
• TEXAS
INSTRUMENTS

MSP430 Family

1994 1994
====~========~==~=

IMPORTANT NOTICE

Texas Instruments (TI) reseNes the right to make changes to its products or to discon­
tinue any semiconductor product or seNice without notice, and advises its customers
to obtain the latest version of relevant information to verify, before placing orders, that
the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the
specifications applicable at the time of sale in accordance with TI's standard warranty.
Testing and other quality control techniques are utilized to the extent TI deems neces­
sary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by governrnent requirements.

Certain applications using semiconductor products may involve potential risks of
death, personal injury, or severe property or environmental damage ("Critical Applica­
tions").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT
APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the
customer. Use of TI products in such applications requires the written approval of an
appropriate TI officer. Questions concerning potential risk applications should be
directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate
design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or seNices described herein. Nor does TI
warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI
covering or relating to any combination, machine, or process in which such semicon­
ductor products or seNices might be or are used.

Copyright © 1994, Texas Instruments Incorporated

MSP430 Family

MSP430 Family
Assembly Language Tools

User's Guide

Read This First MSP430 Family

Read This First

This preface summarizes the chapters, lists related documentation, and describes the style
and symbol conventions used in this manual.

How This Manual Is Organized

This document contains the following chapters:

Chapter 1 Introduction and Installation

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

ChapterS

Chapter 9

Provides an overview of the assembly language development tools, a
walkthrough, and installation information.

Introduction to Common Object File Format
Discusses the basic COFF concept of sections and how they can help you
use the assembler and linker more efficiently. Common object file format, or
COFF, is the object file format used by the MSP430 family tools. Read
Chapter before using the assembler and linker.

Assembler Description
Tells you how to invoke the assembler and discusses source statement
format, valid constants and expressions, and assembler output.

Assembler Directives
Divided into two parts: the first part describes the directives according to
function, and the second part presents the directives in alphabetical order.

Instruction Set Summary
Summarizes the MSP430 instruction set alphabetically.

Macro Language
Describes macro directives, substitution symbols used as macro para­
meters, and how to create macros.

Archiver Description
Contains instructions for invoking the archiver, creating new archive
libraries, and modifying existing libraries.

Linker Description
Tells you how to invoke the linker, provides details about linker operation,
discusses linker directives, and presents a detailed linking example.

Absolute Lister Description
Tells you how to invoke the absolute lister so that you can obtain a listing of
the absolute addresses of an object file.

MSP430 Family Read This First

Chapter 10

Appendix A

Appendix B

AppendixC

Appendix D

Appendix E

Appendix F

Appendix G

Object Format Converter Description
Tells you how to invoke the object format converter so that you can convert
a COFF object file into an Intel, Tektronix, or TI-tagged object format.

Common Object File Format
Contains supplemental technical data about the internal format and
structure of COFF object files.

Symbolic Debugging Directives
Lists symbolic debugging directives that a high level language can use.

Assembler Error Messages
Lists the assembler error messages.

Linker Error Messages
Lists the linker error messages.

ASCII Character Set
Provides a table of the ASCII character set.

Glossary
Contains a glossary of terms and acronyms used in this book.

Floating Point Formats
Contains informations about the internal format of floating point constants.

Related Documentation

The following MSP430 documents are also available.

The MSP430 Family Data Manual (literature number SPNSxxx) discusses hardware
aspects of the MSP430, such as pin functions, architecture, stack operation, and inter­
faces, and contains the MSP430 instruction set.

The MSP430 data sheets contain the recommended operating conditions, electrical
specifications, and timing characteristics of the MSP430 family devices.

MSP430C201 16-Bit Microcontroller Data Sheet (literature number SPNSxxx)

Read This First MSP430 Family

Style and Symbol Conventions

This document uses the following conventions:

Program listings, program examples, and interactive displays are shown in a special font.
Examples use a bold version of the special font for emphasis. Here is a sample program
listing:

10000 20
20001 2cjl
30002 32
40003

~ .~IjftE 45
1J1 .~1J1'tE 47
~ .~IjftE 50

.'tE~'t

In syntax descriptions, the instruction, command, or directive is in a bold face font and
parameters are in italics. Portions of a syntax that are in bold face should be entered as
shown; portions of a syntax that are in italics describe the type of information that should
be entered. Here is an example of a directive syntax:

.space size

.space is the directive. This directive has one parameter, indicated by size. When you
use .space, the first and only parameter must be the size.

Square brackets ([and]) identify an optional parameter. If you use an optional
parameter, you specify the information within the brackets; you don't enter the brackets
themselves. This is an example of an instruction that has an optional parameter:

.text [address I

Braces ({ and}) indicate a list. The symbol I (read as or) separates items within the list.
Here's an example of a list:

{albic}

This provides three choices: a, b, or c.

Some directives can have a varying number of parameters. For example, the .byte
directive can have up to 100 parameters. The syntax for this directive is:

.byte value1 [, ... , valuenl

This syntax shows that .byte must have at least one value parameter, but you have the
option of supplying additional value parameters, separated by commas.

MSP430 Family Read This First

Following are other symbols and abbreviations used throughout this document.

Symbol Definition Symbol Definition

RO-R3 Registers with special functions R4-R15 Working registers, general
purpose

PC Program counter register SP Stack pointer register

SR Status register CG1,CG2 Constant generator registers

LSB Least significant bit MSB Most significant bit

H,h Suffix - hexadecimal number B,b Suffix - binary integer

Q,q Suffix - octal integer

{ } List of parameters [1 Optional parameter

text Indicates a "fill in the blank" - replace the text in italics with an appropriate
substitute. For example, substitute an actual label for /abet, substitute an actual
destination expression for expression.

Trademarks
IBM, IBM PC, IBM PC/XT, PC-DOS, IBM OS/2, and PS/2 are trademarks of International Business
Machines Corp.
MS, MS OS/2, MS-DOS, and MS-Windows are registered trademarks of Microsoft Corp.
Sun-3, Sun--4, Sun View, SunWindows, and Sun Workstation are trademarks of Sun Microsystems,
Inc.
UNIX is a registered trademark of AT&T Bell Laboratories, Inc.
VAX and VMS are trademarks of Digital Equipment Corp.

MSP430 Family Introduction and Installation

Topics

Introduction and Installation 1-3

1 .1 Development Tools Overview 1-4

1.2 Software Installation 1-6
1.2.1 Installing the Tools on IBM PC/ATs or 100% Compatible Machines With

PC-DOS, MS-DOS, or OS/2 1-6

1.3 Getting Started 1-7

Figures

Fig. Title

1.1 MSP430 Assembly Language Development Flow

Page

1-4

1-1

Introduction and Installation MSP430 Family

1·2

MSP430 Family Introduction and Insta"ation

1 Introduction and Installation

The MSP430 devices are well supported by a full set of hardware and software development
tools. This document discusses the software development tools included with the MSP430
assembly language package:

Assembler

Archiver

Linker

Absolute Lister

ROM Utility

These tools can be installed on the following systems:

PC/AT with PC-DOS, MS-DOS, OS/2 or MS-Windows

The MSP430 assembly language tools create and use object files that are in common object
file format (COFF) to facilitate modular programming. Object files contain separate blocks
(called sections) of code and data that you can load into different MSP430 memory spaces.
You will be able to program the MSP430 more efficiently if you have a basic understanding
of COFF.

1-3

Introduction and Installation MSP430 Family

1.1 Development Tools Overview

The figure shows the assembly language development flow. The shaded portion highlights
the most common development path; the other portions are optional.

EPROM
Programmer

Absolute
Lister MSP430 Software Evaluation In·Circuit

Simulator Module Emulator

Figure 1.1: MSP430 Assembly Language Development Flow

1-4

MSP430 Family Introduction and Installation

The assembler translates assembly language source files into machine language object
files. Source files can contain instructions, assembler directives, and macro directives.
You can use assembler directives to control various aspects of the assembly process,
such as the source listing format, symbol definition, and section content.

The archiver allows you to collect a group of files into a single archive file. For example,
you can collect several macros together into a macro library. The assembler will search
through the library and use only the members that are called as macros by the source
file. You can also use the archiver to collect a group of object files into an object library.
The linker will include in the library the members that resolve external references during
the link.

The linker combines object files into a single executable object module. As it creates the
executable module, it performs relocation and resolves external references. The linker
accepts relocatable GOFF object files (created by the assembler) as input. It also accepts
archiver library members and output modules created by a previous linker run. Linker
directives allow you to combine object file sections, bind sections or symbols to
addresses or within memory ranges, and define or redefine global symbols.

The absolute lister provides a file that can be reassembled to produce a listing of the
absolute addresses of an object file.

The MSP430 microcontroller programmer accepts GOFF files as input, but most EPROM
programmers do not. The object format converter converts a GOFF object file into TI­
tagged, Intel, Motorola or Tektronix object format. The converted file can be downloaded
to an EPROM programmer.

The main purpose of this development process is to produce a module that can be
executed in a system that contains a MSP430 device. You can use one of several
debugging tools to refine and correct your code before downloading it to a MSP430
system.

1-5

Introduction and Installation MSP430 Family

1.2 Software Installation

This section contains instructions for installing the assembly language tools.

1.2.1 Installing the Tools on IBM PC/ATs or 100% Compatible Machines With PC­
DOS, MS-DOS, OS/2 or MS-Windows

The MSP430 assembly language software package is shipped on a double-sided, high­
density disk. Your system must have at least 512K bytes of memory space and 1 MB of
harddisk space.

First make a backup of the product disk.
Insert the backup disk into the floppy disk drive of your choice.
Change to that drive and enter:

INSTALL

Follow the instructions displayed on screen.

1-6

MSP430 Family Introduction and Installation

1.3 Getting Started

The tools you will probably use most often are the assembler and the linker. This section
provides a quick walkthrough so that you can get started without reading the whole user's
guide. These examples show the most common methods for invoking the assembler and
linker.

1) Create two short source files to use for the walkthrough; call them filel.asm and
file2. asm.

filel. asm file2.asm

.global addq .global addq
start clr RIO addq inc RIO

clr Rll inc Rll

skp ret
loop call #addq .end

jnc loop
.end

2) Enter the following command to assemble file1.asm.

asm430 filel

3) The asm430 command invokes the MSP430 assembler; filel. asm is the input source
file.

If the input file extension is .asm, you don't have to specify the extension; the assembler
uses .asm as the default. This example creates an object file called filel. obj. The
assembler creates an object file only if there are no errors. You can specify a name for
the object file, but if you don't, the assembler will append the .obj extension to the input
filename.

4) Now assemble file2 .asm; enter:

asm430 file2 -1

5) This time, the assembler creates an object file called f ile2 . obj. The -I (lowercase "L")
option tells the assembler to create a listing file; the listing file for this example is called
file2.1st.

6) Link filel. obj and file2. obj; enter:

Ink430 filel file2 -0 prog.out

7) The Ink430 command invokes the linker. fileI.obj and file2 .obj are the input object
files. (If the input file extension is .obj, you don't have to specify the extension; the linker
uses .obj as the default.) The linker combines filel. obj and file2. obj to create an
executable object module called prog. out. The -0 option supplies the name of the output
module.

1-7

Introduction and Installation MSP430 Family

1-8

MSP430 Family Introduction to COFF Format

Topics

2 Introduction to Common Object File Format

2.1 Sections

2.2 How the Assembler Handles Sections
2.2.1 Uninitialized Sections
2.2.2 Initialized Sections
2.2.3 Named Sections
2.2.4 Section Program Counters
2.2.5 An Example That Uses Sections Directives

2.3 How the Linker Handles Sections
2.3.1 Default Memory Allocation
2.3.2 Placing Sections in the Memory Map

2.4 Relocation

2.5 Runtime Relocation

2.6 Loading a Program

2.7 Symbols in a COFF File
2.7.1 External Symbols
2.7.2 The Symbol Table

Figures

Fig. Title

2.1 Partitioning Memory Into Logical Blocks

2.2 Using Sections Directives

2.3 Generated Object Code according to previous source code example

2.4 Combining Input Sections to Form an Executable Object Module

2.5 An Example of Code That Generates Relocation Entries

Title

2.1

Default Section Directive

Notes

2-3

2-4

2-6
2-6
2-7
2-7
2-8
2-8

2-11
2-12
2-13

2-14

2-15

2-16

2-17
2-17
2-17

Page

2-5

2-9

2-10

2-12

2-14

Page

2-6

2-1

Introduction to COFF Format MSP430 Family

2-2

MSP430 Family Introduction to COFF Format

2 Introduction to Common Object File Format

The assembler and linker create object files that can be executed by a MSP430 device. The
format that these object files are in is called common object file format (GOFF).

GOFF makes modular programming easier because it encourages you to think in terms of
blocks of code and data when you write an assembly language program. These blocks are
known as sections. Both the assembler and the linker provide directives that allow you to
create and manipulate sections.

For more information about GOFF object file structure refer to the Appendix.

2-3

Introduction to COFF Format MSP430 Family

2.1 Sections

The smallest unit of an object file is called a section. A section is a block of code or data that
will ultimately occupy contiguous space in the MSP430 memory map. Each section of an
object file is separate and distinct from the other sections. COFF object files always contain
three default sections:

.text section

• data section

• bss section

usually contains executable code .

usually contains initialized data.

usually reserves space for uninitialized variables .

In addition, the assembler and linker allow you to create, name, and link named sections that
are used like the .data, .text, and .bss sections.

It is important to note that there are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections are initialized;
named sections created with the .sect assembler directive are also
initialized.

Uninitialized sections reserve space in the memory map for uninitialized data. The .bss
section is uninitialized; named sections created with the .usect,
reg, and .regpair assembler directive are also un initialized.

The assembler provides several directives that allow you to associate various portions of
code and data with the appropriate sections. The assembler builds these sections during the
assembly process, creating an object file that is organized like the object file shown in the
following figure.

One of the linker's functions is to relocate sections into the target memory map; this is called
allocation. Because most systems contain several different types of memory, using sections
can help you to use target memory more efficiently. All sections are independently
relocatable; you can place different sections into various blocks of target memory. For
example, you can define a section that contains an initialization routine and then allocate the
routine into a portion of the memory map that contains ROM.

2-4

MSP430 Family Introduction to COFF Format

Object File Target File

Figure 2.1: Partitioning Memory I nto Logical Blocks

2-5

Introduction to COFF Format MSP430 Family

2.2 How the Assembler Handles Sections

The assembler's main function related to sections is to identify the portions of an assembly
language program that belong in a particular section. The assembler has seven directives
that support this function:

.bss

.data

.seet

.text

.useet

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect
directives create initialized sections.

Note: Default Section Directive

If you don't use any of the sections directives, the assembler assembles everything into
the . text section.

2.2.1 Uninitialized Sections

Uninitialized sections reserve space in MSP430 memory; they are usually allocated into
RAM. These sections have no actual contents in the object file; they simply reserve memory.
A program can use this space at runtime for creating and storing variables.

Un initialized data areas are built by using the .bss and .usect assembler directives. The .bss
directive reserves space in the .bss section. The .usect directive reserves space in a specific
uninitialized named section. If the section name is specified, the space is reserved in the
named section. Each time you invoke one of these directives, the assembler reserves more
space in the appropriate section.

The syntaxes for these directives are:

.bss name [,size in bytes]

symbol .useet "section name", size in byte

symbol

size

2-6

points to the first byte reserved by this invocation of the .bss or .usect
directive. The symbol corresponds to the name of the variable that you're
reserving space for. It can be referenced by any other section and can also be
declared as a global symbol (with the .global assembler directive).

is an absolute expression. The .bss directive reserves size bytes in the .bss
section; the .usect directive reserves size bytes in section name. If the section
name is specified, the space is reserved in the named section.The default size
for .bss is one byte.

MSP430 Family Introduction to COFF Format

section name tells the assembler which named section to reserve space in.

The .text, .data, and .sect directives tell the assembler to stop assembling into the current
section and begin assembling into the indicated section. The .bss and .usect, however, do
not end the current section and begin a new one; they simply "escape" from the current
section temporarily. The .bss and .usect directives can appear anywhere in an initialized
section without affecting the contents of the initialized section.

2.2.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections
are stored in the object file and placed in MSP430 memory when the program is loaded.
Each initialized section is separately relocatable and may reference symbols that are defined
in other sections. The linker automatically resolves these section-relative references.

Three directives tell the assembler to place code or data into a section. The syntaxes for
these directives are:

.text

.data

.sect "section name"

When the assembler encounters one of these directives, it stops assembling into the current
section (acting as an implied "end current section" command). It then assembles subsequent
code into the respective section until it encounters another .text, .data, or .sect directive.

Sections are built up through an iterative process. For example, when the assembler first
encounters a .data directive, the .data section is empty. The statements following this first
.data directive are assembled into the .data section (until the assembler encounters a .text or
.sect directive). If the assembler encounters subsequent .data directives, it adds the state­
ments following these .data directives to the statements that are already in the .data section.
This creates a single .data section that can be allocated contiguously into memory.

2.2.3 Named Sections

Named sections are sections that you create. You can use them like the default .text, .data,
and .bss sections, but they are assembled separately from the default sections.

For example, repeated use of the .text directive builds up a single .text section in the object
file. When linked, this .text section is allocated into memory as a single unit. Suppose there is
a portion of executable code (perhaps an initialization routine) that you don't want allocated
with .text. If you assemble this segment of code into a named section, it will be assembled
separately from .text, and you will be able to allocate it into memory separately from .text.
Note that you can also assemble initialized data that is separate from the .data section, and
you can reserve space for un initialized variables that is separate from the .bss section.

2-7

Introduction to COFF Format MSP430 Family

Two directives let you create named sections:

The .usect directive creates sections that are used like the .bss section. These sections
reserve space in RAM for variables.

The .sect directive creates sections that can contain code or data, similar to the default
.text and .data sections. The .sect directive creates named sections with relocatable
addresses.

The syntaxes for these directives are:

symbol .usect "section name", size

.sect "section name"

The section name parameter is the name of the section. Section names are significant to 8
characters. You can create up to 32,767 separate named sections.

Each time you invoke one of these directives with a new name, you create a new named
section. Each time you invoke one of these directives with a name that was already used, the
assembler assembles code or data (or reserves space) into the section with that name. You
cannot use the same names with different directives. That is, you cannot create a section
with the .usect directive and then try to use the same section with .sect.

2.2.4 Section Program Counters

The assembler maintains a separate program counter for each section. These program
counters are known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Initially, the
assembler sets each SPC to O. As the assembler fills a section with code or data, it
increments the appropriate SPC. If you resume assembling into a section, the assembler
remembers the appropriate SPC's previous value and continues incrementing the SPC at
that point.

The assembler treats each section as if it begins at address 0; the linker relocates each
section according to its final location in the memory map.

2.2.5 An Example That Uses Sections Directives

The figure on the next page shows how you can build COFF sections incrementally, using
the sections directives to swap back and forth between the different sections. You can use
sections directives to:

Begin assembling into a section for the first time.

Continue assembling into a section that already contains code. In this case, the
assembler simply appends the new code to the code that is already in the section.

2-8

MSP430 Family Introduction to COFF Format

The spes are modified during assembly. A line in a listing file has four fields:
Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.
Field 4 contains the original source statement.

1
2
3
4 0000
5 0000

6
7
8
9

10

0002

11 0000
12
13
14
15
16 0004
17
18
19
20
21 0000
22 0000
23 0002
24 0004
25
26
27
28
29 0006
30 0006

31
32
33
34

0008

35 0000
36 0001
37
38
39
40
41 0006
42 0006
43 0008
44
45
46
47
48 0000

0011
0022

0123

5504
4304

'23fd

OOaa
OObb

4524
4407

49 0000 . 0000
0002 ' 0006

** Assemble an initialized table into .data **
**

.data
eoeff .word 011h, 022h

** Reserve space in .bss for a variable
**

.bss buffer, 10

** Still in .data
**

ptr .word 0123h

** Assemble code into the .text section
**

.text
add1 add R5,R4

elr R4
jnz addl

** Assemble more data into the .data section**
**

.data
ivals .word Oaah, Obbh

** define another section for more variables**
**

var2
inbuf

.usect "newvars",l

.usect "newvars",7

** Assembler more code into .text
**

acode
.text
mov @R5, R4
mov R4, R7

** Define a named section for into vectors
**

.sect

.word
"vectors"
addl, aeode

"--y--/ "--y--/"'-r" ''----------y----------/
Field 1 Field 2 Field 3 Field 4

Figure 2.2: Using Sections Directives

2-9

Introduction to COFF Format MSP430 Family

The listing file creates five sections:

.text contains 10 bytes of object code .

• data contains 10 bytes of object code.

vectors is a named section created with the .sect directive; it contains 4 bytes of
initialized data .

• bss reserves 10 bytes in memory.

newvars is a named section created with the .usect directive; it reserves 8 bytes in
memory.

The second column shows the object code that is assembled into these sections; the first
column shows the source statements that generated the object code.

Line Numbers
22
23
24
42
43

5
5
16
30
30

49
49

11

35
36

Object Code
5504
4304
23FD
4524
4407

0011
0022
0123
OOAA
OOBB

0000
0006

Section
.text

. data

vectors

.bss

newvars

Figure 2.3: Generated Object Code according to previous source code example

2-10

MSP430 Family Introduction to COFF Format

2.3 How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses the sections in
COFF object files as building blocks; it combines input sections (when more than one file is
being linked) to create output sections in an executable COFF output module. Second, the
linker chooses memory addresses for the output sections.

The linker provides two directives that support these functions:

The MEMORY directive allows you to define the memory map of a target system. You
can name portions of memory and specify their starting addresses and their lengths.

The SECTIONS directive tells the linker how to combine input sections and where to
place the output sections in memory.

It is not always necessary to use linker directives. If you don't use them, the linker uses the
target processor's default allocation algorithm. When you do use linker directives, you must
specify them in a linker command file.

2-11

Introduction to COFF Format

2.3.1 Default Memory Allocation

Executable
Object Module

MSP430 Family

Memory Map

Space for

Variables

(.bss)

Figure 2.4: Combining Input Sections to Form an Executable Object Module

In the figure, file1.obj and file2.obj have been assembled to be used as linker input. Each
contains the .text, .data, and .bss default sections; in addition, each contains a named
section. The executable output module shows the combined sections. The linker combines
file1.text with file2.text to form one .text section, then combines the .data sections, then the
.bss sections, and finally places the named sections at the end. The memory map shows
how the sections are put into memory.

2-12

MSP430 Family Introduction to COFF Format

2.3.2 Placing Sections in the Memory Map

The figure also illustrates the linker's default methods for combining sections. Sometimes
you may not want to use the default setup. For example, you may not want all of the .text
sections to be combined into a single .text section. Or you might want a named section
placed where the .data section would normally be allocated. Most memory maps comprise
various types of memories (RAM, ROM, EPROM, etc.) in varying amounts; you may want to
place a section in a particular type of memory.

The MEMORY directive allows you to define the memory map for your particular system.

The SECTIONS directive lets you build sections and place them into memory.

2-13

Introduction to COFF Format MSP430 Family

2.4 Relocation

The assembler treats each section as if it began at address O. All relocatable symbols
(labels) are relative to address 0 in their sections. Of course, all sections can't actually begin
at address 0 in memory, so the linker relocates sections by:

allocating sections into the memory map so that they begin at the appropriate address.

adjusting symbol values to correspond to the new section addresses.

adjusting references to relocated symbols to reflect the adjusted symbol values.

The linker uses relocation entries to adjust references to symbol values. The assembler
creates a relocation entry each time a relocatable symbol is referenced. The linker then uses
these entries to patch the references after the symbols are relocated.

1 .global x
2 0000 .text
3 0000 !40300000 br #x ;uses an external relocation
4 0004 '12BOOO08 call #y ;uses an internal relocation
5 0008 5504 y: add R5, R4 ; defines internal relocation

Figure 2.5: An Example of Code That Generates Relocation Entries

Both symbols x and yare relocatable. y is defined in the .text section of this module; x is
defined in some other module. When the code is assembled, x has a value of 0 (the
assembler assumes all undefined external symbols have values of 0), and y has a value of 8
(relative to address 0 in the .text section). The assembler generates two relocation entries,
one for x and one for y. The reference to x is an external reference (indicated by the !
character in the listing). The reference to y is to an internally defined relocatable symbol
(indicated by the' character in the listing).

After the code is linked, suppose that x is relocated to address 7100h. Suppose also that the
.text section is relocated to begin at address 7200h; Y now has a relocated value of 7208h.
The linker uses the two relocation entries to patch the two references in the object code:

40300000

12B00008

br #x becomes 40307100

call #y becomes 12B07208

Each section in a COFF object file has a table of relocation entries. The table contains one
relocation entry for each relocatable reference in the section. The linker usually removes
relocation entries after it uses them. This prevents the output file from being relocated again
(if it is rei inked or when it is loaded). A file that contains no relocation entries is an absolute
file (all its addresses are absolute addresses). If you want the linker to retain relocation
entries, invoke the linker with the -r option.

2-14

MSP430 Family Introduction to COFF Format

2.5 Runtime Relocation

It may be necessary or desirable at times to load code into one area of memory and run it in
another. For example, you may have performance-critical code in a ROM-based system.
The code must be loaded into ROM but would run much faster if it were in RAM.

The linker provides a simple way to specify this. In the SECTIONS directive, you can
optionally direct the linker to allocate a section twice: once to set its load address, and again
to set its run address.

Use the load keyword for the load address and the run keyword for the run address.

The load address determines where a loader will place the raw data for the section. Any
references to the section (such as labels in it) refer to its run address. The application must
copy the section from its load address to its run address; this does not happen automatically
just because you specify a separate run address.

If you provide only one allocation (either load or run) for a section, the section is allocated
only once and will load and run at the same address. If you provide both allocations, the
section is actually allocated as if it were two different sections of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run
address. The linker allocates uninitialized sections only once: if you specify both run and
load addresses, the linker warns you and ignores the load address.

2-15

Introduction to COFF Format MSP430 Family

2.6 Loading a Program

The linker produces executable GOFF object modules. An executable object file has the
same GOFF format as object files that are used as linker input; however, the sections in an
executable object file are combined and relocated to fit into target memory.

In order to run a program, the data in the executable object module must be transferred, or
loaded, into target system memory.

Several methods can be used for loading a program, depending on the execution
environment. Some of the more common situations are listed below.

The MSP430 development tools (In-Gircuit-Emulator and Evaluation Module) provide
GOFF object module loading capabilities.

You can use the object format converter (the rom430, which is shipped as part of the
assembly language package) to convert the executable GOFF object module into one of
several object file formats. You can then use the converted file with almost any EPROM
programmer to burn the program into an EPROM.

2-16

MSP430 Family Introduction to COFF Format

2.7 Symbols in a COFF File

A COFF file contains a symbol table that stores information about symbols in the program.
The linker uses this table when it performs relocation. Debugging tools can also use the
symbol table to provide symbolic debugging.

2.7.1 External Symbols

External symbols are symbols that are defined in one module and referenced in another
module. You can use the .def, .ref, or .global directives to identify symbols as external:

Defined (.def) Defined in the current module and used in another module

Referenced (.ref)

Global (.global)

Referenced in the current module, but defined in another module

May be either of the above

The following code segment illustrates these definitions.

x: ADD
BR
.global
.global

#56h, R4
#y
x
y

Define x
Reference y
DEF of x
REF of y

The .global definition of x says that it is an external symbol defined in this module and that
other modules can reference x. The .global definition of y says that it is an undefined symbol
that is defined in some other module.

The assembler places both x and y in the object file's symbol table. When the file is linked
with other object files, the entry for x defines unresolved references to x from other files. The
entry for y causes the linker to look through the symbol tables of other files for y's definition.

The linker must match all references with corresponding definitions. If the linker cannot find a
symbol's definition, it prints an error message about the unresolved reference. This type of
error prevents the linker from creating an executable object module.

2.7.2 The Symbol Table

The assembler always generates an entry in the symbol table when it encounters an external
symbol (both definitions and references). The assembler also creates special symbols that
point to the beginning of each section; the linker uses these symbols to relocate references
to other symbols in a section.

The assembler does not usually create symbol table entries for any other type of symbol,
because the linker does not use them. For example, labels are not included in the symbol
table unless they are declared with .global. For symbolic debugging purposes, it is
sometimes useful to have entries in the symbol table for each symbol in a program. To
accomplish this, invoke the assembler with the -s option.

2-17

Introduction to COFF Format MSP430 Family

2-18

MSP430 Family

Topics

3 Assembler Description

3.1 Assembler Development Flow

3.2 Invoking the Assembler

3.3 Naming Altemate Directories for Assembler Input
3.3.1 -i Assembler Option
3.3.2 Environment Variable (A_DIR)

3.4 Source Statement Format

3.5 Constants

3.6 Character Strings

3.7 Symbols

3.8 Expressions
3.8.1 Operators
3.8.2 Expression Overflow and Underflow
3.8.3 Well-Defined Expressions
3.8.4 Conditional Expressions
3.8.5 Relocatable Symbols and Legal Expressions

3.9 Source Listings

3.10 Cross-Reference Listings

Examples

Ex. Title

3.1 An Assembler Listing

3.2 An Assembler Cross-Reference Listing

Figures

Fig. Title

3.1 Assembler Development Flow

Tables

Table Title

3.1 Operators Used in Expressions (Precedence)

3.2 Expressions With Absolute and Relocatable Symbols

3.3 Symbol Attributes

Assembler Description

3-3

3-4

3-5

3-7
3-7
3-8

3-9

3-12

3-14

3-15

3-18
3-19
3-19
3-20
3-20
3-20

3-23

3-26

Page

3-25

3-26

Page

3-4

Page

3-19

3-21

3-26

3-1

Assembler Description MSP430 Family

3-2

MSP430 Family Assembler Description

3 Assembler Description

The assembler translates assembly language source files into machine language object files.
These files are in common object file format (COFF). Source files can contain the following
assembly language elements:

Assembler directives

Assembly language instructions

Macro directives

This two-pass assembler does the following:

Processes the source statements in a text file to produce a relocatable object file.

Produces a source listing (if requested) and provides you with control over this listing.

Allows you to segment your code into sections and maintain an SPC (section program
counter) for each section of object code.

Defines and references global symbols and appends a cross-reference listing to the
source listing (if requested).

Assembles conditional blocks.

Supports macros, allowing you to define macros inline or in a library.

3-3

Assembler Description MSP430 Family

3.1 Assembler Development Flow

The figure illustrates the assembler's role in the assembly language development flow. The
assembler accepts assembly language source files as input.

EPROM
Programmer

Absolute
Lister MSP430

Figure 3.1: Assembler Development Flow

3-4

Software Evaluation In-Circuit
Simulator Module Emulator

MSP430 Family Assembler Description

3.2 Invoking the Assembler

To invoke the assembler, enter the following:

asm430 {input file {object file {listing file { rawdata file]]]] {-options]

asm430 is the command that invokes the assembler.

input file names the assembly language source file. If you do not supply an extension, the
assembler assumes that the input file has the default extension .asm. If you do
not supply an input filename when you invoke the assembler, the assembler will
prompt you for one.

object file names the object file that the assembler creates. If you do not supply an
extension, the assembler uses .obj as a default extension. If you do not supply an
object file, the assembler creates a file that uses the input file name with the .obj
extension.

listing file names the optional listing file that the assembler can create. If you do not supply
a name for a listing file, the assembler does not create one unless you use the -I
option. In this case, the assembler uses the input filename. If you do not supply
an extension, the assembler uses . 1st as a default extension.

rawdata file names the optional ascii-format object file that the assembler can create. If you
do not supply a name for the rawdata file, the assembler does not create one
unless you use the -z option. In this case, the assembler uses the input filename.
If you do not supply an extension, the assembler uses .txt as a default extension

options identifies the assembler options that you want to use.

Options are not case-sensitive and can appear anywhere on the command line
following the command. Precede each option with a hyphen (-). You can string
the options together; for example, -Ic is equivalent to -I -c. The valid assembler
options are as follows:

-a creates an absolute listing. When you use -a, the assembler does not
produce an object file. The absolute listing option is used in conjunction
with the absolute lister.

-b suppress banner on all pages except page 1.

-c makes case insignificant. For example, the symbols ABC and abc will be
equivalent. If you do not use this option, case is significant.

-j specifies a directory where the assembler can find files named by the
.copy, .include, or .mlib directives. The format of the -i option is -ipath­
name. You can specify up to 10 directories in this manner; each path­
name must be preceded by the -i option.

-I (lowercase "L") produces a listing file.

-q (quiet) suppresses the banner and all progress information.

3-5

Assembler Description MSP430 Family

3-6

-s puts aU defined symbols in the object file's symbol table. Usually, the
assembler puts only global symbols into the symbol table. When you use
Os, symbols that are defined as labels or as assembly-time constants are
also placed in the symbol table.

-x produces a cross-reference table and appends it to the end of the listing
file. If you do not request a listing file, the assembler creates one anyway.

-z creates an objext file in ascii format containing no relocation and debug
information. The generation of the COFF object file is not affected. This
option is used in conjunction with the evaluation module.

MSP430 Family Assembler Description

3.3 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from external files.
The .copy and .include directives tell the assembler to read source statements from another
file, and the .mlib directive names a library that contains macro functions. The syntaxes for
these directives are:

.copy "filename"

.include "filename"

.mlib "filename"

The filename names a copy/include file that the assembler reads statements from or a macro
library that contains macro definitions. The filename may be a complete path name, a partial
path name, or a filename with no path information. The assembler searches for the file in:

1) The directory that contains the current source file. The current source file is the file being
assembled when the .copy, .include, or .mlib directive is encountered.

2) Any directories named with the -i assembler option.

3) Any directories set with the environment variable A_DIR.

You can augment the assembler's directory search algorithm by using the -i assembler
option or the A_DIR environment variable.

3.3.1 -i Assembler Option

The -i assembler option names an altemate directory that contains copy/include files or
macro libraries. The format of the -i option is as follows:

asm430 -ipathname source filename

You can use up to 10 -i options per invocation; each -i option names one pathname. In
assembly source, you can use the .copy, .include, or .mlib directive without specifying any
path information. If the assembler doesn't find the file in the directory that contains the
current source file, it searches the paths provided by the -i options.

For example, assume that a file called source.asm is in the current directory; source.asm
contains the following directive statement:

.copy "copy.asrn"

3-7

Assembler Description MSP430 Family

Path name for copy. asm Invocation Command
DOS c: \430\files\copy. asm asm430 -ic:\430\files source.asm

The assembler first searches for copy.asm in the current directory because source.asm is in
the current directory. Then, the assembler searches in the directory named with the -i option.

3.3.2 Environment Variable (A_DIR)

An environment variable is a system symbol that you define and assign a string to. The
assembler uses the environment variable A_DIR to name alternate directories that contain
copy/include files or macro libraries. The command for assigning the environment variable is
as follows:

DOS set A_DIR = pathname;another pathname ...

The pathnames are directories that contain copy/include files or macro libraries. You can
separate the pathnames with a semicolon or with blanks. In assembly source, you can use
the .copy, .include, or .mlib directive without specifying any path information. If the assembler
doesn't find the file in the directory that contains the current source file or in directories
named by -i, it searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy "copyl.asm"

.copy "copy2.asm"

Path name Invocation Command
DOS c:\430\files\copyl.asm set A_DIR=c:\dsys; c:\exec\source

c:\dsys\copy2.asm asm430 -ic:\430\files source.asm

The assembler first searches for copy1.asm and copy2.asm in the current directory because
source.asm is in the current directory. Then the assembler searches in the directory named
with the -i option and finds copy1.asm. Finally, the assembler searches the directory named
with A_DIR and finds copy2.asm.

Note that the environment variable remains set until you reboot the system or reset the
variable by entering one of these commands:

DOS set

3-8

MSP430 Family Assembler Description

3.4 Source Statement Format

MSP430 assembly language source programs consist of source statements that can contain
assembler directives, assembly language instructions, macro directives, and comments.
Source statement lines can be as long as the source file format allows, but the assembler
reads up to 200 characters per line. If a statement contains more than 200 characters, the
assembler truncates the line and issues a warning.

The next several lines show examples of source statements:

sym . equ ; Symbol sym = 2
Begin: ADD #sym+5,Rll; Add (sym+5) to contents of Rll

.word 016h ; Initialize a word with 016h

A source statement can contain four ordered fields. The general syntax for source
statements is as follows:

{label] [:] mnemonic {operand list] {;comment]

Follow these guidelines:

All statements must begin with a label, a blank, an asterisk, or a semicolon.

Labels are optional; if used, they must begin in column 1.

One or more blanks must separate each field. Note that tab characters are equivalent to
blanks.

Comments are optional. Comments that begin in column 1 can begin with an asterisk or
a semicolon (* or ;), but comments that begin in any other column must begin with a
semicolon.

Label Field

Labels are optional for all assembly language instructions and for most (but not all)
assembler directives. When used, a label must begin in column 1 of a source statement. A
label can contain up to 32 alphanumeric characters (A-Z, a-z, 0-9, _, and $). Labels are
case-sensitive, and the first character cannot be a number. A label can be followed by a
colon (:); the colon is not treated as part of the label name. If you don't use a label, the first
character position must contain a blank, a semicolon, or an asterisk.

When you use a label, its value is the current value of the section program counter (the label
points to the statement it's associated with). If, for example, you use the .word directive to
initialize several words, a label would point to the first word. In the following example, the
label Start has the value 40h.

9
10

003F
0040
0041
0043

OOOA
0003
0007

* Assume some other code was assembled
Start: .word OAh,3,7

3-9

Assembler Description MSP430 Family

A label on a line by itself is a valid statement. It assigns the current value of the section
program counter to the label; this is equivalent to the following directive statement:

label .equ $; $ provides the current value of the SPC

When a label appears on a line by itself, it points to the instruction on the next line (the SPC
is not incremented):

3
4

0050
0050 0003

Here:
.word

Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in column 1, or it
would be interpreted as a label. The mnemonic field can contain one of the following
opcodes:

Machine-instruction mnemonic (such as ADC, MOV, POP)

Assembler directive (such as .data, .Iist, .equ)

Macro directive (such as .macro, .var, .mexit)

A macro call

Operand Field

The operand field is a list of operands that follow the mnemonic field. An operand can be a
constant, a symbol, or a combination of constants and symbols in an expression. You must
separate operands with commas.

Operand Prefixes for Instructions

The assembler allows you to specify that a constant, symbol, or expression should be
used as an address, an immediate value, or an indirect value. The following rules apply
to the operands of instructions.

3-10

No prefix - the operand is an address or a register. If you do not use a prefix with
an operand, the assembler treats an operand representing a constant value as an
absolute address. When the operand is a label, the assembler generates a symbolic
address. A register name specifies the contents of the named register. This are
examples of instructions that use operands without prefixes:

Label: ADD OFFFEh,R5
ADD Label,R5

i add contents of absolute address to register
; add contents of symbolic address to register

& prefix - the operand is an absolute address. If you use the & sign as a prefix,
the assembler treats the operand as an absolute address, similar to using no prefix.
The operand has to specify a constant value:

MOV &200h,R5
MOV 200h,R5

Both instructions generate the same object code, moving the contents of absolute
address 200h to register R5.

MSP430 Family Assembler Description

prefix - the operand is an immediate value. If you use the # sign as a prefix, the
assembler treats the operand as an immediate value. This is true even when the
operand is an address; the assembler treats the address as a value instead of using
the contents of the address. This is an example of an instruction that uses an
operand with the # prefix:

Label: ADD #123,R5

The operand #123 is an immediate value. The assembler adds 123 (decimal) to the
contents of register RS.

@ prefix - the operand is an indirect address. If you use the @ sign as a prefix,
the assembler treats the operand as an indirect address; that is, it uses the contents
of the operand as an address. This is an example of an instruction that uses an
operand with the @ prefix:

Label: MOV @R4,R4

The operand @R4 specifies an indirect address. The assembler goes to the address
specified by the contents of register R4 and then moves the contents of that location
to register R4.

Immediate Addressing for Directives

The immediate addressing mode is used mostly with instructions; in some cases, it can
also be used with the operands of directives.

Usually, it is not necessary to use the immediate addressing mode for directives.
Compare the following statements:

ADD #10, R4

.byte 10

In the first statement, the immediate addressing mode is necessary to tell the assembler
to add the value 10 to register R4. In the second statement, however, immediate
addressing is not used; the assembler expects the operand to be a value and initializes a
byte with the value 10.

Comment Field ---------------------------­

A comment can begin in any column and extends to the end of the source line. A comment
can contain any ASCII character, including blanks. Comments are printed in the assembly
source listing, but they do not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column 1, it can start
with a semicolon (;) or an asterisk (*). Comments that begin anywhere else on the line
must begin with a semicolon. The asterisk identifies a comment only if it appears in column
1.

3-11

Assembler Description

3.5 Constants

The assembler supports six types of constants;

Binary integer constants
Octal integer constants
Decimal integer constants
Hexadecimal integer constants
Character constants

• Assembly-time constants

MSP430 Family

The assembler maintains each constant internally as a 32-bit quantity. Note that constants
are not sign extended. For example, the constant OFFH is equal to OOFF (base 16) or 255
(base 10); it does not equal -1.

Binary Integers-------------------------­

A binary integer constant is a string of up to 16 binary digits (Os and 1 s) followed by the suffix
B (or b). If fewer than 16 digits are specified, the assembler right-justifies the value and
zero-fills the unspecified bits. These are examples of valid binary constants;

OOOOOOOOBConstant equal to 010 or 016

0100000b Constant equal to 3210 or 2016

01 b Constant equal to 110 or 116

11111 OOOBConstant equal to 24810 or OF816

Octal Integers

An octal integer constant is a string of up to 6 octal digits (0 through 7) followed by the suffix
Q (or q). These are examples of valid octal constants;

100 Constant equal to 810 or 816

1000000 Constant equal to 32,76810 or 800016

2260 Constant equal to 15010 or 9616

Decimal Integers -------------------------­

A decimal integer constant is a string of decimal digits, ranging from? -32,768 to 65,535.
These are examples of valid decimal constants;

1000 Constant equal to 100010 or 3E816

-32768

25

3-12

Constant equal to -32,76810 or 800016

Constant equal to 2510 or 1916

MSP430 Family Assembler Description

Hexadecimal Integers -------------------------­

A hexadecimal integer constant is a string of up to 4 hexadecimal digits followed by the suffix
H (or h). Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. A
hexadecimal constant must begin with a decimal value (0-9). If fewer than 4 hexadecimal
digits are specified, the assembler right-justifies the bits. These are examples of valid
hexadecimal constants:

78h

OFh

37ACh

Constant equal to 12010 or 007816

Constant equal to 1510 or 000F16

Constant equal to 14,25210 or 37AC16

Character Constants

A character constant is a single character enclosed in single quotes. The characters are
represented intemally as 8-bit ASCII characters. Two consecutive single quotes are required
to represent each single quote that is part of a character constant. A character constant
consisting only of two single quotes is valid and is assigned the value O. These are examples
of valid character constants:

'a' Defines the character constant a and is represented internally as 6116

'C' Defines the character constant C and is represented internally as 4316

Defines the character constant "" and is represented internally as 2716

Defines a null character and is represented internally as 0016

Note the difference between character constants and character strings. A character constant
represents a single integer value; a string is a list of characters.

Assembly-Time Constants -----------------------­

If you use the .equ directive to assign a value to a symbol, the symbol becomes a constant.
In order to use this constant in expressions, the value that is assigned to it must be absolute.
For example:

sym . equ
MOV #sym,R10

You can also use the .equ directive to assign symbolic constants for register names. In this
case, the symbol becomes a synonym for the register:

sym .equ R14
MOV #lO,sym

3-13

Assembler Description MSP430 Family

3.6 Character Strings

A character string is a string of characters enclosed in double quotes. Double quotes that are
part of character strings are represented by two consecutive double quotes. The maximum
length of a string varies and is defined for each directive that requires a character string.
Characters are represented internally as B-bit ASCII characters. Appendix lists valid
characters.

These are examples of valid character strings:

"sample program" defines a 14-character string, sample program

defines an 8-character string, PLAN "C"

Character strings are used for the following:

Filenames, as in .copy "filename"

Section names, as in .sect "section name"

Data initialization directives, as in .byte "charstring"

Operand of .string or .byte directive

3-14

MSP430 Family Assembler Description

3.7 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol name is a string
of up to 32 alphanumeric characters (A-Z, a-z, 0-9, $, _and?). The first character in a symbol
cannot be a number; symbols cannot contain embedded blanks. The symbols you define are
case sensitive; for example, the assembler recognizes ABC, Abc, and abc as three unique
symbols. You can override case sensitivity with the -c assembler option. This type of symbol
is valid only during the assembly in which it is defined, unless you use the .global directive to
declare it as an external symbol.

Labels

Symbols that are used as labels become symbolic addresses that are associated with
locations in the program. A label used locally within a file must be unique. Mnemonic op­
codes and assembler directive names (without the _'.' prefix) are valid label names.

Labels can also be used as the operand of a .global, .ref, .def, or .bss directive; for example:

.global labell

labe12 nop
mov labell, R4
br labe12

Local Labels---­

Local labels are a special type of label whose scope and effect are only temporary. A local
label has the form $n, where n is a decimal digit in the range 0-9. For example, $4 and $1
ar2 valid local labels.

Normal labels must be unique (thay Cdn be declared only once), and they can be used as
constants in the operand field. L0c: labels, however, can be undefined and defined again. If
a local label is used as an operand, it can be used only as an operand for a 1 a-bit jump
instruction.

A local label can be undefined, or reset, in one of four ways:

By the .newblock directive

By changing sections (using a .sect, .text, or .data directive)

By entering an include file (specified by the .include or .copy directive)

By leaving an Include file (specified by the .include or .copy directive)

3-15

Assembler Description

This is an example of code that declares and uses a local label legally:

Labell:

$1

$1

mov R12,R13
jnz $1
mov #-1, R13
cmp R13 ,R4
.newblock; Undefine $1 so it can be used again
jne $1
inc R13
add R13 ,R14

The following code uses a local label illegally:

Labell:

$1

$1

mov R12, R13
jnz $1
mov #-1, R13
cmp R3, R4
jne $1
inc R13
add R13,R14 ; WRONG - $1 is multiply defined

MSP430 Family

Local labels are especially useful in macros. If a macro contains a normal label and is called
more than once, the assembler issues a multiple-definition error. However, if you use a
local label within a macro and then use .newblock within the macro, the local label is used
and reset each time the macro is expanded.

Up to ten local labels can be in effect at one time. After you undefine a local label, you can
define it and use it again. Local labels do not appear in the object code symbol table.

Constants--­

Symbols can be set to constant values. By using constants, you can equate meaningful
names with constant values. The .equ, .set, and .structl.tag/.endstruct directives enable you
to set constants to symbolic names. Symbolic constants cannot be redefined. The following
example shows how these directives can be used:

K .set 1024
maxbuf .set 2*K

item

array

.struct

.byte value

.byte delta

.endstruct

.tag

.bss

MOV

item
array, i_len*K

array.delta,R4

constant definitions

item structure definition
constant offsets value 0
constant offsets delta = 1

array declaration

; array+l

The assembler also has several predefined symbolic constants; these are discussed in the
next subsection.

3-16

MSP430 Family Assembler Description

Symbolic Constants

The assembler has several predefined symbols, including the following:

$, the dollar sign character, represents the current value of the section program counter
(SPC).

Register symbols, which are of the form Rn or rn , where n is an expression that
evaluates in the range 0-15. (If the number is greater than 15, the symbol is not
considered a register symboL) The number may be decimal. Note that PC, SP and SR
are valid register symbols; they represent registers with special functions (RO - R3).

Substitutions Symbols

Symbols can be assigned a string value (variable). This enables you to alias character
strings by equating them to symbolic names. Symbols that represent character strings are
called substitution symbols. When the assembler encounters a substitution symbol, its string
value is substituted for the symbol name. Unlike symbolic constants, substitution symbols
can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:

. asg "R13" , SPl

. asg "+ II I pI s

.asg "-5", minS

ADD # minS,SPl

When you are using macros, substitution symbols are important because macro parameters
are actually substitutions symbols that are assigned a macro argument. The following code
shows how substitution symbols are used in macros:

add2 .macro src,dest add2 macro definition

mov src,R4
mov R4,RS
mov dest,R4
add RS,R4
mov R4,dest

.endm

*add2 invocation
add2 10cl, 10c2

3-17

Assembler Description MSP430 Family

3.8 Expressions

An expression is a constant, a symbol, or a series of constants and symbols separated by
arithmetic operators. The range of valid expression values is -32,768 to 65,535. These are
the three main factors that influence the order of expression evaluation:

Parentheses Expressions that are enclosed in parentheses are always
evaluated first.

8/(4/2) = 4, but 8/412 = 1

Note that you cannot substitute braces ({ }) or brackets ([1)
for parentheses.

Precedence groups Operators, listed in the next table, are divided into nine
precedence groups. When the order of expression evaluation is
not determined by parentheses, the highest precedence
operation is evaluated first.

8 + 4/2 = 10 (412 is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not determine
the order of expression evaluation, the expressions are
evaluated from left to right. Note that the highest precedence
group is evaluated from right to left.

8/4*2 = 4, but 8/(4*2) = 1

3-18

MSP430 Family Assembler Description

3.8.1 Operators

Group Operator Description

1 + Unary plus
- Unary minus

- 1 s complement
! Logical NOT

2 * Multiplication
/ Division

% Modulo

3 + Addition
- Subtraction

4 « Shift left
» Shift right

5 < Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

6 = (==) Equal to

!= «» Not equal to

7 & Bitwise AND

8 A Bitwise XOR

9 I Bitwise OR

Notes: 1) Operators in parentheses () indicate an alternate form.
2) Group 1 operators are evaluated right to left. All other operators

are evaluated left to right.

Table 3.1: Operators Used in Expressions (Precedence)

3.8.2 Expression Overflow and Underflow

The assembler checks for overflow and underflow conditions when arithmetic operations are
performed at assembly time. The assembler issues a Value Truncated warning whenever an
overflow or underflow occurs. The assembler does not check for overflow or underflow in
multiplication.

3-19

Assembler Description MSP430 Family

3.B.3 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands. Well-defined
expressions contain only symbols or assembly-time constants that are defined before they
are encountered in the expression. The evaluation of a well-defined expression must be
absolute.

This is an example of a well-defined expression:

lOOOh+X

where X was previously defined as an absolute symbol.

3.B.4 Conditional Expressions

The assembler supports relational operators that can be used in any expression; they are
especially useful for conditional assembly. Relational operators include the following:

= Equal to -- Equal to
!= Not equal to <> Not Equal to
< Less than <= Less than or equal to
> Greater than >= Greater than or equal to

Conditional expressions evaluate to 1 if true and 0 if false, and may be used only on
operands of equivalent types, e.g., absolute value compared to absolute value, but not
absolute value compared to relocatable value.

3.B.S Relocatable Symbols and Legal Expressions

The following table summarizes valid operations on absolute, relocatable, and external
symbols. An expression cannot multiply or divide by a relocatable or external symbol. An
expression cannot contain unresolved symbols that are relocatable with respect to different
sections.

Symbols that have been defined as global with the .global directive can also be used in
expressions; in the table, these symbols are referred to as external.

3-20

MSP430 Family Assembler Description

If A is ... If B is ... A+Bis ... A- B is ...

absolute absolute absolute absolute

absolute relocatable relocatable illegal

absolute external external illegal

relocatable absolute relocatable relocatable

relocatable relocatable illegal absolute *

relocatable external illegal illegal

external absolute external external

external relocatable illegal illegal

external external illegal illegal

* A and B must be in the same section; otherwise, this is illegal.

Table 3.2: Expressions With Absolute and Relocatable Symbols

Here are some examples of expressions that use relocatable and absolute symbols. These
examples use four symbols that are defined in the same section:

intern_l:
LAB1:
intern_2:

.global extern_l

.word 'D'

.equ 2

Example 1:

;Defined in an external module
;Relocatable, defined in current module
;LABl = 2
;Relocatable, defined in current module

The first statement in this example puts the value 51 into register R4. The second
statement puts the value 27 into register R4.

MOV #(LABl + (4+3) * 7), R4 R4 51
MOV #(LAB1+4+3*7),R4 R427

Example 2

All legal expressions can be reduced to one of two forms:

relocatable symbol ± absolute symbol

or

absolute value

Unary operators can be applied only to absolute values; they cannot be applied to
relocatable symbols. Expressions that cannot be reduced to contain only one relocatable
symbol are illegal. The first statement in the following example is legal; the others are
illegal.

MOV extern_l - 10, R4
MOV 10-extern_l, R4
MOV - (intern_I), R4
MOV extern_l/IO, R4
MOV intern_l + extern_l,R4

Legal
Can't negate relocatable symbol
Can't negate relocatable symbol
I is not an additive operator
Multiple relocatables

3-21

Assembler Description MSP430 Family

Example 3

The first statement below is legal; although intern_1 and intern_2 are relocatable, their
difference is absolute because they're in the same section. Subtracting one relocatable
symbol from another reduces the expression to re/ocatable symbol + absolute value. The
second statement is illegal because the sum of two relocatable symbols is not an
absolute value.

Mav
Mav

Example 4

intern_l - intern_2 + extern_l, R4
intern_l + intern_2 + extern_l, R4

(legal)
(illegal)

An external symbol's placement in an expression is important to expression evaluation.
Although the statement below is similar to the first statement in the previous example, it
is illegal. This is because of left-to-right operator precedence; the assembler attempts to
add intern_1 to extern_1.

Mav intern_l + extern_l - intern_2, R4 ; (illegal)

3-22

MSP430 Family Assembler Description

3.9 Source Listings

A source listing shows source statements and the object code they produce. To obtain a
listing file, invoke the assembler with the -I (lowercase "L") option.

At the top of each source listing page are two banner lines, a blank line, and a title line. Any
title supplied by a .title directive is printed on this line; a page number is printed to the right of
the title. If you don't use the .title directive, the title area is left blank. The assembler inserts a
blank line below the title line.

Each line in the source file may produce a I!ne in the listing file that shows a source
statement number, an SPC value, the object code assembled, and the source statement. A
source statement may produce more than one byte of object code and may be listed on
more than one line. If so, each additional line is listed immediately following the source
statement line.

Field 1

Field 2

Field 3

Source Statement Number
Line Number
The source statement number is a decimal number. The assembler numbers
source lines as it encounters them in the source file; some statements
increment the line counter but are not listed. (For example, .title statements and
statements following a .nolist are not listed.) The difference between two
consecutive source line numbers indicates the number of statements in the
source file that are not listed.

Include File Letter
The assembler may precede a line with a letter; the letter indicates that the line
is assembled from an include file.

Nesting Level Number
The assembler may precede a line with a number; the number indicates the
nesting level of macro expansions and loop blocks.

Section Program Counter
This field contains the section program counter (SPC) value (hexadecimal). All
sections (.text, .data, .bss, and named sections) maintain separate SPCs. Some
directives do not affect the SPC; they leave this field blank.

Object Code
This field contains the hexadecimal representation of the object code. All
machine instructions and directives use this field to list object code. This field
also contains two columns immediately preceding the object code, which
indicate additional information about the line of object code.
The first column either will be blank or will contain an asterisk (*). The asterisk
indicates that the object code is not a direct mapping from the assembly
source.

3-23

Assembler Description MSP430 Family

Field 4

3-24

The second column indicates a relocation type that is associated with one of
the operands for this line of source code. If more than one operand is
relocatable, this column indicates the relocation type for the first one. The
characters that may appear in this column and their associated relocation types
are illustrated in the following table:

external reference (global)

, text relocatable

+ .sect relocatable

Source Statement Field

" .data relocatable

.bss, .usect relocatable

This field contains the characters of the source statement as they were scanned
by the assembler. The assembler accepts a maximum line length of 200
characters. Spacing in this field is determined by the spacing in the source
statement.

MSP430 Family Assembler Description

Example of an assembler listing with each of the four fields identified:

1 .global func3
2 0000 .bss data1,1
3 0001 .bss ddta2,1
~

'> . copy "macl.inc"
1 add~ .macro sre , dest.
2 mov sre , R4
3 mov R4, R5
4 rnov dest, R4

add R5,R4
mov R4, dest

7 .endm
8
9 ;********************************

10 . * * interrupt vectors
11 ;********************************
12 0000 .sect .oint _vecs"
13 0000 '0000 .word funel
14 0002 +0000 .word fune2
15 0004 !OOOO .word fune3
16
17 ;********************************
18 . * * .text section
19 ;********************************
20 0000 .text
21 0000 funel:
22 0000 add2 datal, data2

1 0000 -40140000 mov datal, R4
1 0004 4405 mov R4, R5
1 0006 -4014fff9 mov data2, R4
1 OOOa 5504 add R5,R4
1 OOOe -4480fff3 mov R4, data2

33 0020 -40140000 mov datal, R4
34 0024 940a emp R4,R10
35 0026 '3401 jge lab
36 0028 4304 elr R4
37 002a 1300 lab: reti
38
39 0000 .sect "other_code II
40 0000 9405 func2 emp R4,R5
41 0002 1300 reti

'-----y--/ '-----y--/ '-----y--/ " • /

Field 1 Field 2 Field 3 Field 4

Example 3.1: An Assembler Listing

3-25

Assembler Description MSP430 Family

3.10 Cross-Reference Listi ngs

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference
listing, invoke the assembler with the -x option or use the .option directive. The assembler
will append the cross-reference to the end of the source listing.

LABEL VALUE DEFN REF

datal 0000 27 28
data2 0001 27 27*
func1 0000 26 18
func2 0000 40 19
func3 REF 1 20
lab 002a 37 35

Example 3.2: An Assembler Cross-Reference Listing

LABEL column contains each symbol that was defined or referenced during the
assembly.

VALUE column contains a 4-digit hexadecimal number, which is the value
assigned to the symbol or a name that describes the symbol's attributes. A
value may also be preceded by a character that describes the symbol's
attributes. The next table lists these characters and names.

DEFINITION (DEFN) column contains the statement number that defines the symbol.
This column is blank for undefined symbols.

REFERENCE (REF) column lists the line numbers of statements that reference the
symbol. If the line number is followed by an asterisk (*), that reference may
modify the contents of the object. A blank in this column indicates that the
symbol was never used.

Character or Name

REF
UNDF

+

Table 3_3: Symbol Attributes

3-26

Meanin

External reference (global symbol)

Undefined

Symbol defined in a .text section

SYrTlbol defined in a .data section

Symbol defined in a .sect section

Symbol defined in a .bss or .usect section .

MSP430 Family Assembler Description

3-27

MSP430 Family

Topics

4 Assembler Directives

4.1 Directives Summary

4.2 Directives That Define Sections

4.3 Directives That Initialize Memory

4.4 Directives That Align the Section Program Counter

4.5 Directives That Format the Output Listing

4.6 Directives That Reference Other Files

4.7 Conditional Assembly Directives

4.8 Assembly-Time Symbol Directives

4.9 Miscellaneous Directives

4.10 Directives Reference

Examples

Ex. Title

4.1 Sections Directives

4.2 Initialization Directives

4.3 The .field Directive

4.4 The .space Directive

4.5 The .align Directive

4.6 The .align Directive

4.7 The .field Directive

4.8 The .usect Directive

List of Tables

Table Title

4.1 Assembler Directives Summary

Assembler Directives

4-3

4-4

4-8

4-10

4-13

4-14

4-15

4-16

4-17

4-18

4-19

Page

4-9

4-10

4-11

4-12

4-13

4-20

4-35

4-66

Page
4-4

4-1

Assembler Directives

Notes

Title

How the .byte, .word, .string, .float, and .field Directives Function in a
.structi.endstruct Sequence

Use .endm to End a Macro

Automatic Alignment on Word Boundary

Creating a Listing File (-I option)

MSP430 Family

Page

The Types of Directives That Can Appear in a .structi.endstruct Sequence

4-10

4-30

4-31

4-44

4-61

4-2

MSP430 Family Assembler Directives

4 Assembler Directives

Assembler directives supply program data and control the assembly process. Assembler
directives enable you to do the following:

Assemble code and data into specified sections

Reserve space in memory for uninitialized variables

Control the appearance of listings

Initialize memory

Assemble conditional blocks

Define global variables

Specify libraries that the assembler can obtain macros from

Generate symbolic debugging information

4-3

Assembler Directives MSP430 Family

4.1 Directives Summary

The table summarizes the assembler directives. Note that al/ source statements that contain
a directive may have a label and a comment. To improve readability, they are not shown as
part of the directive syntax.

Directives That Define Sections

Mnemonic and Syntax

.bss symbol [, size in bytes, address]

.data [address]

.sect "section name" [, address]

.text [address]

symbol.usect "section name", size in bytes

[, address]

Description

Reserve size bytes in the .bss
(uninitialized data) section

Assemble into the .data (initialized data)
section

Assemble into a named (initialized) section

Assemble into the .text (executable code)
section

Reserve size bytes in a named
(un initialized) section

Directives That Initialize Constants (Data and Memory)
Mnemonic and Syntax

.byte value1 [, ... , valuen]

.double floating point value

.field value [. size in bits]

.float floating point value

.space size in bytes

.string "stringt"!. ... , "stringn ']

.word value1 [, ... , valuen]

Table 4.1: Assembler Directives Summary

4-4

Description

Initialize one or more successive bytes in
the current section

Initialize a 48-bit MSP430 floating-point
constant

Initialize a variable-length field

Initialize a 32-bit, MSP430 floating-point
constant

Reserve size bytes in the current section;
note that a label points to the beginning of
the reserved space

Initialize one or more text strings

Initialize one or more 16-bit integers

MSP430 Family Assembler Directives

Directives That Align the Section Counter (SPC)

.ali n

.even

Directives That Format the Output Listing

M dS D nemomcan ;yntax escnptlon

.fclist Allow false conditional code block listing (default)

.fcnolist Inhibit false conditional code block listing

.length page length Set the_page length of the source listinj!

.list Restart the source IistinQ

.mlist Allow macro listinQs and loop blocks (default)

.mnolist Inhibit macro listings and loop blocks

.nolist Stop the source listing

.option {AIBIFIMITIWIXj Select output listing options

.page Eject a page in the source listing

.sslist Allow expanded substitution symbol listing

.ssnolist Inhibit expanded substitution symbol listing
(default)

.title "string" Print a title in the listing page heading

.width page width Set the page width of the source listing

Table 4.1: Assembler Directives Summary (Continued)

4-5

Assembler Directives MSP430 Family

Directives That Reference Other Files

Mnemonic and. Syntax

.copy [Ulfilename['1

.def symbol1 [, ... , symbolnl

.global symbol1 L ... , symbolnl

.include [Ulfilename[']

.mlib [Ulfilename(']

.ref symbol1 [, ... , symboln]

Description

Include source statements from another file

Identify one or more symbols that are defined in
the current module and used in other modules

Identify one or more global (external) symbols

Include source statements from another file

Define macro library

Identify one or more symbols that are used in
the current module but defined in another
module

Conditional Assembly Directives

Mnemonic and Syntax Description

.break [well-defined expressionl Optional repeatable block assembly

.if well-defined expression Begin conditional assembly

.else Optional conditional assembly

.elseif well-defined expression Optional conditional assembly

.endif End conditional assembly

.endloo,,- End repeatable block assembly_

.Ioop [well-defined expression] Begin repeatable block assembly

Table 4.1: Assembler Directives Summary (Continued)

4-6

MSP430 Family Assembler Directives

Assembly-Time Symbols

M nemomcan dS ;yntax Description

.asg ["] character string ['], substitution Assign a character string to a substitution
symbol

.endstruct End structure definition

.equ Equate a value with a symbol

.eval weI/-defined expression, sub- Perform arithmetic on numeric substitution
stitution symbol symbols

.newblock Undefine local labels

.set Equate a value with a symbol

.struct Begin structure definition

.tag Assign structure attributes to a label

Miscellaneous Directives

Mnemonic and Syntax

.emsg string

.end

.label "symbol"

.mmsg string

.setsect ''section name",addr

symbol .setsym addr

.wmsg string

Description

Send user-defined error messages to the output
device

Program end

Define a load address label

Send user-defined messages to the output
device

Produced by absolute lister, See Chapter 9

Produced by absolute lister, See Chapter 9

Send user-defined warning messages to the
output device

Table 4.1: Assembler Directives Summary (Concluded)

4-7

Assembler Directives MSP430 Family

4.2 Directives That Define Sections

Five directives associate the various portions of an assembly language program with the
appropriate sections:

.bss reserves space in the .bss section for uninitialized variables .

• data identifies portions of code in the .data section. The .data section usually contains
initialized data .

• sect defines initialized named sections and associates subsequent code or data with
that section. A section defined with .sect can contain code or data .

• text identifies portions of code in the .text section. The .text section usually contains
executable code .

• usect reserves space in an uninitialized named section. The .usect directive is similar to
the .bss directive, but it allows you to reserve space separately from the .bss section.

The output listing on the next page shows how you can use sections directives to associate
code and data with the proper sections. Column 1 shows line numbers, and column 2 shows
the SPC values. (Each section has its own program counter, or SPC.) When code is first
placed in a section, its SPC equals O. When you resume assembling into a section, its SPC
resumes counting as if there had been no intervening code.

After the code in is assembled, the sections contain:

.text Initializes bytes with the values 1, 2, 3, 4, 5, 6, 7, and 8

.data

var_defs

.bss

xy

Initializes bytes with the values 9, 10, 11, 12, 13, 14, 15, and 16

Initializes bytes with the values 17 and 18

Reserves 19 bytes

Reserves 20 bytes

Note that the .bss and .usect directives do not end the current section or begin new sections;
they reserve the specified amount of space, and then the assembler resumes assembling
code or data into the current section.

4-8

MSP430 Family

1
2
3
4 0000
~ 0000 01

0001 02
6 0002 03

0003 04
7
8
9

10
11 0000
12 0000 09

0001 Oa
13 0002 Ob

0003 Oc
14
15
16
17
18
19 0000
20 0000 11

0001 12
21
22
23
24
25 0004
26 0004 ad

0005 Oe
27 0000
28 0006 Of

0007 10
29
30
31
32
33 0004
34 0004 as

0005 06
35 0000
36 0006 07

0007 08

Example 4.1: Sections Directives

Assembler Directives

i**********************************
;* Start assembling into .text
;**********************************

.text

.byte 1,2

.byte 3,4

i**********************************
;* Start assembling into .data
;**********************************

.data

.byte 9,10

.byte 11,12

i**********************************
i* Start assembling into named
i* section, var_defs
i**********************************

.sect "var_defsn

.byte 17,18

;**********************************
;* Resume assembling into .data
;**********************************

.data

.byte 13,14

.bss sym,19

.byte 15,16
reserve space in .bss
still in . data

;*********************************
;* Resume assembling into .text
i*********************************

.text

.byte 5,6

usym . usect I1xy", 20
.byte 7,8

reserve space in xy
still in . text

4-9

Assembler Directives

4.3 Directives That Initialize Memory

Several directives initialize memory:

MSP430 Family

• .byte places one or more 8-bit values into consecutive bytes of the current section .

. word places one or more 16-bit values into consecutive bytes in the current section .

. string places 8-bit characters from one or more character strings into the current
section. This directive is identical to .byte .

. float calculates a (32-bit) MSP430 floating-point representation of a single precision
floating-point value and stores it in four consecutive bytes in the current section .

. double calculates a (48 bit) MSP430 floating-point representation of a double precision
floating-point value and stores it in six consecutive bytes in the current section.

The following code has been assembled for the example, that compares the .byte, .float,
.word, and .string directives:

1 0000 aa .byte OAAh, OBBh
0001 bb

2 0002 1234 .word 01234h
3 0004 68 . string "help"

0005 65
0006 6c
0007 70

4 0008 81490fdb .float 3.141592654
5 oooe 81490fdaa292 .double 3.141592654

Note: How the .byte, .word, .string, .float, .double and .field Directives
Function in a .structl.endstruct Sequence

The .byte, .word, .string, .float, .double and .field directives do not initalize memory when
they are part of a .structl.endstruct sequence; rather, they define a member's size.

4-10

MSP430 Family Assembler Directives

BYTE CODE

0,1 Dtd .byte OAAh, OBBh

2,3 ~O .word 01234h
7 o 7 0

4,5 EE11tt33 .string "help"
6,7 6 C 7 0 tE1j 7 0 8,9 81 H .float 3.141592654
10,11 o F D B

12,13 ~~ .double 3.141592654
14,15
16,17

Example 4.2: Initialization Directives

• The .field directive places a single value into a specified number of bits in the current
byte. With a field, you can pack multiple fields into a single byte; the assembler does not
increment the SPC until a byte is filled.

The next example shows how fields are packed into a byte. For this example, assume
the following code has been assembled; note that the SPC doesn't change. (The fields
are packed into the same byte.)

1
2
3

0000 03
0000 23
0000 63

7

I
7

I
7

10 1

.field 3,3

.field 4,3

.field 1,2

0

o 1 1 I
0

1 0 0 0 1 1 I
0

10001 1 I
Example 4.3: The .field Directive

.field 3,3

.field 4,3

.field 1,2

• The .space directive reserves a specified number of bytes in the current section. The
assembler fills these reserved bytes with Os.

When you use a label with .space, it points to the first byte of the reserved block.

4-11

Assembler Directives MSP430 Family

The following code has been assembled for the example of the .space directive:

45 0000 0100 .word 100h,200h
0002 0200

46 0004 Res_l: .space 17
47 0016 OOOf .word 15

Res_1 points to the first byte in the space reserved by .space.

4-12

MSP430 Family Assembler Directives

17 bytes {
reserved

"-___ -.,."..,.~---- Res_1 = 04h

F-'---';'~""';';"'""'""'--"'"I

Example 4.4: The .space Directive

4-13

Assembler Directives MSP430 Family

4.4 Directives That Align the Section Program Counter

The .align directive aligns the SPC at the next byte boundary. This directive is useful
with the .field directive when you do not wish to pack two adjacent fields in the same
byte. The following code has been assembled for the example:

1 0000 03
2
3 0001 07
4

Byte

(a) 0

(b) 0

(c) 0

Example 4.5: The .align Directive

.field

. align

. field

7 0
1 o 1 1 1
1 1

1000000111

1

10 00000 J 11
o 1 1 1 1

3,3

7,4

Code

.field 3,3

.align

.field 7,4

The .even directive aligns the SPC at the next word boundary. It can be used to align
bytes or strings on word boundaries:

1 0000 41 .string "ABC"

0001 42

0002 43

2 . even
3 0004 58 .string "XYZ"

0005 59
0006 5a

4

4-14

MSP430 Family Assembler Directives

4.5 Directives That Format the Output Listing

The following directives format the listing file:

The source code contains a listing of false conditional blocks that do not generate code.
The .telist and .tenolist directives turn this listing on and off. You can use the .fclist
directive to list false conditional blocks exactly as they appear in the source code. You
can use the .fcnolist directive to list only the conditional blocks that are actually
assembled.

The .length directive controls the page length of the listing file. You can use this directive
to adjust listings for various output devices.

The .width directive controls the page width of the listing file. You can use this directive
to adjust listings for various output devices.

The .list and .nolist directives turn the output listing on and off. You can use the .nolist
directive to prevent the assembler from printing selected source statements in the listing
file. Use the .list directive to turn the listing back on.

The .mlist and .mnolist directives allow and inhibit macro expansion and loop block
listings. You can use the .mlist directive to print all macro expansions and loop blocks to
the listing.

The .option directive controls several features in the listing file. This directive has several
operands:

A Turns on all listing (overrides all other directives and options).

B Limits the listing of .byte directives to one line.

F Resets the B. W. M. and T directives.

M Turns off macro expansions in the listing.

T Limits the listing of .string directives to one line.

W Limits the listing of .word directives to one line.

X Produces a cross-reference listing of symbols. (You can also obtain a cross-
reference listing by invoking the assembler with the -x option.)

The .page directive causes a page eject in the output listing.

The .sslist and .ssnolist directives allow and inhibit substitution symbol expansion
listing. These directives are useful for debugging substitution symbols outside of macros.

The .title directive supplies a title that the assembler prints at the top of each page.

4-15

Assembler Directives MSP430 Family

4.6 Directives That Reference Other Files

These directives supply information for or about other files:

The .copy and .include directives teli the assembler to begin reading source statements
from another file. When the assembler finishes reading the source statements in the
copy/include file, it resumes reading source statements from the current file. The
statements read from a copied file are printed in the listing file; the statements read from
an included file are not printed in the listing file.

The .global directive declares a symbol to be external so that it is available to other
modules at link time. This directive does double duty, acting as a .def for defined symbols
and as a .ref for undefined symbols. Note that the linker will resolve an undefined global
symbol only if it is used in the program. The .global directive declares a symbol as 16
bits.

The .def directive identifies a symbol that is defined in the current module and can be
used by other modules. The assembler puts the symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but defined in
another module. The assembler marks the symbol as an undefined external symbol and
puts it in the object symbol table so that the linker can resolve its definition.

The .mlib directive supplies the assembler with the name of an archive library that
contains macro definitions. When the assembler encounters a macro that is not defined
in the current module, it searches for it in the macro library specified with .mlib.

4-16

MSP430 Family Assembler Directives

4.7 Conditional Assembly Directives

Conditional assembly directives enable you to instruct the assembler to assemble certain
sections of code according to a true or false evaluation of an expression. Two sets of
directives allow you to assemble conditional blocks of code:

The .if/.elseif/.else/.endif directives tell the assembler to conditionally assemble a block
of code according to the evaluation of an expression .

.if expression Marks the beginning of a conditional block and assembles code if
the .if condition is true .

. elseif expression

. else

.endif

Marks a block of code to be assembled if .if is false and .elseif is
true.

Marks a block of code to be assembled if .if is false .

Marks the end of a conditional block and terminates the block.

The .Ioop/.breakl.endloop directives tell the assembler to repeatedly assemble a block
of code according to the evaluation of an expression .

.loop expression Marks the beginning a repeatable block of code.

.break expression

. endloop

Continue to repeatedly assemble when the .break expression is
false. Go to code immediately aiter .endloop if expression is true.

Marks the end of a repeatable block .

The assembler supports several relational operators that are especially useful for conditional
expressions.

4-17

Assembler Directives MSP430 Family

4.8 Assembly-Time Symbol Directives

These directives equate meaningful symbol names to constant values or strings.

The .set and .equ directives set a constant value to a symbol. The symbol is stored in the
symbol table and cannot be redefined; for example:

bval .set OlOOh
.word bval, bval*2, bval+12
br bval

Note that the .set and .equ directives produce no object code.

The .structl.endstruct directives set up C-like structure definitions, and the .tag
directive assigns the C-like structure characteristics to a label.

The .struct.lendstruct directives enable you to set up a C-like structure definition so that
similar elements can be grouped together. Element offset calculation is then left up to the
assembler. The .struct/.endstruct directives do not allocate memory. They simply create a
symbolic template that can be used repeatedly.

The .tag directive assigns structure characteristics to a label. This simplifies the symbolic
representation and also provides the ability to define structures that contain other
structures.The .tag directive does not allocate memory, and the structure tag (stag) must
be defined before it is used.

type .struct
x .byte
y .byte
t_len .endstruct

coord .tag type
.usect coord,t_len
add coord.y,R4

; structure tag definition

; declare coord (coordinate)
iactual?memory?allocation

The .asg directive assigns a character string to a substitution symbol. The value is stored
in the substitution symbol table. When the assembler encounters a substitution symbol, it
replaces the symbol with its character string value. Substitution symbols can be
redefined .

. asg "10, 20, 30, 40", coefficients

.byte coefficients

The .eval directive evaluates an expression, translates the results into a character string.
and assigns the character string to a substitution symbol. This directive is most useful for
manipulating counters; for example:

4-18

.asg 1, x

.loop

.byte x*lOh

.break x = 4

.eval x+l, x

.endloop

MSP430 Family Assembler Directives

4.9 Miscellaneous Directives

This section discusses miscellaneous directives.

The .setsect directive is generated by the absolute lister. It specifies an absolute starting
address for a section name so that the assembler can generate an absolute listing.

The .setsym directive is generated by the absolute lister. It specifies an absolute address
for a global symbol. This allows the assembler to generate an absolute listing.

The .end directive terminates assembly. It should be the last source statement of a
program. This directive has the same effect as an end-of-file.

The .label directive defines a special symbol that refers to the loadtime address rather
than the runtime address within the current section.

These three directives enable you to define your own error and waming messages:

The .emsg directive sends error messages to the standard output device. The .emsg
directive generates errors in the way the assembler does, incrementing the error count
and preventing the assembler from producing an object file.

The .wmsg directive sends warning messages to the standard output device. The .wmsg
directive functions in the same way the .emsg directive does, but increments the warning
count and does not prevent the assembler from producing an object file.

The .mmsg directive sends assembly-time messages to the standard output device. The
.mmsg directive functions in the same way the .emsg and .wmsg directives do, but does
not set the error count or the warning count and does not prevent the assembler from
producing an object file.

4-19

Assembler Directives MSP430 Family

4.10 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized
alphabetically, one directive per page; related directives (such as .if/.else/.endif), however,
are presented together on one page. Here's an alphabetical table of contents for the
directives reference:

Directive Page Directive Page

.align4-20

.asg .. .4-21 .newblock ... 4-51

.break4-46 .nolist .. 4-44

.bss4-23 .option ... 4-52

.byte4-24 .page .. 4-54

.copy4-25 .ref .. 4-37

.data4-27

.double4-28 .sect .. 4-55

.def4-37 .se1... ... 4-56
.space ... 4-58

.elseif .. .4-40 .sslist .. 4-59

.else .. .4-40 .ssnolist .. 4-59

.emsg4-29 .string .. 4-24

.end .. .4-30 .struct... ... 4-61

.endif .. .4-40

.endloop4-46 .tag ... 4-61

.endstruct4-61 .text ... 4-63

.equ .. .4-56 . title ... 4-64

.eval .. .4-21 . usect .. 4-65

.even .. .4-31 .width .. 4-43
.wmsg ... 4-29

.fclist4-32 .word ... 4-67

.fcnolist4-32

.field .. .4-33

. float4-36

.global4-37

.if .. .4-40

.include4-25

.Iabel .. 4-42

.Iength .. .4-43

.list .. .4-44

.Ioop4-46

.mlib .. .4-48

.mlist4-50

.mmsg .. .4-29

.mnolist4-50

4-20

MSP430 Family Assembler Directives

Syntax .align

Description The .align directive aligns the section program counter (SPC) on the
next byte boundary. This directive is useful with the .field directive
when you do not wish to pack two adjacent fields in the same byte.

Example This example shows the creation of two fields that would normally be
packed within the same byte. The .align directive forces these fields
into separate bytes.

1 0000 03
2
3 0001 07
4

Byte

(a) 0
1

o 1

I
(b) 0 10000001

(c) 0 10000001

011

Example 4.6: The .align Directive

1 1

1

1 I
1

1 I
1 1

.field 3,3

. align

.field 7,4

Code

.field 3,3

.align

.field 7,4

4-21

Assembler Directives MSP430 Family

Syntax

Description

4-22

.asg ["] character string["], substitution symbol

.eval well-defined expression, substitution symbol

The .asg directive assigns character strings to substitution symbols;
substitution symbols are stored in the substitution symbol table.

The .asg directive can be used in many of the same ways as the .set
directive, but while .set assigns a constant value (cannot be redefined)
to a symbol, .asg assigns a character string (can be redefined) to a
substitution symbol.

The assembler assigns the character string to the substitution
symbol. The quotation marks are optional. If there are no quotation
marks, the assembler reads characters up to the first comma and
removes leading and trailing blanks. In either case, a character
string is read and assigned to the sUbstitution symbol.

The substitution symbol is a required parameter that must be a
valid symbol name. The substitution symbol may be 32 characters
long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, under­
scores, and dollar signs.

The .eval directive performs arithmetic operations on substitution
symbols. This directive evaluates the expression and assigns the
string value of the result to the substitution symbol. The .eval directive
is especially useful as a counter in .Ioop/.endloop blocks.

MSP430 Family Assembler Directives

Example This example shows how .asg and .eval can be used.

1 .sslist; show expanded sub.syms
2 ; *
3 ; * .asg/.eval example
4 . *
5 .asg &, AND
6 .asg Rll, FP
7
8 0000 503bOOOc add #32 AND 44, FP

add #32 & 44, Rll
9

10 .asg 0, x
11 .loop 5
12 .eval x+1, x
13 .word x
14 .endloop

1 .eval x+l, x
.eval 0+1, x
1 0004 0001 .word x
.word 1
1 .eval x+1, x
.eval 1+1, x
1 0006 0002 .word x
.word 2
1 .eval x+l, x
.eval 2+1, x
1 0008 0003 .word x
.word
1 .eval x+1, x
.eval 3+1. x
1 OOOa 0004 .word x
.word 4
1 .eval x+l, x
.eval 4+1, x
1 OOOe 0005 .word x
.word 5

4-23

Assembler Directives MSP430 Family

Syntax

Description

Example

4-24

.bss name [, size in bytes, address]

The .bss directive reserves space in the .bss section for variables. Use
this directive to allocate space into RAM.

The name is a required parameter. It defines a symbol that points
to the first location reserved by the directive.

The size is an optional parameter. It is a well-defined, absolute
expression that specifies the number of bytes that are allocated.
The default size for this directive is 1 byte.

The address is an optional parameter that specifies a 16-bit
address. It can be used only the first time a .bss directive is
specified. Normally, the SPC is set to 0 the first time a named
section is assembled; you can use the address parameter to
assign an initial value to the SPC. This parameter has no effect on
the final address of the section.

Section directives for initialized sections (.text, .data, and .sect) end
the current section and begin assembling into another section. Section
directives for uninitialized sections (.bss, .reg, .regpair, and .usect),
however, do not affect the current section. The assembler assembles
the .bss, .reg, .regpair, or .usect directive and then resumes
assembling code into the same section.

This example shows the .bss directive used to allocate space for two
variables, array and dflag. The symbol array points to 100 bytes of
uninitialized space (at .bss-SPC = 0). The symbol dflag points to 1
byte of uninitialized space (at .bss-SPC = 100). Note that symbols
declared with the .bss directive can be referenced in the same manner
as other symbols and can also be declared global.

1
2
3
4 0000
5 0000
6
7
8
9

10
11
12
13
14
15

0000
0002

0064

4aOb

4bOc

;***************************************
;* Begin assembling into .text
;***************************************

.text
mov R10, R11

;***************************************
;* Allocate 100 bytes in .bss
;***************************************

.bss
mov

array, 100
R11, R12 ; assembled into .text

;***************************************
;* Allocate 1 byte in .bss
;***************************************

dflag 16
17
18

0004 -4014005e
.bss
mov dflag,R4 ;assembled into .text

19
20
21

* Declare external .bss symbol

MSP430 Family Assembler Directives

22 ,global array still in ,text

4-25

Assembler Directives MSP430 Family

Syntax

Description

Example

4-26

.byte value1 [, ... , valuen]

.string value1 [, ... , valuen]

The .byte and .string directives place one or more 8-bit values into
consecutive bytes of the current section. A value can be either:

An expression that the assembler evaluates and treats as an 8-bit
Signed number, or

A character string enclosed in double quotes. Each character in a
string represents a separate value.

The assembler truncates values that are greater than 8 bits. You can
use up to 100 value parameters, but the total line length cannot
exceed 200 characters.

If you use a label, it points to the location at which the assembler
places the first byte.

Note that when you use .byte or .string in a .structl.endstruct
sequence, .byte or .string defines a member's size; it does not initialize
memory.

This example shows several 8-bit values placed into consecutive
bytes in memory. The label strx has the value Oh, which is the location
of the first initialized byte. The label stry has the value 6h, which is the
first byte initialized by the .string directive.

1 0000 Oa strx . byte 10,-1,"abc",'a'
0001 ff
0002 61
0003 62
0004 63
0005 61

2 0006 Oa stry .string 10,-1,"abc",'a'
0007 ff
0008 61
0009 62
OOOa 63
OOOb 61

MSP430 Family Assembler Directives

Syntax .copy [")filename[")
.include [")filename[")

Description

(The quote marks surrounding the filename are optional.)

The .copy and .include directives tell the assembler to read source
statements from a different file. The assembler:

1) Stops assembling statements in the current source file.

2) Assembles the statements in the copied/included file.

3) Resumes assembling statements in the main source file, starting
with the statement that follows the .copy or .include directive.

The filename is a required parameter that names a source file; the
filename may be enclosed in double quotes. The filename must follow
operating system conventions. You can specify a full path name (for
example, c:\430\file1.asm). If you do not specify a full pathname, the
assembler searches for the file in:

1) The directory that contains the current source file.

2) Any directories named with the -i assembler option.

3) Any directories specified by the environment variable A_DIR.

The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included
file are not printed in the assembly listing, regardless of the number of
.listl.nolist directives that are assembled.

The .copy and .include directives can be nested within a file being
copied or included. The assembler limits this type of nesting to eight
levels; the host operating system may set additional restrictions. The
assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B
indicates a second copied file, etc.

4-27

Assembler Directives MSP430 Family

Example 1 This example shows how the .copy directive is used to tell the
assembler to read and assemble source statements from other files,
then to resume assembling into the current file.

copy.asm
(source file)

. space 29

.copy "byte.asm"

byte.asm
(first copy file)

**In byte.asm

word.asm
(second copy file)

In word.asm
.word OABCDh, 56q

**Back in original file
.string "done"

.byte 32,1+'A'

.copy I'word.aam"
** Back in byte.asm

.byte 67h+3q

Listing file:
1 0000 .space 29
2 . copy "byte.asm"

A 1 ;** In byte.asm
A 2 OOld 20 .byte 32,1+'A'

001e 42
A 3 . copy "word.asm"
B 1 i** In word.asm
B 2 0020 abcd .word OABCDh, 56q

0022 002e
A 4 ;** Back in byte.asm
A 5 0024 6a .byte 67h+3q

3
4 ;** Back in original file
5
6 0025 64 .string "done"

0026 6f
0027 6e
0028 65

Example 2 This example shows how the .include directive is used to tell the
assembler to read and assemble source statements from other files,
then to resume assembling into the current file.

include.asm
(source file)

.space 29

. include "byte2.asm ll

byte2.asm
(first include file)

In byte2.asm

word2.asm
(second include file)

In word2.asm
.word OABCDh, 56q

**Back in original file
.string "done!!

.byte 32,1+ 'A'

.include "word2.asm"
** Back in byte.asm

.byte 67h+3q

4-28

Listing file:
1 0000
2
3
4
5 0025 64

0026 6f
0027 6e
0028 65

.space 29

.include "byte2.asm"

;**Back in original file
.string "done l1

MSP430 Family Assembler Directives

Syntax .data [address]

Description The .data directive tells the assembler to begin assembling source

Example

code into the .data section; .data becomes the current section. The
.data section is normally used to contain tables of data or preinitialized
variables.

The address is an optional parameter that specifies a 16-bit address.
It can be used only the first time a .data directive is specified.
Normally, the section program counter is set to 0 the first time the .data
section is assembled; you can use this parameter to assign an initial
value to the .data section program counter. This parameter has no
effect on the final address of the section; it simply makes the listing
easier to read.

Note that the assembler assumes that .text is the default section.
Therefore, at the beginning of an assembly, the assembler assembles
code into the .text section unless you specify an explicit section control
directive.

This example shows the assembly of code into the .data and .text
sections.

1
2
3
4 0000
5 0000
6
7
8
9

10 0000
11
12 0000
13
14
15
16
17 OOcc
18 OOcc
19 OOce
20
21
22
23
24 0002
25 0002
26
27
28
29
30 OOcf

00
4304

ffff
ff

"901400c8

;************************************
;** Reserve space in .data
:************************************

.data

.space Occh

:************************************
;** Assemble into .text
;************************************

Index
.text
.equ a
mov #Index, R4

;************************************
;** Assemble into .data
;************************************
Table: .data

.word -1

.byte Offh

;************************************
;** Assemble into .text
;************************************

.text
cmp Table, R4

;************************************
;** Resume Assembling into .data **
;************************************

.data

4-29

Assembler Directives MSP430 Family

Syntax

Description

Examples

4-30

.double value

The .double directive places the floating-point representation of a
double floating-point constant into six bytes in the current section. The
value must be a floating-point constant. Each constant is converted to
a floating-point value in the MSP430 (48-bit) format.

The 48·bit value consists of three fields:

An 8-bit biased exponent (e)
A 1-bit sign field (s)
A 39-bit fraction (f)

The value is stored exponent byte first, most significant byte of fraction
second, and least significant byte of fraction sixth in the following
format:

47 403938 o
I e Is I

Note that when you use .double in a .structi.endstruct sequence,
.double defines a member's size; it does not initialize memory. For
more information about MSP430 floating·point format, refer to
Appendix G.

Here are some examples of the .double directive .

1 0000
2 0006
3 OOOe

d38459516140
814000000000
8d40e4000000

. double -1.0e25

. double 3

. double 12345

MSP430 Family Assembler Directives

Syntax .emsg string

.mmsg string

.wmsg string

Description

Example

Use these directives to define your own error and warning messages.
Note that the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.

The .emsg directive sends error messages to the standard output
device. The .emsg directive generates errors in the same way the
assembler does, incrementing the error count and preventing the
assembler from producing an object file.

The .wmsg directive sends warning messages to the standard
output device. The .wmsg directive functions in the same way the
.emsg directive does, but increments the warning count. The
assembler is not prevented from producing an object file.

The .mmsg directive sends assembly-time messages to the
standard output device. The .mmsg directive functions in the same
way the .emsg and .wmsg directives do, but does not set the error
count or the warning count. The assembler is not prevented from
producing an object file.

In this example, the message "ERROR -- MISSING PARAMETER" is
sent to the standard output device.

I MSG_EX .macro parmI
2 .if $symlen(parml) = a
3 .emsg "ERROR -- MISSING PARAMETER"
4 .else
5 MOV parmI, A
6 .endif
7 .endm
8
9 0000 MSG_EX

I .if $symlen(parml) = a
I .emsg "ERROR MISSING PARAMETER"
I .else
I MOV parmI, A
I .endif

These messages will show in the readout like any other error
message:

********* USER ERROR - ERROR -- MISSING PARAMETER
********* USER WARNING -
********* USER MESSAGE -

4-31

Assembler Directives MSP430 Family

Syntax

Description

.end

The .end directive is an optional directive that terminates assembly. It
should be the last source statement of a program. The assembler
ignores any source statements that follow an .end directive.

This directive has the same effect as an end-of-file. You can also use
.end when you're debugging code and you'd like to stop assembling at
a specific point in your code.

Note: Use .endm to End a Macro
Do not use the .end directive to terminate a macro; use the endm
macro directive instead.

Example

4-32

This example shows how the .end directive terminates assembly. If
any source statements follow the .end directive, the assembler ignores
them.

1 0000 Text start: .text -
2 0000 Oa .byte Oah
3 0002 aaaa .word Oaaaah
4 0004 61 .string "aaa"

0005 61
0006 61

5 .end

MSP430 Family Assembler Directives

Syntax .even

Description The .even directive aligns the section program counter (SPC) on the
next word boundary. This directive can be used to force the start of the
next initialized data on an even address.

Example This example shows the initialization of two strings, each aligned on a
word boundary. Without the .even directive the second string would
start immediately after the first one (on an odd address).

1 0000 41 .string "ABC"

0001 42
0002 43

2 . even
3 0004 58 .string "XYZ"

0005 59
0006 5a

4

Note: Automatic Alignment on Word Boundary

Instructions itself and data created by .word, .float and .double directives will be aligned on
a word boundary automatically.

4-33

Assembler Directives MSP430 Family

Syntax

Description

Example

4-34

.felist

.fenolist

Two directives enable you to control the listing of false conditional
blocks.

The .felist directive allows the listing of conditional blocks that do
not produce code (false blocks). By default, the assembler
behaves as if you had used .fclist.

The .tenolist directive inhibits the listing of false conditional blocks
that do not produce code. Only code in the conditional block that
actually assembles appears in the listing. The .if, .elseif, .else, and
.endif directives do not appear.

This example shows the assembly language file and the listing file for
code with and without the conditional blocks listed. This is the un­
assembled file:

x .set 1
y .set 0

.fclist

.if x
MOV #5, R4
.else

MOV #9, R4
.endif

.fcnolist

.if x
MOV #5, R4
.else
MOV #9, R4
. end if

This is the listing file:

1 01
2 00
3
4
5
6
7 0000 40340005
8
9

10
11
12
13
15 0004 40340005

; True
;False

x
y

.set 1 iTrue

.set 0 ;False

. fclist

.if x
MOV #5, R4
.else
MOV #9, R4
.endif

.fcnolist

MOV #5, R4

MSP430 Family Assembler Directives

Syntax .field value [, size in bits]

Description The .field directive initializes multiple-bit fields within a single word of
memory. This directive has two operands:

The value is a required parameter; it is an expression that is
evaluated and placed in the field. The value must be absolute.

The size is an optional parameter; it specifies a number from 1 to
16, which is the number of bits the field consists of. If you do not
specify a size, the assembler assumes that the size is 16 bits. If
you specify a value that cannot fit in size bits, the assembler
truncates the value and issues a warning message. For example,
.field 3,1 causes the assembler to truncate the value 3 to 1; the
assembler also prints the message:

***warning - value truncated.

Successive .field directives pack values into the specified number of
bits in the current word. Fields are packed starting at the least
significant part of the word, moving toward the most significant part as
more fields are added. If the assembler encounters a field size that
does not fit into the current word, it writes out the word, increments the
SPC, and begins packing fields into the next word.

You can use the .align directive to force the next .field directive to
begin packing into a new byte.

If you use a label, it points to the word that contains the field.

Note also that when you use .field in a .structl.endstruct sequence,
.field defines a member's size; it does not initialize memory.

4-35

Assembler Directives MSP430 Family

Example

4-36

This example shows how fields are packed into a word. Note that the
SPC does not change until a word is filled and the next word is begun.

1 ********************************
2 Initialize a 11-bit field
3 ********************************
4 0000 04de .field 4deh,11
5
6 ********************************
7 Initialize a 12-bit field
8 in a new word
9 ********************************

10 0000 Ob27 .field Ob27h,12
11
12 ********************************
13 Initialize a 3-bit field
14 in the same byte
15 ********************************
16 0000 5b27 .field 5,3
17
18 ********************************
19 Initialize a 5-bit field
20 in the next byte
21 ********************************
22 0000 la .field lah,5

MSP430 Family Assembler Directives

The example shows how the directives affect memory.

Word Code
7 0

(a) 0 1 o 011 1 0 1 1 1 01 .field 4deh,11 ,
• /

11-bit field

(b) 0 1000001 o 0 11 101 1 1 1 01 .field Ob27h,12

1 0 1 11001001 1 I ,
• /

12-bit field

(c) 0 1000001 001 1 10 1<1 1 01 .field 5,3

1 0 1: 1 o 1 1 10 01 00 1 11

'--.,-/
3-bit field

(d) 0 10000010011 10 111 01 .field 1ah,5

10 1 01 1 0 1 11 001 001 11 I
2 1 1 1 0 1 01 ,

• /

5-bit field

Example 4.7: The .field Directive

4-37

Assembler Directives MSP430 Family

Syntax

Description

Example

4-38

.float value

The .float directive places the floating-point representation of a single
floating-point constant into four bytes in the current section. The value
must be a floating-point constant. Each constant is converted to a
floating-point value in MSP430 (32-bit) format.

The 32-bit value consists of three fields:

An 8-bit biased exponent (e)

A 1-bit sign field (5)

A 23-bit fraction (I)

The value is stored exponent byte first, most significant byte of fraction
second, and least significant byte of fraction fourth in the following
format:

31 242322 o
e Is I

Note that when you use .float in a .struct/.endstruct sequence, .float
defines a member's size; it does not initialize memory. For more
information about MSP430 floating-point format, refer to Appendix G.

Here are some examples of the .float directive.

1 0000 d3845951
2 0004 81400000
3 0008 8d40e400

. float -1.0e25

. float 3

. float 12345

MSP430 Family Assembler Directives

Syntax .global symbol1 [, ... , symbolnl

Description

Example

.def symbol1 [, ... , symbolnl

.ref symbol1 [, ... , symbolnl

The .global, .def, and .ref directives identify global symbols, which are
defined externally or can be referenced externally.

The .def directive identifies a symbol that is defined in the current
module and can be accessed by other files. The assembler places
this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current
module but defined in another module. The linker resolves this
symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol;
that is, it appears as a label or is defined by the .set, .equ, .bss or
.usect directive. As with all symbols, if a global symbol is defined more
than once, the linker issues a multiple-definition error. Note that .ref
always creates an entry for a symbol, whether the module uses the
symbol or not; .global, however, create a symbol table entry only if the
module actually uses the symbol.

A symbol may be declared global for two reasons:

1) If the symbol is not defined in the current module (including macro,
copy, and include files), the .global or . ref directive tells the
assembler that the symbol is defined in an external module. This
prevents the assembler from issuing an unresolved reference
error. At link time, the linker looks for the symbol's definition in
other modules.

2) If the symbol is defined in the current module, the .global, .globreg,
or .def directive declares that the symbol and its definition can be
used externally by other modules. These types of references are
resolved at link time.

This example shows four files:

file1.lst and file3.lst are equivalent. Both files define the symbol Init
and make it available to other modules; both files use the external
symbols x, y, and z. file1.lst uses the .global directive to identify the
global symbols; file3.lst uses .ref and .def to identify the symbols.

file2.lst and file4.lst are equivalent. Both files define the symbols x,
y, and z and make them available to other modules; both files use
the external symbol Init. file2.lst uses the .global directive to

4-39

Assembler Directives MSP430 Family

4-40

identify the nonregister global symbols; file4.1st uses .ref and .def to
identify the nonregister symbols.

MSP430 Family

file1.lst

1
2
3
4
5
6
7 0000
8 0004
9

10
11
12

file2.1st

1
2
3
4
5
6
7
8
9

10 0000
11
12
13
14

Assembler Directives

Global symbol defined in this file
.global init

Global symbols defined in file2.lst
.global x, y, z

5034002c init:
!OOOO

add #44, R4
.word x

01 x
02 y
03 z

!OOOO

.end

Global symbol defined in this file
.global x, y, z

Global symbols defined in file1.lst
.global init

.equ 1

.equ 2

.equ 3
.word init

.end

4-41

Assembler Directives

4-42

file3.lst
1
2
3
4
5
6
7 0000
8 0004
9

10
11
12

file4.lst

1
2
3
4
5
6

5034002c
!OOOO

7 01
8 02
9 03

10 0000 ! 0000
11
12
13
14

MSP430 Family

Global symbol defined in this file
.def init

Global symbols defined in file4.lst
.ref x, y, z

init: add #44, R4

x
y
z

.word x

.end

Global symbol defined in this file
.def x, y, z

Global symbols defined in file3.lst
.ref init

.equ 1

.equ 2

.equ 3
. word init

. end

MSP430 Family Assembler Directives

Syntax .if well-defined expression

Description

code to assemble when the expression is true

.elseif well-defined expression
code block to execute when the expression is true

.else
code to assemble when the expression is false

.endif
terminate condition block

Four directives provide conditional assembly:

The .if directive marks the beginning of a conditional block. The
expression is a required parameter.

If the expression evaluates to true (nonzero), the assembler
assembles the code that follows it (up to an .elseif, an .else, or
an .endif).

If the expression evaluates to false (0), the assembler
assembles code that follows an .elseif (if present), an else (if
present), or an .endif (if no .elseif or .else is present).

The .elseif directive identifies a block of code to be assembled
when the .if expression is false (0) and the .elseif expression is true
(nonzero). When the .elseif expression is false, the assembler
continues to the next .elseif (if present), .else (if present), or an
.endif. The .elseif directive is optional in the conditional block, and
more than one .elseif can be used. If an expression is false and
there is no .elseif statement, the assembler continues with the code
that follows an .else (if present) or an .endif.

The .else directive identifies a block of code that the assembler
assembles when the .if expression is false (0). This directive is
optional in the conditional block; if an expression is false and there
is no .else statement, the assembler continues with the code that
follows the .endif.

The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional
assembly block, and the .elseif directive can be used more than once
within a conditional assembly block.

4-43

Assembler Directives MSP430 Family

Example Here are some examples of conditional assembly:

1 01 sym1 .set 1
2 02 sym2 .set 2
3 03 sym3 .set 3
4 04 sym4 .set 4
5 If_4: .if sym4=sym2*sym2
6 0000 04 .byte sym4 Equal values
7 .else
8 .byte sym2 * sym2 Unequal values
9 .endif

10 If_5: .if syml<=lO
11 0001 OA .byte 10 Less than/equal
12 .else
13 .byte sym1 Greater than
14 .endif
15 If_6: .if sym3*sym2!=sym4+sym2
16 .byte sym3*sym2 ; Unequal values
17 .else
18 0002 06 .byte sym4+sym2 ;Equal values
19 .endif
20 If_7 .if syml=2
21 .byte sym1
22 .elseif sym2+sym3=5
23 0003 05 .byte sym2+sym3
24 .endif

4-44

MSP430 Family Assembler Directives

Syntax .label symbol

Description The .Iabel directive defines a special symbol that refers to the loadtime
address rather than the runtime address within the current section.
Most sections created by the assembler have relocatable addresses.
The assembler assembles each section as if it started at zero, and the
linker relocates it to the address at which it loaded and ran.

For some applications, it is desirable to have a section load at one
address and run at a different address. For example, you may wish to
load a block of performance-critical code into slower off-chip memory
to save space, and then move the code to high-speed on-chip
memory to run it.

Such a section is assigned two addresses at link time: a load address
and a separate run address. All labels defined in the section are
relocated to refer to the runtime address so that references to the
section (such as branches) are correct when the code runs.

The .Iabel directive creates a special "label" that refers to the loadtime
address. This is useful primarily so that the code that relocates the
section knows where the section was loaded. For example:

; .label Example

start:

.sect ".examp"

.label examp_load

<code>
finish:

. label examp_end

load address of section
run address of section

run address of section end
load address of section end

4-45

Assembler Directives MSP430 Family

Syntax

Description

Example

4-46

.length page length

.width page width

The .length directive sets the page length of the output listing file. It
affects the current page and following pages; you can reset the page
length with another .Iength directive.

Default length: 60 lines
Minimum length: 1 line
Maximum length: 32,767 lines

The .width directive sets the page width of the output listing file. It
affects the next line assembled and following lines; you can reset the
page width with another .width directive.

Default width: 132 characters
Minimum width: 80 characters
Maximum width: 200 characters

Note that the width refers to a full line in a listing file; the line counter
value, SPC value, and object code are counted as part of the width of
a line. Comments and other portions of a source statement that extend
beyond the page width are truncated in the listing.

The assembler does not list the .width and .Iength directives.

The following example shows how to change the page length and
width.

Page length = 65 lines
Page width = 85 characters

. length 65
.width 85

Page length = 55 lines
Page width = 100 characters

. length 55

.width 100

MSP430 Family Assembler Directives

Syntax .Iist

Description

.nolist

The .nolist directive suppresses the source listing output until a .list
directive is encountered. The .Iist directive tells the assembler to
resume printing the source listing after it has been stopped by a .nolist
directive. By default, the assembler acts as if a .list directive had been
specified. The .nolist directive can be used to reduce assembly time
and the size of the source listing; it can be used in macro definitions to
inhibit the listing of the macro expansion.

The assembler does not print the .Iist or .nolist directives or the source
statements that appear after a .nolist directive; however, it continues to
increment the line counter. You can nest the .Iistl.nolist directives;
each .nolist needs a matching .list to restore the listing. At the
beginning of an assembly, the assembler acts as if it has assembled a
.Iist directive.

Note: Creating a Listing File (-I option)

If you don't request a listing file when you invoke the assembler, the assembler ignores the
.Iist directive.

Example This example shows how to use the .copy directive to insert source
statements from another file. The first time this directive is
encountered, the assembler lists the copied source lines in the listing
file. The second time this directive is encountered, the assembler does
not list the copied source lines, because a .nolist directive was
assembled. Note that the .nolist, the second .copy, and .Iist directives
do not appear in the listing file; note also that the line counter is
incremented even when source statements are not listed.

Source file:

.copy "copy2.asm ll

* Back in original file
.nolist
. copy "copy2.asm"
.list

* Back in original file
.string "Done tl

4-47

Assembler Directives

Listing file:

A 1
A 2

2
6

4-48

0000 0020
0002 0042

0008 44
0009 6f
OOOa 6e
OOOb 65

MSP430 Family

.copy "copy2.asm"
* In copy2.asm (copy file)

.word 32, l+'A'

* Back in original file
* Back in original file

.string "Done"

MSP430 Family Assembler Directives

Syntax .Ioop [well-defined expression]
code block to repeatedly assemble

Description

.break [well--defined expression]
continue to assemble repeatedly when the .break expression is false
(zero); go to code immediately following .endloop if expression is true
(nonzero)

.endloop
code block to execute when the .break directive is true (nonzero) or
when the .break expression is omitted and the loop count equals the
expression

Three directives enable you to repeatedly assemble a block of code:

The .Ioop directive begins a repeatable block of code. The optional
expression evaluates to the loop count. If there is no expression,
the loop count defaults to 1024, unless the assembler encounters a
.break directive.

The .break directive is optional, along with its expression. When
the expression is false (0), the loop continues. When the expres­
sion is true (nonzero) or omitted, the assembler breaks the loop
and assembles the code after the .endloop directive.

The .endloop directive terminates a repeatable block of code.

4-49

Assembler Directives MSP430 Family

Example This example illustrates how these directives can be used with the
.eval directive.

1 .eval 0, x
2 coef .loop
3 .word x*100
4 .eval x+l,x
5 .break x = 7
6 .endloop

1 0000 0000 .word 0*100
1 .eval O+l,x
1 .break 1 = 7
1 0002 0064 .word 1*100
1 .eval l+l,x
1 .break 2 = 7
1 0004 ODeS .word 2*100
1 .eval 2+1,x
1 . break 3 = 7
1 0006 012c .word 3*100
1 .eval 3+1,x
1 .break 4 = 7
1 0008 0190 .word 4*100
1 .eval 4+1,x
1 .break 5 = 7
1 OOOa Olf4 .word 5*100
1 .eval 5+1,x
1 . break 6 = 7
1 OOOe 0258 .word 6*100
1 .eval 6+1,x
1 .break 7 = 7

4-50

MSP430 Family Assembler Directives

Syntax .mlib [']fiIename[']

Description

Example

(The quote marks surrounding the filename are optional.)

The .mlib directive provides the assembler with the name of a macro
library. A macro library is a collection of files that contain macro
definitions. These files are bound into a single file (called a library or
archive) by the archiver. Each member of a macro library may contain
one macro definition that corresponds to the name of the file. Note
that:

Macro library members must be source files (not object files).

The filename of a macro library member must be the same as the
macro name, and its extension must be .asm.

The filename must follow host operating system conventions; it may be
enclosed in double quotes. You can specify a full path name (for
example, c:\430\macs.lib). If you do not specify a full pathname, the
assembler searches for the file in:

1) The directory that contains the current source file.

2) Any directories named with the -i assembler option.

3) Any directories specified by the environment variable A_DIR .

When the assembler encounters an .mlib directive, it opens the library
and creates a table of the library's contents. The assembler enters the
names of the individual library members into the opcode table as
library entries; this redefines any existing opcodes or macros that have
the same name. If one of these macros is called, the assembler
extracts the entry from the library and loads it into the macro table. The
assembler expands the library entry in the same manner as other
macros, but it does not place the source code into the listing. Only
macros that are actually called from the library are extracted, and they
are extracted only once.

This example shows how to create a macro library that defines two
macros, inc1 and dec1. The file inc1.asm contains the definition of
inc1, and dec1.asm contains the definition of dec1.

inc1.asm

* Macro for incrementing
incl .MACRO nam

mov nam, R4
inc R4
mav R4, nam
.ENDM

dec1.asm

* Macro for decrementing
decl .MACRO nam

mav narn, R4
dec R4
mav R4, nam
.ENDM

4-51

Assembler Directives MSP430 Family

4-52

ar430 -a mac inc1.asm dec1.asm

Now you can use the .mlib directive to reference the macro library and
define the inc1 and dec1 macros:

1 0000 .bss var1,1
2 0001 .bss var2,1
3
4 .mlib "mac.lib"
5
6 0000 inc1 var1 macro call

1 0000 -40140000 mov var1, R4
1 0004 5314 inc R4
1 0006 -44800000 mov R4, varl

OOOa dec1 var2 macro call
1 OOOa -4014fff5 mov var2, R4
1 OOOe 8314 dec R4
1 0010 -4480ffef mov R4, var2

MSP430 Family Assembler Directives

Syntax .mlist

Description

Example

.mnolist

Two directives provide you with the ability to control the listing of
macro and repeatable block expansions in the listing file:

The .mlist directive allows macro and .Ioop/.endloop block
expansions in the listing file.

The .mnolist directive inhibits macro and .Ioop/.endloop block
expansions in the listing file.

By default, all code encountered in macros and .Ioop/.endloop blocks
is listed.

This example shows how to define a macro named str_3. The first time
the macro is called, the macro expansion is listed (by default). The
second time the macro is called, the macro expansion is not listed,
because a .mnolist directive was assembled. The third time the macro
is called, the macro expansion is again listed because a .mlist directive
was assembled.

1 str - 3 . MACRO pm1, pm2, pm3
2 .string ":pm1:" , ":pm2:" , ":pm3: "
3 .ENDM
4
5 0000 str - 3 "as" I "I", "am"

1 0000 61 .string "as" I "I" , "am"
0001 73
0002 49
0003 61
0004 6d

6 .mnalist
7 0005 str - 3 Has", lilli, "amll
8 .m1ist
9 OOOa str - 3 "as lI , "I", "am"

1 OOOa 61 .string "as" I "I" , "am"
OOOb 73
OOOe 49
OOOd 61
OOOe 6d

4-53

Assembler Directives MSP430 Family

Syntax

Description

Example

4-54

.newblock

The .newblock directive undefines any local labels currently defined. A
local label, by nature, is temporary; the .newblock directive resets local
labels and terminates their scope.

A local label is a label in the form $n, where n is a single decimal digit.
A local label, like other labels, points to an instruction byte. Unlike
other labels, local labels cannot be used in expressions; they can be
used only as the operand in 10-bit jump instructions. Local labels are
not included in the symbol table.

After a local label has been defined and (perhaps) used, you should
use the .newblock directive to reset it. Note that the .text, .data, and
.sect directives also reset local labels and that local labels that are
defined within an include file are not valid outside of the include file.

This example shows how the local label $1 is declared, reset, and then
declared again.

1 0000 4eOd Labell: mov R12, R13
2 0002 2000 jnz $1
3 0004 433d mov #-1, r13
4 0006 9d04 $1 cmp R13, R4
5 .newbloek ;undefine $1
6 0008 2000 jne $1
7 OOOa 531d inc R13
8 OOOe 5dOe $1 add R13, R14

MSP430 Family Assembler Directives

Syntax .option option list

Description The .option directive selects several options for the assembler output
listing. The option list is a list of options separated by commas; each
option selects a listing feature. Valid options include:

A Turns on all listing (overrides all other directives and options).

B Limits the listing of .byte directives to one line.

F Resets the 8, M, W, and T options.

M Turns off macro expansions in the listing.

T Limits the listing of .string directives to one line.

W Limits the listing of .word directives to one line.

X Produces a symbol cross-reference listing.

Options are not case-sensitive.

4-55

Assembler Directives MSP430 Family

Example

4-56

This example shows how to limit the listings of the .byte, .word, and
.string directives to one line each.

1
2
3
4
5
6 0000
7 0004
8 0008
9

10
11
12
13 OOOb

OOOe
OOOd

14 OOOe
0010

15 0012
0013
0014

16
17
18
19
20
21
22
23 0015

0016
0017

24 0018
001a

25 001e
001d
001e

26

bd
15aa
59

bd
bO
05
15aa
0078
59
45
53

bd
bO
05
15aa
0078
59
45
53

i**
;* Limit the listing of .byte, .word,
;* .string directives to 1 line each
i**

.option

.byte

.word

.string

B, W,
- 'C' ,
5546,
"YES"

T
OBOh,
78h

i**
;* Reset the listing options
i**

.option F

.byte -'C', OBOh, 5

.word 5546, 78h

.string "YES"

i**
;* Use The A option to ignore all
;* other options and directives
;**

.option A

.nolist

.option B, W, T

.byte -'C', OBOh, 5

.word 5546, 78h

.string nYES"

.list

MSP430 Family Assembler Directives

Syntax .page

Description The .page directive produces a page eject in the listing file. The .page
directive is not printed in the source listing, but the line counter is
incremented. Using the .page directive to divide the source listing into
logical divisions improves program readability.

Example This example shows how the .page directive causes the assembler to
begin a new page of the source listing.

Source file:

.title "**** Page Directive Example ****"

.page

Listing file:

MSP TSS430 Macro Assembler Prototype Version 1.0 [Mar 22] Wed Aug 18 08:34:18 1993
Copyright (c) 1993 Texas Instruments Incorporated

Page Directive Example ****

2
3
4 ;

PAGE

MSP TSS430 Macro Assembler Prototype Version 1.0 [Mar 22] Wed Aug 18 08:34:18 1993
Copyright (c) 1993 Texas Instruments Incorporated

**** Page Directive Example **** PAGE

4-57

Assembler Directives MSP430 Family

Syntax

Description

Example

4-58

.sect "section name"[,address)

The .sect directive defines a named section that can be used like the
default .text and .data sections. The .sect directive begins assembling
source code into the named section.

The section name identifies a section that the assembler
assembles code into. The name is significant to 8 characters and
must be enclosed in double quotes.

The address is an optional parameter that specifies a 16-bit
address. It can be used only the first time a .sect directive is
specified for a particular section. Normally, the SPC is set to 0 the
first time a named section is assembled; you can use the address
parameter to assign an initial value to the SPC. This parameter has
no effect on the final address of the section; it simply makes the
listing easier to read.

This example shows how two special-purpose sections, Sym_Defs
and Vars, are defined, and how code assembles into them.

1
2
3
4 0000
5 0000
6 0002
7
8
9

10
11 0000
12 0000
13 0002
14
15
16
17
18 4000
19
20
21
22
23
24
25 0004
26 0004
27 0008

28
29
30
31 4000
32 4000
33 4000

4bOc
4dOe

OOaa
50340005

10
08

5034002a
03
0009 04

01
09

;*************************************
i* Begin assembling into .text
;*************************************

.text
MOV Rll, R12
MOV R13, R14

;*************************************
;* Begin assembling into Sym_Defs
;*************************************

x
.sect
.word

ADD

"Sym_Defs"
Oaah
#5, R4

i*************************************
i* Begin assembling into Vars
i*************************************

.sect "Vars" , 4000h
Word_Len .set 16
Byte_Len .set 16 / 2

;*************************************
i* Resume assembling into .text
i*************************************

.text
ADD #42, R4
.byte 3,4

;*************************************
;* Resume assembling into Vars
;*************************************

. sect n Vars n

.field 1,2

.field 2,2

MSP430 Family Assembler Directives

Syntax symbol .set value
symbol .equ value

Description The .set and .equ directives equate a constant value to a symbol. The
symbol can then be used in place of a value in assembly source. This
allows you to equate meaningful names with constants and other
values. The .set and .equ directives are identical and can be used
interchangeably.

The symbol must appear in the label field.

The value must be a well-defined expression; that is, all symbols
in the expression must be previously defined in the current source
module.

Undefined external symbols and symbols that are defined later in the
module cannot be used in the expression. If the expression is
relocatable, the symbol to which it is assigned is also relocatable.

The value of the expression appears in the object field of the listing.
This value is not part of the actual object code and is not written to the
output file.

4-59

Assembler Directives MSP430 Family

Example This example shows how symbols can be assigned with .set.

4-60

1
2
3
4
5
6 0000
7
8
9

10
11
12
13
14 0002
15
16
17
18
19
20 0006
21
22 0008
23
24
25
26
27
28
29
30 OOOa

Db
4b24

35
40340035

OOOa
'07
'0007

35
40340035

;*************************************
;* Equate symbol FP to register Rll
;* and use it instead of Rll
;*************************************
FP .set

MOV
Rll
@FP, R4

i*************************************
;* Set symbol count to an integer
;* expression and use it as an
;* immediate operand
i*************************************
count .equ

MOV
100/2+3
#count, R4

;*************************************
;* Set symbol symtab to relocatable
;* expression
;*************************************
label .word
symtab .set

.word

10
label+l
symtab

;*************************************
;* Set symbol nsyms to another
;* symbol (count) and use it instead *
i* of count
;*************************************
nsyms .equ

MOV
count

#nsyms, R4

MSP430 Family Assembler Directives

Syntax .space size in bytes

Description The .space directive reserves size number of bytes in the current
section and fills them with Os. The section program counter is
incremented to point to the byte following the reserved space.

Example

When you use a label with the .space directive, it points to the first byte
reserved.

This example shows how the .space directive reserves memory.

2
3
4 0000
5
6
7
8
9 0000

10 0010
0012

11
12
13
14
15 0000
16 0000

0001
0002
0003
0004

17
18
19
20
21
22 0005
23 006a
24 006c

0100
0200

2e
64
61
74
61

OOOf
"0005

;************************************
;* Begin assembling into .text
;************************************

.text

;************************************
;* Reserve 15 bytes in .text
;************************************

.space Ofh

.word 100h, 200h

;************************************
;* Begin assembling into .data
;************************************

.data

.string ".data"

i************************************
;* Reserve 100 bytes in .data;
;* Res_l points to the first byte
i************************************
Res 1 .space 100

.word 15

.word Res 1

4-61

Assembler Directives MSP430 Family

Syntax

Description

4-62

.sslist

.ssnolist

Two directives enable you to control substitution symbol expansion in
the listing file:

The .sslist directive allows substitution symbol expansion in the
listing file. The expanded line appears below the actual source line.

The .ssnolist directive inhibits substitution symbol expansion in
the listing file.

By default, all substitution symbol expansion in the listing file is
inhibited. The lines with the pound (#) character denote expanded
substitution symbols.

MSP430 Family Assembler Directives

Example This example shows code that by default (.ssnolist directive) inhibits
the listing of substitution symbol expansion, and it shows the .sslist
directive assembled, which tells the assembler to list substitution
symbol code expansion.

1 0000 .bss X,l
2 0001 .bss y,l
3
4 ADD2 .macro pm1, pm2
5 mov pm1, R4
6 mov R4, R5
7 mov pm2, R4
8 add R5, R4
9 mov R4, pm2

10 .endm
11
12 .asg R11, FP
13 .asg R13, SSP
14
15 0000 4bOd mov FP, SSP
16 0002 add2 x, y

1 0002 -40140000 mov x,R4
1 0006 4405 mov R4, R5
1 0008 -4014fff7 mov y, R4
1 OOOe 5504 add R5, R4
1 OOOe -4480ffO mov R4, y

17
18 .sslist
19
20 0012 4bOd mov FP, SSP

mov R11, R13
21 0014 add2 x, y

1 0014 -40140000 mov pm1,R4
mov x,R4
1 0018 4405 mov R4, R5
1 001a -4014ffe5 mov pm2, R4
mov y, R4
1 DOle 5504 add R5, R4
1 0020 -4480ffdf mov R4, pm2
mov R4, y

4-63

Assembler Directives MSP430 Family

Syntax

Description

4-64

[stag1] .struct [expr 1]
[memO] element [expr2]
[mem1] element [expr2]

[memn] .tag stag2 Lexpr2]

[memN] element [expr2]
[size] .endstruct

label .tag

The .struct directive assigns symbolic offsets to the elements of a data
structure definition. This enables you to group similar data elements
together and then let the assembler do the element offset calculation.
This is similar to a C structure or a Pascal record. The .struct directive
does not allocate any memory; it merely creates a symbolic template
that can be used repeatedly.

The .tag directive gives structure characteristics to a label, simplifying
the symbolic representation and providing the ability to define
structures that contain other structures .. tag does not allocate memory.
The structure tag (stag) of a .tag directive must have been previously
defined.

[stag1] Is the structure's tag. Its value is associated with the
beginning of the structure. If no stag is present, this tells the
assembler to put the structure members in the global symbol
table with their value being their absolute offset from the top
of the structure.

[expr1] Is an expression indicating the beginning offset of the
structure. Structures default to start at O.

[memn] Is a label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the
structure.

element Is one of the following descriptors: .string, . byte, .word,
.float, .double, .tag, and .field. All of these, except .tag, are
typical directives that initialize memory. Following a .struct
directive, these directives describe the structure element's
size. They do not allocate memory. A .tag directive is a
special case because a stag must be specified (such as
stag2 in the definition).

[expr2] Is an expression for the number of elements described. This
value defaults to 1.

[size] Is a label for the total size of the structure.

MSP430 Family Assembler Directives

4-65

Assembler Directives MSP430 Family

Note: The Types of Directives That Can Appear in a .structl.endstruct
Sequence

The only directives that can appear in a .structi.endstruct sequence are element
descriptors, conditional assembly directives, and the .align and .even directives, which
align the member offsets on byte resp. word boundaries. Note that empty structures are
illegal.

Examples

4-66

1
2
3
4
5

0000
0000
0001
0002

nom
den

6 0000 -4014ffff
7
8 0000
9

0000
0000
0002
0004

cplx_rec
reali
imagi
cplx_len

.struct

.byte

.byte

.endstruct

;stag
imemberl
;member2
; real_len

mov real+real_rec.den,R4

.bss real,real_len

.struct

.tag real_rec

.tag real rec

.endstruct

;stag
imemberl
imember2
;cplx_len

o
1
2

o
2
4

jaccess

;allocate

10
11
12
13
14
15 complex .tag cplx_rec
16 0002
17
18 0004 -4014fffe
19 0008 -9014fff9
20

21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37 0006
38

0000

0000
0001
0002

0000
0000
0040
0040
0041
0042
0043

x
y
z

bit_rec
stream
bit7
bit2
bit5
x_int
bit len

bits

39
40

OOOc -40140038
0010 f034007f

.bss complex,cplx_len

mov
cmp

complex.imagi.nom,R4
complex.reali.den,R4

;allocate

.struct

.byte

.byte

.byte

.endstruct

;no stag puts members
;into global symbol table
;create 3dim templates

.struct

.string 64

.field 7

.field 2

.field 5

.byte

.endstruct

.tag bit rec

;stag

.bss bits,bit_len

mov bits.bit7,R4 ;load field
and #7fh,R4 ;mask off garbage

MSP430 Family Assembler Directives

Syntax .text [address]

Description The .text directive tells the assembler to begin assembling into the .text
section, which usually contains executable code. The section program
counter is set to 0 if nothing has yet been assembled into the .text
section. If code has already been assembled into the .text section, the
section program counter is restored to its previous value in the section.

Example

The address is an optional parameter that specifies a 16-bit address.
It can be used only the first time a .text directive is specified. Normally,
the section program counter is set to 0 the first time the .text section is
assembled; you can use this parameter to assign an initial value to the
.text section program counter. This parameter has no effect on the final
address of the section; it simply makes the listing easier to read.

Note that the assembler assumes that .text is the default section.
Therefore, at the beginning of an assembly, the assembler assembles
code into the .text section unless you specify one of the other sections
directives (.data or .sect).

This example shows code assembled into the .text and .data sections.
The .data section contains integer constants, and the .text section
contains character strings.

1
2
3
4 0000

0000
0001

7
8
9

10 7000
11 7000
12 7001

7002
13
14
15
16
17 0002
18 0002

0003
19
20
21
22
23 7003
24 7003

05
06

01
02
03

07
08

04

;**************************************
;* Begin assembling into .data
i**************************************

.data

.byte 5,6

;**************************************
;* Begin assembling into .text
;**************************************

.text 7000h

.byte 1

.byte 2, 3

i**************************************
;* Resume assembling into .data
;**************************************

.data

.byte 7,8

;**************************************
;* Resume assembling into .text
;**************************************

.text

.byte 4

4-67

Assembler Directives MSP430 Family

Syntax

Description

Example

.title "string"

The .title directive supplies a title that is printed in the heading on each
listing page. The source statement itself is not printed, but the line
counter is incremented. The string is a quote-enclosed title of up to 65
characters. If you supply more than 65 characters, the assembler
truncates the string and issues a warning.

The assembler prints the title on the page that follows the directive and
on subsequent pages until another .title directive is processed. If you
want a title on the first page of a listing, the first source statement must
contain a .title directive.

This example shows how to print one title on the first page and a
different title on succeeding pages.

Source file:

.title

.title

.page

Listing file:

11** Integer Routines **11

"** Floating Point Routines **"

MSP TSS430 Macro Assembler Prototype Version 1.0 [Mar 22] Wed Aug 18 11:01:02 1993
Copyright (c) 1993 Texas Instruments Incorporated

Integer Routines **

2
3
4

PAGE

MSP TSS430 Macro Assembler Prototype Version 1.0 [Mar 22] Wed Aug 18 11:01:02 1993
Copyright (c) 1993 Texas Instruments Incorporated

** Floating Point Routines ** PAGE 2

4-68

MSP430 Family Assembler Directives

Syntax symbol .useet "section name", size in bytes

Description The .usect directive reserves space for variables in an uninitialized,
named section. This directive is similar to the .bss directive; both
simply reserve space for data and have no contents .. usect defines
additional sections, however, that can be placed anywhere in
memory, independently of the .bss section.

Example

The symbol points to the first location reserved by this invocation of
the .usect directive. The symbol corresponds to the name of the
variable that you're reserving space for.

The section name must be enclosed in double quotes; only the first
8 characters are significant. This parameter names the uninitialized
section.

The size is an expression that defines the number of bytes that are
reserved in section name.

The address is an optional parameter that specifies a 16-bit
address. It can be used only the first time a .usect directive is
specified for a particular section. Normally, the SPC is set to 0 the
first time a named section is assembled; you can use the address
parameter to assign an initial value to the SPC. This parameter has
no effect on the final address of the section.

Other sections directives (.text, .data, and .sect) end the current
section and tell the assembler to begin assembling into another
section. The .usect, .bss, .regpair, and .reg directives, however, do not
affect the current section. The assembler assembles the .usect, .bss,
.regpair, and .reg directives and then resumes assembling into the
current section.

You can repeat the .usect directive to define more than one variable in
the specified section. Variables that can be located contiguously in
memory can be defined in the same section by using multiple .usect
directives with the same section name.

This example shows how to use the .usect directive to define two
uninitialized, named sections, var1 and var2. The symbol ptr points to
the first byte reserved in the var1 section. The symbol array points to
the first byte in a block of 100 bytes reserved in var1, and dflag points
to the first byte in a block of 50 bytes in var1. The symbol vec points to
the first byte reserved in the var2 section.

4-69

Assembler Directives

1
2
3
4 0000
5 0000
6
7
8
9

10 0000
11
12
13
14
15 0001
16
17 0004
18
19
20
21
22 0065
23
24 0008
25
26
27
28
29 0000
30
31 OOOe
32
33
34
35
36

40340003

50340037

-4014005b

-90140000

MSP430 Family

;************************************
;* Assemble into .text
i************************************

.text
mov #03h, R4

;************************************
i* Reserve 1 byte in varl
;************************************
ptr . usect II varl " , 1

:************************************
;* Reserve 100 more bytes in varl
:************************************

array .usect "varl",lOO

add #37h, R4 ; still in .text

:************************************
:* Reserve 50 more bytes in varl
;************************************
dflag .usect "varl",50

mov dflag, R4; still in .text

:************************************
;* Reserve 100 bytes in var2
;************************************
vec .usect "var2", 100

cmp vec, R4 ; still in .text

:************************************
;* Declare external .usect symbol
;************************************

.global array

section var1 section var2

vec--'~D ptr--.

array--.

dflag---+~

1 byte

100 bytes

50 bytes

151 bytes reserved in var1

Example 4.8: The .usect Directive

4-70

o
100 bytes reserved in var2

MSP430 Family Assembler Directives

Syntax .word value1 [, ... , valuenl

Description The .word directive places one or more 16-bit values into consecutive
two-byte pairs in the current section.

Example

The values can be either absolute or relocatable expressions. If an
expression is relocatable, the assembler generates a relocation entry
that refers to the appropriate symbol; the linker can then correctly
patch (relocate) the reference. This allows you to initialize memory with
pointers to variables or labels.

You can use as many values as fit on a single line. If you use a label, it
points to the first word that is initialized.

Note that when you use .word in a .structl.endstruct sequence, it
defines a member's size; it does not initialize memory.

This example shows how to use the .word directive to initialize words.
The symbol WordX pOints to the first word that is reserved.

1 0000
0002
0004
0006

Oc80 Wordx: .word 3200, l+'B', -Oafh, 'X'
0043
ff51
0058

4-71

Assembler Directives MSP430 Family

4-72

MSP430 Family

Topics

5 Instruction Set Summary

5.1 Symbols and Abbreviations

5.2 Addressi'1g Modes

5.3 Instruction Set Summary

5.4 Clock cycles, Length of Instruction
5.4.1 Format I Instructions
5.4.2 Format II Instructions
5.4.3 Format III Instructions
5.4.4 Miscellanous Instructions or Operators

Tables

Table Title

Instruction Set Summary

5-3

5-4

5-5

5-6

5-8
5-8
5-9
5-9
5-9

5.1 Symbols and Abbreviations used in the Instruction Set Summary

Page

5-4

5-5

5-6

5-8

5-9

5.2 Addressing Modes

5.3 MSP430 Family Instruction Set Summary

5.4 Format I Instructions

5.5 Format II Instructions

Notes

Title

5.1 Addressing Modes

5.2 Emulated Instructions

5.3 Cycle Time of the DADO Instruction

5.4 Immediate mode in destination field

Page

5-5

5-7

5-8

5-9

5-1

Instruction Set Summary MSP430 Family

5-2

MSP430 Family Instruction Set Summary

5 Instruction Set Summary

This chapter summarizes the MSP430 family instruction set.

5-3

Instruction Set Summary MSP430 Family

5.1 Symbols and Abbreviations

The following table lists the instruction set symbols and abbreviations used throughout the
rest of this chapter.

Symbol Definition Symbol Definition

src The source operand defined by dst The destination operand defined
As and S-reg by Ad and D-reg

As The bits representing the Ad The bit representing the
addressing mode used for the addressing mode used for the
source destination

S-reg The used Working Register for D-reg The used Working Register for
the source src the destination dst

RO or PC Register 0 or Program Counter R1 or SP Register 1 or Stack Pointer

R2 or Register 2 or Status R3 or Register 3 or Constant
SR/CG1 Register/Constant Generator 1 CG2 Generator 2

R4to Working Register, Rn Working Register with n=4-15,
R15 general purpose general purpose

Immediate Data @ Register indirect addressing

& Absolute address --> Data transfer direction

label 16-bit I abel TOS Top of Stack

C Carry Bit N Negative Bit

V Overflow Bit Z Zero Bit

.B The suffix .B at the instruction .w The suffix .W or no suffix at the
memonic will result in a byte instruction memonic will result in
operation a word operation

MSB Most significant Bit LSB Least significant Bit

Table 5.1: Symbols and Abbreviations used in the Instruction Set Summary

5-4

MSP430 Family Instruction Set Summary

5.2 Addressing Modes

All seven addressing modes for the source operand and all four addressing modes for the
destination operand can address the complete address space. The bit numbers show the
contents of the As resp. Ad mode bits.

As Ad Addressing Mode Syntax Description

00 0 Register Mode Rn Register contents are operand

01 1 Indexed Mode X(Rn) (Rn + X) points to the operand.
X is stored in the next word

01 1 Symbolic Mode AOOR (PC + X) points to the operand.
X is stored in the next word. Indexed
Mode X(PC) is used

01 1 Absolute Mode &AOOR The word following the instruction
contains the absolute address.

10 - Indirect Register @Rn Rn is used as a pointer to the operand
Mode

11 - Indirect @Rn+ Rn is used as a pointer to the operand.
Autoincrement Rn is incremented afterwards

11 - Immediate Mode #N The word following the instruction
contains the immediate constant N.
Indirect Autoincrement Mode @PC+ is
used

Table 5.2: Addressing Modes

Note: Addressing Modes

The addressing modes using the PC as the working register use the normal effects of the
addressing modes. The special addressing modes are caused by the pointing of the PC to
the ROM word following the currently executed instruction.

5-5

Instruction Set Summary MSP430 Family

5.3 Instruction Set Summary

Status Bits

V N Z C
* ADC(.B) dst dst + C ---+ dst x x x x

ADD(.B) src,dst src + dst ---+ dst x x x x
ADDC(.B) src,dst src + dst + C ---+ dst x x x x
AND(.B) src,dst src .and. dst ---+ dst 0 x x x
BIC(.B) src,dst .not.src .and. dst ---+ dst
BIS(.B) src,dst src .or. dst ---+ dst
BIT(.B) src,dst src .and. dst 0 x x x

* BR dst Branch to
CALL dst PC+2 ---+ stack, dst ---+ PC

* CLR(.B) dst Clear destination
* CLRC Clear carry bit 0
* CLRN Clear negative bit 0
* CLRZ Clear zero bit 0

CMP(.B) src,dst dst - src x x x x
* DADC(.B) dst dst + C ---+ dst (decimal) x x x x

DADD(.B) src,dst src + dst + C ---+ dst (decimal) x x x x
* DEC(.B) dst dst-1---+dst x x x x
* DECD(.B) dst dst - 2 ---+ dst x x x x
* DINT Disable interrupt
* EINT Enable interrupt
* INC(.B) dst Increment destination, dst + 1 ---+ dst x x x x
* INCD(.B) dst Double-Increment destination, dst+2---+dst x x x x
* INV(.B) dst Invert destination x x x x

JC/JHS Label Jump to Label if Carry-bit is set
JEQ/JZ Label Jump to Label if Zero-bit is set
JGE Label Jump to Label if (N .XOR. V) = 0
JL Label Jump to Label if (N .XOR. V) = 1
JMP Label Jump to Label unconditionally
IN Label Jump to Label if Negative-bit is set

Legend: 0 Status bit always cleared Status bit always set
x Status bit cleared or set on results Status bit not affected

Emulated Instructions

Table 5.3: MPS430 Family Instruction Set Summary

5-6

MSP430 Family Instruction Set Summary

Status Bits

V N Z C
JNC/JLO Label Jump to Label if Carry-bit is reset
JNElJNZ Label Jump to Label if Zero-bit is reset
MOV(.B) src,dst src -> dst

· NOP No operation

· POP(.B) dst Item from stack, SP+2 -> SP
PUSH(.B) src SP - 2 -> SP, src -> @SP
RETI Return from interrupt x x x x

TOS -> SR, SP + 2 -> SP
TOS -> PC, SP + 2 -> SZP

· RET Return from subroutine
TOS -> PC, SP + 2 -> SP

· RLA(.B) dst Rotate left arithmetically x x x x

· RLC(.B) dst Rotate left through carry x x x x
RRA(.B) dst MSB -> MSB LSB -> C 0 x x x
RRC(.B) dst C -> MSB LSB -> C x x x x

· SBC(.B) dst Subtract carry from destination x x x x

· SETC Set carry bit 1

· SETN Set negative bit

· SETZ Set zero bit
SUB(.B) src,dst dst + .not.src + 1 -> dst x x x x
SUBC(.B) src,dst dst + .not.src + C -> dst x x x x
SWPB dst swap bytes
SXT dst Bit7 -> Bit8 Bit15 0 x x x

· TST(.B) dst Test destination x x x x
XOR(.B) src,dst src .xor. dst -> dst x x x x

Legend: 0 The Status Bit is cleared The Status Bit is set
x The Status Bit is affected The Status Bit is not affected

Emulated Instructions

Table 5.3: MPS430 Family Instruction Set Summary (Concluded)

Note: Emulated Instructions

All marked instructions (•) are emulated instructions. The emulated instructions use core
instructions combined with the architecture and implementation of the CPU for higher code
efficiency and faster execution.

5-7

Instruction Set Summary MSP430 Family

5.4 Clock cycles, Length of Instruction

The operating speed of the CPU is independent from individual instructions. It depends on
the instruction format and the addressing modes. The number of clock cycles refer to the
internal oscillator frequency.

5.4.1 Format I Instructions

Address Mode #01 cycles Length of Example
As Ad instruction

OO,Rn O,Rm 1 1 MOV R5,RB
O,PC 2 1 BR R9

00, Rn 1, x(Rm) 4 2 ADD R5,3(R6)
1, EDE 2 XOR RB,EDE
1, &EDE 2 MOV R5,&EDE

01, x(Rn) O,Rm 3 2 MOV 2(R5),R7
01, EDE 2 AND EDE,R6
01, &EDE MOV &EDE,RB
01, x(Rn) 1, x(Rm) 6 3 ADD 3(R4),6(R9)
01, EDE 1, TONI 3 CMP EDE,TONI
01, &EDE 1, &TONI 3 MOV 2(R5),&TONI

ADD EDE,&TONI
10, @Rn 0, Rm 2 1 AND @R4,R5
10, @Rn 1, x(Rm) 5 2 XOR @R5,B(R6)

1, EDE 2 MOV @R5,EDE
1, &EDE 2 XOR @R5,&EDE

11, @Rn+ O,Rm 2 1 ADD @R5+,R6
0, PC 3 1 BR @R9+

11, #N O,Rm 2 2 MOV #20,R9
0, PC 2 2 BR #2AEh

11, @Rn+ 1, x(Rm) 5 2 MOV @R9+,2(R4)
11, #N 1, EDE 3 ADD #33,EDE
11, @Rn+ 1, &EDE 2 MOV @R9+,&EDE
11, #N 3 ADD #33,&EDE

Table 5.4: Format I Instructions

Note: Cycle Time of the DADO Instruction

The DADD instruction needs 1 extra cycle.

5-8

MSP430 Family Instruction Set Summary

5.4.2 Format II Instructions

Address Mode #01 c cles Length 01 Example

A(s/d) RRC PUSH/ instruction
RRA CALL [words]
SWPB
SXT

00, Rn 1 3/4 1 SWPB R5
01, x(Rn) 4 5 2 CALL 2(R7)
01, EDE 4 5 2 PUSH EDE
10, @Rn 3 4 1 RRC @R9

11, @Rn+ see Note 3 4/5 1 SWPB @R10+
11, #N 3 4/5 2 CALL #81h

Table 5.5: Format II Instructions

Note: Immediate mode in destination field

Instructions should not use immediate mode in the destination lield. This would result in
unpredictable program operation.

5.4.3 Format III Instructions

Jxx - instructions need all the same #-ol-cycles independent 01 a successlull Jump or not.

Clock Cycle: 2 Cycle.

Length 01 Instruction: 1 word.

5.4.4 Miscellanous Instructions or Operators

RETI

Interrupt

Clock Cycle: 5 Cycle.

Length 01 instruction: 1 word.

Clock Cycle: 6 Cycle.

5-9

Instruction Set Summary MSP430 Family

5-10

MSP430 Family Macro Language

Topics

6 Macro Language

6.1 Using Macros

6.2 Defining Macros

6.3 Macro Parameters/Substitution Symbols

6.4 Macro Libraries

6.5 Using Conditional Assembly in Macros

6.6 Using Labels in Macros

6.7 Producing Messages in Macros

6.8 Formatting the Output Listing

6.9 Using Recursive and Nested Macros

6.10 Macro Directives Summary

Ex.

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

Examples

Title

Macro Definition, Call, and Expansion

Calling a Macro With Varying Numbers of Arguments

Using the .asg Directive

Using the .eval Directive

Using Built-In Substitution Symbol Functions

Recursive Substitution

Using the Forced Substitution Operator

Using Subscripted Substitution Symbols to Redefine an Instruction

Using Subscripted Substitution Symbols to Find Substrings

The .Ioop/.break/.endloop Directives

Nested Conditional Assembly Directives

Unique Labels in a Macro

Producing Messages in a Macro

Using Nested Macros

Using Recursive Macros

6-3

6-4

6-5

6-7

6-15

6-16

6-18

6-20

6-21

6-22

6-24

Page

6-6

6-8

6-8

6-9

6-10

6-11

6-12

6-13

6-13

6-17

6-17

6-19

6-20

6-22

6-23

6-1

Macro Language MSP430 Family

6-2

MSP430 Family Macro Language

6 Macro Language

The assembler supports a macro language that enables you to create your own "instruc­
tions." This is especially useful when a program executes a particular task several times. The
macro language enables you to:

Define your own macros and redefine existing macros.

Simplify long or complicated assembly code.

Access macro libraries created with the archiver.

Define conditional and repeatable blocks within a macro.

Manipulate strings within a macro.

Control expansion listing.

6-3

Macro Language MSP430 Family

6.1 Using Macros

Programs often contain routines that are executed several times. Instead of repeating the
source statements for a routine, you can define the routine as a macro, then call the macro in
the places where you would normally repeat the routine. This Simplifies and shortens your
source program.

If you want to call a macro several times, but with different data each time, you can assign
parameters to a macro. This enables you to pass different information to the macro each
time you call it. The macro language supports a special symbol called a substitution
symbol, which is used for macro parameters. In this chapter, we use the terms macro
parameters and substitution symbols interchangeably.

Using a macro is a three-step process:

Step 1: Define the macro. You must define macros before you can use them in your
program. There are two methods for defining macros:

Macros can be defined at the beginning of a source file or in an .include/.copy
file.

Macros can also be defined in a macro library. A macro library is a collection of
files in archive format, created by the archiver. Each member of the archive file
(macro library) may contain one macro definition corresponding to the member
name. You can access a macro library by using the .mlib directive.

Step 2: Call the macro. After you have defined a macro, you can call it by using the macro
name as an opcode in the source program. This is referred to as a macro cal/.

Step 3: Expand the macro. The assembler expands your macros when the source program
calls them. During expansion, the assembler passes arguments by variable to the
macro parameters, replaces the macro call statement with the macro definition, then
assembles the source code. By default, the macro expansions are printed in the
listing file. You can turn off expansion listing by using the .mnolist directive.

When the assembler encounters a macro definition, it places the macro name in the opcode
table. This redefines any previously defined macro, library entry, directive, or instruction
mnemonic that has the same name as the encountered macro. This allows you to expand
the functions of directives and instructions, as well as add new instructions.

6-4

MSP430 Family Macro Language

6.2 Defining Macros

You can define a macro anywhere in your program, but you must define the macro before
you can use it. Macros can be defined at the beginning of a source file or in an .include/.copy
file; they can also be defined in a macro library.

The contents of a macro definition must be contained in the same file. Macro definitions can
be nested, and they can call other macros.

A macro definition is a series of source statements in the following format:

macname .macro [parameter1] [,parameter2]'" [,parameternl

model statements or macro directives

macname

.macro

[.mexit]

.endm

[parameters]

model statements

macro directives

[.mexit]

. endm

names the macro. You must place the name in the source statement's
label field. Only the first 32 characters of a macro name are significant.
The assembler places the macro name in the internal opcode table,
replacing any instruction or previous macro definition with the same
name.

is a directive that identifies the source statement as the first line of a
macro definition. You must place .macro in the opcode field.

are optional substitution symbols that appear as operands for the
.macro directive.

are instructions or assembler directives that are executed each time
the macro is called.

are used to control macro expansion.

functions as a "goto .endm". The .mexit directive is useful when error
testing confirms that macro expansion will fail.

terminates the macro definition .

6-5

Macro Language MSP430 Family

Macro definition: The following code defines a macro, add3, with 3 parameters:

1 ;* add3 argl, arg2, arg3
2 ; * arg3 = argl + arg2 + arg3
3
4 add3 .macro argl, arg2, arg3
5
6 mov argl, R4
7 mav R4, R5
8 mov arg2, R4
9 add R4, R5

10 mov arg3, R4
11 add R5, R4
12 mov R4, arg3
13 .endm

Macro Call: The following code calls the add3 macro with 3 arguments

14
15 0000 add3 x, y ,2

Macro Expansion: The following code shows the substitution of the macro definition for the
macro call. The assembler passes the arguments (supplied in the macro call) by variable
to the parameters (substitution symbols).

1
1 0000 -40140000 mov x, R4
1 0004 4405 mov R4, R5
1 0006 -4014fff9 mov y, R4
1 OOOa 5405 add R4, R5
1 OOOc -4014fff4 mov 2, R4
1 0010 5504 add R5, R4
1 0012 -4480ffee mov R4, 2

16
17
18 ; * Reserve space for vars
19 0000 .bss x,l
20 0001 .bss y,l
21 0002 .bss 2,1

Example 6.1: Macro Definition, Call, and Expansion

If you want to include comments with your macro definition but don't want those comments
to appear in the macro expansion, precede your comments with an exclamation point. If you
do want your comments to appear in the macro expansion, use an asterisk or semicolon in
place of the exclamation point.

6-6

MSP430 Family Macro Language

6.3 Macro Parameters/Substitution Symbols

If you want to call a macro several times, but with different data each time, you can assign
parameters to the macro. The macro language supports a special symbol, called a
substitution symbol, which is used for macro parameters.

Substitution Symbols ------------------------­

Macro parameters are substitution symbols. Substitution symbols are symbols that represent
a character string. Besides being used as macro parameters, these symbols can also be
used outside of macros to equate a character string to a symbol name.

Valid substitution symbols may be 32 characters long and must begin with a letter. The
remainder of the symbol can be a combination of alphanumeric characters, underscores, and
dollar signs.

Substitution symbols used as macro parameters are local to the macro they are defined in.
You can define up to 32 local substitution symbols (including substitution symbols defined
with the .var directive) per macro.

During macro expansion, the assembler passes arguments by variable to the macro
parameters. The character-string equivalent of each argument is assigned to the
corresponding parameter. Parameters without corresponding arguments are set to the null
string. If the number of arguments exceeds the number of parameters, the last parameter is
assigned the character-string equivalent of all remaining arguments.

If you pass a list of arguments to one parameter, or if you pass a comma or semicolon to a
parameter, you must surround the arguments with quotation marks.

At assembly time, the assembler first replaces the substitution symbol with its corresponding
character string, then translates the source code into object code.

6-7

Macro Language

Macro Definition

Parms .macro a,bic
a ;::: :a:
b = :b:
c :::: :c:

.endm

Calling the Macro, Parms

Parms 100,label
a 100
b label
c

Parms 100,x
a 100
b
c x

Parms IIlInstring" 1I11,X,¥
a IIstringll
b x
c = y

Parms 100,label,x,y
a 100
b = label
c = x,y

MSP430 Family

Parms "100,200,300" ,x,y
a 100,200,300
b x
c y

Example 6.2: Calling a Macro With Varying Numbers of Arguments

Directives That Define Substitution Symbols ---------------­

You can manipulate substitution symbols with the .asg and .eval directives.

• The .asg directive assigns a character string to a substitution symbol.

The syntax of the .asg directive is:

.asg £"] character string £'1, substitution symbol

The quotation marks are optional. If there are no quotation marks, the assembler reads
characters up to the first comma and removes leading and trailing blanks. In either case,
a character string is read and assigned to the substitution symbol.

The example shows character strings being assigned to substitution symbols.

.asg R13,FP

.asg @ ,Ind

.asg """string""",strng

.asg "a, b, c", parms
mov Ind(FP) ,R4

Example 6.3: Using the .asg Directive

6-8

frame pointer
indirect addressing
string
parameters
mov @ (R13) ,R4

MSP430 Family Macro Language

The .eval directive performs arithmetic on numeric substitution symbols.

The syntax of ttie .eval directive is:

.eval well-defined expression, substitution symbol

The .eval directive evaluates the expression and assigns the string value of the result to
the substitution symbol. If the expression is not well defined, the assembler generates an
error and assigns the null string to the symbol.

The example shows arithmetic being performed on substitution symbols .

. asg 1, counter

.loop 100

.word counter

.eval counter+l, counter

.endloop

Example 6.4: Using the .eval Directive

In the example, the .asg directive could be replaced with the .eval directive (.eval 1, counter)
without changing the output. In simple cases like this, you can use .eval and .asg
interchangeably. If you want to calculate a value from an expression, however, you must use
the .eval directive.

The .asg directive only assigns a character string to a substitution symbol, while the .eval
directive evaluates an expression and then assigns the character string equivalent to a
substitution symbol.

Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make decisions based on
the string value of substitution symbols. These functions always return a value, and they can
be used in expressions. Built-in substitution symbol functions are especially useful in
conditional assembly expressions. Parameters to these functions are substitution symbols or
character-string constants.

In the following function definitions, a and b are parameters that represent substitution
symbols or character string constants. The term string, used below, refers to the string value
of the parameter.

6-9

Macro Language MSP430 Family

Function Return Value

$symlen(a) length of string a

$symcmp(a,b) < Oifa< b Oifa= b >Oifa>b

$firstch(a,ch) index of the first occurrence of character constant ch in string a

$Iastch(a,ch) index of the last occurrence of character constant ch in string a

$isdefed(a) 1 if string a is defined in the symbol table
o if string a is not defined in the symbol table

$ismember(a,b) top member of list b is assigned to string a
o if b is a null string

$iscons(a)

$isname(a)

1 if string a is a binary constant
2 if string a is an octal constant
3 if string a is a hexadecimal constant
4 if string a is a character constant
5 if string a is a decimal constant

1 if string a is a valid symbol name
o if string a is not a valid symbol name

$isreg(a) 1 if string a is a valid predefined register name
o if string a is not a valid predefined register name

.asg Label, x

.if ($symcmp(x, "Label") 0)
cmp x,R4
. end if
.asg "Ll,L2,L3", list
.if ($ismember(x, list))
cmp x,R4
.endif

Example 6.5: Using Built-In Substitution Symbol Functions

6-10

x ~ label
evaluates to true

list ~ Ll,L2,L3
x = Ll list = L2,L3

MSP430 Family Macro Language

Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to substitute the
corresponding character string. If that string is also a substitution symbol, the assembler
performs substitution again. The assembler continues doing this until it encounters a token
that is not a substitution symbol or until it encounters a substitution symbol that it has already
encountered during this evaluation.

In the example, the y is substituted for x; z is substituted for y; and x is substituted for z. The
assembler recognizes this as infinite recursion and ceases substitution.

.asg IIX" I Z

.asg "z" ,Y

.asg "y",x
cmp x, R4

; * cmp x, R4

Example 6.6: Recursive Substitution

declare z and assign z "XII

declare y and assign y "Zll

declare x and assign x "y"

recursive expansion

Forcing Substitutions ------------------------­

In some cases, substitution symbols are not recognizable to the assembler. The forced
substitution operator, which is a set of colons, enables you to force the substitution of a
symbol's character string. Simply surround a symbol with colons to force the substitution. Do
not include any spaces between the colons and the symbol.

The syntax for the forced substitution operator is:

:symbo/:

The assembler expands substitution symbols surrounded by colons before it expands any
other substitution symbols.

You can use the forced substitution operator only inside of macros, and you cannot nest a
forced substitution operator within another forced substitution operator.

6-11

Macro Language MSP430 Family

force .macro x
.asg 0, x
.loop 8

; *
loop/.endloop are discussed
in Section 4.0

AUX:x: .equ x The x in AUXx would not be
recognizable as a substituion
symbol by the assembler

;*
; *

.eval x+l, x

.endloop

.endm

force ;macro call

This would generate the following source code:

AUXO .equ 0
AUXl .equ 1

AUx7 .equ 7

Example 6.7: Using the Forced Substitution Operator

Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitution symbol
with subscripted substitution symbols. You must use the forced substitution operator for
clarity.

You can access substrings in two ways:

:symbol (well-defined expression):

This method of subscripting evaluates to a character string with one character.

: symbol (well-defined expression 1, well-defined expression2):

In this method, expression1 represents the substring's starting position, and expression2
represents the substring's length. You can specify exactly where to begin subscripting
and the exact length of the resulting character string. The index of substring characters
begins with 1, not O.

The next two examples show built-in substitution symbol functions used with subscripted
substitution symbols.

6-12

MSP430 Family Macro Language

In the first example, subscripted substitution symbols redefine the pop instruction so that it
handles indirect addressing.

popx macro x
.var trnp, len
.asg :x(1): ,trnp
.if $ syrncrnp (trnp, "@") a
.eval $syrnlen(x) ,len
.asg :x (2, len) :, trnp
.if $isreg(trnp) ~ 1
pop a (trnp)
.else
.ernsg "Bad Register Name"
.endif
.else
.ernsg "Bad Operand"
.endif
.endrn

papx @R4 macro call

Example 6.8: Using Subscripted Substitution Symbols to Redefine an Instruction

In the second example, the subscripted substitution symbol is used to find a substring strg1
beginning at position start in the string strg2. The position of the substring strg1 is assigned
to the substitution symbol pos.

substr .macro
.var
.if
.eval
. end if
.eval
.eval
.eval
.eval
.loop
.break
.asg
.if
.eval
.break
.else
.eval
.endif
.endloop
.endrn

.asg

.asg
substr
.word

start,strg1,strg2,pas
len1,len2,i,trnp
$syrnlen(start) ~ a
I,start

a ,pos
start,i
$syrnlen(strgl) ,len1
$syrnlen(strg2) ,len2

i ~ (len2-len1+1)
":strg2(i,len1) : ",trnp
$syrncrnp(strgl,trnp) ~ a
i,pos

i+l,i

a,pas
"arl ar2 ar3 ar4",regs
1, "ar2",regs,pos
pas

Example 6.9: Using Subscripted Substitution Symbols to Find Substrings

6-13

Macro Language MSP430 Family

Substitution Symbols as Local Variables in Macros -------------­

If you want to use substitution symbols as local variables within a macro, you can use the
.var directive to define up to 32 local macro substitution symbols (including parameters) per
macro. The .var directive creates temporary substitution symbols with the initial value of the
null string. These symbols are not passed in as parameters, and, after expansion, these
symbols are lost.

.var sym1 [,sym21 ... [,symnl

The .var directive is used in the last two examples.

6-14

MSP430 Family Macro Language

6.4 Macro Libraries

One of the ways you can define macros is in a macro library. A macro library is a collection
of files that contain macro definitions. You must use the archiver to collect these files, or
members, into a single file (called an archive). Each member of a macro library contains one
macro definition. The files in a macro library must be unassembled source files. The macro
name and the member name must be the same, and the macro filename's extension must be
.asm. For example:

Macro Name

simple

add3

Filename in Macro Library

simple.asm

add3.asm

You can access the macro library by using the .mlib assembler directive .

. mlib macro library filename

When the assembler encounters an .mlib directive, it opens the library and creates a table of
its contents. The assembler enters the names of the individual members within the library
into the opcode tables as library entries; this redefines any existing opcodes or macros that
have the same name. If one of these macros is called, the assembler extracts the entry from
the library and loads it into the macro table. The assembler expands the library entry in the
same manner as other macros. You can control the listing of library entry expansions with
the .mlist directive. Only macros that are actually called from the library are extracted, and
they are extracted only once.

You can create a macro library with the archiver by simply including the desired files in an
archive. A macro library is no different from any other archive, except that the assembler
expects the macro library to contain macro definitions. The assembler expects only macro
definitions in a macro library; putting object code or miscellaneous source files into the library
may produce undesirable results.

6-15

Macro Language MSP430 Family

6.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/.breakl.endloop.
They can be nested within each other up to 32 levels deep. The format of a conditional block
is:

.if well-defined expression

code block to execute when the .if expression is true (nonzero)

[.elseif well-defined expression]

code block to execute when the .elseif expression is true (nonzero)

[.else]

code block to execute when the .elseif expression is false (zero)

.endif

The .elseif and .else directives are optional, and they can be used more than once within a
conditional assembly code block. When they are omitted, and when the .if expression is false
(zero), the assembler continues to the code following the .endif directive.

The .Ioop/.breakl.endloop directives enable you to assemble a code block repeatedly. The
format of a repeatable block is:

.Ioop [well-defined expression]

code block to repeatedly assemble

[.break [well-defined expression]j

continue to repeatedly assemble when the .break expression is false (zero)

.endloop

code block to execute when the .break expression is true (nonzero) or when the
.break expression is omitted and the loop count equals expression.

The .Ioop directive's optional expression evaluates to the loop count. If the expression is
omitted, the loop count defaults to 1024, unless the assembler encounters a .break directive.

The .break directive and its expression are optional. If the expression evaluates to false, the
loop continues. The assembler breaks the loop when the .break expression evaluates to true
or when the .break expression is omitted and the loop count equals expression. When the
loop is broken, the assembler continues with the code after the .endloop directive.

The next three examples show the .Ioop/.breakl.endloop directives, properly nested con­
ditional assembly directives, and built-in substitution symbol functions used in a conditional
assembly code block.

6-16

MSP430 Family Macro Language

.asg l,x

.loop

. break (x==lO)

.eval x+l,x

.endloop

If x==10, quit loop/break with expression

Example 6.10: The .Ioop/.break/.endloop Directives

.asg Lx

.loop

.if (x==lO)

.break

.endif

.eval x+l,x

.endloop

If x==10, quit loop
force break

Example 6.11: Nested Conditional Assembly Directives

6-17

Macro Language MSP430 Family

6.6 Using Labels in Macros

All labels in an assembly language program must be unique. This includes labels in macros.
If a macro is expanded more than once, its labels are defined more than once. Defining a
label more than once is illegal. The macro language provides a method of defining labels in
macros so that the labels are unique. Simply follow the label with a question mark, and the
assembler will replace the question mark with a period followed by a unique number. When
the macro is expanded, you will not see the unique number in the listing file. Your label will
appear with the question mark as it did in the macro definition. The syntax for a unique label
is:

laber?

6-18

MSP430 Family Macro Language

1 min .macro X,Y
2 mav x, R4
3 cmp y, r4
4 jl m1?
5 mav y, R4
6 m17
7 .endm
8
9

10
11 0000 .bss var1
12 0001 .bss var2
13 0002 .bss var3
14
15 0000 min varl, var2

1 0000 -40140000 mav varl, R4
1 0004 -9014£ffb cmp var2, r4
1 0008 '3802 jl m1?
1 OOOa -4014£££5 mav var2, R4
1 OOOe m1?

16
17 OOOe min var2, var3

1 OOOe -4014£££1 mav var2, R4
1 0012 -9014ffee cmp var3, r4
1 0016 '3802 j1 m1?
1 0018 -4014ffe8 mav var3, R4
1 001c m1?

18

LABEL VALUE DEFN REF

m1.1 OOOe 15 15
ml.2 001c 17 17
var1 0000 11 15
var2 0001 12 15 15 17
var3 0002 13 17 17

Example 6.12: Unique Labels in a Macro

The maximum label length is shortened to allow for the unique suffix. For example, if the
macro is expanded fewer than 10 times, the maximum label length is 30 characters. If the
macro is expanded from 10 to 999 times, the maximum label length is 29. The label with its
unique suffix is shown in the cross-listing file.

6-19

Macro Language MSP430 Family

6.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your own assembly­
time error and warning messages. These directives are especially useful when you want to
create messages specific to your needs. The last line of the listing file shows the error and
warning counts. These counts alert you to problems in your code and are especially useful
during debugging.

.emsg

.wmsg

.mmsg

sends error messages to the listing file. The .emsg directive generates
errors in the same way the assembler does, incrementing the error count
and preventing the assembler from producing an object file.

sends warning messages to the listing file. The .wmsg directive functions in
the same manner as the .emsg directive but increments the warning count
and does not prevent the generation of an object file.

sends warnings or assembly-time messages to the listing file. The .mmsg
directive functions in the same manner as the .emsg directive but does not
set the error count or prevent the generation of an object file.

Macro comments are comments that appear in the definition of the macro but do not show
up in the expansion of the macro. An exclamation point in column 1 identifies a macro
comment. If you want your comments to appear in the macro expansion, precede your
comment with an asterisk or semicolon.

The example shows user messages in macros and macro comments that will not appear in
the macro expansion.

TEST . MACRO X,y

This macro checks for the correct number of parameters.
The macro generates an error message if x an yare not present.

.if

.emsg

.mexit

.else

.endif

.if

.endif

.endm

($symlen(x) == Ol$symlen(y) == 0)) Test for
proper input

"ERROR - missing parameter in call to TEST"

1 error, no warnings

Example 6.13: Producing Messages in a Macro

6-20

MSP430 Family Macro Language

6.8 Formatting the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide information. You
may need to see this hidden information, so the macro language supports an expanded
listing capability.

By default, the assembler shows macro expansions and false conditional blocks in the list
output file. You may want to turn this listing off or on within your listing file. The assembler
provides three sets of directives that enable you to control the listing of this information.

• Macro and Loop Expansion Listing

.mlist

.mnolist

expands macros and .Ioop/.endloop blocks. The.mlist directive prints to the
listing all code encountered in those blocks. By default, the assembler
behaves as if you had used .mlist.

suppresses the listing expansion of macros and .Ioop/.endloop blocks.

False Conditional Block Listing

.felist

.fenolist

causes the assembler to print to the listing file all false conditional blocks
that do not generate code. Conditional blocks appear in the listing exactly
as they appear in the source code. By default, the assembler behaves as if
you had used .felist.

suppresses the listing of false conditional blocks. Only the code in
conditional blocks that actually assembles appears in the listing. The .if,
.elsif, .else, and .endif directives do not appear in the listing.

Substitution Symbol Expansion Listing

.sslist

.ssnolist

expands substitution symbols in the listing. This is useful for debugging the
expansion of substitution symbols. The expanded line appears below the
actual source line.

turns off substitution symbol expansion in the listing. By default, the
assembler behaves as if you had used .ssnolist.

6-21

Macro Language MSP430 Family

6.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means that you can
call other macros from inside a macro definition. When you use nested macros, you can call
different macros from your macro definition. You can nest macros up to 32 levels deep.
When you use recursive macros, you call a macro from its own definition (the macro calls
itself).

When you create recursive or nested macros, you should pay close attention to the
arguments that you pass to macro parameters because the assembler uses dynamic
scoping for parameters. This means that the called macro uses the environment of the
macro from which it was called.

The following example shows nested macros. Note that the y in the in_block macro hides
the y in the out_block macro. The x and z from the ouCblock macro, however, are accessible
to the in_block macro .

. macro Y,a

.endm

out_block .macro x,y,z

.endm
out_block

Example 6.14: Using Nested Macros

6·22

visible parameters are Y,a and
x,z from the calling macro

visible parameters are x,y,z

macro call with x and y as
arguments

macro call

MSP430 Family Macro Language

The next example shows recursive macros. The fact macro produces assembly code
necessary to calculate the factorial of n where n is an immediate value. The result is placed
in the A register. The fact macro accomplishes this by calling fact1, which calls itself
recursively .

factI

. fcnolist

.macro n

.if n == 1
mov #globcnt, R4

. else
.eval n-l, temp
.eval globcnt*temp, globcnt
factI temp

.endif

.endm

fact .macro n

. if ! $iscons (n)
.emsg "Parm not a constant II

.elseif n < 1
mov #0, R4

.else
.var temp
.asg n, globcnt

factI n

.endif

.endm

Example 6.15: Using Recursive Macros

leave answer in R4 reg .

compute decrement of n
multiply to get new result
recursive call

type check input

type check input

perform recursive procedute

6-23

Macro Language MSP430 Family

6.10 Macro Directives Summary

Creating Macros

Mnemonic and Syntax

macname .macro
[parameter 1}···[parameter nl

.mlib filename

.mexit

.endm

Description

Define macro

Identify library containing macro definitions

Go to .endm

End macro definition

Manipulating Substitution Symbols

Mnemonic and Syntax

.asg ['1character string['1, substitution
symbol

.eval well-defined expression, substitution
symbol

.var substitution symboI1 ... [substitution
symbolnl

Description

Assign character string to substitution
symbol

Perform arithmetic on numeric substitution
symbols

Define local macro symbols

Conditional Assembly

Mnemonic and Syntax Description

.if well-defined expression Begin conditional assembly

.elseif well-defined expression Optional conditional assembly block

.else Optional conditional assembly block

.endif End conditional assembly

.Ioop [well-defined expression} Begin repeatable block assembly

.break [well-defined expression} Optional repeatable block assembly

.endloop End repeatable block assembly

6-24

MSP430 Family Macro Language

Producing Assembly-Time Messages

Mnemonic and Syntax

.emsg

.wmsg

.mmsg

Mnemonic and Syntax

.fclist

.fcnolist

.mlist

.mnolist

.sslist

.ssnolist

Description

Send error message to standard output

Send warning message to standard output

Send assembly-time message to standard
output

Formatting the listing

Description

Allow false conditional code block listing
(default)

Inhibit false conditional code block listing

Allow macro listings (default)

Inhibit macro listings

Allow expanded substitution symbol listing

Inhibit expanded substitution symbol listing
(default)

6-25

Macro Language MSP430 Family

6-26

MSP430 Family

7 Archiver Description

7.1 Archiver Development Flow

7.2 Invoking the Archiver

7.3 Archiver Examples

Fig. Title

7.1 Archiver Development Flow

Note Title

7.1 Naming Library Members

Topics

Figures

Notes

Archiver Description

7-3

7-4

7-5

7-7

Page

7-4

Page

7-6

7-1

Archiver Description MSP430 Family

7-2

MSP430 Family Archiver Description

7 Archiver Description

The MSP430 family archiver lets you combine several individual files into a single file called
an archive or a library. Each file within the archive is called a member. Once you have
created an archive, you can use the archiver to add more files to the library, delete or replace
existing members, or extract members.

You can build libraries out of any type of files. Both the assembler and the linker accept
archive libraries as input; the assembler can use libraries that contain individual source files,
and the linker can use libraries that contain individual object files.

One of the most useful applications of the archiver is to build a library of object modules. For
example, you could write several arithmetic routines, assemble them, and then use the
archiver to collect the object files into a single, logical group. You can then specify an object
library as linker input. The linker will search through the library and include any members that
resolve external references.

You can also use the archiver to build macro libraries. You can create several separate
source files, each of which contains a single macro, and then use the archiver to collect
these macros into a single, functional group. The .mlib assembler directive lets you specify
the name of a macro library to the assembler; during the assembly process, the assembler
will search the specified library for the macros that you call.

7-3

Archiver Description MSP430 Family

7.1 Archiver Development Flow

The figure shows the archiver's role in the assembly language development process. Both
the assembler and the linker accept libraries as input.

EPROM
Programmer

Absolute
Lister

Figure 7.1: Archiver Development Flow

7-4

Software
Simulator Module MSP430

In-Circuit
Emulator

MSP430 Family Archiver Description

7.2 Invoking the Archiver

To invoke the archiver, enter:

ar430 [-]command[option] Iibname [filename 1 ... filenamen]

ar430 is the command that invokes the archiver.

Iibname names an archive library. If you don't specify an extension for Iibname, the
archiver uses the default extension .lib.

filename names individual member files that are associated with the library. If you don't
specify an extension for a filename, the archiver uses the default extension .obj.

command tells the archiver how to manipulate the members in the library. A command can
be preceded by an optional hyphen. You must use one of the following
commands when you invoke the archiver, but you can use only one command
per invocation. These are valid archiver commands:

-a adds the specified files to the library. Note that this command does not
replace an existing member that has the same name as an added file; it
simply appends new members to the end of the archive. It is possible to
have several members with the same name in an archive. If you want to
replace existing members, use the r command.

-d deletes the specified members from the library.

-r replaces the specified members in the library. If you don't specify any
filenames, the archiver replaces the library members with files of the
same name in the current directory. If the specified file is not found in the
library, the archiver adds it instead of replacing it.

-t prints a table of contents of the library. If you specify filenames, only
those files are listed. If you don't specify any filenames, the archiver lists
all the members in the specified library.

-x extracts the specified files. If you don't specify any member names, the
archiver extracts all the members in the library. When the archiver
extracts a member, it simply copies the member into the current
directory; it doesn't remove it from the library.

In addition to one of the commands, you can specify the following options:

-e tells the archiver not to use the default extension .obj for member names.
This allows the use of filenames without extensions.

-q (quiet) suppresses the banner and status messages.

-s prints a list of the global symbols that are defined in the library. (This
option is valid only with the -a, -r, and -d commands.)

-v (verbose) provides a file-by-file description of the creation of a new
library from an old library and its constituent members.

7-5

Archiver Description MSP430 Family

Note: Naming Library Members

It is possible (but not desirable) for a library to contain several members with the same
name. If you attempt to delete, replace, or extract a member, and the library contains more
than one member with the specified name, the archiver deletes, replaces, or extracts the
first member with that name.

7-6

MSP430 Family Archiver Description

7.3 Archiver Examples

Here are some examples of using the archiver.

Example 1

This example creates a library called function.lib that contains the files sine.obj, cos.obj,
and flt.obj.

ar430 -a function sine cos fIt
MSP430 Archiver Version 1.00
Copyright Ie) 1994 Texas Instruments Incorporated

==> new archive 'function.lib'
~~> building archive 'function. lib'

Because these examples use the default extensions (.lib for the library and .obj for the
members), it is not necessary to specify them.

Example 2

You can print a table of contents of function. lib with the ·t option:

ar430 -t function
MSP430 Archiver Version 1.00
Copyright Ie) 1994 Texas Instruments Incorporated

FILE NAME SIZE DATE

sine.obj
cos.obj
flt.obj

Example 3

248
248
248

Mon Feb 14 01:25:44 1994
Mon Feb 14 01:25:44 1994
Mon Feb 14 01:25:44 1994

You can explicitly specify extensions if you don't want the archiver to use the default
extensions; for example:

ar430 -av function.fn sine.asm cos.asm flt.asrn
MSP430 Archiver Version 1.00
Copyright Ie) 1994 Texas Instruments Incorporated

==> add 'sine.asm'
~~> add 'cos.asm'
~~> add 'flt.asm'
~~> building archive 'function.fn'

This creates a library called function.fn that contains the files sine.asm, cos.asm, and
flt.asm. (·v is the verbose option.)

Example 4

If you want to add new members to the library, specify

ar430 -as function tan.obj arctan.obj area.obj
MSP430 Archiver Version 1.00
Copyright Ic) 1994 Texas Instruments Incorporated

~~> symbol defined: 'R2D2'
~~> symbol defined: 'Christmas'
~~> building archive 'function. lib'

Because this example doesn't specify an extension for the libname, the archiver adds the
files to the library called function.lib. If function.lib didn't exist, the archiver would create it.
(The -s option tells the archiver to list the global symbols that are defined in the library.)

7-7

Archiver Description MSP430 Family

Example 5

If you want to modify a member in a library, you can extract it, edit it, and replace it. In
this example, assume there's a library named macros.lib that contains the members
push.asm, pop.asm, and swap.asm.

ar430 -x macros push.asm

The archiver makes a copy of push.asm and places it in the current directory; it doesn't
remove push.asm from the library, though. Now you can edit the extracted file. To
replace the copy of push.asm that's in the library with the edited copy, enter:

ar430 -r macros push.asm

7-8

MSP430 Family

8

8.1

Linker Description

Linker Development Flow

8.2 Invoking the Linker

8.3 Linker Options

Topics

8.3.1 Relocation Capabilities (-a and -r Options)
8.3.2 C Language Options (-c and ocr Options)
8.3.2 Define an Entry Point (-e global symbol Option)
8.3.3 Set Default Fill Value (-f cc Option)
8.3.4 Make All Global Symbols Static (-h Option)
8.3.3 Define Heap Size (-heap constant Option)
8.3.5 Alter the Library Search Algorithm (-i dir Option/C_DIR)
8.3.6 Create a Map File (-m filename Option)
8.3.9 Ignore the Memory Directive Fill Specification (-n option)
8.3.7 Name an Output Module (-0 filename Option)
8.3.8 Specify a Quiet Run (-q Option)
8.3.9 Strip Symbolic Information (-s Option)
8.3.4 Define Stack Size (-sstack and -hstack Options)
8.3.5 Introduce an Unresolved Symbol (-u symbol Option)
8.3.6 Exhaustively Read Libraries (-x option)

8.4 Command Files

8.5 Object Libraries

8.6 The MEMORY Directive
8.6.1 Default Memory Model
8.6.2 MEMORY Directive Syntax

8.7
8.7.1
8.7.2
8.7.3
8.7.4

8.8
8.8.1
8.8.2
8.8.3

8.9
8.9.1
8.9.2

The SECTIONS Directive
Default Sections Configuration
SECTIONS Directive Syntax
Specifying the Address of Output Sections (Allocation)
Specifying Input Sections

Specifying a Section's Runtime Address
Specifying Two Addresses
Uninitialized Sections
Referring to the Load Address by Using the .Iabel Directive

Using UNION and GROUP Statements
Overlaying Sections With the UNION Statement
Grouping Output Sections Together

8.10 Overlay Pages
8.10.1 Using the MEMORY Directive to Define Overlay Pages
8.10.2 Using Overlay Pages With the SECTIONS Directive
8.10.3 Syntax of Page Definitions

Linker Description

8-5

8-6

8-7

8-9
8-10
8-11
8-11
8-11
8-11
8-12
8-12
8-14
8-14
8-14
8-14
8-15
8-15
8-15
8-15

8-16

8-19

8-20
8-20
8-20

8-23
8-23
8-23
8-26
8-28

8-31
8-31
8-32
8-32

8-35
8-35
8-38

8-39
8-39
8-39
8-39

8-1

Linker Description

8.11 Default Allocation Algorithm
8.11.1 Default Allocation
8.11.2 General Rules for Forming Output Sections

8.12 Special Section Types (DSECT, COPY, and NOLOAD)

8.13 Assigning Symbols at link Time
8.13.1 Syntax of Assignment Statements
8.13.2 Assigning the SPC to a Symbol
8.13.3 Assignment Expressions
8.13.4 Symbols Defined by the linker

8.14 Creating and Filling Holes
8.14.1 Initialized and Uninitialized Sections
8.14.2 Creating Holes
8.14.3 Filling Holes
8.14.4 Explicit Initialization of Uninitialized Sections
8.14.5 Examples of Using Initialized Holes

8.15 Partial (Incremental) linking

8.16 linking C Code
8.16.1 Runtime Initialization
8.16.2 Object libraries and Runtime Support
8.16.3 Setting the Size of the Stack and Heap Sections
8.16.4 Autoinitialization (ROM and RAM Models)
8.16.5 The -c and -cr linker Options

8.17 linker Example

Examples

Ex. Title

8.1 linker Command File

8.2 Command File With linker Directives

8.3 The SECTIONS Directive

8.4 The Most Common Method of Specifying Section Contents

8.5 Copying a Section From ROM to RAM

8.6 Illustration of the Form of the UNION Statement

8.7 Illustration of Separate Load Addresses for UNION Sections

8.8 Overlay Page

8-2

MSP430 Family

8-39
8-39
8-40

8-41

8-42
8-42
8-42
8-43
8-44

8-45
8-45
8-45
8-47
8-48
8-49

8-50

8-51
8-51
8-51
8-52
8-52
8-52

8-52

Page

8-16

8-17

8-24

8-28

8-33

8-35

8-37

8-39

MSP430 Family

Figures

Fig. Title

8.1 Linker Development Flow

8.2 Section Allocation

8.3 Runtime Execution

8.4 Runtime Memory Allocation

8.5 Load and Run Memory Allocation

8.6 Initialized Hole

8.7 RAM Model of Autoinitialization

8.8 ROM Model of Autoinitialization

8.7 Linker Command File, demo.cmd

8.8 Output Map File, demo.map

Tables

Table Title

8.1 Linker Options Summary

8.2 Operators in Assignment Expressions

Note Title

8.1

Filling Memory Ranges

Compatibility With Previous Versions

Notes

Binding and Alignment or Named Memory Are Incompatible

You Cannot Specify Addresses for Sections Within a Group

The Sections Directive

Filling Sections

Unions and Overlay Pages Are Not the Same

The PAGE Option

Linker Description

Page

8-6

8-25

8-34

8-36

8-37

8-49

8-52

8-52

8-53

8-54

Page

8-9

8-44

Page

8-22

8-23

8-27

8-38

8-39

8-48

8-54

8-54

8-3

Linker Description MSP430 Family

8-4

MSP430 Family Linker Description

8 Linker Description

The MSP430 family linker creates executable modules by combining COFF object files. The
concept of COFF sections is basic to linker operation.

As the linker combines object files, it:

allocates sections into the target system's configured memory

relocates symbols and sections to assign them to final addresses

resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and
address binding. The language supports expression assignment and evaluation and
provides two powerful directives, MEMORY and SECTIONS, that allow you to:

define a memory model that conforms to target system memory

combine object file sections

allocate sections into specific areas of memory

define or redefine global symbols at link time

8-5

Linker Description MSP430 Family

8.1 Linker Development Flow

The following figure illustrates the linker's role in the assembly language development
process. The linker accepts several types of files as input, including object files, command
files, libraries, and partially linked files. The linker creates an executable COFF object
module that can be downloaded to one of several development tools or executed by a
MSP430 device.

EPROM
Programmer

Absolute
Lister

Figure 8.1: Linker Development Flow

8-6

MSP430 Software Evaluation In-Circuit
Simulator Module Emulator

MSP430 Family

8.2 Invoking the Linker

The general syntax for invoking the linker is:

Ink430 [-option] filename1 ... filenamen

Ink430 is the command that invokes the linker.

options

Linker Description

can appear anywhere on the command line or in a linker command file. (Options are
discussed in Section 8.3.)

filenames

can be object files, linker command files, or archive libraries. The default extension
for all input files is .obj; any other extension must be explicitly specified. The linker
can determine whether the input file is an object file or an ASCII file that contains
linker commands. The default output filename is a.out.

There are three methods for invoking the linker:

Specify options and filenames on the command line. This example links two files, file1.obj
and file2.obj, and creates an output module named link. out.

lnk430 filel.obj file2.obj -0 link.out

Enter the Ink430 command with no filenames and no options; the linker will prompt for
them:

Command files :
Object files [.obj]
Output files [] :
Options :

For command files, enter one or more command file names.

For object files, enter one or more object file names. The default extension is .obj.
Separate the filenames with spaces or commas; if the last character is a comma, the
linker will prompt for an additional line of object file names.

The output file is the name of the linker output module. This overrides any -0 options
entered with any of the other prompts. If there are no -0 options and you do not answer
this prompt, the linker will create an object file with a default filename of a.out.

The options prompt is for additional options, although you can also enter them in a
command file. Enter them with hyphens, just as you would on the command line.

Put filenames and options in a linker command file. For example, assume the file
linker.cmd contains the following lines:

-0 link.out
filel. obj
file2.obj

Now you can invoke the linker from the command line; specify the command file name as
an input file:

8-7

Linker Description MSP430 Family

lnk430 linker.cmd

When you use a command file, you can also specify other options and files on the
command line. For example, you could enter:

lnk430 -m link.map linker.cmd file3.obj

The linker reads and processes a command file as soon as it encounters it on the
command line, so it links the files in this order: file1.obj, file2.obj, and file3.obj. This
example creates an output file called link. out and a map file called link.map.

8-8

MSP430 Family Linker Description

8.3 Linker Options

Linker options control linking operations. They can be placed on the command line or in a
command file. Linker options must be preceded by a hyphen (-). The order in which options
are specified is unimportant, except for the -I and -i options. Options are separated from
arguments (if they have them) by an optional space.

Option Description
-a Produce an absolute, executable module. This is the default; if neither

-a nor -r is specified, the linker acts as if -a is specified.
oar Produce a relocatable, executable object module.
-e global symbol Define a global symbol that specifies the primary entry point for the

output module.

-f fill value Set the default fill value for holes within output sections; fill value is a
16-bit constant.

-h Make all global symbols static.

-i dirt Alter the library-search algorithm to look in dir before looking in the
default location. This option must appear before the -I option.

-I filenamet Name an archive library file as linker input; filename is an archive
library name.

-m filenamet Produce a map or listing of the input and output sections, including
holes, and place the listing in filename.

-0 filenamet Name the executable output module. The default filename is a.out.
-q Request a quiet run (suppress the banner).

-r Retain relocation entries in the output module.
-s Strip symbol table information and line number entries from the output

module.

-u symbol Place an unresolved external symbol into the output module's symbol
table.

-x Force rereading of libraries. Resolves "back" references.
-z filenamet Produce an additional byte formatted ASCII file loadable by the

evaluation module. The default filename is the output filename with
the extension .txt.

t The filename must follow operating system conventions.

Table 8.1: Linker Options Summary

8-9

Linker Description MSP430 Family

8.3.1 Relocation Capabilities (-a and -r Options)

One of the tasks the linker performs is relocation. Relocation is the process of adjusting all
references to a symbol when the symbol's address changes. The linker supports two options
(-a and or) that allow you to produce an absolute or a relocatable output module. Default is -
a.

Producing an Absolute Output Module (-a Option)

When you use the -a option without the -r option, the linker produces an absolute,
executable output module. Absolute files contain no relocation information. Executable
files contain the following:

special symbols defined by the linker
an optional header that describes information such as the program entry point
no unresolved references

This example links file1.obj and file2.obj and creates an absolute output module called
a.out:

Ink430 -a filel.obj file2.obj

Producing a Relocatable Output Module (-r Option)

When you use the -r option without the -a option, the linker retains relocation entries in
the output module. If the output module will be relocated (at load time) or relinked (by
another linker execution), use -r to retain the relocation entries.

The linker produces an unexecutable file when you use the -r option without -a. A file that
is not executable does not contain special linker symbols or an optional header. The file
may contain unresolved references, but these references do not prevent creation of an
output module.

This example links file1.obj and file2.obj and creates a relocatable output module called
a.out:

Ink430 -r filel.obj file2.obj

The output file a.out can be relinked with other object files or relocated at load time.
(Linking a file that will be relinked with other files is called partial linking)

Producing an Executable Relocatable Output Module (-ar)

If you invoke the linker with both the -a and -r options, the linker produces an executable,
relocatable object module. The output file contains the special linker symbols, an optional
header, and all resolved symbol references, but the relocation information is retained.

This example links file1.obj and file2.obj and creates an executable, relocatable output
module called xr.out:

Ink430 oar filel.obj file2.obj -0 xr.out

Note that you can string the options together (Ink430 oar) or you can enter them
separately (Ink430 -a or).

8-10

MSP430 Family Linker Description

Relocating or Relinking an Absolute Output Module

The linker issues a warning message (but continues executing) when it encounters a file
that contains no relocation or symbol table information. Relinking an absolute file can be
successful only if each input file contains no information that needs to be relocated (that
is, each file has no unresolved references and is bound to the same virtual address that it
was bound to when the linker created it).

8.3.2 Define an Entry Point (-e global symbol Option)

The memory address that a program begins executing from is called the entry point. When
a loader loads a program into target memory, the program counter must be initialized to the
entry point; the PC then pOints to the beginning of the program.

The linker can assign one of four possible values to the entry point. These values are listed
below in the order in which the linker tries to use them. If you use one of the first three
values, it must be an external symbol in the symbol table. Possible entry point values
include:

The value specified by the -e option. The syntax is -e global symbol where global symbol
defines the entry point and must appear as an external symbol in one of the input files.

Zero (default value).

This example links file1.obj and file2.obj. The symbol begin is the entry point; begin must be
defined as external in file1 or file2.

Ink430 -e begin filel.obj file2.obj

8.3.3 Set Default Fill Value (of cc Option)

The -f option fills the holes formed within output sections or initializes uninitialized sections
when they are combined with initialized sections. This allows you to initialize memory areas
during link time without reassembling a source file. The argument cc is a 16-bit constant (up
to four hexadecimal digits). If you do not use of, the linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCD:

Ink430 -f OABCDh filel.obj file2.obj

8.3.4 Make All Global Symbols Static (-h Option)

The -h option makes output global symbols static. This is useful when you are using partial
linking to link related object files into self-contained modules, then relinking the modules
together into a final system. If there are global symbols in one module that have the same
name as global symbols in other modules, but you want to treat them as separate symbols,
use the -h option when building the modules. The global symbols in the· modules, which

8-11

Linker Description MSP430 Family

would normally be visible to the other modules and cause possible redefinition problems in
the final link, are made static so they are not visible to the other modules.

For example, assume b1.obj. b2.obj. and b3.obj are related and reference a global variable
GLOB. Also assume that d1.obj, d2.obj. and d3.obj are related and reference a separate
global variable GLOB. You can link the related files together with the following commands:

lnk430 -h -r bl.obj b2.obj b3.obj -0 bpart.out
lnk430 -h -r dl.obj d2.obj d3.obj -0 dpart.out

The -h option guarantees that bpart.out and dpart.out will not have global symbols and
therefore two distinct versions of GLOB exist. The -r option is used to allow bpart.out and
dpart.out to retain their relocation entries. These two partially linked files can then be linked
together safely with the following command:

lnk430 bpart.out dpart.out -0 system. out

8.3.5 Alter the Library Search Algorithm (-i dir Option/C_DIR)

Usually, when you want to specify a library as linker input, you simply enter the library name
as you would any other input filename; the linker looks for the library in the current directory.
For example, suppose the current directory contains the library objectlib. Assume that this
library defines symbols that are referenced in the file file1.obj. This is how you link the files:

lnk430 filel.obj object. lib

If you want to use a library that is not in the current directory, use the -I (lowercase "L") linker
option. The syntax for this option is -I filename. The filename is the name of an archive
library; the space between -I and the filename is optional.

You can augment the linker's directory search algorithm by using the -i linker option or the
environment variable. The linker searches for object libraries in the following order:

1) It searches directories named with the -i linker option.
2) It searches directories named with the environment variable C_DIR.
3) If C_DIR is not set, it searches directories named with the assembler's environment

variable, A_DIR.
4) It searches the current directory.

-i Linker Options

The -i linker option names an alternate directory that contains object libraries. The syntax for
this option is -i dir. dir names a directory that contains object libraries; the space between -i
and the directory name is optional. When the linker is searching for object libraries named
with the -I option, it searches through directories named with -i first. Each -i option specifies
only one directory, but you can use several -i options per invocation. When you use the -i
option to name an alternate directory, it must precede the -I option on the command line or in
a command file.

8-12

MSP430 Family Linker Description

As an example, assume that there are two archive libraries called r.lib and lib2.lib. The table
below shows the directories that r.lib and Iib2.lib reside in, how to set environment variable,
and how to use both libraries during a link.

Path name Invocation Command

DOS \Id and \ld2 Ink430 f1.obj f2.obj -i\ld -i\ld2 -Ir.lib -lIib2.lib

Environment Variable (C_DIR)

An environment variable is a system symbol that you define and assign a string to. The linker
uses an environment variable named C_DIR to name alternate directories that contain object
libraries. The command for assigning the environment variable is:

DOS set C_DIR~pathname;another path name ...

The pathnames are directories that contain object libraries. Use the -I option on the
command line or in a command file to tell the linker which libraries to search for.

As an example, assume that two archive libraries called r.lib and lib2.lib reside in Id and Id2
directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set
the environment variable, and how to use both libraries during a link.

Pathname Invocation Command

DOS \ld and \ld2 set C_DIR~\ld;\ld2

1nk430 fl.obj f2.obj -1 r.1ib -1 1ib2.1ib

Note that the environment variable remains set until you reboot the system or reset the
variable by entering:

DOS set

The assembler uses an environment variable named A DIR to name alternate directories
that contain copy/include files or macro libraries. If C_DIR is not set, the linker will search for
object libraries in the directories named with A_DIR.

8-13

Linker Description MSP430 Family

8.3.6 Create a Map File (-m filename Option)

The -m option creates a link map listing and puts it in filename. This map describes:

Memory configuration.

Input and output section allocation.

The addresses of extemal symbols after they have been relocated.

The map file contains the name of the output module and the entry pOint; it may also contain
up to three tables:

A table showing the new memory configuration if any nondefault memory is specified.

A table showing the linked addresses of each output section and the input sections that
make up the output sections.

A table showing each external symbol and its address. This table has two columns: the
left column contains the symbols sorted by name, and the right column contains the
symbols sorted by address.

This example links file1.obj and file2.obj and creates a map file called map.out:

Ink430 filel.obj file2.obj -m map.out

8.3.7 Name an Output Module (-0 filename Option)

The linker creates an output module when no errors are encountered. If you do not specify
a filename for the output module, the linker gives it the default name a.out. If you want to
write the output module to a different file, use the -0 option. The filename is the new output
module name.

This example links file1.obj and file2.obj and creates an output module named run.out:

Ink430 -0 run.out filel.obj file2.obj

8.3.8 Specify a Quiet Run (-q Option)

The -q option suppresses the linker's banner when -q is the first option on the command line
or in a command file. This option is useful for batch operation.

8-14

MSP430 Family Linker Description

8.3.9 Strip Symbolic Information (-s Option)

The -s option creates a smaller output module by omitting symbol table information and line
number entries. The -s option is useful for production applications when you must create the
smallest possible output module.

This example links file1.obj and file2.obj and creates an output module, stripped off line
numbers and symbol table information, named nosym.out:

lnk430 -0 nosyrn.out -s filel.obj file2.obj

Note that using the -s option limits later use of a symbolic debugger and may prevent a file
from being relinked.

8.3.5 Introduce an Unresolved Symbol (-u symbol Option)

The -u option introduces an unresolved symbol into the linker's symbol table. This forces the
linker to search through a library and include the member that defines the symbol. Note that
the linker must encounter the -u option before it links in the member that defines the symbol.

For example, suppose a library named rts.lib contains a member that defines the symbol
symtab; none of the object files you are linking reference symtab. Suppose you plan to rei ink
the output module, however, and you would like to include the library member that defines
symtab in this link. Using the -u option as shown below forces the linker to search rts.lib for
the member that defines symtab and to link in the member.

lnk430 -u symtab filel.obj file2.obj rts.lib

If you do not use -u, this member is not included, because there is no explicit reference to it
in file1.obj or file2.obj.

8.3.6 Exhaustively Read Libraries (-x option)

8-15

Linker Description MSP430 Family

The linker normally reads input files, archive libraries included, only once: when they are
encountered on the command line or in the command file. When an archive is read, any
members that resolve references to undefined symbols are included in the link. If an input file
later references a symbol defined in a previously read archive library (this is called a back
reference), the reference will not be resolved.

You can force the linker to repeatedly reread all libraries with the -x option. The linker will
continue to reread libraries until no more references can be resolved. For example, if a.lib
contains a reference to a symbol defined in b.lib, and b.lib contains a reference to a symbol
defined in a.lib, you can resolve the mutual dependencies by listing one of the libraries twice,
as in:

Ink430 -la.lib -lb. lib -la.lib

or you can force the linker to do it for you:

Ink430 -x -la.lib -lb.lib

Linking with the -x option may be slower, so you should use the option only as needed.

8-16

MSP430 Family Linker Description

8.4 Command Files

Linker command files allow you to put linking information in a file; this is useful when you
often invoke the linker with the same information. Linker command files are also useful
because they allow you to use the MEMORY and SECTIONS directives to customize your
application. You must use these directives in a command file; you cannot use them on the
command line. Command files are ASCII files that contain one or more of the following:

Input file names, which specify object files, archive libraries, or other command files. (If a
command file calls another command file as input, this statement must be the last
statement in the calling command file. The linker does not retum from called command
files.)

Linker options, which can be used in the command file in the same manner that they are
used on the command line.

The MEMORY and SECTIONS linker directives. The MEMORY directive defines the
target memory configuration. The SECTIONS directive controls how sections are built
and allocated.

Assignment statements, which define and assign values to global symbols.

To invoke the linker with a command file, enter the Ink430 command and follow it with the
name of the command file:

Ink430 command file name

The linker processes input files in the order that it encounters them. If the linker recognizes a
file as an object file, it links the file. Otherwise, it assumes that a file is a command file and
begins reading and processing commands from it.

The example shows a sample linker command file called link.cmd.

/**/
/* Sample Linker Command File */
/**/
a.obj
b.obj
-0 prog.out
-m prog.map

/* First input filename
/* Second input filename
/* Option to specify output file
/* Option to specify map file

Example 8.1: Linker Command File

*/
*/
*/
*/

This sample file contains only filenames and options. (Note that you can place comments in
a command file by delimiting them with /* and */.) To invoke the linker with this command file,
enter:

lnk430 link.cmd

You can place other parameters on the command line when you use a command file:

lnk430 -r link.cmd c.obj d.obj

8-17

Linker Description MSP430 Family

The linker processes the command file as soon as it encounters it, so a.obj and b.obj are
linked into the output module before c.obj and d.obj.

You can specify multiple command files. If, for example, you have a file called names.lst that
contains filenames and another file called dir.cmd that contains linker directives, you could
enter:

lnk430 names.lst dir.cmd

One command file can call another command file; this type of nesting is limited to 16 levels.
If a command file calls another command file as input, this statement must be the last
statement in the calling command file.

Blanks and blank lines that appear in a command file are insignificant except as delimiters.
This applies to the format of linker directives in a command file, also. The following example
shows a sample command file that contains linker directives. (Linker directive formats are
discussed in later sections.)

/***/

/* Sample Linker Command File with Directives */
/***/

a.obj b.obj c.obj

-0 prog.out -m prog.map

MEMORY
{

RAM:

ROM:

SECTIONS
{

.text:

.data:

.bss:

origin

origin

> ROM

> ROM

> RAM

200h
OFOOOh

/* Input filenames
/* Options

/* MEMORY directives

length OlOOh
length lOOOh

/* SECTION directives

Example 8.2: Command File With Linker Directives

8-18

*/

*/

*/

*/

MSP430 Family Linker Description

The following names are reserved as keywords for linker directives. Do not use them as
symbol or section names in a command file.

align GROUP origin
ALIGN I (lowercase L) ORIGIN
attr len page
ATTR length PAGE
block LENGTH range
BLOCK load run
COPY LOAD RUN
DSECT MEMORY SECTIONS
f NOLOAD spare
FILL 0 type
fill org TYPE
group UNION

Constants in Command Files

Constants can be specified with either of two syntax schemes: the scheme used for
specifying decimal, octal, or hexadecimal constants used in the assember or the scheme
used for integer constants in "c" syntax.

8-19

Linker Description MSP430 Family

8.5 Object Libraries

An object library is a partitioned archive file that contains complete object files as members.
Usually, a group of related modules are grouped together into a library. When you specify an
object library as linker input, the linker includes any members of the library that define
existing unresolved symbol references. You can use the MSP430 archiver to build and
maintain libraries.

Using object libraries can reduce link time and can reduce the size of the executable module.
If a normal object file that contains a function is specified at link time, it is linked whether it is
used or not; however, if that same function is placed in an archive library, it is included only if
it is referenced.

The order in which libraries are specified is important because the linker includes only those
members that resolve symbols that are undefined when the library is searched. The same
library can be specified as often as necessary; it is searched each time it is included, or the -
x option may be used. A library has a table that lists all external symbols defined in the
library; the linker searches through the table until it determines that it cannot use the library
to resolve any more references.

This example links several files and libraries. Assume the following:

Input files f1.obj and f2.obj both reference an external function named clrscr.

Input file f1.obj references the symbol origin.

Input file f2.obj references the symbol fillclr.

Library libc.lib, member 0, contains a definition of origin.

Library liba.lib, member 3, contains a definition of fillclr.

Member 1 of both libraries defines clrscr.

If you enter Ink430 f1.obj liba.lib f2.obj libc.lib:

Member 1 of liba.lib satisfies both references to clrscr because the library is searched
and clrscr is defined before f2.obj references it.

Member 0 of libc.lib satisfies the reference to origin.

Member 3 of liba.lib satisfies the reference to fillclr.

If, however, you enter Ink430 f1.obj f2.obj libc.lib liba.lib, the references to clrscr are satisfied
by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use the -u option to
force the linker to include a library member. The next example creates an undefined symbol
rout1 in the linker's global symbol table:

Ink430 -u routl libc.lib

8-20

MSP430 Family Linker Description

If any members of libc.lib define rout1, the linker includes those members. Note that it is not
possible to control the allocation of individual library members; members are allocated
according to the SECTIONS directive default allocation algorithm.

8-21

Linker Description MSP430 Family

8.6 The MEMORY Directive

The linker determines where output sections should be allocated into memory; the linker
must have a model of target memory to accomplish this task. The MEMORY directive allows
you to specify a model of target memory so that you can define the types of memory your
system contains and the address ranges they occupy. The linker maintains the model as it
allocates output sections and uses the model to determine which memory locations can be
used for object code.

The memory configurations of MSP430 systems differ from application to application. The
MEMORY directive allows you to specify a variety of configurations. After you use the
MEMORY directive to define a memory model, you can use the SECTIONS directive to
allocate output sections into defined memory.

8.6.1 Default Memory Model

The linker's default memory model is based on the MSP430 architecture. This model
assumes that the following memory is available:

256 bytes of RAM, beginning at location 200h

4K bytes of ROM, beginning at location OFOOOh.

If you do not use the MEMORY directive, the linker uses this default memory model.

8.6.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target
system and can be used by a program. Each range of memory has several characteristics:

Name

Starting address

Length

Optional set of attributes

Optional fill specification

When you use the MEMORY directive, be sure to identify all the memory ranges that are
available to load code into. Any memory that you do not explicitly account for with the
MEMORY directive is unconfigured. The linker does not place any part of a program into
unconfigured memory. You can represent nonexistent memory spaces by simply not
including an address range in a MEMORY directive statement.

8-22

MSP430 Family Linker Description

The MEMORY directive is specified in a command file by the word MEMORY (uppercase),
followed by a list of memory range specifications enclosed in braces. For example, you could
use the MEMORY directive to specify a memory configuration as follows:

/**/
/* Sample command file with MEMORY directive */
/**/
filel.obj file2.abj /* Input files */
-0 prag.aut /* Options */

MEMORY
{

RAM: origin 200h length lOOh
ROM: origin OFOOOh length lOOOh

You could then use the SECTIONS directive to link the .bss section into the memory area
named RAM, .text into ROM, and .data into ROM.

The general syntax for the MEMORY directive is:

MEMORY
{

name 1 [(attr)] : origin = constant, length = constant, fill = constant

name n [(attr)] : origin = constant, length = constant, fill = constant
}

name Names a memory range. A memory name may be 1 to 8 characters; valid characters
include A-Z, a-z, $, ., and _. The names have no special significance to the linker;
they simply identify memory ranges. Memory range names are internal to the linker
and are not retained in the output file or in the symbol table.

attr Specifies 1 to 4 attributes associated with the named range. Attributes are optional;
when used, they must be enclosed in parentheses. Attributes can restrict the
allocation of output sections into certain memory ranges. If you do not use any
attributes, you can allocate any output section into any range with no restrictions. Any
memory for which no attributes are specified (including all memory in the default
model) has all four attributes. Valid attributes include:

R Specifies that the memory can be read.

W Specifies that the memory can be written to.

X Specifies that the memory can contain executable code.

Specifies that the memory can be initialized.

origin Specifies the starting address of a memory range and may be abbreviated as org or
o. The value, specified in bytes, is a long integer constant and may be decimal, octal,
or hexadecimal.

8-23

Linker Description MSP430 Family

length Specifies the length of a memory range and may be abbreviated as len or I. The
value, specified in bytes, is a long integer constant and may be decimal, octal, or
hexadecimal.

fill Specifies a fill character for the memory range and may be abbreviated as f. Fills are
optional. The value is a two-byte integer constant and may be decimal, octal, or
hexadecimal. The fill value will be used to fill any areas of the memory range that are
not allocated to a section.

Note: Filling Memory Ranges

If you specify fill values for large memory ranges, your output file will be very large
because filling a memory range (even with zeros) causes raw data to be generated for all
unallocated blocks of memory in the range.

The following example specifies a memory range with the Rand W attributes and a fill
constant of OFFFFh:

MEMORY
{

RFILE (RW) : a = 02h, 1 = OFEh, f = OFFFFh

You normally use the MEMORY directive in conjunction with the SECTIONS directive to
control allocation of output sections. After you use the MEMORY directive to specify the
target system's memory model, you can use the SECTIONS directive to allocate output
sections into specific named memory ranges or into memory that has specific attributes.

8-24

MSP430 Family Linker Description

8.7 The SECTIONS Directive

The SECTIONS directive tells the linker how to combine sections from input files into
sections in the output module and where to place the output sections in memory. In
summary, the SECTIONS directive:

Describes how input sections are combined into output sections.

Defines output sections in the executable program.

Specifies where output sections are placed in memory (in relation to each other and to
the entire memory space).

Permits renaming of output sections.

8.7.1 Default Sections Configuration

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining
and allocating the sections.

8.7.2 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase),
followed by a list of output section specifications enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS
{

name: [property, property, property, ... 1
name: [property, property, property, ... 1
name: [property, property, property, ... 1

Each section specification, beginning with name, defines an output section. (An output
section is a section in the output file.) After the section name is a list of properties that define
the section's contents and how it is allocated. The properties may be separated by optional
commas. Possible properties for a section are:

load allocation defines where in memory the section is to be loaded.
Syntax: load = allocation or

allocation or
> allocation

run allocation defines where in memory the section is to be run.
Syntax: run = allocation or

run> allocation

input sections defines the input sections composing the section.
Syntax: { inpuCsections }

Linker Description

section type defines flags for special section types.
Syntax: type = COpy or

type = DSECT or
type = NOLOAD

For more information on section types, see Section 8.12.

fill value
Syntax:

defines the value used to fill uninitialized "holes"
fill = value or
name: ... { ... } = value

For more information on creating and filling holes, see Section 8.14.

MSP430 Family

The example shows a SECTIONS directive in a sample linker command file. The figure on
the next page shows how these sections are allocated in memory.

/**/

/* Sample command file with SECTIONS directives */

/**/

file1.obj file2.obj
-0 prog.out

SECTIONS

.text:

.canst:

load

load

.bss: load

.vectors: load

ROM
ROM, run
RAM

OFFEOh

t1.obj (.intvec1)
t2.obj (.intvec2)

endvec

.data: align 16

Example 8.3: The SECTIONS Directive

8-26

ODOOOh

/* Input files

/* Options

*/

*/

MSP430 Family Linker Description

The figure shows the five output sections defined by the sections directive in the last
example: .vectors, .text, .const, .bss, and .data.

ROM

.vectors
The .vectors section is composed of the

- bound at OFFEOh .intvec1 section from t1.obj and the .intvec2
section from t2.obj.

- allocated in ROM

- allocated in RAM

The .text section combines the .text sections
from file1.obj and file2.obj. The linker combines
all sections named .text into section.

The .const section combines the .const sec­
tions from file1.obj and file2.obj. The application
must relocate the section to run at ODOOOh.

The .bss section combines the .bss sections
from file1.obj and file2.obj

iDiDiDilIi!E:l;l _ aligned on 16-by1e boundary
~--~------------------------,

Figure 8.2: Section Allocation

The .data section combines the .data sections
from file1.obj and file2.obj. The linker will place it
anywhere there is space for it (in RAM in this
illustration) and align it to a 16-byte boundary.

8-27

Linker Description MSP430 Family

8.7.3 Specifying the Address of Output Sections (Allocation)

The linker assigns each output section two locations in target memory: the location where
the section will be loaded and the location where it will be run. Usually, these are the same,
and you can think of each section as having only a single address. In any case, the process
of locating the output section in the target's memory and assigning its address(es) is called
allocation.

If you do not tell the linker how a section is to be allocated, it uses a default algorithm to
allocate the section. Generally, the linker puts sections wherever they fit into configured
memory. You can override this default allocation for a section by defining it within a
SECTIONS directive and providing instructions on how to allocate it.

You control allocation by specifying one or more allocation parameters. Each parameter
consists of a keyword, an optional equals sign or greater-than sign, and a value optionally
enclosed in parentheses. If load and run allocation is separate, all parameters following the
keyword LOAD apply to load allocation, and those following RUN apply to run allocation.
Possible allocation parameters are:

binding allocates a section at a specific address
.text: load = Ox1000

memory allocates the section into a range defined in the MEMORY directive with the
specified name or attributes
.text: load> ROM

alignment specifies that the section should start on an address boundary
.text: align = Ox100

blocking specifies that the section must fit between two address boundaries: for
example, on a single data page .
. text: block(Ox100)

For the load (usually the only) allocation, you may simply use a greater-than sign and omit
the LOAD keyword:

.text: > ROM

.text: > Ox4000
.text: { ...) > ROM

If more than one parameter is used, you can string them together as follows:

.text: > ROM align 16

Or if you prefer, use parentheses for readability:

.text: load = (ROM align(16))

Binding ----------------------------­

You can supply a specific starting address for an output section by following the section
name with an address:

.text: Ox4000

8-28

MSP430 Family Linker Description

This example specifies that the .text section must begin at location 4000h. The binding
address must be a 16-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough
space), but they cannot overlap. If there is not enough space to bind a section to a specified
address, the linker issues an error message.

Note: Binding and Alignment or Named Memory Are Incompatible

You cannot bind a section to an address if you use alignment or named memory. If you try
to do this, the linker issues an error message.

Memory--

You can allocate a section into a memory range that is defined by the MEMORY directive.
This example names ranges and links sections into them:

MEMORY
{

ROM (RIX) :
RAM (RWIX):

SECTIONS
{

.text

.data

.bss

origin Oh, length
origin ODOOOh, length

> ROM
> RAM,
> RAM

ALIGN=64

lOOOh
lOOOh

In this example, the linker places .text into the area called ROM. The .data and .bss output
sections are allocated into RAM. You can align a section within a named memory range; the
.data section is aligned on a 64-word boundary within the RAM range.

Similarly, you can link a section into an area of memory that has particular attributes. To do
this, specify a set of attributes (enclosed in parentheses) instead of a memory name. Using
the same MEMORY directive declaration, you can specify:

SECTIONS
{

.text: > (X) /* .text --> executable memory */

.data: > (RI) /* .data --> read or init memory */

.bss : > (RW) /* .bss --> read or write memory */

In this example, the .text output section can be linked into either the ROM or RAM area
because both areas have the X attribute. The .data section can also go into either ROM or
RAM because both areas have the R and I attributes. The .bss output section, however,
must go into the RAM area because only RAM is declared with the W attribute.

8-29

Linker Description MSP430 Family

You cannot control where in a named memory range a section is allocated, although the
linker uses lower memory addresses first and avoids fragmentation when possible. In the
preceding examples, assuming no other sections had been bound to addresses that would
interfere with this allocation process, the .text section would start at address O. If a section
must start on a specific address, use binding instead of named memory.

Alignment and Blocking ----------------------­

You can tell the linker to place an output section at an address that falls on an n-byte
boundary, where n is a power of 2. For example:

.text: load = align(32)

allocates .text so that it falls on a 32-byte boundary.

Blocking is a weaker form of alignment that places a section so that it is allocated anywhere
within a "block" of size n. As with alignment, n must be a power of 2. For example:

bss: load = block(OxlOOO)

allocates .bss so that the entire section is contained in a single 4K-byte data page.

You can use alignment or blocking alone or in conjunction with a memory area, but
alignment and blocking cannot be used together.

8.7.4 Specifying Input Sections

An input section specification identifies the sections from input files that are combined to
form an output section. The linker combines input sections by concatenating them in the
order specified. The size of an output section is the sum of the sizes of the input sections that
make up the output section.

SECTIONS

.text:

.data:

.bss :

Example 8.4: The Most Common Method of Specifying Section Contents

The linker takes all the .text sections from the input files and combines them into the .text
output section. The linker concatenates the .text input sections in the order that it encounters
them in the input files. The linker performs similar operations with the .data and .bss
sections. You can use this type of specification for any output section.

8-30

MSP430 Family Linker Description

You can explicitly specify the input sections that form an output section. Each input section is
identified by its filename and section name:

SECTIONS
{

.text
{

flo obj (. text)
f2.obj (sec1)
f3.obj
f4.obj (.text,sec2)

f* Build .text output section

f* Link .text section from fl.obj
f* Link secl section from f2.obj
f* Link ALL sections from f3.obj
f* Link .text and sec2 from f4.obj

*f

*f
*f
*f
*f

Note that it is not necessary for an input section to have the same name as another it is
combined with or as the output section it becomes part of. If a file is listed with no sections,
all of its sections are included in the output section. If any additional input sections have the
same name as an output section but are not explicitly specified by the SECTIONS directive,
they are automatically linked in at the end of the output section. For example, if the linker
found more .text sections in the preceding example and these .text sections were not
specified anywhere in the SECTIONS directive, the linker would concatenate these extra
sections after f4.obj(sec2).

The specifications in the example on the page before are actually a shorthand method for the
following:

SECTIONS
{

.text:

.data:

.bss:

* (. text)
* (.data)
* (.bss)

The "(.text) means the unallocated . text sections from all the input files. This format is useful
when:

You want the output section to contain all input sections that have a certain name, but the
output section name is different from the input sections' names.

You want the linker to allocate the input sections before it processes additional input
sections or commands within the braces.

Here's an example that uses this method:

SECTIONS
{

. text

.data

abc.obj (xqt)
* (. text)

* (.data)
fil.obj (table)

8-31

Linker Description MSP430 Family

In this example, the .text output section contains a named section xqt from file abc.obj, which
is followed by all the .text input sections. The .data section contains all the .data input
sections, followed by a named section table from the file tiI.obj. Note that this method
includes all the unallocated sections. For example, if one of the .text input sections was
already included in another output section when the linker encountered *(.text), the linker
could not include that first .text input section in the second output section.

8-32

MSP430 Family Linker Description

8.8 Specifying a Section's Runtime Address

It may be necessary or desirable at times to load code into one area of memory and run it in
another. For example, you may have performance-critical code in a ROM-based system.
The code must be loaded into ROM but would run much faster if it were in RAM.

The linker provides a simple way to specify this. In the SECTIONS directive, you can
optionally direct the linker to allocate a section twice: once to set its load address and again
to set its run address. For example:

.fir: load = ROM, run = RAM

Use the load keyword for the load address and the run keyword for the run address.

8.8.1 Specifying Two Addresses

The load address determines where a loader will place the raw data for the section. Any
references to the section (such as labels in it) refer to its run address. The application must
copy the section from its load address to its run address; this does not happen automatically
just by specifying a separate run address.

If you provide only one allocation (either load or run) for a section, the section is allocated
only once and will load and run at the same address. If you provide both allocations, the
section is actually allocated as if it were two different sections of the same size. This means
that both allocations occupy space in the memory map and cannot overlay each other or
other sections. (The UNION directive provides a way to overlay sections)

If either the load or run address has additional parameters, such as alignment or blocking,
list them after the appropriate keyword. After the keyword load, everything having to do with
allocation affects the load address until the keyword run is seen, after which everything
affects the run address. The load and run allocations are completely independent, so any
qualification of one (such as alignment) has no effect on the other. You may also specify run
first, then load. Use parentheses to improve readability. Examples:

.data: load = ROM, align = 32, run = RAM

(align applies only to load)

.data: load = (ROM align 32), run RAM

(identical to previous example)

.data: run
load

RAM, align 32,
align 16

(align 32 in RAM for run; align 16 anywhere for load)

8-33

Linker Description MSP430 Family

8.8.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so the only address of significance is the
run address. The linker allocates uninitialized sections only once. If you specify both run and
load addresses, the linker warns you and ignores the load address. Otherwise, if you specify
only one address, the linker treats it as a run address, regardless of whether you call it load
or run. Examples:

.bss: load = OxlOOO, run = RAM

A warning is issued, load is ignored, space is allocated in RAM. All of the following examples
have the same effect. The .bss section is allocated in RAM .

. bss: load = RAM

.bss: run = RAM

.bss: > RAM

8.8.3 Referring to the Load Address by Using the .label Directive

Any reference to a normal symbol in a section refers to its runtime address. However, it may
be necessary at runtime to refer to a load-time address. In particular, the code that copies a
section from its load address to its run address must know where it was loaded. The .Iabel
directive in the assembler defines a special type of symbol that refers to the load address of
the section. Thus, whereas normal symbols are relocated with respect to the run address,
.Iabel symbols are relocated with respect to the load address.

8-34

MSP430 Family Linker Description

define a section to be copied from ROM to RAM

fir:

.sect ".fir"

.label fir_load

<code here>
ret

.label fir_end

load address of section
run address of section
code for the section

copy .fir section from ROM into RAM

.text
MOV #fir _len, R4
MOV #fir _load, R5
MOV #fir, R6

JMP L2
Ll: MOV @RS+, o (R6)

INCD R6
L2: DECD R4

JC Ll

jump to section, now in RAM

call fir ; call runtime address

Linker Command File

/***/
/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE */
/***/
MEMORY
{

ROM: origin~4000h length 4000h
RAM: origin~2000h length 2000h

SECTIONS
{

.text: load ROM

. fir: load ROM, run RAM

Example 8.5: Copying a Section From ROM to RAM

8-35

Linker Description MSP430 Family

The figure illustrates the runtime execution of the last example.

fiUoad:

fir:

Figure 8.3: Runtime Execution

8-36

Application copies
section at runtime

MSP430 Family Linker Description

8.9 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and UNION. Unioning
output sections causes the linker to allocate the same run address to the sections. Grouping
output sections causes the linker to allocate them contiguously in memory.

8.9.1 Overlaying Sections With the UNION Statement

For some applications, you may wish to allocate more than one section to run at the same
address; for example, you may have several routines you want in on-chip RAM at various
stages of the program's execution. Or you may want several data objects that you know will
not be active at the same time to share a block of memory. The UNION statement within the
SECTIONS directive provides a way to allocate several sections at the same run address.

SECTIONS
{

.text: load = ROM
UNION: run = RAM
{

.bssl: (filel.obj (.bss)

.bss2: (file2 .obj (.bss)

.bss3: run = RAM (globals.obj (.bss)

Example 8.6: Illustration of the Form of the UNION Statement

8-37

Linker Description MSP430 Family

Figure 8.4: Runtime Memory Allocation

In the example on the page before, the .bss sections from file1.obj and file2.obj are allocated
at the same address in RAM. The union occupies as much space in the memory map as its
largest component. The components of a union remain independent sections; they are
simply allocated together as a unit.

Allocation of a section as part of a union affects only its run address. Under no
circumstances can sections be overlaid for loading. If an initialized section is a union
member (an initialized section has raw data, such as .text), its load allocation must be
separately specified. The next example illustrates this.

8-38

MSP430 Family Linker Description

UNION run = RAM

.textl: load ROM,

.text2: load ROM,
filel.obj (.text)
file2.obj (.text)

Example 8.7: Illustration of Separate Load Addresses for UNION Sections

.text 2 (load)

copies at runtime

Figure 8.5: Load and Run Memory Allocation

Since the .text sections contain data, they cannot load as a union, although they can be run
as a union. Therefore, each requires its own load address. If you fail to provide a load
allocation for an initialized section within a UNION, the linker issues a warning and allocates
load space anywhere it fits in configured memory.

Un initialized sections are not loaded and do not require load addresses.

8-39

Linker Description MSP430 Family

The UNION statement applies only to allocation of run addresses, so it is redundant to
specify a load address for the union itself. For purposes of allocation, the union is treated as
an uninitialized section: anyone allocation specified is considered a run address, and, if both
are specified, the linker issues a warning and ignores the load address.

8.9.2 Grouping Output Sections Together

The SECTIONS directive has a GROUP option that forces several output sections to be
allocated contiguously. For example, assume that a section named termJee contains a
termination record for a table in the .data section. You can force the linker to allocate .data
and term_ree together:

SECTIONS
{

.text

.bss
GROUP lOOOh :
{

.data

1* Normal output section
1* Normal output section
1* Specify a group of sections

1* First section in the group
1* Allocated immediately after .data

*1
*1
*1

*1
*1

You can use binding, alignment, or named memory to allocate a GROUP in the same way a
single output section is allocated. In the preceding example, the GROUP is bound to address
1 OOOh. This means that .data is allocated at 1000h, and termJee follows it in memory.

Note: You Cannot Specify Addresses for Sections Within a Group

When you use the GROUP option, binding, alignment, or allocation into named memory
can be specified for the group only. You cannot use binding, named memory, or alignment
for sections within a group.

8-40

MSP430 Family Linker Description

8.11 Default Allocation Algorithm

The MEMORY and SECTIONS directives provide flexible methods for building, combining,
and allocating sections. Any memory locations or sections that you choose not to specify,
however, must still be handled by the linker. The linker uses default algorithms to build and
allocate sections within the specifications you supply.

8.11.1 Default Allocation

If you do not use any MEMORY or SECTIONS directives, the linker acts as though the
following definitions were specified:

MEMORY
{

RAM
ROM

SECTIONS
{

.bss

.text

.data

origin 200h length lOOh
origin OFOOOh length lOOOh

> RAM
> ROM
> ROM

All .bss input sections are concatenated to form one .bss output section linked into. All .data
input sections are combined to form a .data output section, which is linked into ROM. All .text
input sections are concatenated to form a .text output section, which is linked into ROM
starting at location OFOOOh.

Unless you specify otherwise with a MEMORY directive, the linker assumes the configuration
specified above. That is, the only memory that the linker uses to build your program is:

256 bytes starting at location 0200h,

4K bytes starting at location OFOOOh.

If there are additional input sections in the input files (specifically, named sections), the linker
links them in after the default sections have been linked. Input sections that have the same
name are combined into a single output section with this name. The linker allocates these
additional output sections into memory wherever there is room. Usually, it is desirable to use
explicit SECTIONS directives to tell the linker where to place named sections.

Note: The SECTIONS Directive

If a SECTIONS directive is specified, the linker performs no part of the default allocation.
Allocation is performed according to the rules specified by the SECTIONS directive and
the general algorithm described below.

8-41

Linker Description MSP430 Family

8.11.2 General Rules for Forming Output Sections

An output section can be formed in one of two ways:

Rule 1 As the result of a SECTIONS directive definition.

Rule 2 By combining input sections with the same names into output sections that are not
defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive (rule 1), this definition
completely determines the section's contents.

An output section can also be formed when input sections are encountered that are not
specified by any SECTIONS directive (rule 2). In this case, the linker combines all such input
sections that have the same name into an output section with this name. For example,
suppose the files f1.obj and f2.obj both contain named sections called Vectors and that the
SECTIONS directive does not define an output section to contain them. The linker combines
the two Vectors sections from the input files into a single output section named Vectors,
allocates it into memory, and includes it in the output file.

After the linker determines the composition of all the output sections, it must allocate them
into configured memory. The MEMORY directive specifies which portions of memory are
configured, or if there is no MEMORY directive, the linker uses the default configuration.

The linker's allocation algorithm attempts to minimize memory fragmentation. This allows
memory to be used more efficiently and increases the probability that your program will fit
into memory. This is the algorithm:

1) Output sections for which you have supplied a specific binding address are placed in
memory at that address.

2) Output sections that are included in a specific, named memory range or that have
memory attribute restrictions are allocated. Each output section is placed into the first
available space within the named area, considering alignment where necessary.

3) .utput sections that have zero length are allocated at the beginning of the first
appropriate memory area unless they are part of a group.

4) Any remaining sections are allocated in the order in which they are defined. Sections not
defined in a SECTIONS directive are allocated in the order in which they are
encountered. Each output section is placed into the first available memory space,
considering alignment where necessary.

8-42

MSP430 Family Linker Description

8.12 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special types to output sections: DSECT, COPY, and NOLOAD. These
types affect the way that the program is treated when it is linked and loaded. For example:

SECTIONS
{

secl: load 2000h, type DSECT {f1.obj}
sec2: load 4000h, type COpy {f2.obj}
sec3: load 6000h, type NOLOAD {f3. obj}

The DSECT type creates a "dummy section" that has the following qualities:

It is not included in the output section memory allocation. It takes up no memory and
is not included in the memory map listing.

It can overlay other output sections, other DSECTs, and unconfigured memory.

Global symbols defined in a dummy section are relocated normally. They appear in
the output module's symbol table with the same value they would have if the DSECT
had actually been loaded. These symbols can be referenced by other input sections.

Undefined external symbols found in a DSECT cause specified archive libraries to be
searched.

The section's contents, relocation information, and line number information are not
placed in the output module.

In the preceding example, none of the sections from f1.obj are allocated, but all the
symbols are relocated as though the sections were linked at address 2000h. The other
sections can refer to any of the global symbols in sec1.

A COPY section is similar to a DSECT section, except that its contents and associated
information are written to the output module.

A NOLOAD section differs from a normal output section in one respect: the section's
contents, relocation information, and line number information are not placed in the output
module. The linker allocates space for it, it appears in the memory map listing, etc.

8-43

Linker Description MSP430 Family

8.13 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols and assign
values to them at link time. You can use this feature to initialize a variable or pointer to an
allocation-dependent value.

8.13.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assignment statements
in the C language:

symbol expression; assigns the value of expression to symbol
symbol += expression; adds the value of expression to symbol
symbol -= expression; subtracts the value of expression from symbol
symbol *= expression; multiplies symbol by expression
symbol 1= expression; divides symbol by expression

The symbol should be defined externally in the program. If it is not, the linker defines a new
symbol and enters it into the symbol table. Assignment statements must be terminated with
a semicolon.

The linker processes assignment statements after it allocates all the output sections.
Therefore, if an expression contains a symbol, the address used for that symbol reflects the
symbol's address in the executable output file.

For example, suppose a program reads data from one of two tables identified by two external
symbols, Table1 and Table2. The program uses the symbol cur_tab as the address of the
current table. cur_tab must pOint to either Table1 or Table2. You could accomplish this in the
assembly code, but you would need to reassemble the program in order to change tables.
Instead, you can use a linker assignment statement to assign cur_tab at link time:

prog.obj
cur_tab = Tablel;

/* Input file */
/* Assign cur_tab to one of the tables */

8.13.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the SPC during
allocation. The linker's " . " symbol is analogous to the assembler's "$" symbol. The " . "
symbol can be used only in assignment statements within a SECTIONS directive because "
. " is meaningful only during allocation, and SECTIONS controls the allocation process.

For example, suppose a program needs to know the address of the beginning of the .data
section. By using the .global directive, you can create an external undefined variable called
Ostar! in the program. Then, assign the value of "." to Ostar!:

8-44

MSP430 Family

SECTIONS
{

.text:

.data:

.bss:

{}

{ Dstart
{}

Linker Description

.;

This defines Dstart to be the ultimate linked address of the .data section. (dstart is assigned
before .data is allocated.) The linker will relocate all references to Dstart.

A special type of assignment assigns a value to the "." symbol. This adjusts the location
counter within an output section and creates a hole between two input sections. Any value
assigned to "." to create a hole is relative to the beginning of the section, not to the address
actually represented by".".

8.13.3 Assignment Expressions

These rules apply to linker expressions:

Expressions can contain global symbols, constants, and the C language operators listed
in the next table.

All numbers are treated as long (32-bit) integers.

Constants are identified by the linker in the same manner as they are by the assembler.
That is, numbers are recognized as decimal unless they have a suffix (H or h for
hexadecimal and Q or q for octal). C language prefixes are also recognized (0 for octal
and Ox for hex). Hexadecimal constants must begin with a digit. No binary constants are
allowed.

Symbols within an expression have only the value of the symbol's address. No type­
checking is performed.

Linker expressions can be absolute or relocatable. If an expression contains any
relocatable symbols (and zero or more constants or absolute symbols), it is relocatable.
Otherwise, the expression is absolute. If a symbol is assigned the value of a relocatable
expression, the symbol is relocatable; if it is assigned the value of an absolute
expression, the symbol is absolute.

The linker supports the C language operators listed in the table in order of precedence.
Operators in the same group have the same precedence. Besides the operators listed in the
table, the linker also has an align operator that allows a symbol to be aligned on an n-byte
boundary within an output section (n is a power of 2). For example, the expression

. = align(16);

aligns the SPC within the current section on the next 16-byte boundary. Because the align
operator is a function of the current SPC, it can be used only in the same context as "." -
that is, within a SECTIONS directive.

8-45

Linker Description MSP430 Family

Group 1 (Highest Precedence) Group 6

! Logical not & Bitwise AND

- Bitwise not
- Neqative

Group 2 Group 7

* Multiplication I Bitwise OR
1 Division
% Mod

Group 3 Group 8

+ Addition && Logical AND
- Minus

Group 4 Group 9

» Arithmetic right shift " Logical OR
« Arithmetic left shift

Group 5 Group 10 (Lowest Precedence)

-- Equal to = Assignment
!= Not equal to += A+=B ®A=A+B
> Greater than -= A-=B® A=A-B
< Less than * = A*=B® A=A*B

<= Less than or equal to 1= A/=B ® A=A/B
>= Greater than or equal to

Table 8.2: Operators in Assignment Expressions

8.13.4 Symbols Defined by the Linker

The linker automatically defines several symbols that a program can use at runtime to
determine where a section is linked. Since these symbols are external, they appear in the
link map. Each symbol can be accessed in any assembly language module if it is declared
with a .global directive. Values are assigned to these symbols as follows:

.text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

8-46

MSP430 Family

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

Linker Description

8-47

Linker Description MSP430 Family

8.14 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have
nothing linked into them. These areas are called holes. In special cases, uninitialized
sections can also be treated as holes. This section describes how the linker handles such
holes and how you can fill holes (and uninitialized sections) with values.

8.14.1 Initialized and Uninitialized Sections

There are two guidelines to remember about the contents of an output section. An output
section contains either:

Raw data for the entire section, or

No raw data.

A section that has raw data is said to be initialized. This means that the object file contains
the actual memory image contents of the section. When the section is loaded, this image is
loaded into memory at the section's specified starting address. The .text and .data sections
always have raw data if anything was assembled into them. Named sections defined with
the .sect assembler directive also have raw data.

By default, the .bss section and sections defined with the .usect directive have no raw data
(they are uninitialized). They occupy space in the memory map but have no actual contents.
Uninitialized sections typically reserve space in RAM for variables. In the object file, an
uninitialized section has a normal section header and may have symbols defined in it; no
memory image, however, is stored in the section.

8.14.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the
linker to leave extra space between input sections within an output section. When such a
hole is created, the linker must follow the first guideline (above) and supply raw data for the
hole.

Holes can be created only within output sections. There can also be space between output
sections, but such spaces are not holes.

To create a hole in an output section, you must use a special type of linker assignment
statement within an output section definition. The assignment statement modifies the SPC
(denoted by " . ") by adding to it, assigning a greater value to it, or aligning it on an address
boundary.

8-48

MSP430 Family Linker Description

The following example uses assignment statements to create holes in output sections:

SECTIONS
{

outsect:
{

f ilel. obj (. text)
• += lOOh; /* Create a hole with size 100h */
file2.obj (.text)
• = align(16); /* Create a hole to align the SPC */
file3.obj (.text)

The output section outsect is built as follows:

The .text section from file1.obj is linked in.

The linker creates a 256-byte hole.

The .text section from file2.obj is linked in after the hole.

The linker creates another hole by aligning the SPC on a 16-byte boundary.

Finally, the .text section from file3.obj is linked in.

All values assigned to the" . " symbol within a section refer to the relative address within the
section. The linker handles assignments to the " . " symbol as if the section started at
address 0 (even if you have specified a binding address). Consider the statement. =
align(16) in the example. This statement effectively aligns file3.obj .text to start on a 16-word
boundary within outsect. If outsect is ultimately allocated to start on an address that is not
aligned, file3 .text will not be aligned, either.

Expressions that decrement" . " are illegal. For example, it is invalid to use the -= operator in
an assignment to " . ". The most common operators used in assignments to " . " are += and
align.

If an output section contains all input sections of a certain type (such as .text), you can use
the following statements to create a hole at the beginning or end of the output section. For
example:

.text:

.data:
. += 100h;)

* (.data)
. += 100h;

/* Hole at the beginning */

/* Hole at the end */

8-49

Linker Description MSP430 Family

Another way to create a hole in an output section is to combine an uninitialized section with
an initialized section to form a single output section. In this case, the linker treats the
uninitialized section as a hole and supplies data for it. Here is an example of creating a hole
in this way:

SECTIONS
{

outsect:
{

filel.obj(.text)
file1.obj (.baa)
}

/* This becomes a hole */

Because the .text section has raw data, all of outsect must also contain raw data (first
guideline). Therefore, the uninitialized .bss section becomes a hole.

Note that uninitialized sections become holes only when they are combined with initialized
sections. If several uninitialized sections are linked together, the resulting output section is
also uninitialized.

8.14.3 Filling Holes

Whenever there is a hole in an initialized output section, the linker must supply raw data to fill
it. The linker fills holes with a 16-bit fill value that is replicated through memory until it fills the
hole. The linker determines the fill value as follows:

1) If the hole is formed by combining an uninitialized section with an initialized section, you
can specify a fill value for the uninitialized section. Follow the section name with an =
sign and a 16-bit constant. For example:

SECTIONS
{

outsect:

filel.obj (.text)
file2.obj (.bss) = OFFh /* Fill this hole */

/* with OOFFh */

2) You can also specify a fill value for all the holes in an output section by using the fill
keyword. For example:

SECTIONS
{

outsect: fill OFFOOh /* This fills holes */
/* with OFFOOh */

+= lOh; /* This creates a hole */
filel.obj (.text)
filel.obj (.bss) /* This creates another hole */

8-50

MSP430 Family Linker Description

3) If you do not specify an initialization value for a hole, the linker fills the hole with the value
specified with -f. Suppose the command file link.cmd contains the following SECTIONS
directive. For example:

SECTIONS
{

.text: { .= 100; } /* Create a 100-word hole */

Now invoke the linker with the -f option:

Ink430 -f OFFFFh link.cmd

This fills the hole with OFFFFh.

4) If you do not invoke the linker with the -f option, the linker fills holes with Os.

Whenever a hole is created and filled in an initialized output section, the hole is identified in
the link map along with the value the linker uses to fill it.

8.14.4 Explicit Initialization of Uninitialized Sections

An uninitialized section becomes a hole only when it is combined with an initialized section.
When uninitialized sections are combined with each other, the resulting output section
remains un initialized and has no raw data in the output file.

However, you can force the linker to initialize an uninitialized section by specifying an explicit
fill value for it in the SECTIONS directive. This causes the entire section to have raw data
(the fill value). For example:

SECTIONS
{

.bss: fill 1234h

Note: Filling Sections

/* Fills .bss with 1234h */

Because filling a section (even with Os) causes raw data to be generated for the entire
section in the output file, your output file will be very large if you specify fill values for large
sections or holes.

8-51

Linker Description MSP430 Family

8.14.5 Examples of Using Initialized Holes

The MSP430X201 device has 4K bytes of program memory, starting at location OFOOOh. The
top bytes of this area are reserved for interrupt vectors. Suppose you want to link the .text
sections from three object files into a .text output section that begins at address OFOOOh.
Suppose also that you have a section of initialized interrupt vectors called inCvecs that you
want to link at address OFFEOh. You could fill the space between the end of the .text section
and the beginning of the interrupt vectors; the figure shows the space filled with a 1-byte fill
value of OEFh and illustrates the desired memory map for program memory.

OFOOOh
.text

Fill with
OEFh

OFFEOh
OFFFFh .'j' i, y~tpr~r:C;

Figure 8.6: Initialized Hole

To obtain the configuration shown in the figure, you must create one large output section that
has .text at the beginning, inCvecs at the end, and a hole between filled with OEFh:

SECTIONS
{

prog OFOOOh :fill = OEFEFh
{
filel.obj (.text)
file2.obj(.text)
file3.obj(.text)
. = OFEOh;
filel.obj(int_vecs)

/* Define prog and start at OFOOOh and */
/* Specify a fill value */
/* Link .text sections from each file */

/* Create hole to OFEOh (OFFEOh abs) */
/* Link in the vectors section */

The fill value must be a 16-bit constant. To have the value OEFh in each byte, the fill value
was specified as OEFEFh.

Notice that the value OFEOh, which is assigned to the section program counter (.), is relative
to the beginning of the section. Because the section begins at OFOOOh, the hole is actually
created from the end of the .text section to address OFFEOh.

8-52

MSP430 Family Linker Description

8.15 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is
known as partial linking, or incremental linking. Partial linking allows you to partition large
applications, link each part separately, and then link all the parts together to create the final
executable program.

Follow these guidelines for producing a file that you will relink:

Intermediate files must have relocation information. Use the -r option when you link the
file the first time.

Intermediate files must have symbolic information. By default, the linker retains symbolic
information in its output. Do not use the -s option if you plan to rei ink a file, because -s
strips symbolic information from the output module.

Intermediate link steps should be concerned only with the formation of output sections
and not with allocation. All allocation, binding, and MEMORY directives should be
performed in the final link step.

The following example shows how you can use partial linking:

Step 1: Link the file file1.com; use the -r option to retain relocation information in the output
file tempout1 .out.

lnk430 -r -0 tempoutl file1.com

file1.com contains:

SECTIONS
{

881: {
flo obj
f2.obj

fn.obj
}

8-53

Linker Description MSP430 Family

Step 2: Link the file file2.com; use the -r option to retain relocation information in the output
file tempout2.out.

lnk430 -r -0 tempout2 file2.com

file2.com contains:

SECTIONS
{

882:
gl.obj
g2.obj

gn.obj
}

Step 3: Link tempout1.out and tempout2.out:

lnk430 -m final.map -0 final.out tempoutl.out tempout2.out

8-54

MSP430 Family Linker Description

8.17 Linker Example

This example links a program called demo. out. There are three object modules, demo.obj,
ctrl.obj, and tables.obj.

Assume the following memory configuration:

Address Range

200h to 2FFh

1 FOOh to 1 FFFh

2000h to 3FFFh

OFOOOh to OFFFFh

Memory Contents

internal RAM

Data EEPROM

8K external RAM

4K internal program ROM

The program is built from the following elements:

Executable code, contained in the .text sections of demo.obj and ctrl.obj, must be linked
into program ROM. The symbol SETUP must be defined as the program entry point.

• A set of interrupt vectors, contained in the inCvecs section of tables.obj, must be linked
at address OFFEOh in program ROM.

• A table of coefficients, contained in the .data section of tables.obj, must be linked into
.EEPROM. The remainder of EEPROM must be initialized with the value OA26Eh.

• A set of variables, contained in the .bss section of ctrl.obj, must be linked into the RAM.
These variables must be preinitialized to OFFFFh.

• Another .bss section in demo.obj must be linked into external RAM.

The next two figures illustrate the linker command file and the map file for this example.

8-55

Linker Description MSP430 Family

/**/
1* Specify the Linker Options *1
/**/
-e SETUP 1* Define the entry point * I
-0 demo.out 1* Name the output file *1
-m demo . map 1* create a load map * I
/**/
1* Specify the Input Files *1
/**/
demo.obj
ctrl.obj
tables.obj
/**/
1* Specify the Memory Configuration *1
/**/
MEMORY
{

RAM origin 0200h length 0100h
EEPROM origin 1FOOh length 0100h
RAMEXT origin 2000h length 2000h
ROM origin OFOOOh length 1000h

/**/
1* Specify the Output Sections *1
SECTIONS

.text: > ROM 1* Link all . text sections into ROM *1

int _vecs OFFEOh: {} 1* Link interrupts at FFEOh *1

.data: 1* Link the data sections *1
{

tables.obj (.data)
= 100h; 1* Create a hole to end of the block *1

} = OA26Eh > EEPROM 1* Fill and link into EEPROM *1

ctrl _vars: 1* Create new section for ctrl vars *1
{

ctrl.obj (.bss)
OFFFFh > RAM 1* Fill with OFFFFh and link to RAM *1

.bss > RAMEXT 1* Link all remaining .bss sections *1

/**/
1* End of Linker Command File *1
/**/

Figure 8.7: Linker Command File, demo.cmd

Now invoke the linker by entering the following command:

Ink430 demo.cmd

This creates the map file shown in the next figure and an output file called demo.out that can
be run on the MSP430.

8-56

MSP430 Family

MSP430 COFF Linker

Thu Feb 10 09:21:32 1994
OUTPUT FILE NAME: <demo.out>

Linker Description

Version 1.00

ENTRY POINT SYMBOL: "SETUP" address: 0000[000

MEMORY CONFIGURATION
name origin
RAM 00000200
EEPROM OOOOlfOO
RAM EXT 00002000
ROM 0000[000

SECTION ALLOCATION MAP

output
section page origin
. text -~O OOOOfOOO

OOOOfOOO
0000f008
0000f008

int_vecs OOOOffeO
OOOOffeO

.data 0 OOOOlfOO
OOOOlfOO
0000lf08
00002000
00002000

ctrl_var 0 00000200
00000200

.bss 0 00002000
00002000
00002004

GLOBAL SYMBOLS
address
00002000
OOOOlfOO
OOOOfOOO
OOOOfOOO
00002000
00002004
0000f010

[7 symbols]

name
.bss
.data
.text
SETUP
edata
end
etext

length
000000100
000000100
000002000
000001000

length
00000010
00000008
00000000
00000008

00000020
00000020

00000100
00000008
000000f8
00000000
00000000

00000004
00000004

00000004
00000004
00000000

Figure 8.8: Output Map File, demo. map

attributes fill
RWIX
RWIX
RWIX
RWIX

attributes/
input sections

demo.abj (.text)
tables.obj (.text)
ctrl.obj (.text)

tables.abj (int_vecs)

tables.obj (.data)
--HOLE-- [fill = a26e]
ctrl.abj (.data)
dema.obj (.data)

ctrl.abj (.bss) [fill

UNINITIALIZED
demo. obj (. bss)
tables.abj (.bss)

address
OOOOlfOO
00002000
00002000
00002004
OOOOfOOO
OOOOfOOO
0000f010

name
.data
edata
.bss
end

.text
SE1'UP
etext

ffff]

8-57

MSP430 Family Absolute Lister Description

Topics

9 Absolute Lister Description 9-3

9.1 Producing an Absolute Listing 9-4

9.2 Invoking the Absolute Lister 9-5

9.3 Absolute Lister Example 9-6

Figures

Fig. Title Page

9.1 Absolute Lister Development Flow 9-4

9-1

Absolute Lister Description MSP430 Family

9-2

MSP430 Family Absolute Lister Description

9 Absolute Lister Description

The MSP430 absolute lister is a debugging tool. This utility accepts linked object files as
input and creates .abs files as output. These .abs files can be assembled to produce a listing
that shows the absolute addresses of object code. Normally, this is a tedious process
requiring many manual operations; the absolute lister utility, however, performs these
operations automatically.

9-3

Absolute Lister Description MSP430 Family

9.1 Producing an Absolute Listing

The figure illustrates the steps required to produce an absolute listing.

Step 1: First, assemble a source file.

Step 2: Link the resulting object file.

~' .. ~; .~ .. "/~ :~~ .ro:- .. ~:;

·~"""""'''''''''''TI""'"".,-.-./:i~vOketheabSOliJte lister;:uset~ 1h1~r... ., , :":. ;:: :: ;:.' :: :.: :.:. . .. : : ":::: ; .:.~ ~'.~ .. : " .. :; ~". ,: :t ~: .. :: ;. '.~ ~ .. : ~ :: ":: ". :.::~ ~ :i: " .. ::" :". ".: ::
'F-'-'--""'-'-'''''-'--'-'--''"'-; :()b~Qrfile:as' inPIJt. This' crefd~ a; fiJa:vv~ti ~n

i.abe :e.xtension.

Figure 9.1: Absolute Lister Development Flow

9-4

MSP430 Family Absolute Lister Description

9.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

abs430 filename

where filename must be a linked object file. The absolute lister assumes that this file has an
extension of .out. (This is the extension that the linker produces for output files).

If you omit the filename when you invoke the absolute lister, the utility prompts you for a
filename.

The absolute lister produces an output file for each file that was linked to create filename. out.
These files are named with the individual filenames and an extension of .abs.

Assemble this file and use the -a assembler option to create the absolute listing:

asm430 filename.abs -a

9-5

Absolute Lister Description MSP430 Family

9.3 Absolute Lister Example

This example uses three source files. Note that module1.asm and module2.asm both include
the file globals.def.

module1.asm module2.asm globals.def

.bss xflags,2 .copy "globals.def" .global flags

.bss flags .text Gflag .set 2

.copy "globals.def" bic #Gflag,&flags

.text
bis #Gflag,&flags

The following steps create absolute listings for the files module1.asm and module2.asm:

Step 1: First, assemble module1.asm and module2.asm:
asm430 modulel
asm430 module2

This creates two object files called module1.obj and module2.obj.

Step 2: Next, link module1.obj and module2.obj. using the following linker command file,
called abstest.cmd:

9-6

/**/
/* File abstest.cmd -- COFF linker control file */
/* for linking MSP430 modules */
/**/
-0 ABSTEST.OUT /* executable output file */
-m ABSTEST.MAP /* output map file */

/* input files
MODULE1.OBJ
MODULE2.0BJ

/* define MSP430 memory map
MEMORY
{

RAM:
ROM:

origin=00200h
origin=OFOOOh

/* define the output sections
SECTIONS
{

.bss:

.text:
>RAM
>ROM

length=OlOOh
length=lOOOh

*/

*/

*/

MSP430 Family Absolute Lister Description

Invoke the linker:

Ink430 abstest.cmd

This creates an executable object file called abstest.out; use this new file as input
for the absolute lister.

Step 3: Now, invoke the absolute lister:
abs430 abstest.out

This creates two files called module1.abs and module2.abs:

module1.abs:

flags
.bss
end
.text
etext
.data
edata

module2.abs:

flags
.bss
end
.text
etext
.data
edata

.nolist

.setsym

.setsym

.setsym

. setsym

.setsym

.setsym

.setsym

.setsect

.setsect

.setsect

.list

.text

. copy

.nolist

.setsym

.setsym

.setsym

.setsym

.setsym

.setsym

.setsym

.setsect

.setsect

.setsect

.list

.text

. copy

0202h
0200h
0203h
OfOOOh
OfOO8h
OOh
OOh
".text",OfOOOh
".data",OOh
".bss",0200h

"MODULE1.ASM"

0202h
0200h
0203h
OfDOOh
OfOO8h
OOh
DOh
".text",OfOO4h
".data",OOh
".bss",0203h

"MODULE2.ASM"

9-7

Absolute Lister Description MSP430 Family

These files have information that the assembler needs when you invoke it in step 4:

They contain .setsym directives, which equate values to global symbols. Both
files contain global equates for the symbol flags. The symbol flags was defined
in the file globals.def, which was included in module1.asm and module2.asm.

They contain .setsect directives, which define the absolute addresses for
sections.

• They contain .copy directives, which tell the assembler which assembly
language source file to include.

Note that the .setsym and .setsect directives are not useful in normal assembly; they
are useful only for creating absolute listings.

Step 4: Finally, assemble the .abs files created by the absolute lister (remember that you
must use the -a option when you invoke the assembler):
asm430 -a modulel.abs
asm430 -a module2.abs

This creates two listing files called module1.lst and module2.lst; no object code is
produced. These listing files are similar to normal listing files; however, the
addresses shown are absolute addresses. The absolute listing files created are:

module1.lst:
MSP430 Macro Assembler Version 1.00 [04/94] Wed May 25 14:12:55 1994

Copyright (c) 1994 Texas Instruments Incorporated

MODULE1.ABS PAGE 1

13 fOOO .text
14 . copy "MODULE1.ASM"

A 1 0200 .bss xflags,2
A 2 0202 .bss flags
A 3 . copy "globals.def"
B 1 .global flags
B 2 02 Gflag .set 2
B 3
B 4
A 4 fOOO .text
A 5 fOOO -d3a20202 bis #Gflag, &flags
A 6

No Errors, No Warnings

9-8

MSP430 Family Absolute Lister Description

module2.1st:
MSP430 Macro Assembler

Copyright (c) 1994
Version 1.00 [04/94] Wed May 25 14:42:20 1994

Texas Instruments Incorporated

MODULE2.ABS PAGE 1

13 f004 .text
14 . copy "MODULE2.ASM"

A 1 . copy "globals.def"
B 1 .global flags
B 2 02 Gflag .set 2
B 3
B 4
A 2 f004 . text
A 3 f004 !c3a20202 bic #Gflag, &flags
A 4

No Errors, No Warnings

9-9

Absolute Lister Description MSP430 Family

9-10

MSP430 Family Object Format Converter Description

Topics

10 Object Format Converter Description

10.1 Object Format Converter Development Flow

10.2 Extended Tektronix Hex Object Format

10.3 Intel Hex Object Format

10.4 TI-Tagged Object Format

10.5 Motorola S Format

10.6 Invoking the Object Format Converter

10.7 Object Format Converter Examples

10.8 Halt Conditions

Figures

Fig. Title

10.1 Object Format Converter Development Flow

10.2 Extended Tektronix Hex Object Format

10.3 Intel Hex Object Format

10.4 TI-Tagged Object Format

10.5 Motorola S Format

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

Page

10-4

10-5

10-6

10-7

10-8

10-1

Object Format Converter Description MSP430 Family

10-2

MSP430 Family Object Format Converter Description

10 Object Format Converter Description

Most EPROM programmers do not accept COFF object files as input. The object format
converter converts a COFF object file into one of four object formats that most EPROM
programmers accept as input:

Extended Tektronix hex object format supports 32-bit addresses.

Intel hex object format supports 16-bit addresses.

Motorola S format supports 16-bit addresses.

TI-tagged object format supports 16-bit addresses.

10-3

Object Format Converter Description MSP430 Family

10.1 Object Format Converter Development Flow

The figure illustrates the object format converter's role in the assembly language
development process.

Figure 10.1: Object Format Converter Development Flow

10-4

MSP430 Family Object Format Converter Description

10.2 Extended Tektronix Hex Object Format

The Extended Tektronix hex object format supports 32-bit addresses and has three types of
records: data, symbol, and termination records.

termination record signifies the end of a module.

symbol record

data record

contains information about program sections.

contains the header field, the load address, and the object code.

The header field, in the data record, contains the following information:

Number of
ASCII

Characters Description

%

Block length

Block type

1

2

Data type is Extended Tektronix hex format

Number of characters in the record, minus the %

6 = data record
8 = termination record

Sumcheck 2 A 2-digit hex sum modulo 256 of all values in the
record except the % and the sumcheck itself.

The load address, in the data record, specifies where the object code will be located. The
first number specifies the address length; this is always 8. The remaining characters of the
data record contain the object code, 2 characters per byte.

Sumcheck: 21H = 1+5+6+8+1+0+0+0+0+0+0+0+ 1 2+0+2+0+2+0+2+0+2+0+2+0

Block Length
15H = 21 ----, C Object Code: 6 bytes

n I I

~:~~e, ~'rF2:'L::':;:': 10000J00H
Block Type: Length of
6 (data) Load Address

Figure 10.2: Extended Tektronix Hex Object Format

10-5

Object Format Converter Description MSP430 Family

10.3 Intel Hex Object Format

The Intel hex object format supports 16-bit addresses and consists of a 9-character (4-field)
prefix, which defines the start of record, byte count, load address, and record type, and a 2-
character sumcheck suffix.

The two record types, which are represented in the 9-character prefix, are described below:

00 = data record (begins with the colon start character)

01 = end-of-file record

Record type 00, the data record, begins with the colon (:) start character and is followed by
the byte count, the address of the first data byte, the record type (00), and the sumcheck.
The sumcheck is the 2s complement (in binary) of the preceding bytes in the record,
including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with the colon (:) start character. The
colon is followed by the byte count, the address, the record type (01), and the sumcheck.

Start Address
Character ----;I, ~

:lOOOOOOOFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOO]
:lOOOlOOOFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO Data
:l0002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEO Recoms
:l0003000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDO
:l0004000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCO

:~OOOO~W y
Byte --1 I L Sumcheck J
Count Record

Type

Figure 10.3: Intel Hex Object Format

10-6

MSP430 Family Object Format Converter Description

10.4 TI-Tagged Object Format

The TI-tagged object format supports 16-bit addresses and consists of a start-of-file
record, data records, and end-of-file record. Each of the data records is made up of a series
of small fields and is signified by a tag character. The following is a list of the significant tag
characters:

K is followed by the program identifier.

7 is followed by a sumcheck (acknowledged).

8 is followed by a sumcheck (ignored).

9 is followed by a load address.

B is followed by a data word (4 characters).

F identifies the end of the data record.

Program
Identifier

~ I I I I Tag Characters n
KOOOOCOFTFOTI ~ ~
900000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F234F]
900020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F Data
900040BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF Recoms
900050BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FDF

y~Load TT T
I Address Data Sumcheck

End of File Words
Record

Figure 10.4: TI-Tagged Object Format

If any data fields appear before the first address, the first field is assigned address 0000.
Address fields may be expressed for any data byte, but none is required. The sumcheck
field, which is preceded by the tag character 7, is a 2s complement of the sum of the 8-bit
ASCII values of characters, beginning with the first tag character and ending with the
sum check tag character (7 or 8). The end-of-file record is a (:) colon.

10-7

Object Format Converter Description MSP430 Family

.1 0.5 Motorol~ 8 Form~t

The Motorola S format supports 16-bit addresses and consists of a start-of -file record, data
records, and an end-of-file record. Each record is made up of five fields: record type, byte
count, address, data, and sumcheck. The three record types are as follows:

80 Header record

81 Code/data record

89 Termination record

The byte count is the character pair count in the record, excluding the type and byte count
itself.

The sumcheck is the least significant byte of the ones complement of the sum of the values
represented by the pairs of characters making up the byte count, address, and the code/data
fields.

Address
Type

--;I, ~ Header
::J Record S00600004844521B

Sl137000D514D515D51D65178E700D07FB7001173DJ Data
"''''''''",000"",,,,,,,," T R~"d,
S9030000FC 1 ::J Termination
L.-J L.-J Record

Byte ---1 L- Sumcheck
Count

Figure 10.5: Motorola S Format

10-8

MSP430 Family Object Format Converter Description

10.6 Invoking the Object Format Converter

To invoke the object format converter, enter

rom430 {-option] {GOFF input file {output file]]

rom430 is the command that invokes the object format converter; all parameters are
optional.

options can be entered anywhere on the line, but the order of filenames is significant. The
filenames (if used) are interpreted as:

1) The input filename.

2) The output filename.

These are the options:

-x specifies Tektronix hex object format for the output.

-i specifies Intel hex object format for the output.

-t specifies TI-tagged object format for the output.

-m specifies Motorola S format for the output.

If you don't specify an option, the object format converter produces Tektronix hex format
output files.

If you do not specify an input filename, the object format converter prompts for it. If you
specify a filename without an extension, the utility assumes that the filename has a
default extension of .obj.

If you do not specify a second filename, the object format converter uses the input
filename with an extension based on the format chosen:

Option Format Extension

-x Tektronics .tek

-i Intel Hex .int

-t TI-Tagged .tag

-m Motorola S .ms

When the utility finishes converting the input file, it prints the message Translation complete.

10-9

Object Format Converter Description MSP430 Family

10.7 Object Format Converter Examples

Here are some examples of using the object format converter.

Example 1

You can invoke the object format converter with no options and no filenames by entering:

rom430

The utility will print the following banner and prompt:

COFF Object Converter Version 1.00
Copyright Ie) 1994, Texas Instruments Incorporated

Coff file [.obj]:

If, for example, you respond to the prompt with a filename of test, the object format
converter uses the file test.obj as an input file. The utility produces an output file named
testtek in Tektronix hex format. (Tektronix format is the default when you don't specify a
format.)

• Example 2

If you enter

rom430 -i in out1

the utility uses in.obj as the input file. It creates an Intel hex format file named out1.in.

Example 3

If you enter

rom430 -x in.tmp out.x

the object format converter uses in.tmp as the input file. It produces Tektronix hex format
output file named out.x .

• Example4

If you enter:

rom430 -t test

the object format converter uses test.obj as the input file. It produces an output file
named test.tag in TI-tagged format.

10-10

MSP430 Family Object Format Converter Description

10.8 Halt Conditions

Two situations cause the object format converter to abort execution:

1) If any of the specified files cannot be opened, the object format converter prints the
message Input COFF file cannot be opened and aborts.

2) If you supply the utility with the name of an invalid object file, the object format converter
prints the message Corrupt input file and aborts.

10-11

Object Format Converter Description MSP430 Family

10-12

MSP430 Family Common Object File Format

Topics

A Common Object File Format A-3

A.1 How the COFF File Is Structured A-4

A.2 How the File Header Is Structured A-6

A.3 Optional File Header Format A-7

A.4 How Section Headers Are Structured A-8

A.S Structuring Relocation Information A-10

A.6 How the Line Number Table Is Structured A-12

A.7 Symbol Table Structure and Content A-14
A.7.1 Special Symbols Used in the Symbol Table A-16
A.7.2 Symbol Name Format A-17
A.7.3 String Table Structure A-18
A. 7.4 Storage Classes A-18
A.7.S Symbol Values A-20
A.7.6 Section Number A-21
A.7.7 Type Entry A-21
A.7.8 Auxiliary Entries A-22

Examples

Ex. Title Page

A.1 Section Header Pointers for the .text Section A-9

A.2 Line Number Entries A-13

Figures

Fig. Title Page

A.1 COFF File Structure A-4

A.2 Sample COFF Object File A-S

A.3 Line Number Blocks A-12

A.4 Symbol Table Contents A-14

A.S Symbols for Blocks A-17

A.6 Symbols for Functions A-17

A.7 Sample String Table A-18

A-1

Common Object File Format

Tables

Table Title

A.1 File Header Contents

A.2 File Header Flags (Bytes 18 and 19)

A.3 Optional File Header Contents

A.4 Section Header Contents

A.5 Section Header Flags (Bytes 36 and 37)

A.6 Relocation Entry Contents

A.7 Relocation Types (Bytes 8 and 9)

A.8 Line Number Entry Format

A.9 Symbol Table Entry Contents

A.10 Special Symbols in the Symbol Table

A.11 Symbol Storage Classes

A.12 Special Symbols and Their Storage Classes

A.13 Symbol Values and Storage Classes

A.14 Section Numbers

A.15 Basic Types

A.16 Derived Types

A.17 Auxiliary Symbol Table Entries Format

A.18 Filename Format for Auxiliary Table Entries

A.19 Section Format for Auxiliary Table Entries

A.20 Tag Name Format for Auxiliary Table Entries

A.21 End-of-Structure Format for Auxiliary Table Entries

A.22 Function Format for Auxiliary Table Entries

A.23 Array Format for Auxiliary Table Entries

A.24 End--<>f-Blocks/Functions Format for Auxiliary Table Entries

MSP430 Family

Page

A-6

A-6

A-7

A-8

A-8

A-10

A-11

A-12

A-15

A-16

A-19

A-20

A-20

A-21

A-22

A-22

A-23

A-24

A-24

A-24

A-25

A-25

A-25

A-26

A.25 Beginning--<>f-Blocks/Functions Format for Auxiliary Table A-26

A.26 Structure, Union, and Enumeration Names Format for Auxiliary Table Entries A-26

A-2

MSP430 Family Common Object File Format

20 Common Object File Format

The MSP430 assembler and linker create object files that are in common object file format
(GOFF). GOFF is an implementation of an object file format of the same name that was
developed by AT&T for use on UNIX-based systems. This object file format is used because
it encourages modular programming and provides more powerful and flexible methods for
managing code segments and target system memory.

One of the basic GOFF concepts is sections. If you understand section operation, you will be
able to use the assembly language tools more efficiently.

This appendix contains technical details about GOFF object file structure. Much of this
information pertains to the symbolic debugging information that is produced by high level
programming languages. The main purpose of this appendix is to provide supplementary
information for those of you who are interested in the intemal format of GOFF object files.

A-3

Common Object File Format MSP430 Family

20.1 How the COFF File Is Structured

The elements of a COFF object file describe the file's sections and symbolic debugging
information. These elements include:

a file header.

optional header information.

a table of section headers.

raw data for each initialized section.

relocation information for each initialized section.

line number entries for each initialized section.

a symbol table.

a string table.

The assembler and linker produce object files with the same COFF structure; however, a
program that is linked for the final time does not usually contain relocation entries.

file header

optional file header

section 1 header

section n header

section 1
_raw data

section n
raw data
section 1

rI:!location information

symbol table

string table

Figure 20.1: COFF File Structure

A-4

section headers

raw data
(executable code
and initialized data)

relocation
information

line number
entries

MSP430 Family Common Object File Format

The following figure shows a typical example of a COFF object file that contains the three
default sections, .text, .data, and .bss, and a named section (referred to as <named».
Although uninitialized sections have section headers, they have no raw data, relocation
information, or line number entries. This is because the .bss and .usect directives simply
reserve space for uninitialized data; uninitialized sections contain no actual code.

file header
r-----7.te~x7t----~'

section header
.data

sectionheader
.bss

section header
<named> section

~~s~e~c~ti~o~n~h~e~ad~e~r __ ~<
.text

raw data
.data

raw data
<named> section

r-__ -Ura~w~da~t~a ____ ~<
.text

relocation information data ...
relocation information

------ ------ ----

<named> section
relocation information

.text
IIherium6efs •.••...

:dala
IJni':nlimbEir$.i

<'1l:lrrJlitC/>: secti<m..
Hnenumbers /
symbol table

string table

Figure 20.2: Sample COFF Object File

section headers

raw data

relocation
information

line number
entries

A-5

Common Object File Format MSP430 Family

20.2 How the File Header Is Structured

The file header contains 20 bytes of information that describe the general format of an object
file.

Byte Type Description
Number

0-1 Unsigned short integer Magic number, indicates that the file can be
executed in a MSP430 system.

2-3 Unsigned short integer Number of section headers.

4-7 Long integer Time and date stamp, indicates when the file
was created.

8-11 Long integer File pointer, contains the symbol table's starting
address.

12-15 Long integer Number of entries in the symbol table.

16-17 Unsigned short integer Number of bytes in the optional header. This
field is either 0 or 28; if it is 0, there is no
optional file header.

18-19 Unsigned short integer Flags (see Table A-2).

Table 20.1: File Header Contents

The following table lists the flags that can appear in bytes 18 and 19 of the file header. Any
number and combination of these flags can be set at the same time (for example, if bytes 18
and 19 are set to 0003h, F _RELFLG and F _EXEC are both set.)

Mnemonic Flag Description

F_RELFLG 0001h Relocation information was stripped from the file.

F_EXEC 0002h The file is relocatable (it contains no unresolved external
references).

F _LNNO 0004h Line numbers were stripped from the file.

F_LSYMS 0008h Local symbols were stripped from the file.

F_BENDIAN 0200h The file has the byte ordering used by MSP430 devices (most
significant byte first).

Table 20.2: File Header Flags (Bytes 18 and 19)

A-6

MSP430 Family Common Object File Format

20.3 Optional File Header Format

The linker creates the optional file header and uses it to perform relocation at download time.
Partially linked files do not contain optional file headers.

Byte Type Description
Number

0-1 Short integer Magic number

2-3 Short integer Version stamp

4-7 Long integer Size (in bytes) of executable code

8-11 Long integer Size (in bytes) of initialized data

12-15 Long integer Size (in bytes) of uninitialized data

16-19 Long integer Entry point

20-23 Long integer Beginning address of executable code

24-27 Long integer Beginning address of initialized data

Table 20.3: Optional File Header Contents

A-7

Common Object File Format MSP430 Family

20.4 How Section Headers Are Structured

COFF object files contain a table of section headers that define where each section begins in
the object file. Each section has its own section header.

Byte Type Description
Number

0-7 Character Eight--character section name, padded with nulls

8-11 Long integer Section's physical address

12-15 Long integer Section's virtual address

16-19 Long integer Section size in words

20-23 Long integer File pointer to raw data

24-27 Long integer File pointer to relocation entries

28-31 Long integer File pointer to line numoor'entries

32-33 Unsigned short integer Number of relocation enltriies

34-35 Unsigned short integer Number of line number entries

36-37 Unsigned short integer Flags (see Table A-5)

38 Character Reserved

39 Unsigned Character Memory page number

Table 20.4: Section Header Contents

Mnemonic Flag Description

STYP_REG OOOOh Regular section (allocated, relocated, loaded)

STYP_DSECT 0001h Dummy section (relocated, not allocated, not loaded)

STYP_NOLOAD 0002h Noload section (allocated, relocated, not loaded)

STYP_GROUP 0004h Grouped section (formed from several input sections)

STYP_PAD 0008h Padding section (loaded, not allocated, not relocated)

STYP_COPY 0010h Copy section (relocated, loaded, but not allocated; relocation
and line number entries are processed normally)

STYP_TEXT 0020h Section contains executable code

STYP_DATA 0040h Section contains initialized data

STYP_BSS 0080h Section contains uninitialized data
Note: The term loaded means that the raw data for this section appears In the object file.

Table 20.5: Section Header Flags (Bytes 36 and 37)

A-8

MSP430 Family Common Object File Format

The flags listed in the last table can be combined; for example, if the flag's word is set to
024h, both STYP _GROUP and STYP _TEXT are set.

The example illustrates how the pointers in a section header would point to the various
elements in an object file that are associated with the .text section .

. text 0-7 8-11 12-15 16-19 20-23 24-27 28-31 32-3334-35 36-37 38 39
Section ,---r--r---r--r---r--r---,---,---,---,---r-.,
Header

Example 20.1: Section Header Pointers for the .text Section

As Figure A-2 , page A-3, shows, uninitialized sections (created with the .bss and .usect
directives) vary from this format. Although uninitialized sections have section headers, they
have no raw data, no relocation information, and no line number information; also, they
occupy no actual space in the object file. Therefore, the number of relocation entries, the
number of line number entries, and the file pointers are 0 for an uninitialized section. The
header of an uninitialized section simply tells the linker how much space for variables it
should reserve in the memory map.

A-9

Common Object File Format MSP430 Family

20.5 Structuring Relocation Information

A COFF object file has one relocation entry for each relocatable reference. The assembler
automatically generates relocation entries. The linker reads the relocation entries as it reads
each input section and performs relocation. The relocation entries determine how references
within each input section are treated.

The relocation information entries use the 1 Q-byte format shown in the table.

Byte Type Description
Number

0-3 Long integer Virtual address of the reference

4-5 Unsigned short integer Symbol table index (0-65535)

6-7 Unsigned short integer Reserved

8-9 Unsigned short integer Relocation type (see Table A-7)

Table 20.6: Relocation Entry Contents

The virtual address is the symbol's address in the current section before relocation; it
specifies where a relocation must occur. (This is the address of the field in the object
code that must be patched.)

Here's an example of code that generates a relocation entry:

2
3 0000

.global X
!40300000 br #x

In this example, the virtual address of the relocatable field is 0001.

The symbol table index is the index of the referenced symbol. In the preceding
example, this field would contain the index of X in the symbol table. The amount of the
relocation is the difference between the symbol's current address in the section and its
assembly-time address. The relocatable field must be relocated by the same amount as
the referenced symbol. In the example, X has a value of 0 before relocation. Suppose X
is relocated to address 2000h. This is the relocation amount (2000h - 0 = 2000h), so the
relocation field at address 1 is patched by adding 2000h to it.

You can determine a symbol's relocated address if you know which section it is defined
in. For example, if X is defined in .data and .data is relocated by 2000h, X is relocated by
2000h.

If the symbol table index in a relocation entry is -1 (OFFFFh), this is called an internal
relocation. In this case, the relocation amount is simply the amount by which the current
section is being relocated.

A-10

MSP430 Family Common Object File Format

• The relocation type specifies the size of the field to be patched and describes how the
patched value should be calculated. The type field depends on the addressing mode that
was used to generate the relocatable reference. In the preceding example, the actual
address of the referenced symbol (X) will be placed in a 16-bit field in the object code.
This is a 16-bit direct relocation, so the relocation type is R_RELWORD.

Mnemonic Flag Relocation Type

R_ABS OOOOh No relocation

R_RELBYTE OOOFh 8-bit direct reference to symbol's address

R_RELWORD 0010h 16-bit direct reference to symbol's address

R_HIWORD 0031h 8-bit reference to MSB of word

Table 20.7: Relocation Types (Bytes 8 and 9)

A-11

Common Object File Format MSP430 Family

20.6 How the Line Number Table Is Structured

The object file contains a table of line number entries that are useful for symbolic debugging.
When the C compiler produces several lines of assembly language code, it creates a line­
number entry that maps these lines back to the original line of C source code that generated
them. Each single line number entry contains 6 bytes of information.

Byte Type Description
Number

0-3 Long integer This entry may have one of two values:

1) If it is the first entry in a block of line-number entries, it
points to a symbol entry in the symbol table.

2) If it is not the first entry in a block, it is the physical address
of the line indicated by bytes 4-5.

4-5 Unsigned This entry may have one of two values:
short integer 1) If this field is 0, this is the first line of a function entry.

2) If this field is not 0, this is the line number of a line of C
source code.

Table 20.8: Line Number Entry Format

The figure shows how line number entries are grouped into blocks.

Symbol Index 1 0
--- - -- -- - - -- -

physical address line number
-- - --- ---- ---
physical address line number

Symbollndexn 0
-- - -- -- - ---- -- -- -

physical address line number
-- --- - -- --- -- --- --- ----
physical address line number

Figure 20.3: Line Number Blocks

As the figure shows, each entry is divided into halves:

For the first line of a function,

A-12

Bytes 0-3 point to the name of a symbol or a function in the symbol table.

Bytes 4-5 contain a 0, which indicates the beginning of a block.

MSP430 Family Common Object File Format

For the remaining lines in a function,

Bytes 0-3 show the physical address (the number of bytes created by a line of C
source).

Bytes 4-5 show the address of the original C source, relative to its appearance in the
C source program.

The line entry table can contain many of these blocks.

The following example illustrates the line number entries for a function named XYZ. As
shown, the function name is entered as a symbol in the symbol table. The first portion on
XYZ's block of line number entries points to the function name in the symbol table. Assume
that the original function in the C source contained three lines of code. The first line of code
produces 4 bytes of assembly language code, the second line produces 3 bytes, and the
third line produces 10 bytes.

-~

0 1 --
4 2 line number
7 3 entries

symbollable

Example 20.2: Line Number Entries

(Note that the symbol table entry for XYZ has a field that points back to the beginning of the
line number block.)

Because line numbers are not often needed, the linker provides an option (-s) that strips line
number information from the object file; this provides a more compact object module.

A-13

Common Object File Format

20.7 Symbol Table Structure and Content

The order of symbols in the symbol table is very important.

static variables

defined global symbols

undefined global symbols

Figure 20.4: Symbol Table Contents

MSP430 Family

Static variables refer to symbols defined in C that have storage class static outside any
function. If you have several modules that use symbols with the same name, making them
static confines the scope of each symbol to the module that defines it (this eliminates
multiple-definition conflicts).

The entry for each symbol in the symbol table contains the symbol's:

Name (or an offset into the string table).

Type.

Value.

Section it was defined in.

Storage class.

Basic type (integer, character, etc.).

A-14

MSP430 Family Common Object File Format

Derived type (array, structure, etc.).

Dimensions.

Line number of the source code that defined the symbol.

Section names are also defined in the symbol table.

All symbol entries, regardless of the symbol's class and type, have the same format in the
symbol table. Each symbol table entry contains the 18 bytes of information listed in the next
table. Each symbol may also have an 18-byte auxiliary entry; the special symbols listed in
the table after next always have an auxiliary entry. Some symbols may not have all the
characteristics listed above; if a particular field is not set, it is set to nUll.

Byte Type Description
Number

0-7 Character This field contains one of the following:

1} An 8-character symbol name, padded with nulls

2} An offset into the string table if the symbol name is
longer than 8 characters

8-11 Long integer Symbol value; storage class dependent

12-13 Short integer Section number of the symbol

14-15 Unsigned short Basic and derived type specification
integer

16 Character Storage class of the symbol

17 Character Number of auxiliary entries (always 0 or 1)

Table 20.9: Symbol Table Entry Contents

A-15

Common Object File Format MSP430 Family

20.7.1 Special Symbols Used in the Symbol Table

The symbol table contains some special symbols that are generated by the compiler,
assembler, and linker. Each special symbol contains ordinary symbol table information and
an auxiliary entry.

Symbol Description

.file File name

.text Address of the .text section

.data Address of the .data section

.bss Address of the .bss section

.bb Address of the beginning of a block

.eb Address of the end of a block

.bf Address of the beginning of a function

.ef Address of the end of a function

.target Pointer to a structure or union that is returned by a function

.nfake Dummy tag name for a structure, union, or enumeration

.eos End of a structure, union, or enumeration

etext Next available address after the end of the .text output section

edata Next available address after the end of the .data output section

end Next available address after the end of the .bss output section

Table 20.10: Special Symbols in the Symbol Table

Several of these symbols appear in pairs:

.eb indicate the beginning and end of a block .

. bf/.ef indicate the beginning and end of a function.

nfake/.eos name and define the limits of structures, unions, and enumerations that were
not named. The .eos symbol is also paired with named structures, unions, and
enumerations.

When a structure, union, or enumeration has no tag name, the compiler assigns it a name so
that it can be entered into the symbol table. These names are of the form nfake, where n is
an integer. The compiler begins numbering these symbol names at O.

Symbols and Blocks

In C, a block is a compound statement that begins and ends with braces. A block always
contains symbols. The symbol definitions for any particular block are grouped together in the

A-16

MSP430 Family Common Object File Format

symbol table and are delineated by the .bb/.eb special symbols. Note that blocks can be
nested in C, and their symbol table entries can also be nested correspondingly. The following
figure shows how block symbols are grouped in the symbol table.

Symbol Table

Block 1: .bb
r--~---

symbols for
block 1

f-- -- ~b-

Block 2:.bb

Figure 20.5: Symbols for Blocks

-":,,,' '.-'--" -":,,,.--"-

symbols for
·····.··bI0Ck2

.eb

Symbols and Functions -----------------------­

The symbol definitions for a function appear in the symbol table as a group, delineated by
.bf/.ef special symbols. The symbol table entry for the function name precedes the .bf special
symbol. The next figure shows the format of symbol table entries for a function.

Figure 20.6: Symbols for Functions

function name

.bf

symbols for
the function

.ef

If a function returns a structure or union, a symbol table entry for the special symbol .target
will appear between the entries for the function name and the .bf special symbol.

20.7.2 Symbol Name Format

The first 8 bytes of a symbol table entry (bytes 0-7) indicate a symbol's name:

A-17

Common Object File Format MSP430 Family

If the symbol name is 8 characters or less, this field has type character. The name is
padded with nulls (if necessary) and stored in bytes 0-7.

If the symbol name is greater than 8 characters, this field is treated as two long integers.
The entire symbol name is stored in the string table. Bytes 0-3 contain 0, and bytes 4-7
are an offset into the string table.

20.7.3 String Table Structure

Symbol names that are longer than eight characters are stored in the string table. The field in
the symbol table entry that would normally contain the symbol's name contains, instead, a
pointer to the symbol's name in the string table. Names are stored contiguously in the string
table, delimited by a null byte. The first four bytes of the string table contain the size of the
string table in bytes; thus, offsets into the string table are greater than or equal to four.

The next figure shows an example of a string table that contains two symbol names,
Adaptive-Filter and Fourier-Transform. The index in the string table is 4 for Adaptive-Filter
and 20 for Fourier-Transform.

38

'A' 'd' 'a' 'p'

't' Ii' 'v' 'e'

, ,
'F' Ij' 'I'

't' 'e' 'r' '\0'

'F' '0' 'u' 'r'

Ii' 'e' 'r'
, ,

'T' 'r' 'a' 'n'

's' 'f' '0' 'r'

'm' '\0'

Figure 20.7: Sample String Table

A-18

MSP430 Family Common Object File Format

20.7.4 Storage Classes

Byte 16 of the symbol table entry indicates the storage class of the symbol. Storage classes
refer to the method in which the C compiler accesses a symbol.

Mnemonic Value Storage Class Mnemonic Value Storage Class

C_NULL 0 No storage class C_USTATIC 14 Undefined static

C_AUTO 1 Automatic variable C_ENTAG 15 Enumeration tag

C_EXT 2 External definition C_MOE 16 Member of an
enumeration

C_STAT 3 Static C_REGPAR 17 Register parameter
M

C_REG 4 Register variable CJIELD 18 Bit field

C_EXTREF 5 External reference C_UEXT 19 Tentative external
definition

C_LABEL 6 Label C_STATLAB 20 Static load time label

C_ULABEL 7 Undefined label C_EXTLAB 21 External load time
label

C_MOS 8 Member of a C_BLOCK 100 Beginning or end of
structure a block; used only

for the .bb and .eb
special symbols

C_ARG 9 Function argument C_FCN 101 Beginning or end of
a function; used only
for the .bf and .ef
special symbols

C_STRTAG 10 Structu re tag C_EOS 102 End of structure;
used only for the
.eos special symbol

C_MOU 11 Member of a union C_FILE 103 Filename; used only
for the .file special
symbol

C_UNTAG 12 Union tag C_LlNE 104 Used only by utility
programs

C_TPDEF 13 Type definition

Table 20.11: Symbol Storage Classes

A-19

Common Object File Format MSP430 Family

Some special symbols are restricted to certain storage classes.

Special Restricted to This Special Restricted to This
Symbol Storage Class Symbol Storage Class

.file C_FILE .eos C_EOS

.bb C_BLOCK .text C_STAT

.eb C_BLOCK .data C_STAT

.bf C_FCN .bss C_STAT

.ef C_FCN

Table 20.12: Special Symbols and Their Storage Classes

20.7.5 Symbol Values

Bytes 8-11 of a symbol table entry indicate a symbol's value. A symbol's value depends on
the symbol's storage class; the table summarizes the storage classes and related values.

Storage Class Value Description Storage Class Value Description

C_AUTO Stack offset in bits C_UNTAG 0

C_EXT Relocatable address C_TPDEF 0

C_STAT Relocatable address C_ENTAG 0

C_REG Register number C_MOE Enumeration value

C_LABEL Relocatable address C_REGPARM Register number

C_MOS Offset in bits C_FIELD Bit displacement

C_ARG Stack offset in bits C_BLOCK Relocatable address

C_STRTAG 0 C_FCN Relocatable address

C_MOU Offset in bits C_FILE 0

Table 20.13: Symbol Values and Storage Classes

If a symbol's storage class is C_FILE, the symbol's value is a pOinter to the next .file symbol.
Thus, the .file symbols form a one-way linked list in the symbol table. When there are no
more .file symbols, the final .file symbol points back to the first .file symbol in the symbol
table.

The value of a relocatable symbol is its virtual address. When the linker relocates a section,
the value of a relocatable symbol changes accordingly.

A-20

MSP430 Family Common Object File Format

20.7.6 Section Number

Bytes 12-13 of a symbol table entry contain a number that indicates which section the
symbol was defined in. The table lists these numbers and the sections they indicate.

Mnemonic Section Description
Number

N_DEBUG -2 Special symbolic debugging symbol

N_ABS -1 Absolute symbol

N_UNDEF 0 Undefined external symbol

N_SCNUM 1 . text section (typical)

N_SCNUM 2 .data section (typical)

N_SCNUM 3 .bss section (typical)

N_SCNUM 1-32,767 Section number of a named section, in the order in which
the named sections are encountered

Table 20.14: Section Numbers

Note that if there were no .text, .data, or .bss sections, the numbering of named sections
would begin with 1.

If a symbol has a section number of 0, -1, or -2, it is not defined in a section. A section
number of -2 indicates a symbolic debugging symbol, which includes structure, union, and
enumeration tag names, type definitions, and the filename. A section number of -1 indicates
that the symbol has a value but is not relocatable. A section number of 0 indicates a
relocatable external symbol that is not defined in the current file.

20.7.7 Type Entry

Bytes 14-15 of the symbol table entry define the symbol's type. Each symbol has one basic
type and one to six derived types.

Here is the format for this 16--bit type entry:

Derived Derived Derived Derived Derived Derived Basic
Type Type Type Type Type Type Type

6 5 4 3 2 1
Size
(in bits):

2 2 2 2 2 2 4

Bits 0-3 of the type field indicate the basic type.

A-21

Common Object File Format MSP430 Family

Bits 4-15 of the type field are arranged as six 2-bit fields that can indicate 1 to 6 derived
types.

Mnemonic Value Type Mnemonic Value Type

T_VOID 0 Void type T_STRUCT 8 Structure

T_SCHAR1 1 Character T_UNION 9 Union
(explicitly signed)

T_CHAR 2 Character T_ENUM 10 Enumeration
(implicitly signed)

T_SHORT 3 Short integer T_LDOUBL 11 Long Double Floating
E Point

T_INT 4 Integer T_UCHAR 12 Unsigned character

T_LONG 5 Long integer T_USHORT 13 Unsigned short
integer

TJLOAT 6 Floating point T_UINT 14 Unsigned integer

T_DOUBLE 7 Double floating point T_ULONG 15 Unsigned long integer

Table 20.15: Basic Types

Mnemonic Value Type Mnemonic Value Type

DT_NON 0 No derived type DT_FCN 2 Function

DT_PTR 1 Pointer DT_ARY 3 Array

Table 20.16: Derived Types

An example of a symbol with several derived types would be a symbol with a type entry of
00000000110100112. This entry indicates that the symbol is an array of pointers to short
integers.

20.7.8 Auxiliary Entries

Each symbol table entry may have one or no auxiliary entry. An auxiliary symbol table entry
contains the same number of bytes as a symbol table entry (18), but the format of an
auxiliary entry depends on the symbol's type and storage class. The following table
summarizes these relationships.

A-22

MSP430 Family Common Object File Format

Type Entry

Name Storage Derived Basic Auxiliary Entry Format
Class Type 1 Type

.file CJILE DT_NON T_VOID Filename (see further
tables)

. text, .data, .bss C_STAT DT_NON T_VOID Section (see further
tables)

tagname C_STRTAG DT_NON T_STRUCT Tag name (see further
C_UNTAG T_UNION tables)
C_ENTAG T_ENUM

.eos C_EOS DT_NON T_VOID End of structure (see
further tables)

fcname C_EXT DT_FCN (Any) Function (see further
C_STAT tables)

arrname (See note 2) DT_ARY (See note 1) Array (see further tables)

.bb, .eb C_BLOCK DT_NON T_VOID Beginning and end of a
block (see further tables)

.bf, .ef C_FCN DT_NON T_VOID Beginning and end of a
function (see further
tables)

Name related to (See note 2) DT_PTR T_STRUCT Name related to a
a structure, DT_ARR T_UNION structure, union, or
union, or DT_NON T_ENUM enumeration (see further
enumeration tables)

Noles: 1) AnyexceptT _VOID
2) C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF, C_EXT

Table 20.17: Auxiliary Symbol Table Entries Format

In this table, tagname refers to any symbol name (including the special symbol nfake).
Fcname and arrname refer to any symbol name.

A symbol that satisfies more than one condition should have a union format in its auxiliary
entry. A symbol that satisfies none of these conditions should not have an auxiliary entry.

A-23

Common Object File Format MSP430 Family

Filenames ---------------------------­

Each of the auxiliary table entries for a filename contains a 14-character file name in bytes
0-13. Bytes 14-17 are unused.

Byte Number Type Description

0-13 Character File name

14-17 - Unused

Table 20.18: Filename Format for Auxiliary Table Entries

Sections

Byte Number Type Description

0-3 Long integer Section length

4-6 Unsigned short integer Number of relocation entries

7-8 Unsigned short integer Number of line number entries

9-17 - Not used (zero filled)

Table 20.19: Section Format for Auxiliary Table Entries

Tag Names

Byte Number Type Description

0-3 - Unused (zero filled)

4-7 Unsigned long integer Size of structure, union, or enumeration

8-11 - Unused (zero filled)

12-15 Long integer Index of next entry beyond this structure,
union, or enumeration

16-17 - Unused (zero filled)

Table 20.20: Tag Name Format for Auxiliary Table Entries

A-24

MSP430 Family Common Object File Format

End of Structure

Byte Number Type Description

0-3 Long integer Tag index

4-7 Unsigned long integer Size of structure, union, or enumeration

8-17 - Unused (zero filled)

Table 20.21: End-of-Structure Format for Auxiliary Table Entries

Functions -----------------------------

Byte Number Type Description

0-3 Long integer Tag index

4-7 Long integer Size of function (in bits)

8-11 Long integer File pointer to line number

12-15 Long integer Index of next entry beyond this function

16-17 - Unused (zero filled)

Table 20.22: Function Format for Auxiliary Table Entries

Arrays

Byte Number Type Description

0-3 Long integer Tag index

4-7 Unsigned long integer Size of array

8-9 Unsigned short integer First dimension

10-11 Unsigned short integer Second dimension

12-13 Unsigned short integer Third dimension

14-15 Unsigned short integer Fourth dimension

16-17 - Unused (zero filled)

Table 20.23: Array Format for Auxiliary Table Entries

A-25

Common Object File Format MSP430 Family

End of Blocks and Functions----------------------

Byte Number Type Description

0-3 - Unused (zero filled)

4-5 Unsigned short integer C source line number

6-17 - Unused (zero filled)

Table 20.24: End-of-Blocks/Functions Format for Auxiliary Table Entries

Beginning of Blocks and Functions --------------------

Byte Number Type Description

0-3 Unsigned long integer Register save mask

4-5 Unsigned short integer C source line number of block begin

6-7 Unsigned short integer Number line entries for function

8-11 Unsigned long integer Size of local frame for function

12-15 Long integer Index of next entry past this block

16-17 - Unused (zero filled)

Table 20.25: Beginning-of-Blocks/Functions Format for Auxiliary Table

Names Related to Structures, Unions, and Enumerations

Byte Number Type Description

0-3 Long integer Tag index

4-7 Unsigned long integer Size of the structure, union, or enumeration

8-17 - Unused (zero filled)

Table 20.26: Structure, Union, and Enumeration Names Format for Auxiliary Table Entries

A-26

MSP430 Family Symbolic Debugging Directives

Topics

8 Symbolic Debugging Directives 8-3

8-1

Symbolic Debugging Directives MSP430 Family

8-2

MSP430 Family Symbolic Debugging Directives

21 Symbolic Debugging Directives

The MSP430 fixed-point assembler supports several directives that a high level programm­
ing language can use for symbolic debugging:

The .sym directive defines a global variable, a local variable, or a function. Several
parameters allow you to associate various debugging information with the symbol or
function.

The .stag, .etag, and .utag directives define structures, enumerations, and unions,
respectively. The .member directive specifies a member of a structure, enumeration, or
union. The .eos directive ends a structure, enumeration, or union definition.

The .func and .endfunc directives specify the beginning and ending lines of a function.

The .block and .endblock directives specify the bounds of blocks.

The .file directive defines a symbol in the symbol table that identifies the current source
file name.

The .line directive identifies the line number of a source statement.

These symbolic debugging directives are not usually listed in the assembly language file that
the compiler creates. If you want them to be listed, invoke the compiler shell with the -g
option, as shown below:

c1430 -9 input file

This appendix contains an alphabetical directory of the symbolic debugging directives. Each
directive contains an example of C source and the resulting assembly language code.

8-3

Symbolic Debugging Directives MSP430 Family

Syntax

Description

Example

8-4

.block [beginning line number]

.endblock [ending line number]

The .block and .endblock directives specify the beginning and end of a
block. The line numbers are optional; they specify the location in the
source file where the block is defined. Line numbers are relative to the
beginning of the current function.

Note that block definitions can be nested. The assembler will detect
improper block nesting.

Here is an example of C source that defines a block and of the
resulting assembly language code.

C source:

int a,b;
a = b;

/* Beginning of a block */

/* End of a block */

Resulting assembly language code:

.block 4

.sym _a,1,4,1,8

.sym _b,2,4,1,8

.line 5
MOV 2(SP), l(SP)
.endblock 6

MSP430 Family Symbolic Debugging Directives

Syntax .tile filename

Description The .file directive allows a debugger to map locations in memory back
to lines in a source file. The filename is the name of the file that
contains the original C source program. The first 14 characters of the
filename are significant; any pathname information is stripped away.

Example

You can use the .file directive in assembly code to provide a name in
the file and improve program readability.

Here's an example of the .file directive. The file named text.c contained
the C source that produced this directive .

. file "text.e"

8-5

Symbolic Debugging Directives MSP430 Family

Syntax

Description

Example

8-6

June [beginning line number]

.endfunc [ending line number] [, register save maskl 1
[, register save mask2] [, frame size 1
The .func and .endfunc directives specify the beginning and end of a
function. The line numbers are optional; they specify the location in the
source file where the function is defined. The register save masks
indicate which registers were saved by this function. If bit 0 of mask2 is
1, RO was saved by the function; if bit 1 of mask2 is 1, R1 was saved;
if bit 0 of mask1 is 1, R16 was saved; etc. The frame size parameter
indicates how many bytes were reserved for the local frame of this
function,

Note that function definitions cannot be nested,

Here is an example of C source that defines a function and of the
resulting assembly language code,

C source:

povver(x, nl
*/

int X,D;

/* Beginning of a function

register int i, p;
p = 1;
for (i 1; i <= n; ++i) p*= X;
return Pi /* End of function */

MSP430 Family Symbolic Debugging Directives

Resulting assembly language code:
.sym -power,_power,36,2,O
.global ~power

. text

. func 1

i* FUNCTION DEF : -power
.***
-power: ;

INCW #4,STK
POP A
MOV A,-2(STK)
POP A
MOV A,-3(STK)
MOV FP, -l,A
MOV A,-l(STK)
MOV FP,A
MOV A,@STK
MOVW STK,FP
INCW #2,STK
MOV R23,A
MOV A,-l(STK)
MOV R24,A
MOV A,@STK
.sym _x,-4,4,9,8
.sym _n,-5,4,9,8
.sym _i,23,4,4,8
.sym -",,24,4,4,8
.line 3
.line 5

MOV #Olh,R24
.line 6

MOV #Olh,R23
JMP L2

L1:
MOV -4(FP),A
MPY R24,A
MOV B,R24
INC R23

L2 :
MOV -5(FP),A
CMP R23,A
JGE L1
.line 7

MOV R24,R8
EPIO 1 :

.line
MOV @STK,A
MOV A,R24
MOV -1 (STK) ,A
MOV A,R23
MOVW FP,STK
MOV @STK,A
MOV A,FP
MOV -1 (STK),A
MOV A,FP-1
MOV -2(STK),A
MOV A,B
MOV -3(STK),A
INCW #-4,STK
BR @R1
.endfunc 8,OO180H,OOOOOH,O
.end

8-7

Symbolic Debugging Directives MSP430 Family

Syntax

Description

Example

8-8

.line line number [, address]

The .line directive creates a line number entry in the object file. Line
number entries are used in symbolic debugging to associate
addresses in the object code with the lines in the source code that
generated them.

The .Iine directive has two operands:

Line number indicates the line of the source that generated a
portion of code. Line numbers are relative to the beginning of the
current function. This is a required parameter.

Address is an expression that is the address associated with the
line number. This is an optional parameter; if you don't specify an
address, the assembler will use the current SPC value.

The .Iine directive is followed by the assembly language source
statements that are generated by the indicated line of C source. For
example, assume that the lines of C source below are lines 5 and 6 in
the original C source; lines 5 and 6 produce the assembly language
source statements that are shown below.

C source:

for (p = 1; i = 1; i <= n; ++i) p*=x
return Pi

Resulting assembly language code:

L1:

L2:

.line 5
Mav #Olh, R24
Mav #Olh, R23
JMP L2

MaV -4 (FP), A
MPY R24, A
MaV E, R24
INC R23

Mav -5 (FP), A
CMP R23, A
JGE Ll
.line 6

MOV R24, R8

MSP430 Family Symbolic Debugging Directives

Syntax .member name, value [, type, storage class, size, tag, dims]

Description The .member directive defines a member of a structure, union, or
enumeration. It is valid only when it appears in a structure, union, or
enumeration definition.

Example

Name is the name of the member that is put in the symbol table.
The first 32 characters of the name are significant.

Value is the value associated with the member. Any legal
expression (absolute or relocatable) is acceptable.

Type is the type of the member. Appendix A contains more
information about types.

Storage class is the storage class of the member. Appendix A
contains more information about storage classes.

Size is the number of bits of memory required to contain this
member.

Tag is the name of the type (if any) or structure of which this
member is a type. This name must have been previously declared
by a .stag, .etag, or .utag directive.

Dims may be one to four expressions separated by commas. This
allows up to four dimensions to be specified for the member.

The order of parameters is significant. Name and value are required
parameters. All other parameters may be omitted or empty (adjacent
commas indicate an empty entry). This allows you to skip a parameter
and specify a parameter that occurs later in the list. Operands that are
omitted or empty assume a null value.

Here is an example of a C structure definition and the corresponding
assembly language statements:

C source:

struct doc
char title;
char group;
int job_number;

doc_info;

Resulting assembly language code:

.stag doc,24

. member _title,O,2,8,8

. member _group,8,2,8,8

.member _job_number,16,4,8,8

.eos

8-9

Symbolic Debugging Directives MSP430 Family

Syntax

Description

Example 1

8-10

.stag name [, size]
member definitions
.eos

.etag name [, size]
member definitions
.eos

.utag name [, size]
member definitions
.eos

The .stag directive begins a structure definition. The .etag directive
begins an enumeration definition. The .utag directive begins a union
definition. The .eos directive ends a structure, enumeration, or union
definition.

Name is the name of the structure, enumeration, or union. The first 32
characters of the name are significant. This is a required
parameter.

Size is the number of bits the structure, enumeration, or union
occupies in memory. This is an optional parameter; if omitted,
the size is unspecified.

The .stag, .etag, or.utag directive should be followed by a number of
.member directives, which define members in the structure. The
.member directive is the only directive that can appear inside a
structure, enumeration, or union definition.

The assembler does not allow nested structures, enumerations, or
unions. A C compiler "unwinds" nested structures by defining them
separately and then referencing them from the structure they are
referenced in.

Here is an example of a structure definition.

C source:

struct doc
{

char title;
char group;
int job_number;

doc_info;

Resulting assembly language code:

.stag _doc,24

.member _title,Q,2,8,8

.member _group,8,2,8,8

.member _job_number, 16,4,8,8

.eos

MSP430 Family Symbolic Debugging Directives

Example 2 Here is an example of a union definition.

Examp'

C source:

union u_tag
int vall;
float va12;
char vale;

valu;

Resulting assembly language code:

.utaa _u_tag, 24

. men",,, ' _vall, 0, 4 , 11, 8

.memuc'(_va12, 0,6,11,24

.memu"e _vale,O,2,11,8

.eOR

Here is an example of an enumeration definition.

C Source:

Resulting assembly language code:

.etag _o_ty,8
,member _reg_1,O,4,16,8
.member _reg_2,1,4,16,8
.member _result,2,4,16,8
.eos

8-11

Symbolic Debugging Directives MSP430 Family

Syntax

Description

Example

8-12

.sym name, value [, type, storage class, size, tag, dims]

The .sym directive specifies symbolic debug information about a global
variable, local variable, or a function.

Name is the name of the variable that is put in the object symbol
table. The first 32 characters of the name are significant.

Value is the value associated with the variable. Any legal expres­
sion (absolute or relocatable) is acceptable.

Type? is the type of the variable. Appendix A contains more
information about types.

Storage class? is the storage class of the variable. Appendix A
contains more information about storage classes.

Size? is the number of bits of memory required to contain this
variable.

Tag is the name of the type (if any) or structure of which this
variable is a type. This name must have been previously declared
by a . stag , .etag, or .utag directive.

Dims may be up to four expressions separated by commas. This
allows up to four dimensions to be specified for the variable.

The order of parameters is significant. Name and value are required
parameters. All other parameters may be omitted or empty (adjacent
commas indicate an empty entry). This allows you to skip a parameter
and specify a parameter that occurs later in the list. Operands that are
omitted or empty assume a null value.

These lines of C source produce the .sym directives shown below:

C source:

struct s { int member1, member2; } str;
int ext;
int array[5] [10];
long *ptr;
int strcmp () ;

main(arg1,arg2)
int argl;
char *arg2;

register r1;

MSP430 Family Symbolic Debugging Directives

Resulting assembly language code:

.sym _str,_str,8,2,16,_s

.sym _ext,_ext,4,2,8

.sym _array,_array,244,2,400, ,5,10

.sym -ptr,-plr,21,2,16

.sym _main,_main,36,2,0

.sym _arg1,-4,4,9,8

.sym _arg2,-6,18,9,16

.sym _r1,23,4,4,8

8-13

Symbolic Debugging Directives MSP430 Family

8-14

MSP430 Family Assembler Error Messages

Topics

C Assembler Error Messages C-3

C-1

Assembler Error Messages MSP430 Family

C-2

MSP430 Family Assembler Error Messages

22 Assembler Error Messages

The assembler issues several types of error messages:

Fatal

Nonfatal

Macro

When the assembler completes its second pass, it reports any errors that it encountered
during the assembly. It also prints these errors in the listing file (if one is created); an error is
printed following the source line that incurred it.

This appendix discusses the three types of assembler error messages; they are listed in
alphabetical order. Most errors are fatal errors; if an error is not fatal or if it is a macro error,
this is noted in the list.

absolute value required: A relocatable symbol was used where an absolute symbol was
expected.

a component of the expression is invalid

address required: The operand of the flagged directive must be an address

an identifier in the expression is invalid

argument must be character constant

bad indirect address

bad macro library format

.break encountered outside loop block

cannot equate an external to an external

cannot open library: A library name specified with the .mlib directive does not exist or is
already being used.

cannot redefine register: Register names cannot be used as labels.

character constant overflows a word

close (» missing: Mismatched parentheses.

close (]) missing: Mismatched brackets.

close quote missing: All strings must be enclosed in quotes.

comma missing: The assembler expected a comma but did not find one. This usually
means that more operands were expected.

conditional block nesting level exceeded

C-3

Assembler Error Messages MSP430 Family

conflicts with previous section definition

copy file open error: A file specified by a .copy directive does not exist or is already being
used.

directive only valid if (-a) option use: The .setsect and .setsym directives can be used only
if the -a (absolute list) option is specified.

divide by zero: An expression or well-defined expression contains invalid division.

duplicate definition: The symbol appears as an operand of a REF statement, as well as in
the the label field of the source, or the symbol appears more than once in the label field of
the source.

duplicate definition of a structure component

.else or .elseif needs corresponding .if: An .else or .elseif directive was not preceded by
an .if directive.

empty structure

expression changed values due to jump expansion: An expression is dependent on the
amount of code between 2 labels. If the assembler expands a jump in the code between
these 2 labels, then this expression will evaluate to different values in pass1 and pass2.
Between the 2 labels, you will need to manually expand any jumps in your source code
which were automatically expanded by the assembler.

expression not terminated properly

expression out of bounds

filename missing: The specified filename cannot be found.

floating-point expression not allowed

floating-point number not valid in expression

illegal label: A label cannot be used for the second instruction of a parallel instruction pair.

illegal operation in expression

illegal structure definition

illegal structure member

illegal structure, union, or enumeration tag

illegal relative address: The label destination of a relative jump must be defined within the
same section as the jump.

illegal symbolic address: Operand only valid in absolute address mode.

illegal use of local label: Local labels are not allowed in expressions.

invalid binary constant: The only valid binary integers are 0 and 1; the constant must be
suffixed with b or B.

C-4

MSP430 Family Assembler Error Messages

invalid bit number: You must specify a bit number between 0 and 7.

invalid decimal constant: The only valid decimal integers are 0-9.

invalid expression: This may indicate invalid use of a relocatable symbol in arithmetic.

invalid floating-point constant

invalid octal constant: The only valid octal digits are the integers are 0-8; the constant must
be suffixed with q or Q.

invalid opcode: The command field of the source record has an entry that is not a defined
instruction, directive, or macro name.

invalid operand or operand combination

invalid option: An option specified by the .option directive is invalid.

invalid subscript or index

invalid symbol qualifier

invalid trap number: Trap numbers must be absolute values between 0 and 15.

label required: The flagged directive must have a label.

library not in archive format: A file specified with an .mlib directive is not an archive file.

local label multiply defined in block

local label not defined in block

local macro variable is not a valid symbol

macro parameter is not a valid symbol

maximum macro nesting level exceeded

maximum number of copy files exceeded

.mexit directive encountered outside macro

missing .endif directive

missing .endloop directive

missing .endm directive

missing macro name

missing structure tag

no include/copy files in macro or loop blocks

no parameters for macro arguments

no relative jumps to symbols not in current section: Relative jumps to load-time
addresses defined with the .label directive are not allowed.

offset must point to even (word) address

C-5

Assembler Error Messages

open "(" expected

operand missing: An operand must be supplied.

operand must be an immediate value

MSP430 Family

pass1/pass2 operand conflict: A symbol in the symbol table did not have the same value in
pass 1 and pass 2.

positive value required

redefinition of local substitution symbol

register symbol used before definition: Equating a symbol to a register must be done
before first symbol use.

relative jumps to externals are not allowed

string required: You must supply a string that is enclosed in double quotes.

substitution symbol stack overflow

substitution symbol string too long

subtraction of labels not allowed: Subtraction of labels or relationals involving the amount
of code between labels is not allowed in expressions used in some contexts.

symbol required: The .global directive requires a symbol as an operand.

symbol used in both REF and DEF: A REFed symbol is already defined.

syntax error

target address not word aligned

too many local substitution symbols

unbalanced symbol table entries: For .block and .func directives.

undefined structure member

undefined structure tag

undefined substitution symbol

undefined symbol: An undefined symbol was used where a well-defined expression is
required.

underflow in floating-point constant: Floating-point value is too small to represent.

unexpected .endif encountered: An .endif directive was not preceded by a .loop directive.

unexpected .endloop encountered: An .endloop directive was not preceded by a .Ioop
directive.

unexpected .endm directive encountered

unexpected .endstruct directive encountered: An .endstruct directive was not preceded
by a .struct directive.

C-6

MSP430 Family

value is out of range

.var directive encountered outside macro

version number changed

warning - block open at end of file

warning - function .sym required before .func

warning - immediate operand not absolute

warning - line truncated

warning - register converted to immediate

warning - string length exceeds maximum limit

Assembler Error Messages

warning - symbol truncated: The maximum length for a symbol is eight characters. The
assembler ignores the extra characters.

warning - trailing operand(s): The assembler found fewer or more operands than
expected in the flagged instruction.

warning - value out of range

warning - value truncated: The expression given was too large to fit within the instruction
opcode or the required number of bits.

C-7

Assembler Error Messages MSP430 Family

C-8

MSP430 Family Linker Error Messages

Topics

o Linker Error Messages 0-3

0-1

Linker Error Messages MSP430 Family

0-2

MSP430 Family

23 Linker Error Messages

The linker issues several types of error messages:

Syntax and command errors

Allocation errors

I/O errors

Linker Error Messages

This appendix discusses the three types of errors; they are listed alphabetically within each
category. In these listings, the symbol (...) represents the name of an object that the linker is
attempting to interact with when an error occurs.

Syntax/Command Errors

These errors are caused by incorrect use of linker directives, misuse of an input
expression, or invalid options. Check the syntax of all expressions, and check the input
directives for accuracy. Review the various options you are using and check for conflicts.

absolute symbol (...) being redefined: An absolute symbol cannot be redefined.

adding name (...) to multiple output sections: The input section is mentioned twice in
the SECTIONS directive.

ALIGN illegal in this context: Alignment of a symbol can be performed only within a
SECTIONS directive.

attempt to decrement DOT: Statements such as .-= value are illegal. ASSignments to
dot can be used only to create holes.

bad fill value: The fill value must be a 16-bit constant.

binding address for (...) redefined: Only one binding value is allowed for each section.

blocking for (...) redefined: Only one blocking value is allowed for each section.

can't open filename: Specified filename cannot be opened for some reason; file doesn't
exist, wrong file type, etc.

cannot specify both binding and memory area for (...): The two are mutually
exclusive. If you wish the code to be placed at a specific address, use binding only.

cannot specify a page for a section within a GROUP

command file nesting exceeded with file (...): Command file nesting is allowed up to
16 levels.

-e flag does not specify a legal symbol name (...): The -6 option requires a valid
symbol name as an operand.

entry point symbol (...) undefined: The symbol used with the -e option is not defined.

errors in input - (...) not built: Previous errors prevent the creation of an output file.

fill value for (...) redefined: Only one fill value is allowed per output section. Individual
holes can be filled with different values with the section definition.

0-3

Linker Error Messages MSP430 Family

-i path too long (•••): The maximum number of characters in an -i path is 256.

illegal input character: There is a control character or other unrecognized character in
the command file.

illegal memory attributes for (...): The attributes must be some combination of R, W, I,
andX.

illegal operator in expression: Review legal expression operators.

illegal option within SECTIONS: The -I (lowercase L) is the only option allowed within a
SECTIONS directive.

invalid path specified with -i flag: The operand of the -i flag must be a valid file or
pathname.

invalid value for -f flag: must be a 2-byte constant.

invalid value for -heap flag: must be a 2-byte constant.

invalid value for -stack flag: must be a 2-byte constant.

invalid value for -v flag: must be a constant.

length redefined for memory area (..•): Each memory area in a MEMORY directive can
have only one length.

-m flag does not specify a valid filename: You must specify a valid filename to write
the output map file to.

memory area for (•..) redefined: Only one named memory allocation is allowed for each
output section.

memory page for (...) redefined: Only one page allocation is allowed for each section.

memory attributes redefined for (...): Only one set of memory attributes is allowed for
each output section.

missing filename on -I; use -I <filename>: The -I (lowercase L) option requires the use
of a filename operand.

misuse of DOT symbol in assignment instruction: The dot symbol cannot be used in
assignment statements that are outside SECTIONS directives.

no input files: The linker cannot operate without at least one input COFF file.

-0 flag does specify a valid file name: string

output file has no .bss section: This is a warning. This section is usually present in a
COFF file. There is no real requirement for it to be present.

output file has no .data section: This is a warning. This section is usually present in a
COFF file. There is no real requirement for it to be present.

output file has no .text section: This is a warning. This section is usually present in a
COFF file. There is no real requirement for it to be present.

origin missing for memory area (...)

origin redefined for memory area (•••)

0-4

MSP430 ramily Linker Error Messages

-r incompatible with -s (-s ignored): Since the -s option strips the relocation information
and -r requests a relocatable object file, these options are in conflict with each other.

section (...) not built: The most likely cause of this is a syntax error in the SECTIONS
directive.

semicolon required after assignment: There is a syntax error in the command file.

statement ignored: Caused by a syntax error in an expression.

symbol referencing errors - (...) not built

symbol (...) from file (...) being redefined: A defined symbol cannot be redefined in an
assignment statement.

too many arguments - use a command file: You are limited to ten arguments on a
command line, or in response to prompts. ',.,

too many -i options, 7 allowed: Additional search directories can be specified with a
C_DIR or A_DIR environment variable.

type flags for (...) redefined: Only one section type is allowed per section. Note that
type COPY has all of the attributes of type DSECT, so DSECT need not be specified
separately.

type flags not allowed for GROUP or UNION: Special section types apply to individual
sections only.

-u does not specify a legal symbol name: The -u option must specify a legal symbol
name that exists in one of the files that you are linking.

unexpected EOF{end of file): Syntax error in the linker command file.

undefined symbol in expression: An assignment statement contains an undefined
symbol.

unrecognized option (...): Check the list of valid options.

zero or missing length for memory area (...): Each memory range defined with the
MEMORY directive must have a nonzero length.

0-5

Linker Error Messages MSP430 Family

Allocation Errors

These error messages appear during the allocation phase of linking. They generally
appear if a section or group does not fit at a certain address or if the MEMORY and
SECTIONS directives conflict in some way. If you are using a linker command file, check
that MEMORY and SECTIONS directives allow enough room to ensure that no sections
overlap and that no sections are being placed in unconfigured memory.

alignment for (...) must be a power of 2: Section alignment must be a power of 2.

alignment for (...) redefined: Only one alignment is allowed for each section.

binding address (...) for section (...) is outside all memory on page (...): Each section
must fall within memory configured with the MEMORY directive.

binding address (...) for section (...) overlays (...) at (...): Two sections overlap and
cannot be allocated.

binding address (...) incompatible with alignment for section (...): The section has an
alignment requirement from a .align directive or previous link. The binding address
violates this requirement.

blocking for (...) must be a power of 2: Section blocking must be a power of 2.

can't align a section within GROUP - (...) not aligned: The entire GROUP is treated as
one unit, so the GROUP can be aligned or bound to an address, but the sections making
up the GROUP cannot be handled individually.

can't align within UNION - section (...) not aligned: The entire UNION is treated as
one unit, so the UNION can be aligned or bound to an address, but the sections making
up the UNION cannot be handled individually.

can't allocate (...), size ... (page ...): A section can't be allocated, because no configured
memory area exists that is large enough to hold it.

load address for uninitialized section (...) ignored: Uninitialized sections have no load
addresses-only run addresses.

load address for UNION ignored: UNION refers only to the section's run address.

load allocation required for uninitialized UNION member (...): UNIONs refer to
runtime allocation only. You must specify the load address for all sections within a
UNION separately.

no allocation allowed for uninitialized UNION member: An uninitialized section with a
UNION gets its run allocation from the UNION and has no load address, so no allocation
is valid for the member.

no allocation allowed with a GROUP-allocation for section (...) ignored: The entire
group is treated as one unit, so the group can be aligned or bound to an address, but the
sections making up the group cannot be handled individually.

no load address specified for (...); using run address: If an initialized section has a
run address, only the section is allocated to run and load at the same address.

no run allocation allowed for union member (...): A UNION defines the run address for
all of its members; therefore, individual run allocations are illegal.

D-6

MSP430 Family Linker Error Messages

output file (.••) not executable: The output file created may have unresolved symbols or
other problems stemming from other errors. This condition is not fatal.

PC-relative displacement overflow at address (...) in file (.•.): relocation of a PC­
relative jump resulted in a jump displacement too large to encode in the instruction.

section (...) at (•..) overlays at address (..•): The two sections overlap and cannot be
allocated.

section (...) enters unconfigured memory at address (...): A section can't be allocated
because no configured memory area exists that is large enough to hold it.

section (...) not found: An input section specified in a SECTIONS directive was not
found in the input file.

section (..•) won't fit into configured memory: A section can't be allocated, because no
configured memory area exists that is large enough to hold it.

undefined symbol (•..) first referenced in file (...): Unless the -r option is used, the
linker requires that all referenced symbols be defined. This condition prevents the
creation of an executable output file.

0-7

Linker Error Messages MSP430 Family

110 and Internal Overflow Errors:

The following error messages indicate that the input file is corrupt, nonexistent, or
unreadable, or that the output file cannot be opened or written to. Messages in this
category may also indicate that the linker is out of memory or table space. Make sure
that the input file is in the correct directory and that the file system is not out of space. If
the input file is corrupt, try reassembling it.

cannot complete output file (.••), write error: Usually means that the file system is out
of space.

cannot create output file (...): Usually indicates an illegal filename.

can't find input file filename:

can't open (...): The specified file does not exist.

can't read (...)

can't seek (...)

can't write (...)

can't create map file (...): Usually indicates an illegal filename.

fail to copy (...)

fail to read (...)

fail to seek (...)

fail to skip (...)

fail to write (...)

file (...) has no relocation information: You have attempted to relink a file that was not
linked with or.

file (...) is of unknown type, magic number = (...): The binary input file is not a COFF
f:fe.

illegal relocation type (...) found in section(s) of file (...): The binary file is corrupt.

internal error (...): Indicates an internal error is in the linker.

invalid archive size for file (...): The archive file is corrupt.

1/0 error on output file (...)

library (...) member (...) has no relocation information

line number entry found for absolute symbol: The input file is corrupt.

making aux entry filename for symbol n out of sequence: The input file is corrupt.

no string table in file filename: The input file is corrupt.

no symbol map produced - not enough memory: This is a nonfatal condition that
prevents the generation of the symbol list in the map file.

overwriting aux entry filename of symbol n: The input file is corrupt.

out of memory, aborting:

0-8

MSP430 Family Linker Error Messages

relocation entries out of order in section (...) of file (...): The input file is corrupt.

relocation symbol not found: index (...), section (...), file (...): The input file is corrupt.

seek to (...) failed

too few symbol names in string table for archive n: The archive file is corrupt.

0-9

Linker Error Messages MSP430 Family

0-10

MSP430 Family ASCII Char.acter Set

Topics

E ASCII Character Set E-3

E-1

ASCII Character Set MSP430 Family

E-2

MSP430 Family ASCII Character Set

24 ASCII Character Set

Base Char Base Char Base Char Base Char

10 16 10 16 10 16 10 16

0 00 NULL 32 20 SP 64 40 @ 96 60

1 01 SOH 33 21 ! 65 41 A 97 61 a

2 02 STX 34 22 " 66 42 B 98 62 b

3 03 ETX 35 23 # 67 43 C 99 63 c

4 04 EOT 36 24 $ 68 44 0 100 64 d

5 05 ENQ 37 25 % 69 45 E 101 65 e

6 06 ACK 38 26 & 70 46 F 102 66 f

7 07 BEL 39 27 71 47 G 103 67 9

8 08 BS 40 28 (72 48 H 104 68 h

9 09 HT 41 29) 73 49 I 105 69 i

10 OA LF 42 2A * 74 4A J 106 6A j

11 OB VT 43 2B + 75 4B K 107 6B k

12 OC FF 44 2C , 76 4C L 108 6C I

13 00 CR 45 20 - 77 40 M 109 60 m

14 OE SO 46 2E 78 4E N 110 6E n

15 OF SI 47 2F I 79 4F 0 111 6F 0

16 10 OLE 48 30 0 80 50 P 112 70 P

17 11 DC1 49 31 1 81 51 Q 113 71 q

18 12 DC2 50 32 2 82 52 R 114 72 r

19 13 DC3 51 33 3 83 53 S 115 73 s

20 14 DC4 52 34 4 84 54 T 116 74 t

21 15 NAK 53 35 5 85 55 U 117 75 u

22 16 SYN 54 36 6 86 56 V 118 76 v

23 17 ETB 55 37 7 87 57 W 119 77 w

24 18 CAN 56 38 8 88 58 X 120 78 x

25 19 EM 57 39 9 89 59 Y 121 79 Y
26 1A SUB 58 3A : 90 5A Z 122 7A z

27 1B ESC 59 3B ; 91 5B [123 7B {

28 1C FS 60 3C < 92 5C \ 124 7C I

29 10 GS 61 30 = 93 50] 125 70 }

30 1E RS 62 3E > 94 5E A 126 7E -
31 1F US 63 3F ? 95 5F 127 7F DEL -

E-3

ASCII Character Set MSP430 Family

E-4

MSP430 Family Glossary

Topics

F Glossary F-3

F-l

Glossary MSP430 Family

F-2

MSP430 Family Glossary

25 Glossary

absolute address: An address that is permanently assigned to a memory
location.

absolute lister: a debugging tool that allows you to create assembler listings
that contain absolute addresses.

alignment: A process in which the linker places an output section at an address
that falls on an n-bit boundary, where n is a power of 2. You can specify
alignment with the SECTIONS linker directive.

allocation: A process in which the linker calculates the final memory addresses
of output sections.

archive library: A collection of individual files that have been grouped into a
single file.

archiver: A software program that allows you to collect several individual files
into a single file called an archive library. The archiver also allows you to
delete, extract, or replace members of the archive library, as well as to add
new members.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, directives,
and macro directives. The assembler substitutes absolute operation codes
for symbolic operation codes, and absolute or relocatable addresses for
symbolic addresses.

assembly-time constant: A symbol that is assigned a constant value with the
.set or .equ directive.

assignment statement: A statement that assigns a value to a variable.

auxiliary entry: The extra entry that a symbol may have in the symbol table
and that contains additional information about the symbol (whether the
symbol is a filename, a section name, a function name, etc.).

F-3

Glossary

m

F-4

MSP430 Family

binding: A process in which you specify a distinct address for an output section
or a symbol.

block: A set of declarations and statements that are grouped together with
braces .

. bss: One of the default COFF sections. You can use the .bss directive to
reserve a specified amount of space in the memory map that can later be
used for storing data. The .bss section is uninitialized.

byte: A sequence of 8 adjacent bits operated upon as a unit.

C compiler: A program that translates C source statements into assembly
language source statements.

command file: A file that contains linker options and names input files for the
linker.

comment: A source statement (or portion of a source statement) that is used to
document or improve readability of a source file. Comments are not
compiled, assembled, or linked; they have no effect on the object file.

common object file format (COFF): An object file that promotes modular
programming by supporting the concept of sections.

conditional processing: A method of processing one block of source code or
an altemate block of source code, according to the evaluation of a specified
expression.

configured memory: Memory that the linker has specified for allocation.

constant: A numeric value that can be used as an operand.

cross-reference listing: An output file created by the assembler that lists the
symbols that were defined, what line they were defined on, which lines
referenced them, and their final values.

.data: One of the default COFF sections. The .data section is an initialized
section that contains initialized data. You can use the .data directive to
assemble code into the .data section.

directive: Special-purpose commands that control the actions and functions of
a software tool (as opposed to assembly language instructions, which
control the actions of a device).

MSP430 Family Glossary

II

m

o

emulator: A hardware development system that emulates MSP430 operation.

entry point: The starting execution point in target memory.

executable module: An object file that has been linked and can be executed in
a MSP430 system.

expression: A constant, a symbol, or a series of constants and symbols
separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
defined in a different program module.

field: For the MSP430, a software-configurable data type whose length can be
programmed to be any value in the range of 1-16 bits.

file header: A portion of a COFF object file that contains general information
about the object file (such as the number of section headers, the type of
system the object file can be downloaded to, the number of symbols in the
symbol table, and the symbol table's starting address).

global: A kind of symbol that is either 1) defined in the current module and
accessed in another, or 2) accessed in the current module but defined in
another.

GROUP: An option of the SECTIONS directive that forces specified output
sections to be allocated contiguously (as a group).

high-level language debugging: The ability of a compiler to retain symbolic
and high-level language information (such as type and function definitions)
so that a debugging tool can use this information.

hole: An area between the input sections that compose an output section that
contains no actual code or data.

incremental linking: The linking of files that have already been linked.

F-5

Glossary

II

III

F-6

MSP430 Family

initialized section: A COFF section that contains executable code or initialized
data. An initialized section can be built up with the .data, .text, or .sect
directive.

input section: A section from an object file that will be linked into an executable
module.

label: A symbol that begins in column 1 of a source statement and corresponds
to the address of that statement.

line number entry: An entry in a COFF output module that maps lines of
assembly code back to the original C source file that created them.

linker: A software tool that combines object files to form an object module that
can be allocated into system memory and executed by the device.

listing file: An output file created by the assembler that lists source statements,
their line numbers, and their effects on the SPC.

loader: A device that loads an executable module into system memory.

member: The elements or variables of a structure, union, or enumeration.

macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and the
code that make up a macro.

macro expansion: The source statements that are substituted for the macro
call and are subsequently assembled.

macro library: An archive library composed of macros. Each file in the library
must contain one macro; its name must be the same as the macro name it
defines, and it must have an extension of .asm.

magic number: A COFF file header entry that identifies an object file as a
module that can be executed by the MSP430.

map file: An output file, created by the linker, that shows the memory
configuration, section composition, and section allocation, as well as
symbols and the addresses at which they were defined.

memory map: A map of target system memory space that is partitioned into
functional blocks.

mnemonic: An instruction name that the assembler translates into machine
code.

MSP430 Family Glossary

model statement: Instructions or assembler directives in a macro definition that
are assembled each time a macro is invoked.

F-7

Glossary

II

II

III

F-8

MSP430 Family

named section: An initialized section that is defined with a .sect directive, or an
uninitialized section that is defined with a .usect directive.

object file: A file that has been assembled or linked and contains machine­
language object code.

object format converter: A program that converts COFF object files into Intel­
format, Tektronix-format, TI-tagged format, or Motorola-S format object
files.

object library: An archive library made up of individual object files.

operand: The arguments, or parameters, of an assembly language instruction,
assembler directive, or macro directive.

optional header: A portion of a COFF object file that the linker uses to perform
relocation at download time.

options: Command parameters that allow you to request additional or specific
functions when you invoke a software tool.

output module: A linked, executable object file that can be downloaded and
executed on a target system.

partial linking: The linking of a file that will be linked again.

raw data: Executable code or initialized data in an output section.

relocation: A process in which the linker adjusts all the references to a symbol
when the symbol's address changes.

section: A relocatable block of code or data that will ultimately occupy
contiguous space in the memory map.

section header: A portion of a COFF object file that contains information about
a section in the file. Each section has its own header; the header points to
the section's starting address, contains the section's size, etc.

section program counter: See SPC.

MSP430 Family Glossary

o

m

sign-extend: To fill the unused MSBs of a value with the value's sign bit.

SPC (section program counter): An element of the assembler that keeps track
of the current location within a section; each section has its own SPG.

static: A kind of variable whose scope is confined to a function or a program.
The values of static variables are not discarded when the function or
program is exited; their previous value is resumed when the function or
program is re-entered.

storage class: Any entry in the symbol table that indicates how a symbol
should be accessed.

string table: A table that stores symbol names that are longer than 8
characters (symbol names of 8 characters or longer cannot be stored in the
symbol table; instead, they are stored in the string table). The name portion
of the symbol's entry points to the location of the string in the string table.

structure: A collection of one or more variables grouped together under a
single name.

symbol: A string of alphanumeric characters that represents an address or a
value.

symbolic debugging: The ability of a software tool to retain symbolic
information so that it can be used by a debugging tool such as a simulator or
an emulator.

symbol table: A portion of a GOFF object file that contains information about
the symbols that are defined and used by the file.

tag: An optional "type" name that can be assigned to a structure, union, or
enumeration.

target memory: Physical memory in a MSP430-based system into which
executable object code is loaded .

. text: One of the default GOFF sections; an initialized section that contains
executable code. You can use the .text directive to assemble code into the
.text section.

unconfigured memory: Memory that is not defined as part of the memory map
and cannot be loaded with code or data.

uninitialized section: A GOFF section that reserves space in the memory map
but that has no actual contents. These sections are built up with the .bss,
.reg, and .usect directives.

F-9

Glossary

F-10

MSP430 Family

union: A variable that may hold (at different times) objects of different types and
sizes.

unsigned: A kind of value that is treated as a positive number, regardless of its
actual sign.

well-defined expression: An expression that contains only symbols or
assembly-time constants that have been defined before they appear in the
expression.

word: A 16-bit addressable location in target memory.

MSP430 Family

Topics

G Floating Point Formats

G.1 Single Precision Format
G.2 Double Precision Format

Floating Point Formats

G-3

G-3
G-4

G-1

Floating Point Formats MSP430 Family

G-2

MSP430 Family Floating Point Formats

26 Floating Point Formats

All MSP430 floating-point formats consist of three fields: an exponent field (e), a single-bit
sign field (s), and a fraction field (f). The sign field and fraction field may be considered as
one unit and referred to as the mantissa field. The fraction contains an implied most­
significant bit, which is always 1 for a correctly represented floating-point constant. This
provides an additional bit of precision. The exponent is bias 128; that is, subtract 128 from
the unsigned value of the 8 exponent bits to arrive at an actual value for the exponent. A
sign, exponent and fraction of zero is used as a special representation of value zero.

G-3

Floating Point Formats MSP430 Family

26.1 Single Precision Format

In the single precision format, the floating-point number is represented by an 8-bit exponent,
a sign bit and a 23-bit fraction.

The format is as follows:

The fraction contains 23 actual bits plus an implied bit fo, always representing a 1. The value
of each f; is arrived at through this formula:

1
fi = 2i

23 23 1
=> f=~)=Li

i=O i=O 2

Therefore, the layout in terms of values is
1222...!.....!.....!.. _1 __ 1 __ 1_
, 2' 4' 8' 16' 32' 64' 128' 256' 512'

Example: Calculating the fraction (80 in those examples is the exponent)

Floating Point Value

80100000

80310000

fi
1 2 , 8

1 2
, 4' 8' 128

Fraction Decimal Equivalent

1 + 2 1.125
8

1 + 2 +
4 8

+- 1.3828125
128

Given the above format, some examples of acceptable floating-point values are shown in the
following examples.

Example: Calculating Floating-Point Values

G-4

81dOOOOO
Exponent Sign Fraction

[]?[o[oiO[o[oT11 [1I~gO]~m @[~@[O] 0] 0] 0] [O[O[O[O[O[O@

The encoded exponent equals 129; the real exponent equals 129-128 = 1 .

The fraction equals 1 (implied fa) + 2 + 2 = 1.625 .
2 8

The following formula expresses the actual value of the floating-point number:

s x f x 2e•128

MSP430 Family Floating Point Formats

where s is the sign of the number (either 1 or -1), f is the value of the fraction (1.0::;; f <
2.0) and e is the represented value of the exponent.

Therefore, the floating-point value is

-1 x 1.625 x 2129-128 = -3.25

The following list gives other examples of proper floating-point values derived from the above
formulas.

80000000h => 1 .0
80800000h => - 1.0
OOOOOOOOh => 0.0
83200000h => 1.0e1

26.2 Double Precision Format

81500000h
8f3b8000h
840cOOOOh
79937500h

=> 3.25
=> 4.8e4
=> 1.75e1
=> - 9.0e-3

The only difference to the single precision format is the length of the fraction:

leeeee-eeel is I II I iq If I I I I I I ii II IlflTtfl I I ITi f-tll [fliffl I II

Here it contains 39 actual bits plus an implied bit 10; so the summation formation for the
fraction changes to:

39 39 1
f = t;fi = t;z

G-5

Floating Point Formats MSP430 Family

G-6

MSP430 Family

Index

A

A_DIR
assembler 8-12,8-13

A_DIR (assembler) 3-7, 3-8
abbreviations and symbols 5-4
absolute lister 9-3

creating the absolute listing file 3-5
examples 9-6
invoking 9-5

absolute output module 8-10
addressing modes 5-5
alignment 4-13,4-20,8-28
allocation 2-4, 2-11, 8-26

alignment 4-20, 8-28
binding 8-26
blocking 8-28
GROUP 8-38
named memory 8-27
of output sections 8-22
UNION 8-35

altemate directories
naming with -i option 3-7
naming with A_DIR 3-7
naming with C_DIR

linker 8-12
naming with the -I option

linker 8-12
ar370 command 7-5
archive libraries 3-7,4-48, 7-3,8-12,
8-15,8-19

back referencing 8-15
archiver 7-3

examples 7-7
input 7-3
invocation 7-5
options 7-5

arithmetic operators 3-19
asm370 command 3-5
assembler 3-3

character strings 3-14
constants 3-12
cross_reference listings 3-3, 3-26

Index

error messages C-3
expressions 3-18,3-19,3-20,3-21,
3-22
invocation 3-5
macros 6-3
output 3-23,4-14

list options 4-50, 4-52
listing 4-14, 4-24, 4-44

enable 4-44
length 4-14,4-43
suppress 4-44
width 4-14,4-43

listing title 4-64
macro listing 4-48, 4-50
page control 4-54

relocation 2-14
source listings 3-23, 3-25
source statement format 3-9,3-10,
3-11
symbols 2-17,3-15

assembler directives see a/so directives
.align 4-13, 4-20
.asg 4-7,4-17,4-19,4-21,6-8
.block 8-4
.break 4-16,4-46,6-16
.bss 4-8, 4-23

holes 8-48
initializing 8-48
linker definition 8-44
section 8-45, A-5

.byte 4-10,4-24

.cini!
linker definition 8-45
section 8-52

.copy 3-7,4-15,4-24

.data 4-8, 4-27
linker definition 8-44
section 4-27, A-5

.def 4-15,4-37

.else 4-16,4-40,6-16

.elseif 4-16,4-40,6-16

.emsg 4-18,4-29,6-20

.end 4-18,4-30

.endblock 8-4

.endfunc 8-4, 8-6

.endif 4-16,4-40,6-16

.endloop 4-16,4-46,6-16

.endm 6-5

.endstruct 4-17, 4-61

Index-1

Index

.eos 8-4, 8-10

.equ 4-17, 4-56

.etag 8-4, 8-10

.eval 4-17,4-21,6-9

.fclist 4-14,4-32,6-21

.fcnolist 4-14, 4-32, 6-21

.field 4-11,4-13,4-33

.file 8-4, 8-5

.float 4-10, 4-36

.func 8-4,8-6

.global 2-17, 4-15, 4-37

.heap
section 8-52

.hstack
section 8-52

.if 4-16,4-40,6-16

.include 3-7,4-15,4-24

.label 4-18, 4-42

.Ienght 4-14,4-43

.line 8-4, 8-8

.list 4-14, 4-44

.Ioop 4-16,4-46,6-16
default value 6-16

.macro 6-5
libraries 3-7

.member 8-9

.mexit
macro directive 6-5

.mlib 3-7,4-15,4-48,6-15

.mlist 4-14,4-50,6-21

.mmsg 4-18,4-29,6-20

.mnolist 4-14, 4-50, 6-21

.newblock 4-17,4-51

.nolist 4-14,4-44

.option 4-14, 4-52

.page 4-14, 4-54

. ref 4-15,4-37

.sect 4-8, 4-55
section 4-7

.set 4-17, 4-56

.setsect 4-18

.setsym 4-18

.space 4-10, 4-11, 4-58

.sslist 4-14,4-59,6-21

.ssnolist 4-14,4-59,6-21

.sstack
section 8-52

Index-2

MSP430 Family

.stag 4-17, See structure tag, 4-61,
8-4,8-10
.string 4-10,4-24
.struct 4-17, 4-61
.sym 8-4, 8-12
.tag 4-17,4-61
.text 2-4,2-6,2-7,2-8,2-12,2-13,
2-14,4-8,4-27,4-63

linker definition 8-44
section A-5

.title 4-14,4-64

.usect 2-6,2-7,4-8,4-65

.utag 8-4,8-10

.var
macro directive 6-14

.width 4-14, 4-43

.wmsg 4-18,4-29,6-20

.word 4-10,4-67
assembler output

list options 4-52
listing 4-14,4-24,4-44

enable 4-44
length 4-43
suppress 4-44
width 4-43

listing title 4-64
macro listing 4-48, 4-50
page control 4-54

assembly language development flow
7-4,8-6
assembly_time constants 4-56
assigning a value to a symbol 4-56
autoinitialization 8-51

RAM model 8-11, 8-51
ROM model 8-11, 8-51

auxiliary entries A-22

B

binary integers 3-12
binding 8-26
block definitions A-16,8-4
blocking 8-28
boot.asm 8-15
boot.obj 8-51,8-52
byte alignment 4-20

MSP430 Family

c
C compiler 8-11,8-51, A-3, 8-4

block definitions 8-4
enumeration definitions 8-10
file identification 8-5
function definitions 8-6
line number entries 8-8
line number information A-12
member definitions 8-9
special symbols A-16
storage classes A-19
structure definitions 8-10
symbol table entries 8-12
union definitions 8-10

C memory pool 8-12,8-52
C system stack 8-52
C_DIR

linker See environment variables,
8-13

c_intO Cc_intO) 8-11,8-52
calling a macro 6-4
character strings 3-14
cl370 command 8-3
Clock cycles 5-8
code conversion 10-3
COFF 2-3,8-5, 10-3, A-3

auxiliary entries A-22
default sections 2-4
file headers A-6
file structure A-4
initialized sections 2-4
line number table A-12
maximum number of 2-4
named sections 8-45
optional file header A-7
relocation information A-10
section headers A-8
sections 2-3

default 2-4, 2-6, 4-8, 4-23, 4-27,
4-55,4-63
initialized 2-4, 2-6, 4-27, 4-55,
4-63
maximum number of 2-8
named 2-4,2-7,4-8,4-23,4-27,
4-55, 4-63, 4-65, 8-45

.text 4-63

Index

un initialized 2-6, 4-8, 4-23, 4-65
un initialized i 2-4

special symbols A-16
storage classes A-19
string table A-18
symbol table A-14
symbolic debugging A-12
type entry A-21

command
-a (archiver) 7-5
-d (archiver) 7-5
-r (archiver) 7-5
-t (archiver) 7-5
-x (archiver) 7-5

command files
linker 8-16

reserved words 8-18
command files (linker) 8-7
comments

in a linker command file 8-16
in macros 6-20
that extend past page width 4-43

comments ...
in assembly language source code
3-11
that extend past page width 4-43

common object file format See COFF
conditional assembly directives 4-16

in macros 6-16
maximum nesting levels 6-16

conditional block 4-32, See conditional
assembly directives, 4-40, See
conditional assembly directives, See
conditional assembly directives
conditional expressions 3-20
configured memory 8-39
constants 3-12

assembly-time 4-56
assembly-time 4-56
binary integers 3-12
character 3-12
decimal integers 3-12
floating-point 4-36
floating_point 4-36
hexadecimal integers 3-12
in linker expressions 8-43
octal integers 3-12
symbols as 3-12

Index-3

Index

copy files 3-7, 4-24
COPY section 8-41
creating holes 8-45
cross_reference listings 3-3, 3-26

o
debugging See symbolic debugging

producing error messages in macros
6-20

decimal integers 3-12
default

memory allocation 2-12
default allocation 8-39
default fill value for holes 8-11
default memory allocation 2-12
default memory model 8-20
defining macros 6-5
directives

section
.bss 4-8
.data 4-8
.sect 4-8
.text 4-8
.usect 4-8

directives, assember
section

.usect 4-65
directives, assembler See assembler
directives

assembly-time symbols
.asg 4-21
.endstruct 4-17, 4-61
.equ 4-17,4-56
.eval 4-17,4-21
.set 4-17,4-56
.struct 4-17, 4-61
.tag 4-17,4-61

conditional assembly
.else 4-16, 4-40
.elseif 4-16,4-40
.endif 4-16, 4-40
.if 4-16,4-40

directives
.data 4-27

miscellaneous
.emsg 4-18, 4-29
.end 4-18,4-30

Index-4

MSP430 Family

.Iabel 4-18,4-42

.mmsg 4-18, 4-29

.wmsg 4-18,4-29
section

.bss 2-4,2-6,2-7,2-15,4-8,4-23,
4-27
.data 2-4,2-6,2-7, 4-8, 4-27
.emsg 4-18
.end 4-18
.global 4-37
.Iabel 4-18,4-42
.mmsg 4-18
.sect 2-6, 2-7, 2-8, 4-8, 4-55
.sect i 2-6
.setsect 4-18
.setsym 4-18
.text 2-4, 2-6, 2-7, 4-8, 4-27, 4-63
.usect 2-6, 2-7, 4-8, 4-65
.wmsg 4-18

summary table 4-4
that affect assembler output

.end 4-18,4-30

.length 4-43

.Iist 4-44

.mlist 4-50

.mnolist 4-50

.nolist 4-44

.option 4-52

.page 4-54

.title 4-64

.width 4-43
that align the SPC 4-13

.align 4-13,4-20

.field 4-13,4-33
that format the output listing

.Iength 4-14,4-43

.Iist 4-14,4-44

.mlist 4-14,4-50

.mnolist 4-14,4-50

.nolist 4-14,4-44

.option 4-14,4-52

.page 4-14, 4-54

.title 4-14,4-64

.width 4-14,4-43
that initialize data

.byte 4-24

.equ 4-17, 4-56

.float 4-36

.set 4-17, 4-56

MSP430 Family

.space 4-58

.string 4-24

.word 4-67
that initialize memory

.byte 4-10,4-24

.field 4-10,4-11,4-33

.float 4-10,4-36

.space 4-11, 4-58

.string 4-10, 4-24

.word 4-10,4-67
that reference other files

.copy 4-15, 4-24

.def 4-15,4-37

.global 4-15,4-37

.include 4-15,4-24

.mlib 4-15,4-48

. ref 4-15,4-37
directives, conditional assembly 4-16
directives, linker

MEMORY 2-13
SECTIONS 2-13

directory search algorithm
assembler 3-7
linker 8-12

DSECT section 8-41
dummy section 8-41

E

edata
linker symbol 8-44

end
linker symbol 8-44

entry points
_c_into 8-11, 8-52

main 8-11
for C code 8-52
for the linker 8-11

enumeration definitions 8-10
environment variables

A_DIR 3-7, 3-8
C_DIR

linker 8-12,8-13
EPROM programmers 10-3
error messages

assembler C-3
linker 0-3

producing in macros 6-20
etext

linker symbol 8-44

Index

expressions 3-18,3-19,3-20,3-21,3-22
left_to_right evaluation 3-18
linker 8-43
overflow 3-19
parentheses effect on evaluation
3-18
precedence of operators 3-18
that are well defined 3-20
that contain arithmetic operators 3-19
that contain conditional operators
3-20
that contain relocatable symbols 3-20
underflow 3-19

external symbols 3-20, 4-15, 4-37, 4-56

F

false conditional blocks See
.fclistl.fcnolist
file headers A-6
file identification 8-5
filenames

as character strings 3-14
copy/include files 3-7
executable code 1-7
list file 1-7, 3-5
macros

in macro libraries 6-15
object code 1-7, 3-5
searching for, assembler 3-7
source code 1-7,3-5

fill
linker directive 8-14

ignoring fill directive 8-'14
MEMORY specification 8-22

fill value 8-49, See holes
default 8-11, 8-48
flags 8-24
setting 8-11

flags
fill value 8-24

floating-point constants 4-36
floating_point constants 4-36
format I instructions 5-8

Index-5

Index

format II instructions 5-9
format III instructions 5-9
function definitions A-17, 8-6

G

glossary F-3
GROUP

SECTIONS directive 8-38

H

halt conditions 10-11
hardware stack

changing the size of 8-15
default size 8-15

heap (-heap)
linker 8-12,8-52

heap definition 8-12
HEAP_SIZE (~HEAP _SIZE) 8-45
holes 8-11, 8-45

fill value
flags 8-24

fill values 8-47
ignoring fill specs 8-14

in output sections 8-45
in uninitialized sections 8-48
initialized 8-49

HSTACK_SIZE (~HSTACK_SIZE) 8-45

MEMORY attribute 8-21
i-hstack

linker 8-52
i-sstack

linker 8-52
i HEAP SIZE 8-52
i~ HSTACK_SIZE 8-52
i SSTACK SIZE 8-52
IBM PC/AT software installation 1-6
iheap

definition 8-52
ihstack

Index-6

MSP430 Family

definition (C system) 8-52
include file letter (source listing) 3-23
include files 3-7, 4-24
incremental linking 8-50
initialized sections 8-45
input

linker 8-6, 8-16
object format converter 10-9

input ...
archiver 7-3
assembler 7-3
linker 7-3

instruction set
addressing modes 5-5
Clock cycles 5-8
Length of Instructions 5-8
summary 5-3, 5-6
symbols and abbreviations 5-4

instructions
format I 5-8

clock cycles 5-8
length of 5-8

format II 5-9
clock cycles 5-9
length of 5-9

format III 5-9
clock cycles 5-9
length of 5-9

miscellanous instructions 5-9
clock cycles, RETI, interrupt 5-9
length of, RETI, interrupt 5-9

Intel hex object format 10-3, 10-6
Intel object format 10-9
invoking the ...

assembler 3-5
invoking the ...

absolute lister 9-5
archiver 7-5
linker 8-7
object format converter 10-9

isstack
definition (C system) 8-52

K

keywords (linker)
linker 8-18

MSP430 Family

L

labels
case sensitivity 3-9
defined and referenced
(cross_reference list) 3-26
in assembly language source 3-9
in macros 6-18
local 3-15,4-51

resetting 4-51
local labels 4-51

resetting 4-51
syntax 3-9
using with .byte directive 4-24
using with .word directive 4-67

lefUo_right evaluation (of expressions)
3-18
length

MEMORY specification 8-21
Length of Instructions 5-8
library search algorithm

assembler 3-7
linker 8-12

line number table A-12
entry format A-12
line number blocks A-12
removing from object module A-13

line numbers
from C source in assembly code 8-8
in source file listings 3-23
stripping 8-15

linker 8-5
COFF 2-11,2-12,2-13,8-5
command files 8-7,8-16
configured memory 8-39
error messages 0-3
expressions 8-42
incremental linking 8-50
input 8-16
invocation 8-7
linking C code 8-51
Ink370 command 8-7
loading a program 2-16
operators 8-43
options summary 8-9
relocation 2-14
sections 2-11, 2-12, 2-13

SECTIONS directive 8-23
symbols 2-17
unconfigured memory 8-39

linker input 8-6
linker options 8-9
linker output 8-6,8-14
linking C code 8-11
listing

page size 4-43
listing ...

Index

control 4-44, 4-50, 4-52, 4-54, 4-64
file 4-14

listing control 4-44, 4-50, 4-52, 4-54,
4-64,6-21
listing file 4-14
listing page size 4-43
Ink example 8-53
Ink370

linker command 9-5
Ink370 command 8-7,8-16
Ink370 example 8-52
load

linker keyword 8-31
load (linker keyword) 2-15
loading a program 2-16
local labels 3-15, 4-51
logical operators 3-19

M

macro directives
summary table 6-24

macro libraries 4-48,6-15, 7-3
macro parameters See substituition
symbols
macros 6-3

.mlib directive 4-48

.mlist directive 4-50
calling 6-4
conditional assembly 6-16
defining a macro 6-5
description 6-4
directives summary 6-24
expansion 6-4
formatting the output listing 6-21
labels 6-18
libraries 4-48
macro libraries 4-48,6-15

Index-7

Index

nested macros 6-22
parameters See substitution
symbols
producing messages 6-20
recursive macros 6-22
substitution symbols 6-7

as variables in macros 6-14
using comments in 6-20

main '-main) 8-11
maliocO 8-12, 8-52
map file 8-14

example 8-53
member definitions 8-9
MEMORY

linker directive 8-20
default model 8-20
ignoring fill specifications 8-14
overlay pages 8-39

MEMORY (linker directive) 2-11
memory map 2-13
memory pool, C language 8-12,8-52
MEMORY syntax 8-20
MEMORY_SIZE '-MEMORY_SIZE)
8-12
miscellanous instructions 5-9
mnemonic field' 3-9

syntax 3-9
modes, addressing 5-5
Motorola S object format 10-3, to-8,
10-9

N

named memory 8-27
named sections 8-45, A-5
naming an output module 8-14
nested macros 6-22
nesting level number (source listing)
3-23
NOLOAD section 8-41

o
object code (source listing) 3-23
object file format See COFF
object format converter 10-3

examples 10-10

Index-8

MSP430 Family

input 10-9
invocation 10-9
output 10-9

object formats See GOFF
Intel hex 10-3
Motorola S 10-3
Tektronix 10-3
TUagged 10-3

object libraries 7-3,8-12,8-19,8-51
octal integers 3-12
operands 3-9

immediate addressing 3-10
local label 3-15
prefixes 3-9
register aliasing 3-tO

operator precedence order 3-19
option

-a

-c

-cr

-e

-f

assembler 3-5
linker 8-10

assembler 3-5
linker 8-11,8-51

linker 8-11, 8-51

archiver 7-5
linker 8-11

linker 8-11
-hstack

linker 8-15
-i

assembler 3-5,3-7
linker 8-12
object format converter

-I
assembler 3-5
linker 8-12

-m
linker 8-14,8-39
object format converter

-n
linker 8-14

-0

linker 8-14
-q

archiver 7-5
linker 8-14

to-9

10-9

MSP430 Family

-r
linker 8-10,8-50

-s
archiver 7-5
linker 8-15

-sstack
linker 8-15

-t
object format converter 10-9

-u
linker 8-15

-v
archiver 7-5

-x
linker 8-15
object format converter 10-9

optional file header A-7
origin

MEMORY specification 8-21
output

assembler See assembler output
linker 8-6,8-14
module name

linker 8-14
object format converter 10-9
sections

rules 8-40
output ...

assembler 4-14
output listing 4-14
overflow (in expression) 3-19
overlay pages 8-39

maximum number of 8-39
PAGE definition 8-39
using the MEMORY directive 8-39
using the SECTIONS directive 8-39

overlaying sections 8-35

P

page length 4-43
PAGE option

MEMORY directive
definition 8-39

page width 4-43
parentheses in expressions 3-18
partially linked files 8-50
PC-DOS, MS-DOS, or OS/2 software

installation 1-6
precedence groups 3-18
producing an absolute listing 9-4

Q

quiet run
linker 8-14

R

R
MEMORY attribute 8-21

Index

RAM model of autoinitialization 8-11,
8-51
recursive macros 6-22
register

aliasing 3-10
relocatable output module 8-10
relocatable symbols 3-20
relocation 2-14,3-23,8-10
relocation information A-10
reserved words

linker 8-18
ROM model of autoinitialization 8-11,
8-51
rom370 command 10-9
rts.lib 8-51,8-52
Rule 1, output sections contents 8-40
Rule 2, output sections contents 8-40
run

linker keyword 8-31
run (linker keyword) 2-15
runtime initialization 8-51
runtime support 8-51

S

section headers A-8
section specifications 8-23
SECTIONS

linker directive 8-23
alignment 8-28
allocation 8-23, 8-25, 8-26
binding 8-26
blocking 8-28

Index-9

Index

default allocation 8-39
default model 8-23
GROUP 8-38
named memory 8-27
overlay pages 8-39
reserved words 8-18
section specifications 8-23
specifying runtime address 8-31
specifying two addresses 8-31
syntax 8-23
UNION 8-35
use with MEMORY directive 8-22

specifying runtime address 2-15
specifying two addresses 2-15

sections
special section types 8-41

SECTIONS (linker directive) 2-11
software installation

IBM PC/AT 1-6
list of supported operating systems
1-6
PC-DOS, MS-DOS, or OS/2 1-6
UNIX 1-7
VAX/VMS 1-7

software stack
default size 8-15

source listings 3-23, 3-25
source statement

field (source listing) 3-23
format· 3-9, 3-10, 3-11

comment field 3-11
label field 3-9
mnemonic field 3-9
operand field 3-9

number (source listing) 3-23
SPC 2-8

aligning
by creating a hole 8-46
linker 8-43
to byte boundaries 4-20

assembler's effect on 2-8
assigning a label to 3-9
linker symbol 8-42, 8-45
maximum number of 2-8
value associated with labels 3-9
value shown in source listings 3-23

special section types 8-41
special symbols in the symbol table A-16
sstack (-sstack)

Index-10

MSP430 Family

linker 8-15
SSTACK_SIZE (_SSTACK_SIZE) 8-45
stack size

linker 8-15
static variables A-14
storage classes A-19
string ...

functions (substitution symbols)
$fi rstch 6-10
$iscons 6-10
$isdefed 6-10
$ismember 6-10
$isname 6-10
$isreg 6-10
$Iastch 6-10
$symcmp 6-10
$symlen 6-10

string table A-18
stripping line number entries 8-15
stripping symbolic information 8-15
structure definitions 8-10
structure tag (.stag) 4-61
structure tag (stag) 4-17
substitution symbols 6-4, 6-7

.var (macro directive) 6-14
arithmetic operations on 4-17,4-21,
6-9
as local variables in macros 6-14
assigning character strings to 4-17,
4-21
builUn functions 6-9
directives that define 6-8
expansion 4-59

listing 4-14, 4-59
forcing substitution 6-11
in macros 6-7
maximum number per macro 6-7
passing commas and semicolons 6-7
recursive substitution 6-11
subscripted substitution 6-12
valid definition 6-7

symbol
table 2-17

creating entries 2-17
symbol names A-17
symbol table

entry from .sym directive 8-12
special symbols used in A-16
stripping entries 8-15

MSP430 Family

structure and content A-14
symbolic debugging A-12, A-14, 8-4

block definitions 8-4
enumeration definitions 8-10
file identification 8-5
function definitions 8-6
line number entries 8-8
member definitions 8-9
stripping symbolic information 8-15
structure definitions 8-10
symbol table entries 8-12
union definitions 8-10

symbolic offsets 4-61
symbols 2-17, 3-15

and their definitions (cross_reference
list) 3-3, 3-26
assigning values to 4-56

at link time 8-42
character strings 3-14
number of statements that reference
3-26
relocatable symbols in expressions
3-20
reserved words 8-18
statement number that defines 3-26
value assigned 3-26

symbols and abbreviations 5-4
system stack, C language 8-52

T

Tektronix hex object format 10-5
Tektronix object format 10-3, 10-9
TUagged object format 10-3, 10-7, 10-9
TMS370 archiver See archiver

Index

TMS370 linker See linker
TMS370 object format converter See
object format converter
type entry A-21

u
unconfigured memory 8-20, 8-39
underflow (in expressions) 3-19
uninitialized sections 8-45

holes 8-48
initializing 8-48

UNION
SECTIONS directive 8-35

union definitions 8-10
UNIX software installation 1-7

v
VAXIVMS software installation 1-7

w
w

MEMORY attribute 8-21
well_defined expressions 3-20

x
X

MEMORY attribute 8-21

Index-ll

Index MSP430 Family

Index-12

Notes

TISC Sales TI Technology
Offices in Europe Centres

Belgium I Hungary France
Texas Instruments S.A.IN.v. : TI Representation: Texas Instruments
Brussels I Budapest Velizy Villacoublay
Tel.: (02) 7 26 75 80 Tel.: (1) 1 76 37 33 Tel.: Standard:
Fax: (02) 7 26 72 76 Fax: (1) 2 02 62 56 (1) 30 70 10 01

Technical Service:
Finland Italy (1) 30 70 11 33
Texas Instruments OY Texas Instruments S.p.A.
Espoo Agrate Brianza (Mi) Holland
Tel.: (0) 43 54 20 33 Tel.: (0 39) 6 84 21 Texas Instruments B.v.
Fax: (0) 46 73 23 Fax: (0 39) 6 84 29 12 Amstelveen

Tel.: (0 20) 5 45 06 00
France, Republic of Ireland Fax: (0 20) 6 40 38 46
Middle-East & Mrica Texas Instruments Ltd.
Texas Instruments Dublin Italy
Velizy Villacoublay Tel.: (01) 4 75 52 33 Texas Instruments S.p.A.
Tel.: (1) 30 70 10 01 Fax: (01) 4 78 14 63 Agrate Brianza (Mi)
Fax: (1) 30 70 10 54 Tel.: (0 39) 6 84 21

Spain Fax: (0 39) 6 84 29 12
Germany Texas Instruments S.A.
Texas Instruments GmbH Madrid Sweden
Freising Tel.: (1) 3 72 80 51 Texas Instruments
Tel.: (0 81 61) 80-0 Fax: (1) 3 72 82 66 International Trade Corporation
Fax: (0 81 61) 80 45 16 Kista

Sweden Tel.: (08) 7 52 58 00
Hannover Texas Instruments Fax: (08) 7 51 97 15
Tel.: (05 11) 90 49 60 International Trade Corporation
Fax: (05 11) 6 49 03 31 Kista

Tel.: (08) 7 52 58 00
Ostfildern Fax: (08) 7 51 97 15
Tel.: (07 11) 3 40 30 European SC
Fax: (07 11) 3 40 32 57 United Kingdom Information Centre

Texas Instruments Ltd.
Holland Northampton Telephone:
Texas Instruments B.V. Tel.: (0 16 04) 66 30 00 Dutch (33) 1 30 70 11 66
Amstelveen Fax: (0 16 04) 66 30 01 English (33) 13070 11 65
Tel.: (0 20) 6 40 04 16 French (33) 1 30 70 11 64
Fax: (0 20) 5 45 06 60 German (33) 1 30 70 11 68

(0 20) 6 40 38 46 Italian (33) 1 30 70 11 67

Fax: (33) 1 30 70 10 32

~TEXAS
INSTRUMENTS

Printed In Germany Chlonne free paper - to protect our enVlronment
by Sellier Druck, Angerstr. 54, 85354, Freising

-I/} TEXAS
INSTRUMENTS

SLAUE12

