

Migrating an Academic DSP Lab
Course from the TMS320C30 to the

TMS320C67 EVM

By Keith Hoover,
Professor of Electrical and Computer

Engineering, Rose-Hulman Institute of
Technology, Terre Haute, Indiana

(Keith.E.Hoover@Rose-Hulman.Edu)

Introduction
This paper describes the experiences of Professor
Mark Yoder and myself in converting our
TMS320C30 (C30) DSP projects course to the
TMS320C67 (C67). The weekly laboratory
projects assigned in our new DSP projects course
will be described. . The pros and cons associated
with C30 vs. C67 DSP-based instruction in an
academic environment will be summarized.

The ECE department of Rose-Hulman Institute
of Technology has regularly offered a
graduate/senior-level one-quarter (10-week) DSP
laboratory project class based on the Texas
Instruments (TI) C30 DSP since 1992. This
C30-based course was described in the 6th
Annual TI TMS320 Educator’s Conference
Proceedings (“TMS320C30 DSP Laboratory
Course taken Concurrently with a DSP Theory
Course”, Keith Hoover, August 2, 1996). Last
year, prompted by several DSP board failures,
we decided to upgrade our laboratory project
course from the C30 to the C67. We were still
satisfied with our original C30 boards, but we
were disappointed to find that the particular
seven-year old DSP boards we had adopted
(from a smaller DSP board manufacturer) were
no longer made or supported. As we moved to
the C67 DSP, we decided to “learn from past
mistakes” and adopt the more “mainstream” TI
C67 EVM DSP board that is bundled with the
Code Composer Studio integrated development
environment (IDE) software. We reasoned that
these TI C67 boards might be supported for a
longer time than C67 boards from a smaller
company. In addition, we expected that most
educational materials published for the C67
family would focus specifically on the TI C67
EVM DSP board.

More Power, but More to Learn!
As we began upgrading our course from the 60-
Mips C30 board to the 1600-Mips C67 EVM we
discovered that there is considerably more
material for the student (and instructor) to learn.

For example, the C67 board features a parallel,
pipelined architecture, flexible stereo audio
interface (CODEC), and more sophisticated
support software (Code Composer Studio. One
indication of the steeper learning curve is the
substantial increase in the number of user
manuals provided for the C67! Our original 10-
week C30 course was long enough to acquaint
students (who had already taken at least one
general microprocessor or computer architecture
course) with the C30 processor and its software
development tools. This course was able to do a
reasonable job of covering the salient features of
C30 architecture, assembly-language
programming, analog I/O, C programming, and
PC/DSP communication. Only one TI manual
had to be purchased by the students for the
course (TMS320C3x User’s Guide).

In contrast, the C67 EVM, along with its
associated Code Composer Studio IDE, and its
associated debugging and real-time support
software, are supplemented by approximately 20
assorted user’s manuals (so many that it was
only practical to distribute them to the student in
“soft form” as Adobe portable document “.pdf”
files.) We felt that we could no longer
adequately cover all aspects of C67 DSP
programming applications in a single 10-week
class as we did with the C30.

From One C30 Class to Three C67 Classes
Rather than trying to “teach it all” in one quarter,
our C67 instruction was divided into three
roughly independent 10-week courses. The
C67’s parallel, pipelined architecture, assembly-
language, and C programming are covered in our
Computer Architecture II course (EC332), taught
by Professor Mark Yoder. This course is
patterned after TI’s TMS320C62xx DSP Design
Workshop (Texas Instruments, DSP6-NOTES-
3.2a, April 1999). Special emphasis is placed on
assembly optimization, software pipelining, and
techniques for writing optimized C code. In this
course, students use the simulation capabilities
of Code Composer Studio to write, debug, and
analyze various assembly and C programs.

A second course, entitled “Real Time Systems
Programming” (EC597), taught by Professor
Mark Yoder, focuses on the use of Code
Composer Studio’s DSP/BIOS data analysis,
data profiling, event scheduling, and real-time
data exchange (RTDX) capabilities. This course
emphasizes real-time programming issues. It
does not dwell on the theory and implementation

behind the signal processing algorithms
themselves. This course is patterned after Texas
Instrument’s Real-time Software Design
Workshop Using Code Composer Studio (Texas
Instruments, RTSD-NOTES 1.1, August 1999).
In this course, the students work in teams to
perform several assigned, real-time programming
exercises that teach them about various aspects
of Code Composer and DSP/BIOS. Then they
choose a term project. Projects undertaken this
year reflect the students’ individual interests and
area of specialization. They included a real-time,
one-dimensional broom balancer, an MPEG-II
video decoder, a phased audio microphone array,
a video camera-based label recognizer, a
voiceprint display, and a “voice over IP” internet
telephone decoder.

The third course, taught by myself, will be the
focus of this paper. Entitled “DSP Projects”
(EC581), it is the one that most directly
corresponds to our original C30 DSP projects
course. This course focuses on the C67 real-time
implementation of common DSP algorithms
using the C programming language. The only
prerequisite for this course is our senior-level
DSP theory course (which uses the popular
Discrete Time Signal Processing by Oppenheim,
Schafer, and Buck). The primary goal of this
course is to reinforce the DSP theory course by
providing students with an opportunity to
implement and test algorithms in software. Only
about half of the students taking this course will
have had either of the other two C67 courses.
For this reason, the emphasis in this class is on
writing simple, working C code, rather than on
optimizing the code after it is working. All I/O
is to be done at the lowest level possible
(keeping the student “close to the hardware”),
rather than using the more sophisticated and
abstract DSP/BIOS real-time I/O functions
(which are covered in another course).

The DSP Projects course consists of three
components: (1) Nine single-week projects, (2)
Classroom demonstrations of more advanced
topics, (3) A term project. All project work is to
be done in two-person teams. Most of the
projects involve some aspect of digital audio
processing, which has been found to be an
especially motivating topic for many of our
students. Project reports are required to be in a
prescribed, semi-formal, “memorandum-style”
format, with all data, program listings, and
detailed data analyses included in appendices.
The course meets for two hours of “pre-lab

lectures” and one 3-hour lab session per week.
In addition, the lab is open on a walk-in basis
throughout the week. Each student is expected
to spend approximately six hours per week in the
laboratory, outside of the scheduled class/lab
times.

C67 DSP Projects Course Content
Each of the required C67-based experiments
currently performed in the DSP Projects course
(seven on the C67 EVM in real-time using C,
and two using Hyperception’s RIDE 4.2 “block
diagram” DSP tool) will be briefly described.

Please note that the descriptions below are only
very terse summaries of the lab handouts given
to the students. Interested instructors are
welcome to download the weekly C67 project
assignments, as well as associated sample
programs referred to in these project assignment
handouts, from the following URL:

 http://rose-hulman.edu/~hoover/.

(1) Code Composer Familiarization, Audio

Sampling, Reverberation, Comb Filter,
Flanger
The student is guided through the use of
Code Composer Studio to perform editing,
compilation, linking, downloading,
debugging (single-stepping, setting
breakpoints, setting up watch variables,
etc.), and execution of a simple C-language
program which contains printf() and
scanf() functions that perform simple data
processing operations. Next, a basic,
interrupt-driven, sampling program is
introduced. This basic program and its
companion interrupt routine will serve as a
“template” for many of the following DSP
lab projects. The student is then asked to
modify this basic sampling template to turn
it into an audio reverberation program, and
then later into a comb filter. Finally, for
extra credit, the comb filter delay may be
made continuously variable, to implement
an audio flanger.

(2) Floating Point and Fixed Point FIR filter
implementation
A MATLAB M-file (which calls the “FIR1”
MATLAB FIR digital filter design function)
is used to design and plot the frequency
response of 15th order bandstop, bandpass,
and highpass filters. Then a real-time, C
digital filtering program is written that uses

floating point filter coefficients to
implement the various FIR filters on the C67
board. The resulting real-time filter is tested
using a function generator and an
oscilloscope, with the observed results
plotted over the frequency response curve
predicted by MATLAB. Next, the program
is rewritten so that it uses only integer math
(prescaling the floating point filter
coefficients by multiplying them by a large
power of 2 and then truncating them to
integer form).

(3) IIR Filter Implementation and Digital
Wah-Wah Effect
Use Momentum Software’s QEDesign
Digital Filter Design program to design an
IIR bandpass filter to meet given
specifications. Graphically interpret the
resulting pole-zero plot (using ruler
measurements) to verify the predicted
magnitude response. Next, write a C
program that implements the IIR filter in
“Direct Form II”, cascaded 2nd-order
biquadratic sections. Experimentally record
observed, real-time filter performance using
an oscilloscope and a function generator,
and plot the experimental measurements
over the predicted magnitude response.
Finally, implement a series of 10 second-
order bandpass digital filters whose
passbands span the audio spectrum. Write a
program that periodically (every 50 ms)
switches filter coefficients, resulting in a
filter of continuously varying passbands.
Listen to the effect when a low frequency
(100-Hz) square wave (spectrally rich) is
played through the system. Note the classic
“Wah-wah” effect.

(4) Audio AGC With Silence Threshold

(Digital Audio Amplitude Compression)
Write a real-time C-language program for
the C67 that stores a 30 ms audio “frame” in
a circular buffer. This program must also
calculate the average of the absolute values
of the audio samples in the frame. Finally,
the program must scale each value in the
frame by this average magnitude to adjust
the average magnitude of the frame to a
constant, pre-specified value. Then the
resulting adjusted audio frame should be
sent out to the loudspeaker, while the next
30 ms frame is being recorded. Silent
frames are detected by comparing the
average frame magnitude against an

experimentally determined “silence
threshold” value. If the frame’s average
magnitude is below this threshold, the frame
is zeroed rather than scaled. The program
must be written efficiently enough that no
(or very few) audio samples are missed
between frames. The resulting speech heard
in the loudspeaker should sound natural and
continuous and be of constant average
amplitude, even when the speaker moves
several feet away from the microphone.

(5) Audio VU Meter, with Separate Target
and Host C Programs Communicating
Through PCI Interface.
Modify the AGC program from preceding
assignment to pass the average frame
magnitude (a new one every 30 ms) to a
simple companion Microsoft Visual C++
“terminal application” program. Use the
C67 EVM board’s PCI interface hardware,
where the average frame magnitude will be
displayed with ASCII graphics. Use the
“dma_” function call in the C program that
runs on the C67 EVM board, and use the
“evm6x_read” Windows API function in the
companion C++ program that runs on the
PC. First study the example C67 C program
and the companion example C++ PC
program. These illustrate the proper
method for DMA transfer through the C67
EVM’s PCI interface.

(6) Radix-4 FFT Spectrum Analyzer
Study the 64-point radix-4 FFT algorithm
explained in the handout. Draw the simpler
16-point radix-4 FFT butterfly pattern and
indicate the value of each node in the
butterfly for the specific test pattern given.
Compare the final results with those from
MATLAB. (The results should agree.) Next
run the C67 radix-4 FFT program that has
already been coded using the same test data.
Note that it is already set up to calculate the
same 16-point FFT. Verify the proper
results. Now modify this FFT program for
64 points and test it with two test cases
(verified against MATLAB). Now integrate
this 64-point FFT routine into your
interrupt-driven, sampling program
template. In the main program, a global
index variable (incremented in the interrupt
routine) is used to keep track of when 64
points have been stored. Then the FFT is
called, and the frequency corresponding to
the position of the peak magnitude value is

printed. Proper operation can be verified
using a sine-wave function generator whose
frequency is slowly varied between 0 Hz
and half of the sampling rate.

(7) Real-Time, Narrow Band Noise
Reduction via Adaptive Filtering
Implement an LMS adaptive filter, and then
pass an audio signal (consisting of speech
corrupted by a strong, additive, periodic
interference signal) through a delay line.
The delayed speech + noise signal is
delivered to the reference input, while the
non-delayed version of the speech + noise is
delivered to the signal input of the LMS
adaptive filter. The error signal becomes the
de-noised output. First implement this filter
using MATLAB and imported WAV files.
Then demonstrate significant noise
reduction by playing back the processed
WAV file. Experiment with the adaption
coefficient value and the necessary
“decorrelation delay time”. Finally, convert
your MATLAB program to a real time C67
program.

(8) Use of Hyperception Ride 4.2 to Perform

Digital Filtering and Audio
Scrambling/Descrambling
Study and run the various block diagram
DSP examples. Also study the instructions
for using Hyperception’s companion
“Hypersignal Digital Filter Design
Program”. Now construct your own block
diagram system that uses the concept of
mixing and filtering to invert an audio
spectrum. Cascade two of these spectral
inversion systems to realize a simple audio
scrambler and unscrambler. Demonstrate by
first playing the scrambled audio from the
first spectral inverter and then playing the
unscrambled audio from the second spectral
inverter.

(9) DSP Scavenger Hunt

Use Hyperception RIDE 4.2 digital filter
blocks and/or your adaptive filter program to
remove noise from a series of noise-polluted
digital audio (WAV file) clips which
indicate the location of various $5.00 bills
hidden around campus. Since the nature of
the noise varies from one clip to another,
you will have to apply different filters to
each clip. You may want to observe the
spectrum of various frames within the clip

before deciding how it should be filtered.

(10) Term Project (to be chosen by students
who are taking the class for 4 credit hours)
Example projects: Real-time audio spectrum
analyzer, ultrasonic chirp sonar, touch-tone
DTMF telephone monitor, guitar tuner,
underwater ultrasonic receiver/transmitter,
voice-operated security lock.

Pros and Cons of Upgrading an Academic
DSP Lab Course from C30 to C67
Our experiences in migrating our DSP projects
course from the C30 DSP board to the TI C67
EVM DSP board have been largely rewarding,
but not completely without frustration. Making
the transition has been much more challenging
than we first imagined. Many of the real-time
DSP operations that took too long on the old
boards are not as “time-critical” on the new
boards. Because we kept our DSP lab course at
the C-language level, most of the lab projects we
were doing with the C30 carried over without
significant changes to the C67. However, the
details of how analog I/O is performed have
significantly changed and are significantly more
involved than they were on the C30 boards.
Fortunately, many of these I/O details are
“buried” in the initial, interrupt-driven, sampling
template program that was given to the students
in the first lab assignment. A complete
understanding of the details of this template
requires that the students study the 76-page
CODEC user manual and also the various C67
EVM API function calls that are described in the
EVM user manual.

We are still struggling with frequent instabilities
in our Windows installation of Code Composer.
In our particular installation, Code Composer
frequently “freezes”, and the only solution that
we have found is to exit Code Composer, run the
DOS EVM67 board reset program, and then re-
enter Code Composer. Having worked with the
C67 EVM for 6 months, I still feel that my
students and I still have a lot more to learn about
the use of the high-level DSP/BIOS function of
the C67 EVM.

	TMS320C67 EVM
	Introduction
	C67 DSP Projects Course Content
	Pros and Cons of Upgrading an Academic DSP Lab Course from C30 to C67

