&

PRINTED WITH

SOYINK|_

TMS320C54x DSP
Reference Set

Volume 4: Applications Guide

This document contains preliminary data
current as of publication date and is subject
to change without notice.

Literature Number: SPRU173
Manufacturing Part Number: D425009-9761 revision *
October 1996

%‘ TEXAS
INSTRUMENTS

as

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
representthatany license, either express orimplied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 0 1996, Texas Instruments Incorporated

PRELIMINARY

About This Manual

Preface

Read This First

The purpose of this book is to present integrated solutions for typical
TMS320C54x design issues. It combines a description of specific
programming topics with code examples. The text discusses basic
programming topics for the '54x digital signal processor (DSP). The code
examples were created and tested in real time using the '54x evaluation
module (EVM) as a platform. You may use these examples in developing your
applications.

How to Use This Manual

The book is divided into two parts: topic information, provided in Chapters 1-9,
and complete code examples, provided in Chapter 10.

(1 Topicinformation, Chapters 1-9: These chapters give you a framework of
knowledge for programming the '54x. Before creating code, beginners
may want to read these chapters entirely to understand why these issues
must be addressed in certain ways. Advanced users may want to read
only the topics relevant to specific code applications.

[0 Complete code examples, Chapter 10: These examples elaborate on the
code provided in Chapters 1-9. This code has been tested and can be run
as is.

Notational Conventions

PRELIMINARY

This document uses the following conventions.

[Program listings and program examples are shown in a special font.

Here is a sample program listing:

STL A, *AR1+ ; Int_RAM(1)=0
RSBX INTM ; Globally enable interrupts
B MAIN_PG ; Return to foreground program

[Throughout this book, the notation '54x refers to the TMS320C54x and the
TMS320VC54x. The notations '541, '542, etc., refer to the TMS320C541,
TMS320C542, etc. The notation 'LC548 refers to the TMS320LC548.

Related Documentation from Texas Instruments PRELIMINARY

Related Documentation from Texas Instruments

The following books describe the '54x and related support tools. To obtain a
copy of any of these Tl documents, call the Texas Instruments Literature
Response Center at (800) 477-8924. When ordering, please identify the book
by its title and literature number.

TMS320C54x DSP Reference Set (literature number SPRU210) is
composed of four volumes of information, each with its own literature
number for individual ordering.

TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals
(literature number SPRU131) describes the TMS320C54x 16-bit,
fixed-point, general-purpose digital signal processors. Covered are its
architecture, internal register structure, data and program addressing,
the instruction pipeline, DMA, and on-chip peripherals. Also includes
development support information, parts lists, and design considerations
for using the XDS510 emulator.

TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction Set
(literature number SPRU172) describes the TMS320C54x digital signal
processor mnemonic instructions individually. Also includes a summary
of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction Set
(literature number SPRU179) describes the TMS320C54x digital signal
processor algebraic instructions individually. Also includes a summary
of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 4: Applications Guide
(literature number SPRU173) describes software and hardware
applications for the TMS320C54x digital signal processor. Also includes
development support information, parts lists, and design considerations
for using the XDS510 emulator.

TMS320C54x, TMS320LC54x, TMS320VC54x Fixed-Point Digital Signal
Processors (literature number SPRS039) data sheet contains the
electrical and timing specifications for these devices, as well as signal
descriptions and pinouts for all of the available packages.

TMS320C54x Assembly Language Tools User’s Guide (literature number
SPRU102) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the 'C54x generation of devices.

PRELIMINARY

PRELIMINARY

PRELIMINARY

Related Documentation from Texas Instruments

TMS320C5xx C Source Debugger User's Guide (literature number
SPRUQ099) tells you how to invoke the 'C54x emulator, EVM, and
simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C54x Code Generation Tools Getting Started Guide (literature
number SPRU147) describes how to install the TMS320C54x assembly
language tools and the C compiler for the 'C54x devices. The installation
for MS-DOS[, OS/200, SunOS, Solaris(1, and HP-UX[9.0x systems
is covered.

TMS320C54x Evaluation Module Technical Reference (literature number
SPRU135) describes the 'C54x EVM, its features, design details and
external interfaces.

TMS320C54x Optimizing C Compiler User’s Guide (literature number
SPRU103) describes the 'C54x C compiler. This C compiler accepts
ANSI standard C source code and produces TMS320 assembly
language source code for the 'C54x generation of devices.

TMS320C54x Simulator Getting Started (literature number SPRU137)
describes how to install the TMS320C54x simulator and the C source
debugger for the 'C54x. The installation for MS-DOS[, PC-DOSI],
SunOS[l, Solaris(d, and HP-UXO systems is covered.

TMS320 Third-Party Support Reference Guide (literature number
SPRUO052) alphabetically lists over 100 third parties that provide various
products that serve the family of '320 digital signal processors. A myriad
of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise
cancellation, modems, etc.

TMS320 DSP Development Support Reference Guide (literature number
SPRUO011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

Read This First Y

Trademarks

Trademarks

vi

PRELIMINARY

Borland is a trademark of Borland International, Inc.
HP-UX is a trademark of Hewlett-Packard Company.
MS-DOS is a registered trademark of Microsoft Corporation.

0S/2, PC/AT, and PC-DOS are trademarks of International Business
Machines Corporation.

PALUD is a registered trademark of Advanced Micro Devices, Inc.
Solaris and SunOS are trademarks of Sun Microsystems, Inc.

SPARC is a trademark of SPARC International, Inc., but licensed exclusively
to Sun Microsystems, Inc.

Windows is a registered trademark of Microsoft Corporation.

320 Hotline Online, Tl, XDS510, and XDS510WS are trademarks of Texas
Instruments Incorporated.

PRELIMINARY

PRELIMINARY

If You Need Assistance. . .

If You Need Assistance

0 World-Wide Web Sites

TI Online http://www.ti.com

Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm

DSP Solutions http://www.ti.com/dsps

320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.html
O North America, South America, Central America

Product Information Center (PIC) (972) 644-5580

Tl Literature Response Center U.S.A. (800) 477-8924

Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742

U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285

U.S. Technical Training Organization (972) 644-5580

DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com

DSP Modem BBS (281) 274-2323

DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/mirrors/tms320bbs

O Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33130701169 Fax:+33130701032 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 130701168
English +33130701165
Francais +33130701164
Italiano +33130701167
EPIC Modem BBS +33130701199
European Factory Repair +33493 22 2540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
[Asia-Pacific
Literature Response Center +852 2956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 2551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

(0 Documentation

Mail: Texas Instruments Incorporated
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Email: comments@books.sc.ti.com

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the

book.

PRELIMINARY

Read This First Vii

1

PRELIMINARY

Contents

INtrOdUCHION .. 1-1

Presents an introduction to DSP systems, which consist of a DSP, optional external memory,
and an analog front end. Describes the architecture of a typical DSP and an EVM.

1.1 DSP OVEIVIEW ..ot ittt et e e e e e e e e e e e e e e e e 1-2
1.2 '54x Evaluation Module (EVM) OVEIVIEWottt e e 1-3
1.3 Memory INterfaceiuinri it 1-4
1.4 '54x EVM External Memory Interface 1-6)
SyStem Start-Up ..o

Presents typical options when using on-chip ROM, external 16-bit memory (EPROM), or
bootloading from an 8-bit EPROM. Describes start-up conditions and initialization.

2.1 On-Chip ROM/External 16-Bit EPROMc.oiiireiii i D-2)
2.2 Processor Initialization D-3
ANAlOg 1O

Describes the most common means by which data goes to and from the DSP. Discusses
initialization of serial ports and the process of acquiring and transmitting data using interrupt
service routines (ISRs).

3.1 Synchronous Serial POt DEVICESot -2
3.2 TLC320ACO01 Analog Interface CirCuitt -5
3.3 Software Stack 3-19
3.4 Context SWItChING o 3-20,
3.5 nterrupt Handlingo o 3-22
3.6 INterrupt Priority 3-25!
3.7 Circular AdAressing 3-26!
3.8 Buffered Serial POrt o 3-28
SIgNal PrOCESSING oo it A-1

Discusses digital filters that use both fixed and adaptive coefficients and real fast Fourier
transforms.

4.1 Finite Impulse Response (FIR) Filters ... i -2
4.2 Infinite Impulse Response (IIR) Filters ... e -9
4.3 Adaptive FIlteringo -12
4.4 Fast Fourier Transforms (FFTS)ot e e e 4-19
4.4.1 Memory Allocation for Real FFTExample 4-19
4.42 Real FFTEXampPlettt e B-22)

PRELIMINARY iX

Contents PRELIMINARY

5 Resource Management 5

Discusses the on- versus off-chip memory and how to handle requirements for more than 64K
words of memory.

5.1 Memory AllOCAtIONttt 5-2
5.2 Overlay Managemente.une e 5-5
5.3 Memory-to-Memory MOVESttt et e 5-6
5.4 Power Management 3
6 Arithmetic and Logical Operationsouiiiiiii Q—JD

Takes a look at both single- and extended-precision operations, for both fixed-point and
floating-point examples. Discusses methods of bit manipulation and packing/unpacking data.

6.1 Division and Modulus Algorithm -2

6.2 SINES AN COSINES . . .o\ttt ittt e e -9

6.3 SQUArE ROOIS ... 65-14

6.4 Extended-Precision Arithmetic 5-17
6.4.1 Addition and Subtraction 5-18

6.4.2 MUIIPliCAtioN oo 5-21

6.5 Floating-Point AtMEtIC\ttt et e B-24]

6.6 Logical OPErationso.iniee e e B-43)|

7 Application-Specific EXamples Z-D

Describes applications using codebook search for speech coding and Viterbi decoding for
telecommunications.

7.1 Codebook Search for Excitation Signal in Speech Coding
7.2 Viterbi Algorithm for Channel Decoding ...t
8 Bootloader ... @

Describes the process of loading programs received from the host, EPROMSs, or other memory
devices. Discusses various methods of bootloading and when to use them.

8.1 Boot MOdE SEIECHIONo {

8.2 Host Port Interface (HPI) Boot Loading Sequencecoiiiiaen. .. -

8.3 16-Bit/8-Bit Parallel BOOt '

8.4 1O BOOU ..ttt

8.5 Standard Serial BOOtueun e

8.6 Warm BoOt B-12
9 Host—Target COmMmUNICALIONttt e e e et 9-

Describes the communication process and the registers used in transmission between the '54x
EVM and its host.

9.1 Communication Channels e e
9.2 Handshake and Data Transfert e e e e

X PRELIMINARY

PRELIMINARY Contents

10 Application Code EXAMPIES ...ttt 10-1 |

Provides code examples from start-up initialization to signal processing developed for real-time
operation on the '54x EVM.

10.1 Running the Applications i 0-2
10.2 Application Codet e 0-4
A Design Considerations for Using XDS510 Emulator — A-.1|:|

Describes the JTAG emulator cable and how to construct a 14-pin connector on your target
system and how to connect the target system to the emulator.

A.1 Designing Your Target System’s Emulator Connector (14-Pin Header)
A2 BUS ProtOCOl
A3 Emulator Cable Pod
A.4 Emulator Cable Pod Signal Timing e
A.5 Emulation Timing Calculations i e
A.6 Connections Between the Emulator and the Target System
A.6.1 Buffering Signals
A.6.2 Using a Target-System CIOCKt ‘
A.6.3 Configuring Multiple Processors,
A.7 Physical Dimensions for the 14-Pin Emulator Connector ‘
A.8 Emulation Design Considerationsiiiin
A.8.1 Using Scan Path LINKers i
A.8.2 Emulation Timing Calculations for a Scan Path Linker (SPL)
A.8.3 Using Emulation Pins i e
A.8.4 Performing Diagnostic Applications i,
B Development Support and Part Order Information

Provides device part numbers and support tool ordering information for the TMS320C54x and
development support information available from TI and third-party vendors.

B.1 Development SUPPOIT . ..ot
B.1.1 Development TOOIS
B.1.2 Third-Party SUPPOI i e
B.1.3 Technical Training Organization (TTO) TMS320 Workshops
B.Ll.4 ASSISIANCE . ..ottt
B.2 PartOrder Information it
B.2.1 Device and Development Support Tool Nomenclature Prefixes
B.2.2 Device NOMeNCIatUret e %
B.2.3 Development SUppPOrt TOOISottt
C GlOSSAIY ..ttt e e

Defines terms and abbreviations used throughout this book.

PRELIMINARY Contents Xi

PRELIMINARY

Figures

(A)CAJO.)(AJCr)OOHI-‘HI-‘

AR N N |
©CoOoO~NOUOPr,WNPFPOOAOPA,WNERAMWONPRE

4-10
4-11
4-12
4-13

[O P A |
A owDNPR

OO WNEFE WNPRP

Typical DSP Sy Stem . ..o
Block Diagram of @ '54X EVM . .. oo
External Interfaces onthe 541
'54x EVM Interface to External SRAM for Program and Data Memory
Interfacing @ TLC320ACO0L1C AICtothe 54Xt
Master- and Slave-to-'54x Interfacest
SYSIEM StACK . . . oo
BSP Control Extension Register (BSPCE) Diagram ...,
Autobuffering Process for Transmit
Autobuffering Process for Receive
Data Memory Organizationinan FIR Filter i ..
Block Diagram of an Nth-Order Symmetric FIR Filter,
INPUL SEQUENCE SIOragE . ..ottt e e e e
Nth-Order Direct-Form Type Il IR Filter e
Biquad IIR Filter ... o
Adaptive FIR Filter Implemented Using the Least-Mean-Squares (LMS) Algorithm
System Identification Using Adaptive Filter
Memory Allocation for Real FFT Example e
Data Processing Buffer i
Phase 1 Data MEMOIYt e e e e e
Phase 2 Data MemoOrYt e e et
Phase 3 Data MemOry e e
Phase 4 Data MemOrYttt et
32-Bit ADItioN
32-Bit SUDLIraCtion
32-Bit MUltIplication
IEEE Floating-Point Format
CELP-Based Speech Coderottt e e et
Butterfly Structure of the Trellis Diagram ...t
Pointer Management and Storage Scheme for Path Metrics
Boot Mode Selection ProCeSSt
16-Bit EPROM Address Defined by SRC Field
Data Read for a 16-Bit Parallel Boot
Data Read During 8-Bit Parallel Boott
8-Bit/16-Bit Parallel BOOt
Handshake ProtoCol e e e e

PRELIMINARY

PRELIMINARY

|
WN P O 0N

N

|
(&)

A-10
A-11
A-12
A-13

A-14
A-15

8-Bit/16-Bit I/O BOOt MOTEottt e e B-9
Serial BoOt MOOE B-11]
Warm Boot Address Specifiedin BRSWord -12
Host Control Register (HCR) Diagramcc.eueuieamiaaaaea... 0-2
BAX EVM POrt USageo 9-4
Target Control Register (TCR) Diagramii it 0-4
Handshake Protocol 0-7
Data Transfer ProtoColt e D-11
14-Pin Header Signals and Header DIMENSIONSt A-2
Emulator Cable Pod Interface A-5
Emulator Cable Pod TimiNgsSt e e A-6)
Emulator Connections Without Signal Buffering it A-10
Emulator Connections With Signal Buffering o i A-11
Target-System-Generated Test Clock i A-12
Multiprocessor CONNECHIONS it e e A-13
Pod/Connector DIMENSIONS ot e e e e e e A-14
14-Pin CoNNeCtor DIMENSIONSo\ttt et e e e A-15
Connecting a Secondary JTAG Scan Path to a Scan Path Linker A-17
EMUO/1 Configuration to Meet Timing Requirements of Less Than 25ns [A-21]
Suggested Timings for the EMUO and EMUL Signals, -22
EMUO/1 Configuration With Additional AND Gate to Meet Timing Requirements
Of Greater Than 25 NS ... e e e e m
EMUO/1 Configuration Without Global Stop i A-24
TBC Emulation Connections forn JTAG ScanPaths A-25
TMS320C54x Device Nomenclaturet -6
PRELIMINARY Contents xiii

PRELIMINARY

Tables

3-1 BSP Control Extension Register (BSPCE) Bit Summary B-29|
7-1 Code Generated by the Convolutional Encoder 7-6
9-1 '54x EVM Host-Interface Register Usagettt 9-2
9-2 Host Control Register (HCR) Bit SumMmaryttt 9-3
9-3 Target Control Register (TCR) Bit Summaryc.oiiiiiiiiiiinnnnn. 0-5
10-1 Target Files ... 10-4
10-2 Communication Interface Files 10-5
A-1 14-Pin Header Signal DesCriptioNSottt e -3
A-2 Emulator Cable Pod Timing Parameters ...t -6
B-1 Development Support Tools Part Numbers e -7

Xiv PRELIMINARY

PRELIMINARY

Examples

2-1 Vector Table Initialization — vectors.asm i

2-2 Processor Initialization — init_54X.aSm

3-1 Default Initialization of "ACOL

3-2 Initiation of a Secondary Communication Interval for Programming the '"AC01

3-3 Master-Slave MO

3-4 Context Save and Restore for TMS320C54X oot

3-5 Receive Interrupt Service ROULINE i e

3-6 Interrupt Service Routine (ISR)

3-7 Circular Addressing Mode

3-8 BSP Transmit Initialization ROUtINe i

3-9 BSP Receive Initialization Routine

3-10 BSPinitialization ROULINE

4-1 FIR Implementation Using Circular Addressing Mode With a Multiply and Accumulate
(MAQC) INSIIUCTION .\ttt e et e e e e e e e e e e e e e e -3

4-2 Symmetric FIR Implementation Using FIRS Instruction -7

4-3 Two-Biquad Implementation of an IR Filter i, 4-10

4-4 System Identification Using Adaptive Filtering Techniques 4-14

5-1 Memory Management E

5-2 Stack Initialization for Assembly Applications i -4

5-3 Stack Initialization for C Applications -4

5-4 Memory-to-Memory Block Moves Using the RPT Instruction 5-6]

6-1 Unsigned/Signed Integer Division Examples i -3

6-2 Generation of @ SINEWAVE oo 5-10;

6-3 Generation of a CoSINE WaVEot 5-12

64 Square Root COmMpPULatIoN et e 5-14

6-5 B4-Bit AditioN o 5-19

6-6 64-Bit Subtraction 5-21

6-7 32-Bit Integer MUltipliCationore et -23

6-8 32-Bit Fractional MUItPlICAtioNouee et 6-23

6-9 Add Two Floating-Point Numbers 6-25

6-10 Multiply Two Floating-Point NUMbErs e 6-32

6-11 Divide a Floating-Point Number by Another i i, 6-37

6-12 Pack/Unpack Data in the Scrambler/Descrambler of a Digital Modem 6-43

7-1 CodebooK SearCho 7-4

7-2 Viterbi Operator for Channel Codingt e 7-8

8—1 Warm BoOt OPtONttt et et B-12

PRELIMINARY Contents XV

Examples PRELIMINARY

I
W N -

O ©O© ©O© O

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-24
10-25
10-26
10-27
10-28
10-29
A-1
A-2

A-3

XVi

Handshake — Target ACHONt e b-g
Handshake — HOSt ACHION ot e D-10
Data Transfer — Target ACtiON e p-12|
Data Transfer — HOSt ACHION o e e D-13]
Vector Table Initialization 10-6
Memory Allocation for Entire Application i 10-10
Main Program That Calls Different Functions 10-16
Processor Initialization e 10-22
Handshake Between Hostand Target 10-25
Initialization of Variables, Pointers, and Buffers oL, 10-29
Initialization of Serial POrt 1 10-33
TACOL Initializationo 10-38
'ACO1 Register Configurationt 10-42
Receive Interrupt Service Routine 10-46
Task Scheduling o 0-51
Echothe Input Signal [LO-56
Low-Pass FIR Filtering Using MAC INStrUCHONovree e, flo-59|
Low-Pass Symmetric FIR Filtering Using FIRS Instruction [10-64]
Low-Pass Biquad IR Filtere e 10-69
Adaptive Filtering Using LMS Instruction 10-74
256-Point Real FFT Initialization i e 10-84
Bit Reversal ROULINE 0-87
256-Point Real FFT RoUtiNg o e 10-91
Unpack 256-Point Real FFT QUEpUL e 10-97
Compute the Power Spectrum of the Complex Output of the 256-Point Real FFT ... [10-103
Data Transfer from FIFO e 10-106
Interrupt 1 Service ROULING ot e 10-111
Function Calls on HOSt Sidet 10-116
Main Function Callon Host Side e 10-118
Graphic Drivers ROULINE e 10-121
Display the Data onthe SCreen e 10-123
Linker Command File for the Application [L0-124]
Memory Map of TMS320C541 o e 0-127:
Key Timing for a Single-Processor System Without Buffers @
Key Timing for a Single- or Multiple-Processor System With

Buffered Input and OULPULttt et et A-8
Key Timing for a Single-Processor System Without Buffering (SPL) A-19
Key Timing for a Single- or Multiprocessor-System With

Buffered Input and Output (SPL) ot A-19

PRELIMINARY

PRELIMINARY

Equations

7-1 Optimum Code Vector Localization i 7-2
7-2 Cross Correlation Variable (Ci)o 7-3
7-3 Energy Vaniable (Gi)o 7-3
7-4 Optimal Code Vector Conditionttt i e et et 7-3
7-5 Polynomials for Convolutional Encoding 7-5
7—6 BranCh MEtHCttt e e e 7-6

PRELIMINARY Contents XVii

PRELIMINARY

Chapter 1

Introduction

The TMS320C54x is a fixed-point digital signal processor (DSP) in the
TMS320 family. It provides many options for the design of telecommunication
and wireless applications. It executes 50 million instructions per second (MIPS),
providing high performance, low power consumption, and cost effectiveness.

The code examples in this book were tested in real time using a '54x Evalua-
tion Module (EVM) platform. This chapter introduces you to DSP and EVM
architecture and describes the '54x memory interface mechanism and the
EVM'’s interface with memory devices. Since the '54x EVM contains a '541
DSP, the chapter discusses the '541 specifically.

Topic Page
L1 DSP OVEIVIBW ...ttt ettt ettt e
1.2 ’'54x Evaluation Module (EVM) Overview —ccooun.. 1-
18 RMemeR IEiEES ©0000000050000000600500050050005000600500000¢
1.4 ’54x EVM External Memory Interface 1-E|

PRELIMINARY 1-1

DSP Overview

1.1 DSP Overview

PRELIMINARY

The block diagram in Figure 1-1 represents a typical DSP system. It uses an
analog interface, where an input signal is digitized and processed by the DSP
and has an output terminal. The RAM and EPROM blocks make up the
system’s memory. These blocks sometimes replace with DSP on-chip
memory. For a stand-alone system, an EPROM bootloads the code during
system power-up. The emulation interface can access the '54x high-level
language debuggers, factory-installed tests, and field diagnostics. The host
can download program files or data through the emulation port. The host
interface provides buffering, host I1/0 decode, and access control.

Figure 1-1. Typical DSP System

1-2

Host/user
Interface

“«—>

DSP

-4—— Analog input

— Analog output

A+

v

1

RAM

EPROM

Memory

Emulation
interface

PRELIMINARY

PRELIMINARY

'54x Evaluation Module (EVM) Overview

1.2 ’54x Evaluation Module (EVM) Overview

The '54x EVM is a PC/AT™ plug-in half-card that consists of a '541 DSP,
128K x 16 words of fast SRAM, and a TLC320ACO01 analog interface chip
(AIC). It also includes a programmer interface and a mouse-driven, window-
oriented C source debugger. It provides a platform for using real-time device
evaluation, benchmarking, and system debugging to design embedded systems.

The EVM has all common software debugging features, including breakpoint,
modify, load, and watch. User-defined windows can be set up to view device
parameters. The '54x EVM comes with a full assembler/linker package and an
expansion port for interfacing to peripherals. Other hosts, systems, and target
boards can communicate with the EVM using the serial port connector, pro-
vided on the board. The EVM allows you to prototype application software and
hardware. The example code provided in chapter 10 uses '54x EVM as the
hardware platform along with a host interface and demonstrates the various
applications using signal processing techniques.

Figure 1-2 shows the configuration of the '54x EVM. It interfaces to 128K
words of zero wait-state static RAM. The EVM includes 64K words of zero wait-
state program memory and 64K words of zero wait-state data memory. An
external I/0O interface supports 16 parallel I/O ports and a serial port. The host-
target communication system provides a simple means to pass data between
the target and host during real-time operation. The two channels, Aand B, are
single, 16-bit bidirectional registers, mapped into two I/O port locations. Chan-
nel B has a 64-word deep FIFO buffer. The analog interface circuit (AIC) inter-
faces to the '541 serial port. The codec is a TLC320ACO01 AIC that provides
a 14-bit A/D and D/A interface with 16 bits of dynamic range, and sampling
rates up to 43.2 kHz. Two RCA connectors provide analog input and output for
"ACOL1.

Figure 1-2. Block Diagram of a '54x EVM

PRELIMINARY

'541 DSP Serial port 1 |- »| cCodec 4—b
i < » | Serial port
CTRL A B Serial port 0 |4—» connector
167 167 16
&
i I i \
128K x 16 FIFO 110 Control 110
SRAM registers registers connector
A 4 A 4 A 4
ISA bus
Introduction 1-3

Memory Interface PRELIMINARY

1.3 Memory Interface

The '54x has several types of memory interfaces. Each interface contains a
16-bit address bus and 16-bit data bus signal lines. These transfer information
and control interface operation. All of the interfaces are independent of one
another, and different operations can be performed simultaneously on each
interface.

The external direct memory access (DMA) interface lets external devices cause
the processor to give up the bus and control signals for DMA. The MSTRB signal
is activated for program and memory accesses, and the IOSTRB signal is used
for transactions with I/0 ports (PORTR and PORTW instructions). The R/W sig-
nal controls the direction of accesses. The external ready input signal (READY)
and the software-programmable wait-state generators allow the processor to in-
terface with memory and 1/0 devices of varying speeds.

Two signals, HOLD and HOLDA, allow an external device to take control of the
processor’s buses. The processor acknowledges receiving a HOLD signal
from an external device by bringing HOLDA low. The RS signal initializes the
internal 541 logic and executes the system-initialization software. The PS,
DS, and 1/0 select signals are used to select any external program, data, or
I/O access. The connection of X1 and X2/CLKIN determines the clock source
that drives the clock generator. The clock mode that operates the clock gener-
ator is determined by the CLKMD(1-3) signals.

Figure 1-3 shows the external interfaces on the '541. The device contains two
independent bidirectional serial ports: serial port 0 and serial port 1. The analog
interface circuit interfaces directly to the serial ports of the '541. The external flag,
BIO, is used to monitor the status of the peripheral devices. The XF pin signals
external devices via software. The '541 has four external, maskable user inter-
rupts that external devices can use to interrupt the processor and one external,
nonmaskable interrupt (NMI). These provide a convenient means to perform peri-
odic I/O or other functions.

The '541 can be interfaced with EPROMs and static RAMs. The speed, cost,
and power limitations imposed by an application determine the selection of
memory device. If speed and maximum throughput are important, the '541 can
run with no wait states. In this case, memory accesses are performed in a
single machine cycle. Slower memories can be accessed by introducing an
appropriate number of wait states or slowing down the system clock.

1-4 PRELIMINARY

PRELIMINARY

Figure 1-3. External Interfaces on the '541

Data/address
bus and control
signals

System control <

PRELIMINARY

Reset———P—

Clocks

541
D(15-0) _HOLD
A(15-0) HOLDA
% NMI
IS INT(0=3)
_ IACK
RIW
MSTRB s
OSTRB BIO
READY ToUT
1AQ
MSC CLKX0
== _DX0
RS FSX0
X1 CLKRO
X2/CLKIN RRJ
CLKOUT
CLKMD(1-3)
— CLKX1
MP/MC DX1
FSX1
CNT CLKR1
DR1

FSR1

Memory Interface

4)
¢ } External DMA interface

< . .
— ¢ External interrupt interface
—»

-
}> External flags

—® Timer output

< Serial port 0

¢ Serial port 1

Introduction 1-5

'54x EVM External Memory Interface PRELIMINARY

1.4

1-6

'54x EVM External Memory Interface

The '54x EVM includes 64K words of zero wait-state program memory and
64K words of zero wait-state data memory, providing a total of 128K words of
external memory. The PS line controls accesses to data and program memory.
Each time the DSP accesses external program memory, the PS line goes low,
driving the A16 address line low and forcing access to memory locations
00000h — OFFFFh. Data memory accesses have no effect on the PS line. During
data memory accesses, the PS line remains high. This means that the EVM
accesses memory locations from 100000h — 1FFFFh. These accesses are
tabulated in the truth table below.

Access MSTRB PS DS
Program 0 0 1
Data 0 1 0
No access 1 1 1

Figure 1-4 shows a diagram of program/data memory interfaces for the EVM.

PRELIMINARY

PRELIMINARY '54x EVM External Memory Interface

Figure 1-4. '54x EVM Interface to External SRAM for Program and Data Memory

128K x 8
Address bus AQ
Al15-A0 Al
A2
A3 Pro
A eory
A5 64K x 8 DO
A6 D1
A7 D2
A8 D3
A9 D4
Al10 D5
All D6
Al2 D7
Al3 Data
Ald memory
A15 64K x 8
CE
WE
OE
GND
128K x 8
AOQ
Al
A2
A3 Program
MSTRB—@ 2: memory D8
g — 2 1 64K X 8 |——=——
R/W A6 D9
A7 D10
A8 D11
A9 D12
Al10 D13
All D14
Al2 D15 Data bus
A13 Data D15-D0O
Al4d memory
A15 64K x 8
CE
—— WE
OE

GND

PRELIMINARY Introduction 1-7

PRELIMINARY

Chapter 2

System Start-Up

To successfully power up a system, you must have a clear understanding of
reset signals, clock modes and sources, memory interfaces with and without
wait states, and bank switching. Common methods to start up a program
include using on-chip ROM, external 16-bit EPROM, and bootloading from an
8-bit EPROM. This chapter examines these start-up methods and parameters
and gives examples of initialization software.

Topic Page
2.1 On-Chip ROM/External 16-Bit EPROMccovveeernn.. 2[27]
2.2 Processor Initialization 2-

PRELIMINARY 2-1

On-Chip ROM/External 16-Bit EPROM PRELIMINARY

2.1 On-Chip ROM/External 16-Bit EPROM

2-2

The '54x program memory space can reside either on- or off-chip. On-chip
memory can include RAM, ROM, and external SRAM; off-chip memory can
include 16-bit EPROM. There are two common methods to execute a pro-
gram: running from memory (which uses on-chip ROM or 16-bit external
EPROM) or using the bootloader either serially or in parallel from a 16- or an
8-bit EPROM.

The system can run using a 16-bit external EPROM or on-chip ROM. With on-
chip ROM, internal memory is enabled. The EVM uses 128K words of external
memory, which includes 64K words each of program and data memory. If a
program resides in the external memory space, the program space includes
part of the 64K of program memory. The EVM has external SRAM that can
emulate either on-chip ROM or external EPROM. Executing the code from on-
chip ROM requires no wait states, whereas executing from external EPROM
requires some wait states, depending upon the speed of the DSP and the
speed of the EPROM. In either case, the program starts executing from the
reset vector, FF80h.

Program memory in on-chip ROM is configured internally, since the processor
is in microcomputer mode when the MP/MC pin is low. For 16-bit EPROM, the
program space is external. The processor is configured in microprocessor
mode when MP/MC is high.

PRELIMINARY

PRELIMINARY Processor Initialization

2.2 Processor Initialization

At power-up, the state of the '54x processor is partially defined, since all the
bits in both status control registers are established. Thus, the processor is in
a predefined condition at reset. Some of the conditions in these registers can
be changed, depending upon the system configuration and the application.
The reset signal puts the processor in a known state. In a typical DSP system,
the processor must be initialized for proper execution of an application.

Starting up the system from on-chip ROM or 16-bit EPROM is done by reset-
ting the processor. In both cases, the processor is reset by applying a low level
to the RS pin. Reset causes the processor to fetch the reset vector. Upon reset,
the IPTR bits of the PMST register are all setto 1, mapping the vectors to page
511 in program memory space. This means that the reset vector always re-
sides at program memory location OFF80h. This location usually contains a
branch instruction to direct program execution to the system initialization rou-
tine.

After a reset, the processor initializes the following internal functions:

(1 Stack pointer (SP)

(1 Memory-mapped peripheral control registers (SWWSR and BSCR)
[Status registers (STO and ST1)

(1 Control register (PMST)

Some of the reset bits in the status and control registers can be changed during
initialization. The '54x has a software stack and the stack pointer must be
initialized. The data page pointer, which is initialized to page 0 during reset,
must also be configured during initialization. The predefined and the remaining
bits in STO, ST1, and PMST are initialized so that the processor starts execut-
ing the code from a defined state.

Software wait-state generators interface external memory devices to the pro-
cessor. Programmable bank switching determines the bank size. The software
wait-state register (SWWSR) and the bank-switching control register (BCSR)
are initialized.

Example 2—-1 initializes the vector table. Example 2—2, on page 2-6, initializes
the '54x, where the processor branches to main_start upon reset.

PRELIMINARY System Start-Up 2-3

Processor Initialization

Example 2—-1. Vector Table Initialization — vectors.asm

; TEXAS INSTRUMENTS INCORPORATED

.mmregs

.include "init_54x.inc”

.include "main.inc”

ref SYSTEM_STACK
ref main_start

ref receive_intl

ref host_ command_intl

PRELIMINARY

1
1
)
1

; Functional Description

This function initializes the vector table of 541 device

.sect "vectors”
reset: BD main_start ; RESET vector
STM #SYSTEM_STACK,SP
nmi: RETE
NOP
NOP
NOP ;NMI~
; software interrupts
sintl7 .space 4*16
sint18 .space 4*16
sint19 .space 4*16
sint20 .Sspace 4*16
sint21 .space 4*16
sint22 .space 4*16
sint23 .space 4*16
sint24 .space 4*16
sint25 .space 4*16
sint26 .space 4*16
sint2 .Space 4*16
sint28 .Space 4*16
sint29 .space 4*16
sint30 .space 4*16
int0: RETE
NOP
NOP ; INTO
NOP
intl: BD host_command_intl ; Host interrupt
PSHM STO
PSHM ST1 ; INTL
int2: RETE
NOP
NOP
NOP
tint: RETE
NOP
NOP ; TIMER
NOP
2-4

PRELIMINARY

PRELIMINARY Processor Initialization

Example 2-1. Vector Table Initialization — vectors.asm (Continued)

rint0: RETE ; Serial Port Receive
NOP ; Interrupt 0
NOP
NOP
xintO: RETE ; Serial Port Transmit
; Interrupt O
NOP
NOP
NOP
rintl: BD receive_intl ; Serial Port Receive
PSHM STO ; Interrupt 1
PSHM ST1
xintl: RETE ; Serial Port Transmit
NOP ; Interrupt 1
NOP
NOP
int3: RETE
NOP
NOP ;INT3
NOP
.end

PRELIMINARY System Start-Up 2-5

Processor Initialization PRELIMINARY

Example 2—-2. Processor Initialization — init_54x.asm

; TEXAS INSTRUMENTS INCORPORATED
.mmregs
.include "init_54x.inc”
.include "main.inc”

.ref d_frame_flag

ref RCV_INT1_DP

.ref aic_init,serial_init,init_54,init_bffr_ptr_var

ref task _handler,evm_handshake,fifo_host_transfer
STACK .usect "stack”,K_STACK_SIZE
SYSTEM_STACK .set K_STACK_SIZE+STACK

.def main_start

.def SYSTEM_STACK

This is the main function that calls other functions.

; Functional Description

.sect "main_prg”
* The code initializes the 541 device, handshake between Target (DSP)
* and the host (PC). Zeros all buffers, variables and init. pointers
* |nitializes serial port, programs ACOL1 registers for selecting sampling
* rate, gains etc.

* *% *% *kkkkkkkhkkhhkkkkkk *% * *kkkkkkkhkkhhkkkhkk *% *

main_start:

CALL init_ 54 ;initialize ST0,ST1 PMST and
;other registers

Jif K_HOST_FLAG =1

CALL evm_handshake ; EVM host handshake

.endif

CALL init_bffr_ptr_var ; init tables,vars,bffrs,ptr

CALL serial_init ; initialize serial_port 1

CALLD aic_init ; Configures AC01

LD #0,DP

NOP

* Fkkkkkkkkkk * Fkkkkkkk * Fkk

* After enabling interrupts from the above, the real processing starts here
* After collecting 256 samples from ACO1 a flag(d_frame_flag is set).
* Handles the task initiated by the user and transfers the data to the

start_loop
LD #RCV_INT1 _DP,DP : restore the DP

loop:
BITF d_frame_flag,1 ; if 256 samples are received
BC loop,NTC ; if not just loop back
CALL task_handler ; handles task scheduling
CALL fifo_host_transfer ; EVM HOST interface
B loop
.end

2-6 PRELIMINARY

PRELIMINARY Processor Initialization

Example 2-2. Processor Initialization — init_54x.asm (Continued)

* Filename: Main.inc
* Includes all the constants that are used in the entire application

K_O set O ; constant

K_FIR_INDEX set 1 ; index count

K_FIR_BFFR set 16 : FIR buffer size

K_negl .set —1h ; index count

K_BIQUAD set 2 ; there are 2 bi-quad sections
K_IIR_SIZE .set 10 ; each bi-quad has 5 coeffs
K_STACK_SIZE .set 200 ; stack size

K_FRAME_SIZE .set 256 ; PING/PONG buffer size
K_FRAME_FLAG set 1 ; set after 256 collected
H_FILT_SIZE .set 128 ; H(z) filter size
ADPT_FILT_SIZE .set 128 ; W(2) filter size

K_mu .set Oh ; initial step constant
K_HOST_FLAG set 1 ; Enable EVM_HOST interface
K_DEFAULT_ACO01 .set 1h ; default ACO1 init

* This include file sets the FFT size for the '54x Real FFT code

* Note that the Real FFT size (i.e. the number of points in the

* original real input sequence) is 2N; whereas the FFT size is

* the number of complex points formed by packing the real inputs,

* which is N. For example, for a 256-pt Real FFT, K_FFT_SIZE

* should be set to 128 and K_LOGN should be set to 7.
K_FFT_SIZE .set 128 ; # of complex points (=N)
K_LOGN set 7 ; # of stages (=logN/log2)
K_ZERO_BK set O

K_TWID_TBL_SIZE .set 128 ; Twiddle table size
K_DATA_IDX_1 set 2 ; Data index for Stage 1
K_DATA IDX 2 set 4 ; Data index for Stage 2
K_DATA IDX_3 .set 8 ; Data index for Stage 3
K_FLY_COUNT_3 set 4 ; Butterfly counter for Stage 3
K_TWID_IDX_3 set 32 ; Twiddle index for Stage 3

* FILENAME: INIT54x.INC

* This include file contains all the initial values of STO, ST1, PMST, SWWSR, BSCR registers
;STO Register Organization
*

* |15 13| 12| 11| 10| 9 | 8 0|

*

* | ARP | TC | C | OVA| O0OVB] DP |

*

K_ARP .set 000b<<13 ; ARP can be addressed from 000b —111b
; reset value

K_TC set 1lb<<12 ; TC =1 atreset

K C set 1b<<1l ;C=1atreset

K_OVA .set 1b<<10 ; OVA =0 at reset, Set OVA

K_OVvB set 1b<<9 ; OVB =0 at reset, Set OVB

K_DP .set 000000000b<<0; DP is cleared to O at reset

K_STO .set K_ARP|K_TC|K_C|K_OVA|K_OVBI|K_DP

PRELIMINARY System Start-Up

2-7

Processor Initialization PRELIMINARY

Example 2-2. Processor Initialization — init_54x.asm (Continued)
;ST1 Register Organization

* | 15|14 | 13|12 |11]|110]9|8]|7]|] 6| 5|4 0 |
*
* |BRAF|CPL | XF | HM [INTM| 0 |OVM|SXM|C16|FRCT|CMPT| ASM |
*
K_BRAF .set 0Ob<<15 ;BRAF=0 atreset
K_CPL .set Ob<<14 ;CPL=O0atreset
K_XF set 1b<<13 ;XF=1atreset
K_HM .set Ob<<12 ;HM=0 atreset
K_INTM set 1b<<11 ;INTM
K_ST1 RESR .set 0Ob<<10 ;reserved
K_OVM set 1b<<9 ;OVM=0 atreset
K_SXM set 1b<<8 : SXM =1 at reset
K_C16 .set 0b<<07 ;C16=0atreset
K_FRCT .set 1b << 06 ;FRCT =0 atreset,
; Set FRCT
K_CMPT .set Ob<<05 ;CMPT=0 atreset
K_ASM .set 00000b << 00 ; ASM =0 at reset

K_ST1 HIGH .set K_BRAF|K_CPL|K_XF|K_HM|K_INTM|K_ST1 RESR|K_OVM|K_SXMK_ST1 LOW
set K_C16|K_FRCT|K_CMPT|K_ASM
K_ST1 set K_ST1 HIGH|K_ST1_LOW

* *kkkkkkkhkkhhkkkkkk *% F*hkkkkkkkkkkkkkk *% * *kkkkkkkhkkkkk

*

*PMST Register Organization
*

* |15 7 |1 6 | 5 | 4 | 3 | 2 | 1 0 |
*
* | IPTR IMP/MC | OVLY| AVIS| DROM |CLKOFF| Reserved |
*
K_IPTR set 111111111b<<07 ;111111111b at reset
K_MP_MC set 1b<<06 ; 1 at reset
K_OVLY .set 0Ob<<05 ; OVLY =0 at reset
K_AVIS .set Ob<<04 ; AVIS = 0 at reset
K_DROM .set 0b<<03 ; DROM =0 at reset
K_CLKOFF set 0b<<02 : CLKOFF = 0 at reset
K_PMST_RESR .set 00b<<O0 ; reserved
; for 548 bit 0 = SMUL
;saturation on multiply
; bit 1 = SST = saturation on store

K_PMST.set

K_IPTR|JK_MP_MC|K_OVLY|K_AVIS|K_DROM|K_CLKOFF|K_PMST_RESR

2-8 PRELIMINARY

PRELIMINARY Processor Initialization

Example 2-2. Processor Initialization — init_54x.asm (Continued)
*SWWSR Register Organization

*

| 15 14 1211 9|8 6| 5 31 2 0 |

| Reserved | /O | Data | Data | Program| Program |

* F X *

*kkdkk * *

K_SWWSR_IO .set 2000h ; set the I/O space

* *

*

*Bank Switching Control Register (BSCR)Organization

*

* |15 12 | 11 | 10 2 | 1| 0]
*
* | BNKCMP | PS-DS | Reserved | BH | EXIO |
*
K_BNKCMP .set 0000b << 12 ; bank size = 64K
K_PS_DS .set Ob<<1l
K_BSCR_RESR .set 000000000b<<2 ;reserved space
K_BH set Ob<<1 ; BH =0 at reset
K_EXIO .set 0Ob<<O : EXIO =0 at reset
K_BSCR .set K _BNKCMP|K_PS_DS|K_BSCR_RESR|K_BH|K_EXIO
; TEXAS INSTRUMENTS INCORPORATED

.mmregs

include "init_54x.inc”

.def init_54

; Functional Description
;Initializes the processor from a reset state

.sect "main_prg”
init_54: ; Init.the s/w wait state reg.for 2 wait states for 1/0O operations
ST™M #K_SWWSR_IO, SWWSR ; 2 wait states for I/Ooperations
; wait states for Bank Switch
STM #K_BSCR, BSCR ; 0 wait states for BANK SWITCH

; initialize the status and control registers
STM #K_STO, STO
STM #K_ST1, ST1
RETD
STM #K_PMST,PMST
.end

PRELIMINARY System Start-Up 2-9

PRELIMINARY

Chapter 3

Analog I/O

Most DSP systems transfer data through peripherals. These peripherals
include parallel and serial ports. This chapter describes how the serial ports
are initialized and how the TLC320AC01 ('ACO01) analog interface circuit (AIC)
interfaces to the '54x serial port. This chapter also describes the various issues
involved such as stack, context switching, interrupt priorities, and different
addressing modes for collecting the samples during the interrupt processing.

Topic Page
3.1 Synchronous Serial Port Devicesc..coiiiiiiiiiiin.. 3 El
3.2 TLC320ACO01 Analog Interface Circuit 3-
3.3 Software Stack ... -19
3.4 Context SWItChiNGottt e 3
3.5 Interrupt Handling ..ot 3
3.6 INtErrUPt PrOMtY ..ot e 3
3.7 Circular Addressing i 3-@
3.8 Buffered Serial POrt ..ot 3

PRELIMINARY 31

Synchronous Serial Port Devices PRELIMINARY

3.1 Synchronous Serial Port Devices

Several '54x devices implement a variety of types of flexible serial port inter-
faces. These serial port interfaces provide full duplex, bidirectional, commu-
nication with serial devices such as codecs, serial analog to digital (A/D) con-
verters, and other serial systems. The serial port interface signals are directly
compatible with many industry-standard codecs and other serial devices. The
serial port may also be used for interprocessor communication in multiproces-
sing applications. When the serial ports are in reset, the device can be config-
ured to shut off the serial port clocks. This allows the device to run in a low-pow-
er mode of operation.

Three signals are necessary to connect the '54x to the serial port, as shown
in Figure 3—1. On the transmitting device, the transmit data signal (DX) sends
the data, the transmit frame synchronization signal (FSX) initiates the transfer
at the beginning of the packet, and the transmit clock signal (CLKX) clocks the
bit transfer.

The corresponding pins on the receiving device are the received serial data
signal (DR), the receive frame synchronization signal (FSR) and, the receive
clock signal (CLKR), respectively. At reset, CLKX, CLKR, DR, FSX, and FSR
become inputs and DX is set for high impedance. Figure 3—1 shows the '54x
interface to an 'ACO1 that uses the serial port to transfer the data to and from
the DSP. The SCLK signal clocks the serial data into and out of the device.

Figure 3—1. Interfacing a TLC320ACO01C AIC to the '54x

3-2

10.368 MHz
TMS320C54x TLC320AC01
Serial port
01 MCLK
DX > DIN
DR | DOUT
FSX :jf
FSR
CLKX :jf SCLK
CLKR

PRELIMINARY

PRELIMINARY Synchronous Serial Port Devices

Figure 3—2 shows the master and slave-to-DSP interface. In the master-slave
mode, the master 'AC01, generates its own shift clock and frame sync signals
and generates all delayed frame-sync signals to support slave devices. The
slave receives the shift clock and frame-sync signals from the master device.

Figure 3—2. Master- and Slave-to-'54x Interfaces

TMS320C54x 10.368 MHz TLC320ACO01
Serial port Master
0/1 »| McLk mode
DX © »1 DIN
DR [¢—@ DOUT
FSX
FSR :j
CLKX SCLK
CLKR ::I
TLC320ACO01
Slave
mode
(< > MCLK
(< > DIN
DOUT
>
»{ SCLK
vVvy

The serial port operates through three memory-mapped registers: the serial
port control register (SPC), the data transmit register (DXR), and the data
receive register (DRR). The configuration of the serial port is changed by writ-
ing to the SPC register. The system configuration is as follows:

(1 Wordlength: The serial port must be programmed to use 16-bit data, since
communications between the 'AC01 AIC and the host DSP use 16 bits.
This means clearing the format bit, FO, to a logic O.

[Frame synchronization: The system operates in burst mode with frame
synchronization signals generated externally by the 'AC0O1. This means
the frame synchronization mode bit, FSM, must be setto alogic 1. A frame
sync pulse is required on the frame sync transmit and receive pins (FSX
and FSR, respectively) for the transmission and reception of every word.

PRELIMINARY Analog /O 33

Synchronous Serial Port Devices PRELIMINARY

Italso meansthatthe FSX pin hasto be configured as an input pin by clear-
ing the transmit mode bit, TXM, to a logic 0.

(1 Clock: The clock is generated externally by the '"ACO1 and is supplied to
the DSP on the CLKX pin. This means clearing the clock mode bit, MCM,
to a logic 0.

To reset the serial port, two writes to the SPC register must occur. The first
must write 0s to the transmit reset (XRST) and receive reset (RRST) bits and
the desired configuration to all the other bits. The second must write 1s to the
XRST and RRST bits and write the desired configuration to all the other bits.
The SPC register is written as 0000 0000 1100 1000 to pull the serial port out
of reset. This is shown in Example 3-1 on page 3-7.

3-4 PRELIMINARY

PRELIMINARY

TLC320ACO01 Analog Interface Circuit

3.2 TLC320ACO01 Analog Interface Circuit

PRELIMINARY

The 'ACO1 is an audio-band processor. It integrates a band-pass switched-
capacitor antialiasing input filter, 14-bit A/D and D/A converters, a low-pass
switched-capacitor output reconstruction filter, sinx/x compensation, and a
serial port for data and control transfers. The A/D and D/A channels operate
synchronously, and data is transferred in 2s-complement format. It has nine
internal registers that can be programmed for an application.

There are three basic modes of operation:

1) Stand-alone analog interface mode: The ’ACO1 generates the shift clock
and frame synchronization signals for data transfers; it is the only AIC
used.

2) Master-slave mode: One’ACO01 serves as the master, generating the mas-
ter shift clock and frame synchronization signals; the other 'ACO1s serve
as slaves.

3) Linear codec mode: The shift clock and frame synchronization signals are
externally generated by the host.

Software control of the AIC allows you to program the sampling frequency, cut-
off frequencies for the low- and high-pass filters, and analog input and output
gains at any time. No programming is needed when the default values of the
'’ACOL1 are satisfactory.

Data transfers between the DSP and the 'ACO01 are categorized as primary and
secondary serial communications. During primary communication, the 14 most
significant bits (MSBSs), bits 2 through 15, specify sample data. If the two least
significant bits (LSBs), bits 1 and 0, are 11, a subsequent 16 bits of control in-
formation is received by the 'AC01 as part of the secondary serial communica-
tion interval. This control information programs one of the nine internal registers.
During the secondary communication interval, the bits transmitted to the 'AC01
are defined as follows:

(1 Bits 15 and 14, which control phase shifting in certain applications, are
usually 0s.

[J Bit 13 decides whether the data is written to or read from a register.
(1 Bits 12 through 8 define the address of the register to be programmed.
[Bits 7 through O contain the data to be stored in a register for write operations.

The bits received from the ’AC01 during the secondary communicationinterval
are Os for bits 15 through 8, and the value of the register data for bits 7 through
0.

Analog I/0O 3-5

TLC320ACO01 Analog Interface Circuit PRELIMINARY

3-6

The three programs that follow show the use of the 'ACO1 in different circum-
stances: Example 3—1 assumes that the user is satisfied with the default con-
figuration of the '"AC01 and proceeds to receive and send data, Example 3—2
on page 3-12 shows how to program the 'ACO01 for a particular configuration
before data transfer, and Example 3—3 on page 3-17 demonstrates serial com-
munications while in a master-slave configuration. All three programs consist
of a main routine which, apart from initializing the serial port and the interrupt,
also resets the 'ACO1.

Example 3-1 initiates a reset of the 'ACO01, initializes the serial port, and sets
up interrupts. To reset the ’ACO1 properly, it must be held in reset for at least
one MCLK cycle. With the "ACO1 operating at 10.368 MHz, one MCLK cycle
equals 96.45 ns. In all the examples, the total time spent between initiating a
reset and pulling the ’ACO1 out of reset is 12 cycles. For a ’54x DSP operating
at40 MHz, one cycle is 25 ns. This means that the '"AC01 spends 300 nsin reset.
This is roughly three times the specification’s recommended value and is safe,
since it allows a proper reset.

If a 50-MHz DSP is used, one cycle equals 20 ns; the same code keeps the
'ACO1 in reset for 240 ns. This is also safe, since it is approximately 2.5 times
the specification’s recommended value.

The 'ACO1 can operate at a minimum clock frequency of 5.184 MHz. This im-
plies that it must be held in reset for at least one MCLK cycle, or 192.9 ns. As-
suming a processor speed of 50 MHz, the '"AC01 spends 12 cycles multiplied
by 20 ns = 240 ns in reset.

A safe margin holds the "ACO1 in reset for at least twice the specification’s rec-
ommended time. To allow the necessary time in reset, use a dedicated timer
function or insert useful instructions to fill the time slot. After the 'ACO1 is reset,
the main program sits in a loop, waiting for a serial port interrupt.

Example 3-1 initializes the serial port and uses the default initialization of the
’ACO01, which is in the master mode and transfers the data upon a receive inter-
rupt. It is not necessary to initiate a secondary communication interval to pro-
gram the 'ACO1. The serial port is configured between the cycles that the AIC
is in reset.

PRELIMINARY

PRELIMINARY TLC320AC01 Analog Interface Circuit

Example 3—1. Default Initialization of 'AC01
;TEXAS INSTRUMENTS INCORPORATED

.mmregs

.include "interrpt.inc”

.include init_ser.inc”
AIC_VAR_DP .usect "aic_vars”,0
aic_in_rst .usect "aic_vars”,1
aic_out_of rst .usect "aic_vars”,1

.def serial_init

; Functional Description

; This routine initializes the serial port 1 of 541. The serial port is put
;inreset by writing 0’s to RRST and XRST bits and pulled out of reset by
;writing 1's to both RRST and XRST bits. This routine also puts the AC0O1
;Inreset and after 12 cycles the ACO1 is pulled out of reset. The serial

; portinitialization is done during the 12 cycle latency of the ACO1 init.

.sect "ser_cnfg”

serial_init:
LD #AIC_VAR_DP,DP ; initialize DP for aic_reset
ST #K_0, aic_in_rst ; bit 15 =0 of TCR resets AIC
PORTW aic_in_rst,K_ TRGCR_ADDR ;write to address 14h (TCR)

*We need at least 12 cycles to pull the AIC out of reset.

STM #K_SERIAL_RST, SPC1 ;reset the serial port with
;0000 0000 0000 1000
STM #K_SERIAL_OUT_RST, SPC1 ;bring ser.port out of reset
;0000 0000 1100 1000
RSBX INTM
LD #0,DP
ORM #(K_RINT1|K_INT1),IMR ; Enable RINTZ1,INT1
; 0000 0000 0100 0010
LD #AIC_VAR_DP,DP ; restore DP
STM #(K_RINT1),IFR ; clear RINT1
ST™M #K_0,DXR1 ; 0000 0000 0100 0000

: Pull the ACO1 out of reset — the ACO1 requires that it be held in reset for
; 1 MCLK, which is equivalent to 96.45ns (based on an MCLK of 10.368MHz)

ST #K_8000, aic_out_of rst ;bitl5=1b rings AIC from reset
RETD

PORTW aic_out_of_rst, K TRGCR_ADDR ;AIC out of reset

.end

* This include file includes the SPC1 register configuration

* * * * *

PRELIMINARY Analog /O 3-7

TLC320ACO01 Analog Interface Circuit

Example 3—1.Default Initialization of ’AC01 (Continued)

* FILENAME: “INIT_SER.INC”
SPC Register Organization

|15 |14 | 13 | 12 |11 |10]9 | 8 |
| | | | | |

| | | | | | | | |
|FREE | SOFT| RSRFULL| XSREMPTY| XRDY | RRDY | IN1| INO |

|7 16 |

51413211 10|
| | | |

| | | | I I I I |
|[RRST | XRST| TXM | MCM| FSM | FO | DLB | RES |

0% X X X X X X X X k<

This include file includes the SPC1 register configuration

Name
Reserved
DLB

FO

FSM

MCM

TXM

XRST

RRST

INO

IN1

RRDY
XRDY
XSREMPTY

RSRFUL

SOFT
FREE

Function

Always read as 0

Digital loop back : 0 —> Disabled, 1 _. Enabled

Format bit: 0 — > data transferred as 8 bit bytes, 1 —> 16 bit
words

Frame sync pulse: 0 — serial port in continuous mode, 1 — FSM
is required

Clock mode bit: 0 —> CLKX obtained from CLKX pin 1—> CLKX
obtained from CLKX

Transmit mode bit: 0 — Frame sync pulses generated externally
and supplied on FSX pin, 1—> Internally generated frame sync
pulses out on FSX pin

Transmit reset bit: 0 —> reset the serial port, 1—> bring

serial port out of reset

Receive reset bit: 0 —> reset the serial port, 1-> bring

serial port out of reset

Read-only bit reflecting the state of the CLKR pin
Read—only bit reflecting the state of the CLKX pin

Transition from 0 to 1 indicates data is ready to be read
Transition from 0 to 1 indicates data is ready to be sent
Transmit shift register empty (Read-only) 0 —> transistor has
experienced underflow, 1-> has not experienced underflow
Receive shift register full flag (Read-only): 0 —> Receiv-

er has experienced overrun, 1—> receiver has not experienced
overrun

Soft bit — 0 —> immediate stop, 1—> stop after word completion
Free run hit: 0 — behavior depends on SOFT bhit, 1—> free run
regardless of SOFT bit

PRELIMINARY

PRELIMINARY

PRELIMINARY TLC320AC01 Analog Interface Circuit

Example 3—1.Default Initialization of 'AC0O1 (Continued)

The system has the following configuration:
;. Uses 16-bit data =>FO =0
; Operates in burst mode =>FSM = 1
; CLKX s derived from CLKX pin => MCM =0
; Frame sync pulses are generated externally by the AIC => TXM =0
; Therefore, to reset the serial port, the SPC field would have
;0000 0000 0000 1000
; To pull the serial port out of reset, the SPC field would have
0000 0000 1100 1000

K_0 .set 00000000b << 8 ; bits 15-8 to O at reset
K_RRST set Ob<<7 : First write to SPC1 is 0

; second write is 1
K_XRST set Ob<<6 ; First write to SPC1is 0

; second write is 1
K_TXM .set Ob<<5b
K_MCM set Ob<<4
K_FSM set 1b<<3 ; Frame Sync mode
K_ZERO .set 000b<<0
K_SERIAL_RST .set K_OJK_RRST|K_XRST|K_TXM|K_MCM|K_FSM|K_ZERO

; first write to SPC1 register
K_RRST1 set 1lb<<7 : second write to SPC1
K_XRST1 set 1lb<<6 ; second write to SPC1
K_SERIAL_OUT_RST .set K _0|JK_RRST1|K_XRST1|K_TXM|K_MCM|K_FSM|K_ZERO
K_TRGCR_ADDR .set 14h ; Target/Status 1/0 address
K_0 .set Oh
K_8000 .set 8000h ; set bit 15 to pull AIC out

; of reset

* FILENAME: INTERRUPT.INC
541 Interrupt Mask Register (IMR) Organization

115 9187 16151413211 10]

| Reserved | INT3| XINT1] RINT1| XINTO| RINTO| TINT| INT2| INT1| INTO|

* % X X X X -

This file includes the IMR and IFR configuration

K_IMR_RESR .set 0000000b << 9 ; reserved space

K_INT3 .set 1b << 8 : disable INT3

K_XINT1 .set lb<<7 ; disable transmit interrupt 1
K_RINT1 .set 1b<<6 ; enable receive interrupt 1
K_XINTO .set 1b << 5 ; disable transmit interrupt O
K_RINTO .set lb<<4 ; disable receive interrupt
K_TINT .set 1b << 3 ; disable timer interrupt
K_INT2 .set 1b << 2 : disable INT2

K_INT1 .set 1b<< 1 ; disable INT1

K_INTO .set lb<<1 ; enable INTO

PRELIMINARY Analog /O 3-9

TLC320ACO01 Analog Interface Circuit PRELIMINARY

3-10

Example 3—-2 on page 3-12 demonstrates initiation of a secondary commu-
nication interval for programming the 'ACO1. The configuration of the 'AC01
can be changed viaits nine internal registers. To understand this, consider reg-
isters 1 and 2 in the 'ACO1.

The data content of register 1, also referred to as the register A, determines
the divisions of the master clock frequency that produce the internal filter clock,
FCLK. The default value of this register is 18 (decimal). The filter clock
frequency is calculated using the equation:

FCLK frequency = master clock frequency / (register A contents X 2)

This means that foran MCLK of 10.368 MHz, the default value of the filter clock
frequency is

FCLK =288 kHz

This FCLK determines the —3 dB corner frequency of the low-pass filter which
is given by:

f|_p = FCLK/40
The default value of f| p is equal to 7.2 kHz.

The data content of register 2 of the ’AC01, also referred to as register B, deter-
mines the division of FCLK to generate the conversion clock, and is given by
the equation:

Conversion frequency = FCLK/(register B contents)

The default value of register B is equal to 18 (decimal). Hence, the default value
of the conversion (sampling) frequency is equal to:

288 kHz /18 = 16 kHz

This register also determines the —3 dB corner frequency of the high-pass
filter, which is given by:

fup = sampling frequency/200
Hence, the default value of fyp is equal to 80 Hz.

For a system that processes speech signals, the following parameters are
desirable:

Sampling frequency fg = 8.0 kHz

Low-pass filter corner frequency, f p = 3.6 kHz

PRELIMINARY

PRELIMINARY

PRELIMINARY

TLC320ACO01 Analog Interface Circuit

Assume thatthe '’AC01 uses a master clock frequency, MCLK, of 10.368 MHz.
The 'ACO01’'s parameters are:

fLp = FCLK/40 gives FCLK = 144 kHz
FCLK = MCLK/(register A x 2) gives register A = 36 (decimal)
fg = FCLK/B gives register B = 18 (decimal)

This also means that with the specified sampling frequency, the —3 dB corner
frequency of the high-pass filter changes to 8.0 kHz / 200 = 48 Hz.

After the ’ACO1 has been reset in the main program, it makes a call to the rou-
tine wrt_cnfg, which programs the new values of registers A and B as calcu-
lated above. To prevent the occurrence of an interrupt while programming the
'ACO01, wrt_cnfg disables all interrupts until the end of programming. After
each word has been sent to the serial port, the code waits for the data to be
copied from the data transmit register to the transmit shift register before it
sends the next data. After the 'ACO1 has been programmed, the main routine
waits for an interrupt. The service routines that transfer data between the
memory buffers and the serial port transmit and receive registers remain the
same.

Analog I/0O 3-11

TLC320ACO01 Analog Interface Circuit PRELIMINARY

Example 3-2. Initiation of a Secondary Communication Interval for Programming

the 'ACO1
;TEXAS INSTRUMENTS INCORPORATED
.mmregs
.include "interrpt.inc”
.include "init_ser.inc”
AIC_VAR_DP .usect "aic_vars”,0
aic_in_rst .usect "aic_vars”,1

aic_out_of rst .usect "aic_vars”,1
.def serial_init

; Functional Description

; This routine initializes the serial port 1 of 541. The serial port is put

in reset by writing 0's to RRST and XRST bits and pulled out of reset by
writing 1's to both RRST and XRST bits. This routine also puts the AC01
in reset and after 12 cycles the ACO1 is pulled out of reset. The serial
port initialization is done during the 12 cycle latency of the ACO1 init.

.sect "ser_cnfg”

serial_init:
LD #AIC_VAR_DP,DP ; initialize DP for aic_reset
ST #K_0, aic_in_rst ; bit 15 = 0 of TCR resets AIC
PORTW aic_in_rst,K_TRGCR_ADDR ;write to address 14h (TCR)

* *kkkkkkkhkkhhkkkkkk *% * *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkkkkkk

*We need at least 12 cycles to pull the AIC out of reset.

* *kkkkkkkk * *kkkkkkkk * * * * Fkkkkk

ST™M #K_SERIAL_RST, SPC1 ;reset the serial port with
;0000 0000 0000 1000
ST™M #K_SERIAL_OUT_RST, SPC1 ;bring ser.port out of reset
;0000 0000 1100 1000
RSBX INTM
LD #0,DP
ORM #(K_RINT1|K_INT1),IMR ; Enable RINT1,INT1
; 0000 0000 0100 0010
LD #AIC_VAR_DP,DP ; restore DP
STM #(K_RINT1),IFR ; clear RINT1
STM #K_0,DXR1 ; 0000 0000 0100 0000

; Pull the ACO1 out of reset — the ACOL1 requires that it be held in reset for
; 1 MCLK, which is equivalent to 96.45ns (based on an MCLK of 10.368MHz)

ST #K_8000, aic_out_of_rst ; bit 15 = 1 brings AIC from reset
RETD
PORTW aic_out_of rst, K TRGCR_ADDR ;AIC out of reset
.end
; TEXAS INSTRUMENTS INCORPORATED
.mmregs
.include "interrpt.inc”
ref wrt_cnfg ; initializes AC01

.def aic_init

Functional Description
This routine disables IMR and clears any pending interrupts before
initializing ACO1. The wrt_cnfg function configures the ACO1

.sect "aic_cnfg”

3-12 PRELIMINARY

PRELIMINARY TLC320AC01 Analog Interface Circuit

Example 3-2. Initiation of a Secondary Communication Interval for Programming
the 'ACO01(Continued)

aic_init:

CALLD wrt_cnfg ; initialize ACO1

ANDM #(~K_RINT1|K_INT1),IMR ; disable receive_int1,INT1

ORM #(K_RINT1|K_INT1),IMR ; enable the RINT1, INT1

RETD

ST™M #(K_RINT1),IFR ; service any pending interrupt

.end
* This file includes the ACO1 registers initialization
* All registers have 2 control bits that initiates serial communication
* There are 2 communication modes — primary and secondary communications
* During primary communication the control bits DOO and D01 are 11 to request
* for a secondary communication. In the secondary serial communications the
* control bits D15 and D14 perform same control function as primary.
* The R/W~ bit at reset is set to 0 placing the device in write mode.

* *

K_NOP_ADDR set 0<<8

K_REG_O .set K_NOP_ADDR

K_A_ADDR set 1<<8 ; REG 1 address

K_A_REG .set 36

K_REG_1 .set K_A_ADDR|K_A_REG ; FCLK = 144KHz => A =24h

K_B_ADDR set 2<<8 ; REG 2 address

K_B_REG .set 18

K REG 2 .set K_B_ADDR|K_B_REG ; Sampling rate = 8KHz

K_AA_ADDR .set 3<<8 ; Register 3 address

K_AA_REG set O

K_REG_3 .set K_AA_ADDR|K_AA_REG ;;no shift

K_GAIN_ADDR set 4<<8 ; Register 4 address

K_MONITOR_GAIN .set 00b<<4 ; Monitor output gain = squelch

K_ANLG_IN_GAIN .set 0lb<<2 ; Analog input gain = 0dB

K_ANLG_OUT_GAIN .set 0lb<<O0 ; Analog output gain = 0dB

K_REG_4 .set K_GAIN_ADDR|K_MONITOR_GAIN|K_ANLG_IN_GAIN|K_ANLG_OUT_GAIN

K_ANLG_CNF_ADDR .set 5<<8 ; Register 5 address

K_ANLG_RESRV set 0<<3 ; Must be set to OK_HGH_FILTER
set 0<<2 ; High pass filter is enabled

K_ENBL_IN .set 0lb<<O ; Enables IN+ and IN—

K_REG_5 .set K_ANLG_CNF_ADDR|K_ANLG_RESRV|K_HGH_FILTER|K_ENBL_IN

K_DGTL_CNF_ADDR .set 6<<38 ; Register 6 address

K_ADC_DAC set 0<<5 ; ADC and DAC is inactive

K_FSD_OUT set 0<<4 ; Enabled FSD output

K_16_BIT_COMM set 0<<3 ; Normal 16—bit mode

K_SECND_COMM set 0<<2 ; Normal secondary communication

K_SOFT_RESET set 0O<<1 ; Inactive reset

K_POWER_DWN set 0<<O0 ; Power down external

K_REG_HIGH_6 .set K _DGTL_CNF_ADDR|K_ADC_DAC|K_FSD_OUT|K_16_BIT_COMM

K_REG_LOW_6 .set K_SECND_COMMI|K_SOFT_RESET|K_POWER_DWN

K_REG_6 .set K _REG_HIGH_6|K_REG_LOW_6

K_ FRME_SYN _ADDR .set 7<<8 ; Register 7 address

K_FRME_SYN set 0<<8 ;

K_REG_7 .set K _FRME_SYN_ADDR|K_FRME_SYN

K_FRME_NUM_ADDR .set 8<<8 ; Register 8 address

K_FRME_NUM set 0<<8 ;

PRELIMINARY Analog I/0 3-13

TLC320ACO01 Analog Interface Circuit PRELIMINARY

Example 3-2. Initiation of a Secondary Communication Interval for Programming
the 'ACO1(Continued)

K_REG_8 .set K_FRME_NUM_ADDR|K_FRME_NUM
; primary word with DO1 and DOO bits set to 11 will cause a
; secondary communications interval to start when the frame
; sync goes low next
K_SCND_CONTRL.set 11b<<0 ; Secondary comm.bits
AIC_REG_START_LIST .sect "aic_reg” ; includes the aic table
.word AIC_REG_END_LIST-AIC_REG_START_LIST-1
word K_REG_1
.word K _REG_2
.word K_REG_3
.word K_REG 4
.word K_REG_5
.word K REG_6
.word K_REG_7
.word K_REG_8
AIC_REG_END_LIST
K_XRDY .set 0800h ; XRDY bitin SPC1
; TEXAS INSTRUMENTS INCORPORATED
.mmregs
.include "interrpt.inc”
ref wrt_cnfg ;initializes ACO1
.def aic_init

Functional Description
This routine disables IMR and clears any pending interrupts before
initializing ACO1. The wrt_cnfg function configures the ACO1

.sect "aic_cnfg”

aic_init:
CALLD wrt_cnfg ; initialize ACO1
ANDM #(~K_RINT1),IMR ; disable receive_intl
ORM #(K_RINT1|K_INT1),IMR ; enable the RINT1, INT1
RETD
ST™M #(K_RINT1),IFR ; service any pending interrupt
.end
; TEXAS INSTRUMENTS INCORPORATED
.mmregs

.include "aic_cfg.inc”
aic_reg_tble .usect "aic_vars”,10
.def wrt_cnfg

Functional Description
Writes new configuration data into the ACO1. Assuming a system
which processes speech signals and * requires the following parameters
Low pass filter cut—off frequency = 3.6 kHz
Sampling rate = 8000 Hz
Assume the Master clock MCLK = 10.368 MHz
This example demonstrates how to program these parameters —
the registers affected are:
Register A which determines the division of the MCLK frequency
to generate the internal filter clock FCLK.
It also determines the —3 dB corner frequency of the low—pass filter

3-14 PRELIMINARY

PRELIMINARY TLC320AC01 Analog Interface Circuit

Example 3-2. Initiation of a Secondary Communication Interval for Programming
the 'ACO01(Continued)

Register B which determines the division of FCLK to generate
the sampling (conversion) frequency
It also determines the —3dB corner frequency of the high—pass filter

.asg AR1AIC_REG_P
.sect "aic_cnfg”
wrt_cnfg:
ST™M #aic_reg_tble,AIC_REG_P ; init AR1
RPT #AIC_REG_END_LIST-AIC_REG_START_LIST
MVPD #AIC_REG_START_LIST,*AIC_REG_P+ ; move the table

ST™M #aic_reg_tble,AIC_REG_P ; init AR1
ST™M #K_REG_0,DXR1 ; primary data word —
; @ jump start!
wait_xrdy
BITF SPC1,K_XRDY ;test XRDY bit in SPC1
BC wait_xrdy,NTC ;loop if not set
STM #K_SCND_CONTRL,DXR1 ;send primary word with

; D01-D00 =11to
;signify secondary communication

LD *AIC_REG_P+,A
STLM ABRC ; gives the # of registers to be
NOP
;initialized
RPTB aic_cfg_complte-1
wait_xrdyl
BITF SPC1,K_XRDY ;test XRDY bit in SPC1
BC wait_xrdyl,NTC ;loop if not set
LD *AIC_REG_P+,A ; Read the register contents
STLM A, DXR1
wait_xrdy2
BITF SPC1,K_XRDY ;test XRDY bit in SPC1
BC wait_xrdy2,NTC ;loop if not set
STM #K_SCND_CONTRL,DXR1 ; set to read the next register
aic_cfg_complte ; contents
wait_xrdy3
BITF SPC1,K_XRDY ;test XRDY bit in SPC1
BC wait_xrdy3,NTC ;loop if not set
RET

PRELIMINARY Analog I/0 3-15

TLC320ACO01 Analog Interface Circuit PRELIMINARY

3-16

Example 3—-3 on page 3-17 uses two 'AC01s in master-slave configuration. Af-
ter the ’ACO1s have been reset, the AcO1s make a call to the routine wrt_cnfg.
This routine programs the low- and high-pass filter cutoff frequencies, the
number of slave devices attached, and sets up the frame-sync delay register.
During the programming mode, the master and its slaves are programmed
with the same control information. The last register programmed is frame-sync
delay, which determines the lag between the frame-sync and delayed frame-
sync signals. The minimum value for the frame-sync delay register is 18 (deci-
mal). This is because every data transfer requires 16 clock periods, and the
output data, DOUT, is placed in the high-impedance state on the 17th rising
edge of the clock.

Example 3-3 uses a minimum value of 18, which means that the time delay
between the frame sync and the delayed frame sync is equal to 18 multiplied
by the period of SCLK. With SCLK =2.592 MHz based on an MCLK of 10.368
MHz, the time delay is 6.94us. The hardware schematic indicates that the
delayed frame-sync signal from the master is the frame-sync signal for the
slave. The master, therefore, generates a frame-sync signal for itself and a
delayed frame-sync signal for its slave. It then synchronizes the host serial port
for data transfers to itself and its slaves. All interrupts on the host are disabled
during the time the '"ACO01s are programmed. This disallows the host from re-
ceiving or sending any data to or from the 'ACO1s.

The output data (DOUT) from the ’ACO1 operating in the master mode is avail-
able at the falling edge of the master frame-sync signal. In the primary commu-
nication interval, this data represents the 14-bit A/D conversion result. The two
least significant bits (LSBs), DO1 and DOO, determine whether the data is gen-
erated by the master or its slave as follows:

D01 D00
Master mode 0 0
Slave mode 0 1

In the secondary communication interval, the data available at DOUT repre-
sents the contents of the register read with the eight MSBs set to 0 and the
read/write bit set to logic 1 during the primary interval. If no register read is re-
quested, the second word is all Os.

The output data at DOUT from the ’ACO01 operating in slave mode is available
at either the falling edge of the external frame sync signal (which is the delayed
frame sync from the master) or the rising edge of the external SCLK signal,
whichever comes first.

PRELIMINARY

PRELIMINARY TLC320AC01 Analog Interface Circuit

When the ACO1 receives an interrupt, the service routine first determines
whether the received data is from the master or the slave by checking the LSBs
of the received data at bit positions D01 and DOO. If the LSBs are 00, the re-
ceived data is stored in a memory buffer, which holds all data received from
the master. The service routine also sends data from a memory buffer, which
holds all data going the master. If the LSBs of the received data are 01, data
is received from and sent to the slave 'AC01, using dedicated memory buffers.
This can be used with double buffering or circular buffers to allow the ISR to
notify the main routine. This occurs when new input data is available for pro-
cessing and/or space is available to accept processed data for output to or
from the master and the slave.

Example 3—3. Master-Slave Mode

*kkkkkk *% *kkkkkkkhkkhhkkkkkk *% *% *hkkkkkkhkkkhkkkkrk *

* This file includes the ACO1 registers initialization

* All registers have 2 control bits that initiates serial communication

* There are 2 communication modes — primary and secondary communications

* During primary communication the control bits DOO and DO1 are 11 to request

* for a secondary communication. In the secondary serial communications the

* control bits D15 and D14 perform same control function as primary.

* The R/W~ bit at reset is set to 0 placing the device in write mode.

* DS7-DS00 —> Number of SCLK'’s between FS~ and FSD~. When slaves are used,
* this should be the last register to be programmed The minimum value for this

* register should be decimal 18. This means that the time interval between the

* FS~ and FSD~ with an SCLK * frequency of 2.592 MHz (with an MCLK of 10.368 MHz)
*is 18 1/2.592 MHz = 6.94 us

; DS7-DS00 —> # of frame sync signals generated by AC01

; Therefore, number of frame sync signals number of slave = devices + 1

; In programming the AC01 REG?7 is the last register to be programmed if the

; configuration is master salve mode configuration

K_NOP_ADDR set 0<<38

K_REG_0 .set K_NOP_ADDR

K_A_ADDR set 1<<8 ; REG 1 address

K_A_REG .set 36

K_REG_1 .set K_A_ADDR|K_A REG ; FCLK = 144KHz => A =24h
K_B_ADDR set 2<<8 ; REG 2 address

K_B_REG .set 18

K_REG_2 .set K_B_ADDR|K_B_REG ; Sampling rate = 8KHz
K_AA ADDR set 3<<8 ; Register 3 address
K_AA_REG set 0

K_REG_3 .set K_AA_ADDRI|K_AA _REG ;no shift

K_GAIN_ADDR .set 4<<8 ; Register 4 address
K_MONITOR_GAIN .set 00b<<4 ; Monitor output gain = squelch
K_ANLG_IN_GAIN .set 0lb<<2 ; Analog input gain = 0dB
K_ANLG_OUT_GAIN .set 01b<<0 ; Analog output gain = 0dB
K_REG_4 .set K_GAIN_ADDR|K_MONITOR_GAIN|K_ANLG_IN_GAIN|K_ANLG_OUT_GAIN
K_ANLG_CNF_ADDR .set 5<<8 ; Register 5 address
K_ANLG_RESRV set 0<<3 ; Must be setto 0
K_HGH_FILTER set 0<<2 ; High pass filter is enabled
K_ENBL_IN .set 0lb<<O ; Enables IN+ and IN—

PRELIMINARY Analog /O 3-17

TLC320ACO01 Analog Interface Circuit

Example 3—-3. Master-Slave Mode (Continued)

PRELIMINARY

K_REG_5 .set K_ANLG_CNF_ADDR|K_ANLG_RESRV|K_HGH_FILTER|K_ENBL_IN
K_DGTL_CNF_ADDR .set 6<<8 ; Register 6 address

K_ADC_DAC set 0<<5 ; ADC and DAC is inactive

K_FSD_OuUT set 0<<4 ; Enabled FSD output

K_16_BIT_COMM set 0<<3 ; Normal 16—bit mode

K_SECND_COMM set 0<<2 ; Normal secondary communication
K_SOFT_RESET set 0<<1 ; Inactive reset

K_POWER_DWN set 0<<0 ; Power down external

K_REG_HIGH_6 .set K_DGTL_CNF_ADDR|K_ADC_DAC|K_FSD_OUT|K_16_BIT_COMM
K_REG_LOW._6 .set K_SECND_COMMI|K_SOFT_RESET|K_POWER_DWN

K_REG_6 .set K _REG_HIGH_6|K_REG_LOW_6

K_FRME_SYN_ADDR .set 7<<8 ; Register 7 address

K_FRME_SYN .set 18<<8 ;

K_REG_7 .set K_FRME_SYN_ADDR|K_FRME_SYN

K_FRME_NUM_ADDR .set 8<<8 ; Register 8 address

K_FRME_NUM set 2<<8 :

K_REG_8 .set K_FRME_NUM_ADDR|K_FRME_NUM

; primary word with DO1 and DOO bits set to 11 will cause a
; secondary communications interval to start when the frame
; sync goes low next
K_SCND_CONTRL set 11lb<<O ; Secondary comm.bits
AIC_REG_START_LIST .sect "aic_reg” ; includes the aic table
.word AIC_REG_END_LIST-AIC_REG_START_LIST-1
word K REG 1
.word K_REG_2
.word K_REG_3
.word K_REG_4
.word K REG 5
.word K_REG_6
.word K_REG_8
.word K_REG_7 ; this should be the last
; register to be programmed
AIC_REG_END_LIST
K_XRDY .set 0800h ; XRDY bitin SPC1

3-18

PRELIMINARY

PRELIMINARY Software Stack

3.3 Software Stack

A ’54x device has a software stack whose location is determined by the con-
tents of the stack pointer (SP). When using the software stack, you must
accommodate anticipated storage requirements. The system stack fills from
high to low memory addresses, as shown in Figure 3—3. The SP always points
to the last element pushed onto the stack. A push performs a predecrement
and a pop performs a postincrement of the system stack pointer. The stack is
used during subroutine calls and returns and inside the subroutine as tempo-
rary storage.

The CALL, CALLD, CC, CCD, CALA, and CALAD instructions push the value
of the program counter (PC) onto the stack. The RET and RETD instructions
pops the stack and places its value into the program counter. The contents of
any memory-mapped register can be pushed onto and popped from the stack,
using the PSHM and POPM instructions. Two additional instructions, PSHD,
and POPD, are included in the instruction set so that data memory values can
be pushed onto and popped from the stack.

Figure 3-3. System Stack

Low memory

Free
SP—p- Top of stack

Bottom of stack

High memory

PRELIMINARY Analog I/0 3-19

Context Switching

PRELIMINARY

3.4 Context Switching

3-20

Before you execute a routine, you must save its context and restore the context
after the routine has finished. This procedure is called context switching, and
involves pushing the PC onto the stack. Context switching is useful for subrou-
tine calls, especially when making extensive use of the auxiliary registers,
accumulators, and other memory-mapped registers.

Due to system and CPU requirements, the order of saving and restoring can
vary. Some repeatinstructions, such as RPTB, are interruptible. To nestrepeat
block instructions, you must ensure that the block-repeat counter (BRC),
block-repeat start address (RSA), and block-repeat end address (REA) regis-
ters are saved and restored.

You must also ensure that the block-repeat active flag (BRAF) is properly set.
Since the block-repeat flag can be deactivated by clearing the BRAF bit of the
ST1 register, the order in which you push the block-repeat counter and ST1
is important. If the BRC register is pushed onto the stack priorto ST1, any PC
discontinuity in RPTB can give a wrong result, since BRAF is cleared in ST1.
Thus, you must restore BRC before restoring the ST1 register.

A context save complements the restored contents. To ensure the integrity of
the code, determine what contents must be restored so that no sequencing is
lost.

PRELIMINARY

PRELIMINARY Context Switching

Example 3—4. Context Save and Restore for TMS320C54x

title “CONTEXT SAVE/RESTORE on SUBROUTINE or INTERRUPT
CONTEXT_RESTORE .macro
POPM PMST ;Restore PMST register

POPM RSA ;Restore block repeat start address
POPM REA ;Restore block repeat end address
POPM BRC ;Restore block repeat counter
POPM IMR ;Restore interrupt mask register
POPM BK ;Restore circular size register
POPM ST1 ;Restore ST1
POPM STO ;Restore STO
POPM ARO ;Restore ARO
POPM AR1 ;Restore AR1
POPM AR2 ;Restore AR2
POPM AR3 ;Restore AR3
POPM AR4 ;Restore AR4
POPM AR5 :Restore AR5
POPM ARG6 ;Restore ARG
POPM AR7 ;Restore AR7
POPM T ;Restore temporary register
POPM TRN ;Restore transition register
POPM BL ;Restore lower 16 bits of accB
POPM BH ;Restore upper 16 bits of accB
POPM BG ;Restore 8 guard bits of accB
POPM AL :Restore lower 16 bits of accA
POPM AH ;Restore upper 16 bits of accA
POPM AG ;Restore 8 guard bits of accA
.endm

CONTEXT_SAVE .macro
PSHM AG ;Save 8 guard bits of accA
PSHM AH ;Save upper 16 bits of accA
PSHM AL ;Save lower 16 bits of accA
PSHM BG ;Save 8 guard bits of accB
PSHM BH ;Save upper 16 bits of accB
PSHM BL ;Save lower 16 bits of accB
PSHM TRN ;Save transition register
PSHM T ;Save temporary register
PSHM AR7 :Save AR7
PSHM ARG6 ;Save AR6
PSHM AR5 ;Save AR5
PSHM AR4 ;Save AR4
PSHM ARS3 ;Save AR3
PSHM AR2 ;Save AR2
PSHM AR1 ;Save AR1
PSHM ARO ;Save ARO
PSHM STO ;Save STO
PSHM ST1 :Save ST1
PSHM BK ;Save circular size register
PSHM IMR ;Save interrupt mask register
PSHM BRC ;Save block repeat counter
PSHM REA ;Save block repeat end address
PSHM RSA ;Save block repeat start address
PSHM PMST ;Save PMST register
.endm

PRELIMINARY Analog /O 3-21

Interrupt Handling

PRELIMINARY

3.5 Interrupt Handling

3-22

The '54x CPU supports 16 user-maskable interrupts. The vectors for interrupts
not used by a '54x device can function as software interrupts, using the INTR
and TRAP instructions. TRAP and INTR allow you to execute any of the 32
available ISRs. You can define other locations in the interrupt vector table. The
INTR instruction sets the INTM bit to 1, clears the corresponding interrupt flag
to 0, and makes the IACK signal active, but the TRAP instruction does not.
INTR and TRAP are nonmaskable interrupts.

When a maskable interrupt occurs, the corresponding flag is set to 1 in the in-
terrupt flag register (IFR). Interrupt processing begins if the corresponding bit
in IMR register is set to 1 and the INTM bit in the ST1 register is cleared. The
IFR register can be read and action taken if an interrupt occurs. This is true
even when the interruptis disabled. This is useful when not using an interrupt-
driven interface, such as in a subroutine call when INT1 has not occurred.

When interrupt processing begins, the PC is pushed onto the stack and the
interrupt vector is loaded into the PC. Interrupts are then disabled by setting
INTM = 1. The program continues from the address loaded in the PC. Since
allinterrupts are disabled, the program can be processed without any interrup-
tions, unless the ISR reenables them. Except for very simple ISRs, it is impor-
tant to save the processor context during execution of the routine.

During the time the '"ACO1 is reset, the DSP initializes the serial port and sets
up the interrupt. To set up the interrupts, it performs the following operations:

(0 Enables unmasked interrupts by clearing the interrupt mode bit (INTM)

[J Clears prior receive interrupts by writing the current contents of the
appropriate receive interrupt flag in the IFR back to the IFR

(1 Enablesreceive interrupts by setting the appropriate receive interrupt flag
in the interrupt mask register (IMR)

The initialization of the IMR and IFR registers and the INTM bit is included in
the serial port and the "ACO1 initialization.

Example 3-5 processes the receive interrupt 1 service routine. The routine
collects 256 samples in the first buffer and changes the address to the second
buffer for the next 256 samples while processing the first buffer.

PRELIMINARY

PRELIMINARY

Example 3-5. Receive Interrupt Service Routine

: TEXAS INSTRUMENTS INCORPORATED
.mmregs
.include "INTERRPT.INC”
.include "main.inc”

RCV_INT1_DP .usect "rcv_vars”,0
d_index_count .usect "rcv_vars”,1
d_rcv_in_ptr .usect "rcv_vars”,1 ; save/restore input bffr ptr
d_xmt_out_ptr .usect "rcv_vars”,1 ; save/restore output bffr ptr
d_frame_flag .usect "rcv_vars”,1
input_data .usect "inpt_buf’,K_FRAME_SIZE*2 ; input data array
output_data .usect "outdata”,K_FRAME_SIZE*2 ; output data array
.def receive_intl
.def d_frame_flag
.def RCV_INT1_DP
.def input_data,output_data
.def d_xmt_out_ptr
.def d_rcv_in_ptr

; Functional Description

; This routine services receive interruptl. Accumulator A, AR2 and AR3

; are pushed onto the stack since AR2 and AR3 are used in other applications.
;A 512 buffer size for both input and output.

;. After every 256 collection of input samples a flag is set to process the

; data. No circular buffering scheme is used here.

; After collecting 256 samples in the 1st bffr, then the second buffer

; address is loaded and collect data in the second buffer while processing

Interrupt Handling

. the first buffer and vice versa.

.asg AR2,GETFRM_IN_P ; get frame input data pointer
.asg AR3,GETFRM_OUT_P ; get frame output data pointer
.asg AR2,SAVE_RSTORE_AR2
.asg AR3,SAVE_RSTORE_ARS3
.sect "main_prg”
receive_intl:
PSHM AL
PSHM AH
PSHM AG
PSHM BL
PSHM BH
PSHM BG

; AR2, AR3 are used in other routines, they need to be saved and restored

; since receive interrupt uses AR2 and AR3 as pointers

PSHM SAVE_RSTORE_AR2 ; Since AR2 and AR3 are used

PSHM SAVE_RSTORE_ARS3 ; in other routines, they need

PSHM BRC

LD #RCV_INT1_DP,DP ; init. DP

MVDK d_rcv_in_ptr, GETFRM_IN_P ; restore input bffr ptr

MVDK d_xmt_out_ptr, GETFRM_OUT_P ; restore output bffr ptr

ADDM #1,d_index_count : increment the index count

LD #K_FRAME_SIZE,A

SUB d_index_count, A

BC get_samples,AGT ;check for a frame of samples
PRELIMINARY

Analog I/0O 3-23

Interrupt Handling

PRELIMINARY

Example 3—-5. Receive Interrupt Service Routine (Continued)

frame_flag_set

ADDM

ST

reset_buffer

STLM
STLM

get_samples

3-24

LDM
STL
LD
AND
STLM
MVKD
MVKD
POPM
POPM
POPM
POPM
POPM
POPM
POPM
POPM
POPM
POPM
POPM
RETE
.end

#1,d_int_count
#K_FRAME_FLAG,d_frame_flag
#0,d_index_count
#input_data+K_FRAME_SIZE,A
#output_data+K_FRAME_SIZE,B

d_int_count,2
reset_buffer,NTC
#K_FRAME_SIZE,A
#K_FRAME_SIZE,B
#K_0,d_int_count

A.GETFRM_IN_P
B,GETFRM_OUT_P

DRR1,A
A*GETFRM_IN_P+
*GETFRM_OUT_P+,A
#0fffch,A
A,DXR1
GETFRM_IN_P,d_rcv_in_ptr
GETFRM_OUT_P,d_xmt_out_ptr
BRC
SAVE_RSTORE_AR3
SAVE_RSTORE_AR2
BG
BH
BL
AG
AH
AL
ST1
STO

; set frame flag
: reset the counter
; second input bffr starting addr
; second output bffr starting addr
; check for 1st/2nd bffr

; 1st input address
; 1st output address

; input buffer address
; output buffer address

; load the input sample
; write to buffer
; if not true, then the filtered
; signal is send as output
; write to DXR1
; save input buffer ptr
; save out bffr ptr

. restore AR3
; restore AR2

; return and enable interrupts

PRELIMINARY

PRELIMINARY

Interrupt Priority

3.6 Interrupt Priority

Interrupt prioritization allows interrupts that occur simultaneously to be serviced
in a predefined order. For instance, infrequent but lengthy ISRs can be inter-
rupted frequently. In Example 3—6, the ISR for the INT1 bitincludes context save
and restore macros. When the routine has finished processing, the IMR is re-
stored to its original state. Notice that the RETE instruction not only pops the
next program counter address from the stack, but also clears the INTM bit to 0.
This enables all interrupts that have their IMR bit set.

Example 3—6. Interrupt Service Routine (ISR)

title “Interrupt Service Routine”

.mmregs
intl:
CONTEXT_STORE

; push the ¢ ontents of accumulators and registers on stack

ST™M #K_INTO,IMR ; Unmask only INTO~

RSBX INTM

; Enable all Interrupts

; Main Processing for Receive Interrupt 1

SSBX INTM

; Disable all interrupts

CONTEXT_RESTORE ; pop accumulators and registers

RETE
.end

PRELIMINARY

; return and enable interrupts

There is a potential conflict between the INTM bit disable and context restore.
If an interrupt O (INTO) occurs during context restore, the macro CON-
TEXT_RESTORE is executed before servicing INTO. This can trigger an INTO.
If INTM is cleared during the context restore, it branches to the INTO service
routine. If you reenable the interrupts when INTM returns from INTO, a conflict
occurs, because INTM is set to 0 and its original contents are lost. To preserve
the contents of the INTM bit, do not enable the interrupts when INTM returns
from the INTO service routine. During interrupt priorities, preserve the INTM
and IMR bits for the system requirements.

Analog I/0O 3-25

Circular Addressing

PRELIMINARY

3.7 Circular Addressing

Circular addressing is an important feature of the '54x instruction set. Algo-
rithms for convolution, correlation, and FIR filters can use circular buffers in
memory. In these algorithms, the circular buffers implement a sliding window
that contains the most recent data. As new data comes in, it overwrites the old-
estdata. The size, the bottom address, and the top address of the circular buff-
er are specified by the block size register (BK) and a user-selected auxiliary
register (ARn). A circular buffer size of R must start on a K-bit boundary (that
is, the K LSBs of the starting address of the circular buffer must be 0), where
K is the smallest integer that satisfies 2K > R.

Circular addressing can be used for different functions of an application. For
example, it can be used for collecting the input samples in a block. It can also
be used in processing samples in blocks and data in the output buffer. In
Example 3—7, a frame of 256 samples is collected from the serial port to pro-
cess the data using the circular addressing mode. The output from the pro-
cessed block is sent to the D/A converter through the serial port register using
circular buffers. A ping-pong buffering scheme is used. While processing the
first buffer, samples are collected in the second buffer, and vice versa. The
real-time operation of the system is not disturbed and no data samples are lost.

Example 3—7. Circular Addressing Mode
; TEXAS INSTRUMENTS INCORPORATED

.mmregs
.include "INTERRPT.INC”
.include "main.inc”
RCV_INT1_DP .usect "rcv_vars”,0
d_index_count .usect "rcv_vars”,1
d_rcv_in_ptr .usect "rcv_vars”,1 ;S ave/restore input bffr ptr
d_xmt_out_ptr .usect "rcv_vars”,1 ;S ave/restore output bffr ptr
d_frame_flag .usect "rcv_vars”,1
input_data .usect "inpt_buf’,K_FRAME_SIZE*2 ; input data array
output_data .usect "outdata”,K_FRAME_SIZE*2 ;o0 utput data array
.def receive_intl
.def d_frame_flag
.def RCV_INT1_DP
.def input_data,output_data
.def d_xmt_out_ptr
.def d_rcv_in_ptr

Functional Description
This routine services receive interruptl. Accumulator A, AR2 and AR3
are pushed onto the stack since AR2 and AR3 are used in other applications.
A 512 buffer size of both input and output uses circular addressing.
;. After every 256 collection of input samples a flag is set to process the
data. A PING/PONG buffering scheme is used such that upon processing

1

PING buffer, samples are collected in the PONG buffer and vice versa.

3-26 PRELIMINARY

PRELIMINARY

Circular Addressing

Example 3—7. Circular Addressing Mode (Continued)

.asg AR2,GETFRM_IN_P

.asg AR3,GETFRM_OUT_P
.asg AR2,SAVE_RSTORE_AR2
.asg AR3,SAVE_RSTORE_ARS3
.sect "main_prg”

receive_intl:
PSHM AL
PSHM AH
PSHM AG
PSHM BL
PSHM BH
PSHM BG

; get frame input data pointer
; get frame output data pointer

; AR2, AR3 are used in other routines, they need to be saved and restored

; since receive interrupt uses AR2 and ARS3 as pointers

PSHM SAVE_RSTORE_AR2
PSHM SAVE_RSTORE_ARS3
PSHM BRC

STM #2*K_FRAME_SIZE,BK

LD #RCV_INT1_DP,DP

MVDK d_rcv_in_ptr, GETFRM_IN_P
MVDK d_xmt_out_ptr, GETFRM_OUT_P
ADDM #1,d_index_count

LD #K_FRAME_SIZE,A
SUB d_index_count, A
BC get_samples,AGT
frame_flag_set
ST #K_FRAME_FLAG,d_frame_flag
ST #0,d_index_count
get_samples

LDM DRR1,A

STL A*GETFRM_IN_P+%

LD *GETFRM_OUT_P+%,A

AND #0fffch,A

STLM ADXR1

MVKD GETFRM_IN_P,d_rcv_in_ptr
MVKD GETFRM_OUT_P,d_xmt_out_ptr
POPM BRC

POPM SAVE_RSTORE_ARS3

POPM SAVE_RSTORE_AR2

POPM BG
POPM BH
POPM BL
POPM AG
POPM AH
POPM AL
POPM ST1
POPM STO
RETE
.end
PRELIMINARY

; Since AR2 and AR3 are used
; in other routines, they need

; circular buffer size of in,out
; arrays
; init. DP
; restore input circular bffr ptr
; restore output circular bffr ptr
; increment the index count

;check for a frame of samples

; set frame flag
: reset the counter

; load the input sample
; write to buffer
; if not true, then the filtered
; signal is send as output
; write to DXR1
; save input circular buffer ptr
; save out circular bffr ptr

; restore AR3
: restore AR2

; return and enable interrupts

Analog I/0O 3-27

Buffered Serial Port PRELIMINARY

3.8 Buffered Serial Port

The buffered serial port (BSP) is made up of a full-duplex, double-buffered
serial port interface, which functions in a similar manner to the '54x standard
serial port, and an autobuffering unit (ABU). The serial port section of the BSP
is an enhanced version of the '54x standard serial port. The ABU is an addition-
al section of logic which allows the serial port section to read/write directly to
'54x internal memory independent of the CPU. This results in a minimum over-
head for serial port transfers and faster data rates. The full duplex BSP serial
interface provides direct communication with serial devices such as codecs,
serial A/D converters, and other serial devices with a minimum of external
hardware. The double-buffered BSP allows transfer of a continuous commu-
nication stream in 8-,10-,12- or 16-bit data packets. This section uses the '542
device to verify the BSP functionality.

The autobuffering process occurs between the ABU and the 2K-word block of
ABU memory. Each time a serial port transfer occurs, the data involved is
automatically transferred to or from a buffer in the 2K-word block of memory
under control of the ABU. No interrupts are generated with each word transfer
in autobuffering mode. Interrupts are generated to the CPU each time one of
the half-boundaries is crossed. When autobuffering capability is disabled
(standard mode), transfers with the serial port are performed under user con-
trol (software). When autobuffering is enabled, word transfers can be done di-
rectly between the serial port and '54x internal memory using the ABU em-
bedded address generators. The ABU has its own set of circular addressing
registers with corresponding address generation units. The length and starting
addresses of the buffers are user programmable. A buffer empty/full interrupt
can be posted to the CPU.

The six MSBs in the BSP control extension register (BSPCE) configure the
ABU. Bits 14 and 11 are read only and the remaining bits are read/write.
Figure 3—4 shows the bit positions of BSPCE and Table 3—1 provides a sum-
mary of each bit.

Figure 3—4. BSP Control Extension Register (BSPCE) Diagram

15 14 13 12 11 10 9 8 7 6 5 4-0
HALTR | RH | BRE | HALTX | XH | BXE | PCM | FIG | FE | CLKP | FSP CLKDV
R/W R R/W R/W R R/W R/W R/W R/W R/W R/W R/W

3-28 PRELIMINARY

PRELIMINARY

Buffered Serial Port

Table 3-1. BSP Control Extension Register (BSPCE) Bit Summary

Bit Name Function

15 HALTR Autobuffering Receive Halt. This control bit determines whether autobuffering receive is
halted when the current half of the buffer has been received.

HALTR =0 Autobuffering continues to operate when the current half of the buffer
has been received.

HALTR =1 Autobuffering is halted when the current half of the buffer has been re-
ceived. When this occurs, the BRE bit is cleared to 0 and the serial port
continues to operate in standard mode.

14 RH Receive Buffer Half Received. This read-only bit indicates which half of the receive buff-
er has been filled. Reading RH when the RINT interrupt occurs (seen either as a pro-
gram interrupt or by polling IFR) is a convenient way to identify which boundary has just
been crossed.

RH=0 The first half of the buffer has been filled and that receptions are cur-
rently placing data in the second half of the buffer.

RH=1 The second half of the buffer has been filled and that receptions are
currently placing data in the first half of the buffer.

13 BRE Autobuffering Receive Enable. This control bit enables autobuffering receive.

BRE =0 Autobuffering is disabled and the serial port interface operates in stan-
dard mode.

BRE=1 Autobuffering is enabled for the receiver.

12 HALTX Autobuffering Transmit Halt. This control bit determines whether autobuffering transmit
is halted when the current half of the buffer has been transmitted.

HALTX =0 Autobuffering continues to operate when the current half of the buffer
has been transmitted.

HALTX =1 Autobuffering is halted when the current half of the buffer has been
transmitted. When this occurs, the BXE bit is cleared to 0 and the serial
port continues to operate in standard mode.

11 XH Transmit Buffer Half Transmitted. This read-only bit indicates which half of the transmit
buffer has been transmitted. Reading XH when the XINT interrupt occurs (seen either as
a program interrupt or by polling IFR) is a convenient way to identify which boundary
has just been crossed.

XH=0 The first half of the buffer has been transmitted and transmissions are
currently taking data from the second half of the buffer.

XH=1 The second half of the buffer has been transmitted and transmissions
are currently taking data from the first half of the buffer.

PRELIMINARY Analog I/0 3-29

Buffered Serial Port

PRELIMINARY

Table 3—1. BSP Control Extension Register (BSPCE) Bit Summary (Continued)

Bit Name Function

10 BXE Autobuffering Transmit Enable. This control bit enables the autobuffering transmit.
BXE=0 Autobuffering is disabled and the serial port operates in standard mode.
BXE=1 Autobuffering is enabled for the transmitter.

9 PCM Pulse Code Modulation Mode. This control bit puts the serial port in pulse code modulation
(PCM) mode. The PCM mode only affects the transmitter. BDXR-to-BXSR transfer is not
affected by the PCM bit value.

PCM =0 Pulse code modulation mode is disabled.

PCM =1 Pulse code modulation mode is enabled. In PCM mode, BDXR is trans-
mitted only if its most significant (215) bit is set to 0. If this bit is set to 1,
BDXR is not transmitted and BDX is put in high impedance during the
transmission period.

8 FIG Frame Ignore. This control bit operates only in transmit continuous mode with external
frame and in receive continuous mode.

FIG=0 Frame sync pulses following the first frame pulse restart the transfer.
FIG=1 Frame sync pulses following the first frame pulse that initiates a transfer
operation are ignored.

7 FE Format Extension. The FE bit in conjunction with FO in the SPC register specifies the word
length. When FO FE = 00, the format is 16-bit words; when FO FE = 01, the format is 10-bit
words; when FO FE = 10, the format is 8-bit words; and when FO FE = 11, the format is
12-bit words. Note that for 8-, 10-, and 12-bit words, the received words are right justified
and the sign bit is extended to form a 16-bit word. Words to transmit must be right justified.

6 CLKP Clock Polarity. This control bit specifies when the data is sampled by the receiver and trans-
mitter.

CLKP =0 Data is sampled by the receiver on BCLKR falling edge and sent by the
transmitter on BCLKX rising edge.

CLKP =1 Data is sampled by the receiver on BCLKR rising edge and sent by the
transmitter on BCLKX falling edge.

5 FSP Frame Sync Polarity. This control bit specifies whether frame sync pulses (BFSX and
BFSR) are active high or low.

FSP=0 Frame sync pulses (BFSX and BFSR) are active high.
FSP=1 Frame sync pulses (BFSX and BFSR) are active low.
3-30 PRELIMINARY

PRELIMINARY

Table 3-1. BSP

Buffered Serial Port

Control Extension Register (BSPCE) Bit Summary (Continued)

Bit Name

Function

40 CLKDV

Internal Transmit Clock Division factor. When the MCM bit of BSPCis setto 1, CLKX is driv-
en by an on-chip source having a frequency equal to 1/(CLKDV+1) of CLKOUT. CLKDV
rangeis 0-31. When CLKDV is odd or equal to 0, the CLKX duty cycle is 50%. When CLKDV
is an even value (CLKDV=2p), the CLKX high and low state durations depend on CLKP.
When CLKP is 0, the high state duration is p+1 cycles and the low state duration is p cycles;
when CLKP is 1, the high state duration is p cycles and the low state duration is p+1 cycles.

PRELIMINARY

The autobuffering process for transmit is illustrated in Figure 3-5 and for
receive in Figure 3—-6. When a process is activated upon request from the seri-
al port (XRDY =1 or RRDY = 1), four actions are performed:

1) ’'54x internal memory access,
2) address register update,

3) decision for interrupt,

4) autodisabling management.

An interrupt is generated whenever the first or second half-of-buffer is pro-
cessed. The RH and XH bits in BSPCE allow you to know which half has been
processed when an interrupt boundary is found. For further details on BSP
operation, refer to the TMS320C54x DSP Reference Set, Volume 1: CPU and
Peripherals.

Analog I/0O 3-31

Buffered Serial Port

Figure 3-5. Autobuffering Process for Transmit

PRELIMINARY

&BXE =1
& XRST=1

Else

= ’ AXL =0 ;buffer wrap around
XH=1

Endif

Endif

Endif
.

DXR = Mem (AXR);memory access
AXRL = +1
If (AXRL=BKXL>>1) OR (AXRL=BKL) Then

Generate XINT; Buffer boundary
XRDY =1 If (AXRL=BKXL>>1) Then

:increment address

XH =0 ;first half emptied

;second half emptied

If (HALTX = 1) Then

BXE =0 ,disconnect ABU

3-32

PRELIMINARY

PRELIMINARY Buffered Serial Port

Figure 3—6. Autobuffering Process for Receive

4)

Mem (ARR) = DRR ;memory access

ARRL = +1 :increment address
If ARRL=BKRL>>1) OR (ARRL=BKRL) Then
RRDY =1 Generate RINT;, Buffer boundary
& BRWE =1
& RRST = 1 If ARRL=BKRL>>1) Then
RH =0 :first half filled
= P> Else

ARL = 0 ;buffer wrap around
RH =1 ;second half filled
Endif

If (HALTR = 1) Then ;auto disabling
BRE =0 ;disconnect ABU
Endif
Endif

o J

PRELIMINARY Analog I/0 3-33

Buffered Serial Port

PRELIMINARY

Initialization Examples

3-34

In order to start or restart BSP operation in standard mode, the same steps are
performed in software as with initializing the serial port (see TMS320C54x
DSP Reference Set, Volume 1: CPU and Peripherals), in addition to which, the
BSPCE register must be initialized to configure any of the enhanced features
desired. To start or restart the BSP in autobuffering mode, a similar set of steps
must also be performed, in addition to which, the autobuffering registers must
be initialized.

As anillustration of the proper operation of a buffered serial port, Example 3—8
and Example 3-9 define a sequence of actions. The '542 peripheral configura-
tion has been used as a reference for these examples. The examples show
the actions for initializing the BSP for autobuffering mode operation. In both
cases, assume that transmit and receive interrupts are used to service the
ABU interrupts.

Example 3-8 initializes the serial port for transmit operations only, with burst
mode, external frame sync, and external clock selected. The selected data for-
mat is 16 bits, with frame sync and clock polarities selected to be high true.
Transmit autobuffering is enabled by setting the BXE bit in the BSPCE, and
HALTX has been set to 1, which causes transmission to halt when half of the
defined buffer is transmitted.

Example 3-9 initializes the serial port for receive operations only. Receive au-
tobuffering is enabled by setting the BRE and HALTR bits in the BSPCE to 1.

The complete initialization code is shown in Example 3—-10 on page 3-36.

PRELIMINARY

PRELIMINARY

Buffered Serial Port

Example 3—-8. BSP Transmit Initialization Routine

Action

Description

1

2)

3)

4)

5)

6)

7
8)

Reset and initialize the serial port
by writing 0008h to SPC.

Clear any pending serial port in-
terrupts by writing 0020h to IFR.

Enable the serial port interrupts
by ORing 0020h with IMR.

Enable interrupts globally (if nec-
essary) by clearing the INTM bit
in ST1.

Initialize the ABU transmit by
writing 1400h to BSPCE.

Write the buffer start address to
AXR.

Write the buffer size to BKX.

Start the serial port by writing
0048h to SPC.

This places both the transmit and receive portions of the serial port
in reset and sets up the serial port to operate with externally gener-
ated FSX and CLKX signals and FSX required for transmit/receive of
each 16-bit word.

Eliminate any interrupts that may have occurred before initialization.

Enable transmit interrupts.

Interrupts must be globally enabled for the CPU to respond.

This causes the autobuffering mode to stop when the current half-of-
buffer has been transmitted.

Identify the transmit buffer register address.

Identify the buffer size of the ABU.

This takes the transmit portion of the serial port out of reset and starts
operations with the conditions defined in steps 1 and 5.

Example 3—-9. BSP Receive Initialization Routine

Action

Description

1)

2)

3)

4)

5)

6)

7
8)

Reset and initialize the serial port
by writing 0000h to SPC.

Clear any pending serial port in-
terrupts by writing 0010h to IFR.

Enable the serial port interrupts
by ORing 0010h with IMR.

Enable interrupts globally (if nec-
essary) by clearing the INTM bit
in ST1.

Initialize the ABU transmit by
writing AOOOh to BSPCE.

Write the buffer start address to
ARR.

Write the buffer size to BKR.

Start the serial port by writing
0088h to SPC.

PRELIMINARY

This places both the transmit and receive portions of the serial port
in reset and sets up the serial port to operate with externally gener-
ated FSR and CLKR signals and FSR required for transmit/receive
of each 16-bit word.

Eliminate any interrupts that may have occurred before initialization.

Enable receive interrupts.

Interrupts must be globally enabled for the CPU to respond.

This causes the autobuffering mode to stop when the current half-of-
buffer has been received.

Identify the receive buffer register address.

Identify the buffer size of the ABU.

This takes the receive portion of the serial port out of reset and starts
operations with the conditions defined in steps 1 and 5.

Analog I/0O 3-35

Buffered Serial Port

Example 3—10. BSP initialization Routine

.mmregs

K_STACK_SIZE .set 100

STACK

.usect “stack”,K_STACK_SIZE

SYSTEM_STACK .set STACK_K_STACK_SIZE

.def SYSTEM_STACK
.ref main_start

ref bsp_receive_int
.ref bsp_transmit_int
.sect "vectors”

reset: BD main_start ; RESET vector
STM #SYSTEM_STACK,SP

nmi: RETE
NOP
NOP
NOP ;NMI~

; software interrupts

sint17 .space 4*16

sint18 .space 4*16

sint19 .space 4*16

sint20 .space 4*16

sint21 .space 4*16

sint22 .space 4*16

sint23 .space 4*16

sint24 .Sspace 4*16

sint25 .space 4*16

sint26 .space 4*16

sint27 .Space 4*16

sint28 .space 4*16

sint29 .space 4*16

sint30 .space 4*16

int0: RETE
NOP
NOP ; INTO
NOP

intl: RETE ;
NOP
NOP ;INTL
NOP

int2: RETE
NOP
NOP
NOP

tint: RETE
NOP
NOP ; TIMER
NOP

brint: BD bsp_receive_int ; Buffered serial port receive intr
PSHM STO
PSHM ST1

bxint: BD bsp_transmit_int ; Buffered serial port transmit intr
PSHM STO
PSHM ST1

trint: RETE ; TDM serial port transmit intr
NOP

3-36

PRELIMINARY

PRELIMINARY

PRELIMINARY Buffered Serial Port

Example 3—-10. BSP initialization Routine (Continued)

NOP
NOP
txint: RETE ; TDM serial port transmit interrupr
NOP
NOP
NOP
int3: RETE
NOP
NOP ;INT3
NOP
hpiint:RETE ; HPIl interrupt
NOP
NOP
NOP
.end
.mmregs
.include "interrpt.inc”
.include "init_ser.inc”
K_AUTO_BFFR_SIZE .set 8
rtop_bffr .usect “auto_rcv",K_AUTO_BFFR_SIZE ; starting address of receive bffr
xtop_bffr .usect “auto_xmt”,K_AUTO_BFFR_SIZE ; starting address of transmit bffr
.def rtop_Dbffr
.def xtop_bffr
.def serial_init
; This routine initializes the BSP of 542. The serial port is put
;inreset by writting 0's to RRST and XRST bits and pulled out of reset by
;writting 1's to both RRST and XRST bits. The BSPCE register is init such
; that autobuffer is enabled. Also HALTX and HALTR are enabled to halt the
; autobuffering scheme whenever half buffer is either received or transmitted

.sect "ser_cnfg”
serial_init:

*% *% * *kkdkkkkkkkkkk *% * * *kkdkkkkhkkkkhk *% * F*kkkkk

* We need atleast 12 cycles to pull the AIC out of reset.

* * * * *kkkkkkkk * * * *

RSBX XF ; Put the ACO1 in reset

STM #K_SERIAL_RST, BSPC ;reset the serial port with
;0000 0000 0000 1000

STM #K_ABUC,BSPCE : enable auto—buffer

ST™M #K_SERIAL_OUT_RST, BSPC ;bring ser.port out of reset with
;0000 0000 1100 1000

RSBX INTM ; Enable interrupts
LD #0,DP
ORM #(K_BXINT|K_BRINT),IMR ; Enable both BSP receive

; transmit interrupt
; 0000 0000 0011 0000
STM #(K_BXINT|K_BRINT),IFR : clear BXINT,BRINT
; Pull the ACO1 out of reset — the ACO1 requires that it be held in reset for
; 1 MCLK, which is equivalent to 96.45ns (based on an MCLK of 10.368MHz)
SSBX XF ; Pull ACO1 out of reset
RET
.end

PRELIMINARY Analog I/O

3-37

Buffered Serial Port

PRELIMINARY

Example 3—10. BSP initialization Routine (Continued)

* FILENAME: SERIAL_INIT.INC”
* This include file includes the BSPC register configuration

SPC Register Organization

*
* |15)14 | 13 | 12 |11 |10 |9 | 8]
* | | | | | | | | |
| | | | | | | | I
* |FREE | SOFT| RSRFULL| XSREMPTY| XRDY | RRDY | IN1] INO |
*
*
“ |7 16 1 5[4]13]2[1]0]
*]|
* |RRST | XRST| TXM | MCM| FSM | FO | DLB | RES |
*
;Bit Name Function
0 Reserved Always read as 0
i1 DLB Digital loop back : 0 —> Disabled, 1 _. Enabled
2 FO Format bit: 0 — > data transfered as 8 bit bytes,
; 1 —> 16 bit words
i3 FSM Frame sync pulse: 0 —> serial port in continuous mode,
; 1 —> FSM is required
4 MCM Clock mode bit: 0 —> CLKX obtained from CLKX pin
; 1—> CLKX obtained from CLKX
5 TXM Transmit mode bit: 0 —> Frame sync pulses generated externally
; 1—> Internally generated frame sync
6 XRST Transmit reset bit:0 —> reset the serial port,
; 1-—> bring serial port out of reset
7 RRST Receive reset bit: 0 —> reset the serial port,
; 1—> bring serial port out of reset
;8 INO Read-only bit reflecting the state of the CLKR pin
9 IN1 Read-only bit reflecting the state of the CLKX pin
;10 RRDY Transition from 0 to 1 indicates data is ready to be read
11 XRDY Transition from 0 to 1 indicates data is ready to be sent
;12 XSREMPTY Transmit shift register empty (Read—only)
; 0 —> tramsitter has experienced underflow,
; 1-> has not expereinced underflow
;13 RSRFUL Receive shift register full flag (Read—only):
; 0 —> Receiver has experienced overrun,
; 1—> receiver has not experienced overrun
;14 SOFT Soft bit — 0 —> immdeiate stop, 1—> stop after word completion
;15 FREE Free run bit: 0 —> behaviour depends on SOFT hit,
; 1-> free run regardless of SOFT bit
K 0 .set 00000000b << 8 ; bits 15-8 to O at reset
K_RRST set Ob<<7 ; First write to BSPC is 0
; : second write is 1
K_XRST set Ob<<6 ; First write to BSPC is 0
; : second write is 1
K_TXM .set 0Ob<<5
K_MCM set Ob<<4
K_FSM set 1b<<3 ; Frame Sync mode
K_ZERO .set 000b << 0

K_SERIAL_RST

1

3-38

set K_O|JK_RRST|K_XRSTI|K_TXM|K_MCM|K_FSM|K_ZERO
; first write to BSPC regsiter

PRELIMINARY

PRELIMINARY Buffered Serial Port

Example 3—-10. BSP initialization Routine (Continued)

K_RRST1 set 1b<<7 ; second write to BSPC

K_XRST1 set 1lb<<6 ; second write to BSPC

K_SERIAL_OUT_RST .set K_0O|K_RRST1|K_XRST1|K_TXM|K_MCM|K_FSM|K_ZERO
; second write to SPC1 regsiter

K_TRGCR_ADDR .set 14h ; Timer Control Register 1/0
; address

K_0 .set 0Oh

K_8000 .set 8000h ; set bit 15 to pull AIC out
; of reset

BSPCE Register Organization

|15 [14]13]12 [11[10]9 |8 |7 | 6|5 |4 O]
| | | | | | | | | | | | |

| | | | | | | | I | | | |
I[HALTR| RH | BRE| HALTX| XH | BXE| PCM| FIG| FE |[CLKP| FSP | CLKDIV |

* X X X X -

; Auto—Buffering Control Register (ABU)

K_CLKDV .set 00000<<0 : External clock
K_FSP .set 0<<5 ; Frame sync pulses are active
; high at reset O
K_CLKP set 0<<6 ; CLKP =0 at reset
K_FE set 0<<7 : 16 bit format
K_FIG set 0<<8 ; at reset =0
K_PCM set 0<<9 ; ho PCM mode
K_BXE set 1<<10 ; enable transmit auto—buffer
; mode
K_HALTX set 1<<12 : auto—buffer is halted after
; half buffer has been trans
; mitted
K_BRE set 1<<13 ; enable receive auto—buffer
K_HALTR set 1<<15 ; auto—buffer is halted after
; half buffer has been received
K_SPIC .set K_CLKDV|K_FSP|K_CLKP|K_FE|K_FIG|K_PCM
K_ABUC .set K_SPIC|K_BXE|K_HALTX|K_BRE|K_HALTR
K_XH .set 0800h ; transmit half buffer check
K_RH .set 4000h : receive half buffer check

* FILENAME: INTERRUPT.INC
* This file includes the IMR and IFR configuration
; 542Interrupt Mask Register (IMR) Organization

15 10 987 | 6 |54 |3 |2 |1 0|

*|Reserved | HPINTJINT3] XINTL| RITNZ | XINTO| RINTO | TINT | INT2 |INT1 |INTO|

* * * * * * *

K_IMR_RESR .set 0000000b << 9 ; reserved space
K_HPIINT set 1b<<8 ; disable HPI interrupt
K_TXINT set 1b<<7 ; enable TDM transmit 1
K_TRINT set 1lb<<6 ; enable TDM receive 1
K_BXINT set 1lb<<5 ; enable BSP transmit

; interrupt
K_BRINT set 1b<<4 ; enable BSP receive intr
K_TINT set 1lb<<3 ; enable timer interrupt
K_INT2 set 1lb<<2 ; enable INT2
K_INT1 set 1lb<<1 ;enable INT1

PRELIMINARY Analog I/0 3-39

Buffered Serial Port

Example 3—10. BSP initialization Routine (Continued)

K_INTO set 1b<<O ; enable INTO
.mmregs
.nclude "interrpt.inc”
.include "init_ser.inc”

ref rtop_Dbffr
ref wrt_cnfg ; initializes ACO1
.def aic_init

5.2 Functional Description
This routine disables IMR and clears any pending interrupts before

PRELIMINARY

initializing ACO1. The wrt_cnfg function configures the ACO1

.sect "aic_cnfg”

aic_init:
CALLD wrt_cnfg ; initialize ACO1
ANDM #~(K_BXINT|K_BRINT),IMR ; disable receive_intl
LD #rtop_bffr,A
STLM AAXR ; PING/PONG buffering scheme
STLM AARR ; is used
ST™M #8,BKX : transmit circular size
ST™M #8,BKR ; receive circular size
ORM #(K_BXINT|K_BRINT),IMR ; enable the RINT1, INT1
RETD
ST™M #(K_BXINT|K_BRINT),IFR ; service any pending interrupt
.end
.include "aic_cfg.inc”
.def wrt_cnfg

Writes new configuration data into the ACO1. Assuming a system
which processes speech signals and * requires the following parameters
Low pass filter cut—off frequency = 3.6 kHz

Sampling rate = 8000 Hz

Assume the Master clock MCLK = 10.368 MHz

This example demonstrates how to program these parameters —
the registers affected are:

Register A which determines the division of the MCLK frequency

to generate the internal filter clock FCLK.

It also determines the —3 dB corner frequency of the low—pass filter
Register B which determines the division of FCLK to generate

the sampling (conversion) frequency

It also determines the —3dB corner frequency of the high—pass filter

.asg AR1AIC_REG_P
.sect "aic_cnfg”
wrt_cnfg:
ST™M #aic_reg_tble,AIC_REG_P ;init AR1
RPT #AIC_REG_END_LIST-AIC_REG_START_LIST
MVPD #AIC_REG_START_LIST,*AIC_REG_P+ ; move the table
ST™M #aic_reg_tble,AIC_REG_P ;init AR1

ST™M #K_REG_0,BDXR ;primary data word — a jump start!
wait_xrdy

BITF BSPC,K_XRDY ;test XRDY bit in BSPC

BC wait_xrdy,NTC ;loop if not set

ST™M #K_SCND_CONTRL,BDXR ;send primary word with D01-D00

;signify secondary communication
LD *AlC_REG_P+,A

3-40

=11to

PRELIMINARY

PRELIMINARY Buffered Serial Port

Example 3—-10. BSP initialization Routine (Continued)

STLM A,BRC ;gives the # of regsiters to be
NOP sinitialized
RPTB aic_cfg_complte-1
wait_xrdyl
BITF BSPC,K_XRDY ;test XRDY bit in BSPC
BC wait_xrdy1l,NTC ;loop if not set
LD *AIC_REG_P+,A ;Read the register contents
STLM A, BDXR
wait_xrdy2
BITF BSPC,K_XRDY ;test XRDY bit in BSPC
BC wait_xrdy2,NTC ;loop if not set
ST™M #K_SCND_CONTRL,BDXR ;set to read the next register
aic_cfg_complte ;contents
RET
.end

* * * * * * *

* FILENAME: AIC_CFG.INC

* This file includes the ACO1 registers initialization

* All registers have 2 control bits that initiates serial communication

* There are 2 communication modes — primary and secondary communications
* During primary communication the control bits DOO and D01 are 11 to request
* for a secondary communication. In the secondary serial communications the
* control bits D15 and D14 perform same control function as primary.

* The R/W~ bit at reset is set to 0 placing the device in write mode.

K_NOP_ADDR set 0<<8

K_REG_0 .set K_NOP_ADDR

K_A ADDR set 1<<8 ; REG 1 address

K_A REG .set 36

K_REG_1 .set K_A_ADDR|K_A_REG ; FCLK = 144KHz => A =24h
K_B_ADDR .set 2<<8 ; REG 2 address

K_B_REG .set 18

K_REG_2 .set K _B_ADDR|K_B_REG ; Sampling rate = 8KHz

K_AA_ADDR set 3<<8 ; Register 3 address

K_AA_REG set O

K_REG_3 .set K_AA_ADDR|K_AA REG ;;no shift

K_GAIN_ADDR set 4<<8 ; Register 4 address

K_MONITOR_GAIN .set 00b<<4 ; Monitor output gain = squelch
K_ANLG_IN_GAIN .set 0lb<<2 ; Analog input gain = 0dB
K_ANLG_OUT_GAIN .set 0lb<<O0 ; Analog output gain = 0dB

K_REG_ 4 .set K_GAIN_ADDR|K_MONITOR_GAIN|K_ANLG_IN_GAIN|K_ANLG_OUT_GAIN
K_ANLG_CNF _ADDR .set 5<<8 ; Register 5 address

K_ANLG_RESRV set 0<<3 ; Must be setto 0

K_HGH_FILTER set 0<<2 ; High pass filter is enabled

K_ENBL_IN set 0lb<<O ; Enables IN+ and IN—

K_REG_5 .set K_ANLG_CNF_ADDR|K_ANLG_RESRV|K_HGH_FILTER|K_ENBL_IN
K_DGTL_CNF_ADDR .set 6<<38 ; Register 6 address

K_ADC _DAC set 0<<5 ; ADC and DAC is inactive

K_FSD_OUT set 0<<4 ; Enabled FSD output

K_16_BIT_COMM set 0<<3 ; Normal 16—bit mode

K_SECND_COMM set 0<<2 ; Normal secondary communication
K_SOFT_RESET set 0<<1 ; Inactive reset

K_POWER_DWN set 0<<O0 ; Power down external

K_REG_HIGH_6 .set K _DGTL_CNF_ADDR|K_ADC_DAC|K_FSD_OUT|K_16_BIT_COMM

PRELIMINARY Analog /O 3-41

Buffered Serial Port PRELIMINARY

Example 3—10. BSP initialization Routine (Continued)

K_REG_LOW_6 set K_SECND_COMM|K_SOFT_RESET|K_POWER_DWN
K_REG 6 set K_REG_HIGH_6|K_REG_LOW_6
K_FRME_SYN_ADDR .set 7<<8 ; Register 7 address
K_FRME_SYN set 0<<8 ;

K_REG 7 set K_FRME_SYN_ADDR|K_FRME_SYN
K_FRME_NUM_ADDR .set 8<<8 ; Register 8 address
K_FRME_NUM set 0<<8 ;

K_REG 8 set K_FRME_NUM_ADDR|K_FRME_NUM

; primary word with DO1 and DOO bits set to 11 will cause a secondary
; communications interval to start when the frame sync goes low next
K_SCND_CONTRL set 11b<<0 ; Secondary communication request
AIC_REG_START_LIST .sect "aic_reg” ; includes the aic table
.word AIC_REG_END_LIST-AIC_REG_START_LIST-1
.word K REG 1
.word K_REG_2
.word K_REG_3
.word K REG 4
.word K_REG_5
.word K_REG_6
.word K _REG 7
.word K_REG_8
AIC_REG_END_LIST
aic_reg_tble .usect "aic_vars”,10
K_XRDY .set 0800h ; XRDY bit in BSPC
.mmregs
.include "INTERRPT.INC”
.include "init_ser.inc”
.def bsp_receive_int
.def bsp_transmit_int
; bsp transmit and receive interrupt service routine
; This routine performs BSP receive interrupt and transmit interrupt in
; autobuffering mode. Since HALTX and HALTR = 1, the autobuffering mode
; is disabled thus BXE and BRE =1 to continue in autobuffering mode.

.sect "main_prg”
bsp_receive_int:
LD #0,DP
ORM #K_BRE,BSPCE : enable the auto—buffer mode
POPM ST1
POPM STO
RETE ; return and enable interrupts

*kkkkk *kkdkk * *kkk

bsp_transmit_int:

LD #0,DP

ORM #K_BXE,BSPCE ; enable the auto—buffer mode
POPM ST1

POPM STO

RETE ; return and enable interrupts
.end

3-42 PRELIMINARY

PRELIMINARY Buffered Serial Port

Example 3—-10. BSP initialization Routine (Continued)

.mmregs

.include "init_54x.inc”

.include "main.inc”

.include init_ser.inc”

ref d_auto_bffr_flag,d_auto_bffr_reg,rtop_bffr
ref RCV_INT1_DP

ref aic_init,serial_init,init_54,init_bffr_ptr_var
.def main_start

.sect "main_prg”

main_start:
CALL init_54 ; initialize STO,ST1 PMST and other regsiters
CALL init_bffr_ptr_var ; init tables,vars,bffrs,ptr
CALL serial_init ; initialize serial_port 1
if K_DEFAULT_AC01=1
CALLD aic_init ; Configures AC01
LD #0,DP
NOP
.else ; default ACO1 config
LD #rtop_bffr,A ; sampling rate = 16KHz
STLM AAXR ; init. the buffers
STLM AARR
STM #8,BKX : transmit circular size
ST™M #8,BKR ; receive circular size
.endif
start_loop
LD #RCV_INT1_DP,DP : restore the DP
loop:
BITF d_auto_bffr_flag,1 ; check if auto—buffering scheme
BC loop,NTC ; is enabled
ST #0,d_auto_bffr_flag
LD #rtop_bffr,A ; PING buffer address
MVKD BSPCE,d_auto_bffr_reg ; load the status of SPCE
BITF d_auto_bffr reg,K_RH ; check if first is emptied
BC half_buffer_empty,NTC
ADD #K_AUTO_BFFR_SIZE/2,A ; PONG buffer
half_buffer_empty
STLM A, AXR : like PING/PONG buffer scheme
B loop
.end

PRELIMINARY Analog I/0 3-43

PRELIMINARY

Chapter 4

Signal Processing

Certain features of the '54x architecture and instruction set facilitate the
solution of numerically intensive problems. Some examples include filtering,
encoding techniques in telecommunication applications, and speech recogni-
tion. This chapter discusses digital filters that use both fixed and adaptive
coefficients and fast Fourier transforms.

Topic Page
4.1 Finite Impulse Response (FIR) Filters 4-
4.2 Infinite Impulse Response (IIR) Filters 4 =
4.3 Adaptive Filtering4
4.4 Fast Fourier Transforms (FFTS) i 4-
4-1

PRELIMINARY

Finite Impulse Response (FIR) Filters PRELIMINARY

4.1 Finite Impulse Response (FIR) Filters

Digital filters are a common requirement for digital signal processing systems.
There are two types of digital filters: finite impulse response (FIR) and infinite
impulse response (IIR). Each of these can have either fixed or adaptive coeffi-
cients.

If an FIR filter has an impulse response, h(0), h(1), ..., h(N-1), and x(n] repre-
sents the input of the filter at time n, the output y(n] at time n is given by the
following equation:

y(n) = hO)x(n) + h(L)x(n-1) + h2)X(n=2) + ...+ h(N-1)X[n—(N-1)]

Figure 41 illustrates a method using circular addressing to implement an FIR
filter. To set up circular addressing, initialize BK to block length N. The locations
for d_data_buffer, and impulse responses, COFF_FIR, must start from
memory locations whose addresses are multiples of the smallest power of 2
thatis greater than N. Forinstance, if N =11, the firstaddress for d_data_buffer
must be a multiple of 16. Thus, the lowest four bits of the beginning address
must be 0.

Figure 4-1. Data Memory Organization in an FIR Filter

4-2

Initial input Final input
samples samples

Low address h(N-1) Oldest input| Xx[n—(N-1)] x(n) —

h(N-2) X[n—(N-2)] X[N—(N-1)]
. . . Circular
queue
h(1) x(n-1) x(n-2)
High address h(0) Newest input x(n) x(n-1) E—

In Example 4-1, N is 16 and the circular buffer starts at an address whose four
LSBs are 0.

PRELIMINARY

PRELIMINARY Finite Impulse Response (FIR) Filters

Example 4-1. FIR Implementation Using Circular Addressing Mode With a Multiply

and Accumulate (MAC) Instruction

; TEXAS INSTRUMENTS INCORPORATED
.mmregs
include "main.inc”
; the 16 tap FIR coefficients
COFF_FIR_START .sect "coff fir" ; filter coefficients
.word 6Fh
.word OF3h
.word 269h
.word 50Dh
.word 8A%h
.word 0C9%h
.word OFF8h
.word 11EBh
.word 11EBh
.word OFF8h
.word 0C9%h
.word 8A%h
.word 50Dh
.word 269h
.word OF3h
.word 6Fh
COFF_FIR_END
FIR_DP .usect “fir_vars”,0
d_filin .usect “fir_vars”,1
d_filout .usect "fir_vars”,1
fir_coff table .usect "fir_coff",20
d_data_buffer .usect "fir_bfr",40 ; buffer size for the filter
.def fir_init p nitialize FIR filter
.def fir_task P p erform FIR filtering

; Functional Description
: This routine initializes circular buffers both for data and coeffs.

.asg ARO, FIR_INDEX_P

.asg AR4,FIR_DATA_P

.asg ARS5,FIR_COFF_P

.sect "fir_prog”

fir_init:

ST™M #fir_coff_table,FIR_COFF_P

RPT #K_FIR_BFFR-1 ;move FIR ¢ oeffs from program

MVPD #COFF_FIR_START,*FIR_COFF_P+ ; to data

ST™M #K_FIR_INDEX,FIR_INDEX_P

STM #d_data_buffer,FIR_DATA P ;load ¢ ir_bfr address for the
; recent samples

RPTZ A#K_FIR_BFFR

STL A*FIR_DATA P+ : reset the buffer

STM #(d_data_buffer+K_FIR_BFFR-1), FIR_DATA_P

RETD

STM #fir_coff_table, FIR_COFF_P

PRELIMINARY

Signal Processing

4-3

Finite Impulse Response (FIR) Filters

PRELIMINARY

Example 4-1. FIR Implementation Using Circular Addressing Mode with a Multiply

and Accumulate (MAC) Instruction (Continued)

Functional Description

This subroutine performs FIR filtering using MAC instruction.
accumulator A (filter output) = h(n)*x(n-i) fori=0,1...15

.asg
.asg
.asg
.asg
.sect
fir_task:
; LD
STM
RPTBD
ST™M
LD
fir_filter:
STL

RPTZ
MAC
STH
fir_filter_loop
RET

ARS6,INBUF_P
AR7,0UTBUF_P
AR4,FIR_DATA P
AR5,FIR_COFF_P

"fir_prog”

#FIR_DP,DP

#K_FRAME_SIZE-1,BRC ; Repeat 256 times
fir_filter_loop—1

#K_FIR_BFFR,BK ; FIR circular bffr size

*INBUF_P+, A ; load the input value

A*FIR_DATA_ P+% ; replace oldest sample with newest

; sample

A,(K_FIR_BFFR-1)
*FIR_DATA_P+0%,*FIR_COFF_P+0%,A ; filtering

A, *OUTBUF_P+ ; replace the oldest bffr value

PRELIMINARY

PRELIMINARY

Finite Impulse Response (FIR) Filters

In a second method, two features of the '54x device facilitate implementation
of the FIR filters: circular addressing and the FIRS instruction. The FIR filter
shown in Figure 4-2, with symmetric impulse response about the center tap,
is widely used in digital signal processing applications because of its linear
phase response. In applications such as speech processing, linear phase re-
sponse is required to avoid phase distortion, which degrades the quality of the

signal waveforms. The output of the filter for length N is given by:

N/2-1

y(m= % h(k)[x(n—k)+x(n—(N-1+k))]

k=0

n=20,1,2

Figure 4-2. Block Diagram of an Nth-Order Symmetric FIR Filter

PRELIMINARY

x(n)

Z—l

Z—l

h(0)

Z—l

Z—l

Z—l

h(1)

Z—l

Z—l

h(2)

h(N/2-1)

Signal Processing

> y(n)

4-5

Finite Impulse Response (FIR) Filters PRELIMINARY

Figure 4—3 shows the storage diagram of the input sequence for two circular buff-
ers. To build the buffers, the value of N/2 is loaded into a circular buffer size regis-
ter. AR4 is set to point to the top of buffer 1 and AR5 points to the bottom of buffer
2. The data at the top of buffer 1 is moved to the bottom of buffer 2 for the delayed
operation before storing new sample data in buffer 1. The processor then per-
forms the adds and multiplies h(0){x(0)+x(—N+1)}. After each iteration of the filter-
ing routine, AR4 points to the next time slot window for the data move and AR5
points to the next input sample. For the next iteration of the filtering routine, AR4
points to address 1 and AR5 points to address N/2—2.

Figure 4-3. Input Sequence Storage

4-6

Input Sample ~ Buffer Address ARU Buffer 2 Address
XO)=—1 x(-8) 0 \¢&—— X(=9) 0
X(=7) 1 x(-10) 1
X(=6) 2 x(~11) 2
X(=5) 3 x(=12) 3
X(-4) 4 X(-13) 4
x(=3) 5 x(-14) 5
x(=2) 6 x(-15) 6
X(-1) 7 x16) |7 « 2R

Example 4-2 shows how to implement a symmetric FIR filter on the '54x. It
uses the symmetrical finite impulse response (FIRS) instruction and the repeat
next instruction and clear accumulator (RPTZ) instruction together. FIRS can
add two data values (input sequences stored in data memory) in parallel with
multiplication of the previous addition result using an impulse response stored
in program memory. FIRS becomes a single-cycle instruction when used with
the single-repeat instruction. To perform the delayed operation in this storage
scheme, two circular buffers are used for the input sequence.

PRELIMINARY

PRELIMINARY Finite Impulse Response (FIR) Filters

Example 4-2. Symmetric FIR Implementation Using FIRS Instruction
; TEXAS INSTRUMENTS INCORPORATED

.mmregs
.include “main.inc”
FIR_COFF .sect "sym_fir” ; filter coefficients
.word 6Fh
.word O0F3h
.word 269h
.word 50Dh
.word 8A9h
.word 0C9%h
.word OFF8h
.word 11EBh
d_datax_buffer .usect "cir_bfr",20
d_datay_buffer .usect "cir_bfrl",20
.def sym_fir_init ; initialize symmetric FIR
.def sym_fir_task

Functional Description
This routine initializes circular buffers both for data and coeffs.

.asg ARO,SYMFIR_INDEX_P
.asg AR4,SYMFIR_DATX_P
.asg AR5,SYMFIR_DATY_P
.sect "sym_fir"
sym_fir_init:
ST™M #d_datax_buffer, SYMFIR_DATX P ; load cir_bfr address

; for the 8 most
; recent samples STM #d_datay
_buffer+K_FIR_BFFR/2-1,SYMFIR_DATY_P

; load cir_bfrl address

; for the 8 old samples
STM #K_negl,SYMFIR_INDEX_P ; index offset —

; whenever the pointer

; hits the top of the bffr,

; it automatically hits

; bottom address of

: buffer and decrements

; the counter

RPTZ A#K_FIR_BFFR

STL A* SYMFIR_DATX_P+

ST™M #d_datax_buffer, SYMFIR_DATX_P

RPTZ A#K_FIR_BFFR

STL A* SYMFIR_DATY_P-

RETD

STM #d_datay_buffer+K_FIR_BFFR/2-1, SYMFIR_DATY_P

PRELIMINARY Signal Processing 4-7

Finite Impulse Response (FIR) Filters

PRELIMINARY

Example 4-2. Symmetric FIR Implementation Using FIRS Instruction (Continued)

; Functional Description

;This program uses the FIRS instruction to implement symmetric FIR filter
;Circular addressing is used for data buffers. The input scheme for the data;
;samples is divided into two circular buffers. The first buffer contains
;samples from X(—=N/2) to X(-1) and the second buffer contains samples from
X(=N) to X(-=N/2-1).

sym_fir_task:

symmetric_fir:

.asg
.asg
.asg
.asg
.sect

STM
RPTBD
STM
LD

MVDD
STL

ADD
RPTZ
FIRS
MAR
MAR
STH

sym_fir_filter_loop

RET
.end

ARG6,INBUF_P

AR7,0UTBUF_P

AR4,SYMFIR_DATX_P

AR5,SYMFIR_DATY_P
"sym_fir”

#K_FRAME_SIZE-1,BRC

sym_fir_filter_loop-1
#K_FIR_BFFR/2,BK
*INBUF_P+, B

*SYMFIR_DATX_P,*SYMFIR_DATY_P+0% ; move X(-N/2) to X(-N)
eplace oldest sample with newest

B,*SYMFIR_DATX_P
; sample

*SYMFIR_DATX_P+0%,*SYMFIR_DATY_P+0%,A

B,#(K_FIR_BFFR/2-1)

*SYMFIR_DATX_P+0%,*SYMFIR_DATY_P+0%,FIR_COFF
*+SYMFIR_DATX_P(2)% ; to load the next newest sample

*SYMFIR_DATY_P+%
B, *OUTBUF_P+

o r

; position for the X(—N/2) sample

; add X(0)+X(=N/2-1)

PRELIMINARY

PRELIMINARY

Infinite Impulse Response (lIR) Filters

4.2 Infinite Impulse Response (lIR) Filters

IIR filters are widely used in digital signal processing applications. The transfer
function of an IIR filter is given by:

by + bzt + ...+ byzV ¥(2)

H(2) = 1+az'+...+az" x©2

The transfer function has both poles and zeros. Its output depends on both in-
put and past output. lIR filters need less computation than FIR filters. However,
IIR filters have stability problems. The coefficients are very sensitive to coeffi-
cient quantization. Figure 4—-4 shows a typical diagram of an IIR filter.

Figure 4-4. Nth-Order Direct-Form Type Il IR Filter
d(n)

Most often, lIR filters are implemented as a cascade of second-order sections,
called biguads. The block diagram is shown in Figure 4-5.

Figure 4-5. Biquad IIR Filter

dn) bo dn) b,

x(n) y(n)

PRELIMINARY Signal Processing 4-9

Infinite Impulse Response (IIR) Filters PRELIMINARY

Example 4-3. Two-Biquad Implementation of an IIR Filter
; TEXAS INSTRUMENTS INCORPORATED

.mmregs
.include "main.inc”
.sect "iir_coff”

iir_table_start

*

* second-order section # 01

*

.word —26778 A2
.word 29529 Al/2
.word 19381 B2
.word —-23184 :B1
.word 19381 :BO

* second—order section # 02

.word —-30497 A2
.word 31131 ;AL/2
.word 11363 B2
.word -20735 ;B1
.word 11363 :BO
iir_table_end
iir_coff_table .usect "coff_iir",16
IIR_DP .usect "iir_vars”,0
d_iir_d .usect "iir_vars”,3*2
d_iir_y .usect "iir_vars”,1
.def iir_init
.def iir_task

Functional Description
This routine initializes buffers both for data and coeffs.

.asg AR5, IIR_DATA_P ; data samples pointer
.asg AR4,lIIR_COFF_P ; lIR filter coffs pointer
.sect "iir
iir_init:
STM #iir_coff_table,IIR_COFF_P
RPT #K_IIR_SIZE-1 ; move IIR coeffs from program
MVPD #iir_table_start,*IIR_COFF_P+ ;to data
; LD #lIR_DP,DP
STM #d_iir_d,IIR_DATA_P ;AR5:d(n),d(n-1),d(n-2)
RPTZ A#5 ;initial d(n),d(n-1),d(n—2)=0
STL AXIIR_DATA_P+
RET

4-10 PRELIMINARY

PRELIMINARY Infinite Impulse Response (IIR) Filters

Example 4-3. Two-Biquad Implementation of an IIR Filter (Continued)

; Functional Description

This subroutine performs IIR filtering using biquad sections
IIR Low pass filter design

Filter type : Elliptic Filter

Filter order : 4 order (cascade: 2nd order + 2nd order)

cut freq. of pass band : 200 Hz

cut freq. of stop band : 500

; BO
; >+ > d(n) X—>+ —-—>
; I I I
; | Al | B1
; +<—x—d(n-1) —x—>+ |
, I
; | A2 | B2 |
; +<—x—d(n-2) —x—>+
; second order IIR
.asg AR5,IIR_DATA P ; data samples pointer
.asg ARA4,IIR_COFF_P ; IR filter coffs pointer
.asg ARG6,INBUF_P
.asg AR7,0UTBUF_P
.asg ARL]IIR_INDEX_P
.sect iir”
iir_task:
ST™M #K_FRAME_SIZE-1,BRC ; Perform filtering for 256 samples
RPTB iir_filter_loop-1
LD *INBUF_P+,8,A ; load the input value
iir_filter:
STM #d_iir_d+5,IIR_DATA_P ;AR5:d(n),d(n-1),d(n-2)
MVPD #iir_table_start,*lIR_COFF_P+ ;to data

STM #iir_coff_table,IIR_COFF_P ;AR4:coeff of IIR filter A2,A1,B2,B1,B0
STM #K_BIQUAD-L1,IIR_INDEX_P

feedback_path:
MAC *IR_COFF_P+*IIR_DATA_P—A :input+d(n—-2)*A2

MAC *lIR_COFF_P*IR_DATA P.A input+d(n—2)*A2+d(n—1)*A1/2
MAC *lIR_COFF_P+*IR_DATA P-A :A=A+d(n-1)*A1/2
STH A*IIR_DATA P+ :d(n) = input+d(n-2)*A2+d(n—1)*A1

MAR *[IR_DATA_P+
* Forward path
MPY *IR_COFF_P+*IR_DATA_P-A ;d(n-2)*B2
MAC *[IR_COFF_P+*IR_DATA_P,A ;d(n-2)*B2+d(n-1)*B1
DELAY *lIR_DATA_P- ;d(n-2)=d(n-1)
eloop:
BANZD feedback_path, *IIR_INDEX_P—
MAC *[IR_COFF_P+*IIR_DATA_P,A ;d(n—-2)*B2+d(n-1)*B1+d(n)*BO

DELAY *IIR_DATA_P- ;d(n-1)=d(n)

STH A,d_iir_y ;output=d(n-2)*B2+d(n-1)*B1+d(n)*BO

LD d_iir_y,2,A ; scale the output

STL A, *OUTBUF_P+ ; replace the oldest bffr value
iir_filter_loop

RET

.end

PRELIMINARY Signal Processing 4-11

Adaptive Filtering

4.3 Adaptive Filtering

Some applications for adaptive FIR and IIR filtering include echo and acoustic
noise cancellation. In these applications, an adaptive filter tracks changing
conditions in the environment. Although in theory, both FIR and IIR structures
can be used as adaptive filters, stability problems and the local optimum points
of IR filters makes them less attractive for this use. FIR filters are used for all
practical applications. The LMS, ST||MPY, and RPTBD instructions on the '54x
can reduce the execution time of code for adaptive filtering. The block diagram
of an adaptive FIR filter is shown in Figure 4—6. The Adaptive filtering routine
is shown in Example 4-4, page 4-14.

PRELIMINARY

Figure 4-6. Adaptive FIR Filter Implemented Using the Least-Mean-Squares (LMS)

4-12

Algorithm

X(n) | 21 zl f—»- - - -] 11— Desired
resdp((l)q?se
(n) §
o 3
3 -
LMS

On the '54x, one coefficient can be adapted by using the least-mean-squares
(LMS) algorithm, which is given by

by (i+1) = by (i) + 2Be(i)x(i - k),

where:

e(i) = d() - y(i)

The output of the adaptive filter is given by

N-1

yi) =Y b x (i-k)
k=0

PRELIMINARY

PRELIMINARY

Adaptive Filtering

The LMS instruction can perform a MAC instruction and an addition with
rounding in parallel. The LMS algorithm calculates the filter output and up-
dates each coefficient in the filter in parallel by using the LMS instruction, along
with the ST||MPY and RPTBD instructions. For each coefficient in the filter at
a given instant, 2f3e(i) is a constant. This factor can be computed once and
stored in the temporary register, T, to use in each of the updates. The ST||MPY
instruction multiplies a data sample by this factor, then the LMS instruction up-
dates a coefficient in the filter and accumulates the filtered output. Since the
factor is stored in T, the adaptive filtering in a time-slot window is performed
in N cycles.

An adaptive filter can be used in modeling to imitate the behavior of a physical
dynamic system. Figure 4—7 shows a block diagram of system identification,
where the adaptive filter adjusts itself to cause its output to match that of the
unknown system. H(z) is the impulse response of an unknown system; for ex-
ample, the echo response in the case of an acoustic echo cancellation system.
The signal x(n) trains the system. The size of the adaptive filter is chosen to
be N, where N is the number of taps (coefficients) of the known system, W(z).

Two circular buffers store the input sequence. AR3 points to the first buffer,
AR2 points to the coefficients of H(z), AR4 points to the coefficients of W(z),
and AR5 points to the second buffer. The newest sample is stored in a memory
location that is input to the adaptive filter. The input sample is subtracted from
the output of the adaptive filter to obtain the error data for the LMS algorithm.
In this example, the adaptive filter output is computed for the newest sample
and the filter coefficients are updated using the previous sample. Thus, there
is an inherent delay between the update of the coefficient and the output of the
adaptive filter.

Figure 4—-7. System Identification Using Adaptive Filter

PRELIMINARY

d(n)
H(z) T
x(n) e(n)
X y(n)
W(z)

Signal Processing 4-13

Adaptive Filtering PRELIMINARY

Example 4-4. System Identification Using Adaptive Filtering Techniques

; TEXAS INSTRUMENTS INCORPORATED

.mmregs
.include "main.inc”
scoff .sect "coeffh”

include "impulse.h”
ADAPT_DP .usect "adpt_var”,0

d_primary .usect "adpt_var”,1

d_output .usect "adpt_var”,1

d_error .usect "adpt_var”,1

d mu .usect "adpt var”,1

d_mu_e .usect "adpt_var”,1

d_new_x .usect "adpt_var”,1

d_adapt_count .usect "adpt_var”,1

hcoff .usect "bufferh”, H_FILT SIZE ; H(2) coeffs

wecoff .usect "bufferw”, ADPT_FILT_SIZE W(z) coeffs

xh .usect "bufferx”, H_FILT_SIZE ; input data to H(z)

XW .usect "bufferp”, ADPT_FILT_SIZE ; input data—adaptive filter
.def adapt_init,adapt_task

; Functional Description

Initializes the adaptive coefficients, buffers, vars, and sets the circular

; This subroutine moves filter coefficients from program to data space.
; buffer address for processing.

.asg ARO,INDEX_P
.asg ARZL,INIT_P ; initialize buffer pointer
.asg AR3,XH_DATA_P ; data coeff buffer pointer
.asg AR5 XW_DATA P ; data coeff buffer pointer
; for cal.y output
.sect "filter”
adapt_init:

; Initialize input data location, input to hybrid, with zero.
STM #xh,INIT_P
RPTZ A#H_FILT SIZE-1
STL AZINIT_P+
; Initialize input data location, input to adaptive filter, with Zero.
STM #xw,INIT_P
RPTZ A#ADPT_FILT_SIZE-1
STL A*INIT_P+
; Initialize adaptive coefficient with Zero.
STM #wcoff, INIT_P
RPTZ A#ADPT_FILT_SIZE-1
STL A*INIT_P+
; initialize temporary storage locations with zero
ST™M #d_primary,INIT_P
RPTZ A#6
STL A*INIT_P+
; copy system coefficient into RAM location, Reverse order STM #hcoff,INIT_P
RPT #H_FILT_SIZE-1
MVPD #scoff, *INIT_P+

4-14 PRELIMINARY

PRELIMINARY Adaptive Filtering

Example 4-4. System Ildentification Using Adaptive Filtering Techniques (Continued)

;LD #ADAPT_DP,DP ;set DP now and not worry about it
ST #K_mu,d_mu
STM#1,INDEX_P ; increment value to be used by

; dual address

; associate auxiliary registers for circular computation
STM#xh+H_FILT_SIZE-1,XH_DATA_P ;lasti nput of hybrid buffer

RETD

STM #xw+ADPT_FILT_SIZE-1,XW_DATA P ;last element of input buffer

; Functional Description

This subroutine performs the adaptive filtering. The newest sample is stored
in a separate location since filtering and adaptation are performed at the

the w(N-1) coefficient.

d_primary = xh *hcoff
d_output = xw *wcoff
LMS algorithm:

; same time. Otherwise the oldest sample is over written before updating

w(i+1) = w(i)+d*mu_error*xw(n—i) for i = 0,1,...127 and n = 0,1,.....
.asg AR2,H_COFF_P ; H(Z) coeff buffer pointer
.asg AR3XH_DATA P ; data coeff buffer pointer
.asg ARG6,INBUF_P ; input buffer address pointer
.asg AR7,0UTBUF_P ; output buffer address pointer
; for cal. primary input
.asg AR4,W_COFF_P ; W(z) coeff buffer pointer
.asg AR5 XW_DATA_P ; data coeff buffer pointer
.sect “filter”
adapt_task:

ST™M #H_FILT_SIZE,BK ; first circular buffer size
ST™M #hcoff,H_COFF_P ; H_COFF_P —> last of sys coeff
ADDM #1,d_adapt_count

LD *INBUF_P+, A ; load the input sample

STM #wcoff W_COFF_P : reset coeff buffer

STL A,d_new_x ; read in new data

LD d_new_ Xx,A ;

STL A*XH_DATA_P+0% ; store in the buffer

RPTZ A#H_FILT_SIZE-1 ; Repeat 128 times

MAC *H_COFF_P+0%,*XH_DATA_P+0%,A ; mult& acc:a=a+ (h*x)
STH A,d_primary ; primary signal

; start simultaneous filtering and updating the adaptive filter here.

LD d_mu_e,T ; T = step_size*error

SUB B,B . zeroacc B

STM #(ADPT_FILT_SIZE-2),BRC ; set block repeat counter
RPTBD Ims_end-1

MPY *XW_DATA_P+0%, A ; error * oldest sample
LMS *W_COFF_P, *XW_DATA_P ; B =filtered output (y)

; Update filter coeff
ST A, *W_COFF_P+ ; save updated filter coeff
|| MPY *XW_DATA_P+0%,A ; error *x[n—(N-1)]

PRELIMINARY Signal Processing 4-15

Adaptive Filtering

PRELIMINARY

Example 4-4. System Identification Using Adaptive Filtering Techniques (Continued)

LMS *W_COFF_P, *XW_DATA_P

Ims_end

STH
MPY
MVKD
LMS
STH
LD
SuUB
STL
LD
MPY
STH
LD
STL
LD
SUB
BC
RETD

ST

.end

; B = accum filtered output y
; Update filter coeff

A, *W_COFF_P ; final coeff

*XW_DATA_P,A ; X(0)*h(0)
#d_new_x,*XW_DATA_P ; store the newest sample
*W_COFF_P,*XW_DATA_P+0%

B, d_output ; store the filtered output
d_primary,A

d_output,A
A, d_error ; store the residual error signal
d mu,T

d_error,A ; A=u*e

Ad mu_e ; save the error *step_size
d_error,A ; residual error signal
A, *OUTBUF_P+
#K_FRAME_SIZE A ; check if a frame of samples
d_adapt_count,A ; have been processed

adapt_task,AGT

#K_0,d_adapt_count ; restore the count

* This is an input file used by the adaptive filter program.
* The transfer function is the system to be identified by the adaptive filter

4-16

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

OFFFDh
24h

1Ch
OFFF3h
OFFE8h .word 0Ch
3h

1Eh
1Ah
22h
OFFF5h
OFFE5h
OFFF1h
OFFC5h
0Ch
OFFE8h
37h
OFFE4h
OFFCAh
1Ch
OFFFDh
21h
OFFF7h

PRELIMINARY

PRELIMINARY Adaptive Filtering

Example 4-4. System Ildentification Using Adaptive Filtering Techniques (Continued)

.word 2Eh
.word 28h
.word OFFC6h
.word 53h
.word OFFBOh
.word 55h
.word OFF36h
.word 5h
.word OFFCFh
.word OFF99h
.word 64h
.word 41h
.word OFFF1h
.word OFFDFh
.word 0D1h
.word 6Ch
.word 57h
.word 36h
.word OAOh
.word OFEE3h
.word 6h
.word OFEC5h
.word OABh
.word 185h
.word OFFF6h
.word 93h
.word 1Fh
.word 10Eh
.word 59h
.word OFEFOh
.word 96h
.word OFFBFh
.word OFF47h
.word OFF76h
.word OFFOBh
.word OFFAFh
.word 14Bh
.word OFF3Bh
.word 132h
.word 289h
.word 8Dh
.word OFE1Dh
.word OFE1Bh
.word 0D4h
.word OFF69h
.word 14Fh
.word 2AAh
.word OFD43h
.word OF98Fh
.word 451h
.word 13Ch
.word OFEF7h
.word OFE36h

PRELIMINARY Signal Processing 4-17

Adaptive Filtering

PRELIMINARY

Example 4-4. System Identification Using Adaptive Filtering Techniques (Continued)

4-18

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

80h
OFFBBh
OFC8Eh
10Eh
37Dh
6FAh
1h
OFD89h
198h
OFE4Ch
OFE78h
0F215h
479h
749h
289h
O0F667h
304h
5F8h
34Fh
47Bh
OFF7Fh
85Bh
OF837h
OF77Eh
OFF80h
0B9Bh
OF03Ah
OEE66h
OFE28h
OFADOhA
8C3h
OF5D6h
14DCh
OF3A7h
OE542h
10F2h
566h
26AAh
15Ah
2853h
OEE95h
93Dh
20Dh
1230h
238Ah

PRELIMINARY

PRELIMINARY

Fast Fourier Transforms (FFTs)

4.4 Fast Fourier Transforms (FFTS)

FFTs are an efficient class of algorithms for the digital computation of the N-point
discrete Fourier transform (DFT). In general, their input sequences are assumed
to be complex. When input is purely real, their symmetric properties compute the
DFT very efficiently.

One such optimized real FFT algorithm is the packing algorithm. The original
2N-point real input sequence is packed into an N-point complex sequence.
Next, an N-point FFT is performed on the complex sequence. Finally the
resulting N-point complex output is unpacked into the 2N-point complex
sequence, which corresponds to the DFT of the original 2N-point real input.

Using this strategy, the FFT size can be reduced by half, at the FFT cost func-
tion of O(N) operations to pack the input and unpack the output. Thus, the real
FFT algorithm computes the DFT of a real input sequence almost twice as fast
as the general FFT algorithm. The following subsections show how to perform
a 16-point real FFT (2N = 16).

4.4.1 Memory Allocation for Real FFT Example

PRELIMINARY

The memory organization for the real FFT example in Chapter10, Application
Code Examples, uses the memory configuration shown in Figure 4-8 on page
4-20.

The following tables give the organization of values in data memory from the
beginning of the real FFT algorithm to its end. Initially, the original 2N-point real
input sequence, a(n), is stored in the lower half of the 4N-word data processing
buffer, as shown in Figure 4-9 on page 4-21.

Signal Processing 4-19

Fast Fourier Transforms (FFTs)

Figure 4-8. Memory Allocation for Real FFT Example

4-20

rfft_task

reset

d_grps_cnt
d_twid_idx
d_data_idx

sine

cosine

fft_data

real_fft_output

—>

—>

—>

—>

—>

PRELIMINARY

Program Memory

0080h
Program space
015Eh (about 224 words)
FF80h Interrupt vector table
FFFFh and reserved locations
Data Memory
0000h
Memory-mapped registers
005Fh
0060h Group counter
0061h Index of twiddle table
0062h Index of data processing buffer
0070h
Stack
007Fh
0400h
Sine table
05FFh
0800h
Cosine table
09FFh
0CO00h Data processing buffer
(2048 words maximum)
(bottom half serves as real FFT input
13FFh buffer initially)
1400h
Power spectrum
output buffer
17EFh (1024 words maximum)

PRELIMINARY

PRELIMINARY Fast Fourier Transforms (FFTs)

Figure 4-9. Data Processing Buffer

Data Memory

0CO00h
0CO01h
0C02h
0C03h
0C04h
0CO05h
0CO06h
0C07h
0CO08h
0C0%h
0COAh
0COBh
0COCh
0CODh
0COEh
0COFh
0C10h a(0)
0C11h a(1)
0C12h a(2)
0C13h a(3)
0C14h a(4)
0C15h a(5)
0C16h a(6)
0C17h a(7)
0C18h a(8)
0C19h a(9)
0C1Ah a(10)
0C1Bh a(11)
0C1Ch a(12)
0C1Dh a(13)
0C1Eh a(14)
0C1Fh a(15)

PRELIMINARY Signal Processing 4-21

Fast Fourier Transforms (FFTs) PRELIMINARY

4.4.2 Real FFT Example

The '54x real FFT algorithm is a radix-2, in-place DFT algorithm. It is shown
in the following subsections in four phases :

1) Packing and bit-reversal of input
2) N-point complex FFT

3) Separation of odd and even parts
4) Generation of final output

Initially, any real input sequences of 16 to 1024 points can be used by simply
modifying the constants K_FFT_SIZE and K_LOGN appropriately, defined in
file main.inc. (The real input size is described as 2N and the FFT size in phase
two as N.) For a 256-point real input, for example, K_FFT_SIZE must be set
to 128, not 256, and K_LOGN must be 7, not 8. Input data is assumed to be in
Q15 format.

4.4.2.1 Phase 1: Packing and Bit-Reversal of Input

4-22

In phase 1, the input is bit-reversed so that the output at the end of the entire
algorithm is in natural order. First, the original 2N-point real input sequence is
copied into contiguous sections of memory labeled real_fft_input and inter-
preted as an N-point complex sequence, d[n]. The even-indexed real inputs
form the real part of d[n] and the odd-indexed real inputs form the imaginary
part. This process is called packing. (n is a variable indicating time and can
vary from 0 to infinity, while N is a constant). Next, this complex sequence is
bit-reversed and stored into the data processing buffer, labeled fft_data.

1) Arrange the real input sequence, a(n) forn=0, 1, 2, ... n— 1, as shown
in Figure 4-9. Divide a(n) into two sequences as shown in Figure 4-10.
The first is the original input sequence from 0C10h to 0C1Fh. The other
is a packed sequence:

forn=0,1,2,...,N=-1

2) Form the complex FFT input, d(n), by using r(n) for the real part and i(n)
for the imaginary part:

d(n)=r(n)+ji(n)

3) Store d(n) in the upper half of the data processing buffer in bit-reversed
order as shown in Figure 4-10 on page 4-23.

PRELIMINARY

PRELIMINARY Fast Fourier Transforms (FFTs)

Figure 4-10. Phase 1 Data Memory

0CO00h r0) = a(0)
0CO01h i(0) = a()
0C02h r4) = a(8)
0C03h i(4) = a@)
0CO04h r2) = a(4)
0CO05h i2) = a@)
0C06h r6) = a(l2)
0C07h i(6) = a(13)
0CO08h (1) = a2
0C09%h i) = a@)
0COAh r(5) = a(10)
0COBh i(5) = a(11)
0COCh r3) = a(b)
0CODh i) = a(7)
0COEh 1(7) = a(14)
0COFh i(7y = a(b)
0C10h a(0)
0C11h a(l)
0C12h a(2)
0C13h a(3)
0C14h a(4)
0C15h a(5)
0C16h a(6)
0C17h a(7)
0C18h a(8)
0C19h a(9)
0C1Ah a(10)
0C1Bh a(11)
0C1Ch a(12)
0C1Dh a(13)
0C1Eh a(14)
0C1Fh a(15)

PRELIMINARY Signal Processing 4-23

Fast Fourier Transforms (FFTs) PRELIMINARY

4.4.2.2 Phase 2: N-Point Complex FFT

In phase 2, an N-point complex FFT is performed in place in the data-processing
buffer. The twiddle factors are in Q15 format and are stored in two separate
tables, pointed to by sine and cosine. Each table contains 512 values, corre-
sponding to angles ranging from 0 to almost 180 degrees. The indexing scheme
used in this algorithm permits the same twiddle tables for inputs of different sizes.
Since circular addressing indexes the tables, the starting address of each table
must line up to an address with Os in the eight LSBs.

1) Perform an N-point complex FFT on d(n). The resulting sequence is

Dlk] = F{d(n)} = R[k] + j I[k]
where R[k] and I[K] are the real and imaginary parts of D[K], respectively.

2) Since the FFT computation is done in place, the resulting sequence, D[K],
occupiesthe upper half of the data-processing buffer, as shown. The lower
half of the data processing buffer still contains the original real input
sequence, a(n). This is overwritten in phase 3.

3) Allthe information from the original 2N-point real sequence, a(n), is contained
in this N-point complex sequence, D[k]. The remainder of the algorithm un-
packs D[K] into the final 2N-point complex sequence, Alk] = F{a(n)}.

4-24 PRELIMINARY

PRELIMINARY

Figure 4—-11. Phase 2 Data Memory

PRELIMINARY

0Co0h RI[O]
0Co1h I[0]
0Cco2h RI1]
0C03h I
0C04h R[2]
0CO5h 2]
0C06h R[3]
0Co7h 3]
0Co8h R[4]
0Co9h 4]
0COAh RI5]
0COBh I[5]
ococh RI6]
0CoDh I[6]
0COEh R[7]
0COFh 7]
0C10h a(0)
0C1th a()
0C12h a@)
0C13h a@)
0C14h a(4)
0C15h a(5)
0C16h a6)
0C17h a(?)
0c18h)
0C19h a(9)
0C1Ah a(10)
0C1Bh a(1l)
0cC1iCh a(12)
0C1Dh a(13)
0C1Eh a(14)
0C1Fh a(15)

Fast Fourier Transforms (FFTs)

Signal Processing

4-25

Fast Fourier Transforms (FFTs)

PRELIMINARY

4.4.2.3 Phase 3: Separation of Odd and Even Parts

4-26

Phase 3 separates the FFT output to compute four independent sequences:
RP, RM, IP, and IM, which are the even real, odd real, even imaginary, and the
odd imaginary parts, respectively.

1)

2)

D[K] is separated into its real even part, RP[K], real odd part, RM[K], imagi-
nary even part, IP[k], and imaginary odd part, IM[k,] according to the fol-
lowing equations:

RP[K| = RP[N-K] = 0.5 * (RIK] + R[N-K])
RMK] = —~RM[N-K] = 0.5 * (R[K] — RIN~K])
IPIK] = IPIN-K] = 0.5 * ([K] + [[N—K])

IMIK] = —IM[N-K| = 0.5 * (I[K] — [N—K])
RP[0] = R[0]

1P[0] = 1[0]

RMIO] = IM[0] = RM[N/2] = IM[N/2] = 0
RP[N/2] = RIN/2]

IPIN/2] = [[N/2]

The table below shows the organization of the values at the end of phase
three. The sequences RP[k] and IP[k] are stored in the upper half of the
data processing buffer in ascending order; the sequences RM[K] and IM[K]
are stored in the lower half in descending order.

PRELIMINARY

PRELIMINARY

Figure 4-12. Phase 3 Data Memory

PRELIMINARY

0CO00h RP[0] = R[0]
0CO1h IP[0] = I[0]
0C02h RP[1]
0C03h IP[1]
0C04h RP[2]
0C05h IP[2]
0CO06h RP[3]
0CO07h IP[3]
0Co8h RP[4] = R[4]
0C09h IP[4] = I[4]
0COAh RP[5]
0COBh IP[5]
0COCh RP[6]
0CODh IP[6]
0COEh RP[7]
0COFh IP[7]
0C10h a(0)
0C11h a(l)
0C12h IM[7]
0C13h RM[7]
0C14h IM[6]
0C15h RMI6]
0C16h IM[5]
0C17h RMI5]
0C18h IM[4] =0
0C19h RM[4] = 0
0C1Ah IM[3]
0C1Bh RMI3]
0C1Ch IM[2]
0C1Dh RM[2]
0C1Eh IM[1]
0C1Fh RMI[1]

Fast Fourier Transforms (FFTs)

Signal Processing

4-27

Fast Fourier Transforms (FFTs) PRELIMINARY

4.4.2.4 Phase 4: Generation of Final Output

Phase 4 performs one more set of butterflies to generate the 2N-point complex
output, which corresponds to the DFT of the original 2N-point real input se-
quence. The output resides in the data processing buffer.

1) The four sequences, RP[k], RM[K], IP[K], and IM[K], are used to compute
the real FFT of a(n) according to the following equations.

AR[K = AR[2N — K = RP[K] + cos(k TU /N) * IP[K] — sin(k TU /N)*RM[K]
AIK = —Al[2N — K] = IM[K] — cos(k Tt /N) * RM[K] — sin(k TU /N) * IP[K]
ARJ[0] = RP[0] + IP[0]
AI[0] = IM[O] — RM[O]
AR[N] = R[0] — /[0]
AN =0
where:
A[K] = A[2N-K] = AR[K] + j A[K] = F{a(n)}

2) The real FFT outputs fill up the entire 4N-word data processing buffer.
These outputs are real/imaginary, interleaved, and in natural order, as
shown in Figure 4-13 on page 4-29. The values RM[0] and IM[0] are not

stored because they are not used to compute the final outputs in phase
4,

4-28 PRELIMINARY

PRELIMINARY

Figure 4-13. Phase 4 Data Memory

PRELIMINARY

0CO00h AR[0]
0CO1h Al[0]
0C02h AR[1]
0C03h Al[1]
0C04h AR[2]
0C05h Al[2]
0CO06h AR[3]
0CO07h Al[3]
0Co8h AR[4]
0C09h Al[4]
0COAh AR[5]
0COBh Al[5]
0COCh ARI6]
0CODh Al[6]
0COEh AR[7]
0COFh Al[7]
0C10h AR[S]
0C11h Al[8]
0C12h AR[9]
0C13h Al[9]
0C14h AR[10]
0C15h Al[10]
0C16h AR[11]
0C17h Al[11]
0C18h AR[12]
0C19h Al[12]
0C1Ah AR[13]
0C1Bh Al[13]
0C1Ch AR[14]
0C1Dh Al[14]
0C1Eh AR[15]
0C1Fh Al[15]

Fast Fourier Transforms (FFTs)

Signal Processing

4-29

PRELIMINARY

Chapter 5

Resource Management

This chapter introduces features of the '54x thatimprove system performance.
These features allow you to conserve power and manage memory. You can
improve the performance of any application through efficient memory manage-
ment. Some issues include:

[On-chip memory versus off-chip memory

|

Random access variables that use direct memory addressing versus aggre-
gate variables that include structures/arrays

The use of pointers for accessing the arrays and pointers
Alignment of long words to even addresses
The K-boundary requirement for circular buffers

Uo oo

Allocation of stack

This chapter also discusses unique features of the '548 and 'LC548 that help
when an application needs a large amount of memory.

Topic Page
5.1 Memory AllOCAtIONttt 5
5.2 Overlay Managementc.oueiuiiraneaneianae... 55 |
5.3 Memory-to-Memory MOVES SE
5.4 Power Management

PRELIMINARY 5-1

Memory Allocation

PRELIMINARY

5.1 Memory Allocation

The '54x can access a large amount of program and data memory (64K words
each), but can handle only a limited amount of on-chip memory. On-chip
memory accesses reduce the cycle time, since there are eight differentinternal
buses on the '54x but there is only one external bus for off-chip accesses. This
means that off-chip operation requires more cycles to perform an operation
than on-chip operation.

The DSP uses wait-state generators to interface to slower memaories. The sys-
tem, then, cannot run at full speed. If on-chip memory consists of dual access
RAM (DARAM), accessing two operands from the same block does not incur
a penalty. Using single access RAM (SARAM), however, incurs a cycle penal-
ty. You can use on-chip ROM for tables to make efficient use of memory.

Random-access variables use direct addressing mode. This allocates all the
random variables on a single data page, using one data page initialization for
the application. Data-page relative memory addressing makes efficient use of
memory resources. Each data variable has an associated lifetime. When that
lifecycle is over, the data variable ceases to exist. Thus, if two data variables
have non-overlapping lifetimes, both can occupy the same physical memory.
All random variables, then, can form unions in the linker command file.

The actual lifetime of a variable determines whether it is retained across the
application or only in the function. By careful organization of the code memory,
resources can be used optimally. Aggregate variables, such as arrays and
structures, are accessed via pointers located within that program’s data page.
Aggregate variables reside elsewhere in memory. Depending upon the life-
time of the arrays or structures, these can also form unions accordingly.

Memory management is required for interrupt-driven tasks. Often, program-
mers assume that all CPU resources are available when required. This may not
be the case if tasks are interrupted periodically. These interrupts do not require
many CPU resources, but they force the system to respond within a certain time.
To ensure that interrupts occur within the specified time and the interrupted code
resumes as soon as possible, you must use low overhead interrupts. If the ap-
plication requires frequent interrupts, you can use some of the CPU resources
for these interrupts. For example, when all CPU resources are used, simply sav-
ing and restoring the CPU’s contents increases the overhead for an interrupt
service routine (ISR).

A dedicated auxiliary register is useful for servicing interrupts. Allowing inter-
rupts at certain places in the code permits the various tasks of an application
to reuse memory. If the code is fully interruptible (that is, interrupts can occur
anywhere and interrupt response time is assured within a certain period),

PRELIMINARY

PRELIMINARY

Memory Allocation

memory blocks must be kept separate from each other. On the other hand, if
a context switch occurs at the completion of a function rather than in the middle
of execution, the variables can be overlapped for efficiency. This allows vari-
ables to use the same memory addresses at different times.

Long words must be aligned at even boundaries for double-precision opera-
tions; thatis, the most significant word at an even address and the least signifi-
cant word at an odd address. Circular buffers start at a K boundary, where K
is the smallest integer that satisfies 2K > R and R is the size of the circular buff-
er. If an application uses circular buffers of different sizes, you must use the
align directive to align the buffers to correct sizes. You can do this by allocating
the largest buffer size as the first alignment, the next highest as the second
alignment, and so forth. Example 5-1 shows the memory management align-
ment feature where the largest circular buffer is 1024 words, and therefore, is
assigned first. A 256-word buffer is assigned next. Unused memory can be
used for other functions without conflict.

Example 5-1. Memory Management

PRELIMINARY

DRAM : origin = 0x0100, length = 0x1300
inpt_buf :{} > DRAM,align(1024)PAGE 1
outdata :{} > DRAM,align(1024)PAGE 1

UNION . > DRAM align(1024) PAGE 1
{

fft_bffr

adpt_sct:

{

*(bufferw)

.+=80h;

*(bufferp)
} }
UNION : > DRAM align(256) PAGE 1
{

fir_bfr

cir_bfr

coff_iir

bufferh

twid_sin
}
UNION . > DRAM align(256) PAGE 1
{

fir_coff

cir_bfrl

bufferx

twid_cos
}

Resource Management 5-3

Memory Allocation

PRELIMINARY

Stack allocation can also benefit from efficient memory management. The
stack grows from high to low memory addresses. The stack pointer (SP)
decrements the stack by 1 before pushing its contents, which must be
preserved, onto the stack and post increments after a pop. The bottom location
is added to the stack, giving the actual stack size. The last element is always
empty. Whether the stack is on chip or off chip affects the cycle count for acces-
sing data.

Example 5-2 shows stack initialization when the application is written in
assembly. The variable SYSTEM_STACK holds the size of the stack. It is
loaded into the SP, which points to the end of the stack. The predecrement
during the push operation and the postincrement during the pop cannot over-
flow the stack. Example 5—3 shows stack initialization when the application is
written in C.

Example 5-2. Stack Initialization for Assembly Applications

K_STACK_SIZE .set 100
STACK .usect “stack”, K_STACK_SIZE
SYSTEM_STACK .set STACK+K_STACK_SIZE
ref SYSTEM_STACK
ST™M #SYSTEM_STACK, SP ; initialization
; of SP- this is done
; vectors.asm
stack :{} DRAM PAGE 1 ; initialization of stack
; in linker command file

The compiler uses a stack to allocate local variables, pass arguments, and
save the processor status. The stack size is set by the linker and the default
size is 1 K words. In Example 5-3, the .stack section creates a stack size of
1 K words. A section of 100 words is created, referenced as top_stck and
btm_stck, for the CPU requirements. The rest of the stack (1024 — 100) words
can be used for passing arguments and local variables. Only the btm_stck is
referenced in the code; hence, several sections can be created within the 1 K
words of the stack.

Example 5-3. Stack Initialization for C Applications

5-4

ref btm_stck ; bottom of stack label
ST™M #btm_stck, SP ; initialization of SP — this is done
; vectors.asm
stack :
{
top_stck =; [* top of stack */
+=100; * size of the stack */
btm_stck =,; /* this is done in linker command
} file */

PRELIMINARY

PRELIMINARY Overlay Management

5.2 Overlay Management

Some systems use a memory configuration in which all or part if the memory
space is overlaid. This allows the system to map different banks of physical
memory into and out of a single address range. Multiple banks of physical
memory can overlay each other at one address range. This is achieved by
setting the OVLY bit in the PMST register. This is particularly useful in loading
the coefficients of a filter, since program and data use the same physical
memory.

If an application needs more than 64K words of either data or program memory;,
two options are available. The first extends the 16-bit address line to a
16 + n-address line for the extended memory space. The '548 provides 16 + 7
address lines to access 8M words of program space. The other option uses
an external device that provides upper addresses beyond the 16-bit memory
range. The DSP writes a value to a register located in its /0O space, whose data
lines are the higher address bits. Itimplements bank switching to cross the 64K
boundary. Since the bank switch requires action from the DSP, frequent
switching between the banks is not very efficient. Itis more efficient to partition
tasks within a bank and switch banks only when starting new tasks.

The 'LC548 is designed to support a much larger program space of 8M words.
Its memory-mapped register controls paging, and its extra instructions
address extended program space. The OVLY bit configures the 8M words for
on- or off-chip memory. If OVLY = 1, the lower half (128 pages) is a shared,
on-chip, 32K-word block and the remaining 4M words are off-chip. If OVLY = 0,
the entire 8M words of memory are off chip.

PRELIMINARY Resource Management 5-5

Memory-to-Memory Moves

5.3 Memory-to-Memory Moves

PRELIMINARY

There are various reasons for performing memory-to-memory moves. These
reasons include making copies of buffers to preserve the original, moving con-
tents from ROM to RAM, and moving copies of code from their load location
to their execution location. Example 5-4 implements memory-to-memory

moves on the '54x using single-instruction repeat loops.

Example 5—4.Memory-to-Memory Block Moves Using the RPT Instruction

5-6

.mmregs
text

: This routine uses the MVDD instruction to move
; information in data memory to other data memory
; locations.

MOVE_DD:

STM #4000h,AR2 ;Load pointer to source in
;data memory.

ST™M #100h,AR3 ;Load pointer to
;destination in data memory.

RPT #(1024-1) ;Move 1024 value.

MVDD *AR2+*AR3+

RET

; This routine uses the MVDP instruction to move external
; data memory to internal program memory.

1999999999999999999999939999993999999999999999999399999993

MOVE_DP:
STM #0EOOOh,AR1 ;Load pointer to source in
;data memory.
RPT #(8192-1) ;Move 8K to program memory space.
MVDP *AR1+,#800h
RET

PRELIMINARY

PRELIMINARY Memory-to-Memory Moves

Example 5-4. Memory-to-Memory Block Moves Using the RPT Instruction (Continued)

; This routine uses the MVPD instruction to move external
; program memory to internal data memory.

111 I I09099009909999999999999099091)

MOVE_PD:

ST™M #0100h,AR1 ;Load pointer to
;destination in data memory.
RPT #(128-1) ;Move 128 words from external
MVPD #3800h,*AR1+ ;program to internal data
;memory.
RET

; This routine uses the READA instruction to move external
; program memory to internal data memory. This differs

; from the MVPD instruction in that the accumulator

; contains the address in program memory from which to

: transfer. This allows for a calculated, rather than

; pre-determined, location in program memory to be

; specified.
READ_A:
ST™M #0100h,AR1 ;Load pointer to
;destination in data memory.
RPT #(128-1) ;Move 128 words from external
READA *AR1+ ;program to internal data
;memory.
RET

; This routine uses the WRITEA instruction to move data
; memory to program memory. The calling routine must

; contain the destination program memory address in the
; accumulator.

WRITE_A:
ST™M #380h,AR1 ;Load pointer to source in
;data memory.
RPT #(128-1) ;Move 128 words from data
WRITA *AR1+ ;memory to program memory.
RET

PRELIMINARY Resource Management 5-7

Power Management

PRELIMINARY

5.4 Power Management

5-8

The '54x family of DSPs exhibits very low power dissipation and flexible power
management. This is important in developing applications for portable sys-
tems, particularly wireless systems. Three aspects of power management are
discussed here: on- versus off-chip memory, the use of HOLD, and the use of
IDLE modes.

To fetch and execute instructions from on-chip memory requires less power
than accessing them from off-chip memory. The difference between these two
accesses becomes noteworthy if a large piece of code resides off chip and is
used more frequently than the on-chip code. The code can be partitioned so
that the code that consumes the most power and is used most frequently is
placed on-chip. (Masked ROM devices are another alternative for very high-
performance applications.)

If the program is executed from internal memory and no external access
occurs, switching of address outputs can be disabled with the AVIS bit in the
PMST register. This feature saves a significant amount of power. However,
once the AVIS bit is set, the address bus is still driven in its previous state. The
external bus function in the bank-switching control register (BSCR) contrib-
utes to the state of the address, control, and data lines. If itis disabled, the ad-
dress and data buses, along with the control lines, become inactive after the
current bus cycle.

The HOLD signal and the HM bit initiate a power-down mode by either shutting
off CPU execution or continuing internal CPU execution if external access is
not necessary. This makes external memory available for other processors.
The timers and serial ports are not used, and the device can be interrupted and
serviced.

Using the IDLEL, IDLE2, and IDLE3 modes dissipates less power than normal
operation. The system clock is not halted in IDLE1, but CPU activities are
stopped. Peripherals and timers can bring the device out of power-down
mode. The system can use the timer interrupt as a wake-up if the device needs
to be in power-down mode periodically. The IDLE2 instruction halts both CPU
and peripherals. Unlike the IDLE1 mode, an external interrupt wakes up the
processor in IDLE2. The IDLE2 mode saves a significant amount of power,
compared to IDLE1. The IDLE3 mode shuts off the internal clock, also saving
power.

PRELIMINARY

PRELIMINARY

Chapter 6

Arithmetic and Logical Operations

This chapter shows how the '54x supports typical arithmetic and logical opera-
tions, including multiplication, addition, division, square roots, and extended-
precision operations.

Topic Page
6.1 Division and Modulus Algorithm —coiiiiiii 6:7 |
6.2 SiNes and COSINESounere i 6[9 |
6.3 SqUare ROOIS
6.4 Extended-Precision Arithmetic —c.oveuieeenn... 6-
6.5 Floating-Point Arithmetic i G-E
6.6 Logical OPerationsoueenonei 6

PRELIMINARY 6-1

Division and Modulus Algorithm PRELIMINARY

6.1 Division and Modulus Algorithm

6-2

The '54x implements division operations by using repeated conditional subtrac-
tion. Example 6-1 uses four types of integer division and modulus:

Type I: 32-bit by 16-bit unsigned integer division and modulus
Type II: 32-bit by 16-bit signed integer division and modulus
Type Ill: 16-bit by 16-bit unsigned integer division and modulus
Type IV: 16-bit by 16-bit signed integer division and modulus

SUBC performs binary division like long division. For 16-bit by 16-bit integer
division, the dividend is stored in low part accumulator A. The program repeats
the SUBC command 16 times to produce a 16-bit quotient in low part accumu-
lator A and a 16-bit remainder in high part accumulator B. For each SUBC sub-
traction that results in a negative answer, you must left-shift the accumulator
by 1 bit. This corresponds to putting a 0 in the quotient when the divisor does
not go into the dividend. For each subtraction that produces a positive answer,
you must left shift the difference in the ALU output by 1 bit, add 1, and store
the result in accumulator A. This corresponds to putting a 1 in the quotient
when the divisor goes into the dividend.

Similarly, 32-bit by 16-bit integer division is implemented using two stages of
16-bit by 16-bit integer division. The first stage takes the upper 16 bits of the
32-bit dividend and the 16-bit divisor as inputs. The resulting quotient
becomes the higher 16 bits of the final quotient. The remainder is left shifted
by 16 bits and adds the lower 16 bits of the original dividend. This sum and the
16-bit divisor become inputs to the second stage. The lower 16 bits of the
resulting quotient is the final quotient and the resulting remainder is the final
remainder.

Both the dividend and divisor must be positive when using SUBC. The division
algorithm computes the quotient as follows:

1) The algorithm determines the sign of the quotient and stores this in
accumulator B.

2) The program determines the quotient of the absolute value of the numera-
tor and the denominator, using repeated SUBC commands.

3) The program takes the negative of the result of step 2, if appropriate, ac-
cording to the value in accumulator B.

PRELIMINARY

PRELIMINARY Division and Modulus Algorithm

For unsigned division and modulus (types | and 1l1), you must disable the sign
extension mode (SXM = 0). For signed division and modulus (types Il and 1V),
turn on sign extension mode (SXM = 1). The absolute value of the numerator
must be greater than the absolute value of the denominator.

Example 6-1. Unsigned/Signed Integer Division Examples

! File Name: DIV_ASM.ASM
Title: Divide & Modulus — Assembly Math Utilities.
Original draft: Alex Tessaralo

;; Modified for '54x: Simon Lau & Philip Jones
;v Texas Instruments Inc.

Target: C54X

;; Contents: DivModUI132 ; 32—bit By 16-hit Unsigned Integer Divide

5 ; And Modulus.

5 DivModUl116 ; 16—bit By 16—hit Unsigned Integer Divide
" ; And Modulus.

5 DivModI32 ; 32—hit By 16-bit Signed Integer Divide

" ; And Modulus.

5 DivModI16 ; 16—bit By 16-bit Signed Integer Divide

5 ; And Modulus.

History: mm/dd/yy | Who | Description Of Changes.

* 08/01/96 | Simon L. | Original draft.

Module Name: DivModUI32

1

;; Description: 32 Bit By 16 Bit Unsigned Integer Divide And Modulus

;; Usage ASM:

. .bss d_NumH,1 ; 00000000h to FFFFFFFFh
;o .bss d_NumL,1

5 .bss d_Den,1 ; 0000h to FFFFh

;1 .bss d_QuotH,1 ; 00000000h to FFFFFFFFh
;o .bss d_QuotL,1

5 .bss d_Rem,1 ; 0000h to FFFFh

;i CALL DivModUI132

5 Input: d_NumH

5 d_NumL

" d_Den

PRELIMINARY Arithmetic and Logical Operations 6-3

PRELIMINARY

Division and Modulus Algorithm

Example 6-1. Unsigned/Signed Integer Division Examples (Continued)

;;Modifies: SXM
;;accumulator A

Output: d_QuotH

5 d_QuotL

d_Rem
;; Algorithm: Quot = Num/Den
;; Rem = Num%Den
;i NumH =n3|n2 QuotH =q3|g2
5 NumL =nl1|n0 QuotL =q1|q0
5 Den =d1|d0 Rem =rl|r0

Phasel: t1|t0|g3|g2 = A (after repeating SUBC 16 times)

d1|d0) 00]00|n3|n2 =A (before)

Phase2: r1|r0|q1|q0 =A (after repeating SUBC 16 times)
N diljd0o) t1jtO|nljn0 =A (before)

NOTES: Sign extension mode must be turned off.

.def DivModUI32

ref d_NumH

ref d_NumL

ref d_Den

.ref d_QuotH

.ref d_QuotL

.ref d_Rem

.textDivModUI32:

RSBX SXM ; sign extention mode off
LD d_NumH,A

RPT #(16-1)

SUBC d_Den,A

STLA, d_QuotH

XOR d_QuotH,A ; clear AL
OR d_NumL,A ; AL = NumL
RPT #(16-1)

SUBC d_Den,A

STLA, d_QuotL

STHA,d_Rem

RET

Module Name: DivModUI16

11

;; Description: 16 Bit By 16 Bit Unsigned Integer Divide And Modulus

110

;» Usage ASM:

6-4 PRELIMINARY

PRELIMINARY

Division and Modulus Algorithm

Example 6-1. Unsigned/Signed Integer Division Examples (Continued)
" .bss d_Num,1 ; 0000h to FFFFh
5 .bss d_Den,1 ; 0000h to FFFFh
" .bss d_Quot,1 ; 0000h to FFFFh
5 .bss d Rem,1 : 0000h to FFFFh
2 CALL DivModUI16

’I’nput: d_Num

" d_Den

Modifies: SXM

" accumulator A

Output: d_Quot

5 d Rem

’Algorithm: Quot
5 Rem = Num%Den

Num=n1|n0
" Den=d1|dO
- r1[r0|q1|q0 = A

; d1|d0) 00[00[nL|n0 = A

NOTES: Sign exten

= Num/Den

Quot
Rem

=q1|q0
=rljr0

(after repeating SUBC 16 times)
(before)

sion mode must be turned off.

.def DivModUI16
.ref d_Num
.ref d_Den
.ref d_Quot
.ref d_Rem
text

DivModUI16:
RSBX SXM
LD @d_Num,A
RPT #(16-1)
SUBC @d_Den,A
STL A,@d_Quot
STH A,@d_Rem
RET

; sign extention mode off

Module Name: DivModI32

Description: 32 Bit By 16 Bit Signed Integer Divide And Modulus.

110

; 80000001h to 7FFFFFFFh

. Usage ASM:

5 .bss d NumH,1
; .bss d_NumL,1
5 .bss d_Den,1

; .bss d_QuotH,1

PRELIMINARY

; 8000h to 7FFFh
; 80000001h to 7FFFFFFFh

Arithmetic and Logical Operations

Division and Modulus Algorithm PRELIMINARY

Example 6-1. Unsigned/Signed Integer Division Examples (Continued)

1
”
1

12l

.bss d_QuotL,1
.bss d_Rem,1 ;. 8000h to 7FFFh

CALL DivModI32

5y Input:

12l

Modifies: SXM

d_NumH
d_NumL
d_Den

-
accumulator A
accumulator B

;; Output: d_QuotH

d_QuotL
d_Rem

;; Algori

thm: Quot = Num/Den
Rem = Num%Den

Signed division is similar to unsigned division except that
the sign of Num and Den must be taken into account.
First the sign is determined by multiplying Num by Den.
Then division is performed on the absolute values.

NumH =n3|n2 QuotH =q3|g2

NumL =n1|n0 QuotL =q1|q0

Den =d1|d0 Rem =rl|r0

Phasel: t1]t0|g3|q2 = A (after repeating SUBC 16 times)

d1]|d0) 00]00|n3|n2 = A (before)

Phase2: r1|r0|gl|q0 = A (after repeating SUBC 16 times)
d1|d0) t1]tO|n1jn0 = A (before)

NOTES: Sign extension must be turned on.

.def DivModI32
ref d_NumH
.ref d_NumL
ref d_Den
ref d_QuotH
ref d_QuotL
.ref d_Rem
text
DivModI32:
SSBX SXM ; sign extention mode on
LD d_Den,16,A
MPYA d_NumH ; B has sign of quotient
ABS A

PRELIMINARY

PRELIMINARY Division and Modulus Algorithm

Example 6-1. Unsigned/Signed Integer Division Examples (Continued)

STHA ,d_Rem ; d_Rem = abs(Den) temporarily
LD d_NumH,16,A
ADDS d_NumL,A
ABS A
STH A,d_QuotH ; d_QuotH = abs(NumH) temporarily
STL A,d_QuotL ; d_QuotL = abs(NumL) temporarily
LD d_QuotH,A
RPT #(16-1)
SUBC d_Rem,A
STL A,d_QuotH ; AH = abs(QuotH)
XOR d_QuotH,A : clear AL
OR d_QuotL,A ; AL = abs(NumL)
RPT #(16-1)
SUBC d_Rem,A
STL A,d_QuotL ; AL = abs(QuotL)
STH A,d_Rem ; AH = Rem
BCD DivModI32Skip,BGEQ ; if B neg, then Quot =
; —abs(Quot)
LD d_QuotH,16,A
ADDS d_QuotL,A
NEG A
STH A,d_QuotH
STL A,d_QuotL
DivModI32Skip:
RET

;> Module Name: DivMod|16

Description: 16 Bit By 16 Bit Signed Integer Divide And Modulus.

’L'Jsage ASM:

" .bss d_Num,1 ; 8000h to 7FFFh (QO0.15 format)

" .bss d_Den,1 ; 8000h to 7FFFh (QO0.15 format)

5 .bss d_Quot,1 ; 8000h to 7FFFh (QO0.15 format)
.bss d_Rem,1 ; 8000h to 7FFFh (QO0.15 format)

;5 CALL DivModI16

,I’nput: d_Num)

5 d_Den

Modifies: AR2

" T

N accumulator A

5 accumulator B

" SXM

Output: d_Quot

5 d_Rem

’Algorithm: Quot = Num/Den

5 Rem = Num%Den

PRELIMINARY Arithmetic and Logical Operations 6-7

Division and Modulus Algorithm

Example 6-1.

PRELIMINARY

Unsigned/Signed Integer Division Examples (Continued)

Signed division is similar to unsigned division except that
the sign of Num and Den must be taken into account.
First the sign is determined by multiplying Num by Den.
Then division is performed on the absolute values.

r1|r0|gl|q0

d1|d0)

Num
Den

=A

00/00|n1jn0 = A

=n1|n0
=d1|d0

Quot =q1|q0
Rem =rl1|r0

(after repeating SUBC 16 times)

(before)

NOTES: Sign extension mode must be turned on.

.def DivModI16
ref d_Num
ref d_Den
ref d_Quot
ref d_Rem
text
DivMod|16:
SSBX SXM ; sign extention mode on
STM #d_Quot,AR2
LD d_Den,16,A
MPYA d_Num ; B has sign of quotient
ABS A
STH A,d_Rem ; d_Rem = abs(Den) temporarily
LD d_Num,A
ABS A ; AL = abs(Num)
RPT #(16-1) SUBC d_Rem,A
STL A,d_Quot ; AL = abs(Quot)
STH A,d_Rem ; AH = Rem
LD #0,A
SUB d_Quot,16,A ; AH = —abs(Quot)
SACCD A*AR2BLT ; If B neg, Quot = —abs(Quot)
RET
;;End Of File.

12l

PRELIMINARY

PRELIMINARY Sines and Cosines

6.2 Sines and Cosines

Sine-wave generators are used in signal processing systems, such as com-
munications, instrumentation, and control. In general, there are two methods
to generate sine and cosine waves. The firstis the table look-up method, which
is used for applications not requiring extreme accuracy. This method uses
large tables for precision and accuracy and requires more memory. The se-
cond method is the Taylor series expansion, which is more efficient. This meth-
od determines the sine and cosine of an angle more accurately and uses less
memory than table look-up, and it is discussed here.

The first four terms of the expansion compute the angle. The Taylor series ex-
pansions for the sine and cosine of an angle are:

N I <

sin(@) = x— 5171 T o

3!

=Xt e

X)?:_TJrg(67(1 sxg))
- (A (-2 5))

(S srE0-3)

X5 x7(x2)

_ Xt X8

COS(@) =1- 2| + ﬁ—a + g
- 1% L“_ﬁ(l_ﬁ)
21 41 6! 7.8

_ x2 x4 X2 X2
=15 (1 56(1 78))

15 (-5 (- 5(1-25)))

The following recursive formulas generate the sine and cosine waves:

sin nf = 2 cos(0)sin{(n-1)6} — sin{(n-2)6}
cos nf = 2 cos(0)cos{(n-1)0} — cos{(n-2)6}

These equations use two steps to generate a sine or cosine wave. The first
evaluates cos(0) and the second generates the signal itself, using one multiply
and one subtract for a repeat counter, n.

PRELIMINARY Arithmetic and Logical Operations 6-9

Sines and Cosines

Example 6-2. Generation of a Sine Wave

; Functional Description

PRELIMINARY

Example 6-2 and Example 6-3 assumes that the delayed cos((n—1)) and
cos((n-2)) are precalculated and are stored in memory. The Taylor series
expansion to evaluate the delayed cos((n-1)), cos((n—2))/sin((n-1)), and

sin((n—2)) values for a given 6 can also be used.

This function evaluates the sine of an angle using the Taylor series

expansion.

© sin(theta) = x(1-x"2/2+3(1-x"2/4*5(1—x"2/6+7(1-x"2/8*9))))

.mmregs
.def
d_coff .sect
.word
.word
.word
.word
d x .usect
d_squr_x .usect
d_temp .usect
d_sinx .usect
Cc1 .usect
text
sin_start:
STM

STM
STM
sin_angle:

MPYA
ST

|l LD
MASR
MPYA

[LD
MASR
MPYA
STH
RET
.end

6-10

d_x,d_squr_x,d_coff,d_sinx,C_1

"coeff”
01c7h
030bh
0666h
1556h
"sin_vars”,1
"sin_vars”,1
"sin_vars”,1
"sin_vars”,1
"sin_vars”,1

#d_coff, AR3

#d_x,AR2
#C_1,AR4

#d_x,DP

#6487h,d_x

#7ffth,C_1
*AR2+ A

A*AR2

*AR4,B

*AR2+*AR3+,B,A
A

A*AR2
*AR2-,*AR3+,B,A

*AR2+
B,*AR2

*AR4,B
*AR2—-,*AR3+,B,A
*AR2+
B,*AR2

*AR4,B
*AR2—-,*AR3+,B,A
d_x
B, d_sinx

B

; €1=1/72,c2=1/42,c3=1/20,

; c4=1/6
; input value
i Al, A2, A3, A4

; pild

cletx"2 =P
i AR2 — > x"2

" (1-xM2)I72

; 1-x"2(1—-x"2)[72
T =xM2

DA = 1-x12/42(1-x"2/72)

; T=x"2(1-x"2/72)
: B = A(32-16)*x"2

Cc1
B

= A(32-16)*x"2

; AR2 —>d_squr_x

; sin(theta)

1-x72/20(1-x"2/42(1-x"2/72)

PRELIMINARY

PRELIMINARY Sines and Cosines

Example 6-2. Generation of a Sine Wave (Continued)

; Functional Description

; This function generates the sine of angle. Using the recursive given above, the

; cosine of the angle is found and the recursive formula is used to generate the
; sine wave. The sin(n—1) and sin(n—2) can be calculated using the Taylor

; series expansion or can be pre—calculated.

.mmregs
ref C0S_prog,cos_start
d_sin_delayl .usect "cos_vars”,1
d_sin_delay2 .usect "cos_vars”,1
K_sin_delay_1 .set 0A57Eh ; sin(—pi/4)
K_sin_delay 2 .set 8000h ; sin(=2*pi/4);
K_2 .set 2h ; cicular buffer size
K_256 .set 256 ; counter
K_THETA .set 6487h ; pild
text

start:

LD #d_sin_delayl,DP

CALL cos_start

STM #d_sin_delayl,AR3 ; intialize the buffer

RPTZ A#3h

STL A*AR3+

STM #1,AR0

STM #K_2,BK

STM #K_256-1,BRC

ST™M #d_sin_delayl,AR3

ST #K_sin_delay_1,*AR3+% ;load c alculated initial values of sin((n-1))

ST #K_sin_delay_2,*AR3+% ;load c alculated initial values of sin((n-2))

; this generates the sine_wave

sin_generate:

RPTB end_of sine

MPY *AR2,*AR3+0%,A ; cos(theta)*sin{(n—1)theta}
SUB *AR3,15,A ; 1/2*sin{(n—-2)theta)
SFTA A1lA ; sin(n*theta)
STH A*AR3 ; store
end_of sine
NOP
NOP
B sin_generate
.end

PRELIMINARY Arithmetic and Logical Operations 6-11

Sines and Cosines

Example 6—3. Generation of a Cosine Wave

; Functional Description

PRELIMINARY

; this computes the cosine of an angle using the Taylor Series Expansion

.mmregs

.def d_x,d_squr_x,d_coff,d_cosx,C_7FFF

.def cos_prog,cos_start
STH A*AR3

.word 024ah
.word 0444h
.word 0Oaadh
d_x .usect "cos_vars”,1
d_squr_x .usect "cos_vars”,1
d_cosx .usect "cos_vars”,1
C_T7FFF .usect "cos_vars”,1
K_THETA .set 6487h
K_7FFF .set 7FFFh
text
cos_start:
ST™M #d_coff AR3
STM #d_x,AR2
STM #C_T7FFF,AR4
COS_prog:
LD #d_x,DP
ST #K_THETA,d_x
ST #K_7FFF,C_7FFF
SQUR *AR2+,A
ST A*AR2
|| LD *AR4,B
MASR *AR2+,*AR3+,B,A
MPYA A
STH A*AR2
MASR *AR2—*AR3+,B,A
MPYA *AR2+
ST B,*AR2
|| LD *AR4,B
MASR *AR2—*AR3+,B,A
SFTA A-1A
NEG A
MPYA *AR2+
RETD
ADD *AR4,16,B
STH B,*AR2
.end
.mmregs
ref COS_prog,cos_start
d_cos_delayl .usect "cos_vars”,1
d_cos_delay2 .usect "cos_vars”,1
d_theta .usect "cos_vars”,1
6-12

; store
;1/7.8
:1/5.6
;1/3.4

; pild

;:¢1=1/56,c2=1/30,c3=1/12
; input theta
i Al, A2, A3, A4

; input theta

cletx"2 =P
i AR2 — > x"\2
| (1-xM2)/72
; 1-x"2(1—x"2)I72
T =x"2
A = 1-x72/42(1-x"2/72)
; T =xM2(1—x~2172)
: B = A(32-16)*x"2
B=C_1
s A = 1-x"2/20(1-x"2/42(1—x"2/72))
i =1/2

; B = A(32-16)*x"2

; cos(theta)

PRELIMINARY

PRELIMINARY

Example 6-3.

K_cos_delay_1
K_cos_delay_2
K_2

K_256

K_theta

start:

STM
cos_generate:
RPTB
MPY
SUB
SFTA
STH
PORTW
end_of cose
NOP
NOP
B
.end

Sines and Cosines

Generation of a Cosine Wave (Continued)

.set 06ed9h

.set 4000h
.set 2h
.set 256

.set 4303h

text

#d_cos_delayl,DP
cos_start
COS_prog
#d_cos_delayl,AR3
A#3h

A*AR3+
#d_cos_delayl,AR3
#K_cos_delay_1,*AR3+
#K_cos_delay_2,*AR3
#d_cos_delayl,AR3
#K_theta,d_theta
#1,AR0
#K_2,BK
#K_256-1,BRC

end_of_cose
*AR2,*AR3+0%,A
*AR3,15,A
A1A
A*AR3

*AR3,56h

cos_generate

PRELIMINARY

; COS(—pi/6)
; COS(—2*pil6);
; cicular buffer size
; counter
; sin(pi/2—pi/6)= cos(pi/6)
; Cos(pi/2—pi/x)
; .052=4303h

; calculate cos(theta)

; output vaues

; cos(theta)*cos{(n—1)theta}
; 1/2*cos{(n—2)theta)
; cos(n*theta)
; store
; write to a port

; next sample

Arithmetic and Logical Operations 6-13

Square Roots

6.3 Square Roots

PRELIMINARY

Example 6—4 uses a 6-term Taylor series expansion to approximate the square
root of a single-precision 32-bit number. A normalized, 32-bit, left-justified num-
ber is passed to the square root function. The output is stored in the upper half
of the accumulator, and the EXP and NORM instructions normalize the input
value. The EXP instruction computes an exponent value in a single cycle and
stores the result in T, allowing the NORM instruction to normalize the number
in a single cycle. If the exponent is an odd power, the mantissa is (multiplied by
1 divided by the square root of 2) to compensate after finding the square root
of the 32-bit number. The exponent value is negated to denormalize the number.

Yo =1+

where :
X =y-1
- X_X2 X _5xt _ Ix°
=1+5-% 16 128 " 256
— X _
—1+2 5

where :
05=x<1

Example 6—4. Square Root Computation

* Six term Taylor Series is used here to compute the square root of a number

*y"0.5 = (1+x)"0.5 where x = y-1

* 7 = 14(x/2)-0.5*((x/2)2+0.5%((x/2)"3-0.625*((x/2) 4+0.875*((x/2)"5)

*05<=x<1
.mmregs
.sect "squr_var”
d_part_prod .word O
d_part_shift .word O
C_8000 .word O
C_sqrt_one_half .word 0
d_625 .word 0
d 875 .word O
tmp_rgl .word 0
K_input .set 800h ; input # = 0.0625
K_8000 .set 8000h : =1 or round off bit
K_4000 .set 4000h ; 0.5 coeff
6-14

X)2 X\ _ X)a X)\s
0.5() +o.5(2) 0.625(2) +O.875(2)

PRELIMINARY

PRELIMINARY

Square Roots

Example 6-4. Square Root Computation (Continued)

K_SQRT_HALF .set

K_625 .set

K_875 .set
.text

sqroot:
LD
ST
ST
ST
ST
ST
LD

EXP
nop
NORM
ADDS
STH
LDM
SFTA
BCD

NE

STL

LD

CALLD
ABS
NOP

LD
BD

SUB
MACAR

res_even
LD

CALLD
ABSB
NOP

res_common
LD

RETD
STH

LD
sq_root:

SFTA
SUB
STH
SUB
SQUR
NEG
ADD

PRELIMINARY

5a82h
—-20480
28672

#d_part_prod,DP
#K_8000,C_8000

#K_input,d_part_prod

; 1/sqrt2
; coeff 0.625
; coeff 0.875

#K_SQRT_HALF,C_sqrt_one_half

#K_875,d_875
#K_625,d_625
d_part_prod,16,A
A

A

C_8000,A
A, d_part_prod
T,B

B,-1,B
res_even,NC
B

B,d_part_shift
d_part_prod,16,B
sqg_root

B

B,A

res_common

B,B
C_sqrt_one_half,B

d_part_prod,16,B
sqg_root

d_part_shift, T

B,d_part_prod
d_part_prod,TS,A

B,-1,B
#K_4000,16,B,B
B,tmp_rgl
#K_8000,16,B
tmp_rgl,A

A

A-1B

: load the #
; dead cycle

: round off bit
; normalized input

; check for odd or even power

; negate the power
: this shift is used to denormalize the #
; load the normalized input #
; square root program

; cycle for delayed slot

)

;zero B
; square root of 1/2
; odd power

; cycle for the delayed slot

; right shift value

; denormaliize the #
X2 =y-1/2

;tmp_rgl = x/2

;B =1+x/2

A (XI2)MN2, T=x/2
A=A

; B = 1+x/2—-.5(x/2)"2

Arithmetic and Logical Operations

6-15

Square Roots

Example 6—4. Square Root Computation (Continued)

6-16

SQUR
MACA

LD
MPYA
MACA
SQUR
MPYA
RETD
ADD
ADDS
.end

AA
d_625,8

tmp_rgl,T
A
d_875,B
tmp_rgl,A
A

A-1,B
C_8000,B

s A= (xI2)M
: 0.625*A+B
; T=0.625
T=x/2
; (XI2)M*x[2
: 0.875*A+B
I X272, T =x/2
T A= X[2%x[27\2

: round off bit

PRELIMINARY

PRELIMINARY

PRELIMINARY

Extended-Precision Arithmetic

6.4 Extended-Precision Arithmetic

PRELIMINARY

Numerical analysis, floating-point computations, and other operations may
require arithmetic operations with more than 32 bits of precision. Since the '54x
devices are 16/32-bit fixed-point processors, software is required for arithmetic
operations with extended precision. These arithmetic functions are performed
in parts, similar to the way in which longhand arithmetic is done.

The '54x has several features that help make extended-precision calculations
more efficient. One of the features is the carry bit, which is affected by most
arithmetic ALU instructions, as well as the rotate and shift operations. The
carry bit can also be explicitly modified by loading STO and by instructions that
set or reset status register bits. For proper operation, the overflow mode bit
should be reset (OVM = 0) to prevent the accumulator from being loaded with
a saturation value.

The two '54x internal data buses, CB and DB, allow some instructions to han-
dle 32-bit operands in a single cycle. The long-word load and double-precision
add/subtract instructions use 32-bit operands and can efficiently implement
multi-precision arithmetic operations.

The hardware multiplier can multiply signed/unsigned numbers, as well as
multiply two signed numbers and two unsigned numbers. This makes 32-bit
multiplication efficient.

Arithmetic and Logical Operations 6-17

Extended-Precision Arithmetic

6.4.1 Addition and Subtraction

PRELIMINARY

The carry bit, C, is setin STOif a carry is generated when an accumulator value

is added to:

] The other accumulator
[J A data-memory operand
(dJ Animmediate operand

A carry can also be generated when two data-memory operands are added
or when a data-memory operand is added to an immediate operand. If a carry

is not generated, the carry bit is cleared.

The ADD instruction with a 16-bit shift is an exception because it only sets the
carry bit. This allows the ALU to generate the appropriate carry when adding
to the lower or upper half of the accumulator causes a carry.

Figure 6—1 shows several 32-bit additions and their effect on the carry bit.

Figure 6—1. 32-Bit Addition

6-18

C MSB LSB C MSB LSB
X FFFFFFFFFFACC X FFFFFFFFFFACC
+ 1 +FFFFFFFFFF

10000000000 1FFFFFFFFFE

C MSB LSB C MSB LSB
X 007FFFFFFFACC X 007FFFFFFFACC
+ 1 +FFFFFFFFFF

00080000000 1007FFFFFFE

C MSB LSB C MSB LSB
X FF80000000ACC X FF80000000ACC
+ 1 +FFFFFFFFFF

0 FF80000001 1 FF7FFFFFFF

ADDC

C MSB LSB C MSB LSB

1 0000000000ACC 1 FFFFFFFFFFACC
+ 0 (ADDC) + 0

(ADDC)

00000000001 10000000000

ADD Smem,16,src

C MSB LSB C MSB LSB
1FF8000FFFFACC 1 FF8000FFFFACC
+0000010000 +007FFFO0000

1 FF8001FFFF 1 FFFFFFFFFF

PRELIMINARY

PRELIMINARY

Extended-Precision Arithmetic

Example 6-5 adds two 64-bit numbers to obtain a 64-bit result. The partial
sum of the 64-bit addition is efficiently performed by the DLD and DADD
instructions, which handle 32-bit operands in a single cycle. For the upper half
of a partial sum, the ADDC (ADD with carry) instruction uses the carry bit gen-
erated in the lower 32-bit partial sum. Each partial sum is stored in two memory
locations by the DST (long-word store) instruction.

Example 6-5. 64-Bit Addition

PRELIMINARY

1II100990999039999999999999999999999999979999991997999917

; 64-bit Addition

L X3X2 X1 X0
 +Y3Y2Y1Y0
© W3W2W1Wo
ADD64:DLD ~ @X1A A=XL1X0
DADD @YLA :A=X1X0+Y1Y0
DST A@W1
DLD @X3A A=X3X2
ADDC @Y2A A=X3X2+00Y2+C

ADD @Y3,16,A ;A=X3X2+Y3Y2+C
DST A,@W3
RET

Similar to addition, the carry bit is reset if a borrow is generated when an accu-
mulator value is subtracted from:

[The other accumulator
(1 A data-memory operand
[Animmediate operand

A borrow can also be generated when two data-memory operands are sub-
tracted or when an immediate operand is subtracted from a data-memory
operand. If a borrow is not generated, the carry bit is set.

The SUB instruction with a 16-bit shift is an exception because it only resets
the carry bit. This allows the ALU to generate the appropriate carry when sub-
tracting from the lower or the upper half of the accumulator causes a borrow.

Figure 6-2 shows several 32-bit subtractions and their effect on the carry bit.

Arithmetic and Logical Operations 6-19

Extended-Precision Arithmetic PRELIMINARY

Figure 6-2. 32-Bit Subtraction

C MSB LSB C MSB LSB
X 0000000000ACC X FF00000000ACC
- 1 -FFFFFFFFFF
O FFFFFFFFFF 00000000001

C MSB LSB C MSB LSB

X 007FFFFFFFACC X 007FFFFFFFACC
- 1 -FFFFFFFFFF
1007FFFFFFE CFF80000000

C MSB LSB C MSB LSB

X FF80000000ACC X FF80000000ACC
- 1 -FFFFFFFFFF

l1FF7FFFFFFF 0O FF80000001

SUBB
C MSB LSB C MSB LSB
00000000000ACC O FFFFFFFFFFACC

- 0 (SUBB) - 0 (SUBB)
OFFFFFFFFFF 1 FFFFFFFFFE

SUB Smem,16,src

C MSB LSB C MSB LSB
1 FF8000FFFFACC O FF8000FFFFACC
-0000010000 -FFEFFFFO000O

0007FFFFFFF OFF8001FFFF

6-20 PRELIMINARY

PRELIMINARY

Extended-Precision Arithmetic

Example 6—6 subtracts two 64-bit numbers on the '54x. The partial remainder
of the 64-bit subtraction is efficiently performed by the DLD (long word load)
and the DSUB (double precision subtract) instructions, which handle 32-bit
operands in a single cycle. For the upper half of a partial remainder, the SUBB
(SUB with borrow) instruction uses the borrow bit generated in the lower 32-bit
partial remainder. Each partial remainder is stored in two consecutive memory
locations by a DST.

Example 6—6. 64-Bit Subtraction

6.4.2 Multiplication

PRELIMINARY

64 bit Subtraction

X3 X2 X1 X0
© _Y3Y2Y1Y0
© W3W2WI1W0
DLD @X3A A=X3X2
SUBB @Y2A ‘A=X3X2-00Y2-(invC)

DST A@W1

SUB @Y3,16,A ;A=X3X2-Y3Y2-(invC)
DST A@W3

RET

The MPYU (unsigned multiply) and MACSU (signed/unsigned multiply and accu-
mulate) instructions can also handle extended-precision calculations.

Figure 6—3 shows how two 32-bit numbers obtain a 64-bit product. The MPYU
instruction multiplies two unsigned 16-bit numbers and places the 32-bit result
in one of the accumulators in a single cycle. The MACSU instruction multiplies
a signed 16-bit number by an unsigned 16-bit number and accumulates the
result in a single cycle. Efficiency is gained by generating partial products of
the 16-bit portions of a 32-bit (or larger) value instead of having to split the val-
ue into 15-bit (or smaller) parts.

Arithmetic and Logical Operations 6-21

Extended-Precision Arithmetic PRELIMINARY
Figure 6-3. 32-Bit Multiplication
X1 X0
Y1 YO
X
X0 x YO
Unsigned multiplication
X1xYO0
Signed/unsigned multiplication
X0xY1l
Signed/unsigned multiplication
X1xY1l
+ Signed multiplication
w3 w2 w1 W0

Final 64-bit result

The program in Example 6-7 shows that a multiply of two 32-bit integer num-
bers requires one multiply, three multiply/accumulates, and two shifts. The
product is a 64-bit integer number. Note in particular, the use of MACSU,
MPYU and LD instructions. The LD instruction can perform a right-shift in the

accumulator by 16 bits in a single cycle.

Example 6-8 performs fractional multiplication. The operands are in Q31 format,

while the product is in Q30 format.

6-22

PRELIMINARY

PRELIMINARY Extended-Precision Arithmetic

Example 6—7. 32-Bit Integer Multiplication

; This routine multiplies two 32-bit signed integers
; resulting; in a 64-bit product. The operands are fetched
; from data memory and the result is written back to data

; memory.

; Data Storage:

; X1,X0 32-bit operand
7 YLYO 32-bit operand

© W3,W2,W1W0 64-bit product
; Entry Conditions:
. SXM=1,0VM=0

11101990 009909900999999999999999999997999999799199991

STM #X0,AR2 ;AR2 = X0 addr
STM #Y0,AR3 ;AR3 = YO addr
LD *AR2,T T =X0

MPYU *AR3+A ;A = X0*Y0
STL A,@WO0 ;save WO

LD A-16,A A=A>>16

MACSU *AR2+*AR3—A ;A =X0*Y0>>16 + X0*Y1
MACSU *AR3+,*AR2,A ;A = X0*Y0>>16 + X0*Y1 + X1*YO

STL A@W1 ;save W1

LD A,-16,A A=A>>16

MAC *AR2,*AR3,A A = (X0*Y1 + X1*Y0)>>16 + X1*Y1
STL A Q@W2 ;save W2

STH A,@W3 ;save W3

Example 6-8. 32-Bit Fractional Multiplication

; This routine multiplies two Q31 signed integers
; resulting in a Q30 product. The operands are fetched
; from data memory and the result is written back to data

; memory.

; Data Storage:

; X1,X0 Q31 operand

: Y1,Y0 Q31 operand
W1,wW0 Q30 product

Entry Conditions:
; SXM=1,0VM =0

STM #X0,AR2 ;AR2 = X0 addr
STM #Y1,AR3 ;AR3 = Y1 addr
LD #0,A iclear A

MACSU *AR2+*AR3-,A ;A= X0*Y1
MACSU *AR3+*AR2,A ;A =X0*Y1 + X1*Y0

LD A-16,A A=A>>16

MAC *AR2,*AR3,A A=A+ X1*Y1

STL A,@WO0 ;save lower product
STH A,@W1 ;save upper product

PRELIMINARY Arithmetic and Logical Operations 6-23

Floating-Point Arithmetic PRELIMINARY

6.5 Floating-Point Arithmetic

In fixed-point arithmetic, the binary point that separates the integer from the
fractional part of the number is fixed at a certain location. For example, if a
32-bit number places the binary point after the most significant bit (which is
also the sign bit), only fractional numbers (numbers with absolute values less
than 1), can be represented. The fixed-point system, although simple to imple-
mentin hardware, imposes limitations in the dynamic range of the represented
number. You can avoid this difficulty by using floating-point numbers.

A floating-point number consists of a mantissa, m, multiplied by a base, b,
raised to an exponent, e, as follows:

m * b€

To implement floating-point arithmetic on the '54x, operands must be con-
verted to fixed-point numbers and then back to floating-point numbers. Fixed-
point values are converted to floating-point values by normalizing the input
data.

Floating-point numbers are generally represented by mantissa and expo-
nentvalues. To multiply two numbers, add their mantissas, multiply the expo-
nents, and normalize the resulting mantissa. For floating-point addition, shift
the mantissa so that the exponents of the two operands match. Left-shift the
lower-power operand by the difference between the two exponents. Add the
exponents and normalize the result.

Figure 6—4 illustrates the IEEE standard format to represent floating-point
numbers. This format uses sign-magnitude notation for the mantissa, and the
exponentis biased by 127. In a 32-bit word representing a floating-point num-
ber, the first bit is the sign bit, represented by s. The next eight bits correspond
to the exponent, which is expressed in an offset-by-127 format (the actual ex-
ponent is e-127). The following 23 bits represent the absolute value of the
mantissa, with the most significant 1 implied. The binary point is placed after
this most significant 1. The mantissa, then, has 24 bits.

6-24 PRELIMINARY

PRELIMINARY Floating-Point Arithmetic

Figure 6—4. |IEEE Floating-Point Format

1 8 23

| S | Biased Exponent — e Mantissa — f

The values of the numbers represented in the IEEE floating-point format are

as follows:
(—1)s * 26-127 * (01.f) If 0 <e <255

Special Cases:

(-1)s*0.0 If e =0, and f =0 (zero)

(-1)s *2-126 * (0.) If e = 0 and f <> 0 (denormalized)
(=2)s * infinity If e = 255 and f = 0 (infinity)

NaN (not a number) Ife=255and f<>0

Example 69 through Example 6-11 illustrate how the '54x performs floating-

point addition, multiplication, and division.

Example 6-9. Add Two Floating-Point Numbers

kokkkkkkk *% kkkkkkkkkkkkkkkhkkkkkkkkk *% kkkkkkkkkkkkkkkhkkkkkkkkk *%

* FLOAT_ADD - add two floating point numbers

*: Copyright (c) 1993-1994 Texas Instruments Incorporated

* NOTE: The ordering of the locals are placed to take advantage of long word

*: loads and s tores which require the hi and low words to be at certain addresses.
*: Any future modifications which involve the stack must take this quirk into

*; account

* * * * * * * *

;Operand 1 (OP1) and Operand (OP2) are each packed into sign, exponent, and the
;words of mantissa. If either exponent is zero special case processing is initiated.

;In the general case, the exponents are compared and the mantissa of the lower
;exponent is renormalized according to the number with the larger exponent. The
;mantissas are also converted to a two's complement format to perform the actual
;addition. The result of the addition is then renormalized with the corresponding
;adjustment in the exponent. The resulting mantissa is converted back to its

;original sign—magnitude format and the result is repacked into the floating point
;representation.

* * * * * * * * * *

resource utilization: B accumulator, T-register
; status bits affected: TC, C, SXM, OVM,
; entry requirements : CPL bit set

Fkkkkk * Fkk

% _k _F ¥

PRELIMINARY Arithmetic and Logical Operations

6-25

Floating-Point Arithmetic PRELIMINARY

Example 6-9. Add Two Floating-Point Numbers (Continued)

; Floating Point Format — Single Precision
*.

*31|30|29|28(27|26|25]24|23]22|21]20]|19|18]17|16]
*| | | | | | | | | | | | | | | | |

| | | I | | | | | I | | | | |
*| S|E7|E6|E5|E4|E3|E2|EL|EO | M22| M21| M20| M19| M18| M17| M16|
*.

*.

*15[14]13]12|11]10] 9| 8] 7| 6] 5] 4] 3| 2] 1| 0]
*| | | | | | | | | | | |

| | | I | | | | | I | | | | | |
*| M15| M14| M13| M12| M11| M10| M9 | M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 | MO |
*

*: Single precision floating point format is a 32 bit format consisting of a 1 bit
sign field, an 8 bit exponent field, and a 23 bit mantissa field. The fields are
defined as follows
*. Sign <S> : 0 = positive values; 1 = negative value

* Exponent <E7—EO> : offset binary format

*, 00 = special cases (i.e. zero)

*: 01 = exponent value + 127 = -126

* FE = exponent value + 127 = +127

* FF = special cases (not implemented)

*. Mantissa <M22—-MO0> : fractional magnitude format with implied 1
* 1.M22M21...M1IMO

* Range :=1.9999998 e+127 to —1.0000000 e-126
* +1.0000000 e—126 to +1.9999998 e+127

* (where e represents 2 to the power of)

* —3.4028236 e+38 to —1.1754944 e-38

* +1.1754944 e-38 to +3.4028236 e+38

* (where e represents 10 to the power of)

*- * * * *

res_hm .usect "flt_add”,1 ; result high mantissa
res_Im .usect "flt_add”,1 : result low mantissa
res_exp .usect "flt_add”,1 ; result exponent
res_sign .usect "flt_add”,1 ; result sign

op2_hm .usect "flt_add”,1 ; OP2 high mantissa
op2_Im .usect "flt_add”,1 ; OP2 low mantissa
op2_se .usect "flt_add”,1 ; OP2 sign and exponent
opl_se .usect "flt_add”,1 ; OP1 sign and exponent
opl_hm .usect "flt_add”,1 ; OP1 high mantissa
opl_Im .usect "flt_add”,1 ; OP1 low mantissa
opl_msw .usect "flt_add”,1 ; OP1 packed high word
opl_Isw .usect "flt_add”,1 ; OP1 packed low word
op2_msw .usect "flt_add”,1 ; OP2 packed high word
op2_lsw .usect "flt_add”,1 ; OP2 packed low word
err_no .usect "flt_add”,1 ;

.mmregs
* Floating point number 12.0 can be represented as 1100 = 1.100 x 23 => sign =0

* biased exponent = 127+3 = 130

* 130 = 10000010

* Mantissa 10000000000000000000000

* Thus 12. 0 can be represented as 01000001010000000000000000000000 4140h

*kk Fkk *

*

6-26 PRELIMINARY

PRELIMINARY Floating-Point Arithmetic

Example 6-9. Add Two Floating-Point Numbers (Continued)

K_OP1 HIGH .set 4140h ; floating point number 12.0
K_OP1_LOW .set 0000h
K_OP2_HIGH .set 4140h ; floating point number 12.0
K_OP2_LOW .set 0000h
.mmregs
text
start_flt:
RSBX C16
LD #res_hm,DP ; initialize the page pointer
LD #K_OP2_HIGH,A ; load floating #2 — 12

STL A,op2_msw

LD #K_OP2_LOW,A

STL A,0p2_lIsw

LD #K_OP1_HIGH,A ; load floating #1 — 12
STL A,opl_msw

LD #K_OP1_LOW,A

STL A,opl_Isw

*
*;xx *kk*k *% *kkkkk *kk *kkkhkkkhkkkk *% * *khkkkkkkkkkhkkkk *% *%
*: CONVERSION OF FLOATING POINT FORMAT — UNPACK
* Test OP1 for special case treatment of zero.
* Split the MSW of OP1 in the accumulator.
*. Save the exponent on the stack [xxxx xxxx EEEE EEEE].
* Add the implied one to the mantissa value.
*. Store the mantissa as a signed value
K
DLD opl_msw,A ; load the OP1 high word
SFTA A8 ; shift right by 8
SFTA A-8
BC opl_zero,AEQ ; Ifoplis O, jump to special case
LD AB ; Copy OP1to acc B
RSBX SXM ; Reset for right shifts used for masking
SFTL A1l ; Remove sign bit
STH A,—8,0pl_se ; Store exponent to stack
SFTL A8 ; Remove exponent
SFTL A-9
ADD #080h,16,A ; Add implied 1 to mantissa
XC 1,BLT ; Negate OP1 mantissa for negative values
NEG A
SSBX SXM ; Make sure OP2 is sign—extended
DST A,opl_hm ; Store mantissa
*
*; * * *
*: CONVERSION OF FLOATING POINT FORMAT — UNPACK
* Test OP1 for special case treatment of zero.
* Split the MSW of OP1 in the accumulator.
* Save the exponent on the stack [xxxx xxxx EEEE EEEE].
* Add the implied one to the mantissa value.
* Store the mantissa as a signed value
*
*

PRELIMINARY Arithmetic and Logical Operations 6-27

Floating-Point Arithmetic PRELIMINARY

Example 6-9. Add Two Floating-Point Numbers (Continued)

DLD op2_msw,A ; Load acc with op2

BC op2_zero,AEQ ; If op2is 0, jump to special case

LD AB ; Copy OP2 to acc B

SFTL A1l ; Remove sign bit

STH A,—8,0p2_se ; Store exponent to stack

RSBX SXM ; Reset for right shifts used for masking
SFTL A8 ; Remove exponent

SFTL A-9

ADD #080h,16,A ; Add implied 1 to mantissa

XC 1,BLT ; Negate OP2 mantissa for negative values
NEG A

SSBX SXM ; Set sign extension mode

DST A,0p2_hm ; Store mantissa

Kk *%
’

* EXPONENT COMPARISON
*. Compare exponents of OP1 and OP2 by subtracting: exp OP2 — exp OP1
*: Branch to one of three blocks of processing

* Case 1: exp OP1 is less than exp OP2

* Case 2: exp OP1 is equal to exp OP2

* Case 3: exp OP1 is greater than exp OP2

*

v
LD opl_seA ; Load OP1 exponent
LD op2_se,B ; Load OP2 exponent

*
SUB A,B ; Exp OP2 —exp OP1—>B
BC opl_gt op2,BLT ; Process OP1 > OP2
BC op2_gt_opl,BGT ; Process OP2 > OP2

*

*

* exp OP1 = exp OP2

*

; Mantissas of OP1 and OP2 are normalized identically.

*. Add mantissas: mant OP1 + mant OP2

*. If result is zero, special case processing must be executed.

*. Load exponent for possible adjustment during normalization of result
*- *

* Fkkkkkkk Fkkkkkkk * *

a_eqg_b
DLD opl_hm,A ; Load OP1 mantissa
DADD op2_hm,A ; Add OP2 mantissa
BC res_zero,AEQ ; If result is zero, process special case
LD opl_se,B ; Load exponent in preparation for normalizing

*
kekkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkhkkkkhkkkhkkkkhkkkkkkkkhkkkkkkkkkkkkkkkk

normalize THE RESULT

Take the absolute value of the result.

Set up to normalize the result.

The MSB may be in any of bits 24 through 0.

Left shift by six bits; bit 24 moves to bit 30, etc.
Normalize resulting mantissa with exponent adjustment.

* * *kkkkkkkk * * *kkdkkkkhkkkkk * * * *kkk

*

E I T S T R N

6-28 PRELIMINARY

PRELIMINARY Floating-Point Arithmetic

Example 6-9. Add Two Floating-Point Numbers (Continued)

normalize
STH A,res_sign ; Save signed mantissa on stack
ABS A ; Create magnitude value of mantissa
SFTL A6 ; Pre—normalize adjustment of mantissa
EXP A ; Get amount to adjust exp for normalization
NOP
NORM A : Normalize the result
ST T,res_exp ; Store exp adjustment value
ADD #1,B ; Increment exp to account for implied carry
SUB res_exp,B ; A djust exponent to account for normalization
*
*- * * *k%k * * * *k%k * *
v

; POST-NORMALIZATION ADJUSTMENT AND STORAGE

*. Test result for underflow and overflow.

*. Right shift mantissa by 7 bits.

* Mask implied 1

*. Store mantissa on stack.
*;***

*

normalized
STL B,res_exp ; Save result exponent on stack
BC underflow,BLEQ ; process underflow if occurs
SUB #O0FFh,B ; adjust to check for overflow
BC overflow,BGEQ ; process overflow if occurs
SFTL A7 ; Shift right to place mantissa for splitting
STL Ares_Im ; Store low mantissa
AND #07FO00h,8,A ; Eliminate implied one
STH Ares_hm ; Save result mantissa on stack**
—— — —
* CONVERSION OF FLOATING POINT FORMAT — PACK
*. Load sign.
* Pack exponent.
* Pack mantissa.
*e * * * * * * * * * *
K
LD res_sign,9,A ; 0000 000S 0000 0000 0000 0000 0000 0000
AND #100h,16,A
ADD res_exp,16,A ; 0000 000S EEEE EEEE 0000 0000 0000 0000
SFTL A7 ; SEEE EEEE E000 0000 0000 0000 0000 0000
DADD res_hm,A ; SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM

* * * * * *

: CONTEXT RESTORE
; Pop local floating point variables.
; Restore contents of B accumulator, T Register

vkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkhkkkhkkkkhkkkkkkkkhkkkhkkkhkkkkkkkkkkkkhkkk
1

% _k ok kX X

return_value
NOP
NOP
RET

PRELIMINARY Arithmetic and Logical Operations 6-29

Floating-Point Arithmetic PRELIMINARY

Example 6-9. Add Two Floating-Point Numbers (Continued)

*- * *k%k * * * *k%k * * * *
* exp OP1 > exp OP2
*. Test if the difference of the exponents is larger than 24 (precision of the mantissa)
* Return OP1 as the result if OP2 is too small.
* Mantissa of OP2 must be right shifted to match normalization of OP1
* Add mantissas: mant OP1 + mant op2
K
opl_gt _op2
ABS B ; If exp OP1 >= exp OP2 + 24 then return OP1
SUB #24,B
BC return_op1l,BGEQ
ADD #23,B ; Restore exponent difference value
STL B,res_sign ; Store exponent difference to be used as RPC
DLD op2_hm,A : Load OP2 mantissa
RPT res_sign : Normalize OP2 to match OP1
SFTA A-1
BD normalize ; Delayed branch to normalize result
LD opl_se,B ; Load exponent value to prep for normalization
DADD opl_hm,A ; Add OP1 to OP2
*
*; * * * * * * * * * * * *%k%k *
* OP1 <0OP2
*; Test if the difference of the exponents is larger than 24 (precision of the mantissa).
*. Return OP2 as the result if OP1 is too small.
*, Mantissa of OP1 must be right shifted to match normalization of OP2.
*, Add mantissas: mant OP1 + mant OP2
*- * *k%k *k%k * *k%k * * *
op2_gt_opl
SuU B #24,B ; If exp OP2 >= exp OP1 + 24 then return OP2
BC return_op2,BGEQ
ADD #23,B ; Restore exponent difference value
STL B,res_sign ; Store exponent difference to be used as RPC
DLD opl_hm,A ; Load OP1 mantissa
RPT res_sign ; Normalize OP1 to match OP2
SFTA A-1 BD normalize ; Delayed branch to normalize result
LD op2_se,B ;Load e xponent value to prep for normalization
DADD op2_hm,A ; Add OP2 to OP1
*- * * * * *
* OP1<<OP2 orOP1=0
*- * *k%k * * * *k%k * * * *
v
return_op2
opl_zero
BD return_value
DLD op2_msw,A ; Put OP2 as result into A
NOP
*
*;r\ * * * * *% * * * * * * *
* OP1<<OP2 or OP1=0
*- *%k%k *%k% * * *%k%k *%k% * * * *%k% *
*

6-30 PRELIMINARY

PRELIMINARY

Floating-Point Arithmetic

Example 6-9. Add Two Floating-Point Numbers (Continued)

; Put OP1 back together in acc A as a result

op2_zero
return_opl
DLD opl_hm,A ; Load signed high mantissa of OP1
BC opl_pos,AGT ; If mantissa is negative . . .
NEG A ; Negate it to make it a positive value
ADDM #100h,0opl_se ; Place the sign value back into opl_se
opl_pos
SUB #80h,16,A ; Eliminate implied one from mantissa
LD opl_se,16,B
BD return_value
SFTL B,7
ADD B,A
*- *k%k * * *k%k
*; overflow PROCESSING
*- Push errno onto stack.
* Load accumulator with return value.
*
K
overflow
ST #2,err_no ; Load error no
LD res_sign,16,A ; Pack sign of result
AND #8000,16,A ; Mask to get sign
OR #0FFFFh,A ; Result low mantissa = OFFFFh
BD return_value ; Branch delayed
ADD #07F7Fh,16,A ; Result exponent = OFEh

; underflow PROCESSING
; Push errno onto stack.

; Result high mant = 07Fh

. * *
1

* * * * *

*
*
* Load accumulator with return value.
*
*

underflow
ST #1,err_no
RET
res_zero
BD return_value
SUB AA
NOP
PRELIMINARY

: Load error no

; Branch delayed
; For underflow result =0

Arithmetic and Logical Operations

6-31

Floating-Point Arithmetic PRELIMINARY

Example 6—10. Multiply Two Floating-Point Numbers

* * Fkkkkkkk * * Fkk * * * *
)

*. Float_ MUL — multiply two floating point numbers
*. Copyright (¢) 1993-1994 Texas Instruments Incorporated
*-%k

*kkkkkkkhkkhkkkkkkkhrrkk *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkk

k- * * * * * * * *

;'i'his routine multiplies two floating point numbers. OP1 and OP2 are each unpacked

;into sign, exponent, and two words of mantissa. If either exponent is zero

;special case processing is i nitiated. The exponents are summed. If the result is
;less than zero underflow has occurred. If the result is zero, underflow may have
;occurred. If the r esult is equal to 254 overflow may have occurred. If the result

;is greater than 254 overflow has occurred. Underflow processing returns a value

;of zero. O verflow processing returns the largest magnitude value along with the
;appropriate sign. If no special cases are detected, a 24x24—bit multiply is

;executed. The result of the exclusive OR of the sign bits, the sum of the
;exponents and the ;24 bit truncated mantissa are packed and returned
* * * * * * * *k%k * * * *

*: resource utilization: B accumulator, T-register

* status bits affected: TC, C, SXM, OVM, C16
*
%

entry requirements : CPL bit set

* * * * * * *

; Floating Point Format — Single Precision
*.

*31|30|29|28|27|26|25]24|23]22|21]20]|19|18]17|16]
*| | | | | | | | | | | | |

| | | I | | | | | I | | | | |
*| S|E7|E6|E5|E4|E3|E2|EL|EO|M22| M21| M20| M19| M18| M17| M16|
*

*.

*15|14|13|12]11|10| 9| 8] 7| 6| 5| 4] 3] 2| 1| O]
*| | | | | | | | | | | |

| | | |
| | | I | | | | | I | | | | | |

* M15| M14| M13| M12| M11| M10| M9 | M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 | MO |

*.

*: Single precision floating point format is a 32 bit format consisting ofa *
*: 1 bit sign field, an 8 bit exponent field, and a 23 bit mantissa field. The *
*- fields are defined as follows. *
Sign <S> : 0 = positive values; 1 = negative values
Exponent <E7—EO> : offset binary format

00 = special cases (i.e. zero)

01 = exponent value + 127 = -126

FE = exponent value + 127 = +127

FF = special cases (not implemented)
; Mantissa <M22—-MO0> : fractional magnitude format with implied 1

1.M22M21...M1MO
Range :=1.9999998 e+127 to —1.0000000 e-126

+1.0000000 e—126 to +1.9999998 e+

(where e represents 2 to the power of)

—3.4028236 e+38 to —1.1754944 e—

+1.1754944 e-38 to +3.4028236 e+38

(where e represents 10 to the power of)

T U N O N N N N N S N

%
%
%

6-32 PRELIMINARY

PRELIMINARY Floating-Point Arithmetic

Example 6—10. Multiply Two Floating-Point Numbers (Continued)

res_hm .usect "flt_add”,1 ;result high mantissa

res_Im .usect "flt_add”,1 :result low mantissa

res_exp .usect "flt_add”,1 ;result exponent

res_sign .usect "flt_add”,1 ; result sign

op2_hm .usect "flt_add”,1 ; OP2 high mantissa

op2_Im .usect "flt_add”,1 ; OP2 low mantissa

op2_se .usect "flt_add”,1 ; OP2 sign and exponent

opl_se .usect "flt_add”,1 ; OP1 sign and exponent

opl_hm .usect "flt_add”,1 ; OP1 high mantissa

opl_Im .usect "flt_add”,1 ; OP1 low mantissa

opl_msw .usect "flt_add”,1 ; OP1 packed high word

opl_lsw .usect "flt_add”,1 ; OP1 packed low word

op2_msw .usect "flt_add”,1 ; OP2 packed high word

op2_lsw .usect "flt_add”,1 ; OP2 packed low word

err_no .usect "flt_add”,1 ;

* Floating point number 12.0 can be represented as 1100 = 1.100 x 23 => sign =0

* biased exponent = 127+3 = 130
* 130 = 10000010

* Mantissa 10000000000000000000000
*

Thus 12.0 can be represented as 01000001010000000000000000000000= 4140h

* *kkkkkkkk *kkkkkkkk

*

K_OP1_HIGH .set 4140h ; floating point number 12.0
K_OP1_LOW .set 0000h
K_OP2_HIGH .set 4140h ; floating point number 12.0
K_OP2_LOW .set 0000h
.mmregs
text
start_flt:
RSBX C16 ; Insure long adds for later
LD #res_hm,DP ; initialize the page pointer
LD #K_OP2_HIGH,A ; load floating #2 — 12

STL A,0p2_msw

LD #K_OP2_LOW,A

STL A,0p2_Isw

LD #K_OP1_HIGH,A ; load floating #1 — 12
STL A,opl_msw

LD #K_OP1_LOW,A

STL A,opl_Isw

*kkkkkkkk * *kkkkkkkk

CONVERSION OF FLOATING POINT FORMAT — UNPACK

; Test OP1 for special case treatment of zero.

; Split the MSW of A in the accumulator.
Save the sign and exponent on the stack [xxxx xxxS EEEE EEEE].
Add the implied one to the mantissa value
Store entire mantissa with a long word store

%k ok kX _F k

DLD opl_msw,A : OP1

SFTA A8

SFTA A-8

BC op_zero,AEQ ;ifoplis 0, jump to special case

PRELIMINARY Arithmetic and Logical Operations

6-33

Floating-Point Arithmetic PRELIMINARY

Example 6—10. Multiply Two Floating-Point Numbers (Continued)

STH A,—7,0pl_se ; store sign AND exponent to stack

STL A,opl_Im ; store low mantissa

AND #07Fh,16,A ; mask off sign & exp to get high mantissa
ADD #080h,16,A ; ADD implied 1 to mantissa

STH A,opl_hm ; store mantissa to stack

*

* CONVERSION OF FLOATING POINT FORMAT — UNPACK

*. Test OP2 for special case treatment of zero.

*. Split the MSW of A in the accumulator.

*, Save the sign and exponent on the stack [xxxx xxxS EEEE EEEE].
*. Add the implied one to the mantissa value.

*. Store entire mantissa with a long word store
*- *

* *kkkkkkkk *kkkkkkkk * *kkk

’

DLD op2_msw,A ; load acc a with OP2
BC op_zero,AEQ ; if OP2 is 0, jump to special case
STH A,—7,0p2_se ; store sign and exponent to stack
STL A,op2_Im ; store low mantissa
AND #07Fh,16,A ; mask off sign & exp to get high mantissa
ADD #080h,16,A ; add implied 1 to mantissa
STH A,0p2_hm ; store mantissa to stack

* *

* SIGN EVALUATION

*. Exclusive OR sign bits of OP1 and OP2 to determine sign of result.

*-%k *kkkkk kkkkkkkkkkkkkkkk *% *kkkkk kkkkkkkkkkkkkkkk *kkkkkkkkkk *
LD opl_seA ; load sign and exp of opl to acc
XOR op2_se,A ; Xor with op2 to get sign of result
AND #00100h,A ; mask to get sign
STL A,res_sign ; save sign of result to stack

*- * * * * * *

* EXPONENT SUMMATION

*. Sum the exponents of OP1 and OP2 to determine the result exponent. Since
*. the exponents are biased (excess 127) the summation must be decremented
*: by the bias value to avoid double biasing the result

*. Branch to one of three blocks of processing

*. Case 1. exp OP1 + exp OP2 results in underflow (exp < 0)

* Case 2. exp OP1 + exp OP2 results in overflow (exp >= 0FFh)

*. Case 3: exp OP1 + exp OP2 results are in range (exp >= 0 & exp < OFFh)

*: NOTE: Cases when result exp = 0 may result in underflow unless there

* is a carry in the result that increments the exponent to 1.

* Cases when result exp = OFEh may result in overflow if there

* is a carry in the result that increments the exponent to OFFh.

*- * *k%k * * * *k%k * * * *
LD opl_seA ; Load OP1 sign and exponent
AND #00FFh,A ; Mask OP1 exponent
LD op2_se,B ; Load OP2 sign and exponent
AND #0FFh,B ; Mask OP2 exponent
SUB #07Fh,B ; Subtract offset (avoid double bias)
ADD B,A ; Add OP1 exponent
STL Ares_exp ; Save result exponent on stack
BC underflow,ALT ; branch to underflow handler if exp < 0
SUB #0FFh,A ; test for overflow
BC overflow,AGT ; branch to overflow is exp > 127

*- *k%k * * * *

6-34 PRELIMINARY

PRELIMINARY Floating-Point Arithmetic

Example 6—10. Multiply Two Floating-Point Numbers (Continued)

* MULTIPLICATION

*: Multiplication is implemented by parts. Mantissa for OP1 is three bytes

*. identified as Q, R, and S

* (Q represents OP1 high mantissa and R and S represent the two bytes of OP1 low
* mantissa). Mantissa for

* OP2 is also 3 bytes identified as X, Y, and Z (X represents OP2 high mant and

*. 'Y and Z represent the two bytes

*. of OP2 low mantissa). Then

* 0 Q RS (mantissa of OP1)

* x 0 XY Z (mantissa of OP2)

*- —————————=—=—

* RS*YZ <— save only upper 16 bits of result

*: RS*0X

*: 0Q*YZ

* 0Q*0X <— upper 16 bits are always zero

*- ——————=—=—=—=—=

*: result <— result is always in the internal 32 bits

*:(which ends up in the accumulator) of the possible 64 bit product

*okkkkkkkkk kkkkkkkkkkkkk kkkkkkkkkkkkkkkkkk
’

LD opl_Im,T ; load low mant of opl to T register
MPYU op2_Im,A ;RS*YZ

MPYU op2_hm,B ; RS * 0X

ADD A,-16,B ;B=(RS*YZ) + (RS * 0X)

LD opl_hm,T ; load high mant of opl to T register
MPYU op2_Im,A ;A=0Q*YZ

ADD B,A ;A= (RS*YZ) + (RS *0X) + (0Q *YZ)
MPYU op2_hm,B ;B =0Q *0X

STL B,res_hm ; get lower word of 0Q * 0X

ADD res_hm,16,A ; A =final result

; POST-NORMALIZATION ADJUSTMENT AND STORAGE

; Set up to adjust the normalized result.

; The MSB may be in bit 31. Test this case and increment the exponent
; and right shift mantissa 1 bit so result is in bits 30 through 7

; Right shift mantissa by 7 bits.

; Store low mantissa on stack.

*. Mask implied 1 and store high mantissa on stack.

*. Test result for underflow and overflow.

kkkkkkkkkkkkkkkkkhkkkhkkkkkkkhkkkhkkkhkkkkkkkhkkkkkkhkkkkkkhkkkkkkkkhkkkkkkkhkkkkkkkx

EIE R

ADD #040h,A ; Add rounding bit

SFTA A8 ; sign extend result to check if MSB is in 31
SFTA A-8

RSBX SXM ; turn off sign e xtension for normalization
LD res_exp,B ; load exponent of result

BC normalized,AGEQ ; check if MSB is in 31

SFTL A-1 : Shift result so result is in bits 30:7

ADD #1,B ; increment exponent

STL B,res_exp ; save updated exponent normalized

BC underflow,BLEQ ; check for underflow

SUB #0FFh,B ; adjust to check for overflow

BC overflow,BGEQ ; check for overflow

SFTL A-7 ;'S hift to get 23 msb bits of mantissa result
STL Ares_Im ; store low mantissa result

PRELIMINARY Arithmetic and Logical Operations

6-35

Floating-Point Arithmetic PRELIMINARY

Example 6—10. Multiply Two Floating-Point Numbers (Continued)

AND #07F00h,8,A ; remove implied one
STH Ares_hm ; store the mantissa result
*- * * * * * * * * * * * * * * *
* CONVERSION OF FLOATING POINT FORMAT — PACK
*. Load sign.
*. Pack exponent.
*: Pack mantissa.
*- *kkkkkkhkkhhkk *hkkkkkhkkhhkk *kkkkk
LD res_sign,16,A ; 0000 000S 0000 0000 0000 0000 0000 0000
ADD res_exp,16,A ; 0000 000S EEEE EEEE 0000 0000 0000 0000
SFTL A7 : SEEE EEEE E000 0000 0000 0000 0000 0000
DADD res_hm,A : SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
*e * *k%k * * *k%k *
* CONTEXT RESTORE
*- * * *kk *kk * *% * * * *kk *kk * *% * * *kk *
return_value
op_zero
nop
nop
ret

*
*: overflow PROCESSING

*: Push errno onto stack.

* Load accumulator with return value.
*

overflow

ST #2,err_no ; Load error no
LD res_sign,16,B ; Load sign of result
LD #0OFFFFh,A ; Result low mantissa = OFFFFh
OR B,7,A ; Add sign bit
BD return_value ; Branch delayed
ADD #07F7Fh,16,A ; Result exponent = OFEh
; Result high mant = 07Fh
*k * * *% *% * *% *% *% *
* UNDERFLOW PROCESSING
*: Push errno onto stack.
* Load accumulator with return value.
*- * * * * * * * * * * * * * * * *
underflow
ST #1,err_no ; Load error no
BD return_value ; Branch delayed
SUB AA ; For underflow result = 0
NOP

6-36 PRELIMINARY

PRELIMINARY Floating-Point Arithmetic

Example 6-11. Divide a Floating-Point Number by Another

*- *kkkkkkkk * *kkkkkkkk
)

*. FLOAT_DIV — divide two floating point numbers
* Copyrlght (c) 1993—1994 Texas Instruments Incorporated

F*hkkkkkkkkk *% * *kkkkkkkhkkkkk *% *

;Implementatlon: OP1 and OP2 are each unpacked into sign, exponent, and two words
;of mantissa. If either exponent is zero special case processing is initiated.

;The difference of the exponents are taken. IF the result is less than zero underflow
;has occurred. If the result is zero, underflow may have occurred. If the result

;is equal to 254 overflow may have occurred. If the result is greater than 254
;overflow has occurred.

; Underflow processing returns a value of zero. Overflow processing returns the
;largest magnitude value along with the appropriate sign. If no special cases are
;detected, a 24x24-bit divide is ;executed. The result of the exclusive OR of the
;sign bits, the difference of the exponents and the 24 bit truncated mantissa are
;packed and returned

*okk * * *kkkkk *khkkkk * * * *kkkkkkkk * *
)

* *% * * *kkdkkkkkkkkkk *% * * *kkdkkkkkkkkkk *% *

resource utilization: B accumulator , T register
status bits affected: TC, C, SXM, OVM, C16
entry requirements : CPL bit set

kkkk *kkkkkkkkkkkkk kkkkkkkkk

* AR

1
1
1
1
1

; Floating Point Format — Single Precision
*.

*31|30]29|28|27|26|25]|24|23]22|21|20|19|18|17|16]
*| | | | | | | | | | | | |

| | | |
I | | | | | | | | | | | | | | |
*| S|E7|E6|E5|E4|E3|E2|EL|EO|M22| M21| M20| M19| M18| M17| M16|
*

*

*15|1413]12|11]10] 9| 8] 7| 6] 5| 4] 3| 2] 1| 0]
*| | | | | | | | | | | |

[
I [[| | | | [| | | | | [| I
* M15| M14| M13| M12| M11| M10| M9 | M8 | M7 | M6 | M5 | M4 | M3 | M2 | M1 | MO |
*,

*: Single precision floating point format is a 32 bit format consisting of a 1
bit sign field, an 8 bit exponent *
*- field, and a 23 bit mantissa field. The fields are defined as follows
*
Sign <S> : 0 = positive values; 1 = negative values
Exponent <E7—EO> : offset binary format
00 = special cases (i.e. zero)
01 = exponent value + 127 = -126
FE = exponent value + 127 = +127
FF = special cases (not implemented)
; Mantlssa <M22-MO0> : fractional magnitude format with implied 1
1.M22M21...M1MO
Range :—1.9999998 e+127 to —1.0000000 e-126
+1.0000000 e-126 to +1.9999998 e+127
(where e represents 2 to the power of)
—3.4028236 e+38 to —1.1754944 e-38
+1.1754944 e-38 to +3.4028236 e+
(where e represents 10 to the power of)

Uk K kR Rk Xk kO kX _F_F

PRELIMINARY Arithmetic and Logical Operations

6-37

Floating-Point Arithmetic

Example 6-11. Divide a Floating-Point Number by Another (Continued)

PRELIMINARY

res_hm .usect "flt_div”,1
res_Im .usect "fit_div”,1
res_exp .usect "fit_div”,1
res_sign .usect "fit_div’,1
op2_hm .usect "flt_div”,1
op2_Im .usect "flt_div”,1
op2_se .usect "fit_div”,1
opl_se .usect "fit_div”,1
opl _hm .usect "flt_div”,1
opl_Im .usect "flt_div”,1
opl_msw .usect "fit_div”,1
opl_lIsw .usect "flt_div”,1
op2_msw .usect "fit_div”,1
op2_lIsw .usect "flt_div”,1
err_no .usect "flt_div”,1
.mmregs
*
*
K_divisor_high .set 4140h
K_divisor_low .set 0000h
K_dividend_high .set 4140h
K_dividend_low .set 0000h
.sect "vectors”
B float_div
NOP
NOP
text
float_div:
LD #res_hm,DP ; initialize the page pointer
LD #K_divisor_high,A ; load floating #2 — 12
STL A,0p2_msw
LD #K_divisor_low,A
STL A,0p2_lsw
LD #K_dividend_high,A ; load floating #1 — 12
STL A,opl_msw
LD #K_dividend_low,A
STL A,opl_Isw
RSBX C16 ; Insure long adds for later

*Eox

; CONVERSION OF FLOATING POINT FORMAT — UNPACK
*. Test OP1 for special case treatment of zero.

*. Split the MSW of A in the accumulator.

*. Save the sign and exponent on the stack [xxxx xxxS EEEE EEEE].

*. Add the implied one to the mantissa value.

*. Store entire mantissa with a long word store
B e e e e e e e e e e R R R R e e e e e e

DLD opl_msw,A ; load acc a with OP1

SFTA A8

SFTA A-8

BC opl_zero,AEQ ;if oplis 0O, jump to special case
STH A,—7,0pl_se ; store sign and exponent to stack

6-38 PRELIMINARY

PRELIMINARY Floating-Point Arithmetic

Example 6-11. Divide a Floating-Point Number by Another (Continued)

STL A,opl_Im ; store low mantissa
AND #07Fh,16,A ; mask off sign & exp to get high mantissa
ADD #080h,16,A ; ADD implied 1 to mantissa
STH A,opl_hm ; store mantissa to stack
*
*.
* CONVERSION OF FLOATING POINT FORMAT — UNPACK
* Test OP1 for special case treatment of zero.
*. Split the MSW of A in the accumulator.
*. Save the sign and exponent on the stack [xxxx xxxS EEEE EEEE].
*. Add the implied one to the mantissa value.
* Store entire mantissa with a long word store
*- * * *kk *
DLD op2_msw,A ; load acc a with OP2
BC op2_zero,AEQ ; If OP2 is 0, divide by zero
STH A,—7,0p2_se ; store sign and exponent to stack
STL A,o0p2_Im ; store low mantissa
AND #07Fh,16,A ; mask off sign & exp to get high mantissa
ADD #080h,16,A ; ADD implied 1 to mantissa
STH A,op2_hm ; store mantissa to stack
*
*- * *k%k * * *k%k
*, SIGN EVALUATION
*; Exclusive OR sign bits of OP1 and OP2 to determine sign of result.
*- * * * * * *
* LD opl_seA ; load sign and exp of opl to acc
XOR op2_se,A ; Xor with op2 to get sign of result
AND #00100h,A ; mask to get sign
STL A,res_sign ; save sign of result to stack
*
*e * * * * * * * * * *
* EXPONENT SUMMATION
*. Find difference between operand exponents to determine the result exponent. *
* Since the subtraction process removes the bias it must be re—added in. *
*
*: Branch to one of three blocks of processing
*. Case 1. exp OP1 + exp OP2 results in underflow (exp < 0)
* Case 2: exp OP1 + exp OP2 results in overflow (exp >= OFFh)
* Case 3: exp OP1 + exp OP2 results are in range (exp >= 0 & exp < OFFh)
*: NOTE: Cases when result exp = 0 may result in underflow unless there *
* is a carry in the result that increments the exponent to 1. *
* Cases when result exp = OFEh may result in overflow if there is a carry *
* in the result that increments the exponent to OFFh.
*e * * * * * * * *
K
LD opl_se,A ; Load OP1 sign and exponent
AND #0FFh,A ; Mask OP1 exponent
*
LD op2_se,B ; Load OP2 sign and exponent
AND #O0FFh,B ; Mask OP2 exponent

PRELIMINARY Arithmetic and Logical Operations 6-39

Floating-Point Arithmetic PRELIMINARY

Example 6-11. Divide a Floating-Point Number by Another (Continued)

ADD #07Fh,A ; Add offset (difference eliminates offset)
SUB B,A ; Take difference between exponents
STL Ares_exp ; Save result exponent on stack

*
BC underflow,ALT ; branch to underflow handler if exp < 0
SUB #OFFh,A ; test for overflow
BC overflow,AGT ; branch to overflow is exp > 127

*

*e * * * * * * *

* DIVISION

*. Division is implemented by parts. The mantissas for both OP1 and OP2 are left shifted

* in the 32 hit field to reduce the effect of secondary and tertiary contributions to

* the final result. The left shifted results are identified as OP1’'HI, OP1’'LO, OP2'HI,

* and OP2'LO where OP1’HI and OP2'HI have the xx most significant bits of the mantissas
* and OP1’LO and OP2'LO contain the remaining bits * of each mantissa. Let QHI and QLO
* represent the two portions of the resultant mantissa. Then

\ _ OPI'HI + OPI'LO_ OPI'HI + OPI'LO, 1
QHI + QLO= ST + oR'LO ORHI 1+ 920
*: Now let X = OP2'LO/OP2'HI

*

; Then by Taylor’'s Series Expansion

* 1 - 1_ 2_43
(T X 1-Xx + x°=x° +
: Since OP2'HI contains the first xx significant bits of the OP2 mantissa,
X = OP2'LO/OP2'HI < 2—yy*; Therefore the X2 term and all subsequent terms are less
than the least significant
* bit of the 24—bit result and can be dropped. The result then becomes
OPI'HI + OPI'LO OR'LO
* HI + QLO= * 11—
Q Q OR'HI + OR'LO (OF2’H/)
OR'LO
= HI + QLO * (1-=——~
*; where Q'HI and Q’LO represent the first approximation of the result. Also since
* Q’LO and OP2’'LO/OP2'HI are less significant the 24th bit of the result, this
* product term can be dropped so
OPI'HI + OPI'LO _ OPI'HI + OPI'LO 1
* HIl + QLO= = *

Q QLO OR'HI + OR'LO OR'HI (1 + OF?'LO)
that OR'HI
*k * * *% *% * * *% *%

DLD opl_hm,A : Load dividend mantissa
SFTL A6 ; Shift dividend in preparation for division
*
DLD op2_hm,B ; Load divisor mantissa
SFTL B,7 ; Shift divisor in preparation for division
DST B,op2_hm ; Save off divisor
*
RPT #14 ; QHI = OP1'HI/OP2'HI
SUBC op2_hm,A
STL Ares_hm ; Save QHI
*
SUBS res_hmA ; Clear QHI from ACC
RPT #10 ; Q'LO = OP1'LO / OP2'HI

SUBC op2_hm,A

6-40 PRELIMINARY

PRELIMINARY Floating-Point Arithmetic

Example 6-11. Divide a Floating-Point Number by Another (Continued)

STL A,5res_Im ; Save Q'LO*
LD res_hm,T ; T=Q'HI
MPYU op2_Im,A ; Store Q’'HI * OP2'LO in acc A
SFTL A-1 *
RPT #11 ; Calculate Q'HI * OP2’'LO / OP2'HI
SUBC op2_hm,A ; (correction factor)
SFTL A4 ; Left shift to bring it to proper range
AND #0FFFFh,A : Mask off correction factor
*
NEG A ; Subtract correction factor
ADDS res_Im,A ; Add Q'LO
ADD res_hm,16,A ; Add Q'HI

; POST-NORMALIZATION ADJUSTMENT AND STORAGE

; Set up to adjust the normalized result. The MSB may be in bit 31. Test this
case and increment the exponent and right shift mantissa 1 bit so result is in
bits 30 through 7. Right shift mantissa by 7 bits. Store low mantissa on stack.
Mask implied 1 and store high mantissa on stack. Test result for underflow and

* %k _F *

overflow.
K
LD res_exp,B ; Load result exponent
EXP A ; Get amount to adjust exp for normalizationNOP
NORM A ; Normalize the result
ST T,res_exp ; Store the exponent adjustment value
SuB res_exp,B ; Adjust exponent (add either zero or one)
SFTL A-1 ; Pre—scale adjustment for rounding
ADD #1,B ; Adjust exponent
ADD #020h,A ; Add rounding bit
EXP A ; Normalize after rounding NOP
NORM A ;
ST T,res_exp ; Adjust exponent for normalization
SUB res_exp,B ;
STL B,res_exp ; Save exponent
BC underflow,BLEQ ; process underflow if occurs
SuUB #0FFh,B ; adjust to check for overflow
BC overflow,BGEQ ; process overflow if occurs
SFTL A-7 ; Shift right to place mantissa for splitting
STL Ares_Im : Save result low mantissa
AND #07F00h,8, ; Eliminate implied one
STH Ares_hm ; Save result mantissa on stack
*
*; * * * * * *k%k * * * * * * *k%k * * *
* CONVERSION OF FLOATING POINT FORMAT — PACK
*. Load sign.
*: Pack exponent.
*- Pack mantissa.
*e * * * * *
K

PRELIMINARY Arithmetic and Logical Operations 6-41

Floating-Point Arithmetic PRELIMINARY

Example 6-11. Divide a Floating-Point Number by Another (Continued)

LD res_sign,16,A ; 0000 000S 0000 0000 0000 0000 0000 0000
ADD res_exp,16,A ; 0000 000S EEEE EEEE 0000 0000 0000 0000
SFTL A7 ; SEEE EEEE E000 0000 0000 0000 0000 0000
DADD res_hm,A ; SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
*k k% * * * * * * * *
* CONTEXT RESTORE
*- * * *k%k * *
return_value
opl_zero
ret
*
*; * *%k% * * * * *%k%k * * * *
* OVERFLOW PROCESSING
*. Push errno onto stack.
* Load accumulator with return value.
*- * * *kk * * * * * * * * *
overflow
ST #2,err_no ; Load error no
SAT A ; Result exponent = OFEh
SUB #081h,16,A ; Result high mant = 07Fh
BD return_value ; Branch delayed
LD res_sign,16,B ; Load sign of result
OR B,7,A ; Pack sign*
*-%k * * *k%k *k%k *kkkkk *% * * *k%k *k%k *kkkkk *% * * *

’
*e

UNDERFLOW PROCESSING
*: Push errno onto stack.
* Load accumulator with return value.

*e * * * * * * *
)

*

underflow
ST #1,err_no : Load error no
BD return_value ; Branch delayed
sub AA ; For underflow result =0
nop

Kk
’

* F*kkkkk *kkkkkkkk * *kkk

* DIVIDE BY ZERO
* Push errno onto stack.

*: Load accumulator with return value.
*

op2_zero
ST #3,err_no ; Load error no
SAT A ; Result exponent = FEh
; Result low mant = FFFFh
LD opl_se,16,B ; Load sign and exponent of OP1
AND #100h,16,B ; Mask to get sign of OP1
OR B,7,A ; Pack sign
BD return_value ; Branch delayed
SUB #081h,16,A ; Result high mant = 7Fh
NOP

6-42 PRELIMINARY

PRELIMINARY

Logical Operations

6.6 Logical Operations

DSP-application systems perform many logical operations, including bit manipu-
lation and packing and unpacking data. A digital modem uses a scrambler and
a descrambler to perform bit manipulation. The input bit stream is in a packed for-
mat of 16 bits. Each word is unpacked into 16 words of 16-bit data, with the most
significant bit (MSB) as the original input bit of each word. The unpack buffer con-
tains either 8000h or 0000h, depending upon the bit in the original input-packed
16-bit word. The following polynomial generates a scrambled output, where the
@ sign represents modulus 2 additions from the bitwise exclusive OR of the
data values:

Scrambler output =1 @ x—18 @ x—23

The same polynomial sequence in the descrambler section reproduces the
original 16-bit input sequence. The output of the descrambler is a 16-bit word
in packed format.

Example 6-12. Pack/Unpack Data in the Scrambler/Descrambler of a Digital Modem
; TEXAS INSTRUMENTS INCORPORATED

.mmregs

d_scram_Dbffr

dd
du

e_scram_bffr
npack_buffer

d_input_bit

d_p

ack_out

d_asm_count
K_BFFR_SIZE
K_16

cFu

)

nctional Description

.asg AR1,UNPACK_ BFFR
.asg AR3,SCRAM_DATA_18
.asg AR4,SCRAM_DATA_23
.asg AR2,DE_SCRAM_DATA_18
.asg AR5,DE_SCRAM_DATA 23
.usect "scrm_dat”,30
.usect "dscrm_dt”,30
.usect "scrm_var”,100
.usect "scrm_var”,1
.usect "scrm_var”,1
.usect "scrm_var”,1
.set 24
.set 16
.def d_input_bit
.def d_asm_count

This routine illustrates the pack and unpack of a data stream and
also bit manipulation. A digital scrambler and descrambler does the
bit manipulation and the input to the scrambler is in unpacked format
and the output of the descrambler is in packed 16-bit word.
scrambler_output = 1+x/-18+x"-23

additions are modulus 2 additions or bitwise exclusive OR of data
values. The same polynomial is used to generate the descrambler

output.

.sect "scramblr”
scrambler_init:
ST™M #d_unpack_buffer, UNPACK_BFFR

ST™M #d_scram_bffr, SCRAM_DATA_23

RPTZ A#K_BFFR_SIZE

STL A*SCRAM_DATA 23+

STM #d_scram_bffr+K_BFFR_SIZE-1,SCRAM_DATA_23

PRELIMINARY

Arithmetic and Logical Operations 6-43

PRELIMINARY

Logical Operations

Example 6-12. Pack/Unpack Data in the Scrambler/Descrambler of a Digital Modem
(Continued)

STM #d_scram_bffr+17,SCRAM_DATA 18
STM #d_de_scram_bffr+K_BFFR_SIZE—1,DE_SCRAM_DATA 23
STM #d_de_scram_bffr+17,DE_SCRAM_DATA 18
LD #d_input_bit,Dp
ST #-K_16+1,d_asm_count
scramler_task:
; the unpack data buffer has either 8000h or 0000h since the bit stream
i iseitherlor0
unpack_data:
STM #K_16-1,BRC
RPTB end_loop-1 ; unpack the data into 16—bit
; word
; read the serial bit stream
; mask thelower 15 bits
: the MSB is the serial bit
; Stream
: store the 16 bit word

PORTR 1h,d_input_bit
LD d_input_bit,15,A

STL A*UNPACK_BFFR
unpack_16_words
scrambler:

LD *SCRAM_DATA_18-%,A

XOR *SCRAM_DATA_23,A
XOR *UNPACK_BFFR,A
STL A*SCRAM_DATA_23-%

STL A*UNPACK_BFFR

scramble_word
descrambler:

LD *DE_SCRAM_DATA_18-%,A
XOR *DE_SCRAM_DATA_23A
XOR *UNPACK_BFFR,A

STL A*DE_SCRAM_DATA 23-%

STL A*UNPACK_BFFR

A= XxXN-18+x"-23

;A= A+x"0

; hewest sample, for next
; cycle it will be x(n-1)

; store the scrambled data

; A = xA=18+x"-23
A= A+x”0
; hewest sample, for next
; cycle it will be x(n—-1)
; store the scrambled data

de_scramble_word
; ASM field shifts the descrambler output MSB into proper bit position

pack_data
RSBX SXM ; reset the SXM bit
LD d_asm_count,ASM

LD *UNPACK_BFFR+,A
LD AASM,A

OR d_pack_out,A

STL A, d_pack_out
ADDM #1,d_asm_count

; start pack the data

pack_word
SSBX SXM : enable SXM mode
end_loop
NOP ; dummy instructions nothing
; with the code
NOP
.end

6-44 PRELIMINARY

PRELIMINARY

Chapter 7

Application-Specific Examples

This chapter shows examples of typical applications for the '54x. Since this DSP
is widely used for speech coding and telecommunications, the applications
show how some aspects of these functions are implemented.

Topic Page
7.1 Codebook Search for Excitation Signal in Speech Coding 7-2 |:|
7.2 Viterbi Algorithm for Channel Decoding —ooovvnnnn.. 7-5[_]

PRELIMINARY 7-1

Codebook Search for Excitation Signal in Speech Coding PRELIMINARY

7.1 Codebook Search for Excitation Signal in Speech Coding

Figure 7—-1.

A code-excited linear predictive (CELP) speech coder is widely used for applica-
tions requiring speech coding with a bit rate under 16K bps. The speech coder
uses a vector quantization technique from codebooks to an excitation signal.
This excitation signal is applied to a linear predictive-coding (LPC) synthesis fil-
ter. To obtain optimum code vectors from the codebooks, a codebook search
is performed, which minimizes the mean-square error generated from weighted
input speech and from the zero-input response of a synthesis filter. Figure 7-1
shows a block diagram of a CELP-based speech coder.

CELP-Based Speech Coder

Input speech o| Weighting

filter

Codebook o(n)
LN +

1 Synthesis —
2 filter
g(n)

Gain

Mean-square error
minimization

A

To locate an optimum code vector, the codebook search uses Equation 7-1
to minimize the mean-square error.

Equation 7-1. Optimum Code Vector Localization

7-2

N—.

E = Z{p(n) - V9, (n)}2 N : Subframe

i

The variable p(n) is the weighted input speech, gj(n) is the zero-input response
of the synthesis filter, and vy; is the gain of the codebook.

The cross-correlation (c;) of p(n) and gj(n) is represented by Equation 7-2. The
energy (G;) of gj(n) is represented by Equation 7-3.

PRELIMINARY

PRELIMINARY Codebook Search for Excitation Signal in Speech Coding

Equation 7-2. Cross Correlation Variable (c;)

C = 2 g * p(n)

Equation 7-3. Energy Variable (G;)
N-1
G = Z g’
i=0

Equation 7—1 is minimized by maximizing c;2 / G;. Therefore, assuming that a
code vector with i = opt is optimal, Equation 7—4 is always met for any i. The
codebook search routine evaluates this equation for each code vector and
finds the optimum one.

Equation 7—4. Optimal Code Vector Condition

A
Gi Gopt

Example 7-1 shows the implementation algorithm for codebook search on
'564x. The square (SQUR), multiply (MPYA), and conditional store (SRCCD,
STRCD, SACCD) instructions are used to minimize the execution cycles. AR5
points to ¢;and AR2 points to Gj. AR3 points to the locations of Gqpt and Copt2-
The value of i(opt) is stored at the location addressed by ARA4.

PRELIMINARY Application-Specific Examples 7-3

Codebook Search for Excitation Signal in Speech Coding

Example 7-1. Codebook Search

7-4

SEARCH:

Srh_End:

PRELIMINARY

.titte "CODEBOOK SEARCH”

.mmregs
text

ST™M #C,ARS
STM #G,AR2
STM #OPT,ARS
ST™M #IOPT,AR4
ST #0,*AR4

ST #1,*AR3+
ST #0,*AR3—
STM #N-1,BRC
RPTB Srh_End-1
SQUR *AR5+A
MPYA *AR3+
MAS *AR2+,*AR3-,B

SRCCD *AR4,BGEQ
STRCD *AR3+,BGEQ
SACCD A*AR3—-BGEQ
NOP

RET
.end

;Set C(i) address
;Set G(i) address
;Set OPT address
;Set IOPT address
;Initialize lag
;Initialize Gopt
;Initialize C2opt

A =C(i) * C(i)
;B = C(i)"2 * Gopt
;B =C(i)"2 * Gopt —
;G(i) * C20pt, T = G(i)
;if(B >= 0) then
;iopt = BRC
;if(B >= 0) then
Gopt=T
;if(B >= 0) then
;C20pt = A NOP
:To save current BCR
;*AR4 —> optimal index

PRELIMINARY

PRELIMINARY Viterbi Algorithm for Channel Decoding

7.2 Viterbi Algorithm for Channel Decoding

Convolutional encoding with the Viterbi decoding algorithm is widely used in
telecommunication systems for error control coding. The Viterbi algorithm
requires a computationally intensive routine with many add-compare-select
(ACS) iterations. The '54x can perform fast ACS operations because of dedi-
cated hardware and instructions that support the Viterbi algorithm on chip. This
implementation allows the channel decoder and the equalizer in communica-
tion systems to be used efficiently.

In the global system for mobile communications (GSM) cellular radio, the poly-
nomials in Equation 7-5 are used for convolutional encoding.

Equation 7-5. Polynomials for Convolutional Encoding
G1(D)=1+D3+D4 G2(D)=1+D+ D3+ D4

This convolutional encoding can be represented in a trellis diagram, which
forms a butterfly structure as shown in Figure 7—2. The trellis diagram illus-
trates all possible transformations of convolutional encoding from one state to
another, along with their corresponding path states. There are 16 states, or
eight butterflies, in every symbol time interval. Two branches are input to each
state. Decoding the convolutional code involves finding the optimal path by
iteratively selecting possible paths in each state through a predetermined
number of symbol time intervals. Two path metrics are calculated by adding
branch metrics to two old-state path metrics and the path metric (J) for the new
state is selected from these two path metrics.

Figure 7—-2. Butterfly Structure of the Trellis Diagram

Old state New state

2*]

2J+1
J+8

PRELIMINARY Application-Specific Examples 7-5

Viterbi Algorithm for Channel Decoding PRELIMINARY

Equation 7—6 defines a branch metric.

Equation 7—-6. Branch Metric

M = SD(2*)) * B(J,0) + SD(2*+1) * B(J,1)

SD(2*) is the first symbol that represents a soft-decision input and SD(2*i+1)
is the second symbol. B(J,0) and B(J,1) correspond to the code generated by
the convolutional encoder as shown in Table 7-1.

Table 7-1. Code Generated by the Convolutional Encoder

7-6

J B(J,0) B(J,1)
0 1 1
1 -1 -1
2 1 1
3 -1 -1
4 1 -1
5 -1 1
6 1 -1
7 -1 1

The '54x can compute a butterfly quickly by setting the ALU to dual 16-bit mode.
To determine the new path metric (J), two possible path metrics from 2*J and
2*J+1 are calculated in parallel with branch metrics (M and —M) using the
DADST instruction. The path metrics are compared by the CMPS instruction.

To calculate the new path metric (J+8), the DSADT instruction calculates two
possible path metrics using branch metrics and old path metrics stored in the
upper half and lower half of the accumulator. The CMPS instruction determines
the new path metric.

The CMPS instruction compares the upper word and the lower word of the
accumulator and stores the larger value in memory. The 16-bit transition regis-
ter (TRN) is updated with every comparison so you can track the selected path
metric. The TRN contents must be stored in memory locations after proces-
sing each symbol time interval. The back-track routine uses the information in
memory locations to find the optimal path.

PRELIMINARY

PRELIMINARY

Viterbi Algorithm for Channel Decoding

Example 7-2 shows the Viterbi butterfly macro. A branch metric value is
stored in T before calling the macro. During every butterfly cycle, two macros
prevent T from receiving opposite sign values of the branch metrics.
Figure 7-3 illustrates pointer management and the storage scheme for the
path metrics used in Example 7-2.

In one symbol time interval, eight butterflies are calculated for the next 16 new
states. This operation repeats over a number of symbol time intervals. At the
end of the sequence of time intervals, the back-track routine is performed to
find the optimal path out of the 16 paths calculated. This path represents the
bit sequence to be decoded.

Figure 7-3. Pointer Management and Storage Scheme for Path Metrics

PRELIMINARY

Pointer Location (relative)
AR5 —» 0]
Metrics
2] & 2%] + 1 Old state
15 —
Metrics
J
24 New state
AR3 —»
Metrics
J+8
317

Application-Specific Examples 7-7

Viterbi Algorithm for Channel Decoding

Example 7-2. Viterbi Operator for Channel Coding

7-8

VITRBF

VITRBR

.MACRO

DADST *AR5,A
DSADT *AR5+,B
CMPS A*AR4+

CMPS B,*AR3+
.ENDM

.MACRO

DSADT *AR5,A
DADST *AR5+,B
CMPS A*AR4+
CMPS B,*AR3+

.ENDM

PRELIMINARY

;A = OLD_M(2*0)+T//OLD_(2*J+1)-T

;B = OLD_M(2*J)-T//OLD_(2*J+1)+T
;NEW_M(J) = MAX(A_HIGH,A_LOW)
;TRN<<1, TRN(0,0) = TC

;NEW_M(J+8) = MAX(B_HIGH,B_LOW)
;TRN<<1, TRN(0,) =TC

;A = OLD_M(2*J)-T//OLD_(2*J+1)+T

;B = OLD_M(2*J2)+T//OLD_(2*J+1)-T
;NEW_M(J) = MAX(A_HIGH,A_LOW)
;TRN<<1, TRN(0,0) = TC

;NEW_M(J+8) = MAX(B_HIGH,B_LOW)
;TRN<<1, TRN(0,) =TC

PRELIMINARY

PRELIMINARY

Chapter 8

Bootloader

The bootloader lets you load and execute programs received from a host
processor, EPROMSs, or other standard memory devices. The '54x devices
provide different ways to download the code to accommodate various system
requirements. Some applications use a serial interface. If the code exists in
external ROM, a parallel interface is appropriate. This chapter uses the '542
as a reference platform for HPI bootloader option platform and '541 for other
bootloader options available on '54x.

Topic Page
8.1 Boot Mode SeleCtion oiiiiiii 8[2]
8.2 Host Port Interface (HPI) Boot Loading Sequence 8-

8.3 16-Bit/8-Bit Parallel BOOtouuieeee e 8
8.4 1O BOO ...ttt $-8 |
8.5 Standard Serial BOOtttt 8
8.6 WarM BOOt .. ve ottt et §-12 |

PRELIMINARY 8-1

Boot Mode Selection

PRELIMINARY

8.1 Boot Mode Selection

8-2

Execution begins at location FF80h of the on-chip ROM if the MP/MC pin of
the '54x is sampled low during a hardware reset. This location contains a
branch instruction to start the bootloader program that is factory-programmed
in ROM. This program sets up the CPU status registers before initiating the
bootload. Interrupts are globally disabled (INTM = 1) and internal dual-access
and single-access RAMs are mapped into program/data space (OVLY = 1).
Seven wait states are initialized for all the program and data spaces. The size
of the external memory bank is set to 4K words. It uses one latency cycle when
switching between program and data space.

The boot routine reads the I/O port address OFFFFh by driving the I/O strobe
(IS) signal low. The lower eight bits of the word read from 1/O port address
OFFFFh specify the mode of transfer. The boot routine selection (BRS) word
determines the boot mode. The BRS word uses a source (SRC) field when in
parallel EPROM mode and an entry address (ADDR) field when using a warm
boot (see Section 8.6, Warm Boot on page 8-12). The six least significant bits
and the configuration of CLKX and FSX pins determine whether to use the 8-
or 16-bit bootload serial boot option. The BRS word also determines the 8- or
16-bit parallel /O mode.

The host port interface (HPI) uses interrupt 2 to bootload (INT2). If INT2 is not
latched, the boot routine skips HPI boot mode (see Section 8.2, Host Port Inter-
face (HPI) Bootloading Sequence on page 8-4). It reads the lower eight bits
from the 1/0 address, OFFFFh, to determine the boot mode. Figure 8-1 illus-
trates the boot mode selection process.

PRELIMINARY

PRELIMINARY

Figure 8—1. Boot Mode Selection Process

Initialization

Test INT2:
HPI boot?

r HPI boot mode

1

Begin execution @
hpiram

L —— —

Read BRS word from 1/0
@ address OFFFFh

BRS =
XXXX XX007?

Yes

BRS =
XXXX XX017?,

Yes

BRS =
XXXX XX007,

No

Warm boot
(BRS = xxxx xx11)

r———=—1

PRELIMINARY

1/0 boot mode

No

Boot Mode Selection

Serial boot modes

Brs = \\Yes
xx00 00007,
No

S

1

Configure BSP for 8-bit
(FSX/CLKX as output)
serial port boot mode

Configure BSP for 16-bit
(FSX/CLKX as output)
serial port boot mode

Configure BSP for 8-bit
(FSXICLKX as input)

8-bit parallel /0
mode

16-bit parallel 1/O
mode

Parallel EPROM Boot Modes
8-bit parallel
> EPROM mode
> 16-bit parallel
EPROM mode

Warm boot mode

Pe——————————— e ————1q;

|
|
|
|
-4

serial port boot mode

Configure BSP for 16-bit
(FSX/CLKX as input)
serial port boot mode

Configure TDM for 8-bit
(FSX/CLKX as output)
serial port boot mode

Configure TDM for 16-bit
(FSX/CLKX as output)
serial port boot mode

16-bit TDM standard
mode
(FSX/CLKX as input)

e s |

p— - — — —

Bootloader 8-3

Host Port Interface (HPI) Boot Loading Sequence PRELIMINARY

8.2 Host Port Interface (HPI) Boot Loading Sequence

8-4

The HPI is an 8-bit parallel port that interfaces a host processor to the '542.
The host processor and the '542 exchange information via on-chip, shared
memory. The host interrupts the CPU by writing to the HPI control register
(HPIC). The CPU interrupts the host by asserting the host interrupt (HINT) sig-
nal. The host can acknowledge or clear this signal. The signal determines
whether the HPI boot option is selected by asserting HINT low. This signal is
tied to the external interrupt INT2 input pin if HPI boot mode is selected.
(Instead of tying HINT to INT2, you can send a valid interrupt to the INT2 input
pin within 30 CLOCKOUT cycles after the '542 fetches the reset vector.)

Asserting HINT low sets the corresponding interrupt flag register (IFR) bit. The
bootloader waits for 20 CLKOUT cycles after asserting HINT and reads bit 2
of IFR. Ifthe bit s set (indicating that INT2 is recognized), the bootloader trans-
fers control to the start address of the on-chip HPI RAM (1000h in program
space) and executes code from that point. If bit 2 of the IFR is not set, the boot
routine skips HPI boot mode and reads BRS from the I/O address, OFFFFh,
in 1/0 space. The lower eight bits of this word specify the mode of transfer. The
bootloader ignores the rest of the bits.

If HPI boot mode is selected, the host must download the code to on-chip HPI
RAM before the HPI brings the device out of reset. The bootloader keeps HPI
in shared-access mode (SMODE = 1) during the entire operation. Once HINT
is asserted low by the bootloader, it stays low until a host controller clears it
by writing to HPIC.

PRELIMINARY

PRELIMINARY 16-Bit/8-Bit Parallel Boot

8.3 16-Bit/8-Bit Parallel Boot

The parallel boot option is used when the code is stored in EPROMSs (8 or 16
bits wide). The code is transferred from data to program memory. The six most
significant bits (MSBs) of the source address are specified by the SRC field of
the BRS word, as shown in Figure 8-2.

Figure 8-2. 16-Bit EPROM Address Defined by SRC Field

15 10 9 8 7 6 5 4 3 2 1 0

SRC 0 0 0 0 0 0 0 0 0 0

Note: SRC = Source address

If 16-bit parallel mode is selected, data is read in 16-bit words from the source
address and incremented by 1 after every read operation. The destination
address and the length of the code are specified by the first two 16-bit words.
The length is defined as:

Length = number of 16-bit words to be transferred — 1

The number of 16-bit words specified by length does not include the first two
words read (destination and length parameters), starting from the source ad-
dress. This is shown in Figure 8-3. The code is transferred from data memory
(source address) to program memory (destination address). At least a
10-cycle delay occurs between a read from EPROM and a write to the destina-
tion address. This ensures that if the destination is external memory, like fast
SRAM, there is enough time to turn off the source memory (EPROM) before
the write operation is performed. After the code is transferred to program
memory, the '541 branches to the destination address. This occurs for both for
16-bit and 8-bit parallel boot options.

Figure 8-3. Data Read for a 16-Bit Parallel Boot

15 0

Destination 16

Length 16 =N -1
Code Word (1) 16

Code word (N) 16

Notes: 1) Destination 1 = 16-bit destination
2) Length 1 = 16-bit word that specifies the length of the code (N) that follows it
3) Code word (N) 16 = N 16-bit words to be transferred

PRELIMINARY Bootloader 8-5

16-Bit/8-Bit Parallel Boot PRELIMINARY

If the 8-bit parallel boot option is selected (see Figure 8—4), two consecutive
memory locations (starting at the source address) are read to make one 16-bit
word. The high-order byte must be followed by the low-order byte. Data is read
from the lower eight data lines, ignoring the upper byte on the data bus. The
destination address is a 16-bit word that constitutes the address in program
space where the boot code is transferred. The length is defined as:

Length = number of 16-bit words to be transferred — 1
= (number of bytes to be transferred / 2) -1

Figure 8—4. Data Read During 8-Bit Parallel Boot

7 0

Destinationy,

Destination,
Length, =N -1
Length;=N -1
Code word (1)n,
Code word (1),

Code word (N)p
Code word (N),

Notes: 1) Destinationp, and Destination| represent high and low bytes of destination ad-
dress

2) Lengthp and Length| represent high and low bytes of a 16-bit word that speci-
fies the length N of the code that follows it.

3) Np and Nj bytes constitute N words to be transferred.

8-6 PRELIMINARY

PRELIMINARY

16-Bit/8-Bit Parallel Boot

Figure 8-5 shows the parallel boot sequence, both for the 16- and 8-bit op-

tions.

Figure 8-5. 8-Bit/16-Bit Parallel Boot

Start

Load and save 16-bit
EPROM address (SRC)

v

Read DA

v

Read & copy code
length to BRC

Code
Length v

8-bit read
DA, code length,
code word from SRC

v

Read HB from SRC

v

Read LB from SRC

Branch to DA

Read code word from *
SRC and save code Start executing code
word in PM

v

Increment SRC

v

Increment PM

v

Decrement code length

L v

PRELIMINARY

v

16-bit read
DA, code length,
code word from SRC

Read 16-bit word from
SRC

v

Bootloader

8-7

1/O Boot

8.4

I/0 Boot

PRELIMINARY

The 1/0 boot mode provides asynchronous transfer code from I/O address Oh
to internal/external program memory. Each word can be 16 or 8 bits long. The
'541 communicates with external devices using the BIO and XF handshake
lines. The handshake protocol shown in Figure 8—6 is required to successfully
transfer words from 1/0O address Oh.

Figure 8-6. Handshake Protocol

8-8

BIO

Host request
data transmit |

| S — p-
S N

'541 ready to + Host data valid

541

- | acknowledges . Next word transfer
receive . 1-word transfer | data received

Figure 8-6 shows a data transfer initiated by the host, which drives the BIO
pin low. When BIO goes low, the '541 inputs data from I/O address Oh, drives
the XF pin high to indicate to the host that the data has been received, and
writes the input data to the destination address. The 541 then waits for the BIO
pin to go high before driving the XF pin low. The low status of the XF line can
be polled by the host for the next data transfer.

If 8-bit transfer mode is selected, the lower eight data lines are read from 1/0
address, Oh. The upper byte on the data bus is ignored. The '541 reads two
8-bit words to form a 16-bit word. The low byte of each 16-bit word must follow
the high byte. Figure 8—7 shows the I/O boot sequence, both for the 16- and
8-bit options.

For both 8- and 16-bit I/O, the first two 16-bit words received by the '541 must
be the destination and length of the code, respectively. A minimum delay of 10
clock cycles occurs between the rising edge of XF and the write to the destina-
tion address. This allows the processor sufficient time to turn off its data buffers
before the '541 initiates the write operation if the destination is external
memory. The '541 accesses the external bus only when XF is high.

PRELIMINARY

PRELIMINARY 1/0 Boot

Figure 8—7. 8-Bit/16-Bit I/O Boot Mode

8-bit/16-bit parallel /O mode 8-bit read
* DA, code length,
code word from 1/O Oh
Handshake with host $
v Handshake with host
Read D/A from 1/O Oh v
v Read HB from 1/0O Oh
Handshake with host v
+ Handshake with host
Read code length from i
1/0 Oh
Read LB from I/O Oh

Handshake with host

v

Read D/A from I/O Oh

16-bit handshake & read
DA, code length,

+ code word from I/O Oh
Transfer data from DM
into PM and increment
PM Handshake with host
Read 16-bit word from
Yes 1/0 Oh
Branch to DA

Decrement code length

L v

Start executing code

PRELIMINARY Bootloader 8-9

Standard Serial Boot

PRELIMINARY

8.5 Standard Serial Boot

8-10

The '541 serial boot option can use either the buffered serial port (BSP) or
time-division multiplexed (TDM) serial port in standard mode during booting.
Eight modes are available for the serial boot option (see Figure 8-1, Boot
Mode Selection Process, on page 8-3). The word length (8- or 16-bit) and the
configuration of the CLKX/FSX pins determines the correct mode to use. For
8-bit operation, set the following bits:

[0 Receive reset signal, RRST (to take serial port 0 out of reset)

(1 Transmit mode bit, TXM

(1 Clock mode bit, MCM (so that CLKX is driven by an on-chip clock source)
EI

Frame sync mode bit, FSM (frame sync pulses must be supplied external-
ly on the FSR pin)

(] Format bit, FO (so that data is transferred in an 8-bit length)

This translates to a value of 3Ch to the SPC register, which puts the serial port
in reset. The RRST and XRST of SPC register are set to 1 to take the serial
port out of reset for configuring CLKX/FSX as output pins in 8-bit mode. Then
avalue of FCh is written to the SPC register for 16-bit mode, FO = 0. This writes
38h to the SPC register to put the serial port in reset. It also writes a 1 to both
RRST and XRST to pull the serial port register out of reset and configure
CLKX/FSX as output pins, and a value of F8h is written to the SPC register.

To drive the CLKX and FSX pins as inputs, the MCM and TXM bits are disabled
and the serial port is configured for 8- and 16-bit mode options. The external
flag, XF, sends a signal that the '541 is ready to respond to and receive from
the serial port. The XF flag is set high at reset and is driven low to initiate recep-
tion. No frame sync pulses can appear on FSR before XF goes low. For the
buffered serial port, the BSP control extension register (BSPCE) is initialized
to setthe CLKX to 1/4 of the CLKOUT signal. Figure 8—8 shows the serial boot
sequence.

PRELIMINARY

PRELIMINARY

Figure 8-8. Serial Boot Mode

Serial boot mode

v

Configure SPC register to
put in reset and then pull
out of reset. Configure
BSPCE register

v

Read DA from SP

v

Read code length
from SP

Read code word from
SP and save the code
word in DM

v

Transfer data from DM
into PM and increment
PM

Yes

v

Standard Serial Boot

8-bit read
DA, code length,
code word from SP

v

Read HB from SP

v

Read LB from SP

v

16-bit read
DA, code length,
code word from SP

Read 16-bit word
from SP

Branch to DA

Decrement code length

L v

PRELIMINARY

v

Start executing code

v

Bootloader

8-11

Warm Boot

8.6 Warm Boot

PRELIMINARY

The '541 transfers control to the entry address if the warm boot option is specified.
The warm boot option can be used after a warm device reset or if the program
has already been transferred to internal or external memory by other means, such
as a direct memory access (DMA). For a warm boot, the six MSBs at the entry
point of the code are specified by the SRC or ADDR fields of the BRS word, as
shown in Figure 8-9.

Figure 8-9. Warm Boot Address Specified in BRS Word

15 10

9 8 7 6 5

ADDR

0 0 0 0 0

Note:

ADDR = 6-bit page address

Example 8—1. Warm Boot Option

FILENAME : BOOTC542.ASM

This code segment sets up and executes bootloader code based upon
data saved in data memory

* *kkkkkkkk

title "bootc542”

* *kkkkkkkk * *

Kkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkhkkkkkkkhkkkhkkkkkkkkkkkkhkkkkkkk

* symbol definitions

* *kkkkkkkhkkhhkkkhkk *%

*% *hkkkkkkhkkhhkkkhkk

.mmregs
.mnolist
.def boot
.def endboot
.def bootend
.def bsprcv_isr
.def tdmrcv_isr
.def dest
.def src
.def Ingth
.def s8word
.def hbyte
.def state
* ref boota ; reserved for ROM Code customer
boota .set 0184h ; Arbitrary ref (for USR bootcode)
* Conditional Assembly Flags
C542 .set 1
*
pa0 .set Oh ; port address 0Oh for i/o boot load
brs .set 60h ; boot routine select (configuration word)
bootmode .set 61h ; boot mode extracted from brs
8-12 PRELIMINARY

PRELIMINARY Warm Boot

Example 8-1. Warm Boot Option (Continued)

s8word .set 62h ; concatenator for 8-bit serial load
hbyte .set 63h ; high byte of 8—bit serial word
p8word .set 64h ; concatenator for 8—bit memory load
Src .set 65h ; source address

dest .set 66h ;d estination address (dmov from above)
Ingth .set 67h ; code length

temp .set 68h ; temporary register

state .set 69h : serial 1/O state vector

nmintv .set 6ah ; non—maskable interrupt vector

* Bit equates

b0 .set 00h

b4 .set 04h

b8 .set 08h

bc .set Och

b10 .set 010h

b14 .set 014h

b20 .set 020h

b24 .set 024h

b30 .set 030h

b34 .set 034h

hpiram .set 01000h

int2msk .set 004h ; INT2_ bit position on IFR

* main program starts here

.sect "bootload”
boot
ssbx intm ; disable all interrupts
Id #0, dp
stm #boota, @nmintv
orm #03b00h, @st1 ; xf=1, mh=1, intm=1, ovm=1, sxm=1
orm #020h, @pmst ;ovly=1
stm #O7fffh, swwsr ; 7 wait states for P_,D_, and |_ spaces
stm #0f800h, bscr ; full bank switching

R S S S I S I kA S

* HPI boot, simply branch to HPI RAM

R S S R I S S I S

Jif C542
stm #01010b, hpic ; Send HINT_ low
rpt #18 ; wait 20 clockout cycles
nop
bitf @ifr, #int2msk ; Check if INT2_ flag is set
; ThisTEST MUST BE >= 30 cycles from boot?
stm #int2msk, ifr ; Clear INT2_ bitin ifr if INT2_ latched
bcd endboot, tc ; If yes, branch to HPI RAM
st #hpiram, @dest
.endif
EE IR B S B O A Ok A A A B IR R I I I Sk A A A I I A
* Read Configuration Byte
EIE SR Sk S 2k S 2k S 2E b I 2k A 2k S 2R 2k b 2E b 2k b 2 2k 2 2% 3
portr #0fffth, @brs ; brs <— boot load configuration word
Id @brs, 8, a ; get boot value in acc AL
and #0fcO0h, a ; throw away 2 LSBs

PRELIMINARY Bootloader 8-13

Warm Boot

Example 8—1.
stl a, @src
Idu @brs, a
and #3,a
bc ser_io, aeq
sub #2,a

bc par08, alt

bc parl6, aeq

PRELIMINARY

Warm Boot Option (Continued)

; save as source address
; determine bootload method
;if 2 LSBs == 00
; use serial or parallel I/O
;if2LSBs == 01
; load from 8-bit memory
;if2LSBs ==10
; load from 16-bit memory
;else 2 LSBs ==11

R S R S

* Warm-boot, simply branch to source address ~ *

R S I I R R I

warmboot
delay @src
endboot
Id @dest, a
bacc a

EE S R I I

* Bootload from 16-bit memory

kkkhkkkhkhkkhkhkkhhkkhhkkhkhkkhhkkrkkhkkhkkhk*k

parl6
mvdk @src, arl
Id *arl+, a
stl a, @dest
stim a, ar2
Id *arl+, a
stim a, brc
nop
rptb xfri6-1
mvdk *arl+, ar3
Idm ar2, a
add #1, a
stim a, ar2
sub #1, a
writa @ar3

xfrl6
b endboot

: dest <— src

: branch to destination address

; arl points at source memory (Data)
: load accumulator A with destination
; save to scratchpad
; current destination in block repeat
; get the length
; update block repeat counter register
; bre latency

; read object data
; get previous destination address
; these instructions also
; serve the purpose of inserting
; 10 cycles b/w read & write
; write object data to destination

LSRR S R R I

* Bootload from 8—bit memory, MS byte first *

ESE R S S

par08
mvdk @src, arl
Id *arl+, 8, a
mvdk *arl+, ar3
andm #0ffh, @ar3
or @ar3, a
stl a, @dest
stim a, ar2
Id *arl+, 8, a
mvdk *arl+, ar3
andm #0ffh, @ar3
or @ar3, a
8-14

; arl points at source memory (Data)
; load accumulator A with destination
; ar3 <— junkbyte.low byte
;ar3 <— low byte
; acc A <— high byte.low byte
; save to scratchpad for endboot
; ar2 points at destination
; get number of 16—bit words
; ar3 <— junkbyte.low byte
;ar3 <— low byte
; acc A <— high byte.low byte

PRELIMINARY

PRELIMINARY Warm Boot

Example 8-1. Warm Boot Option (Continued)

stim &, brc ; update block repeat counter register
nop ; brc update latency
rptb eloop4-1
Id *arl+, 8, a ; acc A <— high byte
mvdk *arl+, ar3 ; ar3 <— junkbyte.low byte
andm #0Offh, @ar3 ;ar3 <— low byte
or @ar3, a ; acc A <— high byte.low byte
stl a, @p8word
Idm ar2, a ; acc A <— destination address
nop ; 10 cycles b/w read & write
writa @p8word ; write object data to destination
add #1, a
stim a, ar2 ; update destination address
eloop4d
b endboot
EE IR I I I I B B O O O
ser_io
Id @brs, a
and #0fh, a ; clear except lower 4 bits
st a, @bootmode ; save only boot mode
cmpm @bootmode, #b8 : test for io boot 8
bc pasync08, tc ; If set, perform parallel I/O bootload—8
cmpm @bootmode, #bc ; test bit #3 of configuration word
bc pasynclé, tc ; If set, perform parallel I/O bootload—16

R I S S O I I I S

* Bootload from serial port *

R I S S I S

ser
Id @brs, a
and #3fh, a ; clear except lower 6 bits
stl a, @bootmode ; save only boot mode
cmpm @bootmode, #b0 : test bit #0 of bootmode word
bcd bsp08int, tc ; if set, then 8—bit serial with int BCLKX, BFSX
andm #0ff01lh, @spc ; clear bits 1-7
cmpm @bootmode, #b4 ; test bit #2 of bootmode word
bc bsp16int, tc :if set, then 1 6-bit serial with int BCLKX, BFSX
cmpm @bootmode, #b10 ; test bit #4 of bootmode word
bc bsp08ext, tc ; if set, then 8-bit serial with ext BCLKX, BFSX
cmpm @bootmode, #b14 ; test bit #4&2 of bootmode word
bc bspl6ext, tc ;if set, then 1 6-bit serial with ext BCLKX, BFSX
cmpm @bootmode, #b20 : test bit #5 of bootmode word
bcd tdmO8int, tc ; if set, then 8-bit serial with int TCLKX, TFSX
andm #0ffOOh, @tspc ; clear bits 0-7
cmpm @bootmode, #b24 ; test bit #5&2 of bootmode word
bc tdm16int, tc ; if set, then 1 6-bit serial with int TCLKX, TFSX
cmpm @bootmode, #b30 ; test bit #5&4 of bootmode word
bc tdmO8ext, tc ; if set, then 8-bit serial with ext TCLKX, TFSX
cmpm @bootmode, #b34 ; test bit #5&4&2 of bootmode word
bc tdml16ext, tc ;if set, then 1 6-bit serial with ext TCLKX, TFSX
b bootend

EE R I S R

* Bootload from Buffered Serial Port (BSP) *

R I S S A I

PRELIMINARY Bootloader 8-15

Warm Boot

Example 8—1. Warm Boot Option (Continued)

bspl6ext
orm #0008h, @spc
stm #0003h, spce
bd bspselfl
st #bspadd16, @state
bsp08ext
orm #000ch, @spc
stm #0003h, spce
bd bspselfl
st #bspadd8_1, @state
bspl6int
orm #0038h, @spc
stm #0003h, spce
bd bspselfl
S #bspaddl16, @state
bsp08int
orm #003ch, @spc
stm #0003h, spce
st #bspadd8_1, @state

bspselfl
orm #0080h, @spc
rsbx xf
* Poll for receive data ready
bspin
rsbx tc
bspinn

bcd bspinn, ntc
bitf @spc, #0400h

bsprev_isr
Id @state, a
bacc a

; configure sport and put in reset

PRELIMINARY

;CLKKV=3,FSP=CLKP=FE=FIG=PCM=BXE=HLTX=BRE=HLTR=0

: 16—bir service routine addr

; configure sport and put in reset

; C LKKV=3,FSP=CLKP=FE=FIG=PCM=BXE=HLTX=BRE=HLTR=0

; 8-bit service routine addr

; configure sport and put in reset

; C LKKV=3,FSP=CLKP=FE=FIG=PCM=BXE=HLTX=BRE=HLTR=0

; 16-bit service routine addr

; configure sport and put in reset

;C LKKV=3,FSP=CLKP=FE=FIG=PCM=BXE=HLTX=BRE=HLTR=0

; 8-bit service routine addr
; take sport out of reset
; signal ready—to—receive
; clear flag

; begin receive data routine
pifrrdy =1

; vector to the sport receive routine

* Load destination address (16-bit serial mode)

bspadd16
mvdk @drr, arl
mvkd arl, @dest

; get destination addr into arl
; save destination addr

next service routine

bd bspin

st #bsplenl6, @state
* Load end address (16-bit serial mode)
bsplenl16

Idm drr, a

add @dest, a
stim a, ar0

bd bspin

st #bspisrl6, @state
* Bootload 16-bit serial data
bspisrl6

Idu @arl, a

cmpr eq, arl
bcd bspin, ntc

writa @drr

mar *arl+

b endboot
8-16

)

; get length in words
: add destination address
; save end address

next service routine
; get the destination address

; check for RAM full condition
; spin if transfer not complete

; write object word at destination addr

; increment destination addr

PRELIMINARY

PRELIMINARY

Example 8-1.

Warm Boot Option (Continued)

* Load destination address (8-bit serial mode)

bspadd8_1
Id @drr, 8, a
and #0ffO0h, a
stl a, @hbyte

bd bspin

st #bspadd8_2, @state
bspadd8_2

Idu @drr, a

and #0ffh, a

or @hbyte, a

stim a, arl

stl a, @dest

bd bspin

st #bsplen8_1, @state

; acc A <— junkbyte.high byte
; acc A <— high.byte
; save high byte

; next service routine
; acc A <— junkbyte.low byte
; acc A <— low byte

; acc A <— high byte.low byte
; save destination address

; next service routine

* Load end address (8—bit serial mode)

bsplen8_1
Id @drr, 8, a
stl a, @hbyte

bd bspin

st #bsplen8_2, @state
bsplen8_2

Idu @drr, a

and #0ffh, a

or @hbyte, a
add @dest, a
stim a, ar0

bd bspin

st #bspisr8_1, @state
* Bootload 8-bit serial data
bspisr8_1

Id @drr, 8, a

stl a, @hbyte

bd bspin

st #bspisr8_2, @state
bspisr8_2

Idu @drr, a

and #0ffh, a

or @hbyte, a
stl a, @s8word
Idm arl, a
cmpr eq, arl
bcd endboot, tc
writa @s8word

mar *arl+
bd bspin
st #bspisr8_1, @state

PRELIMINARY

; acc A <— high byte
; save high byte

: next service routine

; acc A <— junkbyte.low byte

; acc A <— low byte
; acc A <— high byte.low byte
: add destination address

; save end address

; next service routine

; acc A <— high byte
; save high byte

; next service routine

; acc A <— junkbyte.low byte
; acc A <— low byte
; acc A <— high byte.low byte
; save 16—bit word
; get destination addr
; check for RAM full condition
; exit if RAM full
; copy word to pmem[<arl>]

: next service routine

Bootloader

Warm Boot

8-17

Warm Boot

Example 8—1. Warm Boot Option (Continued)

R S I I R O R

* Bootload from TDM Serial Port (TDM) *
EE IR SR I S I A S A O A I I I I A A O A Sk A O A I A 2
tdml16ext
orm #0008h, @tspc ; configure sport and put in reset
bd tdmselfl
st #tdmadd16, @state ; 16—bir service routine addr
tdmO08ext
orm #000ch, @tspc ; configure sport and put in reset
bd tdmselfl
st #tdmadd8_1, @state ; 8-bit service routine addr
tdm16int
orm #0038h, @tspc ; configure sport and put in reset
bd tdmselfl
st #tdmadd16, @state : 16—bit service routine addr
tdmO8int
orm #003ch, @tspc ; configure sport and put in reset
st #tdmadd8_1, @state ; 8—bit service routine addr
tdmselfl
orm #0080h, @tspc ; take sport out of reset
rsbx xf ; signal ready—to—receive
* Poll for receive data ready
tdmspin
rsbx tc ; clear flag
tdmspinn
bcd tdmspinn, ntc ; begin receive data routine
bitf @tspc, #0400h pifrrdy =1
tdmrcv_isr
Id @state, a ; vector to the sport receive routine
bacc a
* Load destination address (16-bit serial mode)
tdmadd16
mvdk @trev, arl ; get destination addr into arl
mvkd arl, @dest : save destination addr
bd tdmspin
st #tdmlenl6, @state : next service routine
* Load end address (16-bit serial mode)
tdmlenl6
Idm trcv, a ; get length in words
add @dest, a : add destination address
stim a, ar0 ; save end address
bd tdmspin
st #tdmisrl6, @state : next service routine
* Bootload 16-bit serial data
tdmisrl6
Idu @arl, a ; get the destination address
cmpr eq, arl : check for RAM full condition
bcd tdmspin, ntc ; spin if transfer not complete
writa @trcv ; write object word at destination addr
mar *arl+ ; increment destination addr
b endboot
8-18

PRELIMINARY

PRELIMINARY

PRELIMINARY
Example 8-1. Warm Boot Option (Continued)
* Load destination address (8-bit serial mode)
tdmadd8_1
Id @trev, 8, a ; acc A <— junkbyte.high byte
and #0ffO0h, a ; acc A <— high.byte
stl a, @hbyte ; save high byte
bd tdmspin
st #tdmadd8_2, @state ; next service routine
tdmadd8 2
Idu @trev, a ; acc A <— junkbyte.low byte
and #0ffh, a ; acc A <— low byte
or @hbyte, a ; acc A <— high byte.low byte
stim a, arl ; save destination address
stl a, @dest bd tdmspin
st #tdmlen8_1, @state ; next service routine
* Load end address (8—bit serial mode)
tdmlen8_1
Id @trev, 8, a ; acc A <— high byte
stl a, @hbyte ; save high byte
bd tdmspin
st #tdmlen8_2, @state ; next service routine
tdmlen8_2
Idu @trev, a ; acc A <— junkbyte.low byte
and #0ffh, a ; acc A <— low byte
or @hbyte, ad ; acc A <— high byte.low byte
add @dest, a ; add destination address
stim a, ar0 : save end address
bd tdmspin
st #tdmisr8_1, @state ; next service routine* Bootload 8—bit serial data
tdmisr8_1
Id @trev, 8, a ;acc A <— high byte
stl a, @hbyte ; save high byte
bd tdmspin
st #tdmisr8_2, @state ; next service routine
tdmisr8_2
Idu @trev, a ; acc A <— junkbyte.low byte
and #0ffh, a ; acc A <— low byte
or @hbyte, a ; acc A <— high byte.low byte
st a, @s8word ; save 16—bit word
[dm arl, a ; get destination addr
cmpr eq,arl ; check for RAM full condition
bcd endboot, tc ; exit if RAM full
writa @s8word ; copy word to pmem[<arl>]
mar *arl+
bd tdmspin
st #tdmisr8_1, @state ; next service routine
Bootloader

PRELIMINARY

Warm Boot

8-19

Warm Boot

Example 8—1. Warm Boot Option (Continued)

EZE R R S I I S I I R

* Bootload from parallel I/O port (pa0)

R b I A S R

* Bootload from 1/O port (16-bit parallel)

pasyncl6
call
portr
call
portr
mvdk
Idu

loopl6
call
portr
sshx
rpt
nop
writa
add
banz
Idu
bacc

handshake
pal, @dest ; read word from port to destination
handshake
pa0, @Ingth ; read word from port to length

@Ingth, arl ;arl <— code length

@dest, a ; acc A <— destination address
handshake
pa0, @temp ; read word from port to temp

xf ; acknowledge word as soon as it's read
#8

; 10 cycles delay between xf and write

@temp : write word to destination

#1,a ; increment destination address

loop1l6, *arl— ; loop if arl is not zero

@dest, a : branch to destination addess

a

* Bootload from 1/O port (8-bit parallel), MS byte first pasync08
* get destination address from 1st two byte

call handshake

portr pa0, @hbyte

Id @hbyte, 8, a ; read high byte from port

stl a, @hbyte ; save high byte

call handshake

portr pa0, @dest

Idu @dest, a ; read low byte from port

and #0ffh, a ; clear upper byte

or @hbyte, a ; combine high and low byte

stl a, @dest ; save destination address
* get code length from 2nd two byte

call handshake

portr pa0, @hbyte

Id @hbyte, 8, a ; read high byte from port

stl a, @hbyte ; save high byte

call handshake

portr pa0, @Ingth

Idu @Ingth, a ; read low byte from port

and #0ffh, a ; clear upper byte

or @hbyte, a ; combine high and low byte

stl a, @Ingth ; save code length

stim a, arl ;arl <— code length

Idu @dest, a

Id a, b ; acc B <— destination address
8-20

PRELIMINARY

PRELIMINARY

PRELIMINARY

Warm Boot

Example 8-1. Warm Boot Option (Continued)

loop08
call handshake
portr pa0, @hbyte
Id @hbyte, 8, a
stl a, @hbyte
call handshake
portr pa0, @temp

ssbx xf
Idu @temp, a
and #0ffh, a

or @hbyte, a
stl a, @temp

Id b, a
nop
nop
writa @temp
add #1, a
Id a, b
banz loop08, *arl—
Idu @dest, a
bacc a
* Handshake with BIO signal using XF
handshake
ssbx xf
biohigh
bc biohigh,bio
rshx xf
biolow
rc bio
b biolow
bootend
.end

PRELIMINARY

; read high byte from port
; save high byte

;a cknowledge byte as soon as it's read
; read low byte from port
; clear upper byte
; combine high and low byte
; save code word
; acc A <— destination address

; 10 cycles delay between xf and write
; write code word to program memory
; increment destination address
; save new destination address
; loop if arl not zero
; branch to destination address

; acknowledge previous data word

; wait till host sends request
; indicate ready to receive new data

; wait till new data ready

Bootloader 8-21

PRELIMINARY

Chapter 9

Host-Target Communication

This chapter describes the communication interface between the '54x EVM
and its host. The system passes data between the target and host, while main-

taining real-time operation. The system can be driven by interrupts, polled, or
a mixture of the two.

Topic Page

9.1 Communication Channels —..................... 9p]

9.2 Handshake and Data Transfer

PRELIMINARY 9-1

Communication Channels

PRELIMINARY

9.1 Communication Channels

The host communicates to the '54x EVM via 38 16-bit I/O locations. Each I/O
location is defined by an offset to an I/O page 0 address, shown in Table 9-1.
There are two independent communication channels, A and B, through which
the host and target can communicate. The status/control registers on both the
host and target provide system-level control and status information.

Table 9—-1. '54x EVM Host-Interface Register Usage

1/0 Offset From

Base Address Register Size Register Type
0x0800 Channel A 16 Read/write
0x0804 Channel B 16 Read/write
0x0808 Status/control 16 Read/write

The host writes to channel A (offset 0x0800) and overwrites the current value.
An interrupt 1 (INT1) signal is generated to the target, which sets the channel
A transmit status bit, AXST, to 1 in the host control register (HCR) and sets the
channel A receive status bit, ARST, to 1 in the target control register (TCR).
The host reads from the same location, which clears the ARST bitin HCR and
clears AXST in TCR. Channel B is a 64-word deep, bidirectional FIFO register
that transfers both data and commands. Host write to 0x0804 is buffered by
the FIFO. Data is ignored if the FIFO is full. Figure 9—1 shows the HCR and
Table 9-2 describes the bits.

Figure 9-1. Host Control Register (HCR) Diagram

15 14 13 12 1 10 9-8 7 6 5 4 32 1 0
RESET | MP/MC | BTIE | ATIE | HBIO | BRST2 | BRST | REVL | REVO | XF | BIO [BXST | ARST | AXST
9-2 PRELIMINARY

PRELIMINARY Communication Channels

Table 9—2. Host Control Register (HCR) Bit Summary

Bit Name Description

15 RESET Software reset. If RESET = 1, the target processor and emulation logic are reset
but the host/target communication flags are not reset.

14 MP/MC Microprocessor/microcomputer mode select. The EVM powers up in microcomputer
mode.

13 BTIE Channel B target interrupt enable. If BTIE = 1, channel A receive conditions generate

a host interrupt.

12 ATIE Channel A target interrupt enable. If ATIE = 1, channel A receive conditions generate
a host interrupt.

11 HBIO Host BIO input to target processor
10 BRST2 Channel B receive status bit 2. If BRST2 =1, the target has written to channel B,
forcing an interrupt. The BRST2 flag is cleared when the host reads its channel B.
9-8 BRST Channel B receive status:
BRST
Bit 9 Bit 8 Channel B Receive Status
0 0 Buffer empty
0 1 Buffer less than half full
1 0 Buffer half or more than full
1 1 Buffer full
7 REV1 Card revision status bit 1
6 REVO Card revision status bit O
5 XF External flag from target processor (status)
4 BIO BIO input to target processor

PRELIMINARY Host-Target Communication 9-3

Communication Channels

Table 9-2. Host Control Register (HCR) Bit Summary (Continued)

PRELIMINARY

Bit Name Description
3-2 BXST Channel B transmit status:
BXST
Bit 3 Bit 2 Channel B Transmit Status

0 0 Buffer empty

0 1 Buffer less than half full

1 0 Buffer half or more than full

1 1 Buffer full
1 ARST Channel Areceive status. If ARST =1, the target has written to its channel A register.

The ARST flag is cleared when the host reads channel A.

0 AXST Channel A transmit status. If AXST = 1, host has written to its channel A register.

The AXST flag is cleared when the target reads channel A.

The EVM supports two communication channels, configured as six 1/O ports
for host/target communication and 16 I/O ports for user expansion. Channel
A is a single 16-bit bidirectional register mapped into two 1/O port locations.
Channel B is a single, bidirectional, 64-deep, FIFO buffer that is mapped into
two 1/O port locations. A status 1/0O port provides target control and general-
purpose control, status, and discrete-bit 1/0. Figure 9—3 shows the TCR and
Table 9-3 describes the bits.

Figure 9-2. '54x EVM Port Usage

Port Address Name Usage

0x0010 Channel A Communications
0x0012 Channel B Communications
0x0014 Status Target status/control

Figure 9-3. Target Control Register (TCR) Diagram

15 14 13 12 11-8 7 6 54 32 1 0
AICRST |USR-BOT2 [USR-BOT1 [USR-BOTO | Reserved | USR-BIN1 | USR-BINO |BRST [BXST | ARST | AXST
9-4 PRELIMINARY

PRELIMINARY

Communication Channels

Table 9-3. Target Control Register (TCR) Bit Summary

Bit Name Description
15 AICRST If AICRST = 0, the analog interface circuit is reset
14 USR-BOT2 User discrete output bit 2
13 USR-BOT1 User discrete output bit 1
12 USR-BOTO User discrete output bit O
11-8 - Reserved
7 USR-BIN1 User discrete input bit 1
6 USR-BINO User discrete input bit 0
5-4 BRST Channel B receive status:
BRST
Bit 5 Bit 4 Channel B Receive Status

0 0 Buffer empty

0 1 Buffer less than half full

1 0 Buffer half or more than full

1 1 Buffer full
3-2 BXST Channel B transmit status:

BXST
Bit 3 Bit 2 Channel B Transmit Status

0 0 Buffer empty

0 1 Buffer less than half full

1 0 Buffer half or more than full

1 1 Buffer full
1 ARST Channel Areceive status. If ARST =1, the host has written to its channel A register.

The ARST flag is cleared when the target reads channel A.
0 AXST Channel A transmit status. If AXST =1, target has written to its channel A register.
The AXST flag is cleared when the host reads channel A.

Note: For further register and 1/0 information, see the TMS320C54x Evaluation Module Technical Reference.

PRELIMINARY

Host—Target Communication 9-5

Handshake and Data Transfer PRELIMINARY

9.2 Handshake and Data Transfer

9-6

Example 9-1 through Example 9—4 show how to communicate between the
host and the target through both channels, A and B. The communication in-
volves two steps: a handshake and a data transfer. Channel A sends com-
mands between the host and the target and channel B uses the FIFO buffer
to transfer data, either 64 or 32 words at a time. A buffer of 256 samples is
transferred from target to the host. Data is sent 32 words at a time from the
target, except for the first FIFO, where the first 64 words are sent to the host.
The data is transferred from the target to the FIFO whenever an INT1 signal
occurs. This is generated when the host writes to channel A. The XF line on
the host control sets up a handshake between the host and the target.
Figure 9—4 illustrates the sequence of events in a handshake and Figure 9-5
illustrates the sequence of events in a data transfer.

PRELIMINARY

PRELIMINARY Handshake and Data Transfer

Figure 9—4. Handshake Protocol

Host action Target action

Read channel B until the FIFO is empty.
Write command to channel A (AXST =1,
generates INT1).

v

ARST = 1, since host has written to
channel A polls IFR

Read channel B until the FIFO is
empty.

Read channel A for the command
send by host (ARST = 0).

Send a handshake command to host
through channel A (AXST =1).

Set XF to low.

v

AXST = 0, target has read the
command; poll XF bit.

ARST = 1, target has written a
command to channel A.

Read handshake command from
channel A (ARST = 0).

v

AXST =0, since host has read
the command.

PRELIMINARY Host—Target Communication 9-7

Handshake and Data Transfer PRELIMINARY

Example 9—1. Handshake — Target Action

* This file includes the TCR register configuration of EVM

Fkkkkkkkkkk Fkkkkkkk * *

K_AIC_RST .set Ob << 15 ;if AICRST=0, aic is reset
K_USR_BOT .set 000b << 12 ; User discrete output bits
;0,1,2
K_RESRV .set 0000b << 8 ; Reserved bits
K_USR_BIN .set 00b << 6 ; User discrete input bits 0,1
K_RCV_BRST .set 00b << 4 ; Channel B receive status regs
; buffer half or more K_XMT_BXST
.set 11b << 2 ; Ch B trasnmit status register
; buffer half or more K_RCV_ARST
.set Ob<<1 ; Ch A receive register
K_XMT_AXST .set Ob<<1 ; Ch A transmit register
K_TCR_HIGH .set K_AIC_RST|K_USR_BOT|K_RESRV
K_TCR_LOW .set K_USR_BIN|K_RCV_BRST|K_XMT_BXST|K_RCV_ARST|K_XMT_AXST
K_TCR .set K_TCR_HIGH|K_TCR_LOW

* this includes 1/0 address of CH_A, CH_B and different commands that’s been
* passed between host and the target

K 0 .set Oh ; constant O
K_FIFO_FULL .set OxFF ; Full FIFO command written by
; target
K_FIFO_EMPTY .set OXEE ; Empty FIFO command
; written by host
K_AXST_CLEAR .set OXAE ; Clear AXST empty command
; written by the target
K_HANDSHAKE_CMD .set 0xAB ; handshake CMD written by host
K_CHB .set 12h ; Use Channel B as /O interface
; to 54x EVM for sending data
K_CHA .set 10h : Use Channel A as I/O interface
; to 54x EVM for send command
; to host
K_TRGCR_ADDR .set 14h ; Target status control register
; 110 address location
K_AXST .set 1h : Oh
K_ARST .set 2h ; used to check the control bits
K_BXST .set 0Ch ; check if K_FIFO_SIZE
K_FIFO_SIZE .set 64 ; its a 64 FIFO
K_FRAME_SIZE .set 256 ; Frame size
K_HOST_FLAG .set 1 ;if 0, then host interface
;is disabled
; TEXAS INSTRUMENTS INCORPORATED
.mmregs
.nclude "target.inc”
.include "init_54x.inc”
.include "interrpt.inc”
ref FIFO_DP
ref d_command_reg
ref d_command_value
.def evm_handshake

9-8 PRELIMINARY

PRELIMINARY Handshake and Data Transfer

Example 9-1. Handshake — Target Action (Continued)

; Functional Description

; This initiates the handshake between the host(PC) and the target (DSP).

; The host writes a command to CH A. This generates an INT1 on the target.

; The AXST bit on HCR is set to 1.The INT1 bit in IFR is polled if it is set

; thenitis cleared to clear pending interrupts. The FIFO is cleared

; by reading from the FIFO. The command from host is read thru CH A and ARST
; on TCRis cleared. Another command from target is written to CH A,

; which sets AXST. Also sets XF low. The host polls XF line.

; The host reads CH A which clears ARST on host side and AXST on target side.

.sect "handshke”
evm_handshake:
LD #0,DP
BITF IFR,02h ; Poll for INT1
BC evm_handshake,NTC cARST =1
ST™M #K_INT1,IFR ; clear the pending interrupt

LD #FIFO_DP,DP
RPT #K_FIFO_SIZE-1

PORTR K_CHB,d_command_reg ; assures that FIFO is empty to

PORTR K_CHA,d_command_value ;ARST =0
target_handshake_command: ; read the command from

; to acknowledge INT1

PORTR K_TRGCR_ADDR,d_command_reg ; while (portl4 & ARST)

BITF d_command_reg,K_ARST ; check FIFO empty

BC target_handshake_command, TC ; branch occurs

LD #K_HANDSHAKE_CMD,A ; indicate of FIFO empty

SUB d_command_value,A
bad_handshake_command

BC bad_handshake_command,ANEQ ; read the command send by hosts
ST #K_AXST_CLEAR,d_command_reg ;sendtoac ommand to clear AXST
PORTW d_command_reg, K_CHA ; write command to command reg A
; AXST=1
RSBX XF ; XF=0
RET
.end

PRELIMINARY Host-Target Communication 9-9

Handshake and Data Transfer PRELIMINARY

Example 9—2. Handshake — Host Action

/*
This function initializes the data buffer and reads the FIFO so that FIFO
is empty when the real data transfers starts

*/
void initialize_slave(void)
{ -
intj;
for (j=0;j < 64; j++)
dataa[j] = inport(BDAT_REG); /* read data from data reg. */
for (j=0;j <256; j++)
dataa[j] = 0;
outport(CONT_REG, inport(CONT_REG) & 0xf7ff);
I* :
This initiates the handshake between the target and host. The host writes a command
to target which sets the AXST flag to 1. The INT1 is generated whenever
host writes to CH A. On the target side, INT1 is polled and reads the CH A.
This clears ARST on target side. A command is written to Ch A on target after
emptying the FIFO that sets AXSt =1. Later sets XF to go low. On host XF is polled
and then reads CH A that clears ARST to 0 and AXST to 0 on the target side
*/
int receive_clear_ AXST(void)
/* RECEIVE COMMAND FROM EVM */
{
command = 0xAB;
outport (ADAT_REG,command);
while(inport(CONT_REG) & AXST); /* write command to evm */
while((inport(CONT_REG) & XF));
while(!(inport(CONT_REG) & ARST)); /* wait for evm to send ¢ ommand*/
reply = inport(ADAT_REG); [*read c ommand into reply */
while ((reply & OXAE) |=0xAE);
return(reply); * return command for process'g*/
I* : *

9-10 PRELIMINARY

PRELIMINARY

Figure 9-5. Data Transfer Protocol

I Host action I

Handshake and Data Transfer

I Target action I

FIFO empty (BXST)

{Read first 64 data from target into FIFO

Send a command to host through channel A

(AXST =1)

Initialize counter to 1, since 64 data has already
written to FIFO)

}

else

{

discard the FIFO since there is a overrun on the input
buffer

}

v v

Read the FIFO full command through
channel A (ARST =0)

Write the first 64 data from FIFO to data
buffer

v

AXST =0, since host has read the
command

v

Send a command to target after reading the
FIFO through channel A (AXST = 1)
Generates INT1
I

INT1 occurs

v v

if (64< count < 256)

— f o ——

{

Read the FIFO half- full command through
channel A (ARST = 0)

Send a command to target after reading the
FIFO through channel A (AXST = 1)

Generates INT1}

}
else v

Target receives INT1
Read the FIFO empty command from host through

channel A (ARST = 0)

ARST =0

send data to screen
]

PRELIMINARY

if counter 7
{ Read half FIFO (32 word) from target
Send a command to host through channel A
(ASXT =1)
increment counter
return
}
else
return
[N
Return form Interrupt
Host—Target Communication 9-11

Handshake and Data Transfer

Example 9—-3. Data Transfer — Target Action
; TEXAS INSTRUMENTS INCORPORATED

PRELIMINARY

.mmregs
.include "target.inc”
ref d_output_addr

FIFO_DP
d_command_reg
d_command_value
d_fifo_count
d_fifo_ptr
.def
.def
.def
.def
.def
.def
; Functional Description

.usect "fifo_var”,0
.usect "fifo_var”,1
.usect "fifo_var”,1
.usect "fifo_var”,1
.usect "fifo_var”,1
fifo_host_transfer
FIFO_DP
d_command_reg
d_command_value
d_fifo_ptr
d_fifo_count

; This routine transfers a FIFO(64) of data to host thru CH B.

In the process, after transferring data from DSP to FIFO sends a command

; to host thru CH A.The host acknowledges and sends a command to target (DSP)

; thru CH A.

; The host transfer can be disabled by setting the K HOST_FLAG =0

.asg
.asg
.sect

fifo_host_transfer:

fifo_discard
.endif
RET
.end

9-12

AR7,0UTBUF_P
AR7,SV_RSTRE_AR7

“fifo_fil”
#FIFO_DP,DP
K_HOST_FLAG =1
K_TRGCR_ADDR,d_command_reg ; while (portl4 & BXST)
d_command_reg,K_BXST
fifo_discard, TC ; FIFO discard
d_output_addr,OUTBUF_P ; load PING/PONG bffr address
#K_FIFO_SIZE-1 ; write first set of 64 data
: to FIFO
*OUTBUF_P+,K_CHB ; Fill FIFO
#K_FIFO_FULL,d_command_value
d_command_value, K_CHA ; writecommand to comnd reg A
#1,d_fifo_count ; start counting for transfers
OUTBUF_P,d_fifo_ptr ; save the fifo_ptr

PRELIMINARY

PRELIMINARY Handshake and Data Transfer

Example 9-4. Data Transfer — Host Action

command_FIFO =receive_command_FIFO_FULL();
for (fifo_size=0; fifo_size < 64; fifo_size++)
dataa][fifo_size+count] = inport(BDAT_REG);
send_command_new_FIFO(command);

for (count=64; count< 256; count++)

command_FIFO = receive_command_FIFO_FULL(); /* command from target*/
for (fifo_size=0; fifo_size < 32; fifo_size++)
dataa][fifo_size+count] = inport(BDAT_REG); /* read 32 word fifo*/
count = count+31;
send_command_new_FIFO(command); [* send command to target*/ }
int receive_command_FIFO_FULL(void)

/* RECEIVE COMMAND FROM EVM */

{
while(!(inport(CONT_REG) & ARST)); /* wait for evm to send command*/

reply = inport(ADAT_REG); /* read command into reply */
while ((reply & OxFF) !1=0xFF);
return(reply); /* return command for process’'g*/
}
I* */

[* This function sends a command to target for a new set of data from FIFO*/
void send_command_new_FIFO(command)
unsigned int command;

{
command = OXEE;
outport (ADAT_REG,command);
while(inport(CONT_REG) & AXST);
}

PRELIMINARY Host—Target Communication 9-13

PRELIMINARY

Chapter 10

Application Code Examples

This chapter contains complete code examples for routines that are excerpted
in previous chapters of this book. These routines have been developed using
a '54x EVM platform. These programs demonstrate applications that use a
host interface and run in real time. You may download them to use in develop-
ing your own applications.

Topic Page
10.1 Running the Applications —c.oeiirieiiieeinnnn 102 |
10.2 ApPlication COOE ..\ttt et ettt 1

PRELIMINARY 10-1

Running the Applications PRELIMINARY

10.1 Running the Applications

The host communicates to the '54x EVM through 16-bit I/O locations. Each I/O
location is defined by an offset to an 1/0 page 0 address. The offset used for
these applications is 0x240 + 0x800 for channel A, 0x240 + 0x804 for channel
B, and 0x240 + 0x808 for the target/status control register, where 0x240 is the
base address of the host. Check your PC system documentation to make sure
that I/0O space 0x240 does not conflict with other 1/0 devices. If the EVM is
mapped to other than space 0x240, the base addresses of the control and
status registers must be modified in the file host.h.

The '54x assembler assembles code and generates object files. The linker
command file links the object files and generates a file named main.out, using
common object file format (COFF). You must load main.out into the EVM
debugger command window with the LOAD command and compile the host
software using a Borland C compiler. This generates the file, master.exe. that
contains graphic routines that display data transferred from the target to the
host.

To run the target application, load main.out into the EVM debugger. To start the
program on the target side, press the F5 function key. If you halt the program
with the escape key or use the halt command in the debugger window, the pro-
gram remains in the handshake loop waiting for the host to send a command.
Press the F5 function key to continue. To run the host application, execute
master.exe at the DOS prompt or a window command line. When master.exe
is executed by the host, it displays the message:

Graphics: No error. Press any key to halt.

When you press this key, the graphics window opens and displays data for the
task the target has initiated. The default task is an oscilloscope routine. To
change to a different task, go to the debugger window, halt the program, and
in the command window, type:

e *present_command = X

where x =1, 2, 3, 4, 5 or 6, and present_command has one of the following
values:

1 = oscilloscope

2 = Low-pass finite impulse response (FIR) filter using MAC instruction

3 = Low-pass infinite impulse response (lIR) filter using biquad sections

4 = Lowpass FIR filtering using FIRS instruction

5 = System identification using adaptive filtering with least mean squares
(LMS) instruction

6 = 256-point real fast Fourier transform (FFT)

10-2 PRELIMINARY

PRELIMINARY

PRELIMINARY

Running the Applications

You can view the output of the present task in the graphics window.

To exit the host application, press F3. Communication is lost if at any time the
target code is reloaded or reset in the command window while the host execut-
able is running in the background. This means that if you attempt to reset or
reload the code in the debugger window and you press F5, the computer locks
up. This occurs because there is no handshake between the host and the tar-
get. To unlock, reload and run the code (press F5) on the target side. On the
host side, quit the window and rerun the executable.

The adaptive filter can be tested in two steps. The initial step size d_mu =0
in the first step. If the present task is changed at the debugger window with the
command e *present_command = 5, runs with d_mu = 0. Thus, the system is
not identified since the coefficients of the adaptive filter are not updated. In the
second step the step size can be changed by typing e *d_mu = 0x1000 at the
command window. In this case, the system is identified and the filter coeffi-
cients are adapted using the LMS algorithm. In both cases the error signal can
be observed both on host and also from the output of the '"ACO1.

Application Code Examples 10-3

Application Code PRELIMINARY

10.2 Application Code

Table 10-1 lists programs appropriate for running on a target system and tells
you where to look for them in this chapter.

Table 10-1. Target Files

Title File Name Page

Vector Table Initialization vectors.asm 10-6

Main Program That Calls Different Functions main.asm 10-16
Memory Allocation for Entire Application memory.asm 10-10
Processor Initialization init_54x.asm 10-22
Initialization of Variables, Pointers, and Buffers prcs_int.asm 10-29
Initialization of Serial Port 1 init_ser.asm 10-33
"ACOL1 Initialization init_aic.asm 10-38
’ACO01 Register Configuration aic_cfg.asm 10-42
Receive Interrupt Service Routine rcv_intl.asm 10-46
Task Scheduling task.asm 10-51
Echo the Input Signal echo.asm 10-56
Low-Pass FIR Filtering Using MAC Instruction firasm 10-59
Low-Pass Biquad IIR Filter iirasm 10-69
Low-Pass Symmetric FIR Filtering Using FIRS Instruction sym_fir.asm 10-64
Adaptive Filtering Using LMS Instruction adapt.asm 10-74
256-Point Real FFT Initialization rfft.asm 10-84
Bit Reversal Routine bit_rev.asm 10-87
256-Point Real FFT Routine fft.asm 10-91
Unpack 256-Point Real FFT Output unpack.asm 10-97
Compute the Power Spectrum of the Complex Output power.asm 10-103

of the 256-Point Real FFT

10-4 PRELIMINARY

PRELIMINARY Application Code

Table 10-2 lists programs appropriate for running on a host system and tells
you where to look for them in this chapter.

Table 10-2. Communication Interface Files

Title File Name Page

Handshake Between Host and Target hand_shk.asm 10-25

Interrupt 1 Service Routine hst_intl.asm 10-111
Data Transfer from FIFO fifo.asm 10-106
Main Function Call on Host Side master.c 10-118
Function Calls on Host Side host.c 10-116
Display the Data on the Screen view2.c 10-123
Graphic Drivers Routine graphic2.c 10-121

Example 10—-28 on page 10-124 shows the linker command that links all object
files together to produce a single executable COFF object module. This file es-
tablishes the memory configuration for the entire application, using the '541’s
memory map. Example 10-29 on page 10-127 shows the configuration of the
memory map for a '541 device used by an EVM debugger.

PRELIMINARY Application Code Examples 10-5

Application Code

Example 10-1. Vector Table Initialization

TEXAS INSTRUMENTS INCORPORATED
DSP Data Communication System Development / ASP

Archives: PVCS
Filename: vectors.asm
Version: 1.0

Status: draft)
proposal X)
accepted () dd—mm-yy/?acceptor.

AUTHOR Padma P. Mallela

Application Specific Products

Data Communication System Development
12203 SW Freeway, MS 701

Stafford, TX 77477;{

IPR statements description (can be collected).

© Copyright 1996. Texas Instruments.
All rights reserved.

Change history:

VERSION DATE / AUTHORS COMMENT
1.0 July-24-96 / P.Mallela original created
1. ABSTRACT

1.1 Function Type
a. Core Routine
b. Subroutine

1.2 Functional Description
This file contains vector table of 541
1.3 Specification/Design Reference (optional)

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s vectors.asm

1.6 Notes and Special Considerations

This code is written for 541 device. The code is tested on

C54x EVM

PRELIMINARY

PRELIMINARY

PRELIMINARY Application Code

Example 10-1. Vector Table Initialization (Continued)

3
A{
2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.3 Local Constants

2.2 Local Compiler Flags
%
3. EXTERNAL RESOURCES
; 3.1 Include Files
.mmregs
.include "init_54x.inc”
.include "main.inc”
;3.2 External Data
ref SYSTEM_STACK
;3.3 Import Functions
ref main_start

ref receive_intl
.ref host_command_intl

4. INTERNAL RESOURCES
4.1 Local Static Data

4.2 (_Slobal Static Data

4.3 _Dynamic Data

4.4 ;emporary Data

4.5 Export Functions

5. SUBROUTINE CODE
HeaderBegin

5.1 reset

5.2 Functional Description
This function initializes the vector table of 541 device

5.3 Activation
Activation example:

Reentrancy: No
Recursive: No

PRELIMINARY Application Code Examples 10-7

Application Code

Example 10-1. Vector Table Initialization (Continued)

. 5.4 Inputs

;5.5 Outputs

;5.6 Global

;5.7 Special considerations for data structure

;5.8 Entry and Exit conditions

PRELIMINARY

. |DP|OVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN

Sy
vl

Note : UM — Used & Modified, U — Used, NU — Not Used

;5.9 Execution

1

1

1

Execution time: ?cycles

Call rate: not applicable for this application

[111
in 10]0]1]0]0 |0NU[NU|NU|NU [NU |NU [NU [NU [NUINU[NUINU |[NU|NU

[111
:0ut|0]0]1]0]0 |0|NU|NU[NU |NU |NU |NU |NU |NU [NU[NU|NUINU |[NU|NU

1

;HeaderEnd
; 5.10 Code

reset:

nmi:

.sect

STM

"vectors”
BD main_start

#SYSTEM_STACK,SP

RETE
NOP
NOP

NOP

; software interrupts

sintl7
sint18
sint19
sint20
sint21
sint22
sint23
sint24
sint25
sint26
sint27
sint28
sint29
sint30
int0:

10-8

RETE
NOP
NOP
NOP

.space
.space
.space
.space
.space
.space
.space
.space
.space
.space
.space
.space
.space
.space

4*16
4*16
4*16
4*16
4*16
4*16
4*16
4*16
4*16
4*16
4*16
4*16
4*16
4*16

; INTO

:RESET vector

PRELIMINARY

PRELIMINARY Application Code

Example 10-1. Vector Table Initialization (Continued)

intl: BD host_command_intl ; Host interrupt
PSHM STO
PSHM ST1 T INT1
int2: RETE
NOP
NOP
NOP
tint: RETE
NOP
NOP ; TIMER
NOP
rint0: RETE ; Serial Port Receive
NOP ; Interrupt O
NOP
NOP
xint0: RETE : Serial Port Transmit
NOP ; Interrupt O
NOP
NOP
rintl: BD receive_intl ; Serial Port Receive
PSHM STO ;Interrupt 1
PSHM ST1
xintl: RETE : Serial Port Transmit
NOP ; Interrupt 1
NOP
NOP
int3: RETE
NOP
NOP IINT3
NOP
.end

PRELIMINARY Application Code Examples 10-9

Application Code PRELIMINARY

Example 10-2. Memory Allocation for Entire Application

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: memory.asm

; Version: 1.0

; Status @ draft ()

; proposa (X)

; accepted () dd—mm-yy/?acceptor.

"AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

; IPR statements description (can be collected).

)
;(C) Copyright 1996. Texas Instruments. All rights reserved.

{
; Change history:

1

; VERSION DATE [AUTHORS COMMENT
; 1.0 July-24-96/ P.Mallela original created

1
{
1. ABSTRACT
1.1 Function Type
a.Core Routine
b.Subroutine
1.2 Functional Description
This file contains main function

1.3 Specification/Design Reference (optional)

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s memory.asm

1.6 Notes and Special Considerations

1
1
1
1
)
1
)
1
1
1
1
)
1
1
1
)
1
1
1
)
1
1
1

; This code is written for 541 device. The code is tested on C54x EVM

1

10-10 PRELIMINARY

PRELIMINARY Application Code

Example 10-2. Memory Allocation for Entire Application (Continued)

3
A{
2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.3 Local Constants

2.2 Local Compiler Flags

%
3. EXTERNAL RESOURCES
; 3.1 Include Files
.mmregs
.include "defines.inc”
.include "main.inc”
3.2 External Data

3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data

4.2 (;Iobal Static Data

4.3 D_ynamic Data

4.4 T_emporary Data

4.5 Export Functions

5. SUBROUTINE CODE
HeaderBegin

5.1 main_start

5.2 Functional Description
Memory configuration of the application

5.3 Activation
Activation example:

Reentrancy: No
Recursive : No
5.4 Inputs

PRELIMINARY Application Code Examples 10-11

Application Code PRELIMINARY

Example 10-2. Memory Allocation for Entire Application (Continued)

;5.5 Outputs
. 5.6 Global
: 5.7 Special considerations for data structure

: 5.8 Entry and Exit conditions

. |DP|OVM|SXM|C16|FRCT|ASMI|AROJARLIAR2|AR3|AR4/AR5|ARG|AR|A [B |[BKIBRC| T|TRN]|
;in I|L|J ||1 ||NL|J |l\|IU||N|U I|N|UI|N|U ||NL|J ||NL ||I\IU||I\|IU||NU |[NU |NU [INU|NUINU|NU [NUINU |

soult ||U || l|| l| |N|U , 1| |l\|IU||NIU||N|U ||Nl|J ||N|UI|I\}U| |I\IIU [NU |NU |[NU|NU|NU|NU |NUINU |

; Note : UM — Used & Modified, U — Used, NU — Not Used

5.9 Execution

; Execution time: ?cycles
; Call rate: not applicable for this application

;HeaderEnd

; 5.10 Code

STACK .usect "stack”’,K_STACK_SIZE
SYSTEM_STACK .set K _STACK_ SIZE+STACK

input_data .usect "inpt_buf’,K_FRAME_SIZE*2 ; input data array
output_data .usect "outdata”’,K_FRAME_SIZE*2 ; output data array
; this section of variables are used in receive_intl routine and related routines
RCV_INT1_DP .usect "rcv_vars”,0
d_rcv_in_ptr .usect "rcv_vars”,1 ; save/restore input bffr ptr
d_xmt_out_ptr .usect "rcv_vars”,1 ; save/restore output bffr ptr
d_frame_flag .usect "rcv_vars”,1
d_index_count .usect “rcv_vars”,1
; System Coefficients
scoff .sect "coeffh”

.include "impulse.h”
; RAM location for the System coefficient

hcoff .usect "bufferh”, H_FILT_SIZE

wcoff .usect "bufferw”, ADPT_FILT_SIZE ;

; RAM location for the input data

xh .usect "bufferx”, H_FILT_SIZE ; input data for system

XW .usect "bufferp”, ADPT_FILT_SIZE ; input data for adaptive filter

; RAM location for filter outputs, residual error

; and temporary location for the new input sample.
ADAPT_DP .usect "adpt_var”,0

d_primary .usect "adpt_var”,1

d_output .usect "adpt_var”,1

d_error .usect "adpt_var”,1
d_mu .usect "adpt_var”,1
d mu_ e .usect "adpt_var”,1
d_new_x .usect "adpt_var”,1

d_adapt_count .usect “adpt_var’,1

10-12 PRELIMINARY

PRELIMINARY

Example 10-2. Memory Allocation for Entire Application (Continued)

COFF_FIR_START .sect "coff_fir"
.word 6Fh
.word OF3h
.word 269h
.word 50Dh
.word 8A9h
.word 0C99%h
.word OFF8h
.word 11EBh
.word 11EBh
.word OFF8h
.word 0C99h
.word 8A9h
.word 50Dh
.word 269h
.word OF3h
.word 6Fh

COFF_FIR_END

: circular buffers for coefficients and data buffers

fir_coff_table .usect ™fir_coff”, 20
d_data_buffer .usect "fir_bfr", 40
; variables used in FIR routine

FIR_DP .usect "fir_vars”,0
d_filin .usect “fir_vars”,1
d_filout .usect "fir_vars”,1

; variables used in IIR routine
IIR_DP .usect "iir_vars”,0
d_iir_d . usect iir_vars”,3*2
d_iir_y .usect "iir_vars”,1

.sect iir_coff”
iir_table_start
*

* second—order section # 01

*

.word —-26778 A2
.word 29529 Al/2
.word 19381 B2
.word -23184 Bl
.word -19381 :BO

*

* second—order section # 02

*

.word —-30497 A2

.word 31131 Al/2

.word 11363 ‘B2

.word -20735 :B1

.word 11363 :BO
iir_table_end

iir_coff_table .usect "coff_iir",16
; symmetric FIR filter coeffs

PRELIMINARY

; the 16 tap FIR coefficients
; filter coefficients

Application Code

Application Code Examples 10-13

Application Code PRELIMINARY

Example 10-2. Memory Allocation for Entire Application (Continued)

FIR_COFF .sect "sym_fir" ; filter coefficients

.word 6Fh

.word OF3h

.word 269h

.word 50Dh

.word 8A%h

.word 0C99h

.word OFF8h

.word 11EBh
; circular buffers used in symmetric filter routine
d_datax_buffer .usect "cir_bfr”,20
d_datay_buffer .usect "cir_bfrl”,20

.include "ref_tsk.inc”

task_list .sect "task_tbl” ; calls the tasks itself
.word do_nothing
.word echo_task ; Echo routine
.word fir_task : FIR routine

.word iir_task
.word sym_fir_task
.word adapt_task
.word rfft_task

task_init_list .sect "task int” ; has the i nitialization of tasks
.word do_nothing
.word no_echo_init_task ; there is no init in this case

.word fir_init

.word iir_init

.word sym_fir_init

.word adapt_init

.word do_nothing
; variables used in task handling routine
TASK_VAR_DP .usect "tsk_vars”,0
present_command .usect "tsk_vars”,1
last command .usect "tsk_vars”,1
d_task_addr .usect "tsk_vars”,1
d_task_init_addr .usect "tsk vars”,1
d_buffer_count .usect "tsk_vars”,1
d_output_addr .usect "tsk_vars”,1
d_input_addr .usect "tsk_vars”,1
; Set start addresses of buffers
fft_data .usect "fft_bffr", 4*K_FFT_SIZE ; fft data processing buffer

; Copy twiddle tables
.sect "sin_thl"
sine_table .copy twiddlel ; Sine table
sine .usect "twid_sin",K_FFT_SIZE
.sect "cos_thbl”
cos_table .copy twiddle2 ; cosine table
cosine .usect "twid_cos”,K_FFT_SIZE
; Define variables for indexing input data and twiddle tables
FFT_DP .usect "fft_vars”,0
d_grps_cnt .usect "fft_vars”,1 ; (# groups in current stage)-1

d_twid_idx .usect "fft_vars”,1
; index of twiddle tables
d_data_idx .usect "fft_vars”,1 ; index of input data table

10-14 PRELIMINARY

PRELIMINARY Application Code

Example 10-2. Memory Allocation for Entire Application (Continued)

;variables used for host interface
FIFO_DP .usect "fifo_var”,0
d_command_reg .usect "fifo_var”,1
d_command_value .usect "fifo_var”,1
d_fifo_count .usect "fifo_var”,1
d_fifo_ptr .usect "fifo_var”,1
.end
: Filename : defines.inc
; this include file defines all the variables, buffers and pointers used for the entire

; application

.def STACK,SYSTEM_STACK

.def input_data,output_data

.def scoff,hcoff,wcoff,xh,xw

.def ADAPT_DP,d_primary,d_output,d_error
.def d_mu,d_mue,d_new_x,d_adapt_count

.def fir_coff_table,d_data_buffer

.def FIR_DP,d_filin,d_filout

def COFF_FIR_START,COFF_FIR_END

.def IIR_DP,d_iir_d,iir_y

.def iir_coff_table

def COFF_FIR_START,COFF_FIR_END

.def. d_datax_buffer,d_datay_buffer

.def FIR_COFF

.def TASK_VAR_DP,present_command,last_command
.def d_task_addr,d_task_init_addr,d_buffer_count,d_output_addr
.def RCV_INTL_DP

.def d_rcv_in_ptr,d_xmt_out_ptr

.def d_frame_flag,d_index_count

.def fft_data,sine, cosine

.def FFT_DP,d_grps_cnt, d_twid_idx, d_data_idx
.def cos_table,sine_table

.def FIFO_DP

.def d_command_reg

.def d_fifo_count

.def d_fifo_ptr

; Filename: ref_tsk.inc
; this includes all the task scheduling table referenced labels

ref do_nothing,echo_task,fir_task,iir_task

ref sym_fir_task,fir_init,iir_init,sym_fir_init

.ref no_echo_init_task,fir_init,iir_init,sym_fir_init
ref adapt_init

.def task_init_list,task_list

PRELIMINARY Application Code Examples 10-15

Application Code PRELIMINARY

Example 10-3. Main Program That Calls Different Functions

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: main.asm

; Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

"AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

; IPR statements description (can be collected).

)
;(C) Copyright 1996. Texas Instruments. All rights reserved.

{
; Change history:

VERSION DATE [/ AUTHORS COMMENT
; 1.0 July-24-96 / P.Mallela original created

1
{
1. ABSTRACT
1.1 Function Type
a.Core Routine
b.Subroutine
1.2 Functional Description
This file contains main function

1.3 Specification/Design Reference (optional)

1.4 Module Test Document Reference

Not done
1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s main.asm
1.6 Notes and Special Considerations

1
1
1
1
)
1
)
1
1
1
1
)
1
1
1
)
1
1
1
)
1
1
1

; This code is written for 541 device. The code is tested on C54x EVM

10-16 PRELIMINARY

PRELIMINARY Application Code

Example 10-3. Main Program That Calls Different Functions (Continued)

3
{
2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.3 Local Constants

2.2 Local Compiler Flags
%
3. EXTERNAL RESOURCES
; 3.1 Include Files
.mmregs
.include "init_54x.inc”
.nclude "main.inc”
;3.2 External Data
ref d_frame_flag
ref RCV_INT1_DP
;3.3 Import Functions
.ref aic_init,serial_init,init_54,init_bffr_ptr_var
ref task_handler,evm_handshake,fifo_host_transfer

4. INTERNAL RESOURCES
4.1 Local Static Data
4.2_Global Static Data
4.3_Dynamic Data
4.4_Temporary Data

4.5 Export Functions
.def main_start

5. SUBROUTINE CODE
HeaderBegin

5.1 main_start

5.2 Functional Description
This is the main function that calls other functions.

5.3 Activation
Activation example:

PRELIMINARY Application Code Examples 10-17

Application Code PRELIMINARY

Example 10-3. Main Program That Calls Different Functions (Continued)

BD main_start
PSHM STO
PSHM ST1

Reentrancy: No
Recursive: No

5.4 Inputs
5.5 Outputs

5.6 Global

5.7 Special considerations for data structure

IDP|OVM|SXM|C16|FRCT|ASM|AROJAR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN]
O T T O I O O
An UL 1|NU |1 |NU|NU |NU [NU [NU [NU [NU [NU |NU [NUINUJNU|NU |NU|NU |

SO T O I B N O
;outjU [1]1|NU |1 [NU|NU |NU [NU |NU [NU [NU |NU [NU [NU[NU|NU|NU |[NUINU |

;5.8 Entry and Exit conditions

; Note : UM — Used & Modified, U — Used, NU — Not Used
5.9 Execution

; Execution time: ?cycles

; Call rate: not applicable for this application

;HeaderEnd
; 5.10 Code
.sect "main_prg”

* The code initializes the 541 device, handshake between Target (DSP)
* and the host (PC). Zeros all buffers, variables and init. pointers

* |nitializes serial port, programs ACOL1 registers for selecting sampling
* rate, gains etc..

* * * * * *

main_start:

CALL init_54 ; initialize STO,ST1 PMST and
; other registers

Jif K_HOST_FLAG =1
CALL evm_handshake : EVM host handshake
.endif
CALL init_bffr_ptr_var ; init tables,vars, bffrs, ptr
CALL serial_init ; initialize serial_port 1
CALLD aic_init ; Configures AC01
LD #0,DP
NOP

10-18 PRELIMINARY

PRELIMINARY

Example 10-3. Main Program That Calls Different Functions (Continued)

* * Fkk * * Fkk

* After enabling interrupts from the above, the real processing starts here.
* After collecting 256 samples from ACO1 a flag(d_frame_flag is set).
* Handles the task initiated by the user and transfers the data to the

start_loop
LD #RCV_INT1 _DP,DP ; restore the DP loop:
BITF d_frame_flag,1 ; if 256 samples are received
BC loop,NTC ; if not just loop back
CALL task_handler ; handles task scheduling
CALL fifo_host_transfer ; EVM HOST interface
B loop
.end
* Includes all the constants — main.inc
K_O set O ; constant
K_FIR_INDEX set 1 ; index count
K_FIR_BFFR .set 16 ; FIR buffer size
K_negl .set —1h ; index count
K_BIQUAD set 2 ; there are 2 bi—quad sections
K_IIR_SIZE .set 10 ; each bi—quad has 5 coeffs
K_STACK_SIZE .set 200 ; stack size
K_FRAME_SIZE .set 256 ; PING/PONG buffer size
K_FRAME_FLAG set 1 ; set after 256 collected
H_FILT_SIZE .set 128 ; H(z) filter size
ADPT_FILT_SIZE .set 128 ; W(z) filter size
K_mu .set 0Oh ; initial step constant
K_HOST_FLAG set 1 ; Enable EVM_HOST interface
K_DEFAULT_ACO01 .set 1h ; default ACO1 init
* This include file sets the FFT size for the 'C54x Real FFT code
* Note that the Real FFT size (i.e. the number of points in the
* original real input sequence) is 2N; whereas the FFT size is
* the number of complex points formed by packing the real inputs,
* which is N. For example, for a 256—pt Real FFT, K_FFT_SIZE
* should be set to 128 and K_LOGN should be set to 7.
K_FFT_SIZE .set 128 ; # of complex points (=N)
K_LOGN set 7 ; # of stages (=logN/log2)
K_ZERO_BK set O
K_TWID_TBL_SIZE .set 128 ; Twiddle table size
K_DATA_IDX_1 set 2 ; Data index for Stage 1
K_DATA_IDX_2 set 4 ; Data index for Stage 2
K_DATA IDX_3 set 8 ; Data index for Stage 3
K_FLY _COUNT_ 3 set 4 ; Butterfly counter for Stage 3
K_TWID_IDX_3 .set 32 ; Twiddle index for Stage 3

PRELIMINARY Application Code Examples

Application Code

10-19

Application Code PRELIMINARY

Example 10-3. Main Program That Calls Different Functions (Continued)

* * Fkk * Fkkkkkkk * Fkkkkkkk

* FILENAME: INIT54x.INC

* This include file contains all the initial values of STO, ST1, PMST, SWWSR, BSCR
registers

* STO Register Organization

*

* |15 13]12|11]10| 9 |8 0 |
* | | | | | | |
| I | | | | |
* | ARP |TC|C |OVA|OVB | DP |
*
*
K_ARP .set 000b<<13 ; ARP can be addressed from 00b —111b
; reset value
K_TC .set 1b<<12 ; TC =1 atreset
K_C set 1lb<<11 ;C=1atreset
K_OVA .set 1b<<10 : OVA = 0 at reset, Set OVA
K_OvVvB .set 1lb<<9 ; OVB = 0 at reset, Set OVB
K_DP .set 000000000b<<0 : DP is cleared to O at reset
K_STO .set K_ARP|K_TC|K_C|K_OVA|K_OVB|K_DP

*ST1 Register Organization
*

*

* |15]14|13|12|11|10|9|8|7| 6] 5|4 O]

* | |
| |

* |BRAF| CPL| XF | HM |INTM| O |OVM|SXM|C16|FRCT|CMPT| ASM |

*

*

K_BRAF .set Ob<<15 ; BRAF = 0 at reset

K_CPL set Ob<<14 : CPL =0 at reset

K_XF set 1lb<<13 ; XF =1 at reset

K_HM set Ob<<12 ; HM =0 at reset

K_INTM set 1b<<11 i INTM

K_ST1_RESR .set 0b<<10 ; reserved

K_OVM set 1b<<9 ; OVM = 0 at reset

K_SXM set 1b<<8 ; SXM =1 at reset

K _C16 set Ob<<07 ;. Cl16 =0 atreset

K_FRCT .set 1b<<06 ; FRCT =0 at reset, Set FRCT

K_CMPT set Ob << 05 : CMPT =0 at reset

K_ASM .set 00000b << 00 ; ASM = 0 at reset

K_ST1 _HIGH .set K_BRAF|K_CPL|K_XF|K_HM|K_INTM|K_ST1 _RESR|K_OVM|K_SXM
K_ST1_LOW .set K_C16|K_FRCT|K_CMPT|K_ASM
K STl .set K_ST1 HIGH|K_ST1_LOW

10-20 PRELIMINARY

PRELIMINARY Application Code

Example 10-3. Main Program That Calls Different Functions (Continued)

* * Fkk * Fkkkkkkk *

*PMST Register Organization
*

* |15 7] 65|43 2|1 0]

.] |

* | IPTR [MP/MC |OVLY|AVIS|DROM|CLKOFF| Reserved |
*

K_IPTR .set 111111111b<< 07 ;111111111b at reset
K_MP_MC .set 1b<<06 ; 1 at reset

K_OVLY .set Ob << 05 : OVLY =0 at reset
K_AVIS .set Ob<<04 ; AVIS = 0 at reset
K_DROM .set Ob<<03 ; DROM =0 at reset
K_CLKOFF .set Ob<<02 ; CLKOFF = 0 at reset
K-PMST_RESR .set OOb<<0 ; reserved

; for 548 bit 0 = SMUL
; saturation on multiply
; bit 1 = SST = saturation on store
K_PMST .set K_IPTR|K_MP_MC|K_OVLY|K_AVIS|K_DROM|K_CLKOFF|K_PMST_RESR

*kkkkkk *% *kkkkkkkkkkhhkhhkkkhrrkk Fkkkkk

*SWWSR Register Organization

*

o 15 |14 12|11 98 6|5 3 | 2 0o |
*

* | Reserved | 1/O0 | Data | Data |Program| Program |

*

K_SWWSR_IO .set 2000h ; set the I/O space

*kkkkkk *% *kkkkkkkkkkhhkkhkkkhkrkk *% *kkkkkkkkkkhhkkhkkkhrkkk *% *

*Bank Switching Control Register (BSCR)Organization

*

* | 15 12 | 11 | 10 211 o |
*

* | BNKCMP | PS-DS | Reserved | BH | EXIO |
*

K_BNKCMP .set 0000b << 12 ; bank size = 64K

K PS DS .set Ob<<1l

K_BSCR_RESR .set 000000000b <<2 ; reserved space
K_BH set Ob<<1 : BH =0 at reset

K_EXIO .set Ob<<O ; EXIO =0 at reset

K BSCR .set K_BNKCMP|K_PS_DS|K_BSCR_RESR|K_BH|K_EXIO

PRELIMINARY Application Code Examples 10-21

Application Code

Example 10-4. Processor Initialization

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: init_54x.asm

; Version: 1.0

; Status : draft ()

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

"AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

{

; IPR statements description (can be collected).

)
;(C) Copyright 1996. Texas Instruments. All rights reserved.

{
; Change history:

VERSION DATE [/ AUTHORS COMMENT
; 1.0 July-29-96 / P.Mallela original created

)

{

1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains initialization of the processor

1.4 Module Test Document Reference
Not done

;1.3 Specification/Design Reference (optional)
: 1.5 Compilation Information

; Compiler: TMS320C54X ASSEMBLER
; Version: 1.02 (PC)

; Activation: asm500 —s init_54x.asm

1.6 Notes and Special Considerations

;. This code is written for 541 device. The code is tested on C54x EVM

10-22

PRELIMINARY

PRELIMINARY

PRELIMINARY

Example 10-4. Processor Initialization (Continued)
3
2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

%
3. EXTERNAL RESOURCES
: 3.1 Include Files

.mmregs

.nclude "init_54x.inc”
;3.2 External Data
;3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data

4.2 Global Static Data

4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
.def init_54

5. SUBROUTINE CODE
HeaderBegin

Application Code

5.1 init_54

5.2 Functional Description
Initializes the processor from a reset state

5.3 Activation
Activation example:
CALL init_54

Reentrancy: No
Recursive: No

5.4 Inputs

PRELIMINARY

Application Code Examples

10-23

Application Code PRELIMINARY

Example 10-4. Processor Initialization (Continued)

5.5 Outputs

5.6 Global

5.7 Special considerations for data structure
5.8 Entry and Exit conditions

IDP|OVM|SXM|C16|FRCT|ASM|ARO|ARL|AR2|AR3|AR4|AR5|ARG|AR7|A |B |BK|BRC| T|TRN]
[ttt ettt et
sin [NUJNU [NU [NU [NU [NU [NU [NU [NU |[NU |NU |NU [NU [NU [NU|NU|NU|NU [NU|NU |

S s T O O I O A
:out{NU|NU [NU [NU [NU |NU |NU |NU |NU [NU [UM JUM |NU |NU [NU|NU|NUINU [NU|NU |

1
)
1
1
1
1
1
1
1
1
)
1

Note : UM — Used & Modified, U — Used, NU — Not Used
: 5.9 Execution

Execution time: ?cycles

Call rate: not applicable for this application

1
1
1
1
1
)
1

HeaderEnd

5.10 Code

.sect "main_prg”

init_54:
; Init.the s/w wait state reg.for 2 wait states for 1/0 operations

STM #K_SWWSR_10, SWWSR ; 2 wait states for 1/0 operations
; wait states for Bank Switch

ST™M #K_BSCR, BSCR ; 0 wait states for BANK SWITCH
; initialize the status and control registers

STM #K_STO, STO

STM #K_ST1, ST1

RETD

ST™M #K_PMST,PMST

.end

10-24 PRELIMINARY

PRELIMINARY Application Code

Example 10-5. Handshake Between Host and Target

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: hand_shk.asm

; Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

' AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

IPR statements description (can be collected).

3
; (C) Copyright 1996. Texas Instruments. All rights reserved.

Change history:

VERSION DATE |/ AUTHORS COMMENT
; 1.0 July—26-96 / P.Mallela original created

)

1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains one subroutine:
1) evm_handshake
1.3 Specification/Design Reference (optional)
called by main.asm depending upon if K_HOST_FLAG is set

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s hand_shk.asm

1.6 Notes and Special Considerations

PRELIMINARY Application Code Examples

10-25

Application Code

Example 10-5. Handshake Between Host and Target (Continued)

1
)
1
1

1

2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

3. EXTERNAL RESOURCES

3.1 Include Files

.mmregs
.include "target.inc”
.include "init_54x.inc”
.include "interrpt.inc”

3.2 External Data
ref FIFO_DP
.ref d_command_reg
.ref d_command_value

3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data

4.2 Global Static Data

4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
.def evm_handshake

5. SUBROUTINE CODE
HeaderBegin

PRELIMINARY

1

5.1 evm_handshake

10-26

PRELIMINARY

PRELIMINARY Application Code

Example 10-5. Handshake Between Host and Target (Continued)

5.2 Functional Description

This initiates the handshake between the host(PC) and the target (DSP).
The host writes a command to CH A. This generates an INT1 on the target.
The AXST bit on HCR is set to 1.The bitin IFR is polled if it is set

then it is cleared to clear pending interrupts. The FIFO is cleared

by reading from the FIFO. The command from host is read thru CH A and
ARST on TCR is cleared. Another command from target is written to CH A,
which sets AXST. Also sets XF low. The host polls XF line. The host reads
CH A which clears ARST on host side and AXST on target side.

5.3 Activation
Activation example:
CALL evm_handshake

Recursive : No

5.4 Inputs
NONE

5.5 Outputs
NONE

5.6 Global
Data structure: d_command_reg
Data Format: 16-bit variable
Modified: Yes
Description: command from host is read thru CH A

; Reentrancy: No
; Data structure: d_command_value

Data Format: 16—bit variable
Modified: Yes
Description: holds the command value

5.7 Special considerations for data structure

5.8 Entry and Exit conditions
: |DP|OVM|SXM|C16|FRCT|ASM|AROJAR1|AR2]AR3|AR4|AR5|ARG|AR7|A |B |BK|BRC| T|TRN]|

S RN
in U L] 1|NU|1 |NU|NU |NU [NU [NU [NU [NU |NU |NU [NU[NUJNUINU |[NU[NU |

; T T I I O O O O I
;out/U [1] 1 |NU |1 [NU |NU [NU |NU |NU [NU |NU [NU [NU [UM|NUINU|NU [NUINU |

Note : UM — Used & Modified, U — Used, NU — Not Used
I 5.9 Execution

; Execution time: ?cycles

; Callrate: not applicable for this application

PRELIMINARY Application Code Examples 10-27

Application Code

Example 10-5. Handshake Between Host and Target (Continued)

;HeaderEnd
; 5.10 Code

.sect "handshke”
evm_handshake:

LD #0,DP

BITF IFR,02h ; Poll for INT1

BC evm_handshake,NTC ;ARST =1

STM #K_INTL,IFR ; clear the pending interrupt

LD #FIFO_DP,DP
RPT #K_FIFO_SIZE-1

PORTR K_CHB,d_command_reg ; assures that FIFO is empty to
PORTR K_CHA,d_command_value ; ARST =0
target_handshake_command: ; read the command from HOST

;to acknowledge INT1
PORTR K_TRGCR_ADDR,d_command_reg ; while (portl4 & ARST)

BITF d_command_reg,K_ARST ; check FIFO empty
BC target_handshake_command,TC ; branch occurs
LD #K_HANDSHAKE_CMD,A ; indicate of FIFO empty

SUB d_command_value,A

bad_handshake_command
BC bad_handshake_command,ANEQ ; read the command send by hosts
ST #K_AXST_CLEAR,d_command_reg ; send to a command to clear AXST

PORTW d_command_reg, K_CHA ; write command to command reg A
 AXST =1
RSBX XF i XF=0
RET
.end
10-28

PRELIMINARY

PRELIMINARY

PRELIMINARY Application Code

Example 10-6. Initialization of Variables, Pointers, and Buffers

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: prcs_int.asm

; Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

' AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

IPR statements description (can be collected).

3
; (C) Copyright 1996. Texas Instruments. All rights reserved.

Change history:

VERSION DATE /| AUTHORS COMMENT
; 1.0 July—29-96 / P.Mallela original created

3

{

1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains initialization of buffers,pointers and variables
1.3 Specification/Design Reference (optional)

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s prcs_int.asm

1.6 Notes and Special Considerations

)
1
i
)
’
)
’
)
)
)
1
’
1
)
)
’
)
)
)
’
)
)
)

; This code is written for 541 device. The code is tested on C54x EVM

PRELIMINARY Application Code Examples 10-29

Application Code PRELIMINARY

Example 10-6. Initialization of Variables, Pointers, and Buffers (Continued)
i)

2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

3. EXTERNAL RESOURCES

3.1 Include Files
.mmregs
.nclude “main.inc”
;3.2 External Data
.ref input_data,output_data
ref present_command
.ref d_rcv_in_ptr,d_xmt_out_ptr
ref RCV_INT1_DP
ref d_buffer_count
;3.3 Import Functions

4. INTERNAL RESOURCES

4.1 Local Static Data

4.2 Global Static Data
4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
.def init_bffr_ptr_var

5. SUBROUTINE CODE
HeaderBegin

5.2 Functional Description
This routine initializes all the buffers, pointers and variables

5.1 init_bffr_ptr

10-30 PRELIMINARY

PRELIMINARY Application Code

Example 10-6. Initialization of Variables, Pointers, and Buffers (Continued)

5.3 Activation

Activation example:
CALL init_bffr_ptr_var
Reentrancy: No
Recursive: No

PRELIMINARY

Data structure:

Data Format:

5.4 Inputs
NONE
5.5 Outputs
NONE
5.6 Global
Data structure: AR2
Data Format: 16-bit input buffer pointer
Modified: Yes
Description: initialize to the starting address
Data structure: ARS3
Data Format: 16-bit output buffer pointer
Modified: Yes
Description: initialize to the starting address

present_command
16-bit variable

Modified: Yes

Description: holds the present command
Data structure: input_data

Data Format: 16-bit array

Modified: Yes

Description: address of the input data buffer

Data structure:

output_data

Data Format: 16-bit array

Modified: Yes

Description: address of the output data buffer
Data structure: d_rcv_in_ptr

Data Format: 16-bit var

Modified: Yes

Description: holds the starithg address of input bffr

Data structure:

Data Format:
Modified:
Description:

d_xmt_out_ptr
16-bit variable
Yes
holds the starting address of output bffr

5.7 Special considerations for data structure

Application Code Examples

10-31

Application Code PRELIMINARY

Example 10-6. Initialization of Variables, Pointers, and Buffers (Continued)
5.8 Entry and Exit conditions

. |DP|OVM|SXM|C16|FRCT|ASM]AROJARL|AR2JAR3|AR4|ARS|ARG|AR7|A B |BK|BRC| T|TRN|
S T T T A O I o A

dn (O] 1[1|NU|1 |NU|NU [NU [NU |NU |NU |NU NU [NU [NU|NU[O [NU [NUINU |

S T T I O I O O O B

:outj2 | 1|1 [NU |1 [NU|NU |UM |UM [UM [NU [NU [NU |NU [UM|NU|O [NU |[NUINU |

* Note : UM — Used & Modified, U — Used, NU — Not Used

1

Execution time: ?cycles

;5.9 Execution
; Callrate: not applicable for this application

:HeaderEnd

;. 5.10 Code
.asg AR1,ZRPAD_P ; zero pad pointer
.asg AR2,GETFRM_IN_P ; get frame input data pointer
.asg AR3,GETFRM_OUT_P ; get frame output data pointer
.asg AR2,COFF_P
.sect "zeropad”
init_bffr_ptr_var:
STM #RCV_INT1 _DP,AR2 ;init all vars to O
RPTZ A K_FRAME_SIZE/2-1 ; this may need mods if all vars
STL A, *AR2+ ; are notin 1 page
ST™M #input_data, GETFRM_IN_P ; input buffer ptr
ST™M #output_data, GETFRM_OUT_P ; output buffer ptr
LD #RCV_INT1_DP,DP
MVKD GETFRM_IN_P,d_rcv_in_ptr ; holds present in. bffr ptr
MVKD GETFRM_OUT_P,d_xmt_out_ptr ; holds present out bffr ptr
ST #3,present_command ; initialize present command
ST #K_0, d_buffercount ; reset the buffer count
ST™M #input_data,ZRPAD_P
RPTZ A,2*K_FRAME_SIZE-1 ; zeropad both bottom 256 in-
put_data
STL A, *ZRPAD_P+ ; and fft_data buffers
ST™M #output_data,ZRPAD_P
RPTZ A,2*K_FRAME_SIZE-1
STL A, *ZRPAD_P+
RET

10-32 PRELIMINARY

PRELIMINARY Application Code

Example 10-7. Initialization of Serial Port 1

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

: Archives: PVCS

; Filename: init_ser.asm

:Version: 1.0

; Status : draft @)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

AUTHOR Padma P. Mallela/Ramesh A lyer

; Application Specific Products
; Data Communication System Development
; 12203 SW Freeway, MS 701
; Stafford, TX 77477

; IPR statements description (can be collected).

i}

; (C) Copyright 1996. Texas Instruments. All rights reserved.
{ _
; Change history:

; VERSION DATE [/ AUTHORS COMMENT
; 1.0 July—29-96 / P.Mallela original created
3}

1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains the initialization of the serial port 1

;1.3 Specification/Design Reference (optional)

;1.4 Module Test Document Reference
; Not done

;1.5 Compilation Information

; Compiler: TMS320C54X ASSEMBLER
; Version: 1.02 (PC)

; Activation: asm500 —s init_ser.asm

: 1.6 Notes and Special Considerations

;. This code is written for 541 device. The code is tested on C54x EVM ;

PRELIMINARY Application Code Examples

10-33

Application Code PRELIMINARY

Example 10-7. Initialization of Serial Port 1 (Continued)

A
" 2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

%
: 3. EXTERNAL RESOURCES

3.1 Include Files
.mmregs
.include “interrpt.inc”
.nclude "init_ser.inc”
3.2 External Data

1
)
1

© NONE

;3.3 Import Functions
; NONE

)

{

4. INTERNAL RESOURCES

4.1 Local Static Data
AIC_VAR_DP .usect "aic_vars”,0
aic_in_rst .usect "aic_vars”,1
aic_out_of rst .usect "aic_vars”,1
4.2 Global Static Data

4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
.def serial_init

5. SUBROUTINE CODE
HeaderBegin

5.1 serial_init

5.2 Functional Description
This routine initializes the serial port 1 of 541. The serial port is put
in reset by writting 0’s to RRST and XRST bits and pulled out of reset by
writting 1's to both RRST and XRST bits. This routine also puts the AC01
in reset and after 12 cycles the ACO1 is pulled out of reset. The serial
port initialization is done during the 12 cylce latency of the ACO1 init.

10-34 PRELIMINARY

PRELIMINARY Application Code

Example 10-7. Initialization of Serial Port 1 (Continued)

5.3 Activation
Activation example:
CALL serial_init

Reentrancy: No
Recursive : No

5.4 Inputs

5.5 Outputs

;5.6 Global

Data structure: aic_in_rst

Data Format: 16-bit variable

Modified: Yes

Description: holds the value to put ACO1 in reset state

Data structure: aic_out_of reset

Data Format: 16-bit variable

Modified: Yes

Description: holds the value to put ACO1 out of reset state

5.7 Special considerations for data structure

;5.8 Entry and Exit conditions

. |DP|JOVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B [BK|BRC| T|TRN]|

1 T s o O I O O
in]0]1]1|NU|1 [NU|NU [NU |NU |NU |NU |NU |NU |NU [NUJNU|NUINU [NU|NU |

T o O I I B
;outfU | 1] 1 |NU |1 |NU [NU [NU [NU |[NU |NU |NU |NU |NU [NUJNU|NUINU [NU|NU |

Note : UM — Used & Modified, U — Used, NU — Not Used
;5.9 Execution

; Execution time: ?cycles

; Callrate: not applicable for this application

;HeaderEnd
; 5.10 Code
.sect "ser_cnfg”
serial_init:
LD #AIC_VAR_DP,DP ; initialize DP for aic_reset
ST #K_0, aic_in_rst ; bit 15 = 0 of TCR resets AIC
PORTW aic_in_rst,K_TRGCR_ADDR ;write to address 14h (TCR)

*We need at least 12 cycles to pull the AIC out of reset.

PRELIMINARY Application Code Examples

10-35

Application Code PRELIMINARY

Example 10-7. Initialization of Serial Port 1 (Continued)

STM #K_SERIAL_RST, SPC1 ;reset the serial port with
;0000 0000 0000 1000

STM #K_SERIAL_OUT_RST, SPC1 ;bring ser.port out of reset
;0000 0000 1100 1000

RSBX INTM

LD #0,DP

ORM #K_RINT1|K_INT1),IMR : Enable RINT1,INT1
; 0000 0000 0100 0010

LD #AIC_VAR_DP,DP ; restore DP

STM #(K_RINT1),IFR ; clear RINT1

ST™M #K_0,DXR1 ; 0000 0000 0100 0000

: Pull the ACO1 out of reset — the ACO1 requires that it be held in reset for
; 1 MCLK, which is equivalent to 96.45ns (based on an MCLK of 10.368MHz)

ST #K_8000, aic_out_of rst ; bit 15 = 1 brings AIC from
reset

RETD

PORTW aic_out_of rst, K TRGCR_ADDR ; AIC out of reset

.end

* * * * *

* FILENAME: “INIT_SER.INC*

15 [14] 13 | 12 |11 | 1019 |8 |

IFREE | SOFT| RSRFULL| XSREMPTY] XRDY | RRDY | IN1| INO |

|7 16 [514321]0]
| | | | | | | | I

| | | | | I I I
|[RRST | XRST| TXM | MCM| FSM | FO | DLB | RES |

* 0% Ok Ok 3k Ok 3k F kX F

This include file includes the SPC1 reglster configuration

F*kkdkk *

:Bit Name Function

0 Reserved Always read as 0

i1 DLB Digital loop back: 0 —> Disabled, 1_.Enabled

2 FO Format bit: 0 —> data transfered as 8 bit bytes, 1 —> 16 bit
words

i3 FSM Frame sync pulse: 0 —> serial port in continuous mode, 1 —> FSM
is required

4 MCM Clock mode bit: 0 —> CLKX obtained from CLKX pin 1 —> CLKX
obtained from CLKX

5 TXM Transmit mode bit: 0 —> Frame sync pulses generated externally

and supplied on FSX pin, 1 —> Internally generated frame sync
pulses out on FSX pin

6 XRST Transmit reset bit: 0 —> reset the serial port, 1 —> bring
serial port out of reset

7 RRST Receive reset bit: 0 —> reset the serial port, 1 —> bring
serial port out of reset

;8 INO Read-only bit reflecting the state of the CLKR pin

9 IN1 Read—only bit reflecting the state of the CLKX pin

;10 RRDY Transition from 0 to 1 indicates data is ready to be read

11 XRDY Transition from 0 to 1 indicates data is ready to be sent

10-36 PRELIMINARY

PRELIMINARY Application Code

Example 10-7. Initialization of Serial Port 1 (Continued)

;12 XSREMPTY Transmit shift register empty (Read—only) 0 —> tramsitter
has experienced underflow
;13 RSRFUL Receive shift register full flag (Read—only): 0 —> Receiver
has experienced overrun
;14 SOFT Soft bit — 0 —> immdeiate stop, 1-> stop after word completion
15 FREE Free run bit: 0 —> behaviour depends on SOFT bit, 1—> free run

regardless of SOFT bit
; The system has the following configuration:
; Uses 16-hit data=>FO =0
; Operates in burst mode => FSM =1
; CLKX is derived from CLKX pin => MCM =0
; Frame sync pulses are generated externally by the AIC =>TXM =0
; Therefore, to reset the serial port, the SPC field would have
; 0000 0000 0000 1000
; To pull the serial port out of reset, the SPC field would have
; 0000 0000 1100 1000

K_0 .set 00000000b << 8 ; bits 15-8 to O at reset
K_RRST .set Ob<<7 ; First write to SPC1is 0
: second write is 1
K_XRST .set Ob<<6 ; First write to SPC1is 0
; second write is 1
K_TXM .set Ob<<5
K_MCM .set Ob<<4
K_FSM set 1b<<3 ; Frame Sync mode
K_ZERO .set 000b<<O0
K_SERIAL_RST .set K_O|JK_RRSTI|K_XRST|K_TXM|K_MCM|K_FSM|K_ZERO
; first write to SPC1 register
K_RRST1 set 1b<<7 : second write to SPC1
K_XRST1 set 1lb<<6 ; second write to SPC1
K_SERIAL_OUT_RST .set K _0|JK_RRST1|K_XRST1|K_TXM|K_MCM|K_FSM|K_ZERO
K_TRGCR_ADDR .set 14h ; Target/Status 1/0 address
K_0 .set Oh
K_8000 .set 8000h ; set bit 15 to pull AIC out
; of reset
* FILENAME: INTERRUPT.INC
*
* |15 9|8 |7 | 6|5]4 |3]2 |1]0]
* I I I I I I I I I I
* | Reserved | INT3| XINT1| RINT1| XINTO| RINTO| TINT| INT2| INT1| INTO|
*
*

This file includes the IMR and IFR configuration

* * * *

K_IMR_RESR .set 0000000b << 9 ; reserved space

K_INT3 .set 1b<<8 ; disable INT3

K_XINT1 set 1b<<7 ; disable transmit interrupt 1
K_RINT1 set 1b<<6 ; enable receive interrupt 1
K_XINTO set 1b<<5 ; disable transmit interrupt O
K_RINTO set 1b<<4 ; disable receive interrupt
K_TINT set 1b<<3 ; disbale timer interrupt
K_INT2 set 1b<<2 ; disable INT2

K_INT1 set lb<<1 ; disbale INT1

K_INTO set 1b<<1 : enable INTO

PRELIMINARY Application Code Examples

10-37

Application Code

Example 10-8. 'ACO1 Initialization

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: init_aic.asm

;Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

AUTHOR Padma P. Mallela/Ramesh A. lyer

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

{

; IPR statements description (can be collected).

8
;(C) Copyright 1996. Texas Instruments. All rights reserved.

{
; Change history:

VERSION DATE /| AUTHORS COMMENT
; 1.0 July-29-96/ P.Mallela original created
3

1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains the initialization of ACO1

1.3 Specification/Design Reference (optional)

1.4 Module Test Document Reference
Not done

;1.5 Compilation Information

; Compiler: TMS320C54X ASSEMBLER
; Version: 1.02 (PC)

; Activation: asm500 —s init_aic.asm

1.6 Notes and Special Considerations

This code is written for 541 device. The code is tested on C54x EVM ;

PRELIMINARY

PRELIMINARY

PRELIMINARY Application Code

Example 10-8. 'ACO1 Initialization (Continued)

{
;2. VOCABULARY
2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

;3. EXTERNAL RESOURCES

;3.1 Include Files
.mmregs
.include "interrpt.inc”
. 3.2 External Data
; NONE
;3.3 Import Functions
ref wrt_cnfg ; initializes AC0O1

;4. INTERNAL RESOURCES
4.1 Local Static Data
4.2_GIobaI Static Data
4.3_Dynamic Data

4.4 Temporary Data

;4.5 Export Functions
.def aic_init

5. SUBROUTINE CODE
HeaderBegin

5.1 aic_init

5.2 Functional Description
This routine disables IMR and clears any pending interrupts before
initializing ACO1. The wrt_cnfg function configures the AC01

Activation example:
CALL aic_init

Reentrancy: No

;5.3 Activation
; Recursive: No

PRELIMINARY Application Code Examples 10-39

Application Code PRELIMINARY

Example 10-8. 'ACO1 Initialization (Continued)

;5.4 Inputs

1

;5.5 Outputs

5.6 Global

; 5.7 Special considerations for data structure
;5.8 Entry and Exit conditions

: |DP|OVM|SXM|C16|FRCT|ASM]AROJAR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN|
e rrrrrrr e
in |10 1111 [NU |1 |NU|NU |NU [NU [NU [NU |NU [NU [NU|NUJNU|NU [NU|NU |

S T I O O
sout] [0 [1]1|NU |1 |NU|NU |NU [NU |NU [NU NU |NU [NUINU|NUINU [NUINU |

Note : UM — Used & Modified, U — Used, NU — Not Used
5.9 Execution

; Execution time: ?cycles

; Call rate: not applicable for this application

1

; HeaderEnd

; 5.10 Code
.sect "aic_cnfg”

aic_init:
CALLD wrt_cnfg ; initialize AC01
ANDM #(~K_RINT1|K_INT1),IMR ; disable receive_int1,INT1
ORM #(K_RINT1|K_INT1),IMR ; enable the RINTZ1, INT1
RETD
ST™M (K_RINT1),IFR ; service any pending interrupt
.end

* This file includes the ACO1 registers initialization

* All registers have 2 control bits that initiates serial communication

* There are 2 communication modes — primary and secondary communications
* During primary communication the control bits DOO and D01 are 11 to request
* for a secondary communication. In the secondary serial communications the

* control bits D15 and D14 perform same control function as primary.

* The R/W~ bit at reset is set to 0 placing the device in write mode.

K_NOP_ADDR set 0<<8

K_REG 0 set K _NOP_ADDR

K_A ADDR .set 1<<8 ; REG 1 address
K_A REG set 36 ;

K_REG 1 set K A ADDR|K_A REG : FCLK = 144KHz => A =24h
K_B_ADDR set 2<<8 ; REG 2 address

K_B_REG set 18 ;

K REG 2 set K B ADDRIK_B_REG ; Sampling rate = 8KHz
K_AA ADDR set 3<<8 ; Register 3 address

K_AA REG set O ;

10-40 PRELIMINARY

PRELIMINARY Application Code

Example 10-8. 'ACO1 Initialization (Continued)

K_REG 3 set K _AA ADDR|K_AA REG; ;no shift
K_GAIN_ADDR .set 4<<8 ; Register 4 address
K_MONITOR_GAIN .set 00b << 4 ; Monitor output gain = squelch
K_ANLG_IN_GAIN .set Olb << 2 ; Analog input gain = 0dB
K_ANLG_OUT_GAIN .set 0lb << 0 ; Analog output gain = 0dB
K_REG_4 set K_GAIN_ADDR|K_MONITOR_GAIN|K_ANLG_IN_GAIN|K_ANLG OUT_GAIN
K_ANLG_CNF_ADDR .set 5<<8 ; Register 5 address
K_ANLG_RESRV .set 0<<3 ; Must be set to OK_HGH_FILTER .set0 << 2
; High pass filter is enabled
K_ENBL_IN .set 0lb << 0 ; Enables IN+ and IN—
K_REG_5 .set K_ANLG_CNF_ADDR|K_ANLG_RESRV|K_HGH_FILTER|K_ENBL_IN
K _DGTL CNF ADDR .set 6<<8 ; Register 6 address
K_ADC_DAC set 0<<5 ; ADC and DAC is inactive
K_FSD_OUT set 0<<4 ; Enabled FSD output
K_16 BIT_COMM set 0<<3 ; Normal 16-bit mode
K_SECND_COMM set 0<<2 ; Normal secondary communication
K_SOFT_RESET set 0<<1 ; Inactive reset
K_POWER_DWN set 0<<0 ; Power down external
K_REG_HIGH_6 set K _DGTL_CNF_ADDR|K_ADC DAC|K_FSD_OUT|K 16 BIT_COMM
K_REG_LOW_6 set K_SECND_COMM|K_SOFT_RESET|K_POWER_DWN
K_REG 6 set K REG HIGH 6|K REG LOW 6
K_FRME_SYN_ADDR .set 7<<8 ; Register 7 address
K_FRME_SYN .set 0<<8 ;
K_REG_7 .set K_FRME_SYN_ADDR|K_FRME_SYN
K_FRME_NUM_ADDR .set 8<<38 ; Register 8 address
K_FRME_NUM set 0<<8 ;
K_REG_8 .set K_FRME_NUM_ADDR|K_FRME_NUM

; primary word with DO1 and DOO bits set to 11 will cause a
; secondary communications interval to start when the frame
; sync goes low next
K_SCND_CONTRL set 11lb<<O ; Secondary comm.bits
AIC_REG_START_LIST .sect "aic_reg” ; includes the aic table
.word AIC_REG_END_LIST-AIC_REG_START_LIST-1
.word K REG 1
.word K_REG_2
.word K_REG_3
.word K_REG 4
.word K_REG_5
.word K_REG_6
.word K_REG_7
.word K _REG_8
AIC_REG_END_LIST

K_XRDY .set 0800h ; XRDY bitin SPC1
.sect "aic_cnfg”

aic_init:
CALLD wrt_cnfg ; initialize ACO1
ANDM #(~K_RINT1),IMR ; disable receive_intl
ORM #(K_RINT1|K_INT1),IMR ; enable the RINTL, INT1
RETD
ST™M #(K_RINT1),IFR ; service any pending interrupt
.end

PRELIMINARY Application Code Examples 10-41

Application Code

Example 10-9. 'ACO1 Register Configuration

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: aic_cfg.asm

; Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

AUTHOR Padma P. Mallela/Ramesh A. lyer

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

; IPR statements description (can be collected).

)
;(C) Copyright 1996. Texas Instruments. All rights reserved.

{
; Change history:

1

;VERSION DATE /| AUTHORS COMMENT
; 1.0 July-25-96 / P.Mallela original created

3

{

1. ABSTRACT

1.1 Function Type
a.Core Routine

b.Subroutine

1.2 Functional Description
This file contains the ACOL1 initialization

1.3 Specification/Design Reference (optional)

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s aic_cfg.asm

1.6 Notes and Special Considerations

1
1
1
)
1
)
1
1
1
1
)
1
1
1
)
1
1
1
)
1
1
1

1

10-42

PRELIMINARY

PRELIMINARY

PRELIMINARY

Example 10-9. 'ACO01 Register Configuration (Continued)

A{
. 2.VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

%
: 3. EXTERNAL RESOURCES

3.1 Include Files

.mmregs

.include "aic_cfg.inc”
3.2 External Data
3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data

4.2 Global Static Data

4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
.def wrt_cnfg

5. SUBROUTINE CODE
HeaderBegin

Application Code

5.1 wrt_cnfg

;5.2 Functional Description

; Writes new configuration data into the AC0O1. Assuming a system

; which processes speech signals and * requires the following parameters
; Low pass filter cut—off frequency = 3.6 kHz

; Sampling rate = 8000 Hz

; Assume the Master clock MCLK = 10.368 MHz

; This example demonstrates how to program these parameters —

; the registers affected are:

; Register A which determines the division of the MCLK frequency

; to generate the internal filter clock FCLK.

; It also determines the —3 dB corner frequency of the low—pass filter
; Register B which determines the division of FCLK to generate

; the sampling (conversion) frequency

PRELIMINARY Application Code Examples 10-43

Application Code PRELIMINARY

Example 10-9. 'ACO1 Register Configuration (Continued)

It also determines the —3dB corner frequency of the high—pass filter

5.3 Activation
Activation example:
CALLD wrt_cnfg
STM #K_RINTL,IFR

Reentrancy: No
Recursive: No

5.4 Inputs
NONE

5.5 Outputs
NONE

5.6 Global
Data structure: AR1
Data Format: 16-bit pointer
Modified: No
Description: indexes the table

5.7 Special considerations for data structure

5.8 Entry and Exit conditions

; |DPJOVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |[BK|BRC| T|TRN|
Zin||L|J ||1 ||1||NlIJ ||1 ||N|U IN|U ||NL|J |l|\lU| |||\111 ||N|U||N|U INU [NU [NUINUJNU|NU |NUINU |

EOLIIt|U || 1|| 1| |NIU } 1| |I\IIU||I\IUI|UII\/I ||NI|JI|I\|IU| |L|J|\l| |l|\lU [NU |NU [UM|NU|NUJUM |NUINU |

Note : UM — Used & Modified, U — Used, NU — Not Used

;5.9 Execution
; Execution time: ?cycles
; Callrate: not applicable for this application
; HeaderEnd
5.10 Code

.asg AR1AIC_REG_P
.sect "aic_cnfg”
wrt_cnfg:
STM #aic_reg_tble,AIC_REG_P ;init AR1
RPT #AIC_REG_END_LIST-AIC_REG_START_LIST
MVPD #AIC_REG_START_LIST,*AIC_REG_P+ ; move the table
STM #aic_reg_tble,AIC_REG_P ; init AR1
STM #K_REG_0,DXR1 ; primary data word —
; ajump start!

10-44 PRELIMINARY

PRELIMINARY Application Code

Example 10-9. 'ACO01 Register Configuration (Continued)

wait_xrdy
BITF SPC1,K_XRDY ; test XRDY bit in SPC1
BC wait_xrdy,NTC ; loop if not set
STM #K_SCND_CONTRL,DXR1 ; send primary word with

; D01-D00 =11to
; signify secondary communication
LD *AIC_REG_P+A

STLM A,BRC ; gives the # of registers to be
; initialized
NOP
RPTB aic_cfg_complte-1
wait_xrdy1
BITF SPC1,K_XRDY ; test XRDY bit in SPC1
BC wait_xrdyl,NTC ; loop if not set
LD *AIC_REG_P+A ; Read the register contents
STLM A, DXR1
wait_xrdy2
BITF SPC1,K_XRDY ; test XRDY bit in SPC1
BC wait_xrdy2,NTC ; loop if not set
STM #K_SCND_CONTRL,DXR1 ; set to read the next register
aic_cfg_complte ; contents
wait_xrdy3
BITF SPC1,K_XRDY ; test XRDY bit in SPC1
BC wait_xrdy3,NTC ; loop if not set
RET

PRELIMINARY Application Code Examples 10-45

Application Code

Example 10-10. Receive Interrupt Service Routine

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: rcv_intl.asm

; Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

"AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

; IPR statements description (can be collected).

)
;(C) Copyright 1996. Texas Instruments. All rights reserved.

{
; Change history:

VERSION DATE [/ AUTHORS COMMENT
; 1.0 July-29-96 / P.Mallela original created

1

y
A
1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains interrput service routine INT1:
receive_intl

1.3 Specification/Design Reference (optional)

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s rcv_intl.asm

1.6 Notes and Special Considerations

1
1
1
1
)
1
)
1
1
1
1
)
1
1
1
)
1
1
1
)
1

y
i

10-46

PRELIMINARY

PRELIMINARY

PRELIMINARY Application Code

Example 10-10. Receive Interrupt Service Routine (Continued)
2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

3
A{
: 3 EXTERNAL RESOURCES

;3.1 Include Files
.mmregs
.include "INTERRPT.INC"
.include "main.inc”
;3.2 External Data
ref d_frame_flag
ref d_index_count
ref d_rcv_in_ptr,d_xmt_out_ptr
ref RCV_INT1_DP
;3.3 Import Functions

)
4 INTERNAL RESOURCES
4.1 Local Static Data

4.2 Global Static Data

4.4 Temporary Data

;4.3 Dynamic Data

4.5 Export Functions
.def receive_intl

5. SUBROUTINE CODE
HeaderBegin

5.1 receive_intl

5.2 Functional Description
This routine services receive interruptl. Accumulator A, AR2 and AR3
are pushed onto the stack since AR2 and AR3 are used in other
applications. A 512 buffer size of both input and output uses circular
addressing. After every 256 collection of input samples a flag is set to
process the data. A PING/PONG buffering scheme is used such that upon
processing PING buffer, samples are collected in the PONG buffer and vice
versa.

PRELIMINARY Application Code Examples 10-47

Application Code PRELIMINARY

Example 10-10. Receive Interrupt Service Routine (Continued)

5.3 Activation
Activation example:
BD receive_intl
PSHM STO
PSHM ST1

Reentrancy: No
Recursive : No

5.4 Inputs
NONE

5.5 Outputs
NONE

5.6 Global

Data structure: AR2

Data Format: 16-bit input buffer pointer

Modified: Yes

Description: either point to PING/PONG buffer. Upon entering
AR2 is pushed onto stack and the address is restored
through d_rcv_in_ptr

Data structure: AR3

Data Format: 16—bit output buffer pointer

Modified: Yes

Description: either point to PING/PONG buffer. Upon entering
ARS3 is pushed onto stack and the address is restored
through d_rcv_in_ptr

Data structure: d_index_count

Data Format: 16-bit var

Modified: Yes

Description: holds the number samples that has been collected from
ACO01

Data structure: d_frame_flag

Data Format: 16—bit variable

Modified: Yes

Description: flag is set if 256 samples are collected

Data structure: d_rcv_in_ptr

Data Format: 16-bit var
Modified: Yes
Description: holds the input buffer address where the newest

sample is stored

Data structure: d_xmt_out_ptr

Data Format: 16-bit variable
Modified: Yes
Description: holds the output buffer address where the oldest

sample is sent as output

10-48 PRELIMINARY

PRELIMINARY Application Code

Example 10-10. Receive Interrupt Service Routine (Continued)

5.7 Special considerations for data structure
5.8 Entry and Exit conditions

|DP|OVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN
I e e e e e A
in U1 1|NU |1 [NU|NU|NU|U [U |NU|NU |NU [NU |U [NUINUINU |[NUINU

; T e I o R B O I I B O
;outfU [1] 1|NU |1 |NU|NU |NU[U |U |NU |NU |NU |NU |U [NUJU [NU [NU|NU

)
’
)
’
)
1

" Note : UM — Used & Modified, U — Used, NU — Not Used
5.9 Execution

Callrate: not applicable for this application

; Execution time: ?cycles

:HeaderEnd

:5.10 Code
.asg AR2,GETFRM_IN_P ; get frame input data pointer
.asg AR3,GETFRM_OUT_P ; get frame output data pointer

.asg AR2,SAVE_RSTORE_AR2
.asg AR3,SAVE_RSTORE_AR3
.sect "main_prg”

receive_intl:
PSHM AL
PSHM AH
PSHM AG
PSHM SAVE_RSTORE_AR2
PSHM SAVE_RSTORE_AR3

PSHM BK

PSHM BRC

STM #2*K_FRAME_SIZE,BK ; circular buffr size of in,out
; arrays

LD #RCV_INT1 _DP,DP ; init. DP

MVDK d_rcv_in_ptr, GETFRM_IN_P ; restore input circular bffr ptr

MVDK d_xmt_out_ptr, GETFRM_OUT_P ; restore output circular bffr ptr

ADDM #1,d_index_count ; increment the index count

LD #K_FRAME_SIZE A

SUB d_index_count, A

BC get samples, AGT ;check for a frame of samples
frame_flag_set

ST #K_FRAME_FLAG,d_frame_flag ; set frame flag

ST #0,d_index_count ; reset the counter

PRELIMINARY Application Code Examples

10-49

Application Code PRELIMINARY

Example 10-10. Receive Interrupt Service Routine (Continued)

get_samples

10-50

LDM
STL
LD
AND
STLM
MVKD
MVKD
POPM
POPM
POPM
POPM
POPM
POPM
POPM
POPM
POPM
RETE

DRR1,A ; load the input sample
A*GETFRM_IN_P+% ; write to buffer
*GETFRM_OUT_P+%,A ; if not true, then the filtered
#0fffch,A ; signal is send as output
A,DXR1 ; write to DXR1
GETFRM_IN_P,d_rcv_in_ptr ; save input circualr buffer ptr
GETFRM_OUT_P,d_xmt_out_ptr ; save out circular bffr ptr
BRC
BK
SAVE_RSTORE_AR3
SAVE_RSTORE_AR2
AG
AH
AL
ST1
STO
; return and enable interrupts

PRELIMINARY

PRELIMINARY

Example 10-11. Task Scheduling

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

: Filename: task.asm

; Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

" AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

; IPR statements description (can be collected).

)
;(C) Copyright 1996. Texas Instruments. All rights reserved.

{
; Change history:

VERSION DATE / AUTHORS COMMENT
; 1.0 July—29-96 / P.Mallela original created

3

{

1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file initiates task scheduling

1.3 Specification/Design Reference (optional)

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s task.asm

1.6 Notes and Special Considerations

; This code is written for 541 device. The code is tested on C54x EVM

PRELIMINARY

Application Code

Application Code Examples 10-51

Application Code

Example 10-11. Task Scheduling (Continued)

8
)
)
)
)
)
)
)
)

3}
A

1
1
1

2. VOCABULARY
2.1 Definition of Special Words, Keywords (optional)
2.2 Local Compiler Flags

2.3 Local Constants

3. EXTERNAL RESOURCES

3.1 Include Files

.include "init_54x.inc”
.include "main.inc”
3.2 External Data
ref d_task_addr,d_task_init_addr
.ref d_buffer_count
ref present_command
.ref last_command
ref d_output_addr,d_input_addr
.ref input_data,output_data
ref d_frame_flag
ref task_init_list,task_list
3.3 Import Functions
.ref echo_task
ref fir_init,fir_task
ref do_nothing,no_echo_init_task
.ref fir_init,fir_task
.ref iir_init,iir_task
.ref sym_fir_task,sym_fir_init
.ref adapt_init,adapt_task
.ref rfft_task

4. INTERNAL RESOURCES
4.1 Local Static Data
4.2 Global Static Data

4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
.def task handler

10-52

PRELIMINARY

PRELIMINARY

PRELIMINARY Application Code

Example 10-11. Task Scheduling (Continued)

5. SUBROUTINE CODE
HeaderBegin

5.1 task_handler

5.2 Functional Description
This routine handles the task scheduling. The present_command
can take values 1,2,3,4,5,6. If
present_command = 1 — Echo program is enabled
present_command = 2 — FIR is enabled
present_command = 3 — lIR is enabled
present_command = 4 — Symmetric FIR is enabled
present_command = 5 — Adaptive fitler is enabled
present_command = 6 — FFT is enabled
For every cycle the program checks if the current task is same
as previous task if it is, then no initialization is done.
If its not then cirular buffers, variables pointers are intialized
depending upon the task.

;5.3 Activation

; Activation example:
; CALL task_handler
; Reentrancy: No

; Recursive : No

Data structure: present_command

Data Format: 16-bit variable

Modified: Yes

Description: holds the present command

5.5 Outputs

Data structure: ARG

Data Format: 16-bit input buffer pointer
Modified: Yes

Description: either point to PING/PONG buffer

Data structure: AR7

Data Format: 16-bit output buffer pointer
Modified: Yes

Description: either point to PING/PONG buffer

5.6 Global
Data structure: last_command
Data Format: 16-bit variable

Modified: Yes
Description: holds the last command

PRELIMINARY Application Code Examples 10-53

Application Code PRELIMINARY

Example 10-11. Task Scheduling (Continued)

Data structure: d_frame_flag

Data Format: 16-bit variable

Modified: Yes

Description: gets reset after 256 samples

Data structure: d_buffer_count

Data Format: 16-bit variable

Modified: Yes

Description: used to load either PING/PONG bffr addresses

Data structure: input_data

Data Format: 16-bit array

Modified: Yes

Description: address of the input data buffer

Data structure: output_data

Data Format: 16-bit array

Modified: Yes

Description: address of the output data buffer

; Data structure: d_input_addr

; Data Format: 16-bit variable

; Modified: Yes

; Description: holds either PING/PONG address
; Data structure: d_output_addr

; Data Format: 16-bit variable

Modified: Yes
Description: holds either PING/PONG address

Data structure: d_task_addr

Data Format: 16-bit variable

Modified: Yes

Description: holds the task program address

Data structure: d_task_init_addr

Data Format: 16-bit variable

Modified: Yes

Description: holds the task init. address

5.7 Special considerations for data structure
5.8 Entry and Exit conditions
|DP|OVM|SXM|C16|FRCT|ASM|AROJAR1|AR2|AR3|AR4|AR5|ARG|ART7|A |B |BK|BRC| T|TRN

[ttt rrrrerrrrrrrr
AN UL 1|NU |1 |NU|NU |NU |NU [NU [NU [NU NU JU [NUJNUINU[NU [NU|NU
S T I e O A O O O O R IR B
:outjU | 1] 1|NU |1 |NU|NU |NU [NU [NU NU |NU |U |U [UMJUM|NU|NU [NU|NU

Note : UM — Used & Modified, U — Used, NU — Not Used

10-54 PRELIMINARY

PRELIMINARY Application Code

Example 10-11. Task Scheduling (Continued)

;5.9 Execution
; Execution time: ?cycles
; Call rate: not applicable for this application

;HeaderEnd

: 5.10 Code
.asg ARG6,INBUF_P ; PING/PONG input buffer
.asg AR7,0UTBUF_P ; PING/PONG output buffer

.sect "task_hnd”
task_handler:
; LD #TASK_VAR_DP,DP

ST #K_0,d_frame_flag ; reset the frame flag
ADDM #1,d_buffer_count
LD #input_data,A ; load PING input address
LD #output_data,B ; load PING output address
BITF d_buffer_count,2 ; check if PING/PONG address
BC reset_buffer_address,NTC : needs to be loaded
ADD #K_FRAME_SIZE A ; PONG input address
ADD #K_FRAME_SIZE,B ; PONG output address
ST #K_0,d_buffer_count ; reset counter
reset_buffer_address
STLM A,INBUF_P ; input buffer address
STL A,d_input_addr ; restore either PING/PONG bffr
STLM B,OUTBUF_P ; output buffer address
STL B,d_output_addr ; restore either PING/PONG bffr
LD present_command,A
SUB last_command,A
BC new_task,ANEQ ; check if PC = LC
LD d_task_addr,A ; task_addr should
; contain previous
;PC=LC
CALA A ; call present task
RET
new_task:
MVKD present_command,last_ command ; restore the present command
LD #task_init_list,A ; loads PC init task
ADD present_command,A ; computes the present task
REDA d_task_init_addr ; save the PC into task_addr
LD d_task_init_addr,A
CALA A ; initializes the present task
LD #task_list,A;
ADD present_command,A ; computes the present task
READA d_task_addr ; save the PC into
; task_addr
LD d_task_addr,A
CALA A
RET
do_nothing:
RET
no_echo_init_task:
RET
.end

PRELIMINARY Application Code Examples 10-55

Application Code

Example 10-12. Echo the Input Signal

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: echo.asm

;Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

"AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

IPR statements description (can be collected).
B
;(C) Copyright 1996. Texas Instruments. All rights reserved.

Change history:

VERSION DATE [/ AUTHORS COMMENT
; 1.0 July-24-96 / P.Mallela original created
3

1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains one subroutines:
echo_task
1.3 Specification/Design Reference (optional)
called by task.asm depending upon the task

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s echo.asm

1.6 Notes and Special Considerations

10-56

PRELIMINARY

PRELIMINARY

PRELIMINARY

Example 10-12. Echo the Input Signal (Continued)

2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

3. EXTERNAL RESOURCES

3.1 Include Files
.mmregs
.include "main.inc”
3.2 External Data
3.3 Import Functions

4, INTERNAL RESOURCES
4.1 Local Static Data

4.2 Global Static Data

4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
.def echo_task

5. SUBROUTINE CODE
HeaderBegin

Application Code

5.1 echo_task

5.2 Functional Description

This function reads a sample from either PING/PONG buffer and puts it
back in the output buffer. This is repeated 256 times i.e., size of the

frame. The present command in this case is 1.

5.3 Activation
Activation example:
CALL echo_task
Reentrancy: No
Recursive: No

PRELIMINARY

Application Code Examples 10-57

Application Code PRELIMINARY

Example 10-12. Echo the Input Signal (Continued)

;5.4 Inputs

: Data structure: AR6
; Data Format: 16-bit input buffer pointer
; Modified: Yes
; Description: either point to PING/PONG buffer
: 5.5 Outputs

: Data structure: AR7

; Data Format: 16-bit output buffer pointer

; Modified: Yes

; Description: either point to PING/PONG buffer

5.6 Global

5.7 Special considerations for data structure
5.8_Entry and Exit conditions
|DP|OVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|ARG|AR7|A |B |BK|BRC| T|TRN|
;inl|d ||1 ||1||NL|J ||1 ||N|U ||N|U ||Nl|J |r|\1uI |L|b I|NL||N|U |U |U |NUINU|NU|NU |NU|NU |
;0Jt|U |I 1|| 1| |N|U I 1I |l\|lU||l\lU||N|U ||NL|J I|N|uI ||\luI |I\|IU |UM |UM |[UM|NU|NUJUM |NUINU |
Note : UM — Used & Modified, U — Used, NU — Not Used
5.9 Execution

; Execution time: ?cycles
; Call rate: not applicable for this application

;HeaderEnd

; 5.10 Code
.asg ARG6,INBUF_P ; PING/PONG input buffer
.asg AR7,0UTBUF_P ; PING/PONG output buffer
.sect "echo_prg”

echo_task:
ST™M #K_FRAME_SIZE-1,BRC ; frame size of 256
RPTB echo_loop-1
LD *INBUF_P+, A ; load the input value
STL A, *OUTBUF_P+

echo_loop
RET ; output buffer

10-58 PRELIMINARY

PRELIMINARY Application Code

Example 10-13. Low-Pass FIR Filtering Using MAC Instruction

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

: Filename: fir.asm

; Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

" AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
: 12203 SW Freeway, MS 701

; Stafford, TX 77477

; IPR statements description (can be collected).

)
;(C) Copyright 1996. Texas Instruments. All rights reserved.

{
; Change history:

VERSION DATE / AUTHORS COMMENT
; 1.0 July—26-96 / P.Mallela original created

3
A{
1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

;1.2 Functional Description

; This file contains two subroutines:

; 1) fir_init

; 2) fir_task

;1.3 Specification/Design Reference (optional)

; called by task.asm depending upon the task thru CALA

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s fir.asm

1.6 Notes and Special Considerations

3

PRELIMINARY Application Code Examples 10-59

Application Code PRELIMINARY
Example 10-13. Low-Pass FIR Filtering Using MAC Instruction (Continued)

2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.3 Local Constants

;2.2 Local Compiler Flags

;3. EXTERNAL RESOURCES

;3.1 Include Files
.mmregs
.include "main.inc”

;3.2 External Data
ref d_filin ; filter input
ref d_filout ; filter output
ref d_data_buffer
ref fir_task
.ref COFF_FIR_START,COFF_FIR_END
ref fir_coff_table

;3.3 Import Functions

;4. INTERNAL RESOURCES
;4.1 Local Static Data
4.2_Global Static Data
4.3_Dynamic Data
4.4_Temporary Data

4.5 Export Functions
.def fir_init ; initialize FIR filter
.def fir_filter ; perform FIR filtering

;5. SUBROUTINE CODE
; HeaderBegin

5.1 fir_init

5.1.1 Functional Description
This routine initializes cicular buffers both for data and coeffs.

10-60 PRELIMINARY

PRELIMINARY Application Code

Example 10-13. Low-Pass FIR Filtering Using MAC Instruction (Continued)

5.1.2 Activation
Activation example:
CALL fir_init
Reentrancy: No
Recursive: No

5.1.3 Inputs
NONE
5.1.4 Outputs
NONE

5.1.5 Global

; Data structure: ~ ARO

; Data Format: 16-bit index pointer

: Modified: No

; Description: uses in circular addressing mode for indexing

Data structure: AR4

Data Format: 16-bit x(n) data buffer pointer
Modified: Yes

Description: initializes the pointer

Data structure: AR5

Data Format: 16—bit w(n) coeff buffer pointer
Modified: Yes
Description: initializes the pointer

5.1.6 Special considerations for data structure
5.1.7 Entry and Exit conditions

. |DP|OVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN]|

1 I I O A O A A
in UL 1|NU |1 |NU|NU |NU [NU [NU [NU [NU |NU |NU [UM|NUJNUINU |[NU[NU |

; [1] N
;outfU [1] 1 |NU |1 |NU |UM [NU |NU |NU UM |UM [NU [NU JUM|NU|NU|NU |[NUINU |

Note : UM — Used & Modified, U — Used, NU — Not Used
' 5.1.8 Execution

Execution time: ?cycles

Call rate: not applicable for this application

HeaderEnd

5.1.9 Code
.asg ARO, FIR_INDEX_P
.asg AR4,FIR_DATA_P
.asg AR5,FIR_COFF_P
.sect "fir_prog”

PRELIMINARY Application Code Examples 10-61

Application Code

PRELIMINARY

Example 10-13. Low-Pass FIR Filtering Using MAC Instruction (Continued)

fir_init:

STM #fir_coff_table,FIR_COFF_P

RPT #K_FIR_BFFR-1 ; move FIR coeffs from program

MVPD #COFF_FIR_START,*FIR_COFF_P+ ;to data
STM #K_FIR_INDEX,FIR_INDEX_P

STM #d_data_buffer,FIR_DATA_P ; load cir_bfr address for the

; recent samples
RPTZ A#K_FIR_BFFR
STL A*FIR_DATA P+ ; reset the buffer
STM #(d_data_buffer+K_FIR_BFFR-1), FIR_DATA P
RETD
STM #fir_coff_table, FIR_COFF_P

5. SUBROUTINE CODE
HeaderBegin

5.2

5.2.

fir_task
1 Functional Description

This subroutine performs FIR filtering using MAC instruction.
accumulator A (filter output) = h(n)*x(n-i) fori=0,1...15

10-62

5.2.

5.2.

2 Activation
Activation example:
CALL fir_task
Reentrancy: No
Recursive : No

3 Inputs

Data structure: ARG

Data Format: 16-bit input buffer pointer
Modified: Yes

Description: either point to PING/PONG buffer

Data structure: AR4

Data Format: 16-bit data buffer pointer

Modified: Yes

Description: uses circular buffer addressing mode to filter
16 tap Low—Pass filter — init. in fir_init

Data structure: AR5

Data Format: 16—bit coefficient buffer pointer

Modified: Yes

Description: The 16 tap coeffs comprise the low—pass filter
init. in fir_init

PRELIMINARY

PRELIMINARY Application Code

Example 10-13. Low-Pass FIR Filtering Using MAC Instruction (Continued)
5.2.4 Outputs

; Data structure: AR7

; Data Format: 16-bit output buffer pointer

: Modified: Yes

; Description: either point to PING/PONG buffer

5.2.5 Global
NONE

5.2.6 Special considerations for data structure

5.2.7 Entry and Exit conditions

|DP|OVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|ARG|AR7|A |B |BK|BRC| T|TRN|
1 s o A O O O

N UL 1|NU |1 |NU|NU NU INU [NU [U |NU [U | U JUM|NUINUJNU [NUINU |

; I

; [1] Tt
;outfU | 1] 1|NU |1 |NU |UM [NU |[NU |NU UM [UM [UM [UM JUM|NUJUM|UM |NU|NU |

Note : UM — Used & Modified, U — Used, NU — Not Used
: 5.2.8 Execution

; Execution time: ?cycles

; Call rate: not applicable for this application

:HeaderEnd

; 5.2.9 Code
.asg ARG6,INBUF_P
.asg AR7,0UTBUF_P
.asg AR4,FIR_DATA P
.asg AR5,FIR_COFF_P
.sect "fir_prog”

fir_task:
; LD #FIR_DP,DP
STM #K_FRAME_SIZE-1,BRC ; Repeat 256 times
RPTBD fir_filter_loop-1
STM #K_FIR_BFFR,BK : FIR circular bffr size
LD *INBUF_P+, A ; load the input value
fir_filter:
STL AFIR_DATA P+% ; replace oldest sample with newest

; sample
RPTZ A,(K_FIR_BFFR-1)
MAC *FIR_DATA_P+0%,*FIR_COFF_P+0%,A ; filtering

STH A, *OUTBUF_P+ ; replace the oldest bffr value
fir_filter_loop
RET

PRELIMINARY Application Code Examples

10-63

Application Code

PRELIMINARY

Example 10-14. Low-Pass Symmetric FIR Filtering Using FIRS Instruction

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: sym_fir.asm

; Version: 1.0

; Status : draft ()

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

"AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

{

; IPR statements description (can be collected).

)
;(C) Copyright 1996. Texas Instruments. All rights reserved.

{
; Change history:

VERSION DATE / AUTHORS COMMENT
; 1.0 July-26-96 / P.Mallela original created

)

1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains two subroutines:
1) sym_fir_init
2) sym_fir_task

1.3 Specification/Design Reference (optional)
called by task.asm depending upon the task thru CALA

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s sym_fir.asm

1.6 Notes and Special Considerations

10-64

PRELIMINARY

PRELIMINARY Application Code

Example 10-14. Low-Pass Symmetric FIR Filtering Using FIRS Instruction (Continued)

A{
. 2.VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

%
: 3. EXTERNAL RESOURCES

3.1 Include Files
.mmregs
.include “main.inc”
;3.2 External Data
ref d_datax_huffer
ref d_datay_buffer
ref FIR_COFF
;3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data
4.2_Global Static Data
4.3_Dynamic Data
4.4_Temporary Data
4.5_Export Functions
.def sym_fir_init ; initialize symmetric FIR

.def sym_fir_task

5. SUBROUTINE CODE
HeaderBegin

5.1 sym_fir_init

; 5.1.1 Functional Description
; This routine initializes cicular buffers both for data and coeffs.

5.1.2 Activation
Activation example:
CALL sym_fir_init
Reentrancy: No
Recursive: No

PRELIMINARY Application Code Examples 10-65

Application Code PRELIMINARY

Example 10-14. Low-Pass Symmetric FIR Filtering Using FIRS Instruction (Continued)

5.1.3 Inputs
NONE
5.1.4 Outputs
NONE

5.1.5 Global

Data structure: ARO

Data Format: 16-bit index pointer

Modified: No

Description: uses in circular addressing mode for indexing

; Data structure: AR4

; Data Format: 16-bit x(n) data buffer pointer for 8 latest samples
; Modified: Yes

; Description: initializes the pointer

Data structure: AR5

Data Format: 16-bit x(n) data buffer pointer for 8 oldest samples
Modified: Yes

Description: initializes the pointer

5.1.6 Special considerations for data structure
5.1.7 Entry and Exit conditions

IDP|OVM|SXM|C16|FRCT|ASM|AROJAR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN

S 1 T e I U I O O O O B R R N O
dinJUJ1[1|NU|1 |NU[NU|NU [NU NU |NU [NU |NU [NU JUM|NUJNUINU [NU|NU

P I O T I o O O I O B I N O
;outjU | 1] 1|NU|1 |NU|UM [NU |NU |NU U UM |NU |NU [UM|NU|NUINU [NUJNU

Note : UM — Used & Modified, U — Used, NU — Not Used
: 5.1.8 Execution

; Execution time: ?cycles

; Callrate: not applicable for this application

;HeaderEnd
; 5.1.9 Code
.asg ARO,SYMFIR_INDEX_P
.asg AR4,SYMFIR_DATX_P
.asg AR5,SYMFIR_DATY_P
.sect "sym_fir”
sym_fir_init:
STM #d_datax_buffer, SYMFIR_DATX P ;load cir_bfr address
; for the 8 most
; recent samples
STM #d_datay_buffer+K_FIR_BFFR/2—-1,SYMFIR_DATY_P
; load cir_bfrl address
; for the 8 old samples

10-66 PRELIMINARY

PRELIMINARY Application Code

Example 10-14. Low-Pass Symmetric FIR Filtering Using FIRS Instruction (Continued)

STM #K_negl,SYMFIR_INDEX_P ; index offset —
; whenever the pointer
; hits the top of the bffr,
; it automatically hits
; bottom address of
: buffer and decrements
; the counter
RPTZ A#K_FIR_BFFR
STL A*SYMFIR_DATX_P+
STM #d_datax_buffer, SYMFIR_DATX_P
RPTZ A#K FIR_BFFR
STL A*SYMFIR_DATY_P-
RETD
STM #d_datay_buffer+K_FIR_BFFR/2-1, SYMFIR_DATY_P
5. SUBROUTINE CODE
HeaderBegin

5.2 sym_fir_init

5.2.1 Functional Description
This program uses the FIRS instruction to implement symmetric FIR
filter. Circular addressing is used for data buffers.The input scheme
for the data samples is divided into two circular buffers. The first
buffer contains samples from X(—N/2) to X(-1) and the second buffer
contains samples from X(—N) to X(—N/2-1).

5.2.2 Activation
Activation example:
CALL sym_fir_init
Reentrancy: No
Recursive : No

5.2.3 Inputs

Data structure: ARG

Data Format: 16-bit input buffer pointer
Modified: Yes

Description: either point to PING/PONG buffer

Data structure: AR4

Data Format: 16-bit data buffer pointer

Modified: Yes

Description: uses circular buffer addressing mode to filter
16 tap Low—Pass filter — init. in sym_fir_init

Data structure: AR5

Data Format: 16-bit coefficient buffer pointer

Modified: Yes

Description: The 16 tap coeffs comprise the low—pass filter
init. in sym_fir_init

PRELIMINARY Application Code Examples 10-67

Application Code PRELIMINARY

Example 10-14. Low-Pass Symmetric FIR Filtering Using FIRS Instruction (Continued)

5.2.4 Outputs

Data structure: AR7

Data Format: 16-bit output buffer pointer
Modified: Yes

Description: either point to PING/PONG buffer

5.2.5 Global
NONE

5.2.6 Special considerations for data structure

; 5.2.7 Entry and Exit conditions

. |DP|OVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN
I T O O o I B A O
dn JUJ1[1|NU|1 [NU|NU|NU|NU|NU|U |U |U | U]UM|NUJNU|NU |[NU|NU

st rrrr ettt rrrr o
;out JU|1]1|NU|1 |NU|UM |NU |NU [NU [UM UM |NU |NU [UMJUM|NU|UM |[NU|NU

Note : UM — Used & Modified, U — Used, NU — Not Used
; 5.2.8 Execution

; Execution time: ?cycles

; Call rate: not applicable for this application

1

1

;HeaderEnd
; 5.2.9 Code
.asg ARG6,INBUF_P
.asg AR7,0UTBUF_P
.asg AR4,SYMFIR_DATX_P
.asg AR5,SYMFIR_DATY_P
.sect "sym_fir”
sym_fir_task:
STM #K_FRAME_SIZE-1,BRC
RPTBD sym_fir_filter_loop—1
STM #K_FIR_BFFR/2,BK
LD *INBUF_P+, B
symmetric_fir:
MVDD *SYMFIR_DATX_P,*SYMFIR_DATY_P+0% ; move X(—N/2) to X(—N)
STL B,*SYMFIR_DATX_P ; replace oldest sample with newest
; sample
ADD *SYMFIR_DATX_P+0%,*SYMFIR_DATY_P+0%,A ; add X(0)+X(—N/2-1)
RPTZ B,#(K_FIR_BFFR/2-1)
FIRS *SYMFIR_DATX_P+0%,*SYMFIR_DATY_P+0%,FIR_COFF
MAR *+SYMFIR_DATX_P(2)% ; to load the next newest sample
MAR *SYMFIR_DATY_P+% ; position for the X(—N/2) sample
STH B, *OUTBUF_P+
sym_fir_filter_loop
RET
.end

10-68 PRELIMINARY

PRELIMINARY Application Code

Example 10-15. Low-Pass Biquad IIR Filter

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

: Archives: PVCS

; Filename: iir.asm

:Version: 1.0

; Status : draft ()

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

" AUTHOR: Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

{

; IPR statements description (can be collected).

3}
;(C) Copyright 1996. Texas Instruments. All rights reserved.

{
; Change history:

VERSION DATE / AUTHORS COMMENT
; 1.0 July—26-96 / P.Mallela original created

3

1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains two subroutines:
1) iir_init
2) iir_task
1.3 Specification/Design Reference (optional)
called by task.asm depending upon the task thru CALA

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s iir.asm

1.6 Notes and Special Considerations

PRELIMINARY Application Code Examples 10-69

Application Code

Example 10-15. Low-Pass Biquad IIR Filter (Continued)

{
)

)
)
)
)
)
)
)

3}
A

1
)
1

2. VOCABULARY
2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

3. EXTERNAL RESOURCES

3.1 Include Files
.mmregs
.include “main.inc”
3.2 External Data

ref d_iir_y
ref d_iir d
.ref iir_table_start,iir_coff_table

3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data

4.2 Global Static Data

4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
def iir_init
.def iir_task

5. SUBROUTINE CODE
HeaderBegin

PRELIMINARY

5.1 iir_init

5.1.1 Functional Description

A) This routine initializes buffers both for data and coeffs.

5.1.2 Activation
Activation example:
CALL iir_init
Reentrancy: No
Recursive: No

10-70

PRELIMINARY

PRELIMINARY Application Code

Example 10-15. Low-Pass Biquad IIR Filter (Continued)

: 5.1.3 Inputs

; NONE

; 5.1.4 Outputs

; NONE

; 5.1.5 Global

; NONE

; 5.1.6 Special considerations for data structure

: 5.1.7 Entry and Exit conditions

: |DP|OVM|SXM|C16|FRCT|ASM|AROJAR1|AR2|AR3|AR4|AR5|ARG6|ART|A |B |IBK|BRC| T|TRN

S N e e A e e e N N
inJU L] 1|NU|1 |NU|NU |NU [NU [NU [NU [NU |NU |NU [UM|NUJNUINU |[NU|NU
S I I I O I B O I B O
;outfU | 1]1|NU |1 |NU[NU |NU |NU |NU JUM |UM [NU [NU JUM|NU|NUJUM JUM|NU

: Note : UM — Used & Modified, U — Used, NU — Not Used
5.1.8 Execution

: Execution time: ?cycles
; Callrate: not applicable for this application

:HeaderEnd

; 5.1.9 Code
.asg AR5,IIR_DATA P ; data samples pointer
.asg ARA4,IIR_COFF_P ; lIR filter coffs pointer
.sect "iir"

iir_init:
ST™M #iir_coff_table,IIR_COFF_P
RPT #K_IIR_SIZE-1 ; move IIR coeffs from program
MVPD #iir_table_start,*IIR_COFF_P+ ; to data

LD #lIIR_DP,DP

STM #d_iir_d,IIR_DATA P ;AR5:d(n),d(n-1),d(n—-2)
RPTZ A#5 ;initial d(n),d(n-1),d(n—2)=0
STL AIIR_DATA P+
RET

5. SUBROUTINE CODE
HeaderBegin

5.2 iir_task
5.2.1 Functional Description

; This subroutine performs IIR filtering using biquad sections
; IIR Low pass filter design

; Filter type : Elliptic Filter

; Filter order : 4 order (cascade: 2nd order + 2nd order)

; cut freq. of pass band : 200 Hz

; cut freq. of stop band : 500 Hz

PRELIMINARY Application Code Examples 10-71

Application Code

Example 10-15. Low-Pass Biquad IIR Filter (Continued)

BO
>+ > d(n) X =>+
I I
| Al | Bl |
+<—x—d(n-1) —x—>+
I
I
+

A2 | B2 |
<—Xx—d(n-2) —x—>+

second order IR

PRELIMINARY

5.2.2 Activation
Activation example:
CALL iir_task
Reentrancy: No
Recursive : No

5.2.3 Inputs

Data structure: ARG

Data Format: 16—bit input buffer pointer
Modified: Yes

Description: either point to PING/PONG buffer

5.2.4 Outputs

Data structure: AR7

Data Format: 16—bit output buffer pointer
Modified: Yes

Description: either point to PING/PONG buffer

5.2.5 Global
Data structure: AR1
Data Format: 16-bit index counter
Modified: Yes
Description: checks if 256 samples are processed

Data structure: AR5

Data Format: 16-bit data buffer pointer

Modified: Yes

Description: inlcudes both feed forward and feedback paths

Data structure: AR4

Data Format: 16-bit coefficient buffer pointer
Modified: Yes
Description: contains 2 biquad sections

Data structure: d_iir_

Data Format: 16-bit variable

Modified: Yes

Description: holds the output of the 2 biquad sections

10-72

PRELIMINARY

PRELIMINARY Application Code

Example 10-15. Low-Pass Biquad IIR Filter (Continued)

5.2.6 Special considerations for data structure

5.2.7 Entry and Exit conditions

|DP|OVM|SXM|C16|FRCT|ASM|AROJARL|AR2|AR3|AR4|AR5|ARG|AR7|A |B |BK|BRC| T|TRN|
(Tt ettt rr e
in UL 1|NU |1 |NU|NU |NU |NU [NU [NU [NU U [U JUM|NUJNUINU |NU[NU |

; T T I O I O O I I
;out|U |11 |NU |1 |NU [NU [UM |NU [NU [UM [UM |UM UM [UM|NU|NUJUM |UM|NU |

Note : UM — Used & Modified, U — Used, NU — Not Used

5.2.8 Execution
Execution time: ?cycles

Call rate: not applicable for this application

:HeaderEnd

; 5.2.9 Code
.asg ARS5,IIR_DATA_P ; data samples pointer
.asg AR4,IIR_COFF_P ; lIR filter coffs pointer
.asg ARG,INBUF_P
.asg AR7,0UTBUF_P
.asg ARL,IIR_INDEX_P
.sect "iir”
iir_task:
STM #K_FRAME_SIZE-1,BRC ; Perform filtering for 256 samples
RPTB iir_filter_loop-1
LD *INBUF_P+,8A ; load the input value
iir_filter:
STM #d_iir_d+5,IIR_DATA_P ;AR5:d(n),d(n-1),d(n-2)

STM #iir_coff_table,IIR_COFF_P ;AR4:coeff of lIR filter A2,A1,B2,B1,B0
STM #K_BIQUAD-1,IIR_INDEX_P

feedback_path:
MAC *lIIR_COFF_P+*IR_DATA P—A :input+d(n—2)*A2
MAC *IIR_COFF_P*IR_DATA_P,A ;input+d(n—-2)*A2+d(n-1)*A1/2
MAC *lIIR_COFF_P+*IIR_DATA_P-A ;A=A+d(n-1)*Al/2
STH AIR_DATA P+ ;d(n) = input+d(n—2)*A2+d(n—-1)*Al
MAR *IIR_DATA_P+

* Forward path
MPY *[IR_COFF_P+*IR_DATA_P-A ;d(n-2)*B2
MAC *lIIR_COFF_P+*lIR_DATA P,A ;d(n—2)*B2+d(n-1)*B1
DELAY *IIR_DATA_P- ;d(n=2)=d(n-1)

eloop:
BANZD feedback_path, *IIR_INDEX_P—
MAC *lIIR_COFF_P+*IR_DATA_P,A ;d(n—2)*B2+d(n—1)*B1+d(n)*BO

DELAY *IIR_DATA_P- ;d(n—1)=d(n)

STH A,d_iir_y ;output=d(n—2)*B2+d(n-1)*B1+d(n)*BO

LD d_iir_y,2,A ; scale the output

STL A, *OUTBUF_P+ ; replace the oldest bffr value
iir_filter_loop

RET

.end

PRELIMINARY Application Code Examples

10-73

Application Code

Example 10-16. Adaptive Filtering Using LMS Instruction

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

1

; Archives: PVCS

; Filename: adapt.asm

;Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

' AUTHOR Padma P. Mallela
Application Specific Products
Data Communication System Development

12203 SW Freeway, MS 701
; Stafford, TX 77477

{

IPR statements description (can be collected).
)
;(C) Copyright 1996. Texas Instruments. All rights reserved.
{
; Change history:
: VERSION DATE / AUTHORS COMMENT
; 1.0 July-24-96 / P.Mallela original created
)
{
1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

;1.2 Functional Description

; This file contains two subroutines:

; 1) adapt_init

; 2) adapt_task

;1.3 Specification/Design Reference (optional)
; called by task.asm depending upon the task

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s adapt.asm

10-74

PRELIMINARY

PRELIMINARY

PRELIMINARY Application Code

Example 10-16. Adaptive Filtering Using LMS Instruction (Continued)

;1.6 Notes and Special Considerations

3
A{
2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.3 Local Constants

2.2 Local Compiler Flags

)
{
;3. EXTERNAL RESOURCES
;3.1 Include Files
.mmregs
.include "main.inc”
;3.2 External Data
; ref ADAPT_DP
ref d_mu,d_error,d_primary,d_output,d_mu,d_mu_e,d_new_x
ref scoff,hcoff,wcoff
.ref xh,xw,d_adapt_count
;3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data
4.2_Global Static Data
4.3_Dynamic Data
4.4_Temporary Data

4.5 Export Functions
.def adapt_init,adapt_task

5. SUBROUTINE CODE
HeaderBegin

5.1 adapt_init
5.1.1 Functional Description
This subroutine moves filter coeffcients from program to data space.

Initializes the adaptive coefficients, buffers,vars,and sets the circular
buffer address for processing.

PRELIMINARY Application Code Examples 10-75

Application Code PRELIMINARY

Example 10-16. Adaptive Filtering Using LMS Instruction (Continued)

5.1.2 Activation
Activation example:
CALL adapt_init
Reentrancy: No
Recursive: No

5.1.3 Inputs
NONE

5.1.4 Outputs
NONE

5.1.5 Global
Data structure: ARO
Data Format: 16-bit index pointer
Modified: No
Description: uses in circular addressing mode for indexing

Data structure: AR1

Data Format: 16-bit pointer

Modified: Yes

Description: used in initializing buffers and vars

Data structure: AR3

; Data Format: 16-bit x(n) data buffer pointer for H(z)
; Modified: Yes

; Description: initializes the pointer

Data structure: AR5

Data Format: 16-bit x(n) data buffer pointer for W(z)
Modified: Yes

Description: initializes the pointer

5.1.6 Special considerations for data structure

5.1.; Entry and Exit conditions
|DP|OVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN]|
;inllllJ ||1 ||1||NLIJ ||1 ||N|U INLlJ ||NI.|J |||\1uI |||\1L|J ||NU||N|U [NU [NU JUM|NU|NUJNU |NU|NU |

§0u|t|!J || 1|| 1| |NIU } 1| |r\||u||u||v|||u||v| ||N|UI|LIJ|J| |l|\ll|J ||UM INU |NU [UMJUM|NUINU |NUINU |

; Note : UM — Used & Modified, U — Used, NU — Not Used

;. 5.1.8 Execution
; Execution time: ?cycles
; Callrate: not applicable for this application

;HeaderEnd

10-76 PRELIMINARY

PRELIMINARY Application Code

Example 10-16. Adaptive Filtering Using LMS Instruction (Continued)

: 5.1.9 Code
.asg ARO,INDEX_P
.asg ARLINIT_P ; initialize buffer pointer
.asg AR3,XH_DATA_P ; data coeff buffer pointer
.asg AR5 XW_DATA_P ; data coeff buffer pointer
; for cal.y output
.sect "filter”
adapt_init:

; initialize input data location, input to hybrid, with Zero.
STM #xh,INIT_P
RPTZ A#H_FILT_SIZE-1
STL AXINIT_P+
; initialize input data location, input to adaptive filter, with Zero.
STM #xw,INIT_P
RPTZ A#ADPT_FILT_SIZE-1
STL AXINIT_P+
; initialize adaptive coefficient with Zero.
STM #wcoff,INIT_P
RPTZ A#ADPT_FILT_SIZE-1
STL AXINIT_P+
; initialize temporary storage loacations with zero
STM #d_primary,INIT_P
RPTZ A#6
STL AZINIT_P+
; copy system coefficient into RAM location, Rverse order
STM #hcoff,INIT_P
RPT #H_FILT_SIZE-1
MVPD #scoff,*INIT_P+

; LD #ADAPT_DP,DP ;set DP now and not worry about it
ST #K_mu,d_mu
STM #1,INDEX_P ; increment value to be used by

; dual address
; associate auxilary registers for circular computation
STM #xh+H_FILT_SIZE-1,XH DATA P ; last input of hybrid buffer
RETD
STM #xw+ADPT_FILT_SIZE-1,XW_DATA_P ;last element of input buffer
;5. SUBROUTINE CODE
; HeaderBegin

5.2 adapt_task
5.2.1 Functional Description

This subroutine performs the adaptive filtering.The newest sample is
stored in a seperate location since filtering and adaptation are performed
at the same time. Otherwise the oldest sample is over written before

up dating the w(N-1) coefficient.

d_primary = xh *hcoff
d_output = xw *wcoff

PRELIMINARY Application Code Examples 10-77

Application Code PRELIMINARY

Example 10-16. Adaptive Filtering Using LMS Instruction (Continued)

LMS algorithm:
w(i+1) = w(i)+d*mu_error*xw(n-i) fori = 0,1,...127 and n = 0,1,.....

This program can run in two steps
1. Initial stepsize, d_mu = 0x0. At this point, the system is not
identified since the coefficients are not adapted and the error
signal e (n) is d (n). This is the default mode
2. At the EVM debugger command window change the step size
d_mu — 0x000, with the command e * d_mu = 0x1000
This changes the stepsize. The error signal e(n) in this case
is approximately O (theoretically) and the system is identified.

5.2.2 Activation
Activation example:
CALL adapt_task
Reentrancy: No
Recursive : No

5.2.3 Inputs

Data structure: AR3

Data Format: 16-bit x(n) data buffer pointer for H(Z)
Modified: Yes

Description: uses circular buffer addressing mode of size 128

; Data structure: AR5

; Data Format: 16-bit x(n) data buffer pointer for W(z)

; Modified: Yes

; Description: uses circular buffer addressing mode of size 128
; Data structure: AR6

; Data Format: 16-bit input buffer pointer

; Modified: Yes

; Description: either point to PING/PONG buffer

5.2.4 Outputs

Data structure: AR7

Data Format: 16-bit output buffer pointer
Modified: Yes

Description: either point to PING/PONG buffer

5.2.5 Global

Data structure: AR2

Data Format: 16-bit H(z) coeff buffer pointer

Modified: Yes

Description: uses circular buffer addressing mode of size 128

Data structure: AR4

Data Format: 16—bit W(z) coeff buffer pointer

Modified: Yes

Description: uses circular buffer addressing mode of size 128

10-78 PRELIMINARY

PRELIMINARY Application Code

Example 10-16. Adaptive Filtering Using LMS Instruction (Continued)

Data structure: d_adapt_count

Data Format: 16-bit variable

Modified: Yes

Description: counter to check for processing 256 samples

Data structure: d_new_x

Data Format: 16-bit variable
Modified: Yes

Description: holds the newest sample

Data structure: d_primary

Data Format: 16-bit variable
Modified: Yes

Description: d_primary = xh * hcoeff

; Data structure: d_output

; Data Format: 16-bit variable

; Modified: Yes

; Description: d_output = xw * wcoff
; Data structure: d_error

; Data Format: 16-bit variable

Modified: Yes
Description: d_error = d_primary—d_output

Data structure: d_mu_e

Data Format: 16-bit variable
Modified: Yes

Description: d_mu_e = mu*d_error

5.2.6 Special considerations for data structure
5.2.; Entry and Exit conditions
|DP|OVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN]|
;in||l.|J ||1 ||1||Nl|J ||1 ||N|U Iul |I\|IU||N|U I|UI ||N|UI| l.lJ ||u | U JUM|NU|NU|NU |[NU|NU |
Eodulu |I 1|| 1||N|U { 1I |I\|IU||U| |||\1J |L|JM| ||UI|\/I||UII\/I||U|M |UM |UM [UM|UM|UM|UM |UM|NU |
; Note : UM — Used & Modified, U — Used, NU — Not Used

5.2.8 Execution
Execution time: ?cycles
Call rate: not applicable for this application

HeaderEnd

PRELIMINARY Application Code Examples 10-79

Application Code

PRELIMINARY

Example 10-16. Adaptive Filtering Using LMS Instruction (Continued)

; H(Z) coeff buffer pointer
; data coeff buffer pointer
; input buffer address pointer
; output buffer address pointer

; for cal. primary input

:5.2.9 Code
.asg AR2,H_COFF_P
.asg AR3,XH_DATA_P
.asg ARG6,INBUF_P
.asg AR7,O0UTBUF_P
.asg AR4,W_COFF_P
.asg AR5XW_DATA_P
.sect filter”

adapt_task:
STM #H_FILT_SIZE,BK
STM #hcoff,H_COFF_P
ADDM #1,d_adapt_count
LD *INBUF_P+, A
STM #wcoff W_COFF_P
STL A,d_new_x
LD d_new_x,A
STL A*XH_DATA_P+0%

RPTZ A#H_FILT_SIZE-1
*H_COFF_P+0%,*XH_DATA_P+0%,A ; mult & acc:a=a + (h * X)

MAC

STH A,d_primary

; W(2) coeff buffer pointer
; data coeff buffer pointer

; first circular buffer size
; H_ COFF_P —> last of sys coeff

; load the input sample
; reset coeff buffer
: read in new data
’ : store in the buffer
; Repeat 128 times

; primary signal

; start simultaneous filtering and updating the adaptive filter here.

; T = step_size*error
; set block repeat counter

; error * oldest sample
; B =filtered output (y)

; save updated filter coeff
; error *x[n—(N-1)]
; B = accum filtered output y

LD d mu eT
SUB B,B ; zero acc B
STM #(ADPT_FILT_SIZE-2),BRC
RPTBD Ims_end-1
MPY *XW_DATA_P+0%, A
LMS *W_COFF_P, *XW_DATA_P

; Update filter coeff
ST A, *W_COFF_P+
Il MPY*XW_DATA P+0%,A
LMS *W_COFF_P, *XW_DATA_P

; Update filter coeff

Ims_end

STH A, *W_COFF_P
MPY *XW _DATA P,A

MVKD #d_new_x,*XW_DATA_P

; final coeff
; X(0)*h(0)
; store the newest sample

; store the fitlered output
; store the residual error signal
; save the error *step_size
; residual error signal
; check if a frame of samples

; have been processed

; restore the count

LMS *W_COFF_P,*XW_DATA_P+0%
STH B, d_output
LD d_primary,A
SUB d_output,A
STL A, d_error
LD d_mu,T
MPY d_error,A s A=u*e
STH A,d_mu_e
LD d_error,A
STL A, *OUTBUF_P+
LD #K_FRAME_SIZE,A
SUB d_adapt_count,A
BC adapt_task,AGT
RETD
ST #K_0,d_adapt_count
.end
10-80

PRELIMINARY

PRELIMINARY Application Code

Example 10-16. Adaptive Filtering Using LMS Instruction (Continued)

* This is an input file used by the adaptive filter program.

* The transfer function is the system to be identifued by the adaptive filter
.word OFFFDh
.word 24h
.word 6h
.word OFFFDh
.word 3h
.word 3h
.word OFFE9h
.word 7h
.word 12h
.word 1Ch
.word OFFF3h
.word OFFES8h
.word OCh
.word 3h
.word 1Eh
.word 1Ah
.word 22h
.word OFFF5h
.word OFFE5h
.word OFFF1h
.word OFFC5h
.word OCh
.word OFFES8h
.word 37h
.word OFFE4h
.word OFFCAh
.word 1Ch
.word OFFFDh
.word 21h
.word OFFF7h
.word 2Eh
.word 28h
.word OFFC6h
.word 53h
.word OFFBOh
.word 55h
.word OFF36h
.word 5h
.word OFFCFh
.word OFF99h
.word 64h
.word 41h
.word OFFF1h
.word OFFDFh
.word OD1h
.word 6Ch
.word 57h
.word 36h
.word O0AOh
.word OFEE3h
.word 6h

PRELIMINARY Application Code Examples 10-81

Application Code

Example 10-16.

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

10-82

OFECS5h
OABh
185h
OFFF6h
93h
1Fh
10Eh
59h
OFEFOh
96h
OFFBFh
OFF47h
OFF76h
OFFOBh
OFFAFh
14Bh
OFF3Bh
132h
289h
8Dh
OFE1Dh
OFE1Bh
0D4h
OFF69h
14Fh
2AAh
O0FD43h
OF98Fh
451h
13Ch
OFEF7h
OFE36h
80h
OFFBBh
OFCS8Eh
10Eh
37Dh
6FAN
1h
OFD89%h
198h
OFE4Ch
OFE78h
0F215h
479h
749h
289h
0F667h
304h
5F8h
34Fh
47Bh
OFF7Fh

Adaptive Filtering Using LMS Instruction (Continued)

PRELIMINARY

PRELIMINARY

PRELIMINARY Application Code

Example 10-16. Adaptive Filtering Using LMS Instruction (Continued)

.word 85Bh
.word OF837h
.word OF77Eh
.word OFF80h
.word O0B9Bh
.word OFO03Ah
.word OEE66h
.word OFE28h
.word OFADOh
.word 8C3h
.word OF5D6h
.word 14DCh
.word OF3A7h
.word O0E542h
.word 10F2h
.word 566h
.word 26AAh
.word 15Ah
.word 2853h
.word OEE95h
.word 93Dh
.word 20Dh
.word 1230h
.word 238Ah

PRELIMINARY Application Code Examples 10-83

Application Code

Example 10-17. 256-Point Real FFT Initialization

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: rfft.asm

;Version: 1.0

; Status : draft O)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

"AUTHOR Simon Lau and Nathan Baltz

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

{
; IPR statements description (can be collected).
)
;(C) Copyright 1996. Texas Instruments. All rights reserved.
{ _
; Change history:
VERSION DATE / AUTHORS COMMENT
; 1.0 July-17-96 / Simon & Nathan original created
)
1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains core routine:
; rfft

;1.3 Specification/Design Reference (optional)

;1.4 Module Test Document Reference
; Not done

;1.5 Compilation Information

; Compiler: TMS320C54X ASSEMBLER
; Version: 1.02 (PC)

; Activation: asm500 —s rfft.asm

1.6 Notes and Special Considerations

10-84

PRELIMINARY

PRELIMINARY

PRELIMINARY

Application Code

Example 10-17. 256-Point Real FFT Initialization (Continued)

1

3
A

2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

3. EXTERNAL RESOURCES

3.1 Include Files

.mmregs
.include "main.inc”
.include "init_54x.inc”

3.2 External Data
.ref bit_rev, fft, unpack
ref power
ref sine,cosine
ref sine_table,cos_table

3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data
4.2_GIobaI Static Data
4.3_Dynamic Data

4.4_ Temporary Data

4.5 Export Functions
.def rfft_task

5. SUBROUTINE CODE
HeaderBegin

5.1 rfft

5.2 Functional Description

The following code implements a Radix—2, DIT, 2N—point Real FFT for the
TMS320C54x. This main program makes four function calls, each
corresponds to a different phase of the algorithm. For more details about
how each phase is implemented, see bit_rev.asm, fft.asm, unpack.asm, and

power.asm assembly files.

PRELIMINARY

Application Code Examples

10-85

Application Code PRELIMINARY

Example 10-17. 256-Point Real FFT Initialization (Continued)

5.3 Activation
Activation example:
CALL rfft
Reentrancy: No
Recursive: No

5.4 Inputs
NONE

5.5 Outputs
NONE

5.6 Global

Data Format: 16-bit pointer

Modified: No

Description: used for moving the twiddle tables from
program to data

5.7 Special considerations for data structure

5.8 Entry and Exit conditions

Data structure: AR1
: |DP|OVM|SXM|C16|FRCT|ASM|AROJAR1]AR2|AR3|AR4|AR5|ARG6|ART|A |B |BK|BRC| T|TRN

S T I o I B O R N R A
dinJUJ1[1|NU|1 |NU[NU|NU [NU |NU |NU [NU |NU [NU [NU[NU|NUINU [NU[NU

S T O I B B O R A
;outjU | 1]1|NU|1 |U |NU|UM |NU |NU [NU [NU [NU [NU [NUINU|NUJUM |[NU|NU

' Note : UM — Used & Modified, U — Used, NU — Not Used
: 5.9 Execution

; Execution time: ?cycles

; Callrate: not applicable for this application

:HeaderEnd

; 5.10 Code
.asg AR1FFT_TWID_P
.sect "rfft_prg”
rfft_task:
STM #sine,FFT_TWID_P
RPT #K_FFT_SIZE-1 ; move FIR coeffs from program

MVPD #sine_table *FFT_TWID_P+ ;to data
STM #cosine,FFT_TWID_P

RPT #K_FFT_SIZE-1 ; move FIR coeffs from program
MVPD #cos_table,*FFT_TWID P+ ;to data

CALL bit_rev

CALL fft

CALL unpack
CALLD power

STM #K_ST1,ST1 ; restore the original contents of
; ST1 since ASM field has changed

RET ; return to main program

.end

10-86 PRELIMINARY

PRELIMINARY Application Code

Example 10-18. Bit Reversal Routine

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP ;

; Archives: PVCS

; Filename: bit_rev.asm

; Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

' AUTHOR Simon Lau and Nathan Baltz

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

; IPR statements description (can be collected).

)
;(C) Copyright 1996. Texas Instruments. All rights reserved.
{
; Change history:
VERSION DATE / AUTHORS COMMENT
; 1.0 July-17-96 / Simon & Nathan original created
)
{
1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains one subroutine:
bit_rev

: 1.3 Specification/Design Reference (optional)
; called by rfft.asm depending upon the task thru CALA

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s bit_rev.asm

1.6 Notes and Special Considerations

3

PRELIMINARY Application Code Examples 10-87

Application Code PRELIMINARY

Example 10-18. Bit Reversal Routine (Continued)

2. VOCABULARY
2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

3. EXTERNAL RESOURCES

3.1 Include Files
.mmregs
.include "main.inc”
;3.2 External Data
ref d_input_addr, fft_data
;3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data
4.2_Global Static Data
4.3_Dynamic Data
4.4_Temporary Data

4.5 Export Functions
.def bit_rev

5. SUBROUTINE CODE
HeaderBegin

5.1 bit_rev

5.2 Functional Description
This function is called from the main module of the 'C54x Real FFT code.
It reorders the original 2N—point real input sequence by using
bit-reversed addressing. This new sequence is stored into the data
processing buffer of size 2N, where FFT will be performed in—place
during Phase Two.

10-88 PRELIMINARY

PRELIMINARY Application Code

Example 10-18. Bit Reversal Routine (Continued)

5.3 Activation
Activation example:
CALL bit_rev
Reentrancy: No
Recursive: No

5.4 Inputs
NONE
5.5 Outputs
NONE

5.6 Global

Data structure: ARO

Data Format: 16-bit index pointer

Modified: No

Description: used for bit reversed addressing

; Data structure: AR2

; Data Format: 16-bit pointer
; Modified: Yes

; Description: pointer to processed data in bit-reversed order

Data structure: AR3

Data Format: 16-bit pointer

Modified: Yes

Description: pointer to original input data in natural order

Data structure: AR7

Data Format: 16-bit pointer

Modified: Yes

Description: starting addressing of data processing buffer

5.7 Special considerations for data structure
5.8 Entry and Exit conditions

|DP|OVM|SXM|C16|FRCT|ASM|AROJARL|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN|
T T s I o O O A A
inJU 1] 1|NU|1 [NU|NU [NU |NU |NU |NU [NU [NU [NU [NUINUINUINU |NUINU |

; [1] T T o e e I I O I R I O
;out{U | 1] 1 |NU |1 |NU [UM [NU JUM |UM |NU |NU [NU [UM [NU|NU|NUJUM |NUINU |

' Note : UM — Used & Modified, U — Used, NU — Not Used
: 5.9 Execution

; Execution time: ?cycles

; Call rate: not applicable for this application

:HeaderEnd

PRELIMINARY Application Code Examples 10-89

Application Code PRELIMINARY

Example 10-18. Bit Reversal Routine (Continued)

; 5.10 Code
.asg AR2,REORDERED_DATA
.asg AR3,0ORIGINAL_INPUT
.asg AR7,DATA_PROC_BUF

.sect "rfft_prg”
bit_rev:
SSBX FRCT ; fractional mode is on
MVDK d_input_addr,ORIGINAL_INPUT ; AR3 —> 1 st original input
STM #fft_data,DATA_PROC_BUF ; AR7 —> data processing buffer

MVMM DATA_PROC_BUF,REORDERED_DATA ; AR2 —> 1st bit-reversed data
STM #K_FFT_SIZE-1,BRC
RPTBD bit_rev_end-1
STM #K_FFT_SIZE,ARO ; ARO = 1/2 size of circ buffer
MVDD *ORIGINAL_INPUT+,*REORDERED_DATA+
MVDD *ORIGINAL_INPUT—*REORDERED_DATA+
MAR *ORIGINAL_INPUT+0B
bit_rev_end:
RET ; return to Real FFT main module
end

10-90 PRELIMINARY

PRELIMINARY Application Code

Example 10-19. 256-Point Real FFT Routine

; TEXAS INSTRUMENTS INCORPORATED
; DSP Data Communication System Development / ASP

; Archives: PVCS

; Filename: fft.asm

; Version: 1.0

; Status : draft)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

' AUTHOR Simon Lau and Nathan Baltz

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

; IPR statements description (can be collected).

)
;(C) Copyright 1996. Texas Instruments. All rights reserved.
{
; Change history:
VERSION DATE / AUTHORS COMMENT
; 1.0 July-17-96 / Simon & Nathan original created
)
{
1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains one subroutine:
fft

: 1.3 Specification/Design Reference (optional)
; called by rfft.asm depending upon the task thru CALA

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s fft.asm

1.6 Notes and Special Considerations

3

PRELIMINARY Application Code Examples 10-91

Application Code

Example 10-19. 256-Point Real FFT Routine (Continued)

{
)

)
)
)
)
)
)
)

3}
A

1
)
1

2. VOCABULARY
2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

3. EXTERNAL RESOURCES

3.1 Include Files

.mmregs

.include "main.inc”
3.2 External Data

.ref fft_data, d_grps_cnt, d_twid_idx, d_data_idx, sine, cosine
3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data
4.2 Global Static Data

4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
.def fft

5. SUBROUTINE CODE
HeaderBegin

PRELIMINARY

5.1 fft

5.2 Functional Description
PHASE TWO (LogN)-Stage Complex FFT

This function is called from main module of the 'C54x Real FFT code.

Here we assume that the original 2N—point real input sequence is al
ready packed into an N—point complex sequence and stored into the
data processing buffer in bit-reversed order (as done in Phase One).

Now we perform an in—place, N—point complex FFT on the data proces

sing buffer, dividing the outputs by 2 at the end of each stage to

prevent overflow. The resulting N—point complex sequence will be un—

packed into a 2N—point complex sequencein Phase Three & Four.

10-92

PRELIMINARY

PRELIMINARY Application Code

Example 10-19. 256-Point Real FFT Routine (Continued)

5.3 Activation
Activation example:
CALL fft
Reentrancy: No
Recursive : No

5.4 Inputs
NONE
5.5 Outputs
NONE

5.6 Global

Data structure: ARO

Data Format: 16-bit index pointer
Modified: No

Description: index to twiddle tables

Data structure: AR1

Data Format: 16-hit counter
Modified: No

Description: group counter

; Data structure: AR2

; Data Format: 16-bit pointer

; Modified: Yes

; Description: pointer to 1st butterfly data PR,PI
; Data structure: AR3

; Data Format: 16-bit pointer

Modified: Yes
Description: pointer to 2nd butterfly data QR,QI

Data structure: AR4

Data Format: 16-bit pointer

Modified: Yes

Description: pointer to cosine value WR

Data structure: AR5

Data Format: 16-bit pointer

Modified: Yes

Description: pointer to cosine value WI

Data structure: AR6

Data Format: 16—bit counter
Modified: Yes

Description: butterfly counter

Data structure: AR7

Data Format: 16-bit pointer

Modified: Yes

Description: start address of data processing buffer

PRELIMINARY Application Code Examples 10-93

Application Code PRELIMINARY

Example 10-19. 256-Point Real FFT Routine (Continued)

;5.7 Special considerations for data structure

5.8_Entry and Exit conditions

. |DP|OVM|SXM|C16|FRCT|ASM]AROJAR1|AR2JAR3|AR4|ARS|ARG|AR7|A [B [BK|BRC| TITRN|
;in||l|J ||1 ||1||NLIJ ||1 I| o| |l\|lU||N|U ||N|U ||N|U||I\|IU||I11U| INU [NU [NUINU|NU|NU |NUINU |

;ou|t|U |I 1|| 1| |NIU I 1I |—|1 ||UI|V| ||U|1/I ||UI\|/I I|u||v|I |lhlJI |l|JM |UM [UM [UM|UM|UM|UM |NU|NU |

 Note : UM — Used & Modified, U — Used, NU — Not Used

;5.9 Execution
; Execution time: ?cycles
; Call rate: not applicable for this application

HeaderEnd
5.10 Code
.asg AR1,GROUP_COUNTER
.asg AR2,PX
.asg AR3,0X
.asg AR4WR
.asg AR5WI
.asg ARG6,BUTTERFLY_COUNTER
.asg AR7,DATA_PROC_BUF ; for Stages 1 & 2
.asg AR7,STAGE_COUNTER ; for the remaining stages
.sect "rfft_prg”
fft:
; Stage 1
STM #K_ZERO_BK,BK ; BK=0 so that *ARN+0% == *ARn+0
LD #-1,ASM ; outputs div by 2 at each stage
MVMM DATA_PROC_BUF,PX ; PX—>PR
LD *PX,A ;A= PR

STM #fft_data+K_DATA_IDX_1,0X ; QX —> QR
STM #K_FFT_SIZE/2-1,BRC

RPTBD stagelend-1

STM #K_DATA_IDX_1+1,AR0

SUB *QX,16,A,B ;B = PR-QR

ADD *QX,16,A ;A = PR+QR

STH A ASM,*PX+ ; PR:= (PR+QR)/2
ST B,*QX+ ; QR:= (PR-QR)/2
|ILD *PX,A A = Pl

SUB *QX,16,A,B ;B = PI-QI
ADD *QX,16,A ;A = PI+QI
STH A,ASM,*PX+0 ; PI':= (PI1+QI)/2
ST B,*QX+0% ; Q= (PI-QI)/2
||ILD *PX,A ;A = next PR

10-94 PRELIMINARY

PRELIMINARY

Application Code

Example 10-19. 256-Point Real FFT Routine (Continued)

stagelend:
; Stage 2
MVMM DATA_PROC_BUF,PX PX—>PR
STM #fft_data+K_DATA_IDX_2,QX QX —>0R
STM #K_FFT_SIZE/4-1,BRC
LD *PX,A ;A= PR
RPTBD stage2end-1
STM #K_DATA_IDX_2+1,AR0
; 1st butterfly
SUB *QX,16,A,B ;B = PR-QR
ADD *QX,16,A ;A = PR+QR
STH AASM,*PX+ ; PR= (PR+QR)/2
ST B,*QX+ ; QR :(PR QR)/2
[ILD *PX,A ;A = Pl
SUB *QX,16,A,B ; B == PI-QI
ADD *QX,16,A ‘A = PI+QI
STH A,ASM,*PX+ PI’ = (PI+QI)/2
STH B,ASM,*QX+ ; QI’:= (P1-QI)/2
; 2nd butterfly
MAR *QX+
ADD *PX,*QX,A ;A = PR+QI
SUB *PX,*QX-,B ; B == PR-QI
STH AASM,*PX+ PR’ := (PR+QI)/2
SUB *PX,*QX,A ;A = PI-QR
ST B,*QX ; QR := (PR-QI)/2
[ILD *QX+,B ;B = OR
ST A, *PX ; PI'= (PI-QR)/2
||ADD *PX+0%,A ;A = PI+QR
ST A*QX+0% ; QI':= (PI+QR)/2
[ILD *PX,A ;A = PR
stage2end:
; Stage 3 thru Stage logN-1
STM #K_TWID_TBL_SIZE,BK ; BK = twiddle table size always
ST #K_TWID_IDX_3,d_twid_idx ; init index of twiddle table
STM #K_TWID_IDX_3,AR0 ; ARO = index of twiddle table
STM #cosine,WR ; init WR pointer
STM #sine,WI ; init WI pointer
STM #K_LOGN-2-1,STAGE_COUNTER ; Init stage counter
ST #K_FFT_SIZE/8-1,d_grps_cnt ; init group counter
STM #K_FLY_COUNT_3-1,BUTTERFLY_COUNTER ; init butterfly counter
ST #K_DATA_IDX_3,d_data_idx ; init index for input data
stage:
STM #fft_data,PX :PX— PR
LD d_data_idx, A
ADD *(PX),A
STLM AQX QX —>0R

MVDK d_grps_cnt, GROUP_COUNTER

PRELIMINARY

; AR1 contains group counter

Application Code Examples

10-95

Application Code PRELIMINARY

Example 10-19. 256-Point Real FFT Routine (Continued)

group:
MVMD BUTTERFLY_COUNTER,BRC ; # of butterflies in each grp
RPTBD butterflyend-1
LD *WR,T ;T = WR
MPY *QX+,A (A = QR*WR || QX=>QI
MACR *WI+0%,*QX—,A ;A = QR*WR+QI*WI
l QX—>QR
ADD *PX,16,A,B = (QR*WR+QI*WI)+PR
ST B,*PX PR’ -((QR*WR+QI*WI)+PR)/2
||[SUB *PX+,B ; B := PR—(QR*WR+QI*WI)
| PX—>P|
ST B,*QX ; QR":= (PR—(QR*WR+QI*WI))/2
[IMPY *QX+,A ;A= QR*WI [T=wWI]
1l QX=>Ql
MASR *QX,*WR+0%,A ;A = QR*WI-QI*WR
ADD *PX,16,A,B ; B = (QR*WI-QI*WR)+PI
ST B*QX+ ; QI'=((QR*WI-QI*WR)+P1)/2
F 1 QX—>QR
[[SUB *PX,B ; B 1= PI-(QR*WI-QI*WR)
LD *WR,T ;T = WR
ST B*PX+ ; PI':= (PI-(QR*WI-QI*WR))/2
i || PX—>PR
[IMPY *QX+,A ;A= QR*WR || QX—>QlI
butterflyend:
; Update pointers for next group
PSHM ARO ; preserve ARO
MVDK d_data_idx,ARO
MAR *PX+0 Ji ncrement PX for next group
MAR *QX+0 P ncrement QX for next group
BANZD group,*GROUP_ COUNTER-
POPM ARO ; restore ARO
MAR *QX-

; Update counters and indices for next stage
LD d_data_idx,A

SUB #1,AB iB=A-1

STLM B,BUTTERFLY_COUNTER B UTTERFLY_COUNTER = #flies—1

STL A,1,d_data_idx ; double the index of data

LD d_grps_cntA

STL A,ASM,d_grps_cnt ; 1/2 the offset to next group

LD d_twid_idx,A

STL A,ASM,d_twid_idx : 1/2 the index of twiddle table

BANZ D stage,*STAGE_COUNTER-

MVDK d_twid_idx,ARO ; ARO = index of twiddle table
fft_end:

RET ; return to Real FFT main module

.end

10-96 PRELIMINARY

PRELIMINARY Application Code

Example 10-20. Unpack 256-Point Real FFT Output

; TEXAS INSTRUMENTS INCORPORATED

; DSP Data Communication System Development / ASP
; Archives: PVCS

; Filename: unpack.asm

: Version: 1.0

; Status: draft @)

; proposal (X)

; accepted () dd—mm-yy/?acceptor.

: AUTHOR Simon Lau and Nathan Baltz

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

{

; IPR statements description (can be collected).

)

;. (C) Copyright 1996. Texas Instruments. All rights reserved.

{

; Change history:

VERSION DATE / AUTHORS COMMENT
; 1.0 July-17-96 / Simon & Nathan original created
3

{

;1. ABSTRACT

;1.1 Function Type
: a.Core Routine
; b.Subroutine

;1.2 Functional Description
; This file contains one subroutine:
; unpack

;1.3 Specification/Design Reference (optional)
; called by rfft.asm depending upon the task thru CALA

;1.4 Module Test Document Reference
: Not done

;1.5 Compilation Information

; Compiler: TMS320C54X ASSEMBLER
; Version: 1.02 (PC)

; Activation: asm500 —s unpack.asm

;1.6 Notes and Special Considerations

PRELIMINARY Application Code Examples 10-97

Application Code PRELIMINARY

Example 10-20. Unpack 256-Point Real FFT Output (Continued)

2. VOCABULARY
2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

3. EXTERNAL RESOURCES

3.1 Include Files
.mmregs
.include "main.inc”
;3.2 External Data
.ref fft_data,sine, cosine
;3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data
4.2_Global Static Data
4.3—Dynamic Data
4.4_Temporary Data

4.5 Export Functions
.def unpack

5. SUBROUTINE CODE
HeaderBegin

5.1 unpack
5.2 Functional Description

PHASE THREE & FOUR Unpacking to 2N Outputs

This function is called from the main module of the 'C54x Real FFT
code. It first computes four intermediate sequences (RP,RM, IP, IM)
from the resulting complex sequence at the end of the previous phase.
Next, it uses the four intermediate sequences to form the FFT of the
original 2N—point real input. Again, the outputs are divided by 2 to
prevent overflow

10-98 PRELIMINARY

PRELIMINARY Application Code

Example 10-20. Unpack 256-Point Real FFT Output (Continued)

5.3 Activation
Activation example:
CALL unpack

Reentrancy: No
Recursive: No

5.4 Inputs
NONE
5.5 Outputs
NONE
5.6 Global
5.6.1 Phase Three Global

Data structure: ARO

Data Format: 16-bit index pointer
Modified: No
Description: index to twiddle tables

Data structure: ~ AR2

Data Format: 16-bit pointer

Modified: Yes

Description: pointer to R[K], I[k], RP[K], IP[K]

Data structure: AR3

Data Format: 16-bit pointer

Modified: Yes

Description: pointer to R[N—K], I[N—k], RP[N-K], IP[N-K]

Data structure: ARG

Data Format: 16-bit pointer
Modified: Yes

Description: pointer to RM[K], IM[k]

Data structure: ~ AR7

Data Format: 16-bit pointer

Modified: Yes

Description: pointer to RM[n—k], IM[n—K]
5.6.2 Phase Four Global

Data structure: ARO

Data Format: 16-bit index pointer
Modified: No
Description: index to twiddle tables

Data structure: AR2

Data Format: 16—bit counter
Modified: No
Description: pointer to RP[K], IP[K], AR[K], Al[K], AR[O]

)
’
)
)
)
)
)
)
)
1
’
)
’
)
’
)
1
i
)
)
)
’
)
’
)
’
)
)
)
)
)
1
)
)
1
)
’
)
)
)
)
’
)
)
)
’
)
)
)
’
)
1
)
)

PRELIMINARY Application Code Examples 10-99

Application Code PRELIMINARY

Example 10-20. Unpack 256-Point Real FFT Output (Continued)

Data structure: AR3

Data Format: 16-bit pointer

Modified: Yes

Description: pointer to RM[K], IM[K], AR[2N—k], Al[2N—K]

Data structure: AR4

Data Format: 16-bit pointer

Modified: Yes

Description: pointer to cos(k*pi/N), Al[0]

: Data structure: AR5
; Data Format: 16-bit pointer
; Modified: Yes
; Description: pointer to sin(k*pi/N), AR[N], AI[N]
: 5.7 Special considerations for data structure
: 5.8_Entry and Exit conditions
: 5.8.1 Phase Three Entry and Exit Conditions
IDP|OVM|SXM|C16|FRCT|ASM|AROJAR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B |BK|BRC| T|TRN
§in||2I | I1 ||1 |I 0 |I 1I | !) |L|Lﬂ |lllU| |I\IU||N|UI|I\|IJ [NU [NU |NU [NUINUJO [NU |[NU|NU
;0u|t||2 ||1 I| 1|| 0] 1I ||—1||U|M||N|U I|UM |u||\/|| INU [NU [UM [UM |[UM|UM|UM|UM |[NU|NU
Note : UM — Used & Modified, U — Used, NU — Not Used
: 5.8.2 Phase Four Entry and Exit Conditions
|DP|OVM|SXM|C16|FRCT|ASM|AROJAR1|AR2|AR3|AR4|AR5|ARG6|ART|A |B |BK|BRC| T|TRN
;in||L!l ||1 ||1|| 0|| 1| |l1 ||N|U ||NL|J ||NLB |l|\|LIJ ||N|U {Nlu [NU [NU [NU|NU|NUINU [NU|NU
;oultllJ || 1|| 1| | 0I | I1 ||—1I |lﬂM| |I\IU||U|M ||u||\/|| ||UI\|/I ||UM [NU [NU JUM|UM|UM|UM |NU|NU
Note : UM — Used & Modified, U — Used, NU — Not Used

5.9 Execution

Execution time: ?cycles
Callrate: not applicable for this application

HeaderEnd
5.10 Code
.sect "rfft_prg”
unpack:
; Compute intermediate values RP, RM, IP, IM
.asg AR2,XP_k
.asg AR3,XP_Nminusk
.asg AR6,XM_k
.asg AR7,XM_Nminusk

1
1
)
1
1
1
)

10-100 PRELIMINARY

PRELIMINARY Application Code

Example 10-20. Unpack 256-Point Real FFT Output (Continued)

STM
STM

#fft_data+2,XP_k ; AR2 —> R[K] (temp RP[K])
#fft_data+2*K_FFT_SIZE-2,XP_Nminusk ; AR3 —> R[N—K] (temp

RP[N-K])
#fft_data+2*K_FFT_SIZE+3,XM_Nminusk ; AR7 —> temp RM[N—K]
#fft data+4*K_FFT_SIZE-1,XM_k AR6 —> temp RM[K]

STM
ST™M

STM #-2+K_FFT_SIZE/2,BRC

RPTBD phase3end-1

STM #3,AR0

ADD *XP_K,*XP_Nminusk,A ; A= RIK[+R[N-K] =
2*RP[K]

SUB *XP_Kk,*XP_Nminusk,B ; B := R[K]-R[N-k] =
2*RMIK]

STH AASM,*XP_k+ ; store RP[K] at AR[K]

STH A,ASM,*XP_Nminusk+ ; store RP[N-k]=RP[K] at
AR[N—K]

STH B,ASM,*XM_k— ; store RM[K] at AI[2N—k]

NEG B ; B := RIN-K]-R[K] =
2*RM[N-K]

STH B,ASM,*XM_Nminusk— ; store RM[N—K] at AI[N+k]

ADD *XP_k,*XP_Nminusk,A A = I[K]+I[N-K] =
2*IP[K]

SUB *XP_Kk,*XP_Nminusk,B ; B = I[K]-I[N-K] =
2*IM[K]

STH AASM,*XP_k+ ; store IP[K] at Al[K]

STH A,ASM,*XP_Nminusk—0 ; store IP[N—K]=IP[K] at
AI[N-K]

STH B,ASM,*XM_k— ; store IM[K] at AR[2N—k]

NEG B ; B := I[N=K]-I[K] =
2*IM[N—K]

STH B,ASM,*XM_Nminusk+0 ; store IM[N-K] at AR[N+K]

phase3end:
ST #0,*XM_k- ; RM[N/2]=0
ST #0,*XM_k ; IM[N/2]=0
: Compute AR[0],/ AI[O] AR[N], AI[N]

.asg AR2,AX_k

.asg AR4, IP_O

.asg AR5,AX_N

STM #fft_data,AX_k ; AR2 —> ARJ[0] (temp

RP[Q])
STM #fft_data+1,IP_0 ; AR4 —> Al[0] (temp
IP[0])

STM #fft_data+2*K_FFT_SIZE+1,AX_N ; AR5 —> Al[N]

ADD *AX_k,*IP_0,A ; A := RP[O]+IP[0]

SUB *AX_Kk,*IP_0,B ; B := RP[O]-IP[0]

STH AASM,*AX_k+ ; AR[O] = (RP[O]+IP[0])/2

ST #0,*AX_k ;AI0]=0

MVDD *AX_k+,*AX_N-— ;AIIN]=0

STH B,ASM,*AX_N ; AR[N] = (RP[O]-IP[0])/2

; Compute final outputT/aIues AR[K], Al[K]

.asg AR3,AX_2Nminusk
.asg AR4,COS
.asg AR5,SIN
PRELIMINARY Application Code Examples 10-101

Application Code PRELIMINARY

Example 10-20. Unpack 256-Point Real FFT Output (Continued)

STM #fft_data+4*K_FFT_SIZE-1,AX_2Nminusk ; AR3 —> Al[2N-1]

(temp RM[1])
STM #cosine+K_TWID_TBL_SIZE/K_FFT_SIZE,COS ; AR4 —> cos(k*pi/N)
STM #sine+K_TWID_TBL_SIZE/K_FFT_SIZE,SIN ; AR5 —> sin(k*pi/N)
STM #K_FFT_SIZE-2,BRC
RPTBD phasedend-1

STM #K_TWID_TBL_SIZE/K_FFT_SIZE,ARO ; index of twiddle
tables
LD *AX_k+,16,A s A= RPLK] ||
AR2—>|P[K]
MACR *COS,*AX_k,A ; A :=A+cos(k*pi/N)
*IP[k]
MASR *SIN,*AX_2Nminusk—,A ; A := A—sin(k*pi/N)
*RMIK]
i || AR3—>IM[K]
LD *AX_2Nminusk+,16,B ; B = IMLK] ||
AR3—>RM[K]
MASR *SIN+0%,*AX_k-,B ; B := B=sin(k*pi/N)
*IP[K]
;|| AR2—>RP[K]
MASR *COS+0%,*AX_2Nminusk,B ; B := B—cos(k*pi/N)
*RMIK]
STH AASM*AX_k+ ; ARK] = A/2
STH B,ASM,*AX_k+ ; Alk] = B/2
NEG B ;B:=-B
STH B,ASM,*AX_2Nminusk— ; AI[2N—K] = —Al[K]
=B/2
STH AASM,*AX_2Nminusk— ; AR[2N-K] = AR
[K] = A2
phase4end:
RET 0 r eturntoReal FFTmain module
.end

10-102 PRELIMINARY

PRELIMINARY

Example 10-21.

Real FFT

TEXAS INSTRUMENTS INCORPORATED
DSP Data Communication System Development / ASP

Archives: PVCS
Filename: power.asm
Version: 1.0
Status : draft @)
proposal (X)
accepted () dd—mm-yy/?acceptor.

AUTHOR Simon Lau and Nathan Baltz
Application Specific Products
Data Communication System Development
12203 SW Freeway, MS 701
Stafford, TX 77477

IPR statements description (can be collected).

; (C) Copyright 1996. Texas Instruments. All rights reserved.

A{

Change history:

VERSION DATE [/ AUTHORS COMMENT
1.0 July-17-96 / Simon & Nathan original created
1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains one subroutine:
power

1.3 Specification/Design Reference (optional)
called by rfft.asm depending upon the task thru CALA

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s power.asm

1.6 Notes and Special Considerations

PRELIMINARY Application Code Examples

Application Code

Compute the Power Spectrum of the Complex Output of the 256-Point

10-103

Application Code PRELIMINARY

Example 10-21. Compute the Power Spectrum of the Complex Output of the 256-Point
Real FFT (Continued)

2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.3 Local Constants

2.2 Local Compiler Flags
%
3. EXTERNAL RESOURCES
: 3.1 Include Files

.mmregs

.include "main.inc”
;3.2 External Data

ref fft_data, d_output_addr

;3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data

4.2 Global Static Data

4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
.def power

5. SUBROUTINE CODE
HeaderBegin

5.1 power

;5.2 Functional Description

; PHASE FIVE Power Spectrum

; This function is called from the main module of the 'C54x Real FFT
; code. It computes the power spectrum of the Real FFT output.

5.3 Activation
Activation example:
CALL power
Reentrancy: No
Recursive: No

10-104 PRELIMINARY

PRELIMINARY Application Code

Example 10-21. Compute the Power Spectrum of the Complex Output of the 256-Point

Real FFT (Continued)

5.4 Inputs
NONE
5.5 Outputs
NONE

5.6 Global
Data structure: AR2
Data Format: 16-bit pointer
Modified: Yes
Description: pointer to AR[K], Al[K]

Data structure: AR3

Data Format: 16-bit pointer
Modified: Yes

Description: pointer to output buffer

5.7 Special considerations for data structure

5.8 Entry and Exit conditions

. |DP|OVM|SXM|C16|FRCT|ASM|ARO|AR1|AR2|AR3|AR4|AR5|AR6|AR7|A |B [BK|BRC| T|TRN]|
N 1 s I O o A O A A

AN U L] 1|NU |1 |NU|NU [NU [NU [NU [NU [NU |NU |NU [NU[NUJNUINU |[NU[NU |

S I I I O o IR O I

;outfU [1] 1 |NU |1 |NU [NU [NU [UM UM |NU |NU [NU [NU [UM|NUINUJUM |NUINU |

Note : UM — Used & Modified, U — Used, NU — Not Used
5.9 Execution

Execution time: ?cycles
Call rate: not applicable for this application

HeaderEnd
5.10 Code
.asg AR2,AX
.asg AR3,0UTPUT_BUF
.sect "pwr_prog” power:
MVDK d_output_addr,OUTPUT_BUF ; AR3 points to output buffer
STM #K_FFT_SIZE*2-1,BRC
RPTBD power_end-1
ST™M #fft_data,AX ; AR2 points to AR[0O]
SQUR *AX+,A s A= ARM2
SQURA *AX+,A ; A= ARMN2 + AIN2
STH A*OUTPUT_BUF+
power_end:
RET ; return to main program
.end

PRELIMINARY Application Code Examples

10-105

Application Code

Example 10-22. Data Transfer from FIFO

TEXAS INSTRUMENTS INCORPORATED
DSP Data Communication System Development / ASP

Archives: PVCS
Filename: fifo.asm
Version: 1.0
Status : draft)
proposal (X)
accepted () dd—mm-yy/?acceptor.

AUTHOR Padma P. Mallela
Application Specific Products
Data Communication System Development
12203 SW Freeway, MS 701
Stafford, TX 77477
IPR statements description (can be collected).

(C) Copyright 1996. Texas Instruments. All rights reserved.

Change history:

VERSION DATE / AUTHORS COMMENT
1.0 July-25-96 / P.Mallela original created
1. ABSTRACT

1.1 Function Type
a.Core Routine
b.Subroutine

1.2 Functional Description
This file contains one subroutines:
fifo_host_transfer
1.3 Specification/Design Reference (optional)
called by main.asm depending upon if K_HOST_FLAG is set

1.4 Module Test Document Reference
Not done

1.5 Compilation Information
Compiler: TMS320C54X ASSEMBLER
Version: 1.02 (PC)
Activation: asm500 —s fifo.asm

1.6 Notes and Special Considerations

10-106

PRELIMINARY

PRELIMINARY

PRELIMINARY Application Code

Example 10-22. Data Transfer from FIFO (Continued)

A{
. 2.VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

%
: 3. EXTERNAL RESOURCES

3.1 Include Files

.mmregs
.include "target.inc”
;3.2 External Data
ref d_command_reg
ref d_fifo_count
ref d_command_value
ref d_fifo_ptr
ref d_output_addr
;3.3 Import Functions
)
{

4. INTERNAL RESOURCES
4.1 Local Static Data
4.2_GIobaI Static Data
4.3_Dynamic Data

4.4_ Temporary Data

4.5 Export Functions
.def fifo_host_transfer

5. SUBROUTINE CODE
HeaderBegin

5.1 fifo_host_transfer

This routine transfers a FIFO(64) of data to host thru CH B.

In the process, after transferring data from DSP to FIFO sends a com—
mand to host thru CH A.The host acknowledges and sends a command to
target (DSP) thru CH A. The host transfer can be disabled by setting

the K_HOST_FLAG =0

;5.2 Functional Description

PRELIMINARY Application Code Examples 10-107

Application Code

Example 10-22. Data Transfer from FIFO (Continued)

1
)
1
1
1
1
1
1
1
1
)
1
)
1
1
1
1
1
1
1
1
)
1
1
1
)
1
1
1
1
1
1
1
1
1
1
)
1
1
1
1
)
1
1
1
)
1
1

1
1

5.3 Activation
Activation example:
CALL fifo_host_transfer

Reentrancy: No
Recursive : No

5.4 Inputs
Data structure: d_output_addr
Data Format: 16-bit variable
Modified: NO
Description: holds the starting addr of either PING/PONG addr.

Data structure: d_fifo_count

Data Format: 16—bit var

Modified: Yes

Description: counter for # of transfers

Data structure: d_fifo_ptr

Data Format: 16-bit variable

Modified: Yes

Description: holds the output bffr addr. and incremented by
32 for every transfer

5.5 Outputs
Data structure: AR7
Data Format: 16-bit output buffer pointer
Modified: Yes
Description: either point to PING/PONG buffer
5.6 Global

Data structure: d_command_reg

Data Format: 16-bit variable

Modified: Yes

Description: command from host is read thru CH A
Data structure: d_command_value

Data Format: 16-bit variable

Modified: Yes

Description: holds the command value

5.7 Special considerations for data structure

5.8 Entry and Exit conditions

Note : UM — Used & Modified, U — Used, NU — Not Used

10-108

PRELIMINARY

IDP|OVM|SXM|C16|FRCTJASM|ARO|ARL|AR2|AR3|AR4|ARS|ARG|AR7|A |B |BK|BRC| T|TRN]
S O T T s I O O I O O

AN UL 1|NU |1 |NU|NU |NU |NU [NU [NU [NU |NU |U [NU|NUINUJNU [NU|NU |
;outjU |11 |NU |1 [NU|NU [NU |NU |NU [NU |NU [NU U JUM|NU|NU|NU |NUINU |

PRELIMINARY

PRELIMINARY Application Code

Example 10-22. Data Transfer from FIFO (Continued)

;5.9 Execution
; Execution time: ?cycles
; Callrate: not applicable for this application

:HeaderEnd

; 5.10 Code

; fifo_host_transfer:

; LD #FIFO_DP,DP
if K_HOST_FLAG =1
PORTR K_TRGCR_ADDR,d_command_reg ; while (portl4 & BXST)
BITF d_command_reg,K_BXST

BC fifo_discard, TC : FIFO discard
MVDK d_output_addr,OUTBUF_P ; load PING/PONG bffr address
RPT #K FIFO_SIZE-1 ; write first set of 64 data
; to FIFO
PORTW *OUTBUF_P+,K_CHB ; Fill FIFO
ST #K_FIFO_FULL,d_command_value
PORTW d_command_value, K_CHA ; write command to comnd reg A
ST #1,d_fifo_count ; start counting for tranfers
MVKD OUTBUF_P,d_fifo_ptr ; save the fifo_ptr
fifo_discard
.endif
RET
.end

* *% * * *kkkhkkkkkkkkk *% * *kkdkkkkkkkkkk * *%

* This file includes the TCR register configuration of EVM

K_AIC_RST .set Ob << 15 ; if AICRST=0, aic is reset
K_USR_BOT .set 000b << 12 ; User discrete output bits
;0,1,2
K_RESRV .set 0000b << 8 : Reserved bits
K_USR_BIN .set 00b << 6 ; User discrete input bits 0,1
K_RCV_BRST .set 00b << 4 ; Channel B receive status regs
; buffer half or more
K_XMT_BXST .set 11lb << 2 ; Ch B trasnmit status register
: buffer half or more
K_RCV_ARST .set Ob<<1 ; Ch A receive register
K_XMT_AXST .set Ob<<1 ; Ch A transmit register
K_TCR_HIGH .set K_AIC_RST|K_USR_BOT|K_RESRV
K_TCR_LOW .set K_USR_BIN|K_RCV_BRST|K_XMT_BXST|K_RCV_ARST|K_XMT_AXST
K_TCR .set K_TCR_HIGH|K_TCR_LOW

* this includes 1/O address of CH_A, CH_B and different commands that's been
* passed between host and the target

* *kkkkkkkk * * * *kkkkkkkk * * *

K_0 .set Oh ; constant O
K_FIFO_FULL .set OxFF ; Full FIFO command written by
; target
K_FIFO_EMPTY .set OxEE ; Empty FIFO command
; written by host
K_AXST_CLEAR .set OXAE ; Clear AXST empty command

; written by the target

PRELIMINARY Application Code Examples 10-109

Application Code PRELIMINARY

Example 10-22. Data Transfer from FIFO (Continued)

K_HANDSHAKE_CMD .set O0xAB ; handshake CMD written by host
K_CHB .set 12h : Use Channel B as 1/O interface
; to 54x EVM for sending data
K_CHA .set 10h ; Use Channel A as I/O interface
; to 54x EVM for send command
: to host
K_TRGCR_ADDR .set 14h ; Target status control register
: 1/0 address location
K_AXST .set 1h ; Oh
K_ARST .set 2h ; used to check the control bits
K_BXST .set 3h ; check if K_FIFO_SIZE
.set 64 ;its a 64 FIFO
K_FRAME_SIZE .set 256 ; Frame size
K_HOST_FLAG .set 1 ; if 0, then host interface
; is disabled

10-110 PRELIMINARY

PRELIMINARY Application Code

Example 10-23. Interrupt 1 Service Routine

TEXAS INSTRUMENTS INCORPORATED
DSP Data Communication System Development / ASP

Archives: PVCS
Filename: hst_intl.asm
Version: 1.0
Status: draft O
proposal (X)
accepted () dd—mm-yy/?acceptor.

AUTHOR Padma P. Mallela

; Application Specific Products

; Data Communication System Development
; 12203 SW Freeway, MS 701

; Stafford, TX 77477

; IPR statements description (can be collected).

;. (C) Copyright 1996. Texas Instruments. All rights reserved.

; Change history:

; VERSION DATE /| AUTHORS COMMENT
; 1.0 July—25-96 / P.Mallela original created

1. ABSTRACT

;1.1 Function Type
; a.Core Routine
; b.Subroutine

1.2 Functional Description
This file contains interrput service routine INT1:
; 1) host_command_int1l
;1.3 Specification/Design Reference (optional)
; INT1 is serviced whenever host writes to CH A

;1.4 Module Test Document Reference
; Not done

;1.5 Compilation Information

; Compiler: TMS320C54X ASSEMBLER
; Version: 1.02 (PC)

; Activation: asm500 —s hst_intl.asm

1.6 Notes and Special Considerations

PRELIMINARY Application Code Examples 10-111

Application Code

Example 10-23. Interrupt 1 Service Routine (Continued)

{
)

)
)
)
)
)
)
)

3}
A

1
)
1

2. VOCABULARY

2.1 Definition of Special Words, Keywords (optional)

2.2 Local Compiler Flags

2.3 Local Constants

3. EXTERNAL RESOURCES

3.1 Include Files
.mmregs
.include "target.inc”
3.2 External Data
.ref FIFO_DP
ref d_command_reg
.ref d_fifo_count
ref FIFO_DP
.ref d_command_value
ref d_fifo_ptr
ref d_output_addr
3.3 Import Functions

4. INTERNAL RESOURCES
4.1 Local Static Data
4.2 Global Static Data

4.3 Dynamic Data

4.4 Temporary Data

4.5 Export Functions
.def host_ command_intl

5. SUBROUTINE CODE
HeaderBegin

PRELIMINARY

5.1 host_command_intl

5.2 Functional Description

The host generates INT1 DSP whenever it writes to CH A. In INT1

service routine, the command from host is read whether the FIFO

has been empty. Writes another 32 data from target to FIFO.

Sends a command to host. The host acknowledges the command and read
the 32 data from the FIFO and sends a command to the target for

10-112

PRELIMINARY

PRELIMINARY Application Code

Example 10-23. Interrupt 1 Service Routine (Continued)

another set of 32 data. This process continues for 6 times till all
256 processed samples are transferred to host. Processing INT1 is
done background, i.e., INT1 is globally enabled.

5.3 Activation

Activation example:

BD host_command_intl
PSHM STO

PSHM ST1

Reentrancy: No
Recursive : No

5.4 Inputs
Data structure: d_fifo_count
Data Format: 16-bit var
Modified: Yes
Description: counter for # of transfers

; Data structure: d_fifo_ptr

; Data Format: 16-bit variable

; Modified: Yes

; Description: holds the output bffr addr. and incremented by
; 32 for every transfer

5.5 Outputs

Data structure: AR7

Data Format: 16-bit output buffer pointer
Modified: Yes

Description: either point to PING/PONG buffer

5.6 Global
Data structure: d_command_reg
Data Format: 16-bit variable
Modified: Yes
Description: command from host is read thru CH A

Data structure: d_command_value
Data Format: 16-bit variable

Modified: Yes

Description: holds the command value

5.7 Special considerations for data structure

PRELIMINARY Application Code Examples

10-113

Application Code PRELIMINARY

Example 10-23. Interrupt 1 Service Routine (Continued)
;5.8 Entry and Exit conditions
. |DP|OVM|SXM|C16|FRCT|ASM]AROJARL|AR2JAR3|AR4|ARS|ARG|AR7|A |B [BK|BRC| T[TRN
Ein||L|J ||1 ||1||NLIJ ||1 ||N|U ||Nl|J ||NL|J |r|\|uI |L|L I|NU|NU |U |U |NUINU|NU|NU |NU|NU
;odt||U |I 1|| 1| |N|U I 1I |l\|lU||I\IU||N|U ||NL|J I|N|uI |NuI INU [NU [U JUM|NU|NU|NU |NU|NU
Note : UM — Used & Modified, U — Used, NU — Not Used
5.9 Execution

; Execution time: ?cycles
; Call rate: not applicable for this application

HeaderEnd
5.10 Code
.asg AR7,0UTBUF_P ; output buffer pointer
.asg AR7,SV_RSTRE_AR7
.sect "fifo_fil"
host_command_int1:
PSHM AL
PSHM AH
PSHM AG
PSHM SV_RSTRE_AR7 ; AR7 is used as a poiner for
; output buffer
LD #FIFO_DP,DP ; restore the DP
PORTR K _CHA,d_command_value ; read command from host
wait_host_receive_data
PORTR K_TRGCR_ADDR,d_command_reg ; while (portl4 & AXST)

BITF d_command_reg,K_ARST ; check FIFO empty
BC wait host_receive _data,TC ; branch occurs
LD #K_FIFO_EMPTY,A ; indicate of FIFO empty

SUB d_command_value,A
bad_command

BC bad_command,ANEQ ; read the command send by host
LD #(K_FRAME_SIZE/(K_FIFO_SIZE/2))-1,A
SUB d_fifo_count,A ; check for complete transfer of

; 256 samples

BC start_remain_fifo_transfer, AGT
BD transfer_over

ST #0,d_fifo_count ; reset the fifo count
; start_remain_fifo_transfer
MVDK d_fifo_ptr, OUTBUF_P ; load PING/PONG bffr address

10-114 PRELIMINARY

PRELIMINARY Application Code

Example 10-23. Interrupt 1 Service Routine (Continued)

RPT #(K_FIFO_SIZE/2)-1 ; write 32 data to FIFO

PORTW *OUTBUF_P+,K_CHB ; Fill FIFO half

ST #K_FIFO_FULL,d_command_value

PORTW d_command_value, K_CHA ; write command to cmmnd reg A

; for FIFO half

ADDM #1,d_fifo_count

MVKD OUTBUF_P,d_fifo_ptr ; save the fifo_ptr
transfer_over:

POPM SV_RSTRE_AR7 ; restore AR7

POPM AG

POPM AH

POPM AL

POPM ST1

POPM STO

RETE

.end

PRELIMINARY Application Code Examples 10-115

Application Code

Example 10-24. Function Calls on Host Side

Host Action
/* FILE NAME: HOST.C */
I* C54x EVM/HOST COMMUNICATION FUNCTIONS — HOST SIDE
[rrxx ik ik /
#include "graphic2.c”
#include "host.h” /* flag names, constants */
/*

PRELIMINARY

*/

This function initializes the data buffer and reads the FIFO so that FIFO
is empty when the real data transfers start

void initialize_slave(void)

o
int j;
for (j=0;j < 64; j++)
dataa[j] = inport(BDAT_REG) ; /* read data from data reg. */
for (j=0;j <256; j++)
dataa[j] = 0;
outport(CONT_REG, inport(CONT_REG) & 0xf7ff);
}
/*

*/

The target sends a command to the host after collecting 32 word data from DSP
memory to FIFO. The host checks if the command has been received

*/

int receive_command_FIFO_FULL(void)
/* RECEIVE COMMAND FROM EVM */

{
while(!(inport(CONT_REG) & ARST)) ; /* wait for evm to send command*/
reply = inport(ADAT_REG) ; I* read command into reply*/

while ((reply & OxFF) =0xFF) ; return(reply)
; I* return command for process’g*/
}

/*

*/

/* This function sends a command to target for a new set of data from FIFO*/
void send_command_new_FIFO(command unsigned int command;
{

command = OxEE;
outport (ADAT_REG,command);
while(inport(CONT_REG) & AXST);

/*

This initiates the handshake between the target and host. The host writes
a command to target which sets the AXST flag to 1. The INT1 is generated
whenever host writes to CH A. On the target side, INT1 is polled and reads
the CH A.This clears ARST on target side. A command is written to Ch A on
target after emptying the FIFO that sets AXSt =1. Later sets XF to go low.
On host XF is polled and then reads CH A that clears ARST to 0 and AXST to 0
on the target side
*/
int receive_clear_AXST/(void)
/* RECEIVE COMMAND FROM EVM */

10-116

PRELIMINARY

PRELIMINARY Application Code

Example 10-24. Function Calls on Host Side (Continued)

{

command = 0xAB;

outport (ADAT_REG,command);

while(inport(CONT_REG) & AXST); /* write command to evm */
while((inport(CONT_REG) & XF));

while(!(inport(CONT_REG) & ARST)); /* wait for evm to send command*/

reply = inport(ADAT_REG); /* read command into reply ~ */
while ((reply & OXAE) !=0xAE);
return(reply); /* return command for process’'g*/

*/

PRELIMINARY Application Code Examples 10-117

Application Code

Example 10-25. Main Function Call on Host Side

* Kkkkkkkk * * *kk * * * /

/
I* FILE NAME: MASTER.C */
I* C54x EVM/HOST COMMUNICATION FUNCTIONS — HOST SIDE
#define F1 15104
#define F2 15360
#define F3 15616
#define DATA_FRAME 256
#include <bios.h>
#include "view2.c”
int get_kbhit(void);
extern void send_command_new_FIFO(unsigned int);
void main(void)

int count=0,n,fifo_size;

int main_done =0;

int done = 0;

int hit;

initialize_slave();
/* a command is written to CH A to initiate handshake */
command_AXST = receive_clear_AXST()
while (!main_done)

done =0;
init_graphics()
; while('done)

count =0;
if(kbhit())

hit = get_kbhit();
setviewport(120,433,290,445,0);
clearviewport();

switch(hit)

case (Fl1): amplitude = amplitude *2 ; outtextxy(1,1,"Amplitude
; decreased”)
; break;
/I case (F2): if (amplitude>=2) amplitude = amplitude / 2
; outtextxy(1,1,"Amplitude

; increased”)
; break;
case (F2): done=1 ; closegraph()
; break;
case (F3): done=1 ;main_done=1
;closegraph()
;break;
}
}
else
10-118

*

PRELIMINARY

PRELIMINARY

PRELIMINARY Application Code

Example 10-25. Main Function Call on Host Side (Continued)
{

command_FIFO = receive_command_FIFO_FULL();
for (fifo_size=0; fifo_size < 64, fifo_size++)
dataa[fifo_size+count] = inport(BDAT_REG);
send_command_new_FIFO(command);

for (count=64; count< 256; count++)

command_FIFO = receive_command_FIFO_FULL(); /* command from target*/
for (fifo_size=0; fifo_size < 32; fifo_size++)

dataa[fifo_size+count] = inport(BDAT_REG); /* read 32 word fifo*/

count = count+31;

send_command_new_FIFO(command); /* send command to target*/

screen();

}
}
}
}
closegraph();
}
int get_kbhit(void)
{
unsigned int key = bioskey(0);
fflush(stdin);
return(key);
}

[xHx Kkkkkkkkkkkkkkkkkkk Kkkkkkkkkkkkkkkkkhhhkrkk 7(/

I* FILE NAME: HOST.H C54x */

[* HOST SIDE FLAGS, CONSTANTS, COMMAND NUMBERS, AND GLOBAL VARIABLES */
I* */

/ /

[* The numbers I've picked for the file I/O constants, command numbers, and */

[* basic control constants are not important. These numbers could really — */

[* be anything, as long as two of them are not the same. Please notice the */

[* pattern | used for file commands. Masks and pointers CANNOT be changed. */

#include <stdio.h>

I* FILE I/O CONSTANTS AND COMMAND */
#define MAX_FRAME 256 /* size of data frame to be passed */
I* BASIC CONTROL CONSTANTS */

#define STOP 99

#define NO 98

#define YES 97

#define READY 96

#define CLEAR 95

#define ACKNOWLEDGE 0

[f———— POINTERS TO DATA, COMMAND, AND CONTROL REGISTERS —M %/
unsigned int ADAT_REG = (unsigned int)(0x240 + 0x800);

unsigned int BDAT_REG = (unsigned int)(0x240 + 0x804);

unsigned int CONT_REG = (unsigned int)(0x240 + 0x808);

PRELIMINARY Application Code Examples 10-119

Application Code

Example 10-25. Main Function Call on Host Side (Continued)

/*

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

MASKS FOR READING MESSAGE FLAGS OF CONTROL REGISTER
XF = (unsigned int) 0x0020;
ARST = (unsigned int) 0x0002;
AXST = (unsigned int) 0x0001,;
BRST_MASK = (unsigned int) 0x0200;
BXST_MASK = (unsigned int) 0x0008;

PRELIMINARY

*/

/*
FILE*file[20];
int reply;

GLOBAL VARIABLES USED BY EVM.C AND MASTER.C
/* stores ptrs to files in files.dat*/
[* integer for whatever */

int reply1[128];
int data[256];

int index;

unsigned int command;

unsigned int commandl;

unsigned int command_new_data;
unsigned int command_FIFO;
unsigned int command_AXST,;
unsigned int command_HANDSHAKE;
int amplitude = -10;

10-120

*/

PRELIMINARY

PRELIMINARY Application Code

Example 10-26. Graphic Drivers Routine

I* FILE NAME: GRAPHIC2.C *
I* GRAPHICS DRIVER INITIALIZATION ROUTINE */

I* *

/ * * * * * * * * * /

#include <graphics.h>
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
void init_graphics(void)

inti;

int gdriver = DETECT, gmode, errorcode; int left, top, right, bottom;
initgraph(&gdriver, &gmode, ™); errorcode = graphresult();

if (errorcode != grOKk);

printf("Graphics error: %s\n”, grapherrormsg(errorcode));
printf("Press any key to halt.\n");
getch();

cleardevice();

setlinestyle(0,0,1);

setcolor(1);

seffillstyle(1,3);
rectangle(1,1,getmaxx()-1,getmaxy()-1);
setcolor(7);

left = 5;

top = getmaxy()/2 + — 123;

right = 108;

bottom = getmaxy/()/2+ 163;
rectangle(left,top,right,bottom);
line(left,top + 30,right,top + 30);
line(left,bottom+29,right,bottom+29);
rectangle(left,top — 110,right+523,top — 5);
rectangle(right+4,bottom + 5, right + 523,bottom + 70);
rectangle(left,botom +5,right,bottom+70);
setcolor(15);

settextstyle(0,0,1);

[* outtextxy(left+25,top+12,"CONTROL");
outtextxy(right+16,bottom+32,"MESSAGES:");
outtextxy(left+13,bottom+13,”AIC STATUS");*/
outtextxy(left+2,bottom+38,"Freq: 8kHz");
outtextxy(left+2,bottom+53,"Gain: 2");
settextstyle(0,0,3);
outtextxy(left+10,top—72,"C54X EVM Spectrum Analyzer”);
setlinestyle(0,0,3);
setcolor(15);
left = getmaxx() /2 — 206;
top =getmaxy()/2 - 123;
right = getmaxx() / 2 + 312;
bottom = getmaxy() / 2 + 163;
rectangle(left, top, right, bottom);
floodfill(left+10,top+10,15);

PRELIMINARY Application Code Examples 10-121

Application Code

Example 10-26. Graphic Drivers Routine (Continued)

1

10-122

setcolor(15);

setlinestyle(0,0,3);

left = getmaxx()/2 — 311,

top = getmaxy()/2 + 57 — 40;

right = left + 25;

bottom =top + 25; rectangle(left,top,right,bottom);
seffillstyle(1,1); floodfill(left+5,top+5,15);
settextstyle(0,0,1);

outtextxy(left+5,top+10,"F3");
outtextxy(left+30,top+10,"Quit");

setcolor(15); setlinestyle(0,0,3);

left = getmaxx()/2 — 311,

top = getmaxy()/2 — 23 — 40;

right = left + 25;

bottom = top + 25; rectangle(left,top,right,bottom)
setfillstyle(1,1); floodfill(left+5,top+5,15);
settextstyle(0,0,1); outtextxy(left+6,top+10,"F1");
outtextxy(left+30,top+9,"Decrease”);
outtextxy(left+30,top+16,"amplitude”);
setcolor(15);

setlinestyle(0,0,3);

left = getmaxx()/2 — 311;

top =getmaxy()/2 + 17 — 40;

right = left + 25;

bottom = top + 25;
rectangle(left,top,right,bottom);

setfillstyle(1,1);

floodfill(left+5,top+5,15);

settextstyle(0,0,1); outtextxy(left+6,top+10,"F2");
outtextxy(left+30,top+9,”"Increase”);
outtextxy(left+30,top+16,"amplitude”);

PRELIMINARY

PRELIMINARY

PRELIMINARY Application Code

Example 10-27. Display the Data on the Screen

/ ki ki /
I* FILE NAME: VIEW2.C */

I* DISPLAYS DATA ON THE SCREEN */
I *

/ * * * * * * * * * /

#include "host.c”
void screen(void)

int x,y;
inti,n;
[* setup window (viewport) to display the AIC data */
x = getmaxx()/2 — 203;
y = getmaxy()/2;
setviewport(x,y—120,x+512,y+160,1);
/* move CP to left side of viewport */
X = getx();
y = gety() + 143;
moveto(X,y);
/* make waveform by drawing lines btwn 256 data points sent by EVM */
setlinestyle(0,0,1);
setcolor(14);
for(i=0;i<256;i++) lineto(x+1+2*,y+dataa[i]/amplitude);
[* erase waveform just drawn by re—writing it in background color */
moveto(X,y);
setcolor(3);
for(i=0;i<256;i++) lineto(x+1+2*i,y+dataa[i]/amplitude);

PRELIMINARY Application Code Examples 10-123

Application Code

Example 10-28.

Linker Command File for the Application

/

* This linker command file is assigns the memory allocation for the application

* Fkkkkkkk * * Fkk *

* *

*

* pased on the EVM54x specifically 541.

*kkkkkkkhkkhhkkkkkk B s e s e s

vectors.obj
init_54x.0bj
init_ser.obj
init_aic.obj
aic_cfg.obj
memory.obj
main.obj
prcs_int.obj
rcv_intl.obj
task.obj
fir.obj

iir.obj
sym_fir.obj
adapt.obj
echo.obj
rfft.obj
bit_rev.obj
fft.obj
unpack.obj
power.obj
hand_shk.obj
hst_int1.obj
fifo.obj

—0 main.out
—m main.map

MEMORY

{
PAGE 0:

PROG : origin = 0x7000, length = 0x1000
VECS :origin = 0xff80, length = Ox7f
COFF_SYM: origin = 0x1400, length = 0x40
COFF_FIR: origin = 0x1440, length = 0x40
AIC_TBLE: origin = 0x1480, length = 0x10
TASK_TBL: origin = 0x1490, length = 0x10
TASK_INT: origin = 0x14a0, length = 0x10
IIR_COFF: origin = 0x14b0, length = 0x10
COEFFH : origin = 0x1500, length = 0x100
TWID_SIN: origin = 0x1000, length = 0x80
TWID_COS: origin = 0x1200, length = 0x80
PAGE 1: /* Data space */
ALL_VARS: origin = 0x0080, length = 0x0080
DRAM : origin = 0x0100, length = 0x1300
EXT_DAT : origin = 0x1400, length = OXEOOO
REGS : origin = 0x0000, length = 0x0060

10-124

*%

xxxx/

PRELIMINARY

PRELIMINARY

PRELIMINARY

Application Code

Example 10-28. Linker Command File for the Application (Continued)

SECTIONS
text :{} > PROG PAGE 0 [* code */
vectors :{} > VECS PAGE 0 [* Vector table */
main_prg :{} > PROG PAGE 0
zeropad :{} > PROG PAGE 0
aic_cnfg :{}> PROG PAGE 0
ser_cnfg :{} > PROG PAGE 0
fifo_fil :{} > PROG PAGE 0
task_hnd :{} > PROG PAGE 0
handshke :{}> PROG PAGE 0
fir_prog :{} > PROG PAGE 0
ir :{} > PROG PAGE 0
filter :{} > PROG PAGE 0
rfft_prg :{} > PROG PAGE 0
aic_reg :{} > AIC_TBLE PAGE 0
task_int :{} > TASK_INT PAGE 0
task_tbl :{} > TASK_TBL PAGE 0
coff_fir :{}> COFF_FIR PAGE 0
sym_fir :{} > COFF_SYM PAGE 0
iir_coff :{} > IIR_COFF PAGE 0
coeffh :{} > COEFFH PAGE 0
sin_tbl {}> TWID_SIN PAGE 0
cos_tbl :{}> TWID_COS PAGE 0
inpt_buf :{} > DRAM,align(1024)PAGE 1
outdata :{} > DRAM,align(1024)PAGE 1

UNION: > DRAM align(1024)PAGE 1
fft_bffr
adpt_sct:
(bufferw) / This is needed for alignment of 128 words */
.+=80h;
*(bufferp)

}

UNION: > DRAM align(256) PAGE 1

{
fir_bfr
cir_bfr
coff_iir
bufferh
twid_sin

}

UNION: > DRAM align(256) PAGE 1

{
fir_coff
cir_bfrl
bufferx
twid_cos

}

PRELIMINARY

Application Code Examples 10-125

Application Code PRELIMINARY

Example 10-28. Linker Command File for the Application (Continued)

GROUP: >ALL_VARS PAGE 1
{

aic_vars

rcv_vars

fifo_var

tsk_vars

fir_vars

iir_vars

adpt_var

fft_vars

}
stack :{}> DRAM PAGE 1
}

10-126 PRELIMINARY

PRELIMINARY

Example 10-29. Memory Map of TMS320C541

;TMS320C541 MEMORY MAP
MR

MA 0x0000, 1, 0x002A, RAM ; MMRs

MA 0x0030, 1, 0x0003, RAM ;

MA 0x0060, 1, 0x0020, RAM ; SCRATCH PAD

MA 0x0080, 1, 0x1380, RAM ; INTERNAL DATA RAM

MA 0x0080, 0, 0x1380, RAM ; INTERNAL PROGRAM RAM
MA 0x9000, 0, 0x7000, ROM ; INTERNAL ROM

ma 0x1400, 0, Oxec00, ram ; external ram

ma 0x1400, 1, Oxec00, ram ; external ram

ma 0x0000, 2, 0x15, ioport ; i/o space

map on

;Define reset alias to set PMST for MC mode

;alias myreset, "e pmst = 0xff80; reset ”

;e pmst = Oxffe0 ; MP mode, OVLY, DROM off CLKOUT on
;e hbpenbl = 0x0000

e *0x28 = 0x2000 ; two wait states on i/0, none for memory
e *0x29 = 0x0000 ; no bank switching necessary

dasm pc

echo Loaded TMS320C54x evminit.cmd

PRELIMINARY

Application Code

Application Code Examples

10-127

PRELIMINARY

Appendix A

Design Considerations for
Using XDS510 Emulator

This appendix assists you in meeting the design requirements of the Texas
Instruments XDS510 emulator with respect to IEEE-1149.1 designs and
discusses the XDS510 cable (manufacturing part number 2617698-0001).
This cable is identified by a label on the cable pod marked JTAG 3/5Vand sup-
ports both standard 3-V and 5-V target system power inputs.

The term JTAG, as used in this book, refers to Tl scan-based emulation, which
is based on the IEEE 1149.1 standard.

For more information concerning the IEEE 1149.1 standard, contact IEEE
Customer Service:

Address: |EEE Customer Service
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331

Phone: (800) 678—IEEE in the US and Canada
(908) 981-1393 outside the US and Canada

FAX: (908) 981-9667 Telex: 833233

Topic Page
A.1 Designing Your Target System’s Emulator Connector

(14-Pin Header)iuiui i A-2 |

A2 BUSPIOtOCOl ..ottt A
A3 EmulatorCable Pod,
A.4 Emulator Cable Pod Signal Timing A-
A.5 Emulation Timing Calculations , A-
A.6 Connections Between the Emulator and the Target System .. .A-.lD
A.7 Physical Dimensions for the 14-Pin Emulator Connector oy A-_’LE
A.8 Emulation Design Considerations —coiiiiai.. A-

PRELIMINARY A-l

Designing Your Target System’s Emulator Connector (14-Pin Header) PRELIMINARY

A.1 Designing Your Target System’s Emulator Connector (14-Pin Header)

JTAG target devices support emulation through a dedicated emulation port.
This port is accessed directly by the emulator and provides emulation func-
tions that are a superset of those specified by IEEE 1149.1. To communicate
with the emulator, your target system must have a 14-pin header (two rows of
seven pins) with the connections that are shown in Figure A—1. Table A-1
describes the emulation signals.

Although you can use other headers, the recommended unshrouded, straight
header has these DuPont connector systems part numbers:

Uood

65610-114
65611-114
67996-114
67997-114

Figure A-1. 14-Pin Header Signals and Header Dimensions

T™MS

TDI

PD (Vco)
TDO
TCK_RET
TCK
EMUO

2
4
[6|
8
10
12
14

TRST
GND Header Dimensions:

Pin-to-pin spacing, 0.100 in. (X,Y)
no pin (key)’ Pin width, 0.025-in. square post
GND Pin length, 0.235-in. nominal
GND
GND
EMU1

T While the corresponding female position on the cable connector is plugged to preventimproper
connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the
schematics and wiring diagrams in this appendix.

A-2

PRELIMINARY

PRELIMINARY Designing Your Target System’s Emulator Connector (14-Pin Header)

Table A-1. 14-Pin Header Signal Descriptions

Emulator T Target

Signal Description State State
EMUO Emulation pin 0 I I/0
EMU1 Emulation pin 1 I I/0
GND Ground

PD(Vcc) Presence detect. Indicates that the emulation I O

cable is connected and that the target is
powered up. PD should be tied to V¢ in the
target system.

TCK Test clock. TCK is a 10.368-MHz clock (0]
source from the emulation cable pod. This
signal can be used to drive the system test

clock.
TCK_RET Testclock return. Test clock input to the emu- | (@)
lator. May be a buffered or unbuffered version
of TCK.
TDI Test data input (0] I
TDO Test data output I (0]
T™MS Test mode select (0] I
TRST# Test reset o |

T1=input; O = output

¥ Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise
environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current
considerations.)

PRELIMINARY Design Considerations for Using XDS510 Emulator A-3

Bus Protocol

A.2 Bus Protocol

A4

PRELIMINARY

The IEEE 1149.1 specification covers the requirements for the test access port
(TAP) bus slave devices and provides certain rules, summarized as follows:

(1 The TMS and TDI inputs are sampled on the rising edge of the TCK signal
of the device.

[The TDO output is clocked from the falling edge of the TCK signal of the
device.

When these devices are daisy-chained together, the TDO of one device has
approximately a half TCK cycle setup time before the next device’s TDI signal.
This timing scheme minimizes race conditions that would occur if both TDO
and TDI were timed from the same TCK edge. The penalty for this timing
scheme is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for bus master (emula-
tor) devices. Instead, it states that the device expects a bus master to provide
bus slave compatible timings. The XDS510 provides timings that meet the bus
slave rules.

PRELIMINARY

PRELIMINARY

Emulator Cable Pod

A.3 Emulator Cable Pod

Figure A—2 shows a portion of the emulator cable pod. The functional features
of the pod are:

i

a

TDO and TCK_RET can be parallel-terminated inside the pod if required
by the application. By default, these signals are not terminated.

TCK is driven with a 74LVT240 device. Because of the high-current drive
(32-mA I /lon), this signal can be parallel-terminated. If TCK is tied to
TCK_RET, you can use the parallel terminator in the pod.

TMS and TDI can be generated from the falling edge of TCK_RET, accord-
ing to the IEEE 1149.1 bus slave device timing rules.

TMS and TDI are series-terminated to reduce signal reflections.

A 10.368-MHz test clock source is provided. You can also provide your
own test clock for greater flexibility.

Figure A-2. Emulator Cable Pod Interface

5V
74F175
180 Q 270 Q
Q
i JP1
TDO (pin 7) D Q
74LVT240
10.368 MHz 330
— Y —YA——— TMS (pin 1)
330
—] Y
GND (pins 4,6,8,10,12
(P) %7 A Y
— Y TDI (pin 3)
EMUO (pin 13) {>
74AS1034 ot
EMUL1 (pin 14) TCK (pin 11)
5V
1800 270 Q TRST (pin 2)
P2 74AS1004
TCK_RET (pin 9)T i
PD(VcC) (pin 5) g |
100 Q
RESIN
TL7705A

T The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided as an
optional target system test clock source.

PRELIMINARY

Design Considerations for Using XDS510 Emulator A-5

Emulator Cable Pod Signal Timing PRELIMINARY

A.4 Emulator Cable Pod Signal Timing

Figure A—3 shows the signal timings for the emulator cable pod. Table A-2
defines the timing parameters illustrated in the figure. These timing parame-
ters are calculated from values specified in the standard data sheets for the
emulator and cable pod and are for reference only. Texas Instruments does
not test or guarantee these timings.

The emulator pod uses TCK_RET as its clock source for internal synchroni-
zation. TCK is provided as an optional target system test clock source.

Figure A-3. Emulator Cable Pod Timings

\ \
TCK_RET _/—\—/—_
| | |

22— \
3 —»
TMS, TDI
X
—a4—>
° - 6 P

X

Table A—2. Emulator Cable Pod Timing Parameters

No. Parameter Description Min Max Unit
1 te(TCK) Cycle time, TCK_RET 35 200 ns
2 tw(TCKH) Pulse duration, TCK_RET high 15 ns
3 tw(TCKL) Pulse duration, TCK_RET low 15 ns
4 ta(rms) Delay time, TMS or TDI valid for TCK_RET low 6 20 ns
5 tsu(TDO) Setup time, TDO to TCK_RET high 3 ns
6 th(TDO) Hold time, TDO from TCK_RET high 12 ns

A-6 PRELIMINARY

PRELIMINARY Emulation Timing Calculations

A.5 Emulation Timing Calculations

Example A-1 and Example A-2 help you calculate emulation timings in your
system. For actual target timing parameters, see the appropriate data sheet
for the device you are emulating.

The examples use the following assumptions:

tsu(TT™S) Setup time, target TMS or TDI to TCK

high 10 ns
t4(TTDO) Delay time, target TDO from TCK low 15ns
td(bufmax) Delay time, target buffer maximum 10 ns
td(bufmin) Delay time, target buffer minimum 1ns
thufskew Skew time, target buffer between two de- 1.35ns

vices in the same package:
[td(bufmax) — td(bufmin)] * 0.15

tTCcKfactor Duty cycle, assume a 40/60% duty cycle 0.4
clock (40%)

Also, the examples use the following values from Table A—2 on page A-6:

td(TMsmax) ~ Delay time, emulator TMS or TDI from 20 ns
TCK_RET low, maximum
tsy(toomin) Setup time, TDO to emulator TCK_RET 3ns

high, minimum
There are two key timing paths to consider in the emulation design:

(1 TheTCK_RET-to-TMSorTDlIpath, calIedtpd(TCK_RET_TMS/Tm) (propaga-
tion delay time)

(0 The TCK_RET-to-TDO path, called thd(TCK_RET-TDO)

In the examples, the worst-case path delay is calculated to determine the
maximum system test clock frequency.

PRELIMINARY Design Considerations for Using XDS510 Emulator A-7

Emulation Timing Calculations PRELIMINARY

Example A-1. Key Timing for a Single-Processor System Without Buffers

[td (tmsmax) + Lsu (TTMS)]

tod (TCK_RET-TMS/TDI) t

TCKfactor
(20 ns + 10 ns)
0.4
75 ns, or 13.3 MHz

[td (TTDO) + 1, (TDOmin)]

Lod (TCK_RET-TDO) — t

TCKfactor
(15 ns + 3 ng)

B 0.4

=45 ns, or 22.2 MHz

In this case, because the TCK_RET-to-TMS/TDI path requires more time to
complete, it is the limiting factor.

Example A-2. Key Timing for a Single- or Multiple-Processor System With Buffered Input
and Output

~ [td (TMsmax) T tsu(rmms) T tbufskew]
Lod (TCK_RET-TMS/TDI) — i

TCKfactor

_ (20 ns + 10 ns + 1.35 ns)
B 0.4

= 78.4 ns, or 12.7 MHz

_ [td (TTDO) + tsu (TDOmin) + td (bufmaX)]
tpd (TCK_RET-TDO) — t

TCKfactor

_ (15 ns + 3 ns + 10 ns)
B 0.4

= 70 ns, or 14.3 MHz

In this case also, because the TCK_RET-to-TMS/TDI path requires more time
to complete, it is the limiting factor.

A-8 PRELIMINARY

PRELIMINARY

PRELIMINARY

Emulation Timing Calculations

In a multiprocessor application, it is necessary to ensure that the EMUO and
EMUL lines can go from a logic low level to a logic high level in less than 10
s, this parameter is called rise time, t.. This can be calculated as follows:

ty = 5(Rpullup * Ndevices * Cload_per_device)
5(4.7 kQ x 16 x 15 pF)

5(4.7 x103Q x 16 x 15=no —12 F)
5(1128 x 10 -9)

5.64 ps

Design Considerations for Using XDS510 Emulator A-9

Connections Between the Emulator and the Target System PRELIMINARY

A.6 Connections Between the Emulator and the Target System

Itis extremely important to provide high-quality signals between the emulator
and the JTAG target system. You must supply the correct signal buffering, test
clock inputs, and multiple processor interconnections to ensure proper emula-
tor and target system operation.

Signals applied to the EMUO and EMUL pins on the JTAG target device can
be either input or output. In general, these two pins are used as both input and
output in multiprocessor systems to handle global run/stop operations. EMUQ
and EMUL signals are applied only as inputs to the XDS510 emulator header.

A.6.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is
greater than 6 inches, the emulation signals must be buffered. If the distance
is less than 6 inches, no buffering is necessary. Figure A—4 shows the simpler,
no-buffering situation.

The distance between the header and the JTAG target device must be no more
than 6 inches. The EMUO and EMUL1 signals must have pullup resistors con-
nected to V¢ to provide a signal rise time of less than 10 ps. A 4.7-kQ resistor
is suggested for most applications.

Figure A—4. Emulator Connections Without Signal Buffering

A-10

{¢— 6 inches or less —p|
Vce Vee
JTAG device Emulator header T
EMUO 13 EMUO PD 5
EMU1 L 14 EMU1
TRST 2 TRST oD |2
™S Hrvs GND |2
TDI 3 TDI GND 8
TDO ’ TDO GND 10
TCK —7 1 TCK GND 12
9 TCK_RET
GND

Figure A-5 shows the connections necessary for buffered transmission sig-
nals. The distance between the emulation header and the processor is greater
than 6 inches. Emulation signals TMS, TDI, TDO, and TCK_RET are buffered
through the same device package.

PRELIMINARY

PRELIMINARY

Connections Between the Emulator and the Target System

Figure A-5. Emulator Connections With Signal Buffering

PRELIMINARY

Greater than
- 6 inches —»

Vee v,

ccC
JTAG device Emulator header
13
14

EMUO PD
EMU1

EMUO
EMU1

5
TRST 2 TRST GND 4
TMS F—%K l—C L T™MS GND 6
3 8
10
12

GND

o1 -<——&—{ DI GND
4%7

TDO TDO GND
TCK U frek GND
9 ek RET

The EMUO and EMUL signals must have pullup resistors connected to V¢ to
provide a signal rise time of less than 10 ps. A 4.7-kQ resistor is suggested for
most applications.

The input buffers for TMS and TDI should have pullup resistors connected to
Vcc to hold these signals at a known value when the emulator is not con-
nected. A resistor value of 4.7 kQ or greater is suggested.

To have high-quality signals (especially the processor TCK and the emulator
TCK_RET signals), you may have to employ special care when routing the
printed wiring board trace. You also may have to use termination resistors to
match the trace impedance. The emulator pod provides optional internal paral-
lel terminators on the TCK_RET and TDO. TMS and TDI provide fixed series
termination.

Because TRST is an asynchronous signal, it should be buffered as needed to
ensure sufficient current to all target devices.

Design Considerations for Using XDS510 Emulator A-11

Connections Between the Emulator and the Target System PRELIMINARY

A.6.2 Using a Target-System Clock

Figure A—6 shows an application with the system test clock generated in the
target system. In this application, the emulator’'s TCK signal is left uncon-
nected.

Figure A-6. Target-System-Generated Test Clock

Greater than
6 inches
Vce
. Vce
JTAG device Emulator header T
EMUO - 13 EMUO PD 5
EMUL l 14 EMU1
TRST 2 TRST GND 4
TMS% rvs anp |8
8

o <———e—3{ I GND
00 [———>—T{ 100 oD 2
1 12

TCK NC —— TCK GND
9

TCK_RET

GND

System test clock

Note: Whenthe TMS and TDI lines are buffered, pullup resistors must be used to hold the buffer
inputs at a known level when the emulator cable is not connected.

There are two benefits in generating the test clock in the target system:

(1 The emulator provides only a single 10.368-MHz test clock. If you allow
the target system to generate your test clock, you can set the frequency
to match your system requirements.

[In some cases, you may have other devices in your system that require
a test clock when the emulator is not connected. The system test clock
also serves this purpose.

A-12 PRELIMINARY

PRELIMINARY Connections Between the Emulator and the Target System

A.6.3 Configuring Multiple Processors

Figure A—7 shows a typical daisy-chained multiprocessor configuration that
meets the minimum requirements of the IEEE 1149.1 specification. The
emulation signals are buffered to isolate the processors from the emulator and
provide adequate signal drive for the target system. One of the benefits of this
interface is that you can slow down the test clock to eliminate timing problems.
Follow these guidelines for multiprocessor support:

(1 Theprocessor TMS, TDI, TDO, and TCK signals must be buffered through
the same physical device package for better control of timing skew.

[0 Theinputbuffersfor TMS, TDI, and TCK should have pullup resistors con-
nected to V¢ to hold these signals at a known value when the emulator
is not connected. A resistor value of 4.7 kQ or greater is suggested.

[Buffering EMUO and EMUL1 is optional but highly recommended to provide
isolation. These are not critical signals and do not have to be buffered
through the same physical package as TMS, TCK, TDI, and TDO.

Figure A—7. Multiprocessor Connections

JTAG device JTAG device
—| 0o ™I K TDO DI | Vee
- o o - © o Vce
0 x |0 g g g N4 ‘g g g
E ,9 E 23 g ,9 E o o Emulator header T
| $ l 13 L Emuo Y &
— ® Y epmut
3 ® 2 | TRsT Ny =
(1 6
\—e =) T™S GND
<|——o 3o oo |2
7 10
§S 'l> TDO GND
$ ® <l——oi TCK GND |2
9
TCK_RET
GND

PRELIMINARY Design Considerations for Using XDS510 Emulator A-13

Physical Dimensions for the 14-Pin Emulator Connector PRELIMINARY

A.7 Physical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable
that connects to the emulator, an active cable pod, and a short section of jack-
eted cable that connects to the target system. The overall cable length is
approximately 3 feet 10 inches. Figure A—8 and Figure A-9 (page A-15) show
the physical dimensions for the target cable pod and short cable. The cable
pod box is nonconductive plastic with four recessed metal screws.

Figure A-8. Pod/Connector Dimensions

2.70 in., nominal

4.50 in., nominal

R 9.50 in., nominal

— 0.90in.,
nominal

Emulator cable pod /\ Connector

og%"
Short, jacketed cable °°
J R .

See Figure A-9

Note: Alldimensions are ininches and are nominal dimensions, unless otherwise specified. Pin-to-pin spacing on the connec-
tor is 0.100 inches in both the X and Y planes.

A-14 PRELIMINARY

PRELIMINARY Physical Dimensions for the 14-Pin Emulator Connector

Figure A-9. 14-Pin Connector Dimensions

—P> <—— 0.20i nch,

nominal
cave —7— -

0.66 inch,
nominal

Connector, side view

0.100 inch, Key, pin 6
nominal 4,‘ }‘7
(pin spacing)
|| A

BE

7 0.87 inch,
Cable nominal
5
n 0.100 inch,

nominal

(pin spacing)

— v

Connector, front view

\
2 rows of pins

PRELIMINARY Design Considerations for Using XDS510 Emulator A-15

Emulation Design Considerations PRELIMINARY

A.8 Emulation Design Considerations

This section describes the use and application of the scan path linker (SPL),
which can simultaneously add all four secondary JTAG scan paths to the main
scan path. It also describes the use of the emulation pins and the configuration
of multiple processors.

A.8.1 Using Scan Path Linkers

A-16

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG
emulation scan path into smaller, logically connected groups of 4 to 16
devices. As described in the Advanced Logic and Bus Interface Logic Data
Book, the SPL is compatible with the JTAG emulation scanning. The SPL is
capable of adding any combination of its four secondary scan paths into the
main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance
and isolation than a single scan path. Since an SPL has the capability of adding
all secondary scan paths to the main scan path simultaneously, it can support
global emulation operations, such as starting or stopping a selected group of
processors.

Tl emulators do not support the nesting of SPLs (for example, an SPL
connected to the secondary scan path of another SPL). However, you can
have multiple SPLs on the main scan path.

Scan path selectors are not supported by this emulation system. The TI
ACT8999 scan path selector is similar to the SPL, but it can add only one of
its secondary scan paths at a time to the main JTAG scan path. Thus, global
emulation operations are not assured with the scan path selector.

You can insert an SPL on a backplane so that you can add up to four device
boards to the system without the jumper wiring required with nonbackplane
devices. You connect an SPL to the main JTAG scan path in the same way you
connect any other device. Figure A—10 shows how to connect a secondary
scan path to an SPL.

PRELIMINARY

PRELIMINARY

Emulation Design Considerations

Figure A-10. Connecting a Secondary JTAG Scan Path to a Scan Path Linker

|
SPL
DTCK | DI JTAGO
TDI DTDOO T™MS
TMS DTMSO TCK
TCK DTDIO TRST
TRST DTDO1 T T TDO
DO DTMS1
DTDI1 L
DI JTAG N
DTDO2 ™S
DTMS2 TCK
DTDI2 TRST
DTDO3 TDOo
DTMS3
DTDI3

The TRST signal from the main scan path drives all devices, even those on
the secondary scan paths of the SPL. The TCK signal on each target device
on the secondary scan path of an SPL is driven by the SPL's DTCK signal. The
TMS signal on each device on the secondary scan path is driven by the respec-
tive DTMS signals on the SPL.

DTDOO onthe SPL is connected to the TDI signal of the first device on the sec-
ondary scan path. DTDIO on the SPL is connected to the TDO signal of the last
device in the secondary scan path. Within each secondary scan path, the TDI
signal of a device is connected to the TDO signal of the device before it. If the
SPL is on a backplane, its secondary JTAG scan paths are on add-on boards;
if signal degradation is a problem, you may need to buffer both the TRST and
DTCK signals. Although degradation is less likely for DTMSn signals, you may
also need to buffer them for the same reasons.

PRELIMINARY Design Considerations for Using XDS510 Emulator A-17

Emulation Design Considerations PRELIMINARY

A.8.2 Emulation Timing Calculations for a Scan Path Linker (SPL)

Example A—3 and Example A—4 help you to calculate the key emulation tim-
ings in the SPL secondary scan path of your system. For actual target timing
parameters, see the appropriate device data sheet for your target device.

The examples use the following assumptions:

tsu(TT™S) Setup time, target TMS/TDI to TCK high 10 ns
t4(TTDO) Delay time, target TDO from TCK low 15ns
td(bufmax) Delay time, target buffer, maximum 10 ns
td(bufmin) Delay time, target buffer, minimum 1ns
t(bufskew) Skew time, target buffer, between two 1.35ns

devices in the same package:
[td(bufmax) — td(bufmin)] * 0.15

t(rcKfactor) Duty cycle, TCK assume a 40/60% clock (4000/.4;
0

Also, the examples use the following values from the SPL data sheet:

td(bTMsmax) Delay time, SPL DTMS/DTDO from TCK 3lns
low, maximum

tsu(DTDLmin) Setup time, DTDI to SPL TCK high, 7ns
minimum

td(bTCkHmin) Delay time, SPL DTCK from TCK high, 2ns
minimum

td(bTCKLmax) Delay time, SPL DTCK from TCK low, 16 ns
maximum

There are two key timing paths to consider in the emulation design:
[The TCK-to-DTMS/DTDO path, called tpd(TCK-DTMS)

(1 The TCK-to-DTDI path, called tpqtck-DTDI)

A-18 PRELIMINARY

PRELIMINARY Emulation Design Considerations

Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Example A-3. Key Timing for a Single-Processor System Without Buffering (SPL)

Ly pTMsmax) T | + g (TTMS)]
t =

pd (TCK-DTMS) t

DTCKHmin)

TCKfactor

(31 ns + 2 ns + 10 ns)
0.4

107.5 ns, or 9.3 MHz

td (TTDO) + td (DTCKLmax) + tsu (DTDLmin)]
tod (Tek-DTDI) =

tTCKfactor

_ (15 ns +16 ns + 7 ns)
B 0.4

= 9.5 ns, or 10.5 MHz

In this case, the TCK-to-DTMS/DTDL path is the limiting factor.

Example A—4. Key Timing for a Single- or Multiprocessor-System With Buffered Input
and Output (SPL)

Ly (oTMsmax) T YoTekHming T tsummms) T Lpufskew)
tpd (TCK-TDMS) — t

TCKfactor

(31 ns+2ns + 10 ns + 1.35 ns)
0.4

= 110.9 ns, or 9.0 MHz

+

tyrtoo) * ta(pTekimax) T tsuToLmin t (bufskew)]

tod (TcK-DTDI) = t

TCKfactor

(15 ns+ 15 ns + 7 ns + 10 ns)
0.4

= 120 ns, or 8.3 MHz

In this case, the TCK-to-DTDI path is the limiting factor.

PRELIMINARY Design Considerations for Using XDS510 Emulator A-19

Emulation Design Considerations PRELIMINARY

A.8.3 Using Emulation Pins

A-20

The EMUO/1 pins of Tl devices are bidirectional, 3-state output pins. When in
an inactive state, these pins are at high impedance. When the pins are active,
they provide one of two types of output:

(1 Signal Event. The EMUO/1 pins can be configured via software to signal
internal events. In this mode, driving one of these pins low can cause
devices to signal such events. To enable this operation, the EMUO/1 pins
function as open-collector sources. External devices such as logic analyz-
ers can also be connected to the EMUO/1 signals in this manner. If such
an external source is used, it must also be connected via an open-collector
source.

[0 External Count. The EMUO/1 pins can be configured via software as
totem-pole outputs for driving an external counter. If the output of more
than one device is configured for totem-pole operation, then these devices
can be damaged. The emulation software detects and prevents this condi-
tion. However, the emulation software has no control over external
sources on the EMUO/1 signal. Therefore, all external sources must be
inactive when any device is in the external count mode.

Tl devices can be configured by software to halt processing if their EMUO/1
pins are driven low. This feature combined with the signal event output, allows
one Tl device to halt all other Tl devices on a given event for system-level de-

bugging.

If you route the EMUO/1 signals between multiple boards, they require special
handling because they are more complex than normal emulation signals.
Figure A—11 shows an example configuration that allows any processor in the
system to stop any other processor in the system. Do not tie the EMUO/1 pins
of more than 16 processors together in a single group without using buffers.
Buffers provide the crisp signals that are required during a RUNB (run bench-
mark) debugger command or when the external analysis counter feature is
used.

PRELIMINARY

PRELIMINARY

Emulation Design Considerations

Figure A-11. EMUO/1 Configuration to Meet Timing Requirements of Less Than 25 ns

i' ____________ Target board 1 _'i
I I
Pullup l
| Open- resistor |
| collector emuo/il
| drivers |
Backplane 7|_<]7 Device Device I
XCNT_ENABLE | 1 n :
b -
EMUO0/1-IN
PAL Pullup
resistor | | p—mr—————"-————— — — — — — —
EMU_O/ 1-ouT i- Target board m _i
|| I | |
I TN |
TCK To emulator EMUO | I/ Pullup |
| Open- resistor |
| collector ® EMUO/1|
| drivers |
Device Device |
I . n I
e J

Notes: 1) Thelow time on EMUO/1-IN should be at least one TCK cycle and less than 10 us. Software sets the EMU0/1-OUT

pin to a hi

gh state.

2) To enable the open-collector driver and pullup resistor on EMUL1 to provide rise/fall times of less than 25 ns, the modifi-
cation shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false edges
during the RUNB command or when the external counter selected from the debugger analysis menu is used.

PRELIMINARY

These seven important points apply to the circuitry shown in Figure A—11 and
the timing shown in Figure A-12:

[0 Open-collector drivers isolate each board. The EMUO/1 pins are tied
together on each board.

(1 Atthe board edge, the EMUO/1 signals are split to provide both input and
output connections. This is required to prevent the open-collector drivers

from acting as latches that can be set only once.

[The EMUO/1 signals are bused down the backplane. Pullup resistors must
be installed as required.

Design Considerations for Using XDS510 Emulator

A-21

Emulation Design Considerations PRELIMINARY

[The bused EMUO/1 signals go into a programmable logic array device

PAL® whose function is to generate a low pulse on the EMUO/1-IN signal
when a low level is detected on the EMUO/1-OUT signal. This pulse must
be longer than one TCK period to affect the devices but less than 10 ps
to avoid possible conflicts or retriggering once the emulation software
clears the device’s pins.

During a RUNB debugger command or other external analysis count, the
EMUO/1 pins on the target device become totem-pole outputs. The EMU1
pin is a ripple carry-out of the internal counter. EMUOQ becomes a proces-
sor-halted signal. During a RUNB or other external analysis count, the
EMUO/1-IN signal to all boards must remain in the high (disabled) state.
You must provide some type of external input (XCNT_ENABLE) to the
PAL® to disable the PAL® from driving EMUO/1-IN to a low state.

If you use sources other than Tl processors (such as logic analyzers) to
drive EMUO/1, their signal lines must be isolated by open-collector drivers
and be inactive during RUNB and other external analysis counts.

You must connect the EMUO/1-OUT signals to the emulation header or
directly to a test bus controller.

Figure A-12. Suggested Timings for the EMUO and EMU1 Signals

EMUO/l-IN_m /

A-22

PRELIMINARY

PRELIMINARY Emulation Design Considerations

Figure A-13. EMUO/1 Configuration With Additional AND Gate to Meet Timing
Requirements of Greater Than 25 ns

Pullup I
| Open- resistor |
| coII(_ector P e EMUO/ll
| drivers

Backplane I L, | Device Device I
XCNT_ENABLE | L - " :
- 4
L EMUO/1-IN I
T
PAL
Pullup
_ resistor | | | FT—T T T —————— T ———
EMUO/1 OU.T i_ Target board m |
|| T | |
LN !
TCK To Emulator EMUO | PuI_Iup |
| Open- resistor |
Circuitry required for >25-ns | collector ° . EMUO/1|
rise/fall time modification | drivers |
F—————— A\ ————————— —q 4‘_47' Device] | Device |
| EMUL [! " l
| AND _ | e _l
To emulator EMU1 | “Plo
: [mboards I EMUL1 signal from other boards
L |

Notes: 1) The low time on EMUO/1-IN should be at least one TCK cycle and less than 10 us. Software will set the EMUO/1-OUT
port to a high state.

2) To enable the open-collector driver and pullup resistor on EMUL to provide rise/fall time of greater than 25 ns, the
modification shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false
edges during the RUNB command or when the external counter selected from the debugger analysis menu is used.

PRELIMINARY Design Considerations for Using XDS510 Emulator A-23

Emulation Design Considerations PRELIMINARY

You do not need to have devices on one target board stop devices on another
target board using the EMUO/1 signals (see the circuit in Figure A-14). In this
configuration, the global-stop capability is lost. It is important not to overload
EMUO/1 with more than 16 devices.

Figure A-14. EMUO0/1 Configuration Without Global Stop

r——""""""""-"- A

| Target board 1 |

|

l Pullup |

| resistor |

| o o ... —o-EMUOL |

|

Pullup I - - |

resistor | Device Device |

) .

To emulator o : |

EMUO0/1 | |

T Jd
Fr————————————

| Targetboardm |

l |

l |

I Pullup |

| resistor |

: hd - T 9" EMUO0/1 :

l - _ |

| Device o Device |

I ! ! |

L -

Note: The open-collector driver and pullup resistoron EMU1 must be able to provide rise/fall times of less than 25 ns. Rise times
of more than 25 ns can cause the emulator to detect false edges during the RUNB command or when the external counter
selected from the debugger analysis menu is used. If this condition cannot be met, then the EMUO/1 signals from the
individual boards must be ANDed together (as shown in Figure A—14) to produce an EMUO/1 signal for the emulator.

A.8.4 Performing Diagnostic Applications

For systems that require built-in diagnostics, it is possible to connect the
emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead
of the emulation header. The TBC is described in the Texas Instruments
Advanced Logic and Bus Interface Logic Data Book. Figure A—15 shows the
scan path connections of n devices to the TBC.

A-24 PRELIMINARY

PRELIMINARY

Emulation Design Considerations

Figure A-15. TBC Emulation Connections for n JTAG Scan Paths

PRELIMINARY

Clock Vee
+
TBC TcKI
TDO TDI JTAGO
TMSO ™S
™S1 |— EMUO
TMS2/EVNTO EMUL
TMS3/EVNT1 TRST
TMS4/EVNT2 |— TCK
TMSS/EVNT3 ~[>o— TDO
TCKO - :
TDIO :
DI |— L] TDI JTAGN
™S
EMUO
EMU1L
TRST
TCK
TDO

In the system design shown in Figure A—15, the TBC emulation signals TCKI,
TDO, TMSO0, TMS2/EVNTO, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDIO
are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected. The target
devices' EMUO and EMUL signals are connected to V¢ through pullup resis-
tors and tied to the TBC’s TMS2/EVNTO and TMS3/EVNTL1 pins, respectively.
The TBC'’s TCKI pin is connected to a clock generator. The TCK signal for the
main JTAG scan path is driven by the TBC’s TCKO pin.

On the TBC, the TMSO pin drives the TMS pins on each device on the main
JTAG scan path. TDO on the TBC connects to TDI on the first device on the
main JTAG scan path. TDIO on the TBC is connected to the TDO signal of the
last device on the main JTAG scan path. Within the main JTAG scan path, the
TDI signal of a device is connected to the TDO signal of the device before it.
TRST for the devices can be generated either by inverting the TBC's
TMS5/EVNT3 signal for software control or by logic on the board itself.

Design Considerations for Using XDS510 Emulator A-25

PRELIMINARY

Appendix B

Development Support and Part Order Information

This appendix provides development support information, device part num-
bers, and support tool ordering information for the '54x.

Each '54x support product is described in the TMS320 DSP Development
Support Reference Guide. In addition, more than 100 third-party developers
offer products that support the TI TMS320 family. For more information, refer
to the TMS320 Third-Party Support Reference Guide.

For information on pricing and availability, contact the nearest Tl Field Sales
Office or authorized distributor. See the list at the back of this book.

Topic Page
B.1 Development SUPPOI ...ttt et e e e B
B.2 Part Order INfOrmationouree e B

PRELIMINARY B-1

Development Support

PRELIMINARY

B.1 Development Support

This section describes the development support provided by Texas Instru-
ments.

B.1.1 Development Tools

Tl offers an extensive line of development tools for the '54x generation of
DSPs, including tools to evaluate the performance of the processors, generate
code, develop algorithm implementations, and fully integrate and debug soft-
ware and hardware modules.

Code Generation Tools

[The optimizing ANSI C compiler translates ANSI C language directly into

highly optimized assembly code. You can then assemble and link this code
with the Tl assembler/linker, which is shipped with the compiler. This prod-
uct is currently available for PCs (DOS, DOS extended memory, 0S/2),
HP workstations, and SPARC workstations. See the TMS320C54x Opti-
mizing C Compiler User’s Guide for detailed information about this tool.

The assembler/linker converts source mnemonics to executable object
code. This product is currently available for PCs (DOS, DOS extended
memory, OS/2). The '54x assembler for HP and SPARC workstations is
available only as part of the optimizing '54x compiler. See the
TMS320C54x Assembly Language Tools User’s Guide for detailed in-
formation about available assembly-language tools.

System Integration and Debug Tools

[The simulator simulates (via software) the operation of the '54x and can

B-2

be usedin C and assembly software development. This productis current-
ly available for PCs (DOS, Windows), HP workstations, and SPARC
workstations. See the TMS320C54x C Source Debugger User’s Guide for
detailed information about the debugger.

The XDS510 emulator performs full-speed in-circuit emulation with the
'B4x, providing access to all registers as well as to internal and external
memory of the device. It can be used in C and assembly software develop-
ment and has the capability to debug multiple processors. This product is
currently available for PCs (DOS, Windows, OS/2), HP workstations, and
SPARC workstations. This product includes the emulator board (emulator
box, power supply, and SCSI connector cables in the HP and SPARC ver-
sions), the '54x C source debugger and the JTAG cable.

PRELIMINARY

PRELIMINARY

Development Support

Because the 'C2xx, 'C3x, 'C4x, and 'C5x XDS510 emulators also come
with the same emulator board (or box) as the '54x, you can buy the '54x C
Source Debugger Software as a separate product called the '54x C
Source Debugger Conversion Software. This enables you to debug '54x
applications with a previously purchased emulator board. The emulator
cable that comes with the 'C3x XDS510 emulator cannot be used with the
'54x. You need the JTAG emulation conversion cable (see Section B.2)
instead. The emulator cable that comes with the 'C5x XDS510 emulator
can be used with the '54x without any restriction. See the TMS320C54x C
Source Debugger User’s Guide) for detailed information about the '54x
emulator.

[The TMS320C54x evaluation module (EVM) is a PC/AT plug-in card that
lets you evaluate certain characteristics of the '54x digital signal processor
to see if it meets your application requirements. The '54x EVM carries a
'541 DSP on board to allow full-speed verification of '54x code. The EVM
has 5K bytes of on-chip program/data RAM, 28K bytes of on-chip ROM,
two serial ports, atimer, access to 64K bytes each of external program and
data RAM, and an external analog interface for evaluation of the '54x fami-
ly of devices for applications. See the TMS320C54x Evaluation Module
Technical Reference for detailed information about the '54x EVM.

B.1.2 Third-Party Support

PRELIMINARY

The TMS320 family is supported by products and services from more than 100
independent third-party vendors and consultants. These support products
take various forms (both as software and hardware), from cross-assemblers,
simulators, and DSP utility packages to logic analyzers and emulators. The
expertise of those involved in support services ranges from speech encoding
and vector quantization to software/hardware design and system analysis.

To ask about third-party services, products, applications, and algorithm devel-
opment packages, contact the third party directly. Refer to the TMS320 Third-
Party Support Reference Guide for addresses and phone numbers.

Development Support and Part Order Information B-3

Development Support

PRELIMINARY

B.1.3 Technical Training Organization (TTO) TMS320 Workshops

B.1.4 Assistance

B-4

'54x DSP Design Workshop. This workshop is tailored for hardware and soft-
ware design engineers and decision-makers who will be designing and utiliz-
ing the '54x generation of DSP devices. Hands-on exercises throughout the
course give participants arapid startin developing '54x design skills. Micropro-
cessor/assembly language experience is required. Experience with digital
design techniques and C language programming experience is desirable.

These topics are covered in the '54x workshop:

'54x architecture/instruction set

Use of the PC-based software simulator
Use of the '54x assembler/linker

C programming environment

System architecture considerations
Memory and I/O interfacing
Development support

oo od

For registration information, pricing, or to enroll, call (800)336—5236, ext. 3904.

For assistance to TMS320 questions on device problems, development tools,
documentation, software upgrades, and new products, you can contact TI.
See If You Need Assistance in Preface for information.

PRELIMINARY

PRELIMINARY

Part Order Information

B.2 Part Order Information

This section describes the part numbers of '54x devices, development support
hardware, and software tools.

B.2.1 Device and Development Support Tool Nomenclature Prefixes

PRELIMINARY

To designate the stages in the product development cycle, Tl assigns prefixes
to the part numbers of all TMS320 devices and support tools. Each TMS320
device has one of three prefix designators: TMX, TMP, or TMS. Each support
tool has one of two possible prefix designators: TMDX or TMDS. These pre-
fixes represent evolutionary stages of product development from engineering
prototypes (TMX/TMDX) through fully qualified production devices and tools
(TMS/TMDS). This development flow is defined below.

Device Development Evolutionary Flow:

TMX The partis an experimental device that is not necessarily representa-
tive of the final device’s electrical specifications.

TMP The partis adevice from afinal silicon die that conforms to the device’s
electrical specifications but has not completed quality and reliability
verification.

TMS The partis a fully qualified production device.
Support Tool Development Evolutionary Flow:

TMDX The development-support product that has not yet completed Texas
Instruments internal qualification testing.

TMDS The development-support product is a fully qualified development
support product.

TMXand TMP devices and TMDX development support tools are shipped with
the following disclaimer:

“Developmental product is intended for internal evaluation purposes.”

TMS devices and TMDS development support tools have been fully character-
ized, and the quality and reliability of the device has been fully demonstrated.
Texas Instruments standard warranty applies to these products.

Note:

Itis expected that prototype devices (TMX or TMP) have a greater failure rate
than standard production devices. Texas Instruments recommends that
these devices notbe used in any production system, because their expected
end-use failure rate is still undefined. Only qualified production devices
should be used.

Development Support and Part Order Information B-5

Part Order Information PRELIMINARY

B.2.2 Device Nomenclature

Tl device nomenclature includes the device family name and a suffix.
Figure B—1 provides a legend for reading the complete device name for any
'54x device family member.

Figure B—1. TMS320C54x Device Nomenclature

TMS320 LC 542 PGE 1 - 50

L
Device Family MIPS
TMS320 = DSP Family
PLL Option
1=1,15,2,3
Technology 2=1,4,45,5
C =5V +10% CMOS No number = Software-programmable PLL
LC = 3.3V £10% CMOS
VC =3V £10% CMOS
Package Type
PBK = 128-pin TQFP
Device PGE= 144—p|n TQFP
B4x: 541 542 543 PN = 80-pin TQFP
545 546 548 PZ = 100-pin TQFP
PJ = 100-pin QFP

B-6 PRELIMINARY

PRELIMINARY

B.2.3 Development Support Tools

Part Order Information

Table B-1 lists the development support tools available for the '54x, the plat-
form on which they run, and their part numbers.

Table B-1. Development Support Tools Part Numbers

Development Tool

Platform

Part Number

Assembler/Linker
C Compiler/Assembler/Linker
C Compiler/Assembler/Linker

C Source Debugger Conversion Software

C Source Debugger Conversion Software

Evaluation Module (EVM)
Simulator (C language)
Simulator (C language)
XDS510 Emulatort

XDS510WS Emulator#

3V/5V PC/SPARC JTAG Emulation Cable

PC (DOS™)
PC (DOS™, Windows™, OS/2™)
HP (HP-UX™)/ SPARC™ (Sun OS™)

PC (DOS™, Windows™, 0S/2™)
(XDS510™)

HP (HP-UX™)/ SPARC™ (Sun OS™)
(XDS510WS™)

PC (DOS™, Windows™, OS/2™)

PC (DOS™, Windows ™)

HP (HP-UX™)/SPARC™ (Sun OS™)
PC (DOS™, Windows™, OS/2™)

HP (HP-UX™)/ SPARC™ (Sun OS™)
(SCSI)

XDS510™ / XDS510WS™

TMDS324L850-02
TMDS324L855-02
TMDS324L555-08

TMDS32401L0

TMDS32406L0

TMDX3260051
TMDS324L851-02
TMDS324L551-09
TMDS00510

TMDS00510WS

TMDS3080002

T Includes XDS510 board and JTAG cable; TMDS32401L0 C-source debugger conversion software not included
¥ Includes XDS510WS box, SCSI cable, power supply, and JTAG cable; TMDS32406L0 C-source debugger conversion software

not included

PRELIMINARY

Development Support and Part Order Information

B-7

PRELIMINARY

PRELIMINARY

Appendix C

Glossary

A: See accumulator A.

accumulator: Aregister that stores the results of an operation and provides
an input for subsequent arithmetic logic unit (ALU) operations.

accumulator A: 40-bit register that stores the result of an operation and
provides an input for subsequent arithmetic logic unit (ALU) operations.

accumulator B: 40-bit registers that stores the result of an operation and
provides an input for subsequent arithmetic logic unit (ALU) operations.

adder: A unit that adds or subtracts two numbers.
address: The location of a word in memory.

addressbus: Agroup of connections used to route addresses. The '54x has
four 16-bit address busses: CAB, DAB, EAB, and PAB.

addressingmode: The method by which an instruction calculates the location
of an object in memory.

address visibility mode bit (AVIS): A bit in processor mode status register
(PMST) that determines whether or not the internal program address
appears on the device’s external address bus pins.

ALU: arithmetic logic unit. The part of the CPU that performs arithmetic and
logic operations.

analog-to-digital (A/D) converter: Circuitry that translates an analog sig-
nal to a digital signal.

ARO-ARTY: auxiliary registers 0-7. Eight 16-bit registers that can be
accessed by the CPU and modified by the auxiliary register arithmetic
units (ARAUS) and are used primarily for data memory addressing.

ARAU: See auxiliary register arithmetic unit.

C-1

Glossary

C-2

PRELIMINARY

ARP: See auxiliary register pointer.
ASM: See accumulator shift mode field.

auxiliary register arithmetic unit: An unsigned, 16-bit arithmetic logic unit
(ALU) used to calculate indirect addresses using auxiliary registers.

auxiliary register file: The area in data memory containing the eight 16-bit
auxiliary registers. See also auxiliary registers.

auxiliary register pointer (ARP): A 3-bitfield in status register 0 (STO) used
as a pointer to the currently-selected auxiliary register, when the device
is operating in 'C5x/’C2xx compatibility mode.

auxiliary registers: Eight 16-bit registers (AR7 — ARO) that are used as
pointers to an address within data space. These registers are operated on
by the auxiliary register arithmetic units (ARAUs) and are selected by the
auxiliary register pointer (ARP). See also auxiliary register arithmetic unit.

AVIS: See address visibility mode bit.

B: See accumulator B.

bank-switching control register (BSCR): A 16-bit register that defines the
external memory bank size and enables or disables automatic insertion
of extra cycles when accesses cross memory bank boundaries.

barrel shifter: A unit that rotates bits in a word.
BK: See circular buffer size register.

block-repeat active flag (BRAF): A bit in status register 1 (ST1) that indi-
cates whether or not a block repeat is currently active.

block-repeat counter (BRC): A 16-bit register that specifies the number of
times a block of code is to be repeated when a block repeat is performed.

block-repeat end address register (REA): A 16-bit memory-mapped reg-
ister containing the end address of a code segment being repeated.

block-repeat start address register (RSA): A 16-bit memory-mapped reg-
ister containing the start address of a code segment being repeated.

boot: The process of loading a program into program memory.

boot loader: A built-in segment of code that transfers code from an external
source to program memory at power-up.

PRELIMINARY

PRELIMINARY

PRELIMINARY

Glossary

BRC: See block-repeat counter.
BSCR: See bank-switching control register.

BSP: buffered serial port. An enhanced synchronous serial port that includes
an autobuffering unit (ABU) that reduces CPU overhead in performing
serial operations.

BSPCE: BSP control extension register. A 16-bit memory-mapped register
that contains status and control bits for the buffered serial port (BSP) in-
terface. The 10 LSBs of the SPCE are dedicated to serial port interface
control, whereas the 6 MSBs are used for autobuffering unit (ABU) con-
trol.

butterfly: A kernel function for computing an N-point fast Fourier transform
(FFT), where N is a power of 2. The combinational pattern of inputs
resembles butterfly wings.

C: See carry bit.

C16: Abitin status register 1 (ST1) that determines whether the ALU oper-
ates in dual 16-bit mode or in double-precision mode.

carry bit: A bitin status register 0 (STO0) used by the ALU in extended arith-
metic operations and accumulator shifts and rotates. The carry bit can
be tested by conditional instructions.

circular buffer size register (BK): A 16-hit register used by the auxiliary reg-
ister arithmetic units (ARAUS) to specify the data-block size in circular ad-
dressing.

code: A setofinstructions written to perform a task; a computer program or
part of a program.

cold boot: The process of loading a program into program memory at
power-up.

compare, select, and store unit (CSSU): An application-specific hardware
unit dedicated to add/compare/select operations of the Viterbi operator.

CSSU: See compatre, select, and store unit

Glossary C-3

Glossary

c-4

PRELIMINARY

DAGEN: See data-address generation logic (DAGEN).

DARAM: dual-access RAM. Memory that can be read from and written to in
the same clock cycle.

data address bus: A group of connections used to route data memory
addresses. The '54x has three 16-bit buses that carry data memory
addresses: CAB, DAB, and EAB.

data-address generation logic (DAGEN): Logic circuitry that generates
the addresses for data memory reads and writes. See also program-ad-
dress generation logic (PAGEN).

data bus: A group of connections used to route data. The '54x has three
16-bit data buses: CB, DB, and EB.

data memory: A memory region used for storing and manipulating data.
Addresses 00h—1Fh of data memory contain CPU registers. Addresses
20h-5Fh of data memory contain peripheral registers.

data page pointer (DP): A 9-bitfield in status register 0 (STO) that specifies
which of 512,128 x 16 word pages is currently selected for direct address
generation. DP provides the nine MSBs of the data-memory address; the
dma provides the lower seven. See also dma.

data ROM bit (DROM): A bitin PMST that determines whether or not part
of the on-chip ROM is mapped into data space.

digital-to-analog (D/A) converter: Circuitry that translates a digital signal
to an analog signal.

direct data-memory address bus: A 16-bit bus that carries the direct ad-
dress for data memory.

direct memory address (dma, DMA) : The seven LSBs of a direct-ad-
dressed instruction that are concatenated with the data page pointer
(DP) to generate the entire data memory address. See also data page
pointer.

dma: See direct memory address.
DP: See data page pointer.

DRB: direct data-memory address bus. A 16-bit bus that carries the direct
address for data memory.

DROM: See data ROM bit.

PRELIMINARY

PRELIMINARY

PRELIMINARY

Glossary

exponent encoder (EXP): An application-specific hardware device that
computes the exponent value of the accumulator.

external interrupt: A hardware interrupt triggered by a pin (INTO-INT3).

fast Fourier transform (FFT): An efficient method of computing the discrete
Fourier transform, which transforms functions between the time domain
and frequency domain. The time-to-frequency domain is called the for-
ward transform, and the frequency-to-time domain is called the inverse
transformation. See also butterfly.

fastreturn register (RTN): A 16-bit register used to hold the return address
for the fast return from interrupt (RETF[D]) instruction.

general-purpose input/output pins: Pins that can be used to supply input
signals from an external device or output signals to an external device.
These pins are not linked to specific uses; rather, they provide input or
output signals for a variety of purposes. These pins include the general-
purpose BIO input pin and XF output pin.

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

host port interface (HPI): An 8-bit parallel interface that the CPU uses to
communicate with a host processor.

HPI control register (HPIC): A 16-bit register that contains status and con-
trol bits for the host port interface (HPI).

IFR: See interrupt flag register.

IMR: See interrupt mask register.

Glossary C-5

Glossary

C-6

PRELIMINARY

interrupt: A condition caused either by an event external to the CPU or by
a previously executed instruction that forces the current program to be
suspended and causes the processor to execute an interrupt service
routine corresponding to the interrupt.

interrupt flag register (IFR): A 16-bit memory-mapped register that flags
pending interrupts.

interrupt mask register (IMR): A 16-bit memory-mapped register that
masks external and internal interrupts.

interrupt mode bit (INTM): A bit in status register 1 (ST1) that globally
masks or enables all interrupts.

interrupt service routine (ISR): A module of code that is executed in
response to a hardware or software interrupt.

IPTR: interruptvector pointer. A 9-bit field in the processor mode status regis-
ter (PMST) that points to the 128-word page where interrupt vectors
reside.

IR: instruction register. A 16-bit register used to hold a fetched instruction.

latency: The delay between when a condition occurs and when the device
reacts to the condition. Also, in a pipeline, the necessary delay between
the execution of two instructions to ensure that the values used by the
second instruction are correct.

LSB: least significant bit. The lowest order bit in a word.

maskable interrupts : A hardware interrupt that can be enabled or disabled
through software.

memory map: A map of the addressable memory space accessed by the
'B4x processor partitioned according to functionality (memory, registers,
etc.).

memory-mapped registers: The '54x processor registers mapped into
page 0 of the data memory space.

microcomputer mode: A mode in which the on-chip ROM is enabled and
addressable for program accesses.

PRELIMINARY

PRELIMINARY

PRELIMINARY

Glossary

microprocessor/microcomputer (MP/MC) bit: A bit in the processor
mode status register (PMST) that indicates whether the processor is op-
erating in microprocessor or microcomputer mode. See also microcom-
puter mode; microprocessor mode.

microprocessor mode: A mode in which the on-chip ROM is disabled for
program accesses.

micro stack: A stack that provides temporary storage for the address of the
nextinstruction to be fetched when the program address generation logic
is used to generate sequential addresses in data space.

MSB: most significant bit. The highest order bit in a word.

multiplier: A 17-bit x 17-bit multiplier that generates a 32-bit product. The
multiplier executes multiple operations in a single cycle and operates us-
ing either signed or unsigned 2s-complement arithmetic.

nested interrupt: A higher-priority interrupt that must be serviced before
completion of the current interrupt service routine (ISR). An executing
ISR can set the interrupt mask register (IMR) bits to prevent being sus-
pended by another interrupt.

nonmaskable interrupt: An interrupt that can be neither masked by the
interrupt mask register (IMR) nor disabled by the INTM bit of status regis-
ter 1 (ST1).

overflow: A condition in which the result of an arithmetic operation exceeds
the capacity of the register used to hold that result.

overflow flag: A flag that indicates whether or not an arithmetic operation
has exceeded the capacity of the corresponding register.

Glossary C-7

Glossary

C-8

PRELIMINARY

PAGEN: See program-address generation logic (PAGEN).

PAR: program address register. A 16-bit register used to address the pro-
gram-memory operands in FIRS, MACD, MACP, MVDP, MVPD, READA,
and WRITA instructions.

PC: program counter. A 16-bit register that indicates the location of the next
instruction to be executed.

pipeline: A method of executing instructions in an assembly-line fashion.

pma: program memory address. A register that provides the address of a
multiplier operand that is contained in program memory.

PMST: processor mode status register. A 16-bit status register that controls
the memory configuration of the device. See also ST0, ST1.

pop: Action of removing a word from a stack.

program-address generation logic (PAGEN): Logic circuitry that gener-
ates the address for program memory reads and writes, and the address
for data memory in instructions that require two data operands. This cir-
cuitry can generate one address per machine. See also data-address
generation logic (DAGEN).

program counter (PC): A 16-bit register that indicates the location of the
next instruction to be executed.

program controller: Logic circuitry that decodes instructions, manages the
pipeline, stores status of operations, and decodes conditional operations.

programmemory: A memory region used for storing and executing programs.

push: Action of placing a word onto a stack.

RC: repeat counter. A 16-bit register used to specify the number of times a
single instruction is executed.

register: A group of bits used for temporarily holding data or for controlling
or specifying the status of a device.

repeat counter (RC): A 16-bit register used to specify the number of times
a single instruction is executed.

PRELIMINARY

PRELIMINARY

PRELIMINARY

Glossary

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

REA: block-repeat end address. A 16-bit register that specifies the end ad-
dress of a code segment to be repeated in repeat mode.

RSA: block-repeat start address. A 16-bit register that specifies the start
address of a code segment to be repeated in repeat mode.

RTN: fastreturn register. A 16-bit register used to hold the return address for
the fast return from interrupt (RETF[D]) instruction.

SARAM: single-access RAM. Memory that can be read written once during
one clock cycle.

serial port interface: An on-chip full-duplex serial port interface that pro-
vides direct serial communication to serial devices with a minimum of ex-
ternal hardware, such as codecs and serial analog-to-digital (A/D) and
digital-to-analog (D/A) converters. Status and control of the serial port is
specified in the serial port control register (SPC).

shifter: A hardware unit that shifts bits in a word to the left or to the right.

sign-control logic: Circuitry used to extend data bits (signed/unsigned) to
match the input data format of the multiplier, ALU, and shifter.

sign extension: An operation that fills the high order bits of a number with
the sign bit.

software interrupt (SINT): Aninterrupt caused by the execution ofan INTR
or TRAP instruction.

software wait-state register (SWWSR): software wait-state register. A
16-bit register that selects the number of wait states for the program,
data, and I/O spaces of off-chip memory.

SP: stack pointer. A register that always points to the last element pushed
onto the stack.

STO: A 16-bit register that contains '54x status and control bits. See also
PMST; ST1.

ST1: Al6-bit register that contains '54x status and control bits. See also
PMST, STO.

Glossary C-9

Glossary

C-10

PRELIMINARY

stack: A block of memory used for storing return addresses for subroutines
and interrupt service routines and for storing data.

stack pointer (SP): Aregister that always points to the last element pushed
onto the stack.

temporary register (T): A 16-bit register that holds one of the operands for
multiply operations, the dynamic shift count for the LACT, ADDT, and
SUBT instructions, or the dynamic bit position for the BITT instruction.

time-division multiplexing (TDM): The process by which a single serial
bus is shared by up to eight '54x devices with each device taking turns
to communicate on the bus. There are a total of eight time slots (chan-
nels) available. During a time slot, a given device may talk to any com-
bination of devices on the bus.

transition register (TRN): A 16-bit register that holds the transition decision
for the path to new metrics to perform the Viterbi algorithm.

TSPC: TDM serial port control register. A 16-bit memory-mapped register
that contains status and control bits for the TDM serial port.

wait state : A period of time that the CPU must wait for external program,
data, or I/O memory to respond when reading from or writing to that ex-
ternal memory. The CPU waits one extra cycle (one CLKOUT1 cycle) for
every wait state.

warm boot: The process by which the processor transfers control to the
entry address of a previously-loaded program.

XF: XF status flag. A bit in status register ST1 that indicates the status of the
XF pin.

XPC: program counter extension. A register that contains the upper 7 bits
of the current program memory address.

zerofill: A method offilling the low or high order bits with zeros when loading
a 16-bit number into a 32-bit field.

PRELIMINARY

PRELIMINARY

Index

'ACO01 initialization, example t0]10-41 pointer and storage scheme -7
'ACO01 register configuration, exam- trellis diagram
ple [10-42]to[10-45) using the Viterbi algorithm -3

speech coder [7-2
CELP-based -2
code vector localization (equation) E
code-excited linear predictive (CELP)

14-pin connector, dimensions

14-pin header
header signals

JTAG) A2 linear predictive coding (LPC) synthesis
16-bit/8-bit parallel boot [B-5 using codebook search
256-point real FFT initialization, exam- ARO-AR7, definition

ple [10-84]t0[10-86 ARAU. See auxiliary register arithmetic unit
256-point real FFT routine, exam- ARAUSs. definition

ple 110-91]t0}10-96 arithmetic logic unit (ALU), definition

ARP. See auxiliary register pointer

ASM. See accumulator shift mode field

assistance

A/D converter, definition auxiliary register file, definition

accumulator, definition auxiliary register pointer, definition
accumulator A, definition auxiliary registers, definition
accumulator B, definition AVIS
adaptive filtering using LMS instruction, exam- See also address visibility mode bit
ple to[10-83 definition
add two floating-point numbers, exam-
ple [6-25|to[6-31 E
adder, definition
addition |6-18 B. See accumulator B
address, definition @ bank-switching control register, definition
address visibility, definition barrel shifter
addressing mode, definition BIO pin
analog-to-digital converter, definition bit reversal routine, example to[10-90]
applications BK. See circular buffer size register
adaptive filtering, implementing adaptive FIR fil- block diagrams
ter m external interfaces, '541
channel decoding E implementing an adaptive FIR filter
branch metric equation /-6 pointer management storage scheme
codebook search [7-2 speech coder n
convolutional encoding E block repeat active flag, definition

PRELIMINARY Index Index-1

Index PRELIMINARY

block repeat active flag (BRAF) bit central processing unit (CPU), memory-mapped reg-
block repeat counter, definition isters
block repeat end address (REA), definition circular buffer size register, definition
block repeat start address (RSA), definition CLDV bits [3-31
block repeat start address register, definition CLKP bit
boot, definition code, definition [C-3]
boot loader, definition code generation tools
boot mode selection [8-2] codebook search
process [8-3 example
BRC. See block repeat counter cold boot, definition
BRE bit compare, select and store unit (CSSU), defini-
BSP serial port control extension register tion
(BSPCE) [C-3 compiler B-2
bit summary |3-29 compute power spectrum of complex 256-point real
BRE bit [3-29 FFT output, example [10-103|to|10-105|
BXE bit [3-30 configuration, multiprocessor [A-1
CLKDV.bitS 3-31 connector
CLKP bit 14-pin header @
diagram 3-28 dimensions, mechanical
IEFthI:it DuPont
ESP bit convolutional encoding, trellis diagram [7-5to[7-7]
HALTR bit
HALTX bit m
PCM bit
RH bit data address bus, definition [C-4
XH bit data bus, definition [C-4]
buffered serial port (BSP), definition data memory, definition
buffered signals, JTAG data page pointer, definition
buffering data page pointer (DP), definition [C-4
bus devices [A-4 data ROM bit, definition [C-4
bus protocol [A-4] data ROM bit (DROM), definition [C-4
butterfly, definition [C-3 data transfer — host action, example [9-13)td 9-14
BXE bit data transfer — target action, example [9-1
data transfer from FIFO, exam-
ple to[10-110
data-address generation logic, definition
C bit debug tools
C compiler [B-2 debugger. See emulation
C16, definition development tools B-2|
cable, target system to emulator [A-1]to[A-25)] device nomenclature B9
cable pod diagram
carry bit, definition prefixes
CELP-based speech coding E diagnostic applications

Index-2 PRELIMINARY

PRELIMINARY

dimensions
12-pin header |A-20
14-pin header |A-14
mechanical, 14-pin header [A-14]

direct data-memory address bus, definition @

direct data-memory address bus (DRB), defini-
tion

direct memory address, definition

display data on screen, example

divide a floating-point number by another, exam-
ple [6-37|tol6-42

division and modulus algorithm |6-2

dual-access RAM (DARAM), definition [C-4

DuPont connector [A-2

echo the input signal, example |10-56|to|10-58
EMUO0/1

emulation pins
IN signals |A-20|
rising edge modification |A-2
EMUO/1 signals @ @ @ @
emulation
JTAG cable
timing calculations @to@,t
emulator
connection to target system, JTAG mechanical
dimensions @to
designing the JTAG cable
emulation pins
pod interface |A-5
signal buffering |A-10 to%
target cable, header design to@
emulator pod, timings @
exponent encoder, definition |C-5

extended-precision arithmetic |6-1 tol(-i-23|
addition/subtraction |6-18

64-bit subtraction

multiplication
32-bit fractional multiplication 6-23
32-bit integer multiplication 6-23
32-bit multiplication -22

PRELIMINARY

Index

external interface, '541

fast Fourier transform (FFT) |C-5
fast return register, definition
fast return register (RTN), definition [C-9]

FE bit
FIG bit
floating-point arithmetic
FSP bit

function calls on host side, exam-

ple [10-116(to|10-117

generation of cosine wave, example to[6-13

generation of sine wave, example to

graphic drivers routine, example |10-121] to|10-122|

HALTR bit [3-29
HALTX bit
handshake — host action, example to
handshake — target action, example [©-§to[9-9|
handshake between host and target, exam-
ple [10-25to[10-28
header
14-pin
dimensions 14-pin |A-2)
host control register (HCR)

bit summa@

diagram
host port interface, definition
host port interface boot loading sequence
HPI control register (HPIC)

I/0 boot

IEEE 1149.1 specification, bus slave device
rules

initialization of serial port 1, exam-
ple |10-33|to

Index Index-3

Index

initialization of variables, pointers, and buffers, ex-
ample [10-29|to[10-32

instruction register (IR), definition |C-6
interrupt, definition
interrupt 1 service routine, exam-
ple [10-111|to[10-115
interrupt flag register (IFR)
definition
interrupt mask register (IMR)
definition
interrupt mode (INTM) bit
interrupt service routine, definition
interrupt vector pointer (IPTR), definition
interrupts
hardwar
nested
nonmaskable
user-maskable (external)

JTAG

JTAG emulator

buffered signals
connection to target system [A-1]to
no signal buffering

latency, definition

least significant bit (LSB), definition

linker command file for the application, exam-
ple [10-124]to[10-126]

logical operations |6-43

low-pass biquad IIR filter, example to[10-73]
low-pass filter using MAC instruction, exam-
ple to[10-63]
low-pass symmetric FIR filtering using FIRS instruc-
tion, example [10-64|to[10-68

main function call on host side, exam-

ple [10-118|to[10-120
main program that calls different functions, exam-
ple |10-16|to

Index-4

PRELIMINARY

memory allocation, example to[10-15|
memory map
memory map of TMS320C541, exam-

ple [10-127]to 10-128

memory-mapped registers, defined @

micro stack, definition

microcomputer mode, definition
microprocessor mode, definition @
microprocessor/microcomputer (MP/M_C) bit
most significant bit (MSB), definition
multiplication [6-2

multiplier, definition

multiply two floating-point numbers, exam-

ple to

nested interrupt

nomenclature |B-6
prefixes [B-5

output modes
external count
signal event |A-20
overflow, definition
overflow flag, definition [C-7]

PAL
part numbers, tools B-7|
part-order information
PCM bit
pipeline, definition |C-8
pop, definition
processor initialization, example to[10-24]
processor mode status register (PMST)
definition
MP/MC bit
program address register (PAR), definition |C-8
program controller, definition
program counter, definition
program counter (PC), definition |C-§
program counter extension (XPC), definition |C-10

PRELIMINARY

PRELIMINARY

program memory, definition

program memory address (pma), definition

program-address generation logic, definition |C-8

program-address generation logic (PAGEN), defini-
tion

protocol, bus @

push, definition |C-8

receive interrupt service routine, exam-
ple [10-46|to|10-50

regional technology centers

register
BSP control extension (BSPCE)
definition
host port interface control (HPIC) [C-5
interrupt flag (IFR)
interrupt mask (IMR)

repeat counter, definition |C-8
repeat counter (RC), definition [C-8
reset, definition EJI

RH bit
RTCs

run/stop operation
RUNB, debugger command , , ,
RUNB_ENABLE, input |A-2

scan path linkers
secondary JTAG scan chain to an SPL
suggested timings [A-22
usage

scan paths, TBC emulation connections for JTAG
scan paths

seminars @

serial port interface

shifter, definition

sign control logic, definition

sign extension, definition

signal descriptions 14-pin header

PRELIMINARY

Index

signals
buffered
buffering for emulator connections to[A-13)
description 14-pin header

timing
sines and cosines @
single-access RAM (SARAM), definition
single-instruction repeat loops, memory-to-memory
block moves ﬂ

SINT. See software interrupt
slave devices |A-4

software development tools
assembler/linker

general
linker

software interrupt, definition
software wait state register (SWWSR), defini-
tion
square root computation, example [6-14]to[6-16]
square roots [6-14
stack, definition
stack pointer, definition
stack pointer (SP), definition
standard serial boot
status register 0 (ST0), INTM bit
straight, unshrouded 14-pin |A-2
subtraction [6-18
support tools
development [B-7
device
support tools nomenclature, prefixes
system interface, '541 external interface |1-5
system-integration tools |[B-2

target cable |A-14
target control register (TCR)
bit summar
diagram
target system, connection to emulator [A-1 to[A-25]
target-system clock
task scheduling, example [10-51]to[10-55]
TCK signal [A-2] [A-3] [A-4] [A-6

Index Index-5

Index

TDIsignal A-2,[A-3 [A-4 [A-5, [A-6, [A-7, [A-8 [A-13,
TDM serial port control register (TSPC), defini-

tion [C-10
TDO output @
TDO signal IE
temporary register (T), definition
test bus controller

test clock
diagram |A-12
third-party support

time-division multiplexing (TDM), defined
timing calculations @to @ t

TMS, signal
TMS signal [A-2][A-3][A-5

[A-17] [A-18] |A-19] [A-25
TMS/TDI inputs [A-4]
TMS320C541, interface, external [1-5
tools, part numbers |B-7
tools nomenclature, prefixes [B-5
transition register, definition |C-10

TRgna' A3 p-3 A6 A7 [p-13 [p-17 [p-18,

unpack 256-point real FFT output, exam-
io 97

ple |10-97|to|10-102]

Index-6

PRELIMINARY

unsigned/signed integer division, exam-

ple to@

vector table initialization, example to
Viterbi algorithm (channel decoding)

Viterbi operator for channel coding, example E

warm boot
definition
example [8-12td8-23

workshops [B-4

XDS510 emulator, JTAG cable. See emulation

XF pin E

XF status flag (XF), definition |C-10

XH bit

zero fill, definition

PRELIMINARY

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation from Texas Instruments
	Trademarks
	If You Need Assistance...

	Contents
	Figures
	Tables
	Examples
	Equations
	Introduction
	DSP Overview
	' 54x Evaluation Module (EVM) Overview
	Memory Interface
	' 54x EVM External Memory Interface

	System Start-Up
	On-Chip ROM/External 16-Bit EPROM
	Processor Initialization

	Analog I/O
	Synchronous Serial Port Devices
	TLC320AC01 Analog Interface Circuit
	Software Stack
	Context Switching
	Interrupt Handling
	Interrupt Priority
	Circular Addressing
	Buffered Serial Port
	initialization Examples

	Signal Processing
	Finite Impulse Response (FIR) Filters
	Infinite Impulse Response (IIR) Filters
	Adaptive Filtering
	Fast Fourier Transforms (FFTs)
	Memory Allocation for Real FFT Example
	Real FFT Example
	Phase 1: Packing and Bit-Reversal of Input
	Phase 2: N-Point Complex FFT
	Phase 3: Separation of Odd and Even Parts
	Phase 4: Generation of Final Output

	Resource Management
	Memory Allocation
	Overlay Management
	Memory-to-Memory Moves
	Power Management

	Arithmetic and Logical Operations
	Division and Modulus Algorithm
	Sines and Cosines
	Square Roots
	Extended-Precision Arithmetic
	Addition and Subtraction
	Multiplication

	Floating-Point Arithmetic
	Logical Operations

	Application-Specific Examples
	Codebook Search for Excitation Signal in Speech Coding
	Viterbi Algorithm for Channel Decoding

	Bootloader
	Boot Mode Selection
	Host Port Interface (HPI) Boot Loading Sequence
	16-Bit/8-Bit Parallel Boot
	I/O Boot
	Standard Serial Boot
	Warm Boot

	Host-Target Communication
	Communication Channels
	Handshake and Data Transfer

	Application Code Examples
	Running the Applications
	Application Code

	Design Considerations for Using XDS510 Emulator
	Designing Your Target System's Emulator Connector (14-Pin Header)
	Bus Protocol
	Emulator Cable Pod
	Emulator Cable Pod Signal Timing
	Emulation Timing Calculations
	Connections Between the Emulator and the Target System
	Buffering Signals
	Using a Target-System Clock
	Configuring Multiple Processors

	Physical Dimensions for the 14-Pin Emulator Connector
	Emulation Design Considerations
	Using Scan Path Linkers
	Emulation Timing Calculations for a Scan Path Linker (SPL)
	Using Emulation Pins
	Performing Diagnostic Applications

	Development Support and Part Order Information
	Development Support
	Development Tools
	Code Generation Tools
	System Integration and Debug Tools

	Third-Party Support
	Technical Training Organization (TTO) TMS320 Workshops
	Assistance

	Part Order Information
	Device and Development Support Tool Nomenclature Prefixes
	Device Nomenclature
	Development Support Tools

	Glossary
	Index

