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Read This First 

Appendix A Electrical Specifications 
Provides design documentation for the TMS320C50 and TMS320C51 de­
vices. This data is based upon design goals and modeling information. 

Appendix B External Interface Timing 
Provides functional timing of operation on the external interface bus. 

Appendix C TMS320C5x System Migration 
Provides information for upgrading a TMS320C25 system to a TMS320C5x 
system. Includes package dimensions and pinouts, timing similarities and dif­
ferences, source-code compatibility, memory maps, on-chip peripheral inter­
facing, and development tool enhancements. 

Appendix D TMS320C5x Development Tools 
Lists and briefly describes the hardware and software development tools that 
support the TMS320C5x. 

Appendix E XDS510 Design Considerations 
Provides information to meet the design requirements of the XDS51 0 emulator 
and to support XDS51 0 Cable #2563988-001 Rev. B. 

Appendix F Memories, Analog Converters, Sockets, and Crystals 
Provides product information regarding memories, analog converters, and 
sockets that are manufactured by Texas Instruments and are compatible with 
the TMS320C5x.lnform'ation is also given regarding crystal frequencies, spec­
ifications, and vendors. . 

Appendix G ROM Codes 
Provides information regarding the procedural flow for TMS320 masked parts. 

Appendix H Device and Development Support Tool Nomenclature 
Provides a description of the nomenclature used to designate the stages in the 
product development cycle. 

Related Documentation 

iv 

A wide variety of related documentation is available on digital signal process­
ing. These references fall into one of the following application categories: 

[l digital control systems 
[l digital signal processing 
[l image processing 
[l speech processing 

. Within those areas, the references appear in alphabetical order according to 
author. The documents contain beneficial information regarding designs, oper­
ations, and applications for general and/or specific signal-processing systems 
as well as circuits; all of the documents provide additional references. There-
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* I *+ I *- } 

This provides three choices: *, *+, or *-. 

Unless the list is enclosed in square brackets, you must choose one item 
from the list. 

l:l Some directives can have a varying number of parameters. For example, 
the .byte directive can have up to 100 parameters. The syntax for this di­
rective is: 

.byte value1 [, ... , valuenl 

This syntax shows that .byte must have at least one value parameter, but 
you have the option of supplying additional value parameters, separated 
by commas. 

Information About Cautions and Warnings 

viii 

This book may contain cautions and warnings. 

l:l A caution describes a situation that could potentially damage your soft­
ware or equipment. 

l:l A warning describes a situation that could potentially cause harm to you. 

The information in a caution or a warning is provided for you r protection. Please 
read each caution and warning carefully. 
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Figure 1-1. Evolution of the TMS320 Family 
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The TMS320C5x generation consists of the TMS320C50 and TMS320C51 de­
vices. These digital signal processors are fabricated in accordance with static 
CMOS integrated-circuit technology. Their architectural design is based upon 
that of the TMS320C25. The combination of an advanced Harvard architecture 
(separate buses for program memory and data memory), additional on-chip 
peripherals, more on-chip memory, and a highly specialized instruction set is 
the basis of the operational flexibility and speed of these DSP devices. 
TMS320C5x devices are designed to execute more than 28 MIPS (million in­
structions per second). Spin-off devices with the core CPU and customized 
on-chip memory and peripheral configurations can be developed for special­
ized areas of the electronics market. 

The TMS320C5x generation offers these advantages: 

Cl enhanced TMS320 architectural design for increased performance and 
versatility 

Cl a modular architectural design for rapidly developing spin-off devices 
Ci advanced IC processing technology for increased performance 
Ci source-code compatibility with TMS320C1 x and TMS320C2x DSPs for 

maintaining a roadmap between fixed-point processors and for protecting 
the TMS320 design investments 

Ci enhanced TMS320 instruction set for faster algorithms and for optimized 
high-level language operation 

Ci new static design techniques for minimizing power consumption and maxi-
mizing radiation hardness 

Table 1-1 provides an overview of the TMS320C5x generation of digital signal 
processors. It shows the capacity of on-chip RAM and ROM memories, num­
ber of serial and parallel 110 ports, execution time of one machine cycle, and 
type of package with total pin count. The chart should help you choose the best 
processor for an application. 

The following subsections summarize features ofthe TMS320C5x processors. 
The description of the CPU applies to all TMS320C5x-generation members 
(current and future). At this time, however, descriptions of the remaining fea­
tures pertain only to the TMS320C50 and/or the TMS320C51. Detailed infor­
mation on their CPU, memory, and on-chip peripherals is given in Chapters 3, 
6, and 5, respectively. 
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1.3 Key Features 
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At this time, the TMS320C5x generation consists of the TMS320C50 and the 
TMS320C51 digital signal processors. Key features of these DSPs are listed 
below. Where a feature is exclusive to a particular member, the member's 
name is enclosed within a set of parentheses and noted after that feature. 

o 35-50-ns single-cycle fixed-point instruction execution time 
(28.6 - 20 MIPS) 

o Upward source-code compatible with all TMS320C1 x and TMS320C2x 
devices 

o RAM-based memory operation (TMS320C50) 

o ROM-based memory operation (TMS320C51) 

o 9K x 16-bit single-cycle on-chip program/data RAM (TMS320C50) 

o 1 K x 16-bit single-cycle on-chip program/data RAM (TMS320C51) 

o 2K x 16-bit single-cycle on-chip boot ROM (TMS320C50) 

o 8K x 16-bit single-cycle on-chip program ROM (TMS320C51) 

o 1056 x 16-bit dual-access on-chip data RAM 

o 224K x 16-bit maximum addressable external memory space (64K pro­
gram, 64K data, 64K I/O, and 32K global) 

0· 32-bit arithmetic logic unit (ALU), 32-bit accumulator (ACC), and 32-bit ac-
cumulator buffer (ACCB) 

o 16-bit parallel logic unit (PLU) 

r:;'a 16 x 16-bit parallel multiplier with a 32-bit product capability 

o Single-cycle multiply/accumulate instructions 

o Eight auxiliary registers with a dedicated arithmetic unit for indirect ad­
dressing 

o Eleven context-switch registers (shadow registers) for storing strategic 
CPU-controlled registers during an interrupt service routine 

o Eight-level hardware stack 

o 0- to 16-bit left and right data barrel-shifters and a 64-bit incremental data 
shifter 

[l Two indirectly addressed circular buffers for circular addressing 

Introduction 



General Description 

memory-mapped core-CPU registers and 16 memory-mapped I/O ports. See 
Chapter 3 for more details. 

1.3.2 On-Chip ROM 

The TMS320C50 features a 2K x 16-bit on-chip, maskable, programmable 
ROM.This memory is used for booting from slower external ROM or EPROM 
of program to fast on-chip or external SRAM. ROM can be selected during re­
set by driving the MP/MC pin low. Once your program has been booted into the 
RAM, this boot ROM can be operationally removed from the program memory 
space via the MP/MC bit in the PMST status register. If the ROM is not selected, 
the TMS320C50 starts its execution via an off-chip memory. 

The TMS320C51 features an 8K x 16-bit on-chip maskable ROM. You can use 
this memory for your specified program. Once the development of the program 
has stabilized, submit a ROM code to Texas Instruments for implementation 
into your device. See Chapter 6 for more details. 

1.3.3 On-Chip Data RAM 

Both TMS320C5x devices carry a 1056 x 16-bit on-chip data RAM. This RAM 
can be accessed twice per machine cycle (dual-access RAM) as long as both 
accesses are not write operations. This block of memory is primarily intended 
to store data values but, when needed, can be used to store programs as well 
as data. It can be configured in one of two ways: either all 1056 x 16 bits as 
data memory or 544 x 16 bits as data memory with 512 x 16 bits as program 
memory. You can select the configuration with the CNF bit in status register 
ST1. See Chapter 6 for more details. 

1.3.4 On-Chip ProgramlData RAM 

The TMS320C50 has a 9K x 16-bit on-chip RAM. The TMS320C51 has a 1 K 
x 16-bit on-chip RAM. This memory is software configurable as program and/or 
data memory space. Code can be booted from an off-chip nonvolatile memory 
and then executed at full speed, once it is loaded into this RAM. See Chapter 
6 for more details. 

1.3.5 On-Chip Memory Security 

The TMS320C5x generation has a maskable option to protect the contents of 
on-chip memories. When the related bit is set, no externally originating instruc­
tion can access the on-chip memory spaces. See Chapter 6 for more details. 

1.3.6 Address-Mapped Software Wait-State Generators 

1-8 

Software wait-state logic is incorporated without any external hardware into 
TMS320C5x for interfacing with slower off-chip memory and 110 devices. This 
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ing devices. Also, it can be used to test pin-to-pin continuity as well as to per­
form operational tests on those peripheral devices that surround the 
TMS320C5x. It is interfaced to another internal scanning logic circuitry, which 
has access to all of the on-chip resources. Thus, the TMS320C5x can perform 
on-board emulation by means of the JTAG serial scan pins and the emulation­
dedicated pins. See I EEE Standard P1149.1 for more details. 

1.3.12 TMS320C5x Package 

1-10 

TMS320C5x devices are packaged in a 132-pin Quad Flat Pack package 
(QFP). With consideration for the pin layout of a TMS320C25 package, the 
TMS320C5x package is designed to minimize printed circuit board modifica­
tions when a TMS320C2x processing system is upgraded to a TMS320C5x 
processing system. Signal call-outs for the TMS320C5x appear on the same 
side and in the same order as those for the TMS320C25. See Chapter 2 for 
details. 
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Pin Layout 

2.1 Pin Layout 

Both the TMS320C50 and the TMS320C51 devices are packaged in a 132-pin 
Quad Flat Pack package (QFP) and have the same pin-to-signal relationship. 
Figure 2-1 shows the pin/signal call-outs for this package. 

Figure 2-1. Signal Assignments for TMS320C5x 132-Pin QFP 

NC 18 0 116 NC 
NC 19 115 NC 

vSS3 20 114 V0014 
vSS4 21 (Top View) 113 V0013 

NC 22 112 lACK 
07 23 111 MSC 
06 24 110 CLKOUT1 
05 25 109 XF 
04 26 108 HOLDA 
03 27 107 TOX 
02 28 106 OX 
01 29 105 TFSxrrFRM 
DO 30 104 FSX 

TMS 31 103 CLKM02 

V003 32 102 VSS14 
VOD4 33 101 VSS13 

TCK 34 100 TOO 
VSS5 35 99 V0012 
VSS6 36 98 V0011 

NC 37 97 X1 
INT1 38 96 X21CLKIN1 
INT2 39 95 CLKIN2 
INT3 40 94 BR 
INT4 41 93 STRB 
NMI 42 92 RiW 
DR 43 91 PS 

TOR 44 90 is 
FSR 45 89 OS 

CLKR 46 88 NC 
V005 47 87 VSS12 
V006 48 86 VSS11 

NC 49 85 NC 
NC 50 84 NC 

~~~~~~~~~~~~~M~86~~~ronnnn~nn~~ 80 81 82 83 

Note: NC = No connect. (These pins are reserved.) 
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Table 2-1. TMS320C5x Signal Descriptions (Continued) 
'. 

Signal Pin State Description 

Memory Control Signals 

D§ 89 Oil Data, Program, and 1/0 space select signals. Always high 
PS 91 unless low level asserted for communicating to a particular 
IS 90 external space. Placed into a high-impedance state in hold 

mode. These signals also go into high-impedance when OFF 
is active low. 

READY 128 I Data ready input. Indicates that an external device is pre-
pared for the bus transaction to be completed. If the device 
is not ready (READY is low), the processor waits one cycle 
and checks READY again. READY also indicates a bus 
grant to an external device after a BR (bus request) signal. 

RIW 92 1I01l ReadlWrite signal. Indicates transfer direction during com-
munication to an external device. Normally in read mode 
(high), unless low level asserted for performing a write opera-
tion. Placed in high-impedance state in hold mode. This sig-
nal also goes into high impedance when OFF is active low, 
and it is used in external DMA access of the 9K RAM cell. 
While HOLDA and IAQ are active low, this signal is used to 
indicate the direction of the data bus for DMA reads (high) 
and writes (low). 

STRB 93 I/O/z Strobe signal. Always high unless asserted low to indicate an 
external bus cycle. Placed in high-impedance state in the 
hold mode. This signal also goes into high impedance when 
OFF is active low, and it is used in external DMA access of 
the 9K RAM cell or the 1 K RAM cell on C51. While HOLDA 
and IAQ are active low, this signal is used to select the 
memory access. 

RD 82 Oil Read select indicates an active, external read cycle and may 
connect directly to the output enable (OE) of external de-
vices. This signal is active on all external program, data, and 
110 reads. Placed into high-impedance state in hold mode. 
This signal also goes into high impedance when OFF is ac-
tive low. 

WE 83 O/Z Write enable. The falling edge of this signal indicates that the 
device is driving the external data bus (D15-DO). Data may 
be latched by an external device on the rising edge of WE. 
This signal is active on all external program, data, and 110 
writes. Placed into high-impedance state in hold mode. This 
signal also goes into high impedance when OFF is active low. 
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Table 2-1. TMS320C5x Signal Descriptions (Continued) 

Signal Pin State Description 

Initialization, Interrupt, and Reset Operations 

INT4 41 I External user interrupt inputs. Prioritized and maskable by the interrupt mask 
INT3 40 register and interrupt mode bit. Can be polled and reset via the interrupt flag 
INT2 39 register. 
INT1 38 

NMI 42 I Nonmaskable interrupt. External interrupt that cannot be masked via the INTM 
or the IMR. When NMI is activated, the processor traps to the appropriate vec-
tor location. 

RS 127 I Reset input. Causes the device to terminate execution and forces the program 
counter to zero. When RS is brought to a high level, execution begins at loca-
tion zero of program memory. RS affects various registers and status bits. 

MP/MC 5 I Microprocessor/Microcomputer mode select pin. If active low at reset (micro-
computer mode), the pin causes the irlternal program ROM to be mapped into 
program memory space. In the microprocessor mode. all program memory is 
mapped externally. This pin is sampled only during reset, and the mode that 
is set at reset can be overridden via the software control bit MP/MC in the 
PMST register. 

Osclllatormmer Signals 

, CLKOUT1 110 OIZ Master clock output signal (ClKI N/2 or ClKIN2 frequency). This signal cycles 
at the machine-cycle rate of the CPU. The internal machine cycle is bounded 
by the rising edges of this signal. This signal also goes into high impedance 
when OFF is active low. 

QL~M01 QL~M02 Qlock Mode 

CLKMD1 71 I 0 0 External clock with divide-by-two option. Input 
CLKMD2 103 clock provided to X2ICLKIN1 pin. Internal oscilla-

tor and PLL disabled. 

0 1 Reserved for test purposes. 

1 0 External divide-by-one option. Input clock pro-
vided to CLKIN2. Internal oscillator disabled. 
Internal PLL enabled. 

1 1 Internal or external divide-by-two option. Input 
clock provided to X2ICLKIN1 pin. Internal oscilla-
tor enabled. Internal PLL disabled. 

X2ICLKIN1 96 I Input pin to internal oscillator from the crystal. If the internal oscillator is not be-
ing used, a clock may be input to the device on this pin. The internal machine 
cycle is half this clock rate. 

X1 97 0 Output pin from the internal oscillator for the crystal. If the internal oscillator is 
not used, this pin should be left unconnected. This signal does not go into high 
impedance when OFF is active low. 
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Table 2-1. TMS320C5x Signal Descriptions (Continued) 

Signal Pin State Description 

Supply Pins (Concluded) 

VSS14 102 S Ground for inputs and internal logic. 

VSS15 120 S Ground for inputs and internal logic. 

VSS16 121 S Ground for inputs and internal logic. 

Serial Port Signals 

CLKR 46 I Receive clock inputs. External clock signal for clocking data 
TCLKR 126 I from the ORITOR (data receive) pins into the RSR (serial port 

receive shift register). Must be present during serial port 
transfers. If the serial port is not being used, these pins can 
be sampled as an input via the INO bit of the spcrrspc reg-
isters. 

ClK)( 124 I/OIZ Transmit clock. Clock signal for clocking data from the DR! 
TClKX 123 I/OIZ TOR (data receive register) to the oxrrox (data transmit 

pin). The ClKX can be an input if the MCM bit in the serial 
port control register is set to O. It may also be driven by the 
device at 1/4 the ClKOUT1 frequency when the MCM bit is 
set to 1. If the serial port is not being used, this pin can be 
sampled as an input via the IN1 bitofthe spcrrspc register. 
This signal goes into high impedance when OFF is active 
low. 

DR 43 I Serial data receive inputs. Serial data is received in the RSR 
TOR 44 I (serial port receive shift register) via the ORrrOR pin. 

OX 106 OIZ Serial port transmit outputs. Serial data transmitted from the 
TOX 107 XSR (serial port transmit shift register) via the oxrrox pin. 

Placed in high-impedance state when not transmitting and 
also when OFF is active low. 

FSR 45 I Frame synchronization pulse for receive input. The falling 
TFSRlTAOO 125 I/OIZ edge of the FSRlTFSR pulse initiates the data receive pro-

cess, beginning the clocking of the RSR. TFSR becomes an 
inpuVoutput (TAD D) pin when the serial port is operating in 
TOM mode (TOM bit = 1). In TOM mode, this pin is used to 
outpuVinput the address of the port. This signal goes into 
high impedance when OFF is active low. 
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Table 2-1. TMS320C5x Signal Descriptions (Concluded) 

Signal 

EMU1/0FF 

RESERVED 

2-10 

Pin 

119 

16 
17 
18 
19 
22 
37 
49 
50 
51 
52 
78 
79 
84 
85 
88 
111 
115 
116 
117 

State Description 

Test Signals (Concluded) 

I/OIZ Emulator pin 1/disable all outputs. When TRST is driven low 
or not connected, this pin is configured as OFF. The EMU11 
OFF signal, when active low, puts all output drivers into the 
high-impedance state. Note that OFF is used exclusively for 
testing and emulation purposes (not for multiprocessing 
applications). When TRST is driven high, this pin is used as 
an interrupt to or from the emulator system and Is defined as 
input/output via JTAG scan. 

N/C Reserved pin. These pins are reserved for future 
TMS320C5x devices. These pins should be left uncon­
nected. 
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Architectural Overview 

3.1 Architectural Overview 

3-2 

The TMS320C5x high-performance digital signal processors are designed, 
like the TMS320C25, with an advanced Harvard-type architecture that maxi­
mizes the processing power by maintaining two separate memory bus struc­
tures, program and data, for full-speed execution. Instructions support data 
transfers between the two spaces. 

The TMS320C5x performs twos-complement arithmetic, using the 32-bit ALU 
and accumulator. The ALU is a general-purpose arithmetic unit that operates 
by using 16-bit words taken from data memory or derived from immediate in­
structions, or by using the 32-bit result from the multiplier. In addition to arith­
metic operations, the ALU can perform Boolean operations. The accumulator 
stores the output from theALU and is also the second input to the ALU. The 
accumulator is 32 bits in length and is divided into a high-order word (bits 31 
through 16) and a low-order word (bits 15 through O}.lnstructions are provided 
for storing those high- and low-order accumulator words in memory. For fast, 
temporary storage of the accumulator, there is a 32-bit accumulator buffer. 

In addition to the main ALU, there is a parallel logic unit (PLU) that executes 
logic operations on data without affecting the contents of the accumulator. The 
PLU provides the bit-manipulation ability required of a high-speed controller 
and simplifies the bit setting, clearing, and testing required with control and sta­
tus register operations. 

The multiplier performs 16 x 16-bit twos-complement multiplication with a 
32-bit result in a single-instruction cycle. The multiplier consists of three ele­
ments: multiplier array, PREG (product register), and TREGO (temporary reg­
ister). The 16-bit TREGO temporarily stores the multiplicand; the PREG stores 
the 32-bit product. The multiplier's values come from data memory, come from 
program memory when the MAC/MACD/MADS/MADD instructions are used, 
or are derived immediately from the multiply immediate instructions (MPV I). 
The fast on-chip multiplier allows the device to efficiently perform fundamental 
DSP operations such as convolution, correlation, and filtering. 

The TMS320C5x scaling shifter has a 16-bit input connected to the data bus 
and a 32-bit output connected to the ALU. The scaling shifter produces a left 
shift of 0 to 16 bits on the input data, as programmed in the instruction or de­
fined in the shift count register (TREG1). The LSBs of the output are filled with 
zeros, while the MSBs may be either zero-filled or sign-extended, depending 
upon the state of the sign-extension mode bit (SXM) of status register ST1. Ad­
ditional shift capabilities enable the processor to perform numerical-scaling, 
bit-extraction, extended-arithmetic, and overflow-prevention operations. 

Eight levels of hardware stack are provided for saving the contents of the pro­
gram counter during interrupts and subroutine calls. On interrupts, the strate­
gic registers (ACC, ACCS, ARCR, INDX, PMST, PREG, STO, ST1, TREGs) 
are pushed onto a one-deep stack and popped upon interrupt return, thus pro­
viding a zero-overhead interrupt context switch. 
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Figure 3-1. Block Diagram of TMS320C5x Internal Hardware 

OVM SXM. 
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Table 3-1. TMS320C5x Internal Hardware (Continued) 

Unit Symbol FunctIon 

Block Repeat Address PASR(16) A 16-bit memory-mapped register containing the start address of the seg-
Start Register ment of code being repeated. See subsection 3~6.5 for more details. 

Block Repeat BRCR(16) A 16-bit memory-mapped counter register used to limit the number oftimes 
Counter Register the block is to be repeated. See subsection 3.6.5 for more details. 

Bus Interface Module BIM A buffered interface used to pass data between the internal data and pro-
gram buses. 

Bus Request BR This signal indicates that a data access is mapped to global memory space 
as defined by the GREG register. See Section 6.3 for more details. 

Carry C This bit stores the carry output of the ALU. This bit resides in ST1. See sub-
section 3.5.2 for more information. 

Central Arithmetic Logie Unit CALU The grouping of the ALU, multiplier, accumulator, and scaling shifters. See 
Section 3.5 for more information. 

Circular Buffer CBCR(8) An 8-bit register used to enable/disable the circular buffers and define 
Control Register which auxiliary registers are mapped to the circular buffers. See subsection 

3.4.3 for more information. 

Circular Buffer CBER(16) Two 16-bit registers indicating circular buffer end addresses. CBER1 and 
End Address CBER1 (16) CBER2 are associated with circular buffers one and two, respectively. See 

CBER2(16) subsection 3.4.3 for more information. 

Circular Buffer CBSR(16) Two 16-bit registers indicating circular buffer start addresses. CBSR1 and 
Start Address CBSR1 (16) CBSR2 are associated with circular buffers one and two, respectively. See 

CBSR2(16) subsection 3.4.3 for more information. 

Compare of Program COMPARE This circuit compares the current value in the PC to the value in PAER if 
Address BRAF is active. If the compare shows equal, then the PASR is loaded into 

the PC. See subsection 3.4.3 for more information. 

Configure Ram CNF This bit indicates whether on-chip dual-access RAM blocks are mapped to 
program or data space. The CNF bit resides in ST1. See subsection 3.6.3 
for more information. 

Data Bus DATA A 16-bit bus used to route data. 

Data Memory DATA This block refers to data memory used with the core and defined in specific 
MEMORY device descriptions. It refers to both on- and off-Chip memory blocks in data 

memory space. 

Data Memory DATA A 16-bit bus that carries the address for data memory accesses. 
Address Bus ADDRESS 

Data Memory Address DMA(7) A 7-bit register containing the immediate relative address within a 
Immediate Register 128-word data page. See subsection 3.4.2 for more information. 

Data Memory DP(9) A 9-bit register containing the address of the current page. Data pages are 
Page Pointer 128 words each, resulting in 512 pages of addressable data memory space 

(some locations are reserved). See subsection 3.4.2 for more information. 

Data RAM Map Bit RAM(1) This bit indicates if the single-access RAM is mapped into data space. See 
subsection 3.6.3 for more information. 
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Table 3-1. TMS320C5x Internal Hardware (Continued) 

Unit Symbol Function 

Multiplexer MUX A bus multiplexer used to select the source of operands for a bus or execu-
tion unit, depending on the nature of the current instruction. 

Multiplier MULTIPLIER A 16 x 16-bit parallel multiplier. See subsection 3.5.3 for more information. 

Overflow Flag OV(1) This bit resides in STO and indicates an overflow in an arithmetic operation 
in the ALU. See subsection 3.6.3 for more information. 

Overflow Mode OVM(1) This bit resides in STO and determines whether an overflow in·the ALU will 
wrap around or saturate. See subsection 3.6.3 for more information. 

Overlay to Data Space OVLY(1) This bit resides in the PMST register and determines whether the on-chip 
single-access memory will be addressable in data address space. See 
subsection 3.6.3 for more information. 

Parallel Logic Unit PLU A 16-bit logic unit that executes logic operations from either long immediate 
operands or the contents of the DBMR directly upon data locations without 
interfering with the contents of the CALU registers. See Section 3.7 for 
more information. 

Prefetch Counter PFC (15--0) A 16-bit counter used to prefetch program instructions. The PFC contains 
the address of the instruction currently being prefetched.lt is updated when 
a new prefetch is initiated. The PFC can also address program memory 
when the block move (BLPD), multiply-accumulate (MAC/MACD), and 
table read/write (TBLRITBLW) instructions are used and can address data 
memory when the block move (BLDD) instruction is used. 

Prescaler Count Register COUNT(4) A four-bit register that contains the value for the prescaling operation. 
When the register contents are used as prescaling data, this register is 
loaded from the dynamic shift count or from the instruction. In conjunction 
with the BIT and BITT instructions, this register is loaded from the dynamic 
bit pointer or the instruction word. 

Product Register PREG(32) A 32-bit product register used to hold the multiplier's product. The high and 
low words ofthe PREG can be accessed individually. See subsection 3.5.3 
for more information. 

Program Bus PROG DATA A 16-bit bus used to route instructions (and data for the MAC and MACD 
instructions). 

Program Counter PC(16) A 16-bit program counter used to address program memory sequentially. 
The PC always contains the address of the next instruction to be fetched. 
The PC contents are updated following each instruction decode operation. 

Program Memory PROGRAM This block refers to program memory used with the core and defined in spe-
MEMORY cific device descriptions. It refers to both on- and off-chip memory blocks 

accessed in program memory space. 

Program Memory PROG A 16-bit bus that carries the program memory address. 
Address Bus ADDRESS 

Prescaling Shifter PRESCALER A 0- to 16-bit left barrel shifter used to prescale data coming into the ALU. 
Also used to align data for multiprecision operations. This shifter is also 
used as a 0- to 16-bit right barrel shifter of the ACC. See subsection 3.5.2 
for more information. 

Postscaling Shifter POST- A 0- to 7 -bit left barrel shifter used to postscale data coming out of the 
SCALER CALU. See subsection 3.5.2 for more information. 
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3.4 Internal Memory Organization 

This section describes the memory use of the TMS320C5x core and the ad­
dressing modes supported by the core. 

3.4.1 Memory-Mapped Registers 

Twenty-eight core processor registers are mapped into the data memory 
space. These are listed in Table 3-2. An additional 64 memory-mapped regis­
ters are reserved in page 0 of data space. These data memory locations are 
reserved for peripheral control registers, which are described in Chapter 5. 

Table 3-2. Memory-Mapped Registers 

Name Address Description 

C5x C5x 
Dec Hex 

- 0-3 0-3 Reserved 
IMR 4 4 Interrupt mask register 
GREG 5 5 Global memory allocation register 
IFR 6 6 Interrupt flag register 
PMST 7 7 Processor mode status register 
RPTC 8 8 Repeat counter register 
BRCR 9 9 Block repeat counter register 
PASR 10 A Block repeat program address start register 
PAER 11 B Block repeat program address end register 
TREGO 12 C Temporary register for multiplicand 
TREG1 13 D Temporary register for dynamic shift count 
TREG2 14 E Temporary register used as bit pointer 

in dynamic bit test 
DBMR 15 F Dynamic bit manipulation register 
ARO 16 10 Auxiliary register zero 
AR1 17 11 Auxiliary register one 
AR2 18 12 Auxiliary register two 
AR3 19 13 Auxiliary register three 
AR4 20 14 Auxiliary register four 
AR5 21 15 Auxiliary register five 
AR6 22 16 Auxiliary register six 
AR7 23 17 Auxiliary register seven 
INDX 24 18 Index register 
ARCR 25 19 Auxiliary register compare register 
CBSR1 26 1A Circular buffer 1 start address register 
CBER1 27 1B Circular buffer 1 end address register 
CBSR2 28 1C Circular buffer 2 start address register 
CBER2 29 1D Circular buffer 2 end address register 
CBCR 30 1E Circular buffer control register 
BMAR 31 1F Block move address register 
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Figure 3-2. Direct Addressing Mode 
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Memory-mapped addressing mode operates much like direct addressing 
mode except that the most significant 9 bits of the address are forced to zero 
instead of being loaded with the contents of the DP. This allows the user to di­
rectly address the memory-mapped registers of data page zero without the 
overhead of changing the DP or auxiliary register. Figure 3-3 illustrates 
memory-mapped addressing mode. 

Figure 3-3. Memory-Mapped Addressing Mode 
LAMM PMST 

Machine Code 10 0 0 0 o 0 0 10) 0 0 0 0 1 1 1} 

/ / 

DP 
/ / ro 0 0 0 0 0 0 0 01 / / , ~ / / 

" " / / " ',I ( 
~10--0--0-0----0-0--0--0~-0~1~0--0-0----0-1--1~11 DRB 

Operand Data(DRB) 
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In the case of the long immediate operand, the operand immediately follows 
the opcode in the program sequence. The long immediate operand is 16 bits 
long. Figure 3-6 shows an example of long immediate mode. In this example, 
the second word of the two-word instruction is added to the ACC by the CALU. 

Figure 3-6. Long Immediate Mode 

ADD #01234h 

Operand 

Machine Code 1 0 1 111 100 S H F T 
000 000 o 0 1 o 1 0 0 

Operand 0·0 0 1 001 0 o 0 1 1 o 1 0 0 

Data(second word(15 - O}} 

The operand may come from a CPU register. This type of operand is used in 
special cases. The CALU uses this in multiplying with TREGO, in shifting with 
TREG1 and PM, and in bit manipulation with TREG2. The ARAU uses this with 
INDX and ARCR. The PLU uses this with DBMR. Figure 3-7 illustrates the use 
of the DBMR register as an AND mask in the APL instruction. 

Figure 3-7. Register Access Mode 
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DRB 1 o 0 1 1 1 0 1 [0 0 1 000 01 = )~1 ____ ~ ________ ~ ____ ~~~~~ 
Operand1 
Operand2 

IData(D,B} 
DBMR 

. In the long immediate addressing mode, an operand is addressed by the sec­
ond word of a two-word instruction. In this case, the program address/data bus 
(PAB) is used for the operand fetch. The PC is stored in a temporary register, 
and the long immediate value is loaded into the PC. Then, the PAS is used for 
the operand fetch or write. At the completion of the instruction, the PC is re­
stored from the temporary register, and execution continues. This technique 
is used when two memory addresses are required for the execution of the in-
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Figure 3-9. Registered Block Memory Addressing Mode 
BLDD BMAR, 012h 
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Operand2 Data (ORB) 

Operand1 Data (PC) 

3.4.3 Auxiliary Registers 
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The TMS320C5x provides a register file containing eight auxiliary registers 
(ARO-AR7). The auxiliary registers may be used for indirect addressing of the 
data memory or for temporary data storage. Indirect auxiliary register address­
ing (see Figure 3-10) allows placement of the data memory address of an in­
struction operand into one of the auxiliary registers. These registers are 
pointed to by a three-bit auxiliary register pointer (ARP) that is loaded with a 
value from 0 through 7, designating ARO through AR7, respectively. The auxil­
iary registers and the ARP may be loaded from data memory, the accumulator, 
the product register, or by an immediate operand defined in the instruction. The 
contents of these registers may also be stored in data memory or used as in­
puts to the CALU. These registers appear in the memory map as described in 
Table 3-2. 
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Figure 3-11. Auxiliary Register File 
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Index Register (INDX) (16) 

Compare Register (ARCR) (16) 

Auxiliary Register 7 (AR7) (16) 

Auxiliary Register 6 (AR6) (16) 

Auxiliary Register 5 (AR5) (16) 
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Auxiliary Register 2 (AR2) (16) 

Auxiliary Register 1 (AR1 )(16) 

Auxiliary Register 0 (ARO) (16) 

16 

OUT 

Auxiliary Register Arithmetic Unit (ARAU) (16) 

Auxiliary Register File Bus (AFB) ~(. 

8 LSB of Instruction Register 
(IR) (16) 

Auxiliary 
Register 
Pointer 

(ARP) (3) 

3 LSB of 
Instruction 
Register 
(IR) (16) 

Auxiliary 
Register 

Buffer 
(ARB) (3) 

3 

Architecture 



Internal Memory Organization 
"r'SH'''··Sss,;Sfl'·S,,.f''l'''' '0"'" _____ ~,.~~~~_,.,;~,._·S,.~_li·f,.,._··',._,.Uei_.:&",:s"",s;s_u,,"_"~'''''f'''''''_' . _____ _ 

3-20 

The index register (INOX) can be added to or subtracted from AR(ARP) on any 
AR update cycle. This 16-bit register is one of the memory-mapped registers 
and is used to increment or decrement the address in steps larger than one, 
which is useful for operations such as addressing down a column of a matrix. 
The auxiliary register compare register (ARCR) is used as a limit to blocks of 
data and, in conjunction with the CMPR instruction, supports logical compari­
sons between AR(ARP) and ARCR. The TMS320C25 uses ARO for these two 
functions. After reset, a LAR load of ARO also loads INDX and ARCR to main­
tain compatibility with the TMS320C25. The splitting of functions to the three 
registers is enabled by setting the NOX bit of PMST to one. 

Because the auxiliary registers are memory-mapped, they can be acted upon 
directly by the CALU to provide for more advanced indirect addressing tech­
niques. For example, the multiplier can be used to calculate the addresses of 
three-dimensional matrices. After a CALU load of the auxiliary register, there 
is, however, a two-instruction-cycle delay before auxiliary registers can be 
used for address generation. The INDX and ARCR registers are accessible via 
the CALU, regardless of the condition of the NDX bit (Le., SAMM ARCR writes 
only to the ARCR). 

In addition to its use for address manipulation in parallel with other operations, 
the ARAU may also serve as an additional general-purpose arithmetic unit be­
cause the auxiliary register file can directly communicate with data memory. 
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple­
ments 32-bit twos-complement arithmetic. The BANZ and BANZO instructions 
permit the 'auxiliary registers to be used as loop counters, also. 

The 3-bitauxiliary register pointer buffer (ARB), shown in Figure 3-11, provides 
storage for the ARP on subroutine calls when the automatic context switch 
compatibles of the device are not used. 

Two circular buffers can operate at a given time and are controlled via the circu­
lar buffer control register (CBCR). The CBCR is defined as follows: 

Bit Name Function 

0-2 CAR1 Identifies which auxiliary register is mapped to circular buffer 1. 
3 CENB1 Circular buffer 1 enable=1/disable=O. Set to 0 upon reset. 
4-6 CAR2 Identifies which auxiliary register is mapped to circular buffer 2. 
7 CENB2 Circular buffer 2 enable=1/disable=O. Set to 0 'upon reset. 

Upon reset (RS rising edge), both circular buffers are disabled. To define a cir­
cular buffer, load the CBSR1/2 with the start address of the buffer and 
CBER1/2 with the end address, and load the auxiliary register to be used with 
the buffer with an address between the start and end addresses. Finally, load 
CBCR with the appropriate auxiliary register number and set the enable bit. 
Note that the same auxiliary register can not be enabled for both circular buff­
ers, or unexpected results will occur. As the address is stepping through the 
circular buffer, the auxiliary register value is compared against the value con-
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3.5 Central Arithmetic Logic Unit (CALU) 
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The TMS320C5x central arithmetic logic unit (CALU) contains a 16-bit scaling 
shifter, a ·16 x 16-bit parallel multiplier, a 32-bit arithmetic logic unit (ALU). a 
32-bit accumulator (ACC) , a 32-bit accumulator buffer (ACCB), and additional 
shifters at the outputs of both the accumulator and the multiplier. This section 
describes the CALU components and their functions. Figure 3-12 is a block 
diagram showing the components of the CALU. The following steps occur in 
the implementation of a typical ALU instruction: 

1) Data Is fetched from the RAM on the data bus, 

2) Data is passed through the scaling shifter and the ALU where the arithme-
tic is performed, and 

3) The result is moved into the accumulator. 

One inputto the ALU is always provided by the accumulator. The other input 
may be transferred from the product register (PREG) ofthe multiplier, the accu­
mulator buffer (ACCB), orthe scaling shifter that is loaded from data memory 
or the accumulator (ACC). 
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3.5.1 Prescaling Shifter 

The TMS320C5x provides a scaling shifter that has a 16-bit input connected 
to the data bus and a 32-bit output connected to the ALU; see Figure 3-12. The 
scaling shifter produces a left shift of 0 to 16 bits on the input data. The shift 
count is specified by a constant embedded in the instruction word or by the val­
ue in TREG1. The LSBs of the output are filled with zeros; the MSBs may be 
either filled with zeroes or sign-extended, depending upon the value of the 
SXM bit (sign-extension mode) of status register ST1. 

The TMS320C5x also contains several other shifters that allow it to perform 
numerical scaling, bit extraction, extended-precision arithmetic, and overflow 
prevention. These shifters are connected to the output of the product register 
and the accumulator. 

3.5.2 ALU and Accumulator 
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The TMS320C5x 32-bit ALU and accumulator implement a wide range of arith­
metic and logical functions, the majority of which execute in a single clock 
cycle. Once an operation is performed in the ALU, the result is transferred to 
the accumulatorwhere additional operations, such as shifting, may occur. Data 
that is input to the ALU may be scaled by the prescaling shifter. 

The ALU is a general-purpose arithmetic/logic unit that operates on 16-bit 
words taken from data RAM or derived from immediate instructions. In addition 
to the usual arithmetic instructions, the ALU can perform Boolean operations, 
facilitating the bit manipulation ability required of a high-speed controller. One 
inputto the ALU is always supplied by the accumulator, and the other input may 
be furnished from the product register (PREG) of the multiplier, the accumula­
tor buffer (ACCS), or the output of the scaling shifter (that has been read from 
data RAM or from the ACC). After the ALU has performed the arithmetic or log­
ical operation, the result is stored in the accumulator. For the following.exam­
pie, assume ACC = 0, PREG = 000222200h, PM = 00,· and ACCB = 
000333300h: 

LACC #01111h,8 iACC = 00111100. Load ACC from pre­
iscaling shifter. 

APAC i ACC = 00333300. Add to ACC the 
iproduct register. 

ADDB iACC = 00666600. Add to ACC the 
iaccumulator buffer. 

The 32-bit accumulator (ACC) can be split into two 16-bit segments for storage 
in data memory; see Figure 3-12. Shifters at the output of the accumulator pro­
vide a left shift of 0 to 7 places. This shift is performed while the data is being 
transferred to the data bus for storage. The contents of the accumulator remain 
unchanged. When the postscaling shifter is used on the high word of the accu­
mulator (bits 16 - 31), the MSBs are lost and the LSBs are filled with bits shifted 
in from the low word (bits 0 - 15). When the postscaling shifter is used on the 
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more efficient computation of extended-precision products and additions or 
subtractions. It is quite useful in overflow management. The carry bit is affected 
by most arithmetic instructions as well as the single-bit shift and rotate instruc­
tions. It is not affected by loading the accumulator, logical operations, or other 
such non-arithmetic or control instructions. Examples of carry bit operations 
are shown in Figure 3-13. 

Figure 3-13. Examples of Carry Bit Operations 
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C MSB LSB C MSB LSB 
X F F F F F F F F ACC X o 0 0 0 o 0 0 0 ACC 

+ J 1 
100 0 0 0 000 0 F F F F F F F F 

C MSB LSB C MSB LSB 
X 7 F F F F F F F ACC X 8 0 0 0 0 0 0 1 ACC 

+ J {Q~=Q) 2 {Q~=Q) 

o 800 0 0 000 1 7 F F F F F F F 

C MSB LSB C MSB LSB 
1 0 0 0 0 0 0 0 0 ACC 0 F F F F F F F F ACC 

+ Q {APpe) 1 { SIIBB) 
o 0 0 0 0 0 001 1 F F F F F F F d 

Shown in the examples of Figure 3-13, the value added to or subtracted from 
the accumulator may come from the input scaling shifter, ACCS, or PREG. The 
carry bit is set if the result of an addition or accumulation process generates 
a carry; it is reset to zero if the result of a subtraction generates a borrow. 
Otherwise, it is cleared after an addition or set after a subtraction. 

The ADDC (add to accumulator with carry) and SUBB (subtract from accumu­
lator with borrow) instructions use the previous value of carry in their addition/ 
subtraction operation. The ADCB {add ACCB to accumulator with carry} and 
the SBBB (subtract ACCB from accumulator with borrow) also use the pre­
vious value of carry. 

The one exception to operation of a carry bit, as shown in Figure 3-13, is in 
the use of ADD with a shift count of 16 (add to high accumulator) and SUB with 
a shift count of 16 {subtract from high accumulator}. This case of the ADD in­
struction can set the carry bit only if a carry is generated, and this case of the 
SUB instruction can reset the carry bit only if a borrow is generated; otherwise, 
neither instruction affects it. 

Two conditional operands, C and NC, are provided for branching, calling, re­
turning, and conditionally executing according to the status of the carry bit. The 
CLRC, LST #1, and SETC instructions can also be used to load the carry bit. 
The carry bit is set to one on a hardware reset. 

The SFL and SFR {in-place one-bit shift to the left/right} instructions and the 
ROL and ROR (rotate to the left/right) instructions shift or rotate the contents 
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fractional arithmetic, or justifying fractional products. The PM field of status 
register ST1 specifies the PM shift mode, as shown in Table 3-3. 

Table 3-3. Product Shift Modes 
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PM Resulting Shift 

00 No shift 

01 Left shift of 1 bit 

10 Left shift of 4 bits 

11 Right shift of 6 bits 

The product is shifted one bit to compensate for the extra sign bit gained in mul­
tiplying two 16-bittwos-complement numbers (MPY). The four-bit shift is used 
in conjunction with the MPY instruction with a short immediate value (13 bits 
or less) to eliminate the four extra sign bits gained in multiplying a 16-bit number 
times a 13-bit number. The output of PREG can, instead, be right-shifted 6 bits 
to enable the execution of up to 128 consecutive multiply/accumulates without 
the possibility of overflow. Note that, when the right shift is specified, the prod­
uct is always sign-extended, regardless of the value of SXM. 

The LT (load TREGO) instruction normally loads TREGO to provide one oper­
and (from the data bus), and the MPY (multiply) instruction provides the sec­
ond operand (also from the data bus). A multiplication can also be performed 
with a short or long immediate operand by using the MPY instruction with an 
immediate operand. A product can be obtained every two cycles except when 
a long immediate operand is used. 

Four multiply/accumulate instructions (MAC, MACD, MADD, and MADS) fully 
utilize the computational bandwidth of the multiplier, allowing both operands 
to be processed simultaneously.The data for these operations can be trans­
ferred to the multiplier each cycle via the program and data buses. This facili­
tates single-cycle multiply/accumulates when used with repeat (RPT and 
RPTZ) instructions. In these instructions, the coefficient addresses are gener­
ated by the PC, while the data addresses are generated by the ARAU. This al­
lows the repeated instruction to sequentially access the values from the coeffi­
cient table and step through the data in any of the indirect addressing modes. 
The RPTZ instruction also clears the accumulator and the product register to 
initialize the multiply/accumulate operation. As an example, consider multiply­
ing the row of one matrix times the column of a second matrix. Forthis example, 
consider 10 x 10 matrices, MTRX1 points to the beginning of the first matrix, 
INDX = 10, and AR(ARP) pOints to the beginning of the second matrix: 

RPTZ #9 iFor i = 0, i < 10, i+=. 
MAC MTRX1,*0+ jPREG = DATA(MTRX1 + i) x DATA[MTRX2 + (i x INDX)]. 

iACC += PREG. 
APAC iACC += PREG. 

The MAC and MACD instructions obtain their coefficient pointer from a long 
immediate address and are, therefore, two-word instructions. The MADS and 
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3.6 System Control 

System control on the TMS320C5x is provided by the program counter, hard­
ware stack, PC-related hardware, external reset signal, interrupts (see Section 
3.8), status registers, and repeat counters. The following subsections describe 
the function of each of these components in system control and pipeline opera­
tion. 

3.6.1 Program Address Generation and Control 
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The TMS320C5x has a 16-bit program counter (PC) and an eight-deep hard­
ware stack for PC storage. The program counter addresses internal and exter­
nal program memory in fetching instructions. The stack is used during inter­
rupts and subroutines. 

The program counter addresses program memory, either on-chip or off-chip, 
via the program address bus (PAB). Through the PAB, an instruction is ad­
dressed in program memory and loaded into the instruction register (IREG). 
When the IREG is loaded, the PC is ready to start the next instruction fetch 
cycle. 

The PC can be loaded in a number of ways. When code is sequentially ex­
ecuted, the PC is loaded with PC + 1. When a branch is executed, the PC is 
loaded with the long immediate value directly following the branch instruction. 
In the case of a subroutine call, the PC+2 is pushed onto the stack and then 
loaded with the long immediate value directly following the call instruction. The 
return instructions pop the stack back into the PC to return to the calling or inter­
rupting sequence of code. In the case of a software trap or interrupt trap, the 
PC is loaded with the address of the appropriate trap vector. The contents of 
the accumulator may be loaded into the PC in order to implement computed 
GOTO operations. This can be accomplished with the BACe (branch to ad­
dress in accumulator) or CALA (call subroutine at location specified by ACC) 
instructions. 

The PAB bus can also address data stored in either program or data space. 
This makes it possible, in repeated instructions, to fetch a second operand in 
parallel with the data bus for two-operand operations. When repeated, the 
array addressed by the PAB is sequentially accessed via the incrementing of 
the PC. The block transfer instructions (BLOO, BLOP, and BLPO) use both 
buses so that, when repeated, the pipeline structure can be reading the next 
operand while writing the current one. The BLPO instruction loads the PC with 
either the long immediate address following the BLPO or with the contents of 
the block move address register (BMAR). The PAB bus is then used to fetch 
the source data from program space in this block move operation. The BLOP 
executes much the same except that the PAB bus is used for the destination 
operation. The BLOO instruction uses the PAB bus to address data space. 

The TBLR and TBLW instructions operate much like the BLPD and BLOP in­
structions, respectively, except that the PC is loaded with the low 16 bits of the 
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the PC is loaded with the second word and the core CPU starts refilling the 
pipeline with instructions at the branch address. Because the pipeline has 
been flushed, the branch instruction has an effective execution time of four 
cycles if the branch is taken. If, however, any of the conditions are not met, the 
pipeline controller allows the next instruction (already fetched) to be decoded. 
This means that if the branch is not taken, the effective execution time of the 
branch is two cycles. 

The subroutine call can also be executed conditionally. The CC Instruction op­
erates like the BCND except that the PC pointing to the instruction following 
the CC is pushed onto the PC stack. This sets up the return (by RET) to pop 
the stack to return to the calling sequence. A subroutine or function can have 
multiple return paths based upon the data being processed. Using conditional 
returns (RETC) avoids the need for conditionally branching around the return. 
For example, 

CC OVER_FLOW,OV iIf overflow,then execute the 
ioverflow-handling routine. 

OVER_FLOW iOverflow-handling routine. 

RETC GEQ iIf ACC >= 0, then return. 

RET iReturn. 

In the example, an overflow-handling subroutine is called if the main algorithm 
causes an overflow condition. During the subroutine, the ACC is checked and, 
if it is positive, the subroutine returns to the calling sequence. If not, additional 
processing is necessary before the return. Note that RETC, like RET, is a 
single-word instruction. However, because of the potential PC discontinuity, it 
still operates with the same effective execution time as BCND and CC. 

To avoid flushing the pipeline and causing extra cycles, the TMS320C5x has 
a full set of delayed branches, calls, and returns. In the delayed operation of 
branches, calls, or returns, the two-instruction words following the delayed in­
struction are executed while the instructions at and following the branch ad­
dress are being fetched-therefore, giving an effective two-cycle branch in­
stead of flushing the pipeline. If the instruction following the delayed branch is 
a two-word instruction, then only it wi" be executed. For example, 

OPL #030h,PMST 
BCND NEW_ADRS,EQ 

or 

BCNDD NEW ADRS,EQ 
OPL #030h,PMST. 
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to the XC and after the ADD so that the SPLK will not execute. In the second 
code segment, TEMP2 is notsetto EEEE. The NEQ status, caused by the ADD 
instruction, is established one full cycle before the XC execution phase be­
cause the long immediate value (#01234h) used in the ADD caused it to be a 
two-cycle instruction. Since the condition is not met, a NOP is forced over both 
words of the two-word SPLK instruction, and, therefore, TEMP2 is not affected. 
Note that interrupts will have no effect on this instruction sequence. 

The TMS320C5x also has a feature that allows the execution of a single in­
struction N + 1 times where N is the value loaded in a 16-bit repeat counter 
(RPTC). If the repeat feature is used, the instruction is executed and the RPTC 
is decremented until the RPTC goes to zero. This feature is useful with many 
instructions, such as NORM (normalize contents of accumulator), MACD (mul­
tiply and accumulate with data move), and SUBC (conditional subtract). As in­
structions repeat, the program address and data buses are freed to fetch a 
second operand in parallel with the data address and data buses. This allows 
instructions such as MACD and BLPD to effectively execute in a single cycle 
when they repeat. See Section 7.6, Single Instruction Repeat Loops, for details 
on these instructions. 

The stack is 16 bits wide and eight levels deep. The PC stack is accessible 
through the use of the PUSH and POP instructions. Whenever the contents of 
the PC are pushed onto the top of the stack, the previous contents of each level 
are pushed down, and the bottom (eighth) location of the stack is lost. There­
fore, data will be lost if more than eight successive pushes occur before a pop. 
The reverse happens on pop operations. Any pop after seven sequential pops 
yields the value at the bottom stack level, and all of the stack levels then contain 
the same value. Two additional instructions, PSHD and POPD, push a data 
memory value onto the stack or pop a value from the stack to data "memory. 
These instructions allow a stack to be built in data memory for the nesting of 
subroutines/interrupts beyond eight levels. See Section 7.3, Software Stack, 
for details on software stack. 

3.6.2 Pipeline Operation 
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Instruction pipelining consists of the sequence of bus operations that occur 
during instruction execution. In the operation of the pipeline, the instruction 
fetch, decode, operand fetch, and execute operations are independent, which 
allows overall instruction executions to overlap. Thus, during any given cycle, 
one to four different instructions can be active, each at a different stage of com­
pletion, resulting in a four-deep pipeline. Figure 3-14 shows the operation of 
the four-level pipeline for single-word single-cycle instructions executing with 
no wait states. The pipeline is essentially invisible to the user except in some 
cases, such as auxiliary register updates, memory-mapped accesses of the 
CPU registers, the NORM instruction, and memory configuration commands. 
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or 

EXAM3 LAR 
LACC 
SAMM 
NOP 
NOP 

AR2,#067h ;AR2 = 67. 
#064h ;ACC = 00000064. 
AR2 ;AR2 = 64. 

LACC *­
ADD *-

;Pipeline protection. 
;Pipeline protection. 
;AR2 63. 
;AR2 = 62 .. 

In EXAM1, the decode phase of the ADD instruction is on the same cycle as 
the execute (write) phase of the SAMM instruction. Both of these instructions 
are trying to load AR2. The ADD *- update does load AR2, while the SAMM 
execution is voided. In EXAM2, a NOP is strategically placed to avoid the con­
flict between the ADD *- update of the AR2 and the SAMM write to AR2. In this 
code's sequence, 

AR2 = 67 ~ 66 ~ 64 ~ 63 

Note that the LACC address is based on the value in AR2 before the SAMM 
write to AR2. In EXAM3, the SAMM write to AR2 is completed before either the 
LACC or the ADD have updated AR2. Any two instruction words that do not 
update AR2 can be used in place of the two NOP instructions. This could be 
two one-word instructions or one two-word instruction. The results obtained by 
EXAM1 and EXAM2 code examples may be different ifthe code is interruptible. 
The user should avoid writing code similar to EXAM1 and EXAM2. 

The pipeline effect described above requires writes to memory-mapped regis­
ters to allow for a latency between the write and an access of that register. 
These registers can be accessed by TMS320C5x instructions in the decode 
and operand fetch phases of the pipeline. Table 3-4 outlines the latency re­
quired between an instruction that writes the register and the access of that 
register. 
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3.6.3 Status and Control Registers 
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There are four'key status and control registers for the TMS320C5x core. STO 
and ST1 contain the status of various conditions and modes compatible with 
the TMS320C25, while PMST and CBCR contain extra status and control infor­
mation for control of the enhanced features of the TMS320C5x core. These 
registers can be stored into data memory and loaded from data memory, thus 
allowing the status of the machine to be saved and restored for subroutines. 
STO, ST1 , and PMST each have an associated one-deep stack for automatic 
context-saving when an interrupt trap is taken. The stack is automatically 
popped upon a return from interrupt. Note that the XF bit in ST1 is not saved 
on the one-deep stack or restored from that stack on an automatic context 
save. This feature allows the XF pin to be toggled in an interrupt service routine 
while still allowing automatic context saves. 

The PMST and CBCR registers reside in the memory-mapped register space 
in page zero of data memory space. Therefore, they can be acted upon directly 
by the CALU and the PLU. They can be saved in the same way as any other 
data memory location. Note that the CALU and the PLU operations change the 
bits of these status registers during the execute phase ofthe pipeline. The next 
two instruction words, following an update of these status registers, may not 
be affected by the reconfiguration caused by the status update. 

The LST instruction writes to STO and ST1 , and the SST instruction reads from 
them, except that the INTM bit is not affected by the LST instruction. Unlike the 
PMST and CBCR registers, the STO and ST1 registers do not reside in the 
memory map and, therefore, cannot be handled by using the PLU instructions. 
The individual bits of these registers can be set or cleared with the SETC and 
CLRC instructions. For example, the sign-extension mode is set with SETC 
SXM or cleared with CLRC SXM. 

Figure 3-15 shows the organization of the four status registers, indicating all 
status bits contained in each. Several bits in the status registers are reserved 
and read as logic ones. Table 3-5 defines all the status/control bits. 
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Table 3-5. Status Register Field Definitions (Continued) 

Field Function 

C Carry Bit. This bit is set to 1 if the result of an addition generates a carry, or is reset to 0 if the result of 
a subtraction generates a borrow. Otherwise, it is reset after an addition or is set after a subtraction, 
unless the instruction is ADD or SUB with a 16-bit shift. In these cases, the ADD can only set and the 
SUB only reset the carry bit, but they cannot affect it otherwise. The single-bit shift and rotate instruc-
tions, as well as the SETC, CLRC, and LST #1 instructions also affect this bit. C is set to 1 on a reset. 

CAR1 Circular Buffer 1 Auxiliary Register. These three bits identify which auxiliary register is assigned to circu-
lar buffer 1. 

CAR2 Circular Buffer 2 Auxiliary Register. These three bits identify which auxiliary register is assigned to circu-
lar buffer 2. 

CENB1 Circular Buffer 1 Enable. This bit, when set to 1, enables circular buffer 1. When CEN B 1 is set to 0, circu-
lar buffer 1 is disabled. CENB1 is set to zero upon reset. 

CENB2 Circular Buffer 2 Enable. This bit, when set to 1, enables circular buffer 2. When CEN B2 is set to 0, circu-
lar buffer 2 is disabled. CENB2 is set to zero upon reset. 

CNF On-chip RAM Configuration Control Bit. If this bit is set to 0, the reconfigurable-data dual-access RAM 
blocks are mapped to data space; otherwise, they are mapped to program space. The CNF may be 
modified by the SETC CNF, CLRC CNF, and LST #1 instructions. RS sets the CNF to O. 

DP Data Memory Page Pointer. The 9-bit DP register is concatenated with the 7 LSBs of an instruction word 
to form a direct memory address of, 16 bits. DP may be modified by the LST and LOP instructions. 

HM Hold Mode Bit. When HM = 1, the processor halts internal execution when acknowledging an active 
HOLD. When HM = 0, the processor may continue execution out of internal program memory but puts 
its external interface in a high-impedance state. This bit is set to 1 by reset. 

INTM Interrupt Mode Bit. When this bit is set to 0, all unmasked interrupts are enabled. When it is set to 1, 
all maskable interrupts are disabled. INTM is set and is reset by the SETC INTM and CLRC INTM in-
structions. RS and lACK also set INTM. INTM has no effect on the unmaskable RS and NMI interrupts. 
Note that INTM is unaffected by the LST instruction. This bit is set to 1 by reset. It is also set to 1 when 
a maskable interrupt trap is taken. It is reset to 0 when a RETE (return from interrupt with interrupt en-
able) is executed. 

IPTR Interrupt Vector Pointer. These five bits pOint to the 2K page where the interrupt vectors reside. This 
allows the user to remap the interrupt vectors to RAM for boot-loaded operations. At reset, these bits 
are all set to zero. Therefore, the reset vector always resides at zero in the program memory space. 

MP/MC Microprocessor/Microcomputer Bit. When this bit is set to zero, the on-chip ROM is enabled. When it 
is set to one, the on-chip ROM is not addressable. This bit is set to the value corresponding to the logic 
level on the MP/MC pin at reset. The level on the MP/MC pin is sampled at device reset only and can 
have no effect until the next reset. 

NDX Enable Extra Index Register. This bit configures indexed indirect addressing and auxiliary address reg-
ister compare to operate either in a TMS320C2x-compatible mode (NDX = 0) or in a TMS320C5x-en-
hanced mode (NDX = 1). When NDX = 0, the LAR ARO instruction loads the INDX and ARCR registers 
in addition to ARO. This is because the TMS320C2x devices use ARO for indexing and AR compare 
operations. When NDX = 1, INDX and ARCR are not affected by the LAR instruction. NDX = 0 at reset. 

OV Overflow Flag Bit. As a latched overflow signal, OV is set to 1 when overflow occurs in the ALU. Once 
an overflow occurs, the OV remains set until a reset, BCND(D) on OV/NOV, or LST instruction clears 
OV. 
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Table 3-6. On-Chip RAMt Configuration Control 

Device OVLY RAM Configuration 

TMS320C50 0 0 On-chip 9K RAM is disabled 

TMS320C50 0 1 On-chip 9K RAM is mapped into program space 

TMS320C50 1 0 On-chip 9K RAM is mapped into data space 

TMS320C50 1 1 On-chip 9K RAM is in both program and data 
spaces 

TMS320C51 0 0 On-chip 1 K RAM is disabled 

TMS320C51 0 1 On-chip 1 K RAM is mapped into program space 

TMS320C51 1 0 On-chip 1 K RAM is mapped into data space 

TMS320C51 1 1 On-chip 1 K RAM is in both program and data 
spaces 

t Excluding on-chip dual-access RAM blocks. 

3.6.4 Repeat Counter 
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RPTC is a 16-bit repeat counter, which, when loaded with a number N, causes 
the next single instruction to be executed N + 1 times. The RPTC register is 
loaded by either the RPT or the RPTZ instruction. This results in a maximum 
of 65,536 executions of a given instruction. RPTC is cleared by reset. The 
RPTZ instruction clears both ACC and PREG before the next instruction starts 
repeating. Once a repeat instruction (RPT or RPTZ) is decoded, all interrupts 
(except reset) are masked until the completion of the repeat loop. The RPTC 
register resides in the CPU's memory-mapped register space; however, you 
should avoid writing to this register. 

The repeat function can be used with instructions such as multiply/accumu­
lates (MAC and MACD), block moves (BLDD and BLPD), I/O transfers (IN/ 
OUT), and table read/writes (TBLRITBLW). These instructions, although nor­
mally multicycle, are pipelined when the repeat feature is used, and they effec­
tively become single-cycle instructions. For example, the table read instruction 
may take three or more cycles to execute, but when the instruction is repeated, 
a table location can be read every cycle. Note that not all instructions can be 
repeated. Table 3-7 lists all of the TMS320C5x instructions, segregated ac­
cording to their repeatability. 
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Table 3-7a. Repeatable Instructions (Concluded) 

Repeatable Instructions Description 

. PUSH ;Push low ACC to the PC stack 

ROL ;Rotate ACC left once 

ROLB ;Rotate combined ACC and ACCB left once 

ROR ;Rotate ACC right once 

RORB ;Rotate combined ACC and ACCB right once 

SACH ;Store high ACC with shift 

SACL ;Store low ACC with shift 

SAMM ;Store low ACC direct/indirect to data page 0 

SAR AR,* ;Store AR indirect addressed 

SATH ;Shift ACC right 0 or 16 bits as specified by TREG1 (4) 

SATL ;Shift ACC right 0 to 15 bits as specified by TREG1 (0-3) 

SBB ;Subtract ACCB from ACC 

SBBB ;Subtract ACCB from ACC with borrow 

SFL ;Shift ACC left once 

SFLB ;Shift combined ACC and ACCB left once 

SFR ;Shift ACC right once 

SFRB ;Shift combined ACC and ACCB right once 

SMMR ;Store memory-mapped register 

SPAC ;Subtract PREG from ACC 

SPH ;Store high PREG to direct/indirect addressed 

SPL ;Store low PREG to directlindirect addressed 

SORA ;Add PREG to ACC and square directlindirect addressed 

SORS ;Subtract PREG from ACC and square directlindirect addressed 

SST ;Store status registers 

SUB dma,shft ;Subtract from ACC direct addressed with shift 

SUB *,shft ;Subtract from ACC indirect addressed with shift 

SUBB ;Subtract from ACC directlindirect with borrow 

SUBC ;Conditional subtract from ACC directlindirect 

SUBS ;Subtract from low ACC direct/indirect with sign suppressed 

SUBT ;Subtract from ACC directlindirect with shift specified by TREG1 

TBLR ;Read from program space to data space 

TBLW ;Write from data space to program space 

XPL ;XOR DBMR to direct/indirect addressed 
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Table 3-7b. Instructions Not Meaningful to Repeat (Concluded) 

Instructions Not Meaningful Description 
to Repeat 

SPM ;S9t PREG shift mode 

XOR ;XOR to low ACC directJindirect 

XORB ;XOR ACCB to ACC 

ZALR ;Zero low ACC, load high ACC with rounding 

ZAP ;Zero ACC and PREG 

ZPR ;Zero PREG 

Table 3-7c. Nonrepeatable Instructions 

Nonrepeatable Instructions Description 
ADD Hk ;Add to ACC short immediate 

ADD Hlk,shift ;Add to ACC long immediate with shift 

ADRK ;Add to AR short immediate 

AND #Ik,shft ;AND to ACC long immediate with shift 

APL #Ik ;AND long immediate to directJindirect addressed 

B[D] ;Branch [delayed] unconditionally 

BACC[D] ;Branch [delayed] to address specified in low ACe 

BANZ[D] ;Branch [delayed] on AR(ARP) not zero 

BCND[D] ;Branch [delayed] conditionally 

CALA[D] ;Call [delayed] to address specified in low ACC 

CALL[O] ;Call [delayed] subroutine 

CC[D] ;Call [delayed] subroutine conditionally 

CPL #Ik ;Compare long immediate to direcVindirect addressed 

IDLE ;Idle CPU 

IDLE2 ;Idle until interrupt -low power mode 

INTR ;Soft interrupt 

LACC Hlk,shft ;Load ACC long immediate 

LACL Hk ;Load ACC short immediate 

LAR Hlk ;Load AR with long immediate 

LOP #k ;Load OP short immediate 

NMI ;Non-maskable interrupt 

OPL #Ik ;OR long immediate to directJindirect addressed 

OR #Ik,shft ;OR to ACC long immediate with shift 

RCND[D] ;Return [delayed] from subroutine conditionally 

RET ;Return from subroutine 

RETE ;Return from interrupt service routine with automatic global enable 
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* 

SPLK #010h, BRCR 
RPTB END LOOP-1 

ZAP 
SQRA 
SPL 
MPY 
LTA 
MPY 
APAC 
ADD 
SACL 
CRGT 

*,AR2 
SQRX 

* 
SQRX 

* 
*,0,AR3 
*,0,AR1 

END LOOP 

;Set loop count to 16. 
;For I = BRCR; I > =0; I- -

;ACC = PREG = 0. 
;PREG = X2. 
;Save X2. 
;PREG = b x X. 
;ACC = bX. TREG = X2. 
;PREG = aX2. 
;ACC = aX2 + bX. 
;ACC = aX2 + bX + C = Y. 
;Save Y. 
;Save MAX. 

The example implements 16 executions of Y = aX2 + bX + C and saves the max­
imum value in ACCS. Note that the initialization of the auxiliary registers is not 
shown in the coded example. PAER is loaded with the address of the last word 
in the code segment. The label END_LOOP is placed after the last instruction, 
and the RPTS instruction long immediate is defined as END_LOOP-1 in case 
the last word in the loop is a two-word instruction. 

There is only one set of block repeat registers, so multiple block repeats cannot 
be nested without saving the context of the outside block or using SANZD. The 
simplest method of executing nested loops is to use the RPTa for only the in­
nermost loop and using BANZD for all the outer loops. This is still a valuable 
cycle-saving operation because the innermost loop is repeated significantly 
more times than the outer loops. Block repeats can be nested by storing the 
context of the outer loop before initiating the inner loop, then restoring the outer 
loop's context after completing the inner loop. The context save and restore 
are shown in the following example: 

SMMR BRCR,TEMP1 
SMMR PASR, TEMP2 
SMMR PAER,TEMP3 

;Save block repeat counter. 
;Save block start address. 
;Save block end address. 

SPLK #NUM_LOOP,BRCR ;Set inner loop count. 
RPTB END INNER ;For I = 0; I<=BRCR; I++. 

END INNER 
OPL #l,PMST 
LMMR BRCR,TEMP1 
LMMR PASR, TEMP 2 
LMMR PAER,TEMP3 

;Set BRAF to continue outer loop. 
iRestore block repeat counter. 
;Restore block start address. 
;Restore block end address. 

In this example, the context save and restore operations take 14 cycles. Note 
that repeated single and BANZISANZD loops can also be inside a block re-

o peat. The repeated code can include subroutine calls. Upon returning, the 
block repeat resumes. Repeated blocks can be interrupted. When an enabled 
interrupt occurs during a repeated block of code, the CALU traps to the inter­
rupt and, when the ISR returns, the block repeat resumes. 
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of the last word of the table. Notice that the label marking the end of the loop 
is placed after the last instruction, then the PAER is loaded with that label, mi­
nus 1. It is possible to place the label before the CALA instruction, then load 
the PAER with the label address because this is a one-word instruction. How­
ever, if the last instruction in this loop had been a two-word instruction, the sec­
ond word of the instruction would not be read, and the long immediate operand 
would be substituted with the first instruction in the loop. 

Inside the loop, the pointer to the task table is incremented and saved. Then, 
the task address is read from the table and loaded int9 the accumulator. Next, 
the task is called by the CALA instruction. Notice that, when the task returns 
to the task handler, it returns to the top of the loop. This is because the PC has 
already been loaded with the PASR before the CALA executes the PC disconti­
nuity. Therefore, when the CALA is executed, the address of the top of the loop 
is pushed onto the PC stack. 

The last two words of a repeat-block loop are not interruptible. In other words, 
the interrupt path will not be taken while the last two instruction words of a re­
peat block are being fetched. 

Example 3-1. Interrupt Operation With a Single-Word Instruction at the End of an RPTB 

RPTB END_LOOP-l 
SAR ARO,* f- interrupt path taken here 

if not the last loop iteration 

LACC *+ 
SACL * f- interrupt occurs here 

ENDLOOP: 

MAR *,ARl f- Interrupt path taken here if interrupt 
occurs during last two instruction words 
of the last loop iteration 

Example 3-2. Interrupt Operation With a Two-Word Instruction at the End of an RPTB 
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RPTB END_LOOP-l 
SAR ARO,* f- interrupt path taken here 

if not the last loop iteration 

LACC *+ 
SPLK #1234h, * f- interrupt occurs here 

ENDLOOP: 

MAR *,ARl f- Interrupt path taken here if interrupt 
occurs during last two instruction words 
of the last loop iteration 

Note that any incoming interrupt will be latched by the TMS320C5x as soon 
as it meets the interrupt timing requirement. However, the PC will not branch 
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3.7 Parallel Logic Unit (PLU) 

The parallel logic unit (PLU) can directly set, clear, test, or toggle multiple bits 
in a control/status register or any data memory location. The PLU, shown in 
the block diagram in Figure 3-16, provides a direct logic operation path to data 
memory values without affecting the contents of the accumulator or product 
register. It can be used to set or clear multiple bits in a control register or to test 
multiple bits in a flag register. 

Figure 3-16. Parallel Logic Unit Block Diagram 
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The PLU executes a read-modify-write operation on data stored in data space . 
. The PLU operation begins with the fetching of one operand from data memory 
space and the fetching of the second from either long immediate on the pro­
gram bus or the dynamic bit manipulation register (DBMR). Then, the PLU ex­
ecutes a logical operation defined by the instruction on the two operands. The 
result is written to the same data memory location from which the first operand 
was fetched. 

The PLU allows the direct manipulation of bits in any location in data memory 
space. This direct bit manipulation is done by ANDing, ORing, XORing, or load­
ing a 16-bit long immediate value to a data location. For example, to use AR1 
for circular buffer 1 and AR2 for circular buffer 2 but not enable the circular buff­
ers, initialize the circular buffer control register (CBCR) by executing this: 

SPLK #021h,CBCR ;Store peripheral long immediate.; (DP = 0). 

To later enable circular buffers 1 and 2, execute 
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3.8 Interrupts 

3.8.1 Reset 
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The TMS320C5x core CPU supports sixteen user-maskable interrupts 
(INT16-INT1). However, each TMS320C5x DSP does not necessarily use all 
16. For example, the TMS320C50 and TMS320C51 use only nine of these in­
terrupts (the others are tied high inside the device). Interrupts can be gener­
ated by the serial ports (RINT and XINT), by the timer (TINT), and by the soft­
ware interrupt (TRAP) instruction. The reset (RS) interrupt has the highest 
priority, and the INT16 interrupt has the lowest priority. 

Reset (RS) is a nonmaskable external interrupt that can be used at any time 
to put the TMS320C5x into a known state. Reset is typically applied after pow­
er-up when the machine is in an unknown state. 

Driving the RS signal low causes the TMS320C5x to terminate execution and 
forces the program counter to zero. RS affects various registers and status 
bits. At power-up, the state of the processor is undefined. For correct system 
operation after power-up, a reset signal must be asserted low for one full clock 
cycle. The device will latch the reset pulse and generate an internal reset pulse 
of five cycles, long enough to guarantee a reset of the device. Processor ex­
ecution begins at location 0, which normally contains a branch instruction to 
the system initialization routine. 

When the RS signal is received, the following actions occur: 

1) A logic 0 is loaded into the CNF (configuration control) bit in status register 
ST1, mapping dual-access RAM block 0 into data address space. 

2) The program counter (PC) is set to O. The address bus (lines A 15 - AO) 
is unknown while RS is low, unless the HOLD input of the device is low. 
In this case, the address lines are placed into a high-impedance state until 
HOLD is brought back high. 

3) All interrupts are disabled by setting the INTM bit (interrupt mode) to 1; 
note that RS is nonmaskable. The interrupt flag register (IFR) is cleared. 

4) Status bits are set as follows: 
o ~ OV, 1 ~ XF, 1 ~ SXM, 0 ~ PM, 1 ~ HM, 0 ~ BRAF, 
o ~ TRM, 0 ~ NDX, 0 ~ CENB1, 0 ~ CENB2, 0 ~ IPTR, 
o ~ OVLY, 0 ~ AVIS, 0 ~ RAM, 0 ~ BIG, 0 ~ CNF, 
1 ~ INTM, MP/MC (Pin) ~ PMST (MP/MC), and 1 ~ C, 

Note that the remaining status bits remain undefined and should be initial­
ized appropriately. 

5) The global memory allocation register (GREG) is cleared to make all 
memory local. 
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Table 3-8. Interrupt Locations and Priorities 

Figure 3-17. 
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Namet Location Priority Function 

Dec Hex 

RS 0 0 1 (highest) reset signal 

INT1 2 2 3 user interrupt #1 

INT2 4 4 4 user interrupt #2 

INT3 6 6 5 user interrupt #3 

INT4 8 8 6 user interrupt #4 

INT5 10 A 7 user interrupt #5 

INT6 12 C 8 user interrupt #6 

INT7 14 E 9 user interrupt #7 

INT8 16 10 10 user interrupt #8 

INT9 18 12 11 user interrupt #9 

INT10 20 14 12 user interrupt #10 

INT11 22 16 13 user interrupt #11 

INT12 24 18 14 user interrupt #12 

INT13 26 1A 15 user interrupt #13 

INT14 28 1C 16 user interrupt #14 

INT15 30 1E 17 user interrupt #15 

INT16 32 20 18 user interrupt #16 

TRAP 34 22 N/A TRAP instruction vector 

NMI 36 24 2 nonmaskable interrupt 

t The interrupt numbers here do not correspond to any specific TMS320C5x device. 
The definitions of the interrupts, specific to particular TMS320C5x devices, are cov­
ered in Chapter 5. 

Interrupt Vector Address Generation 

Vector 
Bit 

J IPTR = 00'001 I I INT=5 I 
'" ,/ "-........ / '-........ 

0 0 0 0 11~>11~ 0 ~I 0 0 ~ I~~ I I ! 0 : ~I ~ I 15 14 13 12 9 7 6 2 

Upon reset, the IPTR bits are all set to zero, thus mapping the vectors to page 
zero in program memory space. This means the reset vector always resides 
at zero. The interrupt vectors can be moved to an.other location by loading a 
nonzero value into the IPTR bits. For example, the interrupt vectors can be 
moved to start at location OBOOh by loading the IPTR with 1. 

When an interrupt occurs, a flag is activated in the 16-bit interrupt flag register 
(IFR). Each interrupt is stored in the IFR until it is recognized by the CPU. Any 
of the following four events will clear the interrupt flag: 
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ecuting the 50ft vector. The following example, Example 3-3, illustrates the 
minimum latency from the time an interrupt occurs externally to the interrupt 
acknowledge (lACK). The minimum interrupt acknowledge time is defined as 
8 cycles: 

1) 3 cycles to externally synchronize the interrupt 

2) 1 cycle to for the interrupt to be recognized by the CPU 

3) 4 cycles to execute the INTR instruction and flush the pipeline 

On the ninth cycle, the interrupt vector is fetched and the lACK is generated. 

Example 3-3. Minimum Interrupt Latency 

Interrupt occurs prior to 
the fetch of this Instrucyon 

Interrupt written 

~ IFR J. This Instruction will be refetched after return from Interrupt 

Fetch Mainl Main2 Main3 Main4 MainS Main6 Dummy Dummy Dummy Vecl Vec2 Dummy Dummy ISRl 
Decode Mainl Main2 Main3 Main4 MainS INTR Dummy Dummy Dummy VECl VEC2 DUMMY DUMMY 
Read Mainl Main2 Main3 Main4 MainS INTR Dummy Dummy Dummy Vecl Vec2 Dummy 
Execute Mainl Main2 Main3 Main4 MainS INTR Dummy Dummy Dummy Vecl Vec2 

t 
Interrupt latched extemal 
to the CPU 

t 
INTRjammed 
into the pipeline 

t 
lACK generated 
here 

The maximum latency is a function of what is in the pipeline. Multicycle instruc­
tions add additional cycles to empty the pipeline. This applies to instructions 
that are extended via wait-state insertion on memory accesses. The wait states 
required for interrupt vector accesses also affect the latency. The repeat next 
instruction N times (RPT and RPTZ) also lock out interrupts, and the repeated 
instruction completes all executions before allowing the interrupt to execute. 
This is to protect the context of the repeated instructions because when re­
peated, the instructions run more parallel operations in the pipeline, and the 
context of these additional parallel operations cannot be saved in an ISR. The 
HOLD function takes precedence over interrupts and also can delay the inter­
rupt trap. If an interrupt happens during an active-HOLD state, the interrupt is 
taken at the completion of the HOLD state. 

Interrupts cannot be processed between CLRC INTM and the next instruction 
in a program sequence. For example, if an interrupt occurs during an CLRC 
INTM instruction execution, the device always completes CLRC INTM as well 
as the following instruction before the pending interrupt is processed. This en­
sures that a return (RET) can be executed before the next interrupt is pro­
cessed-thus protecting against PC stack overflow. If the ISRis exited via a 
RETE (return from ISR with enable), the CLRC INTM is unnecessary. 

3.8.3 Interrupt Context Save 
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When an interrupt trap is executed, certain strategic registers are saved auto­
matically. When the return from interrupt instruction (RETE or RETI) is' ex-
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In the example, the address of the reentry point within the ISA is pushed onto 
the PC stack. The RETI instruction pops all the stacks, including the PC stack, 
and resumes execution. At the end of the ISR, a standard return is executed 
because the stack is already popped. 

Not all of the 16 core CPU interrupts are necessarily used on any given 
TMS320C5x device. The vectors for the interrupts not tied to specific external 
pins or internal peripherals can be used as software interrupts. To use the cor­
responding interrupt vectors as software traps with full context save and re­
store, execute the INTR instruction with the appropriate interrupt number as 
an operand. These traps are protected from other interrupts in the same way 
the ISR is protected; all interrupts are globally masked via the INTM bit. To ex­
ecute the context restore, these trap routines must be exited via the RETI or 
RETE instruction. For example, 

INTR 15 iSoftware trap to address 01Eh. 

In this example, the processor will trap to the vector relatively located at 01 Eh. 

3.8.4 Nonmaskable Interrupt 
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The core of the TMS320C5x has two nonmaskable interrupts, reset and NMI. 
Reset is discussed in subsection 3.8.1 NMI is used as a soft reset. It is different 
from a standard interrupt because it is not maskable, and it does not invoke the 
automatic context save. The context save is not invoked, because it is possible 
to take the NMI even during an interrupt service routine. In addition, interrupts 
are globally disabled during an NMI instruction. The NMI is different from reset 
in that it does not affect any of the modes of the device. Note that some 
TMS320C5x devices may not make the NMI available externally. The NMI is 
also delayed by multicycle instructions and HOLD, as described in subsection 
3.8.2. The NMI trap can also be initiated via software using the NMI instruction. 
This instruction forces the PC to the NMI trap location. 

Architecture 
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4.1 Memory Addressing Modes 

The TMS320C5x instruction set provides six basic memory addressing 
modes: 

[l Direct addressing mode 

[l Indirect addressing mode 

[l Immediate addressing mode 

[l Dedicated register addressing mode 

[l Memory-mapped register addressing mode 

[l Circular addressing mode 

Both direct and indirect addressing can be used to access data memory. Direct 
addressing concatenates seven bits of the instruction word with the nine bits 
of the data memory page pointer to form the 16-bit data memory address. Indi­
rect addressing accesses data memory through one of eight auxiliary regis­
ters. In immediate addressing, the data is based on a portion of the instruction 
word(s). Two types of immediate addressing modes are available: short and 
long. In short immediate addressing, an 8-1 9-/13-bit operand is included in the 
instruction word. Long immediate addressing mode uses as its operand a 
16-bit word following the instruction. Dedicated register addressing refers to 
the block move instructions in which the BMAR register addresses program or 
data memory and the parallel logic unit (PLU) instructions in which operands 
are obtained from the DBMR register. Memory-mapped register addressing 
mode is used to load and store memory-mapped registers. Circular addressing 
is an additional mode of indirect addressing that automatically wraps to the be­
ginning of a block of data when the end of the block is reached. The following 
subsections describe each addressing mode and give the opcode formats and 
some examples for each mode. 

4.1.1 Direct Addressing Mode 
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In the direct memory addressing mode, the instruction contains the lower 
seven bits of the data memory address (dma). This field is concatenated with 
the nine bits of the data memory page pointer (DP) register to form the full 
16-bit data memory address. Thus, the DP register points to one of 512 possi­
ble 128-word' data memory pages, and the 7 -bit address in the instruction 
points to the specific location within that data memory page. The DP register 
is loaded by using the LOP (load data memory page pointer) or the LST #0 
(load status register STO) instructions. 
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The opcode of the ADD 9h,5 instruction is 25h and appears in bits 15 through 
8. The shift count of 5 appears in bits 11 through 8 of the. opcode. The data 
memory address 09h appears in bits 6 through O. 

4.1.2 Indirect Addressing Mode 

Eight auxiliary registers (ARO-AR7) provide flexible and powerful indirect ad­
dressing on the TMS320C5x. To select a specific auxiliary register, load the 
auxiliary register pointer (ARP) with a value from 0 through 7, designating ARO 
through AR7, respectively (see Figure 4-2). 

Figure 4-2. Indirect Addressing Block Diagram 
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Auxiliary Registers 

ARO (16) 

AR1 (16) 

AR2 (16) 

AR3 (16) 

AR4 (16) 

AR5 (16) 

AR6 (16) 

AR7 (16) 

16-Bit Data Address 

The contents of the auxiliary registers may be operated upon by the auxiliary 
register arithmetic unit (ARAU), which implements unsigned16-bit arithmetic. 
The ARAU performs auxiliary register arithmetic operations in the decode 
phase of the pipeline. This allows the address to be generated before the de­
code phase of the next instruction. The AR is incremented or decremented af­
ter it is used in the current instruction. 

In indirect addressing, any location in the 64K data memory space can be ac­
cessed via a 16-bit address contained in an auxiliary register. The LAR instruc­
tion loads the address into the register. The auxiliary registers on the 
TMS320C5x may be modified by ADRK (add to auxiliary register short immedi-
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forms the specified mathematical operation on the indicated auxiliary register. 
Additionally, the ARP may be loaded with a new value. All indexing operations 
are performed on the current auxiliary register in the same cycle as the original 
instruction decode phase of the pipeline. 

Indirect auxiliary register addressing allows for post-access adjustments of the 
auxiliary register pointed to by the ARP. The adjustment may be an Increment 
or decrement by one or may be based upon the contents of the INDX register. 
To maintain compatibility with the TMS320C2x devices, set the NDX bit in the 
PMSTreglsterto O.ln the TMS320C2x architecture, the current auxiliary regis­
ter can be incremented or decremented by the value in the ARO register. When 
the NDX bit is set to 0, every ARO modification or LAR write also writes the 
ARCR and INDX registers with the same value. Subsequent modifications of 
the current auxiliary registers using indexed addressing will use the INDX reg­
ister, therefore maintaining compatibility with existing TMS320C2x code. The , 
NDX bit is set to 0 at res,et. 

Bit-reversed addressing modes on the TMS320C5x allow efficient I/O to be 
performed by the resequencing of data points in a radix-2 FFT program. The 
direction of carry propagation in the ARAU is reversed when this mode is se­
lected, and INDX is added to/subtracted from the current auxiliary register. 
Typical use of this addressing mode requires that INDX first be setto a value 
corresponding to one-half of the array's size, and that AR(ARP) be set to the 
base address of the data (the first data point). 

Indirect addressing can be used with all instructions except immediate oper­
and instructions and instructions with no operands. The indirect addressing 
format is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

lopcode I 1 I IDV I INC I DEC I NAR I y 

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing mode 
as indirect. Bits 6 through 0 contain the indirect addressing control bits. 

Bit 6 contains the increment/decrement value (IDV). The IDV bit determines 
whether the INDX register will be used to increment or decrement the current 
auxiliary register. If bit 6 = 0, an increment or decrement (if any) by one occurs 
to the current auxiliary register. If bit 6 = 1, the INDX register is added to or sub­
tracted from the current auxiliary register as defined·by bits 5 and 4. 

Bits 5 and 4 control the arithmetic operation to be performed with AR(ARP) and 
the INDX register. When set, bit 5 indicates that an increment is to be per­
formed. If bit 4 is set, a decrement is to be performed. Table 4-1 shows the cor­
respondence of bit pattern and arithmetic operation. 
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Example 1 ADD *+,8 

Example2 ADD *,8 

Example 3 ADD *-,8 

The CMPR (compare auxiliary register with ARCR) and TC/NTC conditions fa­
cilitate conditional branches, calls, returns, or conditional executes according 
to comparisons between the contents of ARCR and the contents of AR(ARP}. 
To maintain compatibility with the TMS320C2x devices, set the NDX bit in the 
PMSTregisterto O. In the TMS320C2x architecture, the auxiliary register com­
pare function is performed by comparing ARO with the current auxiliary regis­
ter. When the NDX bit is set to 0, every load to ARO loads the ARCR register 
with the same value. Subsequent compares of the current auxiliary register will 
use the ARCR register, therefore maintaining compatibility with existing 
TMS320C2x code. The NDX bit is set to 0 at reset. The auxiliary registers may 
also be used for temporary storage via the load and store auxiliary register in­
structions, LAR and SAR, respectively, or via any instruction that can load and 
store the memory-mapped auxiliary registers. 

The following examples illustrate the indirect addressing format: 

Add to the accumulator the contents of the data memory address defined by 
the contents of the current auxiliary register. This data is left-shifted 8 bits be­
fore being added. The current auxiliary register is autoincremented by one. 
The instruction word is 028AOh. 

As in Example 1, but with no autoincrement; the instruction word is 02880h. 

As in Example 1, except that the current auxiliary register is decremented by 
one; the instruction word is 02890h. . 

Example 4 ADD *0+,8 

As in Example 1, except that the contents of register INDX are added to the 
current auxiliary register; the instruction word is 028EOh. 

Example 5 ADD *0-,8 

As in Example 1, exceptthat the contents of register INDX are subtracted from 
the current auxiliary register; the instruction word is 028DOh. 

Example 6 ADD *+,8,AR3 

As in Example 1, except that the auxiliary register pointer (ARP) is loaded with 
the value 3 for subsequent instructions; the instruction word is 028ABh. 

Example 7 ADD *BRO-,8 
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The contents of register INDX are subtracted from the current auxiliary regis­
ter, with reverse carry propagation; the instruction word is 028COh. 
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4.1.4 

The following is an example code and the instruction word format for the RPT 
instruction with long immediate addressing: 

RPT tOFFFh ;Execute the instruction following the RPT instruction lOOOh times. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 
0 1 1 1 1 1 0 1 1 0 0 0 1 0 0 

16-bit constant 

Dedicated Register Addressing 

Nine instructions in the TMS320C5x instruction set can use one of two spe­
cial-purpose memory-mapped registers in the core CPU. These two registers 
are the block move address register (BMAR) and the dynamic bit manipulation 
register (DBMR). The APL, OPL, CPL, and XPL parallel logic unit (PLU) in­
structions use the contents of the DBMR register when an immediate value is 
not specified as one ofthe operands. The BLDO, BLDP, and BLPO instructions 
can use the BMAR register to point at the source or destination space of a block 
move. The MAOD and MADS also use the BMAR register to address an oper­
and in program memory for a multiply-accumulate operation. 

The syntax for dedicated register addressing can be stated in one of two ways: 

1) specifying BMAR by its predefined symbol as shown below: 

BLDD BMAR,DAT100 ;DP = o. BMAR contains the value 200h. 

The contents of data memory location 200h are copied to data memory lo­
cation 100 on the current data page. The opcode for this instruction is 
OAC64h. 

2) excluding the immediate value from parallel logic unit instructions as 
shown below. The BMAR register is implied by the MAOO and MADS in­
struction mnemonics. 

OPL DAT10; DP = 6. DBMR contains the value OFFFOh. 
;Address 030Ah contains the value Olh 

The contents of data memory location 030Ah are ORed with the contents 
of OBMR. The resulting OFFF1 h is stored back to memory location 030Ah. 
The opcode for this instruction is 590Ah. 

4.1.5 Memory~Mapped Register Addressing 
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Memory-mapped register addressing is used for modifying the 
memory-mapped registers without affecting the current data page pointer val­
ue. In addition, any scratch pad RAM location or data page 0 can be modified 
by using this addressing mode. Figure 4-3 illustrates how this is done by forc-
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implement a sliding window, which contains the most recent data to be pro­
cessed. The TMS320C5x supports two 'concurrent circular buffers operating 
via the auxiliary registers. The following five memory-mapped registers control 
the circular buffer operation: 

l:l CBSR1 - Circular Buffer One Start Register 
l:l CBSR2 - Circular Buffer Two Start Register 
~ CBER1 - Circular Buffer One End Register 
~ CBER2 - Circular Buffer Two End Register 
l:l CBCR - Circular Buffer Control Register 

The a-bit circular buffer control register enables and disables the circular buffer 
operation. The CBCR is defined as follows: 

Bit Name Function 

0-2 CAR1 Identifies which auxiliary register is mapped to circular buffer 1. 
3 CENB1 Circular buffer 1, enable=1/disable=O. Set to 0 upon reset. 

4-6 CAR2 Identifies which auxiliary register is mapped to circular buffer 2. 
7 CENB2 Circular buffer 2, enable=1/disable=O. Set to 0 upon reset. 

In order to define circular buffers, the start and end addresses should first be 
loaded into the corresponding buffer registers; next, a value between the start 
and end registers for the circular buffer is loaded into an auxiliary register. The 
proper auxiliary register value is loaded, and the corresponding circular buffer 
enable bit is set in the control register. Note that the same auxiliary register can 
not be enabled for both circular buffers, or unexpected results will occur.The 
algorithm for circular buffer addressing is as follows (note that the test of the 
auxiliary register value is performed before any modifications): 

If (ARn = CBER) and (any AR modification), 
, Then: ARn = CBSR. 
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Else: ARn = ARn + step. 

In addition, note that if ARn=CBER and no AR modification occurs, the current 
AR is not modified and is still equal to CBER.Notethatwhen the current auxilia­
ry register = CBER, any AR modification (increment or decrement) will set the 
current AR = CBSR. The following examples illustrate the operation: 

splk #200h,CBSRl Circular buffer start register 
splk #203h,CBERl Circular buffer end register 
splk #Oeh,CBCR Enable AR6 pointing to buffer 1 

lar ar6,#200h Case 1 
lacc * AR6 = 200h 

lar ar6,#203h Case 2 
lacc * AR6 = 203h 

lar ar6,#200h Case 3 
lacc *+ AR6 = 201h 

lar ar6,#203h Case 4 
lacc *+ AR6 = 200h 
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4.2 Instruction Set 

The TMS320C5x assembly language instruction set supports both DSP-spe­
cific and general-purpose applications. This section lists and groups the 
TMS320C5x instruction set according to the following functional headings: 

I:l Accumulator Memory Reference Instructions 
I:l Auxiliary Registers and Data Page Pointer Instructions 
r:i Parallel Logic Unit Instructions 
I:l T Register, P Register, and Multiply Instructions 
r:i Branch Instructions 
r:i I/O and Data Memory Operations 
I:l Control Instructions 

Section 4.1 covers the addressing modes associated with the instruction set, 
and Section 4.3 describes individual instructions in more detail. 

4.2.1 Symbols and Abbreviations 
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Table 4-3 lists symbols and abbreviations used in the instruction set summary 
(Table 4-4) and the individual instruction descriptions (Section 4.3). 
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4.2.2 Instruction Set Summary 
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Table 4-4 is a summary of the instruction set for the TMS320C5x digital signal 
processors. This instruction set is a superset of the TMS320C1 x and 
TMS320C2x instruction sets. 

The instruction set sum mary is arranged according to function and is alphabet­
ized within each functional grouping. The number of words that an instruction 
occupies in program memory is specified in column four of the table. Several 
instructions specify two values, separated by a slash mark "/" for the number 
of words. Different forms of the instruction occupy a different number of words. 
For example, the ADD instruction occupies one word when the operand is a 
short immediate value or two words if the operand is a long immediate value. 
The number of cycles that an instruction requires to execute is in column four 
of the table. All instructions are assumed to be executed from internal program 
memory (RAM) and internal data dual-access memory. The cycle timings are 
for single-instruction execution, not for repeat mode. Additional information is 
presented in the Individual Instruction Descriptions in Section 4.3. The symbol 
# indicates those instructions that are new for the TMS320C5x instruction set. 

Section 4.4 includes a table that maps TMS320C2x instructions to 
TMS320C5x instructions. Note that the Texas Instruments TMS320C5x as­
sembler will accept TMS320C2x instructions as well as TMS320C5x instruc­
tions. 
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Table 4-4. Instruction Set Summary (Continued) 

Accumulator Memory Reference Instructions (Concluded) 

Mnemonic Description Words Cycles 

SACB # Store ACC in ACCB 1 1 

SACH Store high ACC with shift 1 1 

SACL Store low ACC with shift 1 1 

SAMM # Store ACC to memory-mapped register 1 1 (processor memory-mapped 
register) 

2 (peripheral memory-mapped 
registers) 

SATH # Barrel-shift ACC right 0 or 16 bits as specified by 1 1 
TREG1 

SATL # Barrel-shift ACC right 0 to 15 bits as specified by 1 1 
TREG1 

SBB # Subtract ACCB from ACC 1 1 

SBBB # Subtract ACCB from ACC with borrow 1 1 

SFL Shift ACC left 1 1 

SFLB # Shift ACCB and ACC left 1 1 

SFR Shift ACC right 1 1 

SFRB # Shift ACCB and ACC right 1 1 

SUB Subtract from ACC 1/2 1 
2 (long immediate value specified) 

SUBB Subtract from ACC with borrow 1 1 

SUBC Conditional subtract 1 1 

SUBS Subtract from low ACC with sign-extension sup- 1 1 
pressed 

SUBT Subtract from ACC with shift specified by TREG1 1 1 

XOR Exclusive-OR with ACC 1/2 1 
2 (long immediate value specified) 

XORB # Exclusive-OR ACCB with ACC 1 1 

ZALR Zero low ACC and load high ACC with rounding 1 1 

ZAP Zero ACC and PREG 1 1 
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Table 4-4. Instruction Set Summary (Continued) 

T Register, P Register, and Multiply Instructions 

Mnemonic Description Words Cycles 

APAC Add PREG to ACC 1 1 

LPH Load high PREG 1 1 

LT Load TREGO 1 1 

LTA Load TREGO & accumulate previous product 1 1 

LTD Load TREGO, accumulate previous product, and 1 1 
move data 

LTP Load TREGO & store PREG in accumulator 1 1 

LTS Load TREGO and subtract previous product 1 1 

MAC Multiply and accumulate 2 3 

MACD Multiply and accumulate with data move 2 3 

MADD # Multiply and accumulate with source pointed at by 1 3 
BMAR 

MADS # Multiply and accumulate both with source pointed at 1 3 
by BMAR and with data move 

MPY Multiply 1/2 1 
2 (long immediate value specified) 

MPYA Multiply and accumulate previous product 1 1 

MPYS Multiply and subtract previous product 1 1 

MPYU Multiply unsigned 1 1 

PAC Load ACC with PREG 1 1 

SPAC Subtract PREG from ACC 1 1 

SPH Store high PREG 1 1 

SPL Store low PREG 1 1 

SPM Set PREG output shift mode 1 1 

SORA Square and accumulate previous product 1 1 

SORS Square and subtract previous product 1 1 

ZPR # Zero product register 1 1 
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Table 4-4. Instruction Set Summary (Continued) 

I/O and Data Memory Operations 

Mnemonic Description Words Cycles 

BLOO Block move from data memory to data memory 1/2 2 (operand specified by BMAR) 
3 (operand specified by long im-

mediate) 

BLOP # Block move from data memory to program memory 1 2 

BlPD Block move from program memory to data memory 1/2 2 (operand specified by BMAR) 
3 (operand specified by long im-

mediate) 

DMOV Data move in data memory 1 1 

IN Input data from port 2 2 

lMMR # load memory-mapped register 2 2 (processor memory-mapped 
register) 

3 (peripheral memory-mapped 
register) 

OUT Output data to port 2 3 

SMMR # Store memory-mapped register 2 2 (processor memory-mapped 
register) 

3 (peripheral memory-mapped 
register) 

TBlR Table read 1 3 

TBlW Table write 1 3 
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4.3 Individual Instruction Descriptions 

4:-24 

This section furnishes detailed information on the instruction set for the 
TMS320C5x family; see Table 4-4, Instruction Set Summary, for a complete 
list of available instructions. Each instruction presents the following informa­
tion: 

I:J assembler syntax 
I:J operands 
I:J opcode 
I:J execution 
I:J description 
I:J words 
I:J cycles 
I:J examples 

The EXAMPLE instruction is provided to familiarize the user with the instruc­
tion format and explain the contents of the instruction manual pages. 

Assembly Language Instructions 



Example 

4-26 

data RAM. The cycle timings are for single-instruction execution, not for repeat mode. 
Note that writing or reading any of the memory-mapped peripheral registers over the pe­
ripheral bus will add one additional cycle to the execution of that instruction. 

Example code is included for each instruction. The effect of the code on memory and/or 
registers is summarized. 
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Syntax [Iabe~ ADCB 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
110 0000 000 

Execution (PC) + 1 ~ PC 
(ACC) + (ACCS) + (C) ~ ACC 

Affected by DVM; affects DV and C 

Description The contents of the accumulator buffer (ACCS) and the value of the carry bit (C) are added 
to the accumulator. The carry bit is set to one if the result of the addition generates a carry 
from the MSB position of the accumulator. 

Words 1 

Cycles 1 

Example ADCB 

4-28 

ACC OJ 
C 

ACCS 

Before Instruction 

1234hl 

2hl 

ACC @] 
C 

ACCS 

After Instruction 

1237hl 
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(PC) + 2 ~ PC 
(ACC) + Ik x 2shift2 ~ ACC 
Affected by SXM and aVM; affects C and av. 

Description The contents of the addressed data memory location or an immediate constant are left­
shifted and added to the accumulator. During shifting, low-order bits are zero-filled. 
High-order bits are sign-extended if SXM = 1 and zero-filled if SXM = O. The re&ult is stored 
in the accumulator. When short immediate addressing is used, the addition is unaffected 
by SXM and is not repeatable. Note that when the ARP is updated during indirect address­
ing, a shift operand must be specified. If no shift is desired, a 0 may be entered for this 
operand. 

Words 

Cycles 

Example 1 

Example 2 

When adding with a shift of 16, the carry bit is set if the results of ~he addition generates 
a carry; otherwise, the carry bit is unaffected. This allows the accumulation to generate 
the proper single carry when adding a 32-bit number to the accumulator. 

1 (Direct, indirect, or short immediate addressing) 
2 (Long immediate addressing) 

1 (Direct, indirect, or short immediate addressing) 
2 (Long immediate addressing) 

ADD DAT1,1 i (DP = 6) 

Before Instruction After Instruction 

Data Memory Data Memory 
1hl 301h 1hl 301h 

ACC IK1 2hl ACC [Q] 04hl 

C C 

ADD *+,O,ARO 

Before Instruction After Instruction 

ARP 41 ARP 01 

AR4 0302hl AR4 0303hl 

Data Memory Data Memory 
2hl 302h 2hl 302h 

ACC IK1 2hl ACC [Q] 04hl 
C C 

Example3 ADD #lh iAdd short immediate 

Before Instruction After Instruction 

ACC [K] ACC @] 03hl 

C C 

Example 4 ADD #llllh,l iAdd long immediate with shift of 1 

Before Instruction After Instruction 

ACC [K] 2hl ACC @] I 2224hl 

C C 
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Syntax 

Operands 

Opcode 

Execution 

Words 

Cycles 

Direct: [labe~ ADDC dma 
Indirect: [/abe~ AD DC {ind} [,next ARPJ 

0;5; dma;5; 127 
o ;5; next ARP ~ 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 . 1 0 0 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 1 0 0 0 0 0 1 See Subsection 4.1.2 

(PC) + 1 ~ PC 
(ACC) + (dma) + (C) ~ ACC 

Affected by OVM; affects OV and C. Not affected by SXM. 

The contents of the addressed data memory location and the value of the carry bit are add­
ed to the accumulator with sign extension suppressed. The carry bit is then affected in the 
normal manner. 

The ADDC instruction can be used in performing multiple-precision arithmetic. 

Example 1 ADDC DATO ; (DP = 6) 

Data Memory 
300h 

ACC IT1 
C 

Before Instruction 

04hl 

13hl 

Example 2 ADDC *-, AR4 ; (OVM = 0) 
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ARP 
ARO 

Data Memory 
300h 

ACC lI] 
C 

[KJ 
OV 

Before Instruction 

01 
300hl 

ohl 

OFFFFFFFFh 1 

Data Memory 
300h 

ACC [Q] 
C 

ARP 

ARO 
Data Memory 

300h 

After Instruction 

04hl 

18hl 

After Instruction 

41 
299hl 

, ohl 

ACC II] &.-' ____ O ...... h I 
C 

@] 
OV 
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Syntax Direct: [/abe~ ADDT clma 
Indirect: [/abe~ ADDT {ina] [,next ARPJ 

Operands 0 ~ dma ~ 127 
o ~ next ARP ~ 7 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 0 0 0 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 654 3 2 0 
Indirect: I 0 1 0 0 0 1 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 
(ACC) + [(dma) x 2TREG1 (3-0)] ~ (ACC) 
If SXM = 1: 

Then (dma) is sign-extended. 
If SXM = 0: 

Then (dma) is not sign-extended. 

Affected by SXM and OVM; affects OV and C. 

Description The data memory value is left-shifted and added to the accumulator, with the result replac­
ing the accumulator contents. The left-shift is defined by the four LSBs of the TREG1, re­
sulting in shift options fmm 0 to 15 bits. Sign extension on the data memory value is con­
trolled by SXM. The carry bit is set when a carry is generated out of the MSB of the accu­
mulator. 

Software compatibility with the TMS320C25 can be maintained by setting the TRM bit of 
the PMST status register to zero. This causes any TMS320C25 instruction that loads 
TREGO to write to all three TREGs. Subsequent calls to the ADDT instruction will shift the 
value by the TREG1 value (which is the same as TREGO), maintaining object-code com­
patibility. 

Words 1 

Cycles 

Example 1 ADDT DAT127 ; (DP = 4. SXM = 0) 

Before Instruction After Instruction 

Data Memory Data Memory 
09hl 027Fh 09hl 027Fh 

TREG1 OFF94hl TREG1 OFF94hl 

ACC [8J OF715hl ACC [Q] OF7A5hl 
c c 
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ADRK Add to Auxiliary Register With Short Immediate 
~»»m;?)O"'):~~"):"mm;. ... »»~»~»»~;o;o ... ».~/.;.m».;o»/.;o)):,,)::y';')::(.:;: .. ~;O»):;:OO»';'):~):~ml.W'»'~oy';Y."m;::y''-~:''):'')ON.'-'-'-;:;O''''''''';-'-'-I.».,-.. ..:,-,-;se,-,-;:~;O»'l'»X~>>.>>.;.m>"H.>>>>».m ... m>>>~):;o~;o>>m.;o):~>>.~~q~ _____ _ 

Syntax [Iabe~ ADRK #k 

Operands Os k s 255 

Opcode 

15 14 13 12 11 10 9 a 765 4 320 
Short: I 0 0 0 0 a-Bit Constant 

Execution (PC) + 1 -:? PC 
AR(ARP) + a-bit positive constant -:? AR(ARP) 

Description The a-bit immediate value is added, right-justified, to the currently selected auxiliary regIs­
ter (as specified by the current ARP) with the result rep/acing the auxiliary register con­
tents. The addition takes place in the ARAU, with the immediate value treated as an a-bit 
positive integer. Note that all arithmetic operations on the auxiliary registers are unsigned. 

Words 

Cycles 

Example 

4-36 

ADRK #80h 

ARP 
AR5 

Before Instruction 

51 
4321hl 

ARP 
AR5 

After Instruction 

51 
43A1hl 
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AND AND With Accumulator 
~~,;w..;Y,.,:"..;~~~*,~~~!~;~;:;~~~~:;*»~m.~~::~/.6:;:~~::;:;:;o.::;y.;~;-~~~:~.~;.;..;o»;o~:::;::~:(.:~:.:::~~:;.;::~.:e;::(':J!:e;::a:;O;:»';'O;:;Y;:~9';e:y;~:,:s,;.-:~::;?;:::»~;Y.::~::;:;,; 

Example 1 AND DAT16 ; (DP = 4) 

Before Instruction After Instruction 

Data Memory Data Memory 
0210h OOFFhl 0210h OOFFhl 

ACC 12345678hl ACC 000OOO78hl 

Exsmple2 AND * 
Before Instruction After Instruction 

ARP 01 ARP 01 

ARO 0301hl ARO 0301hl 

Data Memory 
OFFOOhl 

Data Memory 
OFFOOhl 0301h 0301h 

ACC 12345678hl ACC 00005600hl 

Example 3 AND #OOFFh,4 

Before Instruction After Instruction 

ACe 12345678hl ACC 0OOOO670hl 
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· APAC Add P Register to,.J\P9LJ".'~!~tor 

Syntax [/abe~ APAC 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 

Execution (PC) + 1 ~ PC 
(ACC) + (shifted P register) ~ ACC 

Affected by PM and OVM; affects OV and C. 
Not affected by SXM . 

Description The contents of the P register are shifted as defined by the PM status bits and added to 
the contents of the accumulator. The result is placed in the accumulator. APAC is not af­
fected by the SXM bit of the status register; the P register is always sign-extended.The 
APAC instruction is a subset of the LTA, LTD, MAC, MACD, MADS, MADD, MPYA, and 
SORA instructions. 

Words 1 

Cycles 1 

Example APAC ; (PM = 01) 

4-40 

P 

ACC . (]] 

C 

Before Instruction 

I 40hl 

20hl 

P 

ACC [Q] 
C 

After Instruction 

40hl 

AOhl 
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Example 2 APL DAT96 . : (DP = 0) 
Before Instruction After Instruction 

DBMR OFFOOhl DBMR OFFOOhl 

Data Memory 
SOh 0 1111 hi 

Data Memory 
SOh [[] 1100hl 

TC TC 

Example 3 APL #0100h,*,AR6 
Before Instruction After Instruction 

ARP [K] 51 ARP [Q] sl 
TC TC 

AR5 300hi AR5 300hi 

Data Memory 
OFFFhl 

Data Memory 
0100hl 300h 300h 

Example 4 APL *,AR7 
Before Instruction After Instruction 

ARP IX) sl ARP [Q] 71 
TC TC 

ARS 310hl ARS 310hl 

DBMR 0303hl DBMR 0303hl 

Data Memory Data Memory 
0203hl 310h OEFFhl 310h 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

[Iabe~ BACC[D] 

None 

SACC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 

SACCO 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 

ACC(15-0) ~ PC 

Control is passed to the 16-bit address residing in the lower half of the accumulator.The 
one two-word instruction or two one-word instructions following the branch instruction are 
fetched from program memory and executed before the branch is taken, if the branch is 
a delayed branch (specified by the "0" suffix). 

1 

4 2 (If delayed) 

BACC ; (ACC contains the value 191) 

191 is loaded into the program counter, and the program continues executing from that 
location. 

Example 2 BACCD ; (ACC contains the value 191) 

4-44 

MAR *+,ARl 
LDP #5 

Afterthe current AR, ARP, and OP are modified as specified, program execution continues 
from location 191. 
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BANZ Branch on Auxili~ry Regi~!e,r '1P!;;~_ .. _",_.",_ .. ,_"""_""_,,,,,. ,_"" .... " _ .. "' .... , ,,_, .... ,,'..,. .. ___ ."""' ......... ,, ___ ... , ....... ,_, ... _ 

The program counter (PC) is incremented by 2, and execution continues from that loca­
tion. 

Example2 BANZD PGMO 
LACC #Olh 
LDP #5 

ARP 
ARO 

DP 
ACC 

Before Instruction 

01 

oOhl 

ARP 
ARO 
DP 

ACC 

After Instruction 

01 

51 
o1hl 

After the current DP and ACC are modified as specified, program execution continues 
from location O. 

Example 3 MAR * , ARO 
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LAR AR1,#3 
LAR ARO,#60h 

PGM191 ADD *+,ARl 
BANZ PGM191,ARO 

The contents of data memory locations 60h-63h are added to the accumulator. 
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BCND Branch Conditionally 

Example 1 BCND PGM191, LEQ, C 

If the accumulator contents are less than or equal to zero and the carry bit is set, program 
address 191 is loaded into the program counter, and the program continues executing 
from that location. If these conditions do not hold, execution continues from location PC 
+2. 

Example 2 BCNDD PGM191, OV 

4-48 

MAR * ,ARl 
LDP #5 

After the current AR, ARP, and DP are modified as specified, program execution continues 
at location 191 if the overflow flag (OV) in status register STO is set. If the flag is not set, 
execution continues at the instruction following the LOP instruction. 
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BIT Test Bit 
~~M~~~s:~~:,::e.Y"Q.:S::~:;o~:os~s:,;s:%:;:>:;::~s:;,:s:t,;o;:;.:(,~!-"*;o;~».».O!~;:;~~~~:~m.».~Y."~~~:;:.:~«s:~m~~~&.;-£$.;S~~~::'::~~~9.0->.,;s~s~~S!:~msY.W~sss·sSIS;t-'S "'~~~ 

Example 1 BIT Oh,15 ; (DP = 6) .Test LSB at 300h 

Before Instruction After Instruction 

Data Memory Data Memory 
300h 4Dc8hl 300h 4Dc8hl 

TC 01 TC 01 

Example 2 BIT *,O,AR1 ;Test MSB at 310h 

Before Instruction After Instruction 

ARP 01 ARP 11 

ARO 310hl ARO 310hl 

Data Memory Data Memory 
8000hl 310h 8000hl 310h 

TC 01 TC 1 I 
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Words 1 

Cycles 

Example 1 BITT OOh i (DP = 6). Test bit 14 of data at 300h 
Before Instruction After Instruction 

Data Memory Data Memory 
300h 4DC8hl 300h 4DC8hl 

TREG2 1hl TREG2 1hl 
TC 01 TC 11 

Example 2 BITT * iTest bit 1 of data at 310h 
Before Instruction After Instruction 

ARP 11 ARP 11 
AR1 310hl AR1 310hl 

Data Memory Data Memory 
310h 8000hl 310h 8000hl 

TREG2 OEhl TREG2 OEhl 
TC 01 TC 01 
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Execution 

Block move data to data with DEST in BMAR 

15 14 13 12 11 10 9 8 7 65432 0 
Direct: I 1 0 1 0 1 1 0 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6543210 
Indirect: I 1 0 1 0 1 1 0 1 1 See Subsection 4.1.2 

(PFC) ~ MCS 

If long immediate: 
(PC) + 2 ~ PC 
Ilk ~ PFC 

Else: 
(PC) + 1 ~ PC 
(BMAR) ~ PFC 

While (repeat counter) ;a!: 0: 
(src, addressed by PFC) ~ dst or src ~ (dst, addressed by PFC) 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 ~ PFC 
(repeat counter) -1 ~ repeat counter. 

(src, addressed by PFC) ~dst or src ~ (dst, addressed by PFC) 
Modify AR(ARP) and ARP as specified. 
(MCS) ~ PFC 

Description The word in data memory pointed at by src is copied to a data memory space pointed at 
by dst. The word of the source and/or destination space can be pointed at with a long im­
mediate value, with the contents of the BMAR register, or by a data memory address. Note 
that not all srcldst combinations of pointer types are valid. 

4-54 

RPT can be used with the BLDD instruction in indirect addressing mode to move consecu­
tive words in data memory. The number of words to be moved is one greater than the num­
ber contained in the repeat counter RPTC at the beginning of the instruction. The source 
or destination address for the BLDD instruction specified by the long immediate address 
or BMAR register contents are automatically incremented in repeat mode. If a direct 
memory address is specified, its address is not automatically incremented in repeat mode. 
Note that the source and destination blocks do not have to be entirely on-chip or off-chip. 
Interrupts are inhibited during a BLDD operation used with the RPT instruction. When 
used with RPT, BLDD becomes a single-cycle instruction once the RPT pipeline is started. 
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BLDD Block Move From Data MemorY. to Data Memory 

ExampleS RPTK 2 
BLDD #300h,*+ 

Before Instruction After Instruction 

ARP 01 ARP 01 

ARO 320hl ARO 323hl 

300h 7F98hl 300h 7F98hl 

301h OFFE6hl 301h OFFE6hl 

302h 9522hl 302h 9522hl 

320h 8DEEhi 320h 7F98hl 

321h 9315hl 321h OFFE6hl 

322h 2531 hi 322h 9522hl 
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Example 2 BLDP *,ARO 

Before Instruction After Instruction 

ARP 71 ARP 01 

AR7 310hl AR7 310hl 

Data Memory Data Memory 
OFOFOhl 310h OFOFOhl 310h 

BMAR 2800hl BMAR 2800hl 

Program Memory 
1234hl 

Program Memory 
OFOFOhl 2800h 2800h 
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Words 

Cycles 

Example 1 

Example 2 

Example 3 

4-60 

or the contents of the BMAR register. The data memory destination space is always 
pointed at by a data memory address or auxiliary register pointer. Note that not all src/dst 
combinations of pointer types are valid. 

RPT can be used with the BLPD instruction if more than one word is to be moved. The 
number of words to be moved is one greater than the number contained in the repeat 
counter, RPTC, at the beginning of the instruction. The source address specified by the 
long immediate or BMAR value is automatically incemented in repeat mode. Note that the 
source and destination blocks do not have to be entirely on-chip or off-chip. Interrupts are 
inhibited during a repeated BLPD instruction. When used with RPT, BLPD becomes a 
single-cycle instruction once the RPT pipeline is started. 

1 (Source is specified by the BMAR register) 
2 (Source is specified by a long immediate) 

2 (Source is specified by the BMAR register) 
3 (Source is specified by a long immediate) 

BLPD #800h,OOh ; (DP=6) 

Before Instruction After Instruction 

Program Memory Program Memory 
OFhl 800h OFhl 800h 

Data Memory Data Memory 
OFhl 300h ohl 300h 

BLPD #800h,*,AR7 

Before Instruction After Instruction 

ARP 01 ARP 71 

ARO 310hl ARO 310hl 

Program Memory Program Memory 
1111 hi 800h 1111 hi 800h 

Data Memory 
0100hl 

Data Memory 
1111hl 310h 310h 

BLPD BMAR,OOh ; (DP=6) 

Before Instruction After Instruction 

BMAR 800hl BMAR 800hl 

Program Memory Program Memory 
800h OFhl 800h OFhl 

Data Memory 
ohl 

Data Memory 
OFhl 300h 300h 
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BSAR Barrel Shift . 
Syntax [/abe~ BSAR shift 

Operands 1 S shift s 16 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I 1 0 1 1 1 1 1 1 1 1 1 0 SHFT t 

t See Section 4.5. 

Execution (PC) + 1 ~ PC 

(ACe) / 2shift ~ ACC 

Affected by SXM. 

Description The BSAR instruction executes a 1- to 16-bit right-barrel arithmetic shift of the accumula­
tor in a single cycle. The sign extension is determined by the sign-extension mode bit in 
status register 1 (ST1). 

Words 1 

Cycles 1 

Example 1 BSAR 16 

ACC 

Example 2 BSAR 4 

ACC 

4-62 

; (SXM=O) 

Before Instruction 

00010000h\ 

; (SXM=l) 

Before Instruction 

OFFF10000hl 

ACC 

ACC 

After Instruction 

00000001h\ 

After Instruction 

OFFFF1000hl 
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Syntax [labe~ CALL[D] pma [,{ina} [,next ARPJ] 

Operands o :s; pma :s; 65535 
O~ next ARP:s; 7 

Opcode 

CALL 

15 14 13 12 11 10 9 8 7 6 54320 

0 1 1 0 o I 1 I See Subsection 4.1.2 

16-Bit Constant 

CALLO 

15 14 13 12 11 10 9 8 7 6 54320 

0 o I 1 I See Subsection 4.1.2 

16-Bit Constant 

Execution Non-delayed: PC+2 ~ TOS 
Delayed: PC+4 ~ TOS 
pma ~ PC 
Modify AR(ARP) and ARP as specified. 

Description The current program counter (PC) is incremented and pushed onto the top of the stack 
(TOS). Then, the contents of the program memory address (pma), either a symbolic or 
numeric address, are loaded into the PC. Execution continues at this address. The current 
auxiliary register and ARP are modified as specified. If the call is a delayed call (specified 
by the "D" suffix), the one two-word instruction or two one-word instructions following the 
call instruction are fetched from program memory and executed before the call is ex­
ecuted. 

Words 2 

Cycles 4 2 (If delayed) 

Example 1 CALL PRG191, *+,ARO 

4-64 

Before Instruction After Instruction 

ARP 11 ARP 01 
AR1 OShl AR1 06h\ 

PC 30hl PC OBFhl 

TOS 100hl TOS 32hl 

OBFh is loaded into the program counter, and the program continues executing from that 
location. 
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cc 

Syntax [labe~ CC[Dl pma [cond1] [,cond2] [, ... 

Operands o ~ pma ~ 65535 

Conditions: ACC=O EO 
ACC:;tO NEO 
ACC<O LT 
ACC~O LEO 
ACC>O GT 
ACC~O GEO 
C=O NC 
C=1 C 
OV=O NOV 
OV=1 OV 
TC=O NTC 
TC=1 ' TC 
BIOlow BIO 
Unconditionally UNC 

Opcode 

ce 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 
0 0 I TPt ZLVCt ZLVCt 

16-Bit Constant 

ceo 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 
1 1 0 I TPt ZLVCt ZLVCt 

16-Bit Constant 

t See Section 4.5. 

Execution If(condition(s)) 
Then 

Nondelayed: PC + 2 ~ TOS 
Delayed: PC+4 ~ TOS 
pma ~ PC 

Else 
PC+2 ~ PC 

Description Control is passed to the program memory address pma if the specified conditions are met. 
Note that not all combinations of conditions are meaningful. In addition, the NTC, TC, and 
BID conditions are mutually exclusive. If the call is a delayed call (specified by the "0" suf­
fix), the two one-word instructions or the one two-word instruction following the call are 
fetched from program memory and executed before the call is executed. The CC instruc­
tion operates like the CALL instruction if all conditions are true. 

Words 2 
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CLRC Clear Control Bit 
)$~.AAa. 

Syntax [/abe~ CLRC control bit 

Operands Control bit STO, ST1 bit (from the following set): 

{C, CNF, HM, INTM, OVM, TC, SXM, XF} 

Opcode 

Reset overflow mode (OVM) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 

Reset sign extension mode (SXM) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 

Reset hold mode (HM) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 

Reset TC bit 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 

Reset carry (C) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 1 1 0 0 1 0 0 1 1 0 

Reset CNF bit 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 

Reset INTM bit 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 0 1 1 0 0 0 0 0 0 0 0 

Reset XF pin 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 

Execution (PC) + 1 --7 PC 
o --7 control bit 

Description The specified control bit is set to a logic zero. Note that the LST instruction may also be 
used to load STO and ST1. See subsection 3.6.3, Status and Control Registers, for more 
information on each of these control bits. 

Words 

Cycles 1 
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Syntax [/abe~ CMPL 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 

Execution (PC) + 1 ~ PC 
(ACC) ~ ACC 

Description The contents of the accumulator are replaced with its logical inversion (ones comple-
ment). The carry bit is unaffected. 

Words 1 

Cycles 1 

Example CMP L 
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ACC [X] 
C 

Before Instruction 

OF79825131 

After Instruction 

ACC lK1 0867DAEChi 

C 
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CPL Compare DBMR or Long Immediate With Data Value 
;.,:.:.s.~~ .. smt:~~".;:.$SJ:~S:; ... :':W.~:':·S.;.:."~"'_·:.l·"_~.~""S.X"'._:s:m_::.'."'~.",;e;_'.: i._.i, _.s __ " ................ _1. H""'SH ..... H_; .. ~""; " ..... -'t:c ........ ______ _ 

Syntax Direct: [/abe~ CPL [,#Ik] dma 
Indirect: [/abe~ CPL [,#Ik] {ina} [,next ARPJ 

Operands Os dma s 127 
Ik: 16-bit constant 
o S next ARP s 7 

Opcode Compare DBMR to data value 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 0 1 1 0 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 0 1 0 1 1 1 See Subsection 4.1.2 

Compare data with long immediate 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
0 1 0 1 1 1 I 0 I Data Memory Address 

Direct: 
16-Bit Constant 

15 14 13 12 11 10 9 8 765 4 3 2 o 
o 0 1 I 1 I See Subsection 4.1.2 

Indirect: I--------------'-----IL...------------t 
16-Bit Constant 

ExecutIon Ik unspecified: 
(PC) + 1 -7 PC 

Compare DBMR contents to (dma). 
If (DBMR) = (dma), 

TC= 1; 
Else, 

TC=O. 

Ik specified: 
(PC) + 2 -7 PC 

Compare Ik to (dma). 
If Ik = (dma), 

TC= 1; 
Else 

TC=O. 

Affects TC. 
Not affected by SXM. 

Description If the two quantities involved in the comparison are equal, the TC bit is set to one. TC is 
set to zero otherwise. 

Words 1 (If long immediate value is not specified) 
2 (If long immediate value is specified) 
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CRGT Test for A CC>ACCB 
~»,~~~~~>~~,,~~:»~):~:-:;x-»,:y~:-:~~«~~~;y~~;Y>>>,~~~O!;O~~:-::-:>>';*;:~~X,.y~;o~;se~~;':-::~~:Y,:~:-:~~~~»'»~;:;'~),;';Y>~;:~9';~;v.m:m~).;,~»,:-»'J:~:·>';y';Y':~>):~«o!lY):~~~;:;om~;Yh!.:~.(.~:: 

Syntax [/abe~ CRGT 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I 1 0 1 1 1 1 1 0 0 001 101 

Execution (PC) + 1 ~ PC 
If (ACC) > (ACCB) 

Then (ACC) ~ ACCB; 1 ~ C 
If (ACC) < (ACCB) 

Then (ACCB) ~ ACC; 0 ~ C 
If (ACC) = (ACCB) 

Then 1 ~ C 

Affects C. 

Description The contents of the accumulator (ACe) are compared to the contents of the accumulator 
buffer (ACCS). The larger value (signed) is loaded into both registers. If the contents of 
the accumulator are greater than or equal to the contents of the accumulator buffer, the 
carry bit is set to 1. Otherwise, it is set to O. 

Words 1 

Cycles 1 

Example 1 CRGT 

Example 2 CRGT 
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ACCB 
ACC 

C 

ACCB 
ACC 

C 

Before Instruction 

4hl 

01 

Before Instruction 

5hl 

01 

ACCB 
ACC 

C 

ACCB 
ACC 

C 

After Instruction 

5hl 

After Instruction 

5hl 
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DMOV Data Move in Data Memory 

Syntax Direct: [/abe~ DMOV dma 
Indirect: [labe~ DMOV {ina} [,next ARPJ 

Operands 0$ dma $127 
o $ next ARP $7 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 1 0 1 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 1 1 0 1 1 1 1 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 
(dma) ~ dma + 1 

Affected by CNF and OVLY. 

Description The contents of the specified data memory address are copied into the contents of the next 
higher address. DMOV works only within on-chip data RAM blocks. It works within any 
configurable RAM block if that block is configured as data memory. In addition, the data 
move function is continuous across block boundaries. The data move function cannot be 
used on external data memory or memory-mapped registers. If used on external memory 
or memory-mapped registers, DMOV will read the specified memory location but will per­
form no operations. 

When data is copied from the addressed location to the next higher location, the contents 
of the addressed location remain unaltered. 

The data move function is useful in implementing the z-1 delay encountered in digital sig­
nal-processing. The DMOV function is included in the LTD, MACD, and MADD instruc­
tions (see the LTD, MACD, and MADD instructions for more information). 

Words 1 

Cycles 1 

Example 1 DMOV DAT8 ; (DP = 6) 

Data Memory 
308h 

Data Memory 
309h 

Example 2 DMOV * , ARl 
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ARP 

AR1 

Data Memory 
30Ah 

Data Memory 
30Bh 

Before Instruction 

43hl 

Before Instruction 

01 
30Ahl 

40hl 

41hl 

Data Memory 
308h 

Data Memory 
309h 

ARP 

AR1 

Data Memory 
30Ah 

Data Memory 
30Bh 

After Instruction 

43hl 

43hl 

After Instruction 

11 
30Ahl 

40hl 

40hl 
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Syntax [/abe~ IDLE 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 

Execution (PC) + 1 ~ PC 

Affected by INTM. 

Description The IDLE instruction forces the program being executed to wait until an unmasked inter­
rupt (external or internal) or reset occurs. The PC is incremented only once, and the device 
remains in an idle state until interrupted. 

Words 

Cycles 

Example 

4-78 

The idle state is exited by an unmasked interrupt even if INTM is 1. In the case of INTM 
being 1, the program will continue executing at the instruction following,the IDLE. If INTM 
is 0, then the program will branch to the corresponding interrupt service routine. Execution 
'of the IDLE instruction causes the TMS320C5x to enter the power-down mode. During 
the idle mode, the timer and serial port peripherals are still active. Therefore, timer and 
peripheral interrupts, as well as reset or external interrupts, will remove the processor from 
the idle mode. 

IDLE iThe processor idles until a reset or unmasked interrupt 
ioccurs. 
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Syntax Direct: [/abe~ IN dma, PA 
Indirect: [labe~ IN {ind} ,PA [,next ARPJ 

Operands 0 ~ dma ~ 127 

Opcode 

o ~ next ARP ~7 
O~ PA~65535 

15 14 13 12 11 10 9 
o 1 0 

8 7 6 5 4 3 2 0 
1 I 0 I Data Memory Address 

Direct: 1-------------...&...----&.-------------1 
16-Bit Constant 

15 14 13 12 11 10 9 8 765 4 3 2 o 
1 I 1 I See Subsection 4.1.2 

Indirect: t--------------...&...----&.-----------! o 0 1 

16-Bit Constant 

Execution (PC) + 2 ~ PC 

While (repeat counter) '¢ 0 
Port address ~ address bus A 1S-AO 
Data bus 015-00 ~ dma 
Port address + 1 -7 Port address 
(repeat counter - 1) ~ repeat counter 

Description The IN instruction reads a 16-bit value from an external I/O port into the specified data 
memory location. The IS line goes low to indicate an I/O access, and the STRB, RD, and 
READY timings are the same as for an external data memory read. Note that port address­
es 50h-5Fh are memory-mapped (see subsection 5.1.1 ), but the other port addresses are 
not. 

RPT can be used with the IN instruction to read in consecutive words from I/O space to 
data space. In the repeat mode, the port address (PA) is incremented after each access. 

Words 2 

Cycles 2 

Example 1 IN 

Example2 IN 

4-80 

(Each access cycle time increases by i, the number of I/O memory wait states. This 
is the number of cycles the device must wait for external I/O memory accesses.) 

DAT7,PA5 

*,PAO 

;Read in word from peripheral 
ion port address 5. Store in 
;data memory location 307h (DP=6). 

:Read in word from peripheral on 
:port address O. Store in data memory 
:location specified by the current 
;auxiliary register. 
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~!:;t!f!,,~,,",,~oft Interru.pt , .. ,' '''''. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Words 1 

Cycles 4 

Example . INTR 3 

4-82 

Interrupt Location k Interrupt Location 

RS Oh 16 Reserved 20h 

INT1 2h 17 TRAP 22h 

INT2 4h 18 NMI 24h 

INT3 6h 19 Reserved 26h 

TINT 8h 20 user-defined 28h 

RINT Ah 21 user-defined 2Ah 

XINT Ch 22 user-defined 2Ch 

TRNT Eh 23 user-defined 2Eh 

TXNT 10h 24 user-defined 30h 

INT4 12h 25 user-defined 32h 

Reserved 14h 26 user-defined 34h 

Reserved 16h 27 user-defined 36h 

Reserved 18h 28 user-defined 38h 

Reserved 1Ah 29 user-defined 3Ah 

Reserved 1Ch 30 user-defined 3Ch 

Reserved 1Eh 31 user-defined 3Eh 

iControl is passed to program memory location 6h 
iPC + 1 is pushed onto the stack. 
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Syntax Direct: [labe~ LACC dma [,shift 1] 
Indirect: [/abe~ LACC find} [,shift1 [,next ARPJ] 
Immediate: [/abe~ LACC #Ik [,shift2j , 

Operands 0:::; dma:::; 127 
o :::; next ARP -:;, 7 
0-:;, shift1 -:;, 16 (defaults to 0) 
-32768 -:;, Ik -:;, 32767 
0-:;, shift2 -:;, 15 (defaults to 0) 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 0 0 1 I SHFTt 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 1 I SHFTt See Subsection 4.1 .2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Long: 11 
0 0 0 0 SHFTt 

16-Bit Constant 

Load ACC with shift of 16 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 0 1 0 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 0 See Subsection 4.1.2 

t See Section 4.5. 

Execution Direct or Indirect Addressing: 

(PC) + 1 -7 PC 
(dma) x 2shift1 -7 ACC 

Long Immediate Addressing: 
(PC) + 2 -7 PC 
Ik x 2shift2 -:-7 ACC 

Affected by SXM. 

Description The contents of the specified data memory address or a 16-bit constant are left-shifted 
and loaded into the accumulator. During shifting, low-order bits are zero-filled. High-order 
bits are sign-extended if SXM = 1 and zeroed if SXM = O. 

Words 1 (Direct or indirect addressing) 
2 (Long immediate addressing) 

Cycles 1 (Direct or indirect addressing) 
2 (Long immediate addressing), 
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LACL 
. ;; ., . :;:~21! 

Syntax Direct: [/abe~ LACL dma 
Indirect: 
Immediate: 

[/abe~ LACL {inoj [,next ARPJ 
[/abe~ LACL #k 

Operands 0 :5 dma :5 127 

Opcode 

o :5 next ARP :5 7 . 
OS k s 255 

15 
Direct: I 0 

15 
Indirect: I 0 

15 
Short Immediate: I 1 

Execution (PC) + 1 ~ PC 

14 
1 

14 
1 

14 
0 

13 12 
1 0 

13 12 
1 0 

13 12 
1 1 

Direct or Indirect Addressing: 

o ~ ACC(31-16) 
(dma) ~ ACC(15-0) 

Short Immediate Addressing: 

o ~ ACC(31-8) 
k ~ ACC(7-0) 

Not affected by SXM. 

11 10 9 8 
1 0 0 1 

11 10 9 8 
1 0 0 1 

11 10 9 8 
1 0 0 1 

7 6 5 4 3 2 0 
0 Data Memory Address 

7 6 5 4 3 2 0 
1 See Subsection 4.1 .2 

7 6 5 4 3 2 0 
8-Bit Constant 

Description The contents of the addressed data memory location or a zero-extended 8-bit constant 
are loaded into the 16 low-order bits of the accumulator. The upper half of the accumulator 
is zeroed. The data is treated as an unsigned 16-bit number rather than a twos-comple­
ment number. There is no sign-extension of the operand with this instruction, regardless 
of the state of SXM. 

Words 1 

Cycles 1 
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LACT Load Accumulator With Shift SPe.cifie~ ~YTR.~(31 

Syntax Direct: [/abe~ LACT dma 
Indirect: [/abe~ LACT {inaj [,next ARPJ 

Operands o =:;; dma ~ 127 
o s; next ARP s; 7 

Opcode 

15 14 13 12 11 10 9 8 7 65432 0 
Direct: I 0 1 1 0 1 0 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 65432 0 
Indirect: I 0 1 1 0 0 1 1 1 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 
(dma) X 2TREG1(3-0) ~ ACC 

If SXM = 1: 
Then (dma) is sign-extended. 

If SXM = 0: 
Then (dma) is not sign-extended. 

Affected by SXM. 

Description The LACT instruction loads the accumulator with a data memory value that has been 
left-shifted. The left-shift is specified by the four LSBs of TREG1, resulting in shift options 
from 0 to 15 bits. Using TREG 1 's contents as a shift code provides a dynamic shift mecha­
nism. During shifting, the high-order bits are sign-extended if SXM = 1 and zeroed if SXM 
= O. 

Words 

Cycles 

4-88 

LACT may be used to denormalize a floating-point number if the actual exponent is placed 
in the four LSBs of the T register and the mantissa is referenced by the data memory ad­
dress. Note that this method of denormalization can be used only when the magnitude of 
the exponent is four bits or less. 

Software compatibility with the TMS320C25 can be maintained by setting the TRM bit of 
the PMST status register to zero. This causes any TMS320C25 instruction that loads 
TREGO to write to all three TREGs. Subsequent calls to LACTwill contain the correct shift 
value in TREG1, maintaining object-code compatibility. 

1 

1 
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Syntax Direct: [labe~ LAMM dma 
Indirect: [labe~ LAMM {ind} [,next ARPJ 

Operands o ~ dma ~ 127 
o ~ next ARP ~ 7 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 0 0 0 1 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 0 0 0 0 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 
(dma) ~ ACC 

Description The low word of the accumulator is loaded with the contents of the addressed 
memory-mapped register. The 9 MSBs of the data memory address are set to zero, re­
gardless of the current value of DP or the upper 9 bits of AR(ARP). This instruction allows 
any location on data page zero to be loaded into the accumulator without modifying the 
DP field in status register STO. 

Words 

Cycles 

Example 1 

Example 2 

4-90 

1 

1 (For processor memory-mapped registers) 
2 (For peripheral memory-mapped registers) 

LAMM BMAR ; (DP = 6) 

Before Instruction After Instruction 

ACC 22221376hl ACC 5555hl 

BMAR 5555hl BMAR 5555hl 

Data Memory Data Memory 
1000hl 31Fh 1000hl 31Fh 

LAMM * 
Before Instruction After Instruction 

ARP 11 ARP 11 

AR1 325h l AR1 325hl 

ACC 22221376hl ACC OFhl 

PRD OFhl PRD OFhl 

Data Memory Data Memory 
325h 1000hl 325h 1000hl 

Note that the value in data memory location 325h is not loaded into the accumulator. The 
value at data memory location 25h is loaded. 
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storage register, especially for swapping values between data memory locations without 
affecting the contents of the accumulator. 

Words 1 
2 

Cycles 2 

Example 1 LAR 

Example 2 LAR 

Example 3 LAR 

Example 4 LAR 

(Direct, indirect, or short immediate addressing) 
(Long immediate addressing) 

ARO,DAT16 ; (DP = 6) 
Before Instruction After Instruction 

Data Memory 
18hl 

Data Memory 
18hl 310h 310h 

ARO 6hl ARO 18hl 

AR4,*-
Before Instruction After Instruction 

ARP 41 ARP 41 
Data Memory 

32h I 
Data Memory 

32hl 300h 300h 

AR4 ~QQb I AR4 32hl 

Note: 

LAR in the indirect addressing mode ignores any AR modifications if the AR 
specified by the instruction is the same as that pointed to by the ARP. There­
fore, in Example 2, AR4 is not decremented after the LAJ:l instruction. 

AR4,#Olh 
Before Instruction After Instruction 

AR4 OFFo9hl AR4 01hl 

AR4,#3FFFh 
Before Instruction After Instruction 

AR4 ohl AR4 3FFFhl 
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LOP Load Data 1v!.t;.,!!R,'X" ..... !;."""C?._in ..... te,....'-______________ • ________ ........ __ 

Exsmple2 LDP #Oh 

Before Instruction 

DP 1FFhl 

Example 3 LDP *,ARS 
Before Instruction . 

ARP 41 

AR4 300hl 
Data Memory 

300h o6hl 
DP 1FFhl 

4-94 

DP 

ARP 

AR4 

Data Memory 
300h 
DP 

After Instruction 

ohl 

After Instruction 

51 
300hl 

o6hl 

06hl 
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Example 2 LMMR *,:/I:300h,AR4 ;CBCR = lEh 

Before Instruction After Instruction 

ARP 01 ARO 4hl 

ARO 31Ehl ARO 31Ehl 

Data Memory 
20hl 

Data Memory 
20hl 300h 300h 

CBCR ohl CBCR 20hl 
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Syntax Direct: [labe~ LST #n, dma 
Indirect: [/abe~ LST #n, {ind} [,next ARPJ 

Operands o ~ dma ~ 127 
n = 0,1 
o ~ next ARP ~ 7 

Opcode 

LST#O 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct: I 0 0 0 0 1 1 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 0 1 1 1 0 1 See Subsection 4.1.2 

LST#1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 0 0 0 1 1 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 0 1 1 1 1 1 See Subsection 4.1 .2 

Execution (PC) + 1 ~ PC 
(dma) ~ status register STn 
dma (bits 13-15) ~ ARP (regardless of n) 

Affects ARB, ARP, OV, OVM, DP, CNF, TC, SXM, C, HM, XF, and PM. 
Does not affect INTM. 

Description Status register STn is loaded with the addressed data memory value. Note that the INTM 
.bit is unaffected by LST #0. In addition, the LST #0 instruction does not affect the ARB 
field in the ST1 register even though a new ARP is loaded. If a next ARP value is specified 
via the indirect addressing mode, the specified value is ignored. Instead, ARP is loaded 
with the value contained within the addressed data memory word. 

Words 

Cycles 

Example 1 

4-98 

Note: 

When ST1 is loaded, the value loaded into ARB is also loaded into ARP. 

The LST instruction can be'used for restoring the status registers after subroutine calls 
and interrupts. 

1 

2 

MAR *,ARO 
LST #O,*,ARI iThe data memory word addressed by the contents of 

iauxiliary register ARO is loaded into status register STO, 
iexcept for the INTM bit. Note that even though a next 
iARP value is specified, that value is ignored, and the old 
iARP is not loaded into the ARB. 
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LT Load TREGO ;;~~_~_~;_.~ .. _;.~_.'_' __________ .'_A~_. __ ~_.$~_:.~_W._U_ .. $.;_.&_~Z;_L_;m_~;;_~~k_l ________________________ _ 

Syntax Direct: [/abe~ LT dma 
Indirect: [/abe~ LT {ind} [,next ARP] 

Operands o ~ dma ~ 127 
o ~ next ARP -5: 7 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 432 0 
Direct: I 0 1 1 1 0 0 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 432 0 
Indirect: I 0 1 1 1 0 0 1 1 1 See Subsection 4.1.2 

Execution (PC) + 1 -7 PC 
(dma) -7 TREGO 

IfTRM = 0: 
(dma) -7 TREG1 
(dma) -7 TREG2 

Affected by TRM. 

Description TREGO is loaded with the contents of the specified data memory address (dma). The LT 
instruction may be used to load TREGO in preparation for multiplication. See the LTA, LTD, 
LTP, LTS, MPY, MPYA, MPYS,and MPYU instructions. If the TRM bit of the PMST register 
is 0, then TREG1 and TREG2 are also loaded to maintain compatibility with the 
TMS320C25. The TREGs are memory-mapped registers and may be read and written 
with any instruction that accesses data memory. Note that TREG1 is only 5 bits and 
TREG2 is only 4 bits. 

Words 1 

Cycles 1 

Example 1 LT DAT24 ; (DP = 8. TRM = 1). 

Before Instruction 

Data Memory 
62hl 418h 

TREGO 3hl 

Example 2 LT *,AR3 ; (TRM = 0) 

Before Instruction 

ARP 21 
AR2 418hl 

Data Memory 
62hl 418h 

TREGO 3hl 
TREG1 4hl 
TREG2 5hl 

4-100 

Data Memory 
418h 

TREGO 

ARP 

AR2 

Data Memory 
418h 

TREGO 

TREG1 

TREG2 

After Instruction 

62hl 
62hl 

After Instruction 

31 
418hl 

62h l 
62hl 
62hl 

62hl 
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L TA Load TREGO and Accumulate Previous Product 

Example 2 LTA *,5 ; (TRM = 0) 

Before Instruction After Instruction 

ARP 41 ARP 51 
AR4 324hl AR4 324hl 

Data Memory 
62hl 

Data Memory 
62hl 324h 324h 

TREGO 3hl TREGO 62hl 
TREG1 4hl TREG1 62hl 
TREG2 5hl TREG2 62hl 

P OFhl P OFhl 
ACC [K] 5hl ACC @] 14hl 

c C 
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LTD Load TREGO, Accumulate Previous Product, and Move Data 
~...;e:e;e;~~~ 'f,;,s ~~.'.' ~.u.w~'~.! e.·.~Io!>l!·lo '!M. '';;S';!ie[' .,~. ;p».'"·""·iei;e·f'·»J!·'e'~iei·"~::~~:'''~"~~~·· 

Example 2 LTD *,AR3 ; (TRM = 0) 

Before Instruction After Instruction 

ARP 11 ARP 31 
AR1 3FEhi AR1 3FEhi 

Data Memory Data Memory 
3FEh 62hl 3FEh 62hl 

Data Memory Data Memory 
3FFh Ohl 3FFh 62hl 

TREGO 3hl TREGO 62hl 

TREG1 4hl TREG1 62hl 

TREG2 5hl TREG2 62hl 

P OFhl P OFhI 

ACC (]] 5hl ACC []] 14hl 
C C 
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LTP Load TREGO and Store P Register in Accumulator 
. :efr .. '~~f$: ·t?111~~·~~~~S~~.~~S.,;U·S·~·O;,· .. 

Example 2 LTP *,AR5 ; (PM = 0, TRM = 0) 
Before Instruction After Instruction 

ARP 21 ARP 51 

AR2 324hl AR2 324hl 

Data Memory Data Memory 
324h 62hl 324h 62hl 

TREGO 3hl TREGO 62hl 

TREG1 4hl TREG1 62hl 

TREG2 5hl TREG2 62hl 

P OFhl P OFhl 

ACC lKI 5hl ACC 00 OFhl 

C C 
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Syntax Direct: [/abe~ MAC pma, dma 
Indirect: [labe~ MAC pma, {ind} [,next ARP] 

Operands o ~ pma ~ 65535 
o ~ dma ~ 127 
o ~ next ARP ~ 7 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 320 
1 

Direct: 
0 1 0 0 0 1 o 1 0 J Data Memory Address 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
See Subsection 4.1.2 Indirect: 1--__ ° ___ ° __ ° __ ° ___ °_.1...-11_.1...-1 _________ -1 

16-Bit Constant 

Execution (PC) + 2 ~ PC 
(PFC) ~ MCS 
(pma) ~ PFC 

If (repeat counter) -:t= 0: 
Then (ACC) + (shifted P register) ~ ACC, 

(dma) ~ TREGO 
(dma) x (pma, addressed by PFC) ~ P register, 
Modify AR(ARP) and ARP as specified 
(PFC) + 1 ~ PFC 
(repeat counter) - 1 ~ repeat counter. 

Else (ACC) + (shifted P register) ~ ACC, 
(dma) ~ TREGO 
(dma) x (pma, addressed by PFC) ~ P register, 
Modify AR(ARP) and ARP as specified 

(MCS) ~ PFC 

Affected by aVM and PM; affects C and av. 

Description The MAC instruction multiplies a data memory value (specified by dma) by a program 
memory value (specified by pma). It also adds the previous product, shifted as defined 
by the PM status bits, to the accumulator. 

4-108 

The data and program memory locations on the TMS320C5x may be any nonreserved, 
on-chip or off-chip memory locations. If the program memory is block BO of on-chip RAM, 
then the CNF bit must be set to one. When the MAC instruction is used in the direct ad­
dressing mode, the dma cannot be modified during repetition of the instruction. 

When the MAC instruction is repeated, the program memory address contained in the 
PFC is incremented by one during its operation. This makes it possible to access a series 
of operands in memory. MAC is useful for long sum-of-products operations because it be­
comes a single-cycle instruction, once the RPT pipeline is started. 
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Syntax Direct: [/abe~ MACD pma, dma 
Indirect: [Iabe~ MACD pma, {ina} [,next ARPJ 

Operands 0 ~ pma ~ 65535 
o ~ dma ~ 127 
o ~ next ARP ~ 7 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
1 0 1 0 0 0 1 1 1 0 1 Data Memory Address 

Direct: t-----------...L.----.a...----------I 
16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
o 0 0 0 1 1 11 1 See Subsection 4.1.2 

Indirect: 1------------"----'--------------1 

Execution (PC) + 2 ~ PC 
(PFC) ~ MCS 
(pma) ~ PFC 

If (repeat counter) *" 0: 

16-Bit Constant 

Then (ACC) + (shifted P register) ~ ACC, 
(dma) ~ TREGO 
(dma) x (pma, addressed by PFC) ~ P register 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 ~ PFC 
(dma) 4 (dma) + 1 
(repeat counter) -1 ~ repeat counter. 

Else (ACC) + (shifted P register) ~ ACC, 
(dma) ~ TREGO 
(dma) x (pma, addressed by PFC) ~ P register 
(dma) ~ (dma) + 1 
Modify AR(ARP) and ARP as specified, 

(MCS) ~ PFC 

Affected by OVM and PM; affects C and OV. 

Description The MACD instruction multiplies a data memory value (specified by dma) by a program 
memory value (specified by pma). It also adds the previous product, shifted as defined 
by the PM status bits to the accumuiator. The data and program memory locations on the 
TMS320C5x may be any nonreserved, on-chip or off-chip memory locations. If the pro­
gram memory is block 80 of on-chip RAM, then the CNF bit must be set to one. When 
MACD is used in the direct addressing mode, the dma cannot be modified during repetition 
of the instruction. If MACD addresses one of the memory-mapped registers or external 
memory as a data memory location, the effect of the instruction will be that of a MAC in­
struction (see the DMOV instruction description). 
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Syntax Direct: [Iabe~ MADD dma 
Indirect: [Iabe~ MADD {ind} [,next ARPj 

Operands o =:; dma =:;; 127 
o =:;; next ARP =:;; 7 

Opcode 

15 14 13 12 11 10 9 8 7 
Direct: I 1 0 1 0 1 0 1 1 0 

15 14 13 12 11 10 9 8 7 
Indirect: I 1 0 1 a 1 a 1 1 1 

Execution (PC) + 2 ~ PC 
(PFC) ~ MCS 
(BMAR) ~ PFC 

If (repeat counter) *' 0: 
Then (ACC) + (shifted P register) ~ ACC, 

(dma) ~ TREGO 
(dma) x (pma, addressed by PFC) ~ P register, 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 ~ PFC 
(dma) ~ (dma) + 1 
(repeat counter) - 1 ~ repeat counter. 

Else (ACC) + (shifted P register) ~ ACC, 
(dma) ~ TREGO 
(dma) x (pma, addressed by PFC) ~ P register 
(dma) ~ (dma) + 1 
Modify AR(ARP) and ARP as specified. 

(MCS) ~ PFC 

Affected by OVM and PM; affects C and OV. 

6 5 4 3 2 0 
Data Memory Address 

6 5 432 0 
See Subsection 4.1 .2 

Description The MADD instruction multiplies adatamemoryvalue (specified by the dma) by a program 
memory value. The program memory address is contained in the BMAR register; it is not 
specified by a long immediate constant. This facilitates dynamic addressing of coefficient 
-tables. In addition, the previous product, shifted as defined by the PM status bits, is added 
to the accumulator. The data and program memory locations on the TMS320C5x may be 
any nonreserved, on-chip or off-chip memory locations. If the program memory is block 
BO of on-chip RAM, then the CNF bit must be set to one. When MADD instruction is used 
in the direct addressing mode, the dma cannot be modified during repetition of the instruc­
tion. If MADD addresses one of the memory-mapped registers or external memory as a 
data memory location, the effect of the instruction will be that of a MADS instruction (see 
the DMOV instruction description). 

4-112 

MADD functions in the same manner as MADS, with the addition of data move for on-chip 
RAM blocks. Otherwise, the effects are the same as for MADS. This feature makes MADD 
useful for applications such as convolution and transversal filtering. 
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MADS Multiely and Accurr;,ul;;,te With Dynamic 1::~~f.f!.~sjr;g 

Syntax Direct: [/abe~ . MADS dma 
Indirect: [/abe~ MADS lind} [,next ARPJ 

Operands o ~ dma ~ 127 
o ~ next ARP ~ 7 

Opcode 

15 14 13 12 11 10 9 8 7 65432 0 
Direct: I 1 0 1 0 1 0 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 65432 0 
Indirect: I 1 0 1 0 0 1 0 1 See Subsection 4.1 .2 

Execution (PC) + 1 ~ PC 
(PFC) ~ MCS 
(BMAR) ~ PFC 

If (repeat counter) ¢ 0: 
Then (ACC) + (shifted P register) ~ ACC, 

(dma) ~ TREGO 
(dma) x (pma, addressed by PFC) ~ P register, 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 ~ PFC 
(repeat counter) - 1 ~ repeat counter. 

Else (ACC) + (shifted P register) ~ ACC, 
(dma) ~ TREGO 
(dma) x (pma, addressed by PFC) ~ P register, 
Modify AR(ARP) and ARP as specified, 

(MCS) ~ PFC 

Affected by aVM and PM; affects C and av. 

Description The MADS instruction multiplies a data memory value (specified by dma) by a program 
memory value (specified by pma). It also adds the previous product, shifted as defined 
by the PM status bits, to the accumulator. The pma is specified by the contents of the 
BMAR register, rather than by a long immediate constant. This allows for dynamic ad­
dressing of coefficient tables. 
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The data and program memory locations on the TMS320C5x may be any nonreserved, 
on-chip or off-chip memory locations. If the program memory is block BO of on-chip RAM, 
then the CNF bit must be set to one. When MADS is used in the direct addressing mode, 
the dma cannot be modified during repetition of the instruction. 

When the MADS instruction is repeated, the program memory address contained in the 
PFC is incremented by one during its operation. This makes it possible to access a series 
of operands in memory. MADS is useful for long sum-of-products operations because this 
instruction becomes a single-cycle instruction, once the RPT pipeline is started. 
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Syntax Direct: [/abe~ MAR dma 
Indirect: [/abe~ MAR lind} [,next ARP] 

Operands o ~ next ARP ~ 7 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 1 0 0 0 1 0 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 1 0 1 1 1 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 

Modifies ARP, AR(ARP) as specified by the indirect addressing field. Acts as a NOP in 
direct addressing mode. 

Description In the indirect addressing mode, the auxiliary registers and the ARP are modified; howev­
er, no use is made of the memory being referenced. MAR is used to modify the auxiliary 
registers or the ARP. The old ARP is copied to the ARB field of the status register ST1. 
Note that any operation that MAR performs can also be performed with any instruction that 
supports indirect addressing. ARP can also be loaded by an LST instruction. The instruc­
tion LARP from the TMS320C25 instruction set is a subset of MAR (i.e., MAR *,4 performs 
the same function as LARP 4). 

Words 1 

Cycles 1 

Example 1 MAR 

Example 2 MAR 
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*,ARl iLoad the ARP with 1. 

ARP 
ARB 

Before Instruction 

01 ARP 
ARB 

After Instruction 

11 
01 

*+,AR5 iIncrement current auxiliary register 
i (AR1) and load ARP with 5. 

Before Instruction After Instruction 

AR1 34hl AR1 3shl 
ARP 11 ARP sl 
ARB 01 ARP 11 
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Syntax Direct: [Iabe~ MPYS dma 
Indirect: [Iabe~ MPYS {ind} [,next ARP] 

Operands 0$ dma $127 
o $ next ARP $ 7 

Opcode 

15 14 13 12 11 10 9 8 7 65432 0 
Direct: I 0 1 0 1 0 0 0 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 65432 0 
Indirect: I 0 0 1 0 0 0 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 
(ACC) - (shifted P register) ~ ACC 
(TREGO) x (dma) ~ P register 

Affected by aVM and PM; affects C and av. 

Description The contents of TREGO are multiplied by the contents ofthe addressed data memory loca­
tion. The result is placed in the P register. The previous product, shifted as defined by the 
PM status bits, is also subtracted from the accumulator, and the result is placed in the ac­
cumulator. 

Words 1 

Cycles 1 

Example 1 MPYS DAT13 ; (DP = 6, PM = 0) 

Data Memory 
30Dh 

TREGO 
P 

ACC [K] 
C 

Before Instruction 

7hl 

6hl 

36hl 

54hl 

Example 2 MPYS *, AR5 ; (PM = 0) 

4-120 

ARP 

AR4 

Data Memory 
30Dh 

TREGO 
P 

ACC []] 
C 

Before Instruction 

41 
30Dhl 

7hl 

6hl 

36hl 

54 hi 

Data Memory 
30Dh 

TREGO 
P 

ACC [i] 
C 

ARP 

AR4 

Data Memory 
30Dh 

TREGO 
P 

ACC OJ 
C 

After Instruction 

7hl 

2Ahl 

1Ehl 

After Instruction 

51 
30Dhl 

7hl 

6hl 

2Ahl 

1Ehl 
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NEG Negate Accum~_r _______ """, 

Syntax [/abe~ NEG 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I 1 0 1 1 1 1 1 000 0 0 000 

Execution (PC) + 1 ~ PC 
(ACC) x -1 ~ ACC 

Affected by DVM; affects DV and C. 

Description The contents of the accumulator are replaced with its arithmetic complement (twos com­
plement). The DV bit is set when taking the NEG of 80000000h. If DVM = 1, the accumula­
tor contents are replaced with 7FFFFFFFh.lf DVM = 0, the result is 80000000h. The carry 
bit C on the TMS320C5x is reset to zero by this instruction for all nonzero values of the 
accumulator, and is set to one if the accumulator equals zero. 

Words 1 

Cycles 1 

Example 1 NEG ; (OVM = X) 

Before Instruction After Instruction 

ACC [X] OFFFFF228~ ACC [ill I ODD8hl 
C C 

[K) []J 
ov ov 

Example 2 NEG ; (OVM = 0) 

Before Instruction After Instruction 

ACC [K) 080000000~ ACC [Q] 080000000~ 
C C 

[K) [1] 
ov ov 

Example3 NEG ; (OVM = 1) 

Before Instruction After Instruction 

ACC lX1 080000000hl ACC [QJ 7FFFFFFFhl 

C C 
[K] OJ 
ov ov 
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Syntax [Iabe~ NOP 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I 1 000 1 0 1 100 0 0 0 0 0 0 

Execution (PC) + 1 ~ PC 

Description No operation is performed. The NOP instruction affects only the PC. The NOP 
instruction is useful to create pipeline and execution delays. 

Words 

Cycles 

Example 
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NOP iNo operation is performed. 
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NORM Normalize Contents of Accumulator 
~~~:"<~~~~~~~w#.Xs~~~~~~~~~~~~ 

Example 1 

Example 2 

NORM *+ 

Before Instruction After Instruction 

ARP 
AR2 
ACC []] 

TC 

31-Bit Normalization: 

MAR *,ARl 
LAR ARl, #Oh 

LOOP NORM *+ 
BCND LOOP,NTC 

~ ARP 
oOhl AR2 

OFFFFFOO1~ ACC [Q] 
TC 

jUse ARl to store the exponent. 
;Clear out exponent counter. 
;One bit is normalized. 

21 

O1hl 

OFFFEOO2hl 

;If TC = 0, magnitude not found yet. 

Example 3 15-Bit Normalization: 
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MAR *,ARl 
LAR ARl,#OFh 
RPT #14 

;Use ARl to store the exponent. 
;Initialize exponent counter. 
;lS-bit normalization is specified (yielding 
;a 4-bit exponent and l6-bit mantissa) • 
;NORM automatically stops shifting when NORM *-
;the first significant magnitude bit is found, 
;performing NOPs for the remainder of the 
;repeat loops. 

The method in Example 2 is used to normalize a 32-bit number and yields a 5-bit exponent 
magnitude. The method in Example 3 is used to normalize a 16-bit number and yields a 
4-bit magnitude. If the number requires only a small amount of normalization, the Example 
2 method may be preferable to the Example 3 method. This is because the loop in Exam­
ple 2 runs only until normalization is complete. Example 3 always executes all 15 cycles 
of the repeat loop. Specifically, Example 2 is more efficient if the number requires three 
or less shifts. If the number requires six or 'more shifts, Example 3 is more efficient. 

Note: 

The NORM instruction may be used without a specified operand. In that 
case, any comments on the same line as the instruction will be interpreted 
as the operand. If the first character is an asterisk *, then the instruction will 
be assembled as NORM * with no auxiliary register modification taking 
place upon execution. Therefore, TI recommends that you replace the 
NORM instructions with NORM * + when you want the default increment 
modification. 
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Example 1 OPL DATIO ; (DP=6) 

Before Instruction After Instruction 

DBMR OFFFohl DBMR OFFFohl 

Da:ta Memory 
0OO1hl 

Data Memory 
OFFF1hl 30Ah 30Ah 

Example 2 OPL #OFFFh,DATIO ; (DP=6) 

Before Instruction After Instruction 

Data Memory Data Memory 
30Ah 0OO1hl 30Ah OFFFhl 

Example 3 OPL *,AR6 

Before Instruction After Instruction 

ARP 31 ARP I sl 

AR3 300hl AR3 300hl 

DBMR OFOhl DBMR OFohl 

Data Memory Data Memory 
300h OFhl 300h OFFhl 

Example 4 OPL #1111h,*,AR3 

Before Instruction After Instruction 

ARP sl ARP 31 

ARS 306hl AR6 30Shl 

Data Memory 
OEhl 

Data Memory 
111 Fhl 30Sh 30Sh 
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OR OR With Accumulator 

Words 1 (Direct or indirect addressing) 
2 (Long immediate addressing) 

Cycles 1 (Direct or indirect addressing) 
2 (Long immediate addressing) 

Example 1 OR DAT8 ; (DP = 8) 

Before Instruction After Instruction 

Data Memory Data Memory 
408h OFOOOhl 408h OFOOOhl 

ACC [K] 100002hl ACC [[] 10F002hl 

C C 

Example 2 OR *,ARO 

Before Instruction After Instruction 

ARP 11 ARP 01 

AR1 300hl AR1 300hl 

Data Memory Data Memory 
300h 1111 hi 300h 1111hl 

ACC lK1 222hl ACC lK1 1333hl 

C C 

Example 3 OR #08111h,8 

Before Instruction After Instruction 

ACC II] OFFOOOOhl ACC lK1 OFF1100hl 

C C 
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OUT Output Data to Port 
'~·:·:·e··.··:·:·,;:·.:e:<!·:··cri~,:::,;.:e:~~~';'::~)'f·f·~:"··f.··.:'':=. ~~~~~~~~~~~ .. ~~~~~~~~~~~~ 

Syntax Direct: [labe~ OUT dma, PA 
Indirect: [labe~ OUT {ind}, PA [,next ARPJ 

Operands 0 $; dma $; 127 
o $; next ARP $; 7 
o $; PA $; 65535 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
o 0 0 0 1 0 0 I 0 I Data Memory Address 

Direct: 1---------------""----'------------1 
16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
o I 1 I See Subsection 4.1 .2 

Indirect: 1---------------""----'------------1 
00000 

16-Bit Constant 

Execution (PC) + 2 ~ PC 

While (repeat counter) *' 0 
Port address ~ address bus A 15-AO 
(dma) ~ Data bus 015-00 
Port address + 1 ~ Port address 
(repeat counter - 1) ~ (repeat counter) 

Description The OUT instruction writes a 16-bit value from a data memory location to the specified 
1/0 port. The IS line goes low to indicate an liD access, and the STRB, R/W, and READY 
timings are the same as for an external data memory write. Note that port addresses 
50h-5Fh are memory-mapped (see subsection 5.1.1); the other port addresses are not. 

Words 

Cycles 

RPTcan be used with the OUT instruction to write consecutive words from data memory 
to liD space. In the repeat mode, the port address (PA) is incremented after each access. 

2 

3 (Each output will increase by i, I/O memory wait states. This is the num­
ber of cycles the device must wait for external I/O devices to access 
data.) . 

Example 1 OUT DATO,PA7 i (DP = 4) Output data word stored in data memory 
ilocation 200h to peripheral on port address 7. 

Example 2 OUT 
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*,PA15 iOutput data word referenced by current auxiliary 
;register to peripheral on port address 15. 
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POP Pop Top of Stack to Low Accumulator 
~~.?tt? :; ~~~~~~~.:s:,,~~~w~~~:~ .. ~~~.4Y~~~~ 

Syntax [/abe~ POP 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
\10111110001100 0 

Execution (PC) + 1 ~ PC 
(TOS) ~ACC(15-0) 
o ~ ACC(31-16) 
Pop stack one level 

Description The contents of the top of the stack (TOS) are copied to the low accumulator, and the stack 
is popped after the contents are copied. The upper half of the accumulator is set to all ze­
roes. 

Words 

Cycles 

The hardware stack is last-in, first-out with eight locations. Any time a pop occurs, every 
stack value is copied to the next higher stack location, and the top value is removed from 
the stack. After a pop, the bottom two stack words will have the same value. Because each 
stack value is copied, if more than seven stack pops (POP, POPD, RETe; RETE, RETI, 
or RET instructions) occur before any pushes occur, all levels of the stack contain the 
same value. No provision exists to check stack underflow. 

Example POP 

Before Instruction After Instruction 

ACC 0 82hl ACC (Xl 45hl 
C C 

Stack 45hl Stack 16hl 

16hl 7hl 

7hl 33hl 

33hl 42hl 

42hl 56hl 

56hl 37hl 

37hl 61hl 

61hl 61hl 
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Exampie2 POPD *+,ARl 

4-136 

ARP 

ARO 

Data Memory 
300h 

Stack 

Before Instruction 

I 01 
I 300hl 

55hl 

92hl 

72hl 

8hl 

44hl 

81hl 

75hl 

32hl 

OAAhl 

ARP 

ARO 

Data Memory 
300h 

Stack 

After Instruction 

I 11 
I 301hl 

92hl 

72hl 

8hl 

44hl 

81hl 

75hl 

32hl 

OAAhl 

OAAhl 
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PSHD Push Data Mf!,!!1!!.[,,,,,,,,,,,Y,,,,,,,,,VI_,a_'u .... e,.,., O,.,.,n_<!_r?,_~_ta_,~_!(_,. _______ ::"",,,,,_,,,,,_,0,,,_0', .. ,,,.,,,, .... ,,,",,,,,,.,,_,,,,,,,,,,, ,_,:,,,,_,,,,,,_,,",,~ 

Example 2 PSHD * , ARl 

4-138 

ARP 

ARO 

Data Memory 
1FFh 

Stack 

Before Instruction 

01 

1FFhl 

12hl 

2hl 

33hl 

78hl 

99hl 

42hl 

SOhl 

Ohl 

ohl 

After Instruction 

ARP 11 

ARO 1FFhl 

Data Memory 
12hl 1FFh 

Stack 12hl 

2hl 

33hl 

78hl 

99hl 

42hl 

SOhl 

ohl 
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RET Return From Subroutine 

Example2 RETD 

4-142 

MAR *,4 
LACC #lh 

PC 
ARP 
ACC 
Stack 

Before Instruction 

96hl 

01 

ohl 

37hl 

45hl 

75hl 

21hl 

3Fhl 

45hl 

6Ehl 

6Ehl 

After Instruction 

PC 37hl 

ARP 41 

ACC 01hl 

Stack 45hl 

75hl 

21hl 

3Fhl 

45hl 

6Ehl 

6Ehl 

6Ehl 
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RETI Return From Interrupt 

Syntax [/abe~ RETI 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 

execution (TOS) ~ PC 
Pop stack one level. 

Description The contents of the top stack register are copied into the program counter. The RETI in­
struction also pops the values in the shadow registers (stored when an interrupt was tak­
en) back into their corresponding strategic registers. The following registers are shad­
owed: ACC, ACCB, PREG, STO, ST1, PMST, ARCR, INDX, TREGO, TREG1, and 
TREG2. The XF bit in status register ST1 is not saved or restored to/from the shadow reg­
isters during interrupt service routines. 

Words 

Cycles 4 

Example RET! 

4-144 

PC 

Stack 

Before Instruction 

96hl 

37hl 

45hl 

75hl 

21hl 

3Fhl 

45hl 

6Ehl 

6Ehl 

After Instruction 

PC 37hl 

Stack 45hl 

75hl 

21hl 

3Fhl 

45hl 

6Ehl 

6Ehl 

6Ehl 
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ROLB Rotate ACCB and Accumulator Left 

Syntax [/abe~ ROLB 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
11011111000010100 

Execution (PC) + 1 ~ PC 
C ~ ACCB(O) 
(ACCB(30-Q)) ~ ACCB(31-1) 
(ACCB(31» ~ ACC(O) 
(ACC(30-Q)) ~ ACC(31-1) 
(ACC(31)) ~ C 

Affects C. 
Not affected by SXM. 

Description The ROLB instruction causes a 65-bit rotation. The contents of both the accumulator 
(ACC) and accumulator buffer (ACCB) are rotated to the left by one bit. The MSB of the 
original contents in the accumulator shifts into the carry position. The original value of the 
carry bit (C) shifts into the LSB position of the accumulator buffer, and the MSB of the origi­
nal contents of the accumulator buffer shifts into the LSB position of the accumulator. 

Words 1 

Cycles 1 

Example ROLB 

Before Instruction After Instruction 

ACC [!] I 08080808hl ACC [Q] I 10101011hl 
C C 

ACCS OFFFFFFFEhl ACCS OFFFFFFFDhl 
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Syntax [labe~ RCRB 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I 1 0 1 1 1 1 1 0 000 1 0 1 0 1 

Execution (PC) + 1 ~ PC 
C ~ ACC(31) 
(ACC(31-1 )) ~ ACC(30-O) 
(ACC(O)) ~ ACCB(31) 
(ACCB(31-1 )) ~ ACCB(30-O) 
(ACCB(O)) ~ C 

Affects C. 
Not affected by SXM. 

Description The RORB instruction causes a 65-bit rotation. The contents of both the accumulator 
(ACC) and accumulator buffer (ACCB) are rotated to the right by one bit. The LSB of the 
original contents in the accumulator buffer shifts into the carry position~ The original value 
of the carry bit (C) shifts into the MSB position of the accumulator, and the LSB of the origi­
nal contents of the accumulator shifts into the MSB position of the accumulator buffer. 

Words 1 

Cycles 

Example RORB 

Before Instruction After Instruction 

ACC OJ 08080808hl ACC [Q] 084040404hl 

C C 
ACCB OFFFFFFFEhl ACCB 7FFFFFFFhl 
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Words 

Cycles 

Example 1 

Example 2 

Example 3 

RPT is especially useful for block moves, multiply-accumulates, normalization, and other 
functions. The repeat instruction itself is not repeatable. 

1 (Direct, indirect, or short immediate addressing) 
2 (Long immediate addressing) 

2 

RPT DAT127 i (DP = 31) 

Before Instruction After Instruction 

Data Memory Data Memory 
oChl OFFFh oChl OFFFh 

RPTC ohl RPTC oChl 

RPT *,AR1 

Before Instruction After Instruction 

ARP 01 ARP 11 
ARO 300hl ARO 300hl 

Data Memory Data Memory 
OFFFhl 300h OFFFhl 300h 

RPTC ohl RPTC OFFFhl 

RPT #1 iRepeat next instruction 2 times. 

Before Instruction After Instruction 

RPTC ohl RPTC 1hl 

Example 4 RPT #llllh iRepeat next instruction 4370 times. 

Before Instruction After Instruction 

RPTC I ohl RPTC I 1111hl 
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RPTZ Repeat Preceded by Clearing of ACC and PREG 

Syntax Long Immediate: [/abe~ RP~ #Ik 

Operands o ~ Ik ~ 65535 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 
0 1 1 0 0 0 0 0 

16-Bit Constant 

Execution o ~ ACC 
o ~ PREG 
(PC) + 1 ~ PC 

. Ik ~ RPTC 

Description The RPTZ instruction clears the accumulator and product register and repeats the instruc­
tion following the RPTZ n times, where n = Ik+ 1. RPTZ is equivalent to the following in­
struction sequence: 

MPY #0 
PAC 
RPT #<lk> 

Words 2 

Cycles 2 

Example RPTZ #7FFh iZero product register and accumulator. 
MACD pma, *+ iRepeat MACD 2048 times. 
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SACH Store High Accumulator With Shift 
.·:;:;:;x-m:".:.~;:::;o£~~~m~?~~~~~~N.»~:%~~",*,":>'~~>'>';:~,o;o;s(~"~~X!"$.~La;::(M9.MY"M~;~~~X':'_~~_.;.s;:._;:;;$eO"",. _. ____ _ 

Syntax Direct: [labe~ SACH dma [,shiftJ 
Indirect: [/abe~ SACH {ind} [,shift[, next ARPJ] 

Operands 0 ~ dma ~ 127 
o ~ next ARP ~ 7 
o ~ shift ~ 7 (defaults to 0) 

Opcode 

15 14 13 12 11 10 9 8 7654320 
Direct: I 1 0 0 1 1 I SHFf o Data Memory Address 

15 14 13 12 11 10 9 8 7654320 
Indirect: I 1 0 0 SHFt See Subsection 4.1 .2 

t See Section 4.5. 

Execution (PC) + 1 ~ PC 
[(ACC) x 2shift] ~ dma 

Not affected by SXM 

Description The SACH instruction copies the entire accumulator into a shifter, where it left-shifts the 
entire 32-bit number from 0 to 7 bits. It then copies the upper 16 bits of the shifted value 
into data memory. The accumulator itself remains unaffected. 

Words 1 

Cycles 1 

Example 1 SACH DAT10, l' i (DP = 4) 

Before Instruction After Instruction 

ACC [8] 4208001 hi ACC [K] 4208001 hi 

C C 

Data Memory Data Memory 
0841 hi 20Ah ohl 20Ah 

Example 2 SACH *+,O,AR2 

Before Instruction After Instruction 

ARP I 11 ARP 21 

AR1 I 300hl AR1 301hl 

ACC [K] 4208001 hi ACC [K] 4208001 hi 

c C 
Data Memory Data Memory 

300h ohl 300h 0420hl 
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Syntax Direct: [/abe~ SAMM dma 
Indirect: [/abe~ SAMM {ind} [, next ARPJ 

Operands OS dma S 127 
o S next ARP s 7 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I ·1 0 0 0 1 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 0 0 0 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 
(ACC) ~ dma(O-7) 

Description The low word of the accumulator is copied to the addressed memory-mapped register. 
The upper 9 bits of the data address are set to zero, regardless of the current value of DP 
or the upper 9 bits of AR(ARP). This instruction allows the accumulator to be stored to any 
memory location on data page 0 without modifying the DP field in status register STO. 

Words 1 

Cycles 1 (For processor memory-mapped registers) 
2 (For peripheral memory-mapped registers) 

Example 1 SAMM PRD 

ACC 

PRO 

Data Memory 
325h 

Example 2 SAMM * , AR2 

ARP 

AR7 

ACC 

BMAR 

; (DP = 6) 

Before Instruction 

80hl 

05hl 

OFhl 

; (BMAR = lFh) 

Before Instruction 

I 71 

31Fhl 

080hl 

ohl 

PRO 

Data Memory 
325h 

ARP 

AR7 

ACC 

BMAR 

After Instruction 

ACC I 80hl 

I 80hl 

OFhl 

After Instruction 

I 21 

31Fhl 

080hl 

o8ohl 

Data Memory 
31Fh 11hl 

Data Memory 
11 hi 31Fh 
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SATH Barrel Shift ACC as Specified by TREG1 
;:;:~~~;--~:;~SS>';~!OSY~:;S:iY.>:;SSy'o::»:;:i:;W'«;~)';:::iw.;~~~~~y.;:;»~~~!M:;-":.sY.W'.W"-;~N.>:<O~~:::-~m9'..:'~~~~::~,;,;::· .. ·s.~~~:C.:li:C".·::.·:C::···S·S:::S.·.;·:;.·:C:;S::'::::SS"'S·liS::S.,;s!iS~,;ss:u:_s~_s~.'$""".se: __ 

Syntax SATH 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I 1 0 1 1 1 1 100 1 0 1 100 

Execution (PC) + 1 -? PC 

16 x (TREG1 (4)) -? count 
(ACC) right-shifted by count -? ACC 

Affected by SXM. 

Description The accumulator is barrel-shifted right by 16bits ifbit40fTREG1 isaone.lfbit40fTREG1 
is a zero, the accumulator is unaffected. Zeroes are shifted in if SXM=O. Copies of 
ACC(31) are shifted in if SXM=1. The SATH instruction in conjunction with the SATL in­
struction allows a 2-cycle 0- to 31-bit right shift. The carry bit is unaffected. 

Words 1 

Cycles 

Example 1 SATH ; (SXM = 0) 

Before Instruction After Instruction 

ACC [Xl OFFFFOOOOhl ACC [R] OOOOFFFFhl 
C C 

TREG1 XX1xhi TREG1 XX1xhi 

Example 2 SATH ; (SXM = 1) 

Before Instruction After Instruction 

ACC [K] OFFFFOOOOhl ACC 0 OFFFFFFFFhl 
C C 

TREG1 XX1xhi TREG1 XX1xhi 
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see Subtract ACCB From Accumulator 
~~~~..sw-PQh)'w»;W...:;z:;:;:m:;so;S:~""h.,:XS?m~m~)'~~p":::"~~.QW.$.l.~~~~"".Q""$"/.Q7"""""/. .. ~.:w'~.Q":: _ ___ .... 

Syntax [Iabe~ SBB 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 .4 3 2 1 0 

I 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 

Execution (PC) + 1 ~ PC 
(ACC) - (ACCS) ~ ACC 

Description The contents of the accumulator buffer (ACCS) are 'subtracted from the contents of the 
accumulator. The result is stored in the accumulator, and the accumulator buffer is not af­
fected. The carry bit is reset to zero if the result of the subtraction generates a borrow. 

Words 1 

Cycles 1 

Example SBB 

Before Instruction After Instruction 

ACC [K] 20000000hl ACe UJ 1 OOOOOOOh I 
e C 

ACCS 10000000hl ACCS 10000000hl 
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Syntax .[Iabe~ SBRK #k 

Operands O~ k~255 

Opcode 

15 14 13 12 11 10 9 a 7654320 
Short: I 0 0 0 a-Bit Constant 

Execution (PC) + 1 ~ PC 
AR(ARP) - 8-bit positive constant ~ AR(ARP) 

Description The 8-bit immediate value is subtracted, right-justified, from the currently selected auxilia­
ry register with the result replacing the auxiliary register contents. The subtraction takes 
place in the ARAU, with the immediate value treated as a 8-bit positive integer. 

Words 

Cycles 

Example 

4-162 

SBRK #OFFh 

ARP 
AR7 

Before Instruction 

71 
ohl 

ARP 
AR7 

After Instruction 

I 71 
OFF01hl 
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Example 

4-164 

SETC TC iTC is bit 11 of ST1 

Before Instruction 

ST1 x1xxh ST1 

After Instruction 

x9xxhl 
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SFLB Shift ACCB and Accumulator Left 
~~~_. _.~."i!;.; ... (.:(<< ..... )t •• ;. •• -;< ..•• ;, ..•. ;w ••• "" .. ",,<,.', .. ~: .... ·•······· ... ········,.·····;W· .. X·M;· ;Q;~<Ro.~~~ 

Syntax [/abe~ SFLB 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
110111110000101 0 

Execution (PC) + j ~ PC 
o ~ ACCB(O) 
(ACCB(30-O)) ~ ACCB(31-1) 
(ACCB(31)) ~ ACC(O) 
(ACC(30-O)) ~ ACC(31-1) 
(ACC(31) ~ C 

Affects C. 
Not affected by SXM bit. 

Description The SFLB instruction shifts the concatenation of the accumulator (ACC) and accumulator 
buffer (ACCB) left by one bit position. The least significant bit of the accumulator buffer 
is filled with a zero, and the most significant bit of the accumulator buffer is shifted into the 
least significant bit of the accumulator. The most significant bit of the accumulator is shifted 
into the carry bit (C). The SFLB instruction is unaffected by SXM. 

Words 1 

Cycles 

Example SFLB 

Before Instruction After Instruction 

ACC [IJ I OSOOO1234hl ACC III I 60002469hl 

C C 

ACCS OSOOO1234hl ACCS 60002468hl 
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Syntax 

Operands 

Opcode 

Execution 

[labe~ SFRB 

None 

15 14 13 12 11 
I 1 0 1 1 1 

(PC) + 1 ~ PC 

If SXM=O: 
Then 0 ~ ACC(31) 

If SXM=1: 
Then (ACC(31)) ~ ~CC(31) 

(ACC(31-1)) ~ ACC(30-Q) 
(ACC(O)) ~ ACCB (31) 
(ACCB(31-1)) ~ ACCB(30-Q) 
(ACCB(O)) ~ C 

Affects C. 
Affected by SXM. 

I 

10 9 8 7 6 5 432 0 
1 1 0000101 1 

Description The SFRB instruction shifts the concatenation of the accumulator (ACC) and accumulator 

Words 

Cycles 

buffer (ACCB) right by one bit position. The LSB of the ACCB is shifted into the carry bit. 

If SXM=1 , the instruction produces an arithmetic right shift. The sign bit (MSB) of the accu­
mulator is unchanged and is also copied into bit 30. Bit 0 of the accumulator buffer is 
shifted into the carry bit (C). 

If SXM=O, the instruction produces a logic right shift. All of the accumulator and accumula­
tor buffer bits are shifted right by one bit. The least significant bit of the accumulator buffer 
is shifted into the carry bit, and the most significant bit of the accumulator is filled with a 
zero. 

Example 1 SFRB ; (SXM = 0 ) 

Before Instruction After Instruction 

ACC IKJ I OB0001235hl ACC [gJ 5800091Ahl 

C C 

ACCB OB0001234hl ACCB 00800091 Ahl 

Example 2 SFRB ; (SXM = 1) 

Before Instruction After Instruction 

ACC IKl OB0001234hl ACC [Q] 00800091Ahi 

C C 

ACCS OB0001234hl ACCB 05800091 Ahl 
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Example 2 SMMR *,4I=307h,AR6 ; (CBCR = lEh) 

Before Instruction After Instruction 

ARP 61 ARP I 61 
AR6 OFo1Ehi AR6 I OF01 Ehl 

Data Memory 
1376hl 

Data Memory 
5555hl 307h 307h 

CBCR 5555hl CBCR 5555hl 
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SPH Store High P Regjz!er 

Syntax Direct: [/abe~ SPH dma 
Indirect: [/abe~ SPH {ina} [,next ARPJ 

Operands o ::;;dma::;; 127 
o ::;; next ARP ::;; 7 

Opcode 

15 14 13 12 11 10 9 8 7 6543210 
Direct: I 1 0 0 0 1 1 0 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 1 1 0 1 1 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 
(P register shifter output (31-16)) ~ dma 

Affected by PM. 

Description The high-order bits of the P register, shifted as specified by the PM bits, are stored in data 
memory. Neitherthe P register nor the accumulator is affected by this instr"uction. High-or­
der bits are sign-extended when the right-shift-by-6 mode is selected. Low-order bits are 
taken from the low P register when left shifts are selected. 

Words 1 

Cycles 1 

Example 1 SPH DAT3 ; (DP = 4, PM = 0) • 

Before Instruction After Instruction 

P OFE079844hl P OFE079844hl 

203h 4567hl 203h OFE07hl 

Example 2 SPH *,AR7 ; (PM = 2) 

Before Instruction After Instruction 

ARP 61 ARP 71 

AR6 203hl AR6 203hl 

P OFE079844hl P OFE079844hl 

Data Memory 
4567hl 

Data Memory 
OE079hl 203h 203h 
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SPLK Store Parallel Long Immediate 

Syntax Direct: [/abe~ SPLK #Ik,dma 
Indirect: [/abe~ SPLK #Ik, {ind} [,next ARPJ 

Operands os dma s 127 
os next ARP s 7 
Ik: 16-bit constant 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
1 0 

Direct: 
1 0 1 1 1 01 0 I Data Memory Address 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Indirect: 
0 0 o I 1 I See Subsection 4.1.2 

16-Bit Constant 

Execution (PC) + 2 ~ PC 
Ik ~ dma 

Description The SPLK instruction allows a full 16-bit pattern to be written Into any memory location. 
The parallel logic unit (PLU) supports this bit manipulation independently of the ALU so 
that the ACC is unaffected. 

Words 2 

Cycles 2 

Example 1 SPLK #7FFFh,DAT3 ;(DP = 6) 

Data Memory 
303h 

Before Instruction 

OFE07hl 

Example2 SPLK #llllh, *+,AR4 

4-174 

Before Instruction 

ARP 1 01 
AR4 I 300hl 

Data Memory 
300h 07hl 

Data Memory 
303h 

ARP 

AR4 

Data Memor-y 
300h 

After Instruction 

7FFFhl 

After Instruction 

I 41 
I 301hl 

1111hl 
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SQRA Square and Accumulate Previou~ Prqdupt 

Syntax Direct: [/abe~ SQRA dma 
Indirect: [/abe~ SQRA {ino1 [,next ARPJ 

Operands OS dma S 127 
o s next ARP S 7 

Opcode 

15 14 13 12 11 10 9 8 7 65432 0 
Direct: I 0 1 0 1 0 0 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 65432 0 
Indirect: I 0 1 0 1 0 0 1 0 1 See Subsection 4.1.2 

Execution (PC) + 1 -? PC 
(ACC) + (shifted P register) -? ACC 
(dma) -? TREGO 
(dma) x (dma) -? P register 

Affects OV and C. 
Affected by PM and OVM. 

Description The contents of the P register, shifted as defined by the PM status bits, are added to the 
accumulator. The addressed data memory value is then loaded into TREGO, squared, and 
stored in the P register. 

Words 1 

Cycles 1 

!Example 1 SQRA DAT30 ; (DP = 6, PM = 0) • 

Before Instruction 

Data Memory 
31Eh OFhl 

TREGO 3hl 

P 12Chl 

ACC [8] 1F4hl 
C 

Example 2 SQRA * , AR4 ; (PM = 0) • 

4-176 

ARP 

AR3 

Data Memory 
31Eh 

TREGO 

P 

ACC [K] 
C 

Before Instruction 

I 31 
31Ehl 

OFhl 

3hl 

12chl 

1F4hl 

Data Memory 
31Eh 

TREGO 

P 

ACC 

ARP 

AR3 

Data Memory 
31Eh 

TREGO 

P 

[Q] 
C 

ACe [Q] 
C 

After Instruction 

OFhl 

OFhl 

OE1hl 

320hl 

After Instruction 

I 41 
I 31Ehl 

OFhl 

OFhl 

OE1hl 

320hl 
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SST Store Status R~gister 

Syntax Direct: [/abe~ SST In, dma 
Indirect: [/abe~ SST In, {ina} [,next ARPJ 

Operands o ~ dma ~ 127 
n = 0,1 
o ~ next ARP ~ 7 

Opcode 

Store Status Register 0 SST#O 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 1 0 0 0 1 1 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 1 1 1 01 1 See Subsection 4.1.2 

Store Status Register 1 SST#1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: 1 1 0 0 0 1 1 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 1 1 1 1 1 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 
(status register STn) ~ dma 

Description Status register STn is stored in data memory. In the direct addressing mode, status regis­
ter STn is always stored in page 0, regardless of the value of the DP register. The proces­
sor automatically forces the page to be 0, and the specified location within that page is 
defined in the instruction. Note that the DP register is not physically modified. This allows 
storage of the DP register in the data memory on interrupts, etc., in the direct addressing 
mode without having to change the DP. In the indirect addressing mode, the data memory 
address is obtained from the auxiliary register selected (see the LST instruction for more 
information). In the indirect addressing mode, any page in data memory may be accessed. 

Words 

Cycles 

Status registers STO and ST1 are defined in subsection 3.6.3, Status and Control Regis­
ters. 

Example 1 SST #O,DAT96 ; (DP = 6) 

4-178 

STO 

Data Memory 
SOh 

Before Instruction 

I OA408hl 

OAhl 

STO 

Data Memory 
SOh 

After Instruction 

I OA408hl 

OA408hl 
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Syntax Direct: [/abe~ SUB dma [,shift1] 
Indirect: [/abe~ SUB {ind} [,shift1 [,next ARPJ] 
Short Immediate: [labe~ SUB #k 
Long Immediate: [/abe~ SUB #Ik [,shift2j 

Operands o =:;;dma=:;; 127 
o =:;; shift1 =:;; 16 (defaults to 0) 
o =:;; next ARP :::; 7 
0:::; k:::; 255 
-32768 =:;; Ik =:;; 32767 
0:::; shift2:::; 15 (defaults to 0) 

Opcode 
Subtract from accumulator with shift 

15 14 13 12 11 10 9 8 7 6 
Direct: I 0 0 1 1 I SHFTT 0 

15 14 13 12 11 10 9 8 7 6 
Indirect: I 0 0 1 I SHFTt I 1 

Subtract from accumulator with shift of 16 

15 14 13 12 11 10 9 8 7 6 
Direct: I 0 1 1 0 0 1 0 1 0 

15 14 13 12 11 10 9 8 7 6 
Indirect: I 0 1 1 0 0 1 0 1 1 

Subtract from ACC short immediate 

15 14 13 12 11 10 9 8 7 6 

Short: I 1 0 1 1 1 0 1 0 

Subtract from ACC long immediate with shift 

15 14 13 12 11 10 9 8 7 6 
o 

16-Bit Constant 

t See Section 4.5. 

Execution Direct or Indirect Addressing: 

(PC) + 1 ~ PC 
(ACC) - [(dma) x 2shift1] ~ ACC 
Affects C and av. 
Affected by SXM and aVM. 

Short Immediate Addressing: 

(PC) + 1 ~ PC 
(ACC) - k ~ ACe 

5 4 3 2 0 
Data Memory Address 

5 4 3 2 0 
See Subsection 4.1.2 

5 4 3 2 0 
Data Memory Address 

5 4 3 2 0 
See Subsection 4.1.2 

5 4 3 2 0 
8-Bit Constant 

5 4 321 0 

o SHFTt 
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SUB Subtract From Accumulator 
~~W.6~~~~~»~_·' _____ '_"'!"::;.~~~:.v:«:~:~«:.;w,:~~~~:eN~~~~;:::;;;is;:;::e:~~~ 

Example 4 SUB 

4-182 

#OFFFh,4 ; (SXM = 0) 
Before Instruction 

ACe [[] ,. OFFFFh! 
e 

After Instruction 

Ace II] ! OFh! 
e 
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SUBC Conditional Subtract 

Syntax Direct: [/abe~ SUBC dma 
Indirect: [labe~ SUBC {ind} [,next ARPJ 

Operands 0 ~ dma ~ 127 

Opcode 

Execution 

o ~ next ARP ~ 7 

15 14 13 12 11 10 
Direct: I 0 0 0 0 1 0 

15 14 13 12 11 10 
Indirect: I 0 0 0 0 1 0 

(PC) + 1 ~ PC 
(ACC) - [(dma) x 215 ] ~ ALU output 

If ALU output ~ 0: 
Then (ALU output) x 2 + 1 ~ ACC; 
Else (ACC) x 2 ~ ACC. 

Affects OV and C. 
Affected by SXM. 
Not affected by OVM (no saturation) . 

9 876 5 4 3 2 0 
1 o 0 Data Memory Address 

9 8 765 4 3 2 0 
1 o 1 See Subsection 4.1.2 

Description The SUBC instruction performs conditional subtraction, which may be used for division. 

Words 

Cycles 

4-184 

The 16-bit dividend is placed in the low accumulator, and the high accumulator is zeroed. 
The divisor is in data memory. SUBC is executed 16 times for 16-bit division. After comple­
tion of the last SUBC, the quotient of the division is in the lower-order 16-bit field of the 
accumulator, and the remainder is in the higher-order 16-bits of the accumulator. SUBC 
assumes that the divisor and the dividend are both positive. The SXM bit will affect this 
operation. If SXM=1, then the divisor must have a 0 value in the MSB.lf SXM=O, then any 
16-bit divisor value will produce the expected results. The dividend, which is in the accu­
mulator, must initially be positive (Le., bit 31 must be 0) and must remain positive following 
the accumulator shift, which occurs in the first portion of the SUBC execution. 

If the 16-bit dividend contains fewer than 16 significant bits, the dividend may be placed 
in the accumulator and left-shifted by the number of leading nonsignificant zeroes. The 
number of executions of SUBC is reduced from 16 by that number. One leading zero is 
always significant. . 

Note that SUBC affects OV but is not affected by OVM, and therefore the accumulator 
does not saturate upon positive or negative overflows when executing this instruction. The 
carry bit is affected in the normal manner during thi.s instruction. 
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SUBS Subtract From Accumulator With Sign-Extension Suppressed 
~ •. ;s ... ;:s SC.l., .. :m:; ... ·.:·~~.·~ .. x:.:>.·~>.·*".~~~·!I.~~~~ _______ _ 

Syntax Direct: [labe~ SUBS dma 
Indirect: [/abe~ SUBS {ind} [,next ARPJ 

Operands o ~ dma ~ 127 
o ~ next ARP ~ 7 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 0 0 1 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 0 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 
(ACe) - (dma) ~ ACC 

Affects OV and C; affected by OVM. 
Not affected by SXM. 

Description The contents of the specified data memory location are subtracted from the accumulator 
with sign extension suppressed. The data is treated as a 16-bit unsigned number, regard­
less of SXM. The accumulator behaves as a signed number. SUBS produces the same 
results as a SUB instruction with SXM = 0 and a shift count of O. 

Words 

Cycles 

Example 1 SUBS DAT2 ; (DP = 16, SXM = 1). 

Data Memory 
802h 

ACC [K] 
C 

Before Instruction 

OF003hl 

OF105hl 

Example 2 SUBS * ; (SXM = 1) 

4-186 

ARP 
ARO 

Data Memory 
310h 

ACC [K] 
C 

Before Instruction 

01 
310hl 

OF003hl 

OFFFF105hl 

Data Memory 
802h 

ACC (]] 
C 

ARP 
ARO 

Data Memory 
310h 

ACC [I] 
C 

After Instruction 

OF003hl 

102hl 

After Instruction 

01 
310hl 

OF003hl 

OFFF0102hl 
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SUBT Subtract From Accumulator With ~hi~, Specif!.ed ~y TR~G1 

Exampie2 SUBT * 
Before Instruction After Instruction 

ARP 11 ARP 11 

AR1 800hl AR1 800hl 

Data Memory 
01hl 

Data Memory 
01hl 800h 800h 

TREG1 o~hl TREG1 Q~bl 
ACC [&J ohl ACC [QJ OFFFFFFoohl 

C C 
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TBlR Table Read 
.,' ; 

EXBmple2 TBLR * ,AR7 

Before Instruction After Instruction 

ARP I 01 ARP I 71 

ARO 300hl ARO 300hl 

ACC 24hl ACC 24hl 

Program Memory Program Memory 
24h 307hl 24h 307hl 

Data Memory Data Memory 
300h 75hl 300h 307hl 
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TB LW Table Write 

Example 2 TBLW * 
Before Instruction After Instruction 

ARP I 61 ARP 61 

AR6 1006hl AR6 1006hl 

ACC 258hl ACC 258hl 

Data Memory 
4340hl 

Data Memory 
4340hl 1006h 1006h 

Program Memory Program Memory 
4340hl 258h 307hl 258h 

4-192 Assembly Language Instructions 



XC Execute Conditionallx ___________ . __ .. =; .. _ .. ~ .. ~·= .... _d= .. ;_;H_L_' =._,_ .. ~._.~= ... ~ .... ~~~~_·= .. ====-=, ______________ =m ____ __ 

Syntax [/abe~ XC k [,cond1] [,cond2J [, ... 

Operands k = 1 or 2 

Conditions: 

Opcode 

ACC=O 
ACC:;tO 
ACC<O 
ACC::;O 
ACC>O 
ACC~O 
C=O 
C=1 
OV=O 
OV=1 
BIOlow 
TC=O 
TC=1 
Unconditional 

15 14 13 12 11 
I 1 1 1 INti 0 

t See Section 4.5. 

Execution If (condition(s)) 

EQ 
NEQ 
LT 
LEQ 
GT 
GEQ 
NC 
C 
NOV 
OV 
BIO 
NTC 
TC 
UNC 

10 9 8 
1 I TP t 

Then next k instructions executed 
Else execute NOP's for next k instructions 

765 4 3 2 1 o 
ZLVCt ZLVCt 

Description If k = 2 and conditions are met, the one two-word instruction or two one-word instructions 
following the XC instruction execute. If k = 1 and conditions are met, the one-word instruc­
tion following the XC instruction executes. If the conditions are not met, one or two NOPs 
are executed. Note that not all combinations of conditions are meaningful. The XC instruc­
tion and two-instruction words following the XC are uninterruptible. 

Words 1 

Cycles 

ExanJple xc 1,LEQ,C 
MAR *+ 
ADD DAT100 

If the accumulator contents are less than or equal to zero and the carry bit is set, the ARP 
is modified prior to the execution of the ADD instruction. 
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XOR Exclusive-OR With Accumulator 
'*'«,~ ~~::~S$$~;:;: 

Example 1 XOR DAT127 ; (DP = 511) 

Before Instruction After Instruction 

Data Memory Data Memory 
OFFFFh OFOFOhl OFFFFh OFOFOhl 

ACC [K] 12345678hl ACC [8J 1234A688hl 
C C 

Exsmple2 XOR *+,ARO 

Before Instruction After Instruction 

ARP 71 ARP 01 

AR7 300hl AR7 301hl 

Data Memory Data Memory 
300h OFFFFhl 300h OFFFFhl 

ACC [K] 1234FOFOhi ACC [R] 12340FOFhl 
C C 

Example 3 XOR #OFOFOh,4 

Before Instruction After Instruction 

ACC [K] 11111010hl ACC [X] 111E1F10hl 
C C 
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XPL Exclusive-OR Da!~ ME?moz Value 

Syntax Direct: [/abe~ XPL [#Ik,] dma 
Indirect: [labe~ XPL [#Ik,] lind} [,next ARPJ 

Operands o ~dma ~ 127 
Ik: 1 6-bit constant 
o ~ next ARP s 7 

Opcode 

XOR DBMR with data value 

15 14 13 12 11 10 ' 9 8765' 4 3 2 0 
Direct: I 0 1 0 1 1 0 0 o 0 Data Memory Address 

15 14 13 12 11 10 9 876 5 4 3 2 0 
Indirect: I 0 0 1 0 0 o See Subsection 4.1.2 

XOR long immediate with data value 

15 14 13 12 11 10 9 8765432 0 

0 1 0 1 1 1 0 
Direct: 

o 1 0 1 Data Memory Address 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 543 2 o 
See Subsection 4.1.2 Indirect: l--o ___ 0 __ 1 __ 1 __ 1 __ 0 __ 0--J1_ 1 -111-.-_________ --1 

16-Bit Constant 

Execution Ik unspecified: 

(PC) + 1 ~ PC 
(dma) XOR (DBMR) ~ dma 

Ik specified: 

(PC) + 2 ~ PC 
(dma) XOR Ik ~ dma 
Affects TC. 

Description If a long immediate constant is specified, it is XORed with the addressed data memory 
vallie. If it is not specified, the addressed data memory value is XORed with the contents 
of the dynamic bit manipulation register (DBMR). In either case, the result is written back 
into the specified data memory location, and the accumulator contents are not disturbed. 
If the result of the XOR operation is 0, then the TC bit is set to 1. Otherwise, the TC bit 
is set to O. 

Words 1 (Long immediate value not specified) 
2 (Long immediate value specified) 

Cycles 1 (Long immediate value not specified) 
2 (Long immediate value specified) 

4-198 Assembly Language Instructions 



Syntax Direct: [/abe~ ZALR dma 
Indirect: [/abe~ ZALR {ind} [,next ARPJ 

Operands o ~dma ~ 127 
o ~ next ARP ~ 7 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 0 1 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 1 0 0 0 0 1 See Subsection 4.1.2 

Execution (PC) + 1 ~ PC 
8000h ,~ ACC(15-0) 
(dma) ~ ACC(31-16) 

Description In order to load a data memory value into the high-order half of the accumulator, the ZALR 
instruction rounds the value by adding 1/2 LSB; that is, the 15 low bits (bits 0-14) of the 
accumulator are set to zero, and bit 15 of the accumulator is set to one. 

Words 1 

Cycles 1 

Example 1 ZALR DAT3 ; (DP = 32) 

Before Instruction After Instruction 

Data Memory 
3F01hl 

Data Memory 
3F01hl 1003h 1003h 

ACC III 77FFFFhl ACC [R] 3F018000hl 
C C 

Example 2 ZALR *-,AR4 

Before Instruction After Instruction 

ARP 71 ARP I 41 
AR7 OFFOOhl AR7 I OFEFFhl 

Data Memory 
OEOEOhl 

Data Memory 
OEOEOhl OFFOOh OFFOOh 

ACC 0 107777hl ACC [R] OEOE08000h I 
C C 
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~PR Zero Produpt R..,egister 

Syntax [/abe~ ZPR 

Operands None 

Opcode 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 

Execution (PC) + 1 ~ PC 
o ~ PREG 

Description The product register is set to zero. 

Words 1 

Cycles 1 

Example ZPR 

Before Instruction After Instruction 

PREG I 3F011111hl PREG I oooooooohl 
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TMS320C2x-to-TMS320C5x Instruction Set Mapping A_ u= __ ~~ 

Table 4-5. Mapping Summary (Continued) 

Accumulator Memory Reference Instructions 
(Concluded) 

TMS320C2x Mnemonic TMS320C5x Mnemonic 

SUBC SUBC 
SUBH SUB 
SUBK SUB 
SUBS SUBS 
SUBT SUBT 
XOR XOR 
XORK XOR 
ZAC LACL 
ZALH LACC 
ZALR ZALR 
ZALS LAGL 

Auxiliary Registers and Data Page Pointer Instructions 

TMS320C2x Mnemonic TMS320C5x Mnemonic 

ADRK ADRK 
CMPR CMPR 
LAR LAR 
LARK LAR 
LARP MAR 
LDP LDP 
LDPK LDP 
LRLK LAR 
MAR MAR 
SAR SAR 
SBRK SBRK 

4-204 Assembly Language Instructions 



TMS320C2x-to-TMS320C5x Instruction Set Mapping 
.~~ . 

Table 4-5. Mapping Summary (Continued) 

Branch/Calilnstructions (Concluded) 

TMS320C2x Mnemonic TMS320C5x Mnemonic 

BGZ BCND 
BIOZ BCND 
BLEZ BCND 
BLl BCND 
BNC, BCND 
BNV BCND 
BNZ BCND 
BV BCND 
BZ BCND 
CALA CALA 
CALL CALL 
RET RET 
TRAP TRAP 

1/0 and Data Memory Operations 

TMS320C2x Mnemonic TMS320C5x Mnemonic 

BLKD BLDD 
BLKP BLPD 
DMOV DMOV 
FORTt OPL 

APL 

IN IN 
OUT OUT 
RFSMt APL 
RTXMt APL 
RXF CLRC 
SFSMt OPL 
STXM OPL 
SXF SETC 
TBLR TBLR 
TBLW TBLW 

t The suggested mapping requires that the data page pointer 
be set to o. . 
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Instruction Set Opcode Table 
. f ':~S':~'';~S::'' 

4.5 Instruction Set Opcode Table 

4-208 

This section contains a table that summarizes the opcodes of the instruction 
set forthe TMS320C5x digital signal processors. This instruction set is a super­
set of the TMS320C 1 x and TMS320C2x instruction sets. The instructions are 
arranged according to function and are alphabetized within each category. 

The following symbols are used in the opcode table: 

Symbol Meaning 

A Data memory address bit. 

A R X Three-bit field containing the auxiliary register value (0 - 7). 

BIT X Four-bit field specifies which bit to test for the BIT instruction. 

CM See CMPR instruction. 

I Addressing mode bit. 0= direct addressing mode 
1 = indirect addressing mode 

I I I I I I I I Short Immediate value. 

INTR# Interrupt vector number. 

PM Constant copied into PM bits in status register ST1. See SPM instruction. 

SHF Three-bit shift value. 

SHFT Four-bit shift value. 

N Field for the XC instruction indicating the number of instructions (one or two) to con-
ditionally execute. 

T P Two bits used by the conditional execution instructions to represent the conditions 
TC, NTC, and BIO. 

ZLVC Four-bit field representing the following conditions: 

Z: ACC=O 
L: ACC<O 
V: Overflow 
C: Carry 

A conditional instruction contains two of these four-bit fields. The four-LSB field of 
the instruction is a four-bit mask field. A one in the corresponding mask bit indicates 
that condition is being tested. The second four-bit field (bits 4 - 7) indicates the state 
of the conditions designated by the mask bits as being tested. For example, to test 
for ACC ~ 0, the Z and L fields will be set, while the V and C fields are not set. The 
next four-bit field contains the state of the conditions to test. The Z field will be appro-
priately set to indicate to test the condition ACC = 0, and the L field will be reset to 
indicate to test the condition ACC greater than o. The conditions that can be formed 
from these 8 bits are shown in the BCND, CC, and XC instruction set pages. In order 
to determine if the conditions are met, the four LSB bit mask is ANDed with the condi-
tions. If any bits are set, the conditions are met. 

+ 1 word Indicates the instruction is a two-word instruction. The second word is a 16-bit long 
immediate value or a 16-bit program memory address for immediate addressing. 

Assembly Language Instructions 



Instruction Set Opcode Table ;~~~~~_~~_n_' ______________________________________________________ __ 

Table 4-6. Opcode Summary (Continued) 

Accumulator Memory Reference Instructions (Concluded) 

Instruction Mnemonic Opcode 

Subtract from accumulator with shift SUB 0011 SHFTIAM MM 
Subtract from accumulator with shift of 16 SUB 0110 0101 IAMMM 
Subtract from ACC short immediate SUB 1011 1010 IIII IIII 
Subtract from ACC long immediate with shift SUB 1011 1111 1010 SHFT + 1 word 
Subtract from accumulator with borrow SUBB 0110 0100 lAM MM 
Conditional subtract SUBC 0000 1010 IAAA AAAA 
Subtract from ACC with sign suppressed SUBS 0110 0110 IAAA AAAA 
Subtract from ACC, shift specified by TREG1 SUBT 0110 0111 IAAA AAAA 
XOR accumulator with data value XOR 0110 1100 IAAA AAAA 
XOR with ACC long immediate with shift XOR 1011 1111 1101 SHFT + 1 word 
XOR with ACC long immediate with shift of 16 XOR 1011 1110 1000 0011 + 1 word 
XOR ACCB with accumulator XORB 1011 1110 0001 1010 
,Zero ACC, load high ACC with rounding ZALR 0110 1000 IAAA AAAA 
Zero accumulator and product register ZAP 1011 1110 0101 1001 

Auxiliary Registers and Data Page Pointer Instructions 

Instruction Mnemonic Opcode 

Add to AR short immediate ADRK 0111 1000 III I IIII 
Compare AR with CMPR CMPR 1011 1111 0100 01CM 
Load AR from addressed data LAR 0000 OARX lAM AAAA 
Load AR short immediate LAR 1011 OARX IIII IIII 
Load AR long immediate LAR 1011 1111 0000 1ARX + 1 word 
Load data page pointer with addressed data LDP 0000 1101 IAAA AAAA 
Load data page immediate LDP 1011 1101 IIII IIII 
Modify auxiliary register MAR 1000 1011 IAAA AAAA 
Store AR to addressed data SAR 1000 OARX lAM AAAA 
Subtract from AR short immediate SBRK 0111 1100 IIII IIII 

Parallel Logic Unit Instructions 

Instruction Mnemonic Opcode 

AND DBMR with data value APL 0101 1010 IAAA AMA 
AND long immediate with data value APL 0101 1110 IAAA AAAA + 1 word 
Compare DBMR to data value CPL 0101 1011 lAM AAAA 
Compare data with long immediate CPL 0101 1111 IAAA AAAA + 1 word 
OR DBMR to data value OPL 0101 1001 lAM AAAA 
OR long immediate with data value OPL 0101 1101 IAAA AAAA + 1 word 
Store long immediate to data SPLK 1010 1110 IAAA AAAA + 1 word 
XOR DBMR to data value XPL 0101 1000 IAAA AAAA 
XOR long immediate with data value XPL 0101 1100 IAAA AAAA + 1 word 
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Table 4-6. Opcode Summary (Continued) 

Branch Instructions 

Instruction Mnemonic Opcode 

Branch unconditional with AR update B 0111 1001 1AAA AAAA + 1 word 
Branch unconditional with AR update delayed BD 0111 1101 1AAA AAAA + 1 word 
Branch addressed by ACC BACC 1011 1110 0010 0000 
Branch addressed by ACC delayed BACCD 1011 1110 0010 0001 
Branch AR = 0 with AR update BANZ 0111 1011 1AAA AAAA + 1 word 
Branch AR = 0 with AR update delayed BANZD 0111 1111 1AAA AAAA + 1 word 
Branch conditional BCND 1110 OOTP ZLVC ZLVC + 1 word 
Branch conditional delayed BCNDD 1111 OOTP ZLVC ZLVC + 1 word 
Call subroutine addressed by ACC CALA 1011 1110 0011 0000 
Call subroutine addressed by ACC delayed CALAD 1011 1110 0011 1101 
Call unconditiorial with AR update CALL 0111 1010 1AAA AAAA + 1 word 
Call unconditional with AR update delayed CALLD 0111 1110 1AAA AAAA + 1 word 
Call conditional CC 1110 10TP ZLVC ZLVC + 1 word 
Call conditional delayed CCD 1111 10TP ZLVC ZLVC + 1 word 
Software interrupt INTR 1011 1110 011 I NTR# 
Nonmaskable interrupt NMI 1011 1110 0101 0010 
Return RET 1110 1111 0000 0000 
Return conditional RETC 1110 11TP ZLVC ZLVC 
Return conditionally. delayed RETCD 1111 11 TP ZLVC ZLVC 
Return, delayed RETD 1111 1111 0000 0000 
Return from interrupt with enable RETE 1011 1110 0011 1010 
Return from interrupt RETI 1011 1110 0011 1000 
Trap TRAP 1011 1110 0101 0001 
Execute next one or two INST on condition XC 111 N 01 TP ZLVC ZLVC 

I/O and Data Memory Operations 

Instruction Mnemonic Opcode 

Block move from data to data memory BLDD 1010 1000 IAAA AAAA + 1 word 
Block move data to data DEST long immediate BLDD 1010 1001 IAAA AAAA + 1 word 
Block move data to data with source in BMAR BLDD 1010 1100 IAAA AAAA 
Block move data to data with DEST in BMAR BLDD 1010 1101 IAAA AAAA 
Block move data to PROG with DEST in BMAR BLDP 0101 0111 IAAA AAAA 
Block move from program to data memory BLPD 1010 0101 IAAA AAAA + 1 word 
Block move Prog to data with source in BMAR BLPD 1010 0100 IAAA AAAA 
Data move in data memory DMOV 0111 0111 IAAA AAAA 
Input external access IN 1010 1111 IAAA AAAA + 1 word 
Load memory mapped register LMMR 1000 1001 IAAA AAAA + 1 word 
Out external access OUT 0000 1100 IAAA AAAA + 1 word 
Store memory mapped register SMMR 0000 1001 IAAA AAAA + 1 word 
Table read TBLR 1010 0110 IAAA AAAA 
Table write TBLW 1010 0111 IAAA AAAA 
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5.1 Peripheral Control 

Peripheral circuits are operated and controlled through access of memory­
mapped control and data registers. The operation of the serial ports and timer 
is synchronized to the processor via interrupts orthrough interrupt polling. Set­
ting and clearing bits can enable, disable, initialize, and dynamically reconfi­
gure the peripherals. Data is transferred to and from the peripherals through 
memory-mapped data registers. When a peripheral is not in use, the internal 
clocks are shut off from that peripheral, allowing for lower power consumption 
when the device is in normal run mode or idle mode. 

5.1.1 Memory-Mapped Registers and 1/0 Ports 

Twenty-eight core processor registers are mapped into the data memory 
space. These are listed in subsection 3.4.1 of this user's guide. In addition to 
these core registers, 15 peripheral registers and 16 I/O ports are mapped into 
the data memory space. Table 5-1 lists the memory-mapped registers and liD 
ports of the TMS320C5x. Note that all writes to memory-mapped peripheral 
registers require one additional machine cycle. 

Table 5-1. Memory-Mapped Registers and 110 Ports 

Memory-Mapped Core Processor Registers 

Name Address Description 

Dec Hex 

- 0-3 0-3 Reserved 

IMR 4 4 Interrupt Mask Register 

GREG 5 5 Global Memory Allocation Register 

IFR 6 6 Interrupt Flag Register 

PMST 7 7 Processor Mode Status Register 

RPTC 8 8 Repeat Counter Register 

BRCR 9 9 Block Repeat Counter Register 

PASR 10 A Block Repeat Program Address Start Register 

PAER 11 B Block Repeat Program Address End Register 

TREGO 12 C Temporary Register Used for Multiplicand 

TREG1 13 D 
Temporary Register Used for Dynamic Shift 
Count (5 bits only) 

TREG2 14 E 
Temporary Register Used as Bit Pointer in Dy-
namic Bit Test (4 bits only) 

DBMR 15 F Dynamic Bit Manipulation Register 

ARO 16 10 Auxiliary Register Zero 

AR1 17 11 Auxiliary Register One 

AR2 18 12 Auxiliary Register Two 
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Table 5-1. Memory-Mapped Registers and 110 Ports (Concluded) 

5.1.2 Interrupts 

5-4 

Name Address Description 

Dec Hex 

Memory-Mapped 1/0 Ports 

- 54-79 36-4F Reserved 

PAO 80 50 I/O Port SOh 

PA1 81 51 I/O Port 51h 

PA2 82 52 1/0 Port 52h 

PA3 83 53 1/0 Port 53h 

PA4 84 54 1/0 Port 54h 

PAS 85 55 I/O Port 5Sh 

PA6 86 56 I/O Port 56h 

PA7 87 57 1/0 Port S7h 

PA8 88 58 1/0 Port 58h 

PA9 89 59 1/0 Port S9h 

PA10 90 SA 1/0 Port 5Ah 

PA11 91 58 I/O Port 5Bh 

PA12 92 5C 1/0 Port 5Ch 

PA13 93 50 1/0 Port SOh 

PA14 94 5E 1/0 Port 5Eh 

PA1S 95 SF 1/0 Port 5Fh 

The TMS320C5x devices have four external, maskable user interrupts 
(INT4-INT1) that external devices can use to interrupt the processor; there is 
one nonmaskable interrupt (NMI). Internal interrupts are generated by the seri­
al port (RINT and XINT), by the timer (TINT), by the TDM port (TRNT and 
TXNT) , and by the software interrupt instructions (TRAP, NMI, and INTR). In­
terrupt priorities are set so that reset (RS) has the highest priority and the TDM 
port transmit interrupt (TXNT) has the lowest priority. The NMI effectively has 
the same priority as RS. 

This subsection explains interrupt organization and management. Vector rela­
tive locations and priorities for all internal and external interrupts are shown in 
Table 5-2. No priority is set for the TRAP instruction (used for software inter­
rupts), but it is included here because it has its own vector location. Each inter­
rupt address has been spaced apart by two locations so that branch instruc­
tions can be accommodated in those locations. 

The interrupt vectors reside at locations determined by the five-bit IPTR field 
of the PMST and the address values shown in Table 5-2. The IPTR field is set 
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15-9 8 7 6 5 4 3 2 o 
I RESERVED INT4 TXNT TRNT XINT RINT TINT INT3 INT2 INT1 

Note that the TMS320CSO and TMS320C51 make use of only ten of the sixteen 
generic interrupt lines to the core CPU shown in Section 3.8. 

A one in a specific bit, when read, indicates an active interrupt. For example, 
if the IFR is read to be OOOSh, then INT3 and INT1 are active. A one can be 
written to a specific bit to clear the corresponding interrupt. In the example, if 
a one is written to bit zero (0001 h to IFR), then the INT1 interrupt would be 
cleared. In the above example, the value OOOSh could be written back into the 
IFR to clear both pending interrupts. 

A corresponding interrupt flag is automatically cleared when the interrupt trap 
is taken. When the CPU accepts the interrupt and fetches the instruction at the 
interrupt vector location, it generates an interrupt acknowledge (lACK) signal 
that clears the appropriate interrupt flag bit. A hardware reset (RS active low) 
clears all pending interrupt flags. 

The TMS320CSx devices have a memory-mapped interrupt mask register 
(IMR) for masking external and internal interrupts. The layout of the register 
is as follows: 

15-9 8 7 6 5 4 3 2 o 
I RESERVED INT4 TXNT TRNT XINT RINT TINT INT3 INT2 INT11 

A 1 in bit positions 8 through 0 of the IMR enables the corresponding interrupt, 
provided that INTM = o. The IMR is accessible with both read and write opera­
tions. Note that RS and NMI are not included in the IMR; the IMR has no effect 
on reset or a nonmaskable interrupt. 

Interrupts may be asynchronously triggered. In the functional logic organiza­
tion for INT4-INT1, shown in Figure 5-1, the external interrupt INTn is syn­
chronized to the core via a five flip-flop synchronizer. The actual implementa­
tion of the interrupt circuits is similar to this logic implementation. A one is 
loaded into the I FR if a 1-1-0-0-0 sequence on five consecutive CLKOUT1 
cycles is detected. 

The TMS320CSx devices sample the external interrupt pins multiple times to 
avoid noise-generated interrupts. To detect an active interrupt, these devices 
must sample the signal low on at least three consecutive machine cycles. Once 
an interrupt is detected, the devices must sample the signal high on at least 
two consecutive machine cycles to be able to detect another interrupt. The ex­
ternal interrupt pins are sampled on the rising edge of CLKOUT1 . If the external 
interrupts are running asynchronously, the pulses should be stretched to guar­
antee three consecutive low samples. 
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1) The two software wait-state registers are set to OFFFFh, causing all exter­
nal accesses to occur with 7 wait states. The CWSR is loaded with OFh. 

2) The FO bits of the SPC and TSPC registers are set to zero, selecting a 
word length of 16 bits for each serial port. 

3) The FSM bits of the SPC and TSPC registers are set to zero. FSM must 
be set to one for operation with frame sync pulses. 

4) The TXM bits of the SPC and TSPC are set to zero, configuring the FSX 
and TFSX pins as inputs. 

5) The SPC and TSPC registers are loaded with OyOOh, where the 2 MSBs 
of yare 10 (binary) and the 2 LSBs of y reflect the current levels on the 
transmit and receive clock pins of the respective port. 

6) The TIM and PRD registers are loaded with OFFFFh. The TDDR field of 
the TCR is set to zero. The timer is started. 
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5.3 Software-Programmable Wait-State Generators 

5-10 

Software-programmable wait-state generators can be used to extend external 
bus cycles by up to 7 machine cycles. This provides a convenient means for 
interfacing external devices that do not satisfy the full-speed access-time re­
quirements of the TMS320C5x. Devices requiring more than 7 wait states can 
be interfaced with the hardware READY line. When all external accesses are 
configured for zero wait states, the internal clocks to the wait-state generator 
are shut off, allowing the device to run in a lower power mode of operation. 

The software-programmable wait-state generators are controlled by two 16-bit 
wait-state registers (PDWSR and 10WSR) and a 5-bit control register 
(CWSR). Each of the three external spaces (program, data, and 110 spaces) 
has an assigned field in a software wait-state register. Wait states for the pro­
gram and data spaces are specified in the lower and upper halves of PDWSR, 
respectively. Wait states for 110 space are specified in 10WSR. The bits of 
CWSR control the mapping between wait-state register contents and the num­
ber of wait states. 

The program and data spaces each consist of 64K addresses. Each 64K space 
can be viewed as being composed of four 16K-word blocks. Each 16K address 
segment in program and data space is associated with 2 bits in PDWSR, as 
shown in Table 5--3. The value of a 2-bit field in PDWSR specifies the number 
of wait states to be inserted for each access in the given space and address 
range. 
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Table 5-4. Table 5-5 shows the layout of the CWSR register in PDWSR and 
IOWSR registers. You should always program the CWSR register prior to con­
figuring the PDWSR and IOWSR registers to avoid configuring memory with 
too few wait states during the set-up of wait-state registers. 

Table 5-4. Mapping Between Wait-State Field Values and # of Wait States as a Function of CWSR Bit n 

Walt-State Field No. of Walt States No. of Walt States 
of PDWSR or IOWSR (CWSR Bit n = 0) (CWSR Bit n = 1) 

(Binary Value) 

00 0 0 

01 1 1 

10 2 3 

11 3 7 

Table 5-5. Space Controlled by CSWR Bit n 
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n (Bit Position in Space 
CWSR) 

0' Program 

1 Data 

2 I/O (lower-half: PORTD-PORT7 if BIG=O, OOOOh-7FFFh if BIG=1) 

3 110 (upper-half: PORT8-PORTF if BIG=O, 8000h-OFFFFh if BIG=1) 

4 BIG mode bit 

Figure 5-3 shows a block diagram of the wait-state generator logic for external 
program space. When an external program access is decoded, the appropriate 
field of the PDWSR wait-state register is loaded into the counter. If the field is 
not 000, a not-ready signal is sent to the CPU. The not-ready condition is main­
tained until the counter decrements to zero and the external READY line is 
high. The external READY and the wait state register READY are OR'd togeth­
er to generate the CPU WAIT signal. 

Upon reset, all the software wait-state control register.fields are setto 7. CWSR 
is set to OFh. Device reset also sets the BIG bit of the CWSR register to zero. 
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5.4 General·Purpose 1/0 Pins 

The TMS320C5x devices have two general-purpose pins that are software 
controlled. The 810 pin is a branch control input pin. and the XF pin is an exter­
nal flag output pin. 

The BID pin is useful for monitoring peripheral device status-especially as an 
alternative to an interrupt when time-critical loops must not be disturbed. A 
branch can be conditionally executed when the 810 input is active (low). The 
timing diagram, shown in Figure 5-4, is an example of the BID operation. This 
timing diagram is for a sequence of single-cycle, signal-word instructions lo­
cated in external memory. The BID condition is sampled during the decode 
phase of the pipeline for the XC instruction. All other instructions sample the 
BID pin during the execute phase of the pipeline. 

Figure 5-4. 810 Timing Diagram 
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XF (external flag) is useful for signalling to external devices via software. The 
XF output pin is set to a high level by the SETC XF (set external flag) instruction 
and reset to a low level by the CLRC XF (reset external flag) instruction. XF 
is set high upon device reset. The relationship between the time SETC/CLRC 
instruction is fetched and the time the XF pin is set or reset is shown in 
Figure 5-5. As with BID, the timing shown for XF is for a sequence of single­
cycle, single-word instructions located in external memory. Actual timing may 
vary with different instruction sequences. 

Figure 5-5. External Flag Timing Diagram 
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Table 5-6. Serial Port Bits, Pins, and Registers (Continued) 

Name Description 

Registers 

DXR Data Transmit Register 

ORR Data Receive Register 

XSR Transmit Shift Register 

RSR Receive Shift Register 

SPC Serial Port Control Register. 

The serial port uses two memory-mapped registers: the data transmit register 
(OXR) that holds the data to be transmitted by the serial port, and the data re­
ceive register (ORR) that holds the received data. Both registers operate in ei­
ther the a-bit byte mode or the 16-bit word mode and may be accessed in the 
same manner as any other memory-mapped data memory location. Each reg­
ister has an external clock, a 'framing synchronization signal, and an asso­
ciated shift register. Any instruction accessing data memory or memory­
mapped registers can be used to read from or write to the OXR and ORR. The 
OXR and ORR registers are mapped into data address space. The XSR and 
RSR registers are not directly accessible through software. 

If the serial port is not being used, the OXR and ORR registers can be used 
as general-purpose registers. In this case, FSR should be connected to a logic 
low to prevent a possible receive operation from being initiated. 

The control bits (OLB, FO, TXM, FSM, MCM, XRST, RRST) for the serial port 
reside in the serial control register (SPC). Figure 5-6 shows the serial control 
register bit positions. These bits can be set, cleared, toggled, or loaded via the 
PLU instructions. 

Figure 5-6. Serial Port Control Register (SPC) 
15-14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I RES I RSRFULL I XSREMPTY I XRDY I RRDY IIN1 IINO I RRST I XRST I TXM I MCM I FSM I FO I DLB I RES I 

R R R R R R R RIW RIW RIW RIW RIW RIW RIW R 
Note: R = Read 

W=Write 

Table 5-7. Serial Port Control Register Bits Summary 
Bit Name Function 

0 Reserved Always read as zero. 

The Digital Loopback Mode Bit can be used to put the serial port in digitalloopback mode. When DLB=1 , 
DR and FSR are connected to DX and FSX, respectively, through multiplexers, as shown in 
Figure 5-7(a) and Figure 5-7(b). Additionally, CLKR is driven by CLKX if MCM=1. If DLB=1 and 

1 DLB 
MCM=O, CLKR is taken from the CLKR pin of the device. This configuration allows CLKX and CLKR 
to be tied together externally and supplied by a common external clock source. The logic diagram for 
CLKR is shown in Figure 5-7(c) . .If DLB=O, DR, FSR, and CLKR are taken from the respective device 
pins. Note that TXM must be set to one for proper operation in DLB mode. Note also that the FSX and 
DX signals appear on the device pins when DLB=1, but FSR and DR do not. 
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Figure 5-7. Receiver Signal MUXes 
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The value of the SPC, upon device reset, is OyOOh where the 2 MSBs of yare 
10 (binary) and the two LSBs of y reflect the current levels on the CLKX and 
CLKR pins. 

5.5.1 Transmit and Receive Operations 

5-18 

The transmit and receive sections of the serial port are implemented separate­
ly to allow independent transmit and receive operations. Externally, the serial 
port interface is implemented via the six serial port pins. Figure 5-8 shows the 
registers and pins used in transmit and receive operations. 
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Figure 5-9. Serial Port Transmit Timing Diagram (FSM= 1, first byte = 62h) 
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Figure 5-10. Serial Port Receive Timing Diagram (FSM=1, first byte=62h) 
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If DXR is reloaded before the old DXR contents have been transferred to XSR, 
the old DXR contents will be overwritten. The DXR is copied to the XSR only 
if the XSR is empty and the DXR has been loaded since the last DXR-to-XSR 
transfer. The DXR should be written only when XRDY=1. This condition is 
guaranteed if the DXR write is made in response to a transmit interrupt. 

If TXM=1 and FSM=1, FSX pulses are generated ~nternally and the FSX pin 
is configured as an output. To sustain a continuous bit stream on the DX trans­
mitter output, DXR must be loaded every 8 or 16 bits, depending on the value 
of FO. Furthermore, the next word to be transmitted must be loaded in DXR 
at least 2 CLKX cycles prior to completion of transmission of the current word. 
If this condition is not satisfied, the transmitter will send the previous data from 
the register. 

If TXM=O, the FSX pin is configured as an input. The transmitter behaves in 
the same way as when TXM= 1 , except that FSX pulses are supplied externally. 
A consequence of this is that the timing requirement on loading DXR for contin­
uous-mode transmission is relaxed, because the processor does not impose 
a latency between DXR write and FSX active in this case. 

The transmitter's operation with frame synchronization pulses has been de­
scribed above. Both continuous operation and burst-mode operation (opera­
tion with periods of transmitter inactivity) are possible when FSM=1. When 
FSM=O, only continuous-mode transmission is possible. Timing diagrams for 
transmit and receive operations in this mode are shown in Figure 5-11 and 
Figure 5-12. 
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contents of DXR when FSX goes high. If TXM=1 and DXR are written more 
than once during transmission of a given word, only the last word written to 
DXR will be transmitted; any previous values will be overwritten.Therefore, too 
many writes to the DXR during a given interval will not disturb the XSR con­
tents, but an external FSX pulse will. 

The receive operation is similar to the transmit operation. The receive timing 
diagram with FSM=1 is shown in Figure 5-10. Reception is initiated by a frame 
synchronization pulse on the FSR pin. After FSR goes low, data on the DR pin 
is clocked into the RSR register on every negative-going edge of CLKR. The 
first data bit is considered the MSB, and RSR is filled accordingly. After all the 
bits have been received (as specified by FO), an internal receive interrupt 
(RINT) is generated on the falling edge of CLKR, while the contents of RSR 
are transferred to ORR. If, during a receive operation, a new FSR pulse comes 
in, the bit counter is reset and the RSR starts over. The bits already received 
are lost. 
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5.6.2 TOM Port Operation 

Figure 5-14(a) shows the TMS320C5x TDM port architecture. Up to eight de­
vices can be placed on the four-wire serial bus. The four-wire bus consists of 
a conventional three-wire bus (TDAT, TFRM, and TCLK) and an additional line 
(TAD D) to carry device-addressing information. Data is transmitted and re­
ceived on the bidirectional TDAT line. Note that the device TDX and TDR pins 
are tied together externally to form the TDAT line. A framing pulse is supplied 
by one of the devices on the bus on the TFRM line. 

Rgure 5-14. TOM Four-Wire Bus 
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This device is identified by setting the TXM bit of its TSPC register to one. Only 
one device should have TXM=1 at any given time. Typically, this processor is 
the same one that supplies the TDM port clock signal on TCLK. The TCLKX 
and TCLKR pins are tied together externally to form the TCLK line. TCLKR is 
always an input. TCLKX is an input if MCM=O and an output if MCM=1. In the 
latter case, one device (the one whose MCM bit=1) can supply the clock (fre­
quency=one-fourth of CLKOUT1 frequency) for all devices on the bus. The 
clock can be supplied by an external source if MCM=O for all devices. No more 
than one device should have MCM=1 at any given time. The specification of 
which processor is to supply clock and framing signals is typically made only 
once, during system initialization. The TADD line carries the transmit address 
byte sent by the transmitting device. Figure 5-14(b) shows how the four-wire 
bus is formed from the six serial port pins. 
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The TDM received address (TRAD) register holds the last value received from 
the TADD line. This register can be used to verify the integrity of the serial inter­
face and/or to extract partial or complete information as to which device in the 
system transmitted the last data word. For example, if there is a unique trans­
mit address for each channel, the transmitter can be uniquely identified. Bits 
0-7 hold the received transmit address. Bits 10-8 hold the last time slot num­
ber (i.e., channel ID number). Bits 13-11 hold the current time slot number. 
This number is simply the last slot number plus one, modulo 8. 

Figure 5-16 shows the timing forTDM port transfers. Near the end of a frame 
(8 time slots), the single device having TXM=1 outputs a pulse one TCLK cycle 
wide on the TFRM line. TFRM pulses occur only once every 128 TCLK cycles. 
TFRM is driven low during the remainder of the frame. 

Figure 5-16. Serial Port Timing in TOM Mode 
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\~---------------------------
After the LSB of a given data word is transmitted, the TDAT line goes into the 
high-impedance state. TDAT comes out of high impedance shortly after the 
next falling edge of TCLK. The next 15 data bits are transmitted on rising edges 
of TCLK. In Figure 5-16, the data bits are shown with subscripts that indicate 
the channel (Le., time slot) number. 

The timing forTADD signal for channel 0 is shown in Figure 5-16. After the LSB 
of the channel 7 data is transmitted, the TADD line goes into the high-impe­
dance state. TDAT comes out of high impedance shortly after the next falling 
edge of TCLK. The 8 address bits associated with channel 0 are then trans­
mitted on TADD. After these have been transmitted, TADD goes high and re­
mains high until the channel 1 transfer begins. Forchannels 1-7, TADDcarries 
the address during the first 8 clocks and is high during the remaining 8 clocks. 
Note that the short interval between completion of transmission of the channel 
7 LSB and initiation of transmission of the channel 0 MSB is the only time during 
which TADD is in the high-impedance state. Note that the address line TADD 
must be pulled down to V 55 if there are any channels available with no proces­
sor transmitting data. This is due to the fact that the address line could float 
high. This indicates that when no one is transmitting, all devices will receive 
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5.7 Timer 

The timer is an on-chip down counter that can be used to periodically generate 
CPU interrupts. The timer is decremented by one at every CLKOUT1 cycle. 
A timer interrupt (TINT) is generated each time the counter decrements to zero. 
The timer thus provides a convenient means of performing periodic 1/0 or other 
functions. Figure 5-17 shows a logical block diagram of the timer. When the 
timer is stopped, (TSS = 1), the internal clocks to the timer are shut off, allowing 
the device to run in a lower power mode of operation. 

Figure 5-17. Timer Block Diagram 
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Borrow Borrow 

SRESET 

TRB 

CLKOUT1 

TSS 

~--------~------------------------~.TINT 

>-----------~TOUT 

The timer interrupt rate is given by 

TINT rate = ----
te(C) x u x V te(C) x « TD DR> + 1) x « P RD > + 1) 

where tc(C) is the period of CLKOUT1 , u is the sum of the TDDR contents (see 
Table 5-10) plus 1, and v is the sum of the PRD contents (see Figure 5-17) 
plus 1. 

Thus, the timer interrupt rate is equal to the CLKOUT1 frequency divided by 
two independent factors. Referring to Figure 5-17, each of the two divisors is 
implemented with a down counter and period register. The counter and period 
registers for the first stage are the PSC and TDDR fields of the TeR, respec­
tively, and each is 4 bits wide. The counter and period registers for the second 
stage are the memory-mapped, 16-bit wide TIM and PRD registers. Each time 
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being made, it may be more accurate to stop the timer to read these two values. 
The timer can be stopped by setting the TSS bit to one and restarted by reset­
ting this bit to zero. 

The timer provides a convenient and efficient way to generate a sample clock 
for an analog interface. Consider the following example of using the timer to 
generate a sample rate of 50 kHz. The initialization for this example is as fol­
lows: 

* Clkin frequency ~ 20 MHz; timer is running at 10 MHz. 

* 

* 

LDP 
SPLK 
OPL 
SPLK 
OPL 
CLRC 

#0 
#199, PRD 
#8,IMR 
#20h,TCR 
#1000h,IFR 
INTM 

;Load timer period for 20 usec period. 
iSet timer interrupt mask bit 
;reload and start timer. 
;Clear any pending timer interrupts. 
:global interrupt enable. 

Consider an AID that is operating at this sample rate. A typical interrupt service 
routine (lSR) would be as follows: 

* 50 kHz sample rate AID interrupt service routine 

* 
TIMER ISR MAR *, AR3 Use auxiliary register reserved for Timer ISR. 

IN * , 14 Read AID. 
RETE Re-enable interrupts and return. 

* 
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machine cycle to perform a read or a write. The dual-access RAM can be read 
from and written to in the same cycle. The 1056 words of dual-access RAM are 
configured in three blocks: block 0 (80) is 512 words at address 01 00h-02FFh 
in local data memory or OFEOOh-OFFFFh in program space; block 1 (81) is 512 
words at address 0300h-04FFh in local data memory; and block 2 (82) is 32 
words at address 060h in local data memory. 

The TMS320C51 removes the 2K boot ROM from the device's program 
memory space along with 8K words of single-access program/data RAM. In­
stead, the device replaces the 8K words of RAM with an 8K-word block of 
maskable ROM. The ROM is located in the address range Oh-1 FFFh in pro­
gram space. The additional 1 K words of single-access RAM are mapped to 
data space (800h-08FFh), program space (2000h-23FFh), or both spaces. 
The dual-access blocks of RAM on the TMS320C51 are mapped at the same 
addresses as the TMS320C50. The TMS320C50 and TMS320C51 memory 
maps are shown in Figures 6-1 (a) and 6-1 (b). 

The major topics in this section are listed below: 

Section Page 
6.1 Program Memory ................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-5 
6.2 Local Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-13 
6.3 Global Data Memory.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .... 6-31 
6.4 Input/Output Space ........................................... 6-34 
6.5 Direct Memory Access (DMA) ................ . . . . . .. . . . . . . . . . .. 6-36 
6.6 Memory Management '.' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-40 

Memory 



Memory 
"' 

Figure 6-1. TMS320C51 and TMS320C50 Memory Maps (Concluded) 
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OPL #OlOh,PMST 

SETC CNF 

iMap TMS320CSO 9K RAM or TMS320CSl lK RAM 
iin program space. 
iMap BO to program space. 

Table 6-1 shows the possible program memory configurations available on the 
TMS320C50 device. Table 6-2 shows the possible program memory configu­
rations for the TMS320C51 device. Note that all addresses are specified in 
hexadecimal. 

Table 6-1. TMS320C50. Program Memory Configuration Control 

CNF RAM MP/MC ROM RAM 80 Off-Chip 

0 0 0 0OOO-07FF oaOO-FFFF 

0 0 1 OOOO-FFFF 

0 1 0 00OO-07FF oaOO-2BFF 2COO-FFFF 

0 1 1 oa00-2BFF 0000-07FF 
2COO-FFFF 

1 0 0 0OOO-07FF FEOO-FFFF oaOO-FDFF 

1 0 1 FEOD-FFFF OOOO-FDFF 

1 1 0 OOOD-07FF oaOO-2BFF FEOD-FFFF 2COO-FDFF 

1 1 1 oaOO-2BFF FEOO-FFFF OOOO-D7FF 

2COO-FDFF 

Table 6-2. TMS320C51 Program Memory Configuration Control 

CNF RAM MP/MC ROM RAM 80 Off-Chip 

0 0 0 000D-1FFF 2000-FFFF 

0 0 1 OOOO-FFFF 

0 1 0 0OOO-1FFF 2000-23FF 2400-FFFF 

0 1 1 2000-23FF 0OOO-1FFF 

2400-FFFF 

1 0 0 OOOD-1FFF FEOO-FFFF 2000-FDFF 

1 0 1 FEOO-FFFF OOOO-FDFF 

1 1 0 0OOO-1FFF 2000-23FF FEOO-FFFF 2400-FDFF 

1 1 1 2000-23FF FEOO-FFFF 0OOO-1FFF 
2400-FDFF 

6.1.2 Program Memory Address Map 
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The reset, interrupt, and trap vectors are addressed in program space. These 
vectors are soft-meaning that the processor, when taking the trap, will load 
the PC with the trap address and execute code at the vector location. Two 
words are reserved at each vector location for a branch instruction to the appro-
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6.1.3 Program Memory Addressing 
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The program memory space contains the code for applications. It can also hold 
table information and immediate operands. The program memory is accessed 
only by the PAB. The address for this bus is generated by the program counter 
(PC) when instructions and long immediate operands are addressed. It can 
also be loaded with a long immediate, low accumulator, or registered address­
es for block transfers, multiply/accumulates, and table read/writes. 

The TMS320C5x devices address code by putting the PC out on the PAB bus 
and reading the appropriate location in memory. While the read is executing, 
the PC is incremented for the next fetch. If there is a program address disconti­
nuity (for example, branch, call, return, interrupt, orblock repeat), the appropri­
ate address is loaded into the PC. The PC is also loaded when operands are 
fetched from program memory. Operands are fetched from program memory 
when the device reads or writes to tables (TBLR and TBLW), when it transfers 
data to/from data space (BLPD and BLDP), or when it uses the program bus 
to fetch a second multiplicand (MAC, MACD, MADS, and MADD). The PC is 
loaded with a value other than PC + 1 in the following ways: 

Q Long immediate address with branch or call instructions. 
Q Long immediate address with MAC, MACD, BLDP or BLPD instructions. 
Q Low accumulator with BACC or CALA instructions. 
Q Low accumulator with TBLR or TBLW instruction. 
Q BMAR with MADS, MADD, BLDP or BLPD instructions. 
Q CALU with an interrupt vector address (INTR, TRAP, or NMI) instruction. 
lJ CALU with PASR when at the end of a block repeat loop. 
lJ Pop top of stack with a return' instruction. 

The address flow of a program can be traced externally through the address 
visibility feature. This feature can debug during program development; it is en­
abled after reset and disabled/re-enabled by setting/clearing the AVIS bit in the 
PMST register. The address visibility mode puts the program address out to 
the address pins of the device even when on-chip program memory is ad­
dressed. Note that the memory control signals (PS, RD, etc.) are not active in 
address visibility mode. Instruction addresses can be externally clocked with 
the falling edge of the instruction acquisition (IAQ) pin. Instruction addresses 
include both words of a two-word instruction but do not include block transfers, 
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~.!t .;S!:~~!:HQIt~S·!iS:. 

~ WE Write Enable 

~ lACK Interrupt Acknowledge 

~ READY Memory Ready to Complete Cycle 

[:I HOLD Request for Control of Memory Interface 

[:I HOLDA Acknowledge HOLD Request 

~ BR Bus Request 

[:I lAO Acknowledge Bus Request (when HOLDA is low) 

An example of a minimal external program memory interface is shown in 
Figure 6-2. In this figure, the TMS320C5x device interfaces to an 8K x 8 
EPROM. This is a useful interface when boot-loading code. The boot loader 
can concatenate the bytes to form the 16-bit word instructions. The use of 8-bit­
wide memories saves power, board space, and cost over 16-bit wide memory 
banks. The 16-bit wide memory banks can be used with the same basic inter­
face as the 8-bit wide memories. 
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low and a half cycle after WE goes high; this prevents buffer conflicts on the 
external buses. Additional write cycles can be obtained by modifying the soft­
ware wait-state generator registers. Subsection 6.2.4 includes an example of 
interfacing to external RAM. 
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Table 6-4. TMS320C50 Local Data Memory Configuration Control 

CNF OVLY 80 81 82 Single-Port RAM Off-Chip 
0 0 100h 300h 60h 800h-FFFFh 
0 1 100h 300h 60h 800h-2BFFh 2COOh-FFFFh 
1 0 300h 60h 800h-FFFFh 
1 1 300h 60h 800h-2BFFh 2COOh-FFFFh 

Table 6-5. TMS320C51 Local Data Memory Configuration Control 

CNF OVLY 80 81 82 Single-Port RAM Off-Chip 
0 0 100h 300h 60h 800h-FFFFh 
0 1 100h 300h 60h 800h-BFFh COOh-FFFFh 
1 0 300h 60h 800h-FFFFh 
1 1 300h 60h 800h-BFFh COOh-FFFF 

6.2.2 Local Data Memory Address Map 
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The 64K words of local data memory space include the memory-mapped regis­
ters for the device. The memory-mapped registers reside in data page O. Data 
page 0 has five sections of register banks: core CPU registers, peripheral reg­
isters, tesVemulation reserved area, I/O space port hole, and scratch-pad 
RAM. 

Q There are 28 core CPU registers. These registers can be accessed with 
zero wait states. Some of these registers can be accessed through paths 
other than the data bus (Le., auxiliary registers can be loaded by the 
ARAU). 

Q The peripheral registers are the control and data registers used in the pe­
ripheral circuits. These registers reside on a dedicated peripheral bus 
structure called the TIBUS. They require one wait state when accessed. 

Q The tesVemulation reserved area is used by the test and emulation sys­
tems for special information transfers. Writing to this area can cause the 
device to change its operational mode and, therefore, affect the oper­
ation of the application. 

~ The I/O space port hole provides addressability to 16 words of I/O space 
within the data address space. This allows access to I/O space (other than 
IN and OUT instructions) via the more extensive addressing modes avail­
able within the data space. For example, the SACL instruction can write 
to an I/O memory-mapped port like an OUT instruction does. The external 
interface looks like an OUT instruction occurs (IS active). Port addresses 
reside off-chip and are subject to external wait states. 

Q The scratch-pad RAM block (B2) includes 32 words of dual-access RAM 
for variable storage without fragmenting the larger RAM blocks, both on 
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Table 6-6. Data Page 0 Address Map (Concluded) 

Name Address Description 

Dec Hex 

TIM 36 24 Timer Register 

PRO 37 25 Period Register 

TCR 38 26 Timer Control Register 

- 39 27 Reserved 

POWSR 40 28 Program/Data SIW Wait-State Register 

10WSR 41 29 I/O Port SIW Wait-State Register 

CWSR 42 2A Control SIW Wait-State Register 

- 43-47 2B-2F Reserved for Test/Emulation 

TRCV 48 30 TOM Data Receive Register 

TOXR 49 31 TOM Data Transmit Register 

.rSPC 50 32 TOM Serial Port Control Register 

TCSR 51 33 TOM Channel Select Register 

TRTA 52 34 ReceivelTransmit Address Register 

TRAO 53 35 Received Address Register 

- 54-79 36-4F Reserved 

PAO 80 50 I/O Port 80 

PA1 81 51 I/O Port 81 

PA2 82 52 I/O Port 82 

PA3 83 53 I/O Port 83 

PA4 84 54 I/O Port 84 

PAS 85 55 I/O Port 85 

PA6 86 56 I/O Port 86 

PA7 87 57 I/O Port 87 

PA8 88 58 I/O Port 88 

PA9 89 59 I/O Port 89 

PA10 90 SA I/O Port 90 

PA11 91 58 I/O Port 91 

PA12 92 5C I/O Port 92 

PA13 93 50 I/O Port 93 

PA14 94 5E I/O Port 94 

PA15 95 SF I/O Port 95 

82 96-127 6Q-7F Scratch Pad RAM 

6.2.2.1 Auxiliary Register (ARD-AR7) 
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The eight 16-bit auxiliary registers (ARO-AR7) can be accessed by the CALU 
and modified by the ARAU orthe PLU. The primary function ofthe auxiliary reg­
isters is generating 16-bit addresses to data space. However, these registers 
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The block repeat counter register (BRCR) holds the count value for the block 
repeat feature. This value is loaded before a block repeat operation is initiated. 
It can be changed while a block repeat is in progress; however, take caution 
in this case to avoid infinite loops. The program address start register (PASR) 
holds the start address of the block of code to be repeated. The program ad­
dress end register (PAER) holds the end address of the block of code to be re­
peated. Both these registers are loaded by the RPTB instruction. Block repeats 
are described in more detail in subsection 3.6.5. 

6.2.2.7 Interrupt Registers (IMR,IFR) 

The interrupt mask register (IMR) is used to individually mask off specific inter­
rupts at required times. The interrupt flag register (IFR) indicates the current 
status of the interrupts. Interrupts are described in detail in Section 3.8. 

6.2.2.8 Global Memory Allocation Register (GREG) 

The global memory allocation register (GREG) is used to allocate parts of the 
data address space as global memory. This register defines what amount of 
the local data space will be overlayed by global data space. The operation of 
GREG is further discussed in Section 6.3. 

6.2.2.9 Dynamic Bit Manipulation Register (DBMR) 

The dynamic bit manipulation register (DBMR) is used in conjunction with the 
PLU to provide a dynamic (execution time programmable) mask register. The 
use of this register is described in Section 3.7. . 

6.2.2.10 Temporary Registers (TREGO, TREG1, TREG2) 

TREGO holds one of the multiplicands of the multiplier. It can also be loaded 
via the CALU with the following instructions: LT, LTA, LTD, LTP, LTS, SORA, 
SORS, MAC, MACD, MADS, and MADD. TREG1 holds adynamic (execution­
time programmable) shift count for the prescaling shifter. TREG2 holds a dy­
namic bit address for the BITT instruction. 

6.2.2.11 Processor Mode Status Register (PMST) 

The processor mode status register (PMST) controls memory configurations 
of the TMS320C5x devices (with exception of the CNF bit in ST1). The PMST 
register is described in more detail in subsection 3.6.3 and in the configurability 
sections of Chapter 6. 

6.2.2.12 Serial Port Registers (DRR, DXR, SPC) 
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Three registers are used to control and operate the serial port. The serial port 
control register (SPC) contains the mode control and status bits of the serial 
port. The data receive register (DRR) holds the incoming serial data, and the 
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instructions with only one data memory operand and program address bus 
(PAB) on instructions with a second data memory operand. An instruction op­
erand is provided to the CALU in eight ways. as described in subsection 3.4.2. 
However. data memory addresses are generated in one of the following five 
ways: 

1) By the direct address bus (DAB) using the direct addressing mode (e.g .• 
ADD 01 Oh) relative to the data page pointer (DP). 

2) By the direct address bus (DAB) using the memory-mapped addressing 
mode (e.g .• LAMM PMST) within data page zero. 

3) By the auxiliary register file bus (AFB) using the indirect addressing mode 
(e.g .• ADD *). 

4) By the value pointed at by the PC in long immediate address mode (e.g .• 
BlDD TBl1 .*+). 

5) By the block memory address register (BMAR) in registered block memory 
addressing mode (e.g .• BLDD *+). 

In the direct addressing mode. the 9-bit data memory page pointer (DP) points 
to one of 512 pages (1 page=128 words). The data memory address (dma). 
specified by the seven LSBs of the instruction. points to the desired word within 
the page. The address on the DAB is formed by concatenating the 9-bit DP with 
the 7-bit dma. 

Figure 6-3 illustrates the direct addressing mode. In the illustration. the oper­
and is fetched from data memory space via the data bus. and the address is 
the concatenated value of the DP and the seven LSBs of the instruction. For 
the following example. consider DP = 0184h and TEMP1 = 060h: 

LACC TEMP 1 iACC = TEMP1. 

In the example. the accumulator is loaded with DATA(C260). 

Figure 6-3. Direct Addressing Mode 
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ADD 010h 

Machine Code I 0 0 1 0 

Operand Data(DAB) 

Note: DAB is the 16-bit internal address bus for data memory. 

The memory-mapped addressing mode operates much like the direct address­
ing mode except that the most significant 9 bits of the address are forced to 
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* This routine uses indirect addressing to calculate the following equation: 

* 
* 
* 
* 
* 
* 
* 
* 

\ 
/ 

10 

I ... 1 

XCI) x Y(I) 

* The routine assumes that the X values are located in on-chip RAM block 20, 
* and the Y values in block 21. The efficiency of the routine is due to the use 
* of indirect addressing and the repeat instruction. 

* 
SERIES MAR *,4 

SETC CNF 
LAR AR4,#0300h 
RPTZ #9 
MAC OFFOOh,*+ 
APAC 
RET 

;ARP POINTS TO ADDRESS REGISTER 4. 
;CONFIGURE BLOCK 20 AS PROGRAM MEMORY. 
iPOINT AT BEGINNING OF DATA MEMORY. 
;CLEAR ACC AND P; REPEAT NEXT INST. 10 TIMES 
;MULTIPLY AND ACCUMULATE; INCREMENT AR4. 
;ACCUMULATE LAST PRODUCT. 

In the long immediate addressing mode, an operand is addressed by the sec­
ond word of a two-word instruction. In this case, the program address/data bus 
(PAS) is used forthe operand fetch. The prefetch counter (PFC) is pushed onto 
the microcall stack (MCS), and the long immediate value is loaded into the 
PFC. The PAS is then used for the operand fetch or write. At the completion 
of the instruction, the MCS is popped back to the PFC. The PC is incremented 
by two, and execution continues. This technique is used when two memory ad­
dresses are required for the execution of the instruction. The PFC is used so 
that when the instruction is repeated, the address generated can be autoin­
cremented. Figure 6-6 illustrates this mode. In this illustration, the source ad­
dress (OPERAND1) is fetched via PAS, and the destination address (OPER­
AND2) uses the direct addressing mode. 
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TMS320C5x devices provide a register file containing eight auxiliary registers 
(ARO-AR7). The auxiliary registers may be used for indirect addressing of the 
data memory orfortemporary data storage. Indirect auxiliary register address­
ing (see Figure 6-8) allows placement of the data memory address of an in­
struction operand into one of the auxiliary registers. These registers are 
pointed to by a three-bit auxiliary register pointer (ARP) that is loaded with a 
value from 0 through 7, designating ARO through AR7, respectively. 

Figure 6-8. Indirect Auxiliary Register Addressing Example 
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Auxiliary Register File Data Memory Map 

ARO 0 5 3 7 hi Location 

hi 
OOOOh 

Auxiliary 
AR1 5 5 0 Internal 

03FFh 
Register Pointer C hi 0400h AR2 0 E 9 F 

(in STO) External 

1011111-+ A hl---+ 
1------

ARP AR3 0 F F 3 OFF3Ah I-- 31l.1JJ_ 

AR4 0 3 B hi OFFFFh 

AR5 2 6 B hi 

AR6 0 0 0 8 hi 

AR7 8 4 3 D hi 

The auxiliary registers and the ARP may be loaded from data memory, from 
the accumulator, from the product register, or by an immediate operand de­
fined in the instruction. The contents of these registers may also be stored in 
data memory or used as inputs to the CALU. These registers appear in the 
memory map as described in Table 6-6 on page 6-15. 

The auxiliary register file (ARO-AR7) is connected to the auxiliary register 
arithmetic unit (ARAU), shown in Figure 6-9. The ARAU may autoindex the 
current auxiliary register while the data memory location is being addressed. 
Indexing either by ± 1 or by the contents of the INDX register may be per­
formed. As a result, accessing tables of information does not require the cen­
tral arithmetic logic unit (CALU) for address manipulation. The CALU is now 
free to perform other operations. 

If more advanced address manipulation is required, such as multidimensional 
array addressing, the CALU can directly read from or write to the auxiliary reg­
isters. Take care, however, when writing from the CALU to the auxiliary register 
because the ARAU update of the ARs is done during the decode phase (sec­
ond cycle) ofthe pipeline, whereas the CALU write is done during the execution 
phase (fourth cycle) of the pipeline. Therefore, the two instructions directly fol­
lowing the CALU write should not use the auxiliary register written by the 
CALU. 
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As shown in Figure 6-9, the index register, the compare register, or the eight 
LSBs of the instruction register can be connected to one of the inputs of the 
ARAU. The other input is fed by the current AR (being pointed to by ARP). 
AR{ARP) refers to the contents of the current AR pointed to by ARP. The ARAU 
performs the following functions: 

AR{ARP) + INDX ~ AR{ARP) 

AR{ARP) - INDX ~ AR{ARP) 

AR{ARP) + 1 ~ AR{ARP) 

AR{ARP) - 1 ~ AR{ARP) 

AR{ARP) -7 AR{ARP) 

AR{ARP) + IR{7-O) ~ AR{ARP) 

AR{ARP) -IR{7-O) ~ AR{ARP) 

AR{ARP) + rc{INDX) ~ AR{ARP) 

AR{ARP) - rc{INDX) ~ AR{ARP) 

If (AR{ARP) == ARCR), then TC = 1 
If (AR{ARP) < ARCR), then TC = 1 
If{AR{ARP) > ARCR), then TC = 1 
If{AR{ARP) :;c ARCR), then TC = 1 

If (AR{ARP) = CBER), 
then AR{ARP) =CBSR 

Index the current AR by adding a 
16-bit unsigned integer contained in 
INDX. Example: ADD *0+. 

Index the current AR by subtracting 
a 16-bit unsigned integer contained 
in INDX. Example: ADD *0-. 

Increment the current AR by one. 
Example: ADD * +. 

Decrement the current AR by one. 
Example: ADD *-. 

Do not modify the current AR. Exam­
ple: ADD *. 

Add an 8-bit immediate value to cur­
rent AR. Example: ADRK #055h. 

Subtract an 8-bit immediate value 
from current AR. Example: SBRK 
#055h. 

Bit-reversed indexing, add INDX 
with reverse-carry (rc) propagation . 

. Example: ADD *BRO+. 

Bit-reversed indexing, subtract 
INDX with reverse-carry (rc) propa­
gation. Example: ADD *BRO-. 

Compare current AR with 
ARCR and if condition is true, 
then set TC bit of the status 
register (ST1) to one. If false, 
then clear TC. Example: CMPR 3. 

If at end of circular buffer, reload 
start address. 

The index register (INDX) can be added to or subtracted from AR(ARP) on any 
AR update cycle. This 16-bit register is one of the memory-mapped registers 
and is used to increment or decrement the address in steps larger than one for 
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auxiliary register modification occurring. The ARAU will not detect an AR up­
date that steps over the value contained in CBER. Note that the test in the 
ARAU is performed before the auxiliary register update. 

6.2.4 External Interfacing to Local Data Memory 
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The TMS320C5x devices can address up to 64K words of off-chip local data 
memory. These are the key signals for this interface: 

AO-A15 
00-015 
OS 
STRB 
RD 
WE 
READY 
RQ[1) 

HOLDA 
SA. 
IAQ 

16-Bit Bidirectional Address Bus 
16-Bit Bidirectional Data Bus 
Data Memory Select 
External Memory Access Active Strobe 
Read Select (External Device Output Enable) 
Write Enable 
Memory Ready to Complete Cycle 
Request for Control of Memory Interface 
Acknowledge HOLD Request 
Sus Request 
Acknowledge Bus Request (when HOLDA is low) 

An example of an external RAM interface is shown in Figure 6-10. In this fig­
ure, the TMS320C5x device interfaces to four 16K x 4-bit RAM devices. The 
data memory select (OS) is directly connected to the chip select (CS) of the 
devices. This means the external RAM block will be addressed in any of the 
four 16K banks of local data space. If there are additional banks of off-chip data 
memory, a decode circuit that gates OS with the appropriate address bits can 
be used to drive the memory block chip select. 
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device. If the RAM device does not have an DE pin, then DS should be gated 
with STRB and connected to the CS pin of the RAM to implement the same 
function. The WE signal of the TMS320C5x is tied to the WE signal of the RAM. 
The TMS320C5x takes at least two cycles on all external writes, including a 
half cycle before the WE goes low and a half cycle after WE goes high; this pre­
vents buffer conflicts on the external buses. Additional wait states may be gen­
erated with the software wait-state generators. 
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6.3.2 Global Memory Addressing 

When a data memory address, either direct or indirect, corresponds to a global 
data memory address (as defined by GREG), BR is asserted low with OS to 
indicate that the processor wishes to make a global memory access. External 
logic then arbitrates for control of the global memory, asserting READY when 
the TMS320C5x device has control. The length of the memory cycle is con­
trolled by the READY signal. In addition, the software wait-state generators 
can be used to extend the access times for slower, external memories. The 
wait-state generators corresponding to the overlapped memory address space 
in local data space will generate the wait states for the corresponding address­
es in global data memory space. 

6.3.3 External Interfacing of Global Memory 

Global memory can be used in various digital signal processing tasks, such as 
filters or modems, where the algorithm being implemented may be divided into 
sections with a distinct processor dedicated to each section. With multiple pro­
cessors dedicated to distinct sections of the algorithm, throughput may be in­
creased via pipelined execution. Figure 6-11 illustrates an example of a global 
memory interface. Since the processors can be synchronized by using the RS 
pin, the arbitration logic may be simplified and the address and data bus trans­
fers made more efficient. 

Figure 6-11. Global Memory Interface 

BR ... ~~ BR 
READY 

.. I Arbitration Logic I ---.. READY ... po 

I I 

J- ..i. 
TMS320C5x TMS320C5x 

~ ~ 
<D ~ lI:: 

A15-AO ---... ::I .. ~ 
::I 

~ A15-AO m m 
~ I Global Data Memory I 

, 

015-DO ~ .. ~ .. ... ---.. 015-00 r ... po ... .. ... .. -- ---
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6.4 Input/Output Space 

The TMS320C5x devices support an I/O address space of 64K 16-bit parallel 
input and output ports. I/O ports allow access to peripherals typically used in 
DSP applications such as codecs, digital-to-analog (D/A) converters, and ana­
log-to-digital (AID) converters. This section discusses addressing I/O ports 
and interfacing I/O ports to external devices. 

6.4.1 Addressing Input/Output Ports 

Access to external parallel I/O ports is multiplexed over the same address and 
data bus for program/data memory accesses. I/O space access is distin­
guished from program/data memory accesses by the IS signal going active 
low. All 65,536 ports can be accessed via the IN and OUT instructions, as 
shown in the following example: 

IN OFFFEh,DAT7 iRead data to data memory from external 
idevice on port 65534. 

OUTOFFFFh,DAT7 iWrite data from data memory to external 
idevice on port 65535. 

Sixteen of the 64K I/O ports are mapped in data memory space as shown in 
Table 6-4. The I/O ports may be accessed with the IN and OUT instructions 
along with any instruction that reads or writes a location in data space. In this 
way, I/O is treated the same way as memory. The following example illustrates 
the use of direct addressing to access an I/O device on port 51 h: 

SACL 51h i (DP = 0). Store accumulator to external device 
ion port 81. 

Accesses to memory-mapped I/O space are distinguished from program/data 
accesses by the IS signal. OS is not active, even though the user is writing to 
data space. 

6.4.2 Interfacing to 1/0 Ports 
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The RD and WE signals can be used along with chip-select logic to output data 
to an external device. The port address can be decoded and used as a chip 
select forthe input or output device. The access times to I/O ports can be modi­
fied through the CWSR and 10WSR software wait-state registers. The BIG bit 
in the CWSR register determines how the I/O space is mapped to the software 
control registers. If the BIG bit is set to 0 in the CWSR register, the first sixteen 
ports are assigned in pairs to a software wait-state generator. Each following 
set of 16 registers maps accordingly to the first 16 ports when BIG = O. For ex­
ample, the 16 ports that correspond to the addresses in the data space port 
hole (ports 50h-5Fh) have the same wait states as ports O-Fh. If the BIG bit 
is set to 1 , the wait states are mapped to program space in eight 8K blocks of 
memory. The following table shows how the software wait states are assigned 
to I/O ports according to the BIG bit: 
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6.5 Direct Memory Access (OMA) 

The TMS320C5x supports multiprocessing designs using direct memory ac­
cess (DMA) of external memory or the TMS320C5x on-chip single access 
RAM. The DMA features can be used for multiprocessing by temporarily halt­
ing the execution of one or more processors to allow another processor to read 
from or write to the TMS320C5x's local off-chip memory or on-chip single-ac­
cess RAM. The external memory access may be controlled by using the 
HOLD/HOLDA signals. The DMA access of internal RAM on the TMS320C5x 
is controlled by the HOLD, HOLDA, RIW, STRB, BR, and IAQ lines. 

Figure 6-12. 110 Port Interfacing Logic 

TMS320C5x _ .. TMS70C42 
IS .. I Decode Logic I .. 

Control Pins PA3-PAO I .. .. 
.. .c 

... .. 
~ ... .. 

015-00 "" ...J "" ... Data 

-; .. .c 
~ ~ Program Memory .. ...J 

The multiprocessing is typically a master-slave configuration. The master may 
initialize a slave by downloading a program into its program memory space 
and/or may provide the slave with the necessary data by using external 
memory to complete a task. In a typical TMS320C5x direct memory access 
scheme, the master may be a general-purpose CPU, another TMS320C5x, or 
even an analog-to-digital converter. A simple TMS320C5x master-slave con­
figuration is shown in Figure 6-13. 

Figure 6-13. Direct Memory Access Using a Master-Slave Configuration 

TMS320C5x TMS320C5x 
(Master) _ .. ----1Slave) 

XF .. HOLD 
BIO ~ HOLDA .... 

INT1-INT4 ... XF 
lACK 

.. 
BIO ." I 

.. 
A15-AO .. 

Buffer 
... A15-AO 

015-00 ~ and 015-00 ... 1 .. .... .. 
RIW I.. .. Logic 

J 
t f ' ... v r + + 

MasterData I Master Program II Slave Program I I Slave Data 
Memory (RAM) Memory (ROM) Memory (RAM) Memory (RAM) 
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Figure 6-14. Direct Memory Access in a PC Environment 
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Address Address 

Master CPU 
Data Data 

Local 
Program/Data 

Memory 
(RAM) 

Address I-~-" 

Data 1-4-___ -" Data 

1----"" HOLD 
Disk Controller 

Decode/ 
Arbitration 

Logic TMS320C5x 

Address 1-4--""" 1'-4---1 Ready 1-4---1 HOLDA 

Data 1-4-~-" 
~====~ ~~--~--~ 

Local Address 
Program 
Memory 
(ROM) 

Data 

The TMS320C5x device also provides direct access of the on-chip RAM for ex­
ternal devices. DMA of the on-chip single-access RAM requires the following 
signals: 

H6iJ5 
HOLDA 

RIW 

A15-AO 

015-00 

External request for control of address, data, and control lines. 

Indicates to external circuitry that the memory address, data, and 
control lines are in high impedance, allowing external access of 
on-chip single-access RAM. 

Bus request signal. Externally driven low in hold mode to indicate a 
request for access to on-chip single-access RAM. 

Acknowledge BR request for access to on-chip single-access 
RAM while HOLDA is low. 

Read/write signal indicates the data bus direction for DMA reads 
(high) and DMA writes (low). 

When active low and IAQ and HOLDA are low, this input signal is 
used to select the memory access. STRB determines the duration 
of the memory access. 

Address inputs during HOLDA and SR active low. 

DMAdata. 

In order to access the TMS320C5x device's on-chip single-access RAM, a 
master device must control the device. The master processor initiates a DMA 
transfer by placing the TMS320C5x device in HOLD. Once the device re­
sponds with a HOLDA, the master can select access to the internal on-chip 
single-access RAM by lowering the SR input. The device will respond with an 
IAQ to acknowledge access to the on-chip memory. At this time, the processor 
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6.6 Memory Management 

The TMS320C5x devices have a programmable memory map, which can vary 
for each application. Instructions are provided for integrating the device 
memory into the system memory map. The TMS320C50 device includes 2K 
words of boot ROM, 9K words of single-access RAM, and 1056 words of dual­
access RAM. The TMS320C51 device includes an 8K program ROM, 1 K 
words of single-access RAM, and 1056 words of dual-access RAM. Examples 
of moving and configuring memory are provided in this section. 

6.6.1 Block Moves 

The TMS320C5x devices address a large amount of. memory but are limited 
in the amount of on-chip memory. Several instructions are available for moving 
blocks of data from off-chip slower memories to on-chip memory for faster pro­
gram execution. In addition, data can be transferred from on-chip to off-chip 
for storage or multiprocessor applications. 

The SLOO instruction facilitates the transfer of data from external or internal 
data memory to internal or external data memory. Example 6-1 illustrates the 
use of the SLOO command to move data (for example, a table of coefficients) 
from external memory to internal data RAM. 

Example 6-1. Moving External Data to Internal Data Memory With BLDD 
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* * This routine uses the BLDD instruction to move external data memory to 
* internal data memory. 

* 
MOVED LMMR BMAR,#2800h;BMAR contains source address in data memory. 

AR7,#300h ;AR7 contains destination address in data memory. LAR 
MAR 
RPT 

*,AR7 iLARP = AR7. 
#511 ;Move 512 values to data memory block Bl. 

BLDD BMAR, *+ 
RET 

For systems with external data memory but no external program memory, the 
SLOP instruction can be used to move additional blocks of code into internal 
program memory. Example 6-2 illustrates the use of the SLOP instruction. 
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Example 6-5. Moving Data Memory to Program Memory With TBLW 

* * This routine uses the TBLW instruction to move data memory to 
* program memory. The calling routine must contain the destination program 
* memory address in the accumulator. 

* 
TABLEW MAR 

LAR 
RPT 
TBLW 
RET 

*,AR4 
AR4,#300h 
#511 
*+ 

iLARP ... AR4. 
;AR4 contains source address in data memory. 
;Move 512 items from data memory to program 
imemory. 
iAccumulator contains address of program RAM. 

The IN and OUT instructions move data from data memory to an external port. 
The use of these instructions is illustrated in the following examples. 

Example 6-6. Moving Data From liD Space to Data Memory With IN 

* * This routine uses the IN instruction to move data from I/O space into 
* data memory. 

* 
INPUT MAR * , AR2 

LAR AR2,#300h 

IN *+,1 
RET 

;LARP = AR2. 
;AR2 = 300h. 
ilnput value to data memory at 300h 
;from port 1~ 

Example 6-7. Moving Data From Data Memory to liD Space With OUT 

* * This routine uses the OUT instruction to move data from data space to 
* I/O space. 

* 
OUTP MAR * ,AR1 

LAR AR1, #200h 

OUT *+,1 
RET 

iLARP = AR1 
;AR1 = 200h 
iOutput value to port 1. 

6.6.2 On-Chip Boot ROM (TMS320C50) 
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The fifth generation ofthe Texas Instruments digital signal processors provides 
two different options regarding the chip count and the system flexibility. One 
member of the family, TMS320C51 , has 8K words of mask-programmable on­
chip ROM that allows the customer to use a code-customized processor for 
specific applications while taking advantage of the following: 

[J Greater memory expansion 
[J Lower system cost 
[J Less hardware and wiring 
[J Smaller PCB 

User routines may be submitted customers to Texas Instruments to be masked 
to the on-chip ROM of TMS320C51. 
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low-order one. Data is read from the lower eight data lines, ignoring the upper 
byte on the data bus. The destination address and the length of the code are 
specified by the first two 16-bit words read from the source. The length is de­
fined as: 

length = number of 16-bit words to be transferred - 1 

The code is transferred from the global data memory to the program memory. 
Note that there is at least a four-instruction cycle delay between a read from 
EPROM and write to destination address. This ensures that if the destination 
is external memory, there is enough time to turn off the source memory 
(EPROM) before the write operation is done. 

Memory 
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Processor Initialization 

7.1 Processor Initialization 

7-2 

Prior to the execution of a digital signal processing algorithm, it is necessary 
to initialize the processor. Generally, initialization takes place anytime the pro­
cessor is reset. 

The processor is reset by applying a low level to RS input for at least five ma­
chine cycles; IPTR bits of PMST register are all set to zero, thus mapping the 
vectors to page zero in program memory space. Th1s means that the reset vec­
tor always resides at program memory location O. This location normally con­
tains a branch instruction in order to direct program execution to the system 
initialization routine~ A hardware reset clears all pending interrupt flags and 
sets the INTM (global enable interrupts) bitto 1, thereby disabling all interrupts. 
It also initializes various status bits and peripheral registers. Refer to subsec­
tion 3.8.1 of this book for details. 

To configure the processor after the reset, the following internal functions 
should be initialized. 

[J Memory-mapped core processor and peripheral control registers 

[J Interrupt structure (INTM) 

[J Mode control (OVM, SXM, PM, AVIS, NDX, TRM) 

[J Memory control (RAM, OVLY, CNF) 

[J Auxiliary registers and the auxiliary register pointer (ARP) 

[J Data memory page pointer (DP) 

The OVM (overflow mode), TC (tesVcontrol flag), IMR (interrupt mask regis­
ter), auxiliary register pointer (ARP), auxiliary register pointer buffer (ARB), 
and data memory page pointer (DP) are not initialized by reset. 

Example 7-1 shows coding for initializing the TMS320C5x to the following ma­
chine state, and for the initialization performed during hardware reset: 

[J Internal single-access RAM configured as program memory 

CI Interrupt vector table loaded in internal program memory 

[J Interrupt vector table pointer (IPTR) 

[J Internal dual-access RAM blocks filled with zero 

[J Interrupts enabled 

Software Applications 



Interrupts 
y.;f$f' 

7.2 Interrupts 

7-4 

The TMS320C5x devices have four external maskable user interrupts 
(INT1-INT4) and one nonmaskable interrupt (NMI) available for external de­
vices. Internal interrupts are generated by the serial ports, the timer, and by the 
software interrupt instructions (INTR, TRAP, and NMI). The interrupt structure 
is described in subsection 5.1.2, Interrupts. 

The TMS320C5x devices are capable of generating software interrupts using 
INTR instruction. This allows any of the 32 interrupt service routines to be ex­
ecuted from the user's software. The first 20 ISRs are reserved for external in­
terrupts, peripheral interrupts, and future implementations. The other 12 loca­
tions in the interrupt vector table are user-definable. The INTR instruction can 
invoke any of the 32 interrupts available on the TMS320C5x devices. 

The context saving and restoring function is done in hardware when an inter­
rupt trap is executed. An 8-deep hardware stack is available for saving return 
addresses of the subroutines and the interrupt service routines. Also, there is 
a one-deep stack (or shadow registers) on the following registers: 

ACC 
ACCS 
PREG 
STO 
ST1 
PMST 
TREGO 
TREG1 
TREG2 
INDX 
ARCR 

accumulator 
accumulator buffer 
product register 
status register 0 
status register 1 
processor mode status register 
temporary register for multiplier 
temporary register for shift count 
temporary register for bit test 
indirect address index register 
auxiliary register compare register 

When the interrupt trap is taken, all these registers are pushed onto the one­
deep stack. These shadow registers are popped when the return-from-inter­
rupt (RETI or RETE) is executed. Detailed discussion of interrupts are given 
in Section 3.8, Interrupts. 

The following example illustrates the use of INTR instruction. The forsground 
program sets up auxiliary registers and invokes user-defined interrupt number 
20. Since the context is saved automatically, the interrupt service routine is free 
to use any of the saved registers without destroying the calling program's vari­
ables. The routine shown here uses the CRGT instruction to find the maximum 
value of 16 executions of the equation Y=aX"2+bX+c. The X values are 
pointed at by AR 1. AR2 and AR3 point to the coefficients and Y results, respec­
tively. In order to return the result to the calling routine, all the registers are re­
stored by executing an RETI instruction. The computed value is placed in the 
accumulator, and a standard return is executed because the stack is already 
popped. 
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7.3 Software Stack 

The TMS320C5x has an internalS-deep hardware stack that is used to save 
and restore return addresses for subroutines and interrupts. See subsection 
3.6.1 forfurther details. Provisions have been made on the TMS320C5x to ex­
tend the hardware stack into the data memory. 

The PUSH and POP instructions can access the hardware stack via the accu­
mulator. Two additional instructions, PSHD and POPD, are included in the in­
struction set so that the stack may be directly stored to and recovered from the 
data memory. 

A software stack can be implemented by using POPD instruction at the begin­
ning of each subroutine in order to save the PC in data memory. Then, before 
retu rning, a P SH D is used to put the proper value back onto the top of the stack. 

When the stack has seven values stored on it, and two or more values are to 
be put on the stack before any other values are popped off, a s.ubroutine that 
expands the stack is needed, such as the one shown in Example 7-3. In this 
example, the main program stores the stack, starting location in memory in 
AR2 and indicates to the subroutine whether to push the data from memory 
onto the stack or pop data from the stack to memory. If a zero is loaded into 
the accumulator before calling the subroutine, the subroutine pushes data from 
memory to the stack. If the accumulator contains a nonzero value, the subrou­
tine pops data from the stack to memory. 

Since the CALL instruction uses the stack to save the program counter, the 
subroutine pops this value into the accumulator and utilizes the BACC instruc­
tion to return to the main program. This prevents the program counter from be­
ing stored into a memory location. The subroutine in Example 7-3 uses the 
BCNDD (delayed conditional branch) instruction to determine whether a save 
or restore operation is to be performed. 

Example 7-3. Software Stack Operation 

7-6 

....................................................... 
"""",",,""""""""""""""""""",,, I This routine expands the stack while letting the 

main program determine where to store the stack 
contents, or from where to restore them. 
Entry Conditions: 
ACC = 0 (restore stack); 1 (save stack) 
AR2 -> Top of software stack in data memory ....................................................... , , , , , , , , , , , , , , , , , I , , , , , , , , , , , , , , , , , , , , , I , , , , , , , I I , , , , , , 

STACK: BCNDD 
MAR 
POP 
RPT 
PSHD 
BACC 

POP: MAR 
RPT 
POPD 
MAR 
BACC 

POP,NEQ 
*,AR2 

#6 
*+ 

*-
#6 
*-
*+ 

Delayed branch if POPD required 
Use AR2 as stack pointer 
Get return address 
repeat 7 times 
Put memory in stack 
Return to main program 
Align AR2 
Repeat 7 times 
Put stack in memory 
Realign stack pointer 
Return to main program 
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LOOP 

" ~s"._ " 

APL 
SFR 

RET 

*- .; Keep the LSB only 
;Shift right to throw away unpa~ked bit 

;Return back 

Example 7-5. Using PLU to Do Packing 

.title 'Routine to pack input bits in a single word' 
* ................................ . """",,,,,,",,",,",,,""" 
* PCKD 
* 
* 
* 
* 
* 
* 

IBn ------ BOI 

UNPCKD 

* 10 ° IBnl 
* * 10 -- OIBn-ll 
* 
* 
* 
* 
* 

10 OIBOI 

* ................................ . 
"",""",,,""""""""", .mmregs 

.data 
NO_BITS .set 

PCKD .set 
UNPCKD .set 

.text 

PACK LAR 
MAR 
LDP 

SPLK 
LACC 

RPTB 
SFL 
ADD 
NOP 

LOOP 
SACL 
RET 

16 

60h 
61h 

;Number of bits to be packed 

;Packed word 
;Array of unpacked bits 

ARO,tUNPCKD;ARO points to start of UNPACKED array 
*, ARO ;ARP <- ARO 
to ;DP=O 

tNO BITS-2,BRCR ;Loop NO BITS-l times 
*+ - ;Get the MSB-

LOOP-l 

*+ 

PCKD 

;Begin looping 
;Make space for next bit 
i Put ne:-:t bit 

iStore the result 
iReturn back 

7.4.2 Multiconditional Branch Instruction 
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The TMS320C5x allows multiple conditions to be tested before passing control 
to another section of program. Any of the following 13 conditions may be tested 
individually or in combination with others by CC, RETC, XC, and BCND instruc­
tions: 

ACC=O 
ACC¢O 
ACC<O 
ACCsO 
ACC>O 
ACC~O 

EQ 
NEQ 
LT 
LEQ 
GT 
GEQ 
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Example 7-7. Using CRGT and CRLT 
....................................................................... 
"Thi~'~~~ti~~'~~~~~h~~'th~~~~h'~'bi~~k'~f'd~t~'i~'th~'d~t~'~~~~~y"'" 

to store the maximum value and the address of that value in memory 
locations MAXVAL and MAXADR, respectively. The data block could be 
of any size defined by the Block Repeat Counter Register (BRCR). 

KEY C5X instructions: 

RPTB repeat a block of code as defined by repeat counter BRCR 
CRGT compare ACC to ACCB. Store larger value in both ACC, ACCB. 

Set CARRY bit if a value larger than the previously larger one is found 
XC execute conditionally (lor 2 words) if flag (Carry) is set . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
"""""""""""'111'""""""""""""","""l'"""", , 
MAXADR • set 60h 
MAXVAL • set 61h 

.mmregs 

.text 
LDP to 
LAR ARO, t0300h 
SETC SXM 
LACC t08000h 

Use t07FFFh (largest 
SACB 

startb 

SPLK t9,BRCR 
RPTB endb-1 

point to data page 0 
AR= data memory addr 
set sign extension mode 

; load minimum value 
possible) to check for minimum value 

into ACCB 
rpt cont = 9 for 10 data values 
repeat block. from here to endb-1 

LACC * load data from «ARO» into ACC 
CRGT ; set carry if ACC > previous largest 

Use CRLT to find minimum value 
SACL MAXVAL save new largest which is in ACC & ACCB 
XC t1,C save addr if current value> previous largest 
SAR ARO, MAXADR· 
MAR *+ 

endb RET 

At the end of routine, following 
registers contain: 

ACC 32050 
ACCB = 32050 
(MAXVAL) = 32050 
(MAXADR) 0307h 

.data 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.end 

5000 
10000 
320 
3200 
-5600 
-2105 
2100 
32050 
1000 
-1 

data is expected to be in data ram 
, start address = 0300h 

7.4.4 Matrix Multiplication Using Nested Loops 

7-10 

The TMS320C5x provides three different types of instructions to implement 
code loops. The RPT (single-instruction repeat) instruction allows the following 
instruction to be executed N times. The RPTB (repeat block) instruction repeat­
edly executes a block of instructions with the loop count determined by the 
BRCR count register. The BANZ (branch if AR not zero) instruction is another 

Software Applications 



Circular Buffers 

7.5 Circular Buffers 

7-12 

Circular addressing is an important feature of the TMS320C5x instruction set. 
Algorithms like convolution, correlation, and FI R filters can make use of circular 
buffers in memory. The TMS320C5x supports two concurrent buffers operat­
ing via the auxiliary registers. These five memory-mapped registers control the 
circular buffer operation: CBSR1, CBSR2, CBER1, CBER2, CBCR. See sub­
section 4.1.6 of this book for details. 

The start and end addresses must be loaded in the corresponding buffer regis­
ters before the circular buffer is enabled. Also, the auxiliary register that acts 
as a pointer to the buffer must be initialized with the proper value. 

Example 7-9 illustrates the use of a circular buffer to generate a digital sine 
wave. A 256-word sine-wave table is loaded in the B1 block of dual-access in­
ternal data memory from external program memory. Accessing the internal 
dual-access memory requires only one machine cycle. The block move ad­
dress register (BMAR) is loaded with the ROM address of the table. The 
block-move instruction moves 256 samples of sine wave to internal data 
memory, which is then set up as a circular buffer. 

The start and end addresses of this circular buffer are loaded into the corre­
sponding registers. The auxiliary register AR7 is also initialized to the begin­
ning of the sine-wave table. Note the use of SAMM instruction to update AR7. 
This is possible because all auxiliary registers are memory-mapped at page 
O. Finally, the circular buffer #1 is enabled, and AR7 is mapped to that buffer. 
The other circular buffer is disabled. 

Whenever the next sample is to be pulled off from the table, postincrement indi­
rect addressing may be used with AR7 as the pointer. This ensures that the 
pointer will wrap around to the beginning of the table if the previous sample was 
the last one on the table. 
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The following code does modulo-256 addressing: 

START .set 04000h ; start address of the buffer 

LOP #0 
LACL #OFFh 
SAMM OBMR max value = 255 

MAR *0+ increment AR7 by some amount 
APL AR7 extract lower 4 bits 
OPL #START,AR7 add the start address 
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Example 7-10. Memory-to-Memory Block Moves Using RPT 

7-16 

·.mmregs 
.text 

.......................................................... 
""""""""""""",,""",""",,""""," "" ; This routine uses the BLDD instruction to move external 
; data memory to internal data memory • ......................................................... . 
""""""""""""""""""""",1""""" "" 
MOVEDD: 

SPLK t4000h,BMAR 
LAR AR7,t100h 
MAR *,AR7 
RPT U023 
BLDD BMAR,*+ 
RET 

BMAR -> source in data memory. 
AR7 -> destination in data memory 
LARP = AR7. 
Move 1024 value to blocks BO and B1 

.......................................................... 
""""","""","""",""""""",""""" "" ; This routine uses the BLDP instruction to move external 
; data memory to internal program memory. This 
; instruction could be used to boot load a program to 
; the 8K on chip program memory from external data memory. 
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; j,; ; ; ; ; i 

MOVEDP: 
SPLK t800H,BMAR 
LAR AR7,tOEOOOh 
RPT t8191 
BLDP *+ 
RET 

BMAR -> destination in program memory 
AR7 -> source in data memory. 
Move 8k to program memory space. 

.......................................................... 
""""""""""""""""""""""""""" "" This routine uses the BLPD instruction to move external 
; program memory to internal data memory. This routine 
; is useful for loading a coefficient table stored in 
; external program memory to data memory when no external 
; data memory is available • ......................................................... . 
""""""""""""""""""""""""""" "" 
MOVEPD: 

LAR AR7, nOOh 
RPT U27 
BLPD t3800h,*+ 
RET 

AR7 -> destination in data memory. 
Move 128 values from external program 
to internal data memory BO. 

.......................................................... 
""""""""""""""""""""""""""""" This routine uses the TBLR instruction to move program 

memory to data memory space. This differs from the BLPD 
instruction in that the accumulator contains the address 
in program memory from which to transfer. This allows 
for a calculated, rather than pre-determined, location in 
program memory to be specified • ......................................................... . 

""""""""""""""""""""""""""" "" 
TABLER: 

MAR *,AR3 
LAR AR3,t300h 
RPT U27 
TBLR *+ 
RET 

AR3 -> destination in data memory. 

Move 128 items to data memory block B1 

.......................................................... 
""""""""""""""""""""""""""""" This routine uses the TBLW instruction to move data 
; memory to program memory. The calling routine must 
; contain the destination program memory address in the 
; accumulator • ......................................................... . 
""""""""""""""""""""""""""""" 
TABLEW: 

MAR 
LAR 

*,AR4 
AR4,t380h 

ARP = AR4. 
AR4 -> source address in data memory. 
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7.7 Subroutines 

Example 7-11 illustrates the use of a subroutine to determine the square root 
of a 16-bit number. The main routine executes to the point where the square 
root of a number should be taken. At this point, a delayed call (CALLO) is made 
to the subroutine, transferring control to that section of the program memory 
for execution and then returning to the calling routine via the delayed return 
(RETO) instruction when execution has completed. 

This example shows several features ofTMS320C5x instruction set. In particu­
lar, note the use of delayed-call (CALLO), delayed-return (RETO), and condi­
tional-execute (XC) instructions. Oue to the four-level-deep pipeline on 
TMS320C5x devices, normal branch instructions require 4 cycles to execute. 
Using delayed branches, only two cycles are required for execution. The xc 
instruction is useful where only one or two instructions are to be executed con­
ditionally. In this example, notice how XC is used to avoid extra cycles due to 
branch instruction. Use of the XC instruction also helps in keeping the execu­
tion time of a routine constant, regardless of input conditions. This is because 
XC executes NOPs in place of instructions if conditions are not met. 

Example 7-11. Square Root Computation Using XC 

7-18 

Autocorrelation 
............................................................... 
",,"""""""""","",""",,,"""""",",,""," This routine performs a correlation of two vectors and then 

calls a Square Root subroutine that will determine the RMS 
amplitude of the wave form • .............................................................. . 

""""""""""""""","""""""""",,,"","" 
AUTOC 

CALLD 
MAR 
LACC 

SQRT 
*,ARO 

* 

iCall square root subroutine after 
i e:-:ecuting ne:·:t two instructions 
iGet the value to be passed to SQRT 
i subroutine 

................................................................ 
"""""""",""""""""""""""""",,,"'l""" Square Root Computation 

This routine computes the square root of a number that is located 
in the lower half of accumulator. The number is in Q15 format • ............................................................... . 

"""""""""""""""""""""""""""""""" 
BRCR 
STO 
ST1 
NUMBER 
TEMPR 
GUESS 

.set 

.set 

.set 

.set 

.set 

.set 

.text 
SQRT SST 

SST 
LDP 
SETC 
SPM 

09h 
60h 
61h 
62h 
63h 
64h 

#O,STO 
f:l/STl 
#0 
SXM 
1 

iDP=O 
ilnternal RAM block B2 

;Save context 

iSet SXM=1 
iSet PM mode for fractional arithmetic 
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7.8 Extended-Precision Arith metic 

Numerical analysis, floating-point computations, or other operations may re­
quire arithmetic to be executed with more than 32 bits of precision. Since the 
TMS320C5x devices are 16/32-bit fixed-point processors, software is required 
for the extended precision of arithmetic operations. Subroutines that perform 
the extended-arithmetic functions for TMS320C5x are provided in the exam­
ples of this section. The technique consists of performing the arithmetic by 
parts, similar to the way in which longhand arithmetic is done. 

The TMS320C5x has several features that help make extended-precision cal­
culations more efficient. One of the features is the carry bit. This bit is affected 
by all arithmetic operations of the accumulator, including addition and subtrac­
tion with the accumulator buffer. This allows 32-bit-long arithmetic operations 
using the accumulator buffer as the second operand. 

The carry bit is also affected by the rotate and shift accumulator instructions. 
It may also be explicitly modified by the load status register ST1 and the set/re­
set control bit instructions. For proper operation, the overflow mode bit should 
be reset (OVM = 0) so that the accumulator results will not be loaded with the 
saturation value. 

7.8.1 Addition and Subtraction 

7-20 

The carry bit is set whenever the addition of a value from the input scaling shift­
er, the P register, or the accumulatorbuffer to the accumulator contents gener­
ates a carry out of bit 31. Otherwise, the carry bit is reset because the carry 
out of bit 31 is a zero. One exception to this case is the addition to the accumula­
tor with a shift of 16 instruction (ADD mem, 16), which can only set the carry 
bit. This allows the ALU to generate a proper single carry when the addition 
either to the lower or the upper half of the accumulator actually causes the 
carry. The following examples help to demonstrate the significance of the carry 
bit of the TMS320C5x for additions: 
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In a similar way to addition, the carry bit on the TMS320C5x is reset whenever 
the input scaling shifter, the P register, or the accumulator buffer value sub­
tracted from the accumulator contents generates a borrow into bit 31. Other­
wise, the carry bit is set because no borrow into bit 31 is required. One excep­
tion to this case is the SUB mem, 16 instruction, which can only reset the carry 
bit. This allows the generation of the proper single carry when the subtraction 
from either the lower or the upper half of the accumulator actually causes the 
borrow. The examples in Figure 7-2 demonstrate the significance of the carry 
bit for subtraction. 

Figure 7-2. 32-Bit Subtraction 

C MSB LSB 
X 0 0 0 0 0 0 0 0 ACC 

J 
OFF F F F F F F 

C MSB LSB 
X 7 F F F F F F F ACC 

1 
1 7 F F F F F F E 

C MSB LSB 
X 8 0 0 0 0 0 0 0 ACC 

1 
1 7 F F F F F F F 

C MSB LSB 
X 0 0 0 0 0 0 0 0 ACC 

-F F F F F F F F 
o 0 000 0 001 

C MSB LSB 
X 7 F F F F F F F ACC 

-F F F F F F F F 
C 8 0 0 0 0 000 

C MSB LSB 
X 8 0 0 0 0 0 0 0 ACC 

-F F F F F F F F 
o 8 0 0 0 0 001 

C MSB LSB C MSB LSB 
o 0 0 0 0 0 0 0 0 ACC 0 F F F F F F F F ACC 
_______ ...... O ............ ( ..... St ..... 1B .... B ..... ) 0 (SUBB) 
OFF F F F F F F 1 F F F F F F F E 

C MSB LSB C MSB LSB 
o 8 0 0 0 F F F F ACC 0 8 0 0 0 F F F F ACC 

-0 0 0 1 0 0 0 0 (SUB mem,16) -F F F F 0 0 0 0 (SUB mem,16) 
o 7 F F F F F F F 0 800 1 F F F F 

Example 7-13 implements the subtraction of two 64-bit numbers on the 
TMS320C5x. A borrow is generated within the accumulator for each of the 
16-bit parts of the subtraction operation. 

Example 7-13. 64-Bit Subtraction 

7-22 

......................................................... 
"""""""""""""",,,"""",,""""",,, '" Two 64-bit numbers are subtracted, producing a 64-bit 
result. The number Y (Y3,Y2,Yl,YO) is subtracted from 
X (X3,X2,Xl,XO) resulting in W (W3,W2,Wl,WO). 
If the result is required in 64-bit ACC/ACCB pair, 
replace the instructions as indicated in the comments 
below. 

X3 X2 Xl XO 
- Y3 Y2 Yl YO 
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Figure 7-3. 16-Bit Integer Multiplication 

7-24 

x 
Signed Integer 

v 
X Unsigned Integer 

XxV 

Signed Multipli,cation 

X 

Add X if V 15 = 1 

XxV 

Final 32-Bit Result 

Steps Required: 

1) Multiply two operands X and Y as if they are signed integers, 

2) If MSB of the unsigned integer Y is 1 , add X to the upper half of the 32-bit 
signed product. 

The correction factor must be added to the signed multiplication result because 
the bit weight of the MSB of any 16-bit unsigned integer is 215• 

Consider following representation of a signed integer X and an unsigned inte­
gerY: 

X = -215x15 + 214x14 + 213x13 + ... + 21x1 + 20xo 

Y = 215Y15 + 214Y14 + 213Y13 + ... + 21Y1 + 20yO 

Multiplication of X and Y would yield: 

XxV = X x (215Y15 + 214Y14 + 213Y13 + ... + 21Y1 + 20yo) 

= 215Y15X + 214Y14X + 213Y13X + ... + 21Y1X + 20yoX (1 ) 

However, if X and Yare considered signed integers, their multiplication would 
yield: 

XxV = X x (-215Y15 + 214Y14 + 213Y13 + ... + 21Y1 + 20yo) 
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The following example implements this algorithm. The product is a 64-bit inte­
ger number. Note in particular, the use of BSAR and XC instructions. 

Example 7-14. 32-8it Integer Multiplication 

7-26 

.title "32-bit Optimized Integer Multiplication" 
~def MPY32 

............................................................ 
"Thi;'~~~ti~~'~~itipii~;'t~~'32:bit';ig~~d'i~t~g~~;'~~~~it: 

ing in a 64-bit product. The operands are fetched from 
data memory and the result is written back to data memory. 
Data Storage: 

Xl,XO 
Yl,YO 

. W3,W2,Wl,WO 
Entry Conditions: 

32-bit operand 
32-bit operand 
64-bit product 

DP a 6, SXM a 1 
OVM = 0 ............................................................ 

III""""""""""""""""""""""""'" """ 
Xl .set 
XO .set 
Yl .set 
YO .set 
W3 .set 
W2 .set 
Wl .set 
WO .set 

.text 

MPY32: 
BIT 
LT 
MPYU 
SPL 
SPH 
MPY 
LTP 
MPY 
MPYA 
ADDS 
SACL 
BSAR 
XC 
ADD 
BIT 
APAC 
XC 
ADD 
SACL 
SACH 

300h 
30lh 
302h 
303h 
304h 
30Sh 
306h 
307h 

;DP-6 
; Dp .. 6 
; Dp ... 6 
;DP=6 
;DP-6 
; Dp ... 6 
;DP=6 
;DP=6 

TC = xo bitUS 
T - XO 
P = XOYO 
Save WO 
Save partial Wl 
P = XOYl 
Acc ... XOY1, T - Xl 
P = X1YO 

XO,O 
XO 
YO 
WO 
Wl 
Yl 
Xl 
YO 
Yl 
Wl 
Wl 
16 
l,TC 
Yl 
YO,O 

Acc = XOY1+X1YO, P=X1Yl 
Acc = XOY1+X1YO+XOY02 A -16 
Save final Wl 

l,TC 
Xl 
W2 
W3 

Shift Acc right by 16 
If MSB of XO is 1 
Add Yl 
TC = YO bitflS 
ACC = X1Yl + (XOY1+X1YO)2 A -16 
IF MSB of YO is 1 
Add Xl 
Save ,W2 
Save W3 
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7-28 

Integer and fractional division can be implemented with the SUBC instruction 
as shown in Example 7-16 and Example 7-17, respectively. When imple­
menting a divide algorithm, it is important to know if the quotient can be repre­
sented as a fraction and the degree of accuracy to which the quotient is to be 
computed. For integer division, the absolute value of the numerator must be 
greater than the absolute value of the denominator. For fractional division, the 
absolute value of the numerator must be less than the absolute value of the 
denominator. 

Long Division: 

000000000000110 Quotie~ 
0000000000000101 )000000000010001 

-101 
no 

-1.0.1 
11 Remainder 

SUBC Method: 

32 HIGH ACC LOW ACC 0 
I I II 
0000000000000000 0000000000100001 

-10 1000000000000000 
-10 0111111111011111 

I I I I 
0000000000000000 0000000001000001 

-10 1000000000000000 
-10 0111111110111110 

• 
• 
• 

I I I I 
0000000000000100 0010000000000000 

-10 1000000000000000 
0000000000000001 1010000000000000 
I I I I 
0000000000000011 0100000000000001 

-10 1000000000000000 
0000000000000000 1100000000000001 
I I I I 
0000000000000001 1000000000000011 

-10 1000000000000000 
- 1111111111111101 

0000000000000011 0000000000000110 

Remainder I I Quotient 

Comment 

(1) Dividend is loaded into ACC. The di­
visor is left-shifted 15 and subtracted 
from ACC. The subtraction is nega­
tive, so discard the result and shift 
left the ACC one bit. 

(2) 2nd subtract produces negative an­
swer, so discard result and shift ACC 
(dividend) left. 

• 
• 
• 

(14) 14th SUBC command. The result is 
positive. Shift result left and replace 
LSBwith 1. 

(15) Result is again positive. Shift result 
left and replace LSB with 1. 

(16) Last subtract. Negative answer, so 
discard result and shift ACC left. 

Answer reached after 16 SUBC in­
structions. 
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Example 7-17. Fractional Division Using SUBC 

7-30 

* ........................................................................... . 
*'Thi;'~~~ti~~'i~pi~~~~t;'f~~~ti~~~i'di~i;i~~'~ith'th~'suBc'i~;t~~~ti~~:"F~~ 
* this division routine, the absolute value of the denominator must be 
* greater than the absolute value of the numerator. In addition, the 
* calling routine must check to verify that the divisor does not equal O. 
* * The 16-bit dividend is placed in the high accumulator, and the low accumulator 
* is zeroed. The divisor is in data memory. * .. ~ ........................................................................ . 
"""""""""""""""""""""""111"'"""""""""""" 

DENOM .set 
NUMERA .set 
QUOT .set 
REM .set 
TEMSGN .set 
* 
FRACDIV LDP 

LT 
* 

MPY 
SPH 
LACL 
ABS 
SACL 
LACC 
ABS 

* * If divisor and 
* 

RPT 
SUBC 

* 
BIT 
RETCD 
SACL 
SACH 

* 
LACL 
RETD 
SUB 
SACL 

60h 
61h 
62h 
63h 
64h 

*0 
NUMERA 

DENOM 
TEMSGN 
DENOM 

DENOM 
NUMERA,16 

Determine sign of quotient. 

Make denominator and numerator positive. 

Load high accumulator, zero low accumulator. 

dividend are aligned, division can start here. 

*15 
DENOM 

TEMSGN,O 
NTC 
QUOT 
REM 

*0 
QUOT 
QUOT 

16-cycle division. Low accumulator contains 
the quotient and high accumulator contains the 
remainder at the end of the loop. 

Test sign of quotient. 
; Return if sign positive, else continue. 

Store quotient and remainder during delayed 
return. 

If sign negative, negate quotient 
and return 

Software Applications 



Floating-Point Arithmetic 
~$ISI$& 

7-32 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

SAMM save the accumulator contents in a memory-mapped 
register 

LACB accumulator is loaded with contents of accumulator 
buffer 

SACB contents of accumulator are copied in accumulator 
buffer 

SATL accumulator is barrel-shifted right by the value 
specified in the 4 LSBs of TREGl 

SATH accumulator is barrel-shifted right by 16 bits 
if bit 4 of TREGl is a one. 

SPLK store immediate long constant in data memory 
CPL compare long immediate value (or DBMR) with data 

memory 
TC=l if two values are same 
TC=O otherwise * ................................................................... . 

"""""""""",""""""""""""""",,,I"'""""" 
TREGl .set 

ASIGN .set 
AEXP .set 
AHI .set 
ALO .set 

BSIGN .set 
BEXP .set 
BHI .set 
BLO .set 

CSIGN .set 
CEXP .set 
CHI .set 
CLO .set 
DIFFEXP • set 

.text 

FL ADD 

CMPEXP 

AGTB 

LDP 
SETC 
MAR 
LAR 

LACL 
ADD 
SACB 
LACC 
SUB 
SACL 
BCND 
BCND 

LACC 
SAMM 
SUB 
BCND 
LACB 
SATL 
SATH 
SACB 

AEQB LACC 
SACL 
LACC 
SACL 

CHKSGN LACC 
SUB 
CLRC 
XC 
SETC 
BCNDD 

Odh 

60h 
61h 
62h 
63h 

64h 
65h 
66h 
67h 

68h 
69h 
6Ah 
6Bh 
6Ch 

10 
SXM 
*,ARO 
ARO,IO 

BLO 
BHI,l6 

AEXP 
BEXP 
DIFFEXP 
AEQB,EQ 
ALTB,LT 

DIFFEXP 
TREGl 
132 

;Sign, exponent, high and low part of mantissa 
iof input number A 

iSign, exponent, high and low part of mantissa 
iof input number B 

iSign, exponent, high and low part of mantissa 
iof the resulting floating point number C 

iInitialization 
iSet sign extension mode 
iARP <- ARO 
iARO is used by NORM instruction 

iLoad low Acc with BLO 
iAdd BHI to high Acc 
iAccB = BHIBLO 

iAcc = AEXP=BEXP 
iSave the difference 
iIf IAI == IBI 
iIf IAI < IBI 

iIf IAI > IBI 
iLoad TREGl with I of right shifts reqd. 

AGRT32,GEQ iIf difference> 32 

ASIGN 
CSIGN 
AEXP 
CEXP 

ASIGN 
BSIGN 
TC 
l,LT 
TC 
ADNOW,EQ 

iAcc = BHIBLO 

iRight justify BHIBLO 
iStore the result back in AccB 

iCOPY sign and eXP9nent values of 
iA in C (i.e. the result) 

iAcc=ASIGN-BSIGN 

Clear TC flag 
If A<O and B>O 
Set TC flag 
If both A and B have same sign 
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ADD 
SATL 
SATH 
BD 
SACL 
SACH 

BGRT32 LACC 
SACL 
RETD 
LACC 
SACL 

AGRT32 LACC 
SACL 
LACC 
SACL 
LACC 
SACL 
RETD 
LACC 
SACL 

AHI,16 

CHKSGN 
ALO 
AHI 

BHI 
CHI 

BLO 
CLO 

AHI 
CHI 
ALO 
CLO 
ASIGN 
CSIGN 

AEXP 
CEXP 

; Acc=AHIALO 

;Right-justify ALOAHI 
;Jump back after next two instructions 
;Save normalized value 
;in ALO and AHI 

;If exponent of B > 32 
;then C <- B. 
;Return after 
;saving CHI and CLO 

;If exponent of A > 32 
;then C <- A. 

;Copy ALO to CLO 

;Copy ASIGN to CSIGN 
iReturn after 
icopying AEXP to CEXP 

Example 7-19. Floating-Point Multiplication Using BSAR 

7-34 

.title 'Floating Point Multiplication Routine' 
* ..................................................................... . 
""""""""""",,"",11""""""""'1"'""""",""", * THIS SUBROUTINE MULTIPLIES TWO FLOATING-POINT NUMBERS PRODUCING 

* A NORMALIZED FLOATING-POINT PRODUCT. THE FORMAT OF FLOATING-
* POINT NUMBERS IS SPECIFIED BELOW. 
* 
* 
* 
* 
* 

INPUT I OUTPUT FORMAT 

ALL 0 OR 1 SIGN WORD 

16 BITS EXPONENT 

101 15 BITS HIGH PART OF MANTISSA 

16 BITS LOW PART OF MANTISSA 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

NOTE THAT EVEN IF THE PRODUCT IS ZERO, SIGN OF THE PRODUCT MAY 
EITHER BE POSITIVE OR NEGATIVE DEPENDING ON THE INPUTS. 

Key C5x Instructions: 
BSAR 1-16 bit right barrel arithmet"ic shift in one cycle 
CLRC reset control bit 
SETC set control bit 
BD branch after executing next two one-word instructions 

or one two-word instruction * ..................................................................... . 
""""""""""""""","""""""""",,,",,"""""" 

ASIGN .set 60h ;Sign, exponent, high and low parts of mantissa 
AEXP .set 61h iof input number A 
AHI .set 62h 
ALO .set 63h 

BSIGN .set 64h iSign, exponent, high and low parts of mantissa 
BEXP .set 65h ;of input number B 
BHI .set 66h 
BLO .set 67h 

Software Applications 



Application-Oriented Operations 

7.10 Application-Oriented Operations 

7.10.1 Modem Application 

Digital signal processors are especially appropriate for modem applications. 
The TMS320C5x devices with their enhanced instruction set and reduced in­
struction cycle time are particularly effective in implementing encoding and de­
coding algorithms. Features like circular addressing, repeat block, and 
single-cycle barrel shift reduce the execution time of such routines. 

Example 7-20 implements a differential and convolutional encoder for a 9600-
bitls V.32 modem. This encoder uses trellis coding with 32 carrier states. The 
data stream to be transmitted is divided into groups of four consecutive data 
bits. The first two bits in time Q1 nand Q2n in each group are differentially en­
coded into Y1 nand Y2n according to the following equations: 

Y1 n = Q1n E9 Y1 n-1 

Y2n = (Q1 n • Y1 n-1) E9 Y2n-1 E9 Q2n 

This is done by a subroutine called DIFF. The two differentially encoded bits 
Y1 nand Y2n are used as inputs to a convolutional encoder subroutine EN­
CODE, which generates a redundant bit YOn. These five bits are packed into 
a single word by the PACK subroutine. 

Example 7-20. V.32 Encoder Using Accumulator Buffer 
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.title 'Convolutional Encoding for a V.32 Modem' 

.mmregs 

STATMEM 
INPUT 
YPAST 
OUTPUT 
LOCATE 
PCKD IP 
PCKD-OP 
COUNT 

INIT 

START 

UNPACK 

.set 

.set 

.set 

.set 

.set 

.set 

.set 

.set 

.text 

LAR 
LAR 
LAR 
LDP 

MAR 
LACC 
SACL 

LAR 
LACL 
SAMM 
LACL 
SAMM 

LACC 
RPTB 

60h 
64h 
68h 
63h 
6ah 
1000h 
2000h 
50 

ARl,#PCKD_IP 
AR2,#PCKD OP 
AR3,#COUNT-l 
#0 

*,ARl 
*+,O,ARO 
LOCATE 

ARO,#1NPUT+3 
#3 
BRCR 
#1 
DBMR 

LOCATE 
LOOP1-l 

; (60h - 62h) Delay States Sl,S2,S3 
; (64h - 67h) Four input bits 
; (68h - 69h) Past values of Yl and Y2 
;YO, the redundant bit 
;Temporary storage for current input word 
;1nput buffer (4 bits packed per word) 
;Output buffer (5 bits packed per word) 
;# of input data words 

;COUNT contains # of input words 

;Temporary storage for current input word 

;Loop 4 times 

iLoad DBMR with the mask for LSB 

iAcc = packed input bits 
;for 1=0,1<=3,1++ 
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7.10.2 Adaptive Filtering 

There are many practical applications of adaptive FIRlIIR filtering; one exam­
ple is in the adapting or updating of coefficients. This can become computation­
ally expensive and time-consuming. The MPYA, ZALR, and RPTB instructions 
on TMS320C5x can reduce execution time. 

A means of adapting the coefficients on the TMS320C5x is the least-mean­
square algorithm given by the following equation: 

~ (i + 1) = bk (i) + 2Be(i)x(i - k) 

where e (i) = x (i) - Y (i) 
and N-1 

y(i) = L bk x(i - k) 
k .. O 

Quantization errors in the updated coefficients can be minimized if the result 
is obtained by rounding rather than truncating. For each coefficient in the filter 
at a given point in time, the factor 2*B*e(i) is a constant. This factor can then 
be computed once and stored in the T register for each of the updates. 

MPYA and ZALR instructions help in reducing the number of instructions in the 
main adaptation loop. Furthermore, the RPTB (repeat block) instruction allows 
the block of instructions to be repeated without any penalty for looping. 

Example 7-21 shows a routine that implements a 128-tap FIR filter and an 
LMS adaptation of its coefficients. The single-access internal RAM of 
TMS320C50/C51 can be mapped in both the program and data spaces at the 
same time by setting OVL Y and RAM control flags to 1. This feature can be 
used to advantage by locating the coefficients table in single-access internal 
RAM so that it can be accessed by MACD and MPY instructions without modi­
fying RAM configuration. Note that the MACD instruction requires one of its op­
erands to be in program space. 

If the address of the coefficient table is to be determined in runtime, load the 
BMAR (block move address register) with the address computed dynamically 
and replace the instruction 

MACD COEFFP,*-
by 
MADD *-
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7.10.3 IIR Filters 

Infinite impulse response (IIR) filters are widely used in digital signal process­
ing applications. The transfer function of an IIR filter is given by: 

H( ) _ bo + b1z-1 + ... + bMz-M _ Y(z) 
z - 1 + a1r1 + ... + aNrN - X(z) 

An Nth order direct-form III1R filter can be represented by the following block 
diagram: 

Figure 7-5. Nth Order Direct-Form Type III1R Filter 
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x(n) y(n) 

In the time domain, an Nth order IIR filter is represented by the following two 
difference equations: 

at time interval n: 

x(n) is the current input sample 

y(n) is the output of the IIR filter 

d(n) = x(n) - d(n-1 )a1 - ... - d(n-N+ 1 )aN-1 

y(n) = d(n)bo + d(n-1 )b1 + ... + d(n-N+ 1 )bN-1 

The above two equations can easily be implemented on the TMS320C5x by 
using multiply-accumulate instructions (MAC, MACD, MADS, MADD). Note 
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Example 7-23. Using LTD and MPYA 
.title "N Cascaded BiQuad IIR Filters" 
.mmregs 

............................................................ 
"Thi~'~~~ti~~'i~pi~~~~t~'N'~~~~~d~d'bi~~k~'~f'biq~~d'IIR'" 

canonic type II filters. Each biquad requires 3 data 
memory locations d(n),d(n-l),d(n-2), and 5 coefficients 

, -al,-a2,bO,bl,b2. 
For each block: d(n) = x(n)-d(n-1)al-d(n-2)a2 

y(n) = d(n)bO+d(n-1)b1+d(n-2)b2 

Coefficients Storage: (low to high data memory) 
-a2, -aI, b2, b1, bO, .•• , -a2, -aI, b2, b1, bO 

1st biquad Nth biquad 

State Variables: (low to high data memory) 
d(n),d(n-1),d(n-2), ,d(n),d(n-1),d(n-2) 

Nth biquad 1st biquad 

Entry Conditions: 
ARI -> d(n-2) of 1st biquad 
AR2 -> -a2of 1st biquad 
AR3 -> input sample (Q15 number) 
AR4 -> output sample (Q15 number) 
DP = 0, PM = 0, ARP = 3 ............................................................ 

""""""""""""""""""""""""""" "",, 
BIQUAD: ;Setup variables; 

LOOP: 

ZPR ; Clear P register 
LACC *,15,AR1 ; Get Q15 input 
SPLK f2,INDX ; Setup index register 
SPLK fN-l,BRCR ; Setup count 

;Begin computation;' 
RPTB ELOOP-1 ; repeat for N biquads 

LT 
MPYA 
LTA 
MPY 
LTA 
SACH 
MPY 
LACL 
LTD 
MPY 
LTD 
MPY 

*-,AR2 
*+,AR1 
*-,AR2, 
*+ 
*+,ARI 
*0+,1 
*-
#0 
*-,AR2 
*+,ARI 
*-,AR2 
*+,AR1 

T = d(n-2) 
Acc = x(n), P = -d(n-2)a2 
Acc += -d(n-2)a2, T = d(n-l) 
P = -d(n-l)al 
Acc += -d(n-l)al, T = b2 
Save d(n) 
P = d(n-2)b2 
Acc = 0 
T = d(n-l), d(n-2) = d(n-l) 
Acc += d(n-2)b2, P = d(n-l)b1 
T = d(n), d(n-l) = d(n) 
Acc += d(n-l)b1, P = d(n)bO 

ELOOP: 
LTA *,AR4 
SACH *,1 

Final accumulation 
Save output in Q15 format 

7.10.4 Dynamic Programming 

7-42 

Dynamic programming techniques are widely used in optimal search algo­
rithms. Applications such as speech recognition, telecommunications, and ro­
botics use dynamic programming algorithms. The TMS320C5x digital signal 
processors have an enhanced instruction set for efficient implementation of dy­
namic programming methods. 

Most real-time search algorithms use the basic dynamic programming princi­
ple that the final optimal path from the start state to the goal state always pass 
through an optimal path from the start state to an intermediate state. This helps 
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Figure 7~. Backtracking With Path History 

State #0 

2 

3 
n-4 n-3 n-2 n-1 n 

Path Trace for 5 Periods Current Time Period 

Buffer 

1 1 2 2 

0 0 0 1 

3 2 1 3 

2 3 3 0 Buffer + 15 

n-1 n-3 n-2 

Current Time Period 
Path History Circular Buffer (N = 4) 

Example 7-24. Backtracking Algorithm Using Circular Addressing 
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....................................................... 
""""""""""""""""""""""""""" , Backtracking Example 

This program back-tracks the optimal path expanded by 
a dynamic programming algorithm. The path history 
consists of four paths expanded N times. It is set up 
as a circular buffer of length N*4. 
Note that decrement type circular buffer is used. 
The start and end address of the circular buffer are 
initialized this way because of two reasons: 
1- to avoid skipping the end-address of circ buffer 
2- to ensure that wrap-around is complete before next 
iteration . ...................................................... . 

,""",""""""""""""""""""""""", 
LAR ARO,tBUFFER; get buffer address 
LMMR INDX,PATH ; get the selected path [0 •• 3] 
SPLK tN-1,BRCR ; trace back N time periods 

* init. ARO as pointer to circular buffert1; length=N*4 words 
SPLK tBUFFER+(N-1)*4,CBSR1 
SPLK tBUFFER-3,CBER1 
SPLK t08h,CBCR 

* 
RPTB 
MAR 
LACC 
SAMM 
SBRK 

,SBRK 
TLOOP: 

TLOOP-l 
*0+ 
*0-
INDX 
3 
1 

for i=O,i<N,i++ 
offset by statet 
get next pointer & reset to statetO 
save next statet 
decrement ARO to avoid skipping CBERl 
now ARO is correctly positioned 1 time 
period back (circular addressing) 
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Agure 7-8. An In-Place DIT FFT With In-Order Inputs but Bit-Reversed Outputs 

Stage 1 Stage 2 Stage 3 

x(O) x(O) 

x(4) x(1 ) 

x(2) x(2) 

x(6) 
Wo 

x(3) 

x(1) x(4) 
Wo 

x(5) 
Wo 

x(5) 

x(3) x(6) 
Wo 

x(7) x(7) 

. . 0 1 2 3 
Legend for twiddle factor. Wo = W 8 W1 = W 8 W2 = W 8 W3 = W 8 

Table 7-1. Bit-Reversal Algorithm for an 8-Point Radix-2 DIT FFT 
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Index Bit Pattern Bit-Reversed Pattern Bit-Reversed Index 

0 000 000 0 
1 001 100 4 
2 010 010 2 
3 011 110 6 
4 100 001 1 
5 101 101 5 
6 110 011 3 
7 111 111 7 

The bit-reversed addressing mode is part of the indirect addressing implem­
ented with the auxiliary registers and the associated arithmetic unit. In this 
mode, a value (index) contained in INDX is either added to or subtracted from 
the auxiliary register being pointed to by the ARP. However, the carry bit is not 
propogated in the forward direction; instead, it is propagated in the reverse di­
rection. The result is a scrambling in the address access. 

The procedure for generating the bit-reversed address sequence is to load 
INDX with a value corresponding to one-half the length of the FFT and to load 
another auxiliary register-for example, AR1-with the base address of the 
data array. However, implementations of FFTs involve complex arithmetic; as 
a result, two data memory locations (one real and one imaginary) are asso­
ciated with each data sample. For ease of addressing, the samples are stored 
in workspace memory in pairs with the real part in the even address locations 
and the imaginary part in the odd address locations. This means that the offset 
from the base address for any given sample is twice the sample index. If the 
incoming data is in the following form: 
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Example 7-25. Macros for 16-Point DIT FFT 
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****************************************************************************** 
* FILE: cScxrad2.mac --> macro file for radix 2 fft's based on 320cSx * 
* 
* COPYRIGHT TEXAS INSTRUMENTS INC. 1990 

* 
* 

****************************************************************************** 
* * 
* MACRO 'COMB02X' FOR THE COMPLEX, RADIX-2 DIT FFT * 
* * 
* ORGANIZATION OF THE INPUT DATA MEMORY: Rl,Il,R2,I2,R3,I3,R4,I4 * 

* * 
****************************************************************************** 
* * 
* THE MACRO 'COMB02x' PERFORMS FOLLOWING CALCULATIONS: * 
* 
* Rl := [(Rl+R2)+(R3+R4»)/4 INPUT OUTPUT 
* R2 := [(RI-R2)+(I3-I4»)/4 ------------------ ------------------
* R3 :== [(Rl+R2)-(R3+R4)]/4 ARO= 7 
* R4 := [(RI-R2)-(I3-14)]/4 ARI -> Rl,Il ARI - > RS,IS 
* II := [(11+12)+(13+14)]/4 AR2 -> R2,I2 AR2 - > R6,I6 
* 12 := [(II-I2)-(R3-R4)]/4 ARP-> AR3 -> R3,I3 ARP - > AR3 - > R7,I7 
* 13 := [(11+12)-(13+14)]/4 AR4 -> R4,I4 AR4 - > Ra,Ia 
* 14 := [(II-I2)+(R3-R4)]/4 
* 
*. For a 16-point Radix 2 comple:-: FFT the Macro ' COMB02:·:' has to be 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* repeated N/4 times (e.g. 4 times for a 16 point FFT) • 
* 
****************************************************************************** 
, 
COMBOSx $MACRO num REPEAT MACRO ' COMBOS:-:': N/4 times 

SPLK i:num:-l,BRCR execute 'num' times 'COMBOS:-:' 

RPTB comboend ARP ARI AR2 AR3 AR4 ARS 
--- --- --- --- --- ---

LACC *,14,AR4 ACC := (R3) /4 4 Rl R2 R3 R4 Tl 
SUB *,14,ARS ACC := (R3-R4)/4 S Rl R2 R3 R4 Tl 

SACH *+,I,AR4 Tl (R3-R4)/2 4 Rl R2 13 R4 T2 

ADD *+,IS,ARS ACC := (R3+R4)/4 S Rl R2 R3 14 T2 
SACH *,I,AR2 T2 (R3+R4)/2 2 Rl R2 R3 14 T2 

ADD *,14,ARI ACC := (R2+R3+R4)/4 1 Rl R2 R3 14 T2 
ADD *,14 ACC := (Rl+R2+R3+R4)/4 1 Rl R2 R3 14 T2 
SACH *+,O,ARS Rl := (Rl+R2+R3+R4)/4 S Il R2 R3 14 T2 
SUB *,16,AR3 ACC := (Rl+R2-(R3+R4»/4 3 Il R2 R3 14 T2 
SACH *+,O,ARS R3 := (Rl+R2-(R3+R4»/4 S Il R2 13 14 T2 

ADD *,lS,AR2 ACC := (Rl+R2)/4 2 Il R2 13 14 T2 
SUB *,IS,AR3 ACC := (RI-R2)/4 3 II R2 13 14 T2 
ADD *,14,AR4 ACC := «RI-R2)+(I3»/4 4 Il R2 13 14 T2 
SUB *,14,AR2 ACC := «RI-R2)+(I3-I4»/4 2 II R2 13 14 T2 
SACH *+,O,AR4 R2 := «RI-R2)+(I3-14»/4 4 Il 12 I3 14 T2 
ADD *-,lS,AR3 ACC := «RI-R2) + 13+14 )/4 3 Il 12 13 R4 T2 
SUB *,lS,AR4 ACC "= «RI-R2)-(I3-I4»/4 4 Il 12 13 R4 T2 
SACH *+,O,ARI R4 := «RI-R2)-(I3-I4»/4 1 II 12 13 14 T2 

LACC *,14,AR2 ACC := (Il) /4 2 Il 12 13 14 T2 
SUB *,14,ARS ACC := (Il-12) /4 S Il 12 I3 14 T2 
SACH *,I,AR2 T2 := (Il-I2) /2 2 II 12 13 14 T2 
ADD *,lS,AR3 ACC := «Il+I2» /4 4 Il 12 13 14 T2 
ADD *,14,AR4 ACC := «Il+I2) + (13» /4 4 Il 12 13 14 T2 
ADD *,14,ARI ACC := «11+12)+(13+14»/4 1 II 12 13 14 T2 
SACH *O+,O,AR3 Il := «11+12)+(13+14»/4 3 RS 12 13 14 T2 
SUB *,lS,AR4 ACC := «11+12)-(13+14»/4 4 RS 12 13 14 T2 
SUB *,IS,AR3 ACC := «11+12)-(13+14»/4 3 RS 12 13 14 T2 
SACH *O+,O,ARS 13 := «11+12)-(13+14»/4 S RS 12 R7 14 T2 

LACC *-,15 ACC := (Il-I2) /4 5 R5 I2 R7 I4 Tl 
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* 
* 
* 
* 

QR'= PR - (W*QI + W*QR) - PR - W * QI - W * QR 
PI'= PI + (W*QI - W*QR) = PI + W * QI - W * QR 
QI'- PI - (W*QI - W*QR) - PI - W * QI + W * QR 

«- AR2) «- ARl+l) 
«- ARl+2) 

* 
* 
* 
* 

****************************************************************************** 
, 
PBY4J 

* 

$ MACRO 
MPY 
SPH 
LACC 
MPYS 
SPAC 
SACH 
SUB 
NEG 
SACH 

LACC 
SPAC 
ADD 
SACH 
SUB 
NEG 
SACH 
$ENDM 

*+,AR5 
*,AR1 
*,15,AR2 
*-

*+,O,AR1 
*,16 

*+ 

*,15,ARS 

*,16,AR2 
*+,O,ARI 
*,16 

*+,O,AR2 

TREG= W 
PREG= W*QR/2 
TMP ... W*QR/2 
ACC - PR/2 
ACC - (PR-W*QR)/2 
ACC = (PR-W*QI-W*QR)/2 
QR = (PR-W*QI-W*QR)/2 
ACC (-PR-W*QI-W*QR)/2 
ACC (PR+W*QI+W*QR)/2 
QR (PR+W*QI+W*QR)/2 

ACC'" (PI)/2 
ACC'" (PI-W*QI)/2 
ACC = (PI-W*QI+W*QR)/2 
QI = (PI-W*QI+W*QR)/2 
ACCU= (-PI-W*QI+W*QR)/2 
ACCU= (PI+W*QI-W*QR)/2 
PI (PI+W*QI-W*QR)/2 

AR5 

W*QR/2 
W*QR/2 
W*QR/2 
W*QR/2 
W*QR/2 
W*QR/2 
W*QR/2 
W*QR/2 

PREG ARI 
W*QR/2 PR 
W*QR/2 PR 
W*QR/2 PR 
W*QI/2 PR 
W*QI/2 PR 
W*QI/2 PR 
W*QI/2 PR 
W*QI/2 PR 
W*QI/2 PI 

W*QR/2 W*QI/2 PI 
W*QR/2 PI 

PI 
PI 
PI 
PI 
PR1 

AR2 
QI 
QI 
QI 
QR 
QR 
QI 
QI 
QI 
QI 

OI 
OI 
OI 
ORI 
QR1 
QR1 
QR1 

ARP 
5 
1 
2 
2 
2 
1 
1 
1 
1 

S 
5 
2 
1 
1 
1 
2 

****************************************************************************** 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

MACRO 'P3BY4J' number of words: 16 

ENTRANCE IN THE MACRO: ARP=AR2 
AR1->PR,PI 
AR2->QR,QI 
TREG=W=COS(45)=SIN(45) 

PR'= PR + (W*QI - W*QR) ... PR + W * QI - W * QR 
QR'= PR - (W*QI - W*QR) PR - W * QI + W * QR 
PI'= PI - (W*QI + W*QR) PI - W * QI - W * QR 
QI'= PI + (W*QI + W*QR) PI + W * QI + W * QR 

EXIT OF THE MACRO: ARP=AR2 
ARl->PR+l,PI+1 
AR2->QR+1,QI+1 

«- AR1) 
«- AR2) 
«- AR1+1) 
«- ARl+2) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

****************************************************************************** 
P3BY4J $MACRO 

MPY 
SPH 
LACC 
MPYA 
SPAC 
SACH 
SUB 
NEG 
SACH 

LACC 
I APAC 

ADD 
SACH 
SUB 
NEG 
SACH 
$ENDM 

*+,AR5 
*,AR1 
*,15,AR2 
*-

*+,O,AR1 
*,16 

*+ 

*,15,AR5 

*,16,AR2 
*O+,O,AR1 
*,16 

*O+,O,AR2 

TREG= W 
PREG= 
TMP 
ACC 
ACC 
ACC = 
QR' 
ACC 
ACC 
PR' 

ACC 
ACC 
ACC 
QI' 
ACCU= 
ACCU= 
PI' = 

W*QR/2 
W*QR/2 
PR/2 
(PR+W*QR) /2 
(PR-W*QI+W*QR)/2 
(PR-W*QI+W*QR) /2 
(-PR-W*QI+W*QR)/2 

(PR+W*QI-W*QR) 12 
(PR+W*QI-W*QR)/2 

(PI) /2 
(PI+W*QI) /2 
(PI+W*QI+W*QR)/2 
(PI+W*QI+W*QR)/2 
(-PI+W*QI+W*QR)/2 

(PI-W*QI-W*QR)/2 
(PI-W*QI-W*QR)/2 

AR5 

W*QR/2 
W*QR/2 
W*QR/2 
W*QR/2 
W*QR/2 
W*QR/2 
W*QR/2 
W*QR/2 

PREG AR1 
W*QR/2 PR 
W*QR/2 PR 
W*QR/2 PR 
W*QI/2 PR 
W*QI/2 PR 
W*QI/2 PR 
W*QI/2 PR 
W*QI/2 PR 
W*QI/2 PI 

W*QR/2 W*QI/2 
W*QR/2 

PI 
PI 
PI 
PI 
PI 
PI 
PRS 

AR2 
OI 
OI 
OI 
QR 
OR 
OI 
OI 
OI 
OI 

OI 
OI 
OI 
OR5 
OR5 
OR5 
OR5 

ARP 
5 
1 
2 
2 
2 
1 
1 
1 
1 

5 
5 
2 
1 
1 
1 
2 

, 
****************************************************************************** 
* * 
* 
* 

MACRO ' stage3' number of words: 54 * 
* 
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Example 7-26. Initialization Routine 
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....................................................................... 
""""""""""""""'1"""""""""""""",,""""", file: INIT-FFT.ASM 

Initialized variables ....................................................................... 
"""""""""""""",,""","""""""," """""""", 

.bss 

.bss 

.bss 

.bss 

.hss 

.bss 

Temp variables 

.bss 

NN,1 
NN2,1 
DATAADD,l 
cos45,1 
sin4,1 
cos4,1 

TEMP, 2 

• sect "vectors" 
B INIT,*,ARO 

TABINIT: 

TABEND: 
, 
INIT: 

.sect 

.word 

.word 

.word 

.set 

LOP 
SPM 
CLRC 
SETC 
SPLK 

INIT Block B2 

LAR 
LACC 
RPT 
TBLR 

"init" 
N,N-1,2*N-1,DATA 
5A82h 
TWID,TWID+4 
$ 

#0 ; use only 
o 
OVM 
SXM 
#pmstmask,PMST 

ARO,#NN 
#TABINIT 
#TABEND-TABINIT 
*+ 

INIT TWIDDLE FACTORS 

LAR 
LACC 
RPT 
TBLR 

EXECUTE THE FFT 

WAIT 

LAR 
CALL 

RET 

ARO,#TWID 
#TWIDSTRT 
#TWIDLEN 
*+ 

AR5,:/tTEMP 
FFT,*,AR3 

number of fft-points 
2*N-1 
START ADDRESS OF DATA 

start of sine in stage 4 
start of cosine in stage 4 

used for temporary numbers 

cos(45)=sin(45) 

B2 and rnrnregs for direct addressing 
no shift from PREG.to ALU 
disable overflowrnode 
enable sign extension mode 
ndx=trm=1 

arp is already pointing to arO 

arp is already pointing to arO 

pointer to 2 temp register 
ARP=AR3 FOR MACRO COMBO 

Return 
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FFT: 

STAGEl: 

.sect "fftprogram" 

FFT CODE WITH BIT-REVERSED INPUT SAMPLES / ARP=AR3 

LAR 
LACC 
SAMM 
RPT 
BLDD 

AR3,DATAADD ; TRANSFER 32 WORDS FROM 'input' to 'data' 
NN 
INDX indexregister = N 
NN2 N TIMES 
#INPUT,*BRO+ 

FFT CODE for STAGES land 2 

SPLK 
LAR 
LAR 
LAR 
LAR 
COMB05X 4 

#7,INDX 
ARl,DATAADD 
AR2,#DATA+2 
AR3,#DATA+4 
AR4,#DATA+6 

indexregister = 7 
pointer to DATA 
pointer to DATA + 2 
pointer to DATA + 4 
pointer to DATA + 6 
repeat 4 times 

rl,il 
r2,i2 
r3,i3 
r4,i4 

FFT CODE FOR STAGE 3 / ARP=AR2 
, 
STAGE3: SPLK 

LAR 
LAR 
stage3 

#9,INDX 
ARl,DATAADD 
AR2,#DATA+8 
2 

FFT CODE FOR STAGE 4 / ARP=ARP 

STAGE4 : 

END: 
FFTLEN 

SPLK 
LAR 
LAR 
LAR 
LAR 
SPLK 
ZEROI 
BUTTFLYI 
RET 
.set 
.set 
.end 

#l,INDX 
ARl, DATAADD 
AR2,#DATA+l6 
AR3,cos4 
AR4,sin4 
#6,BRCR 

$ 
END-FFT+l 

index register 
arl -> DATA 
ar2 -> DATA+8 
repeat 2 times 

9 

index register 1 

start of cosine in stage 4 
start of sine in stage 4 

execute ZEROI 
execute 7 times BUTTFLYI 

Software Applications 
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Pinout and Signal Descriptions 
~~s :e::::wsw::s .~~_·ss::~_s.;s_" os:_u ___ . _____ .... s~~,,~.~~:!Q~~~,~;:.;:.:5s ... ~:::~~S!"~.s~s~:.Q;Sli$lS;Rll;"'~~.:$.~~m 

A.1 Pinout and Signal Descriptions 

RgureA-1. TMS320C50/C51 Pinout 132-Pin 

NC 
NC 

VSS3 
VSS4 

NC 
07 
06 
OS 
04 
03 
02 
01 
DO 

TMS 

V003 
V004 

TCK 

Vsss 
VSS6 

NC 
INT1 
INT2 
INT3 
INT4 
NMI 
DR 

TOR 
FSFt 

::CLKR 
-":::':-:-:':-:':" 

V60s 
Voos 

NC 
NC 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Quad Flat Pack Package t 
(Top View) 

15 14 13 12 11 10 9 8 7 6 5 4 3 

o 

80 81 82 83 

t See Pin Assignments, Table A-1 (page A-3) for location and description of all pins. The TMS320C50 
and TMS320C51 will be packaged in 132-pin plastic QFP in production. See Figure A-18 for mechanical 
data. 

Note: NC = No connect. (These pins are reserved.) 

93 

92 

91 

90 

89 

88 

87 

86 

85 

84 

\16'014 
V0013 
lACK 
MSC 
CLKOUT1 
XF 
HOLDA 
TOX 
OX 
TFSXfTFRM 
FSX 
CLKM02 

VSS14 
VSS13 
TOO 

VOD12 
VDD11 
X1 
X2ICLKIN 
CLKIN2 

OS 
NC 

VSS12 
VSS11 
NC 
NC 
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Table A-t. TMS320C50/C5t Pin Assignments (Continued) 

Pin Name Type Description 

35 VSS Supply Ground 

36 VSS Supply Ground 

37 NCt Reserved 

38 INT1 Interrupt #1 

39 INT2 Interrupt #2 ~ 
40 INT3 Interrypt #3 

41 INT4 Interrupt #4· 

45 FSR\\:··::~\\.. ·:::".j:U:\:~:/$~Hal Port :tR~c:~'y:er ·Ft~m~ §yrtb· 
46 CLKR.:::::::::::;.....::\~U\::. Serial.,p(iij,1 Receiv~rClock 

A5 I/OIZ 

A7 I/OIZ •
~ A6 I/OIZ 

65 Voo Supply +5V 

66 Voo Supply +5V 

67 TOI JTAGScan Input 

t NC = No connect 
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'~ .. 

TableA-1. TMS320C50/C51 Pins (Concluded) 

Pin Name Type Description 

101 VSS Supply Ground 

102 VSS Supply Ground 

103 CLKMD2 I Clock Mode Pin 2 

104 FSX 1I01Z Serial Port 1 Transmitter Frame Sync 

105 TFSxrrFRM 1I01Z Serial Port 2 Transmitter Frame Sync .:::,6W\:: .. 

106 OX 01Z seri~l.p ....... o.,.·.i1.: .. ·.·:.1.Trans.mitterOutput ~ 
107 TDX 01Z SeriaiPort 2Transmitter Output ~ 

:~: ~~LDA ~~ 11 ;; ~=:r~:~~i~g·V ,j p:""g:'1 ~ ~NW' 
110 CLKOUT1 OIZ::},:::.:J·). Mach@~ Clock Output j'.[::::.. I 

1 ?~. ii.: TCLKX':i:;::::, 1/01Z Serial Port 2 Transmitter Clock 

,(:,,/:j24::;:':'PLKX» 1/01Z Serial Port 1 Transmitter Clock 

~?9.::?::TFSRITADD 1/01Z Serial Port 2 Receive FramelAddress 

READY External Access Ready to Complete 

129 HOLD Request Access of Local Memory 

130 BIO Bit 1/0 Pin 

131 VDD Supply +5 V 

132 VDD Supply +5 V 
t NC = No connect 
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Electrical Characteristics and Operating Conditions 
"! r :" S';:·ss:"S'··~·,.,. S' .,.. . 'wSlrsrs .. ( 

Table A-4. Electrical Characteristics Over Specified Free-Air Temperature Range (Unless Otherwise Noted) 

Parameter Test Conditions Min Typt Max Unit 
VOH High-level output voltage § VOO=Min,IOH=Max 2.4 3 V 

VOL low-level output voltage § . Voo=Min,IOl =Max 0.3 0.6 V 
IZ Three-state current BR -300 * 20 J.1A 

(VOO = Max) All other three-state -20 * 20 

Input current 

(VI=VSS to VOO) 
TRST pin -10 * 30():.. J.1A 
X2ClKIN pin.,:::?::::::):: -10 * .. ::... 10·:::::::\:::,. 
All other input only pins <)::i::!:\:",:(::?}:: -300 *'::Ui{ ::J(): : ,,::\::::::\ .. 

IOOC SuppIY'current, Core CPU Operating T A=O°C, VOO=~.2.$N,fx=40;96 MHz: .. ,:::":?(::}::::::::. ··:::::;::!!\60rriA· 
lOOp Supply current, pins Operating T A=O°C, VOO=5~25 V, fx=40.96 MHz /::::/::·:':::::::Hi:. ·:·40 mA 
100 Supply current, IDLE .. ::::::'. ::/i\ /};:::.:::. \i)\ ;:{%i 11 mA 

power down modes IDlE2:\::!i:::::;\:::.:{::;'):::..,.:,:::}}:·.,{::.··:::,::::'::,.. :(:: \:::.: ...... 500>: J.1A 
Ci Input capacitance.::::::::::::.::::::::):::::::::.···.,::::}:,::;.): :ii'::,. ·········15 pF 
Co Output capacitance ::)::i\:. '.::::::<::)? .:::)(i:::::i:i?:::<i/:::· 15 pF 

t All typical nominal values are at VOD=5Y;::!fA==-2.~oC::.:::;:\ .:'\:i::: * These values are not specified, perlding d~taile~Characterization.: ..... ,::.:: .::.:> 
§ All input and output voltage levels ar~:nl~mpatib'e~Figure.l~~2 showsthe)~sdc?ad circuit and Figure A-3 shows the voltage 

reference levels..:::,. ':(: \?,'. . .... ...... . 

11 Dependent upon which pStiph!3r~I~:~r,e actiy~. 

Where: IOl 2.0 mA (all outputs) 
IOH 300 J.1A (all outputs) 
VlOAD = 2.15 V 

Output 
>-~J----+-O Under 

Test 

CT 80 pF typical load circuit capacitance. 
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A.3 Clock Characteristics and Timing 

The TMS320C50/C51 can use either its internal oscillator or an external fre­
quency source for a clock. The clock mode is determined by the CLKMD1 (pin 
71) and CLKMD2 (pin 103) clock mode pins. The following table outlines the 
selection of the clock mode by these pins. 

CLKMD1 CLKMD2 Clock Source 

1 0 External divide-by-onec!ock option. 

o Reserved for testptirposes(:;:. 

External divi~e:by~tWq9Ptjon orill!ernal divide-by-tW9:p'io6kHpij9D~:' 
with an ~~1&maFcrystal;\:::. .:::::t»: .::::::~:~}))):>::::.. ':::::::::::\:.: .. 

o 0 . Externalifivide-by~mo optiOn with theJoternal oS¢iJ'ato(:~dl~abled. 

A.3.1 Internal Divide-by-TWo CIOC~:·!!RU2:~:!·.~ii't1:)Eiterq~!!!:CrY$t!!\::. 
The interQB'::}PSCHi:~i~t;i:;:<~R~:bled, by<:66~g~8ting ~::8iYstal across X1 and 
X2/C~,KIf\i'~:~he~fq~glJe:h9Y of cLKg:trEl. is one~~?llf the crystal's oscillating fre­
quenpy. Th~:9~$tar$hould qe in eimerft.lhq~mental or overtone operation and 
,:Rarall~Jlesdn~ht, with an.~tf~9tive~~ties·resistance of 30 ohms and a power 

·::::\d"$.§ipa'J9n df}i1 mW.; it shQUI~.~e '$pecified at a load capacitance of 20 pF. 
.::::: :::::~r:'·}:::~:;~:::}:::~dteth·'t:::overtone:~:~o/$.t~I~::r~qUIrr an additional tuned-LC circuit. Figure A-4 

':::!::::::~::::;::. '::::§bows:a:h ext~rn~1 Cry§JaJ(fYQdamental frequency) connected to the on-chip 
"::~::)):\. J1~cillator ... :::((::::~):: ::::::111:!::::.:.:,. '.:. 

Table A]I;::.VR~eiiJ~!~8~d OBlrtt~:(tQQ::aqB~;jJ~~~:\·!·\~:i:··· 
·:r~:::~:~:. ..::t~:!:~::::::·····:::·:·:·:·:···;····· 

':;~~:::;i;:;:;:>::':" Param~.t.r '::~:%k:: '\}~:: Test Conditions Min Nom Max Unit 

fx T A=O° to 70°C 0 40.96 MHz 

C1, C2 T A=O° to 70°C 10 pF 

§ To preservQ4tl;:::t~ir~~i::::~tate of the processor when fx = 0 Hz, the input clock can be stopped only when both ClKIN and 
ClKOUTf:.rtJligh{.JpJDlE2 mode, clocks are guaranteed to be stopped properly internal to the device. Therefore, in IDlE2 
m~~Jl1j~ .. cdg$trainfi§:::not required. 

':':':':':':::':":::::;: .'~';':> ···:·">::. •.• 5:;~:::::::::: •• 

Fi9#I~fA'~: .. -;~:t~rrl~l Clock Option 

A-10 

X1 X2IClKIN 

Crystal 

_--i 0 1---__ 

C1 T 
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A.3.3 External Divide-bY-One Clock Option 

An external frequency source can be used by injecting the frequency directly 
into CLKIN2, with X1 left unconnected and X2 connected to Voo. This external 
frequency is divided by one to generate the internal machine cycle. The divide­
by-one option is used when the CLKMD1 pin is strapped high and CLKMD2 
is strapped low. 

The external frequency injected must conform to specifications listed ir::!lbe tim-
ing requirements table.,:'r::::'::::'~:::':' ":'{ii":,::,,,:;:::::: 

Table A-8. Switching Characteristics Over Recommended Operatir(gi~~af!itl(Jn~:,,:, = 0.5 t(co)'J'ii!ll :}(:U}i[;:;;:;:::;::::;;;;;"'j:;::i:,;: 

Parameter 
CLKOUT1 cycle time 

CLKIN2 low to CLKOUT1 high 

CLKOUT1 fall time 

CLKOUT1 rise time 

CLKOUT1 low pulse duratiqp, 

CLKOUT1 high pulse dunitiQri ::::(\,,:,,:,' 
:{~/~:: \);:::: '., .;: .-:-: 

Table A-9. Timing ReqUirerneni~:rtl,vei'~foi1fnrtJFide~::2Brratin~'s~g(Jlitqns (H = 0.5 t(eo)) 
Parameter ',,),Mln 

:'48.8 

22 

22 

tp '::;;: \:((:ttfansttory pha~~PLL'synchroot;ed'after CLKIN2 
'i?"i,:,'", supplied. :""'" ",;," 256 

Duty Cycle 35 

t Values detl6ced fitiffi'characterization data and not tested. 

Max 

5 

5 

65 

Unit' 

ns 

ns 

ns 

ns 

ns 

ns 

Unit 

ns 

ns 

ns 

ns 

ns 

cycles 

% 

:I: Topr~~erv~i'lh~)ntJ:f~~,~tate of the processor when fx = 0 Hz, the input clock can be stopped only when both CLKIN2 and 
CLJ:Sqpml::~mtljrQ!:l. IrilDLE2 mode, clocks are guaranteed to be stopped properly internal to the device. Therefore, in IDLE2 

,,:::):modij;:1his'Cdii~R~nt is not required. 

Flbft(f#. A~;:;:\l[1fer~al Divide-by-One Clock Timing 
";':::;:::;:;:;:'. :::::::::., 

···:\}\\}1~~::: .. 

CLKIN~~ 

CLKOUT~'J v 
A-12 

tw(CIH) -r---I 
tc(CI) -+1'--· -~·I I I 

I I 

~ tw(COH) 

~ tw(COL)I I 
I I I I 
I I 

tf(CO)-.j I-­
II 

~ ~ tr(CO) II I 
II I 
I I 
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~~. :eo::::; ~·~:~'~"~(~.·XO 

DATA 

! 
Note: AII~!miQ~s ar~:fbhp·w&t:::~tates. H6~~~er,.~:~~tn~1 ;;m~s always require two cycles to prevent external bus conflicts. 

Th~·~bd.Y~.9iagraririllustrate~ . a one~~¥~le read.~nd a two-cycle write and is not drawn to scale. All external writes 
im"1~piat.~ly·pteceded bY~1Jtext¢rl1al read.or immediately followed by an external read require three machine cycles. 
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~~5(&~~~~~~Y,;S.,;e;~:o,;.';." SS!~S!~~.:·;,:ssss~~~~~s:c~~~~~;~~~~_, ___ _ 

Figure A-B. Ready Timing for Externally Generated Wait States During an External Write Cycle 

CLKOUT1 I I 
I~ III: I th(R-CO) 

ADDRESS _X :: : x'----
tsu(R-CO) I" 1111 " .... ,:./,:n:/

jj
' ····:':::'.! .. :I::::::\ .... 

READY ----t-V(-R)-W--.l~,,~ ) i'.l(~' i::~(~ i* " %ll~~ ~'~ 
~ ,.::::;):-:. . ....••.•.•.•....••••. ~.·.l.i .. l ..•.•.. l.l .• ji~~~ Ii':::: , "':::: .. :.:,.::.:.:'.,:: .. , ." .""." .. ,.. ". :,"',"'. . ......... ::.,:.:::i.::i>-

.. !::;:;::::::!::::;:::::::::::::::!;::::<::" .. :::!:, '::'.-: .. \\., (~~j11r~j::; . 

. ".:.:,:,:, ..... :::::, •. :: ...•. ::.::.: ... ,: ... :::'::.: ........ ' :: .. : .• :: ....• ::.:,: .. :.:::.:',::'.:: .. , ... :' •...• :.:.:.::".: .....•. ::: .. :' .. ,', .. : .. : .•••. :: ...• ':.: .. 11f'::':',,',.'.:",'::,.:'.':".:::'.:':'.':'::':":':' •. :'.:::.::.:. .:{'}:":::' "':')/\... . .... :.::,.:::::.::::: ••• :., ... .. 

Wait Slate .~ener~t~ bx,B§!lOY :..ASiiiiiiiii;i:> ... i?i' 
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A.3.8 Instruction Acquisition (IAQ), Interrupt Acknowledge (lACK), and External 
Flag (XF) Timings 

TableA-15. Switching Characteristics Over Recommended Operating Conditions (H = a.5tereO)) 

Parameter Min Max Unit 
Setup time, address valid before lAO low H-8 ns 

Hold time, address valid after lAO high H-8 .. ",ns 
lAO low pulse duration 

lAO high pulse duration 

Setup time, address valid before lACK low 

Hold time, address valid after lACK high 

lACK low pulse duration 

lACK high pulse duration ns 

Delay time, XF valid after CLKOUT1. ns 

t., lAO goes low during an instruction acquisition. It~g~§iBWorifyhn the first CYCI~idfthe read"When wait states are used. The 
falling edge should be used to latch the vaHd address,The AVIS bit in the PMST regl~ter must be set to zero for the address 
to be valid when the instruction being adgr~$~~~ resid~~in on-chip ~E;!f11ory. .:>: 

:j: lACK goes low during the fetch of the firsty.,ordof!heinterrupt vector;)t goe$l~w only ·00 the first cycle of the read when wait 
states are used. Address pins A t·fA4 ca~tJedecoded at the falling e~ge to idel'ltify the interrupt being acknowledged. The 
AVIS bit in the PMST register must~e setJc?zei'o for the ad~rE)ss to be.vCilidwhen the vectors reside in on-chip memory. 

§ Software dependent on instru.9tionCYcle cql:iht of current instfi:J¢tion behigexecuted. 

Figure A-11. IAQ{IAeki·;~d'F~;~ing;ExarrilJ!~Wi(~·t~8!~xtJ}~al Wait States 

ADDRES'~I~;~W':';o;;;;::":::-:;;-':·-·······-.. ,~::.'p;;;o(:"';;;;.;.;;::(-:(-:::::";iii;;O":;:~.:\.:!'"",':\-.. I-~.;;;;;.-:<;;;;;.:!'""::,:,:::::::::::::::::---------r?<,.----~ 
\m\:=::{.,: {::Ol ...... ~ tw(IAOH) , 

\.'.:,.\r::· :'··, ••. ·,.·.~ ... · .• · .••. :.I·... tsu(A}JA 1 

/.."::/<:,,: : .. ".".:' .. :.::.:.< .. < ~I tw(IAOL) 
··'::::ft :··,· ,..----------------+: ___ _ 

lAO .""":':'::'" ."::::::.::: .·.:,'.:.· ... ·,.,.,i.,:.,.,i .. ,:.,!.,:,,:.,:, .•.. ,:,·,' .. :.: .. ,". \l....... Y 1 

_ ~t~ . ~ tsu(A) lAC: th(A)IACK------·~ 
\ y~------------------------------

.\)/",. tw(IACKL) 14 ~ 
I I 

'44---------- tw(IACKH)---------.. ~ 

\~----------------------------~I 
CLKOUT1 J \-----" \~-----I \~ _____ I 

1 
14 ~(XF) I 

XF------------------------------\L~I ________________________________________________ __ 

Note: lAO and lACK are not affected by wait states. 
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~~m,:~""~,.$.~w."':::::::::~::%W.«''::~::~::X:;?;!~~~"='''~Q.».:~~~''''.hy':,,:!>o;W:9.»;,!:~,,;«,»,,-,;~Y:Y.;~·;9".«o;:: ..... xO;~O;';':"'!;9.:~:o;9;'~;';-X·;Y;~'~~~';"·;';O;';""·;O~·;~';';O;O;~;«"Y;o'.«y. .. >.;y:.;·;·;O;::·;O;O;~:';~~::~9'..:~:."!ov.."9':$~v.;::~~::m~:;m~n.:s 

Figure A-12. External DMA Timing 

A-20 

HOLD 

ADDRESS 
BUSI 

CONTROL 
SIGNALS 

XBR 

'--
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A.3.11 Serial Port Transmit Timing With External Clocks and Frames 

TableA-19. Switching Characteristics Over Recommended Operating Conditions (S = O.5terSCK)) 

Parameter Min Max 

tsu(OX) Setup time, OX valid before CLKX falling S-10 

thlOX) Hold time, OX valid after CLKX falling S-5 

Table A-20. Timing Requirements Over Recommended Operating Conditions (H = O.5tereO)) 

Parameter Min Max 

!c(SCK) Serial port clock cycle time 5.2H 

tf(SCK) Serial port clock fall time 8 

tr(SCK) Serial port clock rise time 8 

tw(SCK) Serial port clock lowlhigh pulse duration 2.1H 

tsu(FS) FSX setup time before CLKX rising edge -(2H-8) 

th(FS) FSX hold time after CLKX falling edge 10 

thlFS)H FSX hold time after CLKX rising edge 2H-8t 

Unit 

ns 

ns 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

t If the FSX pulse does not meet this specification, the first bit of serial data will be driven on the OX pin until the falling edge 
of FSX. After the falling edge of FSX, data will be shifted out on the OX pin. The transmit buffer empty interrupt will be generated 
when the th(RS) and th(RS)H specification is met. 

FigureA-14. Serial Port Transmit Timing With External Clocks and Frames 
14- t,..(Cf'Lf\ ~ 
I .... \'"'''''. 'I I 

I ·1 
CLKX I, 1 

~. 1 1 1 

1 ts,U(FS) I..f- th(FS)H 1 1 

th(FS) 1 ,- .1 , 1 I 
1i4-. -~.II- tw(SCK) 

FSX f \!.""-\\.&.\....a\~-----t-I __ -\;\Ii---_____ ..J1 
1 1 

I 
--~II 

-+I I+- tr(SCK) 

tsu(OX) I· • 
1 114-·-... ·1-1 th(OX) 

ox BIT >OOOOOOOOO<------..x-i ---~~r,..: ---X~ __ ---,X'-__ _ 
2 7/15 8/16 
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A.3.13 Serial Port Receive Timing In TDM Mode 

Table A-22. Timing Requirements Over Recommended Operating Conditions (H = O.Ste(eO)) 

Parameter Min Max Unit 

tc(SCK) Serial port clock cycle time 5.2H ns 
tf(SCK) Serial port clock fall time a ns 
tr(SCK) Serial port clock rise time a ... ns 
tw(SCK) Serial port clock lowlhigh pulse duration .. ",,/r~;1 H:\.:';;n~ 

"'"ILS) TDATITADD setup time before TCLI( falling edge A Iwoe s -;,,;lo ~:;. 
th(LB) TDATrrADD hold time after TCLK falling edge::::::}:§~30 .. :, 

tsueSB)· TDATrrADD setup time before TCLK rising T):;j,,}H/::;:;:,':::}· '$: . .. 1..0: )·':":;;:":::··"\.1:::,:: ns 
th(SB) TDATrrADD hold time after TCLK rising tAt .<\ .. :. (i~5 /::,::":- .. \::,:j::\ I.))· ns 

tsuCFS) TRFM setup time before TCLK rising edge·:Tt:.. :::\,: t\. ..:,d::i 10 .::,f::,. :;:/ t,. ,);::? ns 
th(FS) TRFM hold time after TCLK rising edge ;'<):,:,\::;,\ .c::c:~" .. "to ~?8'C: :,:;I:::.."C; ns 

t These parameters apply only to the first bits in th~:~~:~~f.Q~§!~qg~ .. ",;:,:/)':':";'·:·';;::'.:\)::".:··::·:;:::.: 
; FSX timing and waveforms shown in Figur~A-16 areforexternalF8X. FSX ca"'also~~ configured as internal. The FSX inter­

nal case is illustrated in the transmit timiflgqi?9r.am iriFlgure A-17..·:·.: ... 
.. ::::;.:::::::::;:;: •. ::: ..... 

Figure A-16. Serial Port Timing!'ih TDltiMqd'l/':(:}:·:·· 

!(SC~~~~~~~~~~*jr::) 

~_~((~~ II X B12;; BaX B7 ;; B2X 

\\ 
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A.3.15 Timer Output 

Table A-25. Switching Characteristics Over Recommended Operating Conditions (H = a.Stereo)) 
Parameter Min Nom Max 

tw(TOUn TOUT pulse duration H-S 

Figure A-t8. Timer Output 

TOUT 
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External Interface TIming 
~~~.SSSS~~9.i~9.iW~9.iS,;~~~~,::::.~S,;9.i~.·:C::i:C'::::i~9.i~':?~$~~~~~~·:t:t~,:SS$~::::~ .. $~;;.;;·;;;ki;;;.~";:.;~;$;:': ;s:= 

Figure B-1. Memory Interface Operation for Read-Read-Write (0 Wait State) 
, , , , 

CLKOUT1 , , , , 
ADDRESS K ~ X X 

i , , , , , 
DATA 

, 
~ l( Write Da;a ) I , , , , 

, , , 
\ 

, , 
I RIW , , , , , 

, , , I I 
I \...hJ' 

, , 
RD 

, , 
, , 
, , , I 

WE 
, , ''---I' I , , ' , , , , ' , , 

" A\ 
, , 

I 
IS,DS,PS 

, , I , , , , , , , , 
, I , 

STRB ~ ~ 1'---11 , 
, 

1-Cycle Read '. ., , , , ,. 3-Cycle Write .-, 
1-Cycle Read '4 .-, 
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Figure B-3. Memory Interface Operation for Read-Write (1 Wait State) 

I I , I 
CLKOUT1 

I 
I 

ADDRESS K X X 
I 

, I 

DATA ~ :( Write Da~ ) 
I I , 

\ 
I I 

I RIW , I I , , I 

) I I 
RD \ I I , I , I I , 

I 
I , 

I ~ ;1 WE , , , 
I , , , , 
'l 

, 
1\ 

I , 
I IS,PS,DS 

, , , 
I , , , , 
, , 

1 
I , . 

\ 
, t l STRB I 

I , I , , 

:\J: I '\J' READY 
, 
I 

I , 
I 
, Two-cycle Read I 
~ with one Ready- ~ generated 

wait state I , ... Three-cycle write .' 
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C.1 Package and Pin Layout 

C-2 

The TMS320C25 is available in both a 6a-pin CPGA and a 6a-pin PLCC as 
shown in Figure C-1 and Figure C-2, respectively. The TMS320C50 and 
TMS320C51 are packaged in a 132-pin Quad Flat Pack package (QFP). This 
package is shown in Appendix A. 
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Figure C-2. TMS320C2568-Pin Plastic Leaded Chip Carrier 
1,35 (0.053) 450 
1,19 (0.047) x 

2,79 (0.110) 
2,41 (0.095) 

.-+-+--_.11-- 4,50 (0.1n) 
4,24 (0.167) 

23,62 (0.930) 
23,11 (0.910) 

(At Seating Plane) 

Seating Plane 

\. 0,94 (0.037) R 
0,69 (0.027) 

Thermal Resistance Characteristics 

Parameter Max Unit 

RaJA 
Junction-to-free-air 

46 °CIW thermal resistance 

RaJC 
Junction-to-case 

11 °CIW thermal resistance 

~ 

~ 

0.25 (0.010) R Max 
In3 places 

~ 

24 33 (0.956) , 
24,13 (0.950) 
(see Note A) 

~- ~ ~ ~ .......... ~ ~ ...... ~ 

0 

24,33 (0.956) 
24,13 (0.950) 
(see Note A) 

--
25,27 (0.995) 

~ 

/ 

.. ... 

.. 

-

~~ 

~, 

.4~ 

25,27 (0. 
25,02(0. 

-~, 

995) 
985) 

f- 1,22 (0.048) 
1,07 (0.042) 

... 25,02 {0.985) 

0,81 (0.032) 1 ~ 
0,66 (0.026) ~I----I 1,52 (0'[060) M~~64 

-----* . (0.025) 
I Min 
-------.-. 

I -J.- 0,51 (0.020) 
i 0,36 (0.014) 
I 

Lead Detail 

Notes: A. Centerline of center pin, each side, is within 0,10 (0.004) of package centerline as determined by this dimension. 
B. Location of each pin is within 0,127 (0.005) of true position with respect to center pin on each side. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES. 

C-4 TMS320C5x System Migration 



Package and Pin Layout 
;e;,.n;ss,.,.,.,,,,,,, ,.,."sss;o:;:ss;sx;$; "'-"Sf SS'l'''""",-ss f Sf r ,:s;~ 

Only two TMS320C25 signals (ClKOUT2 and SYNC) are not present on the 
TMS320C5x. Because the TMS320C5x operates with a divide-by-two clock, 
it can be synchronized with reset. Therefore, there is no need for the SYNC 
signal. With only two phases, there are no external timings that tie to the 
ClKOUT2 of the TMS320C25. 

Some ,of the TMS320C25-equivalent pins have additional capabilities on the 
TMS320C5x. The TMS320C5x supports external direct memory access of the 
on-chip single-access RAM block. For this reason, the following signals are 
now bidirectional: 

AO--A 15 = address lines 
STRB = memory access strobe 

R/W = read/write 
BR = bus request 

The TMS320C5x serial port transmit clock (ClKX) can now be configured as 
an output that operates at one-fourth the machine clock rate. ClKX is confi­
gured as an input by reset. The TMS320C25 ClKX pin is always an input. 

The TMS320C25 operates with a four-phase clock. This device's machine rate 
is one-fourth the ClKIN rate. ClKOUT1 and ClKOUT2 operate atthe machine 
rate and are 900 out of phase. The TMS320C5x operates with a two-phase 
clock. The device's machine rate is one-half the ClKIN rate. In addition, the 
TMS320C5x offers a divide-by-one clock input feature so that the device's ma­
chine rate equals the ClKIN rate. ClKOUT1 operates at the machine rate. 
Figure C-4 shows both the TMS320C25 and the TMS320C5x clocking 
schemes. 

Figure C-4. TMS320C25 and TMS320C5x Clocking Schemes 
TMS320C25 
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ClKOUT1 ____ ... 

ClKOUT2 --.J 

elKIN 

ClKOUT1 --.J 
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C.2 Timing 

The TMS320C25 and the TMS320C5x operate with some timing differences. 
These timing differences include aspects of the on-chip operation as well as 
aspects of the external memory interlacing. One key difference is that the 
TMS320C5x is capable of operating at two to three times the speed of a 
TMS320C25. Another key difference is that the TMS320C25 operates with a 
three-deep pipeline, while the TMS320C5x operates with a four-deep pipeline. 
Key differences in the external memory interlace encompass the faster 
TMS320C5x and include certain external interlace enhancements. The final 
key difference is that some compatible operations execute in a different num­
ber of machine cycles. This section describes these differences. 

C.2.1 Device Clock Speed 

C.2.2 Pipeline 

The TMS320C25 operates its machine cycles with a divide-by-four clocking 
scheme. The TMS320C5x uses a divide-by-two clocking scheme. This means 
that a TMS320C25, operating with a 40-MHz ClKIN, executes its machine 
cycles within 100 ns, while the TMS320C5x, which is operating with the same 
ClKIN, executes its machine cycles in 50 ns. This clocking arrangement 
changes the way that the signals of the devices are specified. Many of the 
TMS320C25 timing values, given in the TMS320 Second-Generation Digital 
Signal Processor Data Sheet, are specified as quarter-phase (Q) ± N ns. The 
timing values of the TMS320C5x are defined in half-phases (H). 

The TMS320C25 operates with a three-deep pipeline, while the TMS320C5x 
operates with a four-deep pipeline. This means that anytime there is a program 
counter (PC) discontinuity (for example, branch, call, return, interrupt, etc.), 
it take~ four cycles to complete with the TMS320C5x, whereas it takes three 
cycles on the TMS320C25. The TMS320C5x, however, also has delayed in­
structions that take only two cycles to complete. 

C.2.3 External Memory Interfacing 

C-8 

The TMS320C5x is designed to execute external memory operations with the 
same signals as the TMS320C25. As mentioned above, the TMS320C5x oper­
ates at twice the instruction rate of the TMS320C25 when both operate with 
the same input clock. The TMS320C5x uses its software wait-state generators 
to compensate forthis interlace difference. The TMS320C5x device, operating 
with one software wait state, has similar memory timing to the TMS320C25 op­
erating with no wait states. However, external writes require two cycles on the 
TMS320C5x devices. The exacttiming of the signals differ because ofthe more 
advanced process used with the TMS320C5x. 

The TMS320C5x has two additional memory interface signals to reduce the 
amount of external interfacing circuitries. The RD signal can be used to inter-

'TMS320C5x System Migration 



Instruction Set 

C.3 Instruction Set 
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The TMS320C5x instruction set is a superset of the TMS320C25 instruction 
set. The instruction set of the TMS320C25 is upward source-code compatible. 
This means that all of the instruction features of the TMS320C25, implemented 
and code written for the TMS320C25, can be reassembled to run on the 
TMS320C5x. 

The serial port mode control bits have been moved from the status registers 
to the serial port control register. Because they are no longer part of the CPU 
registers, they no longer have direct instructions to set or clear them. The bits 
of the SPC can be manipulated easily with the PLU instructions. The following 
table shows the instructions used to replace the serial port instructions (note 
that the data page pointer must be set to zero to execute these new instruc­
tions): 

TMS320C25 TMS320C5x 

RFSM APL #OFFFFh,SPC 
SFSM OPL #8,SPC 
RTXM APL #OFFFDh,SPC 
STXM OPL #2,SPC 
FORTO APL #OFFFBh,SPC 
FORT1 OPL #4,SPC 

Note that any or all three bits can be set in one execution of the OPL instruction, 
while any or all three bits can be cleared using the APL. The bits can be toggled 
with the XPL instruction. The I/O ports of the device are addressable in data 
memory space on the TMS320C5x devices. This means any instruction that 
can address data memory can also address the I/O ports. 

There are a number of new instructions on the TMS320C5x devices. These 
instructions provide a more orthogonal addressing scheme and exercise the 
new CPU enhancements. In order to simplify the description of the instruction 
set, a number of different instructions are combined into single new instruc­
tions with additional operand formats, as in this example: 

TMS320C25 TMS320C5x 

ADD *+ ADD *+ 
ADDK OFFh ADD #OFFh 
ADLK OFFFFh ADD #OFFFFh 
ADDH *+ ADD *+,16 

Refer to Chapter 4 for the detailed discussion of the instruction set. 

The IDLE instruction, when executed, stops the CPU from fetching and execut­
ing instructions until an unmasked interrupt occurs. The TMS320C25 automat­
ically enables the interrupts globally with the execution of the IDLE instruction; 
this saves the extra instruction word/cycle required to execute the EINT (en­
able interrupts globally) instruction. Upon receipt of the interrupt, the 
TMS320C25 executes the interrupt vector-and resumes operations. The 
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C.4 On-Chip Peripheral Interfacing 
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The TMS320C5x has more peripherals than the TMS320C25; many 
TMS320C5x peripherals are enhancements of the TMS320C25 peripherals. 
The TMS320C25 has three peripheral circuits: serial port, timer, and 16 1/0 
ports. In addition to these peripherals, the TMS320C5x has software wait 

. states and a divide-by-one clock. 

The serial port of the TMS320C5x has been enhanced in that the CLKX pin can 
be configured as either an input or an output (CLKX is always an input on the 
TMS320C25). CLKX is configured as an input upon a device reset to maintain 
compatibility with the TMS320C25. The new serial port status bits are now 
mapped to a memory-mapped register that is used exclusively for the serial 
port. The serial port modes are no longer controlled via status register 1. There­
fore, serial port modes that are changed by using LST1 instruction will no long­
er work. The mode bits must be set/reset via the serial port control register 
(SPC). The data transmit (DXR) and data receive (ORR) registers have been 
moved in the memory map from locations 1 and 0 to 33 and 32, respectively. 

The timer has been enhanced on the TMS320C5x to include a divide-down fac­
tor of 1 to 17 and can be stopped or reset via software. These additional fea­
tures are controlled via the timer control register (TCR). Upon reset, the di­
vide-down factor is set to 1, and the timer is enabled to maintain compatibility 
with the TMS320C25. The timer (TIM) and period (PRO) registers have been 
moved in the memory map from locations 2 and 3 to locations 36 and 37, re­
spectively. 

The 16 input/output ports of the TMS320C5x are addressable in the data 
memo!"'1 space. This a!!o'."w's direct access of the 1/0 space by the core CPU and 
supports bit operation in the 110 space via the PLU. The 1/0 space is increased 
from 16 portsto 65,536 ports. However, no additional decode circuitry is neces­
sary if only 16 ports are used. 

The TMS320C5x includes software wait-state generators that are mapped on 
16K-word page sizes in the program and data memory spaces. There are also 
wait-state generators forthe 1/0 ports. The 1/0 space wait-state generators can 
be mapped on two-word or on 4K-word boundaries. These wait-state genera­
tors allow the system to be programmed for 0, 1,2, 3, 4, or 7 wait states, elimi­
nating the need of an off-chip interfacing circuitry. External access wait states 
can be extended further via the READY signal. 
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Figure D-1. TMS320C5x Development Environment 
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makes it possible to monitor the state of the simulated device. The simulator 
accepts object codes that are produced by the macro assembler/linker system. 
Recent improvements have been made in simulation technology. The 
TMS320C5x software simulator uses a flexible high-level language debug 
monitor user interface. This interface allows the user to view both C language 
and assembly language to be viewed simultaneously. Single-stepping and 
software breakpoints may be executed in either language, providing a means 
for a high-level language debug environment. This interface is used on both 
the SWDS and XDS51 0, providing an easy transition to other tools. 

These are some key features of the TMS320C5x simulator: 

Cl simulates the entire TMS320C5x instruction set 

Cl simulates the key features of the on-chip TMS320C5x peripherals (serial 
ports and timer) 

Cl has a high-level language debug monitor user interface 

Cl has a windowed, mouse-driven interface, which can be user-customized 

Cl quickly stores/retrieves the simulation parameters from files to facilitate 
preparation for individual sessions 

Cl performs reverse-assembly on source assembly code and C code, or al­
lows both edit and reassembly of the source statements 

Cl simultaneously displays memory in 
• hexadecimal 16-bit values 
• assembled source code 

Cj offers rnany execution modes: 
• single/multiple instruction count 
• single/multiple cycle count 
• until condition is met (UNTIL) 
• while condition exists (WHILE) 
• for set loop count ( FOR) 
• unrestricted run with halt by key input 

During program execution, the internal registers and memory of the simulated 
TMS320C5x are modified as each instruction is interpreted by the host com­
puter. Execution is suspended when either a breakpoint or an error is encoun­
tered orwhen the user halts execution. Once program execution is suspended, 
the internal registers and both program and data memory can be inspected 
and/or modified. Also, the trace memory can be displayed. A record of the sim­
ulation session can be maintained in a journal file so that it can be re-executed 
to regain the same machine state during another simulation session. 

The simulator allows verification and monitoring of the states of the processor, 
without the requirement of hardware. The TMS320C5x software simulator op-
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• Watch Window for displaying values of selected variables, registers, 
or other C expressions. The window automatically displays output of 
the correct data type. 

• Display Windows for displaying all field elements of a selected struc­
ture or array. Display windows understand all data types and automati­
cally display values as their correct ty·pes. If a member of a structure 
or array is another substructure or array, a display window can cause 
children or subwindows to show the substructure or array. 

These items are recommended for the interface: 

l;l a color display for easily recognizing the different display elements. 

l;l a graphics display adapter (EGA or VGA board). Some boards produce 
a larger screen size, which the debugger takes advantage of. 

l;l a mouse to take full advantage of the window and menu feature set. 
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bility of the TMS320C5x within your target system. The XDS features real-time 
hardware breakpoint and program execution capabilities from target 
memory. The TMS320C5x JTAG serial-scan path is used to upload and down­
load both program and data memory and to run all emulator functions. The PC­
resident XDS has a cable for connection to your target system. The XDS has 
the same user interface as the software simulator and the SWDS. 

Key features of the XDS51 0 include 

Cl full-speed execution and monitoring of the TMS320C5x in your target sys-
tem via a 14-pin target connector 

Cl loading/inspection/modification of all registers 

Cl upload/download of both program memory and data memory 

Cl high-level language debug monitor user interface 

Cl single-step execution 

Cl software breakpoint/trace and timing, with up to thirty software breakpoints 

Cl hardware breakpoint/trace on all program addresses 

Cl emulator portability 

Cl reconnectability for multiprocessing applications 

Cl benchmark of execution time clock cycles in real time 

, Full-speed emulation and monitoring of the target system is performed serially 
over a 14-wire cable, which runs from the XDS51 0 to the target system. Four­
teen signals must be brought out of the target system and into a header si­
tuated next to the TMS320C5x. The emulation cable is then connected to the 
header. The 14 signals are 4 JTAG ( IEEE standard P1149.1) scan path sig­
nals, 3 emulation signals, 1 clock signal, and 6 power/ground signals. The , 
JTAG scan path controls the TMS320C5x in the targeted application and pro­
vides access to all registers as well as to internal and external memory of the 
device. Since program execution takes place on the TMS320C5x in the target 
system, there are no timing differences during emulation. This new emulation 
technology offers significant advantages over the technology of traditional 
emulators. These advantages include 

~ 'no transmission problems related to cable length 

Cl a nonintrusive system 

~ no loading problems on signals 

~ no artificial memory limitations 

~ a common screen interface for ease of use 
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Header Signals 

E.1 Header and Header Signals 

To perform emulation with the XDS51 0, your target system must have a 14-pin 
header (two 7-pin rows) with connections as shown in Figure E-1. Table E-1 
describes the emulation signals. 

Although you can use other headers, recommended parts include: 

Straight header, unshrouded DuPont Electronics® part number 67996-114 

Right-angle header, unshrouded DuPont Electronics® part number 68405-114 

Figure £-1. 14-Pin Header Signals and Header Dimensions 

TMS 
TOI 

PO (+5 V) 
TOO 

TCK_RET 
TCK 

EMUO 

1 

3 
5 

7 
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11 
13 

Table E-1. 14-Pin Header Signal Description 

2 
4 

C§: 
8 

10 
12 
14 

XDS51 0 Signal XDS51 0 State 

TMS 0 

TOI 0 

TOO I 

TCK 0 

lRST 0 

EMUO I 

EMU1 I 

PO I 

TCK_RET I 

E-2 

TRST 
GNO 
No pin (key) 
GNO 
GNO 
GNO 
EMU1 

Target State 

I 

I 
r'\ 
'\J 

I 

I 

I/O 

I/O 

0 

0 

Header Dimensions: 
Pin-to-pin spacing: 0.100 in. (X,V) 
Pin width: 0.025 in. square post 
Pin length: 0.235 in., nominal 

Description 

JTAG test mode select. 

JTAG test data input. 

JTAG test data output. 

JTAG test clock. TCK is a 10-MHz clock 
source from the emulation cable pod. This 
signal can be used to drive the system test 
clock. 

JTAG test reset. 

Emulation pin O. 

Emulation pin 1. 

Presence detect. Indicates that the emula-
tion cable is connected and that the target 
is powered up. PO should be tied to +5 
volts in the target system. 

JTAG test clock return. Test clock input to 
the XOS51 0 emulator. May be a buffered or 
unbuffered version of TCK. 
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E.3 Cable Pod 

E-4 

Figure E-2 shows a portion of the XDS51 0 emulator cable pod. These are the 
functional features of the emulator pod: 

(JI Signals TOO and TCK_RET can be parallel-terminated inside the pod if 
required by the application. The default is that these signals are not termi-
nated. . 

(JI Signal TCK is driven with a 74AS1 034 device. Because of the high current 
drive (48 rnA IOl/IOH), this signal can be parallel-terminated. If TCK is tied 
to TCK_RET, then you can use the parallel terminator in the pod. 

(JI Signals TMS and TOI can be generated from the falling edge of TCK_RET, 
according to the IEEE 1149.1 bus slave device timing rules.They can also 
be driven from the rising edge of TCK_RET, which allows a higher 
TCK_RETfrequency. The default is to match the IEEE 1149.1 slave device 
timing rules. This is an emulator software option that can be selected when 
the emulator is invoked. In general, single-processor applications can 
benefitfrom the higher clock frequency. However, in multiprocessing appli­
cations, you may wish to use the IEEE 1149.1 bus slave timing mode to 
minimize emulation system timing constraints. 

(JI Signals TMS and TOI are series-terminated to reduce signal reflections. 

(JI A 1 O-MHz test clock source is provided. You may also provide your own 
test clock for greater flexibility. 
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Figure E-3. Emulator Pod Timings 
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Table E-2. Emulator Pod Timing Parameters 

No. 
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4 

5 

6 

7 
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Reference Description Min Max Unit 

tTCKmin TCK_RET period 35 200 ns 
tTCKmax 

tTCKhighmin TCK_RET high pulse duration 15 ns 

tTCKlowmin TCK_RET low pulse duration 15 ns 

td(XTMXmin) 
td(XTMXmax) 

TMSITOI valid from TCK_RET low (default timing) 6 20 ns 

td(XTMSmin) 
td)XTMSmax) 

TMSITOI valid from TCK_RET high (optional timing) 7 24 ns 

tsu(XTDOmin) TOO setup time to TCK_RET high 3 ns 

thdlXTDOmin) TOO hold time from TCK RET high 12 ns 

It is extremely important to provide high-quality signals between the emulator 
and the target processor. If the distance between the emulation header and the 
processor is greater than 6 inches, the emulation signals should be buffered. 
Sections E.4 and E.5 illustrate typical connections b~tween the target proces­
sor and the emulation header. 
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E.5 Multiprocessor Configuration 

Figure E-5. Multiprocessor Connections 
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Figure E-5 shows a typical multiprocessor configuration. This is a daisy­
chained configuration (TDO-TD! daisy-chained), 'Nhlch meets the minimum re­
quirements of the IEEE 1149.1 specification. The emulation signals in this ex­
ample are buffered to isolate the processors from the emulator and provide ad­
equate signal drive for the target system. One of the benefits of a JTAG test 
interface is that you can generally slow down the test clock to eliminate timing 
problems. Several key points to multiprocessor support are as follows: 

~ The processor TMS, TOI, TOO, and TCK should be buffered through the 
same physical package to control timing skew better. 

Q The input buffers for TMS, TOI, and TCK should have pullups to 5 volts. 
This will hold these signals at a known value when the emulator is not con­
nected. A pullup of 4.7 kn or greater is suggested. 

Q Buffering EMUO and EMU 1 is optional, but highly recommended to provide 
isolation. These are not critical signals and do not need to be buffered 
through the same physical package as TMS, TCK, TOI, and TOO. Buffered 
and unbuffered signals are shown in Figure E-6 and Figure E-7. 

No Signal buffering. In this situation, the distance between the header and 
the processor should be no more than 6 inches. 
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CI It is extremely important to provide high quality signals, especially on the 
processor TCK and the emulator TCK_RET signal. In some cases, this 
may require you to provide special PWB trace routing and to use termina­
tion resistors to match the trace impedance. The emulator pod does pro­
vide optional internal parallel terminators on the TCK_RET and TOO. TMS 
and TOI provide fixed series termination. 
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Case 2: 

Case 3: 
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Single processor, direct connection, TMSffOI timed from TCK_RET low (de­
fault timing). 

tprdtck_ TMS = [t(d{XTMSmax) + tsu{TIMs)l / ttckfactor 
= (20 ns + 10 ns) /0 .4 
= 75 ns (13.3 MHz) 

tprdtck_ TOO = [t{d(TIOO) + tsu(XTOOmin)] / ttckfactor 
= (15 ns + 3 ns) / 0.4 
= 45 ns (22.2 MHz) 

In this case, the TCKlTMS path is the limiting factor. 

Single processor, direct connection, TMSffOI timed from TCK_RET high (op­
tional timing). 

tprdtck_ TMS = td(XTMSmax) + tsu{TIMS) 
= (24 ns + 10 ns) 
= 34 ns (29.4 MHz) 

tprdtck_ TOO = [td(TIOO) + tsu(XTOOmin)] / ttckfactor 
= (15 + 3) / 0.4 
= 45 ns (22.2 MHz) 

In this case, the TCKlTOO path is the limiting factor. One other thing to consider 
in this case is the TMSffOI ho'id time. The minimum hold time forthe XOS510 
cable pod is 7 ns, which meets the 5-ns hold time of the target device. 

Single/multiple processor, TMSffOI buffered input; TCK_RETITOO buffered 
output, TMSffOI timed from TCK_RET high (optional timing). 

tprdtCk_ TMS = td(XTMSmax) + isu(TIMS) + 2 td(bufmax) 
= 24 ns + 10 ns + 2 (10) 
= 54 ns (18.5 MHz) 

tprdtck_ TOO = td(TIOO) + tsu(XTOOmin) + tbufskew 

ttckfactor 

= (15 ns + 3 ns + 1.35 ns) /0.4 
= 58.4 ns (20.7 MHz) 

In this case, the TCKlTMS path is the limiting factor. The hold time on TMSITOI 
is also reduced by the buffer skew (1.35 ns) but still meets the minimum device 
hold time. 

XDS510 Design Considerations 
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Memories and Analog Converters 
!SS 

F.1 Memories and Analog Converters 

F-2 

This section provides product information for EPROM memories, codecs, ana­
log interface circuits, and AID and D/A converters. 

All of these devices can be interfaced with TMS320C5x processors (see Chap­
ter NO TAG for hardware interface designs). Referto Digital Signal Processing 
Applications with the TMS320 Family for additional information on interfaces 
using memories and analog conversion devices. 

The following paragraphs give the name of each device and the location of the 
data sheet for that device in order to obtain further specification information if 
desired. 

Data sheets for EPROM memories are located in the MOS Memory Data Book 
(literature number SMYD008). 

TMS27C64 
TMS27C128 
TMS27C256 
TMS27C512 

Another EPROM memory, TMS27C291 1292, is described in a data sheet (liter­
ature number SMLS291 A). 

The TCM29C13/14/16/17 codecs and filters are described in the data sheet 
beginning on page 2-111 of the Telecommunications Circuits Data Book (liter­
ature number SCT001). An analog interface forthe DSP using a codec and fil­
ter is provided by the TCM29C18/19 data sheet (literature number SCT021). 

The data sheet for the TLC32040 analog interface circuit is provided in the In­
terface Circuits Data Book (literature number SLYD002). 

In the same book are data sheets for AID and D/A converters. The names of 
the devices are as follows: 

TLC0820 
TLC 1205/1225 
TLC7524 
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F.3 Crystals 

This section lists the commonly used crystal frequencies, crystal specification 
requirements, .and the names of suitable vendors. 

Table F-1 lists the commonly used crystal frequencies and the devices with 
which they can be used. 

Table F-1. Commonly Used Crystal Frequencies 

F-4 

Device Frequency 

TMS320C25 40.96 MHz 

TMS320C5x 20.48 MHz 
40.96 MHz 

When connected across X1 and X2/CLKIN ofthe TMS320 processor, a crystal 
enables the internal oscillator. Crystal specification requirements are listed be- . 
low. 

Load capacitance = 20 pF 
Series resistance = 30 ohm 
Power dissipation = 1mW 

Vendors of crystals suitable for use with TMS320 devices are listed below. 

RXD, Inc. 
Norfolk, NB 
(800) 228-8108 

N.E.L. Frequency Controls, Inc. 
Burlington, WI 
(414) 763--3591 

CTS Knight, Inc. 
Contact the local distributor. 
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Figure G-1. TMS320 ROM Code Flowchart 

Customer TMS320 Design 

Customer Submits: 
- TMS320 New Code Release Form 
- Print Evaluation and Acceptance Form (PEAF) 
- Purchase Order for Mask Charge Prototypes 
- TMS320 Code 

Texas Instruments Responds: 
- Customer Code Input Into TI System 
- Code Sent Back to Customer for Verification 

No 

TI Produces Prototypes 

No 

( ~MS320 Production ) 
~----'---' 
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H-2 

Note: 

Predictions show that prototype devices (TMX or TMP) will have a greater 
failure rate than the standard production devices. Texas Instruments recom­
mends that these devices not be used in any production system, because 
their expected end-use failure rate is still undefined. Only qualified produc­
tion devices are to be used. 

TI device nomenclature also includes a suffix with the device family name. This 
suffix indicates the package type (for example, N, FN, or GB) and temperature 
range (for example, L). Figure H-1 provides a legend for reading the complete 
device name for any TMS320 family member. 
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Device and Development Support Tool Nomenclature 

Figure H-2 provides a legend for reading the part number for any TMS320 
hardware or software development tool. 

Figure H-2. TMS320 Development Tool Nomenclature 

H-4 

TMDS 32 4 28 1 0 - 0 2 

QUALIFICATION STATUS-.J L MEDIUMt 
TMDX = prototype 
TMDS = qualified 

DEVICE FAMILY ----~ 
32 = TMS320 family 

PRODUCTTYPE--------~ 

4 = software 
6 = hardware 
8 = upgrade 

MODEL;-------------~ 
11 = XDSI11 
22 = XDS/22 
88 = upgrade kits 

OPERATING SYSTEMt ------' 
02 = C1 x VAXNMS 
08 = C1 x IBM MS/PC-DOS 
22 = C2x VAXNMS 
28 = C2x IBM MS/PC-DOS 
32 = C3x VAXNMS 
38 = C3x IBM MS/PC-DOS 
42 = C4x VAXNMS 
48 = C4x IBM MS/PC-DOS 
52 = C5x VAXNMS 
58 = C5x IBM MS/PC-DOS 

t Software only. 
:I: Hardware only. 

2 = 5-1/4" floppy disk 
8 = 1600 BPI magnetic tape 

SIWFORMATI 
o = object code 
1 = source code 

SEQUENCE NUMBER; 

GENERATION; 
1 =C1x 
2=C2x 
3=C3x 
4=C4x 
5=C5x 

L-___ FORMATt 

1 = TI-tagged 
5 = COFF 
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circular buffer, 1-6,4-11,4-12,4-13,6-17,6-26, 
6-27, .7-12-7-14 

CLKOUT1, 2-6 
CLKR,2-S 
CLKR pins, 5-18 
CLKX,2-S 
CLKX pins, 5-18 
clock option, 1-7 
computed GOTO, 3-30 
configuration, multiprocessor, E-S 
context save, 5-7 
context switching, 1-7 
convolution, i-ii, 3-2, 3-21 
CPU, 1-1 
CPU registers, 1-S, 3-34 
crystals, F-4 
cycle timings (instructions), C-9, C-10, C-11 

data bus (015-00),2-3,2-4 
data memory, 1-4, 1-S, 1-9,2-5,3-2,3-3,3-4,3-6, 

3-7, 3-S, 3-9, 3-10, 3-11, 3-13, 3-16, 3-17, 3-20, 
3-21,3-22,3-24,3-25,3-29,3-34, 3-3S, 3-41, 
3-43,3-52,3-53,3-57 

data memory page pointer (OP), 3-11,6-20,6-21, 
7-2 

data pointer, 3-11 
data receive register (ORR), 5-3 
data transmit register (OXR), 5-3 

decode (pipeline), 3-17,3-34,3-35 
delayed branches, 7 -is 
design, conSiderations, E-1 
development tool nomenclature, H-4 
development tools, TMS320C5x, 0-1 
device nomenclature, H-3 
direct addressing mode, 3-11,3-12,3-15,4-2-4-4, 

4-11, 4-1 OS, 4-110, 4-112, 4-114, 4-116, 4-17S 
direct memory access (OMA), 6-31, 6-36-6-39 
divide-by-one clock, 1-7, A-12, C-7 

division, 5-23 
OMOV, 3-21, 3-29, 3-43 

DR, 2-2, 2-S 

OS, 2-2 

OX, 2-2,2-8 
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dynamic programming, 7-42-7-54 

echo cancellation, 1-11 
electrical specifications, A-1 
emulation timing calculations, E-11 
emulator, XPS510, 0-7 
emulator (XOS), 0-8 
extended-precision arithmetic, 3-24, 3-25, 3-29 
external flag (XF) timing, A-iS 
external memory interface, C-S 

Fast Fourier Transforms (FFT), 1-11 
filtering, 1-11,3-2,3-21 
filters 

FIR,7-12 
"R,7-40-7-42 

finite impulse response (FIR) filters, 7-39 
floating-point arithmetic, 7-31-7-35 
format bit (FO), 5-8, 5-16, 5-17, 5-20, 5-25 
four-level pipeline, 3-34, 3-35 
Fourier transforms, 1-11, 7-45-7-54 
FSX, 2-2, 2-9 
functional block diagram, 3-3, 3-4 

global memory, 6-31-6-33 
global memory allocation register (GREG), 3-6, 3-7, 

3-10,3-54, 6-1S, 6-31, 6-32, 6-33 

graphics~1-11, 6-37 

m 
hardware development tools, 0-7 
hardware multiplier, 3-27 
hardware stack, 1-6,3-2,3-9,3-30,3-59 

Harvard architecture, 1-4 
header, E-2 
header signals, E-2 
high level language (HLL) debugger, 0-5 
HOLO, 3-40, 3-51, 3-54, 3-55, 3-57, 3-58, 3-60 

hold function, 3-58 
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multiple processors, 6-32 

multiplication, 7-10-7-20 

multiplier, 1-6,3-2,3-3,3-22,3-24,3-27,3-28 

multiprocessing, 6-31,6-36 

on-chip memory, 1-3, 1-4, 1-5, 1-8, 3-21, 3-39,3-57 

on-chip program ROM, 1-6 

on-chip RAM, 3-21, 3-42 

on-chip RAM configuration control bit (CNF), 6-5, 
6-13 

on-chip ROM, G-1 

overflow flag (OV), 3-25 

overflow mode (DVM), 3-25 

overflow saturation mode, 3-25 

Parallel Logic Unit (PLU), 4-174, 4-210 

parallel logic unit (PLU), 1-6, 1-7,5-16,5·17,6-16, 
6-18,6-19,7-1,7-7, C-9, C-10 

period register (PRO), 5-8, 5-28, 5-29 

PFC, 3-7, 3-8 

pin assignments, 2-2 

pinouts, 2-2, A-2-A-6 

pipeline operation, 3-30, 3-34 

PMST, 3-37, 3-38, 3-47, 3-49, 4-6, 4-8, 4-11, 4-34, 
4-51,4-71,5-4,5-7,6-5,6-7,6-9,6-13,6-18, 
6-27, 7-2, 7-4 

power-down mode, 3-51 

prefetch counter, 3-8 

product register (PR), 3-2,3-16,3-22,3-24,3-27, 
5-7 

program address bus (PAS), 3-30 

program bus, 3-3, 3-29, 3-52 

program counter, 3-2, 3-11, 3-30, 3-54, 3-59 

program counter (PC), C-8 

program execution, 6-40, 7-2 

program memory, 1-4, 1-8, 1-9, 3-2, 3-11, 3-21, 
3-30,3-55 

protocol, bus, E-3 
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iii 
RIW, 2-2, 2-4 
RAM, 1-8,6-1 

See also memory 
RAM overlay bit, 6-13 
RAM overlay bit (OVLY), 7-38 
READY, 2-2, 2-4 
registers 

auxiliary, 1-6,3-5,3-16-3-21,6-16 
memory-mapped, 3-10, 5-2-5-4 
peripheral, 5-2, 5-3 

repeat counter (RPTC), 3-30, 3-34, 3-42, 3-55, 5-2 
reset (RS), 3-20, 3-25, 3-30, 3-42, 3-54, 3-60, C-6, 

C-12 
right shift, 3-25, 3-27, 3-28 
robotics, 1-11 
ROM code flow, G-2 
ROM code media, G-3 

ROM codes, 1-8, G-1 

scaling, 1-7 
scaling shifter, 3-2, 3-22, 3-24, 3-26 
serial port, 1-7, 1-9,3-51,3-54, C-6, C-7, C-9, C-10, 

C-12 
serial port timing, A-21 , A-22, A-23, A-24, A-25 

shadow registers, 1-6, 4-144, 7-4 
shift modes, 3-27, 3-28 
shifters, 3-22, 3-24 

accumulator, 3-2, 3-16, 3-22, 3-24, 3-25, 3-26 
scaling shifter, 3-2, 3-22, 3-24, 3-26 

sign-extension mode bit (SXM), 3-2, 3-24, 3-27 
signal descriptions, 2-1-2-10, A-2-A-6 

single-instruction repeat (RPT) loops, 7-15-7-17 

sockets, F-3 
software development system (SWDS), C-13, 0-7 

software development tools, 0-3 
software stack, 7-6 

software stack operation, 7-6-7-7 
software wait states, 6-19, 6-34, C-8, C-12 

specifications, A-1 

square root example, 7-18 
stack, 1-6,3-2,3-30,3-34,3-38,3-59,5-7 
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