
• TEXAS
INSTRUMENTS

TMS320C32
Addendum to the TMS320C3x User's Guide

1995 Digital Signal Processing Products
=======

TMS320C32 User's Guide

Addendum to the TMS320C3x User's Guide

March 1995

~TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer's applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated

Preface

Read This First
ij M ! ij n uu jill illiMillli i

l!f.!(

About This Document

This is an addendum to the TMS320C3x User's Guide (literature number
SPRU031) that describes the architecture and features of the TMS320C32
digital signal processor. Features and topics not covered are identical to those
of the TMS320C30 and TMS320C31. The chapter and section numbers
supplement the same chapter and section numbers of the TMS320C3x User's
Guide.

How to Use This Document

This document is intended to be used in conjunction with the TMS320C3x
User's Guide (literature number SPRU031 0) and with the Interfacing Memory
to the TMS320C32 DSPApplication Report (literature number SPRA040).

Notational Conventions

This document uses the following conventions.

o Shading is used in tables to indicate features that are new in the 'C32 and
not available in the 'C30 and 'C31 devices. Shading is also used to indicate
bit values at reset.

o An overbar over a signal name indicates that the signal is active low. The
same applies to pin names.

o Program listings, program examples are shown in a special
typeface similar to a typewriter's.

Here is a sample section of a program listing:

strobes CALLU ARO
STI Rl,*+AR7(4) IOSTRB ->(DMA src)
CALLU ARO
STI Rl,*+AR7(6) STRBO ->(DMA dst)
CALLU ARO
STI Rl,*+AR7(8) STRBI ->(DMA cnt)

Read This First iii

Read This First

If You Need Assistance • ••

iv

H you want to •••

Order Texas Instruments
documentation

Obtain technical support, report
suspected problems

Obtain TI product updates,
application software

Access the TMS320 BBS from
Internet

Report mistakes or offer
suggestions regarding this
document or any other TI
documentation

Do this •••

Call the Literature Response Center at
(800) 477-8924

Call the DSP hotline at (713) 274-2320, send
a FAX to (713) 274-2324 or to
+33-1-3070-1032 in Europe. You can also
send email t04389750@mclmall.com.

Dial the TMS320 Bulletin Board Service
(BBS) at (713) 274-2323 (24 hrs.). Set your
modem to 8 bits,1 stop bit, no parity.
Supported speeds are from 300 to 14400 bps.
In Europe, dial +44-2-3422-3248

Connect via anonymous ftp to ftp.tl.com
(192.94.94.5), subdirectory /pub/mirrors

Send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251-1443
or send email to:
comments@books.sc.tl.com

Contents

1 Introduction. • • • 1·1
1 .4 Key Features .. 1-2

2 Architecture. . . • • . • . . • • . . • . . • • . • . • • . • • • . • • . • . • • • • . • • • . • • • • • • • • • • • • • •• 2·1
2.1 Architectural Overview .. 2-2
2.2 Central Processing Unit ... 2-3

2.2.1 Instruction Cycle lime ... 2-3
2.2.2 Power Management Modes .. 2-3
2.2.3 Edge- or Level-Triggered Interrupts 2-3
2.2.4 Relocatable Interrupt Vector Table 2-3

2.3 Enhanced Memory Interface ... 2-4
2.3.1 16- and 32-Bit Program Memory. .. 2-4
2.3.2 8-, 16-, and 32-Bit Data Memory. .. 2-4

2.4 On-Chip RAM and Boot Loader. .. 2-6
2.5 Peripherals ... , 2-7

2.5.1 Two-Channel Direct Memory Access (DMA) 2-7

3 CPU Registers, Memory, and Cache•..•.....•.•.••••••••.•....•.•.••.•• 3·1
3.1 CPU Register File .. 3-2

3.1.7 Status Register (ST) ... 3-2
3.1.8 CPU/DMA Interrupt Enable Register (IE) 3-3
3.1.9 CPU Interrupt Flag Register (IF) 3-3
3.1.10 Interrupt-Trap Table Pointer (ITIP) 3-4

3.2 Memory Map .. 3-6
3.2.4 Peripheral-Bus Memory Map. .. 3-7

3.4 Boot Loader ... 3-8
3.4.1 Boot Loader Mode Selection .. 3-8
3.4.2 Boot Loading Sequence .. 3-9
3.4.3 Boot Data Stream Structure .. 3-14
3.4.4 Boot Loader Hardware Interface 3-16

4 Data Formats and Floating·Point Operation 4-1
4.3.1 Short Floating-Point Format for External 16-Bit Data 4-2

5 Addressing ...••.•.•............•..• 5·1

6 CPU Program Flow Control .. -" .. 6·1
6.5 Reset Operation .. 6-2

Table of Contents v

Contents

6.7 Power Management Modes .. 6-5
6.7.1 IDLE2 Power-Down Mode .. 6-5
6.7.2 LOPOWER Mode ... 6-6

7 Enhanced External Memory Interface ••••.••.••.•.•.•.•....•••••.•..••••.••.•••••• 7·1
7.1 Features .. 7-2
7.2 Overview. .. 7-3

7.2.1 External Memory Interface Overview 7-3
7.2.2 Program Memory Access .. 7-4
7.2.3 Data Memory Access .. 7-5

7.3 Configuration. .. 7-7
7.3.1 External Interface Control Registers 7-7
7.3.2 32-Bit Wide Memory Interface .. 7-13
7.3.3 16-Bit Wide Memory Interface .. 7-17
7.3.4 8-Bit Wide Memory Interface ... 7-22
7.3.5 External Ready Timing Improvement 7-27

7.4 Bus Timing ... 7-28
7.4.1 STRBO and STRB1 Bus Cycles 7-28
7.4.2 IOSTRB Bus Cycles -.................................. _ .. 7-31
7.4.3 Inactive Bus States ... 7-40

8 Peripherals •.••..••..•.•••••••••••••••.•..•................•••.••...••..••.••.••• 8·1
8.1 Two-Channel DMA Features ... 8-2

8.1.1 DMA Global Control Registers .. 8-2
8.1 .4 CPU/DMA Interrupts ... 8-2
8.3.5 DMA Channel Arbitration ... 8-3
8.1.6 CPU Changes To Support DMA 8-4

9 Pipeline Operation ••••.•••.•.••••••.••..•.••...•..•.••••.••..•.•••..•.•.......... 9·1

10 Assembly Language Instructions ••.•••.••.•••..••..•..•....•.•.•.....•.••..••••• 10·1

11 Software Applications •••••.•••....•••.••.••...••..•.•••.....................••• 11·1

12 Hardware Applications ••••..•••.•.•.••.................•.......•.•.............. 12·1
12.1 Maximum Performance .. 12-2
12.2 Minimum Memory ... 12-5
12.3 Two External Memory Banks 12-8

13 TMS320C32 Signal Descriptions •.••.•....•.................•.•..••............•• 13·1
13.2 Signal Descriptions .. 13-2

A Boot Loader Source Code••.••.•••.........•.....••..•......................• A·1
A.1 Boot Loader Source Code Description .. A-2
A.2 Boot Loader Source Code Listing .. A-4

vi

Figures
'IIUII! I :11:'1111 1 I111U 'III 1 1 1 I i U HlIli i 1111111 1\ II I I Ii I 1\ I I I i1 \ II Ii II 1 !I ill I i

2-1 TMS320C32 Functional Block Diagram .. 2-2
2-2 'C32 Supported Data Types Sizes and External Memory Widths 2-5
3-3 Status Register ... 3-2
3-4 CPU/DMA Interrupt Enable Register .. 3-3
3-5 CPU Interrupt Flag Register .. 3-3
3-6 Effective Base Address of the Interrupt-Trap Vector Table 3-4
3-7 Interrupt and Trap Vector Locations ... 3-5
3-8 TMS320C32 Memory Map ... 3-6
3-11 Peripheral-Bus Memory Map ... 3-7
3-13 Boot Loader Mode Selection Flowchart ... 3-11
3-14 Boot Loader Serial Port Load Flowchart 3-12
3-15 Boot Loader Memory Load Flowchart .. 3-13
3-16 Handshake Data Transfer Operation .. 3-14
3-17 External Memory Interface for Source Data Stream Memory Boot Load 3-16
4-6 Short Floating-Point Format .. 4-2
6-1 IDLE2 Timing ... 6-6
6-2 Interrupt Response Timing After IDLE2 Operation 6-6
6-9 LOPOWER Timing .. 6-7
6-10 MAXSPEED Timing ... 6-7
7-1 Memory Address Spaces .. 7-4
7-2 Status Register ... 7-5
7-3 Memory-Mapped External Interface Control Registers 7-7
7-4 STRBO Control Register ... 7-8
7-5 STRB1 Control Register ... 7-9
7-6 IOSTRB Control Register .. 7-9
7-7 'C32 External Memory Interface for 32 Bit SRAMs 7-13
7-8 Functional Diagram for 8-Bit Data Type Size and 32-Bit External Memory Width 7-14
7-9 Functional Diagram for 16-Bit Data Type Size and 32-Bit External Memory Width 7-15
7-10 Functional Diagram for 32-Bit Data Size and 32-Bit External Memory Width 7-16
7-11 External Memory Interface for 16-Bit SRAMs 7-17
7-12 Functional Diagram for 8-Bit Data Type Size and 16-Bit External Memory Width 7-18
7-13 Functional Diagram for 16-Bit Data Type Size and 16-Bit External Memory Width 7-20
7-14 Functional Diagram for 32-Bit Data Type Size and 16-Bit External Memory Width 7-21
7-15 External Memory Interface for a-Bit SRAMs 7-22
7-16 Functional Diagram for a-Bit Data Type Size and a-Bit External Memory Width 7-23
7-17 Functional Diagram for 16-Bit Data Type Size and a-Bit External Memory Width 7-24

Table of Contents vii

Figures

7-18 Functional Diagram for 32-Bit Data Type Size and 8-Bit External Memory Width 7-26
7-19 ROY liming for Memory Read ... 7-27
7-20 Read-Read-Write Sequence for STRBx active 7-29
7-21 Write-Write-Read Sequence for STRBx active 7-29
7-22 One Wait-State Read Sequence for STRBx active 7-30
7-23 One Wait-State Write Sequence for STRBx Active 7-31
7-24 Zero Wait-State Read and Write Sequence for IOSTRB Active 7-32
7-25 One Wait-State Read Sequence for IOSTRB Active 7-33
7-26 One Wait-State Write Sequence for IOSTRB Active 7-33
7-27 STRBx Read and IOSTRB Write ... 7-34
7-28 STRBx Read and IOSTRB Read ... 7-34
7-29 STRBx Write and IOSTRB Write ... 7-35
7-30 STRBx Write and IOSTRB Read ... 7-35
7-31 IOSTRB Write and STRBx Write ... 7-36
7-32 IOSTRB Write and STRBx Read ... 7-37
7-33 IOSTRB Read and STRBx Write ... 7-37
7-34 IOSTRB Read and STRBx Read ... 7-38
7-35 IOSTRB Write and Read .. 7-39
7-36 IOSTRB Write and Write .. 7-39
7-37 IOSTRB Read and Read .. 7-40
7-38 Inactive Bus States Following IOSTRB Bus Cycle 7-40
7-39 Inactive Bus States Following STRBx Bus Cycle 7-41
8-1 Memory-Mapped Locations for a DMA Channels 8-2
8-2 CPU/DMA Interrupt Enable Register .. 8-3
8-3 CPU Interrupt Flag Register .. 8-3
8-4 DMAO Global Control Register .. 8-3
12-1 Zero Wait-State Interface for 32-Bit SRAMs With 16- and 32-Bit Data Accesses 12-3
12-2 External Memory Map .. 12-4
12-3 'C32 Memory Map ... 12-4
12-4 Zero Wait-State Interface for 16-Bit SRAMs With 16- and 32-Bit Data Accesses 12-5
12-5 External Memory Map .. 12-6
12--6 'C32 Memory Map ... 12-7
12-7 Zero Wait-State Interface for 32-Bit and 8-Bit SRAM Banks .. 12-8
A-1 Boot Loader Flow Chart A-3

viii

Tables
III! i ill JI W I Wi UU Ii WI 11111 i I I I I II

3-7 Boot Loader Mode Selection .. 3-9
3-8 Source Data Stream Structure ... 3-15
6-3 Pin Operation at Reset. .. 6-3
7-1 Data Access Sequence for a Memory Configuration with Two Banks 7-12
7-2 Strobe-Byte Enable for 32-Bit Wide Memory With 8-Bit Data Type Size 7-14
7-3 Strobe-Byte Enable for 32-Bit Wide Memory With 16-Bit Data Type Size 7-15
7-4 Strobe-Byte Enable Behavior for 16-Bit Wide Memory with 8-Bit Data Type Size 7-18
8-2 CPU/DMA Priority .. 8-4
8-3 DMA Priority Mode of DMAO Control Register .. 8-4
13-7 TMS320C32 Signal Descriptions ... 13-2

Table of Contents ix

x

lUll

Chapter 1

Introduction
llml IIIlIIlIIillilll11 ! i II III ill 1\ I 1iMi!mlllllin1 nIl illll.!! 1

The TMS320C32 is the newest product in the TMS320C3x family of DSPs.
The 'C32 not only offers the ease of use and performance advantages of 32-bit
DSPs, but also offers the device and system cost advantages of 16-bit DSPs.
It is also object-code compatible with the 'C3xfamily and source-code compat­
ible with the 'C4x family, providing a lower-cost device road map for Texas
Instruments generations of 32-bit, floating-point DSPs.

1-1

Key Features

1.4 Key Features

Key features of the 'C32:

o TMS320C3x CPU

o Instruction cycle time of 33/40/50 ns

o Two 256 x 32 words of dual-access on-chip RAM blocks

0 Boot loader

0 Serial port

0 Two timers

0 Two channel DMA controller

0 Enhanced memory interface

1·2

Chapter 2

Architecture

This chapter describes the CPU, memory interface, boot loader, peripherals,
and DMA of the 'C32. Chapters 3, 4, 6, 7, and 8 describe in more detail the
functionality of these components.

2-1

Architectural Overview

2.1 Architectural Overview

Figure 2-1 shows a functional block diagram with the key components of the
'C32.

Figure 2-1. TMS320C32 Functional Block Diagram

RElET --t

u:::~
xpo-,

H, 4-
1134-

MelLIIII' --t
CLKlN --t

VDD --t
v
IIIZ

EMlJG.4

2·2

r"'jjj'"'
:sa

~
I-- at

I

~ /

1'roII"""
Coeho

11"32)

-ple-

at

f

RAM
BlookO

(21"32)

:sa

I

RAM
Block'

(21"32)
Boot
AOM

at 32

f I

ALU r---

OMA Con1roII ..

DMAChoMoi0

Glollol Con1rOl Aegl.tor

SOUrce Add' ... Reglater

Dliatlnatlon Addre .. RIg.

...... _ Counter Aeg.

DMAChOMoI'

Globol Con1roI Aegl.tor

Source Addr ... Regl ... ,

oeltlnetlon Addr ... RIIQI.

......... Ie, Counter Aeg.

40

I DlSPO, IRO. lA, , I
r;Io,,- ,.L, ... ~ _______ -,.L.--,

~

h

jW~

~~t1
·lir,
Wit

I~
iI'

I~

M.mory --
.. AO-Z3

.. DO-3'

.... AI'll
0-1ID'i'
o-IIODI
.... 1RII:IIlI:
o-PIIQW

....~ ,
STRBO ::: ~

t-__:S::;TA:::BO::.:C::ont:::'::oI::;A::eg:;, • .J..I I ITR\K8IO
STRB' !ITRlI1lJ!/ ,

::!~ t-__:S::;TA:::B:.:,',:C::-:::::::;A::eg:;, • .J..I I ::; mm:aa
IOSTAB lDlITRIJ

IOSTAB Control Reg. I

r-- SorlolPort

f+ fSXO

Por1Control r+ DXO
Rlgl,. r+ CLKXO

R/xnmor
Algl"I' f+ '8RO

DtltIITl'llnamH r+ DRO

Algll'" f+ CLKAO

Dat, Recilvi
Regll.e,

~ Tlm.rO

GIO:~~:,1IoI
Ie+TCLKO

n,::::.r.~~,od

":!c:t:t~~-

-- Tlm.,1
U'O~:~;;::'01

'::::.,~~,oo .. TCLK'

nmR!~:I~~·r

2.2 Central Processing Unit

The 'C32 central processing unit (CPU) is an enhanced version of the 'C3x
CPU. The enhancements to the CPU include variable-width memory interface,
faster instruction cycle time, power-down modes, relocatable interrupt vector
table, and edge- or level-triggered interrupts.

2.2.1 Instruction Cycle Time

The fast instruction cycle time of the 'C32 allows it to operate at 33, 40, and
50 ns. This corresponds to external clock rates of 60,50, and 40 MHz, respec­
tively.

2.2.2 Power Management Modes

Two power management modes, IDlE2 and LOPOWER, have been added to
the 'C32 CPU. In IDlE2 mode, no instructions are executed and the CPU, pe­
ripherals, and memory retain their previous state while the external bus output
pins are idle. During IDlE2 mode, the H1 clock signal is held high while the H3
clock signal is held low until one of the four external interrupts is asserted. In
lOPOWER (low power) mode, the CPU continues executing instructions and
the DMA continues performing transfers, but at a reduced clock rate. The
ClKIN frequency is divided by 16, which makes a 'C32 with a ClKIN frequency
of 32 MHz perform like a 2-MHz 'C32, with an instruction cycle time of 1000
ns (or 1 MHz). Refer to Section 6.7 for complete details.

2.2.3 Edge- or Level-Triggered Interrupts

To reduce external logic and simplify the interface, the external interrupts are
edge- or level-triggered. The triggering is user-selectable through a bit in the
status register. See subsection 3.1.7 for detailed information.

2.2.4 Relocatable Interrupt Vector Table

Unlike the fixed interrupt-trap vector table location of the 'C30 and 'C31 devices,
the 'C32 has a user-relocatable interrupt-trap vector table. The interrupt-trap
vector table must start on a 256-word boundary. The starting location is pro­
grammable through a bit field in the CPU interrupt flag (IF) register: the interrupt­
trap table pointer (ITIP). Refer to subsection 3.1.9 for more information.

Architecture 2-3

Enhanced Memory Interface

2.3 Enhanced Memory Interface

The 'C3xfamily was designed for 32-bit instructions and 32-bit data opera­
tions. This architecture has many advantages including a high degree of paral­
lelism and provisions for a C compiler. However, the 'C30 and 'C31 require a
32-bit wide external memory even when the data requires only 8-or 16-bit wide
memory. The 'C32 enhanced external memory interface overcomes this li­
mitation by providing the flexibility to address 8-, 16-, or 32-bit data indepen­
dently of the external memory width. In this way, the chip count and size of ex­
ternal memory is reduced. The number of memory chips can be further re­
duced by the 'C32 ability to allow code execution from 16- or 32-bit wide me­
mories. The 'C32 memory interface also reduces the total amount of RAM by
allowing the physical data memory to be 8-,16-, or 32-bit wide. Note that inter­
nally the 'C32 has a 32-bit architecture. Therefore, you can treat the 'C32 as
a 32-bit device regardless of the physical external memory width. The external
memory interface handles the conversion between external memory width
and 'C32 internal 32-bit architecture. Refer to Chapter 7 for detailed descrip­
tion of the external memory interface.

2.3.1 16- and 32-Bit Program Memory

The 'C32 executes code from either 16- or 32-bit wide memories. When con­
nected to 32-bit memories, 'C32 program execution is identical to that of the
'C31. When connected to 16-bit zero wait-state memory, the 'C32 takes two
instruction cycles to fetch a single 32-bit instruction. During the first cycle, the
'C32 fetches the lower 16 bits. During the second cycle, the 'C32 fetches the
upper 16 bits and concatenates them with the previously fetched lower 16 bits.
This process occurs entirely within the memory interface and is transparent to
you. An external pin, PRGW, dictates the external program memory width. Re­
fer to Section 13.2 for signal descriptions.

2.3.2 8-, 16-, and 32-Bit Data Memory

2-4

'C32 external memory interface can load and store 8-, 16-, or 32-bit quantities
into external memory and convert them into an internally equivalent 32-bit rep­
resentation. The external memory interface accomplishes this added function­
ality without changing the CPU instruction set. Figure 2-2 shows the sup­
ported external memory widths and data types sizes.

Enhanced Memory Interface

Figure 2-2. 'C32 Supported Data Types Sizes and External Memory Widths

Memory Width

8 16 32

Data

~: I • • •
Type ~ • •
Size '" ~ •

• Single-cycle read
~ Two-cycle read
'" Four-cycle read

To access 8-/16-/32-bit data quantities (types) from 8-/16-/32-bit wide
memory, the memory interface utilizes either strobe STRBO or STRB1 de­
pending on the address location within the memory map. Each strobe consists
of four pins for byte enables and/or additional address. For 32-bit memory in­
terface, all four pins are used as strobe-byte enable pins. These strobe-byte
enable pins select one or more bytes of the external memory. For 16-bit
memory interface, the 'C32 uses one of these pins as an additional address
pin while using two pins as strobe-byte enable pins. For 8-bit memory inter­
face, the 'C32 uses two of these pins as additional address pins while using
one pin as strobe pin. The 'C32 manipulates the behavior of these pins accord­
ing to the contents of the bus control registers (one control register per strobe).
By setting a few bit fields in this register, you indicate the data type size and
external memory width. Refer to Chapter 7 for detailed information.

Architecture 2-5

On-Chip RAM and Boot Loader

2.4 On-Chip RAM and Boot Loader

2-6

The 'C32 has two 256 x 32-bit dual-access on-chip RAM blocks. Each RAM
block allows two accesses per instruction cycle by the CPU and/or DMA.

The 'C32 boot loader functionality is equivalent to that of the 'C31 , but with
additional modes to handle the data type sizes and memory widths supported
by the external memory interface (8-, 16-, or 32-bit). 'C32 boot loader loads
programs from the serial port, EPROM, or other standard memory devices.
The memory boot load supports data transfers with and without handshaking.
The handshake mode allow synchronous transfer of program by utilizing two
pins as data acknowledge and data ready signals. See Section 3.4 for a de­
tailed description of the boot loader functions.

2.5 Peripherals

Peripherals

The 'C32 peripherals are one serial port, two timers, and two DMA channels.
The serial port and timers are functionally identical to those in the 'C31 periph­
erals. Refer to the TMS320C3x User's Guide Chapter 8 for a detailed descrip­
tion. This section covers the difference between the 'C32 DMA channels and
the 'C30 or 'C31 DMA channel.

2.5.1 Two-Channel Direct Memory Access (DMA)

The 'C32 has a two-channel DMA controller (one more than the 'C30 or 'C31).
Each channel is equivalent to the 'C30/31 DMA with the addition of user-confi­
gurable priorities. Because the DMA and CPU have distinct buses on the 'C3x
devices, they can operate independently of each other. However, when the
CPU and DMA access the same on-chip or external resources, the bandwidth
can be exceeded and priorities must be established. The 'C30 and 'C31 assign
highest priority to the CPU. The 'C32 DMA controller provides more flexibility
by allowing you to choose one of the following priorities:

CPU: For all resource conflicts the CPU has priority over the DMA.

DMA: For all resource conflicts the DMA has priority over the CPU.

Rotating: When the CPU and DMA have a resource conflict during consecu-
tive instruction cycles, the CPU is granted priority. On the following
cycle, the DMA is granted priority. Alternate access continues as
long as the CPU and DMA requests conflict in consecutive instruc­
tion cycles.

The DMA/CPU priority is configured by the DMA PRI bit fields of the corre­
sponding DMA global control register. Refer to Section 8.3 of the TMS320C3x
User's Guide for a complete description.

Architecture 2-7

2-8

III 1111 nn

Chapter 3

CPU Registers, Memory, and Cache
; IU I r III WH!llIIil1i1ii I IIIIII! ilii 111111111111111liliiii11111 \ ! III lill! liimmliil _ illlilliillllllllUl1

The new features of the 'C32 required changes to the CPU register file,
memory map, and boot loader. The following sections discuss these changes.

3-1

CPU Register File

3.1 CPU Register File

Three registers in the CPU register file have been modified to support the new
features of the 'C32 (such as: two channel DMAs, program execution from
16-bit memory width, etc.). The modified registers are: the status (ST) register,
interrupt enable (IE) register, and interrupt flag (IF) register.

3.1.7 Status Register (ST)

The 'C32's status register (ST) has two new bit fields: INT config and PRGW
status. Figure 3-3 shows the bit fields of the status register. At system reset,
o is written to the ST register. The following paragraphs describe the function­
ality of these new bit fields.

Figure 3-3. Status Register

31 16 15

A

14 13 12 11 10 9 8 7 6 5 4 3 2 o

ANI ANI ANI ANI ANI ANI RNI

The INT Config field sets the external interrupt signals INT3-INTO for level­
triggered or edge-triggered interrupts. This field can have the following values
(the shaded entry highlights the reset value):

Bit 14 INT Conflg Function Description

3-2

All the external interrupts, I NT3-1NTO, are configured as edge-triggered interrupts. Edge and
duration are required for the interrupt to be recognized.

The PRGW Status field indicates the status of the external input PRGW pin.
When the signal of the PRGW pin is high, the PRGW status bit is set to 1 indi­
cating a 16-bit program memory width. The 'C32 performs two fetches to re­
trieve a single 32-bit instruction word. In the first fetch, the 'C32 retrieves the
lower 16 bits. In the second fetch, the 'C32 retrieves the upper 16 bits and con­
catenates them with the lower 16 bits. When the signal of the PRGW pin is low,
the PRGW status bit is cleared to 0 indicating a 32-bit program memory width.
The 'C32 performs a single fetch to retrieve a single 32-bit instruction word.
The PRGW bit is a read-only bit. This field can have the following values:

Bit 15 PRGW Status Function Description

o Instruction fetches utilize a 32-bit external program memory read.

1 Instruction fetches utilize two consecutive 16-bit external program memory reads.

CPU Register File

The value of the PRGW bit affects the reset value of the STRBO and STRB1
control register. See subsections 7.3.1 and 7.3.2 for detailed information ..

3.1.8 CPU/DMA Interrupt Enable Register (IE)

The 'C32's CPU/DMA interrupt enable register (IE) has ten new bit fields to
support the additional DMA channel interrupts. These are EINT3 (DMA1),
EINT2 (DMA1), EINT1 (DMA1), EINTO (DMA1), EDINTO (DMA1), EDINT1
(DMAO), ETINIT1 (DMA1), ETINITO (DMA1), ERINTO (DMA1), and EDINT1
(CPU). Figure 3-4 shows the CPUlDMA interrupt enable register. In this fig­
ure, the lower 16 bits are used for CPU interrupt enable and the upper 16 bits
are used for DMA channels interrupt enable. The corresponding DMA channel
(DMAO or DMA 1) are accentuated in parentheses. Note that the serial port re­
ceive DMA interrupt is hardwired to DMA 1 , while the serial port transmit DMA
interrupt is hard-wired to DMAO. At system reset, 0 is written to this register.

Figure 3-4. CPU/DMA Interrupt Enable Register

31 30 29 28

RJW RJW RJW RJW

3.1.9 CPU Interrupt Flag Register (IF)

The 'C32's CPU interrupt flag register (IF) has two new bit fields: DINT1 and
ITTP. Figure 3-5 depicts the CPU interrupt flag register. In this figure, the
DINTO bit refers to DMA channel 0 interrupt flag and DINT1 bit refers to the
DMA channel 1 interrupt flag. At system reset, 0 is written to this register.

Figure 3-5. CPU Interrupt Flag Register

31 18 15 12 11 10 9 8 7 8 5 4 3 2 o

CPU Registers, Memory, and Cache 3-3

CPU Register File

3.1.1 0 Interrupt-Trap Table Pointer (ITTP)

Similarly to the rest of the 'C3x device family, the 'C32's reset vector location
remains at address O. On the other hand, the interrupt and trap vectors are re­
locatable. This is achieved by a new bit field in the CPU interrupt flag register
called the interrupt-trap table pointer (ITTP), shown in Figure 3-5. The ITTP
bit field dictates the starting location (base) of the interrupt-trap vector table.
This base address is formed by left-shifting by eight bits the value of the ITTP
bit field. This shifted value is called the effective base address and is refer­
enced as EA[ITTP], as shown in Figure H. Therefore, the location of an inter­
rupt or trap vector is given by the addition of the effective base address formed
by the ITTP bit field (EA[ITTP]) and the offset of the interrupt or trap vector in
the interrupt-trap vector table, as shown in Figure 3-7. For example, if the
ITTP contains the value 100h, the serial port transmit interrupt vector will be
located at 10005h. Note that the vectors stored in the interrupt-trap vector
table are the addresses of the start of the respective interrupt and trap rou­
tines. Furthermore, the interrupt-trap vector table must lie on a 256-word
boundary since the eighth least significant bits of the effective base address
of the interrupt-trap vector table are O.

Figure 3-6. Effective Base Address of the Interrupt-Trap Vector Table

~ 870

EA[ITTP] = Bits 31-16 ofthe CPU Interrupt Flag Register 00000000

3-4

Figure 3-7. Interrupt and Trap Vector Locations

EA[ITIP] + OOh

EA[ITIP] + 01 h

EA[ITIP] + 02h

EA[ITIP] + 03h

EA[ITIP] + 04h

EA[ITIP] + 05h

EA[ITIP] + 06h

EA[ITIP] + 07h

EA[ITIP] + 08h

EA[ITIP] + 09h

EA[ITIP] + OAh

EA[ITIP] + OSh

EA[ITIP] + OCh

EA[ITIP] + OOh
EA[ITIP] + 1 Fh

EA[ITIP] + 20h

EA[ITIP] + 3Sh

EA[ITIP] + 3Ch

EA[ITIP] + 30h

EA[ITIP] + 3Eh

EA[ITIP] + 3Fh

CPU Register File

Reserved

INTO

INT1

INT2

INT3

XINTO

RINTO

Reserved

Reserved

TINTO

TINT1

OINTO

OlNT1

Reserved

TRAP 0

TRAP 27

TRAP 28 (Reserved)

TRAP 29 (Reserved)

TRAP 30 (Reserved)

TRAP 31 (Reserved)

CPU Registers, Memory. and Cache 3-5

Memory Map

3.2 Memory Map

The 'C32's memory space of 16 MB has program, data, and I/O spaces. Pro­
gram and data spaces are controlled by the STRBO and STRB1 signals, while
the I/O space is controlled by the 10STRB signal.IOSTRB reads and writes take
two cycles to accommodate slow peripheral devices. The MCBL/MP pin deter­
mines the operating mode (microprocessor or microcomputer/boot loader) and
the memory map configuration. Figure 3-8 shows the 'C32's memory map.

Figure 3-8. TMS320C32 Memory Map

3-6

Oh

7FFFFFh
800000h

S07FFFh
SOSOOOh

8097FFh
809800h

SOFFFFh
810000h

82FFFFh
830000h

87FDFFh
87FEOOh

87FEFFh
87FFOOh

87FFFFh
880000h

8FFFFFh
900000h

FFFFFFh

Reset Vector Location

External
STRBO Active

Reserved
(32KWords)

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

Reserved
(32KWords)

External
IOSTRB Active
(128K Words)

Reserved

RAM Block 0
(256 Words

Internal)

RAM Block 1
(256 Words

Internal)

External
STRBO Active

External
STRB1 Active

Microprocessor Mode

Oh

FFFh
1000h

7FFFFFh
SOOOOOh

807FFFh
80S000h

8097FFh
809800h

80FFFFh
810000h

82FFFFh
830000h

87FDFFh
87FEOOh

87FEFFh
87FFOOh

87FFFFh
880000h

8FFFFFh
900000h

FFFFFFh

Reserved for Boot
Loader Operations

I!lIIIBoot1m External
STRBO
Active

Reserved
(32KWords)

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

Reserved
(32KWords)

~Boot2m External
IOSTRB

Active
(1281<)

Reserved

RAM Block 0
(256 Words

Internal)

RAM Block 1
(256 Words Internal)

External
STRBO Active

[WI Boot a m External
STRB1
Active

Microcomputer/Boot Loader Mode

Memory Map

3.2.4 Peripheral-Bus Memory Map

'C32's memory-mapped peripheral and external bus control registers are lo­
cated starting at address 808000h, as showed in Figure 3-8. Figure 3-11
shows the peripheral bus memory map. Note that each peripheral occupies
a 16-word region of the peripheral bus memory map. Also, note that locations
808050h through 80805Fh and 808070h through 8097FFh are reserved.

Figure 3-11. Peripheral-Bus Memory Map

808000h
80800Fh

808010h
80801Fh

808020h
80802Fh

808030h
80803Fh

808040h
80804Fh

808050h
80805Fh

808060h
80806Fh

808070h
8097FFh

DMA Channel 0 Registers
(16)

DMA Channel 1 Registers
(16)

Timer 0 Registers
(16)

Timer 1 Registers
(16)

Serial Port 0 Registers
(16)

Reserved
(16)

External Port Registers
(16)

Reserved

CPU Registers, Memory, and Cache 3-7

Boot Loader

3.4 Boot Loader

The 'C32's boot loader is an enhanced version of that found in the 'C31. The
boot loader can load and execute programs received from a host processor
via standard memory devices (including EPROM), with and without hand­
shake, or via the serial port. 'C32's boot loader supports 16- and 32-bit pro­
gram external memory widths, as well as 8-, 16-, and 32-bit data type sizes and
external memory widths.

3.4.1 Boot Loader Mode Selection

3-8

The 'C32 boot loader functions as a memory boot loader, memory boot loader
with handshake, or a serial-port boot loader. The boot loader mode selection
is determined by the status ofthe INT3-INTO pins immediately following reset.
Table 3-7 lists the boot loader modes. The memory boot loader supports user­
definable byte, half-word, and full-word data formats, allowing the flexibility to
load a source program from memories having widths of 8-, 16-, and 32-bits
with or without handshaking. The source programs to be loaded reside in one
ofthree memory locations: 1 OOOh, 81 OOOOh, and 900000h. The handshaking
mode utilizes XFO and XF1 as data acknowledge and data ready signals, re­
spectively. On the other hand, the serial port boot loader supports 32-bit fixed
burst loads from the 'C32's serial port with an externally-generated serial port
clock and FSR.

Memory Map

Table 3-7. Boot Loader Mode Selection

INTO INT1 INT2 INT3 Boot Loader Mode Source Program Location

0 1 External Memory Boot 1 address 1000h

0 1 External Memory Boot 2 address 81 OOOOh

1 0 1 External Memory Boot 3 address 900000h

1 0 32-bit fixed burst serial Serial Port

0 0 External Memory with Handshake Boot 1 address 1000h,
XFO and XF1 used in handshaking

0 0 External Memory with Handshake Boot 2 address 81 OOOOh,
XFO and XF1 used in handshaking

0 0 External Memory with Handshake Boot 3 address 900000h,
XFO and XF1 used in handshaking

3.4.2 Boot Loading Sequence

The following is the sequence of events that occur during the boot load of a
source program. Table 3-8 shows the structure of the source program.

1) The boot loader mode is invoked by resetting the 'C32 while driving the
MCBL/MP pin high and the corresponding INT3-INTO pins low. The
MCBL/MP must stay high during boot loading, but can be changed any­
time after boot loading has terminated. No reset is necessary when chang­
ing the INT3-INTO pin, as long as the 'C32 is not accessing the overlap­
ping memory (Oh-FFFh) during this transition. In non handshake mode,
one of the INT3-INTO pins can be driven any time after deasserting the
RESET pin (driven low and then high). While in handshake mode, two in­
terrupt pins have to be asserted before deasserting the RESET pin.

2) . The status of the interrupt flag (IF) register's INT3-INTO bit fields dictate
the boot loading mode. The bits are polled in the order described in the flow
chart in Figure 3-13.

a) If only the interruptflag (IF) register's INT3 bitfield is set, the boot load­
er configures the serial port for 32-bit fixed burst mode reads with an
externally generated serial port clock and FSR. Then, it proceeds to
boot load the source program from the serial port. A header indicating
the STRBO, STRB 1, and IOSTRB control registers precedes the actu­
al program, refer to Table 3-8. These header values are loaded into
the corresponding locations at the completion of the boot load opera­
tion. The transferred data-bit order supplied to the serial port must be­
gin with the most significant bit (MSB) and end with the least signifi­
cant bit (LSB). Figure 3-14 depicts the boot loader serial port flow.

b) Otherwise, the boot loader attempts a memory boot load. Figure 3-15
shows the boot loader memory flow. Ifthe Interrupt Flag (IF) register's

CPU Registers, Memory, and Cache 3-9

Boot Loadsr

3-10

I NTO bit field is set, the source program is loaded from memory loca­
tion 1000h. If the Interrupt Flag (IF) register's INT1 bit field is set, the
source program is loaded from memory location 81 OOOOh.lfthe Inter­
rupt Flag (IF) register's INT2 bit field is set, the source program is
loaded from memory location 900000h. After determining the
memory location of the source program, the boot loader checks INT3
bit field in the Interrupt Flag (I F) register. If this bit is set, all data trans­
fers are performed with synchronous handshake. The handshake
protocol utilizes XFO and XF1 as data acknowledge and data ready
signals, respectively. 'C32's XFO is an output pin while the XF1 is an
input pin. Figure 3-16 shows the handshake data transfer operation.
The data transfer operation occurs as follows:

i) The 'C32's boot loader waits until the host sets XF1 low to read in
the data. While the 'C32 waits for XF1 to drop low, the lACK pin
pulses. Setting XF1 low communicates to the 'C32 that the data is
valid. The lACK pulses indicate that the 'C32 is waiting for data.

ii) The boot loader sets XFO low after reading the data value. Drop­
ping XFO acknowledges to the host that the data was read.

iii) The host sets XF1 high to inform the 'C32 that the data is no longer
valid.

iv) Finally, the 'C32 terminates the transfer by setting XFO high.

Note that the memory boot load source program has a header indicating
the boot memory width, STRBO, STRB1, and IOSTRB control registers,
refer to Table 3-8.

3) After reading the header, the boot loader copies the source program
blocks. The source program blocks have three entries preceding the
source program block data. The first entry in the source program block in­
dicates the size of the block, the second entry indicates the address where
the block is to be loaded, while the third entry contains the destination
memory strobe including a pointer that identifies the destination memory
strobe (STRBO, STRB 1, or IOSTRB) and a value that describes the strobe
configuration for the memory width and data type size. If the destination
memory is internal, the third entry should contain a O. Note that the boot
loader cannot load the source program to any memory address below
1000h, unless the address decode logiC is remapped.

4) Once all the program blocks are loaded into their respective address loca­
tions with the given data type sizes, the boot loader resets the IOSTRB,
STRBO, and STRB 1 control registers to the values read atthe beginning of
the boot load process.

5) Finally, the boot loader branches to the destination address of the first
source block loaded and begins program execution.

Boot Loader

Figure 3-13. Boot Loader Mode Selection Flowchart

CPU Registers, Memory, and Cache 3-11

Boot Loadsr

Figure 3-14. Boot Loader Serial Port Load Flowchart

3-12

According to the Destination
Address, Set Corresponding
STRB Control Register Data

Type Size Field

Transfer One Word From
Serial Port to Destination

No

Branch to Destination'
Address of First Block

Loaded

Begin Program Execution

Figure 3-15. Boot Loader Memory Load Flowchart

Read Destination Address

Read Destination Strobe
Control Word

According to the Destin~tion
Address, Set Corresponding
STRB Control Register to the

previously read value.

Boot Loadsr

Branch to Destination
Address of First Block

Loaded

Begin Program Execution

CPU Registers, Memory, and Cache 3-13

Boot Loader
.. ;.:::;':::;'::::::~~' :::::::)w-:::;,:,m~: :::. ; ;;_.::=_~,~l:>.&w.~~"¥~~~:W}.<~.=$Y~~;':':'.m).::::::~~

Figure 3-16. Handshake Data Transfer Operation

·1 .. I ... 1 i)
I I III 1111 I

II 1 1 I I
\~ I I

~
I

V
I

XF1 I I
1 I

I I 1 I
II I I I I II /I

~
I

V
j

\ I XFO 1 1
I I
1 1 I I

:
VaJid~ala)

I

!I~ I
I~) D31-0 I Valid Data

I
I I

IACKV\J
I I I

V I
I
I

3.4.3 Boot Data Stream Structure

3-14

Table 3-8 shows the data stream structure. The data stream is composed of
a header of 3 (serial port load) or 4 (memory load) words and one or more
blocks of source data. The boot loader utilizes this header to determine the
physical memory width where the source program resides (memory load) and
to configure the STRBs after completion of source program boot load. The
blocks of source data have three entries in addition to the raw data. The first
entry in this block indicates the size of the block. The second entry in this block
indicates the memory address where the boot loader copies this source block.
The third entry contains the destination memory strobe configuration including
memory width and data type size. This allows the boot loader to copy and store
8-, 16-, or 32-bit data values into 8-, 16-, or 32-bit wide memory. Words 8
through n, of the shaded entries in Table 3-8, contain the source data for the
first block.

Boot Loadsr

Table 3-8. Source Data Stream Structure

Wordt Content Valid Data Entries

j+1 Zero word. Note that if more than one source block was read, word j Oh
shown above would be the last word of the last source block. Each block
would have the format shown in the shaded entries.

t Word 1 does not exist in serial port boot load since the source program does not reside in memory. * The SSSSSS hexadecimal digits refer to the lower 24 bits of the strobe control register. The x hexadecimal digit identifies the
strobe as follows: 0 for IOSTRB, 4 for STRBO, and 8 for STRB1. Note that when loading into internal memory the entire field,
SSSSSS6)(h, should be cleared to O.

CPU Registers, Memory, and Cache 3-15

Boot Loader

Each source block of data can be loaded to different memory locations. Each
block specifies its own size and destination address. The last source block of
the data stream is appended with a zero word. Because the 'C32's STRBs can
be configured to support different external memory widths and data type sizes,
each source block specifies its data type size. The external memory width was
set when the boot loader read the STRBs control register values in the source
data stream header.

3.4.4 Boot Loader Hardware Interface

The hardware interface for the memory boot load utilizes STRBX_B3 through
STRBX_BO pins as strobe byte enable pins as shown in Figure 3-17. The
hardware interface is Independent of the boot source memory width. This
interface is identical to the 32-bit wide memory interface described in Case 2,
in subsection 7.3.2. For 16-bit memory widths, remove the left-most two
memory devices of Figure 3-17. For a-bit memory widths, remove all but the
right-most one of the memory devices of Figure 3-17.

Figure 3-17. External Memory Interface for Source Data Stream Memory Boot Load

A23 ..
A23

..
A23

..
A23

..
A23

'C32 A22 ..
A22

..
A22 A22 A22

A21 A21 ... A21 A21 A21
A20 . ~

A20
..

A20
.. A20 A20

· · · · · · .
· · · .

A2 A2 ... A2 A2 A2
A1 A1

..
A1

..
A1

..
A1

Ao ~!:JJ.
..

!:JJ. !:JJ. !:JJ.

LJCS ~ CS ~ CS ~ CS

STRBX_B3
1/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7-0)

j j~ j j~

STRBX_B2
STRBX B1
STRBX_BO

)
0(31-24)
0(23-16)
0(15-8)
0(7-0)

3-16

Chapter 4

Data Formats and Floating-Point Operation
II 11 lin 11111111111 i II I I I r UII%IJI f 11 HI If 71 IIUI f 1II1I! IIIIlln JIll

!i!

To facilitate the handling of 16-bit floating point data types, the 'C32 adds a new
short floating point format for external 16-bit data types. Note that the following
short floating-point format is used only in external 16-bit floating point data ac­
cess. This format is different than the 16-bit immediate short floating point data
format used in the 'C32's instruction set. See subsection 4.3.1 of the
TMS320C3x User's Guide (literature number SPRU031) for detailed informa­
tion of the 16-bit immediate short floating-point data format.

4-1

Floating-Point Formats

4.3.1 Short Floating-Point Format for External 16-81t Data

In the short floating point format for external 16-bit data type size, floating point
numbers are represented by a 2s-complement 8-bit exponent field (e), a sign
bit (s), and an 8-bit mantissa field (man) with an implied most-significant non­
sign bit.

Figure 4--6. Short Floating-Paint Format

4-2

15 o
e f

man

Operations are performed with an implied binary point between bits 7 and 6.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point 2s-complement num­
ber x in the short floating-point format is given by:

x= 01.fx2e

10.fx 2e

o

ifs = 0

if s = 1

ife=-128

Note that the floating-point instructions such as LDF, MPYF, ADDF, etc., and
the integer instructions such as LDI, MPYI, ADDI, etc., produce different re­
sults when accessing the same memory location. The Integer load instruc­
tions store the value in the least significant bits of the 'C32's registers. A bit
field in the strobe control register controls sign extension or zero-fill of the most
significant bits of the integer value. On the other hand, the floating-paint load
instructions store the value in the most significant bits of the 'C32's registers.
For example:

If AR1= 4000h, R1 = 00 OOOOOOOOh, the value stored at memory location
4000h is 0180h, and STRBO is configured for a physical memory size and data
type size of 16 bits. Then,

the result of: ADDI *AR1,R1 is R1 = 00 00000180h, while

the result of: ADDF *AR1,R1 is R1 = 01 COOOOOOOh (= - 3.0),
since - 4.0 + 1.0 = - 3.0

Chapter 5

Addressing
I IIII I II1I11 I: I ~ ! it$!H6111 I

: n:

The addressing modes in the 'C32 are identical to those in the 'C30 and 'C31
and are discussed in the TMS320C3x User's Guide (literature number
SPRU031).

5-1

5-2

11"1111 111 1 l1li1

I

Chapter 6

CPU Program Flow Control
1 11 11 rr 11 I; T f f lIn m rrT H III fIT! ! 11 1111 ff T1 T1W PI

This chapter discusses the operations that occur during reset. It also dis­
cusses the I DLE2 and LOPOWER power management modes available in the
'C32.

6-1

Reset Operation

6.5 Reset Operation

6-2

At reset, the 'C32 performs the following operations:

o The peripherals are reset

o The CPU/DMA interrupt enable (IE), CPU interrupt flag (IF), and 1/0 flag
(IOF) registers are loaded with Os.

o All the bit fields in the status register (S1) are loaded with zero, except the
PRGW status bit field that is loaded with the status of the PRGW pin.

o The external bus control registers are reset, see Section 7.3 for a descrip­
tion of the reset value.

o The 'C32 performs a 32-bit read to fetch the reset vector from memory
location Oh. Once read, this value is loaded into the program counter.

o The 'C32 starts executing code from the memory location dictated by the
program counter.

Reset Operation

Table 6-3 shows the state of the 'C32's pins after reset is pulled low.

Table 6-3. Pin Operation at Reset

Signal

031-0

A23-Q

R/W

ROY

HOO5
HOLDA

RESET

INT3-INTO

lACK

MCBL/MP
XF1-XFO

CLIOCO
OXO
FSXO
ClKRO
ORO

FSRO

, Pin. Operation at Re.et
External Bus Interface (70 pins)

32 Synchronous reset. Placed in high-impedance state.

24 Synchronous reset. Placed in high-impedance state.

1 Synchronous reset. Oeasserted by going to a high level.

1

4

1

1

2

1

1

1

1

Reset has no effect.

Reset has no effect.

Reset has no effect.

Control Signals (9 Pins)

Reset input pin.

Reset has no effect.

Synchronous reset. Oeasserted by going to a high level.

Reset has no effect.

Asynchronous reset. Placed in high-impedance state.

Serial Port Signals (6 Pins)

Asynchronous reset. Placed in high-impedance state.

Asynchronous reset. Placed in high-impedance state.

Asynchronous reset. Placed in high-impedance state.

Asynchronous reset. Placed in high-impedance state.

Asynchronous reset. Placed in high-impedance state.

Asynchronous reset. Placed in high-impedance state.

Note: Shaded entries corresponds to the (new) signals that are available only in the 'C32.

CPU Program Flow Control 6-3

Reset Operation

Table 6-3. Pin Operation at Reset (Continued)

Signal # Pins Operation at Reset

Timer Signals (2 Pins)

TCLKO Asynchronous reset. Placed in high-impedance state.

TCLK1 Asynchronous reset. Placed in high-impedance state.

Clock Signals (3 Pins)

H1 Synchronous reset. Goes to its initial state when RESET makes a 1-to-O
transition. See Chapter 13 of the TMS320C3x User's Guide.

H3 Synchronous reset. Goes to its initial state when RESET makes a 1-to-O
transition. See Chapter 13 of the TMS320C3x User's Guide.

CLKIN Reset has no effect.

Emulation and Test Signals (5 Pins)

EMU3-EMUO 4 Reset has no effect.

SHZ 1 Reset has no effect.

Supply Signals (45 pins)

CVss 7 Reset has no effect.

DVss 7 Reset has no effect.

IVSS 4 Reset has no effect.

DVoo 12 Reset has no effect.

VOOL 8 Reset has no effect.

VSSL 6 Reset has no effect.

VSUBS Reset has no effect.

6-4

Power Management Modes

6.7 Power Management Modes

The 'C32 CPU has been enhanced by the addition of two power management
modes, IDLE2 and LOPOWER. Either mode is invoked by executing the corre­
sponding power-down instruction.

6.7.1 IDLE2 Power-Down Mode

In IDLE2 mode (opcode = 06000001 h), the 'C32 behaves as follows:

D No instructions are executed.

D The CPU, peripherals, and internal memory retain their previous state.

D The external bus output pins are idle (the address lines remain in their pre-
vious state, the data lines are in the high-impedance state, and the output
control signals are inactive).

D When the device is in the functional (nonemulation) mode, the clocks stop
with H1 high and H3 low (see Figure 6-1).

D The 'C3x remains in IDLE2 until one of the four external interrupts
(INT3-INTO) is asserted for at least one H1 cycle. When one of the four
interrupts is asserted, the clocks start after a delay of one H1 cycle. The
clocks can start up in the phase opposite to that in which they were
stopped (that is, H 1 may start low when H3 was low before stopping the
clocks and H3 may start low when H 1 was previously low). However, the
H1 and H3 clocks remain 180 degrees out of phase with each other (see
Figure 6-2).

D During I DLE2 operation, the CPU recognizes one of the four external inter­
rupts if it is asserted for at least two H 1 cycles. To avoid generating multiple
false interrupts in level-triggered mode, the interrupt must be asserted for
fewer than three H 1 cycles.

D The interrupt service routine (ISR) must have been setup before placing
device in IDLE2 mode since the instruction following the IDLE2 instruction
is not executed until the RETI (return from interrupt) instruction is
executed.

D When the device is in emulation mode and the IDLE2 instruction is
executed, the H 1 and H3 clocks continue to operate normally and the CPU
behaves as if an I DLE instruction had been executed. The clocks continue
to run for correct operation of the emulator.

Note:

For correct device operation, the three instructions following a delayed
branch should not include either IDLE or IDLE2 instructions.

CPU Program Flow Control 6-5

Power Management Modes

Figure 6-1.IDLE2 Timing

elKIN

IOlE2 Execution

H3 .-I LJ LJ \'--___ _
H1 \'----.JI\'----.JI\'----~/

Oma ______________________________________ --J)~--------------------
Address ___ _

Figure 6-2. Interrupt Response Timing After IDLE2 Operation

I I I I
ClKIN

H3 __ -r

Hl I
I

I I I ~
I I I I

INT3-o

INT3-o

f
I I I
I I Add(ess of I

1s Ins!.

Flag ----t----------t

:
I

vecto; Address
I I

I X X
Address ___1.. ________ "'"-______ ______ ...,

I I I
I q I q I I Data -----+---------'---------!--------+-------4

6.7.2 LOPOWER Mode

6-6

In the lOPOWER (low-power) mode, the CPU continues to execute instruc­
tions and the DMA can continue to perform transfers, but at a reduced clock
rate of the ClKIN frequency divided by 16, that is, a 'C3x with a ClKI N frequen­
cy of 32 MHz performs the same as a 2-MHz 'C3x that has an instruction cycle
time of 1000 ns or 1 MHz).

Power Management Modes

The 'C3x slows down to 1/16 of full speed operation during the read phase of
the LOPOWER instruction. The 'C3x resumes full speed operation during the
read phase ofthe MAXSPEED instruction. The LOPOWER instruction encod­
ing (opcode) is 10800001 h and the MAXSPEED instruction encoding is
10800000h.

Figure 6-9. LOPOWER Timing

ClKIN

~ ~ __________ 32CLKINcycies ----------II~
H3~ \~ ______________________ _J,_

H1~ ______________________ JI

LOPOWER Read

Figure 6-10. MAXSPEED Timing

ClKIN

L

k----------- 32CLKINcycies --------... ~
H3~~ ______________________ J/~-----------------------~

H1-'~----------------------~\~ _______________________ ~
MAXSPEED Read

CPU Program Flow Control 6-7

6-8

Chapter 7

Enhanced External Memory Interface
W.4f20 H ; $1 t.t t W'AW~,$"::mm W)w/.&'~.&'~WW{f}.%«·@:!*=*?.:mm-?~:@':t'tr~xmr*:im"i%j::-:i@@?:i:~?f.m?W:@,M;:*}'~::::::;:::f;g::rf.t~--**.m~~ <. r. t t %1% n
w..@"~&".$'#.&.$~-:W<'.(#ff~~.@"«-*W.~'(HA!@m.w~"'«");W?i>;.~;.w.@~w..w.?w.W'.-.::w-&@$1r#/.<w.*m<~:~:::~r~~::~~*::::*,';::~~(,'::::?''':::::*!~~::;7.'~~~,*::::~*,:iW2(#.w.w@m"*??'(.::!W'~a:: ... =. ===
#1'##/.I!#"#~~~/U.«-w~~~~;w...:~-:-:«<<<@<~&"~W.'~:'w"/#.-:00:<::<<n0::::w.w..:.:<<1<<'(W»'::~..w;:::w~.w.<>'M«>;:::':«0:-:-:::-:-:-:::·~·:«·:«-:-:««««-::w.::w.«-:-:«..:::,:.:.:-:&<,,<::'(<<w..:~-.-..::w.$>>>/.«/..:¥.«~««:
~~,,,,,,,,, __ ~~,,,,,,,,,,,,,,,,,,,,~,,,,,,,,~,,,,,,,,,,,,~,,,,,,,,~,,,......,,.,,.,,,,,,,,,,,,,,,, .. _,~,,,,,,,,,, .. ~,,,,,,,,,,.,,..,...,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,..,...,,..,.~,,,,,,,,,,,,"""'...,."....,.""''''''"'_".'w~w,.·''''',..,...,,,'',..,.,.,,...'''''''''',...,,,,'''''' ''',, .. _ .. ,...'...,..,,,,.,,'''''' .. N...,..,NN,.,,.,,...,,..,.,,..,..,. '

The 'C32 external memory interface provides greater flexibility by improving
the 'C3x core with several new features. This chapter describes these features
and enhancements in detail.

7-1

Features

7.1 Features

7·2

The C32's external memory interface includes the following features:

o One external pin, PRGW, configures the external program memory width
to 16 or 32 bits.

o Two sets of memory STRBs (STRBO and STRB 1) and one IOSTRB allow
zero glue-logic interface to two banks of memory and one bank of external
peripherals.

o Separate bus control registers for each STRB control wait state genera­
tion, external memory width, and data type size.

o Each memory STRB handles 8-, 16- or 32-bit external data accesses
(reads and writes).

o Multiprocessor support through the HOLD and HOLDA signals, is valid for
all the STRBs.

7.2 Overview

Overview

The following sections describe examples, control register setups, and restric­
tions necessary to fully understand the operation and functionality of the exter­
nal memory interface.

7.2.1 External Memory Interface Overview

The 'C32 memory interface accesses external memory through one 24-bit ad­
dress and one 32-bit data bus that is shared by three mutually-exclusive
strobes (STRBO, STRB 1, and IOSTRB). Depending on the address accessed,
the 'C32 activates one of these strobes according to the memory map shown
in Figure 3-8.

STRBO and STRB1 can access 8-,16-, or 32-bit data from 8-,16-, or 32-bit
wide memory. This is accomplished by four signals in each strobe:
STRBx_B3/~ 1, STRBx_B2/~2' STRBxB1, and STRBx_BO. These signals
serve as byte enable pins to access one byte, half-word, or a full-word from
the external memory. The first two Signals also serve as additional address
pins to perform two or four consecutive accesses in 8-bit or 16-bit wide external
memory. The 'C32 controls the behavior of these pins through the data size
and memory width bit fields in the corresponding strobe control register, as fol­
lows:

o Memory width (default value dependent on PRGW pin level)

• a-bit wide memory

• STRBx B3/~1 and STRBx_B2/~2 as address pins
• STRBx_BO as byte enable/chip select signal
• STRBx B 1 unused

• 16-bit wide memory

• STRBx_B3/~1 as address pin
• STRBx B1 and STRBx_BO as byte enable signal
• STRBx B2 unused

• 32-bit memory

• STRBx_B3, STRBx_B2, STRBx_B1, and STRBx_BO as byte
enable signals

o Data size

• 8-bit data, physical address = logical address shift right by 2
• 16-bit data, physical address = logical address shift right by 1
• 32-bit data, physical address = logical address

Enhanced External Memory Interface 7-3

Overview

10STRB can access 32-bit data from 32-bit wide memory. It does not have the
flexibility of S'fR'Bo and STRB1 since it is composed of a single signal:
10STRB. 10STRB bus cycles are different from those of STRBO and STRB1
and are discussed in Section 7.4. This timing difference accomodates slower
I/O peripherals.

Summarizing, the 'C32 memory interface parallel bus implements three mutu­
ally-exclusive address spaces distinguished via three separate control signals
as shown in Figure 7-1. STRBO and STRB1 support 8-/16-, or 32-bit data ac­
cess in 8-/16-/32-bit wide external memory and 16-/32-bit program access in
16-/32-bit wide external memory. 10STRB address space supports 32-bit
data/program access in 32-bit wide external memory. Internally, the 'C32 has
a 32-bit architecture, hence, the memory interface packs and unpacks the data
accessed accordingly.

Figure 7-1. Memory Address Spaces
r------------------,

I
STRBO

8-/16-/32-Bit Data in
'C32 I 8-/16-/32-Bit Wide Memory

I Program in 16-/32-Bit Wide I
I Memory

I 32-Bit PRGWPin I 8-/16-/32-Bit Data in CPU I

! I
STRB1 8-/16-/32-Bit Wide Memory

I
...

Program in 16-/32-Bit Wide .. ! Memory
Memory

Strobe
Interface i Control ... I IOSTRB 32-Bit Data in 32-Bit Wide

Registers
I Memory

I ...
Program in 32-Bit Wide

I Memory
_________________ J

L_

7.2.2 Program Memory Access

7-4

The 'C32 supports program execution from 16- or 32-bit external memory
width. The PRGW pin configures the width of the external program memory.
When this pin is pulled high, the 'C32 executes from 16-bit wide memory.
When this pin is pulled low, the 'C32 executes from 32-bit wide memory. For
16-bit wide zero wait-state memory, the 'C32 takes two instruction cycles to
fetch a single 32-bit instruction. During the first cycle the lower 16 bits of the
instruction are fetched. During the second cycle, the upper 16 bits are fetched
and concatenated with the lower 16 bits. 32-bit memory fetches are identical
to those of the 'C30 and 'C31.

Overview

The PRGW status bit field of the CPU status (ST) register reflects the setting
of the PRGW pin. Figure 7-2 depicts all the bit fields of the CPU status (ST)
register.

Figure 7-2. Status Register

3116 15 14

R R/W

13 12 11 10 9 8 7 6 5 4 3 2 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

The status of the PRGW pin also affects the reset value of the physical memory
width bit fields of the STRBO and STRB 1 bus control registers. The physical
memory width is set to 32-bit memory width if the PRGW pin is logic low after
the device reset. The physical memory width is set to 16-bit memory width if
the PRGW pin is logic high after the device reset (see Section 7.3 for more in­
formation).

7.2.3 Data Memory Access

The 'C32 can load and store 8-, 16-, or 32-bit data quantities from and into
memory. Because the CPU has a 32-bit architecture, the device internally han­
dles all 8-, 16-, or 32-bit data quantities as a 32-bit value. Hence, the external
memory interface handles the conversion between 8- and 16-bit data quanti­
ties to the internal 32-bit representation. The external memory interface also
handles the storage of 32-, 16-, or 8-bit data quantities into 32-, 16-, or 8-bit
wide memories.

7.2.4.1 B-, 16-, or 32-Blt Integers Data Types

The 'C32 supports 8-, 16- or 32-bit integer data quantities. When 8- or 16-bit
integers are read from external memory, the value is loaded into the least sig­
nificant bits of the register with the most significant bits sign-extended or zero­
filled. The polarity of the Sign Ext/Zero Fill bit field of the corresponding STRB
control register controls the sign extension or zero fill (see paragraphs 7.3.1.1
and 7.3.1 .2). 32-bit integer data access is identical to that ofthe 'C30 and 'C31.

Enhanced External Memory Interface 7-5

Overview

7.2.4.2 16- or 32-81t Floating-Point Data Types

7·6

The 'C32 supports 16- or 32-bit floating point data. For 16-bit floating-point
reads, the eight MSBs are the signed exponent and the eight LSBs are the
signed mantissa (See subsection 4.3.1). When a 16·bit floating-point value is
loaded into a 40-bit register, the external memory interface zero-fills the least
significant 24 bits of the register. When a 16-bit floating-point value is used as
a 32-bit on-chip input operand, the external memory interface zero-fills the 16
least significant bits of the 32-bit input operand. 32-bit floating-point data ac­
cess is identical to those of 'C30 and 'C31.

7.3 Configuration

Configuration

To access 8-, 16-, or 32-bit data (types) from 8-, 16-, or 32-bit wide memory,
the memory interface ofthe 'C32 device uses either strobe STRBO or STRB1
with four pins each. These pins serve as byte enable and/or additional address
pins. In conjunction with a shifted version of the internal address presented to
the external address, the 'C32 can select a single byte from one external
memory location or combine up to four bytes from contiguous memory loca­
tions. The behavior of these pins is controlled by the external memory width
and the data type size. The selected data size also determines the amount of
internal to physical address shift. You communicate these values to the 'C32
memory interface through bit fields in the bus control registers.

7.3.1 External Interface Control Registers

The following sections describe the bus control registers used to manipulate
the byte addressability features of the 'C32. Figure 7-3 shows the external in­
terface control memory map.

Figure 7-3. Memory-Mapped External Interface Control Registers

Address

808060h

808061h
808062h
808063h
808064h
808065h

808066h
808067h
808068h
808069h

80806Fh

Register

IOSTRB Control

Reserved

Reserved

Reserved

STRBO Control

Reserved

Reserved

Reserved

STRB1 Control

Reserved

Reserved

Enhanced External Memory Interface 7-7

Configuration

7.3.1.1 STRBO Control Register

The STRBO control register (Figure 7-4) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped
to STRBO. The following table lists the register bits with the bit names and func­
tions. At the system reset, OF10F8h is written to the STRBO control register if
PRGW pin is logic low and 0710F8h is written to the STRBO control register
if the PRGW pin is logic high.

Figure 7-4. STRBO Control Register

31 23 22 21 20 19 18 17 16

Reserved These fields
are new

RNI RNI RNI RNI RNI

15 13 12 8 7 5 4 3 2 0

Reserved BNKCMP NOHOLD HOLDST Same as in
'C30/'C31

ANI ANI ANI RNI RNI R

7.3.1.2 STRB1 Control Register

7-8

The STRB1 control register (Figure 7-5) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped
to STRB1. Figure 7-5 shows the register bits with their names and functions.
At system reset, OF1 OF8h is written to the STRB 1 control register if PRGW pin
is logic low and 071 OF8h is written to the STRB 1 control register if PRGW pin
is logic high.

Configuration

Figure 7-5. STRB1 Control Register

31 21 20 19 18 17 16 15 13 12 8 7 5 4 3 2 o
~------~------r------r-----r-----'

Reserved Reserved BNKCMP WTCNT SWW Reserved

R/W R/W R/W

7.3.1.3 IOSTRB Control Register

The IOSTRB control register (Figure 7-6) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped
to IOSTRB. Unlike the STRBO and STRB1, there is no byte enable signal for
the IOSTRB. The data access through the IOSTRB is always 32-bit. The fol­
lowing table lists the register bits with the bit names and functions. At the sys­
tem reset, OF8h is written to the IOSTRB control register. The IOSTRB timing
is identical to the 'C30's IOSTRB timing.

Figure 7-6. IOSTRB Control Register

31 87 5432 0

Reserved WTCNT SWW I Reserved I
R/W R/W

7.3.1.4 Data Type Size Field

The Data Type Size field indicates the size of the data type written in memory.
This field can have the following values (the reset value is shown by the
shaded entry):

Bit 17

o
o

Bit 16

o
1

o

7.3.1.5 Physical Memory Width Field

Data Size

8-bit

16-bit

Reserved

The Physical Memory Width fields indicates the size of the physical memory
connected to the device. The reset value depends on the status of the PRGW

Enhanced External Memory Interface 7-9

Configuration

pin. If PRGW pin is logic low, the physical memory width is configured to 32
bits (= 11 ~. If PRGW pin is logic high, the physical memory width is configured
to 16 bits (= 01~. This field can have the following values:

Setting the Physical Memory Width field of the STRBO or STRB 1 control regis­
ters changes the functionality of the STRBO or STRB1 signals. When the
Physical Memory Width field is configured to 32 bits, the corresponding
STRBx_BO'-STRBx_B3 signals are configured as byte enable pins (refer to
Figure 7-7). When the Physical Memory Width field is configured to 16 bits,
the corresponding STRBx_B3 signal is configured as an address pin while
STRBx_BO and STRBx_B1 signals are configured as byte enable pins (refer
to Figure 7-11). When the Physical Memory Width field is configured to 8 bits,
the STRBx_B3 and STRBx_B2 signals are configured as address while
STRBx Bx is configured as byte enable pin (refer to Figure 7-15). Note that
once a STRBx_Bx signal is configured as an address pin it will be active for
any external memory access (STRBO, STRB 1, IOSTRB, or external program
fetch).

7.3.1.6 Sign Ext/Zero Fill Field

The Sign ExVZero Fill field selects the method of converting 8- and 16-bit inte­
ger data to 32-bit integer data when transferring data from external memory
to an internal register or memory location. This field can have the following val­
ues (the shaded entry is the reset value):

The most significant bits of an 8- or 16 bit integer reads are zero-filled to make the number
32-bits

Note that 8- and 16-bit integer loads are stored in the least significant bits of
the 'C32 registers/memory with the most significant bits sign-extended or
zero-filled according to the setting of this bit field.

7.3.1.7 STRB Conflg Field

7-10

The STRB Config field indicates if the STRBO_Bx signals are active when
accessing data from either STRBO or STRB 1 memory spaces. This mode is

Bit 21

Configuration

useful when accessing a single external memory bank that stores two different
data types, each mapped to a different STRB (refer to Chapter 12 for exam­
ples). This field can have the following values (the shaded entry depicts the
reset value):

STRBO_Bx signals are active for address locations Oh-7FFFFFh, 880000h-8FFFFFh, and
900000h-FFFFFh.
STRB1 Bx signals are active for address locations 900000h-FFFFFFh

7.3.1.8 STRB Switch Field

Bit 22

The STRB Switch field defines whether a single cycle is inserted between
back-to-back reads when crossing STRBO to STRB 1 or STRB 1 to STRBO
boundaries (switching STRBs). The extra cycle toggles the strobe signal dur­
ing back-to-back reads. Otherwise, the strobe will remain low during back-to­
back reads. This field can have the following values (the shaded entry high­
lights the reset value):

(STRBO only) STRB Switch Function Description

1 Inserts a single cycle between back-to-back reads when switching from STRBO to STRB1
or vice versa.

7.3.1.9 Example

For example, consider a 'C32 connected to two banks of external memory. In
this configuration, one bank is mapped to STRBO while the other bank is
mapped to STRB1. The STRBO bank of memory is 32 bits wide and stores
32-bit data types. The STRB 1 bank of memory is 16 bits wide and stores 16-bit
data types. You transfer these configurations to the TMS320C32 by setting the
Physical Memory Width and Data Type Size fields of the respective STRBO
and STRB 1 control registers. Also, you must clear the STRB Config bit field
to 0 since the banks are separate memories. Note that 'C32's address pins
A23A22A21 ... A1Ao are connected to the STRBO memory bank address pins
A2aA22A21 ... A1Ao. But, 'C32'saddress pinsA22A21 ... A1AoA..1 are connected to
the STRB1 memory bank address pins A23A22A21 ... A1Ao.

Enhanced External Memory Interface 7-11

Configuration

Executing the following code on this device results in the data access se­
quence shown in the Table 7-1:

1) LDI 4000h, AR1 AR1 = 4000h
2) LDI *AR1++, R2 R2 *4000h and AR1 = AR1 + 1
3) ADDI *AR1++, R2 R2 R2 + *4001h and AR1 = AR1 + 1
4) ADDI *AR1++, R2 R2 R2 + *4002h and AR1 AR1 + 1
5) ADDI *AR1++, R2 R2 R2 + *4003h and AR1 = AR1 + 1
6) LDI 900h, AR2 AR2 = 900h
7) LSH 12, AR2 AR2 = 900000h
8) LDI *AR2++, R3 R3 *900000h and AR2 AR2 + 1
9) ADDI *AR2, R3 R3 = R3 + 900001h

By setting the bit fields of the STRBO bus control register with a Physical
Memory Width of 32 bits and a Data Type Size of 32-bit, the external address
referring to STRBO location is identical to the internal address used by the 'C32
CPU. On the other hand, setting the bit fields of the STRB 1 Bus Control regis­
ter with a Physical Memory Width of 16-bit and a Data Type Size of 16-bit, the
address presented by the 'C32's external pins is the internal address shifted
right by one bit with A23 driving A23 and A22. Since STRB1 memory bank ad­
dress pins A2aA22A21 ... A1Ao are connected to the 'C32's address pins
A22A21 ... A1AoA-h the address seen by the STRB 1 memory bank is identical to
the 'C32 CPU internal address.

Table 7-1. Data Access Sequence for a Memory Configuration with Two Banks

Instruction Internal
1# Address

(2) 4000h

(3) 4001h

(4) 4002h

(5) 4003h

(8) 900000h

(9) 900001h

7-12

External Active Strobe Data External Memory

Address Accessed 31 0

4000h STRBO_BO/B1/B2/B3 Data 0 4000h Data 0

4001h STRBO_BO/B1/B2/B3 Data 1 4001h Data 1

4002h STRBO_BO/B1/B2/B3 Data 2 4002h Data 2

4003h STRBO_BO/B1/B2/B3 Data 3 4003h Data 3

15 0

C80000h STRB1_BO/B1 and Data 4 900000h Data 4

STRB1_B3/A-1 = 0 Data 5

C80001h STRB1_BO/B1 and Data 5

STRB1_B3/A-1 = 1

'C32 ability to select a single byte from a single external memory location or
combinations of bytes from several contiguous memory locations, dictates
that the internal address seen by the CPU corresponds to a shifted version of
the address presented to the external pins. The C32's external memory inter­
face handles this conversion automatically as long as you configure the Bus

Configuration

Control register to match the external memory configuration present in your
hardware implementation.

As seen in Figure 2-2, 'C32 handles nine different memory access cases. The
following sections discusses these cases in detail.

7.3.2 32-Bit Wide Memory Interface

'C32 memory interface to 32-bit wide external memory utilizes STRBx_B3
through STRBx_BO pins as strobe-byte enable pins as shown in Figure 7-7.
In this manner, the 'C32 can read/write a single 32-, 16-, or 8-bit value from the
external 32-bit wide memory.

Figure 7-7. 'C32 External Memory Interface for 32-8it SRAMs

TMS320C32

AXX AXX ... AXX ... AXX ... AXX

R/W WE ... WE ... WE ... WE
... CS --.- CS -.- CS -.- CS

I
...

1/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7-0)
STRBx B3

STRBx B2
~iI' ~iI' ~iI'

STRBx B1
STRBx_BO

0(31-24) ...
0(23-16)

0(15-8)
~

0(7-0)

Case 1: 32-Bit Wide Memory With 8-Bit Data Type Size

When the data type size is 8-bit, the 'C32 shifts the internal address two bits
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal address A23 to the external
address pins A23, A22 , and A21 . Also, the memory interface activates the
STRBx _ B3 through STRBx _ BO pins according to the value of the internal ad­
dress bits A1 and Ao as shown in Table 7-2. Figure 7-8 shows a functional dia­
gram of the memory interface for 32-bit wide memory with 8-bit data type size.

Enhanced External Memory Interface 7 -13

Configuration

Table 7-2. Strobe-Byte Enable for 32-Bit Wide Memory With 8-Bit Data Type Size

Internal A1

o
o

Internal Ao
o
1

o

Active Strobe-Byte Enable

STRBx_BO

STRBx_B1

STRBx_B2

STRBx B3

Figure 7-8. Functional Diagram for 8-Bit Data Type Size and 32-Bit External Memory
Width

I TMS320e32

A 23
A 22 -

A21 -
A 20 -

A 2 -

A1 -

AO -

7-14

Memory Interface

P' A23 =---- 4~ A22

A21 ~1 ~1
..

~1 ~1

~
P' p-

A20 ~O ~O
..

~O
...
~ P' p- P'

A 19
..

~9 ~9 ~9 A19

A18 ~8 ~8
..

~8 ~8 P' P' p-

~
AO P' ~ P' ~ ~ +- ~

STRBx .,I es -+- es r+- es es

<
1/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7-0)

A

:
~ 10 STRBx B2 : 01 STRBx B1 :
~

STRBx_BO

0(31-24)
0(23-16)

0(15--8) ~

0(7-0)

For example, reading or writing to memory locations 90 4000h to 904004h in­
volves the following:

Internal Address External Active Strobe-Byte Accessed Data
Bus Address Pins Enable Pins

904000h E41000h STRB1_BO 07-0

904001h E41000h STRB1_B1 °15--8

904002h E41000h STRB1_B2 °23-16

904003h E41000h STRB1_B3 °31-24

904004h E41001h STRB1 BO °7-0

Configuration = ______ 'XmY~...:::::;w~~_:.::>!~=4~~_' ___ ,~:::~'::::'''::::-;_~::::::W$Yh-="'l:x::-;::::-m::'>:::;';~::::::~::-»'~-*,::::'::::.::>!~4~:.::>!'':::<0::l<''::::::::'''W'«"""';"''''''h~;::::~~.,::::;.::;~~"%::::;~,.xmw/'''''''':::r..::~~

Case 2: 32-Bit Wide Memory With 16-Bit Data Type Size

When the data type size is 16-bit, the 'C32 shifts the internal address one bit
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal address A23 to the external
address pins A23 and A22 . Also, the memory interface activates the STRBX-B3
through STRBx_BO pins according to the value of the internal address bit Ao
as shown in Table 7-3. Figure 7-9 shows a functional diagram of the memory
interface for 32-bit wide memory with 16-bit data type size.

Table 7-3. Strobe-Byte Enable for 32-Bit Wide Memory With 16-Bit Data Type Size

Internal Ao Active Strobe-Byte Enable

o STRBx B1 and STRBx BO - -
STRBx B3 and STRBx B2

Figure 7-9. Functional Diagram for 16-Bit Data Type Size and 32-Bit External Memory
Width

TMS320e32

Memory Interface
III
::I
al

~ A23 L+ A23 .. _ ..
A22 A22 A22 A22 A22 A22

"0
A21 -- A21 A21 A21 A21 A21

~ A20 -- A20 A20 A20 A20 r A20
!!! -- A19 A19 A19 A19 A19
8
.1Il
(\j

8 A2
0 A1 -.. A1 A1 A1 A1 A1
(\j
C? Ao- -- Ao AO AO AO .. AO en r+- es --.- es --.- es r+- es ::E
I- I/O{7-0) I/O (7-0) 1/0{7-0) 1/0(7-0)

~ STRBx B3-

-+- .:-+- STRBx B2
STRBx B1 oIL;.- STRBx_BO

............
0{31-24) ~

0{23-16)
0{15-8)

0{7-0)

Enhanced External Memory Interface 7 -15

Configuration

For example, reading or writing to memory locations 904000h to 904004h in­
volves the following:

Internal External Accessed
Address Bus Address Pins Active Strobe-Byte Enable Data Pins

904000h C82000h STRB1 B1 and STRB1 BO °15-0 - -
904001h C82000h STRB1 B3 and STRB1 B2 °31-16 - -
904002h C82001h STRB1 B1 and STRB1 BO °15-0 - -
904003h C82001h STRB1 B3 and STRB1 B2 °31-16 - -
904004h C82002h STRB1 B1 and STRB1 BO °15-0

Case 3: 32-8it Wide Memory With 32-8it Data Type Size

When the data size is 32-bit, the 'C32 does not shift the internal address before
presenting it to the external address pins. In this case, the memory interface
copies the value of the internal address bus to the respective external address
pins. Also, the memory interface activates STRBx_B3 through STRBx_BO
pins during accesses. Figure 7-1 0 shows a functional diagram of the memory
interface for 32-bit wide memory with 32-bit data size.

Figure 7-10. Functional Diagram for 32-Bit Data Size and 32-Bit External Memory Width

TMS320C32

Memory Interface

'" ::::l
III

A23 A23 A23 A23 A23 --'" A23 '" '" A22 A22 A22 A22 A22 A22 ~ r

"0 A21 A21 A21 A21 A21 --'" A21 "0
~ A20 A20 A20 .. A20 ... A20 A20
~
0
0
-'" C\I

A2 A2 A2 ~ ... A2 C') A2 A2 0 A1 ..
~ A1 A1 A1 A1 A1
C') Ao Ao r+-

AO
+-

AO AO + AO
(f)

CS CS -.- CS CS :::i!
I- 1/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7-0)

....-- .. STRBx B3- ~

:~
STRBx B2

/./ff STRBx B1
~ STRBx_BO (....--

STRBXLogic 0(31-24)
0(23-16)

0(15-8)
0(7-0)

7-16

Configuration

For example, reading or writing to memory locations 904000h to 904004h in­
volves the following:

Internal External Active Strobe-Byte Enable Accessed
Address Bus Address Pins Data Pins

904000h 904000h STAB1 BO, STAB1 B1, °3H)
STAB1 B2, and STAB1 B3

904001h 904001h STAB1=BO, STAB1 B1, °31-0
STAB1 B2, and STAB1 B3

904002h 904002h STAB1 BO, STAB1 B1, °31-0
STAB1 B2, and STAB1 B3

904003h 904003h STAB1 BO, STAB1 B1, °31-0
STAB1 B2, and STAB1 B3

904004h 904004h STAB1 BO, STAB1 B1, °31-0
STAB1 B2, and STAB1 B3

7.3.3 16-Bit Wide Memory Interface

'C32 memory interface to 16-bit wide external memory utilizes STRBx_B3 pin
as an additional address pin, A...1, while using STRBx_BO and STRBx_B1 as
strobe-byte enable pins as shown in Figure 7-11. Note that the external
memory address pins are connected to the 'C32's address pins
A22A21 ... A1AoA-l' In this manner, the 'C32 can read/write a single 32-, 16-, or
a-bit value from the external 16-bit wide memory.

Figure 7-11. External Memory Interface for 16-8it SRAMs
TMS320C32

A23
A22

.. A23 ..
A21 .. A22

A1
...

A2

Ao ...
A1 ~

STABX_B3/A-1 _ .. AO :
A/W WE ..

CS

STABx B2 I 1/0(7-0)

STABx B1
A~

STABx_BO
0(31-24)
0(23-16)

0(15-8)
0(7-0)

.. A23 :. .. A22

A2
A1 ... AO WE + CS

1/0(7-0)

A~

Enhanced External Memory Interface 7-17

Configuration

Case 4: 16-Bit Wide Memory With 8-Bit Data Type Size

When the data type size is a-bit, the 'C32 shifts the internal address two bits
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal address A23 to the external
address pins A23, A22, and A21 . The memory interface also copies the value
ofthe internal address A1 to the external STRBx B3/ A... 1 pin. Furthermore, the
memory interface activates the STRBx_B1 and STRBx_BO pins according to
the value of the internal address bit Ao as shown in Table 7-4. Figure 7-12
shows a functional diagram of the memory interface for 16-bit wide memory
with a-bit data type size.

Table 7--4. Strobe-Byte Enable Behavior for 16-Bit Wide Memory with 8-Bit Data Type Size

Internal Ao

o
Active Strobe-Byte Enable

STRBx BO

STRBx B1 =

Figure 7-12. Functional Diagram for 8-Bit Data Type Size and 16-Bit External Memory
Width

TMS320C32

Memory Interface

VI
~

A23 A23 III

~ A22 A22
"0 A21 A21 A22 A22
~ A20 A20 A21 A21
~ A19 A20 A20
8 A18 A19 A19
_VI
C\I
(')

A2 ~
(') A1
en Ao Ao A1 A1 ~
I- STRBx B3/A-1 AO AO

STRBx B1 CS CS
1/0(7-0) 1/0(7-0)

STRBx_BO

D(15-8)
D(7-0)

7-18

Configuration ___________ """"'_"""""~""""" __ . ~~~~~mw~,=ffl«=~w ____ ~~::x%,o,;_:<::»_::_n:::~"..~~_mmjf.1.mj.~

Internal
Address Bus

4000h

4001h

4002h

4003h

4004h

For example, reading or writing to memory locations 4000h to 4004h involves
the following:

External
STRBO_B3/A-1 Active Strobe-Byte Enable Accessed

Address Pins Data Pins

1000h 0 STR60 60 °7-0
1000h 0 STR60 61 °15-8
1000h STR60 60 °7-0
1000h 1 STR60 61 °15-8
1001h 0 STR60 60 °7-0 =

Case 5: 16-8it Wide Memory With 16-8it Data Type Size

When the data type size is 16-bit, the 'C32 shifts the internal address one bit
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal address A23 to the external
address pins A23 and A22. Also, the memory interface copies the value of the
internal addressA1 to the external STRBx_B3/A...1 pin. Moreover, the memory
interface activates the STRBx_B1 and STRBx_BO during accesses.
Figure 7-13 depicts a functional diagram of the memory interface for 16-bit
wide memory with 16-bit data type size.

Enhanced External Memory Interface 7-19

Configuration

Figure 7-13. Functional Diagram for 16-Bit Data Type Size and 16-Bit External Memory
Width

Internal
Address Bus

4000h

4001h

4002h

4003h

4004h

TMS32OC32

A2 --r-~
A1 --t--~ --

Ao -1--_----..._ -... A1 ..
Ao ;
STRBx B3/A-1 -.-

STRBX-Bl J " -
~&.
I CS

I/O (7-0)

; __ :.... L+ STRBx BO -----t-----'

STRBXLogic O{15-8) ~I--______J

0(7-0) "-"'~I--____________ -.J

For example, reading or writing to memory locations 4000h to 4004h involves
the following:

External
STRBO_B3/A....1 Active Strobe-Byte Enable

Accessed
Address Pins Data Pins

2000h 0 STRBO_BO and STRBO_B1 015-0

2000h STRBO_BO and STRBO_B1 015-0

2001h 0 STRBO_BO and STRBO_B1 015-0

2001h STRBO_BO and STRBO_B1 015-0

2002h 0 STRBO BO and STRBO B1 0 15--9

Case 6: 16-Blt Wide Memory with 32-Blt Data Type Size

7-20

When the data type size is 32-bit, the 'C32 does not shift the internal address
before presenting it to the external address pins. In this case, the memory in­
terface copies the value of the internal address bus to the respective external
address pins. The memory interface also toggles STRBx_ B3/ ~ 1 twice to per­
form two 16-bit memory accesses. In the consecutive memory accesses, the
memory interface activates STRBx_B1 and STRBx_BO. In summary, the

Configuration
_____ '""mf=f;$~ ... ~n~~ m __ =::m~~:::O::::-»::~~::AA:::~~~::::~::::::~:~:::w,,::~:::,.::::w..::%mm~I::::::W":::::'<::_~W~W"::::C::::::::%1fm::::M%I~fflW'w.';:':::::~-:'::::,*:~I':':':::::':':':::::::':':';(":W·':N0mw.".""',:"':::x":,;,:mmI%'::<:<::I':';'::::::<:<::M~W::W

memory interface adds one wait state to the 32-bit data access. Figure 7-14
depicts a functional diagram of the memory interface for 16-bit wide memory
with 32-bit data type size.

Figure 7-14. Functional Diagram for 32-Bit Data Type Size and 16-Bit External Memory
Width

en
::J

CD
en
en
Q)

-0
'C «
Q) ...
0
()
en
N
CO)
()
0
C\I
CO)
C/}

~
~

Internal
Address Bus

4000h

4001h

4002h

4003h

4004h

TMS320C32

Memory Interface

... ...
A23 ... A23 ... A24 A24

A22 A22 A23
~

A23

A21
...

A21
...

A22
...

A22
A20 A20 A21 -.. A21

A2 A3 ... A3 ... A2 ...
A2 A1 A1 A2 ... A1 Ao Ao ... A1

~ toggle ... STRBX~B3/AJ Ao Ao ...
CS CS

v~
1/0(7-0) 1/0(7-0)

... STRBx B1 (L;- ~~

STRBx BO

STRBXLogic 0(15-8)

0(7-0) ...

For example, reading or writing to memory locations 4000h to 4004h involves
the following:

External
STRBO_B3/ JL1 Active Strobe-Byte Enable

Accessed
Address Pins Data Pins

4000h 0 STRBO_BO and STRBO_B1 °15--{)

4000h STRBO_BO and STRBO_B1 °15--{)

4001h 0 STRBO_BO and STRBO_B1 °15--{)

4001h 1 STRBO_BO and STRBO_B1 °15--{)

4002h 0 STRBO BO and STRBO B1 °15--{) - -
4002h 1 STRBO_BO and STRBO_B1 °15--{)

4003h ° STRBO_BO and STRBO_B1 °15--{)

4003h STRBO_BO and STRBO_B1 °15--{)

4004h ° STRBO_BO and STRBO_B1 °15--{)

4004h STRBO BO and STRBO B1 01:>:--0

Enhanced External Memory Interface 7-21

Configuration

7.3.4 8-Bit Wide Memory Interface

'C32 memory interface to a-bit wide external memory utilizes STRBx_B3 and
STRBx B2 pins as an additional address pins, A...1 and A...2' respectively, while
using STRBx_BO as strobe-byte enable pin as shown in Figure 7-15. Note
that the external memory address pins are connected to the 'C32's address
pinsA21A20 ... A1AoA-1A-2.ln this manner, the 'C32 can read/write asingle 32-,
16-, or a-bit value from the external a-bit wide memory.

Figure 7-15. External Memory Interface for 8-Bit SRAMs

TMS320C32

A23
A22
A21 .. A23

A1 .. A3 ...
Ao .. A2 ...

STRBx B3/A-1 .. A1 ...
STRBx_B2/A-2 AO :.

R/W :: WE
... CS

STRBx B2 1/0(7-0)
STRBx B1
STRBx_BO

0(31-24)
0(23-16)
0(15-8)
0(7-0) ...

Case 7: 8-Blt Wide Memory With 8-Bit Data Type Size

7-22

Similarly to case 4, the 'C32 shifts the internal address two bits to the right be­
fore presenting it to the external address pins when the data type is a-bit. As
in case 4, the memory interface copies the value of the internal address A23 to
the external address pins A23, A22, and A21 . But in case 7, the memory interface
also copies the value of the internal address A1 to the external STRBx _B3/ A...1
pin and the value of Ao to the external STRBx _ B2/ A...2. Moreover, the memory
interface only actives the STRBx_BO pin during the external memory access.
Figure 7-16 depicts a functional diagram of the memory interface for a-bit
wide memory with a-bit data type size.

Configuration
,=="""""""""" "'"""'=-' _____ i:e:;j~M~~~~j.W~~~~_~ ___ ijj.~ jf~j ifflff·:;:;:;:;,'''::::;;;:'<;:::;''";~'':j~':':~:;':':Ni':':~':';':'*:::'',;0i~_i':':0>'.f.Mi':':_:I'h':':%,:,:~~

Figure 7-16. Functional Diagram for 8-Bit Data Type Size and 8-Bit External Memory
Width

Internal
Address Bus

A04000h

A04001h

A04002h

A04003h

A04004h

TMS320C32

Memory Interface

III
::l

A23 A23 co
!l! A22 A22
!!! A21 A21 A23 "0
"0 A20 A20 A22 <{

!!! A19 A21
8 A18 A20
_Ill
C\I
C')

A2 (.)
0
C\I A1 C')

Ao (/) Ao A2 ~
~ STRBx B3/A-1 A1

STRBx_B2/A-2 AO

STRBx
STRBx BO CS Logic

1/0(7-0)

0(7-0)

For example, reading or writing to memory locations A04000h to A04004h in­
volves the following:

External Active Strobe-Byte Accessed
Address Pins STRBO_B3/A-1 STRBO B3/A-2 Enable Data Pins

E81000h 0 0 STRB1 BO °7-0
E81000h 0 1 STRB1 BO °7-0
E81000h 0 STRB1 BO °7-0
E81000h 1 STRB1 BO °7-0
E81001h 0 0 STRB1 BO °7-0

Enhanced External Memory Interface 7-23

Configuration

Case 8: 8-Bit Wide Memory With 16-Bit Data Type Size

When the data type size is 16-bit, the 'C32 shifts the internal address one bit
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal address A23 to the external
address pins A23 and A22• Also, the memory interface copies the value of the
internal address ~ to the external STRBx_B3/A...1 pin. Furthermore, the
memory interface toggles STRBx_B2/ A...2 twice to perform two 8-bit memory
accesses. Moreover, the memory interface activates the STRBx_BO during
accesses. In summary, the memory interface adds one wait state to the 16-bit
data access. Figure 7-17 depicts a functional diagram of the memory inter­
face for 8-bit wide memory with 16-bit data type size.

Figure 7-17. Functional Diagram for 16-Bit Data Type Size and 8-Bit External Memory
Width

'C32

Memory Interface

A23 A23
UJ A22 A22 ~ A24 ::J en

A21 A21 ~ A23 UJ
UJ

A20 A20 ~ A22 ~
"0 A19 ~ A21 "0
c:(
Q) ...
0
()
_UJ A2
N
("I) A1 A1 ~ A3 P

Ao Ao ~ A2
STRBx_B3/A_1 -.- A1 to Ie
STRBx_B2/A_2 -.- Ao STRBX

Logic CS
STRBx BO I/O (7--O)

D{7--O)

7-24

Internal
Address Bus

A04000h

A04001h

A04002h

Configuration

For example, reading or writing to memory locations A04000h to A04002h in­
volves the following:

External Active Strobe-Byte Accessed
Address Pins

STRBO_B3/)L1 STRBO_B3/)L2
Enable Data Pins

D02000h 0 0 STRB1 BO 0 7-0

002000h 0 1 STRB1 BO 0 7-0

002001h 1 0 STRB1 BO 0 7-0

002001h 1 1 STRB1 BO 07-0
002002h 0 0 STRB1_BO 0 7-0

002002h 0 1 STRB1 BO 0 7-0

Case 9: 8-Bit Wide Memory With 32-Bit Data Type Size

When the data type size is 32-bit, the 'C32 does not shift the internal address
before presenting it to the external address pins. In this case, the memory in­
terface copies the value of the internal address bus to the respective external
address pins. The memory interface also toggles STRBx_B3/~1 and
STRBx_B2/~2 to perform four 8-bit memory accesses. In the consecutive
memory accesses, the memory interface activates STRBx_BO. In summary,
the memory interface adds three wait states to the 32-bit data access.
Figure 7-18 depicts a functional diagram of the memory interface for 8-bit
wide memory with 32-bit data type size.

Enhanced External Memory Interface 7 -25

Configuration
/#;*m'/~~»».W~~~.o»~.@.«}*»i0:,:~,~:,:::,>;:::::>:::<:,»;"""""~R;,'i~N;~$"',,,,,:>;:;::-»"»"":;", .. :'»»»»>~>hW~>::<»~ffi;''%> __ ~':::=~'''''''"'''''''''_~*"'i':':'''!1,:':';':-:,::::::»,,~::»>y~;,:=""";':':0~

Figure 7-18. Functional Diagram for 32-Bit Data Type Size and 8-Bit External Memory
Width

'C32

Memory Interface

Ul A23 A23 ~ A25
:::J

A22 A22 A24 CD ~ ~

Ul A21 A21 ... A23 Ul
~ A20 A20 A22 "0
"0 ex:
~
a
() A2 .. A1 At Ul

~

N A1 --" A1 _ ... A3 C')

SJ Ao ~ Ao ~ A2

toggle
STRBx_83/A.., £ A1

Ao
STRBX toggle

STRBx B2/A-2 T CS
Logic

STRBx_BO

1/0(7-0)

~

0(7-0)

For example, reading or writing to memory locations A04000h to A04001 h in-

volves the following:

Internal External Active Strobe-Byte Accessed
Address Bus Address Pins

STRBO_B3/A-1 STRBO_B3/ A-2
Enable Data Pins

A04000h A04000h 0 0 STRB1 BO °7-0
A04000h 0 1 STRB1 BO 0 7-0

A04000h 0 STRB1 BO 0 7-0

A04000h 1 1 STRB1 BO °7-0
A04001h A04001h 0 0 STRB1 BO °7-0

A04001h 0 1 STRB1 BO 0 7-0

A04001h 0 STRB1_BO °7-0

A04001h STRB1 BO °7-0

7-26

Configuration

7.3.5 External Ready Timing Improvement

The ROY timing should reference to the H1 low signal as shown in
Figure 7-19. This is equivalent to the 'C4x's ready timing, which increases the
time between valid address and the sampling of ROY. This facilitates the
memory hardware interface by increasing the address decode circuit re­
sponse time to generate a ready signal.

Figure 7-19. RDY Timing for Memory Read

H3 -----JI \ __ 1 \ __ 1 \
\\.-----JI \~----JI \\.-----JI

I
H1

\ : I
R/W \'-----

A __ ----Jx
o --------«

----+I
I

~ I

Enhanced External Memory Interface 7-27

Bus Timing ,

7.4 Bus Timing

This section discusses functional timing of operations on the external memory
bus. Detailed timing specifications are contained in the TMS320C32 Data
Sheet. The timing of STRBO and STRB1 bus cycles is identical and discussed
in subsection 7.4.1. The acronym SfRi3x is used in references that pertain
equally to STRBO and STRB1. The IOSTRB bus cycles are timed differently
and are discussed in subsection 7.4.2.

7.4.1 STRBO and STRB1 Bus Cycles

7-28

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is
defined from one falling edge of H 1 to the next falling edge of H 1 . For full speed
(zero wait-state) accesses on STRBO and STRB1, writes take two H1 cycles
and reads take one cycle. However, if the read immediately follows a write, the
read takes two cycles. Note that writes to internal memory take one cycle if no
other accesses to that interface are in progress. The following discussion per­
tains to zero wait-state accesses, unless otherwise specified.

The STRBx signal is low for the active portion of both reads and writes (one
H1 cycle). Additionally, before and after the active portions of writes only
(STRBx low), there is a transition of one H1 cycle. During this transition cycle
the following might occur:

o STRBx is high.

o If required, R/W changes state on the rising edge of H1.

o If required, address changes on the rising edge of H1 if the previous H1
cycle performed a write. If the previous H1 cycle performed a read, ad­
dress changes on the falling edge of H1.

Bus Timing
lm?'/#,MW/M¥..;w-¥//~~_~",;,"",~~",","",~~~~~,:-~n.:w.~$~~.«»'~~~..,;0~~~

Figure 7-22.

7-30

Figure 7-22 illustrates a one wait-state read sequence for STRBx active. On
the first H 1 cycle RDY is high therefore, the read sequence is extended for one
extra cycle. On the second H1 cycle RDY is low and the read sequence is ter­
minated.

One Wait-State Read Sequence for STRBx active

I I I ~

[{ ['---J H3

I I
\.

I I

I

'}'---
I

H1

I I I '\ I I I j I
I I I I I

I I : I l'
I I I I

Rm

I I
I I I I I

A

D
I I I, I

I I
I'\. I I

/ i' \. V
r- Extra Cycle --

Bus Timing
___ """"", __ ""","",;:;;::::::""l:i:·w,"""_:SX.,,,,,.~~ .. e,::::;:;';~::::::;::::-);'W':::::-~:;':::::::::::::-~:::>':::~:::::::::-'::::::::::,%:~:;::::::';;:';::::S:::::::::::::>.:,l:::=<~:::::::::':');:::;,:::-;,;:;x>.;:;:;-;:~>m:,'.,:,;,:""'::::«;;:~::;;:;:;;:::"';::::"'':::::::';';''::'':m-»;:;:<'''';:'':':'::;'::::<''::>'~::<::::''''':,:::xw;,;wm.::;;:>.::>r..m;:;x

Figure 7-23 illustrates a one wait-state write sequence for STRBx active. On
the first H 1 cycle RDY is high therefore, the write sequence is extended for one
extra cycle. On the second H1 cycle RDY is low and the write sequence is ter­
minated.

Figure 7-23. One Wait-State Write Sequence for STRBx Active

H'=1 H1 ~ ~ i'------J~ i"'"--}==
I I I I I
I I I I I

I I I
I I I I I " I l i 1 t j A!W
j I 1 I I

A

D
: : : : : .,
" I : I I I I I

V / \. \. r Extra Cycle --I

7.4.2 IOSTRB Bus Cycles

In contrast to STRBO and STRB1 bus cycles, IOSTRB full speed (zero wait­
state) reads and writes consume two H1 cycles. During these cycles, the
IOSTRB signal is low from the rising edge of the first H 1 cycle to the rising edge
of the second H1 cycle. Also, the address changes on the falling edge of the
first H1 cycle and R/W changes state on the falling edge of H1. This provides
a valid address to peripherals that may change their status bits when read or
written while IOSTRB is active. Moreover, the IOSTRB signal is high between
IOSTRB read and write cycles.

Enhanced External Memory Interface 7-31

Bus Timing
w..m-hW,.W-"«."/.IV//&U&,/H_.a.v~#/..-~_~#..w/."..w~MW#.@'..w-!:!W/'_~~//.@'~"':,;(,,~~~"'~~"'&W~Q.:Y.~.w'#!w.kw..w&::#'~~=m<e,=~w~:'-~~~"'.,;,'~~~

Figure 7-24 illustrates a zero wait-state read and write sequence for IOSTRB
active. During writes, the data is valid when IOSTRB changes.

Figure 7-24. Zero Wait-State Read and Write Sequence for IOSTRB Active

7-32

I I I I I

Figure 7-25 depicts a one wait-state read sequence for IOSTRB active.
Figure 7-26 shows a one wait-state write sequence for IOSTRB active. For
each wait-state added, IOSTRB, R/W, and A are extended for one extra clock
cycle. Writes hold the data on the bus for one extra clock cycle. RDY is
sampled on each extra cycle and the sequenced is terminated when RDY is
low.

Figure 7-25.

Figure 7-26.

Bus

One Wait-State Read Sequence for IOSTRB Active

H3
I I I I~.--.. }--[f [---f ---]

H1

I

I I

{ 1 I~ __ ~ __ ~ ____ ~ __ -JI

I
I

I
R/W I I I I I

I I I I I
I I I I I

A
I I I I I I I

o ~~--~~ __ ~ __ ~I --~I--~I---~~-
/ Iv : \ ~r---l---

------------~ i'---~.-~~+~--~--­
j4-- Extra 'Cycle :::j

One Wait-State Write Sequence for IOSTRB Active

{ I I I I

H3 t Jt Jt t
I I I I

H1

t { 1 IOSTRB
I

I I R':;1 I

: I I
~ I

D

~ I : : I
I V RDY / [\ \.

1.- Extra Cycle --J
Figure 7-27 and Figure 7-28 illustrate the transitions between STRBx reads
and IOSTRB writes and reads, respectively. In these transitions, the address
changes on the falling edge of the H1 cycle.

C:nhanced External Memory Interface 7 -33

Bus Timing
W'''''''/(<".(.0'//.~~Y.'')'';'»<:-::<<<~'''.l'm\'.H/~Q//.<'(U~<-»"(-''k»"''klV<<~XU<<@@'.(hW(_.&R»"/'''N,. ... <<0':(... um:-<..,<,(~<<»~.,w...;.,,.,.<<'_,;-m-~-.»>.:,»AA~~w...,;,»:V.&w..,w.,(<<'#.<<W~~u~~#.::::~(~..w.~$Q/.~~q.:(~

Figure 7-27. STRBx Read and IOSTRB Write

A
--~--~--~~~--~--~--~--~---'r~-

o -----___+_-<

ROY
--------~~~--------------~~~-----

Figure 7-28. STRBx Read and IOSTRB Read

1 { 1 1 1
i. i. l i.
1 1----.1 1 ,.--~

1 }~+~+ ~+ ---+--
I

H1~
STRBO'1~

1 I 1 1 1

I 1
I

1 1 1 1 I
I I I I
1 I 1 1 1

R/IN

I 1 1 I
A j

: I I :
I

1/ Read '
I I, A
I 1,1/0 Read, I' , o

I I I I

\. / \. V

7-34

Bus Timing

Figure 7-29 and Figure 7-30 illustrate the transitions between STRBx writes
and IOSTRB writes and reads, respectively. In these transitions, the address
changes on the falling edge of the H3 cycle.

Enhanced External Memory Interface 7-35

Bus Timing

Figure 7-31 through Figure 7-34 show the transitions between IOSTRB
writes/reads and STRBx writes/reads. In these transitions, the address
changes on the rising edge of the H3 cycle.

Figure 7-31. IOSTRB Write and STRBx Write

7-36

Bus Timing

Figure 7-32. IOSTRB Write and STRBx Read

H3

H1
I I I
I I

I
I

STRBx
I I ~ I I

I I I I I

IOSTAB I ~ ~ 1 i ! 1 RNI~
I

I I I I I I I
I I I I I I -A -

D

I : : I I I I I
I I I I

I/O Write

: : :
Read

i i i
I I

V-
I I I

V-\. \.

Figure 7-33. IOSTRB Read and STRBx Write

Enhanced External Memory Interface 7-37

Bus Timing

Figure 7-34.

I I I I I
I ,

I I I
I I I I I I

{ !).- I

I
I I 'i I I

I I I I
A I I I I I

I I I I
I I L I I

A

I i i i I i -D 1/0 Rea Read

I I : I
I I I

V--"- 1/ "-

7-38

Bus Timing

Figure 7-35 through Figure 7-37 illustrate the transitions between reads and
writes.

Figure 7-35. IOSTRB Write and Read

H3
I I I I

I I I I I I
H1

I I I I I I
I I I I I I

10STRB ---+--..., ~ ~ ~--+---

-11 iii ~I iii L'
R/W I I I t I I

. I I I . I I I
1 I I I 1 I I I 1

A=f : ; ; f ; ; ; F
1 ill 1 1

o --~-~:::jI/~0~w~ri~te~::~-11 __ ~I']I/£oBR~ea~~~~---
I I I

Ii: I I I
ROY ----'--....... -~\ It \ It---'---

Figure 7-36. IOSTRB Write and Write

I. 1 1 1 1 1

o I/O Write I/O Write
I : : : : 1

I
1 1 V .I I V \. \.

Enhanced External Memory Interface 7-39

Bus Timing

Figure 7-37. IOSTRB Read and Read

H3

H1
I I I I I I I

I

I I

I

I I

I
IOSTRB ~ ~ ~ ~

I I I I

R/W ;1
! ! r ! !

l;
A

0

ROY

7.4.3 Inactive Bus States

Figure 7-38 and Figure 7-39 show the signal states when a bus becomes in­
active after an IOSTRB or STRBx, respectively. The strobes (STRBO, STRB1,
IOSTRB, and R/W) are deasserted going to a high level. The address bus pre­
serves the last value and the ready signal (RDY) is ignored.

Figure 7-38. Inactive Bus States Following IOSTRB Bus Cycle

I I I I
H3

H1

I I
~~~{~~-+-+-+-+-+-

I I 
---,\1 I I I i i i i i i : : : I I I I I I 

R/W 

A 
I I l l I I I I I I 

o I/O Write 

i : i i i i i i i 
, 1/ 

I Bus Inactive ROY Ignored -I 

7-40 



Figure 7-39. Inactive Bus States Following STRBx Bus Cycle 

H3 

H1 

STRBx 

A 

o 

~ 

I 

I I 

~ .( -I I 
I I I I 
I I I I 

: : : i 
i : : i 

I/OWnte 

i : i i 
" V 

I 

Bus Timing 

I I I I I 
I I I I I 

i i 
I I I 
I i i I 

i i i i i 
i l l l l 

Bus Inactive ROY Ignored --01 

Enhanced External Memory Interface 7-41 



7·42 



mi11 

Chapter 8 

Peripherals 
!11m !II!IIliiilii II iii i1 I I r::wml vunt. 1 1ft 1 

The 'C32 has an improved DMA that supports two channels and configurable 
priorities. The next sections discuss the new features. 

8-1 



Two-Channel DMA Features 

8.1 Two-Channel DMA Features 

'C32 has a two-channel (channel 0 and channel 1 ) DMA instead of a one-chan­
nel DMA as in the 'C30/'C31 device. The 'C32's DMA functions similarly to that 
of the 'C30/'C31 DMA but with the addition of DMNCPU priority scheme and 
inter-DMA priority mode. Although the 'C32 CPU supports both floating point 
and integer data access with different data size from the external memory, the 
'C32's DMA transfer is strictly an integer data transfer. The integer data access 
of the 'C32 DMA is the same as the CPU integer data access - 32-bit internal 
and data size conversion at the external memory interface port. 

8.1.1 DMA Global Control Registers 

Each of the two channels has its own control, source and destination address, 
and transfer counter registers (Figure 8-1). 

Figure 8-1. Memory-Mapped Locations for a DMA Channels 

Address 

808000h 

808001h 

808002h 

808003h 

808004h 

808005h 

808006h 

808007h 

808008h 

808009h 

80800Fh 

Register 

DMAO Global Control 

Reserved 

Reserved 

Reserved 

DMAO Source Address 

Reserved 

DMAO Destination Address 

Reserved 

DMAO Transfer Counter 

Reserved 

Reserved 

Address 

808010h 

808011h 

808012h 

808013h 

808014h 

808015h 

808016h 

808017h 

808018h 

808019h 

80801Fh 

Register 

DMA1 Global Control 

Reserved 

Reserved 

Reserved 

DMA 1 Source Address 

Reserved 

DMA 1 Destination Address 

Reserved 

DMA1 Transfer Counter 

Reserved 

Reserved 

8.1.4 CPU/DMA Interrupts 

8-2 

Channel o transfers can be synchronized through the use of INTO, INT1, INT2, 
INT3, XINTO, TINTO, TINT1, and DINT1. Channel 1 transfers can be synchro­
nized through the use of INTO, INT1, INT2, INT3, RINTO, TINTO, TINT1, and 
DINTO. The Interrupt Enable Register is shown in Figure 8-2. 



Two-Channel DMA Features 

Figure B-2. CPU/DMA Interrupt Enable Register 

27 26 

R/W 

31 30 29 28 

R/W R/W R/W R/W 

25 24 23 22 21 19 18 17 16 

R/W R/W R/W R/W 

Figure 8-3 depicts the Interrupt Flag Register. In this figure, the DINTO bit re­
fers to DMA channel 0 interrupt flag while DI NT1 bit refers to the DMA channel 
1 interrupt flag. 

Figure 8-3. CPU Interrupt Flag Register 

31 12 11 10 9 8 7 6 5 4 3 2 o 
xx I;jlipillliin DINTO I TINT1 I TINTO xx xx RINTO I XINTO IINT3 I INT2 INT1 INTO 

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 

8.3.5 DMA Channel Arbitration 

'C32's DMA controller priority is configurable through the DMA PRI and 
PRIORITY MODE bits of the DMA global control register as shown in 
Figure 8-4, Table 8-2, and Table 8-3. The PRIORITY MODE bit is only avail­
able on DMAO control register. The shaded entries in Table 8-2, and Table 8-3 
indicate reset values. 

Figure 8-4. DMAO Global Control Register 

31 15 14 9 8 7 3 2 1 o 

Peripherals 8-3 



Two-Channel DMA Features 

Table B-2. CPU/DMA Priority 

o 1 Rotating arbitration, which sets priorities between the CPU and DMA channel by alternating 
their accesses, but not exactly equally. PrioritY rotates between the CPU and DMA accesses 
when they conflict during consecutive instruction cycles. 

acc:essles.lf the DMA channel and the CPU are 

Table 8-3. DMA Priority Mode of DMAO Control Register 

For fixed DMA priority mode, DMA channel 0 always has priority over DMA 
channel 1. If both DMA channels requestthe service, DMA channel 0 will trans­
fer first. For rotating DMA priority mode, DMA channel 0 has priority after the 
device is reset. After reset, the last channel serviced has the lowest priority. 
The arbitration is performed at DMA service boundaries, that is, after either a 
DMA read or a DMA write. 

8.1.6 CPU Changes To Support DMA 

CPU conflicts do not prevent both DMA channels from servicing interrupts. 

8-4 



Chapter 9 

Pipeline Operation 
n rm It!1Bll11!imm mIMI! !!l~\m;~lM_lillilmti1mUmlm_m!il ffilmnmt§mlli&l11U1Uliiil! r m ~ml:t~~J: :.? f ? f 

m!!!:!l!!! 

The pipeline operation in the 'C32 is identical to that in the 'C30 and 'C31 and 
is discussed in the TMS320C3x User's Guide (literature number SPRU031). 

9-1 



9-2 





10-2 



Il!IiI:I!II1I1iI 

Chapter 11 

Software Applications 
I!11!1II1iI!i II iF U 1II!111111!!11 IUilUI::1 .TII UU_lISU __ :lIW%llIllWllHI1W_mi$ffilllSm: TII.TII! III 

The software applications for the 'C32 are the same as those for the 'C30 and 
'C31 and are discussed in the TMS320C3x User's Guide (literature number 
SPRU031). 

11-1 



11-2 



Chapter 12 

Hardware Applications 
1111111111UllillilJI111liifill filii Ii iii i Ui iii iii iii IT fillllll miii iii_iii m i 1m fi II ill X WWllliil m II IT TI TI iii i IT IT rr mIT 11 (II __ mmmm _ i;rr I ~ n· ITII 

E!!i W!!!ii!: il!i!!i!: :::m Hi!!:!!!:::::: : ::: : ::: t;::::t! !: : 

The 'C32 enhanced memory interface design can be used to implement a wide 
variety of system configurations without additional logic. Its external bus pro­
vides a parallel 8-, 16- or 32-bit interface to external memories and peripher­
als. By grouping data type sizes of equal length into a particular memory strobe 
section, the 'C32 can mix two data type sizes with zero wait-state accesses. 
This chapter describes examples that exploit these techniques to achieve 
maximum performance and to minimize memory storage. Refer to the Inter­
facing Memory to the TMS320C32 DSP Application Report (literature number 
SPRA040) for more information. 

12-1 



Maximum Performance 

12.1 Maximum Performance 

12-2 

The 'C32 operates at its maximum performance when executing code from 
32-bit wide memory. The rest of the memory can be used to store two different 
data type sizes. 

For example, a typical audio compression application written in C language 
requires 32-bit data for system stack and 16-bit data for the audio buffers. In 
this case, you must interface the 'C32 as shown in Figure 12-1. This example 
assumes an external memory of 32K of 32-bit words with 8K of 32-bit words 
of stack, 8K of 32-bit words of program, and 32K of 16-bit words data buffers. 

This interface requires you to set the STRBO control register Physical Memory 
Width to 32 bits, Data Type Size to 32 bits, and set the STRB Config bit field 
to 1 (STBRO Control Register = 002FOOOOh). It also requires you to set the 
STRB 1 control register Physical Memory Width to 32 bits and the Data Type 
Size to 16 bits (STBR1 control register = OOODOOOOh). Moreover, the PRGW 
pin must be pulled low to indicate 32-bit program memory width. 

In essence, this example combines Case 3: 32-bit Wide Memory With 32-8it 
Data Type Size and Case 2: 32-8it Wide Memory with 16-8it Data Type Size 
discussed in subsection 7.3.2. 



Maximum Performance 

Figure 12-1. Zero Wait-State Interface for 32-Bit SRAMs With 16- and 32-Bit Data Accesses 

A22 
A13 
A12 
A11 

TMS320e32 

A1 
Ao 

R/W 

STRBO_B3 

STRBO_B2 

STRBO_B1 

STRBO_BO 

0(31-24) 
0(23-16) 
0(15-8) 
0(7-0) 

.. 
A14 

.. 
A14 

.. 
A14 

.. 
A14 ~ .. 

A13 
... 

A13 A13 A13 .. .. .. .. 
A12 

.. 
A12 

.. 
A12 

.. 
A12 ~ ~ .. .. .. A11 --"- A11 A11 An .. .. 

.. 
A1 

.. 
A1 

.. 
A1 

.. 
A1 ... ... ... .. .. .. .. .. Ao .. Ao Ao Ao 

... WE ... WE ... WE ... -

r -+- r+ .. WE 
es es es r+- es 

1/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7-0) 

.. ~ 

... 

... ..... ... 
... .... 

Note that the external memory address pins, A1~13 ... A1Ao, are mapped to the 
'C32's A22A13A12 ... A1Ao. This mapping was chosen to place the system stack 
following the 'C32 internal RAM, thus improving performance by placing the 
top of the stack in internal RAM and allowing itto grow into external RAM. With 
this mapping, external memory accesses in the range 4000h through 7FFFh 
read or write 16-bit data while memory accesses in the range Oh through 
3FFFh read or write 32-bit data. The PRGW pin controls the program fetches. 

Figure 12-2 shows the contents of the external memory. Due to the address 
shift of the 'C32 external memory interface, the mE~mory map seen by the 'C32 
CPU is slightly different. Figure 12-3 shows this memory map. Note that since 
the STRB 1 is configured for 16-bit data type size, the external address pres­
ented on 'C32' s pins is shifted right by one bit. 

Hardware Applications 12-3 



Maximum Performance 

Figure 12-2. External Memory Map 

Oh 

1FFFh 
2000h 

3FFFh 

4000h 

4001h 

7FFFh 

Figure 12-3. 'C32 Memory Map 

12-4 

Oh 

2000h 

3FFFh 

87FEOOh 

87FFFFh 
880000h 

881FFFh 

900000h 

907FFFh 

FFFFFFh 

System Stack Area 
(8K x 32-bit) 

Program Word 0 

Program Word 1 

Program Word 8191 

Data1 DataO 

Data3 Data2 

Data32767 Data32766 

Program 
(8K x 32-bit) 

Internal RAM 
(512 x 32-bit) 

System Stack 
(8K x 32-bit) 

Data Buffers 
(32 x 16-bit) 



12.2 Minimum Memory 

To minimize system cost, the 'C32 can trade the number of external memory 
chips with lower performance by utilizing a zero wait-state 16-bit wide external 
memory. In this configuration, external program accesses and 32-bit data type 
accesses have an additional wait-state, while memory chip count is halved. 
Figure 12-4 shows this configuration. 

Figure 12-4. Zero Wait-State Interface for 16-Bit SRAMs With 16- and 32-Bit Data Accesses 

.. 
A22 ,... A14 ,... A14 
A12 A13 

.. 
A13 

A11 
.. 

A12 
.. 

A12 

TMS320C32 

A1 
.. 

A2 
... 

A2 ,... :: 
Ao ,... A1 ,... A1 

STRBO_B3/A-1 
.. 

Ao 
... 

Ao ,... ,... 

R/W WE 
.. -,... WE 

r CS r+- CS 

STRBO_B1 I/O{7-0) I/O{7-0) 

STRBO_BO 
~ A~ 

0{31-24) 
0{23-16) 
0{15-8) .... 

.: 0{7-0) ..... 

Figure 12-4 shows a 32K of 16-bit words external memory that contains 4.5K 
of 32-bit words of stack, 4K of 32-bit words of program, and 16K of 16-bit words 
data buffers and tables. 

For this example, you must set the STRBO control register Physical Memory 
Width to 16 bits, Data Type Size to 32 bits, and set the STRB Config bit field 
to 1 (STBRO control register = 00270000h). It also requires you to set the 
STRB1 control register Physical Memory Width to 16 bits and the Data Type 
Size to 16 bits (STBR1 Control Register = 00050000h). Furthermore, the 
PRGW pin must be pulled high to indicate 16-bit program memory width. 

In essence, this example combines Case 5: 16-bit Wide Memory with 16-bit 
Data Type Size and Case 6: 16-bit Wide Memory with 32-bit Data Type Size 
discussed in subsection 7.3.3. 

Hardware Applications 12-5 



Minimum Memory 
M> 

As described in Section 12.1, this example maps the system stack contiguous 
with the 'C32 internal RAM. To achieve this, the external memory address pins, 
A14A13".A1Ao, are mappedtothe 'C32'sA22A12".A1AoA-1' Figure 12-5 shows 
the contents of the external memory. Due to the address shift of the 'C32 exter­
nal memory interface, the memory map seen by the 'C32 CPU is shown in 
Figure 12-6. 

Note that since STRB 1 is configured for 16-bit data, the external address pres­
ented on the 'C32' s pins is shifted right by one bit. Since STRBO is configured 
for 32-bit data size, the STRBO_B3/A....1 pin is used to decode the low and high 
bytes of the word. With this mapping, external memory accesses in the range 
4000h through 7FFFh read or write 16-bit data, while memory accesses in the 
range Oh through 3FFFh perform two consecutive reads or writes to retrieve 
or store 32-bit data. The PRGW pin controls the program fetches. 

Figure 12-5. External Memory Map 

12-6 

Oh 

1FFFh 

2000h 

3FFFh 

4000h 

4001h 

7FFFh 

System Stack Area 
(8K x 16-bit) 

Program Low Half-Word 0 

Program High Half-Word 0 

Program Low Half-Word 1 

Program High Half-Word 1 

Program High Half-Word 4095 

DataO 

Data1 

Data16383 



Figure 12-6. 'C32 Memory Map 

Oh 

2000h 

2FFFh 

87FEOOh 

87FFFFh 

880000h 

aaOFFFh 

900000h 

903FFFh 

FFFFFFh 

Minimum Memory 

Program 
(4K x 32-bit) 

Internal RAM 
(512 x 32-bit) 

System Stack 
(4K x 32-bit) 

Data Buffers 
(16K x 16-bit) 

Hardware AppHcations 12-7 



Two External Memory Banks 

12.3 Two External Memory Banks 

'C32 external memory interface allows the use of two zero wait-state external 
memory banks with different widths without incurring in any access penalty 
and additional logic. This gives you the flexibility to trade off performance for 
system cost (fewer memory chips). For instance, you could execute code from 
32-bit wide memory while storing data in a-bit memory, as shown in 
Figure 12-7. This would be advantageous to applications with large amounts 
of a-bit data that require execution at the fastest speed of the device. 

Figure 12-7. Zero Wait-State Interface for 32-Bit and 8-Bit SRAM Banks 

TMS320C32 

A21 

A14 
A13 
A12 
A11 

A1 
Ao 

R!W 

STRB1 B3 

STRBO_B2 

STRBO B1 

STRBO_BO 

0(31-24) 
0(23-16) 
0(15-8) 
0(7-0) 

STRB1_B3/ A.. 1 
STRB1 B2/A..2 

STRB1_BO 

12-8 

A14 A14 A14 
.. 

A14 .. .. .. A13 : A13 .. A13 
_ . A13 -.-A12 .. A12 A12 .. A12 A14 .. A11 A11 A11 A11 A13 

.. 
A1 

.. 
A1 A1 

.. 
A1 

.. 
A3 .. .. .. .. .. .. 

Ao Ao 
.. 

Ao .. 
Ao 

.. 
A2 ... ... 
A1 .. .. .. .. WE WE WE WE ,r--+"- Ao 

J CS r+ CS + CS r+ CS ~ WE 
1/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7-0) -.- CS 

.... 

: 
~ 

.... .... 

~ 

.... 
~ 

.... 
~ 

~ .. 1/0(7-0) .. 

In Figure 12-7, a bank of 32K x 32-bit words is mapped to STRBO while a bank 
of 32K x a-bit words is mapped to STRB 1. 

For this configuration, you must set the STRBO control register Physical 
Memory Width to 32 bits, Data Type Size to 32 bits, and the STRB Config bit 



Two External Memory Banks _______ . ~_~~_'AA __ ~~""";,;;~;:::_h!<M._._.<:l:o;(.x,~~~~~"'»""'::::=:::_""::<'h.~<::::"".«.,..,::"''''"<;:&.",m:<"",:":,;",,f.:::;;.'~ 

field to 0 since the banks are separate memories (STBRO control register = 
OOOFOOOOh). Also, you must set the STRB1 control register Physical Memory 
Width to 8 bits and the Data Type Size to 8 bits (STBR1 control register = 
OOOOOOOOh). 

This example maps the external memory address pins of the 32-bit wide bank, 
A14A13 ... A1Ao, tothe 'C32'sA14A13A12 ... A1Ao. Ontheotherhand, the 8-bitwide 
bank memory address pins, A14A13 ... A1Ao, are mapped to the 'C32's 
A21A13A12 ... A1AoA-1. Note that since STRB1 is configured for 8-bit memory 
width, the external address presented on 'C32s pins is shifted right by two bits. 
With this mapping, external memory accesses in the range Oh through 7FFFh 
read/write 32-bit data to the 32-bit wide bank (STRBO) while memory accesses 
in the range 900000h through 907FFFh read/write 8-bit data to the 8-bit wide 
bank (STRB1). 

Note that two banks of different memory widths should not be connected to the 
same STRB without external decode logic. Different memory widths require 
STRBX_Bx signals to be configured as address pins. These address pins are 
active for any external memory access (STRBO, STRB1, IOSTRB, and pro­
gram fetches). 

Hardware Applications 12-9 



12-10 



Chapter 13 

TMS320C32 Signal Descriptions 
wr.f.;:r.-$.:t'~~~t1X:W'"~m!~::w.;*~W.::t.1&.::::t~::m£t.M~t~W~~~~~~®:rj;~(.~%~%§%:::f.:::;~::::%~~NM~:%::::m:=?;'f.~%H::W#~fi%;:U~~~mw.t.:WA@mmf: 

This chapter contains descriptions of the signals that are specific to the 'C32. 
Table 13-7 describes the signals that the 'C32 uses in the microprocessor 
mode. It lists the signal (or bit) name, the number of pins allocated; the input 
(I), output (0), or high-impedance (Z) operating modes; a brief description of 
the signal's function; and the condition that places an output pin in high imped­
ance. The shading indicates new external signals. 

13-1 



Signal Descriptions . 
13.2 Signal Descriptions 

Table 13-7. TMS320C32 Signal Descriptions 

No. of· 
Signal Plnst I/O/Zt Description 

External Bus Interface (70 pins) 

031-0 32 I/O/Z 32-bit data port of the external bus interface 

A23-0 24 O/Z 24-bit address port of the external bus interface 

R/W 1 O/Z Read/write signal for the external bus interface. The pin is 
high when a read is performed and low when a write is 
performed over the parallel interface. 

ROY Ready signal. This pin indicates that an external device is 
prepared for a external bus interface transaction to complete 

HOLO Hold signal. When is a logic low, any ongoing transaction is 
completed. The A23-0, 031-00, 10STRB, STRBO Bx, 
STRB 1_ Bx, and R/W are placed in the high impedance state, 
and all transactions over the external bus interface are held 
until becomes a logic high, or the NOHOLO bit of the STRBO 
bus control register is set. 

t Input (I), Output (0), High impedance state (Z) 
:I: SHZ active (S), Hold active (H), Reset active (R) 
Note: Shaded entries indicate new 'C32 external signals 

13-2 

Condition 
In High Z:l: 

S H R 

S H R 

S H R 



Signal Descriptions 

Table 13-7. TMS320C32 Signal Descriptions (Continued) 

Signal 

HOLDA 

PRGW 

RESET 

INT3'-INTO 

lACK 

MCBL/MP 

XF1-XFO 

CLKXO 

DXO 

FSXO 

CLKRO 

ORO 

FSRO 

No. of-
Pinst 1/0lZt Description 

Condition 
In High Z* 

4 

1 

2 

External Bus Interface (Continued) (70 pins) 

O/l Hold acknowledge signal. This signal is generated in response S 
to a logic low on HOLD. It signals that A23-0, 
D31-o,IOSTRB, STRBO_Bx, STRB1_Bx, and RfW are placed 
in the high-impedance state and that all transactions over the 
bus are held. HOLDA is high in response to a logic high of 
HOLD, or the NOHOLD bit of the bus control register is set. 

Program memory width select. When this pin is logic low, 
program is fetched as asingle 32-bitword. When it is logic high, 
two 16-bit program fetches are performed for a Single 32-bit 
instruction word. The status of this pin at reset affects the reset 
value of the STRBO and STRB1 bus control register (See 
Section 7.3) 

Control Signals (9 Pins) 

Reset. When this pin is a logic low, the device is placed in the 
reset condition. When reset becomes a logic 1, execution 
begins from the location specified by the reset vector. 

External interrupts. 

O/Z Interrupt acknowledge signal. lACK is set to 1 by the lACK S 
instruction. This signal can be used to indicate the beginning 
or end of an interrupt service routine. 

Microcomputer boot loader/microprocessor mode pin. 

I/O/Z External flag pins. They are used as general purpose I/O pins S 
or to support interlocked processor instructions. 

Serial Port Signals (6 Pins) 

I/O/l Serial port 0 transmit clock. This pin serves as the serial shift S 
clock for the serial port 0 

I/O/l Data transmit output. Serial port 0 transmits serial data on this S 
pin. 

I/O/l Frame synchronization pulse for transmit. The FSXO pulse ini- S 
tiates the transmit data processor over DXO. 

I/O/l Serial port 0 receive clock. This pin serves as the serial shift S 
clock for the serial port 0 

I/O/l Data receive. Serial port 0 receives serial data via the ORO pin. S 

I/O/l Frame synchronization pulse for receive. The FSRO pulse S 
initiates the receive data processor over ORO. 

R 

R 

R 

R 

R 

R 

R 

TMS320C32 Signal Descriptions 13-3 



Signal Descriptions 
~;;u ~;m;;k~:# ~~~_; ___ """ ___ ,= . . ,~~~$/.'WA'..:v4'/..x'l"n;~o;,''''0::;::,:.;;·:-:-w,m;,:,:.;~w.::·:::w.,;w,....,:»yn;:,:= 

Table 13-7. TMS320C32 Signal Descriptions (Concluded) 

Signal 
No. of­
Pinst IIO/Z t Description 

Condition 
In High Z* 

TClKO 

TClK1 

H1 

H3 

ClKIN 

EMU3 

EMU2-EMUO 

SHZ 

CVSS 

DVoo 

DVSS 

IVSS 

VOOL 

VSSL 

VSUBS 

3 

7 

12 

7 

4 

8 

6 

Timer Signals (2 Pin) 

I/O/Z limer clock O. As an input, TlCKO is used by timer 0 to count S 
external pulses. As an output pin, TClKO outputs pulses 
generated by timer O. 

I/O/Z limer clock 1. As an input, TlCK1 is used by timer 1 to count S 
external pulses. As an output pin, TClK1 outputs pulses 
generated by timer 1. 

Clock Signals (3 Pins) 

O/Z External H1 clock. This clock has a period equal to twice S 
ClKIN. 

O/Z External H3 clock. This clock has a period equal to twice ClKI N S 

The input clock pin from an external clock source. 

Emulation and Test Signals (5 Pins) 

O/Z Reserved for emulation. 

Reserved for emulation. lie to +5-V with 20-kQ pull-up resistors. 

Shut down high Z. A low logic level shuts down the 'C32 and 
places all pins in the high-impedance state. This signal is used 
for board-level testing to ensure that no dual-drive conditions 
occur. Caution: A low logic level on the SHZ pin corrupts 'C32 
memory and register contents. Reset the device with an 
SHZ=1 to restore it to a known operation condition. 

Supply Signals (45 Pins) 

Ground 

+5-Vdc supply 

Ground 

Ground 

+5-Vdc supply 

Ground 

Substrate. lie to ground 

t Input (I), Output (0), High-impedance state (Z) * SHZ active (S), Hold active (H), Reset active (R) 
Note: Shaded entries indicate new 'C32 external signals 

13-4 

R 

R 



Appendix A 

Boot Loader Source Code 

This appendix includes a description of the boot loader sequence of events 
and a listing of its source code. 

A-1 



Boot Loader Source Code Description 
~~~~~~~~~oX'~..x:wA!}~>.l:!*:Y-$~..:o\'~~~~::::W":::V~~%W-*!,;-'~;~w..". .... '0~!'.«:~':':"');::W//..1"'<:':':~:~;::::;':YM~""W''''::::::::::::;''::::::~~ 

A.1 Boot Loader Source Code Description

A-2

Figure A-1 shows the boot loader program flow chart. The boot loader pro­
gram starts by initializing three registers: AR7, SP, and /R~. These register
hold the Peripheral Bus memory map register base address, the Timer
Counter register (used as a stack), and a flag that indicates the first block,
respectively. Then, the program checks for serial port boot load or memory
boot load mode by processing the bit fields set in the Interrupt Flag Register
(IF). For a serial port boot load, the program initializes the serial port for 32 bit
fixed burst mode reads with an externally generated serial port clock and FSR.

For a memory boot load, AR3 is set to the boot source address, AR2 points
to the boot source Strobe Control register, and R2 contains the value that will
be stored in this Strobe Control register. The boot loader also sets the bit field
i/OXFO of the I/O Flag Register (IOF) if the handshake mode was selected.
Then the boot loader reads the first word of the boot source program. This 32
bit word indicates the boot memory width and the boot load program stores this
value in R5. ARO points to the read_me routine that performs this read.

After reading the memory width word, the boot loader reads 10STRB, STRBO,
and STRB1 control register values of the source program. These values are
temporarily saved in the DMA Source Address register, DMA Destination
Address register, and DMA Transfer Counter register, respectively. Then, the
program reads the block size with the read_ me routine. If the block size is zero,
the boot loader restores the values of 10STRB, STRBO, and STRB 1 previously
saved and branches to the destination address of the first block loaded and
begins program execution. If the block size is not zero, the boot loader stores
the block size in the BK register. This is used as counter in a repeat block
(RPTB) to transfer all the data or program in that block.

For each block, the boot loader reads the destination address and the destina­
tion strobe control word. The program stores the destination address in the
AR5 register. The destination strobe control word includes the destination
strobe identification, the contents of the destination strobe control register
(includes memory width and data size). The boot loader extracts this informa­
tion from the destination control word and stores the destination strobe control
register memory mapped address in the AR4 register, the contents of the des­
tination strobe control register in the R4 register, and the source data size in
the R3 register. The boot loader sets the ARt register to the appropriate read
routine read_sO for serial port boot load and read_mbfor memory boot load.
The read routine utilizes these registers to control the transfer of a block of data
or program.

Figure A-t. Boot Loader Flow Chart

Serial Initialize
Serial Global

Control Register

Restore Strobe
Values Previously

Saved

Interrupt Flag IF

Memory Width: RS

Memory Control Word
Read Routine: ARO

Boot Loader Source Code Description

Boot Source
Address: AR3

Boot Strobe
Pointer: AR2

Boot Strobe Value:
R2

Handshake Mode:
IOF

Block Size RC

Destination
Address: AR3

Destination Strobe
Pointer: AR4

Destination Strobe
Value: R4 1----1~

Dest. Data Size:
R3

Memory Block Rea
Routine: AR1

Boot Loader Source Code A-3

Boot Loader Source Code Listing

A.2 Boot Loader Source Code Listing

**

* C32BOOT - TMS320C32 BOOT LOADER PROGRAM (142 words) 7-7-94

* (C) COPYRIGHT TEXAS INSTRUMENTS INC., 1994 v.26

-==============-==

*
* NOTE:

*
* 1. Following device reset, the program waits for an external interrupt.

* The interrupt type determines the initial address from which the boot

* loader will start loading the boot table to the destination memory:

* INTERRUPT PIN BOOT TABLE START ADDRESS BOOT SOURCE

* INTO 1000h (STRBO) EPROM

* INTI 810000h (IOSTRB) EPROM

* INT2 900000h (STRBl) EPROM

* INT3 80804Ch (sportO Rx) SERIAL

* INTO and INT3 1000h (STRBO) ASYNC EPROM, XFO/XFl

* INTI and INT3 810000h (IOSTRB) ASYNC EPROM, XFO/XFl

* INT2 and INT3 900000h (STRBl) ASYNC EPROM, XFO/XFl

* If INT3 is asserted together with (INT2 or INTI or INTO) following reset,

* that indicates that the boot table is to be read synchronously from EPROM

* using pins XFO and XFl for handshaking. The handshaking protocol assumes

* that the data ready signal generated by the host arrives through pin XFl.

* The data acknowledge signal is output from the C32 on pin XFO. Both signals

* are active low. The C32 will continuously toggle the lACK signal while

* waiting for the host to assert data ready signal (pin XFl).

*
* 2. The boot operation involves transfer of one or more source blocks from the

* boot media to the destination memory. The block structure of the boot table

* serves the purpose of distributing the source data/program among different

* memory spaces. Each block is preceded by several 32 bit control words

* describing the block contents to the boo.t loader program.

*
* 3. When loading from serial port the boot loader reads the source data/program

A-4

Boot Loader Source Code Listing

* and writes it to the destination memory. There is only one way to read the

* serial port. When loading from EPROM, however, there are 4 different ways

* to read and assemble the source contents, depending on the width of boot

* memory and the size of the program/data being transferred. Because there is

* a possibility that reads and writes can span the same STRB space, the boot

* loader loads the appropriate STRB control registers before each read and

* write.

*
* 4. If the boot source is EPROM whose physical width is less then 32 bits, the

* physical interface of the EPROM device(s) to the processor should be the

* same as that of the 32 bit interface. (This involves a specific connection

* to C32's strobe and address signals). The reason for such arrangement is

* that in order to function properly the boot loader program always expects

* 32 bit data from 32 bit wide memory during the boot load operation. Valid

* boot EPROM widths are : 8, 16, and 32 bits.

*
* 5. A single source block cannot cross STRB boundaries. For example, it's

* destination cannot overlap STRBO space and IOSTRB space. Additionally, all

* of the destination addresses of a single source block should reside in

* physical memory of the same width. It is also not permitted to mix prg and

* data in the same source block.

*
* 6. The boot loader stops boot operation when it finds 0 in the block size

* control word. Therefore each boot table should always end with a 0

* prompting the boot loader to branch to the first address of the first block

* and start program execution from that location.

*
==

* C32 boot loader program register assignments, and altered mem locations

==

* AR7

* ARO

* AR1

*

peripheral memory map

read cntrl data subr pointer

read block data/prg subr pointer

IOF

IOF

XFO (handshake 0)

XF1 (handshake I)

Boot Loader Source Code A·5

Boot Loader Source Code Usting

* R2 - read STRB value R4 - write STRB value

* AR2 read STRB pointer AR4 - write STRB pointer

* AR3 read data/prg pointer AR5 - write data/prg pointer

*
* read --> Rl --> write

*
* IRO EXEC start flag stack - 808024h TIMO cnt reg

* IRI EXEC start address 808028h TIMO per reg

* IOSTRB- 808004h OMAO dst reg

* R3 data SIZE STRBO 808006h OMAO dst reg

* R5 mem WIDTH STRBI 808008h OMAO cnt reg

*
* R6 - memory read value AR6,R7,RO,BK - scratch registers

===~====================

reset .word start reset vector

.space 44h program starts @45h

==

* Init registers: 808000h --> AR7, 808023h --> SP, -1 --> IRO

==

start LOI 4040h,AR7 load peripheral memory map

LSH 9,AR7 base address = 808000h

LOI 23h,SP initialize stack pointer to

OR AR7,SP 808023h (timer counter - 1)

LOI -l,IRO reset exec start addr flag

==

* Test for INT3 and, if set exclusively, proceed with serial boot load. Else,

* load AR3 with lOOOh if INTO, 8l0000h if INTI, 900000h if INT2. Also load

* appropriate boot strobe pointer --> AR2 and force the boot strobe value to

* reflect 32bit memory width. If (INTO or INTI or INT2) and INT3 then turn on

* the handshake mode.

==

waitl LOI IF,RO

ANO OFh,RO clean

CMPI 8,RO test for INT3

BEQ serial ;***** serial boot load mode

LOI AR7,AR2

A-6

Boot Loader Source Code Listing

exit3

exit2

ADDI

TSTB

LDINZ

BNZ

ADDI

TSTB

LDINZ

BNZ

ADDI

TSTB

LDINZ

BZ

60h,AR2

2,RO

4080h,AR3

exit3

4,AR2

1,RO

8,AR3

exit3

4,AR2

4,RO

4800h,AR3

waitl

TSTB 8,RO

BZ exit2

TSTB 80h, IOF

LDI 6,IOF

LDI OFh,R2

LSH l6,R2

OR *AR2,R2

STI R2,*AR2

LSH 9,AR3

.***** ,

.***** ,

.***** ,
• *. , ,
• *. , ,
· *. , ,
• *. , ,

808060h (IOSTRB) -> AR2

test for INTI

8l0000h / 2**9

808064h (STRBO) -> AR2

test for INTO

OOlOOOh / 2**9

808068h (STRB1) -> AR2

test for INT2

900000h / 2**9

test#l INT3 asserted

test#2 INXFl low (not used)

enable handshake mode if

test#l passed

force boot data size to 32

force boot mem width to 32

boot mem start addr -> AR3

* xxOOOOOl

*=== xx000010

* Process MEMORY WIDTH control word (32 bits long) xx000100

*=== xx001000

* xx010000

* xxlOOOOO

LDI

LDI 1,RS

LDI 32,AR6

CALLU read m

loop2 TSTB 1,R6

BNZ labe14

LSH -1,R6

use memory to read cntrl words

read_me -> ARO

mem width 1 (init)

mem reads 32 (init)

read memory once (1st read)

look at next bit

1 bit

2 bit

4 bit

8 bit

16 bit

32 bit

Boot Loader Source Code A-7

Boot Loader Source Code Listing

LSH -1,AR6 decr mem reads

LSH 1,RS incr mem width-> RS

BU loop2 j*****

labe14 SUBl 2,AR6

CMPl O,AR6 set flags

BN strobes .***** total # of mem reads 32/RS ,
labelS CALLU read_m read memory once

DBU AR6,labelS;*****

==

* Read and save lOSTRa, STRBO & STRBl (to be loaded at end of boot load)

========~=-===

strobes CALLU ARO

STl Rl,*+AR7(4) lOSTRB -> (DMA src)

CALLU ARO

STl Rl,*+AR7(6) STRBO -> (DMA dst)

CALLU ARO

STl Rl,*+AR7(B) STRBl -> (DMA cnt)

===============-==

* Process block size (# of bytes, half-words or words after STRB cntrl)

==

block CALLU ARO read boot memory cntrl word

LDl Rl,Rl is this the last block ?

BNZ labe12 j***** no, go around

LDl *+AR7(4),RO (DMA src)

STl RO,*+AR7(60h) restore lOSTRB

LDl *+AR7 (6) ,RO (DMA dst)

STl RO,*+AR7(64h) restore STRBO

LDl *+AR7(B),RO (DMA cnt)

STl RO,*+AR7(6Bh) restore STRBl

BU lRl i***** branch to start of program

label2 LDl Rl,RC setup transfer loop

SUBI l,RC RC - 1 -> RC

A-a

Boot Loader Source Code Usting

==

* Process block destination address, save start address of first block

==

CALLU ARO

LDl

CMFl

R1,AR5

O,lRO

LDlNZ AR5 , lRl

LDlNZ O,lRO

read boot memory cntrl word

set dest addr -> AR5

look at EXEC start addr flag

if -1, EXEC start addr -> lRl

set EXEC start addr flag

==

* (For internal destination this word should be 0 or 60h. The first case

* will result in 0 -> DMA cntrl reg, in second case 0 -> lOSTRB reg.)

* Process block destination strobe control (sss ••• sss 0110 xxOO)

*== strb value === 00

*
CALLU ARO

LDl R1,R4

AND 6Ch,R1

OR3 AR7,R1,AR4

LSH -8,R4

LDl R4,R3

LSH -16,R3

AND 3,R3

TSTB OCh,R1

LDlZ 3,R3

dest mem strb pntr

dest memory strobe

01

10

-> AR4

-> R4

dest data size

(lOSTRB case)

-> R3

lOSTRB

STRBO

STRB1

==

* Look at R5 and choose serial or memory read for block data/program

==

CMFl 0,R5

LDlEQ read_sO,ARI

LDlNE read_mb,ARI

read serial portO

read memory

==

* Transfer one block of data or program

===

RPTB loop4

CALLU AR1

STl R4,*AR4

read data/prg

set write strobe

Boot Loader Source Code A-9

Boot Loader Source Code Usting

NOP pipeline

loop4 STI R1,*ARS++ write data/prg

II STI R2,*AR2 set read strobe

BU block .***** process next block ,
==

* Load RS with 0, load read_sO to ARO and initialize serial port_O

===z=========== __ ===

serial LOI

LOI

LOI

LOI

LOI

STI

LOI

LSH

STI

BU

read_sO,ARO

O,RS

0,R2

AR7,AR2

111h,RO

RO,*+AR7(43h)

OA30h,R7

16,R7

R7,*+AR7(40h)

strobes ;*****

use serial to read cntrl words

memory WIOTH = serial

dummy

dummy

0000111h -> RO

set CLKR,OR,FSR as serial

port pins

A300000h -> R7

set serial global cntrl reg

process first block

==

* Read a single value from serial or boot memory. The number of memory reads

* depends on mem WIOTH and data SIZE. R1 returns the read value.

* (Serial simI NOP -> BZ read_sO & LOI @4000H,R1 -> LOI *+AR7(4Ch),R1)

===-================

read_sO TSTB 20h,IF

BZ read_sO

ANO OFOFh,IF

LOI *+AR7(4Ch),R1

RETSU

*

read_mc LOI 3,R3

read_mb LOI 1,BK

LSH RS,BK

SUBI 1,BK

LOI R3,AR6

ADOI 1,AR6

LSH 3,AR6

LOI RS,RO

A-10

look at RINTO flag

wait for receive buffer full

reset interrupt flag

read data -> R1

data size = 32, 3 -> R3

00000001 (ex: mem width=8)

00000100

OOOOOOFF mask -> BK

0 1 000 EXPAND

1 10 000 DATA -> AR6

11 100 000 SIZE

Boot Loader Source Code Listing

loop3 CMPI 1,RO

BEQ exit 1 DATA SIZE

LSH -l,RO - 1 -> AR6

LSH -1,AR6 MEM WIDTH

BU loop3 .*****. , ,
exit 1 SUBI 1,AR6

LDI O,RO init shift value

LDI O,Rl in it accumulator

loopl ADDI 3,SP 808027h -> SP

CALLU read m read memory once -> R6

SUBI 3,SP 808024h -> SP

AND3 R6,BK,R7 apply mask

LSH RO,R7 shift

OR R7,Rl accumulate -> Rl

ADDI RS,RO increment shift value

DBU AR6,loopl .***** decrement # of chunks -> AR6 ,
RETSU

==

* Perform a single memory read from the source boot table. Handshake enabled if

* IOXFO bit of IOF reg is set, disabled when reset. IACK will pulse continuously

* if handshake enabled and data not ready (to achieve zero-glue interface when

* connecting to a C40 comport)

==

read m TSTB 2,IOF handshake mode enabled ?

BNZ loopS yes, jump over

LDI *AR3++,R6 no, just read memory & return

RETSU

* (C4O)

Boot Loader Source Code A-11

Boot Loader Source Code Listing

loopS lACK *AR7 .*. internal dwmny read pulses lACK , ,
TSTB SOh,lOF .*. , , wait for data ready

BNZ loopS .*. , , (XFl low from host)

LOl *AR3++,R6 .*. , , read memory once -> R6

LOl 2,lOF • *. assert data acknowledge , ,
.*. , , (XFO low to host)

loop6 TSTB SOh,lOF • *. , , wait for data not ready

BZ loop6 • *. (XFl high from host) , ,
LOI 6,lOF .*. , , deassert data acknowledge

.*. , , (XFO high to host)

RETSU

==

A-12

addressing, 5-1

architecture, 2-1
overview, 2-2

assembly language, 10-1

bits
INT Config, 3-2
PRGW Status, 3-2

block diagram, 2-2

boot loader, 2-6, 3-8
code description, A-2
code listing, A-4
data stream, 3-14
flowchart, A-3
hardware interface, 3-16
memory, 3-13
mode flowchart, 3-11
mode selection, 3-8
sequence, 3-9
serial port, 3-12

bus cycles, 7-28
IOSTRB, 7-31
STRBO, 7-28
STRB1,7-28

bus timing, 7-28

CPU, 2-3
DMA interrupts, 8-2
register file, 3-2

CPU/DMA interrupts, 8-2

U I Itt Ii II II I I I! III!!!!! I iI!!!!llliilliUllllttl

m
data

memory, 2-4
transfer, 3-14
type sizes, 2-5

data type size field, 7-9
direct memory access, 2-7
DMA,2-7

channel arbitration, 8-3
control registers, 8-2
CPU interrupts, 8-2
interrupts, 8-2
two-channel,8-2

DMA global control registers, 8-2

external interface control registers, 7-7
external memory interface

configurations, 7-7
features, 7-2
overview, 7-3

fields
data type size, 7-9
physical memory width, 7-9
sign ext/zero fill, 7-10
STRB Config, 7-10
STRB Switch, 7-11

floating-point format, 4-2

m
handshake, 3-14
hardware applications, 12-1

external memory banks, 12-8

Index
!! II

Index-1

Index

maximum performance, 12-2
minimum memory, 12-5

D
IDlE2 power-down mode, 6-5

IE register, 3-3

IF register, 3-3
inactive bus states, 7-40

instruction cycle, 2-3

INT Config bit, 3-2

interface, memory, 2-4

interrupts
CPU/DMA, 8-2
edge-triggered, 2-3
level-triggered, 2-3
locations, 3-5
vector table, 2-3

introduction, 1-1

IOSTRB bus cycles, 7-31

IOSTRB control register, 7-9

ITTP register, 3-4

13
key features, 1-2

I!
lOPOWER mode, 6-6

memory
data, 2-4
DMA,2-7
external banks, 12-8
external map, 12-4, 12-6
external widths, 2-5
interface, 2-4
map, 3-6,12-4,12-7
on-chip RAM, 2-6
peripheral bus, 3-7
program, 2-4

memory interface
16-bitwide, 7-17

Index-2

32-bit wide, 7-13
8-bit wide, 7-22

memory widths
16-bit with 16-bit data type size, 7-19
16-bit with 32-bit data type size, 7-20
16-bit with 8-bit data type size, 7-18
32-bit with 16-bit data type size, 7-15
32-bit with 32-bit data type size, 7-16
32-bit with 8-bit data type size, 7-13
8-bit with 16-bit data type size, 7-24
8-bit with 32-bit data type size, 7-25
8-bit with 8-bit data type size, 7-22

modes
boot loader, 3-8, 3-11
power management, 2-3, 6-5

on-chip RAM, 2-6

peripheral bus, 3-7

peripherals, 2-7, 8-1
physical memory width field, 7-9

pins
address, 13-2
ClKIN,13-4
ClKRO, 13-3
ClKXO, 13-3
CVSS, 13-4
data, 13-2
DRO, 13-3
DVDD,13-4
DVSS, 13-4
DXO, 13-3
EMU2-0, 13-4
EMU3,13-4
FSRO, 13-3
FSXO, 13-3
H1, 13-4
H3,13-4
HOlD,13-2
HOlDA,13-3
IACK,13-3
interrupts, 13-3
IOSTRB, 13-2
IVSS, 13-4
MCBL/MP, 13-3

PRGW, 13-3
RfIN,13-2
ROY, 13-2
RESET,13-3
SHZ, 13-4
STRBx_Bx, 13-2
TCLKO, 13-4
TCLK1,13-4
VOOL,13-4
VSSL,13-4
VSUBS, 13-4
XF1-0, 13-3

pipeline operation, 9-1

power management, modes, 2-3, 6-5
IOLE2 power-down, 6-5
LOPOWER, 6-6

PRGW Status bit, 3-2

program, memory, 2-4

Ii]
ROY timings, 7-27

register file, CPU, 3-2

registers
OMA global control, 8-2
external interface control, 7-7
interrupt enable, 3-3
interrupt flag, 3-3
interrupt-trap table pointer, 3-4
IOSTRB control, 7-9

status, 3-2
STRBO control, 7-8
STRB1 control, 7-8

reset operation, 6-2

serial port, boot loader, 3-12
sign ext/zero fill field, 7-10

signal descriptions, 13-2
clock,13-4
emulation and test signals, 13-4
external bus interface, 13-2
reserved, 13-4
timer, 13-4

signals
control, 13-3
serial port, 13-3

software applications, 11-1

ST register, 3-2
STRB Config field, 7-10

STRB Switch field, 7-11

STRBO control register, 7-8
STRB1 control register, 7-8

II
timings, ROY, 7-27

trap vectors, 3-5

Index-3

Index-4

NOTES

TI Worldwide Sales and Representative Offices
AUSTRALIA / NEW ZEALAND: Texas Instruments Australia Ltd.: Sydney
[61J 2·910·3100, Fax 2·805·1186; Melbourne 3·696·1211, Fax 3·696·4446.
BELGIUM: Texaslnstrumenls Belgium SAIN,V.: Brussels [32J (02) 726·75·
80, Fax (02) 726 72 76.
BRAZIL: Texas Instrumentos Electronlcos do Brasil Ltda.: Sao Paulo
[55J 11·535·5133.
CANADA: Texas Instruments Canada Ltd.: Montreal (514) 335·8392;
Ottawa (613) 726·3201; Toronto (416) 884·9181.
DENMARK: Texas Instruments A/S: Ballerup [45J (44) 68 74 00.
FINLAND: Texas Instruments/OY: Espoo [358J (0) 43 54 20 33,
Fax (0) 46 73 23.
FRANCE: Texas Instruments France: Vellzy·Vlllacoublay Cedex
[33J (1) 30 70 10 01, Fax (1) 30 70 10 54.
GERMANY: Texas Instruments Deutschland GmbH.: Frelslng
[49](08161) 80·0, Fax (08161) 80 45 16; Hannover (0511) 90 49 60,
Fax (0511)6490331; Ostflldern (0711)34030, Fax (0711)3403257.
HONG KONG: Texas Instruments Hong Kong Ltd.: Kowloon [852J 2956·
7288, Fax 2965·2200.
HUNGARY: Texas Instruments Representation: Budapest [36J (1) 269 8310,
Fax (1) 267 1357.
IRELAND: Texas Instruments Ireland Ltd.: Dublin [353J (01) 475 5233,
Fax (01) 478 1463.
ITALY: Texas Instruments Italla S.pA: Agrate Brlanza [39J (039) 66 42.1,
Fax (039) 66 42.912; Rome (06) 6572651.
JAPAN: Texaslnstrumenta Japan Ltd.: Tokyo [81J 03·769·8700,
Fax 03-3457·6777; Osaka 06·204·1881, Fax 06·204·1895; Nagoya 052·583·
8691, Fax 052·563·8696; Ishikawa 0762·23·5471, Fax 0762·23·1583;
Nagano 0263·33·1060, Fax 0263·35·1025; Kanagawa 045·338·1220, Fax
045-338·1255; Kyoto 075·341·7713, Fax 075·341·7724; Saltama 0485·22·
2440,
Fax 0425·23·5787; Oils 0977-73·1557, Fax 0977-73·1583.
KOREA: Texas Instruments Korea Ltd.: Seoul [82J 2·551·2800,
Fax 2-551·2828.
MALAYSIA: Texas Instruments Malaysia Sdn Bhd: Kuala Lumpur
[60J 3·208·6001, Fax 3·230·6605,
MEXICO: Texas Instruments de Mexico S.A. de C. V.: Colonia del Valle
[52J 5·639-9740,
NORWAY: Texas Instruments Norge A/S: Oslo [47] (02) 264 75 70,
MAINLAND CHINA: Texas Instruments China Inc.: Beijing [86J 1·500·
2255, Ext, 3750, Fax 1·500·2705,
PHILIPPINES: Texas Instruments Asia Ltd.: Metro Manila [63J 2·817·6031,
Fax 2·817·6096.
PORTUGAL: Texas Instruments Equlpamento Electronlco (Portugal) LDA.:
Mala [351J (2) 94810 03, Fax (2) 94819 29,
SINGAPORE (& INDIA, INDONESIA, THAILAND): Texas Instruments
Singapore (PTE) Ltd.: Singapore [65J 390-7100, Fax 390·7062,
SPAIN: Texas Instruments Espana SA: Madrid [34] (1) 372 80 51,
Fax (1) 372 82 66; Barcelona (3) 31 791 80,
SWEDEN: Texas Instruments International Trade Corporation
(Sverigefilialen): Klsta [46J (08) 752 58 00, Fax (08) 7519715,
SWITZERLAND: Texas Instruments Switzerland AG: Dletikon
[41J 886·2·3771450,
TAIWAN: Texas Instruments Taiwan Limited: Taipei [886J (2) 378·6800,
Fax 2·377-2718,
UNITED KINGDOM: Texas Instruments Ltd.: Northampton [44J (0234) 270
111, Fax (0234) 223459,

UNITED STATES: Texas Instruments Incorporated: ALABAMA: Huntsville
(205) 430-0114; ARIZONA: Phoenix (602) 224·7800; CALIFORNIA: Irvine
(714) 660·1200; San Diego (619) 278·9600; San Jose (408) 894·9000;
Woodland Hills (818) 704·8100; COLORADO: Denver (303) 488·9300;
CONNECTICUT: Wallingford (203) 265·3807; FLORIDA: Orlando
(407) 667-5300; Fort Lauderdale (305) 425·7820; Tampa (813) 882·0017;
GEORGIA: Atlanta (404) 662·7967; ILUNOIS: Arlington Heights
(708) 640·2925; INDIANA: Indianapolis (317) 573·6400; KANSAS: Kansas
City (913) 451·4511; MARYLAND: Columbia (410) 312-7900;
MASSACHUSETTS: Boston (617) 895·9100; MICHIGAN: Detroit (313) 553-
1500; MINNESOTA: Minneapolis (612) 828·9300; NEW JERSEY: Edison
(908) 906·0033; NEW MEXICO: Albuquerque (505) 345·2555; NEW YORK:
Poughkeepsie (914) 897·2900; Long Island (516) 454·6601; Rochester
(716) 385·6770; NORTH CAROLINA: Charlotte (704) 522·5487; Raleigh
(919) 876·2725; OHIO: Cleveland (216) 765·7258; Dayton (513) 427·6200;
OREGON: Portland (503) 643·6758; PENNSYLVANIA: Philadelphia (215)
825·9500; PUERTO RICO: Hato Rey (809) 753·8700; TEXAS: Austin (512)
250·6769; Dallas (214) 917-1264; Houston (713) 778·6592; WISCONSIN:
Milwaukee (414) 798·1001.

North Americsn Authorized Distributors
COMMERCIAL
Almac / Arrow
Anthem ElectroniCS
Arrow / Schweber
Future ElectroniCS (Canada)
Hami~on Hallmark
Marshall Industries
Wyle
OBSOLETE PRODUCTS
Rochester Electronics 508/462·9332

MILITARY
Alliance Electronics Inc
Future Electronics (Canada)
Hamilton Hallmark
Zeus, An Arrow Company
CATALOG
Allied Electronics
Arrow Advantage
Newark Electonics

For Distributors outside North Amerlcs, contBct your local Sales Office.
AD322i5

Importlnt Notice: Texas Instruments (TI) reserves the right 10 make changes to Of to discontinue any product
or service identified in this publication w~hout notice. TI advises its customers to obtain the latest version of the
relevant information to verify, before placing orders, that the information being relied upon is current.

Please be advised that TI warrants its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with Tl's standard warranty. TI assumes flO liability for applications
assistance, software performance, or third-party product information, or for infringement of patents or services
described in this publication. TI assumes no responsibility for customers' applications or product designs.

• TEXAS
INSTRUMENTS

© 1995 Texas Instruments Incorporated
Printed in the USA

Printed in U.S.A. , March 1995

~lExAs
INSTRUMENTS

SPRU132B

