
1

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

PERF PERF
BIND THIS EDGE

2

PERF PERF
BIND THIS EDGE

Reader Response Card: TMS320C54x DSKplus User’s Guide

Texas Instruments wants to provide you with the best
documentation possible. Please help us meet this goal by
answering these questions and returning this card.

What is your primary use for the information in this
manual?

� Designing ’C54x-based hardware

�Designing ’C54x-based software

How have you used this manual?

�To look up specific information or procedures when
needed (as a reference)

�To read chapters about subjects of interest

�To read from front to back before using the
information

Please describe any mistakes or unclear information in this
manual (include page numbers).

Which topics should be described in greater detail?

Please list topics that were difficult to find, and why (for
example, the topic was not in a logical location).

Please list any other suggestions for improving this book.

Name Title
Company
Address
City State Zip/Country
Phone number

Thank you. October, 1996

�������� ��	����
��� ������� 	��

User’s Guide

1996 Digital Signal Processing Solutions

Printed in U.S.A., October 1996
SDS

SPRU191

�������� ��	����

19
96User’s Guide

��� ������� 	��

TMS320C54x DSKplus
User’s Guide

DSP Starter Kit

Literature Number: SPRU191
January 1998

Printed on Recycled Paper

Running Title—Attribute Reference

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright  1996, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

This book describes the TMS320C54x digital signal processing (DSP)
enhanced starter kit (DSKplus) and how to use the DSKplus with these tools:

� The DSKplus assembler

� The DSKplus debugger

� The DSKplus application loader

How to Use This Manual

The following table summarizes the information contained in this book:

If you are looking for
information about: Turn to these chapters:

Application loader Chapter 3, DSKplus Debugger and
Application Loader Software

Assembler directives Chapter 5, Assembler Description, and
Appendix C, Assembler Directives Reference

Code Explorer Chapter 3, DSKplus Debugger and
Application Loader Software

DSKplus assembler Chapter 5, Assembler Description

DSKplus debugger Chapter 3, DSKplus Debugger and
Application Loader Software

Hardware and software
installation

Chapter 2, Installing the DSKplus Assembler
and Debugger

Initialization of devices Chapter 7, Initialization Routines

Overview of the DSKplus Chapter 1, Introduction

Programming the DSP or host
PC

Chapter 4, Software Considerations

How to Use This Manual / Notational Conventions

iv

If you are looking for
information about: Turn to these chapters:

Using a PAL� device Chapter 6, Hardware

Using the XDS510 with
DSKplus

Chapter 6, Hardware

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface. Examples use a bold version of the
special typeface for emphasis; interactive displays use a bold version
of the special typeface to distinguish commands that you enter from items
that the system displays (such as prompts, command output, error
messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.sect ” section name”, address

.sect is the directive. This directive has two parameters, indicated by
section name and address. When you use .sect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

 Notational Conventions / Information About Cautions

v Read This First

� Braces { and } indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

Related Documentation From Texas Instruments

vi

Related Documentation From Texas Instruments

The following books describe the ’54x and related support tools. To obtain a
copy of any of these TI documents, call the Texas Instruments Literature
Response Center at (800) 477-8924. When ordering, please identify the book
by its title and literature number.

The TMS320C54x DSP Reference Set (literature number SPRU210) is
composed of four volumes of information, each with its own literature
number for individual ordering.

TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals
(literature number SPRU131) describes the TMS320C54x 16-bit,
fixed-point, general-purpose digital signal processors. Covered are its
architecture, internal register structure, data and program addressing,
the instruction pipeline, DMA, and on-chip peripherals. Also includes
development support information, parts lists, and design considerations
for using the XDS510 emulator.

TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction Set
(literature number SPRU172) describes the TMS320C54x digital signal
processor mnemonic instructions individually. Also includes a summary
of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction Set
(literature number SPRU179) describes the TMS320C54x digital signal
processor algebraic instructions individually. Also includes a summary
of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 4: Applications Guide
(literature number SPRU173) describes software and hardware
applications for the TMS320C54x digital signal processor. Also includes
development support information, parts lists, and design considerations
for using the XDS510 emulator.

TLC320AC01C Fixed-Point Digital Signal Processors (literature number
SLAS057) data manual contains the electrical and timing specifications,
as well as parameter measurement information for the TLC320AC01C.

TMS320C54x, TMS320LC54x, TMS320VC54x Fixed-Point Digital Signal
Processors (literature number SPRS039) data sheet contains the
electrical and timing specifications for these devices, as well as signal
descriptions and pinouts for all of the available packages.

 Related Documentation From Texas Instruments

vii Read This First

TMS320C54x Assembly Language Tools User’s Guide (literature number
SPRU102) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C54x generation of devices.

TMS320C5xx C Source Debugger User’s Guide (literature number
SPRU099) tells you how to invoke the ’C54x emulator, EVM, and
simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C54x Code Generation Tools Getting Started Guide (literature
number SPRU147) describes how to install the TMS320C54x assembly
language tools and the C compiler for the ’C54x devices. The installation
for MS-DOS , OS/2 , SunOS , Solaris , and HP-UX 9.0x systems
is covered.

TMS320C54x Evaluation Module Technical Reference (literature number
SPRU135) describes the ’C54x EVM, its features, design details and
external interfaces.

TMS320C54x Optimizing C Compiler User’s Guide (literature number
SPRU103) describes the ’C54x C compiler. This C compiler accepts
ANSI standard C source code and produces TMS320 assembly
language source code for the ’C54x generation of devices.

TMS320C5x Simulator Getting Started (literature number SPRU137)
describes how to install the TMS320C5x simulator and the C source
debugger for the ’C5x. The installation for MS-DOS , PC-DOS ,
SunOS , Solaris , and HP-UX systems is covered.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of ’320 digital signal processors. A myriad
of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise
cancellation, modems, etc.

TMS320 DSP Development Support Reference Guide (literature number
SPRU011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

Trademarks

viii

Trademarks

Code Explorer is a trademark of GoDSP Corporation.

HP-UX is a trademark of Hewlett-Packard Company.

MS-DOS is a registered trademark of Microsoft Corporation.

OS/2 is a trademark of International Business Machines Corporation.

PC is a trademark of International Business Machines Corporation.

PAL is a registered trademark of Advanced Micro Devices, Inc.

Solaris is a trademark of Sun Microsystems, Inc.

TI, XDS510, and 320 Hotline On-line are trademarks of Texas Instruments
Incorporated.

Windows is a trademark of Microsoft Corporation.

Pentium is a trademark of Intel Corporation.

 If You Need Assistance

ix Read This First

If You Need Assistance. . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.html

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/mirrors/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

x

 Contents

xi

Contents

1 Introduction 1-1.
Provides general information about the DSKplus and lists the hardware and software
requirements.

1.1 Kit Contents and Features 1-2.
1.2 What You Need 1-3.

1.2.1 Hardware Requirements 1-3.
1.2.2 Software Requirements 1-3.

1.3 Functional Overview 1-4.

2 Installing the DSKplus Assembler and Debugger 2-1.
Provides assembler and debugger installation instructions for PC systems using Windows .

2.1 Connecting the DSKplus Board 2-2.
2.2 Installing the DSKplus Software 2-3.
2.3 Running the Self-Test Program 2-5.

3 DSKplus Debugger and Application Loader Software 3-1.
Describes the features of the debugger and how to use the application loader software.

3.1 Code Explorer Debugger 3-2.
3.2 Using the Application Loader 3-4.

4 Software Considerations 4-1.
Describes the software considerations for writing DSP applications and the differences
between DSP and host application code.

4.1 DSP Software 4-2.
4.2 DSP Programming Tips 4-5.
4.3 Host PC Software 4-6.
4.4 Host Programming Tips 4-7.

5 DSKplus Assembler Description 5-1.
Explains how to invoke the assembler and discusses source statement format, valid constants
and expressions, assembler output and how to use assembler directives.

5.1 DSKplus Assembler Overview 5-2.
5.2 DSKplus Assembler Development Flow 5-3.
5.3 Invoking the DSKplus Assembler 5-4.

Contents

xii

5.4 Naming Alternate Directories for Assembler Input 5-5.
5.4.1 –i Assembler Option 5-5.
5.4.2 A_DIR Environment Variable 5-6.

5.5 Source Statement Format 5-7.
5.5.1 Label Field 5-7.
5.5.2 Instruction Field 5-8.
5.5.3 Operands 5-8.
5.5.4 Comment Field 5-9.

5.6 Constants 5-10.
5.6.1 Binary Integers 5-10.
5.6.2 Octal Integers 5-10.
5.6.3 Decimal Integers 5-10.
5.6.4 Hexadecimal Integers 5-11.
5.6.5 Character Constants 5-11.
5.6.6 Assembly-Time Constants 5-11.

5.7 Character Strings 5-12.
5.8 Symbols 5-13.

5.8.1 Labels 5-13.
5.8.2 Defining Symbolic Constants (–d Option) on the Command Line 5-14.
5.8.3 Predefined Symbolic Constants 5-14.

5.9 Expressions 5-15.
5.9.1 Operators 5-16.
5.9.2 Expression Overflow and Underflow 5-16.
5.9.3 Well-Defined Expressions 5-16.
5.9.4 Conditional Expressions 5-17.

5.10 Source Listings 5-18.
5.11 DSKplus Assembler Directives 5-20.

5.11.1 Directives Summary 5-20.
5.11.2 Directives That Define Sections 5-23.
5.11.3 Directives That Initialize Constants 5-25.
5.11.4 Directives That Align the Section Program Counter 5-29.
5.11.5 Directives That Format the Output Listing 5-30.
5.11.6 Directives That Reference Other Files 5-30.
5.11.7 Directives That Control Conditional Assembly 5-30.
5.11.8 Directives That Assign Assembly-Time Symbols 5-31.
5.11.9 Directives That Terminate Assembly 5-31.

6 Hardware 6-1.
Describes the DSKplus development hardware, including parallel port registers, signal
definitions, ports, and modes.

6.1 Power and Cables 6-2.
6.2 DSKplus Communications Protocol 6-4.

6.2.1 The PC’s Data Register 6-5.
6.2.2 The PC’s Status Register 6-5.

 Contents

xiii Contents

6.2.3 The PC’s Control Register 6-6.
6.3 Using a PAL� Device 6-7.

6.3.1 Strobe Generator 6-9.
6.3.2 Nibble Mode State Machine 6-10.
6.3.3 Latch/Select (LS) Mode 6-10.

6.4 PAL� Device Modifications 6-12.
6.5 Connecting Boards to Headers 6-14.
6.6 Connecting the XDS510 Emulator Port 6-14.

7 Initialization Routines 7-1.
Describes how to initialize each of the devices on the DSKplus board and the PC’s parallel port.

7.1 Communication Link (CommLink) Initialization 7-2.
7.1.1 Parallel Port and PAL� Device Initialization 7-2.
7.1.2 Host Port Interface Initialization 7-2.

7.2 Serial Port and TLC320AC01 Initialization 7-3.

A DSKplus Circuit Board Dimensions and Schematic Diagram A-1.
Shows the TMS320C54x DSKplus circuit board dimensions and a schematic diagram.

B PAL Equations B-1.
Lists PAL� equations and associated test vectors for factory default PAL� device.

C Assembler Directives Reference C-1.
Describes the directives according to function and presents the directives in alphabetical order.

D Assembler Error Messages D-1.
Lists the error messages that the assembler issues and gives a description of the condition that
caused each error.

E Glossary E-1.
Defines acronyms and key terms used in this book.

Figures

xiv

Figures

1–1 DSKplus Board Diagram 1-4.
1–2 DSKplus Memory Map 1-5.
2–1 Connection Diagram 2-2.
2–2 Code Explorer Port Selection Dialog Box 2-3.
2–3 Code Explorer Debugger Interface 2-4.
2–4 Self-Test Script 2-6.
3–1 Debugger Overview 3-2.
5–1 DSKplus Assembler in the Software Development Flow 5-3.
5–2 Using the .space and .bes Directives 5-25.
5–3 Using the .field Directive 5-26.
5–4 Using Initialization Directives 5-28.
5–5 Using the .align Directive 5-29.
6–1 Data Register 6-5.
6–2 Status Register 6-5.
6–3 Control Register 6-6.
6–4 PAL� Device’s Internal Logic Diagram 6-7.
6–5 Functional Diagram for a 4-Bit Read Cycle 6-9.
6–6 Functional Diagram for a Write or 8-Bit Read Cycle 6-10.
A–1 TMS320C54x DSKplus Circuit Board Dimensions A-2.
A–2 Schematic Diagram of DSKplus Circuit Board A-3.
C–1 The .field Directive C-15.
C–2 Using the .usect Directive C-37.

 Tables

xv Contents

Tables

5–1 Operators Used in Expressions (Precedence) 5-16.
5–2 DSKplus Assembler Directives Summary 5-20.
6–1 DB25 Connector Pin Connections 6-2.

Examples

5–1 Assembler Listing 5-19.
5–2 Using Sections Directives 5-24.
B–1 PAL� Equation Routine B-2.

xvi

1-1

Introduction

The TMS320C54x DSKplus is a low-cost DSP starter kit with enhanced archi-
tecture. The development kit contains a stand-alone application board that you
connect to your PC and that enables you to explore the architecture and
operation of the ’C54x CPU and its peripherals. The DSKplus board executes
your custom ’C54x code in real time while the Windows -based debugger
analyzes it line-by-line, displaying internal DSP register information in multiple
windows, also in real time. The board’s communication interface lets you
create your own ’C54x DSP code and host PC code. The hardware enables
the use of expansion boards for adding memory, peripherals such as codecs,
interface logic, other DSPs, or microcontrollers.

Topic Page

1.1 Kit Contents and Features 1-2.

1.2 What You Need 1-3.

1.3 Functional Overview 1-4.

Chapter 1

Kit Contents and Features

 1-2

1.1 Kit Contents and Features

The DSKplus development kit contains these parts:

� The DSKplus development board
� PC parallel port cable (DB-25M to DB-25F)
� Universal power supply (Input: 100–250 V, 50–60 Hz; Output: 5-V dc, 3.3 A)
� GoDSP’s Windows -based Code Explorer debugger
� TMS320C54x (’C54x) algebraic assembler
� Self-test program
� Various application programs
� TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals
� TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction Set
� TMS320C54x DSP Data Sheet
� TLC320AC01C Single-Supply Analog Interface Circuit Data Manual

Several features of the DSKplus board enable MIP-intensive, low-power
applications:

� One TMS320C542 (’C542) enhanced fixed-point DSP
� 40 MIPS (25-ns instruction cycle time)
� 10K words of dual-access RAM (DARAM)
� 2K words boot ROM
� One time-division-multiplexed (TDM) serial port
� One buffered serial port (BSP)
� One host port interface (HPI) for PC-to-DSP communications
� One on-chip timer
� Three power-down modes on the ’C542
� Programmable, voice-quality TLC320AC01 (DAC, ADC interface circuit)
� Socketed PAL22V10 for board customization
� Socketed oscillator
� Phase-locked-loop (PLL) clock generator
� XDS510 emulator header
� I/O expansion bus and control signals for external designs
� Standard 1/8-inch mono mini-jacks for analog I/O (microphone and multi-

media speakers)

What You Need

1-3Introduction

1.2 What You Need

Make sure that you have the appropriate hardware and software.

1.2.1 Hardware Requirements

In addition to kit contents, you need the following equipment to use the
DSKplus board:

Host A 386, 486, or Pentium PC with a
1.44M-byte 3.5″ floppy disk drive

Port DSKplus supports 4-bit parallel ports
and 8-bit bidirectional parallel ports.
DSKplus does not support Enhanced
Printer Port and Extended Capabilities
Port functionality. However, DSKplus
can operate in standard mode of these
ports.

Memory Minimum of 4M bytes

Monitor Color VGA

1.2.2 Software Requirements

In addition to the provided software, you need the following applications to use
the DSKplus board:

Windows Windows 3.1 or Windows 95

ASCII editor

Functional Overview

 1-4

1.3 Functional Overview

The diagram of the DSKplus development board is shown in Figure 1–1. It
identifies the analog interface circuit TLC320AC01 (’AC01), IEEE.1149.1
emulation port (XDS510), host port interface (HPI), CPU, and peripherals.

Figure 1–1. DSKplus Board Diagram

Voice quality

JP4

C19 C31

C33

IN

J2

J3

OUT

J1
JP1

R54 R53

R34
R35

JP2

JP3
R46R45

R39
C24

C26

R36

L1

C32
C22

C34

U6

R37

R43 R48 R62

C35

U5

D2

U3

P1

U
2

U
1

JP
6

PTC

C
29

DSP
TMS320C542

’AC01
programmable

analog interface DSP
40-MIP ’C542

address bus
DSP external

8-bit bidirectional,
4-bit unidirectional

printer port connectivity,
enabling high speed

applications
(cable included)

DSP external
data bus

XDS510Buffered serial port (BSP)
emulator

port
and host port interface (HPI)

control signals

Universal 5-V
power supply

included

Standard 1/8”
mini-jacks for direct

microphone and
multimedia speaker

connection

(IEEE1149.1 standard)

Socketed 22V 10 PAL
for HPI applications

The host port interface logic is an on-board PAL� device that operates as the
main interface between the host PC’s parallel port and the ’C542 host port in-
terface (HPI). As a result, the interface logic gives the host PC direct control of
the ’C542’s HPI and DSP reset signal, and it can configure the board to operate
with different PC parallel ports (that is, 4-bit and 8-bit printer ports).

When you power the board and start the debugger, the debugger software ini-
tializes the host interface logic and configures the board to the correct parallel
port mode, either 4-bit or 8-bit. At this time, the communication link between
the DSKplus board and host PC is ready for operation.

For the DSKplus and the host to communicate properly, the DSP must follow a
common communication protocol defined by the host. Therefore, the host PC
downloads the protocol to the DSP communication software, which resides in
DSP memory at addresses 80h–17Fh. The protocol also uses a mutual com-

Functional Overview

1-5Introduction

munication buffer in DSP memory at 1000h–1009h. The communication buffer
is the memory used for communicating between the host and DSP. All memory
locations from 80h –17Fh and 1000h –1009h are reserved and must never be
written over. See the DSKplus memory map in Figure 1–2 for information on
reserved memory.

Figure 1–2. DSKplus Memory Map

Memory-mapped
registers

Scratch-pad RAM

On-chip
DARAM

(10K words)

External

0000h

005Fh
0060h

007Fh
0080h

27FFh
2800h

FFFF

0000h

007Fh
0080h

27FFh
2800h

EFFFh
F000h

F7FFh
F800h

FF7Fh
FF80h

FFFFh

0080h

0100h

0180h

0800h

1000h

100Ah

1800h

27FFh

Interrupts

Communications
kernel

Program RAM

BSP RAM block
or program RAM

Kernel buffer

HPI RAM block
or program RAM

Program RAM

Reserved
(OVLY = 1)

On-chip
DARAM

10K words
(OVLY = 1)

External

Reserved
on-chip ROM

Reserved
ROM

(bootloader)

Reserved
ROM interrupts

Program Data

(10 words)

Reserved memory

Functional Overview

 1-6

The ’AC01 analog interface circuit provides a single channel of voice-quality
data acquisition. The ’AC01 has the following features:

� Single-chip solution A/D and D/A conversions with 14 bits of dynamic range
� Built-in, programmable antialiasing filter
� Software-programmable sampling rates
� Software-programmable reset, gain, and loopback
� Software-programmable power-down mode
� 2-channel analog input summing
� Software-selectable auxiliary input
� Configurable as master/slave to allow cascading

The ’AC01 interfaces directly to the ’C542 TDM serial port. The ’AC01 generates
the required shift clock (SCLK) and frame sync (FS) pulses used to send data
to/from the ’AC01. These pulses are a function of software-programmable
registers and the ’AC01 master clock. The master clock is generated by the
on-board oscillator. See Chapter 4, Software Considerations, for instructions on
how to program the ’AC01 or see the TLC320AC01C Single-Supply Analog
Interface Circuit Data Manual.

The DSKplus board provides six headers, including an XDS510 emulator header,
to aid in the design of daughter boards. The XDS510 emulator header allows the
board to act as an XDS emulator target board with robust, nonintrusive de-
bugging capabilities. The XDS is the advanced emulator from TI available
through your local sales office.

The on-board 10-MHz oscillator provides a clock to the ’C542, the ’AC01, and the
PAL� device. The ’C542 PLL option is set to 4, creating a 40-MHz internal clock
oscillator. The ’AC01 runs at 10 MHz. The ’AC01 data manual includes information
for operation at 10.368 MHz; the data from the ’AC01 tables and graphs must be
interpolated to 10 MHz.

The GoDSP Code Explorer provides a Windows-based debugging interface
and a manageable development environment. The debugger interface can
display and modify all of the internal registers of the DSP. Some common
functions of the debugger are single-stepping code, setting breakpoints in code,
setting up watch windows, and managing file I/O. Additional debugger features
and information can be found in Chapter 3, DSKplus Debugger and Application
Loader Software. These tools allow you to fully develop and debug DSP code
in a real-time environment.

Functional Overview

1-7Introduction

The DSKplus software includes a Windows-based real-time debugger,
DSKplus application loader, and an absolute algebraic assembler. The
DSKplus algebraic assembler enables you to program in assembly language
without having extensive knowledge of the mnemonic instruction set. Take, for
example, a case in which you want to multiply two numbers, x � y, and place the
result in accumulator B. With a mnemonic-based assembler, you must know the
function of each mnemonic instruction:

STM #y, AR2 ; Address of first multiplicand
STM #X, AR3 ; Address of second multiplicand
::
MPY *AR3, *AR2, B ;

With an algebraic assembler, you use simpler mathematical notation:

AR2 = #y
AR3 = #x
::
B = *AR2 * *AR3

For more information regarding the algebraic instruction set, see
TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction Set.

The DSKplus algebraic assembler converts the source file with a .asm exten-
sion to an object-based COFF file with a .obj extension. As a result, code ad-
dressing is fully resolved at assembly time using in-line assembler directives,
so there is no need for a linker stage. The code is ready to be loaded into the
DSP.

 1-8

2-1

Installing the DSKplus
Assembler and Debugger

Before you use the DSKplus board, verify that your equipment meets the re-
quirements described in the previous chapter. Next, you must install the hard-
ware and the software on your PC.

This chapter provides instructions for connecting the DSKplus board, installing
the DSKplus software, and running the self-test program.

Topic Page

2.1 Connecting the DSKplus Board 2-2.

2.2 Installing the DSKplus Software 2-3.

2.3 Running the Self-Test Program 2-5.

Chapter 2

Connecting the DSKplus Board

 2-2

2.1 Connecting the DSKplus Board

Follow these steps to ensure a proper connection between the DSKplus board
and the PC host. (See Figure 2–1)

1) Turn off the PC’s power.

2) Connect the DB25 printer cable to the PC’s parallel port.

3) Connect the DB25 printer cable to the DSKplus board.

4) Connect the power cord to the 5-V dc power supply.

5) Plug the transformer into the wall outlet.

6) Connect the 5-pin DIN-to-5.5-mm power supply adapter cable to the pow-
er supply’s 5-pin DIN connector.

7) Connect the 5.5-mm power supply adapter cable into the power supply
connector on the DSKplus board.

8) Turn on the PC’s power.

Figure 2–1. Connection Diagram

5-V Power
supply

Power
supply
adapter
cable

Power
cord

Printer cable

PC display for
software and
debugger

Power supply
connector

Analog in

Analog out

DB25PAL�

TMS320C542

Installing the DSKplus Software

2-3Installing the DSKplus Assembler and Debugger

2.2 Installing the DSKplus Software

From the File menu item in the Windows program manager, click on the RUN
command (or in Windows 95, click on the Start button and select Run...) and
then type:

A:\SETUP.EXE

By default the installation program installs the software to the C:\DSKplus di-
rectory. If you like, change this directory when you are prompted to confirm the
destination directory.

After running the install program, a Windows program group icon appears called
Code Explorer. It has two program icons: Code Explorer and ’C54x Help. The ab-
solute assembler, application loader and self-test are not members of this group
because they are DOS programs and are accessed through the Windows DOS
shell.

To test the setup, click on the Code Explorer icon. The port dialog box appears,
as shown in Figure 2–2.

Figure 2–2. Code Explorer Port Selection Dialog Box

The debugger lists all available parallel ports in the dialog box. You may select
one of the ports listed or type in the desired port I/O address to override the
existing address. The correct port will start the debugger interface. See Sec-
tion 3.1, Code Explorer Debugger, page 3-2 for more information.

Installing the DSKplus Software

 2-4

Provided you have properly installed the hardware and software, the Code Ex-
plorer debugger interface is displayed on your screen as shown in Figure 2–3.

Figure 2–3. Code Explorer Debugger Interface

If an error occurs when you attempt to start the debugger, it may be due to the
hardware setup. To test the hardware setup, run the self-test program.

Running the Self-Test Program

2-5Installing the DSKplus Assembler and Debugger

2.3 Running the Self-Test Program

The self-test program helps you to determine the cause of errors. The self-test
program performs several tests on the parallel port, the DSKplus interface
logic, the ’C54x HPI, the ’C54x DSP, and the ’AC01.

The tests performed, in order, are as follows:

1) Port locator. Checks all parallel ports to determine which are connected
to the DSKplus board.

2) Continuity check. Checks for open data lines and shorts between data
lines.

3) PAL� state machine test. Checks nibble mode functionality and the
PAL� clock.

4) Latch mode test. Verifies that the latch mode of the PAL� is operating
correctly, and brings the PAL� out of 3-state mode.

5) HPIC verification. Checks the HPI control register configuration.

6) HPIA verification. Checks the address in the HPI address register and
HPIA mode.

7) DATA (increment) verification. Checks the data increment mode of the
HPI.

8) DATA (static) verification. Checks the no-increment mode of the HPI.

9) Port mode analysis. Determines the parallel port’s configuration (4-bit
unidirectional or 8-bit bidirectional).

10) ’AC01 test. Performs ’AC01 register programming. Checks the analog fi-
nal output data via loopback mode.

To start the self-test, click on the DOS icon to access a DOS prompt and type:

SELFTEST.EXE

The testing script appears on the screen as shown in Figure 2–4 on page 2-6.
If any errors occur the execution is halted.

Running the Self-Test Program

 2-6

Figure 2–4. Self-Test Script

If an error occurs during the self-test, read the error script completely and con-
firm the following:

� DSKplus power is on, indicated by illumination of the green LED.

� DSKplus is firmly connected to the PC via the printer cable.

The self-test program is somewhat redundant to test for several different
causes of errors. For example, the port locator writes a 0xF0 to the data regis-
ter and looks for the bit (high nibble) in the status register. If this case is true,
it loads the data register with 0x0 and examines the status once again. If this
case passes, it assumes the DSKplus board is attached to the port. If it fails,
it will try the next port. However, a false reply of NO CONNECT occurs if any
of the high four bits are open or shorted to ground. When the test passes and
a port is located, it is still not known if any of the data lines are shorted to one
another. The continuity check performs adjacent data line continuity testing.

The system setup can be responsible for problems connecting to the DSKplus
board. For example, in Windows 95 the DSKplus software does not work if the
parallel port is being “captured” by Windows. You must go into the system set-
up and make sure the port is not captured. A common error is to have a printer
set up to print from DOS-based programs. This captures the port, making it in-
accessible to DSKplus applications.

Running the Self-Test Program

2-7Installing the DSKplus Assembler and Debugger

Another source of errors is the PC port configuration. It is suggested that you
reboot your PC and enter the BIOS setup routine. Confirm that the BIOS paral-
lel port setup does not specify extended capabilities port (ECP) or enhanced
parallel port (EPP). If either is specified, change it to a standard port.

Accesses to the parallel port can vary in speed from machine to machine. The
self-test program ends with information of which you may want to take note if
you plan to write custom host PC applications. This information includes the
port base address, the operating mode (either 4-bit unidirectional or 8-bit bi-
directional) and additional CPU cycles needed for reading from the port. The
extra CPU cycles may be needed for reads, because the data lines become
valid after the RC time constant on the data lines. Self-test calculates how
many host PC CPU cycles are required.

 2-8

3-1

DSKplus Debugger and Application
Loader Software

The DSKplus lets you experiment with and use a DSP for real-time signal pro-
cessing. The DSKplus gives you the freedom to create your own software to
run on the board as is, or to build new boards and expand the system in a num-
ber of ways.

The DSKplus debugger works with the assembler and application loader to
help you develop, test, and refine DSKplus assembly language programs.
This chapter describes the features of the debugger and how to use the ap-
plication loader software.

Topic Page

3.1 Code Explorer Debugger 3-2.

3.2 Using the Application Loader 3-4.

Chapter 3

Code Explorer Debugger

 3-2

3.1 Code Explorer Debugger

The Windows-based debugger included with the DSKplus is a windowed
debugger interface developed by GoDSP and is shown in Figure 3–1. It con-
tains four default windows: disassembly, CPU registers, peripheral registers,
and data memory windows.

The disassembly window shows the DSP code and address location. The
location of the DSP program counter (PC) is highlighted by a yellow line over-
laying the code. The interface also supports symbolic debugging, which
makes debugging code much easier. You can reference locations in code and
code variables by the assembly name or label, so you do not need to know the
physical address. Breakpoints can be added or deleted by pointing and click-
ing on the instruction for the operation you would like to break. Disassembly
window properties can be changed using your menu and select buttons.

Figure 3–1. Debugger Overview

Algebraic /mnemonic
disassembly

CPU registers
and bit fields

DSP peripheral
 registers

Data memory
window

Graphic animation
Point and click
breakpoints

Symbolic
debugging

Single-stepping

Time domain
graphic window

On-line Help

Frequency domain
window

Note: Watch windows can be set up to watch variables, system stack, or any other memory location.
 Files can be connected to probe points within your code.

Code Explorer Debugger

3-3DSKplus Debugger and Application Loader Software

The CPU registers window allows you to view the internal registers and impor-
tant bit fields of the DSP. To change a value of a register, point and click on the
register and type in the new value.

The peripheral register window is like the CPU register window, except that it
includes only the registers that are used for the DSP peripherals, such as the
serial ports.

The data memory window is a default data memory window. The starting ad-
dress and length can be defined using your select button. Multiple data
memory windows can be displayed, allowing you to view any variable, such
as the system stack or assembly variables. Using the data memory window
properties screen you can rename the window to reflect the variable name.

The tool bar on top of the screen includes buttons for single-stepping, running,
and resetting the DSKplus board. These buttons allow you to step over or into
functions. The animation button supports a graphical representation of a
variable or buffer. The data can be viewed in either the time domain or the fre-
quency domain.

Code Explorer probe points are used to connect hard-disk drive files to points
within your application code. Once connected, these files can be used as in-
puts or outputs to your code. To set a probe point, position the cursor over the
instruction and click your right mouse button. To set/reset the probe point se-
lect toggle probe point. After the probe point is set, specific attributes must be
assigned in the probe point window.

The debugger’s on-line help is accessed through a button on the interface. It
can be helpful in providing answers to common questions you may have while
you are using the tool.

Using the Application Loader

 3-4

3.2 Using the Application Loader

The application loader, called LoadApp, loads your application code to the
DSP memory and starts executing it. LoadApp loads the kernel to 0x80h –
0x17Fh and then proceeds to load the application code. The general form of
the command to load an application is:

loadapp –a c:\path\appfile.obj –e label [options]

This command loads appfile.obj to the DSP and begins executing the code at
label. The label must be a valid label in the assembly source files (.asm).

Available command line options:

–a specifies an application file. Immediately followed by a space and
the path and filename.

–bx Specifies the port MODE: x = 4: 4-bit mode
x = 8: 8-bit mode

–px Forces the line printer (LPT) port to a specific number where x is
either 1, 2, or 3.

–e Specifies the starting location for execution in the DSP. The option
is followed by a space and a valid label or address. If you use an
address, it can be in either 0x0 or 0h format. Labels are case sensi-
tive.

–k loads an alternate kernel. The kernel must be one contiguous sec-
tion (no multiple-section kernels) and cannot exceed 7F6h in
length. The kernel path and filename must directly follow this com-
mand line option.

–? lists the options on the screen.

After the code has been loaded, the system exits LoadApp and restores the
DOS prompt. The loader returns the PAL� device to an uninitialized state, so
you must make sure you reinitialize the PAL� device if you have a PC-based
application interfacing with the DSKplus board.

4-1

Software Considerations

DSP code is the program you create and eventually load into the resident DSP
processor. To create DSP code, you must have an ASCII text editor and the
TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction Set. The
assembly source code you create in the editor must be assembled using the
’C54x DSKplus algebraic assembler. The algebraic assembler converts your
source code (.asm) file to machine code (.obj file) that only the DSP can use.

Host PC application code is a program you create with one of the many PC-
based C or C++ compilers. These compilers generate machine code for the
PC CPU (PC resident); this machine code will not run on the DSP. The debug-
ger, and application loader are perfect examples of executable PC code and
are used to load DSP code to the DSP CPU.

Normally, a DSP application begins with the creation of the DSP code, followed
by the creation of the host PC application code (if needed). This chapter de-
scribes software considerations you must make before creating DSP and/or
host PC application code for the ’C54x DSKplus board.

Topic Page

4.1 DSP Software 4-2.

4.2 DSP Programming Tips 4-5.

4.3 Host PC Software 4-6.

4.4 Host Programming Tips 4-7.

Chapter 4

DSP Software

 4-2

4.1 DSP Software

When creating software applications for the DSP processor, you need an
ASCII text editor to create source code, the DSKplus algebraic assembler to
generate DSP object file (machine code), and the debugger interface to ex-
amine the results. This section illustrates the process of combining the DSP
application code with the DSKplus board and assembler.

The DSKplus software includes a simple application that takes data from the
’AC01 and places it in a buffer. To view the source code, open the file named
firstapp.asm located in the firstapp subdirectory of the DSKplus software and
load it into your ASCII editor.

The source code contains two sections: .text and vectors. The .text section in-
cludes all of the executable code that gets data from the ’AC01 and places it
into the buffer. The second section, called vectors, contains the vector location
where the DSP should receive data from the ’AC01. Each time the ’AC01
transfers a data word to the DSP, the DSP goes to the vector for the serial port
interrupt service routine associated with the ’AC01.

By using the .setsect directive, you can set the code section to a particular ad-
dress and page. The .text section resides at 500h and the vectors section re-
sides at 180h, as shown in the file’s statements:

.setsect ”.text”, 0x500,0

.setsect ”vectors”, 0x180,0

The page determines which memory space the section will be loaded to. The
page indicator is either 0 or 1, corresponding to program or data space, re-
spectively.

DSP Software

4-3Software Considerations

The .copy directive copies the source code from the file name enclosed in
double quotes. For the following code, shown in full on your PC editor screen it
copies vectors.asm into the vectors section and appends the ac01init.asm file
to the .text section. Therefore, the assembly source code actually contains
code from the three files: firstapp.asm, vectors.asm, and ac01init.asm.

.sect ”vectors”

.copy ”c:\dskplus\inits\vectors.asm”

 start:

.text

<initialize DSP>

<wait>

 XINT:

<interrupt service routine>

<return>

.copy ”C:\dskplus\inits\ac01init.asm”

The program begins at the label start, where it initializes the DSP and contin-
ues in a wait routine. The initialization routine must always set up the ’AC01(if
you plan to use it), the interrupt table pointer (IPTR), the stack pointer (SP), and
the interrupt mask register (IMR). In this code, the ar2 register is also initialized
to the beginning of the data buffer at 1200h. The interrupt mask bit (INTM) is
set to 0 when initialization is complete and the DSP is ready to receive data.

start:

call AC01INIT

pmst = #01a0h ; set up iptr

sp = #0ffah ; init stack pointer

ar2 = #1200h ; pointer to receive buffer

*ar2+ = data(#0bh) ; store to rcv buffer

imr = #280h

intm = 0 ; ready to rcv int’s

wait nop

goto wait

DSP Software

 4-4

When the DSP receives an interrupt, it proceeds to the vectors section and
reads the vector location. The vector informs the DSP to go to the XINT sub-
routine (also known as the XINT interrupt service routine). As a result, the code
in the XINT routine is executed.

XINT:

b = trcv ; load acc b with input

b = #0FFFCh & b

*ar2+ = data(#0bh) ; store to rcv buffer

tdxr = b ; transmit the data.

TC = (@ar2 == #01280h)

if (TC) goto restrt ; stop if rcv buffer is at 1280h

return_enable

restrt

ar2 = #1200h

return_enable ; used only when not using

debugger

.end

The interrupt service routine gathers data and copies it to the data buffer and
transmits it back to the ’AC01 until the buffer is full. When the buffer is full, the
DSP enters the routine restrt and initializes the ar2 buffer pointer to 1200h to
begin again.

You can use the DSKplus algebraic assembler to assemble this code by typing
the following at a DOS prompt:

dskplasm c:\dskplus\firstapp\firstapp.asm –l

This creates a file firstapp.obj, which you can load into the debugger and ex-
amine. The data values received via the ’AC01 are loaded into the DSP buffer
at location 1200h.

DSP Programming Tips

4-5Software Considerations

4.2 DSP Programming Tips

The following tips can help you develop your application code faster and more
efficiently.

1) The stack pointer (SP) must be initialized. Choose a memory location that
allows the SP to grow with your application.

2) The interrupt mask register (IMR) must always have the HPI interrupt en-
abled so that the debugger can communicate with the DSP’s communica-
tion kernel (IMR = 200h only if you are using the debugger or the loader).

3) Memory from 80h–17Fh is reserved for the kernel. Memory from
1000h–1009h is reserved for the communication buffer.

4) Always have INT2 masked in the IMR register. The HINT pin is tied to INT2
to perform an HPI boot at power up. Enable this interrupt only if you want
the DSP to interrupt itself when the DSP sets the HINT bit in the HPIC.
Otherwise, keep it 0 in the IMR.

5) TRAP 2 is reserved for the kernel (only when using the debugger). There
are many software interrupts to choose from.

Host PC Software

 4-6

4.3 Host PC Software

Creating host PC software requires that you have a PC-based C or C++ com-
piler capable of generating machine code for your PC. This code can be used
to create various applications that allow you to see the results of your DSP
code. In this section, you take firstapp.obj to the next step: you load the data
buffer back to the PC and display the data on the PC screen. To accomplish
this task, the host application must know how to communicate with the DSP
using the communication protocol. Transferring data to and from the PC is
quite simple using the host interface library functions. This library contains all
of the required functions to communicate to the DSKplus board via the parallel
port and is found in the C54XHIL directory. The C++ source code hostapp.cpp
is located in the firstapp subdirectory.

To compile the hostapp.cpp code correctly, load hostapp.cpp into your C or
C++ editor and make sure your project or make file includes the following files:

� HI54X.H (HIL include file)

� HI54X.CPP (HIL linkable function files)

After compiling the hostapp.cpp source file, you can write a batch file to run the
DSP and host PC code simultaneously. First, load the DSP code into the DSP
memory using the LoadApp program, then start the hostapp.exe program. The
batch file would be similar to:

loadapp –a c:\path\firstapp\firstapp.obj –e start
hostapp.exe

Be sure to reassemble firstapp.asm with instruction hpic = #0ah added into the
source file as follows:
restrt

ar2 = #1200h

hpic = #0ah

return_enable

By adding this line, the DSP generates a DSP-to-host interrupt when the buffer
is full. This is the same interrupt the debugger uses to communicate with
DSKplus board. Therefore, it cannot be used with the debugger software.

Host Programming Tips

4-7Software Considerations

4.4 Host Programming Tips

When you are using C54XHIL, be sure to keep the following variables external.
These variables affect functions throughout the C54XHIL.

� extern int pport, portmode, Readdelay

� extern int datareg[pport]

� extern int statreg[pport]

� extern int ctrlreg[pport]

The first three of these variables are used to set up the port number (pport), the
parallel port mode (portmode), and the delay for 8-bit reads (Readdelay). The
port number, pport, is 1, 2, or 3 to select the corresponding port; portmode is
either 0 or 1, to identify 4-bit or 8-bit mode, respectively. The Readdelay vari-
able is needed in cases where the host PC can read data from the data register
before it is validated from the DSKplus board. Readdelay is the value of PC
CPU cycles required before the information on the DSKplus data lines is valid.

The next three variables are the data, status, and control register addresses of
the three common parallel ports. The datareg is the data register where data is
loaded to and from the PC and DSKplus. The statreg is the status register and
is used by the host PC to read data in 4-bit mode and receive DSP-to-host in-
terrupts. The ctrlreg is the control register and is used to control the DSKplus
board via the host interface logic and send host-to-DSP interrupts.

See the C54XHIL.DOC file in the C54XHIL subdirectory for a complete refer-
ence list of the host interface library functions.

 4-8

5-1DSKplus Assembler Description

DSKplus Assembler Description

The DSKplus assembler translates assembly language source (.asm) files
into machine language object (.obj) files. Source files can contain the following
assembly language elements:

� Assembler directives
� Assembly language instructions

This chapter explains how to invoke the assembler and discusses source
statement format, valid constants and expressions, and assembler output.

Topic Page

5.1 DSKplus Assembler Overview 5-2.

5.2 DSKplus Assembler Development Flow 5-3.

5.3 Invoking the DSKplus Assembler 5-4.

5.4 Naming Alternate Directories for Assembler Input 5-5.

5.5 Source Statement Format 5-7.

5.6 Constants 5-10.

5.7 Character Strings 5-12.

5.8 Symbols 5-13.

5.9 Expressions 5-15.

5.10 Source Listings 5-18.

5.11 DSKplus Assembler Directives 5-20.

Chapter 5

DSKplus Assembler Overview

 5-2

5.1 DSKplus Assembler Overview

The DSKplus assembler is a two-pass program that performs the following
tasks:

� Processes the source statements in a text file to produce an absolute
object file

� Produces a source listing (if requested) and provides you with control over
this listing. The section program counter (SPC) is the absolute address of
that opcode.

� Defines and references symbols

� Assembles conditional blocks

This assembler allows you to segment your code into sections and maintain an
SPC for each section of object code.

DSKplus Assembler Development Flow

5-3DSKplus Assembler Description

5.2 DSKplus Assembler Development Flow

Figure 5–1 illustrates the assembler’s role in the software development flow.
The DSKplus assembler accepts assembly language source files as its input
and produces executable code (object files) as its output.

Figure 5–1. DSKplus Assembler in the Software Development Flow

.include files
.copy files

Assembler
source

Absolute
object
files

’C54x
DSKplus

Code
Explorer on

your PC

DSKplus
Assembler

Invoking the DSKplus Assembler

 5-4

5.3 Invoking the DSKplus Assembler

To invoke the DSKplus assembler, enter the following:

dskplasm [input file [object file [listing file]]] [–options]

dskplasm is the command that invokes the assembler.

input file names the assembly language source file. If you do not supply
an extension, the assembler uses the default extension .asm.
If you do not supply an input filename, the assembler prompts
you for one.

object file names the object file that the assembler creates. If you do not
supply an extension, the assembler uses .obj as a default. If
you do not supply an object file, the assembler creates a file
that uses the input filename with the .obj extension.

listing file names the optional listing file that the assembler can create.
If you do not supply a listing filename, the assembler does not
create one unless you use the –l (lowercase L) option. In this
case, the assembler uses the input filename. If you do not sup-
ply an extension, the assembler uses .lst as a default.

options identifies the assembler options that you want to use. Options
are not case sensitive and can appear anywhere on the com-
mand line following the command. Precede each option with
a hyphen. You can combine single-letter options without pa-
rameters: for example, –lc is equivalent to –l –c. Options that
have parameters, such as –i, must be specified separately.

–c makes case insignificant in the assembly language
files. For example, –c will make the symbols ABC and
abc equivalent. If you do not use this option, case is
significant (default).

–d –dname [=value] sets the name symbol. This is equiva-
lent to inserting name .set [value] at the beginning of
the assembly file. If value is omitted, the symbol is set
to 1. For more information, see subsection 5.8.2, page
5-14.

–i –ipathname specifies a directory where the assembler
can find files named by the .copy or .include state-
ments. You can specify up to 10 directories in this man-
ner; each pathname must be preceded by the –i option.
For more information, see subsection 5.4.1, page 5-5.

–l (lowercase L) produces a listing file.

–q (quiet) suppresses the banner and all progress infor-
mation.

Naming Alternate Directories for Assembler Input

5-5DSKplus Assembler Description

5.4 Naming Alternate Directories for Assembler Input

The .copy and .include directives tell the assembler to use code from external
files and to read source statements from another file. The syntax for these
directives is:

.copy ”filename”

.include ”filename”

The filename names a copy/include file that the assembler reads statements
from. The filename may be a complete pathname, a partial pathname, or a file-
name with no path information. The assembler searches for the file in the fol-
lowing location in the order listed:

1) The directory that contains the current source file; the current source file is
the file being assembled when the .copy or .include directive is encountered.

2) Any directories named with the –i assembler option

3) Any directories set with the environment variable A_DIR

You can augment the assembler’s directory search algorithm by using the –i
assembler option or the A_DIR environment variable.

5.4.1 –i Assembler Option

The –i assembler option names an alternate directory that contains copy/
include files. The format of the –i option is as follows:

dskplasm –i pathname

You can use up to 10 –i options per invocation; each –i option names one path-
name. In assembly source, you can use the .copy or .include directive without
specifying path information. If the assembler doesn’t find the file in the direc-
tory that contains the current source file, it searches the paths designated by
the –i options.

Naming Alternate Directories for Assembler Input

 5-6

For example, assume that a file called source.asm is in the current directory;
source.asm contains the following directive statement:

.copy ”copy.asm”

Assume that the file is stored in the directory

c:\320tools\files\copy.asm

Your assembly invocation is:

dskplasm –ic:\320tools\files\source.asm

The assembler first searches for copy.asm in the current directory because
source.asm is in the current directory. Then the assembler searches in the
directory named with the –i option.

5.4.2 A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string
to. The assembler uses the environment variable A_DIR to name alternate
directories that contain copy or include files. The command for assigning the
environment variable is:

set A_DIR= pathname;another pathname ...

The pathnames are directories that contain copy or include files. You can
separate the pathnames with a semicolon or with blanks. In assembly source,
you can use the .copy or .include directives without specifying path information
in these statements and use the A_DIR path list to give the assembler the alter-
nate paths. If the assembler doesn’t find the copy/include file in the directory
that contains the current source file or in directories named by –i, it searches
the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy ”copy1.asm”

.copy ”copy2.asm”

Assume that the files are stored in the following directories:

c:\320tools\files\copy1.asm
c:\dsys\copy2.asm

You could set up the search path with these commands:

set A_DIR=c:\dsys
DSKPLASM –ic:\320tools\files source.asm

The assembler first searches for copy1.asm and copy2.asm in the current
directory because source.asm is in the current directory. Then the assembler
searches in the directory named with the –i option and finds copy1.asm. Finally,
the assembler searches the directory named with A_DIR and finds copy2.asm.

The environment variable remains set until you reboot the system or reset the
variable by entering:

set A_DIR =

Source Statement Format

5-7DSKplus Assembler Description

5.5 Source Statement Format

TMS320C54x assembly language source programs consist of source state-
ments that can contain assembler directives, assembly language instructions,
and comments. The format of the source file determines how long the source
statement can be, but the assembler reads a maximum of 200 characters per
line, so keep your source statements to 200 characters or less. If a statement
contains more than 200 characters, the assembler truncates the line and is-
sues a warning. If you are not concerned with the comments in your source
file, you can allow them to be truncated, but the operational portion of the state-
ments must be kept to a maximum of 200 characters.

Follow these guidelines in writing assembly language source statements:

� All statements must begin with a label, a blank, an asterisk, or a semicolon.

� Labels are optional; if used, they must begin in column 1.

� One or more blanks must separate each field. Tab characters are equiva-
lent to blanks.

� Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

The following are examples of source statements:

SYM1 .set 2 ; Symbol SYM1 = 2.
Begin: AR1 = #SYM1 ; Load AR1 with 2.

.word 016h ; Initialize word (016h).

A source statement can contain four ordered fields. The general syntax for
source statements is as follows:

[label] [:] instruction [;comment]

5.5.1 Label Field

Labels are optional for all assembly language instructions and for most assem-
bler directives (except for .set and .equ, which require labels). When a label
is used, it must begin in column 1 of a source statement. A label can contain
up to 32 alphanumeric characters (A–Z, a–z, 0–9, _, and $). Labels are case
sensitive unless –c is used in invoking the assembler, and the first character
cannot be a number. A label can be followed by a colon (:); the colon is not
treated as part of the label name. If you don’t use a label, the first character
position must contain a blank, a semicolon, or an asterisk.

When you use a label, its value is the current value of the section program
counter (the label points to the statement it is associated with). For example,

Source Statement Format

 5-8

if you use the .word directive to initialize several words, a label would point to
the first word. In the following example, the label Start has the value 40h.

 9 003F ; Assume some other code was assembled.
10 0040 000A Start: .word 0Ah,3,7
 0041 0003
 0042 0007

A label on a line by itself is a valid statement. The label assigns the current value
of the section program counter to the label; this is equivalent to the following
directive statement:

label .set $; $ provides the current value of the SPC.

When a label appears on a line by itself, it points to the instruction on the next
line (the SPC is not incremented):

3 0050 Here:
4 0050 0003 .word 3

5.5.2 Instruction Field

The instruction field follows the label field. The instruction field must not start
in column 1; if it does, it will be interpreted as a label. The instruction field can
contain one of the following opcodes:

� Algebraic instruction (such as B = B + 4123h)
� Assembler directive (such as .data, .list, .set)

5.5.3 Operands

An operand can be a constant (see Section 5.6, page 5-10), a symbol (see
Section 5.8, page 5-13), or a combination of constants and symbols in an
expression (see Section 5.9, page 5-15).

� Operand prefixes for instructions

The assembler allows you to specify that a constant, symbol, or expression
is used as an address, an immediate value, or an indirect value. The follow-
ing rules apply to the operands of instructions.

� # prefix — the operand is an immediate value . If you use the # sign
as a prefix, the assembler treats the operand as an immediate value.
This is true even when the operand is a register or an address; the
assembler treats the address as a value instead of using the contents
of the address. This is an example of an instruction that uses an oper-
and with the # prefix:

Label: B = B + #123

Source Statement Format

5-9DSKplus Assembler Description

The operand #123 is an immediate value. The assembler adds 123
(decimal) to the contents of accumulator B.

� @ prefix — the operand is direct-memory addressed . When using
the @ prefix, the operand is addressed via the direct-addressing
mode. The address is a function of data pointer or stack pointer. The
instruction below adds 10 to AR2 only if DP = 0.

Label: @AR2 += #10

� * prefix — the operand is an indirect address. If you use the * sign
as a prefix, the assembler treats the operand as an indirect address;
that is, it uses the contents of the operand as an address. This is an
example of an instruction that uses an operand with the * prefix:

Label: A = *AR4

The instruction directs the assembler to go to the address specified
by the contents of register AR4 and move the contents of that location
to accumulator A.

� Immediate value for directives

The immediate value mode uses the # character in front of the immediate
value and is primarily used with instructions. In some cases, it can also be
used with the operands of directives.

It is not usually necessary to use the immediate value mode for directives.
Compare the following statements:

A = A + #10

.byte 10

In the first statement, the immediate value mode is necessary to tell the
assembler to add the value 10 to accumulator A. In the second statement,
however, immediate value is not used; the assembler expects the operand
to be a value and initializes a byte with the value 10.

5.5.4 Comment Field

A comment can begin in any column and extends to the end of the source line.
A comment can contain any ASCII character, including blanks. Comments are
printed in the assembly source listing, but they do not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column
1, it can start with a semicolon (;) or asterisk (*). Comments that begin any-
where else on the line must begin with a semicolon. The asterisk identifies a
comment only if it appears in column 1.

Constants

 5-10

5.6 Constants

The assembler supports six types of constants:

� Binary integer
� Octal integer
� Decimal integer
� Hexadecimal integer
� Character
� Assembly time

The assembler maintains each constant internally as a 32-bit quantity.
Constants are not sign extended. For example, the constant 0FFh is equal to
00FF (base 16) or 255 (base 10); it does not equal –1.

5.6.1 Binary Integers

A binary integer constant is a string of up to 16 binary digits (0s and 1s)
followed by the suffix B (or b). If fewer than 16 digits are specified, the
assembler right-justifies the value and zero-fills the unspecified bits. These are
examples of valid binary constants:

00000000B Constant equal to 010 or 016

0100000b Constant equal to 3210 or 2016

01b Constant equal to 110 or 116

11111000B Constant equal to 24810 or 0F816

5.6.2 Octal Integers

An octal integer constant is a string of up to six octal digits (0 through 7) fol-
lowed by the suffix Q (or q). Octals can also be any constant prefixed with a
’0’ without a suffix. These are examples of valid octal constants:

10Q Constant equal to 810 or 816

100000Q Constant equal to 32 76810 or 8 00016

226q Constant equal to 15010 or 9616

5.6.3 Decimal Integers

A decimal integer constant is a string of decimal digits, ranging from –32 768
to 32 767 or 0 to 65 535. These are examples of valid decimal constants:

1000 Constant equal to 100010 or 3E816

–32 768 Constant equal to –32 76810 or 8 00016

25 Constant equal to 2510 or 1916

Constants

5-11DSKplus Assembler Description

5.6.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to four hexadecimal digits
followed by the suffix H (or h). Hexadecimal digits include the decimal values
0–9 and the letters A–F and a–f. A hexadecimal constant must begin with a
decimal value (0–9), it may also be prefixed with 0x. If fewer than four hexa-
decimal digits are specified, the assembler right-justifies the bits. These are
examples of valid hexadecimal constants:

78h Constant equal to 12010 or 007816

0FH Constant equal to 1510 or 000F16

37ACh Constant equal to 14 25210 or 37AC16

0x37AC Constant equal to 14 25210 or 37AC16

5.6.5 Character Constants

A character constant is a string of one or two characters enclosed in single
quotes. The characters are represented internally as 8-bit ASCII characters.
Two consecutive single quotes are required to represent each single quote
that is part of a character constant. A character constant consisting only of two
single quotes is valid and is assigned the value 0. If only one character is speci-
fied, the assembler right-justifies the bits. These are examples of valid character
constants:

’a’ Represented internally as 6116

’C’ Represented internally as 4316

’’’D’ Represented internally as 274416

Note the difference between character constants and character strings (Sec-
tion 5.7, page 5-12, discusses character strings). A character constant repre-
sents a single integer value; a string is a list of characters.

5.6.6 Assembly-Time Constants

If you use the .set directive to assign a value to a symbol, the symbol becomes
a constant. To use this constant in expressions, the value that is assigned to
it must be absolute. For example:

shift3 .set 3
 A = #shift3

You can also use the .set directive to assign symbolic constants for register
names. In this case, the symbol becomes a synonym for the register:

AuxR1 .set AR1
 SP = AuxR1

Character Strings

 5-12

5.7 Character Strings

A character string is a string of characters enclosed in double quotes. A double
quote that is part of a character string is represented by two consecutive dou-
ble quotes. The maximum length of a string varies and is defined for each di-
rective that requires a character string. Characters are represented internally
as 8-bit ASCII characters.

These are examples of valid character strings:

”sample program” defines the 14-character string sample program.

”PLAN ””C””” defines the 8-character string PLAN ”C”.

Character strings are used for the following:

� Filenames, as in .copy ”filename”
� Section names, as in .sect ”section name”
� Section address initializers, as in .setsect ”section name”
� Data initialization directives, as in .byte ”charstring”
� Operands of .string directives

Symbols

5-13DSKplus Assembler Description

5.8 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol
name is a string of up to 32 alphanumeric characters (A–Z, a–z, 0–9, $, and _).
The first character in a symbol cannot be a number, and symbols cannot contain
embedded blanks. The symbols you define are case sensitive; for example, the
assembler recognizes ABC, Abc, and abc as three unique symbols. You can
override case sensitivity with the –c assembler option. A symbol is valid only
during the assembly in which it is defined.

5.8.1 Labels

Symbols used as labels become symbolic addresses associated with loca-
tions in the program. Labels used locally within a file must be unique. Opcodes
and assembler directive names (without the . prefix) are valid label names.

Labels can also be used as the operands of the .bss directive; for example:

.bss label1, 1

label2 NOP
B = B + @label1
goto label2

K .set 1024 ;constant definitions
maxbuf .set 2*K

The assembler also has several predefined symbolic constants; these are
discussed in the next section.

Symbols

 5-14

5.8.2 Defining Symbolic Constants (–d Option) on the Command Line

The –d option equates a constant value with a symbol. The symbol can then
be used in place of a value in assembly source. The format of the –d option
is as follows:

dskplasm –d name=[value]

The name is the name of the symbol you want to define. The value is the value
you want to assign to the symbol. If the value is omitted, the symbol will be set
to 1.

Within assembler source, you may test the symbol with the following directives:

Type of Test Directive Usage

Existence .if $isdefed(” name”)

Nonexistence .if $isdefed(” name”) = 0

Equal to value .if name = value

Not equal to value .if name != value

The argument to the $isdefed built-in function must be enclosed in quotes. The
quotes cause the argument to be interpreted literally rather than as a substitu-
tion symbol.

5.8.3 Predefined Symbolic Constants

The assembler has several predefined symbols, including the following:

� $, the dollar sign character, represents the current value of the section
program counter (SPC).

� Register symbols , including AR0 – AR7

Expressions

5-15DSKplus Assembler Description

5.9 Expressions

An expression is a constant, a symbol, or a series of constants and symbols sepa-
rated by arithmetic operators. The range of valid expression values is –32 768 to
32 767. Three main factors influence the order of expression evaluation:

Parentheses Expressions that are enclosed in parentheses are
always evaluated first.

8 / (4 / 2) = 4, but 8 / 4 / 2 = 1

You cannot substitute braces ({ }) or brackets ([])
for parentheses.

 Precedence groups The ’C54x algebraic assembler uses similar prece-
dence as does the C language. When parentheses
do not determine the order of expression evalu-
ation, the highest precedence operation is eva-
luated first. Shifts (<< >>) have higher precedence
than (+ –).

8 + 4 / 2 = 10 (4 / 2 is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not
determine the order of expression evaluation, the
expressions are evaluated as happens in the C
language.

8 / 4 * 2 = 4 , but 8 / (4 * 2) = 1

Expressions

 5-16

5.9.1 Operators

Table 5–1 lists the operators that can be used in expressions.

Table 5–1. Operators Used in Expressions (Precedence)

Symbols Operators Evaluation

+ – ~ Unary plus, minus, 1s complement Right to left

* / % Multiplication, division, modulo Left to right

<< >> Left shift, right shift Left to right

+ – Addition, subtraction Left to right

< <= > >= Less than, LT or equal, greater than,
GT or equal

Left to right

 !=, =[=] Not equal to, equal to Left to right

& Bitwise AND Left to right

^ Bitwise exclusive OR Left to right

| Bitwise OR Left to right

Note: Unary +, –, and * have higher precedence than the binary forms.

5.9.2 Expression Overflow and Underflow

The assembler checks for overflow and underflow conditions when arithmetic
operations are performed at assembly time. It issues a Value Truncated warning
whenever an overflow or underflow occurs. The assembler does not check for
overflow or underflow in multiplication.

5.9.3 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The assembler
is absolute therefore, all defined expressions are absolute.

This is an example of a well-defined expression:

1000h+X

where x was previously defined.

Expressions

5-17DSKplus Assembler Description

5.9.4 Conditional Expressions

The assembler supports relational operators that can be used in any expression;
they are especially useful for conditional assembly. Relational operators include
the following:

= Equal to = = Equal to

! = Not equal to

< Less than < = Less than or equal to

> Greater than > = Greater than or equal to

Conditional expressions evaluate to 1 if true and 0 if false; they can be used
only on operands of equivalent types.

Source Listings

 5-18

5.10 Source Listings

A source listing shows source statements and the object code they produce.
To obtain a listing file, invoke the assembler with the –l (lowercase L) option.

Two banner lines, a blank line, and a title line are at the top of each source listing
page. Any title supplied by a .title directive is printed on the title line; a page number
is printed to the right of the title. If you don’t use the .title directive, the name of the
source file is printed. The assembler inserts a blank line below the title line.

A source statement produces at least one word of object code. The assembler
lists the SPC value and object code on a separate line for each word of object
code produced. Each additional line is listed immediately following the source
statement line. Each line in the source file produces a line in the listing file that
shows a source statement number, an SPC value, the object code assembled,
and the source statement.

Field 1: source statement number

Line Number

The source statement number is a decimal number. The assembler
numbers source lines as it encounters them in the source file. Some
statements increment the line counter but are not listed; for example,
.title statements and statements following a .nolist are not listed. The
difference between two consecutive source line numbers indicates
the number of intervening statements in the source file that are not
listed.

Include File Letter

The assembler may precede a line number with a letter; the letter in-
dicates that the line is assembled from an included file.

Nesting Level Number

The assembler may precede a line number with a number; the number
indicates the nesting level of loop blocks.

Field 2: section program counter value (absolute target address)

This field contains the section program counter (SPC) value, which is
hexadecimal. All sections (.text, .data, .bss, and named sections) main-
tain separate SPCs. Some directives do not affect the SPC and leave
this field blank. Each section’s SPC value can be initialized using section-
address initializers (that is, .setsect ”section name”).

Source Listings

5-19DSKplus Assembler Description

Field 3: object code

This field contains the hexadecimal representation of the object code.
All machine instructions and directives use this field to list object code.

Field 4: source statement field

This field contains the characters of the source statement as they
were scanned by the assembler. The assembler accepts a maximum
line length of 200 characters. Spacing in this field is determined by
the spacing in the source statement.

Example 5–1 shows an assembler listing with each of the four fields identified.

Example 5–1. Assembler Listing

Field 1 Field 2 Field 3 Field 4

 1
 2
 4 .setsect ”vecs”, 080h
 5 .setsect ”.text”, 0500h
 6 .setsect ”.bss”, 0600h
 7 ***
 8 * Reserve space for a variable *
 9 ***
 10 000600 .bss reserve, 1
 11 ***
 12 * Reset and Interrupt Vectors
 13 ***
 14 000080 .sect ”vecs”
 15 000080 F073 RESET: goto main
 000081 0104
 16 000082 F073 NMI: goto NOPS
 000083 0100
 17 ***
 18 * Main Program
 19 ***
 20 .copy ”4nops.inc”
 A 1 000500 .text
 A 2 000500 F495 NOPS: nop ; NOPS function begins here
 A 3 000501 F495 nop
 A 4 000502 F495 nop
 A 5 000503 F495 nop
 A 6
 21 000504 771D main PMST = #00a0h

 000505 00A0
 22 : : :

 : : :

DSKplus Assembler Directives

 5-20

5.11 DSKplus Assembler Directives

Assembler directives supply data to the program and control the assembly
process. Assembler directives enable you to do the following:

� Assemble code and data into specified sections
� Reserve space in memory for uninitialized variables
� Control the appearance of listings
� Initialize memory
� Initializing the addresses for specified sections
� Assemble conditional blocks
� Examine symbolic debugging information

Appendix C, Assembler Directives Reference, contains the individual direc-
tives’ descriptions in alphabetical order.

5.11.1 Directives Summary

Table 5–2 summarizes the assembler directives.

Note:

Any source statement that contains a directive may also contain a label and
a comment. Labels begin in the first column (and they are the only item al-
lowed to appear in the first column) and all comments are preceded by a
semicolon or an asterisk. To improve readability, labels and comments are
not shown as part of the directive syntax.

Table 5–2. DSKplus Assembler Directives Summary
(a) Directives that define sections

Mnemonic and Syntax Description Page

.bss symbol, size in words [, alignment] Reserve size words in the .bss (uninitialized data) sec-
tion.

C-3

.data Assemble into the .data (initialized data) section. C-9

.sect ”section name” Assemble into a named (initialized) section. C-26

.setsect ”section name”, address [, page] Initialize the section’s absolute address. C-29

.text Assemble into the .text (executable code) section. C-33

symbol .usect ”section name”, size in words
[, alignment]

Reserve size words in a named (uninitialized) section. C-35

DSKplus Assembler Directives

5-21DSKplus Assembler Description

Table 5–2. DSKplus Assembler Directives Summary (Continued)

(b) Directives that initialize constants (data and memory)

Mnemonic and Syntax Description Page

.bes size in bits Reserve size bits in the current section; a label points to
the last addressable word in the reserved space.

C-31

.byte value1[, ... , valuen] Initialize one or more successive bytes in the current
section.

C-5

.field value [, size in bits] Initialize a variable-length field. C-13

.float value [, ... , valuen] Initialize one or more 32-bit, IEEE single-precision,
floating-point constants.

C-16

.int value1 [, ... , valuen] Initialize one or more 16-bit integers. C-19

.long value1[, ... , valuen] Initialize one or more 32-bit integers. C-23

.space size in bits Reserve size bits in the current section; a label points to
the beginning of the reserved space.

C-31

.string ” string1” [, ... , ”stringn”] Initialize one or more text strings. C-32

.pstring ” string1” [, ... , ”stringn”] Initialize one or more text strings (packed). C-32

.xfloat value1 [, ...,valuen] Initialize one or more 32-bit integers, IEEE single-precision,
floating-point constants, but does not align the result on the
long word boundary.

C-16

.xlong value1 [, ...,valuen] Initialize one or more 32-bit integers, but do not align on
long word boundary.

C-23

.word value1 [, ... , valuen] Initialize one or more 16-bit integers. C-19

(c) Directives that format the output listing

Mnemonic and Syntax Description Page

.length page length Set the page length of the source listing. C-20

.list Restart the source listing. C-21

.nolist Stop the source listing. C-21

.page Eject a page in the source listing. C-25

.title ”string” Print a title in the listing page heading. C-34

.width page width Set the page width of the source listing. C-20

DSKplus Assembler Directives

 5-22

Table 5–2. DSKplus Assembler Directives Summary (Continued)

(d) Directives that reference other files

Mnemonic and Syntax Description Page

.copy [”]filename[”] Include source statements from another file. C-6

.include [”]filename[”] Include source statements from another file. C-6

(e) Directives that control conditional assembly

Mnemonic and Syntax Description Page

.break [well-defined expression] End .loop assembly if condition is true. The .break
construct is optional.

C-24

.else well-defined expression Assemble code block if the .if condition is false. The .else
construct is optional.

C-17

.elseif well-defined expression Assemble code block if the .if condition is false and the
.elseif condition is true. The .elseif construct is optional.

C-17

.end End assembly file. C-10

.endif End .if code block. C-17

.endloop End .loop code block. C-24

.if well-defined expression Assemble code block if the condition is true. C-17

.loop [well-defined expression] Begin repeatable assembly of a code block. C-24

(f) Directives that define symbols at assembly time

Mnemonic and Syntax Description Page

.set/.equ Equate a value with a symbol. C-27

.eval well-defined expression,
 substitution symbol

Perform arithmetic on numeric substitution symbols. C-11

(g) Directives that align the section program counter (SPC)

Mnemonic and Syntax Description Page

.align [size in words] Align the SPC on a word boundary specified by the
parameter, which must be a power of 2, or default to page
boundary.

C-2

DSKplus Assembler Directives

5-23DSKplus Assembler Description

5.11.2 Directives That Define Sections

Six directives associate portions of an assembly language program with the
appropriate sections and initialize each section’s address:

� .bss reserves space in the .bss section for uninitialized variables.

� .data identifies portions of code in the .data section. The .data section
usually contains initialized data.

� .sect defines initialized named sections and associates subsequent code or
data with that section. A section defined with .sect can contain code or data.

� .setsect initializes the section program counter (SPC) to a value that cor-
responds to the absolute address of the section.

� .text identifies portions of code in the .text section. The .text section usually
contains executable code.

� .usect reserves space in an uninitialized named section. The .usect
directive is similar to the .bss directive, but it allows you to reserve space
separately from the .bss section.

Example 5–2 shows how you can use sections directives to associate code
and data with the proper sections. This is an output listing; column 1 shows line
numbers, and column 2 shows the SPC values. (Each section has its own pro-
gram counter, or SPC.) When code is first placed in a section, its SPC equals
0. When you resume assembling into a section after other code is assembled,
the section’s SPC resumes counting as if there had been no intervening code.

The directives in Example 5–2 perform the following tasks:

.text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15,
and 16.

var_defs initializes words with the values 17 and 18.

.bss reserves 21 words.

xy reserves 20 words.

The .bss and .usect directives do not end the current section or begin new sections;
they reserve the specified amount of space, and then the assembler resumes
assembling code or data into the current section.

DSKplus Assembler Directives

 5-24

 1
 2
 4 .setsect ”Var_defs”, 080h
 5 .setsect ”.text”, 0500h
 6 .setsect ”.data”, 0600h
 7 .setsect ”.bss”, 0550h
 8 .setsect ”XY”, 0750h
 9 ***
 10 * Start assembling into .text section at 0500h
 11 ***
 12 000500 .text
 13 000500 0001 .word 1,2

 000501 0002
 14 000502 0003 .word 3,4

 000503 0004
 15
 16 ***
 17 * Start assembling into .data section at 0600h
 18 ***
 19 000600 .data
 20 000600 0009 .word 9,10

 000601 000A
 21 000602 000B .word 11,12

 000603 000C
 22
 23 ***
 24 * Start assembling into a named, initialized
 25 * section, Var_defs at 080h
 26 ***
 27 000080 .sect ”Var_defs”
 28 000080 0011 .word 17,18
 000081 0012
 29
 30 ***
 31 * Resume assembling into .data section at current .data
 32 ***
 33 000604 .data
 34 000604 000D .word 13,14

 000605 000E
 35 000550 .bss sym,19 ;Assemble into .bss section
 36 000606 000F .word 15,16 ;return to .data section

 000607 0010
 37
 38 ***
 39 * Resume assembling into .text section at current .text
 40 ***
 41 000504 .text
 42 000504 0005 .word 5,6

 000505 0006
 43 000750 usym .usect ”XY”, 20 ;rsv space unitialized name
 44 000563 .bss more,2 ;rsv 2 more locations in .b
 45 000506 0007 .word 7,8

 000507 0008

Example 5–2. Using Sections Directives

DSKplus Assembler Directives

5-25DSKplus Assembler Description

5.11.3 Directives That Initialize Constants

Several directives assemble values for the current section:

� The .bes and .space directives reserve a specified number of bits in the
current section. The assembler fills these reserved bits with 0s.

You can reserve a specified number of words by multiplying the number of
bits by 16.

� When you use a label with .space, it points to the first word that
contains reserved bits.

� When you use a label with .bes, it points to the last word that contains
reserved bits.

Figure 5–2 shows the .space and .bes directives. Assume the following
code has been assembled for this example:

1
2 ** .space and .bes directives
3
4 0000 0100 .word 100h, 200h
 0001 0200
5 0002 Res_1: .space 17
6 0004 000f .word 15
7 0006 Res_2: .bes 20
8 0007 00ba .byte 0BAh

Res_1 points to the first word in the space reserved by .space. Res_2
points to the last word in the space reserved by .bes.

Figure 5–2. Using the .space and .bes Directives

17 bits
reserved

20 bits
reserved

Res_1 = 02h

Res_2 = 06h

DSKplus Assembler Directives

 5-26

� .byte places one or more 8-bit values into consecutive words of the current
section. This directive is similar to .word, except that the width of each
value is restricted to eight bits.

� The .field directive places a single value into a specified number of bits
in the current word. With .field, you can pack multiple fields into a single
word; the assembler does not increment the SPC until a word is filled.

Figure 5–3 shows how fields are packed into a word. For this example,
assume the following code has been assembled; the SPC doesn’t change for
the first three fields (the fields are packed into the same word):

 4 0000 6000 .field 3, 3
 5 0000 6400 .field 8, 6
 6 0000 6440 .field 16, 5
 7 0001 0123 .field 01234h,20
 0002 4000
 8 0003 0000 .field 01234h,32
 0004 1234

Figure 5–3. Using the .field Directive

0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0

0 1 1
15 14 13

15 12 11 10 9 8 7

6 5 4 3 2 0

0 1 1 0 0 1 0 0 0

15
6 bits

.field 8,6

.field 16,5

.field 3,3

5 bits

3 bits
0

0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1
15

.field 01234h,20

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15

.field 01234h,32

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
15

DSKplus Assembler Directives

5-27DSKplus Assembler Description

� .float and .xfloat calculate the single-precision (32-bit) IEEE floating-
point representation of a single floating-point value and store it in two con-
secutive words in the current section. The most significant word is stored
first. The .float directive automatically aligns to the long word boundary,
and .xfloat does not.

� .int and .word place one or more 16-bit values into consecutive words in
the current section.

� .long and .xlong place 32-bit values into consecutive 2-word blocks in the
current section. The most significant word is stored first. The .long directive
automatically aligns to a long word boundary, and the .xlong directive does not.

� .string and .pstring place 8-bit characters from one or more character
strings into the current section. The .string directive is similar to .byte, placing
an 8-bit character in each consecutive word of the current section. The .pstring
also has a width of eight bits but packs two characters into a word. For .pstring,
the last word in a string is padded with null characters (0) if necessary.

DSKplus Assembler Directives

 5-28

Figure 5–4 compares the .byte, .int, .long, .xlong, .float, .xfloat, .word, and
.string directives. For this example, assume that the following code has been
assembled:

1 0000 00aa .byte 0AAh, 0BBh
 0001 00bb
2 0002 0ccc .word 0CCCh
3 0003 0eee .xlong 0EEEEFFFh
 0004 efff
4 0006 eeee .long 0EEEEFFFFh
 0007 ffff
5 0008 dddd .int 0DDDDh
6 0009 3fff .xfloat 1.99999
 000a ffac
7 000c 3fff .float 1.99999
 000d ffac
8 000e 0068 .string ”help”
 000f 0065
 0010 006c
 0011 0070

Figure 5–4. Using Initialization Directives
Word Code

.byte OAAh, OBBh

.word OCCCh

.int DDDDh

.long EEEEFFFFh

.string ”help”

.float 1.99999

15 0 15 0

.xlong 0EEEEFFFh

.xfloat 1.99999

10, 11

e, f

c, d

9, a

8

6, 7

3, 4

2

0, 1 0 0 A A 0 0 B B

0 C C C

0 E E E E F F F

E E E E F F F F

D D D D

3 F F F F F A C

3 F F F F F A C

0 0 6 8 0 0 6 5

h e

0 0 6 C 0 0 7 0

l p

DSKplus Assembler Directives

5-29DSKplus Assembler Description

5.11.4 Directives That Align the Section Program Counter

The .align directive aligns the SPC at a 1-word to 128-word boundary. This
ensures that the code following the directive begins on an x-word or page
boundary. If the SPC is already aligned at the selected boundary, it is not
incremented. Operands for the .align directive must equal a power of 2
between 20 and 216 (although alignments beyond 27 are not meaningful). For
example:

Operand of 1 aligns SPC to word boundary

2 aligns SPC to long word/even boundary

128 aligns SPC to page boundary

The .align directive with no operands defaults to 128, that is, to a page boundary.

Figure 5–5 demonstrates the .align directive. Assume that the following code
has been assembled:

 1 0000 4000 .field 2, 3
 2 0000 4160 .field 11, 8
 3 .align 2
 4 0002 0045 .string ”Errorcnt”
 0003 0072
 0004 0072
 0005 006f
 0006 0072
 0007 0063
 0008 006e
 0009 0074
 5 .align
 6 0100 0004 .byte 4

Figure 5–5. Using the .align Directive

New SPC =
100h after
assembling
a .align
directive

80h

100h

Current
SPC =
88h

80h
words

(a) Result of .align without an argument

DSKplus Assembler Directives

 5-30

5.11.5 Directives That Format the Output Listing

The following directives format the listing file:

� The .length directive controls the page length of the listing file. You can
use this directive to adjust listings for various output devices.

� The .list and .nolist directives turn the output listing on and off. You can
use the .nolist directive to stop the assembler from printing selected
source statements in the listing file. Use the .list directive to turn the listing
on again.

� The .page directive causes a page eject in the output listing.

� The .title directive supplies a title that the assembler prints at the top of
each page.

� The .width directive controls the page width of the listing file. You can use
this directive to adjust listings for various output devices.

5.11.6 Directives That Reference Other Files

The .copy and .include directives tell the assembler to begin reading source
statements from another file. When the assembler finishes reading the source
statements in the copy/include file, it resumes reading source statements from
the current file. The statements read from a copied file are printed in the listing
file; the statements read from an included file are not printed in the listing file.

5.11.7 Directives That Control Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to
assemble certain sections of code according to a true or false evaluation of an
expression. Two sets of directives allow you to assemble conditional blocks of
code:

� The .if /.elseif /.else/.endif directives tell the assembler to conditionally
assemble a block of code according to the evaluation of an expression.

.if expression marks the beginning of a conditional block and
assembles code if the .if condition is true.

.elseif expression marks a block of code to be assembled if the .if
condition is false and .elseif is true.

.else marks a block of code to be assembled if the .if
condition is false.

.endif marks the end of a conditional block and termi-
nates the block.

DSKplus Assembler Directives

5-31DSKplus Assembler Description

� The .loop/.break/.endloop directives tell the assembler to assemble a
block of code repeatedly according to the evaluation of an expression.

.loop expression marks the beginning a repeatable block of code.

.break expression tells the assembler to continue to assemble re-
peatedly when the .break expression is false, and
to go to the code immediately after .endloop when
the expression is true.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for condi-
tional expressions. For more information about relational operators, see sub-
section 5.9.4, page 5-17.

5.11.8 Directives That Assign Assembly-Time Symbols

Assembly-time symbol directives equate meaningful symbol names to constant
values or strings.

� The .eval directive evaluates an expression, translates the results into a
character, and assigns the character string to a substitution symbol. This
directive is most useful for manipulating counters:

.eval 1 , x

.loop

.byte x*10h

.break x = 4

.eval x+1, x

.endloop

� The .set and .equ directives set a constant value to a symbol. The symbol
is stored in the symbol table and cannot be redefined. For example:

bval .set 0100h
.byte bval, bval*2, bval+12
 goto #bval

The .set and .equ directives produce no object code. The two directives
are identical and can be used interchangeably.

5.11.9 Directives That Terminate Assembly

The .end directive terminates assembly. It should be the last source statement
of a program. This directive has the same effect as an end-of-file.

 5-32

6-1

Hardware

This chapter describes the DSKplus development hardware, including parallel
port registers, signal definitions, ports, and modes. The section also covers the
functionality of the on-board PAL� device, ’AC01 operation and register defini-
tions, and the XDS510 emulator port.

Topic Page

6.1 Power and Cables 6-2.

6.2 DSKplus Communications Protocol 6-4.

6.3 Using a PAL � Device 6-7.

6.4 PAL� Device Modifications 6-12.

6.5 Connecting Boards to Headers 6-14.

6.6 Connecting the XDS510 Emulator Port 6-14.

Chapter 6

Power and Cables

 6-2

6.1 Power and Cables

The DSKplus development hardware is powered by a universal 5-V dc @ 3.3-A
wall-mount power supply. Depending on what function is being performed, the
board’s total power consumption can vary, so it is recommended that the external
loading not exceed 1.0 A when using the the power and ground connections on
the JP headers. If the total board power requirement exceeds 1.0 A, unplug the
board’s power supply immediately and check connections. The power supply in-
cluded with the kit is regulated and filtered and feeds directly into the DSKplus
board. If for some reason the power supply needs to be replaced, you can replace
it with a power supply of similar specifications. Use only 5-V dc power supplies with
a plug of 2.1-mm inner diameter � 5.5-mm outer diameter.

Be careful! The DSKplus board is not regulated; therefore, power
requirements exceeding 1.0 A could result in board damage.

The cable is a straight DB25M-to-DB25F connection. Please use the cable in-
cluded in the kit. If for some reason the cable needs to be replaced, it is recom-
mended that the cable be high quality and not exceed 6 feet in length. Below is
a pin description of the typical DB25 connector and its connection to DSKplus.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 6–1. DB25 Connector Pin Connections

ÁÁÁÁÁ
ÁÁÁÁÁ

Pin ÁÁÁÁÁ
ÁÁÁÁÁ

Name ÁÁÁÁÁ
ÁÁÁÁÁ

ConnectionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

STROBE ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

HR/W ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Controls HR/W of the host port interface (HPI) and the direction of
the bidirectional buffer, and resets the NBL state machine (STROBE = 0)

ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

D0 ÁÁÁÁÁ
ÁÁÁÁÁ

HD0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bit 0 (LSB) data line; controls MODE and TRIST in latch mode

ÁÁÁÁÁ
ÁÁÁÁÁ

3 ÁÁÁÁÁ
ÁÁÁÁÁ

D1 ÁÁÁÁÁ
ÁÁÁÁÁ

HD1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bit 1 data line; controls LS mode and RESET in latch mode
ÁÁÁÁÁ
ÁÁÁÁÁ4

ÁÁÁÁÁ
ÁÁÁÁÁD2

ÁÁÁÁÁ
ÁÁÁÁÁHD2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁBit 2 data lineÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

5
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D3
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

HD3
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bit 3 data line

ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁÁ
ÁÁÁÁÁ

D4 ÁÁÁÁÁ
ÁÁÁÁÁ

HD4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bit 4 data line

ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

D5 ÁÁÁÁÁ
ÁÁÁÁÁ

HD5 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bit 5 data line
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

8
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D6
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

HD6
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bit 6 data line

ÁÁÁÁÁ
ÁÁÁÁÁ

9 ÁÁÁÁÁ
ÁÁÁÁÁ

D7 ÁÁÁÁÁ
ÁÁÁÁÁ

HD7 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bit 7 (MSB) data line

Power and Cables

6-3Hardware

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 6–1. DB25 Connector Pin Connections (Continued)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DescriptionÁÁÁÁ
ÁÁÁÁ
ConnectionÁÁÁÁÁ

ÁÁÁÁÁ
NameÁÁÁÁÁ

ÁÁÁÁÁ
Pin

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

10
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ACK
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HD2 or HD6
(NBL)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bits 2 and 6 when reading from status register in nibble mode

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

11
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

BUSY
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HD3 or HD7
(NBL)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bits 3 and 7 when reading from status register in nibble mode

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

12
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

PE
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HD1 or HD5
(NBL)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bits 1 and 5 when reading from status register in nibble mode

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

13 ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

SLCT ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HD0 or HD4
(NBL)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Bits 0 and 4 when reading from status register in nibble mode

ÁÁÁÁÁ
ÁÁÁÁÁ

14 ÁÁÁÁÁ
ÁÁÁÁÁ

AUTOFD ÁÁÁÁ
ÁÁÁÁ
HCNTL0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Controls HCNTL0 of the HPI

ÁÁÁÁÁ
ÁÁÁÁÁ15

ÁÁÁÁÁ
ÁÁÁÁÁERROR

ÁÁÁÁ
ÁÁÁÁHINT

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDSP-to-host interrupt signalÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

16
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INIT
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

BYTE
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Controls HBIL of the ’C54x HPI and is low for first transfer, high for se-
cond, low for third, and high for fourth (nibble mode). There are only two
transfers when operating in byte mode.

ÁÁÁÁÁ
ÁÁÁÁÁ

17
ÁÁÁÁÁ
ÁÁÁÁÁ

SLCTIN
ÁÁÁÁ
ÁÁÁÁ
HCNTL1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Controls HCNTL1 of the HPI and which latch is selected in latch mode
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

18-25
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

GND
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ground

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DSKplus Communications Protocol

 6-4

6.2 DSKplus Communications Protocol

The DSKplus development board communicates through your PC’s parallel
port. A PC manufactured earlier than 1993 probably has a 4-bit unidirectional
port, which provides an 8-bit write function but only a 4-bit read function, and
its data lines are not bidirectional—return data is read through four status reg-
ister bits. A PC manufactured in 1993 or later probably has an 8-bit bidirection-
al port, which allows 8-bit directional data transfers for both reads and writes,
and the status register bits can be used for other information.

Today’s high-end computers often use enhanced parallel ports and extended
capabilities ports, called EPP and ECP, respectively. These are much more
complex; they provide a multiplexed data and address scheme across the
eight data lines and they use a completely different protocol for communica-
tions. However, these ports support standard compatibility by default, which
is 8-bit bidirectional.

The DSKplus support the following parallel port modes:

� 4-bit unidirectional (called nibble mode)

� 8-bit bidirectional (called byte mode)

� EPP standard compatibility (also 8-bit bidirectional or byte mode)

� EPC standard compatibility (also 8-bit bidirectional or byte mode)

The DSKplus does not support the EPP and EPC extended capabilities.

The parallel port’s registers are located in the PC’s data memory. You must use
a 100% IBM/AT-compatible computer to eliminate any parallel port specification
discrepancies. Compatible PCs use the following port addresses:

Port Data Register Status Register Control Register

1 0x3BC 0x3BD 0x3BE

2 0x378 0x379 0x37A

3 0x278 0x279 0x27A

Don’t get confused by the port number and the LPT designator. The LPTx can
change due to other peripherals connected to your PC. When running custom
applications, always take note of available ports by their addresses.

DSKplus Communications Protocol

6-5Hardware

6.2.1 The PC’s Data Register

The data registers of of the PC’s parallel port are connected to the DSP HPI
data lines (HD0–HD7) through a bidirectional buffer. The data register is al-
ways used for writing to the DSP HPI. However, when data is being read; the
data register is needed only if the PC’s parallel port is bidirectional (8-bit),
otherwise, data is read from the status register. The data register of the PC’s
parallel port is shown in Figure 6–1:

Figure 6–1. Data Register

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

6.2.2 The PC’s Status Register

The status register has five input lines that directly indicate the levels of four sig-
nals connected to the PC external hardware, used for bits of data information only
when in nibble (4-bit) mode. The fifth line is used as a DSP-to-host interrupt
(HINT) line. The status register’s configuration is shown in Figure 6–2:

Figure 6–2. Status Register

7 6 5 4 3 2 1 0

D3 / D7 D2 / D6 D1 / D5 D0 / D4 HINT Not used

R R R R R

DSKplus Communications Protocol

 6-6

6.2.3 The PC’s Control Register

The control register has four bit-addressable output signals available and a
direction bit that controls the direction of the data lines. When transferring data
to the DSP, load the data register first and then the control register. The control
register is shown in Figure 6–3:

Figure 6–3. Control Register

7 6 5 4 3 2 1 0

Not Used
Data Line
Direction

0 CNTL1† BYTE† CNTL0† RNW†

R/W R/W R/W R/W R/W R/W

† Indicates that this bit controls a hardware signal

Bit 5 This bit controls the direction of the parallel port data lines. Writ-
ing to this bit in 4-bit unidirectional ports has no effect.

Bit 4 This bit enables the PC interrupt when ACK in the status register
is set. This bit is always loaded with zero.

Bit 3 Controls the hardware to set/reset the CNTL1 signal

Bit 2 Controls the hardware reset (inverted BYTE signal)

Bit 1 Controls the hardware to set/reset the CNTL0 signal

Bit 0 Controls the hardware to set/reset the RNW signal. When you are
setting bit 0, be sure to set bit 5 appropriately.

Using a PAL� Device

6-7Hardware

6.3 Using a PAL � Device

The DSKplus board includes a socketed 22V10 programmable-array-logic (PAL�)
device. The PAL� has been factory programmed to interface the PC’s parallel port
to the ’C54x HPI with additional capabilities to control the ’C54x reset line (RS), a
nibble state machine, a 3-state controller, and strobe generator.

Figure 6–4. PAL� Device’s Internal Logic Diagram

BYTE

RNW

D1

D0

CNTL1

CNTL0

D

LOAD

Q

LOAD

D Q

LOAD

D Q

LOAD

D Q

IN

SEL

NBL

HBIL

Nibble
mode
state

machine

NBL

HBIL

STRB

LS

MODE

(Output enable)

Latch select

IN

INV STRB

Strobe
generator

EN

TRIST

RESET

Using a PAL� Device

 6-8

Upon power up of the DSKplus board, the PAL� device is reset and all D-latches
are set to 0, driving TRIST low, MODE low, and RESET low. TRIST is the 3-state
controller that places the output pins in the high-impedance state when TRIST
is low. Therefore, at power up, the PAL� device is in the high-impedance state
and STROBE, HBIL, and RESET output values have no effect. Loading the
PAL� device TRIST latch with a 1 drives RESET, STROBE, and HBIL. Once out
of the high-impedance state, the DSP is placed in reset and the DSKplus board
operates in nibble mode.

When MODE = 1, the board operates in 8-bit bidirectional mode.

When MODE = 0, the board operates in 4-bit unidirectional mode (nibble
mode).

The host PC reads its data register twice to complete the 16-bit read when
MODE = 1. The host must read the status register four times to complete a
16-bit read when MODE = 0.

During a read or write access to the HPI, both bytes (high and low) must be
accessed to complete the HPI read/write cycle. Always perform a complete
16-bit read/write. See the TMS320C54x DSP Reference Set, Volume 1: CPU and
Peripherals, for more information about the HPI.

Using a PAL� Device

6-9Hardware

6.3.1 Strobe Generator

Figure 6–4 illustrates the interaction between the PC parallel port and the
PAL� device. During normal operation, the strobe line (STRB) generates a
1-cycle pulse, which is delayed by one clock cycle after the BYTE signal transi-
tions to a new level. The STRB is connected to the ’C54x HDS2 line. The ’C54x
drives or reads the data on the data lines on the falling edge of HDS2. The
’C54x also latches the levels of the CNTL1, CNTL0, HR/W, and BYTE to deter-
mine whether the current transaction is a read or a write, which HPI mode to
use and, which of the two bytes is being transferred.

Figure 6–5. Functional Diagram for a 4-Bit Read Cycle

RNW

HBIL

NBL

D7–D0

1 2 3 4

1st high nibble 1st low nibble 2nd low nibble

Start 4-bit read cycle End 4-bit read cycle

1st data byte 2nd data byte

2nd high nibble

PAL

STRB

CLK

BYTE†

† BYTE cycle time corresponds to the speed at which the host PC can write to the BYTE location in the PC’s port
control register.

Using a PAL� Device

 6-10

6.3.2 Nibble Mode State Machine

Figure 6–5 is a functional diagram for the nibble mode. The nibble mode state
machine controls the NBL signal when performing 4-bit reads only. The NBL
signal controls which nibble of the read appears in the PC status register.
Therefore, each time the PAL� device strobes the HPI, two 4-bit reads must
be performed before strobing the HPI for the second byte. Since the PC parallel
port always supports 8-bit writes and 4-bit reads as a minimum, the nibble state
machine is active only during 4-bit reads (reads when MODE = 0). The state
machine can be reset by setting the RNW line low while operating in nibble
mode. The state machine is turned off when MODE = 1.

Figure 6–6 is the disabled state machine functional diagram. When the state
machine is disabled (MODE = 1) or when it is not selected (RNW is low), HBIL
mimics the BYTE signal.

Figure 6–6. Functional Diagram for a Write or 8-Bit Read Cycle

BYTE

HBIL

NBL

1st byte 2nd byte

6.3.3 Latch/Select (LS) Mode

The latch mode is used to set the D-latches for the RESET, MODE, and TRIST
signals. Latches in the PAL� device can be accessed only when the LS latch
is set. LS is actually a latch accessed by writing 0x2 to the HPI while CNTL1
and CNTL0 are both low. This corresponds to writing 0x0202 to the HPIC regis-
ter because of the required 16-bit data write to the HPIC. Bit 1 of the HPIC reg-
ister has no effect on the DSP itself; instead, this bit sets/resets the LS latch.
Writing a 0x0202 to the HPIC sets the LS latch high. As a result, changes to
the CNTL1 and CNTL0 signals results in loading another latch with data. Ana-
lyzing the logic diagram in Figure 6–4 shows that changes in the CNTL1 and
CNTL0 states will have the following effect:

Using a PAL� Device

6-11Hardware

CNTL (1,0) Effect

00 Neutral state

01 Level of D0 propagates to the MODE output.

Level of D1 propagates to the reset output. (MODE and re-
set must be loaded simultaneously.)

10 Level of D1 propagates to TRIST output

11 Unused

The levels of the data lines propagate to the respective output pins in real time.
To load the data into the latch, load the host data register first, then enter the
correct CNTL1 and CNTL0 levels and return to the neutral state to latch in the
data. You must return to the neutral state after loading the data to the latch to
allow the loading of the data register before performing another load. Also, re-
turning to the neutral state avoids transient states of the CNTL1 and CNTL0
lines. Transient states occur when attempting to change the two signal levels
at the same time. For example, if the current states of CNTL1 and CNTL0 are
high and low (equivalent to 1 and 0) and a load of the PC control register
changes the states to low and high (01), the bits may not change exactly at the
same time, generating erroneous states 00 or 11. Because both of these states
are neutral in the factory-programmed PAL� device, there is no concern. How-
ever, if the state 11 is used in a customized PAL� device, transient states may
have adverse effects. Always return to the neutral state to be safe.

To disable the LS mode, reset the LS latch to 0 by writing a 0x0000 to the HPIC.
At this point, the data latches are loaded and DSP/PC communications oper-
ate normally. The HPIC BOB bit = 0; therefore, the byte ordering is least signifi-
cant byte first. There are PC-based C functions that perform this task automati-
cally.

Refer to the host interface library C54XHIL on your DSKplus diskette for more
information about using the PAL� device. This library includes all of the com-
munication software needed to run application code on your PC. Remember
that when you are running host PC applications, usually you will be unable to
use the debugger.

PAL� Device Modifications

 6-12

6.4 PAL� Device Modifications

The information contained in this section is for experienced users
ONLY, applying it improperly may result in board damage.
Modifications to the DSKplus board are not supported by Texas
Instrument and void all warranties. The debugger and other
included software will not work correctly following board
modifications!

The PAL� device can be modified by reprogramming a 28-pin PLCC 22V10 device
and placing it into the socket. All pins of the PAL� device are accessible though
the JP headers. When modifying the PAL� device, keep in mind the pin connec-
tions listed:

� Pin 1. No connection

� Pin 2. PAL� device CLK input

� Pin 3. Connected to the PC’s D0 data line; cannot be disconnected from
the HPI data lines

� Pin 4. Connected to the PC’s D1 data line; cannot be disconnected from
the HPI data lines

� Pin 5. Connected to the PC’s CNTL1 line; can be disconnected from the
host by removing the series resistor, but cannot be disconnected from the
HPI’s HCNTL1 signal

� Pin 6. Connected to the PC’s BYTE line; can be disconnected from the
host by removing the series resistor, but cannot be disconnected from the
HPI’s HBIL signal

� Pin 7. Connected to the PC’s CNTL0 line; can be disconnected from the
host by removing the series resistor, but cannot be disconnected from the
HPI’s HCNTL0 signal

� Pin 8. No connection

� Pin 9. Connected to the host PC’s RNW line; can be disconnected from
the host by removing the series resistor, but cannot be disconnected from
the HPI’s HR/W signal

� Pin 10. Used for an asynchronous PAL� device reset; forces PAL� device
into 3-state mode by pulling this pin low (the pin is high for normal opera-
tion)

� Pin 11. General-purpose; input only

� Pin 12. General-purpose; input only

PAL� Device Modifications

6-13Hardware

� Pin 13. General-purpose; input only

� Pin 14. Ground

� Pin 15. No connection

� Pin 16. General purpose, input only

� Pin 17. 3-state controller; general-purpose I/O

� Pin 18. Strobe polarity; general-purpose I/O

� Pin 19. Used to create a strobe signal. The strobe signal is delayed by one
PAL� device CLK cycle and has a one PAL� device CLK cycle duration,
required to satisfy the tsu(HAD) and tw(HDSl) HPI timings. There is sufficient
guardband to accomodate an increase in the PAL� clock rate.

� Pin 20. Connected to the output enable (OE) of the bidirectional buffer
(74245). This pin is used to set the outputs of the bidirectional buffer to the
high-impedance state, for lower power consumption, or to allow an external
device control of the DSP HPI data lines.

� Pin 21. Latch select mode output; general purpose I/O

� Pin 22. No connection

� Pin 23. Connected to the DSP HDS2 pin and cannot be disconnected. If
using an external strobe via the JP4 (pin 25) header, be sure pin 23 of the
PAL� device is in the 3-state mode.

� Pin 24. Connected to the DSP reset pin (RS) and cannot be disconnected.
If you are using an external reset line via the JP4 (pin 2) header, be sure
pin 24 of the PAL� device is in 3-state mode. The reset LED (D2) is con-
nected to this pin.

� Pin 25. Connected to the DSP HBIL pin and cannot be disconnected. If
you are using an external HBIL line via the JP1 (pin 31) header, be sure
pin 25 of the PAL� device is in 3-state mode.

� Pin 26. NBL; selects which nibble is used by the 74257 multiplexer; can
be used as a general-purpose pin if the host PC has an 8-bit bidirectional
port

� Pin 27. Mode latch; can be used as a general-purpose pin if the host PC
has an 8-bit bidirectional port. This pin is also pulled high to disable the
74257 multiplexer. When pin 27 is high, additional external status/data,
etc., lines can be connected to be available in the host PC’s status register.

� Pin 28. VCC isolated through inductor (L1)

Connecting Boards to Headers

 6-14

6.5 Connecting Boards to Headers

External boards, sometimes called daughter boards, can be connected to the
DSKplus board via the six JP headers. The universal power supply included
with the kit has two independent 5-V power supplies capable of driving a total
of 3.3 A. Daughter boards may include a 5 DIN connector to separate these
power supplies, or you may choose to use the included DIN-to-5.5-mm adapt-
er. Connectors can be soldered to the JP header holes. Many electronic suppli-
ers can support 12 � 3 configurations.

6.6 Connecting the XDS510 Emulator Port

This section explains how to add debugging capabilities to your DSKplus
board by using Texas Instruments XDS510 emulator.

The XDS510 emulator port is the JP2 header on the DSKplus board. To con-
nect the XDS510 pod and cable, you must first solder a 7�2 header to the
header on the board. The emulator connector is keyed at pin 6, so you must
use wire cutters to cut off pin 6 of the soldered JP2 header.

Once the XDS510 header has been installed, turn off the power to the DSKplus
board, connect the XDS510 emulator to the board, and turn the power back
on. You do not need to disconnect the parallel port from the DSKplus board.

You can use the host printer port to cycle the reset line and to generate HPI
interrupts, etc. Additionally, by using the XDS510 emulator, debugging is less
intrusive and much more powerful. The XDS510 emulator debugs the ’C54x
DSP via the JTAG emulator port allowing you to debug applications that in-
volve the host port interface.

If you are controlling the reset line externally, be sure the PAL� device is in
3-state mode (TRISTATE is low). The PAL� device can be placed in the high-
impedance state mode by loading the TRIST latch with 0 (if TRISTATE is low,
RESET is in the high-impedance state).

Connecting Boards to Headers / Connecting the XDS510 Emulator Port

7-1

Initialization Routines

The chapter describes how to initialize each of the devices on the DSKplus
board and the PC’s parallel port.

Initialization of system elements must occur in a specific order:

1) Parallel port
2) PAL� device
3) HPI
4) DSP serial port
5) ’AC01 (analog interface device)

The first three elements form part of the communications link and the remain-
ing two elements are DSP peripherals.

Topic Page

7.1 Communication Link (CommLink) Initialization 7-2.

7.2 Serial Port and TLC320AC01 Initialization 7-3.

Chapter 7

Communication Link (CommLink) Initialization

 7-2

7.1 Communication Link (CommLink) Initialization

The CommLink initialization routine performs all initialization functions re-
quired for the host PC to communicate with the DSP. It also implements many
of the C functions included in the host interface library C54XHIL. The Comm-
Link initialization resides on the PC host.

7.1.1 Parallel Port and PAL � Device Initialization

The first function of a host application is to find the PC parallel port that con-
nects to the DSKplus board. To do this, using the host interface library, call the
C function locate port(). Other functions include:

void init_port(int);
set_latch(1,0);
mode();

The first C function performed is init_port(), which initializes the PC port to a
known state. The set_latch() function sets the appropriate latch in the PAL�

device. In this case, the PAL� device is brought out of the high-impedance
state (1) and the DSP is placed in reset (0). By default the port operates in
nibble mode. Call the function mode() to set the port to the 8-bit mode if you
have an 8-bit port.

7.1.2 Host Port Interface Initialization

For the DSP’s host port interface to operate correctly, call the function
hpi_init(), which performs a write to the HPI control register to configure the
byte ordering of the communication and to clear any pending interrupts. The
second operation hpi_init() performs is HPI address register initialization. The
routine initializes the HPIA to point to the beginning of the HPI RAM block
(1000h).

After the init_port(), set_latch(1,0), mode(), and hpi_init() functions execute,
the DSKplus board is ready to bootload.

Serial Port and TLC320AC01 Initialization

7-3Initialization Routines

7.2 Serial Port and TLC320AC01 Initialization

The second type of initialization in an application is DSP peripheral initializa-
tion. The on-board ’AC01 analog interface is an external device that connects
to the DSP’s TDM serial port. To use the analog interface, you must initialize
the TDM serial port control register (TSPC) and the ’AC01 registers.

Code for performing the initialization of the serial port and the ’AC01 is included
in the PERIPHS directory of the DSKplus software.

Note:

If you wish to use the DSP’s on-chip peripherals in your own applications,
your code must perform the appropriate peripheral initializations.

Perform the peripheral initialization by loading and running the following DSP
code:

XF = 0 /* Force the AC01 to reset state */
TSPC = #0008h /* Store 8h to the TDM serial port cotrl reg */
TSPC = #00C8h /* Store C8h to the TDM serial port ctrl reg */
CALL AC01INIT /* Call the AC01 init routine */

The first store to the TSPC stops the serial port from operating by resetting the
XRST and RRST bits each to 0. The second store to the TSPC configures the
serial port to receive the CLKX and CLKR clock signals externally (MCM = 0)
and configures FSR and FSX to receive the frame sync pulses externally
(TXM = 0). As a result of the second store to the TSPC, the serial port begins
operating, dependent upon external clock and frame sync pulses.

Note:

The ’AC01 is configured to generate the CLKX, CLR, FSX, and FSR signals.
Do not program the DSP serial port to generate these signals. Always store
#00C8h to the TSPC as the second store.

The CALL statement calls the function AC01INIT to initialize the ’AC01 regis-
ters. By default, the ’AC01 begins operating with a sampling rate of 15.4 kHz.
By programming the internal ’AC01 registers, sampling rates can be changed
quickly and easily. See the TLC320AC01C Single-Supply Analog Interface
Circuit Data Manual for more information about programming the ’AC01.

Serial Port and TLC320AC01 Initialization

 7-4

The AC01INIT routine is located in the PERIPHS directory of the DSKplus soft-
ware. Normally, this routine is included as one of the first operation in the DSP’s
application source code. The PERIPHS directory also includes initialization
routines for all of the peripherals of the TMS320C542. Your DSP software does
not need to initialize peripherals that it does not use.

A-1

Appendix A

DSKplus Circuit Board Dimensions
and Schematic Diagram

This appendix contains the circuit board dimensions shown in Figure A–1 and
the schematic diagram shown in Figure A–2 for the TMS320C54x DSKplus.

Appendix A

S
chem

atic D
iagram

 of D
S

K
plus C

ircuit B
oard

7-2 Figure A–1. TMS320C54x DSKplus Circuit Board Dimensions

2.
50

0

JP4

C19 C31

C33

IN

J2

J3

OUT

J1

JP1

R54 R53

R34

R35

JP2

JP3

R46 R45

R39

C24

C26

R36

L1

C32
C22

C34

U6

R37

R43 R48
R62

C35

U5

D2

U3

P1

U
2

U
1

JP
6

PTC

C
29

DSP

TMS320C542

4.920

2.
35

0

2.
20

0

3.800

4.445

0.150

Note: Dimensions are in inches.

Schematic Diagram of DSKplus Circuit Board

A-3DSKplus Circuit Board Dimensions and Schematic Diagram

F
ig

ur
e

A
–2

.
S

ch
em

at
ic

 D
ia

gr
am

 o
f D

S
K

pl
us

 C
irc

ui
t B

oa
rd

R
3

47
0

R
4

47
0

V
C

C

R
1

47
0

R
2

47
0

1325122411231022 921 820 719 618 517 416 315 214 1

P
1

D
B

25
–F

R
13

33
0

R
14

33
0

R
15

33
0

R
17

10
0

H
IN

T

H
C

N
T

L0

H
R

N
W

B
Y

T
E

H
C

N
T

L1

C
17

22
0p

f

R
16

33
0

C
3

22
0p

f

C
4

22
0p

f

C
1

22
0p

f

C
2

22
0p

f

R
5

27
0

R
6

27
0 R

7
27

0

G
N

D

B
D

0

B
D

1

B
D

2

B
D

3

B
D

4

B
D

5

B
D

6

R
11

27
0

R
12

27
0

R
8

27
0 R

9
27

0 R
10

27
0

R
18

10
0

R
19

10
0 R

20
10

0

R
21

10
0

B
D

7

S
LC

T

P
E

/B
U

S
Y

A
C

K

C
15

22
0p

f

C
16

22
0p

f

C
13

22
0p

f

C
14

22
0p

f

C
11

15
0p

f

C
12

15
0p

f

C
9

15
0p

f

C
10

15
0p

f

C
6

15
0p

f

C
7

15
0p

f

C
8

15
0p

f

C
5

15
0p

f

G
N

D

G
N

D

Schematic Diagram of DSKplus Circuit Board

A-4

F
ig

ur
e

A
–2

.
 S

ch
em

at
ic

 D
ia

gr
am

 o
f D

S
K

pl
us

 C
irc

ui
t B

oa
rd

 (
C

on
tin

ue
d)

R
27

2K

R
22

10
K

R
24

10
K

V
C

C

R
23

10
K

R
25

10
k

L1

IN
D

U
C

T
O

R

R
26

10
K

C
18

.1
U

F

G
N

D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

JP
6

H
E

A
D

E
R

 7
X

2

D
2

LE
D

Ye
llo

w

R
44

4.
7K

C
N

T
L1

 5

B
Y

T
E

 6

C
N

T
L0

 7

N C

8

R
N

W
 9

/R
S

T
10

N
C

 1
1

H
D

1
 4

H
D

0
 3

C
LK

 2

N C

1

V
D

D
28

M
O

D
E

27

N
B

L
26

H
B

IL
25

R
E

S
E

T
24

S
T

R
B

23

N C

2 2

LB
21

B
U

F
E

N
20

D
LY

1
19

P
O

L
18

T
R

IS
T

17

N
C

 1
6

N C

1 5

N
C

 1
3

N
C

 1
2

U
3

T
IB

P
A

L2
2V

10
A

C
F

N

(S
O

C
K

E
T

E
D

 P
LC

C
)

M
C

LK

B
Y

T
E

H
C

N
T

L1

H
C

N
T

L0

H
R

N
W

H
B

IL

H
D

S
2

R
E

S
E

T
\

G
N

D
H

D
0

H
D

1

H
D

2

H
D

3

A
1

 2
A

2
 3

A
3

 4
A

4
 5

A
5

 6
A

6
 7

A
7

 8
A

8
 9

G
19

D
IR

 1

B
1

 1
8

B
2

 1
7

B
3

 1
6

B
4

 1
5

B
5

 1
4

B
6

 1
3

B
7

 1
2

B
8

 1
1

U
1

74
A

C
T

24
5

B
D

0

B
D

1

B
D

2

B
D

3

B
D

6

B
D

7

B
D

4

B
D

5

H
D

4

H
D

5

H
D

6

H
D

7

S
LC

T

P
E

A
C

K

/B
U

S
Y

1A
 2

1B
 3

2A
 5

2B
 6

3A
 1

1

3B
 1

0

4A
 1

4

4B
 1

3

G
 1

5

A
/B

 1

1Y
 4

2Y
 7

3Y
 9

4Y
12

U
2

74
H

C
T

25
7

Schematic Diagram of DSKplus Circuit Board

A-5DSKplus Circuit Board Dimensions and Schematic Diagram

F
ig

ur
e

A
–2

.
 S

ch
em

at
ic

 D
ia

gr
am

 o
f D

S
K

pl
us

 C
irc

ui
t B

oa
rd

 (
C

on
tin

ue
d)

D
[0

..1
5]

A
[0

..1
5]

A 1 1

A 1 2

A 1 3

A 1 4

A 1 5

A 0
A 1

A 2
A 3

A 4
A 5

A 6
A 7

A 8
A 9

A 1 0

G
N

D

C
20 .1
U

F

C
19

.1
U

F

R
32

10
K

R
33

10
K

V
C

C G
N

D

R
29

10
K

R
30

10
K

R
31

10
K

V
C

C

IN
T

0\

IN
T

1\

IN
T

2\

IN
T

3\ N
M

I\

R
E

S
E

T
\

IN
T

0
 6

4

IN
T

1
 6

5

IN
T

2
 6

6

IN
T

3
 6

7

N
M

I
 6

3

R
S

 9
8

IA
C

K
 6

1

H
R

N
W

 1
8

H
C

S
 1

7

H
IN

T
 5

1

H
C

N
LT

1
 4

6

H
D

S
1

12
7

H
C

N
T

L0
 3

9

H
D

S
2

12
9

H
P

IE
N

A
 9

2

H
B

IL
 6

2

H
R

D
Y

 5
5

H
A

S
 1

3

H
D

0
 5

8

H
D

1
 6

9

H
D

2
 8

1

H
D

3
 9

5

H
D

4
12

0

H
D

5
12

4

H
D

6
13

5

H
D

7
 6

B
D

X
 5

9

B
C

LK
R

 4
1

B
D

R
 4

5

B
F

S
R

 4
3

B
C

LK
X

 4
8

B
F

S
X

 5
3

C
LK

O
U

T
 9

4

T
C

LK
R

 4
2

T
C

LK
X

 4
9

T
F

S
R

/T
A

D
D

 4
4

T
F

S
X

/T
F

R
M

 5
4

T
D

R
 4

7

T
D

X
 6

0

X
1

 9
6

X
2/

C
LK

IN
 9

7

V D D

4

V D D

3 3

V D D

5 6

V D D

7 5

V D D

1 0 5

V D D

1 3 0

V D D

1 1 2

C V D D

1 2

C V D D

1 6

C V D D

5 2

C V D D

6 8

C V D D

9 1

C V D D

1 2 5

C V D D

1 4 2

A 0

1 3 1

A 1

1 3 2

A 2

1 3 3

A 3

1 3 4

A 4

1 3 6

A 5

1 3 7

A 6

1 3 8

A 7

1 3 9

A 8

1 4 0

A 9

1 4 1

A 1 0

5

A 1 1

7

A 1 2

8

A 1 3

9

A 1 4

1 0

A 1 5

1 1

C V S S

1

C V S S

3

C V S S

1 5

C V S S

3 4

C V S S

3 7

C V S S

5 0

C V S S

7 0

C V S S

7 3

C V S S

9 0

C V S S

1 0 9

C V S S

1 1 1

C V S S

1 2 6

V S S

1 4

V S S

3 6

V S S

4 0

V S S

5 7

V S S

7 2

V S S

7 6

V S S

9 3

V S S

1 0 6

V S S

1 0 8

V S S

1 1 1

V S S

1 2 8

V S S

1 4 4

C N T

8 0

M P / M C

3 2

C L K M D 3

7 9

C L K M D 2

7 8

C L K M D 1

7 7

D
0

99

D
1

10
0

D
2

10
1

D
3

10
2

D
4

10
3

D
5

10
4

D
6

11
3

D
7

11
4

D
8

11
5

D
9

11
6

D
10

11
7

D
11

11
8

D
12

11
9

D
13

12
1

D
14

12
2

D
15

12
3

IS
22

P
S

20

D
S

21

R
/W

23

M
S

T
R

B
24

IO
S

T
R

B
25

R
E

A
D

Y
19

H
O

LD
30

IA
Q

29

H
O

LD
A

28

M
S

C
26

X
F

27

B
IO

31

T
O

U
T

82

E
M

U
0

83

E
M

U
1/

O
F

F
84

T
D

O
85

T
D

I
86

T
R

S
T

87

T
C

K
88

T
M

S
89U
5

T
M

S
32

0C
54

2
D

S
P

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

IA
C

K
\

H
R

N
W

H
C

S
\

H
IN

T

H
D

S
1

H
D

S
2

H
P

IE
N

A

H
C

N
T

L1

H
C

N
T

L0

H
D

0

H
D

1

H
D

2

H
D

3

H
D

4

H
B

IL H
R

D
Y

H
A

S
\

P
LL

X
4

(O
P

T
IO

N
 2

)

IS
\

P
S

\

D
S

\

R
/W

IO
S

T
R

B
\

M
S

T
R

B
\

R
E

A
D

Y

H
O

LD
\

IA
Q

\

H
O

LD
A

\

M
S

C
\

X
F

B
IO

\

T
O

U
T

H
D

5

H
D

6

H
D

7 B
D

X

B
C

LK
R B

D
R

B
F

S
R

B
C

LK
X

B
F

S
X

T
D

X

C
LK

O
U

T T
D

R

T
C

LK
R

T
C

LK
X

T
F

S
R

T
F

S
X

C
LK

IN
R

34

10
K

E
M

U
0

E
M

U
1

T
D

O T
D

I

T
R

S
T

\

T
C

K

T
M

S

R
35

10
K

V
C

C

C
LK

M
D

1

C
LK

M
D

2

C
LK

M
D

3

M
P

/M
C

\

R
28 33

N C

1

C L K

3

U
4

S
O

C
K

E
T

E
D

10
M

H
z

G
N

D

R
36

0

R
37

0

G
N

D

Schematic Diagram of DSKplus Circuit Board

A-6

F
ig

ur
e

A
–2

.
 S

ch
em

at
ic

 D
ia

gr
am

 o
f D

S
K

pl
us

 C
irc

ui
t B

oa
rd

 (
C

on
tin

ue
d)

C
35

4.
7U

F

G
N

D

R
60

33
K

R
59

10
K

C
33

.2
2U

F

R
57 10

R
55

51
0

V
C

C

R
56

10

C
32

4.
7U

F
R

52

10
K

R
51

10
K

V
C

C

T
D

R

R
63 0

D
O

U
T

 1
1

D
IN

 1
0

F
S

 1
2

M
C

LK
 1

4

S
C

LK
 1

3

F
S

D
 1

7

E
O

C
 1

9

M
/S

 1
8

F
C

0
 1

5

F
C

1
 1

6

P
W

R
D

W
N

 2

R
E

S
E

T
 8

S
U

B
S

 2
1

IN
+

26

IN
–

25

A
U

X
IN

+
28

A
U

X
IN

–
27

M
O

N
O

U
T

 1

O
U

T
+

 3
O

U
T

–
 4

D
A

C
V

D
D

 5

D
A

C
M

ID
 6

D
A

C
G

N
D

 7

A
D

C
V

D
D

24

A
D

C
M

ID
23

A
D

C
G

N
D

22

D
V

D
D

 9

D
G

N
D

20

U
6

T
LC

32
0A

C
01

C
F

N

C
LK

IN

G
N

D

J2

IN
 J

A
C

K

 3 2

 1

8

U
7A

T
LC

22
72

C

G
N

D

 5 6

 7

8

U
7B T
LC

22
72

C

C
38

22
0p

f

R
61

10
K

O
U

T
–

O
U

T
+

A
U

X
+

A
U

X
–

M
O

N
O

U
T

T
D

X

F
S

D
\

M
/S

\

T
C

LK
X

T
F

S
X

M
C

LK

P
W

R
D

W
N

\ X
F

C
31

.1
U

F

C
30

.1
U

F

G
N

D
G

N
D

R
53 33

R
54 33

T
F

S
R

T
C

LK
R

R
58

10
K

C
34

4.
7U

F

J3

O
U

T
 J

A
C

K

G
N

D

Schematic Diagram of DSKplus Circuit Board

A-7DSKplus Circuit Board Dimensions and Schematic Diagram

F
ig

ur
e

A
–2

.
 S

ch
em

at
ic

 D
ia

gr
am

 o
f D

S
K

pl
us

 C
irc

ui
t B

oa
rd

 (
C

on
tin

ue
d)

V
C

C

D
[0

..1
5]

R
39

4.
7K

R
38

4.
7K

V
C

C

T
M

S

T
D

I

1
2

3
4

5
6

7
8

9
10

11
12

13
14

JP
2

X
D

S
51

0
H

E
A

D
E

R

P
IN

 6
 (

K
ey

)

T
R

S
T

\

R
E

A
D

Y

R
45

10
K

 1 4 7 1
0

 1
3

 1
6

 1
9

 2
2

 2
5

 2
8

 3
1

 3
4

 3 6 9 12 15 18 21 24 27 30 33 36 2 5 8 11 14 17 20 23 26 29 32 35

JP
3

H
E

A
D

E
R

 1
2X

3

R
46

10
K

S
LC

T

D
3

D
5

D
7

D
9

D
11

D
13

D
15

B
IO

\

/B
U

S
Y

E
M

U
1

T
D

O T
C

K

E
M

U
0

R
40

10
K

R
41

10
K

R
42

10
K

 1 4 7 1
0

 1
3

 1
6

 1
9

 2
2

 2
5

 2
8

 3
1

 3
4

 3 6 9 12 15 18 21 24 27 30 33 36 2 5 8 11 14 17 20 23 26 29 32 35

JP
4

H
E

A
D

E
R

 1
2X

3

R
48

0

D
1

R
47

33

D
2

D
4

D
6

D
8

H
O

LD
\

M
P

/M
C

\

C
LK

O
U

T

A
C

K

P
E

D
0

D
10

D
12

D
14

IA
Q

\

H
O

LD
A

\

C
LK

M
D

2
C

LK
M

D
3

H
R

D
Y

H
D

S
2

H
C

S
\

H
R

N
W

H
P

IE
N

A H
D

S
1

H
A

S
\

R
43

0

R
/W

IS
\

IO
S

T
R

B
\

C
LK

M
D

1

IA
C

K
\

X
F

R
E

S
E

T
\

M
S

C
\

M
S

T
R

B
\

P
S

\

D
S

\

G
N

D

Schematic Diagram of DSKplus Circuit Board

A-8

F
ig

ur
e

A
–2

.
 S

ch
em

at
ic

 D
ia

gr
am

 o
f D

S
K

pl
us

 C
irc

ui
t B

oa
rd

 (
C

on
tin

ue
d)

H
IN

T

C
LK

IN

R
49 0

 1 4 7 1
0

 1
3

 1
6

 1
9

 2
2

 2
5

 2
8

 3
1

 3
4

 3 6 9 12 15 18 21 24 27 30 33 36 2 5 8 11 14 17 20 23 26 29 32 35

JP
5

H
E

A
D

E
R

 1
2X

3

IN
T

0\

IN
T

2\ N
M

I\

V
C

C

 1 4 7 1
0

 1
3

 1
6

 1
9

 2
2

 2
5

 2
8

 3
1

 3
4

 3 6 9 12 15 18 21 24 27 30 33 36 2 5 8 11 14 17 20 23 26 29 32 35

JP
1

H
E

A
D

E
R

 1
2X

3

H
D

[0
..7

]

H
C

N
T

L0

H
D

0

H
D

2

H
D

4

H
D

6

H
D

1

H
D

3

H
D

5

H
D

7
T

C
LK

R

T
C

LK
X

T
F

S
R

A
U

X
+

A
U

X
–

P
W

R
D

W
N

\

F
S

D
\

A
8

A
6

A
14

A
12

A
10

A
4

A
2

A
0

IN
T

1\

IN
T

3\

M
C

LK

A
9

A
7

A
15

A
13

A
11

T
F

S
X

T
D

R

T
D

X

M
/S

\

O
U

T
+ B
C

LK
R

B
C

LK
X

O
U

T
– M
O

N
O

U
T

H
B

IL

H
C

N
T

L1

B
F

S
R

B
F

S
X

B
D

R

B
D

X

T
O

U
T

V
C

C

A
[0

..1
5]

A
5

A
3

A
1

G
N

D

G
N

D

1

2

 3

J1

P
ow

er
 J

ac
k

P
T

C

JU
M

P
E

R

C
36

47
0p

f

C
37

47
0p

f

C
29

10
uf

V
C

C

G
N

D

D
1

LE
D

V
C

C

C
21

.1
U

F

C
22

.1
U

F

C
23

.1
U

F

C
24

.1
U

F

C
25

.1
U

F

C
26 .1
U

F

C
27

.1
U

F

C
28

.1
U

F

R
50

2K

G
R

E
E

N

G
N

D

B-1

Appendix A

PAL Equations

Included here are the PAL� equations and associated test vectors for the
factory default PAL� device with a brief functional description for each equa-
tion:

LS Loaded only when performing a HPIC write with data line
HD1=1 and BYTE=0. This sets the latch select bit and enables
loading of the RESET, MODE, and TRIST latches.

RESET Controls the DSP reset line. This latch is reset and set with !HD1
(inverted HD1 level). It is loaded only when LS=1 and
CNTL(0,1)=1 0.

TRIST Controls the 3-state controller. If TRIST=0 then RESET,
STROBE, and HBIL have no effect on the DSP. It is loadable
only when LS=1 and CNTL(0,1)=0 1.

MODE Determines how the HPI will interface to the PC. If MODE=0,
the PC parallel port functions in 4-bit mode. If MODE=1, the
parallel port functions in 8-bit mode. When MODE=1, the 74257
mutiplexer is disabled, since 8-bit bidirectional data can be read
from the data register and the multiplexer is not needed. MODE
can be loaded only when LS=1 and CNTL(0,1)=1 0.

BUFEN These 4-bit port data lines cannot be turned off or reversed. This
logic is used to disable the bidirectional buffer when performing
a read in 4-bit mode. By doing so, the parallel port and
bidirectional buffer will never drive into each other. The series
resistors can tolerate this but will cause data lines to be very
noisy in some cases. BUFEN is also disabled when TRIST=0
and MODE=1.

NBL Selects which four bits of the byte are received into the parallel
ports status register. Two BYTE cycles must be performed to
receive a byte and four BYTE cycles must be performed to
receive a 16-bit word. NBL is only active during a 4-bit read.
Writes are always eight bits.

Appendix B

 B-2

HBIL Tied to the DSP HPI to select which byte is to be transferred
to/from the HPI. HBIL mimics BYTE during all writes and 8-bit
reads. HBIL changes level every two BYTE cycles during a 4-bit
read, since two 4-bit reads from the status register must be
performed before reading the next byte from the HPI.

DLY1 Creates the 1-cycle delay in the synchronous delay line. The
1-cycle (100-ns) delay is used to conform to the HPI setup
timings for the HBIL, CNTL(0,1),and HR/W signals.

STRB This latch is the second stage of the synchronous delay line.
This creates a 1-cycle (100-ns) strobe signal. During the HPI
read, the HPI is strobed on the falling edge of STRB (connected
to HDS2). The data remains on the data lines only while
STRB=0. During an HPI write the HPI data is read in on the
rising edge of STRB. The polarity of this signal is controlled by
the POL latch.

POL Reverses the polarity of the STRB signal to keep the data on the
data lines during the BYTE cycle (HPI READS only). This allows
the relatively slow PC to read the data from the data register and
keeps the data on the data lines for the duration of the BYTE
cycle.

Example B–1. PAL� Equation Routine

 BYTE –––––– –––––– –––––––––– –––––– ––––––
 |_____| |_____| |_____| |_____|

 HRNW WRITE –––––––––––––––––––––––––––
 ______________________________| READ

 STRB ––––––– ––– ––– ––– ––––––– – – –
 |_| |_| |_| |_| |_____| |___| |___| |__

 HDx ––PC loads data for HPI write––––––xxxxxx––xxxxx–xxxxx–xxx
 ^
 |
 HPI keeps data on data lines so PC has time to read them.

PAL Equations

B-3PAL Equations

Example B–1. PAL� Equation Routine (Continued)

module C54xDSKp
title ’TMS320C54x DSKplus HPI/PC Interface Logic
Texas Instruments 17 Jul 1996’

 C54xDSKp device ’P22V10C’ ;

”Inputs
 Clk pin 2 ; ”clock input
 HD0 pin 3 ; ”HPI data line 0
 HD1 pin 4 ; ”HPI data line 1
 CNTL1 pin 5 ; ”HPI HCNTL1 input
 BYTE pin 6 ; ”Byte indicator
 CNTL0 pin 7 ; ”HPI HCNTL0 input
 RNW pin 9 ; ”HPI RW indicator
 RST pin 10 ; ”PAL � async reset

”Outputs
 POL pin 18 ; ”Strobe Polarity controller
 TRIST pin 17 ; ”tri–state controller
 DLY1 pin 19 ; ”delay state machine bit
 BUFEN pin 20; ; ”Bi–directional buffer enabler
 LS pin 21 ; ”Latch select mode
 STRB pin 23 ; ”Strobe output
 RESET pin 24 ; ”DSP reset pin
 HBIL pin 25 ; ”Synced BYTE, HPI byte indicator
 NBL pin 26 ; ”Nibble selector (4-bit mode)
 MODE pin 27 ; ”Mode latch output

 RD,WR,H,L = 1,0,1,0;

PAL Equations

 B-4

Example B–1. PAL� Equation Routine (Continued)

equations

 [POL,TRIST,LS,NBL,HBIL,DLY1,STRB,RESET,MODE].clk = Clk;
 [STRB, RESET, HBIL].oe = TRIST;
 [POL,NBL,HBIL,TRIST,LS,RESET,MODE].ar= !RST;

 LS := HD1 & (!BYTE & !RNW & !CNTL0 & !CNTL1)
 # LS & !(!BYTE & !RNW & !CNTL0 & !CNTL1);

 RESET := !HD1 & (LS & CNTL0 & !CNTL1)
 # RESET & !(LS & CNTL0 & !CNTL1);

 TRIST := HD0 & (LS & !CNTL0 & CNTL1)
 # TRIST & !(LS & !CNTL0 & CNTL1);

 MODE := HD0 & (LS & CNTL0 & !CNTL1)
 # MODE & !(LS & CNTL0 & !CNTL1);

 BUFEN = (!MODE & RNW) & TRIST
 # (MODE & !TRIST);

 NBL := ((BYTE & HBIL # NBL & !BYTE) & !MODE
 # MODE # !RNW) & TRIST
 # BYTE & !RNW & !TRIST;

 HBIL := ((!NBL & !BYTE) # (HBIL & BYTE)) & (!MODE # RNW)
 # (BYTE & (MODE # !RNW));

 DLY1 := HBIL;

 STRB := (!(DLY1 $ HBIL) & !POL)
 # ((DLY1 $ HBIL) & POL);

 POL := STRB & HBIL & POL
 # (RNW & !(STRB & HBIL));

trace ([CNTL0,CNTL1,BYTE,RNW] –>[BUFEN,MODE,TRIST,NBL,HBIL,DLY1,STRB]);

PAL Equations

B-5PAL Equations

Example B–1. PAL� Equation Routine (Continued)

test_vectors ”latch test vectors
([Clk, RST,LS,BYTE,RNW,CNTL0,CNTL1,HD0,HD1] –> [NBL,BUFEN,LS,RESET,TRIST,MODE]);
 [.C., 1, .X., 1 , 1 , .X., .X. ,.X.,.X.] –> [0,0,0 ,.Z., 0 , 0];
 [.C., 1, 1 , 0 , 0 , 0 , 0 ,.X., 1] –> [0,0,1 ,.Z., 0 , 0];”LB=1
 [.C., 1, 1 , 1 ,.X., 0 , 0 ,.X., 1] –> [1,0,1 ,.Z., 0 , 0];”HOLD
 [.C., 1, 1 , 1 ,.X., 1 , 0 ,.X., 1] –> [1,0,1 ,.Z., 0 , 0];”RESET=0
 [.C., 1, 1 , 1 ,.X., 1 , 0 ,.X., 0] –> [1,0,1 ,.Z., 0 , 0];”RESET=1
 [.C., 1, 1 , 1 ,.X., 0 , 0 , 1 ,.X.] –> [1,0,1 ,.Z., 0 , 0];”HOLD
 [.C., 1, 1 , 1 ,.X., 0 , 1 , 1 ,.X.] –> [1,0,1 , 1 , 1 , 0];”TRIST=1
 [.C., 1, 1 , 1 ,.X., 0 , 0 , 1 , 0] –> [1,0,1 , 1 , 1 , 0];”HOLD
 [.C., 1, 1 , 1 ,.X., 1 , 0 , 1 , 0] –> [1,0,1 , 1 , 1 , 1];”MODE=1
 [.C., 1, 1 , 1 ,.X., 1 , 0 , 0 , 0] –> [1,0,1 , 1 , 1 , 0];”MODE=0
 [.C., 1, 1 , 1 ,.X., 0 , 0 ,.X.,.X.] –> [1,0,1 , 1 , 1 , 0];”HOLD
; ” TURN OFF LS VIA WRITE CYCLE
 [.C., 1, 0 , 0 , 0 , 0 , 0 ,.X., 0] –> [1,0,0 , 1 , 1 , 0];”HOLD
 [.C., 1, 0 , 0 , 0 , 0 , 0 ,.X., 0] –> [1,0,0 , 1 , 1 , 0];”HOLD
 [.C., 1, 0 , 0 , 0 , 0 , 0 ,.X., 0] –> [1,0,0 , 1 , 1 , 0];”HOLD
 [.C., 1, 0 , 0 , 0 , 0 , 0 ,.X., 0] –> [1,0,0 , 1 , 1 , 0];”HOLD
 [.C., 1, 0 , 1 , 0 , 0 , 0 ,.X., 0] –> [1,0,0 , 1 , 1 , 0];”HOLD
 [.C., 1, 0 , 1 , 0 , 0 , 0 ,.X., 0] –> [1,0,0 , 1 , 1 , 0];”HOLD
 [.C., 1, 0 , 1 , 0 , 0 , 0 ,.X., 0] –> [1,0,0 , 1 , 1 , 0];”HOLD
 [.C., 1, 0 , 1 , 0 , 0 , 0 ,.X., 0] –> [1,0,0 , 1 , 1 , 0];”HOLD

PAL Equations

 B-6

Example B–1. PAL� Equation Routine (Continued)

test_vectors ”8-bit WRITE –> 4-bit READ OPERATION –> 8-bit WRITE
([Clk, RST, BYTE, RNW] –> [BUFEN, NBL, HBIL, DLY1, STRB]);
 [.C., 1 , 1 , 1] –> [1 , 1 , 1 , 1 , 1];
 [.C., 1 , 1 , 0] –> [0 , 1 , 1 , 1 , 1];
 [.C., 1 , 0 , 0] –> [0 , 1 , 0 , 1 , 1];
 [.C., 1 , 0 , 0] –> [0 , 1 , 0 , 0 , 0];
 [.C., 1 , 0 , 0] –> [0 , 1 , 0 , 0 , 1];
 [.C., 1 , 0 , 0] –> [0 , 1 , 0 , 0 , 1];
 [.C., 1 , 1 , 0] –> [0 , 1 , 1 , 0 , 1];
 [.C., 1 , 1 , 0] –> [0 , 1 , 1 , 1 , 0];
 [.C., 1 , 1 , 0] –> [0 , 1 , 1 , 1 , 1]; ”MAKE W–>R TRANS
 [.C., 1 , 1 , 1] –> [1 , 1 , 1 , 1 , 1];
 [.C., 1 , 1 , 1] –> [1 , 1 , 1 , 1 , 1];
 [.C., 1 , 1 , 1] –> [1 , 1 , 1 , 1 , 1];
 [.C., 1 , 0 , 1] –> [1 , 1 , 0 , 1 , 1]; ”R IN EFFECT
 [.C., 1 , 0 , 1] –> [1 , 1 , 0 , 0 , 0];
 [.C., 1 , 0 , 1] –> [1 , 1 , 0 , 0 , 0];
 [.C., 1 , 0 , 1] –> [1 , 1 , 0 , 0 , 0];
 [.C., 1 , 1 , 1] –> [1 , 0 , 0 , 0 , 0];
 [.C., 1 , 1 , 1] –> [1 , 0 , 0 , 0 , 0];
 [.C., 1 , 1 , 1] –> [1 , 0 , 0 , 0 , 0];
 [.C., 1 , 1 , 1] –> [1 , 0 , 0 , 0 , 0];
 [.C., 1 , 0 , 1] –> [1 , 0 , 1 , 0 , 0];
 [.C., 1 , 0 , 1] –> [1 , 0 , 1 , 1 , 1];
 [.C., 1 , 0 , 1] –> [1 , 0 , 1 , 1 , 0];
 [.C., 1 , 0 , 1] –> [1 , 0 , 1 , 1 , 0];
 [.C., 1 , 1 , 1] –> [1 , 1 , 1 , 1 , 0];
 [.C., 1 , 1 , 1] –> [1 , 1 , 1 , 1 , 0];
 [.C., 1 , 1 , 0] –> [0 , 1 , 1 , 1 , 0]; ”MAKE R–>W TRANS
 [.C., 1 , 1 , 0] –> [0 , 1 , 1 , 1 , 1]; ”W IN EFFECT
 [.C., 1 , 0 , 0] –> [0 , 1 , 0 , 1 , 1];
 [.C., 1 , 0 , 0] –> [0 , 1 , 0 , 0 , 0];
 [.C., 1 , 0 , 0] –> [0 , 1 , 0 , 0 , 1];
 [.C., 1 , 0 , 0] –> [0 , 1 , 0 , 0 , 1];
 [.C., 1 , 1 , 0] –> [0 , 1 , 1 , 0 , 1];
 [.C., 1 , 1 , 0] –> [0 , 1 , 1 , 1 , 0];
 [.C., 1 , 1 , 0] –> [0 , 1 , 1 , 1 , 1];

end

PAL Equations

C-1Assembler Directives Reference

Appendix A

Assembler Directives Reference

Assembler directives supply program data and control the assembly process.
They allow you to do the following:

� Assemble code and data into specified sections

� Reserve space in memory for uninitialized variables

� Control the appearance of listings

� Initialize memory

� Assemble conditional blocks

� Define global variables

This appendix is a detailed reference for all of the DSkplus assembler direc-
tives. Each directive is described individually including syntax and examples,,
and the directives are presented in alphabetical order. Generally, the direc-
tives are organized, one directive per page; however, related directives
(such as .if /.else/.endif) are presented together on one page. Following is an
alphabetical table of contents for the directives reference:

Directive Page Directive Page

.align C-2.

.bes C-31.

.break C-24.

.bss C-3.

.byte C-5.

.copy C-6.

.data C-9.

.else C-17.

.elseif C-17.

.end C-10.

.endif C-17.

.endloop C-24.

.equ C-27.

.eval C-11.

.field C-13.

.float C-16.

.if C-17.

.include C-6.

.int. C-19.

.length C-20.

.list C-21.

.long C-23.

.loop C-24.

.nolist C-21.

.page C-25.

.pstring C-32.

.sect C-26.

.setsect C29, C-30.

.set C-27.

.space C-31.

.string C-32.

.text C-33.

.title C-34.

.usect C-35.

.width C-20.

.word C-19.

.xfloat C-16.

.xlong C-23.

Appendix C

.align Align SPC on a 128-Word Boundary

C-2

Syntax .align [size in words]

Description The .align directive aligns the section program counter (SPC) on the next
boundary, depending on the size in words parameter. The size may be any
power of 2, although only certain values are useful for alignment. An operand
of 128 aligns the SPC on the next page boundary, and this is the default if no
size is given. The assembler assembles words containing null values (0) up
to the next x-word boundary.

Operand of 1 aligns SPC to word boundary

 2 aligns SPC to long word/even boundary

128 aligns SPC to page boundary

The assembler aligns the SPC on an x-word boundary within the current sec-
tion.

Example This example shows several types of alignment, including .align 2, .align 4, and
a default .align.

1 0000 0004 .byte 4
2 .align 2
3 0002 0045 .string ”Errorcnt”

0003 0072
0004 0072
0005 006F
0006 0072
0007 0063
0008 006E
0009 0074

4 .align
5 0080 6000 .field 3,3
6 0080 6A00 .field 5,4
7 .align 2
8 0082 6000 .field 3,3
9 .align 8
10 0088 5000 .field 5,4
11 .align
12 0100 0004 .byte 4

 Reserve Space in the .bss Section .bss

C-3 Assembler Directives Reference

Syntax .bss symbol, size in words [, alignment]

Description The .bss directive reserves space for variables in the .bss section. This directive
is usually used to allocate variables in RAM.

symbol points to the first location reserved by this invocation of the
.usect directive. The symbol corresponds to the name of
the variable for which you’re reserving space.

size in words is an expression that defines the number of words that are
reserved in section name.

alignment is an optional parameter. This flag causes the assembler
to allocate size on long word boundaries.

The assembler follows one rule when it allocates space in the .bss section:

Whenever a hole is left in memory, the .bss directive attempts to fill it. When a
.bss directive is assembled, the assembler searches its list of holes left by
previous .bss directives and tries to allocate the current block into one of the
holes.

Section directives for initialized sections (.text, .data, and .sect) end the current
section and begin assembling into another section. The .bss directive, however,
does not affect the current section. The assembler assembles the .bss directive
and then resumes assembling code into the current section.

.bss Reserve Space in the .bss Section

C-4

Example In this example, the .bss directive is used to allocate space for two variables,
TEMP and ARRAY. The symbol TEMP points to 4 words of uninitialized space
(at .bss SPC = 550h). The symbol ARRAY points to 100 words of uninitialized
space (at .bss SPC = 554h); this space must be allocated contiguously within
a page. Note that symbols declared with the .bss directive can be referenced
in the same manner as other symbols.

1 .setsect ”.text”, 0500h
2 .setsect ”.bss”, 0550h
3 ***
4 * Start Assembling into .text section *
5 ***
6 000500 .text
7 000500 E800 A = #0
8
9 ***
10 * Allocate 4 words in .bss for TEMP *
11 ***
12 000550 Var_1: .bss TEMP,4
13
14 ***
15 * Still in .text section *
16 ***
17 000501 F000 A = A + #56h

000502 0056
18 000503 F066 A = T * #73h

000504 0073
19
20 **
21 * Allocate 100 words in .bss for the symbol named ARRAY *
22 **
23 000554 .bss ARRAY,100
24
25 **
26 * Assemble more code into .text section *
27 **
28 000505 8050 @Var_1 = A
29 .end

 Initialize Bytes .byte

C-5 Assembler Directives Reference

Syntax .byte value1 [, ... , valuen]

Description The .byte directive places one or more bytes into consecutive words of the current
section. Each byte is placed in a word by itself; the eight LSBs are filled with
0s. A value can be either of the following:

� An expression that the assembler evaluates and treats as an 8-bit signed
number

� A character string enclosed in double quotes. Each character in a string
represents a separate value.

Values are not packed or sign extended; each byte occupies the eight least
significant bits of a full 16-bit word. The assembler truncates values greater than
eight bits. You can use up to 100 value parameters, but the total line length can-
not exceed 200 characters.

If you use a label, it points to the location where the assembler places the first
byte.

Example In this example 8-bit values—10, –1, abc, and a—are placed into consecutive
words in memory. The label STRX has the value 100h, which is the location
of the first initialized word.

1 0000 .space 100h * 16
2 0100 000a STRX .byte 10, –1, ”abc”, ’a’

0101 00ff
0102 0061
0103 0062
0104 0063
0105 0061

.copy/.include Copy Source File

C-6

Syntax .copy [”]filename[”]
.include [”]filename[”]

Description The .copy and .include directives tell the assembler to read source statements
from a different file. The statements that are assembled from a copy file are
printed in the assembly listing. The statements that are assembled from an
included file are not printed in the assembly listing, regardless of the number of
.list/.nolist directives assembled. The assembler:

1) Stops assembling statements in the current source file.

2) Assembles the statements in the copied/included file.

3) Resumes assembling statements in the main source file, starting with the
statement that follows the .copy or .include directive.

The filename is a required parameter that names a source file. It may be
enclosed in double quotes and must follow operating system conventions. You
can specify a full pathname (for example, c:\dsp\file1.asm). If you do not spec-
ify a full pathname, the assembler searches for the file in:

1) The directory that contains the current source file.
2) Any directories named with the –i assembler option.
3) Any directories specified by the environment variable A_DIR.

The .copy and .include directives can be nested within a file being copied or
included. The assembler limits nesting to ten levels; the host operating system
may set additional restrictions. The assembler precedes the line numbers of
copied files with a letter code to identify the level of copying. An A indicates the
first copied file, B indicates a second copied file, etc..

 Copy Source File .copy/.include

C-7 Assembler Directives Reference

Example 1 In this example, the .copy directive is used to read and assemble source state-
ments from other files; then the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file
byte.asm. When copy.asm assembles, the assembler copies byte.asm into its
place in the listing (note listing below). The copy file byte.asm contains a .copy
statement for a second file, word.asm.

When it encounters the .copy statement for word.asm, the assembler switches
to word.asm to continue copying and assembling. Then the assembler returns
to its place in byte.asm to continue copying and assembling. After completing
assembly of byte.asm, the assembler returns to copy.asm to assemble its
remaining statement.

copy.asm
(Source file)

byte.asm
(First copy file)

word.asm
(Second copy file)

.space 29

.copy ”byte.asm”

 **Back in original file
.pstring ”done”

** In byte.asm
.byte 32,1+ ’A’
.copy ”word.asm”

** Back in byte.asm
.byte 67h + 3q

** In word.asm
.word 0ABCDh, 56q

Listing file:

1 0000 .space 29
2 .copy ”byte.asm”

A 1 ** In byte.asm
A 2 0002 0020 .byte 32,1+ ’A’

0003 0042
A 3 .copy ”word.asm”
B 1 * In word.asm
B 2 0004 ABC .word 0ABCDh, 56q

0005 002
A 4 ** Back in byte.asm
A 5 0006 006 .byte 67h + 3q

3
4 ** Back in original file
5 0007 646F .pstring ”done”

0008 6E65

.copy/.include Copy Source File

C-8

Example 2 In this example, the .include directive is used to read and assemble source
statements from other files; then the assembler resumes assembling into the
current file. The mechanism is similar to the .copy directive, except that state-
ments are not printed in the listing file.

include.asm
(Source file)

byte2.asm
(First include file)

word2.asm
(Second include file)

.space 29

.include ”byte2.asm”

 **Back in original file
.string ”done”

** In byte2.asm
.byte 32,1+ ’A’
.include ”word2.asm”

** Back in byte2.asm
.byte 67h + 3q

** In word2.asm
.word 0ABCDh, 56q

Listing file:

1 0000 .space 29
2 .include ”byte2.asm”
3
4 ** Back in original file
5 0007 0064 .string ”done”

0008 006F
0009 006E
000a 0065

 Assemble into .data Section .data

C-9 Assembler Directives Reference

Syntax .data

Description The .data directive tells the assembler to begin assembling source code into
the .data section; .data becomes the current section. The .data section is nor-
mally used to contain tables of data or preinitialized variables.

The assembler assumes that .text is the default section. Therefore, at the
beginning of an assembly, the assembler assembles code into the .text section
unless you use a section control directive.

Example In this example, code is assembled into the .data and .text sections.

 1 ***
2 ** Reserve space in .data. **
3 ***
4 0000 . data
5 0000 .space 0CCh
6
7 ***
8 ** Assemble into .text. **

 9 ***
10 0000 .text
 ; constant into .data.
11 0000 INDEX .set 0
12 0000 e800 A = #INDEX
13
14 ***
15 ** Assemble into .data. **
16 ***
17 000d Table: .data
18 000d ffff .word –1 ; Assemble 16–bit
19
20 000e 00ff .byte 0FFh ; Assemble 8–bit
21 ; constant into .data.
22
23 ***
24 ** Assemble into .text. **
25 ***
26 0001 .text
27 0001 000d A = A + @Table
28
29 ***
30 ** Resume assembling into the .data section **
31 ** at address 0Fh. **
32 ***
33 000f .data

.end End Assembly

C-10

Syntax .end

Description The .end directive is optional and terminates assembly. It should be the last
source statement of a program. The assembler ignores any source statements
that follow a .end directive.

This directive has the same effect as an end-of-file character. You can use .end
when you’re debugging and would like to stop assembling at a specific point
in your code.

Example This example shows how the .end directive terminates assembly. If any source
statements follow the .end directive, the assembler ignores them.

Source File:

START: .space 300
TEMP .set 15

.bss LOC1, 48h
A = |A|
A = A + #TEMP

 @LOC1 = A
.end
.byte 4
.word CCCh

Listing file:

1 0000 START: .space 300
2 000F TEMP .set 15
3 0000 .bss LOC1, 48h
4 0013 F485 A = |A|
5 0014 F000 A = A + #TEMP

0015 000F
6 0016 8000 @LOC1 = A
7 .end

 Assign Character Strings to Substitution Symbols .eval

C-11 Assembler Directives Reference

Syntax .eval well-defined expression, substitution symbol

Description The .eval directive performs arithmetic on substitution symbols, which are
stored in the substitution symbol table. This directive evaluates the expression
and assigns the string value of the result to the substitution symbol. The .eval
directive is especially useful as a counter in .loop/.endloop blocks.

well-defined
expression

is an alphanumeric expression consisting of legal values that
have been previously defined.

substitution
symbol

is a required parameter that must be a valid symbol name.
The substitution symbol may be 32 characters long and
must begin with a letter. Remaining characters of the sym-
bol can be a combination of alphanumeric characters,
underscores, and dollar signs.

.eval Assign Character Strings to Substitution Symbols

C-12

Example This example shows how .eval can be used.

1 .sslist;show expanded sub. symbols
2 *
3 * .eval example
4 *
5
6 0000 f000 A += #100

0001 0064
7 0002 6d90 *AR0+
8 0003 6d90 *AR0+
9
10 .asg 0, x
11 .loop 5
12 .eval x+1, x
13 .word x
14 .endloop

1 .eval x+1, x
.eval 0+1, x
1 0004 0001 .word x
.word 1
1 .eval x+1, x
.eval 1+1, x
1 0005 0002 .word x
.word 2
1 .eval x+1, x
.eval 2+1, x
1 0006 0003 .word x
.word 3
1 .eval x+1, x
.eval 3+1, x
1 0007 0004 .word x
.word 4
1 .eval x+1, x
.eval 4+1, x
1 0008 0005 .word x
.word 5

 Initialize Field .field

C-13 Assembler Directives Reference

Syntax .field value [, size in bits]

Description The .field directive can initialize multiple-bit fields within a single word of
memory. This directive has two operands:

value is a required parameter; it is an expression that is eva-
luated and placed in the field.

size is an optional parameter; it specifies a number from 1 to
32, which is the number of bits in the field. If you do not
specify a size, the assembler assumes that the size is 16
bits. If you specify a size of 16 or more, the field will start
on a word boundary. If you specify a value that cannot fit
into size bits, the assembler truncates the value and
issues an error message. For example, .field 3,1 causes
the assembler to truncate the value 3 to 1; the assembler
also prints the message:

***warning – value truncated.

Successive .field directives pack values into the specified number of bits start-
ing at the current word. Fields are packed starting at the most significant part
of the word, moving toward the least significant part as more fields are added.
If the assembler encounters a field size that does not fit into the current word,
it writes out the word, increments the SPC, and begins packing fields into the
next word. You can use the .align directive with an operand of 1 to force the
next .field directive to begin packing into a new word.

If you use a label, it points to the word that contains the specified field.

.field Initialize Field

C-14

Example This example shows how fields are packed into a word. Notice that the SPC
does not change until a word is filled and the next word is begun. For more
examples of the .field directive, see page 5-26.

1 ************************************
2 ** Initialize a 14–bit field. **
3 ************************************
4 0000 2AF0 .field 0ABCh, 14
5
6 ************************************
7 ** Initialize a 5–bit field **
8 ** in a new word. **
9 ************************************
10 0001 5000 L_F: .field 0Ah, 5
11
12 ***********************************
13 ** Initialize a 4–bit field **
14 ** in the same word. **
15 ************************************
16 0001 5600 x : .field 0Ch, 4
17
18 ************************************
19 ** 16–bit relocatable field **
20 ** in the next word. **
21 ************************************
22 0002 0001 .field x
23
24 ************************************
25 ** Initialize a 32–bit field. **
26 ************************************
27 0003 0000 .field 04321h, 32

0004 4321

 Initialize Field .field

C-15 Assembler Directives Reference

Figure C–1 shows how the directives in this example affect memory.

Figure C–1. The .field Directive

0 0 1 0 1 0 1 0 1 1 1 1 0 0

0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0

0 1 0 1 0

0 1 0 1 0 1 1 0 0

0 0 0 0 10 0 0 00 0 00 0 0 0

14-bit field

5-bit field

4-bit field

15 0
Word Code

(a) 0

(b) 0

1

(c) 1

(d) 1

2

.field 0ABCh, 14

.field 00Ah, 5

.field 000Ch, 4

.field x

0 0 0 0 11 0 0 10 0 10 1 0 0

(e) 3

4

.field 04321,320 0 0 0 00 0 0 00 0 00 0 0 0

0 0 0 0 00 0 0 00 1 10 1 0 1

.float/.xfloat Initialize Floating-Point Value

C-16

Syntax .float value1 [, ... , valuen]
.xfloat value1 [, ... , valuen]

Description The .float and .xfloat directives place the floating-point representation of one
or more floating-point constants into the current section. The value must be a
floating-point constant or a symbol that has been equated to a floating-point
constant. Each constant is converted to a floating-point value in IEEE single-
precision 32-bit format. Floating point constants are aligned on the long-word
boundaries unless the .xfloat directive is used. The .xfloat directive performs
the same function as the .float directive but does not align the result on the long
word boundary.

The 32-bit value consists of three fields:

Field Meaning

s A 1-bit sign field

e An 8-bit biased exponent

f A 23-bit fraction

The value is stored most significant word first, least significant word second,
in the following format:

s e f
31 30 23 22 0

Example This example shows the .float directive.

1 0000 E904 .float –1.0e25
0001 5951

2 0002 4040 .float 3
0003 0000

3 0004 42F6 .float 123
0005 0000

 Assemble Conditional Blocks .if/.elseif/.else/.endif

C-17 Assembler Directives Reference

Syntax .if well-defined expression
.elseif well-defined expression
.else
.endif

Description Four directives provide conditional assembly:

The .if directive marks the beginning of a conditional block. The well-defined
expression is a required parameter.

� If the expression evaluates to true (nonzero), the assembler assembles
the code that follows the expression (up to a .elseif, .else, or .endif).

� If the expression evaluates to false (0), the assembler assembles code
that follows a .elseif (if present), .else (if present), or .endif (if no .elseif or
.else is present).

The .elseif directive identifies a block of code to be assembled when the .if
expression is false (0) and the .elseif expression is true (nonzero). When the
.elseif expression is false, the assembler continues to the next .elseif (if pres-
ent), .else (if present) or .endif (if no .elseif or .else is present). The .elseif
directive is optional in the conditional blocks, and more than one .elseif can be
used. If an expression is false and there is no .elseif statement, the assembler
continues with the code that follows a .else (if present) or a .endif.

The .else directive identifies a block of code that the assembler assembles
when the .if expression and all .elseif expressions are false (0). This directive
is optional in the conditional block; if an expression is false and there is no .else
statement, the assembler continues with the code that follows the .endif.

The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional assembly
block and the .elseif directive can be used more than once within a conditional
assembly block.

For information about relational operators, see subsection 5.9.4, page 5-17.

.if/.elseif/.else/.endif Assemble Conditional Blocks

C-18

Example This example shows conditional assembly.

1 SYM1 .set 1
2 SYM2 .set 2
3 SYM3 .set 3
4 SYM4 .set 4
5
6 If_4: .if SYM4 = SYM2 * SYM2
7 0000 0004 .byte SYM4 ; Equal values
8 .else
9 .byte SYM2 * SYM2 ; Unequal values
10 .endif
11
12 If_5: .if SYM1 <= 10
13 0001 000a .byte 10 ; Less than / equal
14 .else
15 .byte SYM1 ; Greater than
16 .endif
17
18 If_6: .if SYM3 * SYM2 != SYM4 + SYM2
19 .byte SYM3 * SYM2 ; Unequal value
20 .else
21 0002 0008 .byte SYM4 + SYM4 ; Equal values
22 .endif
23
24 If_7: .if SYM1 = 2
25 .byte SYM1
26 .elseif SYM2 + SYM3 = 5
27 0003 0005 .byte SYM2 + SYM3
28 .endif

 Initialize 16-bit Integer .int/.word

C-19 Assembler Directives Reference

Syntax .int value1 [, ... , valuen]
.word value1 [, ... , valuen]

Description The .int and .word directives are equivalent; they place one or more values
into consecutive 16-bit fields in the current section.

You can use as many values as fit on a single line. If you use a label, it points
to the first word that is initialized.

Example 3 In this example, the .int directive is used to initialize words.

1 0000 .space 73h
2 0000 .bss PAGE, 128
3 0080 .bss SYMPTR, 3
4 0008 E856 INST: A = #56h
5 0009 000A .int 10, SYMPTR, –1, 35 + ’a’, INST

000a 0080
000b FFFF
000c 0084
000d 0008

Example 4 In this example, the .word directive is used to initialize words. The symbol
WordX points to the first word that is reserved.

1 0000 0C80 WORDX: .word 3200, 1 + ’AB’, –0AFh, ’X’
0001 4143
0002 FF51
0003 0058

.length/.width Set Listing Page Size

C-20

Syntax .length page length
.width page width

Description The .length directive sets the page length of the output listing file. It affects the
current and following pages. You can reset the page length with another
.length directive.

� Default length: 60 lines
� Minimum length: 1 line
� Maximum length: 32,767 lines

The .width directive sets the page width of the output listing file. It affects the
next line assembled and the lines following; you can reset the page width with
another .width directive.

� Default width: 80 characters
� Minimum width: 80 characters
� Maximum width: 200 characters

The width refers to a full line in a listing file; the line counter value, SPC value,
and object code are counted as part of the width of a line. Comments and other
portions of a source statement that extend beyond the page width are truncated
in the listing.

The assembler does not list the .width and .length directives.

Example In this example, the page length and width are changed.

** Page length = 65 lines. **
** Page width = 85 characters. **

.length 65

.width 85

** Page length = 55 lines. **
** Page width = 100 characters. **

.length 55

.width 100

 Start/Stop Source Listing .list/.nolist

C-21 Assembler Directives Reference

Syntax .list
.nolist

Description Two directives enable you to control the printing of the source listing:

The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive
is encountered. The .nolist directive can be used to reduce assembly time and
the source listing size.

The assembler does not print the .list or .nolist directives or the source statements
that appear after a .nolist directive. However, it continues to increment the line
counter. You can nest the .list/.nolist directives; each .nolist needs a matching .list
to restore the listing.

By default, the source listing is printed to the listing file; the assembler acts as
if the .list directive had been specified.

Note:

If you don’t request a listing file when you invoke the assembler, the assembler
ignores the .list directive.

Example This example shows how the .copy directive inserts source statements from
another file. The first time this directive is encountered, the assembler lists the
copied source lines in the listing file. The second time this directive is encoun-
tered, the assembler does not list the copied source lines, because a .nolist
directive was assembled. The .nolist, the second .copy, and the .list directives
do not appear in the listing file. Also, the line counter is incremented, even
when source statements are not listed.

.list/.nolist Start/Stop Source Listing

C-22

Source file:

.copy ”copy2.asm”
* Back in original file

NOP
.nolist
.copy ”copy2.asm”
.list

* Back in original file
.string ”Done”

Listing file:

 1 .copy ”copy2.asm”
 A 1 * In copy2.asm (copy file)
 A 2 0000 0020 .word 32, 1 + ’A’
 0001 0042
 2 * Back in original file
 3 0002 F495 NOP
 7 * Back in original file
 8 0005 0044 .string ”Done”
 0006 006F
 0007 006E
 0008 0065

 Initialize Long Word .long/.xlong

C-23 Assembler Directives Reference

Syntax .long value1 [, ... , valuen]
.xlong value1 [, ... , valuen]

Description The .long and .xlong directives place one or more 32-bit values into consecutive
words in the current section. The most significant word is stored first. The .long
directive aligns the result on the long word boundary, while the .xlong directive
does not.

You can use up to 100 values, but they must fit on a single source statement
line. If you use a label, it points to the first word that is initialized.

Example This example shows how the .long and .xlong directives initialize double words.

 1 0000 0000 DAT1: .long 0ABCDh, ’A’ + 100h, ’g’, ’o’
 0001 ABCD
 0002 0000
 0003 0141
 0004 0000
 0005 0067
 0006 0000
 0007 006F
 2 0008 0000 .xlong DAT1, 0AABBCCDDh
 0009 0000
 000a AABB
 000b CCDD
 3 000c DAT2:

.loop/.break/.endloop Assemble Code Block Repeatedly

C-24

Syntax .loop [well-defined expression]
.break [well-defined expression]
.endloop

Description Three directives enable you to repeatedly assemble a block of code:

The .loop directive begins a repeatable block of code. The optional expression
evaluates to the loop count (the number of loops to be performed). If there is no
expression, the loop count defaults to 1024, unless the assembler first encounters
a .break directive with an expression that is true (nonzero) or omitted.

The .break directive is optional, along with its expression. When the expression
is false (0), the loop continues. When the expression is true (nonzero), or
omitted, the assembler breaks the loop and assembles the code after the
.endloop directive.

The .endloop directive terminates a repeatable block of code; it executes
when the .break directive is true (nonzero) or when number of loops performed
equals the loop count given by .loop

Example This example illustrates how these directives can be used with the .eval directive.

 1 .eval 0,x
 2 COEF .loop
 3 .word x*100
 4 .eval x+1, x
 5 .break x = 6
 6 .endloop
1 0000 0000 .word 0*100
1 .eval 0+1, x
1 .break 1 = 6
1 0001 0064 .word 1*100
1 .eval 1+1, x
1 .break 2 = 6
1 0002 00C8 .word 2*100
1 .eval 2+1, x
1 .break 3 = 6
1 0003 012C .word 3*100
1 .eval 3+1, x
1 .break 4 = 6
1 0004 0190 .word 4*100
1 .eval 4+1, x
1 .break 5 = 6
1 0005 01F4 .word 5*100
1 .eval 5+1, x
1 .break 6 = 6

 Eject Page in Listing .page

C-25 Assembler Directives Reference

Syntax .page

Description The .page directive produces a page eject in the listing file. The .page directive
is not printed in the source listing, but the assembler increments the line
counter when it encounters it. Using the .page directive to divide the source
listing into logical divisions improves program readability.

Example This example shows how the page directive causes the assembler to begin a
new page of the source listing.

Source file:

 .title ”**** Page Directive Example ****”
; .
; .
; .
 .page

Listing file:

TMS320C54x DSKplus Assembler Version x.xx Sun Apr 23 13:06:08 1995
 Copyright (c) 1996 Texas Instruments Incorporated

**** Page Directive Example **** PAGE 1

 2 ; .
 3 ; .
 4 ; .
TMS320C54x DSKplus Assembler Version x.xx Sun Apr 23 13:06:08 1995
 Copyright (c) 1996 Texas Instruments Incorporated

**** Page Directive Example **** PAGE 2

.sect Assemble into Named Sections

C-26

Syntax .sect ” section name”

Description The .sect directive defines a named section that can be used like the default
.text and .data sections. The .sect directive begins assembling source code
into the named section.

The section name identifies a section that the assembler assembles code into. The
name is significant to eight characters and must be enclosed in double quotes.

Example This example defines two special-purpose sections, Sym_Defs and Vars, and
assembles code into them.

 1 **
 2 ** Begin assembling into .text section. **
 3 **
 4 0000 .text
 5 0000 E878 A = #78h ; Assembled into .text
 6 0001 F000 A = A + #36h ; Assembled into .text
 0002 0036
 7 **
 8 ** Begin assembling into Sym_Defs section. **
 9 **
 10 0000 .sect ”Sym_Defs”
 11 0000 3D4C .float 0.05 ; Assembled into Sym_Defs
 0001 CCCD
 12 0002 00AA X: .word 0AAh ; Assembled into Sym_Defs
 13 0003 F000 A = A + #X ; Assembled into Sym_Defs
 0004 0002
 14 **
 15 ** Begin assembling into Vars section. **
 16 **
 17 0000 .sect ”Vars”
 18 0010 WORD_LEN .set 16
 19 0020 DWORD_LEN .set WORD_LEN * 2
 20 0008 BYTE_LEN .set WORD_LEN / 2
 21 **
 22 ** Resume assembling into .text section. **
 23 **
 24 0003 .text
 25 0003 F000 A = A + #42h ; Assembled into .text
 0004 0042
 26 0005 0003 .byte 3, 4 ; Assembled into .text
 0006 0004
 27 **
 28 ** Resume assembling into Vars section. **
 29 **
 30 0000 .sect ”Vars”
 31 0000 000D .field 13, WORD_LEN
 32 0001 0A00 .field 0Ah, BYTE_LEN
 33 0002 0000 .field 10q, DWORD_LEN
 0003 0008
 34

 Define Assembly-Time Constant .set / .equ

C-27 Assembler Directives Reference

Syntax symbol .set value
symbol .equ value

Description The .set and .equ directives equate a constant value to a symbol. The symbol
can then be used in place of a value in assembly source. This allows you to
equate meaningful names with constants and other values.

symbol points to the first location reserved by this invocation of the
.usect directive. The symbol corresponds to the name of
the variable for which you’re reserving space.

value must be a well-defined expression; that is, all symbols in
the expression must be previously defined in the current
source module.

Undefined external symbols and symbols that are defined later in the module
cannot be used in the expression. If the expression is relocatable, the symbol
to which it is assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value
is not part of the actual object code and is not written to the output file.

Symbols defined with .set can be made externally visible with the .def or .global
directive. In this way, you can define global absolute constants.

.set/.equ Define Assembly-Time Constant

C-28

Example This example shows how symbols can be assigned with .set and .equ.

 1 **
 2 ** Equate symbol AUX_R1 to register AR1 **
 3 ** and use it instead of the register. **
 4 **
 5 0011 AUX_R1 .set AR1
 6 0000 7711 MMR(AUX_R1) = #56h
 0001 0056
 7
 8 **
 9 ** Set symbol index to an integer expr. **
 10 ** and use it as an immediate operand. **
 11 **
 12 0035 INDEX .equ 100/2 +3
 13 0002 F000 A = A + #INDEX
 0003 0035
 14
 15 **
 16 ** Set symbol SYMTAB to a relocatable expr. **
 17 ** and use it as a relocatable operand. **
 18 **
 19 0004 000A LABEL .word 10
 20 0005 SYMTAB .set LABEL + 1
 21
 22 **
 23 ** Set symbol NSYMS equal to the symbol **
 24 ** INDEX and use it as you would INDEX. **
 25 **
 26 0035 NSYMS .set INDEX
 27 0005 0035 .word NSYMS

 Set Section Physical Address .setsect

C-29 Assembler Directives Reference

Syntax .setsect ” section name” , address [,page]

Description The .setsect directive initializes the absolute address of the named section. The
.setsect directive must be specified before the declaration of a section (.bss,
.text, etc.) or the section program counter (SPC) begins to assemble code into
the section’s default address (0).

section name can be either a section directive such as .text or .bss. If
section name is an initialized or uninitialized named sec-
tion, such as .sect or .usect, the actual name is used to ref-
erence the section (see the following example).

address specifies the beginning address of the section specified as
the section name. The assembler maintains each section
counter of the assembly program.

page specifies where the section resides in memory. Page 0 is pro-
gram memory and page 1 is data. You can force the program
memory to be loaded to data space by specifying page = 1
in the page field. The same applies for data memory being
loaded to program space.

.setsect Set Section Physical Address

C-30

Example This example shows how symbols can be assigned with .setsect.

 1 .setsect ”.text”, 0500h
 2 .setsect ”.bss”, 0550h
 3 .setsect ”Vectors”, 080h
 4 **
 5 * Start Assembling into .text section *
 6 **
 7 000500 .text
 8 000500 E800 A = #0
 9
 10 **
 11 * Allocate 4 words in .bss for TEMP *
 12 **
 13 000550 Var_1: .bss TEMP,4
 14
 15 **
 16 * Still in .text section *
 17 **
 18 000501 F000 A = A + #56h
 000502 0056
 19 000503 F066 A = T * #73h
 000504 0073
 20
 21 **
 22 * Assemble into the Vectors section *
 23 **
 24 000080 .sect ”Vectors”
 25 000080 F4EB RESET return_enable
 26 000081 .space (3*16)
 27 000084 F4EB NMI: return_enable
 28
 29 **
 30 * Assemble more code into .text section *
 31 **
 32 000505 .text
 33 000505 8050 @Var_1 = A
 34 .end

 Reserve Space .space/.bes

C-31 Assembler Directives Reference

Syntax .space size in bits
.bes size in bits

Description The .space and .bes directives reserve size number of bits in the current section
and fill them with 0s.

When you use a label with the .space directive, it points to the first word reserved.
When you use a label with the .bes directive, it points to the last word reserved.

Example This example shows how memory is reserved with the .space and .bes directives.

 1 ***
 2 ** Begin assembling into .text section. **
 3 ***
 4 0000 .text
 5
 6 ***
 7 ** Reserve 0F0 bits (15 words) in the **
 8 ** .text section. **
 9 ***
 10 0000 .space 0F0h
 11 000f 0100 .word 100h, 200h
 0010 0200
 12 ***
 13 ** Begin assembling into .data section. **
 14 ***
 15 0000 .data
 16 0000 0049 .string ”In .data”
 0001 006E
 0002 0020
 0003 002E
 0004 0064
 0005 0061
 0006 0074
 0007 0061
 17 ***
 18 ** Reserve 100 bits in the .data section; **
 19 ** RES_1 points to the first word that **
 20 ** contains reserved bits. **
 21 ***
 22 0008 RES_1: .space 100
 23 000f 000F .word 15
 24 0010 0008 .word RES_1
 25
 26 ***
 27 ** Reserve 20 bits in the .data section; **
 28 ** RES_2 points to the last word that **
 29 ** contains reserved bits. **
 30 ***
 31 0012 RES_2: .bes 20
 32 0013 0036 .word 36h
 33 0014 0012 .word RES_2

.string/.pstring Initialize Text

C-32

Syntax .string ” string1 ” [, ... , ” stringn ”]
.pstring ” string1 ” [, ... , ” stringn ”]

Description The .string and .pstring directives place 8-bit characters from a character
string into the current section. With the .string directive, each 8 bit character
has its own 16-bit word, but with the .pstring directive, the data is packed so
that each word contains two 8-bit bytes. Each string is either:

� An expression that the assembler evaluates and treats as a 16-bit signed
number, or

� A character string enclosed in double quotes. Each character in a string
represents a separate byte.

With .pstring, values are packed into words starting with the most significant
byte of the word. Any unused space is padded with null bytes.

The assembler truncates any values that are greater than eight bits. You may
have up to 100 operands, but they must fit on a single source statement line.

If you use a label, it points to the location of the first word that is initialized.

Example This example shows 8-bit values placed into words in the current section.

 1 0000 0041 Str_Ptr: .string ”ABCD”
 0001 0042
 0002 0043
 0003 0044
 2 0004 0041 .string 41h, 42h, 43h, 44h
 0005 0042
 0006 0043
 0007 0044
 3 0008 4175 .pstring ”Austin”, ”Houston”
 0009 7374
 000a 696E
 000b 486F
 000c 7573
 000d 746F
 000e 6E00
 4 000f 0030 .string 36 + 12

 Assemble into .text Sections .text

C-33 Assembler Directives Reference

Syntax .text

Description The .text directive tells the assembler to begin assembling into the .text section,
which usually contains executable code. The section program counter is set to the
address specified by the preceding .setsect directive if nothing has yet been
assembled into the .text section. If code has already been assembled into the .text
section, the section program counter is restored to its previous value in the section.

.text is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you specify a different
sections directives (.data or .sect).

Example This example assembles code into the .text and .data sections. The .data section
contains integer constants, and the .text section contains character strings.

 1 ***
 2 ** Begin assembling into .data section.**
 3 ***
 4 0000 .data
 5 0000 000a .byte 0Ah, 0Bh
 0001 000b
 6
 7 **
 8 ** Begin assembling into .text section. **
 9 **
10 0000 .text
11 0000 0041 START: .string ”A”,”B”,”C”
 0001 0042
 0002 0043
12 0003 0058 END: .string ”X”,”Y”,”Z”
 0004 0059
 0005 005a
13
14 0006 0000 A = A + @START
15 0007 0003 A = A + @END
16
17 ***
18 ** Resume assembling into .data section.**
19 ***
20 0002 .data
21 0002 000c .byte 0Ch, 0Dh
 0003 000d
22
23 ***
24 ** Resume assembling into .text section.**
25 ***
26 0008 .text
27 0008 0051 .string ”Quit”
 0009 0075
 000a 0069
 000b 0074

.title Define Page Title

C-34

Syntax .title ” string”

Description The .title directive supplies a title that is printed in the heading on each listing page.
The source statement itself is not printed, but the line counter is incremented.

The string is a quote-enclosed title of up to 65 characters. If you supply more
than 65 characters, the assembler truncates the string and issues a warning.

The assembler prints the title on the page that follows the directive, and on sub-
sequent pages until another .title directive is processed. If you want a title on
the first page, the first source statement must contain a .title directive.

Example In this example, one title is printed on the first page and a different title on
succeeding pages.

Source file:

 .title ”**** Fast Fourier Transforms ****”
; .
; .
; .
 .title ”**** Floating–Point Routines ****”
 .page

Listing file:

TMS320C54x DSKplus Assembler Version x.xx Sun Apr 23 16:25:49 1995
 Copyright (c) 1996 Texas Instruments Incorporated

**** Fast Fourier Transforms **** PAGE 1

 2 ; .
 3 ; .
 4 ; .
TMS320C54x DSKplus Assembler Version x.xx Sun Apr 23 16:25:49 1995
 Copyright (c) 1996 Texas Instruments Incorporated

**** Floating–Point Routines **** PAGE 2

 Reserve Uninitialized Space .usect

C-35 Assembler Directives Reference

Syntax symbol .usect ” section name” , size in words [, alignment flag]

Description The .usect directive reserves space for variables in an uninitialized, named
section. This directive is similar to the .bss directive; both simply reserve space
for data and have no contents. However, .usect defines additional sections
that can be placed anywhere in memory, independently of the .bss section.

symbol points to the first location reserved by this invocation of the
.usect directive. The symbol corresponds to the name of
the variable for which you are reserving space.

section name must be enclosed in double quotes; only the first eight
characters are significant. This parameter names the uni-
tialized section.

size in words is an expression that defines the number of words that are
reserved in section name.

alignment flag is an optional parameter. This flag causes the assembler
to allocate size on long word boundaries.

Other sections directives (.text, .data, and .sect) end the current section and
tell the assembler to begin assembling into another section. The .usect and the
.bss directives, however, do not affect the current section. The assembler
assembles the .usect and the .bss directives and then resumes assembling
into the current section.

Variables that can be located contiguously in memory can be defined in the same
specified section; to do so, repeat the .usect directive with the same section name.

.usect Reserve Uninitialized Space

C-36

Example This example uses the .usect directive to define two uninitialized, named sections,
var1 and var2. The symbol ptr points to the first word reserved in the var1 section.
The symbol array points to the first word in a block of 100 words reserved in var1,
and dflag points to the first word in a block of 50 words in var1. The symbol vec
points to the first word reserved in the var2 section.

Figure C–2, page C-37, shows how this example reserves space in two unini-
tialized sections, var1 and var2.

 1 **
 2 ** Assemble into .text section. **
 3 **
 4 0000 .text
 5 0000 E803 A = A + #03h
 6
 7 **
 8 ** Reserve 1 word in var1. **
 9 **
 10 0000 ptr .usect ”var1”, 1
 11
 12 **
 13 ** Reserve 100 words in var1. **
 14 **
 15 0001 array .usect ”var1”, 100
 16
 17 0001 F000 A = A + #037h ; Still in .text
 0002 0037
 18
 19 **
 20 ** Reserve 50 words in var1. **
 21 **
 22 0065 dflag .usect ”var1”, 50
 23
 24 0003 F000 A = A + #dflag ; Still in .text
 0004 0065
 25
 26 **
 27 ** Reserve 100 words in var2. **
 28 **
 29 0000 vec .usect ”var2”, 100
 30
 31 0005 F000 A = A + #vec ; Still in .text
 0006 0000

 Reserve Uninitialized Space .usect

C-37 Assembler Directives Reference

Figure C–2. Using the .usect Directive

1 word

100 words

50 words

ptr

array

dflag

151 words reserved in var1

section var1 section var2

100 words

100 words reserved in var2

vec

C-38

 General Syntax Errors

D-1 Assembler Error Messages

Appendix A

Assembler Error Messages

The assembler issues two types of error messages:

� Fatal
� Nonfatal

When the assembler completes its second pass, it reports any errors that it
encountered during the assembly. It also prints these errors in the listing file
(if one is created); an error is printed following the source line that incurred it.

This appendix lists the three types of assembler error messages in alphabetical
order according to the error message number. Most errors are fatal errors; if an
error is not fatal, this is noted in the assembler listing file. Each error message
consists of its class number and text showing the specific error that was
detected. Each class number group has a Description of the problem and an
Action that suggests possible remedies.

E0000: Comma required to separate arguments
Left parenthesis expected
Matching right parenthesis is missing
Missing right quote of string constant
Syntax Error

Description These are errors about general syntax. The required syntax is
not present.

Action Correct the source per the error message text.

E0001: Section sym is not defined
Section sym is not an initialized section

Description These are errors about invalid symbol names. A symbol is
invalid for the context in which it is used.

Action Correct the source per the error message text.

Appendix D

Assembler Error Messages: E0002 / E0003

D-2

E0002: Invalid directive specification
Invalid mnemonic specification

Description These errors are about invalid mnemonics. The instruction or
directive specified was not recognized.

Action Check the directive or instruction used.

E0003: Cluttered character operand encountered
Cluttered string constant operand encountered
Cluttered identifier operand encountered
Condition must be EQ, LT, GT, or NEQ
Condition must be srcLT, LEQ, GT, or GEQ
Illegal condition, operand, or combination
Illegal indirect memaddr specification
Invalid binary constant specified
Incorrect bit symbol for specified status register
Invalid constant specification
Invalid decimal constant specified
Invalid float constant specified
Invalid hex constant specified
Invalid immediate expression or shift value
Invalid octal constant specified
Invalid operand Shift value out of range

Description These are errors about invalid operands. The instruction,
parameter, or other operand specified was not recognized.

Action Correct the source per the error message text.

 Assembler Error Messages: E0004 / E0005

D-3 Assembler Error Messages

E0004: Absolute, well-defined integer value expected
Accumulator specified in second half of parallel

instruction may not be the same as the first
Data size must be equal to pointer size
Expecting accumulator A or B
Expecting ASM or shift value
Expecting dual memory addressing
Identifier operand expected
Illegal character argument specified
Illegal floating-point expression
Illegal string constant operand specified
Invalid identifier, sym , specified
Not expecting direct operand op
Not expecting indirect operand op
Not expecting immediate value operand op
Operand must be auxiliary register or SP
Operand must be auxiliary register
Offset Addressing modes not legal for MMRs
Pointer too big for this data size
String constant or substitution symbol expected
Substitution symbol operand expected

Description These errors are about illegal operands. The instruction, parame-
ter or other operand specified was not legal for this syntax.

Action Correct the source per the error message text.

E0005: Missing field value operand
Missing operand(s)

Description These are errors about missing operands; a required oper-
and is not supplied.

Action Correct the source so that all required operands are declared.

Assembler Error Messages: E0006 / E0007 / E0009

D-4

E0006: .break must occur within a loop
Conditional assembly mismatch
Matching .endloop missing
No matching .if specified
No matching .endif specified
No matching .endloop specified
No matching .loop specified
Unmatched .endloop directive
Unmatched .if directive

Description These are errors about unmatched conditional assembly direc-
tives. A directive was encountered that requires a matching direc-
tive but the assembler could not find the matching directive.

Action Correct the source per the error message text.

E0007: Conditional nesting is too deep
Loop count out of range

Description These are errors about conditional assembly loops. Condi-
tional block nesting cannot exceed 32 levels.

Action Correct the .if/.elseif/.else/.endif or .loop/.break/.endloop
source.

E0009: Cannot apply bitwise NOT to floats
Unary operator must be applied to a constant

Description These are errors about an illegally used operator. The opera-
tor specified was not legal for the given operands.

Action Correct the source per the error message text so that all
required operands are declared.

 Assembler Error Messages: E0100 / E0101 / E0200 / E0201

D-5 Assembler Error Messages

E0100: Label missing
.setsym requires a label

Description These are errors about required labels. The given directive
requires a label, but none is specified.

Action Correct the source by specifying the required label.

E0101: Labels are not allowed with this directive

Description The error is about an invalid label. The given directive does
not permit a label, but one is specified.

Description Remove the invalid label.

E0200: Binary operator can’t be applied
Division by zero is illegal
Expression must be absolute integer value
Offset expression must be integer value
Operation cannot be performed on given operands
Unary operator can’t be applied
Well-defined expression required

Description These are errors about general expressions. An illegal oper-
and combination was used, or an arithmetic type is required
but not present.

Action Correct the source per the error message text.

E0201: Absolute operands required for FP operations!
Cannot apply bitwise NOT to floats
Floating-point divide by zero
Floating-point overflow
Floating-point underflow
Floating-point expression required
llegal floating-point expression
Invalid floating-point operation

Description These are errors about floating-point expressions. A float-
ing-point expression was used where an integer expression is
required, an integer expression was used where a floating-point
expression is required, or a floating-point value is invalid.

Action Correct the source per the error message text.

Assembler Error Messages: E0300 / E0301 / E0400 / E0802 / E0900

D-6

E0300: Cannot redefine this section name
Symbol can’t be defined in terms of itself
Symbol expected in label field
Symbol, sym , has already been defined
Symbol, sym , is not defined in this source file

Description These are errors about general symbols. An attempt was
made to redefine a symbol or to define a symbol illegally.

Action Correct the source per the error message text.

E0301: Cannot redefine local substitution symbol
Substitution Stack Overflow
Substitution symbol not found

Description These are errors about general substitution symbols. An
attempt was made to redefine a symbol or to define a symbol
illegally.

Action Correct the source per the error message text. Make sure that
the operand of a substitution symbol is defined with a .asg or
.eval directive.

E0400: Symbol table entry is not balanced

Description A symbolic debugging directive does not have a complement-
ing directive (i.e., a .block without a .endblock).

Action Check the source for mismatched conditional assembly direc-
tives.

E0802: Expecting parallel instruction
Incorrect instruction used in parallel
Illegal form of LD used in parallel

Description These are errors about illegal used parallel instructions.

Action Correct the source per the error message text.

E0900: Can’t include a file inside a loop
Invalid load-time label

Description These are errors about illegally used directives. Specific direc-
tives are not permitted where they were encountered because
they will cause a corruption of the object file.

Action Correct the source per the error message text.

 Assembler Error Messages: E1000 / E1300 / W0000 / W0001

D-7 Assembler Error Messages

E1000: Include/Copy file not found or opened

Description The specified filename cannot be found.

Action Check spelling, pathname, environment variables, etc.

E1300: Copy limit has been reached

Description These errors are about general assembler limits that have been
exceeded. The nesting of .copy/.include files in limited to 10 lev-
els.

Action Check the source to determine how limits have been
exceeded.

W0000: No operands expected. Operands ignored
Trailing operands ignored
*+ARn addressing is for write-only

Description These are warnings about operands. The assembler encoun-
tered operands that it did not expect.

Action Check the source to determine what caused the problem and
whether you need to correct the source.

W0001: Field value truncated to value
Field width truncated to size in bits
Line too long, will be truncated
Power of 2 required, next larger power of 2 assumed
Section Name is limited to 8 characters
String is too long – will be truncated
Value truncated
Value truncated to byte size
Value out of range

Description These are warnings about truncated values. The expression
given was too large to fit within the instruction opcode or the
required number of bits.

Action Check the source to make sure the result will be acceptable,
or change the source if an error has occurred.

Assembler Error Messages: W0002

D-8

W0002: Address expression will wrap around
Expression will overflow, value truncated

Description These are warnings about arithmetic expressions. The assem-
bler has done a calculation that produces the indicated result,
which may or may not be acceptable.

Action Verify the result is acceptable, or change the source if an error
has occurred.

 Running Title—Attribute Reference

E-1 Chapter Title—Attribute Reference

Appendix A

Glossary

A

absolute address: An address that is permanently assigned to a memory
location.

A/D: analog-to-digital. Conversion of continuously variable electrical signals
to discrete or discontinuous electrical signals.

AIC: analog interface circuit. Integrated circuit that performs serial A/D and
D/A conversions.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, and direc-
tives. The assembler substitutes absolute operation codes for symbolic op-
eration codes, and absolute or relocatable addresses for symbolic address-
es.

assignment statement: A statement that assigns a value to a variable.

B

batch file: A file containing an accumulation of data to be processed. This
data may be either DOS commands for the PC to execute or debugger
commands for the debugger to execute.

BBS: bulletin board service. Computer program which may be accessed by
remote users, allowing them to post questions and view responses.

block: A set of declarations and statements grouped together in braces and
treated as an entity.

boot: The process of loading a program into program memory.

boot loader: A built-in segment of code that transfers code from an external
source to program memory at power-up.

Appendix E

Glossary

E-2

breakpoint: A place in a computer program, usually specified by an instruction,
where its execution may be interrupted by external intervention.

byte: A sequence of eight adjacent bits operated upon as a unit.

C
code-display windows: Windows that show code, text files, or code-

specific information.

COFF: common object file format. A system of object files configured according
to a standard developed by AT&T. These files are relocatable in memory
space.

command: A character string you provide to a system, such as an assembler,
that represents a request for system action.

command file: A file created by the user which names initialization options
and input files for the linker or the debugger.

command line: The portion of the COMMAND window where you can enter
instructions to the system.

command-line cursor: An on-screen marker that identifies the current
character position on the command line.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comments are
not assembled.

constant: A fixed or invariable value or data item.

cursor: An on-screen marker that identifies the current character position.

D
D/A: digital-to-analog. Conversion of discrete or discontinuous electrical sig-

nals to continuously variable signals.

DARAM: dual-access, random-access memory. Memory that can be altered
twice during each cycle.

debugger: A software interface that permits the user to identify and eliminate
mistakes in a program.

directive: Special-purpose commands that control the actions and functions
of a software tool (as opposed to assembly language instructions, which
control the actions of a device).

Glossary

 Glossary

E-3 Glossary

disassembly: The process of translating the contents of memory from machine
language to assembly language. Also known as reverse assembly.

DSK: digital signal processor starter kit. Tools and documentation provided
to new DSP users to enable rapid use of the product.

DSP: digital signal processor. DSPs process or manipulate digital signals,
which are discrete or discontinuous electrical impulses.

E

EGA: enhanced graphics array. An industry-standard video card.

entry point: A point in target memory where the program begins execution.

expression: One or more operations in assembler programming repre-
sented by a combination of symbols, constants, and paired parentheses
separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
defined in another program module.

F

field: A software-configurable data type which can be programmed to be
from one to eight bits long.

file header: A portion of the COFF object file that contains general informa-
tion about the object file, such as the number of section headers, the type
of system the object file can be downloaded to, the number of symbols
in the symbol table, and the symbol table’s starting address.

G

global symbol: A symbol that is either defined in the current module and
accessed in another or accessed in the current module but defined in
another.

Glossary

Glossary

E-4

H

host port interface (HPI): An 8-bit parallel interface that the CPU uses to
communicate with a host processor.

HPIC: host port interface control register. 16-bit register that controls the
operation of the host port interface (HPI).

HPIA: host port interface address register. 16-bit pointer to HPI memory.

I

IC: integrated circuit. A tiny wafer of substitute material upon which is etched or
imprinted a complex of electronic components and their interconnections.

IMR: interrupt mask register. A 16-bit memory-mapped register used to
enable or disable external and internal interrupts. A 1 written to any IMR
bit position enables the corresponding interrupt (when INTM=0).

input section: A section from an object file that is linked into an executable
module.

interrupt: A condition caused either by an event external to the CPU or by
a previously executed instruction that forces the current program to be
suspended and causes the processor to execute an interrupt service
routine corresponding to the interrupt.

Glossary

 Running Title—Attribute Reference

E-5 Glossary

L

label: A symbol that begins in column 1 of a source statement and corresponds
to the address of that statement.

listing file: An output file created by the assembler that lists source statements,
their line numbers, and any unresolved symbols or opcodes.

LSB: least significant bit. The binary digit, or bit, in a binary number that has
the least influence on the value of the number.

LSByte: least significant byte. The byte in a multibyte word that has the least
influence on the value of the word.

M

member: An element of a structure, union, or enumeration.

memory map: A map of target system memory space that is partitioned into
functional blocks.

menu bar: A row of pulldown menu selections at the top of the debugger dis-
play.

MP/MC bit: A bit in the processor mode status register PMST that indicates
whether the processor is operating in microprocessor or microcomputer
mode. See also microcomputer mode; microprocessor mode.

MSB: most significant bit. The binary digit, or bit, in a binary number that has
the most influence on the value of the number.

MSByte: most significant byte. The byte in a multibyte word that has the
most influence on the value of the word.

N

named section: Either an initialized section that is defined with a .sect directive,
or an uninitialized section that is defined with a .usect directive.

Glossary

Glossary

E-6

O
object file: A set of related records treated as a unit that is the output of an

assembler or compiler and is input to a linker.

operand: The arguments or parameters of an assembly language instruc-
tion, assembler directive, or macro directive.

options: Command parameters that allow you to request additional or specific
functions when you invoke a software tool.

P
PC: Personal computer or program counter, depending on context and where

it’s used. In this book, in installation instructions, or in information relating
to hardware and boards, PC means personal computer (as in IBM PC).
In general debugger and program-related information, PC means
program counter, which is the register that identifies the current statement
in your program.

PROM: programmable read-only memory. An integrated circuit on which
information can be programmed by the user. This circuit can be read
from but not written to.

pulldown menu: A command menu that is accessed by name from the
menu bar at the top of the debugger display.

R
raw data: Executable code or initialized data in an output section.

reverse assembly: The process of translating the contents of memory from
machine language to assembly language. Also known as disassembly.

S
SARAM: single-access, random-access memory. Memory that can be altered

only once during each cycle.

section: A relocatable block of code or data that ultimately occupies a space
adjacent to other blocks of code in the memory map.

serial port: An access point that the debugger uses to sequentially transmit
and receive data to and from the emulator or the applications board. The
port address represents the communication port to which the debugger
is attached.

Glossary

 Glossary

E-7 Glossary

single step: A form of program execution in which the program is executed
statement by statement. The debugger pauses after each statement to
update the data-display window.

source file: A file that contains C code or assembly language code that will
assembled to form a temporary object file.

SPC: section program counter. A specific register that holds the address of
the section where the following directive is to be obtained.

static variable: A variable that is allocated before execution of a program
begins and remains allocated for the duration of the program.

string table: A table that stores symbol names that are longer than eight char-
acters. Symbol names of eight characters or longer cannot be stored in the
symbol table; instead, they are stored in the string table. The name portion
of the symbol’s entry points to the location of the string in the string table.

structure: A collection of one or more variables grouped together under a
single name.

symbol: A string of alphanumeric characters that represents an address or
a value.

T

tag: An optional type name that can be assigned to a structure, union, or
enumeration.

U

unconfigured memory: Memory that is not defined as part of the memory
map and cannot be loaded with code or data.

unsigned value: A value that is treated as a positive number, regardless
of its actual sign.

V

VGA: video graphics array. An industry-standard video card.

W

word: A character or bit string considered as an entity.

Glossary

E-8

 Index

Index-1

Index

; in assembly language source 5-9
operand prefix 5-8
$ symbol for SPC 5-14
* in assembly language source 5-9
* operand prefix 5-9

A
A_DIR environment variable 5-6
absolute address, definition E-1
absolute lister, creating the absolute listing file 5-4
.align assembler directive 5-29, C-2
alignment 5-29 to 5-32
allocation C-2, C-3
alternate directories

naming with –i option 5-5
naming with A_DIR 5-6

alternate directories for assembler input 5-5 to 5-6
application code 3-4
arithmetic operators 5-16
assembler

character strings 5-12
constants 5-10 to 5-11
definition E-1
DSKplus 5-2
error messages D-1 to D-8
expressions 5-15, 5-16
invoking 5-4
options

–c 5-4
–d 5-4, 5-14
–i 5-4, 5-5
–l 5-4, 5-18
–q 5-4

output listing 5-30 to 5-32
enable 5-30, C-21
page eject 5-30, C-25

page length 5-30, C-20
page width 5-30, C-20
suppress 5-30, C-21
title 5-30, C-34

overview 5-2
source listings 5-18 to 5-19
source statement format 5-7 to 5-9
symbols 5-13

assembler directives 5-20
assembler output 5-19
assembly-time constant 5-11
assembly-time constants C-27
assigning a value to a symbol C-27
assignment statement, definition E-1

B
batch files, definition E-1
BBS, definition E-1
.bes assembler directive 5-25, C-31
binary integer constants 5-10
block, definition E-1
blocking C-3
board dimensions A-2
boot, definition E-1
boot loader, definition E-1
.break assembler directive 5-31, C-24
.bss

assembler directive 5-23, C-3
section 5-23, C-3

byte, definition E-2
.byte assembler directive 5-26, C-5

C
–c assembler option 5-4
cables for the DSKplus 6-2

Index

Index-2

character constants 5-11

character strings 5-12

Code Explorer
debugger 3-2
debugger interface 2-4
dialog box 2-3
port I/O address 2-3
port selection 2-3

code explorer, debugger overview 3-2

code-display windows, definition E-2

command file, definition E-2

command line, definition E-2

command-line cursor, definition E-2

comment field 5-9

comments
definition E-2
in assembly language source code 5-9
that extend past page width C-20

communications link (CommLink)
host port interface initialization 7-2
parallel port and PAL device initialization 7-2

communications protocol
PC’s control register 6-6
PC’s data register 6-5
PC’s status register 6-5

conditional
assembly directives 5-30 to 5-32, C-17
blocks C-17
expression 5-17

conditional block, definition E-1

connecting the DSKplus board 2-2

constant 5-10 to 5-11
assembly-time 5-11, C-27
binary integers 5-10
character 5-11
decimal integers 5-10
definition E-2
floating-point C-16
hexadecimal integers 5-11
octal integers 5-10
symbolic 5-14

constants, symbolic 5-14
register symbols 5-14

.copy assembler directive 5-5, 5-30, C-6

copy files 5-5, C-6

cursor, definition E-2

customized applications
connecting boards to headers 6-14
PAL device modifications 6-12

D
–d assembler option 5-4, 5-14

D_DIR environment variable, definition E-2

.data
assembler directive 5-23
section 5-23, C-9

data memory 1-5
dual-access RAM (DARAM) 1-5
external 1-5
memory mapped registers 1-5
RAM 1-5

data registers 6-5

DB25, pin connections 6-2

debugger
Code Explorer 3-2
definition E-2
trouble-shooting 2-4

debugger interface, Code Explorer 2-4

decimal integer constants 5-10

device
PAL 6-7
PAL internal logic diagram 6-7

directives
assembly-time constants C-27
assembly-time symbols

.equ 5-31, C-27

.eval 5-31, C-11

.set 5-31, C-27
conditional assembly

.break 5-31, C-24

.else 5-30, C-17

.elseif 5-30, C-17

.endif 5-30, C-17

.endloop 5-31, C-24

.if 5-30, C-17

.loop 5-31, C-24
definition E-2
miscellaneous 5-31 to 5-32

.end 5-31, C-10
summary table 5-20 to 5-32
that align the section program counter (SPC),

.align 5-29, C-2
that assign assembly-time symbols 5-31 to 5-32

 Index

Index-3

directives (continued)
that control conditional assembly 5-30 to 5-32
that define sections 5-23 to 5-32

.setsect 5-23

.bss 5-23, C-3

.data 5-23, C-9

.sect 5-23, C-26

.text 5-23, C-33

.usect 5-23, C-35
that format the output listing 5-30 to 5-32

.length 5-30, C-20

.list 5-30, C-21

.nolist 5-30, C-21

.page 5-30, C-25

.title 5-30, C-34

.width 5-30, C-20
that initialize constants 5-25 to 5-32

.bes 5-25, C-31

.byte 5-26, C-5

.field 5-26, C-13

.float 5-27, C-16

.int 5-27, C-19

.long 5-27, C-23

.pstring 5-27, C-32

.space 5-25, C-31

.string 5-27, C-32

.word 5-27, C-19

.xfloat 5-27, C-16

.xlong 5-27, C-23
that reference other files 5-30

.copy 5-30, C-6

.include 5-30, C-6

directory search algorithm, assembler 5-5

disassembly, definition E-3

dskplasm command 5-4

DSKplus
board connection 2-2
board diagram 1-4
circuit board dimensions A-2
communications protocol 6-4
features 1-2
memory map 1-5
overview 1-4
pin connections 6-2
power and cables 6-2
software 2-3
schematic diagram A-3

DSKplus assembler 5-3
development flow 5-3

DSKplus communication protocol, PC’s status regis-
ter 6-5

DSP
defined E-3
software 4-2

code versus host PC code 4-2

E
EGA, definition E-3
.else assembler directive 5-30, C-17
.elseif assembler directive 5-30, C-17
emulator port, XDS510 6-14
.end assembler directive 5-31, C-10
.endif assembler directive 5-30, C-17
.endloop assembler directive C-24
environment variables, A_DIR 5-6
.equ assembler directive 5-31, C-27
equations for PAL device B-1
error messages, assembler D-1 to D-8
.eval assembler directive 5-31, C-11
expression 5-15

definition E-3
expressions 5-16

conditional 5-17
left-to-right evaluation 5-15
overflow 5-16
parentheses’ effect on evaluation 5-15
precedence of operators 5-15
that contain arithmetic operators 5-16
that contain conditional operators 5-17
underflow 5-16
well-defined 5-16

external symbol, definition E-3

F
field, definition E-3
.field assembler directive 5-26, C-13
file header, definition E-3
filenames

as character strings 5-12
copy/include files 5-5
list file 5-4
object code 5-4

.float assembler directive 5-27, C-16
floating-point constants C-16

Index

Index-4

G
global symbol, definition E-3

H
hardware

connecting the XDS510 emulator port 6-14
DSKplus communications protocol 6-4
PAL device 6-7
PAL device’s internal logic diagram 6-7
power and cables 6-2
requirements for installation 1-3

hexadecimal integer constants 5-11

host PC, code versus DSP code 4-6

HPIA, definition E-4

HPIC, definition E-4

I
–i assembler option 5-4, 5-5

examples by operating system 5-6
maximum number per invocation 5-5

.if assembler directive 5-30, C-17
IMR, definition E-4

.include assembler directive 5-5, 5-30, C-6

include files 5-5, C-6

initialization
communications link (CommLink) 7-2
DSP peripherals 7-3
host port interface 7-2
parallel port and PAL device 7-2

initialized sections
.data section C-9
.sect section C-26
.text section C-33

input section, definition E-4

installation
connecting the DSKplus board 2-2
DSKplus software 2-3
hardware requirements 1-3
running self-test program 2-5
software requirements 1-3

.int assembler directive 5-27, C-19

interface, Code Explorer debugger 2-4
interrupt, definition E-4

interrupt mask register (IMR), definition E-4
introduction

kit content and features 1-2
overiew 1-4

invoking the assembler 5-4

J
JP header, connecting boards to headers 6-14

K
kit, contents and features 1-2

L
–l assembler option 5-4

source listing format 5-18
label 5-13

definition E-5
symbols used as 5-13

label field 5-7
labels

case sensitivity, –c assembler option 5-4
in assembly language source 5-7
syntax 5-7
using with .byte directive C-5

latch/select mode, (LS) 6-10
left-to-right evaluation (of expressions) 5-15
.length assembler directive 5-30, C-20
.list assembler directive 5-30, C-21
listing

control C-21, C-25, C-34
file 5-30 to 5-32

creating with the –l option 5-4
format 5-18 to 5-19

page eject 5-30
page size 5-30, C-20

listing file, definition E-5
loading, (LoadApp) 3-4
logical operators 5-16
.long assembler directive 5-27, C-23
.loop assembler directive 5-31, C-24
LS mode 6-10
LSB, defined E-5
LSByte, defined E-5

 Index

Index-5

M
member, definition E-5

memory map, for DSKplus 1-5

memory map for DSKplus, definition E-5

menu bar, definition E-5

menu selections, definition (pulldown menu) E-6

modifications, PAL device 6-12

MP/MC bit, definition E-5

MSB, definition E-5

MSByte, definition E-5

N
named section, definition E-5

named sections
.sect directive C-26
.usect directive C-35

naming alternative directories for assembler in-
put 5-5

nibble mode state machine, NBL signal 6-10

.nolist assembler directive 5-30, C-21

O
object code (source listing) 5-19

object file, definition E-6

octal integer constants 5-10

operand, definition E-6

operands
field in assembler statement 5-8 to 5-9
immediate addressing 5-9
in source statement format 5-8 to 5-9
using a label as 5-13
using prefixes 5-8

operator precedence order 5-16

options
assembler 5-4
definition E-6

output, listing 5-30 to 5-32

overflow in expression 5-16

P
page

eject C-25
length C-20
title C-34
width C-20

.page assembler directive 5-30, C-25

PAL, equations B-1

PAL device
4-bit read cycle 6-9
device’s internal logic diagram 6-7
latch/select (LS) mode 6-10
nibble mode state machine 6-10
strobe generator 6-9
write or 8-bit read cycle 6-10

parentheses in expressions 5-15

PC, definition E-6

port, definition E-6

power supply adapter cable 2-2

power supply connector 2-2

power to the DSKplus 6-2

precedence groups 5-15

prefixes for operands 5-8

printer cable 2-2

program entry point, definition E-3

program memory 1-5
dual-access RAM (DARAM) 1-5
external 1-5
HPI RAM 1-5
interrupts 1-5
kernel 1-5
reserved 1-5
ROM 1-5

programming tips
DSP 4-5
host 4-7

.pstring assembler directive 5-27, C-32

pulldown menus, definition E-6

Q
–q assembler option 5-4

quiet run 5-4

Index

Index-6

R
raw data, definition E-6
register

data (PC host) 6-5
PC’s control 6-6
PC’s status 6-5

register symbols 5-14
relational operators, in conditional expres-

sions 5-17
relocation 5-11
requirements

hardware 1-3
software 1-3

running self-test program 2-5

S
.sect

assembler directive 5-23
section 5-23

section, definition E-6
self-test program 2-5
.set assembler directive 5-31, C-27
.setsect C-29

assembler directive 5-23
section 5-23

single-step, definition E-7
software breakpoints, definition E-2
software considerations

DSP programming tips 4-5
DSP software 4-2
host PC 4-6
host programming tips 4-7

software requirements for installation 1-3
source file, definition E-7
source listings 5-18 to 5-19
source statement

field (source listing) 5-19
format 5-7 to 5-9

algebraic field 5-8
comment field 5-9
instruction field 5-8
label field 5-7
operands 5-8 to 5-9

number (source listing) 5-18
.space assembler directive 5-25, C-31

SPC
aligning, to word boundaries 5-29 to 5-32, C-2
assembler symbol 5-8
assigning a label to 5-8
definition E-7
predefined symbol for 5-14
value

associated with labels 5-8
shown in source listings 5-18

starting self-test, script 2-6

static variable, definition E-7

.string assembler directive 5-27, C-32

string table, definition E-7

strobe generator, PAL device 6-9

structure, definition E-7

substitution symbols
arithmetic operations on 5-31
assigning character strings to 5-31

symbol 5-13
case for 5-4
definition E-7

symbolic constants
$ 5-14
defining 5-14
predefined 5-14
register symbols 5-14

symbols
assigning values to C-27
character strings 5-12
defined, by the assembler 5-4
predefined 5-14
used as labels 5-13

T

tag, definition E-7

.text
assembler directive 5-23, C-33
section 5-23, C-33

.title assembler directive 5-30, C-34

 Index

Index-7

U
unconfigured memory, definition E-7

underflow in expression 5-16

uninitialized sections
.bss section C-3
.usect section C-35

unsigned, definition E-7

.usect assembler directive 5-23, C-35

V
VGA, definition E-7

W
well-defined expression 5-16
.width assembler directive 5-30, C-20
word, definition E-7
word alignment C-2
.word assembler directive 5-27, C-19

X
XDS510

emulator port 6-14
location on DSKplus board 1-4

.xfloat assembler directive 5-27, C-16

.xlong assembler directive 5-27, C-23

Index-8

