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October 1977 

Gentlemen: 

Thank you for your interest in Signetics'family of field programmable logic arrays. The enclosed F P LA 
brochure contains device related information which should facilitate your understanding of the 
structure and applications of these new generation LSI devices. 

As a preview of FPLA versatility, page 59 of the brochure contains the program table stored in a sample 
device for demonstrating that an FPLA is a general purpose logic tool, which could be called upon to 
emulate the function of an ALU . .. almost! A device thus programmed performs the OR, AND, 
Exclusive-OR, Mux and Add (with serial carry) of two 4-bit words. These functions are selected by 
connecting the F P LA as shown on page 60. 

Both Signetics FPLAs are available now in either ceramic (I) or power plastic (NJ packages, with unit 
price related to quantity as follows (commercial temperature range): 

QUANTITY 1-24 25-99 100-999 

N82SIOO/ IOlN $17.50 $14.50 $11.50 
N82SIOO/ IOII 30.00 24.60 19.45 

We have in-house programming capability to supply custom programmed parts within 7 days after 
receipt of your program table. Each custom pattern carries a one time charge of $25.00. 

Field programming equipment is currently available to satisfy your programming needs as your usage 
develops. 

PROGRAMMING ENVIRONMENT MODEL MANUFACTURER PRICE 

Prototyping and Qualification LTC-FIOO Signetics ( 408) 739-7700 $ 345.00 

Pilot Production and Field Support PR-100 Curtis Electro-Devices 1299.00 
( 415) 964-3136 

Volume Production x Data I/O 8000.00 
(206) 455-3990 

In some applications, marginal design tradeoffs can be resolved infavor of FPLAs by compressing the 
logic truth table to a minimum number of product terms. Signe tics has a computer program for 
executing a practical minimization algorithm, which it offers as a free service to its customers. 

Both Signe tics F P LAs have been designed for operation over the full Mil-Temp range, and military 
parts are available in standard S-grade and S / 883 B. 

Please, do not hesitate to contact me if you need further information. 

!ii!JDDliC!i 

Napoleone Cavlan 
Applications Manager 
Bipolar Memories 



llGRETICI 
rlllD 
PROGRARIRIAli~ 
lOGIC ARRAt; 

--------~IDDDDDDD ________ ____.IDDDDDDD 
________ -=dlDDDDDDD 
--------~IDDDDDDD 
--------~IDDDDDDD ________ __.IDDDDDDD 



2 !ii!IDDliC!i 



Since the practical introduction of microprogramming in the 
last decade or so, microcode has progressively displaced 
random logic in step with the growing availability of user 
Programmable Read-Only Memories (PROMs). However, even 
with PROMs, designers soon realized that their rigid address­
ing structure made them unsuitable in a wide variety of 
applications which could greatly benefit from a structured 
logic approach. 

Recently, microprocessors have provided a quantum jump in 
design flexibility in applications requiring about 30 IC 
packages, and beyond. When fewer packages are required, 
the inherent speed limitation, software requirements, and 
support circuitry of microprocessors place them out of range 
of a broad spectrum of applications. 

These in general involve algorithms which require a high 
speed logic decision based on a large number of controlling 
variables. It is here that we step into the basic domain of Field 
Programmable Logic Arrays, encompassing applications in 
microprogramming, code conversion, random logic, look-up 
and decision tables, high speed character generators, etc. 
Moreover, when combined with a few storage elements (flip­
flops), FPLAs can implement powerful logic machines of the 
Mealy/Moore form for the realization of finite state sequential 
controllers for traffic, process, peripheral devices, and other 
similar applications. 

smnotms 3 
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NI-CR TECHNOLOGY MATURES 
Nichrome was the first material to give rise 
to stable, low current fuses with excellent 
fusing characteristics, easily reproducible. 
However, as with all new developments, 
Nichrome technology had to undergo a 
learning curve, with each advance signal­
ing the advent of more complex and higher 
performance devices, without a compro­
mise in reliability. It soon became apparent 
that each incremental step in complexity 
implied a fuller understanding of the fusing 
phenomenon. Accordingly, fusible link 
technology has been intensively investigat­
ed by Signetics over the last 6 years (see 
Signetics' Prom Reliability page 39), giving 
rise to the broadest line of PROMs in the 
industry, and presently, the addition of a 
family of Field Programmable Logic Arrays 
(FPLAs), designed for both commercial and 
military temperature ranges. 

WHAT IS AN FPLA? 
Signetics' FPLAs are fast, user program­
mable, TTL logic elements with memory, 
which can streamline logic system design 
by integrating the equivalent of 528 TTL 
gates in 196 packages into a single IC 
package. 

In terms of logic, the FPLA is a two level 
AND-OR, AND-NOR combinatorial logic 
element, consisting of a system of logic 
gates with programmable inputs and out­
puts as shown in Figure 1. These, by means 
of on-chip programmable connectors, 
enable the user to quickly implement 8 
logic functions with a maximum of 48 
product (ANDl terms, involving up to 16 
input variables. 

FPLA AS A TWO LEVEL 
PROGRAMMABLE LOGIC ELEMENT 

AND 
MATRIX 

t 
PROGRAMMABLE 
CONNECTORS 

Figure 1 

LOGIC STRUCTURE OF FPLA 
ILLUSTRATING AND, OR, AND EX-OR ARRAYS 

SUM 
MATRIX 

(POSITIVE 
"OR" 

GATES) 

PRODUCT MATRIX 

(POSITIVE "AND" GATES) 

Fo 

Fl 

Figure 2 

A more detailed organization of the FPLA is 
shown in Figure 2. The device consists of 
an upper resistor-diode AND matric con­
taining 48 product term columns (P-terms), 
and a lower emitter-follower OR matrix 
containing 8 sum term rows (S-terms), one 
for each output function. Each P-term in 
the AND matrix is initially coupled to 16 
true and complement input variables via 32 
fusible Ni-Cr links for programming any 
desired input combination. 

Each P-term is also coupled to each S-term 
in the OR matrix through an emitter fuse, 
for pulling the summing node to a high 
level when the P-term is activated. Each S­
term in turn is coupled to its respective 
output via an Ex-OR gate, which has pro­
grammable transmission polarity by means 
of an input to ground through a fusible link. 
fusible link. 

Selective programming of the internal links 
allows the user to create specific logic paths 
for producing any logic functions as a sum 
of products, defined in the typical Karnaugh 
Map of Figure 3. 

!ii!IDDliC!i 

TYPICAL KARNAUGH MAP 
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Minterms enclose a single cell. Product terms enclose 
2 or more cells. 

Figure 3 

The transmission through the FPLA can be 
traced along the equivalent logic path 
shown in Figure 4. From this figure, it is 
apparent that Signetics' FPLA is basically a 
two level logic element. The first level 
produces 48 internal AND functions, Po 
through P47, of up to 16 logic input 
variables, or their complement. The second 
level produces 8 OR output functions, Fo 
through F7, each involving up to 48 of the 
internally generated AND terms. Alternate­
ly, if desired, this second logic level can be 
programmed to provide 8 NOR output 
functions Fo* through F?*. However, for 
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EQUIVALENT LOGIC PATH OF 
SIGNETICS' FPLA 

1o 11 
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I { 
I I CE I I 

P4)---.-...~ 
(S) 

A typical set of equations describing the device logic 
transmission is shown on page 17. 

Figure 4 

each of the 8 outputs, either the function Fp 
(active-high), or Fp * (active-low) is avail­
able, but not both. The required output 
polarity is programmed by the user via link 
(8). Th overall logic function provided by 
each FPLA output is summarized in Figure 
5. 

TWO LEVEL LOGIC FUNCTION 
PROVIDED BY EACH OF 
THE 8 FPLA OUT PUTS 

All input NANDs have 16 pairs of inputs for gating 
either true or complement states of logic variables. Fp 
or Fp are obtained with CE = "0." 

Figure 5 

When viewed strictly as a logic element, the 
FPLA can be used to implement sets of 
logic equations of the type: 

Fo =lo+ 11Ts+12 T3 11 .. . 
F1=To+11 Ts+ 15 11 la .. . 
F2 = '2 + 11 Is+ ... etc. 

or, by use of De Morgan's theorem, their 
equivalent as for Fo: 

Fo = ff ol ff1 + Isl (fo + '3 + i'?J ... 
This is readily shown in the logic equiva­
lence of Figure 6. 
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LOGIC EQUIVALENCE OF Fo 

Fo ¢::==:) 

Figure 6 

DISCRETE GATE LOGIC 
NETWORK FOR EQUATION SET F1-4 

X1---'---------------------...-..... 
>---- F1 

X3 ----+----------+---+---------~...._ 
>---- F3 

>---F4 
J------t.........,,, 

Figure 7 

Generally FPLAs are effectively used in 
design situations involving many input 
variables and few active logic states; and, 
with a maximum access time of sons, the 
FPLA is a practical alternative to the long 
logic chains necessary when dealing with 
several input variables. 

The following example is a brief, but con­
cise, illustration of how to integrate random 
logic with discrete gates into a Signetics' 
FPLA. Given the set of logic equations F1-4 
below: 

F1 =X1 + X2X3 
F2=X2+X1X3 
F3=X3+X1X2 
F4 = X1X3 + X1X2 

These can be implemented with discrete 
gates as in the AND-OR-NOT logic net­
work of Figure 7. 

This method is practical for simple sys­
tems; but in more complex applications, it 
soon produces a distributed logic network 
with many IC packages and types, difficult 
to design, troubleshoot and modify. 

!ii!JDDliC!i 

On the other hand, the same set of 
equations can be easily coded in an FPLA 
Program Table (see page 23) and pro­
grammed in a device using inexpensive field 
equipment. 
Typically, F1 would require the FPLA to 
contain the fused link pattern shown in 
Figure 8, as specified in the accompanying 
Program Table slice. Overall, all four logic 
functions would use 3 inputs, 4 outputs and 
7 product terms of the FPLA, leaving re­
maining resources spare for later modifi­
cations. 
For example, if it becomes necessary to 
change the X1 product term in F1 to X1, 
deleting the wrong product term and 
adding the new one becomes a trivial task, 
as indicated in the modified pattern and 
revised Program Table of Figure 9. 

These modifications can be made at any 
time in the field by the user, usually within 
the same device (as long as spare re­
sources are available), by means of inex­
pensive programming equipment (as low as 
$350). 



INTEGRATING LOGIC WITH FPLAs 

X1 

X1 

i<1 

X2 

X2 

X2 F1 = X1 + X2X3 
(2 PRODUCT TERMS) 

X3 

X3 

X3 

Figure 8 

MODIFYING LOGIC WITH FPLAs 

Fl modified by deleting term X1 in the OR matrix and adding new term X1. 

Figure 9 
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FPLA: LOGIC OR MEMORY? 
In all practical applications, the view of 
Signetics' FPLAs as two level AND-OR (or 
AND-NOR) logic elements is perfectly 
adequate to manage all necessary logic 
manipulations. However, the use of FPLAs 
in certain types of applications can be 
better grasped by focusing on an alternate 
aspect of their internal structure. A useful 
insight is gained by comparing FPLAs to 
Programmable Read Only Memories 
(PROMsl, and realizing that FPLAs can also 
be viewed as Conditionally Addressable 
Memories. 

In the industry we refer to PROMs as 1 K, 
4K, etc. These usually imply standard 
organizations such ·as 256X4, 512X8, re­
spectively. The larger in each pair of 
numbers refers to the number of words in a 
PROM, and the second represents the 
number of bits in each word. The product 
of both numbers (approximately 1 K, 4Kl 
gives the total number of storage bits 
contained in the PROM. 

This aspect of PROMs carries over to 
FPLAs, such that Signetics' FPLAs can be 
described as 48X8, for a total wo.rking 
storage density of 384 bits. Thus, the FPLA 
is a relatively small PROM, but a much 
more useful one, due to a fundamental 
difference in input structure. 

In a PROM (figure 10l, all internal words 
are reached by a fixed decoder internal to 
the device. The size of this decoder, as well 
as the storage matrix, doubles for each 
additional address input. In a 256X8 PROM, 
the internal decoder selects 1 of 256 words 
by examining 8 address inputs. For a 512X8 
PROM, 1 of 512 words are selected by a 
decoder twice as large by examining 9 ad­
dress inputs. 

The presence of a fixed decoder renders 
PROM addressing exhaustive. This can 
never be avoided, and forces the utilization 
of PROMs in discrete chunks. This con­
straint is at the root of the inefficiency of 
PROMs in the type of application shown in 
Figure 11. Notice that if we define logic "1" 
as the active-true state of all output 
functions, it is not possible to compress the 
truth table by eliminating inactive minterms 
2, 4, and 7. Moreover, with regard to 
minterms O and 1, it is necessary to allocate 
2 distinct storage locations to activate 
output function 03 with a single change in 
input variable Ao. In this case, Ao repre­
sents a logical don't care (Xl which cannot 
be directly programmed in a PROM. In­
stead, separate minterms A2A1Ao and 
A2A1Ao must be programmed. 

With an FPLA, both constraints are re­
moved. 

As shown in Figure 12, the FPLA does away 
with a fixed decoder in favor of a program­
mable address matrix, which offers, in 
place of forced exhaustive addressing, the 
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SIMPLIFIED PROM ORGANIZATION 
i of 2n 

DECODER STORAGE MATRIX 
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Figure 10 
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TYPICAL TRUTH TABLE 
STORED IN AN 8X4 PROM 

ADDRESS OUTPUTS 

Mn A2 A1 Ao 01 02 03 04 

0 
1 
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4 
5 
6 
7 

[ 
65,536] An 

WORDS 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

TIC 
BUFFER 

0 1 1 1 1 
1 0 0 1 1 
0 0 0 0 0 
1 0 1 1 1 
0 0 0 0 0 
1 1 0 1 0 
0 1 1 0 0 
1 0 0 0 0 

Figure 11 

TYPICAL FPLA ORGANIZATION 

(AND) 

PROGRAMMABLE 
ADDRESS 

COMPARATOR 

INACTIVE 
MINTER MS 

48X8 
STORAGE MATRIX 

OUTPUT BUFFER 

B0 B7 

The input buffer drives a programmable address matrix, in which any one of 2n+1 input 
combinations can be programmed to select a stored word. 

Figure 12 

Bm 

flexibility to choose by "linear-select" any 
finite subset from a large number of input 
states. This is possible because each 
column of the address matrix functions 

essentially as a logic comparator pro­
grammed to recognize the simultaneous 
presence of (n) inputs, each either true, 
false, or both !don't care). 
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As a result, storage for unused minterms is 
no longer required. The necessary logic 
output for the inactive minterms occurs by 
"default." And, don't care states of input 
variables can be directly programmed in 
the FPLA. This allows to program the FPLA 
with either minterms, or the more general 
product terms !P-terms) of the input 
variables (addresses) to minimize logic 
"waste." 

When any programmed logic combination 
is present at the FPLA inputs, the corre­
sponding address matrix column (P-term) 
will be pulled high (logically active), forcing 
all (8) outputs to their true logic state pro­
grammed in the storage matrix. Conversely, 
for all unprogrammed logic combinations 
present at the FPLA inputs, all columns will 
remain low (logically inactive) forcing all (8) 
outputs to their false logic state by default 
(the complementary logic state of their pro­
grammed active level polarity). 

Because it is programmable, the FPLA ad­
dress matrix is not bound in size by the 
number of inputs it examines. Signetics' 
FPLA has 16 inputs to the matrix. If it were a 
PROM, this address matrix would have to be 
large enough to decode the address of 
65,536 words. For the FPLA, the matrix has 
to be only large enough to store the address 
of 48 words: the FPLA's P-terms. The 
advantage comes about because here we 
have a choice to select a minimum of any 48 
input words (or more, as determined by 
don't care input variables) from a total 
available pool of 65,536. 

Due to the unique capability of FPLAs to 
store directly don't care (X) input states, 
each internal word !W) in the device storage 
matrix can be addressed by several logic 
input combinations (minterms), given by: 

!MnlT = 2m-r 
Where m = total number of input variables 

r = number of active inputs (true or 
complement) contained in a 
programmed P-term column. 

Thus, if Pt = XXXlo, m = 4 and r = 1, for 
which !MnlT = 8. 

FPLA RESOURCES 
Signetics' family of bipolar Field Program­
mable Logic Arrays includes both tri-state 
(82S100l, and open collector devices 
(828101 ), featuring the following character­
istics: 

• Field programmable !Ni-Cr linkl 
• 16-input variables 
• 8 output functions 
• 48 product terms 
• sons max. access time m-75°Cl 
• 600mW power dissipation !typical) 
• TTL compatible 
• 28-pin package 
• CE input for expansion or inhibit 
• Outputs individually programmable active 

"high" or "low" 
• Single +sv power supply 

These features and organization combine 
into an easy to use, high performance 
device, affording distinct user benefits: 

A. 16-input variables 
The 16X8 1/0 configuration permits 
direct byte manipulations required by 
intelligent terminals, peripherals, micro­
processor based emulators, minicom­
puters, and all the way up to the larger 
mainframes. Also, in address mapping 
applications, it provides the capability 
to scan an address field 65,536 words 
deep. 

B. Chip Enable input 
The Chip Enable input is a major 
improvement over alternate devices: 

• Eases expansion of input variables and/or 
product terms. 

• Permits application of tri-state device in 
bus organized systems. 

• Provides logic inhibit or preconditional 
decoding functions. 

• Provides a unique "default" logic state for 
all outputs, regardless of programmed out­
put polarity. 

C. Fastest access time 
SOns maximum over the commercial 
temperature range renders the replace­
ment of random logic feasible. 

Fy \CD + AB+ AC+ AC / 
4P-TERMS 

A B c 

D. Fully buffered devices 
All product terms can be utilized as 
many times as required, without affect­
ing device speed and power dissipation. 

E. 48 product terms ( P-terms) 
Allow the user to store in the FPLA 48 
distinct words of 8 bits each. These 48 
words can be addressed by a minimum 
of 48 input address combinations, 
chosen by the user among a total 
available pool of 216 (65,536). 

F. Polarity of all outputs individually 
programmable active-high or active-low 
This feature is particularly useful in 
achieving further product term minimi­
zation in cases where the complement 
of an output function can be implement­
ed with fewer product terms. 

Example: 
As shown in Figure 13, a 50% reduction in 
P-terms is obtained when the output of the 
logical structure of Fy is inverted by means 
of a gate external to the elementary FPLA. 
The desired function Fy is then realized with 
penalties in hardware, and circuit delays 
(however smalD. These are eliminated when 
using an FPLA with output polarity pro­
grammed active-low to realize the function 
O's, rather than 1 's. 

D 

ELEMENTARY FPLA 

Fy 

Fy =Pl+ P2 + P3 + P4 

A 

CD Fy 

AB 
00 

01 

11 

10 

00 01 11 10 

x 1111 0 0 

0 u_J 0 0 

0 0 CI: :IJ 
x 0 0 x 

Fv \ABC+ ACD; 
2P-TERMS 

!ii!JDDliC!i 

B c D 

ELEMENTARY FPLA 

Fy 

Fy = P5 + P6 

Figure 13 

13 
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BIPOLAR FIELD PROGRAMMABLE 
LOGIC ARRAY ( 1614818) 

DESCRIPTION 
The 828100 (tri-state outputs) and the 
828101 (open collector outputs) are Bipolar 
Programmable Logic Arrays, containing 48 
product terms (AND terms), and 8 sum 
terms (OR terms). Each OR term controls an 
output function which can be programmed 
either true active-high (Fp), or true active­
low (Fp)· The true state of each output 
function is activated by any logical combi­
nation of 16-input variables, or their com­
plements, up to 48 terms. Both devices are 
field programmable, which means that 
custom patterns are immediately available 
by following the fusing procedure outlined 
in this data sheet. 

The 828100 and 828101 are fully TTL com­
patible, and include chip-enable control for 
expansion of input variables, and output 
inhibit. They feature either open collector or 
tri-state outputs for ease of expansion of 
product terms and application in bus­
organized systems. 

Both devices are available in commercial 
and military temperature ranges. For the 
commercial temperature range (Q° C to 
+75° Cl specify N828100/101,I or N, and for 
the military temperature range (-55° C to 
+125°Cl specify 8828100/101,1. 

FPLA EQUIVALENT LOGIC PATH 

---~ I I 

I ' 
I .' 

P.,~---~ 
(S) 

LOGIC FUNCTION 

Typical Product Term: 
P0 = 10 • 11 • i; • 15 • ~ 

Typical Output Functions: 
F0 = (CE) + (P0 + P1 + P2) @ 8 =Closed 
F0 =(CE)+ (Pa• P, • P2)@ 8 =Open 

NOTE 

For each of the 8 outputs, either the function Fp 
(active-high) or F p (active low) is available, but not 
both. The required function polarity is programmed 
via link (S). 

FEATURES 
• Field programmable (Ni-Cr link) 
• Input variables: 16 
• Output functions: 8 
• Product terms: 48 
• Address access time: 

S82S100/101-80ns Max 
N82S100/101-50ns Max 

• Power dissipation: 600mW typ 
• Input loading: 

5825100/101: -50µA Max 
N82S100/101: -100µA Max 

• Chip enable input 
• Output option: 

825100: Tri-state 
825101: Open collector 

• Output disable function: 
Tri-state-Hi-Z 
Open collector-Hi 

APPLICATIONS 
• CRT display systems 
• Random logic 
• Code conversion 
• Peripheral controllers 
• Function generators 
• Look-up and decision tables 
• Microprogramming 
• Address mapping 
• Character generators 
• Sequential controllers 
• Data security encoders 
• Fault detectors 
• Frequency synthesizers 

LOGIC DIAGRAM 

F, F, 

!ii!JDDliC!i 

B 
OUTPUT 

FUNCTIONS 

825100 (I 5 ) 825101 (0 c ) 

828100-1,N • 828101-1,N 

PIN CONFIGURATION 

GND 

• 1 =Ceramic 
N =Plastic 

l,N PACKAGE* 

tOpen during normal operation 

TRUTH TABLE 

CE 

MODE Pn CE Sr ~ f(Pn) Fp F* p 

Disabled 
(828101) 

Disabled 
(828100) 

Read 

16 
INPUTS 

115 •••••• 1, 

x 1 

1 0 
0 0 

x 0 

x 

Yes 

No 

1 1 

Hi-Z Hi-Z 

1 0 
0 1 

0 1 

48 
PRODUCT 

TERMS 

Vee 
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ttDIPOLAR FIELD PROGRAMMABLE 825100 (I S ) 825101 (O C ) 
ttIOOIC ARRAY ( 16X48X8) 

82S100-l,N • 82S101-l,N 

ABSOLUTE MAXIMUM RATINGS1 THERMAL RATINGS 

RATING 
PARAMETER UNIT 

Min Max 

COM-
TEMPERATURE MILi- MER-

TARY CIAL 

Vee Supply voltage +7 Vdc 
V1N Input voltage +s.s Vdc 
Vour Output voltage +s.s Vdc 
l1N Input currents -30 +30 mA 
lour Output currents +100 mA 

Temperature range oc 
TA Operating 

N82S 100/101 0 +?S 

Maximum 
junction 17S°C 1so0 c 

Maximum 
ambient 12s0 c 7S°C 

Allowable thermal 
rise ambient 
to junction S0°C 75°C 

S82S100/101 -SS +12S 
TsTG Storage -6S +1SO 

DC ELECTRICAL CHARACTERISTICS N82S100/101: 0°::::; TA::::; +7S°C, 4.7SV::::; Vee::::; s.2sv 

S82S100/101: -SS 0 c :S TA :S +12S° C, 4.sv :S Vee :S S.SV 

N82S100/101 582S100/101 

PARAMETER TEST CONDITIONS Min Typ2 Max Min Typ2 Max 

Input voltage3 
V1H High Vee = Max 2 2 
V1L Low Vee= Min 0.85 0.8 
Vic Clamp3,4 Vee = Min. l1N = -18mA -0.8 -1.2 -0.8 -1.2 

Output voltage Vee= Min 
VoH High (82S10Q)3,5 loH = -2mA 2.4 2.4 
VoL Low3.6 loL = 9.6mA 0.3S 0.45 0.35 O.SO 

Input current 
l1H High V1N '--' 5.5V <1 25 <1 so 
l1L Low V1N "' 0.45V ; -10 -100 -10 -1SO 

Output current Vee= Max 
IOLK Leakage7 Vour = S.5V 1 40 1 60 
IQ(OFF) Hi-Z state (82S10Q)7 VouT = S.SV 1 40 1 60 

Vour = 0.4SV -1 -40 -1 -60 
los Short circuit (82S10Q)4.B Vour = OV -20 -70 -1S -8S 

Ice Vee supply current9 Vee ::: Max 120 170 120 180 

Capacitance? Vee -_ 5.0V 
C1N Input V1N 2.0V 8 8 
Cour Output Vour = 2.0V 17 17 

AC ELECTRICAL CHARACTERISTICS R1=470n, R2 = 1kn, CL= 30pF 

PARAMETER TO 

Access time 
T1A Input Output 
TcE Chip enable Output 

Disable time 
Teo Chip disable Output 

NOTES on following page. 
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N82S100/101: 0°C :STA :S +7S°C, 4.7SV :S Vee :S S.2SV 

S82S100/101: -SS 0 c :STA :S +12S° C, 4.SV :S Vee :S s.sv 

N82S100/101 582S100/101 
FROM 

Min Typ2 Max Min Typ2 Max 

Input 3S so 35 80 
Chip enable 1S 30 15 so 

Chip enable 15 30 15 so 

!ijgDDliC!i 

UNIT 

v 

v 

µA 

µA 
µA 

mA 

mA 

pF 

UNIT 

ns 

ns 



BIPOEAR [IELD PROGRAMMABtE 

NOTES 

1 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device of these or any other 
condition above those indicated in the operation of the device specifications is not implied. 

2. All typical values are at Vee= 5V. TA= 25°C. 
3. All voltage values are with respect to network ground terminal. 
4. Test one at the time. 
5. Measured with V1L applied to CE and a logic high stored. 
6. Measured with a programmed logic condition for which the output test is at a low logic level. Output 

sink current is applied thru a resistor to Vee. 
7. Measured with: V1H applied to CE. 
8. Duration of short circuit should not exceed 1 second. 
9. Ice is measured with the chip enable input grounded. all other inputs at 4.5V and the outputs open. 

TEST LOAD CIRCUIT 

OUT 

F, 

I,. 

GND 

TIMING DIAGRAM 

READ CYCLE 
------------------ +3.0V 

INPUT 1.SV 

'------------------ov 

F0-F 7 

TIMING DEFINITIONS 
TcE Delay between beginning of Chip 

Enable low (with Address valid) 
and when Data Output becomes 
valid. 

Teo Delay between when Chip Enable 
becomes high and Data Output is 
in off state (Hi-Z or highl. 

TiA Delay between beginning of valid 
Input (with Chip Enable low) and 
when Data Output becomes valid. 

VIRGIN DEVICE 
The 825100/101 are shipped in an unpro­
grammed state, characterized by: 

1 . All internal Ni-Cr links are intact. 
2. Each product term (P-terml contains both 

true and complement values of every 
input variable Im (P-terms always logical­
ly" alse"l. 

3. The "OR" Matrix contains all 48-P-terms. 
4. The polarity of each output is set to active 

high (fp functionl. 
5. All outputs are at a low logic level. 

RECOMMENDED 
PROGRAMMING PROCEDURE 
To program each of 8 Boolean logic func­
tions of 16 true or complement variables, 
including up to 48 P-terms, follow the Pro­
gram/Verify procedures for the "AND" ma­
trix, "OR" matrix, and output polarity out­
lined below. To maximize recovery from 
programming errors, leave all links in un­
used device areas intact. 

SET-UP 
Terminate all device outputs with a 10K 
resistor to +5V. Set GND (pin 14) to OV. 

!i!!IDDliC!i 

825100-1,N • 825101-1,N 

VOLTAGE WAVEFORM 

INPUT PULSES 

1, If 

Measurements: All circuit delays are measured at the 
+1.5V level of inputs and outputs. 

Output Polarity 

PROGRAM ACTIVE LOW 
(Fp FUNCTION) 
Program output polarity before program­
ing "AND" matrix and "OR" matrix. Pro­
gram 1 output at the time. (5) links of unused 
outputs are not required to be fused. 

1. Set FE (pin 1) to VFEL· 
2. Set Vee (pin 28) to VccL. 
3. Set CE (pin 19), and lo through 115 to V1H. 
4. Apply VoPH to the appropriate output, 

and remove after a period tp. 
5. Repeat step 4 to program other outputs. 

VERIFY OUTPUT POLARITY 
1. Set FE (pin 1 l to VFEL; set Vee (pin 28l to 

Vccs. 
2. Enable the chip by setting CE (pin 19) to 

V1L. 
3. Address a non-existent P-term by apply­

ing V1H to all inputs lo through hs. 
4. Verify output polarity by sensing the 

logic state of outputs Fo through F?. All 
outputs at a high logic level are pro­
grammed active low (Fp function), while 
all outputs at a low logic level are pro­
grammed active high (Fp function). 

5. Return Vee to VccP or VccL. 
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BIPOLAR FIELD PROGRAMMABLE 825100 (I S ) 82S101 (0 C.) 
LOGIC ARRAY ( 1614818) 

"AND" Matrix 
PROGRAM INPUT VARIABLE 
Program one input at the time and one P­
term ·at the time. All input variable links of 
unused P-terms are not required to be 
fused. However. unused input variables 
must be programmed as Don't Care for all 
programmed P-terms. 

1 . Set FE (pin 1) to VFEL. and Vee (pin 28) 
to Veep. 

2. Disable all device outputs by setting 
CE (pin 19) to V1H. 

3. Disable all input variables by applying 
Vix to inputs lo through !is. 

4. Address the P-term to be programmed 
(No. O through 47) by forcing the corre­
sponding binary code on outputs Fo 
through Fs with Fo as LSB. Use stand­
ard TTL logic levels VoHF and VoLF. 

Sa. If the P-term contains neither lo nor iQ 
~nput is a Don't Carel, fuse both lo and 
lo links by executing both steps Sb and 
Sc, before continuing with step 7. 

Sb. !!. the P-term contains lo, set to fuse the 
lo link by lowering the input voltage at 
lo from Vix to V1H. Execute step 6. 

Sc. If the P-term contains TO. set to fuse the 
lo link by lowering the input voltage at 
lo from Vix to V1L. Execute step 6. 

6 a. After to delay, raise FE (pin 1 l from VFEL 
to VFEH. 

6 b. After to delay, pulse the CE input from 
V1H to Vix for a period tp. 

6 c. After to delay, return FE input to VFEL· 
7. Disable programmed input by return­

ing lo to Vix. 
8. Repeat steps S through 7 for all other 

input variables. 
9. Repeat steps 4 through 8 for all other P­

terms. 
1 0. Remove Vix from all input variables. 

VERIFY INPUT VARIABLE 
1. Set FE (pin 1) to VFEL; set Vee (pin 28) to 

Veep. 
2. Enable F7 output by setting CE to Vix. 
3. Disable all input variables by applying Vix 

to inputs lo through I 1s. 
4. Address the P-term to be verified (No. o 

through 4 7) by forcing the corresponding 
binary code on outputs Fo through Fs. 

20 

S. Interrogate input variable lo as follows: 
A. Lower the input voltage at lo from Vix 

to V1H. and sense the logic state of 
output F?. 

B. Lower the input voltage at lo from V1H 
to V1L. and sense the logic state output 
F?. 

The state of lo contained in the P-term is 
determined in accordance with the follow­
ing truth table: 

INPUT VARIABLE STATE 
lo F1 CONTAINED IN P-TERM 

0 1 IQ 
1 0 

0 0 lo 
1 1 

0 1 Don't Care 
1 1 

0 0 (lo). (!;;) 
1 0 

Note that 2 tests are required to uniquely 
determine the state of the input variable 
contained in the P-term. 

6. Disable verified input by returning lo to 
Vix. 

7. Repeat steps S and 6 for all other input 
variables. 

8. Repeat steps 4 through 7 for all other P­
terms. 

9. Remove Vix from all input variables. 

"OR" MATRIX 
PROGRAM PRODUCT TERM 
Program one output at the time for one P­
term at the time. All Pn links in the "OR" 
matrix corresponding to unused outputs 
and unused P-terms are not required to be 
fused. 

1. Set FE (pin 1) to VFEL. 
2. Disable the chip by setting CE (pin 19) 

to V1H. 
3. After to delay, set Vee (pin 28) to Vees. 

and inputs 15 through hs to V1H. V1L. or 
Vix. 

4. Address the P-term to be programmed 
(No. 0 through 47) by applying the 
corresponding binary code to input 

!ii!JDDliC!i 

82S100-1,N • 82S101-l,N 

variables lo through Is, with lo as LSB. 
Sa. If the P-term is contained in output 

function Fo (Fo = 1 or Fo = Ol, got to step 
6, (fusing cycle not required). 

Sb. If the P-term is not contained in output 
function Fo (Fo = O or Fo= 1 l, set to fuse 
the Pn link by forcing output Fo to 
VopF. 

6a. After to delay, raise FE (pin 1) from 
VFEL to VFEH. 

6b. After to delay, pulse the CE input from 
V1H to Vix for a period tp. 

6c. After to delay, return FE input to VFEL· 
6d. After to delay, remove VoPF from out­

put Fo. 
7. Repeat steps S and 6 for all other out­

put functions. 
8. Repeat steps 4 through 7 for all other 

P-terms. 
9. Remove Vees from Vee. 

VERIFY PRODUCT TERM 
1. Set FE (pin 1) to VFEL. 
2. Disable the chip by setting CE (pin 19) to 

V1H. 
3. After to delay, set Vee (pin 28) to Vees. 

and inputs lo through hs to V1H, V1L. or Vix. 
4. Address the P-term to be verified (No. O 

through 47) by applying the correspond­
ing binary code to input variables lo 
through Is. 

S. After to delay, enable the chip by setting 
CE (pin 19) to V1L. 

6. To determine the status of the Pn link in 
the "OR" matrix for each output function 
Fp or Fi), sense the state of outputs Fo 
through F?. The status of the link is given 
by the following truth table: 

OUTPUT 

Active High Active Low 
P-TERM LINK 

(Fp) (Fp) 

0 1 Fused 
1 0 Present 

7. Repeat steps 4 through 6 for all other P­
terms. 

8. Remove Vecs from Vee. 



BIPOLAR FIELD PROGRAMMABLE 
LOGIC ARRA¥ ( 1614818) 

OUTPUT POLARITY PROGRAM-VERIFY SEQUENCE (TYPICAL) 

Tps 

(PROGRAM) (P'AUSEi" 

"AND" MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL) 

Vee= Veep 

VoHF--.---------------------- - G --
Fo-5 PN PN 1 

VOLF ----- + ---

FUSE 
ENABLE VFEL 

_____ J 
CE - - -- - ___s--V1H--....... -! 

VIL ___ ......,_....._...__ ___________ - --- ---- -

"OR" MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL) 

Vee 
------------------- - - - - ------Vccs 

VccP 

V1H I PN - - - - --.-;N:,--1o-5 

Fo-7 

FUSE 
ENABLE 

VIL ... ·------------------- - - - - ---1......:.. - - -
-Jtol- !Pn NOT IN Fp/Fp) 

VOPF----r--------, (Fp) r---------, 
VoH-1 to•------t--·i--rP_s-i 

r-- ---______ ........__ 

L...1 

VFEH--+-,.....,.---i _______ J-
(VERIFY) 

______ __J-

!ii!IDDliC!i 

825100 (I 5 ) 825101 (0 c ) 

828100-1,N • 828101-1,N 
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BIPOLAR FIELD PROGRAMMABLE .825100 (IS) 82SIOI (0 G.) 
LOGIC ARRAY (16X48X8) 

PROGRAMMING SYSTEM SPECIFICATIONS 1 ff A= +25°Cl 

PARAMETER TEST CONDITIONS 

Vccs Vee supply !program/verify Ices= 550mA, min, 
"OR", verify output polarity)2 Transient or steady state 

VccL Vee supply !program output polarity) 
Ices Ice limit !program "OR"l Vccs = +8.75 ± .25V 

Output voltage 
Vo PH Program output polarity3 IOPH = 300 ± 25mA 
Vo PL Idle 

IOPH Output current limit (Program output VOPH = +17 ± 1V 
polarity) 

Input voltage 
V1H High 
V1L Low 

Input current 
fiH High V1H = +5.5V 
liL Low V1L = OV 

Forced output voltage 
Vo HF High 
VoLF Low 

Output current 
IOHF High VoHF = +5.5V 
IOLF Low VoLF = ov 
Vix CE program enable level 

l1x1 Input variables current Vix= +10V 

lix2 CE input current Vix= +10V 

VFEH FE supply (programJ3 IFEH = 300 ± 25mA, 
Transient or steady state 

VFEL FE supply (idle) IFEL = -1mA, max 

IFEH FE supply current limit VFEH=+17±1V 

VccP Vee supply (program/verify "AND"J lccP = 550mA, min, 
Transient or steady state 

lccP Ice limit !program "AND"J VccP = +5.0 ± .25V 

Vo PF Forced output (program) 

IOPF Ou!put current !program) 

TR Output pulse rise time 

tp CE programming pulse width 

to Pulse sequence delay 

TPR Programming time 
TPR 

Programming duty cycle 
TPR + Tps 

FL Fusing attempts per link 

Vs Verify threshold4 

NOTES 

1. These are specifications which a Programming System must satisy in order to be qualified by 
Signetics. 

2. Bypass Vee to GND with a 0.01µf capacitor to reduce voltage spikes. 
3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The 

recommended supply is a constant current source clamped at the specified voltage limit. 
4. Vs is the sensing threshold of the FPLA output voltage for a programmed link. It normally constitutes 

the reference voltage applied to a comparator circuit to verify a successful fusing attempt. 
5. These are new limits resulting from device improvements, and which supersede, but do not obsolete 

the performance requirements of previously manufactured programming equipment. 
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828100-1,N • 828101-1,N 

LIMITS 
UNIT 

Min Typ Max 

8.25 8.5 8.75 v 

0 0.4 0.8 v 
550 1,000 mA 

v 
16.0 17.0 18.0 

0 0.4 0.8 

275 300 325 mA 

v 
2.4 5.5 
0 0.4 0.8 

µA 
50 

-500 

v 
2.4 5.5 
0 0.4 0.8 

100 µA 
-1 mA 

9.5 10 10.5 v 
2.5 mA 

5.0 mA 

16.0 17.0 18.0 v 

1.25 1.5 1.75 v 
275 300 325 mA 

4.75 5.0 5.25 v 

550 1,000 mA 

9.5 10 10.5 v 
10 mA 

10 50 µs 

0.3 0.4 0.5 mss 

10 µs 

0.6 ms 

50 % 

2 cycle 

1.4 1.5 1.6 v 



±BIPOLAR FIELD PROGRAMMMLE 825100 (I S ) 828101 (0 C I 
±±tOGtffAIRAY (1614818) 

16X48X8 FPLA PROGRAM TABLE 
PROGRAM TABLE ENTRIES 

INPUT VARIABLE OUTPUT FUNCTION OUTPUT ACTIVE LEVEL 

Im -
Don't Care 

Prod. Term Prod. Term Not Active Active 
Im 

Present in Fp Present in Fp High Low en 
u H L - (dash) A • (period) H L ;:: 
w NOTE NOTES NOTES z 
(!) Enter 1-1 for unused inputs of used 1. Entries independent of output polarity. 1. Polarity programmed once only 

en P-terms 2. Enter IAI for unused outputs of used P-terms 2. Enter IHI for all unused outputs. 

> 
al PRODUCT TERM, ACTIVE LEVEL 1 c t-1-1-11-1-11-· w INPUT VARIABLE, 
I- I- - -r---.---- t-__J- L J. _I_ L_L-1-
w NO. 1 1 1 1 1 1 OUTPUT FUNCTION 1 
...I 
a. I- - - - r- -, - - ·--- --- t---.-- - ,.., -.----
~ 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 
0 0 u 
w 1 
al ::tt: 2 
0 I-
I- ([ 3 

< 4 z a.. 
0 0 5 ;:: w 

6 a: ~ 
0 ...J 7 a. 0 
~ CD 8 
J: ~ 0 9 >- w I- Cf) > 10 

([ w Cf) 
11 w u I-

x ~ w z 12 x 0 ([ w 
x ~ 13 
~ I- w 

Cf) I- ~ 
u.. :::> < 0 14 
u u 0 u 15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Cf) 36 
I- 37 ([ 

< 38 a.. ::tt: ::tt: 39 
([ w u.. ::tt: w w u 0 w 40 :2 0 > ([ ...J w 

< ([ w w Cl) I- 41 
z 0 0 CD < < 42 
([ ~ I- 0 w Cf) w Cf) u :::> ~ 

I 
43 

~ < ~ 
z < 44 0 I w ...J ([ 

I- u z < CJ 45 
Cf) ([ 

~ 
I- 0 > :::> :::> 0 ([ w 46 u a.. Cf) I- a.. ([ 

47 
( 1) Input and Output fields of unused P-terms can be left blank. Unused inputs and outputs are FPLA terminals left floating. 
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BIPOLAR FIELD PROGRAMMABLE 825100 (f s ) 825101 (n C.) 
LOGIC ARRAY ( 1614818) 

PUNCHED CARD CODING 
FORMAT 

The FPLA Program Table can be supplied 
directly to 8ighetics in punched card form, 

using standard 80-column IBM cards. For 
each FPLA Program Table, the customer 
should prepare in input card deck in ac­
cordance with the following format. Product 
Term cards 3 through 50 can be in any 

CARD N0.1-Free format within designated fields. 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 
1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 

C F 

SIGN1TICS CUSTOM1R NAME 
T 

PROGRAM TABLE NO 
DEVICE NO. 

CARD NO. 2-

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 

1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 

ST X 

F, Fo 

I 

828100-1,N • 828101-1,N 

order. Not all 48 Product Terms need to be 
present. Unused Product Terms require no 
entry cards, and will be skipped during the 
actual programming sequence: 

5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 B 

5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 

RE V ~ ~ 

I DlTE REVISION 
(1 ALPHA CHAR.) 

SYMBOLIZED PART NO. 

5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 B 

5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 

T 
OUTPUT ACTIVE LEVEL (8) TOTAL PRODUCT TERMS USED (2 DECIMAL DIGITS) COMMENTS (FREE FORMAT) 

CARD NO. 3 through NO. 50 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 B 

1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 

I,, 1, F, F, 

I I I 
INPUT VARIABLE (16) OUTPUT FUNCTION (8) COMMENTS (FREE FORMAT) 

PRODUCT TERM NO. (00 THROUGH 47) 

CARD NO. 51 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 

1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 

E T X 

Output Active Level entries are determined 
in accordance with the following table: 

NOTES 

OUTPUT ACTIVE LEVEL 

Active high 
H 

Active low 
L 

1. Polarity programmed once only. 
2. Enter (H) for all unused outputs. 

24 

2 2 

6 7 

2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 

B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 

I 
COMMENTS (FREE FORMAT) 

Input Variable entries are determined in 
accordance with the following table: 

INPUT VARIABLE 

-
Im Im Don't care 
H L - (dash) 

NOTE 

Enter(-) for unused inputs of used P-terms. 

!ii!JODliC!i 

5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 B 

5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 

Output Function entries are determined in 
accordance with the following table: 

OUTPUT FUNCTION 

Product term Product term not 
present in Fp present in Fp 

A •(period) 

NOTES 
1. Entries independent of output polarity. 
2. Enter (A) for unused outputs of used P-terms. 



BIPOLAR FIELD PROGillMMABLE 825100 (I b ) 825101 (0 C J 
LOGIC ARRAY ( 1614818) 

TWX TAPE CODING FORMAT 
The FPLA Program Table can be sent to 
Signetics in ASCII code format via airmail 
using any type of 8-level tape (paper, mylar, 

. fanfold, etc.}, or via TWX: just dial (910} 339-

9283, tell the operator to turn the paper 
puncher on,· and acknowledge. At the end of 
transmission instruct the operator to send 
tape to Signetics Order Entry. 

A number of Program Tables can be se-

82S100-l,N • 82S101-l,N 

quentially assembled on a continuous tape 
as follows, however I im it tape length to a roll 
of 1.75 inch inside diameter, and 4.25 inch 
outside diameter: 

24" 
LEADER 

(CIR) 

a: 25 
::I I MAIN I SUB I 25 I 25 

HEADING I RUBOUTS I PROGRAM TABLE I (CIR) 

7LIB_ 1_ ~I - - - -it_ I ;;:-17 
HEADING I RUBOUTS I PROGRAM TABLE I ~ I TRAILER( g: I HEADING I (CIR) 

~ MIN. (1) MIN. I DATA (1) I MIN. (N) I MIN. I DATA (N) I 0 I (CIR) I\ 
- -'- - _J - - __ ,_:;:j_ _ _L~ 

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a($} character, 
whether used or not: 

1. Customer Name 4. Purchase Order No. 

2. Customer TWX No.------------------ 5. Number of Program Tables 

3. Date----------------------- 6. Total Number of Parts -----------------

8. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry 
preceded by a ($} character, whether used or not: 

1. Signetics Device No. 

2. Program Table No. ------------------ 5. Customer Symbolized Part No. --------------

3. Revision 6. Number of Parts 

C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data 
consists of Output Active Level, Product Term, and Output Function information separated by appropriate identifiers in 
accordance with the following format: 

START OF DATA TEXT START OF DATA FIELD 
(CONTROL A or B) PRODUCT TERM IDENTIFIER 

START OF DATA ~ 1 SPACE (MANDATORY) END OF DATA TEXT 

[ 

FIELD PRODUCT TERM NUMBER [START OF DATA FIELD (CONTROL C) 1 
ACTIVE LEVEL fr (2 DECIMAL DIGITS) 

[ 

IDENTIFIER START OF DATA FIELD I OUTPUT FUNCTION IDENTIFIER 

ACTIV. E LEVEL DATA De INPUT VARIABLE IDENTIFIER OUTPUT FUNCTION DATA INPUT AND OUTPUT DATA FOR 
(8 DIGITS, HIL) INPUT VARIABLE DATA (8 DIGITS, Al•) ALL PRODUCT TERMS USED 

(16 DIGITS, HILi-) ,- ____ _J_ _____ 
1 

STX* A F7F6F5F4F3F2F1F0* P 00 * I 115114113112111 11019181716151413121110* F F7F6F5F4F3F2F1F0* P 01 ..... * F ..... * P .......... F0 ETX 

Entries for the 3 Data Fields are determined in accordance with the following Table: 

INPUT VARIABLE OUTPUT FUNCTION 

-
Im Im Don't care 
H L - (dash} 

Product term Product term not 
present in Fp present in Fp 

A •(period} 

NOTE NOTES 

Enter(-) for unused inputs of used P-terms. 1. Entries independent of output polarity. 
2. Enter (A) for unusea outputs of used P-terms. 

OUTPUT ACTIVE LEVEL 

Active high 
H 

NOTES 

Active low 
L 

1. Polarity programmed once only. 
2. Enter (H) for all unused outputs. 

Although the Product Term data are shown entered in sequence, this is not necessary. It is possible to input only one Product 
Term, if desired. Unused Product Terms require no entry. ETX signalling end of Program Table may occur with less than the 
maximum number of Product Terms entered. · 

NOTES 

1. Corrections to any entry can be made by backspace and rubout. However, limit consecutive rubouts 
to less than 25. 

2. P-Terms can be re-entered any number of times. The last entry for a particular P-Term will be 
interpreted as valid data. 

3. Any P-Term can be deleted entirely by inserting the character (E) immediately following the P-Term 
number to be deleted, i.e., •p 25E deletes P-Term 25. 

4. To facilitate an orderly Teletype print out, carriage returns, line feeds, spaces, rubouts etc. may be 
interspersed between data groups, but only preceding an asterisk ('). 

5. Comments are allowed between data fields, provided that an asterisk(*) is not used in any Heading or 
Comment entry. 

!ii!IDDtiC!i 25. 
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PROGRAMMING 
SIGNETICS' FPLA 
The FPLA is programmed by the user with 
the desired program table (or truth table) in 
3 successive steps involving the AND 
matrix, the OR matrix and the transmission 
polarity of the output Exclusive-OR gates. 

In its initial unprogrammed state, all Ni-Cr 
links are intact, such that: 

• Each P-term contains both true and comple­
ment values of every input Im. Hence, all P­
terms are in the NULL state (unconditionally 
I owl. 

• Each S-term contains all 48 P-terms. 
• The polarity of each output is set to active­

high (Fp function). Since all P-terms are 
inactive, all outputs will be at a low level when 
the chip is enabled (CE = lowl, regardless of 
input conditions. 

The peripheral fusing circuitry inside the 
FPLA and a summary of the fusing require­
ments of the FPLA are shown in Figure 14 
and Table 1, respectively. For a more 
detailed fusing procedure, refer to the data 
sheet in Chapter 2. 

AND Matrix 
Each P-term Pn is programmed by fusing 
the appropriate Ni-Cr links in all pairs that 
couple the P-term to each input variable. If 
Pn contains Im, the I;;; link is fused, and vice 
versa. If Im is a don't care in Pn, both the Im 
and Im links must be fused. If fewer than 16 
variables are used in any application, the 
unused variables represent don't care 
conditions for all used P-terms, and their 
corresponding Im and Im links must in 
general be fused (see Editing, below). 

Since in a blank device all P-terms are in a 
logic null state, unused P-terms require no 
programming at all. 

OR Matrix 
The response of each output function to 
programmed P-terms is assigned in the OR 
matrix. If any product term Pn logically 
negates an output function, the link cou­
pling that output function to the P-term 
must be fused. Conversely, if a P-term 
logically asserts (activates) an output 
function, the corresponding coupling link 
must remain intact. 

No programming is required of OR matrix 
links coupling used or unused P-terms to 
S-terms servicing any unused output func­
tions. 

Output Active Level 
The logic output transition !H - L, or 
L - Hl required for each FPLA output func­
tion when activated by a selected P-term is 
programmed in the Ex-OR gates. 

For an active-low output !H - L transition), 
the link grounding one input of the Ex-OR 
gate servicing the desired output must be 
fused. For an active-high output, the link 
must remain intact. No fusing is required of 
links servicing Ex-OR gates of unused 
outputs. 

I 
N 
p 
u 
T 
s 
0 
u 
T 
p 

u 
T 
s 

FUNCTIONAL FPLA BLOCKS ACTIVATED DURING 
ARRAY PROGRAM/VERIFY SEQUENCE 

OR-MATRIX SELECT AND-MATRIX SELECT 

PROGRAM 

Vee 

Idle 

VERIFY 
AND-MATRIX 

T ... 

Figure 14 

"AND" 
MATRIX 

+5.0V 

+10.0V 
1----11-----

Im "1" 
Program t--; -- ----

I r;;:; "O" 

Active-High 

"OR" OUTPUT 
MATRIX POLARITY 

+8.75V "O" 

Address 
P-Term with "1" 

lo -rs 

"O" 
1--------- N.A. 1-----

Active-Low Address +17.0V~ 

I-------- - P-Term with I--- -- --
"O" 0.4MS 
---·~ 

!Pnl in Fo -Fs "O" 
I--- -- -- -- - I------ N.A. 

!Pn) out +10.0V 

FE +17.0V +1.5V 

CE +10.0~ "1" 
"1" 0.4MS 

J J 

Entries "O" and "1" are standard TTL levels. 

Table 1 SUMMARY OF FPLA INPUT REQUIREMENTS 
FOR PROGRAMMING RESPECTIVE AREAS 

IN THE DEVICE 
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EDITING SIGNETICS' FPLA 
In contrast with PROMs, FPLAs have 
inherent program editing capabilities. After 
programming, the user can incorporate a 
number of program modifications in Sig­
netics' FPLAs. These are tabulated in Table 
2. 

So, given a programmed function: 

Fo =lo+ 1112+13f41s 

it is possible to modify it as: 

Fo =lo+~+ 11'2 + l3'4't5, 

by: 

1. Complement Fo by reprogramming FPLA 
output active-low. 

2. Delete P-term !11l2l from the OR matrix. 
3. Program new P-term !h Gl in the AND matrix. 
4. Change input Is to Don't Care in P-term !13f41sl 

by fusing both Is links in the AND matrix. 

GENERATING THE FPLA 
PROGRAM TABLE 
In a typical application as in Figure 15, the 
symbolic statements, or the truth table, of a 
logic problem are first reduced to a 
minimum set of P-terms. 

ELEMENTARY PROGRAM 
TO BE STORED IN FPLA 

Fa= Po+ I+ P2 
F1 =I+ P1 + P2 

a. Activity Map of 
elementary function set. 

P0 = 12 i1 i0 

P1 = 12 i1 10 

P2 = f2 11 fo 

b. P-term List 

Figure 15 

The minimized output function set is 
expressed in the form of an activity map for 
tabulating those P-terms which are con­
tained in an output function, and those 
which are not, designated by (Pnl or (/) in 
their respective positions. • 

The activity map eases the derivation of 
program table entries for the FPLA input 
variable field, output function field, and 
output active level polarity field. 

The standard program table format adopt­
ed by Signetics is shown in Table 3. The 
term "Program Table" is used in favor of 
truth table, because the former allows don't 
cares (Xl as a direct entry, and thus is more 
general, and conforms to FPLA structure. 

Ideally the FPLA program table should 
contain entries formulated with a code 
which not only issues unambiguous fusing 
commands to a programming system, but 
also readily displays the actual logic state 
of the FPLA outputs. In dealing with logical 
statements or truth tables, most logic 
designers are used to either (1/0l or (H/U 

30 

Program desired logic combination into any 
P-Term to F p/Fp YES unused P-Term. Blow S-Term link(s) coup­

ling P-Term to inactive output functions. 
ADD -------+---+-----------------

- Delete erroneous P-Term. 
1 m/I m to P-Term NO Add new, corrected P-Term. 

P-Term from F p/Fp YES Blow S-Term link coupling P-Term to F p/Fp. 
-------r---~----------------

DELETE - Blow both links coupling the input variable 
lm/lmfromP-Term YES totheP-Term. 

Fp~Fp YES Blow Ex-OR link of output to be inverted. -------i----+-----------------
1 m/lm ~x YES Delete Im/Im from P-Term. 

CHANGE -------+--~----------------
- NO Delete erroneous P-Term, and add a new 

lm~lm P-Term. 
1--------t--- f------------------

Fp~ F p NO Use spare active-high output. 

Table 2 SUMMARY OF "EDITING" FEATURES OF SIGNETICS' FPLA 

PRODUCT TERM ACTIVE LEVEL 

_ ~N!~T VARIABLE (Im) - r - -,- -1- - r - r-1 - r -
- - - - - t--LOUTPlffF!.UNCTION L __ NO. 1 1 1 1 1 6 t-9- 0 8- -7- -6- 5 r 4- 3 r 2- -1..., O t-.-r-r-----T-r -,--5 4 3 2 1 7,6 5'4'3,2,1 0 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

Used P-terms can be programmed anywhere. Unused P-terms require no programming, and can be left blank. 

Table 3 STANDARD SIGNETICS' FPLA PROGRAM TABLE 
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symbols. An additional symbol (Xl is 
generally used for don't care input states. 
Their widespread usage is a strong incen­
tive to choose among these symbols for a 
suitable set to code the FPLA program 
table. 

However, in many cases the program table 
will be transmitted to remote programming 
centers over commercial communication 
links, which normally employ an ASCII 
alpha-numeric code. Since the "distance" 
between the ASCII codes for "O" and "1" is 
only 1 bit, the risk of undetected trans­
mission errors is large. Thus, the set (H, L, 
Xl is more preferable, but it is still not ideal. 
Indeed, to enhance the production of low 
cost programming equipment, in which a 
low cost LED display is mandatory, one 
must forego the (Xl in favor of a more 
realizable symbol such as a (-). 

Therefore, the code for each state of the 
input variables in each P-term is coded as 
illustrated in Table 4. All entries clearly 
indicate. the logic states of the input 
variables which activate a given P-term. 

An additional symbol for the input variables 
is required to code the state in which both Im 
and I; links are intact. This code, chosen as 
(OJ again for ease of display, is necessary to 
indicate the state of input variable(sl in a 
virgin device, or for unused or partially 
programmed P-terms. It is the initial state of 
all input variables, signifying their logic null 
state. If any used P-term contains at least 
one variable in the null state, the P-term will 
never be selected by any logic input combi­
nation. Entry of a (0) in the program table is 
thus meaningless, and not allowed. How­
ever, it does require to be displayed by a 
programming system to indicate blank 
check results, or program fail conditions. 

While these symbols are appropriate to 
code the various states of the FPLA input 
variables for each P-term, as well as the 
output Active Level polarities, they give rise 
to some ambiguities when used to code the 
FPLA outputs, because of the user choice 
of output Active Level. To code the outputs 
of the FPLA, several alternatives are 
available. In all cases, derivation of each 
entry involves scanning the Activity Map to 
determine whether or not an output func­
tion contains a particular P-term. Regard­
less of chosen output polarity, a P-term 
activates Fp if it is contained in Fp. 
Accordingly, any Fp will be forced high, 
and Fp (defined as Fp l will be forced low. 
Conversely, if Pn is not contained in an 
output, all Fp and Fp functions will remain 
in their default logic state (low or high, 
respectively). A particularly convenient 
method for coding the FPLA output table is 
shown in Table 5. 

This coding system utilizes an A (for Active) 
to indicate the presence of Pn in either Fp 
or F P• and a• (period) to indicate absence. 
It has the advantage that the FPLA output 
table can be constructed directly from the 

? 
Pn :f(lm) INPUT STATE PROGRAM TABLE ENTRY FUSE COMMAND 

Im ® Fuse Im link 
Yes -

© Im Fuse Im link 

No Don't Care 8 Fuse both 

Table 4 PROGRAM TABLE CODING OF INPUT VARIABLES 

r---:;--
1 F p ~ f(Pn) 
1_ 

ACTIVITY 
MAP 

--------, 
OUTPUT 
TABLE 

FUSE I 
COMMANDS j 

I 
I Yes Pn ® ® Do not Fuse P n 

link in OR-Matrix 
t-------

I 
I 

-----~ 
Fuse Pn link I 1 

L 
No I 

[ 
0 0 in OR-Matrix ___ I 

Active Level H L 

F F * L-~~-~-L~uncti~Polarity-J 
Entries, contained in 0, are obtained by "multiplying" the contents of the activity map 
with the active level. Note that they are independent of output polarity. 

Table 5 TABLE FOR FORMULATING OUTPUT TABLE ENTRIES FOR THE FPLA 

FPLA FPLA 
OUTPUT LOGIC 
TABLE OUTPUT 

® H L 

0 L H 

® © Active Level] 

[Function Polarity Fp Fp* 

The FPLA output is obtained by "multiplying" output table entries with the active level. 

Table 6 TABLE FOR CALCULATING THE FPLA LOGIC OUTPUT 

PRODUCT TERM ACTIVE LEVEL 
-~N!~TVARIABLE {Im) -r--:--:--r-:--"":"Hf'L 

l ~ ~ ~ ~g-rc1- -6 5 4- 3 .-i- -,- o ti~~~T:Y-r~u~HN~-~-_, 
1---+-+-+-+..;:..+-+---=-+--+---+-+--+---+---+--'-+--'-+--'-+-"'-4 

NO. 

H L L • A 
H L H A • 
L H L A A 

4 

I~ 11111111111111111111111111 

Table 7 PARTIAL PROGRAM TABLE FOR THE EQUATION SET OF FIGURE 15 

activity map. Also, when retrieving the 
stored output table from a programmed 
device, the presence/absence of a P-term 
in an output function is readily detected, 
yielding the easiest array verification 
procedure. However, in order to relate the 
actual logic output of the FPLA to the 
above entries (especially when dealing with 
code conversion, or address translations), 
reference to Table 6 is necessary. 

On the basis of the above coding system, a 
partial program table for the equation set in 
Figure 15 is shown in Table 7. 

!ii!JDDliC!i 

Note that only 3 P-terms and 2 outputs are 
used. Also note that the Active Level for 
FPLA outputs O and 1 has been set to L and 
H respectively to implement the required 
logic transition polarities of Fo and F1. 
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To complete the table we must dispose of 
all its blank areas. The guiding concern 
here should be to leave intact as many as 
possible of the unused FPLA resources, for 
possible later use. Hence: 

1. Leave blank Input Variable and Output Func­
tion fields of all unused P-terms (Pa through 
P47}. 

2. Enter H (initial virgin statel in the Active Level 
field of all unused output functions !F2 through 
F1l. 

3. Enter A (initial virgin state) in the Output 
Function field of all unused output functions 
!F2 through F1l. 

4. Enter a (-J for all unused input variables (13 

through l15J of used P-terms. ln general this is 
not the best alternative. Another, more conser­
vative option, is described below. 

The complete program table for the above 
example, after applying rules 1 through 4, 
is shown in Table 8. 

DISPOSITION OF UNUSED 
INPUTS 
When a particular application involves less 
than 16-input variables, if unused inputs 
are programmed as don't care in all used P­
terms (M) of the FPLA, it is no longer 
possible to modify the logic structure of the 
(M) P-terms by reinstating any of the 
unused inputs as additional controlling 
variables to the FPLA. 

While it is possible to recover from this 
condition by deleting P-terms requiring 
change, and adding any of the remaining 
(48-Ml P-terms programmed with the 
desired number of input variables, this 
method ultimately fails once all 48 P-terms 
are exhausted. 

This method can be combined with an alter­
nate procedure to obtain a greater degree of 
flexibility in adding previously unused in­
puts to a preprogrammed FPLA. It requires 
that about one half of all originally unused 
inputs be programmed high and the remain­
ing half low, in (M) P-terms only. These 
inputs are then normally tied to high and low 
logic levels respectively. 

If at any time during function update or 
modification it becomes necessary to add 
high and/or low control variables to (N) of 
the (M) P-terms, any of the properly 
programmed idle inputs are disconnected 
from their voltage clamps and connected to 
their corresponding logic sources. These 
newly activated inputs must in turn be 
reprogrammed as don't care in (M-Nl of the 
used P-terms. 

An illustration of the above concept is 
easily provided by recoding the previous 
problems as shown in Figure 16. 

Suppose that later on in the design cycle a 
modification of system function is neces­
sary, whereby: 

32 

PRODUCT TERM ACTIVE LEVEL 

_ ~N!l!T VARIABLE llml 8.I8TH=C':fft:! [i!li! [1 
NO. ~ 1 j ~ 1 6 r9-r3- -7- -6 S 4- 3 f -,-, 0 
o -------------HLL 

f-f: ~L?YY~ ~u3Nf ~?~- ,-o-
A A A A A A • A 
A A A A A A A • 
A A A A A A A A 

1 -------------H L H _______ _.:: _____ L H L 

~ : 

lit~~l--+-+--il I l~I I l~I I 1~1 I lr--+-+-il I II I I I I I I I I 

Table 8 COMPLETE PROGRAM TABLE FOR THE EQUATION SET OF FIGURE 15 

FPLA WITH UNUSED INPUTS PROGRAMMED FOR LATER USE 

PRODUCT TERM 

_ ~N!l!T VARIABLE Oml 
NU. 1 1 1 1 1 6 r9r3-r-7- -6 5 5 4 J 2 1 

0 H H H H H H L L L L L 

H H H H H H L L L 
H H H H H H L L L 

4- 3 2- - 1 0 
L L H L L 

L H L H 
L L H L 

ACTIVE LEVEL 
tifi=!Ttf:-HrH •i'.FR r [ 

~~~~W¥~~ur¥~~~~-~-
A A A A A A . A 
A A A A A A A . 
A A A A A A A A 

I 
I 

Bl 1111 I I I I I I I I I I I II I I I IH] 
a. FPLA Program Table 

b. FPLA Connections 

Figure 16 

Fo =Po+ I+ P2 
F1 =I+ P1 + P2 

and 
Po= Ix 12 f110 
P2=ly121110 

The new high and low input variables in Po 
and P2 can be readily included without 
resorting to adding new P-terms as shown 
in Figure 17. 

VERIFYING THE STORED 
PROGRAM 
Unlike PROMs, verification of an FPLA 
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after programming presents unique diffi­
culties, posed by the large number of 
inputs to be manipulated and by the 
associative characteristic of FPLAs. 

, In general, the FPLA program table may 
bear little resemblance to the original truth 
table, yet, from a black box viewpoint, the 
logic function of the FPLA should match 
entry for entry the original truth table. This 
level of verification can only be obtained 
through a logic verification procedure, in 
which the logic transfer characteristic of 
the FPLA is exhaustively examined by 

• 



FPLA INCORPORATING ADDITIONAL INPUTS REQUIRED BY SYSTEM MODIFICATION 

PRODUCT TERM ACTIVE LEVEL 

1 
_ ~N!':!T VARIABLE llml 

ri~ ~~~1~~0H~~~ ~-> NU. 1 1 1 1 1 9-rs- -7- -6 5 4- 3 f- Ci 5 4 3 2 1 0 
0 H H H H H - L L L L L L L H L A A A A A A . A 

H H H H H - L L L - H L H A A A A A A A . ly 

H H H H H H L L L - L H L A A A A A A A A +5V 

I li 11111111111111111111111111 

a. Modified FPLA Program Table 
incorporating additional active in­
puts Ix= 13, and ly =I 10 

b. Modified FPLA Connections 

exerci~ing its inputs with a minterm gener­
ator. 

But, while logic verification is the ultimate 
test of FPLA valid function, it is a useless 
tool for determining the FPLA stored 
program. This is readily apparent in Figure 
18 which shows the output of an elemen­
tary FPLA to be the same (low) for 3 distinct 
internal programmed states, when its 
single input is toggled between high and 
low logic levels. 

Since a non-ambiguous map of the status 
of every link in the device is a most 
essential tool required to monitor and 
manipulate the stored program (especially 
while interacting with an FPLA program­
ming system or when duplicating from a 
master device), Signetics' FPLAs allow 
such map to be obtained via an array verify 
test sequence comprising 3 tests for 
examining the links in the output Ex-OR, 
the AND matrix, and the OR matrix. 

ARRAY VERIFY 
The peripheral fusing circuitry in Signetics' 
FPLAs incorporates additional networks 
and dedicated paths for the array verify test 
sequence. These are shown at the bottom 
of the composite FPLA diagram in Figure 
14. Specifically, to sense the status of the 
AND matrix links, the OR matrix includes 
an extra row of non-fusible emitter follow­
ers Oo through Q47, monitored via Oso 
collector ORed with output F1. This stage 
does not interfere with F1 during normal 
operation because Oso can only get base 
drive during verify mode. 

(H) 

Figure 17 

DISTINCT FPLA PROGRAMMED STATES 
RESULTING IN IDENTICAL LOGIC FUNCTION 

Vee Vee 

3 WAY AMBIGUITY 

(H)i I 

~ ~ / ~.JllO--+-O(L) 
(I) - P - TERM CONTAIN EDIN F*. iV -

t I 

(L) 

I= X(DON'T CARE). CC (Ill)· "NULL" STATE OF VIRGIN DEVICE. 

I 
N 
p 
u 
T 
s 

OUTPUT= ACTIVE LOW= F* 

VERIFY-

Vee 

Verify 

p 

't~~-~r. 
(LI ~-1 '-IF 
~(LI 

(II) - P - TERM NOT CONTAINED INF. 
I =X(OON'T CARE). 
OUTPUT= ACTIVE HIGH= F. 

Figure 18 

"AND" MATRIX "OR" MATRIX 

+5.0V +8.75V 

+10.0V 

(1): Im= "O" 

(2): Im= "1" 
----+--------- ADDRESS P-TERM 

WITH lo- Is 
Idle +10.0V 

3 F
7 

~~~= ~ l q ~ l ~ 
T - T T- TDon't 

Fp Act HI Act LOW 

"O" (Pn) out (Pn) in 

OUTPUT POLARITY 

+8.75V 

"O" 

"1" 
(All) 

Fp Polarity 

"O" active-HIGH 
The internal map of the FPLA is obtained 
by performing the sequence of tests 
summarized in Table 9, during which the 
Fuse Enable input is maintained at +1.5V. 
Verification of the active level polarity of the 
outputs is obtained by addressing a non­
existent P-term in the device, and thus rely 
on the pull-down resistors in the OR matrix 
to yield a non-ambiguous result. 

Im-Null Im Im care 
~ 1-------------- --i--- i----- -~----
T 
s Idle 

ADDRESS P-TERM 
WITH F0 - F5 

"1" (Pn) in (Pn) out "1" active-LOW 

The output active level test must be performed before the OR matrix test. Entries "O" and "1" are standard TTL levels. 

Table 9 SUMMARY OF FPLA INPUT REQUIREMENTS FOR 
MAPPING THE STATUS OF ALL INTERNAL LINKS 
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T,o verify the AND matrix 2 tests are 
required for each input of all P-terms. The 
status of each Im link coupling a P-term to 
the input buffer outputs is determined in 
accordance with Table 10. 

INPUT VARIABLE 
STATE CONTAINED INPUT 

Im F1 IN P-TERM CODE 

L 
H 

L 
H 

L 
H 

L 
H 

H 
Im L 

L 
Im H 

H 
Don't care 

H 

L 
(Im). (Im) 

L 

Table 10 TABLE FOR 
DETERMINING THE STATUS 
OF EACH INPUT VARIABLE 
LINK IN THE AND MATRIX 

L 

H 

-

0 

Verification of the OR matrix requires prior 
knowledge of the output level polarities. 
The status of the OR matrix links coupling 
each P-term to the S-term is given by Table 
11. 

OUTPUT 

Active-high Active-low P-term Link 
(Fp) (Fp) 

L H FUSED 

H L PRESENT 

Table 11 TABLE FOR 
INTERPRETING THE STATUS OF 
OR MATRIX LINKS, BASED ON 

OUTPUT ACTIVE LEVEL 
TEST RES UL TS 

For a more detailed array verify procedure 
refer to the device data sheet. 

LOGIC VERIFY 
After an FPLA has been programmed, and 
its contents checked by array verify against 
hard-copy reference of the program table, 
there should be in most cases little reason 
to suspect that the device will not exhibit 
the correct logic function in a system 
environment. However, in some cases, 
device defects, programming equipment 
problems, user coding inexperience, as 
well as system logic races and other 
marginalities, may all contribute in creating 
a situation in which system failures are 
traced to an FPLA which nevertheless 
appears to contain the correct program 
table. In these cases, further device diag­
nostics are necessary to identify the source 
of the problem at hand, for which the actual 
operating system may be a slow and 
ineffective tool. 
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Also, at the end of the design cycle, some 
users may want to replace FPLAs with 
mask programmable PLAs for cost reduc­
tion. Since a PLA does not contain peri­
pheral fusing circuitry, it is not possible to 
logically address each of its internal links 
to verify that the PLA contains the same 
program table as the master FPLA. In this 
case the only verification possible is a full 
logic verify of the PLA versus FPLA func­
tions. 

Ultimate verification of FPLA logic perfor­
mance entails an exhaustive check of its 
logic function to compare the expected 
truth table with the stored truth table, ob­
tained by cycling the FPLA inputs through 
all 216 combinations with a minterm genera­
tor. This, however, involves dealing with a 
hardcopy reference of a table containing 
about 64,000 input entries, which is a totally 
impractical task in view of what may be 
required to generate and store such table. 

A more feasible alternative consists of con­
structing a "hardwired" logic verify system 
which may be conveniently incorporated 
within the FPLA programming system. The 
programmer would then function as an 
FPLA emulator with the ability to produce 
and display the full truth table of the FPLA, 
viewed just as a logic box. This is extremely 
useful in code conversion, map translations, 
or when programming directly from a truth 
table. 

In essence, the logic verify system must be 
able to compare the actual FPLA logic 
output with that computed on-the-fly by 
composite overlay and manipulation of the 
output table stored in the programmer, as 
activated by all concurrent and multiple 
address selections for each state of the 
input minterm generator. 

The logic verify procedure presumes 
knowledge of the program table stored in 
the device; hence, it must necessarily 
follow an array verify operation to first scan 
and store in the system main memory the 
program table contained in the device 
under test. A comparison of the actual 
versus computed output tables in conjunc­
tion with a direct display of the FPLA logic 
output for each minterm input, will reveal 
all discrepancies. 

To be useful, the logic verify procedure 
must also be fast. If should be complete 
within 5 to 10 seconds per device, and thus 
dictates use of a hardwired algorithm. The 
block diagram of a logic subsystem which 
executes a suitable algorithm, outlining 
basic hardware, controls, and data paths is 
shown in Figure 19. 

The algorithm manipulates program table 
data stored in main memory and active 
level register, in the format contained in 
Table 12. Before loading the program table, 
M/M and the ALR are reset to "O," to clear 
all previously stored fusing commands. A 
binary counter, conditionally incremented, 
functions as minterm !Mnl generator, for 
addressing the FPLA with all 216 input 
combinations. The FPLA output for each 
Mn input is stored in Register B. All 48 P­
terms are fetched one at a time from the 
program table in M/M, and examined to 
determine whether they logically contain 
each Mn. The criteria which logically 
include or exclude Mn from a P-term are 
tabulated in Table 13 for all general 
programmed states. If the test fails, a new 
P-term is fetched, and the test repeated 
until all 48 P-terms have been examined, 
and all 216 minterms are exhausted. On the 
other hand, if the test indicates that Mn is 

BLOCK DIAGRAM OF LOGIC VERIFY 

CLEAR 

16 BIT COUNTER 
(M-TERM) 

GENERATOR 

RESET 

-, 
MAIN MEMORY I 

FPLA PROGRAM TABLE PT I 
I _, 
I 

.... __________ ...._~J 
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CLEAR 

FPLA 

UNDER TEST "B" 

COMPARE 
ENABLE 

NANO : WIRE 
1 AND 

ACTIVE 
LEVEL 

REGISTER 

Figure 19 
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contained in the P-term, the F-set field 
associated with the addressed P-term is 
overlaid in Register A, while the M/M 
address of the P-term is stored in a stack 
containing the concurrent P-term list, and a 
presence flag set to indicate that the P-term 
address is a valid member of the list. 

Testing continues until all 48 P-terms have 
been compared to the Mn count. At this 
point, Register A contains a composite 
FPLA output table obtained when all 
con Jrrently selected P-terms are activat­
ed by Mn at the FPLA inputs. This table is 
merged through an EX-NOR with the 
contents of the ALR to produce a compos­
ite binary F-set, which is in turn compared 
with the contents of Register B. If they are 
equal, the Mn generator is incremented, and 
the test sequence repeated with Mn+1 until 
the last minterm. (Alternately, if in manual 
mode, before incrementing Mn one could 
observe the logic output of the FPLA with 
Mn as input by calling the contents of the 
display buffer). If the contents of Registers A 
and B differ, an error flag is set, and the Mn 
count halted. The following housekeeping 
displays occur, and the system wi 11 wait u nti I 
a continue command: 

• The concurrent P-term list is scanned and 
displayed in the designated field on the CRT. 

• The contents of the Mn generator are dis­
played in the hexadecimal M-term count field, 
while its binary equivalent (presented to the 
FPLA inputs> is displayed in the lnpu~ field. 

• Results of the EX-NOR of Register B with the 
contents of the ALR are displayed in the 
Output field. This yields the output table 
obtained from the device with Mn as input. 

• The contents of the ALR are displayed in the 
Act Levi field. 

• The contents of Register A are displayed in the 
Computed Output Table field. They indicate 
the composite output table expected from the 
FPLA with input Mn. 

• The contents of Register Bare displayed in the 
PLA Output field. They indicate the logic levels 
present at the FPLA outputs. 

A suitable display of this information is 
shown in Table 14. All error conditions 
detected during logic verify will produce 
conflicting indications in the PLA output 
table versus the computed table. From 
Table 14, the presence of A in the PLA 
output table versus a • in the computed 
table suggests an illegal concurrency in the 
device. Conversely, the • in Fo and F5 in 
contrast with an A for the same bits in the 
computed table indicates inherent concur­
rencies absent in the device. Knowing all 
concurrent P-terms and the logic input to 
the FPLA, we can resort either to array 
verify or hardcopy reference of the pro­
gram table and activity map for further 
diagnostics and isolation. · 

Stored 
Format 

Typical 
Entry 

ADDRESS DATA 

P-term P-term Field F-Set Field 

# 115 114 ------ lo F1 Fs --------

Sequential oj 1 1Jo ------ 1 I 1 0 1 --------

27 H L ------ - A • --------

a. M/M binary _format and typical entry 

F1 Fs -------- Fo 

Stored 
0 1 0 

Format --------

Typical 
H L -------- H 

Entry 

b. ALR binary format and typical entry 

Table 12 BINARY ASSIGNMENT OF FPLA PROGRAM TABLE 
STORED IN MAIN MEMORY, AND ACTIVE LEVEL REGISTER 

I II Ill 

Mn H H L L H H H L L H H L L 

P-term H - L - L H - L - H - L -

Mn contained 
Mn not contained in P-term 

in P-term 

(H---u preclude logical inclusion 

Table 13 CRITERIA FOR THE LOGICAL INCLUSION/EXCLUSION 
OF A MINTERM IN AP-TERM 

M-TERM' 
[FA76]' 

LOGIC VERIFY I ACT LEVL 
• • • • • • • • • • • • • • • •• • • • • • • • • • • • • I HHLHHHLH 

', , I , I I [INPUT VARIABLE] 
< p > 1 1 1 1 1 1 
<L> 5432109876543210 
<A> HHHHHLHLLHHHLHHL 

[COMPUTED OUTPUT TABLE] 
[ERROR] ............................. . 
[PLA LOGIC OUTPUT] ............... . 

ERROR: P-TERM CONFLICT 
CONCURRENT P-TERM LIST: 0, 1,2,3,4 

[OUTPUT] 
76543210 
A••AA•A• 

AA•A••AA 
t t t 

HHLHHHLH 

Output bits in error indicated by arrow. 

Table 14 LOGIC VERIFY OF FPLA, YIELDING DEVICE TRUTH-TABLE 
FOR LOGIC INPUT FA76 (HEX). 
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Fo 

0 

A 

L 

H 
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LOGIC COMPRESSION 
A concise illustration of the logic compres­
sion capabilities of FPLAs is obtained by 
using an FPLA to implement a small 
squaring matrix. As shown in Figure 20, 
this matrix generates a binary output A 
which is the square of a binary input B, over 
the range O to 15. This table, suitably 
coded, could be directly programmed in a 
Signetics' FPLA, without resorting to 
further manipulations. 

However, here it will serve as a tractable 
case to outline a general systematic 
procedure involving: 

1. Formulating the logic problem. This can 
be done using a set of Boolean equa­
tions, or a truth table as in Figure 20. 

2. Product term minimization. This can be 
achieved by using any suitable means 
warranted by the complexity of the 
problems on hand. Useful tools are Kar­
naugh maps, Quine/McCloskey method, 
computerized algorithm, etc. 

In this respect, note that on a bit-slice 
basis all output functions, except Fo, 
contain a different number of 1 's than 
their complements (obtained by comple­
menting all output table entries). In 
general, but not always of course, it is 
reasonable to expect a function with the 
least number of 1's to collapse to the 
fewest number of product terms. Since 
the FPLA outputs can be programmed 
active-high or active-low, the designer 
has the freedom to implement either true 
or complement functions, with a view 
towards optimum minimization. But, 
since a minimum solution is obtained by 
a simultaneous minimization of all 
output functions, all combinations of 
true and complement outputs should be 
minimized, before a minimum solution 
can be chosen. Since there are 8 
outputs, there are 28 output sets involv­
ing true and complement functions. 
These require the solution of 256 mini­
mization problems, which could eventu­
ally be done only with the aid of a 
computer. 

Without such capability, as a best guess 
one may choose to minimize a table 
containing a minimum number of 1's, 
obtained by suitable assignment of 
output level polarities, and complemen­
ting table entries where necessary. In the 
case of the squaring matrix, the given 
table already contains the least number 
of 1 's; therefore all FPLA outputs will be 
assigned active-high polarities to imple­
ment all true output functions. Also, for 
expediency sake, product term minimi­
zation will be done on a bit-slice basis by 
means of the Karnaugh maps in Figure 
21. 

Note that output F1 is unconditionally 0. 
It doesn't contain any products terms, 
and so it will not be activated whenever 
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0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

SQUARING MATRIX FOR WHICH THE OUTPUT IS THE SQUARE 
OF ALL 16-INPUT MINTERMS 

INPUTS OUTPUTS 

12 11 10 F7 FG F5 F4 F3 F2 F1 FO 
,...--

0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 0 1 0 0 
0 1 1 0 0 0 0 1 0 0 1 
1 0 0 0 0 0 1 0 0 0 0 

FUNCTION 

1 0 1 0 0 0 1 1 0 0 1 A =B2 (BINARY) 
1 1 0 0 0 1 0 0 1 0 0 
1 1 1 0 0 1 1 0 0 0 1 
0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 1 0 1 0 0 0 1 
0 1 0 0 1 1 0 0 1 0 0 
0 1 1 0 1 1 1 1 0 0 1 
1 0 0 1 0 0 1 0 0 0 0 H 1 0 1 1 0 1 0 1 0 0 1 
1 1 0 1 1 0 0 0 1 0 0 
1 1 1 1 1 1 0 0 0 0 J_ 

,,, 
v 

B A 

Figure 20 

MINIMIZED OUTPUT FUNCTION SET AND 
P-TERM LIST OF SQUARING MATRIX 
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PO= XXXlo 

P2= Xl2f1lo 

P3 = Xf2l1lo 

P7= l3f2l1X 
P 8 = ~12x1 0 
Pg= l3l2l1X 

P10 = l3f2XX 
P11= l3Xl1X 

Figure 21 
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P& = l3f2XIO 

39 



P-terms Po-12 are selected. The neces­
sary logic output will be produced by 
default. 

3. Generating the activity map. 

The activity map is a useful aid in 
generating the program table necessary 
to program an FPLA with the desired 
logic function. The ·activity map for the 
squaring matrix is shown in Figure 22. It 
lists the minimized output function set 
involving the ordered P-terms. 

4. Generating the FPLA program table. 

This is shown in Table 15. The active 
level polarity of all output functions is 
entered first. Next, with each available P­
term in sequence, the logic input struc­
ture of each P-term is assigned and, with 
the aid of the activity map, an (A) is 
entered for each activated function, and 
a period (•) otherwise. This table pro­
vides a direct source of programmable 
entries in the format established for 
commercially available FPLA program­
mers. 

Pn 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

INPUTS 
3 2 1 0 
- - - H 
- - H L 
- H L H 
- L H H 
- H LL 
L H - H 
HL-H 
H L H -
HH-H 
LHH­
H L - -
H - H -
HH--

ACTIVE LEVEL 

HHHHHHHH 

OUTPUT FUNCTION 
7 6 5 4 3 2 1 0 
• • • • • • • A 
• • • • • A • • 
• • • • A • • • 
• • • • A • • • 
• • • A • • • • 
• • • A • • • • 
• • • A • • • • 
• • A • • • • • 
• • A • • • • • 
• • A • • • • • 
• A • • • • • • 
• A • • • • • • 
A • • • • • • • 

Table 15 FPLA PROGRAM TABLE 
FOR SQUARING MATRIX 

By comparing the program table with the 
original truth table, it can be seen that the 
squaring matrix has been compressed from 
16 minterms to 13 P-terms. Since an FPLA 
allows direct storage of either 0, 1, or X 
logic states of input variables, the formal 
logic compression obtained via minterm to 
product term minimization of the squaring 
matrix has been readily translated into 
hardware. 

A representation of the actual logic func­
tion programmed in the FPLA in terms of 
conventional logic symbols is shown in 
Table 16 with the set-up for verifying the 
logic function illustrated in Figure 23. Al­
though it shows little resemblance to the 
original truth table, it must match the func­
tion of the squaring matrix. The desired 
function is obtained by the "Concurrent," 
"Selective," and "Multiple" addressing 
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Pn 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

ACTIVITY MAP OF MINIMIZED OUTPUT FUNCTION 
SET OF SQUARING MATRIX 

Fa= Po + I + I + I + I + I + I + I + I + I + I + I + I 
F1 = I + I + I + I + I + I + I + I + I + I + I + I + I 
F2 = I + P1 + I + I + I + I + I + I + I + I + I + I + I 
F3 = I + I + P2 + P3 + I + I + I + I + I + I + I + I + I 
F4 = I + I + I +I +P4 +P5 +P6 + I + I + I + I + I + I 
Fs = I + I + I + I + I + I + I + P7 + P8 + P9 + I + I + I 
F5 = I + I + I + I + I + I + I + I + I + I + P10 + P11 + I 
F1 = I + I + I + I + I + I + I + I + I + I + I 

Pn = Function activated by P-terrn 
I = Function ignores P-terrn 

INPUTS 

13 12 11 10 

x x x 1 
x x 1 0 
x 1 0 1 
x 0 1 1 
x 1 0 0 
0 1 x 1 
1 0 x 1 
1 0 1 x 
1 1 x 1 
0 1 1 x 
1 0 x x 
1 x 1 x 
1 1 x x 

Figure 22 

OUTPUTS 

F7 F6 F5 F4 F3 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 1 
0 0 0 0 1 
0 0 0 1 0 
0 0 0 1 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 0 0 
0 0 1 0 0 
0 1 0 0 0 
0 1 0 0 0 
1 0 0 0 0 

+ I 

F2 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 16 CONVENTIONAL LOGIC REPRESENTATION 
OF PROGRAM TABLE IN THE FPLA 

+ P12 

F1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

FO 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

SET-UP FOR VERIFYING THE 
LOGIC FUNCTION OF THE FPLA 

Mn 
INPUTS 

CONCURRENT P.TERMS 

'o Fo 

1, 

'2 
13 

FPLA 
F7 

Figure 23 

modes characteristic of FPLAs. These can 
be observed by listing the composite FPLA 
output while executing an exhausting logi­
cal scan at its inputs, as shown in Table 17. 

By viewing each row of the program table as 
an FPLA word selected by the correspond­
ing P-term address, concurrent addressing 
is shown by the simultaneous selection of 
words P0 , P3, P5, P7, P10 and P11 which 
occurs with a binary 1011 input to the FPLA 
(Figure 24a). Similarly, multiple addressing 
is readily apparent by observing that word 
Po is selected by 8 different input combina­
tions, in a manner reminiscent of virtual 
memory storage (Figure 24b). 
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13 12 11 10 
0 0 0 0 O None (Default state term) 
1 0 0 0 1 PO 
2 0 0 1 0 P1 
3 0 0 1 1 PO,P3 
4 0 1 0 0 P4 
5 0 1 0 1 PO,P2,P5 
6 0 1 1 0 P1,P9 
7 0 1 1 1 PO,P5,P9 
8 1 0 0 0 P10 
9 1 0 0 1 PO,P6,P10 
10 1 0 1 0 P1 ,P7,P10,P11 
11 1 0 1 1 PO,P3,P6,P7,P10,P11 
12 1 1 0 0 P4,P12 
13 1 1 0 1 PO,P2,P8,P12 
14 1 1 1 0 P1 ,P11,P12 
15 1 1 1 1 PO,P8,P11,P12 

Table 17 SIMULTANEOUSLY SELECTED 
P-TERMS OBTAINED BY EXERCISING 

THE FPLA WITH A MINTERM 
GENERATOR 



ADDRESS SELECTION 

INPUT 
(11)10 

OUTPUT 
(121)10 

(

0000 0001 + 
0000 1000 

> ~001 0000 
1011 --~- 0010 0000 

0100 0000 
0100 0000 

0111 1001 

Internal OR performed by the FPLA. 

a. Concurrent address selection by 
Mn= (11)10. 

ml] > 0000 0001 
1011 
1101 
1111 

b. Multiple address selection of Po. 

Figure 24 

Selective addressing occurs when minterm 
"O" is presented at the FPLA input, but does 
not activate any of the programmed P-terms 
0 thru 12, and thus none of the output func­
tions. 

At this point it is worth noting that the 
above implementation is not unique, since 
the program table is not unique. This 
results from the individual, rather than the 
simultaneous minimization of the output 
function set. For example: 

F4 = .fol2Xlo + l3T2Xlo + f3l2f1X + l3l2T1 fa 
Fs = l3l2l1X + l3l2l1X + 1312Xlo 

F6 = l3T2XX + l3l2l1X 

is an equivalent form for F4,5,6- This choice 
of expression, although it introduces an 
additional P-term in F4, eliminates P12 for 
realizing F1, since: 

contained in F4,5,6 

In this case no net reduction in number of P­
terms is obtained. However, the method is at 
the root of the search for a minimum set of 
P-terms which will implement the desired 
logic function. Indeed, the reduction of a set 
of logic functions of several variables to a 
minimum set of prime implicants (P-termsl 
requires a simultaneous minimization proc­
ess for which suitable algorithms have 
already been developed. 

Signetics has successfully translated such 
an algorithm in an efficient software pro­
gram for execution on an I BM 370/155 com­
puter system. 

ASYNCHRONOUS SEQUENTIAL 
LOGIC 
FPLAs can be very effective tools in 
streamlining the design of asynchronous 
sequential networks by reducing package 
count, easing modification, and by provid­
ing more uniform logic delays which 
generally reduce, but do not entirely 
eliminate the incidence of logic hazards 
due to oscillations and critical races. And, 
when identified, they may be easier to 
eliminate by redundant usage of logic 
which is "already there," without additional 
hardware penalties. 

The following example illustrates the 
general procedure: 

Problem: Design a network to provide an 
output Z = 1 when both inputs X and Y are 1, 
but only when X goes to 1 before Y. Control 
inputs X and Y can change only one at a time; 
Z should remain 1 as long as Y = 1. 

As a first step, the primitive flow table is 
generated as shown in Table 18. By 
definition, each row of this table can 
contain only one stable state. Dashes, 
denoting don't care, are entered in each 
cell mapping a forbidden transition of the 
control inputs from a stable state (double 
simultaneous transitions). Since these, by 
definition, cannot occur, the dashes can be 
used to simplify the specification of the 
FPLA P-terms. 
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" ", 00 

a CD 
b 1 

c -
d 1 

e 1 

-

g 1 
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@) 
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-

11 10 z 
- 2 0 

3 ® 0 

@ 2 1 

3 - 1 

6 - 0 

® 7 0 

6 (j) 0 

Circled entries are stable states. Uncircled 
entries signify unstable states. 

Table 18 PRIMITIVE FLOW TABLE 

The 7 rows in Table 18, corresponding to 7 
stable states, can be reduced to the 3 
shown in Table 19, by merging all rows with 
identical states in each column, independ­
ent of output state associated with each 
row. In merging rows, stable state entries 
override unstable states. Also regardless of 
merger, Z output values in the final output 
matrix are dictated by the stable states 
(circled entries) in the primitive flow table. 
The 3 rows of the merged flow table need at 
least 2 secondary variables to assign a total 
of 22 = 4 secondary states involving 2 feed­
back loops. This leaves a spare secondary 
state (row) to be used for logic reduction, or 
resolution of critical races. These can in 
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general be minimized by assigning a grey 
code to the feedback loops, which results in 
secondary state assignments involving a 
single variable change for transitions 
between rows. 

" x y 
" ", 00 01 11 10 

R1 

R2 

R3 

CD 
1 

1 

5 

@) 
® 

-

@ 
® 

2 

® 
CJ) 

(a) 

(b,c,d) 

(e,f,g) 

Table 19 MERGED FLOW TABLE 
FOR MINIMIZING 

FEEDBACK LOOPS 

A primitive flow matrix suitable secondary 
state assignments is shown in Table 20. The 
empty cells of Ro= 00 have been assigned 
suitable unstable states to simplify hard­
ware implementation. These are explicitly 
indicated in the final flow matrix ofTable 21. 
From the flow matrix, the excitation matrix 
for the feedback outputs J-K of the network 
is derived in Table 22 by ensuring that all 
stable states in each row are assigned the 
corresponding j-k input values for that row. 
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Table 20 PRIMITIVE FLOW MATRIX 
WITH FEEDBACK INPUT VARIABLES j-k, 

AND CORRESPONDING SECONDARY 
ASSIGNMENTS 
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Table 21 FINAL FLOW MATRIX WITH 
OPTIMUM UNSTABLE STATES 
ASSIGNED TO SPARE ROW Ro 
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Table 22 EXCITATION MATRIX OF 
FEEDBACK OUTPUT VARIABLES J-K 

(MAP ENTRIES) 
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An analysis of all transitions between rows 
of this matrix, as mapped in the transition 
matrix of Table 23, verifies that the choice 
of secondary state assignments does not 
produce logic hazards. The minimized 
logic equation set of the feedback outputs 
is obtained via separate Karnaugh maps for 
J and K, as in Table 24. The choice of a 
suitable set of P-terms for the J-K feedback 
variables must take into account again the 
possibility of logic hazards. As the control 
variables X and Y change, horizontal 
movements among the stable states in the 
transition matrix result in alternate deselec­
tion and selection of FPLA P-terms. Normal 
internal delay differences in this sequence 
may cause momentary deselection of all P­
terms, deactivating all FPLA outputs. This 
is seen as negative or positive glitches 
(depending on active level polarity) on the 
FPLA outputs before they stabilize to the 
correct logic level. Glitches on feedback 
outputs may cause the circuit to settle in 
the wrong final state from any given initial 
stable state. 

"- Xy 

" 
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j k " "\. 00 01 11 10 
00 Ro 
01 R1 
11 R2 
10 Ra 

Table 23 TRANSITION MATRIX 
MAPPING SECONDARY 

TRANSITIONS 
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a. J = XY + Yj + XYk 
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b. K = xv + Y) + XYk 

Table 24 KARNAUGH MAPS FOR 
DERIVING P-TERMS AND 

LOGIC EQUATIONS 
DEFINING THE FEEDBACK 

VARIABLES 

To remove these additional hazards, output 
spiking can be eliminated by choosing P­
terms for J-K such that all legal intercolumn 
transitions from each stable state ensure 
"holding" of the J-K outputs. If necessary, 
redundant P-terms must be used to cover all 
possible cases ("minimal cover" technique). 
For example, from Tables 21 and 24 it is 
apparent that while in stable state 1, held by 
J-K feedback outputs via P-term· (XV), if 
input Y goes to "1," sta_!?.~ state@ must be 
reached. But, if P-term (XYl deselects before 
P-term (Yjl selects, the network may jump to 
Ro, state 4, and settle next in R1, stable state 
@).However, by including P-term (Xjl, the (j) 
input can be held steady while P-term (XV) 
deselects. 

It follows that, as a general rule, enough 
redundant P-terms should be used to 
prevent spurious transitions of the feed­
back variables for all horizontal transitions 
from stable states in each row. This 

requires modification of the J-K equations 
as follows: 

J = xv + Xj + Yj + XYk + jk 
K = xv + YT + jk + XYk 

Since the required logic is already available 
in the FPLA, no hardware penalties are 
incurred. As a final step, the network 
output Z must be realized. It is obtained 
from the output matrix of Table 25. By 
contrast, a discrete logic version of the 
same network with NANO gates would re­
quire 6 IC packages. 
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Table 25 KARNAUGH MAP 

OF OUTPUT Z = VJ 

FPLA PROGRAM TABLE AND CONNECTION 
FOR DESIRED NETWORK FUNCTION 

NO. 1 1 1 
5 4 3 

PRODUCT TERM ACTIVE LEVEL 

-~N_!'1;!TVARIABLE (Im) ~r==cT~r.-uE~C8 
~ 1 ~ 1-9-.-a- -1- -6 5 4- 3 2- -1.., Ci 1-i;~LV[V~~u3Nf~?~·-0-

t----+--t--+-+--+-'t--t--+-t--+--t--+-+.,-L t-:L-+-_-+--1_ A A • 

L - H - A 
- H H - A • • 
H L - L A 
- - H L A 
- H L - • A A 
- - L H • A • 
H L - H • A • 
- L - H • A • 

10 

44 

45 
46 
47 

Unused locations have been left blank for clarity. 

a. Program Table. 

Fo----
FPLA 

CE 

Unused FPLA locations must be programmed in accordance with previously established 
criteria. 

b. Circuit Connection 

Figure 25 
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SYNCHRONOUS SEQUENTIAL 
LOGIC 
When speed is not a problem, the difficult­
ies posed by potential logic hazards in 
asynchronous logic designs can be alto­
gether avoided by resorting to pulsed 
sequential networks. In these networks all 
secondary variables are allowed to settle 
following control input(s) transitions, be­
fore allowing the circuit to be locked in the 
next stable state. This is accomplished by 
periodic clocking of storage elements (flip­
flopsl used to hold the current state of the 
network in preparation for a new input 
condition. Essentially this is equivalent to 
solving a combinational problem at differ­
ent times for determining the desired 
output, as well as which flip-flop control 
inputs, and under what conditions they 
must be enabled. Therefore, every network 
of this type can be generalized as contain­
ing 2 conceptually distinct memory and 
logic blocks, as shown in Figure 26. 

GENERAL STRUCTURE OF 
PULSE SEQUENTIAL NETWORK 

(Mealy Type) 

PRESENT 
STATE 

VARIABLES 

LOGIC 
(Combinatorial) 

MEMORY 
(Flip-Flops) 

Figure 26 

It is with respect to the latter block that 
FPLAs again provide an opportunity to 
streamline design, as well as decrease 
pressure on the designer for an all out 
effort (beyond simple Karnaugh mapsl to 
minimize his logic for reducing package 
count. 

The following example illustrates the 
general design method for typical applica­
tions. 

Problem: Design a network for detect­
ing a decimal 6 or 8 in a serial 4-bit BCD 
word (MSB first). Whenever a 6 or 8 
occurs, output Z = "1." 

In line with Figure 26 above, the desired 
network using an FPLA and D-flops to 
implement the respective blocks will have 
the organization shown in' Figure 27. 
Starting with an initial reset state, designat­
ed @ , a primitive stable state diagram is 
developed as shown in Figure 28, to take 
into account all valid and invalid input 
sequences. 

CIRCUIT BLOCK DIAGRAM 

SERIAL 

~ 
~ 

Di----. 

D-type flip-flops have been arbitrarily chosen. 

Figure 27 

PRIMITIVE STATE DIAGRAM 

1/0 

XIV labels on arrows define Z output <Y's) for each D· 
(X's). I 

Figure 28 

At this stage, an intuitive approach is 
perhaps the best recourse in developing a 
concise diagram excluding most redundant 
or duplicate states. These can be further 
eliminated by analysis of the primitive state 
table in Table 26 for combining all states 
which have identical next states and 

PRESENT ASSIGNMENT 

STATE OA OB ac 
a 0 0 0 0 
b 0 0 1 1 
c 0 1 0 1 
d 0 1 1 1 
e 1 0 0 1 
f 1 0 1 1 
g 1 1 0 0 
i 1 1 1 0 

"O" 

0 
0 
0 
1 
1 
1 
0 
0 

outputs. This step is necessary for minimiz­
ing secondary assignments to reduce the 
number of flip-flops required. 

Since (ml stable states give rise to (n) flip­
flops, where 2 n 2'.: m, 3 flip-flops are 
necessary to define 8 secondary assign­
ments corresponding to each state in the 
reduced table. These assignments in terms 
of D-flops OA, Os and Oc are summarized 
in the transition table of Table 27. As the 
network moves through its stable states, 
the flip-flop transitions mapped in Table 27 
must be ensured by suitable programming 
of the D input of each flip-flop, designated 

PRESENT INPUT (D;) 

STATE "O" "1" "O" "1" 

a b c 0 0 
b e d 0 0 
c f e 0 0 
d i g 0 0 
e i i 0 0 
f h i 0 0 
g ra--a-~r--01 
h ~--~ ~~-%1 i a a 

Next z 
State -

a. Primitive state table 

PRESENT INPUT (Di) 

STATE "O" "1" "O" "1" 

a b c 0 0 
b e d 0 0 
c f e 0 0 
d i g 0 0 
e i i 0 0 
f g i 0 0 
g a a 1 0 
i a a 0 0 

Next z 
State -

b. Reduced state table 

Table 26 FLIP-FLOP MINIMIZATION 
BY COMBINING STATES g AND h 
IN THE PRIMITIVE STATE TABLE 

INPUT (Di) 

T "1" "O" "1" 

1 1 0 1 0 0 0 
0 I 0 1 1 0 0 
1 I 1 0 0 0 0 
1 I 1 1 0 0 0 
1 I 1 1 1 0 0 
0 I 1 1 1 0 0 
0 I 0 0 0 1 0 I 
0 l 0 0 0 0 0 

Next State ~ 

Table 27 STATE TRANSITION TABLE AND "NEXT" OUTPUT, 
WITH SECONDARY ASSIGNMENTS FOR D-FLOPS Q A-C 

FOR EACH STABLE STATE 
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DA, Os and De respectively. This is 
accomplished by using the transition table 
in conjunction with the excitation table for 
a D-flop ff able 28), to generate control 
matrices from which control equations for 
DA, Ds and De are derived. As shown in 
Figure 29, control matrices are really 
Karnaugh maps in which 1/0 cell entries 
refer to the logic state of each D input in 
terms of the input Data Di and flip-flop 
outputs (present state variables) OA-e, 
which are fed back in the network. 

a - an+1 D 

0 0 0 
0 1 1 
1 0 0 
1 1 1 

Table 28 EXCITATION TABLE FOR 
D-TYPE FLIP-FLOP 

The logic equations of Figure 29 are readily 
programmed in an FPLA with the program 
table shown in Table 29. The final network 
is obtained as in Figure 30. 

FINAL CIRCUIT CONNECTION, 
UTILIZING TRI-STATE FPLA 

AND EDGE-TRIGGER D-FLOPS 

82S100 

13 
F3 

CE 

12 F2 

1, Fl 

lo Fo 

74S175 

QA DA 

QB DB 

QC De 

CLR-~~ ...--CLK 

Figure 30 

DEALING WITH DEVICE 
LIMITATIONS 
In some applications, a single FPLA cannot 
accommodate the full program table be­
cause it commands greater resources than 
the finite number of inputs, outputs, and P­
terms available. In many cases this can 
only be overcome by resorting to design 
intuition and ingenuity in place of complex 
data manipulations which tend to obscure 
the problem on hand, and may render 
troubleshooting difficult. 
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CONTROL MATRICES AND LOGIC 
EQUATIONS FOR FLIP-FLOP INPUTS 

D A-C AND OUTPUT Z 
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d. z = a A as a c B; 

Figure 29 
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1/0 Assignment ---.. DiOC Os OA Z DC De DA 

Unused locations have been left blank for clarity. 

Table 29 FPLA PROGRAM TABLE 

Borderline cases can usually be resolved 
by judicious inspection of the program 
table to discover ways to further compres­
sion. Nevertheless, to increase design 
flexibility in these situations, Signetics' 
FPLAs are the only ones which feature a 
Chip Enable input which can be used for 
input and P-term expansions, precondi­
tional input decoding, and output inhibit. 

The output inhibit function of CE not only 
permits utilization of the tri-state device in 
bused organizations, but also provides a 
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means to force all outputs to a unique logic 
state, regardless of their programmed 
polarity, without sacrificing FPLA inputs or 
entailing additional hardware. 

This feature is essential in a number of 
applications involving system initialization 
from a knowri state, exit to "idle" following 
sequence error, synchronous clocking, etc. 
For example, in the typical sequencer of 
Figure 31 b, if an input error occurs parity 
fails, forcing all outputs to logic "1" ("idle" 
state, by user definition). 



CHIP ENABLE CONTROL 

+5V 

"1" "1" 

a. With CE = 1, both True (F) and Comple­
ment (F*)outputs are forced to logic "1." 

PARITY 

b. Sequential Controller forced into "idle" 
state by input parity error. 

Figure 31 

PRODUCT TERM EXPANSION 
Expansion of P-terms involving up to 16 
input variables is easily accomplished with 
open collector devices, as shown in Figure 
32. It is only necessary to parallel respec­
tively all inputs and outputs of several 
devices, operated with CE at ground 
(unless needed as additional control func­
tion). The composite logic output of the 
network is determined by P-terms activated 
in one or several FPLAs simultaneously. 

P-TERM EXPANSION WITH 
OPEN COLLECTOR FPLAs, 

INVOLVING UP TO 16-INPUT 
VARIABLES 

INPUT 

1 01~ 
I I 
I I 
11 

FPLA 

(825101) 
OUTPUT 

Fo~7 

All outputs must be programmed active-low (Fpl to 
realize the wire-AND function. The total number pf P­
terms available is 48N. 

Figure 32 

When using tri-state devices (8281 OOl, P­
term expansion cannot be readily achieved 
in the same way because of logic conflicts 
ensuing from the active pull-up outputs of 
FPLAs sharing the same output bus. To 
ensure enabling only one device at '!..!!me, 
P-term expansion must involve the CE in­
put. 

In most applications requiring more than 
48 P-terms it should be a relatively simple 
task to partition the program table in 2 or 
more subtables, each containing less than 
48 P-terms which in turn can be fitted in 
separate FPLAs. This partitioning is 
achieved by segmenting the original table 
about the 1 's and O's of suitable input 
variables. Since all P-terms Pn which 
contain a segmenting variable as don't care 
give rise to 2 P-terms Pna and Pnb, it is best 
to segment a program table about variables 
with the fewest don't care states. 

The logic sources of segmenting variables 
are removed from the FPLA input field and 
made to drive instead the CE input of the 
required FPLAs, after proper decoding. As 
an example, if one were restricted to use 
tri-state FPLAs with only 10 P-terms each 
to incorporate the program table of Table 
16 (page 40l, a segmentation of this table 
about input 12 yields the subtables shown in 
Table 30. 

Each subtable contains less than 10 P­
terms, and will fit in separate FPLAs which 
are operated in parallel and controlled by 12 
via their CE input, as shown in Figure 33. 

SQUARING MATRIX FUNCTION RES­
IDENT IN 2 TRI-STATE FPLAs PRO­
GRAMMED RESPECTIVELY WITH 
SUBTABLES A AND B. 

Note that the inhibit function of CE, renders 
unnecessary to program the outputs active-low. 

Figure 33 

The feasibility of this procedure is strongly 
dependent on the contents of the original 
program table, and in some degenerate 
cases (too few or no O's at all in the input 
field of the program table) it may not work. 
Also, note that in general the final number 
of P-terms used may increase due to 
expansion of input don't cares. However, 
this is preferable to no solution at all. 
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INPUT VARIABLE EXPANSION 
This is the most difficult and cumbersome 
task with FPLAs. When the program table 
involves more than 16 inputs, the above 
partitioning technique by subtables seg­
mented about any suitable variables will 
work as well with tri-state or open collector 
devices. This technique is shown applied to 
18 input variables in Figure 34. In this case 
several devices are necessary, even though 
not all FPLA P-terms are used. 

DIRECT MANIPULATION_Q.F 18-INPUT 
VARIABLES USING CE WITH 

EITHER 82S100 OR 
82S101 FPLAs 

FPLA 

OUTPUT 

Fo 7 

Note that here it is not necessary to program all output 
functions active-low (Fpl because of the disabling 
function of CE. 

Figure 34 

Note that the expansion capability pro­
vided by CE input limits the total number of 
FPLAs required to 2n, where (n) is the 
number of segmenting variables. Without 
CE, the total number of FPLAs required 
would be 2n+t. 

With more than 20 or so inputs this 
approach may become too costly, and thus 
it may make more sense to review the 
program table in conjunction with the 
problem at hand for ways to multiplex the 
FPLA inputs. This also involves a sort of 
segmentation of the program table for 
grouping P-terms about input variables 
which are mutually exclusive. 

The principle is illustrated in Table 31 when 
dealing with only 17 input variables and 5 
P-terms, for simplicity. The original pro­
gram table in (a) has been segmented about 
the O's and 1 's of variable In, and the P­
terms regrouped as in (bl. Note that it was 
necessary to create new P-terms 4a and 4b 
to expand the don't care for In in P-term 4. 
Here, when In = 0, the outputs are inde­
pendent of ln-1, and when In = 1 the 
outputs are independent of ln+1. These 
inputs can be multiplexed in an FPLA with 
In as the steering condition, as shown in 
Figure 35. The FPLA program table con­
tains upper P-terms with ln-1 variable 
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P-TERMS INPUTS OUTPUTS 

Pn Pn l3 12 11 lo F1 Fs Fs F4 F3 F2 F1 Fo 

Oa 0 x 0 x 1 0 0 0 0 0 0 0 1 
1a 1 x 0 1 0 0 0 0 0 0 1 0 0 
3 2 x 0 1 1 0 0 0 0 1 0 0 0 
6 3 1 0 x 1 0 0 0 1 0 0 0 0 
7 4 1 0 1 x 0 0 1 0 0 0 0 0 

10 5 1 0 x x 0 1 0 0 0 0 0 0 
11a 6 1 0 1 x 0 1 0 0 0 0 0 0 

a. Subtable A to be stored In FPLA #1 with 12 removed. P11 • can be eliminated 
since It Is "covered" by P10. 

P-TERMS INPUTS OUTPUTS 

Pn Pn l3 12 11 lo F1 Fs Fs F4 F3 F2 F1 Fo 

Ob 0 x 1 x 1 0 0 0 0 0 0 0 1 
1b 1 x 1 1 0 0 0 0 0 0 1 0 0 
2 2 x 1 0 1 0 0 0 0 1 0 0 0 
4 3 x 1 0 0 0 0 0 1 0 0 0 0 
5 4 0 1 x 1 0 0 0 1 0 0 0 0 
8 5 1 1 x 1 0 0 1 0 0 0 0 0 
9 6 0 1 1 x 0 0 1 0 0 0 0 0 

11b 7 1 1 1 x 0 1 0 0 0 0 0 0 
12 8 1 1 x x 1 0 0 0 0 0 0 0 

b. Subtable B to be stored in FPLA # 2, with 12 also removed. 

Table 30 SUBTABLES OF SQUARING MATRIX 

Pn l1s . . . 1n+1 In ln-1 ... lo Fx Fy 

0 0 . . . x 1 0 ... 1 1 0 
1 1 . . . 1 0 x ... 1 1 1 
2 x . . . 0 0 x ... 0 0 1 
3 0 . . . x 1 x ... x 1 0 
4 1 . . . x x x ... 0 0 1 
5 1 . . . x 1 1 ... 0 1 0 

a. Initial Program Table involving 17 Input variables, which cannot be directly 
examined by a single FPLA. 

Pn l1s . . . 1n+1 In ln-1 ... lo Fx Fy 

u 1 1 . . . 1 0 - x ... 1 1 1 p 
2 x 0 0 - x 0 0 1 p . . . ... 

E 4a 1 . . . x 0 - x ... 0 0 1 
R 

L 
0 0 1 0 1 1 0 0 . . . x - ... 

w 3 0 . . . x - 1 x ... x 1 0 
E 4b 1 . . . x - 1 x ... 0 0 1 
R 5 1 x - 1 1 0 1 0 . . . ... 

b. Variable I n+1 and I n-1 can be multiplexed on a single FPLA input because they 
are mutually exclusive "about" In (selector). 

Table 31 PROGRAM TABLE 

removed, and lower P-terms with ln+1 
variable removed. 

generating dummy variables to be applied 
to a second-level FPLA. 

When this technique fails too, it may still be 
possible to factor out of the logic equation 
of each FPLA output common expressions 
involving the variables in excess. These can 
be externally combined with simple gating, 
or another FPLA, into first level P-terms 
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OUTPUT EXPANSION 
If an application requires more than 8 
outputs, several FPLAs can be used with 
parallel inputs and separate outputs. In 
other cases, it may be more cost effective 
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MULTIPLEXING OF INPUTS I n+1 
AND I n-1 WITH SELECTOR INPUT 

In ALLOWS 17 INPUTS TO BE 
HANDLED WITH ONE 

16-INPUT FPLA 

1,,~115 1n-1 

... ., ~ ""'°'' .,. 
I FPLA 

I 
I 

lo I 

Figure 35 

to encode the Output Table stored in a 
single device and then unscramble the 
desired output states via a 32X8 PROM or 
1/N decoder as required. Both methods are 
shown in Figure 36. Some caution, how­
ever, is required in formulating the FPLA 
program table to ensure that either single 
or concurrent P-term selections will ulti­
mately point to a unique decoder or PROM 
address. 

OUTPUT EXPANSION 

a. Output expansion by decoding out­
puts previously encoded in the FPLA 
Program Table. 

b. Output expansion by utilizing addi­
tional FPLAs. 

Figure 36 



CH PTIR 5 
APPLICATIOOS 
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The recent surge in design activity involv­
ing microprocessors and microprogram­
ming techniques reflects the growing trend 
to replace hardwired logic with microcode 
for gaining system flexibility at lower cost. 
In this respect, designers have come to rely 
on ever larger and denser PROMs to fit the 
demands of their applications, and today 
PROMs as large as SK bits, organized as 
1KX8 or 2KX4, are readily available. How­
ever, a PROM solution in general forces the 
user to allocate storage for all possible 
logic combinations of the input variables, 
whether needed or not. As a result, when 
dealing with the type of problem requiring 
the manipulation of more than about 1 O 
logic input variables (or Addresses), several 
IC packages are usually necessary. This 
quickly renders a PROM solution marginal 
at best, in terms of speed, power, and cost, 
and in most cases impractical. Fortunately, 
many combinational and sequential logic 
designs involve logic functions which are 
True for only a small subset of the total 
logic states generated by the controlling 
variables. Typical examples are the 96 
graphic characters, out of 212 coding 
states, of a 12-bit Hollerith code; or the 50 
(or sol subroutine-start addresses, from a 
total of 216, in a typical 16-bit micropro­
grammed machine. It is here that we step in 
the basic domain of Field Programmable 
Logic Arrays which, when viewed as 
associative memories, exhibit selective, 
concurrent, and multiple addressing 
modes that enable compressing a set of 
logic functions to the minimum required 
states, at substantial savings in hardware. 

The areas of application in which FPLAs 
provide a more efficient design alternative 
span the whole spectrum of logic design. 
Many applications based on mask­
programmable devices have been well 
documented [ 1,2,3,4,5 ]. However, since 
FPLAs can be readily programmed in the 
field by the user, they are more economical 
and easier to use, and should find their way 
quickly in a wider variety of design situa­
tions. 

The typical design applications described in 
the following pages emphasize the concep­
tual aspects of FPLA usage, in order to focus 
the reader on the basic roles of FPLAs in 
logic design, and ease the transfers of these 
basic ideas to a variety of other practical 
applications. 

An estimate of the savings and design ad­
vantages obtainable by using FPLAs can be 
gleaned by examining the recent experi­
ence of a Signetics' customer who used 
FPLAs in the design of an automatic landing 
system for aircrafts. By using a different 
design approach, he was able to replace 49 
IC packages with 1 FPLA. The tradeoff in 
both design alternatives is shown in Table 
32. In the discrete approach, $1 is about 
what it takes today to place one IC on a PC 
board. 

QUANTITY TYPE 

12 7400 (Quad 2-NAND} 
9 7402 (Quad 2-NOR} 
8 7427 (Triple 3-NOR} 
5 7442 (BCD/DEC Decoder} 
2 74175 (Quad D-FLOP} 
4 7404 (Hex Inverter} 
2 7430 (8-lnput NANO} 
7 7408 (Quad 2-AND} 

COMPARISON 

Random Logic FPLA 

I Cs 49 1 
Power 3.3W 0.6W 
Speed 65NS SONS 
Cost $49 $11.50 
Pins 700 28 
Space SOin2 2in2 

One FPLA replaces 49 ICs at less than 1/4 
the cost. 

Table 32 THE ECONOMICS OF 
LOGIC REPLACEMENT WITH 

FPLAs 

FAULT MONITOR NETWORKS 
The dramatic savings in hardware which 
can be obtained by using FPLAs to 
manipulate a large number of logic vari­
ables is readily apparent when building 1/N 
detectors, as a special case of m/N decoder 

networks. These are useful in a variety of 
applications in computers, data communi­
cations, and fault monitor systems. For 
example, in a data multiplexing system it is 
not uncommon to find 80 or more channels 
time-division multiplexed onto a single 
transmission line. If a fault occurs in the 
multiplexer-control network, multiple or no 
connections on the line give rise to invalid 
transmission. These type of faults can be 
readily detected by using a 1/80 detector to 
monitor the normal selection status of only 
one multiplexer channel at a time. A 1/N 
detector could be implemented by using 
logic gates. Excluding inversion and ORing 
of partial results, the number of gates 
required is given by the number of logic 
states to be detected. For 80 status monitor 
terminals (1 for each data channell: 

# of GateS(AND) = N!(N-1 l! = 80 

This approach, when complicated by the 
fact that each gate also requires 80 inputs, 
becomes quickly impractical. A more 
practical alternative involves partitioning 
the number of terminals in equal subsets 
which are applied to PROMs whose truth 
tables yield outputs x = 1/n and y > 1/n [6]. 
Each PROM is used as a basic building 
block in a cascaded array, to implement a 
general algorithm for detecting 0, 1 or more 
True states (logic "1" =channel selected) of 
n variables. This is shown in Figure 37 for 
N = 80, using a 512X8 PROM organization. 
It requires 10 PROMs, plus some gating 
circuitry for status indication. 

1/80 DETECTOR WITH (P)ROMs 

(P)ROM 

r,~ 

I No. 1 v, 
Tg~ 

F1> 1/80 x, 

T10-. 
I 

Y2 
I No. 2 

T 18___!___.. 
iP)ROM 

T73~ 
I No. 9 Yg 

Tao~ xg 
nT 

x y 

(1/n) (>1/n) 

0 0 0 
1 0 

>1 0 

!ALGORITHM> 

Figure 37 
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However, with FPLAs a more efficient 
solution is possible as shown in Figure 38. 
It requires only 6 devices. 

1/80 DETECTOR WITH FPLAs 

T17 I 
I 

FPLA 

I No. 2 
I 

T32~ X2 

T55~ Y5 
I 
I No. 5 
I 
I 

Tso~ x5 

Figure 38 

FPLA 

Since each FPLA can examine 16 termi­
nals, 5 are sufficient to service all 80 
terminals. Each FPLA utilizes 17 P-terms to 
detect the presence of zero, 1 /16, or > 1 /16 
via outputs (x) and (y) as defined in the 
program table of Figure 33a. An additional 
FPLA is necessary to examine a total of 10 
partial x and y results from the first level 
devices, and to give final indication of the 
number of selected terminals. The program 
for the last FPLA is contained in Table 33b. 

FAST MUL TIBIT SHIFTER 
Computer performance can be greatly 
increased by incorporating hardware capa­
bilities to execute fast multibit shifts. This 
results in a considerable reduction in exe-

50 

FPLA No. 1 

INPUT -----''\.I 
DATA--~ 

SHIFT N 

L/R _ __,_-t--t-111,.1 

LOG/ AR--+-++-1-H~ 

FPLA No. 2 

a. Shifter shifts Left/Right, Arithmetic or 
Logic up to 7 places in 35ns. 

INPUT OUTPUT 

1 1 1 1 1 1 F1 F2 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 x y 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a. Program Table stored in FPLAs 1 through 5 

INPUT OUTPUT 

x = 1/N y > 1/N > 1/N = 1/N 0 
10 9 8 7 6 5 4 3 2 1 F1 F2 F3 

0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 0 0 0 1 0 

b. Program Table stored in FPLA 6 

Starred (*) outputs are programmed active-low. Conventional 
logic symbols are used for clarity. 

Table 33 PROGRAM TABLES OF FPLAs USED 
IN 1/80 DETECTOR 

cution time for algorithms that involve a 
large number of arithmetic, logic, or 
circular shifts, such as divide/multiply, 
floating point operations, etc. 

A multibit shifter implemented with 2 
FPLAs is shown in Figure 39a. It provides 
arithmetic or logic shift of an 8-bit byte 
either left or right up to 7 places within 1 

FAST MUL TIBIT SHIFTER WITH FPLAs 

LEFT SHIFT RIGHT SHIFT 
Im SLN: 111 = 0 SRN: 111 = 1 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 0 
1 1 2 3 4 5 6 7 1 0 
2 2 3 4 5 6 7 2 1 0 
3 3 4 5 6 7 3 2 1 0 Logic/ Arithmetic 
4 4 5 6 7 4 3 2 1 0 l12=X 
5 5 6 7 5 4 3 2 1 0 
6 6 7 6 5 4 3 2 1 0 
7 7 7 6 5 4 3 2 1 0 

7 7 7 7 7 7 7 7 7 7 7 6 5 4 3 2 1 
7 7 6 5 4 3 2 
7 7 6 5 4 3 Arithmetic 
7 7 6 5 4 112=1 
7 7 6 5 
7 7 6 

b. Logic equation set of shifter to be programmed in FPLAs. 

Figure 39 
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clock cycle. Two FPLAs are necessary, for 
a total of 71 P-terms. 

The program table to be stored in the 
devices is derived from the set of output 
equations tabulated in Figure 39b. The 
table entries represent output functions Fo 
through F1, which are true (1) at coordinate 
points Um • SLN) or Om • SRNl. These are re­
spectively the ordered input data bits, and 
the number of right or left shifts. A further 
subdivision of the table is given by '12 for 
arithmetic or logic shifts. 

For example, for a logic shift of the input 
data, the P-terms which must be pro­
grammed in the FPLAs for say output bit 5 
are: 

Fs = lsSRo + l5SR1 + l1SR2 + lsSLo 
+ l4Su + l3SL2 + l2SL3 + l1SL4 + loSLs 

The P-terms in the equation are in turn 
converted in program table format, typical­
ly as shown in Table 34. 

The wire-AND of the 2 FPLAs requires Fo 
through F1 to be programmed active-low 
(each designated as F*l. Therefore, the 
shifter outputs the complement of the 
shifted input word, which must be in turn 
complemented if this inversion cannot be 
buried in the system. Both P-terms involv­
ing SRo and SLO can be combined as 
lsSxo. denoting a don't care for right or left 
shift. All 16 such terms appearing in Fo 
through F1 can be combined into 8 P­
terms. It can be readily shown that all 64 P­
terms implicit in the upper half of the table 
are needed for both arithmetic and logic 
shift, and require 112 = X (don't care) as 
conditional input. For the arithmetic shift 
selected by '12 = "1," 7 additional P-terms 
are necessary to ensure propagation of the 
sign bit to the right in a right shift, and 
retention of the sign bit in F1 during a left 
shift. These additional P-terms can be 
obtained by listing the complete equation 
set summarized in the bottom half of the 
table. 

For example, for an arithmetic shift output 
F5 is given by: 

F5 = l5SLQ + lsSL 1 + l4SL2 
+ bSL3 + l2SL4 + hSLs + loSL6 
+ l5SR0 + +l1SR1 + (SR2 + SR3 
+ SR4 + SRs + SR6 + SR1l 11112 

This application can be readily expanded 
to detect overflow, or to execute circular 
shifts. The capability for circular shifts is 
obtained by using and additional FPLA, for 
a total of 124 P-terms. 

Note that here we can obtain a shift of 7 bit 
positions in 35ns, typical. 

PRIORITY RESOLVER AND 
LATCH 
FPLAs can perform the dual function of 
detecting and latching tri-state-bus data, 
on a priority basis. By using only 24 P-

LOG/AR L/R SN Im F* 

112 I 11 110 lg la l7 15 Is 14 l3 12 11 lo 5 

15SR0---

15S LO - - -

x 
x 

(X) = Don't Care 

1 

0 

0 0 0 x 
0 0 0 x 

x 1 x x x x x 0 

x 1 x x x x x 0 

Table 34 PROGRAM TABLE REPRESENTATION FOR F 5 
(RATHER THAN FS, DUE TO OUTPUT WIRE-ANDING) 

PRIORITY RESOLVER AND LATCH WITH FPLA 

SYSTEM BUS 
11 
11 
11 

(8) 

(DM8097) X 2 

ir--.._ 
--• >-r '-1 I 

I I 
I I ___ _J I 

I 
I 

----, I 
I I 

~·t I 

--· -.:'>1-....... 

10-1 

'8 

lg 

110 

RESET 

FPLA 
(82S101) 

CE 

74S134 

(8) 

The FPLA latched state must be reset prior to sampling new data. 

Figure 40 

terms in a single FPLA, 3 priority functions 
can be selected via inputs So,1.2 as shown 
in Figure 40. 

The reset pulse clears any previously 
latched priority, and must be at least 30ns 
wide to compensate for FPLA delay. 
Sampling of the system bus begins with the 
trailing edge of reset, and ends about 50ns 
after the detection of an input request (H -
L transition). This delay is provided by the 

feedback chain of spare gates in the 
DM8097 buffers, and is required to allow 
the FPLA to latch the incoming request 
before releasing the bus. It is also the 
circuit's resolving time of nearly simultane­
ous requests. The FPLA program table is 
shown in Table 35. The function selected 
by So provides a 1 of 8 priority in time by 
latching the first of eight signals occurring 
on the bus, and is useful in many polling 
applications in which a 50ns resolution is 
adequate. The functions selected by S1 and 
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S2 provide 1 of 8 complementary priorities 
in space by latching the highest ranked 
signal on the bus. 

Both functions are particularly useful in 
asynchronous multiport systems for trans­
ferring control of the main system bus. The 
concept illustrated is readily expanded with. 
additional output circuitry to monitor up to 
16 inputs with any assigned rank, or to 
implement a clocked revolving priority of N 
signals. 

The primary advantage provided by the 
FPLA is that the reassignment of priority 
rank is facilitated by combining the exter­
nal selection with FPLA programmability, 
without resorting to system wire changes. 

MEMORY OVERLAYS 
The storage and software efficiency of a 
computer can be improved by overlaying 
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INPUTS OUTPUTS 

s s s 1 1 1 1 1 1 1 1 F F F F F F F F 
FUNCTION 

2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 l l 
1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 
1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 
1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1st of 8 
1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 Priority 
1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 

J 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 
0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 

0 1 0 x x x x x x x 0 1 1 1 1 1 1 1 0 

l l 
x x x x x x 0 1 1 1 1 1 1 1 0 1 
x x x x x 0 1 1 1 1 1 1 1 0 1 1 
x x x x 0 1 1 1 1 1 1 1 0 1 1 1 1 of 8 
x x x 0 1 1 1 1 1 1 1 0 1 1 1 1 Priority 
x x 0 1 1 1 1 1 1 1 0 1 1 1 1 1 (Ascending rank) 
x 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 i 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 

1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

f l 
1 1 1 1 1 1 0 x 1 1 1 1 1 1 0 1 
1 1 1 1 1 0 x x 1 1 1 1 1 0 1 1 
1 1 1 1 0 x x x 1 1 1 1 0 1 1 1 1 of 8 
1 1 1 0 x x x x 1 1 1 0 1 1 1 1 Priority 
1 1 0 x x x x x 1 1 0 1 1 1 1 1 (Descending rank) 
1 0 x x x x x x 1 0 1 1 1 1 1 1 i 1 0 0 0 x x x x x x x 0 1 1 1 1 1 1 1 

Fo-7 must be programmed active-low. Unused inputs are programmed as Don't Care. 

Table 35 FPLA PROGRAM TABLE FOR PRIORITY RESOLVER 

Read/Write memory with (P>ROM memory 
in blocks of various sizes, including overlay 
on an individual word basis. 

Overlay is a memory-conservation tech­
nique that permits several sets of informa­
tion to share a block of storage. This allows 
several routines to occupy the same 
storage locations at different times. The 
method is also useful in incorporating 
special diagnostics, or for tailoring ma­
chine function to specific customer re­
quirements while maintaining software 
compatibility. 

OVERLAY IS DEFINED BY DESCRIPTOR 
AND MODIFIER 

(P>ROM 

(Modifier) (Descriptor> 

MATCH 

R/W 

ADDRESS 

When (PlROM and R/W memory addresses match, 
modifier data replaces data byte in R/W memory. 

Figure 41 
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A memory overlay results in modification of 
a stored byte at a specific address in R/W 
memory, and is conceptually indicated in 
Figure 41. A typical memory overlay 
application is shown in Figure 42 in which a 
flag is used to conditionally transfer 
(P>ROM or R/W data in the MOR. 

TYPICAL MEMORY OVERLAY SYSTEM 

INPUT DATA READ/WRITE 

MEMORY 

I 
(P)ROM I~ 

OVERLAY! ....1 
1u.. 
I 

(PlROM word is jammed in MOR when address 
"present" flag bit is true. 

Figure 42 

Since (P>ROMs are available in discrete 
chunks confined in standard IC configura­
tions, a lot of storage can be wasted when 
the application requires overlay of many 
blocks of few words each, scattered 
throughout the address range of R/W main 
memory. All unused (P>ROM locations 
servicing a sparsely overlaid sector are 
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forever inhibited access, and are therefore 
wasted. By using an FPLA instead of 
(P)ROM, the FPLA address matrix is 
programmed to recognize only the address 
of the RAM memory locations to be 
overlaid. The contents of the overlaid 
locations (the RAM modifier> are pro­
grammed in the FPLA storage matrix. This 
way, total PROM storage is compressed to 
the actual words used. Also, because of the 
large number of inputs to the FPLA, the 
overlaid locations can be scattered any­
where within a 64K address range. The chip 
enable feature readily extends this range to 
any practical size by allowing several 
FPLAs in parallel to examine a larger 
number of address inputs. 

Note that with an FPLA it is not necessary 
to store flags at the overlay addresses for 
generating the Mux select signal. This 
signal can be generated by monitoring a 
1 - O transition on any of the FPLA outputs. 
When no match exists, all FPLA outputs will 
be at logic "1" (assuming that they have 
been programmed active-low>. If we ex­
clude overlay of all 1 's, the Mux select signal 
is obtained as in Figure 43. 

MUX SELECT SIGNAL 

SEL = 1 when at least 1 FPLA output goes low, 
indicating an address match, and causing the Mux to 
select FPLA data. 

Figure 43 

CORE MEMORY PATCH 
The use of partially functional random 
access memory devices is a well known 
technique employed by manufacturers of 
add-on and other large memory systems to 
reduce overall memory cost per bit. This 
technique now can be extended to core 
memory systems by means of an FPLA. 
Modern core planes are available in many 
sizes, up to 16K X 18 or 32K X 9. A 64K X 9 
memory would require 2 planes, each 
containing about 300K cores, in which it is 
not unusual to find as many as 100 broken 
or improperly tested cores. 

Currently, cores are replaced by a hand 
"restringing" operation, at a cost of about 
$2/core. A better alternative to core re­
placement would be a dynamic repair 
routine, in which memory addresses con­
taining bad bits are patched by an auxiliary 
memory. However, since bad cores can be 
scattered anywhere in the plane, this 
approach would in general be not cost 



effective without an efficient address 
selector network. 

The FPLA renders this technique economi­
cally feasible by providing an address 
"locator" function by virtue of its program­
mable address characteristics. The core 
memory addresses containing bad bits are 
mapped in the AND matrix of an FPLA, 
whose output OR matrix is programmed in 
turn with sequential address pointers to a 
small auxiliary RAM containing correct 
data. 

This scheme is shown in Figure 44 and 
Table 36. A 16-input FPLA is used as an 
address map, and a 64 X 9 RAM as auxiliary 
memory, chosen to simplify control and to 
allow several bad core bits/word. The 48 P­
terms of the FPLA allow dynamic repair of 
48 memory addresses scattered anywhere 
in core. Correct data stored in the 82S09 is 
addressed by 6 FPLA outputs programmed 
as a binary table. Memory select control is 
provided by the F5 output from the FPLA to 
jam the contents of auxiliary memory in the 
MOR when a faulty core location is 
addressed, and to enable writing in auxil­
iary memory only in the patched locations. 

FPLA ADDRESS MAP 

CORE AUXILIARY 
MEMORY MEMORY 

A1 008 

A2 01 8 

A3 028 

I I 
I I 
I I 
I I 

A48 578 

Invalid Data Valid Data 

Table 36 FPLA TRANSLATES 
FAULTY 16-BIT INPUT ADDRESSES 

A1 THROUGH A48 INTO 
VALID AUXILIARY MEMORY LOCATIONS 

The core memory system normally con­
tains sockets and connections for both 
FPLA and auxiliary RAM. These are used 
only with partially functional planes. The 
FPLA input table is programmed immedi­
ately following final test with the addresses 
of core failures. 

This technique could also be applied, with 
suitable modifications, to memory systems 
implemented with partially functional bipo­
lar or MOS memory devices. It could also 
be extended to patch modifications in ROM 
memory systems, or utilize spare locations 
in PROM memory systems to avoid replac­
ing several packages because of random or 
repeated changes. 

SUBROUTINE ADDRESS MAP 
AND BRANCH LOGIC 
In the design of microprogrammed com-

CORE MEMORY "PATCH" WITH FPLA REQUIRES ONLY 2 ICs 

r- -r------.., 
ADDRESS-'---'-----" I I r" - - - , 

I I r_:-.:::)i 1520 I 
I ADDR. I .- I S.A. I 
1 BuFFrn

1 
64Kxs I 1 louTPUT 

I I CORE MEMORY I I 
I I I I -----1 I 

READ ---+-1--..-...
1 

TIMING I ----1'! I 
& ,---------1---~ Sb Gy I 

WRITE --1-:1-----.1 CONTR.I DATA IN BUFFERS I '--- ;.a ... -.L..-- ___ .... 
(9) 

STROBE --+-+-----+----4-4------.-J 

DATA IN_---t-t----t:::============:::;----, RESET 

FPLA 

WE DI 

10-15 

CE 

82S100 

(9) PHANci~M I'"' J_, 
r- -, I I 
I i I I I 

--·---~ MDR I I I I (9l I I L-r-.... L __ ..: 
f p 

+VO-J 

Figure 44 

puters considerable design flexibility is 
gained by complete freedom in allocating 
microprogram subroutines throughout mi­
crocontrol store, and by using variable 
formats in the instruction register op-code 
field. 

To satisfy these requirements in an eco­
nomical manner, an efficient means of ad­
dress translation is mandatory. FPLAs are 
ideally suited for this application as shown 
in a typical system in Figure 45. The first 
FPLA translates the current op-code from a 
16-bit instruction register into 48 
subroutine-start addresses in microcontrol 
store. Variable op-code formats are easily 
handled by judicious programming of don't 
care states in the FPLA input table. The 
second FPLA is used to generate branch 

SUBROUTINE ADDRESS MAP 
AND BRANCH LOGIC 

WITH TRI-STATE FPLAs 

CONTROL FIELD 

Figure 45 
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conditions based on the current microin­
struction, as well as jump and status 
conditions in the machine. In particular, 
using tri-state FPLAs (82S1 OOl saves a 
multiplexer in the address path of the ROM 
Address Register, while their sons access 
time minimizes overhead time in the 
instruction execution loop. 

"VECTORED" PRIORITY 
INTERRUPT SYSTEM 
In some applications, FPLAs are marginally 
cost effective when dedicated to a specific 
function which leaves spare most of the de­
vice resources. In such cases, the cost 
tradeoff may be resolved by a more 
efficient utilization through time-sharing 
the FPLA to perform separate functions. 

This technique can be applied to the design 
of a "vectored" priority interrupt system for 
the Signetics 2650 microprocessor. The 
circuit in Figure 46 is all that is required to 
service 6 1/0 devices via the conventional, 
single level, address vectoring interrupt 
mechanism of the 2650. 

When one or more devices requests 
service, the CPU receives an INTREQ 
signal on its single interrupt pin. Program 
control is transferred to any of 128 possible 
memory locations as determined by an 8-
bit vector supplied by the FPLA on the CPU 
data bus, in accordance with a prepro­
grammed priority. Since memory locations 
are expressed in 2's complement, the 
vector can point anywhere within -63 to 
+64 bytes of page zero, byte zero of 
memory. Also, both direct or relative 
indirect addressing modes can be specified 
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by the vector (bit D7 = 0/1), hence program 
execution can be directed anywhere within 
addressable memory. 

During the execution of the asynchronous 
CPU handshake the FPLA supplies at vari­
ous times 3 distinct functions: 
1. Interrupt request to the CPU, triggered by one 

or more service requests from devices 1 
through 6. 

2. Priority resolution of simultaneous requests by 
placing on the CPU data bus the vector of the 
highest ranked interrupting device. 

3. Issue a request reset signal to 1 of 6 selected 
devices to acknowledge servicing its interrupt. 

The 6 1/0 devices have been assigned the 
arbitrary vectors tabulated in Table 37. 

2's µP DBUS 

COMPLEMENT D7 D6 D5 D4 D3 D2 D1 D0 

VECTOR D/l+/-32 16 8 4 2 1 

+25 Direct 0 0 0 1 1 0 0 1 
-39 " 0 1 0 1 1 0 0 1 
+25 Indirect 1 0 0 1 1 0 0 1 
-39 " 1 1 0 1 1 0 0 1 
+55 Direct 0 0 1 1 0 1 1 1 
+38 " 0 0 1 0 0 1 1 0 

Table 37 VECTORS POINTING 
TO MEMORY LOCATIONS 

CONTAINING INSTRUCTIONS FOR 
SERVICING INTERRUPTING DEVICES 

The FPLA program table in Table 38 shows 
the FPLA P-terms necessary to execute the 
above functions, with inputs hs.14 used as 
function selectors under CPU control. Note 
that it was necessary to program the FPLA 
outputs with the complement of the vector, 
to compensate for the inversion with the 
8T31. 

The timing diagram of the CPU handshake 
and FPLA response is shown in Figure 47. 

In order to be immediately serviced, an 
INTREQ must be received by the CPU be­
fore the last cycle of the current instruction. 
When this occurs, the CPU finishes execut­
ing the current instruction, and in its last 
cycle, rather than fetching the next sequen­
tial instruction, it 1 l sets the interrupt inhibit 
bit in the program status word to inhibit 
further interrupts, and 2) inserts the first 
byte of the "Zero Branch-to-Subroutine, 
Relative" instruction in the IR. 

In the next cycle, the CPU gets ready to ac­
cess the data bus to fetch the interrupt vec­
tor as the second byte of the ZBSR instruc­
tion, hence it generates the INTACK signal 
which is used to jam on the FPLA outputs 
the complement of the vector associated 
with the highest ranked device requesting 
service. The vector is latched, and placed 
on the CPU data bus following the leading 
edge of OPACK, after which the 8T31 A­
bus is locked out. The CPU reads the D-bus 
on the trailing edge of T2, and begins 
executing the interrupt routine. When the 
routine is completed, a return instruction 
clears the interrupt inhibit bit and links 
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"VECTORED" PRIORITY INTERRUPT SYSTEM FOR THE 2650 MICROPROCESSOR 
REQUIRES 3 ICs, AND 2 SPARE GATES 

r---, 
I 1.25 

MHZ I 1 CLOCK I 
L. •• 

INTREQ 

INT ACK 

OPREQ 

I 
I 
I 
I 
I 

I __ ., 

.,J.., REMOTE SITE .,J.,. 
REQUEST F/F •./ REQUEST F/F •~# 
r----~ y r.·--·1 l ~D~V. No. 1b-J 1o~V.No.6b- I 

I .. T- - - .I Rs L r - - .1 Rs I L_1 __________ ~ ______ J 

115 114 113 112 1,, 110 lg la 10-1 

C"E FPLA (82S100) 

F*7 F5 F5 F4 F3 F2 F1 Fo 

~ 

Vee 

Starred (*) FPLA outputs are programmed active-low. 

Figure 46 

FUNCTION PRIORITY/REQUEST T RESET 

(6) 

(8) 

GENERATOR FUNCTION SELECTOR GENERATOR I 
115 114 113112111110 lg 19 17115 15 14 13 12 11 lo F1 F5 F5 F4 F3 F2 F1 Fo 

FPLA OUTPUT 

0 1 x x x x x 1 x x x x x x x x 0 1 1 1 1 1 1 1 

INTERRUPT 
0 1 x x x x 1 x x x x x x x x x 0 1 1 1 1 1 1 1 

REQUEST 
0 1 x x x 1 x x x x x x x x x x 0 1 1 1 1 1 1 1 

TO µP 
0 1 x x 1 x x x x x x x x x x x 0 1 1 1 1 1 1 1 
0 1 x 1 x x x x x x x x x x x x 0 1 1 1 1 1 1 1 
0 1 1 x x x x x x x x x x x x x 0 1 1 1 1 1 1 1 

t---- -- -- -- -- -- -- -- -- - - - -+-- - - - -
1 1 XXXXX1XXXXXXXX11100110 
1 1 XXXX10XXXXXXXX10100110 

PRIORITY 1 1 X X X 1 0 0 X X X X X X X X 0 1 1 0 0 1 1 0 
RESOLVER 1 1 X X 1 0 0 0 X X X X X X X X 0 0 1 0 0 1 1 0 

1 1 x1ooooxxxxxxxx11001000 
1 1 100000XXXXXXXX11011001 

t---- - ----------- - -- --r------
1 0 XXXXXX0001100110100000 

RESET 1 0 X X X X X X 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 
REQUEST 1 0 X X X X X X 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 

1 0 XXXXXX1101100110000100 
1 0 XXXXXX0011011110000010 
1 o xxxxxxoo10011010000001 

Only 18 P-terms are necessary to perform three time-shared functions. 

Table 38 FPLA PROGRAM TABLE 

execution back to the interrupted program. 
Meanwhile, in order to communicate with 
the device being serviced by the interrupt 
routine, it is necessary to flag the device 
that its request has been acknowledged. 
This is done by issuing to the device a reset 
signal generated by the FPLA. The latched 
vector is fed back in the FPLA and decoded 
to issue a unique reset signal, which is in 
turn latched in the 74S174 on the leading 
edge of T2 clock phase. 

!ii!JDDliC!i 

Several variants of this basic approach 
have been investigated. In particular, in a 
case where one needs to service 12 1/0 
devices and can tolerate to point the vector 
within a narrower memory address range, it 
is possible to substitute the 8T31 with 4 tri­
state buffers, and use the FPLA in a wrap­
around connection to latch the vector. The 
generation of the INTREQ and reset signals 
must however be reallocated outside the 
FPLA. 



REFERENCES 
1. D. Mrazek, and M. Morris, "How to De­

sign with Programmable Logic Arrays," 
National Semiconductor Corp., app. 
note AN-89, 1973. 

2. G. Reyling, "PLAs enhance digital proc­
essor speed and cut component count," 
Electronics, August 1974. 

3. J. Maggiore, "PLA-A universal logic 
element," Electronic Products Magazine, 
April 1974. 

4. W.N. Carr, and J.P. Mize, "MOS/LSI De­
sign and Application," pp. 229-258, T.I. 
Electronics Series, McGraw-Hill Co., 
1972. 

5. J.C. Logue et al, "Hardware implementa­
tion of a small system in PLAs," IBM J. 
Res. Develop., March 1975. 

6. A.W. Kobylar et al, "ROMs cut cost, re­
sponse time of m/N detectors," Electron­
ics, February 1973. 

TIMING DIAGRAM OF 1/0 SERVICE REQUEST 
INTERRUPTING PROGRAM EXECUTION 

l
,. ______ c_u_R_R_EN_T_l_NS_T_R_uc_T_IO_N ___ ___,. .. ~1----~ NEXT INSTRUCTION 

FIRST CYCLE I I LAST CYCLE 
I.. .. 

1.~~~~:R ___ .Bl..._fo1 _____ _fol _____ _ 
~TcH~ -.ITcd~ 1 I 

INTERRUPT~..11----------~1, .. 1 
REQUEST -I .. ____ _ 

F* 7 (INTREO) ' 11---, I 
INTACK ~ j, I I L_ 1

1
15) _______________ ....,_---~~II I I 

INTERRUPT VEs:I I I 

Fo6-------------------!--*-·-_!91_ VECTOR 1 :6 RESET 
I 
I 

OPREo----------------------- I 
I 
I __ 1_1 
I 

DBUS----------------------H-1--CZ~>------
(LATCHED VECTOR) '- -t--

REOUESTR-ES_E_T-----~-----------------r---i.___ 

Figure 47 
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APPENDIX A PROGRAM TABLE OF SAMPLE DEVICE 
PROGRAM TABLE ENTRIES 

INPUT VARIABLE OUTPUT FUNCTION OUTPUT ACTIVE LEVEL 

Prod. Term Prod. Term Not Active Active 
Im Im Don't Care Present in Fp Present in Fp High Low 

Cl) 

< H L - (dash) A • (period) H L a 
;:::: NOTE NOTES NOTES 

a C5 Enter (-) for unused inputs of used 1. Entries independent of output polarity. 1. Polarity programmed once only. a 
(;) <::( ~ P-terms. 2. Enter (A) for unused outputs of used P-terms. 2. Enter (H) for all unused outputs. 
-~ ><.' Qi :::::> q: PRODUCT TERM* ACTIVE LEVEL c: LU 
-~ ~ ~ u 

INPUT VARIABLE ~L1 L 1 L 1L'H 1 H 1H1 H Cl) :J G 
:::.... a:· a I- - -..----.----- ~· :___i _ L .....L - I_ L - L.: -1 _ ~ 
.Q a :::::> ..... NO. 1 1 1 1 1 1 OUTPUT FUNCTION* 
"tl >( a lJ.J t- - - - .-- - - - ~--- --- f---..-- - .-- -.----
Cll ::::.... 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 -92 IJ.J Cl) 

Q. a· <:: a 0 L H - - - H • • • A • • • A E LU 0... - - - - - - - - - -
0 <:: 

~ § 1 - - - - - L L H - - - H - - - - 0 • 0 A • • • A (.) <::( '*I: 
Cll a:· I- ~ 2 - - - - - L - H - - - - - - H - 0 • A • 0 • A • .Q a: ...J 
2 a 

~ 
...J 3 - - - - - L L H - - H - - - - - • • A 0 0 • A • c: <::( 

4 L H H 0 A A ~ C:: - - - - - - - - - - - - - 0 0 • • • a a 5 L L H H • A • • • A • • C5 LU - - - - - - - - - - - -
l\J ~ 

Q. 6 - - - - - L - H - - - - H - - - A 0 • • A • • • -~ 0 :J 7 - - - - - L L H H - - - - A • • A • ~ a - - - • • • 
'- ~ CQ 8 - - - - - L L L - - - H - - - H • • 0 A • • 0 A 

~ a 
L L L H H A A ::::.... IJ.J 9 - - - - - - - - - - - • 0 0 0 0 • Cl) :::::.. Cl) 
L L L H H A A lLi I- 10 - - - - - - - - - - - • • • • • • a: 

~ IJ.J (.) <:: 11 - - - - - L L L H - - - H - - - A • 0 0 A 0 • • ~ IJ.J IJ.J ><: a a: ~ 12 - - - - - H H H - - - H - - - - • • 0 A 0 0 0 A ><: 
~ I- IJ.J ~ 13 - - - - - H H H - - H - - - - - • • A • • 0 A 0 Cl) I-

0 A LL. :::::> <::( 14 - - - - - H H H - H - - - - - - 0 0 • 0 A 0 0 
(.) (.) a (.) 

15 - - - - - H H H H - - - - - A 0 0 0 A 0 0 0 - -
16 - - - - L H L L - - - L - - - H 0 0 0 A 0 0 0 A 
17 - - - - L H L L - - - H - - - L 0 0 0 0 0 0 • A 

It) 18 - - - - H H L L - - -
""' 

L - - - L 0 0 • • 0 0 • A ...._ 
C\I 19 - - - - H H L L - - - H - - - H 0 • 0 • • • • A 
C\I 20 - - H - H L L - - L - - - H - 0 • 0 • 0 0 A 0 ...._ -
""' 21 - - - H - H L L - - H - - - L - • • • • • • A • LU 22 - - - L - H L L - - L - - - L - • • • 0 0 • A • I-Cl) 

<::( A :<:: a 23 - - - L - H L L - - H - - - H - • • • • • • • (.!) UJ' 24 - - H - - H L L - L - - - H - - • • • • • A • • Ci) -J 25 H H L L H L A LU 0... - - - - - - - - - - • 0 • 0 • • • a ~ 0 26 - - L - - H L L - L - - - L - - 0 • • • • A • 0 
(.) <::( ,_ 

H A (5 Cl) 
...._ 

27 - - L - - H L L - H - - - - - • • • • • • • a 
LU ~ 

,_ 
L 0 IJ.J 28 - H - - - H L L - - - H - - - • 0 • • A • • • ...J a: Cl) 

29 - - - - H L L H - - - L - - - 0 0 • • A • • • C\I a ~ co :::::.. 30 L H L L L L A IJ.J IJ.J - - - - - - - - - - • 0 • • 0 0 0 
(.) LU a: A <:: <:: 31 - L - - - H L L H - - - H - - - 0 0 • • 0 • 0 

§ 0 32 - L - - - H L L - - - - H - - - • • 0 A • • • • :<:: a 33 - L - - - H L L H - - - - - - - • • • A 0 • • • <::( 
34 - - H H L L - - - - - H • • A • • • • • - - - -
35 - - - - H H L L - - - H - - - - • • A • 0 • 0 0 

~ 36 - - - L - H L L - - - - - - H - • A • • • • • • 
a: 37 - - - L - H L L - - H - - - - - • A • • 0 • 0 • 
~ 38 - - L - - H L L - - - - - H - - A • • • • • • 0 

'*I: '*I: 

LU LL. '*I: 39 - - L - - H L L - H - - - - - - A 0 • • • 0 • • a: 0 IJ.J IJ.J (.) LU 40 - - - - - H L L H - - - H - - - • • • A • • • • ~ a :::= a: -J 
H H A ~ a: IJ.J IJ.J ca 41 - - - - - H L L - - - - - - • • 0 • • • • 

0 a ca ~ 42 - - - - - H L L - - H - - - H - • A • • • • • • a: IJ.J Cl) ~ 
A IJ.J Cl) (.) :::::> ~ 43 - - - - - H L L - H - - - H - - • • • • • • • 

~ ~ j::::: :<:: ~ 44 0 IJ.J ...J 
I- (.) :<:: ~ 

(.!) 45 
Cl) a: 0 
:::::> :::::> 

(.!) 
0 a: 46 

(.) 0... Ci) I- 0... 
47 

*Input and Output fields of unused P-terms can be left blank. Unused inputs and outputs are FPLA terminals left floating. 
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APPENDIX B CONNECTIONS FOR SAMPLE DEVICE 

All device inputs may be toggled with 
manual switches, while all outputs can be 
monitored with an LED arrangement. To 
observe the 5 logic functions of the sample 
FPLA, connect the device as follows: 

Vee 

Is 
~ 

lg 
c: 
0 

Is l 110 

Iii 

1i2 

1i3 

114 

1i5 

CE 

Fi 

F2 

Fx=IA+ls 

Fy=IA+ls 

a. "OR" FUNCTION 

Vee 

Is 

lg 

1io 

Iii 

112 

1i3 

Ii 1i4 

lo 1i5 

F7 CE 

F5 Fo 

F5 Fi 

F4 F2 

GND F3 

Is 

IA 

d. "MULTIPLEX" FUNCTION 

60 

+5V 

Vee 

Is 

15 lg 

15 

14 

1 i2 

Ii 1i4 

1 i5 

F7 CE 

F5 Fo 

F5 Fi 

F4 F2 

GND F3 

Fx=A• S 

Fy=A•S 

b. "AND" FUNCTION c. "EX-OR" FUNCTION 

e. "ADD" FUNCTION (with Serial Carry) 
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SIGNETICS TEXAS MARYLAND WASHINGTON 
Dallas Glen Bumi Bellevue 

HEADQUARTERS Phone: (214) 661-1296 Microcom8, Inc. 
Phone: (3 1) 247-0400 Western Technical Sales 

Phone: (206) 641-3900 
811 East Arques Avenue 

MASSACHUSETTS Sunnyvale, California 94086 
Pl1one: (408) 739-7700 REPRESENTATIVES Reading WISCONSIN 

Kanan Associates Greenfield 
Phone: (617) 944-8484 L-Tec, Inc. 

ALABAMA ALABAMA Phone: (414) 545-8900 
Huntsville Huntsville MICHIGAN 

Phone: (205) 533-5800 Murcota Bloomfield Hills 
Phone: (205) 539-8476 Enco Marketing 

ARIZONA Phone: (313) 642-0203 DISTRIBUTORS 
Phoenix CALIFORNIA 

Phone: (602) 971-2517 San Diego MINNESOTA ALABAMA 
Mesa Engineering Edina 

CALIFORNIA Phone: (714) 278-8021 Mel Foster Tech. Assoc. Huntsville 

Inglewood Sherman Oaks Phone: (612) 835-2254 Hamilton/ Avnet Electronics 

Phone: (213) 670-1101 Astra Ionics Phone: (205) 533-1170 

Irvine Phone: (213) 990-5903 MISSOURI 

Phone: (714) 833-8980 St. Louis ARIZONA 
(213) 924-1668 CANADA Advanced Technology Sales 

Phoenix 
San Diego Phone: (314) 567-6272 

Phone: (714) 560-0242 Calgary, Alberta Hamilton/ Avnet Electronics 

Sunnyvale 
Philips Electronics Industries Ltd. NEW JERSEY Phone: (602) 275-7851 
Phone: (403) 543-5711 

Phone: (408) 736-7565 
Montreal, Quebec Haddonfield Liberty Electronics 

Phone: (602) 257-1272 
Philips Electronics Industries Ltd. Thomas Assoc. Inc. 

COLORADO Phone: (514) 342-9180 Phone: (609) 854-3011 

Parker Ottawa, Ontario 
CALIFORNIA 

Phone: (303) 841-3274 Phillips Electronics Industries Ltd. NEW MEXICO Costa Mesa 
Phone: (613) 237-3131 Albuquerque Avnet Electronics 

FLORIDA Scarborough, Ontario The Staley Company, Inc. Phone: (714) 754-6051 
Pompano Beach Philips Electronics Industries Ltd. 

Phone: (505) 292-0060 
Schweber Electronics 

Phone: (305) 782-8225 Phone: (416) 292-5161 Phone: (213) 556-3880 
Vancouver, B.C. NEW YORK 

ILLINOIS Philips Electronics Industries Ltd. Ithaca Culver City 

Rolling Meadows Phone: (604) 435-4411 Bob Dean, Inc. Hamilton Electro Sales 

Phone: (312) 259-8300 
Phone: (607) 272-2187 Phone: (213) 558-2183 

COLORADO El Segundo 

KANSAS Denver 
NORTH CAROLINA Liberty Electronics 

Wichita Barnhill Five, Inc. Cary Phone: (213) 322-8100 

Phone: (316) 683-5652 Phone: (303) 426-0222 Montgomery Marketing Mountain View Phone: (919) 467-6319 
Elmar Electronics 

MARYLAND CONNECTICUT OHIO 
Phone: (415) 961-3611 

Columbia Newtown Centerville 
Hamilton/ Avnet Electronics 

Phone: (301) 730-8100 Kanan Associates Norm Case Associates 
Phone: (415) 961-7000 

Phone: (203) 426-8157 Phone: (513) 433-0966 San Diego 
MASSACHUSETTS Fairview Park Hamilton/ Avnet Electronics 
Woburn FLORIDA Norm Case Associates Phone: (714) 279-2421 

Phone: (617) 933-8450 Altamonte Springs Phone: (216) 333-4120 Liberty Electronics 
Semtronic Associates Phone: (714) 565-9171 

MINNESOTA Phone: (305) 831-8233 OREGON 

Edina Largo Portland 
Sunnyvale 

Phone: (612) 835-7455 Semtronic Associates Western Technical Sales lntermark Electronics 
Phone: (813) 586-1404 Phone: (503) 297-1711 Phone: (408) 738-1111 

NEW JERSEY TEXAS CANADA ILLINOIS Cherry Hill 
Chicago Austin Downsview, Ontario Phone: (609) 665-5071 

Piscataway L-Tec Inc. Cunningham Co. Cesco Electronics 
Phone: (201) 981-0123 Phone: (312) 286-1500 Phone: (512) 459-8947 Phone: (416) 661-0220 

Dallas Zentronics 
NEW YORK IN DIANA Cunningham Co. Phone: (416) 635-2822 

Phone: (214) 233-4303 
Wappingers Falls Indianapolis Houston Mississauga, Ontario 

Phone: (914) 297-4074 Enco Marketing Cunningham Company Hamilton/ Avnet Electronics 
Woodbury, LI. Phone: (317) 546-5511 Phone: (713) 461-4197 Phone: (416) 677-7432 

Phone: (516) 364-9100 Montreal, Quebec 
KANSAS UTAH Cesco Electronics 

OHIO Overland Park West Bountiful Phone: (514) 735-5511 
Worthington Advanced Technology Sales Barnhill Five, Inc. Zentronics Ltd. 

Phone: (614) 888-7143 Phone: (913) 492-4333 Phone: (801) 292-8991 Phone: (514) 735-5361 
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Ottawa, Ontario Skokie NEW MEXICO OHIO 
Cesco Electronics Bell Industries 

Albuquerque Beechwood Phone: (613) 729-5118 Phone: (312) 965-7500 
Hamilton/ Avnet Electronics Schweber Electronics 

Hamilton/ Avnet Electronics 
IN DIANA 

Phone: (505) 765-1500 Phone: (216) 464-2970 
Phone: (613) 226-1700 
Zentronics Ltd. Indianapolis NEW YORK Cleveland 

Hamilton/ Avnet Electronics 
Phone: (613) 238-6411 Pioneer Elecrtonics Buffalo Phone: (216) 461-1400 

Vancouver, B.C. Phone: (317) 849-7300 Summit Distributors Pioneer Standard Electronics 
Bowtek Electronics Co., Ltd. Phone: (716) 884-3450 Phone: (216) 587-3600 
Phone: (604) 736-1141 KANSAS 

East Syracuse 
Ville St. Laurent, Quebec Dayton Lenexa Hamilton/ Avnet Electronics Hamilton/ Avnet Electronics Hamilton/ Avnet Electronics Hamilton/ Avnet Electronics Phone: (315) 437-2642 Phone: (513) 433-0610 Phone: (514) 331-6443 Phone: (913) 888-8900 

Farmingdale, L.I. Pioneer Standard Electronics 
COLORADO MARYLAND Arrow Electronics Phone: (513) 236-9900 
Commerce City 

Phone: (516) 694-6800 

Elmar Electronics Baltimore Rochester OKLAHOMA 
Phone: (303) 287-9611 Arrow Electronics Hamilton/ Avnet Electronics Phone: (301) 247-5200 Tulsa 

Denver Phone: (716) 442-7820 Component Specialties 
Hamilton/ Avnet Electronics Gaithersburg Schweber Electronics Phone: (918) 664-2820 
Phone: (303) 534-1212 Pioneer Washington Electronics Phone: (716) 461-4000 

Phone: (301) 948-0710 TEXAS 
CONNECTICUT 

Hanover 
Westbury, L.I. 

Hamilton/ Avnet Electronics Dallas Danbury Hamilton/ Avnet Electronics Phone: (516) 333-5800 Component Specialties Schweber Electronics Phone: (301l 796-5000 
Schweber Electronics Phone: (214) 357-4576 Phone: (203) 792-3500 

Georgetown Rockville Phone: (516) 334-7474 Hamilton/ Avnet Electronics 
Schweber Electronics Phone: (214) 661-8204 

Hamilton/ Avnet Electronics Phone: (301) 881-2970 NORTHERN NEW JERSEY 
Phone: (203) 762-0361 Quality Components 

Hamden MASSACHUSETTS Cedar Grove Phone: (214) 387-4949 

Arrow Electronics Hamilton/ Avnet Electronics Schweber Electronics 
Phone: (203) 248-3801 Waltham Phone: (201) 239-0800 Phone: (214) 661-5010 

Schweber Electronics Saddlebrook 
FLORIDA Phone: (617) 890-8484 Arrow Electronics Houston 

Ft. Lauderdale Phone: (201) 797-5800 Component Specialties 
Woburn Phone: (713) 771-7237 

Arrow Electronics Arrow Electronics SOUTHERN NEW JERSEY Phone: (305) 776-7790 Phone: (617) 933-8130 Hamilton/ Avnet Electronics 

Hamilton/ Avnet Electronics 
AND PENNSYLVANIA Phone: (713) 780-1771 

Phone: (305) 971-2900 Hamilton/ Avnet Electronics Cherry Hill, N.J. Quality Components Phone: (617) 933-8000 Milgray-Delaware Valley Phone: (713) 772-7100 Hollywood Phone: (609) 424-1300 Schweber Electronics MICHIGAN Schweber Electronics 
Phone: (305) 922-4506 Moorestown, N.J. Phone: (713) 784-3600 

Orlando Livonia Arrow/ Angus Electronics 
Hammond Electronics Hamilton/ Avnet Electronics Phone: (609) 235-1900 UTAH 
Phone: (305) 241-6601 Phone: (313) 522-4700 

Mt. Laurel, N.J. Salt Lake City 
GEORGIA 

Pioneer Electronics Hamilton/ Avnet Electronics Alta Electronics 
Phone: (313) 525-1800 Phone: (609) 234-2133 Phone: (801) 486-7227 

Atlanta 
Schweber Electronics MINNESOTA CENTRAL NEW JERSEY Hamilton/ Avnet Electronics 
Phone: (404) 449-9170 

Eden Prairie 
AND PENNSYLVANIA Phone: (801) 972-2800 

Norcross Schweber Electronics Somerset, N.J. WASHINGTON Hamilton/ Avnet Electronics Phone: (612) 941-5280 Schweber Electronics 
Phone: (404) 448-0800 Phone: (201) 469-6008 Bellevue Edina Hamilton/ Avnet Electronics 

ILLINOIS Hamilton/ Avnet Electronics Horsham, PA Phone: (206) 746-8750 
Elk Grove Phone: (612) 941-3801 Schweber Electronics 

Schweber Electronics Minneapolis 
Phone: (215) 441-0600 Seattle 

Liberty Electronics Phone: (312) 593-2740 Semiconductor Specialists NORTH CAROLINA Phone: (206) 453-8300 
Elmhurst Phone: (612) 854-8841 

Semiconductor Specialists Greensboro 
WISCONSIN Phone: (312) 279-1000 MISSOURI Hammond Electronics 

Schiller Park Hazelwood 
Phone: (919) 275-6391 New Berlin 

Hamilton/ Avnet Electronics Hamilton/ Avnet Electronics Pioneer Electronics Hamilton/ Avnet Electronics 
Phone: (312) 671-6082 Phone: (314) 731-1144 Phone: (919) 273-4441 Phone: (414) 784-4510 
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FOR SIGNETICS FINLAND JAPAN SOUTH AFRICA 

PRODUCTS Oy Philips Ab Signetics Japan, Ltd. E.D.A.C. (PJY), Ltd. 

WORLDWIDE: Helsinki Tokyo Johannesburg 

Phone: 1 72 71 Phone: (03) 230-1521 Phone: 24-6701-3 

ARGENTINA FRANCE KOREA SPAIN 

Fapesa l.y.C. 
R.T.C. 

Philips Elect Korea Ltd. Copresa S.A. 
Buenos-Aires Seoul Barcelona 
Phone:652-7438/7478 Paris Phone: 44-4202 Phone: 329 63 12 

Phone: 355-44-99 
AUSTRIA MEXICO SWEDEN 

Osterreichische Philips GERMANY Electronica S.A. de C.V. Elcoma A.B. 
Wien Valvo Mexico D.F. Stockholm 
Phone: 93 26 11 Hamburg Phone: 533-1180 Phone: 08/67 97 80 

AUSTRALIA Phone: (040) 3296-1 NETHERLANDS SWITZERLAND 

Philips lndustries-ELCOMA HONG KONG Philips Nederland B.V. Philips A.G. 
Lane-Cove, N.S.W. Eindhoven Zurich 
Phone: (02) 427-0888 Philips Hong Kong, Ltd. Phone: (040) 79 33 33 Phone: 01/ 44 22 11 

BELGIUM 
Hong Kong 

NEW ZEALAND Phone: 12-245121 TAIWAN 

M.B.L.E. INDIA 
E.D.A.C., Ltd. Philips Taiwan, Ltd. 

Brussels Auckland Taipei 
Phone: 523 00 00 Semiconductors, Ltd. Phone: 867119 Phone: (02) 551-3101-5 

BRAZIL (REPRESENTATIVE ONLY) NORWAY THAILAND 

lbrape, S.A. 
Bombay Electronica A.S. Saeng Thong Radio, Ltd. 

Sao Paulo 
Phone: 293-667 Oslo Bangkok 

Phone: 284-4511 IN DONES IA Phone: (02) 15 05 90 Phone:527195,519763 

CANADA P.T. Philips-Ralin Electronics PAKISTAN UNITED KINGDOM 

Philips Electron Devices Jakarta Elmac Ltd Mullard, Ltd. 

Toronto • Phone: 581058 Karachi London 

Phone: 425-5161 Phone: 515-122 Phone: 01-580 6633 
IRAN 

CHILE PERU UNITED STATES 

Philips Chilena S.A. 
Berkeh Company, Ltd. Cadesa Signetics International Corp. 

Tehran Sunnyvale, California 
Santiago Phone:831564 Lima 
Phone: 39-4001 Phone: 628599 Phone: (408) 739-7700 

COLOMBIA 
IS RAEL PHILIPPINES 

URUGUAY 

Sadape S.A. Rapac Electronics, Ltd. Philips Industrial Dev., Inc. 
Luzilectron SA 

Bogota Tel Aviv Makata-Rizal 
Montevideo 

Phone: 600600 Phone: 477115-6-7 Phone: 868951-9 
Phone: 9143 21 

DENMARK ITALY SINGAPORE/ MALAYSIA 
VENEZUELA 
Industrias Venezolanas 

Miniwatt A/S Philips S.p.A. Philips Singapore Pte., Ltd. Philips S.A. 
Kobenhavn Milano Singapore Caracas 
Phone: (01) 69 16 22 Phone: 2-6994 Phone: 538811 Phone: 360-511 
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