VITERBI DECODER
PROCESSING

Viterbi References

* Suggested references:

— J. G. Proakis and M. Salehi, Fundamentals of Communica-tion
Systems, Prentice Hall, 2005. [coding and viterbi]

— A.J. Viterbi, “Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm,” IEEE Trans.
on Information Theory, April 1967.

— G. D. Forney, “Maximum-Likelihood Sequence Estimation of
Digital Sequences in the Presence of Intersymbol
Interference,” IEEE Trans. on Information Theory, May 1972.

— H.-L. Lou, “Implementing the Viterbi Algorithm,” I[EEE
Signal Processing Magazine, Sept. 1995.

— P.J. Black, “Algorithms and Architectures for High Speed
Viterbi Decoding,” Ph.D. dissertation, March 1993.

Viterbi Algorithm

* Widely used in communication systems to decode a
data sequence that has been encoded by a “finite-
state” process

— Ex: ethernet receiver
— Ex: hard disk read electronics

* A very common demanding DSP task

— Ex: viterbi building blocks are in every serious DSP
benchmarking suite

— Ex: The Texas Instruments C64x DSP processor has a
dedicated on-chip viterbi decoder. The viterbi decoder and
a “turbo decoder” occupy about 8% of the chip’s area

Viterbi Algorithm

* Involves coding data, adding noise, and decoding
— Deliberate encoding: convolutional or trellis codes
— Unintentional encoding: intersymbol interference

e Qutput is an estimate of the original data

e Viterbi algorithm is optimal in the maximum
likelihood sense—it finds the input that is most
likely, given the observed channel output

noise

data input I-—-— data estimate

Convolutional Coding Example

Encoding is a process which adds redundancy to data to reduce
the probability of errors or increase the level of acceptable noise
in the channel

The constraint length (commonly called k) is a measure of the
complexity of the code

— Ex:k=7 > 2Flstates =20 states = 64 states (in Wi-Fi)

— Extk=9 - 256 states (a challenging design)
Ex: a 4-state, Rate = V2 convolutional encoder

— input data x,,

— encoded symbols y; and y,

- Y1,=%, XOR x, ; XOR x,,

= Yo =%, XOR x5

— Two data bits output by decoder for each input bit (rate = %2)

— “Double rate” output bits typically sent serially into one “channel”

Convolutional Coding Example

® Present state : X, X1

* Next state: X, X, (input)

> Yin

B. Baas, EEC 281 143

Convolutional Coding Example

e 8-entry truth table X, X, 1, X, Yin You

— inputs: three x’s

— outputs: two y’s 000 0 ’
001 1 1
010 1 0
011 0 1
100 1 1
101 0 0
110 0 1
111 1 0

Convolutional Coding Example

e Each state can transition to only 2 other states
— These two states are reached by either x, =0 or 1

* Next state found by: X1 X, (input)

Notation used in State Graph

B. Baas, EEC 281

Trellis

e The trellis is a time indexed

: : Stat
version of the state diagram Oa:)e 00
e Each state transition (input bit
into the encoder) corresponds 01 01
to a forward step in the trellis 10 10
11 11
time: n n+1

/A

Qe Qr

Trellis

e Given a starting state, every possible input sequence
corresponds to a unique path through the trellis

e Example:

— Assume start in

state 00 State
— Inputsx,=0,1,1,0 00
— QOutputs=
{0,0}1? 01
{11}, 10
{1,0},
{1,0} 11 .

0/00 1/11 1/10 0/10

Viterbi Decoding

The Viterbi decoder calculates a semi-brute-force estimate of
the likelihood for each path through the trellis

Key point: Once the estimates for all states in a step/iteration of
the trellis have been calculated, the probabilities for all
previous steps/iterations can be discarded; only the most likely
entry to a state must be remembered

It comprises four basic steps:

1. Calculate the trellis
a) Weight the trellis branches by calculating branch metrics

b) Compute the minimum weight path to time n+1 in terms of the
minimum weight path to time n. Retain step decisions. Uses add-
compare-select (ACS) algorithm.

2. Find the last state of the minimum weight path.

3. Find the entire minimum weight path. Also called survivor path
decode or traceback.

4. Reorder bits into correct forward ordering.

1. Calculating the Trellis

Each branch is assigned a weight, called a branch metric

The branch metric is a measure of the likelihood of the
transition given the noisy observations

Likelihood of a transition is given by an appropriate measure of
the “distance” between an ideal encoder output and the actual
received signal

The overall goal is to find the minimum weight path (often
called shortest path) through the trellis

1a) Branch Metric Calculations

More likely transitions receive lower weights

Example:
— Receive: {0.13, 0.89}
— Branch with {0,1} outputs receives a lower weight (because it was the
more likely transmitted pair) than the {1,0} branch
A very simple implementation would add just the differences
between received values, for example:

— Starting state: 0,1 Notice from State Graph 0/01 and 1/10 are only options
— Receive: {0.13, 0.89}

— Branch {0,0} Impossible, not present on State Graph
— Branch {0,1} Branch metric= [0-0.13| + [1-0.89| =0.24
— Branch {1,0} Branch metric= [1-0.13| + [0-0.89] =1.76
— Branch {1,1} Impossible, not present on State Graph

Higher performance decoders would use more complex mapping
functions between received values and the branch metric weights

1b) ACS

Goal is to find the most likely entry path into a state
ADD previous state metric to current branch metric

— for first branch
— for second branch

COMPARE which incoming branch produces the
lower metric (higher probability)

SELECT the minimum and save the branch

Fully parallel viterbi decoders use many ACS
datapaths to calculate an entire trellis state update in
one cycle

ACS Hardware

Branch metric A

Previous \
state >

metric 0

> D_ecision
bit

—

New state
> .
metric

Previous

o
(@)
Q@
()
0p]
state > / |
metriC 1 Pre\gt(;l:z G,%%
metric O .w:
"% 4
New.state
Branch metric B e et
Previous \(\6\8\‘
state %‘0(\0

metric 1

Compare

2. FInding The Most Likely Path

o After all data have been processed, we must find the
most likely path through the trellis

e Done by searching through the final “column” of
states and selecting the most likely (lowest weight)

e QOperation done infrequently compared to other
calculations

3. Traceback

* The goal is to read out the best estimate for all
decoded bits 27T

e

e The process begins at the most likely state’'and it
follows this procedure for each state in the trellis N

1) Read stored decision bit from ACS \

2) Output this “decoded bit” \

3) Use the decision bit to calculate the previous state in the ,
trellis

4) <repeat>

4. Reorder Output Bits

Bits output from the traceback operation are in
reverse order (last bit out corresponds to first
received)

Need logic and memory to buffer and reverse order
Fundamental to the algorithm, cannot be avoided
Summary

— Viterbi is data and memory intensive
* Forward ACS
* Reverse traceback
® Forward re-ordering

