The Engineering Staff of
TEXAS INSTRUMENTS INCORPORATED

Semiconductor Group

N

rogrammer’s
Reference
Manual

MOS/LSI One-Chip |
icrocomputers

TEXAS INSTRUMENTS

INCORPORATED

CM122-1
1275

Information contained in this publication is believed to be
accurate and reliable. However, responsibility is assumed
neither for its use nor for any infringement of patents of
rights of others that may result from its use. No license is
granted by implication or otherwise under any patent or
patent right of Texas Instruments or others.

Texas Instruments reserves the right to change
specifications for this product in any manner without
notice.

The TMS 1000 Series Assembler and Simulator programs
are copyrighted by Texas Instruments Incorporated; all
rights are reserved.

Copyright © 1975
Texas Instruments Incorporated

$4.95

TEXAS INSTRUMENTS MOS
ONE-CHIP 4-BIT MICROCOMPUTER FAMILY

TMS 1000 | TMS 1200 TMS 1070 | TMS 1270 TMS 1100 ;| TMS 1300
Package Pin Count 28 Pins 40 Pins 28 Pins 40 Pins 28 Pins 40 Pins
Instruction Read Only Memory 1024 X 8 Bits (8,192 Bits) 1024 X 8 Bits (8,192 Bits) | 2048 X 8 Bits (16,384 Bits)
Data Random Access Memory 64 X 4 Bits (256 Bits) 64 X 4 Bits (256 Bits) 128 X 4 Bits (512 Bits)
R’ Individually Addressed 1 13 1 13 1 16
Output Latches
"0 Parallel Latched Data 8 Bits 8 Bits 10 Bits 8 Bits
Outputs
Maximum-Rated Voltage (O, R, o0V 357 20V
and K)
Working Registers 2-4 Bits Each 2-4 Bits Each 2-4 Bits Each
Instruction Set See Table 3-1, page 3-2 See Table 3-1, page 3-2 See Table 7-1, page 7-2
Pragrammable Instruction Decoder Yes Yes Yes
On-Chip Oscillator Yes Yes Yes
Power Supply /Typical Dissipation 156 V/90 mW 15 V/90 mW 15 V/110 mW
Time-Share Assembler Support Yes Yes Yes
Time-Share Simulator Support Yes Yes Yes
Hardware Evaluator and HE.2 HE-2 HE-2
Debugging Unit
System Evaluator Device with SE-1 SE-1 SE-2

External Instruction Memory

(TMS 1099 JL)

(TMS 1099 JL)

(TMS 1098 JL)

TI worldwide sales offices

.

ALABAMA

P.O. Box 2237, 304 Wynn Drive
Huntsville, Alabama 35804
205-837-7530

ARIZONA

4820 N. Black Canyon Hwy.
Suite 202
Phoenix, Arizona 85017
602-248-8028

CALIFORNIA

831 S. Douglass St.
Ei Segundo, California 90245
213973-2671

Balboa Towers Bldg., Suite 805
5252 Balboa Avenue
San Diego, California 92117
714-279-2622

1505 East 17th St., Suite 201
Santa Ana, California 92701
714-835-9031

776 Palomar Avenus

Sunnyvale, California 94086
408-732-1840

COLORADO
9725 E. Hampden St., Suite 301

Denver, Cotorado 80231
303-751-1780

CONNECTICUT

35 Worth Avenue
Hamden, Connecticut 06518

FLORIDA

601 W. Oakiand Park Bivd.
Fort Lauderdale, Florida 33311
305-566-3294

2221 Lee Road, Suite 108
Winter Park, Florida 32789
305-644-3535

GEORGIA

Route 1, Creekwood Pass
Dailas, Georgia 30132
404-445-4908

ILLINOIS

1701 Lake Avenue, Suite 300
Glenview, lllinois 60025
312-729-5710

INDIANA

3705 Rupp Drive
Arch Bldg.
Fort Wayne, Indiana 46805
219-484-0606

2346 S. Lynhurst Dr., Suite 101

Indianapolis, Indiana 46241
317-248-8555

MASSACHUSETTS
604 Totten Pond Road

Waltham, Mass. 02154
617-890-7400

MICHIGAN

Central Park Plaza
26211 Central Park Blvd., Suite 215

MINNESOTA

A.1.C. Bldg., Suite 202
7615 Metro Blvd.
Edina, Minn. 55435
612-835-2900

NEW JERSEY

1245 Westfield Ave.
Clark, New Jersey 07066
201-574-9800

NEW MEXICO

1101 Cardenas Drive, N.E.,
Room 215
Albuquerque, New Mexico 87110
505-265-8491

NEW YORK

144 Metro Pk.
Rochester, New York 14623
716-461-1800

6700 OId Collamer Rd.
East Syracuse, New York 13057
315-463-9291

P.O. Box 618, 112 Nanticoke Ave.
Endicott, New York 13760
607-785-9987

167 Main Street
Fishkill, New York 12524
914-896-6793
2 Huntington Quadrangle, Suite 2N04

Huntington Station, New York 11746
516-293-2560

NORTH CAROLINA
3631 Westfield

OHIO

28790 Chagrin Blvd., Suite 120
Cleveland, Ohio 44122
216-464-2990

Hawiey Bidg., Suite 101
4140 Linden Avenue
Dayton, Ohio 45432

513-253-3121

OREGON

10700 S.W. Beaverton Hwy., Suite 111
Beaverton, Oregon 97005
503-643-1182

PENNSYLVANIA

275 Commerce Drive
Fort Washington, Pa. 19034
215-643-6450

TEXAS

Headguarters — Gen. Offices
Dallas, Texas 76222
214-238-2011

MS366—-P.0. Box 5012
Dallas, Texas 76222
214-238-6805

3939 Ann Arbor
Houston, Texas 77042
713-785-6906
VIRGINIA
8512 Trabue Road
Richmond, Virginia 23235
804-320-3830
WASHINGTON
700 112th N.E., Suite 101
Bellevue, Washington 98004
206-455-3480

WASHINGTON, D.C.

1500 Wilson Bivd., Suite 1100
Southfield, Michigan 48076 High Point, N.C. 27260 Arlington, Virginia 22209
203-281-0074 313-353-0830 919-869-3651 703-525-0336
ARGENTINA BRAZIL FRANCE ITALY

Texas Instruments Argentina S.A.I.C.F.

C.C. Box 2296 Correo Central
Buenos Aires, Argentina
748-1141

ASIA
Texas Instruments Asia Limited

5F Aoyama Tower Bldg.
24-15 Minami Aoyama Chome
Minato-ku, Tokyo 107, Japan
402-6171

11A-15 Chatham Road

First Floor, Kowloon
Hong Kong
3670061

Texas Instruments Singapore (PTE) Ltd.
7 Kallang Place
Singapore 1, Rep. of Singapore
258-1122

Texas Instruments Taiwan Limited
P.0. Box 3999
Taipei, Chung Ho, Taiwan
921 623

Texas Instruments Malaysia SDN. BHD.
Number 1 Lorong Enggang 33
Kuala Lampur 15-07, Malaysia

647 911

AUSTRALIA
Texas Instruments Australia Ltd.

Suite 205, 118 Great North Road
Five Dock N.S.W. 2046 Australia
831-2555

Box 63, Post Office
171-175 Philip Highway
Efizabeth 5112 South Australia

Texas Instrumentos Electronicos
do Brasil Ltda.

Rua Joao Annes, 153-Lapa
Caixa Postal 30.103, CEP 01.000
Sao Paulo, SP, Brasil

-2956

CANADA
Texas Instruments {ncorporated

935 Montee De Liesse
St. Laurent H4T 1R2
Quebec, Canada
514-341-3232

5F Caesar Avenue
Ottawa 12
Ontario, Canada
613-825-3716

280 Centre Str, East
Richmond Hill (Toronto}

Ontario, Canada
716-856-4453

DENMARK
Texas instruments Denmark

46D, Marielundvej
2730 Herlev, Denmark
(01) 91774 00

FINLAND
Texas Instruments Fintand OY

Fredrikinkatu 75, A7
Helsinki 10, Finland
4717

Texas Instruments France

Boite Postale 5
06 Villeneuve-Loubet, France
310364

La Boursidiere, Bloc A
R.N. 186, 92350 Le Plessis Robinson

30-31 Quai Rambaud
69 Lyon, France
42 78 50

GERMANY
Texas Instruments Deutschland GmbH

Haggerty Str. 1
8050 Freising, Germany
08161/80-1

Frankfurter Ring 243
8000 Munich 40, Germany
089/325011-15

Lazarettstrasse, 19
4300 Essen, Germany
02141/20916

Krugerstrasse 24
1000 Berlin 49, Germany
0311/74 44 041

Akazlenstrasse 22-26
6230 Frankfurt-Griesheim
Germany
0611/39 90 61

Steimbker Hof 8A
3000 Hannover, Germany
0511/55 60 41

Krefelderstrasse 11-15
7000 Stuttgart 50, Germany
0711/54 70 01

Texas | nstruments Italia SpA

Via Della Giustizia 9
20125 Milan, Italy
02-688 31 41

Via L. Mancinella 65
00199 Roma, ltaly
06-83 77 45

Via Montebello 27
10124 Torino, Italy
011832276
MEXICO
Texas Instruments de Mexico S.A.
Poniente 116 #489
Col. Industrial Valiejo
Mexico City, D.F., Mexico
567-92-00
NETHERLANDS
Texas Instruments Holland N.V.
Entrepot Gebouw-Kamer 225
P.0.Box 7603
Schiphoi-Centrum
020-17 36 36
NORWAY
Texas Instruments Norway A/S
Sentrumskontorene
Brugaten 1
Oslo 1, Norway
331880
SWEDEN
Texas Instruments Sweden AB
S-104 40 Stockholm 14
Skeppargatan 26
67 98 35
UNITED KINGDOM
Texas Instruments Limited
Manton Lane

Bedford, England
0234-67466

1

PROGRAMMER

REFERENCE CARD
for

TMS1000

SERIES
MICROCOMPUTERS

[o]
TEXAS INSTRUMENTS

INCORPORATED

P.0. BOX 1443
HOUSTON, TEXAS 77001
713 4945115

TMS 1100/1300 STANDARD INSTRUCTION SET

STATUS

FUNCTION | MNEMONIC | EFFECT DESCRIPTION SYMBOLIC DESCRIPTION | O | 9PE- | hEX
CIN MAT ! RAND, CODE
Register-to- TAY Transfer accumulator to Y register ADY 4 20
Register TYA Transfer Y register to accumulator YA 4 23
Transfer CLA Clear accumulator 0>A 4 7F
Register to TAM Transfer accumuiator to memory AMIX,Y) 4 27
Memory TAMIYC Y Transfer accumulator to memory and increment Y register. If carry, | A9M(X,Y); Y+1Y 4 75
one to status.
TAMDYN Y Transfer accumulator to memory and decrement Y register. If no APMIX,Y); Y -1 4 24
borrow, one to status,
TAMZA Transfer accumulator to memory and zero accumulator AM; 0A 4 26
Memory to T™Y Transfer memory to Y register M{X,Y =Y 4 22
Register TMA Transfer memory to accumulator M{X, YA 4 21
XMA Exchange memory and accumulator M{X,Y)*A 4 03
Arithmetic AMAAC Y Add memory to accumulator, results 10 accumulator. If carry, one M(X,Y H+A-A 4 06
to status
SAMAN Y Subtract accumulator from memory, results to accumulator. If no MIX,Y)-A—A 4 3C
borrow, one to status.
IMAC Y Increment memory and load into accumulator. If carry, one to status | M{X,Y)+12A 4 3E
DMAN Y Decrement memory and load into accumulator. If no borrow, one M{X,Y}~1>A 4 07
1o status.
IAC Y Increment accumulator. f no carry, one to status, A+1A 4 70
DAN Y Decrement accumulator. if no borrow, one to status. A—1A 4 77
A2AAC Y Add 2 to accumulator. Results to accumulator. If carry one to status. | A+2A 4 78
A3AAC Y Add 3 to accumulator. Results to accumulator. If carry one to status. | A+3A 4 74
AdAAC Y Add 4 to accumulator. Results to accumulator. If carry one to status. | A+4—>A 4 c
ABAAC Y Add 5 to accumulator. Results to accumulator. If carry one to status. | A+5>A Add 4 72
ABAAC Y Add 6 to accumulator. Results to accumulator. If carry one to status. | A+6>A Immediate 4 7A
A7AAC Y Add 7 to accumulator. Results to accumulator. If carry one to status. | A+7>A Value 4 76
ABAAC Y Add 8 to accumulator. Results to accumulator. If carry one to status. | A+8—>A To 4 7€
AQAAC Y Add 9 to accumulator. Results to accurnulator. If carry one to status. | A+3>A Accumulator 4 n
A10AAC Y Add 10 to accumulator. Results to accumulator. if carry one to status.| A+10>A 4 79
AT1AAC Y Add 11 to accumulator. Results to accumulator. If carry one to status.| A+11A 4 75
A12AAC Y Add 12 to accumulator. Results to accumulator. If carry one to status.| A+12>A 4 70
A13AAC Y Add 13 to accumulator. Results to accumulator. if carry one to status.| A+13->A 4 73
A14AAC Y Add 14 to accumulator. Results to accumulator. If carry one to status.| A+14—>A 4 78
1IYC Y Increment Y register. If carry, one to status. Y+1Y 4 05
DYN Y Decrement Y register. If no borrow, one to status. Y-12>Y 4 o4
CPAIZ Y Complement accumulator and increment. If then zero, one to status. {Two's comptement) 4 3D
Arithmetic ALEM Y If accumulator less than or equal to memory, one to status. ASMIX,Y) a4 01
Compare
Logical MNEA Y If memory is not equal to accumulator, one to status. MIX,Y}FA 4 00
Compare MNEZ Y If memory not equal to zero, one to status. M(X,Y)F#0 4 3F
YNEA Y If Y register not equal to accumulator, one to status and status latch. | Y#A; SSL 4 02
YNEC Y If Y register not equal to a constant, one to status. Neal(o] 2 c 5—
Bits in SBIT Set memory bit. 1-M(X,Y,B) 3 B 3—
Memory RBIT Reset memory bit. 0-M(X,Y ,B) 3 B 3-
TBIT1 Y Test memory bit. If equal to one, one to status. M(X,Y,B) =1 3 B 3—
Constants TCY Transfer constant to Y register 1Hc)=>y 2 C 4—
TCMIY Transfer constant to memory and increment Y 1{C) >M(X,Y); Y+12Y 2 c 6—
input KNEZ Y If K inputs not equal to zero, one to status. K#0 4 OE
TKA Transfer K inputs to accumulator. K=>A 4 08
Output SETR Set R output addressed by Y. 1-R(Y) 4 | oD
RSTR Reset R output addressed by Y. 0-RIY) 4 | oc
TDO Transfer data from lator and status latch to O outputs A, SLO REG 4 ' 0A
RAM X LDX Load X with file address HFPX 5 F 2—
Addressing COMX Complement the MSB of X XMSB ~> XMSB 4 09
ROM BR Branch on status = one . 1 w -
Addressing CALL Call subroutine on status = one f 1 w — |
RETN Return from subroutine i 4 oF
LDP Load page buffer with constant jcrre 2 c 1-
COMC Complement chapter buffer {Ch>CB 4 0B |

CUT ALONG DOTTED LINE _

z
o z S 3 LT"I k‘l
2 888823382320 333
F AMMMAACACAACOCCr. o | TMS 1000/1200 AND TMS 1070/1270 STANDARD INSTRUCTION SET
2 fanisecvonron=1F STATUS SYMBOLIC |FOR-| OPE- | HEX
m 2 FUNCTION MNEMONIC EFFECTS DESCRIPTION
3 g T DESCRIPTION |MAT | RAND | cope
; 3
g a Register to TAY Transfer accumnulator to Y register. AY 4 24
CZ> doJ oo BN NIRFIYNR|=2 | Register TYA Transfer Y register to accumulator. YA 4 23
ﬁ L G D § G) S S S S U) S) 8 CLA Clear accumulator. 0—>A 4 2F
g 8] 8 8 8 '§ g T 3 (:g { a g 3 | Transfer TAM Transfer accumulator to memory. APMIX,Y) 4 03
g 2] S @ Register to TAMIY Transfer accumulator to memory and increment Y register. APMIX,Y); Y+HIOY 4 20
_ < 2 Memory TAMZA Transfer accumulator to memory and zero accumulator. AMIX,Y); 0~A 4 04
z T 2 -
2z Zz < O LI I
g 8 2 8 8 288 9 = A § 5 A oo 2o g ':g Memory to TMY Transfer memory to Y register. M(X, Y)Y 4 22
G e Register TMA Transfer memory to accumulator. M(X,Y}~>A 4 21
N e Saaronmn2ae © N OO N = | XMA Exchange memory and accumulator. M(X,Y)eA 4 2E
2 Arithmetic AMAAC Y Add memory to accumulator, results to accumulator. If carry, one to status. M{X,Y)+A2A 4 25
»
- l SAMAN Y Subtract accumulator from memory, results to accumulator. If no borrow, M(X,Y)—A—A 4 27
§ one to status.
NNNRRENDNDWE @R W o l IMAC Y Increment memory and load into accumulator. If carry, one to status. MIX,Y)+1—A 4 28
= S S B o ity S T S S S SRSy P B DMAN Y Decrement memory and load into accumulator. If no borrow, one to status. M(X,Y)—-1"A 4 2A
2223288 g $< 3283333332332 1A Increment accumulator, no status effect. A+12A 4 0E
28 I iYC Y Increment Y register. If carry, one to status. Y+1=Y 4 2B
DAN Y Decrement accumulator. If no borrow, one to status. A—-1—A 4 07
- <3 33323 DYN Y Decrement Y register. If no borrow, one to status. Y—12Y 4 2C
zzz Zxxxxo 223222))
% 8 g3 8 §566§235355:8320 a2 2 ABAAC Y Add 6 to or, results to or. If carry, one to status. A+6>A 4 06
el anicinbatis fatnlanthiiefatSais Sanathttiend albiaihiainbabiahsiut ABAAC Y Add 8 to accumulator, results to accumulator. If carry, one to status. A+8A 4 01
N3 el ranIigoee~No 0 AN A10AAC Y Add 10 to accumulator, results to accumulator. If carry, one to status. A+10A 4 05
';‘ CPAIZ Y Complement accumulator and increment. If then zero, one to status. {Two's complement) 4 2D
! 2 Arithmetic ALEM Y If accumutator less than or equal to memaory, one to status. A<MI{X,Y) 4 22
§ Compare ALEC Y If accumulator less than or equal to a constant, one to status. A<HC) 2 C 7-
NRNNRYRBRRYIBB8288888 9888 l Logical MNEZ Y If memory not equal to zero, one to status. M{X,Y)=0 4 26
e e T Compare YNEA Y I Y register not equal to accumulator, one to status and status latch. Y#A, SOSL 4 02
?, % 2238 g, %g,f 3233823 % 323382 g I YNEC Y If Y register not equal to a constant, one to status. Y#1(C) 2 (o} 5—
= N Bits in SBIT Set memory bit. 1-M(X,Y,B) 3 B 3-
3 <33 1 Memory RBIT + | Reset memory bit. 0~M(X,Y,B) 3 8 3-
8998889225237 %57832zz3z232 I TBIT Y | Test memory bit. If equal to one, one to status. MI(X,Y,B) = 1 3 B 3—
ndenidnlanionlanieihiunienbeun S S SIS SIS S Constants TCY Transfer constant to Y register. Hcry 2 Cc 4—
Ne®3aa SN S3C© PN w2 I TCMIY Transfer constant to memory and increment Y. HCPMIX,Y), Y+12Y | 2 C 6—
g Input KNEZ Y If K inputs not equal to zero, one to status. K#0 4 09
- N l TKA Transfer K inputs to accumulator. KA 4 08
3 Output SETR Set R output addressed by Y. 1R(Y) 4 0D
N w W oW oW W W oW N
SRBERIIBBEINBEERL S8 I RSTR Reset R output addressed by Y. 0R(Y) 4 oc
[SRD D S S SV USSR U S D S S D S WU S TDO Transfer data from accumulator and status latch to O outputs. ASL>0 REG 4 0A
(Z, 3228 § % 3 5 23 % (23 g (Z-, 323332 g cLo Clear O-output register. 00 REG 4 o8
- N RAM ‘X’ LDX Load ‘X’ with a constant. 1BFX 2 B 3-
s < 5 Addressing COMX Complement ‘X' XX 4 00
8288252722328 32 3 | ROM BR Branch on status = one. 1 —
Addressing CALL Call subroutine on status = one. 1 w —
mimisinininiaisiniaimis! .
TR AR l RETN Return from subroutine 4 oF
2 LDP Load page buffer with constant. 1{C)>PB 2 Cc 11—
Oz |
S FORMAT 1: W = BRANCH ADDRESS — 1(2-7)
° l FORMAT 2: C = CONSTANT OPERAND 1{74)
- = s 2 NN NN
DD N O DO =N WHA AN FORMAT 3: B = RAM-X OR BIT ADDRESS-! {7,6)
e e e e el g ! FORMAT 4: NO OPERANDS
NEoe g Egeg mNw 2o o N , FORMAT 5: F = FILE ADDRESS —I(7-5) TMS 1100 ONLY
=R !

I

II

III

TMS 1000 SERIES

PROGRAMMER’S REFERENCE MANUAL

INTRODUCTION

1-1 General
1-2 Design Features

1-3 Design Steps
1-4 Symbols and Convent1ons

1-4.1 List of Abbreviations .
1-4.2 Symbols and Logic Notation .
1-4.3 Machine-Instruction Flowchart Conventions

TMS 1000/1200 CHIP ARCHITECTURE AND OPERATION

2-1 General .
2-2 ROM Addressmg
2-3 Branching
2-4 Subroutines .
2-5 RAM Addressing .
2-6 RAM Data I/O . . .
2-7 Constant and K Input (CKI) Loglc .
2-8 The Y Register . Coe
2-9 R-Output Register
2-10 Accumulator Register .
2-11 Arithmetic Logic Unit Operat1on
2-11.1 N-Input to Adder.
2-11.2 P-Input to Adder .
2-11.3 Adder/Comparator Output .
2-12 Status Logic . e
2-13 Status Latch
2-14 O-Output Register .
2-15 Programmable Logic Array (PLA)
2-16 O-Output PLA, Code Converter
2-17 Instruction Decoders .
2-17.1 The Programmable M1cro1nstruct1ons .
2-17.2 Fixed Instruction Decoder .
2.18 External Inputs
2.19 Initializing TMS 1000 Serles Dewces
2.20 Power-Up Latch .

INSTRUCTION CROSS REFERENCE TABLES, TMS 1000/1200

vii

1-6

1-1
1-1
1-3
1.5
15

1-6

2-1

2-1

2-6

2-7

2-8

2-8

2-10
2-10
2-12
2-12
2-14
2-15
2-16
2-16
2-16
2-16
2-16
2-17
2-20
2-22
2-22
2-26
2-29
2-29
2-29

TMS 1000 SERIES PROGRAMMER’S REFERENCE MANUAL (Continued)

IV TMS 1000/1200 STANDARD INSTRUCTION SET DEFINITIONS

4-1 Genmeral L Lo L4
4-1.1 Instruction Set. 41
4-1.2 EffectonStatus41
4-1.3 Instruction Formats.42
4-1.4 Microinstructions. 44
4-1.5 Coding Format 44
4-1.6 Examples.44

4-2 Register to Register Transfer Instrucnon T 3
4-2.1 Transfer Accumulator to Y Register 46
4-2.2 Transfer Y Register to Accumulator 47
4-2.3 Clear Accumulator e S

4-3 Register to Memory, Memory to RegLSter Transfer Instructions 4-8
4-3.1 Transfer Accumulator to Memory P
4-3.2 Transfer Accumulator to Memory and Increment Y Register 49
4-3.3 Transfer Accumulator to Memory and Zero Accumulator 49
4-3.4 Transfer Memory to Y Register 410
4-3.5 Transfer Memory to Accumulator 411
4-3.6 Exchange Memory and Accumulator 411
4-3.7 Register/Memory Transfer Example 412

4-4 Arithmetic Instructions . . . e o ¢
4-4.1 Add Memory to Accumulator Results to Accumulator T I
4-4.2 Subtract Accumulator from Memory, Result to Accumulator 4-14
4-4.3 Increment Memory and Load into Accumulator 4-14
4-4.4 Decrement Memory and Load into Accumulator. 4-15
4-4.5 Increment Accumulator 416
44.6 Increment Y Register 417
4-4.7 Decrement Accumulator 417
4-4.8 Decrement Y Register R I
4-4,9 Add 8 to Accumulator, Results to Accumulator B
4-4.10 Add 10 to Accumulator, Results to Accumulator 420
44,11 Add 6 to Accumulator, Results to Accumulator 420
4-4.12 Complement Accumulator and Increment (Two’s

Complement Accumulator) 421
4-4.13 Addition Instruction Example 422
4-4.14 Subtraction Example 424

4-5 Arithmetic Compare Instructions . . . Coe B B
4-5.1 If Accumulator is less than or equal to Memory, One to Status . . . 4-25
4-5.2 If Accumulator is less than or equal to Constant, One to Status . . . 4-25
4-5.3 Arithmetic Compare Example 426

4-6 Logical Compare Instructions e 4
4-6.1 If Memory is not equal to Zero, One to Status 428
4-6.2 If Y Register is not equal to Accumulator, One to Status 4-28

viii

TMS 1000 SERIES PROGRAMMER’S REFERENCE MANUAL (Continued)

4-6.3 If Y Register is Not Equal to a Constant, One to Status .
4-6.4 Logical Compare Example .o
4-7 Bit Manipulation in Memory (RAM) Instructions
4-7.1 Set Memory (RAM) Bit
4-7.2 Reset Memory (RAM) Bit .
4-7.3 Test Memory (RAM) Bit for One .
4-7.4 Bit Manipulation Example
4-8 Constant Transfer Instructions .
4-8.1 Transfer Constant to Y Register . G
4-8.2 Transfer Constant to Memory and Increment Y Register .
4-9 Input Instructions . .
4-9.1 If K Inputs are Not Equal to Zero Set Status .
4-9.2 Transfer K Inputs to Accumulator .
4-9.3 Input Example.
4-10 Output Instructions .
4-10.1 Set R Output
4-10.2 Reset R Output
4-10.3 Transfer Data from Accumulator and Status Latch to O Output
Register .
4-10.4 Clear Output Reg1ster .
4-10.5 Output Sample
4-11 RAM-X Addressing Instructions .
4-11.1 Load X Register with a Constant
4-11.2 Complement X Register .
4-11.3 RAM-X Addressing Example
4-12 ROM Addressing Instructions .
4-12.1 Branch, Conditional on Status .
4-12.2 Call Subroutine, Conditional on Status
4-12.3 Return from Subroutine .
4-12.4 Load Page Buffer with a Constant
4-12.5 Program Control Example 1
4-12.6 Program Control Example 2

V. TMS 1100/1300
5-1 Introduction
5-2 Design Support

VI TMS 1100/1300 OPERATION
6-1 General .
6-2 ROM Addressmg
6-3 RAM Addressing .
6-4 Control and Data Outputs
6-4.1 R-Outputs
6-4.2 O-Outputs

ix

4-29
4-29
4-32
4-32
4-32
4-33
4-34
4-35
4-35
4-35
4-36
4-36
4-36
4-37
4-39
4-39

. 4-39

440
440
441
442

442

442
443
444
444

446

448
449
450
453

5-1
5-1

6-1
6-1
6-4
6-5

6-7

TMS 1000 SERIES PROGRAMMER'’S REFERENCE MANUAL (Continued)

6-5 Instruction Decoders e 6T
6-5.1 The Instruction- Programmable -Logic Array N 24
6-5.2 The Fixed-Instruction Decoder 67

VII CROSS-REFERENCE TABLES TMS 1100/1300

VIII TMS 1100/1300 STANDARD-INSTRUCTION DESCRIPTION

81 General S |
8-2 TMS 1000/1200 vs TMS 1000/1300 Instruct1ons O 2 |
8-2.1 Differences in Definition 81
8-2.2 Instruction Formats. 83
8-3 Register-to-Memory Transfer T
8-3.1 Transfer Accumulator-to-Memory and Increment Y Register 84
8-3.2 Transfer Accumulator-to-Memory and Decrement Y Register 8-6
8-4 Arithmetic Instructions 88
85 LogicalCompare 810

8-6 Output Instructions.0 ... 812
8-6.1 SetROutput00, 812
8-6.2 Reset R-Output 812

87 RAMXAddressing 813

8-7.1 Load X Register . . . - 2 K
8-7.2 Complement the MSB ofX Reglster P -
8-8 ROM Addressing . . . - A X

8-8.1 Branch, Condmonal on Status e e 816
8-8.2 Call, Conditionalon Status 818
8-8.3 Return from Subroutine 820
8-8.4 Complement Chapter Buffer 821

IX MICROPROGRAMMING

9-1 General S |
9-2 The Instruction- Programmable Log1c Array T)
9-3 Microprogramming Guidelines.95
9-3.1 Fixed Instructions95
9-32 Timing. 00 0o 000w o0 .98
9-3.3 ALU Operation . . P
9-3.4 The Constant and K- Input Loglc T R
9-3.5 [Instruction Programmable Logic Array 99

9-3.6 Simulation099
9-3.7 TestGeneration v v v v v v e v e e e e o . .99
9-3.8 Summary. 0 0 00 0 0 e e e e e e e e 912

9-4 Microprogramming Hints 912
94.1 TDOExample 912
942 BRExample916
9-4.3 Reducing PLA Terms . . . N A

9-5 PLA Term Minimization in the Output PLA N A

TMS 1000 SERIES PROGRAMMER’S REFERENCE MANUAL (Continued)

X SUBROUTINE SOFTWARE
10-1 Genmeral 101

10-2 Example Subroutine 101
10-3 Example Calling Sequence . . . T 0N
10-3.1 Calling a Subroutine on the Same Page 101

10-3.2 Calling a Subroutine from a Different Page 10-2
10-4 Multiple Entry Points .. 103

XI ORGANIZING THE RAM
11-1 General 11

11-2 Data Register Organization . . . T I B

11-2.1 Register Left Shift Example T i)

11-2.2 Transfer from Register 0 to 1 (Example). 11-3

11-2.3 Register Transfer Example UsingCOMX 11-3
11-3 Placing FlagBits 113
11-4 Temporary Working Areas 114

XII GENERAL PURPOSE SUBROUTINES

12-1 Register Right Shife. 121
122 Register Exchange 121
12-3 Decimal Addition L L. L 122
1244 Decimal Subtraction 124

XIII EXAMPLE ROUTINES

13-1 General . . G I
13-2 Display and Keyboard Scan e K |
13-2.1 Basic Scan Routine 133
13-2.2 Leading Zero Suppression 134
132.3 KeyDebounce. 134
13-3 Addressingan External RAM 135
13-3.1 Converting BCD to Binary 136

13-3.2 Setting Address Lines of the External RAM from a
Binary Number 137
13-4 Integer BCDMultiply 138
13-5 Integer BCDDivide 139

XIV EXAMPLE PROGRAM

14-1 General . . e s |
14-2 Example Input/Output O |
14-3 RAM Organization« « « .« o 1422
14-3.1 DataRegisters 143
14-3.2 FlagBitsatM(0,13). 143
14-3.3 Temporary Working Areas 143

xi

TMS 1000 SERIES PROGRAMMER’S REFERENCE MANUAL (Continued)

APPENDIX A:
TMS 1000/1200 and TMS 1100/1300 Electrical Specifications .

APPENDIX B:
TMS 1070 and TMS 1270 Microcomputers .

xii

A-1

B-1

R OUTPUTS

(11 OR 13 BITS)
11
[
PROGRAM COUNTER 4
ROM R-OUTPUT RAM
SUBROUTINE RETURN 1024 WORDS LATCH 64 WORDS
REGISTER f e 8 BITS/WORD & BUFFER 4 BITS/WORD
44 —
PAGE ADDRESS 7
REGISTER A8 4 4 j
4 a 2 &
PAGE BUFFER ’ £ 3 A+ b a ” 4
REGISTER 4 A
> —~T\» x.REGISTER
INSTRUCTION
Vss —— DECODER
VDD ——— * 71 4
L4
L4
Y-REGISTER
Y a
u # : ARITHMETIC
| | OSCILLATOR Lot P 4 .
UNIT
K INPUTS => 14 L
4 81TS) 4 ACCUMULATOR
y 1 L 4 REGISTER
4 Wi
£
4
| O-OUTPUT LATCHES & PLA CODE CONVERTER P—/———’
d L.
0 OUTPUTS
(8 BITS)
R OUTPUTS
(11 OR 16 BITS)
RAM
128 WORDS
PROGRAM COUNTER 4 BITS/WORD
SUBROUTINE RETURN | 8
REGISTER 4 8
T 3
// 8
PAGE ADDRESS
REGISTER X REGISTER
4 INSTRUCTION 4
PAGE B‘SJ;:FER ~ DECODER
REGH
L 4
4
Vs5 ——»
S~ 4 :
:1 | L)
OSCILLATOR AH::I;;{GI\:IETIC 4
K INPUTS 4 UNIT AL
(4 BITS) 7
ACCUMULATOR
1 t 4 REGISTER -
4
|o-0UTPUT LATCHES AND PLA CODE CONVERTER]4+——]
i I

O OUTPUTS
(8 BITS)

FIGURE 1-2.2 TMS1100/1300 LOGIC BLOCKS

SECTION I

INTRODUCTION

1-1 GENERAL.

This section introduces the TMS1000 series of one-chip microcomputers and outlines how an
algorithm is developed and implemented to achieve cost effective designs. This introduction
includes a definition of terms and conventions. This manual treats the devices as a system of logic
blocks controlled by the programmer.

Since the hardware, detailed in Section 2, is so close to the software presented in Sections 3 to 9, it
would be appropriate to label this book a “firmware” guide to TMS1000. After receiving the logical
stepping-stone of hardware first, a user is presented with a detailed description of the standard
instructions (Sections 3 and 4). Hints for efficient algorithms and example programs are presented
last in Sections 10 to 14 since they require a thorough understanding of the standard instruction
set.

In keeping with the teaching of firmware, the PLA programming concept is presented without
assuming previous knowledge of MOS, and the appendices include electrical and timing
specifications. This manual leads into a separate “TMS1000 Software User’s Guide” which explains
how to check out programs with software simulation before building prototypes of TMS1000 series
circuits.

1-2 DESIGN FEATURES.

The TMS1000 series architecture is constructed to fit a wide variety of applications. The design is
both cost effective and flexible because data input, processing and output are performed in one
self-contained unit. An internal ROM, RAM and ALU comprise a single-chip microcomputer which
functions according to the ROM program and the system inputs.

Systems with high volume requirements are inexpensive to produce and maintain since a system
implemented with a single controlling device has high reliability, low pin count, and low power
requirements. Several key features (seen in Figures 1-2.1 and 1-2.2) make low-cost products
possible:

e Minimum system: One device containing ROM program, RAM, I/O control and ALU.

e 8-bit parallel O-output bus and up to 16 latched R-outputs.

e Format for the O-outputs is user defined by a PLA converting five input bits to an
eight-bit code.

) Internal oscillator.

e Single power supply (15V).

1-1

The capabilities of the TMS1000 series four-bit microcomputer are limited by the magnitude of
ROM instructions and RAM bits required. More complex systems are implemented cost effectively
by using a multiple chip system with a central “master” controller chip and one or more “slave”
devices. The slave devices controlled by the TMS1000 series microcomputer can be another
TMS1000, PROM, RAM or other possibilities.

1-3 DESIGN STEPS.

It is important for the user to realize that each possible series or combination of inputs to the device
must have a predetermined output forseen by the programmers and systems engineers. Upon
completion of the programming phase of microcomputer ROM design, gate level tooling is
generated for a fixed ROM pattern, and prototype devices are built at the expense of time and
money. Thus, to help the designer be sure that his program is working correctly before releasing a
ROM code-to TI manufacturing, TI provides simulator and assembler programs. In addition, the
software method of testing the program is supplemented with a hardware simulator which operates
in real time. Whenever possible, the hardware simulator is preferred for final checkout because of
simulation in real time. A software emulator, SE-1, which is a TMS1000 with external program
memory, may be used for prototyping systems if the standard instruction set is employed.

Figure 1-3.1 shows typical design development steps for a TMS1000 series algorithm, The following
numbered steps correspond to numbers in the figure.

(1) In the beginning of the program development, the inputs, outputs and RAM assignments
are organized.

(2) After the I/O and RAM is organized, a flow chart of the program is generated to
determine the instruction coding necessary to fulfill specification requirements.

(3) This ROM code is keypunched as a source program on a-card deck, or it is entered
through teletype keyboard on one of several national timeshare systems.

(4) The source program is assembled into an object program (mnemonics converted to
machine-instruction bit-pattern), and assembler software generates a listing and possible
error statements.

(5) After the source program etrors have been removed, a simulator program duplicates the
TMS1000 function as determined by the ROM program, and then the simulator generates
a listing of the contents of the registers and the RAM in either a “snapshot” or an
instruction-by-instruction trace.

(6) The ROM object program may be converted to a paper tape for input to the hardware
simulator for real-time simulation.

(7) After the ROM code is approved, the assembler program generates the ROM object deck.
The ROM object deck and the simulator option control cards specify how the
microcomputet’s instruction decoder, O-output decoder, and ROM patterns are to be
defined. The definition files are sent to TI manufacturing for the generation of prototype
gate masks, slices, and prototype circuits.

(8) After prototype devices are checked by the customer and approved, TI begins volume
production from the masks that were used in the manufacture of prototype devices.

1-2

START TMS1000
PROGRAM

RGANIZE
/0, RAM

FLOW CHART
ROM CODE

SOURCE
PROGRAM
SO ————————— e g —— — — —— | ——{]
ASSEMBLER |
LISTING i | | oBsECT
I I
¥ |
|
EDIT |
g
T
' [
} |
COMPUTER i |
I™™1 SIMULATION [e== === ===m—]
! I
| |
¥
LISTING ~)
NO EDIT a

S e e

HARDWARE SIMULATION

EDIT

SIMULATION
COMPLETE

r

=

PATTERN
GENERATION
TAPE

MASKS

SLICE

PROTOTYPE
CIRCUITS

ujin

TEST

-

QRA AND
LOT ACCEPTANCE
SPECIFICATIONS

PRODUCTION

U

FIGURE 1-3.1 TMS 1000/1200 ALGORITHM DEVELOPMENT

1-3

NO_ o ebiT

1-4 SYMBOLS AND CONVENTIONS.

1-4.1 LIST OF ABBREVIATIONS.

A Accumulator Register

ALU Arithmetic Logic Unit (Adder-Comparator, P&N Inputs, ALU Select)
B Bit Field of Instruction Word

C Constant Field of Instruction Word

CA Chapter Address Latch

CB Chapter Buffer Latch

CKI Constant and K-Input Logic (and Bus)

CL Call Latch

CS Chapter Subroutine Latch

DIP Dual In-line Package

F File Address Field of the Instruction Word
I() Instruction Field

Ki K input terminals

LSB Least Significant Bit

LSD Least Significant Digit

LSI Large Scale Integration

MOS Metal Oxide Semiconductor

MSB Most Significant Bit

MSD Most Significant Digit

M(X,Y) RAM Memory Location = X Address (0 to 7), Y Address (0 to F1¢)
M(X,Y,B) RAM Memory Bit Location (B =0, 1, 2, or 3)
O Output Register

Ox O-Output Terminal, x = 0-9.

OPLA Output Programmable Logic Array

PA Page Address Register (ROM)

PB Page Buffer Register (ROM)

PC Program Counter

PLA Programmable Logic Array

R R-Output Register

Rx R-Output Terminal, x = 0-15

R(Y) R-Output Latch Location =Y

RAM Random Access Memory (Read/Write)
ROM Read Only Memory

S Status

SL Status Latch

SR Subroutine Return Register

W Branch Address of Instruction Field

X RAM X Address Register

Y RAM Y Address Register

1-4

1-4,2 SYMBOLS AND LOGIC NOTATION.

a—->b Transfer value a to b.

c~>d Transfer the contents of register c to d.

e f Exchange contents of e and f.

X One’s complement of X.

= equal

#* not equal

> greater than

> greater than or equal to

< less than

< less than or equal to

+ addition

— subtraction

+ Boolean OR function

. Boolean AND function

ONE set “1”, high (*Vgg), Boolean true, logic one
ZERO reset “0”, low (= VDD), Boolean false, logic zero

PC+ 1~ PC PC value goes to next word address in the pseudo random sequence (0, 1, 3, 7, 15,
etc.) The complete sequence is given on pages 14-5 and 14-6.

1-4.3 MACHINE-INSTRUCTION FLOWCHART CONVENTIONS. The conventions used for
flowcharts are shown in Figure 1-4.1.

Subroutine or routine beginning label.

All instructions except as noted below.

Dual action instruction.

Test or compare instruction, asks a question that effects status.
If test is true, status is set to ONE.

Conditional branch instruction.
Always branch because status is always equal to ONE.

Conditional call instruction.

Always call instruction {condition is known, S = 1).

Return instruction.
FIGURE 1-4.1. MACHINE INSTRUCTION FLOWCHART CONVENTIONS

1-5

R AR R R ERE R
7oy

{5 & | {ax &

SUBROUTINE PAGE
RETURN BUFFER
REGISTER REGISTER

CALL
LATCH

EXTERNAL
INPUTS

Z, INITIALIZE

IN IT/|
FIXED
N
I INSTRUCTION 'ggzggg‘:&
| DECODE
i —» BR —» STO
- CALL F— CKM
l t—»~ RETN —» CKP
l —» LDP —» YTP
— LDX > MTP
I —» coMX > ATN
| —» TDO > NATN
| —» CLO > MTN
—> SETR —> 15TN
I > RSTR —>» CKN
I —> sBIT —» CIN
L RBIT —> NE
I ca
l —>» AUTA
—» AUTY
| L > sTsL

CONSTANT &
K INPUT LOGIC

r { 40PIN DIP
| {_T™s 1200 ONLY
| I R-OUTPUT REG. I
[13
|
1 ROM ARRAY RAM ARRAY
ROM 8192 BIT RAM 256 BIT
| pC 64 (64X8X16) v 18 (16X4X4)
| DECODE DECODE
| 6
! 4
[
[PAGE DECODE X DECODE
I 10F 18 10F4
! 0 =
| PAGE .
PROGRAM
ADDRESS REGISTER
| COUNTER REGISTER
|

ADDER/COMPARATOR

AU SELECT

OUTPUT
PLA

________ O —
VAAVAVRARR

V’

REGISTER

ACCUMULATOR |7

OUTPUT
REGISTER

3 STATUS
LATCH

FIGURE 2-1.1 TMS1000/1200 BLOCK DIAGRAM

1-6

SECTION I1
TMS1000/1200

CHIP ARCHITECTURE AND OPERATION

2-1 GENERAL.

The TMS1000/1200 functional block diagram (Figure 2-1.1) shows all major logic blocks and major
data paths in the TMS1000/1200 architecture. The ROM, ROM addressing, and instruction decode
are on the left side of the diagram. On the right side of the diagram are the adder/comparator, the
RAM, the registers for addressing the RAM, and the accumulator which is the main working
register. The major logic blocks are interconnected to the adder with four-bit parallel data paths.
Table 2-1.1 identifies each major logic block and gives a brief description of its function. Each of
these logic blocks is discussed in detail in the following paragraphs approximately in the numerical
order shown in Figure 2-1.2 accompanying Table 2-1.1.

The instruction timing is fixed and each requires six oscillator cycles to execute. Each of the 43
basic instructions (listed in Table 3-1) is defined to enable one or more microinstructions that
activate control lines during one instruction cycle. These microinstructions explain the firmware
bridge between software instructions and the individual logic block capabilities. A hardwired logic
decoder that cannot be modified decodes 12 “fixed” basic instruction codes into 12 fixed
microinstructions for output instructions, branching, subroutines, RAM X addressing, reset and set
bit instructions. The remaining 31 basic instructions activate a combination of 16 programmable
microinstructions that are encoded by the instruction PLA. The concept of fixed and programmable
microinstructions is used as a tool for understanding the software on the machine level and is used
to increase the power of the instruction set to fit more applications (microprogramming the
instruction set).

2-2 ROM ADDRESSING.

The ROM has 8,192 possible matrix points (1024 eight-bit words) where MOS transistors are placed
to define the bit patterns of the machine language code. The ROM is organized into 16 pages of 64
words each (16 x 64 = 1024 words total). Each word contains eight bits.

Registers used to address the ROM include the following:

a. Page Address Register (PA). Contains the number of the page within the ROM being
addressed. The contents of PA (four bits) are decoded into one of sixteen address lines by
the page decoder.

b. Page Buffer Register (PB). The PB is loaded with a new page address which is then shifted
into the PA for a successful branch or call. The PB is changed by the load page (LDP)
instruction.

¢. Program Counter (PC). Contains the current location of the word (within the page) being
addressed. The contents of PC (six bits) are decoded by the PC decoder into one of 64
address lines selecting one instruction on a page.

Text continued on page 2-6

2-1

NOTE
Figure 2-1.2 identifies
functional areas described in
Table 2-1.1. These blocks are

identified by numbers
referenced in column 1 of
Table 2-1.1.

This figure follows the outline
of Figure 2-1.1, System Block
Diagram.

:

T

?J—H—;Iﬂ[
5

-

0

—\
v

N
-]
N
~N

1221222212122212

[18

]
19 |
S ——
-1

FIGURE 2-1.2 NUMBERED FUNCTIONAL BLOCKS

TABLE 2-1.1. TMS1000/1200 FUNCTIONAL BLOCKS

L T L T L L L L L L L L L LT T T TP |

No. In Block Symbol Logic Function and
Fig. 2-1.2 Name (Abbr.) Type Organization
ROM Array ROM Virtual Contains program bit
Ground ROM pattern. 16 pages of 64
words, 8 bits each.
ROM PC Gates Decodes program counter
Decode into one of 64 ROM
addresses.
Page Decode Gates Decodes page address

register into one of 16
page addresses.

2-2

TABLE 2-1.1. TMS1000/1200 FUNCTIONAL BLOCKS (CONTINUED)

No. In Block Symbol Logic Function and
Fig. 2-1.2 Name (Abbr.) Type Organization
4 Program PC Shift Contains the 6-bit code
Counter Register for the ROM instruction
address.
5 Subroutine SR Storage Contains 6-bit return
Return Register address during the call
Register state.
6 Page Address PA Storage Contains 4-bit page
Register Register address of the ROM
instructions.
7 Page Buffer PB Storage Used to set up page
Register Register changes. Also contains
4-bit return page address
during the call state.
8 Call Latch CL Latch Stores the call state.
9 RAM Atrray RAM Self Contains variable data.
M(X,Y) Refresh Organized by 64 four-bit
RAM words, four files of 16
words.
10 RAMY Gates Decodes the Y address
Decode register into one of 16
RAM address lines. Also
selects one of 13 R lines
for 0< Y <12,
11 R-Output R Single Bit Latches for output to the
Register R(Y) RAM Cells R buffers.
12 X-Register X Storage Contains 2 bits of RAM
Register file address.
13 X Decode Gates Decodes X-register into

one of four RAM page
addresses.

2-3

TABLE 2-1.1. TMS1000/1200 FUNCTIONAL BLOCKS (CONTINUED)

No. In
Fig. 2-1.2

Block
Name

Symbol
(Abbr.)

Logic
Type

Function and
Organization

1“4

15

16

17

18

19

20

Write MUX

Constant & CKI

K-Input Logic

P-MUX

N-MUX

Adder/Comparator

Y-Register Y

AU Select

Data
Selector

Data
Multiplexer

Data

Multiplexer

Data
Multiplexer

Binary
Adder (4 bit parallel)

Storage
Register

Data
Selector

Selects either constant
and K inputs or the
accumulator for writing
into the RAM. Also
performs bit setting and
resetting.
Selects either (1)
constant field, (2) the
K-Input to enter CKI
data bus, or (3) a bit
mask,

Selects input to the adder
from (1) Y, (2) CKI, or
(3) RAM.

Selects N input to the
adder (1) RAM, (2) CK1,
(3) accumulator, (4)

accumulator or (5) Fyg.

Adds the P input and the
N input with a possible
carry. The resulting data
and status effect are
controlled by
Also
logically compares the P
and N inputs.

microinstructions.

Four-bit
pointer

multipurpose

and
register. Y contains the
RAM address for one of
16 possible words in a
file. Y also addresses the
R output register.

st orage

Selects destination of the
adder output to (1)
Y-REG, (2) accumulator,
or (3) neither.

TABLE 2-1.1. TMS1000/1200 FUNCTIONAL BLOCKS (CONTINUED)

No. In Block Symbol Logic Function and
Fig. 2-1.2 Name (Abbr.) Type Organization
21 Status S Gates Conditional branch
Logic control. Normal state =
ONE. Branches are taken
if S = ONE. Selectively
outputs a ZERO when
carry is false or when
logical compare is true. A
ZERO lasts for one
instruction cycle only.
22 Status SL Latch Selectively stores status
Output output.
Latch
23 Accumulator A Storage Four-bit storage register,
Register Register main data working
register.
24 Output 0] Storage Stores the accumulator
Register Register and status latch data for
transfer to the output
buffers. Five bits.
25 Output PLA OPLA PLA Decodes the O-register
into a combination of the
8 output buffers. User
defined.
26 Fixed Fixed logic that decodes
Instruction 8-bit instruction into the
Decoder various fixed micro’
instructions.
27 Instruction PLA 30 term PLA that
Decode PLA converts 8-bit instruction
into a combination of 16
microinstructions.
28 External Gates Input buffers. Performs
Inputs page and PC override for

initializing and hardware
reset.

2-5

d. Subroutine Return Register (SR). Contains the return word address in the call subroutine
mode.

On power up, the program counter is reset to location zero, and the PA is set to 15. Then the
program counter counts to the next ROM address in a pseudo random sequence. The sequence of
addresses in the program counter can be altered by a branch instruction or a call instruction. A new
branch address (W) can be stored into the program counter upon the completion of a successful
branch or call instruction. If the branch instruction is not successful, then the program counter goes
to the next ROM location within the current page.

In a successful call or branch execution the page address register (PA) receives its next page address
from the buffer register (PB). The contents of the PB are changed by the load page instruction
(LDP) which can be executed prior to the branch or call. If the PB is not changed, execution
continues on the same page. In other words, when the program counter reaches the 64th word on a
page, execution begins again at PC location 0 on that page.

2-3 BRANCHING.

All branches are conditional; a status logic path comes from the ALU to designate if a branch
instruction should be successfully executed. A successfully executed branch or call is defined to be
the case when the branch or call transfers control to an instruction address out of the normal
sequence. An unsuccessful branch or call does not affect the normal sequence of the program
counter.

e If the status logic equals ONE, then the branch is successfully executed. That is, six bits
are transferred from the instruction bus from ROM into the program counter. These six
bits are the branch address (W) which locates the next word on the page to be executed.

e If the status logic is equal to ZERO, then the branch instruction is unsuccessful. The
program counter sequences to the next instruction, and then status reverts to a ONE.

When the branch is executed successfully and when not in the call mode (CL = 0), the page buffer
register is loaded into the page address register. If the contents of the page buffer register had been
modified previous to the branch instruction, then this instruction is called a long branch instruction,
since it may branch anywhere in the ROM (a long branch, BL, directive in the source program
generates two instructions - LDP, load page buffer and BR, branch). In the call mode (CL = 1), only
“short” branches are possible, staying within a given page.

NOTE

The normal state of the status logic is ONE.
Several instructions can alter this state to a
ZERO; however, the ZERO state lasts for only
one subsequent instruction cycle (which could
be during a branch or call), then the status logic
will normally revert back to its ONE state
(unless the following instruction resets it to
ZERO).

2-6

2-4 SUBROUTINES.

Similar to branch instructions, call instructions are conditional. One level of subroutine is
permitted, and a call within a call does not execute properly. In the case of a successful call when
status logic equals ONE:

(4)

The call latch (CL) is set to ONE

The contents of the page buffer register (PB) and the page address (PA) register are
exchanged simultaneously.

The return address is stored in SR and PB: the SR address is one address ahead of the
program counter when the call instruction is executed. The return address is saved for a
future return instruction.

The branch address field of the instruction word writes into the program counter.

When a return instruction occurs:

(1)

(2)

(3)

The subroutine return register (containing the call instruction address plus one) is always
transferred to the program counter.

The contents of the page buffer register (containing the page at call) is always transferred
to the page address register.

The call mode is reset (CL = 0).

If a call instruction is executed within a previous call (no return occurred and the call latch is still a
ONE and status is a ONE), there is no transfer of the page buffer register to the page address
register: instead contents of the page address register transfer to the page buffer register, although
the branch address (W) loads into the program counter. For example:

(1)

(2)

(3)

A call instruction is executed, transferring control from ROM page one to page two.
Before execution, the PA and PB are as follows:

PA=1 PB=2
After execution of the call:
PA=2 PB=1
This subroutine contains another call. After execution of this second call:

PA =2 PB =2

Thus a call within a call to another page will cause the return page to change, losing the correct
return page address (which is 1).

2-7

2-5 RAM ADDRESSING.

There are four RAM files, each containing 16 four-bit words in the RAM’s 256-bit matrix (shown in
the upper right of Figure 2-1.1 and in detail in Figure 2-5.1). Two registers are important in RAM
addressing:

e The X register addresses (identifies) each file with a two-bit address (00 to 11), the
address being decoded by the X decoder.

e The Y register identifies the particular word in the file with a four-bit address (0000 to
1111). The Y register is decoded by the Y decoder.

An X and Y address selects one four-bit RAM character, M(X,Y), this address being the storage
location in the RAM matrix. The X register can be set to a constant equal to zero through three
(LDX instruction), or X is complemented (COMX instruction) to flip the address of X to the X file
(e.g., 00 to 11, or 01 to 10, etc.).

Besides going to the Y decoder, the Y-register data is also transferred to the adder/comparator and
is incremented and decremented as well. The Y-register may be set to any constant between zero
and fifteen (by the TCY instruction). Sometimes Y-register data is loaded from the memory (TMY
instruction) or the accumulator (TAY). The Y-register is extremely versatile and is used as a
working register as well as an index for the RAM address. One of its other major functions is to
select an R output address.

Instructions using bit masks from the CKI logic enable additional RAM addressing capabilities. Any
bit in a RAM word addressed by X and Y registers can be set, reset, or tested.

2-6 RAM DATA I/O.
There are two modes of RAM access (read and write) during the instruction cycle.

(1) Data may be read out of the RAM for the purpose of addition, subtraction, or transfer to
the other registers.

(2) Data is stored in the RAM via the write bus.

Two sources of information are written into the RAM; these sources are selected by the write
multiplexer (shown on the right side of the function diagram, Figure 2-1.1). In one mode the
multiplexer selects the accumulator information to be written into the RAM (uses STO
microinstruction). The accumulator data is transferred to memory after data is read from the RAM
but before the ALU results are stored into the accumulator. In the second mode, the constant and
K-input logic is written into the RAM (by the CKM microinstruction). The constants from the ROM
instruction bus are transferred to the RAM directly, and an optional data path from K1, K2, K4,
and K8 exists although not selected in the standard instruction set. Four RAM bits are carried on
the read bus to either the P-multiplexer or to the N-multiplexer and then to the adder/comparator.

FILEO

X REG. =00

FILE 1

X REG. =01

FILE 2

X REG.=10
FILE 3

X REG.=11

Y REGISTER ADDRESS:

15

14 13 12 11 10 9 8 7 6 b

FIGURE 2-5.1 RAM FILE ORGANIZATION

2-9

BIT 3

BIT 2

BIT 1

BIT O

BIT3
BIT 2
BIT 1

BITO

BIT3

BIT 2

BIT1

BITO

BIT3

BIT 2

BIT 1

BITO

2-7 CONSTANT AND K INPUT (CKI) LOGIC.
The purpose of the CKI logic is to select either the K-inputs or the four-bit constants from ROM
(the C field of the instruction word) or a bit mask to go out to the CKI data bus.

The constant and K-input logic is used whenever microinstructions CKP, CKN, or CKM are selected
by an instruction (see Section 2-17 for more details). The data going out on the CKI bus changes for
predetermined instruction values, however, and this section details what the data is and the
versatility of CKI microinstructions. Since the constant and K-input logic is not changeable, it is
important to understand the four separate functions CKI controls before learning how CKI
microinstructions are performed. Table 2-7.1 shows the binary decoded groupings of the instruction
word and the particular output enabled by the CKI logic.

(1)

(2)

First, for eight hexidecimal instruction values (08 to 0F1¢ as listed in Table 2-7.1), the
K-inputs are active. That is, the constants from the ROM are shut off, and the four-bit
external-input bus (center left of Figure 2-1.1) is made available to either the
adder/comparator or the RAM. The instruction decoder determines how the available
data is used.

The second main function is to channel constant data from the instruction bus (from
ROM) to the CKI bus output (instruction values 00 to 07 and 4016 to 7F16 as listed in
Table 2-7.1). The CKI bus is available to the P adder input, the N adder input, or to the
write multiplexer for the RAM as shown in Figure 2-1.1. The constant data from the
ROM can be selected by 72 possible machine instruction values, although the standard
instructions use only 68 of these.

(3) The constant logic is disabled (output at ZERO for values 201 ¢ to 2F¢).

(4)

A bit mask is active. For example, the bit mask as used in the test bit instruction (TBIT1)
determines if a bit from the RAM is a ONE by comparing it with ZERO. The bit mask has
only one ZERO in the four-bit CKI output, as determined by the B field of the
instruction word (see TBIT1 in Table 2-7.1). The B field is two-bits and points to the
selected opening (ZERO) in the mask. Thus, if the least significant bit is to be tested,
then the bit mask outputs the binary word 1110 to the CKI bus output. Then the CKI
bus output goes into both sides of the adder/comparator, and the word at M(X,Y) is
input simultaneously (logically ORed) with the CKI bus into the P side of the
adder/comparator. The compare feature of the adder/comparator is activated and then
the state of the tested bit transfers directly to status logic. The bit mask also selects RAM
bits to be set or reset. For the set bit (SBIT) and reset bit (RBIT) instructions, the zero in
the bit mask field (Table 2-7.1) also acts as a pointer to one of the four bits (identified by
X and Y register contents) in a RAM character.

2-8 THE Y-REGISTER.
The Y-register has three purposes.

(1)

The Y-register addresses the RAM in conjunction with the X-register for RAM 1/O (see
Figure 2-1.1).

2-10

TABLE 2-7.1 CONSTANT AND K-INPUT LOGIC TRUTH TABLE

=

Opcode
(binary list}

S
@
&
g
s

3

Opcode
(hex)

Mnemonic
{Standard

instructions)

CKI

CKI Logic and
Other Constant

Operations

Comment

comx
ABSAAC
YNEA
TAM
TAMZA
AT0AAC
ABAAC
DAN

1(7-4) =
CKI BUS

I (7) = MSB
1(4)=LSB

O 0 0 0O O 0O o Ooje ©o o O 0 © O O

- =210 © O C O O © O

O 0O O O 0O 0 O Ol ©O O ©O 0o O © o
O O O O 0O 0 O Ol O C O O © © O
P I =T = T =1 S S G S = S Y

Y I Gy

[T = T TR . . Y [S — S G S)

- 0 = O = © = o|la 0 =« 0 =2 o = o

o O O O O O O oio o O o o o o ©
MmO O @ P O©W Q)N O WON = O

TKA
KNEZ
TDO
CLO
RSTR

< <|< < <

K1,2,4,8
CKI BUS

Kg = MSB

o o o o o o ©c o o ©

=3

4 0 0 0 = 2 0 0 = = 00 = = o O

P N S S - T - Oy S

NN N NN

N

NN

2

N
MM OO ® P O O N OB WN 2O

0 —> CKI
BUS

o O oo o o o o

© O ol 0o 0 O O ©C O 0 0O O O O O o o

O [UG Y
- = =l O 00O 00 O 0 0O 0 O 0 © O © O
PO N =1 [e Y S S i S S o T = T = S — SR — S S S =)
O 2 Ola = om0 0 00 =B e a0 0 0 C©

1

W W WiN NNN

BIT MASK —
CKI BUS

0 CKI=1110
1 1101
2

[T =]

- e A .

- = o o
-0 = o
O 0O 00

N o g &
1

< < < <

1(7-4) =
CK! BUS

1{7) = MSB
1 {4) = LSB

C —> CKIBUS;C=0t015

NOTE: | = Instruction {op code), C = Constant, W = Branch Address, Y = Yes (’CKP,CKN, or CKM microinstruction is used).

PB = Page Buffer Register (ROM)

(2) The Y-register addresses the R-output register for setting and resetting individual latches.
Whenever a particular R-output needs to be set, the constant bus inputs the R’s address (0
through 12) to Y (TCY instruction), and then a set R-output (SETR) instruction is
executed.

(3) The Y-register is used as a working register. As a working register, ROM words can be
saved. For example, when a long delay time is desired, the Y-register is used as a counter.

The Y register may be set at any constant from 0 to 15, decremented (DYN), or incremented (IYC)
in a single instruction cycle.

Note that in the functional block diagram (Figure 2-1.1), the Y-register has no inverted adder input.
Thus, the Y-register cannot be subtracted from the accumulator or memory.

2-9 R-OUTPUT REGISTER.
The TMS1000 has two outputs:

e R outputs used for control
® O outputs used to transmit data (covered in paragraph 2-14)
The purpose of the R outputs is to control the following:
® External devices
e Display scans
e Input encoding
® Dedicated status logic outputs (such as overflow)
Each R output has a latch that stores a ONE or ZERO, and each latch may be set (ONE) or reset

(ZERO) individually by the set R (SETR) or reset R (RSTR) instructions. The Y register points to
which R output is set by these instructions.

The R-output can be strobed by the ROM program to scan a key matrix. Figure 2-9.1 represents the
maximum key matrix possible without external logic. A simple short from an R line to a K-input
can be detected by the ROM program and interpreted as any function or data entry. Expanding the
matrix is possible by external logic such as using a 4-line to 16-line decoder.

2-10 ACCUMULATOR REGISTER.

The accumulator is a four-bit register that interacts with the adder, the RAM, and the output
registers. The accumulator is the main working register for addition and subtraction. It is the only
register which is inverted before its contents are sent to the adder for subtraction. Subtraction is
accomplished by two’s complement arithmetic. It is a storage register for inputs from the constant
and K-input logic as well as the Y register.

2-12

1 11E =

Em————

- - ¢&—RO
I I

- - | —&—R1
I | I |

|| - — —&—R2
I I I I

— — — - ——€——R3
I I I |

| - —— ——&——R4
1 | I I

— H M «—Re
I I I I

—H H M <"
I I I |

— H H <~
I I

— — — ——&——R8

| I

— — — ———&——R9
L I I I

— — — ——&——R10
I I I I

— — — —&—R11
I I] I

— | . ———&—R12

FIGURE 2-9.1 KEYBOARD MATRIX CONNECTIONS

2-13

Variable data from the K inputs are also stored via the accumulator into the RAM array. Therefore,
any variable data input from the K inputs or from the adder output must pass through the
accumulator to the RAM atray for storage. Likewise, any data to the O outputs must come through
the accumulator. Four accumulator register bits may be latched by the O-output register (where the
status latch information is also latched) for decode by the O-output decoder.

2-11 ARITHMETIC LOGIC UNIT OPERATION.

Arithmetic and logic operations are performed by the Arithmetic Logic Unit (ALU) which is a
four-bit adder/comparator and associated random logic (this is shown in the center right of Figure
2-1.1). The arithmetic unit performs logical comparison, add, subtract, and arithmetic comparison
functions on its P and N inputs. The arithmetic logic unit and interconnects are shown in Figure
2-11.1. These two four-bit parallel inputs (P and N) may be added together or logically compared.
The accumulator has a complemented output to the N selector for subtraction by two’s
complement arithmetic. The other N inputs are from the true output of the accumulator, the RAM,
constants, and the K inputs. The P inputs come from the Y register, the RAM, the constants, and
the K inputs.

FROM CONSTANT

TOY AND K-INPUTS FROM RAM 0 RAM
et AND OUTPUT
HOSIe LATCHES

[J P E N 15TON

lt—CARRY IN

Y REGISTER ADDER/COMPARATOR ACCUMLATOR

{4 bits) (4 bits) (4 bits)

—CARRY OUT
[<+—COMPARE OUT

—L

AU SELECT

AUTO Y — AU TO A l/
NOTE: STATUS OUTPUT TO PROGRAM
ALL DATA PATHS ARE FOUR CONTROL LOGIC AND STATUS
BITS PARALLEL EXCEPT THE OUTPUT LATCH

STATUS OUTPUT.

FIGURE 2-11.1 ARITHMETIC LOGIC UNIT

2-14

Addition and subtraction results (shown in Table 2-11.1) are stored in either the Y register or the
accumulator. Either an arithmetic function or a logical comparison may generate an output to
status logic. If either logical or arithmetic comparison functions are used, only the status logic bit
affects the program control, and neither the Y register’s nor the accumulator register’s contents are
affected. If a branch or call is attempted when the status logic bit is a logic ONE (which is the
normal state), the conditional branch or call is executed.

If an instruction calls for a carry output to status and the carry does not occur, then status will go
to a ZERO level for one instruction cycle. Likewise, if an instruction calls for the logical
comparison function and the bits compared are all equal (EXORED), then status will go to a ZERO
level for one instruction cycle. If status is a logic ZERO, then branches and calls are not performed.

The arithmetic unit has a carry-in feature in which a ONE is added to the sum of the P and N adder

inputs.

2-11.1 N-INPUT TO ADDER. There arc five possible microinstruction selections for adder “N”
input control as shown in Figure 2-1.1. The first comes from the RAM. The second input is from
the constant and K-input logic. Also, the accumulator and accumulator may be selected through the

TABLE 2-11.1 ADDER OUTPUTS

M-A' OR M+A

m Qg O W » © 0 N O O & W N = O|p
-nmoom><oooucnmawm—-oog

oM m U O W P © 0 N O O & W N ==
[4)]

=]
©

© 0 N ® O A WN =2 0OomMmMQYO W >|>

©

CARRY =0
CARRY =1

= N W Hd U1 O N ® © P WO oM™= O
N = OlmMmm Qg O @ P> ©W 0 N O O H wWwlw
W N = OlmMmmMm QOO ® P © O N O G DI
P W N = OlMmMm Qo O TP O O N OO

P O O N O G AE WN = OMmMQOD O B|m
W P> © 0 N O D WN=0OofmMmmQoOO

- oflmn MO O WP © O N OGO D WN|IN
O A WN = O/MMOO ®m®P © © N S|
o A W N o O|IMM OO @ P © 0 NN
N O O A WN = O|mMmMO O ® P O© ®
O NSO G A WN = OmMmO O ® >

O WP ©® ®© N OO A WN=O|mmol|lo
OO0 W P> © ®© N O D WN = O|n m|m
m O O W > © 0 N O 0 & W N = o |mn|m

F
NOTE:
A" 1S THE TWO’S COMPLEMENT OF A (WHICH IS A+1)

N-multiplexer. A fifth function selects fifteen (binary 1111) as an input to the adder. If more than
one input is selected in the same instruction cycle, then those inputs are logically ORed through the
N multiplexer.

2-11.2 P-INPUT TO ADDER. P selections may come from the Y register, constant and K-input
logic, or from the RAM array. If a combination of these inputs is designated, then they are logically
ORed.

2-11.3 ADDER/COMPARATOR OUTPUT. The adder/comparator output (see Table 2-11.1) is
selected by ROM control to go to the Y-register, the accumulator register, or neither. The Y register
is selected by the microinstruction AUTY. The accumulator register is selected by the
microinstruction AUTA. Addition or subtraction instructions select either the Y register or the
accumulator as a destination for results. If neither is selected while the adder is performing an
operation, then this instruction is one of the test instructions. In the test instructions, the adder is
used to generate a status output to control the program, but the results are not stored in either the
Y register or accumulator.

2-12 STATUS LOGIC.

There are 18 instructions that affect status logic, either setting it (to ONE) or resetting it (to
ZERO). In turn, the status logic will permit the successful execution of a branch or call instruction
(if status logic = ONE) or prevent successful execution of these instructions (if reset to ZERO).
Status logic will remain at a ZERO level only for the following instruction cycle and then
automatically be set to the normal ONE state (unless reset to ZERO by the next instruction).

There are two microinstructions (NE and C8) that are used by instructions affecting status. If the
microinstruction C8 is used and a carry occurs in the addition of two four-bit words, the carry goes
from the MSB sum to status, setting status logic to a ONE. If no carry occurs, status logic is ZERO.
In a logic compare instruction (using microinstruction NE), status logic is set to ONE if the four-bit
words at the N and P adder/comparator inputs are not equal; conversely, status logic is ZERO if the
inputs are equal.

213 STATUS LATCH.

The status latch buffers the status-logic bit to the O-output register for decode by the O-output
PLA. Status-logic output is selectively loaded into the status latch by special microinstruction STSL
(used in a logical-compare test instruction that causes the status logic to output a ONE or ZERO).
For example, if the test instruction YNEA (in the standard instruction set) causes status to be a
ONE (if Y register is not equal to A), then the ONE writes into the status latch. If a ZERO is output
by that instruction from status logic, then the ZERO writes into the status latch.

The status latch transfers to the O register with the accumulator bits when TDO, transfer data out,
is executed.

2-14 O-OUTPUT REGISTER.
Paragraph 2-13 describes how the status output is stored in the status latch. The status latch and the
accumulator data are loaded into the O-output register (bottom right of Figure 2-1.1) by a fixed

2-16

instruction from the ROM (TDO), when the programmer decides to change output data. A separate
instruction clears the O-output register. This instruction (CLO) causes all five output register bits to
be reset to ZERO. The five bits from the O register are converted to a parallel eight-bit code by the
OPLA.

NOTE
The O output register transfers accumulator and
status latch data, the R output register
(paragraph 2-9) transfers control data.

2-15 PROGRAMMABLE LOGIC ARRAY (PLA).
There are two PLA’s in the TMS1000 series:

e The O-output PLA (paragraph 2-16)
® The instruction decoder PLA (2-17.1)

For those who may need a review or are unfamiliar with PLA’s, the following discusses the PLA
concept.

A matrix of gates first decodes a number of input bits into a set of output lines (also called
“terms”). Each term can select a combination of output lines from a second matrix of gates (see

Figure 2-15.1).

LOGICAL PRODUCT

—_—
—>
. AND
. MATRIX
.
L]
o o o
Foy F1 ¢ Fog FN
—— Q0
———— Q1
OR
MATRIX — Q2
L .
. .
L] .
——»Qpn
LOGICAL SUM

FIGURE 2-15.1 PLA BLOCK DIAGRAM

2-17

w @ > >

Fo=AB Fq1=AB

FIGURE 2-15.2 STANDARD LOGIC PLA CIRCUIT SCHEMATIC

g “AND"

» Qp=AB+AB
“OR"

—» Q1 =AB

Fo=AB F1=AB

FIGURE 2-15.3 ARRAY LOGIC EQUIVALENT SCHEMATIC

Both matrices are implemented by programmable input NAND gates (Figure 2-15.2). Since we are
concerned only with the input-to-output code conversion, positive logic AND and OR functions are
used herein.

Figure 2-15.2 shows two AND matrix terms, Fg and F1, which are encoding two output OR matrix
terms, Q@ and Q1. The simplified method of presenting the same circuit is shown in Figure 2-15.3.
Each circle in the diagram represents a MOSFET which selects a gate input to a matrix term.

User programming of these PLA’s requires inputs to the TMS1000 simulator for O-output PLA

progtamming and to the assembler and simulator for instruction PLA programming. User inputs are
covered in detail in the TMS1000 Software Users Guide.

2-18

M cren P A

__/ TERM 0—

T

"2 g

ﬁ &: ‘AND’
s bOowvoobooooowowv¢qo

O - OUTPUTS

FIGURE 2-16.1 OUTPUT PLA

2-19

2-16 O-OUTPUT PLA, CODE CONVERTER.

The O-output PLA determines the parallel output definition for each TMS1000 series program.
Thus, a user understanding the capabilities can define an efficient output organization before
designing an algorithm. The organization of the outputs is a necessary starting point for new system
designs.

The O-output register sends five bits to the O-output PLA (bottom of Figure 2-1.1). Figure 2-16.1
shows the five corresponding O-register bits from accumulator and status latch) going into the AND
matrix in true and complemented form. The AND matrix has 20 terms available for decoding a
prescribed pattern of inputs to the OR matrix. The pattern is stored in the matrix by placing MOS
transistors (gates) to select inputs and not placing a gate where an input is not desired (see section

2-15).

Each AND matrix term may decode a subset of the following Boolean equation:

FN=(Al+ Al)- (A2 A2) - (A4 A4)- (A8 - A8)+ (SL- SL)

Either the true, or the complement (not both), or neither (don’t care) of the two inputs enclosed in
parentheses can be selected. The AND matrix may decode up to 20 of these Boolean equations.

Each OR matrix line determines the O-output pattern for each AND term used. If an AND term is
true, the output selection (represented by a circle) is a subset of the following expression:

Ooutput =00+ 01 + 02+ 03+ 04+ 05+ 0g+ 07

If any two or more AND term equations are satisfied, then their ORed output functions are
logically ORed together.

The example coding shown in Figure 2-16.2 shows an output classified into seven-segment
information and binary information. If the status latch bit is ZERO, then the PLA sends binary
information out. If the status latch bit is ONE, then the PLA encodes seven-segment display
information. Note that there are 20 input terms to the OR matrix; four terms encode the binary
value of the accumulator bits, 16 terms encode the characters zero to F.

The TDO instruction latches the status latch and the accumulator bits in the O register. In the case
of term zero (Fg), a ONE from the status latch and zero from the accumulator encodes the

seven-segment character for zero: 01

O output =071 + 02+ 03+ 04 + 05 + Og 06’ 102

Og I
NOTE 04
Positive logic is used on all outputs. A true
output drives toward Vgg. Definition for the
O-PLA to the simulators is covered in the

TMS1000 Series Software User’s Guide.

’03

2-20

Az HZAB A2

Fo F1 F2 F3 F4 Fg Fg F7 Fg FgF10F11F12F13F14F15F16F17F18F19

o £ £ £ A

—Js & — 4;
e I 9

NOTE: IF THE CLO INSTRUCTION IS USED,
THE DECODER OUTPUTS A BLANK (Og TO O7 = ZERO)

FIGURE 2-16.2 TYPICAL CODING EXAMPLE OF O-OUTPUT PLA

2-21

3 1 $7)
£ HH H _i T
5 SaRSUES! e,
é) #‘Q P 54 D T—M'll
3 vl 01
Og| 07 |02
. YI099009099000000000
9 > o0
; i:T s O5
e Og
& s 03
& { @ o {6016 : g?
1 N t -
U:EH%SE?B%HbEDEmemw
;E=/1 - SL=0

2-17 INSTRUCTION DECODERS.
Two logic blocks decode the eight-bit instructions into the various microinstructions.

e Fixed instruction decoder
e Programmable instruction PLA

The fixed instruction decoder cannot be modified and enables 12 fixed controls affecting ROM
addressing, RAM X register, output control, set bit and reset bit instructions. Every program must
use these instructions with their corresponding fixed microinstructions. Refer to Table 2-17.1, and
notice that each “fixed” instruction has a corresponding fixed microinstruction described by an
identical mnemonic.

The remaining 31 basic instructions in the standard set (43 basic instructions - 12 fixed basic
instructions = 31 programmable instructions) have their operations determined by combining one or
more microinstructions as determined by the instruction PLA. The combinations used in the
standard instructions are listed in Table 2-17.1.

The programmable instructions are defined for the user to the assembler and simulator programs by
default definition when the standard instructions are used. When one or more instructions are
redefined, the user specifies the entire set of instruction mnemonics to the assembler, and new PLA
implementation is defined to the simulator. Changing these definitions is covered in detail in the
TMS1000 Series Software User’s Guide.

2-17.1 THE PROGRAMMABLE MICROINSTRUCTIONS. In the preceding sections of this
document, specific controls for each logic block are explained. These controls are enabled by the
microinstructions coming out of the OR matrix of the Instruction Programmable Logic Array.
Figure 2-17.1 summarizes the controls by showing an arrow pointing to the logic block or the
particular data path affected. Table 2-17.2 defines operation of the programmable microinstructions,
and the logic block controlled.

In one instruction cycle the sequence of microinstruction execution is in the following order:

(1) Read RAM, select the inputs to the adder/comparator.
Microinstructions: CIN, MTP, MTN, CKP, CKN, YTP, ATN, 15TN, NATN, C8, NE

(2) Write accumulator contents or CKI bus information into the RAM.
Microinstructions: CKM, STO

(3) Add or compare, then store results into the Y register, accumulator, status logic, or status
latch.
Microinstructions: AUTY, AUTA, STSL

Thus the MTP (RAM memory contents to P-adder input) microinstruction is executed before STO
(store accumulator data into RAM). The adder can perform one operation per instruction cycle. If

2-22

TABLE 2-17.1 MICROINSTRUCTION INDEX

Microinstructions Reference
Mnemonic Opcode
Fixed Programmable Paragraph

ALEC 0 1 1 1 Cc CKP, NATN, CIN, C8 4-5.2
ALEM 0 0 1 0 1 0 0 1 MTP, NATN, CIN, C8 4-5.1
AMAAC 0 0 1 0 0 1 0 1 MTP, ATN, C8, AUTA 4-4.1
ABAAC 0 0 0 0 0 1 1 0 CKP,ATN,C8,AUTA 4-4.11
ABAAC 0 0 0 0 0 0 0 1 CKP, ATN, C8, AUTA 4-4.9
A10AAC 0 0 0 0 0 1 0 1 CKP, ATN, C8, AUTA 4-4.10
BR 1 0 w BR 4-12.1
CALL 1 1 w CALL 4-12.2
CLA 0 0 1 0 1 1 1 1 AUTA 4-2.3
CLO 0 0 0 0 1 0 1 1 CLO 4-104
COMX 0 0 0 0 0 0 0 0 comMX 4-11.2
CPAIZ 0 0 1 0 1 1 0 1 NATN,CIN,C8,AUTA 4-4.12
DAN 0 0 0 0] 1 1 1 CKP, ATN, CIN, C8, AUTA 4-4.7
DMAN* 0 0 1 0 1 0 1 0 MTP, 15TN, C8, AUTA 4-4.4
DYN 0 0 1 0 1 1 0 0 YTP, 16TN, C8, AUTY 4-4.8
1A 0 0 0 0 1 1 1 0 ATN, CIN, AUTA 4-4.5
IMAC* 0 0 1 0 1 0 0 0 MTP, CIN, C8, AUTA 4-4.3
1YC 0 0 1 0 1 0 1 1 YTP, CIN, C8, AUTY 4-4.6
KNEZ 0 0 0 0 1 0 0 1 CKP, NE 4-9.1
LDP 0 0 0 1 Cc LDP 4-12.4
LDX 0 0 1 1 1 1 LDX 4-11.1
MNEZ 0 0 1 0 0 1 1 0 MTP, NE 4-6.1
RBIT 0 0 1 1 0 1 RBIT 4.7.2
RETN 0 0 0 0 1 1 RETN 4-12.3
RSTR 0 0 0 0 1 1 0 0 RSTR 4-10.2
SAMAN 0 0 1 0 0 1 1 MTP, NATN, CIN, C8, AUTA 4-4.2
SBIT 0 0 1 1 0 0 SBIT 4-7.1
SETR 0 0 0 0 1 1 0 1 SETR 4-10.1
TAM 0 0 0 0 0 0 1 1 STO 4-3.1
TAMIY 0 0 1 0 0 0 0 0 STO, YTP, CIN, AUTY 4-3.2
TAMZA 0 0 0 0 0 1 0 0 STO, AUTA 4-3.3
TAY 0 0 1 0 0 1 0 0 ATN, AUTY 4-2.1
TBIT 1 0 0 1 1 1 0 CKP, CKN, MTP, NE 4-7.3
TCY 0 1 0 0 (o] CKP, AUTY 4-8.1
TCMLY 0 1 1 0 [CKM, YTP, CIN, AUTY 4-8.2
TDO 0 0 0 0 1 0 1 0 TDO 4-10.3
TKA 0 0 0 0 1 0 0 0 CKP, AUTA 4-9.2
TMA 0 0 1 0 0 0 0 1 MTP, AUTA 4-3.5
™Y 0 0 1 0 0 0 1 0 MTP, AUTY 4-3.4
TYA 0 0 1 0 0 0 1 1 YTP, AUTA 4-2.2
XMA 0 0 1 0 1 1 1 0 MTP, STO, AUTA 4-3.6
YNEA 0 0 0 0 0 0 1 0 YTP, ATN, NE, STSL 4-6.2
YNEC 0 1 0 1 C YTP, CKN, NE 4-6.3

*Execution of the DMAN or IMAC instruction does not change (increment or decrement) the content of the addressed memory cell.

2-23

(CONTROL)

QR AR AR RE R RER A
oy

[R-OUTPUT REG. J

! T™S 1200
—

| 40 PIN DIP —]

ONLY

998988 _______________

(DATA)

0P L
A R A AR A

13 l
ROM ARRAY RAM ARRAY
ROM 8192 BIT RAM 256 BIT |
PC 64 (64X8X16) Y 16 (16X4X4) |
DECODE DECODE
N
6 1a l
>
T 7Y [T |
PAGE DECODE » X DECODE I
1 OF 18 3 10F4 I
i : £ L ,
PAGE 5 X E
B TR Wq ADDRESS 2 REGISTER @ |
REGISTER T w
0 ckm| z|sTO |
oy & | 4 W |2 e
6 s 2 “ |
SUBROUTINE PAGE Q S| £
RETURN NA BUFFER u |
REGISTER REGISTER I ki CONSTANTE |
AN L4 kineuT LOGIC
CALL 4: 4 2 |
LATCH . S N A
CKI BUS
BRANCH ADDRESS |
] v l
EXTERNAL A
INPUTS]
Z > NITIALIZE |
FIXED |
INSTRUCTION YTP CKP MTP MTN |{CKN| [ATN NATN
INSTRUCTION 8
DECODE PLA . . |
DECODE d4b 15TN d4b
CIN —> |
—» BR > sT0 |
> CALL > CKM
AUTY| |auTA
> RETN > CKP Y-REGISTER |
> LDP > vTP yan |
—» LDX — MTP 1a
—» comx —» ATN |
> TDO L~ NATN |
—» cLO > MTN
> SETR > 15TN 445 |
>~ RSTR L3~ CKN |
—»- SBIT —» CIN ACCRgg'L;I;:TOR
L RBIT > NE R |
> c8 {4) |
> AUTA - |
OUTPUT OUTPUT 1
L AUTY i
PLA <5 REGISTER <:
> sTSL ‘ |

FIGURE 2-17.1 TMS1000 FUNCTIONAL BLOCKS AND
PROGRAMMABLE MICROINSTRUCTIONS

2-24

TABLE 2-17.2 TMS1000 SERIES PROGRAMMABLE MICROINSTRUCTIONS

Execution

Logic

Sequence Mnemonic Affected Function
] CKP P-MUX CKI to P adder input.
YTP P-MUX Y-Reg to P adder input.
MTP P-MUX Memory (X,Y) to P adder input.
1 ATN N-MUX Accumulator to N adder input.
NATN N-MUX Accumulator to N adder input.
MTN N-MUX Memory (X,Y) to N adder input.
15TN N-MUX F16 to N adder input.
CKN N-MUX CKI to N adder input.
| CIN Adder One is added to sum of P plus N inputs
(P+N+1).
NE Adder/Status Adder compares P and N inputs. If they
are identical, status is set to zero.
C8 Adder/Status Carry is sent to status (MSB only).
pr | | et e e csndh e e oen e e e m— o—— o— oo o—— o — e
2 STO Write MUX Accumulator data to memory.
CKM Write MUX CKI to memory.
L e e — e —_——_— e | = =]
3 AUTA AU Select Adder result stored into accumulator.
AUTY AU Select Adder result stored into Y-Reg.
STSL Status Latch Status is stored into status latch.

2-25

two input buses are selected for the same side of the adder, the inputs are logically ORed together
(e.g., TBIT1, section 4-7.3).

The programmable microinstructions are an aid to learning how instructions work. For example, the
IA instruction (increment accumulator) enables three microinstructions; ATN, CIN, and AUTA:

(1) ATN transfers the accumulator data to the N-adder input (P=0)
(2) CIN causes one to be added to the P and N-adder inputs.

(3) AUTA causes the result of the addition to be stored in the accumulator.

Knowing the hardware and how T1 combined the microinstructions explains all 31 programmable
instructions. For example, the YNEC instruction activates three microinstructions.

(1) CKN causes the constant from ROM (immediate operand) to go into the N-input.
(2) YTP enables Y to the P-input
(3) NE sends the comparison to status

Therefore, if Y is logically compared to a constant operand and is not equal to the CKI data,
status equals ONE.

Figure 2-17.2 illustrates the PLA implementation designed by TI for the standard instruction set.
The 31 instructions are translated by 30 PLA terms into a combination of the 16 microinstructions
possible (the ABAAC and the A10AAC are combined on a single PLA line).

The instruction PLA can be reprogrammed in cases where timing or other requirements dictate an
instruction redefinition. Microprogramming this PLA should be considered only when the standard
definition is insufficient to accomplish the program objectives. Contact the MOS division in
Houston, Texas, to obtain help in such cases.

2-17.2 FIXED INSTRUCTION DECODER. This decoder is a block of logic that cannot be changed
and is needed to decode the twelve basic instructions that every program must use (i.e., the machine
code of these fixed instructions cannot be changed). Figure 2-17.3 presents the functional block
diagram again with arrows showing which logic blocks are affected by the fixed microinstructions.
The mnemonics are the same as the ROM instructions since the standard instruction set uses a
one-to-one correspondence between the fixed instructions and their microinstructions.

The 12 instructions, decoded by the fixed instruction decoder, can be modified by adding other
programmable microinstructions to those that are already enabled. These additional
microinstructions can be coded into the programmable instruction decoder. For example, the set
R-output command could be coded to also decrement the Y register. The SETR instruction code is
OC16, and if decoded by both the fixed instruction decoder and the programmable instruction
decoder, this command can perform two operations.

2-26

N 7 N
< IYYY T YYYYYY)
2] | >
o|=hapale “h=i = o P
| M EIE -1 wl o 2] 5 5| 2
I I P = = S) o s e B
— TCY
> I
YNEC
> O ©
TCMIY
o606 ©
N L ALEC
1 > AV A 4 A 4
TAMIY
- ® @
TMA
._D <’; D
] — 1 ‘T ™Y
| ~gu S [
TYA
Lo+ > ®
TAY
A\ 4
AMAAC
a¥
4
| MNEZ
7 A4
& SAMAN
| i IMAC
ALEM
L——D
DMAN
o ad
1YC
»—Q——D 154
DYN
o> o
CPAIZ
o> ©
XMA
o{—o1-d© N ®
CLA
Lo >0
A TBIT1
— ~
A8/10AAC
o>
1 vnea
o ¥
TAM
TAMZA
?— D
ABAAC
4
A4 l
DAN
o>
TKA
L {> D
1 N KNEZ
© Y
VN 1A - e
}D | N
L 0

INPUTS FROM ROM
INSTRUCTION BUS

FIGURE 2-17.2 TMS1000/1200 STANDARD INSTRUCTION DECODE PLA

2-27

(CONTROL)

G (2 2 (@)) (o) () () YR
PR

1
1 40 PIN DIP

I {_T™s 1200 ONLY |

| |

| seTR RsTR] |

|

| ROM ARRAY RAM ARRAY |
ROM 8102 BIT RAM 256 BIT |

I PC 84 (84X8X16) v 16 (16X4X4)

DECODE DECODE I
| |
: ° {4y |
l 16 4 4 |

3 E
I « x | pacE DECODE g X DECODE |
] @ o « 10F 16 2 |
| L 2
= — |
P, g g
T ﬂ |
2 » o
z LDX comx |3 z |
€ 2
E |
L 18 =
Eler: CONSTANT & |
g K INPUT LOGIC
> | |
-1 >
BRANCH ADDRESS CKi BUS |
) 4 |
EXTERNAL !
D E—), [J W1 L |
S 7
lNIT/l > INITIALIZE \ P-mux] \ n-mux [|

FIXED ‘ |

| | insTRucTion | 'NSTRUCTION
8

| DECODE DECODE PLA ol e |
| ADDER '
l —>» BR b STO I

> cALL > ckm {1}
| > RETN —— Y-REGISTER |
| Loe vre 7 4 STATUS

b LDX > MTP 1a LOGIC l
I > comx > ATN AU SELECT |
| > TDO > NATN
| > cLo > MTN |

> SETR —> 15TN Jal |
I [—» RSTR —> CKN N |
| > saIT > cIN ACCUMULATOR

L RBIT |—>» NE TDO REGISTER |
| s |{|} |
| > AUTA

L AUTY OUTPUT '
| L > sTsL LA |
L J\s)
FEHEHHEHE I
(DATA)

FIGURE 2-17.3 TMS1000/1200 FUNCTIONAL BLOCKS & FIXED MICROINSTRUCTIONS

2-28

Note that there are up to 30 PLA terms available, all of which are used up by the standard
instruction set, so additional decoding for fixed instructions will displace some programmable
instruction or must be combined on the same PLA term.

2-18 EXTERNAL INPUTS.
External-inputs logic buffers the K inputs as shown in Figure 2-1.1. Each input has a pull-down
resistor (to Vpp) equal to 50 kilohms. Vpp represents a ZERO input; a Vgg level signifies a ONE.

2-19 INITIALIZING THE TMS 1000 SERIES DEVICES.

The INIT input pin initializes the hardware and resets the page address register, program counter,
and the O- and R-output registers. The external-inputs logic forces binary 1111 into the page
address register and the program counter is reset to zero when a minimum of Vgg —1 volt is applied
to the INIT input for at least six consecutive instruction cycles if K1, K2, K4, K8, and R10 equal
ZERO (Vpp). In addition, the page buffer register is set to binary 1111 and the O-output register,
R-output register, and the call latch are reset to all ZEROes.

The INIT pin is used in some applications as a hardware reset since the aforementioned procedure
sets the program counter and page address register addresses to the initial power-up address if all K
inputs and R10 are held at a low level. The following diagram shows the circuitry to accomplish
hardware clear with all K-inputs at a logic ZERO. A capacitor reduces bounce noise from the key
contacts since INIT must be at a high level for at least six instruction cycles after key bounce has

ceased.

INIT INPUT

(MOS)

Vss

2-20 POWER-UP LATCH.

The TMS1000 contains a power-up latch (not shown in Figure 2-1.1) which presets the PC to zero
and the PA and PB to F1g, presets the call latch to ZERO, resets the O-output register to all
ZEROes, and resets the R-output register to all ZEROes.

2-29

If the system power supply settles slowly in systems that require frequent power-up and
power-down cycles, the circuit connected to the INIT input in Figure 2-19.1 will help ensure a
proper power-on procedure, since systems require executing a special block of code for clearing all
the RAM characters, clearing the accumulator, resetting external devices, etc. A capacitor connected
to the INIT pin causes the Vgg level to charge slowly through a clocked load device to Vpp,
internal to the TMS 1000. The diode discharges the capacitor when the system is turned off. The
capacitance required varies from system to system, but the capacitance should be large enough to
hold the Vgg —1 volt for six instruction cycles longer thanthe rise time of the power supply as a
minimum. All K-inputs must be at Vpp to accomplish all the effects of the power-on latch, and
output pin R10 must not be pulled high.

|

Vpop IMOS v
T DD
| J

SZ | D, ' >

—

FNIT |

A1 | INPUT

CEXT — |
®]
VSS IMOS

CexT (ufd) = .06 POWER SUPPLY RISE TIME {ms)

FIGURE 2-19.1 TYPICAL POWER ON CIRCUIT

2-30

SECTION III
INSTRUCTION CROSS REFERENCE TABLES

This section is a quick-reference introduction to the 43 TMS1000 series instructions that are
defined in Section 4. These tables facilitate instruction comprehension and are arranged in the
following order:

e Table 3-1 lists the instructions by function.

e Table 3-2 lists the instructions alphabetically.

e Table 3-3 lists the microinstructions for each instruction.

e Table 3-4 lists the instructions by binary machine code.

e Figure 3-1 is the instruction code map in hexadecimal.

NOTE

These tables use abbreviations and symbols
explained in paragraphs 1-4.1 and 1-4.2.

3-1

TABLE 3-1 TMS1000/1200 STANDARD INSTRUCTION SET

Status* Explained

Function |Mnemonic | Effect Description in Para.
Cc8 NE
Register to | TAY Transfer accumulator to Y register. 4-2.1
Register TYA Transfer Y register to accumulator. 4-2.2
CLA Clear accumulator. 4-2.3
Transfer TAM Transfer accumulator to memory. 4-3.1
Register to | TAMIY Transfer accumulator to memory and increment Y register. 4-3.2
Memory TAMZA Transfer accumulator to memory and zero accumulator. 4-3.3
Memory to | TMY Transfer memory to Y register. 4-34
Register TMA Transfer memory to accumulator. 4-3.5
XMA Exchange memory and accumulator. 4-3.6
Arithmetic | AMAAC Y Add memory to accumulator, results to accumulator. If carry, one to status. 4-4,1
SAMAN Y Subtract accumulator from memory, results to accumulator. 4-4.2
If no borrow, one to status.

IMAC** Y Increment memory and load into accumulator. If carry, one to status. 4-4.3
DMAN** | Y Decrement memory and load into accumulator. If no borrow, one to status. 4-4.4
1A Increment accumulator, no status effect. 4-4.5
1YC Y Increment Y register. If carry, one to status. 4-4.6
DAN Y Decrement accumulator. If no borrow, one to status. 4-4.7
DYN Y Decrement Y register. If no borrow, one to status. 4-4.8
A8AAC Y Add 8 to accumulator, results to accumulator. If carry, one to status. 4-4.9

A10AAC Y Add 10 to accumulator, results to accumulator. If carry, one to status. 4-4.10

A6AAC Y Add 6 to accumulator, results to accumulator. If carry, one to status. 4-4.11

CPAIZ Y Complement accumulator and increment. If then zero, one to status. 4-4.12
Arithmetic | ALEM Y If accumulator less than or equal to memory, one to status. 4-5.1
Compare ALEC Y If accumulator less than or equal to a constant, one to status 4-5.2
Logical MNEZ Y If memory not equal to zero, one to status. 4-6.1
Compare YNEA Y If Y register not equal to accumulator, one to status and status latch. 4-6.2
YNEC Y If Y register not equal to a constant, one to status 4-6.3
Bits in SBIT Set memory bit. 4-7.1
Memory RBIT Reset memory bit. 4-7.2
TBIT1 Y Test memory bit. If equal to one, one to status. 4-7.3
Constants | TCY Transfer constant to Y register. 4-8.1
TCMIY Transfer constant to memory and increment Y. 4-8.2
Input KNEZ Y If K inputs not equal to zero, one to status. 4-9.1
TKA Transfer K inputs to accumulator. 4-9.2
Output SETR Set R output addressed by Y. 4-10.1
RSTR Reset R output addressed by Y. 4-10.2
TDO Transfer data from accumulator and status latch to O-outputs. 4-10.3
CLO Clear O-output register. 4-10.4
RAM X LDX Load X with a constant, 4-11.1
Addressing | COMX Complement X. 4-11.2
ROM BR Branch on status = one. 4-12.1
Addressing | CALL Call subroutine on status = one. 412.2
RETN Return from subroutine. 4-12.3
LDP Load page buffer with constant. 4-12.4

*NOTE A:

C8 (microinstruction C8 is used) — Y (Yes) means that if there is a carry out of the MSB, status output goes to the ONE state. If no
carry is generated, status output goes to the ZERO state.

NE (microinstruction NE is used) — Y (Yes) means that if the bits compared are not equal, status output goes to the ONE state. If
the bits are equal, status output goes to the ZERO state.

A ZERO in status remains through the next instruction cycle only. If the next instruction is a branch or call and status is a ZERO,
then the branch or call is not executed.

**NOTE B:
Execution of the DMAN or IMAC instruction does not change (increment or decrement) the content of the addressed memory cell.

3-2

TABLE 3-2. ALPHABETICAL MNEMONIC REFERENCE

Mnemonic (Os_)code Opcode Action Status Reference
binary) (hex) o8 NE Paragraph

ALEC 0 11 c 7 - A<cC Y 4.5.2
ALEM 0 o 1 o 10 0 1 29 A<M(X,Y) ' 4-5.1
AMAAC | 0 o 1 o o 1 o0 1 25 M(X,Y)+ A~ A Y 441
ABAAC | 0 0o 0 o o 1 1 0 06 A+6—A Y 4-4.11
ABAAC | O o 0 o 0o 0 o0 1 01 A+8-A Y 4.4.9
A10AAC]| 0 o 0 o0 o 1 0 05 A+10-~A Y 4-4.10

S=1,cL=0] $=0
BR 1 0 w { - ‘ Hw) - PC P1 —151 -~ PC 4121

| N iy

§=1,CL=0 1s = os

PC+1-SR)_PC+1-PC
CALL 1 1 w { - PBo PA |S=1,CL= 4122

1->CL SEE PARA 2.4

1{w) - PC
CLA 0 o 1 o0 11 1 2 F 0—A 4.23
cLo 0 0o o0 o 10 1 1 0B 0- O Register 4-10.4
CcomMX 0 0o 0 o0 0 0 0 o© 00 X- X 4.11.2
cPAIZ | O o 1 o0 11 0 1 2D A+1-A Y 4.412
DAN 0 0 0 o o 1 1 1 07 A-1-> A Y 447
DMAN* | 0 o 1 0 10 1 0 2 A M(X,Y)-1-> A Y 444
DYN 0 0o 1 o 1 1 0 0 2¢C Y-1->Y Y 4438
1A 0 0 0 o 11 1 0 0E A+1-> A 445
IMAC* | 0 o 1 o 1 0 0 o0 28 MIX,Y)+ 1~ A Y 443
1yc 0 o 1 o0 10 1 1 2B Y+1->Y Y 4.4.6
KNEZ 0 0o 0 o0 10 0 1 09 K8,4,2,1+0 Y 49,1
LDP 0 o o0 1 c 1 - Hc) — PB 4124
LDX 0 o 1 1 101 3 - B) > X 4111
MNEZ 0 o 1 o 6 1 1 0 26 M(X,Y)# 0 Y 4.6.1
RBIT 0 o 1 1 0o 1 3 - 0->M(X,Y,B) 4.7.2

s cL=1 cL=0

RETN | 0 0o 0 o 111 0F 1 pERS | periRre 4123

0—->CL
RSTR 0 0o 0 o 1 1 0 o ocC 0~ R(Y),0<Y<12 4-10.2
SAMAN | 0 o 1 0 o 1 1 27 M(X,Y)- A= A Y 4.4.2
SBIT 0 o 1 1 0o o 3 - 1- M(X,Y,B) 4.7
SETR 0 o 0 o0 110 0D 1->R(Y),0<Y < 12 4.10.1
TAM 0 o 0 o o o 1 1 03 A> M(X,Y) 4-3.1
TAMIY | O 0o 1 o 0 0 o0 O 20 A-MIXY),Y+1-> Y 4.3.2
TAMZA | O 0o 0 o 0o 1 0 o0 04 A-M(X,Y), 0> A 4-3.3
TAY 0 0o 1 o 0 1 0 o 24 A->Y 4.2
TBIT1 0 o 1 1 1 0 3 - M(X,Y,B) =1 Y 4.7.3
TCY 0 1 0 o0 c 4 — ey v 4.8.1
TcMIY | o 1 1 0 c 6 — 1C)> MIX,Y), Y+1->Y 482
TDO 0 0 0 0 1 0 1 0 0 A SL, A} > ORegister 4-10.3
TKA 0 0o 0 o0 1 0 0 o 08 K8, 4,21~ A 4.9.2
T™MA 0 o 1 o o 0o o0 1 21 M(X,Y) > A 4.35
™Y 0 o 1 o o 0 1 0 22 M(X,Y) > Y 434
TYA 0 o 1 o0 o o 1 1 23 Y- A 4.2.2
XMA 0 o 1 0 11 1 0 2 E M(X,Y) =~ A 4-36
YNEA | O 0o 0 O o o0 1 o 02 Y #A, S~ SL¥* Y 4.6.2
YNEC 0 1 0 1 c 5 — Y#C Y 4-6.3

*Execution of the DMAN.or IMAC instruction does not change (increment or decrement) the content of the addressed memory cell,

**Only one instruction sets or resets Status Latch.

3-3

TABLE 3-3 MICROINSTRUCTION INDEX

Microinstructions Reference
Mnemonic Opcode
Fixed Programmable Paragraph
ALEC 0 1 1 1 [CKP, NATN, CIN, C8 4-5.2
ALEM 0 0 1 0 1 0 0 1 MTP, NATN, CIN, C8 4-5.1
AMAAC 0 0 1 0 0 1 0 1 MTP, ATN, C8, AUTA 4-4.1
ABAAC 0 0 0 0 0 1 1 0 CKP,ATN,C8,AUTA 4-4.11
A8AAC 0 0 0 0 0 0 0 1 CKP, ATN, C8, AUTA 4-4.9
A10AAC 0 0 0 0 0 1 0 1 CKP, ATN, C8, AUTA 4-4.10
BR 1 0 w BR 4-12.1
CALL 1 1 w CALL 4-12.2
CLA 0 0 1 0 1 1 1 1 AUTA 4-2.3
cLO 0 0 0 0 1 0 1 1 CLO 4-10.4
COMX 0 0 0 0 0 0 0 0 CcOMX 4-11.2
CPAIZ 0 0 1 0 1 1 0 1 NATN,CIN,C8,AUTA 4-4.12
DAN 0 0] 0 0 1 1 1 CKP, ATN, CIN, C8, AUTA 4-4.7
DMAN* 0 0 1 0 1 0 1 0 MTP, 15TN, C8, AUTA 4-4.4
DYN 0 0 1 0 1 1 0 0 YTP, 15TN, C8, AUTY 4-4.8
1A 0 0 0 0 1 1 1 0 ATN, CIN, AUTA 4-4.5
IMAC* 0 0 1 0 1 0 0 0 MTP, CIN, C8, AUTA 4-4.3
1YC 0 0 1 0 1 0 1 1 YTP, CIN, C8, AUTY 4-4.6
KNEZ 0 0 0 0 1 0 0 1 CKP, NE 4-9.1
LDP 0 0 0 1 Cc LDP 4-12.4
LDX 0 0 1 1 1 1 LDX 4-11.1
MNEZ 0 0 1 0 0 1 1 0 MTP, NE 4-6.1
RBIT 0 0 1 1 0 1 RBIT 4-7.2
RETN 0 0 0 0 1 1 RETN 4-12.3
RSTR 0 0 0 0 1 1 0 0 RSTR 4-10.2
SAMAN 0 0 1 0 0 1 1 MTP, NATN, CIN, C8, AUTA 4-4.2
SBIT 0 0 1 1 0 0 SBIT 4-7.1
SETR 0 0 0 0 1 1 0 1 SETR 4-10.1
TAM 0 0 0 0 0 0 1 1 STO 4-3.1
TAMIY 0 0 1 0 0 0 0 0 STO, YTP, CIN, AUTY 4-3.2
TAMZA 0 0 0 0 0 1 0 0 STO, AUTA 4-3.3
TAY 0 0 1 0 0 1 0 0 ATN, AUTY 4-2.1
TBIT 1 0 0 1 1 1 0 CKP, CKN, MTP, NE 4-7.3
TCY 0 1 0 0 C CKP, AUTY 4-8.1
TCMIY 0 1 1 0 C CKM, YTP, CIN, AUTY 4-8.2
TDO 0 0 0 0 1 0 1 0 TDO 4-10.3
TKA 0 0 0 0 1 0 0 0 CKP, AUTA 4-9.2
TMA 0 0 1] 0 0 0 1 MTP, AUTA 4-35
™Y 0 0 1 0 0 0 1 0 MTP, AUTY 4-3.4
TYA 0 0 1 0 0 0 1 1 YTP, AUTA 4-2.2
XMA 0 0 1 0 A1 1 1 0 MTP, STO, AUTA 4-3.6
YNEA 0 0 0 0 0 0 1 0 YTP, ATN, NE, STSL 4-6.2
YNEC 0 1 0 1 Cc YTP, CKN, NE 4-6.3

*Execution of the DMAN or IMAC instruction does not change (increment or decrement) the content of the addressed memory cell.

3-4

TABLE 3-4. BINARY CODING OF STANDARD INSTRUCTIONS

Opcode Opcode Mnemonic Action Status Reference
(binary list) (hex) cs | NE Paragraph
0 0 0 0 0 0 0 0 0 0 COMX X > X 4-11.2
0 0 0 0 0 0 0 1 0 1 ABAAC A+8->A Y 4-4.9
0 0 0 0 0 0 1 0 0 2 YNEA Y #A 8-> SL Y 4-6.2
0 0 0 0 0 0 1 1 0 3 TAM A->M(X,Y) 4-3.1
0 0 0 0 0 1 0 0 0 4 TAMZA A—~>M(X,Y),0~>A 4-3.3
0 0 0 0 0 1 0 1 0 5 A10AAC A+10—>A Y 4-4.10
0 0 0 0 0 1 1 0 0 6 AG6AAC A+6—~>A Y 4-4.11
0 0 0 0 0 1 1 1 V] 7 DAN A-1-A Y 4-4.7
0 0 0 0 1 0 0 0 0 8 TKA K8,4,2, 1~ A 4-9.2
0 0 0 0 1 0 0 1 0 9 KNEZ K8,4,2,1#0 Y 4-9.1
0 0 0 0 1 0 1 0] A TDO SL, A~ O Register 4-10.3
0 0 0 0 1 0 1 1 0 B CcLO 0 > O Register 4-10.4
0 0] 0 1 1 0 0] [RSTR 0->R(Y),0<Y <12 4-10.2
0 0 0 0 1 1 0 1 0 D SETR 1~ R{Y),0<Y<12 4-10.1
0 0 0 0 1 1 1 0 0 E 1A A+1->A 445
CL=1 CL=0
0 0 o0 o 11 11 0 F RETN SR>PC PBPA 4123
PB~PA PC+1-PC
| 14
0 0 0 1 c 1 — LDP 1(C)~PB 4-124
0 0 1 0 0 0 0 0 2 0 TAMIY A->M(XY),Y+1->Y 4-3.2
0 0 1 0 [} 0 0 1 2 1 TMA M(X,Y) > A 4-3.5
0 0 1 0 0 0 1 0 2 2 T™MY M(X,Y)~>Y 4.3.4
0 0 1 0 0 0 1 1 2 3 TYA YA 4-2.2
0 0 1 0 0 1 0 0 2 4 TAY A-Y 4-2.1
0 0 1 0 0 1 0 1 2 5 AMAAC M(X,Y)+A—>A Y 4-4.1
0 0 1 0 (1} 1 1 0 2 6 MNEZ M(X,Y)#0 Y 4-6.1
0 0 1 0 0 1 1 1 2 7 SAMAN M(X,Y)-A—>A Y 4-4.2
0 0 1 0 1 0 0 0 2 8 IMAC* M(X,Y)+1—>A Y 4-4.3
0 0 1 0 1 0 0 1 2 9 ALEM A <M(X,Y) Y 4-5.1
0 0 1 0 1 0 1 0 2 A DMAN* M(X,Y)-1-> A Y 4-4.4
0 0 1 0 1 0 1 1 2 B IYc Y+1-Y Y 4-4.6
0 0 1 0 1 1 0 0 2 Cc DYN Y-1->Y Y 4-4.8
0 0 1 0 1 1 0 1 2 D CPAIZ A+1—A Y 4-4.12
0 0 1 0 1 1 1] 2 E XMA M(X,Y) < A 4-3.6
0 0 1 0 1 1 1 1 2 F CLA 0—->A 4-2.3
0 0 1 1 0 0 B 3 — SBIT 1-> M(X,Y,B) 4-71
0 0 1 1 0 1 B 3 - RBIT 0~ M(X,Y,B) 4-7.2
0 0 1 1 1 0 B 3 - TBIT1 M(X,Y,B) =1 Y 4-7.3
0 0 1 1 1 1 B 3 - LDX 1(B) >~ X 4-11.1
0 1 0 0 C 4 - TCY 1C)—~vY 4-8.1
0 1 0 1 (o] 5 - YNEC Y#C Y 4-6.3
0 1 1 0 [6 — TCMIY 1C) > M(X,Y),Y +1] 4-8.2
0 1 1 1 [7 - ALEC A<C Y 4-5.2
$=1 $=0
1 0 w - - BR (W)~ PC |PC +1—>PC 4-12.1
peopa |' S
S=1 $=0
1 1 w — - CALL PC+1—>SR|PC+1—~PC 4-12.2
PA<PB 1->8
litec

*Execution of the DMAN or IMAC instruction does not change {increment or decrement) the content of the addressed memory cell.

3-5

MACHINE INSTRUCTION
CODE

A Zz
Ho) 1 W2 13) 14) 1(8) 16) 17

MSB LSB

*OPERAND

*C = constant; B = B field; W = memory address.

FIGURE 3-1 STANDARD INSTRUCTION MAP, TMS1000/1200

3-6

SECTION IV

TMS 1000/1200
STANDARD INSTRUCTION SET DEFINITIONS

4-1 GENERAL.

4-1.1 INSTRUCTION SET. An instruction set of 43 basic instructions programs the TMS1000
ROM. The instruction mnemonics relate directly to the instruction effects to reinforce the user’s
knowledge of the hardware.

The instructions are grouped in this section according to function as listed in Tables 2-1.2 and 3-1.
Each instruction is described in a common format that defines the mnemonic, status effects,
formats, operands, symbolic description, purpose, execution description, and microinstructions
performed.

4-1.2 EFFECT ON STATUS. Eighteen instructions conditionally affect the machine status logic.
The mnemonics for these instructions contain a one- or two-character descriptor to indicate how
status logic is affected. Each descriptor (shown in Table 4-1.1) indicates the condition where status
will remain set (logic ONE). The conditional instructions, branch and call, are successful only if
status is set. The mnemonic descriptor therefore indicates the conditions under which an
immediately following branch or call will be performed. If the instruction results do not meet the
descriptor’s condition, then status is reset (logic ZERO) and any immediately following branch or
call will not be performed. [Recall that status logic in the reset (ZERO) state affects only branches
or calls in the next instruction cycle before returning to the normal (logic ONE) state]

TABLE 4-1.1. DESCRIPTOR ACTION

Descriptor Cause/Result that Transfers ONE to Status
Last (C Carry out during addition or increment instructions
Character N No borrow during subtraction or decrement instructions
In Z Zero result from 2’s complement
Mnemonic 1 Tested memory bit is a logic ONE
Middle of -LE- Is less than or equal to
Mnemonic NE- Is not equal to

Each instruction description in this section contains a status description. The way in which the
instruction depends upon status or sets status is defined as follows:

e Set: The instruction unconditionally forces status to ONE and is not conditional upon
status.

e Carry Into Status: The value of the carry from the adder is transferred to status. In the

subtraction instructions, carry = borrow.

4.1

e Comparison Result Into Status: The logical comparison value from the ALU is transferred
to status (equal: ZERO to status; unequal: ONE to status).

e Conditional On Status: The instruction’s execution results are conditional upon the state
of the status. After executing the instruction, status is unconditionally equal to ONE.

4-1.3 INSTRUCTION FORMATS. The machine instructions have been divided into four instruction
formats. A format subdivides the eight bits of each instruction into fields. These fields contain the

operation code and operands.

4-1.3.1 Instruction Format I:

OP W

This format has a two-bit operation-code field, and the operand is a six-bit ROM-word address field.
This format is used for program control by branch and call instructions. The operand, the branch
address, has a value of 0 to 63.

4-1.3.2 Instruction Format II:

0 1 2 3 4 5 6 7

This format has a four-bit operation-code field, the operand is a four-bit constant field. This format
is used for instructions that contain an immediate value that loads RAM memory or a register with a
constant.

NOTE
The constant value (from 0 to 15) is reversed in
the C field. The assembler properly converts any
decimal value into this machine code format.

Example: The constant value 8 would appear in the machine instruction as follows.

42

4-1.3.3 Instruction Format III:

LSB MSB

This format has a six-bit operation code, and the operand is a two-bit RAM bit address field. This
format is used for addressing a bit in a RAM word. Also, B describes the two-bit X address operand
for the LDX command.

NOTE
‘The bit address, B, is inverted. The assembler
converts decimal value into this machine format
as shown below:

B -FIELD

BIT ADDRESS RAM WORD
1(6) 17) MSB LSB
0 0 0 X
1 1 0 X
2 0 1 X
3 1 1 X

4-1.3.4 Instruction Format IV:

This format defines an eight-bit operation code field only. Instructions of this format have no
constant operands. The instruction always performs the same action, for example transferring the
accumulator to the Y register.

4.3

4-1.4 MICROINSTRUCTIONS. In paragraphs 4-2 to 4-12, the mnemonics for the microinstructions
performed by each machine instruction are listed to refer the user to the hardwareg steps performed.
The programmable microinstructions (16) are used in 31 instructions. The 12 fixed
microinstructions, which are decoded by hardwired logic (non-programmable), are used in the 12
“fixed” instructions.

4-1.5 CODING FORMAT. Coding programs are covered in detail in the TMS1000 Software Users
Guide which covers the assembler and the simulator programs. The following rules should be

followed in writing a program on a coding form.

a. Label fields are a maximum of eight alphanumeric characters starting with an alphabetic
character. The label field begins in column one.

b. The operation code is to the right of a label, the two separated by at least one blank
space. If no label is used, the operation code begins after the first column (second column

or further over).

c. The operand is to the right of the operation code, the two separated by at least one blank
space.

d. A comment is to the right of the operand, the two separated by at least one blank space.
If a comment occupies a separate line, it must begin with an asterisk in column one,

Figure 4-1.1 is a sample of a filled out coding form. For legibility, it is recommended that the fields
begin in the following columns:

a. Label fields begin in column one.

b. Operation codes should begin in column 10.

c. Operands should begin in column 16.

d. Comments to an instruction should begin in column 30.

e. Comment lines begin in column one with an asterisk. *
4-1.6 EXAMPLES. Examples are provided for various instructions in paragraphs 4-2 through 4-12.
These examples illustrate typical applications and how the instructions are combined to perform a

function. The contents of the affected hardware registers and memory are illustrated so the reader
can follow through an example, step by step if necessary.

4.4

|-oaTe PAGE or
80 COLUMN DATA FORM Ti-1579-8 7 ;[|
REQUESTER EXT. luivlsloN COST CENTER [W.07ACCOUNT NG. PROGRAM/SYSTEM T ! ! -
. S SV S - e S
m KEYPUNCH D VERIFY D LIST DSPEC|AL INSTRUCTIONS
CARD

“| Copivg ExampPLe

V23456 78 910 t1121314151617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 15 76 77 78 79 80,

o 3 THIS 1S AN EXAHPLE CODING FoE THS |PAP SCEIES SPURCE PROGEAMS

» (CREG ey @ IVITIALIZ Y TO @,
TeMIYy g ZCRO TO MEMURY,” | MCREMCUT Y,

» Y CONTIAME UNTIL WORD SUX 1S SET To 26RO # =7
K W

R C1
ENV Y=7, RETURN TO CALLING PEOGRAN.

eTVv

20

10]

NOTE: + MEANS 12 OVERPUNCH; - MEANS 11 OVERPUNCH

FIGURE 4-1.1 SAMPLE CODING FORM

4-2 REGISTER TO REGISTER TRANSFER INSTRUCTION.
Register to register instructions affect only the indicated register. These instructions are all format
IV type and have no operands.

The only data path for these instructions is through the adder. The rcader should refer to the data
paths on the functional block diagram (Figure 2-1.1) as necessary.

4-2.1 TRANSFER ACCUMULATOR TO Y REGISTER.

O 1 2 3 4 5 & 3
MENMONIC: TAY NN
STATUS: Set

FORMAT: v

ACTION: A-Y

DESCRIPTION: The accumulator contents are unconditionally transferred to

the Y register. The accumulator contents are unaltered.

MICROINSTRUCTIONS: ATN, AUTY
X Y A MXY) S
ADY * Initial 0 s E o© 1
TAY 0 EX E o9 1

*In this and all subsequent examples, the initial conditions are specified above the dotted line.
Status, if reset to zero by an instruction, is shown with the affected instruction - the following
instruction cycle. Register contents are shown in hexadecimal.

4.6

4-2.2 TRANSFER Y REGISTER TO ACCUMULATOR.

O 1 2 3 a4 5 & 7
MNEMONIC: TYA IR
STATUS: Set

FORMAT: v

ACTION: Y- A

DESCRIPTION: The four-bit contents of the Y register are unconditionally

transferred to the accumulator. The contents of the Y register
are unaltered.

MICROINSTRUCTIONS: YTP, AUTA
X Y A MIXY) s
v A 2 9. 6 2
YA 2 9 %9 2 4

4-2,.3 CLEAR ACCUMULATOR.

0 1 2 3 4 5 6 7
1 1 1 | T ¥ I
MNEMONIC: CLA o o 1 o 1t 1 1
I L i L L 1 1
STATUS: Set
FORMAT: v
ACTION: 0-> A
DESCRIPTION: The contents of the accumulator are unconditionally cleared to
zero.
MICROINSTRUCTIONS: AUTA
0—>A
CLA

47

4.3 REGISTER TO MEMORY, MEMORY TO REGISTER TRANSFER INSTRUCTIONS.

These instructions are used to transfer four-bit data information between registers and RAM
memory for storage or retrieval of information. These instructions are all format IV type and have
no operands.

The only register-to-memory data path is from the accumulator into memory. Notice that the Y
register may not be transferred into memory directly. Data transferred from memory to the
registers always passes through the adder and may then be directed into either the accumulator or
the Y register.

No operands are used.

4-3.1 TRANSFER ACCUMULATOR TO MEMORY.

0 : 1 T 2 3 4 5 6 7
T 1 I 1 T
MNEMONIC: TAM o 0 o 0o o o 1 1
| 1 A 1 I 1 1
STATUS: Set
FORMAT: v
ACTION: A - M(X)Y)
DESCRIPTION: The four-bit contents of the accumulator are stored in the

memory (RAM) location addressed by the X and Y registers.
The accumulator contents are unaltered.

MICROINSTRUCTION: STO

4 2 1
A MIX.Y) TAM 0 6 4\4 1

4.8

4-3.2 TRANSFER ACCUMULATOR TO MEMORY AND INCREMENT Y REGISTER.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

PURPOSE:

DESCRIPTION:

MICROINSTRUCTIONS:

A >M(X,Y)

Y+1=2>Y

0 1 2 3 4 5 6 7
TAMIY
1 1 1 1 L L 1
Set
v
A~ M(X,Y)
Y+1->Y

Y register sequentially addresses a file of sixteen RAM words,
and the addressed words are set to the accumulator value(s),
during initialization routines for example.

The contents of the accumulator are stored in the memory
location addressed by the X and Y registers. Then the contents
of the Y register are incremented by one. The accumulator
contents are unaltered,

STO, YTP, CIN, AUTY.

4-3.3 TRANSFER ACCUMULATOR TO MEMORY AND ZERO ACCUMULATOR.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

DESCRIPTION:

0 1 2 3 4 5 & 7
T T T T T 7T

TAMZA o 0. 0 o o 1 0 o0
1 i . 1 1 1 1

Set

v

A -> M(X)Y)

0- A

The contents of the accumulator are stored in the RAM
location addressed by the X and Y registers. The contents of the
accumulator are then cleared to zero.

49

MICROINSTRUCTIONS: STO, AUTA

X Y A M(XY) S
0 _E B 3 1
TAMZA { : B B !
A~ MI(X,Y) 0 E B 1
0—>A
4-34 TRANSFER MEMORY TO Y REGISTER.
(V] 1 2 3 4 5 6 7
L] T T 1 T I 1
MNEMONIC: ™Y o 0o 1 0 o 0 1 o
. | | 1 L L 1 1
STATUS: Set
FORMAT: IV
ACTION: M(X,)Y)> Y
DESCRIPTION: The contents of the RAM location addressed by the X and Y
registers are loaded into the Y register. Memory contents are
unaltered.
MICROINSTRUCTIONS: MTP, AUTY
I X Y A M{X,Y) S
M(X,Y) > Y d__3__°9 A _ 1

I T™MY 1 A 9 2 1

4-10

4-3.5 TRANSFER MEMORY TO ACCUMULATOR.

1 1 i [| 1 1
MNEMONIC: TMA o o 1 0o o 0 0 1
) 1] 1 1 1 L
STATUS: Set
FORMAT: v
ACTION: M(X,Y) ~> A
DESCRIPTION: The contents of the RAM location addressed by the X and Y
registers are loaded into the accumulator. Memory contents arc
unaltered.
MICROINSTRUCTIONS: MTP, AUTA
X Y A M(X,Y) S
M(X,Y) —A 083y 2 _
TMA 0 9 3 3 1

4-3.6 EXCHANGE MEMORY AND ACCUMULATOR.

o 1 2 3 4 5 6 7
MNEMONIC: XMA 0:011:0:,:1:1:0
STATUS: Set
FORMAT: v
ACTION: M(X,Y) < A
DESCRIPTION: The memory contents (addressed by the X and Y registers) are

exchanged with the accumulator contents. For example, this
instruction is useful to retrieve a memory word into the
accumulator for an arithmetic operation and save the current
accumulator contents in the RAM. The accumulator may be
restored by a second XMA instruction.

MICROINSTRUCTIONS: MTP, STO, AUTA
| X Y A MIX,Y) S
M(X,Y) < A 9 __3><_F_ 1
| XMA 1 9 F 3 1

4-11

4-3.7 REGISTER/MEMORY TRANSFER EXAMPLE. The following is a simple example that
combines some of the instructions into a small program.

The program is designed to load the 16 words in a RAM X-file with their Y addresses. For example,
memory word M(0,5) will contain a 5. This program contains a branch instruction to allow the
program to loop. To simplify this illustration, this program is written to loop continuously. The
address in the Y register always contains a value in the range 0 <Y < 15. (If the Y register contains
F16 and is incremented, it returns to 0.)

LABEL OPCODE OPERAND COMMENT
CLA ACCUMULATOR TO ZERO
TAY Y REG TO ZERO
LOOP TAMIY STORE A IN MEMORY AND INCREMENT Y.
TYA TRANSFER Y TO A.
BR LOOP BRANCH TO LOOP
X
0->A o
CLA 0
TAY 0
0
A=Y TAMIY {
0
TYA 0
BR 0
A > M(X,Y)
0
TAMIY {
Y+1 > Y 0
TYA 0
BR 0 2 ?
YA

The following diagram summarizes data transfers that may take place in one instruction cycle:

4-4 ARITHMETIC INSTRUCTIONS.

The instructions herein define a class of arithmetic operations. All arithmetic operations are
performed by the adder. The arithmetic operands originate from memory, registers, or instruction
constants. The results from the adder are stored into the accumulator or Y register, and carry (and
borrow) information is transferred to status. The carry out bit is important for multi-precision
arithmetic operations and loop control.

The adder is the center of the arithmetic operations. Because the adder can only perform add
operations, subtraction is performed by the two’s complement system.

All arithmetic instructions are in format IV and have no variable operands. Although in some cases,
microinstruction CKP enables CKI logic to the adder and allows the four least significant bits of the

instruction to be used in the operation.

4-4.1 ADD MEMORY TO ACCUMULATOR, RESULTS TO ACCUMULATOR.

0] 1 2 3 4 5 6 7
I T 1 1 T T
MNEMONIC: AMAAC o 0o 1 o0 0 1 o 1
1 1 4 1 1 1 1
STATUS: Carry into status
FORMAT: IV
ACTION: M(X,Y)+A~> A
1-> Sif sum> 15
0- Sifsum< 15
DESCRIPTION: The contents of the memory location addressed by the X and Y

registers are added to the contents of the accumulator. The
result is stored into the accumulator. The resulting carry
information is transferred to status. A sum that is greater than
15 results in a carry and a ONE to status. Memory contents arc

unaltered.
MICROINSTRUCTIONS: MTP, ATN, C8, AUTA
EXAMPLE: Assume that the RAM word contains 15 and the accumulator

contains a one.

1111 MXY)
+0001 A
CARRY =1 0000 A CONTENTS

Status is set (to ONE) as a result of the carry.

413

4-4,2 SUBTRACT ACCUMULATOR FROM MEMORY, RESULT TO ACCUMULATOR.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

DESCRIPTION:

MICROINSTRUCTIONS:

EXAMPLE:

SAMAN 6 o 1 0 0 1 1 1

Carry into status
v

M(X,Y)-A~ A
L=>5 ?fA < M(X.Y) } Initial Conditions

0 Sif A> M(X,Y)

The contents of the accumulator are subtracted from the
memory word addressed by the X and Y registers via two’s
complement addition. The result is stored into the accumulator.
Status is set if the accumulator is less than or equal to the
memory word, indicating that no-borrow occurred. A borrow
occurs when the accumulator is greater than the memory word
and status is reset (to ZERO).

MTP, NATN, CIN, C8, AUTA.
Assume that the current RAM word contains a 5 and the

accumulator contains a 2. The SAMAN instruction will perform
as follows:

0101 MXY)
1101 +A _
1o f TIA= -2
CARRY = 1 0011 A=3

Status is ONE, indicating that no borrow occurred.

4-4.3 INCREMENT MEMORY AND LOAD INTO ACCUMULATOR.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

IMAC o o 1 0 1 0 0 0

Carry into status
v
M(X,)Y)+1- A

1> Sif M(X,Y) =15

] } Initial Conditions
0 Sif M(X,Y) < 15

4-14

DESCRIPTION:
MICROINSTRUCTIONS:
*
6—>Y

M(X,Y)+1 > A

YES

O O

The contents of memory addressed by the X and Y registers are
fetched. One is added to this word and the result is stored in the
accumulator. The resulting carry information is transferred to
status. Status is set if the sum is greater than 15. Memory is left
unaltered.

MTP, CIN, C8, AUTA

1. NO CARRY

BRANCH

2. CARRY OCCURS

Y A MIXY) S BRANCH
1

IMAC

BR

X
2

TCY6 2
2
2 YES

*See paragraph 4-8.1 for RAM Y addressing explanation.
+See paragraph 4-12.1 for branch instruction description.

4-4.4 DECREMENT MEMORY AND LOAD INTO ACCUMULATOR.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

DESCRIPTION:

DMAN o o 1 o 1 o 1 o

Carry into status
v

M(X,Y)-1- A

1> Sif M(X,Y) > 1} Initial Conditions

0 Sif M(X,Y)=0

The contents of memory addressed by the X and Y registers are
fetched. One is subtracted from this word (add F1¢), and the
result is placed in the accumulator. The resulting carry
information is transferred to status. If memory is greater than
or equal to one, status is set indicating that no borrow occurred.
Memory contents are unaltered.

4-15

MICROINSTRUCTIONS: MTP, 15TN, C8, AUTA

Y

1. BORROW OCCURS
10—>Y
X BRANCH
M(X,Y)-1—>A TCY10 0
DMAN 0
BR 0 A NO
NO

2. NO BORROW

BORROW ?

X Y A M(XY) S BRANCH
0 5 0 7 1

TCY 10 O 2 1
@ @ DMAN 0 A 1/ 2 1
BR 0 A 1 2 1 YES
4-4,5 INCREMENT ACCUMULATOR.
0 1 2 3 4 5 [:] 7
1 1 ¥ I 1 1 1
MNEMONIC: 1A o o ©o o 1 1 1 o
1 1 1l 1 1 1 L
STATUS: Set
FORMAT: Iv
ACTION: A+1-A
DESCRIPTION: The contents of the accumulator are incremented by one. The
result is placed back into the accumulator. Carry to status is not
performed.
MICROINSTRUCTIONS: ATN, CIN, AUTA

l WARNING I
A+ 1> A

Do not use this example. An infinite loop will result. Do not
attempt to use this sequence because status is always a ONE,

YES

NO

4-16

4-4.6 INCREMENT Y REGISTER.

0 1 2 3 4 5 6 7
| I I I T L 1
MNEMONIC: IYC o 0 1 o 1 0 1 1
1 1 1 1 1 1 1
STATUS: Carry into status
FORMAT: v
ACTION: Y+1->Y
1> %f Y =15 } Initial Conditions
0->SifY<15
DESCRIPTION: The contents of the Y register are incremented by one. The

result is placed back into the Y register. Resulting carry
information is transferred to status. A sum greater than 15
results in status being set.

MICROINSTRUCTIONS: YTP, CIN, C8, AUTY.
‘ 1. NO CARRY
Y+1—>YVY
X Y A M(XY) S BRANCH
0_
1YC 0
YES BR 0
NO
X Y A M(XY) S BRANCH
K 1
1YC 1 0 1
BR 1 0 0 9 1 YES
44,7 DECREMENT ACCUMULATOR.
1] 1 2 3 4 5 6 7
I I T I i I 1
MNEMONIC: DAN o o o 0o 0o 1 1 1
1 1 1 1 1 1 1
STATUS: Carry into status
FORMAT: v
ACTION: A-1-A
1=5 ?f A=1 } Initial Conditions
0-SifA=0

4-17

DESCRIPTION: The contents of the accumulator are decremented by one (add
F16). If a borrow results, status is reset to a logic ZERO. If
accumulator contents are greater than one, there is no borrow,
and status is set to a ONE.

MICROINSTRUCTIONS: CKP, ATN, CIN, C8, AUTA

A—1—>A 1. BORROW OCCURS
Y A MIXY) S BRANCH

NO
BORROW ?

BR
4-4.8 DECREMENT Y REGISTER.
0 1 2 3 4 5 6 7
1 T I ! T T
MNEMONIC: DYN o 0 t o 1 1 0 o0
Il 1 ! 1 Il 1 [l
STATUS: Carry into status
FORMAT: v
ACTION: Y-1-Y
1= %f Y= 1} Initial Conditions
0->SifY=0
PURPOSE: To decrement the contents of the Y register by one.
DESCRIPTION: The contents of the Y register are decremented by one. This is

performed by adding a minus one (F{¢). Resulting carry
information is transferred into Status. If theresultis notequal
to 15, status will be set indicating no borrow.

MICROINSTRUCTIONS: YTP, 15TN, C8, AUTY

4-18

Y_1—Y 1. BORROW OCCURS

YES

MNEMONIC:

STATUS:

FORMAT:

ACTION:

PURPOSE:

DESCRIPTION:

MICROINSTRUCTIONS:

S BRANCH

‘NO
BORROW?

Y A M(XY) S BRANCH
1

X
ORI
DYN 1

1

BR

0 1 2 3 4 5 8 7
T T T T T 1
AB8AAC 0 0o o o o0 0o 0o 1
1 1 1 1 1] 1
LsB MmsB

Carry into status
v

A+8—- A
1 - Sif sum > 15
0> Sifsum< 15

To add the constant eight (8) to the accumulator, flipping the
most significant bit of the accumulator.

The constant eight (8), from the four low order bits of the
instruction, is added to the accumulator contents. Carry
information is transferred into status. A sum greater than 15
will generate a carry and will set status.

CKP, ATN, C8, AUTA

A+8—>A 1. NO CARRY

©

X Y A M(XY) S BRANCH
0 4 1

ABAAC 0 4

BR 0 4

No 2. CARRY OCCURS

X Y A M(XY) S BRANCH
0 — 1
ABAAC 1 F
F

1
2 1 YES

BR 1

4-19

4-4.10 ADD 10 TO ACCUMULATOR, RESULTS TO ACCUMULATOR.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

PURPOSE:

DESCRIPTION:

MICROINSTRUCTIONS:

EXAMPLE:

0 1 2 3 4 5 6 1
T T T T T T T
A10AAC o o o0 o o0 1 o 1
1 1 1 1 1 1 L
LSB MSB

Carry into status
v

A+10- A
1 - Sif sum > 15
0—- Sifsum< 15

To add the constant 10 to the accumulator. This is useful for
BCD correction during subtraction.

The constant ten (10), from the four low order bits of the
instruction, is added to the accumulator’s contents. Carry
information is transferred into status and a sum greater than 15
sets status.

CKP, ATN, C8, AUTA

See paragraph 4-4.14.

4-4.11 ADD 6 TO ACCUMULATOR, RESULT TO ACCUMULATOR.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

PURPOSE:

DESCRIPTION:

o 1 2 3 4 5 6 7
T T T T T
A6AAC 0o 0o o0 0o 0 1 1 o
1 | 1 1 1 1 1
LsB MSB

Carry into status
v

A+6—> A
1- Sifsum> 15
0~ Sifsum< 15

To add the constant 6 to the accumulator. This is useful for
BCD correction during addition.

The constant six (6), from the four low order bits of the
instruction, is added to the accumulator contents. Carry
information is transferred into status. A sum greater than 15
will result in a carry and set status.

4-20

MICROINSTRUCTIONS:

EXAMPLE:

CKP, ATN, C8, AUTA

See paragraph 4-4.13,

44,12 COMPLEMENT ACCUMULATOR AND INCREMENT (two’s complement accumulator)

MNEMONIC:

STATUS:

FORMAT:

ACTION:

PURPOSE:

DESCRIPTION:

MICROINSTRUCTIONS:

YES

©

0 1 2 3 4 5 6 7

CPAIZ 6 o 1 0 1 1 0o 1

Carry into status

Iv

A+1-> A

1> %fA =0 } Initial Conditions
0->SifA#0

To obtain the two’s complement of the word in the
accumulator.

The two’s complement of the accumulator is computed by
adding one to the one’s complement of the accumulator and
storing the result in the accumulator. Carry information is
transferred into status. If the accumulator contents are ZERO,
carry occurs, and status is set (to ONE).

NATN, CIN, C8, AUTA

1. NO CARRY

A+1>A
X Y A M(XY) S BRANCH
0 1
CPAIZ 0_ _1 ________
BR 0 1 NO
NO 2. CARRY OCCURS

O

X Y A M(XY) S BRANCH
0 3 0 6 1

CPAIZ O 3
BR 0 3

4-21

4-4.13 ADDITION INSTRUCTION EXAMPLE. The following example illustrates the addition
arithmetic instructions. This example shows adding a word to a BCD number in memory. BCD
correction is performed to keep the digit in the range 0 to 9. Upon exit from this routine the
accumulator contains a one if a carry has resulted or a zero if no carry has resulted.

LABEL OP CODE

AMAAC

BR

TAM

AGAAC

BR

CLA
CONTU

FIXUP AGAAC
CORRECT TAMZA
1A
BR

OPERAND

FIXUP

CORRECT

CONTU

COMMENT

ADD CURRENT DIGIT TO A
BRANCH IF CARRY {SUM > 15)
TRANSFER A TO MEMORY

ADD 6, TEST FOR DIGIT 10 TO 15
BRANCH IF CARRY

CLEAR ACCUMULATOR

EXIT

ADD 6 TO CORRECT TO BCD
TRANSFER A TO MEMORY, CLEAR A
INCREMENT ACCUMULATOR

EXIT

4-22

1. BCD CORRECTION NOT NECESSARY

o© o« H B o
o e o > > > o
g <
@]
n 3 (%] Ll B [7,)
o o
z _ o
Vu. = V.: M V.,
X o x o X
= 5 W
w w
o« o
< o < o g
Q o
> o > v o a >IN
B o _
@
Q Q
< g N <
AMH o« m M [m o m
< mrF <o - 2 a <
................................. > SN >
“ < ; < 1
1] X 1]
4 + W. M ! 4 7 H
m 3 t] o il V|
: < o < N Se—— o
; m Pl
P . o
' i) ' 7] H '
H " w] "
P ; > P
; i .
- P M ' ~ \vu. < H ~ m
> < : > < CTITELP S
~— R Py
-] < 4 S T 5 N -
5 < 4 - < o
93 [&] < < m (8]
E m
--- >

YES

BR

er execution:

Aft

-

ABAAC

A=0 NO CARRY
A=1 CARRY

<3

YES

4-23

4-4.14 SUBTRACTION EXAMPLE. The following example illustrates using arithmetic instructions
to perform subtraction from a BCD value in memory. The example uses BCD correction to keep the
values in the range of 0 to 9. Upon exit from the routine, the accumulator contains a one if a
borrow has occurred or a zero if no borrow.

LABEL OP CODE OPERAND COMMENT
SAMAN SUBTRACT A FROM MEMORY WORD
BR NOFIX BRANCH IF NO BORROW

* BCD CORRECTION REQUIRED IF BORROW

*

A10AAC ADD 10
TAMZA STORE A IN MEMORY, ZERO A
INA INCREMENT A

CONTU . CONTINUE

* .

NOFIX TAM TRANSFER A INTO MEMORY
CLA CLEAR A
BR CONTU

1. BCD CORRECTION NOT NECESSARY

@ X Y A M(XY) S BRANCH
2

by 9 2 s 1

M(X,Y)—A > A SAMAN 0 1
BR 0 1 YES

.................................... 0 1

TAMZA {
0 1
YES

NO BORROW ? 1 VES

:
| BR 0

‘mwwmmmeMWWWMMWWWMMWCD

A |
A+t10 > A A~ M(X,Y)
‘ 0=>aA 2. BCD CORRECTION NECESSARY
A —>M(X,Y) H
; X Y A MIXY) S BRANCH
0—~>A .
i 2 5 7 3
! i SAMAN 2 5
a1 e 2 s
! A10AAC 2 5
- Yol 2 5
emeneeeereemeeseeenacnneaannas : TAMZA{
i 2 5
vt “1a 2 5

After execution:
A=0 NO BORROW
A=1 BORROW

424

4-5 ARITHMETIC COMPARE INSTRUCTIONS.

Arithmetic compares are performed by the adder using two’s complement addition. The contents of
the accumulator are subtracted from the value it is being compared to. The carry bit is transferred
to status. The only condition that will generate a carry is the less than or equal condition. No data is
destroyed by the compare instructions.

4-5.1 IF ACCUMULATOR IS LESS THAN OR EQUAL TO MEMORY, ONE TO STATUS.

0 1 2 3 4 5 6 7
I 1 T 1 I 1 T
MNEMONIC: ALEM 6 0o 1 0o 1 0 o 1
1 1 L 1 H 1 1
STATUS: Carry into status
FORMAT: v
ACTION: A< M(X,Y)?
1> Sif A< M(X,Y)
0~ Sif A>M(X,Y)
DESCRIPTION: The value from the accumulator is subtracted from the contents

of the memory location, addressed by the X and Y registers,
using two’s complement addition. Resulting carry information
is transferred into status. Status equal to ONE indicates that the
accumulator is less than or equal to the memory word. Memory
and accumulator contents are unaltered.

MICROINSTRUCTIONS: MTP, NATN, CIN, C8
EXAMPLE: Assume accumulator contains a 5 and M(X,Y) contains a 6.
0110 MXY)
1010 +A _
1 +1 } -lAl = -5
CARRY =1 0001 RESULTS NOT STORED

4-5.2 IF ACCUMULATOR IS LESS THAN OR EQUAL TO CONSTANT, ONE TO STATUS.

0 1 2 3 4 5 6 7
| 1 1 I 1 I
MNEMONIC: ALEC I c
: : : LSB : : : MSB
STATUS: Carry into status
FORMAT: II
OPERAND: Constant value 0 < I(C) < 15

4-25

ACTION: A<I1(C)?
1> Sif A<I(C)
0~ Sif A> I(C)

PURPOSE: To arithmetically compare accumulator contents to a constant
value.
DESCRIPTION: The accumulator value is subtracted from the constant (in the C

ficld of the instruction) using two’s complement addition.
Resulting carry information is transferred into status. Status is
set if the accumulator is less than or equal to the constant. The
accumulator data is unaltered.

MICROINSTRUCTIONS: CKP, NATN, CIN, C8

4-5.3 ARITHMETIC COMPARE EXAMPLE. The following example illustrates the arithmetic
compare instructions.

This example performs a search of one complete RAM file, searching the 16 words of the file for
the largest value. The current maximum value is maintained in the accumulator. At the end of the
search, the maximum value found is tested for being a valid BCD number in the range of 0 to 9.

LABEL OP CODE OPERAND COMMENT
TCY 0 STARTATY=0
NEWMAX TMA LOAD NEW HIGH VALUE
NOCHNG Iyc INCREMENT TO NEXT COL.
BR DONE DONE OR CARRY
ALEM CURRENT MAX L.E. MEMORY DIGIT?
BR NEWMAX YES, GO SET CURRENT AS MAX
BR NOCHNG NO, GO CHECK NEXT DIGIT
DONE ALEC 9 IS MAX L.E. 9?
BR VALID YES
BR INVALID NO

4-26

A <M(X,Y)

YES

YES

NO

VALID INVALID

NOCHNG

NEWMAX

NOCHNG

NOCHNG

DONE

4-27

TCY 0

TMA

IyC

BR DONE
ALEM

BR NEWMAX

YES

TMA

1YC

BR DONE
ALEM

BR NEWMAX

!

1
1
1
1

NO

BR NOCHNG
lyc

*
BR NOCHNG
1YC
BR DONE

©w o ©

P O g o af a1

CONTINUE
15

YES

YES

YES

ALEC9
BR VALID

3
1
1
1
1

- ed ed e -

YES

4-6 LOGICAL COMPARE INSTRUCTIONS.

Logical compare instructions allow two values to be compared for equality. Operands may be
register values, constants or memory words. The ALU compares P-input to the N-input. If equal, the
ALU transmits a ZERO to status. The status may then be tested by a conditional instruction
immediately following the compare. No data is destroyed by the logical compare.

4-6.1 IF MEMORY IS NOT EQUAL TO ZERO, ONE TO STATUS.

MNEMONIC: MNEZ N
STATUS: Comparison result into status

FORMAT: v

ACTION: M(X,Y) # 0?

1 Sif M(X,Y)# 0
0> Sif M(X,Y)=0

PURPOSE: To compare a memory word to zero.

DESCRIPTION: The memory contents addressed by the X and Y register are
logically compared to zero. Comparison information is
transferred into status. Inequality between memory value and
zero will set status.

MICROINSTRUCTIONS: MTP, NE.

4.6.2 IF Y REGISTER IS NOT EQUAL TO ACCUMULATOR, ONE TO STATUS.

0 1 2 3 4 5 6 7

MNEMONIC: YNEA ° o o o 0 o 1 o
T S S T SR

STATUS: Comparison result into status

FORMAT: v

ACTION: Y # A?

1>Sand1->SLifY# A
0->Sand0~>SLifY=A

PURPOSE: To compare the contents of the Y register and the accumulator
for inequality, and to preset the status latch for buffering to the
O-output register.

DESCRIPTION: The contents of the Y register are logically compared to the
contents of the accumulator. Comparison information is

428

transferred into status. Inequality will set status. Status also
transfers into the status latch to be made available for a future
data output instruction (TDO).

MICROINSTRUCTIONS: YTP, ATN, NE, STSL.

4-6.3 IF Y REGISTER IS NOT EQUAL TO A CONSTANT, ONE TO STATUS.

MNEMONIC: YNEC o 1 0 1 c
I l I LsB I : t MSB

STATUS: Comparison result into status
FORMAT: II
OPERAND: Constant, 0 < I(C) < 15
ACTION: Y # I(C)?

1-SifY+C

0-SifY=C
DESCRIPTION: The contents of the Y register are logically compared to the

four-bit value from the C field of the instruction. Compare
result is transferred into status. Inequality between the
operands causes status to be set (ONE).

MICROINSTRUCTIONS: YTP, CKN, NE

4-6.4 LOGICAL COMPARE EXAMPLE. The following example illustrates the logical compare
instructions. This example shows formatting the display of a floating point multidigit BCD number
stored in RAM memory. The LSD is at Y address 0. The Y register sequentially addresses a 16 word
file, starting with the most significant digit position (the MSD is at Y address 1 to 15). The
accumulator contains the position of the implied decimal point. Zero suppression stops when the
first non-zero digit is found or when the decimal point position is reached. Zeros are suppressed by
replacing them with a blank code digit (F1¢) which is obtained by subtracting one from the zero.

LABEL OP CODE OPERAND COMMENT
Loorp MNEZ DIGIT NOT EQUAL TO ZERO?
BR DONE YES, EXIT TO DONE
YNEA Y INDEX NOT EQUAL TO A (DECIMAL POINT)?
BR SUPRES NO, CONTINUE TO SUPPRESSION
DONE . YES, DONE
SUPRES XMA EXCHANGE MEMORY AND A
DAN DECREMENT A (PRODUCE F)
XMA EXCHANGE M AND A
DYN DECREMENT Y INDEX
BR LooP LOOP TO TEST NEXT DIGIT

429

1. STOP ZERO SUPPRESSION BECAUSE OF A LEADING DECIMAL POINT

BRANCH

M(XY) S

A

ammesaceamsescsscsssssscancad

)) 7 »
w ri] w é
> > > > o ojja|w~
- - - o 1.._1 -
o of|le] e
@_ o o © o [g o ofe o oflefw
2_2 N o~ N N o~ M o «||loju
_ <
< < M ™ I) N o~ o~ W w
_ 2 C
@ o &
Ol ©O O ©O ©O © O ©O O 0O © 0O 0 OO0 O © 0 o O O » L
- w
=4 o g
N < N < N < = s >
P f.gzsz Y. 8,575, 8.0, 58 %z
2t 24 [+ oo e > @« € 2 folnal
2o >o X 0O0X0oa S0 >0X0X0o=sa>o O X > 2 =2
B T T T T N (]
1] .
1] .
1] L]
1] 1
' H
" "
m < i
|||||||||| - e memmeae
1] 1
: : ~ 0 - 4 nV
' H > 4 > -
1] 1
' H X < X |
: : Pttt — BN IX - = L -
H H
1 1
1 1]
1] .
1] 1)
1] 1
1] L)
L]]
.
1]
s

B o

M(X,Y) #0

Y

4-30

2. STOP ZERO SUPPRESSION BECAUSE OF A NON-ZERO INTEGER

M{X,Y) S BRANCH

A
2

X
0

MNEZ
BR
YNEA
BR
XMA
DAN
XMA
DYN

NO

YES
YES
YES

0
4
0
F

0
0
0
0
0
0
0
0
0
0
CONTENTS SUMMARY :

BR
MNEZ

BR
M(X,Y) BEFORE
M(X,Y) AFTER

A
M(X,Y) < A
A-1—>A

NO

M(X,Y) <A
Y-1—>Y

\j

P R L L L L

M(X,Y) #0

4.31

4-7 BIT MANIPULATION IN MEMORY (RAM) INSTRUCTIONS.

The bit instructions operate on an individual bit in the RAM. The selected bit may be set, reset or
tested. These instructions allow a program to use bits as “flags” to maintain the on or off state of an
event and to test the current state of the flag bit. The bit addresses are defined as follows:

BIT ADDRESS B FIELD RAM WORD
e 7 MSB LSB
o 0 0 X
. 1 0 X
) 0 1 X
3 1 1 X
4-7.1 SET MEMORY (RAM) BIT.
0 | 1 | 2 3 4 5 6 7
i J L j
MNEMONIC: SBIT o 0o 1 1 o o B
1 1 1 1 1 = 1 T
STATUS: Set
FORMAT: III
OPERAND: Bit address, 0 < I(B) < 3
ACTION: 1~ M(X,Y,B)
DESCRIPTION: One of the four bits, as selected by the B-field of the operand, is

set to a logic ONE in the RAM memory word addressed by the
contents of the X and Y registers.

FIXED MICROINSTRUCTION: SBIT

4-7.2 RESET MEMORY (RAM) BIT.

0 ' 1 | 2 3 4 5 6 7
T T T T
MNEMONIC: RBIT 1] 0 1 1 0 1 B
1 1 1 L I LSBIMSB
STATUS: Set
FORMAT: 111

4-32

OPERAND:

ACTION:

DESCRIPTION:

FIXED MICROINSTRUCTION:

Bit address, 0 < I(B) < 3

0~ M(X,Y,B)

One of the four bits, as selected by the B-field of the
instruction, is reset to a logic ZERO in the RAM memory word

addressed by the contents of the X and Y registers.

RBIT

4.7.3 TEST MEMORY (RAM) BIT FOR ONE.

MNEMONIC:

STATUS:

FORMAT:

OPERAND:

ACTION:

PURPOSE:

DESCRIPTION:

MICROINSTRUCTIONS:

i I | T 1 T

TBIT1 o 0o 1 1 1 o B

[
LSB MSB

Comparison result into status
IT1
Bit Address, 0 < I(B)< 3

M(X,Y,B) = 1?
1- Sif M(X,Y,B) = 1
0- S if M(X,Y,B) =0

To test a selected memory bit for a logic ONE and set status
accordingly.

The CKI logic generates a four-bit mask which goes to both P
and N adder inputs (CKP and CKN microinstructions). The bit
mask has a ZERO (opening) selected by the B field of the
instruction word (shown in Table 2-7.1). The RAM word,
selected by registers X and Y, is logically ORed with the bit
mask word by the MTP microinstruction combined with the
CKP microinstruction. The NE microinstruction sends to status
the comparison information caused by logically comparing the
unmasked bit from RAM with a ZERO (the opening in the bit
mask input to the N side of the ALU).

CKP, CKN, MTP, NE

4-33

4.7.4 BIT MANIPULATION EXAMPLE. The following example illustrates the three memory bit
instructions. This routine will “flip” the state of bit 2 in RAM word M(X,Y).

LABEL OP CODE OPERAND COMMENTS
TBIT1 2 ISBIT2O0N?
BR SETOFF YES, BRANCH
SBIT 2 NO, SET IT ON
BR CONTU

SETOFF RBIT 2 BIT OFF

@ 1.BIT2=1

| §
| | R
E : TBITI2 2 F 3 1
, ; BR 2 F 3 1 YES
[T ! : RBIT2 2 F 3 1
' YES :
i BIT2=1? : BR 2 F 3 3 1 YES
' :
: ;
:
:
i 1>M(X,Y,2)
:
' ; TBIT1 2
BR
0~>M(X,Y,2) :
: SBIT 2
;
]
v

4.34

4-8 CONSTANT TRANSFER INSTRUCTIONS.

Most programs need constant values to preset counters for loop control, to set RAM constants, or
to set a register to a RAM address. For the following instructions, constants from the C-field of the
instruction are transferred into memory or the registers.

4-8.1 TRANSFER CONSTANT TO Y REGISTER.

MNEMONIC:

STATUS:

FORMAT:

OPERAND:

ACTION:

PURPOSE:

DESCRIPTION:

MICROINSTRUCTIONS:

0 1 2 3 4 5 6 7
| — | —
TCY o + o0 0 c
L1 [S
53 MSB
Set
11

Constant, 0 < [(C) < 15

IC) > Y

To load the Y register with a constant. Common uses are to set
Y to a particular RAM word address, address a selected R(Y)

output line or to initialize Y for loop control.

The four-bit value from the C-field of the instruction is
transferred into the Y register.

CKP, AUTY

Note: M(X,Y) appears to change because the pointer (Y) is changed.

4-35

4-8.2 TRANSFER CONSTANT TO MEMORY AND INCREMENT Y REGISTER.

MNEMONIC:

STATUS:

FORMAT:

OPERAND:

ACTIONS:

DESCRIPTION:

MICROINSTRUCTIONS:

|

3 — M(X,Y)

Y+1—Y

l

TCMIY o 1 1 o c

Set
I
Constant, 0 < I(C) < 15

1(C) » M(X,Y)
Y+1-Y

The four-bit value from the C-field of the instruction is stored

in the memory location addressed by the X and Y registers. The
Y register contents are then incremented by one.

CKM, YTP, CIN, AUTY.

4-35(A)

4-9 INPUT INSTRUCTIONS.

The input instructions are used to bring external data from the four input (K) lines into the
microcomputer. This data transfers into the registers or memory for manipulation or storage. No
operands are used.

4-9.1 IF K INPUTS ARE NOT EQUAL TO ZERO, SET STATUS.

T [I | | I I
MNEMONIC: KNEZ © 0 0o 0o 1 0 o o
i 1 1 1 1 | [l
STATUS: Comparison result into status
FORMAT: Iv
ACTION: Kg 4, 2,1 07
1->SifK+#0
0-SifK=0
PURPOSE: To test the four K-input lines for a non-ZERO state. This

instruction is useful for monitoring a keyboard for a ‘key
down” condition.

DESCRIPTION: Data on the four external K-input lines are compared to zero.
Comparison information is transferred into status. Non-ZERO
data inputs cause status to be set (to ONE).

MICROINSTRUCTIONS: CKP, NE.

4-9.2 TRANSFER K-INPUTS TO ACCUMULATOR.

0 1 2 3 4 5 6 7

1 i I | 1 J 1
MNEMONIC: TKA © o o o 1 0 0 o

| L 1 1 i] Il
STATUS: Set
FORMAT: Iv
ACTION: . Kg, 42,1~ A
PURPOSE: To transfer the external input data into the accumulator for

processing.

DESCRIPTION: Data present on the four external K-input lines is transferred

into the accumulator.

MICROINSTRUCTIONS: CKP, AUTA

4-36

49.3 INPUT EXAMPLE. The following example illustrates the input instructions. This example
handles input from a keyboard. The keys must be sampled one row at a time. The particular row
selected is determined by which R-output line being set on. This example shows sampling on row
five only, and determines which of four keys on row five are depressed. If all four K inputs are zero,
no key is currently depressed. For simplicity no key-debounce logic has been included.

LABEL OP CODE OPERAND COMMENT
TCY 5 SET ROWS
SETR ENABLE ROW 5
KNEZ TEST K INPUTS FOR NON-ZERO
BR INPUT YES, GO TO INPUT
* NO DATA PRESENT ON INPUT LINES
RSTR DISABLE ROW 5
BR CONTU EXIT

*

* NOW STORE THE DATA FROM THE K LINES.

*

INPUT TKA INPUT K LINESTO A
RSTR DISABLE ROW 5

*
*

* NOW FIND WHICH KEY ON ROW 5.

*

ALEC 1 KEY 1?

BR ONK1 YES

ALEC 2 KEY 2?

BR ONK2 YES

ALEC 4 KEY 4?

BR ONK4 YES

BR ONK8 MUST BE ON KS8.

4-37

O
0

“@rc-eeemc-e-mamememsasassssecsermcssscsssesooemass

0->RIY) TCY 5
SETR
BR
CKI—~>A
: KNEZ
' § TKA
RSTR
ALEC 1
BR
ALEC 2
BR
DATA ON
e |1 LINE
AT Y=6
DATA ON
K2 LINE
AT Y=b
DATA ON
K4 LINE
AT Y=5
NO DATA DATA ON
ON ANY K8 LINE
K LINES AT Y=5
AT Y=5

4-38

BRANCH

2K#0

X S R{Y) BRANCH
L

0 4 1

0 5 4 1

0 5 4 1

0 5 4 1 1

0 5 1

0 5 1

0 5 1 0

0 5 0 NO
0 5 0

0 5 0 YES

410 OUTPUT INSTRUCTIONS.

Output instructions make internal data available to external devices. Two types of output exist,

individual or group.

The 13 R-output lines are controlled individually. The O-outputs go out as an eight-bit group. The
R output lines are normally used to multiplex K input data, strobe O-output data, or to control

individual output signals.
No operands are used.
4-10.1 SET R OUTPUT.
MNEMONIC:

STATUS:

FORMAT:

ACTION:

PURPOSE:

DESCRIPTION:

FIXED MICROINSTRUCTION:

4-10.2 RESET R OUTPUT.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

PURPOSE:

SETR o o o0 o0 1 1 0o 1

Set
v

1= R(Y)
For0<Y <12 TMS 1200
For 0<Y<10 TMS 1000

To set one R output line to a logic ONE.

The contents of the Y register selects the proper R output. The
content of the Y register is between 0 through 12 inclusive, to
select the R output to be set. For values greater than 12 in the
Y register, the instruction is a no-operation.

SETR
0 1 2 3 4 5 & 7
T T T T T
RSTR 6 0 o o 1 1 o o
I S R S S S
Set
v
0-> R(Y)

For0<Y<12 TMS 1200
For 0<Y<10 TMS 1000

To reset one R-output line to a logic ZERO.

4-39

DESCRIPTION:

FIXED MICROINSTRUCTION:

The contents of the Y register select the proper R output (RO
to R12). The contents of the Y register are between 0 and 12
inclusive to select the R output to be reset. For values greater
than 12 in the Y register, the instruction is a no-operation.

RSTR

4-10.3 TRANSFER DATA FROM ACCUMULATOR AND STATUS LATCH TO O-OUTPUT

REGISTER.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

DESCRIPTION:

FIXED MICROINSTRUCTION:

0 1 2 3 4 5 & 1
T T T T T T

TDO o 0 o o0 1 0 1 0
1 1 1 1 L L 1

Set

Iv

SL - O-output Register
A - O-output Register

The contents of the accumulator and the status latch are
transferred to the O-output register. The O-register data is
decoded by the output PLA depending upon how the user
programmed the output PLA. The output PLA translates the
five-bit code into an eight-bit value present on the eight parallel
lines.

TDO

4-10.4 CLEAR OUTPUT REGISTER.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

DESCRIPTION:

FIXED MICROINSTRUCTION:

CLO o o o0 o 1 0 1 1

Set

v

0 - O-Register

The O-register contents are cleared to zero. It is important to
remember that the output PLA may be defined by the user to

translate this value into any eight-bit value desired.

CLO

4-40

4-10.5 OUTPUT SAMPLE. The following example illustrates the various output instructions. Four
data words from memory, M(0,3) through M(0,0), go to the O-output register. The R-outputs are
used to signal which word is presented. The O-register is cleared after each word has been presented.
The example assumes that a previous YNEA instruction set the status latch to ZERO.

LABEL OP CODE OPERAND COMMENT
TCY 3 SET INDEX AND COUNTER
LOOP SETR SET R(Y) OUTPUT STROBE
TMA LOAD DIGIT INTO A
TDO LOAD OUTPUT FROM A AND SL
RSTR RESET R(Y) OUTPUT STROBE
CLO CLEAR O OUTPUT REGISTER
DYN DECREMENT Y REGISTER
BR LOOP LOOP UNTIL Y BORROWS
‘ i X O R(Y) BRANCH
INITIAL 0 0
3> 2
TCY 3 0 1
Ptk w r ------ - LOOP SETR 0 1
vy ™A 0 1
; ; RSTR 0 F F 1
I cLo 0 FOF 1
: : DYN o F A 1 0 o
moA BR LOOP 0o 2 F A 10 0 YES
I LOOP SETR 0o 2 F A 10
i ASL-OREG TMA 0 2 10
T : TDO 0 2 A A A
‘ Y RSTR 0o 2 A A A
0= R(Y) cLo 0 A A
: . DYN 0 A 5 0
‘ ¥ BR LOOP 0 1 A 5 1 0 YES
0~ OREG LOOP SETR K 10
‘ : ™A 0 1 1 0
H Y : TDO 0 1 5 5 1 5
RSTR 0 1 5 5 15
: i cLo o 1 5 5 1
i DYN 0 5 9 1
BR LOOP 0 5 9 1 YES
LOOP SETR 0 1
P ™A 0 1
' TDO 0 1
‘ RSTR 0
cLO 0
DYN 0
BR LOOP 0 NO

441

411 RAM-X ADDRESSING INSTRUCTIONS.
Two instructions are provided to control the RAM-X file addressing. The instructions can load an
absolute address in the X register or can complement the value in the X register to flip between

RAM file addresses.

4-11.1 LOAD X REGISTER WITH A CONSTANT.

0 1 2 3 4 5 [} 7

i 1 1 I i 1
MNEMONIC: LDX 0o o0 1 o1 B

| 1 1 1 1 = 1 =
STATUS: Set
FORMAT: III
OPERAND: X file address; 0 < X < 3
ACTION: 1(B) > X
DESCRIPTION: A constant value is loaded into the X-register. This is used to set

FIXED MICROINSTRUCTION:

the X register to the desired RAM file index. The two-bit B-field
of the instruction is loaded into the X-register.

LDX

4-11.2 COMPLEMENT X REGISTER.

o 1 2 3 a4 5 & 3
MNEMONIC: COMX o 0 0 o o 0 o o
STATUS: Set
FORMAT: v
ACTION: X~ X
DESCRIPTION: The contents of the X register are logically complemented

FIXED MICROINSTRUCTION:

(one’s complement):
(0) 00— 11(3)
() 01— 10(2)
(20 10— 01 (1)
(3) 11— 00(0)

COMX

442

411.3 RAM-X ADDRESSING EXAMPLE. The following example illustrates using the LDX and
COMX instructions that effect the X register.

This example exchanges the first four digits of RAM file 0 with RAM file 3. The exchange is
performed using the complement X instruction.

LABEL OP CODE OPERAND COMMENT
TCY 0 SET RAM ADDRESS
LDX 0 to M (0,0).
Loop TMA FETCH FROM FILE 0
comx COMPLEMENT X, FLIP TO FILE 3
XMA EXCHANGE M AND A
COMX FLIP TO FILE 0
TAMIY STORE ACCUMULATOR AND INCREMENT Y
YNEC 4 DONE?
BR LOOP LOOP UNTILY =3

0>y M(X,Y) S BRANCH
‘ 0 1
1 RAM CONTENTS BEFORE EXAMPLE EXECUTION:
0-+X 3 v= |3210
1 X=040123
; x=3]04586
1
M(X,Y) ~>A
1
! 1
XX 1
1
) |
MIX,Y) A 1
1
' .
X=X 1
1
')
A-MIX,Y) !
1
Y41 =Y 1 RAM CONTENTS AFTER EXAMPLE EXECUTION:
v=_ l3210
COMX 7 Y= 3210
X=0]04586
XMA 1 X=3]0123
Y#4 COMX 1 R
1 1
TAMIY {
0 1
YNEC 4 0 1
YES
BR 0 3 4 0 1 vEs
ONE MORE LOOP UNTIL Y = 4.
NO

4-43

4-12 ROM ADDRESSING INSTRUCTIONS.
The following set of instructions controls the program execution sequence. The ROM program
normally executes sequentially within a ROM page until altered by a ROM addressing instructions.

These instructions alter the contents of the program counter (PC), subroutine return register (SR),
page address register (PA) or the page buffer registers (PB) as required to perform branching,
subroutine calls, and returns.

Branch and call instructions are always conditional on status. Status performs the function of a
switch. Status set (ONE) will enable, and status reset (ZERO) will disable the conditional jump of
the instruction. The state of the status is dependent upon the results of the previously executed
instruction. The normal state of status is to be a ONE (set), and it will always return to this state
after one instruction cycle if the next instruction does not reset status (ZERO).

4-12.1 BRANCH, CONDITIONAL ON STATUS.

[4] 1 2 3 4 5 6 7
I 1 I T 1 1
MNEMONIC: BR 10 w
1 s 1 1 1 1 1 =
STATUS: Conditional on status
FORMAT: I
OPERAND: Branch Address [(W)
ACTION: IfS=1and CL =0:
(W) > PC
PB - PA

IfS=1and CL=1:
I(W) > PC

If S=0:
PC+1- PC
1-+S8
NOTE
PC points to next address in a fixed sequence
which is actually a pseudo random count.

PURPOSE: To allow the program to alter the normal sequential program
execution. The branch will be conditional on the status results
of the previously executed instruction.

DESCRIPTION: The branch instruction is always conditional upon the state of
status. If status is reset (logic ZERO), then the branch is
unsuccessfully executed and the next sequential instruction will

be performed.

4-44

FIXED MICROINSTRUCTION:

If the status is set (logic ONE), then the branch will occur by
the following actions. The W-field of the instruction is loaded
into the program counter (PC). The contents of the page buffer
(PB) are transferred into the page address (PA) register (this
transfer does not occur when the machine is in the call mode).

Branches may be of two types, short or long. Short branches
address within the current page while long branches address into
another ROM page. The type of branch performed is
determined by the contents of the PB register. To execute a
long branch, the contents of the PB register must be modified
to the desired page address prior to the branch which is
performed via the load PB-register (LDP) instruction. When a
long branch is desired in the source program, a branch long, BL,
directive causes the assembler to generate two instructions, LDP
and BR.

BR

NOTE

To allow for conditional branching, the branch
instruction must immediately follow the
instruction that affected the status. Only that
instruction immediately preceding the branch
instruction determines if status is ZERO, causing
the branch to be unsuccessful. If unconditional
branching is desired, the preceding instructicn
must always set status to ONE.

3

{SHORT
BRANCH
ONLY)
PB —>PA
PC+1-PC
YES 158
g
W) ->PC
BRANCH
UNSUCCESSFUL
EXECUTE NEXT SEQUENTIAL BRANCH
INSTRUCTION UNSUCCESSFUL

SINGLE INSTRUCTION CYCLE FLOWCHART — BRANCH INSTRUCTION

4-45

4-12.2 CALL SUBROUTINE, CONDITIONAL ON STATUS.

MNEMONIC:

STATUS:

FORMAT:

OPERAND:

ACTION:

PURPOSE:

DESCRIPTION:

-
CALL 1 w
1

MSB LsB

Conditional on status

Subroutine word address, I(W).

IfS=1and CL = 0:
PC+1- SR
PB < PA
(W) - PC

1-CL

IfS=1andCL =1:
(W) > PC
PA - PB

IfS=0:
PC+ 1~ PC
1-S

NOTE

PC actually has a pseudo random count to the
next instruction.

To allow the program to transfer control to a common
subroutine. Because the call instruction saves the return address,
subroutines may be called from various locations in a program,
and the subroutine will return control back to the proper, saved
calling address using the call-return instruction, RETN.

Call is always conditional upon status. If status is reset, then the
call is executed unsuccessfully. If the status is set, then the call
is performed by the following operations.

The address of next instruction is saved in the subroutine return
(SR) register. The contents of the page buffer and the page
address registers are exchanged. This saves the return page
address in PB and sets PA to the page address of the subroutine
called. The PC is loaded with the contents of the W-field of the
call instruction which is the address of the subroutine called.

The call latch (CL) is set to a logic ONE when in the call mode.
This protects the return address in SR.

4-46

Long calls (call to another page) can be made by performing a
LDP instruction prior to the CALL. Omitting the LDP
instruction (and PA = PB) will result in a short call (call to the
same page). When a long call is desired in the source program,
the call long, CALLL, directive causes the assembler to generate
two instructions, LDP and CALL.

When the machine is in the call mode, it is not possible to
perform long branches because the PB to PA transfer is locked
out while in the call mode. A short branch is possible in the call
mode.

Because only one level of return addresses may be saved, a
subroutine may not call another subroutine.
NOTE
Executing a call instruction while the machine is
in the call mode, CL = 1, will have the same
effect as a short branch except the PA transfers
to PB. The W-field of the instruction is
transferred to the PC. The page address register
is not altered. See paragraph 2-4 for a more
detailed explanation.

FIXED MICROINSTRUCTION: CALL

CALL
LATCH = 0?

NO (INVALID CALL)

SUCCEED

PC + 1SR
STATUS PA ©PB
NO SAVE RETURN
LOGIC = 17 PA—PB
LOSE RETURN
y y
. 1~>CL
YES PC+1->PC SET CALL MODE
Ui LATCH

W) —>pPC
NEW ADDRESS

CALL
UNSUCCESSFUL

EXECUTE NEXT
SEQUENTIAL
INSTRUCTION

CALL SUCCESSFUL

SINGLE INSTRUCTION CYCLE FLOWCHART — CALL INSTRUCTION

4-47

4-12.3 RETURN FROM SUBROUTINE.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

PURPOSE:

DESCRIPTION:

RETN 6 0o o o0 1 1 1 1

Set
v

IfCL=1:
SR -~ PC
PB - PA
0->CL

IfCL =0:
PC+1->PC
PB - PA

To return control from a called subroutine back to the calling
program.

The return address is restored. The subroutine return (SR)
register contents are transferred to the PC. Simultaneously, the
contents of the PB register are transferred into the PA register.
The call latch (CL) is reset, placing the machine in the normal
non-call mode.

NOTE

When a return instruction is executed in the
non-call mode (CL = 0), two different results
may occur depending upon the contents of the
page buffer (PB). If PA equals PB, (i.e., PB has
not been modified by a LDP instruction), then
the instruction will be a no-operation. If the PB
has been altered, then control will be passed to
the new page whose address is in PB. Note that
when CL = 0, the PC is only incremented by
one.

4.48

4 l
RETN 0—~>cCL
CLEAR CALL
MODE
y
PB = PA
1-s
SR —PC
YES
EXIT
NO)
PC +1->PC

EXECUTE NEXT
SEQUENTIAL INSTRUCTION

EXIT

SINGLE INSTRUCTION CYCLE FLOWCHART — RETURN INSTRUCTION

4-12.4 LOAD PAGE BUFFER WITH A CONSTANT.

MNEMONIC: LDP o o o 1| oo
1 1 | = Il 1 IMSB

STATUS: Set

FORMAT: II

OPERAND: ROM page address: 0<C< 15

ACTION: I(C) ~ PB

PURPOSE: To load the page buffer (PB) register with a new ROM page
address. This is necessary for performing long branch or call
instructions.

DESCRIPTION: The PB register is loaded with the four-bit value from the

C-field of the instruction.

FIXED MICROINSTRUCTION: LDP

449

4.12.5 PROGRAM CONTROL EXAMPLE 1. The following example illustrates the usage of the
program control instructions BR, CALL, RETN and LDP.

This example illustrates using a control loop that calls a subroutine to perform a specific function.
The control loop continues to call the subroutine until certain conditions are met, then control is
passed to another portion of the main program in a different ROM page. This particular example
calls a ‘shift left’ routine to shift a five word string left one word address at a time. The shift routine
is called until a non-zero word is found in position M(0,3). Because the subroutine is in another
page, a long call is performed by setting a new page address in the page buffer (PB) before the call.

Page 3
LABEL OP CODE OPERAND COMMENT
LDX 0 SET RAM ADDRESS
LOOP TCY 3 to M(0, 3)
MNEZ M(0, 3) # 0;
BR DONE BRANCH IF NOT EQUAL, DONE

*

SET UP TO CALL SHIFT LEFT ROUTINE

LDP 5 SLRTN IS IN PAGE 5

CALL SLRTN CALL SLRTN

BR LoopP RETURN HERE, BRANCH TO LOOP
*
DONE LDP 4 GO TO PAGE 4

BR MORE PERFORM LONG BRANCH

Page 5

* COMMON SUBROUTINE, SLRTN, SHIFT LEFT.

SLRTN TCY 0 CLEAR Y INDEX
CLA CLEARA
SWITCH XMA EXCHANGE MEMORY & ACCUMULATOR
IYC INCREMENT Y INDEX
YNEC 4 Y = 4? (END OF STRING)
BR SWITCH CONTINUE IF NOT EQUAL
RETN RETURN TO CALL

4-50

SLRTN

SWITCH

SWITCH

SWITCH -

SWITCH

LOOP

DONE

LDX 0
TCY 3
MNEZ

BR DONE
LDP 5
CALL SLRTN
TCY O

CLA

XMA

1YC

YNEC 4

BR SWITCH
XMA

IYC

YNEC 4

BR SWITCH
XMA

1YC

YNEC 4

BR SWITCH
XMA

1YC

YNEC 4

BR SWITCH
RETN

BR LOOP
TCY 3
MNEZ

BR DONE
LDP 4

BR MORE

Shift left until M(0,3) # 0, then branch to page 4.

Before X = O
Y 4
M(X,Y) | 0

©O O ©O O O 0O 0O © O © 0o 0 O o0 0o o0 0 o|looo o o

0 4 0 o0 1 3
o [8] o 1 13
o 3 o [1] 103
o 3 0 1 1 3
o 3 0 1 13
0o 3 0 1 1 4
After X =| 0
Y |4 3 2
mixy) lo 1 8

4-51

1

1

1

1

1

1 YES
1

1

1

1 YES
1

1

1

1 YES
1

1

1

1 NO

YES

3
3
3
3

YES

0
0
0
0
0
0

YES

5—> PB

!

CALL SL

0>y

0—>A

:

M(X,Y) <A

Y+1>Y

412.6 PROGRAM CONTROL EXAMPLE 2. The following example illustrates using the call
instruction to conditionally call a subroutine.

This example shows how to sct up paging to a possible call before the instruction that sets the
proper status. The subroutine is then conditionally called. Note that the current page must then be
reset before any branching occurs. In this example, the subroutine will force bit 3 of the current
memory word to a ZERO.

Page 7
LABEL OP CODE OPERAND COMMENT

LDX 2 SET RAM FILE ADDRESS

TCY 15 ADDRESS M(2, 15)

LDP 8 SET UP PB FOR CALL

TBIT1 3 M(2, 15, 3) = 1?

CALL FB CALL FB IF YES

LDP 7 RESTORE PROPER PAGE ADDRESS
Page 8

* SUBROUTINE TO FLIP BIT 3 OFF
FB RBIT 3 RESETS M(2, 15, 3) TO ZERO
RETN RETURN TO INSTRUCTION AFTER CALL

4-53

Concer 1

1.M(2,15,3) =0

| 15> Y |

I | DX

| I TCY

| 8—~>PB | LDP
TBIT1

CALL

| |
{ cALLFB
I I

| 7->PB |

CL CALL

NO

o © O © o O

' | 2. M(2,15,3) = 1

CL CALL

°o|»
s
x
=
-
-
>
]
@

FB LDX
r— - - — — = — 7 TCY
LDP 8
TBIT1 3
CALL FB

RBIT 3
0—>M(2,15,3) | RETN

YES

2
2
2
2
2
2
2

4.54

M M M M M M
- 0 © © © O o

I | wop 7

I RETN |

SECTION V

TMS 1100/1300

5-1 INTRODUCTION.
The following features are contained in an expanded ROM and RAM version of the TMS 1000
series:

TMS 1100
] Pin-for-pin compatible with the TMS 1000
] 16K-bit ROM, 2048 eight-bit instructions
° 512-bit RAM, 128 four-bit data words.

TMS 1300
) 16K-bit ROM
o 512-bit RAM
o 16 individually-latched R-outputs, 40-pin package.

The next three sections of this manual detail the functional differences between the
TMS 1000/1200 and the TMS 1100/1300. Thus, one should have read the previous four sections
before continuing.

5-2 DESIGN SUPPORT.

To simulate the TMS 1100/1300 the user may access an assembler and simulator via one of several
nationwide timeshare processing services. The assembler and simulator programs written by Texas
Instruments are now capable of aiding design work on the new devices in the TMS 1000 series (see
[1], [2], and [3] in Figure 5-2). In additio to software simulation, two methods of real-time
algorithm verification are available. The HE-2, hardware emulator [4], is a prototyping system with
a removeable memory board to debug the TMS 1000/1200 or a TMS 1100/1300 program. The
HE-2 provides several debug aids such as memory inspection, a single-step, and breakpoint, and
modification of all the programmable areas in the machine is done by a paper-tape reader.

For most applications, a System Evaluator-2 (TMS 1098/SE-2 [5]) is available for real-time
algorithm verification. The SE-2 is a P-channel MOS/LSI microprocessor that is identical to the
TMS 1100/1300 microcomputer with the ROM removed and the O-output register bits transferred
out directly. The user replaces the ROM with external memory devices such as PROM, EPROM or a
suitably loaded RAM. The program-counter, page-address, and chapter-address outputs select the
instruction word stored in the program memory which feeds into an 8-bit parallel instruction bus.
Then each instruction executes exactly like the TMS 1100/1300 standard-instruction-set
descriptions found in Section VII and VIII. An external decoder may be necessary to convert the
five-bit O-output code to the appropriate eight-bit code to completely simulate the O-output PLA.

5-1

START TMS 1100
PROGRAM

ORGANIZE
1/0, RAM

FLOW CHART
ROM CODE

{

{\

SOURCE
PROGRAM

(3)

HARDWARE

ASSEMBLER

COMPUTER
SIMULATION

oK
SIMULATION
COMPLETE

[&—————— EDIT

EDIT

SIMULATION

EDIT

PATTERN

MASKS

l SLICES

PROTOTYPE
CIRCUITS

TEST

OoK?

QRA AND
LOT ACCEPTANCE
SPECIFICATIONS

‘ PRODUCTION ’

FIGURE 5-1 TMS 1100/1300 SERIES ALGORITHM DEVELOPMENT

5-2

EDIT

SECTION VI

TMS 1100/1300 OPERATION

6-1 GENERAL.

The following sections concentrate on the differences between the TMS 1100/1300 and the
TMS 1000/1200 features. The user should first understand the TMS 1000/1200 architecture and
operation before reading the sections covering the following:

® Instruction Read-Only Memory

® Read/Write Random-Access-Memory
® Outputs

. Instruction PLA

® Fixed Instruction Decoder

° Standard Instruction Set.

The areas shaded in the TMS 1100/1300 functional block diagram (Figure 6-1.1) have been added
or improved to change the basic TMS 1000/1200 architecture to the new TMS 1100/1300 design.
The unshaded functional blocks operate per the previous TMS 1000/1200 descriptions unless stated
otherwise.

6-2 ROM ADDRESSING.

The TMS 1100/1300 features 2048 eight-bit instruction words stored permanently in the ROM.
Providing twice the TMS 1000/1200’s ROM capacity requires one additional addressing bit, for a
total of eleven bits. As previously described, the ROM is divided into 16 pages of 64 words each.
The TMS 1100/1300 ROM has two chapters each containing 16 pages. The following latches
control the chapter addressing:

1. CA — The chapter address latch stores the current chapter data.

2. CB — The chapter buffer latch stores the succeeding chapter data and transfers to the CA
pending the successful execution of a subsequent branch or call instruction.

3. CS — The chapter subroutine latch stores the return address after successfully executing a

call instruction (CA - CS). CS transfers data back to CA when the return from
subroutine (RETN) instruction occurs.

6-1

16,384 BITS

16

ARARCRRRLRRRR

1 TMS 1300 ONLY — 40 PDIP
O —————

INIT

dagdeded

F———— ———— — ——— = —————

_________ BEEL

Lo

PAGE DECODER X DECODER
10F4 g
@0
a 2 w
— T
PAGE =
6) '?:&“TAE“; ADDRESS 2
\ / REGISTER a
3 3
() a w
{1d | {1 |8
SUBROUTINE PAGE S CONSTANT &
RETURN BUFFER v 4 A K-INPUT LOGIC
REGISTER \/ REGISTER z -
4
- 4 —
CALL |~ 8
LATCH « CK1 BUS
- § —
BRANCH ADDRESS >
EXTERNAL
4
+|INITIALIZE
4 V} 4 \4} 4 a
) ¢
\ P-MUX / \ N-MUX /
—» BR — CKP
— CALL —» vTP 4 4
—® RETN — MTP
- COMC —& ATN ADDER/COMPARATOR
|—e LDP e NATN
—& LDX —e MTN 4 @
— COMX — 15TN
> TDO > CKN STATUS
—» SETR L CIN LOGIC
—&-RETR —» NE
—» sBIT —» C8
“—s RBIT —» STO
= CKM
ACCUMULATOR
| AUTA Y REGISTER REGISTER
AUTY —— 7
STSL U
4 1
ouTPUT i STATUS
OUTPUT PLA 5 REGISTER LATCH

TEBY

FIGURE 6-1.1 EXPANDED RAM/ROM TMS 1100 SERIES
FUNCTIONAL BLOCK DIAGRAM

6-2

To begin with, the three latches are reset upon application of power to the circuit. When software
control must shift to the other chapter, the complement chapter (COMC) instruction toggles the
chapter-buffer bit. At any time after this point either branches to a routine or calls to a subroutine
in chapter one is possible if status is equal to ONE. The following actions occur for the branch and
call instructions.

S=1CL=0 S=1CL=1 COMMENT
ACTION ACTION
BR
1) CB—~CA 1) CB—>CA Change Chapter
2) PB—> PA Only if CL = 0, change page
3) iw) - PC 3) Hw) > PC Change address on page
CALL
1) CA—~>CS Store chapter return
2)CB -~ CA 2)CB—>CA Change chapter
3) PB < PA 3) PA—PB Exchange only if CL =0
4) PC+1-> SR Store return address
5) {w) -~ PC 5) I{w) - PC Change address on page
6)1—-CL Store call mode

Note that if the call latch is set at the time of the branch, item 2) (S = 1) is skipped. To change the
page buffer (by LDP) is improper if CL =1 since PB holds the return address during the call mode.
However, branches between the two chapters are permissible without executing the load-page-buffer
(LDP) instruction during the call mode because actions 1) and 3) do occur. Thus, the size of the
TMS 1100/1300 subroutine has increased to 128 instructions from 64 instructions maximum. As
shown graphically in Figure 6-2.1, it is convenient to envision the ROM with adjacent pages that are
equal in number.

Call instructions in a subroutine are invalid if status is ONE since the return address in PB is
destroyed. Item 3) for the call instruction is PA > PB when the call latch is set.

If the status is ZERO due to the previous instructions effects, the branch or call is unsuccessfully
executed (PC + 1 » PC), and status returns to ONE. If the status is always ONE due to the previous
instruction (LDP or COMC for example), then the following branch or call is unconditional.

The return from subroutine instruction (RETN) causes the following actions.

RETN 1) SR~ PC CL=1
2) PB ~ PA
3)CS—~>CA
4)0—~>CL

CHAPTER 0 CHAPTER 1

LoP 11—
all 00
PAGE 0
y 7 .
m
m
: 2
PAGE 1
PAGE 2
PROGRAM FLOW
-
/
POWER ON
PAGE 15

FIGURE 6-2.1 ROM ORGANIZATION

If the call latch was not set by a previous call instruction, the SR is equal to PC + 1, and CS is equal
to CA. Therefore, the following summarizes the effect of the return instruction:

RETN 1 PC+1—>PC CL=0
2) PB—~> PA

The return instruction is not dependent on the status logic and leaves status set at ONE after
execution.

6-3 RAM ADDRESSING.

Since the TMS 1100/1300 RAM has twice the storage of a TMS 1000/1200 RAM, there is an
additional bit of addressing for a total of seven. As before, the RAM is organized into four-bit words
and each individual bit in a word can be set, reset, or tested once the X- and Y-address is fixed. To
accommodate a larger RAM, the load-X-register instruction (LDX) has the following format:

LsB MSB
10) 1(1) 1{2) «3) 1{4) 1{5) 1{6) 1(7)
o|o|1|0|1| F | FORMATYV
LDX Action: 1{5-7) > X
or
I(F) > X

6-4

The RAM is organized into eight files (addressed by X) each containing 16 four-bit words
(addressed by Y). The most-significant bit of X is decoded to address two halves of the Y-decoder.
The lower-order half of the Y-decoder is selected when Xy spg = 0 and only the low-order address
lines enable the R-output register bits.

The 16 R-output-register-address lines are only available when the X-register contents are between
zero and three, the most-significant bit being reset.

The TMS 1100/1300 complement X-register (COMX) causes only the most-significant bit to change
state. Thus, complement X will change the X-address from file zero-to-four, one-to-five, two-to-six,
three-to-seven, and vice-versa.

ﬁ

R-OUTPUT
REGISTER

16

RAM ARRAY
32 512 BITS
(16 X 4 X 8)

RAM

Y 4
DECODER

4 1 X DECODER
10F4
ﬁ
X REGISTER I
ﬁ

FIGURE 6-3.1 RAM ORGANIZATION

WRITE BUS

READ BUS

6-4 CONTROL AND DATA OUTPUTS.

6-4.1 R-OUTPUTS. In the TMS 1300 device 16 R-outputs are available and 11 are available in the
TMS 1100. The maximum stand-alone keyboard matrix scanned by the TMS 1300 is shown on the

next page.

The Y-register values select the appropriate bit for the SETR and RSTR instructions. Y-register
must be less than or equal to ten in the TMS 1100, and the X-register must be less then or equal to
three to address a R-output. The full Y-address range from zero-to-fifteen is usable by the
TMS 1300.

6-5

eRO

<«

&

<

<

s

<

< w

<

&

—&— R0

__<é_ R11

__<<_ R12

-—-<<—- R13

——<e R14

—(&— Ris

DETAIL

FIGURE 6-4.1 KEYBOARD MATRIX CONNECTIONS

6-6

6-4.2 O-OUTPUTS. The O-output configuration in the TMS 1100/1300 is identical to the
TMS 1000/1200. However, the clear-output-register instruction (CLO) was replaced by the new
complement-chapter (COMC) instruction. The effect of clearing the O-output register is obtained in
the TMS 1100/1300 by loading zero in the accumulator and the status latch and then performing
the transfer-data-out (TDO) instruction. In most cases, the above procedure is the normal sequence
for transferring out all data anyway; hence, there is no disadvantage in deleting the CLO instruction.

6-5 INSTRUCTION DECODERS.

The 54 instructions decoded by the instruction PLA and the fixed-instruction decoder comprise the
TMS 1100/1300 standard-instruction set. The 12 fixed instructions and 42 programmable
instructions are listed in Table 6-5.1 with their corresponding fixed- and programmable-
microinstructions. The TMS 1100/1300 standard-instruction set, which was designed for maximum
flexibility, will be used by most programs. However, if timing or other considerations dictate an
instruction’s redefinition, contact the MOS Division in Houston, Texas. To aid users who need to
microprogram the instruction set, Section IX contains helpful hints and guidelines for redefining
instructions.

6-5.1 THE INSTRUCTION-PROGRAMMABLE-LOGIC ARRAY. The shaded functional blocks in
Figure 6-5.1 are affected by the 16 programmable-microinstructions. The effect of enabling a given
microinstruction is described in Table 6-5.2 and is identical to the TMS 1000/1200 operation. To
provide a starting point for user algorithms, the standard coding for the instruction PLA should be
used. The standard mnemonics and instruction definitions are resident in the Texas Instruments
TMS 1100/1300 Assembler and Simulator Programs; so, users can begin algorithm designs readily
and check-out may be accomplished with the SE-2. With the standard definitions for
TMS 1100/1300 instructions, an automatic test generation program provides complete functional
and parametric testing capability for every user’s custom ROM and output PLA design.

The PLA schematic in Figure 6-5.2 shows the gate-mask coding for the standard instruction’s
microinstructions listed in Table 6-5.2. Figure 6-5.3 shows the SE-2 gate-placement option which is
used to generate the PLA coding for the TMS 1100/1300 standard instructions (Table 6.5-1). This
coding is the default OPCPLA description stored in the TMS 1100/1300 simulator (and can be
punched in paper tape for loading the instruction definitions into the HE-2 instruction-PLA RAMs).

6-5.2 THE FIXED-INSTRUCTION DECODER. The 12 fixed instructions are decoded by fixed
logic and cannot be changed. Every program must use the assigned opcode values as described by
Table 6-5.1. The fixed microinstructions emanating from the bottom of the fixed-instruction
decoder in Figure 6-5.4 fan out to the shaded logic blocks that they affect. The mnemonics have a
one-to-one correspondence between the fixed instructions and their microinstructions because the
standard instruction set uses one microinstruction (no programmable microinstruction) per fixed
instruction (see Table 6-5.1).

6-7

TABLE 6-5.1 TMS 1100/1300 MICROINSTRUCTION INDEX

Microinstructions

Mnemonic Opcode Fixed Programmable
A2AAC 0 1 1 1 1 0 0 0 CKP,ATN,CIN,C8 AUTA
A3AAC 0 1 1 1 0 1 0 0 CKP,ATN,CIN,C8,AUTA
A4AAC 0 1 1 1 1 1 0 0 CKP,ATN,CIN,C8,AUTA
ABAAC 0 1 1 1 0 0 1 0 CKP,ATN,CIN,C8 AUTA
ABAAC 0 1 1 1 1 0 1 0 CKP,ATN,CIN,C8, AUTA
A7AAC 0 1 1 1 0 1 1 0 CKP,ATN,CIN,C8 AUTA
ABAAC 0 1 1 1 1 1 1 0 CKP,ATN,CIN,C8 AUTA
A9AAC 0 1 1 1 0 0 0 1 CKP,ATN,CIN,C8 AUTA
A10AAC 0 1 1 1 1 0 0 1 CKP,ATN,CIN,C8,AUTA
A11AAC 0 1 1 1 0 1 0 1 CKP,ATN,CIN,C8 AUTA
A12AAC 0 1 1 1 1 1 0 1 CKP,ATN,CIN,C8,AUTA
A13AAC 0 1 1 1 0 0 1 1 CKP,ATN,CIN,C8 AUTA
A14AAC 0 1 1 1 1 0 1 1 CKP,ATN,CIN,C8 AUTA
ALEM 0 0 0 0 0 0 0 1 MTP,NATN,CIN,C8
AMAAC o 0 0 0 0 1 1 0 ATN,MTP,C8,AUTA

BR 1 0 w BR

CALL 1 1 w CALL

CLA 0 1 1 1 1 1 1 1 CKP,CIN,C8,AUTA
cOoMC 0 0 0 0 1 0 1 1 CcoMC

COMX 0 0 0 0 1 0 0 1 COMX

CPAIZ 0 0 1 1 1 1 0 1 NATN,CIN,C8,AUTA
DAN 0 1 1 1 0 1 1 1 CKP,ATN,CIN,C8 AUTA
DMAN 0 0 0 0 0 1 1 1 MTP,15TN,C8,AUTA
DYN 0 0 0 0 0 1 0 0 YTP,15TN,C8 AUTY
IAC 0 1 1 1 0 0 0 0 CKP,ATN,CIN,C8,AUTA
IMAC 0 0 1 1 1 1 1 0 MTP,CIN,C8 AUTA

1YC 0 0 0 0 0 1 0 1 YTP,CIN,C8,AUTY
KNEZ 0 0 0 0 1 1 1 0 CKP,NE

LDP 0 0 0 1 C LDP

LDX 0 0 1 0 1 F LDX

MNEA 0 0 0 0 0 0 0 0 MTP,ATN,NE

MNEZ 0 0 1 1 1 1 1 1 MTP,NE

RBIT 0 0 1 1 0 1 B RBIT

RETN 0 0 0 0 1 1 1 1 RETN

RSTR 0 0 0 0 1 1 0 0 RSTR

SAMAN 0 0 1 1 1 1 0 0 MTP,NATN,CIN,C8,AUTA
SBIT 0 0 1 1 0 0 B SBIT

SETR 0 0 0 0 1 1 0 1 SETR

TAM 0 0 1 0 0 1 1 1 STO

TAMDYN 0 0 1 0 0 1 0 0 STO,YTP,15TN,C8,AUTY
TAMIYC 0 0 1 0 0 1 0 1 STO,YTP,CIN,C8 AUTY
TAMZA 0 0 1 0 0 1 1 0 STO,AUTA

TAY 0 0 1 0 0 0 0 0 ATN,AUTY

TBIT1 0 0 1 1 1 0 B CKP,CKN,MTP,NE

TCY 0 1 0 0 Cc CKP,AUTY

TCMIY 0 1 1 0 C CKM,YTP,CIN,AUTY
TDO 0 0 0 0 1 0 1 0 TDO

TKA 0 0 0 0 1 0 0 0 CKP,AUTA

TMA 0 0 1 0 0 0 0 1 MTP,AUTA

™Y 0 0 1 0 0 0 1 0 MTP,AUTY

TYA 0 0 1 0 0 0 1 1 YTP,AUTA

XMA 0 0 0 0 0 0 1 1 MTP,STO,AUTA

YNEA 0 0 0 0 0 0 1 0 YTP,ATN,NE,STSL
YNEC 0 1 0 1 [YTP,CKN,NE

6-8

WRITE BUS

X DECODER
B PAGE DECODER Zz\ 1 N oF
ﬁ ﬁ
—
PROGRAM PAGE | X REGISTER]
6] coUNTER ADDRESS
REGISTER 3
6 7
6 4

READ BUS

,_ i
| ﬁ | TMS 1300 ONLY — 40 PDIP 1
r—— -
| R-OUTPUT
| REGISTER
] ROM ROM ARRAY 16
PC :Eggg;m 128 16,384 BITS
I (64 X8X16X2) RAM ARRAY
32 512 BITS
| /\ (16 X4 X 8)
6 1 I

I RAM

cA Y 4
l m DECODER

cs
|

SUBROUTINE PAGE

RETURN BUFFER
REGISTER \/ REGISTER

PAN ‘ -

INSTRUCTION BUS

CONSTANT &
4 /| K-INPUT LOGIC

m CALL 2
LATCH u CKI BUS
I & — |
(@ > <
BRANCH ADDRESS > |
|
@ > N exrenmat |
} INPUTS |
t
INIT I 7 iNITIALIZE [
: INSTFRIﬁg'?mN 'NST;'EXT'ON 8 SR |
| DECODER
| — BR —e CKP |
| = CALL —e YTP |
—» RETN e MTP
| 5. coMC > ATN |
] — LDP e NATN [
| [LDX —» MTN CIN
| —® coMX —e 15TN ‘
-~ TDO —» CKN |
I —» SETR I cIN
- RSTR —» ME |
| [SBIT —» C8 |
| L RBIT — STO |
—p CKM
ACCUMULATOR
| —» AUTA Y REGISTER REGISTER |
| | —» AUTY —T1— |
L STSL
| L |
|
OUTPUT 1
| OUTPUT PLA 5 REGISTER |
| [
| |

T @wﬁf@@@ ““““]

FIGURE 6-5.1 TMS 1100/1300 FUNCTIONAL BLOCKS AND
PROGRAMMABLE MICROINSTRUCTIONS

-

6-9

TABLE 6-5.2 TMS 1000 SERIES PROGRAMMABLE MICROINSTRUCTIONS

E ti
xecution Mnemonic Affected Logic Function
Sequence

1 CKP P-MUX CK! to P-adder input
YTP P-MUX Y-register to P-adder input
MTP P-MUX Memory (X,Y) to P-adder input

1 ATN N-MUX Accumulator to N-adder input
NATN N-MUX Accumulator to N-adder input
MTN N-MUX Memory (X,Y) to N-adder input
156TN N-MUX F16 to N-adder input
CKN N-MUX CKI1 to N-adder input

1 CIN Adder One is added to sum of P plus N inputs (P+N+1)}
NE Adder/Status Adder compares P and N inputs. If they are identical,

status is set to zero.

Cc8 Adder/Status Carry is sent to status (MSB only)

2 STO Write MUX Accumulator data to memory
CKM Write MUX CKI to memory

3 AUTA AU Select Adder result stored into accumulator
AUTY AU Select Adder result stored into Y-register
STSL Status Latch Status is stored into status latch

6-10

AND OR
14 \ 20 Y
scassszas ALY
>
o El = ~ISI=
¥ iwlol=|2]| 2
— SQUIHEIE E 5 3F°<<g
i
|
—
—~
| Sy
-0 -0 MNEA
> & ALEM
Q o> + H-YNEA
1 ot XMA
ol > DYN, TAMDYN
'—D IYC, TAMIYC
Q‘D AMAAC
g ! 5> & DMAN
L &1 o] -6 oo TKA
N 7.\ KNEZ
>_¢_ F S & TAY
IO——D o P ™A
0 o> r: .Y >-1-d T™MY
1
&> & oo -|-TYA
)\ &1 | & | TamDYN. TAMIVE
TAMZA
> :I-—e——-D & TAM
o & o> ! TBIT
o> oldle SAMAN
I;——D o101 CPALZ
IMAC
o> o160
MNEZ
) A
o o e
D &1 YNEC
TCMIY
? 9610 ®—AC DN, GLA. AGIAC,
D A2/3/.../13/14AAC
- ool > r‘ i cta ,
CY Y (Y TA AN ”
o1 3 6 0 o o o ©°

INPUTS FROM ROM
INSTRUCTION BUS

FIGURE 6-5.2 TMS 1100/1300 STANDARD INSTRUCTION PLA

6-11

OPCPLA

OPX 00=MTP, ATN, NE; MNEA

OPX 01 =MTP, NATN, CIN, C8; ALEM

OPX 02 =YTP, ATN, NE, STSL; YNEA

OPX 03 =STO, MTP, AUTA; XMA

OPB 00 —00100= YTP, 15TN, AUTY, C8; DYN, TAMDYN
OPB 00— 00101 = YTP, CIN, AUTY, C8; IYC, TAMIYC
OPX 06 =MTP, ATN, AUTA, C8; AMAAC

OPX 07 =MTP, 15TN, AUTA, C8; DMAN

OPX 08 =CKP, AUTA; TKA

OPX OE=CKP, NE; KNEZ

OPX 20= ATN, AUTY; TAY

OPX 21 =MTP, AUTA; TMA

OPX 22 =MTP, AUTY; ™Y

OPX 23=YTP, AUTA; TYA

OPB 0010010 —=STO, YTP, 156TN, CIN, AUTY, C8; TAMDYN, TAMIYC
OPX 26=STO, AUTA; TAMZA

OPX 27 =STO; TAM

OPB 001110 — — = CKP, CKN, MTP, NE; TBIT1

OPX 3C=MTP, NATN, CIN, AUTA, C8; SAMAN

OPX 3D =NATN, CIN, AUTA, C8; CPAIZ

OPX 3E =MTP, CIN, AUTA, C8; IMAC

OPX 3F = MTP, NE; MNEZ

OPB 0100 — — — — = CKP, AUTY; TCY

OPB 0101 — — — — = YTP, CKN, NE; YNEC

OPB 0110 — — — — = CKM, YTP, CIN, AUTY; TCMIY

OPB 0111 — —— —=CKP, ATN, CIN, AUTA, C8; IAC, DAN, A2/3/.../13/14AAC, CLA, AC1AC
OPX 7F =CKP, CIN, AUTA, C8; CLA

FIGURE 6-5.3 TMS 1100/1300 STANDARD INSTRUCTION PLA CODING

6-12

INIT

VRV,

128

- ~N
- -
[+ o«

™
-
4

TMS 1300 ONLY — 40 PDIP

R14
R15

| ROM ROM ARRAY 16
pC :E(C?gi\)gm 16,384 BITS
' | {64 X 8 X 16 X 2} RAM ARRAY
32 512 BITS
l r (16 X4 X 8)
I RAM
Y 4
I DECODER
A\ 4 X DECODER
l 10F4 @
2
I]
2 w
=
r <
| -
.. w
| (] [F SBIT
®» LDX 3~ Leomx)
[g 4 RBIT
o w
| g -
| o
| 5 |
| 2 CONSTANT &
| 3 4) K-INPUT LOGIC
E —
[4
! @ —]
| = CKI BUS
L - 3 1
<
BRANCH ADDRESS >
7 EXTERNAL
! INPUTS
| / 4
»INITIALIZE
I PE——
| FIXED 4 v 4 a 4
| INSTRUCTION 'NST::S:T'ON 8 AV
I DECODER \ P-MUX / \ N-MUX /
| —» BR —» CKP
[L cALL —» vTP 4 4
| —8> RETN I—» MTP
—- COMC — ATN ADDER/COMPARATOR
| —» LDP s NATN
| —= { DX [—e MTN
I —8~ COMX — 15TN ¢ 2
s TDO l— CKN
o STATUS
| L —» SETR o LOGIC
[RSTR —» NE
| I sBIT —» c8
| L— RBIT — STO
| CKM
| l—» AUTA Y REGISTER AC;EGM,Z#:;OR
s AUTY |
; L—» STSL {1}
sTaTus |
1
| OUTPUT PLA 5 LATCH
I {} -
L — e

_________ JRVRVRVRS:

FIGURE 6-5.4 TMS 1100/1300 FUNCTIONAL BLOCKS AND
FIXED MICROINSTRUCTIONS

6-13

TEBY

SECTION VII

CROSS-REFERENCE TABLES TMS 1100/1300

This section provides the user with a quick-reference to the 40 TMS 1100/1300 instructions.
Symbolic descriptions and paragraph references help rapid understanding of the standard
instruction set.

Table 7-1 lists the instructions by function

Table 7-2 lists the instructions alphabetically

Table 7-3 lists the microinstructions for each instruction
Table 7-4 lists the instructions by binary machine code

Figure 7-1 is a hexadecimal-instruction map.

7-1

TABLE 7-1 TMS 1100/1300 STANDARD INSTRUCTION SET

Status Explained
Function Mnemonic Effect Description In Para. %
C8 | NE
Register-to- | TAY Transfer accumulator to Y register 4-2.1
Register TYA Transfer Y register to accumulator 4-2.2
Transfer CLA Clear accumulator 4-2.3
TAM Transfer accumulator to memory 431
TAMIYC Y Transfer accumulator to memory and increment Y register. If carry, 84.1
Register to one 1o status.
Memory TAMDYN Y Transfer accumulator to memory and decrement Y register. If no 84.2
borrow, one to status.
TAMZA Transfer accumulator to memory and zero accumulator 4-3.3
Memory to TMY Transfer memory to Y register 4-3.4
Register TMA Transfer memory to accumulator 435
XMA Exchange memory and accumulator 4-3.6
AMAAC Y Add memory to accumulator, results to accumulator. If carry, one 441
to status
SAMAN Y Subtract accumulator from memory, results to accumulator. If no 442
borrow, one to status.
IMAC Y Increment memory and load into accumulator. If carry, one to status 443
DMAN Y Decrement memory and load into accumulator. If no borrow, one 444
to status.
IAC Y Increment accumulator. If no carry, one to status. 84
DAN Y Decrement accumulator. if no borrow, one to status. 84
A2AAC Y Add 2 to accumulator. Results to accumulator. If carry one to status. 84
A3AAC Y Add 3 to accumulator. Results to accumulator. If carry one to status. 84
A4AAC Y Add 4 to accumulator. Results to accumulator. If carry one to status. 84
Arithmetic | ABAAC Y Add 5 to accumulator. Results to accumulator. If carry one to status. 84
ABAAC Y Add 6 to accumulator. Results t0 accumulator. If carry one to status. 84
A7AAC Y Add 7 to accumulator. Results to accumulator. If carty one to status. 84
ABAAC Y Add 8 to accumulator. Results to accumulator. If carry one to status. 84
A9AAC Y Add 9 to accumulator. Results to accumulator. If carry one to status. 8-4
A10AAC Y Add 10 to accumulator. Results to accumulator. If carry one to status. 84
AT11AAC Y Add 11 to accumulator. Results to accumulator. If carry one to status. 8-4
A12AAC Y Add 12 to accumulator. Results to accumulator. If carry one to status. 8-4
A13AAC Y Add 13 to accumulator. Results to accumulator. If carry one to status. 84
A14AAC Y Add 14 to accumulator. Results to accumulator. If carry one to status. 84
IYC Y Increment Y register. If carry, one to status. 446
DYN Y Decrement Y register. If no borrow, one to status. 4-4.8
CPAIZ Y Complement accumulator and increment. If then zero, one to status. 4-4.12
Arithmetic ALEM Y If accumulator less than or equal to memory, one to status. 4-5.1
Compare
MNEA Y If memory is not equal to accumulator, one to status. 85
Logical MNEZ Y If memory not equal to zero, one to status. 4-6.1
Compare YNEA Y If Y register not equal to accumulator, one to status and status latch. 4-6.2
YNEC Y If Y register not equal to a constant, one to status. 4-6.3
Bits in SBIT Set memory bit. 4-7.1
Memory RBIT Reset memory bit 4-7.2
TBIT1 Y Test memory bit. If equal to one, one to status. 4-6.3
Constants TCY Transfer constant to Y register 48.1
’ TCMIY Transfer constant to memory and increment Y 4-8.2
Input KNEZ Y If K inputs not equal to zero, one to status 49.1
TKA Transfer K inputs to accumulator 4-9.2
SETR Set R output addressed by Y 8-6.1
Output RSTR Reset R output addressed by Y 8-6.2
TDO Transfer data from accumulator and status latch to O outputs 4-10.3
RAM X LDX Load X with file address 8-7.1
Addressing | COMX Complement the MSB of X 8-7.2
BR Branch on status = one 88.1
ROM CALL Call subroutine on stf_:tus = one 8-8.2
Addressing RETN Return from subroutine 88.3
LDP Load page buffer with constant 4124
COMC Complement chapter buffer 8-8.4

IThe TMS 1100/1300 instruction values are different from the TMS 1000/1200 opcodes given in Section IV. The correct values are
found in Tables 7-2 through 7-4.

7-2

TABLE 7-2 TMS 1100/1300 ALPHABETICAL MNEMONIC REFERENCE

Mnemonic Opcode Binary O::(;?(de Action C:tatu:' E s:rf:;::::
AC1AC 01 11 c 7 — | A+C+1>A Y 84
ALEM 00 O0O0OOT O 1 01 | ASMIX,Y) Y 45.1
AMAAC 0000O0T1T10 0 6 | MIX,Y)+A—>A Y 4-4.1
S=1,CL=0 S=1,CL=1
CB—~>CA CB—~>CA
PB —>PA W) > PC
BR 10 w — 1{w) — PC 8-8.1
S=0,CL=10R0
PC+1—>PC
1—>8
S=1,CL=0 S=1,CL=1
CA—>CS CB—>CA
CB—~>CA PA —>PB
CALL 11 w _ PB < PA W) ~>PC 88.2
PC+1 >8R $=0,CL=10RO
1(W)—=>PC PC+1—>PC
1—>CL 1->8
CLA o1 111111 7 F|0~>A 42.3
CcoMC 00001011 0 B | CB—~cCB 8-8.4
COMX 00001001 0 9 | Xmsg > XmsB 8-7.2
CPAIZ 00111101 3 D|A+1>A Y 4-4.12
DMAN 000O0O0T1 11 0 7 | MIX,Y)—1—>A Y 44.4
DYN 000O0O0O1 00 04 |Y—-1—>Y Y 448
IMAC 00111110 3 E | MIX,Y)+1—~>A Y 443
IYC 000O0O0OT1O01 05 |Y+1—>Y Y 446
KNEZ 00001110 0 E | Kgg,2,170 Y 4-4.1
LDP 0001 c 1 — | C—>PB 4-12.4
LDX 00101 F 2 — | F>X 8-7.1
MNEA 000O0O0DOO0O 0 0 | MIX,Y)#A Y 8.5
MNEZ 00111111 3 F | MIX,Y)¥#0 Y 46.1
RBIT 001101 B 3 — | 0>M(X,V,B) 472
CL=1 CcL=0
SR—>PC PC +1—>PC
RETN 000O0T1TT1T 11 0 F | PB>PA PB > PA 8-8.3
CS—>CA
0—~>CL
RSTR 000O0C1T 100 0 C | 0—>RI(Y) 86.2
SAMAN 00111100 3 C | MIX,Y)—A—>A Y 442
SBIT 001100 B 3 — | 1>M(X,V,B) 4-7.1
SETR 00001101 0 D | 1=>RI{Y) 8-6.1
TAM 00100111 2 7 | A= MIXY) 4-3.1
TAMDYN 00100100 2 4 | ASPMIX,Y); Y —1—Y Y 83.2
TAMIYC 00100101 2 5 | AMIXY);Y+1—=>Y Y 8-3.1
TAMZA 00100110 2 6 | AMIX,Y);0~>A 4-3.3
TAY 001000O0TO00O 2 0 | A>Y 421
TBIT1 001110 B 3 — | MIX,Y,B)=1 Y 4-7.3
TCY 0100 c 4 — | Cc~>Y 48.1
TCMIY 0110 c 6 — | CoMIX,Y);Y+1>Y 482
TDO 00001010 0 A | A, SL~>0 REGISTER 4-10.3
TKA 00001000 0 8 | Kga2,1>A 49.2
TMA 00100001 2 1 | MIX, Y)~>A 435
T™MY 001000T10 2 2 | MIX,Y)>Y 4-3.4
TYA 00100011 2 3 |Y—=>A 4-2.2
XMA 000O0OGOT1 1 0 3 | MIX,Y)<A 436
YNEA 000O0O0OT1O 0 2 | Y#A,S—>SL Y 4-6.2
YNEC 0101 c 5 — | Y#C Y 46.3

* Opcodes 70 through 7E perform the instructions having the following mnemonics: IAC, DAN, A2AAC, A3AAC, A4AAC, AGAAC,
ABAAC, A7AAC, ABAAC, A9AAC, A10AAC, A11AAC, A12AAC, A13AAC, A14AAC. See Figure 7-1.

TABLE 7-3 TMS 1100/1300 MICROINSTRUCTION INDEX

Mnemonic Opcode Microinstructions

Fixed Programmable
AC1AC 01 11 Cc CKP,ATN,CIN,C8 AUTA
ALEM 00O00O 000 1 MTP,NATN,CIN,C8
AMAAC 0 00O 0110 ATN,MTP,C8 AUTA
BR 10 W BR
CALL 1 1 W CALL
CLA 01 11 11 1 1 CKP,CIN,C8,AUTA
comC 0 00O 10 1 1 comc
COMX 00O00O 10 01 COMX
CPAIZ 00 11 11 01 NATN,CIN,C8,AUTA
DMAN 00O00O0 o1 11 MTP,16TN,C8,AUTA
DYN 00O00O 0100 YTP,15TN,C8, AUTY
IMAC 00 11 1110 MTP,CIN,C8, AUTA
Iyc 0000 0101 YTP,CIN,C8 AUTY
KNEZ 00O00O0 1110 CKP,NE
LDP 0001 C LDP
LDX 0010 1 F LDX
MNEA 00O00O 0000 MTP,ATN,NE
MNEZ 00 11 11 11 MTP,NE
RBIT 00 11 01 B RBIT
RETN 0 00O 11 11 RETN
RSTR 00O0O 1100 RSTR
SAMAN 00 11 1100 MTP,NATN,CIN,C8 AUTA
SBIT 00 11 00 B SBIT
SETR 0000 11 0 1 SETR
TAM 0010 o1t 11 STO
TAMDYN 0010 0100 STO,YTP,15TN,C8,AUTY
TAMIYC 0010 010 1 STO,YTP,CIN,C8,AUTY
TAMZA 0010 0110 STO,AUTA
TAY 0010 0 00O ATN,AUTY
TBIT1 0 0 11 0 B CKP,CKN,MTP,NE
TCY 0100 Cc CKP,AUTY
TCMIY 0110 Cc CKM,YTP,CIN,AUTY
TDO 00O00O0 1010 TDO
TKA 0 00O 1 000 CKP,AUTA
TMA 0010 0 0 01 MTP,AUTA
T™MY 0010 0010 MTP,AUTY
TYA 0010 00 11 YTP,AUTA
XMA 00O00O 00 11 MTP,STO,AUTA
YNEA 00O00O0 0010 YTP,ATN,NE,STSL
YNEC 01 0 1 C YTP,CKN,NE

*The same programmable microinstructions perform the following instructions having opcodes 70 through 7E:
IAC, DAN, A2AAC, A3AAC, A4AAAC, ASAAC, AGAAC, ATAAC, ABAAC, A9AAC, A10AAC, A11AAC, AT2AAC,
A13AAC, A14AAC. Note the PLA Diagram, Figure 6-5.3.

7-4

TABLE 7-4 TMS 1100/1300 BINARY INSTRUCTION LIST

R . Opcode . . Status Reference
Opcode Binary List Hex Mnemonic Action C8 NE Paragraph
000O0OGOGOO0 0 0 MNEA M (X, Y)#A Y 85
00O0O0OOT O 1 0 1 ALEM ASIM(X,Y) Y 4-5.1
000O0O0COT1O0 0 2 YNEA Y#A;S—>SL Y 4-6.2
000O0O0OO0T1 1 0 3 XMA M (X,Y) <A Y 4-3.6
000O0O0OT100 0 4 DYN Y—-1=Y Y 4438
000O0O0OT1O0 1 0 5 Iye Y+1>Y 446
0111 11 11 7 F CLA 0—>A Y 423
000O0O0OT1 1 1 0o 7 DMAN MIX,Y)—1—>A 444
00001000 0o 8 TKA Kg, 4,2,1>A 4.9.2
0 00O0T11TO0O0M1 0 9 COMX X msB ~XmsB 8-7.2
00001010 0 A TDO A, SL—~>0 REGISTER 4-10.3
000010 11 0 B comMc CB—~cCB 8-8.4
00001100 0 C RSTR 0->RIY) 8-6.2
00001101 0D SETR 1->R(Y) 86.1
00001110 0 E KNEZ Kg, 4,2 170 Y 49.1
CL=1 CL=0
SR —~>PC PC +1->PC
00O0O0 1 11 0 F RETN PB —>PA PB = PA 88.3
CS—>CA
0—>CL
00 0 1 C 1 - LDP C—>PB 4-12.4
001 00O0CO0OO 2 0 TAY A=Y 421
001000O0GO01 2 1 TMA M(X,Y) > A 435
00100G10 2 2 ™Y M(X,Y)—>Y 4-34
0010001 1 2 3 TYA Y=>A 4-2.2
00100100 2 4 TAMDYN A->MIX,YLY —1-=>Y Y 83.2
00100101 2 5 TAMIYC A=MIXY);Y+1=>Y Y 8-3.1
00100110 2 6 TAMZA A—=>M(X,Y);0~>A 433
00100111 2 7 TAM A—>MI(X,Y) 4-3.1
00101 F 2 - LDX c>X 8-7.1
001100 B 3 - SBIT 1> MI(X,Y,B) 4-7.1
001101 B 3 - RBIT 0—~>M(X, Y, B) 4-7.2
001110 B 3 — TBITY M(X,Y,B) =1 Y 4-7.3
00111100 3 C SAMAN M(X,Y) —-A—>A Y 4-42
00111101 3 D CPAIZ A+1—>A Y 4-4.12
00111110 3 E IMAC M(X,Y)+1—>A Y 4-4.3
00111111 3 F MNEZ M(X,Y}#0 Y 46.1
0100 c 4 — TCY c—>Y 4.8.1
01 0 1 c 5 — YNEC Y #C Y 4-6.3
0110 c 6 — TCMIY CoM XY Y+1=>Y 4-6.2
00000110 06 AMAAC M(X,Y) + A—>A Y 441
01 1 1 c 7 - AC1AC* A+C+1=>1 Y 84
(l s=1,cL=0 S=1,CL=1
CB—~>CA CB—>CA
PB —>PA W) ~>PC
10 w - - BR W) = PC 8-8.1
§=0,CL=10RO0
PC +1->PC
Y 1->8§
(1 s=1,cL=0 S=1,CL=1
CA—>CS CB—~>CA
CB = CA PA —>PB
11 w - - CALL PB < PA W) = PC 88.2
PC +1—>SR $=0,CL=10R0
HW) = PC PC +1—>PC
(| 1-cL 1->§]

*Opcodes 70 through 7E perform IAC, DAN, A2AAC, A3AAC, A4AAC, ABAAC, ABAAC, A7AAC, ABAAC, ASAAC, A10AAC, A11AAC,
A12AAC, A13AAC, and A14AAC.

7-5

MACHINE INSTRUCTION CODE

1oy 11 12y 13) | 14 1y ue) 17

MSB S8

z

0 1 2 3| a 5 6 | 7 | 8 9 A 8 c | D | E F

o Imnea |aLemivnea [xma |pyn | ive jamaac DMA»l TKA |comx | TDO [comc |RsTR lssmknez RETN
1 LDP
2 |vay | tma| tay | Tva| TAM- ITOM TAM- | TAm LDX
3 SBIT RBIT TBIT lSAMAN craiz| IMAC [MNEZ
4 TCY
5 YNEC
6 TeMIY

7 Liac |asaac|asaac |a13aaGA3AAC |ATIAAC| ATAAC| DAN |A2AAC IAIDAAC | AGAAC|A14AAC| AGAAC |A12AACIABAAC| CLA

— BR

CALL

*C = constant; B = bit address; W = memory address; F = file address

FIGURE 7-1 TMS 1100/1300 STANDARD INSTRUCTION MAP

7-6

SECTION VIII

TMS 1100/1300 STANDARD-INSTRUCTION DESCRIPTION

8-1 GENERAL.

There are 40 basic TMS 1100/1300 instructions in the standard-instruction set. Tables 7-1 through
7-4 summarized the instruction set in various ways. The instruction values are different from the
TMS 1000/1200 and there are new instructions added.

8-2 TMS 1000/1200 vs TMS 1000/1300 INSTRUCTIONS.

8-2.1 DIFFERENCES IN DEFINITION. The load-X-register instruction (LDX) has a larger operand
field creating a new format (V) for that instruction. COMX affects the MSB only in the
TMS 1100/1300 (in the TMS 1000/1200 COMX complemented the entire X-register contents).

The complement-chapter instruction (COMC) displaces the TMS 1000/1200’s CLO instruction.

The add-constant plus-one-to accumulator (with carry — status), AC1AC , will perform the
A6/8/10AAC, 1A, and DAN TMS 1000/1200 instructions. The increment-accumulator instruction
(IA) in the TMS 1000/1200 is now performed by AC1AC 0 which sends a zero to status if there is
no carry. Decrement accumulator (DAN) is replaced by AC1AC 14. The ALEC instruction is not
included in the TMS 1100/1300 instruction set; therefore, the AC1AC must be used. In this case
the operand contains the two’s complement of the ALEC operand and subtraction is the effect.
Note, however, that each time AC1AC is performed, the results are stored in the accumulator. For
this reason instructions saving the accumulator temporarily and restoring the contents may be
needed.

The TAMIYC replaces the TAMIY instruction, allowing loop control with the carry information.
The MNEA and TAMDYN are new instructions in the TMS 1100/1300 repertoire.

Table 8-2.1 shows a cross-reference for the TMS 1100/1300 and TMS 1000/1200 instructions. The
shaded areas indicate either changes in opcodes, mnemonics, or actions.

8-1

TABLE 8-2.1 TMS 1000 SERIES INSTRUCTION CROSS REFERENCE

TMS 1100/1300 TMS 1000/1200
Mnemonic Opcode Binary Opcode Action Mnemonic O:_)izc))(de
3 ALEC* 7 -
< , ALEM 29
M(X,Y)+A—> A AMAAC 2 5
S=1,CL=0 S
PB ~ PA W) - PC
BR 10 w —_ 1(W) > PC BR —
S=0,CL=10RO
PC+1—->PC
1->8
PA - PB
CALL 11 W — PB < PA 1{(W) > PC CALL —_
PC+1-SR §=0,CL=10RO
(W) = PC PC+1—~>PC
1-CL 1-+8
CLA 2 F
cLo™* 0B
COMX 00
CPAIZ 2 D
M(X,Y) - 1->A DMAN 2 A
Y-1-Y DYN 2 C
M(X,Y)+1—=A IMAC 2 8
Y+1-=>Y 1YC 2 B
Kga21#0 KNEZ 09
0001 [1 - C—PB LDP 1 -
B3 LDX 3 -
M(X,Y)#0 MNEZ 2 6
001101 B 3 - 0~ M(X,Y.B) RBIT 3 -
CL=1 CL=0
SR > PC PC+1-PC
RETN 00001111 0 F PB - PA RETN 0 F
RSTR RSTR 0 C
SAMAN SAMAN 2 7
SBIT 1> M(X,Y,B) SBIT 3 -
1 - R(Y) SETR 0D
- M(X,Y) TAM 03
TAMIY 20
TAMZA A~ M(XY);0—->A TAMZA 0 4
TAY A-Y TAY 2 4
TBIT1 001110 B 3 - M(X.,Y B} =1 TBIT1 3 -
TCY 0100 C 4 - c~>Y TCY 4 —
TCMIY 0110 C 6 - CMX Y Y+1—-Y TCMIY 6 —
TDO 00001010 0 A A, SL > OREGISTER TDO 0 A
TKA 00001000 08 Kga21~A TKA 08
TMA 00100001 2 1 M(X,Y) -~ A TMA 21
T™MY 00100010 2 2 M(X,Y) =~ Y ™Y 2 2
TYA 00100011 2 3 Y—=>A TYA 2 3
XMA : % M(X,Y) < A XMA 2 E
YNEA 00000010 0 2 Y#A,S—SL YNEA 0 2
YNEC 0101 C 5 — Y#C YNEC 5 —

"ALEC replaced by AC1AC. AC1AC is synonymous with DAN, 1IAC, A6AAC, A8/10AAC and both are accepted by the TMS 1100 and 1300
assembler.
**CLO replaced by COMC.

8-2

8-2.2 INSTRUCTION FORMATS. Format V is a new TMS 1100/1300 format. Format V, used for
LDX, has a three-bit operand because the X-register contains three bits (see paragraph 8-5.1).

Instruction Format I:

Instruction Format II:

0 1 2 3 4 5 6 7

Instruction Format I11:

0 1 2 3 4 65 6 7

oP B
l 1 i | | |

LSB MSB

[nstruction Format IV:

0 1 2 3 4 b 6 7

Instruction Format V:

0 1 2 3 4 5 6 7

8-3

8-3 REGISTER-TO-MEMORY TRANSFER.

The register-to-memory transfer instructions that are unique to the TMS 1100/1300 are the
TAMIYC and TAMDYN instructions.

8-3.1 TRANSFER ACCUMULATOR-TO-MEMORY AND INCREMENT Y REGISTER.

MNEMONIC: TAMIYC 6 1 2 3 4 5 & 9
Or0|1IO'0I1l0]1

STATUS: Carry into status]] I | |] |
FORMAT: v
ACTION: A~ M(X,Y)

Y+1-Y

1~>8ify=15 Initial condition

0->SifY<15 e ons

PURPOSE: The Y register sequentially addresses a file of 16 RAM words, and the addressed words
are set to the accumulator value(s), during initialization for example.

DESCRIPTION: The contents of the accumulator are stored in the memory location addressed by
the X and Y registers. The contents of the accumulator are unaltered. Then the contents of

the Y register are incremented by one. Carry information is transferred into status. If the
result is greater than 15, status is set.

MICROINSTRUCTIONS: STO, YTP, CIN, C8, AUTY

84

EXAMPLE: The following routine transfers all E’s to file six in the TMS 1100 RAM:

LOOP

LDX
TCY
CLA
AT4AAC

TAMIYC

BR
BR

EXIT
LOOP

A+14->A

—

A~ M(X,Y)

Y+1=>Y

CARRY?

NO

\

YES

M(X,Y) S BRANCH
A 1
A 1
A 1
A 1
E 0
0
6 0 NO
6 1 YES
{6 1
6 1
6 0 NO
6 1 YES
-
L]
L
EXIT

8-5

8-3.2 TRANSFER ACCUMULATOR-TO-MEMORY AND DECREMENT Y REGISTER.

MNEMONIC: TAMDYN 0 1 2 3 a 5 6 7
o'o l1—'010'1'0'0

STATUS: Carry into status I |] I] l 1
FORMAT: Iv
ACTION: A->MX,Y)

Y-1-Y

1-Sify>1 Initial diti

O*SlfY=0 nitial con ons

PURPOSE: The Y register sequentially addresses a file of 16 RAM words, and the addressed words
are set to the accumulator value(s), during initialization for example.

DESCRIPTION: The contents of the accumulator are stored in the memory location addressed by
the X and Y registers. The contents of the accumulator are unaltered. Then, the contents of
the Y register are decremented by one. Carry information is transferred to status. If the result
is not equal to 15, status will be set indicating no borrow.

MICROINSTRUCTIONS: STO, YTP, 15TN, C8, AUTY

EXAMPLE: The following routine transfers all E’s to file six with one less branch instruction than
the previous example:

X Y A MIXY S BRANCH

LDX 6 6 1
TCY 15 6 1
CLA 6 1
A14AAC 6 1
6 0
LOOP TAMDYN {6 o

BR LOOP 6 1 YES
6 1
g |

6 1 YES

6> X

15->Y

0—->A

!

A+ 14> A

E—

A~ M(X,Y)

Y—-1=>Y

NO
BORROW?

8-7

84 ARITHMETIC INSTRUCTIONS.,

The A6/8/10AAC and DAN instructions from the TMS 1000/1200 standard-instruction set are
included in the TMS 1100/1300 standard-instruction set. The IAC instruction replaces IA and sends
carry out to status. A 2/3/4/5/7/9/11/12/13/14 AAC are new instructions for the TMS 1100/1300.
All of the accumulator arithmetic instructions are format IV instructions. However, those
instructions are replaceable by one format II instruction, AC1AC —. The AC1AC — instruction is
used for convenience and is interchangeable with the format IV mnemonics in the source program.
The assembler converts either format into the proper opcode.

*MNEMONIC: AC1AC o 1 2 3 4 5 6 7
0 ' 1 I 1 ! 1 ! é !
STATUS: Carry into status] l] 1 1 |
LSB MSB
FORMAT: 11
OPERAND: Constant value 0 < I(C) < 14
ACTION: A+C+1-> A

1- Sif sum> 15
0- Sifsum< 15

PURPOSE: Used as an alternate mnemonic for various add-immediate-value-to-the-accumulator
instructions. See note below.

DESCRIPTION: The C field of the instruction word, I(7-4), is incremented by one and added to
the accumulator contents. The result is placed back into the accumulator. The resulting carry
information transfers to status. A result greater than 15 sets status.

MICROINSTRUCTIONS: CKP, ATN, CIN, C8, AUTA

*Note: The AC1AC instructions have the equivalent format IV mnemonics enabled by the default
instruction definitions in the TMS 1100/1300 assembler:

MNEMONICS
FORMAT II OP CODE
FORMAT IV
OP CODE 1(C) HEXADECIMAL
AC1AC 0 IAC 70
AC1AC 1 A2AAC 78
AC1AC 2 A3AAC 74
AC1AC 3 A4AAC 7C
AC1AC 4 ABAAC 72
AC1AC 5 ABAAC 7A
AC1AC 6 A7AAC 76
AC1AC 7 ABAAC 7E
AC1AC 8 A9AAC 71
AC1AC 9 A10AAC 79
AC1AC 10 AT1AAC 75
AC1AC 1 A12AAC 7D
AC1AC 12 A13AAC 73
AC1AC 13 A14AAC 78
AC1AC 14 DAN 77
(ILLEGAL) 15 CLA 7F

8-8

EXAMPLES: Refer to paragraph 12-3 and 12-4 for addition and subtraction in BCD.

The following example shows a input program which tests the K-input data for a value greater than or
equal to eight. The K-input data is valid when RO is set and the data is loaded into M(1,0) for

permanent storage .

X Y A MXY s BRANCH K
LDX 1 0 4 1 0
TCY 0 T 0 2 1 0
SETR 1 0 1 C
TKA 1 0 1 c
TAM 1 0 1 C
ABAAC 1 0 1 C
BR GES8 1 0 1 C
LTS8
1> X
0-vY
1-> R(Y)
K-> A
A=>M
A+8—>A
YES
CARRY?

NO

8-9

8-5 LOGICAL COMPARE.
A new logical-compare instruction allows the user to test the RAM contents against the accumulator
data.

MNEMONIC: MNEA o:o:o:o:o:o:o:o
STATUS: Comparison result into status

FORMAT: v

ACTION: M(X,Y)# A ?

1 Sif M(X,Y) #A
0~ Sif M(X,Y)= A

PURPOSE: To compare the RAM data with the accumulator contents.
DESCRIPTION: The contents of the memory addressed by the X and Y registers are logically
compared to the accumulator contents. The comparison information is transferred to status.

Inequality will set status.

MICROINSTRUCTIONS: MTP, ATN, NE

8-10

EXAMPLE: The following routine searches file five for the first word equal to nine.

X Y A MIXY) S BRANCH
LDX 5 0 F 3 1
CLA 5 3 1
A9AAC 5 3 1
TCY 15 5 9 1
LOOP MNEA 5 1
BR NEXT 5 0 NO
BR EQ9 5 9 1 YES
NEXT DYN
BR LOOP
EXIT ‘
65— X
0~ A
A+9—> A
4
YES
;NEXT
Y—-1->Y
NO

BORROW?

8-11

8-6 OUTPUT INSTRUCTIONS.
The TMS 1100/1300 has one less output instruction (CLO) than the TMS 1000/1200. The
operation of the SETR and RSTR commands is possible for 0<Y<15, 0<X<3.

8-6.1 SET R-OUTPUT.

MNEMONIC: SETR T 1 T 1 I

STATUS: SET

FORMAT: 1Y

ACTION: 1= R(Y)
For 0< X< 3;

0<Y<10 , TMS 1100
0<Y<15, TMS 1300

PURPOSE: To set one selected R-output latch to a logic ONE.

DESCRIPTION: The contents of the Y register selects the proper R output. The X register must be
less than or equal to three. The Y-register contents is between zero and ten for TMS 1100
applications, and for values greater than ten, the instruction is a no-operation. The full range,
0 <Y < 15, can be used in the 40-pin package version, TMS 1300.

FIXED MICROINSTRUCTION: SETR

EXAMPLE: See paragraphs 4-10.5 and 13-3.2.

8-6.2 RESET R-OUTPUT.

0 1 2 3 4 5 6 7
MNEMONIC: RSTR | 1 | 1 | { 1
0 0 0 0 1 1 0 0
| R R D I B
STATUS: SET
FORMAT: v
ACTION: 0> R(Y)
For 0<X < 3;

0<Y<10, TMS 1100
0<Y<15, TMS 1300

PURPOSE: To reset one selected R-output latch to a logic ZERO.

DESCRIPTION: The contents of the Y register selects the proper R output. The X register must be
less than or equal to three. The Y-register contents is between zero and ten for TMS 1100

8-12

applications, and for values greater than ten, the instruction is a no-operation. The full range,
0 <Y <15, can be used in the 40-pin package version, TMS 1300.

FIXED MICROINSTRUCTION: RSTR
EXAMPLE: See paragraphs 4-10.5 and 13-3.2.
8-7 RAM X ADDRESSING.

The RAM addressing is modified to reflect the additional four files in the TMS 1100/1300. Also,
the COMX instruction operation affects only the MSB of the X register.

8-7.1 LOAD X REGISTER.

MNEMONIC: LDX o 'o 11T, b !
e S a——

STATUS: SET

FORMAT: Vv

OPERAND: X-file address; 0 < X < 7

ACTION: I(F) > X

DESCRIPTION: A constant value, I(7-5), is loaded into the X register. This is used to set the
X register to the desired RAM file index. The three-bit F-field of the instruction is loaded
into the X register.

FIXED MICROINSTRUCTION: LDX

EXAMPLES: See paragraphs 8-3 to 8-5.

8-7.2 COMPLEMENT THE MSB OF X-REGISTER.

MNEMONIC: COMX 0:0:0:0{1:0:0:1
STATUS: SET

FORMAT: v

ACTION: XMSB > XMSB

8-13

DESCRIPTION: The MSB (most-significant-bit) of the X register is logically complemented.

FIXED MICROINSTRUCTION:

(0) 000 - 100 (4)
(1) 001 - 101 (5)
(2) 010 - 110 (6)
(3) 011 - 111 (7)
(4) 100 - 000 (0)
(5) 101 - 001 (1)
(6) 110 - 010 (2)
(7) 111 - 011 (3)
COMX

EXAMPLE: The next example illustrates the power of the COMX instruction (when used with the
appropriate LDX instructions). A subroutine has four entry points. Each entry point has a
different starting condition for the X register. Four different transfers of multi-precision data
are accomplished by the complement-Xregister instruction (COMX) which is the only

X-addressing within the base

subroutine. Since a user often requires data transfer to and from

various files, this technique saves ROM instructions by not having to write a different routine

for each transfer.

LABEL OPCODE OPERAND

TRO4 LDX 4

TRANS TCY 15

LooP CoMX

TMA

COoMX

TAMDYN

BR LOOP

RETN
TR40 LDX 0

BR TRANS
TR15 LDX 5

BR TRANS
TR51 LDX 1

BR TRANS

COMMENT

ENTRY POINT TO TRANSFER
FROM FILE ZERO TO FOUR.

INITIALIZEY TO 15

FLIP THE MSB OF X

TRANSFER M{(X,Y) TO ACCUMULATOR
FLIP THE MSB OF X AGAIN

COMPLETE THE TRANSFER OF ONE WORD
BRANCH iF NO BORROW

ENTRY POINT TO TRANSFER
FROM FILE FOUR TO ZERO

ENTRY POINT TO TRANSFER
FROM FILE ONE TO FIVE

ENTRY POINT TO TRANSFER
FROM FILE FIVE TO ONE.

8-14

0—>X

OO <

8-15

15=>Y

lk

XmsB = Xmss

'

M(X,Y)—> A

'

XmsB > XmsB

'

A= M(X,Y)

Y—-1->Y

NO
BORROW?

YES

8-83 ROM ADDRESSING.

An additional fixed instruction, COMC, is necessary to change chapters in the TMS 1100/1300. The
remaining ROM addressing instructions have appropriate actions to accommodate the additional
chapter addressing.

8-8.1 BRANCH, CONDITIONAL ON STATUS.

I | I I | T
MNEMONIC: BR v | W
STATUS: Condition on status
FORMAT: I
OPERAND: Branch address, I(W)
ACTION: IfS=1,CL=0
CB~ CA
PB - PA
(W) ~ PC
ifs=1,CL=1
CB— CA
I(W) > PC

fS=0,CL=10r0
PC+1-PC
1->S

PURPOSE: To alter the normal sequential program execution by the conditional results of the
previous instruction.

DESCRIPTION: The branch instruction is always conditional upon the state of status. If status is
reset (logical ZERO), then the branch is unsuccessfully executed and the next sequential
instruction will be performed. If the status is set (logic ONE), then the branch performs the
following actions: the chapter-buffer (CB) bit goes to the chapter-address (CA) latch. The
page-buffer (PB) contents transfers into the page-address (PA) register (unless CL = 1). The
branch address, W-field, loads into the program counter.

The following standard-symbol flowchart describes the machine operation for the branch
instructions that result in the actions listed above.

8-16

FIXED MICROINSTRUCTION: BR

EXAMPLE: See paragraphs 4-12 and 8-8.4.

CB > CA
STATUS. NO
LOGIC =1? l
PC+1-PC
YES 1-8 NO
(W) > PC PC - SR
BRANCH PB > PA
UNSUCCESSFUL ,
EXECUTE NEXT
SEQUENTIAL INSTRUCTION >l

BRANCH
SUCCESSFUL

SINGLE INSTRUCTION CYCLE FLOWCHART - BRANCH INSTRUCTION

8-17

8-8.2 CALL, CONDITIONAL ON STATUS.

MNEMONIC: CALL 1 | 1 | W I

STATUS: Conditional on status
FORMAT: I
OPERAND: Branch Address, [(W)

ACTION: 1fS=1,CL=0
CA - CS
CB- CA
PB + PA
PC+1- SR
(W)~ PC
1> CL

fS=1,CL=1
CB~ CA
PA - PB
(W) > PC

IfS=0,CL=10r0
PC+1-PC
1-3S

PURPOSE: To allow the program to transfer control to a common subroutine. Because the call
instruction saves the return address, subroutines may be called from various locations in a
program. A RETN, call return, instruction will restore control back to the instruction after
the call that instituted the subroutine.

DESCRIPTION: Call is always conditional upon status. If status is reset, then the call is
unsuccessfully executed. If status is set, the following operations occur:

The address of the next instruction is saved in the subroutine-return register (SR). The
contents of the page-buffer (PB) and the page-address (PA) registers are exchanged. The
chapter-address (CA) bit transfers to the chaptersubroutine (CS) latch. The chapter-buffer
(CB) bit goes to the chapter-address (CA) latch. The branch address, W-field, loads into the
program counter. The call latch (CL) is set. If the call latch was set by a previous call
instruction, the PB-to-PA transfer does not occur; instead, the PA transfers to PB changing
the saved page address. Also, the CA will not transfer to CS. The following standard-symbol
flowchart describes the machine operations for the call instructions that result in the actions
listed above.

8-18

FIXED MICROINSTRUCTION:

EXAMPLE:

STATUS

NO

CALL

See paragraphs 4-12 and 8-8.4.

LOGIC =1?
N

YES

7.

PC+1-PC
1->§

CALL
UNSUCCESSFU

EXECUTE NEXT
SEQUENTIAL
INSTRUCTION

CALL
LATCH =0?
CL=07?

NO

SUCCEED | YES PA - PB
LOSE RETURN
PAGE
PC+1—SR
PA < PB
CA—CS
SAVE RETURN
(W) > PC
CB—CA
NEW ADDRESS
 J
1-CL
SET CALL

MODE LATCH

1

W) - PC
CB— CA
NEW ADDRESS

CALL
SUCCESSFUL

EXIT

SINGLE INSTRUCTION CYCLE FLOWCHART — CALL INSTRUCTION

8-19

8-8.3 RETURN FROM SUBROUTINE.

MNEMONIC: RETN I I 1 I I I I

STATUS: SET
FORMAT: v

ACTION: IfCL=1
SR~ PC
PB - PA
CS - CA
0~ CL

IfCL=0
PC+1-PC
PB > PA

PURPOSE: To return control from a called subroutine back to the calling program.

DESCRIPTION: The return address is restored. The subroutine-return (SR) register contents
transfer to the PC. Simultaneously, the contents of the page-buffer (PB) transfer into the
page-address (PA) register. If the call-latch (CL) is ONE, the chapter subroutine (CS) content
loads into the chapter address (CA). If the call latch is ZERO, the CS-to-CA transfer does not
occur as summarized from the following standard-symbol flowchart.

8-20

FIXED MICROINSTRUCTION: RETN

(RETN)
CEY
CLEAR
CALL MODE
*PB - PA L
1~s SR = PC
CS— CA
YES
EXIT
NO
EXECUTE NEXT PC+1-~>PC
SEQUENTIAL
INSTRUCTION
EXIT

SINGLE INSTRUCTION CYCLE FLOWCHART — RETURN INSTRUCTION

*Note: The page buffer (PB) may contain data other than the return address if a LDP (see
paragraph 4-12.4) instruction was executed during the call mode equal to ONE. Also, when not in
the call mode the page buffer contents go to the page-address (PA) register, changing the page
address as well as updating the program counter.

8-8.4 COMPLEMENT-CHAPTER BUFFER.

MNEMONIC: COMC I [I I T I

STATUS: SET
FORMAT: v
ACTION: CB -~ CB

PURPOSE: To set up a branch or call to the opposite chapter’s ROM address.
DESCRIPTION: The chapter-buffer (CB) bit is complemented logically. Note that the

chapter-buffer bit, chapter-address (CA), and chapter-subroutine (CS) bits are reset to ZERO
upon application of power.

8-21

EXAMPLE: A subroutine and a routine are on page one, chapter one. Four subroutines are located
at various ROM (see map below) addresses: SUBA, at PA =0, CA = 0; SUBB, at PA = 15,
CA =1; SUBC, at PA =15, CA = 0; and SUBD, at PA = 0, CA = 1. The following routine calls
the four subroutines in order:

PA=0,CA=1
COMC
CALL SUBA
COMC
LDP 15
CALL SUBB
CcoMC
LDP 15
CALL SUBC
COMC
CALL SUBD
CHAPTER 0 CHAPTER 1
PAGE 0
POWER
ON
PAGE 15

8-22

A second routine can call the subrontines conditionally perhaps in a different order. Also, the
subroutines can be accessed easily by another main program that branches to the subroutines rather
than calling them. In that case, a branch after the RETN location is executed because the RETN
acts as a no-operation if CL is ZERO. Thus, the control transfer is also accomplished with branch
instructions in conjunction with the any-desired COMC or LDP combination.

FIXED MICROINSTRUCTION: COMC

CHAPTER 0 CHAPTER 1

PAGE 0 .
°
[]
POWER
ON < rd ~
l————a— LDP 0 \
PAGE 15 BR SUBA

*NOTE: RETN IS A NO-OPERATION
IN THIS ROUTINE.

8-23

SECTION IX

MICROPROGRAMMING

9-1 GENERAL,

The smallest quantum of control with which programmers can exercise a computer is the way to
describe a microinstruction. As shown in Table 9-1, an instruction is generally considered to consist
of one or more microinstructions. A similar definition for a macroinstruction is that one or more
instructions constitute a single macroinstruction. A normal programming task requires generation of
a ROM-instruction sequence that forms routines or subroutines. An unusual occurence in computer
programming tasks is when the instruction set itself is changed; especially since this requires a
hardware change for non-microprogrammable machines. ’

TABLE 9-1 DEFINITION OF TERMS

MACROINSTRUCTION ONE OR MORE INSTRUCTIONS

INSTRUCTION ~ SINGLE ROM WORD CONSISTING OF ONE OR
MORE MICROINSTRUCTIONS

MICROINSTRUCTIONS SMALLEST UNIT OF CONTROL OVER SPECIFIC
LOGIC BLOCKS

MICROPROGRAMMING REDEFINING INSTRUCTIONS — CHANGING THE
COMBINATIONS OF MICROINSTRUCTIONS
USED

In any case, the smallest element of control is derived from a second ROM or PLA in the TMS 1000
series that decodes instructions rather than addresses. Each instruction enables a number of
sequenced control lines that affect logic blocks throughout the device. The programmable
microinstructions (control lines) which fan out over the device are explained in paragraphs 2-17 and
6-5. Before continuing with this section on microprogramming, paragraphs 2-14 through 2-17 and
6-5 should be read and understood.

The following diagram, Figure 9-1, indicates the procedure for microprogramming. In the case of
the assembler, the entire instruction set must be defined. The simulator requires the instruction
PLA definition reflecting the desired changes. Software and hardware simulations are available and a
new instruction set may be verified by either method. The manufacturing inputs are the
ROMe-instruction code and the entire PLA definitions. Although the same gate-level mask that fixes
the ROM and output PLA also encodes the instruction PLA, the test program (see paragraph 9-3.7)
may need modification and any desired microprogramming requires evaluation.

Contact Texas Instruments, Houston, if microprogramming assistance is needed or when significant
changes to the instruction set are encountered.

9-1

START
PROGRAM

WRITE ROM
CODE USING
STANDARD
INSTRUCTIONS

REPLACE OR
MODIFY
STANDARD
INSTRUCTION
AND REWRITE
ALGORITHM

DEFINE INSTRUCTION
SET MNEMONICS TO
ASSEMBER AND
CONTACT Tl.

SEE PARAGRAPH

2-6 “TMS 1000

SERIES SOFTWARE
USER'S GUIDE"”

VERIFY NEW
INSTRUCTION
CODE USING
INSTRUCTION
PLA DIAGRAM.
DEFINE PLA
INSTRUCTION
CODE TO THE
SIMULATOR.

SEE PARAGRAPH
3-3.2.2 “TMS 1000
SERIES SOFTWARE
USER'S GUIDE"”

USE STANDARD
PROCEDURE IN

FIGURE 9-1 MICROPROGRAMMING STEPS

!

il —

K

COMPUTER
ASSEMBLY
AND
SIMULATION

EDIT

oK

HARDWARE SIMULATION

OK

SIMULATION
COMPLETE

ERROR

SEND PROGRAM AND
PLA DEFINITIONS TO

|

PROTOTYPE FABRICATION

|

TEST

ERROR

OK

QRA AND LOT
ACCEPTANCE SPECS

9-2

PRODUCTION

1

LISTING

9-2 THE INSTRUCTION-PROGRAMMABLE-LOGIC ARRAY.
A ROM generally has a fixed-address decode and programmable-output data is encoded when a
single address is enabled. In contrast, a PLA has both programmable decode and encode. Thus, a
great deal of versatility exists in a physically limited area. The instruction-PLA inputs come from
the instruction bus. Thirty terms, F; (i=1 to 30), decode the instruction word and enable some
combination of the 16 microinstructions. The following equation describes the possible expressions
to be satisified by the instruction-word data.

7 *

Fi=11

1(2), 1(2) =1, 0, X.
RUARIC)) ()

I(0) - I(1) - 1(2) - I(3) * 1(4) - L(5) - 1(6) - 1(7))

(i.e., MNEZ = F6

In the equation above, the programmer chooses the input variables (1, 0, or X) that describe the
desired instruction opcode(s) 1(0-7) that will enable a given term, F;. The 1, 0, or X (don’t care) is
programmed by a PLA term to decode corresponding data from the instruction memory. A
one-to-one correspondence (ignoring the don’t-care bits) causes a PLA term to be true. A true term
causes the selected combination of microinstructions to go out.

Note that ALU-input controls have negative-true outputs. If a negative-true microinstruction is
selected by the programmer, the logical complement (no gate) is placed in the OR-matrix array.
Given that Q; is a microinstruction output, then all selections (gate placement indicated by circles)
for the output are logically ORed together:

=Y * F where j = 1 to 16.
i=1 (i.e., STO=QJ'=F11+F12+F13+F24)

In most cases only one decoded Fj term is true at a time. So, Q (1-16) corresponds exactly to what
is selected by the OR matrix for that term.

If two or more decode terms, Fj, are enabled simultaneously for any given instruction opcode, note
the equation above for the negative-true microinstructions; all F; terms must be ZERO to enable
those negative-true outputs (logical OR).

For example, the PLA definitions shown for the TMS 1100/1300 in Figure 9-2.1 and 9-2.2 have
two terms enabled for some instructions; this illustrates reducing the number of terms required to
describe a particular instruction set. Suppose that the TAMIYC, opcode 257¢, instruction is
addressed by the program counter. Both terms F13 and Fy; are enabled by opcode 257 ¢. The STO
microinstruction is on because Fq3 enables it. The C8 and AUTY microinstructions are enabled by
both terms. YIP is ZERO for both terms, and CIN is ZERO for both terms. Thus, YTP, CIN, STO,
C8, and AUTY all combine to activate the control necessary to perform TAMIYC. Note that I5TN
is ONE in term F22 and ZERO in term Fq3:

15TN =QJ'=F22+F13

Fyop=1 F13=0
QJ =1=15TN
15TN =0

The 15TN output is therefore disabled for this instruction by term Fy».

* .
I1,%, are used in the Boolean sense here,

9-3

r N I4 Y
S: 88 88 E “frﬁ‘ $4444444
>
ol 12 | jz|HlEl®
— SRR e o2 2
= imm) >
o>
o>
| & MNEA
L ALEM
YNEA

D -©
XMA
L DYN, TAMDYN

20

15

(=) ™~ _? . TBIT1
o> L1 dld SAMAN
I-_e- oot CPAIZ
& b y P IMAC
Y A an S Y g P
j I aad o MNEZ
® g > &
~ 1| Tey
o D
N o0 o YNEC
— 9
| g a0 FinY TCM|Y
g I T IAC, DAN,CLA, AC1AC,
— A2/3/ .../13/14AAC
CLA
- el o> I
—

o
o
]

o

o1 o °

INPUTS FROM ROM
INSTRUCTION BUS

FIGURE 9-2.1 TMS 1100/1300 STANDARD INSTRUCTION PLA

9.4

OPCPLA

OPX 00=MTP,ATN,NE; MNEA
OPX 01=MTP,NATN,CIN,CS; ALEM
OPX 02=YTP,ATN,NE,STSL; YNEA
OPX 03=STO MTP,AUTA; XMA

OPB 00-00100=YTP,15TN,AUTY,CS; DYN,TAMDYN
i IYC,T

'OPX 06=MTP,ATN,AUTACS; AMAAC
OPX 07=MTP,15TN,AUTA C8: DMAN
OPX 08=CKP,AUTA; TKA
OPX OE=CKP,NE; KNEZ
OPX 20=ATN,AUTY; TAY
OPX 21=MTP,AUTA; TMA
OPX 22=MTP,AUTY; T™MY
OPX 23=YTP,AUTA; TYA

OPX 26=STO,AUTA; TAMZA
OPX 27=STO, TAM
OPB 001110——=CKP,CKN MTP,NE; TBIT1
OPX 3C=MTP,NATN,CIN,AUTA,CS; SAMAN
OPX 3D=NATN,CIN,AUTA,CS; CPAIlZ
OPX 3E=MTP,CIN,AUTA,CS; IMAC
OPX 3F=MTP,NE; MNEZ
OPB 0100———-—-=CKP,AUTY; TCY
OPB 0101———--=YTP,CKN,NE; YNEC
OPB 0110————=CKM,YTP,CIN,AUTY; TCMIY
OPB 0111———-=CKP,ATN,CIN,AUTA,CS; IAC,DAN,A2/3/.../13/14AAC,CLA ,ACIAC
OPX 7F=CKP,CIN,AUTA,CS; CLA

FIGURE 9-2.2 TMS 1100/1300 STANDARD INSTRUCTION PLA CODING

If Fy3 is true and another PLA term enables 15TN and disables CIN, then a new instruction
TAMDYN is defined. Term F73 does this when decoding opcode 241 .

9-3 MICROPROGRAMMING GUIDELINES.

The next seven paragraphs describe the ground-rules for microprogramming. The information
encapsulates ideas presented elsewhere in this manual and brings all the microprogramming facts
together for clarity.

9-3.1 FIXED INSTRUCTIONS. The fixed instructions can not be deleted or have their values
changed. The shaded areas in Figures 9-3.1 and 9-3.2 indicate the values for the fixed instructions of
the TMS 1000/1200 and TMS 1100/1300 respectively. Nonetheless, fixed instructions are
programmable in the sense that their operations may be augmented by adding programmable
microinstructions to the existing fixed microinstruction. Paragraph 9-4 has two examples of this
technique.

9-5

MACHINE INSTRUCTION CODE

A z
Ho) 11) H2) 13) | 14 15) ue) K7)
MsB LSB a
3
o
w
a
o
*
TAMZA[AT0AAC|AGAAC | DAN| TKA | KNEZ[TDO
1 c
2 framiy |T™MA | TMY | TYA| TAY |AMAAC|MNEZ [SAMAN IMAC |ALEM [DMAN| 1YC | DYN EPAIZ| XMA| CLA
TBIT1 B
c
c
c
c

*C = constant, B = B field, W = memory address.

FIGURE 9-3.1 TMS 1000/1200 FIXED INSTRUCTION MAP

9-6

MACHINE INSTRUCTION CODE

1oy 1) K2)

1{3) | 1(4) u5) 1{6)

17)

MsB

LSB

0
1

2

3 CPAIZ

4 F TCY

5 YNEC

6 TcMIY

7 [1ac [asaaciasaac ja1zaadasanc [Aniasc| A7aac| DAN A2AAc|A1oAAc AGAAC|A14AAC|AdAAC [A1288C|ABAAC] CLA

*C = constant; B = bit address; W = memory address; F = file address

FIGURE 9-3.2 TMS 1100/1300 FIXED INSTRUCTION MAP

9-3.2 TIMING. The programmable instruction timing is fixed according to the order given in Table
9-3.1. The sequence for an instruction is as follows: the ALU inputs first, storage into memory
next, and storage into registers and status latch last. This timing is also given in Section A5 in the
Appendix. Both figures in A5 should be noted whenever a fixed microinstruction is combined with
programmable macroinstructions. In particular, the R-output register addressing takes place at the
same time as the RAM addressing. The ALU inputs are determined during ¢1 while the RAM data is
read out.

TABLE 9-3.1 TMS 1000 SERIES PROGRAMMABLE MICROINSTRUCTIONS

Execution .
Mnemonic Logic Affected Function
Sequence

1 CKP P-MUX CK| to P-adder input
YTP P-MUX Y-register to P-adder input
MTP P-MUX Memory (X,Y) to P-adder input

1 ATN N-MUX Accumulator to N-adder input
NATN N-MUX Accumulator to N-adder input
MTN N-MUX Memory (X,Y) to N-adder input
15TN N-MUX Figto N-adder input
CKN N-MUX CKI to N-adder input

1 CIN Adder One is added to sum of P plus N inputs (P+N+1)
NE Adder/Status Adder compares P and N inputs. If they are

identical, status is set to zero

[e:] Adder/Status Carry is sent to status (MSB only)

2 STO Write MUX Accumulator data to memory
CKM Write MUX CKI to memory

3 AUTA AU Select Adder result stored into accumulator
AUTY AU Select Adder result stored into Y-register
STSL Status Latch Status is stored into status latch

9-3.3 ALU OPERATION. Since all of the programmable microinstructions affect the ALU, its
operation deserves a thorough understanding. The guidelines are straightforward:

a)

b)

Multiple-simultaneous inputs to either one of the multiplexers are logically ORed. See
the TBIT1 explanation in paragraph 4-7.3.

If an adder input has no microinstruction selecting data, that input to the adder is
0000 in binary (i.e., N input in the MNEZ instruction).

Any simultaneous output selections occur in tandem (i.e., C8 and AUTA are executed
together).

No instruction may use two ALU operations in a single instruction cycle.

9-8

9-3.4 THE CONSTANT AND K-INPUT LOGIC. Table 9-3.2 summarizes the data available on the
CKI bus for the instruction values listed. Whenever CKP, CKN, or CKM microinstructions are used,
the data sent out by CKI is variable depending on the opcode chosen for the instruction. A decoder
within the CKI logic block determines the actions, and this decoder cannot be modified (similar to
fixed microinstructions). For information concerning how the TMS 1000/1200 instructions utilized
the CKI logic, see Table 2-7.1.

TABLE 9-3.2
OPCODE (HEX) CKI LOGIC OPERATION
00—-07 CONSTANT OPERAND —>CKI BUS
08—0F K INPUT = CKI BUS
10-1F N/A
20-2F 0—>CKIBUS
30—-3F BIT MASK = CKI BUS
40-7F CONSTANT OPERAND > CKI BUS
80—FF N/A

9-3.5 INSTRUCTION PROGRAMMABLE LOGIC ARRAY. The maximum number of PLA terms
is 30. Any additional programming in the TMS 1000/1200 instruction set requires reduction of
terms (explained in paragraphs 9-4.3 and 9-2). Three terms in the TMS 1100/1300 instruction PLA
are available for microprogramming. Any further additions to the microprogrammable code requires
a reduction of terms or the loss of a present standard instruction. A direct replacement of one
instruction for another requires no additional PLA terms. The accompanying diagram, Figure 9-3.3,
is convenient for checking trial coding.

9-3.6 SIMULATION. The HE-1 and HE-2 emulators verify microprogramming results through
hardware. The SE-1 and SE-2 devices have the capability to use the standard-instruction sets.
However, it is easy to verify any instruction set through software simply by using the TMS 1000
series simulator and assembler. Note that the simulator accepts the instruction PLA coding and the
assembler accepts only the mnemonic definitions (see Figure 9-1).

9-3.7 TEST GENERATION. An automatic-test-generation program provides Texas Instruments a
test pattern sequence for all codes using the standard-instruction sets. An additional NRE cost can
be incurred for major deviations from the standard-instruction set. The cost is dependent on the
amount of engineering required to devise a complete test for the unit. For some changes, however,
there is no charge. Table 9-3.3 and 9-3.4 list the instructions needed by the test-generator
algorithms. If those instructions listed are changed, Texas Instruments must hand program the test.
All instructions on the list should be used at least once in the program or be placed in unused
portions of the instruction memory. For instance, an unused instruction can be placed at the end of
a page that contains only 63 instructions. If there are deviations from the standard instruction set,
or if all the instructions are not somewhere in the ROM, please inform the MOS Division in
Houston, Texas.

9-9

OR

AND

o]

[+]

o

o]

— m
O 0000000000000¢ n,353h::;;::;:;é
o <
(9 uA.H o
<4
en uAn._ o
@en Alh
an Al.—L;
o ~H
~ T T T T T T T T T TR T TR TH THL. THR 1) L, L, L, L, L L bbb L, L
”._.:_.___.__1_._..__.: L L rrrreorere

FIGURE 9-3.3 TMS 1000 INSTRUCTION PLA

9-10

TABLE 9-3.3 TMS 1000/1200 TEST ALGORITHM INSTRUCTIONS

MNEMONIC OPCODE
ALEC
AMAAC
BR
CLA
COMX
DYN
IYC
LDP
LDX
RBIT
SBIT
SETR
TAM
TAMIY
TAY
TBIT1
TCY
TDO*
TKA
TMA
TYA
XMA
YNEA
YNEC

“=0=) 0|
| =00 =| o]
I =00 =|] =

~00O0=00 -
| © =00 |
| © =0 = |

0000000000000 O0OO0OO0OO0O0O0O0O0 =
- =00 =

~ 0000000 =-0000~=u320000]| O
| ©~ 0000 | 0200 =0=5| 0=0=| = |

OCOO0OO0O00CO0OO0O0CO0DO0OOODOOO0OO0OOOOOCO =00
oo_._;_xoood_.o_;od..‘_\odao_-l - -

| oo =200 |

*TDO can be programmed to decrement the Y register.

TABLE 9-3.4 TMS 1100/1300 TEST ALGORITHM INSTRUCTIONS

MNEMONIC OPCODE
AMAAC 0
BR
CLA
CcomMmC
COMX
DYN
IYC
LDP
LDX
RBIT
SBIT
SETR
TAM
TAMIY
TAY
TBIT1
TCY
TDO*
TKA
TMA
TYA
XMA
YNEA
YNEC

| ==00-= | O
] | 00 == | ©

—~—00O0-00C=|] 00==0 |

| o0 =0 |
lo_n_‘al

COO0OO0CO0O0O0O0O0OO0OOOO0OO0O0O0OO0OO0OQO -0
— 000000, 00000O0CO0OOCODOOO0O00O0O ~
OOO—‘—\OOO—‘-AA-\O—i—\—'OOOOOO] -
—lOOOOOOO—'OOOO—'—‘O—\OOOOO' -

| OO0 O0O0O0 | OO == =0 = |

| OO0 OO ==
__t_\OOA'
Iod-ﬂ—lool

*IDO can be programmed to decrement the Y register.

9-11

9.3.8 SUMMARY. To sum up, knowledge of the TMS 1000 series logic is all that one needs to start
inventing instructions. The only hard step to make is deciding when an instruction redefinition is
appropriate. The decision must weigh the schedules, the cost, and the simulation methods required.
In some cases, concerning marginal feasibility, the instruction set will have to be modified and the
effects on a program development are readily assessed. However, in the latter development stages a
problem may arise unexpectedly. In such cases, it is suggested that the Applications Programming
Staff in Houston be involved in obtaining a satisfactory solution to the problem. If the proper
information can be provided, an alternative path (such as ROM code reduction) may solve such
problems without resorting to microprogramming.

9.4 MICROPROGRAMMING HINTS.

Two of the following examples show how microinstructions define a more powerful instruction in
the TMS 1100/1300 instruction PLA. A third example indicates how don’t cares in PLA
programming enable multiple instructions and make room in the TMS 1000/1200 for more
instructions.

9.4.1 TDO EXAMPLE. Assuming that every time the user wants a transfer-data-out (TDO)
instruction, he also needs a decrement-Y-register (DYN) instruction. If these two instructions
combine into one instruction (six oscillator pulses long), then execution time is reduced and the
ROM instruction count is shorter. The following steps proceed according to the guideline set up in
paragraph 9-3:

1) The TDO opcode is 0Aqg. Since TDO is a fixed microinstruction, 0Aq1g is
permanently assigned to that instruction. See paragraph 9-3.1.

2) The appropriate programmable microinstructions are checked for timing. The
decrement-Y-register uses YTP, 15TN, C8, and AUTY. The Y-register contents plus 15
(—1) transfer back into the Y-register. The C8 microinstruction sends the carry-bit to
the status logic. Since TDO is not dependent on the Y-register or status logic, the
timing is appropriate. See paragraphs 9-3.2 and 9-3.3. Figure 9-4.1 shows the data flow
involved in the new instruction.

3) The CKI logic is unused by the new instruction which will be defined as TDODYN.
Check paragraph 9-3.4.

4) The TMS 1100/1300 instruction PLA has three available product terms. Term 28
receives gates to decode 0A1 g as indicated in Figure 9-4.2. The microinstructions YTP,
15TN, C8, and AUTY are enabled by gates on the OR matrix on the right half of
Figure 9-4.2.

5) The input that defines the new mnemonic to the assembler is shown in Figure 9-4.3.
The entire instruction set description must be contained in the INSTRUCTIONS LDP
section.

9-12

- T T T T

ROM
PC & CHAPTER
DECODER

i,

128

ROM ARRAY
16,384 BITS
(64 X8 X 16 X 2)

| TMS 1300 ONLY — 40 PDIP
B e ——

cs
B PAGE DECODER
ﬁ
___:> PAGE
6 TO‘LGNRTAE"R" ADDRESS
/ REGISTER
6 /
6 4
SUBROUTINE PAGE
RETURN BUFFER
REGISTER \/ REGISTER
4
CALL
LATCH

BRANCH ADDRESS

NIT

INSTRUCTION BUS

=

Y ADDRESS

.. BBBBE

J> EXTERNAL
INPUTS
< e \NITIALIZE
FIXED
INSTRUCTION ‘NST;‘_J:T'ON 8
DECODER
|—» BR - ckp
— CALL > yTP
L RETN — MTP
L cOMC | > ATN
> Lop [» NATN
- 1 DX — MTN
—e 15TN
I CKH
L CIN
| o I'E
L CE =
—o ST‘E)
| CKM
> AUTA
s AUTY'
L sTsL

BRCEREN
EYEE

CKI BUS

R-OUTPUT
REGISTER
16
RAM ARRAY
32 512 BITS
(16 X 4 X 8)
RAM
Y 4 A
DECODER
pPAYZ X DECODER
10F4 "
=2
o
z =
£
l X REGISTER —I “
2
[+]
3 @ WRITE
< MUX
w
[
a
CONSTANT &
4 A K-INPUT LOGIC

ACCUMULATOR
REGISTER

55

OUTPUT
REGISTER

STATUS
LATCH

FIGURE 9-4.1 TDODYN INSTRUCTION DATA FLOW — TMS 1100/1300

9-13

]

kil :I;_ | ALEM
kil e YNEA
8 B &> A
ki DYN, TAMDYN
ki I; TYC, TAMIYC
Ed = AMAAC
° ki 15 DMAN
Nk 1= TKA
ki E KNEZ
U
i 4 o
ki e ™Y
Y ™= TYA
kil g TAMDYN, TAMIYC
ki % TAMZA
| 1 " TAM
ki — TBIT1
Nk i g SAMAN
ki 1o CPAIZ
ki e IMAC
Ed % 1 MNEZ
ki N +—E 1 TCY
Y] g YNEC
Ed g TCMIY
R O “TAC, DAN, CLA. AGT1AC
_l’__’,_ Py A273/. . ./13/14AAC
T CLA
n''y -+
A3l8ls ;
o 6 & &6 b -0

INPUTS FROM ROM
INSTRUCTION BUS

FIGURE 9-4.2 TMS 1100/1300 NON-STANDARD INSTRUCTION PLA

9-14

INSTRUCTIONS LDP

MNEA VO 4
ALEM V1 4
YNEA 1V2 4
XMA V3 4
DYN 1va 4
IYC V5 4
AMAAC 1IV6 4
DMAN V7 4
TKA 1v8 4

4

COMX NE

“comc V11

4
RSTR V12 4
SETR V13 4
KNEZ vi4 4
RETN V15 4
LDP 1, He 2
TAY 1V32 4
TMA 1V33 4
™Y 1vV34 4
TYA ' 1V35 4
TAMDYN 1V36 4
TAMIYC V37 4
TAMZA V38 4
TAM 1V39 4
LDX V5, VC 5
SBIT Hi2, 1ic 3
RBIT 113, 1c 3
TBIT1 1114, 11IC 3
SAMAN V60 4
CPAIZ V61 4
IMAC V62 4
MNEZ IV63 4
TCY 14, 11C 2
YNEC 115, liC 2
TCMIY 116, tIC 2
IAC V112 4
A9AAC V113 4
ABAAC V114 4
A13AAC IV115 4
A3AAC 1V116 4
A11AAC V117 4
A7AAC 1V118 4
DAN V119 4
A2AAC V120 4
A10AAC V121 4
ABAAC V122 4
A14AAC V123 4
A4AAC V124 4
A12AAC V125 4
ABAAC 1V126 4
CLA V127 4
AC1AC 17, 1C V#15 2
BR 12, BA 1
CALL 13, BA 1

END

FIGURE 9-4.3 TMS 1100/1300 NON-STANDARD INSTRUCTION SET
: ASSEMBLER DEFINITION

9-15

6) The input that defines the new instruction PLA is shown in Figure 9-4.4. The OPCPLA
section must be completely described to the simulator.

7) The list in Table 9-3.4 shows that TDODYN is accepted by the automatic test genera-
tion program. Thus, no extra NRE cost is incurred.

OPCPLA

OPX
oPX
OPX
OPX
OoPB
oPB
OPX
OPX
OPX
OPX
OPX
OoPX
oPX
OoPX
oPB
oPX
OoPX
oPB
OPX
OPX
OPX
OPX
OPB
OPB
OPB
OPB
OPX

00=MTP,ATN,NE;
01=MTP,NATN,CIN,CS8;
02=YTP,ATN,NE,STSL
03=STOMTP,AUTA;
00-00100=YTP,15TN,AUTY,CS8;
00-00101=YTP,CIN,AUTY,CS8;
06=MTP,ATN,AUTA,CS;
07=MTP,15TN,AUTA,CS;
08=CKP,AUTA;

0E=CKP,NE;

20=ATN,AUTY;
21=MTP,AUTA;
22=MTP,AUTY;
23=YTP,AUTA;
0010010—=STO,YTP,15TN,CIN,AUTY,CS;
26=STO,AUTA;

27=8TO;
001110——=CKP,CKN,MTP,NE;
3C=MTP,NATN,CIN,AUTA,C8;
3D=NATN,CIN,AUTA,CS;
3E=MTP,CIN,AUTA,CS;

3F=MTP,NE;
0100————=CKP,AUTY;
0101————=YTP,CKN,NE;
0110————=CKM,YTP,CIN,AUTY;
0111————=CKP,ATN,CIN,AUTA,CS8;
7F=CKP,CIN,AUTA,CS8;

MNEA

ALEM

YNEA

XMA

DYN, TAMDYN
IYC,TAMIYC
AMAAC

DMAN

TKA

KNEZ

TAY

TMA

™Y

TYA
TAMDYN, TAMIYC
TAMZA

TAM

TBIT1

SAMAN

CPAIZ

IMAC

MNEZ

TCY

YNEC

TCMIY
IAC,DAN,A2/3/.../13/14AAC,CLA,ACIAC
CLA

FIGURE 9-4.4 TMS 1100/1300 NON-STANDARD INSTRUCTION PLA CODING

9-4.2 BR EXAMPLE. For some algorithms a loop is used for critically timed output control. A
solution is to execute the first word in the loop at the same time the branch to loop occurs. The
branch address should be inconspicuous because all branch instructions with the same operand
(regardless of the page address whereupon the branch occurs) produce the combined results of the
fixed and programmable microinstructions. A branch-to-program counter address 201 ¢ sends the

control to the last location within a page. The next address in the loop is 00 (by the wrap-around
shift-register counter effect). Let the decrement-Y-register (DYN) be the first instruction in the
loop. Assume that reducing the instruction execution cycles by one is sufficient to speed up the
loop’s cycle time. Then the following steps are necessary to implement the new instruction that
combines DYN with a branch instruction to address 201 ¢.

1) Assign BRDYN the opcode value of A07¢.
2) Define the microinstructions necessary to implement DYN. (YTP, 15TN, AUTY, C8)
3) Check limitations of the instruction PLA and timing constraints.

4) Define BRDYN to the assembler, and limit the validity of BR to exclude operands of
2016

5) Define the BRDYN code and the microinstructions to the simulator.

6) Check the list of instructions used by the automatic-test generator. The new
instruction may require a software change to the test program.

9-4.3 REDUCING PLA TERMS. The reduction of terms is analegous to minimizing a Boolean
expression by means of a Karnaugh map or algabraic methods. The purpose is to enable a logical
expression with fewer gates. Due to the hardware structure found in PLAs, the technique of
inspection is sufficient to solve most minimization problems. The TMS 1100/1300
standard-instruction set was minimized by inspection. The same is possible in the TMS 1000/1200
instruction set for users who must add microinstructions to fixed instructions (without losing
existing instructions). The 30 term instruction PLA is filled by the existing TMS 1000/1200 coding.
The following procedure reduces the 30 terms into 29 terms.

1) Looking at Table 3-4, The TMS 1000/1200 microinstruction index, some instructions
seem to have similar or overlapping microinstructions. For example, notice CLA, TAM,
and TAMZA.

2) After finding that the threc instructions use only two positive-logic microinstructions,
STO and AUTA, it is possible to use only two PLA terms to completely define the
three instructions.

3) If one PLA term decodes CLA and TAMZA, and if another PLA term decodes TAM
and TAMZA, TAMZA can be completely defined by the overlapping of the two terms.

if: Term A enables AUTA for CLA and TAMZA, and Term B enables STO for
TAMZA and TAM, then simultaneously Terms A and B enable both AUTA and
STO, TAMZA.

4) The instruction map (Figure 3-1) helps visualizing how the next step is accomplished.
A don’t-care bit is assigned to Term A and Term B such that two opcodes enable each
term. A third opcode must enable both terms.

9-17

5) Since the standard instructions’ opcodes do not have the necessary similiarities, the
opcodes are reassigned to fit the requirements:

OPCODE

MNEMONIC

HEXADECIMAL
TAM 03
TAMZA 23
CLA 22
TYA 04 (replaced by TAMZA)
™Y 2F (replaced by CLA)

The shaded bits are to be the don’t cares for the two terms.

6) The simulator inputs for the two terms in question are:

OPB 00-00011=STO; TAM,TAMZA
OPB 0010001—-=AUTA; TAMZA,CLA

TYA and TMY also require changes to the product matrix to reflect the reassigned
opcodes.

9-5 PLA TERM MINIMIZATION IN THE OUTPUT PLA.

Since the reduction procedure described in 9-4.3 is common to all PLAs, application to the output
PLA is possible. In many circumstances the user desires more than 20 output codes from the QPLA.
Don’t-care bits will enable two PLA terms to generate a third output code if both are enabled
simultaneously. An example illustrating the reduction procedure follows:

Assume a seven-segment display provides a user with a hexadecimal output font. Five other codes
are also needed. The output PLA has 20 terms, so the requirement for PLA terms must be reduced
from 21 to 20. The coding in Figure 2-16.2 is a good starting point for this example. Note the
overlapping nature of the output codes for zero, eight, and nine. If the data for zero and nine are
logically ORed, the character eight is the output code.

Fortunately, zero and eight differ by only one bit, and eight and nine differ by only one bit:

O-REGISTER: SL AgAjAzA1 07005040302010¢9 — O OUTPUTS
Fo 1 01111110 ‘zero’
1 11111110 ‘eight’
Fg 1 11011110 ‘nine’

Thus, one term decoding the following Oregister data enables zero and eight:

F0=SL-R4'KZ'51

9-18

A second term decoding the following O-register data enables eight and nine:
F9=SL-Ag- A4+ Ay

Thus, one don’t care is selected in the following general Boolean equation for a given term F;(i=0
to 19) in the output PLA:

F;=SL-1I Ag, SL=1,0X; A=1,0X.
2=1,2/4,8

If both terms Fy and Fg are true for 18 in the output register, then the following Boolean
expression getermines the code for each O-output terminal Oj:

1
0j=2, F where j = 0 to 7
i=0

In the case where both F(and Fg are true, O7 through O are all on and the character eight is
enabled.

The above procedure can be applied also to the codes for C, E, and F. Each time the procedure is
used, a new term is available for another specific O-output code.

9-19

SECTION X

SUBROUTINE SOFTWARE

10-1 GENERAL.

By using the subroutine capability of the TMS 1000 series, programs are substantially compacted,
enabling the user to write very powerful algorithms within the 1024- or 2048-word limit. Normally
“straight line” programming is used only for high-speed applications.

A subroutine is used to avoid duplication of ROM code when a particular section of code is used
several times within a program.

A subroutine is a section of code terminated with a RETN instruction. A CALL instruction
transfers program execution to the first instruction in the subroutine. At the completion of the
subroutine program control is transferred to the instruction address immediately following the
CALL. Examples of a subroutine and different calling techniques follow. Unless indicated
otherwise, these examples and those in the following sections are compatible with the
TMS 1100/1300. Only X addressing is changed when running these TMS 1000/1200 programs on
the TMS 1100/1300.

10-2 EXAMPLE SUBROUTINE.

The following subroutine, CREG, will clear out digits 0 to 6 on a given RAM file. The RAM X
address is set prior to CALLing this subroutine.

LABEL OP CODE OPERAND COMMENT

CREG TCY 0 INITIALIZE Y TO 0
C1 TCMIY 0 THE WORDS ARE CLEARED BY TRANSFERRING THE
CONSTANT 0 TO MEMORY WHILE INCREMENTING Y
YNEC 7 CONTINUE UNTIL WORD 6 ISSET TO 0O (Y =7)
BR C1
RETN WHEN Y =7, RETURN TO THE CALLING PROGRAM

10-3 EXAMPLE CALLING SEQUENCE.

Recall that both CALL and BR instructions are conditional on status. To successfully execute a call,
the CALL instruction must either follow a non-status affecting instruction, such as TCY or LDX, or
follow a status affecting instruction that will leave status set at ONE. If the call is successful, then
the contents of the page address and page buffer registers are exchanged. Therefore, care must be
taken to ensure that the page buffer contents point to the subroutine page before attempting a call.

The subroutine labeled CREG is arbitrarily placed on ROM page 7. To demonstrate calling
sequences, examples of calling from page 7 and calling off of page 7 are given.

10-3.1 CALLING A SUBROUTINE ON THE SAME PAGE. Remember that a successful branch to a

page transfers the page buffer contents to the page address register, leaving them identical. The first
example assumes that both registers are identical.

10-1

LABEL

OP CODE OPERAND

LDX

CALL
BR

3

CREG
XYZ

COMMENT

BY PRECEDING THE CALL WITH A NON-STATUS AFFECTING
INSTRUCTION, THE CALL WILL BE UNCONDITIONAL

SO THIS INSTRUCTION ALWAYS PASSES CONTROL TO CREG
AFTER THE COMPLETION OF CREG, THIS IS THE NEXT
INSTRUCTION EXECUTED.

When a subroutine is used initially, it is embedded directly in a straight line sequence rather than
CALLed, to save a CALL instruction. This holds only if the page buffer and page address register
contents are identical.

LABEL

CREG
ci

The following
modified.

LABEL

OP CODE

LDX
TCY
TCMIY
YNEC
BR
RETN
BR

OPERAND

NooWw

Xyz

COMMENT

CREG SUBROUTINE

example shows how to correctly call a subroutine when the page buffer has been

OP CODE OPERAND

LDP
ALEC
BR
LDP

CALL

a
6
ABC
7

CREG

COMMENT

CHANGE PAGE BUFFER CONTENTS TO 4
IF A IS LESS THAN 7, BRANCH TO ABC ON PAGE 4.

IF NO BRANCH, PAGE BUFFER REMAINS = 4. IF ACALL IS
ATTEMPTED NOW, CONTROL INCORRECTLY PASSES OVER TO
PAGE 4. THUS THE PAGE BUFFER MUST BE SET TO 7.

10-3.2 CALLING A SUBROUTINE FROM A DIFFERENT PAGE. If the calling sequence is not on
the same page as the subroutine, a LDP precedes the CALL so that the page buffer content is equal
to the subroutine’s page address. The following example demonstrates a CALL from one page to

another and a conditional CALL.

LABEL

OP CODE OPERAND

LDP
ALEC
CALL

7
0
CREG

COMMENT

SET PAGE BUFFER TO 7
IF A=0, THEN CREG WILL BE SUCCESSFULLY CALLED.

Notice that the test instruction, ALEC 0, must immediately precede the CALL since status is
affected for one instruction cycle only.

10-2

10-4 MULTIPLE ENTRY POINTS.

Often it is desired to use a subroutine several times, specifying different conditions each time for
entering that subroutine. A call to the multiple entry points presets different conditions, and then a
branch into the base subroutine is executed. Thus, rewriting the subroutine for each entry condition
is avoided.

The following examples use the CREG routine as the basic subroutine. The CREG routine clears
words 0 to 6 on a RAM page where the X address is set before CREG is CALLed (as in example,
paragraph 10-3.1). If clearing words 0 to 6 is required more than once in a program, then it is
advantageous to create a new subroutine (e.g., CREG3 which sets X to 3 before entering CREG).

LABEL OP CODE OPERAND COMMENT

CREG TCY 0
C1 TCMIY 0
YNEC 6 BASIC SUBROUTINE
BR C1
RETN
CREG3 LDX 3 SETX=3
BR CREG

Now the calling sequence becomes:

LABEL OPCODE OPERAND COMMENT

3

CALL CREG3

Note that the CREG subroutine is not modified and can be called again.

Another example, again using CREG as the base subroutine, is the subroutine CLALL. CLALL sets
Y to 6 before entering the clearing routine, so every word on the RAM page is cleared, including
words 7 to 15.

LABEL OP CODE OPERAND COMMENT

CREG TCY 0
c1 TCMIY 0
YNEC 6 BASIC SUBROUTINE
BR Cc1
RETN
CLALL TCY 6 SETY=6
BR c1 BRANCH INTO THE CLEARING LOOP

Since an LDP instruction destroys the subroutine return address, a subroutine and its multiple entry

points must be contained within one ROM page. Generally, less LDP instructions are needed when a
subroutine resides on the same ROM page that the subroutine is called most frequently.

10-3

SECTION XI

ORGANIZING THE RAM

11-1 GENERAL.

To use the TMS1000 data storage efficiently, the locations of storage areas in the RAM must be
assigned carefully. The RAM is normally subdivided into data “registers”, flag bits, and temporary
working areas. If the location assignments are chosen logically, unnecessary use of RAM addressing
instructions, such as LDX and TCY, can be minimized.

The following paragraphs given general guidelines for RAM organization which is useful in most

programs. The routines and guides given are applicable to the TMS 1100/1300 as well as the
TMS 1000/1200.

111-2 DATA REGISTER ORGANIZATION.

To minimize X and Y addressing, data “registers” should be located on sequential locations on the
same RAM page. For example, the following is a seven word “register” organization that defines a
subset of any 16 word file:

X=

g .
DATA REGISTER 0to3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~

Y ADDRESS

If organized in this manner, a register left-shift subroutine requires only three Y addressing
instructions.

NOTE
Assume in this example and in all succeeding
examples, that register location Y = 0 is the least
significant digit (LSD) and location Y = 6 is the
most significant digit (MSD).

111

11-2.1 REGISTER LEFT SHIFT EXAMPLE.

LABEL OP CODE OPERAND COMMENT

LSHFT CLA ENTER THIS SUBROUTINE WITH X SET. THE ACCUMULATOR
WILL BE TRANSFERRED TO THE LSD, SO INITIALIZE TO 0.

LDATA TCY 0 THE LOCATION Y =0 IS THE LSD.
L1 XMA EXCHANGE MEMORY AND ACCUMULATOR.

IYyc INCREMENT Y

YNEC 7 KEEP EXCHANGING UNTIL Y =7.

BR L1

RETN

Note that this subroutine could also be a data entry subroutine by setting the accumulator equal to
the new data and CALLing LDATA.

For most programs, several data registers are required. Whenever possible, these registers are placed
on different RAM pages, and their Y locations on these pages would he equal. Thus, X and Y
addressing can be minimized on register-to-register operations such as transfers, addition and
subtraction. If organized as in Figure 11-2.1, a transfer from register DRO to register DR1 requires
only three addressing instructions.

j . REGISTER DR3 ———

r—-—— REGISTER DR2 =iy

pg— REGISTER DR1 it

4 REGISTER DRO ——

Y ADDRESS

FIGURE 11-2.1 EXAMPLE OF RAM ORGANIZATION

11-2

11-2.2 TRANSFER FROM REGISTER 0 TO 1 (EXAMPLE).

LABEL OPCODE OPERAND COMMENT

TRO1 TCY 0 INITIALIZEY =0
T LDX 0 SETX=0
TMA TRANSFER M(0,Y) TO ACCUMULATOR
LDX 1 SET X=1
TAMIY TRANSFER ACCUMULATOR TO M(1,Y) AND INCREMENT Y
YNEC 7 CONTINUE UNTILY =7
BR T1
RETN

11-2.3 REGISTER TRANSFER EXAMPLE USING COMX. Notice in paragraph 11-2.2 that DRO
contents can be transferred to DR1, but DR1 cannot be transferred to DRO. Also, this subroutine
cannot be used for transfers between any other register pairs.

This limitation can be overcome by using the COMX instruction in the following subroutine and by
defining paired registers (two registers that transfer to and from each other) to be on complemented
X addresses.

LABEL OPCODE OPERAND COMMENT
TRO3 LDX 3 THE BASE SUBROUTINE CAN TRANSFER REGISTER DRO

TO DR3, DR3 TO DRO, DR1 TO DR2, AND DR2 TO DR1.
FOR DRO TO DR3 PRESET X TO 3.

TRO TCY 0 INITIALIZEY =0

T2 comXx COMPLEMENT X
TMA TRANSFER M(X,Y) TO ACCUMULATOR
ComMX COMPLEMENT X
TAMIY TRANSFER ACCUMULATOR TO M(X,Y), AND INCREMENT Y
YNEC 7 TRANSFER UNTIL Y =7
BR T2
RETN

TR30 LDX 0 FOR THE TRANSFER OF DR3 TO DRO PRESET X TO 0
BR TRO

TR12 LDX 2 FOR THE TRANSFER OF DR1 TO DR2, PRESET X TO 2
BR TRO

TR21 LDX 1
BR TRO

By using multiple entry points, four register transfers are accomplished with one base subroutine.

11-3 PLACING FLAG BITS. 4
One should carefully choose the location of flag bits. As usual, the objective is to minimize
addressing instructions. The following are general suggestions on bit placement.

Registers and the registers’ sign bits should be located in the same RAM page and located in

adjacent Y addresses. This permits the transfer of sign bits by the same subroutine which transfers
the register contents. For instance, in examples in paragraphs 11-2.2 and 11-2.3, sign bits located in

11-3

Y =7 could be transferred, along with the data in the register, simply by changing the YNEC 7 to a
YNEC 8 command.

Different flags which are tested sequentially in a program should be placed in the same RAM word
to eliminate both X and Y changes between tests.

11-4 TEMPORARY WORKING AREAS.
Temporary working areas arc cither full register length, which is required in a three register
calculation (i.e., divide, when one register holds the intermediate results), or shorter length areas
which are used for counters and pointers.

Data Register 1, in Figure 11-2.1, is a good location for storing the results from DRO divided by
DR3, as is demonstrated in a later example. To transfer the result back to DRO, a simple DR1 to
DRO transfer is required.

Pointers and counters should be placed on the same RAM file as the registers that they interact with
(Register X number = file 0, 1, 2, or 3). The following example monitors an external event
(detected at EXIT label), counts to 16 (e.g., 16 items loaded into a container), and then adds one to
a BCD register in the same file for each count of 16.

BINARY
EVENT sTeR
COUNTER BCD REGIST
P ~ -
- REGISTER >
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
~)
2
Y ADDRESS

11-4

Oto3

LABEL OPCODE OPERAND COMMENT

COUNT TCY 15 SET Y TO BINARY EVENT (B.E.) COUNTER LOCATION (15)
IMAC BE COUNTER +1
BR ADD 1 IF CARRIED, BRANCH TO ADD1 WHICH ADDS 1
TO THE BCD REGISTER.,
TAM IF NO CARRY TRANSFER ACCUMULATOR TO BE COUNTER
BR EXIT AND BRANCH TO EXIT WHERE A ROUTINE IS LOCATED
WHICH WAITS FOR THE EVENT WHICH IS BEING COUNTED.
ADD1 TAMIY IF 16'TH PULSE, ACCUMULATOR = 0, SO TRANSFER

ACCUMULATOR TO B.E. COUNTER AND INCREMENT
Y (BECOMES = 0)

INCM IMAC M(X,Y) + 1 TO ACCUMULATOR
TAM STORE ACCUMULATOR BACK INTO M(X,Y).
ALEC 9 IF ACCUMULATOR WAS LESS THAN OR EQUAL TO 9, THEN
GO TO EXIT, SINCE THE REGISTER 1S CORRECT IN BCD.
BR EXIT
TCMIY 0 IF ACCUMULATOR > 9, SET THIS DIGIT =0, AND ADD
ONE TO THE NEXT HIGHER ORDER DIGIT.
BR INCM
EXIT . EXTERNAL ROUTINE WAITS FOR THE
. COMPLETION OF A
. NEW EVENT THAT

BR COUNT IS TO BE COUNTED

Notice that by placing the BCD counter and B.E. counter in the same file, no X addressing was
required. The LSD of the BCD register was addressed with TAMIY, saving both ROM code and
execution time. f

SECTION XII

GENERAL PURPOSE SUBROUTINES

12-1 REGISTER RIGHT SHIFT.T :
This routine right shifts the register and enters a 0 to the MSD.

NOTE
These subroutines assume that the data registers
are organized as in Figure 11-2.1.

LABEL OPCODE OPERAND COMMENT

RSHIFT CLA .
TCY 6 SET Y =6 (MSD)
R1 XMA EXCHANGE MEMORY CONTENTS AND ACCUMULATOR.
DYN DECREMENT Y TO NEXT LOWER DIGIT
BR R1 CONTINUE UNTIL Y EQUALS ZERO.
RETN]

122 REGISTER EXCHANGE. |
This subroutine exchanges registers DRO and DR3 or DR2 and DR1 depending on entry point. If
entered at label EX03, DRO is exchanged with DR3.

LABEL OPCODE OPERAND COMMENT

EX03 LDX 3
EXO0 TCY 0 PRESET Y =0
EX1 TMA TRANSFER M(X,Y) TO ACCUMULATOR.
COMX COMPLEMENT X
XMA EXCHANGE M(X,Y) AND ACCUMULATOR.
COMX COMPLEMENT X AGAIN
TAMIY TRANSFER ACCUMULATOR TO MEMORY AND INCREMENT Y
YNEC 7 CONTINUE EXCHANGING UNTIL X=7
BR EX1 '
RETN
°
.
[]
)
EX21 LDX 2 IF ENTERED HERE, REGISTER DR1 IS EXCHANGED WITH DR2.
BR EXO0

TThe routines in 12-1 and 12-2 are compatible with the TMS 1100/1300 except X address assignments.

12-1

12-3 DECIMAL ADDITION,

The following subroutine adds two registers word by word in BCD. In BCD, if the sum of two
words is greater than nine, then the correction-factor six must be added to the result, and a carry
must be propagated to the next higher order digit. In this subroutine, the carry bit is propagated by
the accumulator. Register DRO is added to register DR3 and the result stored in register DRO. As
before, X may be preset in the beginning to have: DRO + DR3 -~ DR3, DR1 + DR2 -~ DR1, or DR1
+ DR2 - DR2.

LABEL OPCODE OPERAND COMMENT

A030 TCY 0 PRESET Y =0
CLA CLEAR ACCUMULATOR WHICH WILL BE USED AS THE
CARRY DIGIT
AD1 comx COMPLEMENT X
AMAAC ADD M(X,Y) TO ACCUMULATOR (POSSIBLE CARRY)
COMX COMPLEMENT X
AMAAC ADD M(X,Y) + [M(X,Y) + CARRY], ANSWER TO ACCUMULATOR
BR GT9 BRANCH IF THE SUM WAS GREATER THAN 15
ALEC 9 NOW TEST FOR A SUM LESS THAN 10
BR LT10 AND BRANCH TO LT10
GT9 ABAAC IF SUM GREATER THAN 15, ADD 06.
TAMZA TRANSFER THE CORRECTED SUM TO MEMORY AND
CLEAR THE ACCUMULATOR.
1A SET THE ACCUMULATOR (CONTAINS THE CARRY BIT) =1
INCY IYyc INCREMENT Y
YNEC 7 CONTINUE ADDING UNTIL Y =7
BR AD1
RETN
LT10 TAMZA FOR SUMS LESS THAN 10, TRANSFER THE ACCUMULATOR

TO MEMORY AND CLEAR THE CARRY DIGIT.
BR INCY

12-2

The following subroutine adds two multi—précision registers, DRO and DR4, for TMS 1100/1300
applications of BCD addition. Since ALEC is not available in the TMS 1100/1300, six-plus-the-
accumulator is used to generate a carry if the accumulator is greater than nine. If the accumulator
was greater than nine, it is corrected to BCD. If the accumulator was less than or equal to nine, no
carry results and ten (—6) is added to the accumulator which is stored in memory.

LABEL OP CODE OPERAND COMMENT

A040 TCY 0 PRESET Y
CLA
AD1 COmMX 04
AMAAC
COMX 4-0
AMAAC
BR GT15 RESULT GREATER THAN 15
AGAAC CORRECT TO BCD AND TEST
BR GT9 IF GREATER THAN 9, BRANCH
A10AAC CORRECT BACK TO BCD
TAMZA
BR INCY
GT15 AGAAC CORRECTION TO BCD
GT9 TAMZA
IAC SET CARRY =1
INCY IYC
YNEC 7
BR AD1
RETN

12-3

12-4 DECIMAL SUBTRACTION.

This subroutine subtracts two registers word by word in BCD. Subtraction is similar to addition in
that if 2 borrow occurs, the correction factor ten must be added to the result, and the borrow bit
that is propagated by the accumulator must be added to the next-higher-order subtrahend digit. In
this example, register DR3 is subtracted from register DRO with the result stored into register DRO.
If the initial X address is modified as before, the subroutines DR3 — DRO ~> DR3,DR1 — DR2 >
DR1, or DR2 — DR1 ~ DR2 can be generated.

LABEL OPCODE OPERAND COMMENT

§$300 LDX 0 PRESET XTO 0
TCY 0
CLA CLEAR THE ACCUMULATOR, TO BE USED AS THE
BORROW DIGIT.
$1 comx COMPLEMENT X; ADDRESS THE SUBTRAHEND.
AMAAC ADD SUBTRAHEND M(X,Y) + BORROW, > ACCUMULATOR
CcomMX COMPLEMENT X; ADDRESS THE MINUEND.
SAMAN MINUEND M(X,Y) - [SUBTRAHEND M(X,Y) + BORROW]
SENT TO ACCUMULATOR.
BR NOBOR
A10AAC IF BORROW OCCURS, ADD CORRECTION OF + 10
TAMZA TRANSFER THE RESULT TO MEMORY AND CLEAR
THE ACCUMULATOR.
1A SET ACCUMULATOR (BORROW DIGIT) TO 1.
INCYS IYyc INCREMENT Y
YNEC 7 UNTIL Y =7.
BR $1
RETN
NOBOR TAMZA IN THE NO BORROW CASE, TRANSFER THE RESULT TO
MEMORY AND CLEAR THE ACCUMULATOR.
BR INCYS IN THE NO BORROW CASE, THE ACCUMULATOR

(BORROW) REMAINS = 0.

tNOTE: When using the TMS 1100/1300 standard instruction set, [A must be replaced by either
IAC or AC1IAC 0. The assembler default mnemonic definition accepts either format.

12-4

SECTION XIII

EXAMPLE ROUTINES

13-1 GENERAL.

This section provides routines that are commonly found in TMS 1000/1200 and 1100/1300 applica-
tions.

13-2 DISPLAY AND KEYBOARD SCAN.

Many applications require the TMS1000 to scan a display and accept keyboard data from
momentary and non-momentary switches. Figure 13-2.1 illustrates a typical keyboard and display
configuration.

N N NI AR NN
N [N N AN N N N\ tKg
N~ N N NN
LN [N AN AN AN AN AN K4
PO N N N A NI N N N
AN AN N N AN AN A K
2
DIGIT STROBES
~ M A R \P _ ko ST SEGMETDRIVE
N N AN N\ \ N Nk r] r N
Ro R1 R2 R3 R4 R5 RG ------ 00 01 02 03 04 05 06

FIGURE 13-2.1. TYPICAL KEYBOARD AND DISPLAY CONFIGURATION

13-1

Data is displayed by sequentially setting R lines to display one character at a time. Segment
information for that character is decoded through the output PLA which is programmed to provide
seven-segment inverted or non-inverted, current drive. For seven-segment drive, an extra O output is
available for driving a decimal point or other external logic in the user’s system. The state of each
switch can be checked while sequentially setting the R lines. For instance, during thé time that R2
is on, if switch B is closed and switches A, C, and D are open, then the K inputs would be equal to 4
(binary 0100). Key decoding, debounce, multiple key push protection, and rollover are provided by
software control. Also, external logic states are sensed by this scheme of using the R lines as data
selectors (see Figure 13-2.2).

.

FIGURE 13-2.2. EXTERNAL DATA INPUT MULTIPLEXER

ING l; IN2 E
<
IN7 IN3
c O"—jl O'"j_\ N N N
‘ &
IN8 IN4
T T
® . g
RN+4 RN+3 RN+2 RN+1 RN

K8

K4

K2

K1

The requirements of the display scan depend upon the type of display used. Variables such as scan
speed, direction of digit scan (right to left vs. left to right), duty cycle, digit or segment blanking

and leading zero suppression are also controlled by software.

13-2.1 BASIC SCAN ROUTINE. This routine displays words 0 to 6 of a file while checking for a K
input. As soon as a K input occurs, an exit is made.

LABEL OPCODE OPERAND COMMENT

DisP TCY
DIS1 DYN

TMA
1YC
RSTR
DYN
TDO
SETR
KNEZ
BR
YNEC
BR

7 PRESET Y =7 (SCAN FROM LEFT TO RIGHT)
DECREMENT Y TO TRANSFER LOWER ORDER
DIGIT TO THE ACCUMULATOR
INCREMENT Y TO RESET HIGHER ORDER R LINE
DECREMENT Y TO SET LOWER ORDER R LINE.
TRANSFER ACCUMULATOR TO OUTPUT DECODE
TEST FOR K INPUT

EXIT IF K INPUT IS NOT ZERO, BRANCH TO EXIT

15 TEST FOR COMPLETION OF SCAN, Y =15

DIs1 IF NOT COMPLETE, BRANCH TO DIS1

DISP IF COMPLETE, REINITIALIZE Y

The timing diagram in Figure 13-2.3 shows how the routine controls the output lines.

00 - Og DIGIT 6 V DIGIT5 V DIGIT 4 V DIGIT 3 V DIGIT 2 V DIGIT 1 V DIGIT 0 \ DIGIT 6 V DIGITS
Re
R — <
DIGIT TIME DEAD TIME —
Rg
——l -—
DEAD TIME
Ra
—-»[la—
R3 —
—-' le—
R2 —_—
—»l —
R1 J—
—-I lt—
Ro
——I —

TOTAL SCAN TIME

TIME s

FIGURE 13-2.3. TYPICAL DISPLAY OUTPUT TIMING

13-3

Shown in Figure 13-2.3 are “dead times”, or times when no data is displayed. The short dead time
between sequential digits is caused by the decrement Y that must follow a RSTR. The longer dead
time between digit zero and the following digit six is caused by a SETR(Y =15) which acts like a
no-op after digit zero is reset. Duty cycle defined by:

INDIVIDUAL DIGIT TIME
TOTAL SCAN TIME

DUTY CYCLE =

is lowered by this dead time. For applications requiring high duty cycles, more complex display
routines are written to keep the dead times to a minimum. To minimize the effects of dead time,
individual digit times are also increased, as long as the total scan time is not excessive.

13-2.2 LEADING ZERO SUPPRESSION. To provide leading zero suppression, one character that is
not decoded in the output PLA (therefore a blanked O output = all zeros) is loaded into the
O-output register to provide a suppressed zero output. This code can be stored in the RAM file
digits to be blanked before entering the display routine.

In the following routine 15 will be used as the blank code (not decoded according to output PLA
programming). This routine stores 15’s in the display register in all digit positions in the display
register that are leading zeroes.

LABEL OPCODE OPERAND COMMENT

BLANK TCY 6 ADDRESS MSD

BL1 MNEZ IF NON-ZERO, BLANKING COMPLETE SO
BR DisP EXIT TO DISP
TCMIY 15 IF NOT, SET THAT DIGIT =15
DYN
DYN ADDRESS THE NEXT LOWER ORDER DIGIT
BR BL1 CONTINUE THIS PROCESS UNTILY =0
BR DISP

13-2.3 KEY DEBOUNCE. K inputs are debounced in software on the TMS1000 by delaying a
specified time period after the first K input is detected and then retesting. If the signal is still valid
at the second test, then the input is a true input and not noise. Figure 13-2.4 illustrates some of the
typical noise problems.

L9 l‘J
-
\) - — J\. ~ AN ~" o’
TRANSIENT NOISE LEADING EDGE SWITCH CLOSURE TRA'LING EDGE
BOUNCE BOUNCE
> 3.5 msec 5-10 msec 5-10 msec

FIGURE 13-2.4. KEY NOISE TIMING

13-4

To provide the delay period required for deglitching an input, the display routine can be looped
through the required number of times, or the following simple delay loop can be used.

LABEL OPCODE OPERAND COMMENT

DELAY DAN THIS ROUTINE COUNTS THE ACCUMULATOR DOWN TO
BR DELAY ZERO WITHIN A LOOP THAT COUNTS Y DOWN TO 0.
DYN IF THE ACCUMULATOR AND Y ARE INITIALIZED TO
BR DELAY 15, THEN THIS ROUTINE WILL DELAY 544

INSTRUCTION CYCLES (=9.8 msec @ clock freq = 333 Khz)

13-3 ADDRESSING AN EXTERNAL RAM.
For some applications, the internal data storage capability of the TMS1000 must be supplemented
with an external RAM. Most standard RAMS can be utilized by taking advantage of the TMS1000’s

unique output architecture.

The following routines demonstrate techniques used to address a RAM. A RAM organization of
256 x 4 is used in this example. To simplify the interface requirements RAM has separate input and
output data lines as shown in Figure 13-3.1. To further simplify the example, no other external
components, such as a keyboard or display, are used.

The RAM address is supplied by RO to R7. READ/WRITE and CHIP SELECT are R8 and R9. Og
to O3 provides data that is read into the RAM. Data is read from the RAM output on K1 to K8.

cs R/W
Rg R
04 o Kg 8 R9
03 ™ Kg
02 — K2
01 o K1
2656 x4 RAM TMS1000
11 jug Og
12 b 04
13 pa- 02
14 pt 03
A7 Ag As Aq A3z A2 Aj Ag Ro R1 R2R3 Rq Rs Rg R7

b) ITT

FIGURE 13-3.1. CONNECTIONS TO EXTERNAL RAM

13-5

In many applications the RAM address is stored in the TMS1000 in BCD. The first part of this
routine converts a three-digit BCD number (000-255) into a two word binary address (00-FF).
Next, a routine tests each bit of the two binary words and individually sets or resets corresponding
R lines (R0O-R7).

13-3.1 CONVERTING BCD TO BINARY. Assume that the number to be converted is stored in
RAM words M(X, Y with Y =1 to 3) with the hundreds digit in M(X,3), the tens digit in M(X,2),
and the ones digit in M(X,1). This routine places the converted results in M(X,0) and M(X,1). The
word at M(X,1) is the most significant.

First, the ones digit is transferred to M(X,0), and M(X,1) is cleared. Then the tens digit, M(X,2), is
decremented until it equals zero. Every time it is decremented, binary ten (1010) is added to
M(X,0) with any carry being added to M(X,1). When the tens digit equals zero, the hundreds digit is
decremented. For every time that the hundreds digit is decremented, ten is placed into the tens digit
(10 x 10) and the process is repeated (decrementing the tens digit). Finally, when the hundreds digit
is decremented and it borrows, the conversion is complete.

LABEL OPCODE OPERAND COMMENT

BCDBI CLA FIRST, TRANSFER ONES DIGIT TO M(X,0)
TCY 1 AND CLEAR M(X,1)
XMA M(X,1) STORES THE CARRY FROM M(X,0).
TCY 0
TAM ONES DIGIT, ALREADY BINARY, GOES TO M(X,0)
BCBI1 TCY 2 ADDRESS THE 10's DIGIT
DMAN (10's DIGIT) -1+ ACCUMULATOR
BR BCBI3 BRANCH IF NON ZERO TO BCBI3
TCY 3 IF ZERO, ADDRESS 100's DIGIT
DMAN (100's DIGIT) -1 > ACCUMULATOR
BR BCBI2 BRANCH IF NOW ZERO TO BCBI2
BR BIOUT IF ZERO, BCD TO BINARY CONVERSION COMPLETE.
BCBI2 TAM TRANSFER 100’s DIGIT -1 (ACCUMULATOR) ~> 10’s DIGIT
TCY 2 SET 10's DIGIT =10
TCMIY 10
BR BCBI1 AND BRANCH TO BCBI1 TO CONTINUE DECREMENTING
THE 10°s DIGIT
BCBI3 TAM TRANSFER 10’s DIGIT -1 ACCUMULATOR — 10's DIGIT
TCY 0 ADDRESS 1's DIGIT
TMA TRANSFER 1's DIGIT -~ ACCUMULATOR
A10AAC ADD 1's DIGIT + 10 > ACCUMULATOR
BR BCBI5 IF GREATER THAN 16, BRANCH TO BCBI5
BR BCBI6 IF NOT, BRANCH TO BCBI6
BCBI5 TAMIY TRANSFER 1's DIGIT +10 > 1's DIGIT AND
INCREMENT Y
IMAC PROPAGATE CARRY TO M(X,1)
BCBI6 TAM TRANSFER ACCUMULATOR~> M
BR BCBI1

13-6

13-3.2 SETTING ADDRESS LINES OF THE EXTERNAL RAM FROM A BINARY NUMBER.
Assuming that the binary address is now stored in M(X,1) (most significant) and M(X,0) (least
significant), this routine tests each bit at the binary address and sets a corresponding R line if the bit
is set. Initially, all R lines are reset. For example if M(X,1) contained 1101 and M(X,0) contained
0101, then this routine would set R7, R6, R4, R2, and RO.

LABEL OPCODE OPERAND COMMENT

BIOUT TCY 2 ADDRESS THE POINTER
TCMIY 7 SET POINTER TO SEVEN
TCY 1 ADDRESS M(X,1)
BIOT1 TBIT1 3 TESTBIT 3
CALL SET IF SET, SET R(POINTER)
CALL DEC DECREMENT POINTER
TBIT1 2 REPEAT FOR BIT 2
CALL SET
CALL DEC
TBIT1 1 REPEAT FORBIT 1
CALL SET
CALL DEC
TBIT1 0 REPEAT FORBIT 0
CALL SET
DEC TYA THE DEC SUBROUTINE 1S EMBEDDED HERE TO
SAVE A CALL. HOLD Y IN ACCUMULATOR
TCY 2 ADDRESS POINTER DIGIT
XMA POINTER -1~ POINTER
DAN
XMA
TAY RETURN CURRENT LOCATIONTO Y
RETN
DYN X-1—Y,IF Y IS NON-ZERO, BRANCH TO BIOT1 TO
BR BIOT1 WORK ON THE CONTENTS OF M(X,0)
* NOW THAT THE RAM ADDRESS IS SET, DATA CAN
EITHER BE READ ON THE K INPUTS OR WRITTEN
FROM THE O OUTPUTS.
°
°
SET TYA SAVE POINTER FOR HEX WORD
TCY 2 RECALL ADDRESS POINTER FOR R OUTPUT
™Y
SETR SET ADDRESS
TAY RESTORE POINTER FOR HEX WORD
RETN

13-7

13-4 INTEGER BCD MULTIPLY.

The following routine is an example of a simple integer multiply routine. Using the register
organization of Figure 11-2.1, this routine multiplies DRO and DR3 leaving the result in DRO. The
DR1 register holds DRO data during this operation. The MSD of DR1 is addressed first. Every time
this digit can be decremented, DRO is added to DR3 and results are stored in DRO (a long call to
A030). When that digit has been decremented to zero, DRO is shifted left and the process repeated
for the next-lower-order digit in DR1. When all the digits in BCD have been decremented to zero,
the multiplication is complete. Since the multiplication of two N-digit numbers can resultina 2 x
N-digit result, this routine does not work for numbers greater than three digits since the product
register, DRO, is only a seven-digit register. This restriction is overcome by increasing the length of
DRO or by formatting the data in floating-point mode.

In floating point, each register is left justified prior to multiplication, and the order of
multiplication reversed; that is, the LSD of DRI is decremented first, and a right shift is used rather
than a left shift. This results in the six least-significant-digits of the result being discarded.

LABEL OPCODE OPERAND COMMENT

MULT CALLL TRO1 TRANSFER DRO ~ DR1 (PARAGRAPH 11-2.3).
TCMIY 6 UPON EXIT FROM TRO1, X=1AND Y =7,
A POINTER WILL BE STORED THERE THAT WILL
BE USED TO ADDRESS THE DIGIT IN DR1.
LDX 0 SET POINTER TO 6, CLEAR THE DRO
CALL CREG

ML2 LDX 1 ADDRESS THE POINTER
TCY 7
™Y SET Y = POINTER CONTENTS
DMAN DR1 (POINTER) -1 > ACCUMULATOR
BR NOBR BRANCH TO NOBR IF DR1 (POINTER) 1S NON-ZERO
TCY 7 IF DR1 (POINTER) =0, SET POINTER = POINTER -1
DMAN POINTER -1 > ACCUMULATOR
BR ML1 BRANCH TO ML1 IF POINTER IS NON-ZERO
BR EXIT IF 0, THEN MULTIPLICATION COMPLETE, SO BRANCH TO
SOME EXIT ROUTINE.
ML1 TAM ACCUMULATOR TO POINTER
LDX 0 SHIFT DRO LEFT
CALLL LSHFT PARAGRAPH 6-2.1
BR ML2
NOBR TAM IF DR1 (POINTER) WAS NON-ZERO, TRANSFER
CALLL A030 ACCUMULATOR TO DR1 (POINTER) AND ADD DRO
TO DR3 —+ DRO (PARAGRAPH 7-3)
BR ML2

13-8

13-5 INTEGER BCD DIVIDE.,

The following routine is an example of a simple integer divide. In this routine, the DRO is divided
by DR3 with the result left in DR1. The result is transferred to DRO upon completion. In this
routine, DR3 is repeatedly subtracted from DRO. Every time this subtraction is accomplished with
no borrow, the DRI register is incremented. When the first borrow occurs, the division is complete.

This routine is the simplest form of division although it has the longest execution time. If both
numbers were in floating point mode, and left justified prior to division, then several division
techniques exist that substantially decrease the execution time.

LABEL OPCODE OPERAND COMMENT

DIVID LDX 1 CLEARC
CALLL CREG
D1 CALLL S300 DRO - DR3~ DRO
ALEC 0 IF NO BORROW, AT EXIT FROM $300 THE ACCUMULATOR = 0.
BR INCC IF SO, BRANCH TO INCC
CALLL TR10 IF BORROW, DIVISION COMPLETE SO
BR EXIT TRANSFER DR1 - DRO AND EXIT DIVIDE LOOP
INCC LDX 1 INCREMENT DR1 BY ADDING 1 TO
TCY 0 DIGIT 0 AND PROPAGATING THE
D2 IMAC CARRY IF THE RESULT IS GREATER THAN 9
TAM THERE IS NO CHECK IN THIS ROUTINE FOR DIVIDE BY 0.
ALEC 9
BR D1
TCMIY 0

BR D2

The following routine uses the TMS 1100/1300 instruction set for integer divide. The ALEC
command is replaced by an appropriate AC1AC command accompanied by a change in the branch
logic. For the TMS 1100/1300 DRO is divided by DR4, and the results are saved in DRO.

LABEL

DIVID

D1

Dz

OVER9

TR10

TR

OP CODE OPERAND

LDX
CALLL

CALLL
DAN

BR
LDX
TCY

IMAC
TAM
AGAAC
BR

BR

TCMIY
BR

TCY

LDX
TMA
LDX
TAMIY
YNEC
BR

BR

CREG

§400

TR10

OVER9
D1

D2

TR
EXIT

COMMENT

SUBTRACT DR4 FROM DRO, RESULTS PLACED IN DRO
IF BORROW AT EXIT FROM S400, THE ACCUMULATOR =1,
DIVISION COMPLETE

IF NO BORROW, ADD ONE TO QUOTIENT REGISTER, DR1

IF RESULT WAS GREATER THAN 9

RESULT TO ZERO, INCREMENT NEXT MOST-SIGNIFICANT-WORD

TRANSFER COMPLETED RESULT TO DRO

13-10

SECTION XIV

EXAMPLE PROGRAM

14-1 GENERAL

In this section all the examples previously demonstrated are combined to form a working TMS1000
program. This example program illustrates the TMS1000 used as an interval timer and performs

integer BCD multiplication, division, addition, and subtraction.

14-2 EXAMPLE INPUT/OUTPUT.
The schematic in Figure 14-2.1 illustrates the external connections required.

gl S N NE Y N N N>
AN AN L AN AN AN AN K4
N9 N8 NJ
AN AN AN K2
s hx k= K+ fenthc Teik
NSNS NN RTINS N TMS1000 07
AN AN AN AN N AN AN K
1
80 HZ — > Ks
Ro Rq R2 R3 Rq Ry Rg 0Op O1 O2 O3 04 O Og

VY

|]
Il

oJ-
I <><,L

Y

LIC
11

_

SEGMENT 1 TO 7

FIGURE 14-2.1. INTERCONNECT SCHEMATIC FOR EXAMPLE PROGRAM

| o<l—

CLOCK
MODE

The R lines are used to strobe the display and keyboard. The output PLA encodes the accumulator

and status latch into seven segment data.

Data keys are on K4 and K2. Function keys are on K1. A 60 hz clock signal feeds into K8. The

function keys are +, —, X, +, ENT, and C. To execute a multiply, the key sequence would be:

2 | — [ENT| —=| 3 —» | X

which would result in a 6 in the display. The C key is used to clear all the working registers.

14-1

To use the interval timer feature, enter the amount of time to be counted with the data keys. When
the CLK key is depressed, the program will transmit a ONE on O7 which can be used to
communicate to external logic that the circuit is in the clock mode. The program then enters a
countdown mode that decrements the display every second. During this countdown mode none of
the keys are active. When the display has been decremented to zero, O7 is reset, and the keyboard is
reactivated. For the purposes of illustration, this program has not been compacted to give a
mimimal ROM word count.

14-3 RAM ORGANIZATION.
The example program uses the RAM organization shown in Figure 14-3.1.

X ADDRESS

BITO
BIT 1

BIT 2
BIT 3

-t DR3 ———————t 3

BITO
BIT 1
BIT 2
BIT 3

BITO
BIT 1
BIT 2
BIT 3

DR1 —_

POINTER

BITO ONE
BIT 1 CLOCK CLK

BIT2 | COUNTER | NE
BIT 3

DRO E——— 0

TEMP
STORAGE
A

-
N

« 15 14 13 1 10 9 8 7 6 5 4 3 2 1 0
~ J

Y ADDRESS

FIGURE 14-3.1. RAM ORGANIZATION FOR EXAMPLE PROGRAM

14-2

14-3.1 DATA REGISTERS.
e DRO. Display register. Storage register for data entered and for final results.

. DR3. Storage register for the first factor in a calculation. Data is transferred to DR3 when
the ENT key is depressed.

. DR1. Working register used for multiply and divide.
14-3.2 FLAG BITS AT M(0,13).
° Bit 0, the “ONE” flag. In the clock mode, this flag is set when a clock signal is first on
and accepted. Prevents double counting of the clock signal. The “ONE” flag is reset when

the clock signal goes low.

. Bit 1, the “CLK” flag. This flag differentiates between the two modes of operation, clock
and compute. Set when the CLK key is accepted. Reset when the display register is
decremented to zero.

° Bit 3, “NE” flag. In the compute mode, this flag is set when new data is being entered
into the display register, and reset upon completion of a function. In the data entry

routine, this flag is tested before the new data is entered.

If “NE” equals O, then the DRO (display) is cleared before the new data is accepted. If “NE” is set,
then the DRO is left shifted with the new data going to the LSD.

14-3.3 TEMPORARY WORKING AREAS

] M(0,12); Used in the display routine to hold the R location that is currently being
displayed.

° M(0,14-15): Clock signal counter. In the clock mode, this counter is incremented every
clock pulse (every 1/60 second). When this counter equals 60, one second has elapsed.

] M(1,7): Pointer used in the multiply routine.

14-3

ag

SSSSSSSSSSS

$SS5S5855555S
ss SS
s
ss
$5555555555S
$SS5555555S88
Ss
ss
ss Ss
$S55S5S5555SS
$SSSSS5S5SS
JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ JJ
JJ JJ
NRRRARRRNNREN:
RRNRENRRNRR!
RRRRERF RRRRR
RRRRRRRRRRIRR
RR RR
RR RR
RR RR
RRIRKRRARRRRR
RRYRRRRRRRRR
RR RR
RR RR
RR RR
RR RR
RR RR
FFFFFFFFFFFFF
FFRFFFFFFFFFF
(33
FF
FF
FFEFFFFFF
FFFFFFFFF
FF
FF
FF
FF

FF

AAAAAAAAA
AAAAAAAAAAA
AA AA
AA AA
AA AA
AA AA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AA AA
AA AA
AA AA
AA AA
00000000000
0000000000000
00 oa
00 oc
[s]a} 0C
no co
00 (8]a]
J0 (s]8}
a0 CO
[818] o
0000000000000
00000000000
TITTTTITTITITITY
TITTYTITTITTIY
7
TT
TT
17
TT
1T
TT
I7
TT
T
TTITYTTITITTT
TTTTTITITITTY
1T
17
7
T
1T
T7
TT
17
T
7

MM MM
MMM MMM
MMM M MMMM
MM MM MM MM

MM MM MM MM
MM MMM MM

MM M MM
MM MM
MM MM
MM MM
MM MM
MM MM
8B88B8B8B88B8BB
£BBB3BRBBBBBS
BB BB
BB B8
BB BB
B8BBBBBBBAAB
BBBRB3AR3BESB
£8 BB
ER BB
£B BB
BBRE3BBBBBRABB
BBRR3BRBBBRB
TITTTT7777717
IR RRRERRRA)
T7 17
77
17
17
77
77
17
77
17
17
0030000
000000000
00 20
00 00
00 00
[of¢] 00
oo 00
00 00
00 090
00 00
000000000
0000000

PPPPPPPPPPPP
PPPPPPPPPPPPP
PP PP
pp PP
PP PP
PP PP
PPPPPPPPPPPPP
PPPPPPPPPPPP
pp
ep
pp
PP
BB3BEBBBP BBB
383888388 BBAA
38 BB
BB 88
38 BB
3BBBBBBBEBBAB
BBBBRABBBRBBA
BB 38
B3 88
38 B8R
BBBBEBB3EBRBA
8388B8BBBBABA
666666666666
6666666666666
66
66
66
666666666666
6666666666666
66 66
66 66
66 66
6666666666666
66666666666

LL

LL

LL

LL

L

LL

LL

LL

L

LL

LLLLLLLLLLLLL

LLLLLLLLLLLLL

99999999999

9999999999999

99 99

39 99

99 99

9999999999999

999999999999
99
99
99

9999999999999

999999999999

FFFFFFFFFFEFF

FFFFFFFFFFFFF

FF

FF

FF

FEEFFFFEF

FFFFFFEFFF

FF

FF

FF

FF

FF

EEEEEEEEEEEEE
EEEEEEEEEEEEE
EE

EE

EE

EEEEEEEEE
EEEEEEEEE

EEEEFEEEEEEEE
EEEEEEEEEEEEE

33333333333
3333333333333
33 33

33

33

333

333

33

33

33 33
333333333333

3333333333

0000000
000000000

000030000
06000000

99999999999
9999999999999
99 99
99 99
99 99
9999999999999

999999959999

9999999999999
999999999999

0000000
000000000
00 00

Q0 00
000000009
0000000

33333333333
3333333333333
33 33

33
33
333
333
33
33
33 33
333333333333
3333333333
11
111
1111
11
11
11
11
11
11
11
111111
111111

Gyl

TMS1000 ASSEMBLER (VERSION 8.1 05/01/75) 11/24/75 14330346
COPYRIGHT (C) 1975 TEXAS INSTRUMENTS INCORPORATED
TEXAS INSTRUMENTS OWNS AND IS RESPONSIBLE FOR TMS1000 ASSEMBLER

ROM SOURCE PROGRAM S SAMPLE"

PAGE NO. O

AD LOC ORJECT CODE STMT SOURCE STATEMENT
1 TITLE SAMPLE X
2 OPTION LIST
3 OPTION XREF
4 OPTION STAT
5 OPTIGN ROM
000 7 ONE EQU 0
001 3 CLK EQU 1
003 9 NE EQU 3
1l e Yo et sk Xk ok K MoK K % ko R Aok ek ok ook Rk ok ok ok kR R R R E Rk ok ok K xRk Rk kR ke F KRk KR Kk K
12 * DISPLAY AND KEYBOARD SCAN ROUTINE. THIS ROUTINE *
13 * SCANS THE KEYBOARD AND DISPLAY, AND DETECTS A *
14 * CLOCK INPUT., THERE ARF TWO MODES OF OPERATION, *
15 * CALCULATOR (NORMAL MODE) AND CLNCK MODE. IN THE *
16 * CALCULATOR MODE THE CLOCK INPUT IS IGNORED, ONLY *
17 * KEYS CAN BE ENTERED. IN THE CLOCK MODE, KEY *
13 * DEPRESSIONS ARE IGNORED AND ONLY CLOCK SIGNALS *
13 * CAN BE INPUT,. BIT 1 OF M(0,13), THE CLK FLAG, *
20 * WILL BE SET IN THE CLOCK MODE. *
21 o o sk o ook e o ok ok o ok ook e s o e o e ofe e o e ot ol ol ok e kol e o ok e ok ok e s odo ek ook ek ik ek R ok o
000 003 00001000 23 LOCK TKA INPUT THE K INPUTS AND MASK OFF K8y THE CLOCK INPUT.
201 904 0111 1112 24 KIN ALEC 7 1F ANY KEY THAT WAS PREVIOQUSLY PUSHED IS STILL DOWN,
003 00C 10 001111 25 BR K1l THEN CONTROL REMAINS LOCKED IN THIS LOGCP.
907 01C 00000001 26 ABAAC *
J0F 03C)00921111 27 K1 RETN *
91F 03F 0111 0000 28 ALEC 0 *
03F 03 10 111101 23 BR RESET *
03€ 039 10 000000 30 BR L0CK *
p3d 036 0103 2110 32 RESET TCY [} RESET ANY R LINE THAT MAY STILL BE SET DUE YO A
238 J2E 090001120 33 REL RSTR PREVIOUS KEY PUSH.
337 ClE 00101100 34 DYN *
02F 03D 10 11911 35 B8R RE1 *
01F 038 0100 0110 27 DISP TCY 6 START THE DISPLAY LOOP.
03C 031 10 000110 338 BR SCAN2
a39 026 00100011 40 SCANL TYA TRANSFER Y, THE CURRENT R LOCATION, TO THE ACCUMULATOR.
033 00F 01900 0011 41 TCY 12 ADDRESS M{J,12).
327 01> 00100000 42 TAMIY STORE THE R LOCATION I[N M(0,12) WHILE ADDRESSING
43 * M(0,13).
J3E 338 0J00122) 44 TKA TRANSFER THE K I[NPUTS T0O THE ACCUMULATCR.
10 037 901110 10 45 TRITL CLK TEST THE CLOCK FLAG TO CHECK THE CURRENT OPERATING
J3A 329 10 100100 46 3R CLIK MODE (CLOCK OR CALCULATE}.
335 Ji6 11 0202301 47 CALL KIN IF CALCULATE, CALL KIN wWHICH MASKS OFF THE CLOCK INPUT

228 J23 0lll 0063 48 ALEC

0 {F NO KEY INPUT, ACC = 0, BRANCH TO NOK.
016 018 10 111690 49 BR NOK

9 vl

J2c
18
139
221
n02
ns
JOR
17
J2F

e
2338
J3l
)23

0o
700
Jie
Mo
120

LA
V34
D29
712

J24
38
1l
22

134
J09
13

BRI
J1e
Nie
12

DA
JL5

2a
Ji4
)28
019
120

232
J2¢0
o0l
035
J08
114
2c
0LF
J3A4

039
v21
IV
290

014
034
J2F
1y
u3o

323
L
375
J03

712
123
T
Jun

3
324
JIF
Jla
7233
327
CJs
a1

N2
J17

J2A
1
N2z
109
092

1000JL1l
10 131100
00191190
L0 101100
11 300000
J1il 0220
L} 111129
039197199
19 070000

771191 90
Jled 2ull
JA132I10
D0101109

0010499t
23131311
J31I11))
oCL0L1N0
RINTUIV] S) B4

D00011LI1

J101 1111
Lo 111701
Lo nl11to

OL1l 111D
10 011100
PRIRS AR D
17 111702

ML) D)
7100 9110
J0N1133)
J0100L1L0
1J J0)3490
[UNBI D RD]
J9L01L))
JRCERVI RV §

70170011
[S10T0VIVIVE NU)

190 1911
2112 2300
12 111300
Ly 900000
15 020200

51
92
53
54
55
56
57
53
59

61
62
63
b4
65
6o
el
68
69
72
71
72
73
74
75

17
78
79

82
83
B4%
85
3do
87
bd
83

Sl
93
94

96
97
93
Gy
100
1C1
102
103
104
105
100
1e7

NEL

NOC
NIK

SCA

on

TST

i

W+

AY DAN IF KEY INPUT, ENTER THE DELAY LONOP.
3R DFLAY ®
DYN =
BR DELAY *
CALL LICK NOW TEST THF INPUTS AGAIN (MASKING (FF THF CLOCK INPUT)
ALEC 0 I[F NG KEY INPUT, THEN THE INPUT wAS CAUSED 8Y
3R NIIK NOISE OR LEARING FDGF KFY BOUNCE.
RL KEY IF THE KEY IS STILL OOWN, THEN IT IS A VALID INPUT.
LK RBIT ONE BRANCH HERE IN CLUCK MODE WITH NI CLOCK INPUT.
TCY 12 SET Y = CURRFNT R LUCATIUNG
MY *
DYN TRANSFEx M{O,Y-1) CONTENTS TO THE ACCUMULATOR.
FETCH 1 ‘
N2 TMA *
1YC RESET R{Y).
RSTR =
DYN SET Y = Y-1.
Tou TRANSFER THE ACCUMULATOR AND STATUS LATCH
TG THE QUTPUT PLA.
SETR SET RiY-1).
YNEC 15 CONTINUE UNTIL Y = 15.
BR SCAN1 *
BR DIsSe START A NEw LUUP wHEN Y =¢S5 15,
K ALEC 7 BRANCH HERE L+ IN THE CLUCK MODE.
BR NOCL K [F NO CLUCK ENPUT, K8 = 0, BRANCH T NOCLK.
T8IT1 ONE IF CLGCK INPUT, CHECK THE DONE FLAG T3 INSURE THAT
AR NOK A PULSE IS NNT CUUNTLED TwiICE.
S8IT UNE IF THE ONE FLAG IS NOT SET, SET THE ONE FLAG AND
TcyY 6 START THE TIMER UPDATE.
L LoOP 1 FIRST CHECK TL SEE [F THF A REGISTER IS ZFERO.
MNE 2 *
BR CiK1l IF NCN~-ZERO, A3RANCH TU TLKl.
LDe 0 =
JYN #*
AR TSTL *
IF THE A REGISTER IS ZERO, RESET THE STATUS LATCH
WHICH WILL RESET 37 wHEN THE NEXT TDD CCCURS, AND
ALSU CLEAR THE CLK AND UNE FLAGS.
TYA SET Y = ACCUMULATNR,
YNE A THIS INSTRUCTION wIlL THEN RESET THE STATUS LATCH.
SINCE Y IS NUOw = THE ACCUMULATAOR.
TCY 13 ADDRESS THE CUNTROL FLAGS IN M(J,13).
TOMTY 0 CLEAF CLK AND (NE FLAGS.
BR NIK RETURN TU THE DISPLAY LOOP, NOW IN THE CALCULATF MODE.
EE LOCK wxxxr NO-(IP INSTRUCTINN %%k
BES LNCK wxkex NO-NP INSTRUCTION %kxik
THE PrI3RAM COUNTER SEQUENCE IS SHUwN &NTIKELY FOR ALL 64 INSTRUCTIONS.
THF PRIGRAM CIUNTLK IS IN THE COLUMM ON THE LEFT. T THE IMMEDIATE RIGHT
THE LOCATION INDEX (LOC) GIVES THE SEQUFNCED ADRDRESS OF THE INSTRUCTION
IN THE ROM NBJECT CiiDFe THE 'OPTICN RUM*' QUTPUT IS PRINTED AT THE END OF AN
ASSEMBLY RUN.

PAGE

ek R s ook 3 o e ke R o ol oK o K e e S e e A o o ofe i e 3 o R oK o ol ok oo R e ok Rk e O ool e e R R R R

PAGT

NU¥IER

0 COKRTAINS 64 ROM INSTRUCTIINS.

LT

PAGE NO. 1

oA LOC JRJECT CODE STMT

108

109

110

111

112

113
009 343 113) 0111 115
201 744 00101010 116
003 740 0111 19001 117
397 25C 19 111199 113
I9F A7C 9110 9700 119
J1F 97F Q3191000 12)
93F 078 0111 1910 121
)3F 079 10 111100 122
030 970 U110 2200 124
38 065 0010101 125
237 J5¢ 1) 111199 126
92 0Im 0119 1091 127
JLIE 978 10 111911 128
3¢ 571 00700011 130
939 Jbo 03I12090 131
333 J4€ 10 111000 132

123

SOURCE STATEMENT

00 0 o e o K ROk R e R e oA ol o o o e o R Rt e ok e B0 T O S o e ok K o oK ol R ek

* UPDATE TIMER. IF A [S NON-Z2ERC, INCREMENT THE CLOCK *
* COUNTER FIELD M({Os14) AND M{0,15) TILL IT OVERFLOWS *
* (='S 60). WHEN THIS OCCURS, L SECOND HAS ELAPSED AND *
* THE A REGISTER IS DECREMENTED. *
et e ke kol ook £ R KR o R R o R ok 3 Ok o e ook o o ok o oK o ok ek o S e ok ok o ok ok ok ok R R R XK
CLK1l TCY 14 INCREMENT M(0,14).

IMAC *

ALEC 9 I[f LESS THAN 10, RETURN TO THE DISPLAY LOOP,.

BR CLK3

TCMIY 0 IF# GREATER THAN 9, SET M{C,14)=0 AND INCREMENT M(0,15).

IMAC *

ALEC 5 IF LESS THAN 6, RFTURN TQ THE DISPLAY LOCP.

ER CLK3

TCMIY i) I[F GKEATER THAN 5, THEN CVERFLOW. SET M(0,15) =0
CLK2 DMAN WHILE ADDRESSING M{0,3). M{J,Y) - 1 TO ACCUMULATOR.

3R CLK3 IF NON-ZERQ, RFTUKN TO THE NISPLAY LUDP,

TCMTY 9 IF ZERO, SET = 6 AND AQCDRESS THE HIGHER ORDFR DIGIT.

38R CLK2
CLK3 TAM

3L NOK

PAGE

e ok 2 ok v e 3t ofe ot ofe ok R e g o s R0 e 3 o R 3 o ok ot Dl R O 3 Of B ofe XNt e e o ek % kol e ek X e o e ek wk g e o e o ok ek ok ok

PAGE NUM3TP 1 CONTAINS Lo RUM INSTRUCTIUNS.

31

PAGH e 2

pAN LUC QRJECT Cunt STMT SUURCE STATEMENT
124 **tv*******tt#ﬂ***t##*i#*******#**#*#t**ﬁ*tv****#k*ﬁ#tttt#tﬁkﬁ#****#*fﬁ*u#*t#**i
135 * VALID KEY ENTRY. FIRST CLEAR THE SLANK CODES *
130 x FROM THE A REGISTER. THEN DECODF THE KEYS. *
137 o e o e o B e X % e R A RS 6 % 36 o oK o 0 R R X0 R e o O ok Ok X o 3R e R ok K R R R oK e

97))93 J1d) 2L 133 KEY TCY 6 CLEAR THE 15'S FRPCM THE A RFGISTFR.

091 8« 50101110 129 CLEN XMA *

093 180 oLl 1901 140 ALFL 9 *

237 >0 12 DLllll 14l BR CLENL *

JuF JRC 12J1011EL 142 cLa *

JLF J4F wal0111) 143 CLENL XMA *

)3k J3E 291011190 las VYN *

a3¢ JH3 12 202901 145 LR CLEN *

Q30 ARTIRENEVE SvIs I N2 9 § 147 TCY 13 ADDRESS M(D,13) wHICH HOLDS THE CONTROL FLAGS.

PER JAC 0211100 143 LOP 3 THE ACCUMULATSK STILL HOLJDS THE < INPUT VALUE.

J37 249 111 1232 149 ALEC 1 [f THE ACC = L, THEN A FUNCTEION KFY ON K1 WAS DFPRESSEN

92F Mo L0 0332399 159 AR FINC
152 3:**#¥t#ngtt*gttﬁ$n*#$¢t**#**tﬁ*t#tt#*Et*###t#*&kﬁ**xt**xm****t*kﬁk&kﬂ*#;*******
153 * IATA KEY ENTRY. *
154 *#*#vt*ttavx:xx*xn###**tk*t#n*t##**t**#t#t*xtﬁ:*:*#*t*mt#*a#nvxtc#tt#***m****t**

Jlr JEETEEP RS V] 155 Lop 2 RFESEY THE PAGL BUFFER REGISIER = 2,

n3c AL NaLLi0 11 156 TBITL NE TEST THF NUMARFER FNTRY FLAG. [F LERC,

939 JAG 1) O1ELDL 157 3R NE=] THEN CLEAR THF A PEGISTFK.

333 N8l 311N 11 1% SRIT NE AND SET THE NUMRER ENTRY FLAG. 1F THE NUMRER

221 NCREEENIVIVER R B 1 159 CALLL C?EG ENTRY FLAG IS 1, BYPASS THIS SUBRJUTINE CALL.

0JF)84 11 112111 leJ

210 277 120 a9ll 161 NE=1 TCY 12 ADDRESS M(0,12) wHICH CONTAINS THE KEY'S R LOCATTUN.

NERY gAy 20101110 162 XMa TRANSFER THE R LCCATION T THE ACCUMJULATOR AND THE K

J35 996 IN1LLG 01 163 TRITL 2 LNCATION TO M{0,12). NUMRER KEYS DN K4 = THEIR R

2R JA) 1J 121100 los ar K& IN LOCATIUN, THE 2 KEY IS ON R2, THE 3 KEY IS ON ®3, ETC.
165 * If THE KEY IS ON K&, THEN 81T 2 wILL BE SET. IF NOT,
leo * THEN THE KEY IS ONM X2. [F THE KEY IS GN K2, ADD o
1617 * T} THE K LOCATION TO GET THE KEYS VALUE.

Jle 08 20009110 163 AGAAC THE 7 KEY IS ON Rl, THF 3 KEY [S ON R2, ETC.

n2c aR2 2190 1ILD 169 K4IN TCY 5 TEST THE MSD DIGIT. IF NON-ZERU, THEN THE REGISTER

18 J40 GJLIOLID 173 MNF Z IS FuLL SO EXIT.

033)81 1J €20101 171 BER EXiNUM

q21 J85 JuJllll0 172 caLLt LIATA LeFT SHIFT THE A KEGISTEP. ENTER THF ACCUMULATOR TO

)02 333 11 1h1J1) 173

005 $94 D00L11LL 174 EXNUM 3L BLANK THE LSD. RETURN TU THF BLANK REOUTINE,

PR L] JAC 1) 1lvwoll 17>
176 PAGE

AR Xk % %R W R R R RO KOR e ek R R Rk R o x4k o o ok X% o oK ok gk ok o ko o o O e ok ok ek ook R R R R R R R X R

PACH NUMBER 2 CONTATNS 39 R0M INSTRUCTIONS.

6 V1

PAGE NC.

PAD Lcc
c09d 0c3
)01 X4
203 ace
207 anc
09F JFC
olF OFF
J3F JFFE
03F JFY
03N OFo
9383 JEC
237 ODE
J2F JED
J1E JFR
33C OF1
139 ufF6
333 JCE
327 anpn
20& OFA
210 L é
JI3A JEYD
335 06
023 JED
J16 ang
J20 plavs
018 0ED
13¢ oc1
)zl 305
002 acn
0a5 aNG
098 QEC
217 bhla
)2¢ JFA
a1c IFD
423 9F1
)31 Mo
223 acn
%6 ans
M0 IF 4
J1R OFF
)36 mna
2e JES
Jia OF3
)34 Nl
329 Mo
12 :C8
124 n2
278 DE2
X TR %

PAGE uuMAss

3
UBJECT CNIE STMT SUURCE STATEMENT
177 ot Rk R R R R OO R R e AR R KRR KRR R K ARk Rk
174 *® FUNCTION KEY DECODE. *
179 2R R B e R R R g e e X e e o e o ol e X ok oK 0 ROROK ok 0 RHOR 3ok B o R B 3 ok ok Rk o
001131 11 181 FUNC RBIT NE IF ANY FUNCTICON KEY IS DEPRESSED, RESET THE NE FLAG.
139 JI1l 182 TCY 12 ADDRESS M{N,12), WHICH HOLDS THF KEY'S] LOCATION.
00191910 183 DMAN IF THE R LOCATICN IS NCT 2ZFRO, BRANCH T NOT=0.
13 111D11 184 BR NOT=2 THE ACCUMULATOR =*S THE R LOCATION - 1.
186 * IF M{0,12) IS ZFR0U, THEN THIS IS THE CLOCK KEY.
135 1)11 187 TCY 13 ADDRESS M(0413), WHICH HOLDS THE CCNTRCL FLAGS.
Q71100 19 168 SB8IT CLK SET THE CLUCK FLAG.
39200010 189 YNFA SINCE Y = 13 AND THE ACCUMULATOR = 15, THIS INSTRUCTION
192 L * WILL SET THE STATUS LATCH, WHICH WILL SFT 07 WHEN
191 * THE NEXT TDO GCCURS.
30913200 192 BL LOCK PFTURN TO THE DISPLAY ROUTINE.
10 079200 193
Q0011111 105 NOT=) LDP 15 If THE ACCUMULATOR =), THFN THIS IS THE CLEAR KEY.
111 9090 196 ALEC 0
10 070111 167 BR CLER
3331J1190 198 LDP) IF THE ACCUMULATOR = 1, THEN THIS IS THE ENTER KEY.
2111 1990 199 ALEC 1
10 111101 200 B8R TRAB
233139010 201 Loep & IF THE ACCUMULATOR = 2, THER THIS IS THF + KEY.
27111 0103 202 ALEC 2
1y 909000 203 B8R PLUS
OLLl 11390 204 ALEC 3 I+ THE ACCUMULATOR = 3, THEN THIS IS THE — KEY.
10 Ju1ill 20> B8R MINS
J3311112 236 LOP 7 IF THE ACCUMULATOR = 4, THEN THIS I3 THE x KEY.
2111 DI1D 207 ALEC &
1C 090300 208 BR MULT
209 * IF THE ACCUMULATOR = 5, THEN THIS IS THE / KEY.
21t e ok e o X AR et o X 0k 7 o A o oo e OB M e 30 ORI e R o K R R o KR o R ook e o oK o ek oK ok e ROk
212 * DIVIDE ROUTINE *
213 ok AR K R e R ok s oo o o oo o ok o e e R R e o o o A K K ok Ak KR R R R
JJ1111 19 214 DIVID LDX 1 CLEAR THE C REGISTER.
2J011111 215 CALLL CREG
tL 119111 216
32301103192 217 vl CALLL SBAA SUBTRACT B FROM A.
11 111019 213
J1L1 0900 219 ALEC Q 1+ NO BORROW, THEMN UPON EXIT FROM SBAA,
1) 117110 220 B8R INCC THE ACCUMULATOR wlLL = 2. IF SO, PRANCH T3 INCC.
210) 9309 221 TCY [¢] TRANSFER € TO A,
1111 1) 222 TRCA LDX 1 *
13190091 223 TMA *
vlIlll 20 224 LOX 0 *
3212227 225 TAMIY *
71791 1110 226 YNEC 7 *®
1o 101110 227 B8R TRCA *
91011111 223 BL BLANK AND EXIT THE OIVIDE LNOP,
19 112011 229
JJL1EL 12 230 INCC LDX 1 INCREMENT C BY ADDING L TO DIGIT O AND PRUPAGATING
27100 0390 231 TCY 0 THE CARPY [F THF &ESULT IS GREATER THAN 9,
02101000 232 D2 IMAC
SOOBEBIEY 233 TAM THERE IS NGO CHFCK IN THIS FNUTINE FOR A NIVINF RY Q.
2111 1791 234 ALEC 9
Lu 109)J01 235 BR D1
J1L9 2100 236 TCMIY 0
12 NN 237 3R 02
2313 PAGF

3 CONTALNS 47 A% INSTHUCTIONS,.

M R R AR KRR ML R R KA KR F G AR EE REIE R KRR AR n R AR h R e R kR R R RKOE S K

0l-+1

PAGE NO. 4

PAN Lec
009 103
JJii 174
003 100
0u7 17
00F 13C
J1F L3F
Q3¢ L3F
237 139
13D L3o
J38 125
137 1=

(RJECT CODE

23711310
11 333)3J39
20011111
13 110011

aN011910

11 111410
211l 02090
17 320711
PRRISE RN

11 110111
Ly J0uUJLl

STMT

239
240
241
242
243
244
24>

247
2438
249
259
251
252
253
254
255
256
257

SOURCE STATEMENT

#*#**l#***t#*##t#t##*#**#**t*t##**#t********t**##**#ﬁi“*###t****#tt#t*tt#*i!*tmt
- + KEY. *
**************#*#*#*#***t#ti#t##***tt##**#*‘##*#***t#v*K#k***#v*##t##tt#t******t
PLUS CALLL AAEA ADD B TO A.

TOB 8L BLANK RETURN TU THE BLANK RCUTINE.

e e e 3 o ok o o e O R e R 8 R e o o o o o o ok oo e e ok o ok o ok o o o R R R ok R K o ek el i o ok X % Rk R ok ko o K %

* - KEY. *
e o o g ek ok e e ok ok ok K ok o ot X oo o R ot o ok ol ok K e R ok ol o 3 o e o ok ot e Xe e e ol o o ol i ol koo R ok ek kb ok
4INS CALLL S344 SUBTRACT 3 FROM A. IF A RORROW OGCURS, THEN UPGN

ALET 0 EXIT FROM SRAA, THE ACCUMULATOR WILL RE NON-ZERO.

BR TR IF NC BURRUW, RETURN T THE BLANK ROUTINE.

CALLL CREG IF A EORRUW DCCURS, CLEAR THE A REG.

3R Tu3 AND RETURN TO THF BLANK RPUTINE.

PAGE

R e e g xR g BOR RO O SOR R IR 8 308 e K3t A0 K o o 3 o ok e e o ok ok o o o okl o o K o 3 3 el e e o e o oo sl Rk e o e ek ok o

SAGY NUMAER

4 CUNTAINS 11 ROM INSTRUCTINNS.

I1v1

PAD LI DAYSCT CONE STMT SIURCE STATEMENT
2548 e X ok afeofe dofe ok ok ol ok AR dcole ook okl e e et Akt R e ek Kok ek R R R Rk ok Rk Rk kR R m R ok kR ok kR ke kR kR Rk
259 * REGISTFR ADDITICN SUBROUTINE *
260 e g ¥ e e 3 s o ok ook 3k ot oo Sk e ol o o o ke ok o 3R o o oo o 3 ol o o ok e ok ok ke ok R 3 ot Sl e ek ot ok ook ok ok ok e ok o ek e e ok

300 143 30111l 90 261 AA3A LDX 0 TN SUM B INTO A, INITIALIZE X = 0.

001 144 J1¢3 0303 263 ey 0 INTTIALIZE ¥ = D.

203 14C)IIDLLLL 264 CLA CLEAR THE ACCUMULATOR wHICH WILL BF USED AS CARRY.

T 1SC £0309090 265 AD1 CMX COMPL TMENT X.

IGF 17T II17MLL 260 AMAAC ADD M(XRAR,Y) TG THE ACCUMULATCR (CAR2Y),

LS LTF 20029032 267 COMX COMPLIMENT X.

J3F LTS 01091l 265 AMAAG ADD DIGITS M(X,Y) + (M{XBAR,Y) + CARRY).

33 179 1) L1011l 269 4R GTY SRANCH IF THE SUM IS GKSATER THAN 15.

339 176 9111 1301 270 ALEC 9 Nuw TEST FUK A SUM LESS THAN 10. IF S(,

238 lex 10 01110 271 3R LT1) APANCH TO LT1D.

237 15% 00090119 272 GT9 AGAAC [F THE SUM IS GREATER THAN 9, ADD 6.

326 170 0000190 273 TAMZA THANSFER THE CURRECTED SUM TO M(X,Y) AND CLEAR THE ACC.

LT 178 I993111) 274 1A SET THE ACCUMULATCR (CARRY DIGIT) = 1.

736 171 07191011 275 INCY IYC INCREMENT Y.

039 lboe J1J1 1112 270 YNEC 7 CONTINUE ADDING UMTIL Y = 7.

933 14 1) 209111 277 RK AD1

927 150 2091111t 273 RET

IG5 LT 3L 279 LTLY TAMZA FUR SUMS LESS THAN 10, TRANSFEK THE ACCUMULATOR TN

LY 1TT 1) 111199 269 HBR Iy M(X,Y) AND CLFAR THE ACCUMULATUR (CARKY DIGIT).
282 Ade e e o e ek o e e ofk ofe o ek ol ok ol e e g o ok o e oot o o o o o o e ol o 3k e o oo ok e o ol e ok o ool ok o ik ol o sk e e e ofe sl ok ok e o e e
243 * REGISTFR SUBTRACTION SUSROUTINE. *
284 e %z e e 3 o %2 v e et g g o o e v ol o ofe o ek e e e ke ol ok o o ol e o i ok e o o e ok o o ol ok ke e ool o 3 ok ok ok o o ok s ok ol ok ok R ok ek ok R o

334 le= OI11LL 09 285 SRAA LOX 0 T SURTRACT B EROM A, INITIALLZE X = 0.

735 lve 1100 209 287 ey 0 INITIALIZE Y = Q.

Jz% 16) 1L 283 CLA CLEAR THE ACTUMULATOR, THE BORROW DIGIT.

e 158 0009 289 Ss1 € oMX COMPLIMENT X, ADDRESS THF SUBTRAHEND.

32¢ 172 0910019l 290 AMAAC ADD SUBTRAHEND (Y) + S02R0W.

13 16T 1999090 291 CMx CUMPLIMENT X, ADDRESS THE MINUEND.

130 14l 27130111 232 SAMAN MINUEND(Y) - (SUBTRAHEND(Y) + BURROW) T0 ACCUMULATOR,

321 145 1) 113101 293 B NIICR 3RANCH IF NO RORRUW DCCURS.

292 143 99909101 294 ALOAAC LF AGKROW, ADD CORRECTION, + 10.

205 154 JJ000130 294 TAMZA TKANSFER THE RESULT TC M(X,Y) AND CLEAR THE ACCUMULATOR

313 1eC JIIINLLD 296 14 SET THE ACCUMULATUE (BGEROW DIGIT) = 1.

L7 157 aa1910ll 297 INCYS 1YC INCREMENT Y.

Y2¢ 17A 019l 1119 293 YNE® 7 UNTIL Y = 7.

210 172 17 Dlello 299 3R st

133 16l 09301111 300 RETN

)31 l4o 90009190 302 NI3UR TAMZA LN THE NO BUKROW CASE, TRANSFER THE RESULT TO M{X,Y).

323 14 19 0I0LLL 303 3R 1veYs CLEAR THE ACCUMULATCGR (RARRUW DIGIT).
304 PAGE

A X TR e e o e xR e Tk RO K 5 R XR e R o kol e S ot o SR e o e e R o ot e Kt e e A ook K X 2R Ol e ot e o e kool R o ot e XK KO

PAG- NUMAFR 5 CONTATNS 3o RIOM INSTRUCTIONS.

At

PAGE NO. 6

PAD LUC 1BJECT CODE STMT SNURCE STATEMENT
305 *****#***#*##t*t***#*‘***t***#t*##$***tt¥**#*****tttt*###*#K*******t*t#**#*****!
306 * TRANSFER THE A REGISTER CONTENTS TO C SUBROUTINE. *
307 *#********###tt*#***##****#******#$#***##*t***&***#t****#**##*###****t#t##***##*

000 183 0100 0000 304 TRAC TCY 0 INITIALIZE Y = 0.

oal 184 001111 00 309 T1 LDX 0 SET X = 0.

203 18C 99100001 310 ™A TRANSEER M{0,Y) TO THE ACCUMULATOR.

007 19C 0Ol1lLl 10 311 LDX 1 SET X = 1.

JIF 1RC 9110073) 312 TAMIY TRANSFER THE ACCUMULATOR TO M(1,Y) AND INCREMENT Y.

J1F 1BF 0101 1119 313 YNEC 7 CUNTINUE UNTIL Y = 7.

03F 1RF 10 000001 314 AR T

I3F 189 02391111 315 RETHN
317 !***##t##*¥####*#**#***t###****#*********t*#**v******##t***t**t****k*****##i*#*#
318 * COMPLEMENTED KEGISTFR TRANSFER SURROUTINE. *
319 #*****t*&##**t*#ﬂ#*t*##t#‘t*#******#*****!*k##***********t*t***t##ﬁ#***i**tt****

330 1Be OJLILL 11 32) TRAB LDX 3 TO TRANSFER A TO 8, INITIALIZE X = 3.

03r 1AE 0100 0300 321 TRO TCY 0 INETIALIZE Y = 0.

137 1$E 0000000V 322 12 COMX COMPLEMENT X.

J2F 18D 27139301 323 TMA TRANSFER M{X,Y) TC ACCUMULATOR.

91 LIP3 0N0IUN0 324 COMX CUMPLEMENT X.

03¢ 131 00109300 325 TAMIY TRANSFER THE ACCUMULATUR TO M(XBAR,Y), AND INCREMENT Y.

039 lAs 0LO1 1110 326 YNEC 7 TRANSFER UNTIL Y = 7.

233 185 10 11011l 327 8R 2

)27 189D))I01111 328 RETN

00E LAR 00011111 329 BL BLANK THIS SURROUTINE IS USED AS AN ENTER KEY.

aLs 1A7 10 110911 339
332 ***#*#***#****t#ttk&*t**t#¥***t##ti**i###*********##t#*#**i**#t***##**t#*tt*****
333 ® REGISTER RIGHT SHIFT SUBRUUTINE. %
334 #**#*****####***#t*‘**t******#**v***ﬁx#t#********t#*ﬂ****ttt#*********##********

934 1A9 2910l11ll 335 RSHFT CLA THE ACCUMULATGRs WHICH IS SFT = 0, IS TRANSFERRED TO

335 196 130 JL10 336 Tcy 6 THE MS8. INITIALIZE Y = 6 (MSB LOCATION).

028 1A3 30101110 337 R1 XMA EXCHANGE MEMOKY CONTENTS AN THE ACCUMULATOR.

216 1%8 J0lUllud 333 oYN DECREMENT Y TU SHIFT THE NEXT DIGIT.

32C 12 1) LIIDLL 339 BR R1 CONTINUE UNTIL Y EQUALS ZERO.

013 1A) 09901111 340 RETN
341 PAGE

o g s R o A o R R R RO B R R R R A K K SR R R MO KK R R s R R R e R X

PAG= NUMRFR 6 CONTAINS 25 ROM INSTRUCTIONS.

eyl

PAGE NU. 7

2AN L J3JECT CODE STMT SOURCE STATEMENT
342 e st o g et ok e ok e gt o ok ol o RO R o oK o ok e O O o o s o o R o R e g el R oo o o o O O o e K
343 * MULTIPLY ROUTINE *
344 ootk de A Aok R R AR R R R R R o e e o e K AR o R R o ok K R R o 0 R R s ok ook ok oK

009 1C3 00010110 345 MULT CALLL TRAC TRANSFER THE CONTENTS OF A TO C.

201 1C4 11 2001330 340

003 1CC 2110 2119 347 TCMIY 6 UPUN EXIT FROM TRAC, X = 1L AND Y = 7. A POINTER WILL
348 * BE STORED THERE THAT WILL RE USED TO ADDRESS THF DIGIT
349 * IN Co INITIALIZE THE POINTER = 6.

007 1D 0Jilll 09 350 LDX o} CLEAR THE A REGISTER.

JOF IFC 9)3011t1l 351 CALLL CREG

a1f LFF 11 110111 352

D3F 1FF 30111 10 353 ML2 LLX 1 ADDRESS THE POUINTER.

DRI 1Fe 3139 1112 354 TCY 7

730 176 90109919 355 ™Y SET ¥ = PUINTER.

038 1FF 0J101010 356 DMAN CI{POINTER) - 1 TQ THE ACCUMULATOR,.

317 1DE 10 100901 357 AR NIBR 3RANCH TO NORCR IF C{POINTER) IS NON-ZERN,

J2F 1fFD 8199 1119 353 TCY 7 IF C{PUINTER) = O, SET THF PUINTFR = POINTER - 1.

J1r 1F3)J192101) 359 DMAN POINTFR — 1 T THE ACCUMULATOR.

23C 1fF1 19 100111 360 BR ML1 BRANCH TO MLL1 IF THE POINTER [S NON-ZFRQO.

J36 1¥6 QUO1L111 361 GL BLANK IFf ZERO, THEN MULTIPLICATION (S COMPLFTF.

133 1CF 12 110311 362

327 10D 99000011 363 ML1L TAM TRANSFER THE ACCUMULATOR T0O THE PNINTER,

JOE LF3 32111l DD 364 LOX o SHIFT A LEFT.
3606 ek ok ok ok 20k o AR 3 ook R R ok A o o oK oK o A e KKK e K o R R R R R o B
367 * REGISTER LEFT SHIFT SUBRNUTINF. THIS SURRDUTINE *
368 * LEFT SHIFTS DIGITS O THRU 6 OF A GIVEN FILE. IFf *
369 * ENTERED AT LSHFT, O IS TRANSFERRFD TO THE LSD. IF *
370 * FNTERED AT LDATA, THE ACC WILL 3F T@ANSFERRED ¥*
371 * TO THE LSD. *
372 o oot oot sk ol o R e ol Rl o e ke ke ok o sk o oK Ol oK ek R o ko sl ook o ok O R R o R SRl ok ok skt ok Rk R R ok

JiD 1F7 39131111 373 LSHFT CLA FOR ENTRY AT LSHFT, INITIALIZE ACC = O.

13A 1FS 0l70 0300 375 LUATA TCY 0 SET ¥ = LSD.

335 Lo6 33id1l10 370 Li XMaA EXCHANGE MEMORY AND THE ACCUMULATOR,

128 10 00101011 371 iyc INCREMENT Y.

J16 1D3 0101 1110 373 YNEC 7 KEEP EXCHANGING UNTIL Y = 7.

22C 1F2 12 112101 379 B3R LL

213 1FD 02091111 380 RETN

133 1C1 12 111111 382 BR ML 2

021 15 092000711 383 NOBR TAM IF C(PUINTER) WAS NON-ZERD, TRANSFER THFE ACCUMULATOR
384 * TN C(POINTER).

202 13 00011010 385 CALLL AADA AND A0D B TO AL

cos D4 11 0JU200 386

¢I8 18C 17 111l 387 BR ML 2
3838 PAGE

ok et o R Rk TR B AR R e Nk Rkl 0 ol e ok ok K ook ok et Rk R R R AR R R R R ok R XK

PAGE NUM2eR 7 CUNTAINS 33 ROM INSTRUCTIUNS.

Yi-¥1

PAGE NO. 15

PAD LOC NBJECT CODE STMTY SOURCE STATEMENT
396 3 e et oo ok ol ok o stk ok ok ol ok ok ke o sl o ool ot o o ok o ot ol e ke aek A o ol o ko o sk kool e ok e ook e ol okt ke sk o e ok ok Rk ok ok
397 * POWER UP CLEAR ROUTINE. *
398 * WHEN POWER IS FIRST APPLIFD, CCNTROL IS PASSED TO *
399 * PAGE 15, LOCATION 00. FOR THIS EXAMPLE, THE WORKING *
400 * REGISTERS wILL BE CLEARED AND ALL THE FLAGS IN FILE *
401 * O WILL BE RESET. *
402 e ko oo Ak ok s o ok ok o e O o ok ok o 3k st ofe o o oK e e ko e o e ok ol ekt 3 ¢ o ol K Ok 3 3K Rk sk ok ko e ok Ak s e ok sk o okl ok ok

Jo2 3C3 2210111t 404 CLA THIS PROGRAM REQUIRES THE STATUS LATCH = 0 ON POWER

091 3C4 0100 0000 405 TCY 0 UP. THE FIRST TDO INSTRUCTION wILL THEN SET O7 = 0.

003 3CC 30000010 400 YNEA

217 30C 0J11ll1 11 407 CLER LDX 3 CLEAR THF B REGISTER.

00f 3FC 11 110111 408 CALL CREG

OLF 3FF J01111 10 409 LDX 1 CLEAR THE C REGISTER.

N3F 3FE 11 110111 410 CALL CREG

Q3E 3F9 00111l J0 411 LDX 0 CLEAR ALL OF FILE O, INCLUDING THE A REGISTER.

Q30 3F6 0170 1110 413 CLALL TCY 7 CLEAR ALL DIGITS OF A FILE SUBROUTINE.

238 3EF 10 101111 414 B8R Ccl

331 3DE 0100 0000 4le CREG TCyY 0 CLEAR REGISTER SUBROUTINE. CLEAR DIGITS O THRU 6

92F 3FD 0110 0000 417 [#} TCMIY 0 *

J1E 3F8 9J1J1 1110 418 YNEC 7 *

03cC 3F1 10 10l1ll 419 BR Ccl *

339 3€E6 000301111 420 RETN *
422 tt*#i**tl*****##***i***!****t!##*#tti##*t***k**l#*t**#***###*#**tktt#t*t**tt#tt*
423 * LEADING ZERO SUPPRESSIUN ROUTINE. STORE A BLANK CODE *
424 * {15) IN DIGITS WHICH HOLD LEADING ZEROES. *
425 2 e ook ok e Fote o ROk ok 2 e ek 3k o ok ol ol XK o ook ok o el e e e K ok ek o % e ok ok o o e o e ok ek Rl ok ke sk ke sk ol ke

333 3CE)J111t 32 426 BLANK LOX 0 ADDRESS M(0,6), THE MSD OF THE DISPLAY REGISTER.

027 300 0100 0110 427 TCY 6 {THE A REGISTER)

JOE 3F3 00100110 428 BLL MNE £ TEST FOR A NON ZERO DIGIT.

310 3FT 10 1olloo 429 B8R BRLCK WHEN A NON Z2ERQ DIGIT IS FOUND, BRANCH TGO THE DISPLAY

J3A 369 0110 1111 430 TCMIY 15 ROUTINE, IF THE DIGIT IS ZFRO, STORE A 15.

235 3D6 093131120 431 DYN

028 3ED 90101100 432 DYN

J16 303 10 001110 433 BR 8L1 CONTINUE UNTIL ALL OF THE DIGITS HAVE BEEN TESTED.

J2¢C 3F2 092310900 434 BRLCK 8L LOCK

018 3E0 19 0200300 435
436 END

% e ek e ok o ok e e o o o e ek o e S ofe o e o o e st o o o skl ok sk ke e o ok 3 o RO SOk ok R ook R o Xk ok R R KR X

PAGE NUMBER L5 CONTAINS 25 ROM INSTRUCTIONS.

S1-v1

END OF SCURCE PROGRAM DATA

NO. OF ERROAS IN ASSEMBL Y=

PAGE NO.

VRNV HFWN—U

TOTAL NQ.

(=]

NO. OF INSTRUCTIONS

64
16
30
47
11
36
25
30

0

VCOoOOCuwoo

OF INSTRUCTIONS

284

91-v1

SYMAQOL

AABA
aD1
ALEC

AMAAC
ALOAAC
A6AAC
A8AAC
3L
3LANK
3Ll

IR

BRLCK
TALL
CALLL

cLa
CLALL
CLEN
CLENL
ZLER
CLK
CLKL
CLK2
fLK3
CLOK
COMX
CKEG
c1l
VAN
DELAY
nise
OIVID
DMAN
NYN
Nl

n2
END
EQU
EXNUM
FETCH
FUNC
GT9
1A
IMAC
INCC
INCY
INCYS
fyc
KEY
KIN
K1

VALUE

J149
0147
0070

0025
vo0s
0006
0001
0280
03F3
Q23CE
208D

03EC
J2C0o
20CO

0J2F
03FD
0381
309F
33C7T
7991
0040
onTR
7C
onz24
0000
03F7
03€EF
Joa7
092C
J01%
J0EC
002A
002C
00E1L
0004
3620
2000
0085
2000
00CO
o177
plekal
0028
00F6
oL7C
0157
Jl28
0089
2001
N00F

DEFN

261
265
apC

opC
apc
opPC
s}
apC
426
428
apC

434
opPC
oeC

arC
413
139
143
407

115
125
130

77
514
416
417
apcC

51

37
214
oecC
opcC
2117
232
opc
nec
174
oprC
181
212
alge
apPcC
230
275
297
jale
138

24

217

REFERENCES
242 261
265 217
196 199

24 28
266 268
294
168 272

26

58 131
174 228
428 433
357 360
271 277
205 208
145 150

89 99

49 52

25 29
429 434

47 55
172 215
159
142 264
413
139 145
141 143
197 407

a 45

86 115
125 128
118 122

46 77
265 261
159 215
414 417

51

51 52

37 15
214
125 183

34 53
217 235
232 237
436

7 8
171 174

65
150 181
269 272
274 296
116 120
220 232
215 280
297 303

67 215

58 138

24 47

25 27

CROSS REFERENCE TABLE

385

202
48
290

174
244
379
280
222
157
100

54

30

408
217

288

188

126
289
254
419

54

356
64

232

297

204
56

192
329

382
293
227
164
101

57

35

410
242

335

130

291
351

359
69

377

207
77

228
361

387
299
235
171
118

T4

38

253

373

322
408

83

219
117

244
426

414
303
237
184
122

75

46

254

404

324
4190

144

234
121

329

419
314
253
197
126

78

345

416

338

252
140

361

429
327
256
200
128

80

351

431

273
149

434

433
339
269
203
141

86

385

432

LT¥1

LDATA
LDP
LoXx

LOCK
LSHFT
LT1)

MINS
ML1
ML2
MNEZ
MULT
NE
NE=1
NOBROR
NOBR
NOCLK
NOK
NOT=0
ONE
OPTION
PAGE

PLUS
RBIT
RESET
RETN
RE1
RSHFT
RSTR
R1
SAMAN
S8AA
SRIT
SCAN1
SCAN2
SETR
SPACE

St
TAM
TAMIY
TAMZA
TBITL
TCMIY
TCy

700
TKA
TMA
TMY
ToB
TRAB
TrAC
TRCA
TR
TSTZ
TYA
T1
T2
XMA
YNEA
YNEC

OLFA
0olo0
003C

0000
01DD
014E
01F5
O10F
0lE7
OLlFF
3026
a1Co
0003
009D
0171
OLlEL
201C
0038
00F8B
0000
0000
0000

0102
0034
0030
020F
0038
01B8A
200C
01A8
39227
017A
0030
0339
0006
900D
0000

0156
2003
0020
2004
0038
0060
0040

2024
0008
J021
0022
J1n3
J1B0
2180
Q0FE
J1BR
2013
9023
oLsi
0LA7
092
1002
06059

375
oprC
opPC

23
373
279
376
250
363
353
opPcC
345

161
302
383
61
62
195

(3149
oPC

242
arc

32
opPC

33
335
apc
337
81409
285
opcC

40

66
apPcC
necC

289
aec
opPC
aecC
orcC
opPC
orPC

oPC
sl
orC
oprcC
244
329
308
222
321

84
oprC
309
322
3149
opC
opC

172

311
214

23
373
271
376
235
360
353

85
208

157
293
357
61
49
184

341
107
203
61
29
27
33
335
33
337
202
217
82
40
38
72
316
180
60

289
130
42
273
45
93
321
l61
32
70
23
66
63
244
290
308
222
321
84
40
309
322
139
35
73

3715

320
222
30

279
379
250
363
382
170
345
156
161
302
383

78

57
195

6l

388
133
242
181

278
35

68
339

250
158
14
66

331
185
16
10
299
233
225
279
79
119
336
169
37

44
223
355
253
320
345
227

89

94
314
321
143
189
226

148
350
224

55

387
4238

158

62
79

389
176

300

285
188

365
194
81
22

363
312
295
156
124
354
182

41

256

162

406
276

155
353
230
100

181

8u
82

390
238

315

374
210
90
31

383
325
302
l63
127
358
187

62

323

337

2938

195
364
261
101

99

391
257

328

341
246
114

36

236
375
221

83

376

313

193
407
285
192

131

392
304

340

403
262
123

39

347
405
231

97

326

201
409
309
434

393

380

412
281
129

50

417
413
263
115

37138

206
411

394

420

415
286
146

430
416
2817
138

418

426

395

421
301
151

427
308
147

81-¥1

IPCINE USAGE STATISTICS

IPCIDE
ALEC
AMAAC
Al10AAC
AGAAC
ABAAC
3L

Ir
CALL
CALLL
CLA
cOomMX
DAN
DMAN
YN
END
£QU
FETCH
1A
IMAC
1YC
LopP
LDX
MNFZ
QPTION
PAGE
/BIT
RETN
RSTR
SAMAN
SBIT
SET2
SPACE
TAM
TAMIY
TANMZA
TRITL
TCMIY
TCY
OO
TKA
T™MA
™Y
TYA
XMA
YNEA
YNEC

CHOUNT
18

>

-
FUNFPWFOP~C0COHOO W

—

w
DWIANNAENEND PP PP IR NNRC O

6141

ROM CODE ASSEMBLY

000
ol1
022
033
044
055
066
Q77
088
Q99
OAA
0R8
occ
0DD
OEE
OFF
1197
121
132
143
154
165
176
187
198
149
18A
1CB
1DC
1E0
1FE
20F
229
231
242
253
264
275
286
297
2A3
289
2CA
203
2FC
2F)
30E
31F
332
341
352
363
374
385
396
3A7
388
3C9
3na
3€3
3FC
49D
41F
42F

FNO

90
Al
38
oc
63
33
FD
30
74
40
33
FF
32
Fs
56
D6
89
E7
30
39
18
4F
63
54
81
€D
6E
45
16
EF
cc
EF
nNE
cn
BC
AB
94
39
78
67
56
45
34
23
12
o1
EF
DE
€0
8C
a8
34
89
78
67
56
D6
3C
60
RE
75
EF
o€
co

0F

SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SARPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLF
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE

COOCO0O0OVWCoOWOOLLLWLLOULULUODOULUODUOLODLOCRLIOULLLLOUOULLUCORDOLLCOWLOLODLLLOLLOOO

RCM CNDE

0080
005F
0088
0080
Q028
0000
0010
0003
0000
0000
2000
QOF7
9024
0074
001F
0032
0000
2009
0000
003C
0004
0000
0079
0000
oo02¢
002F
0002
0014
003C
0028
003E
0900
00092
0000
0000
3002
0000
00090
0909
0009
0003
0000
0002
0003
0000
0000
0003
0000
030)
0002
0000
0009
0000
0000
0000
0009
0000
0002
000J
0000
J0F7
090)
0002
0000

A33IMBLY

002¢C
907€E
209C
0028
0000
0000
0000
09088
0000
0000
0000
002F
205€
0970
0083
0000
0000
0200
0000
0040
0200
005E
008C
0000
0000
0000
001F
0066
0003
0024
J0F7
0000
0000
0000
0000
3000
0000
0000
0000
0200
0900
0000
0000
0000
0000
2000
0000
0000
3000
0000
000¢
0000
0000
0000
0000
0000
0000
0000
3300
0000
0060
0300
0700
0300

0080
0030
0046
000A
0000
0000
0000
008C
0000
0060
0083
0080
0012
0040
0021
0000
0060
0000
0000
00e1l
0040
0000
000E
0000
0000
0000
0020
ooce
00Al
0000
0300
0000
0000
0000
0000
0000
0000
0000
0000
0000
00co
00060
Goco
0300
0000
2000
0000
000V
0000
0200
0000
0000
00co
0000
0300
0000
0000
0000
Q0J3F
002C
QOF7
0000
0000
0300

0008
0070
0089
0046
0900
0000
0000
0000
00FA
009F
00AC
0Q2c
0020
001F
0078
0000
0000
0020
0000
0004
2000
0000
3087
0000
0000
0020
0021
0083
0000
0000
3000
0300
0000
0000
0000
0009
0000
0000
0000
0000
0000
0000
0300
0000
0000
0309
3300
0000
3300
0000
0uQY
0000
0300
0J092
0300
0000
0200
0092
2946
D0 AF
033t
3000
0000
3000

007E
0093
0023
003A
0000
0000
0000
3000
0079
001F
001C
002€
0000
003C
003E
001A
2000
0000
00LlF
2000
0000
003C
005E
0000
003E
002€
0081
2000
000F
00A7
9000
0000
0000
0000
0000
23000
2000
0000
0000
0000
0000
0000
J000
2000
0000
0020
0000
0000
2000
0000
0000
0000
0000
3000
3000
0000
Q000
2000
3240
0000
0000
3000
0000
3200

00AC
00ClL
00l0
0046
0000
0000
0000
2063
0000
0078
0000
0000
0003
0000
0009
00Co
0000
2002
0000
0000
0000
0000
0004
0021
000F
0042
005E
00090
0000
0085
0030
0000
0000
0000
0000
2020
Q000
0000
0000
0000
0000
0000
0000
0000
0009
0039
0000
0000
3009
0000
0002
0000
0000
0003
0000
0000
0000
003C
20929
0000
9090
0020
00920
2000

0022
0002
ofeJe1s]
0080
0000
0000
0300
GJ69
0033
3000
0000
QUF7
0360
0094
001F
0000
2000
2000
0000
0000
0000
0000
0325
0700
0000
0300
0000
3300
0000
0300
3000
0000
0200
0000
0000
0000
0000
0000
0090
0000
03930
0000
0000
0000
0900
0200
0000
0000
0000
0000
02330
0000
0200
0300
0000
0000
0000
0000
2380
00AF
000G0
0000
5200
3290

0038
0088
00A4
0080
2000
008C
0000
007A
0000
3026
0038
00Co
2000
0000
0040
0000
0000
J0cC0
0083
0000
1000
J00C€E
J0C4
0087
0000
20C0
Q08F
2000
00cCo
Q0cCu
30CO
0000
0000
00CO
JOGO
0902
0000
0000
aoco
00Co
J0C)
a0 Co
2000
30C0
00cCo
J0C0
00cCo
Q000
2000
3000
3000
J000
0000
3000
0000
ucco
00CO
2000
00090
2010
2000
0000
2000
0200

009€E
002C
0048
0008
0079
0000
002A
0028
0000
0000
004A
0037
0070
0079
2080
0000
0000
00090
2000
0005
0000
002F
3025
0000
000F
0020
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0009
0000
0000
0000
0000
09000
0000
0000
0000
0000
0000
0000
0000
0009
0000
0000
0600
0000
0029
0000
0000
0000
0000
9009

002C
0026
0023
000F
0000
008C
0000
0000
0000
0000
0000
0043
0300
008D
007C
0000
0000
0000
0000
002F
000F
008E
0000
0000
0000
QoAB
0016
00CO
0000
0022
0300
0000
9000
0000
0000
0000
0900
0000
0000
0000
0300
0000
0000
0000
0000
0300
0000
0000
0000
0000
0000
0000
0000
0000
Q000
0000
0000
0000
0300
0000
0000
0000
0000
0300

0088
0021
ooB8
0088
0088
0000
0000
0085
0000
0000
0020
001A
001E
0000
0016
0000
0000
Q00090
001A
0097
0006
0000
0000
0000
0000
0000
00Co
2000
001F
002F
0000
0000
0000
0000
0000
0090
0200
0000
0000
0000
9030
0030
0009
0000
0000
2000
0000
0000
0000
0000
2000
0000
0000
0000
0000
2000
0000
0000
3009
0000
0000
0000
0000
0009

00Co
0001
0070
008D
0000
0000
0003
0000
0000
0000
0000
0020
0000
0028
0012
0000
0000
0000
0000
0087
0028
0096
0009
0000
0000
0000
0003
002E
0000
002A
0000
0000
0000
0000
0200
0202
0000
0000
0000
0000
0000
0000
0000
0000
0000
0002
0000
0000
0000
0000
0200
0000
0000
0009
0000
3390
002F
0000
2000
004E
0000
0000
39200
2000

008F
0020
000C
0070
0000
0000
0000
0046
001F
0000
0048
0000
0080
008F
003E
0000
0083
0000
0070
0000
0000
0028
0000
0000
0000
0000
0000
0000
0000
004E
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0030
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0040
0000
Q00F
00AC
0000
¢000
0000
0000

002C
002¢C
000C
0000
0009
0000
0000
0G2€
0000
0090
0043
00A1
003E
0000
0080
001F
0000
Q0F7
00FA
0000
000F
0025
0040
0000
0000
003F
0000
Q05E
0040
0000
0000
0000
0000
0000
0000
0000
0000
Q0300
0000
0000
9000
0000
0000
0000
0000
0239
0000
0000
n000
0000
0999
0000
0000
0000
0000
0090
0000
002¢C
0003
005E
0000
0000
0000
000)

0043
0014
0034
0000
00090
00090
0000
001E
0039
0000
0014
0000
0000
0000
0048
0000
0083
0000
0000
0000
0000
0000
003C
0000
005E
0083
0ooo
0000
000¢C
003C
0000
9000
0000
0000
0000
0000
0000
0300
¢oo0
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
3200
0000
0000
0000
0000
0900
0000
0000
2000
003C
0000
0000
00co
0000

7018
20AC
0086
0000
0000
0000
0000
3G00
0000
0000
0081
0000
00AE
00Bé6
0087
0000
0000
0000
2027
0000
0000
0000
2000
2046
0000
0000
0000
2000
0000
001F
0000
0000
2000
0000
0000
0000
0000
0000
0000
0000
0000
0000
03092
0000
0000
0000
2000
0000
0000
0000
09000
2000
0000
0000
0000
J000
9000
008E
0J6F
0000
0090
2000
0000
3309

0060
0043
0007
0047
0000
0000
0060
0G00
0006
002€
0000
00FA
0088
0072
0002
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
000F
0000
0000
00BF
004E
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0020
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
7000
0020
0000
0000
0000
0026
3020
0000
0000
00090

0z-v1

TMS1000 SIMULATOR (VERSION C.l 6/167175) 117247175 14:31:32
COPYRIGHT (C) 1975 TEXAS INSTRUMENTS INCORPORATED
TEXAS INSTRUMENTS OWNS AND IS RESPONSIBLE FOR SIM1000
ASSEMBLER INPUT: TMS1000 DBJECT: *SAMPLE®CREATED 11/24/75 14:30:46 BY VERSION B(05/01/75) ASSM
KEYBOARD
KEY DOWN = 750 INSTRUCTION CYCLES; FETCH AT ROM LOCATION O 06 {(HEX)

KEY 0 300
KEY 1 310
KEY 2 3209
KEY 3 330
KEY 4 340
KEY 5 350
KEY 6 360
KEY 7 210
KEY 8 220
KEY 5 230
KEY Ctc 100
KEY c 110
KEY ENT 120
KEY + 130
KEY - 140
KEY * 150
KEY / 160

SNAPSHCT

Map 0123456789ABCOE

REGAD 0(6-003350(9)33:30;
REGB 0(F-0)3;

REGC 1(F-0);

REGD 2(F=0)3

REGE 3(F-0);
opPLA

QUT -0=39111111

NUT -1=00300110

OUT -2=019011011

OuT -3=01001111

IUT -4=01100110

NUT -5=01101101

QUT -6=01111101

QUT -7=00000111

0OuT -8=01111111

AUT -9=011901111

QUTB 1----=10000000

®xxEND OF DATA ON FTO9F001l¥x%

1¢v1

DATA CARD

kxx KEY-BOARD DEFINITIVN *#x*

R00 RrO1 RQ2

Kl cLc ¢ ENT

K8

TEST

z
e

WANONEMWNWRNCO #FNMP+WMN | OO O DOOM WD W -

3
ENT

DATA CARD 2:2 - C
2

C

1:1234567

R03 RrO4 ROS

+ - *

ENT 999999 -
1.
12.
123.
1234,
12345.
123456
123456,
123456.
9.
99.
399.
9999.
99399.
999999.
876543,
2.
2.
3.
5.
4o
4o
2.
3.
6.
O.
3.
3.
3.
6.
2.
2.
2.
3.

l.

3.
3.

2.

RJ6 ROT RO8

/

R10

2 ENT 3 + 4 ENT 2 * C 6 ENT 3 / 3 ENT 6 7/ C 2 ENT 3 - 3 ENT

0006 00000FFFFFFF
0086000UOFFFFFFL
008600000FFFFF L2
008600000FFFF123
0086 00J000FFF1234
008600000FF 12345
008600000F 123456
008000000F1234506
0006 00000F 123456
00800000JFFFFFF9
008600000FFFFF99
00860C000FFFF999
0086030900FFF9999
008600000FF99999
008600000F 999999
000600000F876543
CO3600000FFFFFF2
0006CIIIOFFFFFF2
008500000FFFFFF3
000600000FFFFFF5
008600000FFFFFF4
000000000FFFFFF4
0086020)0FFFFFF2
00060CI00FFFFFF3
CO0600000FFFFFFF
008600000FFFFFFo
00060J000FFFFFFo
0086 000J)0FFFFFF 3
CO006000)0FFFFFFF
00860J000FFFFFF3
0006 J0000FFFFFF3
008609000FFFFFF6
0006 JICOCOFFFFFF2
000600000FFFFFFF
008000000FFFFFF2
0006)0 IIIFFFFFF2
0N8600000FFFFFF 3

0006 00000FFFFFFL
008600000FFFFFF3
000600000FFFFFF3

008600000FFFFFF2
0006 00000FFFRFFF
000600000FFFFFFF

6007400700000000
69C7400709000000
60C7400700000000
60GC7400700000000
60L74703703000000
6007400709000000
60C(7400700000000
6CC7400700000000
60C7420700000000
6C0C7400700000000
6007400730000000
60C7400700000000
60C7400700000000
60C7400700000000
6037400700000000
£0€74 007200000000
60C7400700000000
60C7490700000000
60C7420700000000
60C7430720000000
60C7400700000000
60C7400700000000
6J3C7400700000000
60074950700000000
60C74C0700000000
60C7400700000000
60C7400700000000
6CC7400703000000
60C74N00700000000
60C7400700000000
60C7400700000000
60C7400700000000
6GC7420700000002
6)CT400700000000
©JCT7400700000000
6.3C7430703000000
60C7400790000900

60C7400700000000
6007400700000000
6007400700000000

60C7400700000000
6007%400700000000
6007400700000000

8001€20760347006
8001C203760347006
8001C20760347006
8001C20760347006
8001C20760347006
8001C20760347006
8201C20763347006
8001C207603470006
8001C20760347006
8001C20760347006
8001C20760347006
8001C20760347006
8001C20760347006
3001C20760347006
8001C20760347026
8001C20760347006
3001C20760347006
8001C20760347006
8001C20760347006
8321C20760347006
8001C20760347006
3001C€20760347006
8001C20760347006
3001C20760347006
B3001C207603470206
8001C20760347006
8001C20760347006
8001C207602347006
8001C20760347006
8001C207603470006
8001C20760347006
8001C20760347006
8001C23760347006
8001C20760347006
8001C20760347006
8001C20760347006
8001C20760347906

8001C20760347006
8001C20760347006
8001C20760347006

8001C20760347006
BOO1C20760347006
8001C20760347006

6300822810000000
6303B22810000000
6300822810000000
6300822810000000
6300822810000000
6300822810000000
6300822B810000000
6300822B10000000
6300822810123456
6300822810123456
6300B22R10123456
6300822810123456
6300R22B10123456
6300B22B10123456
6300822813123456
6300B22R10123456
6300B22B10123456
6300822810000002
6300B22R10000002

6300822810000002

6300822813000002
6300B822810000004
6300822310000004
6300822810000004
6300B22819090090
6300822810000000
6300822810000006
6300B22810000006
6300822810000006
6300B228100009006
6300822810000003
©300R22R10000003
63900822810000003
6300822810000000
6300822810000000
6300822310000002
6300822R10000002

6300B22B10000002
6300822810000002
6300822810000003

6300B822R10000003
6330822810000003
6300822810000000

IC=

IC=
IC=
1C=
1C=
IC=
IC=
IC=
IC=
IC=
IC=
ic=

IC=
Ic=
IC=
ic=
1C=
IC=
IC=
IC=
IC=
IC=

IC=
1C=
IC=
Ic=
ic=
IC=
IC=
IC=
ICc=
1C=

IC=
IC=
Ic=

00000204
00000808
00000808
00000806
00000804
00000809
00000804
00000809
00000807
00000809
00000803
00000803
00000803
00000803
00000803
006000806
00000807
00000807
00000803
00000804
00000808
00000807
00000805
00001172
00020830
00000851
00000807
00000803
00000952
00000804
00000807
00000850
00001116
00000830
00000806
00000807
00000803
00000806

00000803
00000807

= 00000805

30009808

= 00000831

(4% 4!

DATA
3

cLe
PA=0

R{7-A)=00000010000

NATA
RUN

NATA
RUN

DATA
RUN

DATA
RUN

NATA
RUN

DATA
PA=)

R{0-A)=001000000090

DATA
RUN

DATA
DATA
RUN
RUN

DATA
PA=0

R{0-A)=00010000000

DATA

CARD 3:% 3 $ CLC PRT
3.
0000003.
PC=06 [R=21 X=0 Y=5 A=0

CARD 4:PAT K8 139 FO
0000003.

CARD S:RUN 1112
J0000023.

CARD 6:RUN 1112
0000003,

CARD T:RUN 1112
0000093,

CARD 8:RUN 1112
0000203.

CARD 9:SET M OE 85 PRT

008600000FFFFFF3
0026000000000003

60C7400700000000
6007400720000000

S=1 SL=1 CL=0 PB=0 SR=06 KL=00

0(7-0)=10111111 KEY=
40-3{F-0)=0026000000000003 6007400700000000 8001C20760347006 6300822810000000

RUN 1112

0120000000000003

0220000000000003

0321000000C00C003

0422000000000003

0522000000000003

60C7400700000000

60C7400700000000

60C7400700000000

6007400700000000

60C7400700000000

PC=3A [R=A4 X=0 Y¥=D A=0 S=1 SL=1 CL=0 PB=0 SR=3A KL=08

CARD 10:RUN 1112
0000003.

CARD 11:SET M 00 1

CARD 12:RUN 1112
3000930,
0000000.

CARD 13:SET K 00

0{7-0)=10111111 KEY=
M0-3 (F-0)=5822000000000003 6J07400730000300 8001C2076J3347006 6300822810000000

5923000000000003

RUN '*
00240092000000029
0003 000000000000

PRT

60C7400700000000

60C7400700000000
60C7400700000000

PC=06 IR=21 X=0 ¥=2 A=F S=1 SL=0 CL=0 PR=0 SR=06 KL=08

CARD 14:PAT X8 0 O

PRT

0(7-0)=10111111 KEY=
M0-3(F=-0)=0223090300000J393 600740370033000J 8201C207603479C6 630J6822810000000

PA=) PC=06 IR=21 X=0 Y=2 A=F §$=1 SL=0 CL=0 PB=0 SR=06 KL=00

R(JI-A)=003100030000

DATA
[

3
cLc

CARD 15:C 3 $ CLC $ PRT
3.
0000093.

0(7-0)=10111111 KEY=
M0-3(F-0)=0003200000000090 6007400700200000 8001C20760347006 6300322810000000

000600000F FFFFFF
0086 00000FFFFFF3
0026000000000003

60C7400700000000
60C74007T00000300
60C7400700000000

PA=0) PC=06 IR=21 X=0 Y=5 A=0 S=1 SL=1 CL=0 PB=0 SR=06 KL=00

R{0-A)=02002010000

DATA
RUN
RUN
RUN

OATA
RuUA
RUN
4
CcLC
RUN

DATA
RUN
RUN

CARD 16:CLK K8 555 555
0000003.
0000003,
0000313,

CARD 17:RUN 1112 RUN *
0000939,

0000000.

4

00003%%.

0000004,

CARD LB:RUN 4443 RUN
9300004 .
0000034.

END OF FILE ON FTO5F0QL

RUN 1112 8 RUN 1112 $ SET M JE 85 RUN 1112
0120000000000003 60C7400700000000
0220001000000003 60C7400700000000
59219023000090003 63C74007392000000

CLK K8 0 0 4 CLC PAT K8 555 A RUN 2224
002203¢000020000 63874907037000900
00000C0000000000 60 C7400700000000
008600000FFFFFF 4 60C7400700000000
302600)39200003J4 60C7430700000000
02200000000000J4 60C7400700000000

8896
0623000000000004 60C7400700000000
1433000000000004 6007400700000000

J(7-0)=10111111 KEY=
MO-3(F-0)=0026000000000003 6007400700000000 8001C20760347006 6300B22810000000

8031C20760347006
8001C20760347006

8001C20760347006

8001C20760347006

8301C20760347006

8001C20760347006

8001C20760347006

8001C2U760347006

8001C20760347006
8001C20760347006

8001C20760347306
8001C20760347206
8001C20760347006

SET M 301

8001C20760347006
8001C20760347006
8001€20760347006

8001C20760347006
8001£20760347006
8001C20760347006
8301C292760347006
8001C20760347006

8001C20760347006
8001C207603470006

6300822B810000000
6300822B10000000

6300822810000000

6300822810000000

6300822812000000

6300822310000000

6300822810000000

6300822810020000

6300B822810000000
$300822810000000

6300822810000000
6300822810000002
6300822810000009

6300822B10000000
630UB22810000000
6300822810000000

6300822B10000000
6300822810000000
6300B22810000000
6300822810000000
6300822810000000

6300822810000000

*6300B22810000000

iC=

IC=
IC=
iC=
IC=
IC=

90000804

= 00000802

00001112

00001112

00001112

00001112

00001112

Qooo1LL12

= 00001112

00000074

= 00000804

00000804

= 00000802

= 00001112

00001112

= 00001112

00001112
00000092
00000808
00000802
00002224

= 00004448
= 00008896

APPENDIX A
TMS 1000/1200 AND TMS 1100/1300 ELECTRICAL SPECIFICATIONS

A1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Voltage applied to any device terminal (see Note 1) . -20V
Supply voltage, VDD .. .-20Vt003V
Datainputvoltage ..., .-20Vto03V
Clock inputwvoltage-20Vto03V
Average output current (see Note 2): Qoutputs « —24amA
Routputs —14mA

Peak output current: OQoutputs —48mA
Routputs ... —28mA

Continuous power dissipation: TMS 1000/1100NL. a00mw
TMS 1200/1300NL e00mw

Operating free-air temperaturerange .0cCt70°C
Storage temperaturerange . —s5°Cto180°C

*Stresses beyond those listed under *’Absolute Maximum Ratings”’ may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyond those indicated in the ‘’Recommended Operating Conditions’’
section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

A2 RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN NOM MAX UNIT
Supply voltage, Vpp (see Note 3) —14 -15 —175 \
High-level input voltage, V| (see Note 4) K —1.3 = 0.3 \
INIT or Clock -1.3 -1 0.3
Low-level input voltage, V| (see Note 4) K VDD —4 v
INIT or Clock VDD —15 —8
Clock cycle time, te{p) 25 3 10 us
Instruction cycle time, t 15 60 us
Pulse width, clock high, tw(pH) 1 us
Pulse width, clock low, twiol) 1 us
Sum of rise time and pulse width, clock high, t, + tw(pH) 1.25 us
Sum of fall time and pulse width, clock low, t§ + twiol) 1.25 us
Oscillator frequency, fogc 100 400 kHz
Operating free-air temperature, Tp 0 70 °c

1. Unless otherwise noted, all voltages are with respect to Vgs.

2, These average values apply for any 100-ms period.

3. Ripple must not exceed 0.2 volts peak-to-peak in the operating frequency range.

4. The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this specification for
logic vottage levels only,

—_— — — — VIH{p)

|
|
I I ViLio)
|
|

NOTE: Timing points are 90% (high) and 10% (low).

EXTERNALLY DRIVEN CLOCK INPUT WAVEFORM

A-1

A3 ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)

PARAMETER TEST CONDITIONS MIN TYPT MAX |UNIT
1 Input current, K inputs Vi=0V 50 300 500 | A
VoH High-level output voltage O outputs 1o =—10mA —1.1% —0.6% v
(see Note 1) Routputs | lg=—2mA —0.75 —04
oL Low-level output current VoL = VDD —100 | wA

Average supply current from Vpp

1 All outputs open —6 —-10 | mA
DD(av) s 1000/1200 (see Note 2) outputs op

| Average power dissipation Al outputs ope 7 1] ma
utpu n - -
DD(av) TMS1100/1300 (see Note 2) puts o

Average power dissipation

PIAV) 1Mms 1000/1200 (see Note 2 Al outputs open % 175) mW
s s3] o
fosc Internal oscillator frequency Rext =50 k2, Cext = 47 PF 250 300 350 | kHz
Ci Small-signal input capacitance, K inputs V) =0, f=1kHz 10 pF
Ci(o) Input capacitance, clock input V=0, =100 kHz 25 pF

T All typical values are at Vpp = —15 V., TA = 25°C.
fParts with Vo of -2V minimum, —1.3 V typical, are available if requested.
NOTES: 1. The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this
specification for logic voltage levels only.
2. Values are given for the open-drain O and R output configurations. Pull-down resistors are optionally available on all

outputs and increase Ipp (see Section Ad).

A4 SCHEMATICS OF INPUTS AND OUTPUTS

TYPICAL OF ALL O AND R

TYPICAL OF ALL O AND R OUTPUTS WITH OPTIONAL
TYPICAL OF ALL K INPUTS OPEN-DRAIN OUTPUTS PULL-DOWN RESISTORS
Vgs Vsgs Vss

INPUT __? '_?
N

l% E ——] - OUTPUT
R ~ 50 k{2 l
OUTPUT —&

—O Vpp

Vpp

The O outputs have nominally 60 € on-state impedance; however, upon request a 130-Q2 buffer can be mask program-
med (see note [1] section A3).

The value of the pull-down resistors is mask alterable and provides the following nominal short-circuit output currents
{outputs shorted to Vss): .

O outputs: 100, 200, 300, 500, or 900 uA
R outputs: 100, 150, or 200 pA

A-2

A5 OUTPUT, INPUT, AND INSTRUCTION TIMING

| EXECUTE SETR OR RSTR OR TDO INSTRUCTION | NEXT INSTRUCTION

i

- |

S [SO S U [(O |
1

APPROXIMATE INTERNAL OSCILLATOR WAVEFORM

o1) (}___*r
92 | | | | | [
95 ! L J | L |
3 | | J

INSTRUCTION
[

K INPUT VALID

TIME ——meee—pp

' |
! |
See Note 1 | |
SETR / 02 I |
| | I
| See Note 2 | |
RSTR | '
! |
| | i
I See Note 2 I' See Note 1 |
e e e - 1
TDO ' J‘/ | ¢3 |
| e e e Y e L ___o______ 1
| | i
I FETCH CYCLE - INSTRUCTION N ! EXECUTE CYCLE — INSTRUCTION N }
l EXECUTE CYCLE — INSTRUCTION N-1 ' FETCH CYCLE - INSTRUCTION N+1 |
I d
] 1
o I i |
| | '
}
L
i : L_J | | I |
|

| | |

1
2 : l I I
|
| | |
L ROM INST l

je—— FETCH—» l—— INSTRUCTION EXECUTE
| ADDRESS DECODE l
I |
l READ WRITE |
| UPDATE PC RAM RAM |
| |
| ALU REGISTER |
| RAM ADDRESS INPUT STORE ;
|

| EXECUTE |
| BR/CALL :
|]
| |
| |
I |
{
! |

NOTES: 1. Initial rise time is load dependent. The high-level output voltage, Vo, is characterized following the indicated clock period.

2. Rise and fali times are load dependent.

A3

B1

B2

APPENDIX B
TMS 1070 AND TMS 1270 MICROCOMPUTERS

INTRODUCTION

The TMS 1000 series flexibility is augmented by two versions of high-voltage (35-volt) microcomputers, the TMS 1070
and the TMS 1270. The standard instruction set and operation is identical to that of the TMS 1000/1200.
Architecturally, the devices are identical to the TMS 1000/1200 except that two additional O-output OR-matrix terms
were added to provide a total of ten O outputs in the TMS 1270, a 40-pin package unit. The TMS 1070/1270 provides
direct interface to low-voltage flourescent displays. The TMS 1070/1270 interfaces with all circuits requiring up to
35-volt levels.

The accompanying diagram shows an interface to a 30-volt fluorescent display.

(SEGMENT DATA) DIGIT STROBE)
O OUTPUTS o -¢ (—O R OUTPUTS
o—=e ’o)
I L
50 k2 PSR S 50 k2
EACH ° : EACH

vZ{T
— 0-30V

STROBED FLUORESCENT DISPLAY INTERCONNECT

DESIGN SUPPORT

The TMS 1070/1270 simulation is provided by several time-sharing services. The assembler and simulator programs are
accessed by specifying the appropriate device option in the assembler TITLE command.

Functional hardware simulation is accomplished by an SE-1 or an HE-2. To emulate more than eight O ou‘tputs in the
TMS 1270 with an HE-2 requires an external decoder. Level-shifting buffers allow functional evaluation in the
high-voltage prototyping systems.

B3 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Voltage applied to any device terminal (seeNote 1) « « « « « « « « « . . =20V
Supply voltage, Vpp - - e e e e e e e —-20Vto 0.3V
Data input and output voltage with Vpp applied (seeNote 2} =35Vto 0.3V
Clock input and INIT input voltage .. e e e e e e e -20Vto 03V
Average output current {see Note 3): Qoutputs « « —2bmA
Routputs « « « « —12mA

Peak output current: Ooutputs v 00 e e e e e e e e —5 mA
Routputs « « « v « v v v v e e e e e e .. —24mA

Continuous power dissipation: TMS1070NL. 400mw
TMS1270NL. v v « « « « 600mMmwW

Operating free-air temperature range « . .« . . . 0 e e e e e 0°C to 70°C
Storage temperature range +« 4 « + + 4« « @« +« v -—5B5Cto150°C

*Stresses beyond those listed under ““Absolute Maximum Ratings”” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions’”
section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

B4 RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN NOM MAX UNIT
Supply voltage, Vpp (see Note 4) —14 —-15 —~175 \
High-level input voltage, V1 (see Note 5) K -6 0.3 %
INIT or Clock -1.3 -1 0.3
Low-level input voltage, V| {see Note 5) K {See Note 2) —3 3 \%
INIT or Clock Vpbp -15 -8
Clock cycle time, t¢c(p) 25 3 10 us
Instruction cycle time, t¢ 15 60 us
Pulse width, clock high, tyy(¢H) 1 us
Pulse width, clock low, ty (gL) 1 ' us
Sum of rise time and pulse width, clock high, ty + tw(gH) 1.25 us
Sum of fall time and pulse width, clock low, tf + tyy(p1) 1.25 Mus
Oscillator frequency, fogc 100 400 kHz
Operating free-air temperature, TA 0 70 °Cc

NOTES: 1. Unless otherwise noted, all voltages are with respect to Vgg.
2. Vpp must be within the recommended operating conditions specified in B4.

3. These average values apply for any 100-ms period.

4, Ripple must not exceed 0.2 volts peak-to-peak in the operating frequency range.

5. The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this specification for

logic voltage levels only.

B5

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE

(UNLESS OTHERWISE NOTED)

PARAMETER TEST CONDITIONS MIN Typt MAX UNIT
l Input current, K inputs V=0V 40 100 300 HA
Vou High-level output voltage O outputs lop=—1mA -1 -0.5 v

(see Note 1) R outputs o =—10mA —-45 225

tol. Low-level output current VoL = VDD —100 uA
IDD(av) Average supply current from Vpp All outputs open -6 -10 mA
P(av) Average power dissipation Al outputs open 20 175 |
fosc Internal oscillator frequency Rext =50 k2, Cext =47 pF 250 300 350 kHz
C; Small-signal input capacitance, K inputs V=0V, f=1kHz 10 pF
Ci(¢) Input capacitance, clock input V=0V, =100 kHz 25 pF

tan typical values are at Vpp = =15 V, Tp = 25°C.

NOTE 1: The algebraic convention where the most-positive (least-negative) limit is designated

for logic voltage levels only.

B-3

as maximum is used in this specification

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-35a
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	12-01
	12-02
	12-03
	12-04
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04

