{9 TeEXAS
INSTRUMENTS

TMS320C62xx

Programmer s

Guide

TI DSP SOLUTIONS

15

15 YEARS OF LEADERSHIP

1997 Digital Signal Processing Solutions

*’:‘ TEXAS
INSTRUMENTS

Printed in U.S.A., July 1997 SPRU198A
D426013-9761 revision*

\\\\\ > MOl TMS320C62xx

Guide

1997

TMS320C62xx
Programmer’s Guide

Preliminary

Literature Number: SPRU198A
D426013-9761 revision *
July 1997

b TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tl warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
represent that any license, either express orimplied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 0 1997, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This manual is a reference for programming TMS320C62xx digital signal pro-
cessor (DSP) devices.

Before you use this book, you should install your code generation and debug-
ging tools.

This book is organized in four major parts:

(d Partl:Introduction includes a brief description of the 'C62xx architecture
and code development flow. It also includes a tutorial that introduces you
to the tools you will use in each phase of development.

(1 Part ll: C Code includes C code examples and discusses optimization
methods for the code. This information can help you choose the most
appropriate optimization techniques for your code.

(1 Partlll: Assembly Code describes the structure of assembly code. It also
provides examples and discusses optimizations for assembly code.

(J PartlV: Appendix provides extensive code examples from the GSM EFR
vocoder.

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

The following books describe the TMS320C62xx devices and related support
tools. To obtain a copy of any of these Tl documents, call the Texas Instru-
ments Literature Response Center at (800) 477—8924. When ordering, please
identify the book by its title and literature number.

TMS320C6x Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the 'C6x generation of devices.

TMS320C6x Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the 'C6x C compiler. This C compiler accepts ANSI
standard C source code and produces assembly language source code
for the ’C6x generation of devices. This book also describes the
assembly optimizer, which helps you optimize your assembly code.

TMS320C6x C Source Debugger User’s Guide (literature number
SPRU188) tells you how to invoke the 'C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

TMS320C62xx CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the 'C62xx CPU architecture, instruction
set, pipeline, and interrupts for the TMS320C62xx digital signal proces-
Ssors.

TMS320 DSP Designer’'s Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using *C2x,
'C3x, 'C4x, 'C5x, and other Tl DSPs.

TMS320C62xx Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C62xx digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port, serial ports, direct memory access (DMA), clocking and phase-
locked loop (PLL), and the power-down modes.

TMS320C6201 Digital Signal Processor Data Sheet (literature number
SPRS051) describes the features of the TMS320C6xx and provides pin-
outs, electrical specifications, and timings for the device.

Trademarks

Trademarks

Solaris and SunOS are trademarks of Sun Microsystems, Inc.
VelociTl is a trademark of Texas Instruments Incorporated.

Windows and Windows NT are registered trademarks of Microsoft
Corporation.

Read This First v

If You Need Assistance

If You Need Assistance . . .

O World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
O North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
1 Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax:+33130701032 Email: epic@ti.com
Deutsch +49 81618033 11 or+33 130701168
English +3313070 1165
Francais +33 13070 11 64
Italiano +3313070 1167
EPIC Modem BBS +3313070 1199
European Factory Repair +33493 222540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
O Asia-Pacific
Literature Response Center +852 2956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 2551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2377 1450 Fax: +886 2377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/
1 Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”
1 Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the

vi

book.

Contents

Part I: Introduction

3 I [1 o Yo 11 o3 { Lo o T 1-1

Introduces some features of the 'C62xx microprocessor and discusses the basic process for
creating code.

1.1 TMSB20C62xx Architecture e et 1-2
1.2 TMS320C62xx Pipeline e 1-2
1.3 Code Development Flow to Increase Performance 1-3
2 Code Development Flow Tutorialccciiiiiiiiiiiiii it i it neannnns 21
Uses example code to walk you through the code development flow for the TMS320C62xx.
2.1 Before You Begin 2-2
2.2 Introductiontothe Example Code i 2-3
2.3 Lesson 1: Compiling, Assembling, and Linking the Example Code 2-5
2.4 Lesson 2: Profiling the Example Code i 2-7
2.5 Lesson 3: Phase 1 of the Code DevelopmentFlow 2-13
2.6 Lesson 4: Phase 2 of the Code DevelopmentFlow 2-16
2.7 Lesson 5: Phase 3 of the Code DevelopmentFlow 2-24
2.8 SUMMANY ..t e 2-30
Part II: C Code
3 Optimizing C Code ...ttt it et e anssaa s nnasaaa s 3-1
Explains how to maximize C performance by using compiler options, intrinsics, and code trans-
formations.
3.1 WItING C COode ..o e 3-2
3.1.1 Tipson Data TYPes . ..o 3-2
3.1.2 Analyzing C Code Performanceoiiiiiiiiiinniiinn.. 3-2
3.2 Compiling C Code 3-4
3.2.1 Compiler OptioNsttt 3-4
3.2.2 Memory Dependenciest 3-5
3.3 Refining C Code 3-9
3.3.1 Using IntrinsiCso 3-9
3.3.2 Using Word AccessforShortData iiiiiii... 3-12
3.3.3 Software Pipelining ... 3-16

Vi

Contents

Part Ill: Assembly Code

4

viii

Structure of Assembly Code ...t i i i 4-1

Describes the structure of the assembly code, including labels, conditions, instructions, func-
tional units, operands, and comments.

4.1 Labels . o e 4-2
4.2 Parallel Bars 4-2
4.3 CoNditiONS ... 4-3
4.4 INSHUCHONS o o 4-4
4.5 Functional Units i 4-6
4.8 OPEIaANAS . ..ottt 4-8
4.7 COMIMENTS ..ottt ettt et e e 4-9
Optimizing Assembly Code ...ttt it e et eiarataranaranns 5-1
Describes methods that help you develop more efficient assembly language programs.
5.1 Assembly Code 5-2
5.2 Wiriting Parallel Codet 5-4
521 Dot Product CCodeo 5-4
5.2.2 Translating C Code to Linear Assemblyo, 5-4
5.2.3 Allocating Resourceso 5-5
5.2.4 Drawing a Dependency Graphot 5-5
5.2.5 Comparing Performance (Nonparallel Versus Parallel Assembly Code) 5-7
5.2.6 Comparing Performanceot 5-9
5.3 Using Word Access for Short Data ...t 5-10
5.3.1 Unrolled Dot Product CCode 5-10
5.3.2 Translating C Code to Linear Assembly, 5-11
5.3.3 Drawing a Dependency Graph 5-12
5.3.4 Allocating Resourcest 5-12
5.835 Final Assembly 5-14
5.3.6 Comparing Performance 5-15
5.4 Software Pipelining 5-16
5.41 Modulo lteration Interval Schedulingl 5-18
5.4.2 Using the Assembly Optimizer to Create Optimized Loops 5-21
5.43 Final Assembly 5-22
5.4.4 Comparing Performanceot 5-30
5.5 Modulo Scheduling of Multicycle LOOPS i 5-31
5.5.1 Weighted Vector SUm C Codet e 5-31
5.5.2 Translating C Code to Linear Assemblyo, 5-31
5.5.3 Determining the Minimum lteration Interval 5-32
5.5.4 Drawing a Dependency Graph i 5-34
55.5 Allocating ReSoUrCesot e 5-35
5.5.6 Modulo lteration Interval Scheduling 5-35
5.56.7 Using the Assembly Optimizer for the Weighted Vector Sum 5-46
5.5.8 Final Assembly 5-47

5.6

5.7

5.8

5.9

5.10

Contents

Loop Carry Paths e 5-50
5.6.1 1IRFilter CCodettt e e 5-50
5.6.2 Translating C Code to Linear Assembly (Inner Loop) 5-51
5.6.3 Drawing a Dependency Graph ... 5-52
5.6.4 Determining the Minimum lteration Interval 5-53
5.6.5 Allocating Resourcesiiiiiii e 5-55
5.6.6 Modulo lteration Interval Scheduling i 5-56
5.6.7 Using the Assembly Optimizer forthe IR Filter 5-57
5.6.8 Final Assembly i 5-58
If-Then-Else Statements inaLoop ... 5-59
571 If-Then-Else CCodeo e 5-59
5.7.2 Translating C Code to Linear Assembly, 5-60
5.7.3 Drawing a Dependency Graph ...t 5-61
5.7.4 Determining the Minimum lteration Interval 5-62
5.7.5 Allocating Resourcesooiiiiiii i 5-63
5.7.6 Final Assembly i 5-64
5.7.7 Comparing Performance 5-65
Loop UNrolling . ..o e 5-67
5.8.1 Unrolled If-Then-Else CCode ... 5-67
5.8.2 Translating C Code to Linear Assembly, 5-68
5.8.3 Drawing a Dependency Graph ...t 5-69
5.8.4 Determining the Minimum Iteration Interval 5-70
5.8.5 Allocating Resourcesot 5-70
5.8.6 Final Assembly o 5-72
5.8.7 Comparing Performance 5-73
Live-ToO-LONg ISSUES ot e 5-74
5.9.1 C Code With Live-Too-Long Problem o i, 5-74
5.9.2 Translating C Code to Linear Assembly ..., 5-75
5.9.3 Drawing a Dependency Graph i 5-75
5.9.4 Determining the Minimum lteration Interval 5-77
5.9.5 Allocating Resourcest 5-79
5.9.6 Final Assembly With Move Instructions oot 5-81
Redundant Load Elimination i 5-83
5.10.1 FIRFilterC Code . ..o e 5-83
5.10.2 Translating C Code to Linear Assembly, 5-85
5.10.3 Drawing a Dependency Graph ..., 5-86
5.10.4 Determining the Minimum lteration Interval 5-87
5.10.5 Allocating Resourcesuiiiiiii e 5-87
5.10.6 Final Assembly o 5-88

Contents ix

Contents

5.11

5.12

5.13

MemOory BankKs e 5-91
511.1 FIRFilter InnerLoopo e 5-93
5.11.2 Unrolled FIRFilter CCodet 5-95
5.11.3 Translating C Code to Linear Assembly 5-96
5.11.4 Drawing a Dependency Graphco i 5-97
5.11.5 Linear Assembly for Unrolled FIR Inner Loop With .mptr Directive 5-98
5.11.6 Allocating Resourcesiiiiiiiiii e 5-100
5.11.7 Determining the Minimum Iteration Interval 5-101
5.11.8 Final Assembly 5-101
5.11.9 Comparing Performanceo 5-101
Software Pipelining the Outer Loop ... e 5-104
5.12.1 Unrolled FIRFilterCCodeooiii e 5-104
5.12.2 Making the Outer Loop Parallel With the Inner Loop Epilog and Prolog ... 5-105
5.12.3 Final Assembly o 5-105
5.12.4 Comparing Performance ... 5-108
Outer Loop Conditionally Executed With InnerLoopt 5-109
5.13.1 Unrolled FIRFilter CCodet e 5-109
5.13.2 Translating C Code to Linear Assembly (InnerLoop) 5-110
5.13.3 Translating C Code to Linear Assembly (Outer Loop) 5-111
5.13.4 Unrolled FIRFilterCCodeoooiii i 5-111
5.13.5 Translating C Code to Linear Assembly (Inner Loop) 5-118
5.13.6 Translating C Code to Linear Assembly (Inner Loop and Outer Loop) 5-115
5.13.7 Determining the Minimum lteration Interval 5-119
5.13.8 Final Assembly o 5-119
5.13.9 Comparing Performance 5-122

Part IV: Appendix

A Applications Programmingoouuiiieiiiiin i iianiia i iaaaiaa s A-1
Provides extensive code examples from the GSM EFR vocoder.

A1 Summary of Major Programming Methods L. A-2

A.2 Implementation of the GSM EFR Vocoder o i A-3

A.2.1 Implementation of the Multiply-Accumulate Loop A-4

A.2.2 Implementation of the Windowing and Scaling Part of autocorr.c A-7

A2.3 Implementationofcor_h A-20

A.2.4 Implementation of the rrv Computation in search_10i40 A-27

A.2.,5 Implementation of the Index Search in search_10i40 A-38

A.2.6 Implementation of the FIR Filter, residu.c, in GSM EFR Vocoder A-51

A.2.7 Implementation of the Lag Search in the lag_max () Routine A-56

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19

5-20
A-1

A-3

Figures

Dependency Graph for Vector Sum #1 3-6
Dependency Graph for Vector SUum #2 3-7
Software-Pipelined Loop e 3-16
Labels in Assembly Code 4-2
Parallel Bars in Assembly Code 4-2
Conditions in Assembly Code e 4-3
Instructions in Assembly Code e 4-4
TMS320C62xx Functional Units 4-6
Units inthe Assembly Code ... i e 4-7
Operands inthe Assembly Code i e 4-8
Operands in INStruCtionsot e 4-8
Comments in Assembly Code 4-9
Dependency Graph of Dot Product ... 5-6
Dependency Graph of Dot Product with Parallel Assembly 5-8
Dependency Graph of Dot Product With LDW i 5-12
Dependency Graph of Dot Product With LDW (Showing Functional Units) 5-13
Dependency Graph of Dot Product With LDW (Showing Functional Units) 5-17
Dependency Graph of Weighted Vector Sum i, 5-34
Dependency Graph of Weighted Vector Sum (Showing Resource Conflict) 5-38
Dependency Graph of Weighted Vector Sum (With Resource Conflict Resolved) 5-41
Dependency Graph of Weighted Vector Sum (Scheduling ci+1) 5-43
Dependency Graph of IR Filter e 5-52
Dependency Graph of IIR Filter (With Smaller Loop Carry) 5-54
Dependency Graph of If-Then-Else Code i .. 5-61
Dependency Graph of If-Then-Else Code (Unrolled)t 5-69
Dependency Graph of Live-Too-Long Codeo e 5-76
Dependency Graph of Live-Too-Long Code (Split-Join Path Resolved) 5-79
Dependency Graph of FIR Filter (With Redundant Load Elimination) 5-86
4-Bank Interleaved Memoryo 5-91
4-Bank Interleaved Memory With Two Memory Spaces, 5-92
Dependency Graph of FIR Filter (With Even and Odd Elements of

Each Array on Same Loop CyCle)o e 5-94
Dependency Graph of FIR Filter (With No Memory Hits) 5-97
Flow Diagram for the Windowing and Scaling Part of autocorr.c A-9
Flow Diagram for autocorr.c With Loop Unrollingot A-12
Flow Diagram for autocorr.c With Rearranged CCode, A-13

Contents Xi

Tables

5-4
5-5
5-6
5—7

5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22

Xii

Using the C_OPTIONS Environment Variable 2-6
Cycle COUNES . ..o 2-10
Revised Cycle Counts for veC_mpy() ..ot e 2-22
Revised Cycle Counts foriir()o e 2-23
Revised Cycle COUNES oo e e 2-23
Revised Cycle Counts foriir()o e e 2-28
Revised Cycle CoUNtS oo e 2-29
Subset of Compiler OptioNS ot 3-4
TMS320C6x C Compiler INtrinSiCS i 3-10
Selected TMS320C62xX DireCtivest e 4-4
Selected TMS320C62xx Instruction MNemonics 4-5
Functional Units and Descriptions e 4-6
Comparison of Nonparallel and Parallel Code ...t 5-9
Comparison of Dot Product Code With Use of LDW i, 5-15
Modulo lteration Interval Scheduling Table for Dot Product

(Before Software Pipelining)o i 5-18
Modulo lteration Interval Table for Dot Product (After Software Pipelining) 5-20
Comparison of Dot Product Code EXamplesuuiiiiiiiiiinnnn. 5-30
Modulo lteration Interval Table for Weighted Vector Sum (2-Cycle Loop) 5-37
Modulo lteration Interval Table for Weighted Vector Sum With SHR Instructions 5-39
Modulo lteration Interval Table for Weighted Vector Sum (2-Cycle Loop) 5-42
Modulo lteration Interval Table for Weighted Vector Sum (2-Cycle Loop) 5-45
Resource Table for IR Filter o e e 5-53
Modulo lteration Interval Table for IIR (4-Cycle Loop)coviiiiiiiinnnanaon. 5-56
Resource Table for If-Then-Else Code i 5-62
Comparison of If-Then-Else Code Examples 5-66
Resource Table for Unrolled If-Then-Else Code ot 5-70
Comparison of If-Then-Else Code Examples i, 5-73
Resource Table for Live-Too-Long Code oo 5-77
Resource Table for FIR Filter Code e 5-87
Resource Table for FIR Filter Code e 5-101
Comparison of FIR Filter Code oo e 5-101
Comparison of FIR Filter Code e 5-108
Resource Table for FIR Filter Code ... et 5-119
Comparison of FIR Filter Code e 5-122

W Wwoww
_LIII
()] W N =

(o2}

|
\l

© 00

WWWWOWWwoWwWwowaowowow
TLLTEEET
OO0k wWN—O

Examples

The Code Example—demoT.Ct e 2-3
The Multiply Accumulate Function—mac1.c i, 2-3
The Vector Multiply Function—vec_mpy1.C ... i 2-4
The Biquad Filter—iir1.Co e 2-4
Including the clock() Function in demot.c (count.c) oo .. 2-11
Inner Loop Kernel of mact.asm ... i e 2-13
Inner Loop Kernel of vec_mpy1.asm e 2-14
Inner Loop Kernel of iir1.asm e 2-15
The Vector Multiply Function—vec_mpy1.c ... 2-16
Inner Loop Kernel of vec_mpyt.asmo 2-16
The Revised Vector Multiply Function—vec_mpy2.c 2-17
The Biquad Filter—iir1.C o e 2-18
The Revised Biquad Filter—iir2.Co e 2-19
The Revised Example—demo2.C e 2-20
Inner Loop Kernel of vec_mpy2.asm e 2-21
Inner Loop Kernel of iir2.asm e 2-22
The Revised Biquad Filter—iir2.Cot 2-25
The Biquad Filter, Revised and Assembly-Optimized—iir3.sa 2-26
The Revised Example—demo3.Co 2-27
Inner Loop Kernel of iir3.asm 2-28
BasiC VeCtor SUM 3-5
Vector Sum With const Keywords oo e 3-7
Compiler Output for Vector Sum Code e 3-8
Saturated Add Without Intrinsics 3-9
Saturated Add With IntrinSics e 3-9
Vector Sum With const Keywords, _nassert, WordReads 3-12
Vector Sum With const Keywords, _nassert, Word Reads (Generic Version) 3-13
Dot Product Using INtriNSIiCS e 3-14
FIR Filter—Original Form 3-14
FIR Filter— Optimized Form e 3-15
TriP COUNEEIS . . e e 3-17
Vector Sum With const Keywords and _nassert 3-18
Vector Sum With Three Memory Operations 3-19
Word-Aligned Vector SUM oo 3-19
Vector Sum Using const Keywords, _nassert, Word Reads, and Loop Unrolling 3-20
FIR_Type2—Original FOrm e e 3-21

Examples

3-17
5-1
5-2
5-3
5-4
5-5
5-6
5-7

5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42

Xiv

FIR_Type2—Inner Loop Completely Unrolled, 3-22
Dot Product C Codettt e e e e 5-4
List of Assembly Instructions for Dot Product oo, 5-4
Nonparallel Assembly Code for Dot Product 5-7
Parallel Assembly Code for Dot Product oo e 5-8
Dot Product C Code (Unrolled)o e 5-10
Linear Assembly for Dot Product Inner Loop withLDW 5-11
Linear Assembly for Dot Product Inner Loop With LDW

(With Allocated RESOUICES)ttt e e 5-13
Assembly Code for Dot Product With LDW (Before Software Pipelining) 5-14
Linear Assembly for Dot Product Inner Loop (With Conditional SUB Instruction) 5-17
Linear Assembly for Full Dot Product 5-21
Assembly Code for Dot Product (Software Pipelined) 5-23
Assembly Code for Dot Product (Software Pipelined With No Extraneous Loads) 5-25
Assembly Code for Dot Product (Software Pipelined — No Prolog or Epilog) 5-28
Assembly Code for Dot Product (Software Pipelined With Smallest Code Size) 5-29
Weighted Vector Sum C Code e 5-31
Linear Assembly for Weighted Vector Sum InnerLoopt 5-31
Weighted Vector Sum C Code (Unrolled) et 5-32
Linear Assembly for Weighted Vector Sum Using LDW 5-33
Linear Assembly for Weighted Vector Sum With Resources Allocated 5-35
Linear Assembly for Weighted Vector Sum i, 5-46
Assembly Code for Weighted Vector Sum i 5-48
1 (T G O 7 o = 5-50
Linear Assembly for IR INNerLoop e 5-51
Linear Assembly for IR Inner Loop With Reduced Loop Carry Path 5-55
Linear Assembly for IIR Inner Loop (With Allocated Resources) 5-55
Linear Assembly for IR Filter e 5-57
Assembly Code for IR Filtero e 5-58
If-Then-Else C Codeottt e e 5-59
Linear Assembly for If-Then-Else Inner Loop ..., 5-60
Linear Assembly for Full If-Then-Else Code 5-63
Assembly Code for If-Then-Else e 5-64
Assembly Code for If-Then-Else With Loop Count Greater Than3 5-65
If-Then-Else C Code (Unrolled) i 5-67
Linear Assembly for Unrolled If-Then-Else InnerLoopo it 5-68
Linear Assembly for Full Unrolled If-Then-Else Code 5-71
Assembly Code for Unrolled If-Then-Else 5-72
Live-Too-LoNg C Codeo oot e 5-74
Linear Assembly for Live-Too-Long InnerLoop ... 5-75
Linear Assembly for Full Live-Too-Long Code, 5-80
Assembly Code for Live-Too-Long With Move Instructions 5-81
FIRFilter C Code ... e e i e 5-83
FIR Filter C Code With Redundant Load Elimination 5-84

5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50

5-51
5-52

5-53
5-54
5-55
5-56
5-57

5-58

5-59

A-10
A-11

A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24

Examples

Linear Assembly for FIR InnerLoopo e 5-85
Linear Assembly for FUl FIR Code i e 5-87
Final Assembly Code for FIR Filter With Redundant Load Elimination 5-89
Final Assembly Code for Inner Loop of FIRFilter, 5-93
FIR Filter C Code (Unrolled) i 5-95
Linear Assembly for Unrolled FIR InnerLoop ..., 5-96
Linear Assembly for Full Unrolled FIR Filter o 5-98
Final Assembly Code for FIR Filter With Redundant Load Elimination and
NO Memory Hitso e 5-102
Unrolled FIR Filter C Codeoiiiiii e et 5-104
Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined 5-106
Unrolled FIR Filter C Code i 5-109
Linear Assembly for Unrolled FIR InnerLoop ..., 5-110
Linear Assembly for FIROuter Loopo e 5-111
Unrolled FIRFilter C Code e 5-112
Linear Assembly for FIR With Outer Loop Conditionally Executed
With INNer LOOP . . . oot 5-114
Linear Assembly for FIR With Outer Loop Conditionally Executed
With Inner Loop (With Functional Units) it 5-116
Final Assembly Code for FIR Filter e 5-120
C Code for the Typical MAC LOOP ... iiii it e e et A-4
Linear Assembly for the MAC LOOPo oot e A-4
C Code for MAC Loop With Loop Unrolling A-5
C Code for Energy Computation MAC LOOP ...ttt A-5
Linear Assembly for Energy Computation MACLoop ..., A-5
Assembly Code for the Energy Computation MAC LoOopcovviiiiiiiinnennn... A-6
C Code for the Windowing and Scaling Part of autocorr.c................ A-8
Linear Assembly for One lteration of autocorr.c (Loop 1) ..., A-9
Linear Assembly for Loop 1 of autocorr.c (Using LDW) oot A-10
Linear Assembly for Loop 2 of autocorr.c (No Loop Unrolling) A-10
Linear Assembly for Loop 2 of autocorr.c (With Loop Unrolling) A-11
Linear Assembly for Loop 3 of autocorr.co A-11
Linear Assembly for Loop | of autocorr.c (Modified)t A-14
Linear Assembly for Loop Il of autocorr.c (Modified)ot A-15
Implemented C Code for aUtOCOIT.C . ..o oottt i ees A-16
Assembly Code for Windowing and Scaling Part of autocorr.c A-17
C Code for Cor_ N ... e A-20
Linear Assembly for cor_h (One Inner Loop lteration) A-21
C Code for cor_h (With Inner Loop Unrolling) i, A-22
Linear Assembly for cor_h (With Inner Loop Unrolling) A-23
Assembly Code for cor_h With Reduced Code Size A-24
C Code for the rrv Computationin search_10i40, A-27
Linear Assembly for the rrv Computation in Search_10i40 (One Loop lteration) A-28
C Code for the rrv Computation in search_10i40 (Unrolled Loop) A-30
Contents XV

Examples

A-25
A-26
A-27
A28
A-29
A-30
A-31
A-32
A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-40
A-41

XVi

Linear Assembly for rrv Computation in search_10i40 (One Loop lteration) A-31
Assembly Code for the rrv Computation in search_10i40 A-33
C Code for the Index Search for search_10i40 i, A-38
Linear Assembly for the Index Search for search_10i40 (Inner Loop) A-41
Modified C Code forthe Index Search i A-42
Assembly Code for the search_10i40 Index Search A-44
C Code for residU.Cot A-51
C Code for residu.c After Rearrangement Using Intrinsics A-52
Implemented C Code for residu.C i e A-53
Assembly Code for residu.C ... A-54
C Code for the Lag Search inlag_max()couuiiiiiiiii .. A-57
C Code for the Lag Search in lag_max () (Comparison Order Changed) A-58
C Code for the Lag Search in lag_max() With Outer Loop Unrolling A-59
Linear Assembly for the Lag Search in lag_max() InnerLoop A-59
C Code for the Lag Search in lag_max() With Inner and Outer Loops Unrolled A-60
Linear Assembly for the Lag Search in lag_max() InnerLoop A-61
Assembly Code for the Lag Searchinlag_ max()cooiiiiiiiiiiiii... A-62

P_art I
Introduction

Part Il

C Code

Part Il
Assembly Code

Part IV

Appendix

I Hed

Chapter 1

Introduction

Part |

This chapter introduces some features of the 'C62xx microprocessor and
discusses the basic process for creating code.

Topic Page
1.1 TMS320C62xx Architectureccoiiiiiiiiiiiininnnnnn. 1-2
12 TSPUEPEe [PREiR® cooooocoonnoooooasaaooononooaaasonaanonac 1-2

1.3 Code Development Flow to Increase Performance 1-3

1-1

Part |

TMS320C62xx Architecture / TMS320C62xx Pipeline

1.1 TMS320C62xx Architecture

The 'C62xx is a fixed-point digital signal processor (DSP) and is the first DSP
to use the VelociTI™ architecture. VelociTl is a high-performance, advanced
very-long-instruction-word (VLIW) architecture, making it an excellent choice
for multichannel, multifunction, and performance-driven applications.

The 'C62xx DSPs are based on the 'C62xx CPU, which consists of:

oo oooo

Program fetch unit

Instruction dispatch unit

Instruction decode unit

Two data paths, each with four functional units
Thirty-two 32-bit registers

Control registers

Control logic

Test, emulation, and interrupt logic

1.2 TMS320C62xx Pipeline

1-2

The 'C62xx pipeline has several features that provide optimum performance,
low cost, and simple programming.

i

L

Increased pipelining eliminates traditional architectural bottlenecks in pro-
gram fetch, data access, and multiply operations.

Pipeline control is simplified by eliminating pipeline locks.
The pipeline can dispatch eight parallel instructions every cycle.

Parallel instructions proceed simultaneously through the same pipeline
phases.

Code Development Flow to Increase Performance

1.3 Code Development Flow to Increase Performance

You can achieve the best performance from your ’C62xx code if you follow this
flow when you are writing and debugging your code:

Phase 1: Write C code
Develop C Code 7

Compile
v
Profile

Yes
Complete)

No

Refine C code
Phase 2: 3
Refine C Code

Compile
v
Profile

Complete)

Yes
optimization?

Write linear assembly

Phase 3: 3
Write Linear —
Assembly Assembly optimize
v
Profile
No
Yes

(Complete)

Introduction 1-3

Part |

Code Development Flow to Increase Performance

The following lists the phases in the three-step software development flow
shown on page 1-3, and the goal for each phase:

Phase Goal

1 You can develop your C code for phase 1 without any knowledge of
the ’C62xx. Use the 'C62xx profiling tools that are described in the
TMS320C6x C Source Debugger User’s Guide to identify any ineffi-
cient areas that you might have in your C code. To improve the per-
formance of your code, proceed to phase 2.

Part |

2 Use the intrinsics, shell options, and techniques that are described
in Chapter 3 of this book to improve your C code. Use the 'C62xx
profiling tools to check its performance. If your code is still not as effi-
cient as you would like it to be, proceed to phase 3.

3 Extract the time-critical areas from your C code and rewrite the code
in linear assembly. You can use the assembly optimizer to optimize
this code.

1-4

Chapter 2

Code Development Flow Tutorial

This chapter walks you through the code development flow that was
introduced in Chapter 1. It uses step-by-step instructions and code examples
to show you how to use the software developmenttools in each phase of devel-
opment.

Before you start this tutorial, you should install the code generation tools and
the C source debugger. If you do not have a Texas Instruments C source de-
bugger, use your own debugger to check your results.

The sample code that is used in this tutorial is included on the code generation
tools CD-ROM. When you install your code generation tools, the example
code is installed in the c6xtools directory. Use the code in that directory to go
through the examples in this chapter.

The examples in this chapter were run on the most recent version of the soft-
ware development tools that were available as of the publication of this book.
Because the tools are being continuously improved, you may get different re-
sults if you are using a more recent version of the tools.

Topic Page
21 BeforeYouBeginccouiuiiiiiiiii i 2-2
2.2 Introduction to the ExampleCodeccoiiiriinnnnnnn 2-3
2.3 Lesson 1: Compiling, Assembling, and Linking the

Example Codecoiiiiiiiiiiiiiiiiin e ennennnnnns 2-5
2.4 Lesson 2: Profiling the ExampleCodecciiinntt. 2-7
2.5 Lesson 3: Phase 1 of the Code Development Flow 2-13
2.6 Lesson 4: Phase 2 of the Code Development Flow 2-16
2.7 Lesson 5: Phase 3 of the Code Development Flow 2-24
2.8 SUMMAIY ...ttt i i iaaaaaaaanasaaaserrsannnnnnnnnnns 2-30

2-1

Part |

Part |

Before You Begin

2.1

2-2

Before You Begin

This tutorial contains three basic types of information:

Primary tasks

Important information

Optional tasks

Primary tasks identify the main lessons in the
tutorial; they are boxed so that you can find
them easily. A primary task looks like this:

On a command line, enter:

load6x count.out

In addition to primary actions, important infor-
mation ensures that the tutorial works correctly.
Important information is marked like this:

m If you are using SunOS, be sure

you reinitialize your shell before continuing with
this tutorial.

Optional tasks allow you to learn more about
the 'C62xx tools; however, you do not need to
perform the optional tasks to complete the tuto-
rial successfully. Optional tasks are marked like
this:

The stand-alone simulator (load6x)

is another tool that you can use to find out what
the cycle count for each function is...

This tutorial is divided into lessons. Each lesson builds on the previous lesson.
To get the most benefit from the tutorial, you should start at the beginning and
work your way through to the end without skipping lessons or doing them out

of order.

Introduction to the Example Code

2.2 Introduction to the Example Code
The C code example that you will use to start this tutorial is demo1.c, which

is shown in Example 2-1. This example calls three functions: maci(),
vec_mpy1(), and iir1().

Example 2—1. The Code Example—demo1.c

main (int argc, char *argvl[])

{
const short coefs[150];
short optr[150];
short state[2];
const short af[l50];
const short b[150];
int ¢ = 0;
int dotpl[l] = {0};
int sum= 0;
short y[150];
short scalar = 3345;
const short x[150];

sum = macl(a, b, c, dotp);
vec_mpyl (y, x, scalar);
iirl (coefs, x, optr, state);

The maci() function, a multiply accumulate example, is shown in
Example 2-2. It is performing a dot product, which is the squaring of a vector.

Example 2-2. The Multiply Accumulate Function—mac1.c

int macl (const short *a, const short *b, int sqr, int *sum)
{
int i;
int dotp

*sum;

for (i = 0; 1 < 150; i++)
{
dotp += b[i] * alil;
sqr += b[i] * b[i];
}

*sum = dotp;
return sdqgr;

Code Development Flow Tutorial 2-3

Part |

Part |

Introduction to the Example Code

The vec_mpy() function shown in Example 2—-3 is a vector multiply, which is
a scalar multiply followed by a right shift. The result is stored to a second vec-
tor.

Example 2-3. The Vector Multiply Function—vec_mpy1.c

void vec_mpyl (short y[], const short x[], short scalar)
{

int 1i;

for (i = 0; i < 150; i++)
y[i]l += ((scalar * x[i]) >> 15);

The third function, iir1(), is a typical infinite impulse response (lIR) biquad filter.
The code for this function is shown in Example 2—4.

Example 2—4. The Biquad Filter—iir1.c

2-4

void iirl (const short *coefs, const short *input,
short *optr, short *state)
{
short x;
short t;
int n;

x = input[0];

for (n = 0; n < 50; n++)
{
t = X + ((coefs[2] * state[0] +
coefs[3] * state[l]) >> 15);

b
Il

t + ((coefs[0] * state[0] +
coefs[l] * state[l]) >> 15);

state[l] = state[0];
state[0] = t;
coefs += /* point to next filter coefs */

4;
state += 2; /* point to next filter states */

}

*optr++ = x;

Lesson 1: Compiling, Assembling, and Linking the Example Code

2.3 Lesson 1: Compiling, Assembling, and Linking the Example Code

The first step is to compile, assemble, and link the code.

On a command line, enter the following on a single line:

cléx —g —-o -k -mg demol.c macl.c vec_mpyl.c iirl.c
-z lnk.cmd -1 rts620l.lib -o demol.out

You should not receive any errors, and the file, demo1.out, should be created.
If you receive an error message, look up that error message in the appropriate

user’s guide.

Here is a description of what you told the shell program (cl6x) to do:

clex
-9

—0

Ink.cmd

Run the compiler and the assembler.

Generate symbolic debugging directives that are used by
the debugger.

Invoke the optimizer at the default level. (o is the same as
-02.)

Not all optimizations work well with debugging, because the
optimizer’s rearrangement of code can make it difficult for
you to correlate source code with object code. Using the —g
option with the —o option allows for the maximum amount
of optimization that is compatible with debugging.

Keep the assembly output files. Notice that you now have
the following .asm files in your current directory: main.asm,
mac1.asm, vec_mpyi.asm, and iir1.asm.

When the —k option is not used, the shell program deletes
the assembly output files after assembly is complete.

Turn on the maximum amount of optimization that is com-
patible with profiling. The —mg option allows you to profile
optimized code.

Invoke the linker. The addition of this option to the cl6x com-
mand line means that the code is compiled, assembled,
and linked in one step.

Use Ink.cmd as the linker command file. Linker command
files allow you to put linking information into a file, which is
useful when you invoke the linker often with the same in-
formation.

Linker command files are also useful because they allow
you to use the MEMORY directive, which defines the target
memory configuration, and the SECTIONS directive, which
controls how sections are built and allocated.

Code Development Flow Tutorial 2-5

§
Q

Part |

Lesson 1: Compiling, Assembling, and Linking the Example Code

-1 rts6201.lib Include the runtime-support library, rts6201.lib, which is in-
cluded on your CD-ROM.

The runtime-support functions in rts6201.lib were compiled
for little

-endian mode. For big-endian mode, use the runtime sup-
port functions in rts6201e.lib.

—o demol.out Name the output file demo1.out. (The default is a.out.)

Because this option came after the —z option, it was consid-
ered a linker option and was interpreted differently than the
—0 option that you entered before —z.

Try This: | The options above are used throughout the rest of this tutorial.

They are fairly common and might be ones that you want to use repeatedly.
To avoid having to retype them each time you run the code development tools,
you can use the C_OPTIONS environment variable. The shell program uses
the default options and/or input filenames that you name with the C_OPTIONS
environment variable every time you run the shell.

Use the commands in Table 2—1 to set up the C_OPTIONS environment vari-
able with the options used on page 2-5.

Table 2—1. Using the C_OPTIONS Environment Variable

Your Setup What to Change Command

Windows NTO System applet SET C_OPTION=—g —0 -k —mg *.c —z Ink.cmd —I rts6201.lib
WindowsO 95 autoexec.bat SET C_OPTION=—g —0 -k —mg *.c —z Ink.cmd —I rts6201.lib

C shell .cshrc setenv C_OPTION "—g —o —k —mg *.c —z Ink.cmd —| rts6201.lib”
Bourne or Korn shell .profile setenv C_OPTION "—g —0 -k —mg *.c —z Ink.cmd —| rts6201.lib”

2-6

Notice that the —o demo1.out linker option was not included. If it were included,
running the second tutorial example, demo2.c, would result in a output file
named demo1.out instead of a more logical name such as demo2.out.

Also, note that *.c is used. This tells the compiler to compile all of the C files
in the current directory. Make sure that your current directory contains all of the
C files that you want to compile and does not contain any additional C files that
you do not want to compile.

Lesson 1: Compiling, Assembling, and Linking the Example Code / Lesson 2: Profiling the Example Code

m If you are using SunQOS, be sure you reinitialize your shell before
continuing with this tutorial:

(1 For C shells, enter the following on a command line:
source ~/.cshrc

(1 For Bourne or Korn shells, enter the following on a command line:

source ~/.profile

2.4 Lesson 2: Profiling the Example Code

Now, use the profiler to look at the output of demo1. In this lesson, you will use
the profiler to see the total execution time in number of cycles of each C func-
tion in demo1.out.

To start the profiler and load demo1.out, follow these steps:
1) Double-click the icon for the debugger.

2) From the Profile menu, select Profile Mode.

The debugger switches to profiling mode and displays only the Com-
mand, Disassembly, File, and Profile windows.

3) From the File menu, select Load Program.

This displays the Load Program File dialog box.

4) Double-clickthe demo1.out file. To do so, you might need to change the
working directory.

This loads demo1.out into the profiler. Because the File window is re-
served for C programs, it disappears.

Code Development Flow Tutorial 2-7

Part |

Part |

Lesson 2: Profiling the Example Code

2-8

To select the areas of demo1 that you want profiled, follow these steps:

1)

From the Profile menu, select Select Areas.

This displays the Profile Marking dialog box.

2) Inthe Level box, select C.
3) Inthe Area box, select Functions.
This indicates that the C functions in demo1. out will be your profile
areas.
4) Click Mark.
Profile Marking !Elm
—&rea Marking
Level Area
& 0 Lines, Chat;
O desenble | | © Fanges St End |
 Both & Functions
Al areas
Mocule: [TEENNNNNE -] [Mok | Erabe |
Funchion: INM‘ LI Unmnark | Dizable |
Cloze | Help |
5) Click Close.

The Profile window is updated to include a line for each C function in
demof.

Lesson 2: Profiling the Example Code
To start the profiling session, follow these steps:
1)

Click the run icon on the toolbar:

This displays the Profile Run dialog box.
2)

In the Run Method box, select Quick, no exclusive fields. This will show

you the total execution time (cycle count) of a profile area, including the
execution time of any subroutines called within the functions.
3)

Part |

If main() is not already selected as your starting point, choose it from
the list of starting points.

Profile Run [x | |
Rur Method

7 Full, all fields

& Duick, no exclusive fields

0 RBesume, [Clear data

Often

Digplay Aate:

Mewver
1 1 1 1 1 1 1 1 1 1 1 1
=
Start Point: Imain

£l

|]S I Cancel |

Help |
4) Click OK.

The Run Method dialog box closes and the status bar reads Target:
Profiling to indicate that the profiling session has started.

Code Development Flow Tutorial

2-9

Part |

Lesson 2: Profiling the Example Code

The program restarts and runs to main() without profiling. Profiling begins
when main() is reached and continues until the exit point of main() is reached.
When profiling is complete, the status bar reads Target: Halted and your Profile
window looks like this:

[uw] Profile AEE

Type

Z Function
C Function
C Function
Z Function

|Area Hame Count Inclusive Incl-Ha=z |
1 270 270
1 167 167
1 831 831
1 316 3le

wec _mpyl(]

The Inclusive column indicates the cycle counts for each function, including
any function that it calls. Because these functions do not call any other func-
tions, the inclusive cycle counts are the same as the exclusive cycle counts.
Notice that the cycle count for the mac1() function is 167, and that the cycle
counts for the vec_mpy1() and iir1() functions are much higher—316 and
270, respectively.

Tointerpretthe cycle counts in the Profile window, you need to understand how
they are calculated. Here is the formula for calculating cycle counts:

Execute packets x loop iterations in C code + constant

An execute packet is a group of parallel instructions. You can have up to eight
instructions executing in parallel; therefore, each execute packet can contain
up to eight instructions. Execute packets are covered in more detail on
page 2-14.

Table 2—-2 shows how the cycle counts were calculated for each function.

Table 2-2. Cycle Counts

Function Execute Packets Loop lterations Constant Cycle Count
maci() 1 150 17 1 x 150 +17 =167
vec_mpy1() 2 150 16 2 x 150 + 16 = 316
irt() 5 50 20 5 x 50 +20 =270

2-10

Lesson 2: Profiling the Example Code

Try This: | The stand-alone simulator (load6x) is another tool that you can use

to find out what the cycle count for each function is. To get cycle count informa-
tion for each function with the stand-alone simulator, embed the clock() func-
tion in your C code. Example 2—5 shows how to rewrite demo1.c to include the
clock() function.

Example 2-5. Including the clock() Function in demo1.c (count.c)

#include <stdio.h>
#include <time.h>

main (int argc, char *argvl[])

{
const short coefs[150];
short optr[150];
short state[2];
const short af[l50];
const short b[150];
int ¢ = 0;
int dotp[l] = {0};
int sum= 0;
short y[150];
short scalar = 3345;
const short x[1507];
clock_t start, stop, overhead;

start = clock();

stop = clock();
overhead = stop - start;
start = clock();

sum = macl(a, b, c, dotp);
stop = clock();
printf ("macl cycles: %d\n”, stop - start - overhead);

start = clock();

vec_mpyl (y, x, scalar);

stop = clock();

printf ("vec_mpyl cycles: %d\n”, stop - start - overhead);

start = clock();

iirl (coefs, x, optr, state);

stop = clock();

printf (”iirl cycles: %d\n”, stop - start - overhead);

Note:

When using this method, remember to calculate the overhead and include
the appropriate header files.

Code Development Flow Tutorial 2-11

Part |

Part |

Lesson 2: Profiling the Example Code

2-12

Now, compile, assemble, and link count.c.

If you did not set up your C_OPTIONS environment variable as described
on page 2-6, enter the following on a command line:

cléx —g —o -k —-mg count.c macl.c vec_mpyl.c iirl.c
-z lnk.cmd -1 rts620l1.lib -o count.out

OR

If you set up your C_OPTIONS environment variable as described on
page 2-6, enter the following on a command line:

cléx -z —-o count.out

Although the —z option is already specified in the C_OPTIONS environment
variable, you need to specify it on the command line to indicate that this oc-

currence of —o is a linker option.

Use load6x to see the output of the printf statements that were embedded in
the C code.

On a command line, enter:

load6x count.out

You should see the following output:

TMS320C6x C I/0 COFF Loader Version 1.01
Copyright (c) 1989-1997 Texas Instruments Incorporated
Interrupt to abort

macl cycles: 175

vec_mpyl cycles: 324

iirl cycles: 278

NORMAL COMPLETION: 20949 cycles

Notice that these cycle counts are higher than the cycle counts that you saw
with the profiler. For example, mac1 is listed here as having 175 cycles; howev-
er, it was listed in the Profiler window as having 167 cycles. You will see some
extra cycles when you use load6x because you still have overhead for each
function call. When you use the profiler, the cycles needed for calling the func-
tions are not included in the profile display.

The Using the Standalone Simulator chapter in the TMS320C6x Optimizing
C Compiler User’s Guide discusses load6x in more detail.

Lesson 3: Phase 1 of the Code Development Flow

2.5 Lesson 3: Phase 1 of the Code Development Flow

Looking at the functions in demo1 one at a time, you can determine whether
or not they need to be improved and, if they do need to be improved, how they
can be improved. Start by looking at the first function, mac1().

Example 2—6 shows the assembly output of the function’s inner loop kernel.
The loop kernelis the area of the loop with the most parallelism. Only the inner
loop is shown, because this is the area that can be improved with software pi-
pelining. Notice that there are eight instructions executing in parallel (as indi-
cated by the seven sets of parallel bars). This is the maximum number of
instructions that the 'C62xx can execute in parallel, so this code does not need
to be improved.

Example 2—6. Inner Loop Kernel of mac1.asm

L3: ; PIPED LOOP KERNEL

ADD .12 B4,B7,B7 ;
I ADD .L1 A5,A3,A3 ;
I MPY .M2X A4,B5,B4 ;@@
I MPY M1 A4, A4, A5 ;@@
|l [BO] B .s1 L3 ;eeeee
|l [BO] SUB .S2 B0, 1,B0 ;eeeeee
|| LDH .D1 *A0++,A4 ;eeeEEEeE
I LDH .D2 *B6++,B5 ;eeeeeee

The @ characters specify the iteration of the loop that an instruction is on in
the software pipeline; these symbols are automatically created by the code
generation tools. One @ character represents the firstiteration, two @ charac-
ters represents the second iteration, and so on.

Because the mac1() function does not need to be improved, it does not need
to go beyond phase 1 of the code development flow.

Code Development Flow Tutorial 2-13

Part |

Lesson 3: Phase 1 of the Code Development Flow

Look at Example 2—7, which shows the assembly output of the innermost loop
forthe vec_mpy1() function. Recall from page 2-10 that the vec_mpy1() func-
tiontook 316 cyclesto execute. This code is not as parallel as the mac1() func-
tion. The assembly output for the vec_mpy1() function shows two execute
packets. Each execute packet has four parallel instructions. This loop can be

improved.
—
E Example 2—7. Inner Loop Kernel of vec_mpy1.asm
Q
L3: ; PIPED LOOP KERNEL
ADD .1L2X A3,B6,B5 ;
(|11 (211 B .s1 13 ;@e
I LDH .D2 *1B4 (6),B6 ;QQE
| LDH .D1 *A0++,Ad ;eeee
Execute packets STH D2 B5, *B4++ :
I SHR .s1 A3,15,A3 ;@
| MPY .M1 A5,A4,RA3 ;ea
[l [Al] SUB L1 Al,1,Al ;eQe

2-14

Lesson 3: Phase 1 of the Code Development Flow

Example 2—-8 shows the assembly output of the innermost loop for the iir()
function. Recall from page 2-10 that the iir1() function took 270 cycles to
execute. As you can see, some execute packets have five parallel instructions,
while others have as few as four parallel instructions, which indicates that the
code can probably be improved.

Example 2-8. Inner Loop Kernel of iir1.asm

L3: ; PIPED LOOP KERNEL
SHR .s2 B4,15,B4 ;
|| SHR .s1 A3,15,A5 ;
I MPY .M2X B6,A5,B6 ;@
I LDH .D1 *+A6(16),A4 ;QQ
I LDH .D2 *+B7(10),B6 ;@@
ADD .L1 A0, A5, A0 ;
I MPY .M1X B6,A3,A3 ;@
I MPY .M2X B5,A4,B5 ;@
I LDH .D1 *+A6(22),A3 ;@@
I LDH .D2 *+B7(8),B5 ;@@
EXT .51 AO,16,16,A0 ;
I STH .D2 B5, *+B7 (6) ;@
I MPY .M1X B5,A3, A4 ;@
I LDH .D1 *+A6(20),A3 ;@@
ADD .s1 8,26,A6 ;
I STH .D2 DO, *B7++(4) ;
I ADD LL1X 20,B4,A0 ;
|l [BO] SUB .12 B0, 1, B0 ;@
I ADD .82 B6,B5, B4 ;@
EXT .51 AO,16,16,A0 ;
|l [BO] B .s2 L3 ;@
I ADD .L1 A3,A4,A3 ;@
I LDH .D1 *+A6(18),A5 ;QQ@

To improve the vec_mpy() andiir() functions, start by seeing how you can re-
fine and improve your C code. This is what is referred to as phase 2 of the code
development flow, and this is what the next lesson is about.

Code Development Flow Tutorial 2-15

Part |

Lesson 4: Phase 2 of the Code Development Flow

2.6 Lesson 4: Phase 2 of the Code Development Flow

For your convenience, the vec_mpy1() function is duplicated here as
Example 2-9 (the C version) and Example 2—10 (the assembly output of the
inner loop). This is the same code that you saw in Example 2-3 and
Example 2—-7.

E Example 2-9. The Vector Multiply Function—vec_mpy1.c
(]

Q

void vec_mpyl (short y[], const short x[], short scalar)

{

int i;

for (i = 0; 1 < 150; i++)
y[i]l += ((scalar * x[i]) >> 15);

Example 2—9 uses short data types. Because short data types are 16 bits, they
translate into halfword instructions, such as LDH and STH (see
Example 2-10).

The loop in Example 2—10 uses two LDH instructions and an STH instruction
to load x[i] and y[i] and store back to y[i]. Because only two memory operations
can occur per cycle, the fastest that this loop can execute is one y[i] result ev-
ery two cycles. This loop is limited by the number of D units.

Example 2—-10. Inner Loop Kernel of vec_mpy1.asm

2-16

L3: ; PIPED LOOP KERNEL
ADD .L2X A3,B6,B5 ;
[[Al] B .S1 L3 ; Q@
[LDH .D2 *+B4 (6) ,B6 ;eee
[LDH .D1 *A0++,A4 ;eeee
STH .D2 B5, *B4++ ;
[SHR .S1 A3,15,A3 ;@
[MPY .M1 A5,A4,A3 ; Qe
[l [Al] SUB .11 Al,1,Al ;eee

Because x is an array, x[i] and x[i + 1] are next to each other in memory. This
means that instead of using halfword instructions (LDH and STH) to load and
store each elementin the array, you can use word instructions (LDW and STW)
to load and store two elements at a time, as long as the data is aligned on a
word boundary. In other words, all word accesses should have the 2 LSBs of
the address set to zero. Two elements at a time, x[i] and x[i + 1], fit into one
32-bit register.

Lesson 4: Phase 2 of the Code Development Flow

To achieve this in C, declare x[] as an integer instead of as a short data type.
Also, you need to use some intrinsics.

Now that you have determined that you can load x[i] and x[i + 1] into the same
register, you need to figure out how to do it. You can do this by using the _mpy
and _mpylh intrinsics. Intrinsics are like built-in C functions that correspond to
'C62xx assembly language instructions. The _mpy intrinsic multiplies the
16 LSBs of one operand by the 16 LSBs of another and returns the result. The
_mpylh intrinsic multiplies the 16 LSBs of the first operand by the 16 MSBs of
the second and returns the result.

You can then use the _add2 intrinsic to add the 16 MSBs of the first operand
to the 16 MSBs of the second operand. At the same time, the _add2 intrinsic
also adds the 16 LSBs of the first operand to the 16 LSBs of the second oper-
and. The result of both additions is stored in a 32-bit operand.

MSBs LSBs
+ +

MSBs LSBs

MSBs LSBs

Example 2—11 shows how to rewrite the vec_mpy() function to include the
_mpy and _mpylh intrinsics:

Example 2—11. The Revised Vector Multiply Function—vec_mpy2.c

void vec_mpy2 (int yI[], const int x[], short scalar)
{

int i, wval;

unsigned int temph, templ;

for (i = 0; i < 75; i++)

{

val = x[1];

templ = (_mpy (scalar, val) >> 15) & 0x0000ffff;
temph = (_mpylh(scalar, val) << 1) & Oxffff0000;
y[i] = _add2(y[i], temph | templ);

}

Code Development Flow Tutorial 2-17

Part |

Part |

Lesson 4: Phase 2 of the Code Development Flow

Now, look at the iir1() function. Example 2—12 shows the same code that you

saw in Example 2—4.

Example 2—12. The Biquad Filter—iir1.c

void iirl (const short *coefs,
short *optr,

{

short X;
short t;
int n;

x = input[0];

}

*optr++ = x;

const short *input,

short *state)

for (n = 0; n < 50; n++)
{
t = x + ((coefs[2] * state[0] +
coefs[3] * state[l])
x =t + ((coefs[0] * state[0] +
coefs[l] * state[l])
state[l] = state[0];
state[0] = t;
coefs += 4;
state += 2;

>> 15);

>> 15);

/* point to next filter coefs
/* point to next filter states

*/
*/

Lesson 4: Phase 2 of the Code Development Flow

You can improve the iir() function by using the same methods that you used
to improve the vec_mpy() function. Example 2—13 shows how to rewrite the
iir() function:

Example 2—13. The Revised Biquad Filter—iir2.c

void iir2 (const int *coefs, const short *input,
short *optr, short *state)

{

short X;
short t;
int n;
x = input[0];

for (n = 0; n < 50; n++)

t= x+((_mpy (coefs[1l],state[0]) +
_mpyhl (coefs[1l],state[l])) >> 15);

x= t+ ((_mpy (coefs[0],state[0]) +

_mpyhl (coefs[0],state[1l])) >> 15);
state[l] = statel[0];
state[0] = t;
coefs += 2;
state += 2;

*optr++ = x;

Code Development Flow Tutorial 2-19

Part |

Part |

Lesson 4: Phase 2 of the Code Development Flow

Using demo2.c, shown in Example 2—14, run the revised functions through the

compiler, assembler, and linker.

Example 2—14. The Revised Example—demo2.c

main (int argc, char *argvl[])

{
const short coefs[100];
short optr[100];
short statel[2];
const short a[l100];
const short b[100];
int ¢ = 0;
int dotp[l] = {0};
int sum= 0;
short y[100];
short scalar = 3345;
const short x[100];

sum = macl(a, b, c, dotp);
vec_mpy2 (y, x, scalar);
iir2 (coefs, x, optr, state);

2-20

Lesson 4: Phase 2 of the Code Development Flow

If you did not set up your C_OPTIONS environment variable as described
on page 2-6, enter the following on a command line:

cléx —g —-o -k -mg demo2.c macl.c vec_mpy2.c iir2.c
-z lnk.cmd -1 rts6201.lib -o demo2.out

OR

If you set up your C_OPTIONS environment variable as described on
page 2-6, enter the following on a command line:

cléx -z —-o demo2.out

Although the —z option is already specified in the C_OPTIONS environment
variable, you need to specify it on the command line to indicate that this oc-
currence of —o is a linker option.

The innerloop of the vec_mpy?2() function translates into the following assem-
bly output:

Example 2—-15. Inner Loop Kernel of vec_mpyZ2.asm

L3: ; PIPED LOOP KERNEL
OR .L2X B5,A8,B7 ;@
I SHL .s1 A6,1,Ad ;@@
Il [Al] B .s2 13 ;@@
I AND .11 A5,A4, A6 Qe
I LDW .D2 *+B4 (12),B5 ;QQ@
I MPYLH M1 A0,A9, A6 ;QRR
I LDW .D1 *A3++,A9 ;RRRRRE
STW .D2 B6, *B4d++ ;
I ADD2 .s2 B5,B7,B6 ;@
I AND JL1 A7,A4,A8 ;ee
I MV .L2X A6,B5 ; Qe
|l [Al)] SUB .D1 Al,1,Al ;Qee
I SHR .s1 A8,15,A4 ;RRE
I MPY M1 AO,A9,A8 ;RRRE

As you can see, the code for the vec_mpy2() function is improved over the
original vec_mpy() code. Two LDW instructions are loading four elements
(x[i], x[i+1], y[il, and y[i+1]), and one STW instruction is storing two elements:
x[i] and y[i+1]. With the revised code, two y][i] results are stored every two
cycles. Recall that only one y[i] result was stored every two cycles in
Example 2-10.

Code Development Flow Tutorial 2-21

Part |

Part |

Lesson 4: Phase 2 of the Code Development Flow

Table 2—-3 shows how the vec_mpy() function has improved as it moved from
phase 1 to phase 2.

Table 2-3. Revised Cycle Counts for vec_mpy()

Function Execute Packets Loop lterations Constant Cycle Count
vec_mpy1() 2 150 16 2 x 150 + 16 =316
vec_mpy2() 2 75 22 2x75+22=172

Now, look at the inner loop of the third function, iir(). Example 2—16 shows the
assembly output of the innermost loop for the revised iir() function:

Example 2—-16. Inner Loop Kernel of iir2.asm

L3: ; PIPED LOOP KERNEL
ADD .12 B7,B8,B7 ;
I ADD .11 20,A3,A0 ;
W MV .52 B6, B9 ;@
' STH .D1 AS, *+A4 (6) ;e
[LDW .D2 *B5++(8) ,B8 ;@@
SHR .52 B7,15,B7 ;
I EXT .51 20,16,16,A0 ;
[| [BO] SUB L2 BO, 1, B0 ;@
[MPY .M2X B8,AS5, B8 ;e
W ADD .L1X B6,A3,A3 ;@
W LDH .D2 *+B4 (14) ,B6 ;QQE
ADD .L1X A0,B7,A6 ;
I MPYHL .M2 B8,B9,B7 ;@
[SHR .51 A3,15,A3 ;@
Il [BO] B .52 L3 ;@
[LDW .D2 *+B5(4),B7 ;@Qe
] LDH .D1 *+A4 (12) ,A5 ;QQe
ADD .12 4,B4,B4 ;
' STH .D1 A0, *A4++(4)
' EXT .51 26,16,16,A0 ;
'l MPYHL .M2 B7,B6,B6 ;ee
W MPY .M1X B7,AS5,A3 ;ee

2-22

Lesson 4: Phase 2 of the Code Development Flow

Table 2—4 shows how the iir() function has improved. Now, the code has only
four execute packets; however, each packet has only five parallel instructions,
which could be probably improved.

Table 2—-4. Revised Cycle Counts for iir()

Function Execute Packets Loop Iterations Constant Cycle Count
irt() 5 50 20 5 x 50 +20=270
iir2() 4 50 20 4 x 50 + 20 =220

Use the profiler to view the cycle counts of the revised functions.

Your profile window should look like this:

[z Profile [_ (O] x|
Type | Area Hame Count Inclusive Incl-Hax |
C Function vec_mnpyal) 1 172 172
C Function iirz2 () 1 220 220
C Function nacl() 1 167 167
C Function maing) 1 637 637

Notice that the cycle count for the second function, the vector multiply, is down
from 316 to 172. The IIR filter has improved also: it is down from 270 to 220.
However, the cycle count for the IR filter is still too high. Naturally, the cycle
count for main() has decreased also. It is down from 831 to 637.

Table 2-5. Revised Cycle Counts

Function Execute Packets Loop Iterations Constant Cycle Count
mac1()T 1 150 17 1 x 150 +17 =167
vec_mpy2() 2 75 22 2xX75+22=172
iir2() 4 50 20 4 x 50 +20 =220

T The cycle count for the mac1() function has not changed.

You have done everything you can to refine the C code in the iir() function. To
improve your code at this point, you need to use the assembly optimizer. This
leads you to phase 3 of the code development flow.

Code Development Flow Tutorial 2-23

Part |

Part |

Lesson 5: Phase 3 of the Code Development Flow

2.7 Lesson 5: Phase 3 of the Code Development Flow

2-24

To further improve the iir() function, you will need to rewrite it in linear assem-
bly. Linear assembly is the input for the assembly optimizer.

Linear assembly is similar to regular ’‘C62xx assembly code in that you use
'C62xx instructions to write your code. With linear assembly, however, you do
not need to specify all of the information that you need to specify in regular
'C62xx assembly code. With linear assembly code, you have the option of
specifying the information or letting the assembly optimizer specify it for you.
Here is the information that you do notneed to specify in linear assembly code:

[Parallel instructions

(O Pipeline latency

(1 Register usage

[Which functional unit is being used

If you choose not to specify these things, the assembly optimizer determines
the information that you do not include, based on the information that it has
about your code. As with other code generation tools, you might need to modify
your linear assembly code until you are satisfied with its performance. When
you do this, you will probably want to add more detail to your linear assembly.
For example, you might want to specify which functional unit should be used.

Before you use the assembly optimizer, you need to know the following things
about how it works:

[A linear assembly file must be specified with a .sa extension.

[J Linearassembly code shouldinclude the .cproc and .endproc directives.
The .cproc and .endproc directives delimit a section of your code that you
want the assembly optimizer to optimize. Use .cproc at the beginning of
the section and .endproc at the end of the section. In this way, you can set
off sections of your assembly code that you want to be optimized, like pro-
cedures or functions.

[Linear assembly code may include a .reg directive. The .reg directive al-
lows you to use descriptive names for values that will be stored in regis-
ters. Whenyou use .reg, the assembly optimizer chooses a register whose
use agrees with the functional units chosen for the instructions that oper-
ate on the value.

(1 Linear assembly code may include a .trip directive. The .trip directive
specifies the value of the trip count. The trip count indicates how many
times a loop will iterate.

Now that you have some information about the fundamentals of linear assem-
bly code, look at the revised C code for the biquad filter again. Example 2—17
shows the same code that you saw in Example 2—13.

Lesson 5: Phase 3 of the Code Development Flow

Example 2—17. The Revised Biquad Filter—iir2.c

{

void iir2 (const int *coefs, const short *input,

short X;
short t;
int n;
x = input[0];

for (n = 0; n < 50; n++)

*optr++ = x;

short *optr, short *state)

t= x+((_mpy (coefs[1l],state[0]) +
_mpyhl (coefs[1l],state[1l])) >> 15);

x= t+ ((_mpy (coefs[0],state[0]) +

_mpyhl (coefs[0],state[1l])) >> 15);
state[l] = state[0];
state[0] = t;
coefs += 2;
state += 2;

Example 2—-18 shows how to rewrite the iir() function in linear assembly.

Code Development Flow Tutorial 2-25

Part |

Lesson 5: Phase 3 of the Code Development Flow

Example 2—18. The Biquad Filter, Revised and Assembly-Optimized—iir3.sa

.def _iir3
_iir3 .cproc cptr0,sptr0

.reqg cptrl, s01, sl10, s23, cl0,
.reg p0, pl, p2, p3, s23_s, sl,

—

E MV .2 cptr0,cptrl

Q MV .1 sptr0, sptrl
MVK 50, ctr

LOOP: .trip 50
LDW .D1T1 *cptr0,c32
LDW .D2T2 *cptrl,clO
LDW .D1T2 *sptr0,sl0
MV .2 s10,s10p
MPY M1 c32,s10,p2
MPYH M1 c32,s10,p3
ADD .1 P2,p3,s23
SHR .1 s23,15,s823_s
ADD .2 s23_s,x,t
AND .2 t,mask, t
MPY .M2 cl0,s10,p0
MPYH .M2 cl0,s10,pl
ADD .2 p0,pl,s10_t
SHR .2 s10_t,15,s10_s
ADD .2 sl1l0_s,t,x
SHL .2 s10p,16,sl
OR .2 t,sl,s01
STW .D1 s01, *sptrl
[ctr] ADD .S1 -1l,ctr,ctr
[ctr] B .51 LOOP

.endproc

c32,

s10_s,
x, mask,

s10_t

sptrl, sl0p, ctr

setup loop counter

coefAddr[3]
CoefAddr[1]
StateAddr[1]
save StateAddr([1]

& CoefAddr[2]
& CoefAddr[0]
& StateAddr[0]
& StateAddr[0]

CoefAddr[2] * StateAddr[0]
CoefAddr([3] * StateAddr([l]

CA[2] * SA[Q] + CA[3] * SA[1l]

(CA[2] * SA[O] + CA[3] * SA[1l]) >> 15
t = x+((CA[2]*SA[0]+CA[3]*SA[1])>>15)
clear upper 16 bits

CoefAddr[0] * StateAddr[0]
CoefAddr[1] * StateAddr([1]

CA[0] * SA[O0] + CA[1] * SA[1l]

(CA[O] * SA[0] + CA[1l] * SA[1]) >> 15
x = t+ ((CA[0]*SA[O0]+CA[1]*SA[1])>>15)

StateAddr[1] = StateAddr[0]
StateAddr[0] = t
store StateAddr[1l] & StateAddr[0]
dec outer lp cntr

Branch outer loop

2-26

Lesson 5: Phase 3 of the Code Development Flow

Using demo2.c, shown in Example 2—19, run the revised functions through the
code generation tools.

Example 2—19. The Revised Example—demo3.c

main (int argc, char *argv([])

{
const short coefs[1507];
short optr[150];
short statel[2];
const short a[l507];
const short b[150];
int ¢ = 0;
int dotpl[l] = {0};
int sum = 0;
short y[150];
short scalar = 3345;
const short x[150];

sum = macl(a, b, c, dotp);
vec_mpy2 (y, %, scalar);
iir3(coefs, x, optr, state);

Use the shell program (cl6x) to compile, assemble, and link. Be sure you use
the —mg option. The —mg option ensures that the optimizations that are used
are compatible with profiling.

On a command line, enter:

cléx —g —-o -k -mg demo3.c macl.c vec_mpy2.c iir3.sa
-z lnk.cmd -1 rts6201.1lib -o demo3.out

Notice that you used the shell program to compile a linear assembly file and
a Cfile at the same time. Also notice that (except for the —mg option) you used
the same options that you used in the first part of this tutorial. The assembly
optimizer has a small set of some unique options, but many of the options that
you will use are shell options that apply to either linear assembly files or C files.

Code Development Flow Tutorial 2-27

Part |

Part |

Lesson 5: Phase 3 of the Code Development Flow

Example 2-20. Inner Loop Kernel of iir3.asm

L3: ; PIPED LOOP KERNEL
AND L2 B3,B7,B0 ; clear upper 16 bits
[ADD .S2 BO, B8, B8 ;@ CA[0] * SA[0] + CA[1l] * SA[1]
'l [Al] B .S1 L3 ;@ Branch outer loop
|| ADD L1 A4,A5,A4 ;@ CA[2] * SA[O] 4+ CA[3] * SA[1l]
[MPYH M2 B2,B1,B8 ;@@ CoefAddr[1l] * StateAddr[1]
|| MPY .M1X A0,B1,A4 ;@@ CoefAddr[2] * StateAddr[0]
|| LDW .D2 *B6,B2 ;@@QRQ CoefAddr[1l] & CoefAddr[0]
|| LDW .D1 *A3,A0 ;@QQRQ coefAddr[3] & CoefAddr[2]
ADD .D2 B4,B0,B9 ; X = t+((CA[O]*SA[0]+CA[1]*SA[1l])>>15)
[l OR L2 B0O,B9, B0 ; StateAddr[0] =t
|| SHR .S2 B8, 0xf, B4 ;@ (CA[0] * SA[0] + CA[1] * SA[1]) >> 15
[SHR .S1 A4,0xf, A5 ;@ (CA[2] * SA[0] + CA[3] * SA[1l]) >> 15
[MPY M2 B2,B1,B0 ;@@ CoefAddr[0] * StateAddr[0]
|| MPYH .M1X A0,B1,A5 ;@@ CoefAddr[3] * StateAddr[1l]
|| LDW .D1 *A6,B1 ;@@QQ StateAddr[1l] & StateAddr[0]
STW .D1 BO, *A7 ; store StateAddr[1l] & StateAddr([0]
|| SHL .S2 B5,0x10,B9 ;@ StateAddr[1] = StateAddr[O0]
[l ADD .L2X B9,A5,B3 ;@ t = x+((CA[2]*SA[0]+CA[3]*SA[1])>>15)
|| [Al] ADD .S1 Oxffffffff,Al,Al ;Q@Q@ dec outer lp cntr
|| MV .D2 B1,B5 ;@@ save StateAddr[l] & StateAddr[0]

Table 2—-6 shows how the iir() function has improved as it has moved through

the three phases of code development.

Table 2-6. Revised Cycle Counts for iir()

Function Execute Packets Loop lterations Constant Cycle Count

iirt() 6 50 20 6 X 50 + 20 =270
ir2() 4 50 20 4 x 50 + 20 =220
ir3() 3 50 27 3 XxX50+27=177

2-28

Lesson 5: Phase 3 of the Code Development Flow

Use the profiler to view the cycle counts of the revised functions.

Your profile window should look like this:

[Fum Profile !EI E

Tvpe | Area NHame Count Inclu=sive Incl-Hax |
C Function wvec_mpy2() 1 172 172
C Function 1ixr3() 1 177 177
C Function macl() 1 167 167
C Function maing) 1 594 594

Notice that the cycle count for the IIR filter has improved: it is down from 220
to 177. Naturally, the cycle count for main() has decreased also. It is down
from 637 to 594.

Table 2—-7. Revised Cycle Counts

Function Execute Packets Loop lterations Constant Cycle Count
maci()t 1 150 17 1 x 150 + 17 = 167
vec_mpy2()T 2 75 22 2x75+22=172
iir3() 3 50 27 3 x 50 +27 =177

T The cycle count for the mac1() function and the vec_mpy() function have not changed.

The Using the Assembly Optimizer chapter in the TMS320C6x Optimizing C
Compiler User’s Guide discusses the assembly optimizer in more detail.

Code Development Flow Tutorial 2-29

Part |

Part |

Summary

2.8 Summary

2-30

Congratulations! In this tutorial, you learned the following things:

a

The three phases of code development, how to determine which phases
are appropriate for improving different parts of your code, and how to write
your code for each phase.

What a linear assembily file is and some fundamental information on how
to write one.

How to use the code generation tools to compile, assemble, and link your
C and linear assembly files.

How to use the profiler to analyze your results and determine whether or
not you need to continue refining your code.

P_art I
Introduction

Part Il

C Code

Part Il
Assembly Code

Part IV

Appendix

Il 1ed

Optimizing C Code

You can maximize C performance by using compiler options, intrinsics, and
code transformations. This chapter discusses the following topics:

(1 The compiler and its options
1 Intrinsics

(1 Software pipelining

(1 Loop unrolling

S

Q
Topic Page
31 WritingCCodeccmmmmniiiiiiiii e neneaannnnnnnnns 3-2
3.2 CompilingCCodeccuuuuuiiiinnrrrrrrrnennnnnnnnnnnnns 34
&%) [REIe) © 6D tooooccaanaoocoaannnooonacoocooaaaoooooannanooc 3-9

3-1

Part Il

Writing C Code

3.1 Writing C Code

3.1.1

This chapter shows you how to analyze and tailor your code to be sure you are
getting the best performance from the 'C6x architecture.

Tips on Data Types

Give careful consideration to the data type size when writing your code. The
'C6x compiler defines a size for each data type (signed and unsigned):

[char 8 bits

] short 16 bits

[int 32 bits

J long 40 bits

Based on the size of each data type, follow these guidelines when writing C
code:

1 Avoid code that assumes that int and long types are the same size,

a

because the 'C6x compiler uses long values for 40-bit operations.

Use the short data type for multiplication inputs whenever possible
because this data type provides the most efficient use of the 16-bit multi-
plier in the *C62xx.

Use int or unsigned int types for loop counters, rather than short or un-
signed short data types, to avoid unnecessary sign-extension instructions.

3.1.2 Analyzing C Code Performance

3-2

Use the following techniques to analyze the performance of specific code
regions:

a

One of the preliminary measures of code is the time it takes the code to
run. Use the clock () and printf () functions in C to time and display the
performance of specific code regions. You can use the stand-alone simu-
lator (load6x) to run the code for this purpose.

Use the profile mode in the debugger, as explained in the TMS320C6x
C Source Debugger User’s Guide, to collect execution statistics about
specific areas in your code.

Writing C Code

(1 Use breakpoints, the clk register, and the RUNB command in the
debugger, as described in the TMS320C6x C Source Debugger User’s
Guide, to track the number of CPU clock cycles consumed by a particular
section of code.

(1 The critical performance areas in your code are most often loops. The
easiest way to optimize a loop is by extracting it into a separate file that
can be rewritten, recompiled, and run stand-alone.

As you use the techniques described in this chapter to optimize your C code,
you can then evaluate the performance results by running the code and
looking at the instructions generated by the compiler.

Optimizing C Code 3-3

Part Il

Part Il

Compiling C Code

3.2 Compiling C Code

The 'C6x compiler offers high-level language support by transforming your C
code into more efficient assembly language source code. The compiler tools
include a shell program (cl6x), which you use to compile, assembly optimize,
assemble, and link programs in a single step. To invoke the compiler shell, en-
ter:

cl6x [options] [filenames] [-z [linker options] [object files]]
For a complete description of the C compiler and the options discussed in this
chapter, see the TMS320C6x Optimizing C Compiler User’s Guide.

3.2.1 Compiler Options

Options control the operation of the compiler. Table 3—1 defines the options
discussed in this chapter.

Table 3—1. Subset of Compiler Options

Option Description
—ot Enables software pipelining and other optimizations in the
compiler
—pm¥ Enables program-level optimization
—mt Enables the compiler to use assumptions that allow it to
be more aggressive with certain optimizations
-mg Allows you to profile optimized code
-ms Ensures that redundant loops are not generated
-k Keeps the assembly file so that you can inspect it
—-mu Disables software pipelining

T Although —03 is preferable, at a minimum use the —o option.
1 Use the —pm option for as much of your program as possible.

3-4

Compiling C Code

3.2.2 Memory Dependencies

To maximize the efficiency of your code, the 'C6x compiler schedules as many
instructions as possible in parallel. To schedule instructions in parallel, the
compiler must determine the relationships, or dependencies, between instruc-
tions. Dependency means that one instruction must occur before another.
Because only independent instructions can execute in parallel, dependencies
inhibit parallelism.

4 Ifthe compiler cannot determine that two instructions are independent (for
example, b does not depend on a), it assumes a dependency and sched-
ules the two instructions sequentially.

[Ifthe compiler can determine that two instructions are independent of one
another, it can schedule them in parallel.

Often it is difficult for the compiler to determine if instructions that access
memory are independent. The following techniques help the compiler deter-
mine which instructions are independent:

1 Use the const keyword to indicate which objects are not changed by a
function.

(1 Usethe—pm (program-level optimization) option, which gives the compiler
global access to the whole program or module and allows it to be more
aggressive in ruling out dependencies.

(1 Usethe —mt option, which allows the compiler to use assumptions that al-
low it to eliminate dependencies.

To illustrate the concept of memory dependencies, it is helpful to look at the
algorithm code in a dependency graph. Example 3—1 shows the C code for a
basic vector sum. Figure 3—1 shows the dependency graph for this basic vec-
tor sum. (For more information, see section 5.2.4, Drawing a Dependency
Graph, on page 5-5.)

Example 3—1. Basic Vector Sum

void vecsum(short *sum, short *inl, short *in2, unsigned int N)
{

int i;

for (i = 0; 1 < N; i++)
sum[i] = inl[i] + in2[1i];

Optimizing C Code 3-5

Part Il

Part Il

Compiling C Code

Figure 3—1. Dependency Graph for Vector Sum #1

Load Load
5 5
Number of cycles required Add elements 1
to complete an instruction ———» 1 M ¥
1
Store to

"HHilmeow

The dependency graph in Figure 3—1 shows that:

(1 The paths from sum[i] back to in1[i] and in2[i] indicate that writing to sum
may have an effect on the memory pointed to by either in1 or in2.

(1 Aread fromin1 or in2 cannot begin until the write to sum finishes, which
creates an aliasing problem. Aliasing occurs when two pointers can point
to the same memory location. For example, if vecsum() is called in a pro-
gram with the following statements, in1 and sum alias each other because
they both point to the same memory location:

short a[l0], b[10];
vecsum(a, a, b, 10);

3.2.2.1 The const Keyword

3-6

In Figure 3—1, the reads from in1 and in2 finish before the write to sum within
a single iteration. However, the ’C6x compiler uses software pipelining to exe-
cute multiple iterations in parallel and, therefore, must determine memory
dependencies that exist across loop iterations.

To help the compiler, you can qualify an object with the const keyword, which
indicates that a variable or the memory referenced by a variable will not be
changed, but will remain constant. It is good coding practice to use the const
keyword wherever you can, because it is a simple way to increase the perfor-
mance and robustness of your code.

Compiling C Code

Example 3—-2 shows the vecsum() example rewritten with the const keyword
to indicate that the write to sum never changes the memory referenced by in1
and in2. Figure 3—-2 shows the revised dependency graph for the code in the
inner loop.

Example 3—2. Vector Sum With const Keywords

void vecsum2 (short *sum, const short *inl, const short *in2, unsigned int N)

int 1;
for (i = 0; i < N; i++)
sum[i] = inl[i] + in2[i];

Figure 3-2. Dependency Graph for Vector Sum #2
Load Load

5 5
Add elements

€« —¥

1
Store to

H memory

Example 3—-3 shows the output of the compiler for the vector sum in
Example 3—2. The compiler finds better schedules when dependency paths
are eliminated between instructions. For this loop, the compiler found a soft-
ware pipeline with a 2-cycle kernel, compared with seven cycles for the
previous loop. (The kernel is the body of a pipelined loop where all instructions
execute in parallel.)

Optimizing C Code 3-7

Part Il

Part Il

Compiling C Code

Example 3-3. Compiler Output for Vector Sum Code

L14: ; PIPE LOOP KERNEL
ADD .L1X B4,A0,A5

|| [BO] B .s2 L14

I LDH .D1 *A3++, A0
STH .D1 A5, *Ad++

|| [BO] SUB .12 B0, 1,B0

I LDH .D2 *B5++, B4

For basic information on assembly code, see Chapter 4, Structure of Assem-
bly Code.

3.2.2.2 Performing Program-Level Optimization (—pm Option)

You can specify program-level optimization by using the —pm option with the
—03 option. With program-level optimization, all your source files are compiled
into one intermediate file called a module. The module moves to the optimiza-
tion and code generation passes of the compiler. Because the compiler has
access to the entire program, it performs several optimizations that are rarely
applied during file-level optimization:

[[faparticular argumentin a function always has the same value, the com-
piler replaces the argument with the value and passes the value instead
of the argument.

(O Ifareturnvalue of afunction is never used, the compiler deletes the return
code in the function.

(O If a function is not called, directly or indirectly, the compiler removes the
function.

3.2.2.3 The —mt Option

3-8

Another way to eliminate memory dependencies is to use the —mt option,
which allows the compiler to use assumptions that can eliminate memory de-
pendency paths. For example, if you use the —mt option when compiling the
code in Example 3—1, the compiler uses the assumption that that in1 and in2
do not alias memory pointed to by sum and, therefore, eliminates memory
dependencies among the instructions that access those variables.

Refining C Code

3.3 Refining C Code

You canrealize substantial gains from the performance of your C code by refin-
ing your code in the following areas:

[J Using intrinsics to replace complicated C code

[Using word access to operate on 16-bit data stored in the high and low
parts of a 32-bit register

[Software pipelining the instructions manually

3.3.1 Using Intrinsics

The 'C6x compiler provides intrinsics, special functions that map directly to
inlined’C62xx instructions, to optimize your C code quickly. All instructions that
are not easily expressed in C code are supported as intrinsics. Intrinsics are
specified with a leading underscore (_) and are accessed by calling them as
you call a function.

For example, saturated addition can be expressed in C code only by writing
a multicycle function, such as the one in Example 3—4.

Example 3—4. Saturated Add Without Intrinsics

int sadd(int a, int b)
{

int result;
result = a + b;
if (((a ~ b) & 0x80000000) == 0)

if ((result ”~ a) & 0x80000000)
{
result = (a < 0) ? 0x80000000 : Ox7fffffff;
}
}

return (result);

This complicated code can be replaced by the _sadd() intrinsic, which results
in a single 'C62xx instruction (see Example 3-5).

Example 3-5. Saturated Add With Intrinsics

result = _sadd(a,b);

Optimizing C Code 3-9

Part Il

Part Il

Refining C Code

Table 3-2 lists the ’C62xx intrinsics. For more information on using intrinsics,
see the TMS320C6x Optimizing C Compiler User’s Guide.

Table 3-2. TMS320C6x C Compiler Intrinsics

Assembly

C Compiler Intrinsic Instruction Description

int _abs(int src2); ABS Returns the saturated absolute value of src2.

long _abs(long src2);

int _add2(int src1, int src2); ADD2 Adds the upper and lower halves of src1 to the
upper and lower halves of src2 and returns the
result. Any overflow from the lower half add will not
affect the upper half add.

uint _clr(uint src2, uint csta, uint cstb); CLR Clears the specified field in src2. The beginning
and ending bits of the field to be cleared are speci-
fied by csta and cstb, respectively.

int _ext(uint src2, uint csta, int cstb); EXT Extracts the specified field in src2, sign-extended
to 32 bits. The extract is performed by a shift left
followed by a signed shift right; csta and cstb are
the shift left and shift right amounts, respectively.

uint _extu(uint src2, uint csta, uint cstb); EXTU Extracts the specified field in src2, zero-extended
to 32 bits. The extract is performed by a shift left
followed by a unsigned shift right; csta and cstb
are the shift left and shift right amounts, respec-
tively.

uint _Imbd(uint src7, uint src2): LMBD Searches for a leftmost 1 or 0 of src2 determined
by the LSB of src1. Returns the number of bits up
to the bit change.

int _mpy(int srct, int src2); MPY Multiplies the 16 LSBs of src1 by the 16 LSBs of

int _mpyus(uint src1, int src2); MPYUS src2 and returns the result. Values can be signed

int _mpysu(int srct, uint src2); MPYSU or unsigned.

uint _mpyu(uint src1, uint src2); MPYU

int _mpyh(int src1, int src2); MPYH Multiplies the 16 MSBs of src1 by the 16 MSBs of

int _mpyhus(uint src1, int src2); MPYHUS src2 and returns the result. Values can be signed

int _mpyhsu(int src1, uint src2); MPYHSU or unsigned.

uint _mpyhu(uint src1, uint src2); MPYHU

int _mpyhl(int srct, int src2); MPYHL Multiplies the 16 MSBs of src1 by the 16 LSBs of

int _mpyhuls(uint src1, int src2); MPYHULS src2 and returns the result. Values can be signed

int _mpyhslu(int src1, uint src2); MPYHSLU or unsigned.

uint _mpyhlu(uint src1, uint src2); MPYHLU

3-10

Refining C Code

Table 3—2. TMS320C6x C Compiler Intrinsics (Continued)

Assembly

C Compiler Intrinsic Instruction Description

int _mpylh(int src1, int src2); MPYLH Multiplies the 16 LSBs of src1 by the 16 MSBs of

int _mpyluhs(uint src1, int src2); MPYLUHS src2 and returns the result. Values can be signed

int _mpylshu(int src1, uint src2); MPYLSHU or unsigned.

uint _mpylhu(uint src1, uint src2); MPYLHU

void _nassert(int); Generates no code. Tells the optimizer that the
expression declared with the assert function is
true; this gives a hint to the optimizer as to what
optimizations might be valid.

uint _norm(int src2); NORM Returns the number of bits up to the first nonre-

uint _lnorm(long src2); dundant sign bit of src2.

int _sadd(int src1, int src2); SADD Adds src1 to src2 and saturates the result. Returns

long _lIsadd(int src1, long src2): the result.

int _sat(long src2); SAT Converts a 40-bit value to an 32-bit value and
saturates if necessary.

uint _set(uint src2, uint csta, uint cstb); SET Sets the specified field in src2 to all 1s and returns
the src2 value. The beginning and ending bits of
the field to be set are specified by csta and cstb,
respectively.

int _smpy(int src1, int sr2); SMPY Multiplies src1 by src2, left shifts the result by one,

int _smpyh(int src1, int sr2); SMPYH and returns the result. If the result is 0x8000 0000,

int _smpyhl(int src1, int sr2); SMPYHL saturates the result to 0x7FFF FFFF.

int _smpylh(int src1, int sr2); SMPYLH

uint _sshl(uint src2, uint srcf); SSHL Shifts src2 left by the contents of src1, saturates
the result to 32 bits, and returns the result.

int _ssub(int src1, int src2); SSuB Subtracts src2 from src1, saturates the result size,

long _Issub(int src1, long src2): and returns the result.

uint _subc(uint src1, uint src2); SUBC Conditional subtract divide step.

int _sub2(int src1, int src2); SUB2 Subtracts the upper and lower halves of src2from

the upper and lower halves of src1, and returns the
result. Any borrowing from the lower half subtract
does not affect the upper half subtract.

Optimizing C Code 3-11

Part Il

Part Il

Refining C Code

3.3.2 Using Word Access for Short Data

The 'C62xx has instructions with corresponding intrinsics, such as _add2 (),
_mpyhl ('), _mpylh (), that operate on 16-bit data stored in the high and low
parts of a 32-bit register. When operating on a stream of short data, you can
use word (int) accesses to read two short values at atime, and then use 'C62xx
intrinsics to operate on the data. For example, rewriting the vecsum () function
to use word accesses (as in Example 3-6) doubles the performance of the
loop. See section 5.3, Loading Two Data Values with LDW, on page 5-10 for
more information.

Example 3—6. Vector Sum With const Keywords, _nassert, Word Reads

void vecsum4 (short *sum, const short *inl, const short *in2, unsigned int N)
{

int 1i;

const int *i_inl
const int *i_in2
int *i_sum

(const int *)inl;
(const int *)in2;
(int *)sum;

_nassert (N >= 20);

for (i = 0; i < (N/2); i++)
i_sum([i] = _add2(i_inl[i], i_in2[i]);

Note:

The _nassert intrinsic tells the optimizer that the code that follows meets the
condition specified.

This transformation assumes that the pointers sum, in1, and in2 can be cast
to int *, which means that they must point to word-aligned data. By default, the
compiler aligns all short arrays on word boundaries; however, a call like the
following creates an illegal memory access:

short a[51], b[50], c[50]; vecsumd (&a[l], b, c, 50);

Another consideration is that the loop must now run for an even number of
iterations. You can ensure that this happens by padding the short arrays so
that the loop always operates on an even number of elements.

3-12

Refining C Code

If a vecsum () function is needed to handle short-aligned data and odd-num-
bered loop counters, then you must add code within the function to check for
these cases. Knowing what type of data is passed to a function can improve
performance considerably. It may be useful to write different functions that can
handle different types of data. If your short-data operations always operate on
even-numbered word-aligned arrays, then the performance of your applica-
tion can be improved. However, Example 3—7 provides a generic vecsum()
function that handles all types of data.

Example 3—7. Vector Sum With const Keywords, _nassert, Word Reads (Generic Version)

void vecsum5 (short *sum, const short *inl, const short *in2, unsigned int N)

{

int 1i;

_nassert (N >= 20);

if (((int)sum | (int)in2 | (int)inl) & 0x2)
{

for (i = 0; 1 < N; i++)
sum[i] = inl[i] + in2[i];

else
const int *i_inl (const int *)inl;

const int *i_in2 = (const int *)in2;
int *i_sum = (int *)sum;

for (i = 0; 1 < (N/2); i++)
i_sum[i] = _add2(i_inl[i], i_in2[i]);
if (N & 0x1) sum[i] = inl[i] + in2[i];

}
}

3.3.2.1 Using Word Access in Dot Product

Other intrinsics that are useful for reading short data as words are the multiply
intrinsics. Example 3-8 is a dot product example that reads word-aligned short
data and uses the _mpy () and _mpyh () intrinsics. The _mpyh () intrinsic
uses the 'C62xx instruction MPYH, which multiplies the high 16 bits of two
registers, giving a 32-bit result.

This example also uses two sum variables (sum1 and sum2). Using only one
sum variable inhibits parallelism by creating a dependency between the write
from the first sum calculation and the read in the second sum calculation.
Within a small loop body, avoid writing to the same variable, because it inhibits
parallelism and creates dependencies.

Optimizing C Code 3-13

Part Il

Part Il

Refining C Code

Example 3-8. Dot Product Using Intrinsics

int dotprod(const short *a, const short *b, unsigned int N)
{

int i, suml = 0, sum2 = 0;

const int *i_a = (const int *)aj;
const int *i_b = (const int *)b;

for (1 = 0; 1 < (N >> 1); 1i++)

{
suml = suml + _mpy (i_afi], i_Dbl[i
sum2 = sum2 + _mpyh(i_afli], i_Db[i

}

1)
1)

return suml + sum2;

3.3.2.2 Using Word Access in FIR Filter

Example 3-9 shows an FIR filter that can be optimized with word reads of short
data and multiply intrinsics.

Example 3-9. FIR Filter—Oiriginal Form

void firl (const short x[], const short h[], short yI[], int n, int m, int s)
{

int i, 3j;

long yO0;

long round = 1L << (s - 1);

for (3 = 0; J < mj Jj++)
{
y0 = round;

for (i =

0; 1 < n; i++)
vO += x[1 + Jj] * h[i]l;

v[3jl = (int) (y0 >> s);
}
}

Example 3—10 shows an optimized version of Example 3-9. The optimized
version passes an int array instead of casting the short arrays to int arrays and,
therefore, helps ensure that data passed to the function is word-aligned. As-
suming that a prototype is used, each invocation of the function ensures that
the input arrays are word-aligned by forcing you to insert a cast or by using int
arrays that contain short data.

Refining C Code

Example 3—10. FIR Filter— Optimized Form

void fir2(const int x[], const int h[], short y[], int n, int m, int s)
{

int i, j;

long y0, vyl;

long round = 1L << (s - 1);

_nassert (m >= 16);
_nassert (n >= 16);

for (J = 0; J < (m >> 1); J++)

{
y0 = yl = round;

for (i = 0; 1 < (n >> 1); i++)

{
y0 += _mpy (x[1 + JI, h[il);
y0 += _mpyh (x[1 + 3JI, hiil);
vyl += _mpyhl(x[1i + JjI, hi{il);
yl += _mpylh(x[i + J + 1], h[i]);

*y++ = (int) (y0 >> s);
*y++ = (int) (yl >> s);

Optimizing C Code 3-15

Part Il

Part Il

Refining C Code

3.3.3 Software Pipelining

Software pipelining is a technique used to schedule instructions from a loop
so that multiple iterations of the loop execute in parallel. When you use the —02
and —03 compiler options, the compiler attempts to software pipeline your
code with information that it gathers from your program.

Figure 3-3 illustrates a software-pipelined loop. The stages of the loop are
represented by A, B, C, D, and E. In this figure, a maximum of five iterations
of the loop can execute at one time. The shaded area represents the loop ker-
nel. Inthe loop kernel, all five stages execute in parallel. The area immediately
before the kernel is known as the pipelined-loop prolog, and the area immedi-
ately following the kernel is known as the pipelined-loop epilog.

Figure 3-3. Software-Pipelined Loop

3-16

Al
B1 A2
C1 B2 A3 Pipelined-loop prolog

D1 C2 B3 A4

E1 D2 C3 B4 A5 Kernel
E2 D3 C4 B5

E3 D4 C5 Pipelined-loop epilog
E4 D5
E5

Because loops present critical performance areas in your code, consider the
following areas to improve the performance of your C code:

g Trip count
(1 Redundant loops

(4 Loop unrolling

Refining C Code

3.3.3.1 Trip Count Issues

A trip count is the number of times that a loop executes; the trip counter is the
variable used to count each iteration. When the trip counter reaches a limit
equal to the trip count, the loop terminates. The structure of a software pipeline
requires the execution of a minimum number of loop iterations (a minimum trip
count) in order to fill, or prime, the pipeline.

Loops that are eligible for software pipelining have loop trip counters that count
down. In most cases, the compiler can transform the loop to use a trip counter
that counts down even if the original code was not written that way.

For example, the optimizer transforms the loop in Example 3—11(a) to some-
thing like the code in Example 3—11(b).

Example 3—11. Trip Counters
(a) Original code

for (1 = 0; i < N; i++) /* 1 = trip counter, N = trip count */

(b) Optimized code

for (i = N; i != 0; i--) /* Downcounting trip counter */

The minimum trip count for a software pipeline is determined by the number
of iterations executing in parallel.

If the compiler knows the trip count, it can generate faster and more compact
code. If the compiler cannot determine that a loop always executes for the
minimum trip count, it generates a redundant unpipelined loop. The redundant
unpipelined loop is executed only when the runtime trip count is less than the
minimum trip count; otherwise, the software-pipelined version of the loop is
executed.

Optimizing C Code 3-17

Part Il

=
§
Q

Refining C Code

3.3.3.2 Eliminating Redundant Loops

In Example 3-2 on page 3-7, the compiler cannot determine if the loop
always executes more than the minimum trip count. Therefore, it generates
two versions of the loop:

[An unpipelined version that executes if N is less than the minimum trip
count

(O A software-pipelined version that executes if N is equal to or greater than
the minimum trip count

To indicate to the compiler that you do not want two versions of the loop, you
can use the —ms option so that the compiler generates only the software-pipe-
lined code and never generates a redundant loop; however, loops with an
unknown trip count are not software pipelined.

3.3.3.3 Communicating Trip-Count Information to the Compiler

When invoking the compiler, use the following options to communicate trip-
count information to the compiler:

(1 Usethe—03and—pm compiler options to allow the optimizer to access the
whole program or large parts of it and to characterize the behavior of loop
trip counts.

[Use the _nassert intrinsic to help reduce code size by preventing the
generation of a redundant loop or by allowing the compiler (with or without
the —ms option) to software pipeline innermost loops.

Example 3—12 shows the vector sum code with an _nassert intrinsic that
asserts that N is always at least 10.

Example 3—12. Vector Sum With const Keywords and _nassert

void vecsum3 (short *sum, const short *inl, const short *in2, unsigned int N)

{

int 1i;
_nassert (N >= 10);

for (i = 0; 1 < N; i++)
sum[i] = inl[i] + in2[1i];

See the TMS320C6x Optimizing C Compiler User’s Guide for a complete
discussion of the —ms, —03, and —pm options and the _nassert intrinsic.

3-18

Refining C Code

3.3.3.4 Loop Unrolling

Another technique that improves performance is unrolling the loop; that is, ex-
panding small loops so that each iteration of the loop appears in your code.
This optimization increases the number of instructions available to execute in
parallel. You can use loop unrolling when the operations in a single iteration
do not use all of the resources of the ’C62xx architecture.

In Example 3—-13, the loop produces a new sum([i] every two cycles. Three
memory operations are performed: a load for both in1[i] and in[2] and a store
for sum|i]. Because only two memory operations can execute per cycle, two
cycles are necessary to perform three memory operations.

Example 3—13. Vector Sum With Three Memory Operations

void vecsum2 (short *sum, const short *inl, const short *in2, unsigned int N)
{

int 1i;

for (i = 0; 1 < N; i++)
sum[i] = inl[i] + in2[i];

The performance of a software pipeline is limited by the number of resources
that can execute in parallel. In its word-aligned form (Example 3—14), the vec-
tor sum loop delivers two results every two cycles because the two loads and
the store are all operating on two 16-bit values at a time.

Example 3—14. Word-Aligned Vector Sum

void vecsum4 (short *sum, const short *inl, const short *in2, unsigned int N)

{

int i;
const int *i_inl = (const int *)inl;
const int *i_in2 (const int *)in2;

int *i_sum = (int *)sum;
_nassert (N >= 20);

for (i = 0; i < (N/2); i++)
i_sum[i] = _add2(i_inl[i], i_in2[i]);

Optimizing C Code 3-19

Part Il

Part Il

Refining C Code

If you unroll the loop once, the loop then performs six memory operations per
iteration, which means the unrolled vector sum loop can deliver four results
every three cycles (that is, 1.33 results per cycle). Example 3—15 shows four
results for each iteration of the loop: sum[i] and sum[i+sz] each store an int
value that represents two 16-bit values.

Example 3—15 is not simple loop unrolling where the loop body is simply repli-
cated. The additional instructions use memory pointers that are offset to point
midway into the input arrays and the assumptions that the additional arrays are
a multiple of four shorts in size.

Example 3—15. Vector Sum Using const Keywords, _nassert, Word Reads, and
Loop Unrolling

void vecsumé6 (int *sum, const int *inl, const int *in2, unsigned int N)

{
int 1i;
int sz = N >> 2;

_nassert (N >= 20);

for (i = 0; 1 < sz; i++)

{
sum[i] = _add2(inl[i], 1in2[il]);
sum[i+sz] = _add2(inl[i+sz], in2[i+sz]);

Software pipelining is performed by the compiler only on inner loops; there-
fore, you can increase performance by creating larger inner loops. One
method for creating large inner loops is to completely unroll inner loops that
execute for a small number of cycles.

In Example 3—16, the compiler pipelines the inner loop with a kernel size of one
cycle; therefore, the inner loop completes a result every cycle. However, the
overhead of filling and draining the software pipeline can be significant, and
other outer-loop code is not software pipelined.

3-20

Refining C Code

Example 3—16. FIR_Type2— O Original Form

void fir2 (const short input[], const short coefs[], short outl])
{

int i, 3;

int sum = 0;

for (i = 0; i < 40; i++)
{
for (j = 0; J < 16; j++)
sum += coefs[j] * input[i + 15 - J1;

out[i] = (sum >> 15);
}
}

For loops with a simple loop structure, the compiler uses a heuristic to deter-
mine if it should unroll the loop. Because unrolling can increase code size, in
some cases the compiler does not unroll the loop. If you have identified this
loop as being critical to your application, then unroll the inner loop in C code,
as in Example 3—-17.

Part Il

Optimizing C Code 3-21

Part Il

Refining C Code

Example 3—17. FIR_Type2—Inner Loop Completely Unrolled

void fir2_u(const short input[], const short coefs[], short outl])
{
int i, 3;
int sum;
for (i = 0; 1 < 40; i++)
{
sum = coefs[0] * input[i + 15];
sum += coefs[l] * input[i + 14];
sum += coefs[2] * input[i + 13];
sum += coefs[3] * inputl[i + 12];
sum += coefs[4] * input[i + 11];
sum += coefs[5] * input[i + 10];
sum += coefs[6] * input[i + 9];
sum += coefs[7] * input[i + 8];
sum += coefs[8] * input[i + 7];
sum += coefs[9] * input[i + 6];
sum += coefs[10] * input[i + 5];
sum += coefs[ll] * input[i + 4];
sum += coefs[12] * input[i + 3];
sum += coefs[13] * input[i + 2];
sum += coefs[l4] * input[i + 1];
sum += coefs[15] * input[i + 0];
out [i] = (sum >> 15);
}
}

Now the outer loop is software-pipelined, and the overhead of draining and
filling the software pipeline occurs only once per invocation of the function
rather than for each iteration of the outer loop.

3.3.3.5 What Disqualifies a Loop from Being Software-Pipelined

In a sequence of nested loops, the innermost loop is the only one that can be
software-pipelined. The following restrictions apply to the software pipelining
of loops:

(1 Although a software-pipelined loop can contain intrinsics, it cannot contain
function calls.

[You must not have a conditional break (early exit) in the loop.

[The loop cannot have an incrementing loop counter. One reason that you
run the optimizer with the —02 or —03 option is to convert as many loops
as possible into downcounting loops.

3-22

a

Refining C Code

If the trip counter is modified within the body of the loop, it typically cannot
be converted into a downcounting loop. For example, the following code
is not software-pipelined:
for (1 = 0; 1 < n; i++)
{
i

}

A conditionally incremented loop control variable is not software-pipe-
lined. For example, the following code is not software-pipelined:

for (i = 0; i < x; i++)

{

if (b > a)
i4= 2

If the code size is too large and requires more than the 32 registers in the
'Ce2xXx, it is not software-pipelined.

If a register value is live too long, the code is not software-pipelined. See
section 5.5.6.2, Live Too Long, on page 5-40 and section 5.9, Live-Too-
Long Issues, on page 5-74 for examples of code that is live too long.

If the loop has complex condition code within the body that requires more
than the five ’'C62xx condition registers, the loop is not software pipelined.

Optimizing C Code 3-23

Part Il

1l 1ed

3-24

P_art I
Introduction

Part Il

C Code

Part Il
Assembly Code

Part IV

Appendix

1 Hed

Chapter 4

Structure of Assembly Code

An assembly language program must be an ASCII text file. Any line of
assembly code can include up to six items:

] Label

0 Conditions

[Instruction

1 Functional unit

10 Operands

g Comment

Topic Page

e T - T o = 4-2

4.2 Parallel Barsccviiiiieniirnnenranesranenranessanennannns 4-2

4.3 CONAIIONS .ottt 4-3 §
44 InStructionsciiiiiiiiiii ittt e e e 4-4 i“
45 FunctionalUnitsciiiiiiiiiininrnnenrenenennennnnnns 4-6

tHS (OEEIES oooo0o0annoooccaanaooooa0b000000000000000000000a000000C 4-8

47 COMMENESuiittnenrenensensenranessnasenrasessnnsnsnnnns 4-9

4-1

Part Il

Labels / Parallel Bars

4.1 Labels

A label identifies a line of code or a variable and represents a memory address
that contains either an instruction or data.

Figure 4—1 shows the position of the label in a line of assembly code. The colon
following the label is optional.

Figure 4—1. Labels in Assembly Code

label: parallel bars [condition] instruction unit operands ;comments

Labels must meet the following conditions:

(1 The first character of a label must be a letter.
(O The first character of the label must be in the first column of the text file.
(1 Labels can include up to 32 alphanumeric characters.

4.2 Parallel Bars

Figure 4-2. Parallel Bars in Assembly Code

label: parallel bars [condition] instruction unit operands ;comments

An instruction that executes in parallel with the previous instruction signifies
this with parallel bars (||). This field is left blank for an instruction that does not
execute in parallel with the previous instruction.

4-2

4.3 Conditions

Condlitions

Five registers in the 'C62xx are available for conditions: A1, A2, B0, B1, and
B2. Figure 4—3 shows the position of a condition in a line of assembly code.

Figure 4-3. Conditions in Assembly Code

label: parallel bars [condition] instruction wunit operands ;comments

All ’C62xx instructions are conditional:

d
l:I

If no condition is specified, the instruction is always performed.

If a condition is specified and that condition is true, the instruction
executes. For example:

With this condition ... The instruction executes if ...
[Al] A1!1=0
[1Al] A1=0

If a condition is specified and that condition is false, the instruction does
not execute.

With this condition ... = The instruction does not execute if ...

[A1] Al =0 =
5

[1Al] All=0 a

Structure of Assembly Code 4-3

Part Il

Instructions

4.4 Instructions

Assembly code instructions are either directives or mnemonics:

a

Assembler directives are commands for the assembler (asm6x) that
control the assembly process or define the data structures (constants and
variables) in the assembly language program. All assembler directives
begin with a period, as shown in the partial list in Table 4—1.

Processor mnemonics are the actual microprocessor instructions that
execute at runtime and perform the operations in the program. Table 4—2
summarizes the 'C62xx mnemonics. Processor mnemonics must beginin
column 2 or greater.

Figure 4—-4 shows the position of the instruction in a line of assembly code.

Figure 4—4. Instructions in Assembly Code

label: parallel bars [condition] instruction wunit operands ; comments

Table 4—1. Selected TMS320C62xx Directives

Directives Description

.sect “name" Creates section of information (data or code)

.int value Reserve 32 bits in memory and fill with specified value
long value

.word value

.short value Reserve 16 bits in memory and fill with specified value
.half value

.byte value Reserve 8 bits in memory and fill with specified value

See the TMS320C6x Assembly Language Tools User’s Guide for a complete
list of directives.

Table 4-2. Selected TMS320C62xx Instruction Mnemonics

Instructions

Program Bit
Arithmetic Multiply Load/Store Control Management Logical Pseudo/Other
ABS MPY LD B CLR AND IDLE
ADD MPYH MVK B IRP EXT CMPEQ MV
ADDA MPYHL MVKH B NRP LMBD CMPGT MVC
ADDK MPYLH ST NORM CMPLT NOP
ADD2 SMPY SET OR ZERO
SADD SHL NEG
SAT SHR NOT
SSuUB SSHL
SuB XOR
SUBA
SUBC
SuB2

See the TMS320C62xx CPU and Instruction Set Reference Guide for a com-

plete list of instructions.

Part Il

Structure of Assembly Code 4-5

Part Il

Functional Units

4.5 Functional Units

The ’'C62xx CPU contains eight functional units, which are shown in
Figure 4-5 and described in Table 4-3.

Figure 4-5. TMS320C62xx Functional Units

.S1 .S2
L1 L2
Register Register
file A — = file B
M1 M2
.D1 .D2
Memory

Table 4-3. Functional Units and Descriptions

Functional Unit Description

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations
Left most 1, 0, bit counting for 32 bits
Normalization count for 32 and 40 bits
32 bit logical operations

.S unit (.51, .S2) 32-bit arithmetic operations
32/40 bit shifts and 32-bit bit-field operations
32 bit logical operations
Branching
Constant generation
Register transfers to/from the control register file

.M unit (M1, .M2) 16 x 16 bit multiplies

.Dunit (.D1,.D2) 32-bit add, subtract, linear and circular address calcula-
tion

Figure 4—6 shows the position of the unit in a line of assembly code.

Functional Units

Figure 4—6. Units in the Assembly Code

label: parallel bars [condition] instruction unit operands ; comments

Specifying the functional unit in the assembly code is optional. The functional
unit can be used to document which resource(s) each instruction uses.

Structure of Assembly Code 4-7

Part Il

Part Il

Operands

4.6 Operands

The ‘C62xx architecture requires that memory reads and writes move data
between memory and a register. Figure 4—7 shows the position of the oper-
ands in a line of assembly code.

Figure 4—7. Operands in the Assembly Code

label: parallel bars [condition] instruction unit operands ;comments

Instructions have the following requirements for operands in the assembly
code:

4
a
J

All instructions require a destination operand.
Most instructions require one or two source operands.

The destination operand must be in the same register file as one source
operand.

One source operand per execute packet can come from the register file
opposite that of the other source operand.

When an operand comes from the other register file, the unitincludes an X,
as shown in Figure 4-8, indicating that the instruction is using one of the
cross paths.

Figure 4-8. Operands in Instructions

4-8

ADD L1 AQ0,Al1,A3

ADD LL1X A0,B1,A3

!

All registers except B1 are on the same side of the CPU.

The 'C62xx instructions use three types of operands to access data:

4
J
-

Register operands indicate a register that contains the data.
Constant operands specify the data within the assembly code.

Pointer operands contain addresses of data values.

Only the load and store instructions require and use pointer operands to
move data values between memory and a register.

Comments

4.7 Comments

As with all programming languages, comments provide code documentation.
Figure 4—9 shows the position of the comment in a line of assembly code.

Figure 4-9. Comments in Assembly Code

label: parallel bars [condition] instruction unit operands ; comments

The following are guidelines for using comments in assembly code:
d A comment may begin in any column when preceded by a semicolon (;).
(1 A comment must begin in first column when preceded by an asterisk (*).

(1 Comments are not required but are recommended.

Part Il

Structure of Assembly Code 4-9

1 Hed

4-10

Chapter 5

Optimizing Assembly Code

This chapter describes methods that help you develop more efficient
assembly language programs, understand the code produced by the
assembly optimizer, and perform manual optimization.

This chapter encompasses phase 3 of the code development flow. After you
have developed and optimized your C code using the 'C6x compiler, extract
the inefficient areas from your C code and rewrite them in linear assembly (as-
sembly code that has not been register-allocated and is unscheduled).

The assembly code shown in this chapter has been hand-optimized in order
to direct your attention to particular coding issues. The actual output from the
assembly optimizer may look different, depending on the version you are us-

ing.

Topic Page <
51 AssemblyCodecimuuuuiiiiiiii it 5-2 %
5.2 Writing ParallelCodecciiiiiiiiiiiiiiiiiinniinnnns 5-4 &
5.3 Using Word Access for ShortDatacccvennnnn. 5-10
5.4 SoftwarePipeliningcccoiiiiiiiiiiii i 5-16
5.5 Modulo Scheduling of Multicycle Loopscccceunnnn.. 5-31
5.6 LoopCarryPathsccoiiiiiiiiiiiiiiiiii i iiinnnnnns 5-50
5.7 If-Then-Else Statementsinaloopcccvveennnn... 5-59
58 LoopUnrollingcuuemmmmuuiiiiiiinineernnrenennnnnnnns 5-67
B8 [HEUEEHLEN) [BES coooaooaoooooannnoooo0aan000000000000000 5-74
5.10 Redundant Load Eliminationccciiiiiinnt, 5-83
511 MemoryBankscommuiiiii it iiiiinaans 5-91
5.12 Software Pipelining the OuterLoopccceinnnnnn.. 5-104
5.13 Outer Loop Conditionally Executed With Inner Loop 5-109

5-1

Part Il

Assembly Code

5.1 Assembly Code

5-2

The source that you write for the assembly optimizer is similar to assembly
source code; however, linear assembly does not include information about
parallel instructions, instruction latencies, or register usage. The assembly op-
timizer takes care of the difficulties of streamlining your code by:

[Finding instructions that can be executed in parallel
(1 Handling pipeline latencies during software pipelining
(O Assigning register usage

[Defining which unit to use

Although you have the option with the 'C6x to specify the functional unit or reg-
ister used, this may restrict the compiler’s ability to fully optimize your code.
See the TMS320C6x Optimizing C Compiler User’s Guide for more informa-
tion.

This chapter takes you through the optimization process manually to show you
how the assembly optimizer works and to help you understand when you might
want to perform some of the optimizations manually. Each section introduces
optimization techniques in increasing complexity:

[Section 5.2 and section 5.3 begin with a dot product algorithm to show you
how to translate the C code to assembly code and then how to optimize
the assembly code with several simple techniques.

[Section 5.4 and section 5.5 introduce techniques, such as modulo itera-
tion interval scheduling for both single-cycle loops and multicycle loops,
for the more complex algorithms associated with software pipelining.

[Section 5.6 uses an IIR filter algorithm to discuss the problems with loop
carry paths.

[O Section 5.7 and section 5.8 discuss the problems encountered with if-
then-else statements in a loop and how loop unrolling can be used to re-
solve them.

[Section 5.9 introduces live-too-long issues in your code.

[Section 5.10 uses a simple FIR filter algorithm to discuss redundant load
elimination.

[Section 5.11 discusses the same FIR filter in terms of the interleaved
memory bank scheme used by 'C62xx devices.

[Section 5.12 and section 5.13 show you how to execute the outer loop of
the FIR filter conditionally and in parallel with the inner loop.

Assembly Code

Each example discusses the:

[Algorithm in C code

[Translation of the C code to linear assembly

(1 Dependency graph to describe the flow of data in the algorithm

[d Allocation of resources (functional units, registers, and cross paths)

Note:

There are three types of code for the 'C62xx: C code (which is input for the
C compiler), linear assembly code (which is input for the assembly optimizer),
and assembly code (which is input for the assembler).

Part Il

Optimizing Assembly Code 5-3

Part Il

Writing Parallel Code

5.2 Writing Parallel Code

One way to optimize assembly code is to reduce the number of execution
cycles in a loop. You can do this by rewriting linear assembly instructions so

that they execute in parallel.

5.2.1 Dot Product C Code

The C code in Example 5—1 is a dot product algorithm. The dot product is a
sum in which each element in array a is multiplied by the corresponding ele-

ment in array b. Each of these products is then accumulated into sum.

Example 5—-1. Dot Product C Code

int dotp(short al[], short b[])
{

int sum, 1i;
sum = 0;

for (i=0; 1i<100; i++)
sum += af[i] * b[i];

return (sum) ;

5.2.2 Translating C Code to Linear Assembly

Example 5-2 shows the linear assembly instructions used for the inner loop
of the dot product C code.

Example 5-2. List of Assembly Instructions for Dot Product

LDH .D1 *Ad++,A2 ; load ai from memory

LDH .D1 *A3++,A5 ; load bi from memory

MPY M1 A2,A5,A6 ; ai * bi

ADD L1 A6,A7,A7 ; sum += (ai * bi)

SUB .S1 Al,1,Al ; decrement loop counter
[A1] B .S2 LOOP ; branch to loop

5-4

The load halfword (LDH) instructions increment through the a and b arrays.
Each LDH does a postincrement on the pointer. Each iteration of these instruc-
tions sets the pointer to the next halfword (16 bits) in the array. The ADD in-
struction accumulates the total of the results from the multiply (MPY) instruc-
tion. The subtract (SUB) instruction decrements the loop counter.

An additional instruction is included to execute the branch back to the top of
the loop. The B (branch) instruction is conditional on the loop counter, A1, and
executes only until A1 is 0.

Writing Parallel Code

5.2.3 Allocating Resources

The following rules affect the assignment of functional units for Example 5-2
(shown in the third column):

Load (LDH) instructions must use a .D unit.
Multiply (MPY) instructions must use a .M unit.
Add (ADD) instructions use a .L unit.

Subtract (SUB) instructions use a .S unit.
Branch (B) instructions must use a .S unit.

Uoooo

Note:

The ADD and SUB can be on the .S, .L, or .D units; however, for
Example 5-2, they are assigned as listed above.

5.2.4 Drawing a Dependency Graph

Dependency graphs can help analyze loops by showing the flow of instruc-
tions and data in an algorithm. These graphs also show how instructions
depend on one another. The following terms are used in defining a depen-
dency graph.

1 A node is a point on a dependency graph with one or more data paths
flowing in and/or out.

(O The path shows the flow of data between nodes. The numbers beside
each path represent the number of cycles required to complete the instruc-
tion.

Part Il

[d Aninstruction that writes to a variable is referred to as a parent instruction
and defines a parent node.

[An instruction that reads a variable written by a parent instruction is re-
ferred to as its child and defines a child node.

Use the following steps to draw a dependency graph:

—_

Define the nodes based on the variables accessed by the instructions.

)
2) Define the data paths that show the flow of data between nodes.
3) Add the instructions and the latencies.
4) Add the functional units.

Figure 5—1 shows the dependency graph for the dot product assembly instruc-
tions (shown in Example 5-2) and their corresponding register allocations.

Optimizing Assembly Code 5-5

Writing Parallel Code

Figure 5—1. Dependency Graph of Dot Product

Instruction

mnemonic ——» LDH LDH

Functional
unit

Variable
being
written

5 Register suB
/ allocation
Number of cycles 1 S1
required to complete M1)
an instruction \
1
B

(1 The two LDH instructions, which write the values of ai and bi, are parents
of the MPY instruction. It takes five cycles for the parent (LDH) instruction
to complete. Therefore, if LDH is scheduled on cycle i, then its child (MPY)
cannot be scheduled until cycle i + 5.

(1 The MPY instruction, which writes the product pi, is the parent of the ADD
instruction. The MPY instruction takes two cycles to complete.

Part Il

[0 The ADD instruction adds pi (the result of the MPY) to sum. The output of
the ADD instruction feeds back to become an input on the next iteration
and, thus, creates a loop carry path. (See section 5.6 on page 5-50 for
more information on loop carry paths.)

The dependency graph for this dot product algorithm has two separate parts
because the decrement of the loop counter and the branch do not read or write
any variables from the other part.

(O The SUB instruction writes to the loop counter, cntr. The output of the SUB
instruction feeds back and creates a loop carry path.

[The B (branch) instruction is a child of the loop counter.

5-6

Writing Parallel Code

5.2.5 Comparing Performance (Nonparallel Versus Parallel Assembly Code)

Example 5-3 shows the nonparallel (or linear) assembly code for the dot prod-
uct loop. The MVK instruction initializes the loop counter to 100. The ZERO
instruction clears the accumulator. The NOP instructions allow for the delay
slots of the LDH, MPY, and B instructions.

Executing this dot product code serially requires 16 cycles for each iteration
plus two cycles to set up the loop counter and initialize the accumulator; 100 it-
erations require 1602 cycles.

Example 5-3. Nonparallel Assembly Code for Dot Product

MVK
ZERO
LOOP:
LDH
LDH
NOP
MPY
NOP
ADD
SUB
[A1] B
NOP

.51
L1

.D1
.D1
4

M1

L1
.S1
.S2
5

100, Al
A7

*A4++,A2
*A3++,A5

A2,A5,A6
A6,A7,AT

Al,1,Al
LOOP

; Branch occurs here

Ne Ne Ne Ne Ne N Ne N N

set up loop counter
zero out accumulator

load ai from memory
load bi from memory
delay slots for LDH

ai * bi

delay slot for MPY

sum += (ai * bi)
decrement loop counter
branch to loop

delay slots for branch

Assigning the same functional unit to both LDH instructions slows perfor-
mance of this loop. Therefore, reassign the functional units to execute the
code in parallel, as shown in the dependency graph in Figure 5-2. The parallel
assembly code is shown in Example 5—4.

Optimizing Assembly Code 5-7

Part Il

Part Il

Writing Parallel Code

Figure 5—2. Dependency Graph of Dot Product with Parallel Assembly
LDH

sSuB

.51

Example 5—4. Parallel Assembly Code for Dot Product

I
LOOP:

[(Al]

MVK
ZERO

LDH
LDH
SUB
B

NOP
MPY
NOP
ADD

.s1
L1

.D1
.D2
.S1
.S2

.M1X

L1
; Branch occurs here

100, Al
A7

*Ad++,A2
*B4++,B2
Al,1,Al1
LOOP
A2,B2,A6

A6,A7,A7

’

Ne N+ Ne Ne Ne Ne Ne S

set up loop counter
zero out accumulator

load ai from memory
load bi from memory
decrement loop counter
branch to loop

delay slots for LDH

ai * bi
delay slots for MPY
sum += (ai * bi)

5-8

Because the loads of ai and bi do not depend on one another, both LDH
instructions can execute in parallel as long as they do not share the same
resources. To schedule the load instructions in parallel, allocate the functional
units as follows:

(1 aiand the pointer to ai to a functional unit on the A side, .D1
[J bi and the pointer to bi to a functional unit on the B side, .D2

Because the MPY instruction now has one source operand from A and one

from B, MPY uses the 1X cross path.

Writing Parallel Code

Rearranging the order of the instructions also improves the performance of the
code. The SUB instruction can take the place of one of the NOP delay slots
for the LDH instructions. Moving the B instruction after the SUB removes the
need for the NOP 5 used at the end of the code in Example 5-3.

The branch now occurs immediately after the ADD instruction so that the MPY
and ADD execute in parallel with the five delay slots required by the branch
instruction.

5.2.6 Comparing Performance

Executing the dot product code in Example 5—4 requires eight cycles for each
iteration plus one cycle to set up the loop counter and initialize the accumula-
tor; 100 iterations require 801 cycles.

Table 5—-1 compares the performance of the nonparallel code with the parallel
code.

Table 5—1. Comparison of Nonparallel and Parallel Code

Code Example 100 Iterations Cycle Count
Example 5-3 Dot product nonparallel assembly 2+100 x 16 1602
Example 5—4 Dot product parallel assembly 1+100 x 8 801

Optimizing Assembly Code 5-9

Part Il

Part Il

Using Word Access for Short Data

5.3 Using Word Access for Short Data

The parallel code in section 5.2 uses an LDH instruction to read a[i]. Because
afi] and a[i + 1] are next to each other in memory, you can optimize the code
further by using the load word (LDW) instruction to read a[i] and a[i + 1] at the
same time and load both into a single 32-bit register. (The data must be word-

aligned in memory.)

5.3.1 Unrolled Dot Product C Code

The C code in Example 5-5 has the effect of unrolling the loop by accumu-
lating the even elements, a[i] and bJi], into sumO0 and the odd elements, a[i + 1]
and b[i + 1], into sum1. After the loop, sum0 and sum1 are added to produce
the final sum. (For another example of loop unrolling, see section 5.8 on

page 5-67.)

Example 5-5. Dot Product C Code (Unrolled)

int dotp(short al[l, short b[]
{

int sumO, suml, sum, 1ij;

sum0 += al[i] * b[i];
suml += a[i + 1]
}
sum = sumO + suml;
return (sum) ;

* bli + 1];

)

5-10

Using Word Access for Short Data

5.3.2 Translating C Code to Linear Assembly

Example 5-6 shows the list of ’'C62xx instructions that execute the unrolled dot
product loop. Symbolic variable names are used instead of actual registers.
Using symbolic names for data and pointers makes code easier to write and
allows the optimizer to allocate registers. However, you must use the .reg as-
sembly optimizer directive. See the TMS320C6x Optimizing C Compiler
User’s Guide for more information on writing linear assembly code.

Example 5—6. Linear Assembly for Dot Product Inner Loop with LDW

[cntr]
[cntr]

LDW
LDW
MPY
MPYH
ADD
ADD

SUB

B

*at+,ai_il
*pt+,bi il

load ai & al from memory
load bi & bl from memory

ai_i1,bi_il,pi ai * bi
ai_il,bi_il1,pil ai+l * bi+l
pi, sum0, sum0 sum0 += (ai * bi)

suml += (ai+l * bi+1l)
decrement loop counter
branch to loop

pil, suml, suml
cntr,1l,cntr
LOOP

Ne Nt Ne Ne Ne N Ne N

The two load word (LDW) instructions load a][i], a[i+1], b[i], and b[i+1] on each
iteration.

Two MPY instructions are now necessary to multiply the second set of array
elements:

[The first MPY instruction multiplies the 16 least significant bits (LSBs) in
each source register: a[i] x bli].

[The MPYH instruction multiplies the 16 most significant bits (MSBs) of
each source register: afi+1] x b [i+1].

The two ADD instructions accumulate the sums of the even and odd elements:
sumO and sumfi.

Note:

Thisis true only when the 'C62xx is in little-endian mode. In big-endian mode,
MPY operates on a[i+1] and b[i+1] and MPYH operates on a[i] and b[i]. See
the TMS320C62xx Peripherals Reference Guide for more information.

Optimizing Assembly Code 5-11

Part Il

Part Il

Using Word Access for Short Data

5.3.3 Drawing a Dependency Graph

The dependency graph in Figure 5-3 shows that the LDW instructions are par-
ents of the MPY instructions and the MPY instructions are parents of the ADD
instructions. To split the graph between the A and B register files, place an
equal number of LDWs, MPYs, and ADDs on each side. To keep both sides
even, place the remaining two instructions, B and SUB, on opposite sides.

Figure 5-3. Dependency Graph of Dot Product With LDW

A side] B side
LDW ‘ LDW

5.3.4 Allocating Resources

5-12

After splitting the dependency graph, you can assign functional units and reg-
isters, as shown in the dependency graph in Figure 5—4 and in the instructions
in Example 5-7. The .M1X and .M2X represent a path in the dependency
graph crossing from one side to the other.

Using Word Access for Short Data

Figure 5—4. Dependency Graph of Dot Product With LDW (Showing Functional Units)

A side X B side
LDW : LDW
D1 | bi & bist) -D2
5 ' 5

Example 5—7. Linear Assembly for Dot Product Inner Loop With LDW
(With Allocated Resources)

LDW .D1 *A4++,A2 ; load ai and ai+l from memory
LDW .D2 *B4++,B2 ; load bi and bi+l from memory
MPY .M1X A2,B2,R6 ; ai * bi
MPYH .M2X A2,B2,B6 ; ai+l * bi+l
ADD L1 A6,A7,A7 ; sum0 += (ai * bi)
ADD L2 B6,B7,B7 ; suml += (ai+l * bi+l)
SUB .51 Al,1,Al ; decrement loop counter
[Al] B .S2 LOOP ; branch to loop

Optimizing Assembly Code 5-13

Part Il

Part Il

Using Word Access for Short Data

5.3.5 Final Assembly

Example 5-8 shows the final assembly code for the unrolled loop, using LDW
instructions instead of LDH instructions.

Example 5-8. Assembly Code for Dot Product With LDW (Before Software Pipelining)

MVK .Sl 50,Al1 ; set up loop counter
| ZERO L1 A7 ; zero out sumO0 accumulator
| ZERO L2 B7 ; zero out suml accumulator
LOOP

LDW .D1 *Ad++,A2 ; load ai & ai+l from memory
| LDW .D2 *B4++,B2 ; load bi & bi+l from memory

SUB .51 Al,1,Al ; decrement loop counter
[Al] B .S1 LOOP ; branch to loop

NOP 2

MPY .M1X A2,B2,RA6 ; ai * bi
| MPYH .M2X A2,B2,B6 ; ait+l * bi+l

NOP

ADD L1 A6,A7,A7 ; sumO+= (ai * bi)
| ADD L2 B6,B7,B7 ; suml+= (ai+l * bi+l)

; Branch occurs here

ADD .L1X A7,B7,A4 ; sum = sumO + suml

5-14

The code in Example 5-8 includes the following optimizations:

(O The setup code for the loop is included to initialize the array pointers and
the loop counter and to clear the accumulators. The setup code assumes
that A4 and B4 have been initialized to point to arrays aand b, respectively.

(d The MVK instruction initializes the loop counter.

O The two ZERO instructions, which execute in parallel, initialize the even
and odd accumulators (sum0 and sum1) to 0.

(1 The third ADD instruction adds the even and odd accumulators.

Using Word Access for Short Data

5.3.6 Comparing Performance

Executing the dot product with the optimizations in Example 5-8 requires only
50 iterations, because you operate in parallel on both the even and odd array
elements. With the setup code and the final ADD instruction, 100 iterations of
this loop require a total of 402 cycles (1 + 8 x 50 + 1).

Table 5-2 compares the performance of the different versions of the dot
product code discussed so far.

Table 5-2. Comparison of Dot Product Code With Use of LDW

Code Example 100 Iterations Cycle Count
Example 5-3 Dot product nonparallel assembly 2+100 x 16 1602
Example 5—4 Dot product parallel assembly 1+100 x 8 801
Example 5-8 Dot product parallel assembly with LDW 1+(50x 8)+ 1 402

Optimizing Assembly Code 5-15

Part Il

Part Il

Software Pipelining

5.4 Software Pipelining

5-16

This section describes the process for improving the performance of the as-
sembly code in the previous section through software pipelining.

Software pipelining is a technique used to schedule instructions from a loop
so that multiple iterations execute in parallel. The parallel resources on the
'C62xx make it possible to initiate a new loop iteration before previous itera-
tions finish. The goal of software pipelining is to start a new loop iteration as
soon as possible.

The modulo iteration interval scheduling table is introduced in this section as
an aid to creating software-pipelined loops.

The dot product code in Example 5-8 needs eight cycles for each iteration of
the loop: five cycles for the LDWSs, two cycles for the MPYs, and one cycle for
the ADDs.

Figure 5-5 shows the dependency graph for the dot product instructions.
Example 5-9 shows the same dot product assembly code in Example 57 on
page 5-13, except that the SUB instruction is now conditional on the loop
counter (A1).

Note:

Making the SUB instruction conditional on A1 ensures that A1 stops decre-
menting when it reaches 0. Otherwise, as the loop executes five more times,
the loop counter becomes a negative number. When A1 is negative, it is non-
zero and, therefore, causes the condition on the branch to be true again. If the
SUB instruction were not conditional on A1, you would have an infinite loop.

Software Pipelining

Figure 5-5. Dependency Graph of Dot Product With LDW (Showing Functional Units)

A side X B side
LDW ! LDW
D1 ; bi & bi+1) -D2
5 5
.M2X

.L2

Example 5-9. Linear Assembly for Dot Product Inner Loop
(With Conditional SUB Instruction)

LDW .D1 *Ad++,A2 ; load ai and ai+l from memory
LDW .D2 *B4++,B2 ; load bi and bi+l from memory
MPY .M1X A2,B2,A6 ; ai * bi
MPYH .M2X A2,B2,B6 ; ai+l * bi+l
ADD .L1 A6,A7,RA7 ; sum0 += (ai * bi)
ADD L2 B6,B7,B7 ; suml += (ai+l * bi+l)

[Al] SUB .S1 Al,1,Al ; decrement loop counter

[Al] B .S2 LOOP ; branch to top of loop

Optimizing Assembly Code

Part Il

Part Il

Software Pipelining

5.4.1

Modulo Iteration Interval Scheduling

Another way to represent the performance of the code is by looking atitin a
modulo iteration interval scheduling table. This table shows how a
software-pipelined loop executes and tracks the available resources on a
cycle-by-cycle basis to ensure that no resource is used twice on any given
cycle. The iteration interval of aloop is the number of cycles between the initia-
tions of successive iterations of that loop.

The code in Example 5-8 needs eight cycles for each iteration of the loop, so
the iteration interval is eight.

Table 5-3 shows a modulo iteration interval scheduling table for the dot prod-
uct loop before software pipelining (Example 5-8). Each row represents a
functional unit. There is a column for each cycle in the loop showing the instruc-
tion that is executing on a particular cycle:

(1 LDWs on the .D units are issued on cycles 0, 8, 16, 24, etc.

1 MPY and MPYH on the .M units are issued on cycles 5, 13, 21, 29, etc.
(O ADDs on the .L units are issued on cycles 7, 15, 23, 31, etc.

[SUB onthe .S1 unitis issued on cycles 1, 9, 17, 25, etc.

(1 Bonthe.S2 unitisissued on cycles 2, 10, 18, 24, etc.

Table 5-3. Modulo lIteration Interval Scheduling Table for Dot Product
(Before Software Pipelining)

Unit / Cycle

0,8,..

1,9, .. 2,10,... | 3,11,... | 4,12,... | 5,13,... | 6,14,...

.D1

LDW

.D2

LDW

M1

MPY

M2

MPYH

L1

ADD

L2

ADD

.S1

SuB

.S2

B

5-18

In this example, each unit is used only once every eight cycles.

Software Pipelining

5.4.1.1 Determining the Minimum Iteration Interval

Software pipelining increases performance by using the resources more effi-
ciently. However, to create a fully pipelined schedule, it is helpful to first deter-
mine the minimum iteration interval.

The minimum iteration interval of a loop is the minimum number of cycles you
must wait between each initiation of successive iterations of that loop. The
smaller the iteration interval, the fewer cycles it takes to execute a loop.

Resources and data dependency constraints determine the minimum iteration
interval. The most-used resource constrains the minimum iteration interval.
For example, if four instructions in a loop all use the .S1 unit, the minimum it-
eration interval is at least 4. Four instructions using the same resource cannot
execute in parallel and, therefore, require at least four separate cycles to
execute each instruction.

With the SUB and branch instructions on opposite sides of the dependency
graph in Figure 5-5, all eight instructions use a different functional unit and no
two instructions use the same cross paths (1X and 2X). Because no two
instructions use the same resource, the minimum iteration interval based on
resources is 1.

Note:

In this particular example, there are no data dependencies to affect the
minimum iteration interval. However, future examples may demonstrate this
constraint.

Optimizing Assembly Code 5-19

Part Il

Part Il

Software Pipelining

5.4.1.2 Creating a Fully Pipelined Schedule

Having determined that the minimum iteration interval is 1, you can initiate a
new iteration every cycle. You can schedule LDW and MPY instructions on
every cycle. Table 5—4 shows a fully pipelined schedule for the dot product ex-
ample.

Table 5—4. Modulo Iteration Interval Table for Dot Product (After Software Pipelining)

| Loop Prolog |

Unit / Cycle 0 1 2 3 4 5 6 7,8,9..
L1 ADD
L2 ADD
M1 MPY MPY M*;v
M2 MPYH | MPYH MI:*YH
D1 LDW LOW LOW LOW LOW LOW Low LDW
D2 LDW LOW LOW LOW LOW LOW Low LDW
-S1 SuB suB SUB suB SUB sUB SUB
- i : - - = B

Note: The asterisks indicate the iteration of the loop; shading indicates the single-cycle loop.

5-20

The rightmost column is a single-cycle loop that contains the entire loop.
Cycles 0—6 are loop setup code, or loop prolog.

Asterisks define which iteration of the loop the instruction is executing each
cycle. For example, the rightmost column shows that on any given cycle inside
the loop:

The ADD instructions are adding data for iteration n.

The MPY instructions are multiplying data for iteration n + 2 (**).
The LDW instructions are loading data for iteration n + 7 (*******).
The SUB instruction is executing for iteration n + 6 (******).

The branch instruction is executing for iteration n + 5 (*****).

Uoooo

Software Pipelining

In this case, multiple iterations of the loop execute in parallel in a software pipe-
line thatis eightiterations deep, with iterations n through n + 7 executing in par-
allel. Software pipelines are rarely deeper than the one created by this single-
cycle loop. As loop sizes grow, the number of iterations that can execute in par-
allel tends to become fewer.

5.4.2 Using the Assembly Optimizer to Create Optimized Loops

Example 5-10 shows the linear assembly code for the full dot product loop.
You can use this code as input to the assembly optimizer tool to create soft-
ware pipelined loops automatically. See the TMS320C6x Optimizing C Com-
piler User’s Guide for more information on the assembly optimizer.

Example 5-10. Linear Assembly for Full Dot Product

.global _dotp
_dotp: .cproc a, b
.reg sum, sumO, suml, cntr
.reg ai_il, bi_il, pi, pil
MVK 50, cntr ; cntr = 100/2
ZERO sum0 ; multiply result = 0
ZERO suml ; multiply result = 0
LOOP: .trip 50
LDW *a++,ai_il ; load ai & al from memory
LDW *pb++,bi_1il ; load bi & bl from memory
MPY ai_il,bi_il,pi ; ai * bi
MPYH ai_il,bi_il,pil ; ai+l * bi+l
ADD pi, sum0, sum0 ; sum0 += (ai * bi)
ADD pil, suml, suml ; suml += (ai+l * bi+l)
[cntr] SUB cntr,1l,cntr ; decrement loop counter
[cntr] B LOOP ; branch to loop
ADD sumO, suml, sum ; compute final result
.return sum
.endproc

Resources such as functional units and 1X and 2X cross paths do not have
to be specified because these can be allocated automatically by the assembly
optimizer.

Optimizing Assembly Code 5-21

Part Il

Part Il

Software Pipelining

5.4.3 Final Assembly

5-22

Example 5-11 shows the assembly code for the software pipelined dot prod-
uct in Table 5-4. The accumulators are initialized to 0 and the loop counter is
set up in the first execute packet in parallel with the first LDW instructions. The
asterisks in the comments correspond with those in Table 5-4.

Note:

All instructions executing in parallel constitute an execute packet. An exe-
cute packet can contain up to eight instructions.

See the TMS320C62xx CPU and Instruction Set Reference Guide for more
information about pipeline operation.

Multiple branch instructions are in the pipe. The first branch is issued on
cycle 2 but does not actually branch until the end of cycle 7 (after five delay
slots). The branch target is the execute packet defined by the label LOOP. On
cycle 7, the first branch returns to the same execute packet, resulting in a
single-cycle loop. On every cycle after cycle 7, a branch executes back to
LOOP until the loop counter finally decrements to 0. Once the loop counter is
0, five more branches execute because they are already in the pipe.

Executing the dot product code with the software pipelining as shown in
Example 5-11 requires a total of 58 cycles (7 + 50 + 1), which is a significant
improvement over the 402 cycles required by the code in Example 5-8.

Note:

The code created by the assembly optimizer will not completely match the
final assembly code shown in this and future sections because different ver-
sions of the tool will produce slightly different code. However, the inner loop
performance (number of cycles per iteration) should be similar.

Software Pipelining

Example 5—-11. Assembly Code for Dot Product (Software Pipelined)

LDW .D1 *A4++,A2 ; load ai & ai+l from memory
| LDW .D2 *B4++,B2 ; load bi & bit+l from memory
|| MVK .S1 50,A1 ; set up loop counter
| ZERO L1 A7 ; zero out sumO accumulator
|| ZERO L2 B7 ; zero out suml accumulator
[A1l] SUB .S1 Al,1,Al ; decrement loop counter
| LDW .D1 *A4++,A2 ;* load ai & ai+l from memory
|| LDW .D2 *B4++,B2 ;* load bi & bi+l from memory
[A1l] SUB .S1 Al,1,Al ; * decrement loop counter
|| [A1] B .S2 LOOP ; branch to loop
| LDW .D1 *Ad++,A2 ;** load ai & ai+l from memory
|| LDW .D2 *B4++,B2 ;** load bi & bi+l from memory
[A1l] SUB .S1 Al,1,Al ; ** decrement loop counter
|| [A1] B .S2 LOOP ;* branch to loop
| LDW .D1 *A4++,A2 ;*** load ai & ai+l from memory
| LDW .D2 *B4++,B2 ;*** load bi & bi+l from memory
[A1l] SUB .S1 Al,1,Al ; *** decrement loop counter
|| [A1l] B .S2 LOOP ;** branch to loop
|| LDW .D1 *Ad++,A2 ;**** load ai & ai+l from memory
| LDW .D2 *B4++,B2 ;****% load bi & bi+l from memory
MPY .M1X A2,B2,A6 ; ai * bi
| MPYH .M2X A2,B2,B6 ; ai+l * bi+l
| | [A1l] SUB .51 Al,1,Al ; **** decrement loop counter
|| [A1] B .S2 LOOP ; *** branch to loop
| LDW .D1 *Ad++,A2 jrx*&4% 1d ai & ai+l from memory
|| LDW .D2 *B4++,B2 j¥**x*x% 1d bi & bi+l from memory
MPY .M1X A2,B2,A6 ;¥ ai * bi
| MPYH .M2X A2,B2,B6 ;* ai+l * bi+l
| | [A1] SUB .S1 Al,1,Al ; ***** decrement loop counter
| | [A1] B .S2 LOOP ; **** branch to loop
| LDW .D1 *Ad++,A2 jrRxFFAA 1d ai & ai+l from memory
| LDW .D2 *B4++,B2 jrxxAFxx 1d bi & bi+l from memory
LOOP
ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
| ADD L2 B6,B7,B7 ; suml += (ai+l * bi+l)
| MPY .M1X A2,B2,A6 ;** ai * bi
| MPYH .M2X A2,B2,B6 ;** ai+l * bi+l
| | [A1l] SUB .51 Al,1,Al ; ***x**x* decrement loop counter
| | [A1] B .S2 LOOP ;j***** branch to loop
| LDW .D1 *A4++,A2 jrExxFAx 1d ai & ait+l fm memory
| LDW .D2 *B4++,B2 jrRFFFHAAL 1d bl & bi+l fm memory
; Branch occurs here
ADD .L1X A7,B7,A4 ; sum = sumO + suml

Optimizing Assembly Code 5-23

Part Il

Part Il

Software Pipelining

5.4.3.1 Removing Extraneous Instructions

5-24

The code in Example 5-11 executes extra iterations of some of the instruc-
tions in the loop. The following operations occur in parallel on the last cycle of
the loop:

[lteration 50 of the ADD instructions
O lteration 52 of the MPY and MPYH instructions
[lteration 57 of the LDW instructions

In most cases, extra iterations are not a problem; however, when extraneous
LDWs access unmapped memory, you can get unpredictable results. If the ex-
traneous instructions present a potential problem, remove the extraneous
LDW and MPY instructions by adding an epilog like that included in the second
part of Example 5—-12 on page 5-26.

To eliminate LDWs from the iterations 51 through 57, run the loop seven fewer
times. This brings the loop counter to 43 (50 — 7), which means you still must
execute seven more cycles of ADD instructions and five more cycles of MPY
instructions. Five pairs of MPYs and seven pairs of ADDs are now outside the
loop. The LDWSs, MPYs, and ADDs all execute exactly 50 times. (The shaded
areas of Example 5-12 indicate the changes in this code.)

Executing the dot product code in Example 5-12 with no extraneous LDWs
still requires a total of 58 cycles (7 + 43 + 7 + 1), but the code size is now larg-
er.

Software Pipelining

Example 5—12. Assembly Code for Dot Product (Software Pipelined
With No Extraneous Loads)

LDW
I LDW
I MVK
| ZERO
| ZERO
[Al] SUB

I LDW
I LDW

Al] SUB

|
I LDW
| LDW
Al] SUB

|
| LDW
| LDW

[Al] SUB

| LDW
| LDW

MPY
MPYH
Al] SUB

LDW
LDW

MPY

MPYH
[Al] SUB
[

LDW
LDW

.D1
.D2
.51
L1
L2

.51
.D1
.D2

.s1
.S2
.D1
.D2

.s1
.S2
.D1
.D2

.Ss1
.S2
.D1
.D2

.M1X
.M2X
.51
.S2
.D1
.D2

.M1X
.M2X
.s1
.S2
.D1
.D2

*Ad++,A2
*B4++,B2
43,21

A7

B7

Al,1,Al
*Ad++, A2
*B4++, B2

Al,1,Al
LOOP
*Ad++, A2
*B4++, B2

Al,1,Al
LOOP
*Ad++,A2
*B4++,B2

Al,1,Al
LOOP
*Ad++,A2
*B4++,B2

A2,B2,A6
A2,B2,B6
Al,1,Al
LOOP
*Ad++,A2
*B4++,B2

A2,B2,A6
A2,B2,B6
Al,1,Al
LOOP
*Ad++,A2
*B4++,B2

; load ai & ai+l from memory
; load bi & bi+l from memory
; set up loop counter

; zero out sum0 accumulator
; zero out suml accumulator

; decrement loop counter
;* load ai & ai+l from memory
;* load bi & bi+l from memory

; * decrement loop counter

; branch to loop

;** load ai & ai+l from memory
;** load bi & bi+l from memory

; ** decrement loop counter

;* branch to loop

;*** load ai & ai+l from memory
;*** load bi & bi+l from memory

; *** decrement loop counter

;** branch to loop

;¥*** load ai & ait+l from memory
;**** load bi & bi+l from memory

; ai * bi

; oait+l * bi+l

; **** decrement loop counter

; *** branch to loop

jrx*x*x% 1d ai & ait+tl from memory
jrx**x*x% 1d bi & bi+l from memory

;¥ al * bi

;* ai+l * bi+l

; ***** decrement loop counter

; **** branch to loop

jrRxFFxA 1d ai & ai+l from memory
jrxxAFx 1d bi & bi+l from memory

Optimizing Assembly Code

5-25

Part Il

Part Il

Software Pipelining

Example 5-12. Assembly Code for Dot Product (Software Pipelined
With No Extraneous Loads) (Continued)

LOOP
ADD L1 A6,A7,A7 ; sum0 += (ai * bi)
| ADD .12 B6,B7,B7 ; suml += (ai+l * bi+l)
| MPY .M1X A2,B2,Ab6 ;** ai * bi
| MPYH .M2X A2,B2,B6 ;** ai+l * bi+l
|| [A1l] SUB .51 Al,1,Al ; ¥*FA*x** decrement loop counter
|1 [A1] B .52 LOOP ; ***** branch to loop
| LDW .D1 *Ad4++,A2 jrxxxFxxk 1d ai & ai+l fm memory
| LDW .D2 *B4++,B2 jR&AAxxxx 1d bi & bit+l fm memory
; Branch occurs here
ADD L1 A6,A7,A7 ; sum0 += (ai * bi)
| ADD L2 B6,B7,B7 ; suml += (ai+l * bi+l)
|| MPY .M1X A2,B2,A6 ;** ai * bi
| MPYH .M2X A2,B2,B6 ;** ai+l * bi+l
ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
| ADD L2 B6,B7,B7 ; suml += (ai+l * bi+l)
|| MPY .M1X A2,B2,A6 ;** ai * bi
| MPYH .M2X A2,B2,B6 g wew aildpdl ¥ loildrdl
| ADD L2 B6,B7,B7 ; suml += (ai+l * bi+l)
|| MPY .M1X A2,B2,RA6 ;** ai * bi
|| MPYH .M2X A2,B2,B6 ;** ai+l * bi+l
ADD L1 A6,A7,A7 ; sum0 += (ai * bi)
| ADD L2 B6,B7,B7 ; suml += (ait+tl * bi+l)
| MPY .M1X A2,B2,Ab ;** ai * bi
| MPYH .M2X A2,B2,B6 ;5% ai+l * i+l
ADD L1 A6,A7,A7 ; sum0 += (ai * bi)
| ADD L2 B6,B7,B7 ; suml += (ai+l * bi+1l)
| MPY .M1X A2,B2,Ab Rty gl W Joal
| MPYH .M2X A2,B2,B6 ;** ai+l * bi+l
ADD L1 A6,A7,A7 ; sumO0 += (ai * bi)
| ADD .12 B6,B7,B7 ; suml += (ai+l * bi+l)
ADD L1 A6,A7,A7 ; sumO0 += (ai * bi)
| ADD .12 B6,B7,B7 ; suml += (ai+l * bi+l)
ADD .L1X A7,B7,A4 ; sum = sumO + suml

ADDs

Q ©

MPYs

5-26

Software Pipelining

5.4.3.2 Priming the Loop

Although Example 5—-12 executes as fast as possible, the code size can be
smaller without significantly sacrificing performance. To help reduce code
size, you can use a technique called priming the loop. Assuming that you can
handle extraneous LDWSs, start with Example 5-11, which has no epilog and,
therefore, fewer instructions. (This technique can be used equally well with
Example 5-12.)

To eliminate the prolog and, therefore, the extra LDW and MPY instructions,
begin execution at the loop body (at the LOOP label). Eliminating the prolog
means that:

4 Two LDWs, two MPYs, and two ADDs occur in the first execution cycle of
the loop.

(1 Because the first LDWs require five cycles to write results into a register,
the MPY's do not multiply valid data until after the loop executes five times.
The ADDs have no valid data until after seven cycles (five cycles for the
first LDWs and two more cycles for the first valid MPYs).

Example 5-13 shows the loop without the prolog but with four new instructions
that zero the inputs to the MPY and ADD instructions. Making the MPYs and
ADDs use 0s before valid data is available ensures that the final accumulator
values are unaffected. (The loop counter is initialized to 57 to accommodate
the seven extra cycles needed to prime the loop.)

Because the first LDWSs are not issued until after seven cycles, the code in
Example 5—-13 requires a total of 65 cycles (7 + 57+ 1). Therefore, you are re-
ducing the code size with a slight loss in performance.

Optimizing Assembly Code 5-27

Part Il

Part Il

Software Pipelining

Example 5-13. Assembly Code for Dot Product (Software Pipelined — No Prolog

or Epilog)
MVK .Sl 57,A1 ; set up loop counter
[Al] SUB .S1 Al,1,Al ; decrement loop counter
|| ZERO Ll A7 ; zero out sumO accumulator
| ZERO L2 B7 ; zero out suml accumulator
[A1] SUB .S1 Al,1,Al ; * decrement loop counter
| [A1] B .52 LOOP ; branch to loop
| ZERO L1 A6 ; zero out add input
| ZERO L2 B6 ; zero out add input
[A1] SUB .S1 Al,1,Al ; ** decrement loop counter
|| [A1l] B .52 LOOP ;* branch to loop
| ZERO L1 A2 ; zero out mpy input
| ZERO L2 B2 ; zero out mpy input
[Al] SUB .51 Al,1,Al ; *** decrement loop counter
|| [A1] B .52 LOOP ; ** branch to loop
[Al] SUB .51 Al,1,Al ; **** decrement loop counter
|| [A1l] B .32 LOOP ; *** branch to loop
[Al] SUB .51 Al,1,Al ; ***** decrement loop counter
|| [A1] B .52 LOOP ; **** branch to loop
LOOP :
ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
| ADD L2 B6,B7,B7 ; suml += (ai+l * bi+l)
| MPY .M1X A2,B2,A6 ;%% ai * bi
| MPYH .M2X A2,B2,B6 ;X% ai+l * bi+l
| | [Al] SUB .S1 Al,1,Al j ¥***** decrement loop counter
|| [A1l] B .52 LOOP ; ***** branch to loop
|| LDW .D1 *Ad++,A2 jrxxxkkk 1d ai & ai+l fm memory
| LDW .D2 *B4++,B2 jrxxxxkk 1d bi & bi+l fm memory
; Branch occurs here
ADD .L1X A7,B7,A4 ; sum = sumO + suml

5-28

Software Pipelining

5.4.3.3 Removing Extra SUB Instructions

To reduce code size further, you can remove extra SUB instructions. If you
know that the loop count is at least 6, you can eliminate the extra SUB instruc-
tions as shown in Example 5-14. The first five branch instructions are made
unconditional, because they always execute. (If you do not know that the loop
count is at least 6, you must keep the SUB instructions that decrement before
each conditional branch as in Example 5-13.) Based on the elimination of six
SUB instructions, the loop counter is now 51 (57 — 6). This code shows some
improvement over Example 5-13. The loop in Example 5-14 requires 63
cycles (5 + 57 + 1).

Example 5—14. Assembly Code for Dot Product (Software Pipelined
With Smallest Code Size)

B .S2 LOOP ; branch to loop
| MVK .S1 51,A1 ; set up loop counter
B .S2 LOOP ;* branch to loop
B .S2 LOOP ; ** branch to loop
|| ZERO Ll A7 ; zero out sumO accumulator
| ZERO L2 B7 ; zero out suml accumulator
B .S2 LOOP ; *** branch to loop
| ZERO L1 A6 ; zero out add input
|| ZERO L2 B6 ; zero out add input
B .S2 LOOP ; **** branch to loop
| ZERO L1 A2 ; zero out mpy input
| ZERO L2 B2 ; zero out mpy input
LOOP
ADD .L1 A6,A7,AT7 ; sum0 += (ai * bi)
| ADD L2 B6,B7,B7 ; suml += (ai+l * bi+l)
| MPY .M1X A2,B2,A6 ;** ai * bi
| MPYH .M2X A2,B2,B6 ;** ai+l * bi+l
| | [A1l] SUB .51 Al,1,Al ; ***x**x* decrement loop counter
| | [A1] B .S2 LOOP ;***** branch to loop
| LDW .D1 *Ad++,A2 jrRAAAHHRKR 1d ai & ai+l fm memory
| LDW .D2 *B4++,B2 jrRFFFFAL 1d bl & bit+l fm memory
; Branch occurs here
ADD .L1X A7,B7,A4 ; sum = sumO + suml

Optimizing Assembly Code 5-29

Part Il

Part Il

Software Pipelining

5.4.4 Comparing Performance

Table 5-5 compares the performance of all versions of the dot product code.

Table 5-5. Comparison of Dot Product Code Examples

Code Example 100 Iterations Cycle Count
Example 5-3 Dot product nonparallel assembly 2+100 x 16 1602
Example 5—4 Dot product parallel assembly 1+100 x 8 801
Example 5-8 Dot product parallel assembly with LDW 1+(50 x 8) +1 402
Example 5-11 Software-pipelined dot product 7+50+1 58
Example 5-12 Software-pipelined dot product with no extraneous loads 7+43+7+1 58
Example 5-13 Software-pipelined dot product with no prolog or epilog 7 +57+1 65
Example 5-14 Software-pipelined dot product with smallest code size 5+57 +1 63

5-30

Modulo Scheduling of Multicycle Loops

5.5 Modulo Scheduling of Multicycle Loops

Section 5.4 demonstrated the modulo-scheduling technique for the dot
product code. In that example of a single-cycle loop, none of the instructions
used the same resources. Multicycle loops can present resource conflicts
which affect modulo scheduling. This section describes techniques to deal
with this issue.

5.5.1 Weighted Vector Sum C Code

Example 5-15 shows the C code for a weighted vector sum.

Example 5—15. Weighted Vector Sum C Code

void w_vec (short a[],short b[],short c[],short m)

{

int i;

for (i=0; 1<100; i++) {
c[i] = ((m * a[i]) >> 15) + b[i];
}

5.5.2 Translating C Code to Linear Assembly

Example 5—-16 shows the linear assembly that executes the weighted vector
sum in Example 5—15. This linear assembly does not have functional units as-
signed. The dependency graph will help in those decisions. However, before
looking at the dependency graph, the code can be optimized further.

Example 5—-16. Linear Assembly for Weighted Vector Sum Inner Loop

LDH *aptr++,ai ; ai
LDH *bptr++,bi ; bi
MPY m,ai,pi ; m * oai
SHR pi,15,pi_scaled ; (m * ai) >> 15
ADD pi_scaled,bi,ci ; ci= (m * ai) >> 15 + bi
STH ci, *cptr++ ; store ci

[cntr] SUB cntr,1l,cntr ; decrement loop counter
[cntr]B LOOP ; branch to loop

Optimizing Assembly Code 5-31

Part Il

Part Il

Modulo Scheduling of Multicycle Loops

5.5.3 Determining the Minimum Ilteration Interval

Example 5-16 includes three memory operations in the inner loop (two LDHs
and the STH) that must each use a .D unit. Only two .D units are available on
any single cycle; therefore, this loop requires at least two cycles. Because no
other resource is used more than twice, the minimum iteration interval for this
loop is 2.

Memory operations determine the minimum iteration interval in this example.
Therefore, before scheduling this assembly code, unroll the loop and perform
LDWs to help improve the performance.

5.5.3.1 Unrolling the Weighted Vector Sum C Code

Example 5-17 shows the C code for an unrolled version of the weighted vector
sum.

Example 5-17. Weighted Vector Sum C Code (Unrolled)

void w_vec (short a[],short b[],short c[],short m)

{

int 1i;

for (i=0; i<100; i+=2) {
c[i] = ((m * a[i]) >> 15) + b[i];
c[i+1l] = ((m * a[i+1]) >> 15) + b[i+1];

}

5-32

Modulo Scheduling of Multicycle Loops

5.5.3.2 Translating Unrolled Inner Loop to Linear Assembly

Example 5—-18 shows the linear assembly that calculates c[i] and c[i+1] for the
weighted vector sum in Example 5-17.

[d The two store pointers (*ciptr and *ci+1ptr) are separated so that one
(*ciptr) increments by 2 through the odd elements of the array and the
other (*ci+1ptr) increments through the even elements.

(1 AND and SHR separate bi and bi+1 into two separate registers.

[d This code assumes that mask is preloaded with 0XO000FFFF to clear the
upper 16 bits. The shift right of 16 places bi+1 into the 16 LSBs.

Example 5—-18. Linear Assembly for Weighted Vector Sum Using LDW

LDW
LDW
MPY
MPYHL
SHR
SHR
AND
SHR
ADD
ADD
STH
STH
[cntr] SUB
[cntr]B

*aptr++,ai_i+1
*bptr++,bi_i+1
m,ai_i+1,pi
m,ai_i+1,pi+l
pi,15,pi_scaled
pi+l,15,pi+l_scaled

bi_i+1,mask,bi bi

bi_i+1,16,bi+l bi+l

pi_scaled,bi,ci ci = (m * ai) >> 15 + bi
pi+l_scaled,bi+l,ci+l ci+l = (m * ai+l) >> 15 + bi+l

ci,*ciptr++[2]
ci+l, *ci+lptr++[2]
cntr,1l,cntr

LOOP

ai & ai+l

bi & bi+l

m * ai

m * ai+l

(m * ai) >> 15
(m * ai+l) >> 15

store ci

store ci+l

decrement loop counter
branch to loop

Ne N+ Ne N Ne Ne Ne Ne Ne Ne Ne Ne Ne N

5.5.3.3 Determining a New Minimum lteration Interval

Use the following considerations to determine the minimum iteration interval
for the assembly instructions in Example 5-18:

(1 Four memory operations (two LDWSs and two STHs) must each use a .D
unit. With two .D units available, this loop still requires only two cycles.

(1 Fourinstructions must use the .S units (three SHRs and one branch). With
two .S units available, the minimum iteration interval is still 2.

(1 The two MPYs do not increase the minimum iteration interval.

(1 Because the remaining four instructions (two ADDs, AND, and SUB) can
all use a .L unit, the minimum iteration interval for this loop is the same as
in Example 5-16.

By using LDWs instead of LDHSs, the program can do twice as much work in
the same number of cycles.

Optimizing Assembly Code 5-33

Part Il

Part Il

Modulo Scheduling of Multicycle Loops

5.5.4 Drawing a Dependency Graph

To achieve a minimum iteration interval of 2, you must put an equal number
of operations per unit on each side of the dependency graph. Three operations
in one unit on a side would result in an minimum iteration interval of 3.

Figure 5-6 shows the dependency graph divided evenly with a minimum itera-
tion interval of 2.

Figure 5—6. Dependency Graph of Weighted Vector Sum

A side
LDW

B side

.D1

\
\
l
)
5 5/

SHR

2
1

.S1

.L1X

5-34

Modulo Scheduling of Multicycle Loops

5.5.5 Allocating Resources

Using the dependency graph, you can allocate functional units and registers

as shown in Example 5-19. This code is based on the following assumptions:

1 The pointers are initialized outside the loop.
[mresides in B6, which causes both .M units to use a cross path.
(1 The mask in the AND instruction resides in B10.

Example 5—19. Linear Assembly for Weighted Vector Sum With Resources Allocated

LDW
LDW
MPY
MPYHL
SHR
SHR
AND
SHR
ADD
ADD
STH
STH

.D1
.D2
.M1X
.M2X
.S1
.S2
L2
.S2
LL1X
L2
.D1
.D2
L1
.S1

*A4++,A2 ; ai & ai+l

*B4++,B2 ; bi & bi+l

A2,B6,A5 ; pi=m * ai

A2,B6,B5 ; plit+l = m * ai+l

A5,15,A7 ; pi_scaled = (m * ai) >> 15
B5,15,B7 ; pitl_scaled = (m * ai+l) >> 15
B2,B10,B8 ; bi

B2,16,B1 ; bi+l

A7,B8,A9 ; ci= (m * ai) >> 15 + bi
B7,B1,B9 ; ci+l = (m * ai+l) >> 15 + bi+l
A9, *A6++[2] ; store ci

B9, *BO++[2] ; store ci+l

Al,1,Al ; decrement loop counter

LOOP ; branch to loop

5.5.6 Modulo Iteration Interval Scheduling

Table 5-6 provides a method to keep track of resources that are a modulo it-
eration interval away from each other. In the single-cycle dot product example,
every instruction executed every cycle and, therefore, required only one set
of resources. Table 5-6 includes two groups of resources, which are neces-
sary because you are scheduling a two-cycle loop.

1 Instructions that execute on cycle k also execute on cycle k + 2, k + 4, etc.
Instructions scheduled on these even cycles cannot use the same
resources.

[J Instructions that execute on cycle k + 1 also execute oncycle k + 3,k + 5,
etc. Instructions scheduled on these odd cycles cannot use the same
resources.

(1 Because two instructions (MPY and ADD) use the 1X path but do not use
the same functional unit, Table 5-6 includes two rows (1X and 2X) that
help you keep track of the cross path resources.

Optimizing Assembly Code 5-35

Part Il

Part Il

Modulo Scheduling of Multicycle Loops

5-36

Only seven instructions have been scheduled in this table.
(O The two LDWs use the .D units on the even cycles.

1 TheMPY and MPYH are scheduled on cycle 5 because the LDW has four
delay slots. The MPY instructions appear in two rows because they use
the .M and cross path resources on cycles 5, 7, 9, etc.

(O Thetwo SHRinstructions are scheduled two cycles after the MPY to allow
for the MPY’s single delay slot.

(1 The AND is scheduled on cycle 5, four delay slots after the LDW.

Modulo Scheduling of Multicycle Loops

Table 5-6. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10
.D1 . . .- . -
LDW ai_j+1 | LDW ai_i+1 LDW ai_i+1 LDW ai_i+1 LDW ai_i+1 LDW ai_i+1
.D2 - . .- . -
LDW bi_i+1 | LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1
M1
.M2
.L1
L2
.S1
.S2
1X
2X
Unit/Cycle 1 3 5 7 9 1
.D1
.D2
M1 : . . , S
MPY pi MPY pi MPY pi MPY pi T
(]
M2 * *%* *kk n.
’ MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1 MPYHL pi+1
.L1
AND bi AND bi AND bi AND bi
L2
.S1 . . .
SHR pi_s SHR pi_s SHR pi_s
.S2 . . .
SHR pi+1_s SHR pi+1_s SHR pi+1_s
1X
MPY pi MPY pi MPY pi MPY pi
2X
MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1 MPYHL pi+1
Note: The asterisks indicate the iteration of the loop; shaded cells indicate cycle 0.

Optimizing Assembly Code 5-37

Part Il

Modulo Scheduling of Multicycle Loops

5.5.6.1 Resource Conflicts

Resources from one instruction cannot conflict with resources from any other
instruction scheduled modulo iteration intervals away. In other words, for a
two-cycle loop, instructions scheduled on cycle n cannot use the same re-
sources as instructions scheduled on cycles n + 2, n + 4, n + 6, etc. Table 5-7
shows the addition of the SHR bi+1 instruction. This must avoid a conflict of
resources in cycles 5 and 7, which are one iteration interval away from each
other.

Eventhough LDW bi_i+1 (.D2, cycle 0) finishes on cycle 5, its child, SHR bi+1,
cannot be scheduled on .S2 until cycle 6 because of a resource conflict with
SHR pi+1_scaled, which is on .S2 in cycle 7.

Figure 5—7. Dependency Graph of Weighted Vector Sum (Showing Resource Conflict)

A side B side
LDW

Scheduled
oncycle 5
AND SHR

Scheduled
on cycle 7

5-38

Modulo Scheduling of Multicycle Loops

Table 5-7. Modulo Iteration Interval Table for Weighted Vector Sum With SHR Instructions

Unit / Cycle 0 2 4 6 8 10,12, 14, ...
D1 LDW ai_i+1 | LDW ai_i+1 LDW ai_i+1 LDW ai_i+1 LDW ai_i+1 LDW ai_i+1
b2 LDW bi_i+1 | LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1
M1
M2
.L1
L2
.S1
.S2 . . .

SHR bi+1 SHR bi+1 SHR bi+1
1X
2X

Unit / Cycle 1 3 5 7 9 11,13, 15, ...
.D1
.D2
M1

MPY pi MPY pi MPY pi MPY pi
M2
MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1 MPYHL pi+1
.L1
AND bi AND bi AND bi AND bi
L2
S . . .
SHR pi_s SHR pi_s SHR pi_s
.S2 . . .
SHR pi+1_s SHR pi+1_s SHR pi+1_s
1X
MPY pi MPY pi MPY pi MPY pi
2X
MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1 MPYHL pi+1
Note: The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 5-6.

Optimizing Assembly Code

5-39

Part Il

Part Il

Modulo Scheduling of Multicycle Loops

5.5.6.2 Live Too Long

Scheduling SHR bi+1 on cycle 6 now creates a problem with scheduling the
ADD ci instruction. The parents of ADD ci (AND bi and SHR pi_scaled) are
scheduled on cycles 5 and 7, respectively. Because the SHR pi_scaled is
scheduled on cycle 7, the earliest you can schedule ADD ci is cycle 8.

However, in cycle 7, AND bi * writes bi for the next iteration of the loop, which
creates a scheduling problem with the ADD ci instruction. If you schedule
ADD cion cycle 8, the ADD instruction reads the parent value of bi for the next
iteration, which is incorrect. The ADD ci demonstrates a live-too-long problem.

No value can be live in a register for more than the number of cycles in the loop.
Otherwise, iteration n + 1 writes into the register before iteration n has read that
register. Therefore, in a 2-cycle loop, a value is written to a register at the end
of cycle n, then all children of that value must read the register before the end
of cycle n + 2.

5.5.6.3 Solving the Live-Too-Long Problem

5-40

The live-too-long problem in Table 5—7 means that the bi value would have to
be live from cycles 6-8, or 3 cycles. No loop variable can live longer than the
iteration interval, because a child would then read the parent value for the next
iteration.

To solve this problem move AND bi to cycle 6 so that you can schedule ADD ci
to read the correct value on cycle 8, as shown in Figure 5-8 and Table 5-8.

Modulo Scheduling of Multicycle Loops

Figure 5-8. Dependency Graph of Weighted Vector Sum
(With Resource Conflict Resolved)

A side
LDW

B side

\
\
1
o |
5 5 /

Part Il

Note: Shaded numbers indicate the cycle in which the instruction is first scheduled.

Optimizing Assembly Code 5-41

Part Il

Modulo Scheduling of Multicycle Loops

Table 5-8. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10
D1 LDW ai_i+1 | LDW ai_i+1 LDW ai_i+1 LDW ai_i+1 LDW ai_i+1 LDW ai_i+1
D2 LDW bi_i+1 | LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1
M1
M2
L ADD ci ADD ci
L2 . . .
AND bi AND bi AND bi
.S
.S2 . . .
SHR bi+1 SHR bi+1 SHR bi+1
1X
2X
Unit/Cycle 1 3 5 7 9 1
.D1
.D2
M1
MPY pi MPY pi MPY pi MPY pi
M2
MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1 MPYHL pi+1
.L1
L2
.S . . .
SHR pi_s SHR pi_s SHR pi_s
.S2 . . .
SHR pi+1_s SHR pi+1_s SHR pi+1_s
1X
MPY pi MPY pi MPY pi MPY pi
2X MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1 MPYHL pi+1
Note: The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 5-7.

5-42

Modulo Scheduling of Multicycle Loops

5.5.6.4 Scheduling the Remaining Instructions

Figure 5-9 shows the dependency graph with additional scheduling changes.
The final version of the loop, with all instructions scheduled correctly, is shown
in Table 5-9.

Figure 5-9. Dependency Graph of Weighted Vector Sum (Scheduling ci+1)

A side
LDW

B side

\
>

.S1

.L1X

Part Il

S
1 SUB
.L1 ‘@ 5
1
B
‘ 6

Note: Shaded numbers indicate the cycle in which the instruction is first scheduled.

Optimizing Assembly Code 5-43

Part Il

Modulo Scheduling of Multicycle Loops

5-44

Table 5-9 shows the following additions:

Uoooo

To

B LOOP (.S1, cycle 6)
SUB cntr (.L1, cycle 5)
ADD ci+1 (.L2, cycle 10)
STH ci (cycle 9)

STH ci+1 (cycle 11)

avoid resource conflicts and live-too-long problems, Table 5-9 also

includes the following additional changes:

Uoooo

LDW bi_i+1 (.D2) moved from cycle 0 to cycle 2.

AND bi (.L2) moved from cycle 6 to cycle 7.

SHR pi+1_scaled (.S2) moved from cycle 7 to cycle 9.
MPYHL pi+1 moved from cycle 5 to cycle 6.

SHR bi+1 moved from cycle 6 to 8.

From the table, you can see that this loop is pipelined six iterations deep, be-
cause iterations n and n + 5 execute in parallel.

Modulo Scheduling of Multicycle Loops

Table 5-9. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10,12, 14, ...
D1 LDW ai_i+1 | LDW ai_i+1 LDW ai_i+1 LDW ai_i+1 LDW ai_i+1 LDW ai_i+1
.D2 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1
M1
M2 MPYHL pi+1 MPYHL pi+1 MPYHL pi+1
L1 ADD ci ADD ci
L2 ADD ci+1
S1 B LOOP B LOOP B LOOP
52 SHR bi+1 SHR bi+1

X ADD ci ADD ci
2X MPYHL pi+1 MPYHL pi+1 MPYHL pi+1

Unit/Cycle 1 3 5 7 9 11,13, 15, ...
D1 STH ci STHi
D2 STH cis+1
M1 . * . *%k . *kk .

MPY pi MPY pi MPY pi MPY pi
.M2
L1 SUB cntr SUB cntr SUB cntr SUB cntr
.L2 . *) * % .

AND bi AND bi AND bi

51 SHR pi_s SHR pi_s SHR pi_s
52 SHR pi+1_s | SHRpi+1_s
1X . * . *%* . *kk .

MPY pi MPY pi MPY pi MPY pi
2X

Note: The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 5-8.

Optimizing Assembly Code

5-45

Part Il

Part Il

Modulo Scheduling of Multicycle Loops

5.5.7 Using the Assembly Optimizer for the Weighted Vector Sum

Example 5-20 shows the linear assembly code to perform the weighted vector
sum. You can use this code as input to the assembly optimizer to create a soft-
ware-pipelined loop instead of scheduling this by hand.

Example 5-20. Linear Assembly for Weighted Vector Sum

.global _w_vec
_W_vecC: .cproc a, b, ¢, m
.reg ai_il1, bi_il, pi, pil, pi_il, pi_s, pil_s
.reg mask, bi, bil, ci, cil, cl, cntr
MVK -1, mask ; set to all 1s to create OXFFFFFFFF
MVKH 0, mask ; clear upper 16 bits to create OxXFFFF
MVK 50, cntr ; cntr = 100/2
ADD 2,c,cl ; point to c[1l]
LOOP: .trip 50
LDW .D1 *at++,ai_il ; ai & ai+l
LDW .D2 *p++,bi_il ; bi & bi+l
MPY .M1X ai_il,m,pi ; m * oai
MPYHL .M2X ai_il,m,pil ; om o * oai+l
SHR .S1 pi,15,pi_s ; (m * ai) >> 15
SHR .S2 pil,15,pil_s ; (m * ai+l) >> 15
AND L2 bi_il,mask,bi; bi
SHR .S2 bi_i1,16,bil ; bi+l
ADD .L1X pi_s,bi,ci ; ci = (m * ai) >> 15 + bi
ADD L2 pil_s,bil,cil; ci+l = (m * ai+l) >> 15 + bi+l
STH .D1 ci,*c++[2] ; store ci
STH .D2 cil, *cl++[2] ; store ci+l
[cntr] SUB L1 cntr,1l,cntr ; decrement loop counter
[cntr] B .51 LOOP ; branch to loop
.endproc

5-46

Modulo Scheduling of Multicycle Loops

5.5.8 Final Assembly

Example 5-21 shows the final assembly code for the weighted vector sum.
The following optimizations are included:

[While iteration n of instruction STH ci+1 is executing, iteration n + 1 of
STH ciis executing. To prevent the STH ciinstruction from executing itera-
tion 51 while STH ci + 1 executes iteration 50, execute the loop only 49
times and schedule the final executions of ADD ci+1 and STH ci+1 after
exiting the loop.

(1 The maskforthe AND instruction is created with MVK and MVKH in paral-
lel with the loop prolog.

[d The pointer to the odd elements in array c is also set up in parallel with the
loop prolog.

Optimizing Assembly Code 5-47

Part Il

Part Il

Modulo Scheduling of Multicycle Loops

Example 5-21. Assembly Code for Weighted Vector Sum

LDW .D1 *A4++,A2

ADD .L2X A6,2,B0

LDW .D2 *B4++,B2
| LDW .D1 *Ad++, A2

MVK .S2 -1,B10

LDW .D2 *B4++,B2
| LDW .D1 *A4++,A2
[MVK .S1 49,A1
[MVKH .S2 0,B10

MPY .M1X A2,B6,A5
| | [A1] SUB L1 Al,1,Al

MPYHL .M2X A2,B6,B5
[[A1] B S1 LOOP
| LDW .D2 *B4++,B2
| LDW .D1 *A4++, A2

SHR .S1 A5,15,A7
| AND L2 B2,B10, B8
| MPY .M1X A2,B6,A5
|| [A1] SUB .L1 Al,1,Al

SHR .52 B2,16,B1
[ADD .L1X A7,B8,A9
| MPYHL .M2X A2,B6,B5
I [A1] B .S1 LOOP
| LDW .D2 *B4++,B2
| LDW .D1 *A4++,A2

SHR .S2 B5,15,B7
| STH .D1 A9, *A6++[2]
| SHR .S1 A5,15,A7
| AND L2 B2,B10, B8
|| [A1] SUB .L1 Al,1,Al
| MPY .M1X A2,B6,A5
LOOP:

ADD L2 B7,B1,B9
| SHR .52 B2,16,B1
| ADD .L1X A7,B8,A9
| MPYHL .M2X A2,B6,B5
I [A1] B S1 LOOP
[LDW .D2 *B4++,B2
| LDW .D1 *A4++,A2

; ai & ai+l
; set pointer to ci+l

; bi & bi+l

;* ai & ai+l

; set to all 1ls (OxXFFFFFFFF)

;¥ bi & bi+l

;%% ail & ai+l

; set up loop counter

; clr upper 16 bits (0xO000FFFF)

; m o * ai
; decrement loop counter

; m o* oai+l

; branch to loop
;** bl & bi+l
;*** ai & ai+l

; (m * ai) >> 15

; bi

;¥ m *oai

; * decrement loop counter

; bi+l

; ci = (m * ai)
;¥ m * oai+l

;* branch to loop
;X** bi & bi+l
jRFEAY ai & ai+l

>> 15 + bi

; (m * ai+l) >> 15
; store ci
;¥ (m * ai) >> 15

;% bi
; ** decrement loop counter
;** m o *oai

; ci+l = (m * ai+l) >> 15 + bi+l
;* bi+l
;¥ ci= (m * ai) >> 15 + bi

;FFom % oai+l

j** branch to loop
prEF* biog bi+l
jREFEFX gl & ai+tl

5-48

Modulo Scheduling of Multicycle Loops

Example 5-21. Assembly Code for Weighted Vector Sum (Continued)

STH .D2 B9, *BO++[2] ; store ci+l
| SHR .S2 B5,15,B7 ;* (m * ai+l) >> 15
| STH .D1 A9, *A6++[2] ;* store ci
| SHR .S1 A5,15,A7 ;** (m * ai) >> 15
|| AND L2 B2,B10,B8 ;** bi
| | [A1] SUB L1 Al,1,Al ; *** decrement loop counter
| MPY .M1X A2,B6,A5 JFrYYom % oai

; Branch occurs here
ADD L2 B7,B1,B9 ; ci+l = (m * ai+l) >> 15 + bi+l

STH .D2 B9, *BO ; store ci+l

Optimizing Assembly Code 5-49

Part Il

Part Il

Loop Carry Paths

5.6 Loop Carry Paths

Loop carry paths occur when one iteration of a loop writes a value that must
be read by a future iteration. A loop carry path can affect the performance of
a software-pipelined loop that executes multiple iterations in parallel. Some-
times loop carry paths (instead of resources) determine the minimum iteration
interval.

IIR filter code contains a loop carry path; output samples are used as input to
the computation of the next output sample.
5.6.1 IR Filter C Code

Example 5-22 shows C code for a simple IIR filter. In this example, y][i] is an
input to the calculation of y[i+1]. Before y[i] can be read for the next iteration,
y[i+1] must be computed from the previous iteration.

Example 5-22. IR Filter C Code

void iir(short x[],short y[],short cl, short c2, short c3)

{

int 1i;

for (i=0; 1<100; i++) {
y[i+l] = (cl*x[i] + c2*x[i+1] + c3*y[i]) >> 15;
}

5-50

Loop Carry Paths

5.6.2 Translating C Code to Linear Assembly (Inner Loop)

Example 5-23 shows the 'C62xx instructions that execute the inner loop of the
[IR filter C code. In this example:

[xptr is not postincremented after loading xi+1, because xi of the next
iteration is actually xi+1 of the current iteration. Thus, the pointer points to
the same address when loading both xi+1 for one iteration and xi for the
next iteration.

[d yptris also not postincremented after storing yi+1, because yi of the next
iteration is yi+1 for the current iteration.

Example 5-23. Linear Assembly for IIR Inner Loop

LDH
MPY
LDH
MPY
ADD
LDH
MPY
ADD
SHR
STH
[cntr] SUB
[cntr] B

*xptr++,xi ;o xi+1l

cl,xi,p0 ; cl * xi

*xptr,xi+l ; o xi+l

c2,xi+l,pl ; c2 * xi+l

p0,pl,s0 ; cl * xi + c2 * xi+l
*yptr++,yi iyl

c3,vi,p2 ; c3 * yi

s0,p2,sl ;0 cl * xi + c2 * xi+l + c3 * yi
sl,15,yi+1 ;oyi+l

yi+l, *yptr ; store yi+l

cntr,1l,cntr ; decrement loop counter
LOOP ; branch to loop

Optimizing Assembly Code 5-51

Part Il

Part Il

Loop Carry Paths

5.6.3 Drawing a Dependency Graph

Figure 5-10 shows the dependency graph for the IIR filter. A loop carry path
exists from the store of yi+1 to the load of yi. The path between the STH and
the LDH is one cycle because the load and store instructions use the same
memory pipeline. Therefore, if a store is issued to a particular address on cycle
n and a load from that same address is issued on the next cycle, the load reads
the value that was written by the store instruction.

Figure 5—10. Dependency Graph of IIR Filter
A side B side

5-52

Note: The shaded numbers show the loop carry path:5+2 +1+1+1=10.

Loop Carry Paths

5.6.4 Determining the Minimum Iteration Interval

To determine the minimum iteration interval, you must consider both resources
and data dependency constraints. Based on resources in Table 5-10, the
minimum iteration interval is 2.

Note:

There are six non-.M units available: three on the A side (.51, .D1, .L1) and
three on the B side (.S2, .D2, .L2). Therefore, to determine resource
constraints, divide the total number of non-.M units used on each side by 3
(3 is the total number of non-.M units available on each side).

Based on non-.M unit resources in Table 5-10, the minimum iteration inter-
val for the lIR filter is 2 because the total non-.M units onthe Asideis 5 (5 + 3
is greater than 1 so you round up to the next whole number). The B side uses
only three non-.M units, so this does not affect the minimum iteration interval,
and no other unit is used more than twice.

Table 5-10. Resource Table for IIR Filter

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit
M1 2 MPYs 2 M2 MPY 1

.S B 1 .S2 SHR 1

.D1 2 LDHs 2 .D2 STH 1
.L1,.81, or .D1 ADD & SUB 2 .L20or.S2,.02 ADD 1
Total non-.M units 5 Total non-.M units 3

However, the |IR has a data dependency constraint defined by its loop carry
path. Figure 5-10 shows that if you schedule LDH yi on cycle 0:

[d The earliest you can schedule MPY p2 is on cycle 5.
(1 The earliest you can schedule ADD s1 is on cycle 7.
1 SHR yi+1 must be on cycle 8 and STH on cycle 9.
EI

Because the LDH must wait for the STH to be issued, the earliest the the
second iteration can begin is cycle 10.

To determine the minimum loop carry path, add all of the numbers along the
loop paths in the dependency graph. This means that this loop carry path is
105+2+1+1+1).

Optimizing Assembly Code 5-53

Part Il

Loop Carry Paths

Although the minimum iteration interval is the greater of the resource limits and
data dependency constraints, an interval of 10 seems slow. Figure 5—11
shows how to improve the performance.

5.6.4.1 Drawing a New Dependency Graph

Figure 5-11 shows a new graph with a loop carry path of 4 (2 +1 + 1). because
the MPY p2instruction can read yi+1 while itis stillin a register, you can reduce
the loop carry path by six cycles. LDH yi is no longer in the graph. Instead, you
can issue LDH y[0] once outside the loop. In every iteration after that, the y+1
values written by the SHR instruction are valid y inputs to the MPY instruction.

Figure 5—11.Dependency Graph of IIR Filter (With Smaller Loop Carry)

A side

B side

Part Il

Note: The shaded numbers show the loop carry path: 2 + 1 + 1 = 4.

5-54

Loop Carry Paths

5.6.4.2 New 'C62xx Instructions (Inner Loop)

Example 5-24 shows the new linear assembly from the graph in Figure 5-11,
where LDH yi was removed. The one variable y that is read and written is yi
for the MPY p2 instruction and yi+1 for the SHR and STH instructions.

Example 5-24. Linear Assembly for IIR Inner Loop With Reduced Loop Carry Path

LDH *xptr++, xi ; xi+1l
MPY cl,xi,p0 ; o cl * oxi
LDH *xptr,xi+l ;o xi+l
MPY c2,xi+l,pl ; c2 * xi+l
ADD p0,pl,s0 ; cl * xi + c2 * xi+l
MPY c3,v,p2 P @3 ¥ yi
ADD s0,p2,sl ; cl * xi + c2 * xi+l + c3 * yi
SHR sl,15,y ;o oyi+l
STH Y, *yptr++ ; store yi+l
[cntr] SUB cntr,1l,cntr ; decrement loop counter
[cntr]B LOOP ; branch to loop

5.6.5 Allocating Resources

Example 5-25 shows the same linear assembly instructions as those in
Example 5-24 with the functional units and registers assigned.

Example 5-25. Linear Assembly for IIR Inner Loop (With Allocated Resources)

LDH .D1 *Ad++,A2 ; oxi+1
MPY M1 A6,A2,A5 ; cl * xi
LDH .D1 *A4,A3 ;o xi+l
MPY .M1X B6,A3,A7 ; c2 * xi+l
ADD L1 A5,A7,A9 ; ¢l * xi + c2 * xi+l
MPY .M2X A8,B2,B3 ; c3 % yi
ADD .L2X B3,A9,B5 ; cl * xi + c2 * xi+l + c3 * yi
SHR .S2 B5,15,B2 ;oyi+l
STH .D2 B2, *B4++ ; store yi+l
[A1l] SUB L1 Al,1,Al ; decrement loop counter
[A1l] B .51 LOOP ; branch to loop

Optimizing Assembly Code 5-55

Part Il

Loop Carry Paths

5.6.6 Modulo Iteration Interval Scheduling
Table 5—11 shows the modulo iteration interval table for the IIR filter. The SHR

instruction on cycle 10 finishes in time for the MPY p2 instruction from the next
iteration to read its result on cycle 11.

Table 5-11. Modulo lteration Interval Table for IIR (4-Cycle Loop)

Unit/Cycle 0 4 8,12, 16, ... || Unit/Cycle 1 5 9,13,17, ...
D1 LDH xi LDH xi LDH xi D1 LDHXi+1 | | pH xiv1 | LDH ci+1
D2 ADD <0 D2
M1 M1 MPY po0 MPY p0
M2 M2
.L1 .L1 SUB cntr SUB cntr
L2 L2 ADD s
S S
S2 S2
1X 1X
2X 2X ADD s1

= [Uunitcycle 2 6 10, 14, 18, ... || Unit/Cycle 3 7 11, 15, 19, ...
E D1 D1
D2 D2 STH yi+1
M1 MPY pi MPY pi M1
M2 M2 MPYp2 | MPYp2
L1 L1
L2 L2
S BLOOP | & o0p S
52 SHR yi+1 52
1X MPY pi MPY pi 1X
2X 2X MPYp2 | MPYp2

Note: The asterisks indicate the iteration of the loop.

5-56

Loop Carry Paths

5.6.7 Using the Assembly Optimizer for the IIR Filter

Example 5-26 shows the linear assembly code to perform the IIR filter. Once
again, you can use this code as input to the assembly optimizer to create a soft-
ware-pipelined loop instead of scheduling this by hand.

Example 5-26. Linear Assembly for IIR Filter

.global _iir

_iir: .cproc x, vy, cl, c2, c3
.reg xi, xil, yil
.reg 0, pl, p2, s0, sl, cntr
MVK 100, cntr ; cntr = 100
LDH .D2 *y++,vyil ;o oyi+l

LOOP: .trip 100

LDH .D1 *x++,xi ;o oxi
MPY .M1 cl,xi,p0 ; cl * xi
LDH D1 *x,xil ;o oxi+1
MPY .M1X c2,xil,pl ; Cc2 * xi+l
ADD .L1 pO0,pl,s0 ; cl * xi 4+ c2 * xi+l
MPY .M2X c3,yil,p2 ; c3 * yi
ADD .L2X s0,p2,s1 ; cl * xi + ¢c2 * xi+l + ¢c3 * yi
SHR .52 sl1,15,yil ;oyi+l
STH .D2 yil, *y++ ; store yi+l
[cntr] SUB .L1 c¢ntr,1,cntr ; decrement loop counter
[cntr] B .51 LOOP ; branch to loop
.endproc

Optimizing Assembly Code 5-57

Part Il

Part Il

Loop Carry Paths

5.6.8 Final Assembly

Example 5-27 shows the final assembly for the IIR filter. With one load of y[0]
outside the loop, no other loads from the y array are needed. Example 5-27
requires 408 cycles: (4 x100) + 8.

Example 5-27. Assembly Code for IIR Filter

LDH .D1 *A4++, A2 ; oxi
LDH .D1 *A4, A3 ; xi+l
LDH .D2 *B4++,B2 ; load y[0] outside of loop
MVK .S1 100,A1 ; set up loop counter
LDH .D1 *A4++, A2 ;*oxi
[Al] SUB L1 Al,1,Al ; decrement loop counter
| MPY M1 A6,A2,A5 ; cl * xi
| LDH .D1 *A4,A3 ;* oxi+l
MPY .M1X B6,A3,A7 ; c2 * xi+l
|1 [A1] B .S1 LOOP ; branch to loop
MPY .M2X A8,B2,B3 ; c3 % yi
LOOP :
ADD L1 A5,A7,A9 ; cl * xi + c2 * xi+l
| LDH .D1 *AA++, A2 ;*xoxi
ADD .L2X B3,A9,B5 ; cl * xi + c2 * xi+l + c3 * yi
|| [A1l] SUB L1 Al,1,Al ; * decrement loop counter
|| MPY .M1 A6,A2,A5 ;* cl * oxi
| LDH .D1 *A4,A3 J Y oxi+l
SHR .82 B5,15,B2 ; oyi+l
| MPY .M1X B6,A3,A7 ;Y oc2 *oxi+l
|| [A1l] B .S1 LOOP ;* branch to loop
STH .D2 B2, *B4++ ; store yi+l
| MPY .M2X A8,B2,B3 ;¥ c3 % yi
; Branch occurs here

5-58

If-Then-Else Statements in a Loop

5.7 If-Then-Else Statements in a Loop

If-then-else statements in C cause certain instructions to execute when the if
condition is true and other instructions to execute when it is false. One way to
accomplish this in linear assembly code is with conditional instructions. be-
cause all’C62xx instructions can be conditional on one of five general-purpose
registers, conditional instructions can handle both the true and false cases of
the if-then-else C statement.

5.7.1 If-Then-Else C Code

Example 5-28 contains a loop with an if-then-else statement. You either add
a[i] to sum or subtract a[i] from sum.

Example 5-28. If-Then-Else C Code

int i1f_then(short a[], int codeword, int mask, short theta)
{

int 1i,sum, cond;

sum = 0;
for (i = 0; 1 < 32; i++){
cond = codeword & mask;
if (theta == ! (! (cond)))
sum += afli];
else
sum —-= al[i];
mask = mask << 1;
}
return (sum) ;

}

Branching is one way to execute the if-then-else statement: branch to the ADD
when the if statement is true and branch to the SUB when the if statement is
false. However, because each branch has five delay slots, this method
requires additional cycles. Furthermore, branching within the loop makes soft-
ware pipelining almost impossible.

Using conditional instructions, on the other hand, eliminates the need to
branch to the appropriate piece of code after checking whether the condition
is true or false. Simply program both the ADD and SUB as usual, but make
them conditional on the zero and nonzero values of a condition register. This
method also allows you to software pipeline the loop and achieve much better
performance than you would with branching.

Optimizing Assembly Code 5-59

Part Il

Part Il

If-Then-Else Statements in a Loop

5.7.2 Translating C Code to Linear Assembly

Example 5-29 shows the linear assembly instructions needed to execute in-
ner loop of the C code in Example 5-28.

Example 5-29. Linear Assembly for If-Then-Else Inner Loop

AND
[cond] MVK
CMPEQ
LDH
[if] ADD
['if] SUB
SHL
[cntr] ADD
[cntr]B

codeword, mask, cond cond = codeword & mask

r’
1,cond ; V(! (cond))
theta, cond, if ; (theta == ! (! (cond)))
*aptr++,ai ; alil]
sum, ai, sum ; sum += a[i]
sum, ai, sum ; sum —= ali]
4

mask, 1, mask mask = mask << 1;

-1,cntr,cntr ; decrement counter
LOOP ; for LOOP

5-60

CMPEQis usedto create IF. The ADD is conditional when IF is nonzero (corre-
sponds to then); the SUB is conditional when IF is 0 (corresponds to else).

A conditional MVK performs the !(!/(cond)) C statement. If the result of the
bitwise AND is nonzero, a 1 is written into cond; if the result of the AND is 0,
cond remains at 0.

If-Then-Else Statements in a Loop

5.7.3 Drawing a Dependency Graph

Figure 5—12 shows the dependency graph for the if-then-else C code. This
graph illustrates the following arrangement:

(1 Two nodes on the graph contain sum: one for the ADD and one for the
SUB. Because some iterations are performing an ADD and others are
performing a SUB, each of these nodes is a possible input to the next itera-
tion of either node.

(1 The LDH ai instruction is a parent of both ADD sum and SUB sum, be-
cause both instructions read ai.

(O CMPEQifis also a parent to ADD sum and SUB sum, because both read
IF for the conditional execution.

[d The result of SHL mask is read on the next iteration by the AND cond
instruction.

Figure 5—12. Dependency Graph of If-Then-Else Code

B side
AND

Optimizing Assembly Code 5-61

Part Il

Part Il

If-Then-Else Statements in a Loop

5.7.4 Determining the Minimum lteration Interval

With nine instructions, the minimum iteration interval is at least 2, because a
maximum of eight instructions can be in parallel. Based on the way the depen-
dency graph in Figure 5-12 is split, five instructions are on the A side and four
are on the B side. Because none of the instructions are MPYs, all instructions
must go on the .S, .D, or .L units, which means you have a total of six
resources.

(1 LDH must be on a .D unit.

(O SHL, B, and MVK must be on a .S unit.

(O The ADDs and SUB can be on the .S, .L, or .D units.
(O The AND can be on a .S or .L unit.

From Table 5-12, you can see that no one resource is used more than two
times, so the minimum iteration interval is still 2.

Table 5—-12. Resource Table for If-Then-Else Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

M1 0 M2 0

.S1 SHL & B 2 .S2 MVK 1

.D1 LDH 1 L2 CMPEQ 1

.L1,.S1,or.D1 ADD & SUB 2 .L20or.S2 AND 1
.L2,.82,or.D2 ADD 1

Total non-.M units 5 Total non-.M units 4

5-62

The minimum iteration interval is also affected by the total number of instruc-
tions. Because three units can perform nonmultiply operations on a given side,
a total of five instructions can be performed with a minimum iteration interval
of 2. Because only four instructions are on the B side, the minimum iteration
interval is still 2.

If-Then-Else Statements in a Loop

5.7.5 Allocating Resources

Now that the graph is split and you know the minimum iteration interval, you
can allocate functional units and registers to the instructions. You must ensure
that no resource is used more than twice.

Example 5-30 shows the linear assembly with the functional units and regis-
ters that are used in the inner loop.

Example 5-30. Linear Assembly for Full If-Then-Else Code

.global _if_then
_if then: .cproc a, cword, mask, theta
.reg cond, if, ai, sum, cntr
MVK 32,cntr ; cntr = 32
ZERO sum ; sum = 0
LOOP: .trip 32
AND .32X cword, mask, cond ; cond = codeword & mask
[cond] MVK .82 1, cond ; V(! (cond))
CMPEQ L2 theta,cond, if ; (theta == ! (! (cond)))
LDH .D1 *a++,ai i alil
[if] ADD L1 sum, ai, sum ; sum += ali]
['if] SUB .D1 sum, ai, sum ; sum —-= af[i]
SHL .S1 mask, 1, mask ; mask = mask << 1;
[cntr] ADD L2 -1,cntr,cntr ; decrement counter
[ecntr] B .S1 LOOP ; for LOOP
.return sum
.endproc

Optimizing Assembly Code 5-63

Part Il

Part Il

If-Then-Else Statements in a Loop

5.7.6 Final Assembly

Example 5-31 shows the final assembly code after software pipelining. The
performance of this loop is 70 cycles (2 x 32 + 6).

Example 5-31. Assembly Code for If-Then-Else

MVK .52 32,B0 ; set up loop counter
[BO] ADD L2 -1,B0,B0 ; decrement counter
[BO] ADD L2 -1,B0,B0 ; decrement counter
|1 [BO] B .S1 LOOP ; for LOOP
| LDH .D1 *A4++,A5 ; alil
SHL .51 A6,1,Ab6 ; mask = mask << 1;
| AND .S2X B4,A6,B2 ; cond = codeword & mask
[B2] MVK .32 1,B2 ; (! (cond))
|| [BO] ADD L2 -1,B0, B0 ; decrement counter
|1 [BO] B .51 LOOP ;* for LOOP
| LDH .D1 *Ad++,A5 ;* ali]
CMPEQ .L2 B6,B2,B1 ; (theta == ! (! (cond)))
| SHL .S1 A6,1,A0 ;* mask = mask << 1;
I AND .S2X B4,RA6,B2 ;* cond = codeword & mask
|| ZERO i A7 ; zero out accumulator
LOOP:
[BO] ADD L2 -1,B0, B0 ; decrement counter
|| [B2] MVK .S2 1,B2 ;* (! (cond))
|1 [BO] B .51 LOOP ; ** for LOOP
| LDH .D1 *A4++,A5 ;Y% ali]
[B1] ADD L1 A7,A5,A7 ; sum += ali]
|| [!'B1]SUB .D1 A7,A5,A7 ; osum —-= a[i]
| CMPEQ .L2 B6,B2,B1 ;* (theta == ! (! (cond)))
| SHL .S1 A6,1,A6 ;** mask = mask << 1;
| AND .S2X B4,RA6,B2 ;** cond = codeword & mask
; Branch occurs here

5-64

5.7.7 Comparing Performance

Example 5-32. Assembly Code for If-Then-Else With Loop Count Greater Than 3

If-Then-Else Statements in a Loop

You can improve the performance of the code in Example 5-31 if you know
thatthe loop countis at least 3. If the loop count is at least 3, remove the decre-
ment counter instructions outside the loop and put the MVK (for setting up the
loop counter) in parallel with the first branch. These two changes save two

cycles at the beginning of the loop prolog.

The first two branches are now unconditional, because the loop count is at
least 3 and you know that the first two branches must execute. To account for
the removal of the three decrement-loop-counter instructions, set the loop
counter to 3 fewer than the actual number of times you want the loop to
execute: in this case, 29 (32 — 3).

LOOP:
[BO] ADD
[B2] MVK

[BO] B
LDH

[B1] ADD
[IB1]SUB

SHL
AND

I
I CMPEQ
I
I

.S1
.D1
.S2

.Ss1
.S2X

.S2
.S1
.D1

L2
.51
.S2X
.L1

L2
.S2
.S1
.D1

L1
.D1
L2
.S1
.S2X

LOOP
*A4++,A5
29,B0

A6,1,A6
B4,A6,B2

1,B2
LOOP
*A4++,A5

B6,B2,B1
2A6,1,26
B4,A6,B2
A7

-1,B0, B0
1,B2
LOOP
*A4++,A5

A7,A5,A7
A7,A5,A7
B6,B2,Bl
26,1,A6

B4,A6,B2

; Branch occurs here

’
’

’

’

’

for LOO
ali]
set up

mask =
cond =

' (! (con
* for LO

*oalil

Ne Ne Ne NN

(thet
* mask
* cond =

decreme

P

loop counter

mask << 1;

codeword & mask

d))
OP

== ! (! (cond)))
= mask << 1;
codeword & mask
zero out accumulator

nt counter

*

V(! (cond))

** for LOOP
** a[i]

= mask << 1;

codeword & mask

Example 5-32 shows the improved loop with a cycle count of 68 (2 x 32 + 4).
Table 5-13 compares the performance of Example 5-31 and Example 5-32.

Optimizing Assembly Code

5-65

Part Il

Part Il

If-Then-Else Statements in a Loop

Table 5-13. Compatrison of If-Then-Else Code Examples

Code Example Cycles Cycle Count
Example 5-31 If-then-else assembly code (2 x32)+6 70
Example 5-32 If-then-else assembly code with loop count greaterthan3 (2 x 32) + 4 68

5-66

Loop Unrolling

5.8 Loop Unrolling

Even though the performance of the previous example is good, it can be im-
proved. When resources are not fully used, you can improve performance by
unrolling the loop. In Example 5-33, only nine instructions execute every two
cycles. If you unroll the loop and analyze the new minimum iteration interval,
you have room to add instructions. A minimum iteration interval of 3 provides
a 25% improvement in throughput: three cycles to do two iterations, rather
than the four cycles required in Example 5-32.

5.8.1 Unrolled If-Then-Else C Code

Example 5-33 shows the unrolled version of the if-then-else C code in
Example 5-28 on page 5-59.

Example 5-33. If-Then-Else C Code (Unrolled)

int unrolled_if_then(short a[], int codeword, int mask, short theta)
{

int i, sum, cond;

sum = 0;
for (i = 0; 1 < 32; i+=2){
cond = codeword & mask;
if (theta == ! (! (cond)))
sum += al[i];
else
sum —-= ali];

mask = mask << 1;

cond = codeword & mask;

if (theta == ! (! (cond)))
sum += al[i+l];

else
sum —-= al[i+l];

mask = mask << 1;

}

return (sum) ;

}

Optimizing Assembly Code 5-67

Part Il

Part Il

Loop Unrolling

5.8.2 Translating C Code to Linear Assembly

Example 5-34 shows the unrolled inner loop with 16 instructions and the
possibility of achieving a loop with a minimum iteration interval of 3.

Example 5-34. Linear Assembly for Unrolled If-Then-Else Inner Loop

AND codeword, maski, condi ; condi = codeword & maski
[condi] MVK 1,condi ; (! (condi))
CMPEQ theta, condi,ifi ; (theta == ! (! (condi)))
LDH *aptr++,ai ; oalil
[ifi] ADD sumi, ai, sumi ; sum += ali]
[1ifi] SUB sumi, ai, sumi ; sum —= ali]
SHL maski,l,maski+1 ; maski+l = maski << 1;
AND codeword, maski+l,condi+l; condi+l = codeword & maski+l
[condi+1]MVK 1,condi+1 ; ! (! (condi+l))
CMPEQ theta, condi+1,ifi+1 ; (theta == ! (! (condi+l)))
LDH *aptr++,ai+l ;o oali+!]
[ifi+1] ADD sumi+l,ai+1, sumi+1 ; sum += al[i+1]
[1ifi+1] SUB sumi+l,ai+l, sumi+1 ; sum —-= al[i+l]
SHL maski+l,1,maski ; maski = maski+l << 1;
[cntr] ADD -1,cntr,cntr ; decrement counter
[entr] B LOOP ; for LOOP

5-68

Loop Unrolling

5.8.3 Drawing a Dependency Graph

Although there are numerous ways to split the dependency graph, the main
goal is to achieve a minimum iteration interval of 3 and meet these conditions:

[You cannot have more than nine non-.M instructions on either side.
[Only three non-.M instructions can execute per cycle.

Figure 5—13 shows the dependency graph for the unrolled if-then-else code.
Nine instructions are on the A side, and seven instructions are on the B side.

Figure 5—13. Dependency Graph of If-Then-Else Code (Unrolled)
B side

A side

Part Il

Optimizing Assembly Code 5-69

Part Il

Loop Unrolling

5.8.4 Determining the Minimum lteration Interval

With 16 instructions, the minimum iteration interval is at least 3 because a
maximum of six instructions can be in parallel with the following allocation
possibilities:

(0 LDH must be on a .D unit.

O SHL, B, and MVK must be on a .S unit.

[The ADDs and SUB canbe on a .S, .L, or .D unit.
[The AND can be on a .S or .L unit.

From Table 5—14, you can see that no one resource is used more than three
times so that the minimum iteration interval is still 3.

Checking the total number of non-.M instructions on each side shows that a
total of nine instructions can be performed with the minimum iteration interval
of 3. because only seven non-.M instructions are on the B side, the minimum
iteration interval is still 3.

Table 5—-14. Resource Table for Unrolled If-Then-Else Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit
M1 0 .M2 0

.S MVK and 2 SHLs 3 .S2 MVK and B 2

.D1 2 LDHs 2 L2 CMPEQ 1

.L1 CMPEQ 1 L2 pr.S2 AND 1
.L1or.S1 AND 1 .L2,.S2,or.D2 SUB and 2 ADDs 3
.L1,.S1,or .D1 ADD and SUB 2

Total non-.M units 9 Total non-.M units 7

5.8.5 Allocating Resources

5-70

Now that the graph is split and you know the minimum iteration interval, you
can allocate functional units and registers to the instructions. You must ensure
no resource is used more than three times.

Example 5-35 shows the linear assembly code with the functional units and
registers.

Loop Unrolling

Example 5-35. Linear Assembly for Full Unrolled If-Then-Else Code

LOOP :

[cdi]

[1fi]
[1ifi]

[cdil]

[1£f4i1]
[11fil]

[cntr]
[cntr]

_unrolled_if_then:

.global _unrolled_if_then
.cproc a, cword, mask, theta
.reg cword, mask, theta, ifi, ifil, a, ai, ail, cntr
.reg cdi, cdil, sumi, sumil, sum
MV Ad,a ; C callable register for 1lst operand
MV B4, cword ; C callable register for 2nd operand
MV A6, mask ; C callable register for 3rd operand
MV B6,theta ; C callable register for 4th operand
MVK 16,cntr ; cntr = 32/2
ZERO sumi ; sumi = 0
ZERO sumil ; sumi+l = 0
.trip 32
AND .L1X cword, mask,cdi ; cdi = codeword & maski
MVK .S1 1,cdi ;1! (edi))
CMPEQ .Ll1X theta,cdi,ifi ; (theta == ! (! (cdi)))
LDH .D1 *a++,ai ;oalil
ADD .L1 sumi,ai,sumi ; sum += ali]
SUB .D1 sumi,ai,sumi ; osum —= ali]
SHL .S1 mask,1l,mask ; maski+l = maski << 1;
AND .L2X cword, mask,cdil ; cdi+l = codeword & maski+l
MVK .S2 1,cdil ;o V(! (cdi+l))
CMPEQ .L2 theta,cdil,ifil; (theta == ! (! (cdi+l)))
LDH .D1 *a++,ail ; ali+l]
ADD .L2 sumil,ail,sumil; sum += al[i+1]
SUB .D2 sumil,ail,sumil; sum —-= al[i+1]
SHL .S1 mask,1,mask ; maski = maski+l << 1;
ADD .D2 -1,cntr,cntr ; decrement counter
B .S2 LOOP ; for LOOP
ADD sumi, sumil, sum ; Add sumi and sumi+l for ret value
.return sum
.endproc

Optimizing Assembly Code 5-71

Part Il

Part Il

Loop Unrolling

5.8.6 Final Assembly

Example 5-36 shows the final assembly code after software pipelining. The
cycle count of this loop is now 53: (3x 16) + 5.

Example 5-36. Assembly Code for Unrolled If-Then-Else

MVK .S2 16,B0 ; set up loop counter
LDH .D1 *Ad++,A5 ;o alil
|| [BO] ADD .D2 -1,B0,BO ; decrement counter
LDH .D1 *Ad++,B5 ; ali+l]
|| [BO] B .82 LOOP ; for LOOP
|| [BO] ADD .D2 -1,B0,B0 ; decrement counter
| SHL .S1 A6,1,A6 ; maski+l = maski << 1;
| AND .L1X B4,A6,A2 ; condi = codeword & maski
[A2] MVK .S1 1,A2 ; ' (! (condi))
| AND .L2X B4,A6,B2 ; condi+l = codeword & maski+l
|| ZERO Ll A7 ; zero accumulator
[B2] MVK .S2 1,B2 ; (! (condi+l))
| CMPEQ .L1X B6,A2,Al ; (theta == ! (! (condi)))
| SHL .S1 A6,1,A6 ; maski = maski+l << 1;
| LDH .D1 *Ad++,A5 ;* alil]
| ZERO L2 B7 ; zero accumulator
LOOP
CMPEQ .L2 B6,B2,B1 ; (theta == ! (! (condi+l)))
|| [BO] ADD .D2 -1,B0,B0 ; decrement counter
| LDH .D1 *A4d++,B5 ;X ali+l]
|| [BO] B .82 LOOP ;* for LOOP
| SHL .81 A6,1,A6 ;* maski+l = maski << 1;
| AND .L1X B4,A6,A2 ;* condi = codeword & maski
[A1l] ADD L1 A7,A5,A7 ; sum += ali]
|| [!A1]SUB .D1 A7,A5,A7 ; sum —= af[i]
| | [A2] MVK .S1 1,A2 ;* (! (condi))
| AND .L2X B4,A6,B2 ;* condi+l = codeword & maski+1l
[B1] ADD L2 B7,B5,B7 ; osum += a[i+1]
|| [!'B1]SUB .D2 B7,B5,B7 ; osum —= a[i+l]
|| [B2] MVK .S2 1,B2 ;* (! (condi+l))
| CMPEQ .L1X B6,A2,Al ;* (theta == ! (! (condi)))
| SHL .S1 A6,1,A6 ;* maski = maski+l << 1;
| LDH .D1 *A4++, A5 ;Y% ali]
; Branch occurs here
ADD .L1X A7,B7,A4 ; move to return register

5-72

Loop Unrolling

5.8.7 Comparing Performance

Table 5—15 compares the performance of all versions of the if-then-else code
examples.

Table 5—15. Comparison of If-Then-Else Code Examples

Code Example Cycles Cycle Count
Example 5-31 If-then-else assembly code (2 x32)+6 70
Example 5-32 If-then-else assembly code with loop count greaterthan3 (2 x 32) + 4 68
Example 5-36 Unrolled if-then-else assembly code (3x 16)+5 53

Part Il

Optimizing Assembly Code 5-73

Live-Too-Long Issues

5.9 Live-Too-Long Issues

When the result of a parent instruction is live longer than the minimum iteration
interval of a loop, you have a live-too-long problem. Because each instruction
executes every iteration interval cycle, the next iteration of that parent over-
writes the register with a new value before the child canreadit. Section 5.5.6.1,
Resource Conflicts, on page 5-38 showed how to solve this problem simply
by moving the parent to a later cycle. This is not always a valid solution.

5.9.1 C Code With Live-Too-Long Problem

Example 5-37 shows C code with a live-too-long problem that cannot be
solved by rescheduling the parent instruction. Although it is not obvious from
the C code, the dependency graph in Figure 5—14 on page 5-76 shows a split-
join path that causes this live-too-long problem.

Example 5-37. Live-Too-Long C Code

int live_long(short af[],short b[],short c, short d, short e)
{

int i, sum0O, suml, sum, a0,a2,a3,b0,b2,b3;

short al,bl;

sumO 0;
suml
for (i=0; i<100; i++){

o
~

a0 = af[i] * c;
= al = a0 >> 15;
E a2 = al * d;
o a3 = a2 + a0;

sum0 += a3;

b0 = b[i] * c;
= b0 >> 15;
= bl * e;

b3 = b2 + bO;

suml += b3;

sum = sumO + suml;
return (sum) ;

}

5-74

Live-Too-Long Issues

5.9.2 Translating C Code to Linear Assembly

Example 5-38 shows the assembly instructions that execute the inner loop in
Example 5-37.

Example 5-38. Linear Assembly for Live-Too-Long Inner Loop

LDH *aptr++,ai
LDH *bptr++,bi
MPY ai,c,al

SHR a0,15,al

MPY al,d,a2

ADD a2,a0,a3

ADD sum0, a3, sum0
MPY bi,c,b0

SHR b0,15,bl

MPY bl,e, b2

ADD b2,b0,b3

ADD suml, b3, suml

load ai from memory
load bi from memory
a0 = ai * ¢

al = a0 >> 15

a2 = al * d

a3 = a2 + a0

sumO0 += a3

b0 = bi * ¢

bl = b0 >> 15

b2 = bl * e

b3 = b2 + b0

suml += b3

Ne Ne Ne Ne Ne Ne N Ne N Ne Ne N

[cntr] SUB cntr,1l,cntr ; decrement loop counter
[cntr]B LOOP ; branch to loop

5.9.3 Drawing a Dependency Graph

Figure 5—14 shows the dependency graph for the live-too-long code. This
algorithm includes three separate and independent graphs. Two of the inde-
pendent graphs have split-join paths: from a0 to a3 and from b0 to b3.

Optimizing Assembly Code 5-75

Part Il

Part Il

Live-Too-Long Issues

Figure 5—14. Dependency Graph of Live-Too-Long Code

A side
LDH

Split-join path

5-76

Live-Too-Long Issues

5.9.4 Determining the Minimum Iteration Interval

Table 5—16 shows the functional unit resources for the loop. Based on the re-
source usage, the minimum iteration interval is 2 for the following reasons:

(1 No specific resource is used more than twice, implying a minimum itera-
tion interval of 2.

[J A total of five non-.M units on each side also implies a minimum iteration
interval of 2, because three non-.M units can be used on a side during each
cycle.

Table 5-16. Resource Table for Live-Too-Long Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit
M1 MPY 1 M2 MPY 1

.S1 B and SHR 2 .82 SHR 1

.D1 LDH 1 .D2 LDH 1
.L1,.S1,0or.D1 2 ADDs 2 .L2,.S2,0r.D2 2 ADDs and SUB 3
Total non-.M units 5 Total non-.M units 5

However, the minimum iteration interval is determined by both resources and
data dependency. A loop carry path determined the minimum iteration interval
of the lIR filter in section 5.6, Loop Carry Paths, on page 5-50. In this example,
a live-too-long problem determines the minimum iteration interval.

Part Il

5.9.4.1 Split-Join-Path Problems

In Figure 5—14, the two split-join paths from a0 to a3 and from b0 to b3 create
the live-too-long problem. Because the ADD a3 instruction cannot be sched-
uled untilthe SHR a1 and MPY a2 instructions finish, a0 must be live for at least
four cycles. For example:

J IfMPY a0is scheduled on cycle 5, then the earliest SHR a1 can be sched-
uled is cycle 7.

(1 The earliest MPY a2 can be scheduled is cycle 8.

(1 The earliest ADD a3 can be scheduled is cycle 10.

Optimizing Assembly Code 5-77

Part Il

Live-Too-Long Issues

Because a0 is written at the end of cycle 6, it must be live from cycle 7 to
cycle 10, or four cycles. No value can be live longer than the minimum iteration
interval, because the next iteration of the loop will overwrite that value before
the current iteration can read the value. Therefore, if the value has to be live
for four cycles, the minimum iteration interval must be at least 4. A minimum
iteration interval of 4 means that the loop executes at half the performance that
it could based on available resources.

5.9.4.2 Unrolling the Loop

One way to solve this problem is to unroll the loop, so that you are doing twice
as much work in each iteration. After unrolling, the minimum iteration interval
is 4, based on both the resources and the data dependencies of the split-join
path. Although unrolling the loop allows you to achieve the highest possible
loop throughput, unrolling the loop does increase the code size.

5.9.4.3 Inserting Moves

Another solution to the live-too-long problem is to break up the lifetime of a0
and b0 by inserting move (MV) instructions. The MV instruction breaks up the
left path of the split-join path into two smaller pieces.

5.9.4.4 Drawing a New Dependency Graph

5-78

Figure 5-15 shows the new dependency graph with the MV instructions. Now
the left paths of the split-join paths are broken into two pieces. Each value, a0
and a0’, can be live for minimum iteration interval cycles. If MPY a0 is sched-
uled on cycle 5 and ADD a3 is scheduled on cycle 10, you can achieve a mini-
mum iteration interval of 2 by scheduling MV a0’ on cycle 8. Then a0 is live on
cycles 7 and 8, and a0’ is live on cycles 9 and 10. Because no values are live
more than two cycles, the minimum iteration interval for this graph is 2.

Live-Too-Long Issues

Figure 5—15. Dependency Graph of Live-Too-Long Code (Split-Join Path Resolved)

A side
LDH

B side
LDH

'
'
|
'
|
1
|
'
1
[
'
|
'
|
|
|
1
'
'
'
'
'
|
|
|
|
'
1
'
'
|
'
|
|
|
1
|
[
'
'
'
|
|
'
1
'
1
'
'
|
|
'
|
|
'
1

5.9.5 Allocating Resources

Example 5-39 shows the linear assembly code with the functional units as-
signed. The choice of units for the ADDs and SUB is flexible and represents
one of a number of possibilities. One goal is to ensure that no functional unit
is used more than the minimum iteration interval, or two times.

The two 2X paths and one 1X path are required because the values ¢, d, and
e reside on the side opposite from the instruction that is reading them. If these
values had created a bottleneck of resources and caused the minimum itera-
tion interval to increase, c, d, and e could have been loaded into the opposite
register file outside the loop to eliminate the cross path.

Optimizing Assembly Code 5-79

Part Il

Part Il

Live-Too-Long Issues

Example 5-39. Linear Assembly for Full Live-Too-Long Code

LOOP:

[entr]
[ecntr]

.global _live_long

_live_long:

bOp,

cntr
sum0
suml

b_1, b_2, b_3, cntr

= 100

=0

o

.cproc a, b, ¢, d, e
.reg ai, bi, sumO, suml, sum
.reg alp, a_0, a_1, a_2, a_3, b_0,
MVK 100, cntr ;
ZERO sum0 ;
ZERO suml ;
.trip 100
LDH .D1 *a++,ai ;
LDH .D2 *b++,bi ;
MPY M1 ai,c,a_0 ;
SHR .S1 a_0,15,a_1 ;
MPY .M1X a_l,d,a_2 ;
MV .D1 a_0,a0p ;
ADD L1 a_2,alp,a_3 ;
ADD L1 sumO, a_3, sum0 ;
MPY .M2X bi,c,b_0 ;
SHR .S2 b_0,15,b_1 ;
MPY .M2X b_1,e,b_2 ;
MV .D2 b_0,b0p ;
ADD L2 b_2,b0p,b_3 ;
ADD L2 suml,b_3, suml ;
SUB .S2 cntr,1l,cntr ;
B .S1 LOOP ;
ADD sum0, suml, sum ;

load
load
a0 =
al =
a2 =
save
a3 =
sum0
b0 =
bl =
b2 =
save
b3 =
suml

ai
bi
ai
a0
al
a0
a2
+=
bi
b0
bl
b0
b2
+=

from memory

from memory

* c

>> 15

* d

across iterations
+ al

a3

* ci

>> 15

* e

across iterations
+ b0

b3

decrement loop counter
branch to loop

Add sumi and sumi+l for ret value

.return sum

.endproc

5-80

Live-Too-Long Issues

5.9.6 Final Assembly With Move Instructions

Example 5-40 shows the final assembly code after software pipelining. The
performance of this loop is 212 cycles (2 X100 + 11 + 1).

Example 5—40. Assembly Code for Live-Too-Long With Move Instructions

LDH .D1 *Ad++,A0 ; load ai from memory
|| LDH .D2 *B4++, B0 ; load bi from memory
MVK .S2 100,B2 ; set up loop counter
LDH .D1 *Ad++,A0 ;* load ai from memory
|| LDH .D2 *B4++, B0 ;* load bi from memory
ZERO .51 Al ; zero out accumulator
| ZERO .S2 B1 ; zero out accumulator
LDH .D1 *A4++,A0 ;** load ai from memory
|| LDH .D2 *B4++, B0 ;** load bi from memory
[B2] SUB .S2 B2,1,B2 ; decrement loop counter
MPY M1 AQ,A6,A3 ; a0 = ai * ¢
| MPY .M2X BO,A6,B10 ; b0 = bi * ¢
| LDH .D1 *Ad++,A0 ;*** load ai from memory
|| LDH .D2 *B4++, B0 ;*** load bi from memory
[B2] SUB .S2 B2,1,B2 ; decrement loop counter
| | [B2] B .S1 LOOP ; branch to loop
SHR .S1 A3,15,A5 ; al = a0 >> 15
| SHR .S2 B10,15,B5 ; bl = b0 >> 15
|| MPY M1 AOQ,A6,A3 ;¥ a0 = ai * ¢
| MPY .M2X BO,A6,B10 ;* b0 = bi * ¢
|] LDH .D1 *Ad++,A0 ;**** load ai from memory
| LDH .D2 *B4++, B0 ;**** load bi from memory
MPY .M1X A5,B6,A7 ; a2 = al * d
| MV .D1 A3,A2 ; save a0 across iterations
|| MPY .M2X B5,A8,B7 ; b2 = bl * e
| MV .D2 B10, B8 ; save b0 across iterations
| | [B2] SUB .S2 B2,1,B2 ; * decrement loop counter
| 1 [B2] B .S1 LOOP ;* branch to loop
SHR .S1 A3,15,A5 ;* al = a0 >> 15
| SHR .S2 B10,15,B5 ;* bl = b0 >> 15
|| MPY M1 AQ,A6,A3 ;** a0 = ai * ¢
| MPY .M2X BO,A6,B10 ;** b0 = bi * ¢
| LDH .D1 *Ad++,A0 j*****% load ai from memory
| LDH .D2 *B4++, B0 j***%% Joad bi from memory

Part Il

Optimizing Assembly Code 5-81

Part Il

Live-Too-Long Issues

Example 5—40. Assembly Code for Live-Too-Long With Move Instructions (Continued)

LOOP :
ADD L1 A7,A2,A9 ;¥ a3 = a2 + a0
| ADD L2 B7,B8,B9 ;* b3 = b2 + b0
| MPY .M1X AS5,B6,A7 ;¥ a2 = al * d
| MV .D1 A3,A2 ;* save a0 across iterations
| MPY .M2X B5,A8,B7 ;¥ b2 = bl * e
| MV .D2 B10, B8 ;* save b0 across iterations
|| [B2] SUB .52 B2,1,B2 ; ** decrement loop counter
|| [B2] B .S1 LOOP ; ** branch to loop
ADD L1 Al,A9,Al ; sumO += a3
|] ADD L2 B1,B9,Bl1 ; suml += b3
| SHR .S1 A3,15,A5 ;** al = a0 >> 15
| SHR .S2 B10,15,B5 ;** bl = b0 >> 15
|] MPY M1 AQ,A6,A3 ;¥** a0 = ai * ¢
| MPY .M2X BO,A6,B10 ;¥**% b0 = bi * ¢
| LDH .D1 *Ad++,A0 j¥x**x** Joad ai from memory
| LDH .D2 *B4++, B0 jX*Fx*x* Joad bi from memory
; Branch occurs here
ADD .L1X Al,B1,A4d ; sum = sumO + suml

5-82

Redundant Load Elimination

5.10 Redundant Load Elimination

Filter algorithms typically read the same value from memory multiple times and
are, therefore, prime candidates for optimization by eliminating redundant load
instructions. Rather than perform a load operation each time a particular value
is read, you can keep the value in a register and read the register multiple
times.

5.10.1 FIR Filter C Code

Example 5-41 shows C code for a simple FIR filter. There are two memory
reads (x[i+j] and h[i]) for each multiply. Because the 'C62xx can perform only
two LDHs per cycle, it seems, at first glance, that only one multiply-accumulate
per cycle is possible.

Example 5—41. FIR Filter C Code

void fir(short x[], short h[], short yI[])
{

int i, j, sum;

for (j = 0; j < 100; Jj++) {

sum = 0;
for (i = 0; i < 32; i++)

sum += x[i+3] * h[i];
v[3] = sum >> 15;

One way to optimize this situation is to perform LDWs instead of LDHs to read
two datavalues at atime. Although using LDW works for the h array, the x array
presents a different problem because the ‘C62xx does not allow you to load
values across a word boundary.

For example, on the first outer loop (j = 0), you can read the x-array elements
(0and 1, 2 and 3, etc.) as long as elements 0 and 1 are aligned on a 4-byte
word boundary. However, the second outer loop (j = 1) requires reading x-array
elements 1 through 32. The LDW operation must load elements that are not
word-aligned (1 and 2, 3 and 4, etc.).

5.10.1.1 Redundant Loads

In order to achieve two multiply-accumulates per cycle, you must reduce the
number of LDHs. Because successive outer loops read all the same h-array
values and almost all of the same x-array values, you can eliminate the redun-
dant loads by unrolling the inner and outer loops.

For example, x[1] is needed for the first outer loop (x[j+1] with j = 0) and for the
second outer loop (x[j] with j = 1). You can use a single LDH instruction to load
this value.

Optimizing Assembly Code 5-83

Part Il

Part Il

Redundant Load Elimination

5.10.1.2 New FIR Filter C Code

Example 5-42 shows that after eliminating redundant loads, there are four
memory-read operations for every four multiply-accumulate operations. Now
the memory accesses no longer limit the performance.

Example 5—42. FIR Filter C Code With Redundant Load Elimination

void fir (short x[], short h[], short yI[])
{

int i, Jj, sumO, suml;
short x0,x1,h0,hl;

for (3 = 0; J < 100; 3+=2) ({

sum0 = 0;
suml = 0;
x0 = x[J];

for (i = 0; 1 < 32; i+=2){
x1l = x[j+i+1];
hO = hli];
sum0 += x0 * hO;
suml += x1 * hO;
x0 = x[j+i+2];
hl = h[i+1];
sumO0 += x1 * hl;
suml += x0 * hl;
}

v[j] = sum0 >> 15;

y[j+1l] = suml >> 15;

5-84

Redundant Load Elimination

5.10.2 Translating C Code to Linear Assembly

Example 5-43 shows the linear assembly that perform the inner loop of the
FIR filter C code.

Element x0 is read by the MPY p00 before it is loaded by the LDH x0 instruc-
tion; x[j] (the first x0) is loaded outside the loop, but successive even elements
are loaded inside the loop.

Example 5—43. Linear Assembly for FIR Inner Loop

[ctr]
[ctr]

LDH
LDH
MPY
MPY
ADD
ADD

LDH
LDH
MPY
MPY
ADD
ADD

SUB
B

.D2 *x_1++([2],x1 ;o x1 = x[J+i+1]
.D1 *h++[2],h0 ; hO = hli]

M1 x0,h0,p00 ; x0 * hO

.M1X x1,h0,pl0 ; x1 * hO

L1 p00, sum0, sum0 ; sum0 += x0 * hO0
.L2X pl0, suml, suml ; suml += x1 * hO
.D1 *x++[2], %0 ; x0 = x[J+i+2]
.D2 *h_1++[2],hl ; hl = h[i+1]

M2 x1,hl,p01 ; x1 * hl

.M2X x0,hl,pll ; x0 * hl

.L1X p01, sum0, sumO ; sum0 += x1 * hl
L2 pll, suml, suml ; suml += x0 * hl
.S2 ctr,1,ctr ; decrement loop counter
.32 LOOP ; branch to loop

Optimizing Assembly Code 5-85

Part Il

Redundant Load Elimination

5.10.3 Drawing a Dependency Graph

Figure 5—-16 shows the dependency graph of the FIR filter with redundant load
elimination.
Figure 5—16. Dependency Graph of FIR Filter (With Redundant Load Elimination)

A side | B side
\
LDH L DY LDH

\
\
\
\
;
\
\
|

-D1 /

Part Il

5-86

Redundant Load Elimination

5.10.4 Determining the Minimum Iteration Interval

Table 5—17 shows that the minimum iteration interval is 2. An iteration interval
of 2 means that two multiply-accumulates are executing per cycle.

Table 5—-17. Resource Table for FIR Filter Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit || Unit(s) Instructions Total/Unit
M1 2 MPYs 2 .M2 2 MPYs 2

.S 0 .S2 B 1

.D1 2 LDHs 2 .D2 2 LDHs 2
.L1,.81,0or.D1 2 ADDs 2 L2,.82,.D2 2 ADDs and SUB 3
Total non-.M units 4 Total non-.M units 6

1X paths 2 2X paths 2

5.10.5 Allocating Resources

Example 5—44 shows the linear assembly with functional units and registers

assigned.

Example 5—44. Linear Assembly for Full FIR Code

_fir:

OUTLOOP :

[octr]

.global
.cproc

.reg
.reg

ADD
MVK
MVK
MVK

ADD
SUB
MVK
ZERO
ZERO
SUB

LDH

_fir

x, h, y

x_1, h_1, sumO,
p00, p0l1, plO,

h,2,h_1
50, octr
64, rstx
64,rsth

x,2,x_1
h_1,2,h
16,ctr

sum0

suml
octr,1,octr

.D1 *x++[2]1,x0

suml,
pll,

x0,

Ne Ne Ne N

Ne Ne Ne Ne N N

ctr, octr

x1, hO, hl, rstx, rsth

set up pointer to h[l]
outer loop ctr = 100/2

used to rst x pointer each outer loop
used to rst h pointer each outer loop

set up pointer to x[j+1]
set up pointer to h[O0]

inner loop ctr = 32/2
sumO0 = 0
suml = 0

decrement outer loop counter

Optimizing Assembly Code

5-87

Part Il

Part Il

Redundant Load Elimination

Example 5—44. Linear Assembly for Full FIR Code (Continued)

LOOP: .trip 16
LDH .D2 *x_1++[2],x1
LDH .D1 *h++[2],h0
MPY M1 x0,h0,p00
MPY .M1X x1,h0,pl0
ADD L1 p00, sum0, sum0
ADD .L2X pl0, suml, suml
LDH .D1 *x++[2],x0
LDH .D2 *h_1++[2],hl
MPY .M2 x1,hl,p01
MPY .M2X x0,hl,pll
ADD .L1X p01l, sum0, sum0
ADD L2 pll, suml, suml
[ctr] SUB .52 ctr,1,ctr
[ctr] B .S2 LOOP
SHR sum0, 15, sum0
SHR suml, 15, suml
STH sumQ, *y++
STH suml, *y++
SUB X, rstx,x
SUB h_1,rsth,h_1
[octr] B OUTLOOP
.endproc

x1l = x[j+i+1]

hO = h[i]
x0 * hO
x1 * ho

sum0 += x0 * hO
suml += x1 * hO

x0 = x[Jj+i+2]

hl = h[i+1]
x1 * hl
x0 * hl

sum0 += x1 * hl
suml += x0 * hl

decrement loop counter
branch to loop

sum0 >> 15

suml >> 15

y[j] = sum0 >> 15
y[j+1l] = suml >> 15
reset x pointer to x[7j]
reset h pointer to h[O0]
branch to outer loop

5.10.6 Final Assembly

Example 5-45 shows the final assembly for the FIR filter without redundant
load instructions. At the end of the inner loop is a branch to OUTLOOP that
executes the next outer loop. The outer loop counter is 50 because iterations
jandj + 1 execute each time the inner loop is run. The inner loop counter is
16 because iterations i and i + 1 execute each inner loop iteration.

The cycle count for this nested loop is 2352 cycles: 50 (16 X 2 + 9 + 6) + 2.

Fifteen cycles are overhead for each outer loop:

d Nine cycles execute the inner loop prolog.
[Six cycles execute the branch to the outer loop.

See section 5.12, Software Pipelining the Outer Loop, on page 5-104 for in-

formation on how to reduce this overhead.

5-88

Example 5—45. Final Assembly Code for FIR Filter With Redundant Load Elimination

Redundant Load Elimination

OUTLOOP :

[A2]

MVK

MVK
MVK

LDH
ADD
ADD
ADD
MVK
SUB

LDH
LDH
ZERO
ZERO

LDH
LDH

LDH
LDH

SUB
LDH
LDH

LDH
LDH

MPY
SUB
LDH
LDH

MPY
MPY

LDH
LDH

MV

MPY
MPY
SUB
LDH
LDH

.s1

.s1
.S2

.D1
.L2X
.D2
.L1X
.S2
.51

.D1
.D2
.L1
L2

.D2
.D1

.D1
.D2

.S2
.D2
.D1

.S2
.D1
.D2

.M1
.S2
.D2
.D1

.M2
.M1X
.S2
.D1
.D2

.M2X
M1
.S2
.D2
.D1

50,A2

80,A3
82,B6

*A4++[2],A0
A4,2,B5
B4,2,B4
B4, 0, A5
16,B2
A2,1,A2

*A5++[2],Al
*B5++[2],B1
A9
B9

*B4++[2],B0
*A4++[2],A0

*A5++[2],Al
*B5++[2],B1

B2,1,B2
*B4++[2], B0
*AA++[2],A0

LOOP
*A5++[2],Al
*B5++[2],B1

A0,Al,A7
B2,1,B2

*B4++[2],B0
*A4++[2],A0

B1,B0,B7
B1,Al,AS
LOOP
*A5++[2],Al
*B5++[2],B1

A7, A7
A0, BO, B8
A0,Al,A7
B2,1,B2
*B4++[2],B0
*A4++[2],A0

; hO = hli]

;o x1 = x[j+i+1]

; zero out sum0

; zero out suml

; hl = h[i+1] (:)
; x0 = x[3+i+2]

;* hO = h[i] (:)
;Y oxl = x[J+i+1]

set

up outer loop

used to rst x ptr
used to rst h ptr

x0 =

set
set
set
set

x[7]
up pointer to
up pointer to
up pointer to
up inner loop

counter

outer loop
outer loop

x[J+1]
h[l]
h[0]
counter

decrement outer loop counter

Q)

®

; decrement inner loop counter (:)
;* hl = h[i+1]
;¥ x0 = x[J+1i+2]

; branch to inner loop (:)
;** hO = hli]
;FFoxl o= x[j+i+1]

; x0 * hoO (:)

;* decrement inner loop counter
;** hl = h[i+1]
PR o x0 = x[j+i+2]

; x1 * hl ®
; x1 * ho

;* branch to inner loop

;*** h0 = h[i]

pFrEx oxl o= x[J+i+1]

; x0 * hl (:)
;* x0 * hO

; ** decrement inner loop counter
;*** hl = h[i+1]

prxx o x0 = x[J+1i+2]

Optimizing Assembly Code 5-89

Part Il

Part Il

Redundant Load Elimination

Example 5—45 Final Assembly Code for FIR Filter With Redundant Load Elimination

; outer loop branch occurs

here

(Continued)
LOOP:
ADD .L2X A8,B9,B9 ; suml += x1 * hO
| ADD L1 A7,A9,A9 ; sum0 += x0 * hO
| MPY M2 B1,B0,B7 ;* x1 * hl
| MPY .M1X B1,Al,A8 ;* x1 * hoO
|| [B2] B .52 LOOP ;** branch to inner loop
| LDH .D1 *A5++[2],Al ;¥**%* h0 = h[i]
| LDH .D2 *B5++[2],B1 jrEEx ox]l = x[J+i+1]
ADD .L1X B7,A9,A9 ; sumO0 += x1 * hl
| ADD L2 B8,B9,B9 ; suml += x0 * hl
| MPY .M2X A0, BO,BS8 ;* x0 * hil
| MPY M1 AQ,Al,A7 ;** x0 * hO
|'] [B2] SUB .S2 B2,1,B2 ; *** decrement inner loop cntr
| LDH .D2 *B4++[2],B0 j¥**%% hl = h[i+1]
| LDH .D1 *Ad++[2],A0 JRFFF %0 = x[J+1i+2]
; 1lnner loop branch occurs here
[A2] B .81 OUTLOOP ; branch to outer loop (:)
| SUB L1 A4,A3,A4 ; reset x pointer to x[j]
| SUB L2 B4,B6,B4 ; reset h pointer to h[O0]
SHR .s1 A9,15,A9 ; sum0 >> 15 @
| SHR .52 B9,15,B9 ; suml >> 15
STH .D1 A9, *A6++ ; v[3] = sumO0 >> 15 (:)
STH .D1 B9, *A6++ ; yI[3+1] = suml >> 15 @
NOP 2 ; branch delay slots

5-90

Memory Banks

5.11 Memory Banks

The internal memory of the ‘C62xx family varies from device to device. See the
TMS320C62xx Peripherals Reference Guide to determine the memory
spaces in your particular device. This section discusses how to write code to
avoid memory bank conflicts.

Most ’C62xx devices use an interleaved memory bank scheme, as shown in
Figure 5—17. Each number in the boxes represents a byte address. A load byte
(LDB) instruction from address 0 loads byte 0 inbank 0. A load halfword (LDH)
from address 0 loads the halfword value in bytes 0 and 1, which are also in
bank 0. An LDW from address 0 loads bytes 0 through 3 in banks 0 and 1.

Because each bank is single-ported memory, only one access to each bank
is allowed per cycle. Two accesses to a single bank in a given cycle result in
a memory stall that halts all pipeline operation for one cycle, while the second
value is read from memory. Two memory operations per cycle are allowed
without any stall, as long as they do not access the same bank.

Figure 5—17. 4-Bank Interleaved Memory

2 3 4 5 6 7
9 10 11 12 13 14 15

8N 8N + 1 8N +2|8N+3 8N +4|8N+5 8N +6|8N+7

Bank 0 Bank 1 Bank 2 Bank 3
For devices that have more than one memory space (see Figure 5-18), an

access to bank 0 in one space does not interfere with an access to bank 0 in
another memory space, and no pipeline stall occurs.

Optimizing Assembly Code 5-91

Part Il

Part Il

Memory Banks

Figure 5—-18. 4-Bank Interleaved Memory With Two Memory Spaces

5-92

Memory - ™5™ > | 3 4 | 5 6 | 7
space 0
9 10 11 12 13 14 15
8N | 8N +1 8N +2(8N +3 8N +4(8N +5 8N +6(8N + 7
Bank 0 Bank 1 Bank 2 Bank 3
Memory 8M |8M +1 8M +2|8M + 3 8M + 4|8M + 5 8M +6|8M + 7
space 1
Bank 0 Bank 1 Bank 2 Bank 3

If each array in a loop resides in a separate memory space, the 2-cycle loop
in Example 5—42 on page 5-84 is sufficient. This section describes a solution
when two arrays must reside in the same memory space.

Memory Banks

5.11.1 FIR Filter Inner Loop

Example 5-46 shows the inner loop from the final assembly in Example 5-45.
The LDHs from the h array are in parallel with LDHs from the x array. If x[1] is
on an even halfword (bank 0) and h[0] is on an odd halfword (bank 1),
Example 5-46 has no memory conflicts. However, if both x[1] and h[0] are on
an even halfword in memory (bank 0) and they are in the same memory space,
every cycle incurs a memory pipeline stall and the loop runs at half the speed.

Example 5—46. Final Assembly Code for Inner Loop of FIR Filter

LOOP :

[B2]

[B2]

ADD
ADD
MPY
MPY

LDH
LDH

ADD
ADD
MPY
MPY
SUB
LDH
LDH

.L2X A8,B9,RB9 ; suml += x1 * hO

L1 A7,A9,A9 ; sum0 += x0 * hO

.M2 B1,B0,B7 ;* x1 * hl

.M1X B1,Al1,A8 ;* x1 * ho

.S2 LOOP ; ** branch to inner loop
.D1 *A5++[2],Al j**%*% h0 = h[i]

.D2 *B5++[2],B1 jrErx ox]l = x[J+i+1]

.L1X B7,A9,A9 ; sumO += x1 * hl

L2 B8,B9,B9 ; suml += x0 * hl

.M2X A0, BO,BS8 ;* x0 * hil

M1 AQ,Al,A7 ;** x0 * hO

.S2 B2,1,B2 ; *** decrement inner loop cntr
.D2 *B4++[2],B0 j**** hl = h[i+1]

.D1 *A4++([2],A0 jRFER %0 = x[J+i+2]

Itis not always possible to fully control how arrays are aligned, especially if one
ofthe arrays is passed into a function as a pointer and that pointer has different
alignments each time the function is called. One solution to this problem is to
write an FIR filter that avoids memory hits, regardless of the x and h array align-
ments.

If accesses to the even and odd elements of an array (h or x) are scheduled
onthe same cycle, the accesses are always on adjacent memory banks. Thus,
to write an FIR filter that never has memory hits, even and odd elements of the
same array must be scheduled on the same loop cycle.

Optimizing Assembly Code 5-93

Part Il

Part Il

Memory Banks

In the case of the FIR filter, scheduling the even and odd elements of the same
array on the same loop cycle cannot be done in a 2-cycle loop, as shown in
Figure 5-19. In this example, a valid 2-cycle software-pipelined loop without
memory constraints is ruled by the following constraints:

(1 LDH h0O and LDH h1 are on the same loop cycle.
(10 LDH x0 and LDH x1 are on the same loop cycle.

[MPY p00 must be scheduled three or four cycles after LDH x0, because
it must read x0 from the previous iteration of LDH x0.

O Al MPYs must be five or six cycles after their LDH parents.

d No MPYs on the same side (A or B) can be on the same loop cycle.

Figure 5—19. Dependency Graph of FIR Filter (With Even and Odd Elements of

5-94

Each Array on Same Loop Cycle)

A side

Note: Numbers in bold represent the cycle the instruction is scheduled on.

The scenario in Figure 5-19 almost works. All nodes satisfy the above
constraints except MPY p10. Because one parent is on cycle 1 (LDH h0) and
another on cycle 0 (LDH x1), the only cycle for MPY p10 is cycle 6. However,
another MPY on the A side is also scheduled on cycle 6 (MPY p00). Other
combinations of cycles for this graph produce similar results.

5.11.2 Unrolled FIR Filter C Code

Memory Banks

The main limitation in solving the problem in Figure 5-19 is in scheduling a 2-
cycle loop, which means that no value can be live more than two cycles. In-
creasing the iteration interval to 3 decreases performance. A better solution
is to unroll the inner loop one more time and produce a 4-cycle loop.

Example 5-47 shows the FIR filter C code after unrolling the inner loop one
more time. This solution adds to the flexibility of scheduling and allows you to
write FIR filter code that never has memory hits, regardless of array alignment
and memory space.

Example 5—47. FIR Filter C Code (Unrolled)

void fir (short x[],
{

int i, j, sumO,

short h[],

suml;

short yI[])

short x0,x1,x2,x3,h0,hl,h2,h3;

for (j = 0; j <
sum0 =
suml =

100;
0;
0;

x0 = x[Jjl;

for (i

= 0;
x1
ho

jt=2) A

i

sum0
suml

X2
hl

sum0
suml

x3
h2

sum0
suml

x0
h3

sum0
suml

}

< 32; i+=4){
X [J+i+11]1;
h[i];

+= x0 * hO;
+= x1 * hO;
x[J+1i+27;
hii+l];

+= x1 * hl;
+= x2 * hl;
x[J+1+37;
h{i+2];

+= x2 * h2;
+= x3 * h2;
x[j+i+47];
h[i+3];

+= x3 * h3;
+= x0 * h3;

y[j] = sum0 >> 15;
= suml >> 15;

y[3+1]

Optimizing Assembly Code 5-95

Part Il

Part Il

Memory Banks

5.11.3 Translating C Code to Linear Assembly

Example 5-48 shows the linear assembly for the unrolled inner loop of the FIR

filter C code.

Example 5—48. Linear Assembly for Unrolled FIR Inner Loop

[entr]
[ecntr]

S
B

LDH
LDH
MPY
MPY
ADD
ADD

LDH
LDH
MPY
MPY
ADD
ADD

LDH
LDH
MPY
MPY
ADD
ADD

LDH
LDH
MPY
MPY
ADD
ADD

UB

*x++, x1
*h++, h0
x0,h0,p00
x1,h0,pl0
00, sum0, sum0
10, suml, suml

*x++, X2
*h++,hl
x1,hl,p01
x2,hl,pll
01, sum0, sum0
pll, suml, suml

*x++,x3
*h++,h2
x2,h2,p02
x3,h2,pl2
02, sum0, sum0
pl2,suml, suml

*x++, x0
*h++,h3
x3,h3,p03
x0,h3,pl3
P03, sum0, sum0
pl3, suml, suml

cntr,1l,cntr
LOOP

x1l = x[j+i+1]
hO = h[i]

x0 * hoO

x1 * hoO

sum0 += x0 * hO
suml += x1 * hO

X2 = x[j+i+2]
= h[i+1]

x1l * hl

x2 * hl

sumO0 += x1 * hl

suml += x2 * hl

x3 = x[J+i+3]
= h[i+2]

X2 * h2

x3 * h2

sum0 += x2 * h2

suml += x3 * h2

x0 = x[j+i+4]
= h[i+3]

x3 * h3

x0 * h3

sum0 += x3 * h3

suml += x0 * h3

decrement loop counter
branch to loop

5-96

Memory Banks

5.11.4 Drawing a Dependency Graph

Figure 5-20 shows the dependency graph of the FIR filter with no memory
hits.

Figure 5-20. Dependency Graph of FIR Filter (With No Memory Hits)

A side

Part Il

Optimizing Assembly Code 5-97

Part Il

Memory Banks

5.11.5 Linear Assembly for Unrolled FIR Inner Loop With .mptr Directive

Example 5—49 shows the unrolled FIR inner loop with the .mptr directive. The
.mptr directive allows the assembly optimizer to automatically determine if two
memory operations have a bank conflict by associating memory access infor-
mation with a specific pointer register.

If the assembly optimizer determines that two memory operations have a bank
conflict, then it will not schedule them in parallel. The .mptr directive tells the
assembly optimizer that when the specified register is used as a memory point-
erin aload or store instruction, it is initialized to point at a base location + <off-
set>, and is incremented a number of times each time through the loop.

Without the .mptr directives, the loads of x1 and hO are scheduled in parallel,
and the loads of x2 and h1 are scheduled in parallel. This results in a 50%
chance of a memory conflict on every cycle.

Example 5—49. Linear Assembly for Full Unrolled FIR Filter

fir:

OUTLOOP :

[octr]

.global
.cproc

.reg
.reg
.reg

ADD
MVK
MVK
MVK

ADD
SUB
MVK
ZERO
ZERO
SUB

.mptr
.mptr
.mptr
.mptr

LDH

_fir
X, h, y
x_ 1, h_1, sumO, suml, ctr, octr

p00, p01l, p02, p03, pl0, pll, pl2, pl3
x0, x1, x2, x3, hO, hl, h2, h3, rstx, rsth

h,2,h_1 ; set up pointer to h[1l]

50, octr ; outer loop ctr = 100/2

64, rstx ; used to rst x pointer each outer loop
64, rsth ; used to rst h pointer each outer loop
xX,2,x_1 ; set up pointer to x[j+1]

h_1,2,h ; set up pointer to h[0]

8,ctr ; inner loop ctr = 32/2

sumO ; sumO0 = 0

suml ; suml = 0

octr,1,octr ; decrement outer loop counter

X, x+0

x_1, x+2

h, h+0

h 1, h+2

.D2 *x++[2]1,x0 ; x0 = x[7]

5-98

Memory Banks

Example 5—49. Linear Assembly for Full Unrolled FIR Filter (Continued)

LOOP: .trip 8

LDH
LDH
MPY
MPY
ADD
ADD

LDH
LDH
MPY
MPY
ADD
ADD

LDH
LDH
MPY
MPY
ADD
ADD

LDH
LDH
MPY
MPY
ADD
ADD

[ctr] SUB
[ctr] B .S2

SHR
SHR
STH
STH
SUB
SUB
[octr] B

.endproc

.D1 *x_14++[2],x1
.D1 *h++[2], hO
.M1X x0,h0,p00

M1 x1,h0,pl0

L1 p00, sum0, sum0
.L2X pl0, suml, suml
.D2 *x++[2],%x2
.D2 *h_1++[2]1,hl
.M2X x1,hl,p01

.M2 x2,hl,pll
.L1X p01, sum0, sum0
L2 pll, suml, suml
.D1 *x_14++[2],x3
.D1 *h++[2],h2
.M1X x2,h2,p02

.M1 x3,h2,pl12

L1 p02, sum0, sum0
.L2X pl2,suml, suml
.D2 *x++[2],x0
.D2 *h_1++[2],h3
.M2X x3,h3,p03

.M2 x0,h3,pl3
.L1X p03, sum0, sum0
L2 pl3, suml, suml
.S2 ctr,1,ctr
LOOP

sum0, 15, sum0
suml, 15, suml
sum0, *y++
suml, *y++
xX,rstx, x
h_1,rsth,h_1
OUTLOOP

x1l = x[j+i+1]

hO = hli]
x0 * hO
x1 * hO

sum0 += x0 * hO
suml += x1 * hO

X2 = x[j+i+2]
= h[i+1]

x1l * hl

x2 * hl

sum0 += x1 * hl

suml += x2 * hl

x3 = x[J+i+3]

h2 = h[i+2]
x2 * h2
x3 * h2

sum0 += x2 * h2
suml += x3 * h2

x0 = x[j+i+4]
h3 = h[i+3]
x3 * h3

x0 * h3

sum0 += x3 * h3
suml += x0 * h3

decrement loop counter
branch to loop

sum0 >> 15

suml >> 15

y[j] = sum0 >> 15
y[j+1] = suml >> 15
reset x pointer to x[7]
reset h pointer to h[O0]
branch to outer loop

Optimizing Assembly Code

5-99

Part Il

Part Il

Memory Banks

5.11.6 Allocating Resources

5-100

As the number of instructions in a loop increases, assigning a specific register
to every value in the loop becomes increasingly difficult. If 33 instructions in
aloop each write a value, they cannot each write to a unique register because
the 'C62xx has only 32 registers. As a result, values that are not live on the
same cycles in the loop must share registers.

For example, in a 4-cycle loop:

[If avalue is written at the end of cycle 0 and read on cycle 2 of the loop,
it is live for two cycles (cycles 1 and 2 of the loop).

O [Ifanothervalue is written at the end of cycle 2 and read on cycle 0 (the next
iteration) of the loop, itis also live for two cycles (cycles 3 and 0 of the loop).

Because both of these values are not live on the same cycles, they can occupy
the same register. Only after scheduling these instructions and their children
do you know that they can occupy the same register.

Register allocation is not complicated but can be tedious when done by hand.
Each value has to be analyzed for its lifetime and then appropriately combined
with other values not live on the same cycles in the loop. The assembly opti-
mizer handles this automatically after it software pipelines the loop. See the
TMS320C6x Optimizing C Compiler User’s Guide for more information.

5.11.7 Determining the Minimum Iteration Interval

Memory Banks

Based on Table 5-18, the minimum iteration interval for the FIR filter with no
memory hits should be 4. An iteration interval of 4 means that two multiply/ac-

cumulates still execute per cycle.

Table 5—18. Resource Table for FIR Filter Code

(a) A side (b) B side
Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit
M1 4 MPYs 4 M2 4 MPYs 4
.S1 0 .S2 B 1
.D1 4 LDHs 4 .D2 4 LDHs 4
.L1,.S1,or .D1 4 ADDs 4 .L2,.S2,or.D2 4 ADDs and SUB 5
Total non-.M units 8 Total non-.M units 10
1X paths 4 2X paths 4

5.11.8 Final Assembly

Example 5-50 shows the final assembly to the FIR filter with redundant load
elimination and no memory hits. At the end of the inner loop, there is a branch

to OUTLOORP to execute the next outer loop. The outer loop counter is set to
50 because iterations j and j+1 are executing each time the inner loop is run.
The inner loop counter is set to 8 because iterationsi,i+1,i+2,and i+ 3 are
executing each inner loop iteration.

5.11.9 Comparing Performance

Part Il

The cycle count for this nested loop is 2402 cycles. There is a rather large
outer-loop overhead for executing the branch to the outer loop (6 cycles) and
the inner loop prolog (10 cycles). Section 5.12 addresses how to reduce this
overhead by software pipelining the outer loop.

Table 5-19. Comparison of FIR Filter Code

Code Example

Cycles Cycle Count

Example 5-45 FIR with redundant load elimination
Example 5-50 FIR with redundant load elimination and no
memory hits

50 (16 X 2+9+6) +2 2352

50 (8 X 4+ 10 +6) +2 2402

Optimizing Assembly Code 5-101

Part Il

Memory Banks

Example 5-50. Final Assembly Code for FIR Filter With Redundant Load Elimination

and No Memory Hits
MVK .S1 50,A2 ; set up outer loop counter
MVK .S1 62,A3 ; used to rst x pointer outloop
| MVK .S2 64,B10 ; used to rst h pointer outloop
OUTLOOP :
LDH .D1 *Ad++,B5 ; x0 = x[]]
| ADD .L2X A4,4,B1 ; set up pointer to x[]j+2]
| ADD .L1X B4,2,A8 ; set up pointer to h[1l]
|| MVK .52 8,B2 ; set up inner loop counter
|| [A2] SUB .S1 A2,1,A2 ; decrement outer loop counter
LDH .D2 *B1l++[2],B0 ;X2 = x[J+i+2]
| LDH .D1 *A4++[2],A0 ;o x1 = x[Jj+i+1]
| ZERO L1 A9 ; zero out sumO
| ZERO L2 B9 ; zero out suml
LDH .D1 *A8++[2],B6 ; hl = h[i+1]
| LDH .D2 *B4++[2],Al ; hO = h[i]
LDH .D1 *A4++[2],A5 ; X3 = x[j+i+3]
| LDH .D2 *B1l++[2],B5 ; X0 = x[j+i+4]
LDH .D2 *B4++[2],A7 ; h2 = h[i+2]
| LDH .D1 *A8++[2],B8 ; h3 = h[i+3]
|| [B2] SUB .52 B2,1,B2 ; decrement loop counter
LDH .D2 *B1l++[2],B0 ;Y x2 = x[3+i+2]
| LDH .D1 *A4++[2],A0 ;¥ x1 = x[j+i+1]
LDH .D1 *A8++[2],B6 ;* hl = h([i+1]
| LDH .D2 *B4++[2],Al ;* h0 = h[i]
MPY .M1X B5,Al,A0 ; x0 * hoO
| MPY .M2X AQ,B6,B6 ; x1 * hl
| LDH .D1 *A4++[2],A5 ;¥ x3 = x[J+i+3]
| LDH .D2 *B1++[2],B5 ;¥ x0 = x[j+i+4]
[B2] B .S1 LOOP ; branch to loop
| MPY .M2 BO,B6,B7 ; x2 * hl
|| MPY M1 AQ,Al,Al ; x1 * ho
| LDH .D2 *B4++[2],A7 ;* h2 = h[i+2]
| LDH .D1 *A8++[2],B8 ;* h3 = h[i+3]
|| [B2] SUB .52 B2,1,B2 ; * decrement loop counter
ADD L1 AQ,A9,A9 ; sumO0 += x0 * hO
| MPY .M2X A5, B8, B8 ; x3 * h3
|| MPY .M1X BO,A7,A5 ; x2 * h2
I LDH .D2 *B1l++[2], B0 P** %2 = x[j+1+2]
| LDH .D1 *Ad++[2],A0 ;** ox1 = x[J+i+1]

5-102

Memory Banks

Example 5-50. Final Assembly Code for FIR Filter With Redundant Load Elimination

and No Memory Hits (Continued)

ADD
ADD
MPY
MPY
LDH
LDH

ADD
ADD
MPY
MPY
LDH
LDH

ADD
ADD
B

MPY
MPY
LDH
LDH
SUB

ADD
ADD
MPY
MPY
LDH
LDH

; inner loop branch occurs here

B

SUB
SUB
SUB

SHR
SHR

STH

STH

NOP

; outer loop branch occurs here

.L2X
.L1X
M2
M1
.D1
.D2

L2
L1
.M1X
.M2X
.D1
.D2

.L2X
.L1X
.S1
.M2
M1
.D2
.D1
.S2

L2
L1
.M2X
.M1X
.D2
.D1

.S2
L1
L2
.51

.Ss1
.S2

.D1

.D1

2

Al, B9, B9
B6,A9, A9
B5, B8, B7
AS,A7,A7
*A8++[2],B6
*BA++[2],Al

B7,B9, B9
A5,A9,A9
B5,Al,A0
A0, B6,B6
*AA++[2],A5
*B1++[2],B5

A7,B9,B9
BS,A9,A9
LOOP
BO,B6,B7
A0,Al,Al
*B4++[2],A7
*A8++([2],B8
B2,1,B2

B7,B9,B9
A0,A9,A9
A5, B8, BS
BO,A7,A5
*Bl++[2],B0
*AA4++[2],A0

OUTLOOP
A4,A3,Ad
B4,B10,B4
A9,AQ0,A9

A9,15,A9
B9, 15,B9

A9, *Ab6++

B9, *A6++

suml
sum0
x0 *
x3 *

;¥* hl
; ** ho

’

’

’

suml
sum0

+= x1 * hO
+= x1 * hl

h[i+1]
= h[i]

+= x2 * hl
+= x2 * h2

* x0 * ho

;r* x3
;** x0

’
’
’
’

’

,.** h2 =
;** h3 =
; ** decrement loop counter

’

’

’

suml
sum0

suml

; * sum0
* X3 *
* X2 *

;* x1 * hl

= x[§+i+3]
= x[j+i+4]

+= x3 * h2
+= x3 * h3

;* branch to loop
;¥ x2 * hl
;* x1 * hO

h[i+2]
h[i+3]

+= x0 * h3
+= x0 * hO
h3
h2

prRrRox2 = x[J+i+2]
;*** x]1 =

x[J+i+1]

branch to outer loop

reset x
reset h
sumQ —-=
sum0 >>
suml >>
ylil =

y[3+1]

branch

pointer to x[j]
pointer to h[O0]
(eliminate add)

x0*h0

15
15

sum0 >> 15

suml >> 15

delay slots

Optimizing Assembly Code

5-103

Part Il

Part Il

Software Pipelining the Outer Loop

5.12 Software Pipelining the Outer Loop
In previous examples, software pipelining has always affected the inner loop.
However, software pipelining works equally well with the outer loop in a nested
loop.

5.12.1 Unrolled FIR Filter C Code

Example 5-51 shows the FIR filter C code after unrolling the inner loop (identi-
cal to Example 5-47 on page 5-95).

Example 5-51. Unrolled FIR Filter C Code

void fir (short x[], short h[], short yI[])
{

int i, j, sumO, suml;
short x0,x1,x2,x3,h0,hl,h2,h3;

for (3 = 0; Jj < 100; j+=2) {

sum0 = 0;
suml = 0;
x0 = x[J1;

for (i = 0; 1 < 32; i+=4){
x1l = x[Jj+i+1];
hO = hli];
sum0 += x0 * hO;
suml += x1 * hO;
x2 = x[j+i+2];
hl = h[i+1];
sum0 += x1 * hl;
suml += x2 * hl;
x3 = x[j+1i+3];
h2 = h[i+2];
sum0 += x2 * h2;
suml += x3 * h2;
x0 = x[j+i+4];
h3 = h[i+3];
sum0 += x3 * h3;
suml += x0 * h3;
}

v[j] = sum0 >> 15;

y[j+1] = suml >> 15;

5-104

Software Pipelining the Outer Loop

5.12.2 Making the Outer Loop Parallel With the Inner Loop Epilog and Prolog

The final assembly code for the FIR filter with redundant load elimination and
no memory hits (shown in Example 5-50 on page 5-102) contained 16 cycles
of overhead to call the inner loop every time: ten cycles for the loop prolog and
six cycles for the outer loop instructions and branching to the outer loop.

Most of this overhead can be reduced as follows:

(O Put the outer loop and branch instructions in parallel with the prolog.
(4 Create an epilog to the inner loop.
(1 Put some outer loop instructions in parallel with the inner-loop epilog.

5.12.3 Final Assembly

Example 5-52 shows the final assembly for the FIR filter with a software-pipe-
lined outer loop. Below the inner loop (starting on page 5-107), each instruction
is marked in the comments with an e, p, or o for instructions relating to epilog,
prolog, or outer loop, respectively.

The inner loop is now only run seven times, because the eighth iteration is
done in the epilog in parallel with the prolog of the next inner loop and the outer
loop instructions.

Optimizing Assembly Code 5-105

Part Il

Part Il

Software Pipelining the Outer Loop

Example 5-52. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined

MVK .S1 50,A2 ; set up outer loop counter
STW .D2 B11,*B15-- ; push register
|| MVK .51 74,A3 ; used to rst x ptr outer loop
| MVK .S2 72,B10 ; used to rst h ptr outer loop
| ADD .L2X A6,2,Bl11 ; set up pointer to y[1l]
LDH .D1 *A4++,B8 ; X0 = x[7]
| ADD .L2X Ad,4,B1 ; set up pointer to x[]j+2]
| ADD .L1X B4,2,A8 ; set up pointer to h[1l]
| MVK .52 8,B2 ; set up inner loop counter
|| [A2] SUB .81 A2,1,A2 ; decrement outer loop counter
LDH .D2 *B1++[2],B0 ; X2 = x[J+i+2]
| LDH .D1 *A4++[2],A0 ;o x1 = x[J+i+1]
| ZERO L1 A9 ; zero out sumO
| ZERO L2 B9 ; zero out suml
LDH .D1 *A8++[2],B6 ; hl = h[i+1]
| LDH .D2 *B4++[2],Al ; hO = h[i]
LDH .D1 *A4++[2],A5 ; X3 = x[j+i+3]
| LDH .D2 *Bl++[2],B5 ; x0 = x[j+i+4]
OUTLOOP :
LDH .D2 *B4++[2],A7 ; h2 = h[i+2]
| LDH .D1 *A8++[2],B8 ; h3 = h[i+3]
|| [B2] SUB .52 B2,2,B2 ; decrement loop counter
LDH .D2 *B1l++[2],B0 ;Y x2 = x[3+i+2]
| LDH .D1 *Ad++[2],A0 ;o x1 = x[J+i+1]
LDH .D1 *A8++[2],B6 ;* hl = h[i+1]
[LDH .D2 *B4++[2],Al ;* h0 = h[i]
MPY .M1X B8,Al,A0 ; x0 * hO
| MPY .M2X AO,B6,B6 ; x1 * hl
| LDH .D1 *A4++[2],A5 ;¥ x3 = x[J+1i+3]
| LDH .D2 *B1l++[2],B5 ;* x0 = x[J+i+4]
[B2] B .S1 LOOP ; branch to loop
| MPY M2 BO,B6,B7 ; x2 * hl
I MPY M1 AO,Al,Al ; x1 * ho
| LDH .D2 *B4++[2],A7 ;* h2 = h[i+2]
| LDH .D1 *A8++[2],B8 ;* h3 = h[i+3]
|| [B2] SUB .52 B2,1,B2 ; * decrement loop counter

5-106

Software Pipelining the Outer Loop

Example 5-52. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined (Continued)

ADD L1 AQ,A9,A9 ; sum0 += x0 * hO
| MPY .M2X A5,B8, B8 ; X3 * h3
[MPY .M1X BO,A7,A5 ; X2 * h2
| LDH .D2 *B1++[2], B0 JYYx2 = x[3+i+2]
| LDH .D1 *A4++[2]1,A0 ;¥ o x1 = x[j+i+1]
LOOP
ADD .L2X Al,B9,B9 ; suml += x1 * hO
| ADD .L1X B6,A9,A9 ; sum0 += x1 * hl
I MPY .M2 B5, B8, B7 ; x0 * h3
| MPY M1 A5,A7,A7 ; x3 * h2
| LDH .D1 *A8++[2],B6 ;** hl = h[i+1]
| LDH .D2 *B4++[2],A1 ;** h0 = h[i]
ADD L2 B7,B9,B9 ; suml += x2 * hl
| ADD L1 A5,A9,A9 ; sum0 += x2 * h2
I MPY .M1X B5,Al, A0 ;* x0 * ho
| MPY .M2X AQ,B6,B6 ;* x1 * hl
| LDH .D1 *A4++[2],A5 ;** x3 = x[J3+1+3]
| LDH .D2 *Bl++[2],B5 ;** x0 = x[j+i+4]
ADD .L2X A7,B9,B9 ; suml += x3 * h2
| ADD .L1X B8,A9,A9 ; sum0 += x3 * h3
| | [B2] B .S1 LOOP ;* branch to loop
| MPY .M2 BO,B6,B7 ;* x2 * hl
| MPY .M1 AO,Al,Al ;* x1 * ho
| LDH .D2 *B4++[2],A7 ;** h2 = h[i+2]
| LDH .D1 *A8++[2],B8 ;** h3 = h[i+3]
| | [B2] SUB .S2 B2,1,B2 ; ** decrement loop counter
ADD L2 B7,B9,B9 ; suml += x0 * h3
| ADD L1 AQ,A9,A9 ;* sum0 += x0 * hO
| MPY .M2X A5, B8, B8 ;* x3 * h3
| MPY .M1X BO,A7,A5 ;¥ x2 * h2
| LDH .D2 *B1l++[2],B0 JRFFOx2 = x[J+1+2]
| LDH .D1 *Ad4++[2],A0 jrrRx oxl = x[J+i+1]
; inner loop branch occurs here
ADD .L2X Al,B9,B9 ;e suml += x1 * hO
| ADD .L1X B6,A9,A9 ;e sum0 += x1 * hl
I MPY .M2 B5,B8,B7 ;e x0 * h3
| MPY .M1 A5,A7,A7 ;e x3 * h2
|| SUB .D1 A4,A3,RA4 ;0 reset x pointer to x[7J]
| SUB .D2 B4,B10,B4 ;0 reset h pointer to h[O0]
| | [A2] B .51 OUTLOOP ;0 branch to outer loop

Optimizing Assembly Code 5-107

Part Il

Part Il

Software Pipelining the Outer Loop

Example 5-52. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined (Continued)

ADD .D2
[ADD .L1
| LDH .D1
| ADD .L2X
| ADD .S1X
| MVK .82
ADD .L2X
| ADD .L1X
| LDH .D2
| LDH .D1
|| [A2] SUB .51
ADD L2
| SHR .81
| LDH .D1
[LDH .D2
SHR .82
| LDH .D1
[LDH .D2
STH .D1
[STH .D2
| ZERO .81
| ZERO .82

B7,B9,B9
A5,A9,A9
*Ad++,B8
A4, 4,B1
B4,2,A8
8, B2

A7,B9,B9
B8,A9,A9
*Bl++[2],B0
*Ad++[2], A0
A2,1,A2

B7,B9, B9
A9,15,A9

*A8++[2],B6
*B4++[2],Al

B9, 15,B9
*Ad++[2],A5
*Bl++[2],B5

A9, *A6++[2]
B9, *B11++[2]
A9
B9

; outer loop branch occurs here

;e
;e
Y
;o
;o0
Fe)

;e
;e
Y
Y
;o0

;e
;e
2%
P

;e
Y
2

;e
;e
;o0
Fe)

suml += x2 * hl
sum0 += x2 * h2
x0 = x[]]

set up pointer to x[j+2]
set up pointer to h[l]
set up inner loop counter

suml += x3 * h2

sumO0 += x3 * h3

x2 = x[j+i+2]

x1l = x[Jj+i+1]

decrement outer loop counter

suml += x0 * h3
sum0 >> 15

hl = h[i+1]

hO = h[i]

suml >> 15
x3 = x[J+i+3]
x0 = x[j+i+4]

y[j] = sum0 >> 15
y[j+1l] = suml >> 15
zero out sumO

zero out suml

5.12.4 Comparing Performance

The improved cycle count for this loop is 2006 cycles: 50 ((7 x4) + 6 + 6) + 6. The
outer-loop overhead for this loop has been reduced from 16 to 8 (6 + 6 — 4);
the —4 represents one iteration less for the inner-loop iteration (seven instead

of eight).

Table 5-20. Comparison of FIR Filter Code

Code Example Cycles Cycle Count
Example 545 FIR with redundant load elimination 5016 X 2+9+6)+2 2352
Example 5-50 FIR with redundant load elimination and no memory 50 (8 X 4 +10+6) + 2 2402

hits
Example 5-52 FIR with redundant load elimination and no memory 50 (7 X 4+6 +6) + 6 2006

hits with outer loop software-pipelined

5-108

Outer Loop Conditionally Executed With Inner Loop

5.13 Outer Loop Conditionally Executed With Inner Loop

Software pipelining the outer loop improved the outer loop overhead in the
previous example from 16 cycles to 8 cycles. Executing the outer loop condi-
tionally and in parallel with the inner loop eliminates the overhead entirely.

5.13.1 Unrolled FIR Filter C Code

Example 5-53 shows the same unrolled FIR filter C code that used in the
previous example.

Example 5-53. Unrolled FIR Filter C Code

void fir (short x[], short h[], short yI[])
{

int i, j, sum0O, suml;
short x0,x1,x2,x3,h0,hl,h2,h3;

for (j = 0; j < 100; j+=2) {

sum0 = 0;
suml = 0;
x0 = x[3j];

for (i = 0; 1 < 32; i+=4){
x1l = x[j+i+1];
hO = hli];
sum0 += x0 * hO;
suml += x1 * hO;
x2 = x[j+i+2];
hl = h[i+1];
sum0 += x1 * hl;
suml += x2 * hl;
x3 = x[j+i+3];
h2 = h[i+2];
sum0 += x2 * h2;
suml += x3 * h2;
x0 = x[j+i+4];
h3 = h[i+3];
sum0 += x3 * h3;
suml += x0 * h3;
}

y[3] = sum0 >> 15;

y[j+1] = suml >> 15;

Optimizing Assembly Code 5-109

Part Il

Part Il

Outer Loop Conditionally Executed With Inner Loop

5.13.2 Translating C Code to Linear Assembly (Inner Loop)

Example 5-54 shows a list of linear assembly for the inner loop of the FIR filter
C code (identical to Example 5—48 on page 5-96).

Example 5-54. Linear Assembly for Unrolled FIR Inner Loop

LDH *x++, x1 ;o x1 = x[Jj+i+1]

LDH *h++, h0 ; hO = h[i]

MPY x0,h0,p00 ; x0 * ho

MPY x1,h0,pl0 ; x1 * ho

ADD 00, sum0, sum0 ; sumO0 += x0 * hO

ADD 10, suml, suml ; suml += x1 * hO

LDH *x++, X2 ; x2 = x[J+i+2]

LDH *h++,hl ; hl = h[i+1]

MPY x1,hl,p01 ; x1 * hil

MPY x2,hl,pll ; X2 * hl

ADD 01, sum0, sum0 ; sumO0 += x1 * hl

ADD pll, suml, suml ; suml += x2 * hl

LDH *x++,x3 ; x3 = x[J+i+3]

LDH *h++,h2 ; h2 = h[i+2]

MPY x2,h2,p02 ; x2 * h2

MPY x3,h2,pl2 ; x3 * h2

ADD 02, sum0, sum0 ; sumO0 += x2 * h2

ADD pl2, suml, suml ; suml += x3 * h2

LDH *x++, %0 ; x0 = x[Jj+i+4]

LDH *h++,h3 ; h3 = h[i+3]

MPY x3,h3,p03 ; x3 * h3

MPY x0,h3,pl3 ; x0 * h3

ADD P03, sum0, sum0 ; sumO += x3 * h3

ADD pl3, suml, suml ; suml += x0 * h3
[cntr] SUB cntr,1l,cntr ; decrement loop counter
[cntr] B LOOP ; branch to loop

5-110

Outer Loop Conditionally Executed With Inner Loop

5.13.3 Translating C Code to Linear Assembly (Outer Loop)

Example 5-55 shows the instructions that execute all of the outer loop func-
tions. All of these instructions are conditional on inner loop counters. Two
different counters are needed, because they must decrement to 0 on different
iterations.

[d The resetting of the x and h pointers is conditional on the pointer reset
counter, prc.

(1 The shifting and storing of the even and odd y elements are conditional on
the store counter, sctr.

When these counters are 0, all of the instructions that are conditional on that
value execute.

d The MVK instruction resets the pointers to 8 because after every eight
iterations of the loop, a new inner loop is completed (8 X 4 elements are
processed).

[d The pointer reset counter becomes 0 first to reset the load pointers, then
the store counter becomes 0 to shift and store the result.

Example 5-55. Linear Assembly for FIR Outer Loop

[sctr] SUB sctr,1l,sctr
[!sctr] SHR sum07,15,vy0
[!sctr] SHR suml7,15,y1l
[!sctr] STH y0, *y++[2]
[!sctr] STH yvl,*y_1++[2]
[!sctr] MVK 4,sctr

[pctr] SUB pctr,1l,pctr
[!pctr] SUB X, rstx2,x
[!'pctr] SUB x_1,rstxl,x_1
['pctr] SUB h,rsthl,h
[lpctr] SUB h_1,rsth2,h_1
['pctr] MVK 4,pctr

Ne Ne Ne N Ne Ne Ne Ne Ne Ne Ne N

dec store lp cntr

(sum0 >> 15)

(suml >> 15)

y[3]l = (sum0 >> 15)
y[j+1l] = (suml >> 15)
reset store lp cntr

dec pointer reset 1lp cntr
reset x ptr

reset x_1 ptr

reset h ptr

reset h_1 ptr

reset pointer reset lp cntr

5.13.4 Unrolled FIR Filter C Code

The total number of instructions to execute both the inner and outer loops is
38 (26 for the inner loop and 12 for the outer loop). A 4-cycle loop is no longer
possible. To avoid slowing down the throughput of the inner loop to reduce the
outer-loop overhead, you must unroll the FIR filter again.

Example 5-56 shows the C code for the FIR filter, which operates on eight
elements every innerloop. Two outer loops are also being processed together,
as in Example 5-53 on page 5-109.

Optimizing Assembly Code 5-111

Part Il

Part Il

Outer Loop Conditionally Executed With Inner Loop

Example 5-56. Unrolled FIR Filter C Code

void fir(short x[], short h[], short yI[])

{
int i, j, sumO, suml;
short x0,x1,x2,x3,x4,x5,%x6,x7,h0,hl,h2,h3,h4,h5,h6,h7;

for (3 = 0;

x0

]

sum0 =
suml

< 100;
0;
= 0;
x[3]1;

jt=2) |

for (i = 0; 1i
x1 =
hOo =
sum0
suml
X2 =
hl =
sum0
suml
x3 =
h2 =
sum0
suml
x4 =
h3 =
sum0
suml
x5 =
hd =
sum0
suml
X6 =

sum0
suml
X7 =
he =
sum0
suml
x0 =
h7 =
sum0
suml
}
y[3]

y[j+1l] = suml

< 32; i+=8){
x[Jj+i+1];
hlil;

+= x0 * hO;
+= x1 * hO;
x[J+i+2];
hii+l];

+= x1 * hl;
+= x2 * hl;
x[J+i+3];
hli+2];

+= x2 * h2;
+= x3 * h2;
x[J+i+41];
h{i+3];

+= x3 * h3;
+= x4 * h3;
x[j+1i+5];
hli+4];

+= x4 * h4;
+= x5 * h4;
x[Jj+i+6];
h[i+5];

+= x5 * h5;
+= x6 * h5;
x[§+1i+7];
hli+6];

+= x6 * ho6;
+= x7 * he6;
x[j+i+8];
hi{i+7];

+= x7 * h7;
+= x0 * h7;

= sum0 >> 15;

>> 15;

5-112

Outer Loop Conditionally Executed With Inner Loop

5.13.5 Translating C Code to Linear Assembly (Inner Loop)

Example 5-57 shows the instructions that perform the inner and outer loops
of the FIR filter. These instructions reflect the following modifications:

a
a

LDWs are used instead of LDHSs to reduce the number of loads in the loop.
The reset pointer instructions immediately follow the LDW instructions.

The first ADD instructions for sum0 and sum1 are conditional on the same
value as the store counter, because when sctr is 0, the end of one inner
loop has been reached and the first ADD, which adds the previous sumQ07
to p00, must not be executed.

The first ADD for sum0 writes to the same register as the first MPY p00.
The second ADD reads p00 and p01. At the beginning of each inner loop,
the first ADD is not performed, so the second ADD correctly reads the
results of the first two MPYs (p01 and p00) and adds them together. For
other iterations of the inner loop, the first ADD executes, and the second
ADD sums the second MPY result (p01) with the running accumulator. The
same is true for the first and second ADDs of sum1.

Optimizing Assembly Code 5-113

Part Il

Outer Loop Conditionally Executed With Inner Loop

Example 5-57. Linear Assembly for FIR With Outer Loop Conditionally Executed

Part Il

With Inner Loop
LDW *h++[2],h01 h{i+0] & h[i+1]
LDW *h_1++[2],h23 h[i+2] & h[i+3]
LDW *h++[2],h45 h{i+4] & h[i+5]
LDW .*h_1++[2]1,h67 h[i+6] & h[i+7]
LDW *x+4+[21,x01 x[J+1i+0] & x[j+i+1]
LDW *x_14++[2],x23 xX[J+1i+2] & x[F+1i+3]
LDW *x++[2],x45 x[J+i+4] & x[j+i+5]
LDW *x_1++[2],x67 x[j+i+6] & x[Jj+i+7]
LDH *x, X8 x[J+1+8]
[sctr] SUB sctr,1,sctr dec store lp cntr
[!sctr] SHR sum07,15,vy0 (sum0 >> 15)
[!sctr] SHR suml7,15,vy1 (suml >> 15)
[!sctr] STH y0, *y++[2] y[3] = (sum0 >> 15)
[!sctr] STH yvl,*y_1++[2] y[j+1l] = (suml >> 15)
MV x01,x01b move to other reg file
MPYLH h01l,x01b,pl0 pl0 = h[i+0]*x[J+i+1]
[sctr] ADD pl0, suml7,pl0 suml (pl0) = pl0 + suml
MPYHL h01l,x23,pll pll = h[i+1]*x[Jj+i+2]
ADD pll,pl0, sumll suml += pll
MPYLH h23,x23,pl2 pl2 = h[1i4+2]*x[J+i+3]
ADD pl2,sumll, suml2 suml += pl2
MPYHL h23,x45,p13 pl3 = h[i+3]*x[j+i+4]
ADD pl3,suml2, suml3 suml += pl3
MPYLH h45,x45,p14 pld = h[i+4]*x[Jj+i+5]
ADD pl4,suml3, suml4 suml += pl4
MPYHL h45,x67,p15 pl5 = h[i+5]*x[j+i+6]
ADD pl5, suml4, suml5 suml += pl5
MPYLH h67,x67,pl6 pl6e = h[i+6]*x[J+1i+7]
ADD pl6,suml5, suml6 suml += plé6
MPYHL h67,x8,p17 pl7 = h[i+7]1*x[Jj+1+8]
ADD pl7,suml6, suml?7 suml += pl7
MPY h01l,x01,p00 P00 = h[i+0]*x[J+1+0]
[sctr] ADD P00, sum07,p00 sum0 (p00) = p00 + sumO
MPYH h01l,x01,p01 p0l = hli+1l]*x[J+1i+1]
ADD p01,p00, sum01 sum0 += p01

5-114

Example 5-57. Linear Assembly for FIR With Outer Loop Conditionally Executed
With Inner Loop (Continued)

Outer Loop Conditionally Executed With Inner Loop

[!sctr]

[pctr]
[!'pctr]
[!'pctr]
[!pctr]
[!'pctr]
[!pctr]
[octr]
[octr]

MPY
ADD

MPYH
ADD

MPY
ADD

MPYH
ADD

MPY
ADD

MPYH
ADD

MVK

SUB
SUB
SUB
SUB
SUB
MVK

SUB

h23,x23,p02
p02, sum01, sum02

h23,x23,p03
p03, sum02, sum03

h45,x45,p04
p04, sum03, sum04

h45,x45,p05
p05, sum04, sum05

h67,x67,p06
p06, sum05, sum06

h67,x67,p07
p07,sum06, sumQ7

4,sctr

pctr,1l,pctr
X, rstx2,x
x_1,rstxl,x_1
h,rsthl,h
h_1,rsth2,h_1

p02 = h[i+2]*x[j+i+2]

sum0 += p02

p03 = h[i+3]*x[j+i+3]

sum0 += p03

P04 = h[i+4]*x[j+i+4]

sum0 += p04

P05 = h[i+5]*x[Jj+i+5]

sum0 += p05

p06 = h[i+6]*x[]j+1+6]

sum0 += p06

P07 = h[i+7]1*x[Jj+i+7]

sum0 += p07

reset store lp cntr

dec pointer reset lp cntr

reset x ptr

reset x_1 ptr

reset h ptr

reset h_1 ptr

Ne N+ Ne Ne Ne N

4,pctr reset pointer reset lp cntr

octr,1l,octr ; dec outer lp cntr
LOOP ; Branch outer loop

5.13.6 Translating C Code to Linear Assembly (Inner Loop and Outer Loop)

Example 5-58 shows the linear assembly with functional units assigned. (As
in Example 5-49 on page 5-98, symbolic names now have an A or B in front
of them to signify the register file where they reside.) Although this allocation
is one of many possibilities, one goal is to keep the 1X and 2X paths to a
minimum. Even with this goal, you have five 2X paths and seven 1X paths.

One requirement that was assumed when the functional units were chosen
was that all the sum0 values reside on the same side (A in this case) and all
the sum1 values reside on the other side (B). Because you are scheduling
eight accumulates for both sum0 and sum1 in an 8-cycle loop, each ADD must
be scheduled immediately following the previous ADD. Therefore, itis undesir-
able for any sumO ADDs to use the same functional units as sum1 ADDs.

One MV instruction was added to get x01 on the B side for the MPYLH p10
instruction.

Optimizing Assembly Code 5-115

Part Il

Part Il

Outer Loop Conditionally Executed With Inner Loop

Example 5-58. Linear Assembly for FIR With Outer Loop Conditionally Executed
With Inner Loop (With Functional Units)

_fir:

LOOP:

[sctr]
Isctr]
lsctr]
Isctr]
lsctr]

.global
.cproc

.reg
.reg
.reg
.reg
.reg
.reg
.reg

ADD
ADD
ADD
MVK
MVK
MVK
MVK
MVK
MVK
MVK
ZERO
ZERO

.mptr
.mptr
.mptr
.mptr

.trip 8

LDW
LDW
LDW
LDW

LDW
LDW
LDW
LDW
LDH

SUB
SHR
SHR
STH
STH

_fir

x, h, y
x_1,
sumO1,
sumll,
p00,

pl0,

x01b,
v0, v1,

x,4,x_1
h,4,h_1
y,2,y_1
60, rstxl
60, rstx2
64, rsthl
64, rsth2
201, octr
4,pctr
5,sctr
sumQ7
suml?7

, x+0
1, x+4

h+0
1, h+4

.D1T1
.D2T2
.D1T1
.D2T2

.D2T1
.D1T2
.D2T1
.D1T2
.D2T1

.Sl
.s1
.S2
.D1
.D2

h_1,
sum02,
sumlz,
pO01,
pll,
x01,
rstxl,

octr,
sum03,
suml3,
P03,
pl3,

x45,
rstx2,

v_1,

pr02,
plz,
%23,

*h++[2],h01 ;
*h_1++([2],h23;
*h++[2],h45 ;
*h_1++[2],h67;

*x++[2],x01 ;
*x_1++[2],x23;
*x++[2],x45 ;
*x_1++[2],x67;
*x,%x8 ;

sctr,1l,sctr ;
sum07,15,y0 ;
suml7,15,y1l ;
yO, *y++[2] ;
v1,*y_1++[2] ;

pctr,
sum04,
sumlé,
P04,
pl4,
x67,
rsthil,

sctr
sum05,
sumlb5,
pO6,
plé,
h01,

rsth2

p05,
pl5,
x8,

point to x|

sum06,
sumlé6,
r07
pl7

h23, h45,

2]

sum07
suml7

he7

point to h[2]

point to y[1]

used to rst x pointer each outer loop
used to rst x pointer each outer loop
used to rst h pointer each outer loop
used to rst h pointer each outer loop
loop ctr = 201 = (100/2) * (32/8) + 1
pointer reset lp cntr = 32/8

reset store lp cntr = 32/8 + 1

sum07 = 0

suml7 = 0

h[i+0] & h[i+1]

h[i+2] & h[i+3]

h[i+4] & h[i+5]

h[i+6] & h[i+7]

x[J+i+0] & x[j+i+1]

x[J+i+2] & x[j+i+3]

x[J+i+4] & x[j+i+5]

x[J+i+6] & x[J+1i+7]

x[J+1+8]

dec store lp cntr
(sumO0 >> 15)

(suml >> 15)

y[3] = (sum0 >> 15)
y[j+1] = (suml >> 15)

5-116

Example 5-58. Linear Assembly for FIR With Outer Loop Conditionally Executed

Outer Loop Conditionally Executed With Inner Loop

With Inner Loop (With Functional Units) (Continued)

[sctr]

[sctr]

MV
MPYLH

ADD

MPYHL
ADD

MPYLH
ADD

MPYHL
ADD

MPYLH
ADD

MPYHL
ADD

MPYLH
ADD

MPYHL
ADD

MPY
ADD

MPYH
ADD

MPY
ADD

MPYH
ADD

MPY
ADD

MPYH
ADD

.L2X
.M2X

L2

.M1X
.L2X

.M2
L2

.M1X
.L2X

M1
.L2X

.M2X
.S2

.M2
L2

.M1X
.L2X

M1
L1

M1
L1

.M2
.L1X

.M2
.L1X

M1
L1

M1
L1

x01,x01b
h01l,x01b,pl0

pl0,suml7,pl0

h01l,x23,pll
pll,pl0, sumll

h23,x23,pl2
pl2,sumll, suml2

h23,x45,pl3
pl3,suml2, suml3

h45,x45,pl4
pl4,suml3, suml4

h45,x67,pl5
pl5,suml4, suml5

h67,x67,p16
pl6, suml5, suml6

h67,x8,pl17
pl7,suml6, suml7

h01l,x01,p00
p00, sum07,p00

h01l,x01,p01
p01l,p00, sum01

h23,x23,p02
p02,sum01, sum02

h23,x23,p03
p03, sum02, sum03

h45,x45,p04
p04, sum03, sum04

h45,x45,p05
p05, sum04, sum05

’

move to other reg file
pl0 = h[i+0]*x[Jj+i+1]

suml (pl0) = pl0 + suml

pll = h[i+l]*x[j+i+2]
suml += pll

pl2 = h[i+2]*x[j+i+3]
suml += pl2

pl3 = h[i+3]1*x[j+i+4]
suml += pl3

pld = h[i+4]*x[Jj+i+5]
suml += pl4

Pl5 = h[i+5]*x[Jj+1+6]
suml += pl5

pl6 = h[i+6]*x[j+i+7]
suml += pl6

pl7 = h[i+7]1*x[j+1+8]
suml += pl7

P00 = h[i+0]*x[J+1+0]
sum0 (p00) = p00 + sum0

p0l = h[i+1]*x[j+i+1]
sum0 += p01

p02 = h[i+2]*x[j+i+2]
sum0 += p02

p03 = h[i+3]*x[J+1+3]
sum0 += p03

p04 = h[i+4]*x[J+i+4]
sum0 += p04

p05 = h[i+5]*x[J+1+5]
sum0 += p05

Optimizing Assembly Code

5-117

Part Il

Part Il

Outer Loop Conditionally Executed With Inner Loop

Example 5-58. Linear Assembly for FIR With Outer Loop Conditionally Executed

With Inner Loop (With Functional Units)(Continued)

MPY
ADD

MPYH
ADD

[!sctr] MVK

[pctr] SUB
[!pctr] SUB
[!pctr] SUB
[!pctr] SUB
['pctr] SUB
[!pctr] MVK

[octr] SUB
[octr] B
endproc

.M2
.L1X

.M2
.L1X

.S1

.s1
.S2
.s1
.s1
.S2
.s1

.S2
.S2

h67,x67,p06
06, sum05, sum06

h67,x67,p07
07, sum06, sum07

4,sctr

pctr,1l,pctr
X, rstx2,x
x_1,rstxl,x_1
h,rsthl,h
h_1,rsth2,h_1
4,pctr

octr,1l,octr
LOOP

’

p06 = h[i+6]*x[j+1+6]
sum0 += p06

p07 = h[i+7]*x[J+i+7]
sumQ += p07

reset store lp cntr

dec pointer reset lp cntr
reset x ptr

reset x_1 ptr

reset h ptr

reset h_1 ptr

reset pointer reset lp cntr

dec outer lp cntr
Branch outer loop

5-118

Outer Loop Conditionally Executed With Inner Loop

5.13.7 Determining the Minimum Iteration Interval

Based on Table 5-21, the minimum iteration interval is 8. An iteration interval
of 8 means that two multiply-accumulates per cycle are still executing.

Table 5—-21. Resource Table for FIR Filter Code

(a) A side (b) B side

Unit(s) Total/Unit Unit(s) Total/Unit
M1 8 M2 8

.S1 7 .S2 6

.D1 5 .D2 6

.L1 8 L2 8
Total non-.M units 20 Total non-.M units 20

1X paths 7 2X paths 5

5.13.8 Final Assembly

Example 5-59 shows the final assembly for the FIR filter with the outer loop
conditionally executing in parallel with the inner loop.

Part Il

Optimizing Assembly Code 5-119

Part Il

Outer Loop Conditionally Executed With Inner Loop

Example 5-59. Final Assembly Code for FIR Filter

[Al]

MV
ADD
MV
ADD
MVK

LDW
LDW
MVK

LDW
LDW
MVK
MVK

LDW
LDW
SUB
MVK
MVK
ADD

LDW
LDW
SUB

SUB
SUB
LDH

ADD
MVK

MPYLH
SUB
MPYHL

MPY
MPYLH
SUB
ZERO

SHR
MPY
MPYH
ADD
LDW
LDW
ZERO

.L1X
.D2
.L2X
.D1
.S2

.D1
.D2
.s1

.D2
.D1
.s1
.S2

.D2
.D1
L1
.S1
.S2
.L2X

.D1
.D2
.s1

.S2
.S1
.D2

.S2X
.s1

.M2X
.S2
.M1X

M1
.M2
.S1
L2

.S2
.M2
M1
L2
.D1
.D2
.L1

B4,A0
B4,4,B2
A4,B1
A4,4,Ad
200,B0

*A4++[2],B9
*Bl++[2],A10
4,A1

*B2++[2],B7
*A0++[2],A8
60, A3
60,B14

*B1++[2],All
*A4++[2],B10
Al,1,A1
64,A5

64,B5
26,2,B6

*A0++[2],A9
*B2++[2],B8
A4,A3,A4

B1,B14,B1
A0,A5,A0
*B1,A8

Al10,0,B8
5,A2

A8,B8,B4
B2,B5,B2
A8,B9,Al4

A8,A10,A7
B7,B9,B13
A2,1,A2
B1l1

B11,15,B11
B7,B9,B9
A8,A10,A10
B4,B11,B4
*A4++[2],B9
*B1l++[2],A10
Al0

I
’

I

point to h[0] & h[1]
point to h[2] & h[3]
point to x[j] & x[j+1]

point to x[j+2] & x[j+3]
set 1p ctr ((32/8)*(100/2))

x[J+i+2] & x[Jj+1+3]
x[J+i+0] & x[J+i+1]
set pointer reset lp cntr

h{i+2] & h[i+3]
h[i+0] & h[i+1]
used to reset x ptr (l6*4-4)
used to reset x ptr (16*4-4)

x[J+i+4] & x[J+1i+5]
x[j+i+6] & x[F+i+7]

dec pointer reset lp cntr
used to reset h ptr (16*4)
used to reset h ptr (16*4)
point to y[j+1]

h[i+4] & h[i+5]
h[i+6] & h[i+7]
reset x ptr

reset x ptr
reset h ptr
x[J+1+8]

move to other reg file
set store lp cntr

pl0 = h[i+0]*x[Jj+i+1]
reset h ptr
pll = hli+l]*x[j+i+2]

p00 h[i+0]*x[j+1+0]

pl2 hii+2]*x[j+i+3]

dec store lp cntr

zero out initial accumulator

(Bsuml >> 15)

P02 = h[i+2]*x[j+1i+2]
P01l = h[i+1]*x[j+i+1]
suml (pl0) = pl0 + suml

;Y ox[3+142] & x[J+1i+3]
;% x[J+1+0] & x[j+i+1]

I

zero out initial accumulator

5-120

Outer Loop Conditionally Executed With Inner Loop

Example 5-59. Final Assembly Code for FIR Filter (Continued)

LOOP:

[Al]

[BO]

[IAl]

SHR
SUB
MPYH
ADD
MPYHL
ADD
LDW
LDW

ADD
MPYHL
MPYLH
ADD
LDW
LDW
SUB

MPY
ADD
MPYLH
ADD
LDW
LDW
SUB

MPY
MPYH
ADD
ADD
SUB
SUB
LDH

MVK
MPYH
ADD
MPYHL
ADD
STH
STH
ADD

ADD
ADD
MPYLH
MVK
SUB
MPYHL

.51
.S2
.M2
L1
.M1X
.L2X
.D2
.D1

L1
.M2X
M1
L2
.D2
.D1
.51

.S2
M1
.L1X
.M2
.L2X
.D1
.D2
.s1

.M2
M1
.L1X
.L2X
.S2
.S1
.D2

.51
.M2
L1
.M1X
.S2
.D2
.D1
.L2X

L1
L2
.M2X
.s1
.S2
.M1X

A10,15,A12
BO, 1, B0
B7,B9,B13
A7,A10,A7
B7,A11,A10
Al4,B4,B7
*B2++[2],B7
*A0++[2],A8

A10,A7,A13
A9,B10,B12
A9,A11,A10
B13,B7,B7
*Bl++[2],ALl1
*A4++[2],B10
Al,1,Al

LOOP
A9,Al11,Al1
B9,A13,Al13
B8,B10,B13
A10,B7,B7

*A0++[2],A9
*B2++[2],B8
A4, A3, A4

BS,B10,B11
A9,A11,All
B13,A13,A9
A10,B7,B7
B1,B14,B1
A0,A5,A0
*B1,AS

4,A2
B8,B10,B13
All1,A9,A9
B8, A8,A9
B12,B7,B10
B1l1l, *Bo++[2]
Al2,*A6++[2]
A10,0,B8

Al1l,A9,Al2
B13,B10,B8
A8,B8, B4
4,n1
B2,B5,B2
A8,B9,Al4

; (AsumO >> 15)

; dec outer lp cntr

; P03 = h[i+3]1*x[Jj+1+3]
; sum0 (p00) = p00 + sumO
; pl3 = h[i+3]*x[j+i+4]
; suml += pll

;* h[i+2] & h[i+3]

;* h[i+0] & h[i+1]

; sumO0 += p01l

; pl5 = h[i+5]*x[j+1+6]

; pld = h[i+4]*x[J+1+5]

; suml += pl2

;¥ ox[J+i+4] & x[j+i+5]

;Y x[J+i+6] & x[J+i+7]

;* dec pointer reset lp cntr

; Branch outer loop

; P04 = hi+d]*x[J+1i+4]
; sum0 += p02

; pl6 = h[i+6]*x[J+i+7]
; suml += pl3

;* h[i+4] & h[i+5]

;* h[i+6] & h[i+7]

;* reset x ptr

; P06 = h[i+6]*x[j+i+6]
; p05 = h[i+5]*x[J+1+5]
; sum0 += p03

; suml += pl4

;¥ reset x ptr

;* reset h ptr

;% x[j+1i+8]

; reset store lp cntr

; p07 = h[i+7]1*x[J+1+7]

; sum0 += p04

; P17 = h[i+7]1*x[j+1+8]

; suml += plb

; y[j+1] = (Bsuml >> 15)
;7 v[3]l = (Asum0 >> 15)

;* move to other reg file

; sumO0 += p05

; suml += plo

;* pl0 = h[i+0]*x[J+i+1]

;* reset pointer reset lp cntr
;* reset h ptr

;* pll = h[i+1]*x[j+i+2]

Optimizing Assembly Code

5-121

Part Il

Outer Loop Conditionally Executed With Inner Loop

Example 5-59. Final Assembly Code for FIR Filter (Continued)

ADD .L2X A9,B8,B11 ; suml += pl7
| ADD .L1X B11,A12,A12 ; sumO += p06
| MPY M1 A8,A10,A7 ;* P00 = h[i+0]*x[j+i+0]
| MPYLH M2 B7,B9,B13 ;* pl2 = h[i+2]*x[j+i+3]
|| [A2] SUB .51 A2,1,A2 ;* dec store 1lp cntr
ADD .L1X B13,A12,A10 ; sumO += p07
|| ['A2] SHR .S2 B11,15,B11 ;* (Bsuml >> 15)
| MPY .M2 B7,B9,B9 ;* p02 = h[i+2]*x[j+i+2]
| MPYH M1 A8,A10,Al10 ;¥ p0l = h[i+1]*x[j+i+1]
|| [A2] ADD L2 B4,B11,B4 ;* suml (pl0) = pl0 + suml
| LDW .D1 *Ad++[2]1,B9 ;Y ox[J+i+2] & x[J+i+3]
| LDW .D2 *B1l++[2],A10 ;X% x[J+1i+0] & x[Jj+i+1]
;Branch occurs here
[!A2] SHR .S1 Al10,15,A12 ; (AsumO >> 15)
['A2] STH .D2 B1l1l, *B6++[2] ; v[j+1l] = (Bsuml >> 15)
|| ['A2] STH .D1 Al2, *A6++[2] ; vIjl = (Asum0 >> 15)

5.13.9 Comparing Performance

The cycle count of this code is 1612: 50 (8 X 4 + 0) + 12. The overhead due
to the outer loop has been completely eliminated.

Table 5-22. Comparison of FIR Filter Code

=
T
E Code Example Cycles Cycle Count
Example 5—42 FIR with redundant load elimination 50 (16 X 2+9+6) +2 2352
Example 5-50 FIR with redundant load elimination and no memory 50 (8 X 4 + 10 + 6) + 2 2402
hits
Example 5-52 FIR with redundant load elimination and no memory 50 (7 X 4 +6+6) + 6 2006
hits with outer loop software-pipelined
Example 5-55 FIR with redundant load elimination and no memory 50 (8 X 4 +0) + 12 1612
hits with outer loop conditionally executed with inner
loop

5-122

P_art I
Introduction

Part Il

C Code

Part Il
Assembly Code

Part IV

Appendix

Al ed

Appendix A

Applications Programming

This appendix provides extensive code examples from the Global Systems for
Mobile Communications (GSM) enhanced full-rate (EFR) vocoder. The assem-
bly code examples in this appendix represent hand-optimized code; the code
produced by the assembly optimizer will vary, depending on the version used.

Topic Page
A.1 Summary of Major Programming Methods A-2
A.2 Implementation of GSM EFR Vocoderc.cciiuuun... A-3

Part IV

A-1

Part IV

Summary of Major Programming Methods

A.1 Summary of Major Programming Methods

A-2

The key to implementing applications on the 'C62xx is to take advantage of the
processor’s full speed. The main technique for achieving this goal involves un-
rolling software loops to reach the limits of the functional units while meeting the
data dependency constraints.

In addition to loop unrolling, the following methods are helpful for improving
performance:

(1 Rearranging the C code

If you are implementing a system based on an existing C code, rearranging
the tasks in the C code is a useful method to gain better performance.

[Avoiding memory bank hits

Memory bank hits, especially those in the inner loop in a nested loop
application, hurt the performance dramatically and must be avoided. Most
of the memory bank hits, however, can be eliminated by allocating the
relevant arrays properly. Some situations, like accessing a word and a half-
word in the same cycle, can also create the chance of a memory bank hit
and should also be avoided.

If the system implementation is quite complicated, the program-memory size
becomes an issue. To achieve a good balance between program-memory size
and speed, you can implement the less critical portions with highly-compact
assembly code that sacrifices performance.

Implementation of the GSM EFR Vocoder

A.2 Implementation of the GSM EFR Vocoder

This section presents the implementation of some representative pieces of code
for the Global Systems for Mobile Communications (GSM) enhanced full-rate
(EFR) vocoder. These include the:

Multiply-accumulate loop

Windowing and scaling part of autocorr.c
cor_h

rrv computation in search_10i40

Index search in search_10i40

FIR filter (residu.c)

Lag search in the lag_max () routine

oo oo

Note:

European Telecommunications Standards Institute (ETSI) has the copyright
to all the C code used in this section.

The following global constants/symbols are defined in the EFR vocoder:

#define Word16 short

#define Word32 int

#define MAX 32 Ox7fffffffL
#define MIN_32 0x80000000L
#define MAX_16 Ox7fff
#tdefine MIN_16 0x8000

Part IV

Applications Programming A-3

Part IV

Implementation of the GSM EFR Vocoder

A.2.1 Implementation of the Multiply-Accumulate Loop

First, examine the most popular loop used in almost every fixed-point vocoder,
the multiply-accumulate (MAC) loop, shown in Example A—1.

Example A—1. C Code for the Typical MAC Loop

input:
Wordl6é N; (typical value of N is an even integer,
greater than or equal to 20)
Wordl6 *x, *y;
result:
Word32 sum;
C Code
sum=0;
for (i=0; i<N; i++) sum=L_mac (sum,x[1],y[1i]);
where L_mac(a,b,c) = _sadd(a,_smpy(b,c))

Example A—2 shows a list of symbolic instructions for each iteration of the loop.

Example A-2. Linear Assembly for the MAC Loop

LOOP :
LDH
LDH
SMPY
SADD
[cntr] SUB
[ecntr] B

wpEERDO

LU

*xptr++, xi
*yptr++, vyi
xi,yi,tmp
sum, tmp, sum
cntr,1l,cntr
LOOP

load x[1]

load y[i]

smpy (x[1],y[1])
sum=sadd (sum, smpy (x[1],v[i])
decrement the loop counter
branch to the loop

Ne Ne Ne Ne Ne N

A-4

In Example A—2, xptr is the pointer for the x array and yptr is the pointer for the
y array. Because there are eight functional units, these instructions can easily
fit into one execution packet.

In general, unrolling the loop once as in the code in Example A—3 does not give
the same result as the code shown in Example A—1, because of the ordering
dependence of the saturated addition.

Implementation of the GSM EFR Vocoder

Example A-3. C Code for MAC Loop With Loop Unrolling

Word32 sum_e,
sum_e=0;
sum_o=0;

sum_o;

for (i=0;1<N; i+=2) {

sum_e=L_mac (sum_e,x[1],vI[1]);
sum_o=L_mac (sum_o, x[1+1],y[i+1]);

}

sum=L_add (sum_o, sum_e) ;

I, add(a,b)=_sadd (a,b)

where

However, both approaches lead to the same result if x[i] = y[i] for every i, Be-
cause _smpy (X[i], x[i]) is always greater than or equal to 0. This special MAC
loop is used to compute the energy of a particular signal segment. In this case,
take the approach shown in Example A-3, because it doubles the performance
of the code shown in Example A—2. Example A—4 shows the C code for this spe-
cial MAC loop. Example A-5 lists the symbolic instructions for this loop.

Example A—4. C Code for Energy Computation MAC Loop

sum=0;

for (i=0; i<N; i++)

sum =

or
sum_e=0;
sum_o=0;

L_mac (sum, x[1]

x[1]);

for (1=0; i<N; i+=2) {

sum_e=I, mac (sum_e, x[i],x
sum_o=L_mac (sum_o, x[1+1],x[i+1]);

}

(i1);

sum=L_add (sum_o, sum_e) ;

Example A-5. Linear Assembly for Energy Computation MAC Loop

LOOP:
LDH
SMPY
SADD
LDH
SMPY
SADD

[cntr] SUB

[cntr] B

SADD

nnHRRoOH XU

=

*xptre++, xi
xi,xi,tmp_e
sum_e, tmp_e, sum_e
*xptro++, xi+l
xi+1l,xi+1, tmp_o
sum_o, tmp_o, sum_oO
cntr, 2,cntr

LOOP
sum_e,

sum_oO, sum

Ne N+ Ne Ne Ne oNe Ne N

load x[i]

smpy (x[1],x[1])
sum_e=sadd (sum_e, smpy (x[1],x[1])
load x[i+1]

smpy (x[1+1],x[1+1])
sum_o=sadd (sum_o, smpy (x[1+1],x[1+1])
decrement the loop counter

branch to the loop

sum=sadd (sum_o+sum_e)

Applications Programming A-5

Part IV

Part IV

Implementation of the GSM EFR Vocoder

In Example A-5, xptre and xptro are the pointers for the x array and, at the be-
ginning, point to x[0] and x[1], respectively. The eight instructions in the loop fit
perfectly into one execution packet. This approach computes two MACs in one
cycle. It doubles the performance of the code shown in Example A-2 for the

general MAC loop.

The final assembly code is shown in Example A—6.

Example A—6. Assembly Code for the Energy Computation MAC Loop

o Texas Instruments, Inc

* *

** MAC Loop —— Energy Computation

* %

*x Compute two samples a time

* x

* % Total cycles = (N/2+2)

* %

** Register Usage: A B

*x 4 5

* *

*x Notice that x[0] and x[1] will not be available till LOOP
*x is executed once. Therefore, sum_e and sum_o should be 0Os
*x for the first three iterations. This is why A5,

xx and B6 should be set to 0Os in the prolog.

KK AR A AR A A A A A A A A A A A A A A AR AR A AR A AR AR A AR A A A AR A A A AR A A A AR A AR A A A AR A AR A AR A A A A dA AR A AR A X kK

* K
* *
* x
* %
* K
* %
* K
* %
* *
* K
* *
* K
* *
* x

* *

KK AR A AR A A A A A AR A A AR A A A A A A AR A A A A A A AR A AR AR A AR A KR A A A A AR A KRR AR A AR AR AR A A A A AR AR A AR A AR A X kK

; A4 —— &x[0]
; B4 —— N
; A6 —— sum
ADD .L2X Ad,2,B4 ;o &x[1]
[SUB .D2 B4,6,B1 ; loop counter
| B .S2 LOOP ; branch to the loop
[MVK .51 0,A6 ; initialize sum_e
LDH .D1 *A4++[2],A5 ; load x[0]
| LDH .D2 *B4++[2],B5 ; load x[1]
| B .S2 LOOP ; branch to the loop
I MV .L2X A6,B6 initialize sum_o
LDH .D1 *A4++[2],A5 load x[2]
| LDH .D2 *B4++[2]1,B5 load x[3]
[B .51 LOOP branch to the loop
| MV L1 A6,A5 take care the initial three iterations
[MV L2 B6,B5 take care the initial three iterations
LDH .D1 *A4++[2],A5 load x[4]
| LDH .D2 *B4++[2],B5 load x[5]
[B .51 LOOP

A-6

Implementation of the GSM EFR Vocoder

Example A—6. Assembly Code for the Energy Computation MAC Loop (Continued)

LDH .D1 *A44+4+[2],A5 ; load x[6]

| LDH .D2 *B4++[2]1,B5 ; load x[7]

LOOP
SMPY M1 A5,A5,A7 ; smpy (x[1],x[1])

| SMPY M2 B5,B5,B7 ; smpy (x[1+1],x[i+1])

| SADD L1 A7,RA6,A6 ; sum_e=sadd (sum_e, smpy (x[1],x[1]))

I SADD L2 B7,B6,B6 ; sum_o=sadd (sum_o, smpy (x[1+1],x[i+1]))

[LDH .D1 *A4++[2],A5 ; load x[1i]

[LDH .D2 *B4++[2],B5 ; load x[i+1]

|| [B1] B .S1 LOOP ; branch to the loop

|| [B1] SUB .S2 B1,2,Bl1 ; decrement loop counter
SADD .L1X A6,B6,Ab ; final result, sum = sum_e + sum_o

A.2.2 Implementation of the Windowing and Scaling Part of autocorr.c

The autocorr.c routine is one of the most computationally intensive modules
in the EFR vocoder. The part used in Example A-7 is used for windowing
speech samples and for scaling down the windowed sample sequence if the
input level is too high. Figure A—1 shows the flow diagram for this code.

Applications Programming A-7

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-7. C Code for the Windowing and Scaling Part of autocorr.c

#define L_WINDOW 240

input:

Wordlé x[L_WINDOW], wind[L_WINDOW];
local variables/arrays:

Wordl6 i;

Wordl6 y[L_WINDOW];

Word32 sum;

Wordl6 overfl, overfl_shft;

Original C code:

/* Windowing of signal */
for (i = 0; 1 < L_WINDOW; i++)

y[i] = mult_r (x[i], wind[i]);

}
/* Compute r[0] and test for overflow */

overfl_shft = 0;

do
{
overfl = 0;
sum = 0L;
for (i = 0; 1 < L_WINDOW; i++)
{
sum = L_mac (sum, yl[i], yI[i]);
}
/* If overflow divide y[] by 4 */
if (L_sub (sum, MAX_32) == 0L)
{
overfl_shft = add (overfl_shft, 4);
overfl = 1; /* Set the overflow flag */
for (i = 0; i < L_WINDOW; i++)
{
y[i] = shr (y[i]l, 2);
}
}
}
while (overfl != 0);
Where mult_r(a,b) = _sadd(_smpy(a,b),0x8000L)>>16
IL_mac(a,b,c)= _sadd(a,_smpy (b,c))
I._sub(a,b) = _ssub(a,b)
add(a,b) = ((_sadd((a)<<16, ((b)<<16)))>>16)

shr(a,b) = ((b)<0 ? (_sshl((a), (-b+16))>>16): ((a)>>(b)))

A-8

Implementation of the GSM EFR Vocoder

Figure A—1. Flow Diagram for the Windowing and Scaling Part of autocorr.c

(Stat)

for(i = 0; i < L_WINDOW; i++) | LOOP 1
y[il = mult_r (x[i], wind(i])

for(i = 0;i < L_WINDOW; i++) | L0OP?2
sum = L_mac (sum, y[il, y{i)

iYes

L_sub (sum, MAX_32) == OL

for(i = 0; i < L_WINDOW; i++)
yli] = shr (y[i], 2)

Loop 3

A.2.2.1 Unrolling the Loop

Try the loop unrolling technique for each loop.

Example A—8 shows the list of symbolic instructions needed to execute one it-
eration of loop 1. You can use any arithmetic logic unit (ALU) for the loop-count-

er update.

Example A-8. Linear Assembly for One lteration of autocorr.c (Loop 1)

LOOP1:
LDH
LDH
SMPY
SADD
SHR
STH

[cntr] SUB

[cntr] B

WPUnEREDOD

LU

*windptr++, windi
*xptr++, xi
windi, xi, windxi0
windxi0, 0x8000L, windlxil
windxil, 16,vyi

yi, *yptr++

cntr,1,cntr

LOOP1

;load wind[i]

;load x[1]

jsmpy (x[1],wind[i])

;sadd (smpy (x[i],wind[i]), 0x8000L)
;sadd (smpy (x[1],wind[i]), 0x8000L)>>16
;store y[i]

;decrement loop counter

;branch to loop

Part IV

Applications Programming A-9

Part IV

Implementation of the GSM EFR Vocoder

In Example A—8, windptr, xptr, and yptr are the pointers of wind, x, and y.

The .D unitis used most often (three times). With properly partitioned resources,
this is a 2-cycle loop.

If you unroll the loop once and load both x and wind in words (in GSM EFR,
both x and wind can be loaded in words if they are map-aligned with the word
boundary), you can compute two y values with two cycles. The following is the
new list of the instructions in one loop iteration.

Example A-9. Linear Assembly for Loop 1 of autocorr.c (Using LDW)

LOOP1:
LDW
LDW
SMPY
SMPYH
SADD
SADD
SHR
SHR
STH
STH

[cntr] SUB

[cntr] B

hWhUoDhnHE=EREDO

*windptr++,windi_windi+1 ;load wind[i] and wind[i+1]

*xptr++, xi_xi+l ;load x[i] and x[i+1]
windi_windi+1l,xi_xi+1,windxiO ;smpy (x[1i],wind[i])
windi_windi+1,xi_xi+1,windxi0+1 ;smpy (x[1+1],wind[i+1])

windxi0, 0x8000L, windxil ;sadd (smpy (x[1],wind[1]), 0x8000L)
windxiO+1, 0x8000L, windxil+1 ;sadd (smpy (x[1+1],wind[i+1]), 0x8000L)
windxil, 16,yi ;sadd (smpy (x[1],wind[1]), 0x8000L)>>16
windxil+1l,16,yi+1 ;sadd (smpy (x[1+1],wind[i+1]), 0x8000L)>>16
vi, *yptre++[2] ;store yl[i]

yi+l, *yptro++[2] ;store y[i+l]

cntr,2,cntr ;decrement loop counter

LOOP1 ;branch to loop

In Example A-9, yptre and yptro are the pointers for the y array and, at the be-
ginning, point to y[0] and y[1], respectively.

Note:

Loop 2 is a special MAC loop, as described in section A.2.1 on page A-4. It
can be implemented either as shown in Example A—10 without loop unrolling
or as in Example A—11 with loop unrolling for one iteration.

Example A-10. Linear Assembly for Loop 2 of autocorr.c (No Loop Unrolling)

LOOP2:
LDH
SMPY
SADD
[cntr] SUB
[cntr] B

nntH O

*yptr++,vi ;load y[i]

yi,yi,yyi ismpy (y[11l,y[1]1)

sum, yyi, sum i sadd (sum, smpy (y[1],y[1]))
cntr,1l,cntr ;decrement loop counter
LOOP2 ;branch to loop

Implementation of the GSM EFR Vocoder

Example A—-11. Linear Assembly for Loop 2 of autocorr.c (With Loop Unrolling)

LOOP2:

LDH .D *yptre++,vyi ;load y[i]

LDH .D *yptro++,yi+l ;load y[i+1]

SMPY .M yi,yi,yyi ismpy (y[il,y[1]1)

SMPY .M yi+l,yi+l,yyi+l ;smpy (y[i+1],y[1i+1])

SADD .L sum_e,yyi,sum_e ;sadd (sum_e, smpy (v [1],y[1i])

SADD .L sum_o,yyi+l, sum_o ;sadd (sum_o, smpy (y[i+1],y[i+1]))
[cntr] SUB .S cntr, 2, cntr ;decrement loop counter
[cntr] B .S LOOP2 ;branch to loop

SADD .L sum_e, sum_o, sum ; sum=sum_o+sum_e

Later, you will see that both approaches are used in this application.

Loop 3 is a single-cycle loop and you cannot speed it up by simply unrolling
the loop. The instructions for each iteration are shown in Example A—12.

Example A—12. Linear Assembly for Loop 3 of autocorr.c

LOOP3:

LDH .D *yptrl++, yi ;load y[i]

SHR .S yi,2,yi0 ;shr(y[i],2)

STH .D yi0, *yptrs++ ;store y[i]=shr(y[i],2)
[cntr] SUB L cntr,1,cntr ;decrement loop counter
[cntr] B .S LOOP3 ;branch to loop

In Example A—12, yptrl is the pointer for loading the y array and yptrs is the
pointer for storing the y array.

The new flow diagram is shown in Figure A—2.

Part IV

Applications Programming A-11

Part IV

Implementation of the GSM EFR Vocoder

Figure A-2. Flow Diagram for autocorr.c With Loop Unrolling

(Start)

for(i = 0; i < L_WINDOW; i+=2) {
y[i] = mult_r (x[i], wind[i]) Loop 1
yli+1] = mult_r (x[i+1], wind[i+1])
for(i = 0; i < L_WINDOW; i++) { Loop 2

sum_o = L_mac (sum_o, y[i], y[il)
sum_e = L_mac (sum_e, y[i+1], y[i+1])

sum = sum_o + sum_e

L_sub (sum, MAX_32) == 0L
?

for(i = 0;i < L_WINDOW; i++) Loop 3
y[i] = shr(y[i], 2)

A.2.2.2 Rearrange the C Code
The first execution of loop 2 can be combined with loop 1 to form a new loop |
and its subsequent executions can be combined with loop 3 to form a new

loop II.

Another small change is the implementation of if L_sub(sum, MAX_32) == OL
as if sum == MAX_32.

The new flow diagram with rearranged C code is shown in Figure A-3.

Implementation of the GSM EFR Vocoder

Figure A-3. Flow Diagram for autocorr.c With Rearranged C Code

(Start)

for(i = 0; i < L WINDOW; i+=2) { Loop
vlil = mult_r (x[i], wind{[i])
y[i+1] = mult_r (x[i+1], wind[i+1])
sum_o = L_mac (sum_o, y[i], y[il)
sum_e=L_mac (sum_e, y[i+1], y[i+1])

}

SUM = SumM_0 + sum_e

sum == MAX_32
?

for(i = 0;i<L_WINDOW; i++) { Loop Il
ylil = shr(y[i], 2)
sum = L_mac (sum, y[i, y[i}

)
|

You can implement loop | as one of the two approaches as shown in
Example A—13.

Part IV

Applications Programming A-13

Part IV

Implementation of the GSM EFR Vocoder

Example A-13.

Linear Assembly for Loop | of autocorr.c (Modified)

LOOPI:
LDW .D *windptr++,windi_windi+1 ;load wind[i] and wind[i+1]
LDW D *xptr++,xi_xi+l ;load x[1] and x[i+1]
SMPY .M windi_windi+1l,xi_xi+1,windxiO ;smpy (x[1],wind[i])
SMPYH .M windi_windi+1l,xi_xi+1,windxiO+1 jsmpy (x[1+1],wind[1i+1])
SADD .L windxi0, 0x8000L,windxil ;sadd (smpy (x[1],wind[1]), 0x8000L)
SADD .IL windxiO+1, 0x8000L,windxil+1 ;sadd (smpy (x[1+1],wind[i+1]), 0x8000L)
SHR .S windxil,1l6,yi ;sadd (smpy (x[1],wind[i]),0x8000L)>>16
SHR .S windxil+1l,16,yi+l ;sadd (smpy (x[1+1],wind[i+1]), 0x8000L)>>16
sMPY .M yi,yi,yyi ;smpy (y[il,y[i])
SMPY Mooyit+l,yi+l,yyi+l jsmpy (v [1i+1],y[i+1])
SADD .L sum_e,yyi,sum_e ;sum_e=sadd (sum_e, smpy (y[i],y[1]))
SADD .L sum_o,yyi+l,sum_o ; sum_o=sadd (sum_o, smpy (y[i+1],y[1i+1])
STD .D vyi,*yptre++[2] ;store y[i]
STD .D yi+l,*yptro++[2] ;store y[i+1]
[cntr] SUB .S c¢cntr,2,cntr ;decrement loop counter
[cntr] B .S LOOPI ;branch to loop
or as
LOOPI:
LDW .D *windptr++,windi_windi+l ;load wind[i] and wind[i+1]
LDW D *xptr++,xi_xi+l ;load x[1] and x[i+1]
SMPY .M windi_windi+1,xi_xi+1,windxiO jsmpy (x[1i],wind[i])
SMPYH .M windi_windi+l,xi_xi+1,windxiO+1 jsmpy (x[1+1],wind[1+1])
SADD .L windxi0O, 0x8000L,windxil ;sadd (smpy (x[1],wind[1]), 0x8000L)
SADD .L windxi0+1,0x8000L, windxil+1 ;sadd (smpy (x[1i+1],wind[i+1]), 0x8000L)
SHR .S windxil,1l6,yi ;sadd (smpy (x[1],wind[1]),0x8000L)>>16
SHR .S windxil+l,16,yi+1 ;sadd (smpy (x[1i+1],wind[i+1]), 0x8000L)>>16
SMPYH .M windxil,windxil,yyi ;smpy (y[il,y[1])
SMPYH .M windxi+l,windxi+l,yyi+l ;jsmpy (y[i+1],y[i+1])
SADD .L sum_e,yyi,sum_e ; sum_e=sadd (sum_e, smpy (y[1]1,v[i]))
SADD .L sum_o,yyi+l,sum_o ; sum_o=sadd (sum_o, smpy (y [1+1],y[1i+1])
STD .D yi,*yptre++[2] ;store yl[i]
STD .D yi+l, *yptro++[2] ;jstore y[i+l]
[cntr] SUB .S c¢ntr,2,cntr ;decrement loop counter
[cntr] B .S LOOPI ;branch to loop

The only difference between these two implementations is how to compute yyi
and yyi + 1. Using yyi as an example, the former approach computes yyi follow-
ing the order of the original C code:

_smpy (_sadd (_smpy (a,b) ,0x8000L)>>16,
_sadd (_smpy (a,b), 0x8000L)>>16),

yyi =

The latter computes yyi in a slightly different way as:

_smpyh (_sadd (_smpy (a,b), 0x8000L) ,
_sadd (_smpy (a,b), 0x8000L)) .

yyi =

Implementation of the GSM EFR Vocoder
This provides the flexibility to better pack the instructions and reduces cycle
count.

Loop | is atwo-cycle loop. Loop Il is still a single-cycle loop. Its instructions are
shown in Example A-14.

Example A—-14. Linear Assembly for Loop Il of autocorr.c (Modified)

LOOPITI:
LDH .D *yptrl++,yi ;load y[i]
SHR .S yi,2,yi0 ;shr(y[i], 2)
SMPY .M yi0,yi0,yyi ;smpy(shr(y[il,2),shr(y[i],2))
SADD L sum, yyi, sum ; sum=sadd (sum, smpy (shr (y[i],2),shr(y[i],2)))
STH .D yi0, *yptrs++ ;store y[il=shr(y[i],2)
[cntr] SUB L cntr,1l,cntr ;decrement loop counter
[cntr] B .S LOOPII ;branch to loop

A.2.2.3 Memory Bank Hits
To schedule loop | as a 2-cycle loop:

O X[i] + x[i + 1] << 16 and wind[i] + wind[i + 1] << 16 must be loaded in the
same cycle.

d yli] and y[i+1] must be stored in the other cycle.
To avoid a memory bank hit:

(1 Allocate x and wind in different memory spaces, if possible. For instance,
allocate wind[i] in data ROM and x in data RAM.

[If no data ROM is available, allocate x and wind so they are offset from
each other by one word.

There is no memory bank problem when storing y[i] and y[i + 1].

No memory bank hits occur in loop II, because the distance between the load
and store is always six halfwords.

Part IV

The modified C code of this part of autocorr.c is shown in Example A—15.

Applications Programming A-15

Part IV

Implementation of the GSM EFR Vocoder

Example A-15. Implemented C Code for autocorr.c

Wordl6 1i;

Wordl6 y[L_WINDOW];

Word32 sum, sum_e, sum_o;
Wordl6 overfl, overfl_ shft;

/* Windowing of signal */

sum_e=sum_o=0L;

for (i = 0; 1 < L_WINDOW; i+=2)

{
y[i] = mult_r (x[1i], wind[i]);
y[i+l] = mult_r(x[i+1], window[i+1]);
sum_e = L_mac(sum_e, y[i]l, vI[il);
sum_o = L_mac(sum_o, y[i+1l], yI[i+1l]);

}
sum=sum_e+sum_o;
/* Compute r[0] and test for overflow */

overfl_shft = 0;

do
{
overfl = 0;
/* 1f overflow divide y[] by 4 */
if (sum == MAX_ 32)
{
overfl_shft = add (overfl_shft, 4);
overfl = 1;
sum=0L;
for (i = 0; i < L_WINDOW; i++)
{
y[i]l = shr (y[i]l, 2);
sum = L_mac(sum, y[i], yI[il);
}
}
}
while (overfl != 0);

/* Set the overflow flag */

A.2.2.4 Code-Size Reduction

Finally, consider the code-size reduction. In Figure A—3 on page A-13, loop | is
always executed and loop Il is executed only for high-input levels. This means
that cycle count is the most important factor for loop I, while code size is more
critical for loop 1.

A.2.2.5 Final Assembly Code

Implementation of the GSM EFR Vocoder

The final assembly code is presented in Example A—16.

Example A—16. Assembly Code for Windowing and Scaling Part of autocorr.c

* x
* K
* x
* %
* *
* *
* *
* x
* x
* x
* K
* x

* K

Texas Instruments, Inc

KA AR AR A A AR A AR A A A A R A A A AR A A A A A A A A A AR A A AR KA A AR KA A A A A A A A A AR I A A AR I A AR IR A A AR I A A AR IA A AR XK XA A KK

Implementation of The Windowing and Scaling Part of autocorr.c

In EFR

Compute two samples a time

Total cycles =

257 (No Scaling)
519 (One Scaling)

Register Usage:

; B4 —— &x[0]

; A4 —— gwindow[O0]

i A6 —— &yl[0]

; B8 —— L_WINDOW

; A0 —— sum and sum_e
; BO —— sum_o

; B15 -- stack pointer

A
11

Ak khkhkhkhkhkhhhhrkhkhhhhrhhhhhhkhkhkh bk hkhkhhhhkhhhhkhkhkhhk bk hkhkhkhkhkhkhhhhdhkhkhhrhkhkhhkhhkhhkhrhkhkhkrrhkhhkhxhkhkkkhxx*k

; notice that we use the latter approach in Example A-13

LDW .D2
LDW .D1
MVK .S1
SUB .S2
SUB .L1X
MVK .S2
LDW .D2
LDW .D1
SHL .S2
MVK .s1
ADD .L2X
MV L1
LDW .D2
LDW .D1
MVKLH .Sl
MV LL1X

*B4++,B5
*A4++,A5
480,A6
B8, 6,B1

B15,A6,A6
1,B7

*B4++,B5
*Ad++,A5

B7,15,B7
-1,A10
26,2,B6
A6, A3

*B4++,B5
*A4++,A5
32767,A10
B7,A7

load x[0] & x[1]

load wind[0] & wind[1]
reserve space for y[i]
LOOP I counter

&y [0]

load x[2] & x[3]

load wind[2] & wind[3]

32768 or 0x8000L for rounding

&y [1]
&y [0]

load x[4] & x[5]

load wind[4] & wind[5]
TEEfEffff = MAX_32
32768

* x
* %
* x
* %
* K
* *
* K
* *
* x
* %
* K
* x

* %

Applications Programming

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A—16. Assembly Code for Windowing and Scaling Part of autocorr.c (Continued)

SMPYH .M2X B5,A5,B2 ; o smpy (x[1],wind[1])
[SMPY .M1X B5,A5,A2 ; smpy (x[0],wind[0])
|| B .82 LOOPI
LDW .D2 *B4++,B5 ; load x[6] & x[7]
I LDW .D1 *Ad++,A5 ; load wind[6] & wind[7]
| MVK .S1 0,A0 ; sum_o = 0
| MVK .82 0,BO ; sum_e = 0
SMPYH .M2X B5,A5,B2 ; smpy (x[3],wind[3])
| SMPY .M1X B5,A5,A2 ; osmpy (x[2],wind[2])
[SADD Ll A2,A7,A2 ; sadd(smpy (x[1],wind[1]), 0x8000L)
| SADD L2 B2,B7,B2 ; sadd(smpy (x[0],wind[0]), 0x8000L)
[B .S1 LOOPI
LDW .D2 *B4++,B5 ; load x[8] & x[9]
| LDW .D1 *Ad++,A5 ; load wind[8] & wind[9]
[SHR .s1 A2,16,A9 ; yl[ll=sadd(smpy (x[1],wind[1]),0x8000L)>>16
|| SHR .82 B2,16,B9 ; vIO]=sadd (smpy (x[0],wind[0])+0x8000L)>>16
| SMPYH .Ml A2,A2,A11 ; smpy(y[01,v[0])
[SMPYH .M2 B2,B2,B11 ; osmpy (y[1],vI[1]
LOOPI
STH .D1 A9, *A6++[2] ; store y[1]
I STH .D2 B9, *B6++[2] ; store y[0]
[SADD L1 A2,A7,A2 ; sadd(smpy (x[3],wind[3]),0x8000L)
[SADD L2 B2,B7,B2 ; sadd(smpy (x[2],wind[2]),0x8000L)
I SMPYH .M2X B5,A5,B2 ; smpy (x[5],wind[5])
| SMPY .M1X B5,A5,A2 ; smpy (x[4],wind[4])
|1 [B1] SUB .S2 B1,2,B1 ; decrement the loop counter
|1 [B1] B .51 LOOPI
SADD L1 AQ,Al11,RA0 ; sum_e += smpy(y[0],yI[0])
| SADD L2 BO,B11, B0 ; sum_o += smpy(yI[1l]l,vy[1])
[SMPYH M1 A2,A2,A11 ; osmpy(y[(2]1,vI[2])
[SMPYH .M2 B2,B2,B11 ; smpy (y[3],vy[3])
| SHR .S1 A2,16,A9 ; yvI[3]=sadd(smpy (x[3],wind[3]),0x8000L)>>16
[SHR .S2 B2,16,B9 ; v[2]=sadd(smpy (x[2],wind[2]),0x8000L)>>16
| LDW .D2 *B4++,B5 ; load x[10] & x[11]
| LDW .D1 *A4++,A5 ; load wind[10] & wind[11]
SADD .L1X A0,BO, A0 ; sum = sum_e + sum_o
| MPY M2 BO, 0, B0 ; overfl_shift = 0
; LOOP I completed

Implementation of the GSM EFR Vocoder

Example A—16. Assembly Code for Windowing and Scaling Part of autocorr.c (Continued)

LTEST:

| [AL]
Il [AL

LOOPII:

FINISH:

CMPEQ

LDH
ADD
ADD

LDH
SUB

MV

LDH

MVK

LDH

MV

LDH

LDH
SHR

LDH
SHR

STH
ADD
SMPY
SADD
STH
SMPY
SADD
SADD

SADD

NOP

L1

.s1
.D1
.L2X
.D2

.D2
.S2
.S1
L1
.D2
.s1
.S2

.D2
.S1
.L1

.D2
.Ss1

.D2
.S1X
.S2

.D2
.S1X
.S2
.D1
L2
M1
.L1

.D1
M1
L1
.S2
L1

L1

AQ0,Al10,Al1

FINISH
*A3,B5
A3,2,B9
BO, 4, B0

*B9++,B5
B8, 7,B1
LOOP II
A3,A9
*B9++, B5
0,20
LOOPII

*B9++,B5
LOOPII
AQ,A2

*B9++, B5
LOOPII

*B9++,B5
B5,2,A5
LOOPII

*B9++,B5
B5,2,A5
LOOPII

A5, *A9++
B1,-1,B1
A5,A5,A2
A2,A0,AQ0

A5, *A9++
A5,A5,A2
A2,A0,AQ
LTEST

A2,A0,AQ

A2,A0,AQ0

’

if (sum == MAX_32)

No, exit

load y[0]

&y [1]

add (overfl_shift, 4)

load yI[1]
counter for LOOPII

&y [0]
load y[2]
sum = 0

load y[3]
to take care of the initial condition

load y[4]

load yI[5]
y[0]=shr(y[0],2)

load y[6]

y[1] = shr(y[1l],2)
branch

store y[0]

decrement LOOPII counter
smpy (y[0],y[0])

sum +=smpy (y[i],y[i])

store y[n-1]

smpy (y [n-1],y[n-1])

sum +=smpy (y[n-3],y[n-3])
branch back to LTEST

sum +=smpy (y[n-2],y[n-27])
sum +=smpy (y[n-1],y[n-17)

save the code size

Applications Programming A-19

Part IV

Part IV

Implementation of the GSM EFR Vocoder

If code size is not an issue, you can eliminate the last three NOPs by ex-
panding the epilog of loop II. This saves three cycle counts every time loop |l
executes; however, code size increases by two fetch packets (2 X 32 = 64 bytes).

A.2.3 Implementation of cor_h

The cor_h routine is the second most computationally intensive routine
called to compute the matrix of autocorrelation, rr. The core part of cor_h is
presented in Example A—17.

Example A—17. C Code for cor_h

#define IL_CODE 40

input:
Wordl6 sign[L_CODE], h[L_CODE];

output:
Wordl6 rr[L_CODE] [L_CODE];

local variables/arrays:
Wordl6 h2[L_CODE]; /* function of h, the impulse response of weighted
synthesis filter */
Wordlé6 dec, 3, i, k;
Word32 s;

Original C code

for (dec=1; dec<L_CODE; dec++)

s = 0;
j = L_CODE-1;
= sub(j, dec);

-

for (k=0; k<(L_CODE-dec); k++, i--, j—-)
{
s = L_mac(s, h2[k], h2[k+dec]);
rr[j][i] = mult(round(s), mult(sign[i],sign[7j]));
rr(i]l [J] = rr[3j][i];
}
}
where sub(a,b) = _ssub(a<<1l6, b<<le6)>>16
L_mac(a,b,c) = _sadd(a,_smpy(b,c))
nmult (a,b) = _smpy(a,b)>>16
and round (a) = _sadd(a,0x8000L)>>16

The instructions to execute one iteration of the inner loop are listed in
Example A—18.

A-20

Implementation of the GSM EFR Vocoder

Example A—18. Linear Assembly for cor_h (One Inner Loop lIteration)

INNERLOOP :
LDH
LDH
SMPY
SADD
SADD
LDH
LDH
SMPY
SMPYH
SHR
STH
STH

[icntr] B

bwEzobbbzEUD

.D
[icntr] SUB.ALU
.S

*h2ptr++,h2k ;load h2[k]

*h2decptr++,h2deck ;load h2[k+dec]

h2k, h2deck, h2kk ;smpy (h2 [k],h2[k+dec])

s, h2kk, s ;sadd (s, smpy (h2 [k],h2[k+dec])

s, 0x8000L, sround ;round(s)<<16

*signiptr—-—,signi ;load sign[i]

*signjptr——,signj ;load sign[7j]

signi, signj, signij ;smpy (sign[i],sign[j])=mult (sign[i],sign[j])<<16
signij, sround, rrjio0 ;L_mult (round(s),mult (sign[i],sign[]j]))
rrji0,16,rrji ;rr(j][i]

rrji, *rrjiptr—--[41] ;jstore rr[j][i]

rrji, *rrijptr—--[41] ;jstore rrl[i][]j]

icntr,1,icntr ;decrement inner loop counter
INNERLOOP ;jbranch to inner loop

In Example A—18, h2ptr and h2decptr are the pointers for h2, pointing to h2[k]
and h2[k+dec]. The pointers for sign, signiptr and signjptr, pointto sign[i] and
sign[j]. The pointers for rr, rrjiptr and rrijptr, pointto rr[j][i]and rr[i][j], respec-
tively.

Notice that each element rr[j][i] is implemented as:
re[j][i] = (_smpyh (_sadd (s, 0x8000L), _smpy (sign[i], sign[j]))) >> 16

The .D unit is used most often (six times in the inner loop). Ideally, these
instructions can be arranged in three cycles. However, memory bank hits oc-
cur with any combination of the load and/or store instructions.

Applications Programming A-21

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Next, consider unrolling the inner loop once. The C code is shown in
Example A—19.

Example A—-19. C Code for cor_h (With Inner Loop Unrolling)

for

{

(dec=1;

s =
j =
i =
for

{

dec<

0;

L_COD
sub (J
(k=0;

L_CODE; dec++)

E-1;
, dec);
k< (L_CODE-dec); k+=2, i-=2, j-=2)

= L_mac(s, h2[k], h2[ktdec]);

[§1[1i] = mult (round(s), mult(sign[il]l,sign([]j]));

[1103] = rr[J1I[i];

= L_mac (s, h2[k+1], h2[k+1l+dec]);

[J=11[i-1] = mult(round(s), mult (sign[i-1],sign[j-11));
[i-11[3-11 = rr[j-11[i-11;

) !1=0) |

= L_mac(s,h2[L_CODE-dec-1],h2[L_CODE-1]);

[dec][0] = mult (round(s),mult (sign[0],sign[dec]));

[0] [dec] = rr[dec][0];

A-22

Eight values must be loaded and four values must be stored in every iteration;
however, h2[k] and h2[k + 1] can be loaded in a word. The same is true for
sign[j] and sign[j—1]. A total of six loads are required. The inner loop
instructions are shown in Example A—20.

Example A-20.

Implementation of the GSM EFR Vocoder

Linear Assembly for cor_h (With Inner Loop Unrolling)

INNER LOOP:

LDW
LDH
SMPY
SADD
SADD
LDH
LDW
SMPYLH
SMPYH
SHR
STH
STH
LDH
SMPYHL
SADD
SADD
LDH
SMPY
SMPYH
SHR
STH
STH

DwhkrorrkRobonkErroobHDRUD

.D

*h2ptr++,h2k_h2k+1
*h2decptr++, h2deck
h2k_h2k+1,h2deck, h2kk0
s,h2kk0, s

s, 0x8000L, sround
*signiptr—-—, signi
*signjptr——, signj_signj-1
signi,signj_signij-1,signijo
signij0, sround, rr3ji0
rrji0, 16, rrji

rrji, *rrijiptr—-—[82]

rrii, *rrijptr——[82]
*h2decptr++, h2deck+1
h2k_h2k+1,h2deck+1, h2kkl
s,h2kkl, s

s, 0x8000L, sround
*signiptr—-—, signi-1

signi-1,signj_signj-1,signijl; smpy (sign[i-1],sign[j-1])

signijl, sround, rrjil
rrjil,16,rrjlil

rrilil, *rrijlilptr——[82]
rrilil, *rriljlptr——[82]

[icntr]SUB.ALUicntr, 2, icntr

[icntr]B

.S

INNERLOOP

;load h2[k] and h2[k+1]

; load h2[k+dec]

; smpy (h2 [k],h2[k+dec])

;sadd (s, smpy (h2 [k],h2[k+dec])
;round (s) <<16

;load sign[i]

;load sign[j] and sign[j-1]

;smpy (sign[i], sign[j])

;L_mult (round(s),mult (sign[i], sign[j]))
jrr[Jl[i]

;jstore rr([j]l[i]

;store rr[il[7j]

;load h2[k+1l+dec]

;smpy (h2 [k+1],h2 [k+1+dec])

;sadd (s, smpy (h2 [k+1],h2 [k+1l+dec])
;round (s) <<16

;load sign[i-1]

;L _mult (round(s),mult (sign[i-1],sign[j-11))
jrr[j-1]1[1-1]

;jstore rr[j-1]1[i-1]

;jstore rr[(i-1]1[j-1]

;decrement inner loop counter

;branch to loop

To avoid memory bank hits:

(1 Load words (h2[k], h2[k+1]) and (sign[i—1], sign[i]) together and allo-
cate h2 and sign so that they are aligned with each other.

O Store rr[j][i] and rr[j—1][i—1] together and rr[i][j] and rr[i—1][j—1] to-

gether.

There are five load/store pairs, so each iteration requires only five cycles. You
gain speed by eliminating both the memory bank hits, as well as by reducing
the cycles required to complete each rr.

The final assembly code with reduced code size is shown in Example A-21.
Here, the primitive technique introduced in section 5.4.3.2, Priming the Loop,
on page 5-27 is used to reduce the code size for both the prolog and epilog

of the inner loop.

Applications Programming A-23

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-21. Assembly Code for cor_h With Reduced Code Size

* *

* x

* *

* x

* *

* x

* x

* x

* *

* *

* *

* x

Texas Instruments, Inc
Implementation of cor_h in EFR
Compute four rrs at a time
Total cycles = 2533

Register Usage:

16

SUB L1 A4,1,A13 ;
I ADDK .s1 76,A6 ;
I ADDK .S2 3360,B6 ;
I SUB .D1 A4, 1,A2 ;
MVK .82 0,B2 ;
I ADD L2 B4,2,B13 ;
I MVK .s1 2,Al1 ;
14
OUTERLOOP :
LDW .D1 *A6,A10 ;
I LDW .D2 *B4,B12 ;
I ADD .L1X B13,2,A3 ;
I SUB .s1 A6,A11,R4 ;
|| [A2] ADD .1L2X A2,2,B0 ;
I MPY .M1 A13,Al11,A3
I MPY M2 B11,0,B11 ;
LDH .D2 *B13++[2],A7 ;
I LDH .D1 *A3,B7 ;
I ADD .L2X A4,2,B9 ;
I MV .82 B6,B14 ;
I SUB .11 A6,4,A8 ;
|| [B2] ADDK .s1 -164,714 ;

B

15

A4 -—-— I1L_CODE
B4 ——— &h2[0]
A6 ——— &sign[0]
B6 ——— &rr[0][0]

used to obtain &rr[i][3j]
&sign[L_CODE-2]

&rr [L_CODE-1] [L_CODE-2]+[82]=&rr[j][1]1+[82]
outer loop counter

and srr[i-1][j-1]

not doing the initial store

&h2 [k+dec]

used to increase/decrease the pointers
for h2 and sign

load sign[j-1]1 & sign[]]

load h2[k] & h2[k+1]

&h2 [k+dec+1]

&sign[i-1]

define the inner loop counter

initialize s

load h2][
load h2[
&sign[i]
srr[j][1]1+[82]
&sign[j-3]

from &rr[dec] [0]+[82]

k+dec]
k+dec+1]

to &rr[dec] [0]

LR R I R I R R I R I I I I I I I R i I i I i

* %

* x

* %

* x

* K

* x

* K

* *

* K

* x

* *

* x

KA AR A AR A A AR A A A A R A A A AR A A A A A A A A A AR A A A AR A A A A A A A A A A KA AA KNI AFAA KR I A A A A IR A A AR I A A AR T XA KA KKK KK

A-24

Implementation of the GSM EFR Vocoder

Example A-21. Assembly Code for cor_h With Reduced Code Size (Continued)

[B2]
|1 [B2]
[

[
\
\

[BO]
Il [a2]
|1 [A2]
I'1[B2]
I
|1 [BO]

LDH
LDH
ADD
ADD
ADDK

STH
ADDK

SHR
SUB
SUB

SUB
AND
STH
SUB
MV

INNERLOOP :

I
I
[1[!B1]
Il

I
Il
I
I
[[Al]
I

SHR
SMPYH
SADD

LDW
LDW
B

ADD

LDH
LDH
SMPYH
SMPY
SUB
SUB
ADD

LDH
LDH
SMPYHL
SMPYLH
ADDK
ADDK

.D2
.D1
L2
L1
.52
.51

.D1
.Sl
.L1X
.52
.L2X
.D2

.52
.51
.L2X
.D1
L1
.D2

.52
M1
.L2X

.D1
.D2
.51
.L1X

.D1
.D2
M2
.M1X
.52
L1
.L2X

.D2
.D1
M1
.M2
.Sl
.S2

*B9, A0
*pd-—[2],B5
B4, 4,B8
All,2,Al1l
-82,B14
3,Al

Al2, *Al4
-164,A9
B6,Al4
BO, 1,BO0
B14,A3,B3
B6,2,B6

INNERLOOP
A2,1,A2
A2,1,B2
A12, *A9
Al4,A3,A9
BO, Bl

BY9,16,B10
A3,A0,A3
B11,A15,B9

*A8——,A10
*B8++, B12
OUTERLOOP
B13,2,A3

*A3,B7
*B13++[2],A7
B9, B5,B9
A7,B12,A7
Bl,1,B1
Al,1,Al
24,2,B9

*B9, A0
*A4--[2],B5
Al10,A0,A0
B7,B12,B7
-164,A14
-164,B14

load sign(i]

load sign[i-1]

&h2 [k+2]

update All

srr(j][i]

determine when the stores in the inner loop
actually starts

store rr[dec] [0]

from &rr[0] [dec]+[82]
&rr[jl[i1+182]

inner loop counter
&rr[i-11[j-1]
&rr(j][i-1],
outer loop iteration

tp &rr[0] [dec]

for the next

decrement outer loop counter

decide if the last store is needed
store rr[0] [dec]

srr[il[j1+182]

counter for branching to outer loop

obtain rr[j-1][i-1]
smpyh (sadd (s, 0x8000L) , smpy (sign[i],sign[j]))
sadd (s, 0x8000L)

*load sign[j] & sign[j-1]
*load h2[k] & h2[k+1]
outer LOOP

&h2 [k+dec+1]

*h2 [k+dec+1]

*h2 [k+dec]

smpyh (sadd (s, 0x8000L), smpy (sign[i-1],sign[j-11))
smpy (h2 [k],h2 [k+dec]

decrement the counter for branching to the outer loop
decrement the inner loop

&signl[i]

*load sign[i]

*load sign[i-1]

smpy (sign[j],sign[i])

smpy (h2 [k+1],h2[k+t1+dec])

from &rr[j][i]+[82] to &rr[j]l[i]

from &rr[j-1][1i-11+[82] to &rr([j-1]1[i-1]

Applications Programming A-25

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-21. Assembly Code for cor_h With Reduced Code Size (Continued)

[1[!1AZ]

FINISH:

STH
STH
SADD
SMPY
SUB
ADDK
ADDK

STH
STH
SHR
SADD
SADD
B

ADD

NOP

.D1
.D2
L1
.M2
L2
.S1
.S2

.D1
.D2
.51
L1
L2
.S2

L2
.S2

Al2, *Al4

B10, *Bl4
X B11,A7,A5
X Al0,B5,B5

store rr[j][i]

store rr[j-1][i-1]

s = sadd (s, smpy (h2[k],h2[k+dec])
smpy (sign[i-1],sign[j-1]

Ne Ne Nt Ne N oNe N,

B0, 1,B0 decrement inner loop counter
-164,A9 ## from &rr[i][J]1+[82] to rr[i]l[]]
-164,B3 ## from &rr[i-1]1[j-1]1+([82] to &rr[i-1]1[j-1]
Al2, *A9 ; ## store rr[i]l[]]
B10, *B3 ; ## store rr[j-11[1i-1]
A3,16,A12 ; # obtain rr[j-1]1[i-1]
A5,Al15,A3 ; sadd(s,0x8000L)

X A5,B7,B11 ; s = sadd(s,smpy (h2[k+1],h2[k+dec+1]
INNERLOOP ; end of INNERLOOP

X B4,A11,B13 ; &h2[k+dec]
FINISH ; exit

A-26

The value of s is represented by both B11 and A5 to avoid two .L1 or two .L2
units occurring in the same execute packet. Due to the dependence on s, as
well as the removal of memory bank hits, it takes 20 cycles for each iteration
of the modified C code. The pound sign (#) in the comments indicates that,
each time the outer loop enters the inner loop, this instruction is not executed
(or that the result of this instruction is not useful) until the number of iterations
denoted by # has occurred.

The code size is 11 fetch packets (352 bytes). Without applying the primitive
technique, the code size will be at least four fetch packets more than the code
shown in Example A-21.

You can squeeze the instruction
ADD .L2X B4,A11,B13 ; &h2[k+dec]

into the inner loop to save about 1.5% of the cycle counts, with an increase in
program memory of one fetch packet.

Implementation of the GSM EFR Vocoder

A.2.4 Implementation of the rrv Computation in search_10i40

Example A—22 shows the implementation of the rrv computation in search_10i40.

Example A-22. C Code for the rrv Computation in search_10i40

#define L_CODE 40

#define STEP 5

#define _1_16 (Wordl6) (32768L/16)
#define _1_8 (Wordl6) (32768L/8)

input:
Wordl6 rr[L_CODE] [L_CODE], ipos[L_CODE];

local variables/arrays:
Wordl6 rrv[L_CODE];
Wordl6 10,11,i2,i3,14,15,16,17,18,19; /* defined on [0,L_CODE-1] */
Word32 s;

(The values of i0, i1, i2, i3, i4, i5, i6, and i7 were obtained before entering this loop.)

Original C code

for (i9 = ipos[9]; 19 < L_CODE; 19 += STEP)

L_mult (rr[i9]([i9], _1_16);
L_mac (s, rr[i0]([4i9], _1_8)
IL_mac (s, rr[il][19], _1_8)
I_mac (s, rr[i2][i9], _1_8)
IL_mac (s, rr[i3][i9], _1_8)
1_8)
1_8)
1_8)
1_8)

IL_mac (s, rr[i4][i9], _
= L_mac (s, rr[i5][4i9], _
= L_mac (s, rr[i6][i9], _
= L_mac (s, rr[i7]1[19], _
rrv[i9] = round (s);

nnnnonnonooo
Il

where I_mult(a,b) = _smpy(a,b)
L_mac(a,b,c) = _sadd(a,_smpy(b,c))
and round (a) = _sadd(a,0x8000L)>>16

The instructions for one loop iteration are shown in Example A—23.

Applications Programming

A-27

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-23. Linear Assembly for the rrv Computation in Search_10i40

(One Loop lIteration)

LOOP:

LDH
SMPY
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
SADD
SHR
STH

[icntr] SUB
[icntr]B

DuHHRUNRUNRERUHNEUNRUONRUNRUNRURU

.ALU

*rr9ptr++[205],rr99
rr99,_1_16,s
*rrOptr++[5],rr09
rr09,_1_8,s0
s,s0,s
*rriptr++[5],rrl9
rrl9,_1_8,sl
s,sl,s
*rr2ptr++[5],rr29
rr29,_1_8,s2
s,s2,s
*rr3ptr++[5],rr39
rr39,_1_8,s3
s,s3,s
*rrdptr++[5],rrd9
rrd49,_1_8,s4
s,s4,s
*rr5ptr++[5],rr59
rr59,_1_8,s5
s,s5,s
*rroptr++[5],rr69
rr69,_1_8,s6
s,s6,s
*rriptr++[5],rr79
rr79,_1_8,s7
s,s7,s

s,0x8000L, sround
sround, 16, rrv9
rrv9, *rrv9ptr++[5]
icntr, 1, icntr
LOOP

;load rr[i9][i9]
;s=L_mult (rr([i9][19],_1_16)
;load rr[i0][19]

,L_mult(r[i0][19],_1_8)
;s=L_mac(s,rr[10][19],_1_8)
;load rr([i1][i9]
;L_mult(rr[il1]([4197,_1 8)
;s=L_mac(s,rr[i1][19],_1_8)

;load rr[i2][1i9]

;L_mult (rr[i2][419],_1_8)
;s=L_mac(s,rr[i2][19],_1_8)
;load rr[i3]1[1i9]

;L_mult (rr[i3]1[4197,_1_8)
;s=L_mac (s, rr[i3]1[19],_1_8)
;load rr[i4][1i9]

;L_mult (rr[i4][419],_1_8)
;s=L_mac(s,rr[i4][19],_1_8)
;load rr[i5][19]

;L_mult (rr[i5]1[4191,_1_8)
;s=L_mac(s,rr[i5][19],_1_8)
;load rr([i6] [19]

;L_mult (rr[i6]1[419]1,_1_8)
;s=L_mac(s,rr[i6][19],_1_8)
;load rr([1i7][19]

;L_mult (rr[i7]1[1i9]1,_1_8)
;s=L_mac(s,rr[1i7][19],_1_8)
;round (s)

;rrv([i9]

;store rrv[i9]

;decrement inner loop counter

;branch to loop

A-28

Implementation of the GSM EFR Vocoder

The following table shows the pointers In Example A—23 and the arrays they
point to.

Pointer for array
rroptr rr[i9][i9]
rrOptr rr[i0][i9]
rriptr rr[i1]1[i9]
rr2ptr rr[i2][19]
rr3ptr rr[i3]1[i9]
rr4ptr rr[i4]1[i9]
rr5ptr rr[i5][i9]
rréptr rr[i6][i9]
rr7ptr rr[i7]1[19]
rrv9ptr rrv[i9]

The .D unit is used the most (ten times per iteration). Although these instruc-
tions can be arranged in five cycles, any combination of the load hits the same
memory bank, Because any two values loaded are exactly 40 halfwords apart.
It still takes ten cycles for one rrv.

Part IV

Applications Programming A-29

Part IV

Implementation of the GSM EFR Vocoder

Next, consider unrolling the inner loop once. The C code is shown in
Example A—24.

Example A-24. C Code for the rrv Computation in search_10i40 (Unrolled Loop)

for (i9 = ipos[9]; 19 < L_CODE; 19 += 2*STEP)
{
s = L_mult (rr([i9]1[419], _1_16);
S = L_mult (rr[i9+5][19+5], _1_16);
s = L_mac (s, rr[i0][i9], _1_8);
S = L_mac (S, rr[i0][1i9+5], _1_8);
s = L_mac (s, rr[il][i9], _1_8);
S = L_mac (S, rr[il][i9+5], _1_8);
s = L_mac (s, rr[i2][i9], _1_8);
S = IL_mac (S, rr[i2][i9+5], _1_8);
s = L_mac (s, rr[i3][i9], _1_8);
S = L_mac (S, rr[i3][i9+5], _1_8);
s = L_mac (s, rr[id4][i9], _1_8);
S = L_mac (S, rr([i4]1[i9+5], _1_8);
s = L_mac (s, rr[i5][i9], _1_8);
S = L_mac (S, rr[i5]1[19+5], _1_8);
s = L_mac (s, rr[i6][i9], _1_8);
S = L_mac (S, rr[ie6][i9+5], _1_8);
s = L_mac (s, rr[i7][i9], _1_8);
S = L_mac (S, rr[i7][i9+5], _1_8);
rrv[i9] = round (s);
rrv[i94+5] = round (S);
}

Example A—25 shows the instructions for each iteration.

A-30

Implementation of the GSM EFR Vocoder

Example A-25. Linear Assembly for rrv Computation in search_10i40 (One Loop lteration)

LOOP:
LDH .D *rr9ptr++[410],rr99 ;load rr[i19][i9]
SMPY .M rr99,_1_16,s ;js=L_mult (rr[i9][i9],_1_16)
LDH .D *rr95ptr++[410],rr995 ;load rr[i9+5][19+5]
SMPY .M rr995,_1_16,S ;S=L_mult (rr[i94+5][1i9+5],_1_16)
LDH .D *rrOptr++[10],rr09 ;jload rr([i0][1i9]
SMPY .M rr09,_1_8,s0 ;L_mult (rr[i0][4197,_1_8)
SADD L s,s0,s ;s=L_mac(s,rr[i0][19],_1_8)
LDH .D *rr05ptr++[10],rr095 ;load rr[i0] [i9+5]
SMPY .M rr095,_1_8,S0 ;L_mult (rr[i0] [19+5],_1_8)
SADD .L 5,S80,S ;S=L_mac(S,rr[10] [19+5],_1_8)
LDH .D *rrilptr++[10],rrl9 ;load rr[il][1i9]
SMPY .M rrl9,_1_8,sl ;L_mult (rr[i1][4i9],_1_8)
SADD .L s,sl,s ;s=L_mac(s,rr[1i1][19],_1_8)
LDH .D *rrlbptr++[10],rrl95 ;load rr[il][i9+5]
SMPY .M rrl95,_1_8,S1 ;Lomult (rr[il] [19+45],_1_8)
SADD .L S,S81,S ;S=L_mac (S, rr[il1][19+5],_1_8)
LDH .D *rr2ptr++[10],rr29 ;load rr[i2]1[19]
SMPY .M rr29,_1_8,s2 ;L_mult (rr[i2][19],_1_8)
SADD .L s,s2,s ;s=L_mac(s,rr[i2][19],_1_8)
LDH .D *rr2ptr++[10],rr295 ;load rr[i2] [19+5]
SMPY .M rr295,_1_8,S2 ;Lomult (rr[i2] [19+5],_1_8)
SADD .L S,S2,8 ;S=L_mac(S,rr[i2] [19+5],_1_8)
LDH .D *rr3ptr++[10],rr39 ;load rr[i3]1[i9]
SMPY .M rr39,_1_8,s3 ;L_mult (rr[i3][19],_1_8)
SADD L s,s3,s ;s=L_mac(s,rr[i3][19],_1_8)
LDH .D *rr3ptr++[10],rr395 ;load rr[1i3][1i9+5]
SMPY .M rr395,_1_8,S3 ;L_mult (rr[i3][19+5]1,_1_8)
SADD .L S,S3,S ;S=L_mac(S,rr[1i3][19+5],_1_8)
LDH .D *rr4ptr++[10],rrd9 ;load rr([i4]1[1i9]
SMPY .M rrd49,_1_8,s4 ;L_mult (rr[i4][i9],_1_8)
SADD L s,s4,s ;js=L_mac(s,rr[i4][19],_1_8)
LDH .D *rr4ptr++[10],rrd9 ;load rr([i4][1i9]
SMPY .M rrd49,_1_8,54 ;L_mult (rr[i4]1([419]1,_1_8)
SADD L S,84,S ;S=L_mac(S,rr[i4][19]1,_1_8)
LDH .D *rr5ptr++[10],rr59 ;load rr[i5]1[19]
SMPY .M rr59,_1_8,s5 ;L_mult (rr[i5][19],_1_8)
SADD L s,s5,s ;s=L_mac(s,rr[15]1[19],_1_8)
LDH .D *rr5ptr++[10],rr595 ;load rr[i5] [19+5]
SMPY .M rr595,_1_8,S5 ;L_mult (rr[i5] [19+5],_1_8)
SADD .L S,S85,S ;S=L_mac (S, rr[i5] [19+5],_1_8)
LDH .D *rréptr++[10],rr69 ;load rr[i6][19]
SMPY .M rr69,_1_8,s6 ;L_mult (rr[i6][19],_1_8)

Applications Programming A-31

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-25. Linear Assembly for rrv Computation in search_10i40 (One Loop lteration)

(Continued)
SADD .L s,s6,s ;s=L_mac(s,rr[i6][19],_1_8)
LDH .D *rréoptr++[10],rr695 ;load rr[i6][19+5]
SMPY .M rr695,_1_8,S6 ;L_mult (rr[i6][19+5],_1_8)
SADD .L S,S56,S ;S=L_mac (S, rr[i6][19+5],_1_8)
LDH .D *rriptr++[10],rr79 ;load rr[i7][19]
SMPY .M rr79,_1_8,s7 ;L_mult (rr[i1i71[49],_1_8)
SADD .L s,s7,s ;s=L_mac(s,rr[1i7][i9],_1_8)
LDH .D *rriptr++[10],rr795 ;load rr[i7]1[19+5]
SMPY .M rr795,_1_8,87 ;Lomult (rr[i7]1[19+5],_1_8)
SADD .L S,S87,S ;S=L_mac(S,rr[17][19+5],_1_8)
SADD L s, 0x8000L, sround ; round (s)
SHR .S sround, 16, rrv9 ;rrv[i9]
STH .D rrv9, *rrvoptr++[10] ;store rrv[i9]
SADD L S, 0x8000L, Sround ; round (S)
SHR .S Sround, 16, rrv95 ;rrv[19+5]
STH .D rrv95, *rrv95ptr++[10] ;store rrv[i9+5]
[icntr] SUB .ALU icntr,2,icntr ;decrement inner loop counter
[icntr]B .S INNERLOOP ;jbranch to loop

A-32

The following table shows the pointers In Example A—25 and the arrays they

point to.

Pointer for array

rr9ptr and rr95ptr re[i9][i9]and rr[i9+5][19+5]

rexptr and rrx5ptr rr[ix][i9]andrr[ix][i9+5] (wherex=0,1,...,7)

rrv9ptr and rrv95ptr rrv[i9] and rrv[i9+5]

Again, the .D unit is used the most (twenty times per iteration).

None of the pairs of rr[ix][i9], rr[iy][i9+5] hit the same memory bank (where
ix, iy =10, i1, ..., i7). The same is true for pairs rrv[i9], rrv[i9+5], as well as
for rr[i9][i9] and rr[i9+5][i9+5]. For ease of understanding:

O Load rr[ix][i9], rr[ix][i9+5] together.
(O Load rr[i9][i9], rr[i9+5][i9+5] together.
(O Store rrv[i9], rrv[i9+5] together.

In this way, each iteration takes ten cycles without any memory bank hits. You
double the speed by unrolling the loop once.

The final assembly code is shown in Example A—26.

Implementation of the GSM EFR Vocoder

Example A-26. Assembly Code for the rrv Computation in search_10i40

R R R I S R R I R R R A R Rk A I Rk R I R R R R R R S R
el Texas Instruments, Inc *x
* * * *
i Implementation of the rrv Computation in search_ 10140 in EFR i
* * * *
*x Compute two rrvs a time *
* * * *
*x Total cycles = 55 *
* * * *
*x Register Usage: A B **
* * * *
** 16 14 *x
* * * *
KA A AR A A A A A A A A A AR A A A A A A A A A A A KA I AR A A I A A A A A A AR A A AR A A AR A A I A A AR I A A A A F AR A A F A A A A A A h kKK
; B4 —-—- 10
; BS ——- il
; B6 ——— 12
; B7 ——— 13
; A8 ——- i4
; B9 ——— 15
; AlO0 -- 16
; All —— i7
; B3 ——— 19
; Al5 ——— &rr[0][0]
; A0 ——— &rrvI[0]
; Bl4 —-—- stack pointer
MVK .S1 410,A2 ; offset of rr[i9][19]
| MVK .S2 410,B2 ; offset of rr[i9+5][19+5]
MVK .52 82,B0
MPYU .M2 B3,B0, B3 i [191149]
[SHL .S1X B3,1,A13
I SUB .L2 B0, 2,B0 ; 80
[ADD .82X Al5,B2,B13 ;7 &rr[5][5]
MPYU .M2 B4,B0, B4 ; [10]1[0]
[ADD .L2X Al5,10,B15 ; &rr[0][5]
[MVK .51 80,Al1
MPYU .M2 B5, B0, B5 ;o [i1110]
I ADD .L1X B3,A15,A3 ;o&rr[i9] [19]
[ADD .L2 B3,B13,B3 ;o &rr[i9+5] [19+45]
I ADD .51 Al5,A13,A15 ;7 &rr[0][19]
[ADD .52X B15,A13,B15 ;7 &rr[0][19+5]
[MPYU .M1 Al0,A1,A10 ; [i6]11[0]

Applications Programming A-33

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-26. Assembly Code for the rrv Computation in search_10i40 (Continued)

MPYU M2
I MPYU M1
I ADD LL1X
I ADD .12
I LDH .D1
I LDH .D2
I ADD .s1
MPYU M2
I MPYU M1
I ADD LL1X
I ADD .12
I ADD .s1
I ADD .S2X
I LDH .D1
I LDH .D2
MPYU M2
I ADD LL1X
I ADD L2
I ADD .s1
I ADD .S2X
Il LDH .D1
I LDH .D2
ADD LL1X
I ADD .12
I ADD .s1
I ADD .S2X
I 1LDH .D1
I LDH .D2
ADD .L1X
I ADD .12
I LDH .D1
I LDH .D2
I MVK .82
LDH .D1
I LDH .D2
[SMPY .M1X
I SMPY M2
I SHL .S2
I ADD .L2X

B6,B0,B6
All,Al,All
B4,Al5,A4
B4,B15,B4
*A3++[A2],Al3
*B3++[B2],B13
A0,A13,A0

B7,B0,B7
A8,Al,AS8
B5,Al15,A5
B5,B15,B5
Al0,Al5,A10
Al0,B15,B10
*A4++[10],Al3
*B4++[10],B13

B9, B0, B9
B6,Al5,A6
B6,B15,B6
All,Al5,Al11
All,B15,B11
*A5++[10],Al3
*B5++[10],B13

B7,Al15,A7
B7,B15,B7
A8,Al15,A8
A8,B15,B8
*A6++[10],A13
*B6++[10],B13

B9,Al5,A9
B9,B15,B9
*AT7++[10],A13
*B7,B13
2048,B7

*A8++[10],Al1l3
*B8++[10],B13
Al13,B7,Al12
B13,B7,B12
B7,1,B7
A0,10,BO

’

[12]1[0]

[17]1[0]

&rr[i0][19]

&rr[1i0] [19+45]

load rr[i9][1i9]
[

load rr[i9+45][19+5]
&rrv[i9]

[13]110]

[14]1[0]
&rr[il][19]
&rr[i1il1] [19+45]
srr[i6][9]
&rr[i6] [19+5]
load rr[i0][19]
load rr[i0] [19+5]
[19][0]
s&rr[i2][19]
&rr[i2] [19+5]
&rr[i7]1[19]
&rr[i7][19+5]
load rr[il][i9]
load rr[il][i9+5]
&rr[i3][19]
&rr[i3][19+5]
s&rr[i4]1[1i9]
&rr[1i4] [1945]
load rr[i2][19]
load rr[i2] [19+5]
&rr[i5]1[19]

&rr[1i5] [19+45]
load rr[i3][i9]
load rr[i3] [i9+5]
_1._16

load rr[i4][i9]
load rr[i4][1i9+5]

s=smpy (rr[19][19],_1_16)

S=smpy (rr[i9+5] [19+5],_1_

1.8

&rrv[1i9+5]

16)

A-34

Example A-26. Assembly Code for the rrv Computation in search_10i40 (Continued)

Implementation of the GSM EFR Vocoder

LOOP:

LDH
LDH
SMPY
SMPY

LDH
LDH
SMPY
SMPY

LDH
LDH
SMPY
SMPY
SADD
SADD
MVK

SMPY
SMPY
SADD
SADD
MVK

SADD
SADD
SMPY
SMPY
LDH
LDH
ADD

SMPY
SMPY
SADD
SADD
LDH
LDH

SMPY
SMPY
SADD
SADD
LDH
LDH

.D1
.D2
.M1X
M2

.D1
.D2
.M1X
.M2

.D1
.D2
.M1X
M2
L1
L2
.S1

.M1X
M2
L1
L2
.51

L1
L2
.M1X
M2
.D1
.D2
.51

.M1X
.M2
L1
L2
.D1
.D2

.M1X
M2
L1
L2
.D1
.D2

*A94++4+[10]1,A13
*B9++4+[10],B13
Al13,B7,A15
B13,B7,B15

*A10++[10],A13
*B10++[10],B13
Al13,B7,Al5
B13,B7,B15

*A11++[10],A13
*B11++[10],B13
Al13,B7,Al5
B13,B7,Bl5
Al2,Al15,A12
B12,B15,B12
3,al

A13,B7,Al15
B13,B7,Bl5
Al2,A15,A12
B12,B15,B12
32767,A14

Al2,Al15,A12
B12,B15,B12
Al13,B7,Al5
B13,B7,B15
*A3++[A2],A13
*B3++[B2],B13
Al4,1,Al4

Al13,B7,Al5
B13,B7,Bl5
Al2,A15,A12
B12,B15,B12
*A4++[10],A13
*B4,B13

Al13,B7,Al15
B13,B7,B15
Al2,Al15,A12
B12,B15,B12
*A5++[10],A13
*B5++[10],B13

’
’

7

’

12
’
’

’

2

’

;* load rr[i

)
;* load rr[i0][i9]
;* load rr[i0]

)
;* load rr[il][i9]
1]

load rr[i5][19]

load rr[i5] [19+45]

sO=smpy (rr[i0][1i9],_1_8)
SO=smpy (rr[i0] [19+5],_1_8)
load rr[i6] [19]

load rr[i6] [19+45]

sl=smpy (rr[i1][i9],_1_8)
Sl=smpy (rr[il] [19+5],_1_8)
load rr([i7][19]

load rr[i7][i9+45]

s2=smpy (rr[i2][1i9],_1_8)
S2=smpy (rr[i2] [19+5],_1_8)

s=sadd (s, s0)
S=sadd (S, S0)
loop counter

s3=smpy (rr[13][19],_1_8)
S3=smpy (rr[i3][19+5],_1_8)
s=sadd (s, sl)

S=sadd (S, S1)

s=sadd (s, s2)

S=sadd (S, S2)

s4=smpy (rr[14][19],_1_8)
Sd4=smpy (rr[i4] [19+5] 1_8)

-

;* load rr[i9][19]
;* load rr[1i9+45][19+5]

32768 for rounding

sS5=smpy (rr[i5] [19],_1_8)
SS5=smpy (rr[i5] [19+5],_1_8)
s=sadd (s, s3)

S=sadd (S, S3

[19+5]

s6=smpy (rr[i6] [19],_1_8)
S6=smpy (rr[i6] [19+5],_1_8)
s=sadd (s, s4)

S=sadd (S, S4

[19+5]

Applications Programming

A-35

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-26. Assembly Code for the rrv Computation in search_10i40 (Continued)

SMPY .M1X Al3,B7,Al5
I SMPY M2 B13,B7,B15
I SADD L1 Al2,Al15,Al12
| SADD .L2 B12,B15,B12
| LDH .D1 *A6++[10],Al3
I LDH .D2 *B6++[10],B13
I ADD .S82X A7,10,B7
SADD L1 Al2,Al5,Al12
| SADD L2 B12,B15,B12
|| LDH .D1 *A7++[10],A13
I LDH .D2 *B7,B13
I MVK .52 2048,B7
[[A1] B S1 LOOP
SADD .L1 Al2,Al5,Al12
| SADD L2 B12,B15,B12
| LDH .D1 *A8++[10],A13
] LDH .D2 *B8++[10],B13
| SMPY .M1X Al3,B7,Al2
| SMPY .M2 B13,B7,B12
I SHL .82 B7,1,B7
|| [Al] SUB .S1 Al,1,Al
SADD L1 Al2,Al4,A14
| SADD .L2X B12,Al14,B4
| LDH .D1 *A9++[10],Al3
| LDH .D2 *B9++[10],B13
I SMPY .M1X Al13,B7,Al5
I SMPY .M2 B13,B7,B15
SHR .S1 Al4,16,A14
| SHR .82 B4,16,B4
I SMPY .M1X Al13,B7,Al5
I SMPY M2 B13,B7,B15
I LDH .D1 *A10++[10],A13
| LDH .D2 *B10++[10],B13
SMPY .M1X Al3,B7,Al15
| SMPY M2 B13,B7,B15
I SADD L1 Al2,Al15,Al12
| SADD .L2 B12,B15,B12
| LDH .D1 *A11++[10],A13
| LDH .D2 *B11++[10],B13

’
’

’

’
’
’
’
’

’

’

’

’

;* load rr[i2

)

)
;* load rr([i3][19]
;* load rr[i3]

s7=smpy (rr[i7]1[i9],_1_8)

r———

ST7=smpy (rr[17] [19+5]
s=sadd (s, s5)
S=sadd (S, S5)

;* load rr[i2] [19]

1[19+5]
&rr[i3] [19+5]

s=sadd (s, s6
S=sadd (S, S6

[19+45]
_1_16
branch to the loop

s=sadd (s, s7)
S=sadd (S, S7)
* load rr[i4]
* load rr[i4]
i
i

9]
19+5]
* s=smpy (rr[
* S=smpy (rr[i
_1.8

,_1.8)

[i

[

191 [19],_1_16)
9+5]1[19+5],_1_16)

decrement loop counter

; round(s)

; round(S)

;* load rr([i5][i9]

;* load rr[i5][19+5]

;* sO=smpy (rr[i0][i9],_1_8)
;* SO=smpy (rr[i0] [19+5],_1_8)
; rrv[i9]

; rrv[i9+5]

;* sl=smpy (rr[il][i9],_1_8)
;* Sl=smpy (rr[il] [19+5],_1_8)
;* load rr[i6] [19]

;* load rr([i6] [19+5]

;* s2=smpy (rr[i2][19],_1_8)
;* S2=smpy (rr[i2][19+5],_1_8)

* s=sadd (s, s0)

* S=sadd (S, S0)

* load rr[i7][i9]

* load rr[i7][19+5]

A-36

Implementation of the GSM EFR Vocoder

Example A-26. Assembly Code for the rrv Computation in search_10i40 (Continued)

STH .D1 Al4,*A0++[10] ; store rrv[i9]
|| STH .D2 B4, *BO0++[10] ; store rrv[i9+5]
| SMPY .M1X A13,B7,A15 ;* s3=smpy (rr[i3]1[1i9],_1_8)
Il SMPY M2 B13,B7,B15 ;* S3=smpy (rr[i3][19+5],_1_8)
|| SADD L1 Al2,Al15,A12 ;* s=sadd (s, sl)
|| SADD L2 B12,B15,B12 ;* S=sadd (S, S1l)
Il ADD .S2X A4,10,B4 ;* &rr[i10][19+5]
| MVK .S1 32767,A14 ; end of LOOP

Because of the shortage of registers:

(1 B7servesas_1_16,_1_8 and as the pointer for rr[i3][i9+5].

(1 B4 serves both the value of rrv[i9+5] and the pointer to rr[i0][i9+5].
[A14 represents 0x8000L as well as rrv[i9].

The lastiteration of the loop can be expanded as the epilog of the loop to over-
lap with the prolog of the code that follows this part of the code.

Part IV

Applications Programming A-37

Part IV

Implementation of the GSM EFR Vocoder

A.2.5

The index search in search_10i40 is the core of search_10i40. The C code is

shown in Example A-27.

Implementation of the Index Search in search_10i40

Example A-27. C Code for the Index Search for search_10i40

#define 1,_CODE 40

#define STEP 5

#define _1_16 (Wordl6) (32768L/16)
#define _1 8 (Wordl6) (32768L/8)
input:

Wordl6é rr[L_CODE] [L_CODE],

local variables/arrays:
Wordl6 rrv[L_CODE];
Wordle i0,il,i2,13,1i4,i5,i6,17,18,19;
Wordl6 ia,ib;
Wordl6 ps,ps0,psl,ps2,sq,sq2;
Wordl6 alp,alp_16;
Word32 s,alp0,alpl,alp2;

(The values of i0, i1, i2, i3, i4, i5, i6, i7 , ps0, and alp0 have
been obtained before entering this loop.)

Original C code

sqg = —-1;

alp = 1;

ps 0;

ia = iposI[8];
ib = ipos|[9];

/* initialize 10 indices for 18 loop

ipos[L_CODE],

for (i8 = ipos[8]; i8 < L_CODE; i8 +=

{
psl = add (ps0O, dn[i8]);
alpl = L_mac (alp0O, rr[i8][i8], _
alpl = L_mac (alpl, rr[iO][i8], _
alpl = L_mac (alpl, rr[il][i8], _1_
alpl = L_mac (alpl, rr[i2][i8], _
alpl = L_mac (alpl, rr[i3]1[i8], _1_
alpl = L_mac (alpl, rr[i4][i8], _
alpl = L_mac (alpl, rr[i5]1[i8], _1_
alpl = L_mac (alpl, rr[i6][i8], _
alpl = L_mac (alpl, rr[i7]([i8], _1_

dn[L_CODE];

/* defined on

(see 12-1i3 loop)
STEP)

[0,L_CODE-1]

*/

*/

A-38

Implementation of the GSM EFR Vocoder

Example A-27. C Code for the Index Search for search_10i40 (Continued)

/* initialize 3 indices for 19 inner loop (see 12-i3 loop)

for (19 = ipos[9]; 19 < L_CODE; i9 += STEP)
{
ps2 = add (psl, dn[i9]);

alp2
alp2

L_mac (alpl, rrv[i9], _1_8);
L_mac (alp2, rr[i8][1i9], _1_64);

sgq2 = mult (ps2, ps2);
alp_16 = round (alp2);
s = L_msu (L_mult (alp, sg2), sq, alp_16);

if (s > 0) {

sq = sqg2;

ps = psZ;

alp = alp_16;

ia = i8;

ib = 1i9;

}
}
}
where add(a,b) = _sadd(a<<1l6,b<<16)>>16

IL_mac(a,b,c) = _sadd(a,_smpy(b,c))
mult (a,b) = _smpy(a<<1l6,b<<16)>>16
L_mult (a,b)=_smpy(a,b)
round (a) = _sadd(a,0x8000L)>>16

and L_msu(a,b,c)=_ssub(a,_smpy(b,c))

*/

This is a typical example of the performance being limited by data dependency
constraints. In this case, the dependency is between the values of alp and sg.

Applications Programming

Part IV

A-39

Part IV

Implementation of the GSM EFR Vocoder

A.2.5.1 Rearranging the C Code

To avoid the unnecessary shift, ps, ps1, ps2, alp, alp_16, sq, and sq2 are
implemented as int (Word32) variables. The calculations are implemented as:

Original Implemented as

psl = add (psO0, dn[i8]); psl = _sadd(ps0, dn[i8]<<16);
ps2 = add (psl, dn[i9]); ps2 = _sadd(psl, dn[i19]<<16);
sg2 = mult (ps2, ps2); sg2 = _smpyh (ps2,ps2);

alp_16 = round(alp2); alp_16 = _sadd(alp2,0x8000L);

There is no need to compute s explicitly. Instead of implementing the following

sequence:

s = L_msu (L_mult (alp, sg2), sq, alp_16);

if (s > 0)
{

sq = sqg2;
ps = ps2;
alp = alp_16;
ia = 18;
ib = 19;

}

you can do this sequence to fulfill the same task:

if (_smpyh(alp,sg2) > _smpyh(sqg,alp_16)) {
sq = sq2;

ps = psZ;

alp = alp_16;
ia = 18;

ib = 19;

}

A.2.5.2 Performance Analysis

A-40

The instructions to execute one iteration of the inner loop are shown in

Example A—28.

Example A-28.

Implementation of the GSM EFR Vocoder

Linear Assembly for the Index Search for search_10i40 (Inner Loop)

INNERLOOP :
LDH
SHL
SADD
SMPYH
LDH
SMPY
SADD
LDH
SMPY
SADD
SADD
SMPYH
SMPYH
CMPGT
] MV
] MV
cndr] MV
] MV
] MV

FRECNHRUOCRURE 0O

.ALU
.ALU
.ALU
.ALU
.ALU
.ALU

*dn9ptr++[5],dn9
dn9,16,dn%h
psl,dn9%h,ps2
pPs2,ps2,sg2
*rrvptr++[5], rrv
rrv,_1_8,tmpl
alpl,templ,alp2
*rr89prt++,rr89
rr89,_1_64,tmp2
alp2,tmp2,alp2
alp2,0x8000L,alp_16
alp, sg2,tmp3
sq,alp_16,tmp4
tmp3, tmp4, cndr
sg2, sq

ps2,ps
alp_16,alp

i8,ia

i9,1ib
icntr,1,icntr
INNERLOOP ;jbranch to the loop

load dn[i9]

dn[i9] << 16

ps2 = sadd(psl, dn[i9] << 16)

sg2 = smpyh (ps2,ps2)

load rrv[i9]

smpy (rrv[i9], _1_8)
alp2=sadd(alpl, smpy (rrv[i9],_1_8))
load rr[i8][i9]

smpy (rr[1i8][19],_1_64)
alp2=sadd(alp2, smpy (rr[i8]1[19],_1_64))
alp_l6=sadd(alp2, 0x8000L)

smpyh (alp, sq2)

smpyh (sq,alp_16)

if (smpyh(alp,sg2) > smpyh(sqg,alp_16))

Ne Ne Ne Ne N Ne Ne Ne Ne Ne Ne Ne Ne N

Because both sq and alp are carried over and required from one iteration to
the next, their values should be put in registers to allow speedy retrieval. At
least four cycles are required to compute new sq and alp values, and the
requirement on the functional units does not exceed four execution packets.
Therefore, the inner loop can be effected in four cycles per iteration.

For the outer loop, any pair of rr[ix][i8], rr[iy][i8] (where ix, iy =i0, i1, ..., i7)
will definitely hit the memory bank if they are read together. Therefore, they
should be loaded in one cycle each.

A.2.5.3 Partitioning the Registers

The total number of registers required for this code, including the registers for
the pointer of the arrays, loop counters, intermediate results, etc., exceeds the
number of registers available. To partition the registers without losing speed,
the strategies are:

(1 Fortheinnerloop, store the results of ps, ia, and ib, whose values are not
used in this code.

(4 For the outer loop, store the pointers of arrays starting at rr[i5][i8],
rr[i6][i8], and rr[i7][i8], whose values are needed last in the outer loop.

Applications Programming A-41

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Assume that before entering this code, &dn[0], &ipos[0], &rr[0][0], &rrv[0][O],
i0, i1, i2, i3, i4, i5, i6, i7, ps0, and alp0 are known. Assume that the short
(Word16) integers are stored in the stack in the order i0, i1, i2, i3, i4, i5, i6, i7,
ia, and ib, and that a pointer &local_16[0], pointing to i0, is also known. The
intintegers and the pointers of the rr arrays are stored in the stack in the order
ps0, ps, alp0, alp1, &rr[i5][i8], &rr[i6][i8], and &rr[i7][i8]. The pointer,
&local_32[0], pointing to ps0, is known as well.

The C code is shown in Example A—29.

Example A-29. Modified C Code for the Index Search

sg = -1;

alp = 1;

local_32[1] = 0;
local_16[8] = ipos|[8];
local_16[9] = ipos[9];

/* initialize 10 indices for i8 loop (see 12-i3 loop) */

for (i8 = ipos[8]; 18 < L_CODE; 18 += STEP) {

psl = _sadd (local_32[0], dn[i8]<<16);

local_32[3] = _sadd(local_32[2], _smpy(rr[i8][i8], _1_128));
local_32[3] = _sadd(local_32[3], _smpy(rr[i0][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[il][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i2][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i3][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i4][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i5][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i6][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i7][i8], _1_64));

/* initialize 3 indices for 19 inner loop (see 12-i3 loop) */

for (i9 = ipos([9]; 19 < L_CODE; 19 += STEP) {

ps2 = _sadd(psl, dn[i9]<<16);

alp2 = _sadd(local_32[3], _smpy(rrv[i9], _1_8));
alp2 = _sadd(alp2, _smpy(rr[i8][i9], _1_64));
sg2 = _smpyh(ps2, ps2);

alp_16 = _sadd(alp2,0x8000L);

A-42

Implementation of the GSM EFR Vocoder

Example A-29. Modified C Code for the Index Search (Continued)

if (_smpyh(alp,sqg2) >

sq = sg2;
local_32[1]= ps2;
alp = alp_16;
local _16[8] i8;
local_16[9] = 19;

_smpyh (sqg,alp_16)) {

A.2.5.4 Final Assembly Code

The final code consists of the following steps:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Load i0, i1, ... 19, alp0, and ps0; and initialize sq, ia, and ib. Part
of the code overlaps that of the last iteration of the code in section
A.2.4 on page A-27.

Obtain the pointer for the arrays started at rr[i0][i8], rr[i1][i8],
L Ir[i7][08], re[i8][19], rrv[i9], dn[i8], and dn[i9].

Load rr[i0O][i8], rr[i1][i8], ... rr[i7][i8] and dn[i8], compute
the new ps1 and alp1, update the pointers, and store pointers
&rr[i5][i8], &rr[i6][i8], and &rr[i7][i8].

Loadrr[i8][i9],rrv[i9],anddn[i9]. Compute alp2, ps2, alp_16,
sg2 and perform a comparison. Update the parametersiia, ib, alp,
sq, and ps based on the comparison result. Repeat this step eight
times.

Reload the values of ps0 and alp0, and &rr[i5][i8], &rr[i6][i8],
and &rr[i7][i8]. Verify that step 3 has been repeated eight times.
If not, go to step 3. If so, exit.

To avoid memory bank hits, arrays rr and rrv must not be aligned on the same
word or half-word boundary. The same applies to arrays rr and dn. As you can
see in the final assembly code shown in Example A-30, there are several
places that LDH (or STH) and LDW (or STW) occur in the same execution

packet. They belong to one of the two categories;thatis, always loading values

from or storing values to the same memory locations, as in iterations like this:

LDW .D1 *+A6[3],A11 ; load alpl
| | [B2] STH .D2 B13,*+B6[9] ; store ib=i9

Applications Programming A-43

Part IV

Part IV

Implementation of the GSM EFR Vocoder

The following instructions are used in the inner loop in different memory locations
such as the outer loop:

[B2] STW .D1 B1l1l,*+A6[1] ; store ps
[LDH .D2 *B10++[5],A5; load rr[i5][i8]

In the former case, memory bank hits can be completely eliminated by
allocating the corresponding arrays in memory properly. Memory bank hits
occur in every other iteration in the latter case, however. Although, in general,
you should avoid writing such code, in this case, the performance of the prolog
of the outer loop after the first iteration is limited by the .D unit. You still save
some cycle counts in this example.

To improve the performance, the last two iterations of the inner loop overlap
part of the prolog of the outer loop.

Example A-30. Assembly Code for the search _10i40 Index Search

* K

* K

* K

* K

* K

* K

* *

* K

* K

* *

* %

Texas Instruments, Inc *x
* %

Implementation of The Index Search in search_10i40 in EFR *x
* %

Total cycles = 400 (among the 400 cycles, 10 cycles are caused bl
by memory bank hits) et

* %

Register Usage: A B bl
* %

15 15 *x

LDH

LDH
LDH
MV

R i b b I b R 2 b I b R i IE I I I R I b b I I R I I b b I b b 2k b b I E I I I IR b b b S R S I b i b b o b

khkhkkhkhkhkhkhkkhhkhkhkhkhhhkhhhhkhhhhhkhhhkhhkhhhkhhhh b hhhhhhhkhhhkhkhhhhkhkhhhhkhhkhkhkhkhkhkhkhkhkhkhkhkrkhkhkhkhkhrhrkhkhkhkx

.D1

.D1
.D2
.S1X

* *

; Al3 -—— &ipos[0] and alp

; B6 ——— &local_16[0]

; A6 —-—— stack pointer, point to &local_32[0]

; B8 ——— &rr[0][0]

; A4 ——— &rrv[0]

; Bld ——— &dn[0]

; Bl ——— reserved for the counter of the

; outmost loop in search_10i40
*+A13[8],A7 ; load 18 = ipos[8]
*+A13[9],B13 ; load 19 = ipos[9]
*B6,Al13 ; load 10
B6,AS5 ; &local_v16[0]

A-44

Implementation of the GSM EFR Vocoder

Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

LDH
LDH
MVK

LDH
LDH
MVK
MVK

STW
LDH
SHL
MPYU

STH
STH
ADD
MPYU

LDW
LDH
ADD
ADD
ADD
MPYU
MPYU

LDW
LDH
ADD
ADD

LDH
LDH
ADD
ADD

LDH
ADD
MPYU

LDH
ADD
MPYU
MPYU

.D2
.D1
.51

.D1
.D2
.S1
.52

.D1
.D2
.S2X
M1

.D1
.D2
L2
.M2X

.D1
.D2
.S1X
.52
LL2X
M1
M2

.D1
.D2
.52
L2

.D1
.D2
.52
.L1X

.D2
L2
.M1X

.D1
.L1X
M1
.M2

*+B6[2],B9
*+A5[1],Al4
0,A8

*+A5[4],Al5
*+B6[3],B10
80, A0
80, B0

A8, *+A6[1]
*+B6[5],B11
A7,1,B10
A7,A0,A12

A7, *+A5([8]
B13,*+B6[9]
B8,B10,B2
Al13,B0,B3

*A6,B15
*+B6[6],Al
A12,B2,A12
B14,B10,B7
BS,Al2,BS
Al4,A0,AL4
B9, B0, B9

*+A6[2],All
*+B6[7],B5
B13,B13,Bl2
B3,B2,B3

*A12,A5
*B7++[5],B12
Bl14,B12,B14
Al4,B2,Al4

*B3++[5],A5
B9,B2,B9
B10,A0,A9

*A14++[5],A5
A4,B12,74
A15,A0,AlS5
B11,B0,Bl1

load i2
load il
could insert two

.D

units here for the store

of rrv([i9+30] and rrv[i9+35]
in the code which this piece

immediately follows

load i4
load i3

ps=0

load i5
[0][i8]
[18]1[0]

store ia=i8
store ib=i9

&rr[0][i8]
[10] [0]
load psO
load i6
&rr[i8]1[i8]
&dn[i8]
&rr[i8]1[0]
[111[0]
[12][0]
load alp0
load i7
[0][19]

&rr[i0] [18]

load rr[i8][1i8]
load dn[i8]
&dn[i9]
&rr[il][i8]

load rr[i0][i8]
&rr[i2][i8]
[13]110]

load rr[il][1i8]

&rrv[i9]
[14]1[0]
[15]11[0]

Applications Programming

A-45

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

LDH .D2 *B9++[5],A5
| MVK .S1 256, A0
| ADD L1X A9,B2,A9
|| MPYU M1 Al,A0,Al

LDH .D1 *A9++[5],B12
| ADD .D2 B11,B2,B10
I MVK .S1 7,A2
| MVK .S 512,B0
|| ADD .L1X Al5,B2,Al5
I ADD L2 BS8,B12,B4
| MPYU M2 B5, B0, B5

LDH .D1 *A15++[5],A5
[SHL .S1 AO0,1,A0
| SHL .82 B12,16,B11
| ADD .L1X Al,B2,Al
I SMPY M1 A5,A0Q0,A8

LDH .D2 *B10++[5],A5
[MVK .S1 -1,A3
| SMPY .M1 A5,A0,A8

LDH .D1 *Al++[5],B12
| ADD .D2 B5,B2,Bl1
] SHL .S1 A0, 7,A13
| SADD L1 Al1,A8,All
| SADD L2 B15,B11,B15
I SMPY M1 A5,A0Q,A8

LDH .D2 *B11++[5],A5
| SADD L1 All,A8,All
| SMPY M1 A5,A0, A8
OUTERLOOP :

LDH .D1 *A4++([5],A5
| LDH .D2 *B4++[5],B12
|| SADD L1 All,A8,All
| SUB L2 B13,5,B13
| SMPY .M1X B12,A0,A8

LDH .D2 *Bl4++[5],B12
| SADD L1 All,A8,All
] SMPY M1 A5,A0Q0,A8

load rr[i2][i8]
A0=_1_128
&rr[i3][1i8]
[16]1[0]
load rr[i3][18]
&rr[i5][18]
outer loop counter
BO=_1_¢64
&rr[i4][i8]
&rr[i8]1[1i9]
[(17]110]

load rr[i4d][i8]
_1 64

dn[i8] << 16
&rr[i6] [18]
smpy (rr[i8][i8],_1_128)
load rr[i5][18]

sg=-1
smpy (rr[10][18],_1_64)
load rr[i6][i8]
&rr[i7][18]
alp=0x10000

alpl=sadd(alp0, smpy (rr[i8] [18]
psl
smpy (rr[i1]1[i8],_1_64)

load rr([i7][i8]

alpl=sadd(alpl, smpy (rr[i0][i8],

smpy (rr[i2] [18],_1_64)

load rrv[i9]
load rr[i8][1i9]
alpl=sadd(alpl,smpy (rr[il] [i8]

[13]1[i8]1,_1_64)

smpy (rr

load dn[i9]
alpl=sadd(alpl,smpy (rr[i2] [1i8]
smpy (rr[i4][1i8] 1_64)

r—+

,_1.128))

_1_64))

,_1_64))

,_1_64))

A-46

Implementation of the GSM EFR Vocoder

Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

STW
SADD
SMPY

STW
SHL
SADD
SMPY

LDH
LDH
SHL
SADD
SMPY

LDH

SADD
SMPY
SMPY

STW
SHL
SADD

STW
SADD
SADD

LDH
LDH

SADD
SMPYH

LDH
MVK
MVK
SADD
SMPY
SMPY

.D1
L1
M1

.D1
.Sl
L1

.D1
.D2
.Sl
L1
M1

.D2
L1
M1
.M2

.S2
L1

.D1
L1
L2

.D1
.D2
.S2
.L1X
.M2

.D2
.S1
.S2
L1
M1
.M2

B10, *+A6[4]
All,A8,All
A5,A0, A8

Al,*+A6[5]
A0, 6,A10

All,A8,Al1l
B12,A0,A8

*A4++[5],A5
*B4++[5],B12
A0, 3,A0
All,A8,All
A5,A0, A8

*B14++[5],B12
All,A8,All
A5,A0, A5
B12,B0,B12

B11l, *+A6[6]
B12,16,B1
All,A8,All

A11, *+A6[3]
All,A5,AS
B11,B15,B5

*Ad++[5],A5
*B4++[5],B12
INNERLOOP
A5,B12,A1
B5,B5, B8

*B14++[5],B12
4,n1

0,B2
Al,A10,A8
A5,A0, A5
B12,B0,B12

’
’

;

’

’

’

;** load rrv[i9]
;** load rr[i8]1[19]

’
’
’

;

’

’

’
’

;

;* load rrv[i9]

;* load dn[i9]

; ** load dn[i9]

;% smpy (rrv[i9] 1_8)

store &rr[i5][1i8+5]
alpl=sadd(alpl, smpy (rr[i3][1i8],_1_64))
smpy (rr[1i5][1i8],_1_64)

store &rr[i6][i8+5]

0x8000L
alpl=sadd(alpl, smpy (rr[id] [18],_1_64))
smpy (rr[i6] [1i8],_1_64)

* load rr[i8][1i9]

AO0=_1_8
alpl=sadd(alpl, smpy (rr[i5] [18],_1_64))
smpy (rr[1i7]1[1i8]1,_1_64)

alpl=sadd(alpl,smyp(rr[i6][18],_1_64))
smpy (rrv[i9],_1_8)
smpy (rr[18] [19] 1_64)

-+

store &rr[i7][i8+5]
dn[i9] << 16
done alpl=sadd(alpl, smpy (rr[i7][i8],_1_64))

store alpl
alp2=sadd(alpl, smpy (rrv[i9],_1_8))
ps2=sadd(psl,dn[i19]<<16)

branch to the innerloop
alp2=sadd(alp2, smpy (rr[i8]1[19],_1_64))
sg2=smpyh (ps2, ps2)

innerloop counter

alp_16 = sacc(alp2, 0x8000L)

[

* smpy (rr[i8][1i9],_1_64)

Applications Programming A-47

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

INNERLOOP:

LDW
|| [B2] STH
I SHL
I ADD
[SMPYH
I SMPYH

2] STW

B2] STH
MV
SADD
SADD

LDH
LDH
[Al] SUB

SADD
CMPGT
SMPYH

[B2] MV
Il LDH
[1[B2] Mv
Il SADD
Il SMPY
Il SMPY

2] STW

B2] STH
SHL
MV
SMPYH
SMPYH

LDW
[B2] STH
MV
SADD
SADD

.D1
.D2
.S2
L2
M1
.M2X

.D1
.D2
.S2
L1
L2

.D1
.D2
.S1
.S2

.L2X
M2

.D1
.D2
.S1X
L1
M1
M2

.D1
.D2
.52
L2
M1
.M2X

.D1
.D2
.S2X
L1
L2

*+A6[3],All
B13,*+B6[9]
B12,16,B10
B13,5,B13
A8,A3,All
B8,Al13,B10

B11l, *+A6[1]
A7,*+B6[8]
B5,B11
All,A5,A5
B10,B15,B5

*Ad++[5],A5

*B4++[5],B12

Al,1,Aal
INNERLOOP
A5,B12,A11
B10,Al11,B2
B5,B5, B8

A8,Al3

*B1l4++[5],B12

B8, A3
All,Al10,A8
A5,A0,A5
B12,B0,B12

B11l, *+A6[1]
A7,*+B6[8]
B12,16,B10
B5,B11
A8,A3,All
B8,Al13,B10

*+A6[2],All
B13,*+B6[9]
A6,B2
All,A5,A5
B10,B15,B5

’
’

’

’

2

load alpl
store ib=19

;¥ dn[19]<<16

19=1i9+STEP
smpyh (alp_16, sq)
smpyh (alp, sq2)

store ps
store ia = 18

; *alp2=sadd (alpl, smpy (rrv[i9],_1_8))
; * ps2=sadd(psl,dn[i9]<<16)

;*** load rrv[i9+10]
;*** Jload rr[i8][i9+10]

’
’
’
’

’

’
’
2
’
’
’

’

;* alp_l6=sadd(alp2,

decrement innerloop counter
branch to INNERLOOP

; *alp2=sadd(alp2, smpy (rr[1i8]1[19],_1_64))

if smpyh(alp,sqg2) > smpyh(alp_16,sq)

;% sg2=smpyh (ps2,ps2)

alp=alp_16

; *** load dn[19+10]

sg=sq2
0x8000L)

;**%*% A0 = _1_8
;*** BO = _1_64

end of innerloop

store ps

store ia = 1i8
dn[i9]<<16

ps2

smpyh (alp_16,sq)
smpyh (alp, sg2)

load alp0

store ib=19

stack pointer
alp2=sadd(alp2, smpy (rr[i8][19],_1_64))
ps2=sadd(psl,dn[1i9]<<16)

A-48

Implementation of the GSM EFR Vocoder

Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

LDW
LDW
MVK
SADD
CMPGT
SMPYH

LDH
LDH
MV
ADDK
MV

LDW
LDH
ADDK
SADD
ADD

LDH
STH
SMPYH
SMPYH

MVK
LDW
LDH

LDH
STH
ADD
CMPGT

LDH
STH
SHL
ADDK
MV
SMPY

.D1
.D2
.S1
LL1X
.L2X
M2

.D1
.D2
.51
.52
LL1X

.D1
.D2
.S1
L1
L2

.D1
.D2
M1
.M2X

.S1
.D1
.D2
.52

.D1
.D2
.S2
.L2X

.D1
.D2
.S1
.S2
L1
M1

*+A6[5],Al
*B2,B15
205,A0
A5,B12,A11
B10,Al1, B2
B5,B5, B8

*4++A12 [A0], A5
*B7++[5],B12
A8,A13
-90,B14

BS, A3

*+A6([4],B10
*B3++[5],A5
-90,A4
All1,Al10,A8
B13,5,B13

*Al4++([5],A5
B13, *+B6[9]
A8,A3,Al10
BS,Al13,B10

256,A0
*+A6[6],B11
*B9++[5],A5
OUTERLOOP

*A9++[5],Bl2
A7,*+B6[8]
B13,5,B13
B10,A10,B0

*A15++[5],A5
B13, *+B6[9]
A0, 1,20
-35,B13
A8,Al3
A5,A0,A

&rr[i6][i8]
load psO

alp2=sadd(alp2, smpy (rr[i8]1[19],_1_64))
if smpyh(alp,sqg2) > smpyh(alp_16,sq)
sg2=smpyh (ps2,ps2)

load rr([i8][i8]
load dn[i8]
alp=alp_16
&dn[19]

sg=sqg2

&rr[i5][18]

load rr[i0][i8]

&rrv[i9]

alp_l6=sadd(alp2, 0x8000L)

load rr[il][i8]
store ib=i9
smpyh (alp_16,sq)
smpyh (alp, sg2)

_1.128

&rr[i7][i8]

load rr[i2][i8]
branch to OUTERLOOP

load rr[i3][i8]

store ia = 18

update i9

if smpyh(alp,sqg2) > smpyh(alp_16,sq)

load rr[id][i8]
store ib=i9

_1_64
update 19
alp=alp_16

smpy (rr[18] [18] 1.128)

-

Applications Programming A-49

Part IV

Implementation of the GSM EFR Vocoder

Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

Part IV

[B2] STW .D1IB11, *+A6[1] ; store ps
|l LDH .D2 *B10++[5],A5 ; load rr[i5][i8]
|| [BO] MV .S1X B8,A3 sg=sqg2
| SHL .S2 B12,16,B11 dn[i8] << 16
| | [A2] SUB L1 A2,1,A2 decrement OUTERLOOP counter
|l SMPY M1 A5,AQ0,A8 smpy (rr[10][18],_1_64)
LDH .D1 *Al++[5],B12 load rr[i6][i8]
|| [BO] STH .D2 A7, *+B6[8] store ia = 18
I ADDK .S2 310,B4 srr[i8][i9]
|l SADD L1 All,A8,A11 alpl=sadd(alp0, smpy (rr[i8] [i8],_1_128))
I SADD .12 B15,B11,B15 psl = sadd(ps0,dn[i8]<<16)
| SMPY M1 A5,A0,A8 smpy (rr[1i1]1[i8],_1_64)
[BO] STW .D1 B5, *+A6[1] store ps
I LDH .D2 *B11++[5],A5 load rr[i7][i8]
| ADD .81 A7,5,A7 update 18
|| SADD L1 All,A8,Al11 alpl=sadd(alpl, smpy (rr[i0] [i8],_1_64))
| MV .L2X AO0,BO _1 64
|| SMPY M1 A5,A0Q0,A8 smpy (rr[1i2][1i8],_1_64)

A-50

A.2.6

Implementation of the GSM EFR Vocoder

Implementation of the FIR Filter, residu.c, in GSM EFR Vocoder

Example A—31 shows the C code for the FIR filter, residu.c, in the GSM EFR

vocoder.

Example A-31. C Code for residu.c

#define Wordlé6
Original C code

void Residu (

Wordl6 all, /*
Wordl6 x[], /*
Wordlé yI[], /*
Wordl6 1lg /*

Wordl6 i, 7J;
Word32 s;

and 1lg = 40.

short #define Word32 int

/* m = LPC order == 10 */ #define m 10

(1) : prediction coefficients */
(i) : speech signal */
(o) : residual signal */
(1) size of filtering */

(x[1], al0]);

for (j =1; j <=m; J++)
s = L_mac (s, aljl, x[i - J1);
s = L_shl (s, 3);
y[i] = round (s);
}
return;

where L_mult (a,b) = _smpy(a,b)
L_mac(a,b,c) = _sadd(a,_smpy(b,c))
IL_shl(a,b) = (b>0) ? _sshl(a,b)
round(a) = _sadd(a,0x8000L)>>16

:a >> (-b)

A.2.6.1 Rearranging the C Code

L_shl (s, 3) can be implemented simply as _sshl (s,3). Because array a has
dimensionm + 1 = 11 and the inner loop is always executed 10 times per outer
loop iteration, you can completely unroll the inner loop to gain speed by
representing array a with registers. Because a is a short integer array, it
requires six registers at most for full representation. You can assign one
register only for a[0] for the following reasons:

[a[0] is always a constant, 4096

(1 _shr (0x8000L, 3) = 4096

Applications Programming A-51

Part IV

Part IV

Implementation of the GSM EFR Vocoder

You can change the order of rounding and left shift to save one register. (Other-
wise, you need another register for 0x8000L.) The C code, after complete
inner loop unrolling, is shown in Example A-32.

Example A-32. C Code for residu.c After Rearrangement Using Intrinsics

for (i = 0; 1 < 1lg; i++)

{
s = _smpy (x[i], al[0]);
s = _sadd(s,_smpy(alll, x[i-1]1));
s = _sadd(s,_smpy(al[2], x[i-21));
s = _sadd(s,_smpy(al[3], x[1i-31));
s = _sadd(s,_smpy(al4], x[i-4]1));
s = _sadd(s,_smpy(al[5], x[i-51));
s = _sadd(s,_smpy(al[6], x[1i-6]));
s = _sadd(s, smpy (al[7], x[i-71));
s = _sadd(s,_smpy(a[8], x[i-8]));
s = _sadd(s, smpy (a[9], x[1i-91));
s = _sadd(s,_smpy(al[l0], x[1-101));
s = _sadd(s, al[0]);
s = _sshl(s,3);
y[i] = _shr(s 16);

}

A.2.6.2 Performance Analysis

A-52

The performance is limited by the .L unit for _sadd because this unit is used
at least 11 times per iteration. In other words, it takes at least six cycles per
iteration. You may choose to unroll the loop once to compute two y values per
iteration for the following reasons:

(O To satisfy the ordering property of _sadd
1 To maximize speed: eleven cycles are required to compute two y values,
while six cycles are needed for one y

The C code is is shown in Example A-33.

Example A-33. Implemented C Code for residu.c

Implementation of the GSM EFR Vocoder

for (i = 0; i < lg; i+=2)

{

sO0 = _smpy (x[1], a[0]);

sl = _smpy (x[i+1], a[0]);

s0 = _sadd(s0,_smpy(al[l]l, x[i-11));
sl = _sadd(sl,_smpy(all]l, x[i]));
sO0 = _sadd(s0,_smpy(al2], x[i-21));
sl = _sadd(sl,_smpy(al2], x[i-11));
s0 = _sadd(s0,_smpy(al[3], x[i-31));
sl = _sadd(sl,_smpy(al3], x[i-21));
s0 = _sadd(s0,_smpy(al[4], x[i-4]1));
sl = _sadd(sl,_smpy(al4], x[i-31));
s0 = _sadd(s0,_smpy(al[5], x[i-51));
sl = _sadd(sl,_smpy(al5], x[1i-41));
sO0 = _sadd(s0,_smpy(al6], x[i-6]1));
sl = _sadd(sl,_smpy(al6], x[1-5]1));
s0 = _sadd(s0,_smpy(al7], x[i-71));
sl = _sadd(sl,_smpy(al7], x[1i-61));
s0 = _sadd(s0,_smpy(al[8], x[1i-81));
sl = _sadd(sl,_smpy(al[8], x[i-71));
sO = _sadd(s0,_smpy(al9], x[1i-9]1));
sl = _sadd(sl,_smpy(al9], x[1-81));
s0 = _sadd(s0,_smpy(a[10], x[i-101));
sl = _sadd(sl,_smpy(al[l0], x[1-91));
s0 = _sadd(s0, a[0]);

sl = _sadd(sl, a[0]);

sO0 = _sshl(s0,3);

sl sshl (sl,3);

_shr(s0,16);

yli]l =
1] = _shr(sl,16);

]
y[i+

A.2.6.3 Final Assembly Code for residu.c

The final assembly code is shown in Example A-34.

Applications Programming A-53

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-34. Assembly Code for residu.c

* *

* x

* x

* x

* K

* x

* K

*x

* K

* K

Implementation
Compute two ys

Total cycles =

LDH

LDW
LDW

LDW
LDW

LDW

LDW
LDW

LDW
MVK
MV
MV

SMPY
SMPYHL
LDW
SADD
SADD

SMPYHL
SMPY
SADD
SADD

.D2

.D1
.D2

.D1
.D2

.D2

.D2
.D1

.D2
.S1
.L1X
.S2

.M1
.M2X
.D1
L1
L2

.M1X
.M2X
L1
.L2

of residu.c EFR

at a time

(lg/2+1)*11+6
= 237
Register Usage:

(for 1lg

*B4++, B0

*Ad——, A3
*B4++, B4

*A4——, Al
*B4++,B1

*B4++,B5

*B4++,B6
*A4--,A3

*B4++,B7
1,A2
BO, AQ
B6,B2

A3,A0,A8
A3,B0,BS
*A4——, Al
A8,A9,A9
BS, B9, B9

Al,B4,A8
A3,B4,B8
A8,A9,A9
B8,B9,B9

40)
A
9

A4 ———
B4 ——-
A6 ——-
B6 ---

B
10

&al0]
&x[0]
&y [0]
lg

load

load x[0] & x[1]
load afl] & al[2]

load x[-
load al3

load

load
load

al7] &
x[-4] & x[-3]

load al[9] & al[l0]

to take care of the first execution
al0] = 4096

loop counter, L_SUBFR/2

smpy (x[0],a[0])
smpy (x[1],a[0])

load x[-6] & x[-5]

s0 = sadd(s0, smpy(x[-9],al[9]))
sl = sadd(sl, smpy(x[-8],al[9]))
smpy (x[-1],a[l])

smpy (x[0],a[1])
s0 = sadd(s0, smpy(x
sl sadd (sl, smpy (x

[(-10],a[101))
(-9],a[10]))

R R i b b e I b b b I I b I b S b I I I I R R S I b I e b b b b IR S I I b b IR I I b e b b R b b b b b o I b

* K

* K

* K

* K

* K

* K

* K

* K

* K

* %

KA AR A AR AR A R AR A A A AR A A A AR A A A A A A A A A AR A A AR KR A A AR KA A A A A A IAAA KNI AAA KNI A A A A IR A A AR I A AR IA A AR AKX A KK

A-54

Implementation of the GSM EFR Vocoder

Example A-34. Assembly Code for residu.c (Continued)

[TA2]
[TA2]

\

\

\

\
pointer

\

\

SMPYLH
SMPYH
ADD
ADD
LDW
SADD
SADD

SMPYHL
SMPY
SADD

SADD
SSHL
SSHL

SMPYLH
SMPYH
SADD
SADD
LDW

SHR
SHR

SMPYHL
SMPY
SADD
SADD
STH
SUB

B

SMPYLH
SMPYH
SADD
SADD
LDW

SMPYHL
SMPY
SADD
SADD
LDW

.M1X
.M2X
.S1
S2
.D1
Ll
L2

.M1X
.M2X
L1

L2
.S1
.S2

.M1X
.M2X
L1
L2
.D1

.51
.52

.MIX
.M2X
L1
L2
.D1
.S2
sl

.M1X
.M2X
L1
L2
.D1

.M1X
.M2X
L1
L2
.D1

Al,B4,A8
Al,B4,BS8
A8,0,A9
B8, 0,B9
*Ad——, A3
A9,A0,A9
B9, B0, B9

A3,B1,A8
Al,B1,B8
A8,A9,A9

B8,B9, B9
A9, 3,A7
B9, 3,B1

A3,B1,A8
A3,B1,B8
A8,A9,RA9
BS,B9,B9
*Ad++[6],AL

A7,16,A7
B10,16,B10

Al,B5,A8
A3,B5,B8
A8,A9,A9
BS,B9,B
A7, *AG++
B2,2,B
LOOP

Al,B5,AS8
Al,B5,B8
A8,A9,A9
B8,B9, B9
*Ad——,A3

A3,B6,A8
Al,B6,BS8
A8,A9,A9
B8, B9, B9
*Ad——, Al

’
’

;

;* load x[-1

smpy (x[-2],a[2])
smpy (x[-1],al2])
sO0=smpy (x[0],al[0])
sl=smpy(x[1],al[0])
load x[-8] & x[-7]
sO0 = sadd(s0, 4096)
sl = sadd(sl, 4096)

smpy (x[-3]1,a[3])
smpy (x[-2],a[3])
s0 = sadd(s0, smpy(x[-1]1,all1l]))

sl = sadd(sl, smpy(x[0],all]))
s0 L_shl (s0,3)
sl L_shl (s1, 3)

smpy (x[-4],al4])

smpy (x[-31,al4])

sO = sadd(s0, smpy(x[-2],al[2]))

sl sadd(sl, smpy(x[-1],al[2]))
load x[-10] & x[-9] and update the

y[0] shr(s0, 16)
yI[1l] shr(sl, 16)
to the new &x[0]

smpy (x[-5],a[5])

smpy (x[-4],a[5])

s0 = sadd(s0, smpy(x[-31,al3]))
sl = sadd(sl, smpy(x[-2],al3]))
store yI[0]

decrement loop counter

branch to the loop

smpy (x[-6],a[6])
smpy (x[-5],a[6])
s0 sadd (s0, smpy(x[-4]1,al[4]))
sl sadd(sl, smpy(x[-3],al[4]))

load x[0] & x[1] for the next iteration

smpy (x[=71,al7])

smpy (x[-6],a[7])

s0 = sadd(s0, smpy(x[-5]1,al5]))

sl = sadd(sl, smpy(x[—-4],al[5]))
]

& x[-2]

Applications Programming

A-55

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A-34. Assembly Code for residu.c (Continued)

SMPYLH
SMPYH
SADD
SADD
['A2] STH

SMPYHL
SMPY
SADD
SADD

[A2] SUB
LDW

SMPYLH
SMPYH
SADD
SADD

.M1X A3,B6,A8 ; smpy (x[-8]1,al8])

.M2X A3,B6,BS8 ; smpy (x[-71,al8])

Ll A8,A9,A9 ; sO = sadd(s0, smpy(x[-6],a[6]))
L2 B8,B9,B9 ; sl = sadd(sl, smpy(x[-5],al6]))
.D1 B10, *A6++ ; store y[1]

.M1X Al,B7,A8 ; osmpy (x[-91,al9])

.M2X A3,B7,BS8 ; smpy(x[-8],al[9])

L1 A8,A9,A9 ; sO0 = sadd(s0, smpy(x[-71,al7]))
L2 B8,B9,B9 ; sl = sadd(sl, smpy(x[-6],al7]))
.S2 A2,1,A2

.D1 *A4--,A3 ;* load x[-3] & x[-4]

.M1X Al,B7,A8 ; smpy (x[-10],a[101])

.M2X Al,B7,BS8 ; osmpy (x[-9]1,a[101])

L1 A8,A9,A9 ; sO = sadd(s0, smpy(x[-8],al8]))
L2 B8,B9,B9 ; sl = sadd(sl, smpy(x[-7],al8]))

A.2.7

A-56

There is no memory bank hit within the loop. To avoid a memory bank hit within
the prolog of the loop, arrays a and x must be allocated so that a[1] and x[0] are
offset from each other by one word. Some of the instructions in the loop cannot
be executed in the first iteration. Register A2 indicates which instructions these
are.

Implementation of the Lag Search in the lag_max () Routine

The lag_max () routine performs an open-loop pitch (or lag) search and
computes the normalized correlation for the selected lag. This section
illustrates the implementation of the lag search. The lag search C code is
shown in Example A-35.

Implementation of the GSM EFR Vocoder

Example A-35. C Code for the Lag Search in lag_max()

#define Wordl6 short
#define Word32 int

#define MIN_32 0x80000000L
#define PIT_MAX 143

#define IL_FRAME 160

input:
Wordl6 scal_sig[PIT_MAX+L_FRAME]; (pointed at scal_sig[PIT_MAX] when passed)
Wordl6 scal_fac; (not used in this part of the code)
Wordl6 L_frame, lag_min, lag_max;

local variables:
Wordlé6 i, j, *p, *pl, p_max;
Word32 t0, max;

return:
Wordl6 p_max;

Original C code

for (i = lag_max; i >= lag_min; i--)
{
p = scal_sig;
pl = &scal_sig[-1i];
t0 = 0;
for (j = 0; J < L_frame; Jj++, pt++, pl++)

t0 = L_mac (t0, *p, *pl);
}
if (L_sub (t0, max) >= 0)
{

max = tO0;

p_max = 1i;
}
}
where L_mac(a,b,c) = _sadd(a,_smpy (b, c))
L_sub(a,b) = _ssub(a,b)

IL_frame = L_FRAME/2 = 80
and the search range (lag_min, lag_max) is (18,35), (36,71), or (72,143).

Applications Programming A-57

Part IV

Part IV

Implementation of the GSM EFR Vocoder

A.2.7.1 Rearranging The C Code and Unrolling The Loops

This algorithm is preferable to smaller lag candidates, because it performs a
comparison with if(L_sub (t0,max) >= 0) and the search starts from lag_max.
Because there is not a single instruction for the >= (or <=) comparison, you can
change the search order to start from lag_min to compare with if (0 > max);

p_max is initialized to lag_min. The C code is modified as shown in
Example A-36.

Example A-36. C Code for the Lag Search in lag_max () (Comparison Order Changed)

max = MIN_32;

p_max = lag_min;
for (i = lag_min; i < lag_max; i++)
{

P scal_sig;

pl
t0

&scal_sigl[-1];
0;

for (j=0; j<L_frame; j++, *p++, *pl++) {
t0 = L_mac(t0, *p, *pl);
}
if (£t0 > max)
{
max = tO0;
p_max = 1i;
}
}

Next, look at the inner loop, a general MAC loop. Because *p does not always
equal *p1, it does not fall into the special case described in section A.2.1, Imple-
mentation of the Multiply-Accumulate Loop, beginning on page A-4. Therefore,
the performance cannot be improved by simply unrolling the inner loop.

Now consider unrolling the outer loop once. The C code with outer loop
unrolling is shown in Example A-37. Because the number of lags that needs

to be searched within each search range is always even, such unrolling does
not create an additional case to handle.

A-58

Implementation of the GSM EFR Vocoder

Example A-37. C Code for the Lag Search in lag_max() With Outer Loop Unrolling

Word32 t1;

max = MIN_32;

}
if (£t0 > max)
{
max = t0;
p_max = 1i;
}
if(tl > max)
{
max = tl;
p_max = i+1;

with intrinsics substitutes.

p_max = lag_min;
for (i = lag_min; i < lag_max; i+=2)
{
p = scal_sig;
pl = scal_sigl[-1i];
t0 = 0;
tl = 0;
for (3=0; j<L_frame; j++, p++, pl++) {
tl=_sadd(tl,_smpy (*p,*-pl)); (or tl=_sadd(tl,_smpy(scal_sig[j],scal_sig[-i-1+7]))
t0=_sadd (t0,_smpy (*p, *pl)); (or tO0=_sadd(t0,_smpy(scal_sig[]j],scal_sig[-1i+]]))

The smaller lag is always compared first in the order of the comparisons.

The instructions required for one iteration of the inner loop are shown in

Example A-38.

Example A-38. Linear Assembly for the Lag Search in lag_max() Inner Loop

INNERLOOP :
LDH .D *p++, sig] ; load scal_sigl]j]
LDH .D *-pl, scalijl ; load scal_sig[-i-1+73]
SMPY .M sigj,scalijl, tmpl ; smpy(scal_sig[j],scal_sig[-i-1+7])
SADD L tl,tmpl,tl ; tl=sadd(tl,smpy(scal_sig[j],scal_sig[-i-1+7]
LDH .D *pl++,scalij ; load scal_sig[-i+7]]
SMPY .M sigj,scalij, tmp0 ; smpy (scal_sig[j],scal_sig[-i+73]
SADD L t0, tmp0, t0 ; tO=sadd(t0, smpy(scal_sig[j],scal_sig[-i+3j])
[icntr] SUB .S icntr,1,icntr ; decrement inner loop counter
[icntr] B .S INNERLOOP ; branch to inner loop

Part IV

Applications Programming

A-59

Part IV

Implementation of the GSM EFR Vocoder

The .D unit is used the most (three times). Therefore, the inner loop takes two
cycles.

Now unroll the inner loop once. The first iteration of t1 and the last iteration of
t0 perform outside the inner loop. This avoids memory bank hits. The C code
with the inner and outer loops unrolled is shown in Example A—39.

Example A-39.C Code for the Lag Search in lag_max() With Inner and Outer Loops Unrolled

Word32 t1;

max = MIN_32;
p_max = lag_min;
for

{

(1 = lag_min;

p = scal_sig;
pl =
t0 = 0;

for (3=0;

}
if (0 > max)
t0;
p_max =

max =

i;

}

if(tl > max)
max = tl;
p_max = i+1;

}

scal_sig[-i];

tl=_sadd(tl,_.
j<(L_frame-1);
t0=_sadd (t0, _
tl=_sadd(tl,_.
t0=_sadd (t0, _
tl=_sadd(tl, _:

t0=_sadd (t0, _smpy (scal_sig[L_frame-1],scal_sig[-i+L_frame-1]));

i < lag_max; i+=2)

smpy (*p, *-pl)); (or tl=_sadd(tl,_smpy(scal_sig[]j],scal_sig[-i-1+3])
j+=2, p+=2, pl+=2) {
(or tO0=_sadd(t0,_smpy (scal_sig[j],scal_sig[-i+]]))
(or tl=_sadd(tl,_smpy(scal_sig[j+1],scal_sig[-i+3j]))
(or tO=_sadd (t0,_smpy (scal_sig[j+1],scal_sig[-i+j+1]))
(or tl=_sadd(tl,_smpy (scal_sig[j+2],scal_sig[-i+j+1]))

smpy (*p, *pl)) ;
smpy (*+p, *pl)) ;
smpy (*+p, *+pl));
smpy (*+p[2], *+pl)) ;

{

{

A-60

Although five values of scal_sig, scal_sig[j], scal_sig[j+1], scal_sig[j+2],
scal_sig[—i+]j], and scal_sig[—i+j+1], are required for each inner loop
iteration, scal_sig[j] does not need to be loaded, because it was loaded in the
previous iteration. This means only four loads are required per iteration.
Example A—40 gives the instructions for the modified inner loop.

Implementation of the GSM EFR Vocoder

Example A—40. Linear Assembly for the Lag Search in lag_max() Inner Loop

LDH .D *p++, sigj ; load scal_sigl]j]

LDH .D *-pl, scalijl ; load scal_sig[-i-1+7]

SMPY .M sigj, scalijl,tl ; tl=smpy(scal_sig[j],scal_sig[-i-1+7])
INNERLOOP :

LDH .D *pl++, scalij ; load scal_sig[-i+7]

SMPY .M sigj,scalij,tmp0 ; smpy(scal_sig[j],scal_sig[-i+3j])

SADD .L t0,tmp0,tO ; tO=sadd(t0, smpy(scal_sigl[j]l,scal_sig[-i+7j])

LDH .D *p++, sigj+l ; load scal_sig[j+1]

SMPY .M sigj+l,scalij,tmpl ; smpy(scal_sig[j+1],scal_sig[-i+]])

SADD .L tl,tmpl,tl ; tl=sadd(tl, smpy (scal_sig[j+1],scal_sig[-i+3])

LDH .D *pl++,scalij+l ; load scal_sig[-i+3j+1]

SMPY .M sigj+l,scalij+1l,tmp0 ; smpy(scal_sig[j+1],scal_sig[-i+j+1])

SADD .L tO0,tmp0,tO ; tO0=sadd(t0, smpy (scal_sig[j+1],scal_sig[-i+j+1])

LDH .D *p++, sigj+2 ; load scal_sig[j+2], the scal_sig[]j] for the

; next iteration

SMPY .M sigj+2,scalij+l,tmpl ; smpy(scal_sig[j+2],scal_sig[—-i+73+1])

SADD .L tl,tmpl,tl ; tl=sadd(tl, smpy (scal_sig[j+2],scal_sig[-i+j+1])
[icntr] SUB .S icntr,2,icnt ; decrement inner loop counter
[icntr] B .S INNERLOOP ; branch to inner loop

The inner loop uses two cycles. You double the performance, therefore, by
unrolling both the outer loop and inner loop if no memory bank hits occur.

A.2.7.2 Avoiding Memory Bank Hits

Load scal_sig[—i+]j] and scal_sig[j+1] together and scal_sig[—i+j+1] and
scal_sig[j+2]together to avoid memory bank hits. Memory bank hits can also
be avoided by loading scal_sig[—i+j] and scal_sig[—i+j+1] together and
scal_sig[j+1] and scal_sig[j+2] together.

A.2.7.3 Final Assembly Code for Lag Search

The final assembly code for the lag search segment is shown in
Example A—41.

Applications Programming A-61

Part IV

Part IV

Implementation of the GSM EFR Vocoder

Example A—41. Assembly Code for the Lag Search in lag_max()

R S R SRR SRR R R R R R RS R R R R I I I I I I i I I R I i
* % * *
** Implementation of residu.c EFR *
* % * *
i Compare two lags a time i
* % * %
* Total cycles = 7+(L_frame+6)* (lag_max—lag_min+l)/2 ol
* * * %
** Register Usage: A B *
* % lO 9 * *
* % * %
Ak khkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh bk hk ko ko ko kA hkhkhkhkhk ko hk ko ko ko hkhkhkhkhkhkhkhkhk ko ko ko hkhhkhkhkhkhkdkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhkkx k%
; A4 ——— &scal_sig
; A6 ——— lag_max
; B6 ——— lag_min
SUBAH .D1 Ad4,A6,A7 ; pl=&scal_sig[-LAG_MIN]
| MVK .S2 1,B2
|| SUB .L1X B6,A6,Al ; the outer loop counter
| MV .L2X A4,B7 ; p=&scal_sigl[0]
| MPY M2 B0, 0,BO0O ; initialize the comparison result
|| MPY M1 A2,0,A2 ; take care the initial iteration
|| MV .51 A6,A4 ; p_max = lag_min
SHL .S2 B2,31,B2 ; max=MIN_32=0x80000000L
| LDH .D1 *~A7[1],A5 ; scal_sig[-LAG_MIN-1]
|| LDH .D2 *B7,B5 ; scal_sig[0]
|| ADD L1 Al,1,Al ; make the counter to be an even number
OUTERLOOP :
LDH .D1 *A7,A5 ; scal_sig[-LAG_MIN]
|| LDH .D2 *+B7[1],B6 ; scal_sig[1l]
| | [A2] SADD L2 B10,B8,B10
| | [Al] MV .S2 37,B1 ; inner loop counter
[MPY M1 A3,0,A3
[MPY M2 B8, 0,B8
| ADD .81 A7,2,A9 ; &scal_sig[-LAG_MIN+1]
|l SUB L1 A7,4,A7 ; update pl = &scal_sig[-LAG_MIN-2]
LDH .D1 *A9++,A5 ; scal_sig[-LAG_MIN+1]
|| LDH .D2 *+B7[2],B5 ; scal_sig[2]
|| [B1] B .S INNERLOOP ; branch to the inner loop
| | [A2] CMPGT L2 B10,B2,B0 ; 1f (t0>max)
LDH .D1 *A9++, A5 ; scal_sig[-LAG_MIN+2]
| LDH .D2 *+B7[3],B6 ; scal_sig[3]
| | [BO] MV L2 B10,B2 ; max = t0
| MPY .M1X B1l,1,A2 ; counter to branch to the outerloop

A-62

Implementation of the GSM EFR Vocoder

Example A—41. Assembly Code for the Lag Search in lag_max() (Continued)

LDH .D1 *A9++, A5 ; scal_sig[-LAG_MIN+3]
Il LDH .D2 *+B7[4]1,B5 ; scal_sigl[4]
|| [B1] B .52 INNERLOOP ; branch to the inner loop
| | [A2] CMPGT .L2X A0,B2,BO ; 1f (tl>max)
|1 [BO] SUB L1 A6,2,A4 ; p_max = i
[ADD .S1 A6,2,A6 ; update i
Il MPY M1 A0, 0,A0 ; initialize t1=0
Il MPY M2 B10,0,B10 ; initialize t0=0
LDH .D1 *A9++,A5 ; scal_sig[-LAG_MIN+4]
[LDH .D2 *+B7[5],B6 ; scal_sigl[5]
[SMPY .M1X A5,B5,A3 ; _smpy(scal_sig[-LAG_MIN-1], scal_sig[0])
|1 [BO] MV .L2X AOQ0,B2 ; max = tl
|1 [BO] SUB L1 A6,3,A4 ; p_max = i+l
| | [Al] SUB .51 Al,2,A1 ; update inner loop counter
[ADD .S2 B7,12,B9 ; &scal_sigl[l]
INNERLOOP :
LDH .D1 *A9++,AS5 ; scal_sig[-LAG_MIN+5]
|| LDH .D2 *B9++, B5 ; scal_sigl[6]
|| SMPY .M1X A5,B6,A3 ; _smpy(scal_sig[-LAG_MIN], scal_sig[1l])
|| SMPY .M2X A5,B5,B8 ; _smpy(scal_sig[-LAG_MIN], scal_sig[0])
| SADD .L1 A0,A3,RA0 ; update t1
Il SADD L2 B10,B8,B10 ; update tO
|1 [B1] B .S1 INNERLOOP ; branch to inner loop
|| [B1] SUB .52 B1,1,B1 ; decrement inner loop counter
LDH .D1 *A9++, A5 ; scal_sig[-LAG_MIN+6]
| LDH .D2 *B9++,B6 ; scal_sigl7]
| SMPY .M1X A5,B5,A3 ; _smpy(scal_sig[-LAG_MIN+1], scal_sig[2])
[SMPY .M2X A5,B6,B8 ; _smpy(scal_sig[-LAG_MIN+1], scal_sig[l])
| SADD .L1 A0,A3,RA0 ; update t1
| SADD L2 B10,B8,B10 ; update tO
[SUB .51 A2,1,A2 ; decrement the counter to branch to the outer loop
[[!'A2]B .S2 OUTERLOOP ; branch to the outer loop
LDH .D1 *~A7[1]1,A5 ; scal_sig[-LAG_MIN-3]
[LDH .D2 *B7,B5 ; scal_sig[0]
| SADD Ll AQ,A3,A0 ; update tl1
| SADD L2 B10,B8,B10 ; update tO
[1[!'A1]B .S1 FINISH ; lag search is complete
FINISH:
NOP 5

Allthe epilogs and prologs of the outer and inner loops are compressed to mini-
mize the code size. A2 is both the indicator for avoiding comparisons during
the initial iteration of the outer loop and the counter for branching to the outer
loop during inner loop executions.

Applications Programming A-63

Part IV

Al ed

A-64

[1in assembly code 4-3

@ symbol in assembly output 2-13

|| (parallel bars) in assembly code 4-2
_ (underscore) in intrinsics 3-9

_add2 () intrinsic 3-12
_add2 intrinsic, tutorial 2-17
aliasing 3-6
allocating resources
conflicts 5-38
dot product 5-12
if-then-else 5-63, 5-70
lIR filter 5-55
in writing parallel code 5-5
live-too-long resolution 5-79
weighted vector sum 5-35
AND instruction, mask for 5-47
arrays, controlling alignment 5-93
assembler directives 4-4
assembly code
commentsin 4-9
conditions in 4-3
directives in 4-4
final
autocorr.c, windowing and scaling
part A-17to A-20
dot product 5-14, 5-25 to 5-27, 5-28, 5-29
FIR filter 5-89, 5-93, 5-102, 5-106 to 5-109,
5-120to 5-123
if-then-else 5-64, 5-65, 5-72
IIR filter 5-58
index search in search_10i40 A-43, A-44 to
A-50
live-too-long, with move instructions 5-81

Index

assembly code

final (continued)
MAC loop for energy computation A-6
residu.c A-54 to A-57
rrv computation A-33 to A-37
weighted vector sum 5-48
functional units in 4-6
instructions in 4-4
labels in 4-2
linear
autocorr.c, one iteration of loop A-9
dot product 5-4, 5-7, 5-11, 5-13, 5-17, 5-21
FIR filter 5-85, 5-87, 5-96, 5-98, 5-110,
5-111, 5-114, 5-116
if-then-else 5-63, 5-71
IIR filter 5-55
index search in search_10i40 A-41
lag search in lag_max() A-59
live-too-long 5-80
MAC loop A-4
rrv computation in search_10i40 A-28, A-31
special MAC loop A-5
weighted vector sum 5-35
mnemonics in 4-4
operandsin 4-8
optimizing (phase 3 of flow), description 5-2
parallel, dot product 5-8
parallel barsin 4-2
structure of 4-1 to 4-11
symbolic
if-then-else 5-60, 5-68
IIR filter 5-51, 5-55
live-too-long 5-75
weighted vector sum 5-31, 5-33
writing parallel code 5-4

Index-1

Index

assembly optimizer
for dot product 5-22
tutorial 2-24, 2-27

assistance from Tl vi
autocorr.c, windowing and scaling part A-7

big endian mode, runtime support
(rts6201e.lib) 2-6

big-endian mode, and MPY operation 5-11
biquad filer, original C code 2-4
biquad filter

inner loop kernel of assembly from C with intrin-

sics 2-22
inner loop kernel of linear assembly 2-28
inner loop kernel of original assembly
code 2-15
linear assembly 2-26
with word instructions and intrinsics 2-19
branch target, for software-pipelined dot prod-
uct 5-22

branching to create if-then-else 5-59
breakpoints 3-3

C code
analyzing performance of 3-2
autocorr.c A-8, A-16
basic vector sum 3-5
copyright for A-3
cor_h A-20
dot product 3-14, 5-4, 5-10
FIR filter 3-14, 3-15, 3-21, 3-22, 5-83, 5-84,
5-95, 5-104, 5-109
unrolled 5-112
if-then-else 5-59, 5-67
IIR filter 5-50

index search in search_10i40 A-38, A-40, A-42
lag search in lag_max() A-57, A-58, A-59, A-60

live-too-long 5-74

MAC loop A-4, A-5

rearranging A-2, A-12, A-51

refining (phase 2 of flow), in flow diagram 1-3
residu.c A-51, A-52, A-53

rrv computation in search_10i40 A-27, A-30
saturated add 3-9

Index-2

C code (continued)
trip counters 3-17
vector sum
with const keywords 3-7
with const keywords, _nassert 3-18
with const keywords, _nassert, word
reads 3-12, 3-13
with const keywords, _nassert, word reads,
unrolled 3-20
with three memory operations 3-19
word-aligned 3-19
weighted vector sum 5-31
unrolled version 5-32
writing 3-2
C_OPTIONS environment variable 2-6
'C62xx mnemonics 4-5
char data type 3-2
child node 5-5
cléx command 2-5, 3-4
clk register 3-3
clock () function 2-11, 3-2

code development flow diagram 1-3
phase 1: develop C code 1-3,2-131t0 2-15
phase 2: refine C code 1-3, 2-16 to 2-23

phase 3: write linear assembly 1-3, 2-24 to 2-29

code documentation 4-9
comments in assembly code 4-9
compiler options
-ms 3-18
-02 3-22
—-03 3-18,3-22
—-pm 3-18
conditional break 3-22
conditional execution of outer loop with inner
loop 5-111
conditional SUB instruction 5-16

conditions in assembly code 4-3

conditonal instructions to execute if-then-else 5-60

const keyword 3-5, 3-6
const keywords 3-12
constant operands 4-8
cor_h, implementing A-20
.cproc directive 2-24
CPU elements 1-2

cycle count
for biquad filter 2-28
for functions in demo1.c 2-10
for multiply accumulate 2-10
for vector multiply 2-22
formula for calculating 2-10

data types 3-2

demo1.c example code 2-3
demo2.c example code 2-20
demo3.c example code 2-27

dependency graph
dot product
basic 5-6
parallel execution 5-8
with LDW 5-12, 5-13, 5-17
drawing 5-5
FIR filter
with arrays aligned on same loop cycle 5-94
with no memory hits 5-97
with redundant load elimination 5-86
if-then-else 5-61, 5-69
lIR filter 5-52, 5-54
live-too-long code 5-76, 5-79
showing resolved resource conflict 5-41
showing resource conflict 5-38
steps in drawing 5-5
vector sum 3-6
weighted 5-34, 5-38, 5-41, 5-43
vector sum with const keywords 3-7
weighted vector sum 5-41

destination operand 4-8

dot product
assembly code
nonparallel 5-7
parallel 5-8
with no extraneous loads 5-25 to 5-27
with no prolog or epilog 5-28
with smallest code size 5-29
assembly code with LDW before software pipelin-
ing 5-14
basic C code 5-4
Ccode 5-4
unrolled loop 5-10
C code translated to linear assembly 5-4
C code with intrinsics 3-14
C code with loop unrolling 5-10

Index

dependency graph of basic 5-6
dependency graph of parallel assembly
code 5-8
dependency graph with LDW 5-13
fully pipelined 5-22
linear assembly
for full code 5-21
for inner loop with conditonal SUB instruc-
tion 5-17
for inner loop with LDW 5-11
for inner loop with LDW and allocated re-
sources 5-13
nonparallel assembly code 5-7
parallel assembly code 5-8
word accesses in 3-13

.endproc directive 2-24

energy computation in MAC loop A-6 to A-8
enhanced full rate (EFR) A-3

epilog 3-16

execute packet 2-10, 2-14, 5-22

execution cycles, reducing number of 5-4

extraneous instructions, removing 5-24
SUB instruction 5-29

File menu (debugger) 2-7
FIR filter
Ccode 3-14, 3-15, 5-83, 5-109, 5-112
with redundant load elimination 5-84
final assembly 5-120
final assembly for inner loop 5-93
final assembly with redundant load elimina-
tion 5-89, 5-102, 5-106
linear assembly
for outer loop 5-111
with inner loop unrolled 5-110
with outer loop conditionally executed with in-
nerloop 5-114,5-116
linear assembly for inner loop 5-85
linear assembly for unrolled inner loop 5-96,
5-98
software pipelining the outer loop 5-104
using word access in 3-14
with inner loop unrolled 5-95, 5-104

Index-3

Index

flow diagram
autocorr.c A-9, A-12, A-13
code development 1-3

functional units
description 4-6
in assembly code 4-7
reassigning for parallel execution 5-7

functions
clock () 3-2
printf () 3-2

—g option 2-5
global constants/symbols defined in EFR A-3

global systems for mobile communications
(GSM) A-3

if-then-else
branching versus conditional instructions 5-59
C code 5-59, 5-67
final assembly 5-64, 5-65, 5-72
linear assembly 5-60, 5-63, 5-68, 5-71

IIR filter, C code 5-50

iirt.asm, inner loop kernel 2-15

iirl.c example code 2-4

index search in search_10i40 A-38
information elements in tutorial 2-2
instructions, placement in assembly code 4-4
int data type 3-2

intrinsics
_add2 () 3-12
_mpy () 3-13
_mpyh () 3-13
_mpyhl () 8-12
_mpylh () 3-12

_nassert 3-18

described 2-17, 3-9

in residu.c A-51 to A-53

in saturated add 3-9
summary table 3-10to 3-12

iteration interval, defined 5-18

Index-4

—k compiler option 2-5, 3-4
kernel

loop 2-13,3-7,3-16

of iirl.asm code 2-15

of iir2.asm code 2-22

of iird.asm code 2-28

of macl.asmcode 2-13

of vec_mpy1.asm code 2-14

of vec_mpy2.asm code 2-21

-l linker option 2-6
labels in assembly code 4-2
lag search in lag_max () A-56
linear, optimizing (phase 3 of flow), in flow dia-
gram 1-3
linear assembly 2-24
linker command file 2-5
little endian mode, runtime support
(rts6201.lib) 2-6
little-endian mode, and MPY operation 5-11
live-too-long issues, and software pipelining 3-23
live-too-long code 5-40
Ccode 5-74
inserting move (MV) instructions 5-78
unrolling the loop 5-78
live-too-long issues 5-74
created by split-join paths 5-77
Load Program File dialog box (debugger) 2-7
load word (LDW) instruction 5-10
load6x 2-11,2-12
long data type 3-2
loop carry path, described 5-50
loop control variable, conditionally increm-
ented 3-23
loop counter, handling odd-numbered 3-13
loop iterations 3-17
loop kernel 2-13
loop unrolling
as major programming method A-2
dot product 5-10
for simple loop structure 3-21
for windowing and scaling in autocorr.c A-9
if-then-else code 5-67

loop unrolling (continued)
incor_h A-22
in FIR filter 5-95, 5-98, 5-104, 5-109, 5-111
inlag_max A-58
in live-too-long solution 5-78
in vector sum 3-19

mac1.asm kernel, inner loop 2-13
mac1.c example code 2-3
memory bank hits
avoiding A-2
cor h A-23
in windowing and scaling in autocorr.c A-15
memory bank scheme, interleaved 5-91 to 5-93
memory dependency. See dependency
—mg compiler option 2-5
minimum iteration interval, determining 5-19
for FIR code 5-87, 5-101, 5-119
for if-then-else code 5-62, 5-70
for IIR code 5-53
for live-too-long code 5-77
for weighted vector sum 5-32, 5-33
mnemonic (instruction) 4-4
modulo iteration interval table
dot product
after software pipelining 5-20
before software pipelining 5-18
lIR filter 4-cycle loop 5-56
weighted vector sum
2-cycle loop 5-37, 5-42, 5-45
with SHR instructions 5-39
modulo-scheduling technique, multicycle
loops 5-31
_mpy () intrinsic 3-13
_mpy intrinsic, tutorial 2-17
_mpyh () intrinsic 3-13
_mpyhl () intrinsic 3-12
_mpylh () intrinsic 3-12
_mpylh intrinsic, tutorial 2-17
multiply accumulate function
inner loop kernel of original assembly
code 2-13
original C code 2-3
multiply-accumulate loop (MAC), implementation in
vocoder application A-4

Index

_nassert intrinsic 3-11, 3-12, 3-18
node 5-5

—0 compiler option 2-5, 3-4, 3-16, 3-18, 3-22
—o linker option 2-6
operands
placement in assembly code 4-8
types of 4-8
optimizing assembly code, introduction 5-2
optional tasks in tutorial 2-2
outer loop conditionally executed with inner
loop 5-109
OUTLOOP 5-88, 5-101

parallel bars, in assembly code 4-2

parent instruction 5-5

parent node 5-5

path in dependency graph 5-5

performance analysis
index search in search_10i40 A-40
of Ccode 3-2
of dot product examples 5-9, 5-15, 5-30
of FIR filter code 5-101, 5-108, 5-122
of if-then-else code 5-66, 5-73
residu.c A-52

pipeline in 'C62xx 1-2

—pm compiler option 3-4, 3-5, 3-8, 3-18

pointer operands 4-8

preparation for tutorial 2-1

primary tasks in tutorial 2-2

priming the loop, described 5-27

priming the pipeline 3-17

printf () function 3-2

processor mnemonics 4-5

Profile Marking dialog box 2-8

Profile menu (debugger) 2-7

Profile Run dialog box 2-9

profiing 2-7to 2-12

program-level optimization 3-5

programming methods, summary of A-2

prolog 3-16, 5-27

Index-5

Index

redundant load elimination 5-83
redundant loops 3-18
.reg directive 2-24, 5-11
register allocation 5-100
register operands 4-8
registers, partitioning A-41
related documentation iv
residu.c A-51
residu.c (FIR filter in EFR) A-51
resource conflicts
described 5-38
live-too-long issues 5-40, 5-74
resource table
FIR filter code 5-87,5-101, 5-119
if-then-else code 5-62, 5-70
IIR filter code 5-53
live-too-long code 5-77

routines
autocorr.c A-7
cor_h A-20

lag_max () A-56
rrv computation in search_10i40 A-27
rts6201.lib file 2-6
rts6201e.lib file 2-6
RUNB debugger command 3-3

.sa extension 2-24
_sadd intrinsic 3-9, 3-11
scheduling table. See modulo iteration interval table
shell program (cl6x) 2-5, 3-4
short arrays 3-12
short data type 3-2, 3-12
software pipelining 3-16, 3-20
described 5-16
when not used 3-22

software-pipelined schedule 5-20

source operands 4-8

split-join path 5-74, 5-75, 5-77

stand-alone simulator (load6x) 2-11, 3-2
SunOS shell initialization 2-7

symbolic names, for data and pointers 5-11

Index-6

techniques
for priming the loop 5-27
for refining C code 3-9
for removing extra instructions 5-24, 5-29
using intrinsics 3-9
word access for short data 3-12

TMS320C62xx pipeline 1-2

translating C code to ‘C62xx instructions
dot product, unrolled 5-11
IIR filter 5-51
with reduced loop carry path 5-55
weighted vector sum 5-31
unrolled inner loop 5-33

translating C code to linear assembly, dot prod-
uct 5-4

trip count 2-24, 3-17
communicating information to the compiler 3-18
determining the minimum 3-17

trip counter
converting to a downcounting loop 3-23
defined 3-17

trip directive 2-24

vec_mpy1.asm kernel, inner loop 2-14
vec_mpy1.c example code 2-4

vector multiply function

C with word instructions and intrinsics 2-17

inner loop kernel of assembly from C with intrin-
sics 2-21

inner loop kernel of original assembly
code 2-14

original C code 2-4

tutorial C code example (vec_mpy1.c) 2-4

Index

vector sum function
See also weighted vector sum

C code w@th const keyword 3-7 weighted vector sum

C code with const keyword, _nassert 3-18 basic C code 5-31

C code with const keyword, _nassert, and word
access 3-12,3-13

C code with const keyword, _nassert, word ac-

cess, and loop unrolling ~ 3-20 linear assembly for inner loop 5-31

C code with thrge memory operations 3-19 linear assembly with resources allocated 5-35,
C code word-aligned 3-19 546

compiler output (original assembly code) 3-8 ; ; :
dependency graph _ 3-6, 3-7 traTisc;Is:ngs(_):sgode to assembly instruc
handling odd-numbered loop counter with 3-13
handling short-aligned data with 3-13

rebasic C code 3-5 word access

rewriting to use word accesses 3-12 in dot product 3-13to 3-14
VelociTl 1-2 in FIR filter 3-14

using for short data 3-12to0 3-15
very long instruction word (VLIW) 1-2

VLW 1-2 E
vocoder application A-1

vocoder, implementing A-3 —z compiler option 2-5

C code, unrolled version 5-32
C code with loop unrolling 5-32
final assembly 5-48

windowing and scaling, autocorr.c A-7

Index-7

Index-8

IMPORTANT NOTICE

Texas Instruments (TI1) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are
utilized to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 0 1997, Texas Instruments Incorporated

