
SIGnlTICS
nEID
PROGRAmmAllE
tOGIC ARRAYS

$1.50

I

October 1977

Gentlemen:

Thank you for your interest in Signetics'family of field programmable logic arrays. The enclosed F P LA
brochure contains device related information which should facilitate your understanding of the
structure and applications of these new generation LSI devices.

As a preview of FPLA versatility, page 59 of the brochure contains the program table stored in a sample
device for demonstrating that an FPLA is a general purpose logic tool, which could be called upon to
emulate the function of an ALU . .. almost! A device thus programmed performs the OR, AND,
Exclusive-OR, Mux and Add (with serial carry) of two 4-bit words. These functions are selected by
connecting the F P LA as shown on page 60.

Both Signetics FPLAs are available now in either ceramic (I) or power plastic (NJ packages, with unit
price related to quantity as follows (commercial temperature range):

QUANTITY 1-24 25-99 100-999

N82SIOO/ IOlN $17.50 $14.50 $11.50
N82SIOO/ IOII 30.00 24.60 19.45

We have in-house programming capability to supply custom programmed parts within 7 days after
receipt of your program table. Each custom pattern carries a one time charge of $25.00.

Field programming equipment is currently available to satisfy your programming needs as your usage
develops.

PROGRAMMING ENVIRONMENT MODEL MANUFACTURER PRICE

Prototyping and Qualification LTC-FIOO Signetics (408) 739-7700 $ 345.00

Pilot Production and Field Support PR-100 Curtis Electro-Devices 1299.00
(415) 964-3136

Volume Production x Data I/O 8000.00
(206) 455-3990

In some applications, marginal design tradeoffs can be resolved infavor of FPLAs by compressing the
logic truth table to a minimum number of product terms. Signe tics has a computer program for
executing a practical minimization algorithm, which it offers as a free service to its customers.

Both Signe tics F P LAs have been designed for operation over the full Mil-Temp range, and military
parts are available in standard S-grade and S / 883 B.

Please, do not hesitate to contact me if you need further information.

!ii!JDDliC!i

Napoleone Cavlan
Applications Manager
Bipolar Memories

llGRETICI
rlllD
PROGRARIRIAli~
lOGIC ARRAt;

--------~IDDDDDDD ________ ____.IDDDDDDD
________ -=dlDDDDDDD
--------~IDDDDDDD
--------~IDDDDDDD ________ __.IDDDDDDD

2 !ii!IDDliC!i

Since the practical introduction of microprogramming in the
last decade or so, microcode has progressively displaced
random logic in step with the growing availability of user
Programmable Read-Only Memories (PROMs). However, even
with PROMs, designers soon realized that their rigid address­
ing structure made them unsuitable in a wide variety of
applications which could greatly benefit from a structured
logic approach.

Recently, microprocessors have provided a quantum jump in
design flexibility in applications requiring about 30 IC
packages, and beyond. When fewer packages are required,
the inherent speed limitation, software requirements, and
support circuitry of microprocessors place them out of range
of a broad spectrum of applications.

These in general involve algorithms which require a high
speed logic decision based on a large number of controlling
variables. It is here that we step into the basic domain of Field
Programmable Logic Arrays, encompassing applications in
microprogramming, code conversion, random logic, look-up
and decision tables, high speed character generators, etc.
Moreover, when combined with a few storage elements (flip­
flops), FPLAs can implement powerful logic machines of the
Mealy/Moore form for the realization of finite state sequential
controllers for traffic, process, peripheral devices, and other
similar applications.

smnotms 3

4 !i(gDDliC!i

TAILI or CORTIRTJ

Chapter 1 INTRODUCTION . 7

Ni-Cr Technology Matures . 9
What is an FPLA? . 9
FPLA: Logic or Memory? . 12
FPLA Resources . 13

Chapter 2 DATA SPECIFICATIONS . 15

82S100/82S101 Data Specifications 17

Chapter 3 PROGRAM/VERIFY PROCEDURE . 27

Programming Signetics' FPLA . 29
Editing Signetics' FPLA . 29
Generating the FPLA Program Table . 30
Disposition of Unused Inputs . 32
Verifying the Stored Program . 32
Array Verify . 33
Logic Verify . 34

Chapter 4 USAGE AND LIMITATIONS . 37

Logic Compression . 39
Asynchronous Sequential Logic . 41
Synchronous Sequential Logic . 43
Dealing with Device Limitations . 44
Product Term Expansion . 45
Input Variable Expansion . 45
Output Expansion . 46

Chapter 5 APPLICATIONS . 47

Fault Monitor Networks . 49
Fast Multibit Shifter . 50
Priority Resolver and Latch . 51
Memory Overlays . 51
Core Memory Patch . 52
Subroutine Address Map and Branch Logic . 53
"Vectored" Priority Interrupt System . 53

Chapter 6 APPENDICES . 57

Appendix A Program Table of Sample Device . 59
Appendix B Connections for Sample Device . 60

SALES OFFICES

!ijgDDliC!i 5

6 !ii!IDDliC!i

CH PTIR I
IRTRODUCTIOR

!i!,gDDliC!i 7

8 !ii!IDDliC!i

NI-CR TECHNOLOGY MATURES
Nichrome was the first material to give rise
to stable, low current fuses with excellent
fusing characteristics, easily reproducible.
However, as with all new developments,
Nichrome technology had to undergo a
learning curve, with each advance signal­
ing the advent of more complex and higher
performance devices, without a compro­
mise in reliability. It soon became apparent
that each incremental step in complexity
implied a fuller understanding of the fusing
phenomenon. Accordingly, fusible link
technology has been intensively investigat­
ed by Signetics over the last 6 years (see
Signetics' Prom Reliability page 39), giving
rise to the broadest line of PROMs in the
industry, and presently, the addition of a
family of Field Programmable Logic Arrays
(FPLAs), designed for both commercial and
military temperature ranges.

WHAT IS AN FPLA?
Signetics' FPLAs are fast, user program­
mable, TTL logic elements with memory,
which can streamline logic system design
by integrating the equivalent of 528 TTL
gates in 196 packages into a single IC
package.

In terms of logic, the FPLA is a two level
AND-OR, AND-NOR combinatorial logic
element, consisting of a system of logic
gates with programmable inputs and out­
puts as shown in Figure 1. These, by means
of on-chip programmable connectors,
enable the user to quickly implement 8
logic functions with a maximum of 48
product (ANDl terms, involving up to 16
input variables.

FPLA AS A TWO LEVEL
PROGRAMMABLE LOGIC ELEMENT

AND
MATRIX

t
PROGRAMMABLE
CONNECTORS

Figure 1

LOGIC STRUCTURE OF FPLA
ILLUSTRATING AND, OR, AND EX-OR ARRAYS

SUM
MATRIX

(POSITIVE
"OR"

GATES)

PRODUCT MATRIX

(POSITIVE "AND" GATES)

Fo

Fl

Figure 2

A more detailed organization of the FPLA is
shown in Figure 2. The device consists of
an upper resistor-diode AND matric con­
taining 48 product term columns (P-terms),
and a lower emitter-follower OR matrix
containing 8 sum term rows (S-terms), one
for each output function. Each P-term in
the AND matrix is initially coupled to 16
true and complement input variables via 32
fusible Ni-Cr links for programming any
desired input combination.

Each P-term is also coupled to each S-term
in the OR matrix through an emitter fuse,
for pulling the summing node to a high
level when the P-term is activated. Each S­
term in turn is coupled to its respective
output via an Ex-OR gate, which has pro­
grammable transmission polarity by means
of an input to ground through a fusible link.
fusible link.

Selective programming of the internal links
allows the user to create specific logic paths
for producing any logic functions as a sum
of products, defined in the typical Karnaugh
Map of Figure 3.

!ii!IDDliC!i

TYPICAL KARNAUGH MAP

'-,Ae
co'

00

01

11

10

00

1

0

1

0

01

0

0

0

0

11 10 .v
0

...... ,
~J

1 0

i[T 1]1

TI.!. 1 I _ _J

PRODUCT TE
(AC)

MINTERM
(ABC D)

RM

Minterms enclose a single cell. Product terms enclose
2 or more cells.

Figure 3

The transmission through the FPLA can be
traced along the equivalent logic path
shown in Figure 4. From this figure, it is
apparent that Signetics' FPLA is basically a
two level logic element. The first level
produces 48 internal AND functions, Po
through P47, of up to 16 logic input
variables, or their complement. The second
level produces 8 OR output functions, Fo
through F7, each involving up to 48 of the
internally generated AND terms. Alternate­
ly, if desired, this second logic level can be
programmed to provide 8 NOR output
functions Fo* through F?*. However, for

9

EQUIVALENT LOGIC PATH OF
SIGNETICS' FPLA

1o 11
1
1s

---~~~]_
........__._,.._ ___ _

p 0 L. __.r"""' ...
P1--~ (8)

T-~-,
I {
I I CE I I

P4)---.-...~
(S)

A typical set of equations describing the device logic
transmission is shown on page 17.

Figure 4

each of the 8 outputs, either the function Fp
(active-high), or Fp * (active-low) is avail­
able, but not both. The required output
polarity is programmed by the user via link
(8). Th overall logic function provided by
each FPLA output is summarized in Figure
5.

TWO LEVEL LOGIC FUNCTION
PROVIDED BY EACH OF
THE 8 FPLA OUT PUTS

All input NANDs have 16 pairs of inputs for gating
either true or complement states of logic variables. Fp
or Fp are obtained with CE = "0."

Figure 5

When viewed strictly as a logic element, the
FPLA can be used to implement sets of
logic equations of the type:

Fo =lo+ 11Ts+12 T3 11 .. .
F1=To+11 Ts+ 15 11 la .. .
F2 = '2 + 11 Is+ ... etc.

or, by use of De Morgan's theorem, their
equivalent as for Fo:

Fo = ff ol ff1 + Isl (fo + '3 + i'?J ...
This is readily shown in the logic equiva­
lence of Figure 6.

10

LOGIC EQUIVALENCE OF Fo

Fo ¢::==:)

Figure 6

DISCRETE GATE LOGIC
NETWORK FOR EQUATION SET F1-4

X1---'---------------------...-.....
>---- F1

X3 ----+----------+---+---------~...._
>---- F3

>---F4
J------t.........,,,

Figure 7

Generally FPLAs are effectively used in
design situations involving many input
variables and few active logic states; and,
with a maximum access time of sons, the
FPLA is a practical alternative to the long
logic chains necessary when dealing with
several input variables.

The following example is a brief, but con­
cise, illustration of how to integrate random
logic with discrete gates into a Signetics'
FPLA. Given the set of logic equations F1-4
below:

F1 =X1 + X2X3
F2=X2+X1X3
F3=X3+X1X2
F4 = X1X3 + X1X2

These can be implemented with discrete
gates as in the AND-OR-NOT logic net­
work of Figure 7.

This method is practical for simple sys­
tems; but in more complex applications, it
soon produces a distributed logic network
with many IC packages and types, difficult
to design, troubleshoot and modify.

!ii!JDDliC!i

On the other hand, the same set of
equations can be easily coded in an FPLA
Program Table (see page 23) and pro­
grammed in a device using inexpensive field
equipment.
Typically, F1 would require the FPLA to
contain the fused link pattern shown in
Figure 8, as specified in the accompanying
Program Table slice. Overall, all four logic
functions would use 3 inputs, 4 outputs and
7 product terms of the FPLA, leaving re­
maining resources spare for later modifi­
cations.
For example, if it becomes necessary to
change the X1 product term in F1 to X1,
deleting the wrong product term and
adding the new one becomes a trivial task,
as indicated in the modified pattern and
revised Program Table of Figure 9.

These modifications can be made at any
time in the field by the user, usually within
the same device (as long as spare re­
sources are available), by means of inex­
pensive programming equipment (as low as
$350).

INTEGRATING LOGIC WITH FPLAs

X1

X1

i<1

X2

X2

X2 F1 = X1 + X2X3
(2 PRODUCT TERMS)

X3

X3

X3

Figure 8

MODIFYING LOGIC WITH FPLAs

Fl modified by deleting term X1 in the OR matrix and adding new term X1.

Figure 9

!i!!JDDliC!i 11

FPLA: LOGIC OR MEMORY?
In all practical applications, the view of
Signetics' FPLAs as two level AND-OR (or
AND-NOR) logic elements is perfectly
adequate to manage all necessary logic
manipulations. However, the use of FPLAs
in certain types of applications can be
better grasped by focusing on an alternate
aspect of their internal structure. A useful
insight is gained by comparing FPLAs to
Programmable Read Only Memories
(PROMsl, and realizing that FPLAs can also
be viewed as Conditionally Addressable
Memories.

In the industry we refer to PROMs as 1 K,
4K, etc. These usually imply standard
organizations such ·as 256X4, 512X8, re­
spectively. The larger in each pair of
numbers refers to the number of words in a
PROM, and the second represents the
number of bits in each word. The product
of both numbers (approximately 1 K, 4Kl
gives the total number of storage bits
contained in the PROM.

This aspect of PROMs carries over to
FPLAs, such that Signetics' FPLAs can be
described as 48X8, for a total wo.rking
storage density of 384 bits. Thus, the FPLA
is a relatively small PROM, but a much
more useful one, due to a fundamental
difference in input structure.

In a PROM (figure 10l, all internal words
are reached by a fixed decoder internal to
the device. The size of this decoder, as well
as the storage matrix, doubles for each
additional address input. In a 256X8 PROM,
the internal decoder selects 1 of 256 words
by examining 8 address inputs. For a 512X8
PROM, 1 of 512 words are selected by a
decoder twice as large by examining 9 ad­
dress inputs.

The presence of a fixed decoder renders
PROM addressing exhaustive. This can
never be avoided, and forces the utilization
of PROMs in discrete chunks. This con­
straint is at the root of the inefficiency of
PROMs in the type of application shown in
Figure 11. Notice that if we define logic "1"
as the active-true state of all output
functions, it is not possible to compress the
truth table by eliminating inactive minterms
2, 4, and 7. Moreover, with regard to
minterms O and 1, it is necessary to allocate
2 distinct storage locations to activate
output function 03 with a single change in
input variable Ao. In this case, Ao repre­
sents a logical don't care (Xl which cannot
be directly programmed in a PROM. In­
stead, separate minterms A2A1Ao and
A2A1Ao must be programmed.

With an FPLA, both constraints are re­
moved.

As shown in Figure 12, the FPLA does away
with a fixed decoder in favor of a program­
mable address matrix, which offers, in
place of forced exhaustive addressing, the

12

SIMPLIFIED PROM ORGANIZATION
i of 2n

DECODER STORAGE MATRIX

Ao

Ao

Ai

Ai

I
BUFFER I \

I I I I I I I I
Anl

An

(T = 2n+i -1)

OUTPUT BUFFER

Figure 10
Bo B1 B2

TYPICAL TRUTH TABLE
STORED IN AN 8X4 PROM

ADDRESS OUTPUTS

Mn A2 A1 Ao 01 02 03 04

0
1
2
3
4
5
6
7

[
65,536] An

WORDS

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

TIC
BUFFER

0 1 1 1 1
1 0 0 1 1
0 0 0 0 0
1 0 1 1 1
0 0 0 0 0
1 1 0 1 0
0 1 1 0 0
1 0 0 0 0

Figure 11

TYPICAL FPLA ORGANIZATION

(AND)

PROGRAMMABLE
ADDRESS

COMPARATOR

INACTIVE
MINTER MS

48X8
STORAGE MATRIX

OUTPUT BUFFER

B0 B7

The input buffer drives a programmable address matrix, in which any one of 2n+1 input
combinations can be programmed to select a stored word.

Figure 12

Bm

flexibility to choose by "linear-select" any
finite subset from a large number of input
states. This is possible because each
column of the address matrix functions

essentially as a logic comparator pro­
grammed to recognize the simultaneous
presence of (n) inputs, each either true,
false, or both !don't care).

!ii!JDDliC!i

As a result, storage for unused minterms is
no longer required. The necessary logic
output for the inactive minterms occurs by
"default." And, don't care states of input
variables can be directly programmed in
the FPLA. This allows to program the FPLA
with either minterms, or the more general
product terms !P-terms) of the input
variables (addresses) to minimize logic
"waste."

When any programmed logic combination
is present at the FPLA inputs, the corre­
sponding address matrix column (P-term)
will be pulled high (logically active), forcing
all (8) outputs to their true logic state pro­
grammed in the storage matrix. Conversely,
for all unprogrammed logic combinations
present at the FPLA inputs, all columns will
remain low (logically inactive) forcing all (8)
outputs to their false logic state by default
(the complementary logic state of their pro­
grammed active level polarity).

Because it is programmable, the FPLA ad­
dress matrix is not bound in size by the
number of inputs it examines. Signetics'
FPLA has 16 inputs to the matrix. If it were a
PROM, this address matrix would have to be
large enough to decode the address of
65,536 words. For the FPLA, the matrix has
to be only large enough to store the address
of 48 words: the FPLA's P-terms. The
advantage comes about because here we
have a choice to select a minimum of any 48
input words (or more, as determined by
don't care input variables) from a total
available pool of 65,536.

Due to the unique capability of FPLAs to
store directly don't care (X) input states,
each internal word !W) in the device storage
matrix can be addressed by several logic
input combinations (minterms), given by:

!MnlT = 2m-r
Where m = total number of input variables

r = number of active inputs (true or
complement) contained in a
programmed P-term column.

Thus, if Pt = XXXlo, m = 4 and r = 1, for
which !MnlT = 8.

FPLA RESOURCES
Signetics' family of bipolar Field Program­
mable Logic Arrays includes both tri-state
(82S100l, and open collector devices
(828101), featuring the following character­
istics:

• Field programmable !Ni-Cr linkl
• 16-input variables
• 8 output functions
• 48 product terms
• sons max. access time m-75°Cl
• 600mW power dissipation !typical)
• TTL compatible
• 28-pin package
• CE input for expansion or inhibit
• Outputs individually programmable active

"high" or "low"
• Single +sv power supply

These features and organization combine
into an easy to use, high performance
device, affording distinct user benefits:

A. 16-input variables
The 16X8 1/0 configuration permits
direct byte manipulations required by
intelligent terminals, peripherals, micro­
processor based emulators, minicom­
puters, and all the way up to the larger
mainframes. Also, in address mapping
applications, it provides the capability
to scan an address field 65,536 words
deep.

B. Chip Enable input
The Chip Enable input is a major
improvement over alternate devices:

• Eases expansion of input variables and/or
product terms.

• Permits application of tri-state device in
bus organized systems.

• Provides logic inhibit or preconditional
decoding functions.

• Provides a unique "default" logic state for
all outputs, regardless of programmed out­
put polarity.

C. Fastest access time
SOns maximum over the commercial
temperature range renders the replace­
ment of random logic feasible.

Fy \CD + AB+ AC+ AC /
4P-TERMS

A B c

D. Fully buffered devices
All product terms can be utilized as
many times as required, without affect­
ing device speed and power dissipation.

E. 48 product terms (P-terms)
Allow the user to store in the FPLA 48
distinct words of 8 bits each. These 48
words can be addressed by a minimum
of 48 input address combinations,
chosen by the user among a total
available pool of 216 (65,536).

F. Polarity of all outputs individually
programmable active-high or active-low
This feature is particularly useful in
achieving further product term minimi­
zation in cases where the complement
of an output function can be implement­
ed with fewer product terms.

Example:
As shown in Figure 13, a 50% reduction in
P-terms is obtained when the output of the
logical structure of Fy is inverted by means
of a gate external to the elementary FPLA.
The desired function Fy is then realized with
penalties in hardware, and circuit delays
(however smalD. These are eliminated when
using an FPLA with output polarity pro­
grammed active-low to realize the function
O's, rather than 1 's.

D

ELEMENTARY FPLA

Fy

Fy =Pl+ P2 + P3 + P4

A

CD Fy

AB
00

01

11

10

00 01 11 10

x 1111 0 0

0 u_J 0 0

0 0 CI: :IJ
x 0 0 x

Fv \ABC+ ACD;
2P-TERMS

!ii!JDDliC!i

B c D

ELEMENTARY FPLA

Fy

Fy = P5 + P6

Figure 13

13

14 !ii!JDDliC!i

CllAPTIR I
DATA SPIClflCATIOns

!ii!IDDliC!i 15

16 !ii!JDDliC!i

BIPOLAR FIELD PROGRAMMABLE
LOGIC ARRAY (1614818)

DESCRIPTION
The 828100 (tri-state outputs) and the
828101 (open collector outputs) are Bipolar
Programmable Logic Arrays, containing 48
product terms (AND terms), and 8 sum
terms (OR terms). Each OR term controls an
output function which can be programmed
either true active-high (Fp), or true active­
low (Fp)· The true state of each output
function is activated by any logical combi­
nation of 16-input variables, or their com­
plements, up to 48 terms. Both devices are
field programmable, which means that
custom patterns are immediately available
by following the fusing procedure outlined
in this data sheet.

The 828100 and 828101 are fully TTL com­
patible, and include chip-enable control for
expansion of input variables, and output
inhibit. They feature either open collector or
tri-state outputs for ease of expansion of
product terms and application in bus­
organized systems.

Both devices are available in commercial
and military temperature ranges. For the
commercial temperature range (Q° C to
+75° Cl specify N828100/101,I or N, and for
the military temperature range (-55° C to
+125°Cl specify 8828100/101,1.

FPLA EQUIVALENT LOGIC PATH

---~ I I

I '
I .'

P.,~---~
(S)

LOGIC FUNCTION

Typical Product Term:
P0 = 10 • 11 • i; • 15 • ~

Typical Output Functions:
F0 = (CE) + (P0 + P1 + P2) @ 8 =Closed
F0 =(CE)+ (Pa• P, • P2)@ 8 =Open

NOTE

For each of the 8 outputs, either the function Fp
(active-high) or F p (active low) is available, but not
both. The required function polarity is programmed
via link (S).

FEATURES
• Field programmable (Ni-Cr link)
• Input variables: 16
• Output functions: 8
• Product terms: 48
• Address access time:

S82S100/101-80ns Max
N82S100/101-50ns Max

• Power dissipation: 600mW typ
• Input loading:

5825100/101: -50µA Max
N82S100/101: -100µA Max

• Chip enable input
• Output option:

825100: Tri-state
825101: Open collector

• Output disable function:
Tri-state-Hi-Z
Open collector-Hi

APPLICATIONS
• CRT display systems
• Random logic
• Code conversion
• Peripheral controllers
• Function generators
• Look-up and decision tables
• Microprogramming
• Address mapping
• Character generators
• Sequential controllers
• Data security encoders
• Fault detectors
• Frequency synthesizers

LOGIC DIAGRAM

F, F,

!ii!JDDliC!i

B
OUTPUT

FUNCTIONS

825100 (I 5) 825101 (0 c)

828100-1,N • 828101-1,N

PIN CONFIGURATION

GND

• 1 =Ceramic
N =Plastic

l,N PACKAGE*

tOpen during normal operation

TRUTH TABLE

CE

MODE Pn CE Sr ~ f(Pn) Fp F* p

Disabled
(828101)

Disabled
(828100)

Read

16
INPUTS

115 •••••• 1,

x 1

1 0
0 0

x 0

x

Yes

No

1 1

Hi-Z Hi-Z

1 0
0 1

0 1

48
PRODUCT

TERMS

Vee

17

ttDIPOLAR FIELD PROGRAMMABLE 825100 (I S) 825101 (O C)
ttIOOIC ARRAY (16X48X8)

82S100-l,N • 82S101-l,N

ABSOLUTE MAXIMUM RATINGS1 THERMAL RATINGS

RATING
PARAMETER UNIT

Min Max

COM-
TEMPERATURE MILi- MER-

TARY CIAL

Vee Supply voltage +7 Vdc
V1N Input voltage +s.s Vdc
Vour Output voltage +s.s Vdc
l1N Input currents -30 +30 mA
lour Output currents +100 mA

Temperature range oc
TA Operating

N82S 100/101 0 +?S

Maximum
junction 17S°C 1so0 c

Maximum
ambient 12s0 c 7S°C

Allowable thermal
rise ambient
to junction S0°C 75°C

S82S100/101 -SS +12S
TsTG Storage -6S +1SO

DC ELECTRICAL CHARACTERISTICS N82S100/101: 0°::::; TA::::; +7S°C, 4.7SV::::; Vee::::; s.2sv

S82S100/101: -SS 0 c :S TA :S +12S° C, 4.sv :S Vee :S S.SV

N82S100/101 582S100/101

PARAMETER TEST CONDITIONS Min Typ2 Max Min Typ2 Max

Input voltage3
V1H High Vee = Max 2 2
V1L Low Vee= Min 0.85 0.8
Vic Clamp3,4 Vee = Min. l1N = -18mA -0.8 -1.2 -0.8 -1.2

Output voltage Vee= Min
VoH High (82S10Q)3,5 loH = -2mA 2.4 2.4
VoL Low3.6 loL = 9.6mA 0.3S 0.45 0.35 O.SO

Input current
l1H High V1N '--' 5.5V <1 25 <1 so
l1L Low V1N "' 0.45V ; -10 -100 -10 -1SO

Output current Vee= Max
IOLK Leakage7 Vour = S.5V 1 40 1 60
IQ(OFF) Hi-Z state (82S10Q)7 VouT = S.SV 1 40 1 60

Vour = 0.4SV -1 -40 -1 -60
los Short circuit (82S10Q)4.B Vour = OV -20 -70 -1S -8S

Ice Vee supply current9 Vee ::: Max 120 170 120 180

Capacitance? Vee -_ 5.0V
C1N Input V1N 2.0V 8 8
Cour Output Vour = 2.0V 17 17

AC ELECTRICAL CHARACTERISTICS R1=470n, R2 = 1kn, CL= 30pF

PARAMETER TO

Access time
T1A Input Output
TcE Chip enable Output

Disable time
Teo Chip disable Output

NOTES on following page.

18

N82S100/101: 0°C :STA :S +7S°C, 4.7SV :S Vee :S S.2SV

S82S100/101: -SS 0 c :STA :S +12S° C, 4.SV :S Vee :S s.sv

N82S100/101 582S100/101
FROM

Min Typ2 Max Min Typ2 Max

Input 3S so 35 80
Chip enable 1S 30 15 so

Chip enable 15 30 15 so

!ijgDDliC!i

UNIT

v

v

µA

µA
µA

mA

mA

pF

UNIT

ns

ns

BIPOEAR [IELD PROGRAMMABtE

NOTES

1 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only, and functional operation of the device of these or any other
condition above those indicated in the operation of the device specifications is not implied.

2. All typical values are at Vee= 5V. TA= 25°C.
3. All voltage values are with respect to network ground terminal.
4. Test one at the time.
5. Measured with V1L applied to CE and a logic high stored.
6. Measured with a programmed logic condition for which the output test is at a low logic level. Output

sink current is applied thru a resistor to Vee.
7. Measured with: V1H applied to CE.
8. Duration of short circuit should not exceed 1 second.
9. Ice is measured with the chip enable input grounded. all other inputs at 4.5V and the outputs open.

TEST LOAD CIRCUIT

OUT

F,

I,.

GND

TIMING DIAGRAM

READ CYCLE
------------------ +3.0V

INPUT 1.SV

'------------------ov

F0-F 7

TIMING DEFINITIONS
TcE Delay between beginning of Chip

Enable low (with Address valid)
and when Data Output becomes
valid.

Teo Delay between when Chip Enable
becomes high and Data Output is
in off state (Hi-Z or highl.

TiA Delay between beginning of valid
Input (with Chip Enable low) and
when Data Output becomes valid.

VIRGIN DEVICE
The 825100/101 are shipped in an unpro­
grammed state, characterized by:

1 . All internal Ni-Cr links are intact.
2. Each product term (P-terml contains both

true and complement values of every
input variable Im (P-terms always logical­
ly" alse"l.

3. The "OR" Matrix contains all 48-P-terms.
4. The polarity of each output is set to active

high (fp functionl.
5. All outputs are at a low logic level.

RECOMMENDED
PROGRAMMING PROCEDURE
To program each of 8 Boolean logic func­
tions of 16 true or complement variables,
including up to 48 P-terms, follow the Pro­
gram/Verify procedures for the "AND" ma­
trix, "OR" matrix, and output polarity out­
lined below. To maximize recovery from
programming errors, leave all links in un­
used device areas intact.

SET-UP
Terminate all device outputs with a 10K
resistor to +5V. Set GND (pin 14) to OV.

!i!!IDDliC!i

825100-1,N • 825101-1,N

VOLTAGE WAVEFORM

INPUT PULSES

1, If

Measurements: All circuit delays are measured at the
+1.5V level of inputs and outputs.

Output Polarity

PROGRAM ACTIVE LOW
(Fp FUNCTION)
Program output polarity before program­
ing "AND" matrix and "OR" matrix. Pro­
gram 1 output at the time. (5) links of unused
outputs are not required to be fused.

1. Set FE (pin 1) to VFEL·
2. Set Vee (pin 28) to VccL.
3. Set CE (pin 19), and lo through 115 to V1H.
4. Apply VoPH to the appropriate output,

and remove after a period tp.
5. Repeat step 4 to program other outputs.

VERIFY OUTPUT POLARITY
1. Set FE (pin 1 l to VFEL; set Vee (pin 28l to

Vccs.
2. Enable the chip by setting CE (pin 19) to

V1L.
3. Address a non-existent P-term by apply­

ing V1H to all inputs lo through hs.
4. Verify output polarity by sensing the

logic state of outputs Fo through F?. All
outputs at a high logic level are pro­
grammed active low (Fp function), while
all outputs at a low logic level are pro­
grammed active high (Fp function).

5. Return Vee to VccP or VccL.

19

BIPOLAR FIELD PROGRAMMABLE 825100 (I S) 82S101 (0 C.)
LOGIC ARRAY (1614818)

"AND" Matrix
PROGRAM INPUT VARIABLE
Program one input at the time and one P­
term ·at the time. All input variable links of
unused P-terms are not required to be
fused. However. unused input variables
must be programmed as Don't Care for all
programmed P-terms.

1 . Set FE (pin 1) to VFEL. and Vee (pin 28)
to Veep.

2. Disable all device outputs by setting
CE (pin 19) to V1H.

3. Disable all input variables by applying
Vix to inputs lo through !is.

4. Address the P-term to be programmed
(No. O through 47) by forcing the corre­
sponding binary code on outputs Fo
through Fs with Fo as LSB. Use stand­
ard TTL logic levels VoHF and VoLF.

Sa. If the P-term contains neither lo nor iQ
~nput is a Don't Carel, fuse both lo and
lo links by executing both steps Sb and
Sc, before continuing with step 7.

Sb. !!. the P-term contains lo, set to fuse the
lo link by lowering the input voltage at
lo from Vix to V1H. Execute step 6.

Sc. If the P-term contains TO. set to fuse the
lo link by lowering the input voltage at
lo from Vix to V1L. Execute step 6.

6 a. After to delay, raise FE (pin 1 l from VFEL
to VFEH.

6 b. After to delay, pulse the CE input from
V1H to Vix for a period tp.

6 c. After to delay, return FE input to VFEL·
7. Disable programmed input by return­

ing lo to Vix.
8. Repeat steps S through 7 for all other

input variables.
9. Repeat steps 4 through 8 for all other P­

terms.
1 0. Remove Vix from all input variables.

VERIFY INPUT VARIABLE
1. Set FE (pin 1) to VFEL; set Vee (pin 28) to

Veep.
2. Enable F7 output by setting CE to Vix.
3. Disable all input variables by applying Vix

to inputs lo through I 1s.
4. Address the P-term to be verified (No. o

through 4 7) by forcing the corresponding
binary code on outputs Fo through Fs.

20

S. Interrogate input variable lo as follows:
A. Lower the input voltage at lo from Vix

to V1H. and sense the logic state of
output F?.

B. Lower the input voltage at lo from V1H
to V1L. and sense the logic state output
F?.

The state of lo contained in the P-term is
determined in accordance with the follow­
ing truth table:

INPUT VARIABLE STATE
lo F1 CONTAINED IN P-TERM

0 1 IQ
1 0

0 0 lo
1 1

0 1 Don't Care
1 1

0 0 (lo). (!;;)
1 0

Note that 2 tests are required to uniquely
determine the state of the input variable
contained in the P-term.

6. Disable verified input by returning lo to
Vix.

7. Repeat steps S and 6 for all other input
variables.

8. Repeat steps 4 through 7 for all other P­
terms.

9. Remove Vix from all input variables.

"OR" MATRIX
PROGRAM PRODUCT TERM
Program one output at the time for one P­
term at the time. All Pn links in the "OR"
matrix corresponding to unused outputs
and unused P-terms are not required to be
fused.

1. Set FE (pin 1) to VFEL.
2. Disable the chip by setting CE (pin 19)

to V1H.
3. After to delay, set Vee (pin 28) to Vees.

and inputs 15 through hs to V1H. V1L. or
Vix.

4. Address the P-term to be programmed
(No. 0 through 47) by applying the
corresponding binary code to input

!ii!JDDliC!i

82S100-1,N • 82S101-l,N

variables lo through Is, with lo as LSB.
Sa. If the P-term is contained in output

function Fo (Fo = 1 or Fo = Ol, got to step
6, (fusing cycle not required).

Sb. If the P-term is not contained in output
function Fo (Fo = O or Fo= 1 l, set to fuse
the Pn link by forcing output Fo to
VopF.

6a. After to delay, raise FE (pin 1) from
VFEL to VFEH.

6b. After to delay, pulse the CE input from
V1H to Vix for a period tp.

6c. After to delay, return FE input to VFEL·
6d. After to delay, remove VoPF from out­

put Fo.
7. Repeat steps S and 6 for all other out­

put functions.
8. Repeat steps 4 through 7 for all other

P-terms.
9. Remove Vees from Vee.

VERIFY PRODUCT TERM
1. Set FE (pin 1) to VFEL.
2. Disable the chip by setting CE (pin 19) to

V1H.
3. After to delay, set Vee (pin 28) to Vees.

and inputs lo through hs to V1H, V1L. or Vix.
4. Address the P-term to be verified (No. O

through 47) by applying the correspond­
ing binary code to input variables lo
through Is.

S. After to delay, enable the chip by setting
CE (pin 19) to V1L.

6. To determine the status of the Pn link in
the "OR" matrix for each output function
Fp or Fi), sense the state of outputs Fo
through F?. The status of the link is given
by the following truth table:

OUTPUT

Active High Active Low
P-TERM LINK

(Fp) (Fp)

0 1 Fused
1 0 Present

7. Repeat steps 4 through 6 for all other P­
terms.

8. Remove Vecs from Vee.

BIPOLAR FIELD PROGRAMMABLE
LOGIC ARRA¥ (1614818)

OUTPUT POLARITY PROGRAM-VERIFY SEQUENCE (TYPICAL)

Tps

(PROGRAM) (P'AUSEi"

"AND" MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)

Vee= Veep

VoHF--.---------------------- - G --
Fo-5 PN PN 1

VOLF ----- + ---

FUSE
ENABLE VFEL

_____ J
CE - - -- - ___s--V1H--....... -!

VIL ___,_....._...__ ___________ - --- ---- -

"OR" MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)

Vee
------------------- - - - - ------Vccs

VccP

V1H I PN - - - - --.-;N:,--1o-5

Fo-7

FUSE
ENABLE

VIL ... ·------------------- - - - - ---1......:.. - - -
-Jtol- !Pn NOT IN Fp/Fp)

VOPF----r--------, (Fp) r---------,
VoH-1 to•------t--·i--rP_s-i

r-- ---________

L...1

VFEH--+-,.....,.---i _______ J-
(VERIFY)

______ __J-

!ii!IDDliC!i

825100 (I 5) 825101 (0 c)

828100-1,N • 828101-1,N

21

BIPOLAR FIELD PROGRAMMABLE .825100 (IS) 82SIOI (0 G.)
LOGIC ARRAY (16X48X8)

PROGRAMMING SYSTEM SPECIFICATIONS 1 ff A= +25°Cl

PARAMETER TEST CONDITIONS

Vccs Vee supply !program/verify Ices= 550mA, min,
"OR", verify output polarity)2 Transient or steady state

VccL Vee supply !program output polarity)
Ices Ice limit !program "OR"l Vccs = +8.75 ± .25V

Output voltage
Vo PH Program output polarity3 IOPH = 300 ± 25mA
Vo PL Idle

IOPH Output current limit (Program output VOPH = +17 ± 1V
polarity)

Input voltage
V1H High
V1L Low

Input current
fiH High V1H = +5.5V
liL Low V1L = OV

Forced output voltage
Vo HF High
VoLF Low

Output current
IOHF High VoHF = +5.5V
IOLF Low VoLF = ov
Vix CE program enable level

l1x1 Input variables current Vix= +10V

lix2 CE input current Vix= +10V

VFEH FE supply (programJ3 IFEH = 300 ± 25mA,
Transient or steady state

VFEL FE supply (idle) IFEL = -1mA, max

IFEH FE supply current limit VFEH=+17±1V

VccP Vee supply (program/verify "AND"J lccP = 550mA, min,
Transient or steady state

lccP Ice limit !program "AND"J VccP = +5.0 ± .25V

Vo PF Forced output (program)

IOPF Ou!put current !program)

TR Output pulse rise time

tp CE programming pulse width

to Pulse sequence delay

TPR Programming time
TPR

Programming duty cycle
TPR + Tps

FL Fusing attempts per link

Vs Verify threshold4

NOTES

1. These are specifications which a Programming System must satisy in order to be qualified by
Signetics.

2. Bypass Vee to GND with a 0.01µf capacitor to reduce voltage spikes.
3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The

recommended supply is a constant current source clamped at the specified voltage limit.
4. Vs is the sensing threshold of the FPLA output voltage for a programmed link. It normally constitutes

the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
5. These are new limits resulting from device improvements, and which supersede, but do not obsolete

the performance requirements of previously manufactured programming equipment.

22 !ii!IDDliC!i

828100-1,N • 828101-1,N

LIMITS
UNIT

Min Typ Max

8.25 8.5 8.75 v

0 0.4 0.8 v
550 1,000 mA

v
16.0 17.0 18.0

0 0.4 0.8

275 300 325 mA

v
2.4 5.5
0 0.4 0.8

µA
50

-500

v
2.4 5.5
0 0.4 0.8

100 µA
-1 mA

9.5 10 10.5 v
2.5 mA

5.0 mA

16.0 17.0 18.0 v

1.25 1.5 1.75 v
275 300 325 mA

4.75 5.0 5.25 v

550 1,000 mA

9.5 10 10.5 v
10 mA

10 50 µs

0.3 0.4 0.5 mss

10 µs

0.6 ms

50 %

2 cycle

1.4 1.5 1.6 v

±BIPOLAR FIELD PROGRAMMMLE 825100 (I S) 828101 (0 C I
±±tOGtffAIRAY (1614818)

16X48X8 FPLA PROGRAM TABLE
PROGRAM TABLE ENTRIES

INPUT VARIABLE OUTPUT FUNCTION OUTPUT ACTIVE LEVEL

Im -
Don't Care

Prod. Term Prod. Term Not Active Active
Im

Present in Fp Present in Fp High Low en
u H L - (dash) A • (period) H L ;::
w NOTE NOTES NOTES z
(!) Enter 1-1 for unused inputs of used 1. Entries independent of output polarity. 1. Polarity programmed once only

en P-terms 2. Enter IAI for unused outputs of used P-terms 2. Enter IHI for all unused outputs.

>
al PRODUCT TERM, ACTIVE LEVEL 1 c t-1-1-11-1-11-· w INPUT VARIABLE,
I- I- - -r---.---- t-__J- L J. _I_ L_L-1-
w NO. 1 1 1 1 1 1 OUTPUT FUNCTION 1
...I
a. I- - - - r- -, - - ·--- --- t---.-- - ,.., -.----
~ 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
0 0 u
w 1
al ::tt: 2
0 I-
I- ([3

< 4 z a..
0 0 5 ;:: w

6 a: ~
0 ...J 7 a. 0
~ CD 8
J: ~ 0 9 >- w I- Cf) > 10

([w Cf)
11 w u I-

x ~ w z 12 x 0 ([w
x ~ 13
~ I- w

Cf) I- ~
u.. :::> < 0 14
u u 0 u 15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Cf) 36
I- 37 ([

< 38 a.. ::tt: ::tt: 39
([w u.. ::tt: w w u 0 w 40 :2 0 > ([...J w

< ([w w Cl) I- 41
z 0 0 CD < < 42
([~ I- 0 w Cf) w Cf) u :::> ~

I
43

~ < ~
z < 44 0 I w ...J ([

I- u z < CJ 45
Cf) ([

~
I- 0 > :::> :::> 0 ([w 46 u a.. Cf) I- a.. ([

47
(1) Input and Output fields of unused P-terms can be left blank. Unused inputs and outputs are FPLA terminals left floating.

smnotms 23

BIPOLAR FIELD PROGRAMMABLE 825100 (f s) 825101 (n C.)
LOGIC ARRAY (1614818)

PUNCHED CARD CODING
FORMAT

The FPLA Program Table can be supplied
directly to 8ighetics in punched card form,

using standard 80-column IBM cards. For
each FPLA Program Table, the customer
should prepare in input card deck in ac­
cordance with the following format. Product
Term cards 3 through 50 can be in any

CARD N0.1-Free format within designated fields.

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5
1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4

C F

SIGN1TICS CUSTOM1R NAME
T

PROGRAM TABLE NO
DEVICE NO.

CARD NO. 2-

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5

1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4

ST X

F, Fo

I

828100-1,N • 828101-1,N

order. Not all 48 Product Terms need to be
present. Unused Product Terms require no
entry cards, and will be skipped during the
actual programming sequence:

5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 B

5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0

RE V ~ ~

I DlTE REVISION
(1 ALPHA CHAR.)

SYMBOLIZED PART NO.

5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 B

5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0

T
OUTPUT ACTIVE LEVEL (8) TOTAL PRODUCT TERMS USED (2 DECIMAL DIGITS) COMMENTS (FREE FORMAT)

CARD NO. 3 through NO. 50

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 B

1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0

I,, 1, F, F,

I I I
INPUT VARIABLE (16) OUTPUT FUNCTION (8) COMMENTS (FREE FORMAT)

PRODUCT TERM NO. (00 THROUGH 47)

CARD NO. 51

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5

E T X

Output Active Level entries are determined
in accordance with the following table:

NOTES

OUTPUT ACTIVE LEVEL

Active high
H

Active low
L

1. Polarity programmed once only.
2. Enter (H) for all unused outputs.

24

2 2

6 7

2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5

B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4

I
COMMENTS (FREE FORMAT)

Input Variable entries are determined in
accordance with the following table:

INPUT VARIABLE

-
Im Im Don't care
H L - (dash)

NOTE

Enter(-) for unused inputs of used P-terms.

!ii!JODliC!i

5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 B

5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 B 9 0

Output Function entries are determined in
accordance with the following table:

OUTPUT FUNCTION

Product term Product term not
present in Fp present in Fp

A •(period)

NOTES
1. Entries independent of output polarity.
2. Enter (A) for unused outputs of used P-terms.

BIPOLAR FIELD PROGillMMABLE 825100 (I b) 825101 (0 C J
LOGIC ARRAY (1614818)

TWX TAPE CODING FORMAT
The FPLA Program Table can be sent to
Signetics in ASCII code format via airmail
using any type of 8-level tape (paper, mylar,

. fanfold, etc.}, or via TWX: just dial (910} 339-

9283, tell the operator to turn the paper
puncher on,· and acknowledge. At the end of
transmission instruct the operator to send
tape to Signetics Order Entry.

A number of Program Tables can be se-

82S100-l,N • 82S101-l,N

quentially assembled on a continuous tape
as follows, however I im it tape length to a roll
of 1.75 inch inside diameter, and 4.25 inch
outside diameter:

24"
LEADER

(CIR)

a: 25
::I I MAIN I SUB I 25 I 25

HEADING I RUBOUTS I PROGRAM TABLE I (CIR)

7LIB_ 1_ ~I - - - -it_ I ;;:-17
HEADING I RUBOUTS I PROGRAM TABLE I ~ I TRAILER(g: I HEADING I (CIR)

~ MIN. (1) MIN. I DATA (1) I MIN. (N) I MIN. I DATA (N) I 0 I (CIR) I\
- -'- - _J - - __ ,_:;:j_ _ _L~

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a($} character,
whether used or not:

1. Customer Name 4. Purchase Order No.

2. Customer TWX No.------------------ 5. Number of Program Tables

3. Date----------------------- 6. Total Number of Parts -----------------

8. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry
preceded by a ($} character, whether used or not:

1. Signetics Device No.

2. Program Table No. ------------------ 5. Customer Symbolized Part No. --------------

3. Revision 6. Number of Parts

C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data
consists of Output Active Level, Product Term, and Output Function information separated by appropriate identifiers in
accordance with the following format:

START OF DATA TEXT START OF DATA FIELD
(CONTROL A or B) PRODUCT TERM IDENTIFIER

START OF DATA ~ 1 SPACE (MANDATORY) END OF DATA TEXT

[

FIELD PRODUCT TERM NUMBER [START OF DATA FIELD (CONTROL C) 1
ACTIVE LEVEL fr (2 DECIMAL DIGITS)

[

IDENTIFIER START OF DATA FIELD I OUTPUT FUNCTION IDENTIFIER

ACTIV. E LEVEL DATA De INPUT VARIABLE IDENTIFIER OUTPUT FUNCTION DATA INPUT AND OUTPUT DATA FOR
(8 DIGITS, HIL) INPUT VARIABLE DATA (8 DIGITS, Al•) ALL PRODUCT TERMS USED

(16 DIGITS, HILi-) ,- ____ _J_ _____
1

STX* A F7F6F5F4F3F2F1F0* P 00 * I 115114113112111 11019181716151413121110* F F7F6F5F4F3F2F1F0* P 01 * F * P F0 ETX

Entries for the 3 Data Fields are determined in accordance with the following Table:

INPUT VARIABLE OUTPUT FUNCTION

-
Im Im Don't care
H L - (dash}

Product term Product term not
present in Fp present in Fp

A •(period}

NOTE NOTES

Enter(-) for unused inputs of used P-terms. 1. Entries independent of output polarity.
2. Enter (A) for unusea outputs of used P-terms.

OUTPUT ACTIVE LEVEL

Active high
H

NOTES

Active low
L

1. Polarity programmed once only.
2. Enter (H) for all unused outputs.

Although the Product Term data are shown entered in sequence, this is not necessary. It is possible to input only one Product
Term, if desired. Unused Product Terms require no entry. ETX signalling end of Program Table may occur with less than the
maximum number of Product Terms entered. ·

NOTES

1. Corrections to any entry can be made by backspace and rubout. However, limit consecutive rubouts
to less than 25.

2. P-Terms can be re-entered any number of times. The last entry for a particular P-Term will be
interpreted as valid data.

3. Any P-Term can be deleted entirely by inserting the character (E) immediately following the P-Term
number to be deleted, i.e., •p 25E deletes P-Term 25.

4. To facilitate an orderly Teletype print out, carriage returns, line feeds, spaces, rubouts etc. may be
interspersed between data groups, but only preceding an asterisk (').

5. Comments are allowed between data fields, provided that an asterisk(*) is not used in any Heading or
Comment entry.

!ii!IDDtiC!i 25.

26 smnotiC!i

CllAPTIR J
PROGRARl/YIRlrY

PROCIDURI

S~DDbCS 27

28 !ii!IDDliC!i

PROGRAMMING
SIGNETICS' FPLA
The FPLA is programmed by the user with
the desired program table (or truth table) in
3 successive steps involving the AND
matrix, the OR matrix and the transmission
polarity of the output Exclusive-OR gates.

In its initial unprogrammed state, all Ni-Cr
links are intact, such that:

• Each P-term contains both true and comple­
ment values of every input Im. Hence, all P­
terms are in the NULL state (unconditionally
I owl.

• Each S-term contains all 48 P-terms.
• The polarity of each output is set to active­

high (Fp function). Since all P-terms are
inactive, all outputs will be at a low level when
the chip is enabled (CE = lowl, regardless of
input conditions.

The peripheral fusing circuitry inside the
FPLA and a summary of the fusing require­
ments of the FPLA are shown in Figure 14
and Table 1, respectively. For a more
detailed fusing procedure, refer to the data
sheet in Chapter 2.

AND Matrix
Each P-term Pn is programmed by fusing
the appropriate Ni-Cr links in all pairs that
couple the P-term to each input variable. If
Pn contains Im, the I;;; link is fused, and vice
versa. If Im is a don't care in Pn, both the Im
and Im links must be fused. If fewer than 16
variables are used in any application, the
unused variables represent don't care
conditions for all used P-terms, and their
corresponding Im and Im links must in
general be fused (see Editing, below).

Since in a blank device all P-terms are in a
logic null state, unused P-terms require no
programming at all.

OR Matrix
The response of each output function to
programmed P-terms is assigned in the OR
matrix. If any product term Pn logically
negates an output function, the link cou­
pling that output function to the P-term
must be fused. Conversely, if a P-term
logically asserts (activates) an output
function, the corresponding coupling link
must remain intact.

No programming is required of OR matrix
links coupling used or unused P-terms to
S-terms servicing any unused output func­
tions.

Output Active Level
The logic output transition !H - L, or
L - Hl required for each FPLA output func­
tion when activated by a selected P-term is
programmed in the Ex-OR gates.

For an active-low output !H - L transition),
the link grounding one input of the Ex-OR
gate servicing the desired output must be
fused. For an active-high output, the link
must remain intact. No fusing is required of
links servicing Ex-OR gates of unused
outputs.

I
N
p
u
T
s
0
u
T
p

u
T
s

FUNCTIONAL FPLA BLOCKS ACTIVATED DURING
ARRAY PROGRAM/VERIFY SEQUENCE

OR-MATRIX SELECT AND-MATRIX SELECT

PROGRAM

Vee

Idle

VERIFY
AND-MATRIX

T ...

Figure 14

"AND"
MATRIX

+5.0V

+10.0V
1----11-----

Im "1"
Program t--; -- ----

I r;;:; "O"

Active-High

"OR" OUTPUT
MATRIX POLARITY

+8.75V "O"

Address
P-Term with "1"

lo -rs

"O"
1--------- N.A. 1-----

Active-Low Address +17.0V~

I-------- - P-Term with I--- -- --
"O" 0.4MS
---·~

!Pnl in Fo -Fs "O"
I--- -- -- -- - I------ N.A.

!Pn) out +10.0V

FE +17.0V +1.5V

CE +10.0~ "1"
"1" 0.4MS

J J

Entries "O" and "1" are standard TTL levels.

Table 1 SUMMARY OF FPLA INPUT REQUIREMENTS
FOR PROGRAMMING RESPECTIVE AREAS

IN THE DEVICE

Si!JDlltiCS 29

EDITING SIGNETICS' FPLA
In contrast with PROMs, FPLAs have
inherent program editing capabilities. After
programming, the user can incorporate a
number of program modifications in Sig­
netics' FPLAs. These are tabulated in Table
2.

So, given a programmed function:

Fo =lo+ 1112+13f41s

it is possible to modify it as:

Fo =lo+~+ 11'2 + l3'4't5,

by:

1. Complement Fo by reprogramming FPLA
output active-low.

2. Delete P-term !11l2l from the OR matrix.
3. Program new P-term !h Gl in the AND matrix.
4. Change input Is to Don't Care in P-term !13f41sl

by fusing both Is links in the AND matrix.

GENERATING THE FPLA
PROGRAM TABLE
In a typical application as in Figure 15, the
symbolic statements, or the truth table, of a
logic problem are first reduced to a
minimum set of P-terms.

ELEMENTARY PROGRAM
TO BE STORED IN FPLA

Fa= Po+ I+ P2
F1 =I+ P1 + P2

a. Activity Map of
elementary function set.

P0 = 12 i1 i0

P1 = 12 i1 10

P2 = f2 11 fo

b. P-term List

Figure 15

The minimized output function set is
expressed in the form of an activity map for
tabulating those P-terms which are con­
tained in an output function, and those
which are not, designated by (Pnl or (/) in
their respective positions. •

The activity map eases the derivation of
program table entries for the FPLA input
variable field, output function field, and
output active level polarity field.

The standard program table format adopt­
ed by Signetics is shown in Table 3. The
term "Program Table" is used in favor of
truth table, because the former allows don't
cares (Xl as a direct entry, and thus is more
general, and conforms to FPLA structure.

Ideally the FPLA program table should
contain entries formulated with a code
which not only issues unambiguous fusing
commands to a programming system, but
also readily displays the actual logic state
of the FPLA outputs. In dealing with logical
statements or truth tables, most logic
designers are used to either (1/0l or (H/U

30

Program desired logic combination into any
P-Term to F p/Fp YES unused P-Term. Blow S-Term link(s) coup­

ling P-Term to inactive output functions.
ADD -------+---+-----------------

- Delete erroneous P-Term.
1 m/I m to P-Term NO Add new, corrected P-Term.

P-Term from F p/Fp YES Blow S-Term link coupling P-Term to F p/Fp.
-------r---~----------------

DELETE - Blow both links coupling the input variable
lm/lmfromP-Term YES totheP-Term.

Fp~Fp YES Blow Ex-OR link of output to be inverted. -------i----+-----------------
1 m/lm ~x YES Delete Im/Im from P-Term.

CHANGE -------+--~----------------
- NO Delete erroneous P-Term, and add a new

lm~lm P-Term.
1--------t--- f------------------

Fp~ F p NO Use spare active-high output.

Table 2 SUMMARY OF "EDITING" FEATURES OF SIGNETICS' FPLA

PRODUCT TERM ACTIVE LEVEL

_ ~N!~T VARIABLE (Im) - r - -,- -1- - r - r-1 - r -
- - - - - t--LOUTPlffF!.UNCTION L __ NO. 1 1 1 1 1 6 t-9- 0 8- -7- -6- 5 r 4- 3 r 2- -1..., O t-.-r-r-----T-r -,--5 4 3 2 1 7,6 5'4'3,2,1 0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Used P-terms can be programmed anywhere. Unused P-terms require no programming, and can be left blank.

Table 3 STANDARD SIGNETICS' FPLA PROGRAM TABLE

!ii!JDDliC!i

symbols. An additional symbol (Xl is
generally used for don't care input states.
Their widespread usage is a strong incen­
tive to choose among these symbols for a
suitable set to code the FPLA program
table.

However, in many cases the program table
will be transmitted to remote programming
centers over commercial communication
links, which normally employ an ASCII
alpha-numeric code. Since the "distance"
between the ASCII codes for "O" and "1" is
only 1 bit, the risk of undetected trans­
mission errors is large. Thus, the set (H, L,
Xl is more preferable, but it is still not ideal.
Indeed, to enhance the production of low
cost programming equipment, in which a
low cost LED display is mandatory, one
must forego the (Xl in favor of a more
realizable symbol such as a (-).

Therefore, the code for each state of the
input variables in each P-term is coded as
illustrated in Table 4. All entries clearly
indicate. the logic states of the input
variables which activate a given P-term.

An additional symbol for the input variables
is required to code the state in which both Im
and I; links are intact. This code, chosen as
(OJ again for ease of display, is necessary to
indicate the state of input variable(sl in a
virgin device, or for unused or partially
programmed P-terms. It is the initial state of
all input variables, signifying their logic null
state. If any used P-term contains at least
one variable in the null state, the P-term will
never be selected by any logic input combi­
nation. Entry of a (0) in the program table is
thus meaningless, and not allowed. How­
ever, it does require to be displayed by a
programming system to indicate blank
check results, or program fail conditions.

While these symbols are appropriate to
code the various states of the FPLA input
variables for each P-term, as well as the
output Active Level polarities, they give rise
to some ambiguities when used to code the
FPLA outputs, because of the user choice
of output Active Level. To code the outputs
of the FPLA, several alternatives are
available. In all cases, derivation of each
entry involves scanning the Activity Map to
determine whether or not an output func­
tion contains a particular P-term. Regard­
less of chosen output polarity, a P-term
activates Fp if it is contained in Fp.
Accordingly, any Fp will be forced high,
and Fp (defined as Fp l will be forced low.
Conversely, if Pn is not contained in an
output, all Fp and Fp functions will remain
in their default logic state (low or high,
respectively). A particularly convenient
method for coding the FPLA output table is
shown in Table 5.

This coding system utilizes an A (for Active)
to indicate the presence of Pn in either Fp
or F P• and a• (period) to indicate absence.
It has the advantage that the FPLA output
table can be constructed directly from the

?
Pn :f(lm) INPUT STATE PROGRAM TABLE ENTRY FUSE COMMAND

Im ® Fuse Im link
Yes -

© Im Fuse Im link

No Don't Care 8 Fuse both

Table 4 PROGRAM TABLE CODING OF INPUT VARIABLES

r---:;--
1 F p ~ f(Pn)
1_

ACTIVITY
MAP

--------,
OUTPUT
TABLE

FUSE I
COMMANDS j

I
I Yes Pn ® ® Do not Fuse P n

link in OR-Matrix
t-------

I
I

-----~
Fuse Pn link I 1

L
No I

[
0 0 in OR-Matrix ___ I

Active Level H L

F F * L-~~-~-L~uncti~Polarity-J
Entries, contained in 0, are obtained by "multiplying" the contents of the activity map
with the active level. Note that they are independent of output polarity.

Table 5 TABLE FOR FORMULATING OUTPUT TABLE ENTRIES FOR THE FPLA

FPLA FPLA
OUTPUT LOGIC
TABLE OUTPUT

® H L

0 L H

® © Active Level]

[Function Polarity Fp Fp*

The FPLA output is obtained by "multiplying" output table entries with the active level.

Table 6 TABLE FOR CALCULATING THE FPLA LOGIC OUTPUT

PRODUCT TERM ACTIVE LEVEL
-~N!~TVARIABLE {Im) -r--:--:--r-:--"":"Hf'L

l ~ ~ ~ ~g-rc1- -6 5 4- 3 .-i- -,- o ti~~~T:Y-r~u~HN~-~-_,
1---+-+-+-+..;:..+-+---=-+--+---+-+--+---+---+--'-+--'-+--'-+-"'-4

NO.

H L L • A
H L H A •
L H L A A

4

I~ 11111111111111111111111111

Table 7 PARTIAL PROGRAM TABLE FOR THE EQUATION SET OF FIGURE 15

activity map. Also, when retrieving the
stored output table from a programmed
device, the presence/absence of a P-term
in an output function is readily detected,
yielding the easiest array verification
procedure. However, in order to relate the
actual logic output of the FPLA to the
above entries (especially when dealing with
code conversion, or address translations),
reference to Table 6 is necessary.

On the basis of the above coding system, a
partial program table for the equation set in
Figure 15 is shown in Table 7.

!ii!JDDliC!i

Note that only 3 P-terms and 2 outputs are
used. Also note that the Active Level for
FPLA outputs O and 1 has been set to L and
H respectively to implement the required
logic transition polarities of Fo and F1.

31

To complete the table we must dispose of
all its blank areas. The guiding concern
here should be to leave intact as many as
possible of the unused FPLA resources, for
possible later use. Hence:

1. Leave blank Input Variable and Output Func­
tion fields of all unused P-terms (Pa through
P47}.

2. Enter H (initial virgin statel in the Active Level
field of all unused output functions !F2 through
F1l.

3. Enter A (initial virgin state) in the Output
Function field of all unused output functions
!F2 through F1l.

4. Enter a (-J for all unused input variables (13

through l15J of used P-terms. ln general this is
not the best alternative. Another, more conser­
vative option, is described below.

The complete program table for the above
example, after applying rules 1 through 4,
is shown in Table 8.

DISPOSITION OF UNUSED
INPUTS
When a particular application involves less
than 16-input variables, if unused inputs
are programmed as don't care in all used P­
terms (M) of the FPLA, it is no longer
possible to modify the logic structure of the
(M) P-terms by reinstating any of the
unused inputs as additional controlling
variables to the FPLA.

While it is possible to recover from this
condition by deleting P-terms requiring
change, and adding any of the remaining
(48-Ml P-terms programmed with the
desired number of input variables, this
method ultimately fails once all 48 P-terms
are exhausted.

This method can be combined with an alter­
nate procedure to obtain a greater degree of
flexibility in adding previously unused in­
puts to a preprogrammed FPLA. It requires
that about one half of all originally unused
inputs be programmed high and the remain­
ing half low, in (M) P-terms only. These
inputs are then normally tied to high and low
logic levels respectively.

If at any time during function update or
modification it becomes necessary to add
high and/or low control variables to (N) of
the (M) P-terms, any of the properly
programmed idle inputs are disconnected
from their voltage clamps and connected to
their corresponding logic sources. These
newly activated inputs must in turn be
reprogrammed as don't care in (M-Nl of the
used P-terms.

An illustration of the above concept is
easily provided by recoding the previous
problems as shown in Figure 16.

Suppose that later on in the design cycle a
modification of system function is neces­
sary, whereby:

32

PRODUCT TERM ACTIVE LEVEL

_ ~N!l!T VARIABLE llml 8.I8TH=C':fft:! [i!li! [1
NO. ~ 1 j ~ 1 6 r9-r3- -7- -6 S 4- 3 f -,-, 0
o -------------HLL

f-f: ~L?YY~ ~u3Nf ~?~- ,-o-
A A A A A A • A
A A A A A A A •
A A A A A A A A

1 -------------H L H _______ _.:: _____ L H L

~ :

lit~~l--+-+--il I l~I I l~I I 1~1 I lr--+-+-il I II I I I I I I I I

Table 8 COMPLETE PROGRAM TABLE FOR THE EQUATION SET OF FIGURE 15

FPLA WITH UNUSED INPUTS PROGRAMMED FOR LATER USE

PRODUCT TERM

_ ~N!l!T VARIABLE Oml
NU. 1 1 1 1 1 6 r9r3-r-7- -6 5 5 4 J 2 1

0 H H H H H H L L L L L

H H H H H H L L L
H H H H H H L L L

4- 3 2- - 1 0
L L H L L

L H L H
L L H L

ACTIVE LEVEL
tifi=!Ttf:-HrH •i'.FR r [

~~~~W¥~~ur¥~~~~-~-
A A A A A A . A 
A A A A A A A . 
A A A A A A A A 

I 
I 

Bl 1111 I I I I I I I I I I I II I I I IH] 
a. FPLA Program Table 

b. FPLA Connections 

Figure 16 

Fo =Po+ I+ P2 
F1 =I+ P1 + P2 

and 
Po= Ix 12 f110 
P2=ly121110 

The new high and low input variables in Po 
and P2 can be readily included without 
resorting to adding new P-terms as shown 
in Figure 17. 

VERIFYING THE STORED 
PROGRAM 
Unlike PROMs, verification of an FPLA 

!ii!JDDliC!i 

after programming presents unique diffi­
culties, posed by the large number of 
inputs to be manipulated and by the 
associative characteristic of FPLAs. 

, In general, the FPLA program table may 
bear little resemblance to the original truth 
table, yet, from a black box viewpoint, the 
logic function of the FPLA should match 
entry for entry the original truth table. This 
level of verification can only be obtained 
through a logic verification procedure, in 
which the logic transfer characteristic of 
the FPLA is exhaustively examined by 

• 



FPLA INCORPORATING ADDITIONAL INPUTS REQUIRED BY SYSTEM MODIFICATION 

PRODUCT TERM ACTIVE LEVEL 

1 
_ ~N!':!T VARIABLE llml 

ri~ ~~~1~~0H~~~ ~-> NU. 1 1 1 1 1 9-rs- -7- -6 5 4- 3 f- Ci 5 4 3 2 1 0 
0 H H H H H - L L L L L L L H L A A A A A A . A 

H H H H H - L L L - H L H A A A A A A A . ly 

H H H H H H L L L - L H L A A A A A A A A +5V 

I li 11111111111111111111111111 

a. Modified FPLA Program Table 
incorporating additional active in­
puts Ix= 13, and ly =I 10 

b. Modified FPLA Connections 

exerci~ing its inputs with a minterm gener­
ator. 

But, while logic verification is the ultimate 
test of FPLA valid function, it is a useless 
tool for determining the FPLA stored 
program. This is readily apparent in Figure 
18 which shows the output of an elemen­
tary FPLA to be the same (low) for 3 distinct 
internal programmed states, when its 
single input is toggled between high and 
low logic levels. 

Since a non-ambiguous map of the status 
of every link in the device is a most 
essential tool required to monitor and 
manipulate the stored program (especially 
while interacting with an FPLA program­
ming system or when duplicating from a 
master device), Signetics' FPLAs allow 
such map to be obtained via an array verify 
test sequence comprising 3 tests for 
examining the links in the output Ex-OR, 
the AND matrix, and the OR matrix. 

ARRAY VERIFY 
The peripheral fusing circuitry in Signetics' 
FPLAs incorporates additional networks 
and dedicated paths for the array verify test 
sequence. These are shown at the bottom 
of the composite FPLA diagram in Figure 
14. Specifically, to sense the status of the 
AND matrix links, the OR matrix includes 
an extra row of non-fusible emitter follow­
ers Oo through Q47, monitored via Oso 
collector ORed with output F1. This stage 
does not interfere with F1 during normal 
operation because Oso can only get base 
drive during verify mode. 

(H) 

Figure 17 

DISTINCT FPLA PROGRAMMED STATES 
RESULTING IN IDENTICAL LOGIC FUNCTION 

Vee Vee 

3 WAY AMBIGUITY 

(H)i I 

~ ~ / ~.JllO--+-O(L) 
(I) - P - TERM CONTAIN EDIN F*. iV -

t I 

(L) 

I= X(DON'T CARE). CC (Ill)· "NULL" STATE OF VIRGIN DEVICE. 

I 
N 
p 
u 
T 
s 

OUTPUT= ACTIVE LOW= F* 

VERIFY-

Vee 

Verify 

p 

't~~-~r. 
(LI ~-1 '-IF 
~(LI 

(II) - P - TERM NOT CONTAINED INF. 
I =X(OON'T CARE). 
OUTPUT= ACTIVE HIGH= F. 

Figure 18 

"AND" MATRIX "OR" MATRIX 

+5.0V +8.75V 

+10.0V 

(1): Im= "O" 

(2): Im= "1" 
----+--------- ADDRESS P-TERM 

WITH lo- Is 
Idle +10.0V 

3 F
7 

~~~= ~ l q ~ l ~ 
T - T T- TDon't

Fp Act HI Act LOW

"O" (Pn) out (Pn) in

OUTPUT POLARITY

+8.75V

"O"

"1"
(All)

Fp Polarity

"O" active-HIGH
The internal map of the FPLA is obtained
by performing the sequence of tests
summarized in Table 9, during which the
Fuse Enable input is maintained at +1.5V.
Verification of the active level polarity of the
outputs is obtained by addressing a non­
existent P-term in the device, and thus rely
on the pull-down resistors in the OR matrix
to yield a non-ambiguous result.

Im-Null Im Im care
~ 1-------------- --i--- i----- -~----
T
s Idle

ADDRESS P-TERM
WITH F0 - F5

"1" (Pn) in (Pn) out "1" active-LOW

The output active level test must be performed before the OR matrix test. Entries "O" and "1" are standard TTL levels.

Table 9 SUMMARY OF FPLA INPUT REQUIREMENTS FOR
MAPPING THE STATUS OF ALL INTERNAL LINKS

Si!IDDliCS 33

T,o verify the AND matrix 2 tests are
required for each input of all P-terms. The
status of each Im link coupling a P-term to
the input buffer outputs is determined in
accordance with Table 10.

INPUT VARIABLE
STATE CONTAINED INPUT

Im F1 IN P-TERM CODE

L
H

L
H

L
H

L
H

H
Im L

L
Im H

H
Don't care

H

L
(Im). (Im)

L

Table 10 TABLE FOR
DETERMINING THE STATUS
OF EACH INPUT VARIABLE
LINK IN THE AND MATRIX

L

H

-

0

Verification of the OR matrix requires prior
knowledge of the output level polarities.
The status of the OR matrix links coupling
each P-term to the S-term is given by Table
11.

OUTPUT

Active-high Active-low P-term Link
(Fp) (Fp)

L H FUSED

H L PRESENT

Table 11 TABLE FOR
INTERPRETING THE STATUS OF
OR MATRIX LINKS, BASED ON

OUTPUT ACTIVE LEVEL
TEST RES UL TS

For a more detailed array verify procedure
refer to the device data sheet.

LOGIC VERIFY
After an FPLA has been programmed, and
its contents checked by array verify against
hard-copy reference of the program table,
there should be in most cases little reason
to suspect that the device will not exhibit
the correct logic function in a system
environment. However, in some cases,
device defects, programming equipment
problems, user coding inexperience, as
well as system logic races and other
marginalities, may all contribute in creating
a situation in which system failures are
traced to an FPLA which nevertheless
appears to contain the correct program
table. In these cases, further device diag­
nostics are necessary to identify the source
of the problem at hand, for which the actual
operating system may be a slow and
ineffective tool.

34

Also, at the end of the design cycle, some
users may want to replace FPLAs with
mask programmable PLAs for cost reduc­
tion. Since a PLA does not contain peri­
pheral fusing circuitry, it is not possible to
logically address each of its internal links
to verify that the PLA contains the same
program table as the master FPLA. In this
case the only verification possible is a full
logic verify of the PLA versus FPLA func­
tions.

Ultimate verification of FPLA logic perfor­
mance entails an exhaustive check of its
logic function to compare the expected
truth table with the stored truth table, ob­
tained by cycling the FPLA inputs through
all 216 combinations with a minterm genera­
tor. This, however, involves dealing with a
hardcopy reference of a table containing
about 64,000 input entries, which is a totally
impractical task in view of what may be
required to generate and store such table.

A more feasible alternative consists of con­
structing a "hardwired" logic verify system
which may be conveniently incorporated
within the FPLA programming system. The
programmer would then function as an
FPLA emulator with the ability to produce
and display the full truth table of the FPLA,
viewed just as a logic box. This is extremely
useful in code conversion, map translations,
or when programming directly from a truth
table.

In essence, the logic verify system must be
able to compare the actual FPLA logic
output with that computed on-the-fly by
composite overlay and manipulation of the
output table stored in the programmer, as
activated by all concurrent and multiple
address selections for each state of the
input minterm generator.

The logic verify procedure presumes
knowledge of the program table stored in
the device; hence, it must necessarily
follow an array verify operation to first scan
and store in the system main memory the
program table contained in the device
under test. A comparison of the actual
versus computed output tables in conjunc­
tion with a direct display of the FPLA logic
output for each minterm input, will reveal
all discrepancies.

To be useful, the logic verify procedure
must also be fast. If should be complete
within 5 to 10 seconds per device, and thus
dictates use of a hardwired algorithm. The
block diagram of a logic subsystem which
executes a suitable algorithm, outlining
basic hardware, controls, and data paths is
shown in Figure 19.

The algorithm manipulates program table
data stored in main memory and active
level register, in the format contained in
Table 12. Before loading the program table,
M/M and the ALR are reset to "O," to clear
all previously stored fusing commands. A
binary counter, conditionally incremented,
functions as minterm !Mnl generator, for
addressing the FPLA with all 216 input
combinations. The FPLA output for each
Mn input is stored in Register B. All 48 P­
terms are fetched one at a time from the
program table in M/M, and examined to
determine whether they logically contain
each Mn. The criteria which logically
include or exclude Mn from a P-term are
tabulated in Table 13 for all general
programmed states. If the test fails, a new
P-term is fetched, and the test repeated
until all 48 P-terms have been examined,
and all 216 minterms are exhausted. On the
other hand, if the test indicates that Mn is

BLOCK DIAGRAM OF LOGIC VERIFY

CLEAR

16 BIT COUNTER
(M-TERM)

GENERATOR

RESET

-,
MAIN MEMORY I

FPLA PROGRAM TABLE PT I
I _,
I

.... ___________~J

!ii!JDDliC!i

CLEAR

FPLA

UNDER TEST "B"

COMPARE
ENABLE

NANO : WIRE
1 AND

ACTIVE
LEVEL

REGISTER

Figure 19

RESET__..8. ERR.
F/F

COMPARATOR HALT

EX-NOR

CLEAR

contained in the P-term, the F-set field
associated with the addressed P-term is
overlaid in Register A, while the M/M
address of the P-term is stored in a stack
containing the concurrent P-term list, and a
presence flag set to indicate that the P-term
address is a valid member of the list.

Testing continues until all 48 P-terms have
been compared to the Mn count. At this
point, Register A contains a composite
FPLA output table obtained when all
con Jrrently selected P-terms are activat­
ed by Mn at the FPLA inputs. This table is
merged through an EX-NOR with the
contents of the ALR to produce a compos­
ite binary F-set, which is in turn compared
with the contents of Register B. If they are
equal, the Mn generator is incremented, and
the test sequence repeated with Mn+1 until
the last minterm. (Alternately, if in manual
mode, before incrementing Mn one could
observe the logic output of the FPLA with
Mn as input by calling the contents of the
display buffer). If the contents of Registers A
and B differ, an error flag is set, and the Mn
count halted. The following housekeeping
displays occur, and the system wi 11 wait u nti I
a continue command:

• The concurrent P-term list is scanned and
displayed in the designated field on the CRT.

• The contents of the Mn generator are dis­
played in the hexadecimal M-term count field,
while its binary equivalent (presented to the
FPLA inputs> is displayed in the lnpu~ field.

• Results of the EX-NOR of Register B with the
contents of the ALR are displayed in the
Output field. This yields the output table
obtained from the device with Mn as input.

• The contents of the ALR are displayed in the
Act Levi field.

• The contents of Register A are displayed in the
Computed Output Table field. They indicate
the composite output table expected from the
FPLA with input Mn.

• The contents of Register Bare displayed in the
PLA Output field. They indicate the logic levels
present at the FPLA outputs.

A suitable display of this information is
shown in Table 14. All error conditions
detected during logic verify will produce
conflicting indications in the PLA output
table versus the computed table. From
Table 14, the presence of A in the PLA
output table versus a • in the computed
table suggests an illegal concurrency in the
device. Conversely, the • in Fo and F5 in
contrast with an A for the same bits in the
computed table indicates inherent concur­
rencies absent in the device. Knowing all
concurrent P-terms and the logic input to
the FPLA, we can resort either to array
verify or hardcopy reference of the pro­
gram table and activity map for further
diagnostics and isolation. ·

Stored
Format

Typical
Entry

ADDRESS DATA

P-term P-term Field F-Set Field

115 114 ------ lo F1 Fs --------

Sequential oj 1 1Jo ------ 1 I 1 0 1 --------

27 H L ------ - A • --------

a. M/M binary _format and typical entry

F1 Fs -------- Fo

Stored
0 1 0

Format --------

Typical
H L -------- H

Entry

b. ALR binary format and typical entry

Table 12 BINARY ASSIGNMENT OF FPLA PROGRAM TABLE
STORED IN MAIN MEMORY, AND ACTIVE LEVEL REGISTER

I II Ill

Mn H H L L H H H L L H H L L

P-term H - L - L H - L - H - L -

Mn contained
Mn not contained in P-term

in P-term

(H---u preclude logical inclusion

Table 13 CRITERIA FOR THE LOGICAL INCLUSION/EXCLUSION
OF A MINTERM IN AP-TERM

M-TERM'
[FA76]'

LOGIC VERIFY I ACT LEVL
• • • • • • • • • • • • • • • •• • • • • • • • • • • • • I HHLHHHLH

', , I , I I [INPUT VARIABLE]
< p > 1 1 1 1 1 1
<L> 5432109876543210
<A> HHHHHLHLLHHHLHHL

[COMPUTED OUTPUT TABLE]
[ERROR]
[PLA LOGIC OUTPUT]

ERROR: P-TERM CONFLICT
CONCURRENT P-TERM LIST: 0, 1,2,3,4

[OUTPUT]
76543210
A••AA•A•

AA•A••AA
t t t

HHLHHHLH

Output bits in error indicated by arrow.

Table 14 LOGIC VERIFY OF FPLA, YIELDING DEVICE TRUTH-TABLE
FOR LOGIC INPUT FA76 (HEX).

!ii!JDDliC!i

Fo

0

A

L

H

35

36 !ii!JDDliC!i

CllAPTIR 4
USAGI ARD LlmlTATIORS

!ii!JDDliC!i 37

38 !ii!JDDliC!i

LOGIC COMPRESSION
A concise illustration of the logic compres­
sion capabilities of FPLAs is obtained by
using an FPLA to implement a small
squaring matrix. As shown in Figure 20,
this matrix generates a binary output A
which is the square of a binary input B, over
the range O to 15. This table, suitably
coded, could be directly programmed in a
Signetics' FPLA, without resorting to
further manipulations.

However, here it will serve as a tractable
case to outline a general systematic
procedure involving:

1. Formulating the logic problem. This can
be done using a set of Boolean equa­
tions, or a truth table as in Figure 20.

2. Product term minimization. This can be
achieved by using any suitable means
warranted by the complexity of the
problems on hand. Useful tools are Kar­
naugh maps, Quine/McCloskey method,
computerized algorithm, etc.

In this respect, note that on a bit-slice
basis all output functions, except Fo,
contain a different number of 1 's than
their complements (obtained by comple­
menting all output table entries). In
general, but not always of course, it is
reasonable to expect a function with the
least number of 1's to collapse to the
fewest number of product terms. Since
the FPLA outputs can be programmed
active-high or active-low, the designer
has the freedom to implement either true
or complement functions, with a view
towards optimum minimization. But,
since a minimum solution is obtained by
a simultaneous minimization of all
output functions, all combinations of
true and complement outputs should be
minimized, before a minimum solution
can be chosen. Since there are 8
outputs, there are 28 output sets involv­
ing true and complement functions.
These require the solution of 256 mini­
mization problems, which could eventu­
ally be done only with the aid of a
computer.

Without such capability, as a best guess
one may choose to minimize a table
containing a minimum number of 1's,
obtained by suitable assignment of
output level polarities, and complemen­
ting table entries where necessary. In the
case of the squaring matrix, the given
table already contains the least number
of 1 's; therefore all FPLA outputs will be
assigned active-high polarities to imple­
ment all true output functions. Also, for
expediency sake, product term minimi­
zation will be done on a bit-slice basis by
means of the Karnaugh maps in Figure
21.

Note that output F1 is unconditionally 0.
It doesn't contain any products terms,
and so it will not be activated whenever

13

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

SQUARING MATRIX FOR WHICH THE OUTPUT IS THE SQUARE
OF ALL 16-INPUT MINTERMS

INPUTS OUTPUTS

12 11 10 F7 FG F5 F4 F3 F2 F1 FO
,...--

0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 1
1 0 0 0 0 0 1 0 0 0 0

FUNCTION

1 0 1 0 0 0 1 1 0 0 1 A =B2 (BINARY)
1 1 0 0 0 1 0 0 1 0 0
1 1 1 0 0 1 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 1
0 1 0 0 1 1 0 0 1 0 0
0 1 1 0 1 1 1 1 0 0 1
1 0 0 1 0 0 1 0 0 0 0 H 1 0 1 1 0 1 0 1 0 0 1
1 1 0 1 1 0 0 0 1 0 0
1 1 1 1 1 1 0 0 0 0 J_

,,,
v

B A

Figure 20

MINIMIZED OUTPUT FUNCTION SET AND
P-TERM LIST OF SQUARING MATRIX

', 1110
1312' 00 01 11 10

' 00

1

11

10

0 1

0 1

0 1

0 1

Fo = 10

1 0

1 0

1 0

1 0

', 1110

1312 ', 00

00

01 11 10

01

11

10

', 1110

0

0

0

0

0 1

1 0

1 0

0 1

1312 ', 00 01 11

00

01

11

10

00

01

11

10

0

0

0

0

0

0

0

1

0 0

0 1

1 1

0 1

01 11

0 0

0 0

0 1

1 1

0

0

0

0

10

0

1

0

1

10

0

0

1

1

!ii!)DDliC!i

PO= XXXlo

P2= Xl2f1lo

P3 = Xf2l1lo

P7= l3f2l1X
P 8 = ~12x1 0
Pg= l3l2l1X

P10 = l3f2XX
P11= l3Xl1X

Figure 21

.,
0 0

1 0

1 0

10 0

', 1110

1312' 00

00 0

01

11

10

1

1

0

0 0 0

0 0 0

0 0 0

0 0 0

01 11 10

0 0 0

1 1 0

0 0 0

1 1 0

F4 = l2f1!:Q +f31210
+131210

', 1110

1312 ', 00

00 0

01

11

10

', 1110

0

0

0

1312 ', 00

00 0

01

11

10

0

1

0

01 11 10

0 0 1

0 0 1

0 0 1

0 0 1

01 11 10

0 0 0

0 0 0

1 1 1

0 0 0

0:::::; B:::::; 15

BIT SLICE

(OUTPUT BY
DEFAULT)

P4 = Xl2f1i0
Ps = f312x10
P& = l3f2XIO

39

P-terms Po-12 are selected. The neces­
sary logic output will be produced by
default.

3. Generating the activity map.

The activity map is a useful aid in
generating the program table necessary
to program an FPLA with the desired
logic function. The ·activity map for the
squaring matrix is shown in Figure 22. It
lists the minimized output function set
involving the ordered P-terms.

4. Generating the FPLA program table.

This is shown in Table 15. The active
level polarity of all output functions is
entered first. Next, with each available P­
term in sequence, the logic input struc­
ture of each P-term is assigned and, with
the aid of the activity map, an (A) is
entered for each activated function, and
a period (•) otherwise. This table pro­
vides a direct source of programmable
entries in the format established for
commercially available FPLA program­
mers.

Pn

0
1
2
3
4
5
6
7
8
9
10
11
12

INPUTS
3 2 1 0
- - - H
- - H L
- H L H
- L H H
- H LL
L H - H
HL-H
H L H -
HH-H
LHH­
H L - -
H - H -
HH--

ACTIVE LEVEL

HHHHHHHH

OUTPUT FUNCTION
7 6 5 4 3 2 1 0
• • • • • • • A
• • • • • A • •
• • • • A • • •
• • • • A • • •
• • • A • • • •
• • • A • • • •
• • • A • • • •
• • A • • • • •
• • A • • • • •
• • A • • • • •
• A • • • • • •
• A • • • • • •
A • • • • • • •

Table 15 FPLA PROGRAM TABLE
FOR SQUARING MATRIX

By comparing the program table with the
original truth table, it can be seen that the
squaring matrix has been compressed from
16 minterms to 13 P-terms. Since an FPLA
allows direct storage of either 0, 1, or X
logic states of input variables, the formal
logic compression obtained via minterm to
product term minimization of the squaring
matrix has been readily translated into
hardware.

A representation of the actual logic func­
tion programmed in the FPLA in terms of
conventional logic symbols is shown in
Table 16 with the set-up for verifying the
logic function illustrated in Figure 23. Al­
though it shows little resemblance to the
original truth table, it must match the func­
tion of the squaring matrix. The desired
function is obtained by the "Concurrent,"
"Selective," and "Multiple" addressing

40

Pn

0
1
2
3
4
5
6
7
8
9

10
11
12

ACTIVITY MAP OF MINIMIZED OUTPUT FUNCTION
SET OF SQUARING MATRIX

Fa= Po + I + I + I + I + I + I + I + I + I + I + I + I
F1 = I + I + I + I + I + I + I + I + I + I + I + I + I
F2 = I + P1 + I + I + I + I + I + I + I + I + I + I + I
F3 = I + I + P2 + P3 + I + I + I + I + I + I + I + I + I
F4 = I + I + I +I +P4 +P5 +P6 + I + I + I + I + I + I
Fs = I + I + I + I + I + I + I + P7 + P8 + P9 + I + I + I
F5 = I + I + I + I + I + I + I + I + I + I + P10 + P11 + I
F1 = I + I + I + I + I + I + I + I + I + I + I

Pn = Function activated by P-terrn
I = Function ignores P-terrn

INPUTS

13 12 11 10

x x x 1
x x 1 0
x 1 0 1
x 0 1 1
x 1 0 0
0 1 x 1
1 0 x 1
1 0 1 x
1 1 x 1
0 1 1 x
1 0 x x
1 x 1 x
1 1 x x

Figure 22

OUTPUTS

F7 F6 F5 F4 F3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 1 0 0 0
0 1 0 0 0
1 0 0 0 0

+ I

F2

0
1
0
0
0
0
0
0
0
0
0
0
0

Table 16 CONVENTIONAL LOGIC REPRESENTATION
OF PROGRAM TABLE IN THE FPLA

+ P12

F1

0
0
0
0
0
0
0
0
0
0
0
0
0

FO

1
0
0
0
0
0
0
0
0
0
0
0
0

SET-UP FOR VERIFYING THE
LOGIC FUNCTION OF THE FPLA

Mn
INPUTS

CONCURRENT P.TERMS

'o Fo

1,

'2
13

FPLA
F7

Figure 23

modes characteristic of FPLAs. These can
be observed by listing the composite FPLA
output while executing an exhausting logi­
cal scan at its inputs, as shown in Table 17.

By viewing each row of the program table as
an FPLA word selected by the correspond­
ing P-term address, concurrent addressing
is shown by the simultaneous selection of
words P0 , P3, P5, P7, P10 and P11 which
occurs with a binary 1011 input to the FPLA
(Figure 24a). Similarly, multiple addressing
is readily apparent by observing that word
Po is selected by 8 different input combina­
tions, in a manner reminiscent of virtual
memory storage (Figure 24b).

!ii!JDDliC!i

13 12 11 10
0 0 0 0 O None (Default state term)
1 0 0 0 1 PO
2 0 0 1 0 P1
3 0 0 1 1 PO,P3
4 0 1 0 0 P4
5 0 1 0 1 PO,P2,P5
6 0 1 1 0 P1,P9
7 0 1 1 1 PO,P5,P9
8 1 0 0 0 P10
9 1 0 0 1 PO,P6,P10
10 1 0 1 0 P1 ,P7,P10,P11
11 1 0 1 1 PO,P3,P6,P7,P10,P11
12 1 1 0 0 P4,P12
13 1 1 0 1 PO,P2,P8,P12
14 1 1 1 0 P1 ,P11,P12
15 1 1 1 1 PO,P8,P11,P12

Table 17 SIMULTANEOUSLY SELECTED
P-TERMS OBTAINED BY EXERCISING

THE FPLA WITH A MINTERM
GENERATOR

ADDRESS SELECTION

INPUT
(11)10

OUTPUT
(121)10

(

0000 0001 +
0000 1000

> ~001 0000
1011 --~- 0010 0000

0100 0000
0100 0000

0111 1001

Internal OR performed by the FPLA.

a. Concurrent address selection by
Mn= (11)10.

ml] > 0000 0001
1011
1101
1111

b. Multiple address selection of Po.

Figure 24

Selective addressing occurs when minterm
"O" is presented at the FPLA input, but does
not activate any of the programmed P-terms
0 thru 12, and thus none of the output func­
tions.

At this point it is worth noting that the
above implementation is not unique, since
the program table is not unique. This
results from the individual, rather than the
simultaneous minimization of the output
function set. For example:

F4 = .fol2Xlo + l3T2Xlo + f3l2f1X + l3l2T1 fa
Fs = l3l2l1X + l3l2l1X + 1312Xlo

F6 = l3T2XX + l3l2l1X

is an equivalent form for F4,5,6- This choice
of expression, although it introduces an
additional P-term in F4, eliminates P12 for
realizing F1, since:

contained in F4,5,6

In this case no net reduction in number of P­
terms is obtained. However, the method is at
the root of the search for a minimum set of
P-terms which will implement the desired
logic function. Indeed, the reduction of a set
of logic functions of several variables to a
minimum set of prime implicants (P-termsl
requires a simultaneous minimization proc­
ess for which suitable algorithms have
already been developed.

Signetics has successfully translated such
an algorithm in an efficient software pro­
gram for execution on an I BM 370/155 com­
puter system.

ASYNCHRONOUS SEQUENTIAL
LOGIC
FPLAs can be very effective tools in
streamlining the design of asynchronous
sequential networks by reducing package
count, easing modification, and by provid­
ing more uniform logic delays which
generally reduce, but do not entirely
eliminate the incidence of logic hazards
due to oscillations and critical races. And,
when identified, they may be easier to
eliminate by redundant usage of logic
which is "already there," without additional
hardware penalties.

The following example illustrates the
general procedure:

Problem: Design a network to provide an
output Z = 1 when both inputs X and Y are 1,
but only when X goes to 1 before Y. Control
inputs X and Y can change only one at a time;
Z should remain 1 as long as Y = 1.

As a first step, the primitive flow table is
generated as shown in Table 18. By
definition, each row of this table can
contain only one stable state. Dashes,
denoting don't care, are entered in each
cell mapping a forbidden transition of the
control inputs from a stable state (double
simultaneous transitions). Since these, by
definition, cannot occur, the dashes can be
used to simplify the specification of the
FPLA P-terms.

". Xy

" ", 00

a CD
b 1

c -
d 1

e 1

-

g 1

01

5

-

4

@)

®
5

-

11 10 z
- 2 0

3 ® 0

@ 2 1

3 - 1

6 - 0

® 7 0

6 (j) 0

Circled entries are stable states. Uncircled
entries signify unstable states.

Table 18 PRIMITIVE FLOW TABLE

The 7 rows in Table 18, corresponding to 7
stable states, can be reduced to the 3
shown in Table 19, by merging all rows with
identical states in each column, independ­
ent of output state associated with each
row. In merging rows, stable state entries
override unstable states. Also regardless of
merger, Z output values in the final output
matrix are dictated by the stable states
(circled entries) in the primitive flow table.
The 3 rows of the merged flow table need at
least 2 secondary variables to assign a total
of 22 = 4 secondary states involving 2 feed­
back loops. This leaves a spare secondary
state (row) to be used for logic reduction, or
resolution of critical races. These can in

Si!JDDtiCS

general be minimized by assigning a grey
code to the feedback loops, which results in
secondary state assignments involving a
single variable change for transitions
between rows.

" x y
" ", 00 01 11 10

R1

R2

R3

CD
1

1

5

@)
®

-

@
®

2

®
CJ)

(a)

(b,c,d)

(e,f,g)

Table 19 MERGED FLOW TABLE
FOR MINIMIZING

FEEDBACK LOOPS

A primitive flow matrix suitable secondary
state assignments is shown in Table 20. The
empty cells of Ro= 00 have been assigned
suitable unstable states to simplify hard­
ware implementation. These are explicitly
indicated in the final flow matrix ofTable 21.
From the flow matrix, the excitation matrix
for the feedback outputs J-K of the network
is derived in Table 22 by ensuring that all
stable states in each row are assigned the
corresponding j-k input values for that row.

"- Xy

. "
J k ", 00

00

01

11

10

1

CD
1

01

@)
5

®

11 10

@ ®
- 2

® CJ)

Table 20 PRIMITIVE FLOW MATRIX
WITH FEEDBACK INPUT VARIABLES j-k,

AND CORRESPONDING SECONDARY
ASSIGNMENTS

". Xy

" j k ", 00

00

01

11

10

1

1

CD
1

01

4

@)
5

®

11

3

@
6

®

10

7

®
2

CJ)

Ro

R1

R2

R3

Table 21 FINAL FLOW MATRIX WITH
OPTIMUM UNSTABLE STATES
ASSIGNED TO SPARE ROW Ro

". Xy

" j k ", 00

00

01

11

10

11

11

@
11

01 11 10

01 01 10

@ @ @
10 10 01

@ @ @

(JK)

Table 22 EXCITATION MATRIX OF
FEEDBACK OUTPUT VARIABLES J-K

(MAP ENTRIES)

41

An analysis of all transitions between rows
of this matrix, as mapped in the transition
matrix of Table 23, verifies that the choice
of secondary state assignments does not
produce logic hazards. The minimized
logic equation set of the feedback outputs
is obtained via separate Karnaugh maps for
J and K, as in Table 24. The choice of a
suitable set of P-terms for the J-K feedback
variables must take into account again the
possibility of logic hazards. As the control
variables X and Y change, horizontal
movements among the stable states in the
transition matrix result in alternate deselec­
tion and selection of FPLA P-terms. Normal
internal delay differences in this sequence
may cause momentary deselection of all P­
terms, deactivating all FPLA outputs. This
is seen as negative or positive glitches
(depending on active level polarity) on the
FPLA outputs before they stabilize to the
correct logic level. Glitches on feedback
outputs may cause the circuit to settle in
the wrong final state from any given initial
stable state.

"- Xy

"

42

j k " "\. 00 01 11 10
00 Ro
01 R1
11 R2
10 Ra

Table 23 TRANSITION MATRIX
MAPPING SECONDARY

TRANSITIONS

'\. Xy

" j k ", 00 01

00 lfl 0

01

11

10

11

0

10

a. J = XY + Yj + XYk

" x y

" j k ", 00

00

01

11

10

111

l_L]
I 1 I

LiJ

01
r 1

1 -L _ _.,....
0

0

11 10

1 1 0

_J_f IT--1.J
0 LL]
0 0

b. K = xv + Y) + XYk

Table 24 KARNAUGH MAPS FOR
DERIVING P-TERMS AND

LOGIC EQUATIONS
DEFINING THE FEEDBACK

VARIABLES

To remove these additional hazards, output
spiking can be eliminated by choosing P­
terms for J-K such that all legal intercolumn
transitions from each stable state ensure
"holding" of the J-K outputs. If necessary,
redundant P-terms must be used to cover all
possible cases ("minimal cover" technique).
For example, from Tables 21 and 24 it is
apparent that while in stable state 1, held by
J-K feedback outputs via P-term· (XV), if
input Y goes to "1," sta_!?.~ state@ must be
reached. But, if P-term (XYl deselects before
P-term (Yjl selects, the network may jump to
Ro, state 4, and settle next in R1, stable state
@).However, by including P-term (Xjl, the (j)
input can be held steady while P-term (XV)
deselects.

It follows that, as a general rule, enough
redundant P-terms should be used to
prevent spurious transitions of the feed­
back variables for all horizontal transitions
from stable states in each row. This

requires modification of the J-K equations
as follows:

J = xv + Xj + Yj + XYk + jk
K = xv + YT + jk + XYk

Since the required logic is already available
in the FPLA, no hardware penalties are
incurred. As a final step, the network
output Z must be realized. It is obtained
from the output matrix of Table 25. By
contrast, a discrete logic version of the
same network with NANO gates would re­
quire 6 IC packages.

"- Xy
. "
J k ", 00

00

p1
11

10

0

0

0

0

01 11 10
11 ·- 1 1 0

1LL _LJ 0

0 0 0

0 0 0

(Z)
Table 25 KARNAUGH MAP

OF OUTPUT Z = VJ

FPLA PROGRAM TABLE AND CONNECTION
FOR DESIRED NETWORK FUNCTION

NO. 1 1 1
5 4 3

PRODUCT TERM ACTIVE LEVEL

-~N_!'1;!TVARIABLE (Im) ~r==cT~r.-uE~C8
~ 1 ~ 1-9-.-a- -1- -6 5 4- 3 2- -1.., Ci 1-i;~LV[V~~u3Nf~?~·-0-

t----+--t--+-+--+-'t--t--+-t--+--t--+-+.,-L t-:L-+-_-+--1_ A A •

L - H - A
- H H - A • •
H L - L A
- - H L A
- H L - • A A
- - L H • A •
H L - H • A •
- L - H • A •

10

44

45
46
47

Unused locations have been left blank for clarity.

a. Program Table.

Fo----
FPLA

CE

Unused FPLA locations must be programmed in accordance with previously established
criteria.

b. Circuit Connection

Figure 25

!ii!IDDliC!i

SYNCHRONOUS SEQUENTIAL
LOGIC
When speed is not a problem, the difficult­
ies posed by potential logic hazards in
asynchronous logic designs can be alto­
gether avoided by resorting to pulsed
sequential networks. In these networks all
secondary variables are allowed to settle
following control input(s) transitions, be­
fore allowing the circuit to be locked in the
next stable state. This is accomplished by
periodic clocking of storage elements (flip­
flopsl used to hold the current state of the
network in preparation for a new input
condition. Essentially this is equivalent to
solving a combinational problem at differ­
ent times for determining the desired
output, as well as which flip-flop control
inputs, and under what conditions they
must be enabled. Therefore, every network
of this type can be generalized as contain­
ing 2 conceptually distinct memory and
logic blocks, as shown in Figure 26.

GENERAL STRUCTURE OF
PULSE SEQUENTIAL NETWORK

(Mealy Type)

PRESENT
STATE

VARIABLES

LOGIC
(Combinatorial)

MEMORY
(Flip-Flops)

Figure 26

It is with respect to the latter block that
FPLAs again provide an opportunity to
streamline design, as well as decrease
pressure on the designer for an all out
effort (beyond simple Karnaugh mapsl to
minimize his logic for reducing package
count.

The following example illustrates the
general design method for typical applica­
tions.

Problem: Design a network for detect­
ing a decimal 6 or 8 in a serial 4-bit BCD
word (MSB first). Whenever a 6 or 8
occurs, output Z = "1."

In line with Figure 26 above, the desired
network using an FPLA and D-flops to
implement the respective blocks will have
the organization shown in' Figure 27.
Starting with an initial reset state, designat­
ed @ , a primitive stable state diagram is
developed as shown in Figure 28, to take
into account all valid and invalid input
sequences.

CIRCUIT BLOCK DIAGRAM

SERIAL

~
~

Di----.

D-type flip-flops have been arbitrarily chosen.

Figure 27

PRIMITIVE STATE DIAGRAM

1/0

XIV labels on arrows define Z output <Y's) for each D·
(X's). I

Figure 28

At this stage, an intuitive approach is
perhaps the best recourse in developing a
concise diagram excluding most redundant
or duplicate states. These can be further
eliminated by analysis of the primitive state
table in Table 26 for combining all states
which have identical next states and

PRESENT ASSIGNMENT

STATE OA OB ac
a 0 0 0 0
b 0 0 1 1
c 0 1 0 1
d 0 1 1 1
e 1 0 0 1
f 1 0 1 1
g 1 1 0 0
i 1 1 1 0

"O"

0
0
0
1
1
1
0
0

outputs. This step is necessary for minimiz­
ing secondary assignments to reduce the
number of flip-flops required.

Since (ml stable states give rise to (n) flip­
flops, where 2 n 2'.: m, 3 flip-flops are
necessary to define 8 secondary assign­
ments corresponding to each state in the
reduced table. These assignments in terms
of D-flops OA, Os and Oc are summarized
in the transition table of Table 27. As the
network moves through its stable states,
the flip-flop transitions mapped in Table 27
must be ensured by suitable programming
of the D input of each flip-flop, designated

PRESENT INPUT (D;)

STATE "O" "1" "O" "1"

a b c 0 0
b e d 0 0
c f e 0 0
d i g 0 0
e i i 0 0
f h i 0 0
g ra--a-~r--01
h ~--~ ~~-%1 i a a

Next z
State -

a. Primitive state table

PRESENT INPUT (Di)

STATE "O" "1" "O" "1"

a b c 0 0
b e d 0 0
c f e 0 0
d i g 0 0
e i i 0 0
f g i 0 0
g a a 1 0
i a a 0 0

Next z
State -

b. Reduced state table

Table 26 FLIP-FLOP MINIMIZATION
BY COMBINING STATES g AND h
IN THE PRIMITIVE STATE TABLE

INPUT (Di)

T "1" "O" "1"

1 1 0 1 0 0 0
0 I 0 1 1 0 0
1 I 1 0 0 0 0
1 I 1 1 0 0 0
1 I 1 1 1 0 0
0 I 1 1 1 0 0
0 I 0 0 0 1 0 I
0 l 0 0 0 0 0

Next State ~

Table 27 STATE TRANSITION TABLE AND "NEXT" OUTPUT,
WITH SECONDARY ASSIGNMENTS FOR D-FLOPS Q A-C

FOR EACH STABLE STATE

!ijgDDliC!i 43

DA, Os and De respectively. This is
accomplished by using the transition table
in conjunction with the excitation table for
a D-flop ff able 28), to generate control
matrices from which control equations for
DA, Ds and De are derived. As shown in
Figure 29, control matrices are really
Karnaugh maps in which 1/0 cell entries
refer to the logic state of each D input in
terms of the input Data Di and flip-flop
outputs (present state variables) OA-e,
which are fed back in the network.

a - an+1 D

0 0 0
0 1 1
1 0 0
1 1 1

Table 28 EXCITATION TABLE FOR
D-TYPE FLIP-FLOP

The logic equations of Figure 29 are readily
programmed in an FPLA with the program
table shown in Table 29. The final network
is obtained as in Figure 30.

FINAL CIRCUIT CONNECTION,
UTILIZING TRI-STATE FPLA

AND EDGE-TRIGGER D-FLOPS

82S100

13
F3

CE

12 F2

1, Fl

lo Fo

74S175

QA DA

QB DB

QC De

CLR-~~ ...--CLK

Figure 30

DEALING WITH DEVICE
LIMITATIONS
In some applications, a single FPLA cannot
accommodate the full program table be­
cause it commands greater resources than
the finite number of inputs, outputs, and P­
terms available. In many cases this can
only be overcome by resorting to design
intuition and ingenuity in place of complex
data manipulations which tend to obscure
the problem on hand, and may render
troubleshooting difficult.

44

CONTROL MATRICES AND LOGIC
EQUATIONS FOR FLIP-FLOP INPUTS

D A-C AND OUTPUT Z

,ac
QA' D·

' I 00 Os
00

01

11

10

0

1

0

1

01 11 10

0 0 1

1 1 1

0 0 0

1 1 1

a. DA = 0 A 0 S + 0 A 0 S +
OA Oc 5;

,ac
OA' D;

as', oo 01 11 10

00

01

11

10

1

1

0

1

0

0

0

1

1 0

0 1

0 0

1 0

c. o c = a A a c o i + a A as a c +
Os Oc Dj+ QA Os Dj

,ac
QA' D;

a ' 00 S'
00

01

11

10

0

0

0

1

01

1

0

0

1

11 10

1 0

1 1

0 0

1 1

b. D S = 0 A 0 S Di + 0 A 0 S 0 C +
OAOS

,ac
OA' Di

0 ii'' oo 01

00

01

11

10

0

0

1

0

0

0

0

0

11 10

0 0

0 0

0 0

0 0

d. z = a A as a c B;

Figure 29

PRODUCT TERM ACTIVE LEVEL
-~N_!'~TVARIABLE (lml -r--:--:--r,:j:'"t'.Fii'ti

1-N_o_. +.-=--jl-J:...+-=-l+=-~ +-'--11-6=--11--=·9-
4

.-....::s .-+.-..:....-1 -+--6::.+-=:5'-+-'4--t....::-3 +-=--f 1--1:...+-::-10 ~ ~ ~ ~~r[y~ ~urf ~ ?f-~ -
- - H L • A
- - L H • A
LH-L •A
H - L L A •
- H L L A •
- - L H A •
L L - L • A
- L L H • A
H H L - • A
L - H L • A

10 L L H H A •
11

12

43
44

45
46
47

1/0 Assignment ---.. DiOC Os OA Z DC De DA

Unused locations have been left blank for clarity.

Table 29 FPLA PROGRAM TABLE

Borderline cases can usually be resolved
by judicious inspection of the program
table to discover ways to further compres­
sion. Nevertheless, to increase design
flexibility in these situations, Signetics'
FPLAs are the only ones which feature a
Chip Enable input which can be used for
input and P-term expansions, precondi­
tional input decoding, and output inhibit.

The output inhibit function of CE not only
permits utilization of the tri-state device in
bused organizations, but also provides a

!ii!JDDliC!i

means to force all outputs to a unique logic
state, regardless of their programmed
polarity, without sacrificing FPLA inputs or
entailing additional hardware.

This feature is essential in a number of
applications involving system initialization
from a knowri state, exit to "idle" following
sequence error, synchronous clocking, etc.
For example, in the typical sequencer of
Figure 31 b, if an input error occurs parity
fails, forcing all outputs to logic "1" ("idle"
state, by user definition).

CHIP ENABLE CONTROL

+5V

"1" "1"

a. With CE = 1, both True (F) and Comple­
ment (F*)outputs are forced to logic "1."

PARITY

b. Sequential Controller forced into "idle"
state by input parity error.

Figure 31

PRODUCT TERM EXPANSION
Expansion of P-terms involving up to 16
input variables is easily accomplished with
open collector devices, as shown in Figure
32. It is only necessary to parallel respec­
tively all inputs and outputs of several
devices, operated with CE at ground
(unless needed as additional control func­
tion). The composite logic output of the
network is determined by P-terms activated
in one or several FPLAs simultaneously.

P-TERM EXPANSION WITH
OPEN COLLECTOR FPLAs,

INVOLVING UP TO 16-INPUT
VARIABLES

INPUT

1 01~
I I
I I
11

FPLA

(825101)
OUTPUT

Fo~7

All outputs must be programmed active-low (Fpl to
realize the wire-AND function. The total number pf P­
terms available is 48N.

Figure 32

When using tri-state devices (8281 OOl, P­
term expansion cannot be readily achieved
in the same way because of logic conflicts
ensuing from the active pull-up outputs of
FPLAs sharing the same output bus. To
ensure enabling only one device at '!..!!me,
P-term expansion must involve the CE in­
put.

In most applications requiring more than
48 P-terms it should be a relatively simple
task to partition the program table in 2 or
more subtables, each containing less than
48 P-terms which in turn can be fitted in
separate FPLAs. This partitioning is
achieved by segmenting the original table
about the 1 's and O's of suitable input
variables. Since all P-terms Pn which
contain a segmenting variable as don't care
give rise to 2 P-terms Pna and Pnb, it is best
to segment a program table about variables
with the fewest don't care states.

The logic sources of segmenting variables
are removed from the FPLA input field and
made to drive instead the CE input of the
required FPLAs, after proper decoding. As
an example, if one were restricted to use
tri-state FPLAs with only 10 P-terms each
to incorporate the program table of Table
16 (page 40l, a segmentation of this table
about input 12 yields the subtables shown in
Table 30.

Each subtable contains less than 10 P­
terms, and will fit in separate FPLAs which
are operated in parallel and controlled by 12
via their CE input, as shown in Figure 33.

SQUARING MATRIX FUNCTION RES­
IDENT IN 2 TRI-STATE FPLAs PRO­
GRAMMED RESPECTIVELY WITH
SUBTABLES A AND B.

Note that the inhibit function of CE, renders
unnecessary to program the outputs active-low.

Figure 33

The feasibility of this procedure is strongly
dependent on the contents of the original
program table, and in some degenerate
cases (too few or no O's at all in the input
field of the program table) it may not work.
Also, note that in general the final number
of P-terms used may increase due to
expansion of input don't cares. However,
this is preferable to no solution at all.

!ii!JDDliC!i

INPUT VARIABLE EXPANSION
This is the most difficult and cumbersome
task with FPLAs. When the program table
involves more than 16 inputs, the above
partitioning technique by subtables seg­
mented about any suitable variables will
work as well with tri-state or open collector
devices. This technique is shown applied to
18 input variables in Figure 34. In this case
several devices are necessary, even though
not all FPLA P-terms are used.

DIRECT MANIPULATION_Q.F 18-INPUT
VARIABLES USING CE WITH

EITHER 82S100 OR
82S101 FPLAs

FPLA

OUTPUT

Fo 7

Note that here it is not necessary to program all output
functions active-low (Fpl because of the disabling
function of CE.

Figure 34

Note that the expansion capability pro­
vided by CE input limits the total number of
FPLAs required to 2n, where (n) is the
number of segmenting variables. Without
CE, the total number of FPLAs required
would be 2n+t.

With more than 20 or so inputs this
approach may become too costly, and thus
it may make more sense to review the
program table in conjunction with the
problem at hand for ways to multiplex the
FPLA inputs. This also involves a sort of
segmentation of the program table for
grouping P-terms about input variables
which are mutually exclusive.

The principle is illustrated in Table 31 when
dealing with only 17 input variables and 5
P-terms, for simplicity. The original pro­
gram table in (a) has been segmented about
the O's and 1 's of variable In, and the P­
terms regrouped as in (bl. Note that it was
necessary to create new P-terms 4a and 4b
to expand the don't care for In in P-term 4.
Here, when In = 0, the outputs are inde­
pendent of ln-1, and when In = 1 the
outputs are independent of ln+1. These
inputs can be multiplexed in an FPLA with
In as the steering condition, as shown in
Figure 35. The FPLA program table con­
tains upper P-terms with ln-1 variable

45

P-TERMS INPUTS OUTPUTS

Pn Pn l3 12 11 lo F1 Fs Fs F4 F3 F2 F1 Fo

Oa 0 x 0 x 1 0 0 0 0 0 0 0 1
1a 1 x 0 1 0 0 0 0 0 0 1 0 0
3 2 x 0 1 1 0 0 0 0 1 0 0 0
6 3 1 0 x 1 0 0 0 1 0 0 0 0
7 4 1 0 1 x 0 0 1 0 0 0 0 0

10 5 1 0 x x 0 1 0 0 0 0 0 0
11a 6 1 0 1 x 0 1 0 0 0 0 0 0

a. Subtable A to be stored In FPLA #1 with 12 removed. P11 • can be eliminated
since It Is "covered" by P10.

P-TERMS INPUTS OUTPUTS

Pn Pn l3 12 11 lo F1 Fs Fs F4 F3 F2 F1 Fo

Ob 0 x 1 x 1 0 0 0 0 0 0 0 1
1b 1 x 1 1 0 0 0 0 0 0 1 0 0
2 2 x 1 0 1 0 0 0 0 1 0 0 0
4 3 x 1 0 0 0 0 0 1 0 0 0 0
5 4 0 1 x 1 0 0 0 1 0 0 0 0
8 5 1 1 x 1 0 0 1 0 0 0 0 0
9 6 0 1 1 x 0 0 1 0 0 0 0 0

11b 7 1 1 1 x 0 1 0 0 0 0 0 0
12 8 1 1 x x 1 0 0 0 0 0 0 0

b. Subtable B to be stored in FPLA # 2, with 12 also removed.

Table 30 SUBTABLES OF SQUARING MATRIX

Pn l1s . . . 1n+1 In ln-1 ... lo Fx Fy

0 0 . . . x 1 0 ... 1 1 0
1 1 . . . 1 0 x ... 1 1 1
2 x . . . 0 0 x ... 0 0 1
3 0 . . . x 1 x ... x 1 0
4 1 . . . x x x ... 0 0 1
5 1 . . . x 1 1 ... 0 1 0

a. Initial Program Table involving 17 Input variables, which cannot be directly
examined by a single FPLA.

Pn l1s . . . 1n+1 In ln-1 ... lo Fx Fy

u 1 1 . . . 1 0 - x ... 1 1 1 p
2 x 0 0 - x 0 0 1 p

E 4a 1 . . . x 0 - x ... 0 0 1
R

L
0 0 1 0 1 1 0 0 . . . x - ...

w 3 0 . . . x - 1 x ... x 1 0
E 4b 1 . . . x - 1 x ... 0 0 1
R 5 1 x - 1 1 0 1 0

b. Variable I n+1 and I n-1 can be multiplexed on a single FPLA input because they
are mutually exclusive "about" In (selector).

Table 31 PROGRAM TABLE

removed, and lower P-terms with ln+1
variable removed.

generating dummy variables to be applied
to a second-level FPLA.

When this technique fails too, it may still be
possible to factor out of the logic equation
of each FPLA output common expressions
involving the variables in excess. These can
be externally combined with simple gating,
or another FPLA, into first level P-terms

46

OUTPUT EXPANSION
If an application requires more than 8
outputs, several FPLAs can be used with
parallel inputs and separate outputs. In
other cases, it may be more cost effective

!ii!IDDliC!i

MULTIPLEXING OF INPUTS I n+1
AND I n-1 WITH SELECTOR INPUT

In ALLOWS 17 INPUTS TO BE
HANDLED WITH ONE

16-INPUT FPLA

1,,~115 1n-1

... ., ~ ""'°'' .,.
I FPLA

I
I

lo I

Figure 35

to encode the Output Table stored in a
single device and then unscramble the
desired output states via a 32X8 PROM or
1/N decoder as required. Both methods are
shown in Figure 36. Some caution, how­
ever, is required in formulating the FPLA
program table to ensure that either single
or concurrent P-term selections will ulti­
mately point to a unique decoder or PROM
address.

OUTPUT EXPANSION

a. Output expansion by decoding out­
puts previously encoded in the FPLA
Program Table.

b. Output expansion by utilizing addi­
tional FPLAs.

Figure 36

CH PTIR 5
APPLICATIOOS

!ii!JDDliC!i 47

48 !ii!JDDliC!i

The recent surge in design activity involv­
ing microprocessors and microprogram­
ming techniques reflects the growing trend
to replace hardwired logic with microcode
for gaining system flexibility at lower cost.
In this respect, designers have come to rely
on ever larger and denser PROMs to fit the
demands of their applications, and today
PROMs as large as SK bits, organized as
1KX8 or 2KX4, are readily available. How­
ever, a PROM solution in general forces the
user to allocate storage for all possible
logic combinations of the input variables,
whether needed or not. As a result, when
dealing with the type of problem requiring
the manipulation of more than about 1 O
logic input variables (or Addresses), several
IC packages are usually necessary. This
quickly renders a PROM solution marginal
at best, in terms of speed, power, and cost,
and in most cases impractical. Fortunately,
many combinational and sequential logic
designs involve logic functions which are
True for only a small subset of the total
logic states generated by the controlling
variables. Typical examples are the 96
graphic characters, out of 212 coding
states, of a 12-bit Hollerith code; or the 50
(or sol subroutine-start addresses, from a
total of 216, in a typical 16-bit micropro­
grammed machine. It is here that we step in
the basic domain of Field Programmable
Logic Arrays which, when viewed as
associative memories, exhibit selective,
concurrent, and multiple addressing
modes that enable compressing a set of
logic functions to the minimum required
states, at substantial savings in hardware.

The areas of application in which FPLAs
provide a more efficient design alternative
span the whole spectrum of logic design.
Many applications based on mask­
programmable devices have been well
documented [1,2,3,4,5]. However, since
FPLAs can be readily programmed in the
field by the user, they are more economical
and easier to use, and should find their way
quickly in a wider variety of design situa­
tions.

The typical design applications described in
the following pages emphasize the concep­
tual aspects of FPLA usage, in order to focus
the reader on the basic roles of FPLAs in
logic design, and ease the transfers of these
basic ideas to a variety of other practical
applications.

An estimate of the savings and design ad­
vantages obtainable by using FPLAs can be
gleaned by examining the recent experi­
ence of a Signetics' customer who used
FPLAs in the design of an automatic landing
system for aircrafts. By using a different
design approach, he was able to replace 49
IC packages with 1 FPLA. The tradeoff in
both design alternatives is shown in Table
32. In the discrete approach, $1 is about
what it takes today to place one IC on a PC
board.

QUANTITY TYPE

12 7400 (Quad 2-NAND}
9 7402 (Quad 2-NOR}
8 7427 (Triple 3-NOR}
5 7442 (BCD/DEC Decoder}
2 74175 (Quad D-FLOP}
4 7404 (Hex Inverter}
2 7430 (8-lnput NANO}
7 7408 (Quad 2-AND}

COMPARISON

Random Logic FPLA

I Cs 49 1
Power 3.3W 0.6W
Speed 65NS SONS
Cost $49 $11.50
Pins 700 28
Space SOin2 2in2

One FPLA replaces 49 ICs at less than 1/4
the cost.

Table 32 THE ECONOMICS OF
LOGIC REPLACEMENT WITH

FPLAs

FAULT MONITOR NETWORKS
The dramatic savings in hardware which
can be obtained by using FPLAs to
manipulate a large number of logic vari­
ables is readily apparent when building 1/N
detectors, as a special case of m/N decoder

networks. These are useful in a variety of
applications in computers, data communi­
cations, and fault monitor systems. For
example, in a data multiplexing system it is
not uncommon to find 80 or more channels
time-division multiplexed onto a single
transmission line. If a fault occurs in the
multiplexer-control network, multiple or no
connections on the line give rise to invalid
transmission. These type of faults can be
readily detected by using a 1/80 detector to
monitor the normal selection status of only
one multiplexer channel at a time. A 1/N
detector could be implemented by using
logic gates. Excluding inversion and ORing
of partial results, the number of gates
required is given by the number of logic
states to be detected. For 80 status monitor
terminals (1 for each data channell:

of GateS(AND) = N!(N-1 l! = 80

This approach, when complicated by the
fact that each gate also requires 80 inputs,
becomes quickly impractical. A more
practical alternative involves partitioning
the number of terminals in equal subsets
which are applied to PROMs whose truth
tables yield outputs x = 1/n and y > 1/n [6].
Each PROM is used as a basic building
block in a cascaded array, to implement a
general algorithm for detecting 0, 1 or more
True states (logic "1" =channel selected) of
n variables. This is shown in Figure 37 for
N = 80, using a 512X8 PROM organization.
It requires 10 PROMs, plus some gating
circuitry for status indication.

1/80 DETECTOR WITH (P)ROMs

(P)ROM

r,~

I No. 1 v,
Tg~

F1> 1/80 x,

T10-.
I

Y2
I No. 2

T 18___!___..
iP)ROM

T73~
I No. 9 Yg

Tao~ xg
nT

x y

(1/n) (>1/n)

0 0 0
1 0

>1 0

!ALGORITHM>

Figure 37

!ii!IDDliC!i 49

However, with FPLAs a more efficient
solution is possible as shown in Figure 38.
It requires only 6 devices.

1/80 DETECTOR WITH FPLAs

T17 I
I

FPLA

I No. 2
I

T32~ X2

T55~ Y5
I
I No. 5
I
I

Tso~ x5

Figure 38

FPLA

Since each FPLA can examine 16 termi­
nals, 5 are sufficient to service all 80
terminals. Each FPLA utilizes 17 P-terms to
detect the presence of zero, 1 /16, or > 1 /16
via outputs (x) and (y) as defined in the
program table of Figure 33a. An additional
FPLA is necessary to examine a total of 10
partial x and y results from the first level
devices, and to give final indication of the
number of selected terminals. The program
for the last FPLA is contained in Table 33b.

FAST MUL TIBIT SHIFTER
Computer performance can be greatly
increased by incorporating hardware capa­
bilities to execute fast multibit shifts. This
results in a considerable reduction in exe-

50

FPLA No. 1

INPUT -----''\.I
DATA--~

SHIFT N

L/R _ __,_-t--t-111,.1

LOG/ AR--+-++-1-H~

FPLA No. 2

a. Shifter shifts Left/Right, Arithmetic or
Logic up to 7 places in 35ns.

INPUT OUTPUT

1 1 1 1 1 1 F1 F2
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 x y

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a. Program Table stored in FPLAs 1 through 5

INPUT OUTPUT

x = 1/N y > 1/N > 1/N = 1/N 0
10 9 8 7 6 5 4 3 2 1 F1 F2 F3

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 0

b. Program Table stored in FPLA 6

Starred (*) outputs are programmed active-low. Conventional
logic symbols are used for clarity.

Table 33 PROGRAM TABLES OF FPLAs USED
IN 1/80 DETECTOR

cution time for algorithms that involve a
large number of arithmetic, logic, or
circular shifts, such as divide/multiply,
floating point operations, etc.

A multibit shifter implemented with 2
FPLAs is shown in Figure 39a. It provides
arithmetic or logic shift of an 8-bit byte
either left or right up to 7 places within 1

FAST MUL TIBIT SHIFTER WITH FPLAs

LEFT SHIFT RIGHT SHIFT
Im SLN: 111 = 0 SRN: 111 = 1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 0
1 1 2 3 4 5 6 7 1 0
2 2 3 4 5 6 7 2 1 0
3 3 4 5 6 7 3 2 1 0 Logic/ Arithmetic
4 4 5 6 7 4 3 2 1 0 l12=X
5 5 6 7 5 4 3 2 1 0
6 6 7 6 5 4 3 2 1 0
7 7 7 6 5 4 3 2 1 0

7 7 7 7 7 7 7 7 7 7 7 6 5 4 3 2 1
7 7 6 5 4 3 2
7 7 6 5 4 3 Arithmetic
7 7 6 5 4 112=1
7 7 6 5
7 7 6

b. Logic equation set of shifter to be programmed in FPLAs.

Figure 39

!ii!JDDliC!i

clock cycle. Two FPLAs are necessary, for
a total of 71 P-terms.

The program table to be stored in the
devices is derived from the set of output
equations tabulated in Figure 39b. The
table entries represent output functions Fo
through F1, which are true (1) at coordinate
points Um • SLN) or Om • SRNl. These are re­
spectively the ordered input data bits, and
the number of right or left shifts. A further
subdivision of the table is given by '12 for
arithmetic or logic shifts.

For example, for a logic shift of the input
data, the P-terms which must be pro­
grammed in the FPLAs for say output bit 5
are:

Fs = lsSRo + l5SR1 + l1SR2 + lsSLo
+ l4Su + l3SL2 + l2SL3 + l1SL4 + loSLs

The P-terms in the equation are in turn
converted in program table format, typical­
ly as shown in Table 34.

The wire-AND of the 2 FPLAs requires Fo
through F1 to be programmed active-low
(each designated as F*l. Therefore, the
shifter outputs the complement of the
shifted input word, which must be in turn
complemented if this inversion cannot be
buried in the system. Both P-terms involv­
ing SRo and SLO can be combined as
lsSxo. denoting a don't care for right or left
shift. All 16 such terms appearing in Fo
through F1 can be combined into 8 P­
terms. It can be readily shown that all 64 P­
terms implicit in the upper half of the table
are needed for both arithmetic and logic
shift, and require 112 = X (don't care) as
conditional input. For the arithmetic shift
selected by '12 = "1," 7 additional P-terms
are necessary to ensure propagation of the
sign bit to the right in a right shift, and
retention of the sign bit in F1 during a left
shift. These additional P-terms can be
obtained by listing the complete equation
set summarized in the bottom half of the
table.

For example, for an arithmetic shift output
F5 is given by:

F5 = l5SLQ + lsSL 1 + l4SL2
+ bSL3 + l2SL4 + hSLs + loSL6
+ l5SR0 + +l1SR1 + (SR2 + SR3
+ SR4 + SRs + SR6 + SR1l 11112

This application can be readily expanded
to detect overflow, or to execute circular
shifts. The capability for circular shifts is
obtained by using and additional FPLA, for
a total of 124 P-terms.

Note that here we can obtain a shift of 7 bit
positions in 35ns, typical.

PRIORITY RESOLVER AND
LATCH
FPLAs can perform the dual function of
detecting and latching tri-state-bus data,
on a priority basis. By using only 24 P-

LOG/AR L/R SN Im F*

112 I 11 110 lg la l7 15 Is 14 l3 12 11 lo 5

15SR0---

15S LO - - -

x
x

(X) = Don't Care

1

0

0 0 0 x
0 0 0 x

x 1 x x x x x 0

x 1 x x x x x 0

Table 34 PROGRAM TABLE REPRESENTATION FOR F 5
(RATHER THAN FS, DUE TO OUTPUT WIRE-ANDING)

PRIORITY RESOLVER AND LATCH WITH FPLA

SYSTEM BUS
11
11
11

(8)

(DM8097) X 2

ir--.._
--• >-r '-1 I

I I
I I ___ _J I

I
I

----, I
I I

~·t I

--· -.:'>1-.......

10-1

'8

lg

110

RESET

FPLA
(82S101)

CE

74S134

(8)

The FPLA latched state must be reset prior to sampling new data.

Figure 40

terms in a single FPLA, 3 priority functions
can be selected via inputs So,1.2 as shown
in Figure 40.

The reset pulse clears any previously
latched priority, and must be at least 30ns
wide to compensate for FPLA delay.
Sampling of the system bus begins with the
trailing edge of reset, and ends about 50ns
after the detection of an input request (H -
L transition). This delay is provided by the

feedback chain of spare gates in the
DM8097 buffers, and is required to allow
the FPLA to latch the incoming request
before releasing the bus. It is also the
circuit's resolving time of nearly simultane­
ous requests. The FPLA program table is
shown in Table 35. The function selected
by So provides a 1 of 8 priority in time by
latching the first of eight signals occurring
on the bus, and is useful in many polling
applications in which a 50ns resolution is
adequate. The functions selected by S1 and

!i(gDDliC!i

S2 provide 1 of 8 complementary priorities
in space by latching the highest ranked
signal on the bus.

Both functions are particularly useful in
asynchronous multiport systems for trans­
ferring control of the main system bus. The
concept illustrated is readily expanded with.
additional output circuitry to monitor up to
16 inputs with any assigned rank, or to
implement a clocked revolving priority of N
signals.

The primary advantage provided by the
FPLA is that the reassignment of priority
rank is facilitated by combining the exter­
nal selection with FPLA programmability,
without resorting to system wire changes.

MEMORY OVERLAYS
The storage and software efficiency of a
computer can be improved by overlaying

51

INPUTS OUTPUTS

s s s 1 1 1 1 1 1 1 1 F F F F F F F F
FUNCTION

2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 l l
1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1
1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1st of 8
1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 Priority
1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1

J 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

0 1 0 x x x x x x x 0 1 1 1 1 1 1 1 0

l l
x x x x x x 0 1 1 1 1 1 1 1 0 1
x x x x x 0 1 1 1 1 1 1 1 0 1 1
x x x x 0 1 1 1 1 1 1 1 0 1 1 1 1 of 8
x x x 0 1 1 1 1 1 1 1 0 1 1 1 1 Priority
x x 0 1 1 1 1 1 1 1 0 1 1 1 1 1 (Ascending rank)
x 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 i 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

f l
1 1 1 1 1 1 0 x 1 1 1 1 1 1 0 1
1 1 1 1 1 0 x x 1 1 1 1 1 0 1 1
1 1 1 1 0 x x x 1 1 1 1 0 1 1 1 1 of 8
1 1 1 0 x x x x 1 1 1 0 1 1 1 1 Priority
1 1 0 x x x x x 1 1 0 1 1 1 1 1 (Descending rank)
1 0 x x x x x x 1 0 1 1 1 1 1 1 i 1 0 0 0 x x x x x x x 0 1 1 1 1 1 1 1

Fo-7 must be programmed active-low. Unused inputs are programmed as Don't Care.

Table 35 FPLA PROGRAM TABLE FOR PRIORITY RESOLVER

Read/Write memory with (P>ROM memory
in blocks of various sizes, including overlay
on an individual word basis.

Overlay is a memory-conservation tech­
nique that permits several sets of informa­
tion to share a block of storage. This allows
several routines to occupy the same
storage locations at different times. The
method is also useful in incorporating
special diagnostics, or for tailoring ma­
chine function to specific customer re­
quirements while maintaining software
compatibility.

OVERLAY IS DEFINED BY DESCRIPTOR
AND MODIFIER

(P>ROM

(Modifier) (Descriptor>

MATCH

R/W

ADDRESS

When (PlROM and R/W memory addresses match,
modifier data replaces data byte in R/W memory.

Figure 41

52

A memory overlay results in modification of
a stored byte at a specific address in R/W
memory, and is conceptually indicated in
Figure 41. A typical memory overlay
application is shown in Figure 42 in which a
flag is used to conditionally transfer
(P>ROM or R/W data in the MOR.

TYPICAL MEMORY OVERLAY SYSTEM

INPUT DATA READ/WRITE

MEMORY

I
(P)ROM I~

OVERLAY!1
1u..
I

(PlROM word is jammed in MOR when address
"present" flag bit is true.

Figure 42

Since (P>ROMs are available in discrete
chunks confined in standard IC configura­
tions, a lot of storage can be wasted when
the application requires overlay of many
blocks of few words each, scattered
throughout the address range of R/W main
memory. All unused (P>ROM locations
servicing a sparsely overlaid sector are

!ii!JDDliC!i

forever inhibited access, and are therefore
wasted. By using an FPLA instead of
(P)ROM, the FPLA address matrix is
programmed to recognize only the address
of the RAM memory locations to be
overlaid. The contents of the overlaid
locations (the RAM modifier> are pro­
grammed in the FPLA storage matrix. This
way, total PROM storage is compressed to
the actual words used. Also, because of the
large number of inputs to the FPLA, the
overlaid locations can be scattered any­
where within a 64K address range. The chip
enable feature readily extends this range to
any practical size by allowing several
FPLAs in parallel to examine a larger
number of address inputs.

Note that with an FPLA it is not necessary
to store flags at the overlay addresses for
generating the Mux select signal. This
signal can be generated by monitoring a
1 - O transition on any of the FPLA outputs.
When no match exists, all FPLA outputs will
be at logic "1" (assuming that they have
been programmed active-low>. If we ex­
clude overlay of all 1 's, the Mux select signal
is obtained as in Figure 43.

MUX SELECT SIGNAL

SEL = 1 when at least 1 FPLA output goes low,
indicating an address match, and causing the Mux to
select FPLA data.

Figure 43

CORE MEMORY PATCH
The use of partially functional random
access memory devices is a well known
technique employed by manufacturers of
add-on and other large memory systems to
reduce overall memory cost per bit. This
technique now can be extended to core
memory systems by means of an FPLA.
Modern core planes are available in many
sizes, up to 16K X 18 or 32K X 9. A 64K X 9
memory would require 2 planes, each
containing about 300K cores, in which it is
not unusual to find as many as 100 broken
or improperly tested cores.

Currently, cores are replaced by a hand
"restringing" operation, at a cost of about
$2/core. A better alternative to core re­
placement would be a dynamic repair
routine, in which memory addresses con­
taining bad bits are patched by an auxiliary
memory. However, since bad cores can be
scattered anywhere in the plane, this
approach would in general be not cost

effective without an efficient address
selector network.

The FPLA renders this technique economi­
cally feasible by providing an address
"locator" function by virtue of its program­
mable address characteristics. The core
memory addresses containing bad bits are
mapped in the AND matrix of an FPLA,
whose output OR matrix is programmed in
turn with sequential address pointers to a
small auxiliary RAM containing correct
data.

This scheme is shown in Figure 44 and
Table 36. A 16-input FPLA is used as an
address map, and a 64 X 9 RAM as auxiliary
memory, chosen to simplify control and to
allow several bad core bits/word. The 48 P­
terms of the FPLA allow dynamic repair of
48 memory addresses scattered anywhere
in core. Correct data stored in the 82S09 is
addressed by 6 FPLA outputs programmed
as a binary table. Memory select control is
provided by the F5 output from the FPLA to
jam the contents of auxiliary memory in the
MOR when a faulty core location is
addressed, and to enable writing in auxil­
iary memory only in the patched locations.

FPLA ADDRESS MAP

CORE AUXILIARY
MEMORY MEMORY

A1 008

A2 01 8

A3 028

I I
I I
I I
I I

A48 578

Invalid Data Valid Data

Table 36 FPLA TRANSLATES
FAULTY 16-BIT INPUT ADDRESSES

A1 THROUGH A48 INTO
VALID AUXILIARY MEMORY LOCATIONS

The core memory system normally con­
tains sockets and connections for both
FPLA and auxiliary RAM. These are used
only with partially functional planes. The
FPLA input table is programmed immedi­
ately following final test with the addresses
of core failures.

This technique could also be applied, with
suitable modifications, to memory systems
implemented with partially functional bipo­
lar or MOS memory devices. It could also
be extended to patch modifications in ROM
memory systems, or utilize spare locations
in PROM memory systems to avoid replac­
ing several packages because of random or
repeated changes.

SUBROUTINE ADDRESS MAP
AND BRANCH LOGIC
In the design of microprogrammed com-

CORE MEMORY "PATCH" WITH FPLA REQUIRES ONLY 2 ICs

r- -r------..,
ADDRESS-'---'-----" I I r" - - - ,

I I r_:-.:::)i 1520 I
I ADDR. I .- I S.A. I
1 BuFFrn

1
64Kxs I 1 louTPUT

I I CORE MEMORY I I
I I I I -----1 I

READ ---+-1--..-...
1

TIMING I ----1'! I
& ,---------1---~ Sb Gy I

WRITE --1-:1-----.1 CONTR.I DATA IN BUFFERS I '--- ;.a ... -.L..-- ___
(9)

STROBE --+-+-----+----4-4------.-J

DATA IN_---t-t----t:::============:::;----, RESET

FPLA

WE DI

10-15

CE

82S100

(9) PHANci~M I'"' J_,
r- -, I I
I i I I I

--·---~ MDR I I I I (9l I I L-r-.... L __ ..:
f p

+VO-J

Figure 44

puters considerable design flexibility is
gained by complete freedom in allocating
microprogram subroutines throughout mi­
crocontrol store, and by using variable
formats in the instruction register op-code
field.

To satisfy these requirements in an eco­
nomical manner, an efficient means of ad­
dress translation is mandatory. FPLAs are
ideally suited for this application as shown
in a typical system in Figure 45. The first
FPLA translates the current op-code from a
16-bit instruction register into 48
subroutine-start addresses in microcontrol
store. Variable op-code formats are easily
handled by judicious programming of don't
care states in the FPLA input table. The
second FPLA is used to generate branch

SUBROUTINE ADDRESS MAP
AND BRANCH LOGIC

WITH TRI-STATE FPLAs

CONTROL FIELD

Figure 45

!ii!JDDliC!i

conditions based on the current microin­
struction, as well as jump and status
conditions in the machine. In particular,
using tri-state FPLAs (82S1 OOl saves a
multiplexer in the address path of the ROM
Address Register, while their sons access
time minimizes overhead time in the
instruction execution loop.

"VECTORED" PRIORITY
INTERRUPT SYSTEM
In some applications, FPLAs are marginally
cost effective when dedicated to a specific
function which leaves spare most of the de­
vice resources. In such cases, the cost
tradeoff may be resolved by a more
efficient utilization through time-sharing
the FPLA to perform separate functions.

This technique can be applied to the design
of a "vectored" priority interrupt system for
the Signetics 2650 microprocessor. The
circuit in Figure 46 is all that is required to
service 6 1/0 devices via the conventional,
single level, address vectoring interrupt
mechanism of the 2650.

When one or more devices requests
service, the CPU receives an INTREQ
signal on its single interrupt pin. Program
control is transferred to any of 128 possible
memory locations as determined by an 8-
bit vector supplied by the FPLA on the CPU
data bus, in accordance with a prepro­
grammed priority. Since memory locations
are expressed in 2's complement, the
vector can point anywhere within -63 to
+64 bytes of page zero, byte zero of
memory. Also, both direct or relative
indirect addressing modes can be specified

53

by the vector (bit D7 = 0/1), hence program
execution can be directed anywhere within
addressable memory.

During the execution of the asynchronous
CPU handshake the FPLA supplies at vari­
ous times 3 distinct functions:
1. Interrupt request to the CPU, triggered by one

or more service requests from devices 1
through 6.

2. Priority resolution of simultaneous requests by
placing on the CPU data bus the vector of the
highest ranked interrupting device.

3. Issue a request reset signal to 1 of 6 selected
devices to acknowledge servicing its interrupt.

The 6 1/0 devices have been assigned the
arbitrary vectors tabulated in Table 37.

2's µP DBUS

COMPLEMENT D7 D6 D5 D4 D3 D2 D1 D0

VECTOR D/l+/-32 16 8 4 2 1

+25 Direct 0 0 0 1 1 0 0 1
-39 " 0 1 0 1 1 0 0 1
+25 Indirect 1 0 0 1 1 0 0 1
-39 " 1 1 0 1 1 0 0 1
+55 Direct 0 0 1 1 0 1 1 1
+38 " 0 0 1 0 0 1 1 0

Table 37 VECTORS POINTING
TO MEMORY LOCATIONS

CONTAINING INSTRUCTIONS FOR
SERVICING INTERRUPTING DEVICES

The FPLA program table in Table 38 shows
the FPLA P-terms necessary to execute the
above functions, with inputs hs.14 used as
function selectors under CPU control. Note
that it was necessary to program the FPLA
outputs with the complement of the vector,
to compensate for the inversion with the
8T31.

The timing diagram of the CPU handshake
and FPLA response is shown in Figure 47.

In order to be immediately serviced, an
INTREQ must be received by the CPU be­
fore the last cycle of the current instruction.
When this occurs, the CPU finishes execut­
ing the current instruction, and in its last
cycle, rather than fetching the next sequen­
tial instruction, it 1 l sets the interrupt inhibit
bit in the program status word to inhibit
further interrupts, and 2) inserts the first
byte of the "Zero Branch-to-Subroutine,
Relative" instruction in the IR.

In the next cycle, the CPU gets ready to ac­
cess the data bus to fetch the interrupt vec­
tor as the second byte of the ZBSR instruc­
tion, hence it generates the INTACK signal
which is used to jam on the FPLA outputs
the complement of the vector associated
with the highest ranked device requesting
service. The vector is latched, and placed
on the CPU data bus following the leading
edge of OPACK, after which the 8T31 A­
bus is locked out. The CPU reads the D-bus
on the trailing edge of T2, and begins
executing the interrupt routine. When the
routine is completed, a return instruction
clears the interrupt inhibit bit and links

54

"VECTORED" PRIORITY INTERRUPT SYSTEM FOR THE 2650 MICROPROCESSOR
REQUIRES 3 ICs, AND 2 SPARE GATES

r---,
I 1.25

MHZ I 1 CLOCK I
L. ••

INTREQ

INT ACK

OPREQ

I
I
I
I
I

I __ .,

.,J.., REMOTE SITE .,J.,.
REQUEST F/F •./ REQUEST F/F •~#
r----~ y r.·--·1 l ~D~V. No. 1b-J 1o~V.No.6b- I

I .. T- - - .I Rs L r - - .1 Rs I L_1 __________ ~ ______ J

115 114 113 112 1,, 110 lg la 10-1

C"E FPLA (82S100)

F*7 F5 F5 F4 F3 F2 F1 Fo

~

Vee

Starred (*) FPLA outputs are programmed active-low.

Figure 46

FUNCTION PRIORITY/REQUEST T RESET

(6)

(8)

GENERATOR FUNCTION SELECTOR GENERATOR I
115 114 113112111110 lg 19 17115 15 14 13 12 11 lo F1 F5 F5 F4 F3 F2 F1 Fo

FPLA OUTPUT

0 1 x x x x x 1 x x x x x x x x 0 1 1 1 1 1 1 1

INTERRUPT
0 1 x x x x 1 x x x x x x x x x 0 1 1 1 1 1 1 1

REQUEST
0 1 x x x 1 x x x x x x x x x x 0 1 1 1 1 1 1 1

TO µP
0 1 x x 1 x x x x x x x x x x x 0 1 1 1 1 1 1 1
0 1 x 1 x x x x x x x x x x x x 0 1 1 1 1 1 1 1
0 1 1 x x x x x x x x x x x x x 0 1 1 1 1 1 1 1

t---- -- -- -- -- -- -- -- -- - - - -+-- - - - -
1 1 XXXXX1XXXXXXXX11100110
1 1 XXXX10XXXXXXXX10100110

PRIORITY 1 1 X X X 1 0 0 X X X X X X X X 0 1 1 0 0 1 1 0
RESOLVER 1 1 X X 1 0 0 0 X X X X X X X X 0 0 1 0 0 1 1 0

1 1 x1ooooxxxxxxxx11001000
1 1 100000XXXXXXXX11011001

t---- - ----------- - -- --r------
1 0 XXXXXX0001100110100000

RESET 1 0 X X X X X X 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0
REQUEST 1 0 X X X X X X 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0

1 0 XXXXXX1101100110000100
1 0 XXXXXX0011011110000010
1 o xxxxxxoo10011010000001

Only 18 P-terms are necessary to perform three time-shared functions.

Table 38 FPLA PROGRAM TABLE

execution back to the interrupted program.
Meanwhile, in order to communicate with
the device being serviced by the interrupt
routine, it is necessary to flag the device
that its request has been acknowledged.
This is done by issuing to the device a reset
signal generated by the FPLA. The latched
vector is fed back in the FPLA and decoded
to issue a unique reset signal, which is in
turn latched in the 74S174 on the leading
edge of T2 clock phase.

!ii!JDDliC!i

Several variants of this basic approach
have been investigated. In particular, in a
case where one needs to service 12 1/0
devices and can tolerate to point the vector
within a narrower memory address range, it
is possible to substitute the 8T31 with 4 tri­
state buffers, and use the FPLA in a wrap­
around connection to latch the vector. The
generation of the INTREQ and reset signals
must however be reallocated outside the
FPLA.

REFERENCES
1. D. Mrazek, and M. Morris, "How to De­

sign with Programmable Logic Arrays,"
National Semiconductor Corp., app.
note AN-89, 1973.

2. G. Reyling, "PLAs enhance digital proc­
essor speed and cut component count,"
Electronics, August 1974.

3. J. Maggiore, "PLA-A universal logic
element," Electronic Products Magazine,
April 1974.

4. W.N. Carr, and J.P. Mize, "MOS/LSI De­
sign and Application," pp. 229-258, T.I.
Electronics Series, McGraw-Hill Co.,
1972.

5. J.C. Logue et al, "Hardware implementa­
tion of a small system in PLAs," IBM J.
Res. Develop., March 1975.

6. A.W. Kobylar et al, "ROMs cut cost, re­
sponse time of m/N detectors," Electron­
ics, February 1973.

TIMING DIAGRAM OF 1/0 SERVICE REQUEST
INTERRUPTING PROGRAM EXECUTION

l
,. ______ c_u_R_R_EN_T_l_NS_T_R_uc_T_IO_N ___ ___,. .. ~1----~ NEXT INSTRUCTION

FIRST CYCLE I I LAST CYCLE
I.. ..

1.~~~~:R ___ .Bl..._fo1 _____ _fol _____ _
~TcH~ -.ITcd~ 1 I

INTERRUPT~..11----------~1, .. 1
REQUEST -I .. ____ _

F* 7 (INTREO) ' 11---, I
INTACK ~ j, I I L_ 1

1
15) _______________,_---~~II I I

INTERRUPT VEs:I I I

Fo6-------------------!--*-·-_!91_ VECTOR 1 :6 RESET
I
I

OPREo----------------------- I
I
I __ 1_1
I

DBUS----------------------H-1--CZ~>------
(LATCHED VECTOR) '- -t--

REOUESTR-ES_E_T-----~-----------------r---i.___

Figure 47

!ii!JDDliC!i 55

56 Si!IDDliCS

Si!JDDliCS

CllAPTIR 6
APPIRDICIS

57

58 !ijgDDliC!i

APPENDIX A PROGRAM TABLE OF SAMPLE DEVICE
PROGRAM TABLE ENTRIES

INPUT VARIABLE OUTPUT FUNCTION OUTPUT ACTIVE LEVEL

Prod. Term Prod. Term Not Active Active
Im Im Don't Care Present in Fp Present in Fp High Low

Cl)

< H L - (dash) A • (period) H L a
;:::: NOTE NOTES NOTES

a C5 Enter (-) for unused inputs of used 1. Entries independent of output polarity. 1. Polarity programmed once only. a
(;) <::(~ P-terms. 2. Enter (A) for unused outputs of used P-terms. 2. Enter (H) for all unused outputs.
-~ ><.' Qi :::::> q: PRODUCT TERM* ACTIVE LEVEL c: LU
-~ ~ ~ u

INPUT VARIABLE ~L1 L 1 L 1L'H 1 H 1H1 H Cl) :J G
:::.... a:· a I- - -..----.----- ~· :___i _ LL - I_ L - L.: -1 _ ~
.Q a :::::> NO. 1 1 1 1 1 1 OUTPUT FUNCTION*
"tl >(a lJ.J t- - - - .-- - - - ~--- --- f---..-- - .-- -.----
Cll ::::.... 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 -92 IJ.J Cl)

Q. a· <:: a 0 L H - - - H • • • A • • • A E LU 0... - - - - - - - - - -
0 <::

~ § 1 - - - - - L L H - - - H - - - - 0 • 0 A • • • A (.) <::('*I:
Cll a:· I- ~ 2 - - - - - L - H - - - - - - H - 0 • A • 0 • A • .Q a: ...J
2 a

~
...J 3 - - - - - L L H - - H - - - - - • • A 0 0 • A • c: <::(

4 L H H 0 A A ~ C:: - - - - - - - - - - - - - 0 0 • • • a a 5 L L H H • A • • • A • • C5 LU - - - - - - - - - - - -
l\J ~

Q. 6 - - - - - L - H - - - - H - - - A 0 • • A • • • -~ 0 :J 7 - - - - - L L H H - - - - A • • A • ~ a - - - • • •
'- ~ CQ 8 - - - - - L L L - - - H - - - H • • 0 A • • 0 A

~ a
L L L H H A A ::::.... IJ.J 9 - - - - - - - - - - - • 0 0 0 0 • Cl) :::::.. Cl)
L L L H H A A lLi I- 10 - - - - - - - - - - - • • • • • • a:

~ IJ.J (.) <:: 11 - - - - - L L L H - - - H - - - A • 0 0 A 0 • • ~ IJ.J IJ.J ><: a a: ~ 12 - - - - - H H H - - - H - - - - • • 0 A 0 0 0 A ><:
~ I- IJ.J ~ 13 - - - - - H H H - - H - - - - - • • A • • 0 A 0 Cl) I-

0 A LL. :::::> <::(14 - - - - - H H H - H - - - - - - 0 0 • 0 A 0 0
(.) (.) a (.)

15 - - - - - H H H H - - - - - A 0 0 0 A 0 0 0 - -
16 - - - - L H L L - - - L - - - H 0 0 0 A 0 0 0 A
17 - - - - L H L L - - - H - - - L 0 0 0 0 0 0 • A

It) 18 - - - - H H L L - - -
""'

L - - - L 0 0 • • 0 0 • A_
C\I 19 - - - - H H L L - - - H - - - H 0 • 0 • • • • A
C\I 20 - - H - H L L - - L - - - H - 0 • 0 • 0 0 A 0_ -
""' 21 - - - H - H L L - - H - - - L - • • • • • • A • LU 22 - - - L - H L L - - L - - - L - • • • 0 0 • A • I-Cl)

<::(A :<:: a 23 - - - L - H L L - - H - - - H - • • • • • • • (.!) UJ' 24 - - H - - H L L - L - - - H - - • • • • • A • • Ci) -J 25 H H L L H L A LU 0... - - - - - - - - - - • 0 • 0 • • • a ~ 0 26 - - L - - H L L - L - - - L - - 0 • • • • A • 0
(.) <::(,_

H A (5 Cl)
...._

27 - - L - - H L L - H - - - - - • • • • • • • a
LU ~

,_
L 0 IJ.J 28 - H - - - H L L - - - H - - - • 0 • • A • • • ...J a: Cl)

29 - - - - H L L H - - - L - - - 0 0 • • A • • • C\I a ~ co :::::.. 30 L H L L L L A IJ.J IJ.J - - - - - - - - - - • 0 • • 0 0 0
(.) LU a: A <:: <:: 31 - L - - - H L L H - - - H - - - 0 0 • • 0 • 0

§ 0 32 - L - - - H L L - - - - H - - - • • 0 A • • • • :<:: a 33 - L - - - H L L H - - - - - - - • • • A 0 • • • <::(
34 - - H H L L - - - - - H • • A • • • • • - - - -
35 - - - - H H L L - - - H - - - - • • A • 0 • 0 0

~ 36 - - - L - H L L - - - - - - H - • A • • • • • •
a: 37 - - - L - H L L - - H - - - - - • A • • 0 • 0 •
~ 38 - - L - - H L L - - - - - H - - A • • • • • • 0

'*I: '*I:

LU LL. '*I: 39 - - L - - H L L - H - - - - - - A 0 • • • 0 • • a: 0 IJ.J IJ.J (.) LU 40 - - - - - H L L H - - - H - - - • • • A • • • • ~ a :::= a: -J
H H A ~ a: IJ.J IJ.J ca 41 - - - - - H L L - - - - - - • • 0 • • • •

0 a ca ~ 42 - - - - - H L L - - H - - - H - • A • • • • • • a: IJ.J Cl) ~
A IJ.J Cl) (.) :::::> ~ 43 - - - - - H L L - H - - - H - - • • • • • • •

~ ~ j::::: :<:: ~ 44 0 IJ.J ...J
I- (.) :<:: ~

(.!) 45
Cl) a: 0
:::::> :::::>

(.!)
0 a: 46

(.) 0... Ci) I- 0...
47

*Input and Output fields of unused P-terms can be left blank. Unused inputs and outputs are FPLA terminals left floating.

smnntms 59

APPENDIX B CONNECTIONS FOR SAMPLE DEVICE

All device inputs may be toggled with
manual switches, while all outputs can be
monitored with an LED arrangement. To
observe the 5 logic functions of the sample
FPLA, connect the device as follows:

Vee

Is
~

lg
c:
0

Is l 110

Iii

1i2

1i3

114

1i5

CE

Fi

F2

Fx=IA+ls

Fy=IA+ls

a. "OR" FUNCTION

Vee

Is

lg

1io

Iii

112

1i3

Ii 1i4

lo 1i5

F7 CE

F5 Fo

F5 Fi

F4 F2

GND F3

Is

IA

d. "MULTIPLEX" FUNCTION

60

+5V

Vee

Is

15 lg

15

14

1 i2

Ii 1i4

1 i5

F7 CE

F5 Fo

F5 Fi

F4 F2

GND F3

Fx=A• S

Fy=A•S

b. "AND" FUNCTION c. "EX-OR" FUNCTION

e. "ADD" FUNCTION (with Serial Carry)

!ijgDDliC!i

SALIS 0 r1c1s

!ii!IDDliC!i 61

SIGNETICS TEXAS MARYLAND WASHINGTON
Dallas Glen Bumi Bellevue

HEADQUARTERS Phone: (214) 661-1296 Microcom8, Inc.
Phone: (3 1) 247-0400 Western Technical Sales

Phone: (206) 641-3900
811 East Arques Avenue

MASSACHUSETTS Sunnyvale, California 94086
Pl1one: (408) 739-7700 REPRESENTATIVES Reading WISCONSIN

Kanan Associates Greenfield
Phone: (617) 944-8484 L-Tec, Inc.

ALABAMA ALABAMA Phone: (414) 545-8900
Huntsville Huntsville MICHIGAN

Phone: (205) 533-5800 Murcota Bloomfield Hills
Phone: (205) 539-8476 Enco Marketing

ARIZONA Phone: (313) 642-0203 DISTRIBUTORS
Phoenix CALIFORNIA

Phone: (602) 971-2517 San Diego MINNESOTA ALABAMA
Mesa Engineering Edina

CALIFORNIA Phone: (714) 278-8021 Mel Foster Tech. Assoc. Huntsville

Inglewood Sherman Oaks Phone: (612) 835-2254 Hamilton/ Avnet Electronics

Phone: (213) 670-1101 Astra Ionics Phone: (205) 533-1170

Irvine Phone: (213) 990-5903 MISSOURI

Phone: (714) 833-8980 St. Louis ARIZONA
(213) 924-1668 CANADA Advanced Technology Sales

Phoenix
San Diego Phone: (314) 567-6272

Phone: (714) 560-0242 Calgary, Alberta Hamilton/ Avnet Electronics

Sunnyvale
Philips Electronics Industries Ltd. NEW JERSEY Phone: (602) 275-7851
Phone: (403) 543-5711

Phone: (408) 736-7565
Montreal, Quebec Haddonfield Liberty Electronics

Phone: (602) 257-1272
Philips Electronics Industries Ltd. Thomas Assoc. Inc.

COLORADO Phone: (514) 342-9180 Phone: (609) 854-3011

Parker Ottawa, Ontario
CALIFORNIA

Phone: (303) 841-3274 Phillips Electronics Industries Ltd. NEW MEXICO Costa Mesa
Phone: (613) 237-3131 Albuquerque Avnet Electronics

FLORIDA Scarborough, Ontario The Staley Company, Inc. Phone: (714) 754-6051
Pompano Beach Philips Electronics Industries Ltd.

Phone: (505) 292-0060
Schweber Electronics

Phone: (305) 782-8225 Phone: (416) 292-5161 Phone: (213) 556-3880
Vancouver, B.C. NEW YORK

ILLINOIS Philips Electronics Industries Ltd. Ithaca Culver City

Rolling Meadows Phone: (604) 435-4411 Bob Dean, Inc. Hamilton Electro Sales

Phone: (312) 259-8300
Phone: (607) 272-2187 Phone: (213) 558-2183

COLORADO El Segundo

KANSAS Denver
NORTH CAROLINA Liberty Electronics

Wichita Barnhill Five, Inc. Cary Phone: (213) 322-8100

Phone: (316) 683-5652 Phone: (303) 426-0222 Montgomery Marketing Mountain View Phone: (919) 467-6319
Elmar Electronics

MARYLAND CONNECTICUT OHIO
Phone: (415) 961-3611

Columbia Newtown Centerville
Hamilton/ Avnet Electronics

Phone: (301) 730-8100 Kanan Associates Norm Case Associates
Phone: (415) 961-7000

Phone: (203) 426-8157 Phone: (513) 433-0966 San Diego
MASSACHUSETTS Fairview Park Hamilton/ Avnet Electronics
Woburn FLORIDA Norm Case Associates Phone: (714) 279-2421

Phone: (617) 933-8450 Altamonte Springs Phone: (216) 333-4120 Liberty Electronics
Semtronic Associates Phone: (714) 565-9171

MINNESOTA Phone: (305) 831-8233 OREGON

Edina Largo Portland
Sunnyvale

Phone: (612) 835-7455 Semtronic Associates Western Technical Sales lntermark Electronics
Phone: (813) 586-1404 Phone: (503) 297-1711 Phone: (408) 738-1111

NEW JERSEY TEXAS CANADA ILLINOIS Cherry Hill
Chicago Austin Downsview, Ontario Phone: (609) 665-5071

Piscataway L-Tec Inc. Cunningham Co. Cesco Electronics
Phone: (201) 981-0123 Phone: (312) 286-1500 Phone: (512) 459-8947 Phone: (416) 661-0220

Dallas Zentronics
NEW YORK IN DIANA Cunningham Co. Phone: (416) 635-2822

Phone: (214) 233-4303
Wappingers Falls Indianapolis Houston Mississauga, Ontario

Phone: (914) 297-4074 Enco Marketing Cunningham Company Hamilton/ Avnet Electronics
Woodbury, LI. Phone: (317) 546-5511 Phone: (713) 461-4197 Phone: (416) 677-7432

Phone: (516) 364-9100 Montreal, Quebec
KANSAS UTAH Cesco Electronics

OHIO Overland Park West Bountiful Phone: (514) 735-5511
Worthington Advanced Technology Sales Barnhill Five, Inc. Zentronics Ltd.

Phone: (614) 888-7143 Phone: (913) 492-4333 Phone: (801) 292-8991 Phone: (514) 735-5361

62 !ii!JDDliC!i

Ottawa, Ontario Skokie NEW MEXICO OHIO
Cesco Electronics Bell Industries

Albuquerque Beechwood Phone: (613) 729-5118 Phone: (312) 965-7500
Hamilton/ Avnet Electronics Schweber Electronics

Hamilton/ Avnet Electronics
IN DIANA

Phone: (505) 765-1500 Phone: (216) 464-2970
Phone: (613) 226-1700
Zentronics Ltd. Indianapolis NEW YORK Cleveland

Hamilton/ Avnet Electronics
Phone: (613) 238-6411 Pioneer Elecrtonics Buffalo Phone: (216) 461-1400

Vancouver, B.C. Phone: (317) 849-7300 Summit Distributors Pioneer Standard Electronics
Bowtek Electronics Co., Ltd. Phone: (716) 884-3450 Phone: (216) 587-3600
Phone: (604) 736-1141 KANSAS

East Syracuse
Ville St. Laurent, Quebec Dayton Lenexa Hamilton/ Avnet Electronics Hamilton/ Avnet Electronics Hamilton/ Avnet Electronics Hamilton/ Avnet Electronics Phone: (315) 437-2642 Phone: (513) 433-0610 Phone: (514) 331-6443 Phone: (913) 888-8900

Farmingdale, L.I. Pioneer Standard Electronics
COLORADO MARYLAND Arrow Electronics Phone: (513) 236-9900
Commerce City

Phone: (516) 694-6800

Elmar Electronics Baltimore Rochester OKLAHOMA
Phone: (303) 287-9611 Arrow Electronics Hamilton/ Avnet Electronics Phone: (301) 247-5200 Tulsa

Denver Phone: (716) 442-7820 Component Specialties
Hamilton/ Avnet Electronics Gaithersburg Schweber Electronics Phone: (918) 664-2820
Phone: (303) 534-1212 Pioneer Washington Electronics Phone: (716) 461-4000

Phone: (301) 948-0710 TEXAS
CONNECTICUT

Hanover
Westbury, L.I.

Hamilton/ Avnet Electronics Dallas Danbury Hamilton/ Avnet Electronics Phone: (516) 333-5800 Component Specialties Schweber Electronics Phone: (301l 796-5000
Schweber Electronics Phone: (214) 357-4576 Phone: (203) 792-3500

Georgetown Rockville Phone: (516) 334-7474 Hamilton/ Avnet Electronics
Schweber Electronics Phone: (214) 661-8204

Hamilton/ Avnet Electronics Phone: (301) 881-2970 NORTHERN NEW JERSEY
Phone: (203) 762-0361 Quality Components

Hamden MASSACHUSETTS Cedar Grove Phone: (214) 387-4949

Arrow Electronics Hamilton/ Avnet Electronics Schweber Electronics
Phone: (203) 248-3801 Waltham Phone: (201) 239-0800 Phone: (214) 661-5010

Schweber Electronics Saddlebrook
FLORIDA Phone: (617) 890-8484 Arrow Electronics Houston

Ft. Lauderdale Phone: (201) 797-5800 Component Specialties
Woburn Phone: (713) 771-7237

Arrow Electronics Arrow Electronics SOUTHERN NEW JERSEY Phone: (305) 776-7790 Phone: (617) 933-8130 Hamilton/ Avnet Electronics

Hamilton/ Avnet Electronics
AND PENNSYLVANIA Phone: (713) 780-1771

Phone: (305) 971-2900 Hamilton/ Avnet Electronics Cherry Hill, N.J. Quality Components Phone: (617) 933-8000 Milgray-Delaware Valley Phone: (713) 772-7100 Hollywood Phone: (609) 424-1300 Schweber Electronics MICHIGAN Schweber Electronics
Phone: (305) 922-4506 Moorestown, N.J. Phone: (713) 784-3600

Orlando Livonia Arrow/ Angus Electronics
Hammond Electronics Hamilton/ Avnet Electronics Phone: (609) 235-1900 UTAH
Phone: (305) 241-6601 Phone: (313) 522-4700

Mt. Laurel, N.J. Salt Lake City
GEORGIA

Pioneer Electronics Hamilton/ Avnet Electronics Alta Electronics
Phone: (313) 525-1800 Phone: (609) 234-2133 Phone: (801) 486-7227

Atlanta
Schweber Electronics MINNESOTA CENTRAL NEW JERSEY Hamilton/ Avnet Electronics
Phone: (404) 449-9170

Eden Prairie
AND PENNSYLVANIA Phone: (801) 972-2800

Norcross Schweber Electronics Somerset, N.J. WASHINGTON Hamilton/ Avnet Electronics Phone: (612) 941-5280 Schweber Electronics
Phone: (404) 448-0800 Phone: (201) 469-6008 Bellevue Edina Hamilton/ Avnet Electronics

ILLINOIS Hamilton/ Avnet Electronics Horsham, PA Phone: (206) 746-8750
Elk Grove Phone: (612) 941-3801 Schweber Electronics

Schweber Electronics Minneapolis
Phone: (215) 441-0600 Seattle

Liberty Electronics Phone: (312) 593-2740 Semiconductor Specialists NORTH CAROLINA Phone: (206) 453-8300
Elmhurst Phone: (612) 854-8841

Semiconductor Specialists Greensboro
WISCONSIN Phone: (312) 279-1000 MISSOURI Hammond Electronics

Schiller Park Hazelwood
Phone: (919) 275-6391 New Berlin

Hamilton/ Avnet Electronics Hamilton/ Avnet Electronics Pioneer Electronics Hamilton/ Avnet Electronics
Phone: (312) 671-6082 Phone: (314) 731-1144 Phone: (919) 273-4441 Phone: (414) 784-4510

!ii!JDDliC!i 63

FOR SIGNETICS FINLAND JAPAN SOUTH AFRICA

PRODUCTS Oy Philips Ab Signetics Japan, Ltd. E.D.A.C. (PJY), Ltd.

WORLDWIDE: Helsinki Tokyo Johannesburg

Phone: 1 72 71 Phone: (03) 230-1521 Phone: 24-6701-3

ARGENTINA FRANCE KOREA SPAIN

Fapesa l.y.C.
R.T.C.

Philips Elect Korea Ltd. Copresa S.A.
Buenos-Aires Seoul Barcelona
Phone:652-7438/7478 Paris Phone: 44-4202 Phone: 329 63 12

Phone: 355-44-99
AUSTRIA MEXICO SWEDEN

Osterreichische Philips GERMANY Electronica S.A. de C.V. Elcoma A.B.
Wien Valvo Mexico D.F. Stockholm
Phone: 93 26 11 Hamburg Phone: 533-1180 Phone: 08/67 97 80

AUSTRALIA Phone: (040) 3296-1 NETHERLANDS SWITZERLAND

Philips lndustries-ELCOMA HONG KONG Philips Nederland B.V. Philips A.G.
Lane-Cove, N.S.W. Eindhoven Zurich
Phone: (02) 427-0888 Philips Hong Kong, Ltd. Phone: (040) 79 33 33 Phone: 01/ 44 22 11

BELGIUM
Hong Kong

NEW ZEALAND Phone: 12-245121 TAIWAN

M.B.L.E. INDIA
E.D.A.C., Ltd. Philips Taiwan, Ltd.

Brussels Auckland Taipei
Phone: 523 00 00 Semiconductors, Ltd. Phone: 867119 Phone: (02) 551-3101-5

BRAZIL (REPRESENTATIVE ONLY) NORWAY THAILAND

lbrape, S.A.
Bombay Electronica A.S. Saeng Thong Radio, Ltd.

Sao Paulo
Phone: 293-667 Oslo Bangkok

Phone: 284-4511 IN DONES IA Phone: (02) 15 05 90 Phone:527195,519763

CANADA P.T. Philips-Ralin Electronics PAKISTAN UNITED KINGDOM

Philips Electron Devices Jakarta Elmac Ltd Mullard, Ltd.

Toronto • Phone: 581058 Karachi London

Phone: 425-5161 Phone: 515-122 Phone: 01-580 6633
IRAN

CHILE PERU UNITED STATES

Philips Chilena S.A.
Berkeh Company, Ltd. Cadesa Signetics International Corp.

Tehran Sunnyvale, California
Santiago Phone:831564 Lima
Phone: 39-4001 Phone: 628599 Phone: (408) 739-7700

COLOMBIA
IS RAEL PHILIPPINES

URUGUAY

Sadape S.A. Rapac Electronics, Ltd. Philips Industrial Dev., Inc.
Luzilectron SA

Bogota Tel Aviv Makata-Rizal
Montevideo

Phone: 600600 Phone: 477115-6-7 Phone: 868951-9
Phone: 9143 21

DENMARK ITALY SINGAPORE/ MALAYSIA
VENEZUELA
Industrias Venezolanas

Miniwatt A/S Philips S.p.A. Philips Singapore Pte., Ltd. Philips S.A.
Kobenhavn Milano Singapore Caracas
Phone: (01) 69 16 22 Phone: 2-6994 Phone: 538811 Phone: 360-511

64 !ii!JDDliC!i

!ii!IDDliC!i
a subsidiary of U.S. Philips Corporation

Signet1cs Corporation
PO Box9052

811 East Arques Avenue
Sunnyvale, Cahforn1a 94086

Telephone 4081739-7700

Printed in USA Oct. 1977

