&

PRINTED WITH

SOYINK|_

TMS320C20x
User’s Guide

Literature Number: SPRU127C
April 1999

b TEXAS

INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, ORWARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not
warrant or represent that any license, either express orimplied, is granted under any patentright,
copyright, mask work right, or other intellectual property right of Tl covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI's publication of information regarding any third party’s products or services does
not constitute TI's approval, warranty or endorsement thereof.

Copyright 0 1999, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This user’s guide describes the architecture, hardware, assembly language
instructions, and general operation of the TMS320C20x digital signal proces-
sors (DSPs). This manual can also be used as a reference guide for develop-
ing hardware and/or software applications. In this document, 'C20xT refers to
any of the TMS320C20x devices, except where device-specific information is
explicitly stated. When device-specific information is given, the device name
may be abbreviated; for example, TMS320C203 will be abbreviated as 'C203.
This manual covers 'C203, 'LC203, 'C206, 'LC206, and 'F206 devices. For
pinouts, electrical characteristics, and timing diagrams, refer to the data
sheets of the individual devices.

How to Use This Manual

Chapter 1, Introduction, summarizes the TMS320 family of products and then
introduces the key features of the TMS320C20x generation of that family.
Chapter 2, Architectural Overview, summarizes the 'C20x architecture, provid-
ing information about the CPU, bus structure, memory, on-chip peripherals,
and scanning logic.

If you are reading this manual to learn about the 'C209, Chapter 11 is important
for you. There are some notable differences between the 'C209 and other
'C20x devices, and Chapter 11 explains these differences. In addition, it shows
how to use this manual to get a complete picture of the 'C209.

The following table points you to major topics.

T The generic name '2xx refers to all DSPs using the 2xLP DSP core. This user guide revision uses '20x, a subset of '2xx, to specifi-
cally reference the 'C/LC203, 'F206, and the C/LC206.

How to Use This Manual

For this information:

Look here:

Addressing modes (for addressing data
memory)

Assembly language instructions

Assembly language instructions of
TMS320C1x, 'C2x, 'C20x, and 'C5x
compared

Boot loader

Clock generator
CPU

Custom ROM from TI

Emulator

Features

Input/output ports

Interrupts

Memory configuration

Memory interfacing

On-chip peripherals

Pipeline

Program control

Program examples

Program-memory address generation
Registers summarized

Serial ports

Stack

Status registers

Timer

TMS320C209 differences and
similarities

Wait-state generator

Chapter 6, Addressing Modes

Chapter 7, Assembly Language
Instructions

Appendix C,
TMS320C1x/C2x/C2xx/C5x
Instruction Set Comparison

Chapter 4, Memory and I/O Spaces
Chapter 8, On-Chip Peripherals
Chapter 3, Central Processing Unit

Appendix E, Submitting ROM Codes
to Tl

Appendix F, Design Considerations for
Using XDS510 Emulator

Chapter 1, Introduction
Chapter 2, Architectural Overview

Chapter 4, Memory and I/O Spaces
Chapter 5, Program Control
Chapter 4, Memory and I/O Spaces
Chapter 4, Memory and I/O Spaces
Chapter 8, On-Chip Peripherals
Chapter 5, Program Control
Chapter 5, Program Control
Appendix D, Program Examples
Chapter 5, Program Control
Appendix A, Register Summary

Chapter 9, Synchronous Serial Port
Chapter 10, Asynchronous Serial Port

Chapter 5, Program Control
Chapter 5, Program Control
Chapter 8, On-Chip Peripherals
Chapter 11, TMS320C209

Chapter 8, On-Chip Peripherals

Notational Conventions / Information About Cautions

Notational Conventions
This document uses the following conventions:

[J Program listings and program examples are shown in a special type-
face .

Here is a segment of a program listing:

OUTPUT LDP #6 ;select data page 6
BLDD #300, 20h ;move data at address 300h to 320h
RET

[In syntax descriptions, bold portions of a syntax should be entered as
shown; italic portions of a syntax identify information that you specify. Here
is an example of an instruction syntax:

BLDD source, destination
BLDD is the instruction mnemonic, which must be typed as shown. You
specify the two parameters, source and destination.

[Square brackets ([and]) identify an optional parameter. If you use an op-
tional parameter, you specify the information within the brackets; you do
not type the brackets themselves. You separate each optional operand
from required operands with a comma and a space. Here is a sample syn-
tax:

BLDD source, destination [, ARN]

BLDD is the instruction. The two required operands are source and des-
tination, and the optional operand is ARn. AR is bold and nis italic; if you
choose to use ARn, you must type the letters A and R and then supply a
chosen value for n (in this case, a value from 0 to 7). Here is an example:

BLDD *, #310h, AR3

Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

Read This First Y,

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

vi

This section describes related TIO documents that can be ordered by calling
the Texas Instruments Literature Response Center at (800) 477—8924. When
ordering, please identify the document by its title and literature number.

The following data sheets contain the electrical and timing specifications for
the TMS320C20x devices, as well as signal descriptions and pinouts for all of
the available packages:

[0 TMS320C20x data sheets (literature number SPRS025 and SPRS065)
[0 TMS320F20x data sheet (literature number SPRS050). This data sheet
covers the TMS320F20x devices that have on-chip flash memory.

The books listed below provide additional information about using the
TMS320C2xx devices and related support tools, as well as more general in-
formation about using the TMS320 family of DSPs.

TMS320C1x/C2x/C2xx/C5x Code Generation Tools Getting Started
Guide (literature number SPRU121) describes how to install the
TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x assembly
language tools and the C compiler for the 'C1x, 'C2x, 'C2xx, and 'C5x de-
vices. The installation for MS-DOSO, OS/2[0, SunOS[, and Solaris
systems is covered.

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-
erature number SPRU018) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the 'C1x, 'C2x, 'C2xx, and 'C5x gen-
erations of devices.

TMS320C2x/C2xx/C5x Optimizing C Compiler User's Guide (literature
number SPRUO024) describes the 'C2x/C2xx/C5x C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the 'C2x, 'C2xx, and 'C5x genera-
tions of devices.

TMS320C2xx PC Emulator Installation Guide (literature number SPRU152)
describes the installation of the XDS510 PC emulator and the C source
debugger for OS/2 and MS-Windows operating systems.

TMS320C2xx C Source Debugger User's Guide (literature number
SPRU151) tells you how to invoke the 'C2xx emulator and simulator ver-
sions of the C source debugger interface. This book discusses various
aspects of the debugger interface, including window management, com-
mand entry, code execution, data management, and breakpoints. It also
includes a tutorial that introduces basic debugger functionality.

Related Documentation From Texas Instruments

TMS320C2xx Simulator Getting Started (literature number SPRU137)
describes how to install the TMS320C2xx simulator and the C source
debugger for the 'C2xx. The installation for MS-DOS[], PC-DOS],
SunOS[, Solaristd, and HP-UX[O systems is covered.

TMS320C2xx Emulator Getting Started Guide (literature number
SPRU209) tells you how to install the Windows[1 3.1 and Windows[] 95
versions of the 'C2xx emulator and C source debugger interface.

XDS51x Emulator Installation Guide (literature number SPNUOQ070)
describes the installation of the XDS5100, XDS510PPO, and
XDS510WSO emulator controllers. The installation of the XDS5110]
emulator is also described.

JTAG/MPSD Emulation Technical Reference (literature number SPDUQ079)
provides the design requirements of the XDS5100] emulator controller,
discusses JTAG designs (based on the IEEE 1149.1 standard), and
modular port scan device (MPSD) designs.

TMS320 DSP Development Support Reference Guide (literature number
SPRUO011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

Digital Signal Processing Applications with the TMS320 Family, Vol-
umes 1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017)
Volumes 1 and 2 cover applications using the 'C10 and 'C20 families of
fixed-point processors. Volume 3 documents applications using both
fixed-point processors as well as the 'C30 floating-point processor.

TMS320 DSP Designer’'s Notebook: Volume 1 (literature number
SPRT125). Presents solutions to common design problems using 'C2x,
'C3x, 'C4x, 'C5x, and other Tl DSPs.

TMS320 Third-Party Support Reference Guide (literature number
SPRUO052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

Read This First vii

Related Articles

Related Articles

viii

“A Greener World Through DSP Controllers”, Panos Papamichalis, DSP &
Multimedia Technology, September 1994.

“A Single-Chip Multiprocessor DSP for Image Processing—TMS320C80",
Dr. Ing. Dung Tu, Industrie Elektronik, Germany, March 1995.

“Application Guide with DSP Leading-Edge Technology”, Y. Nishikori, M. Hat-
tori, T. Fukuhara, R.Tanaka, M. Shimoda, |. Kudo, A.Yanagitani, H. Miyaguchi,
et al., Electronics Engineering, November 1995.

“Approaching the No-Power Barrier”, Jon Bradley and Gene Frantz, Electronic
Design, January 9, 1995.

“Beware of BAT: DSPs Add Brilliance to New Weapons Systems”, Panos Pa-
pamichalis, DSP & Multimedia Technology, October 1994.

“Choose DSPs for PC Signal Processing”, Panos Papamichalis, DSP & Multi-
media Technology, January/February 1995.

“Developing Nations Take Shine to Wireless”, Russell MacDonald, Kara
Schmidt and Kim Higden, EE Times, October 2, 1995.

“Digital Signal Processing Solutions Target Vertical Application Markets”, Ron
Wages, ECN, September 1995.

“Digital Signal Processors Boost Drive Performance”, Tim Adcock, Data Stor-
age, September/October 1995.

“DSP and Speech Recognition, An Origin of the Species”, Panos Papamichal-
is, DSP & Multimedia Technology, July 1994.

“DSP Design Takes Top-Down Approach”, Andy Fritsch and Kim Asal, DSP
Series Part Ill, EE Times, July 17, 1995.

“DSPs Advance Low-Cost ‘Green’ Control”, Gregg Bennett, DSP Series Part
I, EE Times, April 17, 1995.

“DSPs Do Best on Multimedia Applications”, Doug Rasor, Asian Computer
World, October 9-16, 1995.

“DSPs: Speech Recognition Technology Enablers”, Gene Frantz and Gregg
Bennett, I&CS, May 1995.

“Easing JTAG Testing of Parallel-Processor Projects”, Tony Coomes, Andy
Fritsch, and Reid Tatge, Asian Electronics Engineer, Manila, Philippines, No-
vember 1995.

Related Articles

“Fixed or Floating? A Pointed Question in DSPs”, Jim Larimer and Daniel
Chen, EDN, August 3, 1995.

“Function-Focused Chipsets: Up the DSP Integration Core”, Panos Papa-
michalis, DSP & Multimedia Technology, March/April 1995.

“GSM: Standard, Strategien und Systemchips”, Edgar Auslander, Elektronik
Praxis, Germany, October 6, 1995.

“High Tech Copiers to Improve Images and Reduce Paperwork”, Karl Guttag,
Document Management, July/August 1995.

“Host-Enabled Multimedia: Brought to You by DSP Solutions”, Panos Papa-
michalis, DSP & Multimedia Technology, September/October 1995.

“Integration Shrinks Digital Cellular Telephone Designs”, Fred Cohen and
Mike McMahan, Wireless System Design, November 1994.

“On-Chip Multiprocessing Melds DSPs”, Karl Guttag and Doug Deao, DSP Se-
ries Part Ill, EE Times, July 18, 1994.

“Real-Time Control”, Gregg Bennett, Appliance Manufacturer, May 1995.

“Speech Recognition”, P.K. Rajasekaran and Mike McMahan, Wireless De-
sign & Development, May 1995.

“Telecom Future Driven by Reduced Milliwatts per DSP Function”, Panos Pa-
pamichalis, DSP & Multimedia Technology, May/June 1995.

“The Digital Signal Processor Development Environment”, Greg Peake, Em-
bedded System Engineering, United Kingdom, February 1995.

“The Growing Spectrum of Custom DSPs”, Gene Frantz and Kun Lin, DSP Se-
ries Part Il, EE Times, April 18, 1994.

“The Wide World of DSPs, " Jim Larimer, Design News, June 27, 1994,

“Third-Party Support Drives DSP Development for Uninitiated and Experts
Alike”, Panos Papamichalis, DSP & Multimedia Technology, December
1994/January 1995.

“Toward an Era of Economical DSPs”, John Cooper, DSP Series Part I, EE
Times, Jan. 23, 1995.

Read This First ix

Trademarks

Trademarks

Tl, 320 Hotline On-line, XDS510, XDS510PP, XDS510WS, and XDS511 are
trademarks of Texas Instruments Incorporated.

HP-UX is a trademark of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.
PALU is a registered trademark of Advanced Micro Devices, Inc.

0S/2, PC, and PC-DOS are trademarks of International Business Machines
Corporation.

Solaris and SunQOS are trademarks of Sun Microsystems, Inc.

If You Need Assistance. . .

If You Need Assistance

1 World-Wide Web Sites
Tl Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
0 North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
1 Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax: +3313070 1032
Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 130 70 11 68
English +33130701165
Francais +33130701164
Italiano +33130701167
EPIC Modem BBS +3313070 1199
European Factory Repair +334 9322 2540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
] Asia-Pacific
Literature Response Center +852 2956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 25512828
Korea DSP Modem BBS +82 25512914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/Tl/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”
0 Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443
Note: When calling a Literature Response Center to order documentation, please specify the literature number of the

book.

Read This First Xi

1

Contents

INtrOAUCTION ..ot
Summarizes the features of the TMS320 family of products and presents typical applications.
Describes the TMS320C20x DSP and lists its key features.

1.1 TMS320 Family ... e
1.2 TMS320C20X GENEIAtION . . .ottt et e et e e e ettt
1.3 Key Features of the TMS320C20Xottt e e ees
ArchiteCtural OVEIVIEWottt et e et e e e e e e e e 2

Summarizes the TMS320C20x architecture. Provides information about the CPU, bus struc-
ture, memory, on-chip peripherals, and scanning logic.

2.1 CC20X BUS SHUCKUIE . . . oot e e e e e 2-3
2.2 Central Processing Unit e 2-5
2.3 Memory and /O SPaceSttt e 2-7
2.4 Program CoNntrol i 2-10
2.5 On-Chip Peripherals i e e 2-11]
2.6 Scanning-Logic CirCUItTYot e e 2-13
Central Processing Unit 3

Describes the TMS320C20x CPU. Includes information about the central arithmetic logic unit,
the accumulator, the shifters, the multiplier, and the auxiliary register arithmetic unit. Concludes
with a description of the status register bits.

3.1 Input Scaling SECHION . .. oo 3-3
3.2 MURIplication SECHION 3-5
3.3 Central Arithmetic LOgQIiC SECHON e 3-8
3.4 Auxiliary Register Arithmetic Unit (ARAU) e 3-12
3.5 Status Registers STO and STL e 3-15
MemOry and 1/O SPACESt e 4-1 |
Describes the configuration and use of the TMS320C20x memory and I/O spaces. Includes
memory/address maps and descriptions of the HOLD (direct memory access) operation and

the on-chip bootloader.

4.1 Overview of the Memory and /O SPacesc.couiiieii i, 4-2
4.2 Program MmOy ...t 4-5
4.3 Local Data MemOrY ...t 4-7
4.4 Global Data MemMOrYttt e 4-11
A5 1O SPACE . .ttt e e 4-14
4.6 Direct Memory Access Using the HOLD Operationccoviiienn... 4-18
4.7 Device-Specific Information 4-22
4.8 'C203 BOOtloader 4-30
4.9 'C206/LC206 Bootloaderiiiiiiti 4-39

Contents

Xiv

Program CONMIOlttt et e e e e
Describes the TMS320C20x hardware and software features used in controlling program flow,
including program-address generation logic and interrupts. Also describes the reset operation
and power-down mode.

5.1 Program-Address Generationc.uiii e 5-2
5.2 Pipeline Operation 5-7
5.3 Branches, Calls, and RetUIrns it 5-8
5.4 Conditional Branches, Calls, and Returns 5-10
5.5 Repeating a Single INStruction 5-14
5.6 INMOITUPES .o 5-15
B.7 ReESEt OPEratiOnot 5-35
5.8 POWEr-DoWNn MOOe 5-40
Addressing MoOeS
Describes the operation and use of the TMS320C20x data-memory addressing modes.

6.1 Immediate Addressing MOde i 6-2)
6.2 Direct Addressing MOttt e 6-4
6.3 Indirect Addressing MOGEo .uin it et 6-9
Assembly Language INStruCtions it e 7. -D

Describes the TMS320C20x assembly language instructions in alphabetical order. Begins with
a summary of the TMS320C20x instructions.

7.1 INStruction Set SUMMAIYt e e e e e 7-

7.2 How To Use the Instruction Descriptionsot 7-12
7.3 INStruction DeSCHPLIONSottt 7-20
ON-Chip PeriPhEralsttt e e e g-1 |

Introduces the TMS320C20x on-chip peripherals. Describes the clock generator, the
CLKOUT1-pin control register, the timer, the wait-state generator, and the general-purpose I/0
pins.

8.1 Control of On-Chip Peripherals e

8.2 ClOCK GEBNEIAION . .\ vttt e e e e e e e e

8.3 CLKOUT1-Pin Control (CLK) RegiStercouiii e

S I 4=

8.5 Walit-State GEeNErator\ttt e et e

8.6 General-Purpose /0 PiNSt e
Synchronous Serial Port ... o
Describes the operation and control of the TMS320C20x on-chip synchronous serial port.

9.1 Overview of the Synchronous Serial Port i, 9-2
9.2 Components and Basic Operationiuuiiiiiiiein i, 9-3
9.3 Controlling and Resetting the Port i 9-8
9.4 Managing the Contents of the FIFO Buffers i ... 9-15
9.5 Transmitter Operationttt e 9-16

10

11

Contents

9.6 RecCeiVer OPerationttt e 9-22
9.7 Troubleshootingt 9-25
9.8 Enhanced Synchronous Serial Port (ESSP) ... 9-29
0.9 ESSP PiNS ..ttt 9-30
9.10 ESSP REQISIEIS . .o\ttt ittt 9-32
9.11 ESSP Register Programming Considerationst 9-40
Asynchronous Serial POrt 10-1 |
Describes the operation and control of the TMS320C20x on-chip asynchronous serial port.

10.1 Overview of the Asynchronous Serial Port o ... 10-2
10.2 Components and Basic Operationioiiiie i, 10-3
10.3 Controlling and Resetting the Portc. e 10-7]
10.4 Transmitter Operationot 10-19
10.5 Receiver Operationt 10-20
TMS320C209 . ..ottt et et

Describes how the TMS320C209 differs from other TMS320C20x devices and is a central re-
source for all the TMS320C209-specific control registers and configuration information.

11.1 ’C209 Versus Other 'C20X DeVICESottt e 11-2
11.2 'C209 Memory and I/O SPaCESottt e e 11-5
11,3 C200 INterTUPES vttt ettt e e e e e 11-10
11.4 ’'C209 On-Chip Peripheralscc i e e 11-15
RegISter SUMMANY ...t e e e e e e A-1

Is a concise, central resource for information about the TMS320C20x on-chip registers. In-
cludes addresses, reset values, and descriptive illustrations for the registers.

Al Addressesand Reset Valuesot e e e e

A.2 Register DESCIPONS ...\ttt
TMS320F206 Flash Serial Loadero.eieeieii i B-1 |
Discusses the TMS320F206 Flash Serial Loader.

B.1 TMS320F206 Flash Serial Loader FEaturesuuue e, B-2
B.2 Functional DeSCPtON u ettt ettt e e e B-3
B.3 Serial Loader COOEuiirti et B-6
TMS320C1x/C2x/C20x/C5x Instruction Set Comparison ..., C-

Discusses the compatibility of program code among the following devices: TMS320C1Xx,
TMS320C2x, TMS320C20x, and TMS320C5x.

BER (O

C.1 Using the Instruction Set ComparisonTable
C.2 Enhanced INSITUCLIONSottt et
C.3 Instruction Set Comparison Table i
Program EXAMPIES ... v ittt -1 |

Presents examples of assembly language programs for the TMS320C20x, primarily examples
for the on-chip peripherals.

D.1 About These Program Examplesco it
D.2 Shared Program Code ...ttt e e e
D.3 Task-Specific Program Codettt e e
D.4 Introduction to Generating Bootloader Code

XV

Contents

E Submitting ROM Codesto Tl e E

Explains the process for submitting custom program code to Tl for designing masks for the on-
chip ROM on a TMS320 DSP.

F Design Considerations for Using XDS510 EMUIAtOr —ovveeeeeeeeeann .. F-1f |

Describes the JTAG emulator cable and how to construct a 14-pin connector on your target sys-
tem and how to connect the target system to the emulator.

F.1 Designing Your Target System’s Emulator Connector (14-Pin Header) F-2
F.2 BUS ProtOCOl F-4
F.3 Emulator Cable Pod F-5
F.4 Emulator Cable Pod Signal Timing e F-6
F5 Emulation Timing Calculations e F-7
F.6 Connections Between the Emulator and the Target System F-10
F.7 Physical Dimensions for the 14-Pin Emulator Connector F-14
F.8 Emulation Design Considerationsouuuiitin i F-16
G GlOSSANY .ttt et

Explains terms, abbreviations, and acronyms used throughout this book.

XVi

3-10
3-11
4-1
4-2
4-3
4-4

4-6
4-7
4-8

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22

Figures

Overall Block Diagram of the "C20Xottt e et e et
Bus Structure Block Diagram

Block Diagram of the Input Scaling, Central Arithmetic Logic, and
Multiplication Sections of the CPU i e e

Block Diagram of the Input Scaling Section i
Operation of the Input Shifter for SXM =0 i
Operation of the Input Shifter for SXM =1 e
Block Diagram of the Multiplication Section
Block Diagram of the Central Arithmetic Logic Section oo,

Shifting and Storing the High Word of the Accumulator

Shifting and Storing the Low Word of the Accumulator

ARAU and Related LOGICo ot e ‘

Status Register STOttt e

Status RegiSter ST ..o e e

Interface With External Program Memory
Pages of Data MemoO Yt e e

Interface With External Local Data MemOryot e e

GREG Register Set to Configure 8K for Global Data Memory

Global and Local Data Memory for GREG =11100000coviriennnnn..

Using 8000h—FFFFh for Local and Global External Memory

1/0O Address Map for the 'C20Xttt e ‘
I/O Port Interface CirCUItry o e ‘
HOLD Deasserted Before Reset Deasserted ...

Reset Deasserted Before HOLD Deassertedcouiriiiiiiininnanann.

"C203 AAAreSS Map ..ottt

TMS320C206, TMS320LC206 Memory Map Configurations

TMS320F206 Memory Map Configurationot

PMST Register Selection for RDttt e e

Simplified Block Diagram of Bootloader Operation,

Connecting the EPROM to the Processorot

Storing the Program inthe EPROM e

Program Code Transferred From 8-Bit EPROM to 16-BitRAM ‘
Interrupt Vectors Transferred First During Boot Load,

Program Memory Status (PMST) Register — (I/O space FFE4h)

Enhanced 'C206 Bootloader OptioNsttt e

Boot-load Flowchart

Figures

N -

] o1 |
-bwl\Jl—‘Hl—‘BLO(I)\IG:U‘I

[T R T
A wNREPB_AWOWNE OO

GJOOCXJCOOOCD\I\I\I\IO')CDO)CID@O')UI(.HWWCHCHUICHWLHCHLH

| |
o O

@@?QO@
WN PPN

|
N

Py

o 01

XViii

Destination Address Space for Programs in Program Memory

16-Bit Word Transfer

Host-"C206 Interface for SSP Boot-load Optionc.c ..

Figure 9. 8-Bit Word Transfer ... e e

16-Bit Source Address for Parallel EPROM BootMode,

Handshake ProtoCol e e e e

16-Bit Entry Address for Warm-Boot Mode ...

Program-Address Generation Block Diagramcoo ...
A PUSh OPEration e
A POP OPEIatioN ..ottt e
4-Level Pipeline Operation e

INT2/INT3 Request Flow Chart e

Maskable Interrupt Operation Flow Chart i e

'C20x Interrupt Flag Register (IFR) — Data-Memory Address 0006h

'C20x Interrupt Mask Register (IMR) — Data-Memory Address 0004h

'C20x Interrupt Control Register (ICR) — I/O-Space Address FFECh

Nonmaskable Interrupt Operation Flow Chart oot

Direct Addressing CONtEXt SAVE ii ittt e

Indirect Addressing CoNtext SAVEt e

Instruction Register Contents for Example 6—=1 i,
Two Words Loaded Consecutively to the Instruction Register in Example 6-2
Pages of Data MemOrY e
Instruction Register (IR) Contents in Direct AddressingMode
Generation of Data Addresses in Direct AddressingMode

Instruction Register Content in Indirect Addressingoiiiiin.n.

Bit Numbers and Their Corresponding Bit Codes for BIT Instruction

Bit Numbers and Their Corresponding Bit Codes for BITT Instruction

LST #0 OPerationttt et e ettt e e

LST #L Operationottt e e e e e

Using the Internal OsCillator
Using an External OScillator
'C20x CLK Register — I/O-Space Address FFE8h
Timer Functional Block Diagram

'C20x Timer Control Register (TCR) — I/O-Space Address FFF8h
'C20x Wait-State Generator Control Register (WSGR) —

I/O-Space Address FFFCh

BIO Timing Diagram EXampleue e e

Synchronous Serial Port Block Diagramt
2-Way Serial Port Transfer With External Frame Sync and External Clock
Synchronous Serial Port Control Register (SSPCR) — I/O-Space FFF1h
Burst Mode Transmission With Internal Frame Sync and

Multiple Words inthe Buffer e

Burst Mode Transmission With External Frame Sync

Continuous Mode Transmission With Internal Frame Sync

YT
P RN

1o
A OWODN P

o

=

N

'I'I'I'I'I'I'I'I'I'I'I'I'II'I'I'I'I'I'I'I'I'I'I'I'I'I

|
PR R R OO~NO® O

w

I
RGN
(62N

Continuous Mode Transmission With External Frame Sync
Burst Mode ReCEPLION o
Continuous Mode ReCEpPLioN it e
Test Bits INthe SSPCR e
Synchronous Serial Port Status (SSPST) Register — I/O address FFF2h
Synchronous Serial Port Multichannel (SSPMC) Register — FFF3h
Synchronous Serial Port Count (SSPCT) Register —FFFBh
Typical Four-Channel Codec Interfacec i
Four-Channel 8-Bit CODEC Interface Timing Example
Four-Channel 16-Bit CODEC Interface Timing Example
Asynchronous Serial Port Block Diagram ...t
Typical Serial Link Between a 'C20x Device anda Host CPU

Asynchronous Serial Port Control Register (ASPCR) —
I/O-Space Address FEFSN

I/O Status Register (IOSR) — I/O-Space Address FFF6h

Example of the Logic for PInS 100—103 e

Data TranSMt . ..ottt e e e e e e

Data RECEIVEo

"C209 AdAreSS MaPS . oottt et e .
'C209 Interrupt Flag Register (IFR) — Data-Memory Address 0006h

'C209 Interrupt Mask Register (IMR) — Data-Memory Address 0004h ‘
'C209 Timer Control Register (TCR) — I/O Address FFFCh ‘
'C209 Wait-State Generator Control Register (WSGR) — 1/0O Address FFFFh

'F206 Memory Map and Serial Port Connections,
TMS320F206 Flash Serial Loader —'F206 Level 1 Flow Chart
Procedure for Generating Executable Files i i
TMS320 ROM Code Submittal Flow Chart e
14-Pin Header Signals and Header DIMENSIONSttt
Emulator Cable Pod Interface
Emulator Cable Pod Timings ..ot e e
Emulator Connections Without Signal Buffering it
Emulator Connections With Signal Buffering i i,
Target-System-Generated Test ClOCK e
Multiprocessor CONNECLIONS ittt e et e
Pod/Connector DIMENSIONSt e e e
14-Pin Connector DIMENSIONSttt e e
Connecting a Secondary JTAG Scan Path to a Scan Path Linker

EMUO/1 Configuration to Meet Timing Requirements of Less Than25ns ‘

Suggested Timings for the EMUO and EMUL SignalSooveeueneennn... ‘

EMUOQ/1 Configuration With Additional AND Gate to Meet Timing
Requirements of Greater Than 25 NS it e

EMUO/1 Configuration Without Global Stop
TBC Emulation Connections forn JTAG ScanPaths

F-23
F-24
F-25

Xix

Tables

O A 0 L O T A T N S T O O LN
A OWONRPONOORRWNREPNRPNRERNEPR

o

| T P R P
N

\l\l\l\l\l\l\l\l@@@(lﬂmtﬂm(ﬂm(ﬂmtﬂmm
OOI\JI—‘OJI\)HI:HCDOO\JCDU'I

0 ~N o o

Typical Applications for TMS320 DSPSt
"C20X Generation SUMIMAIYttt ettt ettt ettt e et
Program and Data Memory on the TMS320C20x Devices

Serial Ports on the 'C20X DEVICESottt e e
Product Shift Modes for the Product-Scaling Shifter

Bit Fields of Status Registers STOand STL ittt

Pins for Interfacing With External Memory and I/O Spaces coooo... 4-3
Data Page O AddresSs Map ... vvvi ittt e 4-8
Global Data Memory Configurations 4-11
On-Chip Registers Mapped to /O Spaceoiiiii i 4-16
'C203 Program-Memory Configuration Options, 4-24
'C203 Data-Memory Configuration Optionst 4-25
PMST Register Bit DESCHPLONSottt 4-40
Bootloader-Pin Configuration 4-41
Program-Address Generation SUMMAIYttt 5-3
Address Loading to the Program Counteroiiuiiiiineiinans 5-4
Conditions for Conditional Branches, Calls, and Returns 5-10
Groupings of CoNdtioNSo o 5-11
'C20x Interrupt Locations and Priorities oo e 5-16
'C20x IFR — Data-Memory Address 0006h Bit Descriptions 5-21
'C20x IMR — Data-Memory Address 0004h Bit Descriptions 5-23
'C20x ICR — 1/O-Space Address FFECh Bit DesCriptions 5-26]
Reset Values of On-Chip Registers Mappedto DataSpace 5-37
Reset Values of On-Chip Registers Mappedto I/O Space 5-37
Reset Conditions for the 'C206/’LC206ottt 5-38
Indirect Addressing Operandsttt e 6-10
Effects of the ARU Code on the Current Auxiliary Register 6-13)
Field Bits and Notation for Indirect AdAreSSiNgoueueeeeeeeeeeee. [6-14]
Accumulator, Arithmetic, and Logic Instructions 7-4
Auxiliary Register INStruCtioNSot e e 7-7
TREG, PREG, and Multiply INStructionso 7-8
Branch INStruCtions o e 7-9
Control INStruCtions 7-9
I/O and Memory INStrUCHIONS i e e 7-11
Product Shift MOOES e 7-37
Product Shift MOOES 7-167

[
~N o

©

|
B
= O

O O O O O O O ©

I
=
N

[l
T
N

T
w

Tables

Peripheral Register Locations and Reset Conditions, 8-2
"C20X INPUE CIOCK MOAES . . . oo e e 8-6
'C20x TCR — I/O Space Address FFF8h Bit Descriptions, 8-11
'C20x WSGR — I/O Space Address FFFCh Bit Descriptions 8-16
Setting the Number of Wait States With the 'C20x WSGR Bits 8-17
SSP INterface PiNs o 9-4
SSPCR — I/O-Space Address FFF1h Bit Descriptionscoiiiiieinann... 9-9
Selecting Transmit Clock and Frame Sync SOUrces ..., 9-13
Runand Emulation Modes [9-26)
TMS320C20x Enhanced Synchronous Serial Port Interface Signals 9-30
ES S P REQISIEIS o 9-32
SSPST Register — 1/0 address FFF2h Bit Descriptions ..., 9-33
SSPMC Register — FFF3h Bit Descriptions 9-35
Typical CLKX/FSX Rates and Their Prescaler Values 9-38
Options/Functions for Burst Mode and Continuous Mode 9-43
Serial Port Configuration —Burst Mode 9-44
Serial Port Configuration — Continuous Mode, 9-45
Asynchronous Serial Port Interface Pins i 10-4
ASPCR — I/O Space Address FFF5h Bit Descriptions ..., 10-7
IOSR — I/O Space Address FFF6h Bit Descriptions 10-10
Common Baud Rates and the Corresponding BRD Values 10-14
Configuring Pins 100103 with ASPCR Bits CIO0—CIO3 [10-16
Viewing the Status of Pins |00-103 With IOSR Bits |00-103 and DIO0O-DIO3 [10-17]
'C209 Program-Memory Configuration Optionsc.oourereeennann... [11-9
'C209 Data-Memory Configuration OPtioNSueuee e, [11-9
'C209 On-Chip Registers Mapped to /O Spacec.covviiiiiiiiinnann.. 11-9
'C209 Interrupt Locations and Priorities 11-10
'C209 IFR — Data Memory Address 0006h Bit Descriptions 11-12
'C209 IMR — Data Memory Address 0004h Bit Descriptions 11-13
'C209 INpUt CloCK MOES .. .ot e e e 11-16
'C209 TCR — I/O Address FFFCh Bit Descriptions cciiiiniinennnn. 11-16
'C209 WSGR — I/O Address FFFFh Bit Descriptions ccoiiiiienn... 11-18
Reset Values of the Status Registers i A-2
Addresses and Reset Values of On-Chip Registers Mapped to Data Space A-2
Addresses and Reset Values of On-Chip Registers Mapped to I/O Space A-2
Symbols and Acronyms Used in the Instruction Set Comparison Table C-3
Summary of Enhanced InStructions i C-5
Shared Programs in This ApPpendiXt e D-3
Task-Specific Programs in This Appendix i D-3
14-Pin Header Signal DesCriptionso.iiiii et F-3
Emulator Cable Pod Timing Parameterscoiiunn. F-6

Examples

N
|

TTTTTTT
P OoOoO~NOOh, WNEREPRP

o

TPTPPTD
[S
wWwnN P

[
A WN P

|
B 2O o0~NO O
o

=

'II'I'II'IIUIUIUIUIU O000O00O00000
S e el
o uhWwWN

I'n
A ow

XXii

An Interrupt Service Routine Supporting INTLand HOLD 4-19
RPT Instruction Using Short-Immediate Addressing, 6-2
ADD Instruction Using Long-Immediate Addressing, 6-3
Using Direct Addressing with ADD (Shiftof 0to15) 6-7
Using Direct Addressing with ADD (Shiftof 16) oot 6-7
Using Direct Addressing With ADDCt e et 6-8
Selecting a New Current Auxiliary Register 6-12
No Increment or DECIrEMENT e 6-15
INCrement DY L ... e 6-15
DecremeNnt DY A .. o 6-16
Increment by INAEX AMOUNEttt et e et 6-16]
Decrement by Index AMOUNt e e 6-16
Increment by Index Amount With Reverse Carry Propagation 6-16
Decrement by Index Amount With Reverse Carry Propagation 6-16
Generic Command File (€203.cmd)t D-5
Header File With 1/0O Register Declarations (init.h) D-6
Header File With Interrupt Vector Declarations (vector.h) D-7
Implementing Simple Delay Loops (delay.asm) ... D-8
Testing and Using the Timer (timer.asm) e D-9
Testing and Using Interrupt INTL (intrl.asm)ououenererenanaenennnn, D-10
Implementing a HOLD Operation (hold.asm) oo, D-11
Testing and Using Interrupts INT2 and INT3 (intr23.aSm)coovenrinnnn... D-12
Asynchronous Serial Port Transmission (uart.asm)c.covieiernnennn. D-13
Loopback to Verify Transmissions of Asynchronous Serial Port (echo.asm) D-14
Testing and Using Automatic Baud-Rate Detection on

Asynchronous Serial Port (autobaud.asm) i D-16
Testing and Using Asynchronous Serial Port Delta Interrupts (bitio.asm) D-18
Synchronous Serial Port Continuous Mode Transmission (ssp.asm)
Using Synchronous Serial Port With Codec Device (ad55.asm)

Hex Conversion Utility Command File

Key Timing for a Single-Processor System Without Buffers

Key Timing for a Single- or Multiple-Processor System With

D-20
D-21
Linker Command File e D-24
D-24
F-
Buffered Input and OULPULttt et e e e F-8

Key Timing for a Single-Processor System Without Buffering (SPL) F-19
Key Timing for a Single- or Multiprocessor-System With
Buffered Input and Output (SPL) o F-19

Chapter 1

Introduction

The TMS320C20x ('C20x) is one of several fixed-point generations of DSPs
in the TMS320 family. The 'C20x is source-code compatible with the
TMS320C2x. Much of the code written for the 'C2x can be reassembled to run
ona’C20x device. In addition, the 'C20x generation is upward compatible with
the 'C5x generation of DSPs.

Topic Page
1.1 TMS320 Family ...
1.2 TMS320C20X GENEIAtON ..o v ettt e et et e e e
1.3 Key Features of the TMS320C20Xueerneeeraaennaaan.. 1[5]

1-1

1.1 TMS320 Family

The TMS320 family consists of fixed-point, floating-point, and multiprocessor
digital signal processors (DSPs). TMS320 DSPs have an architecture de-
signed specifically for real-time signal processing. The following characteris-
tics make this family the ideal choice for a wide range of processing applica-
tions:

Flexible instruction sets
High-speed performance
Innovative parallel architectures
Cost effectiveness

Uooo

1.1.1 History, Development, and Advantages of TMS320 DSPs

1-2

In 1982, Texas Instruments introduced the TMS32010, the first fixed-point
DSP in the TMS320 family. Before the end of the year, Electronic Products
magazine awarded the TMS32010 the “Product of the Year” title. The next
generation devices continue meeting new performance levels for TI DSPs.

Devices within a generation of the TMS320 family have the same CPU struc-
ture but different on-chip memory and peripheral configurations. Spin-off de-
vices use new combinations of on-chip memory and peripherals to satisfy a
wide range of needs in the worldwide electronics market. By integrating
memory and peripherals onto a single chip, TMS320 devices reduce system
cost and save circuit board space.

1.1.2 Typical Applications for the TMS320 Family

Table 1-1 lists some typical applications for the TMS320 family of DSPs. The
TMS320 DSPs offer adaptable approaches to traditional signal-processing
problems such as filtering and vocoding. They also support complex
applications that often require multiple operations to be performed simulta-
neously.

Table 1-1. Typical Applications for TMS320 DSPs

Automotive

Consumer

Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation

Vibration analysis
Voice commands

Digital radios/TVs

Educational toys

Music synthesizers

Pagers

Power tools

Radar detectors

Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General-Purpose

Graphics/Imaging

Industrial

Adaptive filtering
Convolution

Correlation

Digital filtering

Fast Fourier transforms
Hilbert transforms

3-D rotation

Animation/digital maps
Homomorphic processing

Image compression/transmission
Image enhancement

Pattern recognition

Numeric control
Power-line monitoring
Robotics

Security access

Waveform generation Robot vision
Windowing Workstations
Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids

Patient monitoring
Prosthetics
Ultrasound equipment

Image processing

Missile guidance
Navigation

Radar processing

Radio frequency modems
Secure communications
Sonar processing

Telecommunications

Voice/Speech

1200- to 28 800-bps modems
Adaptive equalizers

ADPCM transcoders

Cellular telephones

Channel multiplexing

Data encryption

Digital PBXs

Digital speech interpolation (DSI)
DTMF encoding/decoding

Echo cancellation

Faxing

Line repeaters

Personal communications
systems (PCS)

Personal digital assistants (PDA)

Speaker phones

Spread spectrum communications

Video conferencing

X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis

Speech vocoding
Text-to-speech applications
Voice mail

1.2 TMS320C20x Generation

Texas Instruments uses static CMOS integrated-circuit technology to fabricate
the TMS320C20x DSPs. The architectural design of the 'C20x is based on that
of the "C5x. The operational flexibility and speed of the 'C20x and 'C5x are a
result of an advanced, modified Harvard architecture (which has separate
buses for program and data memory), a multilevel pipeline, on-chip peripher-
als, on-chip memory, and a highly specialized instruction set. The 'C20x per-
forms up to 40 MIPS (million instructions per second).

The 'C20x generation offers the following benefits:

a

a

4

Enhanced TMS320 architectural design for increased performance and

versatility

Modular architectural design for fast development of additional spin-off

devices

Advanced IC processing technology for increased performance

Fast and easy performance upgrades for 'C1x and 'C2x source code,
which is upward compatible with 'C20x source code

Enhanced instruction set for faster algorithms and for optimized high-level

language operation

New static design techniques for minimizing power consumption

Table 1-2 provides an overview of the basic features of the 'C20x DSPs.

Table 1-2. 'C20x Generation Summary

On-Chip Memory MEM Serial Ports 110

Cycle Operating

Time Voltage Off'
Device (ns) (vdd) RAM ROM Flash Chip Sync Async PAR DMA Timers Package
TMS320C203 25/35/50 5V 544 - - 192K 1 1 64K x 16 Ext. 1 100 TQFPT
TMS320LC203 50 3.3v 544 — - 192K 1 1 64K x 16 Ext. 1 100 TQFPT
TMS320F206 50 5V 45K - 32K 192K 1 1 64K x 16 Ext. 1 100 TQFPT
TMS320C209 35/50 5V 45K 4K - 192K - - 64K x 16 Ext. 1 80 TQFPT
TMS320C206 25 3.3V 45K 32K - 192K 1 1 64K x 16 Ext. 1 100 TQFPt
TMS320LC206 25 3.3V 45K 32K - 192K 1 1 64K x 16 Ext. 1 100 TQFPt

T TQFP = Thin quad flat pack

1.3 Key Features of the TMS320C20x

Key features on the various 'C20x devices are:

a

Speed:
W 50-, 35-, or 25-ns execution time of a single-cycle instruction

H 20, 28.5, or 40 MIPS

Code compatibility with other TMS320 fixed-point devices:
B Source-code compatible with all 'C1x and 'C2x devices

B Upward compatible with the 'C5x devices

Memory:

W 224K words of addressable memory space (64K words of program
space, 64K words of data space, 64K words of 1/0 space, and 32K
words of global space)

W 544 words of dual-access on-chip RAM (288 words for data and 256
words for program/data)

B 32K words on-chip ROM or 32K words on-chip flash memory (on
'C206 and 'F206)

B 4K words of single-access on-chip RAM (on 'C206 and 'F206)

CPU:

32-bit arithmetic logic unit (CALU)

32-bit accumulator

16-bit x 16-bit parallel multiplier with 32-bit product capability

Three scaling shifters

Eight 16-bit auxiliary registers with a dedicated arithmetic unit for
indirect addressing of data memory

Program control:
B 4-level pipeline operation
B 8-level hardware stack

B User-maskable interrupt lines

1-5

1-6

Instruction set:

Single-instruction repeat operation
Single-cycle multiply/accumulate instructions

Memory block move instructions for better program/data
management

Indexed-addressing capability

Bit-reversed indexed-addressing capability for radix-2 FFTs

On-chip peripherals:

Software-programmable timer

Software-programmable wait-state generator for program, data, and
I/O memory spaces

Oscillator and phase-locked loop (PLL) to implement clock options:
x1, x2, x4, and —2 (only x2 and +2 available on 'C209)

CLK register for turning the CLKOUT1 pin on and off (not available on
'C209)

Synchronous serial port (not available on 'C209)

Asynchronous serial port (not available on 'C209)

On-chip scanning-logic circuitry (IEEE Standard 1149.1) for emulation
and testing purposes

Power:

5- or 3.3-V static CMOS technology

Power-down mode to reduce power consumption

Packages:

100-pin TQFP (thin quad flat pack)
80-pin TQFP for the 'C209

Chapter 2

Architectural Overview

This chapter provides an overview of the architectural structure and
components of the 'C20x. The 'C20x DSPs use an advanced, modified
Harvard architecture that maximizes processing power by maintaining
separate bus structures for program memory and data memory. The three
main components of the 'C20x are the central processing unit (CPU), memory,
and on-chip peripherals.

Figure 2—1 shows an overall block diagram of the "C20x.

Note:

All’C20x devices use the same central processing unit (CPU), bus structure,
and instruction set, but the 'C209 has some notable differences. For
example, although certain peripheral control registers have the same names
on all 'C20x devices, these registers are located at different I/O addresses
on the 'C209. See Chapter 11 for a detailed description of the differences on
the 'C209.

Topic Page
2.1 'C20X BUS STUCLUIE . .o o ettt e e e e 2
2.2 Central Processing Unit Z-EI
2.3 Memory and /O SPACESvovii i A7 |
2.4 Program Controlouiii i 2410 |
2.5 On-Chip Peripherals 2
2.6 Scanning-Logic CIrCUIttyoueri il 2-

2-1

Architectural Overview

Figure 2-1. Overall Block Diagram of the 'C20x

PRDB |
v
MUX
NPAR |
v
| rc || [PAR] | MSTACK |
Stack 8 x 16
DWEB
v 4
| PAB PAB
T ° Program
‘j control
; A —
< Multiplier
o—* “
y v
P Input shifter
€1 sArRAM > —
<
L J
VYV ?
< pARAM [T ARO]
BO - Auxiliary
® registers
v f - 8 x16 MUX
DARAM » v v
B1,B2 |
_.
wo°*
- === il }
‘| sTo '
ST . _ Output shifter
<=| MR | TP
)
d R Y
.| crec | DWEB
leeeeeoo= v
| DWAB DWAB |
v
| DRAB DRAB |
PRDB DRDB

Note: The I/O-mapped (peripheral) registers are not part of the core; they are accessed as shown in Figure 2—2 on page 2-4.

2-2

2.1

'C20x Bus Structure

Figure 2—2 shows a block diagram of the 'C20x bus structure. The 'C20x inter-
nal architecture is built around six 16-bit buses:

[PAB. The program address bus provides addresses for both reads from
and writes to program memory.

[0 DRAB. The data-read address bus provides addresses for reads from
data memory.

(1 DWAB. The data-write address bus provides addresses for writes to data
memory.

(1 PRDB. The program read bus carries instruction code and immediate
operands, as well as table information, from program memory to the CPU.

(] DRDB. The data read bus carries data from data memory to the central
arithmetic logic unit (CALU) and the auxiliary register arithmetic unit
(ARAU).

1 DWEB. The data write bus carries data to both program memory and data
memory.

Having separate address buses for data reads (DRAB) and data writes
(DWAB) allows the CPU to read and write in the same machine cycle.

Separate program and data spaces allow simultaneous access to program
instructions and data. For example, while data is multiplied, a previous product
can be added to the accumulator, and, at the same time, a new address can
be generated. Such parallelism supports a set of arithmetic, logic, and bit-ma-
nipulation operations that can all be performed in a single machine cycle. In
addition, the 'C20x includes control mechanisms to manage interrupts, re-
peated operations, and function/subroutine calls.

All 'C20x devices share the same CPU and bus structure; however, each de-
vice has different on-chip memory configurations and on-chip peripherals.

2-3

Figure 2-2. Bus Structure Block Diagram

Memory
ROM/ BO B1, B2
SARAM ’ mapped
flash DARAM DARAM registers
. T A A T A A
External / PAB |
 address bus)
% DRAB |
N A
\ DWAB |
External PRDB >
data bus R) K
(DRDB >
A A 4 V
DWEB >
< Control bus >
Yy v R — 4 L1 . . e S S S —
r . . B - r
On-chip peripherals/ | ! | I External |
registers mapped to | Central processing unit (CPU ;
| | P 9 | | signals |
1/0 space
| b | . |
| I Timer I : | ARAU slﬂlr;tuetr Multiplier : : :
- | Memory
| Wait-state | | | | control
| generator | CALU TREG | | |
| | : Auxiliary | | |
Synchronous registers MULTI_DSP >
serial port L Accumulator| PREG | !
I L : | | cLock/mpLL fedb——
« uaRT | | |
| I | : Status Ou_tput Prr??t uct | | Interrupts >
| | Other 110-mapped | | | registers shifter shiiter | | | JTAG/TEST
| registers | | | | |
L J] L

2-4

2.2 Central Processing Unit

The CPU is the same on all the 'C20x devices. The 'C20x CPU contains:

A 32-bit central arithmetic logic unit (CALU)

A 32-bit accumulator

Input and output data-scaling shifters for the CALU

A 16-bit x 16-bit multiplier

A product-scaling shifter

Data-address generation logic, which includes eight auxiliary registers
and an auxiliary register arithmetic unit (ARAU)

Program-address generation logic

L ooodd

2.2.1 Central Arithmetic Logic Unit (CALU) and Accumulator

The 'C20x performs 2s-complement arithmetic using the 32-bit CALU. The
CALU uses 16-bit words taken from data memory or derived from an immedi-
ate instruction, or it uses the 32-bit result from the multiplier. In addition to arith-
metic operations, the CALU can perform Boolean operations.

The accumulator stores the output from the CALU; it can also provide a second
input to the CALU. The accumulator is 32 bits wide and is divided into a high-
order word (bits 31 through 16) and a low-order word (bits 15 through 0).
Assembly language instructions are provided for storing the high- and low-
order accumulator words to data memory.

2.2.2 Scaling Shifters

The 'C20x has three 32-bit shifters that allow for scaling, bit extraction, ex-
tended arithmetic, and overflow-prevention operations:

[Input data-scaling shifter (input shifter). This shifter left shifts 16-bit input
data by 0 to 16 bits to align the data to the 32-bit input of the CALU.

1 Output data-scaling shifter (output shifter). This shifter can left shift output
from the accumulator by 0 to 7 bits before the output is stored to data
memory. The content of the accumulator remains unchanged.

[Product-scaling shifter (product shifter). The product register (PREG) re-
ceives the output of the multiplier. The product shifter shifts the output of
the PREG before that output is sent to the input of the CALU. The product
shifter has four product shift modes (no shift, left shift by one bit, left shift
by four bits, and right shift by 6 bits), which are useful for performing multi-
ply/accumulate operations, performing fractional arithmetic, or justifying
fractional products.

2-5

2.2.3 Multiplier

The on-chip multiplier performs 16-bit x 16-bit 2s-complement multiplication
with a 32-bit result. In conjunction with the multiplier, the 'C20x uses the 16-bit
temporary register (TREG) and the 32-bit product register (PREG). The TREG
always supplies one of the values to be multiplied. The PREG receives the re-
sult of each multiplication.

Using the multiplier, TREG, and PREG, the 'C20x efficiently performs funda-
mental DSP operations such as convolution, correlation, and filtering. The ef-
fective execution time of each multiplication instruction can be as short as one
CPU cycle.

2.2.4 Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

2-6

The ARAU generates data memory addresses when an instruction uses indi-
rect addressing (see Chapter 6, Addressing Modes) to access data memory.
The ARAU is supported by eight auxiliary registers (ARO through AR7), each
of which can be loaded with a 16-bit value from data memory or directly from
an instruction word. Each auxiliary register value can also be stored to data
memory. The auxiliary registers are referenced by a 3-bit auxiliary register
pointer (ARP) embedded in status register STO.

2.3 Memory and I/O Spaces

The 'C20x memory is organized into four individually selectable spaces: pro-
gram, local data, global data, and I/O. These spaces form an address range
of 224K words.

All '"C20x devices include 288 words of dual-access RAM (DARAM) for data
memory and 256 words of data/program DARAM. Depending on the device,
it may also have data/program single-access RAM (SARAM) and read-only
memory (ROM) or flash memory. Table 2-1 shows how much ROM, flash
memory, DARAM, and SARAM are available on the different 'C20x devices.

Table 2—-1. Program and Data Memory on the TMS320C20x Devices

Memory Type 'C203 'c206t 'F206 'C209
ROM (words) - 32K - 4K
Flash memory (words) - - 32K -
DARAM (words) 544 544 544 544
Data (words) 288 288 288 288
Data/program (words) 256 256 256 256
SARAM (words) - 4K 4K 4K

1°C206 refers to the 'C206/'LC206 unless specified otherwise.

The 'C20x also has CPU registers that are mapped in data memory space and
peripheral registers that are mapped in on-chip 1/0 space. The 'C20x memory
types and features are introduced in the sections following this paragraph. For
more details about the configuration and use of the 'C20x memory and 1/O
space, see Chapter 4, Memory and I/O Space.

2.3.1 Dual-Access On-Chip RAM

All’C20x devices have 544 words x 16-bits of on-chip DARAM, which can be
accessed twice per machine cycle. This memory is primarily intended to hold
data but, when needed, can also hold programs. It can be configured in one
of two ways:

1 All 544 words are configured as data memaory.

[0 288 words are configured as data memory, and 256 words are configured
as program memory.

Because DARAM can be accessed twice per cycle, it improves the speed of
the CPU. The CPU operates within a four-cycle pipeline. In this pipeline, the

2-7

CPU reads data on the third cycle and writes data on the fourth cycle. However,
DARAM allows the CPU to write and read in one cycle; the CPU writes to
DARAM on the master phase of the cycle and reads from DARAM on the slave
phase. For example, suppose two instructions, A and B, store the accumulator
value to DARAM and load the accumulator with a new value from DARAM.
Instruction A stores the accumulator value during the master phase of the CPU
cycle, and instruction B loads the new value to the accumulator during the
slave phase. Because part of the dual-access operation is a write, it only ap-
plies to RAM.

2.3.2 Single-Access On-Chip Program/Data RAM

Some of the 'C20x devices have 4K 16-bit words of single-access RAM
(SARAM). The addresses associated with the SARAM can be used for both
data memory and program memory and are software- or hardware-configur-
able (depending on the device) to either external memory or the internal
SARAM. When configured as external, these addresses can be used for off-
chip data and program memory. Code can be booted from off-chip ROM and
then executed at full speed once itis loaded into the on-chip SARAM. Because
the SARAM can be mapped to program and/or data memory, the SARAM al-
lows for more flexible address mapping than the DARAM block.

SARAM is accessed only once per CPU cycle. When the CPU requests multi-
ple accesses, the SARAM schedules the accesses by providing a not-ready
condition to the CPU and then executing the accesses one per cycle. For ex-
ample, if the instruction sequence involves storing the accumulator value and
then loading a value to the accumulator, it would take two cycles to complete
in SARAM, compared to one cycle in DARAM.

2.3.3 Factory-Masked On-Chip ROM

2-8

'C206/'LC206 devices feature an on-chip, 32K 16-bit words of programmable
ROM. The ROM can be selected during reset by driving the MP/MC pin low.
If the ROM is not selected, the device starts its execution from off-chip
memory.

If you want a custom ROM, you can provide the code or data to be pro-
grammed into the ROM in object file format, and Texas Instruments will gener-
ate the appropriate process mask to program the ROM. See Appendix E for
details on how to submit ROM code to Texas Instruments.

2.3.4 Flash Memory

Some of the 'C20x devices feature on-chip blocks of flash memory, which is
electronically erasable and programmable, and non-volatile. Each block of
flash memory will have a set of control registers that allow for erasing, pro-
gramming, and testing of that block. The flash memaory blocks can be selected
during reset by driving the MP/MC pin low. If the flash memory is not selected,
the device starts its execution from off-chip memory. For a further description
on the TMS320F2xx flash devices and how they are used, please refer to the
flash technical reference, TMS320F2xx Flash Memory Technical Reference
(literature number SPRU282).

2-9

Program Control

2.4 Program Control

2-10

Several features provide program control:

(4 The program controller of the CPU decodes instructions, manages the
pipeline, stores the status of operations, and decodes conditional opera-
tions. Elements involved in program control are the program counter, the
status registers, the stack, and the address-generation logic.

[Software mechanisms used for program control include branches, calls,
conditional instructions, a repeat instruction, reset, and interrupts.

For descriptions of these program control features, see Chapter 5, Program
Control.

2.5 On-Chip Peripherals

All the 'C20x devices have the same CPU, but different on-chip peripherals are
connected to their CPUs. The on-chip peripherals featured on the 'C20x de-
vices are:

Clock generator (an oscillator and a phase lock loop circuit)
CLK register for turning the CLKOUT1 pin on and off

Timer

Wait-state generator

General-purpose input/output (1/0) pins

Synchronous serial port

Asynchronous serial port

ooodood

2.5.1 Clock Generator

The clock generator consists of an internal oscillator and an internal phase lock
loop (PLL) circuit. The clock generator can be driven internally by connecting
the DSP to a crystal resonator circuit, or it can be driven by an external clock
source. The PLL circuit generates an internal CPU clock by multiplying the
clock source by a specified factor. Thus, you can use a clock source with a low-
er frequency than that of the CPU. The clock generator is discussed in section
8.2, on page 8-4.

2.5.2 CLKOUT1-Pin Control (CLK) Register

The 'C20x CLK register controls whether the master clock output signal
(CLKOUTL1) is available at the CLKOUTZ1 pin.

2.5.3 Hardware Timer

The 'C20x features a 16-bit down-counting timer with a 4-bit prescaler. Timer
control bits can stop, start, reload, and determine the prescaler count for the
timer. For more information, see section 8.4, Timer, on page 8-8.

2.5.4 Software-Programmable Wait-State Generator

Software-programmable wait-state logic is incorporated (without any external
hardware) for interfacing with slower off-chip memory and 1/O devices. The
'C209 wait-state generator generates zero or one wait states; the wait-state
generator on other 'C20x devices generates zero to seven wait states. For
more information, see section 8.5, Wait-State Generator, on page 8-15.

2-11

2.5.5 General-Purpose I/O Pins

2.5.6 Serial Ports

The 'C20x has pins that provide general-purpose input or output signals. All
'C20x devices have a general-purpose input pin, BIO, and a general-purpose
output pin, XF. Except for the 'C209, the 'C20x devices also have pins 100, 101,
102, and 103, which are connected to corresponding bits (I00-103) mapped
into the on-chip 1/0 space. These bits can be individually configured as inputs
or outputs. For more information on the general-purpose pins, see section 8.6,
on page 8-18.

The serial ports available on the 'C20x vary by device, but two types of serial
ports are represented: synchronous and asynchronous. See Table 2-2 for the
number of each kind on the various 'C20x devices. The sections following the
table provide an introduction to the two types of serial ports.

Table 2-2. Serial Ports on the 'C20x Devices

Serial Ports 'C203 'C206 'F206 'C209
Synchronous 1 1 1 -
Asynchronous 1 1 1 -

Synchronous serial port (SSP)

The 'C20x synchronous serial port (SSP) communicates with codecs, other
'C20x devices, and external peripherals. The SSP offers:

[Twofour-word-deepfirstin, first out (FIFO) buffers that have interrupt-gen-
erating capabilities.

[J Burst and continuous transfer modes.
(1 A wide range of operation speeds when external clocking is used.

If internal clocking is used, the speed is fixed at 1/2 of the internal DSP clock
frequency. For more information on the SSP, see Chapter 9.

Asynchronous serial port (ASP)

2-12

The 'C20x asynchronous serial port (ASP) communicates with asynchronous
serial devices. The ASP has a maximum transfer rate of 250,000 characters
per second (assuming it uses10 bits to transmit each 8-bit character). The ASP
also has logic for automatic baud detection, which allows the ASP to lock to
the incoming data rate. All transfers through the asynchronous serial port use
double buffering. See Chapter 10, Asynchronous Serial Port, for more in-
formation.

Scanning-Logic Circuitry

2.6 Scanning-Logic Circuitry

The 'C20x has JTAG scanning-logic circuitry that is compatible with IEEE
Standard 1149.1. This circuitry is used for emulation and testing purposes
only. The serial scan path is used to perform operational tests on the on-chip
peripherals. The internal scanning logic provides access to all of the on-chip
resources. Thus, the serial-scan pins and the emulation pins on 'C20x devices
allow on-board emulation. However, on all 'C20x devices, the serial scan path
does not have boundary scan logic. Appendix F provides information to help
you meet the design requirements of the Texas Instruments XDS5100 emula-
tor with respect to IEEE-1149.1 designs and discusses the XDS510 cable.

2-13

Chapter 3

Central Processing Unit

This chapter describes the main components of the central processing unit
(CPU). First, this chapter describes three fundamental sections of the CPU
(see Figure 3-1):

[Input scaling section
[J Multiplication section
[Central arithmetic logic section

The chapter then describes the auxiliary register arithmetic unit (ARAU), which
performs arithmetic operations independently of the central arithmetic logic
section. The chapter concludes with a description of status registers STO and
ST1, which contain bits for determining processor modes, addressing pointer
values, and indicating various processor conditions and arithmetic logic re-
sults.

Topic Page
3.1 InputScaling Section 3
3.2 MUltiplication SECHONottt 35|
3.3 Central Arithmetic Logic Section 3-

3.4 Auxiliary Register Arithmetic Unit (ARAU) 3-
3.5 Status Registers STOand STLoutirrireirieaeieannns

3-1

Central Processing Unit

Figure 3-1. Block Diagram of the Input Scaling, Central Arithmetic Logic, and
Multiplication Sections of the CPU

Data write bus (DWEB)

Data read bus (DRDB) \ \
[
Program read bus (PRDB) N \ N N
[
N\
16 T 16 16 16 16 T 16
4 4 Y 2 2
............. S R , Multiplication X)\
+ Input scaling X ' section '
! section ' ! .
! \Mux/ : ' TREG \ MUX/ ,
Z P16 . ! 16
X X ! Multiplier = '
«[31 16]15 0], . 16 x 16 I
! Input shifter (32 bits) : X :
' ' o= PREG '
32 ' 32 !
' 2 '
' | Product shifter (32 bits) | '
‘32 16 .
---------------------------17---.V7- v
, Central arithmetic logic MUX X
' section __/ :
' 32 X
] \ \]
' g S '
] 32 : CALU -
' P ¥ 32 1 '
! L 1 ;
. [Cle Accumulator '
[1 '
[B 1 :
! -~ 32 '
[N \ ' 16
! [Output shifter (32 bits) | '

3.1

Input Scaling Section

A 32-bit input data-scaling shifter (input shifter) aligns a 16-bit value coming
from memory to the 32-bit CALU. This data alignment is necessary for data-
scaling arithmetic as well as aligning masks for logical operations. The input
shifter operates as part of the data path between program or data space and
the CALU and, thus, requires no cycle overhead. Described directly below are
the input, the output, and the shift count of the input shifter. Throughout the dis-
cussion, refer to Figure 3-2.

Figure 3—2. Block Diagram of the Input Scaling Section

From program memory (PRDB)
From data memory (DRDB)

.............

. Input scaling X
! section '
v [31 16]15 0]

Input shifter (32 hits)

To CALU

Input . Bits 15 through 0 of the input shifter accept a 16-bit input from either of
two sources (see Figure 3-2):

[0 Thedatareadbus (DRDB). This inputis a value from a data memory loca-
tion referenced in an instruction operand.

[The program read bus (PRDB). This input is a constant value given as an
instruction operand.

Output . After avalue has been accepted into bits 15 through 0, the input shifter
aligns the16-bit value to the 32-bit bus of the CALU as shown in Figure 3-2.
The shifter shifts the value left 0 to 16 bits and then sends the 32-bit result to
the CALU.

During the left shift, unused LSBs in the shifter are filled with zeros, and unused
MSBs in the shifter are either filled with zeros or sign extended, depending on
the value of the sign-extension mode bit (SXM) of status register ST1.

3-3

Shift count . The shifter can left-shift a 16-bit value by 0 to 16 bits. The size
of the shift (or the shift count) is obtained from one of two sources:

(1 A constantembedded in the instruction word. Putting the shift count in the
instruction word allows you to use specific data-scaling or alignment op-
erations customized for your program code.

[The four LSBs of the temporary register (TREG). The TREG-based shift
allows the data-scaling factor to be determined dynamically so that it can
be adapted to the system’s performance.

Sign-extension mode bit. For many but not all instructions, the sign-exten-
sion mode bit (SXM), bit 10 of status register ST1, determines whether the
CALU uses sign extension during its calculations. If SXM = 0, sign extension
is suppressed. If SXM = 1, the output of the input shifter is sign extended.
Figure 3-3 shows an example of an input value shifted left by 8 bits for
SXM =0. The MSBs of the value passed to the CALU are zero filled.
Figure 3—-4 shows the same shift but with SXM = 1. The value is sign extended
during the shift.

Figure 3-3. Operation of the Input Shifter for SXM = 0
AF11

im

Input _shifter XXX | AFL1
accepting the
value 32
Y
Output value
after left shift of 8 00AF 1100
(SXM = 0)
Figure 3-4. Operation of the Input Shifter for SXM = 1
AF11

ile

XXXX | AF1l1

Input shifter
accepting the
value

32

v
Output value
after left shift of 8 FFAF 1100
(SXM = 1)

3-4

3.2 Multiplication Section

The 'C20x uses a 16-bit x 16-bit hardware multiplier that can produce a signed
or unsigned 32-bit product in a single machine cycle. As shown in Figure 3-5,
the multiplication section consists of:

[The 16-bit temporary register (TREG), which holds one of the multipli-
cands

1 The multiplier, which multiplies the TREG value by a second value from
data memory or program memory

[The 32-bit product register (PREG), which receives the result of the multi-
plication

[The product shifter, which scales the PREG value before passing it to the
CALU.

Figure 3-5. Block Diagram of the Multiplication Section

3.2.1 Multiplier

From data memory
From data memory
From program memory

Product shifter (32 bits) |

» Multiplication T 16 16 | 16!

! section .)

: TREG N\ MUx/ .

From data . 6 !
memory ' Multiplier < !
. 16 x 16 !

6 !
ey PREG !

To high word!)
of PREG | p 32 X

p— TO data memory

To CALU

The 16-bit x 16-bit hardware multiplier can produce a signed or unsigned
32-bit productin a single machine cycle. The two numbers being multiplied are
treated as 2s-complement numbers, except during unsigned multiplication
(MPYU instruction). Descriptions of the inputs and output of the multiplier fol-
low.

3-5

Inputs . The multiplier accepts two 16-bit inputs:

(1 Oneinputis always from the 16-bittemporary register (TREG). The TREG
is loaded before the multiplication with a data-value from the data read bus
(DRDB).

(1 The other input is one of the following:

B A data-memory value from the data read bus (DRDB).
B A program memory value from the program read bus (PRDB).

Output . After the two 16-bit inputs are multiplied, the 32-bit result is stored in
the product register (PREG). The output of the PREG is connected to the 32-bit
product-scaling shifter. Through this shifter, the product may be transferred
from the PREG to the CALU or to data memory (by the SPH and SPL instruc-
tions).

3.2.2 Product-Scaling Shifter

3-6

The product-scaling shifter (product shifter) facilitates scaling of the product
register (PREG) value. The shifter has a 32-bit input connected to the output
of the PREG and a 32-bit output connected to the input of the CALU.

Input . The shifter has a 32-bit input connected to the output of the PREG.

Output . After the shifter completes the shift, all 32 bits of the result can be
passed to the CALU, or 16 bits of the result can be stored to data memory.

Shift Modes . This shifter uses one of four product shift modes, summarized
in Table 3—1. As shown in the table, these modes are determined by the prod-
uct shift mode (PM) bits of status register ST1. In the first shift mode (PM = 00),
the shifter does not shift the product at all before giving it to the CALU or to data
memory. The next two modes cause left shifts (of one or four), which are useful
for implementing fractional arithmetic or justifying products. The right-shift
mode shifts the product by six bits, enabling the execution of up to 128 consec-
utive multiply-and-accumulate operations without causing the accumulator to
overflow. Note that the content of the PREG remains unchanged; the value is
copied to the product shifter and shifted there.

Note:

The right shift in the product shifter is always sign extended, regardless of
the value of the sign-extension mode bit (SXM) of status register ST1.

Table 3-1. Product Shift Modes for the Product-Scaling Shifter

PM Shift Comments

00 No shift Product sent to CALU or data write bus (DWEB) with no shift

01 Leftby 1shift Removes the extra sign bit generated in a 2s-complement
multiply to produce a Q31 productt

10 Leftby 4 bits Removes the extrafour sign bits generated in a 16-bit x 13-bit
2s-complement multiply to produce a Q31 productt when
multiplying by a 13-bit constant

11 Right by 6 bits Scales the product to allow up to 128 product accumulations

without overflowing the accumulator. The right shift is always
sign extended, regardless of the value of the sign-extension
mode bit (SXM) of status register ST1.

Ta Q31 number is a binary fraction in which there are 31 digits to the right of the binary point
(the base 2 equivalent of the base 10 decimal point).

3.3 Central Arithmetic Logic Section

Figure 3—6 shows the main components of the central arithmetic logic section,
which are:

(1 The central arithmetic logic unit (CALU), which implements a wide range
of arithmetic and logic functions.

[The 32-bitaccumulator (ACC), which receives the output of the CALU and
is capable of performing bit shifts on its contents with the help of the carry
bit (C). Figure 3—-6 shows the accumulator’s high word (ACCH) and low
word (ACCL).

(1 The output shifter, which can shift a copy of either the high word or low
word of the accumulator before sending it to data memory for storage.

Figure 3—6. Block Diagram of the Central Arithmetic Logic Section

3-8

From input shifter
From product shifter

.............................

Central arithmetic logic
section

32

To data memory

3.3.1 Central Arithmetic Logic Unit (CALU)

3.3.2 Accumulator

The central arithmetic logic unit (CALU), implements a wide range of arithme-
tic and logic functions, most of which execute in a single clock cycle. These
functions can be grouped into four categories:

] 16-bit addition

[J 16-bit subtraction

(1 Boolean logic operations

[Bittesting, shifting, and rotating.

Because the CALU can perform Boolean operations, you can perform bit ma-
nipulation. For bit shifting and rotating, the CALU uses the accumulator. The
CALU isreferred to as central because there is an independent arithmetic unit,
the auxiliary register arithmetic unit (ARAU), which is described in section 3.4.
A description of the inputs, the output, and an associated status bit of the CALU
follows.

Inputs . The CALU has two inputs (see Figure 3-6):
[One inputis always provided by the 32-bit accumulator.

[The other input is provided by one of the following:

B The product-scaling shifter (see section 3.2.2)
B The input data-scaling shifter (see section 3.1)

Output . Once the CALU performs an operation, it transfers the result to the
32-bitaccumulator, whichis capable of performing bit shifts of its contents. The
output of the accumulator is connected to the 32-bit output data-scaling shifter.
Through the output shifter, the accumulator’s upper and lower 16-bit words
can be individually shifted and stored to data memory.

Sign-extension mode bit. For many but not all instructions, the sign-exten-
sion mode bit (SXM), bit 10 of status register ST1, determines whether the
CALU uses sign extension during its calculations. If SXM = 0, sign extension
is suppressed. If SXM = 1, sign extension is enabled.

Once the CALU performs an operation, it transfers the result to the 32-bit accu-
mulator, which can then perform single-bit shifts or rotations on its contents.
Each of the accumulator’s upper and lower 16-bit words can be passed to the
output data-scaling shifter, where it can be shifted, and then stored in data
memory. Status bits and branch instructions associated with the accumulator
are discussed directly below.

3-9

3-10

Status bits . Four status bits are associated with the accumulator:

[Carry bit (C). C (bit 9 of status register ST1) is affected during:

B Additions to and subtractions from the accumulator:

C=0 When the result of a subtraction generates a borrow.

When the result of an addition does not generate a carry.
(Exception: When the ADD instruction is used with a shift of 16
and no carry is generated, the ADD instruction has no affect on
C)

C=1 When the result of an addition generates a carry.

When the result of a subtraction does not generate a borrow.
(Exception: When the SUB instruction is used with a shift of 16
and no borrow is generated, the SUB instruction has no effect
on C.)

B Single-bit shifts and rotations of the accumulator value. During a left
shift or rotation, the most significant bit of the accumulator is passed to
C; during a right shift or rotation, the least significant bit is passed to C.

[Overflow mode bit (OVM). OVM (bit 11 of status register STO) determines
how the accumulator will reflect arithmetic overflows. When the processor
is in overflow mode (OVM = 1) and an overflow occurs, the accumulator
is filled with one of two specific values:

W [fthe overflow is in the positive direction, the accumulator is filled with
its most positive value (7FFF FFFFh).

B Ifthe overflow isin the negative direction, the accumulator is filled with
its most negative value (8000 0000h).

(1 Overflow flag bit (OV). OV is bit 12 of status register STO. When no accu-
mulator overflow is detected, OV is latched at 0. When overflow (positive
or negative) occurs, OV is set to 1 and latched.

[Test/control flag bit (TC). TC (bit 11 of status register ST1) issetto 0 or 1
depending on the value of atested bit. In the case of the NORM instruction,
if the exclusive-OR of the two MSBs of the accumulator is true, TC is set
to 1.

A number of branch instructions are implemented based on the status of bits
C,0V, and TC, and on the value in the accumulator (as compared to zero). For
more information about these instructions, see section 5.4, Conditional
Branches, Calls, and Returns, on page 5-10.

3.3.3 Output Data-Scaling Shifter

The output data-scaling shifter (output shifter) has a 32-bit input connected to
the 32-bit output of the accumulator and a 16-bit output connected to the data
bus. The shifter copies all 32-bits of the accumulator and then performs a left
shift on its content; it can be shifted from zero to seven bits, as specified in the
corresponding store instruction. The upper word (SACH instruction) or lower
word (SACL instruction) of the shifter is then stored to data memory. The con-
tent of the accumulator remains unchanged.

When the output shifter performs the shift, the MSBs are lost and the LSBs are
zero filled. Figure 3—7 shows an example in which the accumulator value is
shifted left by four bits and the shifted high word is stored to data memory.
Figure 3-8 shows the same accumulator value shifted left by 6 bits and then
the shifted low word stored.

Figure 3—7. Shifting and Storing the High Word of the Accumulator

Accumulator OOFO| FOA1L
32
Output shifter
(left shift by 4 bits) 0FO0F 0A10
16
Data-memory
location OFOF

Figure 3-8. Shifting and Storing the Low Word of the Accumulator

Accumulator 00FO0 | FOA1
32
Output shifter
(left shift by 6 bits) 3C3C 2840
16
Data-memory
location 2840

3-11

3.4 Auxiliary Register Arithmetic Unit (ARAU)

The CPU also contains the auxiliary register arithmetic unit (ARAU), an arith-
metic unit independent of the central arithmetic logic unit (CALU). The main
function of the ARAU is to perform arithmetic operations on eight auxiliary reg-
isters (AR7 through ARO) in parallel with operations occurring in the CALU.
Figure 3-9 shows the ARAU and related logic.

Figure 3—-9. ARAU and Related Logic

3-12

Data read bus (DRDB)

[
/
ARB
V- §
e T R
- ARP
16
/17644*— ARG <+ — I
/+1-P— AR5 <——| 3
16 |
/17644*— AR4 <+ — / MUX \
4 16 ARS 4-_: [K[
£ L >
~e>— ARL [¢ 3LSBs
/5341*— ARO _ | Instruction register |
8LSBs
—/ Y Y VY L
MUX
16
A Y
; ARAU
16 /IN__16
NLE_
Y Data write bus (DWEB)
|
Y Data-read address bus (DRAB)
|
Y Data-write address bus (DWAB)

The eight auxiliary registers (AR7—ARO) provide flexible and powerful indirect
addressing. Any location in the 64K data memory space can be accessed us-
ing a 16-bit address contained in an auxiliary register. For the details of indirect
addressing, see section 6.3 on page 6-9.

To select a specific auxiliary register, load the 3-bit auxiliary register pointer
(ARP) of status register STO with a value from 0 through 7. The ARP can be
loaded as a primary operation by the MAR instruction (which only performs
modifications to the auxiliary registers and the ARP) or by the LST instruction
(which can load a data-memory value to STO by way of the data read bus,
DRDB). The ARP can be loaded as a secondary operation by any instruction
that supports indirect addressing.

The register pointed to by the ARP is referred to as the current auxiliary register
or current AR. During the processing of an instruction, the content of the cur-
rentauxiliary register is used as the address at which the data-memory access
will take place. The ARAU passes this address to the data-read address bus
(DRAB) if the instruction requires a read from data memory, or it passes the
address to the data-write address bus (DWAB) if the instruction requires a
write to data memory. After the instruction uses the data value, the contents
of the current auxiliary register can be incremented or decremented by the
ARAU, which implements unsigned 16-bit arithmetic.

3.4.1 ARAU and Auxiliary Register Functions
The ARAU performs the following operations:

[Increments or decrements an auxiliary register value by 1 or by an index
amount (by way of any instruction that supports indirect addressing)

[J Adds a constant value to an auxiliary register value (ADRK instruction) or
subtracts a constant value from an auxiliary register value (SBRK instruc-
tion). The constant is an 8-bit value taken from the eight LSBs of the
instruction word.

0 Compares the content of ARO with the content of the current AR and puts
the result in the test/control flag bit (TC) of status register ST1 (CMPR
instruction). The result is passed to TC by way of the data write bus
(DWEB).

Normally, the ARAU performs its arithmetic operations in the decode phase of
the pipeline (when the instruction specifying the operations is being decoded).
This allows the address to be generated before the decode phase of the next
instruction. There is an exception to this rule: During processing of the NORM
instruction, the auxiliary register and/or ARP modification is done during the

3-13

3-14

execute phase of the pipeline. For information on the operation of the pipeline,
see section 5.2 on page 5-7.

In addition to using the auxiliary registers to reference data-memory address-
es, you can use them for other purposes. For example, you can:

(1 Use the auxiliary registers to support conditional branches, calls, and re-
turns by using the CMPR instruction. This instruction compares the con-
tent of ARO with the content of the current AR and puts the result in the
test/control flag bit (TC) of status register ST1.

[0 Usethe auxiliary registers for temporary storage by using the LAR instruc-
tion to load values into the registers and the SAR instruction to store AR
values to data memory.

[Use the auxiliary registers as software counters, incrementing or decre-
menting them as necessary.

3.5 Status Registers STO and ST1

The 'C20x has two status registers, STO and ST1, which contain status and
control bits. These registers can be stored to and loaded from data memory,
thus allowing the status of the machine to be saved and restored for subrou-
tines.

The LST (load status register) instruction writes to STO and ST1, and the SST
(store status register) instruction reads from STO and ST1 (with the exception
of the INTM bit, which is not affected by the LST instruction). Many of the indi-
vidual bits of these registers can be set and cleared using the SETC and CLRC
instructions. For example, the sign-extension mode is set with SETC SXM and
cleared with CLRC SXM.

Figure 3—-10 and Figure 3—11 show the organization of status registers STO
and ST1, respectively. Several bits in the status registers are reserved; they
are always read as logic 1s. The other bits are described in alphabetical order
in Table 3-2.

Figure 3—-10. Status Register STO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARP (0)Y] OVM 1t INTM DP
R/W-x R/W-0 R/W-x R/W-1 R/W-x

Note: R =Readaccess; W

=Write access; value following dash (-) is value after reset (x means value not affected by reset).

T This reserved bit is always read as 1. Writes have no effect on it.

Figure 3—11. Status Register ST1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARB ‘ CNF ‘ TC ‘ SXM ‘ C ‘ 1t ' 1t ‘ 1t] 1t ‘ XF ‘ 1t ‘ 1t ‘ PM
R/W—x R/W-0 R/W—x R/W-1 R/W-1 R/W-1 R/W-00

Note: R =Readaccess; W

=Write access; value following dash (-) is value after reset (x means value not affected by reset).

t These reserved bits are always read as 1s. Writes have no effect on them.

3-15

Table 3-2. Bit Fields of Status Registers STO and ST1

Name

Description

ARB

ARP

CNF

DP

INTM

ov

Auxiliary register pointer buffer. ~ Whenever the auxiliary register pointer (ARP) is loaded, the
previous ARP value is copied to the ARB, except during an LST (load status register) instruction.
When the ARB is loaded by an LST instruction, the same value is also copied to the ARP.

Auxiliary register pointer. This 3-bit field selects which auxiliary register (AR) to use in indirect
addressing. When the ARP is loaded, the previous ARP value is copied to the ARB register, except
during an LST (load status register) instruction. The ARP may be modified by memory-reference
instructions using indirect addressing, and by the MAR (modify auxiliary register) and LST
instructions. When the ARB is loaded by an LST instruction, the same value is also copied to the
ARP. For more details on the use of ARP in indirect addressing, see section 6.3, Indirect Addressing
Mode, on page 6-9.

Carry bit . This bitis set to 1 if the result of an addition generates a carry, or cleared to O if the result
of a subtraction generates a borrow. Otherwise, it is cleared after an addition or set after a
subtraction, exceptif the instruction is ADD or SUB with a 16-bit shift. In these cases, ADD can only
set and SUB only clear the carry bit, but cannot affect it otherwise. The single-bit shift and rotate
instructions also affect this bit, as well as the SETC, CLRC, and LST instructions. The conditional
branch, call, and return instructions can execute based on the status of C. C is set to 1 on reset.

On-chip DARAM configuration bit . This bit determines whether reconfigurable dual-access
RAM blocks are mapped to data space or to program space. The CNF bit may be modified by the
SETC CNF, CLRC CNF, and LST instructions. Reset clears the CNF bit to 0. For more information
about CNF and the dual-access RAM blocks, see Chapter 4, Memory and I/0O Spaces.

CNF=0 Reconfigurable dual-access RAM blocks are mapped to data space.
CNF=1 Reconfigurable dual-access RAM blocks are mapped to program space.

Data page pointer. When an instruction uses direct addressing, the 9-bit DP field is concatenated
with the 7 LSBs of the instruction word to form a full 16-bit data-memory address. For more detalils,
see section 6.2, Direct Addressing Mode, on page 6-4. The LST and LDP (load DP) instructions
can modify the DP field.

Interrupt mode bit . This bit enables or disables all maskable interrupts. INTM is set and cleared
by the SETC INTM and CLRC INTM instructions, respectively. INTM has no effect on the
nonmaskable interrupts RS and NMI or on interrupts initiated by software. INTM is unaffected by
the LST (load status register) instruction. INTM is set to 1 when an interrupt trap is taken (except
in the case of the TRAP instruction) and at reset.

INTM =0 All unmasked interrupts are enabled.
INTM =1 All maskable interrupts are disabled.
Overflow flag bit. This bit holds a latched value that indicates whether overflow has occurred in
the CALU. OV is set to 1 when an overflow occurs in the CALU. Once an overflow occurs, the OV

bit remains set until it is cleared by a reset, a conditional branch on overflow (OV) or no overflow
(NOV), or an LST instruction .

3-16

Table 3-2. Bit Fields of Status Registers STO and ST1 (Continued)

Name

Description

OVM

PM

SXM

TC

XF

Overflow mode bit. OVM determines how overflows in the CALU are handled. The SETC and
CLRC instructions set and clear this bit, respectively. An LST instruction can also be used to modify
OVM.

OVM =0 Results overflow normally in the accumulator.

OVM =1 The accumulator is set to either its most positive or negative value upon encountering
an overflow. (See section 3.3.2, Accumulator.)

Product shift mode. PM determines the amount that the PREG value is shifted on its way to the
CALU or to data memory. Note that the content of the PREG remains unchanged; the value is
copied to the product shifter and shifted there. PM is loaded by the SPM and LST instructions. The
PM bits are cleared by reset.

PM =00 The multiplier's 32-bit product is passed to the CALU or to data memory with no shift.

PM =01 The output of the PREG is left shifted one place (with the LSBs zero filled) before
being passed to the CALU or to data memory.

PM =10 The output of the PREG is left shifted four bits (with the LSBs zero filled) before being
passed to the CALU or to data memory.

PM=11 This mode produces a right shift of six bits, sign extended.

Sign-extension mode bit. SXM does not affect the basic operation of certain instructions. For
example, the ADDS instruction suppresses sign extension regardless of SXM. This bit is set by the
SETC SXM instruction and cleared by the CLRC SXM instruction, and may be loaded by the LST
instruction. SXM is set to 1 by reset.

SXM =0 This mode suppresses sign extension.

SXM=1 In this mode, data values that are shifted in the input shifter are sign extended before
they are passed to the CALU.

Test/control flag bit. The TC bitis setto 1if abittested by BIT or BITTisa 1, ifacompare condition
tested by CMPR exists between the current auxiliary register and ARO, or if the exclusive-OR
function of the two MSBs of the accumulator is true when tested by a NORM instruction. The
conditional branch, call, and return instructions can execute based on the condition of the TC bit.
The TC bit is affected by the BIT, BITT, CMPR, LST, and NORM instructions.

XF pin status bit . This bit determines the state of the XF pin, which is a general-purpose output
pin. XF is set by the SETC XF instruction and cleared by the CLRC XF instruction. XF can also be
modified with an LST instruction. XF is set to 1 by reset.

3-17

Chapter 4

Memory and I/O Spaces

This chapter describes the 'C20x memory configuration options and the
address maps of the individual 'C20x devices. It also illustrates typical ways
of interfacing the 'C20x with external memory and external input/output (1/O)
devices.

Each 'C20x device has a 16-bit address line that accesses four individually
selectable spaces (224K words total):

1 A 64K-word program space
[A 64K-word local data space
1 A 32K-word global data space
d A 64K-word I/O space

Also available on select 'C20x devices are an on-chip bootloader and a HOLD
operation. The on-chip bootloader allows a 'C20x to boot software from an
external source to a 16-bit external RAM at reset. The HOLD operation allows
a 'C20x to give external devices direct memory access to external program,
data, and I/O spaces.

Topic Page
4.1 Overview of the Memory and I/O Spaces cooovuinn. 4-
4.2 Program MEMOMYuree ettt e e 45 |
4.3 Local Data MEMOIYitee e e 4
4.4 Global Data MemMOrYeuuieii e 4-11 |
A5 1/O SPaACE . ot 1-14
4.6 Direct Memory Access Using the HOLD Operation 4-.1@
4.7 Device-Specific Information 4-p2 |
A3 CZIBBEOTIERNEF 005000000000050000000000000000050000000000¢
4.9 ’C206/LC206 Bootloadert 4

41

4.1 Overview of the Memory and I/O Spaces

4-2

The 'C20x address map is organized into four individually selectable spaces:

(1 Program memory (64K words) contains the instructions to be executed,
as well as immediate data used during program execution.

[Local data memory (64K words) holds data used by the instructions.

(1 Global data memory (32K words) shares data with other processors or
serves as additional data space. Addresses in the upper 32K words
(8000h—FFFFh) of local data memory can be used for global data memory.

[Input/output (I/O) space (64K words) interfaces to external peripherals
and contains registers for the on-chip peripherals.

These spaces provide a total address range of 224K words. The 'C20x
includes a considerable amount of on-chip memory to aid in system
performance and integration and a considerable amount of addresses that can
be used for external memory and 1/O devices.

The advantages of operating from on-chip memory are:

(O Higher performance than external memory (because the wait states
required for slower external memories are avoided)

[Lower cost than external memory
(1 Lower power consumption than external memory

The advantage of operating from external memory is the ability to access a
larger address space.

The 'C20x design is based on an enhanced Harvard architecture. The 'C20x
memory spaces are accessible on three parallel buses—the program address
bus (PAB), the data-read address bus (DRAB), and the data-write address bus
(DWAB). Because the operations of the three buses are independent, it is
possible to access both the program and data spaces simultaneously. Within
a given machine cycle, the central arithmetic logic unit (CALU) can execute as
many as three concurrent memory operations.

4.1.1 Pins for Interfacing to External Memory and I/O Spaces

Four pin types are used for interfacing to external memory and I/O space.
Table 4-1 describes the main types as:

Q

External buses. Sixteen signals (A15-A0) are available for passing an
address from the 'C20x to another device. Sixteen signals (D15-D0) are
available for transferring a data value between the 'C20x and another
device.

Select signals. These signals can be used by external devices to
determine when the 'C20x is requesting access to off-chip locations, and
whether that request is for data, program, global, or I/O space.

Read/write signals. These signals indicate to external devices the
direction of a data transfer (to the 'C20x or from the 'C20x).

Request/control signals. The input request signals (BOOT, MP/MC,
RAMEN, READY, and HOLD) effect a change in the operation of the
'C20x. The output HOLDA is the response to HOLD.

Table 4-1. Pins for Interfacing With External Memory and I/O Spaces

Pin(s) Description
External buses A15-A0 The 16 lines of the external address bus. This bus can address up to 64K
words of external memory or 1/O space.
D15-D0 The 16 bidirectional lines of the external data bus. This bus carries data
to and from external memory or 1/O space.
Select signals DS Data memory select pin. The 'C20x asserts DS to indicate an access to
external data memory (local or global).
BR Bus request pin. The 'C20x asserts both BR and DS to indicate an access
to global data memory.
PS Program memory select pin. The 'C20x asserts PS to indicate an access
to external program memory.
s I/O space select pin. The 'C20x asserts IS to indicate an access to
external /O space.
STRB External access active strobe. The 'C20x asserts STRB during accesses

to external program, data, or I/O space.

4-3

Table 4-1. Pins for Interfacing With External Memory and I/0O Spaces (Continued)

Pin(s)

Description

Read/write RIW
signals

RD

WE

Request/control BOOT
signals

MP/MC

RAMEN

READY

HOLD

HOLDA

Read/write pin. This pin indicates the direction of transfer between the
'C20x and external program, data, or I/O space.

Read select pin. The 'C20x asserts RD to request a read from external
program, data, or I/O space.

Write enable pin. The 'C20x asserts WE to request a write to external
program, data, or I/O space.

Boot-load pin. This pin is only on devices that have the on-chip
bootloader. If BOOT is low during a hardware reset, the 'C20x transfers
code from EPROM in global data memory to RAM in external program
memory.

Microprocessor/microcomputer pin. This pin is only on devices with
on-chip non-volatile program memory. The level on this pin is tested at
reset. If MP/MC is high, the device is in microprocessor mode (the reset
vector is fetched from external memory). If MP/MC is low, the device is
in microcomputer mode (the reset vector is fetched from on-chip
memory).

Single-access RAM enable pin. On 'C20x devices with on-chip
single-access RAM, when this pinis high, the RAM is enabled; when this
pin is low, the RAM is disabled.

External device ready pin (for generating wait states externally). When
this pin is driven low, the 'C20x waits one CPU cycle and then tests
READY again. After READY is driven low, the 'C20x does not continue
processing until READY is driven high. If READY is not used, it should
be kept high. For a’C20x device with a bootloader, READY must be high
at boot time.

HOLD operation request pin. An external device can request control of
the external buses by asserting HOLD. After the 'C20x (along with proper
software logic) asserts HOLDA, the external device controls the buses
until it deasserts HOLD.

HOLD acknowledge pin. The 'C20x (with assistance from proper
program code) asserts HOLDA to acknowledge that HOLD has been
asserted and places its external buses in high impedance.

4.2 Program Memory

Program-memory space holds the code for applications; it can also hold table
information and constant operands. The program-memory space addresses
up to 64K 16-bit words. Every 'C20x device contains a DARAM block BO that
can be configured as program memory or data memory. Other on-chip
program memory may be SARAM and ROM or flash memory. For information
on configuring on-chip program-memory blocks, see section 4.7.

4.2.1 Interfacing With External Program Memory

The 'C20x can address up to 64K words of external program memory. While
the 'C20x is accessing the on-chip program-memory blocks, the external
memory signals PS and STRB are in the high state. The external buses are
active only when the 'C20x is accessing locations within the address ranges
mapped to external memory. An active PS signal indicates that the external
buses are being used for program memory. Whenever the external buses are
active (when external memory or 1/0O space is being accessed), the 'C20x
drives the STRB signal low.

For fast memory interfacing, it is important to select external memory with fast
access time. If fast memory is not available, or if speed is not a serious
consideration, you can use the the READY signal and/or the on-chip wait-state
generator to create wait states.

Figure 4-1 shows an example of interfacing to external program memory. In
the figure, 8K x 16-bit static memory is interfaced to the 'C20x using two
8K x 8-bit RAMSs.

Obtain the Proper Timing Information

When interfacing memory with high-speed 'C20x devices, refer to
the data sheet for that 'C20x device for the required access, delay,
and hold times.

4-5

Figure 4-1. Interface With External Program Memory

4-6

'C20x DSP

AO
Al
A2

8K x 8 RAM

R 00
Al D1 D2
A2 D2 D3
A3 D3 D4
A4 D4 Dt
A5 D5 o
A6 D6 o7
A7 D7

A8

A9

A10 WE

All RD

A12 CE|l—

A0 DO D8
Al D1 D9
A2 D2 D10
A3 D3 D1l
A4 D4 D12
A5 D5 D13
A6 D6 D14
A7 D7 D15
A8

A9

A10 WE

All RD

Al2 CEl—e

8K x 8 RAM

4.3 Local Data Memory

The local data-memory space addresses up to 64K 16-bit words. Every 'C20x
device has three on-chip DARAM blocks: BO, B1, and B2. Block BO has 256
words that are configurable as either data locations or program locations.
Blocks B1 (256 words) and B2 (32 words) have a total of 288 words that are
available for data memory only. Some 'C20x devices, in addition to the three
DARAM blocks, have an on-chip SARAM block that can be used for program
and/or data memory. Section 4.7 tells how to configure these memory blocks.

Data memory can be addressed with either of two addressing modes: direct-
addressing mode or indirect-addressing mode. Addressing modes are
described in detail in Chapter 6.

When direct addressing is used, data memory is addressed in blocks of 128
words called data pages. Figure 4—2 shows how these blocks are addressed.
The entire 64K of data memory consists of 512 data pages labeled 0 through
511. The current data page is determined by the value in the 9-bit data page
pointer (DP) in status register STO. Each of the 128 words on the current page
is referenced by a 7-bit offset, which is taken from the instruction that is using
direct addressing. Therefore, when an instruction uses direct addressing, you
must specify both the data page (with a preceding instruction) and the offset
(in the instruction that accesses data memory).

Figure 4-2. Pages of Data Memory
DP value Offset 'C20x Data Memory
0000 0000 0 | 000 0000

: : Page 0: 0000h—007Fh
0000 0000 0| 111 1111
0000 0000 1 | 000 0000

: : Page 1: 0080h—00FFh
0000 0000 1 1111111

0000 0001 O | 000 0000

. : Page 2: 0100h—017Fh
0000 0001 O 111 1111

1111 11111 | 000 0000
Page 511: FF80h—FFFFh

1111 1111 1 | 111 1111

4-7

4.3.1 Data Page 0 Address Map

Table 4-2 shows the address map of data page 0 (addresses 0000h—007Fh).
Note the following:

[0 Three memory-mapped registers can be accessed with zero wait states:

B Interrupt mask register (IMR)
B Global memory allocation register (GREG)
B Interrupt flag register (IFR)

(1 The test/emulation reserved area is used by the test and emulation
systems for special information transfers.

Do Not Write to Test/Emulation Addresses

Writing to the test/emulation addresses can cause the device to
change its operational mode and, therefore, affect the operation of
an application.

[The scratch-pad RAM block (B2) includes 32 words of DARAM that
provide for variable storage without fragmenting the larger RAM blocks,
whether internal or external. This RAM block supports dual-access
operations and can be addressed with any data-memory addressing
mode.

Table 4-2. Data Page 0 Address Map

Address Name Description

0000h-0003h - Reserved

0004h IMR Interrupt mask register

0005h GREG Global memory allocation register
0006h IFR Interrupt flag register
0023h-0027h - Reserved

002Bh—-002Fh - Reserved for test/emulation
0060h—007Fh B2 Scratch-pad RAM (DARAM B2)

4.3.2

Interfacing With External Local Data Memory

While the 'C20x is accessing the on-chip local data-memory blocks and
memory-mapped registers, the external memory signals DS and STRB are in
the high state. The external buses are active only when the 'C20x is accessing
locations within the address ranges mapped to external memory. An active DS
signal indicates that the external buses are being used for data memory.
Whenever the external buses are active (when external memory or I/O space
is being accessed) the 'C20x drives the STRB signal low.

For fast memory interfacing, it is important to select external memory with fast
access time. If fast memory is not available, or if speed is not a serious
consideration, you can use the the READY signal and/or the on-chip wait-state
generator to create wait states.

Figure 4-3 shows an example of interfacing to external data memory. In the
figure 8K x 16-bit static memory is interfaced to the 'C20x using two 8K x 8-bit
RAMs. The RAM devices must have fast access times if the internal instruction
speed is to be maintained.

Obtain the Proper Timing Information

When interfacing memory with high-speed 'C20x devices, refer to
the data sheet for that 'C20x device for the required access, delay,
and hold times.

4-9

Figure 4-3. Interface With External Local Data Memory

4-10

'C20x DSP

8K x 8 RAM

AO DO 8(1)
Al D1 02
A2 D2 D3
A3 D3 i
A4 D4 oE
A5 D5 Da
AB D6 57
A7 D7

A8

A

A10 WE

All RD

A12 CEl—

A0 DO D8
Al D1 D9
A2 D2 D10
A3 D3 Dil
A4 D4 D12
A5 D5 D13
A6 D6 D14
A7 D7 D15
A8

A9

A10 WE

All RD

Al2 CE|—q

8K x 8 RAM

4.4 Global Data Memory

Addresses in the upper 32K words (8000h—FFFFh) of local data memory can
be used for global data memory. The global memory allocation register
(GREG) determines the size of the global data-memory space, which is
between 0 and 32K words. The GREG is connected to the eight LSBs of the
internal data bus and is memory-mapped to data-memory location 0005h.
Table 4-3 shows the allowable GREG values and shows the corresponding
address range set aside for global data memory. Any remaining addresses
within 8000h—FFFFh are available for local data memory.

Note:

Choose only the GREG values listed in Table 4-3. Other values lead to
fragmented memory maps.

Table 4-3. Global Data Memory Configurations

GREG Value Local Memory Global Memory

High Byte Low Byte Range Words Range Words
XXXX XXXX 0000 0000 0000h—-FFFFh 65536 - 0
XXXX XXXX 1000 0000 0000h—7FFFh 32768 8000h—FFFFh 32768
XXXX XXXX 1100 0000 0000h—-BFFFh 49152 C000h—FFFFh 16 384
XXXX XXXX 1110 0000 0000h-DFFFh 57 344 EO00Oh—-FFFFh 8192
XXXX XXXX 1111 0000 0000h—-EFFFh 61 440 FOOOh—FFFFh 4096
XXXX XXXX 1111 1000 0000h-F7FFh 63 488 F800h—FFFFh 2048
XXXX XXXX 1111 1100 0000h—-FBFFh 64512 FCOOh—FFFFh 1024
XXXX XXXX 1111 1110 0000h-FDFFh 65024 FEOOh—FFFFh 512
XXXX XXXX 1111 1111 0000h—FEFFh 65280 FFOOh—FFFFh 256

Note: X =Don'’t care

4-11

As an example of configuring global memory, suppose you want to designate
8K addresses as global addresses. You would write the 8-bit value 11100000,
to the eight LSBs of the GREG (see Figure 4—4). This would designate ad-
dresses EO00h—-FFFFh of data memory as global data addresses (see
Figure 4-5).

Figure 4-4. GREG Register Set to Configure 8K for Global Data Memory

8 MSBs 8 LSBs

X X X X X X X XJ]1 1 1 0 0 0 0 O

(Don't cares) Set for 8K of global data memory

Figure 4-5. Global and Local Data Memory for GREG = 11100000

Data Memory Map

0000h
Lower 32K x 16
(always local)
== I GREG = 11100000
8000h 8000h
Upper 32K x 16 Local (24K x 16)
(local and/or global)
DFFFh
EO0Oh
Global (8K x 16)
FFFFRL |] FFFED

4-12

4.4.1 Interfacing With External Global Data Memory

When a program accesses any data-memory address, the 'C20x drives the
DS signal low. If that address is within a range defined by the GREG as global,
BR and DS are asserted. Because BR differentiates local and global
accesses, you can use the GREG to extend data memory by up to 32K.
Figure 4-6 shows two external RAMs that are sharing data-memory
addresses 8000h—FFFFh. Overlapping addresses must be reconfigured
withthe GREG in order to be toggled between local memory and
global memory. For example, in the system of Figure 4-6, when
GREG = XXXXXXXX000000005 (no global memory), the local data RAM is
fully accessible; when GREG = XXXXXXXX10000000, (all global memory),
the local data RAM is not accessible.

Figure 4-6. Using 8000h—FFFFh for Local and Global External Memory

Local data RAM

'C20x 8000h—FFFFh
16
A15—A0 =t 9 D A15-A0
16
D15-D0 o > D15-D0
RD) O »| OF
WE [—o] > WE
DS > CE
16
Global data RAM
16 8000h—FFFFh
> A15-A0
> D15-DO0
> OE
> WE
BR ® > CE

4-13

4.5 1/0 Space

The 'C20x supports an I/O address range of 64K 16-bit words. Figure 4—7
shows the 'C20x 1/O address map.

Figure 4-7. I/O Address Map for the 'C20x

'C20x I/O
0000h
External
FEFFh
FFOOh
Reserved for
test/emulation
FFOFh
FF10h
1/0-mapped
registers and
reserved addresses
FFFFh
On-chip space

4-14

The map has three main sections of addresses:

(1 Addresses 0000h—FEFFh allow access to off-chip peripherals typically
used in DSP applications, such as digital-to-analog and analog-to-digital
converters.

1 Addresses FFOOh—-FFOFh are mapped to on-chip I/O space. These
addresses are reserved for test purposes and should not be used.

[0 Addresses FF10h—FFFFh are also mapped to on-chip I/O space. These
addresses are used for other reserved space and for the on-chip
I/0O-mapped registers. For 'C20x devices other than the 'C209, Table 4—4
lists the registers mapped to on-chip I/O space. For the 1/0-mapped
registers on the 'C209, see section 11.2, on page 11-5.

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to
I/O addresses FFOOh—FFOFh or any reserved I/0O address in the
range FF10-FFFFh (that is, any address not designated for an
on-chip peripheral.)

4-15

Table 4-4. On-Chip Registers Mapped to I/0 Space

I/O Address Name Description

FFE4h PMST Program memory status register

FFE8h CLK CLK register

FFECh ICR Interrupt control register

FFFOh SDTR Synchronous serial port transmit and receive register
FFF1h SSPCR Synchronous serial port control register

FFF2h SSPST Synchronous serial port status register

FFF3h SSPMC Synchronous serial port multichannel register

FFF4h ADTR Asynchronous serial port transmit and receive register
FFF5h ASPCR Asynchronous serial port control register

FFF6h IOSR Input/output status register

FFF7h BRD Baud rate divisor register

FFF8h TCR Timer control register

FFF9h PRD Timer period register

FFFAh TIM Timer counter register

FFFBh SSPCT Synchronous serial port counter register

FFFCh WSGR Wait-state generator control register

Note: This table does not apply to the 'C209. For the I/O-mapped registers on the 'C209,
see section 11.2 on page 11-5.

45.1 Accessing I/O Space

4-16

All' I/O words (external 1/0 ports and on-chip I/O registers) are accessed with
the IN and OUT instructions. Accesses to external parallel I/O ports are
multiplexed over the same address and data buses for program and
data-memory accesses. These accesses are distinguished from external
program and data-memory accesses by IS going low. The data bus is 16 bits
wide; however, if you use 8-bit peripherals, you can use either the higher or
lower eight lines of the data bus to suit a particular application.

You can use RD with chip-select logic to generate an output-enable signal for
an external peripheral. You can also use the WE signal with chip-select logic
to generate a write-enable signal for an external peripheral. As an example of
interfacing to external I/O space, Figure 4-8 shows interface circuitry for eight
input bits and eight output bits. Note that the decode section is simplified if
fewer I/O ports are used.

Figure 4-8. 1I/O Port Interface Circuitry

AO L A YO b15 o Port0
AL 21 v1pis Port 1
A2 8lc vo p13 Port 2
v3 p12 Port 3
vapi Port 4
sv—b]G1 vs p-L0 Port 5
A3 ‘51 G2A ve 3 Port 6
G2B Y7 Port 7
74AC138
'C20x DSP I/0 port address decoder
DO 12 vl 1A1 i Input bit 0
D1 w2 1A2pp Input bit 1
D2 12 |1Y8 1A3[g Input bit 2
b3 g|iy4 1A4 1 Input bit 3
D4 g 2A1 13 Input bit 4
D5 5 2Y2 2A2 15 Input bit 5
D6 3 2Y3 2A3 17 Input bit 6
D7 2Y4 2A4 Input bit 7
1G :)1—0
s 2G 19—
WE [— T4AC244
8-bit input port at I/O
address 0000h
V i D1 Q1 ; Outputb?tO
7 D2 Q2 6 Output b!tl
8 D3 Q3 . Output b!t2
V 13 D4 Q412— Output b!t3
14 D5 Q5 5 Output b!t4
17 D6 Q6 16 QOutput bit 5
18 D7 Q7 19— Output bit 6
n D8 Q8= Output hit 7
1 CLK
5V—CLR
T4AC273

8-bit output latch
at 1/0 address 0001h

4-17

4.6 Direct Memory Access Using the HOLD Operation

4-18

The’C20x HOLD operation allows direct-memory access to external program,
data, and I/O spaces. The process is controlled by two signals:

(1 HOLD. An external device can drive the HOLD/INT1 pin low to request
control over the external buses. If the HOLD/INT 1 interrupt line is enabled,
this triggers an interrupt.

[HOLDA. In response to a HOLD interrupt, software logic can cause the
processor to issue a HOLD acknowledge (HOLDA pin low), to indicate that
it is relinquishing control of its external lines. Upon HOLDA, the external
address signals (A15—-A0), data signals (D15-D0), and memory-control

signals (PS, DS, BR, IS, STRB, R/W, RD, WE) are placed in high
impedance.

Following a negative edge on the HOLD/INT1 pin, if interrupt line HOLD/INT1
is enabled, the CPU branches to address 0002h (this branch could also be
accomplished with an INTR 1 instruction). Here the CPU fetches the interrupt
vector and follows it to the interrupt service routine. If you wish to use this
routine for HOLD operations and also for the interrupt INT1, the tasks carried
out by this routine will depend on the value of the MODE bit:

[0 MODE = 1. When the CPU detects a negative edge on HOLD/INT1, it
finishes executing the current instruction (or repeat operation) and then
forces program control to the interrupt service routine. The interrupt
service routine, after successfully testing for MODE = 1, performs the
tasks for INT1.

(1 MODE = 0. Interrupt line INT1 is both negative- and positive-edge
sensitive. When the CPU detects the negative edge, it finishes executing
the current instruction (or repeat operation) and then forces program
control to the interrupt service routine. This routine, after successfully
testing for MODE = 0, executes an IDLE instruction. Upon IDLE, HOLDA
is asserted and the external lines are placed in high impedance. Only after
detecting a rising edge on the HOLD/INT1 pin, the CPU exits the IDLE
state, deasserts HOLDA, and returns the external lines to their normal
states.

Example 4-1 shows an interrupt service routine that tests the MODE bit and
acts accordingly. Note that the IDLE instruction should be placed inside the
interrupt service routine to issue HOLDA. Also note that the interrupt program
code disables all maskable interrupts except HOLD/INT1 to allow safe
recovery of HOLDA and the buses. Any other sequence of CPU code will
cause undesirable bus control and is not recommended. (Interrupt operation
is explained in detail in section 5.6 on page 5-15.)

Example 4-1. An Interrupt Service Routine Supporting INT1 and HOLD

.mmregs ;Include c2xx memory-mapped registers.
ICR .set OFFECh ;Define interrupt control register in 1/0 space.
ICRSHDW .set 060h ;Define ICRSHDW in scratch pad location.

* Interrupt vectors *

reset B main ;0 —reset , Branch to main program on reset.
Intlh B intl_hold ;1 — external interrupt 1 or HOLD.
.Space 40*16 ;Fill 0000 between vectors and main program.
main: SPLK #0001h,imr ;Enable HOLD/INTL1 interrupt line.
CLRC INTM
wait: B wait
wrxxxxxRk|nterrupt service routine for HOLD logic****xx++ *
intl_hold:
; Perform any desired context save.
LDP #0 ;Set data-memory page to O.
IN ICRSHDW, ICR ;Save the contents of ICR register.
LACL #010h ;Load accumulator (ACC) with mask for MODE bit.
AND ICRSHDW ;Filter out all bits except MODE bit.
BCND intl, neq ;Branch if MODE bit is 1, else in HOLD mode.
LACC imr, 0 ;Load ACC with interrupt mask register.
SPLK #1,imr ;Mask all interrupts except interruptl/HOLD.
IDLE ;Enter HOLD mode. Issues HOLDA, and puts

;buses in high impedance. Wait until
;rising edge is seen on HOLD/INTL1 pin.

SPLK #1, ifr ;Clear HOLD/INT1 flag in interrupt flag register
;to prevent re-entering HOLD mode.
SACL imr ;Restore interrupt mask register.

; Perform necessary context restore.

CLRC INTM ;Enable all interrupts.
RET ;Return from HOLD interrupt.
intl: NOP ;Replace these NOPs with desired intl interrupt
NOP ;service routine.
; Perform necessary context restore.
CLRC INTM ;Enable all interrupts.
RET ;Return from interrupts.

4-19

Here are three valid methods for exiting the IDLE state, thus deasserting
HOLDA and restoring the buses to normal operation:

[Cause arising edge on the HOLD/INT1 pin when MODE = 0.
(O Assert system reset at the reset pin.
[0 Assert the nonmaskable interrupt NMI at the NMI pin.

If reset or NMI occurs while HOLDA is asserted, the CPU will deassert HOLDA
regardless of the level on the HOLD/INT1 pin. Therefore, to avoid further
conflicts in bus control, the system hardware logic should restore HOLD to a
high state.

4.6.1 HOLD During Reset

The HOLD logic can be used to put the buses in a high-impedance state at
power-on or reset. This feature is useful in extending the DSP memory control
to external processors. If HOLD is driven low during reset, normal reset
operation occurs internally, but HOLDA will be asserted, placing all buses and
control lines in a high-impedance state. Upon release of both HOLD and RS,
execution starts from program location 0000h.

Either of the following conditions will cause the processor to deassert HOLDA
and return the buses to a normal state:

[HOLD is deasserted before reset is deasserted. See Figure 4-9. This is
the normal recovery condition after a HOLD operation. After the HOLD
signal goes high, the HOLDA signal will be deasserted, and the buses will
assume normal states.

Figure 4-9. HOLD Deasserted Before Reset Deasserted

4-20

RS~ \ /

fo. ———\ /

HOLDA \ V——

Direct Memory Access Using the HOLD Operation

(1 Reset is deasserted before HOLD is deasserted. See Figure 4-10. The
CPUwilldeassert HOLDA regardless of the HOLD signal after the 16 clock
cycles required for normal reset operation. Along with the HOLDA signal,
the buses will assume normal states. The external system hardware logic
should restore the HOLD signal to a high state to avoid conflicts in HOLD
logic.

Figure 4-10. Reset Deasserted Before HOLD Deasserted

RS T\ /

HOLDA
—/

4-21

4.7 Device-Specific Information

For 'C20x devices other than the 'C209, this section mentions the presence
or absence of the bootloader and HOLD features, shows address maps, and
explains the contents and configuration of the program-memory and data-
memory maps. For details about the memory and I/O spaces of the 'C209, see
section 11.2 on page 11-5.

4.7.1 TMS320C203 Address Maps and Memory Configuration

4-22

The 'C203 has a 'C20x on-chip bootloader and supports the 'C20x HOLD
operation. Figure 4-11 shows the 'C203 address map.

The on-chip program and data memory available on the 'C203 consists of:

(1 DARAM BO (256 words, for program or data memory)
(1 DARAM B1 (256 words, for data memory)
(1O DARAM B2 (32 words, for data memory)

Figure 4-11.’C203 Address Map

'C203 Program 'C203 Data 'C203 1/0
0000h 0000h 0000h
Interrupts (external) Memory-mapped
003Fh registers and
reserved addresses
005Fh
0060h On-chip
DARAM B2
007Fh
0080h
Reserved
O1FFh External
External 0200h | on-chip DARAM
BO* (CNF = 0);
02EEh Reserved (CNF =1)
0300h On-chip
03FFh DARAM B18
0400h
Reserved
07FFh
0800h
External
FDFFh 7FFFh FEFFh
FEOOh 8000h FFOOh
Reserved (CNF = 1); Reserved for
External (CNF = 0) test/emulation
FEFFh External FFOFh
FFOOh On-chip DARAM (local and/or global) FF10h //O-mapped
BOt (CNF = 1); registers and
External (CNF = 0) reserved addresses
FFFFh FFFFh FFFFh

T When CNF = 1, addresses FEOOh—FEFFh and FFOOh—FFFFh are mapped to the same physical block (B0) in program-memory
space. For example, a write to FEOOh will have the same effect as a write to FFOOh. For simplicity, addresses FEOOh—FEFFh
are referred to here as reserved when CNF = 1.

¥ When CNF = 0, addresses 0100h—01FFh and 0200h—-02FFh are mapped to the same physical block (BO) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h—01FFh are
referred to here as reserved.

8 Addresses 0300h—03FFh and 0400h—04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h—04FFh are referred to here as
reserved.

4-23

DARAM blocks B1 and B2 are fixed, but DARAM block BO may be mapped to
program space or data space, depending on the value of the CNF bit (bit 12
of status register ST1):

(1 CNF=0.B0is mapped to data space and is accessible at data addresses
0200h—-02FFh. Note that the addressable external program memory
increases by 512 words.

(1 CNF =1. B0 is mapped to program space and is accessible at program
addresses FFOOh—FFFFh.

At reset, CNF = 0.

Table 4-5 shows the program-memory options for the 'C203; Table 4-6 lists
the data-memory options. Note these facts:

(1 Program-memory addresses 0000h—003Fh are used for the interrupt
vectors.

[Data-memory addresses 0000h—005Fh contain on-chip memory-mapped
registers and reserved memory.

(1 Two other on-chip data-memory ranges are always reserved:
0080h—01FFh and 0400h—-07FFh.

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to
any addresses labeled Reserved. This includes any data-memory
address in the range 0000h—005Fh that is not designated for an
on-chip register and any I/O address in the range FFOOh—FFFFh
that is not designated for an on-chip register.

Table 4-5. 'C203 Program-Memory Configuration Options

CNF DARAM BO External Reserved
0 - 0000h—-FFFFh -
1 FFOOh—-FFFFh 0000h—FDFFh FEOOh-FEFFh

4-24

Table 4-6. 'C203 Data-Memory Configuration Options

DARAM BO DARAM B1 DARAM B2 External Reserved
CNF (hex) (hex) (hex) (hex) (hex)
0 0200-02FF 0300-03FF 0060-007F 0800-FFFF 0000-005F

0080-01FF
0400-07FF
1 - 0300-03FF 0060-007F 0800-FFFF 0000-005F
0080-02FF
0400-07FF

4.7.2 TMS320C206/LC206 Address Maps and Memory Configuration

The 'C206/'LC206 have an on-chip bootloader in ROM. Figure 4-12 shows
addresses for the 'C206/'LC206 memory map. The on-chip program and data
memory available on the ‘C206/'LC206 consists of:

J ROM (32K words, for program memory)

J DARAM BO (256 words, for program or data memory)
0 DARAM B1 (256 words, for data memory)

0 DARAM B2 (32 words, for data memory)

The’'C206/'LC206 includes 544 x 16 words of dual-access RAM (DARAM), 4K
x 16 single-access RAM (SARAM), and 32K x 16 program ROM memory. The
PON and DON bits select the SARAM (4K) mapping in program, data or both.
At reset, these bits are 11, mapping the SARAM in both program and data
memory.

At reset, if the MP/MC is held high, the device is in microprocessor mode and
the program address branches to 0000h (external program space). The
MP/MC pin status is latched in the PMST register (bit 0). As long as this bit
remains high, the device is in microprocessor mode. PMST register bits can
be read and modified in software. If bit 0 is written O, the device enters
microcomputer mode and transfers control to the on-chip ROM at 0000h.

4-25

Figure 4-12. TMS320C206, TMS320LC206 Memory Map Configurations

Hex Program Hex Program Hex Data Hex 1/O Space
0000 Interrupt vectors 0000 Interrupt vectors 0000 Memory-mapped 0000
88‘25 ----------- ggjz ----------- registers and
Bootloader code reserved
___________ addresses
005F
A-law table 0060
___________ On-chip
DARAM B2
p-law table
007F
External | [T 7" 777777
0080 Reserved
01FF
Unused 0200
On-chip DARAM
BO (CNF = 0)+
LEAN I Reserved
7F00 Reserved for (CNF = 1)
ROM test code External
TFFF TFFF 02FF /O space
8000 8000 0300 On-chip
On-chip On-chip 03FE DARAM B1§
SARAM 4K SARAM 4K 0400
Internal (PON = 1) Internal (PON = 1)
External (PON = 0) External (PON = 0) Reserved
8FFF 8FFF 07FF
9000 9000 0800
On-chip
SARAM 4K
External External Internal (DON = 1)
External (DON = 0)
17FF
FDFF FDFF 1800
FEOO Reserved FEOO Reserved
(CNF =1)t (CNF =1) FEFF
External (CNF = 0) External (CNF = 0) FEOO R "
FEFF FEFF External eserve
FFOO FFOO FFOF for test
On-chip DARAM On-chip DARAM FE10)
BO (CNF = 1)t BO (CNF = 1) On-chip /O
External (CNF = 0) External (CNF = 0) peripheral
registers
FFFF FFFF FFFF FFFF

External if MP/MC = 1 Internal if MP/MC = 0

|:| On-chip ROMT (32K)

T When CNF = 1, addresses FEOOh—FEFFh and FFOOh—FFFFh are mapped to the same physical block (B0) in program-memory
space. For example, a write to FEOOh will have the same effect as a write to FFOOh. For simplicity, addresses FEOOh—FEFFh
are referred to here as reserved when CNF = 1.

¥ When CNF = 0, addresses 0100h—01FFh and 0200h—02FFh are mapped to the same physical block (BO) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h—01FFh are
referred to here as reserved.

8 Addresses 0300h—03FFh and 0400h—04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. Addresses 0400h—04FFh are referred to here as reserved.

fl standard ROM devices will come with boot code and the A-law, p-law table.

4-26

4.7.3 TMS320F206 Address Maps and Memory Configuration

The 'F206 has an on-chip serial loader in flash EEPROM. Figure 4-13 shows
addresses for the ‘F206 memory map. The on-chip program and data memory
available on the ‘F206 consists of:

(1 Flash EEPROM (32K words, for program memory)

1 DARAM BO (256 words, for program or data memory)
1 DARAM B1 (256 words, for data memory)

1 DARAM B2 (32 words, for data memory)

The 'F206 includes 544 x 16 words of dual-access RAM (DARAM), 4K x 16
single-access RAM (SARAM), and 32K x 16 program flash EEPROM memory.
The PON and DON bits select the SARAM (4K) mapping in program, data or
both. Atreset, these bits are 11, mapping the SARAM in both program and data
memory.

At reset, if the MP/MC is held high, the device is in microprocessor mode and
the program address branches to 0000h (external program space). The
MP/MC pin status is latched in the PMST register (bit 0). As long as this bit
remains high, the device is in microprocessor mode. PMST register bits can
be read and modified in software. If bit 0 is written O, the device enters
microcomputer mode and transfers control to the on-chip flash memory
(0000h—7FFFh).

4.7.4 Flash Memory (EEPROM)

Flash EEPROM provides an attractive alternative to masked ROM. Like ROM,
flash memory is non-volatile but has the added benefit of being electrically
erasable and programmable without having to be removed from the target
system. This “in-target” reprogrammability makes flash devices an attractive
choice in the areas of prototyping, early field-testing and single-chip
applications. Other key features of the flash include zero wait-state access and
single 5-V power supply. The 'F206 incorporates two 16K x 16-bit flash
EEPROM modules which provide a contiguous 32K x 16-bit array in program
space. For further details on flash memory and programming, refer to the flash
technical reference, TMS320F20x/F24x DSP Embedded Flash Memory Tech-
nical Reference (literature number SPRU282).

4-27

Figure 4-13. TMS320F206 Memory Map Configuration

Hex
0000

003F
0040

3FFF
4000

7FFF
8000

8FFF
9000

FDFF
FEOO

FEFF
FF0O

FFFF

T When CNF = 1, addresses FEOOh—FEFFh and FFOOh—FFFFh are mapped to the same physical block (B0) in program-memory
space. For example, a write to FEOOh will have the same effect as a write to FFOOh. For simplicity, addresses FEOOh—FEFFh

Program

Interrupt
vectors

On-chip 16K
Flash (0)
(MP/MC = 0)

Exte_rnal
(MP/MC =1)

On-chip 16K Flash (1)
(MP/MC = 0)

Ex@al
(MP/MC =1)

On-chip SARAM
4K Internal
(PON =1)

External
(PON =0)

External

On-chip DARAM BO
(cNF =)t
also mapped at
(OFFO0-0FFFFh)
External
(CNF=0)

On-chip DARAM BO
(CNF = 1)t
also mapped at
(OFEO0-OFEFFh)
External
(CNF=0)

Hex Data
0000 Memory-mapped
registers and
Reserved
005F
0060 On-chip
DARAM B2
007F
0080 Reserved
00FF
0100f On-chip DARAM BO
(CNF = 0)%
also mapped at
(0200-02FFh)
Reserved
(CNF = 1)
O1FF
02001 On-chip DARAM BO
(CNF = 0)%
also mapped at
(0100-01FFh)
Reserved
(CNF=1)
02FF
0300
On-chip DARAM B18
also mapped at
(0400-04FFh)
03FF
0400 On-chip
DARAM B18
also mapped at
(0300-03FFh)
04FF
0500
Reserved
07FF
0800] on-chip SARAM 4K
(DON = 1)
External
(DON =0)
17FF
1800 External
FFFF

are referred to here as reserved when CNF = 1.

¥ When CNF = 0, addresses 0100h—01FFh and 0200h—02FFh are mapped to the same physical block (B0) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h—01FFh are

referred to here as reserved.

8 Addresses 0300h—03FFh and 0400h—04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h—04FFh are referred to here as
reserved.

4-28

Hex
0000

FEFF
FFOO

FFOF
FF10

FFFF

1/0 Space

External
1/0O space

Reserved
for
test

On-chip 110
peripheral
registers

4.7.5 PMST Register in the '206 Family

The PMST register provides improved memory interface options. This feature
is in 'TF206/LC206/C206 devices only. All the 'C20x DSP devices have critical
external memory interface timings. At higher clock speeds, the existing RD
signal is too delayed to be used as output enable for memory devices. In order
to achieve a glueless zero wait state memory interface, RD signal has been
provided with a software control bit. This bit (bit 15, FRDN) in PMST register
(FFE4h) can select R/W as the new read signal (pin 45) instead of RD signal.
Choosing R/W is necessary only if RD is incapable of supporting a zero wait
state memory interface.

Figure 4—-14. PMST Register Selection for RD

R/IW RD pin
RD P
PMST (FFE4h)
FRDN
Bit 15

Notes: 1) RD is enabled at reset.
2) R/W is the RD pin signal for fast memory interface if FRDN is enabled .

4-29

4.8

'C203 Bootloader

This section applies to the 'C203’s on-chip bootloader, which boots software
from an 8-bit external ROM to a 16-bit external RAM at reset (see
Figure 4-15). The source for your program is an external ROM located in
external global data memory. The destination for the boot-loaded program is
RAM in the program space. The main purpose of the bootloader is to provide
you with the ability to use low-cost, simple-to-use 8-bit EPROMSs with the 16-bit
'C20x.

Figure 4-15. Simplified Block Diagram of Bootloader Operation

8
EPROM

(program source)

a

'C2
c203 Mapped in global data

memory space

16
RAM

(program destination)

A 4

Written starting at
address 0000h

The code for the bootloader is stored on chip. Using the bootloader requires
several steps: choosing an EPROM, connecting and programming the
EPROM, enabling the bootloader program, and finally, booting.

4.8.1 Choosing an EPROM

4-30

The code that you want boot-loaded must be stored in non-volatile external
memory; usually, this code is stored in an EPROM. Most standard EPROMs
can be used. At reset, the processor defaults to the maximum number of
software wait states to accommodate slow EPROMs.

The maximum size for the EPROM is 32K words x 8 bits, which
accommodates a program of up to 16K words x 16 bits. However, you could
use the bootloader to load your own boot software to get around this limit or
to perform a different type of boot.

Recommended EPROMSs include the 27C32, 27C64, 27C128, and 27C256.

4.8.2 Connecting the EPROM to the Processor

To map the EPROM into the global data space at address 8000h, make the
following connections between the processor and the EPROM (refer to
Figure 4-16):

1 Connect the address lines of the processor and the EPROM (see lines
A14-A0 in the figure).

(1 Connectthe data lines of the processor and the EPROM (see lines D7-D0
in the figure).

[Connect the processor’s RD pin to the EPROM output enable pin (OE in
the figure).

[0 Connectthe processor’s BR pin to the EPROM chip enable pin (CE in the
figure).

Notes:

1) If the EPROM is smaller than 32K words x 8 hits, connect only the
address pins that are available on the EPROM.

2) When the bootloader accesses global memory, along with BR, DS is
driven low. Design your system so that the DS signal does not initiate un-
desired accesses to data memory during the boot loads.

Figure 4-16. Connecting the EPROM to the Processor

'C203 EPROM
(27C256)
15
Al4-A0 » Al4-A0
8
D7-DO |« » D7-DO
RD »| OE
BR »{ CE

4-31

4.8.3 Programming the EPROM

4-32

Texas Instruments fixed-point development tools provide the utilities to
generate the boot ROM code. The on-chip boot ROM is located at address
FFOOh and itis only accessible by the CPU during the boot-load process. After
boot loading is complete, the boot ROM is removed from the memory map.
(For an introduction to the procedure for generating bootloader code, see
Appendix D, Program Examples.) However, should you need to do the
programming, use the following procedure.

Store the following to the EPROM:

[Destination address. Store the destination address in the first two bytes

of the EPROM—store the high-order byte of the destination address at
EPROM address 8000h and store the low-order byte at EPROM address
8001h.

Program length. Store N (the length of your program in words) in the next
two bytes in EPROM. Use this calculation to determine N:

N = ((number of bytes to be transferred)/2) — 1

Store the high-order N byte at EPROM address 8002h and the low-order N
byte at EPROM address 8003h.

Program. Store the program, one byte at a time, beginning at EPROM
address 8004h.

Each word in the program must be divided into two bytes in the EPROM,;
store the high-order byte first and store the low-order byte second. For
example, ifthe firstword is 813Fh, you would store 81h into the first byte (at
8004h) and 3Fhinto the second byte (at 8005h). Then, you would store the
high byte of the next word at address 8006h.

Notes:

1

2)

Do not include the first four bytes of the EPROM in your calculation of
the length (N). The bootloader uses N beginning at the fifth byte of the
EPROM.

Make sure the first part of the program on the EPROM contains code for
the reset and interrupt vectors. These vectors must be stored in the
destination RAM first, so that they can be fetched from program-memaory
addresses 0000h—003Fh. The reset vector will be fetched from 0000h.
For a list of all the assigned vector locations, see section 5.6.2, Interrupt
Table, on page 5-16.

Figure 4-17 shows how to store a 16-bit program into the 8-bit EPROM. A
subscript h (for example, on Word1y,) indicates the high-byte and a subscript
| (for example, on Word1,) indicates the low byte.

Figure 4-17. Storing the Program in the EPROM

16-Bit Program 8-Bit EPROM
15 8 7 0 Address 7 0
Word1y, Word1, 8000h Destinationy,
Word2y, Word2, 8001h Destination,
.. . 8002h Length Np,
. . 8003h Length N,
. . 8004h Word1,
Wordnp, Wordn, 8005h Word1,
8006h Word2y,
8007h Word2,
nnnEh Wordnp,
nnnFh Wordn,

4.8.4 Enabling the Bootloader

To enable the bootloader, tie the BOOT pin low and reset the device. The
BOOT pin is sampled only at reset. If you do not want to use the bootloader,
tie BOOT high before initiating a reset.

Three main conditions occur at reset that ensure proper operation of the
bootloader:

J All maskable interrupts are globally disabled (INTM bit = 1).
J On-chip DARAM block B0 is mapped to data space (CNF bit = 0).
1 Seven wait states are selected for program and data spaces.

After a hardware reset, the processor either executes the bootloader software
or skips execution of the bootloader, depending on the level on the BOOT pin:

g If BOOT is low, the processor branches to the location of the on-chip
bootloader program (FFOOh).

[IfBOOQT is high, the processor begins program execution at the address
pointed to by the reset vector at address 0000h in program memory.

4-33

4.8.5 Bootloader Execution

4-34

Once the EPROM has been programmed and installed, and the bootloader
has been enabled, the processor automatically boots the program from
EPROM at startup. If you need to reboot the processor during operation, bring
the RS pin low to cause a hardware reset.

When the processor executes the bootloader, the program first enables the full
32K words of global data memory by setting the eight LSBs of the GREG
register to 80h. Next, the bootloader copies your program from the EPROM
in global data space to the RAM in program space through a five step process
(refer to Figure 4-18):

1

2)

3)

4)

5)

The bootloader loads the first two bytes from the EPROM and uses this
word as the destination address for the code. (In Figure 4-18, the
destination is 0000h.)

The bootloader loads the next two bytes to determine the length of the
code.

The bootloader transfers the next two bytes. It loads the high byte first and
the low byte second, combines the two bytes into one word, stores the new
word in the destination memory location, and then causes an increment
in the source and destination addresses.

The bootloader checks to see if the end of the program has been reached:

B Ifthe end is reached, the bootloader goes on to step 5.
B If the end is not reached, the bootloader repeats steps 3 and 4.

The bootloader disables the entire global memory and then forces a
branch to the reset vector at address 0000h in program memory. Once the
bootloader finishes operation, the processor switches the on-chip
bootloader out of the memory map.

Note:

During the boot load, data is read using the low-order eight data lines

(D7-D0). The upper eight data lines are not used by the bootloader code.

Figure 4-18. Program Code Transferred From 8-Bit EPROM to 16-Bit RAM

Address
8000h
8001h
8002h
8003h
8004h
8005h
8006h
8007h

nnnEh
nnnFh

8-Bit EPROM

0

Destinationy, = 00h

Destination; = 00h

Length N,

Length N,

Word1y,

Word1,

Word2y,

Word2,

Wordny,

Wordn,

16-Bit RAM
Address 15 8 7 0
0000h Word1p Word1,
. Word2y, Word2,
nnnEh . .
nnnFh Wordnp, Wordn,

The 'C203 fetches its interrupt vectors from program-memory locations
0000h—003Fh (the reset vector is fetched from 0000h). Make sure that the
interrupt vectors are stored at the top of the EPROM, so that they will be
transferred to addresses 0000h—003Fh in the RAM (see Figure 4-19). Each
interrupt vector is a branch instruction, which requires four 8-bit words, and
there is space for 32 interrupt vectors. Therefore, the first 128 words to be
transferred from the EPROM should be the interrupt vectors.

Note:

In the 'C203, the on-chip boot ROM is located at program address FFOOh.
Itis accessed by the CPU only during the bootload process. After bootload-

ing is complete, the boot ROM is removed from the memory map.

4-35

Figure 4-19. Interrupt Vectors Transferred First During Boot Load

8000h
8001h

8002h
8003h
8004h

8083h
8084h

nnnFh

4-36

8-bit EPROM

in global data memory

Destinationy, (00)

Destination; (00)

0000h

16-bit RAM
in program memory

Length Np,

Length N

003Fh
0040h

Interrupt vectors

Interrupt vectors

Program code

v

nnnFh

Program code

4.8.6 Bootloader Program

* * * * * * *

* TMS320C20x Bootloader Program *
* *
* This code sets up and executes bootloader code that loads program *
* code from location 8000h in external global data space and transfersit *
* to the destination address specified by the first word read from locations *
* 8000h and 8001h. *
Jlength 60
GREG .set 5h ; The GREG Register
SRC .set 8000h ; Source address
DEST .set 60h ; Destination address
LENGTH .set 61h ; Code length
TEMP .set 62h ; Temporary storage
HBYTE .set 63h ; Temporary storage for upper half of 16—bit word
CODEWORD .set 64h ; Hold program code word
.sect "bootload”

*

* |nitialization
*

BOOT LDP #0 ; Set the data page to 0 (load DP with 0)
SPLK #2EOOh,TEMP ;SetARP=1,0VM=1,INTM=1,DP =0
LST #0,TEMP
SPLK #21FCh,TEMP ;SetARB=1,CNF=0,SXM=0,XF=1,PM=0
LST #1, TEMP
SPLK #80h,GREG ; Designate locations 8000—FFFFH as global data
; space

EE R I i I R R S R S S R S

* BOOT LOAD FROM 8-BIT MEMORY. MOST SIGNIFICANT BYTE IS FIRST *
R S B R I I

*

* Determine destination address
*

ADDR LAR AR1#SRC ; AR1 points to global address 8000h
LACC *+,8 ; Load ACC with high byte shifted left by 8 bits
SACL HBYTE ; Store high byte
LACL *+ ; Load ACC with low byte of destination
AND #OFFH ; Mask off upper 24 bits.
OR HBYTE ; OR ACC with high byte to form 16-hit
; destination address
SACL DEST : Store destination address

*

* Determine length of code to be transferred
*

LEN LACC *+.8 ; Load ACC with high byte shifted left by 8 bits
SACL HBYTE ; Store high byte
LACL *+ ; Load ACC with low byte of length
AND #OFFH ; Mask off upper 24 bits.
OR HBYTE ; OR ACC with high byte to form 16-bit length
SACL LENGTH ; Store length
LAR ARO,LENGTH ; Load ARO with length to be used for BANZ

4-37

*

* Transfer code

*

LOOP LACC *+8 ; Load ACC with high byte of code shifted by 8 bits
SACL HBYTE ; Store high byte
LACL *+ ARO ; Load ACC with low byte of code
AND #O0FFH ; Mask off upper 24 bits
OR HBYTE ; OR ACC with high byte to form 16-bit code word
SACL CODEWORD ; Store code word
LACL DEST : Load destination address
TBLW CODEWORD ; Transfer code to destination address
ADD #1 ; Add 1 to destination address
SACL DEST ; Save new address
BANZ LOOP,AR1 ; Determine if end of code is reached
SPLK #0,GREG ; Disable entire global memory
INTR 0 ; Branch to reset vector and execute code.
.END
I
Note:

The INTR instruction in the bootloader program causes the processor to
push a return address onto the stack, but the device does not use a RET to
return to this address. Therefore, your program must execute a POP
instruction to get the address off the stack.

4-38

4.9

'C206/LC206 Bootloader

This section describes the bootloader options available on the TMS320C206
and TMS320LC206. Several boot-load options are available on these devices.
You can choose the option required by external pin configurations and an 8-bit
word input from I/O address 0000h. The bootloader provides the flexibility of
loading any executable code into the program memory of the DSP. Your code
can be transferred to the DSP program memory from any one of the following
external sources:

[8/16-bit transfer through the synchronous serial port (SSP)

[8-bit transfer through the asynchronous synchronous serial port (ASP)
(1 8/16-bit EPROM

[8/16-bit parallel port mapped to 1/0O space address 0001h of the DSP

Additionally, a warm boot is also supported.

4.9.1 Boot-load Options

The main function of the bootloader is to transfer user code from an external
source to the program memory at power-up. The TMX320C206/LC206
provides several ways to download code to accommodate varying system
requirements. To ensure compatibility, the 'C206 bootloader supports the
original ‘C203 boot-load mode. The EXT8 pin (pin 1) of the 'C206/'LC206 is
sampled during startup to determine whether to perform the ‘C203 boot-load
or the enhanced 206 boot-load options. are to be performed. Unlike the ‘C203
bootloader, the 'C206 bootloader can load multiple sections of user code in
different segments of memory. In all boot-load modes, the processor
automatically branches to the beginning your code, once boot loading is
complete.

There are two possible scenarios for the TMS320C206/LC206 during startup
based on the condition of the EXTS8 pin:

[EXT8 =low: This invokes the original ‘C203 style bootloader, which boot
loads from an external 8-bit EPROM.

[EXT8 = high: This invokes the enhanced 'C206 bootloader, which
supports the following boot-load options:

Synchronous serial port, 8/16 bit

UART/asynchronous serial port, 8 bit

External parallel EPROM, 8/16 bit

Parallel 1/0 boot, 8/16 bit using BIO and XF for handshaking

Warm boot

The option to be executed is determined by reading the word at I/O address
0000h. The lower 8-bits of the word specify which bootloader option to use.

4-39

4.9.2 Bootloader Operation

If the MP/MC pin is sampled low during a hardware reset, execution begins at
location 0000h of the on-chip ROM. This location contains a branch instruction
to the start of the bootloader program. The level of the EXT8 pin is read via bit
3 (LEVEXTS) in the PMST register (FFE4h in I/O space). If EXT8 pin is read
high, the bootloader checks the boot selection word at location 0000h in 1/O
space and determines which booting method to execute. If EXT8 pin is read
low, control passes by default to 8-bit EPROM boot (‘C203 style bootloader).
This allows upward compatibility from TMS320C203. Figure 4-20 shows the
PMST register. Table 4-7 describes the function of the PMST register bits.
Table 4-8 shows bootloader pin configuration.

Figure 4-20. Program Memory Status (PMST) Register — (I/O space FFE4h)

15 14 4 3 2 1 0
[rFrON | Reserved | LEvexts | Dpon | PoN | wPMC
RIW 0 R RIW RIW RIW

Table 4-7. PMST Register Bit Descriptions

Bit Name

Value at
Reset

Function

15 FRDN

14-4 Reserved

3 LEVEXT8

2 DON

1 PON

0 MP/MC

0

At reset, this bit is 0, which enables enhanced RD signal. If high, the
inverted R/W is active.

These bits are not used.

Bit 3 (a read-only bit) latches in the state of EXT8 pin at reset. If low, the
on-chip bootloader uses ‘C203 style boot load. If high, the enhanced
'C206 bootloader is used.

See below.

Bit 1 and bit 2 configure the SARAM mapping either in program memory,
data memory or both. At reset these bits are 11.

DON (bit 2) PON (bit 1)

00 SARAM not mapped, address in external memory
01 SARAM in program memory at 0x8000h

10 SARAM in data memory at 0x800h

11 SARAM in program and data memory (reset value)

Bit O latches in the state of MP/MC at reset. This bit can also be written
to switch between Microprocessor (1) or Microcomputer (0) modes.

4-40

Table 4-8. Bootloader-Pin Configuration

MP/MC EXTS8 Option Mode(s)
0 0 Use ‘C203 style bootloader 1
0 1 Use 'C206 enhanced bootloader 2t09
1 0 EXT8 has no effect -
1 1 EXT8 has no effect -

The bootloader sets up the CPU status registers as follows:
[On-chip DARAM block BO is mapped into program space (CNF = 1).

[On-chip SARAM block is mapped into program and data space
(PON = 1, DON=1).

Note that both DARAM and SARAM memory blocks are enabled in program
memory space; this allows you to transfer code to on-chip program memory.

At reset, interrupts are globally disabled (INTM = 1). Entire program and data
memory spaces are enabled with seven wait states.

4.9.3 ’'C206 Enhanced Bootloader (EXT8 High - Modes 2 to 9)

The bootloader reads the 1/0 port address 0000h by driving the 1/0 strobe (IS)
signal low. The lower eight bits of the word read from I/O port address 0000h
specify the mode of transfer; the higher eight bits are ignored. This
boot-routine-selection (BRS) word determines the boot mode. The BRS word
uses a 6-bit source address field (SRCE_AD) in parallel EPROM mode and
a 6-bit entry address field (ADDR_bb) in warm-boot mode to arrive at the
starting address of the code.

Figure 4-21 lists the available boot-load options and the corresponding values
for the boot-routine-selection word at I/O address 0000h. This word could be
set by a DIP switch.

Figure 4—22 shows the available boot-load options in flow chart form.

4-41

Figure 4-21. Enhanced 'C206 Bootloader Options

BRS word @ /0O 0000h Boot Load Option Mode
XXXXXXXX Xxx0 0000 8-hit serial SSP, external FSX, CLKX 2
XXXXXXXX xxx0 0100 16-bit serial SSP, external FSX,CLKX 3
XXXXXXXX xxx0 1000 8-bit parallel /O 4
XXXXXXXX xxx0 1100 16-bit parallel I/O 5
XXXXXXXX Xxx1 0000 8-bit ASP /UART 6
XXXXXXXX SRCE ADO1 8-bit EPROM 7
XXXXXXXX SRCE AD10 16-bit EPROM 8
XXXXXXXX ADDR bbll Warm-boot 9

4-42

Figure 4-22. Boot-load Flowchart

C203
style
loader?

(LEVEXTS = 0?)

Serial/
parallel

load?
(2 LSBs of
BRS =00?)

UART/
Perform UART/ asynchronous
asynchronous serial load?
serial load (Bit 4 of
BRS = 1?)

Parallel
1/0 load?
(Bit 3 of

BRS = 1?)

) 8-bit
l;err]fcc;l]r;g r?ogg synchronous
)s/,erial load serial load
Bit 2 of
(Bit 2 of BRS = 0) B%é = 8?)

Perform
C203 style
boot loading

Warm boot
(2 LSBs = 11)

(2 LSBs = 01?)

8-bit
EPROM?

16-bit
EPROM?

(2 LSBs = 10?)

Perform
8-bit
EPROM

Perform
16-bit
EPROM

8-bit

parallel 1/0?
(Bit 2 of

BRS =0?)

Perform 16-bit

parallel /O

(Bit 2 of BRS = 1)

Perform
8-bit
parallel 1/0

Perform 16-bit
synchronous
serial load

(Bit 2 of BRS = 1)

4-43

Figure 4-23 provides the memory map of program address spaces that are
accessible through the bootloader. For modes other than 1, memory locations
from 0000h to 7FFFh are not available for loading code, since that space is
occupied by ROM. However, this limitation can be overcome by modifying the
memory map in your own boot code.

Figure 4-23. Destination Address Space for Programs in Program Memory

’C206 Bootloaders 'C203 style Bootloader
(Other than Mode 1) (Mode 1)
0000h 0000h
Boot ROM External
7FFFh 7FFFh
8000h 8000h
SARAM SARAM
8FFFh 8FFFh
9000h 9000h
External RAM External RAM

FDFFh
FEOOh

— FEFFh Reserved
FFOOh

FEOOh Reserved)

EEEFh BO in PM

FFOOh 'C203 Bootloader

BO in PM

FFFFh

FFFFh

D Memory locations available for boot loading user code.

Caution: Locations 8000h - 807Fh in SARAM are reserved for the second interrupt vector table as mentioned in section 5.
Exercise caution while moving code into this area.

4-44

4.9.4 Interrupt Vectoring

intl_holdv
int2_3v
tintv
rintv
xintv
txrxintv
trapv
nmiv
sSwi8v
SWi9v
swilOv
swillv
swil2v
swil3v
Sildv
swilbv
sSwilév
swi20v
swi2lv
sSwi22v
swi23v
swi24v
swi25v
Swi26v
SWi27v
sSwi28v
SwWi29v
swi30v
swi3lv
reserved

.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set

Interrupt vectors stored in the on-chip ROM have hard coded addresses to the
on-chip SARAM starting at address 8000h in program space. When an
interrupt occurs, a branch is made to the corresponding interrupt vector
located inthe on-chip ROM at addresses (0000h—0040h). A branch instruction
then transfers program control to the second interrupt vector table in the
on-chip SARAM. You must initialize the second interrupt vector table. This
table is used to allow remappable interrupt vectors. See the following code for
initializing interrupt vectors in the SARAM.

Remapped interrupt vectors for TMS320C206, TMS320LC206

.set 8000h ; User maskable interrupt #1

.set 8002h ; User maskable interrupts #2 & #3
.set 8004h ; Timer interrupt vector

.set 801Ah ; SSP receive interrupt vector

.set 8032h ; SSP transmit interrupt vector

.set 804Eh ; UART port Tx/Rx interrupt vector

.set 8050h ; Software trap vector

.set 8052h ; Non-maskable interrupt vector
.set 8054h ; Software interrupt vectors begin...
.set 8056h

.set 8058h ; (Note:lf these interrupts are unused
805Ah ; these memory locations may be
805Ch ; used for other purposes.)

805Eh

8060h

8062h

8064h

8066h

8068h

806Ah

806Ch

806Eh

8070h

8072h

8074h

8076h

8078h

807Ah

807Ch

.set 807Eh

4-45

4.9.5 Synchronous Serial Port (SSP) Boot Mode

4-46

In this mode, the synchronous serial port control register (SSPCR) is
configured for 16-bit or 8-bit word transfer. The data shift clock and frame sync
must be supplied by the external device to the 'C206/'LC206.

(1 16-Bit Word Serial Transfer (Mode 3)

If the 16-bit word transfer is selected , the first 16-bit word received by the
'C206 from the serial port specifies the destination address
(Destinationqg) of code in program memory. The next 16-bit word specifies
the length (Length4g) of the actual code that follows. These two 16-bit
words are followed by N number of code words to be transferred to
program memory. Note that the number of 16-bit words specified by the
parameter N does not include the first two 16-bit words received
(Destination1g and Lengthyg). After the specified number of code words
are transferred to program memory, the 'C206 checks to see if there are
any more sections to be transferred. If there are additional sections to be
transferred, the bootloader proceeds to transfer them in exactly the same
way as the first section. After transferring all the sections, the 'C206
branches to the first destination address. The length N is defined as:

N = (Number of 16-bit words) - 1

If, after transferring all the N words of a section, the 'C206 receives a 0000,
it signals the end of user code. If any word other than 0000 is read, it
indicates that one or more sections is following and the word read is
treated as the destination address of the next section. Refer to
Figure 4—24 for the format of data transfer in 16-bit mode.

Figure 4-24. 16-Bit Word Transfer

DESTINATION

LENGTH of first section (N1)

CODE(1) of length Nq

DESTINATION»

LENGTH of second section (N5)

CODE(2) of length N»

DESTINATIONy

LENGTH of Nth section (Ny)

CODE(N) of length Ny

0000 to end program

Legend:
Destination1g 16-bit destination address
Lengthyg 16-bit word that specifies the length of the code (N) that follows

Code(N)16 N number of 16-bit words to be transferred (actual code)

1 8-Bit Word Serial Transfer (Mode 2)

If the 8-bit word transfer is selected , a higher-order byte and a lower-order
byte form a 16-bit word. The first 16-bits received by the 'C206 from the
serial port specify the destination address (Destinationy, and Destinationy)
of code in program memory. The next 16-bits specify the length (Lengthy,
and Length)) of the actual code that follows. These two 16-bit words are
followed by N number of code words to be transferred to program memory.
Note that the number of 16-bit words specified by the parameter N does
notinclude the first four bytes (first two 16-bit words) received (Destination
and Length). After the specified number of code words are transferred to
program memory, the 'C206 checks to see if there are any more sections
to be transferred. If there are additional sections to be transferred, the
bootloader proceeds to transfer them in exactly the same way as the first
section. After transferring all the sections, the 'C206 branches to the first
destination address. The length N is defined as:

N = (Number of 16-bit words) - 1

or

4-47

N = (Number of bytes to be transferred/2) - 1

If, after transferring all the N words of a section, the 'C206 receives a 0000, it
signals the end of user code. If any word other than 0000 is read, it indicates
that one or more sections is following and the word read is treated as the
destination address of the next section. Refer to Figure 4-26 for the format of
data transfer in 8-bit mode. Figure 4—25 shows the connection details for SSP
boot-load option.

Figure 4-25. Host-"C206 Interface for SSP Boot-load Option

4-48

Host 'C206
CLKX E: CLKX
CLKR J CLKR

FSX »| FSR
FSR |« FSX
DX »| DR
DR |« DX

Figure 4-26. Figure 9.

8-Bit Word Transfer

DESTINATION;,

DESTINATION;,

LENGTHj, of first section (N1p)

LENGTH, of first section (N1))

CODE(1)},

CODE(1),

DESTINATION,

DESTINATION,,

LENGTH}, of second section (Nop,)

LENGTH, of second section (N

CODE(2)p,

CODE(2),

DESTINATIONyp,

DESTINATION

LENGTHj, of Nth section

LENGTH; of Nth section

CODE(N);,

CODE(N),

0000 to end program

Legend:

Destinationy, High byte of destination address

Destination, Low byte of destination address

Lengthy, High byte that specifies the length of the code (N) that follows
Length, Low byte that specifies the length of the code (N) that follows
Code (N)n High byte of N number of 16-bit words to be transferred

Code (N), Low byte of N number of 16-bit words to be transferred

4-49

4.9.6 UART/Asynchronous Serial Port (ASP) Boot Mode (Mode 6)

This mode is extremely useful to transfer user code to the '206 through an
asynchronous serial port such as the RS-232 port available in personal
computers. The data packet format in this mode is similar to that of
synchronous serial port (SSP) boot mode, with the exception that only 8-bit
transfers are supported. The DSPHEX utility is used to convert the COFF file
(*.out) of the user to a hex file suitable for UART bootloading. For more
information about the DSPHEX ultility, refer to TMS320C1x/C2x/C20x/C5x
Assembly Language Tools User’s Guide (literature number SPRU018D).

The 206 senses the baud rate of the incoming data and automatically updates
its baud-rate register. To make this happen, the host must transmit the ASCII
character “a” (or “A”) in the very beginning of the data transfer. 'C206 boot code
echoes “a” on baud lock and then prepares itself to receive user code. The
DSPHEX utility does not automatically add the ASCII value of the character
“a” in the hex file it creates. You can do this with the help of any ASCII editor.
While editing the hex file, you must also make sure that the last word of the file
is 0000h in order to transfer control to the user code after boot loading. The
options for the DSPHEX utility can be either specified on the command line or
with the help of a command file. A sample command file for the DSPHEX utility
is given below:

/* DSPHEX command file to generate hex file from .out file */

[* suitable for UART bootloader */

usercode.out /* Replace with the actual name of user code */
-a [* ASCII- hex format */

—0 usercode.hex /* Replace with the reqd. name of user code */
-byte [* default */

—order MS [* default */

—memwidth 8

—romwidth 8

SECTIONS

{ .text :boot}

49.7 Parallel EPROM Boot Mode

The parallel EPROM boot mode is used when code is stored in EPROM s (8-bit
or 16-bit wide). The code is transferred from external global data memory
(starting at the source address) to program memory (starting at the destination
address). The six MSBs of the source address are specified by the SRCE_AD
field of the boot routine selection word. A 16-bit source address is formed with
the help of this SRCE_AD field as shown in Figure 4-27. The boot-load code
initializes the GREG register to external global data memory space
8000h—0FFFFh. The 'C206/’'LC206 transfers control to the source address
after disabling global data memory.

4-50

Figure 4-27. 16-Bit Source Address for Parallel EPROM Boot Mode

15

10 9 0

SRCE_AD

jofoJoJoJoJoJoJofolo]

Note:

Source address

SRCE_AD = 6-bit page address

Q

16-Bit EPROM Transfer (Mode 8)

If the 16-bit mode is selected, boot code is read in 16-bit words starting at
the source address. After every read operation, the source address
changes by an increment of 1 . The first 16-bit word read from the source
address specifies the destination address (Destination;g) of code in
program memory. The next 16-bit word specifies the length (Lengthg) of
the actual code that follows. These two 16-bit words are followed by N
number of code words to be transferred to program memory. Note that the
number of 16-bit words specified by the parameter N does not include the
first two 16-bit words received (Destinationg and Lengthyg). After the
specified number of code words are transferred to program memory, the
'C206 checks to see if there are any more sections to be transferred. If
there are additional sections to be transferred, the bootloader proceeds
to transfer them in exactly the same way as the first section. After
transferring all the sections, the 'C206 branches to the first destination
address. The length N is defined as:

N = (Number of 16-bit words) - 1

If, after transferring all the N words of a section, the 'C206 receives a 0000,
it signals the end of code. If any word other than 0000 is read, it indicates
that one or more sections is following and the word read is treated as the
destination address of the next section. Refer to Figure 4—24 for the format
of data transfer in 16-bit mode.

Note: There is at least a 4-instruction-cycle delay between a read from the
EPROM and a write to the destination address. This delay ensures that
if the destination is in external memory (for example, fast SRAM), there is
enough time to turn off the source memory (for example, EPROM) before
the write operation is performed.

8-Bit EPROM Transfer (Mode 7)

If the 8-bit mode is selected, two consecutive memory locations (starting
at the source address) are read to form a 16-bit word. The high-order byte
of the 16-bit word is followed by the low-order byte. Data is read from the

4-51

lower eight data lines, ignoring the higher byte on the data bus. The first
16-bit word specifies the destination address (Destination, and
Destination)) of code in program memory. The next 16-bit word specifies
the length Lengthp, and Length)) of the actual code that follows. These two
16-bit words are followed by N number of code words to be transferred to
program memory. Note that the number of 16-bit words specified by the
parameter N does not include the first four bytes (first two 16-bit words)
received (Destination and Length). After the specified number of code
words are transferred to program memory, the 'C206 checks to see if there
are any more sections to be transferred. If there are additional sections to
be transferred, the bootloader proceeds to transfer them in exactly the
same way as the first section. After transferring all the sections, the 'C206
branches to the first destination address. The length N is defined as:

N = (Number of 16-bit words) - 1
or
N = (Number of bytes to be transferred/2) - 1

If, after transferring all the N words of a section, the 'C206 receives a 0000, it
signals the end of user code. If any word other than 0000 is read, it indicates
that one or more sections is following and the word read is treated as the
destination address of the next section. Refer to Figure 4—26 for the format of
data transfer in 8-bit mode.

Note: There is at least a 4-instruction-cycle delay between a read from the
EPROM and a write to the destination address. This delay ensures that if the
destination is in external memory (for example, fast SRAM), there is enough
time to turn off the source memory (for example, EPROM) before the write
operation is performed.

4.9.8 Parallel I/0 Boot Mode (Mode 4 - 8 Bit, Mode 5 - 16 Bit)

4-52

The parallel I/O boot mode asynchronously transfers code from 1/O port at
address 0001h to internal or external program memory. Each word can be 16
bits or 8 bits long and follows the same sequence outlined in parallel EPROM
mode. The 'C206/'LC206 communicates with the external device using the
BIO and XF lines for handshaking. This allows a slower host processor to
communicate with the 'C206/'LC206 by polling/driving the XF and BIO lines.
The handshake protocol shown in Figure 4—28 must be used to successfully
transfer each word via 1/0O port 0001h.

If the 8-bit boot mode is selected, two consecutive 8-bit words are read to form
a 16-bit word. The high-order byte of the 16-bit word is followed by the
low-order byte. Data is read from the lower eight data lines of 1/0 port 0001h,
ignoring the higher byte on the data bus.

A data transfer is initiated by the host, driving the BIO pin low. When the BIO
pin goes low, the 'C206 inputs the data from I/O address 0001h, drives the XF
pin high to indicate to the host that the data has been received and then writes
the input data to the destination address. The 'C206 then waits for the BIO pin
to go low before driving the XF pin low. The low status of the XF line can then
be polled by the host for the next data transfer.

There is at least a 4-instruction-cycle delay between the XF rising edge and
a write operation to the destination address. This delay ensures that if the
destination is in external memory (for example, fast SRAM), the host
processor has enough time to turn off the data buffers before the write
operation is performed. The 'C206 accesses the external bus only when XF
is high.

Figure 4-28. Handshake Protocol

Notes:

4.9.9

1) Host requests data transfer to 'C206 by making BIO low.

2) 'C206 reads in the data through I/0 port 1 and makes XF high. Bootloader program loops until BIO becomes high.
3) After BIO is made high, bootloader acknowledges by making XF low indicating that it is ready for new data.

4) Bootloader program loops until BIO becomes low. XF continues to be low.

5) When BIO becomes low, it signals the host request for the transmission of the next word and the whole sequence
repeats until all words are transferred.

Warm-Boot Mode (Mode 9)

The warm-boot operation does not move any code. Itis useful to branchto your
code if the code has already been transferred to internal or external program
memory by other boot-load methods. This mode is used only if a “warm” device
resetis required. Since warm-boot mode can be invoked only in the microcom-
puter mode, the first section of your code can reside only from 8000h onwards
in program memory, as 0000h to 7FFFh is occupied by ROM. The six MSBs
of the entry address are specified by the ADDR_bb field of the boot routine
selection word (Figure 4-21). A 16-bit entry address is defined by this
ADDR_bb field as shown in Figure 4—29. Since bits 0 — 9 are zero, the starting

4-53

address must lie on 400 word boundaries (x000h, x400h, x800h and xCOO0h).
During initial boot load, the destination address of your code is stored in a
memory variable in B2 RAM. The warm-boot routine uses this address to
transfer control to the user code. If your application overwrites this memory
location, then the address your code must be specified in the BRS word for
warm-boot to function. The 'C206/'LC206 transfers control to the entry
address after disabling global data memory.

Figure 4-29. 16-Bit Entry Address for Warm-Boot Mode

10 9 0

ADDR_bb loJojofJolo]Jo]o]o]o]o|

Note:

Entry address

ADDR_bb = 6-bit page address in 400h word boundaries

4.9.10 'C203 Style Bootloader (EXT8 Low — Mode 1)

4-54

The 'C206 bootloader supports the 'C203 style bootloader when the EXT8 pin
is tied low. However, there are some differences between the original 'C203
device bootloader and the 'C203 style bootloader option supported in the
'C206. This paragraph applies to the 'C203 device bootloader only. The
bootloader option in the TMS320C203 device has a fixed destination address
for the user code. This address must be 0000h, as the interrupt vector table
must be modified first. The reset vector (0000h in program memory) must be
initialized to point to the beginning of the user code. Other interrupt vectors
may need to be setup depending on the user application. After the user code
is boot loaded (for example, application code transferred to external program
memory), INTR O instruction is invoked by the bootloader. This transfers
program control to your code. The boot source address (the address at which
your code is stored in external non-volatile memory) is fixed at 8000h in global
memory space.

The bootloader in TMX320C206/LC206 devices features an 8-bit boot option
from external non-volatile memory (EPROM) to external SRAM or internal
memory at reset if MP/MC pin is sampled low and EXT8 pin is tied low during
a hardware reset. This mode is similar in operation to the original'C203 device
bootloader except during the final branch. There is no INTR 0 instruction,
rather program control branches to the address specified by the accumulator.

The maximum size of the EPROM can be 32K x 8 to yield 16K x 16 of program
memory. However, you could boot your own bootloader, which would perform
a function as desired. The bootloader begins loading from a fixed source
address 8000h in external global data space and begins transferring to the

destination address in program space defined by you. This destination
address is defined by the first two bytes of the EPROM. The destination
address is not constrained to be 0000h as in the case of 'C203 device and can
be any valid program address. However, you may need to modify the interrupt
vector table.

At reset, interrupts are globally disabled, INTM = 1, BO is mapped to program
space, CNF = 1, and seven wait states are selected for program and data
spaces. The boot-load code initializes the GREG register to external global
data memory space 8000h—FFFFh. The operation of this mode is similar to
8-bit EPROM transfer ('C206 boot mode 7).

Note: The assembly source code for the 'C206 bootloader is available on the
web at www.ti.com under '‘C20x DSPs.

4-55

4.9.11 Bootloader Program

* TMS320C206/TMS320LC206 Bootloader Program

*

E R A S T R B I N I I T S S

L I S T T B I I I S R T R I

Revision 1.0, 12/18/97
Revision 1.2, 6/29/98

1.1 changes

1. Fix 16 bit EPROM load, need pointer for counter

2. Fix branching in serial I/O from EQ to TC

3. Change original 8 bit boot from using INTR 0 to a BACC instruction
and copy boot routine to BO. This allows code to be copied to
address 0x0h after switching to microprocessor mode.

4. Set CNF = program space.

5. Add lacl in parallel 16 bit routine to load TEMP

6. Change TEMP to TEMPL1 for 8 bit parallel I/O.

1.2 Changes
1. Change the branch address to 0xFF18 due to incorrect copy.
2. Changed address for DMOV on warm boot

Obijective: This bootloader has a total of 9 options and is backward
compatible to the original '203 bootloader.

Operation: Given the MP/MC " pinis low at reset, the bootloader program
stored in the on—chip ROM determines which method of booting
is to be used.

First, the program decides if the old method of 8 bit EPROM
boot is to be used. If not it continues by reading 1/0 port

zero via the LEVEXTS bit in the PMST register which is a direct
representation of pin 1 (EXT8).

Below are the options for reading 1/O port O:

16 BIT DATA BUS

8 bit SSP XXXX XXXX XXX0 0000
16 bit SSP XXXX XXXX XXX0 0100

8 bit parallel I/O XXXX XXXX XXX0 1000
16 bit parallel I/O XXXX XXXX XXX0 1100
ASP XXXX XXXX XXX1 0000
8 bit EPROM XXXX XXXX SRC. ..01
16 bit EPROM XXXX XXXX SRC. ..10
Warm boot XXXX XXXX ADR. ..11

Interrupt Vectoring: Interrupt vectors stored in the on—chip ROM have hard

coded addresses to the on—chip SARAM starting at
address 0x8000 in program space.

Multiple sections booting: The bootloader allows multiple sections of
program code to be copied via any of the options
except the old style '203 bootloader.

4-56

* F X

have been copied.

*

* Note: B2PA_3 stores the address where execution begins from, after all
* sections have been loaded

+% Jse C206BOOT.CMD file for linking ***

.copy "sldrv201.h” ; Variable and register declaration
SRC .set 8000h ; source address
DEST .set 60h ; destination address
DEST1 .set 331h
LENGTH .set 61h ; code length
TEMP .set 62h ; temporary register
HBYTE .set 63h ; temporary storage for upper half of

: 16—bit word

TEMP1 .set 68h
CODEWORD .set 64h ; hold program code word
CODEWORD1 .set 330h ; hold address for copy for oldboot routine
brs .set 65h ; Boot Selection Word

SOURCE .set 66h
DEST2 .set 67h

b0 .set OFh
bl .set OEh
b2 .set 0Dh
b3 .set 0OCh
b4 .set 0Bh

* Interrupt vectors for TMS320C206, TMS320LC206
*

intl_holdv .set 8000h ; external interrupt vectors

int2_3v .set 8002h ;

tintv .set 8004h ; timer interrupt vector

rintv .set 801Ah ; receive interrupt vector

xintv .set 8032h ; transmit interrupt vector

txrxintv .set 804Eh ; UART port interrupt vector

trapv .set 8050h ; software trap vector

nmiv .set 8052h ; non—maskable interrupt vector
swi8v .set 8054h ; software interrupt vectors
Swi9v .set 8056h ;

swilOv .set 8058h ; (Note: If these interrupts are unused
swillv .set 805Ah ; these data memory locations can be
swil2v .set 805Ch ; assigned to other purposes.)
swil3v .set 805Eh ; Software interrupt vectors
swildv .set 8060h i |
Swil5v .set 8062h | |
swilév .set 8064h 'V \
swi20v .set 8066h ;

swi2lv .set 8068h ;

Swi22v .set 806Ah ;

Swi23v .set 806Ch ;

swi24v .set 806Eh ;

swi25v .set 8070h ;

The first section copied is assumed to be the
entry point to the program once all section(s)

4-57

SWi26v .set 8072h :

sSwi27v .set 8074h ;
swi28v .set 8076h ;
SwWi29v .set 8078h ;
swi30v .set 807Ah ;
swi3lv .set 807Ch ;
reserved .set 807Eh

* * * * * *

.sect "vectors”

* * * * * * *

reset B boot ; 0 — power on reset

intth B intl_holdv ; 1 — external interrupt 1 or HOLD

int23 B int2_3v ; 2 —external interrupts 2 or 3

tint B tintv ; 3 —timer interrupt

rint B rintv ; 4 — synchronous serial port receive interrupt

xint B xintv ; 5 —synchronous serial port transmit interrupt

txrx B txrxintv ; 6 —asynchronous serial port transmit and
; receive interrupt

res B reserved ;7 —reserved for emulation

sSwi8 B Swi8v ; 8 — software interrupt

swi9 B Swi9v ; 9 — software interrupt

swil0 B swilOv ; 10 — software interrupt

swill B swillv ; 11 — software interrupt

swil2 B swil2v ; 12 — software interrupt

swil3 B swil3v ; 13 — software interrupt

swil4 B swildv ; 14 — software interrupt

swil5 B swilbv ; 15 — software interrupt

swil6 B Swil6v ; 16 — software interrupt

trap B trapv ; 17 — software trap

nmi B nmiv ; 18 — non—maskable interrupt

resl B reserved : 19 — Reserved

swi20 B swi20v ; 20 — software interrupt

swi2l B swi2lv ; 21 — software interrupt

swi22 B sSwi22v ; 22 — software interrupt

swi23 B swi23v ; 23 — software interrupt

swi24 B swi24v ; 24 — software interrupt

swi25 B swi25v ; 25 — software interrupt

swi26 B SWi26v ; 26 — software interrupt

swi27 B SWi27v ; 27 — software interrupt

swi28 B swi28v ; 28 — software interrupt

swi29 B SWi29v ; 29 — software interrupt

swi30 B swi30v ; 30 — software interrupt

swi3l B swi3lv ; 31 — software interrupt

.sect "bootload”

* |nitialization
boot LDP #0
SPLK #2EOOH,TEMP ;ARP=1,0VM=1,INTM=1,DP=0

LST #0,TEMP ;BOisin PM
SPLK #31FCH,TEMP ;ARB=1,CNF=1,SXM=0
LST #1, TEMP ; XF=1,PM =0, BO—>Prog.memory

* * * * * *

4-58

* Determine if old or new boot method *

IN TEMP,PMST ; Read level of EXT8 pin.

BIT TEMP,b3 ; Test LEVEXTS bit.

BCND OLDBOOT,NTC ; Branch to 8—bit EPROM boot.
cnextsect=0 FDEST=1

splk #0,nextsect ; flag for determining if new section exists

splk #1,FDEST ; FLAG to determine address of code entry
EE R I I I R I
* Read Configuration Byte *
EE R I I I R
IN brs,0h ; read 1/0 port 0 (/0 0 —>65h)
LACC brs,8 ; Shifted BRS word —> ACC
AND #0FCOOh ; throw away 2 LSBs
SACL SOURCE ; save as source address
; b15.....b10 b9 b8 0000 0000 —>SOURCE
LACL brs : BRS —>ACC
AND #3 ;if 2 LSBs == 00
BCND ser_io,eq ; use serial or parallel I/O or ASP
; At this stage, b1 b0 can be 01,10 or 11
sub #2 ;if 2 LSBs == 01
bcnd PAROS,It ; load from 8-bit memory (EPROM)
;if 2 LSBs == 10
bcnd PAR16,eq ; load from 16—hit memory (EPROM)

;else 2 LSBs==11

R S IR R R R R

* Warm-boot, simply branch to source address *

EE R R S S I S S I S R S

warmboot
dmov SOURCE ; dest <— src
splk #0, GREG
lacl DEST2
BACC
looper splk #0,GREG
LACL B2PA 3 ; load code entry into accumulator
BACC ; branch to address and execute program
OLDBOOT
* COPY TO BO MEMORY, SWITCH TO MP MODE, THEN CONTINUE TO BOOT
*
LAR AR7,#300h ;AR7 => B1 (300h)
MAR * AR7 :ARP => AR7
*
* MOVE THE CODE BLOCK
RPT #(CODE_END-CODE-1) ; €203 bootloader is copied in B1
BLPD #CODE,*+ : BLOCK move from PM to DM
* ; Code is copied in DM from 300h
LDP #6 : DP —> 300h
LAR ARO, #(CODE_END-CODE-1) : ARO is the counter
LAR AR1, #300h ; Source address—>AR1
MAR * AR1
LACL —#0FFO0Oh ; Destination is FFOOh in Prog.memory
SACL DEST1
COPY LACL *+,ARO ; €203 bootloader is copied in FFOOh

4-59

SACL CODEWORD1
LACL DEST1

TBLW CODEWORD1
ADD #1

SACL DEST1

BANZ COPY,AR1

SPLK #0FF18h, Oh ; fix to modify loop return address
LACL #0FF24h ; Write FF18h in FF24h of Prog.memory
TBLW 300h ; This is required to patch the "loop”
MAR * AR1 ; address in the original c203 bootloader
LDP #0 ; after relocation to FFOOh
B OFFOOh

LR R S O O I I A

* BOOT LOAD FROM 8-BIT MEMORY, MS BYTE IS FIRST *

EIE R R S S S O S O

*

* change to MP mode from MC mode
CODE
SPLK 0007h, TEMP ; setto microprocessor mode
OUT TEMP,PMST ; write to PMST register, SARAM mapped in
; program and data (SARAM is internal)

*

* Determine destination address

*
SPLK #80h,GREG ; LOCATIONS 8000—FFFFH are in global data space
LAR ARL1#SRC ; AR1 points to Global address 8000h

LACC *+8 ; Load ACC with high byte and shift 8 bits
SACL HBYTE ; store high byte
LACL *+ ; load ACC with low byte of destination
AND #OFFH ; Mask off upper 24 bits.
OR HBYTE ; OR ACC with high byte to form 16 bit

: destination address
SACL DEST : store destination address in PM
SACL B2PA_3 ; (71h — Program start address)

* Determine length of code to be transferred
*

LACC *+,8 ; Load ACC with high byte and shift 8 bits
SACL HBYTE ; store high byte

LACL *+ ; load ACC with low byte of length

AND #OFFH ; Mask off upper 24 bits.

OR HBYTE ; or ACC with hbyte to form 16 bit length
SACL LENGTH ; store length

LAR ARO,LENGTH ;load aro with length to be used for banz

*

* Transfer code

*

LOOP LACC *+,8 ; Load ACC with high byte of code & shift 8 bits
SACL HBYTE ; store high byte
LACL *+,ARO
AND #0FFH :
OR HBYTE ; OR ACC with hbyte to form 16 bit code word
SACL CODEWORD
LACL DEST

4-60

TBLW CODEWORD

ADD #1

SACL DEST

BANZ LOOP,AR1 ; determine if end of code is reached

splk #0,GREG ; Remove global memory

LACL B2PA 3 ; load code entry into ACCumulator

BACC ; branch to address and execute program
CODE_END

PARQS: j**+xwikrinsinrirrs 8_B|IT EPROM BOOTLOADER CODE BEGINS etk
* Determine destination address
*
SPLK #80h,GREG ; LOCATIONS 8000—FFFFH are in global data space
LAR AR1,SOURCE ; AR1 points to starting address of EPROM in
; global memory space

TOP LACC *+,8 ; Load ACC with high byte and shift 8 bits
SACL HBYTE ; store high byte
LACL *+ ; load ACC with low byte of destination
AND #OFFH ; Mask off upper 24 bits.
OR HBYTE ; OR ACC with high byte to form 16 bit
; destination address —> ACC
bit FDEST,15 ; FDEST = 1 in first pass

bcnd skip5,ntc
splk #0, FDEST ; FDEST = 0 from second pass

SACL B2PA 3 ; Save final destination address to jump to.
skip5 SACL DEST ; Store destination address

bit nextsect,15 ; check to see if through at least one section

bcnd contl,ntc ; nextsect = 0 in first pass

lacl DEST

and #OFFFFh
bcnd looper,eq ; if word is 0000h, booting is done
splk #0,nextsect

contl

*

* Determine length of code to be transferred
*

LACC *+,8 ; Load ACC with high byte and shift 8 bits
SACL HBYTE ; store high byte

LACL *+ ; load ACC with low byte of length

AND #OFFH ; Mask off upper 24 hits.

OR HBYTE ; OR ACC with high byte to form 16 bit length
SACL LENGTH ; store length

LAR ARO,LENGTH ;load ARO with length to be used for banz

*

* Transfer code
*
LOOP1 LACC *+,8 ; Load ACC with high byte of code & shift 8 bits
SACL HBYTE ; store high byte
LACL *+,ARO
AND #0FFH
OR HBYTE ; OR ACC with hbyte to form 16 bit code word
SACL CODEWORD
LACL DEST
TBLW CODEWORD

4-61

ADD #1

SACL DEST

BANZ LOOP1,AR1 ; determine if end of code is reached
call B2_init ; reinitialize for next section

splk #1, nextsect ; flag to check for another section

B TOP

*** 8_bit EPROM bootloader code ends ***
PAR1G: ; **x&sisxxxiiirx 1 6_bit EPROM BOOTLOADER CODE BEGINS ****x#kkdxbiiix
* Determine destination address
*
SPLK #80h,GREG ; LOCATIONS 8000—FFFFH are in global data space
LAR AR1,SOURCE ;AR points to starting address of EPROM in
; global memory space
TOP1 LACC *+ ; Load ACC with destination address
bit FDEST,15 ; FDEST = 1 in first pass
bend skip2,ntc
splk #0, FDEST ; FDEST = 0 from second pass
SACL B2PA_3 ; save final destination address to jump to
skip2 SACL DEST ; store destination address
bit nextsect,15 ; nextsect =0 in first pass
bcnd cont2,ntc
lacl DEST
and #OFFFFh
bcnd looper,eq
splk #0,nextsect
cont2

*

* Determine length of code to be transferred

*

LACC *+ ; Load ACC with length of section
SACL LENGTH ; store length
LAR ARO,LENGTH ; load aro with length to be used for banz

*

* Transfer code
*
LOOP2 LACC *+, ARO ; Load ACC with high byte of code
SACL CODEWORD
LACL DEST
TBLW CODEWORD
ADD #1
SACL DEST
BANZ LOOP2,AR1 ; determine if end of code is reached
call B2_init ; reinitialize for next section
splk #1, nextsect ; flag to check for another section
B TOP1
*** 16—bit EPROM bootloader code ends ***
ASP: ; ¥rkkkrrxkik AGYNCH. SERIAL PORT (UART) BOOTLOADER CODE BEGINS ****okk
* Function: 2xx Serial loader module by polling DR bit ~ *

* *

* Receive data format : *

* Header : *

* start address 1st word *

* Program code/length 2nd word *
*

Program code/data from 3rd word *

4-62

* After data load the PC jumps to the *
* Destination/Load/Run address. *
* UART initialization with autobaud enable

ldp #0
splk #0c0a0h,B2S_0 ; reset the UART by writing O
out B2S_0, aspcr ; Enable Auto baud detect & Rcv interrupt

splk #0e0a0h,B2S_0 ; CAD=1, 1 stop bit
out B2S_0,aspcr
splk #4fffh,B2S_0 ; Clear ADC & Bl bits

out B2S_0,iosr ; enable auto baud
uart: in B2S_0,iosr
bit B2S_0,7 ; check DR bit to see if any new character
bcnd uart,ntc ; is available in the ADTR
in B2S_0,aspcr
bit B2S_0,10 ; Check CAD =1
bcnd nrev,ntc . If 0, start receive, autobaud done
in B2S_1,iosr ; load input status from iosr
bit B2S_1,1 : check if auto baud bit is set,else return
bcnd nauto,ntc ; and wait for Auto baud detect receive
splk #4000h,B2S_1 ; Auto baud detect done
out B2S 1,iosr : clear ADC
splk #0e080h,B2S_1
out B2S 1, aspcr ; Disable CAD bit/ auto baud
in B2S_1,adtr ; Dummy read to discard "a”
out B2S 1,adtr ; Echo back "a”
nauto: in B2S_1,adtr ; Dummy read to clear UART rx buffer
b skipl ; Exit and wait for "a”
skipl: splk #6600h,B2S_0
out B2S_0,iosr ; Clear all Interrupt sources
B uart
nrev:
* Begin receiving user code
setc CNF ; map BO to program space
call B2_init ;
pwait:
in B2S_0,iosr ; Load input status from iosr
bit B2S_0,7 : bit 8 in the data
bcnd pwait,ntc ; IF DR=0 no echo, return
call pnrcv ;
bit B2FM_8,15 ; Wait until Data_move ready flag
bcnd pwait,ntc
lacl B2PA_2 ; Load destination address
tblw B2PD_5 ; Move data to the current destination address
add #1 ; Increment destination address+1
sacl B2PA 2 ; save next destination address
banz pwait,*—

* check if next section, need to read next 16 bit word, if "0000” then a
* section follows else program branches to address saved in B2PA_3.

call B2_init : reinitialize for next section
splk #1, nextsect ; flag to check for another section
B pwait
pnrecv:
mar *,arl ; Valid UART data, Point to Word index reg.

4-63

bit B2D_6,15
bcnd plbyte,tc
in B2S_1,adtr
out B2S_1,adtr
lacc B2S 1,8
sacl B2D 7
mar *+
sar arl,B2D_6
splk #0,B2FM_8
b pskip
plbyte:
in B2S_0,adtr
out B2S_0,adtr
lacc B2S 0,0
and #0ffh
orB2D_7
sacl B2PD_5
mar *+
sar arl,B2D_6
bit nextsect,15
bcnd cont,ntc
lacl B2PD_5
and #0OFFFFh
bcnd looper,eq
splk #0,nextsect
bit B2FH_9,15
bcnd psmove,tc
lar ar0,#2
cmpr O
bend pword2,ntc
bit FDEST,15
bend skip,ntc
splk #0, FDEST
sacl B2PA_3
skip sacl B2PA_2
b pskip
pword2:
lar ar0,#4
cmpr O
bend pskip,ntc
lar ar2,B2PD_5
sar ar2, B2PL_4
splk #1,B2FH_9
b pskip
psmove:
mar *,ar2
splk #1h,B2FM_8
pskip:
splk #0020h, ifr
ret
B2_init:
lacc #0
lar arl,#B2
mar *,arl

*

cont

4-64

; Check if bitO of word index =1,low byte
; received!
; No, Hi byte received!
; Echo receive data
; Align to upper byte
; Save aligned word
; Increment Word Index
; Store high_byte flag
; Reset Data/word move flag as only hi—byte recd!
; wait for next byte

; Receive second byte/low byte
; Echo received data

; Clear high byte
; Add high byte to the word
: store 16—bit word at arl
1+

; Save the count

; check for next section

; if not zero, continue, else check for 0

; load first word

; if 0 done, else
; reset next sect flag for next pass
; Check Header_done flag
; No, if 2 words received update Data_move flag

; test to determine if this is first pass
; skip if this is 2nd section onward
; iIf yes reset flag
: Store DESTINATION address to JUMP TO
; Save data buffer address

’

; Check if 4 words recvd, update program length
; Program length register
; Else exit
; Yes received!,Load PM length in AR2
; Save program length
; Set Header_done flag

; Set UART Data_move ready flag

; Clear interrupt in ifr!

; Point B2_RAM start address

rpt #16

sacl *+ ; Clear B2 memory
lar arl,#00h ; Clear pointers
lar ar2,#00h ;

lar ar3,#00h

ret

*** Asynch. serial port (UART) bootloader code ends ***

F*kkkkkkkkkkkkkkk *% * *kkkkkkkhkkkkk *% *% *

* SERIAL BOOTLOAD (SSP 8/16 bit,UART), PARALLEL /O *

ser_io
bit brs,b4 ; test bit 4 of configuration word
bcnd ASP,TC ; If set, branch to UART bootloader
bit brs,b3 ; test bit 3 of configuration word
bcnd io,tc ; If set, branch to Parallel I/O bootloader

EEE I R

* Bootload from Synchronous serial port (SSP) *
EE R I I B O

ser
bit brs,b2 ; test bit 2 of configuration word
bcnd bit8,ntc ;if 0, then 8—bit mode, else 16—bit mode
ik 16—BIT SYNCH. SERIAL PORT (SSP) BOOTLOADER CODE BEGINS i
* After data load the PC jumps to the Destination *
* /Load/Run address. *
setc CNF ; Block BO in PM
Idp #0h ; set DP=0
setc INTM ; Disable all interrupts
call B2_init
splk #0,nextsect
splk #1,FDEST ; FLAG to determine address of code entry

*SSP initialization
sspld: splk #0c00ah,B2S_0 ; Initialize SSP in Burst mode, in reset

out B2S_0,sspcr : External Clocks, 16 bit word
splk #0c03ah, B2S_0 ; Interrupt on 1 word in FIFO, Internal FSX
out B2S_0, sspcr ; take port out of reset
wait: in B2S_0,sspcr
bit B2S_0,3 ; poll RFNE bit to see if data received
bcnd wait,ntc
call codrx
bit B2FM_8,15 ; Wait until Data_move ready flag

bcnd wait,ntc
splk #0,B2FM_8

lacl B2PA_2 ; Load destination address

tblw B2PD_5 ; Move data to the current destination address
add #1 ; Increment destination address+1

sacl B2PA 2 ; save next destination address

banz wait,*— ; decrement length counter

* check if next section, need to read next 16 bit word, if not "0000” then a
* section follows else program branches to address saved in B2PA_3.

call B2_init : reinitialize for next section
splk #1, nextsect ; flag to check for another section
B wait

* SSP loader code!

4-65

codrx:

in B2S_0,sdtr : Read received data/Load Scratch RAM
out B2S_0,sdtr ; Echo received data
bit nextsect,15 ; check for next section/BIT 0 of nextsect
bcnd contx,ntc ; if not zero, continue, else check for 0
lacl B2S 0

* lacl B2PD_5 : load first word

and #0FFFFh
lar ar7, #9999h

bcnd looper,eq ; if 0 done, else
splk #0,nextsect ; reset next sect flag for next pass
contx mar *,ar3 ; Set Word index register as AR3
mar *+ ; Increment word index
lar ar0,#1 ; If word index =1 save Program start address
cmpr O
bcend pmad,tc
lar ar0,#2 ; If index =2 save Program length
cmpr 0 ; Compare if (AR3)=(AR0). TC=1, if true
bcnd plen,tc ; True in second pass
lacc B2S 0,0
sacl B2PD_5,0 ; Store received word
splk #1h,B2FM_8 ; Set SSP Data_move ready flag
b skip7,ar2
pmad: lacc B2S 0,0 ; Store destination start address in ACC
bit FDEST,15 ; test to determine if this is first pass
bend skip6,ntc ; skip if this is 2nd section onward
splk #0, FDEST ; if yes reset flag
sacl B2PA_3 ; Store DESTINATION address to JUMP TO
skip6 sacl B2PA_2 ; Save data buffer address
b skip7,ar2 ;
plen: larar2,B2S_0 ; Store Program length at B2PL_4
sar ar2,B2PL_4
skip7:
ret

*** 16-bit Synch. serial port (SSP) bootloader code ends ***
Frkkkkkikik 8_BIT SYNCH. SERIAL PORT (SSP) BOOTLOADER CODE BEGINS *****txxx
bit8
* Function: F2xx Serial loader module *
* *
Receive data format : *
Header : *
start address 1st word *
Program code/length 2nd word *
Program code/data from 3rd word *
After data load the PC jumps to the *
Destination/Load/Run address. *
.title ” Serial loader” ; Title
setc CNF ; Block BO in PM
Idp #0h ; set DP=0
setc INTM ; Disable all interrupts
call B2_init
splk #0,nextsect
splk #1,FDEST ; FLAG to determine address of code entry

L I

4-66

*SSP initialization
sspldl splk #0c00ah,B2S_0 ; Initialize SSP in Burst mode, in reset

out B2S_0,sspcr ; External Clocks, 16 bit word
splk #0c03ah, B2S_0 ; Interrupt on 1 word in FIFO, external FSX
out B2S_0, sspcr ; take port out of reset
splk #0001h, B2S_0
out B2S_0,sspst ; 8 bit mode
* splk #8h,imr ; Enable SSP RX interrupt only
pwaitl:
in B2S_0,sspcr ; Load input status from sspcr
bit B2S_0,3 ; Poll RFNE bit
bcnd pwaitl,ntc ; IF DR=0 no echo, return
call pnrevl ;
bit B2FM_8,15 ; Wait until Data_move ready flag
bcnd pwaitl,ntc
lacl B2PA_2 : Load destination address
tbiw B2PD_5 ; Move data to the current destination address
add #1 : Increment destination address+1
sacl B2PA 2 ; save next destination address

banz pwaitl,*—

* check if next section, need to read next 16 bit word, if not "0000” then a
* section follows else program branches to address saved in B2PA_3.

call B2_init ; reinitialize for next section
splk #1, nextsect ; flag to check for another section
B pwaitl
pnrcvl:
mar *,arl ; Valid data, Point to Word index reg.
bit B2D_6,15 ; Check if bitO of word index =1,low byte
bend Ibyte,tc ; received!
in B2S_1,sdtr ; No, Hi byte received!
out B2S_1,sdtr ; Echo receive data
lacc B2S 1,8 ; Align to upper byte
sacl B2D_7 ; Save aligned word
mar *+ : Increment Word Index
sar arl,B2D_6 ; Store high_byte flag
splk #0,B2FM_8 ; Reset Data/word move flag as only hi-byte recd!
b pskip8 ; wait for next byte
Ibyte:
in B2S_0,sdtr ; Receive second byte/low byte
* out B2S_0,sdtr ; Echo received data
lacc B2S 0,0
and #0ffh ; Clear high byte
orB2D_7 ; Add high byte to the word
sacl B2PD_5 ; store 16—bit word at arl
mar *+ D1+
sar arl,B2D_6 ; Save the count
bit nextsect,15 : check for next section
bcnd cont9,ntc ; if not zero, continue, else check for 0
lacl B2PD_5 : load first word
and #0FFFFh
bcnd looper,eq ; if 0 done, else
splk #0,nextsect ; reset next sect flag for next pass
cont9 bit B2FH_9,15 ; Check Header_done flag
bcnd psmoveO,tc ; No, if 2 words received update Data_move flag

4-67

lar arQ,#2

cmpr O

bcnd word2,nte

bit FDEST,15 ; test to determine if this is first pass

bend skipe,ntc ; skip if this is 2nd section onward

splk #0, FDEST ; iIf yes reset flag

sacl B2PA_3 ; Store DESTINATION address to JUMP TO
skipe sacl B2PA_2 : Save data buffer address

b pskip8 ;
word2:

lar ar0,#4 ; Check if 4 words recvd, update program length

cmpr 0 ; Program length register

bend pskip8,ntc ; Else exit

lar ar2,B2PD_5 ; Yes received!,Load PM length in AR2

sar ar2, B2PL_4 ; Save program length

splk #1,B2FH_9 ; Set Header_done flag

b pskip8
psmoveO:

mar *,ar2

splk #1h,B2FM_8 ; Set UART Data_move ready flag
pskip8:

ret

*** 8—bit Synch. serial port (SSP) bootloader code ends ***

R I S R R S S S O I

* Bootload from parallel 1/O port (port 1) —8/16 bit parallel 1/O *
R Sk I I A I SR S
io
splk #0,GREG ; disable global space
bit brs,b2 ; test bit #2 of configuration word
bcnd pasyncO8,ntc ; if reset, use 8—bit mode
Fxxkikkkkk 16—BIT PARALLEL I/O BOOTLOADER CODE BEGINS #***xkkkkkiokx

pasyncl6
mar *arl

TOP3 call handshake
IN DEST,1 ; read word from port 1 to destination
LACL DEST

bit FDEST,15
bcnd skip3,ntc
splk #0, FDEST

SACL B2PA_3 ; save final destination address to jump to

skip3 SACL DEST ; store destination address
bit nextsect,15
bcnd cont3,ntc
lacl DEST
and #O0FFFFh
bcnd looper,eq
splk #0,nextsect

cont3
call handshake
IN LENGTH,1 ; read word from port 1 to length
lar arl,LENGTH ; arl <— code length
lacl DEST : ACC <— destination address
loop16 call handshake
IN TEMP,1 ; read word from port 1 to temp

4-68

setc
nop
nop
tblw
add
banz
call
splk
B

xf

TEMP
#1
loop16,*—

B2_init

#1, nextsect
TOP3

; acknowledge word as soon as it's read

; delay between xf and write

: write word to destination
; increment destination address

; loop if arl is not zero
; reinitialize for next section
; flag to check for another section

*** 16—bit Parallel I/O bootloader code ends ***
wrxxxxxk 8—BIT PARALLEL 1/0 BOOTLOADER CODE BEGINS — MS byte first *******

pasync08
mar * arl
TOP4 call handshake
IN TEMP,1
lacc TEMP,8
sacl DEST
call handshake
IN TEMP,1
lacl TEMP
and #0ffh
or DEST
bit FDEST,15
bcnd skip4,ntc
splk #0, FDEST
SACL B2PA 3
skip4 SACL DEST
bit nextsect,15
bcnd cont4,ntc
lacl DEST
and #0FFFFh
bcnd looper,eq
splk #0,nextsect
cont4
call handshake
IN TEMP,1
lacc TEMP,8
sacl LENGTH
call handshake
IN TEMP,1
lacl TEMP
and #0ffh
or LENGTH
sacl LENGTH
LAR arl,LENGTH
lacl DEST
sacl DEST2
loop08 call handshake
IN TEMP,1
lacc TEMP,8
sacl TEMP1
call handshake
IN TEMP,1

; read 1/0 port 1
; read high byte from port

; read low byte from port
; clear upper byte
; combine high and low byte

; save final destination address to jump to
; store destination address

; read high byte from port
; save high byte

; read low byte from port
; clear upper byte
; combine high and low byte
; save code length
; arl <— code length

: DEST2 <— destination address

; read high byte from port
; save high byte

4-69

lacl TEMP ; read low byte from port

setc xf ; acknowledge byte as soon as it's read
and #0ffh ; clear upper byte

or TEMP1 ; combine high and low byte

sacl TEMP1 ; save code word

lacl DEST2 ; DEST2 <— destination address

tblw TEMP1 ; write code word to program memory
add #1 ; increment destination address

sacl DEST2 ; save new destination address

banz loop08,*— ; loop if arl not zero

call B2 _init : reinitialize for next section

splk #1, nextsect ; flag to check for another section

B TOP4

*** 8_bit Parallel I/O bootloader code ends ***

*

Handshake with BIO signal using XF

handshake

setc xf ; acknowledge previous data word
biohigh

bcnd biohigh,bio ; wait till host sends request

clrc xf ; indicate ready to receive new data
biolow

retc bio ; wait till new data ready

b biolow

.sect "alaw”

; CCITT expansion table

The table is A-law expansion table for ADI-coded samples. Please read
columnar values top to bottom and from left column to next right column.

4-70

.DEF AEXPTAB

AEXPTAB.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

—688
—656
—752
—720
-560
-528
—-624
-592
-944
-912
—1008
-976
-816
—784
-880
—848
-344
-328
-376
-360
—280
—264
-312
—-296
—472
—456
-504
—488
—408
-392
-440
—424
—2752
—2624
-3008
—2880
-2240
-2112
—2496
—2368
-3776
-3648
—4032
-3904
-3264
-3136
-3520
-3392
-1376
-1312
-1504
—-1440
-1120
-1056

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

—1248
-1184
—1888
-1824
-2016
-1952
-1632
-1568
-1760
-1696
—43

-41

—47

=35
-33
-39
=37
-59
-57
—63
—61
=51
-49
-55
-53
-11
-9
-15
-13
-3
-1
-7
-5
=27
=25
=31
-29
-19
-17
-23
=21
-172
-164
—-188
-180
-140
-132
-156
—148
—236
-228
-252
—244

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

—204
-196
-220
212
-86
-82
-94
-90
-70
—66
-78
—74
-118
-114
-126
-122
-102
—98
-110
-106
688
656
752
720
560
528
624
592
944
912
1008
976
816
784
880
848
344
328
376
360
280
264
312
296
472
456
504
488
408
392
440
424
2752
2624

4-71

4-72

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

3008
2880
2240
2112
2496
2368
3776
3648
4032
3904
3264
3136
3520
3392
1376
1312
1504
1440
1120
1056
1248
1184
1888
1824
2016
1952
1632
1568
1760
1696

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

27
25
31
29
19
17
23
21
172
164
188
180
140
132
156
148
236
228
252
244
204
196
220
212
86
82
94
90
70
66
78
74
118
114
126
122
102
98
110
106

.sect "ulaw”

; CCITT mu—law Expansion

Table

.DEF
UEXPTABWORD
.WORD
.WORD
.WORD
.WORD
.WORD

UEXPTAB
OeOalh
Oelalh
Oe2alh
Oe3alh
Oedalh
Oebalh

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

Oe6alh
Oe7alh
Oe8alh
Oe9alh
Oeaalh
Oebalh
Oecalh
Oedalh
Oeealh
Oefalh
0f061h
0f0elh
0f161h
Oflelh
0f261h
0f2elh
0f361h
0f3elh
0f461h
0Ofdelh
0f561h
0f5elh
0f661h
oféelh
0f761h
0f7elh
0f841h
0f881h
0f8clh
0f901h
0f941h
0f981h
0f9clh
Ofa0lh
Ofad1lh
Ofa81h
Ofaclh
0fb01h
0fb41h
0fb81h
Ofbclh
0fcO01h
0fc31h
0fc51h
0fc71h
0fc91h
Ofcblh
Ofcdlh
Ofcflh
ofd11h
0fd31h
0fd51h
0fd71h
0fd91h

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

Ofdblh
ofdd1h
ofdflh
Ofellh
0fe29h
0fe39h
0fe49h
0fe59h
0fe69h
0fe79h
0fe89h
0fe99h
Ofea9h
0feb9h
Ofec9h
0fed9h
Ofee9h
0fef9h
0ff09h
0ff19h
0ff25h
off2dh
0ff35h
0ff3dh
0ff45h
0ff4dh
0ff55h
0ffcdh
0ff6sh
offedh
0ff75h
0ff7dh
0ff85h
0ff8dh
0ff95h
0ffadh
Offa3h
Offa7h
Offabh
Offath
0ffb3h
0ffb7h
Offbbh
Offbth
0ffc3h
Offc7h
Offcbh
Offcth
0ffd3h
offd7h
Offdbh
offdth
Offe2h
Offedh

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

Offe6h
Offe8h
Offeah
Offech
Offeeh
offfoh
offf2h
offfah
offféh
0fff8h
Offfah
Offfch
Offfeh
00000h
01f5fth
01e5fh
01d5fh
01c5fh
01b5fh
0la5fh
0195fh
0185fh
0175fh
0165fh
0155fh
0145fh
0135fh
0125fh
0115fh
0105fh
00f9th
00f1fh
00e9fth
00elfh
00d9fh
00difh
00c9fh
00cifh
00b9fh
00bifh
00a9fth
00alfh
0099fth
0091fh
0089fth
0081fh
007bfh
0077th
0073fh
006ffh
006bfh
0067fth
0063fh
005ffh

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

005bfh
0057fh
0053fh
004ffh
004bfh
0047fh
0043fh
003ffh
003cfh
003afh
0038fh
0036fh
0034fh
0032fh
0030fh
002efh
002cfh
002afh
0028fh
0026fh
0024fh
0022fh
0020fh
001efh
001d7h
001c7h
001b7h
001a7h
00197h
00187h
00177h
00167h
00157h
00147h
00137h
00127h
00117h
00107h
000f7h
000e7h
000dbh
000d3h
000cbh
000c3h
000bbh
000b3h
000abh
000a3h
0009bh
00093h
0008bh
00083h
0007bh
00073h

4-73

4-74

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

0006bh
00063h
0005dh
00059h
00055h
00051h
0004dh
00049h
00045h
00041h
0003dh
00039h
00035h
00031h
0002dh
00029h
00025h
00021h
0001eh
0001ch
0001ah
00018h
00016h
00014h
00012h
00010h
0000eh
0000ch
0000ah
00008h
00006h
00004h
00002h
00000h

Common header file:
Filename: sldrv201.h

.mmregs

; Memory variables specific to flash algorithms

* *

* *

BASE .set 068h

B2 0 .set BASE+0
B2_1 .set BASE+1
B2_2 .set BASE+2
B2_3 .set BASE+3
B2 4 .set BASE+4
B2_5 .set BASE+5

B2_6 .set BASE+6
nextsect .set BASE+7
FDEST .set BASE+8
B2PA_3 .set BASE+9

* Variables for Uart_loader

*

; Base address for variables

; can be changed to relocate
; variable space in RAM

; Program start address

B2 .set 72h
B2S_0 .set B2+0h
B2S_1 .setB2+lh
B2PA_2 .set B2+2h
*

B2PL_4 .setB2+4h
B2PD_5 .set B2+5h
B2D_6 .set B2+6h
B2D 7 .setB2+7h
B2FM_8 .set B2+8h
B2FH_9 .set B2+9h

B2FD_a .set B2+0ah
B2FSH .set B2+0bh

B2FSL .set B2+0ch

* On-chip I/O registers

PMST .set OFFE4h

* SYNC PORT

sdtr set OfffOh
sspcr .set Offflh
sspst .set Offf2h
* UART

adtr .set 0fffdh
aspcr .set Offf5h
iosr .set Offféh
brd .set Offf7h

; Scratch registers
; Program start address

; Program Length
; Program Code/Data
; Variables

; Flag for start Data move — Data_move
; Flag for Header receive — Header_done
; Flag for data move complete — Data_ready
; High word check sum
; Low word check sum

:Defines SARAM in PM/DM and MP/MC " bit

4-75

Chapter 5

Program Control

This chapter discusses the processes and features involved in controlling the
flow of a program on the 'C20x.

Program control involves controlling the order in which one or more blocks of
instructions are executed. Normally, the flow of a program is sequential: the
'C20x executes instructions at consecutive program-memory addresses. At
times, a program must branch to a nonsequential address and then execute
instructions sequentially at that new location. For this purpose, the 'C20x
supports branches, calls, returns, repeats, and interrupts.

The 'C20x also provides a power-down mode, which halts internal program
flow and temporarily lowers the power requirements of the 'C20x.

Topic Page
5.1 Program-Address Generation —............. ... i 5-
5.2 Pipeline Operation 5
5.3 Branches, Calls, and Returns i, S-El
5.4 Conditional Branches, Calls, and Returns 5-

5.5 Repeating a Single Instruction i 5-
5.6 INteImUPLS o 5-15
5.7 Reset Operation oo 5-35
5.8 Power-Down Mode 5-40

5-1

5.1 Program-Address Generation

Program flow requires the processor to generate the next program address
(sequential or nonsequential) while executing the current instruction.

Program-address generation is illustrated in Figure 5—-1 and summarized in
Table 5-1.

Figure 5-1. Program-Address Generation Block Diagram

Program read bus (PRDB)

Data read bus (DRDB)

BACC or CALA
instruction
Interrupt, A 4
branch, or call
Program
Return control
from
subroutine
YYVYVYYY
MUX
Next program address PSHD
register (NPAR) Instruction
v
v
- MUX
Program counter Program address Micro stack
(PC/INPAR+1) register (PAR) (MSTACK) POPD
Sequential operation Dummy cycle Table/block move instruction
— Top of stack (TOS)

Program-address
stack
8 X 16

Program address bus (PAB)

Data write bus (DWEB)

5-2

Table 5-1. Program-Address Generation Summary

Operation

Program-Address Source

Sequential operation

Dummy cycle

Return from subroutine

Return from table move or block move

Branch or call to address specified in
instruction

Branch or call to address specified in
lower half of the accumulator

Branch to interrupt service routine

PC (contains program address +1)
PAR (contains program address)
Top of the stack (TOS)

Micro stack (MSTACK)

Branch or call instruction by way of the
program read bus (PRDB)

Low accumulator by way of the data
read bus (DRDB)

Interrupt vector location by way of the

program read bus (PRDB)

The 'C20x program-address generation logic uses the following hardware:

(g Program counter (PC). The 'C20x has a 16-bit program counter (PC) that
addresses internal and external program memory when fetching
instructions.

(1 Program address register (PAR). The PAR drives the program address
bus (PAB). The PAB is a 16-bit bus that provides program addresses for
both reads and writes.

[Stack. The program-address generation logic includes a 16-bit-wide,
8-level hardware stack for storing up to eight return addresses. In addition,
you can use the stack for temporary storage.

[Micro stack (MSTACK). Occasionally, the program-address generation
logic uses the 16-bit-wide, 1-level MSTACK to store one return address.

[Repeat counter (RPTC). The 16-bit RPTC is used with the repeat (RPT)
instruction to determine how many times the instruction following RPT is
repeated.

5.1.1 Program Counter (PC)

The program-address generation logic uses the 16-bit program counter (PC)
to address internal and external program memory. The PC holds the address
of the next instruction to be executed. Through the program address bus
(PAB), an instruction is fetched from that address in program memory and
loaded into the instruction register. When the instruction register is loaded, the
PC holds the next address.

5-3

The 'C20x can load the PC in a number of ways, to accommodate sequential
and nonsequential program flow. Table 5-2 shows what is loaded to the PC
according to the code operation performed.

Table 5-2. Address Loading to the Program Counter

5.1.2 Stack

Code Operation Address Loaded to the PC

Sequential execution The PC is loaded with PC + 1 if the current instruction has
one word or PC + 2 if the current instruction has two words.

Branch The PC is loaded with the long immediate value directly
following the branch instruction.

Subroutine call and For a call, the address of the next instruction is pushed from

return the PC onto the stack, and then the PC is loaded with the
long immediate value directly following the call instruction.
Areturninstruction pops the return address back into the PC
to return to the calling sequence of code.

Software or hardware The PC is loaded with the address of the appropriate

interrupt interrupt vector location. At this location is a branch
instruction that loads the PC with the address of the
corresponding interrupt service routine.

Computed GOTO The content of the lower 16 bits of the accumulator is loaded
into the PC. Computed GOTO operations can be performed
using the BACC (branch to address in accumulator) or
CALA (call subroutine at location specified by the
accumulator) instructions.

The 'C20x has a 16-bit-wide, 8-level-deep hardware stack. The
program-address generation logic uses the stack for storing return addresses
when a subroutine call or interrupt occurs. When an instruction forces the CPU
into a subroutine or an interrupt forces the CPU into an interrupt service
routine, the return address is loaded to the top of the stack automatically; this
event does not require additional cycles. When the subroutine or interrupt
service routine is complete, a return instruction transfers the return address
from the top of the stack to the program counter.

When the eightlevels are not used for return addresses, the stack may be used
for saving context data during a subroutine or interrupt service routine, or for
other storage purposes.

You can access the stack with two sets of instructions:

[PUSH and POP. The PUSH instruction copies the lower half of the
accumulator to the top of the stack. The POP instruction copies the value
on the top of the stack to the lower half of the accumulator.

(g PSHD and POPD. These instructions allow you to build a stack in data
memory for the nesting of subroutines or interrupts beyond eight levels.
The PSHD instruction pushes a data-memory value onto the top of the
stack. The POPD instruction pops a value from the top of the stack to data
memory.

Whenever a value is pushed onto the top of the stack (by an instruction or by
the address-generation logic), the content of each level is pushed down one
level, and the bottom (eighth) location of the stack is lost. Therefore, data is
lost (stack overflow occurs) if more than eight successive pushes occur before
a pop. Figure 5-2 shows a push operation.

Figure 5-2. A Push Operation

Before Instruction After Instruction
Accumulator Accumulator
or memory | 7h| or memory
location location

| 2h]

| 5h|

Stack | 3h] Stack

| on]

| 12h|

| gen]

| 5an]

| 3Fh| 54h

Pop operations are the reverse of push operations. A pop operation copies the
value at each level to the next higher level. Any pop after seven sequential
pops yields the value that was originally at the bottom of the stack because,
by then, the bottom value has been copied upward to all of the stack levels.
Figure 5-3 shows a pop operation.

5-5

Figure 5-3. A Pop Operation

Accumulator
or memory
location

Stack

5.1.3 Micro Stack (MSTACK)

The program-address generation logic uses the 16-bit-wide, 1-level-deep
MSTACK to store a return address before executing certain instructions.
These instructions use the program-address generation logic to provide a
second address in a two-operand instruction. These instructions are: BLDD,
BLPD, MAC, MACD, TBLR, and TBLW. When repeated, these instructions
use the PC to increment the first operand address and can use the auxiliary
register arithmetic unit (ARAU) to generate the second operand address.
When these instructions are used, the return address (the address of the next
instruction to be fetched) is pushed onto the MSTACK. Upon completion of the
is popped back into the
program-address generation logic. The MSTACK operations are not visible to
you. Unlike the stack, the MSTACK can be used only by the program-address
generation logic; there are no instructions that allow you to use the MSTACK

repeated instruction,

for storage.

Before Instruction

82h]

45h]

16h|

7h]

33h|

42h]

56h|

37h]

61h|

the MSTACK value

Accumulator
or memory
location

Stack

>
=
@
=
=1
7]
=3
c
I3
=
S
gl [dlw [N
o INn] o] [y o o1
IR ELERES >

w
~
=

!
=
>

[<2]
=
>

5.2 Pipeline Operation

Instruction pipelining consists of a sequence of bus operations that occur
during the execution of an instruction. The 'C20x pipeline has four
independent stages: instruction-fetch, instruction-decode, operand-fetch, and
instruction-execute. Because the four stages are independent, these
operations can overlap. During any given cycle, one to four different
instructions can be active, each at a different stage of completion. Figure 5-4
shows the operation of the 4-level-deep pipeline for single-word, single-cycle
instructions executing with no wait states.

The pipeline is essentially invisible to you except in the following cases:

[A single-word, single-cycle instruction immediately following a
modification of the global-memory allocation register (GREG) uses the
previous global map. You can prevent this by adding a NOP instruction
after the instruction that writes to the GREG.

(1 The NORM instruction modifies the auxiliary register pointer (ARP) and
uses the current auxiliary register (the one pointed to by the ARP) during
the execute phase of the pipeline. If the next two instruction words change
the values in the current auxiliary register or the ARP, they will do so during
the instruction decode phase of the pipeline (before the execution of
NORM). This would cause NORM to use the wrong auxiliary register value
and the following instructions to use the wrong ARP value.

Figure 5—-4. 4-Level Pipeline Operation

CLKOUT14 | _ | , | | | [

Fetch I‘_N—’f‘ N+1 : N +2 : N+3 i
Decode I N-1 } N I N+1 I N+2 I
Operand | N-2 \ N-1 | N | N+1 |
Execute I N-3 } N-2 I N-1 I N I

The CPU is implemented using 2-phase static logic. The 2-phase operation
of the 'C20x CPU consists of a master phase in which all commutation logic
is executed, and a slave phase in which results are latched. Therefore,
sequential operations require sequential master cycles. Although sequential
operations require a deeper pipeline, 2-phase operation provides more time
for the computational logic to execute. This allows the 'C20x to run at faster
clock rates despite having a deeper pipeline that imposes a penalty on
branches and subroutine calls.

5-7

5.3 Branches, Calls, and Returns

Branches, calls, and returns break the sequential flow of instructions by
transferring control to another location in program memory. A branch only
transfers control to the new location. A call also saves the return address (the
address of the instruction following the call) to the top of the hardware stack.
Every called subroutine or interrupt service routine is concluded with a return
instruction, which pops the return address off the stack and back into the
program counter (PC).

The 'C20x has two types of branches, calls, and returns:

[Unconditional. An unconditional branch, call, or returnis always executed.
The unconditional branch, call, and return instructions are described in
sections 5.3.1, 5.3.2, and 5.3.3, respectively.

(1 Conditional. A conditional branch, call, or return is executed only if certain
specified conditions are met. The conditional branch, call, and return
instructions are described in detail in section 5.4, Conditional Branches,
Calls, and Returns, on page 5-10.

5.3.1 Unconditional Branches

When an unconditional branch is encountered, it is always executed. During
the execution, the PC is loaded with the specified program-memory address
and program execution begins at that address. The address loaded into the
PC may come from either the second word of the branch instruction or the
lower 16 bits of the accumulator.

By the time the branch instruction reaches the execute phase of the pipeline,
the next two instruction words have already been fetched. These two
instruction words are flushed from the pipeline so that they are not executed,
and then execution continues at the branched-to address. The unconditional
branch instructions are B (branch) and BACC (branch to location specified by
accumulator).

5.3.2 Unconditional Calls

When an unconditional call is encountered, it is always executed. When the
call is executed, the PC is loaded with the specified program-memory address
and program execution begins at that address. The address loaded into the
PC may come from either the second word of the call instruction or the lower
16 bits of the accumulator. Before the PCis loaded, the return address is saved
in the stack. After the subroutine or function is executed, a return instruction
loads the PC with the return address from the stack, and execution resumes
at the instruction following the call.

By the time the unconditional call instruction reaches the execute phase of the
pipeline, the next two instruction words have already been fetched. These two
instruction words are flushed from the pipeline so that they are not executed,
the return address is stored to the stack, and then execution continues at the
beginning of the called function. The unconditional call instructions are CALL
and CALA (call subroutine at location specified by accumulator).

5.3.3 Unconditional Returns

When an unconditional return (RET) instruction is encountered, it is always
executed. When the return is executed, the PC is loaded with the value at the
top of the stack, and execution resumes at that address.

By the time the unconditional return instruction reaches the execute phase of
the pipeline, the next two instruction words have already been fetched. The
two instruction words are flushed from the pipeline so that they are not
executed, the return address is taken from the stack, and then execution con-
tinues in the calling function.

5-9

5.4 Conditional Branches, Calls, and Returns

The 'C20x provides branch, call, and return instructions that will execute only
if one or more conditions are met. You specify the conditions as operands of
the conditional instruction. Table 5-3 lists the conditions that you can use with
these instructions and their corresponding operand symbols.

Table 5-3. Conditions for Conditional Branches, Calls, and Returns

Operand

Symbol Condition Description

EQ ACC=0 Accumulator equal to zero

NEQ ACC %0 Accumulator not equal to zero

LT ACC<0 Accumulator less than zero

LEQ ACC =0 Accumulator less than or equal to zero
GT ACC>0 Accumulator greater than zero

GEQ ACC =0 Accumulator greater than or equal to zero
C c=1 Carry bit setto 1

NC C=0 Carry bit cleared to 0

ov ov=1 Accumulator overflow detected

NOV ov=0 No accumulator overflow detected

BIO BIO low BIO pin is low

TC TC=1 Test/control flag setto 1

NTC TC=0 Test/control flag cleared to 0

5.4.1 Using Multiple Conditions

Multiple conditions can be listed as operands of the conditional instructions.
If multiple conditions are listed, all conditions must be met for the instruction
to execute. Note that only certain combinations of conditions are meaningful.
See Table 5-4. For each combination, the conditions must be selected from
Group 1 and Group 2 as follows:

[Group 1. You can select up to two conditions. Each of these conditions
must be from a different category (A or B); you cannot have two conditions
from the same category. For example, you cantest EQ and OV at the same
time, but you cannot test GT and NEQ at the same time.

5-10

[Group 2. You can select up to three conditions. Each of these conditions
must be from a different category (A or B); you cannot have two conditions
from the same category. For example, you can test TC and C at the same
time, but you cannot test C and NC at the same time.

Table 5-4. Groupings of Conditions

Group 1 Group 2
Category A Category B Category A Category B Category C
EQ ov TC C BIO
NEQ NOV NTC NC
LT
LEQ
GT
GEQ

5.4.2 Stabilization of Conditions

A conditional instruction must be able to test the most recent values of the
status bits. Therefore, the conditions cannot be considered stable until the
fourth, or execution stage of the pipeline, one cycle after the previous
instruction has been executed. The pipeline controller stops the decoding of
any instructions following the conditional instruction until the conditions are
stable.

5.4.3 Conditional Branches

A branch instruction transfers program control to any location in program
memory. Conditional branch instructions are executed only when one or more
user-specified conditions are met (see Table 5-3 on page 5-10). If all the
conditions are met, the PC is loaded with the second word of the branch
instruction, which contains the address to branch to, and execution continues
at this address.

By the time the conditions have been tested, the two instruction words
following the conditional branch instruction have already been fetched in the
pipeline. If all the conditions are met, these two instruction words are flushed
from the pipeline so that they are not executed, and then execution continues
at the branched-to address. If the conditions are not met, the two instruction
words are executed instead of the branch. Because conditional branches use

5-11

conditions determined by the execution of the previous instructions, a condi-
tional branch takes one more cycle than an unconditional one.

The conditional branch instructions are BCND (branch conditionally) and
BANZ (branch if currently selected auxiliary register is not equal to 0). The
BANZ instruction is useful for implementing loops.

5.4.4 Conditional Calls

The conditional call (CC) instruction is executed only when the specified
condition or conditions are met (see Table 5-3 on page 5-10). This allows your
program to choose among multiple subroutines based on the data being
processed. If all the conditions are met, the PC is loaded with the second word
of the call instruction, which contains the starting address of the subroutine.
Before branching to the subroutine, the processor stores the address of the
instruction following the call instruction—the return address—to the stack. The
function must end with a return instruction, which will take the return address
off the stack and force the processor to resume execution of the calling
program.

By the time the conditions of the conditional call instruction have been tested,
the two instruction words following the call instruction have already been
fetched in the pipeline. If all the conditions are met, these two instruction words
are flushed from the pipeline so that they are not executed, and then execution
continues at the beginning of the called function. If the conditions are not met,
the two instructions are executed instead of the call. Because there is a wait
cycle for conditions to become stable, the conditional call takes one more cycle
than the unconditional one.

5.4.5 Conditional Returns

5-12

Returns are used in conjunction with calls and interrupts. A call or interrupt
stores a return address to the stack and then transfers program control to a
new location in program memory. The called subroutine or the interrupt service
routine concludes with a return instruction, which pops the return address off
the top of the stack and into the program counter (PC).

The conditional return instruction (RETC) is executed only when one or more
conditions are met (see Table 5-3 on page 5-10). By using the RETC
instruction, you can give a subroutine or interrupt service routine more than
one possible return path. The path chosen then depends on the data being
processed. In addition, you can use a conditional return to avoid conditionally
branching to/around the return instruction at the end of the subroutine or
interrupt service routine.

If all the conditions are met for execution of the RETC instruction, the
processor loads the return address from the stack to the PC and resumes
execution of the calling or interrupted program.

RETC, like RET, is a single-word instruction. However, because of the
potential PC discontinuity, it operates with the same effective execution time
as the conditional branch (BCND) and the conditional call (CC). By the time
the conditions of the conditional return instruction have been tested, the two
instruction words following the return instruction have already been fetched in
the pipeline. If all the conditions are met, these two instruction words are
flushed from the pipeline so that they are not executed, and then execution of
the calling program continues. If the conditions are not met, the two
instructions are executed instead of the return. Because there is a wait cycle
for conditions to become stable, the conditional return takes one more cycle
than the unconditional one.

5-13

5.5 Repeating a Single Instruction

5-14

The 'C20x repeat (RPT) instruction allows the execution of a single instruction
N + 1 times, where N is specified as an operand of the RPT instruction. When
RPT is executed, the repeat counter (RPTC) is loaded with N. RPTC is then
decremented every time the repeated instruction is executed, until RPTC
equals zero. RPTC can be used as a 16-bit counter when the count value is
read from a data-memory location; if the count value is specified as a constant
operand, it is in an 8-bit counter.

The repeat feature is useful with instructions such as NORM (normalize
contents of accumulator), MACD (multiply and accumulate with data move),
and SUBC (conditional subtract). When instructions are repeated, the address
and data buses for program memory are free to fetch a second operand in
parallel with the address and data buses for data memory. This allows
instructions such as MACD and BLPD to effectively execute in a single cycle
when repeated.

5.6

5.6.1

Interrupts

Interrupts are hardware- or software-driven signals that cause the 'C20x to
suspend its current program sequence and execute a subroutine. Typically,
interrupts are generated by hardware devices that need to give data to or take
data from the 'C20x (for example, A/D and D/A converters and other
processors). Interrupts can also signal that a particular event has taken place
(for example, a timer has finished counting).

The 'C20x supports both software and hardware interrupts:
[A software interruptis requested by an instruction (INTR, NMI, or TRAP).

[A hardware interruptis requested by a signal from a physical device. Two
types exist:

B External hardware interrupts are triggered by signals at external
interrupt pins. All these interrupts are negative-edge triggered and
should be active low for at least one CLKOUT1 period to be
recognized.

W /nternal hardware interrupts are triggered by signals from the on-chip
peripherals.

If hardware interrupts are triggered at the same time, the 'C20x services them
according to a set priority ranking. Each of the 'C20x interrupts, whether
hardware or software, can be placed in one of the following two categories:

(1 Maskable interrupts. These are hardware interrupts that can be blocked
(masked) or enabled (unmasked) through software.

1 Nonmaskable interrupts. These interrupts cannot be blocked. The
'C20x will always acknowledge this type of interrupt and branch from the
main program to a subroutine. The 'C20x nonmaskable interrupts include
all software interrupts and two external hardware interrupts: reset (RS)
and NMI.

Interrupt Operation: Three Phases

The 'C20x handles interrupts in three main phases:

1) Receivetheinterruptrequest. Suspension of the main program mustbe
requested by a software interrupt (from program code) or a hardware
interrupt (from a pin or an on-chip device).

2) Acknowledge the interrupt. The 'C20x must acknowledge the interrupt
request. If the interrupt is maskable, certain conditions must be met in
order for the 'C20x to acknowledge it. For nonmaskable hardware
interrupts and for software interrupts, acknowledgement is immediate.

Program Control 5-15

3) Execute the interrupt service routine. Once the interrupt is
acknowledged, the 'C20x branches to its corresponding subroutine called
aninterrupt service routine (ISR). The 'C20x follows the branch instruction
you place at a predetermined address (the vector location) and executes
the ISR you have written.

5.6.2 Interrupt Table

For’C20x devices other than the 'C209, Table 5-5 lists the interrupts available
and shows their vector locations. In addition, it shows the priority of each of the
hardware interrupts. For the corresponding 'C209 table, see section 11.3,
'C209 Interrupts, on page 11-10.

Table 5-5. 'C20x Interrupt Locations and Priorities

Vector

Kt Location Name Priority Function

0 Oh RS 1 (highest) Hardware reset (nonmaskable)

1 2h HOLD/INT1L 4 User-maskable interrupt #1

2 4h INT2, INT3* 5 User-maskable interrupts #2
and #3

3 6h TINT 6 User-maskable timer interrupt

4 8h RINT 7 User-maskable synchronous
serial port receive interrupt

5 Ah XINT 8 User-maskable synchronous
serial port transmit interrupt

6 Ch TXRXINT 9 User-maskable asynchronous
serial port transmit/receive in-
terrupt

7 Eh 10 Reserved

8 10h INT8 - User-defined software interrupt

9 12h INT9 - User-defined software interrupt

Note: Thistable does notapply to the 'C209. For the 'C209 interrupttable, see section 11.30n
page 11-10.
T The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.
+INT2 and INT3 have separate pins but are tied to the same vector location.

5-16

Table 5-5. 'C20x Interrupt Locations and Priorities (Continued)

Vector
Kt Location Name Priority Function
10 14h INT10 - User-defined software interrupt
11 16h INT11 - User-defined software interrupt
12 18h INT12 - User-defined software interrupt
13 1Ah INT13 - User-defined software interrupt
14 1Ch INT14 - User-defined software interrupt
15 1Eh INT15 - User-defined software interrupt
16 20h INT16 - User-defined software interrupt
17 22h TRAP - TRAP instruction vector
18 24h NMI 3 Nonmaskable interrupt
19 26h 2 Reserved
20 28h INT20 - User-defined software interrupt
21 2Ah INT21 - User-defined software interrupt
22 2Ch INT22 - User-defined software interrupt
23 2Eh INT23 - User-defined software interrupt
24 30h INT24 - User-defined software interrupt
25 32h INT25 - User-defined software interrupt
26 34h INT26 - User-defined software interrupt
27 36h INT27 - User-defined software interrupt
28 38h INT28 - User-defined software interrupt
29 3Ah INT29 - User-defined software interrupt
30 3Ch INT30 - User-defined software interrupt
31 3Eh INT31 - User-defined software interrupt
Note: Thistable does notapply to the 'C209. For the 'C209 interrupttable, see section 11.3 on

page 11-10.

T The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.
$INT2 and INT3 have separate pins but are tied to the same vector location.

5-17

5.6.3 Maskable Interrupts

When a maskable interrupt is successfully requested by a hardware device or
by an external pin, the corresponding flag or flags are activated. These flags
are activated whether or not the interrupt is later acknowledged by the
processor.

Two registers on the 'C20x contain flag bits:

4 Interrupt flag register (IFR), a 16-bit, memory-mapped register located at
address 0006h in data-memory space.The IFR is explained in detail in
section 5.6.4

(1 Interrupt control register (ICR), a 16-bitregister located at address FFECh
in 1/0 space.The ICR is explained in section 5.6.6.

The IFR contains flag bits for all the maskable interrupts. The ICR contains
additional flag bits for the interrupts INT2 and INT3. For all maskable interrupts
except INT2 and INT3, an interrupt request is sent to the CPU as soon as the
interrupt signal is sent by the pin or on-chip peripheral. For INT2 or INT3, the
interrupt request is only sent to the CPU if the interrupt signal is not masked
by its mask bit in the ICR. Figure 5-5 shows the process for successfully
requesting INT2 or INT3.

Figure 5-5. INT2/INT3 Request Flow Chart

(INTZ or INT3 asserted at pin)

Interrupt unmasked

NoO in ICR?

|Corresponding ICR flag bit set |

s

Qnterrupt request sent to CPU)

After an interrupt request is received by the CPU, the CPU must decide
whether to acknowledge the request. Maskable hardware interrupts are
acknowledged only after certain conditions are met:

[Priorityis highest. When more than one hardware interrupt is requested
at the same time, the 'C20x services them according to a set priority
ranking in which 1 indicates the highest priority. For the priorities of the
hardware interrupts, see section 5.6.2 (on page 5-16).

1 IMR mask bit is 1. The interrupt must be unmasked (enabled) in the
interrupt mask register (IMR), a 16-bit, memory-mapped register located
at address 0004h in data-memory space. The IMR contains mask bits for
all the maskable interrupts. INT2 and INT3 share one of the bits in the IMR.
The IMR is explained in section 5.6.5 on page 5-23.

[J INTM bitis 0. The interrupt mode (INTM) bit, bit 9 of status register STO,
enables or disables all maskable interrupts:

B When INTM = 0, all unmasked interrupts are enabled.
B When INTM = 1, all unmasked interrupts are disabled.

INTM is set to 1 automatically when the CPU acknowledges an interrupt
(except when initiated by the TRAP instruction). INTM can also be set to
1 by a hardware reset or by execution of a disable-interrupts instruction
(SETC INTM). You can clear INTM by executing the enable-interrupts
instruction (CLRC INTM). INTM has no effect on reset, NMI, or
software-interrupts (initiated with the TRAP, NMI, and INTR instructions).
Also, INTM is unaffected by the LST (load status register) instruction.

INTM does not modify the interrupt flag register (IFR), the interrupt mask
register (IMR), or the interrupt control register (ICR).

When the CPU acknowledges a maskable hardware interrupt, it loads the
instruction bus with the INTR instruction. This instruction forces the CPU to
branch to the corresponding interrupt vector location. From this location in
program memory, the CPU fetches a branch that leads to the appropriate
interrupt service routine. As the CPU branches to the interrupt service routine,
it also sets the INTM bit to 1, preventing all hardware-initiated maskable
interrupts from interrupting the execution of the ISR. Note that the INTR
instruction can also be initiated directly by software; thus, the interrupt service
routines for the maskable interrupts can also be initiated directly with the INTR
instruction (see section 5.6.7, Nonmaskable Interrupts on page 5-27).

To determine which vector address has been assigned to each of the
interrupts, see section 5.6.2 (on page 5-16). Interrupt vector locations are
spaced apart by two addresses so a 2-word branch instruction can be
accommodated in each of the locations.

5-19

Figure 5-6 summarizes how maskable interrupts are handled by the CPU.

Figure 5—6. Maskable Interrupt Operation Flow Chart

5.6.4

5-20

Cnterrupt request sent to CPU)

v

Corresponding IFR flag bit set

Interrupts enabled
(INTM bit = 0)
?

Interrupt
unmasked?

I Interrupt acknowledged I

v
I INTM bit setto 1 I
| PC saved on stack |

I Interrupt service routine run I

I Return instruction restores PC I
|

v
(Program continues)

Interrupt Flag Register (IFR)

The 16-bit interrupt flag register (IFR), located at address 0006h in data
memory space, contains flag bits for all the maskable interrupts. When a
maskable interrupt request reaches the CPU, the corresponding flag is set to
1 in the IFR. This indicates that the interrupt is pending, or waiting for
acknowledgement.

Read the IFR to identify pending interrupts, and write to the IFR to clear
pending interrupts. To clear an interrupt request (and set its IFR flag to 0), write

a 1 to the corresponding IFR bit. All pending interrupts can be cleared by
writing the current contents of the IFR back into the IFR. Acknowledgement
of a hardware request also clears the corresponding IFR bit. A device reset
clears all IFR bits.

Notes:

1) When an interrupt is requested by an INTR instruction, if the
corresponding IFR bit is set, the CPU will not clear it automatically. If an
application requires that the IFR bit be cleared, the bit must be cleared
in the interrupt service routine.

2) To avoid double interrupts from the synchronous serial port and the
asynchronous serial port (including delta interrupts), clear the IFR bit(s)
in the corresponding interrupt service routine, just before returning from
the routine.

For 'C20x devices other than the 'C209, Figure 5-7 shows the IFR.
Descriptions of the bits follow the figure. For a description of the 'C209 IFR,
see section 11.3.1, 'C209 Interrupt Registers, on page 11-12.

Figure 5-7. 'C20x Interrupt Flag Register (IFR) — Data-Memory Address 0006h

15 6 5 4 3 2 1 0
Reserved TXRXINT XINT RINT TINT INT2/INT3 | HOLD/INT1
0 RW1C-0 R/WIC-0 R/WI1C-0 R/WIC-0 R/WIC-0 R/W1C-0
Note: 0 = Always read as zeros; R = Read access; W1C = Write 1 to this bit to clear it to O;

value following dash (-) is value after reset.

Table 5-6. 'C20x IFR — Data-Memory Address 0006h Bit Descriptions

Bit
No. Name Function
15-6 Reserved Bits 15-6 are reserved and are always read as 0s.
5 TXRXINT Transmit/receive interrupt flag. Bit 5 is tied to the transmit/receive interrupt for the

asynchronous serial port. To avoid double interrupts, write a 1 to this bit in the
interrupt service routine.

0

1

Interrupt TXRXINT is not pending.

Interrupt TXRXINT is pending.

5-21

Table 5—6. 'C20x IFR — Data-Memory Address 0006h Bit Descriptions (Continued)

Bit
No.

Name

Function

4

0

XINT

RINT

TINT

INT2/INT3

HOLD/INT1

Transmit interrupt flag. Bit 4 is tied to the transmit interrupt for the synchronous serial
port. To avoid double interrupts, write a 1 to this bit in the interrupt service routine.

0 Interrupt XINT is not pending.
1 Interrupt XINT is pending.

Receive interrupt flag. Bit 3 is tied to the receive interrupt for the synchronous serial port.
To avoid double interrupts, write a 1 to this bit in the interrupt service routine.

0 Interrupt RINT is not pending.

1 Interrupt RINT is pending.

Timer interrupt flag. Bit 2 is tied to the timer interrupt, TINT.
0 Interrupt TINT is not pending.

1 Interrupt TINT is pending.

Interrupt 2/Interrupt 3 flag. The INT2 pin and the INT3 pin are both tied to bit 1. If INT2
is requested, INT2/INT3 and FINT2 of the interrupt control register (ICR) are both
automatically set to 1. If INT3 is requested, INT2/INT3 and FINT3 (of the ICR) are both
automatically set to 1.

0 Neither INT2 nor INT3 is pending.

1 At least one of the two interrupts is pending. To determine which one is pending
orif both are pending, read flag bits FINT2 and FINT3 inthe ICR. FINT2 and FINT3
are not automatically cleared when INT2 and INT3 are acknowledged by the CPU;
they must be cleared by the interrupt service routine.

HOLD/Interrupt 1 flag. Bit 0 is a flag for HOLD or INT1. The operation of the HOLD/INT1
pin differs depending on the value of the MODE bit in the ICR. When MODE = 1, an
interrupt s triggered only by a negative edge on the pin. When MODE =0, interrupts can
be triggered by both a negative edge and a positive edge. This is necessary to implement
the 'C20x HOLD operation (see section 4.6, Direct Memory Access Using The HOLD
Operation, on page 4-18).

0 HOLD/INT1 is not pending.

1 HOLD/INT1 is pending.

5-22

5.6.5

Interrupt Mask Register (IMR)

The 16-bit interrupt mask register (IMR), located at address 0004h in data-
memory space, is used for masking external and internal hardware interrupts.
Neither NMI nor RS is included in the IMR; thus, IMR has no effect on these
interrupts.

Read the IMR to identify masked or unmasked interrupts, and write to the IMR
to mask or unmask interrupts. To unmask an interrupt, set its corresponding
IMR bit to 1. To mask an interrupt, set its corresponding IMR bitto 0. The IMR
bits are not affected by a device reset.

For 'C20x devices other than the 'C209, Figure 5-8 shows the IMR.
Descriptions of the bits follow the figure. For a description of the 'C209 IMR,
see section 11.3.1, 'C209 Interrupt Registers, on page 11-12.

Figure 5-8. 'C20x Interrupt Mask Register (IMR) — Data-Memory Address 0004h

15 6 5 4 3 2 1 0
Reserved TXRXINT | XINT RINT TINT INT2/INT3 | HOLD/INT1
0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (-) is value after reset.

Table 5—7. 'C20x IMR — Data-Memory Address 0004h Bit Descriptions

Bit
No. Name Function
15-6 Reserved Bits 15-6 are reserved and are always read as 0s.
5 TXRXINT Transmit/receive interrupt mask. Bit 5 is tied to the transmit/receive interrupt for the
asynchronous serial port.
0 Interrupt TXRXINT is masked.
1 Interrupt TXRXINT is unmasked.
4 XINT Transmit interrupt mask. Bit 4 is tied to the transmit interrupt for the synchronous serial
port.
0 Interrupt XINT is masked.
1 Interrupt XINT is unmasked.
3 RINT Receive interrupt mask. Bit 3 is tied to the receive interrupt for the synchronous serial

port.
0 Interrupt RINT is masked.

1 Interrupt RINT is unmasked.

5-23

Table 5—-7. 'C20x IMR — Data-Memory Address 0004h Bit Descriptions (Continued)

Bit
No. Name Function
2 TINT Timer interrupt mask. Bit 2 is tied to the interrupt for the timer.
0 Interrupt TINT is masked.
1 Interrupt TINT is unmasked.
1 INT2/INT3 Interrupt 2/Interrupt 3 mask. The INT2 pin and the INT3 pin are both tied to bit 1. With
this bit, you mask both INT2 and INT3 simultaneously. In conjunction with this bit, bits
MINT2 and MINT3 of the ICR are used to individually unmask INT2 and INT3.
0 INT2 and INT3 are masked.
1 If INT2/INT3 =1 and MINT2 = 1, INT2 is unmasked.
If INT2/INT3 =1 and MINT3 =1, INT3 is unmasked.
0 HOLD/INT1 HOLD/Interrupt 1 mask. This bit masks or unmasks interrupts requested at the
HOLD/INT1 pin.
0 HOLD/INT1 is masked.
1 HOLD/INT1 is unmasked.
5.6.6 Interrupt Control Register (ICR)

The 16-bit interrupt control register (ICR), located at address FFECh in I/O
space, controls the function of the HOLD/INT1 pin and individually controls the
interrupts INT2 and INT3.

Controlling the HOLD /INT1 pin

5-24

This pin can be used for triggering the interrupt INT1 and for sending a HOLD
signal to the CPU. Accordingly, the MODE bit provides two possible modes for
the HOLD/INT1 pin. When MODE = 1, the pin is negative-edge sensitive and,
thus, is set appropriately for initiating a standard interrupt (INT1). When
MODE = 0, the pin is both negative- and positive-edge sensitive, which is
necessary for implementing the logic for the HOLD operation (see section 4.6,
Direct Memory Access Using The HOLD Operation, on page 4-18).
Regardless of the value of MODE, the pin is connected to the same interrupt
logic, which initiates only one interrupt service routine. (HOLD/INT1 is mapped
to interrupt vector location 0002h in program memory.) To differentiate the two
uses of the pin, the interrupt service routine must test the value of the MODE
bit.

Controlling INT2 and INT3

Each of these interrupts has its own pin. However, they share:

1 Asingle flag bit (INT2/INT3) in the interrupt flag register (IFR).
1 A single mask bit in the interrupt mask register (IMR).

[Asingleinterrupt service routine. (INT2 and INT3 are mapped to interrupt
vector location 0004h in program memory.)

To allow you to use INT2 and INT3 individually, the ICR provides two mask bits
(MINT2 and MINT3) and two flag bits (FINT2 and FINT3).

When interrupts are requested on the pins INT2 and INT3, MINT2 and MINT3
determine whether the flag bits FINT2, FINT3, and INT2/INT3 are set. To mask
INT2 (prevent the setting of flags FINT2 and INT2/INT3), write a 0 to MINT2;
to mask INT3 (prevent the setting of flags FINT3 and INT2/INT3) write a 0 to
MINT3. If INT2/INT3 is not set, the CPU has not received and will not
acknowledge the interrupt request.

When INT2/INT3 is set, one or both of the interrupts is pending. To differentiate
the occurrences of the two interrupts, your interrupt service routine can test
FINT2 and FINT3 and then branch to the appropriate subroutine. If you want
the interrupt service routine to be executed only in response to one of the
interrupts, mask the other interrupt in the ICR. Each of the ICR flag bits, like
the IFR flag bit, can be cleared by writing a 1 to it.

Note:

1) Neither FINT2 nor FINT3 is automatically cleared when the CPU
acknowledges the corresponding interrupt. If the application requires
the bit(s) be cleared, the clearing must be done in the interrupt service
routine.

2) Writing 1s to FINT2 and FINT3 will set these bits to 0 but will not clear
interrupt requests for INT2 and INT3. To clear requests for INT2 and/or
INT3, write a 1 to the INT2/INT3 bit of the IFR.

If INT2 or INT3 is unmasked in the ICR, the IFR flag bit will be set regardless
of bit 1 (INT2/INT3) in the IMR. If the IFR flag bit is set, the IMR bit is set, and
the INTM bitis 0 (maskable interrupts are enabled), the CPU will acknowledge
the interrupt. If an interrupt is masked by the IMR and/or the ICR, it will not be
acknowledged, even if INTM = 0.

5-25

At reset, all ICR bits are set to zero, which means:

[0 The HOLD/INT1 pin is both negative- and positive-edge sensitive
(MODE = 0).

(1 The FINT2 and FINT3 flag bits are cleared.

[INT2 and INT3 are masked.

Figure 5-9 shows the ICR, and bit descriptions follow the figure.

Figure 5-9. 'C20x Interrupt Control Register (ICR) — I/O-Space Address FFECh

15 5 4 3 2 1 0
Reserved MODE FINT3 FINT2 MINT3 MINT2
0 R/W-0 R/W1C-0 R/W1C-0 R/W-0 R/W-0

Note: 0 = Always read as zeros; R = Read access; W = Write access; W1C = Write 1 to this bit to clear it to O;
value following dash (-) is value after reset.

Table 5-8. 'C20x ICR — I/O-Space Address FFECh Bit Descriptions
Bit
No. Name Function

15-5 Reserved Bits 15-5 are reserved and are always read as 0Os.

4 Mode Pin mode. Bit 4 selects one of two possible modes for the HOLD/INT1 pin.

0 Double-edge mode. The HOLD/INT1 pin is both negative- and positive-edge
sensitive. A falling edge or a rising edge triggers an interrupt request. This mode
is necessary for proper implementation of a HOLD operation.

1 Single-edge mode. A falling edge (only) on the HOLD/INT1 pin triggers an interrupt
request.

3 FINT3 Interrupt 3 flag. If MINT3 = 1, an interrupt request on the INT3 pin sets FINT3 and bit 1
of the IFR (INT2/INT3).

0 INT3 is not pending.
1 INT3 is pending.

2 FINT2 Interrupt 2 flag. If MINT2 = 1, an interrupt request on the INT2 pin sets FINT2 and bit 1
of the IFR (INT2/INT3).

0 INT2 is not pending.

1 INT2 is pending.

5-26

Table 5-8. 'C20x ICR — I/O-Space Address FFECh Bit Descriptions (Continued)

Bit
No. Name Function
1 MINT3 Interrupt 3 mask. This bit masks the external interrupt INT3 or, in conjunction with the
INT2/INT3 bit of the IMR, unmasks INT3.
0 INT3 is masked. Neither FINT3 nor bit 1 of the IFR (INT2/INT3) is set by a request
on the INT3 pin.
1 INT3is unmasked. Flag bits FINT3 and INT2/INT3 are both set by a request on the
INT3 pin.
0 MINT2 Interrupt 2 mask. This bit masks the external interrupt INT2 or, in conjunction with the

INT2/INT3 bit of the IMR, unmasks INT2.

0 INT2 is masked. Neither FINT2 nor bit 1 of the IFR (INT2/INT3) is set by a request
on the INT2 pin.

1 INT3 is unmasked. Flag bits FINT2 and INT2/INT3 are both set by a request on the
INT2 pin.

5.6.7 Nonmaskable Interrupts
Hardware nonmaskable interrupts can be requested through two pins:

[RS (reset). RS is an interrupt that stops program flow, returns the
processor to a predetermined state, and then begins program execution
ataddress 0000h. For details of the reset operation, see section 5.7, Reset
Operation, on page 5-35. When RS is acknowledged, the interrupt mode
(INTM) bit of status register ST1 is set to 1 to disable maskable interrupts.

1 NMI. When NMI is activated (either by the NMI pin or by the NMI
instruction), the processor switches program control to vector location
24h. In addition, maskable interrupts are disabled (the INTM bit of status
register STO is set to 1). Although NMI uses the same logic as the
maskable interrupts, it is not maskable. NMI happens regardless of the
value of the INTM bit, and no mask bit exists for NMI. If the NMI pin is not
used, it should be pulled high to prevent an accidental interrupt.

NMI can be used as a soft reset. Unlike a hardware reset (RS), the NMI
neither affects any of the modes of the device nor aborts a currently active
instruction or memory operation.

Software interrupts (which are inherently nonmaskable) are requested by the
following instructions:

[INTR. This instruction allows you to initiate any 'C20x interrupt, including
user-defined interrupts INT8 through INT16 and INT20 through INT31.

5-27

5-28

The instruction operand (K) indicates which interrupt vector location the
CPU will branch to. To determine the operand K that corresponds to each
interrupt vector location see section 5.6.2 (on page 5-16). When an INTR
interrupt is acknowledged, the interrupt mode (INTM) bit of status register
ST1is set to 1 to disable maskable interrupts.

Note:

The INTR instruction does not affect IFR flags. When you use the INTR
instruction to initiate an interrupt that has an associated flag bit in the IFR,
the instruction neither sets nor clears the flag bit. No software write operation
can set the IFR flag bits; only the appropriate hardware requests can. If a
hardware request has set the flag for an interrupt and then the INTR
instruction is used to initiate that interrupt, the INTR instruction will not clear
the flag.

[NMI. This instruction forces a branch to interrupt vector location 24h, the
same location used for the nonmaskable hardware interrupt NMI. Thus,
you can either initiate NMI by driving the NMI pin low or by executing an
NMI instruction. When the NMI instruction is executed, INTM is setto 1 to
disable maskable interrupts.

(1 TRAP. This instruction forces the CPU to branch to interrupt vector
location 22h. The TRAP instruction does not disable maskable interrupts
(INTMis not set to 1); thus when the CPU branches to the interrupt service
routine, that routine can be interrupted by the maskable hardware
interrupts (in addition to RS and NMI).

If the INTM bit is set to 1 during the acknowledgement process, all hardware-
initiated maskable interrupts are disabled and, thus, cannot interfere with the
interrupt service routine.

To determine which vector address has been assigned to each of the interrupts
on a specific 'C20x device, see section 5.6.2 (on page 5-16). Interrupt vector
locations are spaced apart by two addresses so that a 2-word branch
instruction can be accommodated in each location.

Figure 5-10 summarizes how nonmaskable interrupts are handled by the
CPU.

Figure 5-10. Nonmaskable Interrupt Operation Flow Chart

Cnterrupt request sent to CPU)

v

I Interrupt acknowledged I

No

TRAP
instruction?

v

| INTM bit set to 1 |

I PC saved on stack |1—
v

I Interrupt service routine run I

I Return instruction restores PC I

(Program continues)

5.6.8 Interrupt Service Routines (ISRs)

After an interrupt has been requested and acknowledged, the CPU follows an
interrupt vector to the ISR. The ISR is the program code that actually performs
the tasks requested by the interrupt. While performing these tasks, the ISR
may also be:

[J Saving and restoring register values
[Managing ISRs within ISRs

Saving and restoring register values

Only the incremented program counter value is stored automatically before
the CPU enters an interrupt service routine (ISR). You must design the ISR to
save and then restore any other important register values. For example, if your
ISR will need to perform a multiplication, it will need to use the product register
(PREG). If the value currently in the PREG must be in the PREG after the ISR,
the ISR must save the value, perform the new multiplication, store the resulting
PREG value, and then reload the original value. You may find that certain
registers will need to be saved during most ISRs. If so, you can copy acommon
save and restore routine and then individualize it for each interrupt.

5-29

Managing ISRs within ISRs

5-30

The 'C20x hardware stack allows you to have ISRs within ISRs. When
considering nesting ISRs like this, keep the following in mind:

4

If you want the ISR be interrupted by a maskable interrupt, the ISR must
unmask the interrupt by setting the appropriate IMR bit (and ICR bit, if
applicable) and executing the enable-interrupts instruction (CLRC INTM).

The hardware stack is limited to eight levels. Each time an interrupt is
serviced or a subroutine is entered, the return address is pushed onto the
hardware stack. This provides a way to return to the previous context
afterwards. The stack contains eight locations, allowing interrupts or
subroutines to be nested up to eight levels deep. (One level of the stack
is reserved for debugging, to be used for breakpoint/single-step
operations. If debugging is not used, this extra level is available for internal
use.) If your software requires more than eight stack levels, you can use
the POPD and PSHD instructions to effectively extend the stack into data
memory.

If you do not nest ISRs, you can avoid stack overflow. The 'C20x has a
feature that allows you to prevent unintentional nesting. If an interrupt
occurs during the execution of a CLRC INTM instruction, the device
always completes CLRC INTM as well as the next instruction before the
pending interrupt is processed. This ensures that a return instruction that
directly follows CLRC INTM will be executed before an interrupt is
processed. The return instruction will pop the previous return address off
the top of the stack before the new return address is pushed onto the stack.

To allow the CPU to complete the return, interrupts are also blocked after a
RET instruction until at least one instruction at the return address is
executed. Interrupts may be blocked for more than one instruction if the
instruction at the return address requires additional blocking for pipeline
protection.

If you want an ISR to occur within the current ISR rather than after the
current ISR, place the CLRC INTM instruction more than one instruction
before the return (RET) instruction.

5.6.9

Interrupt Latency

The length of an interrupt latency—the delay between when an interrupt
request is made and when it is serviced—depends on many factors. For
example, the CPU always completes all instructions in the pipeline before
executing a software vector. This section describes the factors that determine
minimum latency and then describes factors that may cause additional
latency. The maximum latency is a function of wait states and pipeline
protection.

For an external, maskable hardware interrupt, a minimum latency of eight
cycles is required to synchronize the interrupt externally, recognize the
interrupt, and branch to the interrupt vector location. On the ninth cycle, the
interrupt vector is fetched. For a software interrupt, the minimum latency
consists of four cycles needed to branch to the interrupt vector location.

Latency for pipeline protection

Multicycle instructions add additional cycles to empty the pipeline. Instructions
may become multicycle for these reasons:

[An instruction that writes to or reads from external memory may be
delayed by wait states generated by the external READY pin or the
on-chip wait-state generator. These wait states may affect the instruction
being executed at the time the interrupt is requested, and they may affect
the interrupt itself if the interrupt vector must be fetched from external
memory.

[If an interrupt occurs during a HOLD operation and the interrupt vector
must be fetched from external memory, the vector cannot be fetched until
HOLDA is deasserted.

1 When repeated with RPT, instructions run parallel operations in the
pipeline and the context of these additional parallel operations cannot be
saved in an interrupt service routine. To protect the context of the repeated
instruction, the CPU locks out all interrupts except reset until the RPT loop
completes.

Note:

Reset (RS) is not delayed by multicycle instructions. NMI can be delayed by
multicycle instructions.

5-31

Latency for stack overflow protection

A return address (incremented program counter value) is forced onto the
hardware stack every time the CPU follows another interrupt service routine
or other subroutine. However, the 'C20x has a feature that can help you to keep
the hardware stack from overflowing. Interrupts cannot be processed between
the CLRC INTM (enable maskable interrupts) instruction and the next
instruction in a program sequence. This ensures that a return instruction that
directly follows CLRC INTM will be executed before an interrupt is processed.
The return instruction will pop the previous return address off the top of the
stack before the new return address is pushed onto the stack. If the interrupt
were to occur before the return, the new return address would be added to the
hardware stack, even if the stack were already full.

To allow the CPU to complete the return, interrupts are also blocked after a
RET instruction until at least one instruction at the return address is executed.

5.6.10 Context Saving During Interrupts

5-32

During context saving and restoring, the order in which registers STO and ST1
are loaded is crucial and changes contingent upon the addressing mode
(direct and indirect). As there is no LPL instruction, you can extend
interruptability by:

[J Direct addressing context save
(1 Indirect addressing context save (software stack)

See Figure 5-11 and Figure 5-12 for code examples.

[J Direct addressing context save

Using direct addressing to perform context save to data memory is the
simplest way to extend interruptability to the second level of depth. The
code example below shows the most likely items to be saved, and in so
doing, demonstrates most of the techniques used for contexting in
general. Note, however, that this is not a comprehensive context save
operation, and that you must consider which registers will, and will not, be
maintained for the specific ISR. Given the large number of registers
present on the 'C20x, it is not recommended that you employ a generic, all
encompassing context save process, as this would almost always be

impractical.

Figure 5-11. Direct Addressing Context Save

STATUS .usect “BLOCKB?2”, 2 ; Must be located on Data Page 0
.bss CONTEX, 4, 1 ; Located anywhere in Data Memory

text
ISR1: SST #0,STATUS ; STO must go to data page 0
SST #1,STATUS+1 ; ST1 must go to data page 0
LDP #CONTEX ;
SACH CONTEX ; Save ACCH & ACCL
SACL CONTEX+1 ; (if needed, P & T regs saved as shown above)
POPD CONTEX+2 ; Offload 1 level of stack
BLDD #04h, CONTEX+3 ; Save IMR
LDP #0
LACL #0010B ; Mask to sub-enable only INT2, for example
SACL 04h ; Write to IMR
CLRC INTM ; Re-allow interruptability
* .
* ; Nestable ISR goes here. . .
* .
SETC INTM ; Interruptability back off
LDP #CONTEX ; Go to page with context values
PSHD CONTEX+2 : Reload stack with return address
LACL CONTEX+1 ; Restore ACCL w/o sign extension
ADD CONTEX,16 ; Sum in ACCH
LDP #0 ; Go to DP=0. for status registers

BLDD #CONTEX+3, 04h ; Restore to IMR
LST #1, STATUS+1 ; Restore ST1
LST #0, STATUS ; Restore STO

CLRC
RET

INTM

; Enable interrupts

5-33

(O Indirect addressing context save (software stack)

Using indirect addressing to perform a context save allows any degree of
nestability of interrupts and is typically used in conjunction with a software
stack. In creating a software stack, you should assign one auxiliary
register (AR) as a stack pointer. Following TI's C compiler convention, AR1
has been assigned as the stack pointer (SP).

Figure 5-12. Indirect Addressing Context Save

.bss STACK,100h ; Assign 512 locations for stack
text

OSR1: LAR AR1, #STACK ; AR1is SP, start at beginning
*

*

ISR1: MAR * AR1 ; Select ARL1 to point to stack
SST #1,*+ : Save ST1 & STO
SST #0,*+
SACH *+ ; Save ACCH & ACCL
SACL *+
LDP #0
LACC 4h ; Get IMR
SACL *+ ; Store old IMR
POPD *+ ; Offload 1 level of stack
LACL #010B ; Mask to sub-enable only INT2
SACL 4h ; New IMR
CLRC INTM ; Re-allow interruptability
* .
* ; Interruptible ISR goes here
* .
SETC INTM ; Interruptability back off
MAR *AR1 ; Select stack pointer
MAR *— ; Move ARL1 to last saved content
PSHD *- : Reload stack with return address
LACC * ; Get & restore original IMR value
LDP #0
SACL 4h ; Restore IMR
LACL *- ; Load ACCL & sum in ACCH
ADD *-,16
LST #0,*— ; Restore STO
LST #1,* : Restore ST1 and ARP
CLRC INTM ; Enable interrupts
RET ; Return to main

5-34

5.7 Reset Operation

Reset (RS) is a nonmaskable external interrupt that can be used at any time
to put the 'C20x into a known state. Reset is the highest priority interrupt; no
other interrupt takes precedence over reset. Reset is typically applied after
power up when the machine is in an unknown state. Because the reset signal
aborts memory operations and initializes status bits, the system should be
reinitialized after each reset. The NMI interrupt can be used for soft resets
because it neither aborts memory operations nor initializes status bits.

Driving RS low causes the 'C20x to terminate execution and affects various
registers and status bits. For correct system operation after power up, RS must
be asserted for atleast six clock cycles. The device latches the reset pulse and
generates an internal reset pulse long enough to ensure a device reset. The
device fetches its first instruction 16 cycles after the rising edge of RS.
Processor execution begins at location 0000h, which normally contains a
branch instruction to the system initialization routine.

When the 'C20x receives a reset signal, the following actions take place:

] Control features:

B The program counter is cleared to 0 (however, the address bus,
A15-A0, is unknown while RS is low).

B Statusbitsinregisters STO and ST1 are loaded with their reset values:
OV=0, INTM=1,CNF=0, SXM=1,C=1, XF=1and PM = 00.
(The other status bits remain undefined and should be initialized by a
reset.)

B The INTM (interrupt mode) bit is set to 1, disabling all maskable
interrupts. (RS and NMI are not maskable.) Also, the interrupt flag
register (IFR), interrupt mask register (IMR), and interrupt control
register (ICR) are cleared.

B The MODE bit of the interrupt control register (ICR) is set to 0 so that
the HOLD/INTL1 pin is both negative- and positive-edge sensitive.

B The repeat counter (RPTC) is cleared.

1 Memory and I/O spaces:

B A logic 0 is loaded into the CNF (configuration control) bit in status
register ST1, mapping dual-access RAM block BO into data space.

B The global memory allocation register (GREG) is cleared to make all
memory local.

B The wait-state generator is set to provide the maximum number of wait
states for external memory and I/O accesses.

5-35

(4 Peripherals:

The peripherals are not reset until 16 CLKOUT1 cycles from the rising edge
of the RESET pin.

B The timer count is set to its maximum value (FFFFh), the timer
divide-down value is set to 0, and the timer starts counting down.

B The synchronous serial port is reset:

The port emulation mode is set to immediate stop.
Error and status flags are reset.

Receive interrupts are set to occur when the receive buffer is not
empty.

Transmit interrupts are set to occur when the transmit buffer can
accept one or more words.

External clock and frame synchronization sources are selected.
Continuous mode is selected.
Digital loopback mode is disabled.

The receiver and transmitter are enabled.

B The asynchronous serial port is reset:

The port emulation mode is set to immediate stop.

Error and status flags are reset.

Receive, transmit, and delta interrupts are disabled.
One stop bit is selected.

Auto-baud alignment is disabled.

The TX pin is forced high between transmissions.

I/0 pins 100, 101, 102, and 103 are configured as inputs.
A baud rate of (CLKOUTL1 rate)/16 is selected.

The port is disabled.

B CLK register bit O is cleared to 0 so that the CLKOUT1 signal is
available at the CLKOUT1 pin.

No other registers or status bits (such as the accumulator, DP, ARP, and the
auxiliary registers) are initialized. Table 5—9 and Table 5-10 list the reset val-
ues for all the registers mapped to on-chip addresses.

5-36

Table 5-9. Reset Values of On-Chip Registers Mapped to Data Space

Name Data-Memory Address Reset Value Description

IMR 0000h Interrupt mask register

GREG 0000h Global memory allocation register
IFR 0000h Interrupt flag register

Table 5-10. Reset Values of On-Chip Registers Mapped to I/0 Space

I/O Address
Name 'C209 Other 'C20x Reset Value Description
PMST - FFE4h 0000x Program memory status register
CLK - FFE8h 0000h CLKOUT1-pin control (CLK) register
ICR - FFECh 0000h Interrupt control register
SDTR - FFFOh xxxxh Synchronous data transmit and receive register
SSPCR - FFF1h 0030h Synchronous serial port control register
SSPST - FFF2h 0000h Synchronous serial port status register
SSPMC - FFF3h 0000h Synchronous serial port multichannel register
ADTR - FFF4h xxxxh Asynchronous data transmit and receive register
ASPCR - FFF5h 0000h Asynchronous serial port control register
IOSR - FFF6h 18xxh I/O status register
BRD - FFF7h 0001h Baud-rate divisor register
TCR FFFCh FFF8h 0000h Timer control register
PRD FFFDh FFF9h FFFFh Timer period register
TIM FFFEh FFFAQ FFFFh Timer counter register
SSPCT - FFFBh 0000h Synchronous serial port shift clock and frame
sync prescaler
WSGR FFFFh FFFCh OFFFh Wait-state generator control register

Note: An x in an address represents four bits that are either not affected by reset or dependent on pin levels at reset.

5-37

5.7.1 TMS320C206/LC206 Reset and PLL Lock Conditions

TMS320C206/LC206 devices have special reset conditions compared to the
TMS320C203 and TMS320F206 devices. Table 5-11 explains the reset
conditions for the TMS320C206/LC206 devices.

Table 5-11. Reset Conditions for the ‘C206/'LC206

Condition PLLRS RS2 RS PLL T DSP Core
Power on reset (POR) 0 X (Don't care) 0 Reset Reset

After POR Always 1 1 1 No No

After POR Always 1 0 0 No Reset

T PLL-reset means that the PLL resets and initiates locking sequence.
[CaseA

The Case A schematic shows initiation of PLL and DSP core reset at power
up. After power up, reset pulses on RS2 (for example, watchdog timer) reset
the DSP core only. The PLL does not reset as PLLRS remains inactive high
while RS2 is active low. This scheme keeps CLKOUT1 locked for all resets
except for power-on reset.

PLL

DSP core

T\
RS2———__J

TMS320C206/LC206

5-38

] CaseB

The Case B schematic shows initiation of the PLL reset and DSP core reset
for every reset. Following every reset, the PLL initiates the PLL locking
sequence as PLLRS is low during reset RS.

VCC
PLLRS , :
D : PLL !
) RS - :
: DSP core !
TMS320C206/LC206
] CaseC

The Case C schematic shown is equivalent to case B. PLL and DSP core are
reset for each reset. PLL initiates the locking sequence for every reset as
PLLRS is low during reset.

VCC

% ,

PLLRS ' :
D D 1 : PLL !
) o Z
: DSP core !
TMS320C206/LC206

5-39

5.8 Power-Down Mode

The 'C20x has a power-down mode that allows the 'C20x core to enter a
dormant state and use less power than during normal operation. Executing an
IDLE instruction initiates power-down mode. When the IDLE instruction
executes, the program counter is incremented once, and then all CPU
activities are halted. While the 'C20x is in power-down mode, all of its internal
contents are maintained. The content of all on-chip RAM remains unchanged.
The peripheral circuits continue to operate, allowing the serial ports and the
timer to take the CPU out of the power-down state. The CLKOUT1 pin remains
active if bit 0 of the CLK register is set to 0.

The methods for terminating power-down mode depend on whether the
power-down was initiated under normal circumstances or as part of a HOLD
operation. sections 5.8.1 and 5.8.2 describe the differences.

5.8.1 Normal Termination of Power-Down Mode

5-40

If power-down has been initiated, any hardware interrupt (internal or external)
takes the processor out of the IDLE state. If you use reset or NMI, the CPU will
immediately execute the corresponding interrupt service routine. In addition,
if you use reset, registers will assume their reset values.

For a maskable hardware interrupt to wake the processor, it must be
unmasked by the interrupt mask register (IMR bit = 1). However, if the interrupt
is unmasked and is then requested, the processor will leave the IDLE state
regardless of the value of the INTM bit (bit 9 of status register ST0). The value
of the INTM bit will only determine the action of the CPU after power-down has
been terminated:

[INTM = 0. The interrupt is enabled, and the CPU executes the
corresponding interrupt service routine.

(4 INTM = 1. The interrupt is disabled, and the CPU continues with the
instruction after IDLE.

If you do not want the CPU to follow an interrupt service routine before
continuing with the interrupted program sequence:

(1 Do not use reset or NMI to bring the processor out of power-down.

[0 Make sure your program globally disables maskable interrupts (sets INTM
to 1) before IDLE is executed.

5.8.2 Termination of Power-Down During a HOLD Operation

One of the necessary steps in the HOLD operation is the execution of an IDLE
instruction (see section 4.6, Direct Memory Access Using The HOLD
Operation, on page 4-18) . There are unique characteristics of the HOLD
operation that affect how the IDLE state can be exited.

Before performing a HOLD operation, your program must write a O to the
MODE bit (bit 4 of the interrupt control register, ICR). This makes the
HOLD/INT1 pin both negative- and positive-edge sensitive. A falling edge on
HOLD/INT1 will cause the CPU to branch to the interrupt service routine, which
initiates the HOLD operation with an IDLE instruction. A subsequent rising
edge on HOLD/INT1 can take the CPU out of the IDLE state and end the HOLD
operation. This rising-edge interrupt does not cause the CPU to branch to the
interrupt service routine.

The recommended software logic for the HOLD operation is described in
section 4.6, Direct Memory Access Using the HOLD Operation.

During a HOLD operation, there are only three valid methods for taking the
CPU out of the IDLE state:

[J Causing a rising edge on the HOLD/INT1 pin.
[J Asserting a system reset at the reset pin.
[J Asserting the nonmaskable interrupt NMI at the NMI pin.

If you use reset or NMI, the CPU will immediately execute the corresponding
interrupt service routine. In addition, if you use reset, the contents of some
registers will be changed. For more information about exiting a HOLD
operation with reset or NMI, see section 4.6, Direct Memory Access Using The
HOLD Operation.

5-41

Chapter 6

Addressing Modes

This chapter explains the three basic memory addressing modes used by the
'C20x instruction set. The three modes are:

J Immediate addressing mode
[J Direct addressing mode
[J Indirect addressing mode

In immediate addressing, a constant to be manipulated by the instruction is
supplied directly as an operand of that instruction. Two types of immediate
addressing are available—short and long. In short-immediate addressing, an
8-, 9-, or 13-bit operand is included in the instruction word. Long-immediate
addressing uses a 16-bit operand.

When you need to access data memory, you can use direct or indirect addres-
sing. Direct addressing concatenates seven bits of the instruction word with
the nine bits of the data-memory page pointer (DP) to form the 16-bit data
memory address. Indirect addressing accesses data memory through one of
eight 16-bit auxiliary registers.

Topic Page
6.1 Immediate Addressing Modec.iiiiiiiiiii, 6
6.2 Direct Addressing MOeoovuiiiiiiii i 6[4]
6.3 Indirect Addressing Mode 6-@

6-1

6.1

Immediate Addressing Mode

In immediate addressing, the instruction word contains a constant to be ma-
nipulated by the instruction. The 'C20x supports two types of immediate ad-

dressing:

[0 Short-immediate addressing. Instructions that use short-immediate ad-
dressing take an 8-bit, 9-bit, or 13-bit constant as an operand. Short-im-
mediate instructions require a single instruction word, with the constant

embedded in that word.

[0 Long-immediate addressing. Instructions that use long-immediate ad-
dressing take a 16-bit constant as an operand and require two instruction
words. The constantis sent as the second instruction word. This 16-bit val-
ue can be used as an absolute constant or as a 2s-complement value.

6.1.1 Examples of Immediate Addressing

In Example 6-1, the immediate operand is contained as a part of the RPT
instruction word. For this RPT instruction, the instruction register will be loaded
with the value shown in Figure 6—1. Immediate operands are preceded by the

symbol #.

Example 6-1. RPT Instruction Using Short-Immediate Addressing

RPT #99

;Execute the instruction that follows RPT

;100 times.

Figure 6-1. Instruction Register Contents for Example 6—1
15 14 13 12 11 10

9

8

7

1 0 1

1

1 0

1

1

0

1

RPT opcode for immediate addressing

8-bit constant = 99

In Example 6-2, the immediate operand is contained in the second instruction

word. The instruction register receives, consecutively, the two 16-bit values
shown in Figure 6-2.

Example 6-2. ADD Instruction Using Long-Immediate Addressing

ADD #16384,2 ;Shift the value 16384 left by two bits
:and add the result to the accumulator.

Figure 6-2. Two Words Loaded Consecutively to the Instruction Register in Example 6—2
First instruction word:

5 14 13 12 11 10 9 8 7 6 5 4 3 2

1 0
$1 o0 1 1 1 1 1 1 1 O O 1/ 0 O 1 o
ADD opcode for long-immediate addressing shift = 2
Second instruction word:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o 1 o o0 o0 O o o o o o o o o o o

16-bit constant = 16 384 = 4000h

6-3

6.2 Direct Addressing Mode

In the direct addressing mode, data memory is addressed in blocks of 128
words called data pages. The entire 64K of data memory consists of 512 data
pages labeled 0 through 511, as shown in Figure 6—3. The current data page
is determined by the value in the 9-bit data page pointer (DP) in status register
STO. For example, if the DP value is 000000000, the current data page is O.

If the DP value is 0000000105, the current data page is 2.

Figure 6-3. Pages of Data Memory

DP value Offset
0000 0000 0 ' 000 0000

0000 0000 0| 111 1111
0000 0000 1 000 0000

0000 0000 1 | 111 1111
0000 0001 O | 000 0000

0000 0001 0 111 1111

1111 11111 | 000 0000

1111 11111 | 111 1111

In addition to the data page, the processor must know the particular word being
referenced on that page. This is determined by a 7-bit offset (see Figure 6-3).
The offset is supplied by the seven least significant bits (LSBs) of the instruc-
tion register, which holds the opcode for the next instruction to be executed.
Indirectaddressing mode, the content of the instruction register has the format

shown in Figure 6—4.

Data Memory

Page 0: 0000h—007Fh

Page 1: 0080h—00FFh

Page 2: 0100h—017Fh

Page 511: FF80h—FFFFh

Figure 6—4. Instruction Register (IR) Contents in Direct Addressing Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
8 MSBs 0 7 LSBs
8 MSBs Bits 15 through 8 indicate the instruction type (for example,

ADD) and also contain any information regarding a shift of the
data value to be accessed by the instruction.

0 Direct/indirect indicator.
dressing mode as direct.

Bit 7 contains a O to define the ad-

7 LSBs Bits 6 through 0 indicate the offset for the data-memory ad-
dress referenced by the instruction.

To form a complete 16-bit address, the processor concatenates the DP value
and the seven LSBs of the instruction register, as shown in Figure 6-5. The
DP supplies the nine most significant bits (MSBs) of the address (the page
number), and the seven LSBs of the instruction register supply the seven LSBs
of the address (the offset). For example, to access data address 003Fh, you
specify data page 0 (DP = 0000 0000 0) and an offset of 011 1111. Concatenat-
ing the DP and the offset produces the 16-bit address 0000 0000 0011 1111,
which is 003Fh or decimal 63.

Figure 6-5. Generation of Data Addresses in Direct Addressing Mode

Data page pointer (DP)

Instruction register (IR)

9 bits

8 MSBs 0

7 LSBs

All 9 bits from DP

\ 4

7 LSBs from IR

\ 4

Page (9 MSBs)

Offset (7 LSBs)

16-bit data-memory address

Initialize the DP in All Programs

It is critical that all programs initialize the DP. The DP is not
initialized by reset and is undefined after power up. The 'C20x
development tools use default values for many parameters,
including the DP. However, programs that do not explicitly initialize

the DP can execute improperly, depending on whether they are
executed on a 'C20x device or with a development tool.

6-5

6.2.1 Using Direct Addressing Mode

When you use direct addressing mode, the processor uses the DP to find the
data page and uses the seven LSBs of the instruction register to find a particu-
lar address on that page. Always do the following:

1) Setthe data page. Load the appropriate value (from 0 to 511) into the DP.
The DP register can be loaded by the LDP instruction or by any instruction
that can load a value to STO. The LDP instruction loads the DP directly
without affecting the other bits of STO, and it clearly indicates the value
loaded into the DP. For example, to set the current data page to 32 (ad-
dresses 1000h—107Fh), you can use:

LDP #32 ;Initialize data page pointer

2) Specify the offset. Supply the 7-bit offset as an operand of the instruction.
Forexample, if you wantthe ADD instruction to use the value at the second
address of the current data page, you would write:

ADD 1h ;Add to accumulator the value in the current
;data page, offset of 1.

You do not have to set the data page prior to every instruction that uses direct
addressing. If all the instructions in a block of code access the same data page,
you can simply load the DP at the front of the block. However, if various data
pages are being accessed throughout the block of code, be sure the DP is
changed whenever a new data page should be accessed.

6.2.2 Examples of Direct Addressing

6-6

In Example 6-3, the first instruction loads the DP with 0000001005 (4) to set
the current data page to 4. The ADD instruction then references a data
memory address that is generated as shown following the program code. Be-
fore the ADD instruction is executed, the opcode is loaded into the instruction
register. Together, the DP and the seven LSBs of the instruction register form
the complete 16-bit address, 0000001000001001, (0209h).

Example 6—-3. Using Direct Addressing with ADD (Shift of O to 15)

LDP #4 ;Set data page to 4 (addresses 0200h—027Fh).
ADD 9h,5 ;The contents of data address 0209h are
;left—shifted 5 bits and added to the
;contents of the accumulator.
DP =4 Instruction register (IR)
0000 0010 O 0010 : 0010 0O 000 1001
ADD Shift of 5 9h
opcode
All 9 bits from DP 7 LSBs from IR
\ 4 A 4
0000 0010 O 000 1001
16-bit data address 0209h

In Example 64, the ADD instruction references a data memory address that
is generated as shown following the program code. For any instruction that

performs a

shift of 16, the shift value is not embedded directly in the instruction

word; instead, all eight MSBs contain an opcode that not only indicates the

instruction
indicate an

type but also a shift of 16. The eight MSBs of the instruction word
ADD with a shift of 16.

Example 6—4. Using Direct Addressing with ADD (Shift of 16)

LDP #5 ;Set data page to 5 (addresses 0280h—02FFh).
ADD 9h,16 ;The contents of data address 0289h are
;left—shifted 16 bits and added to the
;contents of the accumulator.
DP =5 Instruction register (IR)
0000 0010 1 0110 0001 0| 000 1001
ADD with shift of 16 9h
opcode
All 9 bits from DP 7 LSBs from IR
\ 4 \ 4
0000 0010 1 000 1001

16-bit data address 0289h

6-7

In Example 6-5, the ADDC instruction references a data memory address that
is generated as shown following the program code. Note that if an instruction
does not perform shifts, like the ADDC instruction does not, all eight MSBs of
the instruction contain the opcode for the instruction type.

Example 6-5. Using Direct Addressing with ADDC

DP = 500

1111 1010 O

Instruction register (IR)

LDP #500 ;Set data page to 500 (addresses FAOOh—FA7Fh).
ADDC 6h ;The contents of data address FAO6h
;and the value of the carry bit (C) are
;added to the contents of the accumulator.

0110 0000

0

000 0110

ADDC opcode

6h

All 9 bits from DP

A 4 Y

7 LSBs from IR

1111

1010 O 000 0110

16-bit data address FAO6h

6.3 Indirect Addressing Mode

Eight auxiliary registers (ARO—-AR7) provide flexible and powerful indirect ad-
dressing. Any location in the 64K data memory space can be accessed using
a 16-bit address contained in an auxiliary register.

6.3.1 Current Auxiliary Register

To select a specific auxiliary register, load the 3-bit auxiliary register pointer
(ARP) of status register STO with a value from 0 to 7. The ARP can be loaded
as a primary operation by the MAR instruction or by the LST instruction. The
ARP can be loaded as a secondary operation by any instruction that supports
indirect addressing.

The register pointed to by the ARP is referred to as the current auxiliary register
or current AR. During the processing of an instruction, the content of the cur-
rent auxiliary register is used as the address at which the data-memory access
will take place. The ARAU passes this address to the data-read address bus
(DRAB) if the instruction requires a read from data memory, or it passes the
address to the data-write address bus (DWAB) if the instruction requires a
write to data memory. After the instruction uses the data value, the contents
of the current auxiliary register can be incremented or decremented by the
ARAU, which implements unsigned 16-bit arithmetic.

Normally, the ARAU performs its arithmetic operations in the decode phase of
the pipeline (when the instruction specifying the operation is being decoded).
This allows the address to be generated before the decode phase of the next
instruction. There is an exception to this rule: During processing of the NORM
instruction, the auxiliary register and/or ARP modification is done during the
execute phase of the pipeline. For information on the operation of the pipeline,
see section 5.2 on page 5-7.

6.3.2 Indirect Addressing Options

The 'C20x provides four types of indirect addressing options:

1 Noincrementordecrement. The instruction uses the content of the current
auxiliary register as the data memory address but neither increments nor
decrements the content of the current auxiliary register.

1 Increment or decrement by 1. The instruction uses the content of the cur-
rent auxiliary register as the data memory address and then increments
or decrements the content of the current auxiliary register by one.

[Incrementordecrementby anindex amount. The value in ARO is the index
amount. The instruction uses the content of the current auxiliary register

6-9

as the data memory address and then increments or decrements the con-
tent of the current auxiliary register by the index amount.

(1 Increment or decrement by an index amount using reverse carry. The val-
ue in ARO is the index amount. After the instruction uses the content of the
current auxiliary register as the data-memory address, that content is in-
cremented or decremented by the index amount. The addition or subtrac-
tion, in this case, is done with the carry propagation reversed (for FFTs).

These four option types provide the seven indirect addressing options listed
in Table 6-1. The table also shows the instruction operand that corresponds
to each indirect addressing option and gives an example of how each option
is used.

Table 6-1. Indirect Addressing Operands

Option Operand Example

No increment or decrement * LT * loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR.

Increment by 1 *+ LT *+ loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then adds one to the
content of the current AR.

Decrement by 1 *— LT *— loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then subtracts one from
the content of the current AR.

Increment by index amount *0+ LT *0+ loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then adds the content
of ARO to the content of the current AR.

Decrement by index amount ~ *0— LT *0- loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then subtracts the con-
tent of ARO from the content of the cur-
rent AR.

6-10

Table 6-1. Indirect Addressing Operands (Continued)

Option Operand Example
Increment by index amount, *BRO+ LT *BRO+ loads the temporary register
adding with reverse carry (TREG) with the content of the data

memory address referenced by the
current AR and then adds the content
of ARO to the content of the current AR,
adding with reverse carry propagation.

Decrement by index amount, *BRO- LT *BRO- loads the temporary register

subtracting with reverse carry (TREG) with the content of the data
memory address referenced by the
current AR and then subtracts the
content of ARO from the content of the
current AR, subtracting with bit reverse
carry propagation.

Allincrements or decrements are performed by the auxiliary register arithmetic
unit (ARAU) in the same cycle during which the instruction is being decoded
in the pipeline.

The bit-reversed indexed addressing allows efficient I/O operations by rese-
quencing the data points in a radix-2 FFT program. The direction of carry prop-
agationinthe ARAU is reversed when the address is selected, and ARO is add-
ed to or subtracted from the current auxiliary register. A typical use of this ad-
dressing mode requires that ARO first be set to a value corresponding to half
of the array’s size, and that the current AR value be set to the base address
of the data (the first data point).

6.3.3 Next Auxiliary Register

In addition to updating the current auxiliary register, a number of instructions
can also specify the next auxiliary register or next AR. This register will be the
current auxiliary register when the instruction execution is complete. The
instructions that allow you to specify the next auxiliary register load the ARP
with a new value. When the ARP is loaded with that value, the previous ARP
value is loaded into the auxiliary register pointer buffer (ARB). Example 6—6
illustrates the selection of a next auxiliary register, as well as other indirect ad-
dressing features discussed so far.

6-11

Example 6—6. Selecting a New Current Auxiliary Register

MAR* AR1 :Load the ARP with 1 to make AR1 the
;current auxiliary register.

LT *+AR2 ;AR2 is the next auxiliary register.
:Load the TREG with the content of the
;address referenced by AR1, add one to
:the content of AR1, then make AR2 the
;current auxiliary register.

MPY * ;Multiply TREG by content of address
;referenced by AR2.

6.3.4 Indirect Addressing Opcode Format

Figure 6—6 shows the format of the instruction word loaded into the instruction
register when you use indirect addressing. The opcode fields are described
following the figure.

Figure 6—6. Instruction Register Content in Indirect Addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
8 MSBs 1 ARU N NAR

8 MSBs Bits 15 through 8 indicate the instruction type (for example,
LT) and also contain any information regarding data shifts.

1 Direct/indirect indicator. Bit 7 contains a 1 to define the
addressing mode as indirect.

ARU Auxiliary register update code. Bits 6 through 4 determine
whether and how the current auxiliary register is incremented
or decremented. See Table 6-2.

N Next auxiliary register indicator. Bit 3 specifies whether the
instruction will change the ARP value.

N=0 If N is 0, the content of the ARP will remain
unchanged.

N=1 If N is 1, the content of NAR will be loaded into
the ARP, and the old ARP value is loaded into
the auxiliary register buffer (ARB) of status

register ST1.
NAR Next auxiliary register value. Bits 2 through O contain the
value of the next auxiliary register. NAR is loaded into the ARP

if N =1.

6-12

Table 6-2. Effects of the ARU Code on the Current Auxiliary Register

ARU Code
6 5 4 Arithmetic Operation Performed on Current AR
0 0 0 No operation on current AR
0 0 1 current AR-1 - current AR
0 1 0 current AR+ 1 - current AR
0 1 1 Reserved
1 0 0 current AR — ARO - current AR [reverse carry propagation]
1 0 1 current AR - ARO - current AR
1 1 0 current AR + ARO - current AR
1 1 1 current AR + ARO - current AR [reverse carry propagation]

Table 6—3 shows the opcode field bits and the notation used for indirect ad-
dressing. It also shows the corresponding operations performed on the current
auxiliary register and the ARP.

6-13

Table 6-3. Field Bits and Notation for Indirect Addressing

Instruction Opcode Bits

15 - 876543210 Operand(s) Operation
~ 8MSBs -1 0 0 0 0 —NAR- * No manipulation of current AR
~ 8MSBs -1 0 0 0 1 <NAR- * ARnN NAR - ARP
. 8MSBs - 1 0 0 1 0 ~NAR- *— current AR —1 - current AR
. 8MSBs - 1 0 0 1 1 ~NAR- *~ ARN current AR — 1 - current AR
NAR - ARP
- 8MSBs -~ 1 0 1 0 0 —NAR- *+ current AR + 1 — current AR
- 8MSBs -1 0 1 0 1 —NAR- *+,ARn current AR + 1 — current AR
NAR - ARP
- 8MSBs - 1 1 0 0 0 <~NAR- *BRO—- current AR — rcARO - current AR T
- 8MSBs - 1 1 0 0 1 ~NAR- *BRO-,ARN current AR — rcARO - current AR
NAR - ARP T
- 8MSBs - 1 1 0 1 0 ~NAR- *0— current AR — ARO - current AR
- 8MSBs - 1 1 0 1 1 ~NAR- *0—,ARN current AR — ARO - current AR
NAR - ARP
p 8MSBs - 1 1 1 0 0 —NAR- *0+ current AR + ARO - current AR
- 8MSBs - 1 1 1 0 1 —NAR- *0+,ARn current AR + ARO - current AR
NAR - ARP
- 8MSBs - 1 1 1 1 0 ~NAR- *BRO+ current AR + rcARO - current AR T
P 8MSBs - 1 1 1 1 1 ~—NAR- *BRO+,ARN current AR + rcARO - current AR
NAR - ARP T
1 Bit-reversed addressing mode
Legend: rc Reverse carry propagation
NAR Next AR
n 0,1,2,..,0r7
8 MSBs Eight bits determined by instruction type and (sometimes) shift information
- Is loaded into

6-14

6.3.5 Examples of Indirect Addressing

In Example 6—7, when the ADD instruction is fetched from program memory,

the instruction register is loaded with the value shown.

Example 6—7. No Increment or Decrement

ADD *,8 ;Add to the accumulator the content of the
;data-memory address referenced by the
;current auxiliary register. The data
;is left-shifted 8 bits before being added.

15 14 13 12 11 10 9 8 7 6 5 4

0 0 1 0;1 0 0 0[1][0 0 O X X X
ADD opcode Shift =8
NAR = don't cares
Addressing mode = indirect N = No next AR specified

ARU = No operation on current AR

In Example 68, when the ADD instruction is fetched from program memory,

the instruction register is loaded with the value shown.

Example 6-8. Increment by 1

ADD *+,8,AR4 ;Operates as in Example 6-7, but
;in addition, the current auxiliary
;register is incremented by one, and
;AR4 is chosen as the next auxiliary

;register.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0o 0 1 0;1 0 0 of[1]0 1 0ol o0[1 0 o
ADD opcode Shift =8
NAR =4
Addressing mode = indirect N = next AR specified

ARU = increment current AR by 1

6-15

Example 6-9. Decrement by 1

ADD *-,8 ;Operates as in Example 6-7, but in
;addition, the current auxiliary register
;is decremented by one.

Example 6-10. Increment by Index Amount

ADD *0+,8 ;Operates as in Example 6—7, but in
;addition, the content of register ARO
;is added to the current auxiliary
;register.

Example 6-11. Decrement by Index Amount

ADD *0-,8 ;Operates as in Example 67, but in
;addition, the content of register ARO
;is subtracted from the current auxiliary
;register.

Example 6-12. Increment by Index Amount With Reverse Carry Propagation

ADD *BR0+,8 ;Operates as in Example 6-10, except that
;the content of register ARO is added to
;the current auxiliary register with
;reverse carry propagation.

Example 6—13. Decrement by Index Amount With Reverse Carry Propagation

ADD *BR0-,8 ;Operates as in Example 6-11, except that
;the content of register ARO is subtracted
;from the current auxiliary register with
;reverse carry propagation.

6-16

6.3.6 Modifying Auxiliary Register Content

The LAR, ADRK, SBRK, and MAR instructions are specialized instructions for
changing the content of an auxiliary register (AR):

[The LAR instruction loads an AR.

[The ADRK nstruction adds animmediate value to an AR; SBRK subtracts
an immediate value.

[The MAR instruction can increment or decrement an AR value by one or
by an index amount.

However, you are not limited to these four instructions. Auxiliary registers can
be modified by any instruction that supports indirect addressing operands. (In-
direct addressing can be used with all instructions except those that have im-
mediate operands or no operands.)

6-17

Chapter 7

Assembly Language Instructions

The 'C20x instruction set supports numerically intensive signal-processing op-
erations as well as general-purpose applications such as multiprocessing and
high-speed control. The 'C20x instruction set is compatible with the 'C2x
instruction set; code written for the 'C2x can be reassembled to run on the
'C20x. The 'C5x instruction set is a superset of that of the 'C20x; thus, code
written for the 'C20x can be upgraded to run on a 'C5x.

This chapter describes the assembly language instructions.

Topic Page
7.1 Instruction Set Summary ... Y-El
7.2 How To Use the Instruction Descriptions 710 |
7.3 Instruction DesCriptionSt 7-

7-1

7.1

7-2

Instruction Set Summary

This section provides a summary of the instruction set in six tables (Table 7-1
to Table 7-6) according to the following functional headings:

[0 Accumulator, arithmetic, and logic instructions (see Table 7-1 on page
7-4)

Auxiliary register and data page pointer instructions (see Table 7-2 on
page 7-7)

TREG, PREG, and multiply instructions (see Table 7-3 on page 7-8)
Branch instructions (see Table 7—4 on page 7-9)

Control instructions (see Table 7-5 on page 7-9)

I/O and memory operations (see Table 7—6 on page 7-11)

oo o

Within each table, the instructions are arranged alphabetically. The number of
words that an instruction occupies in program memory is specified in column
three of each table; the number of cycles that an instruction requires to execute
is in column four. All instructions are assumed to be executed from internal
program memory (RAM) and internal data dual-access memory. The cycle
timings are for single-instruction execution, not for repeat mode. Additional
information about each instruction is presented in the individual instruction
descriptions in section 7.2.

For your reference, here are definitions of the symbols used in these six sum-
mary tables:

ACC The accumulator
AR Auxiliary register
ARX A 3-bit value used in the LAR and SAR instructions to desig-

nate which auxiliary register will be loaded (LAR) or have its
contents stored (SAR)

BITX A 4-bit value (called the bit code) that determines which bit of
a designated data memory value will be tested by the BIT
instruction

CM A 2-bit value. The CMPR instruction performs a comparison

specified by the value of CM:

If CM = 00, test whether current AR = ARO
If CM = 01, test whether current AR < ARO
If CM = 10, test whether current AR > ARO
If CM = 11, test whether current AR # ARO

IAAA AAAA

| NTR#

PM

SHF
SHFT

P

(One | followed by seven As) The | at the left represents a bit
that reflects whether direct addressing (I = 0) or indirect ad-
dressing (1=1) is being used. When direct addressing is used,
the seven As are the seven least significant bits (LSBs) of a
data memory address. For indirect addressing, the seven As
are bits that control auxiliary register manipulation (see sec-
tion 6.3, Indirect Addressing Mode, p. 6-9).

(Eight Is) An 8-bit constant used in short immediate addres-
sing

(Nine Is) A 9-bit constant used in short immediate addressing
for the LDP instruction

(Thirteen Is) A 13-bit constant used in short immediate ad-
dressing for the MPY instruction

A 5-bit value representing a number from 0 to 31. The INTR
instruction uses this number to change program control to one
of the 32 interrupt vector addresses.

A 2-bit value copied into the PM bits of status register ST1 by
the SPM instruction

A 3-bit left-shift value
A 4-bit left-shift value

A 2-bit value used by the conditional execution instructions to
represent four conditions:

BIO pin low TP =00
TC bit =1 TP =01
TCbhit=0 TP =10
No condition TP =11

7-3

ZLVC ZLVC

+ 1 word

Two 4-bit fields — each representing the following conditions:

ACC=0 Z
ACC<O0 L
Overflow \Y
Carry C

A conditional instruction contains two of these 4-bit fields. The
4-LSB field of the instruction is a mask field. A 1 in the corre-
sponding mask bit indicates that condition is being tested. For
example, to test for ACC = 0, the Z and L fields are set, and
the Vand Cfields are not set. The Z field is set to test the condi-
tion ACC = 0, and the L field is reset to test the condition
ACC = 0.The second 4-bit field (bits 4 — 7) indicates the state
of the conditions to test. The conditions possible with these
eight bits are shown in the descriptions for the BCND, CC, and
RETC instructions.

The second word of a two-word opcode. This second word
contains a 16-hit constant. Depending on the instruction, this
constant is a long immediate value, a program memory ad-
dress, or an address for an I/O port or an I/O-mapped register.

Table 7-1. Accumulator, Arithmetic, and Logic Instructions

Mnemonic Words Cycles Opcode
ABS Absolute value of ACC 1 1 1011 1110 0000 0000
ADD Add to ACC with shift of O to 15, direct or indirect 1 1 0010 SHFT IAAA AAAA
Add to ACC with shift 0 to 15, long immediate 2 2 1011 1111 1001 SHFT
+ 1 word
Add to ACC with shift of 16, direct or indirect 1 1 0110 0001 IAAA AAAA
Add to ACC, short immediate 1 1 1011 1000 I 1
ADDC Add to ACC with carry, direct or indirect 1 1 0110 0000 IAAA AAAA
ADDS Add to low ACC with sign-extension suppressed, 1 1 0110 0010 IAAA AAAA
direct or indirect
ADDT Add to ACC with shift (0 to 15) specified by TREG, 1 1 0110 0011 IAAA AAAA

direct or indirect

Table 7-1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Mnemonic Description Words Cycles Opcode
AND AND ACC with data value, direct or indirect 1 1 0110 1110 IAAA AAAA
AND with ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1011 SHFT
+ 1 word
AND with ACC with shift of 16, long immediate 2 2 1011 1110 1000 0001
+ 1 word
CMPL Complement ACC 1 1 1011 1110 0000 0001
LACC Load ACC with shift of 0 to 15, direct or indirect 1 1 0001 SHFT IAAA AAAA
Load ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1000 SHFT
+ 1 word
Load ACC with shift of 16, direct or indirect 1 1 0110 1010 IAAA AAAA
LACL Load low word of ACC, direct or indirect 1 1 0110 1001 IAAA AAAA
Load low word of ACC, short immediate 1 1 1011 1001 1 H
LACT Load ACC with shift (0 to 15) specified by TREG, 1 1 0110 1011 IAAA AAAA
direct or indirect
NEG Negate ACC 1 1 1011 1110 0000 0010
NORM Normalize the contents of ACC, indirect 1 1 1010 0000 IAAA AAAA
OR OR ACC with data value, direct or indirect 1 1 0110 1101 IAAA AAAA
OR with ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1100 SHFT
+ 1 word
OR with ACC with shift of 16, long immediate 2 2 1011 1110 1000 0010
+ 1 word
ROL Rotate ACC left 1 1 1011 1110 0000 1100
ROR Rotate ACC right 1 1 1011 1110 0000 1101
SACH Store high ACC with shift of 0 to 7, 1 1 1001 1SHF IAAA AAAA
direct or indirect
SACL Store low ACC with shift of 0 to 7, 1 1 1001 OSHF IAAA AAAA
direct or indirect
SFL Shift ACC left 1 1 1011 1110 0000 1001
SFR Shift ACC right 1 1 1011 1110 0000 1010

Table 7-1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Mnemonic

Description

Words Cycles Opcode

SUB

SUBB
SUBC

SUBS

SUBT

XOR

ZALR

Subtract from ACC with shift of O to 15,

direct or indirect

Subtract from ACC with shift of 0 to 15,

long immediate

Subtract from ACC with shift of 16,

direct or indirect

Subtract from ACC, short immediate
Subtract from ACC with borrow, direct or indirect
Conditional subtract, direct or indirect

Subtract from ACC with sign-extension
suppressed, direct or indirect

Subtract from ACC with shift (0 to 15) specified by

TREG, direct or indirect

Exclusive OR ACC with data value, direct or indirect

Exclusive OR with ACC with shift of O to 15,

long immediate

Exclusive OR with ACC with shift of 16, long

immediate

Zero low ACC and load high ACC with rounding,

direct or indirect

0011 SHFT IAAA AAAA

1011 1111 1010 SHFT
+ 1 word

0110 0101 IAAA AAAA

1011 1010 HIF 1l
0110 0100 IAAA AAAA
0000 1010 IAAA AAAA

0110 0110 IAAA AAAA

0110 0111 IAAA AAAA

0110 1100 IAAA AAAA

1011 1111 1101 SHFT
+ 1 word

1011 1110 1000 0011
+ 1 word

0110 1000 IAAA AAAA

7-6

Table 7-2. Auxiliary Register Instructions

Mnemonic Description Words Cycles Opcode

ADRK Add constant to current AR, 1 1 0111 1000 i
short immediate

BANZ Branch on current AR not-zero, 2 4 (condition true) 0111 1011 1AAA AAAA
indirect 2 (condition false) + 1 word

CMPR Compare current AR with ARO 1 1 1011 1111 0100 01CM

LAR Load specified AR from 1 2 0000 OARX IAAA AAAA
specified data location,
direct or indirect
Load specified AR with 1 2 1011 OARX 11 1
constant, short immediate
Load specified AR with 2 2 1011 1111 0000 1ARX
constant, long immediate + 1 word

MAR Modify current AR and/or ARP, 1 1 1000 1011 IAAA AAAA
indirect (performs no operation
when direct)

SAR Store specified AR to specified 1 1 1000 OARX IAAA AAAA
data location, direct or indirect

SBRK Subtract constant from current 1 1 0111 2100 [HF T

AR, short immediate

Table 7-3. TREG, PREG, and Multiply Instructions

Mnemonic Description Words Cycles Opcode

APAC Add PREG to ACC 1 1 1011 1110 0000 0100

LPH Load high PREG, direct or indirect 1 1 0111 0101 IAAA AAAA

LT Load TREG, direct or indirect 1 1 0111 0011 IAAA AAAA

LTA Load TREG and accumulate previous product, 1 1 0111 0000 IAAA AAAA
direct or indirect

LTD Load TREG, accumulate previous product, and 1 1 0111 0010 IAAA AAAA
move data, direct or indirect

LTP Load TREG and store PREG in accumulator, 1 1 0111 0001 IAAA AAAA
direct or indirect

LTS Load TREG and subtract previous product, 1 1 0111 0100 IAAA AAAA
direct or indirect

MAC Multiply and accumulate, direct or indirect 2 3 1010 0010 IAAA AAAA

+ 1 word

MACD Multiply and accumulate with data move, direct or 2 3 1010 0011 IAAA AAAA
indirect + 1 word

MPY Multiply TREG by data value, direct or indirect 1 1 0101 0100 IAAA AAAA
Multiply TREG by 13-bit constant, short immediate 1 1 1100 e nm

MPYA Multiply and accumulate previous product, director 1 1 0101 0000 IAAA AAAA
indirect

MPYS Multiply and subtract previous product, direct or 1 1 0101 0001 IAAA AAAA
indirect

MPYU Multiply unsigned, direct or indirect 1 1 0101 0101 IAAA AAAA

PAC Load ACC with PREG 1 1 1011 1110 0000 0011

SPAC Subtract PREG from ACC 1 1 1011 1110 0000 0101

SPH Store high PREG, direct or indirect 1 1 1000 1101 IAAA AAAA

SPL Store low PREG, direct or indirect 1 1 1000 1100 IAAA AAAA

SPM Set product shift mode 1 1 1011 1111 0000 OOPM

SQRA Square and accumulate previous product, director 1 1 0101 0010 IAAA AAAA
indirect

SQRS Square and subtract previous product, direct or 1 1 0101 0011 IAAA AAAA

indirect

Table 7-4. Branch Instructions

Mnemonic Description Words Cycles Opcode
B Branch unconditionally, indirect 2 4 0111 1001 1AAA AAAA
+ 1 word
BACC Branch to address specified by 1 4 1011 1110 0010 0000
ACC
BANZ Branch on current AR not-zero, 2 4 (condition true) 0111 1011 1AAA AAAA
indirect 2 (condition false) + 1 word
BCND Branch conditionally 2 4 (conditions true) 1110 O0TP ZLVC ZLVC
2 (any condition false) + 1 word
CALA Call subroutine at location 1 4 1011 1110 0011 0000
specified by ACC
CALL Call subroutine, indirect 2 4 0111 1010 1AAA AAAA
+ 1 word
CcC Call conditionally 2 4 (conditions true) 1110 10TP ZLVC ZLVC
2 (any condition false) + 1 word
INTR Soft interrupt 1 4 1011 1110 0111 NTR#
NMI Nonmaskable interrupt 1 4 1011 1110 0101 0010
RET Return from subroutine 1 4 1110 1111 0000 0000
RETC Return conditionally 1 4 (conditions true) 1110 11TP ZLVC ZLVC
2 (any condition false)
TRAP Software interrupt 1 4 1011 1110 0101 0001

Table 7-5. Control Instructions

Mnemonic Description Words Cycles Opcode

BIT Test bit, direct or indirect 1 1 0100 BITX IAAA AAAA

BITT Test bit specified by TREG, direct or indirect 1 1 0110 1111 IAAA AAAA

CLRC Clear C bit 1 1 1011 1110 0100 1110
Clear CNF bit 1 1 1011 1110 0100 0100
Clear INTM bit 1 1 1011 1110 0100 0000
Clear OVM bit 1 1 1011 1110 0100 0010
Clear SXM bit 1 1 1011 1110 0100 0110
Clear TC bit 1 1 1011 1110 0100 1010
Clear XF bit 1 1 1011 1110 0100 1100

Table 7-5. Control Instructions (Continued)

Mnemonic Description Words Cycles Opcode
IDLE Idle until interrupt 1 1 1011 1110 0010 0010
LDP Load data page pointer, 1 2 0000 1101 IAAA AAAA
direct or indirect
Load data page pointer, 1 2 1011 1201 [
short immediate
LST Load status register STO, direct or indirect 1 2 0000 1110 IAAA AAAA
Load status register ST1, direct or indirect 1 2 0000 1111 IAAA AAAA
NOP No operation 1 1 1000 1011 0000 0000
POP Pop top of stack to low ACC 1 1 1011 1110 0011 0010
POPD Pop top of stack to data memory, direct or indirect 1 1 1000 1010 IAAA AAAA
PSHD Push data memory value on stack, direct or 1 1 0111 0110 IAAA AAAA
indirect
PUSH Push low ACC onto stack 1 1 1011 1110 0011 1100
RPT Repeat next instruction, direct or indirect 1 1 0000 1011 IAAA AAAA
Repeat next instruction, short immediate 1 1 1011 1011 I 1
SETC Set C bit 1 1 1011 1110 0100 1111
Set CNF bit 1 1 1011 1110 0100 0101
Set INTM bit 1 1 1011 1110 0100 0001
Set OVM bit 1 1 1011 1110 0100 0011
Set SXM bit 1 1 1011 1110 0100 0111
Set TC bit 1 1 1011 1110 0100 1011
Set XF bit 1 1 1011 1110 0100 1101
SPM Set product shift mode 1 1 1011 1111 0000 OOPM
SST Store status register STO, direct or indirect 1 1 1000 1110 IAAA AAAA
Store status register ST1, direct or indirect 1 1 1000 1111 IAAA AAAA

7-10

Table 7-6. I/O and Memory Instructions

Mnemonic Description Words Cycles Opcode

BLDD Block move from data memory to data memory, 2 3 1010 1000 IAAA AAAA
direct/indirect with long immediate source + 1 word

Block move from data memory to data memory, 2 3 1010 1001 IAAA AAAA
direct/indirect with long immediate destination + 1 word

BLPD Block move from program memory to data memory, 2 3 1010 0101 IAAA AAAA
direct/indirect with long immediate source + 1 word

DMOV Data move in data memory, direct or indirect 1 1 0111 0111 IAAA AAAA

IN Input data from 1/O location, direct or indirect 2 2 1010 1111 IAAA AAAA
+ 1 word

ouT Output data to port, direct or indirect 2 3 0000 1100 IAAA AAAA
+ 1 word

SPLK Store long immediate to data memory location, 2 2 1010 1110 IAAA AAAA
direct or indirect + 1 word

TBLR Table read, direct or indirect 1 3 1010 0110 IAAA AAAA

TBLW Table write, direct or indirect 1 3 1010 0111 IAAA AAAA

7-11

7.2 How To Use the Instruction Descriptions

7.2.1 Syntax

7-12

Section 7.3 contains detailed information on the instruction set. The descrip-
tion for each instruction presents the following categories of information:

Syntax
Operands
Opcode
Execution
Status Bits
Description
Words
Cycles
Examples

oo ouooo

Each instruction begins with a list of the available assembler syntax expres-
sions and the addressing mode type(s) for each expression. For example, the
description for the ADD instruction begins with:

ADD dma [, shift] Direct addressing

ADD dma, 16 Direct with left shift of 16
ADD ind[, shift [, ARn]] Indirect addressing

ADD ind, 16 [, ARnN] Indirect with left shift of 16
ADD #k Short immediate addressing
ADD #lk [, shift] Long immediate addressing

These are the notations used in the syntax expressions:

italic Italic symbols in an instruction syntax represent variables.
symbols Example: For the syntax:
ADD dma

you may use a variety of values for dma.
Samples with this syntax follow:

ADD DAT

ADD 15

boldface Boldface characters in an instruction syntax must be typed as
characters shown.
Example: For the syntax:
ADD dma, 16
you may use a variety of values for dma, but the
word ADD and the number 16 should be typed
as shown. Samples with this syntax follow:
ADD 7h, 16
ADD X, 16

[X]

[, x1 [, x2]]

Operand x is optional.

Example:

For the syntax:

ADD dma, [, shiff]

you must supply dma, as in the instruction:
ADD 7h

and you have the option of adding a shift value,
as in the instruction:

ADD 7h, 5

Operands x1 and x2 are optional, but you cannot include x2
without also including x1.

Example:

For the syntax:

ADD ind, [, shift[, ARnN]]

you must supply ind, as in the instruction:
ADD *+

You have the option of including shift,

as in the instruction:

ADD *+, 5

If you wish to include ARn, you must also
include shift, as in:

ADD *+, 0, AR2

The # symbol is a prefix for constants used in immediate
addressing. For short- or long- immediate operands, it is
used in instructions where there is ambiguity with other
addressing modes.

Example:

RPT #15 uses short immediate addressing. It
causes the next instruction to be repeated 16
times. But RPT 15 uses direct addressing.
The number of times the next instruction
repeats is determined by a value stored in
memory.

Finally, consider this code example:

MoveData BLDD DATS5, #310h ;move data at address

;referenced by DATS5 to address
:310h.

Note the optional label MoveData used as a reference in front of the instruc-
tion mnemonic. Place labels either before the instruction mnemonic on the
same line or on the preceding line in the first column. (Be sure there are no
spaces in your labels.) An optional comment field can conclude the syntax ex-
pression. At least one space is required between fields (label, mnemonic, op-
erand, and comment).

7-13

7.2.2 Operands

Operands can be constants, or assembly-time expressions referring to
memory, I/O ports, register addresses, pointers, shift counts, and a variety of
other constants. The operands category for each instruction description
defines the variables used for and/or within operands in the syntax
expressions. For example, for the ADD instruction, the syntax category gives
these syntax expressions:

ADD dma [, shift] Direct addressing

ADD dma, 16 Direct with left shift of 16
ADD ind[, shift [, ARnN]] Indirect addressing

ADD ind, 16 [, ARnN] Indirect with left shift of 16
ADD #k Short immediate addressing
ADD #lk [, shift] Long immediate addressing

The operands category defines the variables dma, shift, ind, n, k, and k. For
ind, an indirect addressing variable, you supply one of the following seven
symbols:

* k4 4. %0+ *0- *BRO+ *BRO-

These symbols are defined in section 6.3.2, Indirect Addressing Options, on
page 6-9.

7.2.3 Opcode

The opcode category breaks down the various bit fields that make up each
instruction word. When one of the fields contains a constant value derived
directly from an operand, it has the same name as that operand. The contents
of fields that do not directly relate to operands have other names; the opcode
category either explains these names directly or refers you to a section of this
book that explains them in detail. For example, these opcodes are given for
the ADDC instruction:

ADDC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo 1 1 0 o o 0o o0]o0] dma

ADDC ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lo 1 1 0 o o 0o of[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in Section 6.3, Indirect Addressing Mode (page 6-9).

7-14

7.2.4 Execution

7.2.5 Status Bits

7.2.6 Description

The field called dma contains the value dma, which is defined in the operands
category. The contents of the fields ARU, N, and NAR are derived from the op-
erands ind and n but do not directly correspond to those operands; therefore,
a note directs you to the appropriate section for more details.

The execution category presents an instruction operation sequence that de-
scribes the processing that takes place when the instruction is executed. If the
execution event or events depend on the addressing mode used, the execu-
tion category specifies which events are associated with which addressing
modes. Here are notations used in the execution category:

(n The content of register or location r.
Example: (ACC) represents the value in the accumulator.

X >y Value x is assigned to register or location y.
Example: (data-memory address) - ACC means:
The content of the specified data-memory
address is put into the accumulator.

r(n:m) Bits n through m of register or location r.
Example: ~ ACC(15:0) represents bits 15 through 0 of the
accumulator.

(r(n:m)) The content of bits n through m of register or location r.
Example: (ACC(31:16)) represents the content of bits 31
through 16 of the accumulator.

nnh Indicates that nn represents a hexadecimal number.

The bits in status registers STO and ST1 affect the operation of certain instruc-
tions and are affected by certain instructions. The status bits category of each
instruction description states which of the bits (if any) affect the execution of
the instruction and which of the bits (if any) are affected by the instruction.

The description category explains what happens during instruction execution
and its effect on the rest of the processor or on memory contents. It also dis-
cusses any constraints on the operands imposed by the processor or the as-
sembler. This description parallels and supplements the information given in
the execution category.

7-15

7.2.7 Words

7.2.8 Cycles

7-16

The words category specifies the number of memory words (one or two) re-
quired to store the instruction. When the number of words depends on the ad-
dressing mode used for an instruction, the words category specifies which ad-
dressing modes require one word and which require two words.

The cycles category of each instruction description contains tables showing
the number of processor machine cycles (CLKOUT1 periods) required for the
instruction to execute in a given memory configuration when executed as a
single instruction or when repeated with the RPT instruction. For example:

Cycles for a Single Instruction

Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1 1+p
External 1+d 1+d 1+d 2+d+p

Cycles for a Repeat (RPT) Execution of an Instruction
Program

Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n n+p
External n+nd n+nd n+nd n+1+p+nd

The column headings in these tables indicate the program source location, de-
fined as follows:

ROM
DARAM
SARAM

External

The instruction executes from internal program ROM.
The instruction executes from internal dual-access program RAM.
The instruction executes from internal single-access program RAM.

The instruction executes from external program memory.

If an instruction requires memory operand(s), the rows in the table indicate the
location(s) of the operand(s), as defined here:

DARAM The operand is in internal dual-access RAM.
SARAM The operand is in internal single-access RAM.

External The operand is in external memory.

For the RPT mode execution, nindicates the number of times a given instruc-
tion is repeated by an RPT instruction. Additional cycles (wait states) can be
generated for program-memory, data-memory, and I/O accesses by the wait-
state generator or by the external READY signal. These additional wait states
are represented in the tables by the following variables:

p Program-memory wait states. Represents the number of additional clock
cycles the device waits for external program memory to respond to a
single access.

d Data-memory wait states. Represents the number of additional clock
cycles the device waits for external data memory to respond to a single
access.

io I/0 wait states. Represents the number of additional clock cycles the de-

vice waits for an external I/O device to respond to a single access.

n Number of repetitions (where n > 2 to fill the pipeline). Represents the
number of times a repeated instruction is executed.

If there are multiple accesses to one of the spaces, the variable will be preced-
ed by the appropriate integer multiple. For example, two accesses to external
program memory would require 2p wait states. The above variables may also
use the subscripts src, dst, and codeto indicate source, destination, and code,
respectively.

Single access RAM (SARAM) allows for only one access per cycle. However,
the internal single access memory on each 'C20x processor is divided into
2K-word blocks contiguous in address space. You can use SARAM for
simultaneous accesses to program memory and data memory if the accesses
are made to different 2K-word blocks.

All external reads take at least one machine cycle while all external writes take
at least two machine cycles. However, if an external write is immediately fol-
lowed or preceded by an external read cycle, then the external write requires
three cycles. If the wait state generator or the READY pin is used to add m
(m > 0) wait states to an external access, then external reads require m+1
cycles, and external write accesses require m+2 cycles. See Section 8.5,
Wait-State Generator, page 8-15, for the discussion on generating wait states.

7-17

7.2.9 Examples

7-18

The instruction-cycle timings are based on the following assumptions:

a

At least the next four instructions are fetched from the same memory sec-
tion (internal or external) that was used to fetch the current instruction (ex-
cept in the case of PC discontinuity instructions, such as B, CALL, etc.)

In the single-execution mode, there is no pipeline conflict between the cur-
rent instruction and the instructions immediately preceding or following
that instruction. The only exception is the conflict between the fetch phase
of the pipeline and the memory read/write (if any) access of the instruction
under consideration. See Section 5.2, Pipeline, on page 5-7 for more in-
formation about pipeline operation.

In the repeat execution mode, all conflicts caused by the pipelined execu-
tion of an instruction are considered.

Example code is included for each instruction. The effect of the code on
memory and/or registers is summarized. Program code is shown in a

specialtypeface . The sample code is then followed by a verbal or graph-
ic description of the effect of that code. Consider this example of the ADD
instruction:
ADD*+,0,AR0
Before Instruction After Instruction
ARP I 4] ARP [9
AR4 | 0302h] AR4
Data Memory Data Memory
302h | 2h| 302h
ACC | 2h| Acc [o] 04h
c c

Here are the facts and events represented in this example:

a

a

The auxiliary register pointer (ARP) points to the current auxiliary register.
Because ARP = 4, the current auxiliary register is AR4.

When the addition takes place, the CPU follows AR4 to data-memory
address 0302h. The content of that address, 2h, is added to the content
of the accumulator, also 2h. The result (4h) is placed in the accumulator.
(Because the second operand of the instruction specifies a left shift of 0,
the data-memory value is not shifted before being added to the accumula-
tor value.)

The instruction specifies an increment of one for the contents of the cur-
rent auxiliary register (*+); therefore, after the addition is performed, the
content of AR4 is incremented to 0303h.

The instruction also specifies that ARO will be the next auxiliary register;
therefore, after the instruction ARP = 0.

Because no carry is generated during the addition, the carry bit (C) be-
comes 0.

7-19

7.3 Instruction Descriptions

This section contains detailed information on the instruction set for the 'C20x
(For a summary of the instruction set, see Section 7.1.) The instructions are
presented alphabetically, and the description for each instruction presents the
following categories of information:

Syntax
Operands
Opcode
Execution
Status Bits
Description
Words
Cycles
Examples

(I I I I iy Y

For a description of how to use each of these categories, see Section 7.2.

7-20

Absolute Value of Accumulator ABS

Syntax ABS
Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(1 o 1 1 1 1 1 0 0 0 0O O O O O O

Execution Increment PC, then ...
[(ACC)| - ACC;0 - C

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM

Description If the contents of the accumulator are greater than or equal to zero, the accu-
mulator is unchanged by the execution of ABS. If the contents of the accumula-
tor are less than zero, the accumulator is replaced by its 2s-complement value.
The carry bit (C) on the 'C20x is always reset to zero by the execution of this
instruction.

Note that 8000 0000h is a special case. When the overflow mode is not set
(OVM = 0), the ABS of 8000 0000h is 8000 0000h. When the overflow mode
is set (OVM = 1), the ABS of 8000 0000h is 7FFF FFFFh. In either case, the
OV status bit is set.

Words 1
Cycles Cycles for a Single ABS Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an ABS Instruction
ROM DARAM SARAM External
n n n n+p

Assembly Language Instructions 7-21

ABS Absolute Value of Accumulator

Example 1 ABS
Before Instruction
ACC | 1234h| ACC
c
Example 2 ABS
Before Instruction
ACC | OFFFFFFFFh] ACC
c
Example 3 ABS ;(OVM =1)
Before Instruction
ACC | 80000000h] ACC
c
oV
Example 4 ABS ;(OVM = 0)
Before Instruction
ACC | 80000000h| ACC
c
oV

7-22

After Instruction

o —
C

After Instruction

o L 10
C

After Instruction

[0] [__7erereFey
C

ov

After Instruction

[0] [soo00000n
C

ov

Add to Accumulator ADD

Syntax ADD dma [, shift] Direct addressing
ADD dma, 16 Direct with left shift of 16
ADD ind [, shift [, ARn]] Indirect addressing
ADD ind, 16 [, ARnN] Indirect with left shift of 16
ADD #k Shortimmediate addressing
ADD #Ik [, shift] Long immediate addressing
Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
Ik: 16-bit long immediate value
ind: Select one of the following seven options:

* k5 %0+ *0- *BRO+ *BRO-

Opcode ADD dma [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 o 1 o] shift 0| dma
ADD dma, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 0o o 0o o 1]o0] dma

ADD ind|[, shift [, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 0o 1 o] shift 1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

ADD ind, 16 [, AR1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0o 1 1 0 0 0 0 1|1]| ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

ADD #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 0 O k

ADD #lk [, shiff
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 o0 1 1 1 1 1 1 1 O 0 1 shift

Assembly Language Instructions 7-23

ADD Add to Accumulator

Execution Increment PC, then ...
Event
(ACC) + ((data-memory address) x 2shift) _, ACC

(ACC) + ((data-memory address) x 216) _, ACC

(ACC) + k — ACC

(ACC) + Ik x 2shift , AcC

Status Bits Affected by Affects Addressing mode
SXM and OVM C and OV Direct or indirect
OVM C and OV Short immediate
SXM and OVM C and OV Long immediate

Description The content of the addressed data memory location or an immediate constant

Addressing mode
Direct or indirect

Direct or indirect
(shift of 16)

Short immediate

Long immediate

is left-shifted and added to the accumulator. During shifting, low-order bits are
zero filled. High-order bits are sign extended if SXM = 1 and zero filled if

SXM = 0. The result is stored in the accumulator. When short immediate ad-

dressing is used, the addition is unaffected by SXM and is not repeatable.

If you are using indirect addressing and update the ARP, you must specify a
shift operand. However, if you do not want a shift to occur, enter a 0 for this

operand. For example:

ADD *+,0,AR2

Normally, the carry bitis set (C = 1) if the result of the addition generates a carry
and is cleared (C = 0) if it does not generate a carry. However, when adding
with a shift of 16, the carry bit is set if a carry is generated but otherwise, the
carry bit is unaffected. This allows the accumulator to generate the proper
single carry when adding a 32-bit number to the accumulator.

Words Words
1

7-24

Addressing mode

Direct, indirect, or
short immediate

Long immediate

Cycles

Example 1

Example 2

Add to Accumulator ADD

Cycles for a Single ADD Instruction (Using Direct and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p

T1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an ADD Instruction (Using Direct
and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

1 1f the operand and the code are in the same SARAM block

Cycles for a Single ADD Instruction (Using Short Immediate Addressing)
ROM DARAM SARAM External
1 1 1 1+p

Cycles for a Single ADD Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External
2 2 2 2+2p
ADD 1,1 ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
301h | 1h] 301h
ACC | 2h] acc [o]
C C
ADD *+,0,AR0
Before Instruction After Instruction
ARP I 4] ARP [9
AR4 | 0302h] AR4
Data Memory Data Memory
302h | 2h] 302h
ACC | 2h] acc [o]
C C

Assembly Language Instructions 7-25

ADD Add to Accumulator

Example 3 ADD #1h ;Add short immediate
Before Instruction After Instruction
Acc | A [g]
C C
Example 4 ADD #1111h,1 ;Add long immediate with shift of 1
Before Instruction After Instruction
Acc | | acc (0]
C C

7-26

Add to Accumulator With Carry ADDC

Syntax ADDC dma Direct addressing
ADDC ind [, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ % 0+ *0- *BRO+ *BRO-

Opcode ADDC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0o o o 0o]o] dma

o

ADDC ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0 o o o of[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + (data-memory address) + (C) - ACC

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM.

Description The contents of the addressed data-memory location and the value of the
carry bit are added to the accumulator with sign extension suppressed. The
carry bitis then affected in the normal manner: the carry bitis set (C = 1) if the
result of the addition generates a carry and is cleared (C = 0) if it does not gen-
erate a carry.

The ADDC instruction can be used in performing multiple-precision arithmetic.

Words 1
Cycles Cycles for a Single ADDC Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Assembly Language Instructions 7-27

ADDC Add to Accumulator With Carry

Cycles for a Repeat (RPT) Execution of an ADDC Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tif the operand and the code are in the same SARAM block

;(DP = 6: addresses 0300h—037Fh;

;DAT300 is a label for 300h)

Example 1 ADDC DAT300
Before Instruction
Data Memory
300h | 04h|
ACC | 13h]
c
Example 2 ADDC *— AR4 ;(OVM =0)
Before Instruction
ARP | 0]
ARO | 300h]
Data Memory
300h | 0oh]
ACC | OFFFFFFFFh|
c
oV

7-28

After Instruction
Data Memory

3000
acc [0]
C

After Instruction

ARP
ARO
Data Memory
300h
Acc
C
5

Add to Accumulator With Sign Extension Suppressed ADDS

Syntax ADDS dma Direct addressing

ADDS ind [, ARn] Indirect addressing
Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* % %~ %0+ *0- *BRO+ *BRO-
Opcode ADDS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(BN

[0 1 1 0 o0 o 00| dma

ADDS ind [, AR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0 o o 1 of[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + (data-memory address) - ACC

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM.

Description The contents of the specified data-memory location are added to the accumu-
lator with sign extension suppressed. The data is treated as an unsigned 16-bit
number, regardless of SXM. The accumulator contents are treated as a signed
number. Note that ADDS produces the same results as an ADD instruction
with SXM = 0 and a shift count of 0.

The carry bit is set (C = 1) if the result of the addition generates a carry and
is cleared (C = 0) if it does not generate a carry.

Words 1
Cycles Cycles for a Single ADDS Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Assembly Language Instructions 7-29

ADDS Add to Accumulator With Sign Extension Suppressed

Cycles for a Repeat (RPT) Execution of an ADDS Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T If the operand and the code are in the same SARAM block

Example 1 ADDS 0
Before Instruction
Data Memory
300h | OF006h|
ACC | 00000003h]
C
Example 2 ADDS *
Before Instruction
ARP | 0|
ARO | 0300h|
Data Memory
300h | OFFFFh|
ACC | 7FFF0000H]
C

7-30

;(DP = 6: addresses 0300h—037Fh)

After Instruction
Data Memory

300h
acc [0
C
After Instruction
ARP I
ARO
Data Memory
300h

Acc [o] 7FFFFFFFh
c

Add to Accumulator With Shift Specified by TREG ADDT

Syntax ADDT dma Direct addressing
ADDT ind [, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ % *0+ *0- *BRO+ *BRO-

Opcode ADDT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 0 0o o 1 1][o0] dma

ADDT ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0 0o 0o 1 1[1]| ARU | N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + [(data-memory address) x 2(TREG(3:0))] _, (ACC)

Status Bits Affected by Affects
SXM and OVM C and OV
Description The data-memory value is left shifted and added to the accumulator, and the

result replaces the accumulator contents. The left shift is defined by the four
LSBs of the TREG, resulting in shift options from 0 to 15 bits. Sign extension
on the data-memory value is controlled by SXM. The carry bit (C) is set when
acarryis generated out of the MSB of the accumulator; if no carry is generated,
the carry bit is cleared.

Words 1
Cycles Cycles for a Single ADDT Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block.

Assembly Language Instructions 7-31

ADDT Add to Accumulator With Shift Specified by TREG

Cycles for a Repeat (RPT) Execution of an ADDT Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tif the operand and the code are in the same SARAM block

Example 1 ADDT 127
;SXM = 0)
Before Instruction
Data Memory
027Fh 09h|
TREG | OFF94h|
ACC | OF715h|
C
Example 2 ADDT *— AR4 {(SXM =0)
Before Instruction
ARP | 0l
ARO | 027Fh|
Data Memory
027Fh | 09h|
TREG | OFF94h|
ACC OF715h|

I
c

7-32

Data Memory
027Fh

TREG
ACC

ARP
ARO

Data Memory
027Fh

TREG
ACC

[o]
c

o [2]

;(DP = 4: addresses 0200h—-027Fh,

After Instruction

OFF94
OF7AS5|

>
=
@
=
=1
7]
[
=
c
3]
o
S

o

©

= | S5l 1=

027E

o
[
=

OFF94
OF7A5

!!

Add Short-Immediate Value to Auxiliary Register ADRK

Syntax ADRK #k Shortimmediate addressing
Operands k: 8-bit short immediate value
Opcode ADRK #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 k
Execution Increment PC, then ...

(current AR) + 8-bit positive constant — current AR

Status Bits None

Description The 8-bitimmediate value is added, right justified, to the current auxiliary regis-
ter (the one specified by the current ARP value) and the result replaces the
auxiliary register contents. The addition takes place in the ARAU, with the im-
mediate value treated as an 8-bit positive integer. All arithmetic operations on
the auxiliary registers are unsigned.

Words 1
Cycles Cycles for a Single ADRK Instruction
ROM DARAM SARAM External
1 1 1 1+p
Example ADRK #80h
Before Instruction After Instruction
ARP | 5] ARP
AR5 | 4321h| AR5

Assembly Language Instructions 7-33

AND AND With Accumulator

Syntax AND dma Direct addressing
AND ind [, ARn] Indirect addressing
AND #lk [, shiff] Long immediate addressing
AND #lk, 16 Long immediate with left
shift of 16
Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from O to 7 designating the next auxiliary register
Ik: 16-bit long immediate value
ind: Select one of the following seven options:

* %k *_ %0+ *0— *BRO+ *BRO-

Opcode AND dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[lo 1 1 0 1 1 1 o]o] dma

AND ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l[lo 1 1 0o 1 1 1 of[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

AND #lk [, shiff

15 14 13 12 11 10 9 8 6 4 3 2 1 O
1 o 1 1 1 1 1 1 1 O 1 1 shift
Ik
AND #lk, 16
15 14 13 12 11 10 9 8 6 5 4 3 2 1

1 o 1 1 1 1 1 O 1 O O O O O 0 1

Ik
Execution Increment PC, then ...
Event(s) Addressing mode

(ACC(15:0)) AND (data-memory address) — ACC(15:0) Direct or indirect
0 - ACC(31:16)

(ACC(31:0)) AND Ik x 2shift . AccC Long immediate

(ACC(31:0)) AND Ik x 216, ACC Long immediate
with left shift of 16

7-34

Status Bits

Description

Words

Cycles

AND With Accumulator AND

None
This instruction is not affected by SXM.

If direct or indirect addressing is used, the low word of the accumulator is
ANDed with a data-memory value, and the resultis placed in the low word posi-
tion in the accumulator. The high word of the accumulator is zeroed. If immedi-
ate addressing is used, the long-immediate constant can be shifted. During the
shift, low-order and high-order bits not filled by the shifted value are zeroed.
The resulting value is ANDed with the accumulator contents.

Words Addressing mode
1 Direct or indirect
2 Long immediate

Cycles for a Single AND Instruction (Using Direct and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an AND Instruction (Using Direct
and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T 1f the operand and the code are in the same SARAM block

Cycles for a Single AND Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Assembly Language Instructions 7-35

AND AND With Accumulator

Example 1 AND 16

Data Memory
0210h

ACC

Example 2 AND *

ARP
ARO

Data Memory
0301h

ACC

Example 3 AND #00FFh,4

ACC

7-36

;(DP = 4: addresses 0200h—-027Fh)

Before Instruction

00FFh]

12345678h|

Before Instruction

0|

0301h|

OFFO00h|

12345678h|

Before Instruction

12345678h|

Data Memory
0210h

ACC

ARP
ARO

Data Memory
0301h

ACC

ACC

After Instruction

00FFh
00000078h

After Instruction

0301

OFFO00
00005600

After Instruction

00000670h

Syntax
Operands
Opcode

Execution

Status Bits

Description

Add PREG to Accumulator APAC

APAC

None

APAC

15 14 13 12 11 10 8 7 6 5 4 3 1 0
[1 o 1 1 1 1 0 0 0 O

Increment PC, then ...
(ACC) + shifted (PREG) — ACC

Affected by Affects
PM and OVM C and OV

This instruction is not affected by SXM.

The contents of PREG are shifted as defined by the PM status bits of the ST1
register (see Table 7—7) and added to the contents of the accumulator. The re-
sult is placed in the accumulator. APAC is not affected by the SXM bit of the
status register. PREG is always sign extended. The task of the APAC instruc-
tion is also performed as a subtask of the LTA, LTD, MAC, MACD, MPYA, and

SQRA instructions.

Table 7—-7. Product Shift Modes

Words
Cycles

PM Bits
Bitl Bit0O Resulting Shift
0 0 No shift
0 1 Left shift of 1 bit
1 0 Left shift of 4 bits
1 1 Right shift of 6 bits
1
Cycles for a Single APAC Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an APAC Instruction
ROM DARAM SARAM External
n n n n+p

Assembly Language Instructions 7-37

APAC Add PREG to Accumulator

Example APAC ;(PM =01)
Before Instruction After Instruction
PREG | 40h| PREG 40h
ACC | 20h| Acc [o] AOh
c c

7-38

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

Branch Unconditionally B

B pmal, ind[, ARnM]] Indirect addressing
pma: 16-bit program-memory address

n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %4 % *0+ *0- *BRO+ *BRO-

B pmal, ind [, ARnM]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0o 1 1 1 1 0 0 1|1]| ARU [N | NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

pma - PC
Modify (current AR) and (ARP) as specified.

None

The current auxiliary register and ARP contents are modified as specified, and
controlis passed to the designated program-memory address (pma). The pma
can be either a symbolic or numeric address.

2
Cycles for a Single B Instruction
ROM DARAM SARAM External
4 4 4 4+4p

Note: Whenthisinstruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

B 191,*+,AR1

The value 191 is loaded into the program counter, and the program continues
to execute from that location. The current auxiliary register is incremented by
1, and ARP is set to point to auxiliary register 1 (AR1).

Assembly Language Instructions 7-39

BACC Branch to Location Specified by Accumulator

Syntax BACC

Operands None

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0

Execution ACC(15:0) -~ PC

Status Bits None

Description Control is passed to the 16-bit address residing in the lower half of the accumu-
lator.

Words 1

Cycles Cycles for a Single BACC Instruction
ROM DARAM SARAM External
4 4 4 4+3p

Note: Whenthis instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example BACC ;(ACC contains the value 191)

The value 191 is loaded into the program counter, and the program continues
to execute from that location.

7-40

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Branch on Auxiliary Register Not Zero BANZ

BANZ pmal, ind[, ARnN]] Indirect addressing

pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %k % 40+ *0- *BRO+ *BRO-

BANZ pma [, ind [,ARnN]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 1 1 1 1 0 1 1[1] ARU [N | NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

If (current AR) £0
Then pma - PC
Else (PC)+2 - PC
Modify (current AR) and (ARP) as specified

None

Control is passed to the designated program-memory address (pma) if the
contents of the current auxiliary register are not zero. Otherwise, control
passes to the next instruction.The default modification to the current AR is a
decrementby one. N loop iterations can be executed by initializing an auxiliary
register (as a loop counter) to N-1 prior to loop entry. The pma can be either
a symbolic or a numeric address.

2
Cycles for a Single BANZ Instruction
Conditon ROM DARAM SARAM External
True 4 4 4 4+4p
False 2 2 2 2+2p

Note: The 'C20x performs speculative fetching by reading two additional instruction words. If
the PC discontinuity is taken, these two instruction words are discarded.

Assembly Language Instructions 7-41

BANZ Branch on Auxiliary Register Not Zero

Example 1

Example 2

7-42

BANZ PGMO ;(PGMO labels program address 0)
Before Instruction After Instruction
ARP I ol ARP [
ARO I 5h| ARO

Because the content of ARO is not zero, the program address denoted by
PGMO is loaded into the program counter (PC), and the program continues ex-
ecuting from that location. The default auxiliary register operation is a decre-
ment of the current auxiliary register content; thus, ARO contains 4h at the end
of the execution.

or
Before Instruction After Instruction
ARP I ol ARP [d
ARO I Oh] ARO

Because the content of ARO is zero, the branch is not executed; instead, the
PC isincremented by 2, and execution continues with the instruction following
the BANZ instruction. Because of the default decrement, ARO is decremented
by 1, becoming —1.

MAR * ARO ;Set ARP to point to ARO.

LAR AR1,#3 ;Load AR1 with 3.

LAR ARO,#60h ;Load ARO with 60h.
PGM191 ADD *+,AR1 ;Loop: While AR1 not zero,

BANZ PGM191,*~AR0 ;add data referenced by ARO
:to accumulator and increment
:ARO value.

The contents of data-memory locations 60h—63h are added to the accumula-
tor.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Branch Conditionally BCND

BCND pma, cond 1 [,cond?2][,...]

pma: 16-bit program-memory address

cond Condition

EQ ACC=0

NEQ ACC#0

LT ACC<O0

LEQ ACC<0

GT ACC >0

GEQ ACC=0

NC C=0

C c=1

NOV ov=0

ov ov=1

BIO BIO low

NTC TC=0

TC TC=1

UNC Unconditionally
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 o o+ —Fp—1 ZTVC | ZLVC

pma

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

If cond1 AND cond2 AND ...
Then pma - PC
Else increment PC

None

Abranch is taken to the specified program-memory address (pma) if the speci-
fied conditions are met. Not all combinations of conditions are meaningful. For
example, testing for LT and GT is contradictory. In addition, testing BIO is mu-
tually exclusive to testing TC.

2
Cycles for a Single BCND Instruction
Condition ROM DARAM SARAM External
True 4 4 4 4+4p
False 2 2 2 2+2p

Note: The'C20x performs speculative fetching by reading two additional instruction words. If
the PC discontinuity is taken, these two instruction words are discarded.

Assembly Language Instructions 7-43

BCND Branch Conditionally

Example BCND PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is
set, program address 191 is loaded into the program counter, and the program
continues to execute from that location. If these conditions do not hold, execu-
tion continues from location PC + 2.

7-44

TestBit BIT

Syntax BIT dma, bit code Direct addressing
BIT ind, bit code [, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
bit code: Value from 0 to 15 indicating which bit to test (see Figure 7-1)
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %4 - %0+ *0- *BRO+ *BRO-

Opcode BIT dma, bit code
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 0 1 0 0 ‘ bit code ‘ 0 ’ dma |

BIT ind, bit code [,ARN]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 0o o] pitcode [1| ARU |[N]| NAR |

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data bit number (15 — bit code)) —» TC

Status Bits Affects
TC
Description The BIT instruction copies the specified bit of the data-memory value to the TC

bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM
instructions also affect the TC bit in ST1. A bit code value is specified that
corresponds to a certain bit number of the data-memory value, as shown in
Figure 7—1. For example, if you want to copy bit 6, you specify the bit code as
9, which is 15 minus six (15-6).

Figure 7-1. Bit Numbers and Their Corresponding Bit Codes for BIT Instruction

Bit code 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bitnumber 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[N I N N I O

MSB Data-memory value LSB

Words 1

Assembly Language Instructions 7-45

BIT TestBit

Cycles Cycles for a Single BIT Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p
Tif the operand and the code are in the same SARAM block
Cycles for a Repeat (RPT) Execution of a BIT Instruction
Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd
T1f the operand and the code are in the same SARAM block
Example 1 BIT 0h,15 ;(DP = 6). Test LSB at 300h
Before Instruction After Instruction
Data Memory Data Memory
300h 4DC8h| 300h
TC ol TC [0
Example 2 BIT *,0,AR1 ;Test MSB at 310h, then set ARP =1
Before Instruction After Instruction
ARP o] ARP
ARO 310h| ARO
Data Memory Data Memory
310h 8000h] 310h
TC 0] TC

7-46

Test Bit Specified by TREG BITT

Syntax BITT dma Direct addressing
BITT ind[, ARN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0O to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* % *_ *0+ *0- *BRO+ *BRO-

Opcode BITT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 0o 1 1 1 1]o0] dma

BITT ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0o 1 1 1 1[1]| ARU N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data bit number (15 -TREG(3:0))) — TC

Status Bits Affects
TC
Description The BITT instruction copies the specified bit of the data-memory value to the

TC bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM
instructions also affect the TC bitin status register ST1. The bit number is spe-
cified by a bit code value contained in the four LSBs of the TREG, as shown
in Figure 7-2.

Figure 7-2. Bit Numbers and Their Corresponding Bit Codes for BITT Instruction

Bitcode (n4LSBsof O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TREG)
Bitnumber 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[N I N N N O A B R

MSB Data-memory value LsB

Words 1

Assembly Language Instructions 7-47

BITT Test Bit Specified by TREG

Cycles Cycles for a Single BITT Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p
Tif the operand and the code are in the same SARAM block
Cycles for a Repeat (RPT) Execution of an BITT Instruction
Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd
T1f the operand and the code are in the same SARAM block
Example 1 BITT 00h ;(DP = 6) Test bit 14 of data
;at 300h
Before Instruction After Instruction
Data Memory Data Memory
300h I 4DC8h] 300h
TREG I 1n] TREG
TC | g T
Example 2 BITT * ;Test bit 1 of data at 310h
Before Instruction After Instruction
ARP | 1] ARP
AR1 I 310h] AR1
Data Memory Data Memory
310h I 8000h] 310h
TREG | OEh] TREG OEh
Tc | o T I

7-48

Syntax

Operands

Opcode

Block Move From Data Memory to Data Memory BLDD

General syntax: BLDD source, destination

BLDD #lk, dma Direct with long immediate
source

BLDD #lk, ind [, ARn] Indirect with long
immediate source

BLDD dma, #lk Direct with long immediate
destination

BLDD ind, #lk [, ARN] Indirect with long immediate
destination

dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

Ik: 16-bit long immediate value

ind: Select one of the following seven options:

* %+ - %0+ *0- *BRO+ *BRO-

BLDD #/k, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 0]o0| dma

BLDD #lk, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o

1 0 1 0 1 0 o/1] AU |[N] NAR

Ik

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

BLDD dma, #lk
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 10| dma

BLDD ind, #lk [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o

1 0 1 0 1 0 11| ARU [N] NAR

Ik

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Assembly Language Instructions 7-49

BLDD Block Move From Data Memory to Data Memory

Execution

Status Bits

Description

Words

7-50

Increment PC, then ...

(PC) -~ MSTACK

lk - PC

(source) - destination

For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC

While (repeat counter) # O:
(source) — destination
For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC
(repeat counter) —1 - repeat counter

(MSTACK) - PC
None

The word in data memory pointed to by source is copied to a data-memory
space pointed to by destination. The word of the source and/or destination
space can be pointed to with a long-immediate value or by a data-memory ad-
dress. Note that not all source/destination combinations of pointer types are
valid.

Note:

BLDD will not work with memory-mapped registers.

RPT can be used with the BLDD instruction to move consecutive words in data
memory. The number of words to be moved is one greater than the number
contained in the repeat counter (RPTC) at the beginning of the instruction.
When the BLDD instruction is repeated, the source (destination) address spe-
cified by the long immediate constant is stored to the PC. Because the PC is
incremented by 1 during each repetition, it is possible to access a series of
source (destination) addresses. If you use indirect addressing to specify the
destination (source) address, a new destination (source) address can be ac-
cessed during each repetition. If you use the direct addressing mode, the spe-
cified destination (source) address is a constant; it will not be modified during
each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.
Interrupts are inhibited during a BLDD operation used with the RPT instruction.
When used with RPT, BLDD becomes a single-cycle instruction once the RPT
pipeline is started.

2

Block Move From Data Memory to Data Memory BLDD

Cycles

Cycles for a Single BLDD Instruction
Operand ROM DARAM SARAM External
Source: DARAM 3 3 3 3+2p
Destination: DARAM
Source: SARAM 3 3 3 3+2p
Destination: DARAM
Source: External 3+dgre 3+dgre 3+dgre 3+dgct2p
Destination: DARAM
Source: DARAM 3 3 3 3+2p
Destination: SARAM 4t
Source: SARAM 3 3 3 3+2p
Destination: SARAM 4t
Source: External 3+dge 3+dgre 3+dge 3+dgct2p
Destination: SARAM A+dg T
Source: DARAM 4+dygt A+dygt 4+dygt 6+dysit2p
Destination: External
Source: SARAM 4+dygt A+dygt 4+dggt 6+dystt2p
Destination: External
Source: External 4+dgo+dgst A+dgo+dgst 4+dgrot+dyst 6+dg o tdgs+2p

Destination: External

1 1f the destination operand and the code are in the same SARAM block.

Assembly Language Instructions 7-51

BLDD Block Move From Data Memory to Data Memory

Cycles for a Repeat (RPT) Execution of a BLDD Instruction

Operand ROM DARAM SARAM External
Source: DARAM n+2 n+2 n+2 n+2+2p
Destination: DARAM
Source: SARAM n+2 n+2 n+2 n+2+2p
Destination: DARAM
Source: External n+2+ndgc n+2+ndgc n+2+ndgc n+2+ndg,c+2p
Destination: DARAM
Source: DARAM n+2 n+2 n+2 n+2+2p
Destination: SARAM n+4t
Source: SARAM n+2 n+2 n+2 n+2+2p
Destination: SARAM 2n# 2n¥ 2n¥ 2n+2p¥

n+4t

2n+28
Source: External n+2+ndg,c Nn+2+ndgc n+2+ndgc n+2+ndg,c+2p
Destination: SARAM n+4+ndg,c T
Source: DARAM 2n+2+ndyg; 2n+2+ndyg; 2n+2+ndgyg; 2n+2+ndgyg+2p
Destination: External
Source: SARAM 2n+2+ndyg; 2n+2+ndyg; 2n+2+ndyg; 2n+2+ndgyg+2p
Destination: External
Source: External 4n+ndsrc+ndd5t¢ 4n+ndg..+Nndygs 4n+ndg,o+ndygy 4n+2+ndgyc+ndggi+2p

Destination: External

T 1f the destination operand and the code are in the same SARAM block

¥ If both the source and the destination operands are in the same SARAM block

8 If both operands and the code are in the same SARAM block

7-52

Block Move From Data Memory to Data Memory BLDD

Example 1 BLDD #300h,20h ;(DP = 6)
Before Instruction
Data Memory
300h | oh|
320h | OFh]|
Example 2 BLDD *+#321h,AR3
Before Instruction
ARP | 2]
AR2 | 301h]
Data Memory
301h | 01h]
321h | OFh]

Data Memory
300h

320h

ARP
AR2

Data Memory
301h

321h

>
=
@
=
=1
w0
=
c
(o]
=
o
=]
ol |le
S| |=

After Instruction

II

302

!
=
>

Assembly Language Instructions 7-5

w

BLPD Block Move From Program Memory to Data Memory

Syntax

Operands

Opcode

Execution

Status Bits

7-54

General syntax: BLPD source, destination

BLPD #pma, dma Direct with long immediate
source

BLPD #pma, ind [, ARN] Indirect with long immediate
source

pma: 16-bit program-memory address

dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* %+ % %0+ *0- *BRO+ *BRO-

BLPD #pma, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 10| dma

pma

BLPD #pma, ind [, ARnN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 1|1]| ARU [N | NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...

(PC) -~ MSTACK

pma - PC

(source) - destination

For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC

While (repeat counter) # O:
(source) — destination
For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC
(repeat counter) —1 - repeat counter

(MSTACK) — PC

None

Description

Words

Block Move From Program Memory to Data Memory BLPD

A word in program memory pointed to by the sourceis copied to data-memory
space pointed to by destination. The first word of the source space is pointed
to by a long-immediate value. The data-memory destination space is pointed
to by a data-memory address or auxiliary register pointer. Not all source/des-
tination combinations of pointer types are valid.

RPT can be used with the BLPD instruction to move consecutive words. The
number of words to be moved is one greater than the number contained in the
repeat counter (RPTC) at the beginning of the instruction. When the BLPD in-
struction is repeated, the source (program-memory) address specified by the
long immediate constant is stored to the PC. Because the PC is incremented
by 1 during each repetition, it is possible to access a series of program-
memory addresses. If you use indirect addressing to specify the destination
(data-memory) address, a new data-memory address can be accessed during
each repetition. If you use the direct addressing mode, the specified data-
memory address is a constant; it will not be modified during each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.
Interrupts are inhibited during a repeated BLPD instruction. When used with
RPT, BLPD becomes a single-cycle instruction once the RPT pipeline is
started.

2

Assembly Language Instructions 7-55

BLPD Block Move From Program Memory to Data Memory

Cycles

Cycles for a Single BLPD Instruction
Operand ROM DARAM SARAM External
Source: DARAM/ROM 3 3 3 3+2Pcode

Destination: DARAM

Source: SARAM 3 3 3 3+2Pcode
Destination: DARAM

Source: External 3+pgre 3+pgrc 3+pgre 3+Psret2Pcode
Destination: DARAM

Source: DARAM/ROM 3 3 3 3+2Pcode
Destination: SARAM 4t

Source: SARAM 3 3 3 3+2Pcode
Destination: SARAM 4t

Source: External 3+Psrc 3+Psrc 3+Psrc 3+Psrct2Pcode
Destination: SARAM A+pg,t

Source: DARAM/ROM 4+dyg; 4+dyst 4+dgst 6+dysi+2Pcode

Destination: External

Source: SARAM 4+dggt 4+dggt 4+dggt 6+dyst*t2Pcode
Destination: External

Source: External A+pgretdyst A+pgrotdyst A+pgrotdyst 6+Psrctdgstt2Pcode
Destination: External

T 1f the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a BLPD Instruction

Operand ROM DARAM SARAM External

Source: DARAM/ROM n+2 n+2 n+2 N+2+2Pcode
Destination: DARAM

Source: SARAM n+2 n+2 n+2 N+2+2Pcode
Destination: DARAM

Source: External N+2+npg;c N+2+NPgyc N+2+NPgyc N+2+NPsyc+2Pcode
Destination: DARAM

Source: DARAM/ROM n+2 n+2 n+2 N+2+2Pcode
Destination: SARAM n+4t

T1f the destination operand and the code are in the same SARAM block
% 1f both the source and the destination operands are in the same SARAM block
§1f both operands and the code are in the same SARAM block

7-56

Block Move From Program Memory to Data Memory BLPD

Cycles for a Repeat (RPT) Execution of a BLPD Instruction (Continued)

Operand ROM DARAM SARAM External
Source: SARAM n+2 n+2 n+2 N+2+2Pcode
Destination: SARAM 2n? 2n 2nt 2N+2Pcodet

n+47

2n+28
Source: External N+2+npgc N+2+NPgc N+2+NPgyc N+2+NPgrc+2Pcode
Destination: SARAM n+4+npg,. T
Source: DARAM/ROM 2n+2+ndyg; 2n+2+ndygy 2n+2+ndggy 2n+2+ndgst*+2Pcode
Destination: External
Source: SARAM 2n+2+ndyg; 2n+2+ndyg; 2n+2+ndyg; 2n+2+ndgsi+2Pcode
Destination: External
Source: External An+npgetndygt 4n+npg e+ndyst 4n+npgrc+ndyst 4n+2+npgrctndygs+
Destination: External 2Pcode

1 If the destination operand and the code are in the same SARAM block

% 1f both the source and the destination operands are in the same SARAM block

§ If both operands and the code are in the same SARAM block

Example 1

Example 2

BLPD

Program Memory

Data Memory

BLPD

Program Memory

Data Memory

#800h,00h ;(DP=6)

Before Instruction

#800h,*,AR7

Before Instruction

Program Memory

OFh] 800h
Data Memory

oh| 300h

0] ARP

310h] ARO

Program Memory

1111h| 800h
Data Memory

0100h]| 310h

Assembly Language Instructions 7-5

After Instruction

o
m
>

o
T
=y

After Instruction

310

1111

1111

~

CALA call Subroutine at Location Specified by Accumulator

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

7-58

CALA
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000110000

PC+1 - TOS
ACC(15:0) - PC

None

The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). Then, the contents of the lower half of the accumulator are
loaded into the PC. Execution continues at this address.

The CALA instruction is used to perform computed subroutine calls.

1
Cycles for a Single CALA Instruction
ROM DARAM SARAM External
4 4 4 4+3p

Note: Whenthis instruction reaches the execute phase of the pipeline, two additional instruc-

tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

CALA
Before Instruction After Instruction
PC | 25h] PC
ACC | 83h ACC
TOS | 100h] TOS

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

Call Unconditionally CALL

CALL pmal, ind[, ARN]] Indirect addressing
pma: 16-bit program-memory address

n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

¥ %+ % %0+ *0- *BRO+ *BRO-
CALL pmal, ind[, ARn]]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o 1 1 1 1 0 1 0|1] ARU |N| NAR
pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

PC+2 - TOS
pma - PC
Modify (current AR) and (ARP) as specified.

None

The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). Then, the contents of the pma, either a symbolic or numeric
address, are loaded into the PC. Execution continues at this address. The cur-
rent auxiliary register and ARP contents are modified as specified.

2
Cycles for a Single CALL Instruction
ROM DARAM SARAM External
4 4 4 4+4pt

Note: Whenthisinstruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

CALL 191,*+ AR0
Before Instruction After Instruction
ARP |] are I
AR1 | 05h| AR1 06h
pC | 307 PC
TOS | 100h]| TOS 32h

Program address 0BFh (191) is loaded into the program counter, and the pro-
gram continues executing from that location.

©

Assembly Language Instructions 7-5

CC call conditionally

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

7-60

CC pma, cond1 [,cond?] [,...]

pma: 16-bit program-memory address

cond Condition

EQ ACC=0

NEQ ACC #0

LT ACC<O0

LEQ ACC<0

GT ACC>0

GEQ ACC=0

NC C=0

C c=1

NOV ov=0

oV ov=1

BIO BIO low

NTC TC=0

TC TC=1

UNC Unconditionally
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0o 1 ol Fp— ZTVC | ZLVC

pma

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

If cond1 AND cond 2 AND ...
Then
PC+2 - TOS
pma - PC
Else
Increment PC

None

Controlis passed to the specified program-memory address (pma) if the speci-
fied conditions are met. Not all combinations of conditions are meaningful. For
example, testing for LT and GT is contradictory. In addition, testing BIO is mu-
tually exclusive to testing TC. The CC instruction operates like the CALL in-
struction if all conditions are true.

2
Cycles for a Single CC Instruction
Condition ROM DARAM SARAM External
True 4 4 4 4+4pt
False 2 2 2 2+2p

T The processor performs speculative fetching by reading two additional instruction words. If the
PC discontinuity is taken these two instruction words are discarded.

Example

Call Conditionally CC

cc PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is
set, 0BFh (191) is loaded into the program counter, and the program continues
to execute from that location. If the conditions are not met, execution continues
at the instruction following the CC instruction.

Assembly Language Instructions 7-61

CLRC cClear Control Bit

Syntax

Operands

Opcode

Execution

Status Bits

Description

7-62

CLRC control bit

control bit: Select one of the following control bits:
C Carry bit of status register ST1
CNF RAM configuration control bit of status register ST1
INTM Interrupt mode bit of status register STO
OVM Overflow mode bit of status register STO
SXM Sign-extension mode bit of status register ST1
TC Test/control flag bit of status register ST1
XF XF pin status bit of status register ST1

CLRCC
15 14 13 12 11 10 9
[1 o 1 1 1 1 1 0 o 1 0 0 1 1 1 0|

[e¢]
~
]
(&)
D
w
N
=
o

CLRC CNF
15 14 13 12 11 10 9
[1 o 1 1. 1 1 1 0 0 1 0 0 0O 1 0 O|

[ee]
~
[e]
ol
SN
w
N
=
o

CLRC INTM

15 14 13 12 11 10 9
[1 o 1 1 1 1 1 0 0o 1 0 0 0 0 0 O]

[ee]
~
[¢]
ol
ISy
w
N
=
o

CLRC OVM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 1 1 1 1 0o 0 1 0 0 0 0 1 O]

CLRC SXM

15 14 13 12 11 10 9
[1 o 1 1 1 1 1 0 o 1 0 0 0 1 1 O]

(o]
~
(]
o1
I
w
N
I
o

CLRCTC
15 14 13 12 11 10 9
[1 o 1 1 1 1 1 0o 0 1 0 0 1 0 1 O]

(o]
~
()]
&)]
D
w
N
=
o

CLRC XF
15 14 13 12 11 10 9
[1 o 1 1 1 1 1 0 0 1 0 0 1 1 0 O

(o]
~
()]
&)]
SN
w
N
=
o

Increment PC, then ...
0 - control bit

None

The specified control bit is cleared to 0. Note that the LST instruction can also
be used to load STO and ST1. See section 3.5, Status Registers STO and ST1
on page 3-15, for more information on each of these control bits.

Clear Control Bit CLRC

Words 1

Cycles Cycles for a Single CLRC Instruction
ROM DARAM SARAM External
1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a CLRC Instruction

ROM DARAM SARAM External
n n n n+p

Example CLRCTC ;(TCis bit 11 of ST1)

After Instruction

Before Instruction
x9xxh| ST1

ST1 |

Assembly Language Instructions 7-63

CMPL complement Accumulator

Syntax CMPL
Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1
Execution Increment PC, then ...
(ACC) - ACC
Status Bits None
Description The contents of the accumulator are replaced with its logical inversion (1s
complement). The carry bit is unaffected.
Words 1
Cycles Cycles for a Single CMPL Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an CMPL Instruction
ROM DARAM SARAM External
n n n n+p
Example CMPL
Before Instruction After Instruction
ACC | 0F7982513h] ACC
c c

7-64

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

Compare Auxiliary Register With ARO CMPR

CMPR CM
CM: Value from 0 to 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 12 1 1 1 1 0 1 0 0 0 1| CM

Increment PC, then ...
Compare (current AR) to (ARO) and place the result in the TC bit of status
register ST1.

Affects
TC

This instruction is not affected by SXM. It does not affect SXM.
The CMPR instruction performs a comparison specified by the value of CM:

If CM = 00, test whether (current AR) = (ARO)
If CM = 01, test whether (current AR) < (ARO)
If CM = 10, test whether (current AR) > (ARO)
If CM = 11, test whether (current AR) # (ARO)

If the condition is true, the TC bitis set to 1. If the condition is false, the TC bit
is cleared to 0.

Note that the auxiliary register values are treated as unsigned integers in the
comparisons.

1
Cycles for a Single CMPR Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an CMPR Instruction
ROM DARAM SARAM External
n n n n+p
CMPR 2 ;(current AR) > (ARO0)?
Before Instruction After Instruction
ARP | 4] ARP
ARO | OFFFFh] ARO
AR4 I 7FFFh] AR4
TC | 1] TC [d

;]

Assembly Language Instructions 7-6

DMOQOV Data Move in Data Memory

Syntax DMOV dma Direct addressing
DMOQV ind [, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %4 % %0+ *0- *BRO+ *BRO-

Opcode DMOV dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 1 0o 1 1 1][o0] dma

DMOV ind [, AR~
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l[o 1 1 1 0o 1 1 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) — data-memory address + 1

Status Bits Affected by
CNF
Description The contents of the specified data-memory address are copied into the con-

tents of the next higher address. When data is copied from the addressed loca-
tion to the next higher location, the contents of the addressed location remain
unaltered.

DMOV works only within on-chip data DARAM blocks. It works within any con-
figurable RAM block if that block is configured as data memory. In addition, the
data move function is continuous across block boundaries. The data move
function cannot be performed on external data memory. If the instruction spec-
ifies an external memory address, DMOV reads the specified memory location
but performs no operations.

The data move function is useful in implementing the z—1 delay encountered
in digital signal processing. The DMOV function is a subtask of the LTD and
MACD instructions (see the LTD and MACD instructions for more information).

Words 1

7-66

Data Move in Data Memory DMOV

Cycles Cycles for a Single DMOV Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,3 1+p
Externalf 2+2d 2+2d 2+2d 5+2d+p
T1f the operand and the code are in the same SARAM block
1f used on external memory, DMOV reads the specified memory location but performs no
operations.
Cycles for a Repeat (RPT) Execution of a DMOV Instruction
Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM 2n-2 2n-2 2n-2, 2n+1T 2n-2+p
Externalf 4n-2+2nd 4n—-2+2nd 4n—2+2nd 4n+1+2nd+p
T1f the operand and the code are in the same SARAM block
1f used on external memory, DMQOV reads the specified memory location but performs no
operations.
Example 1 DMOV DATS ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
308h I 43h] 308h
Data Memory Data Memory
309h | 2h] 309h 43h
Example 2 DMOV * AR1
Before Instruction After Instruction
ARP | o are
ARO | 30Ah] ARO
Data Memory Data Memory
30Ah | 40h] 30Ah 40h
Data Memory Data Memory
30Bh | 41h] 30Bh 40h

Assembly Language Instructions 7-6

N

IDLE Idle Until Interrupt

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

7-68

IDLE
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 1 1 1 1 0 0 0 1 0 0 0 1 0]

Increment PC, then wait for unmasked or nonmaskable hardware interrupt.

Affected by
INTM

The IDLE instruction forces the program being executed to halt until the CPU
receives arequest from an unmasked hardware interrupt (external or internal),
NMI, or reset. Execution of the IDLE instruction causes the 'C20x to enter a
power-down mode. The PC is incremented once before the 'C20x enters pow-
er down; itis notincremented during the idle state. On-chip peripherals remain
active; thus, their interrupts are among those that can wake the processor.

The idle state is exited by an unmasked interrupt even if INTM is 1. (INTM, the
interrupt mode bit of status register STO, normally disables maskable inter-
rupts when it is set to 1.) When the idle state is exited by an unmasked inter-
rupt, the CPU’s next action, however, depends on INTM:

O IfINTMis 0, the program branches to the corresponding interrupt service
routine.

[IfINTMis 1, the program continues executing at the instruction following
the IDLE.

NMI and reset are not maskable; therefore, if the idle state is exited by NMI or
reset, the corresponding interrupt service routine will be executed, regardless
of INTM.

1
Cycles for a Single IDLE Instruction
ROM DARAM SARAM External
1 1 1 1+p
IDLE ;The processor idles until a hardware reset,
;a hardware NMI, or an unmasked interrupt
;occurs.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Input Data From Port IN

IN dma, PA Direct addressing
IN ind, PA[, ARN] Indirect addressing
dma: 7 LSBs of the data-memory address

n: Value from 0O to 7 designating the next auxiliary register
PA: 16-bit I/O port or 1/0-mapped register address

ind: Select one of the following seven options:

* %+ - %0+ *0- *BRO+ *BRO-

IN dma, PA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 1 1 1|0 | dma

IN ind ,PA[,AR~]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...
PA - address bus lines A15-A0
Data bus lines D15-D0 - data-memory address
(PA) - data-memory address

None

The IN instruction reads a 16-bit value from an I/O location into the specified
data-memory location. The IS line goes low to indicate an I/O access. The
STRB, RD, and READY timings are the same as for an external data-memory
read.

The repeat (RPT) instruction can be used with the IN instruction to read in con-
secutive words from I/O space to data space.

2

Assembly Language Instructions 7-69

IN Input Data From Port

Cycles Cycles for a Single IN Instruction
Program
Operand ROM DARAM SARAM External
Destination: DARAM 2+i0g 2+i0gr0 2+i0gpc 3+i0grc*+2Pcode
Destination: SARAM 2+i0g 2+i0gr0 2+i0gpc 3+i0grc*+2Pcode
3+iogc
Destination: External 3+dygs+i0gyc 3+dystt+i0gre 3+dgystti0sre 6+dyst+10src*2Pcode

T1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an IN Instruction

Program
Operand ROM DARAM SARAM External
Destination: DARAM 2n+niog.c 2n+Niog.c 2n+niog,¢ 2n+1+ni0gyc+2Pcode
Destination: SARAM 2n+niog.c 2n+Niog.c 2n+niog,¢ 2n+1+ni0g;c+2Pcode

2n+2+niog.

Destination: External ~ 4n—1+ndyg+ 4n-1+ndgg+nioge 4n—-1+ndggs+nioge 4n+2+ndyg+Niogo+
NiOsc 2Pcode

T 1f the operand and the code are in the same SARAM block

Example 1 IN 7,1000h ;Read in word from peripheral on
;port address 1000h. Store word in
;data memory location 307h (DP=6).

Example 2 IN *5h ;Read in word from peripheral on
;port address 5h. Store word in
;data memory location specified by
;current auxiliary register.

7-70

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

Software Interrupt INTR

INTR K

K: Value from 0 to 31 that indicates the interrupt vector location
to branch to

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 1 1 1 1 0 0 1 1| K

(PC) +1 - stack
corresponding interrupt vector location — PC

Affects
INTM

This instruction is not affected by INTM.

The processor has locations for 32 interrupt vectors; each location is repre-
sented by a value K from 0 to 31. The INTR instruction is a software interrupt
that transfers program control to the program-memory address specified by
K. The vector at that address then leads to the corresponding interrupt service
routine. Thus, the instruction allows any one of the interrupt service routines
to be executed from your software. For a list of interrupts and their correspond-
ing K values, see section 5.6.2, Interrupt Table, on page 5-16. During execu-
tion of the instruction, the value PC + 1 (the return address) is pushed onto the
stack. Neither the INTM bit nor the interrupt masks affect the INTR instruction.
An INTR for the external interrupts looks exactly like an external interrupt (an
interrupt acknowledge is generated, and maskable interrupts are globally dis-
abled by setting INTM = 1).

1
Cycles for a Single INTR Instruction
ROM DARAM SARAM External
4 4 4 4+3pt

T The processor performs speculative fetching by reading two additional instruction words. Ifthe
PC discontinuity is taken, these two instruction words are discarded.

INTR 3 ;PC + 1 is pushed onto the stack.
;Then control is passed to program
;memory location 6h.

Assembly Language Instructions 7-71

LACC Load Accumulator With Shift

Execution Increment PC, then ...
Event Addressing mode
(data-memory address) x 2shift . ACC Direct or indirect
(data-memory address) x 216 _, ACC Direct or indirect (shift of 16)
Ik x 2shift _, ACC Long immediate

Status Bits Affected by
SXM

Description The contents of the specified data-memory address or a 16-bit constant are

left shifted and loaded into the accumulator. During shifting, low-order bits are
zero filled. High-order bits are sign extended if SXM = 1 and zeroed if SXM = 0.

Words Words Addressing mode
1 Direct or indirect
2 Long immediate
Cycles Cycles for a Single LACC Instruction (Using Direct and Indirect Addressing)
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACC Instruction (Using Direct
and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tifthe operand and the code are in the same SARAM block

Cycles for a Single LACC Instruction (Using Immediate Addressing)
ROM DARAM SARAM External

2 2 2 2+2p

7-72

Example 1

Example 2

Example 3

LACC 6,4
;SXM = 0)
Before Instruction
Data Memory
406h | 01h|
ACC | 012345678h|
c
LACC * 4 :(SXM = 0)
Before Instruction
ARP | 2
AR2 | 0300h|
Data Memory
300h | oFFh|
ACC | 12345678Hh|
c
LACC #0F000h,1 ;(SXM =1)
Before Instruction
ACC | 012345678h]|
c

Assembly Language Instructions 7-7

Load Accumulator With Shift LACC

;(DP = 8: addresses 0400h—047Fh,

After Instruction
Data Memory

406h
ACC
C

After Instruction

ARP
AR2
Data Memory
300h
Acc
C
After Instruction
ACC

C

w

LACC Load Accumulator With Shift

Syntax LACC dmal, shiff
LACC dma, 16

LACC ind]|, shift[, ARn]]
LACC ind, 16[, ARn]

LACC #Ik [, shiff

Direct addressing

Direct with left shift of 16
Indirect addressing

Indirect with left shift of 16
Long immediate addressing

Operands d
s

n.

ma
hift:

7 LSBs of the data-memory address
Left shift value from 0 to 15 (defaults to 0)
Value from 0 to 7 designating the next auxiliary register

Ik:
ind:

16-bit long immediate value
Select one of the following seven options:
* %+ *— *0+ *0— *BRO+ *BRO-

Opcode

LACC dma [, shift]

15 14 13 12 11 10 9 8 7 6
0 0 0 1| shift IE
LACC dma, 16

15 14 13 12 11 10 9 8 7 6

o 1 1 0 1 0 1 0|

o

LACC ind [, shift[, ARn]]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 0 0 1| shift 1| ARU [N[NAR
Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LACC ind, 16[, ARnN]
15 14 13 12 11 10 9 8 7 6

5 4 3 2 1 0

o 1 1 0 1 0 1 0]1

ARU [N | NAR

Note:

LACC #lk [, shiff
15 14 13 12 11 10 9 8 7 6

ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

1 0 1 1 1 1 1 1 1

Ik

7-74

Load Low Accumulator and Clear High Accumulator LACL

Syntax LACL dma Direct addressing
LACL ind[, ARnN] Indirect addressing
LACL #k Short immediate
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
ind: Select one of the following seven options:

* %+ % *0+ *0- *BRO+ *BRO-

Opcode LACL dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 0 1 0o o 1][o0] dma

LACL ind[, AR~
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 1 0 1 0o 0o 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LACL #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o 1 1 1 0o o0 1 k
Execution Increment PC, then ...
Events Addressing mode
0 - ACC(31:16) Direct or indirect

(data-memory address) - ACC(15:0)

0 - ACC(31:8) Short immediate
k -~ ACC(7:0)
Status Bits This instruction is not affected by SXM.
Description The contents of the addressed data-memory location or a zero-extended 8-bit

constant are loaded into the 16 low-order bits of the accumulator. The upper
half of the accumulator is zeroed. The data is treated as an unsigned 16-bit
number rather than a 2s-complement number. There is no sign extension of
the operand with this instruction, regardless of the state of SXM.

Words 1

Assembly Language Instructions 7-75

LACL

Load Low Accumulator and Clear High Accumulator

Cycles Cycles for a Single LACL Instruction (Using Direct and Indirect Addressing)
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p
Tif the operand and the code are in the same SARAM block
Cycles for a Repeat (RPT) Execution of an LACL Instruction (Using Direct
and Indirect Addressing)
Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd
Tif the operand and the code are in the same SARAM block
Cycles for a Single LACL Instruction (Using Immediate Addressing)
ROM DARAM SARAM External
1 1 1 1+p
Example 1 LACL 1 ;(DP = 6: addresses 0300h—037Fh)
Before Instruction After Instruction
Data Memory Data Memory
301h I oh| 301h
ACC | 7FFFFFEEN] ACC
C C
Example 2 LACL *— AR4
Before Instruction After Instruction
ARP | 0 ARP
ARO | 401h| ARO
Data Memory Data Memory
401h I OOFFh| 401h
ACC | 7FFFFFFEN] ACC
C C

7-76

Load Low Accumulator and Clear High Accumulator LACL

Example 3 LACL #10h

Before Instruction After Instruction

ACC | 7FEEEFFFN] ACC

Cc C

Assembly Language Instructions 7-77

LACT Load Accumulator With Shift Specified by TREG

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

7-78

LACT dma Direct addressing
LACT ind [, ARn] Indirect addressing

dma: 7 LSBs of the data-memory address
n: Value from O to 7 designating the next auxiliary register
ind: Select one of the following seven options:
* %+ *— *0+ *0— *BRO+ *BRO-
LACT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l[lo 1 1 0 1 0 1 1]o0| dma

LACT ind[, AR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l[o 1 1 0 1 0o 1 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...
(data-memory address) x 2(TREG(3:0)) . AcC

If SXM = 1:
Then (data-memory address) is sign extended.
If SXM = 0:
Then (data-memory address) is not sign extended.

Affected by
SXM

The LACT instruction loads the accumulator with a data-memory value that
has been left shifted. The left shift is specified by the four LSBs of the TREG,
resulting in shift options from 0 to 15 bits. Using the four LSBs of the TREG as
a shift code provides a dynamic shift mechanism. During shifting, the high-or-
der bits are sign extended if SXM = 1 and zeroed if SXM = 0.

LACT may be used to denormalize a floating-point number if the actual expo-
nentis placed in the four LSBs of the TREG register and the mantissa is refer-
enced by the data-memory address. This method of denormalization can be
used only when the magnitude of the exponent has four bits or less.

1

Cycles

Example 1

Example 2

Load Accumulator With Shift Specified by TREG LACT

Cycles for a Single LACT Instruction

Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p

T1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACT Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1f n+p
External n+nd n+nd n+nd n+1+p+nd

T 1f the operand and the code are in the same SARAM block

LACT 1
:SXM = 0)
Before Instruction

Data Memory Data Memory

301h | 1376h| 301h

TREG | 14h| TREG

ACC | 98F7EC83N] ACC
c c

LACT *~ AR3 {(SXM = 1)
Before Instruction
ARP | 1] ARP
AR1 | 310h| AR1
Data Memory Data Memory

310h | OFFOOh| 310h

TREG | 11h] TREG

ACC | 098F7EC83h] ACC
c c

Assembly Language Instructions 7-7

;(DP = 6: addresses 0300h—-037Fh,

After Instruction

1376

14

13760h

30F

OFF00

>
=
@
=
=
%)
=
c
(o]
=
o
=]

i

=

> =3 > w > >

OFFFFFEQOh

©

LAR Load Auxiliary Register

LAR ARX, dma
LAR ARX, ind [, ARN]

Syntax

Direct addressing
Indirect addressing

LAR ARX, #k Shortimmediate addressing
LAR ARX, #lk Long immediate addressing
Operands X: Value from 0 to 7 designating the auxiliary register to be loaded
dma: 7 LSBs of the data-memory address
k: 8-bit short immediate value
Ik: 16-bit long immediate value
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:
* %+ *— *0+ *0— *BRO+ *BRO-
Opcode LAR AR x, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0o 0o o o] X 0 | dma
LAR AR X, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 0o 0o o o] X 1] ARU [N| NAR
Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).
LAR AR x, #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 X k
LAR AR x, #lk
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 1 1 1 0 0 1 X
Ik
Execution Increment PC, then ...
Event Addressing mode
(data-memory address) —» ARX Direct or indirect
k - ARx Short immediate
Ik - ARX Long immediate
Status Bits None

7-80

Description

Words

Cycles

Load Auxiliary Register LAR

The contents of the specified data-memory address or an 8-bit or 16-bit
constant are loaded into the specified auxiliary register (ARX). The specified
constant is treated as an unsigned integer, regardless of the value of SXM.

The LAR and SAR (store auxiliary register) instructions can be used to load
and store the auxiliary registers during subroutine calls and interrupts. If an
auxiliary register is not being used for indirect addressing, LAR and SAR
enable the register to be used as an additional storage register, especially for
swapping values between data-memory locations without affecting the
contents of the accumulator.

Words Addressing mode

1 Direct, indirect or
short immediate

2 Long immediate

Cycles for a Single LAR Instruction (Using Direct and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM 2 2 2 2+Pcode
SARAM 2 2 2,3t 2+Pcode
External 2+dgre 2+dgre 2+dgre 3+dsrc*Pcode

1 If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LAR Instruction (Using Direct
and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM 2n 2n 2n 2n+Peode
SARAM 2n 2n 2n, 2n+1t 2n+Pcode
External 2n+ndg;e 2n+ndge 2n+ndgyc 2n+1+ndgcPeode

T1f the operand and the code are in the same SARAM block

Cycles for a Single LAR Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+Peode

Cycles for a Single LAR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Assembly Language Instructions 7-81

LAR Load Auxiliary Register

Example 1 LAR ARO0,16 ;(DP = 6: addresses 0300h—037Fh)
Before Instruction After Instruction
Data Memory Data Memory
310h | 18h| 310h 18h
ARO I 6h| ARO
Example 2 LAR AR4 *—
Before Instruction After Instruction
ARP | 7] are
Data Memory Data Memory
300h | 32h | 300h
AR4 | 300h | AR4
I 1
Note:

LAR in the indirect addressing mode ignores any AR modifications if the AR
specified by the instruction is the same as that pointed to by the ARP. There-
fore, in Example 2, AR4 is not decremented after the LAR instruction.

Example 3 LAR AR4,#01h
Before Instruction After Instruction
AR4 | OFF09h| AR4
Example 4 LAR ARG6,#3FFFh
Before Instruction After Instruction
ARG | Oh] ARG

7-82

Load Data Page Pointer LDP

Syntax LDP dma Direct addressing
LDP ind[, ARnN] Indirect addressing
LDP #k Short immediate
addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from O to 7 designating the next auxiliary register
k: 9-bit short immediate value
ind: Select one of the following seven options:

* k5 %0+ *0- *BRO+ *BRO-

Opcode LDP dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0o 0o 0 1 1 o0 1]o0] dma

LDP ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 0o 0o o 1 1 o 1[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LDP #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 1 0 k
Execution Increment PC, then ...
Event Addressing mode
Nine LSBs of (data-memory address) — DP Direct or indirect
k - DP Short immediate
Status Bits Affects
DP
Description The nine LSBs of the contents of the addressed data-memory location or a

9-bitimmediate value is loaded into the data page pointer (DP) of status regis-
ter STO. The DP can also be loaded by the LST instruction.

In direct addressing, the 9-bit DP and the 7-bit value specified in the instruction
(dma) are concatenated to form the 16-bit data-memory address accessed by
the instruction. The DP provides the 9 MSBs, and dma provides the 7 LSBs.

Words 1

Assembly Language Instructions 7-83

LDP Load Data Page Pointer

Cycles Cycles for a Single LDP Instruction (Using Direct and Indirect Addressing)
Program
Operand ROM DARAM SARAM External
DARAM 2 2 2 2+Pcode
SARAM 2 2 2,3f 2+Pcode
External 2+dgrc 2+dgyc 2+dgyc 3+dsrctPeode
T If the operand and the code are in the same SARAM block
Cycles for a Repeat (RPT) Execution of an LDP Instruction (Using Direct and
Indirect Addressing)
Program
Operand ROM DARAM SARAM External
DARAM 2n 2n 2n 2n+Pgode
SARAM 2n 2n 2n, 2n+1t 2n+pcode
External 2n+ndge 2n+ndge 2n+ndg¢ 2n+1+ndgcPeode
T If the operand and the code are in the same SARAM block
Cycles for a Single LDP Instruction (Using Short Immediate Addressing)
ROM DARAM SARAM External
2 2 2 2+Pcode
Example 1 LDP 127 ;(DP = 511: addresses FF80h—-FFFFh)
Before Instruction After Instruction
Data Memory Data Memory
FFFFh | FEDCh] FFFFh
DbP | 1FFh] DP
Example 2 LDP #0h
Before Instruction After Instruction
DbP | 1FFh] DP
Example 3 LDP * AR5
Before Instruction After Instruction
ARP I 4] ARP
ARS | o0h] AR
Data Memory Data Memory
300h I 06h] 300h
DP | 1FFh] DP 06h

7-84

Load Product Register High Word LPH

Syntax LPH dma Direct addressing
LPH ind [, ARn] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ % *0+ *0- *BRO+ *BRO-

Opcode LPH dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 1 o 1 1]0 | dma

o

LPH ind [, ARnN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 1 0o 1 o 1[1] ARU |[N][NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) -~ PREG (31:16)

Status Bits None

Description The 16 high-order bits of the PREG are loaded with the content of the specified
data-memory address. The low-order PREG bits are unaffected.

The LPH instruction can be used for restoring the high-order bits of the PREG
after interrupts and subroutine calls.

Words 1
Cycles Cycles for a Single LPH Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Assembly Language Instructions 7-85

LPH Load Product Register High Word

Cycles for a Repeat (RPT) Execution of an LPH Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tif the operand and the code are in the same SARAM block

Example 1 LPH DATO

Data Memory
200h

PREG

Example 2 LPH * ARG
ARP
AR5

Data Memory
200h

PREG

7-86

(DP =4)
Before Instruction

Data Memory

0F79Ch| 200h

30079844h| PREG

Before Instruction

5] ARP
200h] AR5
Data Memory
0F79Ch] 200h
30079844h] PREG

After Instruction

OF79Ch

0F79C9844h

After Instruction

|

200h

OF79Ch
0F79C9844h

Load Status Register LST

Syntax LST #m, dma Direct addressing
LST #m, ind [, ARN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
m: Select one of the following:
0 Indicates that STO will be loaded
1 Indicates that ST1 will be loaded
ind: Select one of the following seven options:

* %+ *_ 0+ *0- *BRO+ *BRO-

Opcode LST #0, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 0 0o o 1 1 0o | dma

-

LST #0, ind [, ARnN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 0o 0o 0o 1 1 1 of[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LST #1, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[EEN

[0 0o 0o 0o 1 1 1[0 | dma

LST #1, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 0o 0o 0o 1 1 1 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).
Execution Increment PC, then ...
(data-memory address) — status register STm

For details about the differences between an LST #0 operation and an LST #1
operation, see Figure 7-3, Figure 74, and the description category below.

Figure 7-3. LST #0 Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data | | [I |
! ! ! ! ! !]] ! ! ! ! ! !
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

STO | ARP | ov [ovM[1 | INT™M | DP |

Assembly Language Instructions 7-87

LST Load Status Register

Figure 7-4. LST #1 Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sTo | ARP [ov [owwm | 1 | INT™ | DP |
1 1 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Data | | [[| I [| I |
! ! ! ! ! ! ! ! ! !
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ST1 | ARB [cNe| 7C [sxm | ¢ [1 |1 |1 |1 x| 1] 1] Pm |
Status Bits Affects

ARB, ARP, OV, OVM, DP, CNF, TC, SXM, C, XF, and PM

This instruction does not affect INTM.

Description The specified status register (STO or ST1) is loaded with the addressed data-
memory value. Note the following points:

[0 The LST #0 operation does not affect the ARB field in the ST1 register,
even though a new ARP is loaded.

(1 Duringthe LST #1 operation, the value loaded into ARB is also loaded into
ARP.

(1 If a next AR value is specified as an operand in the indirect addressing
mode, this operand is ignored. ARP is loaded with the three MSBs of the
value contained in the addressed data-memory location.

[0 Reserved bit values in the status registers are always read as 1s. Writes
to these bits have no effect.

The LST instruction can be used for restoring the status registers after subrou-

tine calls and interrupts.

Words 1
Cycles Cycles for a Single LST Instruction
Program
Operand ROM DARAM SARAM External
DARAM 2 2 2 2+Peode
SARAM 2 2 2,3t 2+Pcode
External 2+dsrc 2+dsyc 2+dsyc 3+dsc*Peode

Tif the operand and the code are in the same SARAM block

7-88

Load Status Register LST

Cycles for a Repeat (RPT) Execution of an LST Instruction

Program
Operand ROM DARAM SARAM External
DARAM 2n 2n 2n 2n+Peode
SARAM 2n 2n 2n, 2n+1t 2n+Pcode
External 2n+ndge 2n+ndgyc 2n+ndgyc 2n+1+ndg,c+Peode

T1f the operand and the code are in the same SARAM block

Example 1 MAR * ARO
LST #0,*AR1 ;The data memory word addressed by the

;contents of auxiliary register ARO is
;loaded into status register STO,except
;for the INTM bit. Note that even
;though a next ARP value is specified,
;that value is ignored. Also note that
;the old ARP is not loaded into the

;ARB.
Example 2 LST #0,60h ;(DP =0)
Before Instruction After Instruction
Data Memory Data Memory
60h | 2404h] 60h
STO | 6E00N] STO
ST1 | 05ECh] ST1
Example 3 LST #0,*— AR1
Before Instruction After Instruction
ARP I 4] ARP
AR4 | 3FFh] AR4
Data Memory Data Memory
3FFh | EE04h] 3FFh
STO | EEOOh| STO
ST1 | F7ECh]| ST1

©

Assembly Language Instructions 7-8

LST Load Status Register

Example 4 LST #1,00h :(DP =6)
:Note that the ARB is loaded with
:the new ARP value.

Before Instruction After Instruction
Data Memory Data Memory
300h | E1BCh]| 300h
STO | 0406h] STO
ST1 | 09ECh]| ST1

7-90

Load TREG LT

Syntax LT dma Direct addressing
LT ind [, ARN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0O to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* % *_ *0+ *0- *BRO+ *BRO-

Opcode LT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 0o o 1 1]0] dma

LT ind [, ARN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 1 0 0o 1 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) - TREG

Status Bits None

Description TREG is loaded with the contents of the specified data-memory address. The
LT instruction may be used to load TREG in preparation for multiplication. See
also the LTA, LTD, LTP, LTS, MPY, MPYA, MPYS, and MPYU instructions.

Words 1
Cycles Cycles for a Single LT Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

T 1f the operand and the code are in the same SARAM block

Assembly Language Instructions 7-91

LT Load TREG

Cycles for a Repeat (RPT) Execution of an LT Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tif the operand and the code are in the same SARAM block

Example 1 LT 24

Data Memory
418h

TREG

Example 2 LT * AR3
ARP
AR2

Data Memory
418h

TREG

7-92

;(DP = 8: addresses 0400h—047Fh)

Before Instruction

62h]

3h]

Before Instruction

2|

418h]

62h|

3h]

Data Memory
418h

TREG

ARP
AR2

Data Memory
418h

TREG

After Instruction

!
N
=y

[<2]
N
=

After Instruction

II

418

[
N
=

!
N
=2

Load TREG and Accumulate Previous Product LTA

Syntax LTA dma Direct addressing

LTA ind [, ARn] Indirect addressing
Operands dma: 7 LSBs of the data-memory address

n: Value from O to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* %+ *— *0+ *0- *BRO+ *BRO-
Opcode LTA dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 0 o o o]o0] dma

LTA ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 1 0o o o of[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) - TREG
(ACC) + shifted (PREG) — ACC

Status Bits Affected by Affects
PM and OVM C and OV
Description TREG is loaded with the contents of the specified data-memory address. The

contents of the product register, shifted as defined by the PM status bits, are
added to the accumulator, and the result is placed in the accumulator.

The carry bit is set (C = 1) if the result of the addition generates a carry and
is cleared (C = 0) if it does not generate a carry.

The function of the LTA instruction is a subtask of the LTD instruction.

Words 1
Cycles Cycles for a Single LTA Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Assembly Language Instructions 7-93

LTA Load TREG and Accumulate Previous Product

Cycles for a Repeat (RPT) Execution of an LTA Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tif the operand and the code are in the same SARAM block

;(DP = 6: addresses 0300h—037Fh,

;PM =0: no shift of product)

Example 1 LTA 36
Before Instruction
Data Memory
324h | 62h|
TREG | 3h|
PREG | OFh|
ACC | 5h|
C
Example 2 LTA * AR5 ;(PM = 0)
Before Instruction
ARP | 4]
AR4 | 324h|
Data Memory
324h | 62h|
TREG | 3h|
PREG | OFh|
ACC | 5h|
C

7-94

After Instruction
Data Memory

324

TREG

PREG

Acc [0] 14h
c

After Instruction

ARP
AR4
Data Memory
324h
TREG
PREG

acc o] [1an|
c

Syntax

Operands

Opcode

Execution

Status Bits

Description

Load TREG, Accumulate Previous Product, and Move Data LTD

LTD dma Direct addressing
LTD ind [, ARnN] Indirect addressing
dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:
¥ %+ % %0+ *0- *BRO+ *BRO-
LTD dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 0 0o 1 o]o0] dma

LTD ind [, ARN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 1 0 0o 1 o[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...

(data-memory address) - TREG

(data-memory address) - data-memory address + 1
(ACC) + shifted (PREG) - ACC

Affected by Affects
PM and OVM C and OV

TREG is loaded with the contents of the specified data-memory address. The
contents of the PREG, shifted as defined by the PM status bits, are added to
the accumulator, and the result is placed in the accumulator. The contents of
the specified data-memory address are also copied to the next higher data-
memory address.

This instruction is valid for all blocks of on-chip RAM configured as data
memory. The data move function is continuous across the boundaries of con-
tiguous blocks of memory but cannot be used with external data memory or
memory-mapped registers. The data move function is described under the in-
struction DMOV.

Note:

If LTD is used with external data memory, its function is identical to that of
LTA; that is, the previous product will be accumulated, and the TREG will be
loaded from external data memory, but the data move will not occur.

The carry bit is set (C = 1) if the result of the addition generates a carry and
is cleared (C = 0) if it does not generate a carry.

Assembly Language Instructions 7-95

LTD Load TREG, Accumulate Previous Product, and Move Data

Words 1
Cycles Cycles for a Single LTD Instruction
Program
Operand ROM DARAM SARAM External ¥
DARAM 1 1 1 1+p
SARAM 1 1 1,3t 1+p
External 2+2d 2+2d 2+2d 5+2d+p

T If the operand and the code are in the same SARAM block
% Ifthe LTD instruction is used with external memory, the data move will not occur. (The previous
product will be accumulated, and the TREG will be loaded.)

Cycles for a Repeat (RPT) Execution of an LTD Instruction

Program
Operand ROM DARAM SARAM External ¥
DARAM n n n n+p
SARAM 2n-2 2n-2 2n-2, 2n+1t 2n-2+p
External 4n—-2+2nd 4n—-2+2nd 4n—-2+2nd 4n+1+2nd+p

T If the operand and the code are in the same SARAM block
¥ Ifthe LTD instruction is used with external memory, the data move will not occur. (The previous
product will be accumulated, and the TREG will be loaded.)

Example 1 LTD 126 ;(DP = 7: addresses 0380h—03FFh,
;PM = 0: no shift of product).

Before Instruction After Instruction

Data Memory Data Memory

3FEh | 62h] 3FEh
Data Memory Data Memory

3FFh | oh| 3FFh

TREG | 3h| TREG

PREG I OFh| PREG

ACC | 5h| Acc [o] 14h

C C

7-96

Load TREG, Accumulate Previous Product, and Move Data

Example 2 LTD *AR3
ARP
AR1

Data Memory
3FEh

Data Memory
3FFh

TREG
PREG
ACC

Note:

;(PM =0)

Before Instruction

1]

3FEN|

62h|

Oh]

3h|

OFh|

5|

Assembly Language Instructions

ARP
AR1

Data Memory
3FEh

Data Memory
3FFh

TREG
PREG

acc [o]
c

LTD

>
=
@
=
=1
w0
=
c
(o]
=
o
=]
=] |w

3FE

()]
N
=

Ql |oof |o
I N
IO =] =

[N
N
>

The data move function for LTD can occur only within on-chip data memory RAM blocks.

7-9

~

LTP Load TREG and Store PREG in Accumulator

Syntax LTP dma Direct addressing

LTP ind [, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address

n: Value from O to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* %+ *— *0+ *0— *BRO+ *BRO-
Opcode LTP dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 1 0o o o 1][o0] dma

LTP ind [, ARnN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 1 1 0 0o 0 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) - TREG
shifted (PREG) - ACC

Status Bits Affected by
PM
Description The TREG is loaded with the content of the addressed data-memory location,

and the PREG value is stored in the accumulator. The shift at the output of the
PREG is controlled by the PM status bits.

Words 1
Cycles Cycles for a Single LTP Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

7-98

Load TREG and Store PREG in Accumulator LTP

Cycles for a Repeat (RPT) Execution of an LTP Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Example 1 LTP 36 ;(DP = 6: addresses 0300h—037Fh,
;PM = 0: no shift of product)

Before Instruction

>
=
@
@
=1
0w
=
c
(o]
=
o
>

Data Memory Data Memory
324h | 62h]| 324h 62h
TREG | 3h| TREG 62h
PREG | OFh] PREG
ACC | 5h] ACC
c c
Example 2 LTP * AR5 ;(PM =0)
Before Instruction After Instruction
ARP I 2] ARP
AR2 | 324h| AR2
Data Memory Data Memory
324h | 62h] 324h
TREG | 3h| TREG 62h
PREG | OFh| PREG OFh
AcCC | 5h| AccC OFh
c c

©

Assembly Language Instructions 7-9

LTS Load TREG and Subtract Previous Product

Syntax LTS dma Direct addressing

LTS ind[, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

¥ *+ *— *0+ *0- *BRO+ *BRO-
Opcode LTS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[o 1 1 1 0 1 0o o0]o0|] dma

LTS ind [, ARnN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l[lo 1 1 1 0 1 0 o0[1] ARU N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) - TREG
ACC - shifted (PREG) - ACC

Status Bits Affected by Affects
PM and OVM C and OV
Description TREG is loaded with the contents of the addressed data-memory location. The

contents of the product register, shifted as defined by the contents of the PM
status bits, are subtracted from the accumulator. The result is placed in the
accumulator.

The carry bit is cleared (C = 0) if the result of the subtraction generates a
borrow, and is set (C = 1) if it does not generate a borrow.

Words 1
Cycles for a Single LTS Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

7-100

Load TREG and Subtract Previous Product

LT

()

Cycles for a Repeat (RPT) Execution of an LTS Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Example 1 LTS

DAT36

Data Memory

324h
TREG
PREG

ACC

Example 2 LTS

ARP
AR1
324h
TREG
PREG
ACC

C

* AR2

o[X

;(DP = 6: addresses 0300h—037Fh,

;PM = 0: no shift of product)

Before Instruction

| 62h|
| 3h|
|
|

OFh|
05h]

;(PM =0)

Before Instruction

1]
324h|
62h|
3h|
OFh]
05h|

Assembly Language Instructions

Data Memory
324h

TREG
PREG
ACC

ARP
AR1
324h
TREG
PREG
ACC

[o]

C

o

>
=
@
=
=1
0w
=
c
(o]
=
o
>

||
NN
0| | =

OFFFFFFF6h

324

>

=l

0]

o}

=

wn

o

c

(o]

[=2

o]
ol loo| | > o
TN N T
iA=L >

OFFFFFFF6h

7-101

MAC Multiply and Accumulate

Syntax

Operands

Opcode

Execution

Status Bits

7-102

MAC pma, dma Direct addressing
MAC pma, ind [, ARn] Indirect addressing
dma: 7 LSBs of the data-memory address

pma: 16-bit program-memory address

n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ % %0+ *0- *BRO+ *BRO-

MAC pma, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 0 1 0 0 0 1 0]o0] dma

pma

MAC pma, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 0 1 0 0 0 1 0|1 ARU [N][NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then . ..

(PC) -~ MSTACK

pma - PC

(ACC) + shifted (PREG) - ACC

(data-memory address) - TREG

(data-memory address) x (pma) - PREG

For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC

While (repeat counter) # O:
(ACC) + shifted (PREG) —» ACC
(data-memory address) - TREG
(data-memory address) x (pma) - PREG
For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC
(repeat counter) — 1 - repeat counter

(MSTACK) — PC

Affected by Affects
PM and OVM C and OV

Description

Words

Multiply and Accumulate MAC

The MAC instruction:

[Addsthe previous product, shifted as defined by the PM status bits, to the
accumulator. The carry bit is set (C = 1) if the result of the addition gener-
ates a carry and is cleared (C = 0) if it does not generate a carry.

1 Loads the TREG with the content of the specified data-memory address.

[Multiplies the data-memory value in the TREG by the contents of the spe-
cified program-memory address.

The data and program memory locations on the 'C20x may be any nonre-
served on-chip or off-chip memory locations. If the program memory is block
BO of on-chip RAM, the CNF bit must be set to 1.

When the MAC instruction is repeated, the program-memory address con-
tained in the PC is incremented by 1 during each repetition. This makes it pos-
sible to access a series of operands in program memory. If you use indirect
addressing to specify the data-memory address, a new data-memory address
can be accessed during each repetition. If you use the direct addressing mode,
the specified data-memory address is a constant; it will not be modified during
each repetition.

MAC is useful for long sum-of-products operations because, when repeated,
it becomes a single-cycle instruction once the RPT pipeline is started.

2

Assembly Language Instructions 7-103

MAC Multiply and Accumulate

Cycles
Cycles for a Single MAC Instruction

Operand ROM DARAM SARAM External
Operand 1: DARAM/ 3 3 3 3+2Pcode
ROM

Operand 2: DARAM

Operand 1: SARAM 3 3 3 3+2Pcode
Operand 2: DARAM

Operand 1: External 3+pop1 3+p0p1 3+p0p1 3+pop1+2pcode
Operand 2: DARAM

Operand 1: DARAM/ 3 3 3 3+2Pcode
ROM

Operand 2: SARAM

Operand 1: SARAM 3 3 3 3+2Pcode
Operand 2: SARAM 4T 4t 4t 4+2pcoge’
Operand 1: External 3+p0p1 3+p0p1 3+pop1 3+pgp1+2pcode
Operand 2: SARAM

Operand 1: DARAM/ 3+dgp, 3+dgp2 3+dpp2 3+dop2+2Pcode
ROM

Operand 2: External

Operand 1: SARAM 3+dgp» 3+dgp2 3+dgp2 3+dgp2t2Pcode
Operand 2: External

Operand 1: External 4+pgpg+dopy 4+Pgp1+dop2 4+pgp1+dop2 4+pgp1+dop2+2Pcode
Operand 2: External

1 1f both operands are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MAC Instruction

Operand ROM DARAM SARAM External
Operand 1: DARAM/ n+2 n+2 n+2 N+2+2Pcode
ROM

Operand 2: DARAM

Operand 1: SARAM n+2 n+2 n+2 N+2+2Pcode
Operand 2: DARAM

Operand 1: External n+2+npgp; N+2+NPgp71 N+2+NPgp1 N+2+NPop1+2Pcode

Operand 2: DARAM

T 1f both operands are in the same SARAM block

7-104

Multiply and Accumulate MAC

Cycles for a Repeat (RPT) Execution of an MAC Instruction (Continued)

Operand ROM DARAM SARAM External

Operand 1: DARAM/ n+2 n+2 n+2 N+2+2Pcode

ROM

Operand 2: SARAM

Operand 1: SARAM n+2 n+2 n+2 N+2+2Pcode
Operand 2: SARAM 2n+2t 2n+271 2n+2t 2n+2t

Operand 1: External n+2+npgp; N+2+NPgp1 N+2+NPgp1 N+2+NPop1+2Pcode
Operand 2: SARAM

Operand 1: DARAM/ n+2+ndg,, n+2+ndgp2 n+2+ndgpo N+2+ndyp2+2Pcode
ROM

Operand 2: External

Operand 1: SARAM n+2+ndgpp n+2+ndgp2 n+2+ndypp N+2+ndgp2+2Pcode
Operand 2: External

Operand 1: External 2n+2+npgp;+ 2n+2+npgp1+tNdopy 2N+2+Npgp1+ndepy 2N+2+NPypg+Ndgpo+
Operand 2: External ndgp, 2Pcode

t1f both operands are in the same SARAM block

Example 1 MAC OFFO00Nh,02h
Before Instruction
Data Memory
302h | 23h]
Program Memory
FFOOh | 4n|
TREG | 45h|
PREG | 458972h|
ACC | 723EC41h]
C
Example 2 MAC OFFO0O0Oh,*,AR5

Before Instruction

ARP | 4]
AR4 | 302h]
Data Memory
302h | 23h]
Program Memory
FFOOh | 4h]
TREG | 45h|
PREG | 458972h|
ACC | 723EC41h|

Assembly Language Instructions

(DP =6, PM =0, CNF =1)

After Instruction
Data Memory

302h
Program Memory
FFOOh
TREG
PREG

Acc [o] 76975B3h
c

:(PM = 0, CNF = 1)

After Instruction

ARP
AR4 302h
Data Memory

302h

Program Memory
FFOOh
TREG
PREG

Acc [0] 76975B3h
c

7-105

MACD Multiply and Accumulate With Data Move

Syntax

Operands

Opcode

Execution

7-106

MACD pma, dma Direct addressing
MACD pma, ind [, ARn] Indirect addressing
dma: 7 LSBs of the data-memory address

pma: 16-bit program-memory address

n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %k k. 0+ *0- *BRO+ *BRO-

MACD pma, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 0 1 0 0 0 1 10| dma

pma

MACD pma, ind [, ARN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 0 1 0 0 0 1 1|1]| ARU [N | NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then . . .

(PC) -~ MSTACK

pma - PC

(ACC) + shifted (PREG) -~ ACC

(data-memory address) - TREG

(data-memory address) x (pma) - PREG

For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC

(data-memory address) — data-memory address + 1

While (repeat counter) # O:
(ACC) + shifted (PREG) —» ACC
(data-memory address) - TREG
(data-memory address) x (pma) - PREG
For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC
(data-memory address) — data-memory address + 1
(repeat counter) — 1 - repeat counter

(MSTACK) - PC

Status Bits

Description

Words

Cycles

Multiply and Accumulate With Data Move MACD

Affected by Affects
PM and OVM C and OV

The MACD instruction:

[Addsthe previous product, shifted as defined by the PM status bits, to the
accumulator. The carry bit is set (C = 1) if the result of the addition gener-
ates a carry and is cleared (C = 0) if it does not generate a carry.

[J Loads the TREG with the content of the specified data-memory address.

[Multiplies the data-memory value in the TREG by the contents of the spe-
cified program-memory address.

[Copies the contents of the specified data-memory address to the next
higher data-memory address.

The data- and program-memory locations on the 'C20x may be any nonre-
served, on-chip or off-chip memory locations. If the program memory is block
BO of on-chip RAM, the CNF bit must be set to 1. If MACD addresses one of
the memory-mapped registers or external memory as a data-memory location,
the effect of the instruction is that of a MAC instruction; the data move will not
occur (see the DMQV instruction description).

When the MACD instruction is repeated, the program-memory address con-
tained in the PC is incremented by 1 during each repetition. This makes it pos-
sible to access a series of operands in program memory. If you use indirect
addressing to specify the data-memory address, a new data-memory address
can be accessed during each repetition. If you use the direct addressing mode,
the specified data-memory address is a constant; it will not be modified during
each repetition.

MACD functions in the same manner as MAC, with the addition of a data move
for on-chip RAM blocks. This feature makes MACD useful for applications
such as convolution and transversal filtering. When used with RPT, MACD be-
comes a single-cycle instruction once the RPT pipeline is started.

2

Assembly Language Instructions 7-107

MACD Multiply and Accumulate With Data Move

Cycles for a Single MACD Instruction

Operand ROM DARAM SARAM External
Operand 1: DARAM/ 3 3 3 3+2Pcode
ROM
Operand 2: DARAM
Operand 1: SARAM 3 3 3 3+2Pcode
Operand 2: DARAM
Operand 1: External 3+pgp; 3+Pgp1 3+Pop1 3+Pop1+2Pcode
Operand 2: DARAM
Operand 1: DARAM/ 3 3 3 3+2Pcode
ROM
Operand 2: SARAM
Operand 1: SARAM 3 3 3 3+2Pcode
Operand 2: SARAM 4t 4+2pcoge’
5%

Operand 1: External 3+pgp; 3+Pop1 3+Pop1 3+Pop1+2Pcode
Operand 2: SARAM
Operand 1: DARAM/ 3+dgp, 3+dgp2 3+dpp2 3+dop2+2Pcode
ROM
Operand 2: External8
Operand 1: SARAM 3+dgp, 3+dgp2 3+dpp2 3+dpp2+2Pcode
Operand 2: External®
Operand 1: External 4+pgpg+dopy 4+Pop1+dop2 4+pgp1+dop2 4+pgp1+dop2+2Pcode
Operand 2: External®
T 1f both operands are in the same SARAM block
1f both operands and code are in the same SARAM block
§ Data move operation is not performed when operand2 is in external data memory.

Cycles for a Repeat (RPT) Execution of an MACD Instruction
Operand ROM DARAM SARAM External
Operand 1: DARAM/ n+2 n+2 n+2 N+2+2Pcode
ROM
Operand 2: DARAM
Operand 1: SARAM n+2 n+2 n+2 N+2+2Pcode

Operand 2: DARAM

it operand 2 and code are in the same SARAM block

¥ 1f both operands are in the same SARAM block

8 f both operands and code are in the same SARAM block

1 Data move operation is not performed when operand?2 is in external data memory.

7-108

Multiply and Accumulate With Data Move MACD

Cycles for a Repeat (RPT) Execution of an MACD Instruction (Continued)

Operand ROM DARAM SARAM External
Operand 1: External N+2+npyp1 N+2+Npyp1 N+2+npyp1 N+2+NPyp1+2Pcode
Operand 2: DARAM
Operand 1: DARAM/ 2n 2n 2n 2n+2pcode
ROM 2n+21
Operand 2: SARAM
Operand 1: SARAM 2n 2n 2n 2n+2Pcode
Operand 2: SARAM 3n¥ 3n¥ 2n+27 3n¥

3nt

3n+28
Operand 1: External 2n+Npgpz 2n+npgpz 2n+Npgpz 2n+npgp1+2Pcode
Operand 2: SARAM 2n+2+npgp; T
Operand 1: DARAM/ n+2+ndgp, n+2+ndgypo n+2+ndgp2 N+2+ndyp2+2Pcode
ROM
Operand 2: Externall
Operand 1: SARAM n+2+ndgpo n+2+ndgp N+2+ndgp2 N+2+ndpp2+2Pcode
Operand 2: Externall
Operand 1: External 2n+2+npgpg+ 2n+2+nppp1+ndopy 2N+2+Npgp1+Ndepy 2N+2+NPgpg+Ndgpo+
Operand 2: ExternalT ndp,» 2Pcode

Tt operand 2 and code are in the same SARAM block

1 1f both operands are in the same SARAM block

§1f both operands and code are in the same SARAM block
T Data move operation is not performed when operand2 is in external data memory.

Example 1

MACD OFFO00h,08h

Data Memory
308h

Data Memory
309h

Program Memory
FFOOh

TREG
PREG
ACC

C

;(DP = 6: addresses 0300h—037Fh,

;PM = 0: no shift of product,

;CNF = 1: RAM BO configured to

;program memory).

Before Instruction
Data Memory

After Instruction

| 7 so8n
Data Memory
| e 309
Program Memory
| 4h] FFOOh
| h TREG
I 458972h] PREG
| 723EC41h] acc o]
C

Assembly Language Instructions

7-109

MACD Multiply and Accumulate With Data Move

Example 2 MACD OFF0O0h,*,AR6 :(PM =0, CNF =1)
Before Instruction After Instruction

ARP | 5] ARP [¢
AR5 | 308h] AR5

Data Memory Data Memory
308h | 23h] 308h 23h

Data Memory Data Memory
309h | 18h] 309h

Program Memory Program Memory
FF0Oh | 4h] FFOOh
TREG | 45h] TREG
PREG | 458972h| PREG
ACC | 723ECA41h| AcC [0]
C C

Note: The data move function for MACD can occur only within on-chip data memory RAM
blocks.

7-110

Syntax

Operands

Opcode

Execution

Status Bits

Description

Modify Auxiliary Register MAR

MAR dma Direct addressing
MAR ind [, ARn] Indirect addressing
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* % *_ %0+ *0- *BRO+ *BRO-

MAR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o o o 1 0o 1 1][o0] dma

MAR ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[t o o o 1 o 1 1[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Event(s) Addressing mode
Increment PC Direct
Increment PC Indirect

Modify (current AR) and (ARP) as specified

Affects Addressing mode
None Direct
ARP and ARB Indirect

In the direct addressing mode, the MAR instruction acts as a NOP instruction.

In the indirect addressing mode, an auxiliary register value and the ARP value
can be modified; however, the memory being referenced is not used. When
MAR modifies the ARP value, the old ARP value is copied to the ARB field of
ST1. Any operation that MAR performs with indirect addressing can also be
performed with any instruction that supports indirect addressing. The ARP can
also be loaded by an LST instruction.

The LARP instruction from the 'C25 instruction set is a subset of MAR. For ex-
ample, MAR *, AR4 performs the same function as LARP 4, which loads the
ARP with 4.

For loading an auxiliary register, see the description for the LAR instruction.
For storing an auxiliary register value to data memory, see the SAR instruction.

Assembly Language Instructions 7-111

MAR Modify Auxiliary Register

Words 1
Cycles Cycles for a Single MAR Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an MAR Instruction
ROM DARAM SARAM External
n n n n+p
Example 1 MAR * AR1 ;Load the ARP with 1.
Before Instruction After Instruction
ARP | o are
ARB | 7 ars 9
Example 2 MAR *+ AR5 ;Increment current auxiliary
;register (AR1) and load ARP
;with 5.
Before Instruction After Instruction
AR1 | 34h| ARL
ARP | 0 are
ARB I o] ARB

7-112

Multiply MPY

Syntax MPY dma Direct addressing

MPY ind [, ARnN] Indirect addressing

MPY #k Shortimmediate addressing
Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

k: 13-bit short immediate value

ind: Select one of the following seven options:

* %+ - %0+ *0- *BRO+ *BRO-

Opcode MPY dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0 1 0o 1 0o o]o] dma

MPY ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 0 1 0 1 0o o[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

MPY #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 k
Execution Increment PC, then ...
Event Addressing mode

(TREG) x (data-memory address) - PREG Direct or indirect

(TREG) xk - PREG Short immediate
Status Bits None
Description The contents of TREG are multiplied by the contents of the addressed data

memory location. The result is placed in the product register (PREG). With
short immediate addressing, TREG is multiplied by a signed 13-bit constant.
The short-immediate value is right justified and sign extended before the multi-
plication, regardless of SXM.

Words 1

Assembly Language Instructions 7-113

MPY Multiply

Cycles Cycles for a Single MPY Instruction (Using Direct and Indirect Addressing)
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPY Instruction (Using Direct
and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tifthe operand and the code are in the same SARAM block

Cycles for a Single MPY Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External
1 1 1 1+p
Example 1 MPY DAT13 :(DP = 8)
Before Instruction After Instruction
Data Memory Data Memory

40Dh | 7h] 40Dh
TREG | 6h] TREG
PREG | 36h] PREG

7-114

Example 2 MPY * AR2

ARP
AR1

Data Memory
40Dh

TREG
PREG

Example 3 MPY #031h

TREG
PREG

Before Instruction

| 1] ARP
| 40Dh| AR1
Data Memory
| 7h| 40Dh
| 6h| TREG
| 36h| PREG
Before Instruction
| 2h| TREG
| 36h] PREG

Multiply MPY

40D

>
=
@
=
=
w0
=
c
(o]
=
o
=]

of [~

== =

N
>
=

>
=
@
=
=1
w0
=
c
(o]
=
o
=]

)

=

(o]
N
=2

Assembly Language Instructions 7-115

MPYA Multiply and Accumulate Previous Product

Syntax MPYA dma Direct addressing
MPYA ind [, ARN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ *_ %0+ *0— *BRO+ *BRO-

Opcode MPYA dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo 1 0o 1 0 0o 0 o0]o0] dma

MPYA ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lo 1 0o 1 0 o o of[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + shifted (PREG) —» ACC
(TREG) x (data-memory address) - PREG

Status Bits Affected by Affects
PM and OVM C and OV
Description The contents of TREG are multiplied by the contents of the addressed data

memory location. The resultis placed in the product register (PREG). The pre-
vious product, shifted as defined by the PM status bits, is also added to the
accumulator.

Words 1
Cycles Cycles for a Single MPYA Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

7-116

Example 1

Example 2

Multiply and Accumulate Previous Product

MPYA

Cycles for a Repeat (RPT) Execution of an MPYA Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

MPYA

MPYA

DAT13
Data Memory
30Dh
TREG
PREG
ACC

C

*,AR4
ARP
AR3

Data Memory

30Dh
TREG
PREG

ACC

C

:(DP = 6, PM = 0)

Before Instruction

I 7h]
I 6h|
| 36N
| 54h|

;(PM = 0)
Before Instruction
I 3l
| 30Dh]

I 7h|
I 6h]
I
I

36h|
54h|

Assembly Language Instructions

Data Memory
30Dh

TREG
PREG
ACC

ARP
AR3

Data Memory
30Dh

TREG
PREG
ACC

[o]

C

0[5

>
=
@
=
=]
0]
=
c
(o]
=
o
5
ol |N
> |=

of [
>\ (=
Sl =

30D

>
=
@
=
=
0]
=
c
(o]
=
o
o =]
> ol N
EAlEARES = [

®
>
=2

7-117

MPYS Multiply and Subtract Previous Product

Syntax MPYS dma Direct addressing
MPYS ind [, ARn] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ *_ %0+ *0— *BRO+ *BRO-

Opcode MPYS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo 1 0o 1 0 0o 0o 1]o0] dma

MPYS ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l[lo 1 0o 1 0 o o 1[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) — shifted (PREG) - ACC
(TREG) x (data-memory address) - PREG

Status Bits Affected by Affects
PM and OVM C and OV
Description The contents of TREG are multiplied by the contents of the addressed data

memory location. The resultis placed in the product register (PREG). The pre-
vious product, shifted as defined by the PM status bits, is also subtracted from
the accumulator, and the result is placed in the accumulator.

Words 1
Cycles Cycles for a Single MPYS Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

7-118

Example 1

Example 2

Multiply and Subtract Previous Product

MPYS

Cycles for a Repeat (RPT) Execution of an MPYS Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

MPYS

MPYS

DAT13

Data Memory
30Dh

TREG
PREG

Acc [X]

ARP
AR4

Data Memory
30Dh

TREG
PREG
ACC

ol

:(DP = 6, PM = 0)

Before Instruction

7h|
6h|
36h|
54h|

;(PM = 0)
Before Instruction
I 4
| 30Dh

7h]
6h|
36h|
54h|

Assembly Language Instructions

Data Memory
30Dh

TREG
PREG
ACC

ARP
AR4

Data Memory
30Dh

TREG
PREG
ACC

[1]

C

o =]

>
=
1]
=
5
0]
=
c
(o]
=
o
N 5
o] N
S=] =

[y
m
0

30D

>
=
@
=
=
0]
=
c
(o]
=
o

N S5

>||of N

S=] 1= =S| o

=
m
=

7-119

MPYU Multiply Unsigned

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

7-120

MPYU dma Direct addressing
MPYU ind [, ARn] Indirect addressing

dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ *— *0+ *0- *BRO+ *BRO-

MPYU dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0o 1 0 1 0o 1][o0] dma

MPYU ind [,AR"]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l[o 1 o0 1 0 1 0 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...
Unsigned (TREG) x unsigned (data-memory address) - PREG

None
This instruction is not affected by SXM.

The unsigned contents of TREG are multiplied by the unsigned contents of the
addressed data-memory location. The result is placed in the product register
(PREG). The multiplier acts as a signed 17 x 17-bit multiplier for this instruc-
tion, with the MSB of both operands forced to 0.

When another instruction passes the resulting PREG value to data memory
or to the CALU, the value passes first through the product shifter at the output
of the PREG. This shifter always invokes sign extension on the PREG value
when PM = 3 (right-shift-by-6 mode). Therefore, this shift mode should not be
used if unsigned products are desired.

The MPYU instruction is particularly useful for computing multiple-precision
products, such as when multiplying two 32-bit numbers to yield a 64-bit prod-
uct.

Multiply Unsigned MPYU

Cycles Cycles for a Single MPYU Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p
T1f the operand and the code are in the same SARAM block
Cycles for a Repeat (RPT) Execution of an MPYU Instruction
Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd
1 1f the operand and the code are in the same SARAM block
Example 1 MPYU 16 ;(DP = 4: addresses 0200h—-027Fh)
Before Instruction After Instruction
Data Memory Data Memory
210h | OFFEFH] 210h
TREG | OFFFFH| TREG
PREG | 1h| PREG OFFFE0001h
Example 2 MPYU * ARG
Before Instruction After Instruction
ARP I 5] ARP [4
AR5 | 210h| AR5
Data Memory Data Memory
210h | OFFFFh| 210h OFFFFh
TREG | OFFFFh| TREG OFFFFh
PREG | 1h] PREG OFFFE0001h

Assembly Language Instructions

7-121

NEG Negate Accumulator

Syntax NEG
Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 1 0 1 1 1 1 1 0 O O O O O O 1 O

Execution Increment PC, then ...
(ACC)x -1 - ACC

Status Bits Affected by Affects
OVM C and OV
Description The content of the accumulator is replaced with its arithmetic complement (2s

complement). The OV bit is set when taking the NEG of 8000 0000h. If OVM
= 1, the accumulator content is replaced with 7FFF FFFFh. If OVM = 0, the
result is 8000 0000h. The carry bit (C) is cleared to 0 by this instruction for all
nonzero values of the accumulator, and is set to 1 if the accumulator equals

zero.
Words 1
Cycles Cycles for a Single NEG Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an NEG Instruction
ROM DARAM SARAM External
n n n n+p
Example 1 NEG ;(OVM = X) Convert —3544 to +3544
Before Instruction After Instruction
ACC [oFFFrFr22an] acc [0
C C
oV oV
Example 2 NEG ;(OVM =0)
Before Instruction After Instruction
ACC I 080000000H] acc [0
C C
ov ov

7-122

Negate Accumulator NEG

Example 3 NEG ;(OVM =1)
Before Instruction After Instruction
Ace [oooooooon] ~ Acc [o]
c C
oV oV

Assembly Language Instructions 7-123

NMI Nonmaskable Interrupt

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Example

7-124

NMI

None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111001010010

(PC) +1 - stack
24h - PC
15 INTM

Affects
INTM

This instruction is not affected by INTM.

The NMI instruction forces the program counter to the nonmaskable interrupt
vector located at 24h. This instruction has the same effect as the hardware
nonmaskable interrupt NMI.

1
Cycles for a Single NMI Instruction
ROM DARAM SARAM External
4 4 4 4+3pT

T The'c20x performs speculative fetching by reading two additional instruction words. If the PC
discontinuity is taken, these two instruction words are discarded.

NMI ;PC + 1 is pushed onto the stack, and then
;control is passed to program memory location
;24h.

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words
Cycles

Example

No Operation NOP

NOP
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 o o o 1 0 1 1 O O O O O O o0 o

Increment PC

None

No operation is performed. The NOP instruction affects only the PC. The NOP
instruction is useful for creating pipeline and execution delays.

1
Cycles for a Single NOP Instruction

ROM DARAM SARAM Externa
1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an NOP Instruction
ROM DARAM SARAM External
n n n n+p
NOP ;No operation is performed.

Assembly Language Instructions 7-125

NORM Normalize Contents of Accumulator

Syntax

Operands

Opcode

Execution

Status Bits

Description

7-126

NORM ind Indirect addressing

ind: Select one of the following seven options:
* *+ *— *0+ *0— *BRO+ *BRO-

NORM ind
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 0 0 O0|1] ARU [N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...

If (ACC) = 0:
Then TC - 1;
Else, if (ACC(31)) XOR (ACC(30)) =0:
Then TC - 0,
(ACC)x2 - ACC
Modify (current AR) as specified,;
Else TC - 1.

Affects
TC

The NORM instruction normalizes a signed number that is contained in the ac-
cumulator. Normalizing a fixed-point number separates it into a mantissa and
an exponent by finding the magnitude of the sign-extended number. An exclu-
sive-OR operation is performed on accumulator bits 31 and 30 to determine
if bit 30 is part of the magnitude or part of the sign extension. If they are the
same, they are both sign bits, and the accumulator is left shifted to eliminate
the extra sign bit.

The current AR is modified as specified to generate the magnitude of the expo-
nent. It is assumed that the current AR is initialized before normalization be-
gins. The default modification of the current AR is an increment.

Multiple executions of the NORM instruction may be required to completely
normalize a 32-bit number in the accumulator. Although using NORM with
RPT does not cause execution of NORM to fall out of the repeat loop automati-
cally when the normalization is complete, no operation is performed for the re-
mainder of the repeat loop. NORM functions on both positive and negative 2s-
complement numbers.

Words
Cycles

Example 1

Example 2

Normalize Contents of Accumulator

NORM

Notes:

Forthe NORM instruction, the auxiliary register operations are executed dur-
ing the fourth phase of the pipeline, the execution phase. For other instruc-
tions, the auxiliary register operations take place in the second phase of the
pipeline, in the decode phase. Therefore:

1) The auxiliary register values should not be modified by the two

instruction words following NORM.

If the auxiliary register used in the

NORM instruction is to be affected by either of the next two instruction
words, the auxiliary register value will be modified by the other instruc-
tions before it is modified by the NORM instruction.

2) The value in the auxiliary register pointer (ARP) should not be mo-

dified by the two instruction words following NORM.

If either of the

next two instruction words specify a change in the ARP value, the ARP
value will be changed before NORM is executed; the ARP will not be
pointing at the correct auxiliary register when NORM is executed.

1
Cycles for a Single NORM Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of a NORM Instruction
ROM DARAM SARAM External
n n n n+p
NORM *
Before Instruction After Instruction
ARP | 2] ARP
AR2 | 0oh| AR2

31-Bit Normalization:

LOOP

MAR * AR1 ;Use ARL1 to store the exponent.
LAR AR1,#0h ;Clear out exponent counter.
NORM *+ ;:0One bit is normalized.

BCND LOOP,NTC ;If TC =0, magnitude not found yet.

Assembly Language Instructions

ACC [___oFFFFFoo1n] AcC [OFFFE002h]
C
TC

7-127

NORM Normalize Contents of Accumulator

Example 3

7-128

15-Bit Normalization:

MAR * AR1 ;Use ARL1 to store the exponent.
LAR AR1#0Fh ;Initialize exponent counter.
RPT #14 ;15-bit normalization specified (yielding
;a 4-bit exponent and 16-bit mantissa).
NORM *— ;NORM automatically stops shifting when first

;significant magnitude bit is found,
;performing NOPs for the remainder of the
;repeat loops.

The method used in Example 2 normalizes a 32-bit number and yields a 5-bit
exponent magnitude. The method used in Example 3 normalizes a 16-bit num-
ber and yields a 4-bit magnitude. If the number requires only a small amount
of normalization, the Example 2 method may be preferable to the Example 3
method because the loop in Example 2 runs only until normalization is com-
plete. Example 3 always executes all 15 cycles of the repeat loop. Specifically,
Example 2 is more efficient if the number requires three or fewer shifts. If the
number requires six or more shifts, Example 3 is more efficient.

OR With Accumulator OR

Syntax OR dma Direct addressing
OR ind [, ARn] Indirect addressing
OR #lk [, shiff] Long immediate addressing
OR #lk, 16 Long immediate with left
shift of 16
Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
Ik: 16-bit long immediate value
ind: Select one of the following seven options:

* %k % *0+ *0- *BRO+ *BRO-

Opcode OR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 0o 1 1 o 1]o0] dma
OR ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 0o 1 1 o 1[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

OR #Ik [, shiff
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 o 1 1 1 1 1 1 1 1 O O shift

OR #lk [, 16]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 O O O O O 1 O

Ik
Execution Increment PC, then ...
Event(s) Addressing mode

(ACC(15:0)) OR (data-memory address) - ACC(15:0) Direct or indirect
(ACC(31:16)) - ACC(31:16)

(ACC) OR |k x 2shift , AcC Long immediate

X - ong immediate
(ACC)OR Ik x 216 _, ACC Long i di
with left shift of 16

Assembly Language Instructions 7-129

OR OR With Accumulator

Status Bits None
This instruction is not affected by SXM.

Description An OR operation is performed on the contents of the accumulator and the con-
tents of the addressed data-memory location or a long-immediate value. The
long-immediate value may be shifted before the OR operation. The result re-
mains in the accumulator. All bit positions unoccupied by the data operand are
zero filled, regardless of the value of the SXM status bit. Thus, the high word
of the accumulator is unaffected by this instruction if direct or indirect address-
ing is used, or if immediate addressing is used with a shift of 0. Zeros are
shifted into the least significant bits of the operand if immediate addressing is
used with a nonzero shift count.

Words Words Addressing mode
1 Direct or indirect
2 Long immediate
Cycles Cycles for a Single OR Instruction (Using Direct and Indirect Addressing)
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

T If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an OR Instruction (Using Direct and
Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tifthe operand and the code are in the same SARAM block

Cycles for a Single OR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External
2 2 2 2+2p

7-130

Example 1

Example 2

Example 3

ORDAT8 ;(DP =28)

Before Instruction
Data Memory

408h | 0FO000h|
ACC | 100002h]
c
OR * ARO
Before Instruction
ARP | 1]
AR1 | 300h]
Data Memory
300h | 1111h|
ACC | 222h]
c

OR #08111h,8

Before Instruction
ACC | OFF0000N]

OR With Accumulator OR

After Instruction
Data Memory

408h 0F000h
ACC 10F002h
c

After Instruction

ARP [

AR1 300h
Data Memory
300h 1111h

AcC
C

After Instruction

ACC
c

Assembly Language Instructions 7-131

OUT output Data to Port

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

7-132

OUT dma, PA Direct addressing
OUT ind, PA[, ARn] Indirect addressing
dma: 7 LSBs of the data-memory address

PA: 16-bit I/O address

n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ % %0+ *0- *BRO+ *BRO-

OUT dma, PA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 1 0 0]0] dma

PA

OUT ind, PA[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 01 ARU [N]| NAR

PA

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...

PA - address bus A15-A0

(data-memory address) - data bus D15-D0
(data-memory address) - PA

None

The OUT instruction writes a 16-bit value from a data-memory location to the
specified 1/0O location. The IS line goes low to indicate an I/O access. The
STRB, R/W, and READY timings are the same as for an external data-memory
write.

RPT can be used with the OUT instruction to write consecutive words from
data memory to 1/O space.

2

Output Data to Port

Cycles
Cycles for a Single OUT Instruction
Program
Operand ROM DARAM SARAM External
Source: DARAM 3+ioggt 3+ioggt 3+ioggt 5+iogst+2Pcode
Source: SARAM 3+i0gst 3+i0gst 3+i0gst 5+i0gst+2Pcode
A+iogg T

Source: External

3+dgpctiogst

3+dgrctiogst

3+dgpctiogst

6+dgrc+i0gs+2Pcode

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an OUT Instruction

Program
Operand ROM DARAM SARAM External
Destination: DARAM 3n+niogg; 3n+niogg; 3n+niogg; 3n+3+niogst+2Pcode
Destination: SARAM 3n+nioygy 3n+niogg; 3n+niogg; 3n+3+niogst+2Pcode

Destination: External

5n—2+ndg.+

niOdst

5n—2+ndg,-+Nioggs

3n+1+niogs,

5n—2+ndg,-+niogst

5n+1+ndg,c+Nioggt+
2Pcode

1 1f the operand and the code are in the same SARAM block

Example 1

Example 2

ouT

ouT

DATO0,100h

*,100h

;(DP = 4) Write data word stored in

;data memory location 200h to
;peripheral at 1/0 port address
;100h.

:Write data word referenced by

;current auxiliary register to
;peripheral at 1/0 port address
;100h.

Assembly Language Instructions

ouT

7-133

PAC Load Accumulator With Product Register

Syntax PAC
Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 1 0 1 1 1 11 0 O O O O o o0 1 1

Execution Increment PC, then ...
shifted (PREG) - ACC

Status Bits Affected by
PM
Description The content of PREG, shifted as specified by the PM status bits, is loaded into
the accumulator.
Words 1
Cycles Cycles for a Single PAC Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of a PAC Instruction
ROM DARAM SARAM External
n n n n+p
Example PAC ;(PM = 0: no shift of product)
Before Instruction After Instruction
PREG | 144 PREG
ACC I 23h] ACC
c c

7-134

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Pop Top of Stack to Low Accumulator POP

POP
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000110010

Increment PC, then ...
(TOS) - ACC(15:0)
0 - ACC(31:16)

Pop stack one level

None

The content of the top of the stack (TOS) is copied to the low accumulator, and
then the stack values move up one level. The upper half of the accumulator
is set to all zeros.

The hardware stack functions as a last-in, first-out stack with eight locations.
Any time a pop occurs, every stack value is copied to the next higher stack lo-
cation, and the top value is removed from the stack. After a pop, the bottom
two stack words will have the same value. Because each stack value is copied,
if more than seven stack pops (using the POP, POPD, RETC, or RET instruc-
tions) occur before any pushes occur, all levels of the stack will contain the
same value. No provision exists to check stack underflow.

1
Cycles for a Single POP Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of a POP Instruction
ROM DARAM SARAM External
n n n n+p

Assembly Language Instructions 7-135

POP Pop Top of Stack to Low Accumulator

Example POP

Before Instruction After Instruction

ACC | 82h] ACC

c c

Stack | 45h] Stack
| 6]
| 7]
|)
| a2
I 56|
| 37
| 61h| 61h

7-136

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Pop Top of Stack to Data Memory POPD

POPD dma Direct addressing
POPD ind [, ARn] Indirect addressing

dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %t %~ %0+ *0— *BRO+ *BRO-

POPD dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[

[t o 0o o 1 o 0o dma

POPD ind [,ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[t o o o 1 0o 1 of[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...
(TOS) - data-memory address
Pop stack one level

None

The value from the top of the stack is transferred into the data-memory location
specified by the instruction. In the lower seven locations of the stack, the val-
ues are copied up one level. The stack operation is explained in the description
for the POP instruction. No provision exists to check stack underflow.

1
Cycles for a Single POPD Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 2+d 2+d 2+d 4+d+p

Tif the operand and the code are in the same SARAM block

Assembly Language Instructions 7-137

POPD Pop Top of Stack to Data Memory

Cycles for a Repeat (RPT) Execution of a POPD Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+2t n+p
External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

Tif the operand and the code are in the same SARAM block

Example 1 POPD DAT10 :(DP = 8)
Before Instruction

Data Memory Data Memory
40Ah 55h| 40Ah

Stack 92h| Stack
72h|
8h|
44h|
81h|
75h|
32h|
0AAh

Example 2 POPD *+ AR1
Before Instruction
ARP | o] ARP
ARO | 300h] ARO

Data Memory Data Memory
300h 55h] 300h

Stack 92h| Stack
72h|
8h|
44h]
81h|
75h|
32h|
0AAh]

7-138

After Instruction

~ | [[~N | |©
a2l B9 IN]IN
o0 1= =] =] =] 1=

w
N
=

O0AA

o
I!

b

5=

After Instruction

w
~ | [oof & ~| | o
al =] 18] o] IN] N =
SIS ISIS)|IS)] IS 0| |-

w
N
=2

o

I!
>

=S

0AA

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Push Data-Memory Value Onto Stack PSHD

PSHD dma Direct addressing
PSHD ind [, ARnN] Indirect addressing

dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ %~ %0+ *0— *BRO+ *BRO-

PSHD dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 1 o 1 0o dma

[

PSHD ind [, ARnN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 1 0o 1 1 of[1]| ARU | N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...
(data-memory address) - TOS
Push all stack locations down one level

None

The value from the data-memory location specified by the instruction is trans-
ferred to the top of the stack. In the lower seven locations of the stack, the val-
ues are also copied one level down, as explained in the description for the
PUSH instruction. The value in the lowest stack location is lost.

1
Cycles for a Single PSHD Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Assembly Language Instructions 7-139

PSHD Push Data-Memory Value Onto Stack

Cycles for a Repeat (RPT) Execution of a PSHD Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+nd+p

Tif the operand and the code are in the same SARAM block

Example 1 PSHD 127

Data Memory
1FFh

Stack

Example 2 PSHD * AR1

ARP
ARO

Data Memory
1FFh

Stack

7-140

;(DP = 3: addresses 0180-01FFh)

Before Instruction

65h|
2h]
33h]
78h]|
99h]|
42h]
50h]
0h|
0h|

Before Instruction
I o]
| 1FFh|

12h|
2h|
33h|
78h|
99h|
42h|
50h|
oh|
oh]

Data Memory
1FFh

Stack

ARP
ARO

Data Memory
1FFh

Stack

After Instruction

S| |I= 51515 =

al >
ol IN
ol | =

!
>

After Instruction

=
ol || |w = [= n
©|] || [nof [N [T
o I [I fn I e 2 I [Y [el I |]

al s
[=] RS
|| =

!
>

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Example

Push Low Accumulator Onto Stack PUSH

PUSH
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000111100

Increment PC, then...
Push all stack locations down one level
ACC(15:0) - TOS

None

The stack values move down one level. Then, the content of the lower half of
the accumulator is copied onto the top of the hardware stack.

The hardware stack operates as a last-in, first-out stack with eight locations.
If more than eight pushes (due to a CALA, CALL, CC, PSHD, PUSH, TRAP,
INTR, or NMI instruction) occur before a pop, the first data values written are
lost with each succeeding push.

1
Cycles for a Single PUSH Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of a PUSH Instruction
ROM DARAM SARAM External
n n n n+p
PUSH
Before Instruction After Instruction
ACC I 7h] ACC
C C
Stack | 2h| Stack
| 5h]
| 3]
| oh|
| 12h]
| 86h|
| 54h]
| 3Fh| 54h

Assembly Language Instructions 7-141

RET Return From Subroutine

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Example

7-142

RET
None
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1110111100000000

(TOS) - PC
Pop stack one level.

None

The contents of the top stack register are copied into the program counter. The
remaining stack values are then copied up one level. RET concludes subrou-
tines and interrupt service routines to return program control to the calling or
interrupted program sequence.

1
Cycles for a Single RET Instruction
ROM DARAM SARAM External
4 4 4 4+3p

Note: Whenthis instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

RET
Before Instruction After Instruction

PC | 96h] PC
Stack | 37h] Stack
I 45h]

I 75h|

I 21h|

| 3Fn]

| 45h| 6Eh

| 6Eh| 6Eh

| 6Eh| 6Eh

Syntax
Operands

T
Opcode

Execution

Status Bits

Description

Words
Cycles

Example

Return Conditionally RETC

RETC cond1 [, cond?]|,...]

cond Condition
EQ ACC=0
NEQ ACC#0
LT ACC<0
LEQ ACC<0
GT ACC >0
GEQ ACC =0
NC C=0

C c=1
NOV ov=0
oV ov=1
BIO BIO low
NTC TC=0
TC TC=1
UNC Unconditionally

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[1 1 1 0o 1 1| TP | ZLVC ZLVC

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

If cond 1 AND cond 2 AND ...
(TOS) - PC
Pop stack one level

Else, continue

None

If the specified condition or conditions are met, a standard return is executed
(see the description for the RET instruction). Note that not all combinations of
conditions are meaningful. For example, testing for LT and GT is contradictory.
In addition, testing BIO is mutually exclusive to testing TC.

1
Cycles for a Single RETC Instruction

Condition ROM DARAM SARAM External
True 4 4 4 4+4p
False 2 2 2 2+2p

Note: The processor performs speculative fetching by reading two additional instruction
words. If the PC discontinuity is taken, these two instruction words are discarded.
RETC GEQ,NOV ;A return is executed if the
;accumulator content is positive
;or zero and if the OV (overflow)
;-bit is zero.

Assembly Language Instructions 7-143

ROL Rotate Accumulator Left

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Example

7-144

ROL

None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
i1 0 1 1 1 1 1 O O O O O 1 1 O O

Increment PC, then ...

C - ACC(0)

(ACC(31)) - C
(ACC(30:0)) - ACC(31:1)

Affects
C

This instruction is not affected by SXM.

The ROL instruction rotates the accumulator left one bit. The value of the carry
bit is shifted into the LSB, then the MSB is shifted into the carry bit.

1
Cycles for a Single ROL Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an ROL Instruction

ROM DARAM SARAM External

n n n n+p

ROL

Before Instruction After Instruction
acc [o] | B0001234h] ACC
C C

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

Rotate Accumulator Right ROR

ROR
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
$1 0 1 1 1 1 1 O O O O O 1 1 O 1

Increment PC, then ...

C - ACC(31)

(ACC(0)) - C
(ACC(31:1)) - ACC(30:0)

Affects
C

This instruction is not affected by SXM.

The ROR instruction rotates the accumulator right one bit. The value of the
carry bit is shifted into the MSB of the accumulator, then the LSB of the accu-
mulator is shifted into the carry bit.

1
Cycles for a Single ROR Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an ROR Instruction

ROM DARAM SARAM External

n n n n+p

ROR

Before Instruction After Instruction
acc [o] | B0001235h] AcC
C C

Assembly Language Instructions 7-145

RPT Repeat Next Instruction

Syntax RPT dma Direct addressing
RPT ind [, ARn] Indirect addressing
RPT #k Short immediate
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
ind: Select one of the following seven options:

* %+ *_ %0+ *0— *BRO+ *BRO-

Opcode RPT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[o o o 0o 1 0 1 1]o0] dma

RPT ind [, ARnN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l[o o o o 1 0 1 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

RPT #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 1 1 k
Execution Increment PC, then ...
Event Addressing mode
(data-memory address) - RPTC Direct or indirect
k - RPTC Short immediate
Status Bits None
Description The repeat counter (RPTC) is loaded with the content of the addressed data-

memory location if direct or indirect addressing is used; itis loaded with an 8-bit
immediate value if shortimmediate addressing is used. The instruction follow-
ing the RPT is repeated ntimes, where nis the initial value of the RPTC plus
1. Since the RPTC cannot be saved during a context switch, repeat loops are
regarded as multicycle instructions and are not interruptible. The RPTC is
cleared to 0 on a device reset.

RPT is especially useful for block moves, multiply/accumulates, and normal-
ization. The repeat instruction itself is not repeatable.

Words 1

7-146

RPT

Repeat Next Instruction

Cycles Cycles for a Single RPT Instruction (Using Direct and Indirect Addressing)
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p
T1f the operand and the code are in the same SARAM block
Cycles for a Single RPT Instruction (Using Short Immediate
Addressing)
ROM DARAM SARAM External
1 1 1 1+p
Example 1 RPT DAT127 ;(DP = 31: addresses 0F80h—0FFFh)
;Repeat next instruction 13 times.
Before Instruction After Instruction
Data Memory Data Memory
OFFFh | och] OFFFh
RPTC | oh| RPTC 0Ch
Example 2 RPT *AR1l ;Repeat next instruction 4096 times.
Before Instruction After Instruction
ARP I ol ARP
ARO | 300n] ARO
Data Memory Data Memory
300h | OFFFN] 300h
RPTC | oh| RPTC
Example 3 RPT #1 ;Repeat next instruction two times.
Before Instruction After Instruction
RPTC | oh] RPTC

Assembly Language Instructions

7-147

SACH Store High Accumulator With Shift

Syntax SACH dma|, shift2] Direct addressing
SACH ind[, shift2 [, ARn]] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
shift2: Left shift value from 0 to 7 (defaults to 0)
n: Value from O to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* % s_ %0+ *0— *BRO+ *BRO-

Opcode SACH dma [, shift2]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 o o 1]1] shz |oO| dma

SACH ind [, shift2[, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[t o o 1[1] shit2 [1] ARU | N| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
16 MSBs of ((ACC) x 2shift2) _, data-memory address

Status Bits This instruction is not affected by SXM

Description The SACH instruction copies the entire accumulator into the output shifter,
where it left shifts the entire 32-bit number from 0 to 7 bits. It then copies the
upper 16 bits of the shifted value into data memory. During the shift, the low-or-
der bits are filled with zeros, and the high-order bits are lost. The accumulator
itself remains unaffected.

Words 1
Cycles Cycles for a Single SACH Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 2+d 2+d 2+d 4+d+p

Tif the operand and the code are in the same SARAM block

7-148

Store High Accumulator With Shift SACH

Cycles for a Repeat (RPT) Execution of an SACH Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+2t n+p
External 2n+nd 2n+nd 2n+nd 2n+2+nd+p
T1f the operand and the code are in the same SARAM block
Example 1 SACH DAT10,1 ;(DP = 4: addresses 0200h—-027Fh,
;left shift of 1)
Before Instruction After Instruction
ACC | 4208001h] ACC 4208001h
C C
Data Memory Data Memory
20Ah | Oh| 20Ah
Example 2 SACH *+,0,AR2 ;(No shift)
Before Instruction After Instruction
ARP | 1] ARP
AR1 | 300h] AR1
ACC | 4208001h] ACC 4208001h
C C
Data Memory Data Memory
300h | oh| 300h 0420h

Assembly Language Instructions 7-149

SACL Store Low Accumulator With Shift

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

7-150

SACL dma], shift2] Direct addressing
SACL ind [, shift2 [, ARN]] Indirect addressing
dma: 7 LSBs of the data-memory address

shift2: Left shift value from 0 to 7 (defaults to 0)

n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* % »_ %0+ *0— *BRO+ *BRO-

SACL dmal, shift2]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 o o 1]o] shf2 |oO|] dma

SACL ind[, shift2[, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[t o o 1]o] sht2 [1] ARU |N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...
16 LSBs of ((ACC) x 2shift2) _, data-memory address

This instruction is not affected by SXM.

The SACL instruction copies the entire accumulator into the output shifter,
where it left shifts the entire 32-bit number from 0 to 7 bits. It then copies the
lower 16 bits of the shifted value into data memory. During the shift, the
low-order bits are filled with zeros, and the high-order bits are lost. The
accumulator itself remains unaffected.

1
Cycles for a Single SACL Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 2+d 2+d 2+d 4+d+p

Tif the operand and the code are in the same SARAM block.

Store Low Accumulator With Shift SACL
Cycles for a Repeat (RPT) Execution of an SACL Instruction
Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+2t n+p
External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

T1f the operand and the code are in the same SARAM block.

Example 1 SACL DAT11,1
;left shift of 1)
Before Instruction
ACC | 7C63 8421]
C
Data Memory
20Bh | 05h]
Example 2 SACL * 0,AR7 ;(No shift)
Before Instruction
ARP | 6l
AR6 | 300h]
ACC | 0OFF 8421h]
C
Data Memory
300h | 05h|

Assembly Language Instructions

;(DP = 4: addresses 0200h—-027Fh,

After Instruction

ACC
C

Data Memory

20Bh 0842h

After Instruction
ARP
AR6 300h
ACC

C

Data Memory

300h 8421h

7-151

SAR Store Auxiliary Register

Syntax SAR ARX, dma Direct addressing
SAR ARX, ind [, ARN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
X: Value from 0O to 7 designating the auxiliary register value to be
stored
n: Value from O to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %4 % *0+ *0— *BRO+ *BRO-

Opcode SAR ARX, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0o o o o] X o | dma

SAR ARYX, ind [, ARN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 0o o o o] X o] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ARx) — data-memory address

Status Bits None

Description The content of the designated auxiliary register (ARX) is stored in the specified
data-memory location. When the content of the designated auxiliary register
is also modified by the instruction (in indirect addressing mode), SAR copies
the auxiliary register value to data memory before it increments or decrements
the contents of the auxiliary register.

Words 1
Cycles Cycles for a Single SAR Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 2+d 2+d 2+d 4+d+p

Tif the operand and the code are in the same SARAM block

7-152

Store Auxiliary Register SAR

Cycles for a Repeat (RPT) Execution of an SAR Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+2t n+p
External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

T1f the operand and the code are in the same SARAM block

SAR ARO,DAT30 ;(DP = 6: addresses 0300h—037Fh)
Before Instruction After Instruction
ARO | 37h] ARO
Data Memory Data Memory
31Eh | 18h| 31Eh
SAR ARO,*+
Before Instruction After Instruction
ARP I o] ARP [o
ARO | 401h] ARO
Data Memory Data Memory
401h | oh| 401h

Assembly Language Instructions 7-153

SBRK Subtract Short-Immediate Value From Auxiliary Register

Syntax SBRK #k Shortimmediate addressing
Operands k: 8-bit positive short immediate value
Opcode SBRK #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 1 1 1 o0 o k
Execution Increment PC, then ...

(current AR) —k - current AR

Note that k is an 8-bit positive constant.
Status Bits None

Description The 8-bit immediate value is subtracted, right justified, from the content of the
current auxiliary register (the one pointed to by the ARP) and the result re-
places the contents of the auxiliary register. The subtraction takes place in the
auxiliary register arithmetic unit (ARAU), with the immediate value treated as
an 8-bit positive integer. All arithmetic operations on the auxiliary registers are

unsigned.
Words 1
Cycles Cycles for a Single SBRK Instruction
ROM DARAM SARAM External
1 1 1 1+p
Example SBRK #0FFh
Before Instruction After Instruction
ARP | 7] ARP
AR7 I oh| ART7

7-154

Syntax
Operands

Opcode

Execution

Status Bits

Description

SETC control bit

Set Control Bit

SETC

control bit: Select one of the following control bits:

C Carry bit of status register ST1

CNF RAM configuration control bit of status register ST1

INTM Interrupt mode bit of status register STO

OVM Overflow mode bit of status register STO

SXM Sign-extension mode bit of status register ST1

TC Test/control flag bit of status register ST1

XF XF pin status bit of status register ST1
SETCC
15 14 13 12 11 10 8 7 5 4 3 2 1 0
[1 o 1 1 1 1 0 0 0 0 1 1 1 1|
SETC CNF
15 14 13 12 11 10 8 7 5 4 3 2 1 0
[1 o 1 1 1 1 0 0 0 0 0 1 0 1|
SETC INTM
15 14 13 12 11 10 8 7 5 4 3 2 1 0
[1 o 1 1 1 1 0 0 0 0 0 0 0 1|
SETC OVM
15 14 13 12 11 10 8 7 5 4 3 2 1 0
[1 0o 1 1 1 1 0 0 0 0 0 0 1 1|
SETC SXM
15 14 13 12 11 10 8 7 5 4 3 2 1 0
[1 o 1 1 1 1 0 0 0 0 0 1 1 1 |
SETC TC
15 14 13 12 11 10 8 7 5 4 3 2 1 0
[1 o 1 1 1 1 0 0 0 0 1 0 1 1|
SETC XF
15 14 13 12 11 10 8 7 5 4 3 2 1 0
[1 0o 1 1 1 1 0 0 0 0 1 1 0 1|

Increment PC, then ...

1 - control b

None

it

The specified control bit is set to 1. Note that LST may also be used to load
STO and ST1. See section 3.5, Status and Control Registers, on page 3-15 for

more information on each control bit.

Assembly Language Instructions

7-155

SETC Set Control Bit

Words

Cycles

Example

7-156

1
Cycles for a Single SETC Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an SETC Instruction

ROM DARAM SARAM External

n n n n+p
SETC TC ;TCis bit 11 of ST1

Before Instruction After Instruction
ST1 | xLxxh | sT1

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

Shift Accumulator Left SFL

SFL
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000001001

Increment PC, then ...
(ACC(31)) - C
(ACC(30:0)) - ACC(31:1)
0 - ACC(0)

Affects
C

This instruction is not affected by SXM.

The SFL instruction shifts the entire accumulator left one bit. The least signifi-
cant bit is filled with a 0, and the most significant bit is shifted into the carry bit
(C). SFL, unlike SFR, is unaffected by SXM.

1
Cycles for a Single SFL Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an SFL Instruction
ROM DARAM SARAM External
n n n n+p
SFL
Before Instruction After Instruction
ACC | B0001234h] ACC
C C

Assembly Language Instructions 7-157

SFR Shift Accumulator Right

Syntax SFR
Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 11 0 O O O O 1 0 1 O

Execution Increment PC, then ...
If SXM =0
Then 0 - ACC(31).
IfSXM=1
Then (ACC(31)) - ACC(31)

(ACC(31:1)) — ACC(30:0)
(ACC(0)) - C

Status Bits Affected by Affects
SXM C
Description The SFR instruction shifts the accumulator right one bit.

(1 If SXM =1, the instruction produces an arithmetic right shift. The sign bit
(MSB) is unchanged and is also copied into bit 30. Bit O is shifted into the
carry bit (C).

O IfSXM =0, the instruction produces a logic right shift. All of the accumula-
tor bits are shifted right by one bit. The least significant bit is shifted into
the carry bit, and the most significant bit is filled with a 0.

Words 1
Cycles Cycles for a Single SFR Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an SFR Instruction
ROM DARAM SARAM External
n n n n+p

7-158

Example 1

Example 2

Shift Accumulator Right SFR

SFR ;(SXM = 0: no sign extension)
Before Instruction
ACC | B0001234h| ACC
c
SFR ;(SXM = 1: sign extend)
Before Instruction
ACC | B0001234h] ACC
c

After Instruction

[0] 5800091Ah

C

After Instruction

[0] D800091Ah

C

Assembly Language Instructions 7-159

SPAC Subtract PREG From Accumulator

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

7-160

SPAC
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000000101

Increment PC, then ...
(ACC) — shifted (PREG) — ACC

Affected by Affects
PM and OVM C and OV

This instruction is not affected by SXM.

The content of PREG, shifted as defined by the PM status bits, is subtracted
from the content of the accumulator. The result is stored in the accumulator.
SPAC is not affected by SXM, and the PREG value is always sign extended.

The function of the SPAC instruction is a subtask of the LTS, MPYS, and SQRS
instructions.

1
Cycles for a Single SPAC Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an SPAC Instruction
ROM DARAM SARAM External
n n n n+p
SPAC ;(PM = 0)
Before Instruction After Instruction
PREG | 10000000h] PREG
ACC | 70000000h] ACC
C C

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Store High PREG SPH

SPH dma Direct addressing
SPH ind [, ARnN] Indirect addressing
dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

sk 5 %0+ *0- *BRO+ *BRO-

SPH dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o o o 1 1 o 1]o0] dma

SPH ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[t o o o 1 1 0o 1[1]| ARU N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...
16 MSBs of shifted (PREG) — data-memory address

Affected by
PM

The 16 high-order bits of the PREG, shifted as specified by the PM bits, are
stored in data memory. First, the 32-bit PREG value is copied into the product
shifter, where it is shifted as specified by the PM bits. If the right-shift-by-6
mode is selected, the high-order bits are sign extended and the low-order bits
are lost. If a left shift is selected, the high-order bits are lost and the low-order
bits are zero filled. If PM = 00, no shift occurs. Then the 16 MSBs of the shifted
value are stored in data memory. Neither the PREG value nor the accumulator
value is modified by this instruction.

1
Cycles for a Single SPH Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 2+d 2+d 2+d 4+d+p

Tif the operand and the code are in the same SARAM block

Assembly Language Instructions 7-161

SPH Store High PREG

Cycles for a Repeat (RPT) Execution of an SPH Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+2t n+p
External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

Tif the operand and the code are in the same SARAM block

Example 1 SPH DAT3

PREG

Data Memory
203h

Example 2 SPH * AR7
ARP
AR6
PREG

Data Memory
203h

7-162

;(DP = 4: addresses 0200h—-027Fh,

;PM = 0: no shift)

Before Instruction

FE079844h| PREG
Data Memory
| 4567h| 203h

;(PM = 2: left shift of four)

Before Instruction

| 6] ARP
| 203h] ARG
| FE079844h| PREG

Data Memory

4567h| 203h

FE079844h

FEO7

203
FE079844h

> >
=+ =+
9] ®
= =
=1 =1
7] 7]
Z 2
= =
c c
] 9]
=3 o
o o
=] =]
= SN =

EQ079

Store Low PREG SPL

Syntax SPL dma Direct addressing
SPL ind [, ARn] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* k5 %0+ *0- *BRO+ *BRO-

Opcode SPL dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o o o 1 1 o o]o0] dma

SPL ind [, ARnN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[t o o o 1 1 0o of[1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
16 LSBs of shifted (PREG) — data-memory address

Status Bits Affected by
PM
Description The 16 low-order bits of the PREG, shifted as specified by the PM bits, are

stored in data memory. First, the 32-bit PREG value is copied into the product
shifter, where it is shifted as specified by the PM bits. If the right-shift-by-6
mode is selected, the high-order bits are sign extended and the low-order bits
are lost. If a left shift is selected, the high-order bits are lost and the low-order
bits are zero filled. If PM = 00, no shift occurs. Then the 16 LSBs of the shifted
value are stored in data memory. Neither the PREG value nor the accumulator
value is modified by this instruction.

Words 1
Cycles Cycles for a Single SPL Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 2+d 2+d 2+d 4+d+p

Tif the operand and the code are in the same SARAM block

Assembly Language Instructions 7-163

SPL Store Low PREG

Cycles for a Repeat (RPT) Execution of an SPL Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+2t n+p
External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

Tif the operand and the code are in the same SARAM block

Example 1 SPL DAT5

PREG

Data Memory
205h

Example 2 SPL * AR3
ARP
AR2
PREG

Data Memory
205h

7-164

;(DP = 4: addresses 0200h—-027Fh,

;PM = 2: left shift of four)

Before Instruction

OFE079844h| PREG
Data Memory
| 4567h| 205h
;(PM = 0: no shift)
Before Instruction
| 2] ARP
| 205h] AR2
| OFE079844h| PREG
Data Memory
| 4567h| 205h

OFE079844h

08440

205
OFE079844h

> >
=+ =+
9] ®
= =
=1 =1
7] 7]
= =
c c
] 9]
=3 o
o o
=] =]
=3 =) =

09844

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Example 1

Store Long-Immediate Value to Data Memory SPLK

SPLK #lk, dma Direct addressing
SPLK #lk, ind[, ARN] Indirect addressing
dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register
Ik: 16-bit long immediate value

ind: Select one of the following seven options:

* %+ *_ %0+ *0- *BRO+ *BRO-

SPLK #lk, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 00| dma

SPLK #lk, ind [, AR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[

1 0 1 0 1 1 0o/1] ARU [N | NAR

Ik

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...
Ik - data-memory address

None

The SPLK instruction allows a full 16-bit pattern to be written into any data
memory location.

2
Cycles for a Single SPLK Instruction
Program
Operand ROM DARAM SARAM External
DARAM 2 2 2 2+2p
SARAM 2 2 2,3T 2+2p
External 3+d 3+d 3+d 5+d+2p

T1f the operand and the code are in the same SARAM block

SPLK #7FFFh,DAT3 ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
303h | FEO7h| 303h 7FFFh

Assembly Language Instructions 7-165

SPLK Store Long-Immediate Value to Data Memory

Example 2 SPLK #1111h,*+ AR4

Before Instruction

ARP | ol

ARO | 300h]
Data Memory

300h | 07h|

7-166

ARP
ARO

Data Memory
300h

After Instruction

301h

1111

h

Syntax
Operands
Opcode

Execution

Status Bits

Description

Set PREG Output Shift Mode SPM

SPM constant
constant: Value from O to 3 that determines the product shift mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 1 1 1 0 0 0 0 0 0] constant|

Increment PC, then ...
constant - product shift mode (PM) bits

Affects
PM

This instruction is not affected by SXM.

The two LSBs of the instruction word are copied into the product shift mode
(PM) bits of status register ST1 (bits 1 and 0 of ST1). The PM bits control the
mode of the shifter at the output of the PREG. This shifter can shift the PREG
output either one or four bits to the left or six bits to the right. The possible PM
bit combinations and their meanings are shown in Table 7-8. When an instruc-
tion accesses the PREG value, the value first passes through the shifter,
where it is shifted by the specified amount.

Table 7-8. Product Shift Modes

Words
Cycles

Example

PM Field Specified Product Shift

00 No shift of PREG output

01 PREG output to be left shifted 1 place

10 PREG output to be left shifted 4 places

11 PREG output to be right shifted 6 places and sign extended

The left shifts allow the product to be justified for fractional arithmetic. The
right-shift-by-six mode allows up to 128 multiply accumulate processes with-
out the possibility of overflow occurring. PM may also be loaded by an LST #1
instruction.

1
Cycles for a Single SPM Instruction
ROM DARAM SARAM External
1 1 1 1+p
SPM 3 ;Product register shift mode 3 (PM = 11)

;is selected causing all subsequent
;transfers from the product register (PREG)
;to be shifted to the right six places.

Assembly Language Instructions 7-167

SQRA Square Value and Accumulate Previous Product

Syntax SQRA dma Direct addressing
SQRA ind[, ARn] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* % % %0+ *0- *BRO+ *BRO-

Opcode SQRA dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[lo 1 0o 1 0 0o 1 o0]o0] dma

SQRA ind[, AR1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 o0 1 0 0o 1 o0[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + shifted (PREG) - ACC
(data-memory address) - TREG
(TREG) x (data-memory address) - PREG

Status Bits Affected by Affects
OVM and PM OV andC
Description The content of the PREG, shifted as defined by the PM status bits, is added

to the accumulator. Then the addressed data-memory value is loaded into the
TREG, squared, and stored in the PREG.

Words 1
Cycles Cycles for a Single SQRA Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

7-168

Square Value and Accumulate Previous Product SQRA

Cycles for a Repeat (RPT) Execution of an SQRA Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Example 1 SQRA DAT30 ;(DP = 6: addresses 0300h—037Fh,
;PM = 0: no shift of product)

Before Instruction

>
=
@
=
=
w0
=
c
(o]
=
o
=]

Data Memory Data Memory
31Eh | OFh| 31Eh OFh
TREG | 3h| TREG OFh
PREG | 12Ch| PREG
ACC | 1F4h] acc [0
C C
Example 2 SQRA * AR4 ;(PM = 0)
Before Instruction After Instruction
ARP | 3] ARP
AR3 | 31Eh| AR3
Data Memory Data Memory
31Eh | OFh] 31Eh
TREG | 3h] TREG
PREG | 12Ch| PREG
ACC | 1F4h| acc [o]
c C

Assembly Language Instructions 7-169

SQRS Square Value and Subtract Previous Product

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

7-170

SQRS dma Direct addressing
SQRS ind [, ARN] Indirect addressing

dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *— *0+ *0- *BRO+ *BRO-

SQRS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2
l[o 1 0o 1 0 0o 1 1]o0] dma

SQRS ind [, AR1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2

l[lo 1 0o 1 0 0o 1 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...

(ACC) - shifted (PREG) — ACC
(data-memory address) - TREG

(TREG) x (data-memory address) - PREG

Affected by Affects
OVM and PM OVandC

The content of the PREG, shifted as defined by the PM status bits, is sub-
tracted from the accumulator. Then the addressed data-memory value is

loaded into the TREG, squared, and stored in the PREG.

1
Cycles for a Single SQRS Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Example 1

Example 2

Square Value and Subtract Previous Product SQRS

Cycles for a Repeat (RPT) Execution of an SQRS Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

SQRS

SQRS

DAT9
Data Memory
309h
TREG
PREG
ACC
C
* AR5
ARP
AR3
Data Memory
309h
TREG
PREG
ACC
C

;(DP = 6: addresses 0300h—-037Fh,

;PM = 0: no shift of product)

Before Instruction

08h |
1124h|
190h |
1450h |

;(PM =0)
Before Instruction
| 3]
| 309h]

08h|
1124h|
190h]
1450h|

Data Memory
309h

TREG
PREG
ACC

ARP
AR3

Data Memory
309h

TREG
PREG
ACC

After Instruction

0
0
4
12C0h

o [-]
S|I=| 1=

After Instruction

w

AlO] |© o

ol |0 <]
o153 |5 0| |01

12CO

0[]

Assembly Language Instructions 7-171

SST Store Status Register

Syntax

Operands

Opcode

Execution

Status Bits

Description

7-172

SST #m, dma Direct addressing
SST #m, ind [, ARn] Indirect addressing
dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
m: Select one of the following:
0 Indicates that STO will be stored
1 Indicates that ST1 will be stored
ind: Select one of the following seven options:
¥ *+ *— *0+ *0- *BRO+ *BRO-
SST #0, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o 1 1 1 o]o0] dma

SST #0, ind[, AR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 o o o 1 1 1 o0[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

SST #1, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o o o 1 1 1 1][o0] dma

SST #1, ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 o o o 1 1 1 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...
(status register STm) — data-memory address

None
Status register STO or ST1 (whichever is specified) is stored in data memory.

Indirectaddressing mode, the specified status register is always stored in data
page 0, regardless of the value of the data page pointer (DP) in STO. Although
the processor automatically accesses page 0, the DP is not physically
modified; this allows the DP value to be stored unchanged when STO is stored.

Inindirect addressing mode, the storage address is obtained from the auxiliary
register selected; thus, the specified status register contents can be stored to
an address on any page in data memory.

Store Status Register

SST

Status registers STO and ST1 are defined in section 3.5, Status Registers STO

and ST1, on page 3-15.

Words 1
Cycles Cycles for a Single SST Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 2+d 2+d 2+d 4+d+p

T 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SST Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+2t n+p
External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

Tif the operand and the code are in the same SARAM block

Example 1 SST #0,96 ;Direct addressing: data page 0
;accessed automatically
Before Instruction
STO | 0A408h] STO
Data Memory Data Memory
60h | 0Ah| 60h
Example 2 SST #1,*, AR7 ;Indirect addressing
Before Instruction
ARP | o] ARP
ARO | 300h] ARO
ST1 | 2580h] ST1
Data Memory Data Memory
300h | oh| 300h

Assembly Language Instructions

After Instruction
0A408

!!

0A408

After Instruction

300
2580

2580

7-173

SUB Subtract From Accumulator

Syntax SUB dmal|, shift] Direct addressing
SUB dma,16 Direct with left shift of 16
SUB ind [,shift [, ARN]] Indirect addressing
SUB ind,16[, ARnN] Indirect with left shift of 16
SUB #k Short immediate
SUB #Ik [,shift] Long immediate
Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
Ik: 16-bit long immediate value
ind: Select one of the following seven options:

* % % %0+ *0- *BRO+ *BRO-

Opcode SUB dma [,shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0O 1 1] shift | 0 | dma
SUB dma, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| o 1 1 o0 O 1 o0 1 | 0 | dma

SUB ind[, shift [, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| o o0 1 1 | shift | 1 | ARU ‘ N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

SUB ind,16 [, ARN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 1 1 0 0 1 O 1|l| ARU ‘N| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

SUB #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 0 1 1 1 O 1 0 k

SUB #Ik [, shift]
15 14 13 12 11 10

[{e]
[e¢]
~
[e)]
(6]
N
w
N
=
o

1 0 1 1 1 1 1 1 1 0 1 O shift

7-174

Execution

Status Bits

Description

Words

Subtract From Accumulator SUB

Increment PC, then ...
Event Addressing mode
(ACC) — ((data-memory address) x 2shift) _, ACC Direct or indirect

(ACC) — ((data-memory address) x 216) . ACC Direct or indirect
(shift of 16)
(ACC) -k - ACC Short immediate
(ACC) — Ik x 2shift , ACC Long immediate
Affected by Affects Addressing mode
OVM and SXM OVandC Direct or indirect
OVM OV andC Short immediate
OVM and SXM OVandC Long immediate

In direct, indirect, and long immediate addressing, the content of the ad-
dressed data-memory location or a 16-bit constant are left shifted and sub-
tracted from the accumulator. During shifting, low-order bits are zero filled.
High-order bits are sign extended if SXM = 1 and zero filled if SXM = 0. The
result is then stored in the accumulator.

If short immediate addressing is used, an 8-bit positive constant is subtracted
from the accumulator. In this case, no shift value may be specified, the subtrac-
tion is unaffected by SXM, and the instruction is not repeatable.

Normally, the carry bit is cleared (C = 0) if the result of the subtraction gener-
ates a borrow; it is set (C = 1) if it does not generate a borrow. However, if a
16-bit shift is specified with the subtraction, the instruction will clear the carry
bit if a borrow is generated but will not affect the carry bit otherwise.

Words Addressing mode
1 Direct, indirect

or shortimmediate
2 Long immediate

Assembly Language Instructions 7-175

SUB Subtract From Accumulator

Cycles Cycles for a Single SUB Instruction (Using Direct and Indirect Addressing)
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an SUB Instruction (Using Direct
and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tif the operand and the code are in the same SARAM block.

Cycles for a Single SUB Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Single SUB Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External
2 2 2 2+2p
Example 1 SUB DAT80 ;(DP = 8: addresses 0400h-047Fh
Before Instruction After Instruction
Data Memory Data Memory
450h I 11h| 450h
ACC I 24h)] ACC
C C
Example 2 SUB *~ 1,AR0 ;(Left shift by 1, SXM = 0)

7-176

SUB

Subtract From Accumulator

Before Instruction After Instruction

ARP I 7] ARP [
AR7 I 301h| AR7
Data Memory Data Memory
301h | 04h 301h
ACC | 09n] ACC
C C
Example 3 SUB #8h
Before Instruction After Instruction
AcC | o7h] acc [o]
C C
Example 4 SUB #0FFFh,4 ;(Left shift by four, SXM = 0)
Before Instruction After Instruction
ACC | OFFFFh] ACC
C C

Assembly Language Instructions 7-177

SUBB Subtract From Accumulator With Borrow

Syntax SUBB dma Direct addressing
SUBB ind [, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %k % 0+ *0- *BRO+ *BRO-

Opcode SUBB dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[lo 1 1 0 0o 1 0o o0]o0] dma

SUBB ind [, AR1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 1 0o o 1 o of[1] ARU |N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) — (data-memory address) — (logical inversion of C) - ACC

Status Bits Affected by Affects
OVM OV and C

This instruction is not affected by SXM.

Description The content of the addressed data-memory location and the logical inversion
of the carry bit is subtracted from the accumulator with sign extension sup-
pressed. The carry bit is then affected in the normal manner: the carry bit is
cleared (C = 0) if the result of the subtraction generates a borrow; it is set
(C =1)if it does not generate a borrow.

The SUBB instruction can be used in performing multiple-precision arithmetic.

Words 1
Cycles Cycles for a Single SUBB Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

7-178

Subtract From Accumulator With Borrow SUBB

Cycles for a Repeat (RPT) Execution of an SUBB Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Example 1 SUBB DAT5
Before Instruction
Data Memory
405h | o6h]
acc [o] | 06h]
C
Example 2 SUBB *
Before Instruction
ARP | 6]
ARG | 301h]
Data Memory
301h | 02h]
ACC | 04h]
C

;(DP = 8: addresses 0400h—047Fh)

After Instruction
Data Memory

405h
Acc [o] OFFFFFFFFh
c

After Instruction

ARP L
ARG
Data Memory
301h
ACC 02h
[

In the first example, C is originally zeroed, presumably from the result of a pre-
vious subtractinstruction that performed a borrow. The effective operation per-
formed was 6 — 6 — (0-) = —1, generating another borrow (resetting carry) in
the process. In the second example, no borrow was previously generated (C
= 1), and the result from the subtract instruction does not generate a borrow.

Assembly Language Instructions

SUBC cConditional Subtract

Syntax SUBC dma Direct addressing

SUBC ind [, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* %+ *— *0+ *0- *BRO+ *BRO-
Opcode SUBC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 0o 0o 1 0o 1 ofo0] dma

SUBC ind [, AR"]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o o o o 1 0o 1 of[1] ARU |N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution For (ACC) = 0 and (data-memory address) = 0:

Increment PC, then ...
(ACC) — [(data-memory address) x 215] . ALU output

If ALU output =0
Then (ALU output) x 2 +1 - ACC
Else (ACC) x2 - ACC

Status Bits Affects
OVandC
Description The SUBC instruction performs conditional subtraction, which can be used for

division as follows: Place a positive 16-bit dividend in the low accumulator and
clear the high accumulator. Place a 16-bit positive divisor in data memory.
Execute SUBC 16 times. After completion of the last SUBC, the quotient of the
division is in the lower-order 16 bits of the accumulator, and the remainder is
inthe higher-order 16 bits of the accumulator. For negative accumulator and/or
data-memory values, SUBC cannot be used for division.

If the 16-bit dividend contains fewer than 16 significant bits, the dividend may
be placed in the accumulator and left shifted by the number of leading nonsig-
nificant 0s. The number of executions of SUBC is reduced from 16 by that num-
ber. One leading 0 is always significant.

SUBC operations performed as stated above are not affected by the sign-ex-
tension mode bit (SXM).

7-180

Words

Cycles

Example 1

Example 2

Conditional Subtract SUBC

SUBC affects OV but s not affected by OVM; therefore, the accumulator does
not saturate upon positive or negative overflows when executing this instruc-
tion. The carry bit is affected in the normal manner during this instruction: the
carry bit is cleared (C = 0) if the result of the subtraction generates a borrow
and is set (C = 1) if it does not generate a borrow.

1
Cycles for a Single SUBC Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SUBC Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

1 1f the operand and the code are in the same SARAM block

SUBC DAT2 ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
302h | 01h| 302h
ACC | 04h| acc [o] 08h
C C
RPT #15
SUBC *
Before Instruction After Instruction
ARP I 3] ARP
AR3 | 1000h] AR3
Data Memory Data Memory
1000h | 07h] 1000h
ACC | 41h] AcC
C C

Assembly Language Instructions 7-181

SUBS Subtract From Accumulator With Sign Extension Suppressed

Syntax SUBS dma Direct addressing

SUBS ind [, ARn] Indirect addressing
Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

¥ *+ *— %0+ *0- *BRO+ *BRO-
Opcode SUBS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 0o o 1 1 o]o0] dma

SUBS ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0o o 1 1 of[1]|] ARU |N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) — (data-memory address) - ACC

Status Bits Affected by Affects
OVM OV and C

This instruction is not affected by SXM.

Description The content of the specified data-memory location is subtracted from the accu-
mulator with sign extension suppressed. The data is treated as a 16-bit un-
signed number, regardless of SXM. The accumulator behaves as a signed
number. SUBS produces the same results as a SUB instruction with SXM =
0 and a shift count of 0.

The carry bitis cleared (C = 0) if the result of the subtraction generates a bor-
row and is set (C = 1) if it does not generate a borrow.

Words 1
Cycles Cycles for a Single SUBS Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

7-182

Subtract From Accumulator With Sign Extension Suppressed SUBS

Cycles for a Repeat (RPT) Execution of an SUBS Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Example 1 SUBS DAT2
Before Instruction
Data Memory
802h | 0F003h|
ACC | OF105h]
C
Example 2 SUBS * ((SXM =1)
Before Instruction
ARP | ol
ARO | 310n]
Data Memory
310h | 0F003h]
ACC | OFFFF105h]
C

Assembly Language Instructions

:(DP = 16, SXM = 1)

After Instruction
Data Memory

802h 0F003h
ACC 102h
c

After Instruction

ARP [d
ARO 310h

Data Memory
0F003h

310h

ACC
c

7-183

SUBT Subtract From Accumulator With Shift Specified by TREG

Syntax SUBT dma Direct addressing
SUBT ind [, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from O to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ *_ %0+ *0— *BRO+ *BRO-

Opcode SUBT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[lo 1 1 0 0o 1 1 1]o0] dma

SUBT ind [, AR1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 1 0o o 1 1 1[1]| ARU I N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) — [(data-memory address) x 2(TREG(3:0))] _, (ACC)

IfSXM=1
Then (data-memory address) is sign-extended.
IfSXM=0
Then (data-memory address) is not sign-extended.
Status Bits Affected by Affects
OVM and SXM OVandC
Description The data-memory value is left shifted and subtracted from the accumulator.

The left shiftis defined by the four LSBs of TREG, resulting in shift options from
0 to 15 bits. The result replaces the accumulator contents. Sign extension on
the data-memory value is controlled by the SXM status bit.

The carry bitis cleared (C = 0) if the result of the subtraction generates a bor-
row and is set (C = 1) if it does not generate a borrow.

Words 1

7-184

Subtract From Accumulator With Shift Specified by TREG SUBT

Cycles Cycles for a Single SUBT Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p
T1f the operand and the code are in the same SARAM block.
Cycles for a Repeat (RPT) Execution of an SUBT Instruction
Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd
Tif the operand and the code are in the same SARAM block.
Example 1 SUBT DAT127 ;(DP = 5: addresses 0280h—02FFh)
Before Instruction After Instruction
Data Memory Data Memory
2FFh I 06h] 2FFh
TREG I osh] TREG
ACC I OFDASH] ACC
C C
Example 2 SUBT *
Before Instruction After Instruction
ARP | 1] ARP
AR1 | 800h| AR1 800h
Data Memory Data Memory
800h | 01h] 800h 01h
TREG I osh] TREG
ACC I Oh| acc [o]
C C

Assembly Language Instructions 7-185

TBLR Table Read

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

7-186

TBLR dma
TBLR ind [, ARnN]

Direct addressing
Indirect addressing

dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* ok *— *0+ *0— *BRO+ *BRO-

TBLR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 o 1 0 o 1 1 o]o0] dma

TBLR ind [, AR/
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[t o 1 0o o 1 1 o[1]| ARU N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...

(PC) - MSTACK

(ACC(15:0)) - PC

(pma) - data-memory address

For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC

While (repeat counter) # 0
(pma) - data-memory address
For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC
(repeat counter) =1 — repeat counter.

(MSTACK) - PC
None

The TBLR instruction transfers a word from a location in program memory to
a data-memory location specified by the instruction. The program-memory ad-
dressis defined by the low-order 16 bits of the accumulator. For this operation,
aread from program memory is performed, followed by a write to data memory.
When repeated with the repeat (RPT) instruction, TBLR effectively becomes
a single-cycle instruction, and the program counter that was loaded with
(ACC(15:0)) is incremented once each cycle.

1

Table Read TBLR

Cycles
Cycles for a Single TBLR Instruction
Program

Operand ROM DARAM SARAM External
Source: DARAM/ROM 3 3 3 3+Pcode
Destination: DARAM

Source: SARAM 3 3 3 3+Pcode
Destination: DARAM

Source: External 3+Pgrc 3+Psrc 3+Psrc 3+Psrc*Peode
Destination: DARAM

Source: DARAM/ROM 3 3 3 3+Pcode
Destination: SARAM 4t

Source: SARAM 3 3 3 3+Pcode
Destination: SARAM 4t

Source: External 3+Psrc 3+Psrc 3+Psrc 3+Psrc*Pcode
Destination: SARAM 4+pg,c T

Source: DARAM/ROM 4+dyg; 4+dyst 4+dyst 6+dystPcode
Destination: External

Source: SARAM 4+dggt 4+dggt A+dygt 6+dysi+Pcode
Destination: External

Source: External 4+pgrctdyst 4+pgrctdyst A+pgctdyst 6+psrctdgsttPcode

Destination: External

1 If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a TBLR Instruction

Program
Operand ROM DARAM SARAM External
Source: DARAM/ROM n+2 n+2 n+2 N+2+Pcode
Destination: DARAM
Source: SARAM n+2 n+2 n+2 N+2+Pcode
Destination: DARAM
Source: External N+2+npgc N+2+NPgyc N+2+NPsrc N+2+NPsrc+Peode

Destination: DARAM

1 1f the destination operand and the code are in the same SARAM block
1 1f both the source and the destination operands are in the same SARAM block
§1f both operands and the code are in the same SARAM block

Assembly Language Instructions 7-187

TBLR Table Read

Cycles for a Repeat (RPT) Execution of a TBLR Instruction (Continued)

Program
Operand ROM DARAM SARAM External
Source: DARAM/ROM n+2 n+2 n+2 N+2+Peode
Destination: SARAM n+4t
Source: SARAM n+2 n+2 n+2 N+2+Pgode
Destination: SARAM 2nt 2nt 2nt 2nt

2n+28

Source: External N+2+NPgyc N+2+NPgc N+2+NpPgyc N+2+NPgrc+Peode
Destination: SARAM n+4+npg,ct
Source: DARAM/ROM 2n+2+ndyg; 2n+2+ndyg; 2n+2+ndyg; 2n+4+ndyst+Peode
Destination: External
Source: SARAM 2n+2+ndgg; 2n+2+ndgg; 2n+2+ndggs; 2n+4+ndgsi+Peode
Destination: External
Source: External 4n+npsctndygst AN+NPsc+tNdys 4n+npsrc+ndyst An+2+NPgrc+Ndgss+
Destination: External Pcode

T 1f the destination operand and the code are in the same SARAM block
% 1f both the source and the destination operands are in the same SARAM block
8 f both operands and the code are in the same SARAM block

Example 1 TBLR DAT6

ACC

Program Memory
23h

Data Memory
206h

Example 2 TBLR * AR7
ARP
ARO
ACC

Program Memory
24h

Data Memory
300h

7-188

;(DP = 4: addresses 0200h—-027Fh)

Before Instruction

| 23h] ACC
Program Memory
| 306h| 23h
Data Memory
| 75h] 206h
Before Instruction
| o] ARP
| 300h] ARO
| 24h| ACC
Program Memory
| 307h] 24h
Data Memory
| 75h| 300h

After Instruction

306

306

300

307

>

=

@

=

=1

7]

[

=

c

)

o

S
N} N
i w
= > EEIN > = =

307

Table Write TBLW

Syntax TBLW dma Direct addressing
TBLW ind [, ARN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %k % 0+ *0- *BRO+ *BRO-

Opcode TBLW dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o 1 0 o 1 1 1]o0] dma

TBLW ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[t o 1 0 0o 1 1 1[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(PC+1) — MSTACK
(ACC(15:0)) — PC+1
(data-memory address) - pma,
For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC

While (repeat counter) £ 0
(data-memory address) —» pma,
For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC
(repeat counter) =1 - repeat counter.

(MSTACK) — PC+1
Status Bits None

Description The TBLW instruction transfers a word in data memory to program memory.
The data-memory address is specified by the instruction, and the program-
memory address is specified by the lower 16 bits of the accumulator. A read
from data memory is followed by a write to program memory to complete the
instruction. When repeated with the repeat (RPT) instruction, TBLW effectively
becomes a single-cycle instruction, and the program counter that was loaded
with (ACC(15:0)) is incremented once each cycle.

Words 1

Assembly Language Instructions 7-189

TBLW Table Write

Cycles
Cycles for a Single TBLW Instruction
Program
Operand ROM DARAM SARAM External
Source: DARAM/ROM 3 3 3 3+Pcode
Destination: DARAM
Source: SARAM 3 3 3 3+Pcode
Destination: DARAM
Source: External 3+dgre 3+dgre 3+dgre 3+dgetPeode
Destination: DARAM
Source: DARAM/ROM 3 3 3 3+Pcode
Destination: SARAM 4t
Source: SARAM 3 3 3 3+Pcode
Destination: SARAM 4t
Source: External 3+dgsc 3+dgrc 3+dgsc 3+dsretPeode
Destination: SARAM 4+dg, T
Source: DARAM/ROM 4+pyst 4+pyst 4+pyst 5+pgsttPeode
Destination: External
Source: SARAM A+Pgst 4+pgst 4+pygst 5+Pgst*Peode
Destination: External
Source: External 4+dgrctPgst 4+dgrctPgst 4+dgrctPgst S+dsrc+PgsttPeode
Destination: External
T 1f the destination operand and the code are in the same SARAM block
Cycles for a Repeat (RPT) Execution of a TBLW Instruction
Program
Operand ROM DARAM SARAM External
Source: DARAM/ROM n+2 n+2 n+2 N+2+Pcode
Destination: DARAM
Source: SARAM n+2 n+2 n+2 N+2+Pgode
Destination: DARAM
Source: External n+2+ndgc n+2+ndgc n+2+ndgc N+2+ndg;c+Peode

Destination: DARAM

T1f the destination operand and the code are in the same SARAM block

% 1f both the source and the destination operands are in the same SARAM block
§1f both operands and the code are in the same SARAM block

7-190

Cycles for a Repeat (RPT) Execution of a TBLW Instruction (Continued)

Table Write TBLW

Program
Operand ROM DARAM SARAM External
Source: DARAM/ROM n+2 n+2 n+2 N+2+Peode
Destination: SARAM n+3t
Source: SARAM n+2 n+2 n+2 N+2+Pcode
Destination: SARAM 2n¥ 2n# 2nt 2nt

2n+18

Source: External n+2+ndgc n+2+ndgc n+2+ndg.c N+2+ndg c+Peode
Destination: SARAM n+3+ndg,. T
Source: DARAM/ROM 2n+2+npyg; 2n+2+Npgst 2n+2+npgst 2n+3+NPyst+Peode
Destination: External
Source: SARAM 2n+2+nNpygt 2n+2+nNpygt 2n+2+npygst 2n+3+NPgsttPeode
Destination: External
Source: External An+ndgctNpgs 4n+ndgc+npgst 4n+ndg - +Npgst 4n+1+ndg,c+tnNpgst
Destination: External Pcode

1 1f the destination operand and the code are in the same SARAM block
1 If both the source and the destination operands are in the same SARAM block
§f both operands and the code are in the same SARAM block

Example 1

Example 2

TBLW DATS

ACC

Data Memory
1005h

Program Memory
257h

TBLW *

ARP
ARG
ACC

Data Memory
1006h

Program Memory
258h

;(DP = 32: addresses 1000h—107Fh)

Before Instruction

257h]

4339h|

306h]

Before Instruction

6]

1006h]

258h|

4340n]

307h]

Assembly Language Instructions

ACC

Data Memory
1005h

Program Memory
257h

ARP
ARG
ACC

Data Memory
1006h

Program Memory
258h

After Instruction
257

4339

4399

After Instruction

1006
258

4340

4340

7-191

TRAP Software Interrupt

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

7-192

TRAP
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111001010001

(PC) +1 - stack
22h - PC

Not affected by INTM; does not affect INTM.

The TRAP instruction is a software interrupt that transfers program control to
program-memory location 22h and pushes the program counter (PC) plus 1
onto the hardware stack. The instruction at location 22h may contain a branch
instruction to transfer control to the TRAP routine. Putting (PC + 1) onto the
stack enables a return instruction to pop the return address (which points to
the instruction after TRAP) from the stack. The TRAP instruction is not mask-
able.

1
Cycles for a Single TRAP Instruction
ROM DARAM SARAM External
4 4 4 4+3pt

T The processor performs speculative fetching by reading two additional instruction words. If the
PC discontinuity is taken, these two instruction words are discarded.

TRAP ;PC + 1 is pushed onto the stack, and then
;control is passed to program memory location
;22h.

Exclusive OR With Accumulator XOR

Syntax XOR dma Direct addressing
XOR ind [, ARN] Indirect addressing
XOR #lk [, shift] Long immediate addressing
XOR #lk,16 Long immediate with left
shift of 16
Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0O to 7 designating the next auxiliary register
Ik: 16-bit long immediate value
ind: Select one of the following seven options:

* % *_ %0+ *0- *BRO+ *BRO-

Opcode XOR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 0 1 1 0o o]o0] dma

XOR ind [, ARN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0 1 1 o of[1]| ARU | N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

XOR #lk [, shiff
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 o 1 1 1 1 1 1 1 1 0 1 shift

XOR #lk, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 o 1 1 1 1 1 O 1 O O O O

Ik
Execution Increment PC, then ...
Event(s) Addressing mode

(ACC(15:0)) XOR (data-memory address) - ACC(15:0) Direct or indirect
(ACC(31:16)) - ACC(31:16)

(ACC(31:0)) XOR Ik x 2shift _, ACC(31:0) Long immediate

(ACC(31:0)) XOR Ik x 216 , ACC(31:0) Long immediate
with left shift of 16

Assembly Language Instructions 7-193

XOR Exclusive OR With Accumulator

Status Bits

Description

Words

Cycles

7-194

None

With direct or indirect addressing, the low half of the accumulator value is
exclusive ORed with the content of the addressed data memory location, and
the result replaces the low half of the accumulator value; the upper half of the
accumulator value is unaffected. With immediate addressing, the long imme-
diate constant is shifted and zero filled on both ends and exclusive ORed with
the entire content of the accumulator. The carry bit (C) is unaffected by XOR.

Words Addressing mode
1 Direct or indirect
2 Long immediate

Cycles for a Single XOR Instruction (Using Direct and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

T If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an XOR Instruction (Using Direct
and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tif the operand and the code are in the same SARAM block

Cycles for a Single XOR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Example 1

Example 2

Example 3

Exclusive OR With Accumulator XOR

XOR DAT127

Before Instruction

Data Memory
OFFFFh | OFOFOh]
ACC | 12345678h]
C

XOR *+ ARO

Before Instruction

ARP | 7
AR7 | 300h]
Data Memory
300h | OFFFFh|
ACC | 1234F0FOh]
C
XOR #0FOFOh,4
;four)
Before Instruction
ACC | 11111010h]
C

;(DP = 511: addresses FF80h—FFFFh)

After Instruction
Data Memory

OFFFFh OFOFOh
ACC 1234A688h
c

After Instruction

ARP [d

AR7 301h
Data Memory
300h OFFFFh

AcC
C

;(First shift data value left by

After Instruction

ACC

C

Assembly Language Instructions 7-195

ZALR Zero Low Accumulator and Load High Accumulator With Rounding

Syntax ZALR dma Direct addressing
ZALR ind[, ARN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ % %0+ *0- *BRO+ *BRO-

Opcode ZALR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[o 1 1 0 1 0 0 o0]o0|] dma

ZALR ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lo 1 1 0 1 0 0 o0[1] ARU [N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) —» ACC(31:16)
8000h - ACC(15:0)

Status Bits None

Description The ZALR instruction loads a 16-bit data-memory value into the high word of
the accumulator. The instruction rounds the value by adding half of the value
of the LSB: bit 15 of the accumulator is set, and bits 14 are cleared.

Words 1
Cycles Cycles for a Single ZALR Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

7-196

Zero Low Accumulator and Load High Accumulator With Rounding ZALR

Cycles for a Repeat (RPT) Execution of a ZALR Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Example 1 ZALR DAT3
Before Instruction
Data Memory
1003h | 3Fo1h|
ACC | 77FFFFh|
C
Example 2 ZALR *~ AR4
Before Instruction
ARP | 7
AR7 | OFFOOh]
Data Memory
OFFO0h | OEOEOh]
ACC | 107777h]|
C

Assembly Language Instructions

;(DP = 32: addresses 1000h—107Fh)

After Instruction
Data Memory

1003h
ACC
C
After Instruction
ARP
ART

Data Memory

OFFOOh OEOEOh
ACC 0EOE08000h
c

7-197

Chapter 8

On-Chip Peripherals

This chapter discusses on-chip peripherals connected to the 'C20x CPU and
their control registers. The on-chip peripherals are controlled through 1/0
mapped registers. The operations of the timer and the serial ports are
synchronized to the processor through interrupts and interrupt polling. The
'C20x on-chip peripherals are:

Clock generator

Timer

Software-programmable wait-state generator
General-purpose /O pins

Synchronous serial port (SSP)
Asynchronous serial port (ASP), or UART

Uooodoo

The serial ports are discussed in Chapter 9 and Chapter 10.

For examples of program code for the on-chip peripherals, see Appendix D,
Program Examples.

Topic Page
8.1 Control of On-Chip Peripherals 8-
8.2 ClOCK GENEIAOr .. .ottt et e e e e e e e e 8-4 |
8.3 CLKOUT1-Pin Control (CLK) Register ..., 8-
8.4 TMEI -8
8.5 Wait-State GENeratoroiiuueeinieeaiiie i, 8-15 |
8.6 General-Purpose IO PINS 8

8-1

8.1 Control of On-Chip Peripherals

The on-chip peripherals are controlled by accessing control registers that are
mapped to on-chip I/O space. Datais also transferred to and from the peripher-
als through these registers. Setting and clearing bits in these registers can en-
able, disable, initialize, and dynamically reconfigure the on-chip peripherals.

On adevice reset, the CPU sends an internal SRESET signal to the peripheral
circuits. Table 8-1 lists the peripheral registers and summarizes what hap-
pens when the values in these registers are reset. For a description of all the
effects of a device reset, see section 5.7, Reset Operation, on page 5-35.

Table 8-1. Peripheral Register Locations and Reset Conditions

Reset Value Effects at Reset

. 1/0 Address

Register

Name 'C209 Other 'C20x
PMST - FFE4h
CLK - FFESh
SDTR - FFFOh
SSPCR -~ FFF1h
SSPST - FFF2h
SSPMC - FFF3h
ADTR - FFF4h

000xh

0000h

xxxxh

0030h

0000h

0000h

xxxxh

Program memory status register. SARAM mapped
into program and data memory. MP/MC and
LEVEXTS bits depend on external pin state.

CLKOUTI1-pin control (CLK) register. The
CLKOUT1 signal is available at the CLKOUT1 pin.

Synchronous data transmit and receive register.
The value in this register is undefined after reset.

Synchronous serial port control register. The port
emulation mode is setto immediate stop. Errorand
status flags are reset. Receive interrupts are set to
occur when the receive buffer is not empty.
Transmit interrupts are set to occur when the
transmit buffer can accept one or more words.
External clock and frame synchronization sources
are selected. Continuous mode is selected. Digital
loopback mode is disabled. The receiver and
transmitter are enabled.

Synchronous serial port status register. Data word
size is 16 bits. Sign extension is off. FIFO registers
are empty. Clock prescaler is disabled. Input clock
is CLKOUT1. CLKX polarity is normal. FSX rate is
rate at which data is written to transmit FIFO.

Synchronous serial port multichannel register.
GPC is disabled. Multichannel mode is disabled.
SPI mode is disabled.

Asynchronous data transmit and receive register.
The value in this register is undefined after reset.

Table 8-1.

Peripheral Register Locations and Reset Conditions (Continued)

Register
Name

I/O Address

'C209

Other 'C20x

Reset Value

Effects at Reset

ASPCR

IOSR

BRD

TCR

PRD

TIM

SSPCT

WSGR

FFFCh

FFFDh

FFFEh

FFFFh

FFF5h

FFF6h

FFF7h

FFF8h

FFF9h

FFFAh

FFFBh

FFFCh

0000h

18xxh

0001h

0000h

FFFFh

FFFFh

0000h

OFFFh

Asynchronous serial port control register. The port
emulation mode is set to immediate stop. Receive,
transmit, and delta interrupts are disabled. One
stop bit is selected. Auto-baud alignment is
disabled. The TX pin is forced high between
transmissions. I/O pins 100, 101, 102, and 103 are
configured as inputs. The port is disabled.

I/O status register. Auto-baud alignment is
disabled. Error and status flags are reset. The
lower eight bits are dependent on the values on
pins 100, 101, 102, and 103 at reset.

Baud rate divisor register. A baud rate of
(CLKOUT1 rate)/16 is selected.

Timer control register. The divide-down value is 0,
and the timer is started.

Timer period register. The next value to be loaded
into the timer counter register (TIM) is at its highest
value.

Timer counter register. The timer count is at its
highest value.

Synchronous serial port counter register. SSP
counter bits are 0.

Wait-state generator control register. The
maximum number of wait states are selected for
off-chip program, data, and I/O spaces.

8.2 Clock Generator

The high pulse of the master clock output signal (CLKOUT1) signifies the logic
phase of the device (the phase when values are changed), while the low pulse
signifies the latch phase (the phase when values are latched). CLKOUT1 de-
termines much of the device’s operational speed. For example:

[The timer clock rate is a fraction of the rate of CLKOUT1.

(1 Each instruction cycle is equal to one CLKOUT1 period.

(1 Each wait state generated by the READY signal or by the on-chip wait-
state generator is equal to one CLKOUT1 period.

You control the rate of CLKOUT1 with the on-chip clock generator. The clock
generator creates an internal CPU clock signal CLKOUT1 whose rate is a frac-
tion or multiple of a source clock signal CLKIN. This generator consists of two
independent components, an oscillator and a phase lock loop (PLL) circuit.
The internal oscillator, in conjunction with an external resonator circuit, allows
you to generate CLKIN internally and create a CLKOUT1 signal that oscillates
at a multiple (0.5, 1, 2, or 4 times) of the frequency of CLKIN. The PLL makes
the rate of CLKOUTL1 a multiple of the rate of CLKIN and locks the phase of
CLKOUT1 to that of CLKIN.

CLKIN can be generated by the internal oscillator or by an external oscillator:

[Internal oscillator . The clock source is generated internally by connect-
ing a crystal resonator circuit across the CLKIN/X2 and X1 pins. The crys-
tal should be in either fundamental or overtone operation and parallel res-
onant, with an effective series resistance of 30 ohms and a power dissipa-
tion of 1 mW. It should also be specified at a load capacitance of 20 pF.
Figure 8—1 shows the setup for a fundamental frequency crystal. Over-
tone crystals require an additional tuned-LC circuit.

Ifthe internal oscillator is used, the frequency of CLKOUT1 is half the oscil-
lating frequency of the crystal in +2 mode. For example, a 40-MHz crystal
will provide a CLKOUT1 rate of 20 MHz, providing 20 MIPS of processing
power.

Figure 8—1. Using the Internal Oscillator

8-4

'C20x
_L i X1
Crystal == ClI
T - CLKIN/X2

ite

[External Oscillator . If an external oscillator is used, its output must be
connected to the CLKIN/X2 pin. The X1 pin must be left unconnected. See
Figure 8-2.

Figure 8-2. Using an External Oscillator

'C20x

No connection — X1

Oscillator CLKIN/X2

\ 4

Regardless of the method used to generate CLKOUT1, CLKOUTL1 is also
available at the CLKOUTL1 pin, unless the pin is turned off by the CLK register
(see section 8.3).

You can lower the power requirements for the 'C20x by slowing down or stop-
ping the input clock.

Note:

When restarting the system, activate RS before starting or stopping the
clock, and hold it active until the clock stabilizes. This brings the device back
to a known state.

8.2.1 Clock Generator Options

The 'C20x provides four clock modes: divide-by-2 (+2), multiply-by-1 (x1),
multiply-by-2 (x2), and multiply-by-4 (x4). The =2 mode operates the CPU at
half the input clock rate. Each of the other modes operates the CPU at a multi-
ple of the input clock rate and phase locks the output clock with the the input
clock. You set the mode by changing the levels on the DIV1 and DIV2 pins. For
each mode, Table 8-2 shows the generated CPU clock rate and the state of
DIV2, DIV1, the internal oscillator, and the internal phase lock loop (PLL).

Notes:
1) Change DIV1 and DIV2 only while the reset signal (RS) is active.

2) The PLL requires approximately 2500 cycles to lock the output clock sig-
nal to the input clock signal. When setting the x1, x2, or x4 mode, keep
the reset (RS) signal active until at least three cycles after the PLL has
stabilized.

8-5

Table 8-2. 'C20x Input Clock Modes

Clock External Internal Internal
Mode CLKOUT1 Rate DIV2 DIVl CLKIN Source? Oscillator PLL
2 CLKOUTL = CLKIN = 2 0 0 No Enabled Disabled
Yes Disabled Disabled
x1 CLKOUT1 =CLKIN x 1 0 1 Required Disabled Enabled
x2 CLKOUT1 = CLKIN x 2 1 0 Required Disabled Enabled
x4 CLKOUT1 = CLKIN x 4 1 1 Required Disabled Enabled

8-6

Remember the following when configuring the clock mode:

a

The clock mode configuration cannot be dynamically changed. After you
change the levels on DIV1 and DIV2, the mode is not changed until a hard-
ware reset is executed (RS low).

The operation of the PLL circuit is affected by the operating voltage of the
device. If your device operates at 5V, the PLL5V signal should be tied high
at the PLL5V pin. If you have a 3-V device, tie PLL5V low.

The x1, x2, and x4 modes use an internal phase lock loop (PLL) that re-
quires approximately 2500 cycles to lock. Delay the rising edge of RS until
at least three cycles after the PLL has stabilized. When the PLL is used,
the duty cycle of the CLKIN signal is more flexible, but the minimum duty
cycle should not be less than 10 nanoseconds. When the PLL is not used,
no phase-locking time is necessary, but the minimum pulse width must be
45% of the minimum clock cycle.

8.3 CLKOUT1-Pin Control (CLK) Register

You can use bit 0 of the CLK register to turn off the pin for the master clock out-
put signal (CLKOUT1). The CLK register is located at address FFE8h in 1/0O
space and has the organization shown in Figure 8-3.

Figure 8-3. 'C20x CLK Register — I/O-Space Address FFE8h

15 1 0
Reserved CLKOUT1
0 R/W-0

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (-) is value after reset.

Ifthe CLKOUT1 hitis 1, the CLKOUT1 signal is not available at the CLKOUT1
pin; if the bitis 0, CLKOUT1 is available at the pin. At reset, this bit is cleared
to 0. When the IDLE instruction puts the CPU into a power-down mode,
CLKOUT1 remains active at the pinifthe CLKOUTL1 bitis 0. (For more informa-
tion on the 'C20x power-down mode, see section 5.8, Power-Down Mode, on
page 5-40).

For the current status of CLKOUT1, read bit 0. To change the status, write to
bit 0. When programming, allow the CLKOUT1 pin two cycles to change its
state from on to off or from off to on. Bits 15-1 are reserved and are always
read as 0s.

8-7

8.4 Timer

The 'C20x features an on-chip timer with a 4-bit prescaler. This timer is a down
counter that can be stopped, restarted, reset, or disabled by specific status
bits. You can use the timer to generate periodic CPU interrupts.

Figure 8-4 shows a functional block diagram of the timer. There is a 16-bit
main counter (TIM) and a 4-bit prescaler counter (PSC). The TIM is reloaded
from the period register PRD. The PSC is reloaded from the period register
TDDR.

Figure 8—4. Timer Functional Block Diagram

8-8

SRESET
TRB
PRD TDDR
+ * CLKOUT1
f O———
TIM PSC TSS
\ O————
Borrow Borrow
.
P TINT
™ » TOUT

L~

Each time a counter decrements to zero, a borrow is generated on the next
CLKOUT1 cycle, and the counter is reloaded with the contents of its corre-
sponding period register. The contents of the PRD are loaded into the TIM
when the TIM decrements to 0 or when a 1 is written to the timer reload bit
(TRB) in the timer control register (TCR). Similarly, the PSC is loaded with the
value in the TDDR when the PSC decrements to 0 or when a 1 is written to
TRB.

When the TIM decrements to 0, it generates a borrow pulse that has a duration
equal to that of a CLKOUT1 cycle (tc(C))- This pulse is sent to:

[The external timer output (TOUT) pin
[The CPU, as a timer interrupt (TINT) signal

The TINT request automatically sets the TINT flag bit in the interrupt flag regis-
ter (IFR). You can mask or unmask the request with the interrupt mask register
(IMR). If you are not using the timer, mask TINT so that it does not cause an
unexpected interrupt.

8.4.1 Timer Operation
Here is a typical sequence of events for the timer:

1) The PSC decrements on each succeeding CLKOUT1 pulse until it
reaches 0.

2) Onthe next CLKOUT1 cycle, the TDDR loads the new divide-down count
into the PSC, and the TIM decrements by 1.

3) The PSC andthe TIM continue to decrement in the same way until the TIM
decrements to 0.

4) Onthe next CLKOUT1 cycle, a timer interrupt (TINT) is sent to the CPU,
a pulse is sent to the TOUT pin, the new timer count is loaded from the
PRD into the TIM, and the PSC is decremented once.

The TIM decrements by one every (TDDR+1) CLKOUT1 cycles. When PRD,
TDDR, or both are nonzero, the timer interrupt rate is defined by Equation 8-1,
where tg(c) is the period of CLKOUT1, u is the TDDR value plus 1, and v is
the PRD value plus 1. When PRD = TDDR = 0, the timer interrupt rate is
(CLKOUTL1 rate)/2.

Equation 8-1. Timer Interrupt Rate for Nonzero TDDR and/or PRD

TINTrate = -+ x % __1 1 _ CLKOUT1 rate

= X =
facoy UXV tyeo ~ (TDDR + 1) x (PRD + 1) (TDDR + 1) x (PRD + 1)

Note:

Equation 8-1is not valid for TDDR = PRD =0; in this case, the timer interrupt
rate defaults to (CLKOUT1 rate)/2.

In Equation 8-1 the timer interrupt rate equals the CLKOUT1 frequency
(1/tC(Co)) divided by two independent factors (uandv). Each of the two divisors
is implemented with a down counter and a period register. See the timer
functional block diagram, Figure 8-4, on page 8-8. The counter and period
registers for the divisor u are the PSC and TDDR, respectively, both 4-bit fields
of the timer control register (TCR). The counter and period registers for the
divisor v are the TIM and PRD, respectively. Both are16-bit registers mapped
to I/O space.

8-9

The 4-bit TDDR (timer divide-down register) and the 4-bit PSC (prescaler
counter) are contained in the timer control register (TCR) described in section
8.4.2. The TIM (timer counter register) and the PRD (timer period register) are
16-bit registers described in section 8.4.3. You can read the TCR, TIM, and
PRD to obtain the current status of the timer and its counters.

Note:

Read the TIM for the current value in the timer. Read the TCR for the PSC
value. Because it takes two instructions to read both the TIM and the TCR,
the PSC may decrement between the two reads, making comparison of the
reads inaccurate. Therefore, where precise timing measurements are
necessary, you may want to stop the timer before reading the two values.
(Set the TSS bit of the TCR to 1 to stop the timer; clear TSS to O to restart
the timer.)

8.4.2 Timer Control Register (TCR)

8-10

The TCR, a 16-bit register mapped to on-chip I/O space, contains the control
bits that:

Control the mode of the timer

Specify the current count in the prescaler counter
Reload the timer

Start and stop the timer

Define the divide-down value of the timer

Uoooo

For 'C20x devices other than the 'C209, Figure 8-5 shows the bit layout of the
TCR. Descriptions of the bits follow the figure. For a description of the 'C209
TCR, see section 11.4.2 on page 11-16.

Figure 8-5. 'C20x Timer Control Register (TCR) — I/O-Space Address FFF8h

15 12 11 10 9 6 5 4 3 0
Reserved FREE SOFT PSC TRB TSS TDDR
0 R/W-0 R/W-0 R/W-0 R/W-0 W-0 R/W-0
Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash () is value after reset.

Table 8-3. 'C20x TCR — I/O Space Address FFF8h Bit Descriptions

Bit
No.

Name

Function

15-12

11-10

9-6

Reserved

FREE, SOFT

PSC

TRB

Bits 15-12 are reserved and are always read as 0s.

These bits are special emulation bits that determine the state of the timer when a
breakpoint is encountered in the high-level language debugger. If the FREE bit is
set to 1, then, upon a software breakpoint, the timer continues to run (that is, runs
free). In this case, SOFT is a don't care. But if FREE is 0, then SOFT takes effect.
In this case, if SOFT = 0, the timer halts the next time the TIM decrements. If the
SOFT bit is 1, then the timer halts when the TIM has decremented to zero. The
default (reset) setting is FREE = 0 and SOFT = 0. The available run and
emulation modes are:

00 Stop after the next decrement of the TIM (hard stop)
01 Stop after the TIM decrements to O (soft stop)

10 Freerun

11 Freerun

Timer prescaler counter. These four bits hold the current prescale count for the
timer. For every CLKOUT1 cycle that the PSC value is greater than 0, the PSC
decrements by one. One CLKOUT1 cycle after the PSC reaches 0, the PSC is
loaded with the contents of the TDDR, and the timer counter register (TIM)
decrements by one. The PSC is also reloaded whenever the timer reload bit
(TRB) is set by software. The PSC can be checked by reading the TCR, but it
cannot be set directly. It must get its value from the timer divide-down register
(TDDR). At reset, the PSC is set to 0.

Timer reload bit. When you write a 1 to TRB, the TIM is loaded with the value in
the PRD, and the PSC is loaded with the value in the timer divide-down register
(TDDR). The TRB bit is always read as zero.

8-11

Table 8-3. 'C20x TCR — I/O Space Address FFF8h Bit Descriptions (Continued)

Bit
No. Name Function
4 TSS Timer stop status bit. TSS stops or starts the timer. At reset, TSS is cleared to 0
and the timer immediately starts.
0 Starts or restarts the timer.
1 Stops the timer.
3-0 TDDR Timer divide-down register. Every (TDDR + 1) CLKOUT1 cycles, the timer counter

register (TIM) decrements by one. At reset, the TDDR bits are cleared to 0. If you
want to increase the overall timer count by an integer factor, write this factor mi-
nus one to the four TDDR bits. When the prescaler counter (PSC) value is 0, one
CLKOUTL1 cycle later, the contents of the TDDR reload the PSC, and the TIM
decrements by one. TDDR also reloads the PSC whenever the timer reload bit
(TRB) is set by software.

8.4.3 Timer Counter Register (TIM) and Timer Period Register (PRD)

8-12

These two registers work together to provide the current count of the timer:

[The 16-bittimer counter register (TIM) holds the current count of the timer.
The TIM decrements by one every (TDDR+1) CLKOUT1 cycles. When the
TIM decrements to zero, the TINT bit of the interrupt flag register (IFR) is
set (causing a pending timer interrupt), and a pulse is sent to the TOUT
pin.

You cannot directly write to the TIM register. At reset, this register is set to
hold its maximum value of FFFFh. See Table 8-1 (page 8-2) for the ad-
dress of this register.

(1 The 16-bittimer period register (PRD) holds the next starting count for the
timer. When the TIM decrements to zero, in the following cycle, the con-
tents of the PRD are loaded into the TIM. The PRD contents are also
loaded into the TIM when you set the timer reload bit (TRB).

You can program the PRD to contain a value from 0 to 65 535 (FFFFh).
After reset, the PRD holds its maximum value of FFFFh. See Table 8-1
(page 8-2) for the address of this register. If you are not using the timer,
you can mask TINT and then use the PRD as a general-purpose data-
memory location.

You control the timer’s current and next periods. You can write to or read from
the TIM and PRD on any cycle. You can monitor and control the count by read-
ing from the TIM and writing the next counter period to the PRD without disturb-
ing the current timer count. The timer will start the next period after the current

count is complete. If you use TINT, you should program the PRD and TIM be-
fore unmasking TINT, to avoid unwanted interrupts.

Once a reset is initiated, the TIM begins to decrement only after reset is
deasserted.

8.4.4 Setting the Timer Interrupt Rate
When the divide-down value (TDDR) is 0, you can program the timer to gener-
ate an interrupt (TINT) every 2 to 65 536 cycles by programming the period
register (PRD) from 0 to 65 535 (FFFFh). When TDDR is nonzero (1 to 15),

the timer interrupt rate decreases.

If TDDR, PRD, or both are nonzero, the timer interrupt rate is given by:

_ CLKOUT1 rate
TINTTate = =55R + 1) x (PRD + 1)

Note:

When TDDR = PRD = 0, the timer interrupt rate defaults to
(CLKOUTL1 rate)/2.

As an example of setting the timer interrupt rate, suppose the CLKOUT1 rate
is 10 MHz and you want to use the timer to generate a clock signal with a rate
of 10 kHz. You need to divide the CLKOUT1 rate by 1000. The TDDR is loaded
with 4, so that every 5 CLKOUT1 cycles, the TIM decrements by one. The PRD
is loaded with the starting count (199) for the TIM. These values are verified
with the TINT rate equation:

B 1
TINT rate = CLKOUT1 rate X (TDDR + 1) x (PRD + 1)
_ 1 CLKOUT1 cycle 1 TINT cycle
TINT rate = —5=0—= 7555 X (4 + 1) x (199 + 1) CLKOUTL1 cycles
3
TINT rate — 10 x 103 TINT cycles — 10 kHz

S

The PSC and the TIM would be loaded with the values from the TDDR and the
PRD, respectively. Then, one CLKOUT1 cycle after the TIM decrements to 0,
the timer would send an interrupt to the CPU.

8-13

8.4.5 The Timer at Hardware Reset

8-14

On adevice reset, the CPU sends an SRESET signal to the peripheral circuits,
including the timer. The SRESET signal has the following consequences on
the timer:

(1 The registers TIM and PRD are loaded with their maximum values
(FFFFh).

[All the bits of the TCR are cleared to zero with the following results:
B The divide-down value is O (TDDR = 0 and PSC = 0).
B The timer is started (TSS = 0).
B The FREE and SOFT bits are both 0.

8.5 Wait-State Generator

Wait states are necessary when you want to interface the 'C20x with slower
external logic and memory. By adding wait states, you lengthen the time the
CPU waits for external memory or an external 1/0O port to respond when the
CPU reads from or writes to that memory or port. Specifically, the CPU waits
one extra cycle (one CLKOUT1 cycle) for every wait state. The wait states op-
erate on CLKOUT1 cycle boundaries.

To avoid bus conflicts, writes from the 'C20x always take at least two
CLKOUT1 cycles.

The 'C20x offers two options for generating wait states:

[0 The READY signal. With the READY signal, you can externally generate
any number of wait states.

1 The on-chip wait-state generator. With this generator, you can generate
zero to seven wait states.

8.5.1 Generating Wait States With the READY Signal

When READY is low, the 'C20x waits one CLKOUT1 cycle and checks READY
again. The 'C20x will not continue executing until READY is driven high; there-
fore, if the READY signal is not used, it should be pulled high during external
accesses.

Again, the READY pin can be used to generate any number of wait states.
However, even when the 'C20x operates at full speed, it may not respond fast
enough to provide a READY-based wait state for the first cycle. For extended
wait states using external READY logic, the on-chip wait-state generator
should be programmed to generate at least one wait state.

The READY pin has no effect on accesses to internalmemory or I/O registers,
except in the case of the 'C209 (refer to section 11.2, 'C209 Memory and I/0
Spaces). For a 'C20x device with a bootloader, READY must be high at boot
time.

8.5.2 Generating Wait States With the '*C20x Wait-State Generator

For devices other than the 'C209, the software wait-state generator can be
programmed to generate zero to seven wait states for a given off-chip memory
space (lower program, upper program, data, or I/O), regardless of the state of
the READY signal. This wait-state generator has the bit fields shown in
Figure 8—6 and described after the figure. For a description of the 'C209 wait-

8-15

state generator, see section 11.4.3 on page 11-17. To avoid bus conflicts, all
writes to external addresses take at least two cycles. Once the wait-state gen-
erator has no zero value, the wait states are extended for both read and write
cycles.

Figure 8—6. 'C20x Wait-State Generator Control Register (WSGR)
— I/O-Space Address FFFCh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved ISWS DSWS PSUWS PSLWS
0 R/W-111 R/W-111 R/W-111 R/W-111

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (-) is value after reset.

Table 8-4. 'C20x WSGR — I/0O Space Address FFFCh Bit Descriptions
Bit
No. Name Function

15-12 Reserved Bits 15-12 are reserved and are always read as 0s.

11-9 ISWS I/O-space wait-state bits. Bits 9-11 determine the number of wait states (0, 1, 2,
3,4,5, 6, or 7) that are applied to reads from and writes to off-chip I/O space. At
reset, the three ISWS bits become 111, setting seven wait states for reads from
and writes to off-chip I/O space.

8-6 DSWS Data-space wait-state bits. Bits 6—-8 determine the number of wait states (0, 1, 2,
3,4,5, 6, or 7) that are applied to reads from and writes to off-chip data space. At
reset, the three DSWS bits become 111, setting seven wait states for reads from
and writes to off-chip data space.

5-3 PSUWS Upper program-space wait-state bits. Bits 3-5 determine the number of wait
states (0, 1, 2, 3, 4, 5, 6, or 7) that are applied to reads from and writes to off-chip
upper program addresses 8000h—FFFFh. At reset, the three PSUWS bits become
111, setting seven wait states for reads from and writes to off-chip upper program
space.

2-0 PSLWS Lower program-space wait-state bits. Bits 0-2 determine the number of wait
states (0, 1, 2, 3, 4, 5, 6, or 7) that are applied to reads from and writes to off-chip
lower program addresses Oh—7FFFh. At reset, the three PSLWS bits become 111,
setting seven wait states for reads from and writes to off-chip lower program
space.

8-16

Table 8-5 shows how to set the number of wait states you want for each type
of off-chip memory. For example, if you write 1s to bits 0 through 5, the device
will generate seven wait states for off-chip lower program memory and seven
wait states for off-chip upper program memory.

Table 8-5. Setting the Number of Wait States With the 'C20x WSGR Bits

PSUWS Upper PSLWS Lower
ISWS Bits DSWS Bits Bits Program Bits Program

- /O Wait - DataWait | T Wait - Wait

1 10 9 States 8 7 6 states 5 4 3 states 2 1 0 states
0O 0 O 0 0O 0 O 0 0 0 O 0 0 0 O 0
0 O 1 1 O 0 1 1 0O 0 1 1 0O 0 1 1
0 1 0 2 0O 1 0O 2 0O 1 0O 2 0O 1 0O 2
0 1 1 3 O 1 1 3 0o 1 1 3 0o 1 1 3
1 O 0 4 1 0 O 4 1 0 O 4 1 0 O 4
1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5
1 1 0 6 1 1 0 6 1 1 o0 6 1 1 0 6
1 1 1 7 1 1 1 7 1 1 1 7 1 1 1 7

In summary, the wait-state generator inserts zero to seven wait states to a giv-
en memory space, depending on the values of PSLWS, PSUWS, DSWS, and
ISWS, while the READY signal remains high. The READY signal may then be
driven low to generate additional wait states. At reset, all WSGR bits are set
to 1, making seven wait states the default for every memory space.

8-17

8.6 General-Purpose I/O Pins

The 'C20x provides pins that can be used to supply input signals from an exter-
nal device or output signals to an external device. These pins are not bound
to specific uses; rather, they can provide input or output signals for a great vari-
ety purposes. You have access to the general-purpose input pin BIO and the
general-purpose output pin XF. On 'C20x devices other than the 'C209, you
also have the pins 100, 101, 102, and 103, which can each be configured as
an input pin or an output pin.

8.6.1 Input Pin B

The general-purpose input pin BIO pin provides input from an external device
and is particularly helpful as an alternative to an interrupt when time-critical
loops must not be disturbed. The BIO signal gives you control through three
instructions, a conditional branch (BCND), a conditional call (CC), and a condi-
tional return (RETC). Here is an example of each:

(1 BCND pma, BIO

pmais a program memory address_that you specify. The CPU branches to
the program memory address if BIO is low.

d CC pma, BIO

pmais a program memory address that you specify. If BIO is low, the CPU
stores the return address to the top of the hardware stack and then
branches to the program memory address.

(1 RETC BIO

If BIO is low, the CPU transfers the return address from the stack to the
program counter (PC) to return from a subroutine or interrupt service rou-
tine.

If BIO is not used, it should be pulled high so that a conditional branch, call,
or return will not be executed accidentally.

An example of BIO timing is shown in Figure 8-7. This timing diagram is for
a sequence of single-cycle, single-word instructions located in external
memory. BIO must be asserted low for at least one CLKOUT1 cycle. The
BCND, CC, and RETC instructions sample the BIO pin during their execute
phase in the pipeline. Actual timing may vary with different instruction se-
quences.

8-18

Figure 8-7. BIO Timing Diagram Example

cLkouTt | |

| 1 CLKOUT
‘ cycle

III‘IIIIIIIIIL
1]
|
|
|

@
o

8.6.2 Output Pin XF

_| /

The XF pin is the external flag output pin. If you connect XF to an input pin of
another processor, you can use XF as a signal to other processor. The most
recent XF value is latched in the 'C20x, and that value is indicated by the XF
status bit of status register ST1. You can set XF (XF = 1) with the SETC XF (set
external flag) instruction and clear it (XF = 0) with the CLRC XF (clear external
flag) instruction. In addition, you can write to ST1 with the LST (load status
register) instruction. During a hardware reset, XF is set to 1.

8.6.3 Input/Output Pins 100, 101, 102, and 103

For additional input/output control, 'C20x devices other than the 'C209 have
pins 100, 101, 102, and 103, which can be individually configured as inputs or
outputs. These pins are software-controllable with the asynchronous serial
port control register (ASPCR) and the 1/O status register (IOSR). For the
details of configuring and using these 1/O pins, see section 10.3.5, Using I/O
Pins 103, 102, 101, and 100, on page 10-15.

8-19

Chapter 9

Synchronous Serial Port

The 'C20x devices have a synchronous serial port that provides direct
communication with serial devices such as codecs (coder/decoders) and
serial A/D converters. The serial port may also be used for intercommunication
between processors in multiprocessing applications.

The synchronous serial port offers these features:

J Two four-word-deep FIFO buffers

[Interrupts generated by the FIFO buffers
J A wide range of speeds of operation

[J Burst and continuous modes of operation

For examples of program code for the synchronous serial port, see Appendix D,
Program Examples.

Topic Page
9.1 Overview of the Synchronous Serial Port ~ 90 |
9.2 Components and Basic Operation c.. i 9-

9.3 Controlling and Resettingthe Port ~ 9-

9.4 Managing the Contents of the FIFO Buffers 9:
9.5 Transmitter Operation i 9
9.6 Receiver Operationuietiine i 9-22
9.7 Troubleshooting ...ttt 9{25 |
9.8 Enhanced Synchronous Serial Port (ESSP) 9.-@
9.9 ESSP PiNsS ... D-30
9.10 ESSP Registers
9.11 ESSP Register Programming Considerations 9-.4@

9-1

9.1 Overview of the Synchronous Serial Port

9-2

Both receive and transmit sections of the synchronous serial port have a
four-word-deep first-in, first-out (FIFO) buffer. The FIFO buffers reduce the
amount of CPU overhead inherent in servicing transmit or receive data by
reducing the number of transmit or receive interrupts that occur during a
transfer. The synchronous serial port is reset 16 CLKOUTL1 cycles after the
rising edge of the pin, during device reset.

In the internal clock mode, the maximum transmission rate for both transmit
and receive operations is the CPU clock rate divided by two, or
(CLKOUTL1 rate)/2. Therefore, the maximum rate is 10 megabits/s for a
20-MHz (50-ns) device, 14.28 megabits/s for a 28.57-MHz (35-ns) device, and
20 megabits/s for a 40-MHz (25-ns) device. Since the serial port is fully static,
it also functions at arbitrarily low clocking frequencies.

Two modes of operation are provided to support a wide range of applications:

(1 Continuous mode — provides operation that requires only one frame
synchronization (frame sync) pulse to transmit several packets at
maximum frequency

(1 Burstmode —allows transmission of a single 16-bit word following a frame
sync pulse.

These two modes of operation suit most of the industry-standard synchronous
serial-data devices, such as codecs. This portis intended to provide a glueless
interface to most of the standard codec parts. However, these modes can also
be adapted for specialized synchronous interfaces.

9.2 Components and Basic Operation

The synchronous serial port has several hard-wired parts, including two FIFO
buffers and six signal pins. Figure 9-1 shows how the components of the
synchronous serial port are interconnected.

Figure 9—1. Synchronous Serial Port Block Diagram

Internal data bus

v

—I—p— SDTR receive (-3) SDTR transmit (-3) 4—_

Control > Receive (-2) Transmit (-2) < Control

logic logic
(receive) > Receive (-1) Transmit (-1) < (transmit)

4 Receive (0) Transmit (0) J 4
A
RINT XINT
v v v
DR —» RSR XSR —» DX
CLKR FSR FSX CLKX
9.2.1 Signals

Serial port operation requires three basic signals:

a

Clock signal. The clock signal (CLKX/CLKR) is used to control timing
during the transfer. The timing signal for transmissions can be either
generated internally or taken from an external source.

Frame sync signal. The frame sync signal (FSX/FSR) is used at the start
of a transfer to synchronize the transmit and receive operations. The
frame sync signal for transmissions can be either generated internally or
taken from an external source.

9-3

[Data signal. The data signal carries the actual data that is transferred in
the transmit/receive operation. The data signal transmit pin (DX) of one
device should be connected to the data signal receive (DR) pin on another
device.

Table 9-1 describes the six pins that use these signals.

Table 9-1. SSP Interface Pins

Pin
Name Description

CLKX Transmit clock input or output. The clock signal is used for clocking data
from the serial port transmit shift register (XSR) to the DX pin. If the port is
configured for accepting an external clock, this pin receives the clock
signal. If the port is configured for generating an internal clock, this pin
transmits the clock signal.

FSX Transmit frame synchronization. FSX signals the start of a transmission.
If the port is configured for accepting an external frame sync pulse, this pin
receives the pulse. If the portis configured for generating an internal frame
sync pulse, this pin transmits the signal.

DX Serial data transmit. DX transmits serial data from the serial port transmit
shift register (XSR).

CLKR Receive clock input. CLKR receives an external clock signal for clocking
the data from the DR pin into the serial port receive shift register (RSR).

FSR Receive frame synchronization. FSR initiates the reception of data at the
beginning of the packet.

DR Serial data receive. DR receives serial data, transferring it into the serial
port receive shift register (RSR).

Figure 9-2 shows how the signals are connected in a typical serial transfer
between two devices. The DR pin receives serial data from the Doy signal,
and the DX signal sends serial data to the Dy pin. The FSX and FSR signals
are both supplied from the FS pin, and they initiate the transfers (at the
beginning of a data packet). The SCK signal drives both the CLKX and CLKR
signals, which clock the bit transfers.

Figure 9-2. 2-Way Serial Port Transfer With External Frame Sync and External Clock

TLC320AD55C TMS320C203
Dout
Analog —»——F--1 AID f----"~ > DR
signal D
IN
Analog —<4¢—+f--1{ DIA | ----- < DX
signal
SCK 4>—E CLKX
CLKR
ES 4>—E FSX
FSR
Legend: D oyt Transmitdata DR Receive data
DIN Receive data DX Transmit data
SCK Clock source CLKX Transmit clock
FS Frame sync source CLKR Receive clock

FSX Transmit frame synchronization
FSR Receive frame synchronization

9.2.2 FIFO Buffers and Registers

The synchronous serial port (SSP) has two four-level transmit and receive
FIFO buffers (shown at the center of Figure 9—1 on page 9-3).

Two on-chip registers allow you to access the FIFO buffers and control the
operation of the port:

[Synchronous data transmit and receive register (SDTR). The SDTR,
atl/O address FFFOh, is used for the top of both FIFO buffers (transmitand
receive) and is the only visible part of the FIFO buffers.

[0 Synchronous serial port control register (SSPCR). The SSPCR, atl/O
address FFF1h, contains bits for setting port modes, indicating the status
of a data transfer, setting trigger conditions for interrupts, indicating error
conditions, accepting bit input, and resetting the port. Section 9.3 includes
a detailed description of the SSPCR.

Two other registers (not accessible to a programmer) control transfers
between the FIFO buffers and the pins:

[Synchronous serial port transmit shift register (XSR). Each data word
is transferred from the bottom level of the transmit FIFO buffer to the XSR.
The XSR then shifts the data out (MSB first) through the DX pin.

[Synchronous serial port receive shift register (RSR). Each data word
is accepted, one bit at a time, at the DR pin and shifted into the RSR. The
RSR then transfers the word to the bottom level of the receive FIFO buffer.

9-5

9.2.3

Interrupts

The synchronous serial port (SSP) has two hardware interrupts that let the
processor know when the FIFO buffers need to be serviced:

[Transmitinterrupts (XINTs) cause a branch to address 000Ah in program
space whenever the transmit-interrupt trigger condition is met. Set the
trigger condition by setting bits FT1 and FTO in the SSPCR (see Table 5-8
on page 5-26). XINTs have a priority level of 8 (1 being highest).

(1 Receive interrupts (RINTs) cause a branch to address 0008h in program
space whenever the receive-interrupt-trigger condition is met. The trigger
condition is selected by setting the FR1 and FRO bits in the SSPCR (see
Table 5-8 on page 5-26). RINTs have a priority level of 7.

These are maskable interrupts controlled by the interrupt mask register (IMR)
and interrupt flag register (IFR).

Note:

To avoid a double interrupt from the SSP, clear the IFR bit (XINT or RINT)
in the corresponding interrupt service routine, just before returning from the
routine.

9.2.4 Basic Operation

9-6

Typically, transmission through the serial port follows this process:

1) Initialize the serial port to the desired configuration by writing to the
SSPCR.

2) Your software writes up to four words to the transmit FIFO buffer through
the SDTR.

3) The transmit FIFO buffer copies the earliest-written word to the transmit
shift register (XSR) when the XSR is empty.

4) The XSR shifts the data, bit-by-bit (MSB first), to the DX pin.

5) When the XSR empties, it signals the FIFO buffer, and then:
[If the FIFO buffer is not empty, the process repeats from step 3.

[Ifthe FIFO buffer is empty (as specified by the FT1 and FTO bits in the
SSPCR), it sends a transmit interrupt (XINT) to request more data,
and the process repeats from step 2.

Reception through the serial port typically is done as follows:

1)

2)

3)

4)

Data from the DR pin is shifted, bit-by-bit (MSB first), into the receive shift
register (RSR).

When the RSR is full, the RSR copies the data to the receive FIFO buffer.

The process then does one of two things, depending upon the state of the
receive FIFO buffer:

[Ifthe receive FIFO buffer is not full, the process repeats from step 1.

1 Ifthereceive FIFO bufferis full (as specified by the FR1 and FRO bitsin
the SSPCR), it sends a receive interrupt (RINT) to the processor to
request servicing.

The processor can read the received data from the receive FIFO buffer
through the SDTR.

9-7

9.3 Controlling and Resetting the Port

The synchronous serial port control register (SSPCR) controls the operation
of the synchronous serial port. To configure the serial port, a total of two writes
to the SSPCR are necessary:

1) Write your choices to the configuration bits and place the port's FIFO in
reset by writing zeros to SSPCR bits XRST and RRST.

2) Write your choices to the configuration bits and take the port's FIFO out
of reset by writing ones to bits XRST and RRST.

Note:

XRST and RRST are bits that reset the pointer to two FIFOs (transmit and
receive). These bits do not reset the serial port mode or operation. When
XRST and RRST are reset, the FIFO pointers are set to start at zero (empty
condition). See enhanced serial port features in section 9.8 to view the reset
conditions in ESSP.

Setthe DLB bit of the SSPCR to zero to disable digital loopback mode, which
is not normally used in serial transfers. See section 9.7.1, Test Bits, for a de-
scription of digital loopback mode.

Make sure you write your configuration choices to the SSPCR during both
writes.

Figure 9-3 shows the 16-bit memory-mapped SSPCR. Following the figure is
a description of each of the bits.

Figure 9-3. Synchronous Serial Port Control Register (SSPCR) — I/O-Space FFF1h

9-8

15 14 13 12 11 10 9 8
FREE SOFT TCOMP RFENE FT1 FTO FR1 FRO |
R/W-0 R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0
OVF INO XRST RRST TXM MCM FSM DLB |
R-0 R-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0

Note: R=Read access; W=Write access; value following dash (-) is value after reset.

Table 9-2. SSPCR — I/O-Space Address FFF1h Bit Descriptions

Bit
No. Name Function
15-14 FREE, SOFT These bits are special emulation bits that determine the state of the serial port

clock when a breakpoint is encountered in the high-level language debugger. If
the FREE bit is set to 1, then, upon a breakpoint, the clock continues to run (that
is, free runs) and data is shifted out. In this case, SOFT is a don't care. If
FREE = 0, then SOFT takes effect. At reset, immediate stop mode is selected
(FREE = 0 and SOFT = 0). The effects of the FREE and SOFT bits are:
FREE SOFT Run/Emulation Mode
0 0 Immediate stop
0 1 Stop after completion of word
1 0 Free run
1 1 Free run
Note: If an option besides immediate stop is chosen for the receiver, an overflow
error is possible. The default mode (selected at reset) is immediate stop. The
FREE and SOFT bits are for emulation and test purpose only. In your application,
use '00’ as default values for these bits.

13 TCOMP Transmission complete. This bit is cleared to 0 when all data in the transmit FIFO
buffer has been transmitted (the buffer is empty) and is set to 1 when new data is
written to the transmit FIFO buffer (the buffer is not empty).

12 RFNE Receive FIFO buffer not empty bit. This bit is 1 when the receive FIFO buffer
contains data and is cleared when the buffer empties.

11-10 FT1, FTO FIFO transmit-interrupt bits. The values you write to FTO and FT1 set an interrupt

trigger condition based on the contents of the transmit FIFO buffer. When this
condition is met, a transmit interrupt (XINT) is generated and the data can be
transferred out to the FIFO buffer using the OUT instruction. Writing to bits FT1
and FTO controls transmit interrupt generation as follows:

FT1 FTO Generates XINT when...

0 0 Transmit FIFO buffer can accept one or more words;
XINT occurs repeatedly until the buffer is full.

0 1 Transmit FIFO buffer can accept two or more words;
XINT occurs repeatedly until three words are written.

1 0 Transmit FIFO buffer can accept three or four words;
XINT occurs repeatedly until two words are written.

1 1 Transmit FIFO buffer is empty (can accept 4 words);
XINT occurs repeatedly until one word is written.

Table 9—2. SSPCR — I/O-Space Address FFF1h Bit Descriptions (Continued)

Bit
No. Name

Function

9-8 FR1, FRO

7 OVF
6 INO

5 XRST
4 RRST
3 TXM

FIFO receive-interrupt bits. The values you write to FRO and FR1 set an interrupt
trigger condition based on the contents of the receive FIFO buffer. When this
condition is met, a receive interrupt (RINT) is generated and the data can be
transferred in from the FIFO buffer using the IN instruction. Writing to bits FR1
and FRO controls receive interrupt generation as follows:

FR1 FRO Generate RINT when...

0 0 Receive FIFO buffer is not empty.

0 1 Receive FIFO buffer holds at least two words.
1 0 Receive FIFO buffer holds at least three words.
1 1 Receive FIFO buffer is full (holds four words).

Overflow bit. This bit is set whenever the receive FIFO buffer is full and another
word is received in the RSR. The contents of the FIFO buffer will not be
overwritten by this new word. OVF is cleared when the FIFO buffer is read.

Input bit. This bit allows the CLKR pin to be used as a bit input. INO reflects the
current logic level on the CLKR pin. INO can be tested by using a BIT or BITT
instruction on the SSPCR. If the serial port is not used, INO can be used as a
general-purpose bit input.

Transmit reset bit. This bit resets the transmitter FIFO of the serial interface. Set
XRST to 0 to put the transmitter FIFO in reset. The FIFO will point to the start of
the 4-deep FIFO and treat the FIFO as empty. Set XRST to 1 to bring the
transmitter out of reset.

Receive reset bit. This bit resets the receiver FIFO of the serial interface. Set
RRST to 0 to put the receiver FIFO in reset. The FIFO will point to the start of the
4-deep FIFO and treat the FIFO as empty. Set RRST to 1 to bring the receiver out
of reset.

Transmit mode. This bit determines the source device for the frame synchroniza-
tion (frame sync) pulse for transmissions. It configures the transmit frame sync pin
(FSX) as an output or as in input. Note that the receive frame sync pin (FSR) is
always configured as an input.

0 An external frame sync source is selected. FSX is configured
as an input and accepts an external frame sync signal. The
transmitter idles until a frame sync pulse is supplied on the FSX

pin.

1 The internal frame sync source is selected. The FSX pin is
configured as an output and sends a frame sync pulse at the
beginning of every transmission. In this mode, frame sync
pulses are generated internally when data is transferred from
the SDTR to the XSR to initiate data transfers. The internally
generated framing signal is synchronous with respect to CLKX.

9-10

Table 9—2. SSPCR — I/O-Space Address FFF1h Bit Descriptions (Continued)

Bit
No. Name Function
2 MCM Clock mode. This bit determines the source device for the clock for a serial port
transfer. It configures the clock transmit pin (CLKX) as an output or as an input.

Note that the clock receive pin (CLKR) is always configured as an input.

0 An external clock source is selected. The CLKX pin is
configured as an input that accepts an external clock signal.

1 The internal clock source is selected. The CLKX pin is
configured as an output driven by an internal clock source with
a frequency equal to 1/2 that of CLKOUTL1. Note that if
MCM =1 and DLB = 1, CLKR is also supplied by the internal
source.

1 FSM Frame synchronization mode. The FSM bit specifies whether frame
synchronization pulses are required between consecutive word transfers.

0 Continuous mode is selected. In continuous mode, one frame
sync pulse (FSX/FSR) initiates the transmission/reception of
multiple words.

1 Burst mode is selected. A frame sync pulse (FSX/FSR) is
required for the transmission/reception of each word.

0 DLB Digital loopback mode. The DLB bit can be used to put the serial port in digital

loopback mode.

0

Digital loopback mode is disabled. The DR, FSR, and CLKR
signals are connected to their respective device pins.

Digital loopback mode is enabled. DR and FSR become
internally connected to DX and FSX, respectively. The FSX and
DX signals appear on the device pins, but FSR and DR do not.

TXM must be set to 1 for proper operation in digital loopback
mode.

CLKX drives CLKR if you also set MCM = 1. If DLB = 1 and
MCM = 0, CLKR is taken from the CLKR pin of the device. This
configuration allows CLKX and CLKR to be tied together
externally and supplied by a common external clock source.

9-11

9.3.1 Selecting a Mode of Operation (Bit 1 of the SSPCR)

Different applications require different modes of operation for the serial port.
The synchronous serial port supports two basic modes of operation:

a

Continuous mode (FSM=0). The continuous mode of operation requires
only an initial frame sync pulse, as long as a write to SDTR (for
transmission) or aread from SDTR (for reception) is executed during each
transmission/reception. Use continuous mode for transmitting a
continuous stream of information.

Burst mode (FSM =1). Inburst mode operation, a frame sync is required
for every transfer, and there are periods of serial port inactivity between
packet transmits. Use this mode for transmitting short packets of
information.

9.3.2 Selecting Transmit Clock Source and Transmit Frame Sync Source
(Bits 2 and 3 of the SSPCR)

9-12

The transmit clock is used to set the transmission rate of the serial port.
Transmissions can be clocked by the internal clock source or by an external
source:

a

To use the internal clock source, set the MCM bit in the SSPCR to 1. This
causes the serial port to take CLKX from the internal source. The internal
clock rate is (CLKOUTL1 rate)/2.

To use an external clock source:

1) Connect the external clock to the CLKX pin of the transmitter and to
the CLKR pin of the receiver.

2) Setthe MCM bitto 0inthe SSPCRto cause the serial portto get CLKX
from the CLKX pin.

A transmit frame sync pulse marks the start of a data transmission. The
synchronous serial port can transmit using the internal frame sync source or
using an external source:

a
a

To use internal frame sync pulses, set the TXM bit in the SSPCR to 1.

To use external frame sync pulses:

1) Connectthe frame sync source to the FSX pin of the transmitter and to
the FSR pin of the receiver.

2) Setthe TXM bit in the SSPCR to 0 to enable external frame syncs.

The source configuration options are summarized in Table 9-3.

Table 9-3. Selecting Transmit Clock and Frame Sync Sources

MCM TXM CLKX source FSX source
0 0 External External
0 1 External Internal
1 0 Internal External
1 1 Internal Internal

9.3.3 Resetting the Synchronous Serial Port (Bits 4 and 5 of the SSPCR)

Reset the synchronous serial port by setting XRST =0 and RRST =0 and then
setting XRST =1 and RRST = 1. These bits can be set individually, allowing
you to reset only the transmitter or only the receiver. When a zero is written to
one of these bits, activity in the corresponding section of the serial port stops.

9.3.4 Using Transmit and Receive Interrupts (Bits 8—11 of the SSPCR)

The synchronous serial port has two interrupts for managing reads and writes
to the FIFO buffers. The processor can determine when the FIFO buffers need
servicing in two ways:

[0 By polling the SSPCR register (RFNE and TCOMP bhits)
[By setting up XINT and/or RINT interrupts

To determine when the FIFO buffers need servicing by polling, disable the
interrupts by masking them in the interrupt mask register (IMR).

If you want to use interrupts to manage your serial transfer, then perform three
steps:

1) Create interrupt service routines for XINTs and RINTs and include a
branch to each service routine at the appropriate interrupt vector address:

[The RINT vector is fetched from address 0008h.
[The XINT vector is fetched from address 000Ah.

2) Select when you want interrupts to occur and set the FRO, FR1, FTO, and
FT1 bits accordingly. You can set the FIFO buffers to generate interrupts
when they are empty, when they have 1 or 2 words, when they have 3 or
4 words, or when they are full. Table 5-8 shows what values to set in the
FRO, FR1, FTO, and FT1 bits for each condition.

9-13

3) Enable the interrupts by unmasking them in the interrupt mask register
(IMR).

For more information about interrupts, see section 5.6, Interrupts, p. 5-15.

Note:

To avoid a double interrupt from the SSP, clear the IFR bit (XINT or RINT)
in the corresponding interrupt service routine, just before returning from the
routine.

9-14

9.4 Managing the Contents of the FIFO Buffers

The SDTR is a read/write register (at I/O address FFFOh) that is used to send
data to the transmit FIFO buffer and to extract data from the receive FIFO
buffer.

A word is written to the SDTR by the OUT instruction. When the transmit FIFO
buffer is full, additional writes to the SDTR are ignored. Therefore, your
program should not write a word for transmission until at least one space is
available in the transmit FIFO buffer. You can set up a transmit interrupt (XINT)
based on the contents of the buffer (using the FT1 and FTO bits of the SSPCR).
If your program writes words to the buffer only when the buffer is empty, you
can use the transmission complete (TCOMP) bit; when the buffer is empty,
TCOMP = 0.

When the receive FIFO buffer holds data, you can read the received data from
the FIFO buffer through the SDTR (using the IN instruction). You can check
the state of the receive buffer by reading the receive FIFO buffer not empty
(RFENE) bitin the SSPCR, or you can set up a receive interrupt (RINT) based
on the state of the buffer (using the FR1 and FRO bits of the SSPCR).

9-15

9.5 Transmitter Operation

Transmitter operation is different in continuous and burst modes. Other
differences also depend on whether an internal or an external frame sync is
used.

9.5.1 Burst Mode Transmission With Internal Frame Sync (FSM =1, TXM = 1)

9-16

Use burst mode transmission with internal frame sync to transfer short packets
at rates lower than maximum packet frequency while using an internal frame
sync generator. Place the transmitter in burst mode with internal frame sync
by setting the FSM bit to 1 and the TXM bit to 1.

This mode of operation offers several features:

(O A one-clock-cycle frame-sync pulse is generated internally at the
beginning of each transmission.

(1 Continuous transmission is possible if SDTR is updated in the XINT
interrupt service routine.

[J Transmission can be initiated by an external event (for example, an
external interrupt) or by a receive interrupt (RINT).

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the
clock signal and received by the 'C20x on the next falling edge of the clock
signal.

Burst mode transmission with internal frame sync requires the following order
of events (see Figure 9—4):

1) Initiate the transfer by writing to SDTR.

2) A frame sync pulse is generated on the next rising edge of CLKX. The
frame sync pulse remains high for one clock cycle.

3) Onthe nextrising edge of CLKX after FSX goes high, XSR is loaded with
the value at the bottom of the FIFO buffer, and the frame sync pulse goes
low. Additionally, the first data bit (MSB first) is driven on the DX pin. If the
FIFO buffer becomes empty during this operation, it generates XINT to re-
guest more data.

4) Therestofthe bits are then shifted out. Each new bit is transmitted at each
consecutive rising edge of CLKX.

5) If the FIFO buffer still holds a word or words to be transmitted, another
frame sync pulse is generated in parallel to the driving of the LSB on the
DX pin, and transmission continues at step 3. If the FIFO is empty,
transmission is complete.

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the
new word will be lost; the FIFO buffer will not accept any more than four words.

The burst mode can be discontinued (changed to continuous mode) only by
a serial-port or device reset. Changing the FSM bit during transmit or halt will
not necessarily cause a switch to continuous mode.

Figure 9—4. Burst Mode Transmission With Internal Frame Sync
and Multiple Words in the Buffer

XSR loaded XSR loaded
from buffer from buffer

9.5.2 Burst Mode Transmission With External Frame Sync (FSM = 1, TXM = 0)

Use burst mode transmission with external frame sync to transfer short
packets at rates lower than maximum packet frequency while using an
external frame sync generator. Place the transmitter in burst mode with
external frame sync by setting the FSM bit to 1 and the TXM bit to 0.

This mode of operation offers several features:
1 A frame sync pulse initiates transmission.

[If a frame sync pulse occurs after the initial one, then transmission
restarts.

[J Transmission can be initiated by an external event (for example, an
external interrupt) or by a serial port receive interrupt (RINT).

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the
clock signal and received by the 'C20x on the next falling edge of the clock
signal.

Burst mode transmission with external frame sync involves the following order
of events (see Figure 9-5):

9-17

A frame sync pulse initiates the transmission. The pulse is sampled on the
falling edge of CLKX. After the falling edge of CLKX, the contents of the
first entry in the FIFO buffer are transferred to the XSR. If the FIFO buffer
becomes empty during this operation, it generates a XINT to request more
data.

On the next rising edge of CLKX after FSX goes high, DX is driven with
the first bit (MSB) of the word to be transmitted.

The frame sync goes low (and remains low during word transmission).
Once FSX goes low, the rest of the bits are shifted out.

When all of the bits in the word are transferred, the port waits for a new
frame sync pulse.

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the
new word will be lost; the FIFO buffer will not accept any more than four words.

If a frame sync pulse occurs during transmission, transmission is restarted. If
another value has been written to the SDTR, a new word is sent; otherwise,
the last word in the XSR is sent.

The burst mode can be discontinued (changed to continuous mode) only by
a serial-port or device reset. Changing the FSM bit during transmit or halt will
not necessarily cause a switch to continuous mode.

Figure 9-5. Burst Mode Transmission With External Frame Sync

CLKX

9-18

DX —"—;—K AISX A14X A13X AIZX Allx A10 X: * A0 a 55]L B15

—>

XSR loaded
from buffer

—>

XSR loaded
from buffer

9.5.3 Continuous Mode Transmission With Internal Frame Sync (FSM =0, TXM = 1)

Use continuous mode transmission with internal frame sync to transfer long
packets at maximum packet frequency while using an internal frame sync
generator. Place the transmitter in continuous mode with internal frame sync
by setting the FSM bit to 0 and the TXM bit to 1.

In continuous mode, frame sync pulses are not necessary after the initial pulse
for consecutive packet transfers. A frame sync is generated only for the first
transmission. As long as the FIFO buffer has new values to transmit, the mode
continues. Transmission halts when the buffer empties. If SDTR is written to
after the halt, the device starts a new continuous mode transmission.

This mode of operation offers several features:
[A write to the SDTR begins the transmission.

[A one-clock-cycle frame-sync pulse is generated internally at the
beginning of the transmission.

[As long as data is maintained in the transmit FIFO buffer, the mode
continues.

[Failure to update the FIFO buffer causes the process to end.

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the
clock signal and received by the 'C20x on the next falling edge of the clock
signal.

As illustrated by Figure 9-6, in this mode, the port operates as follows:
1) The transfer is initiated by a write to the SDTR.

2) The write to the SDTR causes a frame sync pulse to be generated on the
nextrising edge of CLKX. The frame sync pulse remains high for one clock
cycle.

3) Onthe nextrising edge of CLKX after FSX goes high, the XSR is loaded
with the earliest-written value from the transmit FIFO buffer, and the frame
sync pulse goes low. Additionally, the first data bit (MSB first) is driven on
the DX pin. If the FIFO buffer becomes empty during this operation, it
generates an XINT to request more data.

4) The rest of the bits are then shifted out. Each new bit is transmitted at the
rising edge of CLKX.

5) Once the entire word in the XSR is shifted out, the next word is loaded in
and the first bit of the word is placed on the DX pin. Then, the process
repeats beginning with step four. If a new word is not in the transmit FIFO
buffer, the process ends.

9-19

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the
new word will be lost; the FIFO buffer will not accept any more than four words.

Continuous mode can be discontinued (changed to burst mode) only by a
serial-port mode change or device reset. Changing the FSM bit during transmit
or halt will not necessarily cause a switch to burst mode.

Figure 9—6. Continuous Mode Transmission With Internal Frame Sync

e | b— 1
—

XSR loaded XSR loaded
from buffer from buffer

9.5.4 Continuous Mode Transmission with External Frame Sync (FSM=0, TXM=0)

9-20

Use continuous mode transmission with external frame sync to transfer long
packets at maximum packet frequency while using an external frame sync
generator. Place the transmitter in continuous mode with external frame sync
by setting the FSM bit to 0 and the TXM bit to 0.

In continuous mode, frame sync pulses are not necessary after the initial pulse
for consecutive packet transfers. A frame sync is generated only for the first
transmission. As long as the FIFO buffer has new values to transmit, the mode
continues. Transmission halts when the buffer empties. If SDTR is written to
after the halt, the device starts a new continuous mode transmission.

This mode of operation offers several features:

[Only one frame sync is necessary for the transmission of consecutive
packets.

(1 If the FIFO buffer is not empty, the mode continues. If the FIFO buffer is
empty, the process ends.

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the

clock signal and received by the 'C20x on the next falling edge of the clock
signal.

Continuous mode transmission with external frame sync requires the following
order of events (see Figure 9-7):

1)

2)

3)
4)

5)

A frame sync pulse initiates the transmission. The pulse is sampled on the
falling edge of CLKX. After the falling edge of CLKX, the contents of the
current word in the transmit FIFO buffer are transferred to the XSR. If the
FIFO buffer becomes empty during this operation, it generates an XINT
to request more data.

On the next rising edge of CLKX after FSX goes high, DX is driven with
the first bit (MSB) of the word to be transmitted.

The frame sync goes low (and remains low during word transmission).
Once FSX goes low, the rest of the bits are shifted out.

Once the entire word in the XSR is shifted out, the next word is loaded in
and the first bit of the word is placed on the DX pin. Then, the process
repeats beginning with step four. If a new word is not in the transmit FIFO
buffer, the process ends.

Ifthe SDTR is loaded with a new word while the transmit FIFO buffer is full, the
new word will be lost; the FIFO buffer will not accept any more than four words.

The continuous mode can be discontinued (changed to burst mode) only by
a serial-port or device reset. Changing the FSM bit during transmit or halt will
not necessarily cause a switch to burst mode.

Figure 9—7. Continuous Mode Transmission With External Frame Sync

| \ | MSB | | | \ \ | LsSB | \ \ |
| | | | | | \ | | \ |
| Van] W_/_L\ 1
T \ \ \ \ \ \ ' T \ \ \ \

XSR loaded XSR loaded

from buffer from buffer

9-21

9.6 Receiver Operation

Receiver operation is different in continuous and burst modes. The receiver
does not generate frame sync pulses; it always takes the frame sync pulse as
an input.

In selecting the proper receive mode, note that the mode for the receiver must
match the mode for the transmitter.

If all four words of the receive FIFO buffer have been filled, the buffer will not
accept additional words. If a fifth write is attempted, the overflow (OVF) bit of
the SSP control register (SSPCR) is setto 1.

9.6.1 Burst Mode Reception

9-22

Use burst mode receive to transfer short packets at rates lower than maximum
packet frequency.

This mode of operation offers these features:
(1 The data packet is marked by the frame sync pulse on FSR.
(1 Reception of data can be maintained continuously.

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the
clock signal and received by the 'C20x on the next falling edge of the clock
signal.

The following events occur during a burst mode receive operation (see
Figure 9-8):

1) A frame sync pulse initiates the receive operation. This event is sampled
on the falling edge of CLKR.

2) Onthe next falling edge of CLKR after the falling edge of FSR, the first bit
(MSB) is shifted into the receive shift register (RSR).

3) The rest of the bits in the word are then shifted into RSR one at a time at
each consecutive falling edge of CLKR.

4) After all bits have been received, if the receive FIFO buffer is not full, the
contents of the RSR are copied into the receive FIFO buffer. If the FIFO
buffer becomes full during this operation, an interrupt (RINT) is sent to the
CPU, and the overflow bit (OVF) of the SSPCR is set.

5) The receive operation is started again after the next frame sync pulse.
However, the received word can be loaded into the FIFO buffer only if the
buffer is empty; otherwise, the word is lost.

If a frame sync pulse occurs during reception, reception is restarted, and the
bits that were shifted into the RSR before the pulse are lost.

Figure 9—-8. Burst Mode Reception

Word loaded
to buffer
from RSR

9.6.2 Continuous Mode Reception

Use continuous mode receive to transfer long packets at maximum packet
frequency.

This mode of operation offers several features:

1 Only the first frame sync signal is necessary to start the reception of
consecutive words.

[As long as the receive FIFO buffer is not allowed to overflow, the mode
continues. Overflow is indicated by the OVF bit in the SSPCR.

[Reception can be maintained continuously.

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the
clock signal and received by the 'C20x on the next falling edge of the clock
signal.

As shown in Figure 9-9, the following events occur during a continuous mode
receive operation:

1) Thereceive operation begins when a frame sync signal is detected on the
falling edge of CLKR.

2) Onthe first falling edge of CLKR after the frame sync signal goes low, the
first bit (MSB) is shifted into the RSR.

9-23

3) The remaining bits in the word are then shifted into the RSR, one by one
at the falling edge of each consecutive clock cycle.

4) Atfter all bits have been received, if the FIFO buffer is not full, the contents
of the RSR are copied to the receive FIFO buffer. If the receive FIFO buffer
does become full, an interrupt (RINT) is sent to the CPU, and if overflow
has occurred, the overflow (OVF) bit of the SSPCR s set.

5) The process then repeats itself, except that there are no additional frame
sync pulses.

If a frame sync pulse occurs during reception, then reception is restarted and
the bits in the current word that were shifted into the RSR before the pulse are
lost.

If the FIFO buffer becomes full, no new words will be received into the buffer
until at least one word has been read from the buffer (through the SDTR). Once
the continuous receptionis started, the port will always be reading in the values
on the DR pin. To stop continuous mode reception, either change mode bits
to burst mode or initiate system reset.

Figure 9-9. Continuous Mode Reception
\ | \ | \ | \ \ \ | \ \ \ \

DR —0—(A15 X A14X A13X A12X
B s == e
RINT | \ | \ | \ | I \ \ | \
\ \ \ T \ \ \ \ \ o \ \
Word loaded Word loaded
to buffer to buffer
from RSR from RSR

9-24

9.7 Troubleshooting

9.7.1 Test Bits

The synchronous serial port uses three bits for troubleshooting and testing. In
addition to using these three bits, you must be able to identify special error
conditions that may occur in actual transfers. Error conditions result from an
unprogrammed event occurring to the serial port. These conditions are
operational errors such as overflow, underflow, or a frame sync pulse during
a data transfer.

This section describes how the serial port handles these errors and the state
it acquires during these error conditions. The types of errors differ slightly in
burst and continuous modes.

Three bits in the SSPCR help you test the synchronous serial port. The digital
loopback mode bit (DLB) can be used to internally connect the receive data
and frame sync signals to the transmit data and frame sync signals on the
same device. The FREE and SOFT bits allow emulation modes that stop the
port either immediately or after the transmission of the current word.
Figure 9-10 shows the bits that are used for troubleshooting. The list items
following the figure describe the functions of these bits.

Figure 9—-10. Test Bits in the SSPCR

15

14

FREE

SOFT

DLB

0 FREE and SOFT are special emulation bits that allow you to determine
the state of the serial port clock when a breakpoint is encountered in the
high-level language debugger. If the FREE bit is set to 1, then, upon a
software breakpoint, the clock continues to run (that is, free runs) and data
is shifted out. In this case, SOFT is a don't care. But if FREE is 0, then
SOFT takes effect. If SOFT = 0, then the clock immediately stops, thus
aborting any transmission. If the SOFT bitis 1, the particular transmission
continues until completion of the word, and then the clock halts. Table 9-4
summarizes the available run and emulation modes.

9-25

Table 9—4. Run and Emulation Modes

FREE SOFT Run/Emulation Mode

0 0 Immediate stop

0 1 Stop after completion
of word

1 0 Free run

1 1 Free run

Note:

If an option besides immediate stop is chosen for the receiver, an overflow
error is possible. The default mode (selected at reset) is immediate stop.

[DLB enables or disables digital loopback mode:

B To enable the digital loopback mode, set DLB = 1.
B To disable the digital loopback mode, set DLB = 0.

When you enable digital loopback mode, the transmit data (DX) and frame
sync (FSX) signals become internally connected to the receive data (DR)
and frame sync (FSR) signals. After writing code for both the transmitter
and the receiver, you can then test whether the code is working properly
and also check that the serial portis functioning. In addition, if both the DLB
and MCM bits are 1, the transmit clock signal is also connected internally
to the receive clock signal.

The serial port operates normally when you disable digital loopback mode;
that is, no transmit and receive signals are internally connected together.

Note:
To configure the serial port, a total of two writes to the SSPCR are necessary:

1) First, write your choices to the configuration bits and place the port in
reset by writing zeros to XRST and RRST.

2) Second, write your choices to the configuration bits and take the port out
of reset by writing ones to the XRST and RRST bits.

9-26

9.7.2 Burst Mode Error Conditions
The following are descriptions of errors that can occur in burst mode:

a

Underflow. Underflow is caused if an external FSX occurs, and there are
no new words in the transmit FIFO buffer. Upon receiving the FSX
(generally, from an external clock source), transmitter resends the
previous word; that is, the value in XSR will be transmitted again.

Overflow. This error occurs when the device has not read incoming data
and more data is being sent (indicated by a frame sync pulse on FSR). The
OVF bit of the SSPCR is set to indicate overflow. The processor halts
updates to the FIFO buffer until the SDTR is read. Thus, any further data
sent is lost.

Frame sync pulse during a reception. If the frame sync occurs during a
reception, the present reception is aborted and a new one begins. The
data that was being loaded into the RSR is lost, but the data in the FIFO
buffer is not. No RSR-to-FIFO buffer copy occurs until all 16 bits in a word
have been received.

Frame sync pulse during a transmission. Another error results when a
frame sync occurs while atransmissionisin process. If the datain the XSR
is being driven on the DX pin when the frame sync pulse occurs, then the
present transmission is aborted. Then, whatever data is next in the FIFO
buffer at the time of the frame sync pulse is transferred to XSR for
transmission.

9.7.3 Continuous Mode Error Conditions

The following are descriptions of continuous mode errors and how the port re-
sponds to them:

a

Underflow. Underflow occurs when the XSR is ready to accept new data
but there are no new words in the transmit FIFO buffer. Underflow errors
are fatal to a transmission; it causes transmission to halt. For as long as
the transmit FIFO buffer is empty, frame sync pulses are ignored. If new
data is then written to the SDTR, another frame sync pulse is required (or
generated, if you are using internal frame syncs) to restart continuous
mode transmission.

Your software can do the following to determine how many words are leftin
the transmit FIFO buffer:

B Test for the condition TCOMP = 0. When the transmit FIFO buffer
empties, the TCOMP bit of the SSPCR is set to 0.

B Causeaninterrupt (XINT) to occur based on the contents of the buffer.
You can use bits FT1 and FTO in the SSPCR to set the interrupt trigger
conditions shown in Table 5-8 on page 5-26.

9-27

9-28

[0 Overflow. Overflow occurs when the RSR has new data to pass to the

receive FIFO buffer but the FIFO buffer is full. Overflow errors are fatal to
a reception. For as long as the FIFO buffer is full, any incoming words will
be lost. To restart reception, make space in the buffer by reading from it
(through the SDTR).

Frame sync pulse during a transmission. After the initial frame sync, no
others should occur during transmission. If a frame sync pulse occurs
during a transmission, the current transmission is aborted, and a new
transmit cycle begins.

Frame sync pulse during a reception. After the initial frame sync, no others
should occur during reception. If a frame sync pulse occurs during a
reception, the current packet of data is lost. On any FSR pulse, the RSR
bit counter is reset; therefore, the data that was being shifted into the RSR
from the the DR pin is lost.

9.8 Enhanced Synchronous Serial Port (ESSP)

The enhanced synchronous serial port (ESSP) is a feature available in
TMS320F206 and TMS320C206/LC206 series of digital signal processors.
The ESSP is an enhancement of the synchronous serial port (SSP), which is
standard in the C20x family. In addition to providing a glueless interface for
multiple serial devices, the ESSP also features a pseudo serial peripheral
interface (SPI) mode of operation. The maximum transmission rate for both
transmit and receive operations are the CPU clock divided by two, i.e.
CLKOUT1(frequency)/2. Therefore, the maximum rate is 10Mbit/s at 50ns,
14.28Mbit/s at 35ns, and 20Mbit/s at 25ns. Refer to the Tl web site at
www.ti.com and follow the DSP path to 'C20x DSPto find software source on
ESSP test programs.

9.8.1 ESSP Features
[Full-duplex, double-buffered synchronous serial port

[J Highly flexible operation:
B Burst and continuous modes
B Supports 8- and 16-bit word lengths

B Multichannel mode with glueless interface to as many as four
voice-band or telephony codecs for telecommunications applications
such as line cards and feature phones.

B Pseudo serial peripheral interface (SPI) mode

1 Independent four-level deep FIFO for both the receive and transmit
sections

B Programmable FIFO level interrupts to reduce software overhead
B FIFO level status bits

[J Various clocking options to ease interfacing in many applications

B Internal shift clock, CLKX, derived from an independent 8-bit
prescaler
B Internal frame sync, FSX, derived from an independent 8-bit prescaler

B Polarity control on shift clock, CLKX, and frame sync pulse, FSX

[J High impedance control on data transmit pin DX for TDM applications

[

Prescalers are configurable as general-purpose 16-bit counters.

[Fast transfer rate of 20 Mbits/s at 25ns cycle time

9-29

9.9 ESSP Pins

The enhanced synchronous serial port has seven pins for external interface.
Table 9-5 explains the functions of these pins. In this table, SSP mode
indicates that only one serial device is connected to the DSP chip (for example,
the ESSP mode has not been activated. ESSP mode indicates that the ESSP
features have been activated (by programming the ESSP registers) and that
one or more serial devices have been connected to the DSP chip.

Table 9-5. TMS320C20x Enhanced Synchronous Serial Port Interface Signals

100 'C20x
Pin Pin I/0/zT Description

87 CLKX I/O Transmit clock (input or output). Clock signal for clocking data from the serial
port transmit shift register (XSR) to the data transmit (DX) pin. CLKX is an
input if the MCM bit in the SSPCR is set to 0 (external CLKX). It can also be
generated internally if the MCM bit is set to 1. Internal CLKX rate is
determined by the input clock to the CLKX prescaler (CLXCT) and is
governed by the equation:

CLKX rate = CLKOUT1 / (2*(CLXCT+1))

The generated CLKX can also feed a frame sync prescaler (FSXCT) to
generate internal frame syncs synchronous to CLKX at variable rates. The
prescalers for CLKX and FSX are defined in the I/O register SSPCT at
FFF3h in I/O space. The input to the CLKX prescaler is CLKOUTL1.

84 CLKR/ 1/0 Receive clock (input). In the SSP mode, this pin is the external clock signal
FSX2 for clocking data from the DR (data receive) pin into the RSR (receive shift
register) and must be present during serial port data receive process. If the
serial port is not being used, this pin can be sampled as an input via the INO
bit of the SSPCR.

Frame synchronization pulse 2 (output). In the ESSP mode, if the
multichannel register is configured for two channels, this pin transmits the
frame sync for the second serial device connected to the serial port.

85 FSR/FSX3 1/0 Frame synchronization pulse for receive (input). In the SSP mode, the falling
edge of the FSR pulse initiates the data receive process.

Frame synchronization pulse 3 (output). In the ESSP mode, if the
multichannel register is configured for three channels, this pin transmits the
frame sync for the third serial device connected to the serial port.

86 DR Serial data receive (input). Serial data is received into the receive shift
register (RSR) from DR pin.

Ti= Input, O = Output, Z = High impedance

9-30

Table 9—-5. TMS320C20x Enhanced Synchronous Serial Port Interface Signals

(Continued)
100 'C20x
Pin Pin I/0/zT Description

89 FSX/FSX1 /O Frame synchronization pulse for transmit (input or output). The falling edge of
the FSX pulse initiates the data transmit process beginning the clocking of
the XSR. Following reset, FSX is an input. This pin can be selected by
software to be an output when the TXM bit in the SSPCR is set to 1.

The frame sync can be generated internally. The frame sync rate can be
either defined by the prescaler FSXCT or by the rate at which data is written
into the transmit FIFO. The internal CLKX can also feed a frame sync
prescaler to generate internal frame sync synchronous to CLKX and at
variable rates. Internal FSX rate is determined by the input clock to the
prescaler and is governed by the equation:

FSX rate = CLKX pin clock /((2*(FSXCT+1))

The prescalers for CLKX and FSX are defined in the I/O register SSPCT at
FFF3h in I/O space.

Frame synchronization pulse 1 (output). In the ESSP mode, this pin transmits
the frame sync for the first serial device connected to the serial port. This
frame sync functions as the master frame sync, while FSX2, FSX3, FSX4
follow this pulse as slaves.

90 DX (0] Serial data transmit (output). Serial data is transmitted from the transmit shift
register (XSR) through DX pin. DX is placed in high impedance when not
transmitting.

96 I00/FSX4 110 Input/Output O (input or output). In the SSP mode, this pin is used as a
general-purpose input/output.

Frame synchronization pulse 4 (output). In the ESSP mode, if the
multi-channel register is configured for four channels, this pin transmits the
frame sync for the fourth serial device connected to the serial port.

t1=1Input, O = Output, Z = High impedance

9.9.1 Multichannel Mode

In the multichannel mode of the ESSP, up to four serial devices can be
connected gluelessly to the DSP. All the four serial devices are connected in
parallel to the DX, DR, CLKX lines. In effect, all the serial devices transmit and
receive data at the same shift clock rate. The exact instant at which each
device transmits and receives data is determined by the frame sync pulse for
the corresponding device. In the SSP mode, only one device is connected to
the DSP and the default frame sync signal FSX is used. When additional serial
devices are connected in the ESSP mode, CLKR, FSR and 100 act as the
frame syncs for the additional serial channels. The successive frame syncs
are separated by 18 shift clocks.

9-31

9.10 ESSP Registers

The enhanced synchronous serial port operates through the five registers
(SDTR, SSPCR, SSPST, SSPMC, and SSPCT) that are mapped into the 1/0
space. Before the ESSP can be used, the control and status registers need

to be programmed. The ESSP registers are listed in Table 9-6.

Table 9-6. ESSP Registers

Registers I/O Address Value at Reset Description
SSPST FFF2h 0000h SSP Status register
SSPMC FFF3h 0000h SSP Multichannel register
SSPCT-CLXCT FFFBh xx00h Shift clock prescaler (CLKX) (low byte,
bits 7-0)
SSPCT-FSXCT FFFBh 00xxh Frame sync prescaler (FSX) (high byte,

bits 15-8)

Notes: 1) x —Indicates undefined values or value based on the pin levels at reset.
2) SSPST, SSPMC and SSPCT are registers that are unique to ESSP.

9.10.1 Synchronous Serial Port Status Register (SSPST)

The SSPST register is used to configure the various ESSP options. It has
additional FIFO status bits. The prescalers for CLKX and FSX are also
configured by the SSPST.

Figure 9—11. Synchronous Serial Port Status (SSPST) Register — I/O address FFF2h

15 14 13 12 11 10 9
DRP Pin FSN FSXOX FSXST Reserved CLN CLXOX
Status
R R/W R/W WI1C/R R/W R/W

7 6 5 4 3 2 1 0
. . SGNEX BYTE
PRSEN Transmit FIFO Status Receive FIFO Status (Sign-Extend) (8/16 Bi)
R/W R R R/W R/W

Note: R =Read, W = Write, W1C/R = Write one to clear

9-32

Table 9—-7. SSPST Register — I/O address FFF2h Bit Descriptions

Bit
No. Name Function

15 DRP pin DR pin read bit. Read-only DRP bit that gives visibility to the DR pin.

14 FSN Frame sync invert bit. FSN selects the polarity for the frame sync. At reset, FSN is
0 and selects FSX to be high for one CLKX duration. The data transmit and
receive is based on the falling edge of FSX. If FSN is set to 1, the polarity of the
FSX is inverted. The FSX remains high during data transmit or receive (8/16
CLKX cycles). FSN bit controls both the FSX and FSR polarity. In the internal FSX
mode, the outgoing FSX is inverted once and the incoming FSR is inverted once.
Thus, if FSX and FSR pins are externally connected, the polarity of the FSX/FSR
are the same with respect to the SSP core.

13 FSXOX Internal FSX selection bit. FSXOX selects the type of internal frame sync that is
issued from the FSX pin. If set to 1, the FSX is from the frame sync prescaler
FSXCT. If reset to 0, the internal FSX is at the rate at which data is written into the
transmit FIFO.

12 FSXST Prescaler FSXST status bit. FSXST is set to 1 every time the FSXCT prescaler
Status counter reaches zero. FSXST can be read and cleared by writing a 1. This bit is
also a counter-status bit in the 16-bit counter mode. It is set to 1 whenever the
16-bit counter reaches zero. FSXST initiates an interrupt if GPI is enabled in the
SSPMC register.

11 Reserved Reserved

10 CLN Shift clock CLKX invert bit. CLN selects the polarity for the shift clock CLKX. If
reset to 0, CLKX is of normal polarity. If set to 1, CLKX is inverted for internal and
external CLKX. CLN bit controls both the CLKX and CLKR polarity. In the internal
CLKX mode, the outgoing CLKX is inverted once, and the incoming CLKR signal
is inverted once. Thus, if CLKX and CLKR pins are externally connected, the
polarity of the CLKX/CLKR are the same with respect to the SSP core.

9 CLXOX Input clock source CLXOX bit. In the general purpose counter mode (GPC bit =1),
CLXOX selects the input clock source to the 16-bit counter (SSPCT). If CLXOX =
1, the input clock is CLKX pin clock (either CLKOUT1/2 or external CLKX
depending on the MCM bit). If CLXOX bit is 0, the input clock is CLKOUTL. In all
other modes, CLXOX has no effect (don’t care x).

8 PRSEN Prescale clock enable. When set to 1, PRSEN enables the input clock source to
the CLKX prescaler CLXCT and extends the scaled CLKX to the ESSP. If reset to
0, the prescaler does not count down as there is no input clock to the counter. The
input to CLXCT is CLKOUT1. PRSEN bit functions as a master to all ESSP
clocks/modes. All ESSP bits should be preloaded before PRSEN is enabled.

7-5 Transmit Status of the receive and transmit FIFOs. Define the status of the receive and
FIFO Status transmit FIFOs. Each set of 3 bits is capable of indicating five different states that
reflect upon the contents of the FIFOs.

9-33

Table 9—7. SSPST Register — I/O address FFF2h Bit Descriptions (Continued)

Bit
No. Name Function

4-2 Receive FIFO Status of the receive and transmit FIFOs. Define the status of the receive and
Status transmit FIFOs. Each set of 3 bits is capable of indicating five different states that
reflect upon the contents of the FIFOs.

1 SGNEX Sign-extend. When the selected data word size is 8 bits, SGNEX, when set to 1,
(Sign-Extend) sign extends the most significant 8 bits of the 16-bit word. If the bit is reset to O,
the most significant 8 bits are filled with zeros.

0 BYTE Data word size. Defines the data word length as 16 bits or 8 bits. The default
(8/16 Bit) value at reset is 0 and selects the 16-bit data word size. The 8-bit data can be
received or transmitted by setting bit O to 1.

9.10.2 Synchronous Serial Port Multichannel Register (SSPMC)

The SSPMC register is used to select multichannel and 16-bit counter features
in the ESSP. Figure 9-12 explains the bit fields used to control the
multichannel option on the ESSP.

Figure 9-12. Synchronous Serial Port Multichannel (SSPMC) Register — FFF3h

15 14 13 12 1 10 9 8 7
| SSPRST ‘ Reserved |
RIS
6 5 4 3 2 1 0
[sp | cHl CHO MMODE GPI CHLT cpCc |
RIW RIW RIW RIW RIW RIW RIW

Note: R =Read, W = Write

9-34

Table 9-8. SSPMC Register — FFF3h Bit Descriptions

Bit
No.

Name

Function

15

14-7

SSPRST

Reserved

SPI

CH1,
CHO

SSPRST resets the current operation of SSP. At reset, SSPRST is 0 and enables
normal SSP operation. If set to 1, the SSP resets as follows:

a. Resets transmit FIFO pointers and transmit shift register
b. Resets receive FIFO pointers and receive shift register

c. Prescaler logic reloads the prescaler counters if GPC=0. If GPC=1, there is no
reload to prescalers. Resets all logic, except counter logic.

d. SSP control register bits (SSPCR) are not affected. However, all status bits are
reset.

Reserved

SPI mode bit. SPI, when 1, enables an 8/16-bit pseudo serial peripheral interface (SPI)
mode. This mode is available only in burst mode with internal shift clock CLKX. If bit 6
is reset to 0, the SPI mode is disabled. In this mode, CLKX is issued only during the
time that data bits are transmitted or received. Data is transmitted/received whenever
transmit FIFO has data along with an FSX signal. Prescaled FSX cannot be used in
this mode. CLKR and FSR are internally connected to CLKX and FSX, respectively.
CLKX pin is normally low in SPI mode. If the CLN bit is enabled in the SSPST register,
then the CLKX pin is high between data transmits.

Channel select bit. CHO, CH1 select the number of channels that are available in the
multichannel mode. CHO, CH1 have no effect if the MMODE bit is 0.

00 Selects one channel with one frame sync pulse FSX1 on FSX pin. The FSX rate
is defined only by the FSX prescaler, FSXCT.

01 Selects two channels with the second frame sync pulse FSX2 on the CLKR pin
(pin 84). Frame sync FSX2 is issued on the second CLKX cycle from the LSB of
the first channel.

10 Selects three channels with the third frame sync pulse FSX3 on the FSR pin (pin
85). Frame sync FSX3 is issued on the second CLKX cycle from the LSB of the
second channel.

11 Selects all four channels with the fourth frame sync pulse FSX4 on the 100 pin
(pin 96). Frame sync FSX4 is issued on the second CLKX cycle from the LSB of
the third channel. In this mode, the 100 pin is not available for I1/O operation.

9-35

Table 9—8. SSPMC Register — FFF3h Bit Descriptions (Continued)

Bit
No. Name Function

3 MMODE Multichannel mode bit. MMODE, if reset to the default value 0, deselects the
multichannel option on the serial port. If set to 1, MMODE selects the multichannel
mode and uses the prescaled frame sync FSX only. In this mode, one or more frame
sync pulses are generated on different pins for glueless interface to multiple codecs.
The FSX and CLKX signals are internally connected to FSR and CLKR pins
respectively. CLKR and FSR pins are available as outputs for generating multichannel
frame sync FSX2, FSX3. The fourth channel frame sync (FSX4) is generated on 100
pin (pin96). In this mode, 100 is not available as the general purpose 1/O pin.

2 GPI General purpose counter interrupt bit. GPI configures the XINT interrupt of the SSP as
the 16-bit counter interrupt. Whenever the 16-bit counter reaches 0, an XINT interrupt

is generated instead of a serial port transmit interrupt.

1 CHLT 16-hit counter halt bit. CHLT can be used to stop the 16-bit counter when the
prescalers are used as a counter. The default value is 0 and indicates that the counter

is counting. A value of 1 stops the counter.

0 GPC General purpose counter bit. GPC configures the two prescalers CLXCT, FSXCT as a
16-bit counter. When GPC is 1, CLXCT and FSXCT are together used as a 16-bit
counter. The input to the counter is either internal CLKOUT1 or CLKX pin clock as
defined by CLXOX in SSPST register. In the counter mode the prescalers are not
available for ESSP clock scaling. The GPC bit should be 0 if the prescalers are to be

used for CLKX and FSX scaling.

9.10.3 Synchronous Serial Port Count Register (SSPCT)

9-36

The shift clock CLKX and frame sync FSX can come from external or internal
sources. The SSPCR register bits define the source of these signals. The
SSPCT register holds two 8-bit prescale counters to provide user-specific shift
clock (CLKX) and frame sync clock (FSX). The CLXCT counter is an 8-bit
prescaler to divide CLKOUT1. The value of the prescaler output clock is:

CLKOUT1/(2%(CLXCT+1))

CLXCT is the prescale value defined in the SSPCT register bits 7-0. At reset,
the CLXCT register value is zero, which makes the CLKX rate equal to
(CLKOUT1)/2. This register can be written with any desired 8-bit prescale
value. The prescaler functions as a down counter, and the counter value can
be read anytime. The input clock source to the CLXCT prescaler can be
CLKOUT1 only. PRSEN (bit 8 of the SSPST register) should be setto 1, which
enables the input clock to the prescaler.

Once 8-hit prescaler values are written to the register SSPCT, PRSEN must
be enabled to start the counter counting down. The prescaler values are

loaded into the counter from the internal buffers only after PRSEN is enabled.
Enabling PRSEN should always follow any prescaler update. The prescaler
has an internal buffer register that gets updated every time SSPCT is written.
After reaching zero, the counter reloads the prescale value from the buffer and
counts down. This sequence of reload and count down repeats until PRSEN
bit in SSPST is reset to 0. If the PRSEN is reset to 0, the prescaler does not
have any input clock source to count down.

FSXCT takes either the CLKX prescaler output or the external CLKX pin clock
as its input. This helps to generate a variable frame sync pulse synchronous
to CLKX. Most applications require a FSX rate that is a multiple of the CLKX
rate. The FSX rate is defined by the equation:

CLKX pin clock/(2*(FSXCT+1))

FSXST bit (bit 12 in SSPST) is set every time FSXCT reaches zero, and can
be reset by writing a 1 to the FSXST bit. The 8-bit prescaler FSXCT for FSX
also functions in a similar way to the CLKX prescaler CLXCT.

Pay Attention to the FSXCT Value for Serial Channel Configuration

In multichannel mode, the value of FSXCT chosen (for 16-bit data)
should be such that there are at least (18 * n) SCLKs between
successive frame syncs, where n is the number of serial channels.
For example, FSXCT should be greater than or equal to 35 (23h) if
four serial channels are configured. For 8-bit data, FSXCT should
be greater than or equal to 19 (13h) for four channel configuration.
This number is valid for any CLKX and changes only with the
number of serial channels configured.

9.10.4 Programmable Internal CLKX and FSX Rates

The device clock CLKOUT1, external shift clock CLKX, and the 8-bit
prescalers can provide various CLKX/FSX rates to match several serial
interface devices. Interface devices such as CODECSs operate in slave mode
expecting external shift clock. Table 9-9 provides various shift clock and frame
sync rates that can be generated for voice band applications using the
prescalers.

9-37

Table 9-9. Typical CLKX/FSX Rates and Their Prescaler Values

Prescale Value Prescale Value

CLKOUT1 CLXCT Decimal (Hex) CLKX Rate FSXCT Decimal (Hex) FSX Rate Remarks
40.96 MHz 0 20.48 MHz 255 (FFh) 40 kHz
9 (9h) 2.048 MHz 127 (7Fh) 8 kHz VBAP/combo
codec rates
159 (9Fh) 128 kHz 3 (03h) 16 kHz
20.48 MHz 0 10.24 MHz 255 (FFh) 20 kHz
4 (4h) 2.048 MHz 127 (7Fh) 8 kHz VBAP/combo
codec rates
159 (9Fh) 64 kHz 3 (03h) 16 kHz
12.288 x 2 = 0 12.288 MHz 383 (17Fh) 16 kHz
24.576 MHz
1h 6.144 MHz 191 (BFh) 16 kHz
5h 2.048 MHz 127 (7Fh) 8 kHz VBAP/combo
codec rates
7h 1.536 MHz 95 (5Fh) 8 kHz VBAP/combo
codec rates
191 (BFh) 64 kHz 3 (03h) 8 kHz

9.10.5 Prescalers as General Purpose Counter

The two 8-bit prescalers in the SSPCT register can be used as a single 16-bit
down counter. The GPC bit in SSPMC register enables the 16-bit counter
mode. When GPCis setto 1, the prescalers are not available for scaling CLKX
and FSX. The 16-bit counter can accept either CLKOUTL1 clock or CLKX pin
clock as its input. The counter value can be read any time and can be stopped
by setting CHLT bit in the SSPMC register. The counter flags a status bit
FSXST whenever it reaches 0x0000. The counter reloads the counter value
after it reaches zero and continues to count down. The FSXST bit is cleared
by writing a one to that bit.

Figure 9-13. Synchronous Serial Port Count (SSPCT) Register — FFFBh

15

8 7 0

8-bit prescaler — FSXCT

8-bit prescaler — CLXCT

Note:

9-38

R/W R/W

R = Read, W = Write

When the prescalers are used as a 16-bit counter, they are not available for
prescaling FSX and CLKX. Two options are possible in the 16-bit counter
mode (GPC =1).

[Option 1: Internal CLKX (MCM = 1)

When CLXOX =1, input to counter is CLKX which is CLKOUT1/2, since
the prescalers are not operating.

When CLXOX = 0, input to the counter is CLKOUTL1.

[Option 2: External CLKX (MCM =0)
When CLXOX =1, input to counter is the CLKX pin.
When CLXOX = 0, input to counter is CLKOUTL1.

9-39

9.11 ESSP Register Programming Considerations

All standard SSP features can be configured by programming the ESSP
register (SSPCR) alone. This provides compatibility to the existing codes for
standard SSP in TMS320C203. However, if ESSP features such as
multichannel mode, prescaled frame sync, and shift clocks are desired, it is
necessary to initialize ESSP registers (SSPCT, SSPMC, and SSPST). It is
recommended that registers SSPCT and SSPMC are initialized first, followed
by the SSPST register. The prescalers are enabled only after the PRSEN bit
(bit 8 in SSPST) is set to 1. It is essential that the other registers be preloaded
before enabling the PRSEN bit in the SSPST register.

9.11.1 ESSP Register Initialization

While changing CLKN or FSN bits, initialize the SSPST register in two steps:
1) Load the SSPST registers bits with PRSEN bit O.
2) Provide at least one CLKX cycle delay before setting PRSEN bit.

This helps internal synchronization of all the clocks (FSX/CLKX). This also
makes the prescalers and the clock circuit respond to the stable clock
(FSX/CLKX, FSR,CLKR) edges. However, in any initialization sequence, the
prescaler clocks are stable after the first reload of the prescaler counters.

9.11.2 Prescaler Values in Multichannel Mode

9-40

Considerable attention must be paid in choosing the value of FSXCT in
multichannel mode. For 16-bit data, successive frame sync pulses occur
18 SCLKs after the previous frame sync pulse. In the multichannel mode, if all
4 channels are used, a new data word is transmitted after a period of 72 SCLKs
for a given channel. (A new frame sync can occur only after 72 SCLKs.) This
is the minimum requirement. The minimum value for FSXCT can be easily
found from the formula for calculating the FSX rate. This is done by applying
the condition that two frame syncs for a given channel must be separated by
atleast (N * 18) SCLKs, where N is the number of channels in the multi-channel
mode. This condition is applicable for 16-bit mode, where successive frame
syncs are separated by 18 SCLKs. In 8-bit mode, the frame syncs are
separated by 10 SCLKs. PRSEN must be 1 forthe FSXCT prescaler to operate
correctly.

Figure 9-14. Typical Four-Channel Codec Interface

CLKX ° o °
DX o ®
DR 1
Y'Y A 4 v A A 4 Y v
FSX »{ CODEC 1 CODEC 2 CODEC 3 CODEC 4
V' N A A
CLKR/FSX2
FSR/FSX3
I00/FSX4
'C20x DSP
Figure 9-15. Four-Channel 8-Bit CODECT Interface Timing Example
< : : : — 125pus — : >
' CH1L | ' CH2 | ' CH3 | ' CH4 X
| | | | | ' 1 xxx CLKS '
1 1 8 1 1 11 1 1 21 1 1 31 1

ckx MJuuyuernniure ooy rroruurururan

1

FSX

CLKR/FSX2

FSR

100 |
t CODEC - coder-decoder devices such as COMBO/VBAP type of telephony codecs

9-41

Figure 9—16. Four-Channel 16-Bit CODECT Interface Timing Example

xxx CLKS

clkx MUy Jruruye o Jrururururururan

71

16-bit

16-bit

16-bit

16-bit

16-bit

16-bit

DX

DR

FSX

CLKR/FSX2

FSR

100
T CODEC - coder-decoder devices such as COMBO/VBAP type of telephony codecs

9-42

10d [BLI8S SNOUOILYIUAS

Ev-6

9.11.3 ESSP Serial Port Configurations

The ESSP port can be configured for two modes of operation, burst and continuous, by setting bits in
the SSPCR, SSPMC, and SSPST registers. Table 9-10 lists the SSP and ESSP functions, by option
number, available for both modes. Note that in continuous mode, the Multichannel and SPI functions
(options 10, 11, 12) are not available. Table 9-11 shows burst mode, and Table 9-12 shows continuous
mode.

Table 9-10. Options/Functions for Burst Mode and Continuous Mode

Register Bits Register Bits
ESSP Configuration CLKX FSX ESSP Configuration CLKX FSX
FIFO- FIFO-
Option Function E | P|E | P ratet Option Function E | P|E | P ratef
1 SSP RESET - - |- = = - 9 SSP option with o I I
CLKXCT#
2 SSP optiont - % 10 Multichannel§ o o
3 SSP option with - o 11 Multichannel 8 - o
FSXCT#
4 SSP optiont e - - 12 SPI§ o e e
5 SSP optiont - - 13 Counter and SSP - - -
6 SSP option with i N 14 Counter and SSP I I
CLXCT#
7 SSP option with i i 15 Counter and SSP | »~ I I
8-bit prescalerst
8 SSP optiont i e p” 16 Counter and SSP | »~ .
Legend: E - External | - Internal P - Prescaled

T TXFIFO WRITE RATE: In this state, the frame sync is issued along with each word transmitted from the TXFIFO.
tssp Option refers to all features of the standard SSP — without the use of the ESSP register bits. These options differ based on CLKX and FSX source.
8§ Multichannel and SP!I functions (options 10, 11, 12) are not available in continuous mode.

suoneiapisuo) buiwweibold 191sibay 4SST

v-6

Table 9-11. Serial Port Configuration — Burst Mode

SSPCR

o Register SSPMC Register SSPST Register

p

t S

. S M F F C P C C F

! P c c M c s s L R B C L L s F

o F M T|R S H H (6] H G|F X X Cc X S Y L F X K X S

n S C X |S P B B D L PlS OSL O E T K S C X C X

s M M M [T I 1 0 E T C|{N X TN X N E X X T rate T rate

1 0 0 0|0 O 0 0 0 0 0|0 O O O 0 0 0 E E Not used - Not used -

2 1 0 0[O0 O X X 0 X 0|0 X 0 O X 0 01 E E Not used E CLKX Not used E FSX

3 1 0 1 /0 O X X 0 X 00 1 0 O X 1 01 E | Not used E CLKX Used P FSX | FSX by FSXCT

4 1 0 1 /0 O X X 0 X 0|0 0 O O X X 01 E | Not used E CLKX Not used I FSX

5 1 1 0|0 O X X 0 X 0l0 X 0 O X 0 01 | E Not used 1/2C1 Not used | FSX by TX FIFO write
6 1 1 0|0 O X X 0 X 0|0 X 0 O X 1 01 | E UsedCLKX 1/2ClorP Not used E FSX

7 1 1 1 /0 O X X 0 X 00 1 0 O X 1 01 I 1 UsedCLKX 1/2ClorP Used E FSX

8 1 1 1 /0 O X X 0 X 0|0 O 0 O X o o1 1 1 Not used 1/2C1 Not used Def by FSX/P FSXCT
9 1 1 1]1]0 O X X 0 X 0|0 0 O O X 1 01 | | UsedCLKX 1/2ClorP Not used Def by write to TX FIFO
10 1 1 1]/]0 0 o1 o1 1 0 00O 1 0 O X 1 01 1 | Used 1/2ClorP Used Def by write to TX FIFO
11 1 0 1]/]0 0 o1 o1 1 0 00O 1 0 O X 1 01 E | Not used E CLKX Used FSX1 def by Fsxctt
12 1 1 10 1 0 0 0 0 0|0 O O O X 1 01 1 1 Used 1/2ClorP Not used FSX1 def by Fsxctt
13 1 1 110 O 0 0 0 u 170 00 O O1 1 01 I | ul6 1/2C1 ule6 Def by write to TX FIFO
14 1 1 0|0 O 0 0 0 u 1|0 X 0 0 01 1 01 | E uU16 1/2C1 u16 E
15 1 0 1 /0 O 0 0 0 u 1|0 0 0O O 01 1 01 E | u16 E uU16 Def by write to TX FIFO
16 1 0 0|0 O 0 0 0 u 1|0 X 0 0 01 1 01 E E u16 E uU16 E

Legend: E -External 1/2 C1-1/2 CLKOUT1 U16 - Used by 16-bit Counter u - Defines other functions in the selected mode. 0 and 1 are valid options.
| - Internal P - Prescaled Def - Defined X - DON'T CARE, does not affect selected mode. Replace X with 0 while writing to registers.

TESXCT defines FSX rate to be greater than (18x4) SCLKs for 16-bit data and (10x4) SCLKs for 8-bit data, or the FSX rate will be incorrect.

suoneispisuo) buiwweibold 191sibay 4SST

104 [BlI8S SNOUOIYIUAS

G-6

Table 9-12. Serial Port Configuration — Continuous Mode

SSPCR

o Register SSPMC Register SSPST Register

p

t S

. S M F F © P C © F

! P c ¢ M c s s L R B C L L s F

0 F M T|R S H H o H G|F X X C X S Y L F X K X S

n S C X|S P B B D L P|S OS L O E T K S © X © X

s M M M | T | 1 0 E T CIN X T N X N E X X T rate T rate

1 0 0 0 0 O 0 0 0 0O 0|0 O O O 0 0 0 E E Not used — Not used -

2 0 0 0[O0 O X X 0 X 0|0 X 0 O 0 0 01 E E Not used E CLKX only Not used E

3 0 0 1 0 O X X 0 X 0|0 1 0 O X 1 on E 1 Not used E CLKX only Used | FSX | FSX def by FSXCT
4 0 0 110 O X X 0 X 0|0 0 O O X X 01 E | Not used E CLKX Not used TX FIFO write rate

5 0 1 0|0 O X X 0 X 0/0 X 0 O X 0 01 | E Not used 1/2C1 Not used E FSX

6 0 1 0|0 O X X 0 X 0|0 X 0 O X 1 01 | E UsedCLKX 1/2ClorP Not used E FSX

7 0o 1 10 O X X 0 X 00 1 0 O X 1 01 | | UsedCLKX 1/2ClorP Used Def by FSX P

8 0 1 1]/10 O X X 0 X 0|0 0 O O X o o1 I | Not used 1/2C1 Not used Def by write to TX FIFO
9 0 1 1]/10 O X X 0 X 0|0 0 0 O X 1 01 | | UsedCLKX 1/2ClorP Not used Def by write to TX FIFO
10 For options 10, 11, and 12,
11 there is no Multichannel or SPI function in the Continuous Mode of the SSP.
12 (FSM bit is a Don't Care for this mode.)
13 0o 1 1 /0 O 0 0 0 u 1/0 0 O0 O O1 1 01 I | uU16 1/2C1 u16 Def by write to TX FIFO
14 0 1 0 0 O 0 0 0 u 1[0 X 0 0 o0n 1 on I E u16 1/2C1 ul6 E
15 0 oO0 1 /0 O 0 0 0 u 1|0 0 0O O 01 1 01 E I uU16 E u16 Def by write to TX FIFO
16 0O 0O O0 |0 O 0 0 0 u 1|0 X 0 0 01 1 01 E E uU16 E u16 E

Legend: E - External 1/2 C1-1/2 CLKOUT1 U116 - Used by 16-bit Counter u - Defines other functions in the selected mode. 0 and 1 are valid options.
| - Internal P - Prescaled Def - Defined X - DON'T CARE, does not affect selected mode. Replace X with O while writing to registers.

TESXCT defines FSX rate to be greater than (18x4) SCLKs for 16-bit data and (10x4) SCLKSs for 8-bit data, or the FSX rate will be incorrect.

suoneiapisuo) buiwweibold 191sibay 4SST

Chapter 10

Asynchronous Serial Port

The 'C20x has an asynchronous serial port that can be used to transfer data
to and from other devices. The port has several important features:

Full-duplex transmit and receive operations at the maximum transfer rate
Data-word length of eight bits for both transmit and receive

Capability for using one or two stop bits

Double buffering in all modes to transmit and receive data

Adjustable baud rate of up to 250,000 10-bit characters per second
Automatic baud-rate detection logic

Uododoo

For examples of program code for the asynchronous serial port, see Appendix D,
Program Examples.

Topic Page
10.1 Overview of the Asynchronous Serial Port ~ 10 |
10.2 Components and Basic Operation c.ooeuue.n.. 10-3_|
10.3 Controlling and Resetting the Port lO
10.4 Transmitter Operationiiiiiiie i 10-19
10.5 Receiver Operationoouuiiiie i 0-20

10-1

10.1 Overview of the Asynchronous Serial Port

10-2

The on-chip asynchronous serial port (ASP) provides easy serial data commu-
nication between host CPUs and the 'C20x or between two ’'C20x devices. The
asynchronous mode of data communication is often referred to as UART (uni-
versal asynchronous receive and transmit). For transmissions, data written to
atransmitregister is converted from an 8-bit parallel form to a 10- or 11-bit seri-
al form (the eight bits preceded by one start bit and followed by one or two stop
bits). Each of the ten or eleven bits is transmitted sequentially (LSB first) to a
transmit pin. For receptions, data is received one bit at a time (LSB first) at a
receive pin (one start bit, eight data bits, and one or two stop bits). The received
bits are converted from serial form to parallel form and stored in the lower eight
bits of a 16-bit receive register. Errors in data transfers are indicated by flags
and/or interrupts. The asynchronous serial port is reset 16 CLKOUT1 cycles
after the rising edge of the reset pin, during device reset.

The maximum rate for transmissions and receptions is determined by the rate
of the internal baud clock, which operates at a fraction of the rate of CLKOUT1.
The exact fraction is determined by the value in the 16-bit programmable
baud-rate divisor register (BRD). For receptions, you may enable (through
software) the auto-baud detection logic, which allows the ASP to lock to the
incoming data rate.

10.2 Components and Basic Operation

Figure 10—1 shows the main components of the asynchronous serial port.

Figure 10-1. Asynchronous Serial Port Block Diagram

Internal data bus

A
\ 4
Control » ADTR ADTR < Control
logic logic
(receive) (transmit)
TXRXINT € » TXRXINT
4 \ 4
Sequence | ARSR AXSR »-| Sequence
control control
A A
RX " cLkouTt —»{ Baud-rate T
generator
10.2.1 Signals

Two types of signals are used in asynchronous serial port (ASP) operations:

(1 Datasignal. Adata signal carries data from the transmitter to the receiver.
Data is sent through the transmit pin (TX) on the transmitter and accepted
through the receive pin (RX) on the receiver. One-way serial port transmis-
sion requires one data signal; two-way transmission requires two data sig-
nals.

[0 Handshake signal.The data transfer can be improved by using bits
100103 of the ASP control register (ASPCR) for handshaking.

Data is transmitted on a character-by-character basis. Each data frame con-
tains a start bit, eight data bits, and one or two stop bits. The transmit and re-
ceive sections are both double-buffered to allow continuous data transfers.

The pins used by the asynchronous serial port are summarized in Table 10-1.
Each of these pins has an associated signal with the same name.

10-3

Table 10-1. Asynchronous Serial Port Interface Pins

Pin Name Description

TX Asynchronous serial port data transmit pin. Transmits serial data from
the asynchronous serial port transmit shift register (AXSR).

RX Asynchronous serial port data receive pin. Receives serial data into the
asynchronous serial port receive shift register (ARSR).

100 General purpose I/0 pin 0. Can be used for general purpose 1/O or for
handshaking by the UART.

101 General purpose I/O pin 1. Can be used for general purpose 1/O or for
handshaking by the UART.

102 General purpose I/0 pin 2. Can be used for general purpose 1/O or for
handshaking by the UART.

103 General purpose I/0 pin 3. Can be used for general purpose I/O or for

handshaking by the UART.

10.2.2 Baud-Rate Generator

10.2.3 Registers

10-4

The baud-rate generator is a clock generator for the asynchronous serial port.
The output rate of the generator is a fraction of the CLKOUT1 rate and is con-
trolled by a 16-hbit register, BRD, that you can read from and write to at I/0 ad-
dress FFF7h. For a CLKOUT1 frequency of 40 MHz, the baud-rate generator
can generate baud rates as high as 2.5 megabits/s (250,000 characters/s) and
as low as 38.14 hits/s (3.81 characters/s).

Four on-chip registers allow you to transmit and receive data and to control the
operation of the port:

(1 Asynchronous data transmit and receive register (ADTR). The ADTR is a
16-bit read/write register for transmitting and receiving data. Data written
to the lower eight bits of the ADTR is transmitted by the asynchronous seri-
al port. Data received by the port is read from the lower eight bits of the
ADTR. The upper byte is read as zeros. The ADTR is an on-chip register
located at address FFF4h in 1/O space.

[0 Asynchronous serial port control register (ASPCR). The ASPCR, at I/0
address FFF5h, contains bits for setting port modes, enabling or disabling
the automatic baud-rate detection logic, selecting the number of stop bits,
enabling or disabling interrupts, setting the default level on the TX pin, con-
figuring pins 103-100, and resetting the port. Section 10.3.1 gives a de-
tailed description of the ASPCR.

10.2.4 Interrupts

[l/Ostatusregister (IOSR). Bitsin the IOSR indicate detection of the incom-
ing baud rate, various error conditions, the status of data transfers, detec-
tion of a break on the RX pin, the status of pins 103-100, and detection of
changes on pins 103-100. The IOSRis ataddress FFF6hin I/O space. For
detailed descriptions of the bits in the IOSR, see section 10.3.2.

(1 Baud-rate divisor register (BRD). The 16-bit value in the BRD is a divisor
used to determine the baud rate for data transfers. BRD (at address
FFF7h in 1/O space) is either loaded by software or is loaded by the port
when the automatic baud-rate detection logic is enabled and samples the
incoming baud rate. Section 10.3.3 describes how to determine the BRD
value that will produce the desired baud rate.

Two other registers (not accessible to a programmer) control transfers be-
tween the ADTR and the pins:

[Asynchronous serial port transmit shift register (AXSR). During transmis-
sions, each data character is transferred from the ADTR to the AXSR. The
AXSR then shifts the character out (LSB first) through the TX pin.

[Asynchronous serial portreceive shift register (ARSR). During receptions,
each data character is accepted, one bit at a time (LSB first), at the RX pin
and shifted into the ARSR. The ARSR then transfers the character to the
ADTR.

The asynchronous serial port has one hardware interrupt (TXRXINT), which
can be generated by various events (described in section 10.3.6). TXRXINT
leads the CPU to interrupt vector location 000Ch in program memory. The
branch at that location should lead to an interrupt service routine that identifies
the cause of the interrupt and then acts accordingly. TXRXINT has a priority
level of 9 (1 being highest).

TXRXINT is a maskable interrupt controlled by the interrupt mask register
(IMR) and interrupt flag register (IFR).

Note:

To avoid a double interrupt from the ASP, clear the IFR bit (TXRXINT) in the
corresponding interrupt service routine, just before returning from the rou-
tine.

10.2.5 Basic Operation

Figure 10-2 shows a typical serial link between a 'C20x device and any host
CPU. In this mode of communication, any 8-bit character can be transmitted

10-5

or received serially by way of the transmit data pin (TX) or the receive data pin
(RX), respectively. The data transmitted or received through the TX and RX
pins will be at TTL level. However, if the hosts are separated by a few feet or
more, the serial data lines must be buffered through line-drivers (RS-232 or
RS-485, depending on the application).

When an 8-bit character is written into the lower eight bits of the ADTR, the
data, in parallel form, is converted into a 10- or 11-bit character with one start
bit and one or two stop bits. This new 10- or 11-bit character is then converted
into a serial data stream and transmitted through the TX pin one bit at a time.
The bit duration is determined by the baud clock rate. The baud-rate divisor
register (BRD) is programmable and takes a 16-bit value, providing all the
industry-standard baud rate values.

Similarly, if a 10- or 11-bit data stream reaches the RX pin, the serial port sam-
ples the bit at the transmitted baud rate and converts the serial stream into an
8-bit parallel data character. The received 8-bit character is stored in the lower
eight bits of the ADTR.

Figure 10-2. Typical Serial Link Between a ‘C20x Device and a Host CPU

10-6

Line drivers

'C20x Host
serial port serial port
1D : . : . RX
RX —<—«—<} < : <]—-—<— X

Line drivers

10.3 Controlling and Resetting the Port

The asynchronous serial port is programmed through three on-chip registers
mapped to I/0 space: the asynchronous serial port control register (ASPCR),
the I/O status register (IOSR), and the baud-rate divisor register (BRD). This
section describes the contents of each of these registers and also explains the
use of associated control features.

10.3.1 Asynchronous Serial Port Control Register (ASPCR)

The ASPCR controls the operation of the asynchronous serial port.
Figure 10-3 shows the fields in the 16-bit memory-mapped ASPCR and bit
descriptions follow the figure. All of the bits in the register are read/write, with
the exception of the reserved bits (12—10). The ASPCR is an on-chip register
mapped to address FFF5h in I/O space.

Figure 10-3. Asynchronous Serial Port Control Register (ASPCR)
— I/O-Space Address FFF5h

15 14 13 12 11 10 9 8
FREE SOFT URST Reserved DIM TIM |
R/W-0 R/W-0 R/W-0 0 R/W-0 R/W-0
7 6 5 4 3 2 1 0
RIM STB CAD SETBRK CIO3 Clo2 Clo1 CIO0 |
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Note: 0 = Always as zeros; R=Read access; W=Write access; value following dash (-) is value after reset.

Table 10-2. ASPCR — I/O Space Address FFF5h Bit Descriptions

Bit
No. Name Function
15 FREE This bit sets the port to function in emulation or run mode.
0 Emulation mode is selected. SOFT then determines which emulation mode
is enabled.
1 Free run mode is selected.
14 SOFT This bit is enabled when the FREE bit is 0. It determines the emulation mode.

0 Process stops immediately.

1 Process stops after word completion.

10-7

Table 10-2. ASPCR — I/O Space Address FFF5h Bit Descriptions (Continued)

Bit
No. Name Function

13 URST Reset asynchronous serial port bit. URST is used to reset the asynchronous seri-
al port. At reset, URST = 0.

0 The port is in reset.
1 The port is enabled.
12-10 Reserved Always read as 0s.

9 DIM Delta interrupt mask. DIM selects whether or not delta interrupts are asserted on
the TXRXINT interrupt line. A delta interrupt is generated by a change on one of
the general-purpose 1/O pins (103, 102, 101, or 100).

0 Disables delta interrupts.
1 Enables delta interrupts.

8 TIM Transmit interrupt mask. TIM selects whether transmit interrupts are asserted on
the TXRXINT interrupt line. A transmit interrupt is generated by THRE (transmit
register empty indicator in the IOSR) when the transmit register (ADTR) empties.
0 Disables transmit interrupts.

1 Enables transmit interrupts.

7 RIM Receive interrupt mask. RIM selects whether receive interrupts are asserted on
the TXRXINT interrupt line. A receive interrupt is generated by one of these indi-
cators in the IOSR: Bl (break interrupt), FE (framing error), OE (overflow error), or
DR (data ready).

0 Disables receive interrupts.
1 Enables receiver interrupts.

6 STB Stop bit selector. STB selects the number of stop bits used in transmission and

reception.
0 One stop bit is used in transmission and reception. This is the default value
at reset.
1 Two stop bhits are used in transmission and reception.
5 CAD Calibrate A detect bit. CAD is used to enable and disable automatic baud-rate

alignment (auto-baud alignment).
0 Disables auto-baud alignment.

1 Enables auto-baud alignment.

10-8

Table 10-2. ASPCR — I/O Space Address FFF5h Bit Descriptions (Continued)

Bit
No. Name Function

4 SETBRK Set break bit. Selects the output level of TX when the port is not transmitting.
0 The TX output is forced high when the port is not transmitting.
1 The TX output is forced low when the port is not transmitting.

3 ClOo3 Configuration bit for 103. CIO3 configures 1/0 pin 3 (I03) as an input or as an out-
put.
0 103 is configured as an input. This is the default value at reset.
1 103 is configured as an output.

2 Clo2 Configuration bit for 102. CIO2 configures 1/O pin 2 (102) as an input or as an out-
put.
0 102 is configured as an input. This is the default value at reset.
1 102 is configured as an output.

1 Clo1 Configuration bit for 101. CIO1 configures 1/0 pin 1 (I01) as an input or as an out-
put.
0 101 is configured as an input. This is the default value at reset.
1 101 is configured as an output.

0 CIlO0 Configuration bit for 100. CIOO0 configures 1/0 pin 0 (I00) as an input or as an out-
put.
0 100 is configured as an input. This is the default value at reset.
1 100 is configured as an output.

10-9

10.3.2 /O Status Register (IOSR)

The IOSR returns the status of the asynchronous serial port and of 1/O pins
I00-103. The IOSR is a 16-bit, on-chip register mapped to address FFF6h in
I/0 space. Figure 10—4 shows the fields in the IOSR, and bit descriptions fol-
low the figure.

Figure 10-4. I/O Status Register (IOSR) — I/O-Space Address FFF6h

15 14 13 12 1 10 9 8
Reserved ADC BI TEMT THRE FE OE DR
0 R/W1C-0 RIW1C-0 R-1 R-1 RIW1C-0 R/W1C-0 R-0
7 6 5 4 3 2 1 0
DIO3 DIO2 DIO1 DIOO 103 102 101 100
R/W1C—x R/W1C—x R/W1C—x R/W1C—x R/WT—x RWT—x RWT—x RWT—x

Note: 0 = Always read as 0; R=Read access; W1C=Write 1 to this bit to clear it to 0; W = Write access;
value following dash (-) is value after reset (x means value not affected by reset).

T This bit can be written to only when it is configured as an output by the corresponding CIO bit in the ASPCR.

Table 10-3.

IOSR — I/O Space Address FFF6h Bit Descriptions

Bit

No.

Name

Function

15

14

13

Reserved

ADC

Bl

Always read as 0.

A detect complete bit. If the CAD bit of the ASPCR is 1 and the character A or ais
received in the ADTR, ADC is set to 1. The character A or a remains in the ADTR
after it has been detected. To avoid an overrun error when the next character
arrives, the ADTR should be read immediately after ADC is set.

0 A or a has not been detected. No receive interrupt (TXRXINT) will be
generated.

1 A or a has been detected. If the CAD bit of the ASPCR is also 1, a receive
interrupt (TXRXINT) will be generated, regardless of the values of the DIM,
TIM, and RIM bits of the ASPCR. For as longas ADC=1and CAD =1, a
receive interrupt will occur.

Break interrupt indicator. Bl = 1 indicates that a break has been detected on the
RX pin. Write a 1 to this bit to clear it to 0. Bl is also cleared to 0 at reset.

A break on the RX pin also generates an interrupt (TXRXINT).

10-10

Table 10-3.

IOSR — I/O Space Address FFF6h Bit Descriptions (Continued)

Bit

No.

Name

Function

12

11

10

TEMT

THRE

FE

OE

Transmit empty indicator. TEMT = 1 indicates whether the transmit register
(ADTR) and/or transmit shift register (AXSR) are full or empty. This bit is set to 1
on reset.

0 The ADTR and/or AXSR are full.

1 The ADTR and the AXSR are empty; the ADTR is ready for a new
character to transmit.

Transmit register (ADTR) empty indicator. THRE is set to 1 when the contents of
the transmit register (ADTR) are transferred to the transmit shift register (AXSR).
THRE is reset to 0 by the loading of the transmit register with a new character. A
device reset sets THRE to 1.

The emptying of the ADTR also generates an interrupt (TXRXINT).
0 The transmit register is not empty. Port operation is normal.

1 The transmit register is empty, indicating that it is ready to be loaded with a
new character.

Framing error indicator. FE indicates whether a valid stop bit has been detected
during reception. Clear the FE bit to 0 by writing a 1 to it. It is also cleared to 0 on
reset.

A framing error also generates an interrupt (TXRXINT).
0 No framing error is detected. Port operation is normal.
1 The character received did not have a valid (logic 1) stop bit.

Receive register (ADTR) overrun indicator. OE indicates whether an unread char-
acter has been overwritten. Clear the OE bit to 0 by writing a 1 to it. It is also
cleared to O on reset.

The occurrence of overrun also generates an interrupt (TXRXINT).
0 No overrun error is detected. The port is operating normally.

1 The last character in the ADTR was not read before the next character
overwrote it.

10-11

Table 10-3.

IOSR — I/O Space Address FFF6h Bit Descriptions (Continued)

Bit
No. Name Function

8 DR Data ready indicator for the receiver. This bit indicates whether a new character
has been received in the ADTR. This bit is automatically cleared to zero when the
receive register (ADTR) is read or when the device is reset.
The reception of a new character into the ADTR also generates an interrupt
(TXRXINT).
0 The receive register (ADTR) is empty.
1 A character has been completely received and should be read from the

receive register (ADTR).

7 DIO3 Change detect hit for 103. DIO3 indicates whether a change has occurred on the
103 pin. A change can be detected only when |03 is configured as an input by the
CIO3 bit of the ASPCR (CIO3 = 0) and the serial port is enabled by the URST bit
of the ASPCR (URST = 1). Writing a 1 to DIO3 clears it to 0.
The detection of a change on the 103 pin also generates an interrupt (TXRXINT).
0 No change is detected on 103.
1 A change is detected on 103.

6 DIO2 Change detect bit for 102. DIO2 indicates whether a change has occurred on the
102 pin. A change can be detected only when 102 is configured as an input by the
ClO2 bit of the ASPCR (CIO2 = 0) and the serial port is enabled by the URST bit
of the ASPCR (URST = 1). Writing a 1 to DIO2 clears it to 0.
The detection of a change on the 102 pin also generates an interrupt (TXRXINT).
0 No change is detected on 102.
1 A change is detected on 102.

5 DIO1 Change detect hit for I01. DIO1 indicates whether a change has occurred on the

101 pin. A change can be detected only when IO1 is configured as an input by the
CIO1 bit of the ASPCR (CIO1 = 0) and the serial port is enabled by the URST bit
of the ASPCR (URST = 1). Writing a 1 to DIO1 clears it to 0.

The detection of a change on the 101 pin also generates an interrupt (TXRXINT).
0 No change is detected on 101.

1 A change is detected on 101.

10-12

Table 10-3. IOSR — I/O Space Address FFF6h Bit Descriptions (Continued)

Bit
No. Name

Function

4 DIOO

3 103

2 102

1 101

0 100

Change detect bit for I00. DIOO indicates whether a change has occurred on the
100 pin. A change can be detected only when 100 is configured as an input by the
CIOO0 bit of the ASPCR (CIOO0 = 0) and the serial port is enabled by the URST hit
of the ASPCR (URST = 1). Writing a 1 to DIOO clears it to 0.

The detection of a change on the 100 pin also generates an interrupt (TXRXINT).
0 No change is detected on 100.
1 A change is detected on 100.

Status bit for I03. When the 103 pin is configured as an input (by the CIO3 bit of
the ASPCR), this bit reflects the current level on the 103 pin.

0 The 103 signal is low.
1 The 103 signal is high.

Status bit for I02. When the 102 pin is configured as an input (by the CIO2 bit of
the ASPCR), this bit reflects the current level on the 102 pin.

0 The 102 signal is low.
1 The 102 signal is high.

Status bit for 101. When the 101 pin is configured as an input (by the CIO1 bit of
the ASPCR), this bit reflects the current level on the 101 pin.

0 The 101 signal is low.
1 The 101 signal is high.

Status bit for I00. When the 100 pin is configured as an input (by the CIOO bit of
the ASPCR), this bit reflects the current level on the 100 pin.

0 The 100 signal is low.

1 The 100 signal is high.

Note: IfIO0-3 pins have been configured as outputs, IO0-3 bits can be written with either a 1 or 0 to reflect on the I/0 pins (0-3)

respectively.

10-13

10.3.3 Baud-Rate Divisor Register (BRD)

The baud rate of the asynchronous serial port can be set to many different
rates by means of the BRD, an on-chip register located at address FFF7h in
I/O space. Equation 10—1 shows how to set the BRD value to get the desired
baud rate. When the BRD contains 0, the ASP will not transmit or receive any
character. At reset, BRD = 0001h.

Equation 10-1. Value Needed in the BRD
BRD value in decimal = CLKOUTZ1 frequency

16 x desired baud rate

Table 10-4 lists common baud rates and the corresponding hexadecimal val-
ue that should be in the BRD for a given CLKOUT1 frequency.

Table 10-4. Common Baud Rates and the Corresponding BRD Values

BRD Value in Hexadecimal

Baud CLKOUT1 =20 MHz CLKOUTL1 = 28.57 MHz CLKOUT1 =40 MHz
Rate (50 ns) (35 ns) (25 ns)

1200 0411 05CC 0823

2400 0208 02E6 0411

4800 0104 0173 0208

9600 0082 00B9 0104

19200 0041 005C 0082

10.3.4 Using Automatic Baud-Rate Detection

The ASP contains auto-baud detection logic, which allows the ASP to lock to
the incoming data rate. The following steps explain the sequence by which the
detection logic could be implemented:

10-14

1

2)

3)

Enable auto-baud detection by setting the CAD bitin the ASPCR to 1 and
ADC bit in the IOSR to zero.

Receive from a host the ASCII character A or a as the first character, at
any desired baud rate definable in the BRD register. If the first character
received is A or a, the serial port will lock to the incoming baud rate (the
rate of the host), and the BRD register will be updated to the incoming baud
rate value.

Baud-rate detection is indicated by a TXRXINT interrupt (mapped to vec-
tor location 000Ch) if TXRXINT is unmasked in the interrupt mask register
and is globally enabled by the INTM bit of status register STO. This inter-
rupt occurs regardless of the values of the DIM, TIM, and RIM bits in the
ASPCR.

4) Following the baud detection interrupt, the ADTR should be read to clear
the Aor acharacter from the receive buffer. If the ADTR is not cleared, any
subsequent character received will set the OE bit in the IOSR, indicating
an overrun error.

5) Once the baud rate is detected, both the CAD and ADC bits must be
cleared; write 0 to CAD and write 1 to ADC. If CAD is not cleared, the auto
baud-detection logic will try to lock to the incoming character speed. In
addition, for as long as ADC = 1 and CAD = 1, receive interrupts will be
generated.

10.3.5 Using I/O Pins 103, 102, 101, and 100

Pins 103,102,101, and IO0 can be individually configured as inputs or outputs
and can be used as handshake control for the asynchronous serial port or as
general-purpose /O pins. They are software-controlled through the asynchro-
nous serial port control register (ASPCR) and the 1/O status register (IOSR),
as shown in Figure 10-5.

Figure 10-5. Example of the Logic for Pins 100-103

Delta Interrupt Mask Configure 1/0 pins (IN or OUT)
ASPCR DIM CIO3| ClO2| CIO1| CIOO| FFF5h

[
I
I
I
I

| GP 1/0

in 100

Level change | P

detect |
I
I

DIM bit §_ _______
Delta interrupt : 4

IOSR DIO3 | DIO2 | DIO1 | DIOO | 103 | 102 | 101 | 100 | FFF6h

Change on I/0 pin Current level of /O pin

10-15

The four LSBs of the ASPCR, bits CIO0—CIO3, are for configuring each pin as
an input or an output. For example, as shown in the figure, setting CIOO0 to 1
configures 100 as an output; setting CIOO0 to 0 configures |00 as an input. At
reset, CIO0-CIO3 are all cleared to 0, making all four of the the pins inputs.
Table 10-5 summarizes the configuration of the pins.

Table 10-5. Configuring Pins 100—103 with ASPCR Bits CIO0-CIO3

CI0O0 100 Cio1 101 Clo2 102 CI03 103
Bit Pin Bit Pin Bit Pin Bit Pin
0 Input 0 Input 0 Input 0 Input
1 Output 1 Output 1 Output 1 Output

When pins I00-103 are configured as inputs

10-16

When pins IO0-103 are configured as inputs, the eight LSBs of the IOSR allow
you to monitor these four pins. Each of the IOSR bits 3-0, called 103, 102, 101,
and 100, can be used to read the current logic level (high or low) of the signal
at the corresponding pin. Each of the bits 7—4, called DIO3, DIO2, DIO1, and
DIOQO, is used to track a change from a previous known or unknown signal val-
ue at the corresponding pin. When a change is detected on one of the pins,
the corresponding detect bit is set to 1, and an interrupt request is sent to the
CPU on the TXRXINT interrupt line. You can clear each of the detect bits to
0 by writing a 1 to it. DIO3-DIOO are only useful when the pins are configured
as inputs and the serial port is enabled by the URST bit of the ASPCR
(URST =1). Table 10—6 summarizes what IOSR bits 0—7 indicate when 00—
103 are inputs.

Table 10-6. Viewing the Status of Pins 100-103 With IOSR Bits I00—103 and DIO0-DIO3

IOSR Bit IOSR Bit When 100-103 are inputs,
Number Name this bit indicates...
0 100 Current logic level (0 or 1) on pin 100
1 101 Current logic level (0 or 1) on pin 101
2 102 Current logic level (0 or 1) on pin 102
3 103 Current logic level (0 or 1) on pin 103
4 Dloot Change detected (1) or not detected (0)

on pin 100 (when 100 is an input)

5 Dlo1t Change detected (1) or not detected (0)
on pin 101 (when 101 is an input)

6 Dlo2t Change detected (1) or not detected (0)
on pin 102 (when 102 is an input)

7 DlOo3t Change detected (1) or not detected (0)
on pin 103 (when 103 is an input)

T Write a 1 to this bit to clear it to 0.

When pins I00-103 are configured as outputs

When pins I00-103 are configured as outputs, you can write to the four LSBs
(103-100) of the IOSR. The value you write to each bit becomes the new logic
level at the corresponding pin. For example, if you write a 0 to bit 2, the logic
level at pin 102 changes to low; if you write a 1 to bit 2, the logic level on 102
changes to high.

10.3.6 Using Interrupts

The asynchronous serial port interrupt (TXRXINT) can be generated by three
types of interrupts:

[Transmit interrupts. A transmit interrupt is generated when the ADTR
empties during transmission. This indicates that the port is ready to accept
a new transmit character. In addition to generating the interrupt, the port
sets the THRE bit of the IOSR to 1. Transmit interrupts can be disabled by
the TIM bit of the ASPCR.

[Receiveinterrupts. Any one of the following events will generate a receive
interrupt:

B The ADTR holds a new character. This event is also indicated by the
DR bit of the IOSR (DR = 1).

10-17

10-18

B Overrun occurs. The last character in the ADTR was not read before
the next character overwrote it. Overrun also sets the OE bit of the
IOSR to 1.

B A framing error occurs. The character received did not have a valid
(logic 1) stop bit. This eventis also indicated by the FE bit of the IOSR
(FE =1).

B A break has been detected on the RX pin. This event also sets the Bl
bit of the IOSR to 1.

B Thecharacter A or a has been detected inthe ADTR by the auto-baud
detect logic. This event also sets the ADC bit of the IOSR to 1. This
interrupt will occur regardless of the values of the DIM, TIM, and RIM
bits of the ASPCR.

With the exception of the A detect interrupt, receive interrupts can be dis-
abled by the RIM bit of the ASPCR.

(O Deltainterrupts. This type of interrupt is generated if a change takes place
on one of the 1/0O lines (100, 101, 102, or I03) when the lines are used for
ASP control (when DIM =1 in the ASPCR). The event is also indicated by
the corresponding detect bit (DIOO, DIO1, DIO2, or DIO3) in the IOSR.
Delta interrupts can be disabled by the DIM bit of the ASPCR.

TXRXINT leads the CPU to interrupt vector location 000Ch in program
memory. The branch at that location should lead to an interrupt service routine
that identifies the cause of the interrupt and then acts accordingly. TXRXINT
has a priority level of 9 (1 being highest).

TXRXINT is a maskable interrupt and is controlled by the interrupt mask regis-
ter (IMR) and interrupt flag register (IFR).

Note:

To avoid a double interrupt from the ASP, clear the IFR bit (TXRXINT) in the
corresponding interrupt service routine, just before returning from the rou-
tine.

10.4 Transmitter Operation

The transmitter consists of an 8-bit transmit register (ADTR) and an 8-bit trans-
mit shift register (AXSR). Data to be transmitted is written to the ADTR, and
then the port transfers the data to the AXSR. Data written to the transmit regis-
ter should be written in right-justified form, with the LSB as the rightmost bit.
Data from the AXSR is shifted out on the TX pin in the serial form shown in
Figure 10-6 (the number of stop bits depends on the value of the STB bit in
the ASPCR). When the serial port is not transmitting, TX should be held high
by clearing the SETBRK bit of the ASPCR (SETBRK = 0).

Figure 10-6. Data Transmit

\ Start/<Bit0><Bit1><Bit2><Bit3><: X Bit6 X Bit7 ¥ Stop 1 Stop 2

Transmission is started by a write to the ADTR. If the AXSR is empty, data from
the ADTR is transferred to the AXSR. If the AXSR is full, then data is kept in
the ADTR, and existing data in the AXSR is shifted out to the sequence control
logic. If both the AXSR and ADTR are full and the CPU tries to write to the
ADTR, the write is not allowed, and existing data in both registers is main-
tained.

If the transmit register is empty and interrupt TXRXINT is unmasked (in the
IMR) and enabled (by the INTM bit), an interrupt is generated. Whenthe ADTR
empties, the THRE bit of the IOSR is setto 1. The bitis cleared when a charac-
ter is loaded into the transmit register. Bit 12 (TEMT) of the IOSR is set if both
the transmit and transmit shift registers are empty.

The sequence control logic constructs the transmit frame by sending out a
start bit followed by the data bits from the AXSR and either one or two stop bits.

Here is a summary of asynchronous mode transmission:
1) Aninterrupt (TXRXINT) is generated if the transmit register is empty.
2) If AXSR is empty, the data is transferred from ADTR to AXSR.

3) A start bit is transmitted to TX, followed by eight data bits (LSB first), and
the stop hit(s).

4) For the next transmission, the process begins again from step 1.

To avoid double interrupts, the interrupt service routine should clear TXRXINT
in the interrupt flag register (IFR), just before forcing a return from the routine.
Take special care when using this interrupt; it will be generated frequently for
as long as the transmit register is empty.

10-19

10.5 Receiver Operation

The receiver includes two internal 8-bit registers: the receive register (ADTR)
and receive shift register (ARSR). The data received at the RX pin should have
the serial form shown in Figure 10-7 (the number of stop bits required de-
pends on the value of the STB bit in the ASPCR).

Figure 10-7. Data Receive

—\ san /<Bito><8n1><an><8n3><j:><sne><sm>/ —

10-20

Data is received on the RX pin, and the negative-edge detect logic initiates a
receive operation and checks for a start bit. After the eight data bits are re-
ceived, a stop bit (or bits) should be received, indicating the end of that block.
If a valid stop bit is not received, a framing error has occurred; in response, the
FE bit in the ASPCR is setto 1, and a TXRXINT interrupt is generated. Then
normal reception continues, and the receiver looks for the next start bit.

Once a valid stop bit is received, data is then transferred to the ADTR, and an
interrupt (TXRXINT) is sent to the CPU. The DR bit of the IOSR is set to indi-
cate that a character has been received in the receive register, ADTR. (DR is
cleared to 0 when the ADTR is read.) The ARSR is now available to receive
another character.

If ADTR is not read before new data is transferred into the ADTR, the overflow
error (OE) flag is set in the IOSR.

In summary, asynchronous mode reception involves the following events:

1) Anegative edgeisreceived on RXtoindicate a start bit. Atestis performed
to indicate whether a start bit is valid.

2) If the start bit is valid, eight data bits are shifted into ARSR (LSB first).

3) A stop bit is received to indicate end of reception. (If a stop bit is not re-
ceived, a framing error is indicated.)

4) Data is transferred from ARSR to ADTR.
5) Aninterruptis sent to the CPU once data has been placed in the ADTR.
6) Receptionis complete. The receiver waits for another negative transition.

To avoid double interrupts, the interrupt service routine should clear TXRXINT
in the interrupt flag register (IFR) just before forcing a return from the routine.

Chapter 11

TMS320C209

All 'C20x devices use the same central processing unit (CPU), bus structure,
and instruction set, but the 'C209 has some notable differences. This chapter
compares features on the 'C209 with those on other 'C20x devices and then
provides information specific to the 'C209 in the areas of memory and 1/0
spaces, interrupts, and on-chip peripherals.

Topic Page
11.1 ’C209 Versus Other 'C20x DeviCesccouiiiiieeeao... 11-2
11.2 'C209 Memory and /O SPacesuiiiiiinneennnennn.. 1-5
11.3 'C209 INtEITUPLS . .ottt e e e e e 1-10
11.4 'C209 On-Chip Peripherals 1-15

11-1

11.1 'C209 Versus Other 'C20x Devices

This section explains the differences between the 'C209 and other 'C20x de-
vices and concludes with a table to help you find the other information in this
manual that applies to the 'C209.

11.1.1 What Is the Same

The following components and features are identical on all 'C20x devices, in-
cluding the 'C2009:

Uooodod

11.1.2 What Is Different

11-2

Central processing unit

Status registers STO and ST1
Assembly language instructions
Addressing modes

Global data memory
Program-address generation logic
General-purpose I/0 pins BIO and XF

The important differences between the 'C209 and other 'C20x devices are as

follows:

(1 Peripherals:

The 'C209 has no serial ports.

The wait-state generator can be programmed to generate either no
wait states or one wait state. Other 'C20x devices provide zero to
seven wait states.

The wait-state generator does not provide separate wait states for the
upper and lower halves of program memory.

The 'C209 supports address visibility mode (enabled with the wait-
state generator control register). In this mode, the device passes the
internal program address to the external address bus when this bus is
not used for an external access.

The 'C209 clock generator supports only two options: multiply-by-two
(% 2) and divide-by-two (=2).

The 'C209 does not have a CLK register; thus it cannot prevent the
CLKOUT1 signal from appearing on the CLKOUTL1 pin.

The 'C209 does not have I/O pins 103, 102, 101, and 100.

J Memory and I/O Spaces:

The 1/0O addresses of the peripheral registers are different on the
'C2009.

The 'C209 does not support the 'C20x HOLD operation.

[Interrupts:

The 'C209 has four maskable interrupt lines, none of them shared.
The other devices have six interrupt lines, one shared by the INT2 and
INT3 pins.

The 'C209 does not have an interrupt control register (ICR) because
INT2 and INT3 have their own interrupt lines.

Although the interrupt flag register (IFR) and interrupt mask register
(IMR) are used in the same way on all 'C20x device, the 'C209 has
fewer flag and mask bits because it does not have serial ports.

On the 'C209, interrupts INT2 and INT3 have their own interrupt lines
and, thus, have their own interrupt vectors. On other 'C20x devices,
INT2 and INT3 share an interrupt line and, thus, share one interrupt
vector.

The 'C209 has an interrupt acknowledge pin (IACK), which allows ex-
ternal detection of when an interrupt has been acknowledged.

The 'C209 has two pins for reset: RS and RS; other 'C20x devices
have only RS.

11.1.3 Where to Find the Information You Need About the TMS320C209

For information about:

Look here:

Assembly language instructions

Clock generator

CPU
Data-address generation

I/O Space

Chapter 7, Assembly Language

Instructions
Main description Chapter 8, On-Chip Peripherals
Options and configuration Section 11.4.1 (page 11-15)

Chapter 3, Central Processing Unit

Chapter 6, Addressing Modes

Main description Chapter 4, Memory
Effect of READY pin Section 11.2 (page 11-5)
Control register locations Table 11-3 (page 11-9)

11-3

For information about: Look here:

Interrupts Main description Chapter 5, Program Control
Vector locations Table 11-4 (page 11-10)
Flag and mask registers Section 11.3.1 (page 11-12)
Interrupt acknowledge pin Section 11.3.2 (page 11-14)
Memory Main description Chapter 4, Memory
Address maps Figure 11-1 (page 11-6)
Configuration Section 11.2 (page 11-5)
Pipeline Chapter 5, Program Control
Power-down mode Chapter 5, Program Control
Program-address generation Chapter 5, Program Control
Program control Chapter 5, Program Control
Stack Chapter 5, Program Control
Status registers Chapter 5, Program Control
Timer Main description Chapter 8, On-Chip Peripherals
Configuration Section 11.4.2 (page 11-16)
Wait-state generator Main description Chapter 8, On-Chip Peripherals
Configuration Section 11.4.3 (page 11-17)

11-4

11.2 'C209 Memory and I/O Spaces

The 'C209 does not have an on-chip bootloader and does not support the
'C20x HOLD operation. Figure 11-1 shows the 'C209 address map. The on-
chip program and data memory available on the 'C209 consists of:

1 ROM (4K words, for program memory)

1 SARAM (4K words, for program and/or data memory)
1 DARAM BO (256 words, for program or data memory)
1 DARAM B1 (256 words, for data memory)
d

DARAM B2 (32 words, for data memory)

11-5

Figure 11-1.’C209 Address Maps

'C209 Program 'C209 Data 'C209 1/0
0000h 0000h
0000h Interrupts (on-chip) Memory-mapped
(MP/MC = 0) registers and
Interrupts (external) reserved addresses
(MP/MC = 1) o0aEh :
003Fh|¥ On-chip
DARAM B2
007Fh
On-chip ROM 0080h ~eserved
— v
(MP/MC = 0) 01FFh
Mi’;f\j_rg?' . 0200h | On-chip DARAM
OFFFh (=D BO* (CNF = 0);
1000h On-chip SARAM 02EFh Reserved (CNF = 1)
(RAMEN = 1); 0300h On-chip
External 03FEh DARAM B18 External
(RAMEN = 0)
1FFFh 0400h
2000h Reserved
07FFh
0800h Reserved
(RAMEN = 1)
External
External OFFFh (RAMEN = 0);
1000 1 on-chip SARAM
(RAMEN = 1):
External
- 1FFEN (RAMEN = 0) FEFER
FEOOh FFOOh
Reserved (CNF = 1); External Reserved for
7FFFh .
External (CNF = 0) test/emulation
FEFFh 8000h FFOFh
FFOOR | on-chip DARAM External FF10h /0-mapped
BOt (CNF = 1); (local and/or global) registers and
External (CNF = 0) reserved addresses
FFFFh FFFFh FFFFh

T When CNF = 1, addresses FEOOh—FEFFh and FFOOh—FFFFh are mapped to the same physical block (BO) in program-memory
space. For example, a write to FEOOh will have the same effect as a write to FFOOh. For simplicity, addresses FEOOh—FEFFh
are referred to here as reserved when CNF = 1.

¥ When CNF = 0, addresses 0100h—01FFh and 0200h—02FFh are mapped to the same physical block (BO) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h—01FFh are
referred to here as reserved.

§ Addresses 0300h—03FFh and 0400h—04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h—04FFh are referred to here as
reserved.

11-6

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to
any addresses labeled Reserved. This includes any data-memory
address in the range 0000h—005Fh that is not designated for an
on-chip register and any I/O address in the range FFOOh—FFFFh
that is not designated for an on-chip register.

You select or deselect the ROM by changing the level on the MP/MC pin at re-
set:

[0 When MP/MC = 0 (low) at reset, the device is configured as a microcom-
puter. The on-chip ROM is enabled and is accessible at addresses
0000h—0FFFh. The device fetches the reset vector from on-chip ROM.

O When MP/MC = 1 (high) at reset, the device is configured as a micropro-
cessor, and addresses 0000h—OFFFh are used to access external
memory. The device fetches the reset vector from external memory.

Regardless of the value of MP/MC, the 'C20x fetches its reset vector at loca-
tion 0000h of program memory.

The addresses assigned to the on-chip SARAM are shared by program
memory and data memory. The RAMEN signal allows you to toggle the data
addresses 1000h—1FFFh and the program addresses 1000h—1FFFh between
on-chip memory and external memory:

1 When RAMEN =1 (high), program addresses 1000h—1FFFh and data ad-
dresses 1000h—1FFFh are mapped to the same physical locations in the
on-chip SARAM. For example, 1000h in program memory and 1000h in
data memory point to the same physical location in the on-chip SARAM.
Thus, the 4K words of on-chip SARAM are accessible for program and/or
data space.

Note:

When RAMEN = 1, program addresses 1000h—1FFFh and data addresses
1000h—1FFFh are one and the same. When writing data to these locations
be careful not to overwrite existing program instructions.

J When RAMEN = 0 (low), program addresses 1000h—1FFFh (4K) are
mapped to external program memory and data addresses 1000h—1FFFh

11-7

(4K) are mapped to external data memory. Thus, a total of 8K additional
addresses (4K program and 4K data) are available for external memory.

DARAM blocks B1 and B2 are fixed, but DARAM block BO may be mapped to
program space or data space, depending on the value of the CNF bit (bit 12
of status register ST1):

(1 When CNF =0, BO is mapped to data space and is accessible at data ad-
dresses 0200h—-02FFh. Note that the addressable external program
memory increases by 512 words. At reset, CNF = 0.

(1 When CNF =1, BO is mapped to program space and is accessible at pro-
gram addresses FFOOh—FFFFh.

Table 11-1 lists the available program memory configurations for the 'C209;
Table 11-2 lists the data-memory configurations. Note these facts:

[Program-memory addresses 0000h—003Fh are used for the interrupt vec-
tors.

[Data-memory addresses 0000h—005Fh contain on-chip memory-mapped
registers and reserved memory.

(1 Two other on-chip data-memory ranges are always reserved:
0080h—01FFh and 0400h—07FFh.

Table 11-1. 'C209 Program-Memory Configuration Options

L ROM SARAM DARAM BO External Reserved
MP/MC RAMEN CNF (hex) (hex) (hex) (hex) (hex)

0 0 0 0000-OFFF - - 1000-FFFF -

0 0 1 0000-0FFF - FFOO-FFFF 1000-FDFF FEOO-FEFF

0 1 0 0000-0FFF 1000-1FFF - 2000-FFFF -

0 1 1 0000-0FFF 1000-1FFF FFOO-FFFF 2000-FDFF FEOO-FEFF

1 0 0 - - - 0000-FFFF -

1 0 1 - - FFOO-FFFF 0000-FDFF FEOO-FEFF

1 1 0 - 1000-1FFF - 0000-0FFF -
2000-FFFF

1 1 1 - 1000-1FFF FFOO-FFFF 0000-OFFF = FEOO-FEFF
2000-FDFF

11-8

Table 11-2. ’'C209 Data-Memory Configuration Options

DARAM BO
RAMEN CNF (hex)

DARAM B1
(hex)

DARAM B2
(hex)

SARAM External
(hex) (hex)

Reserved
(hex)

0 0 0200-02FF

0300-03FF

0060-007F

- 0800-FFFF

0000—-005F
0080-01FF
0400-07FF

0300-03FF

0060-007F

- 0800—FFFF

0000-005F
0080-02FF
0400-07FF

1 0 0200-02FF

0300-03FF

0060-007F

1000-1FFF 2000-FFFF

0000-005F
0080-01FF
0400-OFFF

0300-03FF

0060-007F

1000-1FFF 2000-FFFF

0000-005F
0080-02FF
0400-OFFF

A portion of the on-chip I/O space contains the control registers listed in
Table 11-3.The corresponding registers on other 'C20x devices are not at the
addresses shown in this table. When accessing the I/O-mapped registers on
the 'C209, also keep in mind the following:

(1 TheREADY pin must be pulled high to permit reads from or writes to regis-
ters mapped to internal /0 space. This is not true for other 'C20x devices.

1 The S (I/O select) and R/W (read/write) signals are visible on their pins
during reads from or writes to registers mapped to internal I/O space. On
other ’C20x devices, none of the interface signals are visible during inter-
nal /O accesses.

Table 11-3. ’'C209 On-Chip Registers Mapped to I/0 Space

I/O Address Name Description

FFFCh TCR Timer control register

FFFDh PRD Timer period register

FFFEh TIM Timer counter register

FFFFh WSGR Wait-state generator control register

Note: The corresponding registers on other 'C20x devices are not at these addresses.

11-9

11.3 'C209 Interrupts

Table 11-4.

11-10

Table 114 lists the interrupts available on the 'C209 and shows their vector
locations. In addition, it shows the priority of each of the hardware interrupts.
Note that a device reset can be initiated in either of two ways: by driving the
RS pin low or by driving the RS pin high. The K value shown for each interrupt
vector location is the operand to be used with the INTR instruction if you want
to force a branch to that location.

'C209 Interrupt Locations and Priorities

Vector
Kt Location Name Priority Function
0 Oh RS or RS# 1 (highest) Hardware reset (nonmaskable)
1 2h INT1 4 User-maskable interrupt #1
2 4h INT2 5 User-maskable interrupt #2
3 6h INT3 6 User-maskable interrupt #3
4 8h TINT 7 User-maskable interrupt #4:

timer interrupt

5 Ah 8 Reserved
6 Ch 9 Reserved
7 Eh 10 Reserved
8 10h INT8 - User-defined software interrupt
9 12h INT9 - User-defined software interrupt
10 14h INT10 - User-defined software interrupt
11 16h INT11 - User-defined software interrupt
12 18h INT12 - User-defined software interrupt
13 1Ah INT13 - User-defined software interrupt
14 1Ch INT14 - User-defined software interrupt

T The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.

¥ The 'C209 has two pins for triggering a hardware reset: RS and RS. If either RS is driven low
or RS is driven high, the device will be reset.

Table 11-4. 'C209 Interrupt Locations and Priorities (Continued)

Vector
KT Location Name Priority Function
15 1Eh INT15 - User-defined software interrupt
16 20h INT16 - User-defined software interrupt
17 22h TRAP - TRAP instruction vector
18 24h NMI 3 Nonmaskable interrupt
19 26h 2 Reserved
20 28h INT20 - User-defined software interrupt
21 2Ah INT21 - User-defined software interrupt
22 2Ch INT22 - User-defined software interrupt
23 2Eh INT23 - User-defined software interrupt
24 30h INT24 - User-defined software interrupt
25 32h INT25 - User-defined software interrupt
26 34h INT26 - User-defined software interrupt
27 36h INT27 - User-defined software interrupt
28 38h INT28 - User-defined software interrupt
29 3Ah INT29 - User-defined software interrupt
30 3Ch INT30 - User-defined software interrupt
31 3Eh INT31 - User-defined software interrupt

T The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.
¥ The 'C209 has two pins for triggering a hardware reset: RS and RS. If either RS is driven low
or RS is driven high, the device will be reset.

11-11

11.3.1 'C209 Interrupt Registers

As with other 'C20x devices, the maskable interrupts of the 'C209 are
controlled by an interrupt flag register (IFR) and an interrupt mask register
(IMR). Figure 11-2 shows the IFR and Figure 11-3 shows the IMR. Each of
the figures is followed by descriptions of the bits.

Figure 11-2.’C209 Interrupt Flag Register (IFR) — Data-Memory Address 0006h

15 4 3 2 1 0
Reserved \ TINT \ INT3 ‘ INT2 ‘ INT1 |
0 RWIC-0 R/MWIC-0 RMIC-0 R/WIC-0

Note: 0 = Always read as zeros; R = Read access; W1C = Write 1 to this bit to clear it to O;
value following dash (-) is value after reset.

Table 11-5. 'C209 IFR — Data Memory Address 0006h Bit Descriptions

Bit
No. Name Function
15-4 Reserved Bits 15—4 are reserved and are always read as 0s.
3 TINT Timer interrupt flag. Bit 3 indicates whether interrupt TINT is pending (whether
TINT is requesting acknowledgment from the CPU).
0 Interrupt TINT is not pending.
1 Interrupt TINT is pending.
2 INT3 Interrupt 3 flag. Bit 2 indicates whether INT3 is pending (whether INT3 is request-
ing acknowledgment from the CPU).
0 INT3 is not pending.
1 INT3 is pending.
1 INT2 Interrupt 2 flag. Bit 1 indicates whether INT2 is pending (whether INT2 is request-
ing acknowledgment from the CPU).
0 INT2 is not pending.
1 INT2 is pending.
0 INT1 Interrupt 1 flag. Bit O indicates whether INT1 is pending (whether INT1 is request-

ing acknowledgment from the CPU).
0 INT1 is not pending.

1 INT1 is pending.

11-12

Figure 11-3.’C209 Interrupt Mask Register (IMR) — Data-Memory Address 0004h

15 4 3 2 1 0
Reserved ‘ TINT ‘ INT3 ‘ INT2 \ INT1 |
0 RW-0 RMW-0 RW-0 RMW-0

Note: Note: 0= Always read as zeros; R = Read access; W = Write access; value following dash (-) is value after reset.

Table 11-6. ’'C209 IMR — Data Memory Address 0004h Bit Descriptions

Bit
No. Name Function
15-4 Reserved Bits 15-4 are reserved and are always read as 0s.
3 TINT Timer interrupt mask. Mask or unmask the internal timer interrupt, TINT, with this
bit.
0 TINT is masked.
1 TINT is unmasked.
2 INT3 Interrupt 3 mask. Unmask external interrupt INT3 by writing a 1 to this bit.
0 INT3is masked.
1 INT3is unmasked.
1 INT2 Interrupt 2 mask. Unmask external interrupt INT2 by writing a 1 to this bit.
0 INT2is masked.
1 INT2is unmasked.
0 INT1 Interrupt 1 mask. Unmask external interrupt INT1 by writing a 1 to this bit.

0 INT1 is masked.

1 INT1 is unmasked.

11-13

11.3.2 IACK Pin

11-14

On the 'C209, the interrupt acknowledge signal is available at the external
IACK pin. The CPU generates this signal while it fetches the first word of any
of the interrupt vectors, whether the interrupt was requested by hardware or
by software. IACK is not affected by wait states; IACK goes low only on the first
cycle of the read when wait states are used. At reset, the interrupt acknowl-
edge signal is generated in the same manner as for a maskable interrupt.

Your external hardware can use the IACK signal to determine when the pro-
cessor acknowledges an interrupt. Additionally, when IACK goes low, the
hardware can sample the address pins (A15—-A0) to determine which interrupt
the processor is acknowledging. Since the interrupt vectors are spaced apart
by two words, address pins A1-A4 can be decoded at the falling edge of IACK
to identify the interrupt being acknowledged.

11.4 'C209 On-Chip Peripherals
The 'C209 has these on-chip peripherals:

1 Clock generator. The clock generator is fundamentally the same on all
'C20x devices, including the 'C209. However, the 'C209 is limited to the
two clock modes described in section 11.4.1.

[Timer. The timer is also fundamentally the same. The difference here is
that the timer control register (TCR) on the 'C209 does not offer bits for
configuring timer emulation modes. Section 11.4.2 describes the 'C209
TCR.

[J Wait-state generator. The wait-state generators of the 'C20x devices
operate similarly; however, the ’'C209 wait-state generator is different from
that of other 'C20x devices in these ways:

B It offers zero or one wait states (not zero to seven).

B It cannot produce separate wait states for the lower (0000h—7FFFh)
and upper (8000h—FFFFh) halves of program space.

B Itprovides a bitfor enabling or disabling address visibility mode. In this
mode (not available on other 'C20x devices), the 'C209 passes the
internal program address to the external address bus when this bus is
not used for an external access.

The 'C209 generator is programmable by way of the 'C209 wait-state
generator control register (WSGR) and is described section 11.4.3.

11.4.1 'C209 Clock Generator Options

The 'C209 includes two clock modes: divide-by-2 (+2) and multiply-by-2 (x2).
The =2 mode operates the CPU at half the input clock rate. The x2 option
doubles the input clock and phase-locks the output clock with the input clock.
To enable the +2 mode, tie the CLKMOD pin low. To enable the x2 mode, tie
CLKMOD high. For each clock mode, Table 11-7 shows the generated CPU
clock rate and shows the state of CLKMOD, the internal oscillator, and the
internal phase lock loop (PLL).

Notes:
[Change CLKMOD only while the reset signal (RS or RS) is active.

[J The PLL requires approximately 2200 cycles to lock the output clock
signal to the input clock signal. When setting the x2 mode, keep the reset
(RS or RS) signal active until at least three cycles after the PLL has
stabilized.

11-15

Table 11-7. ’'C209 Input Clock Modes

Clock Mode CLKOUT1 Rate CLKMOD Oscillator PLL
-2 CLKOUT1 = CLKIN +~2 0 Enabled Disabled
x 2 CLKOUT1 = CLKIN x 2 1 Disabled Enabled

Remember the following points when configuring the clock mode:

[0 The modes cannot be configured dynamically. After you change the level
on CLKMOD, the mode is not changed until a hardware reset is executed
(RS low or RS high).

(1 The clock doubler mode uses an internal phase-locked loop (PLL) that re-
quires approximately 2200 cycles to lock. Delay the rising edge of RS (or
the falling edge of RS) until at least three cycles after the PLL has stabi-
lized. When the PLL is used, the duty cycle of the CLKIN signal is more
flexible, but the minimum duty cycle should not be less than 10 nanosec-
onds. When the PLL is not used, no phase-locking time is necessary, but
the minimum pulse width must be 45% of the minimum clock cycle.

11.4.2 'C209 Timer Control Register (TCR)

Figure 11-4 shows the bit fields of the 'C209 TCR, and descriptions of the bit
fields follow the figure.

Figure 11-4.°C209 Timer Control Register (TCR) — I/O Address FFFCh

15-10 9-6 5 4 3-0
Reserved PSC TRB TSS TDDR
0 R/W-0 R/W-0 W-0 R/W-0

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (-) is value after reset.

Table 11-8. ’'C209 TCR — I/O Address FFFCh Bit Descriptions

Bit
No. Name Function
15-10 Reserved TCR bits 10-15 are reserved and are always read as 0s.
9-6 PSC Timer prescaler counter. These four bits hold the current prescale count for the

timer. For every CLKOUT1 cycle that the PSC value is greater than 0, the PSC
decrements by one. One CLKOUT1 cycle after the PSC reaches 0, the PSC is
loaded with the contents of the TDDR, and the timer counter register (TIM) decre-
ments by one. The PSC is also reloaded whenever the timer reload bit (TRB) is
set by software. The PSC can be checked by reading the TCR, but it cannot be
set directly. It must get its value from the timer divide-down register (TDDR). At
reset, the PSC is set to 0.

11-16

Table 11-8. 'C209 TCR — I/O Address FFFCh Bit Descriptions (Continued)

Bit
No. Name Function

5 TRB Timer reload bit. When you write a 1 to TRB, the TIM is loaded with the value in
the PRD, and the prescaler counter (PSC) is loaded with the value in the timer
divide-down register (TDDR). The TRB bit is always read as zero.

4 TSS Timer stop status bit. TSS is a 1-bit flag that stops or starts the timer. To stop the
timer, set TSS to 1. To start or restart the timer, set TSS to 0. At reset, TSS is
cleared to 0 and the timer immediately starts.

3-0 TDDR Timer divide-down register. Every (TDDR + 1) CLKOUT1 cycles, the timer counter

register (TIM) decrements by one. At reset, the TDDR bits are cleared to 0. If you
want to increase the overall timer count by an integer factor, write this factor mi-
nus one to the four TDDR bits. When the prescaler counter (PSC) value is 0, one
CLKOUTZ1 cycle later, the contents of the TDDR reload the PSC, and the TIM
decrements by 1. TDDR also reloads the PSC whenever the timer reload bit
(TRB) is set by software.

11.4.3 'C209 Wait-State Generator

As with other 'C20x devices, the 'C209 offers two options for generating wait
states:

[J The READY signal. With the READY signal, you can externally generate
any number of wait states.

[The on-chip wait-state generator. With the 'C209 wait-state generator, you
can internally generate zero or one wait state.

The 'C209 wait-state generator inserts a wait state to a given memory space
(data, program, or I/O) if the corresponding bitin WSGR is setto 1, regardless
of the condition of the READY signal. As with other 'C20x devices, the READY
signal can then be used to further extend wait states. The WSGR control bits
are all setto 1 by reset, so that the device can operate from slow memory after
reset. To avoid bus conflicts, writes from the 'C209 always take two CLKOUT1
cycles each.

To control the wait-state generator, you read from or write to the wait-state gen-
erator control register (WSGR), mapped to 1/O memory location FFFFh.
Figure 11-5 shows the register’s bit layout, and descriptions of the bits follow.
The WSGR also enables or disables address visibility mode.

11-17

Figure 11-5.’C209 Wait-State Generator Control Register WSGR) — I/O Address FFFFh

15-4 3 2 1 0
Reserved AVIS ISWS DSWS | PSWS
0 Ww-1 w-1 W-1 Ww-1

Note: 0 = Always read as zeros; W = Write access; value following dash (-) is value after reset.

Table 11-9. ’'C209 WSGR — I/O Address FFFFh Bit Descriptions

Bit
No. Name Function

15-4 Reserved Bits 15—4 are reserved and are always read as 0Os.

3 AVIS Address visibility mode. AVIS = 1 enables the address visibility mode of the de-
vice. In this mode, the device provides a method of tracing internal code opera-
tion: it passes the internal program address to the address bus when this bus is
not used for an external access. At reset, AVIS is set to 1. For production sys-
tems, the AVIS bit should be cleared to 0 to reduce power and noise. (AVIS does
not generate a wait state.)

2 ISWS I/O-space wait-state bit. When ISWS = 1, one wait state will be applied to all
reads from off-chip I/O space. When ISWS = 0, no wait states are generated for
off-chip 1/0 space. At reset, this bit is set to 1.

1 DSWS Data-space wait-state bit. When DSWS = 1, one wait state will be applied to all
reads from off-chip data space. When DSWS = 0, no wait states are generated for
off-chip data space. At reset, this bit is set to 1.

0 PSWS Program-space wait-state bit. When PSWS = 1, one wait state will be applied to
all reads from off-chip program space. When PSWS = 0, no wait states are gener-
ated for off-chip program space. At reset, this bit is set to 1.

11-18

Appendix A

Register Summary

For the status and control registers of the 'C20x devices, this appendix
summarizes:

[Their addresses
[Their reset values
] The functions of their bits

Topic Page
Al Addressesand ResetValues A
A.2 Register Descriptions A-E

A-1

A.1 Addresses and Reset Values

The following tables list the 'C20x registers, the addresses at which they can
be accessed, and their reset values. Note that the registers mapped to internal
I/O space on the 'C209 are at addresses different from those of other 'C20x
devices. In addition, the 'C209 wait-state generator control register has a dif-
ferent reset value because there are only four control bits in the register.

Table A-1. Reset Values of the Status Registers

Name Reset Value (Binary) Description
STO XXX0 X11X XXXX XXXX Status register 0
ST1 XXX0 X111 1111 1100 Status register 1

Notes: 1) Noaddresses are given for STO and ST1 because they can be accessed only by the CLRC, SETC, LST, and SST
instructions.

2) X: Reset does not affect these bits.

Table A—2. Addresses and Reset Values of On-Chip Registers Mapped to Data Space

Name Data-Memory Address Reset Value Description

IMR 0004h 0000h Interrupt mask register

GREG 0005h 0000h Global memory allocation register
IFR 0006h 0000h Interrupt flag register

Table A—3. Addresses and Reset Values of On-Chip Registers Mapped to

I/O Space
I/O Address

Name 'C209 Other 'C20x Reset Value Description
CLK - FFE8h 0000h CLKOUT1-pin control (CLK) register
ICR - FFECh 0000h Interrupt control register
SDTR - FFFOh xxxxh Synchronous data transmit and receive register
SSPCR - FFF1h 0030h Synchronous serial port control register
ADTR - FFF4h xxxxh Asynchronous data transmit and receive register
ASPCR - FFF5h 0000h Asynchronous serial port control register
IOSR - FFF6h 18xxh I/O status register

Note: Anxintheresetvalue represents one to four bits that are either not affected by reset or dependent on pin levels at reset.

Table A-3. Addresses and Reset Values of On-Chip Registers Mapped to
I/0O Space (Continued)

I/O Address
Name 'C209 Other 'C20x Reset Value Description
BRD - FFF7h 0001h Baud-rate divisor register
TCR FFFCh FFF8h 0000h Timer control register
PRD FFFDh FFF9h FFFFh Timer period register
TIM FFFEh FFFAQ FFFFh Timer counter register
WSGR FFFFh FFFCh OFFFh Wait-state generator control register

Note: Anxintheresetvalue represents one to four bits that are either not affected by reset or dependent on pinlevels at reset.

A.2 Register Descriptions

A-4

The following figures summarize the content of the 'C20x status and control
registers that are divided into fields. (The other registers contain no control
bits; they simply hold a single 16-bit value.) Each figure in this section provides
information in this way:

[d The value shown in the register is the value after reset. If the value of a
particular bit is not affected by reset or depends on pin levels at reset, that
bit will contain an X.

[0 Each unreserved bit field or set of bits has a callout that very briefly de-
scribes its effect on the processor.

[Eachnon-reserved bit field or set of bits is labeled with one or more of the
following symbols:

B Rindicates that your software can read the bit field but cannot write to
it.

B W indicates that your software can read the bit field and write to it.

Bm WAI1C indicates that writing a 1 to the bit field clears it to O; writing a 0
has no effect.

When both read access and write access apply to a bit field, two of these
symbols are shown, separated by / (a forward slash): R/W or R/W1C.

(1 Where needed, footnotes provide additional information for a particular
figure.

Status Register STO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X X X 0 X 1t 1 X X X X X X X X X
ARP ov OVM INTM DP
R/IW R/IW RIW R/IW

! Overflow mode

1 Overflow mode selected

Overflow flag
0 Flag is reset
1 Overflow detected in accumulator

Auxiliary register pointer
Selects the current auxiliary register
0,1,2,3,4,5,6,0r7)

 This reserved bit is always read as 1. Writes have no effect.

0 Accumulator results overflow normally.

Data page pointer
Selects the current page
0,1,2,..,511) in

data memory

Interrupt mode
0 All unmasked interrupts enabled
1 All unmasked interrupts disabled

Status Register ST1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|x X x‘ 0 ‘ X ‘ 1 ‘ 1 ‘1T‘1T‘1T‘1T‘ 1 ‘1T‘1‘r‘o 0
ARB CNF TC SXM C XF PM
R/W R/W R/W R/W R/W R/W

Sign-extension mode
0 Sign extension suppressed
1 Sign extension mode selected

Test/control flag
Holds results of various software tests

DARAM BO configuration

00 No shift

01 Leftshiftof1

10 Left shift of 4

11 Right shift of 6, sign extended

1 Product shift mode

XF pin status

0 DARAM BO mapped to data memory 0 XF pin low
1 DARAM B0 mapped to program memory 1 XF pin high
Auxiliary register pointer buffer Carry bit

Holds previous ARP value

0 Carry not generated/borrow generated

1 Carry generated/borrow not generated

T These reserved bits are always read as 1s. Writes have no effect.

'‘C20x Interrupt Flag Register (IFR) — Except 'C209 — Data-Memory Address 0006h

15 6 5 4 3 2 1 0
0] 0 \ 0 \ 0 \ 0 \ 0 0
Reserved T TXRXINT XINT RINT TINT INT2/INT3 HOLD/INT1

. RIw1C R/W1C : R/W1C R/W1C " R/IW1C R/W1C

: Receive interrupt flag
' 0 Interrupt RINT not pending HOLD/INTL1 flag
‘ 0 HOLD/INT1 not pending

1 HOLD/INT1 pending

1 Interrupt RINT pending

Transmit interrupt flag INT2/INT3 flag
2 :Eg:ﬂg: im$ Bg;g;rgdmg 0 Neither INT2 nor INT3 pending
1 INT2 and/or INT3 pending
Transmit/receive interrupt flag Timer interrupt flag
0 Interrupt TXRXINT not pending 0 Interrupt TINT not pending
1 Interrupt TXRXINT pending 1 Interrupt TINT pending

T These reserved bits are always read as 0s. Writes have no effect.

Interrupt Flag Register (IFR) — 'C209 — Data-Memory Address 0006h

15 4 3 2 1 0
0 o | o | o | o |
Reserved t TINT INT3 INT2 INTL

'

' RIWIC ‘RANlC 'RIWIC |RMWIC

1 INT1 flag
! 0 INT1 not pending
1 INT1 pending

1 INT2 flag

! 0 INT2 not pending
. INT3flag 1 INT2 pending
' 0 INT3 not pending

‘ 1 INT3 pending

Timer interrupt flag
0 Interrupt TINT not pending
1 Interrupt TINT pending

T These reserved bits are always read as 0s. Writes have no effect.

Interrupt Mask Register (IMR) — Except 'C209 — Data-Memory Address 0004h

15 6 5 4 3 2 1 0
0 o | o | o | o | 0 0

Reserved T TXRXINT ~ XINT RINT TINT INT2INT3 HOLD/INTL

" RIW RW + RIW RIW - RW RIW

Receive interrupt mask }

0 Interrupt RINT masked ' HOLD/INT1 mask

1 Interrupt RINT unmasked 1 0 HOLD/INT1 masked

‘ 1 HOLD/INTZ1 unmasked

Transmit interrupt mask INT2/INT3 mask

0 Interrupt XINT masked 0 INTZ and INT3 masked

1 Interrupt XINT unmasked 1 INT2 and INT3 unmasked
Transmit/receive interrupt mask Timer interrupt mask
0 Interrupt TXRXINT masked 0 Interrupt TINT masked
1 Interrupt TXRXINT unmasked 1 Interrupt TINT unmasked

t These reserved bits are always read as 0s. Writes have no effect.

Interrupt Mask Register (IMR) — 'C209 — Data-Memory Address 0004h

15 4 3 2 1 0
0 | o | o | o | o |
Reserved T TINT INT3 INT2 INT1
L RIW ‘ RIW RIW RIW
3 [
: INT1 mask

0 INT1 masked
INT2 mask 1 INT1 unmasked

0 INT2 masked
TNT3 mask 1 INT2 unmasked

0 INT3 masked
1 INT3 unmasked

Timer interrupt mask
0 Interrupt TINT masked
1 Interrupt TINT unmasked

T These reserved bits are always read as 0s. Writes have no effect.

Interrupt Control Register (ICR) — I/O Address FFECh

INTZ flag 1 INT3 request will reach CPU.

0 INT2 not pending

15 5 4 3 2 1 0
0 o | o 0 0 0
Reserved T MODE FINT3 FINT2 MINT3 MINT2
RIW ' RIW1C R/W1C ' RIW RIW
| 1 -
| ! INT2 mask
1 ! 0 INT2 request will not reach CPU.
1 INT3 mask 1 INT2 request will reach CPU.
1 0 INT3 request will not reach CPU.

1 INT2 pending
INT3 flag

0 INT3 not pending

1 INT3 pending

HOLD/INT1 pin mode

0 Double-edge mode. HOLD/INT1 pin both negative- and positive-edge sensitive
1 Single-edge mode. HOLD/INT1 pin only negative-edge sensitive

T These reserved bits are always read as 0s. Writes have no effect.

Timer Control Register (TCR) — Except 'C209 — I/O Address FFF8h

15 12 11 10 9 6 5 3 0
0 | o | o 0
Reserved T FREE SOFT PSC TRB TSS TDDR
3 R/W R/W W R/W

4
0 0 0
S

Timer reload bit
Write 1 to reload timer counters.
Always read as 0

: Timer divide-down register
! Holds next value to be loaded into PSC

Timer prescaler counter
Holds current prescale count for the timer

Timer stop status bit
0 Start or restart timer.

Emulation/run mode)
1 Stop timer.

0 O Stop after the next decrement of the TIM (hard stop).
0 1 Stop after the TIM decrements to O (soft stop).

1 0 Freerun

1 1 Freerun

t These reserved bits are always read as 0s. Writes have no effect.

Timer Control Register (TCR) — 'C209 — I/O Address FFFCh

15 10 9-6 5 4 30
0 0 | o | o 0
Reserved T PSC TRB TSS TDDR
' RIW RIW W RIW

Timer divide-down register
Holds next value to be loaded into the PSC

Timer stop status bit

0 Start or restart timer.
1 Stop timer.

Timer reload bit
Write 1 to reload timer counters. Always read as 0.

Timer prescaler counter
Holds the current prescale count for the timer

T These reserved bits are always read as 0s. Writes have no effect.

Wait-State Generator Control Register \(WSGR) — Except 'C209— I/O Address FFFCh

15 14 13 11 10 9 7 6 5 4 3 2 1 0
0 1 1 1] 1 1 1|1 1 1|1 1 1

Reserved f ISWS DSWS PSUWS PSLWS
el ' RIW | RIW RIW

1/0 wait states

PRPRPPFPOOOO
PFRPOOFRPFLPOO

POFRPOFRPOFRO

0 wait states
1 wait state

2 wait states
3 wait states
4 wait states
5 wait states
6 wait states
7 wait states

Data wait states

PRPRPRPPOOOO
PRPOORFREFLOO
RPOFRPOFRPROFrO

0 wait states
1 wait state

2 wait states
3 wait states
4 wait states
5 wait states
6 wait states
7 wait states

Upper program
wait states

PRPRPRPPOOOO

T These reserved bits are always read as 0s. Writes have no effect.

RPRPOORRKLROO
RFOROROR

0

0 wait states
1 wait state

2 wait states
3 wait states
4 wait states
5 wait states
6 wait states
7 wait states

Lower program
wait states

PRPRPRPPOOOO
PRPOOFRPFLPOO
POFRPOFRPORFRO

0 wait states
1 wait state

2 wait states
3 wait states
4 wait states
5 wait states
6 wait states
7 wait states

Wait-State Generator Control Register \WSGR) — 'C209 — I/O Address FFFFh

15 2 1 0
0 E 1 1
Reserved T AVIS ISWS DSWS PSWS
---------------------- . RIW RIW RIW RIW

I/0 wait states
0 | 0 wait states

1 1 1 wait state

Address visibility mode

0 Address visibility mode disabled
1 Address visibility mode enabled

T These reserved bits are always read as 0s. Writes have no effect.

A-10

Data wait states

0 | O wait states
1| 1 wait state

Program wait states

0 | 0 wait states
1| 1 wait state

CLK Register — I/O Address FFE8h

15 1 0
0 | 0 I
Reserved t CLKOUT1

‘ RIW

CLKOUT1 pin control
0 CLKOUT1 signal available at CLKOUT1 pin
1 CLKOUT1 signal not available at CLKOUT1 pin

T These reserved bits are always read as 0s. Writes have no effect.

A-11

Synchronous Serial Port Status Register (SSPST) — I/O Address FFF2h

15 14 13 12 11 10 9 8
[o [o o | o [o] o [o | o |
DRP FSN FSXOX FSXST Reserved CLN CLXOX PRSEN
Status

Prescale clock enable

0 Disable prescaler

0 FSX rate is data-write rate in FIFO 1 Enable prescaler

; Internal FSX selection bit
' 1 FSXis from prescaler FSXCT
' Input clock source bit (GPC)

0 Input clock is CLOCKOUT1
1 Input clock is CLKX

Frame sync polarity :
0 Normal polarity 1
1 Inverted polarity |

Polarity for shift clock

0 Normal polarity
1 Inverted polarity

Status of DR pin

Setto 1 if FSXCT prescaler/
GP counter reaches zero.

7 6 5 4 3 2 1 0
TX FIFO Status RX FIFO Status SGNEX BYTE
\/ I
Receive FIFO status Data word size
000 FIFO empty 0 16 bits
001 FIFO has 1 word 1 8 hits
010 FIFO has 2 words
Transmit FIFO status 011 FIFO has 3 words Sign extension
000 FIFO empty 100 FIFO has 4 words 0 Disable sign extension
001 1 word to transmit 1 Enable sign extension

010 2 words to transmit
011 3 words to transmit
100 4 words to transmit

A-12

Synchronous Serial Port Multichannel Control Register (SSPMC) — I/O Address FFF3h

15 14

SSPRST

SSP reset
0 No action
1 Reset

Reserved

SPI CH1 CHO MMODE GPI CHLT GPC

Multichannel mode
0 Disable multichannel option
1 Enable multichannel option

Select number of channels
0 0 1channel
0 1 2channels
1 0 3channels
1 1 4 channels

SPI mode

0 Disable SPI mode
1 Enable SPI mode

GPC counter bit

1 Prescalers used as 16-bit GP counter

16-bit counter halt
0 Normal operation (counter running)
1 Stop counter

GPC counter interrupt
0 GPC has no interrupts

0 Prescalers used for FSX and CLKX scaling

1 Selects SSP’s transmit interrupt as GPC interrupt

A-13

Synchronous Serial Port Counter Register (SSPCT) — I/O Address FFFBh

15

8 7

FSXCT

8-bit prescaler value for
frame-sync prescaler or
high byte for GP counter

A-14

8-bit prescaler value for
CLKX prescaler or
low byte for GP counter

Program Memory Status Register (PMST) — I/O Address FFE4h

15 14 4 3 2 1 0
0 X X 1 1 X
FRDN

Reserved LEVEXT8 DON PON MP/MC

Latches the level of
the EXT8 pin at reset

Fast read enable

0 Use RD asread
1 Use inverted R/W as read

Microprocessor/Microcomputer

0 Microcomputer
1 Microprocessor

SARAM mapping

0 0 SARAM not mapped

0 1 SARAM in PM at 8000h
1 0 SARAM in DM at 800h

1 1 SARAM in PM and DM

A-15

Synchronous Serial Port Control Register (SSPCR) — I/O Address FFF1h

15 14 13 12 11 10 9 8
| 0] 0 0] 0 \ 0 \ 0 0] 0 |
FREE SOFT TCOMP RENE FT1 FTO FR1 FRO
j/ 'R %
R/W R/W : R/W + R/W R/W R/W

1 Receive FIFO buffer status
! 0 Receive buffer empty.
| 1 Receive buffer holds data.

Transmit FIFO buffer status
0 Transmit buffer empty.
1 Transmit buffer not empty.

Emulation/run mode

0 0 Immediate stop

0 1 Stop after completion of word
1 0 Freerun

1 1 Freerun

4

Generate RINT when . . .

0 0 Receive buffer not empty.

0 1 Receive buffer holds 2 or more words.
1 0 Receive buffer holds 3 or 4 words.

1 1 Receive buffer full.

Generate XINT when . . .
0 O Transmit buffer can accept 1 or more words.
0 1 Transmit buffer can accept 2 or more words.
1 0 Transmit buffer can accept 3 or 4 words.

1 1 Transmit buffer empty (can accept 4 words).

7 6 5 4 3 2 1 0
[o [o | 1 | o | o | o | o |
ov RRST TXM MCM FSM DLB
R/W RIW " RIW R/W ! R/W R/W

Receiver reset

0 Receiver in reset
1 Receiver enabled

Transmitter reset

0 Transmitter in reset
1 Transmitter enabled

CLKR pin status
0 Level on CLKR pin is low.
1 Level on CLKR pin is high.

Overflow flag

0 No overflow condition
1 Overflow detected in receive buffer

A-16

Digital loopback mode

3 0 Digital loopback mode disabled
| 1 Digital loopback mode enabled
Frame sync mode

0 Continuous mode
1 Burst mode

Transmit clock source

.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
U
I
! 0 External clock source
! 1 Internal clock source
I

Transmit frame sync source

0 External frame sync source
1 Internal frame sync source

Asynchronous Serial Port Control Register (ASPCR) — I/O Address FFF5h

15 14 13 12 11 10 9 8
0 0 0 0 0 ‘ 0 |
FREE SOFT URST Reserved t DIM TIM
hd R/W : R/W R/W
R/W J‘ R/W e e e e oo o |
Port reset ‘

! 0 Portin reset
‘ 1 Port enabled
Emulation/run mode

0 0 Immediate stop

0 1 Process stops after character completion.
1

1

Transmit interrupt mask

Delta interrupt mask
0 Disables delta interrupts

0 Disables transmit interrupts
1 Enables transmit interrupts

0 Free run 1 Enables delta interrupts
1 Freerun
7 6 5 4 3 2 1 0
| o | o | o 0 o | o [o 0
RIM STB CAD SETBRK Clo3 ClOo2 Clo1 ClO0
RIW

. RW RIW " RIW RIW

0 TX output forced high

‘ TX pin level between transmissions
! 1 TX output forced low

Auto-baud alignment
0 Disables auto-baud alignment

' Number of stop bits

: 0 One stop bit for transmission and reception

' 1 Two stop bits for transmission and reception
Receive interrupt mask

0 Disables receive interrupts
1 Enables receive interrupts

1 Enables auto-baud alignment when ADC =0

RIW RIW . RIW

100 pin configuration

101 pin configuration
0 101 configured as input
1 101 configured as output

1 102 pin configuration

! 0 102 configured as input

\ 1 102 configured as output
103 pin configuration

0 103 configured as input

1 103 configured as output

t These reserved bits are always read as 0s. Writes have no effect.

0 100 configured as input
1 100 configured as output

A-17

I/O Status Register (IOSR) — I/O Address FFF6h

15 14 13 12 11 10 9 8
L o | o [o [&+ [1 | o | o [o |
Reservedt ADCH E: TEMT THRE} FE? OE* DR?

R/W1C

| RIWIC R

1 Transmit empty indicator

! 0 ADTR and/or AXSR are full.

' 1 ADTR and AXSR are empty; ADTR is
: ready for a new character to transmit.

Break interrupt indicator
0 Normal operation
1 Break has been detected on RX pin.

A detect complete bit
0 Normal operation.
1 CAD bit of ASPCRis1and Aor a
is received in ADTR.

| RIWIC R

] Data ready indicator for receiver

' 0 Receive register empty

] 1 Character has been completely
w received.

Receive register overrun indicator

0 No overrun error detected.

1 Last character in ADTR was not read
before the next character overwrote it.

Framing error indicator
0 No framing error detected.
1 Character received did not have a valid stop bit.

Transmit register empty indicator

0 Transmit register not empty. Port operation normal.
1 Transmit register empty. Port ready to receive new
character.

7 6 5 4 3 2 1 0
| x | x | x | x | x | x | x X
DIO3# DIO2# DIO1# DIOO# 1038 1028 1018 1008
-+ RIWIC RIWIC " RIWIC RWIC -RW | RW . RIW RIW

1 Change detect bit for 100
1 0 No change detected on 100
| 1 Change detected on 100

Change detect bit for 101
0 No change detected on 101
1 Change detected on 101

Change detect bhit for 102
0 No change detected on 102
1 Change detected on 102

Change detect bit for 103
0 No change detected on 103
1 Change detected on 103

T This reserved bit is always read as 0. Writes have no effect.

: 100 pin status
! 0 100 signal low

1 100 signal high

0 101 signal low
1 101 signal high

: |01 pin status
1 102 pin status

] 0 102 signal low
' 1 102 signal high
03 pin status

0 103 signal low

1 103 signal high

¥ When any one of these bits changes in response to the specified event, an interrupt request is generated on the TXRXINT line.
8 This bit can be written to only when the corresponding pin is configured (in the ASPCR) as an output.

A-18

TMS320F206 Flash Serial Loader

The TMS320F206 devices are shipped with a serial bootloader code in the
flash O array. This appendix explains the memory map, serial port
connections, and a level 1 flow chart for the 'F206 serial loader. There is also
a functional description section that contains information regarding software
modules, operation, and host utility loading status/modes for the 'F206.

Topic Page
B.1 TMS320F206 Flash Serial Loader Features — B
B.2 Functional Description B-El
B.3 Serial Loader Code

B-1

B.1 TMS320F206 Flash Serial Loader Features

The serial loader for the TMS320F206 device facilitates initial programming
of flash arrays. This section describes functional aspects of the serial loader
and gives a quick start for flash programming.

B.1.1 Revision 2.0 Software Features

See the Revision 2.0 serial flash programming and PC/host serial
communication utilities on the Tl web for details and source at www.ti.com
under C2000 DSP devices.

B.1.2 'F206 Memory Map for the Serial Loader

Figure B—1. 'F206 Memory Map and Serial Port Connections

—
UART
Flash O array
serial loader TMS320F206
level 1T
eve SSP

9
8000h —PM >

or SARAM
0800h —DM serial loader
Flash 1 array level 2%
(COFFA.out)

8400h —PM
or Flash
B1 RAM 0CO00h —-DM program
flash variables data
7FFFh PC/host

TLevel 1 — Program shipped with Flash 0 array
fLevel 2 — Program that will be loaded using Level 1 code

B.2 Functional Description

B.2.1 Software Modules

B.2.2 Operation

The flash serial loader utility is intended for programming the on-chip flash
(32k) of the TMS320F206 device. The flash serial loader utility contains three
software modules:

(] Serial Loader Level 1
(1 Host Serial Communication Utility
(] Serial Loader Level 2

The serial loader level 1 module resides in the on-chip flash, specifically flash
0 array at 0x0000h. All the 'F206 devices, rev. 2.0 and above, shipped from
T1 will contain this code pre—programmed in flash 0. The level 1 module’s serial
communication code communicates through the on-chip UART to a host
computer to load any application code to its internal memory.

The host serial communication utility module (F206sldr.exe) is a Windows '95
program for IBM/PC compatibles which use PC COM ports to communicate
with 'F206 devices. The host utility communicates with level 1 code on the
'F206 device to download flash algorithms and flash data to be programmed.

The serial loader level 2 module contains the flash control and flash algo-
rithms. The level 2 code is loaded into internal memory using the level 1 code
and host utility.

Figure B—1 shows atypical configuration between the 'F206 device and a host
system. At power on reset, the level 1 software resident in the 'F206'’s on-chip
flashinitializes the UART or the SSP. This initialization is contingent on the sta-
tus of the BIO pin. If the BIO pinis high, the UART loader is enabled. The UART
loader enables auto-baud detect logic and waits for characters through the
UART port. Figure B-2 explains the software logic in detail.

The host PC sends ascii character 'a’ as the first character through the serial
link to the 'F206. On receipt of a valid 'a’ the level 1 software logic locks to
incoming data rate, updates its baud rate register, and echoes character 'a’
back to the host. After receiving a valid echo from the DSP, the host sends
the level 2 algorithm code to the 'F206. The level 2 code takes control of the
DSP core. The level 2 code handshakes with the host to receive flash data for
flash programming.

B.2.3 Host Utility Loading Status and Modes

The host utility communicates with level 2 code until the programming is done
and updates the communication status window (both successful completion

B-3

and error code, if any). The host activates its communication status through
the DTR and RTS signals on its serial port as well as on the host monitor. The
DTR signal goes low when it receives a valid echo of character 'a’ from the
'F206 device. This indicates that band lock is successful and DTS remains low
until the flash programming is complete. If during the loading process any error
occurs, the RTS signal goes active low. It remains low indicating that there was
an error in the current loading process. If LEDs (light emitting devices) are add-
ed to these signals, they provide visual indication of loading status at the re-
mote end (at the 'F206 device side).

The host software runs in either continuous mode or single device mode. In
the single device mode, the host program halts after loading/programming the
device. In the continuous mode, the host software resends character 'a’ and
waits for a valid echo to proceed with the loading process. This logic runs con-
tinuously until the program is aborted. The continuous mode enables multiple
device programming without manual interaction on the host terminal.

Figure B-2. TMS320F206 Flash Serial Loader — 'F206 Level 1 Flow Chart

F206 serial loader
level 1

Initialize DSP,
BOin PM

BIO pin=0 Enable UART loader
only
2
v
Receive UART data
Enable SSP loader
burst mode,
16-bitword,
CLKX/R & FSX/R N
are external
Yes
Echo “a”
¥
Receive header code
Echo every
characterreceived
1
Receive serial data

Header_done
=17

Receive serial data

:

Move code to
destinationaddress

Code
length=0
?

No

Yes

Disableinterrupts
X

Branch to
destinationaddress
(run address)

Done

B.3 Serial Loader Code

B.3.1 'F206 Serial Loader Code — Level 1

* Program : usload_2.asm *

* Function: F206 Serial loader Code —Level 1 *

* Loads code/data either through UART or SSP *

* if BIO pin is low at boot/reset time *

* Uart starts in autobaud mode, receive *

* "a” or "A"as first character. *

* The cpu will wait indefinitely for first ~ *

* character to be "a” or"A”. On receipt of "a” or*

* "A” uart data will be loaded as valid code. *

* Receive data format : *

* First character ~ "A” or "a” *

* Header : Destination/Load/Run *

* start address 1 word *

* Program code/length 2 word *

* Program code/data from 3word *

* After data load the, interrupts will be *

* disabled and PC will jump to the Destination *

* /Load/Run address. *

* *

* Revision : 1.1 *

* Written by: Sam Saba/ASP/St, TX Date: 7/17/97 *
title " Serial loader” ; Title
.copy "finit.h” ; Variable and register declaration
text
b start
b inptl ; INT1—These interrupt vector locations

; are with RET, for safety.

b inpt23 ; INT2/INT3 — The exact interrupt routine address

need to be specified here when
interrupt routines are used

b time ; TINI Timer interrupt
b codrx ; RX_Syncinterrupt
b codtx ; TX_SYNC interrupt
b uart ; TXIRX Uart port interrupt
start: setc CNF : Block BO in PM
Idp #0h :set DP=0
setcINTM ; Disable all interrupts
* UART initialization *
splk#0fffth,ifr ; clearinterrupts
splk#0000h,B2S_0
outB2S_0, wsgr : Set zero wait states
splk#0006h,B2S_0
outB2S_0, pmst : Set SARAM in DM and PM

*Uartinitialization with autobaud enable
splk#0c0a0h,B2S 0 ;resetthe UART by writing O
outB2S_0, aspcr ; 1 stop bit, rx interrupt, input i/o
splk#0e0a0Oh,B2S_0 ;CDC=1enable

B-6

outB2S_0,aspcr

splk#4fffh,B2S_0 : enable ADC bit
outB2S_0,iosr : enable auto baud
splk#20h,imr ; Enable UART interrupt only
bcndsspld,bio :1f BlO is low use SSP loader
b uartld
*SSP initialization, if BIO pin = 0 at boot/reset, else UART loader enabled
sspld: splk#0c00ah,B2S_0 ; Initialize SSP in Burst mode
outB2S_0,sspcr ; External Clocks, 16 bit word
splk#0c03ah,B2S 0 ; Interrupt on 1 word in FIFO
outB2S_0, sspcr
splk#8h,imr ; Enable SSP RX interrupt only
uartld :lacc#0
lararl,#B2 ; Point B2_RAM start address
mar*,arl
rpt#16
sacl *+ ; Clear B2 memory
lararl,#00h ; Clear pointers
larar2,#00h :
larar3,#00h
clrcintm
wait: idle ;
bitB2FM_8,15 ; Wait until Data_move ready flag

bcndwait,ntc
splk#0,B2FM_8

lac|B2PA_2 ; Load destination address
tbiwB2PD_5 : Move data to the current destination address
add #1 ;Incrementdestination address+1
saclB2PA_2 : save next destination address
banz wait,*—
setcintm ; Disable interrupts
laclB2PA_3 ; Pointto Destination/Load/Run address
bacc ; Branch to Program address
b wait

uart:
inB2S_0,aspcr
bitB2S_0,10 ;Check CDC =1
bcndnrev,ntc :If O, start receive, autobaud done
inB2S_1,iosr ; load input status from iosr
bitB2S 1,1 : check if auto baud bit is set,else return
bcndnauto,ntc ; and wait for Auto baud detect receive
splk#4000h,B2S_1 ; Auto baud detect done
outB2S_1,iosr : clear ADC
splk#0e080h,B2S 1
outB2S 1, aspcr : Disable CDC bit/ auto baud
inB2S_1,adtr ; Dummy read to discard "a”
outB2S_1,adtr : Echo back "a”

nauto: inB2S_1,adtr ; Dummy read to clear uart rx buffer
b skip ; Exit and wait for "a”

nrcv: inB2S_0,iosr ; Load input status from iosr
bitB2S 0,7 : bit 8 in the data
bcend skip,ntc :IF DR=0 no echo, return
mar *,arl ; Valid UART data, Point to Word index reg.
bitB2D_6,15 ; Check if bit0 of word index =1,low byte

B-7

bcnd Ibyte,tc

in B2S_1,adtr
out B2S_1,adtr
lacc B2S_1,8
sacl B2D_7

mar *+
sararl,B2D_6
splk #0,B2FM_8
b skip

Ibyte: in B2S_0,adtr

out B2S_0,adtr

lacc B2S_0,0
and #0ffh
orB2D_7

sacl B2PD_5
mar *+

sar arl,B2D_6
bit B2FH_9,15
bcnd smove,tc
lar ar0,#2
cmpr 0

bcnd word2,ntc
sacl B2PA_2
sacl B2PA_3
b skip

word?2: lar ar0,#4

cmpr 0
bend skip,ntc
lar ar2,B2PD_5

sarar2, B2PL_4

splk #1,B2FH_9
b skip

smove: mar *,ar2

splk #1h,B2FM_8

:received!
; No, Hi byte received!
: Echoreceive data
; Align to upper byte
; Save aligned word
:Increment Word Index
; Store high_byte flag
; Reset Data/word move flag as only hi-byte recd!
; wait for next byte
; Receive second byte/low byte
: Echoreceived data

; Clear high byte
; Add high byte to the word
: store 16—bit word at arl
1+
; Save the count
; Check Header_done flag
; No, if 2 words received update Data_move flag

: Store destination/Load/Run address
: Store destination/Load/Run address

; Check if 4 words recvd, update program length
; Program length register
; Else exit
; Yesreceived!,Load PM length in AR2
; Save program length
; Set Header_done flag

; Set UART Data_move ready flag

skip: splk #6600h,B2S_0

out B2S_0,iosr
splk #0020h, ifr
clrc intm

ret

* SSP loader code!
codrx:

B-8

in B2S_0,sdtr
out B2S_0,sdtr
mar *,ar3

mar *+

lar ar0,#1
cmpr O

bcnd pmad,tc
lar ar0,#2
cmpr 0

bend plen,tc
lacc B2S_0,0
sacl B2PD_5,0

splk #1h,B2FM_8

; Clear all Interrupt sources
; Clear interrupt in ifr!

; Load Scratch register
: Echoreceived data
; Set Word index register as ar3
: Increment word index
; Ifword index =1 save Program start address

; Ifindex =2 save Program length

: Store received word
; Set SSP Data_move ready flag

b skips,ar2
pmad: laccB2S_0,0
sacl B2PA 2
sacl B2PA_3
b skips,ar2
plen: larar2,B2S 0
sarar2,B2PL_4
skips: splk #8h,ifr
clrc intm
ret
inptl: ret
inpt23:ret
time: ret
codtx: ret

: Store destinations start address at
; B2PA_2 and B2PA_3

; Store Program length at B2PL_4

; Clear interrupt flag

.end ; Assembler module end directive —optional

B.3.2 ’'F206 Serial Loader Code — Level 1 Only

* Include file with 1/O register declarations *

* For usload_2.asm Serial loader Level 1 only *

* *

* Written by Sam Saba, Tl Houston ~ 4/17/97 *
.mmregs

* On—chip register equates

*Flash controlregisters

f_accessO .set OffeOh

f_accessl .set Offelh

pmst .set Offedh

*CLKOUT

clkl .set Offe8h

*INTERRUPT CONTROL

icr .set Offech

*SYNC PORT

sdtr .set OfffOh

sspcr .set Offflh

*UART

adtr .set Offf4h

aspcr .set Offf5h

iosr .set Offféh

brd .set Offfrh

*TIMER

ter .set Offf8h

prd .set Offf9h

tim .set Offfah

*WAIT STATES

wsgr .set Offfch

*Variables

B2 .set60h

B2S_0 .set B2+0h ; Scratch registers
B2S_1 .setB2+1h

B2PA_2 .set B2+2h ; Program start address
B2PA_3 .set B2+3h ; Program start address
B2PL_4 .set B2+4h ; Program Length
B2PD_5 .set B2+5h ; Program Code/Data
B2D_6 .set B2+6h : Variables

B2D 7 .setB2+7h

B2FM_8 .set B2+8h ; Flag for start Data move — Data_move
B2FH_9 .set B2+9h ; Flag for Header receive — Header_done
B2FD_a .set B2+0ah ; Flag for data move complete — Data_ready
B2FSH .set B2+0bh ; High word check sum
B2FSL .set B2+0ch : Low word check sum

B-10

Appendix C

TMS320C1x/C2x/C20x/C5x
Instruction Set Comparison

This appendix contains a table that compares the TMS320C1x, TMS320C2x,
TMS320C20x, and TMS320C5x instructions alphabetically. Each table entry
shows the syntax for the instruction, indicates which devices support the
instruction, and describes the operation of the instruction. Section C.1 shows
a sample table entry and describes the symbols and abbreviations used in the
table.

The TMS320C2x, TMS320C20x, and TMS320C5x devices have enhanced
instructions; enhanced instructions are single mnemonics that perform the
functions of several similar instructions. Section C.2 summarizes the
enhanced instructions.

This appendix does not cover topics such as opcodes, instruction timing, or
addressing modes; in addition to this book, the following documents cover
such topics in detail:

TMS320C1x User’s Guide (literature number SPRU013)
TMS320C2x User’s Guide (literature number SPRU014)

TMS320C5x User’s Guide (literature number SPRU056)

Topic Page
C.1 Using the Instruction Set Comparison Table —/ C-
C.2 Enhanced INStrUCHONSot C
C.3 Instruction Set Comparison Table — C-

C-1

C.1 Using the Instruction Set Comparison Table

To help you read the comparison table, this section provides an example of a
table entry and a list of acronyms.

C.1.1 An Example of a Table Entry

In cases where more than one syntax is used, the first syntax is usually for di-
rect addressing and the second is usually for indirect addressing. Where three
or more syntaxes are used, the syntaxes are normally specific to a device.

This is how the AND instruction appears in the table:

Syntax

1x | 2x | 2xx | 5x Description

AND dma
AND {ind} [, next ARP]
AND #Ik [, shiff]

vV v v | AND With Accumulator

v oV v Vv | TMS320C1x and TMS320C2x devices: AND the
contents of the addressed data-memory location with
the 16 LSBs of the accumulator. The 16 MSBs of the
accumulator are ANDed with Os.

TMS320C20x and TMS320C5x devices: AND the
contents of the addressed data-memory location or a
16-bit immediate value with the contents of the
accumulator. The 16 MSBs of the accumulator are
ANDed with Os. If a shift is specified, left shift the
constant before the AND. Low-order bits below and
high-order bits above the shifted value are treated as
Os.

The first column, Syntax, states the mnemonic and the syntaxes for the AND
instruction.

The checks in the second through the fifth columns, 1x, 2x, 2xx, and 5x, indi-
cate the devices that can be used with each of the syntaxes.

1x refers to the TMS320C1x devices

2x refers to the TMS320C2x devices, including TMS320C25
2xx refers to the TMS320C20x devices

5x refers to the TMS320C5x devices

In this example, you can use the first two syntaxes with TMS320C1x,
TMS320C2x, TMS320C20x, and TMS320C5x devices, but you can use the
last syntax only with TMS320C20x and TMS320C5x devices.

The sixth column, Description, briefly describes how the instruction functions.
Often, an instruction functions slightly differently for the different devices: read
the entire description before using the instruction.

C.1.2 Symbols and Acronyms Used in the Table

The following table lists the instruction set symbols and acronyms used
throughout this chapter:

Table C-1. Symbols and Acronyms Used in the Instruction Set Comparison Table

Symbol Description Symbol Description

Ik 16-bit immediate value INTM interrupt mask bit

k 8-bit immediate value INTR interrupt mode bit

{ind} indirect address (0)Y] overflow bit

ACC accumulator P program bus

ACCB accumulator buffer PA port address

AR auxiliary register PC program counter

ARCR auxiliary register compare PM product shifter mode

ARP auxiliary register pointer pma program-memory address
BMAR block move address register RPTC repeat counter

BRCR block repeat count register shift, shift, shift value

C carry bit src source address

DBMR dynamic bit manipulation register ST status register

dma data-memory address SXM sign-extension mode bit

DP data-memory page pointer TC test/control bit

dst destination address T temporary register

FO format status list TREGN TMS320C5x temporary register (0-2)
FSX external framing pulse TXM transmit mode status register
IMR interrupt mask register XF XF pin status bit

Based on the device, this is how the indirect addressing operand {ind} is
interpreted:

{ind} 'Cix: {*|*+|*}
'C2x: {*|*+| *~| *O+| *0— | *BRO+ | *BRO-}
"C20x: {*|*+|*|*0+| *0— | *BRO+ | *BRO-}
'C5x: {*|*+|*|*O+| *0— | *BRO+ | *BRO-}

where the possible options are separated by vertical bars (]). For example:
ADD {ind }

is interpreted as:

'C1x devices ADD {* | *+|*}

'C2x devices ADD {*| *+ | *~ | *0+ | *0— | *BRO+ | *BRO-}
'C20x devices ADD {*| *+ | *~ | *0+ | *O— | *BRO+ | *BRO-}
'C5x devices ADD {*| *+ | *~ | *0+ | *O— | *BRO+ | *BRO-}

Based on the device, these are the sets of values for shift, shift;, and shift:

shift 'Clx: 0-15 (shift of 0—15 bits)
'C2x: 0-15 (shift of 015 bits)
'C20x: 0-16 (shift of 016 bits)
'C5x: 0-16 (shift of 016 bits)
shifty 'Clx: n/a
'C2x: 0-15 (shift of 0-15 bits)
'C20x: 0-16 (shift of 0—16 bits)
'C5x: 0-16 (shift of 016 bits)
shifty 'Clx: n/a
'C2x: n/a
'C20x: 0-15 (shift of 0—15 bits)
'C5x: 0-15 (shift of 0-15 bits)

In some cases, the sets are smaller; in these cases, the valid sets are given
in the Description column of the table.

C.2 Enhanced Instructions

An enhanced instruction is a single mnemonic that performs the functions of
several similar instructions. For example, the enhanced instruction ADD
performs the ADD, ADDH, ADDK, and ADLK functions and replaces any of
these other instructions at assembly time. For example, when a program using
ADDH is assembled for the 'C20x or 'C5x, ADDH is replaced by an ADD
instruction that performs the same function. These enhanced instructions are
valid for TMS320C2x, TMS320C20x, and TMS320C5x devices (not

TMS320C1X).

Table C-2 below summarizes the enhanced instructions and the functions that
the enhanced instructions perform (based on TMS320C1x/2x mnemonics).

Table C-2. Summary of Enhanced Instructions

Enhanced
Instruction

Includes These Operations

ADD

AND
BCND

BLDD
BLDP

CLRC

LACC
LACL
LAR
LDP
LST
MAR
MPY
OR
RPT
SETC
SUB

ADD, ADDH, ADDK, ADLK
AND, ANDK

BBNZ, BBZ, BC, BCND, BGEZ, BGZ, BIOZ, BLEZ, BLZ,
BNC, BNV, BNZ, BV, BZ

BLDD, BLKD
BLDP, BLKP

CLRC, CNFD, EINT, RC, RHM, ROVM, RSXM, RTC,
RXF

LAC, LACC, LALK, ZALH
LACK, LACL, ZAC, ZALS
LAR, LARK, LRLK

LDP, LDPK

LST, LST1

LARP, MAR

MPY, MPYK

OR, ORK

RPT, RPTK

CNFP, DINT, SC, SETC, SHM, SOVM, SSXM, STC, SXF
SUB, SUBH, SUBK

C-5

C.3 Instruction Set Comparison Table

Syntax

1x

2X

2XX

5x

Description

ABS

Absolute Value of Accumulator

If the contents of the accumulator are less than zero,
replace the contents with the 2s complement of the
contents. If the contents are = 0, the accumulator is not
affected.

ADCB

Add ACCB to Accumulator With Carry

Add the contents of the ACCB and the value of the
carry bit to the accumulator. If the result of the addition
generates a carry from the accumulator's MSB, the
carry bit is set to 1.

ADD dma |, shift]

ADD ({ind} [, shift[, next ARP]]
ADD #k

ADD # Ik [, shift2)]

< L <

<< L <

Add to Accumulator With Shift

TMS320C1x and TMS320C2x devices: Add the
contents of the addressed data-memory location to the
accumulator; if a shiftis specified, left shift the contents
of the location before the add. During shifting,
low-order bits are zero filled, and high-order bits are
sign extended.

TMS320C20x and TMS320C5x devices: Add the
contents of the addressed data-memory location or an
immediate value to the accumulator; if a shift is
specified, left shift the data before the add. During
shifting, low-order bits are zero filled, and high-order
bits are sign extended if SXM = 1.

ADDB

Add ACCB to Accumulator
Add the contents of the ACCB to the accumulator.

ADDC dma
ADDC ({ind} [, next ARP]

Add to Accumulator With Carry

Add the contents of the addressed data-memory
location and the carry bit to the accumulator.

ADDH dma
ADDH {ind} [, next ARP]

Add High to Accumulator

Add the contents of the addressed data-memory
location to the 16 MSBs of the accumulator. The LSBs
are not affected. If the result of the addition generates
a carry, the carry bit is set to 1.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: If the result of the addition generates a carry
from the accumulator’'s MSB, the carry bit is set to 1.

Syntax

1x

2X

2XX

5x

Description

ADDK #k

Add to Accumulator Short Immediate

TMS320C1x devices: Add an 8-bit immediate value to
the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Add an 8-bit immediate value, right justified,
to the accumulator with the result replacing the
accumulator contents. The immediate value is treated
as an 8-bit positive number; sign extension is
suppressed.

ADDS dma
ADDS {ind} [, next ARP]

Add to Accumulator With Sign Extension
Suppressed

Add the contents of the addressed data-memory
location to the accumulator. The value is treated as a
16-bitunsigned number; sign extension is suppressed.

ADDT dma
ADDT {ind} [, next ARP]

Add to Accumulator With Shift Specified by T
Register

Left shift the contents of the addressed data-memory
location by the value in the 4 LSBs of the T register; add
the result to the accumulator. If a shift is specified, left
shift the data before the add. During shifting, low-order
bits are zero filled, and high-order bits are sign
extended if SXM = 1.

TMS320C20x and TMS320C5x devices: If the result of
the addition generates a carry from the accumulator’s
MSB, the carry bit is set to 1.

ADLK #Ik [, shiff

Add to Accumulator Long Immediate With Shift

Add a 16-bit immediate value to the accumulator; if a
shift is specified, left shift the value before the add.
During shifting, low-order bits are zero filled, and
high-order bits are sign extended if SXM = 1.

ADRK #k

Add to Auxiliary Register Short Immediate

Add an 8-hit immediate value to the current auxiliary
register.

C-7

Syntax

1x

2X

2XX

5x

Description

AND dma
AND {ind} [, next ARP]
AND #lk [, shiff]

AND With Accumulator

TMS320C1x and TMS320C2x devices: AND the
contents of the addressed data-memory location with
the 16 LSBs of the accumulator. The 16 MSBs of the
accumulator are ANDed with Os.

TMS320C20x and TMS320C5x devices: AND the
contents of the addressed data-memory location or a
16-bit immediate value with the contents of the
accumulator. The 16 MSBs of the accumulator are
ANDed with Os. If a shift is specified, left shift the
constant before the AND. Low-order bits below and
high-order bits above the shifted value are treated as
0s.

ANDB

AND ACCB to Accumulator
AND the contents of the ACCB to the accumulator.

ANDK # Ik [, shiff

AND Immediate With Accumulator With Shift

AND a 16-bitimmediate value with the contents of the
accumulator; if a shift is specified, left shift the constant
before the AND.

APAC

Add P Register to Accumulator
Add the contents of the P register to the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the add, left shift the contents of the P
register as defined by the PM status bits.

APL [#IK] ,dma
APL [#lk,] {ind} [, next ARP]

AND Data-Memory Value With DBMR or Long
Constant

AND the data-memory value with the contents of the
DBMR or a long constant. If a long constant is
specified, it is ANDed with the contents of the
data-memory location. The result is written back into
the data-memory location previously holding the first
operand. If the result is 0, the TC bit is set to 1;
otherwise, the TC bit is cleared.

pma
B pma /[, {ind} [, next ARP]]

Branch Unconditionally
Branch to the specified program-memory address.

TMS320C2x and TMS320C20x devices: Modify the
current AR and ARP as specified.

Syntax

1x

2X

2XX

5x

Description

B[D] pmal, {ind} [, next ARP]]

Branch Unconditionally With Optional Delay

Modify the current auxiliary register and ARP as
specified and pass control to the designated
program-memory address. If you specify a delayed
branch (BD), the next two instruction words (two
1-word instructions or one 2-word instruction) are
fetched and executed before branching.

BACC

Branch to Address Specified by Accumulator

Branch to the location specified by the 16 LSBs of the
accumulator.

BACCID]

Branch to Address Specified by Accumulator
With Optional Delay

Branch to the location specified by the 16 LSBs of the
accumulator.

If you specify a delayed branch (BACCD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
branching.

BANZ pma
BANZ pma [, {ind} [, next ARP]]

Branch on Auxiliary Register Not Zero

If the contents of the 9 LSBs of the current auxiliary
register (TMS320C1x) or the contents of the entire
current auxiliary register (TMS320C2x) are # 0, branch
to the specified program-memory address.

TMS320C2x and TMS320C20x devices: Modify the
current AR and ARP (if specified) or decrement the
current AR (default). TMS320C1x devices: Decrement
the current AR.

BANZ[D] pma [, {ind} [, next
ARP]]

Branch on Auxiliary Register Not Zero With
Optional Delay

If the contents of the current auxiliary register are # 0,
branch to the specified program-memory address.
Modify the current AR and ARP as specified, or
decrement the current AR.

If you specify a delayed branch (BANZD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
branching.

Syntax Ix | 2x | 2xx | 5x Description

BBNZ pma [, {ind} [, next ARP]] v | ¥ | ¥ |Branchon Bit # Zero
If the TC bit = 1, branch to the specified
program-memory address.
TMS320C2x devices: Modify the current AR and ARP
as specified.
TMS320C20x and TMS320C5x devices: If the —p
porting switch is used, modify the current AR and ARP
as specified.

BBZ pmal, {ind} [, next ARP]] v | ¥ | ¥ |Branch on Bit = Zero

BBZ pma v [If the TC bit = 0, branch to the specified
program-memory address.
TMS320C2x devices: Modify the current AR and ARP
as specified.
TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the —p porting
switch is used.

BC pmal, {ind} [, next ARP]] v v | Branch on Carry

BC pma v | v |If the C bit = 1, branch to the specified
program-memory address.
TMS320C2x devices: Modify the current AR and ARP
as specified.
TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the —p porting
switch is used.

BCND pma, cond; [, condy] [, ...] v Branch Conditionally
Branch to the program-memory address if the
specified conditions are met. Not all combinations of
conditions are meaningful.

BCND[D] pma, condy v | Branch Conditionally With Optional Delay

[, condo] |, ...]

Branch to the program-memory address if the
specified conditions are met. Not all combinations of
conditions are meaningful.

If you specify a delayed branch (BCNDD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
branching.

C-10

Syntax 1x [2x | 2xx | 5x Description

BGEZ pma v v v | Branch if Accumulator = Zero

BGEZ pmal, {ind} [, next ARP]] v V| If the contents of the accumulator = 0, branch to the
specified program-memory address.
TMS320C2x devices: Modify the current AR and ARP
as specified.
TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the —p porting
switch is used.

BGZ pma v v V' | Branch if Accumulator > Zero

BGZ pmal, {ind} [, next ARP]] v v | Ifthe contents of the accumulator are > 0, branch to the
specified program-memory address.
TMS320C2x devices: Modify the current AR and ARP
as specified.
TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the —p porting
switch is used.

BIOZ pma v v v | Branch on I/O Status = Zero

BIOZ pmal|, {ind} [, next ARP]] v v [If the BIO pin is low, branch to the specified
program-memory address.
TMS320C2x devices: Modify the current AR and ARP
as specified.
TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the —p porting
switch is used.

BIT dma, bit code V|V Vv | Test Bit

BIT {ind}, bit code [, next ARP] v v Vv | Copy the specified bit of the data-memory value to the
TC bitin ST1.

BITT dma v v V| Test Bit Specified by T Register

BITT {ind} [, next ARP] v v v | TMS320C2x and TMS320C20x devices: Copy the

specified bit of the data-memory value to the TC bit in
ST1. The 4 LSBs of the T register specify which bit is
copied.

TMS320C5x devices: Copy the specified bit of the
data-memory value to the TC bit in ST1. The 4 LSBs
of the TREG2 specify which bit is copied.

c-11

Syntax

1x

2X

2XX

a1
x

Description

BLDD
BLDD
BLDD
BLDD
BLDD
BLDD
BLDD
BLDD

#1k, dma

#1k, {ind} [, next ARP]
dma, #lk

{ind}, #Ik [, next ARP)]
BMAR, dma

BMAR, {ind} [, next ARP]
dma BMAR

{ind}, BMAR [, next ARP]

<< L <

L R R

Block Move From Data Memory to Data Memory

Copy a block of data memory into data memory. The
block of data memory is pointed to by src, and the
destination block of data memory is pointed to by dst.

TMS320C20x devices: The word of the source and/or
the destination space can be pointed to with a long
immediate value or a data-memory address. You can
use the RPT instruction with BLDD to move
consecutive words, pointed to indirectly in data
memory, to a contiguous program-memory space. The
number of words to be moved is 1 greater than the
number contained in the RPTC at the beginning of the
instruction.

TMS320C5x devices: The word of the source and/or
the destination space can be pointed to with a long
immediate value, the contents of the BMAR, or a
data-memory address. You can use the RPT
instruction with BLDD to move consecutive words,
pointed to indirectly in data memory, to a contiguous
program-memory space. The number of words to be
moved is 1 greater than the number contained in the
RPTC at the beginning of the instruction.

BLDP
BLDP

dma
{ind} [, next ARP]

Block Move From Data Memory to Program
Memory

Copy a block of data memory into program memory
pointed to by the BMAR. You can use the RPT
instruction with BLDP to move consecutive words,
indirectly pointed to in data memory, to a contiguous
program-memory space pointed to by the BMAR.

BLEZ
BLEZ

pma
pma [, {ind} [, next ARP]]

Branch if Accumulator < Zero

If the contents of the accumulator are <0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the —p porting
switch is used.

C-12

Syntax 1x | 2x | 2xx | 5x Description

BLKD dmal, dma2 v v v | Block Move From Data Memory to Data Memory

BLKD dmal, {ind} [, next ARP] vV v | Move a block of words from one location in data
memory to another location in data memory. Modify the
current AR and ARP as specified. RPT or RPTK must
be used with BLKD, in the indirect addressing mode,
if more than one word is to be moved. The number of
words to be moved is 1 greater than the number
contained in RPTC at the beginning of the instruction.

BLKP pma, dma v v v | Block Move From Program Memory to Data

BLKP pma, {ind} [, next ARP] vV v Memory

Move a block of words from a location in program
memory to a location in data memory. Modify the
current AR and ARP as specified. RPT or RPTK must
be used with BLKD, in the indirect addressing mode,
if more than one word is to be moved. The number of
words to be moved is 1 greater than the number
contained in RPTC at the beginning of the instruction.

BLPD t#pma, dma Vv
BLPD T#pma, {ind} [, next ARP] v
BLPDtBMAR, dma

BLPD TBMAR, {ind} [, next ARP]

Block Move From Program Memory to Data
Memory

Copy a block of program memory into data memory.
The block of program memory is pointed to by src, and
the destination block of data memory is pointed to by
dst.

<< L <

TMS320C20x devices: The word of the source space
can be pointed to with a long immediate value. You can
use the RPT instruction with BLPD to move
consecutive words that are pointed at indirectly in data
memory to a contiguous program-memory space.

TMS320C5x devices: The word of the source space
can be pointed to with a long immediate value or the
contents ofthe BMAR. You can use the RPT instruction
with BLPD to move consecutive words that are pointed
at indirectly in data memory to a contiguous
program-memory space.

BLZ pma v Vv V' | Branch if Accumulator < Zero

BLZ pmal, {ind} [, next ARP]] v v If the contents of the accumulator are <0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the —p porting
switch is used.

TBLDD and BLPD are TMS320C5x and TMS320C20x instructions for the BLKD and BLKP instructions in the TMS320C2x and
TMS320C1 devices. The assembler converts TMS320C2x code to BLKB and BLKP.

C-13

Syntax 1x | 2x | 2xx | 5x Description

BNC pmal|, {ind} [, next ARP]] v v v | Branch on No Carry
If the C bit = 0, branch to the specified
program-memory address.
TMS320C2x devices: Modify the current AR and ARP
as specified.
TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the —p porting
switch is used.

BNV pmal, {ind} [, next ARP]] v | ¥ | ¥ |Branch if No Overflow
If the OV flag is clear, branch to the specified
program-memory address.
TMS320C2x devices: Modify the current AR and ARP
as specified.
TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the —p porting
switch is used.

BNZ pma v Branch if Accumulator # Zero

BNZ pmal, {ind} [, next ARP]] v | v | ¥ [If the contents of the accumulator Z 0, branch to the
specified program-memory address.
TMS320C2x devices: Modify the current AR and ARP
as specified.
TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the —p porting
switch is used.

BSAR [shiff] v | Barrel Shift
In a single cycle, execute a 1- to 16-bit right arithmetic
barrel shift of the accumulator. The sign extension is
determined by the sign-extension mode bit in ST1.

BV pma v Branch on Overflow

BV pmal, {ind} [, next ARP]] v v Vv |If the OV flag is set, branch to the specified

program-memory address and clear the OV flag.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Modify the current AR and ARP as specified.

TMS320C20x and TMS320C5x devices: To modify the
AR and ARP, use the —p porting switch.

C-14

Syntax

1x

2X

2XX

5x

Description

BZ pma
BZ pmal, {ind} [, next ARP]]

Branch if Accumulator = Zero

If the contents of the accumulator = 0, branch to the
specified program-memory address.

TMS320C2x, TMS320C20x and TMS320C5x
devices: Modify the current AR and ARP as specified.

TMS320C20x and TMS320C5x devices: To modify the
AR and ARP, use the —p porting switch.

CALA

Call Subroutine Indirect

The contents of the accumulator specify the address
of a subroutine. Increment the PC, push the PC onto
the stack, then load the 12 (TMS320C1x) or 16
(TMS320C2x/C20x) LSBs of the accumulator into the
PC.

CALA[D]

Call Subroutine Indirect With Optional Delay

The contents of the accumulator specify the address
of a subroutine. Increment the PC and push it onto the
stack; then load the 16 LSBs of the accumulator into
the PC.

If you specify a delayed branch (CALAD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the call.

CALL pma
CALL pma[{ind} [, next ARP]]

Call Subroutine

The contents of the addressed program-memory
location specify the address of a subroutine. Increment
the PC by 2, push the PC onto the stack, then load the
specified program-memory address into the PC.

TMS320C2x and TMS320C20x devices: Modify the
current AR and ARP as specified.

CALL[D] pmal, {ind} [, next
ARP]

Call Unconditionally With Optional Delay

The contents of the addressed program-memory
location specify the address of a subroutine. Increment
the PC and push the PC onto the stack; then load the
specified program-memory address (symbolic or
numeric) into the PC. Modify the current AR and ARP
as specified.

If you specify a delayed branch (CALLD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the call.

C-15

Syntax

1x

2X

2XX

5x

Description

CcC pma, condy [, condy] [, ..

]

Call Conditionally

If the specified conditions are met, control is passed to
the pma. Not all combinations of conditions are
meaningful.

CC[D] pma, cond; [, condo] [, ..

]

Call Conditionally With Optional Delay

If the specified conditions are met, control is passed to
the pma. Not all combinations of conditions are
meaningful.

If you specify a delayed branch (CCD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the call.

CLRC control bit

Clear Control Bit

Set the specified control bit to a logic 0. Maskable
interrupts are enabled immediately after the CLRC
instruction executes.

CMPL

Complement Accumulator

Complement the contents of the accumulator (1s
complement).

CMPR CM

Compare Auxiliary Register With ARO

Compare the contents of the current auxiliary register
to ARO, based on the following cases:

If CM = 005, test whether AR(ARP) = ARO.
If CM = 015, test whether AR(ARP) < ARO.
If CM = 105, test whether AR(ARP) > ARO.
If CM = 11,, test whether AR(ARP) # AROQ.

If the result is true, load a 1 into the TC status bit;
otherwise, load a 0 into the TC bit. The comparison
does not affect the tested registers.

TMS320C5x devices: Compare the contents of the
auxiliary register with the ARCR.

CNFD

Configure Block as Data Memory

Configure on-chip RAM block BO as data memaory.
Block BO is mapped into data-memory locations
512h-767h.

TMS320C5x devices: Block BO is mapped into
data-memory locations 512h—1023h.

C-16

Syntax

1x

2X

2XX

5x

Description

CNFP

Configure Block as Program Memory

Configure on-chip RAM block BO as program memory.
Block BO is mapped into program-memory locations
65280h—65535h.

TMS320C5x devices: Block BO is mapped into
data-memory locations 65024h—65535h.

CONF 2-bit constant

Configure Block as Program Memory

Configure on-chip RAM block BO0/B1/B2/B3 as
program memory. For information on the memory
mapping of BO/B1/B2/B3, see the TMS320C2x User’s
Guide.

CPL
CPL

[#Ik]] dma
[#1k,] {ind} [, next ARP]

Compare DBMR or Immediate With Data Value

Compare two quantities: If the two quantities are
equal, set the TC bit to 1; otherwise, clear the TC bit.

CRGT

Test for ACC > ACCB

Compare the contents of the ACC with the contents of
the ACCB, then load the larger signed value into both
registers and modify the carry bit according to the
comparison result. If the contents of ACC are greater
than or equal to the contents of ACCB, set the carry bit
to 1.

CRLT

Test for ACC < ACCB

Compare the contents of the ACC with the contents of
the ACCB, then load the smaller signed value into both
registers and modify the carry bit according to the
comparison result. If the contents of ACC are less than
the contents of ACCB, clear the carry bit.

DINT

Disable Interrupts

Disable all interrupts; set the INTM to 1. Maskable
interrupts are disabled immediately after the DINT
instruction executes. DINT does not disable the
unmaskable interrupt RS; DINT does not affect the
IMR.

DMOV dma
DMOV {ind} [, next ARP]

Data Move in Data Memory

Copy the contents of the addressed data-memory
location into the next higher address. DMOV moves
data only within on-chip RAM blocks.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: The on-chip RAM blocks are BO (when
configured as data memory), B1, and B2.

C-17

Syntax

1x

2X

2XX

5x

Description

EINT

Enable Interrupts

Enable all interrupts; clear the INTM to 0. Maskable
interrupts are enabled immediately after the EINT
instruction executes.

EXAR

Exchange ACCB With ACC

Exchange the contents of the ACC with the contents
of the ACCB.

FORT 1-bit constant

Format Serial Port Registers

Load the FOwithaOoral. If FO =0, the registers are
configured to receive/transmit 16-bit words. If FO = 1,
the registers are configured to receive/transmit 8-hit
bytes.

IDLE

Idle Until Interrupt

Forces an executing program to halt execution and
wait until it receives a reset or an interrupt. The device
remains in an idle state until it is interrupted.

IDLE2

Idle Until Interrupt—Low-Power Mode

Removes the functional clock input from the internal
device; this allows for an extremely low-power mode.
The IDLEZ instruction forces an executing program to
halt execution and wait until it receives a reset or
unmasked interrupt.

IN dma, PA
IN {ind}, PA[, next ARP]

Input Data From Port

Read a 16-hit value from one of the external I/O ports
into the addressed data-memory location.

TMS320C1x devices: This is a 2-cycle instruction.
During the first cycle, the port address is sent to
address lines A2/PA2-A0/PAO; DEN goes low,
strobing in the data that the addressed peripheral
places on data bus D15-DO.

TMS320C2x devices: The IS line goes low to indicate
an /O access, and the STRB, R/W, and READY
timings are the same as for an external data-memory
read.

TMS320C20x and TMS320C5x devices: The IS line
goes low to indicate an I/O access, and the STRB, RD,
and READY timings are the same as for an external
data-memory read.

C-18

Syntax

1x

2X

2XX

5x

Description

INTR K

Soft Interrupt

Transfer program control to the program-memory
address specified by K (an integer from 0 to 31). This
instruction allows you to use your software to execute
any interrupt service routine. The interrupt vector
locations are spaced apart by two addresses (Oh, 2h,
4h, ..., 3Eh), allowing a two-word branch instruction to
be placed at each location.

LAC dma/|, shiff
LAC {ind} [, shift[, next ARP]]

Load Accumulator With Shift

Load the contents of the addressed data-memory
location into the accumulator. If a shift is specified, left
shift the value before loading it into the accumulator.
During shifting, low-order bits are zero filled, and
high-order bits are sign extended if SXM = 1.

LACB

Load Accumulator With ACCB

Load the contents of the accumulator buffer into the
accumulator.

LACC dmal, shift;]
LACC {ind} [, shift; [, next ARP]]
LACC #lk |, shift)]

Load Accumulator With Shift

Load the contents of the addressed data-memory
location or the 16-bit constant into the accumulator. If
a shift is specified, left shift the value before loading it
into the accumulator. During shifting, low-order bits are
zero filled, and high-order bits are sign extended if
SXM = 1.

LACK 8-bit constant

Load Accumulator Immediate Short

Load an 8-bit constant into the accumulator. The 24
MSBs of the accumulator are zeroed.

LACL dma
LACL {ind} [, next ARP]
LACL #k

Load Low Accumulator and Clear High
Accumulator

Load the contents of the addressed data-memory
location or zero-extended 8-bit constant into the 16
LSBs of the accumulator. The MSBs of the
accumulator are zeroed. The datais treated as a 16-bit
unsigned number.

TMS320C20x: A constant of 0 clears the contents of
the accumulator to 0 with no sign extension.

C-19

Syntax

1x

2X

2XX

5x

Description

LACT dma
LACT {ind} [, next ARP]

Load Accumulator With Shift Specified by T
Register

Left shift the contents of the addressed data-memory
location by the value specified in the 4 LSBs of the T
register; load the result into the accumulator. If a shift
is specified, left shift the value before loading it into the
accumulator. During shifting, low-order bits are zero
filled, and high-order bits are sign extended if SXM = 1.

LALK # k[, shiff

Load Accumulator Long Immediate With Shift

Load a 16-bitimmediate value into the accumulator. If
a shiftis specified, left shift the constant before loading
it into the accumulator. During shifting, low-order bits
are zero filled, and high-order bits are sign extended if
SXM = 1.

LAMM dma
LAMM {ind} [, next ARP]

Load Accumulator With Memory-Mapped
Register

Load the contents of the addressed memory-mapped
register into the low word of the accumulator. The 9
MSBs of the data-memory address are cleared,
regardless of the current value of DP or the 9 MSBs of
AR (ARP).

LAR AR, dma

LAR AR, {ind} [, next ARP]
LAR AR, #k

LAR AR, #lk

<< L <

L <

Load Auxiliary Register

TMS320C1x and TMS320C2x devices: Load the
contents of the addressed data-memory location into
the designated auxiliary register.

TMS320C25, TMS320C20x, and TMS320C5x
devices: Load the contents of the addressed
data-memory location or an 8-bit or 16-bit immediate
value into the designated auxiliary register.

LARK AR, 8-bit constant

Load Auxiliary Register Immediate Short

Load an 8-bit positive constant into the designated
auxiliary register.

LARP 1-bit constant
LARP 3-bit constant

Load Auxiliary Register Pointer
TMS320C1x devices: Load a 1-bit constant into the
auxiliary register pointer (specifying ARO or AR1).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Load a 3-bit constant into the auxiliary
register pointer (specifying ARO—ARY7).

C-20

Syntax

1x

2X

2XX

5x

Description

LDP dma
LDP {ind} [, next ARP]
LDP #k

Load Data-Memory Page Pointer

TMS320C1x devices: Load the LSB of the contents of
the addressed data-memory location into the DP
register. All high-order bits are ignored. DP = 0 defines
page 0 (words 0-127), and DP = 1 defines page 1
(words 128-143/255).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Load the 9 LSBs of the addressed
data-memory location or a 9-bit immediate value into
the DP register. The DP and 7-bit data-memory
address are concatenated to form 16-bit data-memory
addresses.

LDPK 1-bit constant
LDPK 9-bit constant

Load Data-Memory Page Pointer Immediate

TMS320C1x devices: Load a 1-bit immediate value
into the DP register. DP = 0 defines page 0 (words
0-127), and DP = 1 defines page 1 (words
128-143/255).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Load a 9-bit immediate into the DP register.
The DP and 7-bit data-memory address are
concatenated to form 16-bit data-memory addresses.
DP = 8 specifies external data memory. DP = 4
through 7 specifies on-chip RAM blocks BO or B1.
Block B2 is located in the upper 32 words of page 0.

LMMR dma, #lk
LMMR {ind}, #lk [, next ARP]

Load Memory-Mapped Register

Load the contents of the memory-mapped register
pointed at by the 7 LSBs of the direct or indirect
data-memory value into the long immediate addressed
data-memory location. The 9 MSBs of the
data-memory address are cleared, regardless of the
current value of DP or the 9 MSBs of AR (ARP).

LPH dma
LPH {ind} [, next ARP]

Load High P Register

Load the contents of the addressed data-memory
location into the 16 MSBs of the P register; the LSBs
are not affected.

LRLK AR, Ik

Load Auxiliary Register Long Immediate

Load a 16-bit immediate value into the designated
auxiliary register.

LST dma
LST {ind} [, next ARP]

Load Status Register

Load the contents of the addressed data-memory
location into the ST (TMS320C1x) or into STO
(TMS320C2x/2xx/5X).

C-21

Syntax

1x

2X

2XX

5x

Description

LST #n, dma

LST #n, {ind} [, next ARP]

Load Status Register n

Load the contents of the addressed data-memory
location into STn.

LST1 dma
LST1 {ind} [, next ARP]

Load ST1

Load the contents of the addressed data-memory
location into ST1.

LT
LT

dma
{ind} [, next ARP]

Load T Register

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREGO (TMS320C5x).

LTA
LTA

dma
{ind} [, next ARP]

Load T Register and Accumulate Previous
Product

Load the contents of the addressed data-memory
location into T register (TMS320C1x/2x/2xx) or
TREGO (TMS320C5x) and add the contents of the P
register to the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the add, shift the contents of the P
register as specified by the PM status bits.

LTD
LTD

dma
{ind} [, next ARP]

Load T Register, Accumulate Previous Product,
and Move Data

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREGO (TMS320C5x), add the contents of the P
register to the accumulator, and copy the contents of
the specified location into the next higher address
(both data-memory locations must reside in on-chip
data RAM).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the add, shift the contents of the P
register as specified by the PM status bits.

LTP
LTP

dma
{ind} [, next ARP]

Load T Register, Store P Register in Accumulator

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREGO (TMS320C5x). Store the contents of the
product register into the accumulator.

LTS
LTS

dma
{ind} [, next ARP]

Load T Register, Subtract Previous Product

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREGO (TMS320C5x). Shift the contents of the
product register as specified by the PM status bits, and
subtract the result from the accumulator.

C-22

Syntax

1x

2X

2XX

5x

Description

MAC pma, dma
MAC pma, {ind} [, next ARP]

Multiply and Accumulate

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as
specified by the PM status bits) to the accumulator.

MACD dma, pma
MACD pma, {ind} [, next ARP]

Multiply and Accumulate With Data Move

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as
specified by the PM status bits) to the accumulator. If
the data-memory address is in on-chip RAM block BO,
B1, or B2, copy the contents of the address to the next
higher address.

MADD dma
MADD {ind} [, next ARP]

Multiply and Accumulate With Data Move and
Dynamic Addressing

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as defined
by the PM status bits) into the accumulator. The
program-memory address is contained in the BMAR,;
this allows for dynamic addressing of coefficient
tables.

MADD functions the same as MADS, with the addition
of data move for on-chip RAM blocks.

MADS dma
MADS ({ind} [, next ARP]

Multiply and Accumulate With Dynamic
Addressing

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as defined
by the PM status bits) into the accumulator. The
program-memory address is contained in the BMAR,;
this allows for dynamic addressing of coefficient
tables.

MAR dma
MAR {ind} [, next ARP]

<

<

Modify Auxiliary Register

Modify the current AR or ARP as specified. MAR acts
as NOP in indirect addressing mode.

MPY dma

MPY {ind} [, next ARP]
MPY #k

MPY #lk

<< L <

<L <L <

Multiply

TMS320C1x and TMS320C2x devices: Multiply the
contents of the T register by the contents of the
addressed data-memory location; place the result in
the P register.

TMS320C20x and TMS320C5x devices: Multiply the
contents of the T register (TMS320C20x) or TREGO
(TMS320C5x) by the contents of the addressed
data-memory location or a 13-bit or 16-bit immediate
value; place the result in the P register.

C-23

Syntax

1x

2X

2XX

5x

Description

MPYA dma
MPYA {ind} [, next ARP]

Multiply and Accumulate Previous Product

Multiply the contents of the T register (TMS320C2x/
2xx) or TREGO (TMS320C5x) by the contents of the
addressed data-memory location; place the result in
the P register. Add the previous product (shifted as
specified by the PM status bits) to the accumulator.

MPYK 13-bit constant

Multiply Immediate

Multiply the contents of the T register (TMS320C2x/
2xx) or TREGO (TMS320C5x) by a signed 13-bit
constant; place the result in the P register.

MPYS dma
MPYS {ind} [, next ARP]

Multiply and Subtract Previous Product

Multiply the contents of the T register (TMS320C2x/
2xx) or TREGO (TMS320C5x) by the contents of the
addressed data-memory location; place the result in
the P register. Subtract the previous product (shifted
as specified by the PM status bits) from the
accumulator.

MPYU dma
MPYU {ind} [, next ARP]

Multiply Unsigned

Multiply the unsigned contents of the T register
(TMS320C2x/2xx) or TREGO (TMS320C5x) by the
unsigned contents of the addressed data-memory
location; place the result in the P register.

NEG

Negate Accumulator

Negate (2s complement) the contents of the
accumulator.

NMI

Nonmaskable Interrupt

Force the program counter to the nonmaskable
interrupt vector location 24h. NMI has the same effect
as a hardware nonmaskable interrupt.

NOP

No Operation

Perform no operation.

NORM
NORM {ina}

Normalize Contents of Accumulator

Normalize a signed number in the accumulator.

OPL [#lk,] dma
OPL [#lk,] {ind} [, next ARP]

<<] <

OR With DBMR or Long Immediate

If along immediate is specified, OR it with the value at
the specified data-memory location; otherwise, the
second operand of the OR operation is the contents of
the DBMR. The result is written back into the
data-memory location previously holding the first
operand.

C-24

Syntax

1x

2X

2XX

5x

Description

OR dma
OR {ind} [, next ARP]
OR #Ik[, shiff]

OR With Accumulator

TMS320C1x and TMS320C2x devices: OR the 16
LSBs of the accumulator with the contents of the
addressed data-memory location. The 16 MSBs of the
accumulator are ORed with 0s.

TMS320C20x and TMS320C5x devices: OR the 16
LSBs of the accumulator or a 16-bit immediate value
with the contents of the addressed data-memory
location. If a shift is specified, left-shift before ORing.
Low-order bhits below and high-order bits above the
shifted value are treated as 0s.

ORB

OR ACCB With Accumulator

OR the contents of the ACCB with the contents of the
accumulator. ORB places the result in the
accumulator.

ORK #Ik[, shiff

OR Immediate With Accumulator with Shift

OR a 16-bit immediate value with the contents of the
accumulator. If a shift is specified, left-shift the
constant before ORing. Low-order bits below and
high-order bits above the shifted value are treated as
Os.

OUT dma, PA
OUT ({ind}, PA[, next ARP]

Output Data to Port

Write a 16-bit value from a data-memory location to the
specified I/0 port.

TMS320C1x devices: The first cycle of this instruction
places the port address onto address lines
A2/PA2—A0/PAQ. During the same cycle, WE goes low
and the data word is placed on the data bus D15-DO.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: The IS line goes low to indicate an I/O access;
the STRB, R/W, and READY timings are the same as
for an external data-memory write.

PAC

Load Accumulator With P Register

Load the contents of the P register into the
accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the load, shift the P register as
specified by the PM status bits.

C-25

Syntax 1x [2x | 2xx | 5x Description

POP v Vv | ¥ | ¥ | Pop Top of Stack to Low Accumulator
Copy the contents of the top of the stack into the 12
(TMS320C1x) or 16 (TMS320C2x/2xx/5x) LSBs of the
accumulator and then pop the stack one level. The
MSBs of the accumulator are zeroed.

POPD dma v v Vv | Pop Top of Stack to Data Memory

POPD {ind} [, next ARP] v v Vv | Transfer the value on the top of the stack into the
addressed data-memory location and then pop the
stack one level.

PSHD dma v v Vv | Push Data-Memory Value Onto Stack

PSHD {ind} [, next ARP] v v v | Copy the addressed data-memory location onto the
top of the stack. The stack is pushed down one level
before the value is copied.

PUSH vV v Vv | Push Low Accumulator Onto Stack
Copy the contents of the 12 (TMS320C1x) or 16
(TMS320C2x/2xx/5x) LSBs of the accumulator onto
the top of the hardware stack. The stack is pushed
down one level before the value is copied.

RC v | v | ¥ [Reset Carry Bit
Reset the C status bit to O.

RET V|V Y Return From Subroutine
Copy the contents of the top of the stack into the PC
and pop the stack one level.

RET[D] v | Return From Subroutine With Optional Delay
Copy the contents of the top of the stack into the PC
and pop the stack one level.
If you specify a delayed branch (RETD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the return.

RETC cond; [, conds] [, ...] v Return Conditionally

If the specified conditions are met, RETC performs a
standard return. Not all combinations of conditions are
meaningful.

C-26

Syntax 1x [2x | 2xx | 5x Description

RETCID] cond; [, conds] [, ...] V| Return Conditionally With Optional Delay
If the specified conditions are met, RETC performs a
standard return. Not all combinations of conditions are
meaningful.
If you specify a delayed branch (RETCD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the return.

RETE V| Enable Interrupts and Return From Interrupt
Copy the contents of the top of the stack into the PC
and pop the stack one level. RETE automatically
clears the global interrupt enable bit and pops the
shadow registers (stored when the interrupt was
taken) back into their corresponding strategic
registers. The following registers are shadowed: ACC,
ACCB, PREG, STO, ST1, PMST, ARCR, INDX,
TREGO, TREG1, TREG2.

RETI v | Return From Interrupt
Copy the contents of the top of the stack into the PC
and pop the stack one level. RETI also pops the values
in the shadow registers (stored when the interrupt was
taken) back into their corresponding strategic
registers. The following registers are shadowed: ACC,
ACCB, PREG, STO, ST1, PMST, ARCR, INDX,
TREGO, TREG1, TREG2.

RFSM v Reset Serial Port Frame Synchronization Mode
Reset the FSM status bit to 0.

RHM v Vv | Reset Hold Mode
Reset the HM status bit to 0.

ROL v v v | Rotate Accumulator Left
Rotate the accumulator left one bit.

ROLB Vv | Rotate ACCB and Accumulator Left
Rotate the ACCB and the accumulator left by one bit;
this results in a 65-bit rotation.

ROR vV Vv | Rotate Accumulator Right
Rotate the accumulator right one bit.

RORB Vv | Rotate ACCB and Accumulator Right

Rotate the ACCB and the accumulator right one bit;
this results in a 65-bit rotation.

Cc-27

Syntax

1x

2X

2XX

5x

Description

ROVM

Reset Overflow Mode

Reset the OVM status bit to 0; this disables overflow
mode.

RPT dma

RPT {ind} [, next ARP]
RPT #k

RPT #lk

<< L <<

<< L <

Repeat Next Instruction

TMS320C2x devices: Load the 8 LSBs of the
addressed value into the RPTC; the instruction
following RPT is executed the number of times
indicated by RPTC + 1.

TMS320C20x and TMS320C5x devices: Load the 8
LSBs of the addressed value or an 8-bit or 16-bit
immediate value into the RPTC; the instruction
following RPT isrepeated ntimes, where nisRPTC+1.

RPTB pma

Repeat Block

RPTB repeats a block of instructions the number of
times specified by the memory-mapped BRCR without
any penalty for looping. The BRCR must be loaded
before RPTB is executed.

RPTK #k

Repeat Instruction as Specified by Immediate
Value

Load the 8-bit immediate value into the RPTC; the
instruction following RPTK is executed the number of
times indicated by RPTC + 1.

RPTZ #lk

Repeat Preceded by Clearing the Accumulator
and P Register

Clear the accumulator and product register and repeat
the instruction following RPTZ ntimes, where n= [k +1.

RSXM

Reset Sign-Extension Mode

Reset the SXM status bit to 0; this suppresses sign
extension on shifted data values for the following
arithmetic instructions: ADD, ADDT, ADLK, LAC,
LACT, LALK, SBLK, SUB, and SUBT.

RTC

Reset Test/Control Flag
Reset the TC status bit to 0.

RTXM

Reset Serial Port Transmit Mode

Reset the TXM status bit to O; this configures the serial
port transmit section in amode where itis controlled by
an FSX.

RXF

Reset External Flag

Reset XF pin and the XF status bit to O.

C-28

Syntax

1x

2X

2XX

5x

Description

SACB

Store Accumulator in ACCB

Copy the contents of the accumulator into the ACCB.

SACH dma |, shiff
SACH {ind} [, shift[, next ARP]]

Store High Accumulator With Shift

Copy the contents of the accumulator into a shifter.
Shift the entire contents 0, 1, or 4 bits (TMS320C1x) or
from 0 to 7 bits (TMS320C2x/2xx/5x), and then copy
the 16 MSBs of the shifted value into the addressed
data-memory location. The accumulator is not
affected.

SACL dma
SACL dmal|, shiff]
SACL {ind} [, shift[, next ARP]]

Store Low Accumulator With Shift

TMS320C1x devices: Store the 16 LSBs of the
accumulator into the addressed data-memory
location. A shift value of 0 must be specified if the ARP
is to be changed.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Store the 16 LSBs of the accumulator into the
addressed data-memory location. If a shiftis specified,
shift the contents of the accumulator before storing.
Shift values are 0, 1, or 4 bits (TMS320C20) or from O
to 7 bits (TMS320C2x/2xx/5X).

SAMM dma
SAMM {ind} [, next ARP]

Store Accumulator in Memory-Mapped Register

Store the low word of the accumulator in the addressed
memory-mapped register. The upper 9 bits of the data
address are cleared, regardless of the current value of
DP or the 9 MSBs of AR (ARP).

SAR AR, dma
SAR AR, {ind} [, next ARP]

Store Auxiliary Register

Store the contents of the specified auxiliary register in
the addressed data-memory location.

SATH

Barrel-Shift Accumulator as Specified
by T Register 1

If bit 4 of TREG1 is a 1, barrel-shift the accumulator
right by 16 bits; otherwise, the accumulator is
unaffected.

SATL

Barrel-Shift Low Accumulator as Specified
by T Register 1

Barrel-shift the accumulator right by the value
specified in the 4 LSBs of TREGL1.

SBB

Subtract ACCB From Accumulator

Subtract the contents of the ACCB from the
accumulator. The result is stored in the accumulator;
the accumulator buffer is not affected.

C-29

Syntax

1x

2X

2XX

5x

Description

SBBB

Subtract ACCB From Accumulator With Borrow

Subtract the contents of the ACCB and the logical
inversion of the carry bit from the accumulator. The
result is stored in the accumulator; the accumulator
buffer is not affected. Clear the carry bit if the result
generates a borrow.

SBLK #Ik[, shiff

Subtract From Accumulator Long Immediate
With Shift

Subtract the immediate value from the accumulator. If
a shift is specified, left shift the value before
subtracting. During shifting, low-order bits are zero
filled, and high-order bits are sign extended if SXM =
1.

SBRK #k

Subtract From Auxiliary Register Short
Immediate

Subtract the 8-bit immediate value from the
designated auxiliary register.

SC

Set Carry Bit
Set the C status bit to 1.

SETC control bit

Set Control Bit

Set the specified control bit to a logic 1. Maskable
interrupts are disabled immediately after the SETC
instruction executes.

SFL

Shift Accumulator Left

Shift the contents of the accumulator left one bit.

SFLB

Shift ACCB and Accumulator Left

Shift the concatenation of the accumulator and the
ACCB left one bit. The LSB of the ACCB is cleared to
0, and the MSB of the ACCB is shifted into the carry bit.

SFR

Shift Accumulator Right

Shift the contents of the accumulator right one bit. If
SXM = 1, SFR produces an arithmetic right shift. If
SXM = 0, SFR produces a logic right shift.

SFRB

Shift ACCB and Accumulator Right

Shift the concatenation of the accumulator and the
ACCB right 1 bit. The LSB of the ACCB is shifted into
the carry bit. If SXM =1, SFRB produces an arithmetic
right shift. If SXM =0, SFRB produces alogic right shift.

SFSM

Set Serial Port Frame Synchronization Mode
Set the FSM status bit to 1.

C-30

Syntax 1x [2x | 2xx | 5x Description

SHM v Vv | Set Hold Mode
Set the HM status bit to 1.

SMMR dma, #lk v | Store Memory-Mapped Register

SMMR {ind}, #Ik [, next ARP] Vv | Store the memory-mapped register value, pointed at
by the 7 LSBs of the data-memory address, into the
long immediate addressed data-memory location. The
9 MSBs of the data-memory address of the
memory-mapped register are cleared, regardless of
the current value of DP or the upper 9 bits of AR(ARP).

SOVM v v | ¥ | Vv |SetOverflow Mode
Set the OVM status bit to 1; this enables overflow
mode. (The ROVM instruction clears OVM.)

SPAC VoY v V| Subtract P Register From Accumulator
Subtract the contents of the P register from the
contents of the accumulator.
TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the subtraction, shift the contents of
the P register as specified by the PM status bits.

SPH dma vV V| Store High P Register

SPH {ind} [, next ARP] v v Vv | Store the high-order bits of the P register (shifted as
specified by the PM status bits) at the addressed
data-memory location.

SPL dma vV V| Store Low P Register

SPL {ind} [, next ARP] V|V Vv | Store the low-order bits of the P register (shifted as
specified by the PM status bits) at the addressed
data-memory location.

SPLK #Ik, dma v V| Store Parallel Long Immediate

SPLK #Ik, {ind} [, next ARP] Vv | Write a full 16-bit pattern into a memory location. The
parallel logic unit (PLU) supports this bit manipulation
independently of the ALU, so the accumulator is
unaffected.

SPM 2-bit constant v v Vv | Set P Register Output Shift Mode

Copy a 2-bit immediate value into the PM field of ST1.
This controls shifting of the P register as shown below:

PM =00, Multiplier output is not shifted.

PM =01, Multiplier output is left shifted one place
and zero filled.

PM =10, Multiplier output is left shifted four places
and zero filled.

PM =11, Multiplier output is right shifted six places

and sign extended; the LSBs are lost.

C-31

Syntax 1x [2x | 2xx | 5x Description

SQRA dma v | ¥ | ¥ | Square and Accumulate Previous Product

SQRA {ind} [, next ARP] v | v | ¥ [Addthe contents of the P register (shifted as specified
by the PM status bits) to the accumulator. Then load
the contents of the addressed data-memory location
into the T register (TMS320C2x/2xx) or TREGO
(TMS320C5x), square the value, and store the result
in the P register.

SQRS dma v v Vv | Square and Subtract Previous Product

SQRS {ind} [, next ARP] v v v | Subtract the contents of the P register (shifted as
specified by the PM status bits) to the accumulator.
Then load the contents of the addressed data-memory
location into the T register (TMS320C2x/2xx) or
TREGO (TMS320C5x), square the value, and store the
result in the P register.

SST dma vV v Vv | Store Status Register

SST {ind} [, next ARP] vV v Vv | Store the contents of the ST (TMS320C1x) or STO
(TMS320C2x/2xx/5x) in the addressed data-memory
location.

SST #n, dma v V | Store Status Register n

SST #n, {ind} [, next ARP] v Vv | Store STnin data memory.

SST1dma v v Vv | Store Status Register ST1

SST1{ind} [, next ARP] v | v | ¥ [Store the contents of ST1 in the addressed
data-memory location.

SSXM v | ¥ | ¥ |Set Sign-Extension Mode
Set the SXM status hit to 1; this enables sign
extension.

STC v v Vv | Set Test/Control Flag
Set the TC flag to 1.

STXM v Set Serial Port Transmit Mode

Set the TXM status bit to 1.

C-32

Syntax

1x

2X

2XX

Description

SUB dma |, shiff]

SUB {ind} [, shift[, next ARP]]

SUB #k
SUB #Ik [, shift,]

<L L <

<L <L <

Subtract From Accumulator With Shift

TMS320C1x and TMS320C2x devices: Subtract the
contents of the addressed data-memory location from
the accumulator. If a shift is specified, left shift the
value before subtracting. During shifting, low-order
bits are zero filled, and high-order bits are sign
extended if SXM = 1.

TMS320C20x and TMS320C5x devices: Subtract the
contents of the addressed data-memory location or an
8- or 16-bit constant from the accumulator. If a shift is
specified, left shift the data before subtracting. During
shifting, low-order bits are zero filled, and high-order
bits are sign extended if SXM = 1.

SUBB dma
SUBB {ind} [, next ARP]

Subtract From Accumulator With Borrow

Subtract the contents of the addressed data-memory
location and the value of the carry bit from the
accumulator. The carry bit is affected in the normal
manner.

SUBC dma
SUBC {ind} [, next ARP]

Conditional Subtract

Perform conditional subtraction. SUBC can be used
for division.

SUBH dma
SUBH {ind} [, next ARP]

Subtract From High Accumulator

Subtract the contents of the addressed data-memory
location from the 16 MSBs of the accumulator. The 16
LSBs of the accumulator are not affected.

SUBK #k

Subtract From Accumulator Short Immediate

Subtract an 8-bit immediate value from the
accumulator. The data is treated as an 8-bit positive
number; sign extension is suppressed.

SUBS dma
SUBS {ind} [, next ARP]

Subtract From Low Accumulator With Sign
Extension Suppressed

Subtract the contents of the addressed data-memory
location from the accumulator. The data is treated as
a 16-bit unsigned number; sign extension is
suppressed.

C-33

Syntax

1x

2X

2XX

5x

Description

SUBT dma
SUBT {ind} [, next ARP]

Subtract From Accumulator With Shift Specified
by T Register

Left shift the data-memory value as specified by the 4
LSBs of the T register (TMS320C2x/2xx) or TREG1
(TMS320C5x), and subtract the result from the
accumulator. If a shift is specified, left shift the
data-memory value before subtracting. During
shifting, low-order bits are zero filled, and high-order
bits are sign extended if SXM = 1.

SXF

Set External Flag
Set the XF pin and the XF status bit to 1.

TBLR dma
TBLR {ind} [, next ARP]

Table Read

Transfer a word from program memory to a
data-memory location. The program-memory address
is in the 12 (TMS320C1x) or 16 (TMS320C2x/2xx/5x)
LSBs of the accumulator.

TBLW dma
TBLW {ind} [, next ARP]

Table Write

Transfer a word from data-memory to a
program-memory location. The program-memory
address is in the 12 (TMS320C1x) or 16
(TMS320C2x/2xx/5x) LSBs of the accumulator.

TRAP

Software Interrupt

The TRAP instruction is a software interrupt that
transfers program control to program-memory
address 30h (TMS320C2x) or 22h (TMS320C20x/5x)
and pushes the PC + 1 onto the hardware stack. The
instruction at address 30h or 22h may contain a branch
instruction to transfer control to the TRAP routine.
Putting the PC + 1 on the stack enables an RET
instruction to pop the return PC.

XC n, condy [, conds] [, ...]

Execute Conditionally

Execute conditionally the next n instruction words
where 1 < n< 2. Not all combinations of conditions are
meaningful.

C-34

Syntax

1x

2X

2XX

5x

Description

XOR dma
XOR {ind} [, next ARP]
XOR #lk [, shiff]

Exclusive-OR With Accumulator

TMS320C1x and TMS320C2x devices: Exclusive-OR
the contents of the addressed data-memory location
with 16 LSBs of the accumulator. The MSBs are not
affected.

TMS320C20x and TMS320C5x devices:
Exclusive-OR the contents of the addressed
data-memory location or a 16-bitimmediate value with
the accumulator. If a shift is specified, left shift the
value before performing the exclusive-OR operation.
Low-order bits below and high-order bits above the
shifted value are treated as Os.

XORB

Exclusive-OR of ACCB With Accumulator

Exclusive-OR the contents of the accumulator with the
contents of the ACCB. The results are placed in the
accumulator.

XORK #lk [, shiff

Exclusive-OR Immediate With Accumulator With
Shift

Exclusive-OR a 16-bit immediate value with the
accumulator. If a shift is specified, left shift the value
before performing the exclusive-OR operation.
Low-order bits below and high-order bits above the
shifted value are treated as 0s.

XPL [#lk)] dma
XPL [#lk,] {ind} [, next ARP]

Exclusive-OR of Long Immediate or DBMR
With Addressed Data-Memory Value

If a long immediate value is specified, exclusive OR it
with the addressed data-memory value; otherwise,
exclusive OR the DBMR with the addressed
data-memory value. Write the result back to the
data-memory location. The accumulator is not
affected.

ZAC

Zero Accumulator

Clear the contents of the accumulator to 0.

ZALH dma
ZALH {ind} [, next ARP]

Zero Low Accumulator and Load High
Accumulator

Clear the 16 LSBs of the accumulator to 0 and load the
contents of the addressed data-memory location into
the 16 MSBs of the accumulator.

C-35

Syntax

1x

2X

2XX

5x

Description

ZALR dma
ZALR {ind} [, next ARP]

Zero Low Accumulator, Load High Accumulator
With Rounding

Load the contents of the addressed data-memory
location into the 16 MSBs of the accumulator. The
value is rounded by 1/2 LSB; that is, the 15 LSBs of the
accumulator (0—14) are cleared and bit 15 is set to 1.

ZALS dma
ZALS {ind} [, next ARP]

Zero Accumulator, Load Low Accumulator With
Sign Extension Suppressed

Load the contents of the addressed data-memory
location into the 16 LSBs of the accumulator. The 16
MSBs are zeroed. The data is treated as a 16-bit
unsigned number.

ZAP

Zero the Accumulator and Product Register

The accumulator and product register are zeroed. The
ZAP instruction speeds up the preparation for a repeat
multiply/accumulate.

ZPR

Zero the Product Register

The product register is cleared.

C-36

Appendix D

Program Examples

This appendix provides:
1 Abriefintroduction to the process for generating executable program files.

(1 Sample programs for implementing simple routines and using interrupts,
I/O pins, the timer, and the serial ports.

This appendix is not intended to teach you how to use the software develop-
ment tools. The following documents cover these tools in detail:

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide
(literature number SPRUO018)

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide
(literature number SPRU024)

TMS320C2xx C Source Debugger User’s Guide
(literature number SPRU151)

For further information about ordering these documents, see Related
Documentation From Texas Instruments on page vi of the Preface. For source
code and examples, refer to the Tl web site at www.ti.com and follow the DSP
path to the 'C20x DSP.

Topic Page
D.1 About These Program Examples —c..oeueiinnen... D
D.2 Shared Program Codeuiueineiii e, -5 |
D.3 Task-Specific Program Codeccoviiiiriiraneano... DI8 |

D.4 Introduction to Generating Bootloader Code D-

D-1

About These Program Examples

D.1 About These Program Examples

Figure D-1 illustrates the basic process for creating assembly language files
and then generating executable files from them:

1) Use the 'C2xx assembler to create:

1 A command file (c203.cmdin the figure) that defines address ranges
according to the architecture of the particular 'C2xx device

(1 An assembly language program (test.asmin the figure)

2) Assemble the program. The command shown under Step 2 in the figure
generates an object file and a file containing a listing of assembler errors
encountered.

3) Use the linker to bring together the information in the object file and the
command file and create an executable file (test.out in the figure). The
command shown also generates a map file, which explains how the linker
assigned the individual sections in the memory.

Note:

The procedure here applies to the PCL development environment and is giv-
en only as an example.

Figure D-1. Procedure for Generating Executable Files

Step 1

Using assembler, create command file
c203.cmd

and source program

test.asm

Step 2
Assemble source program
dspa test.asm -l -v2xx -s

Output files
test.Ist — Error listings
test.obj — assembled file

Step 3
Run linker
dsplnk test.obj c203.cmd -o test.out -m test.map

Output files
test.out — executable file
test. map — map file

The program examples in section D.2 and section D.3 consist of code for
shared files and task-specific files. Table D—1 describes the shared programs.
Shared files contain code that is used by multiple task-specific files. The task-
specific programs are described in Table D-2. Every task-specific file that
uses the header files includes them by way of the .copy assembler directive:

.copy "init.h”
.copy "vector.h”

The assembler brings together the .h files and .asm file. The linker links
assembled files according to the device architecture defined in the linker com-
mand file (c203.cmd).

Section D.4 contains an introduction to the procedure for using the assembler
and linker to generate code for the bootloader. Program examples are also giv-

en in that section.

Table D-1. Shared Programs in This Appendix

Program Functional Description See ...

c203.cmd Command file that defines size and placement of address blocks for ~ Example D-1, page
the program, data, and 1/0 spaces

init.h Header file that declares space for variables and constants; declares ~ Example D-2, page
initial values for variables; designates labels for the addresses of the
control registers mapped to on-chip I/O space; contains comments
that explain the functions of the control registers

vector.h Header file that fills the interrupt vector locations with branchestothe ~ Example D-3, page

corresponding interrupt service routines or with other values

Table D-2. Task-Specific Programs in This Appendix

Program Functional Description See ...
delay.asm Creates simple nested delay loops, measurable through XF and I/0O pins Example D4,
page |D-8
timer.asm Generates periodic timer interrupt, XF and I/O pins toggle at the interrupt ~ Example D-5,
rate page [D-9
intrl.asm Causes XF pin to toggle at the rate of the interrupt signal on the INT1 pin ~ Example D-6,
page
hold.asm Explains the software logic for implementing a HOLD operation Example D-7,
page
intr23.asm Accepts an interrupt signal on INT2 or INT3. Toggles XF pin for each Example D-8,
interrupt. page

D-3

Table D-2. Task-Specific Programs in This Appendix (Continued)

Program Functional Description See ...
uart.asm Causes the asynchronous serial port to transmit a test message Example D-9,
continuously at 1200 baud. Baud rate is 1200 at 50-ns cycle time. page
echo.asm Echoes the character received by the asynchronous serial port at 12200 Example D-10,
baud page
autobaud.asm Causes the asynchronous serial port to lock on to the incoming baud rate Example D-11,
and echoes the received character. The first character received should page
be a or A.
bitio.asm Toggles XF bit in response to delta interrupts and sends a character = Example D-12,
through the asynchronous serial port page
ssp.asm Causes the synchronous serial port to send words in continuous mode Example D-13,
with internal shift clock and frame synchronization page
ad55.asm Implements simple loopback with a TLC320AD55C codec chipinterfaced ~ Example D-14,
to the synchronous serial port page

D.2 Shared Program Code

Example D—1. Generic Command File (c203.cmd)

/* Title: ¢203.cmd */

/* Generic command file for linking TMS320C20x assembler files */

[*input files: *.obj files */

[* output files: *.out file */

I* Map files: *.map file (optional) */

/* TMS320C20x architecture declaration for linker use */

MEMORY

{

PAGE 0: /* PM — Program memory */

EX1_PM :ORIGIN=0H , LENGTH=0FEFFH /* External program RAM */

BO_PM :ORIGIN=0FFO0H, LENGTH=0100H /* BLOCK MAP IN CNF=1 */

PAGE 1: /* DM — Data memory */

REGS :ORIGIN=0H , LENGTH=60H * MEM-MAPPED REGS */
BLK_B2 :ORIGIN=60H , LENGTH=20H /* BLOCK B2 */
BLK_BO :ORIGIN=200H , LENGTH=100H /*BLOCK BO */
BLK_B1 :ORIGIN=300H , LENGTH=100H /*BLOCK B1 */
EX1 DM :ORIGIN=0800H, LENGTH=7800H /* EXTERNAL DATA RAM */
GM_DM :ORIGIN=8000H, LENGTH=8000H /* External DATA RAM AS GLOBAL*/
PAGE 2: /* 110 SPACE */

I0_IN :ORIGIN=0FFO0H, LENGTH=0FFH /*1/O MAPPED PERIPHERAL */
I0_EX :ORIGIN=0000H, LENGTH=0FFOOH /* EXT. /O MAPPED PERIPHERAL */

}

SECTIONS

/* Linker directive to specify section placement in the memory map */

{

vectors {}>EX1_PM PAGE 0 [* Vectors at 0x0000 */

text {}>EX1_PM PAGE 0 [* text placed after vectors */

.bss {}>EX1_DM PAGE 1 [* .bss in 0x800 in DM */

new {}>BLK_B2 PAGE 1 /* new in 0x0060 in DM */

.data :{} > 0x0370 PAGE 1 [* .data at 0x0370 in DM */

}

D-5

Example D-2. Header File With I/0O Register Declarations (init.h)

* File: init.h *

* Include file with I/O register declarations *
.mmregs ; Include reserved words
.bss dmem,10 ; Undefined variables space

.def ini_d, start,codtx ; Directive for symbol address
; generation in the current module

; —optional
ini_d: .usect "new”,10 ; Example of undefined variable space
; with the segment’s name as "new”
.data ; Example of including dummy constants
; —optional

.word 055aah
.word 0aa55h

* On—chip register equates

* CLKOUT

clk1 .set 0Offe8h
* INTERRUPT CONTROL
icr .set Offech
* SYNC PORT

sdtr .set OfffOh
sspcr .set Offflh
* UART

adtr .set Offf4h
aspcr .set Offf5h
iosr .set Offféh
brd .set Offf7h
*TIMER

tcr .set Offfsh
prd .set Offfoh
tim .set Offfah
* WAIT STATES

wsgr .set Offfch
* Variables

rxbuf .set 0300h
size .set 00020h
del .set 0010h

Example D-3. Header File With Interrupt Vector Declarations (vector.h)

* File: vector.h

* File defines Interrupt vector labels *

.sect "vectors”
b start
inptl
inpt23
timer
codrx
codtx
uart

T OOTOTUTOT

.Space 45*16
word 1,2,3,4,5

; reset vector — Jump to label start on reset

; INTL interrupt

; INT2/INT3 interrupt

; TINT Timer interrupt

; RX_Sync interrupt

; TX_SYNC interrupt

; TX/RX Uart port interrupt

; Reserved and s/w interrupt vector locations
; Directive for filling zeros in PM space
; Example for constant loading

D-7

D.3 Task-Specific Program Code

Example D—4. Implementing Simple Delay Loops (delay.asm)

Delay loop. XF and I/O 3 pins toggle after each delay *

* File: delay.asm
* Function:
title "Delay routine”
.copy "init.h”
.copy “vector.h”
text
start: clrc cnf
Idp #0h
setc INTM
splk #0000h, 60h
out 60h, wsgr
splk #0e00ch,60h
out 60h,aspcr
lar ar0,#del
mar *ar7
splk #0008h,6eh
splk #0000h,6fh
splk #Offffh,60h
lar ar? #del
loop: clrc xf
out 6fh,iosr
delyl: rpt 60h
nop
banz delyl,ar7
lar ar7 #del
setc xf
out 6eh,iosr
dely2: rpt 60h
nop
banz dely2,ar7
lar ar7 #del
b loop
inptl: ret
inpt23: ret
timer: ret
uart: ret
codtx: ret
codrx: ret
.end

; Title
; Variable and register declaration
: Vector label declaration

; Map block BO to data memory
; set DP=0
; Disable all interrupts
; Set zero wait states

; Define iosr for bit 1/0 in aspcr

: Initialize ar0
; Set ARP to ar7
; data for setting bit 1/0 3
; data for clearing bit I/0 3
; Inner repeat loop size

; xf=0
; bit 3=0
; @ 50ns, this loop gives 3.4 ms approx.
; delay = 17*3.4 = 57.8 ms approx.
s xf=1
: bit 3=1
; @ 50ns, this loop gives 3.4 ms approx.

; delay = 17*3.4 = 57.8 ms approx.

; Unused interrupts
; have dummy returns for safety

; Assembler module end directive —optional

Example D-5. Testing and Using the Timer (timer.asm)

* File: timer.asm
* Function: Timer test code

title "Timer Test”
.copy "init.h”
.copy "vector.h”
text

start: clrc CNF
Idp #0h
setc INTM
splk #0000h,60h
out 60h, wsgr
splk #Offffh,ifr
splk #0004h,imr
splk #0e00ch, 60h
out 60h, aspcr
mar *arl
lar arl,#rxbuf
splk #0004h,61h
splk #0008h,62h
out 61h,iosr
splk #0000h, 63h
splk #00ffh, 64h
out 64h, prd
out 63h, tim
splk #0c2fh, 64h

out 64h, tcr
clrc intm
clrc xf

wait: out 62h,iosr
idle
clrc xf
b wait

timer: setc xf
in 68h,tcr
in 69h,prd
in 6ah,tim
out 61h,iosr
clrc intm
ret

inptl: ret

inpt23: ret

codtx: ret

codrx: ret

uart: ret
.end

* PRD=0x00ff, TDDR=f @ 50ns, gives an interrupt interval=205us *
* PRD=0xffff, TDDR=0 @ 50ns, gives an interrupt interval=3.27ms*
* Timer interval measurable on I/O 2,3 or xf pins *

; Title
; Variable and register declaration
; Vector label declaration

; Map block BO to data memory
: set DP=0
; Disable all interrupts

; Set zero wait states
; clear interrupts
; enable timer interrupt
; configure bit 1/0 103 and 102 as outputs
; set the aspcr for the above

; bit value to set I/O 2
; bit value to set I/O 3
; set the bit 2 = high, 3= zero

: set PRD=0x00ffh
; set TIM=0x0000
: PSC, TDDR are zero, reload, restart

: set i02=0

cxf=1

; Read tcr,prd, tim regs.

; setio2=1

; Unused interrupt routines

; Assembler module end directive —optional

Example D—6. Testing and Using Interrupt INT1 (intrl.asm)

* File: intrl.asm *
* Function: Interrupt test code *

* For each INT1 interrupt XF,I/O pins 103 and 102 will toggle and *

* transmit char 'c’ through UART *

title "Interrupt 1 Test” ; Title

.copy init.h” ; Variable and register declaration
.copy “vector.h” ; Vector label declaration
text
start: clrc CNF ; Map block B0 to data memory
Idp #0h : set DP=0
setc INTM ; Disable all interrupts
splk #Offfth, ifr ; Clear interrupts
splk #0001h, imr ; Enable intl interrupts
splk #0010h, 60h
out 60h,icr ; Enable Intrl in mode bit/ICR
splk #0000h, 60h
out 60h, wsgr ; Set zero wait states
splk #0e00ch, 60h ; configure 103 and 102 as outputs
out 60h, aspcr ; set the aspcr for the above
splk #0411h, 60h ; default baud rate 1200, for UART @50 ns
out 60h,brd
mar *arl ; Initialize AR pointer with AR1
lar arl,#rxbuf
lar ar0,#size ; set counter limit
splk #0004h,61h ;set bit 1/0 2
splk #0008h,62h ; setbit1/0 3
splk #0063h,63h ; set tx data
clrc INTM
clrc XF
wait: out 61h,iosr ; toggle 102/3
idle
clrc XF ; toggle xf
b wait
inptl: in 65h, icr ; Read icr
out 62h, iosr ; toggle 102/3
out 65h, adtr ; send icr value through UART to check
; interrupt source
setc XF ; toggle xf
clrc INTM
ret
timer: ret
inpt23: ret
uart: ret
codtx: ret
codrx: ret
.end ; Assembler module end directive

; —optional

D-10

Example D-7. Implementing a HOLD Operation (hold.asm)

* File: hold.asm *
* Function: HOLD test code *
* Check for HOLDA toggle for HOLD requests in MODE 0 *
* Check for XF toggle on HOLD/INTL1 requests in MODE 1 *

title " HOLD Test” ; Title

.mmregs
icr .set OFFECh ; Interrupt control register in 1/0 space
icrshdw .set 060h ; scratch pad location

* Interrupt vectors

text
reset B main ; O—reset , Branch to main program on reset
intlh B intl_hold ; 1—external interrupt 1 or HOLD
.Space 40*16
rrxxxekkk|nterrupt service routine ISR for HOLD logic Fkkkkkokok
main: splk #0001h,imr
clrc intm
wait: b wait
intl_hold:
; Perform any desired context save
Idp #0
in icrshdw, icr ; save the contents of ICR register
lacl #010h ; load ACC with mask for MODE bit
and icrshdw ; Filter out all bits except MODE bit
becnd intl,neq ; Branch if MODE bit is 1, else in HOLD mode
lacc imr, 0 ; load ACC with interrupt mask register
splk #1,imr ; mask all interrupts except interruptl/HOLD
idle : enter HOLD mode, issues HOLDA
; and the busses will be in tristate
splk #1, ifr ; Clear HOLD/INT1 flag to prevent
; re—entering HOLD mode
sacl imr ; restore interrupt mask register
; Perform necessary context restore
clrc intm ; enable all interrupts
ret ; return from HOLD interrupt
intl: nop ; Replace this with desired INT1 interrupt
nop ; service routine
setc xf ; Dummy toggle to check the loop entry
clrc xf ;in MODE 1
splk #0001,ifr
clrc intm ; enable all interrupts
ret ; return from interrupts

D-11

Example D-8. Testing and Using Interrupts INT2 and INT3 (intr23.asm)

* File: intr23.asm
* Function: Interrupt test code *
* Interrupt on INT2 or INT3 will toggle 103 and 102 bits *
* and icr value copied in the Buffer @300 *
title " Interrupt 2/3 Test” ; Title
.copy init.h” ; Variable and register declaration
.copy "vector.h” ; Vector label declaration
text
start: clrc CNF ; Map block BO to data memory
Idp #0h : set DP=0
setc INTM ; Disable all interrupts
splk #Offffh, ifr ; clear interrupts
splk #0002h, imr ; Enable intl interrupts
splk #0003h, 60h
out 60h, icr ; Enable Int2 and 3 in ICR
splk #0000h, 60h
out 60h, wsgr : Set zero wait states
splk #0e00ch, 60h ; configure the 103 and 102 as outputs
out 60h, aspcr ; set the aspcr for the above
mar * arl ; ARP=arl
lar arl, #rxbuf
lar ar0, #size ; set counter limit
splk #0004h, 61h ;set bit 1/0 2
splk #0008h, 62h ; setbit1/0 3
splk #0063h, 63h : set tx data
clrc intm
clrc xf
wait: out 61h, iosr ; toggle 1/0 2
idle
clrc xf ; toggle xf bit
b wait
inpt23: in 65h, icr ; Read icr
in *+, icr ; Capture icr in buffer @300
mar * ar0
banz skip, arl
lar arl, #rxbuf
lar ar0, #size
skip: out 62h, iosr ; toggle 102/3
setc xf ; toggle xf
out 65h, icr ; clear interrupt 2/3 flag bit
clrc intm
ret
timer: ret
inptl: ret
uart: ret
codtx: ret
codrx: ret
.end ; Assembler module end directive
; —optional

D-12

Example D-9. Asynchronous Serial Port Transmission (uart.asm)

* File: uart.asm *
* Function: UART Test Code *
* Continuously sends "C203 UART is fine’ at 1200 baud. *

title " UART Test” ; Title

.copy "init.h” ; Variable and register declaration

.copy "vector.h” ; Vector label declaration

text
start: clrc CNF ; Map block B0 to data memory

ldp #0h : set DP=0

setc INTM ; Disable all interrupts
* UART initialization *

splk #Offfth,ifr ; Clear interrupts

splk #0000h,60h

out 60h, wsgr : Set zero wait states

splk #0c180h,61h ; reset the UART by writing 0

out 61h, aspcr ; 1 stop bit, tx interrupt, input i/o

splk #0e180h,61h ; Enable the serial port

out 61h,aspcr
splk #4fffh,62h

out 62h,iosr ; disable auto baud
splk #0411h, 63h ; set baud rate =1200 @ 20-MHz CLKOUT1
out 63h, brd
splk #20h,imr ; enable UART interrupt
mar *arl : ARP=arl
lar arl,#rxbuf
* Load data at DM300 :'c203 UART is fine!” — xmit data
splk #0063h,*+ ; ascii value for the above characters

splk #0032h,*+
splk #0030h,*+
splk #0033h,*+
splk #0020h,*+

splk #0055h,*+
splk #0041h,*+
splk #0052h,*+
splk #0054h,*+
splk #0020h,*+

splk #0069h,*+
splk #0073h,*+
splk #0020h,*+

splk #0066h,*+
splk #0069h,*+
splk #006eh,*+
splk #0065h,*+
splk #0020h,*+
splk #0021h,*+
splk #0021h,*+
splk #0020h,*+

D-13

Example D-9. Asynchronous Serial Port Transmission (uart.asm) (Continued)

wait:

uart:

skip:

inptl:
inpt23:
timer:
codtx:
codrx:

lar arl,#rxbuf
lar ar0, #20
mar *arl
clrc intm

clrc xf
idle
b wait

setc xf
splk #Offffh,67h
out *+ adtr
mar * arQ
banz skip,arl
lar arl,#rxbuf
lar ar0,#20

splk #0020h,ifr
clrc intm
ret

ret

ret

ret

ret

ret
.end

; load buffer size
; load data pointer

; toggle xf bit

; toggle xf bit
; transmit character from data buffer@300
; check if size=0, and reload

; set size = character length
; Clear ifr bit

: Assembler module end directive
; —optional

Example D-10. Loopback to Verify Transmissions of Asynchronous Serial Port (echo.asm)

* File:

* Function:
*

*

start:

clrc

echo.asm
UART Test Code

Continuously echoes data received by UART at 1200 baud. *
Received data will be stored in the buffer @300 *

title " UART/ASP loop back”
.copy init.h”
.copy “vector.h”
text
CNF
#0h
INTM

Idp
setc

; Title
; Variable and register declaration
; Vector label declaration

; Map block BO to data memory
: set DP=0
; Disable all interrupts

D-14

Example D-10. Loopback to Verify Transmissions of Asynchronous Serial Port (echo.asm)

(Continued)

* UART initialization *

splk #Offfth,ifr
splk #0000h,60h
out 60h, wsgr
splk #0c080h,61h
out 61h, aspcr
splk #0e080h,61h
out 61h,aspcr
splk #4fffh,62h
out 62h,iosr
splk #0411h, 63h
out 63h, brd
splk #20h,imr
mar *arl

* Load data at DM300

lar arl,#rxbuf
lar ar0, #size
mar *arl
clrc intm

wait: clrc
idle
b wait

uart: setc xf
in 68h,iosr
bit 68h,7
bcnd skip,ntc
in * adtr
out *+ adtr
mar * ar0
banz skip,arl
lar arl,#rxbuf
lar ar0,#size

skip: splk #0020h, ifr
clrc intm
ret

inptl: ret

inpt23: ret

timer: ret

codtx: ret

codrx: ret
.end

; clear interrupts

; Set zero wait states
; reset the UART by writing O
; 1 stop bit, rx interrupt, input i/o

: disable auto baud
; set baud rate =1200 @ 20MHz CLKOUT1

; enable UART interrupt

; load buffer size
; load data pointer

; toggle xf bit

; toggle xf bit
; Check receive flag bit in iosr
; load input status from iosr
; bit 8 in the data
; IF DR=0 no echo, return
: read and save at 300h
; echo

: check if size=0, and reload

; Clear interrupt in ifr!

; Assembler module end directive
; —optional

D-15

Example D-11. Testing and Using Automatic Baud-Rate Detection on
Asynchronous Serial Port (autobaud.asm)

* File: autobaud.asm *
* Function: UART,auto baud test *

* Locks to incoming baud rate if the first character *

* is "A” or "a” & continuously echoes data received *

* through the port. *
* Once detection is complete, if the CAD and ADC bits are not *

* disabled and the interrupt is enabled, the ISR will occur for *
* all characters received and will change the baud setting again. *

title "Auto_baud detect” ; Title

.copy init.h” ; Variable and register declaration
.copy “vector.h” ; Vector label declaration
text
start: clrc CNF ; Map block BO to data memory
ldp #0h ; set DP=0
setc INTM ; Disable all interrupts
* UART initialization *
splk #Offffh,ifr ; Cclear interrupts
splk #0000h,60h
out 60h, wsgr ; Set zero wait states
splk #0c0aOh,61h ; reset the UART by writing 0
out 61h, aspcr ; 1 stop bit, rx interrupt, input i/o
splk #0e0aOh,61h ; CAD=1 enable
out 61h,aspcr
splk #4fffh,62h ; enable ADC bit
out 62h,iosr ; disable auto baud
splk #0000h, 63h ; set baud rate =0000 @ 20-MHz CLKOUT1
out 63h, brd
splk #20h,imr ; enable UART interrupt
mar *arl
lar arl,#rxbuf
* Load data at DM300
lar arl,#rxbuf
lar ar0, #size ; load buffer size
mar * arl ; load data pointer
clrc intm
wait: clrc
idle
b wait

D-16

Example D-11. Testing and Using Automatic Baud-Rate Detection on
Asynchronous Serial Port (autobaud.asm) (Continued)

uart:

rcv:

skip:

inptl:

timer:
codtx:
codrx:

inpt23:

setc
in
bit
bcnd
splk
out
splk
out
in
bit
bcnd
in
out
mar
banz
lar
lar
splk
clrc
ret
ret
ret
ret
ret
ret
.end

xf

68h,iosr
68h,1

rcv,ntc
#4fffh,67h
67h,iosr
#0e080h,67h
67h, aspcr

68h,iosr

68h,7

skip,ntc

* adtr

*+ adtr

* ar0

skip,arl
arl,#rxbuf
ar0,#size

#0020h,ifr

intm

; load input status from iosr
: check if auto baud bit is set
: branch normal receive
: clear ADC

; Disable CAD bit/auto baud
; check for DR bit
; bit 8 in the data
; IF DR=0 no echo, return
; read and save at 300h
:echo

: check if size=0, and reload

: Clear ifr

; Assembler module end directive
; —optional

D-17

Example D-12. Testing and Using Asynchronous Serial Port Delta Interrupts (bitio.asm)

* File: bitio.asm *
* Function: Delta interrupt test code *
* Accepts delta interrupt on 10 pins 3 and 2 *
* If bit level changes on bit 7, send character 'c’ *
* through UART & toggle xf pin. *
* If bit level changes on bit 6, send character '/’ *
* through UART & toggle xf pin. *
* The delta bits are cleared after interrupt service *
title "BIT 10 Interrupt Test”; Title
.copy init.h” ; Variable and register declaration
.copy "vector.h” ; Vector label declaration
text
start: clrc CNF ; Map block BO to data memory
ldp #0h ; set DP=0
setc INTM ; Disable all interrupts

* UART initialization *

splk #Offffh,ifr
splk #0000h,60h
out 60h, wsgr
splk #0c200h,61h

; clear interrupts

; Set zero wait states
; reset the UART by writing O

; 1 stop bit, Delta interrupt,
; input i/o

out 61h, aspcr

splk #0e200h,61h
out 61h,aspcr
splk #4fffh,62h
out 62h,iosr
splk #0411h, 63h
out 63h, brd
splk #20h,imr
splk #0063h,65h
splk #0069h,67h
mar *arl

lar arl,#rxbuf

; disable auto baud
; set baud rate =1200 @ 20-MHz CLKOUT1

; enable UART interrupt
; transmit value = 0063h ='c’
; transmit value = 0063h =1’

* Load data at DM300 *
lar arl,#rxbuf
lar ar0, #size
mar *arl

: load buffer size
; load data pointer

clrc intm ; disable interrupts for polling
wait:

idle

b wait

D-18

Example D-12. Testing and Using Asynchronous Serial Port Delta Interrupts(bitio.asm)

(Continued)
uart: setc xf ; toggle xf bit
in 68h,iosr ; Bit i/o check
bit 68h,8 ; bit address 7 1/0 3 BIT IS SET?
; required bit place = complement 7!
bcnd poll,ntc ; NO then check FOR 1/0 2
clrc tc
out 65h, adtr ; transmit 63h ='c’
splk #0080h,6bh : reset delta bit
out 6bh,iosr : THE DELTA INTERRUPTS WILL BE ALWAYS
; COMING IF THIS IS NOT CLEARED!!!
clrc xf ; clear xf bit
splk #20h,ifr ; clear ifr bits
clrc intm
ret
poll: in 68h,iosr
bit 68h,9 ; bit address 6 1/O 2 bit is set?
bcnd polll,ntc
clrc tc
out 67h, adtr ; if set transmit 69h =7’
splk #0040h,6bh ; reset delta bit
out 6bh,iosr
poll1: clrc xf ; clear xf bit
splk #20h,ifr ; clear ifr bits
clrc intm
ret
inptl: ret
inpt23: ret
timer: ret
codtx: ret
codrx: ret
.end ; Assembler module end directive

; —optional

D-19

Example D-13. Synchronous Serial Port Continuous Mode Transmission (ssp.asm)

* File: ssp.asm
* Function: Continuous transmit in CONTINUOUS mode *
* Internal shift clock and frame sync *
* Transmit FIFO level is set to 4 *
title "SSP Continuous mode” ; Title
.copy init.h” ; Variable and register declaration
.copy “vector.h” ; Vector label declaration
text
start: clrc cnf ; Map block BO to data memory
ldp #0h ; set DP=0
setc INTM ; Disable all interrupts
splk #0000h, 60h ; Set zero wait states
out 60h, wsgr
splk #0ccOch,60h ; reset the serial port by writing
out 60h, sspcr ; zeros at NOR/RES
splk #0cc3ch,60h ; enable Sync port, 4 word fifo,
out 60h,sspcr : internal clocks, Continuous mode
; Use sspcr= #0cc3eh for Burst mode
splk #1717h,61h ; dummy data for tx

splk #7171h,63h
splk #0aa55h,64h

splk #55aah,62h : transmit 55aah on tx
splk #10h,imr ; enable xinit interrupt
clrc intm ; enable INTM

out 62h,sdtr ; Xmit once to start
out 61h,sdtr ; transmit interrupts

out 63h,sdtr
out 64h,sdtr

loop: clrc xf ; clear xf flag
idle
b loop
codtx: setc xf ; set xf bit
out 62h,sdtr ; transmit 0x55aah again
out 61h,sdtr ; transmit 1717h
out 63h,sdtr ; transmit 7171h
out 64h,sdtr ; transmit aa55h
splk #0010h, ifr ; clear ifr flag
clrc intm
ret
codrx: ret
inptl: ret
inpt23: ret
timer: ret
uart: ret
.end ; Assembler module end directive
; —optional

D-20

Example D-14. Using Synchronous Serial Port With Codec Device (ad55.asm)

* File: ad55.asm *
* Function: Burst mode simple loop back on AD55 CODEC *
* CODEC master clock 10 MHz *
* Simple 1/O at 9.6-kHz sampling *
title "AD55 codec simple 1/0”; Title
.copy "init.h” ; Variable and register declaration
.copy "vector.h” ; Vector label declaration
text
start: clrc cnf ; Map block BO to data memory
ldp #0h : set DP=0
setc intm ; Disable all interrupts
splk #0000h, 60h : Set zero wait states
out 60h,wsgr
splk #0c002h,60h ; Initialize SSP
out 60h, sspcr ; reset the serial port by writing
splk #0c032h,60h ; zeros to reset bits,
out 60h,sspcr ; enable Sync port, 1 word fifo,
; CLX/FSR as inputs. Burst mode
main: splk #08h,imr ; enable RINT interrupt
splk #Offffh, ifr ; reset ifr flags
mar *arl ; load arl with rx buffer
lar arl, #rxbuf
lar ar0, #size
*0 0 R/W reg_add data ; AD55 command reg. bits
*D15 14 13 12-8 7-0
splk #0000h, 60h ; reg0 nop
splk #0304h, 61h ; regl 9.6khz sampling
splk #0200h, 62h ; default data 00
splk #0301h, 63h : default data 01
splk #0401h, 64h ; default data 01
splk #0508h, 65h ; default data 08
splk #0001h, 66h ; secondary comm. request data
out 66h,sdtr ; request sec. comm.
out 61h,sdtr ; send regl data for 9.6-Khz sampling
out 60h,sdtr ; send 0x0000 after programming
clrc intm ; Enable SSP interrupts
loop: clrc xf ; clear xf flag
idle ; Wait for SSP interrupt
b loop

D-21

Example D-14. Using Synchronous Serial Port With Codec Device (ad55.asm)

(Continued)

codtx: splk #0010h, ifr ; clear tx intr flag
clrc intm
ret

codrx: setc xf ; toggle xf bit
in * sdtr ; Read ADC value
lacc *+,0 : Make LSB zero
and #0fffeh,0 ; to avoid secondary
sacl 6ah,0 ; request for codec
out 6ah,sdtr ; Send ADC value to DAC
mar * ar0
banz skip,arl ; Check buffer limits
lar arl,#rxbuf
lar ar0,#size

skip: splk #0008h, ifr ; Clear ifr flag
clrc intm
ret

inptl: ret

inpt23: ret

timer: ret

uart: ret
.end ; Assembler module end directive

; —optional

D-22

D.4 Introduction to Generating Bootloader Code

The 'C2xx on-chip bootloader boots software from an 8-bit external EPROM
to a 16-bit external RAM at reset. This section introduces to the procedure for
using Texas Instruments development tools to generate the code that will be
loaded into the EPROM.

Note:

The procedure in this section is given only as an example. This procedure
may have to be modified to suit different applications.

For more details, refer to the TMS320CI1x/C2x/C2xx/C5x Assembly
Language Tools User’s Guide (literature number SPRUQ18).

The process for generating bootloader code uses these basic steps:

1) Write the following code by using the TMS320C1x/C2x/C2xx/C5x
assembler:

(1 The code that you wish to have loaded into the EPROM. Program
codeis listed after a.textassembler directive (see any of the programs
in section D.3).

[A linker command file that defines the architecture of the particular
'C2xx device being used. Example D-15 shows a command file for
the 'C203. Note that the file declares the .text section at 0000h. Thisis
necessary because the bootloader transfers the code to the external
RAM beginning at address 0000h.

2) Assemble the code. Use the —v2xx option (for 'C2xx assembly) in the
assemble command.

3) Link the assembled file with the command file by using the
TMS320C1x/C2x/C2xx/C5x linker.

4) Write a hex conversion command file (an ASCII file) that contains options
and directives for the TMS320C1x/C2x/C2xx/C5x hex conversion utility.
Example D-16 shows such a file.

5) Use the hex conversion command file with the hex conversion utility to
generate the boot code in an ASCII hexadecimal format suitable for load-
ing into an EPROM programmer. The command file in Example D—-16 se-
lects the Inteld format.

D-23

Example D-15. Linker Command File

{

text

MEMORY

{

PAGE 0: /* PM — Program memory */

EX1_PM :ORIGIN=0H , LENGTH=0FEFFH /* External program RAM */

BO_PM :ORIGIN=0FFO0H, LENGTH=0100H /* BLOCK MAP IN CNF=1 */

PAGE 1: /* DM — Data memory */

REGS :ORIGIN=0H , LENGTH=60H * MEM-MAPPED REGS */

BLK_B2 :ORIGIN=60H , LENGTH=20H /* BLOCK B2 */

BLK_BO :ORIGIN=200H , LENGTH=100H /*BLOCK BO, */

BLK_B1 :ORIGIN=300H , LENGTH=100H /*BLOCKB1 */

EX1_DM :ORIGIN=0800H, LENGTH=7800H /* EXTERNAL DATA RAM */
GM_DM :ORIGIN=8000H, LENGTH=8000H /* External DATA RAM AS GLOBAL */
PAGE 2: /*1/0O SPACE */

IO_IN :ORIGIN=0FFO0H, LENGTH=0FFH /*1/O MAPPED PERIPHERAL */
I0_EX :ORIGIN=0000H, LENGTH=0FFOOH /* EXT. I/O MAPPED PERIPHERAL */
}

SECTIONS

[* Linker directive to specify section placement in the memory map */

{} >EX1LPM PAGEO

Example D—16. Hex Conversion Utility Command File

dsphex boot.cmd
/* boot.cmd file an example */

test.out /* File for boot code in COFF format*/
—i [* option to generate Intel hex format */
-0 test.i0 /* Name of the output file */
—byte [* 16—bit code is converted into byte */
[* stack to suit 8—bit ROM. */
—order MS [* The byte order is higher byte first followed by */
/* lower order byte */
—memwidth 8
—romwidth 8
—boot
SECTIONS

{ .text:boot}

D-24

Appendix E

Submitting ROM Codes to Tl

The size of a printed circuit board is a consideration in many DSP applications.
To make full use of the board space, Texas Instruments offers this ROM code
option that reduces the chip count and provides a single-chip solution. This op-
tion allows you to use a code-customized processor for a specific application
while taking advantage of:

(1 Greater memory expansion
[Lower system cost

[J Less hardware and wiring
J Smaller PCB

If a routine or algorithm is used often, it can be programmed into the on-chip
ROM of a TMS320 DSP. TMS320 programs can also be expanded by using
external memory; this reduces chip count and allows for a more flexible pro-
gram memory. Multiple functions are easily implemented by a single device,
thus enhancing system capabilities.

TMS320 development tools are used to develop, test, refine, and finalize the
algorithms. The microprocessor/microcomputer (MP/MC) mode is available
on all ROM-coded TMS320 DSP devices when accesses to either on-chip or
off-chip memory are required. The microprocessor mode is used to develop,
test, and refine a system application. In this mode of operation, the TMS320
acts as a standard microprocessor by using external program memory. When
the algorithm has been finalized, the code can be submitted to Texas Instru-
ments for masking into the on-chip program ROM. At that time, the TMS320
becomes a microcomputer that executes customized programs from the on-
chip ROM. Should the code need changing or upgrading, the TMS320 can
once again be used in the microprocessor mode. This shortens the field-
upgrade time and avoids the possibility of inventory obsolescence.

Figure E-1 illustrates the procedural flow for developing and ordering
TMS320 masked parts. When ordering, there is a one-time, nonrefundable
charge for mask tooling. A minimum production order per year is required for
any masked-ROM device. ROM codes will be deleted from the Tl system one
year after the final delivery.

E-1

Submitting ROM Codes to T/

Figure E-1. TMS320 ROM Code Submittal Flow Chart

(Customer TMS320 Design

Customer submits:

— TMS320 New Code Release Form

— Print Evaluation and Acceptance Form (PEAF)
— Purchase order for mask prototypes

— TMS320 code

v

Texas Instruments responds:
— Customer code input into Tl system
— Code sent back to customer for verification

Customer
approves
algorithm

No

A

TI produces prototypes

Customer
approves
prototypes (minimum
production order
required)

No

iy

(TMS320 production

E-2

Submitting ROM Codes to T/

The TMS320 ROM code may be submitted in one of the following forms:
[J Attachmentto an email
1 3-1/2-in floppy: COFF format from macro-assembler/linker (preferred)

When code is submitted to Tl for masking, the code is reformatted to accom-
modate the TI mask-generation system. System-level verification by the cus-
tomer is therefore necessary to ensure the reformatting remains transparent
and does not affect the execution of the algorithm. The formatting changes in-
volve the removal of address-relocation information (the code address begins
atthe base address of the ROM in the TMS320 device and progresses without
gaps to the last address of the ROM) and the addition of data in the reserved
locations of the ROM for device ROM test. Because these changes have been
made, a checksum comparison is not a valid means of verification.

With each masked-device order, the customer must sign a disclaimer that
states:

The units to be shipped against this order were assembled, for expe-
diency purposes, on a prototype (that is, nonproduction qualified)
manufacturing line, the reliability of which is not fully characterized.
Therefore, the anticipated inherent reliability of these prototype units
cannot be expressly defined.

and a release that states:

Any masked ROM device may be resymbolized as Tl standard
product and resold as though it were an unprogrammed version of
the device, at the convenience of Texas Instruments.

The use of the ROM-protect feature does not hold for this release statement.
Additional risk and charges are involved when the ROM-protect feature is
selected. Contactthe nearest Tl Field Sales Office for more information on pro-
cedures, leadtimes, and cost associated with the ROM-protect feature.

E-3

Appendix F

Design Considerations for
Using XDS510 Emulator

This appendix assists you in meeting the design requirements of the Texas
Instruments XDS510 emulator with respect to IEEE-1149.1 designs and
discusses the XDS510 cable (manufacturing part number 2617698-0001).
This cable is identified by a label on the cable pod marked JTAG 3/5Vand sup-
ports both standard 3-V and 5-V target system power inputs.

The term JTAG, as used in this book, refers to Tl scan-based emulation, which
is based on the IEEE 1149.1 standard.

For more information concerning the IEEE 1149.1 standard, contact IEEE
Customer Service:

Address: |EEE Customer Service
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331

Phone: (800) 678—IEEE in the US and Canada
(908) 981-1393 outside the US and Canada

FAX: (908) 981-9667 Telex: 833233

Topic Page
F.1 Designing Your Target System’s Emulator Connector

(L4-Pin Header)ouiei

R2 BUSPEITEE) c000000005000000000000000005000500060050005000004
F.3 Emulator Cable POdoiutiti i H-5 |
F.4 Emulator Cable Pod Signal Timing ] F-
F5 Emulation Timing Calculations iiiiiiiinn... F-
F.6 Connections Between the Emulator and the Target System .. .F.—lD
F.7 Physical Dimensions for the 14-Pin Emulator Connector ~ I.:-.14:|
F.8 Emulation Design Considerations , F-

F-1

F.1 Designing Your Target System’s Emulator Connector (14-Pin Header)

JTAG target devices support emulation through a dedicated emulation port.
This port is accessed directly by the emulator and provides emulation func-
tions that are a superset of those specified by IEEE 1149.1. To communicate
with the emulator, your target system must have a 14-pin header (two rows of
seven pins) with the connections that are shown in Figure F-1. Table F-1
describes the emulation signals.

Although you can use other headers, the recommended unshrouded, straight
header has these DuPont connector systems part numbers:

[65610-114
(] 65611-114
[67996-114
[67997-114

Figure F-1. 14-Pin Header Signals and Header Dimensions

TMS| 1 2 TRST
oI ol Pin-{o-pin spacing, 6.100 in. (X.Y)
PD (Vco) | 5 n no pin (key)T Pin width, 0.025-in. square post
o | 7 8 GND Pin length, 0.235-in. nominal
TCK_RET| 9 10 | GND
TCK| 11 12 | GND
EMUO | 13 14 | EMUL

T While the corresponding female position on the cable connector is plugged to preventimproper
connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the
schematics and wiring diagrams in this appendix.

Table F-1. 14-Pin Header Signal Descriptions

Emulator T Targett

Signal Description State State
EMUO Emulation pin 0 I 110
EMU1 Emulation pin 1 I 110
GND Ground

PD(Vce) Presence detect. Indicates that the emulation o

cable is connected and that the target is
powered up. PD should be tied to V¢ in the
target system.

TCK Test clock. TCK is a 10.368-MHz clock (@) |
source from the emulation cable pod. This
signal can be used to drive the system test
clock.

TCK_RET Test clock return. Test clock input to the (0]
emulator. May be a buffered or unbuffered
version of TCK.

TDI Test data input (@) |
TDO Test data output I (0]
T™MS Test mode select @) |
TRSTH Test reset 0 [

T1=input; O = output

¥ Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise
environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current
considerations.)

F.2 Bus Protocol

F-4

The IEEE 1149.1 specification covers the requirements for the test access port
(TAP) bus slave devices and provides certain rules, summarized as follows:

(1 The TMS and TDI inputs are sampled on the rising edge of the TCK signal
of the device.

[The TDO output is clocked from the falling edge of the TCK signal of the
device.

When these devices are daisy-chained together, the TDO of one device has
approximately a half TCK cycle setup time before the next device’s TDI signal.
This timing scheme minimizes race conditions that would occur if both TDO
and TDI were timed from the same TCK edge. The penalty for this timing
scheme is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for bus master (emula-
tor) devices. Instead, it states that the device expects a bus master to provide
bus slave compatible timings. The XDS510 provides timings that meet the bus
slave rules.

F.3 Emulator Cable Pod

Figure F-2 shows a portion of the emulator cable pod. The functional features
of the pod are:

(1 TDO and TCK_RET can be parallel-terminated inside the pod if required
by the application. By default, these signals are not terminated.

(1 TCKisdriven with a 74LVT240 device. Because of the high-current drive
(32-mA IgL/lpn), this signal can be parallel-terminated. If TCK is tied to

TCK_RET, you can use the parallel terminator in the pod.

[TMSandTDIcan be generated from the falling edge of TCK_RET, accord-
ing to the IEEE 1149.1 bus slave device timing rules.

[TMS and TDI are series-terminated to reduce signal reflections.

[J A 10.368-MHz test clock source is provided. You can also provide your
own test clock for greater flexibility.

Figure F-2. Emulator Cable Pod Interface

TDO (pin 7)

GND (pins 4,6,8,10,12)

EMUO (pin 13)

EMU1 (pin 14)

TCK_RET (pin 9)t

PD(Vcc) (pin 5)

5V
T4F175
180 Q 270 Q
Q
i JP1
D Q

74LVT240

10.368 MHz 33Q
— Y —YWN——]

33Q

] Y

37 A Y

] Y

D74A81034

5V
180 Q 270 Q

2 JP2 74AS1004

100 Q |

RESIN
TL7705A

TMS (pin 1)

TDI (pin 3)

TCK (pin 11)T

TRST (pin 2)

T The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided as an
optional target system test clock source.

F-5

F.4 Emulator Cable Pod Signal Timing

Figure F—3 shows the signal timings for the emulator cable pod. Table F-2
defines the timing parameters illustrated in the figure. These timing parame-
ters are calculated from values specified in the standard data sheets for the
emulator and cable pod and are for reference only. Texas Instruments does
not test or guarantee these timings.

The emulator pod uses TCK_RET as its clock source for internal synchroni-
zation. TCK is provided as an optional target system test clock source.

Figure F-3. Emulator Cable Pod Timings

\ \
TCK_RET _/—\—/—_

f—z—"ﬁ—s—h‘

TMS, TDI X
\

e a—n |
° - 6 P

X

Table F—2. Emulator Cable Pod Timing Parameters

No. Parameter Description Min Max Unit
1 te(TCK) Cycle time, TCK_RET 35 200 ns
2 tw(TCKH) Pulse duration, TCK_RET high 15 ns
3 tw(TCKL) Pulse duration, TCK_RET low 15 ns
4 t4(TmMS) Delay time, TMS or TDI valid for TCK_RET low 6 20 ns
5 tsu(TDO) Setup time, TDO to TCK_RET high 3 ns
6 th(TDO) Hold time, TDO from TCK_RET high 12 ns

F.5 Emulation Timing Calculations

Example F-1 and Example F-2 help you calculate emulation timings in your
system. For actual target timing parameters, see the appropriate data sheet
for the device you are emulating.

The examples use the following assumptions:

tsu(TT™S) Setup time, target TMS or TDI to TCK

high 10 ns
t4(TTDO) Delay time, target TDO from TCK low 15ns
td(bufmax) Delay time, target buffer maximum 10 ns
td(bufmin) Delay time, target buffer minimum 1ns
thufskew Skew time, target buffer between two 1.35ns

devices in the same package:
[td(bufmax) — td(bufmin)l * 0-15

tTCKfactor Duty cycle, assume a 40/60% duty cycle 0.4
clock (40%)

Also, the examples use the following values from Table F-2 on page F-6:

ty(TMsmax) ~ Delay time, emulator TMS or TDI from 20 ns
TCK_RET low, maximum
tsu(tpomin) ~ Setup time, TDO to emulator TCK_RET 3ns

high, minimum
There are two key timing paths to consider in the emulation design:

(1 TheTCK_RET-to-TMSorTDlpath,calledtyqtck_RET-TMS/TDI)(Propaga-
tion delay time)

1 The TCK_RET-to-TDO path, called thd(TCK_RET-TDO)

In the examples, the worst-case path delay is calculated to determine the
maximum system test clock frequency.

F-7

Example F-1. Key Timing for a Single-Processor System Without Buffers

gy

[td (TMSmax) TTMS)]
t =

pd (TCK_RET-TMS/TDI) t

TCKfactor

(20 ns + 10 ns)
0.4

75 ns, or 13.3 MHz

+ tsu (TDOmin)]

[td (TTDO)
t =

pd (TCK_RET-TDO) tTCKfactor

_ (15ns + 3ns)
- 0.4
= 45ns, or 22.2 MHz

In this case, because the TCK_RET-to-TMS/TDI path requires more time to
complete, it is the limiting factor.

Example F-2. Key Timing for a Single- or Multiple-Processor System With Buffered Input

F-8

and Output

+

[td (TMSmax) tsu (TTMS) + tbufskew]

t =
pd (TCK_RET-TMS/TDI) Lrekfactor

_(20ns + 10 ns + 1.35ns)
B 0.4

= 78.4ns, or 12.7 MHz

_ [td (TTDO) + tsu (TDOmMIN) + td (bufmaX)]
tpd (TCK_RET-TDO) — t

TCKfactor

_ (15ns + 3ns + 10 ns)
B 0.4

= 70ns, or 14.3 MHz

In this case also, because the TCK_RET-to-TMS/TDI path requires more time
to complete, it is the limiting factor.

In a multiprocessor application, it is necessary to ensure that the EMUO and
EMUL lines can go from a logic low level to a logic high level in less than 10
us, this parameter is called rise time, t,. This can be calculated as follows:

ty 5(Rpullup * Ndevices * Cload_per_device)
5(4.7 kQ x 16 x 15 pF)

5(4.7x103Q x 16 x 15=no ~12 F)
5(1128 x 10 -9)

5.64 us

F-9

F.6 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the JTAG target system. You must supply the correct signal buffering, test
clock inputs, and multiple processor interconnections to ensure proper emula-
tor and target system operation.

Signals applied to the EMUO and EMUL1 pins on the JTAG target device can
be either input or output. In general, these two pins are used as both input and
output in multiprocessor systems to handle global run/stop operations. EMUO
and EMUL signals are applied only as inputs to the XDS510 emulator header.

F.6.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is
greater than 6 inches, the emulation signals must be buffered. If the distance
is less than 6 inches, no buffering is necessary. Figure F—4 shows the simpler,
no-buffering situation.

The distance between the header and the JTAG target device must be no more
than 6 inches. The EMUO and EMU1 signals must have pullup resistors con-
nected to V¢ to provide a signal rise time of less than 10 ps. A 4.7-kQ resistor
is suggested for most applications.

Figure F—-4. Emulator Connections Without Signal Buffering

F-10

|{¢— 6 inches or less —p
Vce Vee
JTAG device Emulator header T
EMUO 13 EMUO PD 5
EMU1 L 14 EMU1
TRST 21 TRsT GND |2
™S H1ms GnD |2
TDI El TDI GND 8
TDO ! TDO GND 10
TCK —T 1 TCK GND 12
9 TCK_RET
GND

Figure F-5 shows the connections necessary for buffered transmission sig-
nals. The distance between the emulation header and the processor is greater
than 6 inches. Emulation signals TMS, TDI, TDO, and TCK_RET are buffered
through the same device package.

Figure F-5. Emulator Connections With Signal Buffering

Greater than
- 6 inches —>

Vece

Vce
JTAG device Emulator header
13 5

EMUO

EMUO PD

l 14

EMUL EMUL

TRST 2| TRST Ny =

™s [—<]—e Hrvs GND |8

DI <]—0—3 DI onp |8
> 7 10

TDO TDO GND
11 12

TCK TCK GND
91 rck_RET

The EMUO and EMUL signals must have pullup resistors connected to V¢ to
provide a signal rise time of less than 10 ps. A 4.7-kQ resistor is suggested for
most applications.

GND

The input buffers for TMS and TDI should have pullup resistors connected to
V¢ to hold these signals at a known value when the emulator is not con-
nected. A resistor value of 4.7 kQ or greater is suggested.

To have high-quality signals (especially the processor TCK and the emulator
TCK_RET signals), you may have to employ special care when routing the
printed wiring board trace. You also may have to use termination resistors to
match the trace impedance. The emulator pod provides optional internal paral-
lel terminators on the TCK_RET and TDO. TMS and TDI provide fixed series
termination.

Because TRST is an asynchronous signal, it should be buffered as needed to
ensure sufficient current to all target devices.

F-11

F.6.2 Using a Target-System Clock

Figure F—6 shows an application with the system test clock generated in the
target system. In this application, the emulator’'s TCK signal is left uncon-

nected.

Figure F—6. Target-System-Generated Test Clock

Greater than

Vee

LT
4
6
8
10
12
GND

‘ 6 inches ’
Vce
JTAG device Emulator header

EMUO - 13 EMUO PD
EMU1 l 14 EMUL
TRST 2 TRST GND
s ——<}-o rvs GND

o F<}——e—2{ i GND
TDO 4|F7 TDO GND
TCK ne —H ek GND

9 TCK_RET
System test clock

Note: Whenthe TMS and TDI lines are buffered, pullup resistors must be used to hold the buffer
inputs at a known level when the emulator cable is not connected.

There are two benefits in generating the test clock in the target system:

(1 The emulator provides only a single 10.368-MHz test clock. If you allow
the target system to generate your test clock, you can set the frequency
to match your system requirements.

[J In some cases, you may have other devices in your system that require
a test clock when the emulator is not connected. The system test clock
also serves this purpose.

F-12

F.6.3 Configuring Multiple Processors

Figure F—7 shows a typical daisy-chained multiprocessor configuration that
meets the minimum requirements of the IEEE 1149.1 specification. The
emulation signals are buffered to isolate the processors from the emulator and
provide adequate signal drive for the target system. One of the benefits of this
interface is that you can slow down the test clock to eliminate timing problems.
Follow these guidelines for multiprocessor support:

[Theprocessor TMS, TDI, TDO, and TCK signals must be buffered through
the same physical device package for better control of timing skew.

[Theinputbuffers for TMS, TDI, and TCK should have pullup resistors con-
nected to V¢ to hold these signals at a known value when the emulator

is not connected. A resistor value of 4.7 kQ or greater is suggested.

Buffering EMUO and EMUL is optional but highly recommended to provide
isolation. These are not critical signals and do not have to be buffered
through the same physical package as TMS, TCK, TDI, and TDO.

Figure F—7. Multiprocessor Connections

JTAG device JTAG device
—| DO DI ¢ TDO ™I |— Vee
- o o - © o Vece
E FlE O @ E Fl- O m Emulator header
| { l 13| Emuo PD |2
) ° 14 L emut
()\ 2 | TRsT Y
(1 6
(o <|——o ™S GND
<]——¢ 311oi GND |2
7 10
5§ 'l> TDO GND
’—0 (—e <]| e ek GND |22
9 Tk _RET
GND

F-13

F.7 Physical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable
that connects to the emulator, an active cable pod, and a short section of jack-
eted cable that connects to the target system. The overall cable length is
approximately 3 feet 10 inches. Figure F-8 and Figure F-9 (page F-15) show
the physical dimensions for the target cable pod and short cable. The cable
pod box is nonconductive plastic with four recessed metal screws.

Figure F-8. Pod/Connector Dimensions

2.70in., nominal

4.50 in., nominal

= 9.50 in., nominal

— 0.90in.,
nominal

Fmulator cable pod ' Connector
Short, jacketed cable <>°

See Figure F-9

Note: Alldimensions are in inches and are nominal dimensions, unless otherwise specified. Pin-to-pin spacing on the connec-
tor is 0.100 inches in both the X and Y planes.

F-14

Figure F-9. 14-Pin Connector Dimensions

<—— 0.20i nch,
nominal

cae —7— I

0.66 inch,
nominal

Connector, side view

0.100 inch, —— Key, pin 6
nominal 4.‘ }‘7
(pin spacing)

Cable

A

BE

7 0.87 inch,
nominal
5
n 0.100 inch,
E‘ nominal

(pin spacing)

,

Connector, front view

2 rows of pins

F-15

F.8 Emulation Design Considerations

This section describes the use and application of the scan path linker (SPL),
which can simultaneously add all four secondary JTAG scan paths to the main
scan path. It also describes the use of the emulation pins and the configuration
of multiple processors.

F.8.1 Using Scan Path Linkers

F-16

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG
emulation scan path into smaller, logically connected groups of 4 to 16
devices. As described in the Advanced Logic and Bus Interface Logic Data
Book, the SPL is compatible with the JTAG emulation scanning. The SPL is
capable of adding any combination of its four secondary scan paths into the
main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance
andisolationthan a single scan path. Since an SPL has the capability of adding
all secondary scan paths to the main scan path simultaneously, it can support
global emulation operations, such as starting or stopping a selected group of
processors.

Tl emulators do not support the nesting of SPLs (for example, an SPL
connected to the secondary scan path of another SPL). However, you can
have multiple SPLs on the main scan path.

Scan path selectors are not supported by this emulation system. The TI
ACT8999 scan path selector is similar to the SPL, but it can add only one of
its secondary scan paths at a time to the main JTAG scan path. Thus, global
emulation operations are not assured with the scan path selector.

You can insert an SPL on a backplane so that you can add up to four device
boards to the system without the jumper wiring required with nonbackplane
devices. You connect an SPL to the main JTAG scan path in the same way you
connect any other device. Figure F—10 shows how to connect a secondary
scan path to an SPL.

Figure F-10. Connecting a Secondary JTAG Scan Path to a Scan Path Linker

|
SPL
DTCK | DI JTAGO
TDI | DTDOO ™S
TMS = DTMSO TCK
TCK ~ DTDIO TRST
TRST | Srpos __} [— TDO
0O prms:
DTDI1 —
o1 JTAGN
DTDO2 ™S
DTMS2 TCK
DTDI2 TRST
DTDO3 TDO
DTMS3
DTDI3

The TRST signal from the main scan path drives all devices, even those on
the secondary scan paths of the SPL. The TCK signal on each target device
on the secondary scan path of an SPL is driven by the SPL's DTCK signal. The
TMS signal on each device on the secondary scan path is driven by the respec-
tive DTMS signals on the SPL.

DTDOO onthe SPL is connected to the TDI signal of the first device on the sec-
ondary scan path. DTDIO on the SPL is connected to the TDO signal of the last
device in the secondary scan path. Within each secondary scan path, the TDI
signal of a device is connected to the TDO signal of the device before it. If the
SPL is on a backplane, its secondary JTAG scan paths are on add-on boards;
if signal degradation is a problem, you may need to buffer both the TRST and
DTCK signals. Although degradation s less likely for DTMSn signals, you may
also need to buffer them for the same reasons.

F-17

F.8.2 Emulation Timing Calculations for a Scan Path Linker (SPL)

Example F-3 and Example F—4 help you to calculate the key emulation tim-
ings in the SPL secondary scan path of your system. For actual target timing
parameters, see the appropriate device data sheet for your target device.

The examples use the following assumptions:

tsu(TT™S) Setup time, target TMS/TDI to TCK high 10 ns
t4(TTDO) Delay time, target TDO from TCK low 15 ns
td(bufmax) Delay time, target buffer, maximum 10 ns
td(bufmin) Delay time, target buffer, minimum 1ns
t(bufskew) Skew time, target buffer, between two 1.35ns
devices in the same package:
[td(bufmax) — td(bufmin)l * 0.15
t(rcKfactor) Duty cycle, TCK assume a 40/60% clock 0.4
(40%)

Also, the examples use the following values from the SPL data sheet:

td(DTMSmax) Delay time, SPL DTMS/DTDO from TCK 31ns
low, maximum

tsu(bTDLmin) Setup time, DTDI to SPL TCK high, 7ns
minimum

ta(oTCkHmin) Delay time, SPL DTCK from TCK high, 2ns
minimum

ta(bTckLmax) Delay time, SPL DTCK from TCK low, 16 ns
maximum

There are two key timing paths to consider in the emulation design:

(10 The TCK-to-DTMS/DTDO path, called thd(TCK-DTMS)

1 The TCK-to-DTDI path, called tyg(rck-DTDI)

F-18

Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Example F-3. Key Timing for a Single-Processor System Without Buffering (SPL)

[td(DTMSmax) + td(DTCKHmin) + i, (TTMS)]

t =

pd (TCK-DTMS) Yrekfactor

(31ns + 2ns + 10 ns)
0.4

107.5 ns, or 9.3 MHz

[td (TTDO) + td (DTCKLmax) + tsu (DTDLmin)]
tod (Tck-DTDI) =

tTCKfaCtor

_ (15ns + 16 ns + 7 ns)
B 0.4

= 9.5ns, or 10.5 MHz

In this case, the TCK-to-DTMS/DTDL path is the limiting factor.

Example F—4. Key Timing for a Single- or Multiprocessor-System With Buffered Input

and Output (SPL)
[td ©tmsmax) T Yprekmming T tsurtvs) t t(bufskew)]
t =
pd (TCK-TDMS) tTCKfactor
(31ns+2ns + 10ns + 1.35ns)

0.4
= 110.9 ns, or 9.0 MHz

[td (rm00o) T 4 (pTCKimax) T

tTCKfactor

tsu©TDLming T td (outskew)
tpd (TCK-DTDI) —

_ (15ns 4+ 15ns + 7 ns + 10 ns)
0.4

= 120 ns, or 8.3 MHz

In this case, the TCK-to-DTDI path is the limiting factor.

F-19

F.8.3 Using Emulation Pins

F-20

The EMUO/1 pins of Tl devices are bidirectional, 3-state output pins. When in
an inactive state, these pins are at high impedance. When the pins are active,
they provide one of two types of output:

(1 Signal Event. The EMUO/1 pins can be configured via software to signal
internal events. In this mode, driving one of these pins low can cause
devices to signal such events. To enable this operation, the EMUO/1 pins
function as open-collector sources. External devices such as logic analyz-
ers can also be connected to the EMUO/1 signals in this manner. If such
an external source is used, it must also be connected via an open-collector
source.

[0 External Count. The EMUOQ/1 pins can be configured via software as
totem-pole outputs for driving an external counter. If the output of more
than one device is configured for totem-pole operation, then these devices
can be damaged. The emulation software detects and prevents this condi-
tion. However, the emulation software has no control over external
sources on the EMUO/1 signal. Therefore, all external sources must be
inactive when any device is in the external count mode.

Tl devices can be configured by software to halt processing if their EMUO/1
pins are driven low. This feature combined with the signal event output, allows
one Tl device to halt all other Tl devices on a given event for system-level de-

bugging.

If you route the EMUO/1 signals between multiple boards, they require special
handling because they are more complex than normal emulation signals.
Figure F-11 shows an example configuration that allows any processor in the
system to stop any other processor in the system. Do not tie the EMUO/1 pins
of more than 16 processors together in a single group without using buffers.
Buffers provide the crisp signals that are required during a RUNB (run bench-
mark) debugger command or when the external analysis counter feature is
used.

Figure F-11.EMUO/1 Configuration to Meet Timing Requirements of Less Than 25 ns

Pullup I
| Open- resistor |
| collector . Emuorl
| drivers

Backplane I < | Device] | Device I
XCNT_ENABLE | ! " :
S S -

EMUO0/1-IN

PAL Pullup
resistor | | pPm/————————"—"——">"———————

EMU.Oll-OUT i- Target board m _i
B ' |
I N |
TCK To emulator EMUO P Pullup |
| open- resistor |
| collector o EMUO/1|
| drivers |
Device] | Device |
| ! " l
e J

Notes: 1) The low time on EMUO/1-IN should be at least one TCK cycle and less than 10 us. Software sets the EMU0/1-OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMUL to provide rise/fall times of less than 25 ns, the modifi-
cation shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false edges
during the RUNB command or when the external counter selected from the debugger analysis menu is used.

These seven important points apply to the circuitry shown in Figure F-11 and
the timing shown in Figure F-12:

[J Open-collector drivers isolate each board. The EMUO/1 pins are tied
together on each board.

1 Atthe board edge, the EMUO/1 signals are split to provide both input and
output connections. This is required to prevent the open-collector drivers

from acting as latches that can be set only once.

[The EMUO/1 signals are bused down the backplane. Pullup resistors must
be installed as required.

F-21

[0 The bused EMUOQ/1 signals go into a programmable logic array device

PAL® whose function is to generate a low pulse on the EMUO/1-IN signal
when a low level is detected on the EMUO/1-OUT signal. This pulse must
be longer than one TCK period to affect the devices but less than 10 ps
to avoid possible conflicts or retriggering once the emulation software
clears the device’s pins.

During a RUNB debugger command or other external analysis count, the
EMUOQ/1 pins on the target device become totem-pole outputs. The EMU1
pin is a ripple carry-out of the internal counter. EMUO becomes a proces-
sor-halted signal. During a RUNB or other external analysis count, the
EMUO/1-IN signal to all boards must remain in the high (disabled) state.
You must provide some type of external input (XCNT_ENABLE) to the
PAL® to disable the PAL® from driving EMUO/1-IN to a low state.

If you use sources other than Tl processors (such as logic analyzers) to
drive EMUO/1, their signal lines must be isolated by open-collector drivers
and be inactive during RUNB and other external analysis counts.

You must connect the EMUO/1-OUT signals to the emulation header or
directly to a test bus controller.

Figure F-12. Suggested Timings for the EMUO and EMU1 Signals

TCK_/__/__/__/__/__

EMUO/l-lNW /

F-22

Figure F-13. EMUO0/1 Configuration With Additional AND Gate to Meet Timing
Requirements of Greater Than 25 ns

Pullup I
| Open- resistor |
| collector s - Emuoral
| drivers

Backplane I , | Device Device I
XCNT_ENABLE I L - n :
L 4
L EMUO/1-IN I
T
PAL
Pullup
i resistor | | | FT—T—————————— - —————
EMUO0/1 OU.T r Target board m _i
| | T | |
IS |
TCK To Emulator EMUO | PuI_Iup |
| Open- resistor |
Circuitry required for >25-ns | collector ° . EMUO/1|
rise/fall time modification | drivers |
i_ _______ \ ————————— F—1 AI_Q_‘ Device Device |
1 o n
EMUL [|
| AND — | e Y J
Up to
To emulator EMU1 E—
: | mboards I EMUL1 signal from other boards
L |

Notes: 1) The low time on EMUO/1-IN should be at least one TCK cycle and less than 10 us. Software will set the EMU0/1-OUT
port to a high state.

2) To enable the open-collector driver and pullup resistor on EMUL1 to provide rise/fall time of greater than 25 ns, the
modification shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false
edges during the RUNB command or when the external counter selected from the debugger analysis menu is used.

F-23

You do not need to have devices on one target board stop devices on another
target board using the EMUO/1 signals (see the circuit in Figure F=14). In this
configuration, the global-stop capability is lost. It is important not to overload
EMUO/1 with more than 16 devices.

Figure F-14. EMUO0/1 Configuration Without Global Stop

Note:

r———————""—"—"——-" A
| Target board 1 |
|
: Pullup |
| resistor |
—o—o ... ——e- EMUO/1 :
Pullup : - _ |
resistor | Delvlce .. | Device |
n
To emulator ° | |
EMUO/1 | |
- d
r— """ A
| Targetboardm |
: |
|
I Pullup |
| resistor |
: ° - —— 9 EMUO0/1 l
| |
| Device] | Device |
| L2 n
|
L |

The open-collector driver and pullup resistor on EMU1 must be able to provide rise/fall times of less than 25 ns. Rise times
of more than 25 ns can cause the emulator to detect false edges during the RUNB command or when the external counter
selected from the debugger analysis menu is used. If this condition cannot be met, then the EMUO/1 signals from the
individual boards must be ANDed together (as shown in Figure F-14) to produce an EMUO/1 signal for the emulator.

F.8.4 Performing Diagnostic Applications

F-24

For systems that require built-in diagnostics, it is possible to connect the
emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead
of the emulation header. The TBC is described in the Texas Instruments
Advanced Logic and Bus Interface Logic Data Book. Figure F—15 shows the
scan path connections of n devices to the TBC.

Figure F-15. TBC Emulation Connections for n JTAG Scan Paths

Clock Vee
R
TBC TCKI o
TDO TDI JTAGO
TMSO ™S
™S1 |— EMUO
TMS2/EVNTO EMU1L
TMS3/EVNT1 TRST
TMS4/EVNT2 |— TCK
TMS5/EVNT3 ~[>o— TDO
TCKO f_
TDIO -
DI — L] TDI JTAGN
™S
EMUO
EMU1
TRST
TCK
TDO

In the system design shown in Figure F-15, the TBC emulation signals TCKI,
TDO, TMSO0, TMS2/EVNTO, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDIO
are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected. The target
devices’ EMUO and EMU1 signals are connected to V¢ through pullup resis-
tors and tied to the TBC’s TMS2/EVNTO0 and TMS3/EVNTL1 pins, respectively.
The TBC'’s TCKI pin is connected to a clock generator. The TCK signal for the
main JTAG scan path is driven by the TBC’s TCKO pin.

On the TBC, the TMSO pin drives the TMS pins on each device on the main
JTAG scan path. TDO on the TBC connects to TDI on the first device on the
main JTAG scan path. TDIO on the TBC is connected to the TDO signal of the
last device on the main JTAG scan path. Within the main JTAG scan path, the
TDI signal of a device is connected to the TDO signal of the device before it.
TRST for the devices can be generated either by inverting the TBC's
TMS5/EVNT3 signal for software control or by logic on the board itself.

F-25

Appendix G

Glossary

AO-A15: Collectively, the external address bus; the 16 pins are used in par-
allel to address external data memory, program memory, or 1/O space.

ACC: See accumulator.

ACCH: Accumulator high word. The upper 16 bits of the accumulator. See
also accumulator.

ACCL: Accumulator low word. The lower 16 bits of the accumulator. See
also accumulator.

accumulator: A 32-bit register that stores the results of operations in the
central arithmetic logic unit (CALU) and provides an input for subsequent
CALU operations. The accumulator also performs shift and rotate opera-
tions.

ADCbit: A detect complete bit. Bit 14 of the /O status register (IOSR); aflag
bit used in the implementation of automatic baud-rate detection in the
asynchronous serial port.

address: The location of program code or data stored in memory.

addressingmode: Amethod by which an instruction interprets its operands
to acquire the data it needs. See also direct addressing; immediate ad-
dressing, indirect addressing.

address visibility bit (AVIS): A bitin the 'C209’s wait-state generator con-
trol register (WSGR) that allows the internal program address to appear
at the 'C209 address pins. This allows the internal program address to
be traced.

ADTR: Asynchronous data transmit and receive register. A 16-bit register
used by the on-chip asynchronous serial port. Data to transmit is written
to the 8 LSBs of the ADTR, and received data is read from the 8 LSBs
of the ADTR. See also ARSR.

analog-to-digital (A/D) converter: A circuit that translates an analog signal
to a digital signal.

G-1

Glossary

G-2

AR: See auxiliary register.

ARO-ART: Auxiliary registers O through 7. See auxiliary register.
ARAU: See auxiliary register arithmetic unit (ARAU).

ARB: See auxiliary register pointer buffer (ARB).

ARP: See auxiliary register pointer (ARP).

ARSR: Asynchronous serial port receive shift register. A 16-bit register in the
on-chip asynchronous serial port that receives data from the RX pin one
bit at a time. When full, ARSR transfers its data to the ADTR. See also
ADTR.

ASPCR: Asynchronous serial port control register. A 16-bit register used to
control the on-chip asynchronous serial port; contains bits for setting port
modes, enabling or disabling the automatic baud-rate detection logic, se-
lecting the number of stop bits, enabling or disabling interrupts, setting
the default level on the TX pin, configuring pins 103-100, and resetting
the port.

auxiliary register: One of eight 16-bit registers (AR7—ARO0) used as point-
ersto addressesin data space. The registers are operated on by the aux-
iliary register arithmetic unit (ARAU) and are selected by the auxiliary
register pointer (ARP).

auxiliary register arithmetic unit (ARAU): A 16-bit arithmetic unit used to
increment, decrement, or compare the contents of the auxiliary registers.
Its primary function is manipulating auxiliary register values for indirect
addressing.

auxiliary register pointer (ARP): A 3-bit field in status register STO that
points to the current auxiliary register.

auxiliary register pointer buffer (ARB): A 3-Dbit field in status register ST1
that holds the previous value of the auxiliary register pointer (ARP).

AVIS: See address visibility bit (AVIS).

AXSR: Asynchronous serial port transmit shift register. A 16-bit register in
the asynchronous serial port that receives data from the ADTR and
transfers it one bit at a time to the TX pin. See also ADTR; TX pin.

BO: An on-chip block of dual-access RAM that can be configured as either
data memory or program memory, depending on the value of the CNF
bit in status register ST1.

B1l: An on-chip block of dual-access RAM available for data memory.

Glossary

B2: An on-chip block of dual-access RAM available for data memory.

baud-rate divisor register (BRD): A register for the asynchronous serial
port that is used to set the serial port’'s baud rate.

Bl bit: Break interrupt bit. Bit 13 of the 1/O status register (IOSR); indicates
when a break is detected on the asynchronous receive (RX) pin.

BIO pin: A general-purpose input pin that can be tested by conditional
instructions that cause a branch when an external device drives BIO low.

bit-reversed indexed addressing : A method of indirect addressing that
allows efficient 1/0O operations by resequencing the data points in a
radix-2 FFT program. The direction of carry propagation in the ARAU is
reversed.

bootloader: A built-in segment of code that transfers code from an 8-bit
external source to a 16-bit external program destination at reset.

BOOT pin: The pinthat enables the on-chip bootloader. When BOOT is held
low, the processor executes the bootloader program after a hardware
reset. When BOOT is held high, the processor skips execution of the
bootloader and accesses off-chip program-memory at reset.

BR: Bus request pin. This pin is tied to the BR signal, which is asserted when
a global data memory access is initiated.

branch: A switching of program control to a nonsequential program-
memory address.

BRD: See baud-rate divisor register (BRD).

burst mode: A synchronous serial port mode in which the transmission or
reception of each word is preceded by a frame synchronization pulse.
See also continuous mode.

C bit: See carry bit (C).

CAD bit: Calibrate A detect bit. Bit 5 of the ASPCR; enables and disables
the automatic baud-rate detection logic of the on-chip asynchronous
serial port.

CALU: See central arithmetic logic unit (CALU).

carry bit: Bit 9 of status register ST1; used by the CALU for extended
arithmetic operations and accumulator shifts and rotates. The carry bit
can be tested by conditional instructions.

G-3

Glossary

G-4

central arithmetic logic unit (CALU): The 32-bit wide main arithmetic logic
unit for the 'C2xx CPU that performs arithmetic and logic operations. It
accepts 32-bit values for operations, and its 32-bit output is held in the
accumulator.

CIO0-CIO3 hits: Bits 0—3 of the asynchronous serial port control register
(ASPCR); they individually configure pins I00-103 as either inputs or
outputs. For example, CIOO0 configures the 100 pin. See also DIO0-DIO3
bits, 100—103 bits.

CLK register: CLKOUTI1-pin control register. Bit O of determines whether
the CLKOUT1 signal is available at the CLKOUT1 pin.

CLKIN: Input clock signal. A clock source signal supplied to the on-chip
clock generator at the CLKIN/X2 pin or generated internally by the on-
chip oscillator. The clock generator divides or multiplies CLKIN to pro-
duce the CPU clock signal, CLKOUT1.

CLKMOD pin: (On the 'C209 only) Determines whether the on-chip clock
generator is running in the divide-by-two or multiply-by-two mode. See
also clock mode.

CLKOUT1: Master clock output signal. The output signal of the on-chip
clock generator. The CLKOUT1 high pulse signifies the CPU’s logic
phase (when internal values are changed), and the CLKOUT1 low pulse
signifies the CPU'’s latch phase (when the values are held constant).

CLKOUT1 cycle: See CPU cycle.
CLKOUTZ1-pin control register: See CLK register.

CLKR: Receive clock input pin. A pin that receives an external clock signal
to clock data from the DR pininto the synchronous serial port receive shift
register (RSR).

CLKX: Transmit clock input/output pin. A pin used to clock data from the syn-
chronous serial port transmit shift register to the DX pin. If the serial port
is configured to accept an external clock, this pin receives the clock sig-
nal. If the port is configured to generate an internal clock, this pin trans-
mits the clock signal.

clock mode (clock generator): One of the modes which sets the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal CLKIN. The 'C209 has two clock modes (=2 and x2); other
'C2xx devices have four clock modes (+2, x1, x2, and x4).

clock mode (synchronous serial port): See clock mode bit (MCM).

clock mode bit (MCM): Bit 2 of the synchronous serial port control register
(SSPCR); determines whether the source signal for clocking synchro-
nous serial port transfers is external or internal.

Glossary

CNFbit: DARAM configuration bit. Bit 12 in status register ST1. CNF is used
to determine whether the on-chip RAM block BO is mapped to program
space or data space.

codec: A device that codes in one direction of transmission and decodes in
another direction of transmission.

COFF: Common object file format. An output format that promotes modular
programming by supporting sections; the format of files created by the
TMS320C1x/C2x/C2xx/C5x assembler and linker.

context saving/restoring : Saving the system status when the device en-
ters a subroutine (such as an interrupt service routine) and restoring the
system status when exiting the subroutine. On the 'C2xx, only the pro-
gram counter value is saved and restored automatically; other context
saving and restoring must be performed by the subroutine.

continuous mode: A synchronous serial port mode in which only one frame
synchronization pulse is necessary to transmit or receive several con-
secutive packets at maximum frequency. See also burst mode.

CPU: Central processing unit. The 'C2xx CPU is the portion of the processor
involved in arithmetic, shifting, and Boolean logic operations, as well as
the generation of data- and program-memory addresses. The CPU in-
cludes the central arithmetic logic unit (CALU), the multiplier, and the
auxiliary register arithmetic unit (ARAU).

CPU cycle: The time required for the CPU to go through one logic phase
(during which internal values are changed) and one latch phase (during
which the values are held constant).

current AR: See current auxiliary register.

current auxiliary register: The auxiliary register pointed to by the auxiliary
register pointer (ARP). The auxiliary registers are ARO (ARP =0)
through AR7 (ARP = 7). See also auxiliary register, next auxiliary regis-
ter.

currentdata page: The data page indicated by the content of the data page
pointer (DP). See also data page; DP.

DO0-D15: Collectively, the external data bus; the 16 pins are used in parallel
to transfer data between the 'C2xx and external data memory, program
memory, or 1/0 space.

DARAM: Dual-access RAM. RAM that can be accessed twice in a single
CPU clock cycle. For example, your code can read from and write to DA-
RAM in the same clock cycle.

G-5

Glossary

G-6

DARAM configuration bit (CNF): See CNF bit.

data-address generation logic: Logic circuitry that generates the address-
es for data memory reads and writes. This circuitry, which includes the
auxiliary registers and the ARAU, can generate one address per ma-
chine cycle. See also program-address generation logic.

data page: One block of 128 words in data memory. Data memory contains
512 data pages. Data page 0 is the first page of data memory (addresses
0000h-007Fh); data page 511 is the last page (addresses
FF80h—FFFFh). See also data page pointer (DP); direct addressing.

data page O0: Addresses 0000h-007Fh in data memory; contains the
memory-mapped registers, areserved test/emulation area for special in-
formation transfers, and the scratch-pad RAM block (B2).

data page pointer (DP): A 9-bit field in status register STO that specifies
which of the 512 data pages is currently selected for direct address gen-
eration. When an instruction uses direct addressing to access a data-
memory value, the DP provides the nine MSBs of the data-memory ad-
dress, and the instruction provides the seven LSBs.

data-read address bus (DRAB): A 16-bit internal bus that carries the ad-
dress for each read from data memory.

data read bus (DRDB): A 16-bit internal bus that carries data from data
memory to the CALU and the ARAU.

data-write address bus (DWAB): A 16-bit internal bus that carries the ad-
dress for each write to data memory.

data write bus (DWEB): A 16-bit internal bus that carries data to both pro-
gram memory and data memory.

decode phase: The phase of the pipeline in which the instruction is de-
coded. See also pipeline; instruction-fetch phase; operand-fetch phase;
instruction-execute phase.

delta interrupt: ~ An asynchronous serial port interrupt (TXRXINT) that is
generated if a change takes place on one of these general-purpose 1/0
pins: 100, 101, 102, or 103.

digital loopback mode: A synchronous serial port test mode in which the
receive pins are connected internally to the transmit pins on the same de-
vice. This mode, enabled or disabled by the DLB bit, allows you to test
whether the port is operating correctly.

DIM: Delta interrupt mask bit. Bit 9 of the asynchronous serial port control
register (ASPCR); enables or disables delta interrupts.

Glossary

DIO0O-DIO3 bits: Bits 4-7 of the IOSR. If the asynchronous serial portis en-
abled (the URST bit of the ASPCR is 1), these bits are used to track a
change from a previous known or unknown signal value at the corre-
sponding I/O pin (I00-103). For example, DIOO indicates a change on
the 100 pin. See also CIO0—-CIO3 bits; I00—-103 bits.

direct addressing: One of the methods used by an instruction to address
data-memory. In direct addressing, the data-page pointer (DP) holds the
nine MSBs of the address (the current data page), and the instruction
word provides the seven LSBs of the address (the offset). See also indi-
rect addressing.

DIV2/DIV1: Two pins used togetherto determine the clock mode of the 'C2xx
clock generator (—2, x1, x2, or x4). (The 'C209 uses the CLKMOD pin
and has only two clock modes, =2 and x2.)

divide-down value: The value in the timer divide-down register (TDDR).
This value is the prescale count for the on-chip timer. The larger the di-
vide-down value, the slower the timer interrupt rate.

DLB bit: Bit 0 of the synchronous serial port control register (SSPCR); en-
ables or disables digital loopback mode for the on-chip synchronous seri-
al port. See also digital loopback mode.

DP: See data page pointer (DP).

DR bit: Data ready indicator for the receiver. Bit 8 of the I/O status register
(IOSR); indicates whether a new 8-bit character has been received in the
ADTR of the asynchronous serial port.

DR pin: Serial data receive pin. A synchronous serial port pin that receives
serial data. As each bitis received at DR, the bitis transferred serially into
the receive shift register (RSR).

DRAB: See data-read address bus (DRAB).
DRDB: See data read bus (DRDB).

DS: Data memory select pin. The 'C2xx asserts DS to indicate an access to
external data memory (local or global).

DSWS: Data-space wait-state bit(s). A value in the wait-state generator con-
trol register (WSGR) that determines the number of wait states applied
to reads from and writes to off-chip data space. On the 'C209, DSWS is
bit 1 of the WSGR; on other 'C2xx devices, DSWS is bits 8-6.

dual-access RAM : See DARAM.

dummy cycle: A CPU cycle in which the CPU intentionally reloads the pro-
gram counter with the same address.

G-7

Glossary

G-8

DWAB: See data-write address bus (DWAB).
DWEB: See data write bus (DWEB).

DXpin: Serial data transmit pin. The pin on which data is transmitted serially
from the synchronous serial port; accepts a data word one bit at a time
from the transmit shift register (XSR).

execute phase: The fourth phase of the pipeline; the phase in which the
instruction is executed. See also pipeline; instruction-fetch phase;
instruction-decode phase; operand-fetch phase.

external interrupt: A hardware interrupt triggered by an external event
sending an input through an interrupt pin.

FE bit: Framing error indicator bit. Bit 10 of 1/O status register (IOSR); indi-
cates whether a valid stop bit has been detected during the reception of
a character into the asynchronous serial port.

FIFO buffer: First-in, first-out buffer. A portion of memory in which data is
stored and then retrieved in the same order in which it was stored. The
synchronous serial port has two four-word-deep FIFO buffers: one for its
transmit operation and one for its receive operation.

flash memory: Electronically erasable and programmable, nonvolatile
(read-only) memory.

FRO/FR1: FIFO receive-interrupt bits. Bits 8 and 9 of the synchronous serial
port control register (SSPCR); together they set an interrupt trigger
condition based on the number of words in the receive FIFO buffer.

frame synchronization (frame sync) mode: One of two modes in the syn-
chronous serial port that determine whether frame synchronization
pulses are necessary between consecutive data transfers. See also
burst mode; continuous mode.

frame synchronization (frame sync) pulse: A pulse that signals the start
of a transmission from or reception into the synchronous serial port.

framing error: An error that occurs when a data character received by the
asynchronous serial port does not have a valid stop bit. See also FE bit.

FREE bit (asynchronous serial port): Bit 15 of the asynchronous serial
port control register (ASPCR); determines whether the portis in free-run
mode or an emulation mode. When FREE =0, bit 14 (SOFT) determines
which emulation mode is selected.

Glossary

FREE bit (synchronous serial port): Bit 15 of the synchronous serial port
control register (SSPCR); determines whether the port is in free-run
mode or an emulation mode. When FREE =0, bit 14 (SOFT) determines
which emulation mode is selected.

FREE bit (timer): Bit 11 of the timer control register (TCR); determines
whether the timer is in free-run mode or an emulation mode. When
FREE = 0, bit 14 (SOFT) determines which emulation mode is selected.
FREE and SOFT are not available in the TCR of the 'C209.

FSMbit: Bit1 ofthe synchronous serial port control register (SSPCR); deter-
mines the frame synchronization mode for the synchronous serial port.
See also burst mode; continuous mode.

FSR pin: Receive frame synchronization pin. This input pin accepts a frame
sync pulse that initiates the reception process of the synchronous serial
port.

FSXpin: Transmit frame synchronization pin. This input/output pin accepts/
generates a frame sync pulse that initiates the transmission process of
the synchronous serial port. If the port is configured for accepting an ex-
ternal frame sync pulse, the FSX pin receives the pulse. If the portis con-
figured for generating an internal frame sync pulse, the FSX pin transmits
the pulse.

FTO/FT1: FIFO transmit-interrupt bits. Bits 10 and 11 of the synchronous se-
rial port control register (SSPCR); together they set an interrupt trigger
condition based on the number of words in the transmit FIFO buffer.

general-purpose input/output pins: Pins that can be used to accept input
signals and/or send output signals but are not linked to specific uses.
These pins are the input pin BIO, the output pin XF, and the input/output
pins 100, 101, 102, and 103. (I00-103 are not available on the 'C209.)

global data space : One of the four 'C2xx address spaces. The global data
space can be used to share data with other processors within a system
and can serve as additional data space. See also local data space.

GREG: Global memory allocation register. A memory-mapped register
used for specifying the size of the global data memory. Addresses not
allocated by the GREG for global data memory are available for local
data memory.

G-9

Glossary

G-10

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

HOLD: Aninput signal that allows external devices to request control of the
external buses. If an external device drives the HOLD/INT1 pin low and
the CPU sends an acknowledgement at the HOLDA pin, the external de-
vice has control of the buses until it drives HOLD high or a nonmaskable
hardware interrupt is generated. If HOLD is not used, it should be pulled
high.

HOLDA: HOLD acknowledge signal. An output signal sentto the HOLDA pin
by the CPU in acknowledgement of a properly initiated HOLD operation.
When HOLDA is low, the processor is in a holding state and the address,
data, and memory-control lines are available to external circuitry.

HOLD operation: An operation on the 'C2xx that allows for direct memory
access of external memory and I/O devices. A HOLD operation is initi-
ated by a HOLD/INT1 interrupt. When the corresponding interrupt ser-
vice routine executes an IDLE instruction, the external buses enter the
high-impedance state and the HOLDA signal is asserted. The buses re-
turn to their normal state, and the HOLD operation is concluded, when
the processor exits the IDLE state.

IACK: See interrupt acknowledge signal (IACK).

IC: (Used in earlier documentation.) See interrupt control register (ICR).
ICR: See interrupt control register (ICR).

IFR: See interrupt flag register (IFR).

immediate addressing: One of the methods for obtaining data values used
by an instruction; the data value is a constant embedded directly into the
instruction word; data memory is not accessed.

immediate operand/immediate value: A constant given as an operand in
an instruction that is using immediate addressing.

IMR: See interrupt mask register (IMR).

INO: Bit6 ofthe synchronous serial port control register (SSPCR); allows you
to use the CLKR pin as a bit input. INO indicates the current logic level
on CLKR.

Glossary

indirect addressing: One of the methods for obtaining data values used by
an instruction. When an instruction uses indirect addressing, data
memory is addressed by the current auxiliary register. See also direct ad-
dressing.

input clock signal: See CLKIN.
input/output status register: See 1/O status register (IOSR).

input shifter: A 16- to 32-bit left barrel shifter that shifts incoming 16-bit data
from O to 16 positions left relative to the 32-bit output.

instruction-decode phase: The second phase of the pipeline; the phase in
which the instruction is decoded. See also pipeline; instruction-fetch
phase; operand-fetch phase; instruction-execute phase.

instruction-execute phase: The fourth phase of the pipeline; the phase in
which the instruction is executed. See also pipeline; instruction-fetch
phase; instruction-decode phase; operand-fetch phase.

instruction-fetch phase: The first phase of the pipeline; the phase in which
the instruction is fetched from program-memory. See also pipeline;
instruction-decode phase; operand-fetch phase; instruction-execute
phase.

instruction register (IR): A 16-bit register that contains the instruction be-
ing executed.

instruction word: A 16-bit value representing all or half of an instruction. An
instruction that is fully represented by 16 bits uses one instruction word.
An instruction that must be represented by 32 bits uses two instruction
words (the second word is a constant).

INT1-INT3: Three external pins used to generate general-purpose hard-
ware interrupts.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

interrupt: A signal sent to the CPU that (when not masked or disabled)
forcesthe CPU into a subroutine called an interrupt service routine (ISR).
This signal can be triggered by an external device, an on-chip peripheral,
or an instruction (INTR, NMI, or TRAP).

interrupt acknowledge signal (IAC): An output signal on the 'C209 that
indicates that an interrupt has been received and that the program count-
er is fetching the interrupt vector that will force the processor into the ap-
propriate interrupt service routine.

interrupt control register (ICR): A 16-bit register used to differentiate
HOLD and INT1 and to individually mask and flag INT2 and INT3.

G-11

Glossary

G-12

interrupt flag register (IFR): A 16-bit memory-mapped register that indi-
cates pending interrupts. Read the IFR to identify pending interrupts and
write to the IFR to clear selected interrupts. Writing a 1 to any IFR flag
bit clears that bit to 0.

interrupt latency: The delay between the time an interrupt request is made
and the time it is serviced.

interrupt mask register (IMR): A 16-bit memory-mapped register used to
mask external and internal interrupts. Writing a 1 to any IMR bit position
enables the corresponding interrupt (when INTM = 0).

interrupt mode bit (INTM): Bit 9 in status register STO; either enables all
maskable interrupts that are not masked by the IMR or disables all mask-
able interrupts.

interrupt service routine (ISR) : A module of code that is executed in re-
sponse to a hardware or software interrupt.

interrupt trap: See interrupt service routine (ISR).

interruptvector: A branch instruction that leads the CPU to an interrupt ser-
vice routine (ISR).

interrupt vector location: An address in program memory where an inter-
rupt vector resides. When an interrupt is acknowledged, the CPU
branches to the interrupt vector location and fetches the interrupt vector.

INTM bit: See interrupt mode bit (INTM).

I00-103 bhits: Bits 0—3 of the IOSR. When pins 100-103 are configured as
inputs, these bits reflect the currentlogic levels on the pins. For example,
the 100 bit reflects the level on the 100 pin. See also C/IO0-CIO3 bits;
DIO0-DIO3 bits.

I00-103 pins: Four pins that can be individually configured as inputs or out-
puts. These pins can be used for interfacing the asynchronous serial port
or as general-purpose I/O pins. See also CIO0-CIO3 bits; DIO0O-DIO3
bits; I00-103 bits.

I/O-mapped register: One of the on-chip registers mapped to addresses in
I/0 (input/output) space. These registers, which include the registers for
the on-chip peripherals, must be accessed with the IN and OUT instruc-
tions. See also memory-mapped register.

I/O status register (IOSR): A register in the asynchronous serial port that
provides status information about signals I100-103 and about transfers
in progress.

IOSR: See I/O status register (IOSR).

Glossary

IR: See instruction register (IR).

IS: 1/O space select pin. The 'C2xx asserts IS to indicate an access to exter-
nal 1/0 space.

ISR: See interrupt service routine (ISR).

ISWS: I/O-space wait-state bit(s). A value in the wait-state generator control
register (WSGR) that determines the number of wait states applied to
reads from and writes to off-chip 1/0 space. On the 'C209, ISWS is bit 2
of the WSGR; on other 'C2xx devices, ISWS is bits 11-9.

latchphase: The phase ofa CPU cycle during whichinternal values are held
constant. See also logic phase; CLKOUT1.

local data space: The portion of data-memory addresses that are not allo-
cated as global by the global memory allocation register (GREG). If none
of the data-memory addresses are allocated for global use, all of data
space is local. See also global data space.

logic phase: The phase of a CPU cycle during which internal values are
changed. See also latch phase; CLKOUT1.

long-immediate value: A 16-bit constant given as an operand of an
instruction that is using immediate addressing.

LSB: Leastsignificant bit. The lowest order bitin aword. When used in plural
form (LSBs), refers to a specified number of low-order bits, beginning
with the lowest order bit and counting to the left. For example, the four
LSBs of a 16-bit value are bits 0 through 3. See also MSB.

machine cycle: See CPU cycle.

maskable interrupt : A hardware interrupt that can be enabled or disabled
through software. See also nonmaskable interrupt.

master clock output signal: See CLKOUT1.
master phase: See logic phase.
MCM bhit: See clock mode bit (MCM).

memory-mapped register: One of the on-chip registers mapped to ad-
dresses in data memory. See also I/O-mapped register.

microcomputer mode: A mode in which the on-chip ROM or flash memory
is enabled. This mode is selected with the MP/MC pin. See also MP/MC
pin; microprocessor mode.

G-13

Glossary

G-14

microprocessor mode: A mode in which the on-chip ROM or flash memory
is disabled. This mode is selected with the MP/MC pin. See also MP/MC
pin; microcomputer mode.

micro stack (MSTACK): A register used for temporary storage of the pro-
gram counter (PC) value when an instruction needs to use the PC to ad-
dress a second operand.

MIPS: Million instructions per second.

MODE bit: Bit 4 of the interrupt control register (ICR); determines whether
the HOLD/INT1 pinis only negative-edge sensitive or both negative- and
positive-edge sensitive.

MP/MC pin: A pinthat indicates whether the processor is operating in micro-
processor mode or microcomputer mode. MP/MC high selects micropro-
cessor mode; MP/MC low selects microcomputer mode.

MSB: Most significant bit. The highest order bit in a word. When used in plu-
ral form (MSBs), refers to a specified number of high-order bits, begin-
ning with the highest order bit and counting to the right. For example, the
eight MSBs of a 16-bit value are bits 15 through 8. See also LSB.

MSTACK: See micro stack.

multiplier: A part of the CPU that performs 16-bit x 16-bit multiplication and
generates a 32-bit product. The multiplier operates using either signed
or unsigned 2s-complement arithmetic.

next AR: See next auxiliary register.

next auxiliary register: The register that will be pointed to by the auxiliary
register pointer (ARP) when an instruction that modifies ARP is finished
executing. See also auxiliary register, current auxiliary register.

NMI: A hardware interrupt that uses the same logic as the maskable inter-
rupts but cannot be masked. It is often used as a soft reset. See also
maskable interrupt, nonmaskable interrupt.

nonmaskable interrupt: An interrupt that can be neither masked by the in-
terrupt mask register (IMR) nor disabled by the INTM bit of status register
STO.

NPAR: Nextprogram address register. Part of the program-address genera-
tion logic. This register provides the address of the next instruction to the
program counter (PC), the program address register (PAR), the micro
stack (MSTACK), or the stack.

Glossary

OE: Receiver register overrun indicator bit. Bit 9 of the I/O status register
(IOSR); indicates whether overrun has occurred in the receiver of the
asynchronous serial port (that is, whether an unread character in the
ADTR has been overwritten by a new character).

operand: A value to be used or manipulated by an instruction; specified in
the instruction.

operand-fetch phase: The third phase of the pipeline; the phase in which
an operand or operands are fetched from memory. See also pipeline;
instruction-fetch phase; instruction-decode phase; instruction-execute
phase.

output shifter: 32- to 16-bit barrel left shifter. Shifts the 32-bit accumulator
output from 0 to 7 bits left for quantization management, and outputs ei-
ther the 16-bit high or low half of the shifted 32-bit data to the data write
bus (DWEB).

OV bit: Overflow flag bit. Bit 12 of status register STO; indicates whether the
result of an arithmetic operation has exceeded the capacity of the accu-
mulator.

overflow (in a register): A condition in which the result of an arithmetic op-
eration exceeds the capacity of the register used to hold that result.

overflow (in the synchronous serial port): A condition in which the re-
ceive FIFO buffer of the port is full and another word is received in the
RSR. (None of the contents of the FIFO buffer are overwritten by this new
word.)

overflow mode: The mode in which an overflow in the accumulator will
cause the accumulator to be loaded with a preset value. If the overflow
is in the positive direction, the accumulator will be loaded with its most
positive number. If the overflow is in the negative direction, the accumu-
lator will be filled with its most negative number.

overrun: Acondition in the receiver of the asynchronous serial port. Overrun
occurs when an unread character in the ADTR is overwritten by a new
character.

OVF bit: Overflow bit (synchronous serial port). Bit 7 of the synchronous se-
rial port control register (SSPCR); indicates when the receive FIFO buff-
er of the port is full and another word is received in the RSR. (None of
the contents of the FIFO buffer are overwritten by this new word.)

OVM bit: Overflow mode bit. Bit 11 of status register STO; enables or dis-
ables overflow mode. See also overflow mode.

G-15

Glossary

G-16

PAB: See program address bus (PAB).

PAR: Program address register. A register that holds the address currently
being driven on the program address bus for as many cycles as it takes
to complete all memory operations scheduled for the current machine
cycle.

PC: See program counter (PC).
PCB: Printed circuit board.

pending interrupt: A maskable interrupt that has been successfully re-
quested but is awaiting acknowledgement by the CPU.

period register: See PRD.

pipeline : A method of executing instructions in an assembly line fashion.
The 'C2xx pipeline has four independent phases. During a given CPU
cycle, four different instructions can be active, each at a different stage
of completion. See also instruction-fetch phase; instruction-decode
phase; operand-fetch phase; instruction-execute phase.

PLL: Phase lock loop circuit.
PM bits: See product shift mode bits (PM).

power-down mode: The mode in which the processor enters a dormant
state and dissipates considerably less power than during normal opera-
tion. This mode is initiated by the execution of an IDLE instruction. During
a power-down mode, all internal contents are maintained so that opera-
tion continues unaltered when the power-down mode is terminated. The
contents of all on-chip RAM also remains unchanged.

PRD: Timer period register. A 16-bit memory-mapped register that specifies
the main period for the on-chip timer. When the timer counter register
(TIM) is decremented past zero, the TIM is loaded with the value in the
PRD. See also TDDR.

PRDB: See program read bus (PRDB).
PREG: See product register (PREG).
prescaler counter: See PSC.

product register (PREG): A 32-bit register that holds the results of a multi-
ply operation.

product shifter: A 32-bit shifter that performs a 0-, 1-, or 4-bit left shift, or
a 6-bit right shift of the multiplier product based on the value of the prod-
uct shift mode bits (PM).

Glossary

product shift mode: One of four modes (no-shift, shift-left-by-one, shift-left-
by-four, or shift-right-by-six) used by the product shifter.

product shift mode bits (PM): Bits 0 and 1 of status register ST1; they iden-
tify which of four shift modes (no-shift, left-shift-by-one, left-shift-by-four,
or right-shift-by-six) will be used by the product shifter.

program address bus (PAB): A 16-bit internal bus that provides the ad-
dresses for program-memory reads and writes.

program-address generation logic: Logic circuitry that generates the ad-
dresses for program memory reads and writes, and an operand address
in instructions that require two registers to address operands. This cir-
cuitry can generate one address per machine cycle. See also data-ad-
dress generation logic.

program control logic: Logic circuitry that decodes instructions, manages
the pipeline, stores status of operations, and decodes conditional opera-
tions.

program counter (PC): A register that indicates the location of the next
instruction to be executed.

program read bus (PRDB): A 16-bit internal bus that carries instruction
code and immediate operands, as well as table information, from pro-
gram memory to the CPU.

PS: Program select pin. The 'C2xx asserts PS to indicate an access to exter-
nal program memory.

PSC: Timer prescaler counter. Bits 9—6 of the timer control register (TCR);
specifies the prescale count for the on-chip timer.

PSLWS: Lowerprogram-space wait-state bits. A value in the wait-state gen-
erator control register (WSGR) that determines the number of wait states
applied to reads from and writes to off-chip lower program space (ad-
dresses 0000h—7FFFh). PSLWS is not available on the 'C209; instead,
see PSWS. On other 'C2xx devices, PSLWS is bits 2-0 of the WSGR.
See also PSUWS.

PSUWS: Upperprogram-space wait-state bits. A value in the wait-state gen-
erator control register (WSGR) that determines the number of wait states
applied to reads from and writes to off-chip upper program space (ad-
dresses 8000h—FFFFh). PSUWS is not available on the 'C209; instead,
see PSWS. On other 'C2xx devices, PSUWS is bits 5-3 of the WSGR.
See also PSLWS.

PSWS: Program-space wait-state bit. Bit 0 of the 'C209 wait-state generator
control register (WSGR). PSWS determines the number of wait states
applied to reads from off-chip program memory space.

G-17

Glossary

G-18

RAMEN: RAM enable pin. This pin enables or disables on-chip single-ac-
cess RAM.

RD: Read select pin. The 'C2xx asserts RD to request a read from external
program, data, or I/O space. RD can be connected directly to the output
enable pin of an external device.

READY: External device ready pin. Used to create wait states externally.
When this pin is driven low, the 'C2xx waits one CPU cycle and then tests
READY again. After READY is driven low, the 'C2xx does not continue
processing until READY is driven high.

receive interrupt (asynchronous serial port): An interrupt (TXRXINT)
caused during reception by any one of these events: the ADTR holds a
new character; overrun occurs; a framing error occurs; a break has been
detected on the RX pin; a character Aor ahas been detected inthe ADTR
by the automatic baud-rate detection logic.

receive interrupt (synchronous serial port): See RINT.

receive interrupt mask bit (RIM): Bit 7 of the asynchronous serial port con-
trol register (ASPCR); enables or disables receive interrupts of the
asynchronous serial port.

receive pin (asynchronous serial port): See RX pin.
receive pin (synchronous serial port): See DR pin.
receive register (asynchronous serial port): See ADTR.
receive register (synchronous serial port): See SDTR.

receive reset (RRST) bit: Bit 4 of the synchronous serial port control regis-
ter (SSPCR); resets the receiver portion of the synchronous serial port.

receive shift register (asynchronous serial port): See ARSR.
receive shift register (synchronous serial port): See RSR.

repeat counter (RPTC): A 16-bit register that counts the number of times
a single instruction is repeated. RPTC is loaded by an RPT instruction.

reset: A way to bring the processor to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at address 0000h.

reset pin (RS , also RS on 'C209): This pin causes a reset.

reset vector: The interrupt vector for reset.

Glossary

return address: The address of the instruction to be executed when the
CPU returns from a subroutine or interrupt service routine.

RFENE bit: Receive FIFO buffer not empty bit. Bit 12 of the synchronous seri-
al port control register (SSPCR); indicates whether the receive FIFO
buffer of the synchronous serial port contains data to be read.

RIM bit: See receive interrupt mask bit (RIM).

RINT: Receive interrupt (synchronous serial port). An interrupt (RINT) gen-
erated during reception based on the number of words in the receive
FIFO buffer. The trigger condition (the desired number of words in the
buffer) is determined by the values of the receive-interrupt bits (FR1 and
FRO) of the synchronous serial port control register (SSPCR).

RPTC: See repeat counter (RPTC).

RRST: Receive reset bit. Bit 4 of the synchronous serial port control register
(SSPCR); resets the receiver portion of the synchronous serial port.

RS: Reset pin. When driven low, causes a reset on any ’C2xx device, includ-
ing the 'C209.

RS: Reset pin. (On the 'C209 only) When driven high, causes a reset.

RSR: Receive shift register. Shifts data serially into the synchronous serial
port from the DR pin. See also XSR.

R/W: Read/write pin. Indicates the direction of transfer between the 'C2xx
and external program, data, or I/O space.

RX pin: Asynchronous receive pin. During reception in the asynchronous
serial port, this pin accepts a character one bit at a time, transferring it
to the ARSR.

SARAM: Single-access RAM. RAM that can accessed (read from or written
to) once in a single CPU cycle.

scratch-pad RAM: Another name for DARAM block B2 in data space (32
words).

SDTR: Synchronous data transmit and receive register. An 1/O-mapped
read/write register that sends data to the transmit FIFO buffer and ex-
tracts data from the receive FIFO buffer.

SETBRK: Bit 4 of the asynchronous serial port control register (ASPCR);
selects the output level (high or low) on the TX pin when the port is not
transmitting.

G-19

Glossary

G-20

short-immediate value: An 8-, 9-, or 13-bit constant given as an operand
of an instruction that is using immediate addressing.

signbit: The MSB of a value when it is seen by the CPU to indicate the sign
(negative or positive) of the value.

sign extend: Fill the unused high order bits of a register with copies of the
sign bit in that register.

sign-extension mode (SXM) bit : Bit 10 of status register ST1; enables or
disables sign extension in the input shifter. It also differentiates between
logic and arithmetic shifts of the accumulator.

single-access RAM: See SARAM.
slave phase: See latch phase.

SOFT bit (asynchronous serial port): Bit 14 in the asynchronous serial
port control register (ASPCR); a special emulation bit that is used in con-
junction with bit 15 (FREE) to determine the state of an asynchronous
serial port transfer when a software breakpoint is encountered during
emulation. When FREE = 0, SOFT determines the emulation mode. See
also FREE bit (asynchronous serial port).

SOFT bit (synchronous serial port): Bit 14 of the synchronous serial port
control register (SSPCR); a special emulation bit that is used in conjunc-
tion with bit 15 (FREE) to determine the state of a synchronous serial port
transfer when a software breakpoint is encountered during emulation.
When FREE =0, SOFT determines the emulation mode. See also FREE
bit (synchronous serial port).

SOFT bit (timer): Bit 10 of the timer control register (TCR); a special emula-
tion bit that is used in conjunction with bit 11 (FREE) to determine the
state of the timer when a software breakpoint is encountered during
emulation. When FREE = 0, SOFT determines the emulation mode.
SOFT and FREE are not available in the TCR of the 'C209. See also
FREE bit (timer).

software interrupt: An interrupt caused by the execution of an INTR, NMI,
or TRAP instruction.

software stack: A program control feature that allows you to extend the
hardware stack into data memory with the PSHD and POPD instructions.
The stack can be directly stored and recovered from data memory, one
word at time. This feature is useful for deep subroutine nesting or protec-
tion against stack overflow.

SSPCR: Synchronous serial port control register. A 16-bit 1/0-mapped regis-
ter that you write to when setting the configuration of the synchronous
serial port and that you read when obtaining the status of the port.

Glossary

STO and ST1: See status registers STO and ST1.

stack: A block of memory reserved for storing return addresses for subrou-
tines and interrupt service routines. The 'C2xx stack is 16 bits wide and
eight levels deep.

starthit: Every 8-bit data value transmitted or received by the asynchronous
serial port must be preceded by a start bit, a logic 0 pulse.

status registers STO and ST1.: Two 16-bit registers that contain bits for de-
termining processor modes, addressing pointer values, and indicating
various processor conditions and arithmetic logic results. These regis-
ters can be stored into and loaded from data memory, allowing the status
of the machine to be saved and restored for subroutines.

STBbit: Stop bit selector. Bit 6 of the asynchronous serial port control regis-
ter (ASPCR); selects the number of stop bits (one or two) used in trans-
mission and reception.

stopbit: Every 8-bit data value transmitted or received by the asynchronous
serial port must be followed by one or two stop bits, each a logic 1 pulse.
The number of stop bits required depends on the STB bit of the ASPCR.

STRB: External access active strobe. The 'C2xx asserts STRB during ac-
cesses to external program, data, or /O space.

SXM bit: See sign-extension mode bit (SXM).

TChbit: Test/control flag bit. Bit 11 of status register ST1; stores the results
of test operations done in the central arithmetic logic unit (CALU) or the
auxiliary register arithmetic unit (ARAU). The TC bit can be tested by
conditional instructions.

TCOMP: Transmission complete bit. Bit 13 of the synchronous serial port
control register (SSPCR); indicates when all data in the transmit FIFO
buffer of the synchronous serial port has been transmitted.

TCR: Timer control register. A 16-bit register that controls the operation of
the on-chip timer.

TDDR: See timer divide-down register (TDDR).

temporary register (TREG): A 16-bit register that holds one of the oper-
ands for a multiply operation; the dynamic shift count for the LACT,
ADDT, and SUBT instructions; or the dynamic bit position for the BITT
instruction.

TEMT bit: Transmit empty indicator. Bit 12 of the I/O status register (IOSR);
indicates whether the transmit register (ADTR) and/or the transmit shift
register (AXSR) of the asynchronous serial port are full or empty.

G-21

Glossary

G-22

THRE bit: Transmit register empty indicator. Bit 11 of the 1/O status register
(IOSR); indicates when the contents of the transmit register (ADTR) are
transferred to the transmit shift register (AXSR).

TIM bit: Transmit interrupt mask bit. Bit 8 of the asynchronous serial port
control register (ASPCR); enables or disables transmit interrupts of the
asynchronous serial port.

TIM register: See timer counter register (TIM).

timer counter register (TIM): A 16-bit memory-mapped register that holds
the main count for the on-chip timer. See also timer prescaler counter
(PSC).

timer divide-down register (TDDR): Bits 3—0 of the timer control register
(TCR); specifies the timer divide-down period for the on-chip timer. When
the timer prescaler counter (PSC) decrements past zero, the PSC is
loaded with the value in the TDDR. See also timer period register (PRD).

timer interrupt (TINT): See TINT.

timer period register (PRD): A 16-bit memory-mapped register that speci-
fies the main period for the on-chip timer. When the timer counter register
(TIM) is decremented past zero, the TIM is loaded with the value in the
PRD. See also TDDR.

timer prescaler counter (PSC): Bits 9—6 of the timer control register (TCR);
specifies the prescale count for the on-chip timer.

timer reload bit (TRB): Bit 5 of the timer control register (TCR); when TRB
is set, the timer counter register (TIM) is loaded with the value of the timer
period register (PRD), and the prescaler counter (PSC) is loaded with the
value of the timer divide-down register (TDDR).

timer stop status bit (TSS): Bit 4 of the TCR. TSSis used to start and stop
the timer.

TINT: Timer interrupt. An interrupt generated by the timer on the next
CLKOUT1 cycle after the main counter (TIM register) decrements to 0

TOS: Top of stack. Top level of the 8-level last-in, first-out hardware stack.

TOUT: Timer output pin. Provides access to an output signal based on the
rate of the on-chip timer. On the next CLKOUT1 cycle after the main
counter (TIM register) decrements to 0, a signal is sent to TOUT.

transmit interrupt (asynchronous serial port): An interrupt (TXRXINT)
generated when the transmit register (ADTR) empties during transmis-
sion. This condition indicates that the ADTR is ready to accept a new
transmit character.

Glossary

transmit interrupt (synchronous serial port): See XINT.

transmit mode (TXM) bit: Bit 3 of the synchronous serial port control regis-
ter (SSPCR); determines whether the source signal for frame synchro-
nization is external or internal.

transmit pin (asynchronous serial port): See TX pin.
transmit pin (synchronous serial port): See DX pin.
transmit/receive interrupt (TXRXINT): The CPU interrupt used to respond

to a delta interrupt, receive interrupt, or transmit interrupt from the
asynchronous serial port. All three of these interrupt types request
TXRXINT and use the single TXRXINT interrupt vector. See also delta
interrupt, receive interrupt; transmit interrupt.

transmit register (asynchronous serial port): See ADTR.
transmit register (synchronous serial port): See SDTR.

transmit reset (XRST) bit: Bit 5 of the synchronous serial port control regis-
ter (SSPCR); resets the transmitter portion of the synchronous serial
port.

transmit shift register (asynchronous serial port): Also called AXSR, this
register shifts data serially out of the asynchronous serial port through
the TX pin. See also ARSR.

transmit shift register (synchronous serial port): Also called XSR, this
register shifts data serially out of the synchronous serial port through the
DX pin. See also RSR.

TRB: See timer reload bit (TRB).

TREG: See temporary register (TREG).
TSS bit: See timer stop status bit (TSS).
TTL: Transistor-to-transistor logic.

TX pin: Asynchronous transmit pin. The pin on which data is transmitted
serially from the asynchronous serial port; accepts a character one bit at
a time from the transmit shift register (AXSR).

TXM: Transmit mode bit. Bit 3 of the synchronous serial port control register
(SSPCR); determines whether the source signal for frame synchroniza-
tion is external or internal.

TXRXINT: See transmit/receive interrupt (TXRXINT).

G-23

Glossary

G-24

UART: Universal asynchronous receiver and transmitter. Used as another
name for the asynchronous serial port.

URST: Resetasynchronous serial port bit. Bit 13 of the asynchronous serial
port control register (ASPCR); resets the asynchronous port.

vector: See interrupt vector.
vector location: See interrupt vector location.

wait state : A CLKOUT1 cycle during which the CPU waits when reading
from or writing to slower external memory.

wait-state generator : An on-chip peripheral that generates a limited num-
ber of wait states for a given off-chip memory space (program, data, or
I/0). Wait states are set in the wait-state generator control register
(WSGR).

WE: Write enable pin. The 'C2xx asserts WE to request a write to external
program, data, or /O space.

WSGR: Wait-state generator control register. This register, which is mapped
to 1/0O memory, controls the wait-state generator.

XF bit: XF-pin status bit. Bit 4 of status register ST1 that is used to read or
change the logic level on the XF pin.

XFpin: External flag pin. A general-purpose output pin whose status can be
read or changed by way of the XF bit in status register ST1.

XINT: Transmit interrupt (synchronous serial port). An interrupt generated
during transmission based on the number of words in the transmit FIFO
buffer. The trigger condition (the desired number of words in the buffer)
is determined by the values of the transmit-interrupt bits (FT1 and FTO)
of the synchronous serial port control register (SSPCR).

XRST. Transmitreset bit. Bit 5 of the synchronous serial port control register
(SSPCR); resets the transmitter portion of the synchronous serial port.

XSR: Transmit shift register. Shifts data serially out of the synchronous serial
port through the DX pin. See also RSR.

zero fill:

Glossary

Fill the unused low or high order bits in a register with zeros.

G-25

* operand @
*+ operand [6-10
*— operand 6-10]
*0+ operand @l
*0— operand
*BRO+ operand
*BRO- operand
14-pin connector
dimensions |E-15
14-pin header
header signals E
JTAG
4-level pipeline operation E

AO0—A15 (external address bus)
definition
shown in figure -6} [4-10} [4-13] [4-17] [4-31]
ABS instruction
absolute value (ABS instruction)
accumulator
definition
description [3-9)
shifting and storing high and low words,
diagrams
accumulator instructions
absolute value of accumulator (ABS)
add PREG to accumulator (APAC)
add PREG to accumulator and load TREG
(LTA)
add PREG to accumulator and multiply
(MPYA)
add PREG to accumulator and square specified
value (SQRA)
add PREG to accumulator, load TREG, and
move data (LTD)

Index

accumulator instructions (continued)

add PREG to accumulator, load TREG, and
multiply (MAC)

add PREG to accumulator, load TREG, multiply,
and move data (MACD)

add value plus carry to accumulator
(ADDC)

add value to accumulator (ADD)

add value to accumulator with shift specified by
TREG (ADDT)

add value to accumulator with sign extension
suppressed (ADDS)

AND accumulator with value (AND)

branch to location specified by accumulator
(BACC)

call subroutine at location specified by accumula-
tor (CALA)

complement accumulator (CMPL)

divide using accumulator (SUBC) |7-180

load accumulator (LACC)

load accumulator using shift specified by TREG
(LACT)

load accumulator with PREG (PAC)

load accumulator with PREG and load TREG
(LTP)

load high bits of accumulator with rounding
(ZALR)

load low bits and clear high bits of accumulator
(LACL)

negate accumulator (NEG)

normalize accumulator (NORM)

OR accumulator with value (OR)

pop top of stack to low accumulator bits
(POP)

push low accumulator bits onto stack
(PUSH)

rotate accumulator left by one bit (ROL) [7-144]

rotate accumulator right by one bit (ROR) [7-14

shift accumulator left by one bit (SFL)

shift accumulator right by one bit (SFR)

Index-1

Index

accumulator instructions (continued)

store high byte of accumulator to data memory
(SACH)

store low byte of accumulator to data memory
(SACL)

subtract conditionally from accumulator
(SUBC)

subtract PREG from accumulator (SPAC)

subtract PREG from accumulator and load TREG
(LTS)

subtract PREG from accumulator and multiply
(MPYS)

subtract PREG from accumulator and square
specified value (SQRS)

subtract value and logical inversion of carry bit
from accumulator (SUBB)

subtract value from accumulator (SUB)

subtract value from accumulator with shift speci-
fied by TREG (SUBT)

subtract value from accumulator with sign exten-
sion suppressed (SUBS) [7-182]

XOR accumulator with data value (XOR) [7-193|

ADC bit |10-10
ADD instruction

ADDC instruction m

address generation
data memory
direct addressing
immediate addressing B-3
indirect addressing
program memory
hardware 5-3

address maps
'C203 W4-23
'C209 [11-6
data page 0 #4-8

address visibility mode (AVIS bit)

addressing

bit-reversed indexed [6-10} [G-3

addressing modes
definition |G-1]
direct

description
examples
figure §-3

opcode format §-5]to [6-71

role of data page pointer (DP) E
immediate é

Index-2

addressing modes (continued)
indirect
description E
effects on auxiliary register pointer
(ARP) B-14|to
effects on current auxiliary register §-14]to

A
D O

examples p-15
modifying auxiliary register content
opcode format @to

operands -4
operation types g-14|to
options

possible opcodes B-14to

overview [6-1
ADDS instruction m
ADDT instruction |7-3
ADRK instruction [7-33
ADTR (asynchronous serial port transmit and re-
ceive register)
AND instruction
APAC instruction
applications
TMS320 devices [L-3
ARAU (auxiliary register arithmetic unit)
ARAU and related logic
block diagram |3-1
ARB (auxiliary register pointer buffer)
architecture of 'C2xx R-1]to
arithmetic logic unit
central (CALU)
ARP (auxiliary register pointer)
ARSR (asynchronous serial port receive shift regis-
ter)
ASPCR Wchronous serial port control regis-
ter) |10-7
configuring pins 100-I103 as inputs/out-

puts
quick reference

asynchronous
reception
transmission |10-19

asynchronous serial port

basic operation
baud rates
common {10-14

setting

asynchronous serial port (continued)

baud-rate detection logic
detecting A or a character (ADC bit)
enabling/disabling (CAD bit)
block diagram
components
configuration
delta interrupts
enabling/disabling (DIM bit)
emulation modes (FREE and SOFT bits)
features m
interrupts (TXRXINTS)
flag bit (TXRXINT)
introduction
mask bit in IMR (TXRXINT)
mask bits in ASPCR (DIM, TIM, RIM)
priority
three types
vector location p-16
introduction
overrun in receiver, detecting (OE bit)
overview
receive interrupts
enabling/disabling (RIM bit)
receive pin (RX)
definition 110-4
detecting break on (Bl bit)
receiver operation
reset conditions

resetting (URST bit) [10-8
signals
data [10-3
handshake
stop bit(s)
detecting invalid (FE bit) [10-11
setting number of (STB bit) [L0-§
transmit interrupts
enabling/disabling (TIM bit)
transmit pin (TX)
definition 10-4
output level between transmissions (SETBRK
bit)

transmitter operation |10-19

asynchronous serial port registers

baud-rate divisor register (BRD)
control register (ASPCR) |10-7|
configuring pins 100-103 as inputs/
outputs [10-16

quick reference

Index

asynchronous serial port registers (continued)
1/O status register (IOSR)
description
quick reference |A-17
introduction
receive register (ADTR)
detecting overrun in (OE bit) [10-1
detecting when empty (DR bit)
receive shift register (ARSR)
receive/transmit register (ADTR)
transmit register (ADTR)
detecting when empty (THRE bit)
detecting when it and AXSR are empty (TEMT
bit)
transmit shift register (AXSR)
detecting when it and ADTR are empty (TEMT
bit)
transmit/receive register (ADTR)

automatic baud-rate detection [10-14

auxiliary register arithmetic unit (ARAU)
description

auxiliary register instructions

add short immediate value to current auxiliary
register (ADRK)

branch if current auxiliary register not zero
(BANZ)

compare current auxiliary register with ARO
(CMPR)

load specified auxiliary register (LAR) [7-80]

modify auxiliary register pointer (MAR) |7-111

modify current auxiliary register (MAR) |7-111]

store specified auxiliary register (SAR) [7-152

subtract short immediate value from current aux-

iliary register (SBRK) [7-154
auxiliary register pointer (ARP) [3-16,
auxiliary register pointer buffer (ARB)

auxiliary register update (ARU) code [6-13

auxiliary registers (ARO-AR7)

block diagram [3-12
current auxiliary register
role in indirect addressing

update code (ARU,
description @
general uses for [3-14
instructions that modify content
next auxiliary register m
used in indirect addressing

b-dwol6-18]

Index-3

Index

AVIS bit |11-18

AXSR (asynchronous serial port transmit shift
register)

B instruction

BACC instruction

BANZ instruction

baud-rate
detection procedure
divisor regisﬂBRD)
generator 4
BCND instruction [7-43
Bl bit
BIO pin [8-18]to[B-19
BIT instruction
bit-reversed indexed addressing
BITT instruction m

BLDD instruction
block diagrams
'C2xx overall
ARAU and related logic [3-12
arithmetic logic section of CPU
asynchronous serial port
auxiliary regist%ARO—AR?) and ARAU

bus structure

CPU (selected sections) @

input scaling section of CPU

multiplication section of CPU

program-address generation

synchronous serial port

timer

block move instructions

block move from data memory to data memory
(BLDD)

block move from program memory to data
memory (BLPD) ‘

BLPD instruction

Boolean logic instructions
AND
CMPL (complement/NOT)
OR m
XOR (exclusive OR)
BOOT (boot load pin)
definition

Index-4

bootloader to m

boot source (EPROM)
choosing an EPROM
connecting the EPROM
programming the EPROM
diagram {4-30 to
enabling }4-3
execution

generating code for EPROM to
program code

BR (bus request pin)
definition @4-3
shown in figure
branch instructions

branch conditionally (BCND)

branch if current auxiliary register not zero
(BANZ)

branch to location specified by accumulator
(BACC)

branch to NMI interrupt vector location
(NMI)

branch to specified interrupt vector location
(INTR)

branch to TRAP interrupt vector location
(TRAP)

branch unconditionally (B)

call subroutine at location specified by accumula-
tor (CALA)

call subroutine conditionally (CC) @

call subroutine unconditionally (CALL)

conditional, overview

return conditionally from subroutine
(RETC) [7-143

return unconditionally from subroutine

(RET)

unconditional, overview
BRD (baud-rate divisor register)

buffered signals
JTAG

buffering
burst mode
definition
error conditions [9-2
reception |9-22
transmission
with external frame sync P-17
with internal frame sync 9-16

bus devices |F-4
bus protocol in emulator system EI]

BN

-59

bus request pin (BR)

definition

shown in figure
buses

block diagram
data read bus (DRDB)
data write bus (DWEB)
data-read address bus (DRAB) PR-3
data-write address bus (DWAB)
program address bus (PAB)
definition
used in program-memory address
generation
program read bus (PRDB) @

C (carry bit)
affected during SFL and SFR instructions
to[7-159]
definition [3-16
involved in accumulator events
used during ROL and ROR instructions |7-144
to|Z-146
'C209 device [11-1]to[11-18]
comparison to other 'C2xx devices |11-2
differences in interrupts
differences in memory and I/O spaces
differences in peripherals
similarities
interrupts
locating 'C209 information in this manual

(table)
memory and I/O spaces
on-chip peripherals |11-15
cable

target system to emulator E] to
cable pod , E
CAD bit
CALA instruction [7-58
CALL instruction [7-59
call instructions
call subroutine at location specified by

accumulator (CALA)
call subroutine conditionally (CC)
call subroutine unconditionally (CALL)
conditional, overview
unconditional, overview -8

Index

CALU (central arithmetic logic unit)
definition
description [3-9
carry bit (C)
affected during SFL and SFR instructions
to[7-159]
definition |3-16
involved in accumulator events (3-10
used during ROL and ROR instructions
to |7-146
CC instruction
central arithmetic logic section of CPU
CIO0-CIO3 (bits)
configuring pins I00-103 as inputs/
outputs
CLK register
description
quick reference
reset condition [5-36

CLKIN signal @to
CLKMOD pin G4
CLKOUT1 bit [8-7]
CLKOUT1 signal [8-4to[8-6]
definition |G-4]
turning CLKOUT1 pin on and off
CLKOUT1-pin control (CLK) register
description [8-7

quick reference
reset condition [5-36

CLKR pin
as bit input (INO bit)
definition h

CLKX pin [9-4

clock generator to
'C209 clock options [11-15(to |ll-18|
introduction [2-11
modes

'C203/C204 E[

'c209 [11-15)tol11-1
clock mode bit (MCM)
clock modes

clock generator
'C203/C204 B-5
'C209
synchronous serial port |9-1
CLRC instruction E
CMPL instruction [7-64

CMPR instruction |[7-65

Index-5

Index

CNF (DARAM configuration bit) current auxiliary register @
o add short immediate value to (ADRK instruc-
code compatibility tion)
codec branch if not zero (BANZ instruction)
definition |G-5 compare with ARO (CMPR instruction)
conditional instructions - to5-13 mc;;rrr:)e nt-m?if serement (MAR instrue-
conditional branch |5-11|to [5-13]

role in indirect addressing [6-9 to

nditional call -12 . . .
conditional ca to b-13 subtract short immediate value from (SBRK in-

conditional return [5-12|to |5 ;
conditions that may be tested [5-10 struction)

stabilization of conditions |5-11| update code (ARU)
using multiple conditions [5-10

configuration
memory

global data @1

RAM (dual-access) D0-D15 (external data bus)
g;gg definition
RAM (single-access) [T shown in figure [4-6| 4-10| }4-13| [4-17| }4-31]
ROM, 'C209 DARAM (dual-access RAM)
multiprocessor |F-1 configuration
'C203
connector 'C209 11-8
14-pin header description

dimensions, mechanical . -
DuPont DARAM configuration bit (CNF)

; data memory
continuous mode address ma
error conditions |9-27| p

: 'C203
reception [9-23 'c209 [11-6]
transmission

with external frame sync P-20 data page 0 - -
with internal frame sync [B-19 caution about reserved addresses
configuration
control instructions (summary) IE RAM (dual-access)
'C203 [4-24)
CPU [3-1]to 3-18 /0209

a(:_(t':#mutl_at?r ;B9 ion BB RAM (single-access)
arithmetic logic section |o- data page pointer (DP) [3-16
auxiliary register arithmetic unit (ARAU) exterﬂaﬂnt@rfaciné)

block diagram (partial) caution about proper timing §-9
CALU (central arithmetic logic unit) |3-9 413

central arithmetic logic unit (CALU)
definition

input scaling section/input shifter [3-3
key features

multiplication section

A-T]

on-chip registers mapped to @

output shifter m data memory select pin (DS)
overview definition §4-3
product shifter [3-6 shown in figure
product shift modes E data page 0 @
status registers STO and ST1 - caution about test/emulation addresses @

Index-6

Index

data page pointer (DP) DRAB (data-read address bus) @
caution about initializing DP DRDB (data read bus)
definition _ . DS (data memory select pin)
load (LDP instruction) definition
role in direct addressing [6-4 shown in figure ’
data read bus (DRDB) @ DSWS bit(s)
data write bus (DWEB) E 'C203/C204 [8-16
data-read address bus (DRAB) P-3 'C209
data-scaling shifter dual-access RAM (DARAM) [G-5
at input of CALU [3-3 configuration
at output of CALU 'C203 W-24
data-write address bus (DWAB) ‘€209 {118
delta interrupts description -
description DuPont connector
enabling/disabling (DIM bit) DWAB (data-write address bus) @
device reset DWEB (data write bus) -3
diagnostic applications [F-24 DX pin
digital loopback mode [9-26
DIM bit
dimensions EMUO/L
ﬁg:: Ezggz: Eig configuration |F-21] ,
mechanical, 14-pin header [F-1 emulation pins__[F-20
IN signals E

DIO0-DIO3 (bits)

detecting change on pins |00-103 |10-17| rising edge modification |F-22

EMUO/L signals [E-2| -3} [F-6, F-7 [F-13 [F-18]

direct addressin ;
description g emulat]l‘_on _ ol =
examples configuring multiple processors [F-13
ﬁgurep JTAG cable
opcode format @to@ pins

role of data page pointer (DP) timing calculations [F-7]to F-9] [F-18to

using scan path linkers [F-16

dlr?icotnr;e access (using HOLD opera emulation capability
during reset [4-20 emulation modes (FREE and SOFT bits)
example asynchronous serial port
terminating correctly synchronous serial port [9-9
DIV1 and DIV2 pins [8-5,[G-7 emulation timing
divide (SUBC instruction) emulator
DLB bit cable pod .
. . connection to target system, JTAG mechanical
DMOV instruction dimensions to
DP (data page pointer) designing the JTAG cable [F-1
caution about initializing DP emulation pins [F-20
definition pod interface
load (LDP instruction) pod timings [F-6
role in direct addressing -4 signal buffering to
DR bit target cable, header design [F-2to
DR pin @ enhanced instructions @

Index-7

Index

error conditions
asynchronous serial port
framing error (FE bit
overrun (OE bit) [10-11

synchronous serial port
burst mode

continuous mode 9-27

examples of 'C2xx program code [D-1]to [D-24]
external access active strobe (STRB) E
external address bus (A0-A15)

definition

shown in figure -6} 4-10| p-13, p-17, -3
external data bus (D0O-D15)

definition |4-3

shown in figure [4-6|, [4-10, ¢-13, Bp-17, 4-31]
external device ready pin (READY)

definition |4-4

generating wait states with
external interfacing

diagrams

external oscillator
using (diagram) [B-5

FE bit |10-11
features summary

FIFO buffers
introduction [0-§
FINT2 bit |5-26)
FINT3 bit [5-26]
flag bits
I/O status register (IOSR) [10-10
interrupt control register (ICR)
interrupt flag register (IFR) [5-18
flash memory (on-chip)
introduction

flow charts
interrupt operation

maskable interrupts %
nonmaskable interrupts b-2
requesting INT2 and INT3 p-18
TMS320 ROM code submittal [E-2
FR1 and FRO bits [9-10
frame synchronization mode (FSM bit)
framing error (FE bit)

Index-8

FREE bit [-9]
asynchronous serial port
timer m

FSM bit

FSR pin [0-4

FSX pin P-4

FT1 and FTO bits [9-9

general-purpose 1/O pins [8-18to
input
BIO B-18to
100-103 [10-15]to[10-14
output
100-103 [10-15|t0]10-16}|10-17
X
generating executable files
figure
generating wait states with
generators (on-chip)
baud-rate generator
clock generator [8-4to
'C209 clock options
wait-state generator
'c209 11-ffto

global data memory
configuration
external interfacing

global memory allocation register (GREG) |

GREG (global memory allocation register)

hardware interrupts
definition |5-1§
nonmaskable external [5-27]

priorities [5-16
types
hardware reset
header
14-pin
dimensions, 14-pin
HOLD (HOLD operation request pin)
definition @
use in HOLD operation
HOLD acknowledge pin (HOLDA)
definition
use in HOLD operation

HOLD operation
description 8
during reset [4-20]
example
terminating correctly

HOLD operation request pin (HOLD)
definition
use in HOLD operation [4-18

HOLD/INT1 bit
in interrupt flag register (IFR)
in interrupt mask register (IMR)

HOLD/INTL1 interrupt

flag bit
mask bit

priority
vector location

HOLD/INT1 pin
mode set by MODE bit

HOLDA (HOLD acknowledge pin)

definition [4-4

use in HOLD operation [4-18

110
general-purpose pins
input
BIO @to
100-103 [10-15to[10-17]
output
100-103 [10-15 to[10-17]
XF
parallel ports
serial ports

asynchronous to

introduction R-12
synchronous D-1]to[9-43

I/O space
accessing {4-16
address map
caution about reserved addresses |4-1
description
external interfacing
instructions
transfer data from data memory to I/O space
(our)

transfer data from I/O space to data memory

(IN)

Index

1/0 space (continued)
on-chip registers mapped to
'C203/C204

'c209 [11-9]
accessing #-1
pins for external interfacing
I/0 space select pin (IS)
definition |4-3
shown in figure
1/0 status register (IOSR)
description [10-10
detecting change on pins I00-103
quick reference
reading current logic level on pins
100-103
1/0-mapped registers
addresses and reset values |A-2
IACK signal
ICR (interrupt control register) [5-24]to
bits [5-26
quick reference |A-8
IDLE instruction [7-68
IEEE 1149.1 specification
bus slave device rules

IFR (interrupt flag register) [5-20|to
bits

'c203/c
'C209
clearing interrupts
quick reference
immediate addressing
IMR (interrupt mask register) to
bits
’c203/c
'C209
in interrupt acknowledgement process [5-19
quick reference

IN instruction
INO bit

indirect addressing
description [6-9
effects on auxiliary register pointer (ARP)

10 |6-16]

effects on current auxiliary register t0|6-16
examples [6-15
modifying auxiliary register content [6-17]
opcode format _6-12|to [6-14]

operands

Index-9

Index

indirect addressing (continued)
operation types [6-14|to[6-16|
options
possible opcodes to

input clock modes
'C203/C204 [8-5
'C209 |11-15
input scaling section of CPU @

input shifter B-3
input/output status register (IOSR)
description
detecting change on pins 100-103
reading current logic level on pins
I00-103 |10-17

instruction register (IR)
definition |G-1

instruction set
key features [1-6

instructions IE to

Boolean logic

AND
CMPL (complement/NOT)
OR

XOR (exclusive OR)
compared with those of other TMS320

devices [B-1to [c-1to[c-3q
conditional [5-10[to b

branch (BCND)

call (CC)

conditions that may be tested

return (RETC)

stabilization of conditions

using multiple conditions

CPU halt until hardware interrupt (IDLE)

delay/no operation (NOP)
descriptions
how to use
enhanced , -5
idle until hardware interrupt (IDLE)
interrupt
branch to NMI interrupt vector location
(NMI)
branch to specified interrupt vector location
(INTR)
branch to TRAP interrupt vector location

(TRAP)

Index-10

instructions (continued)

negate accumulator (NEG)
no operation (NOP)
normalize (NORM)
OR
power down until hardware interrupt
(IDLE)
repeat next instruction n times
description (RPT)
introduction
stack
pop top of stack to data memory
(POPD)
pop top of stack to low accumulator bits
(POP)
push data memory value onto stack
(PSHD)
push low accumulator bits onto stack
(PUSH)
status registers STO and ST1
clear control bit (CLRC)
load (LST)
load data page pointer (LDP)
modify auxiliary register pointer (MAR) 11
set control bit (SETC)
set product shift mode (SPM)
store (SST) [7-172
summary [7-2to
test bit specified by TREG (BITT)
test specified bit (BIT)
INT1 bit ('C209)
in interrupt flag register (IFR)
in interrupt mask register (IMR)

INT1 interrupt

'C203/C204
flag bit (HOLD/INT1) B-22
mask bit_HOLD/INTl) 5-24
priority E
vector location H-16
'C209
flag bit [11-12]
mask bit |11-13
priority
vector location

INT2 bit (C209)
in interrupt flag register (IFR)
in interrupt mask register (IMR)

Index

INT2 interrupt using (diagram) [8-4
'C203/C204 interrupt [5-15|to|5-34)
flag bits definitions [5-15,
FINT2 hardware interrupt
INT2/INT3 _ definition B-13
masking/unmasking in ICR p-2 priorities
masking/unmasking in IMR ~ 5-24 'C203/C204 [5-16
priority 'c209 [11-10]
vector location p-16 interrupt mode bit (INTM)
'C209 use in enabling/disabling maskable inter-
flag bit rupts 5-19
mask bit interrupt service routines (ISRs) to
priority [11-10 ISRs within ISRs
vector location |11-10 saving and restoring context to[5-3d
INT2/INTS bit latency [5-31]to[5-32]
in interrupt flag register (IFR) after execution of RET p-32
in interrupt mask register (IMR) during execution of CLRC INTM
INT20—INT31 (interrupts), vector locations minimum latency I@
'C203/C204 5171 maskable interrupt [5-18|to 5-20]
'C209 ' acknowledgement conditions 5-19
INT3 bit (C209) definition
in interrupt flag register (IFR) |11-12 enab/{ng(d/sablln with INTM bit
in interrupt mask register (IMR) flag bits in ICR %
flag bits in IFR p-2

INTS interrupt flow chart of operation m

CZ;/):;CZ;? flow chart of requesting INT2 and INT3 p-1§
FINT3 interrupt mode bit (INTM) B-1

masking/unmasking in ICR b-24|to [5-42]
masking/unmasking in IMR ~ b-23|to[5-42]

nonmaskable interrupt [5-27|to[5-29)
definition

INT2/INT3 [5-22
masking/unmasking in ICR b-27
masking/unmasking in IMR 5-24
priority

vector location E-18 flow chart of operation 5-29
'C209 hardware-initiated ﬁ
flag bit software-initiated 5-27
mask bit operation (three phases) [5-15
priority pending interrupt (IFR flag set) [5-20|to|5-22|
vector location phases of operation [E-15]
INT8-INT16 (interrupts), vector locations prlqutles -
'C203/C204 [5-16|to[5-17] c205/c204
'C209 [1L-10 €209
) | in interrupt acknowledgement process 5-19
interfacing registers
:g gﬁgmg: ?/Ioobsal 6?Caeta ory interrupt control register (ICR
to external IocaIF()JIata memory E Int?ér;é); flg/ster (FR) f0}5-2
to external program memory interrupt mask register (IMR) B-23|to[5-24
internal oscillator 'C209

Index-11

Index

interrupt (continued)

software interrupt
definition 5-15
instructions 5-27

special cases

clearing ICR flag bits
clearing IFR flag bit after INTR instruc-

tion

clearing IFR flag bits set by serial port inter-

rupts

controlling INT2 and INT3 with ICR
requesting INT2 and INT3 5-1§

table [5-16

vector locations
'C203/C204
'C209

interrupt acknowledge signal (IACK)

interrupt control register (ICR) to
bits
quick reference [A-g
interrupt flag register (IFR) to
bits
'C203/C204
'C209
clearing interrupts
quick reference

interrupt latenc
definition |G-12
description [5-31

interrupt mask register (IMR) to
bits
'C203/C204
'C209
in interrupt acknowledgement process [5-19
quick reference
interrupt mode bit (INTM)
interrupt phases of operation
interrupt service routines (ISRs)
definition |G-12
ISRs within ISRs |5-30
saving and restoring context

INTM (interrupt mode bit)
effect on power-down mode

in interrupt acknowledgement process

INTR instruction
introduction [5-27
operand (K) values

'C203/C204
'C209

Index-12

introduction
TMS320 devices [1-2]
TMS320C2xx devices
100103 (bits)
reading current logic level on pins
100-103
100-103 (pins) to[10-17]
IOSR (I/O status register)
detecting change on pins 100-103
quick reference
reading current logic level on pins

100-103
IR (instruction register)
definition

IS (1/O space select pin)
definition #@-3
shown in figure

ISR (interrupt service routine) to
definition
ISRs within ISRs [5-30]
saving and restoring context [5-29|to|5-30|

ISWS bit(s)
'C203/C204 [B-16)
'C209 [II-18

JTAG
JTAG emulator

buffered signals
connection to target system -1 to[F-25]

no signal buffering

key features of the 'C2xx [L-5

LACC instruction [7-74

LACL instruction |7-7

LACT instruction [7-78

LAR instruction

latch phase of CPU cycle [G-13

latency, interrupt to
after execution of RET [5-32
during execution of CLRC INTM
minimum latency

LDP instruction m
local data memory
address map
'‘C203 Y-23
'‘C209 |11-6
configuration

RAM (dual-access)
'C203
'C209
RAM (single-access)
description
external interfacing
caution about proper timing E
pages of (diagram)
logic instructions
AND
CMPL (complement/NOT)
G

XOR (exclusive OR) [7-193

logic phase of CPU cycle |G-13
long immediate addressing
LPH instruction [7-85

LST instruction m

LT instruction m

LTA instruction |[7-93

LTD instruction

LTP instruction [7-98

LTS instruction

MAC instruction |7-102
MACD instruction
MAR instruction |7-111]

mask bits
asynchronous serial port control register
(ASPCR)
interrupt control register (ICR)
interrupt mask register (IMR)
maskable interrupts [5-18
acknowledgement conditions
definition
enabling/disabling with INTM bit
flag bits in ICR
flag bits in IFR [5-20
flow chart of operation

flow chart of requesting INT2 and INT3

Index

maskable interrupts (continued)
masking/unmasking in ICR |5-24
masking/unmasking in IMR [5-23

MCM bit

memory
address map
'c203 §-23
'c209 [11-6
data page 0 B
available on TMS320C2xx devices |2-7]
available types E
bootloader @
boot source (EPROM)
diagram Y¥-30
enabling #-33
execution H-34
generating code for EPROM P-23|to[D-24
program code

data page pointer (DP)
device-specific information
direct memory access (using HOLD opera-
tion)
during reset
example #-19
terminating correctly
external interfacing
global data memory
/O ports
local data memory ¥-9
program memory -5

HOLD operation
during reset
example #-19
terminating correctly

introduction @

local data memory
description #-7jto
pages of (diagram) 4-7

on-chip memory, advantages |4-2

organization

overview [2-7

pins for external interfacing

program memory Eto
address generation logic E
address sources

Index-13

Index

memory (continued)
RAM (dual-access)
configuration
'C203 4-24
'C209 [11-
description
RAM (single-access)
configuration
description -8
reset conditions

ROM
configuration, 'C209
introduction

memory instructions
block move from data memory to data memory
(BLDD)

block move from program memory to data

memory (BLPD) [7-54

move data after add PREG to accumulator, load
TREG, and multiply (MACD) |7-106
move data to next higher address in data

memory (DMOV)
move data, load TREG, and add PREG to accu-

mulator (LTD)
store long immediate value to data memory

(SPLK)
table read (TBLR)
table write (TBLW)
transfer data from data memory to I/O space

(ouT)

transfer data from 1/O space to data memory
(IN)

transfer word from data memory to program

memory (TBLW)

transfer word from program memory to data
memory (TBLR) |7-186
memory-mapped registers
addresses and reset values

micro stack (MSTACK)
microprocessor/microcomputer pin (MP/MC)
definition |4-4
use in configuring memory, 'C209
MINT2 bit
MINT3 bit
MODE bit

used in HOLD operation §4-18
MP/MC (microprocessor/microcomputer pin)

definition
use in configuring memory, ‘C209

Index-14

MPY instruction
MPYA instruction |7-116
MPYS instruction |7-118
MPYU instruction |7-120
MSTACK (micro stack) E
multicycle instructions
multiplication section of CPU @
multiplier

description

introduction
multiply instructions

multiply (include load to TREG) and accumulate

previous product (MAC)

multiply (include load to TREG), accumulate
previous product, and move data
(MACD)

multiply (MPY)

multiply and accumulate previous product
(MPYA)

multiply and subtract previous product
(MPYS)

multiply unsigned (MPYU)

square specified value after accumulating pre-
vious product (SQRA)

square specified value after subtracting previous
product from accumulator (SQRS) 7-17@

NEG instruction [7-122
next auxiliary register |6-1
next program address register (NPAR)
definition
shown in figure
NMI hardware interrupt
description
priority
'C203/C204
'‘c209 |11-11

vector location

'C203/C204

'C209 |11-11
NMI instruction [7-12
introduction [5-28
vector location

'C203/C204
‘€209

nonmaskable interrupts |5-27
definition
flow chart of operation

hardware-initiated |5-2
software-initiated

NOP instruction
NORM instruction [7-126

NPAR (next program address register)
definition
shown in figure 5-2

OE bit

off-chip (external) memory
'C203 [4-2
'C209 |11-

on-chip generators

baud-rate generator

clock generator
'C209 clock options |11-15
wait-state generator |8-1
‘€209 11-[7%

on-chip memory
advantages -2
flash, introduction P-9
RAM (dual-access)
available
'C203
'C209
configuration

'C203 [4-24
'C209
description B-}

RAM (single-access)
available, 'C209
configuration
description :

ROM
available, 'C209 |11-6
configuration, ‘C209
introduction p-§

on-chip peripherals

asynchronous serial port [10-1]to[10-20]

available types

clock generator to
'C209 clock options to

control of @ to

general-purpose 1/0 pins [8-18Jto

Index

on-chip peripherals (continued)
overview
register locations and reset values @
reset conditions
synchronous serial port to
timer tom
wait-state generator 8-15to[8-17

'c209 11-fF tolszéi

on-chip registers mapped to data space
addresses and reset values |A-2
quick reference figures

on-chip registers mapped to 1/0 space
addresses and reset values h
quick reference figures

on-chip ROM

opcode format
direct addressing @
immediate addressing _|6-2
indirect addressing [6-12

OR instruction

oscillator [8-4

OUT instruction

output modes
external count [F-20
signal event
output shifter
OV (overflow flag bit)
overflow in accumulator

detecting (OV bit)
enabling/disabling overflow mode (OVM
bit) [3-17
overflow in synchronous serial port
burst mode
continuous mode [9-28
detecting (OVF bit) [9-10

overflow mode bit (OVM) [B-17
effects on accumulator |3-10
OVF bit 19-10

PAB (program address bus)
definition

used in program-memory address genera-

tion
PAC instruction |7-134
packages

available types IE

Index-15

Index

pages of data memory
figure @

PAL [F-21][F-22[F-24]

PAR (program address register)
definition
shown in figure

parallel I/O ports m

PC (program counter)
description [5-3
loading
shown in figure E

peripherals (on-chip)

asynchronous serial port [10-1]to[10-20]
available types [1-6
clock generator to
'C209 clock options to]11-18
control of [8-2]toB-3
general-purpose /0 pins [8-18|to B-2]
overview
register locations and reset values [8-2
reset conditions
synchronous serial port to[9-49
timer [8-8|to[8-14
wait-state generator [8-15to[8-17|
'C209 11-[1’tolzf:§!
phase lock loop (PLL)
pins
asynchronous serial port
CLKOUT1
clock generator
CLKIN/X2 8-
CLKMOD |11-15
DIV1 and DIV2 8
X1
ger@l-pﬁ)se
BIO 8-18
100-103
XF
I/0 and memory [4-3
TACK ('C209)
memory and I/0 }4-3
READY
synchronous serial port
timer (TOUT)
wait-state (READY)
pipeline
operation -7
PM (product shift mode bits)

POP instruction |7-135

Index-16

pop operation (diagram)

POPD instruction |[7-137

power saving features @

power-down mode

PRD

PRD (timer period register) [8-12|to[8-13}|G-22|to

G-26

PRDB (program read bus) IE
PREG (product register)
PREG instructions

add PREG to accumulator (APAC)

add PREG to accumulator and load TREG
(LTA)

add PREG to accumulator and multiply
(MPYA)

add PREG to accumulator and square specified
value (SQRA)

add PREG to accumulator, load TREG, and
move data (LTD)

add PREG to accumulator, load TREG, and
multiply (MAC)

add PREG to accumulator, load TREG, multiply,
and move data (MACD)

load high bits of PREG (LPH)

set PREG output shift mode (SPM)

store high word of PREG to data memory
(SPH)

store low word of PREG to data memory
(SPL)

store PREG to accumulator (PAC instruc-
tion)

store PREG to accumulator and load TREG
(LTP)

subtract PREG from accumulator (SPAC)

subtract PREG from accumulator and load TREG
(LTS)

subtract PREG from accumulator and multiply
(MPYS)

subtract PREG from accumulator and square

specified value (SQRS)

product register (PREG)
product shift mode bits (PM)
product shift modes

product shifter @

program address bus (PAB)

definition
used in program-memory address genera-
tion

program address register (PAR)
definition
shown in figure 5-2

program control features
address generation, program memory @
branch instructions
conditional %
unconditional
call instructions
conditional
unconditional

conditional instructions to[5-1
conditions that may be tested 5-10|to |5-1

stabilization of conditions H-11|to|5-13
using multiple conditions

pipeline operation

program counter (PC) E
loading

repeating a single instruction

reset conditions

return instructions

conditional
unconditional

stack
status registers STO and ST1
bits B-15

program counter (PC) @
description 5-3
loading
shown in figure 5-2

program examples to

about the examples |D-2
asynchronous serial port

automatic baud-rate detection test

delta interrupts D-18

transmission D-13

transmission loopback test
boot loader code

command file D-24

hex conversion file |D-24
command file (generic) |D-5
delay loops
header file with 1/O register declarations [D-6
header file with interrupt vector

declarations [D-7
HOLD operation
interrupt INT1 [D-10
interrupts INT2 and INT3 |D-12|

Index

program examples (continued)
synchronous serial port
transmission (continuous mode)
using with codec

timer

program memory
address generation logic
micro stack (MSTACK) b-
program counter (PC)
stack
address map
'‘C203 H-23
'C209 |11-6
address sources
configuration
RAM (dual-access)
'c203 [4-24]
'C209 |11-
RAM (single-access)
ROM, 'C209
description
external interfacing
caution about proper timing #-3

program memory select pin (PS)
definition }4-3
shown in figure

program read bus (PRDB) -3
program-address generation (diagram)

protocol
bus, in emulator system |F-4

PS (program memory select pin)
definition [4-3
shown in figure

PSC (timer prescaler counter)
'C203/C204
'C209 [11-16
definition

PSHD instruction
PSLWS bits

PSUWS bits [8-16

PSWS bit

PUSH instruction |7-141
push operation (diagram) @

Index-17

Index

R/W (read/write pin) [4-4]

RAM (on-chip)
dual-access
configuration

'C203
'C209 [11-8
description -7

single-access
configuration
description B-§

RAMEN (single-access RAM enable pin)
definition
use in configuring memory

RD (read select pin)
definition |4-4

shown in figure @ , ,

read select pin (RD)
definition |4-4
shown in figure E

read/write pin (R/W)

READY (external device ready pin)
definition [4-4]
generating wait states with

receive interrupt
asynchronous serial port
enabling/disabling (RIM bit)
synchronous serial port

receive pin
asynchronous serial port (RX)
detecting break on (Bl bit) 10-10
synchronous serial port (DR) [9-4

receive register
asynchronous serial port (ADTR)
detecting overrun in (OE bit) [10-1
detecting when empty (DR bit)
synchronous serial port (SDTR) -5

receive shift register
asynchronous serial port (ARSR)
synchronous serial port (RSR) [9-5

register summary @ to

Index-18

registers
addresses and reset values |A-2)
asynchronous serial port
baud-rate divisor register (BRD)
control register (ASPCR)
I/0 status register (IOSR) [10-10
receive shift register (ARSR)
transmit shift register (AXSR) 110-5
auxiliary registers, current auxiliary
register m
auxiliary registers (ARO-AR7)
current auxiliary register
next auxiliary register 1
baud-rate divisor register (BRD)
CLKOUT1-pin control (CLK) register [8-7
I/O status register (IOSR)
interrupt control register (ICR) to b-42
interrupt flag register (IFR)
'C209 |(11-12|to|11-18|
interrupt mask register (IMR) [5-23|to|5-24|
'c209 |11-13|to]11-18
mapped to data pagIéT@
mapped to I/O space
'C203/C204
‘€209 [11-9]
accessing H-1
quick reference to
serial port
status registers STO and ST1
timer
control register (TCR)
'C203/C204 |8-1
'C209 |11-17
counter register (TIM)
divide-down register (TDDR)
'C203/C204 [8-1
'C209 [11-17
period register (PRD)
prescaler counter (PSC)
'C203/C204 B-11
'C209 m-
wait-state generator control register (WSGR)
'C203/C204
'C209

repeat (RPT) instruction

description
introduction

repeat counter (RPTC)

repeating a single instruction
reset

at same time as HOLD operation
introduction |5-2

priority
'C203/C204
'C209

vector location
'C203/C204
'C209
reset values of on-chip registers
mapped to data space |5-37
mapped to I/O space [5-37}]A-
status registers STO and ST1

RET instruction
RETC instruction |7-143
return instructions

conditional, overview

return conditionally from subroutine
(RETC)

return unconditionally from subroutine

(RET)

unconditional, overview
RFNE bit -9
RIM bit
RINT bit

in interrupt flag register (IFR)
in interrupt mask register (IMR)

RINT interrupt
definition

flag bit
mask bit
priority

vector location
ROL instruction [7-144
ROM, customized Elto
ROM (on-chip)

configuration, 'C209
introduction

ROM codes
submitting to Texas Instruments [E-1]to

ROR instruction
RPT instruction
RPTC (repeat counter)
RRST bit

Index

RS (reset)
at same time as HOLD operation
introduction
priority
'C203/C204
'C209
vector location
’0203/0
'C209
RSR (synchronous serial port receive shift regis-
ter)
run/stop operation m
RUNB
debugger command to

RUNB_ENABLE

input
RX pin [10-4

SACH instruction |[7-148
SACL instruction |[7-150
SAR instruction |[7-152
SARAM (single-access RAM)
configuration
definition
description |2

SBRK instruction

scaling shifters
input shifter
introduction
output shifter
product shifter [3-6
product shift modes E
scan path linkers |F-16
secondary JTAG scan chain to an SPL
suggested timings
usage
scan paths
TBC emulation connections for JTAG scan
paths
scanning logic overview
SDTR (synchronous serial port transmit and receive
register)
using to access FIFO buffers m
serial port
registers

Index-19

Index

serial ports
available on TMS320C2xx devices m
introduction [2-12
reset conditions
serial-scan emulation capability
SETBRK bit [10-9
SETC instruction E
SFL instruction |7-157|
SFR instruction [7-158
shifters
input shifter
introduction
output shifter
product shifter [3-6
product shift modes E
short immediate addressing @
signal descriptions
14-pin header
signals
buffered 0
buffering for emulator connections to
description, 14-pin header
timing [F-6
sign-extension mode bit (SXM)
definition
effect on CALU (central arithmetic logic
unit)
effect on input shifter @
single-access RAM (SARAM)
configuration [11-7
definition |G-19
description [2-8
single-access RAM enable pin (RAMEN)
definition
use in configuring memory
slave devices |F-4
SOFT bit
asynchronous serial port [10-7
timer m

software interrupts
definition
instructions

SPAC instruction |7-160
SPH instruction

SPL instruction |7-163

SPLK instruction |7-165

SPM instruction |7-16

[y

~

Index-20

SQRA instruction [7-168
SQRS instruction [7-170

SSPCR (synchronous serial port control regis-
ter)

quick reference
SST instruction
stack -4

managing nested interrupt service routines
pop top of stack to data memory (POPD instruc-
tion)
pop top of stack to low accumulator bits (POP
instruction)
push data memory value onto stack (PSHD in-
struction)
push low accumulator bits onto stack (PUSH in-
struction)
status registers STO and ST1
addresses and reset values |A-2
bits
clear control bit (CLRC instruction)
introduction
load (LST instruction)
load data page pointer (LDP instruction)
modify auxiliary register pointer (MAR instruc-
tion)
quick reference |A-5
set control bit (SETC instruction)
set product shift mode (SPM instruction)
store (SST instruction)
STB bit
STRB (external access active strobe)
SUB instruction
SUBB instruction |[7-178
SUBC instruction [7-180
SUBS instruction |[7-182]
SUBT instruction [7-184
SXM (sign-extension mode bit)
definition
effect on CALU (central arithmetic logic
unit)
effect on input shifter @
synchronous serial port
basic operation -6
bit input from CLKR pin (INO bit)
block diagram
burst mode (introduction) [9-12
CLKR pin as bit input (INO bit) |9-1
clock source for transmission (MCM bit)
components

synchronous serial port (continued)
configuration
continuous mode (introduction)
controlling and resetting -8
digital loopback mode [9-26
emulation modes [9-26|
error conditions
burst mode D-27
continuous mode P-27
features @
FIFO buffers
detecting data in receive FIFO buffer (RFNE
bit)
detecting empty transmit FIFO buffer (TCOMP
bit)
introduction
managing contents with SDTR
frame sync modes (FSM bit)
frame sync source for transmission (TXM
bit)

interrupts (XINT and RINT)

flag bits

mask bits
priorities p-18
receive (RINT) §-§
controlling (FR1 and FRO bits)
transmit (XINT)
controlling (FT1 and FTO bits) B-9
using
vector locations p-16
introduction |2-1
overflow in receiver
burst mode
continuous mode P-28
detecting (OVF bit) P-10
overview
pins -4
receiver operation
burst mode D-22
continuous mode P-23
registers (overview) [9-5
reset conditions
resetting
receiver (RRST bit) 9-10
transmitter (XRST bit) P-10
selecting mode of operation
selecting transmit clock source
selecting transmit frame sync source [9-12
signals [9-3
testing |9-2

Index

synchronous serial port (continued)
transmitter operation ‘
burst mode with external frame sync 9-17
burst mode with internal frame sync P-16
continuous mode with external frame
sync
continuous mode with internal frame
sync
troubleshooting
bits for testing the port
error conditions
burst mode [9-27
continuous mode [9-27
underflow in transmitter
burst mode P-27
continuous mode P-27

synchronous serial port registers
control register (SSPCR)
description §-§
quick reference A-16
FIFO buffers
detecting data in receive FIFO buffer (RFNE
bit)
detecting empty transmit FIFO buffer (TCOMP
bit)
introduction
managing contents with SDTR
overview é
receive shift register (RSR) -

transmit and receive register (SDTR 2 o-g

using to access FIFO buffers
transmit shift register (XSR) @

target cable
target system

connection to emulator [F-1] to[F-25]

target system emulator connector
designing

target-system clock

TBLR instruction [7-186

TBLW instruction

TC (test/control flag bit)
response to accumulator event
response to auxiliary register compare

TCK signal _[F-2] [F-3] [F-4, F-6] [F-7) [F-13] F-17
[F-18 [F-25
TCOMP bit [9-9

Index-21

Index

TCR (timer _control register) to
'C209 |11-16]

quick reference

TDDR (timer divide-down register)
'C203/C204
'C209 [11-17
definition
TDI signal to,
TDO signal [F-4, -5 [F-8 [F-19 [F-25
temporary register (TREG) @
TEMT bit
test bus controller [F-22, [F-24]

test clock
diagram

test/control flag bit (TC)
response to accumulator event

response to auxiliary register compare

THRE bit
TIM (timer counter register) [8-12|to |8-13}[G-22|to
TIM bit [10-8
timer [8-8 to:
block diagram [8-8
control register (TCR) [8-10t0[8-12]
counter register (TIM) [8-12/to[8-13] [G-22|to
G-26
divide-down register (TDDR)
'C203/C204 @
'C209 11-1
definition [G-2.
interrupt (TINT)
'C203/C204

flag bit [p-22
mask bit [5-24
priority |5-16

vector location
'C209
flag bit
mask bit
priority |11-10
vector location |[11-10
interrupt rate [8-13
operation B-9to[8-10
period register (PRD) [8-12|to [8-13, [G-22|to

prescaler counter (PSC)
'C203/C204 §-11
'C209 |11-16

reload

Index-22

'C203/C204_ B-11
'c209 11-f%

reset

setting interrupt rate |8-13

stop/start
'C203/C204
€209 11-f%

timer control register (TCR) to
'C209
quick reference
timer counter register (TIM) [8-12to [8-13} |G-22|to
timiperiod register (PRD) [8-12|to[8-13}|G-22|to
G-26
timing calculations [F-7]to[F-9} [F-18]to
TINT bit
'C203/C204
in interrupt flag register (IFR) B-22
in interrupt mask register (IMR) 5-24
'C209
in interrupt flag register (IFR)
in interrupt mask register (IMR)
TINT interrupt
'C203/C204
flag bit
mask bit
priority
vector location H-16
'C209
flag bit
mask bit |11-13
priority
vector location
definition
TMS signal -2 to [F-8, [F-13 [F-17]to[F-19] [F-25]
TMS/TDI inputs |F-4
TMS320 devices
applications
overview
TMS320 ROM code submittal
flow chart
TMS320C1x/C2x/C2xx/C5x instruction set
comparisons B-1]to [B-10] to |C-36|
TMS320C209 device [11-1]to[11-18
comparison to other 'C2xx devices [11-2|
differences in interrupts
differences in memory and I/O spaces
differences in peripherals |[11-2
similarities

TMS320C209 device (continued)

interrupts [11-10
locating 'C209 information in this manual

(table)
memory and 1/O spaces
on-chip peripherals [11-15
transmit interrupt)
asynchronous serial port |10-17

enabling/disabling (TIM bit) _10-3
synchronous serial port

transmit pin
asynchronous serial port (TX)
output level between transmissions (SETBRK
bit)
synchronous serial port (DX)

transmit register
asynchronous serial port (ADTR) [10-4
detecting when empty (THRE bit) [10-11
detecting when it and AXSR are empty (TEMT
bit) [10-11

synchronous serial port (SDTR)

transmit shift register
asynchronous serial port (AXSR)
detecting when it and ADTR are empty (TEMT
bit) [10-11
synchronous serial port (XSR)

TRAP instruction
introduction |5-28
vector location

'C203/C204
'c209

TRB bit
'C203/C204 |8-1
'C209 [11-17

TREG (temporary register) [-6

TREG instructions

load accumulator using shift specified by TREG
(LACT)

load TREG (LT)

load TREG and add PREG to accumulator
(LTA)

load TREG and store PREG to accumulator
(LTP)

load TREG and subtract PREG from accumulator
(LTS)

load TREG, add PREG to accumulator, and
move data (LTD)

Index

TREG instructions (continued)
load TREG, add PREG to accumulator, and
multiply (MAC)
load TREG, add PREG to accumulator, multiply,
and move data (MACD) |7-106
TRST signal [F-2} [F-3, [F-6} [F-7) F-13] [F-17
TSS bit
'C203/C204 [8-12)
'C209 [11-17
TX pin
TXM bit |9-10
TXRXINT bit
in interrupt flag register (IFR) |5-21
in interrupt mask register (IMR)
TXRXINT interrupt
flag bit
mask bit in IMR
priority
vector location [5-16

unconditional instructions
unconditional branch
unconditional call
unconditional return
underflow in synchronous serial port
burst mode [9-27
continuous mode

URST bit

wait states

definition |G-24

for data space
’0203/0
'C209

for 1/0O space
'C203/C204
'C209

for program space
’0203/0
'C209

generating with READY signal [8-15

generating with wait-state generator
'C203/C204_ B-15|to
'€209 11-f} to[11-18

Index-23

Index

wait-state generator m tom
'C209 |11-17|to|11-18
introduction [2-11
wait-state generator control register (WSGR)
'C209
quick reference
WE (write enable pin)
definition |4-4
shown in figure [4-6, 4-10, 4-13,
write enable pin (WE)
definition
shown in figure @ , ,
WSGR (wait-state generator control register)
'C203/C204
'C209 [11-18
quick reference

XF bit (XF pin status bit)
XF pin |8-19

Index-24

XINT bit
in interrupt flag register (IFR)
in interrupt mask register (IMR)

XINT interrupt

flag bit
mask bit

priority
vector location

XOR instruction |7-193
XRST bit

XSR (synchronous serial port transmit shift

register) @

ZALR instruction [7-196

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Information About Cautions
	Related Documentation From Texas Instruments
	Related Articles
	Trademarks
	If You Need Assistance...

	Contents
	Figures
	Tables
	Examples
	Introduction
	TMS320 Family
	History, Development, and Advantages of TMS320 DSPs
	Typical Applications for the TMS320 Family

	TMS320C20x Generation
	Key Features of the TMS320C20x

	Architectural Overview
	'C20x Bus Structure
	Central Processing Unit
	Central Arithmetic Logic Unit (CALU) and Accumulator
	Scaling Shifters
	Multiplier
	Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

	Memory and I/O Spaces
	Dual-Access On-Chip RAM
	Single-Access On-Chip Program/Data RAM
	Factory-Masked On-Chip ROM
	Flash Memory

	Program Control
	On-Chip Peripherals
	Clock Generator
	CLKOUT1-Pin Control (CLK) Register
	Hardware Timer
	Software-Programmable Wait-State Generator
	General-Purpose I/O Pins
	Serial Ports
	Synchronous serial port (SSP)
	Asynchronous serial port (ASP)

	Scanning-Logic Circuitry

	Central Processing Unit
	Input Scaling Section
	Multiplication Section
	Multiplier
	Product-Scaling Shifter

	Central Arithmetic Logic Section
	Central Arithmetic Logic Unit (CALU)
	Accumulator
	Output Data-Scaling Shifter

	Auxiliary Register Arithmetic Unit (ARAU)
	ARAU and Auxiliary Register Functions

	Status Registers ST0 and ST1

	Memory and I/O Spaces
	Overview of the Memory and I/O Spaces
	Pins for Interfacing to External Memory and I/O Spaces

	Program Memory
	Interfacing With External Program Memory

	Local Data Memory
	Data Page 0 Address Map
	Interfacing With External Local Data Memory

	Global Data Memory
	Interfacing With External Global Data Memory

	I/O Space
	Accessing I/O Space

	Direct Memory Access Using the HOLD Operation
	HOLD\ During Reset

	Device-Specific Information
	TMS320C203 Address Maps and Memory Configuration
	TMS320C206/LC206 Address Maps and Memory Configuration
	TMS320F206 Address Maps and Memory Configuration
	Flash Memory (EEPROM)
	PMST Register in the ’206 Family

	'C203 Bootloader
	Choosing an EPROM
	Connecting the EPROM to the Processor
	Programming the EPROM
	Enabling the Bootloader
	Bootloader Execution
	Bootloader Program

	'C206/LC206 Bootloader
	Boot-load Options
	Bootloader Operation
	'C206 Enhanced Bootloader (EXT8 High - Modes 2 to 9)
	Interrupt Vectoring
	Synchronous Serial Port (SSP) Boot Mode
	UART/Asynchronous Serial Port (ASP) Boot Mode (Mode 6)
	Parallel EPROM Boot Mode
	Parallel I/O Boot Mode (Mode 4 - 8 Bit, Mode 5 - 16 Bit)
	Warm-Boot Mode (Mode 9)
	'C203 Style Bootloader (EXT8 Low – Mode 1)
	Bootloader Program

	Program Control
	Program-Address Generation
	Program Counter (PC)
	Stack
	Micro Stack (MSTACK)

	Pipeline Operation
	Branches, Calls, and Returns
	Unconditional Branches
	Unconditional Calls
	Unconditional Returns

	Conditional Branches, Calls, and Returns
	Using Multiple Conditions
	Stabilization of Conditions
	Conditional Branches
	Conditional Calls
	Conditional Returns

	Repeating a Single Instruction
	Interrupts
	Interrupt Operation: Three Phases
	Interrupt Table
	Maskable Interrupts
	Interrupt Flag Register (IFR)
	Interrupt Mask Register (IMR)
	Interrupt Control Register (ICR)
	Controlling the HOLD\/INT1\ pin
	Controlling INT2\ and INT3\

	Nonmaskable Interrupts
	Interrupt Service Routines (ISRs)
	Saving and restoring register values
	Managing ISRs within ISRs

	Interrupt Latency
	Latency for pipeline protection
	Latency for stack overflow protection

	Context Saving During Interrupts

	Reset Operation
	TMS320C206/LC206 Reset and PLL Lock Conditions

	Power-Down Mode
	Normal Termination of Power-Down Mode
	Termination of Power-Down During a HOLD Operation

	Addressing Modes
	Immediate Addressing Mode
	Examples of Immediate Addressing

	Direct Addressing Mode
	Using Direct Addressing Mode
	Examples of Direct Addressing

	Indirect Addressing Mode
	Current Auxiliary Register
	Indirect Addressing Options
	Next Auxiliary Register
	Indirect Addressing Opcode Format
	Examples of Indirect Addressing
	Modifying Auxiliary Register Content

	Assembly Language Instructions
	Instruction Set Summary
	How To Use the Instruction Descriptions
	Syntax
	Operands
	Opcode
	Execution
	Status Bits
	Description
	Words
	Cycles
	Examples

	Instruction Descriptions
	ABS
	ADD
	ADDC
	ADDS
	ADDT
	ADRK
	AND
	APAC
	B
	BACC
	BANZ
	BCND
	BIT
	BITT
	BLDD
	BLPD
	CALA
	CALL
	CC
	CLRC
	CMPL
	CMPR
	DMOV
	IDLE
	IN
	INTR
	LACC
	LACL
	LACT
	LAR
	LDP
	LPH
	LST
	LT
	LTA
	LTD
	LTP
	LTS
	MAC
	MACD
	MAR
	MPY
	MPYA
	MPYS
	MPYU
	NEG
	NMI
	NOP
	NORM
	OR
	OUT
	PAC
	POP
	POPD
	PSHD
	PUSH
	RET
	RETC
	ROL
	ROR
	RPT
	SACH
	SACL
	SAR
	SBRK
	SETC
	SFL
	SFR
	SPAC
	SPH
	SPL
	SPLK
	SPM
	SQRA
	SQRS
	SST
	SUB
	SUBB
	SUBC
	SUBS
	SUBT
	TBLR
	TBLW
	TRAP
	XOR
	ZALR

	On-Chip Peripherals
	Control of On-Chip Peripherals
	Clock Generator
	Clock Generator Options

	CLKOUT1-Pin Control (CLK) Register
	Timer
	Timer Operation
	Timer Control Register (TCR)
	Timer Counter Register (TIM) and Timer Period Register (PRD)
	Setting the Timer Interrupt Rate
	The Timer at Hardware Reset

	Wait-State Generator
	Generating Wait States With the READY Signal
	Generating Wait States With the C20x Wait-State Generator

	General-Purpose I/O Pins
	Input Pin BIO\
	Output Pin XF
	Input/Output Pins IO0, IO1, IO2, and IO3

	Synchronous Serial Port
	Overview of the Synchronous Serial Port
	Components and Basic Operation
	Signals
	FIFO Buffers and Registers
	Interrupts
	Basic Operation

	Controlling and Resetting the Port
	Selecting a Mode of Operation (Bit 1 of the SSPCR)
	Selecting Transmit Clock Source and Transmit Frame Sync Source (Bits 2 and 3 of the SSPCR)
	Resetting the Synchronous Serial Port (Bits 4 and 5 of the SSPCR)
	Using Transmit and Receive Interrupts (Bits 8ã11 of the SSPCR)

	Managing the Contents of the FIFO Buffers
	Transmitter Operation
	Burst Mode Transmission With Internal Frame Sync (FSM = 1, TXM = 1)
	Burst Mode Transmission With External Frame Sync (FSM = 1, TXM = 0)
	Continuous Mode Transmission With Internal Frame Sync (FSM = 0, TXM = 1)
	Continuous Mode Transmission with External Frame Sync (FSM=0, TXM=0)

	Receiver Operation
	Burst Mode Reception
	Continuous Mode Reception

	Troubleshooting
	Test Bits
	Burst Mode Error Conditions
	Continuous Mode Error Conditions

	Enhanced Synchronous Serial Port (ESSP)
	ESSP Features

	ESSP Pins
	Multichannel Mode

	ESSP Registers
	Synchronous Serial Port Status Register (SSPST)
	Synchronous Serial Port Multichannel Register (SSPMC)
	Synchronous Serial Port Count Register (SSPCT)
	Programmable Internal CLKX and FSX Rates
	Prescalers as General Purpose Counter

	ESSP Register Programming Considerations
	ESSP Register Initialization
	Prescaler Values in Multichannel Mode
	ESSP Serial Port Configurations

	Asynchronous Serial Port
	Overview of the Asynchronous Serial Port
	Components and Basic Operation
	Signals
	Baud-Rate Generator
	Registers
	Interrupts
	Basic Operation

	Controlling and Resetting the Port
	Asynchronous Serial Port Control Register (ASPCR)
	I/O Status Register (IOSR)
	Baud-Rate Divisor Register (BRD)
	Using Automatic Baud-Rate Detection
	Using I/O Pins IO3, IO2, IO1, and IO0
	When pins IO0–IO3 are configured as inputs
	When pins IO0–IO3 are configured as outputs

	Using Interrupts

	Transmitter Operation
	Receiver Operation

	TMS320C209
	C209 Versus Other ’C20x Devices
	What Is the Same
	What Is Different
	Where to Find the Information You Need About the TMS320C209

	'C209 Memory and I/O Spaces
	'C209 Interrupts
	'C209 Interrupt Registers
	IACK\ Pin

	'C209 On-Chip Peripherals
	'C209 Clock Generator Options
	'C209 Timer Control Register (TCR)
	'C209 Wait-State Generator

	Register Summary
	Addresses and Reset Values
	Register Descriptions
	Status Register ST0
	Status Register ST1
	C20x Interrupt Flag Register (IFR) — Except ’C209 — Data-Memory Address 0006h
	Interrupt Flag Register (IFR) — ’C209 — Data-Memory Address 0006h
	Interrupt Mask Register (IMR) — Except ’C209 — Data-Memory Address 0004h
	Interrupt Mask Register (IMR) — ’C209 — Data-Memory Address 0004h
	Interrupt Control Register (ICR) — I/O Address FFECh
	Timer Control Register (TCR) — Except ’C209 — I/O Address FFF8h
	Timer Control Register (TCR) — ’C209 — I/O Address FFFCh
	Wait-State Generator Control Register (WSGR) — Except ’C209— I/O Address FFFCh
	Wait-State Generator Control Register (WSGR) — ’C209 — I/O Address FFFFh
	CLK Register — I/O Address FFE8h
	Synchronous Serial Port Status Register (SSPST) — I/O Address FFF2h
	Synchronous Serial Port Multichannel Control Register (SSPMC) — I/O Address FFF3h
	Synchronous Serial Port Counter Register (SSPCT) — I/O Address FFFBh
	Program Memory Status Register (PMST) — I/O Address FFE4h
	Synchronous Serial Port Control Register (SSPCR) — I/O Address FFF1h
	Asynchronous Serial Port Control Register (ASPCR) — I/O Address FFF5h
	I/O Status Register (IOSR) — I/O Address FFF6h

	TMS320F206 Flash Serial Loader
	TMS320F206 Flash Serial Loader Features
	Revision 2.0 Software Features
	’F206 Memory Map for the Serial Loader

	Functional Description
	Software Modules
	Operation
	Host Utility Loading Status and Modes

	Serial Loader Code
	'F206 Serial Loader Code – Level 1
	'F206 Serial Loader Code – Level 1 Only

	TMS320C1x/C2x/C20x/C5x Instruction Set Comparison
	Using the Instruction Set Comparison Table
	An Example of a Table Entry
	Symbols and Acronyms Used in the Table

	Enhanced Instructions
	Instruction Set Comparison Table

	Program Examples
	About These Program Examples
	Shared Program Code
	Task-Specific Program Code
	Introduction to Generating Bootloader Code

	Submitting ROM Codes to TI
	Design Considerations for Using XDS510 Emulator
	Designing Your Target Systemós Emulator Connector (14-Pin Header)
	Bus Protocol
	Emulator Cable Pod
	Emulator Cable Pod Signal Timing
	Emulation Timing Calculations
	Connections Between the Emulator and the Target System
	Buffering Signals
	Using a Target-System Clock
	Configuring Multiple Processors

	Physical Dimensions for the 14-Pin Emulator Connector
	Emulation Design Considerations
	Using Scan Path Linkers
	Emulation Timing Calculations for a Scan Path Linker (SPL)
	Using Emulation Pins
	Performing Diagnostic Applications

	Glossary
	Index

