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Introduction 
This paper describes the experiences of Professor 
Mark Yoder and myself in converting our 
TMS320C30 (C30) DSP projects course to the 
TMS320C67 (C67).  The weekly laboratory 
projects assigned in our new DSP projects course 
will be described. .  The pros and cons associated 
with C30 vs. C67 DSP-based instruction in an 
academic environment will be summarized.   
 
The ECE department of Rose-Hulman Institute 
of Technology has regularly offered a 
graduate/senior-level one-quarter (10-week) DSP 
laboratory project class based on the Texas 
Instruments (TI) C30 DSP since 1992.  This 
C30-based course was described in the 6th 
Annual TI TMS320 Educator’s Conference 
Proceedings (“TMS320C30 DSP Laboratory 
Course taken Concurrently with a DSP Theory 
Course”, Keith Hoover, August 2, 1996).  Last 
year, prompted by several DSP board failures, 
we decided to upgrade our laboratory project 
course from the C30 to the C67.  We were still 
satisfied with our original C30 boards, but we 
were disappointed to find that the particular 
seven-year old DSP boards we had adopted 
(from a smaller DSP board manufacturer) were 
no longer made or supported.  As we moved to 
the C67 DSP, we decided to “learn from past 
mistakes” and adopt the more “mainstream” TI 
C67 EVM DSP board that is bundled with the 
Code Composer Studio integrated development 
environment (IDE) software.  We reasoned that 
these TI C67 boards might be supported for a 
longer time than C67 boards from a smaller 
company.  In addition, we expected that most 
educational materials published for the C67 
family would focus specifically on the TI C67 
EVM DSP board.  
 
More Power, but More to Learn! 
As we began upgrading our course from the 60-
Mips C30 board to the 1600-Mips C67 EVM we 
discovered that there is considerably more 
material for the student (and instructor) to learn.  

For example, the C67 board features a parallel, 
pipelined architecture, flexible stereo audio 
interface (CODEC), and more sophisticated 
support software (Code Composer Studio.  One 
indication of the steeper learning curve is the 
substantial increase in the number of user 
manuals provided for the C67!   Our original 10-
week C30 course was long enough to acquaint 
students (who had already taken at least one 
general microprocessor or computer architecture 
course) with the C30 processor and its software 
development tools.  This course was able to do a 
reasonable job of covering the salient features of 
C30 architecture, assembly-language 
programming, analog I/O, C programming, and 
PC/DSP communication.   Only one TI manual 
had to be purchased by the students for the 
course (TMS320C3x User’s Guide).   
 
In contrast, the C67 EVM, along with its 
associated Code Composer Studio IDE, and its 
associated debugging and real-time support 
software, are supplemented by approximately 20 
assorted user’s manuals (so many that it was 
only practical to distribute them to the student in 
“soft form” as Adobe portable document “.pdf” 
files.)  We felt that we could no longer 
adequately cover all aspects of C67 DSP 
programming applications in a single 10-week 
class as we did with the C30.  
 
From One C30 Class to Three C67 Classes 
Rather than trying to “teach it all” in one quarter, 
our C67 instruction was divided into three 
roughly independent 10-week courses.  The 
C67’s parallel, pipelined architecture, assembly-
language, and C programming are covered in our 
Computer Architecture II course (EC332), taught 
by Professor Mark Yoder.  This course is 
patterned after TI’s TMS320C62xx DSP Design 
Workshop (Texas Instruments, DSP6-NOTES-
3.2a, April 1999).  Special emphasis is placed on 
assembly optimization, software pipelining, and 
techniques for writing optimized C code.  In this 
course, students use the simulation capabilities 
of Code Composer Studio to write, debug, and 
analyze various assembly and C programs. 
 
A second course, entitled “Real Time Systems 
Programming” (EC597), taught by Professor 
Mark Yoder, focuses on the use of Code 
Composer Studio’s DSP/BIOS data analysis, 
data profiling, event scheduling, and real-time 
data exchange (RTDX) capabilities.  This course 
emphasizes real-time programming issues.  It 
does not dwell on the theory and implementation 



 

 

behind the signal processing algorithms 
themselves.  This course is patterned after Texas 
Instrument’s Real-time Software Design 
Workshop Using Code Composer Studio (Texas 
Instruments, RTSD-NOTES 1.1, August 1999).  
In this course, the students work in teams to 
perform several assigned, real-time programming 
exercises that teach them about various aspects 
of Code Composer and DSP/BIOS.  Then they 
choose a term project.   Projects undertaken this 
year reflect the students’ individual interests and 
area of specialization.  They included a real-time, 
one-dimensional broom balancer, an MPEG-II 
video decoder, a phased audio microphone array, 
a video camera-based label recognizer, a 
voiceprint display, and a “voice over IP” internet 
telephone decoder. 
 
The third course, taught by myself, will be the 
focus of this paper.  Entitled “DSP Projects” 
(EC581), it is the one that most directly 
corresponds to our original C30 DSP projects 
course.  This course focuses on the C67 real-time 
implementation of common DSP algorithms 
using the C programming language.  The only 
prerequisite for this course is our senior-level 
DSP theory course (which uses the popular 
Discrete Time Signal Processing by Oppenheim, 
Schafer, and Buck).  The primary goal of this 
course is to reinforce the DSP theory course by 
providing students with an opportunity to 
implement and test algorithms in software.  Only 
about half of the students taking this course will 
have had either of the other two C67 courses.  
For this reason, the emphasis in this class is on 
writing simple, working C code, rather than on 
optimizing the code after it is working.  All I/O 
is to be done at the lowest level possible 
(keeping the student “close to the hardware”), 
rather than using the more sophisticated and 
abstract DSP/BIOS real-time I/O functions 
(which are covered in another course).   
 
The DSP Projects course consists of three 
components: (1) Nine single-week projects, (2) 
Classroom demonstrations of more advanced 
topics, (3) A term project.  All project work is to 
be done in two-person teams.   Most of the 
projects involve some aspect of digital audio 
processing, which has been found to be an 
especially motivating topic for many of our 
students.  Project reports are required to be in a 
prescribed, semi-formal, “memorandum-style” 
format, with all data, program listings, and 
detailed data analyses included in appendices.  
The course meets for two hours of  “pre-lab 

lectures” and one 3-hour lab session per week.  
In addition, the lab is open on a walk-in basis 
throughout the week.   Each student is expected 
to spend approximately six hours per week in the 
laboratory, outside of the scheduled class/lab 
times.   
 
C67 DSP Projects Course Content 
Each of the required C67-based experiments 
currently performed in the DSP Projects course 
(seven on the C67 EVM in real-time using C, 
and two using Hyperception’s RIDE 4.2 “block 
diagram” DSP tool) will be briefly described.   
 
Please note that the descriptions below are only 
very terse summaries of the lab handouts given 
to the students.  Interested instructors are 
welcome to download the weekly C67 project 
assignments, as well as associated sample 
programs referred to in these project assignment 
handouts, from the following URL: 
 
        http://rose-hulman.edu/~hoover/. 
 
(1) Code Composer Familiarization, Audio 

Sampling, Reverberation, Comb Filter, 
Flanger 
The student is guided through the use of 
Code Composer Studio to perform editing, 
compilation, linking, downloading, 
debugging (single-stepping, setting 
breakpoints, setting up watch variables, 
etc.), and execution of a simple C-language 
program which contains printf( ) and  
scanf( ) functions that perform simple data 
processing operations.  Next, a basic, 
interrupt-driven, sampling program is 
introduced.  This basic program and its 
companion interrupt routine will serve as a 
“template” for many of the following DSP 
lab projects.  The student is then asked to 
modify this basic sampling template to turn 
it into an audio reverberation program, and 
then later into a comb filter.  Finally, for 
extra credit, the comb filter delay may be 
made continuously variable, to implement 
an audio flanger. 
 

(2) Floating Point and Fixed Point FIR filter 
implementation 
A MATLAB M-file (which calls the “FIR1” 
MATLAB FIR digital filter design function) 
is used to design and plot the frequency 
response of 15th order bandstop, bandpass, 
and highpass filters.  Then a real-time, C 
digital filtering program is written that uses 



 

 

floating point filter coefficients to 
implement the various FIR filters on the C67 
board.  The resulting real-time filter is tested 
using a function generator and an 
oscilloscope, with the observed results 
plotted over the frequency response curve 
predicted by MATLAB.  Next, the program 
is rewritten so that it uses only integer math 
(prescaling the floating point filter 
coefficients by multiplying them by a large 
power of 2 and then truncating them to 
integer form).   
 

(3) IIR Filter Implementation and Digital 
Wah-Wah Effect 
Use Momentum Software’s QEDesign 
Digital Filter Design program to design an 
IIR bandpass filter to meet given 
specifications.   Graphically interpret the 
resulting pole-zero plot (using ruler 
measurements) to verify the predicted 
magnitude response.  Next, write a C 
program that implements the IIR filter in 
“Direct Form II”, cascaded 2nd-order 
biquadratic sections.  Experimentally record 
observed, real-time filter performance using 
an oscilloscope and a function generator, 
and plot the experimental measurements 
over the predicted magnitude response.  
Finally, implement a series of 10 second-
order bandpass digital filters whose 
passbands span the audio spectrum.  Write a 
program that periodically (every 50 ms) 
switches filter coefficients, resulting in a 
filter of continuously varying passbands.  
Listen to the effect when a low frequency 
(100-Hz) square wave (spectrally rich) is 
played through the system.  Note the classic 
“Wah-wah” effect. 

 
(4) Audio AGC With Silence Threshold 

(Digital Audio Amplitude Compression) 
Write a real-time C-language program for 
the C67 that stores a 30 ms audio “frame” in 
a circular buffer.  This program must also 
calculate the average of the absolute values 
of the audio samples in the frame.  Finally, 
the program must scale each value in the 
frame by this average magnitude to adjust 
the average magnitude of the frame to a 
constant, pre-specified value. Then the 
resulting adjusted audio frame should be 
sent out to the loudspeaker, while the next 
30 ms frame is being recorded.  Silent 
frames are detected by comparing the 
average frame magnitude against an 

experimentally determined “silence 
threshold” value.  If the frame’s average 
magnitude is below this threshold, the frame 
is zeroed rather than scaled.  The program 
must be written efficiently enough that no 
(or very few) audio samples are missed 
between frames.  The resulting speech heard 
in the loudspeaker should sound natural and 
continuous and be of constant average 
amplitude, even when the speaker moves 
several feet away from the microphone. 
 

(5) Audio VU Meter, with Separate Target 
and Host C Programs Communicating 
Through PCI Interface.   
Modify the AGC program from preceding 
assignment to pass the average frame 
magnitude (a new one every 30 ms) to a 
simple companion Microsoft Visual C++ 
“terminal application” program.  Use the 
C67 EVM board’s PCI interface hardware, 
where the average frame magnitude will be 
displayed with ASCII graphics.  Use the 
“dma_” function call in the C program that 
runs on the C67 EVM board, and use the 
“evm6x_read” Windows API function in the 
companion C++ program that runs on the 
PC.  First study the example C67 C program 
and the companion example C++  PC 
program.   These illustrate the proper 
method for DMA transfer through the C67 
EVM’s PCI interface. 
 

(6) Radix-4 FFT Spectrum Analyzer 
Study the 64-point radix-4 FFT algorithm 
explained in the handout.  Draw the simpler 
16-point radix-4 FFT butterfly pattern and 
indicate the value of each node in the 
butterfly for the specific test pattern given.   
Compare the final results with those from 
MATLAB. (The results should agree.)  Next 
run the C67 radix-4 FFT program that has 
already been coded using the same test data.  
Note that it is already set up to calculate the 
same 16-point FFT.  Verify the proper 
results.  Now modify this FFT program for 
64 points and test it with two test cases 
(verified against MATLAB).  Now integrate 
this 64-point FFT routine into your 
interrupt-driven, sampling program 
template.  In the main program, a global 
index variable (incremented in the interrupt 
routine) is used to keep track of when 64 
points have been stored.  Then the FFT is 
called, and the frequency corresponding to 
the position of the peak magnitude value is 



 

 

printed.   Proper operation can be verified 
using a sine-wave function generator whose 
frequency is slowly varied between 0 Hz 
and half of the sampling rate. 
 

(7) Real-Time, Narrow Band Noise 
Reduction via Adaptive Filtering 
Implement an LMS adaptive filter, and then 
pass an audio signal (consisting of speech 
corrupted by a strong, additive, periodic 
interference signal) through a delay line.  
The delayed speech + noise signal is 
delivered to the reference input, while the 
non-delayed version of the speech + noise is 
delivered to the signal input of the LMS 
adaptive filter.  The error signal becomes the 
de-noised output.  First implement this filter 
using MATLAB and imported WAV files.  
Then demonstrate significant noise 
reduction by playing back the processed 
WAV file.  Experiment with the adaption 
coefficient value and the necessary 
“decorrelation delay time”.   Finally, convert 
your MATLAB program to a real time C67 
program. 

 
(8) Use of Hyperception Ride 4.2 to Perform 

Digital Filtering and Audio 
Scrambling/Descrambling 
Study and run the various block diagram 
DSP examples.  Also study the instructions 
for using Hyperception’s companion 
“Hypersignal Digital Filter Design 
Program”.  Now construct your own block 
diagram system that uses the concept of 
mixing and filtering to invert an audio 
spectrum.  Cascade two of these spectral 
inversion systems to realize a simple audio 
scrambler and unscrambler. Demonstrate by 
first playing the scrambled audio from the 
first spectral inverter and then playing the 
unscrambled audio from the second spectral 
inverter. 

 
(9) DSP Scavenger Hunt 

Use Hyperception RIDE 4.2 digital filter 
blocks and/or your adaptive filter program to 
remove noise from a series of noise-polluted 
digital audio (WAV file) clips which 
indicate the location of various $5.00 bills 
hidden around campus.  Since the nature of 
the noise varies from one clip to another, 
you will have to apply different filters to 
each clip.  You may want to observe the 
spectrum of various frames within the clip 

before deciding how it should be filtered. 
 

(10)  Term Project  (to be chosen by students 
who are taking the class for 4 credit hours) 
Example projects: Real-time audio spectrum 
analyzer, ultrasonic chirp sonar, touch-tone 
DTMF telephone monitor, guitar tuner, 
underwater ultrasonic receiver/transmitter, 
voice-operated security lock. 

 
Pros and Cons of Upgrading an Academic 
DSP Lab Course from C30 to C67 
Our experiences in migrating our DSP projects 
course from the C30 DSP board to the TI C67 
EVM DSP board have been largely rewarding, 
but not completely without frustration.  Making 
the transition has been much more challenging 
than we first imagined.  Many of the real-time 
DSP operations that took too long on the old 
boards are not as “time-critical” on the new 
boards.  Because we kept our DSP lab course at 
the C-language level, most of the lab projects we 
were doing with the C30 carried over without 
significant changes to the C67.  However, the 
details of how analog I/O is performed have 
significantly changed and are significantly more 
involved than they were on the C30 boards.  
Fortunately, many of these I/O details are 
“buried” in the initial, interrupt-driven, sampling 
template program that was given to the students 
in the first lab assignment.  A complete 
understanding of the details of this template 
requires that the students study the 76-page 
CODEC user manual and also the various C67 
EVM API function calls that are described in the 
EVM user manual.   
 
We are still struggling with frequent instabilities 
in our Windows installation of Code Composer.  
In our particular installation, Code Composer 
frequently “freezes”, and the only solution that 
we have found is to exit Code Composer, run the 
DOS EVM67 board reset program, and then re-
enter Code Composer.  Having worked with the 
C67 EVM for 6 months, I still feel that my 
students and I still have a lot more to learn about 
the use of the high-level DSP/BIOS function of 
the C67 EVM.   
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