*’? TeExAs
INSTRUMENTS

TMS320C32

Addendum to the TMS320C3x User’s Guide

User’s Guide

1995 Digital Signal Processing Products

TMS320C32 User’s Guide

Addendum to the TMS320C3x User’s Guide

March 1995

"4‘ TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (T1) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tiwarrants performarice of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
represent that any license, either express orimplied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated

Preface

Re This Fir

About This Document

This is an addendum to the TMS320C3x User’s Guide (literature number
SPRUO031) that describes the architecture and features of the TMS320C32
digital signal processor. Features and topics not covered are identical to those
of the TMS320C30 and TMS320C31. The chapter and section numbers
supplement the same chapter and section numbers of the TMS320C3x User’s
Guide.

How to Use This Document

This document is intended to be used in conjunction with the TMS320C3x
User’s Guide (literature number SPRU031D) and with the Interfacing Memory
to the TMS320C32 DSP Application Report (literature number SPRA040).

Notational Conventions
This document uses the following conventions.

O Shadingis used in tables to indicate features that are new in the ‘C32 and
not available in the 'C30 and 'C31 devices. Shading is also used to indicate
bit values at reset.

[Anoverbar over a signal name indicates that the signal is active low. The
same applies to pin names.

O Program listings, program examples are shown in a special
typeface similar to a typewriter’s.

Here is a sample section of a program listing:
strobes CALLU ARO

STI R1,*+AR7(4) ; IOSTRB —> (DMA src)
CALLU ARO

STI R1,*+AR7(6) ; STRBO —>(DMA dst)
CALLU ARO :
STI R1,*+AR7(8) ; STRBI —>(DMA cnt)

Read This First iii

Read This First

If You Need Assistance. . .

If you want to. . .

Do this...

Order Texas Instruments
documentation

Call the Literature Response Center at
(800) 477—8924

Obtain technical support, report
suspected problems

Call the DSP hotline at (713) 274-2320, send
a FAX to (713) 274-2324 or to
+33-1-3070-1032 in Europe. You can also
send email to 4389750@mcimail.com.

Obtain TI product updates,
application software

Dial the TMS320 Bulletin Board Service
(BBS) at (713) 274-2323 (24 hrs.). Set your
modem to 8 bits,1 stop bit, no parity.
Supported speeds are from 300 to 14400 bps.
In Europe, dial +44-2-3422-3248

Access the TMS320 BBS from
Internet

Connect via anonymous ftp to ftp.ti.com
(192.94.94.5), subdirectory /pub/mirrors

Report mistakes or offer
suggestions regarding this
document or any other Tl
documentation

Send your comments to:

Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443

Houston, Texas 77251-1443

or send email to:
comments@books.sc.ti.com

Contents

Introduction ...t i i i ittt et e et as e 11
1.4 Key Featurescoiiiiiiit i i ittt ittt et 1-2
Architectureciiiiiiiiiiiii ittt eiietetssstesssnsnsssassacasnassassnns 2-1
2.1 Architectural Overview it e 2-2
2.2 Central Processing Unito ittt it e 2-3
221 Instruction Cycle TIMettt 2-3
222 PowerManagementModesc.ooiiiiiiiiiiiiii i 2-3
2.2.3 Edge- or Level-Triggered Interruptsccoiiiiiiiiiiiiiiie, 2-3
2.2.4 Relocatable InterruptVector Table it 2-3
23 EnhancedMemoryinterfacec.c.c.iiiiiiiiiiiiii i 2-4
23.1 16-and 32-Bit Program Memoryoiiiiiii it it 2-4
232 8-,16-,and32-BitDataMemorycco ittt 2-4
24 On-ChipRAMandBootLoader..............iiiiiiiiiii ittt e iianennns 2-6
25 Peripheralsc. i i i i e e s 2-7
2.5.1 Two-Channel Direct Memory Access (DMA)coiiiiiiinnnnnn. 2-7
CPU Registers, Memory,and Cacheccoiiiiiininnrieenerrenneseenananenes 3-1
3.1 CPURegister Filecouuiiiiiiiiit ittty 3-2
3.1.7 Status Register (ST) ..ottt i ittt it 3-2
3.1.8 CPU/DMA Interrupt Enable Register (IE)ccoiiiinnan. 3-3
3.1.9 CPUInterrupt Flag Register (IF)oi i 3-3
3.1.10 Interrupt-Trap Table Pointer (ITTP) i 3-4
3.2 Memory Map ... e e e 3-6
3.2.4 Peripheral-BusMemory Map ...ttt 3-7
3.4 BoOtLoaderiiiiiii e 3-8
3.4.1 BootLoader Mode Selection ...t 3-8
3.42 BootlLoadingSequencCeouiiiiieiieiiii i 3-9
3.43 BootDataStream Structure i 3-14
3.4.4 Boot Loader Hardware Interfaceot 3-16
Data Formats and Floating-Point Operationccciiiiiiiiiinnnes. 4-1
4.3.1 Short Floating-Point Format for External 16-BitData 4-2
Addressingciiiiiiiiiiiiiii it ittt s st e e s 5-1
CPUProgram Flow Controlcoiiiiiiiiinininnrrnrensnrneasassnnnnanss . 61
6.5 Reset Operationttt e e e 6-2

Table of Contents '

Contents

10
1
12

13

vi

6.7 PowerManagementModesccoiiiiiiii i e 6-5
6.7.1 IDLE2 Power-DownMode ...t 6-5
6.7.2 LOPOWERMOMEc.iviiiiii et eeeans 6-6
Enhanced External Memory iInterfacecciiiiiiiiiiiinirenrenreenennnns 7-1
% T =T (1] - 7-2
7.2 OVBIVIBW ..ttt i i e e e 7-3
7.2.1 External Memory Interface Overview, 7-3
7.22 Program Memory ACCESScuiiminin it 7-4
723 DataMemory ACCESSovvirittiee e tiie ittt tne e iieeeennenns 7-5
7.3 Configurationciiiiiiii e 7-7
7.3.1 External Interface Control Registers, 7-7
732 32-BitWideMemoryinterface ...t 7-13
7.3.3 16-BitWide MemoryInterface i, 7-17
7.3.4 8-BitWideMemorylinterfacecciiii it 7-22
7.3.5 External Ready Timing Improvemento, 7-27
7.4 BUSTIMING ..ottt 7-28
7.41 STRBOand STRB1BuUSCyclescoviiiiiiiiiiniiiiinn.. 7-28
7.42 |OSTRBBusCycles PR .. 7-31
743 InactiveBusStatesc.cciiiiiiiiiii i e 7-40
=TT o] 4 =T - 1 - 8-1
8.1 Two-Channel DMAFeaturesc.ouuiiiiteinniiiiiiiiiiiniiinnnns 8-2
8.1.1 DMA Global Control Registerscciiiiiiiiiiiiiniiinn.. 8-2
8.1.4 CPU/IDMAINMerrupts e 8-2
8.3.5 DMAChannel Arbitrationcciiiiiiiiiiiii e 8-3
8.1.6 CPUChanges TO SUpport DMA it 8-4
Pipeline Operationcciiiiiiiiiiiiiiiiiirisssenentetresesanneersnnnnnns 9-1
Assembly Language Instructionsccciiiiiiiiiiiiii it ittt ii e 10-1
Software Applicationscciiiiiiiiiiiiiiii it i i i e e et ra e, 111
Hardware Applications ...ttt it ittt it i teteeeetennnnnnrens 12-1
121 Maximum Performance ...ttt i e e e 12-2
122 Minimum MemoOry ...ttt i e e e e e 12-5
12.3 Two External Memory Banksc.. it i e 12-8
TMS320C32 Signal Descriptionsoiiiiiiiiiiiiiiiiiiiitirteeneennnnennen 13-1
13.2 Signal DesCriptionsoiiiiiiii i i e 13-2
Boot Loader Source Codeciiiiiiiiiieiiiiiineannnterererannnneenrannnns A-1
A1 Boot Loader Source Code Description ..., A-2
A2 Boot Loader Source Code Listingc.ccoiiiiiiiiii i A-4

e

3-11

3-13
3-14
3-15
3-16
3-17

61
6-2
6-9
6-10
7-1
7-2
7-3
7-4

7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17

TMS320C32 Functional Block Diagramoiiiiiiiiiiiiiiiiiiiieennnn, 2-2
'C32 Supported Data Types Sizes and External Memory Widths 2-5
Status RegiStert i i i e e e e 3-2
CPU/DMA Interrupt Enable Register i 3-3
CPU Interrupt Flag Register e e 3-3
Effective Base Address of the Interrupt-Trap Vector Table 3-4
Interrupt and Trap Vector Locationsttt it it 3-5
TMS320C32 Memory Map ...t i i e e e e e e 3-6
Peripheral-Bus Memory Mapottt it et 3-7
Boot Loader Mode Selection Flowchartc.ccciiiiiiiiiiiinnninnnnennn. 3-11
Boot Loader Serial Port Load Flowchart o ..., 3-12
Boot Loader Memory Load Flowchart ...ttt iiiiiinnennn. 3-13
Handshake Data Transfer Operationc i, 3-14
External Memory Interface for Source Data Stream Memory Boot Load 3-16
Short Floating-Point Format i inree e 4-2
IDLE2 TiMiNG . e et e e 6-6
Interrupt Response Timing After IDLE2 Operationccoiiiiiiiinnn, 6-6
LOPOWER TIMINGttt ettt ettt ettt et e et nnannnns 6-7
MAXSPEED Timingoiiii i et et et i 6-7
Memory Address SPacest e 7-4
Status Registert e e e, 7-5
Memory-Mapped External Interface Control Registers 7-7
STRBO Control Registerc.iiiiiiiii i et et iiiaans 7-8
STRB1 Control Registert aas 7-9
IOSTRB Control Register ...ttt et ettt nns 7-9
’C32 External Memory Interface for 32 Bit SRAMs 7-13
Functional Diagram for 8-Bit Data Type Size and 32-Bit External Memory Width 7-14
Functional Diagram for 16-Bit Data Type Size and 32-Bit External Memory Width 7-15
Functional Diagram for 32-Bit Data Size and 32-Bit External Memory Width 7-16
External Memory Interface for 16-Bit SRAMS i, 7-17
Functional Diagram for 8-Bit Data Type Size and 16-Bit External Memory Width 7-18
Functional Diagram for 16-Bit Data Type Size and 16-Bit External Memory Width 7-20
Functional Diagram for 32-Bit Data Type Size and 16-Bit External Memory Width 7-21
External Memory Interface for 8-Bit SRAMS it 7-22
Functional Diagram for 8-Bit Data Type Size and 8-Bit External Memory Width 7-23
Functional Diagram for 16-Bit Data Type Size and 8-Bit External Memory Width 7-24

Table of Contents vii

Figures

7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
8-1

8-2

8-3

84

121
12-2
12-3
124
12-5
12-6
12-7
A-1

viii

Functional Diagram for 32-Bit Data Type Size and 8-Bit External Memory Width 7-26
RDY TimingforMemory Readc.c.oiiiiiiniiiiii i 7-27
Read-Read-Write Sequence for STRBx active oo, 7-29
Write-Write-Read Sequence for STRBx activecciiiiiiiiiiiiannn. 7-29
One Wait-State Read Sequence for STRBx activeccovivvinina... 7-30
One Wait-State Write Sequence for STRBX ACtiVec.covviiiiiiiiininnnnnn. 7-31
Zero Wait-State Read and Write Sequence for IOSTRB Active 7-32
One Wait-State Read Sequence for IOSTRB Activeccovvvinni... 7-33
One Wait-State Write Sequence for IOSTRB Active, 7-33
STRBx Read and IOSTRB WHIiteccc.iiiiiiiiiii ittt e iieiiiiiiinns 7-34
STRBxRead and IOSTRB Readc.ciiiiiiiiiiiieiiiiiiiinnnnnns 7-34
STRBx Write and IOSTRB WIite ..ottt i s 7-35
STRBx Write and IOSTRBReadc.cciuuuiiiiiiiii ittt 7-35
IOSTRB Write and STRBXWHItet 7-36
IOSTRBWriteand STRBXRead ...ttt 7-37
IOSTRB Read and STRBXWIitet 7-37
IOSTRBRead and STRBX Readttt 7-38
IOSTRBWriteand Read ...ttt i i it 7-39
IOSTRBWriteand Writet it 7-39
IOSTRBReadand Readc.ccviiiiiiiiiiiii s 7-40
Inactive Bus States Following IOSTRBBusCycleccoiiiin.... 7-40
Inactive Bus States Following STRBxBusCycle, 7-41
Memory-Mapped LocationsforaDMA Channelsiiiiinn... 8-2
CPU/DMA Interrupt Enable Registerottt 8-3
CPU Interrupt Flag Register ... e 8-3
DMAOQ Gilobal Control Registerciiiiiii ettt 8-3
Zero Wait-State Interface for 32-Bit SRAMs With 16- and 32-Bit Data Accesses 12-3
External Memory Mapttt ittt ittt e e e e e e 12-4
C2 MmOy Map ..ottt e e e e e 12-4
Zero Wait-State Interface for 16-Bit SRAMs With 16- and 32-Bit Data Accesses 12-5
External Memory Map ... e e e 12-6
G2 MEMOIY Map ..ottt it i e e e e 12-7
Zero Wait-State Interface for 32-Bit and 8-Bit SRAMBanks 12-8
Boot Loader FIow Chartttt ittt e iiiiiiiiiaeanaannns A-3

3-7

6-3
7-1

7-3
7-4
8-2
8-3
137

Boot Loader Mode Selectionttt it e 3-9
Source Data Stream Structure ... 3-15
PinOperation at Resett i i it i ittt 6-3
Data Access Sequence for a Memory Configuration with TwoBanks 7-12
Strobe-Byte Enable for 32-Bit Wide Memory With 8-Bit Data Type Size 7-14
Strobe-Byte Enable for 32-Bit Wide Memory With 16-Bit Data Type Size 7-15
Strobe-Byte Enable Behavior for 16-Bit Wide Memory with 8-Bit Data Type Size 7-18
L0 S 70 1N o T/ 8-4
DMA Priority Mode of DMAQ Control Registert 8-4
TMS320C32 Signal DesCriptionsviiiiieiii ittt ittt eiie e rnaannenns 13-2

Table of Contents ix

Chapter 1

Introduction

The TMS320C32 is the newest product in the TMS320C3x family of DSPs.
The 'C32 not only offers the ease of use and performance advantages of 32-bit
DSPs, but also offers the device and system cost advantages of 16-bit DSPs.
Itis also object-code compatible with the 'C3x family and source-code compat-
ible with the 'C4x family, providing a lower-cost device road map for Texas
Instruments generations of 32-bit, floating-point DSPs.

Key Features

1.4 Key Features
Key features of the 'C32:
TMS320C3x CPU
Instruction cycle time of 33/40/50 ns
Two 256 x 32 words of dual-access on-chip RAM blocks
Boot loader
Serial port
Two timers

Two channel DMA controller

000000 0dOo

Enhanced memory interface

Chapter 2

2

This chapter describes the CPU, memory interface, boot loader, peripherals,
and DMA of the 'C32. Chapters 3, 4, 6, 7, and 8 describe in more detail the
functionality of these components.

Architectural Overview

2.1 Architectural Overview

Figure 2—-1 shows a functional block diagram with the key components of the

'C32.

Figure 2—1. TMS320C32 Functional Block Diagram

Program RAM RAM
Cache Block 0 Block 1 Boot
(64 x (256 x 32) (256 x 32) ROM
32 32 4 32 2 32
2
R
PC
RESET —
INTO-3 —
TATRK <
XFO-1 <
Ht ¢
H3 <
MCBL/NP —
CLKIN —¥
Voo —"
Vss —¥ -
BHZ —» DMA Controller
EMUO-3 ¥
DMA Channel 0
Global Control Register
Source Address Register
Destination Address Reg.
Transfer Counter Reg.
DMA Channel 1
Global Control Register
Source Address Register
Destination Address Reg.
Transfer Counter Reg.
4 40

2-2

41| Registers
22 (ARO-AR?) | kg
32
R
Other 32
2 g -
(12)

Muitiplexer

le» AO-23
je» DO-31
|-» R/W
Memory [
Interface jo— ROLD
}-» AOLDA
je— PRGW
|» STRBO_BYA_,
STRBO > STRBO B2/
> STRBO_ BT
STRBO Control Reg. | | |-+ STREU B0
STRB1 |-> STRBT_BYA_,
> STRBI_B2/
|-> STRB_BT
STRB1 Control Reg. | (S STRETBS
IOSTRB
> |-» OSTRB
10STRB Control Reg. |
Serial Port
5 FSX0
Port Control | » Dxo
LTt
mer
Register -» FSRO
Data Transmit -» DRO
Register |-» CLKRO
Data Receive
Register
> TCLKO
“Timer Period
Register
Timer Counter
Register
Timer 1
al Contr
Register
Timer Period > TCLK1
Register
Timer Counter
Register

Central Processing Unit

2.2 Central Processing Unit

The 'C32 central processing unit (CPU) is an enhanced version of the 'C3x
CPU. The enhancements to the CPU include variable-width memory interface,
faster instruction cycle time, power-down modes, relocatable interrupt vector
table, and edge- or level-triggered interrupts.

2.2.1 Instruction Cycle Time

The fast instruction cycle time of the 'C32 allows it to operate at 33, 40, and
50 ns. This corresponds to external clock rates of 60, 50, and 40 MHz, respec-
tively.

2.2.2 Power Management Modes

Two power management modes, IDLE2 and LOPOWER, have been added to
the 'C32 CPU. In IDLE2 mode, no instructions are executed and the CPU, pe-
ripherals, and memory retain their previous state while the external bus output
pins are idle. During IDLE2 mode, the H1 clock signal is held high while the H3
clock signal is held low until one of the four external interrupts is asserted. In
LOPOWER (low power) mode, the CPU continues executing instructions and
the DMA continues performing transfers, but at a reduced clock rate. The
CLKIN frequency is divided by 16, which makes a’C32 with a CLKIN frequency
of 32 MHz perform like a 2-MHz 'C32, with an instruction cycle time of 1000
ns (or 1 MHz). Refer to Section 6.7 for complete details.

2.2.3 Edge- or Level-Triggered Interrupts

To reduce external logic and simplify the interface, the external interrupts are
edge- or level-triggered. The triggering is user-selectable through a bit in the
status register. See subsection 3.1.7 for detailed information.

2.2.4 Relocatable Interrupt Vector Table

Unlike the fixed interrupt-trap vector table location of the 'C30 and 'C31 devices,
the 'C32 has a user-relocatable interrupt-trap vector table. The interrupt-trap
vector table must start on a 256-word boundary. The starting location is pro-
grammable through a bit field in the CPU interrupt flag (IF) register: the interrupt-
trap table pointer (ITTP). Refer to subsection 3.1.9 for more information.

Architecture 2-3

Enhanced Memory Interface

2.3 Enhanced Memory Interface

2.3.1

The 'C3x family was designed for 32-bit instructions and 32-bit data opera-
tions. This architecture has many advantages including a high degree of paral-
lelism and provisions for a C compiler. However, the 'C30 and 'C31 require a
32-bit wide external memory even when the data requires only 8-or 16-bit wide
memory. The 'C32 enhanced external memory interface overcomes this li-
mitation by providing the flexibility to address 8-, 16-, or 32-bit data indepen-
dently of the external memory width. In this way, the chip count and size of ex-
ternal memory is reduced. The number of memory chips can be further re-
duced by the 'C32 ability to allow code execution from 16- or 32-bit wide me-
mories. The 'C32 memory interface also reduces the total amount of RAM by
allowing the physical data memory to be 8-, 16-, or 32-bit wide. Note that inter-
nally the 'C32 has a 32-bit architecture. Therefore, you can treat the 'C32 as
a 32-bit device regardless of the physical external memory width. The external
memory interface handles the conversion between external memory width
and 'C32 internal 32-bit architecture. Refer to Chapter 7 for detailed descrip-
tion of the external memory interface.

16- and 32-Bit Program Memory

The 'C32 executes code from either 16- or 32-bit wide memories. When con-
nected to 32-bit memories, 'C32 program execution is identical to that of the
'C31. When connected to 16-bit zero wait-state memory, the 'C32 takes two
instruction cycles to fetch a single 32-bit instruction. During the first cycle, the
'C32 fetches the lower 16 bits. During the second cycle, the 'C32 fetches the
upper 16 bits and concatenates them with the previously fetched lower 16 bits.
This process occurs entirely within the memory interface and is transparent to
you. An external pin, PRGW, dictates the external program memory width. Re-
fer to Section 13.2 for signal descriptions.

23.2 8-, 16-, and 32-Bit Data Memory

2-4

'C32 external memory interface can load and store 8-, 16-, or 32-bit quantities
into external memory and convert them into an internally equivalent 32-bit rep-
resentation. The external memory interface accomplishes this added function-
ality without changing the CPU instruction set. Figure 2—2 shows the sup-
ported external memory widths and data types sizes.

Enhanced Memory Interface

Figure 2-2. 'C32 Supported Data Types Sizes and External Memory Widths

Memory Width
8 16 32
Data 8 . ¢ L
Type 16 ® L ¢
Size 32 & @ ¢

¢ Single-cycle read
@® Two-cycle read
& Four-cycle read

To access 8-/16-/32-bit data quantities (types) from 8-/16-/32-bit wide
memory, the memory interface utilizes either strobe STRBO or STRB1 de-
pending on the address location within the memory map. Each strobe consists
of four pins for byte enables and/or additional address. For 32-bit memory in-
terface, all four pins are used as strobe-byte enable pins. These strobe-byte
enable pins select one or more bytes of the external memory. For 16-bit
memory interface, the 'C32 uses one of these pins as an additional address
pin while using two pins as strobe-byte enable pins. For 8-bit memory inter-
face, the 'C32 uses two of these pins as additional address pins while using
one pin as strobe pin. The 'C32 manipulates the behavior of these pins accord-
ing to the contents of the bus control registers (one control register per strobe).
By setting a few bit fields in this register, you indicate the data type size and
external memory width. Refer to Chapter 7 for detailed information.

Architecture 2-5

On-Chip RAM and Boot Loader

2.4 On-Chip RAM and Boot Loader

2-6

The 'C32 has two 256 x 32-bit dual-access on-chip RAM blocks. Each RAM
block allows two accesses per instruction cycle by the CPU and/or DMA.

The 'C32 boot loader functionality is equivalent to that of the ‘C31, but with
additional modes to handle the data type sizes and memory widths supported
by the external memory interface (8-, 16-, or 32-bit). ‘C32 boot loader loads
programs from the serial port, EPROM, or other standard memory devices.
The memory boot load supports data transfers with and without handshaking.
The handshake mode allow synchronous transfer of program by utilizing two
pins as data acknowledge and data ready signals. See Section 3.4 for a de-
tailed description of the boot loader functions.

Peripherals

2.5 Peripherals

The 'C32 peripherals are one serial port, two timers, and two DMA channels.
The serial port and timers are functionally identical to those in the 'C31 periph-
erals. Refer to the TMS320C3x User’s Guide Chapter 8 for a detailed descrip-
tion. This section covers the difference between the '*C32 DMA channels and
the 'C30 or 'C31 DMA channel.

2.5.1 Two-Channel Direct Memory Access (DMA)

The 'C32 has a two-channel DMA controller (one more than the 'C30 or 'C31).
Each channel is equivalent to the 'C30/31 DMA with the addition of user-confi-
gurable priorities. Because the DMA and CPU have distinct buses on the 'C3x
devices, they can operate independently of each other. However, when the
CPU and DMA access the same on-chip or external resources, the bandwidth
can be exceeded and priorities must be established. The 'C30 and 'C31 assign
highest priority to the CPU. The 'C32 DMA controller provides more flexibility
by allowing you to choose one of the following priorities:

CPU: For all resource conflicts the CPU has priority over the DMA.
DMA: For all resource conflicts the DMA has priority over the CPU.

Rotating: When the CPU and DMA have a resource conflict during consecu-
tive instruction cycles, the CPU is granted priority. On the following
cycle, the DMA is granted priority. Alternate access continues as
long as the CPU and DMA requests conflict in consecutive instruc-
tion cycles.

The DMA/CPU priority is configured by the DMA PRI bit fields of the corre-
sponding DMA global control register. Refer to Section 8.3 of the TMS320C3x
User’s Guide for a complete description.

Architecture 2-7

2-8

Chapter 3

The new features of the 'C32 required changes to the CPU register file,
memory map, and boot loader. The following sections discuss these changes.

3-1

CPU Register File

3.1 CPU Register File

Three registers in the CPU register file have been modified to support the new
features of the 'C32 (such as: two channel DMAs, program execution from
16-bit memory width, etc.). The modified registers are: the status (ST) register,
interrupt enable (IE) register, and interrupt flag (IF) register.

3.1.7 Status Register (ST)

The 'C32's status register (ST) has two new bit fields: INT config and PRGW
status. Figure 3—3 shows the bit fields of the status register. At system reset,
0 is written to the ST register. The following paragraphs describe the function-
ality of these new bit fields.

Figure 3-3. Status Register

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conflg GIE | CC | CE | CF | xx | RM |OVM | LUF | LV UF N 4 Vv Cc

R RW RW RW RW RW RW RW RW RW RW RW RW RW RW

The INT Config field sets the external interrupt signals INT3-INTO for level-
triggered or edge-triggered interrupts. This field can have the following values
(the shaded entry highlights the reset value):

Bit 14 INT Config Function Description

erfupté,I IN_T I_NTFO aréﬂéonﬁguréd as édge-t}iggered intekrrupts. Edge énd
duration are required for the interrupt to be recognized.

The PRGW Status field indicates the status of the external input PRGW pin.
When the signal of the PRGW pin is high, the PRGW status bit is set to 1 indi-
cating a 16-bit program memory width. The 'C32 performs two fetches to re-
trieve a single 32-bit instruction word. In the first fetch, the 'C32 retrieves the
lower 16 bits. In the second fetch, the 'C32 retrieves the upper 16 bits and con-
catenates them with the lower 16 bits. When the signal of the PRGW pin is low,
the PRGW status bit is cleared to 0 indicating a 32-bit program memory width.
The 'C32 performs a single fetch to retrieve a single 32-bit instruction word.
The PRGW bit is a read-only bit. This field can have the following values:

Bit 15 PRGW Status Function Description

0] Instruction fetches utilize a 32-bit external program memory read.

1 Instruction fetches utilize two consecutive 16-bit external program memory reads.

3-2

CPU Register File

The value of the PRGW bit affects the reset value of the STRBO and STRB1
control register. See subsections 7.3.1 and 7.3.2 for detailed information.

3.1.8 CPU/DMA Interrupt Enable Register (IE)

The 'C32's CPU/DMA interrupt enable register (IE) has ten new bit fields to
support the additional DMA channel interrupts. These are EINT3 (DMA1),
EINT2 (DMA1), EINT1 (DMA1), EINTO (DMA1), EDINTO (DMA1), EDINT1
(DMAO), ETINIT1 (DMAT1), ETINITO (DMA1), ERINTO (DMAT1), and EDINT1
(CPU). Figure 3—4 shows the CPU/DMA interrupt enable register. In this fig-
ure, the lower 16 bits are used for CPU interrupt enable and the upper 16 bits
are used for DMA channels interrupt enable. The corresponding DMA channel
(DMAO or DMA1) are accentuated in parentheses. Note that the serial port re-
ceive DMA interrupt is hardwired to DMA1, while the serial port transmit DMA
interrupt is hard-wired to DMAQ. At system reset, 0 is written to this register.

Figure 3—4. CPU/DMA Interrupt Enable Register

19 18 17 18
EINT3 EINT2 EINT1 EINTO
(oMao) | (oMao) | (oma0) | (DMAO)
AW RW AW RW
9 8 7 6 5 4 3 2 1 0
ETINTT | ETINTO | xx | xx | ERINTO | EXINTO | EINT3 | EINT2 | EINTT | EINTO
Py | (cPY) cryy | eryy | cryy | Py | Py | (cPy)
AW AW RW RW AW RW AW

3.1.9 CPU Interrupt Flag Register (IF)

The 'C32’'s CPU interrupt flag register (IF) has two new bit fields: DINT1 and
ITTP. Figure 3-5 depicts the CPU interrupt flag register. In this figure, the
DINTO bit refers to DMA channel 0 interrupt flag and DINT1 bit refers to the
DMA channel 1 interrupt flag. At system reset, 0 is written to this register.

Figure 3-5. CPU Interrupt Flag Register

31

16

1512 11 10 0 8 7 6 5 4 3 2 1 0
ot | owto [Tntt | TNt | xx | xx | miNTo | xinto [inTa | Ntz | inti | inTo |
R AW

CPU Registers, Memory, and Cache 3-3

CPU Register File

3.1.10 Interrupt-Trap Table Pointer (ITTP)

Similarly to the rest of the *C3x device family, the ’C32’s reset vector location
remains at address 0. On the other hand, the interrupt and trap vectors are re-
locatable. This is achieved by a new bit field in the CPU interrupt flag register
called the interrupt-trap table pointer (ITTP), shown in Figure 3-5. The ITTP
bit field dictates the starting location (base) of the interrupt-trap vector table.
This base address is formed by left-shifting by eight bits the value of the ITTP
bit field. This shifted value is called the effective base address and is refer-
enced as EA[ITTP], as shown in Figure 3—6. Therefore, the location of an inter-
rupt or trap vector is given by the addition of the effective base address formed
by the ITTP bit field (EA[ITTP]) and the offset of the interrupt or trap vector in
the interrupt-trap vector table, as shown in Figure 3-7. For example, if the
ITTP contains the value 100h, the serial port transmit interrupt vector will be
located at 10005h. Note that the vectors stored in the interrupt-trap vector
table are the addresses of the start of the respective interrupt and trap rou-
tines. Furthermore, the interrupt-trap vector table must lie on a 256-word
boundary since the eighth least significant bits of the effective base address
of the interrupt-trap vector table are 0.

Figure 3—6. Effective Base Address of the Interrupt-Trap Vector Table

EA[ITTP] =

23

8 7 0

Bits 31—16 of the CPU Interrupt Flag Register 00000000

CPU Register File

Figure 3—7. Interrupt and Trap Vector Locations

EA[ITTP] + 00h
EA[ITTP] + 01h
EA[ITTP] + 02h
EA[ITTP] + 03h
EA[ITTP] + 04h
EA[ITTP] + 05h
EA[ITTP] + 06h
EA[ITTP] + 07h
EA[ITTP] + 08h
EA[ITTP] + 0%h
EA[ITTP] + 0Ah
EA[ITTP] + 0Bh
EA[ITTP] + 0Ch

EA[ITTP] + 0Dh
EA[ITTP] + 1Fh

EA[ITTP] + 20h

EA[ITTP] + 3Bh
EA[ITTP] + 3Ch
EA[ITTP) + 3Dh
EA[ITTP] + 3Eh
EA[ITTP] + 3Fh

Reserved

INTO

INTA

INT2

INT3

XINTO

RINTO

Reserved

Reserved

TINTO

TINT1

DINTO

DINT1

Reserved

TRAP 0

TRAP 27

TRAP 28 (Reserved)

TRAP 29 (Reserved)

TRAP 30 (Reserved)

TRAP 31 (Reserved)

CPU Registers, Memory, and Cache

3-5

Memory Map

3.2 Memory Map

The 'C32's memory space of 16 MB has program, data, and 1/O spaces. Pro-
gram and data spaces are controlled by the STRB0O and STRB1 signals, while
the I/O space is controlled by the IOSTRB signal. IOSTRB reads and writes take
two cycles to accommodate slow peripheral devices. The MCBL/MP pin deter-
mines the operating mode (microprocessor or microcomputer/boot loader) and
the memory map configuration. Figure 3-8 shows the 'C32's memory map.

Figure 3-8. TMS320C32 Memory Map

oh Oh
Reset Vector Location Reserved for Boot
Loader Operations
External FFFh
STRBO Active 1000h External
TFFFFFh iﬁ‘iﬁ’
80C 7FFFFFh
Reserved 800000h
(32K Words) Reserved
807FFFh 32K Words;
808000h 807FFFh ¢)
Peripheral Bus 808000h
Memory-Mapped Peripheral Bus
Registers Memory-Mapped
(6K Words Internal) Registers
8097FFh
809800h 8097FFh (6K Words Internal)
Reserved 809800h
(32K Words) Reserved
80FFFFh (32K Words)
e — e
IOSTRB Active External
82FFFFh (128K Words) TOSTRB
830000h Active
128
Reserved 82FFFFh (12869
87FDFFh 830000h
87FEOOh Reserved
RAM Block 0 87FDFFh
B 87FE0Oh RAM Block 0
87FEFFh (256 Words
87FFO0h 87FEFFh Internal)
RAM Block 1 87FFO0h
(256 Words RAM Block 1
87FFFFh Internal) (256 \?Vordsﬁ(r:\temal)
880000h 87FFFFh
External 880000h
J— STRBO Active g__rg_ggfxg[
ive
weceeh s
External
STRB1 Active Eeomal
FFFFFFh FFFFFFh Active
Microprocessor Mode Microcomputer/Boot Loader Mode

Memory Map

3.2.4 Peripheral-Bus Memory Map

'C32's memory-mapped peripheral and external bus control registers are lo-
cated starting at address 808000h, as showed in Figure 3—8. Figure 3—11
shows the peripheral bus memory map. Note that each peripheral occupies
a 16-word region of the peripheral bus memory map. Also, note that locations
808050h through 80805Fh and 808070h through 8097FFh are reserved.

Figure 3—11. Peripheral-Bus Memory Map

808000h
80800Fh

808010h
80801Fh

808020h
80802Fh

808030h
80803Fh

808040h
80804Fh

808050h
80805Fh

808060h
80806Fh

808070h
8097FFh

DMA Channel 0 Registers
(16)

DMA Channel 1 Registers
(16)

Timer O Registers
(16)

Timer 1 Registers
(16)

Serial Port 0 Registers
(16)

Reserved
(16)

External Port Registers
(16)

Reserved

CPU Registers, Memory, and Cache 3-7

Boot Loader

3.4 Boot Loader

The 'C32’s boot loader is an enhanced version of that found in the 'C31. The
boot loader can load and execute programs received from a host processor
via standard memory devices (including EPROM), with and without hand-
shake, or via the serial port. ‘C32’s boot loader supports 16- and 32-bit pro-
gram external memory widths, as well as 8-, 16-, and 32-bit data type sizes and
external memory widths.

3.4.1 Boot Loader Mode Selection

The 'C32 boot loader functions as a memory boot loader, memory boot loader
with handshake, or a serial-port boot loader. The boot loader mode selection
is determined by the status of the INT3—INTO pins immediately following reset.
Table 3-7 lists the boot loader modes. The memory boot loader supports user-
definable byte, half-word, and full-word data formats, allowing the flexibility to
load a source program from memories having widths of 8-, 16-, and 32-bits
with or without handshaking. The source programs to be loaded reside in one
of three memory locations: 1000h, 81 0000h, and 900000h. The handshaking
mode utilizes XFO and XF1 as data acknowledge and data ready signals, re-
spectively. On the other hand, the serial port boot loader supports 32-bit fixed
burst loads from the 'C32’s serial port with an externally-generated serial port
clock and FSR.

Memory Map

Table 3—-7. Boot Loader Mode Selection

INTO INT1 INT2 INT3 |BootLoader Mode Source Program Location
0 1 1 1 External Memory Boot 1 address 1000h
1 0 1 1 External Memory Boot 2 address 81 0000h
1 1 0] 1 External Memory Boot 3 address 900000h
1 1 1 0 32-bit fixed burst serial Serial Port
0 1 1 0 External Memory with Handshake | Boot 1 address 1000h,
XF0 and XF1 used in handshaking
1 0 1 0 External Memory with Handshake | Boot 2 address 810000h,
XFO0 and XF1 used in handshaking
1 1 0 0] External Memory with Handshake | Boot 3 address 900000h,

XF0 and XF1 used in handshaking

3.4.2 Boot Loading Sequence

The following is the sequence of events that occur during the boot load of a
source program. Table 3—8 shows the structure of the source program.

1) The boot loader mode is invoked by resetting the *C32 while driving the

2)

MCBL/MP pin high and the corresponding INT3—INTO pins low. The
MCBL/MP must stay high during boot loading, but can be changed any-
time after boot loading has terminated. No reset is necessary when chang-
ing the INT3—INTO pin, as long as the ’C32 is not accessing the overlap-
ping memory (Oh—FFFh) during this transition. In nonhandshake mode,
one of the INT3—INTO pins can be driven any time after deasserting the
RESET pin (driven low and then high). While in handshake mode, two in-
terrupt pins have to be asserted before deasserting the RESET pin.

' The status of the interrupt flag (IF) register’s INT3—INTO bit fields dictate
the boot loading mode. The bits are polled in the order described in the flow
chart in Figure 3—-13.

a) Ifonlytheinterruptflag (IF) register’s INT3 bit field is set, the boot load-
er configures the serial port for 32-bit fixed burst mode reads with an
externally generated serial port clock and FSR. Then, it proceeds to
boot load the source program from the serial port. A header indicating
the STRBO, STRB1, and IOSTRB control registers precedes the actu-
al program, refer to Table 3—8. These header values are loaded into
the corresponding locations at the completion of the boot load opera-
tion. The transferred data-bit order supplied to the serial port must be-
gin with the most significant bit (MSB) and end with the least signifi-
cant bit (LSB). Figure 3—14 depicts the boot loader serial port flow.

b) Otherwise, the boot loader attempts a memory boot load. Figure 3—15
shows the boot loader memory flow. If the Interrupt Flag (IF) register’s

CPU Registers, Memory, and Cache 3-9

Boot Loader

3-10

3)

4)

5)

INTO bit field is set, the source program is loaded from memory loca-
tion 1000h. If the Interrupt Flag (IF) register’s INT1 bit field is set, the
source program is loaded from memory location 810000h. If the Inter-
rupt Flag (IF) register’s INT2 bit field is set, the source program is
loaded from memory location 900000h. After determining the
memory location of the source program, the boot loader checks INT3
bit field in the Interrupt Flag (IF) register. If this bit is set, all data trans-
fers are performed with synchronous handshake. The handshake
protocol utilizes XFO and XF1 as data acknowledge and data ready
signals, respectively. 'C32’s XFO0 is an output pin while the XF1 is an
input pin. Figure 3—16 shows the handshake data transfer operation.
The data transfer operation occurs as follows:

i) The’C32’s boot loader waits until the host sets XF1 low to read in
the data. While the 'C32 waits for XF1 to drop low, the TACK pin
pulses. Setting XF1 low communicates to the 'C32 that the data is
valid. The IACK pulses indicate that the 'C32 is waiting for data.

i) The boot loader sets XFO low after reading the data value. Drop-
ping XFO acknowledges to the host that the data was read.

ii) Thehostsets XF1 hightoinform the ‘'C32 that the datais no longer
valid.
iv) Finally, the 'C32 terminates the transfer by setting XFO high.

Note that the memory boot load source program has a header indicating
the boot memory width, STRBO, STRB1, and IOSTRB control registers,
refer to Table 3-8.

After reading the header, the boot loader copies the source program
blocks. The source program blocks have three entries preceding the
source program block data. The first entry in the source program block in-
dicates the size of the block, the second entry indicates the address where
the block is to be loaded, while the third entry contains the destination
memory strobe including a pointer that identifies the destination memory
strobe (STRBO, STRB1, or IOSTRB) and a value that describes the strobe
configuration for the memory width and data type size. If the destination
memory is internal, the third entry should contain a 0. Note that the boot
loader cannot load the source program to any memory address below
1000h, unless the address decode logic is remapped.

Once all the program blocks are loaded into their respective address loca-
tions with the given data type sizes, the boot loader resets the IOSTRB,
STRBO, and STRB1 control registers to the values read at the beginning of
the boot load process.

Finally, the boot loader branches to the destination address of the first
source block loaded and begins program execution.

Boot Loader

Figure 3—13. Boot Loader Mode Selection Flowchart

Reset
MCBL/MP = 1

IF
Register Bit
INT3 Set?

IF
Register Bit

Register Bit
INTO Set?

IF
Register Bit
INT2 Set?

CPU Registers, Memory, and Cache 3-11

Boot Loader

Figure 3—14. Boot Loader Serial Port Load Flowchart

(serial Port Load)

Set Up Serial Port for
32-Bit Fixed Burst Mode

!

/ Wait for Serial Port Input /

Read IOSTRB Control
Word

!

/ Wait for Serial Port Input /

!

Read STRBO Control Word

v

/ Wait for Serial Port Input /

v

Read STRB1 Control Word

I

N

v

/ Wait for Serial Port Input /

Load Block Size

3-12

Yes

/ Wait for Serial Port Input /

Set STRBO, STRB1, and
IOSTRB Control Registers

Branch to Destination
Address of First Block
Loaded

Load Destination Address

v

(Begin Program Execution)

/ Wait for Serial Port Input /

Read Destination Strobe
Control Word

v

According to the Destination

Address, Set Corresponding

STRB Control Register Data
Type Size Field

/ Wait for Serial Port Input /

Transfer One Word From
Serial Port to Destination
Address

Boot Loader

Figure 3—15. Boot Loader Memory Load Flowchart

(Memory Load)

Is
IF Register
Bit Field INT3
Set
?

No

Enable
Handshake Mode

Determine Boot Address:
Boot 1, Boot 2, or Boot 3

Read Memory Width:
8, 16, or 32 Bits

™ Read IOSTRB Control
Register

Read STRBO Control
Register

Read STRB1 Control
Register

L

v

Read Block Size

Yes

Read Destination Address

Set STRBO, STRB1, and
IOSTRB Control Registers

Read Destination Strobe
Control Word

According to the Destination

Address, Set Corresponding

STRB Control Register to the
previously read value.

-

Transfer Data Source to

Destination Address

End
of Block
?

Yes

CPU Registers, Memory, and Cache

Branch to Destination
Address of First Block
Loaded

I

(Begin Program Execution)

3-13

Boot Loader

Figure 3—16. Handshake Data Transfer Operation

((

iii iv

({

XF1

N

I\l

L

-

(f

XFO

D31-0 ——*$——< Valid Data
| I
I I
T T

1

-

5

if < ValidData

\/\/

—_

< T

3.4.3 Boot Data Stream Structure

Table 3-8 shows the data stream structure. The data stream is composed of
a header of 3 (serial port load) or 4 (memory load) words and one or more
blocks of source data. The boot loader utilizes this header to determine the
physical memory width where the source program resides (memory load) and
to configure the STRBs after completion of source program boot load. The
blocks of source data have three entries in addition to the raw data. The first
entry in this block indicates the size of the block. The second entry in this block
indicates the memory address where the boot loader copies this source block.
The third entry contains the destination memory strobe configuration including
memory width and data type size. This allows the boot loader to copy and store
8-, 16-, or 32-bit data values into 8-, 16-, or 32-bit wide memory. Words 8
through n, of the shaded entries in Table 3-8, contain the source data for the
first block.

Boot Loader

Table 3-8. Source Data Stream Structure

Wordt

Content

Valid Data Entries

1

Memory width (8, 16, or 32 bits) where source program resides

8h, 10h, or 20h

Value to set the IOSTRB control register

See subsection 7.3.3

Value to set the STRBO control register

See subsection 7.3.1

2
3
4

j+1

Value to set the STRB1 control register

Zero word. Note that if more than one source block was read, word j | Oh
shown above would be the last word of the last source block. Each block

would have the format shown in the shaded entries.

See subsection 7.3.2

t Word 1 does not exist in serial port boot load since the source program does not reside in memory.

% The SSSSSS hexadecimal digits refer to the lower 24 bits of the strobe control register. The x hexadecimal digit identifies the
strobe as follows: 0 for IOSTRB, 4 for STRBO, and 8 for STRB1. Note that when loading into internal memory the entire field,
S5585556xh, should be cleared to 0.

CPU Registers, Memory, and Cache 3-156

Boot Loader

Each source block of data can be loaded to different memory locations. Each
block specifies its own size and destination address. The last source block of
the data stream is appended with a zero word. Because the 'C32’s STRBs can
be configured to support different external memory widths and data type sizes,
each source block specifies its data type size. The external memory width was
set when the boot loader read the STRBs control register values in the source
data stream header.

3.4.4 Boot Loader Hardware Interface

The hardware interface for the memory boot load utilizes STRBX_B3 through
STRBX_BO pins as strobe byte enable pins as shown in Figure 3—-17. The
hardware interface is independent of the boot source memory width. This
interface is identical to the 32-bit wide memory interface described in Case 2,
in subsection 7.3.2. For 16-bit memory widths, remove the left-most two
memory devices of Figure 3—17. For 8-bit memory widths, remove all but the
right-most one of the memory devices of Figure 3-17.

Figure 3—-17. External Memory Interface for Source Data Stream Memory Boot Load

'C32

STRBX B3
STRBX_B2
STRBX B1
STRBX_BO

D(31-24)
D(23-16)
D(15-8)
D(7-0)

_’: A2z f A2g f A2z f A2z
> Ao > Az > Az > Az
1 Az > Apy > Aoy > Aoy
—» A2 > Az > A > A
> A, > A, | A, | A,
—p— A«| »- A1 » A1 A-|
— > > Ay > Ay Ay
CS »CS »—CS »—1CS
1/10(7-0) 1/0(7-0) 1/10(7-0) 1/0(7-0)
I § 3 A A
*—
—<
—<

3-16

Chapter 4

Data Formats and Floating-Point Operation

To facilitate the handling of 16-bit floating point data types, the ’'C32 adds anew
short floating point format for external 16-bit data types. Note that the following
short floating-point format is used only in external 16-bit floating point data ac-
cess. This format is different than the 16-bitimmediate short floating point data
format used in the 'C32's instruction set. See subsection 4.3.1 of the
TMS320C3x User’s Guide (literature number SPRU031) for detailed informa-
tion of the 16-bit immediate short floating-point data format.

Floating-Point Formats

4.3.1 Short Floating-Point Format for External 16-Bit Data

In the short floating point format for external 16-bit data type size, floating point
numbers are represented by a 2s-complement 8-bit exponent field (), a sign
bit (s), and an 8-bit mantissa field (man) with an implied most-significant non-
sign bit.

Figure 4—6. Short Floating-Point Format

15 8 7 6 0
e s f

l-—man ‘-——'l

Operations are performed with an implied binary point between bits 7 and 6.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point 2s-complement num-
ber x in the short floating-point format is given by:

X= 01.fx 28 ifs=0
10.fx 28 ifs=1
0 ife=-128

Note that the floating-point instructions such as LDF, MPYF, ADDF, etc., and
the integer instructions such as LDI, MPYI, ADDI, etc., produce different re-
sults when accessing the same memory location. The integer load instruc-
tions store the value in the Jeast significant bits of the 'C32’s registers. A bit
field in the strobe control register controls sign extension or zero-fill of the most
significant bits of the integer value. On the other hand, the floating-pointload
instructions store the value in the most significant bits of the 'C32’s registers.
For example:

If AR1= 4000h, R1 = 00 00000000h, the value stored at memory location
4000h is 0180h, and STRBO is configured for a physical memory size and data
type size of 16 bits. Then,

the result of: ADDI *AR1,R1 is R1 00 00000180h, while

the result of: ADDF *AR1,R1 is R1 01 C0000000h (= — 3.0),
since—4.0+1.0=-3.0

Chapter 5

Addressing

The addressing modes in the ’C32 are identical to those in the 'C30 and 'C31
and are discussed in the TMS320C3x User's Guide (literature number
SPRUO031).

Chapter 6

CPUProgram FIowControl

This chapter discusses the operations that occur during reset. It also dis-
cusses the IDLE2 and LOPOWER power management modes available in the
'C32.

6-1

Reset Operation

6.5 Reset Operation

At reset, the 'C32 performs the following operations:

Q
Q

The peripherals are reset

The CPU/DMA interrupt enable (IE), CPU interrupt flag (IF), and I/O flag
(IOF) registers are loaded with Os.

All the bit fields in the status register (ST) are loaded with zero, except the
PRGW status bit field that is loaded with the status of the PRGW pin.

The external bus control registers are reset, see Section 7.3 for a descrip-
tion of the reset value.

The 'C32 performs a 32-bit read to fetch the reset vector from memory
location Oh. Once read, this value is loaded into the program counter.

The 'C32 starts executing code from the memory location dictated by the
program counter.

Reset Operation

Table 6-3 shows the state of the 'C32’s pins after reset is pulled low.

Table 6-3. Pin Operation at Reset

Signal #Pins Operation at Reset

External Bus Interface (70 pins)
D31-0 32 Synchronous reset. Placed in high-impedance state.
A23-0 24 Synchronous reset. Placed in high-impedance state.
R/W 1 Synchronous reset. Deasserted by going to a high level

RDY 1 Reset has no effect.
HOLD 1 Reset has no effect.
HOLDA 1 Reset has no effect.

ff
Control Signals (9 Pins)

RESET 1 Reset input pin.

INT3-INTO 4 Reset has no effect.

TACK 1 Synchronous reset. Deasserted by going to a high level.

MCBL/MP 1 Reset has no effect.

XF1-XFo 2 Asynchronous reset. Placed in high-impedance state.
Serial Port Signals (6 Pins)

CLKX0 1 Asynchronous reset. Placed in high-impedance state.

DX0 1 Asynchronous reset. Placed in high-impedance state.

FSXO0 1 Asynchronous reset. Placed in high-impedance state.

CLKRO 1 Asynchronous reset. Placed in high-impedance state.

DRO 1 Asynchronous reset. Placed in high-impedance state.

FSRO 1 Asynchronous reset. Placed in high-impedance state.

Note: Shaded entries corresponds to the (new) signals that are available only in the 'C32.

CPU Program Flow Control 6-3

Reset Operation

Table 6-3. Pin Operation at Reset (Continued)

Signal #Pins Operation at Reset
Timer Signals (2 Pins)
TCLKO 1 Asynchronous reset. Placed in high-impedance state.
TCLK1 1 Asynchronous reset. Placed in high-impedance state.
Clock Signals (3 Pins)
H1 1 Synchronous reset. Goes to its initial state when RESET makes a 1-to-0
transition. See Chapter 13 of the TMS320C3x User’s Guide.
H3 1 Synchronous reset. Goes to its initial state when RESET makes a 1-to-0
transition. See Chapter 13 of the TMS320C3x User’s Guide.
CLKIN 1 Reset has no effect.
Emulation and Test Signals (5 Pins)
EMU3-EMUO 4 Reset has no effect.
SHZ 1 Reset has no effect.
Supply Signals (45 pins)

CVss 7 Reset has no effect.

DVgg 7 Reset has no effect.

IVss 4 Reset has no effect.

DVpp 12 Reset has no effect.

VppL 8 Reset has no effect.

VssL 6 Reset has no effect.

Vsugs 1 Reset has no effect.

6-4

Power Management Modes

6.7 Power Management Modes

The 'C32 CPU has been enhanced by the addition of two power management
modes, IDLE2 and LOPOWER. Either mode is invoked by executing the corre-
sponding power-down instruction.

6.7.1 IDLE2 Power-Down Mode
In IDLE2 mode (opcode = 06000001h), the 'C32 behaves as follows:

Q
Q
Q

No instructions are executed.
The CPU, peripherals, and internal memory retain their previous state.

The external bus output pins are idle (the address lines remain in their pre-
vious state, the data lines are in the high-impedance state, and the output
control signals are inactive).

When the device is in the functional (nonemulation) mode, the clocks stop
with H1 high and H3 low (see Figure 6-1).

The 'C3x remains in IDLE2 until one of the four external interrupts
(INT3-INTO) is asserted for at least one H1 cycle. When one of the four
interrupts is asserted, the clocks start after a delay of one H1 cycle. The
clocks can start up in the phase opposite to that in which they were
stopped (that is, H1 may start low when H3 was low before stopping the
clocks and H3 may start low when H1 was previously low). However, the
H1 and H3 clocks remain 180 degrees out of phase with each other (see
Figure 6-2).

During IDLE2 operation, the CPU recognizes one of the four external inter-
rupts ifitis asserted for atleast two H1 cycles. To avoid generating multiple
false interrupts in level-triggered mode, the interrupt must be asserted for
fewer than three H1 cycles.

The interrupt service routine (ISR) must have been setup before placing
device in IDLE2 mode since the instruction following the IDLEZ2 instruction
is not executed until the RETI (return from interrupt) instruction is
executed.

When the device is in emulation mode and the IDLE2 instruction is
executed, the H1 and H3 clocks continue to operate normally and the CPU
behaves as if an IDLE instruction had been executed. The clocks continue
to run for correct operation of the emulator.

Note:

For correct device operation, the three instructions following a delayed
branch should not include either IDLE or IDLEZ2 instructions.

CPU Program Flow Control 6-5

Power Management Modes

Figure 6-1. IDLE2 Timing

ST/ N A NV A
T\ S

Data

Address

IDLE2 Execution

\
/

Figure 6-2. Interrupt Response Timing After IDLE2 Operation

CLKIN
. Interrupt Vector Fetchfirst
| ClocksDriven | | | Rgad I | instructionof ISR
H3 Y/ \ y \ 4 __Y \ 8 \ IV_\—*—_\
I | I I
L | | |
H1 _'—"\I /— "\ /_\, /T — ,__/_‘I_J
I | I l I I
INT3-0 | vy | | I |
I | | I | I |
INT3-0 | | I I I
L
Flag] T] | Addpessof
| { | | | | 1Stinst. |
Address X Vector Address X X
I | I I I [I
Data I | | |
I [| [

6.7.2 LOPOWER Mode

In the LOPOWER (low-power) mode, the CPU continues to execute instruc-
tions and the DMA can continue to perform transfers, but at a reduced clock
rate of the CLKIN frequency divided by 16, thatis, a’C3x with a CLKIN frequen-
cy of 32 MHz performs the same as a 2-MHz 'C3x that has an instruction cycle
time of 1000 ns or 1 MHz).

Power Management Modes

The 'C3x slows down to 1/16 of full speed operation during the read phase of
the LOPOWER instruction. The 'C3x resumes full speed operation during the
read phase of the MAXSPEED instruction. The LOPOWER instruction encod-
ing (opcode) is 1080 0001h and the MAXSPEED instruction encoding is
1080 0000h.

Figure 6-9. LOPOWER Timing

(SR VAV A

I‘ 32CLKINcycles ﬂ
H3 "\ \ I~
HI\ /T \ /[—
LOPOWER Read

Figure 6-10. MAXSPEED Timing
25 A VAV S

|‘ 32CLKINcycles ,l
H3 ™\ / /o
H1 _/ \ W W o
MAXSPEED Read

CPU Program Flow Control 6-7

6-8

Chapter 7

Enhanced External Memory Interface

s s

The 'C32 external memory interface provides greater flexibility by improving
the 'C3x core with several new features. This chapter describes these features
and enhancements in detail.

7-1

Features

7.1 Features

The C32's external memory interface includes the following features:

O One external pin, PRGW, configures the external program memory width
to 16 or 32 bits.

O Two sets of memory STRBs (STRB0 and STRB1) and one IOSTRB allow
zero glue-logic interface to two banks of memory and one bank of external
peripherals.

(O Separate bus control registers for each STRB control wait state genera-
tion, external memory width, and data type size.

O Each memory STRB handles 8-, 16- or 32-bit external data accesses
(reads and writes).

O Multiprocessor support through the HOLD and HOLDA signals, is valid for
all the STRBs.

Overview

7.2 Overview

The following sections describe examples, control register setups, and restric-
tions necessary to fully understand the operation and functionality of the exter-
nal memory interface.

7.2.1 External Memory Interface Overview

The 'C32 memory interface accesses external memory through one 24-bit ad-
dress and one 32-bit data bus that is shared by three mutually-exclusive
strobes (STRBO, STRB1, and IOSTRB). Depending on the address accessed,
the 'C32 activates one of these strobes according to the memory map shown
in Figure 3-8.

STRBO and STRB1 can access 8-, 16-, or 32-bit data from 8-, 16-, or 32-bit
wide memory. This is accomplished by four signals in each strobe:
STRBx_B3/A_1, STRBx_B2/A_5, STRBxB1, and STRBx_BO. These signals
serve as byte enable pins to access one byte, half-word, or a full-word from
the external memory. The first two signals also serve as additional address
pins to perform two or four consecutive accesses in 8-bit or 16-bit wide external
memory. The "C32 controls the behavior of these pins through the data size
and memory width bit fields in the corresponding strobe control register, as fol-
lows:

O Memory width (default value dependent on PRGW pin level)
M 8-bit wide memory

m STRBx_B3/A_{ and STRBx_B2/A_5 as address pins
m STRBx_BO as byte enable/chip select signal
= STRBx_B1 unused

W 16-bit wide memory

m STRBx_B3/A_4 as address pin
m STRBx_B1 and STRBx_BO as byte enable signal
= STRBx_B2 unused

W 32-bit memory

= STRBx_B3, STRBx_B2, STRBx_B1, and STRBx_BO as byte
enable signals
O Datasize

B 8-bit data, physical address = logical address shift right by 2
B 16-bit data, physical address = logical address shift right by 1
W 32-bit data, physical address = logical address

Enhanced External Memory Interface 7-3

Overview

IOSTRB can access 32-bit data from 32-bit wide memory. It does not have the
flexibility of STRBO and STRB1 since it is composed of a single signal:
IOSTRB. IOSTRB bus cycles are different from those of STRB0 and STRB1
and are discussed in Section 7.4. This timing difference accomodates slower
I/0 peripherals.

Summarizing, the 'C32 memory interface parallel bus implements three mutu-
ally-exclusive address spaces distinguished via three separate control signals
as shown in Figure 7-1. STRBO and STRB1 support 8-/16-, or 32-bit data ac-
cess in 8-/16-/32-bit wide external memory and 16-/32-bit program access in
16-/32-bit wide external memory. IOSTRB address space supports 32-bit
data/program access in 32-bit wide external memory. Internally, the 'C32 has
a 32-bit architecture, hence, the memory interface packs and unpacks the data
accessed accordingly.

Figure 7—1. Memory Address Spaces

[m———————
|
|
32-Bit
CPU
|
|
Strobe
| Control
Registers
e ——

—————————— A
| N 8-/16-/32-Bit Data in
'C32 I STRBO 8-/16-/32-Bit Wide Memory
| ¥ . .
| Program in 16-/32-Bit Wide
| Memory
) |
PRGW Pin | 8-/16-/32-Bit Data in
l STRB1 8-/16-/32-Bit Wide Memory
| EEm—
| Program in 16-/32-Bit Wide
Memory ! Memory
]
Interface |
| OSTRB 32-Bit Data in 32-Bit Wide
| Memory
| E— . -
Program in 32-Bit Wide
J' Memory

7.2.2 Program Memory Access

7-4

The 'C32 supports program execution from 16- or 32-bit external memory
width. The PRGW pin configures the width of the external program memory.
When this pin is pulled high, the 'C32 executes from 16-bit wide memory.
When this pin is pulled low, the 'C32 executes from 32-bit wide memory. For
16-bit wide zero wait-state memory, the 'C32 takes two instruction cycles to
fetch a single 32-bit instruction. During the first cycle the lower 16 bits of the
instruction are fetched. During the second cycle, the upper 16 bits are fetched
and concatenated with the lower 16 bits. 32-bit memory fetches are identical
to those of the 'C30 and 'C31.

Overview

The PRGW status bit field of the CPU status (ST) register reflects the setting
of the PRGW pin. Figure 7-2 depicts all the bit fields of the CPU status (ST)
register.

Figure 7-2. Status Register

12 1 10 9 8 7 6 5 4 3 2 1 0

CC |CE|CF |xx |RM |OVM|LUF | LV | UF | N Y4 \ C

R RW RW RW RW RW RW RW RW RW RW RW RW RW RW

The status of the PRGW pin also affects the reset value of the physical memory
width bit fields of the STRBO and STRB1 bus control registers. The physical
memory width is set to 32-bit memory width if the PRGW pin is logic low after
the device reset. The physical memory width is set to 16-bit memory width if
the PRGW pin is logic high after the device reset (see Section 7.3 for more in-
formation).

7.2.3 Data Memory Access

The 'C32 can load and store 8-, 16-, or 32-bit data quantities from and into
memory. Because the CPU has a 32-bit architecture, the device internally han-
dles all 8-, 16-, or 32-bit data quantities as a 32-bit value. Hence, the external
memory interface handles the conversion between 8- and 16-bit data quanti-
ties to the internal 32-bit representation. The external memory interface also
handles the storage of 32-, 16-, or 8-bit data quantities into 32-, 16-, or 8-bit
wide memories.

7.2.4.1 8-, 16-, or 32-Bit Integers Data Types

The 'C32 supports 8-, 16- or 32-bit integer data quantities. When 8- or 16-bit
integers are read from external memory, the value is loaded into the least sig-
nificant bits of the register with the most significant bits sign-extended or zero-
filled. The polarity of the Sign Ext/Zero Fill bit field of the corresponding STRB
control register controls the sign extension or zero fill (see paragraphs 7.3.1.1
and 7.3.1.2). 32-bitinteger data access is identical to that ofthe 'C30 and 'C31.

Enhanced External Memory Interface 7-5

Overview

7.2.4.2 16- or 32-Bit Floating-Point Data Types

The 'C32 supports 16- or 32-bit floating point data. For 16-bit floating-point
reads, the eight MSBs are the signed exponent and the eight LSBs are the
signed mantissa (See subsection 4.3.1). When a 16-bit floating-point value is
loaded into a 40-bit register, the external memory interface zero-fills the least
significant 24 bits of the register. When a 16-bit floating-point value is used as
a 32-bit on-chip input operand, the external memory interface zero-fills the 16
least significant bits of the 32-bit input operand. 32-bit floating-point data ac-
cess is identical to those of 'C30 and 'C31.

Configuration

7.3 Configuration

To access 8-, 16-, or 32-bit data (types) from 8-, 16-, or 32-bit wide memory,
the memory interface of the 'C32 device uses either strobe STRBO or STRB1
with four pins each. These pins serve as byte enable and/or additional address
pins. In conjunction with a shifted version of the internal address presented to
the external address, the 'C32 can select a single byte from one external
memory location or combine up to four bytes from contiguous memory loca-
tions. The behavior of these pins is controlled by the external memory width
and the data type size. The selected data size also determines the amount of
internal to physical address shift. You communicate these values to the 'C32
memory interface through bit fields in the bus control registers.

7.3.1 External Interface Control Registers

The following sections describe the bus control registers used to manipulate
the byte addressability features of the 'C32. Figure 7—3 shows the external in-

terface control memory map.

Figure 7-3. Memory-Mapped External Interface Control Registers

Address
808060h
808061h
808062h
808063h
808064h
808065h
808066h
808067h
808068h
808069h

80806Fh

Register

IOSTRB Control

Reserved

Reserved

Reserved

STRBO Control

Reserved

Reserved

Reserved

STRB1 Control

Reserved

Reserved

Enhanced External Memory Interface 7-7

Configuration

7.3.1.1 STRBO Control Register

The STRBO control register (Figure 7—4) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped
to STRBO. The following table lists the register bits with the bit names and func-
tions. At the system reset, OF 10F8h is written to the STRBO control register if
PRGW pin is logic low and 0710F8h is written to the STRBO control register
if the PRGW pin is logic high.

Figure 7—4. STRBO Control Register

31 23
Reserved
15 13 12 8 2 1 0
Reserved BNKCMP WTCNT SWwW HIZ NOHOLD HOLDST
R/W R/W R/W RW R/W R

Same as in
'C30/'C31

7.3.1.2 STRB1 Control Register

7-8

The STRB1 control register (Figure 7-5) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped
to STRB1. Figure 7-5 shows the register bits with their names and functions.
At system reset, OF 10F8h is written to the STRB1 control register if PRGW pin
is logic low and 0710F8h is written to the STRB1 control register if PRGW pin
is logic high.

Configuration

Figure 7-5. STRB1 Control Register
31 21 20 19 18 17 16 15 13 12 8 7 5 4 3 2 0

Reserved | Reserved | BNKCMP | WTCNT | SWW | Reserved

R/W R/W RW

7.3.1.3 IOSTRB Control Register

The IOSTRB control register (Figure 7—6) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped
to IOSTRB. Unlike the STRBO and STRB1, there is no byte enable signal for
the IOSTRB. The data access through the IOSTRB is always 32-bit. The fol-
lowing table lists the register bits with the bit names and functions. At the sys-
tem reset, OF8h is written to the IOSTRB control register. The IOSTRB timing
is identical to the ’C30’s IOSTRB timing.

Figure 7—6. IOSTRB Control Register

31 8 7 54 32 0
| Reserved | WTCNT | sww | Reserved |
RW RW

7.3.1.4 Data Type Size Field

The Data Type Size field indicates the size of the data type written in memory.
This field can have the following values (the reset value is shown by the

shaded entry):
Bit 17 Bit 16 Data Type Size
0] 0 8-bit
0 1 16-bit
1 0 Reserved

7.3.1.5 Physical Memory Width Field

The Physical Memory Width fields indicates the size of the physical memory
connected to the device. The reset value depends on the status of the PRGW

Enhanced External Memory Interface 7-9

Configuration

pin. If PRGW pin is logic low, the physical memory width is configured to 32
bits (= 11,). If PRGW pin is logic high, the physical memory width is configured
to 16 bits (= 015). This field can have the following values:

Bit19 | Bit18 | Physical Memory Width

0 0 8-bit

Reserved

Setting the Physical Memory Width field of the STRBO or STRB1 control regis-
ters changes the functionality of the STRBO or STRB1 signals. When the
Physical Memory Width field is configured to 32 bits, the corresponding
STRBx_B0-STRBx_B3 signals are configured as byte enable pins (refer to
Figure 7-7). When the Physical Memory Width field is configured to 16 bits,
the corresponding STRBx_BS3 signal is configured as an address pin while
STRBx_B0 and STRBx_B1 signals are configured as byte enable pins (refer
to Figure 7—11). When the Physical Memory Width field is configured to 8 bits,
the STRBx_B3 and STRBx_B2 signals are configured as address while
STRBx_Bx is configured as byte enable pin (refer to Figure 7—-15). Note that
once a STRBx_Bx signal is configured as an address pin it will be active for
any external memory access (STRBO, STRB1, IOSTRB, or external program
fetch).

7.3.1.6 Sign Ext/Zero Fill Field

The Sign Ext/Zero Fill field selects the method of converting 8- and 16-bit inte-
ger data to 32-bit integer data when transferring data from external memory
to aninternal register or memory location. This field can have the following val-
ues (the shaded entry is the reset value):

Bit 20 Sign Ext/Zero-Fill Function Description

1 The most significant bits of an 8- or 16 bit integer reads are zero-filled to make the number
32-bits

Note that 8- and 16-bit integer loads are stored in the least significant bits of
the 'C32 registers/memory with the most significant bits sign-extended or
zero-filled according to the setting of this bit field.

7.3.1.7 STRB Config Field

The STRB Config field indicates if the STRBO_Bx signals are active when
accessing data from either STRBO or STRB1 memory spaces. This mode is

7-10

Configuration

useful when accessing a single external memory bank that stores two different
data types, each mapped to a different STRB (refer to Chapter 12 for exam-
ples). This field can have the following values (the shaded entry depicts the
reset value):

800000h—FFFFFh.
STRB1_Bx signals are active for address locations 900000h—FFFFFFh

7.3.1.8 STRB Switch Field

The STRB Switch field defines whether a single cycle is inserted between
back-to-back reads when crossing STRBO to STRB1 or STRB1 to STRBO
boundaries (switching STRBSs). The extra cycle toggles the strobe signal dur-
ing back-to-back reads. Otherwise, the strobe will remain low during back-to-
back reads. This field can have the following values (the shaded entry high-
lights the reset value):

Bit 22
(STRBO only) STRB Switch Function Description

1 Inserts a single cycle between back-to-back reads when switching from STRBO to STRB1
or vice versa.

7.3.1.9 Example

For example, consider a’C32 connected to two banks of external memory. In
this configuration, one bank is mapped to STRBO while the other bank is
mapped to STRB1. The STRBO bank of memory is 32 bits wide and stores
32-bit datatypes. The STRB1 bank of memory is 16 bits wide and stores 16-bit
data types. You transfer these configurations to the TMS320C32 by setting the
Physical Memory Width and Data Type Size fields of the respective STRBO
and STRB1 control registers. Also, you must clear the STRB Config bit field
to 0 since the banks are separate memories. Note that 'C32's address pins
A23A20A21...A1Ag are connected to the STRBO memory bank address pins
A23A20A%1...A1Ag. But,'C32's address pins AooA21...A1Ag A_1 areconnectedto
the STRB1 memory bank address pins Ax3A20Az1...AAg.

Enhanced External Memory Interface 7-11

Configuration

Executing the following code on this device results in the data access se-
guence shown in the Table 7-1:

1) LDI 4000h, ARl
2) LDI *AR1++, R2

AR1 = 4000h
R2 *4000h and ARl = ARl + 1

3) ADDI *AR1+4++, R2 R2 = R2 + *4001h and ARl = ARl + 1

4) ADDI *AR1++, R2 ; R2 = R2 + *4002h and ARl = ARl + 1
= R2 + *4003h and ARl = ARl + 1

6) LDI 900h, AR2 AR2 = 900h

7) LSH 12, AR2 AR2 = 900000h

8) LDI *AR2++, R3
9) ADDI *AR2, R3

5) ADDI *AR1++, R2 ; R2

; R3 = *¥900000h and AR2 = AR2 + 1

; R3 = R3 + 900001h
By setting the bit fields of the STRBO bus control register with a Physical
Memory Width of 32 bits and a Data Type Size of 32-bit, the external address
referring to STRBO location is identical to the internal address used by the 'C32
CPU. On the other hand, setting the bit fields of the STRB1 Bus Control regis-
ter with a Physical Memory Width of 16-bit and a Data Type Size of 16-bit, the
address presented by the 'C32’s external pins is the internal address shifted
right by one bit with A3 driving Agz and A,,. Since STRB1 memory bank ad-
dress pins AzzAxAsi...A1Ag are connected to the 'C32’'s address pins
AxoAz...AjAGA 4, the address seen by the STRB1 memory bank is identical to
the ’C32 CPU internal address.

Table 7-1. Data Access Sequence for a Memory Configuration with Two Banks

External Memory

Instruction Internal External Active Strobe Data
Address Address Accessed 31 0
(2) 4000h 4000h STRBO_B0/B1/B2/B3 Data 0 4000h Data 0
(3) 4001h 4001h STRBO_B0/B1/B2/B3 Data 1 4001h Data 1
4) 4002h 4002h STRB0_B0/B1/B2/B3 Data 2 4002h Data 2
(5) 4003h 4003h STRB0_B0/B1/B2/B3 Data 3 4003h Data 3
15 0
(8) 900000h C80000h STRB1_B0/B1 and Data 4 900000h Data 4
STRB1_B3/A_1=0 Data
9) 900001th C80001h STRB1_B0/B1 and Data 5

7-12

STRB1_B3/A_q1 =1

'C32 ability to select a single byte from a single external memory location or
combinations of bytes from several contiguous memory locations, dictates
that the internal address seen by the CPU corresponds to a shifted version of
the address presented to the external pins. The C32’s external memory inter-
face handles this conversion automatically as long as you configure the Bus

Configuration

Control register to match the external memory configuration present in your
hardware implementation.

As seen in Figure 2—-2, 'C32 handles nine different memory access cases. The
following sections discusses these cases in detail.

7.3.2 32-Bit Wide Memory Interface

'C32 memory interface to 32-bit wide external memory utilizes STRBx_B3
through STRBx_BO pins as strobe-byte enable pins as shown in Figure 7-7.
In this manner, the 'C32 can read/write a single 32-, 16-, or 8-bit value from the
external 32-bit wide memory.

Figure 7-7.°'C32 External Memory Interface for 32-Bit SRAMs

TMS320C32

AXX
R/W

STRBx_B3

STRBx_B2
STRBx_B1
STRBx_BO

D(31-24)
D(23-16)
D(15-8)
D(7-0)

\ 4

AXX

WE

\ 4

4
13 &
\

EE
V V(Vr
EE

YYy
Yy

cs

CS CS

CS

/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7-0)
A A A A

Anl‘

Case 1: 32-Bit Wide Memory With 8-Bit Data Type Size

When the data type size is 8-bit, the 'C32 shifts the internal address two bits
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal address A,; to the external
address pins Aps, Agp, and Ayq. Also, the memory interface activates the
STRBx_B3 through STRBx_BO pins according to the value of the internal ad-
dress bits A; and Ay as shown in Table 7—2. Figure 7—-8 shows a functional dia-
gram of the memory interface for 32-bit wide memory with 8-bit data type size.

Enhanced External Memory Interface 7-13

Configuration

Table 7-2. Strobe-Byte Enable for 32-Bit Wide Memory With 8-Bit Data Type Size

Internal A; Internal Ag Active Strobe-Byte Enable

0 0 STRBx_BO
0 1 STRBx_B1
1 0 STRBx_B2
1 1 STRBx_B3

Figure 7-8. Functional Diagram for 8-Bit Data Type Size and 32-Bit External Memory
Width

TMS320C32

Memory Interface

Aoz] A23
A2p A22
— —] > > >
A2y A2y Axq Ay Axq Ay
— —_—p > > S
A2o A2 A2 A0 Ao Ao
—_—] > > >
: A1g A9 A9 A9 Atg
: _—] 'S > >
‘ Aqg Ag Ag Ag Ag
A2 _\ ‘ ' .
Ay — .
Ao Y g fa) > A q 1%
cs cs cs cS
l 1/0(7-0) 1/O(7-0) 1/0(7-0) 1/0(7-0)
1 »{ STRBx B3
10 »| STRBX B2
01 »{ STRBx Bt
00 »| STRBx_BO
D(31-24) |
D(23-16) |
D(15-8) |
D(7-0) |«

For example, reading or writing to memory locations 904000h to 904004h in-
volves the following:

Internal Address External Active Strobe-Byte Accessed Data
Bus Address Pins Enable Pins
904000h E41000h STRB1_BO D79
904001h E41000h STRB1_B1 Dys5-8
904002h E41000h STRB1_B2 D23 16
904003h E41000h STRB1_B3 D3y_24
904004h E41001h STRB1_BO D7_g

7-14

Configuration

Case 2: 32-Bit Wide Memory With 16-Bit Data Type Size

When the data type size is 16-bit, the ’C32 shifts the internal address one bit
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal address A, to the external
address pins Ayz and Ax,. Also, the memory interface activates the STRBX-B3
through STRBx_BO pins according to the value of the internal address bit A,
as shown in Table 7—3. Figure 7-9 shows a functional diagram of the memory
interface for 32-bit wide memory with 16-bit data type size.

Table 7-3. Strobe-Byte Enable for 32-Bit Wide Memory With 16-Bit Data Type Size

Internal Ag Active Strobe-Byte Enable
0 STRBx_B1 and STRBx_BO
1 STRBx_B3 and STRBx_B2

Figure 7-9. Functional Diagram for 16-Bit Data Type Size and 32-Bit External Memory

Width
TMS320C32
Memory Interface
2
g A23 ———t:: A23
2 Ao Aopp —p— A22 p— A22 p—{ A22 p—{ A22
22 [T A2
g A2q \ A21 —p— A21 »— A21 »— A21 »— A21
< Agg —»—] A0 »— A20 > A20 > A20
S T\N Ajg —>— A19 > A19 > A19 > A19
<
g
2—\ . . .
] A1—\ Ay ——p—{ Al »—{ A1 »—{ Al »— Al
S Ap— Ag —> A0 »{ A0 > A0 > A0
3 CS »—CS »—CS »{CS
*— 1/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7-0)
A \ A
STRBx B3 . 1
/ STRBx B2
STRBx_Bt
STRBx_BO
D(31-24) |-
D(23-16) |-«
D(15-8) |
D(7-0) |
Enhanced External Memory Interface 7-15

Configuration

For example, reading or writing to memory locations 904000h to 904004h in-
volves the following:

Internal External Accessed
Address Bus | Address Pins Active Strobe-Byte Enable Data Pins
904000h C82000h STRB1_B1 and STRB1_B0 Di5-0
904001h C82000h STRB1_B3 and STRB1_B2 D31—-16
904002h C82001h STRB1_B1 and STRB1_B0 Dis_¢
904003h C82001h STRB1_B3 and STRB1_B2 D31-16
904004h C82002h STRB1_B1 and STRB1_B0O Dy5_¢

Case 3: 32-Bit Wide Memory With 32-Bit Data Type Size

When the data size is 32-bit, the 'C32 does not shift the internal address before
presenting it to the external address pins. In this case, the memory interface
copies the value of the internal address bus to the respective external address
pins. Also, the memory interface activates STRBx_B3 through STRBx_B0
pins during accesses. Figure 7-10 shows a functional diagram of the memory
interface for 32-bit wide memory with 32-bit data size.

Figure 7—-10. Functional Diagram for 32-Bit Data Size and 32-Bit External Memory Width

TMS320C32’s Core Address Bus

N

STRBX Logic

TMS320C32

Memory Interface

;

D(31-24)
D(23-16)
D(15-8)
D(7-0)

> Axz »{ A23 »1 A23 »{ A23 »{ A23
»| A2 > A22 »{ A22 »| A22 | A22
» Axy — - A21 > A21 > A21 »1 A21
> Ao g ————»{ A20 »1 A20 »1{ A20 > A20
o [E— »>| A2 | A2 | A2
| A ——— A > A1 »{ A1 »{ A1
> Ag > A0 > A0 > A0 > A0
cs cs cs cs
1/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7-0)
STRBx B3 A A A A
STRBx B2
L/ STRBx B1
STRBx_BO

AAAA

7-16

Configuration

For example, reading or writing to memory locations 904000h to 904004h in-
volves the following:

Internal External Accessed
Address Bus | Address Pins Active Strobe-Byte Enable Data Pins
904000h 904000h STRB1_BO, STRB1_Bf1, D319
STRB1_B2, and STRB1_B3

904001h 904001h STRB1_BO, STRB1_Bf1, D310
STRB1_B2, and STRB1_B3

904002h 904002h STRB1_BO, STRB1_B1, D31
STRB1_B2, and STRB1_B3

904003h 904003h STRB1_BO, STRB1_B1, D310
STRB1_B2, and STRB1_B3

904004h 904004h STRB1_BO, STRB1_Bf1, D319
STRB1 B2, and STRB1 B3

7.3.3 16-Bit Wide Memory Interface

'C32 memory interface to 16-bit wide external memory utilizes STRBx_B3 pin
as an additional address pin, A_4, while using STRBx_B0 and STRBx_B1 as
strobe-byte enable pins as shown in Figure 7—11. Note that the external
memory address pins are connected to the ’'C32’s address pins
Ag2Az1...A1AgA—. In this manner, the 'C32 can read/write a single 32-, 16-, or
8-bit value from the external 16-bit wide memory.

Figure 7-11. External Memory Interface for 16-Bit SRAMs

TMS320C32
A23
Ay —P]A23 »-1A23
Agy ————»{A22 ——>{ A22
Ay > A2 ————»{ A2
Ao > AT > A1
STRBX_B3/A_1 ——»] A0 1 AO
RW [——»|WE ——»{WE
—»{CS CS
STRBx_B2 1/0(7-0) 1/0(7-0)
STRBx_B1 A
STRBx_BO
D(31-24)
D(23-16)
D(15-8) |-
D(7-0) |«

Enhanced External Memory Interface 7-17

Configuration

Case 4: 16-Bit Wide Memory With 8-Bit Data Type Size

Table 7—4. Strobe-Byte Enable Behavior for 16-Bit Wide Memory with 8-Bit Data Type Size

Figure 7—-12. Functional Diagram for 8-Bit Data Type Size and 16-Bit External Memory

When the data type size is 8-bit, the 'C32 shifts the internal address two bits
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal address A,; to the external
address pins Az, Aoo, and Ayy. The memory interface also copies the value
of theinternal address A, to the external STRBx_B3/A_1 pin. Furthermore, the
memory interface activates the STRBx_B1 and STRBx_BO pins according to
the value of the internal address bit Ag as shown in Table 7—4. Figure 7-12
shows a functional diagram of the memory interface for 16-bit wide memory

with 8-bit data type size.

Internal Ag Active Strobe-Byte Enable
0 STRBx_BO
1 STRBx_B1

A22
A21
A20
A19

A1

A0

cs
/0(7-0)

Width
TMS320C32
Memory Interface
3
@ Apz T A23
g A — A2
< Ay Agp — | A2t
é . Ajg —P A19
% Ao : .
3 A4 . .
S Ay — —>{ Al
= STRBx_B3/A-1 —»— A0
_~ 1 —>»{ STRBx B1 —»{ CS
1/0(7-0)
0 }—»{ STRBx_BO 4
D(15-8) |-«
D(7-0) |-

Configuration

For example, reading or writing to memory locations 4000h to 4004h involves

the following:
:‘;Z'r’;‘s's Bus marnal STRBOBI/A4 Active Strobe-Byte Enable S:f::?::
4000h 1000h 0 STRBO_BO D7_o
4001h 1000h 0 - STRBO_B1 Dis_g
4002h 1000h 1 STRBO_BO D7_o
4003h 1000h 1 STRBO_B1 Dis_g
4004h 1001h 0 STRBO_BO D7_g

Case 5: 16-Bit Wide Memory With 16-Bit Data Type Size

When the data type size is 16-bit, the *C32 shifts the internal address one bit
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal address A3 to the external
address pins Ayz and A,. Also, the memory interface copies the value of the
internal address A to the external STRBx_B3/A_1 pin. Moreover, the memory
interface activates the STRBx_B1 and STRBx_BO during accesses.
Figure 7—13 depicts a functional diagram of the memory interface for 16-bit
wide memory with 16-bit data type size.

Enhanced External Memory Interface 7-19

Configuration

Figure 7-13.

Functional Diagram for 16-Bit Data Type Size and 16-Bit External Memory
Width

TMS320C32

MemoryInterface
A23 —ﬁ: A23
Azx — Agpg —— P A3 [P Az

A2 I e Az [P A2
Ao T] Agg —————— > Ay > Az
. Ag— P Axp > Ax

Aé—\ :) 1.
Ay — A — 1A, A

o A ———> A A

TMS320C32’s Core Address Bus

STRBx_B3/A-1 P Ay —> Ag.
CS Cs
Z 1/0(7-0) 1/O(7-0)
t: STRBx_B1 A
P STRBx_BO
STRBX Logic D(15-8) |«
D(7-0) |-
For example, reading or writing to memory locations 4000h to 4004h involves
the following:
Internal External STEEA B . Accessed
Address Bus Address Pins STRBO_B3/A_q Active Strobe-Byte Enable Data Pins
4000h 2000h 0 STRBO_BO0 and STRBO_B1 D150
4001h 2000h 1 STRBO_B0 and STRBO_B1 D150
4002h 2001h 0 STRBO_BO and STRBO_B1 D59
4003h 2001h 1 STRBO_B0 and STRBO_B1 D150
4004h 2002h 0 STRBO_B0 and STRBO_B1 D150

Case 6: 16-Bit Wide Memory with 32-Bit Data Type Size

7-20

When the data type size is 32-bit, the 'C32 does not shift the internal address
before presenting it to the external address pins. In this case, the memory in-
terface copies the value of the internal address bus to the respective external
address pins. The memory interface also toggles STRBx_B3/A_4 twice to per-
form two 16-bit memory accesses. In the consecutive memory accesses, the
memory interface activates STRBx_B1 and STRBx_BO. In summary, the

Configuration

memory interface adds one wait state to the 32-bit data access. Figure 7-14
depicts a functional diagram of the memory interface for 16-bit wide memory
with 32-bit data type size.

Figure 7-14. Functional Diagram for 32-Bit Data Type Size and 16-Bit External Memory
Width

TMS320C32

Memory Interface

[2]
]
m
@ Aog P Aog ———p Apy —»— Azq
O Ay P App — P A23 —— A3
§ Aoq > Ayy —P Aoo —»—| Ao
o Az0 Pl Ayg — > Azt [P A
o]
S
3 A oA, —— > A | As
9‘) A1 - A1 _—p A2 ——p A2
2 Ao b oAy ——— > A] A
toggle. o
= oggle, IsrrEx BIA1 —T o] 2—% | gﬂs
- 1/O(7-0
= v l V0 (7-0) /0(7-0)
STRBx Bi A A

[_C: STRBx_BO

STRBX Logic D(15-8) |
D(7-0) |

For example, reading or writing to memory locations 4000h to 4004h involves

the following:
K‘;‘;‘;’;‘;’s Bus IE\’;‘::::; ping STRBO_B3/A_y Active Strobe-Byte Enable Q:f::f::
4000h 4000h 0 STRBO_BO and STRBO_B1 D150
4000h 1 STRBO_BO and STRBO_B1 D50
4001h 4001h 0 STRBO_BO and STRBO_B1 D50
4001h 1 STRBO_BO and STRBO_B1 Dys o
4002h 4002h 0 STRB0_BO and STRBO_B1 D50
4002h 1 STRBO_BO and STRBO_BH D50
4003h 4003h 0 STRBO_BO0 and STRBO_B1 Dys_o
4003h 1 STRBO_BO and STRBO_B1 Dis o
4004h 4004h 0 STRBO_BO0 and STRBO_B1 D150
4004h 1 STRBO B0 and STRBO B1 Dis o

Enhanced External Memory Interface 7-21

Configuration

7.3.4 8-Bit Wide Memory Interface

’C32 memory interface to 8-bit wide external memory utilizes STRBx_B3 and
STRBx_B2 pins as an additional address pins, A_{ and A_,, respectively, while
using STRBx_BO as strobe-byte enable pin as shown in Figure 7-15. Note
that the external memory address pins are connected to the 'C32’s address
pins Ag1Agg...A1AgA-1A—o. Inthis manner, the 'C32 can read/write a single 32-,
16-, or 8-bit value from the external 8-bit wide memory.

Figure 7—-15. External Memory Interface for 8-Bit SRAMs

TMS320C32

A23
Ao
Agy F———»{A23

Aq P> A3
Ag f—»A2
STRBx_B3/A_1 |———P{ A1
STRBx_B2/A_, ———»{A0
RW [—»WE
—»|CS
STRBx_B2 1/0(7-0)
STRBx_B1
STRBx_BO
D(31-24)
D(23-16)
D(15-8)
D(7-0) |-«

Case 7: 8-Bit Wide Memory With 8-Bit Data Type Size

7-22

Similarly to case 4, the 'C32 shifts the internal address two bits to the right be-
fore presenting it to the external address pins when the data type is 8-bit. As
in case 4, the memory interface copies the value of the internal address A3 to
the external address pins Ags, Azz, and A,¢. Butin case 7, the memory interface
also copies the value of the internal address A, to the external STRBx_B3/A_1
pin and the value of Ay to the external STRBx_B2/A_». Moreover, the memory
interface only actives the STRBx_BO pin during the external memory access.
Figure 7—16 depicts a functional diagram of the memory interface for 8-bit
wide memory with 8-bit data type size.

Configuration

Figure 7-16. Functional Diagram for 8-Bit Data Type Size and 8-Bit External Memory

Width

[\j TMS320C32's Core Address Bus

TMS320C32

Memory Interface

STRBx
Logic

:

I/ i

D(7-0)

-«

Ap ————p—
STRBx_B3/A-1 —»—
STRBx_B2/A-2 —P

STRBx_BO——p|

A23
A22
A21
A20

A2
A1l
AO

cs
1/0(7-0)

!

For example, reading or writing to memory locations A0O4000h to A04004h in-
volves the following:

Internal External Active Strobe-Byte Accessed
Address Bus Address Pins STRBO_B3/A_; STRBO_B3/A_, Enable Data Pins
A04000h E81000h 0 0 STRB1_BO D7_o
A04001h E81000h 0 1 STRB1_BO D7_¢
A04002h E81000h 1 0 STRB1_BO D7_0
A04003h E81000h 1 1 STRB1_BO D7_o
A04004h E81001h 0 0 STRB1_BO D7_o

Enhanced External Memory Interface

7-23

Configuration

Case 8: 8-Bit Wide Memory With 16-Bit Data Type Size

When the data type size is 16-bit, the 'C32 shifts the internal address one bit
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal address Ay; to the external
address pins Az and Ay,. Also, the memory interface copies the value of the
internal address A, to the external STRBx_B3/A_q pin. Furthermore, the
memory interface toggles STRBx_B2/A_5 twice to perform two 8-bit memory
accesses. Moreover, the memory interface activates the STRBx_BO during
accesses. In summary, the memory interface adds one wait state to the 16-bit
data access. Figure 7-17 depicts a functional diagram of the memory inter-
face for 8-bit wide memory with 16-bit data type size.

Figure 7—17. Functional Diagram for 16-Bit Data Type Size and 8-Bit External Memory

7-24

Width

'C32

Memory Interface

Az23 E: Az3
R | % > A
" A21 —\ Ay — > |Axs
g A2o \ A20 > Az
2 : A1g | A2t
9_) .
Q
o /'\ .
w 2“"—-*‘ . .
N
3 2(1) T M > A;
T Ao > Az
\ﬁk STRBx_B3/Ay —>|A,
»| STREx B2/A, —>—
STREX STRBx B2/A. 2‘—5
Logic _

7'

D(7-0)

Configuration

For example, reading or writing to memory locations A04000h to A04002h in-
volves the following:

Address Bus | Adaress Pin | STRBOB3/A-1 | STRBUB3/Ap gy, 5re Ve | FEEINC
A04000h D02000h 0 0 STRB1_BO D7_o
D02000h 0 1 STRB1_BO D7_o
A04001h D02001h 1 0 STRB1_BO D7_o
D02001h 1 1 STRB1_BO D7_o
A04002h D02002h 0 0 STRB1_BO D70
D02002h 0 1 STRB1_BO D7_o

Case 9: 8-Bit Wide Memory With 32-Bit Data Type Size

When the data type size is 32-bit, the ’‘C32 does not shift the internal address
before presenting it to the external address pins. In this case, the memory in-
terface copies the value of the internal address bus to the respective external
address pins. The memory interface also toggles STRBx_B3/A_{ and
STRBx_B2/A_5 to perform four 8-bit memory accesses. In the consecutive
memory accesses, the memory interface activates STRBx_BO. In summary,
the memory interface adds three wait states to the 32-bit data access.
Figure 7—18 depicts a functional diagram of the memory interface for 8-bit
wide memory with 32-bit data type size.

Enhanced External Memory Interface 7-25

Configuration

Figure 7-18. Functional Diagram for 32-Bit Data Type Size and 8-Bit External Memory

Width
'C32
Memory Interface
g Ao3 > A3 >— Azs
@ Az > Axp —————>—{Axy
§ Aoy » Ay — A3
s A20 > Ao >— A2z
< .
o . .
[e] . . .
—%’)’ Ao > A »— Ay
k % Aq » A1 > A3
© A Ay ——»A;
|—>‘ Aq
loage ,, | STRBX_BI/A4 A
STREX | 299% »| STRBX B2/A, — cs
ogie »| STRBx BO
1/0(7-0)
A
D(7-0) |
For example, reading or writing to memory locations A04000h to A04001h in-
volves the following:
Internal External T T T W01 T H L] Active Strobe-Byte = Accessed
Address Bus Address Pins > NB0_B3/A STRBOB3/Ap)0 Data Pins
A04000h A04000h 0 0 STRB1_BO D79
A04000h 0 1 STRB1_BO D70
A04000h 1 0 STRB1_BO D70
A04000h 1 1 STRB1_BO D70
A04001h A04001h 0 0] STRB1_B0O D79
A04001h 0 1 STRB1_BO D79
A04001h 1 0 STRBT_BO D7_o
A04001h 1 1 STRB1_BO D79

7-26

Configuration

7.3.5 External Ready Timing Improvement

The RDY timing should reference to the H1 low signal as shown in
Figure 7—19. This is equivalent to the 'C4x’s ready timing, which increases the
time between valid address and the sampling of RDY. This facilitates the
memory hardware interface by increasing the address decode circuit re-
sponse time to generate a ready signal.

Figure 7—-19. RDY Timing for Memory Read

TN

:

s
2
4——4—\}——
d

<
<

]
)

_4
i

g
N

Enhanced External Memory Interface 7-27

Bus Timing

7.4 Bus Timing

This section discusses functional timing of operations on the external memory
bus. Detailed timing specifications are contained in the TMS320C32 Data
Sheet. The timing of STRBO and STRB1 bus cycles is identical and discussed
in subsection 7.4.1. The acronym STRBx is used in references that pertain
equally to STRBO and STRB1. The IOSTRB bus cycles are timed differently
and are discussed in subsection 7.4.2.

7.4.1 STRBO and STRB1 Bus Cycles

7-28

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is
defined from one falling edge of H1 to the next falling edge of H1. For full speed
(zero wait-state) accesses on STRBO and STRB1, writes take two H1 cycles
and reads take one cycle. However, if the read immediately follows a write, the
read takes two cycles. Note that writes to internal memory take one cycle if no
other accesses to that interface are in progress. The following discussion per-
tains to zero wait-state accesses, unless otherwise specified.

The STRBx signal is low for the active portion of both reads and writes (one
H1 cycle). Additionally, before and after the active portions of writes only
(STRBx low), there is a transition of one H1 cycle. During this transition cycle
the following might occur:

O STRBx s high.
 If required, R/W changes state on the rising edge of H1.

O [frequired, address changes on the rising edge of H1 if the previous H1
cycle performed a write. If the previous H1 cycle performed a read, ad-
dress changes on the falling edge of H1.

Bus Timing

Figure 7-20 illustrates a zero wait-state read-read-write sequence for STRBx
active. The data is read as late in the cycle as possible to allow for the maxi-
mum access time from address valid. Note that although external writes take
two cycles, writes to internal memory take one cycle if no other accesses to
that interface are in progress. Similarly to typical external interfaces, the R/W
signal does not change until STRBO and STRB1 are deactivated.

Figure 7-20. Read-Read-Write Sequence for STRBx active

==
H1 y 4 y 4
C
STRBx \
]
RW
| ! |
| |
A
| 1
|
° | | | I [/
| | | | |
RDY \ \ A4

Figure 7-21 illustrates a zero wait-state write-write-read sequence for STRBx
active. During back-to-back writes, the data is valid approximately one-half
cycle after STRBx changes for the first write, but for subsequent writes the data
is valid when STRBx changes.

Figure 7-21. Write-Write-Read Sequence for STRBx active

[[!!
RNV_\l!! '!'/"

L L L
A III‘XIIIXII)

|| |1 |
——C I S 1y W
e s

]

RDY ~\ \ |/ _\

Enhanced External Memory Interface 7-29

Bus Timing

Figure 7-22 illustrates a one wait-state read sequence for STRBXx active. On
the first H1 cycle RDY is high therefore, the read sequence is extended for one
extra cycle. On the second H1 cycle RDY is low and the read sequence is ter-
minated.

Figure 7-22. One Wait-State Read Sequence for STRBXx active

H3

H1

STRBx

I
I
|
I
|
I
+
|
I
I
1
I

RDY /

Extra Cycle —"

A1

7-30

Bus Timing

Figure 7-23 illustrates a one wait-state write sequence for STRBXx active. On
the first H1 cycle RDY is high therefore, the write sequence is extended for one
extra cycle. On the second H1 cycle RDY is low and the write sequence is ter-
minated.

Figure 7-23. One Wait-State Write Sequence for STRBx Active

STRBx }l

|
|
|
RV) | |
|

_— 7 S\ /T

L— Extra Cycle —*[

7.4.2 IOSTRB Bus Cycles

In contrast to STRBO and STRB1 bus cycles, IOSTRB full speed (zero wait-
state) reads and writes consume two H1 cycles. During these cycles, the
IOSTRB signal is low from the rising edge of the first H1 cycle to the rising edge
of the second H1 cycle. Also, the address changes on the falling edge of the
first H1 cycle and R/W changes state on the falling edge of H1. This provides
a valid address to peripherals that may change their status bits when read or
written while IOSTRB is active. Moreover, the IOSTRB signal is high between
IOSTRB read and write cycles.

Enhanced External Memory Interface 7-31

Bus Timing

Figure 7—24 illustrates a zero wait-state read and write sequence for IOSTRB
active. During writes, the data is valid when IOSTRB changes.

Figure 7-24. Zero Wait-State Read and Write Sequence for IOSTRB Active

H3
H1
IOSTRB
RW
A
e
D | | Read ¥ Write)

] A —

| | |

| | I | | |

RDY \ _V N\

Figure 7-25 depicts a one wait-state read sequence for IOSTRB active.
Figure 7—26 shows a one wait-state write sequence for IOSTRB active. For
each wait-state added, IOSTRB, R/W, and A are extended for one extra clock
cycle. Writes hold the data on the bus for one extra clock cycle. RDY is
sampled on each extra cycle and the sequenced is terminated when RDY is
low.

7-32

Bus Timing

Figure 7-25. One Wait-State Read Sequence for IOSTRB Active

LI SR N S N A N

H1

IOSTRB

RW

_"___-__.7A___

—_—— - —— — —
—_——

"

|

I

|

|

_—
ROV /,\IL\'/_—

[OSTRB | ‘|\
|
|
T
I

|
R/W |
f f f
|
A
1

T
i¢— Extra Cycle —J

Figure 7—-27 and Figure 7-28 illustrate the transitions between STRBx reads
and IOSTRB writes and reads, respectively. In these transitions, the address
changes on the falling edge of the H1 cycle.

Enhanced External Memory Interface 7-33

Bus Timing

Figure 7-27. STRBx Read and IOSTRB Write

—_————— — — _

H3 A

H1

IOSTRB

RDY

Figure 7-28. STRBx Read and IOSTRB Read

H3
H1

STRBO,1
IOSTRB

R/W

RDY

7-34

Bus Timing

Figure 7—29 and Figure 7-30 illustrate the transitions between STRBx writes
and IOSTRB writes and reads, respectively. In these transitions, the address
changes on the falling edge of the H3 cycle.

Figure 7-29. STRBx Write and IOSTRB Write

I |
H3 A 4
. -

| |

STRBx \ f
I
IOSTRB | | R A B

R/W ‘

1T 1 T 717 71 71
I T T e e S N

RDY A4 ANI4

Figure 7-30. STRBx Write and IOSTRB Read
I I I | I I

" =8 ==
Ht I\—Jf' T r M~ X

I | | |
STRBx \ I - 1 T ! 1
| | | | [|
| | | | | | | N
JOSTRB ' | | | ! | \ V4 !
| I | [| [|
RW T\ | | | } } f f
T ! T I | I I
| | | I | | |
A
T T T ! T T T | !
|] | | | |
D 4 Write t + +(l/0 Read)—+——
| [| | | |
| | |] |] |
RDY \ :/ N\ :/

Enhanced External Memory Interface 7-35

Bus Timing

Figure 7-31 through Figure 7-34 show the transitions between IOSTRB
writes/reads and STRBx writes/reads. In these transitions, the address
changes on the rising edge of the H3 cycle.

Figure 7-31. IOSTRB Write and STRBx Write

I I I I | | I
i —~) — .“II
H1 /‘}{
I I
[I
I I
I I

I
I I
STRBx I T _;_f_
: |
o T oo
| | |
I I I I I I I
RW I I | |
[| I | l
| | | | | | |
A

7-36

Bus Timing

Figure 7-32. IOSTRB Write and STRBx Read

H3

H1

STRBx

IOSTRB

RDY

Figure 7-33. IOSTRB Read and STRBx Write

STRBx

IOSTRB

.

|

|
Write |

I
A4

7-37

Enhanced External Memory Interface

Bus Timing

Figure 7-34. IOSTRB Read and STRBx Read

STRBx

IOSTRB

[a]

RDY

7-38

Bus Timing

Figure 7-35 through Figure 7-37 illustrate the transitions between reads and
writes.

Figure 7-35. IOSTRB Write and Read

A i
1 | 1 | | |
PR N S S N B
D ———k /O Write /O Write r—
o L
L ! | : ! | :
RDY \ / N\ V/

Enhanced External Memory Interface 7-39

Bus Timing

Figure 7-37. IOSTRB Read and Read

| |
| |
| | | |
D ___> /O Read T T 1/0O Real —
RN A
RDY \ :/ \ I/

7.4.3 Inactive Bus States

Figure 7-38 and Figure 7-39 show the signal states when a bus becomes in-
active after an IOSTRB or STRBX, respectively. The strobes (STRBO, STRB1,
IOSTRB, and R/W) are deasserted going to a high level. The address bus pre-

serves the last value and the ready signal (RDY) is ignored.

Figure 7-38. Inactive Bus States Following IOSTRB Bus Cycle
l I l

H3

H1

IOSTRB

E

— — 4 —— - — -

| — — 4 — — 4 —
L — .______/__

| |
| [
D — 1/O Write t ;
| |
| |

— — 4+ — —

RDY N\ _V

j——————— Bus Inactive RDY Ignored —*|

7-40

Bus Timing

Figure 7-39. Inactive Bus States Following STRBx Bus Cycle

I | I | | I
=0=0=0=-0=0’
" o { T { T {

| | I t t i i t t
——— L
RW — \ | I I - T T | T T
I] | | | | I | |
] | | |] | | | |
A X

, T T I T T T T T T
| | | | | | |
D e rite } } + + % t
I [| | | [[
| | | | |]] | |

RDY N\

————— Bus Inactive RDY Ignored ——':

Enhanced External Memory Interface 7-41

7-42

Chapter 8

The 'C32 has an improved DMA that supports two channels and configurable
priorities. The next sections discuss the new features.

8-1

Two-Channel DMA Features

8.1 Two-Channel DMA Features

8.1.1

'C32 has atwo-channel (channel 0 and channel 1) DMA instead of a one-chan-
nel DMA as inthe 'C30/'C31 device. The 'C32’s DMA functions similarly to that
of the 'C30/'C31 DMA but with the addition of DMA/CPU priority scheme and
inter-DMA priority mode. Although the *C32 CPU supports both floating point
and integer data access with different data size from the external memory, the
'C32’'s DMA transfer is strictly an integer data transfer. The integer data access
of the 'C32 DMA is the same as the CPU integer data access — 32-bit internal
and data size conversion at the external memory interface port.

DMA Global Control Registers

Each of the two channels has its own control, source and destination address,
and transfer counter registers (Figure 8—1).

Figure 8—1. Memory-Mapped Locations for a DMA Channels

Address

808000h
808001h
808002h
808003h
808004h
808005h
808006h
808007h
808008h
808009h

80800Fh

Register Address Register
DMAO Global Control 808010h DMA1 Global Control

Reserved 808011h Reserved
Reserved 808012h Reserved
Reserved 808013h Reserved

DMAO Source Address 808014h DMA1 Source Address
Reserved 808015h Reserved

DMAQO Destination Address 808016h DMAT1 Destination Address

Reserved 808017h Reserved

DMAQO Transfer Counter 808018h DMAT1 Transfer Counter
Reserved 808019h Reserved
Reserved 80801Fh Reserved

8.1.4 CPU/DMA Interrupts

8-2

Channel 0 transfers can be synchronized through the use of INTO, INT1, INT2,
INT3, XINTO, TINTO, TINT1, and DINT1. Channel 1 transfers can be synchro-
nized through the use of INTO, INT1, INT2, INT3, RINTO, TINTO, TINT1, and
DINTO. The Interrupt Enable Register is shown in Figure 8-2.

Two-Channel DMA Features

Figure 8-2. CPU/DMA Interrupt Enable Register

19 18 17 16

ETINT1 |E EINT3 | EINT2 | EINT1 | EINTO
| ' (DMAO) | (DMAOD) | (DMAO) | (DMAD)

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
)INT1 | EDINTO | ETINT1 | ETINTO ERINTO | EXINTO | EINT3 | EINT2 | EINT1 | EINTO
XXX Gepy | cpu) | cry) | cryy [cru) | Py | cry | cru) | cry) | cru)
RW RW RW RW R/W RW RW RW RW RW

Figure 8-3 depicts the Interrupt Flag Register. In this figure, the DINTO bit re-
fers to DMA channel 0 interrupt flag while DINT1 bit refers to the DMA channel
1 interrupt flag.

Figure 8-3. CPU Interrupt Flag Register

31 12 1N 10 9 8 7 6 5 4 3 2 1 0
C DINTO [TINT1 | TINTO | xx [xx | RINTo | xiNTo | INT3 | INT2 | INT1 | INTO |
RW AW RW AW RW RW RW RW RW RW

8.3.5 DMA Channel Arbitration

'C32's DMA controller priority is configurable through the DMA PRI and
PRIORITY MODE bits of the DMA global control register as shown in
Figure 8—4, Table 8-2, and Table 8-3. The PRIORITY MODE bit is only avail-
able on DMAO control register. The shaded entries in Table 8—2, and Table 8-3
indicate reset values.

Figure 8—4. DMAO Global Control Register

15 1 10 9 8 7 6 5 4 3 2 1 0
TCINT | TC | SYNC | DECDST | INCDST | DECSRC | INCSRC | STAT | START

RW RW RW RW RW RW RW R RW

Peripherals 8-3

Two-Channel DMA Features

Table 8-2. CPU/DMA Priority

Bit 13 | Bit 12 | DMA PRI Function Description

0 1 Rotating arbitration, which sets priorities between the CPU and DMA channel by alternating
their accesses, but not exactly equally. Priority rotates between the CPU and DMA accesses
when they conflict during consecutive instruction cycles.

1 0 Reserved.

1 1 DMA access has higher priority than the CPU accesses. If the DMA channel and the CPU are
requesting the same resource, then the DMA proceeds.

Table 8-3. DMA Periority Mode of DMAO Control Register

PRIORITY MODE Description

Fixed priority for the two DMA channels.

For fixed DMA priority mode, DMA channel 0 always has priority over DMA
channel 1. If both DMA channels request the service, DMA channel 0 will trans-
fer first. For rotating DMA priority mode, DMA channel 0 has priority after the
device is reset. After reset, the last channel serviced has the lowest priority.
The arbitration is performed at DMA service boundaries, that is, after either a
DMA read or a DMA write.

8.1.6 CPU Changes To Support DMA

CPU conflicts do not prevent both DMA channels from servicing interrupts.

8-4

Chapter 9

Pipeline Operation

The pipeline operation in the 'C32 is identical to that in the 'C30 and 'C31 and
is discussed in the TMS320C3x User’s Guide (literature number SPRU031).

9-1

9-2

Chapter 10

__'_,Assembly Language Instructlogns

S

The instruction set for the 'C32 is identical to the 'C30 and 'C31 instruction set

and is discussed in the TMS320C3x User’s Guide (literature number
SPRUO031).

10-1

10-2

Chapter 11

Software Application

s

The software applications for the ‘C32 are the same as those for the *C30 and
’C31 and are discussed in the TMS320C3x User’s Guide (literature number
SPRUO031).

Hardware Applications

i S

The ’C32 enhanced memory interface design can be used to implement awide
variety of system configurations without additional logic. Its external bus pro-
vides a parallel 8-, 16- or 32-bit interface to external memories and peripher-
als. By grouping data type sizes of equal length into a particular memory strobe
section, the 'C32 can mix two data type sizes with zero wait-state accesses.
This chapter describes examples that exploit these techniques to achieve
maximum performance and to minimize memory storage. Refer to the Inter-
facing Memory to the TMS320C32 DSP Application Report (literature number
SPRAO040) for more information.

12-1

Maximum Performance

12.1 Maximum Performance

12-2

The 'C32 operates at its maximum performance when executing code from
32-bit wide memory. The rest of the memory can be used to store two different
data type sizes.

For example, a typical audio compression application written in C language
requires 32-bit data for system stack and 16-bit data for the audio buffers. In
this case, you must interface the 'C32 as shown in Figure 12—1. This example
assumes an external memory of 32K of 32-bit words with 8K of 32-bit words
of stack, 8K of 32-bit words of program, and 32K of 16-bit words data buffers.

This interface requires you to set the STRBO control register Physical Memory
Width to 32 bits, Data Type Size to 32 bits, and set the STRB Config bit field
to 1 (STBRO Control Register = 002F 0000h). It also requires you to set the
STRB1 control register Physical Memory Width to 32 bits and the Data Type
Size to 16 bits (STBR1 control register = 000D 0000h). Moreover, the PRGW
pin must be pulled low to indicate 32-bit program memory width.

In essence, this example combines Case 3: 32-bit Wide Memory With 32-Bit
Data Type Size and Case 2: 32-Bit Wide Memory with 16-Bit Data Type Size
discussed in subsection 7.3.2.

Maximum Performance

Figure 12—-1. Zero Wait-State Interface for 32-Bit SRAMs With 16- and 32-Bit Data Accesses

Az [P A — P Aqy > Ay — > Ay
Az [P A —»1 A3 — > Ags3 — > A3
Az 1A —> A2 —> A2 —>1 A2
Ay P> A > A1y — A1y —» Aqq
TMS320C32
Ay A > A —> A, —>1 A
Ao ™ Ao > Ag ™ Ao > Ag
RW —>{WE we —>{wE [—>{wE
J CS CS —» CS —» CS
STRBO_B3 — 1/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7—0)
STRBO_B2 A A A A
STRBO_B1
STRBO_BO
D(31-24) |4¢———
D(23-16) |
D(15-8) |
D(7-0) |-

Note that the external memory address pins, Ay4A13...AAq, are mapped to the
'C32's AxoAq3Aq2...A1Ag. This mapping was chosen to place the system stack
following the 'C32 internal RAM, thus improving performance by placing the
top of the stack in internal RAM and allowing it to grow into external RAM. With
this mapping, external memory accesses in the range 4000h through 7FFFh
read or write 16-bit data while memory accesses in the range Oh through
3FFFh read or write 32-bit data. The PRGW pin controls the program fetches.

Figure 12-2 shows the contents of the external memory. Due to the address
shift of the 'C32 external memory interface, the memory map seen by the 'C32
CPU is slightly different. Figure 12—3 shows this memory map. Note that since
the STRBH1 is configured for 16-bit data type size, the external address pres-
ented on 'C32’ s pins is shifted right by one bit.

Hardware Applications 12-3

Maximum Performance

Figure 12-2. External Memory Map

Oh System Stack Area
1FFFh (8K x 32-bit)
2000h Program Word 0

Program Word 1

3FFFh Program Word 8191
4000h Datalt Data0
4001h Data3 Data2
7FFFh Data32767 Data32766

Figure 12-3. 'C32 Memory Map

Oh
2000h
Program
(8K x 32-bit)
3FFFh
87FEQOh
Internal RAM
(512 x 32-bit)
87FFFFh
880000h
System Stack
(8K x 32-bit)
881FFFh
900000h
Data Buffers
(32 x 16-bit)
907FFFh
FFFFFFh

12-4

Minimum Memory

12.2 Minimum Memory

To minimize system cost, the 'C32 can trade the number of external memory
chips with lower performance by utilizing a zero wait-state 16-bit wide external
memory. In this configuration, external program accesses and 32-bit data type
accesses have an additional wait-state, while memory chip count is halved.
Figure 12—4 shows this configuration.

Figure 12—4. Zero Wait-State Interface for 16-Bit SRAMs With 16- and 32-Bit Data Accesses

A22 Ag ‘ A1a
Az P Az [P A
At P A2 —> A2
TMS320C32 ' '
Aq —>] A —>1 Ao
Ao [P A > A
STRBO_B3/A— — P A —> Ay
RW F—>»1WE —» WE
STRBO_B1 — 1/0(7-0) 1/0(7-0)
STRBO_BO A
D(31-24)
D(23-16)
D(15-8) |€¢———
D(7-0) |«

Figure 12—4 shows a 32K of 16-bit words external memory that contains 4.5K
of 32-bit words of stack, 4K of 32-bit words of program, and 16K of 16-bit words
data buffers and tables.

For this example, you must set the STRBO control register Physical Memory
Width to 16 bits, Data Type Size to 32 bits, and set the STRB Config bit field
to 1 (STBRO control register = 0027 0000h). It also requires you to set the
STRB1 control register Physical Memory Width to 16 bits and the Data Type
Size to 16 bits (STBR1 Control Register = 00050000h). Furthermore, the
PRGW pin must be pulled high to indicate 16-bit program memory width.

In essence, this example combines Case 5: 16-bit Wide Memory with 16-bit
Data Type Size and Case 6: 16-bit Wide Memory with 32-bit Data Type Size
discussed in subsection 7.3.3.

Hardware Applications 12-5

Minimum Memory

As described in Section 12.1, this example maps the system stack contiguous
with the 'C32internal RAM. To achieve this, the external memory address pins,
Aq4A13...AjAg, aremappedtothe’'C32's AppAq2...AjApA_4. Figure 12-5 shows
the contents of the external memory. Due to the address shift of the 'C32 exter-
nal memory interface, the memory map seen by the 'C32 CPU is shown in
Figure 12-6.

Note that since STRB1 is configured for 16-bit data, the external address pres-
ented on the 'C32’ s pins is shifted right by one bit. Since STRBO is configured
for 32-bit data size, the STRBO_B3/A_4 pinis used to decode the low and high
bytes of the word. With this mapping, external memory accesses in the range
4000h through 7FFFh read or write 16-bit data, while memory accesses in the
range Oh through 3FFFh perform two consecutive reads or writes to retrieve
or store 32-bit data. The PRGW pin controls the program fetches.

Figure 12-5. External Memory Map

12-6

on System Stack Area

1FEFh (8K x 16-bit)

2000h Program Low Half-Word 0
Program High Half-Word 0
Program Low Half-Word 1
Program High Half-Word 1

3FFFh Program High Half-Word 4095

4000h Data0

4001h Data1

7FFFh Data16383

Minimum Memory

Figure 12—6. 'C32 Memory Map

Oh
2000h
Program
(4K x 32-bit)
2FFFh
87FEOOh
Internal RAM
(512 x 32-bit)
87FFFFh
880000h
System Stack
(4K x 32-bit)
880FFFh
900000h
Data Buffers
(16K x 16-bit)
903FFFh
FFFFFFh

Hardware Applications 12-7

Two External Memory Banks

12.3 Two External Memory Banks

’C32 external memory interface allows the use of two zero wait-state external
memory banks with different widths without incurring in any access penalty
and additional logic. This gives you the flexibility to trade off performance for
system cost (fewer memory chips). For instance, you could execute code from
32-bit wide memory while storing data in 8-bit memory, as shown in
Figure 12—7. This would be advantageous to applications with large amounts
of 8-bit data that require execution at the fastest speed of the device.

Figure 12-7. Zero Wait-State Interface for 32-Bit and 8-Bit SRAM Banks

TMS320C32
A21
Ats >1A14 >1A14 >1A14 >A14
A13 >1A13 > A3 >1A13 >1A13
App|—PA12 >1A12 >1A12 >1A12 Aqq
Aqq »{A11 > A11 > A4 > A1 —»{A13
AP A A4 1A > A4 >1A3
A—>1A > Ao > A0 > Ao — A2
A4
AW || WE > WE > WE TE %
cs »|{Cs »CS »{CS \A\
| WE
STRB1_B3 1/O(7-0) 1/0(7-0) 1/0(7-0) 1/O(7-0) —»{CS
STRBO_B2 A A A 1
»|1/0(7-0)
STRBO_B1
STRBO_BO
D(31-24) |
D(23-16) |«
D(15-8) |4
D(7-0) |

STRB1_B3/A 1
STRB1_B2/Ap
STRB1_BO

AAA

In Figure 12—7, a bank of 32K x 32-bit words is mapped to STRBO while a bank
of 32K x 8-bit words is mapped to STRB1.

For this configuration, you must set the STRBO control register Physical
Memory Width to 32 bits, Data Type Size to 32 bits, and the STRB Config bit

12-8

Two External Memory Banks

field to 0 since the banks are separate memories (STBRO control register =
0O0OF 0000h). Also, you must set the STRB1 control register Physical Memory
Width to 8 bits and the Data Type Size to 8 bits (STBR1 control register =
00000000h).

This example maps the external memory address pins of the 32-bit wide bank,
A1 4A1 3. .A1A0, tothe’'C32’s A1 4A1 3A1 2.. .A1 Ao Ontheother hand, the 8-bitwide
bank memory address pins, A;4A;3..AjAg, are mapped to the 'C32’s
Ax1A13A12...AjAQA_1. Note that since STRB1 is configured for 8-bit memory
width, the external address presented on 'C32s pins is shifted right by two bits.
With this mapping, external memory accesses in the range Oh through 7FFFh
read/write 32-bit data to the 32-bit wide bank (STRBO) while memory accesses
in the range 900000h through 907FFFh read/write 8-bit data to the 8-bit wide
bank (STRB1).

Note that two banks of different memory widths should not be connected to the
same STRB without external decode logic. Different memory widths require
STRBX_Bx signals to be configured as address pins. These address pins are
active for any external memory access (STRBO, STRB1, IOSTRB, and pro-
gram fetches).

Hardware Applications 12-9

12-10

 TMS320C32 Signal Descriptions

R AR e

This chapter contains descriptions of the signals that are specific to the 'C32.
Table 13—7 describes the signals that the 'C32 uses in the microprocessor
mode. It lists the signal (or bit) name, the number of pins allocated; the input
(1), output (O), or high-impedance (Z) operating modes; a brief description of
the signal’s function; and the condition that places an output pin in high imped-
ance. The shading indicates new external signals.

13-1

Signal Descriptions

13.2 Signal Descriptions

Table 13—7.TMS320C32 Signal Descriptions

No. of- Condition

Signal Pinst 1/O/Zt Description In High Z#
External Bus Interface (70 pins)

D31-0 32 1/0/Z 32-bit data port of the external bus interface S H R

A23-0 24 0O/Z 24-bit address port of the external bus interface S H R

R/W 1 O/Z Read/write signal for the external bus interface. The pinis S H R

high when a read is performed and low when a write is

Ready signal. This pin indicates that an external device is
prepared for a external bus interface transaction to complete

HOLD 1 | Hold signal. When is a logic low, any ongoing transaction is
completed. The A23-0, D31-D0, IOSTRB, STRBO_BX,
STRB1_Bx, and R/W are placed in the high impedance state,
and all transactions over the external bus interface are held
until becomes a logic high, or the NOHOLD bit of the STRBO
bus control register is set.

1 input (), Output (0), High impedance state (2)
$SHZ active (S), Hold active (H), Reset active (R)
Note: Shaded entries indicate new 'C32 external signals

13-2

Signal Descriptions

Table 13-7. TMS320C32 Signal Descriptions (Continued)

Signal

No. of-
Pinst

¥O/Zt Description

Condition
In High Z#

External Bus Interface (Continued) (70 pins)

HOLDA

PRGW

0O/z

Hold acknowledge signal. This signal is generated in response
to a logic low on HOLD. It signals that A23-0,
D31-0,I0STRB, STRBO_Bx, STRB1_Bx, and R/W are placed
in the high-impedance state and that all transactions over the
bus are held. HOLDA is high in response to a logic high of
HOLD, or the NOHOLD bit of the bus control register is set.

Program memory width select. When this pin is logic low,
program is fetched as a single 32-bit word. Wheniitis logic high,
two 16-bit program fetches are performed for a single 32-bit
instruction word. The status of this pin at reset affects the reset
value of the STRBO and STRB1 bus control register (See
Section 7.3)

S

Control Signals (9 Pins)

INT3-INTO
IACK

MCBL/MP
XF1-XFO

0O/Z

1/0/Z

Reset. When this pin is a logic low, the device is placed in the
reset condition. When reset becomes a logic 1, execution
begins from the location specified by the reset vector.

External interrupts.

Interrupt acknowledge signal. IACK is set to 1 by the IACK
instruction. This signal can be used to indicate the beginning
or end of an interrupt service routine.

Microcomputer boot loader/microprocessor mode pin.

External flag pins. They are used as general purpose 1/O pins
or to support interlocked processor instructions.

Serial Port Signals (6 Pins)

CLKX0

DXO0

FSX0

CLKRO

DRO
FSRO

1/0/2

1/0/Z

1/10/Z

1/10/Z

1/0/Z
1/0/Z

Serial port 0 transmit clock. This pin serves as the serial shift
clock for the serial port 0

Data transmit output. Serial port 0 transmits serial data on this
pin.

Frame synchronization pulse for transmit. The FSXO0 pulse ini-
tiates the transmit data processor over DX0.

Serial port 0 receive clock. This pin serves as the serial shift
clock for the serial port 0

Datareceive. Serial port O receives serial data via the DRO pin.

Frame synchronization pulse for receive. The FSRO pulse
initiates the receive data processor over DRO.

TMS320C32 Signal Descriptions

13-3

Signal Descriptions

Table 13-7. TMS320C32 Signal Descriptions (Concluded)

No. of- Condition

Signal Pinst 1/O/Zt Description In High Z#
Timer Signals (2 Pin)
TCLKO 1 I/O/Z Timer clock 0. As an input, TLCKO is used by timer O to count S R

external pulses. As an output pin, TCLKO outputs pulses
generated by timer 0.

TCLK1 1 I/0/Z Timer clock 1. As an input, TLCK1 is used by timer 1 to count S R
external pulses. As an output pin, TCLK1 outputs pulses
generated by timer 1.

Clock Signals (3 Pins)

H1 1 0O/Z External H1 clock. This clock has a period equal to twice S
CLKIN.

H3 1 O/Z External H3 clock. This clock has a period equaltotwice CLKIN S

CLKIN 1 | The input clock pin from an external clock source.
Emulation and Test Signals (5 Pins)

EMU3 1 O/Z Reserved for emulation.

EMU2-EMUO 3 | Reserved for emulation. Tie to +5-V with 20-kQ pull-up resistors.

SHz 1 | Shut down high Z. A low logic level shuts down the 'C32 and
places all pins in the high-impedance state. This signal is used
for board-level testing to ensure that no dual-drive conditions
occur. Caution: A low logic level on the SHZ pin corrupts 'C32
memory and register contents. Reset the device with an
SHZ=1 to restore it to a known operation condition.

Supply Signals (45 Pins)

CVgs 7 | Ground

DVpp 12 | +5-Vdc supply

DVgs 7 | Ground

IVgs 4 l Ground

VpoL 8 | +5-Vdc supply

Vssi 6 | Ground

Vsuss 1 | Substrate. Tie to ground

t Input (), Output (O), High-impedance state (2)
1+ SHZ active (S), Hold active (H), Reset active (R)
Note: Shaded entries indicate new 'C32 external signals

13-4

Appendix A

_Boot Loader Source Code

This appendix includes a description of the boot loader sequence of events
and a listing of its source code.

A-1

Boot Loader Source Code Description

A.1 Boot Loader Source Code Description

A-2

Figure A—1 shows the boot loader program flow chart. The boot loader pro-
gram starts by initializing three registers: AR7, SP, and IR0. These register
hold the Peripheral Bus memory map register base address, the Timer
Counter register (used as a stack), and a flag that indicates the first block,
respectively. Then, the program checks for serial port boot load or memory
boot load mode by processing the bit fields set in the Interrupt Flag Register
(IF). For a serial port boot load, the program initializes the serial port for 32 bit
fixed burst mode reads with an externally generated serial port clock and FSR.

For a memory boot load, AR3 is set to the boot source address, AR2 points
to the boot source Strobe Control register, and R2 contains the value that will
be stored in this Strobe Control register. The boot loader also sets the bit field
I/OXFO of the I/O Flag Register (IOF) if the handshake mode was selected.
Then the boot loader reads the first word of the boot source program. This 32
bit word indicates the boot memory width and the boot load program stores this
value in R5. ARO points to the read_mc routine that performs this read.

After reading the memory width word, the boot loader reads IOSTRB, STRBO,
and STRB1 control register values of the source program. These values are
temporarily saved in the DMA Source Address register, DMA Destination
Address register, and DMA Transfer Counter register, respectively. Then, the
program reads the block size with the read_mcroutine. If the block size is zero,
the boot loader restores the values of IOSTRB, STRBO, and STRB1 previously
saved and branches to the destination address of the first block loaded and
begins program execution. If the block size is not zero, the boot loader stores
the block size in the BK register. This is used as counter in a repeat block
(RPTB) to transfer all the data or program in that block.

For each block, the boot loader reads the destination address and the destina-
tion strobe control word. The program stores the destination address in the
ARS register. The destination strobe control word includes the destination
strobe identification, the contents of the destination strobe control register
(includes memory width and data size). The boot loader extracts this informa-
tion from the destination control word and stores the destination strobe control
register memory mapped address in the AR4 register, the contents of the des-
tination strobe control register in the R4 register, and the source data size in
the R3register. The boot loader sets the AR1 register to the appropriate read
routine read_sO for serial port boot load and read_mb for memory boot load.
The read routine utilizes these registers to control the transfer of a block of data
or program.

Boot Loader Source Code Description

Figure A—1. Boot Loader Flow Chart

Initialize Registers:
AR7, SP, IRO

Boot Source
Address: AR3

Interrupt Flag IF Boot Strobe

No >
Pointer: AR2

Process Interrupts

INTO, INT1, INT2
Memory Width: RE}\ s
Process Memory

Boot Strobe Value:
R2

Serial Initialize

Y

Serial Glopal €
Control Register Memory Control Word Width Word Handshake Mode:
Read Routine: ARO - |OF
Read and Store
Strobe Values e
©
g
Q
Read Block Size Block Size RC g
3
k]
Yes §
Block 5
Size=0? 2
o
3
Restore Strobe Read Destination Destination E
Values Previously Address Address: AR3
Saved

Destination Strobe
Pointer: AR4

Start
Program Execution

Read Destination
Strobe

Destination Strobe
Value: R4

Dest. Data Size:
R3

Memory Block Read
Routine: AR1

Memory Width:
5

Select Read
Routine

Boot Loader Source Code A-3

Boot Loader Source Code Listing

A.2 Boot Loader Source Code Listing

(2222 2R SRR RS R R RRRRRRRRRRRRRRRRRR Rt it AR Rt R RRARRRRRRRRRRRER SRS

* C32BOOT — TMS320C32 BOOT LOADER PROGRAM (142 words) 7-7-94
* (C) COPYRIGHT TEXAS INSTRUMENTS INC., 1994 v.26

* *

*

* NOTE:

* 1, Following device reset, the program waits for an external interrupt.

* The interrupt type determines the initial address from which the boot

* loader will start loading the boot table to the destination memory:

* | INTERRUPT PIN BOOT TABLE START ADDRESS BOOT SOURCE

* | INTO 1000h (STRBO) EPROM

* [INT1 810000h (IOSTRB) EPROM

* | INT2 900000h (STRBI1) EPROM

* | INT3 80804Ch (sport0 Rx) SERIAL

* | INTO and INT3 1000h (STRBO) ASYNC EPROM, XFO/XF1l

* | INT1 and INT3 810000h (IOSTRB) ASYNC EPROM, XFO/XF1

* | INT2 and INT3 900000h (STRB1) ASYNC EPROM, XFO/XF1

* If INT3 is asserted together with (INT2 or INT1 or INTO) following reset,
* that indicates that the boot table is to be read synchronously from EPROM
* using pins XF0 and XF1 for handshaking. The handshaking protocol assumes
* that the data ready signal generated by the host arrives through pin XF1.
* The data acknowledge signal is output from the C32 on pin XFO. Both signals
* are active low. The C32 will continuously toggle the IACK signal while

* waiting for the host to assert data ready signal (pin XF1).

* 2. The boot operation involves transfer of one or more source blocks from the

* boot media to the destination memory. The block structure of the boot table
* serves the purpose of distributing the source data/program among different
* memory spaces. Each block is preceded by several 32 bit control words

* describing the block contents to the boot loader program.

* 3. When loading from serial port the boot loader reads the source data/program

Boot Loader Source Code Listing

* 4.
*
*
*
*
*
*
*
* 5.
*
*
*
*
*
* 6.

*

===

and writes it to the destination memory. There is only one way to read the
serial port. When loading from EPROM, however, there are 4 different ways
to read and assemble the source contents, depending on the width of boot
memory and the size of the program/data being transferred. Because there is
a possibility that reads and writes can span the same STRB space, the boot
loader loads the appropriate STRB control registers before each read and

write.

If the boot source is EPROM whose physical width is less then 32 bits, the
physical interface of the EPROM device(s) to the processor should be the
same as that of the 32 bit interface. (This involves a specific connection
to C32's strobe and address signals). The reason for such arrangement is
that in order to function properly the boot loader program always expects
32 bit data from 32 bit wide memory during the boot load operation. Valid

boot EPROM widths are : 8, 16, and 32 bits.

A single source block cannot cross STRB boundaries. For example, it'’s
destination cannot overlap STRBO space and IOSTRB space. Additionally, all
of the destination addresses of a single source block should reside in
physical memory of the same width. It is also not permitted to mix prg and

data in the same source block.

The boot loader stops boot operation when it finds 0 in the block size
control word. Therefore each boot table should always end with a 0
prompting the boot loader to branch to the first address of the first block

and start program execution from that location.

* C32 boot loader program register assignments, and altered mem locations

P pp——

* AR7 — peripheral memory map IOF — XFO (handshake O)

* ARO — read cntrl data subr pointer IOF — XF1 (handshake I)

* ARl — read block data/prg subr pointer

*

Boot Loader Source Code A-5

Boot Loader Source Code Listing

R2 — read STRB value R4 — write STRB value
AR2 — read STRB pointer AR4 — write STRB pointer
AR3 — read data/prg pointer AR5 — write data/prg pointer

read —> R1 —> write

* IR0 — EXEC start flag stack — 808024h — TIMO cnt reg
* IRl — EXEC start address 808028h — TIMO per reg
* IOSTRB— 808004h — DMAO dst reg
* R3 - data SIZE STRBO — 808006h — DMAO dst reg
* R5 — mem WIDTH STRB1 — 808008h — DMAO cnt reg
*
* R6 — memory read value AR6,R7,R0,BK — scratch registers
* *
reset .word start ; reset vector
.space 44h ; program starts @45h

*

* Init registers : 808000h —> AR7, 808023h —> Sp, -1 —> IR0

*

start LDI 4040h,AR7 ; load peripheral memory map
LSH 9,AR7 ; base address = 808000h
LDI 23h,SP ; initialize stack pointer to
OR AR7,SP ; 808023h (timer counter — 1)
LDI -1,IR0 ; reset exec start addr flag

*

*

Test for INT3 and, if set exclusively, proceed with serial boot load. Else,
load AR3 with 1000h if INTO, 810000h if INT1, 900000h if INT2. Also load
appropriate boot strobe pointer —> AR2 and force the boot strobe value to
reflect 32bit memory width. If (INTO or INT1 or INT2) and INT3 then turn on
the handshake mode.

waitl LDI IF,R0
AND 0Fh,RO ; clean
CMPI 8,R0 ; test for INT3
BEQ serial ;***%*x . gerial boot load mode

A-6

LDI AR7,AR2

Boot Loader Source Code Listing

ADDI 60h,AR2 ; 808060h (IOSTRB) —> AR2

TSTB 2,R0 ; test for 1INTI1

LDINZ 4080h,AR3 ; 810000h / 2**9

BNZ exit3 pRIKKK o

ADDI 4,AR2 ; 808064h (STRBO) —> AR2

TSTB 1,R0 ; test for INTO

LDINZ 8,AR3 ; 001000h / 2**9

BNZ exit3 gRIKKE

ADDI 4,AR2 ; 808068h (STRB1) —> AR2

TSTB 4,R0O ; test for INT2

LDINZ 4800h,AR3 ; 900000h / 2**9

BZ waitl jR*IAK
exit3 TSTB 8,R0 ;*; test#1 — INT3 asserted

BZ exit2 ;*; test#2 — INXF1l low (not used)

TSTB 80h, IOF ;*; enable handshake mode if

LDI 6,IO0OF ;*; test#l passed
exit2 LDI OFh,R2

LSH 16,R2 ; force boot data size to 32

OR *AR2,R2 ; force boot mem width to 32

STI R2,*AR2

LSH 9,AR3 ; boot mem start addr —> AR3
* xx000001
k=== xx000010
* Process MEMORY WIDTH control word (32 bits long) xx000100
*======= xx001000
* xx010000
* xx100000

LDI read_mc,AR0O ; use memory to read cntrl words

; read_mc —> ARO

LDI 1,R5 ; mem width = 1 (init)

LDI 32,AR6 ; mem reads = 32 (init)

CALLU read m ; read memory once (lst read)
loop2 TSTB 1,R6

BNZ label4d

LSH -1,R6 ; look at next bit

o BN e

16
32

bit
bit
bit
bit
bit
bit

Boot Loader Source Code

A-7

Boot Loader Source Code Listing

LSH
LSH
BU
label4 SUBI
CMPI
BN
label5 CALLU
DBU

*

-1,AR6

1,R5

loop2 R
2,AR6

0,AR6

strobes Pl
read_m

ARG, label5; *****

~ ~

~

~e

.

’

.
’

decr mem reads

incr mem width —> R5

set flags
total # of mem reads = 32/R5

read memory once

* Read and save

*

IOSTRB, STRBO & STRB1 (to be loaded at end of boot load)

strobes CALLU
STI
CALLU
STI
CALLU
STI

*

ARO
R1,*+AR7(4)
ARO
R1,*+AR7(6)
ARO
R1,*+AR7(8)

4

’

~

IOSTRB —> (DMA src)

STRBO —> (DMA dst)

STRB1 —> (DMA cnt)

* Process block

*

size (# of bytes,

half-words or words after STRB cntrl)

block CALLU
LDI
BNZ
LDI
STI
LDI
STI
LDI
STI
BU

label2 LDI
SUBI

A-8

ARO

R1,R1

label2 pREKKK
*+AR7(4),RO

RO, *+AR7 (60h)
*+AR7(6),R0

RO, *+AR7 (64h)
*+AR7(8),R0

RO, *+AR7 (68h)
IR1 gREFHK
R1,RC

1,RC

~

~e

~e

~e

read boot memory cntrl word
is this the last block ?
no, go around

(DMA src)
restore IOSTRB

(DMA dst)
restore STRBO

(DMA cnt)
restore STRBI1
branch to start of program
setup transfer loop

RC - 1 —> RC

Boot Loader Source Code Listing

* *

* Process block destination address, save start address of first block

[rp— *

CALLU ARO
LDI R1,AR5
CMPI 0,IR0
LDINZ ARS5,IR1

read boot memory cntrl word

~

set dest addr —> AR5

look at EXEC start addr flag
if -1, EXEC start addr —> IR1
set EXEC start addr flag

~ ~

~e

LDINZ O0,IRO

~e

* (For internal destination this word should be 0 or 60h. The first case
* will result in 0 —> DMA cntrl reg, in second case 0 —> IOSTRB reg.)

* Process block destination strobe control (sss...sss 0110 xx00)

* strb value === 00 — IOSTRB
* 01 — STRBO
CALLU ARO ; 10 — STRB1
LDI R1,R4
AND 6Ch,R1 ; dest mem strb pntr —> AR4
OR3 AR7,R1,AR4
LSH —8,R4 ; dest memory strobe —> R4
LDI R4,R3
LSH -16,R3
AND 3,R3 ; dest data size —> R3
TSTB 0Ch,R1 ; (IOSTRB case)
LDIZ 3,R3
* *

* Look at RS and choose serial or memory read for block data/program

* *
CMPI O,R5
LDIEQ read_sO0,ARl ; read serial port0
LDINE read_mb,AR1 ; read memory

* === *

* Transfer one block of data or program

k=== *

RPTB loop4
CALLU ARl ; read data/prg
STI R4, *AR4 ; set write strobe

Boot Loader Source Code A-9

Boot Loader Source Code Listing

NOP
loop4 STI R1, *ARS5++
|| sTI R2,*AR2
BU block §RI IR

*

pipeline

~

; write data/prg

set read strobe

~

; process next block

* Load R5 with 0, load read_s0 to

*

ARO and initialize serial port_ 0

serial LDI read_s0,AR0O
LDI 0,R5
LDI 0,R2

LDI AR7,AR2

LDI 111h,RO

STI RO, *+AR7(43h)
LDI 0A30h,R7

LSH 16,R7

STI R7,*+AR7(40h)

BU strobes g Rk kK

; use serial to read cntrl words

memory WIDTH = serial

~

dummy

~e

dummy
0000111h —> RO
; set CLKR,DR,FSR as serial

~

~e

; port pins
; A300000h —> R7
; set serial global cntrl reg

; process first block

* ==== =%

* Read a single value from serial

or boot memory. The number of memory reads

* depends on mem WIDTH and data SIZE. Rl returns the read value.

* (Serial sim: NOP —> BZ read_s0

*

& LDI @4000H,R1 —> LDI *+AR7(4Ch),R1)

read_s0 TSTB 20h,IF
B2 read_s0
AND OFDFh, IF

look at RINTO flag

~

wait for receive buffer full

-

reset interrupt flag

~

LDI *+AR7(4Ch) ,R1 ; read data —> RI1
RETSU
*
read_mc LDI 3,R3 ; data size = 32, 3 —> R3
read_mb LDI 1,BK ; 00000001 (ex: mem width=8)
LSH R5,BK ; 00000100
SUBI 1,BK ; 000000FF = mask —> BK
LDI R3,AR6 ; 0 — 1 000 EXPAND

ADDI 1,AR6
LSH 3,AR6
LDI R5,R0

A-10

1 - 10 000 DATA —> AR6
11 - 100 000 SIZE

~

~

Boot Loader Source Code Listing

loop3 CMPI 1,R0
BEQ exitl ; DATA SIZE
LSH -1,R0 ; -1 —> ARG
LSH —1,AR6 ; MEM WIDTH
BU loop3 AL L]
exitl SUBI 1,AR6
LDI 0,R0O ; init shift value
LDI 0,R1 ; init accumulator
loopl ADDI 3,SP ; 808027h —> SP

CALLU read_m read memory once —> R6

~e

SUBI 3,SP ; 808024h —> SP

AND3 R6,BK,R7 ; apply mask

LSH RO,R7 ; shift

OR R7,R1 ; accumulate —> R1

ADDI R5,R0 increment shift value

~

DBU AR6,loopl ;****x . decrement # of chunks —> AR6
RETSU

k=== *

* Perform a single memory read from the source boot table. Handshake enabled if
* IOXFO bit of IOF reg is set, disabled when reset. IACK will pulse continuously
* if handshake enabled and data not ready (to achieve zero-glue interface when

* connecting to a C40 comport)

* ==== === *
read_m TSTB 2,I0F ; handshake mode enabled ?
BNZ loop$S ; yes, jump over
LDI *AR3++,R6 ; no, Jjust read memory & return
RETSU
* (C40)

Boot Loader Source Code A-11

Boot Loader Source Code Listing

loop5 IACK *AR7
TSTB 80h, IOF
BNZ loop5
LDI *AR3++,R6
LDI 2,IO0F

loop6 TSTB 80h,IOF
BZ loopé6

LDI 6,IOF

RETSU

internal dummy read pulses IACK

wait for data ready
(XF1 low from host)
read memory once —> R6
assert data acknowledge
(XFO low to host)

wait for data not ready
(XF1 high from host)
deassert data acknowledge

(XFO high to host)

A-12

Index

addressing, 5-1

architecture, 2-1
overview, 2-2

assembly language, 10-1

bits
INT Config, 3-2
PRGW Status, 3-2

block diagram, 2-2

boot loader, 2-6, 3-8
code description, A-2
code listing, A-4
data stream, 3-14
flowchart, A-3

hardware interface, 3-16

memory, 3-13
mode flowchart, 3-11
mode selection, 3-8
sequence, 3-9
serial port, 3-12

bus cycles, 7-28
I0OSTRB, 7-31
STRBO, 7-28
STRB1, 7-28

bus timing, 7-28

CPU, 2-3
DMA interrupts, 8-2
register file, 3-2

CPU/DMA interrupts, 8-2

data
memory, 2-4
transfer, 3-14
type sizes, 2-5
data type size field, 7-9
direct memory access, 2-7
DMA, 2-7
channel arbitration, 8-3
control registers, 8-2
CPU interrupts, 8-2
interrupts, 8-2
two-channel, 8-2
DMA global control registers, 8-2

external interface control registers, 7-7

external memory interface
configurations, 7-7
features, 7-2
overview, 7-3

fields
data type size, 7-9
physical memory width, 7-9
sign ext/zero fill, 7-10
STRB Config, 7-10
STRB Switch, 7-11

floating-point format, 4-2

handshake, 3-14
hardware applications, 12-1
external memory banks, 12-8

Index-1

Index

maximum performance, 12-2
minimum memory, 12-5

IDLE2 power-down mode, 6-5
IE register, 3-3
IF register, 3-3
inactive bus states, 7-40
instruction cycle, 2-3
INT Config bit, 3-2
interface, memory, 2-4
interrupts
CPU/DMA, 8-2
edge-triggered, 2-3
level-triggered, 2-3
locations, 3-5
vector table, 2-3
introduction, 1-1
IOSTRB bus cycles, 7-31
IOSTRB control register, 7-9

ITTP register, 3-4

key features, 1-2

LOPOWER mode, 6-6

memory
data, 2-4
DMA, 2-7
external banks, 12-8
external map, 12-4, 12-6
external widths, 2-5
interface, 2-4
map, 3-6, 12-4, 12-7
on-chip RAM, 2-6
peripheral bus, 3-7
program, 2-4

memory interface
16-bit wide, 7-17

Index-2

32-bit wide, 7-13
8-bit wide, 7-22
memory widths
16-bit with 16-bit data type size, 7-19
16-bit with 32-bit data type size, 7-20
16-bit with 8-bit data type size, 7-18
32-bit with 16-bit data type size, 7-15
32-bit with 32-bit data type size, 7-16
32-bit with 8-bit data type size, 7-13
8-bit with 16-bit data type size, 7-24
8-bit with 32-bit data type size, 7-25
8-bit with 8-bit data type size, 7-22
modes
boot loader, 3-8, 3-11
power management, 2-3, 6-5

on-chip RAM, 2-6

peripheral bus, 3-7
peripherals, 2-7, 8-1
physical memory width field, 7-9
pins
address, 13-2
CLKIN, 13-4
CLKRO, 13-3
CLKXO0, 13-3
CVSS, 13-4
data, 13-2
DRO, 13-3
DVDD, 13-4
DVSS, 13-4
DXo, 13-3
EMU2-0, 13-4
EMUS, 13-4
FSRO, 13-3
FSXo0, 13-3
H1, 13-4
H3, 13-4
HOLD, 13-2
HOLDA, 13-3
IACK, 13-3
interrupts, 13-3
IOSTRB, 13-2
IVSS, 13-4
MCBL/MP, 13-3

Index

PRGW, 13-3

R/W, 13-2

RDY, 13-2

RESET, 13-3

SHZ, 13-4

STRBx_Bx, 13-2

TCLKO, 13-4

TCLK1, 13-4

VvDDL, 13-4

VSSL, 13-4

VSUBS, 13-4

XF1-0, 13-3
pipeline operation, 9-1
power management, modes, 2-3, 6-5

IDLE2 power-down, 6-5

LOPOWER, 6-6
PRGW Status bit, 3-2

program, memory, 2-4

RDY timings, 7-27

register file, CPU, 3-2

registers
DMA global control, 8-2
external interface control, 7-7
interrupt enable, 3-3
interrupt flag, 3-3
interrupt-trap table pointer, 3-4
IOSTRB control, 7-9

status, 3-2
STRBO control, 7-8
STRB1 control, 7-8

reset operation, 6-2

serial port, boot loader, 3-12
sign ext/zero fill field, 7-10
signal descriptions, 13-2
clock, 13-4
emulation and test signals, 13-4
external bus interface, 13-2
reserved, 13-4
timer, 13-4
signals
control, 13-3
serial port, 13-3
software applications, 11-1
ST register, 3-2
STRB Config field, 7-10
STRB Switch field, 7-11
STRBO control register, 7-8
STRBH1 control register, 7-8

timings, RDY, 7-27
trap vectors, 3-5

Index-3

Index-4

NOTES

Tl Worldwide Sales and Representative Offices

AUSTRALIA / NEW ZEALAND: Texas Instruments Australia Ltd.: Sydney
[61) 2-910-3100, Fax 2-805-1186; Melbourne 3-696-1211, Fax 3-696-4446.
BELGIUM: Texas Instruments Belgium S.A./N.V.: Brussels [32] (02) 726-75-
80, Fax (02) 726 72 76.

BRAZIL: Texas Instrumentos Electronicos do Brasil Ltda.: Sao Paulo

[55] 11-535-5133.

CANADA: Texas Instruments Canada Ltd.: Montreal (514) 335-8392;
Ottawa (613) 726-3201; Toronto (416) 884-9181.

DENMARK: Texas Instruments A/S: Ballerup [45] (44) 68 74 00.
FINLAND: Texas Instruments/OY: Espoo [358] (0) 43 54 20 33,

Fax (0) 46 73 23.

FRANCE: Texas Instruments France: Velizy-Villacoublay Cedex

(33] (1) 30 70 10 01, Fax (1) 30 70 10 54.

GERMANY: Texas Instruments Deutschland GmbH.: Freising

[49] (08161) 80-0, Fax (08161) 80 45 16; Hannover (0511) 90 49 60,

Fax (0511) 64 90 331; Ostfildern (0711) 34 030, Fax (0711) 34 032 57.
HONG KONG: Texas Instruments Hong Kong Ltd.: Kowloon [852] 2956-
7288, Fax 2965-2200.

HUNGARY: Texas Instruments Representation: Budapest [36] (1) 269 8310,
Fax (1) 267 1357.

IRELAND: Texas Instruments Ireland Ltd.: Dublin [353] (01) 475 52 33,
Fax (01) 478 14 63.

ITALY: Texas Instruments ltalia S.p.A.: Agrate Brianza [39] (039) 68 42.1,
Fax (039) 68 42.912; Rome (06) 657 26 51.

JAPAN: Texas Instruments Japan Ltd.: Tokyo [81] 03-769-8700,

Fax 03-3457-6777, Osaka 06-204-1881, Fax 06-204-1895; Nagoya 052-583-

8691, Fax 052-583-8696; Ishikawa 0762-23-5471, Fax 0762-23-1583;
Nagano 0263-33-1060, Fax 0263-35-1025; Kanagawa 045-338-1220, Fax
045-338-1255; Kyoto 075-341-7713, Fax 075-341-7724; Saitama 0485-22-
2440,

Fax 0425-23-5787; Oita 0977-73-1557, Fax 0977-73-1583.

KOREA: Texas Instruments Korea Ltd.: Seoul [82] 2-551-2800,

Fax 2-551-2828.

MALAYSIA: Texas Instruments Malaysia Sdn Bhd: Kuala Lumpur

[60] 3-208-6001, Fax 3-230-6605.

MEXICO: Texas Instruments de Mexico S.A. de C.V.: Colonia del Valle
52] 5-639-9740.

NORWAY: Texas Instruments Norge A/S: Oslo [47] (02) 264 75 70.
MAINLAND CHINA: Texas Instruments China Inc.: Beljing [86] 1-500-
2255, Ext. 3750, Fax 1-500-2705.

PHILIPPINES: Texas Instruments Asia Ltd.: Metro Manila [63] 2-817-6031,
Fax 2-817-6096.

PORTUGAL: Texas Instruments Equipamento Electronico (Portugal) LDA.:
Maia [351) (2) 948 10 03, Fax (2) 948 1929,

SINGAPORE (& INDIA, INDONESIA, THAILAND): Texas Instruments
Singapore (PTE) Ltd.: Singapore [65] 390-7100, Fax 390-7062.

SPAIN: Texas Instruments Esparia S.A.: Madrid [34] (1) 37280 51,

Fax (1) 372 82 66; Barcelona (3) 31 791 80.

SWEDEN: Texas Instruments International Trade Corporation
(Sverigefilialen): Kista [46] (08) 752 58 00, Fax (08) 751 97 15.
SWITZERLAND: Texas Instruments Switzerland AG: Dietikon

[41) 886-2-3771450.

TAIWAN: Texas instruments Talwan Limited: Taipel [886)] (2) 378-6800,
Fax 2-377-2718.

UNITED KINGDOM: Texas Instruments Ltd.: Northampton [44] (0234) 270
111, Fax (0234) 223 459.

UNITED STATES: Texas Instruments Incorporated: ALABAMA:: Huntsville
(205) 430-0114; ARIZONA: Phoenix (602) 224-7800; CALIFORNIA: Irvine
(714) 660-1200; San Diego (619) 278-9600; San Jose (408) 894-9000;
Woodland Hills (818) 704-8100; COLORADO: Denver (303) 488-9300;
CONNECTICUT: Wallingford (203) 265-3807; FLORIDA: Oriando

(407) 667-5300; Fort Lauderdale (305) 425-7820; Tampa (813) 882-0017;
GEORGIA: Atlanta (404) 662-7967; ILLINOIS: Arlington Heights

(708) 640-2925; INDIANA: Indlanapolis (317) 573-6400; KANSAS: Kansas
City (913) 451-4511; MARYLAND: Columbia (410) 312-7900;
MASSACHUSETTS: Boston (617) 895-9100; MICHIGAN: Detroit (313) 553-
1500; MINNESOTA: Minneapolis (612) 828-9300; NEW JERSEY: Edison
(908) 906-0033; NEW MEXICO: Albuquerque (505) 345-2555; NEW YORK:
Poughkeepsie (914) 897-2900; Long Island (516) 454-6601; Rochester
(716) 385-6770; NORTH CAROLINA: Charlotte (704) 522-5487; Raleigh
(919) 876-2725; OHIO: Cleveland (216) 765-7258; Dayton (513) 427-6200;
OREGON: Portland (503) 643-6758; PENNSYLVANIA: Philadelphia (215)
825-9500; PUERTO RICO: Hato Rey (809) 753-8700; TEXAS: Austin (512)
250-6769; Dallas (214) 917-1264; Houston (713) 778-6592; WISCONSIN:
Milwaukee (414) 798-1001.

North American Authorized Distributors

COMMERCIAL MILITARY

Almac / Arrow Alliance Electronics Inc
Anthem Electronics Future Electronics (Canada)
Arrow / Schweber Hamilton Hallmark

Future Electronics (Canada)
Hamilton Hallmark CATALOG
Marshall Industries Allied Electronics
Wyle Arrow Advantage
OBSOLETE PRODUCTS Newark Electonics
Rochester Electronics 508/462-9332

For Distributors outside North America, contact your local Sales Office.

Zeus, An Arrow Company

AD32295

Important Notice: Texas Instruments (TI) reserves the right to make changes to or to discontinue any product
or service identified in this publication without notice. Tl advises its customers to obtain the latest version of the
relevant information to verify, before placing orders, that the information being relied upon is current.

Please be advised that Tl warrants its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Tl assumes no liability for applications
assistance, software performance, or third-party product information, or for infringement of patents or services

in this publication. Tl assumes no ibility for of product designs.

‘?@ TEXAS
INSTRUMENTS

© 1995 Texas Instruments Incorporated
Printed in the USA

3
INSTRUMENTS

Printed in U.S.A., March 1995 SPRU132B

