{9 TeEXAS
INSTRUMENTS

TMS320C5x
DSP Starter Kit

User’s Guide

1996 Microprocessor Development Systems

‘? TEXAS
INSTRUMENTS

Printed in U.S.A., June 1996 SPRU101A
2617684-9761 revision A

1996

\\\\\ ...ﬂc 129X TMS320C5x DSP Starter Kit

TMS320C5x
DSP Starter Kit
User’s Guide

b TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TlI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
represent that any license, either express orimplied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright O 1996, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This book describes the DSP (digital signal processor) Starter Kit (DSK) and
how to use the DSK with these tools:

(1 The DSK assembler
(1 The DSK debugger

How to Use This Manual

The goal of this book is to help you learn to use the DSK assembler and debugger.
This book is divided into three parts:

[0 Part I: Hands-On Information is presented first so that you can start using
your DSK the same day you receive it.

B Chapter 1 describes the features and provides an overview of the
TMS320C5x DSP Starter Kit.

B Chapter 2 contains installation instructions for your assembler and
debugger. It lists the hardware and software tools you’ll need to use
the DSK and tells you how to set up its environment.

B Chapter 3 lists the key features of the assembler and debugger and tells
you the steps you need to take to assemble and debug your program.

(O Partll: Assembler Description contains detailed information about using
the assembler.

B Chapter 4 explains how to create DSK assembler source files and invoke
the assembler.

B Chapter5discusses the valid directives and gives you an alphabetical
reference to these directives.

(4 Partlll: Debugger Description contains detailed information about using
the debugger. Chapter 6 explains how to invoke the DSK debugger and
use its pulldown menus, dialog boxes, and debugger commands.

Notational Conventions

Notational Conventions
This document uses the following conventions.

(O Program listings, program examples, interactive displays, filenames, and
symbol names are shown in a special typeface similar to a typewriter’s.
Examples use a bold version of the special typeface for emphasis; inter-
active displays use a bold version of the special typeface to distinguish
commands that you enter from items that the system displays (such as
prompts, command output, error messages, etc.).

Here is a sample program listing:

00001 — 0a00 .ps 0a00h
00002 — —_— .entry

>>>>> ENTRY POINT SET TO 0a0O0

00003 0a00 8b88 mar *,ARO
00004 0al1 8ba? loop mar *+, ARl

Here is an example of a system prompt and a command that you might
enter:

C:> dska testfile.asm

[Insyntaxdescriptions, the instruction, command, or directive is in a bold face
font and parameters are in an italics. Portions of a syntax that are in bold
should be entered as shown; portions of a syntax that are in italics describe
the type of information that should be entered. Syntax that is entered on a
command is centered in a bounded box. Syntax that is used in a text file is
left-justified in an unbounded box. Here is an example of a directive syntax:

.include ”filename”

.include is the directive. This directive has one parameter, indicated by file-
name. When you use .include, the parameter must be an actual filename,
enclosed in double quotes.

[Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

LACC 16-bit constant [, shiff]

U

Note that .word does not

Notational Conventions

The LACC instruction has two parameters. The first parameter, 16-bit con-
stant, is required. The second parameter, shift, is optional. If you use the
optional second parameter, you must precede it with a comma.

Braces({and})indicate alist. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

* 1 *+ 1 * }

This provides three choices: *, *+, or *-.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

In assembler syntax statements, column 1 is usually reserved for the first
character of an optional label or symbol. If a label or symbol is a required
parameter, the symbol or label will be shown starting against the left margin
of the shaded box as in the example below. No instruction, command, direc-
tive, or parameter, other than a symbol or label, should begin in column one.

symbol .set symbol value

In the above example, the symbol is required for the .set directive and
must begin in column 1.

Some directives can have a varying number of parameters. For example, the
.word directive can have several parameters. The syntax for this directive is:

begin in column 1. _7 .word Oabcdh,56

This syntax shows that .word must have at least one value parameter, but
you have the option of supplying a label or additional value parameters,
separated by commas.

Information About Cautions and Warnings

This book may contain warnings.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

Read This First v

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

vi

The following books describe the TMS320C5x and related support tools. To
obtain a copy of any of these documents, call the Texas Instruments Literature
Response Center at (800) 477—-8924. When ordering, please identify the book
by its title and literature number.

TMS320C5x User’s Guide (literature number SPRU056) describes the 'C5x
16-bit, fixed-point, general-purpose digital signal processors. Covered
are its architecture, internal register structure, instruction set, pipeline,
specifications, DMA, I/O ports, and on-chip peripherals.

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-
erature number SPRUO018) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the 'C1x, 'C2x, 'C2xx, and 'C5x gen-
erations of devices.

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (literature
number SPRU024) describes the 'C2x/C2xx/C5x C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the 'C2x, 'C2xx, and 'C5x genera-
tions of devices.

TMS320C5x C Source Debugger User’s Guide (literature number
SPRU055) tells you how to invoke the 'C5x emulator, EVM, and simulator
versions of the C source debugger interface. This book discusses vari-
ous aspects of the debugger interface, including window management,
command entry, code execution, data management, and breakpoints. It
also includes a tutorial that introduces basic debugger functionality.

TMS320 DSP Designer’s Notebook: Volume 1 (SPRT125). Presents solu-
tions to common design problems using 'C2x, ’C3x, 'C4x, ’C5x, and other
TI DSPs.

If You Need Assistance . ..

If You Need Assistance

If youwantto...

Contact Texas Instruments at . . .

Visit Tl online

World Wide Web:

http://www.ti.com

Receive general information
or assistance

World Wide Web:
North America, South America:

Europe, Middle East, Africa
Dutch:

English:

French:

Italian:

German:

Japan (Japanese or English)
Domestic toll-free:
International:

Korea (Korean or English):
Taiwan (Chinese or English):

http://www.ti.com/sc/docs/pic/home.htm
(214) 644-5580

33—-1-3070-1166
33-1-3070-1165
33—-1-3070-1164
33—-1-3070-1167
33—-1-3070-1168

0120-81-0026
81-3-3457-0972 or
81-3-3457-0976

82—2-551-2804
886—2-3771450

Ask questions about Digital
Signal Processor (DSP)
product operation or report
suspected problems

Fax:

Fax Europe:

Email:

World Wide Web:

Bulletin Board Service (BBS)
North America:

(713) 274-2320

(713) 274-2324
+33-1-3070-1032
4389750@mcimail.com
http://www.ti.com/dsps
(713) 274—2323 8-N-1
+44-2-3422-3248

BBS Europe: ftp.ti.com:/mirrors/tms320bbs
320 BBS Online: (192.94.94.53)
Request tool updates Software: (214) 638—0333
Software fax: (214) 6387742
Hardware: (713) 274-2285
(800)

Order Texas Instruments
documentation (see Note 1)

Literature Response Center:

800) 477-8924

Make suggestions about or
report errors in documenta-
tion (see Note 2)

Email:
Mail:

comments@books.sc.ti.com

Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443

Houston, Texas 77251-1443

Notes:

1) The literature number for the book is required; see the lower-right corner on the back cover.

2) Please mention the full title of the book, the literature number from the lower-right corner of the back cover, and the
publication date from the spine or front cover.

Read This First Vi

FCC Warning

FCC Warning

Trademarks

viii

This equipment is intended for use in a laboratory test environment only. It gener-
ates, uses, and can radiate radio frequency energy and has not been tested for
compliance with the limits of computing devices pursuant to subpart J of part 15
of FCC rules, which are designed to provide reasonable protection against radio
frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case the user at his own
expense will be required to take whatever measures may be required to correct
this interference.

IBM, PC, and PC-DOS are registered trademarks of International Business
Machines Corp.

MS-DOS is a registered trademark of Microsoft Corp.

AT is a trademark of International Business Machines Corp.

Contents

Part I: Hands-On Information

B I | 314 o Yo 10T 1 o o 1-1

Describes the key features and provides a functional overview of the TMS320C5x
DSP Starter Kit (DSK)

1.1 Key Features ... o 1-2
1.2 DSK OVEIVIBW ..ottt 1-3
1.8 MmOy . 1-4
2 Installing the DSK Assembler and Debuggercciiiiiiiiiiiiiiiiiiinnnnn, 21
Provides installation information for the DSK on a PC system running under DOS
2.1 What YOU' Il NEed e e e e 2-2
Hardware checklist 2-2
Software checklist 2-3
DSK module connections e 2-4
2.2 Step 1: Connecting the DSKto Your PC s 2-5
2.3 Step 2: Installing the DSK Software i 2-6
2.4 Step 3: Modifying Your config.sys File 2-7
2.5 Step 4: Modifying the PATH Statement i 2-8
2.6 Step 5: Verifying the Installation 2-9
Installation errors o 2-10
3 Overview of a Code Development and Debugging Systemcccceeiinnnnt. 3-1
Covers the assembler, debugger, and code development for the DSK
3.1 Description of the DSK Assembler i 3-2
Key features of the assembler i 3-2
3.2 Description of the DSK Debugger ... e 3-3
Key features of the debugger i 3-3
3.3 Developing Code forthe DSK 3-4
3.4 Getting Started 3-5

Contents

Part Il: Assembler Description

4 Usingthe DSKAssembIer ...t it iiaaiiaareannnnnns 4-1
Describes the DSK assembler, constants, symbols, expressions, and how to assemble
your program
4.1 Creating DSK Assembler Source Files i 4-2
Using valid labels e 4-3
Using the mnemonic field 4-4
Using the operand fieldo i e 4-5
Commenting your sourcefile i 4-6
4.2 CONSIANIS .o 4-7
Decimal Integers oo e 4-7
Hexadecimal integers 4-7
Binary INtegers 4-7
Character Constantst 4-7
4.3 SYMDOIS . . 4-8
LabEIS . ot e 4-8
CONS ANES ...t e 4-8
4.4 Using Symbols as EXPressionsouiuuiiin et 4-9
4.5 Assembling Your Programt 4-10
Generating an output file (-k option) 4-10
Creating a temporary object file (-l option) 4-10
Defining assembler statements from the command line (asm option) 4-11
5 Assembler Directivescociiiiiiiii it i i i 5-1
Describes how to use the DSK assembler directives
5.1 Using the DSK Assembler DireCtivescoiiiiiiiii i 5-2
5.2 Directives That Define Sections ... 5-4
5.3 Directives That Reference Other Files i i, 5-6
5.4 Directives that Enable Conditional Assembly i, 5-7
5.5 Directives That Initialize Memory 5-8
5.6 Miscellaneous DireCtives 5-10
5.7 Directives Reference 5-11

Contents

Part Ill: Debugger Description

6 Usingthe DSK DebUgQercuuiiiii ittt iaasiansrannnnannrrannnnnnns 6-1
Describes how to invoke and use the DSK debugger

6.1 Invoking the Debugger 6-2

Displaying a list of available options (? or Hoption) 6-2

Selecting the baud (boption) o 6-2

Identifying the serial port (com# orc#option) 6-3

Defining an entry point (e option) 6-3

Selecting a data terminal ready (DTR) logic level (i option) 6-3

Selecting the screen size (land soptions) ..., 6-3

Setting the configuration mode for memory (moption) 6-4

6.2 Using Pulldown Menus in the Debugger i, 6-5

Escaping from the pulldown menus and submenust 6-5

Using the Display submenu 6-5

Using the Fill submenu e 6-7

Using the Load submenu o e 6-7

Usingthe Help submenu i e 6-8

Using the eXec submenu i 6-9

Using the Quit submenu e 6-9

Using the Modify submenu e 6-9

Using the Break submenu i e 6-10

Using the Init submenu 6-10

Using the Watch submenu o 6-10

Using the Reset submenu i 6-10

Using the Save submenu i e 6-11

Using the Copy submenu 6-11

Using the Op-Sys SUDMENU e e 6-11

6.3 Using Dialog BOXESttt e 6-13

Closing adialog boX e 6-15

6.4 Using Software Breakpoints 6-16

Setting a software breakpoint 6-16

Clearing a software breakpoint 6-17

Finding the software breakpoints thatareset 6-17

6.5 Quick-Reference Guide i 6-18

A DSP Starter Kit (DSK) Circuit Board Dimensions and Schematic Diagrams A-1

Contains the schematics for the DSK

€] o =TT T 0T B-1
Defines acronyms and key terms used in this book

Contents Xi

Figures

1-1
1-2
1-3
21
2-2
2-3

3—1
3-2
5-1
6-1

6-3
A1

Xii

'Chx DSK BIOCK Diagramot e e 1-3
Memory Map of the 'C5x DSK o o 1-4
DSK 10 RS-232 CONNECHIONS . ..ottt e 1-6
The DSK Module Connections foran RS-232 Cable 2-4
Connecting Your RS-232 Cable Into Your DSKBoard ..., 2-5
DOS Command Setup for the DSK Environment (Sample autoexec.bat File) 2-8
The Basic Debugger Display e 2-9
The Basic Debugger Display e 3-3
DSK Software Development FIow 3-4
The .space DireCtiveo e 5-9
The Main Menu Bar e 6-5
The Monitor Information Screen 6-8
Setting a Software Breakpoint 6-16
TMS320C5x DSK Circuit Board DImensions ...t A-2

41
4-2

5-2
6-1
62
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14

Tables

INdireCt AdAreSSINgGottt e e e e e 4-5
Summary of Assembler Optionso 4-10
Assembler Directives SUMMAryt i 5-2
Memory-Mapped Registers 5-25
Summary of Debugger Options 6-2
SCreen Size OPHONSt 6-3
Submenu Selections for Displaying Information, 6-6
Submenu Selections for Filling Memoryc.c i 6-7
Submenu Selections for Loading Information into Memory 6-7
Submenu Selections for Executing Code 6-9
Submenu Selections for Modifying Code ... 6-9
Submenu Selections for Handling Breakpoints o i, 6-10
Submenu Selections for Watching Data 6-10
Submenu Selections for Saving Code 6-11
Submenu Selections for Copying Information 6-11
Debugger Function Key Definitions i 6-18
Debugger Floating-Point Formats 6-18
Debugger Register Definitions 6-19

Contents Xiii

Examples

31
3-2
41
51

Xiv

Source File try1.asm ... 3-5
Assembler Created List File try1.Isto 3-7
Analyzing Expressions With the DSK by Using Continuous Strings 4-9
Sections DireCtiVES oo 5-5

Chapter 1

Introduction

This chapter provides an overview of the TMS320C5x DSP Starter Kit (DSK).
The ’C5x DSK is a low-cost, simple, stand-alone application board that lets you
experiment with and use 'C5x DSPs for real-time signal processing. The DSK
has a 'C50 onboard to allow full-speed verification of the 'C5x code. The DSK
also gives you the freedom to create your own software to run on the DSK board,
allows you to build new boards, or to expand the system in many ways. The
supplied debugger is windows-oriented, which simplifies code development
and debugging capabilities.

Topic Page
1.1 KeyFeaturesot iaiin i iannnnennns 1-2
1.2 DSKOVEIVIEWcciiiitiiitiiaannrraannsreananranannnsnnnns 1-3

P 11T 1 1 o) 1-4

1-1

Key Features

1.1

1-2

Key Features

This section describes the key features of the TMS320C5x DSK:

a

J
-
4

L

[

Industry standard 'C50 fixed-point DSP
50 ns instruction cycle time
32K-byte PROM (programmable read-only memory)

Voice quality analog data acquisition via the TLC32040 AIC (analog interface
circuit)

Standard RCA connectors for analog input and output that provide direct
connection to microphone and speaker

XDS510 emulator connector

I/O expansion bus for external design

DSK Overview

1.2 DSK Overview

Figure 1—1 depicts the basic block diagram of the 'C50. It shows the interconnec-
tions, which include the host interface, analog interface, and emulation interface.
PC communications are via the RS-232 port on the DSK board. The 32K bytes
of PROM contain the kernel program for boot loading.

All pins of the 'C50 are connected to the external I/O interfaces. The external
I/O interfaces include four 24-pin headers, a 4-pin header, and a 14-pin
XDS510 header.

The TLC32040 AIC interfaces to the 'C50 serial port. Two RCA connectors
provide analog input and output on the board.

Figure 1—1. 'C5x DSK Block Diagram

Expansion <
connector |«
< TNS320C50
Control . _ Analog [Analog out
co-01s SB[Jnerace
port [— .
32K x 8 B —| AO0-A15 —<— Analog in
PROM) JTAG
bootcode < emulation port

A

XDS510 port
14-pin header

Introduction 1-3

Memory

1.3 Memory

The 'C5x DSK is one of the simplest 'C5x DSP application boards. Even
though no external memory is available on the board, the 10K on-chip RAM
of the 'C50 provides enough memory for most DSP application programs. The
kernel program is contained in the 32K, 8-bit PROM. The PROM is only for
DSK boot loading and cannot be accessed after boot loading, as this portion
of the on-chip memory is reserved for the kernel program. Figure 1—2 shows
the memory map of the 'C5x DSK.

Figure 1-2. Memory Map of the 'C5x DSK

Program Data
0000h
Memory map
Bootloader registers
(on-chip)
ROM 0060h
Reserved
by kernel
0800h 0080h B2
Interrupt
vectorsT Reserved
0840h 0100h
Bo¥
Debugger 0300h
kernel B
rogram
Preg 0500h
0980h Reserved
0800h
) Reserved
User’s
o e
0980h
2C00h
User’s
External space
space
2C00h
FEOOh External
B0+ space
FFFFh FFFFh

T INT2 of TRAP is reserved by the DSK.

$ B0 may be configured as either program or data memory, depending on the value of the CN bit
in status register ST1.

1-4

Memory

The on-chip, dual-access, random-access-memory (DARAM) B2 is reserved as
a buffer for the status registers. The single-access, random-access-memory
(SARAM) is configured as program and data memory. The kernel program is
stored in this area from 0x840h—0x980h. If the kernel program performs an
overwrite, a reset signal is required to let the DSK reload the kernel program.
Since the kernel program is stored in the SARAM, this on-chip memory cannot
be configured as data memory only (RAM = 0). The interrupt vectors are allo-
cated, starting from 0x800h. The IPTR in the PMST register should not be modi-
fied (refer to subsection 3.6.3, Status and Control Registers of the TMS320C5x
User’s Guide).

The TLC32040 AIC on the board provides a single-channel, input/output,
voice-quality analog interface with the following features:

[J Single-chip digital-to-analog (D/A) and analog-to-digital (A/D) conversion
with 14 bits of dynamic range

[d Variable D/A and A/D sampling rate and filtering

The AIC interfaces directly to the 'C50 serial port. The master input clock to
the AIC is provided by a 10-MHz timer output from the 'C50.

The AIC is hard-wireﬁor 16-bit word mode operation. The reset pin of the AIC
is connected to the BR pin of the 'C50.

DSK analog capabilities are suited to many applications, including audio data
processing. You can directly connect most preamplified microphones and
speakers to the DSK analog input and output. For more information
concerning the AIC, refer to the AIC data sheet, literature number SLAS014E.

The DSK provides six headers, including the XDS510, to help you to design your
own external hardware. The majority of the 'C50 and other integrated circuit (IC)
signals to the board are connected to these headers. The XDS510 header allows
the DSK to become a portable XDS510 target system.

The 'C5x DSK has its own windows-oriented debugger that makes it easy to
develop and debug software code. The DSK communicates with the PC using
the XF and BIO pins through the RS-232 serial port. Figure 1-3 shows the
module connections between the RS-232 serial port of the PC and the DSK.

Introduction 1-5

Memory

Figure 1-3. DSK to RS-232 Connections

T T Reono e 1
RS-232 line ,
buffers C50 DSP|
TX (XMIT) BIO
PC/AT
host TR (RCV) XF

serial port | gND

%A\/
7

|

| |

| |

I |

~ /| |

asynchronous| DTR (RS) | |
| |

I |

| |

| |

The DSK has its own assembler. Refer to Chapters 4, 5, and 6 for a description
of the assembler and the debugger and their uses.

1-6

Chapter 2

Installing the DSK
Assembler and Debugger

This chapter describes how to install the DSP Starter Kit (DSK) on an IBM PC ™

system running under PC-DOS™ or MS-DOS ™.

Topic Page
zh) WAERYGEIHI NEEE) cooooaoooanoooooo0aoananco0c00000a0000000000ac 2-2
2.2 Step 1: Connecting the DSKto YourPCc.aa... 2-5
2.3 Step 2: Installing the DSK Softwarecccciiiiiiiinn.n. 2-6
2.4 Step 3: Modifying Your config.sysFile 2-7
2.5 Step 4: Modifying the PATH Statement 2-8
2.6 Step 5: Verifying the Installationcccoiiiiiiina. 29

2-1

What You’'ll Need

2.1 What You’'ll Need

The following checklists detail items that are shipped with the DSK assembler
and debugger and any additional items you’ll need to use these tools. The DSK
module connections for an RS-232 cable are also discussed in this section.

Hardware checklist

[]

HINN

NN

host An IBM PC, AT™, or 100% compatible PC with a hard disk system
and a 1.2M-byte floppy-disk drive

memory Minimum of 640K bytes

display Monochrome or color (color recommended)

power requirements A 9 V,. @ 250 mA (or greater) power supply with a 2.1-mm power
jack connector, which is common to most wall-mounted AC trans-
formers. A low-current UL transformer is recommended, because it
is designed to hold up during brief power surges.

Notes:

1) You may want to use the DSK’s on-board power supply and regulators for
external circuits. If so, you must not overload the circuit. External loads
cause the regulators to operate at a higher temperature. Loads > 50 mA
are not recommended.

2) Ifyou are using an external power supply, be sure you connect it correctly;
the DSK is not warrantied after you have made modifications to it.

To minimize risk of electric shock and fire hazard, the power supply
adapter should be rated class 2 or safety extra-low voltage. The
adapter and personal computer providing energy to this product
should be certified by one or more of the following: UL, CSA, VDE, TUV.

board DSK circuit board
port Asynchronous RS-232 serial communications link
cable RS-232 with a DB9 interface

[]

optional hardware

miscellaneous
materials

Software checklist

]
]

[]

operating system

files

miscellaneous files

What You’'ll Need

An EGA- or VGA-compatible graphics display card and a large monitor.
The debugger has two options that allow you to change the overall size
of the debugger display. To use a larger screen size, you must invoke
the debugger with the - option. For more information about debugger
options, refer to page 6-2.

Blank, formatted disks

MS-DOS or PC-DOS (version 4.01 or later)
dskba.exe is an executable file for the DSK assembiler.

dskb5d.exeis an executable file needed for running the DSK debugger
interface.

Other files are included in your DSK package, such as sample source
files and additional documentation. You can find a brief description of
these files in the Readme file included on your disk. Be sure to check
the Readme file for the latest information on software changes and
DSK operation.

Note:

Other applications for the DSK can also be downloaded from the TMS320
BBS or Internet file transfer protocol (FTP) site. See the If You Need Assis-
tance subsection on page vii, for the Internet address.

Installing the DSK 2-3

What You’'ll Need

DSK module connections

You need an RS-232 cable to connect your PC to your DSK board. The DSK
is designed with a DB9 RS-232 connection mounted on the board. Figure 2—1
shows the DSK module connections.

Figure 2—1. The DSK Module Connections for an RS-232 Cable

Female B";'e
bB25 2 Female Male
e |13 e °|1 DB9
25 S . 14| ¢ © DB9
o ¢ : : 5 o |1
s e : of ¢ 6l oo
* s o IS S
[] ° ° o o 9 o o
o e o 6 °
:) ° 5 o |1 5
° : : :
o o 25
14 e |1 ® 113
Pin Assignments
Signal Name DB25 DB9
Protective ground 1
Transmit data 2 3t
Receive data 3 ot
Request to send 4
Clear to send 5
Data set ready 6
Signal ground 7 51
Carrier detect 8 1
Data terminal ready 20 4t
Ring indicator 22 9

t These signals are used by the DSK.

Step 1: Connecting the DSK to Your PC

2.2 Step 1: Connecting the DSK to Your PC
Follow these steps to connect your DSK board to your PC:
1) Turn off your PC’s power.
2) Connectyour RS-232 cable to either communication port 1 or 2 on your PC.
3) Connect your RS-232 cable to a 25-t0-9 pin adapter, if necessary.

4) Plug the RS-232 cable (or adapter) into the DSK board. Refer to
Figure 2-2 for details.

Figure 2-2. Connecting Your RS-232 Cable Into Your DSK Board

System clock Plug your RS-232 cable into this socket (DB female)

\

Analog interface
circuit \ @ @
_ e

\ - -
S E
= = o |[]
Analog in D]
=/
([
Analog out D “nnn
= = =0 |]
v - i -
Power supply @ @
connector

!
PROM store kernel program

For schematics and more detail on the DSK board, refer to Appendix A.

5) Connect the 9-V,. transformer onto the DSK board. Refer to Figure 2—-2
for details.

6) Plug the transformer into a wall socket.

7) Turn your PC’s power on.

Note:

The following are suitable RS-232 connections:

(1 DB9 male connected to DB25 female
1 DB9 male connected to DB9 female

Installing the DSK 2-5

Step 2: Installing the DSK Software

2.3 Step 2: Installing the DSK Software

2-6

This section explains the process of installing the debugger software on a hard
disk system.

1) Make a backup copy of the product disk. (If necessary, refer to the DOS
manual that came with your computer.)

2) Onyour hard disk or system disk, create a directory named dsktools. This
directory is for the DSK assembler and debugger software. To create this

directory, enter:
md c:\dsktools

3) Insert your product disk into drive A. Copy the contents of the disk:
copy a:*.* c:dsktools*.* /v

Step 3: Modifying Your config.sys File

2.4 Step 3: Modifying Your config.sys File

When using the debugger, you can have only 20 files open or active at one
time. To tell the system not to allow more than 20 active files, you must add the
following line to your config.sys file:

FILES=20

Once you edit your config.sys file and add the line, invoke the file by turning
off the PC’s power and turning it on again.

Installing the DSK 2-7

Step 4: Modifying the PATH Statement

2.5 Step 4: Modifying the PATH Statement

To ensure that your debugger works correctly, you must modify the PATH
statement to identify the dsktools directory. Not only must you do this before
you invoke the debugger for the first time, you must do it any time you power
up or reboot your PC.

You can accomplish this by entering individual DOS commands, but it's
simpler to put the commands in your system’s autoexec.bat file. The general
format for doing this is:

PATH=C:\dsktools;pathname2;pathname3;. . .

This allows you to invoke the debugger without specifying the name of the
directory that contains the debugger executable file.

If you are modifying your autoexec.bat file and it already contains a PATH
statement, simply include ;C:\dsktools at the end of the statement as shown
in Figure 2-3.

Figure 2-3. DOS Command Setup for the DSK Environment (Sample autoexec.bat File)

2-8

DATE
TIME

ECHO OFF

PATH statement ———> PATH=c:\dos;c:\dsktools
CLS

If you modify the autoexec.bat file, be sure to invoke it before invoking the
debugger for the first time. To invoke this file, enter:

autoexec

Step 5: Verifying the Installation

2.6 Step 5: Verifying the Installation

To ensure that you have correctly installed your DSK board, assembler, and
debugger, enter one of the following commands at the system prompt:

(4 If you are using serial communication port 1 (com1), enter:
dsk5d cl

[J If you are using serial communication port 2 (com2), enter:
dsk5d c2

[If you are using serial communication port 3 (com3), enter:
dsk5d c3

[If you are using serial communication port 4 (com4), enter:
dsk5d c4

Use c1, c2, c3, or ¢4 to identify the serial port that the debugger uses for com-
municating with your PC. The default setting is c1.

After entering the dsk5d command, you should see a display similar to this one:

Figure 2—4. The Basic Debugger Display

/// Display Fill Load Help eXec Quit Modify Break Init Watch Reset Save Copy Pc

— TMS320C50 Reverse Assembler —|rTMS320C50 Watches| [—TMS320C50 Registe
ADDR CODE WORD MNMC OPERANDS FIELD [0] hex (1010h) ACC :00000000 C:0
edffh = 01667770 ACCB :00000000 OV:0

0a00 bedl SETC INIM PRG :00000000 PM:0
0a0l bcic LDP #28 TRGO :0000TRG1:0000
0a02 bf80 0000 LACC #0000h,0 TRG2 :0000 DP: 0000
0a04 c000 MPY #0000h ST0:0600 ST1: 0lfc
0a05 bf09 0e00 LAR ARI1, #0e00h PC: 0a00 ARO: 0000
0a07 8b89 MAR *,AR1 St0: 0000 AR1l: 000a
0a08 bb06 RPT #6 Stl: 0000 AR2: 0000
0a09 a2a0 0e00 MAC 0e00h, *+ St2: 0000 AR3: 0000
0a0b be04 APAC St3: 0000 AR4: 0000
alac 90a0 SACL *+,0 St4: 0000 AR5: 0000
0a0d 1100 LACC 0000h,1 St5: 0000 AR6: 0000
O0ale 90a0 SACL *+,0 St6: 0000 AR7: 0000
0a0f 1101 LACC 0001h,1 DRR: 0000 DXR: 0000
0al0 90a0 SACL *+,0 TIM: 2932 PRD: ffff
IMR: 0002 IFR: 000b

PMST:0834 INDX:0000

DBMR: 0000 BMAR:0000
——TMS320C50 Display Data Memory: ’Hexadecimal’ format CWSR:0000 GRG: £ff00
SPCR:0800 TCR: 0000

1007: 0800 ffff ffff fffd fffe 0001 1200. . .

100e: 2000 0000 edff 7ffe ffbf ffff 0240 . .= .Q@. .
1015: 0000 0000 0010 fdff 7fff ffff fef7. .p
10lc: 1101 0000 2841 0000 ff7d ffff ffff.() A.}. . . .

1000: 0000 ffef feef bfdf 0100 0008 0000. ﬂﬂ? o o oo
= ()

\\INPUT comvanp | /

Installing the DSK 2-9

Step 5: Verifying the Installation

Installation errors

2-10

If you see a display similar to this one, you have correctly installed your DSK
board, assembler, and debugger. If you don’t see a display, your software or
cables may not be installed properly. Go through the installation instructions
again and make sure that you have followed each step correctly; then reenter
the command above.

If you still do not see a display, one or more of the following conditions may be
the cause:

(1 Your baud setting may be incorrect. Some Windows and OS/2 applications
and notebook computers have low-level software limitations that may affect
baud settings. Refer to page 6-2 for valid baud settings.

(1 Youmay have used an incorrect communication port (com1 versus com 2).
Refer to page 6-3 for more information on communication ports.

(1 Your communication port channel may be interrupted or noisy. If so, try
using a lower baud rate. Refer to page 6-2 for valid baud rates.

[A mouse driver or other software may be using the same communication port
you are attempting to use with the DSK. If so, try another communication port
for the DSK. Refer to page 6-3 for more information on communication ports.

[Your RS-232 cable and connectors may not be connected snugly.

[Your 9-V4 transformer may not be plugged in on both ends. When the
DSKis receiving power the LM7805 voltage regulator is warm to the touch.

Chapter 3

Overview of a Code
Development and Debugging System

The DSP Starter Kit (DSK) lets you experiment with and use a DSP for real-
time signal processing. The DSK gives you the freedom to create your own
software to run on the board as is or to build new boards and expand the
system in any number of ways.

The DSK assembler and debugger are software interfaces that help you to
develop, test, and refine DSK assembly language programs.

This chapter provides an overview of the assembler and debugger and
describes the overall code development process.

Topic Page
3.1 Description of the DSK Assemblerc.ccvviiiinnnt. 3-2
3.2 Description of the DSK Debuggerccciiiiiiiiinn... 3-3
3.3 Developing Code forthe DSKccviiiiiiiiiiiiinnnn. 34
&) () SIEER) cooooococananoooaaob000000000000000000000000000C 3-5

3-1

Description of the DSK Assembler

3.1 Description of the DSK Assembler

The DSK assembler is a simple and easy-to-use interface. Only the most signifi-
cant features of an assembler have been incorporated. Note that this is not a
COFF assembler; however, you can create object files by using the TI TMS320
fixed-point DSP assembly language tools that load and run on the DSK.

Key features of the assembler

[Quick. The DSK assembler differs from many other assemblers in that it
does not go through a linker phase to create an output file. Instead, the
DSK uses special directives to assemble code at an absolute address
during the assembly phase. As a result, you can create small programs
quickly and easily.

(O Easytouse. If you wantto create larger programs, you can do so by simply
chaining files together with the .include directive.

3-2

Description of the DSK Debugger

3.2 Description of the DSK Debugger

The debugger is easy to learn about and to use. Its friendly, window-oriented
interface reduces learning time and eliminates the need to memorize complex
commands. The debugger is capable of loading and executing code with
single-step, breakpoint, and run-time halt capabilities.

Figure 3—1 identifies several features of the debugger display. When you
invoke the debugger, you should see a display similar to this one (it may not
be exactly the same, but it should be close).

Figure 3—1. The Basic Debugger Display

menu bar

reverse
assembly
display

—

—

data memory—s

display

command
entry

—

/ Display Fill Load Help eXec Quit Modify Break Init Watch Reset Save Copy Pc \

— TMS320C50 Reverse Assembler —|rTMS320C50 Watches| [—TMS320C50 Registe register
ADDR CODE WORD MNMC OPERANDS FIELD [0] hex (1010h) ACC :00000000 C:0 d|sp|ay
edffh = 01667770 ACCB :00000000 OV:0
0200 bedl SETC INIM PRG :00000000 PM:0
0a01 bcic LDP #28 TRGO :0000TRG1:0000
0202 bf80 0000 LACC #0000h,0 TRG2 :0000 DP: 0000
0a04 c000 MPY #0000h ST0:0600 ST1: 01fc
0a05 bf09 0e00 LAR AR1, #0e00h PC:0a00 ARO: 0000
0a07 8b89 MAR %, AR1 St0: 0000 AR1: 000a
0a08 bb06 RPT #6 Stl: 0000 AR2: 0000
0209 a2a0 0e00 MAC 0e0Oh, *+ - - YvatCh
0a0b be04 APAC St3: 0000 AR4: 0000 display
alac 90a0 SACL *+,0 St4: 0000 AR5: 0000
0a0d 1100 LACC 0000h, 1 St5: 0000 AR6: 0000
0ale 90a0 SACL *+,0 St6: 0000 AR7: 0000
0a0f 1101 LACC 0001h,1 DRR: 0000 DXR: 0000
0al0 90a0 SACL *+,0 TIM: 2932 PRD: ffff
IMR: 0002 IFR: 000b
PMST:0834 INDX:0000
DBMR:0000 BMAR:0000
[—TMS320C50 Display Data Memory: ’Hexadecimal’ format — | CWSR:0000 GRG: £f00
SPCR:0800 TCR: 0000
1000: 0000 ffef feef bfdf 0100 0008 0000. nn™ ..
1007: 0800 ffff ffff fffd fffe 0001 1200. . .2a(). .
100e: 2000 0000 edff 7ffe ffbf ffff 0240 g .
1015: 0000 0000 0010 fdff 7Tfff ffff fef7l. .p
10lc: 1101 0000 2841 0000 f£f7d ffff ffff.() A.}. . .

INPUT coMMAND [

Key features of the debugger

a

U

Easy to use, window-oriented interface. The DSK debugger separates
code, data, and commands into manageable portions.

Powerful command set. Unlike many other debugging systems, this
debugger doesn’t force you to learn a large, intricate command set. The
DSK debugger supports a small but powerful command set.

Flexible command entry. There are two main ways to enter commands:
at the command line or by using the menu bar. Choose the method that
you like better.

Overview of a Code 3-3

Developing Code for the DSK

3.3 Developing Code for the DSK

Figure 3-2 illustrates the DSK code development flow.

Figure 3-2. DSK Software Development Flow

assembler

debugger

3-4

L] .
‘Assembler:
: source

. .

Assembler

SExecutabIef
e :> Debugger

DSK
target
system

The following list describes the tools shown in Figure 3—-2.

The assembler translates DSK assembly language source files into machine
language object files for the TMS320C5x family of processors. Only the most
essential features of an assembler have been incorporated. This is not a
COFF assembiler, although executable object files created by the TMS320
fixed-point DSP assembly language tools will also load and run on the DSK.

The goal of the development process is to produce a module that can be
executed in a DSK target system. You can use the debugger to refine and
correct your code.

Getting Started

3.4 Getting Started

This section provides a quick walkthrough so that you can get started without
reading the entire user’s guide. These examples show the most common
methods for invoking the assembler and debugger.

1) Create a short source file to use for the walkthrough; call it try1.asm.

Example 3—1. Source File try1.asm

Ak hkhkhkhkhkhhkhhhkhhkhhkhrhhdhhhhhkhhkhrhhhhkhhhkhhkhdhkhhhkhhhkhhkhhkhhdhkhhhkkhhkhdhkhkhdhhkrhkkhhkhrhkhkkhdhhrhkhkxkx*k
* Saw—toothed Wave Generator *
* Ramp rate is determined by interrupt rate and step size. Ramp is made by *
* numerical rollover. No AIC initialization, using the default value. *
Kk hkhkhkhkkhhkhkhkhhkhhhhhkhhr kb hkhhkhrh bk dhhhhhhkhhkdhkhkhkhkr bk hkhkhhkhk bk ok kb hkhkhkhkrhkhhkhkhkd ko hkrhkhhkhkhxkx
; Declare memory-mapped registers and
; program block address

.mmregs ; Include memory map reg

.ps 0080ch ;

B XINT ; Set transmit interrupt vector

.ps 00a00h ;

.entry ; Initial PC address

LDP #0 ; Load Data Page for DXR (Zero)

CALL SP_init ; Call serial port initialize function

LAMM IMR ;

OR #20h ; Unmask receive interrupt (XINT)

SAMM IMR ;

SPLK #0ffffh, IFR; Clear pending interrupt
LOOP: ADD #10 ; Increment ACCU by 10

SACL DXR, 3 ; Shift ACCU left 3 bits when storing

IDLE ; Wait for D/A interrupt

B LOOP ;
XINT: RETE ; Reenable interrupts
SP_init:

SPLK #01h, PRD ; Generate 10 MHz clock from TOUT to

SPLK #20h, TCR ; support AIC master clock

MAR *, ARO ;

LACC #0080h ; Set 00000080h => ACC

SACH DXR ; Clear DXR

SACL GREG ; Set GREG = 80h, >8000h memory = Global

LAR ARO, #0FFFFh ; ARO point to global memory

RPT #9999 ; Bring the BR low for 10000 cycles

LACC *,0,ARO ; (.5ms at 50ns)

SACH GREG ; Disable global memory

LACC #0008h ; Put serial port in reset and configure as

SACL SPC ; burst mode, FSX input, and data length 16 bits

LACC #80c8h ;

SACL SPC ; Bring the serial port out of reset

RET

Overview of a Code 3-5

Getting Started

3-6

Enter the following command to assemble try1.asm:
dsk5a tryl

This command invokes the TMS320C5x DSK assembler. If the input file
extension is .asm (for example, try1.asm), you don’t have to specify the
extension; the assembler uses .asm as the default. For more information
about invoking the assembler, refer to Section 4.5.

When you enter this command, the debugger creates an executable file
called try1.dsk.

To see a listing of errors and warnings that may have occurred during
assembly, assemble try1.asm with the —I option (lowercase L).

dsk5a tryl -1

This time, the assembler not only creates an executable file, it creates a

listing file called try1.Ist. The listing file is helpful because it contains a list
of all unresolved symbols and opcodes.

Getting Started

Example 3—2. Assembler Created List File try1.Ist

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010

00011
00012
>>>>>
00013
00014

00015
00016

00017
00018

00019
0020

00021
00022

00023
00024
00025

00026

00027
00028

00029
00030
00031

00032

00033
00034
00035

00036
00037

00038
00039
>>>>>
>>>>>

—_—— e kR AR A A A A A A A A A A A A A A A A Ak Ak Ak kA Ak Ak Ak Ak Ak kA kA Ak Ak kA hk kA kA Ak kA khk ok ok ok ok ok ok ok ok ok k%
-——— —-——-— *Saw-toothed Wave Generator *
--——— ———— * Ramp rate is determined by interrupt rate and step size. Ramp is made *
-—--— —-—-— * by numerial rollover. No AIC initialization, using the default value.*
—_—— PR R Ik kI I I 2 I I Ik I I 2k k2 I I Ik I S Ik Ik I I Ik Ik I Ik Ik Ik Ik Ik Ik Ik ko I I Ik Ik I I I
—--—— —--—— ; Declare memory-mapped registers and
—-—-——- ——-—-— ; program block address
-—-—— 0000 .mmregs ; Include memory map reg
-—-—— 080c .ps 0080ch ;
080c 7980 B XINT ; Set transmit interrupt vector
080d 0000
-——— 0a00 .ps 00a00h ;
-——— 0000 .entry ; Initial PC address
ENTRY POINT SET TO 0a00
0a00 bc00 LDP #0 ; Load Data Page for DXR (Zero)
0a0l 7a80 CALL SP_init ; Call serial port initialize function
0a02 0000
0a03 0804 LAMM IMR ;
0a04 DbfcO OR #20h ; Unmask receive interrupt (XINT)
0a05 0020
0a06 8804 SAMM IMR ;
0a07 ael6 SPLK #0ffffh, IFR; Clear pending interrupt
0a08 ffff
0a09 b80a LOOP: ADD #10 ; Increment ACCU by 10
0ala 9321 SACL DXR, 3 ; Shift ACCU left 3 bits when storing
0al0b be22 IDLE ; Wait for D/A interrupt
0a0c 7980 B LOOP ;
0a0d 0a09
O0ale be3a XINT: RETE ; Re—enable interrupts
-—-— -———— SP_init:
0a0f ae25 SPLK #01h, PRD ; Generate 10 MHz clock from TOUT to
0al0 0001
0all ae26 SPLK #20h, TCR ; support AIC master clock
0al2 0020
0al3 8b88 MAR *,AR0O ;
0al4 bf80 LACC #0080h ; Set 00000080h => ACC
0al5 0080
0alé6e 9821 SACH DXR ; Clear DXR
0al7 9005 SACL GREG ; Set GREG = 80h, >8000h memory = Global
0al8 Dbf08 LAR ARO, #O0FFFFh; ARO point to global memory
0al9 ffff
Oala bec4 RPT #9999 ; Bring the BR low for 10000 cycles
0alb 270f
Oalc 1088 LACC *,0,AR0O ; (.5ms at 50ns)
0ald 9805 SACH GREG ; Disable global memory
Oale Dbf80 LACC #0008h ; Put serial port in reset and configure as
0alf 0008
0a20 9022 SACL SPC ; burst mode, FSX input, and data length 16 bits
0a2l bf8o0 LACC #80c8h ;
0a22 80c8
0a23 9022 SACL SPC ; Bring the serial port out of reset
0az24 ef00 RET
FINISHED READING ALL FILES
ASSEMBLY COMPLETE: ERRORS:0 WARNINGS:O0

Overview of a Code 3-7

Getting Started

5)

3-8

Now you are ready to debug your program. Enter the following command
to invoke the debugger:

dsk5d
This command brings up the TMS320C5x DSK debugger on your screen.

Now you can load your try1.dsk sample program by using the LOAD com-
mand. For more information on using the debugger, refer to Chapter 6.

Chapter 4

Using the DSK Assembler

This chapter tells you how to use the DSK assembler and describes valid DSK
source files.

Topic Page
4.1 Creating DSK Assembler Source Files 4-2
42 Constantsoiiiiiiiiiii i 4-7
43 SYymbOISiiiiiiii i 4-8
4.4 Using Symbols as EXpressionsccovvriiinnnnnnnnnnns 4-9
4.5 Assembling YourProgramcoiiiiiiiiiiiiaaan, 4-10

4-1

Creating DSK Assembler Source Files

4.1 Creating DSK Assembler Source Files

4-2

To create a DSK assembler source file, you can use almost any ASCII program
editor. Be careful using word processors; these files contain various formatting
codes and special characters which word processors may alter.

DSK assembly language source programs consist of source statements that
can contain assembler directives, assembly language instructions, and com-
ments. Your source statement lines can be up to 80 characters per line.

The following example shows several lines of source statements:

.ps 0a00h ;initialize PC
sym .set 2 ; symbol sym=2
Begin: add #sym ;add sym (5) to accumulator
.word 016h ;initialize a word with 016h
sacl sym ;store accumulator-location sym(5)
LAB_1:
LAB 2: b LAB_ 1
LAB_3: b LAB_2 ;location of LAB_1 & LAB_2 are same
b LAB_3 ;LAB_3 is at next address

Your source statement can contain four ordered fields. The general syntax for
source statements is as follows:

[labell[:] mnemonic [operand lisf] [; comment]

Follow these guidelines:
[Allstatements must begin with alabel, a blank, an asterisk, or a semicolon.
(1 Labels are optional; if you use them, they must begin in column 1.

O Oneor more blanks must separate each field. Note that tab characters are
equivalent to blanks.

[Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

Using valid labels

Creating DSK Assembler Source Files

Labels are optional for all assembly language instructions and for most (but not
all) assembler directives. When you use them, a label must begin in column 1
of a source statement. A label can contain up to 16 alphanumeric characters
(A-Z,a-z,0-9, and _). Labels are case sensitive and the first character cannot
be a number. For example:

.ps 0a00h ; Your code can start here
.entry

Start: mar *,ARO
lar ARO, #0
lacl #03fh ; Turn on all interrupts
1dp #0 ; IMR located in page O
sacl 4 ;store mask to IMR

In the preceding example, the colon is optional. The DSK assembler does not
require a label terminator.

When you use a label, its value is the current value of the section program counter
(the label points to the statement with which it is associated). If, for example, you
use the .word directive to initialize several words, a label would point to the first
word. In the following example, the label Begins has the value 0a00h.

00001 ————= ———— *assume other code was assembled
00002 ———— ———-
00003 ———- 0a00 .ps 0a00h
00004 0a00 000a Begins: .word OAh, 3,7
0a01 0003
0a02 0007

When a label appears on a line by itself, it points to the instruction on the next
line:

00018 ———— £fb0O .ds 0fb00h
00019 ———= ———- Here:

00020 fb00O 000a .word O0Ah, 3,7
00021 ——— ———-—

When an opcode or directive references a label, the label is substituted with
the address of the label’s location in memory. The only exceptions are the .set
directive, which assigns a value to a label, and the LDP opcode, which loads
the nine most significant bits (MSB) of the address.

If youdon’tuse alabel, the first character position must contain a blank, a semi-
colon, or an asterisk.

Using the DSK Assembler 4-3

Creating DSK Assembler Source Files

Using the mnemonic field

4-4

The mnemonic field follows the label field. The mnemonic field must not start
in column 1 or it will be interpreted as a label. The mnemonic field can contain
one of the following opcodes:

[Machine-instruction mnemonic (such as ADD, MPY, POP)
[Assembler directive (such as .data, .set, .entry)

If you have a label in the first column, a space, colon, or tab must separate the
mnemonic field (opcode) from the label. For example:

.ps 0a00h ; Your code can start here
.entry

START: mar *,ARO
lar ARO, #0
lacl #03fh ; Turn on all interrupts
1dp #0

Refer to your TMS320C5x User’s Guide for syntax specifications on individual
opcodes.

Using the operand field

Creating DSK Assembler Source Files

The operand field is a list of operands that follow the mnemonic field. An
operand can be a constant (see Section 4.2) or a symbol (see Section 4.3).
You must separate operands with commas.

The assembler allows you to specify that a constant, symbol, or expression
should be used as an address, an immediate value, or an indirect value. The
following rules apply to the operands of instructions.

a

No prefix — the operand is a well-defined immediate value. The
assembler expects a well-defined immediate value, such as a register
symbol or a constant. This is an example of an instruction that uses oper-
ands without prefixes:

Label: ADD A3

The assembler adds the contents of address A3 to the contents of the
accumulator.

* prefix — the operand is a register indirect address. If you use the *
sign as a prefix, the assembler treats the operand as an indirect address;
that is, it uses the operand as an address. For example:

Label: ADD *+, AR3

The following symbols are used in indirect addressing, including bit-
reversed (BR) addressing. A * indicates that the contents of AR are used
as the data memory address plus the functions indicated.

Table 4—1. Indirect Addressing

Operand Additional Functions

Incremented after the access

Decremented after the access

*0+ The contents of INDX are added to AR after the access

*0- The contents of INDX are subtracted from AR after the access

*BRO+ The contents of ARO are added to AR with reverse carry (rc) propa-
gation after the access

*BRO- The contents of ARO are subtracted from AR with reverse carry

(rc) propagation after the access

For more information on indirect addressing and bit-reversed addressing,
refer to Memory Addressing Modes in the TMS320C5x User’s Guide.

Using the DSK Assembler 4-5

Creating DSK Assembler Source Files

Commenting your source file

A comment can begin in any column and extend to the end of the source line.
A comment can contain any ASCII character, including blanks. Comments are
printed in the assembly source listing, but they do not affect the assembly.

You can comment your source file in one of two ways. The most common way
is to place a semicolon anywhere on the line you want to comment. All text
placed after the semicolon is ignored by the DSK assembler. For example:

; Your code can start here
.ps 0a00h
.entry
START: mar *,ARO
lar ARO, #0
lacl #03fh ; Turn on all interrupts
1dp #0

Another way to comment your source file is to use an asterisk in the first column
of your code.

* Your code can start here
.ps 0a00h
.entry

START: mar *,ARO
lar ARO, #0

* Turn on all interrupts
lacl #03fh
1ldp #0

If the asterisk is not in the first column, the assembler assumes it is part of your
code and may generate an error.

A source statement that contains only a comment is valid.

4.2 Constants

Decimal integers

Constants

The assembler supports four types of constants:

(0 Decimal integer constants

(1 Hexadecimal integer constants
[J Binary integer constants

[Character constants

The assembler maintains each constant internally as a 32-bit quantity.
Constants are not sign extended. For example, the constant 0FFh is equal to
00FF (base 16) or 255 (base 10); it does not equal —1.

A decimal integer constant is a string of decimal digits, ranging from
—2 147 483 647 to 4 294 967 295. Examples of valid decimal constants are:

1000 Constant equal to 10001¢ or 3E81¢g

-32768 Constant equal to —32 7681q or 80001¢

25 Constant equal to 251 or 194¢
Hexadecimal integers

Binary integers

Character constants

A hexadecimal integer constant is a string of up to eight hexadecimal digits
followed by the suffix H (or h). Hexadecimal digits include the decimal values 0—9
and the letters A-F or a—f. A hexadecimal constant must begin with a decimal
value (0-9). These are examples of valid hexadecimal constants:

78h Constant equal to 1201 or 007844
OFh Constant equal to 154 or 000F g
37ACh Constant equal to 14 2521 or 37AC1g

A binary integer constant is a string of Os and 1s followed by the suffix B (or b).
Examples of valid binary constants include:

0101b Constant equal to 5
10101b Constant equal to 21
-0101b Constant equal to -5

A character constant is a single character enclosed in double quotes. The
characters are represented as 8-bit ASCII characters.

Using the DSK Assembler 4-7

Symbols

4.3 Symbols

Labels

Constants

4-8

Symbols are used as labels, constants, and substitution symbols. A symbol
name is a string of up to 16 alphanumeric characters (A-Z, a-z,0-9, $,—, and
+); symbols cannot contain embedded blanks. The first characterin a symbol
cannot be a number or special character. The symbols you define are case
sensitive; for example, the assembler recognizes ABC, Abc, and abc as three
unique symbols.

Symbols that are used as labels become symbolic addresses that are
associated with locations in the program. A label must be unique. Do not use
register names as labels.

................. the label Begins has the value of a0OO0Oh.

00001 —-——= ———— *assume other code was assembled
00002 ———= ———-—
00003 —--—-- 0a00 .ps 0a00h
00004 0a00 000a Begins: .word O0Ah, 3,7
0a01 0003
0a02 0007

Symbols can be set to constant values. By using constants, you can equate
meaningful names with constant values. The .set directive enables you to set
constants to symbolic names. Symbolic constants cannot be redefined. The
following example shows how these directives can be used:

; Example showing valid symbols, labels and references

.ps 0a00h ; Initialize PC
K .set 12 ; constant definition K = 12
K*2 .set 24 ; constant definition K*2 = 24
BIN .set 01010101b; BIN = 055h
max_buf .set K*2 ; constant definition max_buf = K*2
= 24
+A .set 10 ; constant definition << Incorrect
lacl #K ; loads 12
lacl #-K ; loads -12
lacl #K*2 ; loads 24
lacl max_buf ; loads 24
lacl !BIN ; loads O0AAh

Using Symbols as Expressions

4.4 Using Symbols as Expressions

Unlike other assemblers, the DSK assembler is not capable of analyzing numerical
or logical expressions. However, by removing all of the spaces within a field so that
the expression is a continuous string, you can set the entire string to a specific value
(see Example 4—1).

Example 4—1. Analyzing Expressions With the DSK by Using Continuous Strings

(a) Expression analysis with a COFF assembler

FEFT .set 256
LAR ARQ, #FFT
LACC #FFT -1 ;jexpression analysis

(b) Expression analysis with the DSK assembler

FET .set 256
FFT-1 .set 255 ;set string FFT-1 = 255
LAR ARO, #FFT
LACC #FFT-1 ;FFT-1 is a complete string

In Example 4—1 (b) , FFT—1 is a continuous string. The .set directive equates the
value 256 to the symbol FFT and 255 to the symbol FFT—1; these symbols can
now be used in place of their values. The two opcodes now contain the following:

LAR ARO, #256
LACC #255

Using the DSK Assembler 4-9

Assembling Your Program

4.5 Assembling Your Program

Before you attempt to debug your programs, you must first assemble them. Here’s
the command for invoking the assembler when preparing a program for debugging:

dsk5a [filename(s)] [—options]

dsk5a is the command that invokes the assembler.

filenames are one or more assembly language source files. Filenames are
not case sensitive.

—options affect the way the assembler processes input files.
Options and filenames can be specified in any order on the command line.

Table 4-2 lists the assembler options; the following subsections describe the
options.

Table 4-2. Summary of Assembler Options

Option Description

-k Generates an output file regardless of errors or warnings

- Generates a temporary file containing a list of any unresolved
opcodes or symbols

asm Allows you to define assembler statements from the command line

Generating an output file (—k option)

By default, the DSK deletes a file corrupted with errors. For debugging
purposes, the —k option tells the DSK assembler to generate an output file
despite any errors or warnings found.

Creating a temporary object file (—I option)

The DSK assembler generates an intermediate listing file containing all un-
resolved opcodes when you use the —I (lowercase L) option. For example, if
you want to assemble a file named test.asm and create a listing file, enter:

dsk5a test -1

The above example creates the file test.Ist from the file test.asm. Any
unresolved symbols are resolved after the DSK assembler has read the entire
assembly file.

4-10

Assembling Your Program

Defining assembler statements from the command line (asm option)

The asm option allows you to define assembler statements from the command
line. Since the DSK does not have a linker, using the asm option allows you
to specify constants and load addresses. The general format for the command
containing this option is:

dskba filename asm” statement” [asm” statement” ...]
For example:
dsk5a test.asm asm”FFT .set 256” asm” .entry 0aOOh”

This statement specifies a program entry point (or load address) of 0a00h and
generates the file test.inc, in the following format:

FFT .SET 256
.entry 0a00h

All asm statements are written to an include file named file.inc, overwriting the
previous file.

The asm statement is also useful for controlling parameter values such as .set,
or controlling conditional assembler execution by using such directives as the
.if/.else/.endif.

dsk5a test.asm asm”fft .set 256"

In this example, the asm statement is assigning a value of 256 to the symbol fft.

Using the DSK Assembler 4-11

4-12

Chapter 5

Assembler Directives

Assembler directives supply program data and control the assembly process.
They allow you to do the following:

[Assemble code and data into specified sections

(1 Reserve space in memory for uninitialized variables

4 Control the appearance of listings

1 Initialize memory

1 Assemble conditional blocks

(1 Define global variables

Topic Page
5.1 Using the DSK Assembler Directivescciiinnnt. 5-2
5.2 Directives That Define Sectionsccciiiiiiinonn.. 5-4
5.3 Directives That Reference Other Files 5-6
5.4 Conditional Assembly Directivesccciiiiiiiiiinnn.. 5-7
5.5 Directives That Initialize Memorycccoiiiiiiiiaa.. 5-8
5.6 Miscellaneous Directivescciiiiiiiiiiniinnnrnnnnnnes 5-10
5.7 DirectivesReferenceciiiiiiiiiiiiii i 5-11

5-1

Using the DSK Assembler Directives

5.1 Using the DSK Assembler Directives

Table 5—-1 summarizes the assembler directives. Note that all source
statements that contain a directive may have a label and a comment. To
improve readability, they are not shown as part of the directive syntax.

Table 5-1. Assembler Directives Summary

(a) Directives that define sections

Mnemonic and Syntax Description

.data Assemble into data memory

.ds [address] Assemble into data memory (initialize data address)
.entry [address] Initialize the starting address of the program counter

when loading a file

.ps [address] Assemble into program memory (initialize program
address)
text Assemble into program memory

(b) Directives that reference other files

Mnemonic and Syntax Description
.copy ["Ifilename[”] Include source statements from another file
.include [“Ifilename[”] Include source statements from another file

(c) Conditional assembly directives

Mnemonic and Syntax Description
.else Optional conditional assembly
.endif End conditional assembly

.if well-defined expression Begin conditional assembly

5-2

Using the DSK Assembler Directives

Table 5—-1. Assembler Directives Summary (Continued)

(a) Directives that initialize constants (data and memory)

Mnemonic and Syntax

Description

.bfloat valuey [,..., value,]

.byte valuey [,..., valuey]

.double valuey [,..., valuep]

.efloat value; [,..., value,]

float valuey [,..., value,]

.int valuey [,..., value,]
Jdong valuey [,..., value,]

Jdgxx valuey [,..., valuep]
.qxx valuey [,..., value,]
.space size in bits
.string “string;”[....,

“stringn’]

tfloat valuey [,..., valuey]

.word valuey [,..., valuey]

Initialize a 16-bit, 2s-complement exponent and a
32-bit, 2s-complement mantissa—an unpacked
floating-point number

Initialize one or more successive words in the current
section

Initialize a 64-bit, IEEE double-precision, floating-
point constant

Initialize a 16-bit, 2s-complement exponent and a
16-bit, 2s-complement mantissa—a less accurate
unpacked floating-point number

Initialize a 32-bit, IEEE single-precision, floating-
point constant

Initialize one or more 16-bit integers
Initialize one or more 32-bit integers

Initialize a 32-bit, signed 2s-complement integer whose
decimal point is displaced xx places from the LSB

Initialize a 16-bit, signed 2s-complement integer whose
decimal point is displaced xx places from the LSB

Reserve size bits in the current section; note that a
label points to the beginning of the reserved space

Initialize one or more text strings

Initialize a 32-bit, 2s-complement exponent and a
64-bit, 2s-complement mantissa; note that the ini-
tialized integers are in unpacked form

Initialize one or more 16-bit integers

(b) Miscellaneous directives

Mnemonic and Syntax

Description

.end
Jdistoff
Jdiston

.set

.mmregs

Program end
End source listing (overrides the —| assembler option)

Restart the source listing (overrides the —I assembler
option)

Equate a value with a local symbol
Enter memory-map registers into symbol table

Assembler Directives 5-3

Directives That Define Sections

5.2 Directives That Define Sections

5-4

Five directives associate the various portions of an assembly language
program with the appropriate sections:

a

4

a

The .data directive identifies portions of code to be placed in data memory.
Data memory usually contains initialized data.

The .ds directive functions like .data; however, with .ds you can specify
an optional address to initialize a new data address.

The .entry directive identifies the starting address of the program counter.
The current address is used by default, but you can specify an optional ad-
dress.

The .ps directive identifies portions of code to be placed in program
memory. With .ps you can specify an additional address to initialize a new
program address.

The .text directive identifies portions of code in the .text section. The .text
section usually contains executable code.

Example 5-1 shows how you can use sections directives to associate code and
data with the proper sections. This is an output listing; column 1 shows line num-
bers, and column 2 shows the section program counter (SPC) values. (Each
section has its own section program counter, or SPC. When code is first placed
in a section, its SPC equals 0. When you resume assembling into a section, its
SPC resumes counting as if there had been no intervening code.

After the code in Example 5—1 is assembled, the sections contain:

text Initialized bytes with the values 1, 2, 3, 4, 5, and 6

.data Initialized bytes with the values 9, 10, 11, and 12

Directives That Define Sections

Example 5—1. Sections Directives

OOOOl - - *hkhkh Kk hkhkhhkhkkhkkhkhkkhkkhkhkkhkkhkhhkhkhkdrhrhkrrrkhhk
00002 --—-- ---— * Initialize section addresses *
00003 —_———— khkhk Ak hkhkhhkhkhkkhkhkkhkhkhkhhhdhhhh ok rhkkkk
00004 ---- 0a00 .ps 0a00h
00005 —--—-- 0e00 .ds 0e00h
00006 —_———— R dh dh b b b b b b 2 2 b 2 2 b S S Sh Sh Sh Sh Sh Sh Sh ih Sb ab b b b 3
00007 -—-—-— —-——— * Start assembling into .text *
00008 _— - *hkhkhhhkhkhhhkhkkhkhkkhkkhkhkkhkkhkhkhhkhkhkddrdrrrhhrx
00009 —-——= ———-— .text
00010 0a00 0001 .byte 1,2

0a0l 0002
00011 0a02 0003 .byte 3,4

0a03 0004
00012 - - Ak hkhhhkhkhhhkhkhkkhkkhkkhkhkhkkhkkhkhhkkhkhkdArkrkrrrhhhx
00013 --—- ---—- * Start assembling into .data *
00014 —_———— Ak hkhkhkhkhkhhkkhkhkkhkhkkhkhkhkhhhhhhh ok rhhhkk
00015 —-——= ———-— .data
00016 0e00 0009 .byte 9,10

0e01 000a
00017 0e02 000b .byte 11,12

0e03 000c
00018 - - Ak hkhkhhkhkhhkhkhkkhkkhkkhkhkhhhkhkhhkhkhrrrhkhrhhhhk
00019 --—-- —-——— * Resume assembling into .text *
00020 _ - *hkhkhhkhkhkhkhkhkhkkhkhkkhkkhkhkhkkhkhhhkhkhkdrdrdrrrhhrx
00021 ———= ———— .text
00022 0a04 0005 .byte 5,6

0a05 0006
>>>>> FINISHED READING ALL FILES
>>>>> ASSEMBLY COMPLETE: ERRORS:0 WARNINGS: 0

Note:

You can use the .ps and .ds directives to assemble your code to the same
memory locations. This won’t cause an assembly error; however, it is possible
to overwrite previously defined memory blocks.

Assembler Directives 5-5

Directives That Reference Other Files

5.3 Directives That Reference Other Files

5-6

The .copy and .include directives tell the assembler to read source statements
from another file. This is the syntax for these directives:

[-copy ’filename”

4 .include “filename”

The .copy and .include directives tell the assembler to begin reading source
statements from another file. When the assembler finishes reading the source
statements in the copy/include file, it resumes reading source statements from
the current file. The statements read from the copied or included files are
printed in the listing file.

The filename names a copy/include file that the assembler reads statements
from. The filename can be a complete pathname, a partial pathname, or afile-
name with no path information. The assembler searches for the file in the
directory that contains the current source file. The current source file is the file
being assembled when the .copy or .include directive is encountered.

Directives that Enable Conditional Assembly

5.4 Directives that Enable Conditional Assembly

The .if/.else/.endif directives tell the assembler to conditionally assemble a
block of code according to the evaluation of an expression. Note that you
cannot nest .if statements.

1 The.if expressiondirective marks the beginning of a conditional block and
assembles code if the .if condition is true (not zero).

(1 The .else directive marks a block of code to be assembled if .if is false.

(1 The .endif directive marks the end of a conditional block and terminates
the block.

The expression parameter can be either a numeric value or a previously
defined symbol.

Assembler Directives 5-7

Directives That Initialize Memory

5.5 Directives That Initialize Memory

5-8

Each of these directives, with the exception of the .byte and .string directives,
aligns the object to a 16-bit word boundary.

a

4

The .byte directive places one or more 8-bit values into consecutive words
of the current section.

The .word directive places one or more 16-bit values into consecutive
words in the current section.

The .string directive places 8-bit characters from one or more character
strings into the current section.

The .long directive places one or more 32-bit values into consecutive
32-bit fields in the current section.

The .int directive places one or more 16-bit values into consecutive words
in the current section.

The .gxx directive places one or more 16-bit, signed 2s-complement values
into consecutive words in the current section. Note that the decimal point
is displaced xx places from the LSB.

The .lgxx directive places one or more 32-bit, signed 2s-complement values
into consecutive 32-bit fields in the current section. Note that the decimal
point is displaced xx places from the LSB.

The .float directive calculates 32-bit IEEE floating-point representations
of single precision floating-point value and stores it in two consecutive
words in the current section.

The .bfloat directive calculates a 16-bit, signed 2s-complement exponent
and a 32-bit, signed 2s-complement mantissa.

The .efloat directive calculates a 16-bit, signed 2s-complement exponent
and a 16-bit, signed 2s-complement mantissa.

The .tfloat directive calculates a 32-bit, signed 2s-complement exponent
and a 64-bit, sighed 2s-complement mantissa.

The .double directive calculates a 64-bit IEEE floating-point representation
of a double precision floating-point value and stores it in four consecutive
words in the current section.

Directives That Initialize Memory

[d The .space directive reserves a specified number of bits in the current
section. The assembler advances the SPC and skips the reserved words.

When you use a label with .space, it points to the first word of the reserved

block.

Figure 5—1 shows an example of the .space directives. Assume the following
code has been assembled for this example:

RES_1:

.ps
.word

.space

.word

0a00h
100h,
30h
15

200h
;Reserve 48 bits or 3 words

Res_1 points to the first byte in the space reserved by .space.

Figure 5—1. The .space Directive

3 words
reserved

{

«—— Res_1=0a02h

Assembler Directives

Miscellaneous Directives

5.6 Miscellaneous Directives

5-10

This section discusses miscellaneous directives.

a

[

The .end directive terminates assembly. It should be the last source statement
of a program. This directive has the same effect as an end-of-file character.

The .listoff directive overrides the —| option and prohibits source listing.
The .liston directive begins source listing.

The .mmregs directive defines symbolic names for the memory-mapped
register. Using .mmregs is the same as executing a .set for all memory-
mapped registers—for example, greg .set 4—and makes it unnecessary
to define these symbols. See Table 5-2, page 5-25, for a list of memory-
mapped registers.

The .set directive equates meaningful symbol names to constant values
or strings. The symbol is stored in the symbol table and cannot be
redefined; for example:

bval .set 0100h
.byte bval
B bval

Directives Reference

5.7 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are
organized alphabetically, one directive per page; however, related directives
(such as .if/.else/.endif) are presented on the same page. Here’s an alphabetical
table of contents for the directive reference:

Directive Page
bfloat . ..o 5-18
byt 5-12
OOy e e 5-13
data . .o 5-15
double . 5-18
S 5-15
efloat . . 5-18
IS 5-20
BN e 5-16
endif L 5-20
=T 01 5-17
float .o 5-18
T 5-20
dnclude ..o 5-13
0 5-33
distoff oo 5-21
diston .o 5-21
dONg 5-23
OXX 5-24
MBS . 5-24
S i 5-31
OXK e e 5-24
T PP 5-28
OPACE 5-29
SHNG 5-12
deXt o 5-31
Hloat .o 5-18
WOIA 5-33

Assembler Directives 5-11

.byte/.string Directives Reference

Syntax

Description

Example

.byte value; [, ..., valuey]
.string string; [, ..., stringn]

The .byte and .string directives place one or more 8-bit values into consecutive
bytes of the current section. A value or a string can be either:

[Anexpression that the assembler evaluates and treats as an 8-bit signed
number, or

[A character string enclosed in double quotes. Each character in a string
represents a separate value.

The .byte directive places one or more 8-bit values into consecutive words of
the current section.

Unlike the .byte directive, the .string directive places the 8-bit values into
memory in a packed form in the order they are encountered. If a word is not
filled, the remaining bits are filled with zeros.

This example shows several 8-bit values placed into consecutive bytes in
memory. The label strx has the value a00h, which is the location of the first in-
itialized byte. The label stry has the value a07h, which is the location of the first
byte initialized by the .string directive.

00001 —---- 0a00 .ps 0a00h
00002 0a00 000a strx: .byte 10,-1,2,0Ah, "abc”
0a0l1l 00ff
0a02 0002
0a03 000a
0a04 0061
0a05 0062
0al06 0063
00003 0a07 Oaff stry: .string 10,-1,2,0Ah, "abc”
0a08 020a
0a09 6162
0ala 6300
>>>>> FINISHED READING ALL FILES
>>>>> ASSEMBLY COMPLETE: ERRORS:0 WARNINGS: 0

In the above example, abc is converted into three ASCII characters.

Syntax

Description

Example

Directives Reference .copy/.include

.copy “filename”

.include ”filename”

The .copy and .include directives tell the assembler to read source statements
from a different file. The assembler:

1) Stops assembling statements in the current source file
2) Assembles the statements in the copied/included file

3) Resumes assembling statements in the main source file, starting with the
statement that follows the .copy or .include directive

filename is a required parameter that names a source file; the filename must be
enclosed in double quotes and must follow operating system conventions. You can
specify a full pathname (for example, c:\dsktools\file1.asm). If you do not specify
a full pathname, the assembler searches for the file in the current directory.

The statements that are assembled from an included file are printed in the
assembly listing, depending on the .liston/.listoff directives and —I option.

The .copy and .include directives can be nested within a file being copied or
included. The assembler limits this type of nesting to eight levels; the host
operating system may set additional restrictions.

This example shows how the .include directive is used to tell the assembler to read
and assemble source statements from other files, and then resume assembling
into the current file.

Source file: (source.asm)

;filename: source.asm
. space 10h ;filename: source.asm
.include "byte.asm” ;filename: source.asm
;filename: source.asm
.space 20h ;jfilename: source.asm

First copy file: (byte.asm)

;jfilename: byte.asm

.byte ra’”, 0ah, 32 ;jfilename: byte.asm
.include "word.asm” ;jfilename: byte.asm
.byte 11,12,13 ;jfilename: byte.asm

;jfilename: byte.asm

Second copy file: (word.asm)

;filename: word.asm
.word Oabcdh, 56 ;filename: word.asm
;filename: word.asm

Using the DSK Assembler 5-13

.copy/.include Directives Reference

5-14

Listing file:
00001 ———= 0e0O0 .ds 0e00h ;filename:
00002 ———— ———— ;filename:
00003 0e00 0010 .space 10h ;filename:
00004 ———— ———= .include "byte.asm” ;jfilename:

Ak hkhhkhhkrkkhkhkhhrhkkhkhhhkrhkhkhkhrrhkhkhhkrkhkkhkhkhkhkrxkkhkkhrx

* OPENING INCLUDE FILE Dbyte.asm

AR IR Ik b b b b b b b b b 2 2 S dE dE 2 2h SR Sh Sh Ih b b b b b b b b b 2 2 2 g 4

00001 ———— ———— ;filename:
00002 0e01 0061 .byte "a"”,0ah, 32 ;filename:
0e02 000a
0e03 0020
00003 ———— ———— .include "word.asm” ; filename
R I e e I e I I e b b b I b b I I b b b I b I b I b b I b b b b I b b b b b b3
* OPENING INCLUDE FILE word.asm

R R I I I R R I i I I I I S I I R I I S I b I I R I I b e

00001 ———— ———— ;filename:
00002 0e04 abcd .word Oabcdh, 56 ;filename:

0e05 0038

00003 ———= ———-— ; filename:

>>>>> FINISHED READING ALL FILES
Kk Kk k ok ok k ok ok k ok k& k ok ok ok ok ok ok k ok ok ok ok ok k ok ok k ko k k ok ok ok ok ok ok ok ok

* CLOSING FILE word.asm

Ak hkkhhkhhkhkhkhkhhrhkkhkhhhrhkhkhkhrrkhkhkhhkrkhkkhkhkhkhkrxkkhkkhxx

00004 0eO6 000b .byte 11,12,13 ; filename:
0e07 000c
0e08 000d

R I i I I I i I e I I i I I I b b b b b b I I b I I b b b b 2 b b b e

* CLOSING FILE byte.asm

Ak hkhkhhrhkhkhkhhrhkhkhhhkrhkhhkhrhkhkhkhdrrhkkhkhhkhkrxhkkkxxx

00005 ———— ———— ;filename:
00006 0e09 0020 .space 20h ;filename:

>>>>> FINISHED READING ALL FILES
>>>>> ASSEMBLY COMPLETE: ERRORS:0 WARNINGS: 0

Source.asm
source.asm
source.asm
sSource.asm

byte.asm
byte.asm

:byte.asm

word.asm
word.asm

word.asm

byte.asm

source.asm
source.asm

Syntax

Description

Example

.data

Directives Reference .data/.ds

.ds [address]

The .data and .ds directives tell the assembler to begin assembling source code
into data memory. The .data and .ds sections are normally used to contain tables
of data or preinitialized variables.

addressis an optional parameter that specifies a 16-bit address. Normally, the
section program counter is set to 0 the first time the .data or .ds section is
assembled; you can use this parameterto assign aninitial value to the SPC.

Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the .text
section unless you specify a section control directive.

This example shows the assembly of code into the .data and .text sections.

.ps
.entry
.include
.ds
.text

setup: mar
lar
lar
lar
lar

.data
val_1 .int

.text
loop: mar

mar

mar

b

.data
val_ 2 .float

0a00h ;set up load and run addresses

"VECT.ASM"”
0400h

*,ARO ;initialize the CPU registers
ARO, #0
AR1, #0
AR2, #0
AR3, #0

0,1,2,3,4,5,6,7 ;init. integer values

;continue with some code
*+,AR1
*+,AR2
*+,AR3
loop, *+, ARO

0,1,2,3,4,5,6,7 ;init. flt-pt values

Assembler Directives 5-15

.end Directives Reference

Syntax

Description

Example

5-16

.end

The .end directive is an optional directive that terminates assembly. It should
be the last source statement of a program. The assembler ignores any source
statements that follow an .end directive.

This example shows how the .end directive terminates assembly.

Source file:
.ps 0a00h
.entry
START NOP
NOP
NOP
B START
.end
LAB ADD #5
sub #1
B LAB
Listing file:
00001 ---- 0a00 .ps 0a00h
00002 —-——- 0000 .entry

>>>>> ENTRY POINT SET TO 0a00
00003 0a00 8b0O0O START NOP

00004 0a01 8b0O NOP

00005 0a02 8b00 NOP

00006 0a03 7980 B START
0a04 0a00

00007 ———— ———= .end

>>>>> LINE:7 .END ENCOUNTERED
>>>>> FINISHED READING ALL FILES
>>>>> ASSEMBLY COMPLETE: ERRORS:0 WARNINGS: 0

Syntax

Description

Example

Directives Reference .entry

.entry [value]

The .entry directive tells the assembler the address of the program counter
when afile is loaded. If you do not use the value parameter, the current program
memory address, determined by the .ps or .text section, becomes the starting
address. If you have more than one .entry directive in your file, then the last
.entry directive encountered becomes the starting address of your code.

Here is an example of the .entry directive.

.ps 0a00h
LOOP : MAR *+,AR1 ;An infinite loop
B LOOP, *+, ARO ;
.entry ;Start program
MAR *,ARO
LAR ARO, #0
LAR AR1, #0
B LOOP ;call the routine

Assembler Directives 517

float/.bfloat/.double/.efloat/.tfloat Directives Reference

Syntax

Description

.bfloat /
N\

Example

5-18

.efloat

float valuel,..., valuep)
.bfloat valuel|,..., valuep]
.double valuel,..., valuep]
.efloat valuel,..., value,]
tfloat valuel,..., value,]

The .float directive places the floating-point representation of a single floating-point
constant into two words in the current section. value must be a floating-point
constant. Each constant is converted to a floating-point value in 32-bit IEEE
floating-point format.

The IEEE floating-point format consists of three fields:

[A 1-bit sign field (s)
(O An 8-bit biased exponent (exponent)
[A 23-bit normalized mantissa (mantissa)

15 14 7__6 0

S exponent mantissa

15 0
mantissa

The .bfloat directive format is slightly different in that it has a 16-bit exponent
and both a high and low mantissa:

15 0
exponent

15 0
mantissa (high)

15 0
mantissa (low)

Here is an example of floating-point directives.

Source file:
.ds 0400h
.bfloat 1.5,3,6
.bfloat -1.5,3,6
.efloat 1.5,3,6
.end

Directives Reference .float/.bfloat/.double/.efloat/.tfloat

Listing file:

00001
00002

00003

00004

00005
>>>>>
>>>>>
>>>>>

—-——— 0400 .ds 0400h
0400 0000 .bfloat 1,5,3,6

0409 0000 .bfloat -1,5,3,6

0412 6000 .efloat 1,5,3,6

———————— .end
LINE:5 .END ENCOUNTERED
FINISHED READING ALL FILES
ASSEMBLY COMPLETE: ERRORS:0

WARNINGS: 0

Assembler Directives

5-19

.if/.elseif/.else/.endif Directives Reference

Syntax

Description

Example

5-20

.if well-defined expression
.else

.endif

Three directives provide conditional assembly:

a

4

The .if directive marks the beginning of a conditional block. The well-defined
expression is a required parameter.

W |If the expression evaluates to true (nonzero), the assembler
assembles the code that follows it (up to an .else or an .endif).

W If the expression evaluates to false (0), the assembler assembles
code that follows an .else (if present) or an .endif.

The .else directive identifies a block of code that the assembler assembles
when the .if expression is false (0). This directive is optional in the
conditional block; if an expression is false and there is no .else statement,
the assembler continues with the code that follows the .endif.

The .endif directive terminates a conditional block.

Nested .if/.else/.endif directives are not valid.

Here are some examples of conditional assembly:

yes .set 1
no .set 0
BO_Dat .set no
B1l_Dat .set yes
If_1: Lif BO_Dat
.ds 0100h
.endif
Jif B1l_Dat
.ds 0300h
If_2: .endif
I 1
Note:

In this instance, the asm option can be particularly useful in turning on the .if
conditional statement from the command line. For example, you could enter:

dskb5a test asm”B0_Dat .set 1”

Syntax

Description

Example

Directives Reference .liston/.listoff

Jiston

Jistoff

The .liston and .listoff directives can be useful in debugging. They override
the —| assembler option, which turns on the output listing. The source listing
is always written to a file with an extension of .Ist.

Here’s an example of a source file and its output listing file.

Source file:

R R R I e S I I R I I R I I i I I I b R S b I b I b I b b b b i

* .liston/off example
R IR IR b b b b b b b b b b b S 2 2 SR dh dh 2h Sh 2h Ih Sh b b b b b b b o
.ds 0400h
.listoff
DATA .word 1,2,3,4,5 ;Do not want this listed!
.liston ;Note this line isn’t listed
.ps 0a00h
lacl #PROG
lar ARO, #DATA
rpt #3 ;move 4 words from DS to PS
tbhlw *4
loop nop
b loop
.word 0,0,0,0

Using the DSK Assembler 5-21

Jiston/.listoff Directives Reference

Listing file:
OOOOl 77777777 R I b b b b b b b b b b b b b b b 2 2 2 2 2 4 2E b ah dh 2h Sh Sh Sb Sh Sh b b b b b b 3
00002 ———= ———- * .liston/off example
00003 ________ R R b b i b e I I I I I I I I b b b b b b b b b b b b b b b b I O O O
00004 —---- 0400 .ds 0400h
00005 ——=—= ———— .listoff
00008 ——-— 0a00 .ps 0a00h
00009 0a00 bf80 lacc #PROG
0a01 0a09
00010 0a02 bf08 lar ARO, #DATA
0a03 0400
00011 0a04 bb03 rpt #3
00012 0a05 a7a0 tbhlw * 4
00013 0a06 8b00O loop nop
00014 0a07 7980 b loop
0a08 0000
00015 0a09 0000 PROG .word 0,0,0,0
0ala 0000
0a0b 0000
0alc 0000

>>>>> FINISHED READING ALL FILES
>>>>> ASSEMBLY COMPLETE: ERRORS:0 WARNINGS: 0

5-22

Syntax

Description

Example

Directives Reference .long

dong values [, ..., valuen]

The .long directive places one or more 32-bit values into consecutive words
of the current section. value can be either:

[d Anexpression that the assembler evaluates and treats as a 32-bit signed
number, or

[d A character string enclosed in double quotes. Each character in a string
represents a separate value.

If you use a label, it points to the location at which the assembler places the
first byte.

This example shows several 32-bit values placed into consecutive bytes in
memory. The label strx has the value OFB0Oh, which is the location of the first
initialized byte.

00001 --—- £bo0O .ps 0fb00h ;
00002 £fb00 2710 strx: .long 10000, ”string”, A"
fb01 0000
fb02 0053
fb03 0000
fb04 0074
fb05 0000
fb06 0072
fb07 0000
fb08 0069
fb09 0000
fb0a 006a
fb0b 0000
fb0c 0067
fb0d 0000
fb0e 0041
fb0f 0000
>>>>> FINISHED READING ALL FILES
>>>>> ASSEMBLY COMPLETE: ERRORS:0 WARNINGS: 0

Assembler Directives 5-23

dqxx/.qxx Directives Reference

Syntax

Description

Example

5-24

Jdqxx valuey |, ..., valuen]

.qxx valuey [, ..., valuep]

The .gxx and .lgxx directives generate signed, 2s-complement fractional integers
and long integers whose decimal points are displaced xx places from the LSB.

Here’s an example of the .gxx directive.

00001 —--—- 0400 .ds 0x400
00002 0400 2000 .Q15 0.25
00003 0401 4000 .Q15 0.5
00004 0402 6000 .Q15 0.75
00005 0403 €000 .Q15 -0.25,-0.5,-0.75
0404 c000
0405 a000
00006 0406 0000 .L024 9,10
0407 0900
0408 0000
0409 0a00

>>>>> FINISHED READING ALL FILES
>>>>> ASSEMBLY COMPLETE: ERRORS:O0 WARNINGS: 0

Syntax

.mmregs

Directives Reference .mmregs

Description The .mmregs directive defines global symbolic names for the TMS320 regis-
ters and places them in the global symbol table. It is equivalent to executing
greg .set 5, imr .set 4, etc. The symbols are local and absolute. Using the
.mmregs directive makes it unnecessary to define these symbols. The
symbols are placed as shown in Table 5-2.

Table 5-2. Memory-Mapped Registers

Address
Name DEC HEX Description
0-3 0-3 Reserved
IMR 4 4 Interrupt mask register
GREG 5 5 Global memory allocation register
IFR 6 6 Interrupt flag register
PMST 7 7 Processor mode status register
RPTC 8 8 Repeat counter register
BRCR 9 9 Block repeat counter register
PASR 10 A Block repeat program address start register
PAER 11 B Block repeat program address end register
TREGO 12 C Temporary register used for multiplicand
TREG1 13 D Temporary register used for dynamic shift count
TREG2 14 E Temporary register used as bit pointer in
dynamic bit test
DBMR 15 F Dynamic bit manipulation register
ARO 16 10 Auxiliary register 0
AR1 17 11 Aucxiliary register 1
AR2 18 12 Auxiliary register 2
AR3 19 13 Aucxiliary register 3
AR4 20 14 Aucxiliary register 4
AR5 21 15 Aucxiliary register 5

Assembler Directives 5-25

.mmregs Directives Reference

Table 5-2. Memory-Mapped Registers (Continued)

Address

Name DEC HEX Description
ARG6 22 16 Auxiliary register 6
AR7 23 17 Auxiliary register 7
INDX 24 18 Index register
ARCR 25 19 Auxiliary register compare register
CBSR1 26 1A Circular buffer 1 start register
CBERT1 27 1B Circular buffer 1 end register
CBSR2 28 1C Circular buffer 2 start register
CBER2 29 1D Circular buffer 2 end register
CBCR 30 1E Circular buffer control register
BMAR 31 1F Block move address register
DRR 32 20 Data receive register
DXR 33 21 Data transmit register
SPC 34 22 Serial port control register

35 23 Reserved
TIM 36 24 Timer register
PRD 37 25 Period register
TCR 38 26 Timer control register

39 27 Reserved
PDWSR 40 28 Program S/W wait-state register
IOWSR 4 29 I/O S/W wait-state register
CWSR 42 2A S/W wait-state control register

43-47 2B-2F Reserved

TRCV 48 30 TDM data receive register
TDXR 49 31 TDM data transmit register
TSPC 50 32 TDM serial port control register

5-26

Table 5-2. Memory-Mapped Registers (Continued)

Directives Reference .mmregs

Address
Name DEC HEX Description
TCSR 51 33 TDM channel select register
TRTA 52 34 Receive/transmit address register
TRAD 53 35 Received address register
54-79 36-4F Reserved

Assembler Directives 5-27

.set/.equ Directives Reference

Syntax

Description

Example

Result

5-28

symbol .set value

The .set directive equates a constant value to a symbol. The symbol can then
be used in place of a value in assembly source. This allows you to equate
meaningful names with constants and other values.

[symbol must appear in the label field.

(O value mustbe awell-defined expression; that is, all symbols in the expression
must be previously defined in the current source module.

This example shows how symbols can be assigned with .set.

zZero .set 0

zero+1 .set 1 jzero +1 is a symbol
LACL zero ;jzero + 1 is replaced
ADD #zero+l ; symbol

LACL 0

ADD 1

Syntax

Description

Example

Directives Reference .Space

.space size in bits

The .space directive reserves size number of bits in the current section. The
SPC is incremented to point to the word following the reserved space.

When you use a label with the .space directive, it points to the first word reserved.
This example shows how the .space directive reserves memory.

Source file:

Ak hkhhhrkhkkhhkhkrrkhkkhkhhrkhkkhkhkhkhkrhkkhkhkhrkxkhkkh*xx

* Begin assembling into .text
R I R S I S e b I S I S I SR I b I b Sh I Sh b I b b b S I b b 4

.text

R R R R I R I I R I S I R I I I R b I b e I I I I I S b 4

* Reserve 15 words in .text
ER R b b I e b I b b b b I b b b b I b b I 2 I b I b b I b b b b

.space 0f0Oh
.word 100h, 200h

R IR IR IR b b b b b b b b b S 2 2 SR S S SR SR Sh 2h b b b b b b b b b 4

* Begin assembling into .data
R IR IR b b b b b b b b b b b S 2 2 S SR S Sh S dh Sh 2h Sh b b b b b b b b b 4
.data
.string ”.data”
RS R b b b b b b b S b b 2 2 S 2 dh 2h dh dh Sh Sh b Sb Sb b b b b b b b b 2 2 2 2 g 4
* Reserve 2 words in .data;
* Res_1 points to the first reserved word
RS IR b b b b b b b b b b 2 2 2 2 S 2h 2 dh dh Sh Sh Sh Sb Sb Sb b b b b b b b 2 2 2 2 g 4
.space 020h
.word 15

Assembler Directives 5-29

.Space Directives Reference

5-30

Listing file:

00008 0a00 00£0
000090a0f 0100
0al0 0200

00014 ---- 0000
000150e00 2e64
0e01 6174
0e02 6100

00023 0e03 0020
00024 0e05 000£
000250e06 0e03

>>>>> FINISHED
>>>>> ASSEMBLY

Ak hkhkkhkkhkhhhkhkhhhhkrhkhkhhkrhkhkhhhkrhhhkhkrhkhkkhkhhxkxkk*x*x

* Begin assembling into .text
R I I b I I S I b I b I S S S b I b I Ih b b S 2 Ib I Ib b b b b Sh S 4

.text

hhhkkhkkhkhhhkhAkhkhkhhrhkkhkhhrkhkhkhhhkrhkhkhkhkrxkkhkhkhhxkkk*rx

* Reserve 15 words in .text
khhkhkhkhkkhhkhkkhrkhhkhkkhhkkhkhkhkhhkdhhhkhkhrdhhhkkhkrkhhkhkhrkhkhdxkhx*k

. space 0f0h
.word 100h, 200h

ER R R I S b b I S S b I I S S S S S S b e S S b b I S Sb 2b b S S S b

* Begin assembling into .data
KA K AKR AR A KRR AR AR AR A AR AR AR AR A AR AR AR A KA AR AR kK

.data
.string ”.data”

hAhk Ak kA A hhk A hhAhhkrdhkhhkrhkddhkhkrhhhkhkrxkhkhhrkxkxkk*

* Reserve 2 words in .data
* Res_l points to the 1lst reserved word
R R e I S b b b I S S b e I S b S I S Sb b b e S Sh b b I S b db b S S S 4
Res_1 .space 020h
.word 15
.word Res_1

READING ALL FILES
COMPLETE: ERRORS:0 WARNINGS: 0

Syntax

Description

Directives Reference .text/.ps

text
.ps [address]

The .text and .ps directives tell the assembler to begin assembling into the
.text or .ps sections (program memory), which usually contain executable
code. The section program counter is set to a00h if nothing has yet been as-
sembled into the .text or .ps sections. If code has already been assembled into
the respective sections, the section program counter is restored to its previous
value in the section.

address is an optional parameter for the .ps directive that specifies a 16-bit
address. This address sets the initial value of the SPC. If no address is speci-
fied, a default value of a00h is used.

Note that the assembler assumes that .text is the default section. Therefore, at
the beginning of an assembly, the assembler assembles code into the .text sec-
tion unless you specify one of the other sections directives (.data, .ps, .ds, .entry).

Assembler Directives 5-31

text / .ps Directives Reference

Example This example shows code assembled into the .text and .data sections. The .data
section contains integer constants, and the .text section contains character
strings.

OOOOl ________ P e i I I e i e I e I i b b b I b I b i i
00002 —=——= ———— * Begin assembling into .data *
00003 ________ EE I e b I b I I I b I I e b e I I b b b b b b b e b b b b b g
00004 --—— fb0O .ds 0fb00h
00005 fb0O0O 0005 .byte 5,6

fb01 0006
00006 ________ khkhkkhkhhkkhhkkhkkhkhkkhhkhkkhkhkkhkhkhkhkhkkhkrhhkhkhrkhhxk*x
00007 ———= ———- * Begin assembling into .ps *
00008 ________ ER i b e I I I I I I i i b e I b b e b b b I b b b b g
00009 —--—— 7000 .ps 7000h
00010 7000 0001 .byte 1
00011 7001 0002 .byte 2,3

7002 0003
00012 ________ E i b i i I I e I i i b e i I b b e b b b i b b b b g
00013 ———— ———- * Begin assembling into .data *
00014 ________ E i b I e I I e I e i b e I b b b b b b b b e b b b b i g
00015 —-——— ———~ .data
00016 fb02 0007 .byte 7,8

fb03 0008
00017 ________ R R I b b I b I I I b b I b b b b I b b b b b b b e b I b b 3
00018 ————= ———— * Begin assembling into .ps *
00019 77777777 kA hkhkkhhkhkkhhkhkhkhkkhhkkhkkhkhkkhkhkhkhhkhkhkhhhkkhxkkh*xkx*x
00020 —-——— ———- .ps
00021 7003 0004 .byte 4

>>>>> FINISHED READING ALL FILES
>>>>> ASSEMBLY COMPLETE: ERRORS:0 WARNINGS: 0

5-32

Directives Reference .word / .int

Syntax .word valuey [, ..., valuen]
.int valuey |, ..., valuey]
Description The .int and .word directives place one or more 16-bit values into consecutive

words in the current section.

value must be absolute. You can use as many values as fit on a single line
(80 characters). If you use a label, it must point to the first initialized word.

Example 1 This example shows how to use the .word directive to initialize words. The
symbol WordX points to the first reserved word.
00001 —---- fe00 .ds 0fe00h
00002 fe0O0 0c80 WordX: .word 3200,0ffh, 3
fe0l O00ff
fe02 0003
00003 ————= ———-
00004 ———— ———-
Example 2 Here’s an example of the .int directive.
00005 —-—-- ££00 .ds 0ff00h
00006 ££f00 0000 LABI1 .int 0,-1,2,0ABCDh
f£f01 ffff
££02 0002
f£f03 abcd

>>>>> FINISHED READING ALL FILES
>>>>> ASSEMBLY COMPLETE: ERRORS:O0 WARNINGS:0

Assembler Directives 5-33

5-34

Chapter 6

Using the DSK Debugger

This chapter tells you how to invoke the DSK debugger and use its pulldown
menus.

Topic Page
6.1 Invoking the Debuggercoiiiiiiiiiiiiinnnnnnnnnns 6-2
6.2 Using Pulldown Menus in the Debugger 6-5
6.3 UsingDialogBoxesccoiiiiiiiiiriinnnnrinnnnrnnnnnnss 6-13
6.4 Using Software Breakpointsccoiiiiiiiiinns, 6-16
6.5 Quick ReferenceGuideoiiiiiiiiiiiii i 6-18

6-1

Invoking the Debugger

6.1

Invoking the Debugger

Here’s the basic format for the command that invokes the debugger:

dskb5d [options]

dsk5d is the command that invokes the debugger.
options supply the debugger with additional information.

Table 6—1 lists the debugger options; the following subsections describe the
options.

Table 6—1. Summary of Debugger Options

Option Description

?orH Displays a listing of the available options
brate Selects the valid baud rate

comi# or c# Selects serial communication port 1, 2, 3, or 4
eaddress Defines a program entry point

i Selects a logic level for DTR (data terminal ready) reset; note
that the default DTR is inverse

I Selects the EGA/VGA screen sizes
m [0,1] Sets the configuration of CNF bit (default = 0)
S Selects the default screen length of 25

Displaying a list of available options (? or H option)

You can display the contents of Table 6—1 on your screen by using the ? or
H option. For example, enter:

dsk5d ?

Selecting the baud (b option)

6-2

The valid baud settings are:

b4800
b9600
b19200
b38400
b57600

Uoooo

Invoking the Debugger

Identifying the serial port (com# or c# option)

The c1, ¢c2, ¢3, or c4 option identifies the serial port that the debugger uses for
communicating with your PC. The default setting, c1, is used when your serial
port is connected to serial communication port 1 (com1). Depending on your
serial port connection, replace serial port with one of these values:

4 If you are using com1, enter:
dsk5d cl

4 If you are using com2, enter:
dsk5d c2

[If you are using com3, enter:
dsk5d c3

[If you are using com4, enter:
dsk5d c4

Defining an entry point (e option)

Use option e to set the initial program entry address. The address you select
must be a four-digit hexadecimal value. For example:

dsk5d eaO0Oh

The above example sets the DSK debugger at an initial address of 0a00h.

Selecting a data terminal ready (DTR) logic level (i option)

Using option i tells the dsk5d to invert DTR as a reset signal. Usually, the
RS-232 DTR line is high and pulses low for a reset signal. However, if you use
the i option (inverse), the DTR line is low and pulses high for a reset signal.

Selecting the screen size (I and s options)

By default, the debugger uses an 80-character-by-25-line screen. You can use
one of the options in Table 6-2 to switch between screen sizes.

Table 6-2. Screen Size Options

Option Description
| 80 characters by 43 lines

s 80 characters by 25 lines (default)

Using the DSK Debugger 6-3

Invoking the Debugger

Setting the configuration mode for memory (m option)

Use the m option to configure memory sections in the same way the SETC/
CLRC instruction works. Refer to your TMS320C5x User’s Guide for more
information on the SETC instruction.

6-4

Using Pulldown Menus in the Debugger

6.2 Using Pulldown Menus in the Debugger

Figure 6—1 shows the main menu bar in the DSK debugger.

Figure 6—1. The Main Menu Bar

Display Fill Load Help eXec Quit Modify Break Init Watch Reset Save Copy PC]

Many of the debugger’s pulldown menus have additional submenus. A submenu
is indicated by a main menu selection enclosed in < > characters. For example,
here’s the Display submenu and Format, which is a submenu of Display:

display <display> Data Program Version Status Breakpoints Format Memory
submenu

format <format> Unsgnd Int Char Pckdstrng Long Double Q15 Oct heX B-E-T float
submenu

Because the DSK debugger supports over 50 commands, it's not practical to
discuss the commands associated with all of the submenu choices. Here’s a
tip to help you with the DSK commands: the highlighted letters show the key
to press for the corresponding debugger command. For example, the high-
lighted letters in Display - Format - Char show that you press @, (®, ,
in that order, to display the submenus.

Escaping from the pulldown menus and submenus

If you display a submenu and then decide that you don’'t want to make a selection

press to return to the main menu bar.

Using the Display submenu

Table 6-3 lists the submenu selections for Display submenu. The highlighted
letters show the keys that you can use to select choices.

Using the DSK Debugger 6-5

Using Pulldown Menus in the Debugger

Table 6-3. Submenu Selections for Displaying Information

To display this.. .. Select - Display
Data memory Data
Program memory Program
Current version of the debugger Version
Register status Status
List of set breakpoints Breakpoints
Format Format
Unsigned integer Unsgnd
Integer Int
Character Char
String pckdStrng
Long Long
Floating-point number Flt
Double Double
Signed Q15 Q15
Octal Oct
Hexadecimal heX
Big floating-point number B-E-T float
(exponent = 16; mantissa = 32/Q30)
Short floating-point number B-E-T float
(exponent = 16; mantissa = 16/Q14)
Long floating-point number B-E-T float
(exponent = 32; mantissa = 64/Q62)
Memory Memory
Set a new address Address
Big (exponent = 16;mantissa = 32/Q30) B-E-T float
Double Double
Short floating-point number B-E-T float
Long floating-point number B-E-T float
Floating-point number Float
Integer Int
Long Long
Octal Oct
Q15 Q15
Unsigned integer Unsgnd
Hexidecimal heX

Using Pulldown Menus in the Debugger

Using the Fill submenu

Table 6—4 lists the selections for filling memory. The highlighted letters show
the keys you can use to select choices.

Table 6—4. Submenu Selections for Filling Memory

To fill this . .. Select - Fill
Data memory Data
Program memory Program

Using the Load submenu

Table 6-5 lists the selections for the Load submenu. The highlighted letters
show the keys you can use to select choices.

Table 6-5. Submenu Selections for Loading Information into Memory

To load this . .. Select - Load

COFF file COFF

DSK file DSK

List of set breakpoints Breakpoints

Format Format
Unsigned integer Unsgnd
Integer Int
Character Char
String pckdStrng
Long Long
Floating-point number Flt
Double Double
Signed Q15 Q15
Octal Oct
Hexadecimal heX
Big floating-point number B-E-T float

(exponent = 16; mantissa = 32/Q30)

Short floating-point number B-E-T float
(exponent =16; mantissa = 16/Q14)

Long floating-point number B-E-T float
(exponent = 32; mantissa = 64/Q62)
Program counter Programcounter

Using the DSK Debugger 6-7

Using Pulldown Menus in the Debugger

Using the Help submenu

You can press F1 or H to bring up the Help Window Display shown in
Figure 6—2. Choose from the menu selections listed below to find additional
information.

Figure 6—2. The Monitor Information Screen

6-8

Help Window Display

Usage of the program: dskd [[-]\][options]
Options: Please note that options are not case significant

? or H : this display

Bxxxxx : xxxxx selects the baudrates! Work as today:
4800.9600.19200[default] .38400.57600

COMx : comport: x=1 [default] or x=2, 3 and 4, and

optional ’C1l,’ 'C2,’ "C3' or ’"C4’ can be used

Exxxx : defines with 4 following digits the entry point
format e|E[0z]xxxx[h]

I : selects logic level for DIR->Reset (default-—>
inverse)

L : selects the EGA/VGA scree length (43 or 50)

S : selects the default screen length (25)

Function Key definitions

F1l Help Information

PGUP PGDN HOME END newPage File Quit ESC 01/17

-

To move through the Help Window Display, you can use the following submenu
selections:

PGUP to move ahead a page

PGDN to move back a page

HOME to return to the first page of the help menu

END to go to the last page of the help menu

newPage to go to a specific page number in the help menu
File to print the file help.txt

Quit to exit the help menu and return to the debugger

ESC to exit the help menu and return to the debugger

UoouoUouooo

Using Pulldown Menus in the Debugger

Using the eXec submenu

Table 66 lists the selections for executing code. The highlighted letters show
the keys that you can use to select choices.

Table 6-6. Submenu Selections for Executing Code

To execute code from . .. Select - eXec

The beginning of your program Go

A particular address Address

One line of code to the next Singlestep/ret/blank
One line number to the next Num_steps

The beginning of a certain function Function

The beginning of your program with break Run

point disabled (free run)

Using the Quit submenu
To exit the debugger and return to the operating system, enter this command:

q @

If aprogramis running or a submenu is displayed, press before you quit
the debugger to halt program execution or return to the main menu.

Using the Modify submenu

Table 6—7 lists the selections for modifying your code. The highlighted letters
show the keys you can use to select choices.

Table 6—-7. Submenu Selections for Modifying Code

To modify . .. Select - Modify

A register Register
Your program Program
Data Data

An in or out port In/out ports

Using the DSK Debugger 6-9

Using Pulldown Menus in the Debugger

Using the Break submenu

Table 68 lists the selections for setting software breakpoints in your program.
The highlighted letters show the keys you can use to select choices.

Table 6-8. Submenu Selections for Handling Breakpoints

To perform the following . . . Select - Break
Set a breakpoint for a specific address ba
Set a breakpoint for an unknown address be
Clear a breakpoint bd
Find breakpoints bl

Refer to Section 6.4, Using Software Breakpoints for more information.

Using the Init submenu
Using the Init submenu initializes the CPU registers and entry point of your
program.

Using the Watch submenu

Table 6-9 lists the selections for watching your code during program execution.
The highlighted letters show the keys you can use to select choices.

Table 6-9. Submenu Selections for Watching Data

To change your watch settings . . . Select - Watch
Add a variable/value to watch Add
Delete a variable/value to watch Delete
Format the variables/values you are watching Format
Modify the variables/values you are watching Modify

Using the Reset submenu
To reset the DSK board, enter this command:

r

If a submenu is displayed, press to return to the main menu before you
reset the board.

6-10

Using Pulldown Menus in the Debugger

Using the Save submenu

Table 6—-10 lists the menu selections for saving code during a debugging
session. The highlighted letters show the keys you can use to select choices.

Table 6—10. Submenu Selections for Saving Code

To save... Select - Save

A register value Register
Data Data
Your program Program
A certain format Format

Using the Copy submenu

Table 6—11 lists the menu selections for copying information. The highlighted
letters show the keys you can use to select choices.

Table 6—11. Submenu Selections for Copying Information

To copy from...to... Select - Copy

Data to data Data to data

One program to another program Program to program
Data to your program dAta to program
Your program to data pRogram to data

Using the Op-sys submenu

The debugger provides a simple method for entering DOS commands without
explicitly exiting the debugger environment. To do this, use the Op-sys submenu.
Op-sys is not displayed in the main menu bar, but you may use it by entering this
command:

o

If a submenu is displayed, press to return to the main menu before
attempting to enter the operating system (op-sys).

The debugger opens a system shell and displays the DOS prompt. At this
point, enter any DOS command.

Using the DSK Debugger 6-11

Using Pulldown Menus in the Debugger

When you are finished entering commands and are ready to return to the
debugger environment, enter:

exit

Note:

Available memory may limit the Op-sys commands that you can enter from
a system shell. For example, you cannot invoke another version of the

debugger.

6-12

Using Dialog Boxes

6.3 Using Dialog Boxes

Some of the debugger commands have parameters. When you execute these
commands from pulldown submenus, you must have some way of providing
parameter information. The debugger allows you to do this by displaying a dialog
box that asks for this information.

Entering text in a dialog box is much like entering commands in the operating
system. For example, when you select Program from the Fill submenu, the
debugger displays a dialog box that asks you for parameter information. The
dialog box looks like this:

Fill Program Memory

Fill Program Memory

Start Address:

To enter a start address, simply type it in and press (@. The next parameter
appears in the dialog box:

Fill Program Memory

Fill Program Memory
Start Address: 0500h

Length:

Using the DSK Debugger 6-13

Using Dialog Boxes

You can omit entries for optional parameters by pressing &), but the debugger
won’t allow you to skip required parameters. When you have entered all
appropriate parameter values, Fill Program Memory finished appears at the
bottom of the dialog box.

In the case of the Modify menu when you select Data from its submenu, an
empty dialog box appears on the screen:

Modify Data Memory of 320c50

Startadd

Press (& for the debugger to display the first parameter:

Modify Data Memory of 320c50

Startadd 1000
Address: 1000 > efff new:

Enter the address you want to modify and press (@). The next parameter appears
in the dialog box.

Modify Data Memory of 320c50

Startadd 1000

Address: 1003 > ffff new g
Address: 0002 > 0003
Address: 1001 > 0002
Address: 1000 > 0001

6-14

Using Dialog Boxes

Closing a dialog box

When you’ve entered a value for the final parameter, there are three ways to
exit from the dialog box:

(1 Press

1 Press @
(g Press @ and

Performing the last of these options at the prompt causes the debugger to
close the dialog box and execute the command with the parameter values you
supplied.

Using the DSK Debugger 6-15

Using Software Breakpoints

6.4 Using Software Breakpoints

This section describes the processes for setting and clearing software break-
points and for obtaining a listing of all the breakpoints that are set.

During the debugging process, you may want to halt execution temporarily so
that you can examine the contents of selected variables, registers, and
memory locations before continuing with program execution. You can do this
by setting software breakpoints in assembly language code. A software break-
point halts any program execution, whether you’re running or single-stepping
through code.

Setting a software breakpoint

ba

When you set a software breakpoint, the debugger highlights the breakpointed
line in a bolder or brighter font. The highlighted statement appears in the reverse
assembly window.

After execution is halted by a breakpoint, you can continue program execution
by reissuing any of the run or single-step commands.

You can set a software breakpoint by entering either the ba or the be command.

If you know the address where you’d like to set a software breakpoint, you can
use ba. This command is useful because it doesn’t require you to search
through code to find the desired line. When you enter ba , the debugger asks
you to enter an absolute address. Once you have entered the address, you are
asked to choose the line number where you want the breakpoint set.
Figure 6-3 shows a breakpoint set at address ffd4 on line number 4. Note that
you cannot set more than one breakpoint at the same statement.

Figure 6-3. Setting a Software Breakpoint

6-16

be

Breakpoints
0 Add = 00000h Instr = 00000h Enabled
1 Add = 00000h Instr = 00000h Disabled
2 Add = 00000h Instr = 00000h Disabled
3 Add = 00000h Instr = 00000h Disabled
4 Add = 0ffd4h Instr = 00000h Enabled
5 Add = 00000h Instr = 00000h Disabled
6 Add = 00000h Instr = 00000h Disabled
7 Add = 00000h Instr = 00000h Disabled

If you don’t know a specific address, you can enter the be (breakpoint enable/
disable) command. The debugger displays a list of addresses as shown in
Figure 6-3, and asks you what line number you want to set a breakpoint on.

Using Software Breakpoints

Clearing a software breakpoint

bd If you'd like to clear a breakpoint, use the bd command. When you enter bd,
the Breakpoints box appears on the screen (see Figure 6-3). The debugger
then asks which line number contains the breakpoint you want to delete. When
you enter the line number, the breakpoint is disabled.

Finding the software breakpoints that are set

bl Sometimes you may need to know where software breakpoints are set. The
bl command provides an easy way to get a complete listing of all the software
breakpoints that are currently set in your program. The bl command displays
the Breakpoints box shown in Figure 6-3.

Using the DSK Debugger 6-17

Quick-Reference Guide

6.5 Quick-Reference Guide

Table 6-12, Table 6-13, and Table 6-14 provide a quick-reference guide to the
debugger function key definitions, floating-point formats, and register defini-
tions.

Table 6-12. Debugger Function Key Definitions

Function Key Description

Fi Displays help information

-
N

Prints the contents of the screen to a file named screen.srn

‘I'I
w

Displays the directory

Not used

Executes your program to the next breakpoint
Not used

Not used

=
00

Single-steps your program

a i m ny m
© ~| o al B

Not used

F10 Single-steps your program and steps past calls

or Displays the reverse assembly window

or Turns the trace on or off (this key acts as a toggle switch)

Table 6—-13. Debugger Floating-Point Formats

Floating-Point

Format Description

float 32-bit IEEE standardized floating-point format
.double 64-bit IEEE standardized double floating-point format
.bfloat 16-bit exponent + 32-bit mantissa

(exponent is 2s complement / mantissa = Q30)

float 32-bit exponent + 64-bit mantissa
(exponent is 2s complement / mantissa = Q62)

.efloat 16-bit exponent + 16-bit mantissa
(exponent is 2s complement / mantissa = Q14)

6-18

Table 6—-14. Debugger Register Definitions

Quick-Reference Guide

Register

Definition

Description

ACCU
ACCB

PREG
TRGO

TRGH1
TRG2
ARi

STO
STH
PMST
SPC
STCKi

DRR
DXR
TIM
PRD
IMR
GREG

ARP (ST0)
OV (STO)
OVM (STO)
INTM (STO)
DP (STO)
ARB (ST1)
CNF (ST1)
TC (STH)
SXM (STH1)
C (ST1)
HM (ST1)

Accumulator
Accumulator buffer

Product register
Temporary multiplicand

Temporary register 1
Temporary register 2
Auxiliary register

Status register 0

Status register 1

Status register

Serial port control register
Stack register

Data receive register at address 32
Data transmit register at address 33

Timer register at address 36
Period register at address 37

Interrupt mask register at address 4

Global register at address 5

Auxiliary register pointer
Overflow flag
Overflow mode

Interrupt mode (enable global interrupt)

Data page pointer

Auxiliary register pointer buffer
DARAM program/data configuration

Test/control flag
Sign-extension mode enable
Carry bit

Hold mode selection

32 bits with a carry in ST1

32 bits to temporarily store
ACCU

32 bits used for 16 x 16 bit
multiplication

16 bits for multiplication and
special instructions

5 bits for dynamic shift
4 bits for bit pointer in bit test

16 bits with i = 0, 7 used as
a counter and pointer

16 bits
16 bits
16 bits
16 bits

16 bits with i = 0,7 used for
hardware stackingt

16 bits for the serial port
16 bits for the serial port

16 bits

16 bits

9 bits for masking 9 interrupts

8 bits to define data memory
as global

3 bits
1 bit
1 bit
1 bit
9 bits
3 bits
1 bit
1 bit
1 bit
1 bit
1 bit

T The debugger uses one stack level for itself.

Using the DSK Debugger

6-19

Quick-Reference Guide

Table 6-14. Debugger Register Definitions (Continued)

Register Definition Description
PM (ST1) PREG to ACCU shift mode 2 bits

IPTR (PMST) Interrupt vector pointer 5 bits

OVLY (PMST) Data SARAM enable 1 bit

RAM (PMST) Program SARAM enable 1 bit

MP/MC (PMST) Micro processor/computer mode 1 bit

TXM (SPC) FSX mode bit 1 bit

MCM (SPC) CLKX clock mode (internal/external) 1 bit
FSM (SPC) Frame synch mode (burst/continuous) 1 bit
FO (SPC) Format bit (8/16 bit mode) 1 bit

6-20

Appendix A

DSP Starter Kit (DSK) Circuit Board Dimensions
and Schematic Diagrams

This appendix contains the circuit board dimensions and the schematic
diagrams for the TMS320C5x DSK.

A-1

Circuit Board Dimensions

Figure A—1. TMS320C5x DSK Circuit Board Dimensions

Note:

4.100 Ref
—»{ [4— 0.0500 TLC32040CFN
gggg :>|oooooooo 000 |oooooooooooo|@
: DOOOOOO:OOOO D OO0O0O0O00O0O0000O0
?:n:lllllll: — - DD [I:[I
- - —n
1.655 _ - = 0 [1502
) Iul-él-llll = E “q_)
= o
NS4 O — —0O
W Ho i — ~+ 1100 S
A\ o — —o o] D 3
) — Frrrenrt N
)| oo oo = S
0.605 = = © [0.608
D D = DDDDD :|||||||: |§|
0.100—|_
oaumo — (Y 277779 Ececoeceey Begsssszesad ©
3° © O O
=3 235
clj.% SN oK)
a

Dimensions are in inches.

Schematic Diagram

T 70 T T30S | F661 1C ATenuey Seq
L89L19T v
AT Joquinn Juawndo(| ozIg [aiNDS)
LI SYALAVLS dSA XSO0TESINL 1 A
AND ZHINOY
apIL A
SINAWNILSNI SYXAL m
3
1
1|o[z|1 2
zlz|olo]lofels|v|clo]s| 1fof+|€
i| 1)1 ls|s|olo]s|s|€]€l | ¢
SSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSS
210/ AN AAAANAAANAAANAAA b b 9L
“OnwA S1d vy (2
oaw
MOL
1aL LLOONTD oy MINoY D >
SINL AN |y AT
LS¥L a7 TAORT 1D
DD | NI
NTOZX 52
X e
XaL
¥qAL wov_ ﬁw_oe
WHAL/XSAL AL >
AQVIAISAL e REERN
XIDL =2 VJQ._HNV
AWDL - = DL]
S e x>
A = pem|
XSd o XSd |
e AS R
2407 0SD0ZESNL s wmw_ XT3
IO vz D |
dX T 1
o1 P ord]
-OW/dIN - SIWIN]
S4 Py ST]
MOVI Pty SOV >
INN D% TRN
7INI -7 7
EINI P T
TINI P A
LINI P ¢ T
aaaaaaaaqaaaaqaadad
68L9SvEC10 AAAAAAAAAAAAaAaad
aadaaaddad AAAAAAAAAAAAAAAA
slelo] zlifrlelelslifofols|s|elele]s | LY LY LY LY MLy
L SEFEPEEEPPEIEEIT P oy Iy e o1y
strlelelifo
iilifififilelelolslr kel ¢ ¢
a
< ST 0T > -

A-3

iagrams

ic D

d Schemat

imensions an

DSP Starter Kit (DSK) Circuit Board D

Schematic Diagram

z 6 ML
! 94
J0A

70 T T30S | FGOT L1 Atenuey eq
v 1892192 v
AT Jaquunp juawndoq 71§
LD SYGIAVLS dSA ¥SO0TESINL Q,Mrv
omL
SINTNAALSNI SYXEL
€ €
ODA aND vOu vOu
-00A o I
))
D014 0H0ZEDTL
WHO 0 anod 0N f——x
Ld
<} AN m aaa ANDV - 204
— _|ﬂ|n aLAg aNOV gt Ml S
<} S 108 -00A | L1y ord
[T S—pron +ODA
r@ <l d xsi ami |5
CXa > T—{xa 100 | =T
mﬁmml q xaos 100 [t =
qa NIXNY [~NTX0V]
T —d usa Nmxny |F TNIXOV]
T | d ¥aod ~NI 7
| BEE d 1asay o\ TNV]
T
881SL
[EX -
680 YOLOANNOD
<=L van
681SL XTT° o
<o} " —o
qT 4
| *———o0
<IN v\, T T XT. T 0o
INHO 0 *———o
8y —10
c *—+——o
T °}
<} N
RArel
681SL 681L
acn o
<} TT T T a

A-4

Schematic Diagram

10 iZ TS]

F661 1C ATenuey Seq

AHY

L89L19T

JoquInN JUAWNI0C] azig

LI SYALAVLS dSA XSDOTESALL

aND

YIAVHH 016SAX

= <RI >———d11 o
SINANNYLSNI SYXEL nw ﬂ
ds ¢
(AT30) 9 NId xlmw m P
q
X1 M3AVAH IS >———q¢ !
- TaT
dre < p
T——gs b
% TV qoc ol b (A \
[gst Ll P TV - —_
i dor a b kA
qrl €l P [A
TV g % Ay
dua 11 b
TV qa LB 4%
SN — = /
TN a— P
v ¢
T 1 v
edl DDA
ST 01V
20A
TXT1 49dVvdH INJ9SZDdLT
dre < p ON ddA
T dz i B - N s
/ 7a cmw ﬂ > T \] mm 49
o dor o b £ vV
ki drn o b od [T
Uiy da 1 b T v [
71d q: B T M TV
% T 9 ° B T \ VAN
N 9 < w [
|n U|
7 0 VI T
LA o |—% i
7T (00— o o T OV
TaT__0C_| TV
Y0 v
I A T FV
. . TT 3 T IV
ALy ALY o VA o c—
v sd /T 5T ov 0T 1V
70d cl | T v
o

o

ISTOIV._ >

I5T0IQ

IST0Id >

A-5

iagrams

D

Ic

d Schemat

imensions an

DSP Starter Kit (DSK) Circuit Board D

C 70 T T30S | F661 1C ATenuey Seq

Schematic Diagram

B L89L19T v
AT J2quIn JUSWNI0 zIS
LI SAALAVLS dSA XSO0ZESWL AND
SLNHWNALSNI SYXEL anr _ anr _ anr _ anr _ anr _ anr _ anr _ anr _
1D €10 [4f) 110 010 60 80 Lo Ly sl
_ _ _ _ _ _ _ _ SIO 4]
2%
SO6LIN'T
a A G———————————
m TOOPNT
-00A < R OA D IA . anNo
=DOA T A
I a
anr anr
LISSNT 9 anLy e YD == 40001 s~
€a O ¥ €© ¥
T
anr
0 == anoool o
D ¥
5 T
N TOOPNT
5)
O0A <t—5r OA IA - _Ml_n
TOSIIN'T vsoord
n €f
+>A1
TX¢ 4AavaH
v €
¢ 1 p—TN)
odT TX¢1 ¥davaH
TX¢l ¥aavaH Pup—
| R drc ¢ p aT] w I
[T dw 1t p Nem|
<F S doc 61 p |
+—dsi u b TS S>
L dor a1 p—
toxo——9!] P—— ot o —
— du 11 p—or] b——————
- dor ¢ p—
a9 L P
9 <
voo€
T 1

A-6

Appendix B

Glossary

absolute address: An address that is permanently assigned to a memory
location.

A/D: Analog-to-digital. Conversion of continuously variable electrical signals
to discrete or discontinuous electrical signals.

AIC: Analog interface circuit. Integrated circuit that performs serial A/D and
D/A conversions.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, directives,
and macro directives. The assembler substitutes absolute operation codes
for symbolic operation codes, and absolute or relocatable addresses for
symbolic addresses.

assighment statement: A statement that assigns a value to a variable.

autoexec.bat: A batch file that contains DOS commands for initializing your PC.

batch file: A file containing an accumulation of data to be processed. This
data may be either DOS commands for the PC to execute or debugger
commands for the debugger to execute.

BBS: Bulletin board service. Computer program which may be accessed by
remote users, allowing them to post questions and view responses.

block: Asetofdeclarations and statements grouped together in braces and
treated as an entity.

breakpoint: A place in a computer program, usually specified by an instruction,
where its execution may be interrupted by external intervention.

byte: A sequence of eight adjacent bits operated upon as a unit.

B-1

Glossary

B-2

code-display windows: Windows that show code, text files, or code-
specific information.

COFF: Common object file format. A system of object files configured according
to a standard developed by AT&T. These files are relocatable in memory
space.

command: A character string you provide to a system, such as an assembler,
that represents a request for system action.

command file: A file created by the user which names initialization options
and input files for the linker or the debugger.

command line: The portion of the COMMAND window where you can enter
instructions to the system.

command-line cursor: An on-screen marker that identifies the current
character position on the command line.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comments are
not assembled.

constant: A fixed or invariable value or data item.

cross-reference listing: An output file created by the assembler that lists
the symbols that were defined, the line they were defined on, the lines
that referenced them, and their final values.

cursor: An on-screen marker that identifies the current character position.

D/A: Digital-to-analog. Conversion of discrete or discontinuous electrical
signals to continuously variable signals.

DARAM: Dual-access, random-access memory. Memory that can be altered
twice during each cycle.

D_DIR: An environment variable that identifies the directory containing the
commands and files necessary for running the debugger.

debugger: A software interface that permits the user to identify and eliminate
mistakes in a program.

Glossary

directive: Special-purpose commands that control the actions and functions
of a software tool (as opposed to assembly language instructions, which
control the actions of a device).

disassembly: The process of translating the contents of memory from machine
language to assembly language. Also known as reverse assembly.

DSK: Digital signal processor starter kit. Tools and documentation provided
to new DSP users to enable rapid use of the product.

DSP: Digital signal processor. DSPs process or manipulate digital signals,
which are discrete or discontinuous electrical impulses.

DTR: Data terminal ready. A signal defined by the RS-232 standard that al-
lows a data source, such as a computer or terminal, to indicate that it is
ready for transmission.

EGA: Enhanced graphics array. An industry-standard video card.
entry point: A pointin target memory where the program begins execution.

expression: One or more operations in assembler programming repre-
sented by a combination of symbols, constants, and paired parentheses
separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
defined in another program module.

field: A software-configurable data type which can be programmed to be
from one to eight bits long.

file header: A portion of the COFF object file that contains general informa-
tion about the object file, such as the number of section headers, the type
of system the object file can be downloaded to, the number of symbols
in the symbol table, and the symbol table’s starting address.

global symbol: A symbol that is either defined in the current module and
accessed in another or accessed in the current module but defined in
another.

Glossary B-3

Glossary

B-4

IC: Integrated circuit. A tiny wafer of substitute material upon which is etched or
imprinted a complex of electronic components and their interconnections.

input section: A section from an object file that is linked into an executable
module.

label: A symbolthatbeginsin column 1 of a source statement and corresponds
to the address of that statement.

listing file: An output file created by the assembler that lists source statements,
their line numbers, and any unresolved symbols or opcodes.

LSB: Leastsignificant bit. The binary digit, or bit, in a binary number that has
the least influence on the value of the number.

LSByte: Least significant byte. The byte in a multibyte word that has the
least influence on the value of the word.

member: An element of a structure, union, or enumeration.

memory map: A map of target system memory space that is partitioned into
functional blocks.

menubar: A row of pulldown menu selections at the top of the debugger dis-
play.

mnemonic: Aninstruction name that the assembler translates into machine
code.

MSB: Most significant bit. The binary digit, or bit, in a binary number that has
the most influence on the value of the number.

MSByte: Most significant byte. The byte in a multibyte word that has the
most influence on the value of the word.

named section: Either an initialized section that is defined with a .sect directive,
or an uninitialized section that is defined with a .usect directive.

Glossary

object file: A set of related records treated as a unit that is the output of an
assembler or compiler and is input to a linker.

operand: The arguments or parameters of an assembly language instruc-
tion, assembler directive, or macro directive.

options: Command parameters that allow you to request additional or specific
functions when you invoke a software tool.

PC: Personal computer or program counter, depending on context and where
it's used. In this book, in installation instructions, or in information relating
to hardware and boards, PC means personal computer (as in IBM PC).
In general debugger and program-related information, PC means
program counter, which is the register that identifies the current statement
in your program.

PROM: Programmable read-only memory. An integrated circuit on which
information can be programmed by the user. This circuit can be read
from but not written to.

pulldown menu: A command menu that is accessed by name from the
menu bar at the top of the debugger display.

raw data: Executable code or initialized data in an output section.

reverse assembly: The process of translating the contents of memory from
machine language to assembly language. Also known as disassembly.

SARAM: Single-access, random-access memory. Memory that can be altered
only once during each cycle.

section: Arelocatable block of code or data that ultimately occupies a space
adjacent to other blocks of code in the memory map.

serial port: An access point that the debugger uses to sequentially transmit
and receive data to and from the emulator or the applications board. The
port address represents the communication port to which the debugger
is attached.

Glossary B-5

Glossary

single step: A form of program execution in which the program is executed
statement by statement. The debugger pauses after each statement to
update the data-display window.

source file: A file that contains C code or assembly language code that will
assembled to form a temporary object file.

SPC: Section program counter. A specific register that holds the address of
the section where the following directive is to be obtained.

static variable: A variable that is allocated before execution of a program
begins and remains allocated for the duration of the program.

string table: A table that stores symbol names that are longer than eight char-
acters. Symbol names of eight characters or longer cannot be stored in the
symbol table; instead, they are stored in the string table. The name portion
of the symbol’s entry points to the location of the string in the string table.

structure: A collection of one or more variables grouped together under a
single name.

symbol: A string of alphanumeric characters that represents an address or
a value.

tag: An optional type name that can be assigned to a structure, union, or
enumeration.

unconfigured memory: Memory that is not defined as part of the memory
map and cannot be loaded with code or data.

unsigned value: A value that is treated as a positive number, regardless
of its actual sign.

VGA: Video graphics array. An industry-standard video card.

word: A character or bit string considered as an entity.

? debugger option 6-2

absolute address, definition B-1
AC transformer, power requirements 2-2
asm assembler option 4-11
assembler 3-4, 4-1to 4-12

—l option 3-5

constants 4-7

definition B-1

description of 3-2

directives 5-1 to 5-11

executable file 2-3

expressions 4-9

key features 3-2

options 4-10

source, listings 4-2

source statement format 4-2

symbols 4-8

assembler directives. See directives
assembling your program 4-10
assembly-time constants E-28
assigning a value to a symbol E-28
assignment statement, definition B-1
autoexec.bat 2-8

autoexec.bat file, definition B-1

b debugger option 6-2
ba command 6-16
backup, of product disk 2-6

batch files
config.sys 2-7
definition B-1

invoking, autoexec.bat 2-8

Index

baud rate 6-2
error 2-10

bd command 6-17

.bfloat 6-18
assembler directive 5-8, E-18

binary integers 4-7

bl command 6-17

block, definition B-1

breakpoints. See software breakpoints
bulletin board, updating DSK software, vii
.byte, assembler directive 5-8, E-12
byte, definition B-1

¢ or com debugger option 6-3
c1/c2/c3/ca

debugger option 2-9

error 2-10

cable, requirements 2-2, 2-4
character, constants 4-7

CLRC, clear 6-4

code-display windows, definition B-2
code, developing 3-4
comi/com2/com3/com4

debugger option 2-9
error 2-10

command file, definition B-2
command line
defining assembler statements 4-11
definition B-2
command-line cursor, definition B-2
comments 4-6to 4-7
definition B-2
communication, link between PC and DSK 2-2
communication port, error 2-10

Index-1

Index

conditional assembly, directives 5-7
conditional block E-20
definition B-1
config.sys
modifying 2-7
sample 2-8
connecting the DSK board to your PC 2-5
constant, definition B-2
constants 4-7,4-8
assembly-time 4-7, E-28
binary integers 4-7
character 4-7
decimal integers 4-7
floating-point E-18
hexadecimal integers 4-7
symbols as 4-7

contacting Texas Instruments, vii
.copy assembler directive 5-6, E-13
copy files E-13
Copy submenu 6-11

disk to hard drive 2-6

files 5-6

information 6-11
cross-reference listing B-2
cursors, definition B-2

D_DIR environment variable, definition B-2
.data
assembler directive 5-4, E-15
section 5-4, E-15
DB25 connection 2-4
DB9 connection 2-4

debugger
definition B-2
description of 3-3
display, basic 3-3
environment, setting up 2-8
executable file 2-3
exiting 6-9
exiting to the operating system 6-11
installation 2-6
invoking 6-2
key features 3-3
menu bar 6-5

Index-2

debugger (continued)
options 6-2
? 62
b 62
corcom 6-3
e 6-3
h 62
i 6-3
| 6-3
s 6-3
pulldown menus, using 6-5

decimal integer constants 4-7

dialog box
closing 6-15
using 6-13

directives 5-1to 5-34
alphabetical reference 5-11
assembly-time constants E-28
conditional assembly 5-2, 5-7

.else E-20

.endif 5-7, E-20

if 5-7, E-20
define sections 5-2, 5-4

.data 5-4, E-15

.ds 54

.entry 5-4

.ps 5-4, E-31

.text 5-4, E-31
definition B-3
initialize constants 5-8 to 5-9

.bfloat 5-8, E-18

.byte 5-8, E-12

.double 5-8, E-18

.efloat 5-8, E-18

float 5-8, E-18

.int 5-8

long 5-8, E-23

dgx

5-8, E-24
.gx
5-8, E-24

.space 5-9, E-29

.string 5-8, E-12

.tfloat 5-8, E-18

.word 5-8, E-33
initializing the load address, .ds E-15
listing your output, .liston E-21
miscellaneous 5-10

.end 5-10, E-16

directives (continued)
.entry E-17
listoff 5-10
liston 5-10
.set 5-10
reference other files 5-2
.copy 5-6, E-13
.include 5-6, E-13

directories
dsktools directory 2-6
for debugger software 2-6, 2-8

disassembly, definition B-3
display requirements 2-2, 2-3
display reverse assembly contents 6-18

Display submenu 6-5
Format submenu 6-5
Memory submenu 6-5

display, function key method 6-18
displaying information, menu selections 6-5

.double 6-18
assembler directive 5-8, E-18

.ds
assembler directive 5-4, E-15
section 5-4

dska command 3-5, 4-10
dska.exe file 2-3

dskd command 2-9, 3-5, 6-2
dskd.exe file 2-3

DSP, defined B-3

DTR
defined B-3
logic level, selecting 6-3

e debugger option 6-3

.efloat 6-18
assembler directive 5-8, E-18

EGA, definition B-3

.else, assembler directive 5-7, E-20

enabling software breakpoints 6-16

.end, assembler directive 5-10, E-16
.endif, assembler directive 5-7, E-20
.entry, assembler directive 5-4, E-17

Index

entry point
defining 6-3
definition B-3

eXec submenu 6-9

execute program to breakpoint, function key meth-
od 6-18

executing code, menu selections 6-9
exiting the debugger 6-9
expressions 4-9

external symbol, definition B-3

field, definition B-3

file header, definition B-3

filename, copy/include file 5-6

Fill submenu 6-7

filling memory, menu selections 6-7

float 6-18
assembler directive 5-8, E-18

floating-point constants E-18
function keys, definition 6-18

getting started 3-5
global symbol, definition B-3

h debugger option 6-2
hardware requirements 2-2
Help submenu 6-8

function key display 6-18
hexadecimal integers 4-7
host system 2-2

i debugger option 6-3

.if, assembler directive 5-7, E-20
.include, assembler directive 5-6, E-13
include, files 5-6

include, files E-13

Init submenu 6-10

Index-3

Index

initializing
CPU registers 6-10
program entry point 6-10
input section, definition B-4
installation
debugger software 2-6
errors 2-10
hardware connections 2-5
verifying 2-9
.int, assembler directive 5-8, E-33
invoking, assembler 4-10
invoking the debugger 6-2

—k assembler option 4-10

—l assembler option 4-10
| debugger option 6-3
—l option 3-5
label, definition B-4
labels 4-3, 4-8
case sensitivity 4-3
in assembly language source 4-2
syntax 4-2
using with .byte directive E-12
listing file, definition B-4
listing software breakpoints 6-17
listoff, assembler directive 5-10, E-21
liston, assembler directive 5-10, E-21
Load submenu 6-7
loading information, menu selections 6-7
Jong, assembler directive 5-8, E-23
dgxx, assembler directive 5-8, E-24
LSB 5-8, E-24
defined B-4
LSByte, defined B-4

member, definition B-4

memory
filling 6-7
loading information into, menu selections 6-7

Index-4

memory (continued)
requirements 2-2
memory map, definition B-4
menu bar 6-5
definition B-4
menu selections, definition (pulldown menu), B-5
.mmregs assembler directive 5-10, E-25
mnemonic, definition B-4
mnemonic field 4-4
syntax 4-2
Modify submenu 6-9
MS-DOS, software requirements 2-3
MSB 4-3
MSb, definition B-4
MSByte, definition B-4

named section, definition B-4

object file
creating 4-10
definition B-5

opcodes, defining 4-4
operand, definition B-5
operands 4-5
labels 4-8
prefixes 4-5
operating system
accessing from within the debugger environ-
ment 6-11
requirements 2-3
returning to the debugger 6-11
Op-sys submenu 6-11
options
assembler 4-10to 4-12
debugger 6-2
definition B-5
output file, generating 4-10

PATH statement 2-8
PC, definition B-5
PC-DOS, software requirements 2-3

pin assignments RS-232 connections 2-4
port, definition B-5
power requirements 2-2
print screen, function key method 6-18
program
assembling 4-10
entry point 6-10
defining 6-3
definition B-3
program execution, using the pulldown menus 6-9
.ps
assembler directive 5-4, E-31
section 5-4

pulldown menus 6-5to 6-12
Copy submenu 6-11
definition B-5
Display submenu 6-5
escaping from 6-5
eXec submenu 6-9
Fill submenu 6-7
Help submenu 6-8
Init submenu 6-10
Load submenu 6-7
Modify submenu 6-9
Op-sys submenu 6-11
Quit submenu 6-9
Reset submenu 6-10
Save submenu 6-11
Watch submenu 6-10

Quit submenu 6-9
.gxx, assembler directive 5-8, E-24

raw data, definition B-5
reference guide 6-18
register definitions 6-19

requirements
power 2-2
software 2-3

Reset submenu 6-10
resetting the DSK board 6-10
RS-232 connections 2-4

Index

s debugger option 6-3
Save submenu 6-11
saving code 6-11
screen size, selecting 6-3
section, definition B-5
section program counter. See SPC
serial port
identifying 6-3
requirements 2-2
.set, assembler directive 5-10, E-28
setc, debugger command 6-4
signal name RS-232 connections 2-4
single-step, definition B-6
singlestep, function key method 6-18
software breakpoints 6-16
ba command 6-16
bd command 6-17
be command 6-16
bl command 6-17
clearing 6-17
definition B-1
listing 6-17
setting 6-16
software requirements 2-3
source 4-21t04-6
source file, definition B-6
source files 4-2 10 4-6
commenting 4-6 to 4-7
labeling 4-3
opcodes 4-4
.space, assembler directive 5-9, E-29
SPC
assigning a label to 4-3
assigning an initial value E-15
definition B-6
setting starting address 5-4
value, associated with labels 4-3
statements, defining from the command line 4-11
static variable, definition B-6
.string, assembler directive 5-8, E-12
string table, definition B-6
structure, definition B-6
submenus 6-5
symbol, definition B-6
symbols 4-8
assigning values to E-28

Index-5

Index

tag, definition B-6
temporary object file, creating 4-10

text
assembler directive 5-4, E-31
section 5-4

float 6-18
assembler directive 5-8, E-18

trace, turning on/off 6-18

transformer, power requirements 2-2

Index-6

unconfigured memory, definition B-6
unsigned, definition B-6

VGA, definition B-6

warranty information 2-2

Watch submenu 6-10

.word, assembler directive 5-8, E-33
word, definition B-6

IMPORTANT NOTICE

Texas Instruments (TI1) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are
utilized to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 0 1996, Texas Instruments Incorporated

