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Preface

Read This First

About This Manual

This manual is a reference for programming TMS320C6000 digital signal pro-

cessor (DSP) devices.

Before you use this book, you should install your code generation and debug-

ging tools.

This book is organized in five major parts:

� Part I: Introduction includes a brief description of the ’C6000 architecture

and code development flow. It also includes a tutorial that introduces you

to the tools you will use in each phase of development and an optimization

checklist to help you achieve optimal performance from your code.

� Part II: C Code includes C code examples and discusses optimization

methods for the code. This information can help you choose the most

appropriate optimization techniques for your code.

� Part III: Assembly Code describes the structure of assembly code. It pro-

vides examples and discusses optimizations for assembly code. It also in-

cludes a chapter on interrupt subroutines.

� Part IV: ’C64x Programming Techniques describes programming con-

siderations for the ’C64x.

� Part V: Appendix provides a summary of feedback solutions.
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Related Documentation From Texas Instruments

The following books describe the TMS320C6000 devices and related support

tools. To obtain a copy of any of these TI documents, call the Texas Instru-

ments Literature Response Center at (800) 477–8924. When ordering, please

identify the book by its title and literature number.

TMS320C6000 Assembly Language Tools User’s Guide (literature number

SPRU186) describes the assembly language tools (assembler, linker,

and other tools used to develop assembly language code), assembler

directives, macros, common object file format, and symbolic debugging

directives for the ’C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number

SPRU187) describes the ’C6000 C compiler and the assembly optimizer.

This C compiler accepts ANSI standard C source code and produces as-

sembly language source code for the ’C6000 generation of devices. The

assembly optimizer helps you optimize your assembly code.

TMS320C6000 CPU and Instruction Set Reference Guide (literature

number SPRU189) describes the ’C6000 CPU architecture, instruction

set, pipeline, and interrupts for these digital signal processors.

TMS320C6000 Peripherals Reference Guide (literature number SPRU190)

describes common peripherals available on the TMS320C6201/6701

digital signal processors. This book includes information on the internal

data and program memories, the external memory interface (EMIF), the

host port interface (HPI), multichannel buffered serial ports (McBSPs),

direct memory access (DMA), enhanced DMA (EDMA), expansion bus,

clocking and phase-locked loop (PLL), and the power-down modes.

TMS320C64x Technical Overview (SPRU395) The TMS320C64x technical

overview gives an introduction to the ’C64x digital signal processor, and

discusses the application areas that are enhanced by the ’C64x VelociTI.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number

SPRT125) presents solutions to common design problems using ’C2x,

’C3x, ’C4x, ’C5x, and other TI DSPs.
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Trademarks

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

VelociTI is a trademark of Texas Instruments Incorporated.

Windows and Windows NT are registered trademarks of Microsoft

Corporation.
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Introduction

This chapter introduces some features of the ’C6000 microprocessor and dis-

cusses the basic process for creating code and understanding feedback. Any

reference to ’C6000 pertains to the ’C62x (fixed-point), ’C64x (fixed-point), and

the ’C67x (floating-point) devices. Though most of the examples shown are

fixed-point specific, all techniques are applicable to each device.
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1.1 TMS320C6000 Architecture

The ’C62x is a fixed-point digital signal processor (DSP) and is the first DSP

to use the VelociTI� architecture. VelociTI is a high-performance, advanced

very-long-instruction-word (VLIW) architecture, making it an excellent choice

for multichannel, multifunctional, and performance-driven applications.

The ’C67x is a floating-point DSP with the same features. It is the second DSP

to use the VelociTI� architecture.

The ’C64x is a fixed-point DSP with the same features. It is the third DSP to

use the VelociTI� architecture.

The ’C6000 DSPs are based on the ’C6000 CPU, which consists of:

� Program fetch unit

� Instruction dispatch unit

� Instruction decode unit

� Two data paths, each with four functional units

� Thirty-two 32-bit registers (’C62x and ’C67x)

� Sixty-four 32-bit registers (’C64x)

� Control registers

� Control logic

� Test, emulation, and interrupt logic

1.2 TMS320C6000 Pipeline

The ’C6000 pipeline has several features that provide optimum performance,

low cost, and simple programming.

� Increased pipelining eliminates traditional architectural bottlenecks in pro-

gram fetch, data access, and multiply operations.

� Pipeline control is simplified by eliminating pipeline locks.

� The pipeline can dispatch eight parallel instructions every cycle.

� Parallel instructions proceed simultaneously through the same pipeline

phases.

TMS320C6000 Architecture / TMS320C6000 Pipeline
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1.3 Code Development Flow To Increase Performance

Traditional development flows in the DSP industry have involved validating a

C model for correctness on a host PC or Unix workstation and then painstak-

ingly porting that C code to hand coded DSP assembly language. This is both

time consuming and error prone. This process tends to encounter difficulties

that can arise from maintaining the code over several projects.

The recommended code development flow involves utilizing the ’C6000 code

generation tools to aid in optimization rather than forcing the programmer to

code by hand in assembly. These advantages allow the compiler to do all the

laborious work of instruction selection, parallelizing, pipelining, and register al-

location. This allows the programmer to focus on getting the product to market

quickly. These features simplify the maintenance of the code, as everything

resides in a C framework that is simple to maintain, support, and upgrade.

The recommended code development flow for the ’C6000 involves the phases

described below. The tutorial section of the Programmer’s Guide focuses on

phases 1 – 3. These phases will instruct the programmer when to go to the tun-

ing stage of phase 3. What is learned is the importance of giving the compiler

enough information to fully maximize its potential. An added advantage is that

this compiler provides direct feedback on the entire programmer’s high MIPS

areas (loops).  Based on this feedback, there are some very simple steps the

programmer can take to pass complete and better information to the compiler

allowing the programmer  a quicker start in maximizing compiler performance.
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You can achieve the best performance from your ’C6000 code if you follow this

code development flow when you are writing and debugging your code:

Efficient?
Yes

No

Complete

Efficient?
Yes

No

Efficient?

Write C codePhase 1: 
Develop C Code

Phase 2:
Refine C Code

Phase 3:
Write Linear
Assembly

More C 
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Yes
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Complete

Compile

Profile
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Compile
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Complete

Write linear assembly

Profile
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The following table lists the phases in the 3-step software development flow

shown on the previous page, and the goal for each phase:

Phase Goal

1 You can develop your C code for phase 1 without any knowledge of
the ’C6000. Use the ’C6000 profiling tools that are described in the
Code Composer Studio User’s Guide to identify any inefficient areas
that you might have in your C code. To improve the performance of
your code, proceed to phase 2.

2 Use techniques described in this book to improve your C code. Use
the ’C6000 profiling tools to check its performance. If your code is
still not as efficient as you would like it to be, proceed to phase 3.

3 Extract the time-critical areas from your C code and rewrite the code
in linear assembly. You can use the assembly optimizer to optimize
this code.

Because most of the millions of instructions per second (MIPS) in DSP applica-

tions occur in tight loops, it is important for the ’C6000 code generation tools

to make maximal use of all the hardware resources in important loops. Fortu-

nately, loops inherently have more parallelism than non-looping code because

there are multiple iterations of the same code executing with limited depen-

dencies between each iteration. Through a technique called software pipelin-

ing, the ’C6000 code generation tools use the multiple resources of the Veloci-

TI architecture efficiently and obtain very high performance.

This chapter shows the code development flow recommended to achieve the

highest performance on loops and provides a feedback list that can be used

to optimize loops with references to more detailed documentation.
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Table 1–1, Code Development Steps, describes the recommended code de-

velopment flow for developing code which achieves the highest performance

on loops.

Table 1–1.Code Development Steps

Step Description

Phase

1

1 Compile and profile native C/C++ code

� Validates original C/C++ code

� Determines which loops are most important in terms of MIPS require-

ments.

Phase

2 Add restrict qualifier, loop iteration count, memory bank, and data alignment

information.

� Reduces potential pointer aliasing problems

� Allows loops with indeterminate iteration counts to execute epilogs

� Uses pragmas to pass count information to the compiler

� Uses memory bank pragmas and _nassert intrinsic to pass memory

bank and alignment information to the compiler.

Phase

2 3 Optimize C code using other ’C6000 intrinsics and other methods

� Facilitates use of certain ’C6000 instructions not easily represented in

C.

� Optimizes data flow bandwidth (uses word access for short (’C62x,

’C64x, and ’C67x) data, and double word access for word (’C64x, and

’C67x) data).

Phase

3

4a Write linear assembly

� Allows control in determining exact ’C6000 instructions to be used

� Provides flexibility of hand-coded assembly without worry of pipelining,

parallelism, or register allocation.

� Can pass memory bank information to the tools

� Uses .trip directive to convey loop count information

4b Add partitioning information to the linear assembly

� Can improve partitioning of loops when necessary

� Can avoid bottlenecks of certain hardware resources
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When you achieve the desired performance in your code, there is no need to

move to the next step. Each of the steps in the development involve passing

more information to the ’C6000 tools. Even at the final step, development time

is greatly reduced from that of hand-coding, and the performance approaches

the best that can be achieved by hand.

Internal benchmarking efforts at Texas Instruments have shown that most

loops achieve maximal throughput after steps 1 and 2. For loops that do not,

the C/C++ compiler offers a rich set of optimizations that can fine tune all from

the high level C language. For the few loops that need even further optimiza-

tions, the assembly optimizer gives the programmer more flexibility than

C/C++ can offer, works within the framework of C/C++, and is much like pro-

gramming in higher level C. For more information on the assembly optimizer,

see the TMS320C6000 Optimizing C/C++ Compiler User’s Guide and Chapter

5, Optimizing Assembly Code via Linear Assembly, in this book.

In order to aid the development process, some feedback is enabled by default

in the code generation tools. Example 1–1 shows output from the compiler

and/or assembly optimizer of a particular loop. The -mw feedback option gen-

erates additional information not shown in Example 1–1, such as a single it-

eration view of the loop.
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Example 1–1. Compiler and/or Assembly Optimizer Feedback

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SOFTWARE PIPELINE INFORMATION

;*

;*      Known Minimum Trip Count         : 2

;*      Known Maximum Trip Count         : 2

;*      Known Max Trip Count Factor      : 2

;*      Loop Carried Dependency Bound(^) : 4

;*      Unpartitioned Resource Bound     : 4

;*      Partitioned Resource Bound(*)    : 5

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     2        3

;*      .S units                     4        4

;*      .D units                     1        0

;*      .M units                     0        0

;*      .X cross paths               1        3

;*      .T address paths             1        0

;*      Long read paths              0        0

;*      Long write paths             0        0

;*      Logical  ops (.LS)           0        1     (.L or .S unit)

;*      Addition ops (.LSD)          6        3     (.L or .S or .D unit)

;*      Bound(.L .S .LS)             3        4

;*      Bound(.L .S .D .LS .LSD)     5*       4

;*

;*      Searching for software pipeline schedule at ...

;*         ii = 5  Register is live too long

;*         ii = 6  Did not find schedule

;*         ii = 7  Schedule found with 3 iterations in parallel

;*      done

;*

;*      Epilog not entirely removed

;*      Collapsed epilog stages     : 1

;*

;*      Prolog not removed

;*      Collapsed prolog stages     : 0

;*

;*      Minimum required memory pad : 2 bytes

;*

;*      Minimum safe trip count     : 2

;*

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

This feedback is important in determining which optimizations might be useful

for further improved performance. The section Understanding Feedback on

page 2-2 is provided as a quick reference to techniques that can be used to

optimize loops and refers to specific sections within this book for more detail.
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Optimizing C/C++ Code

You can maximize C/C++ performance by using compiler options, intrinsics,

and code transformations. This chapter discusses the following topics:

� The compiler and its options

� Intrinsics

� Software pipelining

� Loop unrolling

Topic Page

2.1 Understanding Feedback 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Writing C/C++  Code 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3 Compiling C/C++ Code 2-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4 Profiling Your Code 2-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.5 Refining C/C++ Code 2-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 2
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2.1 Understanding Feedback

The compiler provides some feedback by default. Additional feedback is gen-

erated with the -mw option. The feedback is located in the .asm file that the

compiler generates. In order to view the feedback, you must also enable -k

which retains the .asm output from the compiler. By understanding feedback,

you can quickly tune your C code to obtain the highest possible performance.

The feedback in Example 1–1 is for an innermost loop. On the ’C6000, C code

loop performance is greatly affected by how well the compiler can software

pipeline. The feedback is geared for explaining exactly what all the issues with

pipelining the loop were and what the results obtained were. Understanding

feedback will focus on all the components in the software pipelining feedback

window.

The compiler goes through three basic stages when compiling a loop. Here we

will focus on the comprehension of these stages and the feedback produced

by them. This, combined with the Feedback Solutions in Appendix A will send

you well on your way to fully optimizing your code with the ’C6000 compiler.

The three stages are:

1) Qualify the loop for software pipelining

2) Collect loop resource and dependency graph information

3) Software pipeline the loop

2.1.1 Stage 1: Qualify the Loop for Software Pipelining

The result of this stage will show up as the first three or four lines in the feed-

back window as long as the compiler qualifies the loop for pipelining:

Example 2–1.Stage 1 Feedback

;*      Known Minimum Trip Count         : 2

;*      Known Maximum Trip Count         : 2

;*      Known Max Trip Count Factor      : 2

� Trip Count. The number of iterations or trips through a loop.

� Minimum Trip Count. The minimum number of times the loop might exe-

cute given the amount of information available to the compiler.

� Maximum Trip Count. The maximum number of times the loop might exe-

cute given the amount of information available to the compiler.
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� Maximum Trip Count Factor. The maximum number that will divide

evenly into the trip count. Even though the exact value of the trip count is

not deterministic, it may be known that the value is a multiple of 2, 4, etc...,

which allows more agressive packed data and unrolling optimization.

The compiler tries to identify what the loop counter (named trip counter be-

cause of the number of trips through a loop) is and any information about the

loop counter such as minimum value (known minimum trip count), and wheth-

er it is a multiple of something (has a known maximum trip count factor).

If factor information is known about a loop counter, the compiler can be more

aggressive with performing packed data processing and loop unrolling opti-

mizations. For example, if the exact value of a loop counter is not known but

it is known that the value is a multiple of some number, the compiler may be

able to unroll the loop to improve performance.

There are several conditions that must be met before software pipelining is al-

lowed, or legal, from the compiler’s point of view. These conditions are:

� It cannot have too many instructions in the loop. Loops that are too big,

typically require more registers than are available and require a longer

compilation time.

� It cannot call another function from within the loop unless the called func-

tion is inlined. Any break in control flow makes it impossible to software

pipeline as multiple iterations are executing in parallel.

If any of the conditions for software pipelining are not met, qualification of the

pipeline will halt and a disqualification messages will appear. For more infor-

mation about what disqualifies a loop from being software-pipelined, see sec-

tion 2.5.3.6, on page 2-62.
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2.1.2 Stage 2: Collect Loop Resource and Dependency Graph Information

The second stage of software pipelining a loop is collecting loop resource and

dependency graph information. The results of stage 2 will be displayed in the

feedback window as follows:

Example 2–2.Stage 2 Feedback

;*      Loop Carried Dependency Bound(^) : 4

;*      Unpartitioned Resource Bound     : 4

;*      Partitioned Resource Bound(*)    : 5

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     2        3

;*      .S units                     4        4

;*      .D units                     1        0

;*      .M units                     0        0

;*      .X cross paths               1        3

;*      .T address paths             1        0

;*      Long read paths              0        0

;*      Long write paths             0        0

;*      Logical  ops (.LS)           0        1     (.L or .S unit)

;*      Addition ops (.LSD)          6        3     (.L or .S or .D unit)

;*      Bound(.L .S .LS)             3        4

;*      Bound(.L .S .D .LS .LSD)     5*       4

� Loop carried dependency bound. The distance of the largest loop carry

path, if one exists. A loop carry path occurs when one iteration of a loop

writes a value that must be read in a future iteration. Instructions that are

part of the loop carry bound are marked with the ̂  symbol in the assembly

code saved with the –k option in the *.asm file. The number shown for the

loop carried dependency bound is the minimum iteration interval due to a

loop carry dependency bound for the loop.

Often, this loop carried dependency bound is due to lack of knowledge by

the compiler about certain pointer variables. When exact values of point-

ers are not known, the compiler must assume that any two pointers might

point to the same location. Thus, loads from one pointer have an implied

dependency to another pointer performing a store and vice versa. This can

create large (and usually unnecessary) dependency paths. When the

Loop Carried Dependency Bound is larger than the Resource Bound, this

is often the culprit. Potential solutions for this are shown in Appendix A,

Feedback Solutions.
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� Unpartitioned resource bound across all resources. The best case re-

source bound minimum iteration interval before the compiler has parti-

tioned each instruction to the A or B side. In Example 2–2, the unparti-

tioned resource bound is 4 because the .S units are required for 8 cycles,

and there are 2 .S units.

� Partitioned resource bound across all resources. The mii after the in-

structions are partitioned to the A and B sides. In Example 2–2, after parti-

tioning, we can see that the A side .L, .S, and .D units are required for a

total of 13 cycles, making the partitioned resource bound �13/3� � 5. For

more information, see the description of Bound (.L .S .D .LS .LSD) later

in this section.

� Resource partition table. Summarizes how the instructions have been

assigned to the various machine resources and how they have been parti-

tioned between the A and B side. An asterisk is used to mark those entries

that determine the resource bound value – in other words the maximum

mii. Because the resources on the C6000 architecture are fairly orthogo-

nal, many instructions can execute 2 or more different functional units. For

this reason, the table breaks these functional units down by the possible

resource combinations. The table entries are described below:

� Individual Functional Units (.L .S .D .M) show the total number of

instructions that specifically require the .L, .S, .D, or .M functional

units. Instructions that can operate on multiple different functional

units are not included in these counts. They are described below in the

Logical Ops (.LS) and Addition Ops (.LSD) rows.

� .X cross paths represents the total number of AtoB and BtoA. When

this particular row contains an asterisk, it has a resource bottleneck

and partitioning may be a problem.

� .T address paths  represents the total number of address paths re-

quired by the loads and stores in the loop. This is actually different

from the number .D units needed as some other instructions may use

the .D unit. In addition, there can be cases where the number of .T ad-

dress paths on a particular side might be higher than the number of .D

units if .D units are partitioned evenly between A and B and .T address

paths are not.

� Long read path represents the total number of long read port paths .

All long operations with long sources use this port to do extended

width (40-bit) reads. Store operations share this port so they also

count toward this total. Long write path represents the total number of

long write port paths. All instructions with long (40bit) results will be

counted in this number.
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� Logical ops (.LS) represents the total number of instructions that can

use either the .L or .S unit.

� Addition ops (.LSD)  represents the total number of instructions that

can use either the .L or .S or .D unit.

� Bound (.L .S .LS) represents the resource bound value as deter-

mined by the number of instructions that use the .L and .S units. It is

calculated with the following formula:

Bound(.L .S .LS ) = ceil((.L + .S + .LS) / 2)

Where ceil represents the ceiling function. This means you always

round up to the nearest integer. In Example 2–2, if the B side needs:

3 .L unit only instructions

4 .S unit only instructions

1 logical .LS instruction

you would need at least  �8/2� cycles or 4 cycles to issue these.

� Bound (.L .S .D .LS .LSD)  represents the resource bound value as

determined by the number of instructions that use the .D, .L and .S

unit. It is calculated with the following formula:

Bound(.L .S .D .LS .LSD)

= ceil((.L + .S + .D + .LS + .LSD) / 3)

Where ceil represents the ceiling function. This means you always

round up to the nearest integer. In Example 2–2, the A side needs:

2 .L unit only instructions, 4 .S unit only instructions, 1 .D unit only in-

structions, 0 logical .LS instructions, and 6 addition .LSD instructions

You would need at least �13/3� cycles or 5 cycles to issue these.
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2.1.3 Stage 3: Software Pipeline the Loop

Once the compiler has completed qualification of the loop, partitioned it, and

analyzed the necessary loop carry and resource requirements, it can begin to

attempt software pipelining. This section will focus on the following lines from

the feedback example:

Example 2–3.Stage 3 Feedback

;*      Searching for software pipeline schedule at ...

;*         ii = 5  Register is live too long

;*         ii = 6  Did not find schedule

;*         ii = 7  Schedule found with 3 iterations in parallel

;*      done

;*

;*      Epilog not entirely removed

;*      Collapsed epilog stages     : 1

;*

;*      Prolog not removed

;*      Collapsed prolog stages     : 0

;*

;*      Minimum required memory pad : 2 bytes

;*

;*      Minimum safe trip count     : 2

� Iteration interval (ii). The number of cycles between the initiation of

successive iterations of the loop. The smaller the iteration interval, the

fewer cycles it takes to execute a loop. All of the numbers shown in each

row of the feedback imply something about what the minimum iteration in-

terval (mii) will be for the compiler to attempt initial software pipelining.

Several things will determine what the mii of the loop is and are described

in the following sections. The mii is simply the maximum of any of these

individual mii’s.

The first thing the compiler attempts during this stage, is to schedule the loop

at an iteration interval (ii) equal to the mii determined in stage 2: collect loop

resource and dependency graph information. In the example above, since the

A–side bound (.L, .S, .D, .LS, and .LSD) was the mii bottleneck, our example

starts with:

;*      Searching for software pipeline schedule at ...

;*         ii = 5  Register is live too long

If the attempt was not successful, the compiler provides additional feedback

to help explain why. In this case, the compiler cannot find a schedule at 11

cycles because register is live too long. For more information about live too

long issues, see section 5.10, on page 5-101.
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Sometimes the compiler finds a valid software pipeline schedule but one or

more of the values is live too long. Lifetime of a register is determined by the

cycle a value is written into it and by the last cycle this value is read by another

instruction. By definition, a variable can never be live longer than the ii of the

loop, because the next iteration of the loop will overwrite that value before it

is read.

The compiler then proceeds to:

ii = 6 Did not find schedule

Sometimes, due to a complex loop or schedule, the compiler simply cannot

find a valid software pipeline schedule at a particular iteration interval.

Regs Live Always : 1/5 (A/B–side)

Max Regs Live : 14/19

Max Cond Regs Live : 1/0

� Regs Live Always refers to the number of registers needed for variables

to be live every cycle in the loop. Data loaded into registers outside the

loop and read inside the loop will fall into this category.

� Max Regs Live refers to the maximum number of variable live on any one

cycle in the loop. If there are 33 variables live on one of the cycles inside

the loop, a minimum of 33 registers is necessary and this will not be pos-

sible with the 32 registers available on the ’C62x and ’C67x cores. In addi-

tion, this is broken down between A and B side, so if there is uneven parti-

tioning with 30 values and there are 17 on one side and 13 on the other,

the same problem will exist. This situation does not apply to the 64 regis-

ters available on the ’C64x core.

� Max Cond Regs Live tells us if there are too many conditional values

needed on a given cycle. The ’C62x and ’C67x cores have 2 A side and

3 B side condition registers available. The ’C64x core has 3 A side and 3

B side condition registers available.

After failing at ii = 6, the compiler proceeds to ii = 7:

ii = 7 Schedule found with 3 iterations in parallel

It is successful and finds a valid schedule with 3 iterations in parallel. This

means it is pipelined 3 deep. In other words, before iteration n has completed,

iterations n+1 and n+2 have begun.

Each time a particular iteration interval fails, the ii is increased and retried. This

continues until the ii is equal to the length of a list scheduled loop (no software

pipelining). This example shows two possible reasons that a loop was not soft-

ware pipelined. To view the full detail of all possible messages and their de-

scriptions, see Feedback Solutions in Appendix A.
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After a successful schedule is found at a particular iteration interval, more in-

formation about the loop is displayed. This information may relate to the load

threshold, epilog/prolog collapsing, and projected memory bank conflicts.

Speculative Load Threshold : 12

When an epilog is removed, the loop is run extra times to finish out the last it-

erations, or pipe–down the loop. In doing so, extra loads from new iterations

of the loop will speculatively execute (even though their results will never be

used). In order to ensure that these memory accesses are not pointing to inval-

id memory locations, the Load Threshold value tells you how many extra bytes

of data beyond your input arrays must be valid memory locations (not a

memory mapped I/O etc) to ensure correct execution. In general, in the large

address space of the ’C6000 this is not usually an issue, but you should be

aware of this.

 Epilog not entirely removed

 Collapsed epilog stages : 1

This refers to the number of epilog stages, or loop iterations that were re-

moved.  This can produce a large savings in code size. The –mh enables spec-

ulative execution and improves the compiler’s ability to remove epilogs and

prologs.  However, in some cases epilogs and prologs can be partially or en-

tirely removed without speculative execution. Thus, you may see nonzero val-

ues for this even without the –mh option.

Prolog not removed 

Collapsed prolog stages : 0

This means that the prolog was not removed.  For various technical reasons,

prolog and epilog stages may not be partially or entirely removed.

Minimum required memory pad : 2 bytes

The minimum required memory padding to use -mh is 2 bytes. See the

TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more informa-

tion on the -mh option and the minimum required memory padding.

Minimum safe trip count :2

This means that the loop must execute at lease twice to safely use the software

pipelined version of the loop.  If this value is less than the known minimum trip

count, two versions of the loop will be generated. For more information on elim-

inating redundant loops, see section 2.5.3.2, on page 2-55.
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2.2 Writing C/C++ Code

This chapter shows you how to analyze and tailor your code to be sure you are

getting the best performance from the ’C6000 architecture.

2.2.1 Tips on Data Types

Give careful consideration to the data type size when writing your code. The

’C6000 compiler defines a size for each data type (signed and unsigned):

� char 8 bits 

� short 16 bits 

� int 32 bits 

� long 40 bits

� float 32 bits

� double 64 bits

Based on the size of each data type, follow these guidelines when writing C

code:

� Avoid code that assumes that int and long types are the same size, be-

cause the ’C6000 compiler uses long values for 40-bit operations. This

can cause extra instructions to be generated and limit functional unit

selection.

� Use the short data type for fixed-point multiplication inputs whenever pos-

sible because this data type provides the most efficient use of the 16-bit

multiplier in the ’C6000 (1 cycle for “short * short” versus 5 cycles for “int

*  int”).

� Use int or unsigned int types for loop counters, rather than short or un-

signed short data types, to avoid unnecessary sign-extension instructions.

� When using floating-point instructions on a floating-point device such as

the ’C6700, use the –mv6700 compiler switch so the code generated will

use the device’s floating-point hardware instead of performing the task

with fixed point hardware.  For example, if the –mv6700 option is not used,

the RTS floating-point multiply will be used instead of the MPYSP instruc-

tion.

� When using the ’C6400 device, use the –mv6400 compiler switch so the

code generated will use the device’s additional hardware and instructions.
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2.2.2 Analyzing C Code Performance

Use the following techniques to analyze the performance of specific code re-

gions:

� One of the preliminary measures of code is the time it takes the code to

run. Use the clock( ) and printf( ) functions in C/C++ to time and display

the performance of specific code regions. You can use the stand-alone

simulator (load6x) to run the code for this purpose. Remember to subtract

out the overhead of calling the clock( ) function.

� Use the profile mode of the stand-alone simulator.  This can be done by

compiling your code with the –mg option and executing load6x with the –g

option. The profile results will be stored in a file with the .vaa extension.

Refer to the TMS320C6000 Optimizing C/C++ Compiler User’s Guide for

more information.

� Enable the clock and use profile points and the RUN command in the Code

Composer debugger to track the number of CPU clock cycles consumed

by a particular section of code.  Use “View Statistics” to view the number

of cycles consumed.

� The critical performance areas in your code are most often loops.  The

easiest way to optimize a loop is by extracting it into a separate file that

can be rewritten, recompiled, and run with the stand-alone simulator

(load6x).

As you use the techniques described in this chapter to optimize your C/C++

code, you can then evaluate the performance results by running the code and

looking at the instructions generated by the compiler.
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2.3 Compiling C/C++ Code

The ’C6000 compiler offers high-level language support by transforming your

C/C++ code into more efficient assembly language source code. The compiler

tools include a shell program (cl6x), which you use to compile, assembly opti-

mize, assemble, and link programs in a single step. To invoke the compiler

shell, enter:

cl6x [options] [filenames] [–z [linker options] [object files]]

For a complete description of the C/C++ compiler and the options discussed

in this chapter, see the TMS320C6000 Optimizing C/C++ Compiler User’s

Guide (SPRU187).

2.3.1 Compiler Options

Options control the operation of the compiler. This section introduces you to

the recommended options for performance, optimization, and code size. Con-

siderations of optimization versus performance are also discussed.

The options described in Table 2–1 are obsolete or intended for debugging,

and could potentially decrease performance and increase code size. Avoid us-

ing these options with performance critical code.

Table 2–1.Compiler Options to Avoid on Performance Critical Code

Option Description

–g/–s/

–ss/–gp

These options limit the amount of optimization across C state-

ments leading to larger code size and slower execution.

–mu Disables software pipelining for debugging. Use –ms2/–ms3

instead to reduce code size which will disable software pipelin-

ing among other code size optimizations.

–o1/–o0 Always use –o2/–o3 to maximize compiler analysis and opti-

mization. Use code size flags (–msn) to tradeoff between per-

formance and code size.

–mz Obsolete. On pre–3.00 tools, this option may have improved

your code, but with 3.00+ compilers, this option will decrease

performance and increase code size.
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The options in Table 2–2 can improve performance but require certain charac-

teristics to be true, and are described below.

Table 2–2.Compiler Options for Performance

Option Description

–o3† Represents the highest level of optimization available. Various

loop optimizations are performed, such as software pipelining,

unrolling, and SIMD. Various file level characteristics are also

used to improve performance.

–oi0 Disables all automatic size–controlled inlining, (which is en-

abled by –o3). User specified inlining of functions is still al-

lowed.

–pm‡ Combines source files to perform program–level optimization by

allowing visibility to the entire application source.

† Although –o3 is preferable, at a minimum use the –o option.
‡ Use the –pm option for as much of your program as possible.

Table 2–3.Compiler Options That Slightly Degrade Performance and Improve Code Size

Option Description

–mh<n> Allows speculative execution. The appropriate amount of pad-

ding must be available in data memory to insure correct execu-

tion. This is normally not a problem but must be adhered to.

–mi<n> Describes the interrupt threshold to the compiler. If you know

that NO interrupts will occur in your code, the compiler can

avoid enabling and disabling interrupts before and after soft-

ware pipelined loops for a code size and performance improve-

ment. In addition, there is potential for performance improve-

ment where interrupt registers may be utilized in high register

presure loops.

–ms0

–ms1

Optimizes primarily for performance, and secondly for code

size. Could be used on all but the most performance critical

routines.

–mt Enables the compiler to use assumptions that allow it to be

more aggressive with certain optimizations. When used on lin-

ear assembly files, it acts like a .no_mdep directive that has

been defined for those linear assembly files.

–op2 Specifies that the module contains no functions or variables that

are called or modified from outside the source code provided to

the compiler. This improves variable analysis and allowed as-

sumptions.
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The options described in Table 2–4 are recommended for control code, and

will result in smaller code size with minimal performance degradation.

Table 2–4.Compiler Options for Control Code

Option Description

–o3† In addition to the optimizations described in Table 2–2, -o3 can

perform other code size reducing optimizations like: eliminating

unused assignments, eliminating local and global common sub-

expressions, and removing functions that are never called.

–pm‡ Combines source files to perform program–level optimization by

allowing visibility to the entire application source.

–op2 Specifies that the module contains no functions or variables that

are called or modified from outside the source code provided to

the compiler. This improves variable analysis and allowed as-

sumptions.

–oi0 Disables all automatic size–controlled inlining, (which is en-

abled by –o3). User specified inlining of functions is still al-

lowed.

–ms2–ms3 Optimizes primarily for code size, and secondly for perfor-

mance.

† Although –o3 is preferable, at a minimum use the –o option.
‡ Use the –pm option for as much of your program as possible.

The options described in Table 2–5 provide information, but do not affect per-

formance or code size.

Table 2–5.Compiler Options for Information

Option Description

–mw Use this option to produce additional compiler feedback. This

option has no performance or code size impact.

–k Keeps the assembly file so that you can inspect and analyze

compiler feedback. This option has no performance or code

size impact.

–gp Enables automatic function level profiling with the loader. Can

result in minor performance degradation around function call

boundaries only.

–s/–ss Interlists C/C++ source or optimizer comments in assembly.

The -s option may show minor performance degradation. The

-ss option may show more severe performance degradation.
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2.3.2 Memory Dependencies

To maximize the efficiency of your code, the ’C6000 compiler schedules as

many instructions as possible in parallel. To schedule instructions in parallel,

the compiler must determine the relationships, or dependencies, between in-

structions. Dependency means that one instruction must occur before anoth-

er, for example, a variable must be loaded from memory before it can be used.

Because only independent instructions can execute in parallel, dependencies

inhibit parallelism.

� If the compiler cannot determine that two instructions are independent (for

example, b does not depend on a), it assumes a dependency and sched-

ules the two instructions sequentially accounting for any latencies needed

to complete the first instruction.

� If the compiler can determine that two instructions are independent of one

another, it can schedule them in parallel.

Often it is difficult for the compiler to determine if instructions that access

memory are independent. The following techniques help the compiler deter-

mine which instructions are independent:

� Use the restrict keyword to indicate that a pointer is the only pointer that

can point to a particular object in the scope in which the pointer is declared.

� Use the –pm (program-level optimization) option, which gives the compiler

global access to the whole program or module and allows it to be more

aggressive in ruling out dependencies.

� Use the –mt option, which allows the compiler to use assumptions that al-

low it to eliminate dependencies. Remember, using the –mt option on lin-

ear assembly code is equivalent to adding the .no_mdep directive to the

linear assembly source file.  Specific memory dependencies should be

specified with the .mdep directive.  For more information see section 4.4,

Assembly Optimizer Directives in the TMS320C6000 Optimizing C/C++

Compiler User’s Guide.
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To illustrate the concept of memory dependencies, it is helpful to look at the

algorithm code in a dependency graph. Example 2–4 shows the C code for a

basic vector sum. Figure 2–1 shows the dependency graph for this basic vec-

tor sum. For more information about drawing a dependency graph, see section

5.3.4, on page 5-11.

Example 2–4.Basic Vector Sum

void vecsum(short *sum, short *in1, short *in2, unsigned int N)

{

  int i;

 

  for (i = 0; i < N; i++)

    sum[i] = in1[i] + in2[i];

}

Figure 2–1. Dependency Graph for Vector Sum #1
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The dependency graph in Figure 2–1 shows that:

� The paths from sum[i] back to in1[i] and in2[i] indicate that writing to sum

may have an effect on the memory pointed to by either in1 or in2.

� A read from in1 or in2 cannot begin until the write to sum finishes, which

creates an aliasing problem. Aliasing occurs when two pointers can point

to the same memory location. For example, if vecsum( ) is called in a pro-

gram with the following statements, in1 and sum alias each other because

they both point to the same memory location:

short a[10], b[10];

vecsum(a, a, b, 10);

2.3.2.1 The Restrict Keyword

To help the compiler determine memory dependencies, you can qualify a

pointer, reference, or array with the restrict keyword. The restrict keyword is

a type qualifier that may be applied to pointers, references, and arrays. Its use

represents a guarantee by the programmer that within the scope of the pointer

declaration, the object pointed to can be accessed only by that pointer. Any

violation of this guarantee renders the program undefined. This practice helps

the compiler optimize certain sections of code because aliasing information

can be more easily determined.

In the example that follows, you can use the restrict keyword to tell the compiler

that a and b never point to the same object in foo (and the objects’ memory that

foo accesses does not overlap).

Example 2–5.Use of the Restrict Type Qualifier With Pointers

void foo(int * restrict a, int * restrict b)

{

  /* foo’s code here */

}

This example is a use of the restrict keyword when passing arrays to a function.

Here, the arrays c and d should not overlap, nor should c and d point to the

same array.
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Example 2–6.Use of the Restrict Type Qualifier With Arrays

void func1(int c[restrict], int d[restrict])

{

  int i;

  for(i = 0; i < 64; i++)

  {

    c[i] += d[i];

    d[i] += 1;

  }

}

Do not use the restrict keyword with code such as listed in Example 2–7. By

using the restrict keyword in Example 2–7, you are telling the compiler that it

is legal to write to any location pointed to by a before reading the location

pointed to by b. This can cause an incorrect program because both a and b

point to the same object —array.

Example 2–7.Incorrect Use of the restrict Keyword

void func (short *a, short * restrict b)/*Bad!! */

{

int i;

for (i = 11; i < 44; i++) *(––a) = *(––b);

}

void main ()

{

short array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40, 41, 42,

43, 44};

short *ptr1, *ptr2;

ptr2 = array + 44;

ptr1 = ptr2 – 11;

func(ptr2, ptr1); /*Bad!! */

}

Note: Do not use const to tell the compiler that two pointers do not point
to the same object. Use restrict instead.
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2.3.2.2 The –mt Option

Another way to eliminate memory dependencies is to use the –mt option,

which allows the compiler to use assumptions that can eliminate memory de-

pendency paths. For example, if you use the –mt option when compiling the

code in Example 2–4, the compiler uses the assumption that that in1 and in2

do not alias memory pointed to by sum and, therefore, eliminates memory de-

pendencies among the instructions that access those variables.

If your code does not follow the assumptions generated by the –mt option, you

can get incorrect results.  For more information on the –mt option refer to the

TMS320C6000 Optimizing Compiler User’s Guide (SPRU187).
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2.3.3 Performing Program-Level Optimization (–pm Option)

You can specify program-level optimization by using the –pm option with the

–o3 option. With program-level optimization, all your source files are compiled

into one intermediate file giving the compiler complete program view during

compilation. This creates significant advantage for determining pointer loca-

tins passed into a function. Once the compiler determines two pointers do not

access the same memory location, substantial improvements can be made in

software pipelined loops. Because the compiler has access to the entire pro-

gram, it performs several additional optimizations rarely applied during file-lev-

el optimization:

� If a particular argument in a function always has the same value, the com-

piler replaces the argument with the value and passes the value instead

of the argument.

� If a return value of a function is never used, the compiler deletes the return

code in the function.

� If a function is not called, directly or indirectly, the compiler removes the

function.

Also, using the –pm option can lead to better schedules for your loops.  If the

number of iterations of a loop is determined by a value passed into the function,

and the compiler can determine what that value is from the caller, then the

compiler will have more information about the minimum trip count of the loop

leading to a better resulting schedule.
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2.4 Profiling Your Code

In large applications, it makes sense to optimize the most important sections

of code first. You can use the information generated by profiling options to get

started. You can use several different methods to profile your code. These

methods are described below.

2.4.1 Using the Standalone Simulator (load6x) to Profile

There are two methods to using the standalone simulator (load6x) for profiling.

� If you are interested in just a profile of all of the functions in your applica-

tion, you can use the –g option in load6x.

� If you are interested in just profiling the cycle count of one or two functions,

or if you are interested in a region of code inside a particular function, you

can use calls to the clock( ) function (supported by load6x) to time those

particular functions or regions of code.

2.4.1.1 Using the –g Option to Profile on load6x

Invoking load6x with the –g option runs the standalone simulator in profiling

mode. Source files must be compiled with the –mg profiling option for profiling

to work on the standalone simulator. The profile results are stored in a file

called by the same name as the .out file, but with the .vaa extension.

If you used the –mg profiling option when compiling and linking ”example.out”,

use the –g option to create a file in which you can view the profiling results. For

example, enter the following on your command line:

load6x –g example.out

Now, you can view the file ”example.vaa” to see the results of the profile ses-

sion created with the –mg option on the .out file.

Your new file, ”example.vaa” should have been created in the same directory

as the .out file. You can edit the .vaa file with a text editor. You should see some-

thing like this:

Program Name: example.out

Start Address: 00007980 main, at line 1, ”demo1.c”

Stop Address: 00007860 exit

Run Cycles: 3339

Profile Cycles: 3339

BP Hits: 11

*******************************************************

Area Name   Count Inclusive Incl–Max Exclusive Excl–Max

CF iir1( ) 1 236 236 236 236

CF vec_mpy1( ) 1 248 248 248 248

CF mac1( ) 1 168 168 168 168

CF main( ) 1 3333 3333 40 40



Profiling Your Code

 2-22

Count represents the number of times each function was called and entered.

Inclusive represents the total cycle time spent inside that function including

calls to other functions. Incl–Max (Inclusive Max) represents the longest time

spent inside that function during one call. Exclusive and Excl–Max are the

same as Inclusive and Incl–Max except that time spent in calls to other func-

tions inside that function have been removed.

2.4.1.2 Using the Clock( ) Function to Profile

To get cycle count information for a function or region of code with the standa-

lone simulator, embed the clock( ) function in your C code. The following exam-

ple demonstrates how to include the clock() function in your C code.

Example 2–8. Including the clock( ) Function

#include <stdio.h>
#include <time.h> /* need time.h in order to call clock()*/

main(int argc, char *argv[]) {
const short coefs[150];
short optr[150];
short state[2];
const short a[150];
const short b[150];
int c = 0;
int dotp[1] = {0};
int sum= 0;
short y[150];
short scalar = 3345;
const short x[150];
clock_t start, stop, overhead;

start = clock(); /* Calculate overhead of calling clock*/
stop = clock(); /* and subtract this value from The results*/
overhead = stop – start; 

start = clock();
sum = mac1(a, b, c, dotp);
stop = clock();
printf(”mac1 cycles: %d\n”, stop – start – overhead);

start = clock();
vec_mpy1(y, x, scalar);
stop = clock();
printf(”vec_mpy1 cycles: %d\n”, stop – start – over head);

start = clock();
iir1(coefs, x, optr, state);
stop = clock();
printf(”iir1 cycles: %d\n”, stop – start – overhead);
}
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2.5 Refining C/C++ Code

You can realize substantial gains from the performance of your C/C++ code

by refining your code in the following areas:

� Using intrinsics to replace complicated C/C++ code

� Using word access to operate on 16-bit data stored in the high and low

parts of a 32-bit register

� Using double access to operate on 32-bit data stored in a 64-bit register

pair (’C64x and ’C67x only)

2.5.1 Using Intrinsics

The ’C6000 compiler provides intrinsics, special functions that map directly to

inlined ’C62x/’C64x/’C67x instructions, to optimize your C/C++ code quickly.

All instructions that are not easily expressed in C/C++ code are supported as

intrinsics. Intrinsics are specified with a leading underscore (_) and are ac-

cessed by calling them as you call a function.

For example, saturated addition can be expressed in C/C++ code only by writ-

ing a multicycle function, such as the one in Example 2–9.

Example 2–9. Saturated Add Without Intrinsics

int sadd(int a, int b)

{

  int result;

 

  result = a + b;

 

  if (((a ^ b) & 0x80000000) == 0)

  {

    if ((result ^ a) & 0x80000000)

    {

      result = (a < 0) ? 0x80000000 : 0x7fffffff;

    }

  }

  return (result);

}

This complicated code can be replaced by the _sadd( ) intrinsic, which results

in a single ’C6x instruction (see Example 2–10).

Example 2–10. Saturated Add With Intrinsics

result = _sadd(a,b);
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Table 2–6 lists the ’C6000 intrinsics. For more information on using intrinsics,

see the TMS320C6000 Optimizing C/C++ Compiler User’s Guide.

Table 2–6. TMS320C6000 C/C++ Compiler Intrinsics 

C Compiler Intrinsic
Assembly

Instruction Description Device

int _abs(int src2);

int_labs(long src2);

ABS Returns the saturated absolute value of

src2.

int _abs2 (int src2); ABS2 Calculates the absolute value for each

16–bit value.

’C64x

int _add2(int src1, int src2); ADD2 Adds the upper and lower halves of src1 to

the upper and lower halves of src2 and re-

turns the result. Any overflow from the low-

er half add will not affect the upper half

add.

int _add4 (int src1, int src2); ADD4 Performs 2s–complement addition to pairs

of packed 8–bit numbers.

’C64x

ushort & _amem2(void *ptr); LDHU/

STH

Allows aligned loads and stores of 2 bytes

to memory.

uint & _amem4(void *ptr); LDW/

STW

Allows aligned loads and stores of 4 bytes

to memory.

double & _amemd8(void * ptr); LDDW/

STDW or

2 LDW/

2 STW

Allows aligned loads and stores of 8 bytes

to memory.

’C64x

   or

   all

const ushort & _amem2_const(const

void *ptr);

LDHU Allows aligned loads of 2 bytes to memory.

const uint & _amem4_const(const void

*ptr);

LDW Allows aligned loads of 4 bytes to memory.

const double & _amemd8_const(const

void * ptr);

LDDW

or

2 LDW

Allows aligned loads of 8 bytes to memory. ’C64x

   or

   all

int _avg2 (int src1, int src2); AVG2 Calculates the average for each pair of

signed 16–bit values.

’C64x

unsigned _avgu4(uint src1, uint src2); AVGU4 Calculates the average for each pair of un-

signed 8–bit values.

’C64x

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 2–6. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly

Instruction

unsigned _bitc4 (uint src2); BITC4 For each of the 8–bit quantities in src, the

number of 1 bits is written to the corre-

sponding position in the return value.

’C64x

unsigned _bitr (uint src2); BITR Reverses the order of the bits. ’C64x

uint _clr(uint src2, uint csta, uint cstb); CLR Clears the specified field in src2. The be-

ginning and ending bits of the field to be

cleared are specified by csta and cstb, re-

spectively.

unsigned _clrr(uint src1, int src2); CLR Clears the specified field in src2. The be-

ginning and ending bits of the field to be

cleared are specified by the lower 10 bits

of the source register.

int _cmpeq2 (int src1, int src2); CMPEQ2 Performs equality comparisons on each

pair of 16–bit values. Equality results are

packed into the two least–significant bits of

the return value.

’C64x

int _cmpeq4 (int src1, int src2); CMPEQ4 Performs equality comparisons on each

pair of 8–bit values. Equality results are

packed into the four least–significant bits

of the return value.

’C64x

int _cmpgt2 (int src1, int src2); CMPGT2 Compares each pair of signed 16–bit val-

ues. Results are packed into the two least–

significant bits of the return value.

’C64x

unsigned _cmpgtu4 (uint src1, uint

src2);

CMPGTU4 Compares each pair of unsigned 8–bit val-

ues. Results are packed into the four

least–significant bits of the return value.

’C64x

unsigned _deal (uint src2); DEAL The odd and even bits of src are extracted

into two separate 16–bit values.

’C64x

int _dotp2 (int src1, int src2);

double _ldotp2 (int src1, int src2);

DOTP2

LDOTP2

The product of signed lower 16–bit values

of src1 and src2 is added to the product of

signed upper 16–bit values of src1 and

src2.

’C64x

int _dotpn2 (int src1, int src2); DOTPN2 The product of signed lower 16–bit values

of src1 and src2 is subtracted from the

product of signed upper 16–bit values  of

src1 and src2.

’C64x

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 2–6. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly

Instruction

int _dotpnrsu2 (int src1, uint src2); DOTPNR-

SU2

The product of unsigned lower 16–bit val-

ues in src1 and src2 is subtracted from the

product of signed upper 16–bit values in

src1 and src2. 215 is added and the result

is sign shifted right by 16.

’C64x

int _dotprsu2 (int src1, uint src2); DOTPR-

SU2

The product of the first signed pair of

16–bit values is added to the product of

the  unsigned second pair of 16–bit  values

in src1 and src2. 215 is added and the re-

sult is sign shifted right by 16.

’C64x

unsigned _dotpu4 (uint src1, uint src2);

int _dotpsu4 (int src1, uint src2);

DOTPU4

DOTPSU4

For each pair of 8–bit values in src1 and

src2, the 8–bit value from src1 is multiplied

with the 8–bit value from src2. The four

products are summed together.

’C64x

int_dpint(double); DPINT Converts 64-bit double to 32-bit signed in-

teger, using the rounding mode set by the

CSR register.

’C67x

long _dtol(double src); Reinterprets double register pair a a long

register pair.

int _ext(int src2, uint csta, int cstb); EXT Extracts the specified field in src2, sign-ex-

tended to 32 bits. The extract is performed

by a shift left followed by a signed shift

right; csta and cstb are the shift left and

shift right amounts, respectively.

int _extr(int src2, int src1); EXT Extracts the specified field in src2, sign-ex-

tended to 32 bits. The extract is performed

by a shift left followed by a signed shift

right; csta and cstb are the shift left and

shift right amounts, respectively.

uint _extu(uint src2, uint csta, uint cstb); EXTU Extracts the specified field in src2, zero-

extended to 32 bits. The extract is per-

formed by a shift left followed by a un-

signed shift right; csta and cstb are the

shift left and shift right amounts, respec-

tively.

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 2–6. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly

Instruction

uint _extur(uint src2, int src1); EXTU Extracts the specified field in src2, zero-

extended to 32 bits. The extract is per-

formed by a shift left followed by a un-

signed shift right; csta and cstb are the

shift left and shift right amounts, respec-

tively.

uint _ftoi(float); Reinterprets the bits in the float as an un-

signed integer.

(Ex: _ftoi(1.0) == 1065353216U)

int _gmpy4 (int src1, int src2); GMPY4 Performs the galois field multiply on 4 val-

ues in src1 with 4 parallel values in src2.

The 4 products are packed into the return

value.

’C64x

uint _hi(double); Returns the high 32 bits of a double as an

integer.

double _itod(uint, uint); Creates a new double register pair from

two unsigned integers.

float _itof(uint); Reinterprets the bits in the unsigned inte-

ger as a float.

(Ex: _itof(0x3f800000) == 1.0)

double _ldotp2 (int src1, int src2);

int _dotp2 (int src1, int src2);

LDOTP2

DOTP2

The product of the lower signed 16–bit val-

ues in src1 and src2 are added to the prod-

uct of the upper signed 16–bit values in

src1 and src2. In the ldotp2 vecsum, the

result is sign extended to 64 bits.

uint _lmbd(uint src1, uint src2); LMBD Searches for a leftmost 1 or 0 of src2 deter-

mined by the LSB of src1. Returns the

number of bits up to the bit change.

uint _lo(double); Returns the low (even) register of a double

register pair as an integer.

double _ltod(long src); Reinterprets long register pair src as a

double register pair.

long _dtol(double src); Reinterprets double register pair a a long

register pair.

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 2–6. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly

Instruction

int _max2 (int src1, int src2);

int _min2 (int src1, int src2);

unsigned _maxu4 (uint src1, uint src2);

unsigned _minu4 (uint src1, uint src2);

MAX2

MIN2

MAXU4

MINU4

Places the larger/smaller of each pair of

values in the corresponding position in the

return value. Values can be 16–bit signed

or 8–bit unsigned.

’C64x

ushort & _mem2(void *ptr); 2 LDB /

2 STB

Allows unaligned loads and stores of 2 by-

tes to memory.

uint & _mem4(void *ptr); LDNW/

STNW

Allows unaligned loads and stores of 4 by-

tes to memory

’C64x

double & _memd8(void *ptr); LDNDW/

STNDW

Allows unaligned loads and stores of 8 by-

tes to memory.

’C64x

const ushort & _mem2_const(const void

*ptr);

2 LDB Allows unaligned loads of 2 bytes to

memory.

const uint & _mem4_const(const void

*ptr);

LDNW Allows unaligned loads of 4 bytes to

memory.

’C64x

const double & _memd8_const(const

void * ptr);

LDNDW Allows unaligned loads of 8 bytes to

memory.

’C64x

double _mpy2 (int src1, int src2); MPY2 Returns the products of the lower and

higher 16–bit values in src1 and src2.

’C64x

double _mpyhi (int src1, int src2);

double _mpyli (int src1, int src2);

MPYHI

MPYLI

Produces a 16 by 32 multiply. The result is

placed into the lower 48 bits of the returned

double. Can use the upper or lower 16 bits

of src1.

’C64x

int _mpyhir (int src1, int src2);

int_mpylir (int src1, int src2);

MPYHIR

MPYLIR

Produces a signed 16 by 32 multiply. The

result is shifted right by 15 bits. Can use

the upper or lower 16 bits of src1.

’C64x

double _mpysu4 (int src1, uint src2);

double _mpyu4 (uint src1, uint src2);

MPYSU4

MPYU4

For each 8–bit quantity in src1 and src2,

performs an 8–bit by 8–bit multiply. The

four 16–bit results are packed into a

double. The results can be signed or un-

signed.

’C64x

int _mpy(int src1, int src2);

int _mpyus(uint src1, int src2);

int _mpysu(int src1, uint src2);

uint _mpyu(uint src1, uint src2);

MPY

MPYUS

MPYSU

MPYU

Multiplies the 16 LSBs of src1 by the 16

LSBs of src2 and returns the result. Values

can be signed or unsigned.

Note: Instructions not specified with a device apply to all ’C6000 devices.



Refining C/C++ Code

2-29Optimizing C/C++ Code

Table 2–6. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly

Instruction

int _mpyh(int src1, int src2);

int _mpyhus(uint src1, int src2);

int _mpyhsu(int src1, uint src2);

uint _mpyhu(uint src1, uint src2);

MPYH

MPYHUS

MPYHSU

MPYHU

Multiplies the 16 MSBs of src1 by the 16

MSBs of src2 and returns the result. Val-

ues can be signed or unsigned.

int _mpyhl(int src1, int src2);

int _mpyhuls(uint src1, int src2);

int _mpyhslu(int src1, uint src2);

uint _mpyhlu(uint src1, uint src2);

MPYHL

MPYHULS

MPYHSLU

MPYHLU

Multiplies the 16 MSBs of src1 by the 16

LSBs of src2 and returns the result. Values

can be signed or unsigned.

int _mpylh(int src1, int src2);

int _mpyluhs(uint src1, int src2);

int _mpylshu(int src1, uint src2);

uint _mpylhu(uint src1, uint src2);

MPYLH

MPYLUHS

MPYLSHU

MPYLHU

Multiplies the 16 LSBs of src1 by the 16

MSBs of src2 and returns the result. Val-

ues can be signed or unsigned.

int _mvd (int src2); MVD Moves the data from the src to the return

value over 4 cycles using the multipler

pipeline.

’C64x

void _nassert(int); Generates no code. Tells the optimizer

that the expression declared with the

assert function is true. This gives a hint to

the compiler as to what optimizations

might be valid (word-wide optimizations).

uint _norm(int src2);

uint lnorm(long src2);

NORM Returns the number of bits up to the first

nonredundant sign bit of src2uint _lnorm(long src2); nonredundant sign bit of src2.

unsigned _pack2 (uint src1, uint src2);

unsigned _packh2 (uint src1, uint src2);

PACK2

PACKH2

The lower/upper half–words of src1 and

src2 are placed in the return value.

’C64x

unsigned _packh4 (uint src1, uint src2);

unsigned _packl4 (uint src1, uint src2);

PACKH4

PACKL4

Packs alternate bytes into return value.

Can pack high or low bytes.

’C64x

unsigned _packhl2 (uint src1, uint src2);

unsigned _packlh2 (uint src1, uint src2);

PACKHL2

PACKLH2

The upper/lower half–word of src1 is

placed in the upper half–word the return

value. The lower/upper half–word of src2

is placed in the lower half–word the return

value.

’C64x

double _rcpdp(double); RCPDP Computes the approximate 64-bit double

reciprocal.

’C67x

float _rcpsp(float); RCPSP Computes the approximate 64-bit double

reciprocal.

’C67x

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 2–6. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly

Instruction

unsigned _rotl (uint src2, uint src1); ROTL Rotates src2 to the left by the amount in

src1.

’C64x

double _rsqrdp(double src); RSQRDP Computes the approximate 64-bit double

reciprocal square root.

’C67x

float _rsqrsp(float src); RSQRSP Computes the approximate 32-bit float re-

ciprocal square root.

’C67x

int _sadd(int src1, int src2);

long lsadd(int src1 long src2):

SADD Adds src1 to src2 and saturates the result.

Returns the resultlong _lsadd(int src1, long src2): Returns the result.

unsigned _saddu4 (uint src1, uint src2); SADDU4 Performs saturated addition between

pairs of 8-bit unsigned values in src1 and

src2.

’C64x

int _sadd2 (int src1, int src2);

int _saddus2 (uint src1, int src2);

SADD2

SADDUS2

Performs saturated addition between

pairs of 16–bit values in src1 and src2.

Src1 values can be signed or unsigned.

’C64x

int _sat(long src2); SAT Converts a 40-bit value to an 32-bit value

and saturates if necessary.

uint _set(uint src2, uint csta, uint cstb); SET Sets the specified field in src2 to all 1s and

returns the src2 value. The beginning and

ending bits of the field to be set are speci-

fied by csta and cstb, respectively.

unsigned _setr(uint, int); SET Sets the specified field in src2 to all 1s and

returns the src2 value. The beginning and

ending bits of the field to be set are speci-

fied by the lower ten bits of the source reg-

ister.

unsigned _shfl (uint src2); SHFL The lower 16 bits of src are placed in the

even bit positions, and the upper 16 bits of

src are placed in the odd bit positions.

’C64x

unsigned _shlmb (uint src1, uint src2);

unsigned _shrmb (uint src1, uint src2);

SHLMB

SHRMB

Shifts src2 left/right by one byte, and the

most/least significant byte of src1 is

merged into the least/most significant byte

position.

’C64x

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 2–6. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly

Instruction

int _shr2 (int src2, uint src1);

unsigned _shru2 (uint src2, uint src1);

SHR2

SHRU2

For each 16-bit quantity in src2, the quanti-

ty is arithmetically or logically shifted right

by src1 number of bits. src2 can contain

signed or unsigned values.

’C64x

int _smpy(int src1, int src2);

int _smpyh(int src1, int src2);

int _smpyhl(int src1, int src2);

int _smpylh(int src1, int src2);

SMPY

SMPYH

SMPYHL

SMPYLH

Multiplies src1 by src2, left shifts the result

by one, and returns the result. If the result

is 0x80000000, saturates the result to

0x7FFFFFFF.

double _smpy2 (int src1, int src2); SMPY2 Performs 16-bit multiplication between

pairs of signed packed 16-bit values, with

an additional 1 bit left–shift and saturate

into a double result.

’C64x

int _spack2 (int src1, int src2); SPACK2 Two signed 32–bit values are saturated to

16–bit values and packed into the return

value.

’C64x

unsigned _spacku4 (int src1, int src2); SPACKU4 Four signed 16–bit values are saturated to

8–bit values and packed into the return

value.

’C64x

int _spint(float); SPINT Converts 32-bit float to 32-bit signed inte-

ger, using the rounding mode set by the

CSR register.

’C67x

int _sshvl (int src2, int src1);

int _sshvr (int src2, int src1);

SSHVL

SSHVR

Shifts src2 to the left/right of src1 bits. Sat-
urates the result if the shifted value is
greater than MAX_INT or less than
MIN_INT

’C64x

int _sshl (int src2, uint src1); SSHL Shifts src2 left by the contents of src1, sat-

urates the result to 32 bits, and returns the

result.

int _ssub(int src1, int src2);

long lss b(int src1 long src2):

SSUB Subtracts src2 from src1, saturates the re-

sult size and returns the resultlong _lssub(int src1, long src2): sult size, and returns the result.

uint _subc(uint src1, uint src2); SUBC Conditional subtract divide step.

Note: Instructions not specified with a device apply to all ’C6000 devices.



Refining C/C++ Code

 2-32

Table 2–6. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly

Instruction

int _sub2(int src1, int src2); SUB2 Subtracts the upper and lower halves of

src2 from the upper and lower halves of

src1, and returns the result. Any borrowing

from the lower half subtract does not affect

the upper half subtract.

int _sub4 (int src1, int src2); SUB4 Performs 2s–complement subtraction be-

tween pairs of packed 8–bit values.

’C64x

int _subabs4 (int src1, int src2); SUBABS4 Calculates the absolute value of the differ-

ences for each pair of packed 8–bit values.

’C64x

uint _swap4 (uint src2); SWAP4 Exchanges pairs of bytes (an endian

swap) within each 16–bit value.

’C64x

uint _unpkhu4 (uint src2); UNPKHU4 Unpacks the two high unsigned 8–bit val-

ues into unsigned packed 16–bit values.

’C64x

uint _unpklu4 (uint src2); UNPKLU4 Unpacks the two low unsigned 8–bit val-

ues into unsigned packed 16–bit values.

’C64x

uint _xpnd2 (uint src2); XPND2 Bits 1 and 0 of src are replicated to the up-

per and lower halfwords of the result, re-

spectively.

’C64x

uint _xpnd4 (uint src2); XPND4 Bits 3 through 0 are replicated to bytes 3

through 0 of the result.

’C64x

Note: Instructions not specified with a device apply to all ’C6000 devices.
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2.5.2 Wider Memory Access for Smaller Data Widths

In order to maximize data throughput on the C6000, it is often desirable to use

a single load or store instruction to access multiple data values consecutively

located in memory. For example,  all C6000 devices have instructions with cor-

responding intrinsics, such as _add2( ), _mpyhl( ), _mpylh( ), etc,  that oper-

ate on 16-bit data stored in the high and low parts of a 32-bit register. When

operating on a stream of 16–bit data, you can use word (32–bit) accesses to

read two 16–bit values at a time, and then use other ’C6x intrinsics to operate

on the data. Similarly, on the C64x and C67x devices, it is sometimes desirable

to perform 64–bit accesses with LDDW to access two 32–bit values, four

16–bit values, or even eight 8–bit values, depending on situation.

For example, rewriting the vecsum( ) function to use word accesses (as in

Example 2–11) doubles the performance of the loop. See section 5.4, Using

Word Access for Short Data and Doubleword Access for Floating–Point Data,

on page 5-19 for more information. This type of optimization is called packed

data processing.

Example 2–11. Vector Sum With restrict Keywords,MUST_ITERATE, Word Reads

void vecsum4(short *restrict sum, restrict short *in1, 

restrict short *in2, unsigned int N)

{

int i;

#pragma MUST_ITERATE (10);

 

for (i = 0; i < (N/2); i++) 

_amem4(&sum[i]) = add2(_amem4_const(&in1[i]), _amem4_const(&in2[i]));

 }

Note:

The MUST_ITERATE intrinsic tells the compiler that the following loop will
iterate at least the specified number of times.

The _amem4 intrinsic tells the compiler that the following access is a 4–byte
(or word) aligned access of an unsigned int beginning at address sum. The
_amem4_const intrinsics tell the compiler that the following accesses are a
4–byte (or word) aligned access of a const unsigned int beginning at ad-
dresses in in1 and in2 respectively.

The use of aligned memory intrinsics is new to release 4.1 of the C6000 Opti-

mizing C Compiler. Prior to this release, the method used was type–casting,

wherein the programmer casts a pointer of a “narrow” type to a pointer of a

“wider” type as seen in the example below.



Refining C/C++ Code

 2-34

Example 2–12. Example of Vector Sum with Type–Casting

void vecsum4(short *restrict sum, restrict short *in1, 

restrict short *in2, unsigned int N)

{

 int i;

const int *restrict i_in1 = (const int *)in1;

const int *restrict i_in2 = (const int *)in2;

int *restrict i_sum = (int *)sum;

#pragma MUST_ITERATE (10);

for (i = 0; i < (N/2); i++)

i_sum[i] = _add2(i_in1[i], i_in2[i]);

}

In this example pointers sum, in1 and in2 are cast to int*, which means that

they must point to word–aligned data. By default, the compiler aligns all global

short arrays on doubleword boundaries. The type casting method, though ef-

fective, is not supported by ANSI C. In the traditional C/C++ pointer model, the

pointer type specifies both the type of data pointed to, as well as the width of

access to that data. With packed data processing , it is desirable to access mul-

tiple elements of a given type with a single de–reference as the example above

does. Normally, de–referencing a pointer–to–type returns a single element of

that type. Furthermore, the ANSI C standard states that pointers to different

types are presumed to not alias (except in the special case when one pointer

is a pointer–to–char). (See Chapter 2, Lesson One of the Compiler Tutorial for

more information on pointer/memory aliasing). Thus, casting between types

can thwart dependence analysis and result in incorrect code.

In most cases, the C6000 compiler can correctly analyze the memory depen-

dences. The compiler must disambiguate memory references in order to de-

termine whether the memory references alias. In the case where the pointers

are to different types (unless one of the references is to a char, as noted

above), the compiler assumes they do not alias. Casts can break these default

assumptions since  the compiler only gets to see the type of the pointer when

the de–reference happens, not the type of the data actually being pointed to.

See the following example.
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Example 2–13. Example of Casting Breaking Default Assumptions

int test(short *x))

{

int t, *y=(int*)x;

*x = 0;

t = *y;

return t;

}

 

In this example, x and y are indirect references to unnamed objects via point-

ers x and y. Those objects may or may not be distinct. According to the C stan-

dard (section 2.4), a conforming program may not access an object of one type

via a pointer to another type when those types have different sizes. That per-

mits an optimizing compiler to assume that *x and *y point to distinct objects

if it cannot prove otherwise. This assumption is often critical to obtaining high

quality compiled code.

In this example, the compiler is allowed to assume that *x and *y point to ob-

jects that are independent, or distinct. Thus, the compiler could reorder the

store to *x and the load of *y causing test() to return to the old value of *y instead

of the new value, which is probably not what the user intended.

Another similar example is shown below.

Example 2–14. Example Two of Casting Breaking Default Assumptions

test(short *x))

{

int t;

*x = 0;

t = *((int *)x);

return t;

}

 

In this case, the compiler is allowed to assume that both x and *((int *)x) are

independent. Therefore, the reordering of the store and load may occur as in

Example 2–13.

As these two examples illustrate, it is not recommended to assign a pointer of

one type to a pointer of another type. Instead, one should use the new memory
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intrinsics at the point of reference to allow any size load or store to reference

a particular size pointer. The new memory intrinsics retain the type information

for the original type while still allowing the compiler to access data at a wider

width, so that the compiler default assumptions are no longer broken. These

new intrinsics build upon the two intrinsics added to the 4.0 release to support

non–aligned word and double word memory accesses (see Example 2–16).

Below, Example 2–13 is rewritten to use the memory intrinsics.

Example 2–15. Example 2–13 Rewritten Using Memory Access Intrinsics

int test(short *x))

{

int t;

*x = 0;

t = _amem4(x);

return t;

}

 

In this example, _amem4 allows t to be loaded with an aligned 4–byte (word)

value referenced by the short *x.

 Table 2–7 summarizes all the memory access intrinsics.

Table 2–7.  Memory  Access  Intrinsics 

(a) Double load/store

C Compiler Intrinsic Description

_memd8(p) unaligned access of double beginning at address p

(existing intrinsic)

_memd8_const(p) unaligned access to const double beginning at ad-

dress p

_amemd8(p) aligned access of double beginning at address p

_amemd8_const(p) aligned access to const double beginning at address p
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Table 2–7.  Memory  Access  Intrinsics(Continued)

(b) Unsigned int load/store

C Compiler Intrinsic Description

_mem4(p) unaligned access of unsigned int beginning at ad-

dress p (existing intrinsic)

_mem4_const(p) unaligned access to const unsigned int beginning at

address p

_amem4(p) aligned access of unsigned int beginning at address

p

_amem4_const(p) aligned access to const unsigned int beginning at

address p

(c) Unsigned short load/store

C Compiler Intrinsic Description

_mem2(p) unaligned access of unsigned short beginning at ad-

dress p

_mem2_const(p) unaligned access to const unsigned short beginning

at address p

_amem2(p) aligned access of unsigned short beginning at ad-

dress p

_amem2_const(p) aligned access to const unsigned short beginning at

address p

Pointer p can have any type. However, in order to allow the compiler to correct-

ly identify pointer aliases, it is crucial that the pointer argument p to each of

these intrinsic functions correctly identify the type of the object being pointed

to. That is, if you want to fetch four shorts at at time, the argument to _memd8()

must be a pointer to (or an array of) shorts.

On the ’C64x, nonaligned accesses to memory are allowed in C through the

_mem4 and _memd8 intrinsics.



Refining C/C++ Code

 2-38

Example 2–16. Vector Sum With Non–aligned Word Accesses to Memory

void vecsum4a(short *restrict sum, const short *restrict in1, 

const short restrict *in2, unsigned int N)

{

    int i;

 

   #pragma MUST_ITERATE (10)

 

    for (i = 0; i < N; i += 2)

   _mem4(&sum[i]) = _add2(_mem4_const(&in1[i]),_mem4_const(&in2[i]));

 }

 

Another consideration is that the loop must now run for an even number of it-

erations. You can ensure that this happens by padding the short arrays so that

the loop always operates on an even number of elements.

If a vecsum( ) function is needed to handle short-aligned data and odd-num-

bered loop counters, then you must add code within the function to check for

these cases. Knowing what type of data is passed to a function can improve

performance considerably. It may be useful to write different functions that can

handle different types of data. If your short-data operations always operate on

even-numbered word-aligned arrays, then the performance of your applica-

tion can be improved. However, Example 2–17 provides a generic vecsum( )

function that handles all types of alignments and array sizes.
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Example 2–17. Vector Sum With restrict Keywords, MUST_ITERATE pragma, and Word
Reads (Generic Version)

void vecsum5(short *restrict sum, const short *restrict in1, const short *re-

strict in2, unsigned int N)

{

  int i;

 

     /* test to see if sum, in2, and in1 are aligned to a word boundary */

 

    if (((int)sum | (int)in2 | (int)in1) & 0x2)

     {

    #pragma MUST_ITERATE (20);

     for (i = 0; i < N; i++)

     sum[i] = in1[i] + in2[i];      

      }

     else

     {   

     #pragma MUST_ITERATE (10);         

     for (i = 0; i < (N/2); i++)  

   _amem4(&sum[i]) = _add2(_amem4_const(&in1[i]), _amem4_const(&in2[i])); 

 

     if (N & 0x1) sum[i] = in1[i] + in2[i];      

      }

}
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2.5.2.1 Using Word Access in Dot Product

Other intrinsics that are useful for reading short data as words are the multiply

intrinsics. Example 2–18 is a dot product example that reads word-aligned

short data and uses the _mpy( ) and _mpyh( ) intrinsics. The _mpyh( ) intrin-

sic uses the ’C6000 instruction MPYH, which multiplies the high 16 bits of two

registers, giving a 32-bit result.

This example also uses two sum variables (sum1 and sum2). Using only one

sum variable inhibits parallelism by creating a dependency between the write

from the first sum calculation and the read in the second sum calculation. With-

in a small loop body, avoid writing to the same variable, because it inhibits par-

allelism and creates dependencies.

Example 2–18. Dot Product Using Intrinsics

int dotprod(const short *restrict a, const short *restrict b, unsigned int N)

{

  int i, sum1 = 0, sum2 = 0;

  for (i = 0; i < (N >> 1); i++)

 { 

 sum1 = sum1 + _mpy (_amem4_const(&a[i]), _amem4_const(&b[i]));

 sum2 = sum2 + _mpyh(_amem4_const(&a[i]), _amem4_const(&b[i]));

  }

  return sum1 + sum2;      

}
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2.5.2.2 Using Word Access in FIR Filter

Example 2–19 shows an FIR filter that can be optimized with word reads of

short data and multiply intrinsics.

Example 2–19. FIR Filter—Original Form

void fir1(const short x[restrict], const short h[restrict], short y[restrict],

int n, int m, int s)

{

  int i, j;

  long y0;

  long round = 1L << (s – 1);

 

  for (j = 0; j < m; j++)

  {

    y0 = round;

 

    for (i = 0; i < n; i++)

      y0 += x[i + j] * h[i];

 

    y[j] = (int) (y0 >> s);

  }

}

Example 2–20 shows an optimized version of Example 2–19. The optimized

version passes an int array instead of casting the short arrays to int arrays and,

therefore, helps ensure that data passed to the function is word-aligned. As-

suming that a prototype is used, each invocation of the function ensures that

the input arrays are word-aligned by forcing you to insert a cast or by using int

arrays that contain short data.
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Example 2–20. FIR Filter— Optimized Form

void fir2(const int x[restrict], const int h[restrict], short y[restrict], int

n, int m, int s)

  {

  int i, j;

  long y0, y1;

  long round = 1L << (s – 1);

 

  #pragma MUST_ITERATE (8);

        for (j = 0; j < (m >> 1); j++)

        {               

               y0 = y1 = round;

              #pragma MUST_ITERATE (8);

                    for (i = 0; i < (n >> 1); i++)

                     {

                          y0 += _mpy (x[i + j],   h[i]);

                          y0 += _mpyh (x[i + j],   h[i]);

                          y1 += _mpyhl(x[i + j],   h[i]);

                          y1 += _mpylh(x[i + j + 1], h[i]);

                      }

 

              *y++ = (int)(y0 >> s);

              *y++ = (int)(y1 >> s);

         }

  }

short x[SIZE_X], h[SIZE_H], y[SIZE_Y];

      void main()

 {

       fir1(_amem4_const(&x), _amem4_const(&h), y, n,m, s);

}
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2.5.2.3 Using Double Word Access for Word Data (’C64x and ’C67x Specific)

The ’C64x and ’C67x families have a load double word (LDDW) instruction,

which can read 64 bits of data into a register pair. Just like using word accesses

to read 2 short data items, double word accesses can be used to read 2 word

data items (or 4 short data items). When operating on a stream of float data,

you can use double accesses to read 2 float values at a time, and then use

intrinsics to operate on the data.

The basic float dot product is shown in Example 2–21. Since the float addition

(ADDSP) instruction takes 4 cycles to complete, the minimum kernel size for

this loop is 4 cycles. For this version of the loop, a result is completed every

4 cycles.

Example 2–21. Basic Float Dot Product

 float dotp1(const float a[restrict], const float b[restrict])

{

    int i;

    float sum = 0;

 

    for (i=0; i<512; i++)

        sum += a[i] * b[i];

 

    return sum;

}

In Example 2–22, the dot product example is rewritten to use double word

loads and intrinsics are used to extract the high and low 32-bit values con-

tained in the 64-bit double. The _hi() and _lo() instrinsics return integer values,

the _itof() intrinsic subverts the C typing system by interpreting an integer val-

ue as a float value. In this version of the loop, 2 float results are computed every

4 cycles. Arrays can be aligned on double word boundries by using either the

DATA_ALIGN (for globally defined arrays) or DATA_MEM_BANK (for locally

defined arrays) pragmas.Example 2–22 and Example 2–23 show these prag-

mas.

Note: For the pragmas that apply to functions or symbols, the syntax for
the pragma differs between C and C++. In C, you must supply the name of
the object or function to which you are applying the pragma as the first argu-
ment.  In C++,  the name is omitted; the pragma applies to the declaration
of the object or function that follows it.
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Example 2–22. Float Dot Product Using Intrinsics

float dotprod2(const double a[restrict], const double b[restrict])

{

    int i;

    float sum0 = 0;

    float sum1 = 0;

 

    for (i=0; i<512/2; i++)

    {

        sum0 += _itof(_hi(a[i]))   * _itof(_hi(b[i]));

        sum1 += _itof(_lo(a[i]))   * _itof(_lo(b[i]));

    }

 

    return sum0 + sum1;

}

float ret_val, a[SIZE_A], b[SIZE_B];

void main()

{

     ret_val = dotprod2(_amem8_const(&a), _amem8_const(&b));

}

In Example 2–23, the dot product example is unrolled to maximize perfor-

mance. The preprocessor is used to define convenient macros FHI() and

FLO() for accessing the high and low 32-bit values in a double word. In this

version of the loop, 8 float values are computed every 4 cycles.
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Example 2–23. Float Dot Product With Peak Performance

#define FHI(a) _itof(_hi(a))

#define FLO(a) _itof(_lo(a))

 

float dotp3(const double a[restrict], const double b[restrict])

 {

     int i; 

    float sum0 = 0;

    float sum1 = 0;

    float sum2 = 0;

    float sum3 = 0;

    float sum4 = 0;

    float sum5 = 0;

    float sum6 = 0;

    float sum7 = 0;

    float sum8 = 0;

 

    for (i=0; i<512; i+=4)

    {

        sum0 += FHI(a[i])   * FHI(b[i]);

        sum1 += FLO(a[i])   * FLO(b[i]);

        sum2 += FHI(a[i+1]) * FHI(b[i+1]);

        sum3 += FLO(a[i+1]) * FLO(b[i+1]);

        sum4 += FHI(a[i+2]) * FHI(b[i+2]);

        sum5 += FLO(a[i+2]) * FLO(b[i+2]);

        sum6 += FHI(a[i+3]) * FHI(b[i+3]);

        sum7 += FLO(a[i+3]) * FLO(b[i+3]);

    }

 

    sum0 += sum1;

    sum2 += sum3;

    sum4 += sum5;

    sum6 += sum7;

    sum0 += sum2;

    sum4 += sum6;

    return sum0 + sum4;

  }

void main()

 {

          /* Using 0 as the bank parameter for the DATA_MEM_BANK  */

          /* pragma aligns variable to a double word boundary for */

          /* the C62xx, C64xx, and C67xx. */

     #pragma DATA_MEM_BANK(a, 0);

     #pragma DATA_MEM_BANK (b, 0);

     float ret_val, a[SIZE_A], b[SIZE_B];

     ret_val = dotp3(_amemd8_const(&a), _amemd8_const(double*)b);

}
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In Example 2–24, the dot product example has been rewritten for c64xx. This

demonstrates how it is possible to perform doubleword nonaligned memory

reads on a dot product that always executes a multiple of 4 times.

Example 2–24. Int Dot Product with Nonaligned Doubleword Reads

int dotp4(const short *restrict a, const short *restrict b, unsigned int N)

 {

    int i, sum1 = 0, sum2 = 0, sum3 = 0, sum4 = 0;

    for (i = 0; i < N; i+=4)

    {

       sum1 += _mpy (_lo(_memd8_const(&a[i])), _lo(_memd8_const(&b[i])));

       sum2 += _mpyh(_lo(_memd8_const(&a[i])), _lo(_memd8_const(&b[i])));

       sum3 += _mpy (_hi(_memd8_const(&a[i])), _hi(_memd8_const(&b[i])));

       sum4 += _mpyh(_hi(_memd8_const(&a[i])), _hi(_memd8_const(&b[i])));

     }

    return sum1 + sum2 + sum3 + sum4;

  }
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2.5.2.4 Using _nassert(), Word Accesses, and the MUST_ITERATE pragma

It is possible for the compiler to automatically perform packed data optimiza-

tions for some, but not all loops. By either using global arrays, or by using the

_nassert() intrinsic to provide alignment information about your pointers, the

compiler can transform your code to use word accesses and the ‘C6000 intrin-

sics.

Example 2–25 shows how the compiler can automatically do this optimization.

Example 2–25. Using the Compiler to Generate a Dot Product With Word Accesses

int dotprod1(const short *restrict a, const short *restrict b, unsigned int N)

{

    int i, sum = 0;

    /* a and b are aligned to a word boundary */

    _nassert(((int)(a) & 0x3) == 0);

    _nassert(((int)(b) & 0x3) == 0);

    #pragma MUST_ITERATE (40, 40);

    for (i = 0; i < N; i++)

    sum += a[i] * b[i];

    return sum;

}

Compile Example 2–25 with the following options: –o -k. Open up the assem-

bly file and look at the loop kernel. The results are the exact same as those

produced by Example 2–18. The first 2 _nassert() intrinsics in Example 2–25

tell the compiler that the arrays pointed to by a and b are aligned to a word

boundary, so it is safe for the compiler to use a LDW instruction to load two

short values. The compiler generates the _mpy() and _mpyh() intrinsics inter-

nally as well as the two sums that were used in Example 2–18 (shown again

below).

int dotprod(const short *restrict a, const short *re

strict b, unsigned int N)

{

int i, sum1 = 0, sum2 = 0;

for (i = 0; i < (N >> 1); i++)

{

sum1 = sum1 + _mpy (_amem4_const(&a[i]),

                 _amem4_const(&b[i]));

sum2 = sum2 + _mpyh (_amem4_const(&a[i]),

                  _amem4_const(&b[i]));

}

return sum1 + sum2;

}
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You need some way to convey to the compiler that this loop will also execute

an even number of times. The MUST_ITERATE pragma conveys loop count

information to the compiler. For example, #pragma MUST_ITERATE (40, 40),

tells the compiler the loop immediately following this pragma will execute a

minimum of 40 times (the first argument), and a maximum of 40 times (the sec-

ond argument). An optional third argument tells the compiler what the trip

count is a multiple of. See the TMS320C6000 C/C++ Compiler User’s Guide

for more information about the MUST_ITERATE pragma.

Example 2–26 and Example 2–27 show how to use the _nassert() intrinsic

and MUST_ITERATE pragma to get word accesses on the vector sum and the

FIR filter.

Example 2–26. Using the _nassert() Intrinsic to Generate Word Accesses for Vector Sum

void vecsum(short *restrict sum, const short *restrict in1,
const short *restrict in2, unsigned int N)

{
int i;
_nassert(((int)sum & 0x3) == 0);
_nassert(((int)in1 & 0x3) == 0);
_nassert(((int)in2 & 0x3) == 0);
#pragma MUST_ITERATE (40, 40);
for (i = 0; i < N; i++)

sum[i] = in1[i] + in2[i];
}
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Example 2–27. Using _nassert() Intrinsic to Generate Word Accesses for FIR Filter

void fir (const short x[restrict], const short h[restrict], short y[restrict]

    int n, int m, int s)

{ int i, j;

long y0;

long round = 1L << (s - 1);

_nassert(((int)x & 0x3) == 0);

_nassert(((int)h & 0x3) == 0);

_nassert(((int)y & 0x3) == 0);

for (j = 0; j < m; j++)

{

y0 = round;

#pragma MUST_ITERATE (40, 40);

for (i = 0; i < n; i++)

y0 += x[i + j] * h[i];

y[j] = (int)(y0 >> s);

}

}

As you can see from Example 2–27, the optimization done by the compiler is

not as optimal as the code produced in Example 2–20, but it is more optimal

than the code in Example 2–19.

Example 2–28. Compiler Output From Example 2–27

L3:    ; PIPED LOOP KERNEL

   [!B0]   ADD     .L1     A9,A7:A6,A7:A6    ; |21|

||         MPY     .M2X    A3,B3,B2          ; |21|

||         MPYHL   .M1X    B3,A0,A0          ; |21|

|| [ A1]   B       .S2     L3                ; @|21|

||         LDH     .D2T2   *++B9(8),B3       ; @@|21|

||         LDH     .D1T1   *+A8(4),A3        ; @@|21|

   [!B0]   ADD     .L2     B3,B5:B4,B5:B4    ; |21|

||         MPY     .M1X    A0,B1,A9          ; @|21|

||         LDW     .D2T2   *+B8(4),B3        ; @@|21|

||         LDH     .D1T1   *+A8(6),A0        ; @@|21|

   [ B0]   SUB     .S2     B0,1,B0           ;

|| [!B0]   ADD     .L2     B2,B7:B6,B7:B6    ; |21|

|| [!B0]   ADD     .L1     A0,A5:A4,A5:A4    ; |21|

||         MPYHL   .M2     B1,B3,B3          ; @|21|

|| [ A1]   SUB     .S1     A1,1,A1           ; @@|21|

||         LDW     .D2T2   *++B8(8),B1       ; @@@|21|

||         LDH     .D1T1   *++A8(8),A0       ; @@@|21|
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Example 2–29. Compiler Output From Example 2–20

L3:    ; PIPED LOOP KERNEL

           ADD     .L2     B3,B5:B4,B5:B4

||         ADD     .L1     A3,A5:A4,A5:A4

||         MV      .S2     B1,B2

||         MPY     .M2X    B1,A8,B3

||         MPYHL   .M1X    B1,A8,A3

|| [ A1]   B       .S1     L3

|| [ B0]   LDW     .D2T2   *B8,B1

   [ B0]   SUB     .S2     B0,1,B0

||         ADD     .L1     A3,A7:A6,A7:A6

||         ADD     .L2     B3,B7:B6,B7:B6

||         MPYH    .M1X    B2,A8,A3

||         MPYHL   .M2X    A8,B9,B3

|| [ A1]   SUB     .S1     A1,1,A1

|| [ B0]   LDW     .D1T1   *A0++,A8

|| [ B0]   LDW     .D2T2   *++B8,B9

Example 2–30. Compiler Output From Example 2–19

L4:    ; PIPED LOOP KERNEL

   [ A2]   SUB     .S1     A2,1,A2

||         ADD     .L1     A5,A1:A0,A1:A0

||         MPY     .M1X    B5,A4,A5

|| [ B0]   B       .S2     L4

|| [ B0]   SUB     .L2     B0,1,B0

|| [ A2]   LDH     .D1T1   *A3++,A4

|| [ A2]   LDH     .D2T2   *B4++,B5

Note: The _nassert() intrinsic may not solve all of your short to int or float-
to-double accesses, but it can be a useful tool in achieving better perfor-
mance without rewriting the C code.
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If your code operates on global arrays as in Example 2–31, and you build your

application with the -pm and -o3 options, the compiler will have enough infor-

mation (trip counts and alignments of variables) to determine whether or not

packed-data processing optimization is feasible.

Example 2–31. Automatic Use of Word Accesses Without the _nassert Intrinsic

<file1.c>

int dotp (short *restrict a, short *restrict b, int c)

{

int sum = 0, i;

for (i = 0; i < c; i++) sum += a[i] * b[i];

return sum;

}

<file2.c>

#include <stdio.h>

short x[40] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40 };

short y[40] = { 40, 39, 38, 37, 36, 35, 34, 33, 32, 31,

30, 29, 28, 27, 26, 25, 24, 23, 22, 21,

20, 19, 18, 17, 16, 15, 14, 13, 12, 11,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };

void main()

{

int z;

z = dotp(x, y, 40);

printf(“z = %d\n”, z);

}

Compile file1.c and file2.c with:

cl6x -pm -o3 -k file1.c file2.c
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Below is the resulting assembly file (file1.asm). Notice that the dot product loop

uses word accesses and the ‘C6000 intrinsics.

L2:    ; PIPED LOOP KERNEL

   [!A1]   ADD     .L2     B6,B7,B7

|| [!A1]   ADD     .L1     A6,A0,A0

||         MPY     .M2X    B5,A4,B6

||         MPYH    .M1X    B5,A4,A6

|| [ B0]   B       .S1     L2

||         LDW     .D1T1   *+A5(4),A4

||         LDW     .D2T2   *+B4(4),B6

   [ A1]   SUB     .S1     A1,1,A1

|| [!A1]   ADD     .S2     B5,B8,B8

|| [!A1]   ADD     .L1     A6,A3,A3

||         MPY     .M2X    B6,A4,B5

||         MPYH    .M1X    B6,A4,A6

|| [ B0]   SUB     .L2     B0,1,B0

||         LDW     .D1T1   *++A5(8),A4

||         LDW     .D2T2   *++B4(8),B5
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2.5.3 Software Pipelining

Software pipelining is a technique used to schedule instructions from a loop

so that multiple iterations of the loop execute in parallel. When you use the –o2

and –o3 compiler options, the compiler attempts to software pipeline your

code with information that it gathers from your program.

Figure 2–2 illustrates a software-pipelined loop. The stages of the loop are

represented by A, B, C, D, and E. In this figure, a maximum of five iterations

of the loop can execute at one time. The shaded area represents the loop ker-

nel. In the loop kernel, all five stages execute in parallel. The area immediately

before the kernel is known as the pipelined-loop prolog, and the area immedi-

ately following the kernel is known as the pipelined-loop epilog.

Figure 2–2. Software-Pipelined Loop

A1

B1 A2

C1 B2 A3 Pipelined-loop prolog

D1 C2 B3 A4

E1 D2 C3 B4 A5 Kernel

E2 D3 C4 B5

E3 D4 C5 Pipelined-loop epilog

E4 D5

E5

Because loops present critical performance areas in your code, consider the

following areas to improve the performance of your C code:

� Trip count

� Redundant loops

� Loop unrolling

� Speculative execution
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2.5.3.1 Trip Count Issues

A trip count is the number of loop iterations executed. The trip counter is the

variable used to count each iteration. When the trip count reaches a limit equal

to the trip count, the loop terminates.

If the compiler can guarantee that at least n loop iterations will be executed,

then n is the known minimum trip count. Sometimes the compiler can deter-

mine this information automatically. Alternatively, the user can provide this in-

formation using the MUST_ITERATE and PROB_ITERATE pragma. For more

information about pragmas, see the TMS320C6000 Optimizing C/C++ Com-

piler User’s Guide (SPRU187).

The minimum safe trip count is the number of iterations of the loop that are nec-

essary to safely execute the software pipelined version of the loop.

All software pipelined loops have a minimum safe trip count requirement. If the

known minimum trip count is not above the minimum safe trip count, redundant

loops will be generated.

The known minimum trip count and the minimum safe trip count for a given

software pipelined loop can be found in the compiler-generated comment

block for that loop.

In general, loops that can be most efficiently software pipelined have loop trip

counters that count down. In most cases, the compiler can transform the loop

to use a trip counter that counts down even if the original code was not written

that way.

For example, the optimizer at levels –o2 and –o3 transforms the loop in

Example 2–32(a) to something like the code in Example 2–32(b).

Example 2–32. Trip Counters

(a) Original code

for (i = 0; i < N; i++) /* i = trip counter, N = trip count */

(b) Optimized code

for (i = N; i != 0; i––) /* Downcounting trip counter */
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2.5.3.2 Eliminating Redundant Loops

Sometimes the compiler cannot determine if the loop always executes more

than the minimum safe trip count. Therefore, the compiler will generate two

versions of the loop:

� An unpipelined version that executes if the trip count is less than the mini-

mum safe trip count.

� A software-pipelined version that executes if the trip count is equal to or

greater than the minimum safe trip count.

Obviously, the need for redundant loops will hurt both codesize and to a lesser

extent, performance.

To indicate to the compiler that you do not want two versions of the loop, you

can use the -ms0 or -ms1 option. The compiler will generate the software pipe-

lined version of the loop only if it can prove the minumum trip count will always

be equal or greater than the effective minimum trip count of the software pipe-

lined version of the loop. Otherwise, the non pipelined version will be gener-

ated. In order to help the compiler generate only the software pipelined version

of the loop, use the MUST_ITERATE pragma and/or the -pm option to help the

compiler determine the known minimum trip count.

Note: Use of -ms0 or -ms1 may result in a performance degredation

Using -ms0 or -ms1 may cause the compiler not to software pipeline a loop.
This can cause the performance of the loop to suffer.

When safe, the –mh option may also be used to reduce the need for a redun-

dant loop. The compiler performs an optimization called prolog/epilog collaps-

ing to reduce code size of pipelined loops. In particular, this optimization in-

volves rolling the prolog and/or epilog (or parts thereof) back into the kernel.

This can result in a major code size reduction. This optimization can also re-

duce the minimum trip count needed to safely execute the software-pipelined

loop, thereby eliminating the need for redundant loops in many cases.

The user can increase the compiler’s ability to perform this optimization by us-

ing the -mh, or -mhn option whenever possible. See the TMS320C6000 Opti-

mizing C/C++ Compiler User’s Guide for more information about options.
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2.5.3.3 Communicating Trip-Count Information to the Compiler

When invoking the compiler, use the following options to communicate trip-

count information to the compiler:

� Use the –o3 and –pm compiler options to allow the optimizer to access the

whole program or large parts of it and to characterize the behavior of loop

trip counts.

� Use the MUST_ITERATE pragma to help reduce code size by preventing

the generation of a redundant loop or by allowing the compiler (with or

without the –ms option) to software pipeline innermost loops.

You can use the MUST_ITERATE and PROB_ITERATE pragma to convey

many different types of information about the trip count to the compiler.

� The MUST_ITERATE pragma can convey that the trip count will always

equal some value.

/* This loop will always execute exactly 30 times */

#pragma MUST_ITERATE (30, 30);

for (j = 0; j < x; j++)

� The MUST_ITERATE pragma can convey that the trip count will be great-

er than some minimum value or smaller than some maximum value. The

latter is useful when interrupts need to occur inside of loops and you are

using the -mi<n> option. Refer to section 8.4, Interruptible Loops.

/* This loop will always execute at least 30 times */

#pragma MUST_ITERATE (30);

for (j = 0; j < x; j++)

� The MUST_ITERATE pragma can convey that the trip count is always di-

visible by a value.

/* The trip count will execute some multiple of 4 times */

#pragma MUST_ITERATE (,, 4);

for (j = 0; j < x; j++)

This information call all be combined as well into a single C statement:

#pragma MUST_ITERATE (8, 48, 8);

for (j = 0; j < x; j++)

The compiler knows that this loop will execute some multiple of 8 (between 8

and 48) times. This information is useful in providing more information about

unrolling a loop or the ability to perform word accesses on a loop.
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Several examples in this chapter and in section 8.4.4 show all of the different

ways that the MUST_ITERATE pragma and _nassert intrinsic can be used.

The _nassert intrinsic can convey information about the alignment of pointers

and arrays.

void vecsum(short *restrict a, const short *restrict b,

const short *restrict c)

{

_nassert(((int) a & 0x3) == 0); /* a is word aligned */

_nassert(((int) b & 0x3) == 0); /* b is word aligned */

_nassert(((int) c & 0x7) == 0); /* c is double word

aligned */

. . .

}

See the TMS320C6000 Optimizing C/C++ Compiler User’s Guide for a com-

plete discussion of the –ms, –o3, and –pm options, the _nassert intrinsic, and

the MUST_ITERATE and PROB_ITERATE pragmas.

2.5.3.4 Loop Unrolling

Another technique that improves performance is unrolling the loop; that is, ex-

panding small loops so that each iteration of the loop appears in your code.

This optimization increases the number of instructions available to execute in

parallel. You can use loop unrolling when the operations in a single iteration

do not use all of the resources of the ’C6000 architecture.

There are three ways loop unrolling can be performed:

1) The compiler may automatically unroll the loop.

2) You can suggest that the compiler unroll the loop using the UNROLL pragma.

3) You can Unroll the C/C++ code yourself

In Example 2–33, the loop produces a new sum[i] every two cycles. Three

memory operations are performed: a load for both in1[i] and in2[i] and a store

for sum[i]. Because only two memory operations can execute per cycle, two

cycles are necessary to perform three memory operations.

Example 2–33. Vector Sum With Three Memory Operations

void vecsum2(short *restrict sum, const short *restrict in1, const short *re-

strict in2, unsigned int N)

{

  int i;

 

  for (i = 0; i < N; i++)

    sum[i] = in1[i] + in2[i];

}
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The performance of a software pipeline is limited by the number of resources

that can execute in parallel. In its word-aligned form (Example 2–34), the vec-

tor sum loop delivers two results every two cycles because the two loads and

the store are all operating on two 16-bit values at a time.

Example 2–34. Word-Aligned Vector Sum

void vecsum4(short *restrict sum, const short *restrict in1, 

const short *restrict in2, unsigned int N)

{

  int i;

  #pragma MUST_ITERATE (10);  

   for (i = 0; i < (N/2); i++)

       {

        _amem4(&sum[i]) = _add2(_amem4_const(&in[1]), _amem4_const(&in2[i]));

 }

 }

If you unroll the loop once, the loop then performs six memory operations per

iteration, which means the unrolled vector sum loop can deliver four results ev-

ery three cycles (that is, 1.33 results per cycle). Example 2–35 shows four re-

sults for each iteration of the loop: sum[i] and sum[i+sz] each store an int value

that represents two 16-bit values.

Example 2–35 is not simple loop unrolling where the loop body is simply repli-

cated. The additional instructions use memory pointers that are offset to point

midway into the input arrays and the assumptions that the additional arrays are

a multiple of four shorts in size.

Example 2–35. Vector Sum Using const Keywords, MUST_ITERATE pragma, Word
 Reads, and Loop Unrolling

void vecsum6(int *restrict sum, const int *restrict in1, const int *restrict

in2, unsigned int N)

{

  int i;

  int sz = N >> 2;

 

  #pragma MUST_ITERATE (10);

 

  for (i = 0; i < sz; i++)

  {

     sum[i]  = _add2(in1[i],  in2[i]);

     sum[i+sz] = _add2(in1[i+sz], in2[i+sz]);

  }

}
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Software pipelining is performed by the compiler only on inner loops; there-

fore, you can increase performance by creating larger inner loops. One meth-

od for creating large inner loops is to completely unroll inner loops that execute

for a small number of cycles.

In Example 2–36, the compiler pipelines the inner loop with a kernel size of one

cycle; therefore, the inner loop completes a result every cycle. However, the

overhead of filling and draining the software pipeline can be significant, and

other outer-loop code is not software pipelined.

Example 2–36. FIR_Type2—Original Form

void fir2(const short input[restrict], const short coefs[restrict], short

out[restrict])

{

  int i, j;

  int sum = 0;

 

  for (i = 0; i < 40; i++)

  {

    for (j = 0; j < 16; j++)

      sum += coefs[j] * input[i + 15 – j];

 

    out[i] = (sum >> 15);

  }

}

For loops with a simple loop structure, the compiler uses a heuristic to deter-

mine if it should unroll the loop. Because unrolling can increase code size, in

some cases the compiler does not unroll the loop. If you have identified this

loop as being critical to your application, then unroll the inner loop in C code,

as in Example 2–37.

In general unrolling may be a good idea if you have an uneven partition or if

your loop carried dependency bound is greater than the partition bound. (Refer

to section 5.7, Loop Carry Paths and section 3.2 in the TMS320C6000 Opti-

mizing C/C++ Compiler User’s Guide. This information can be obtained by us-

ing the –mw option and looking at the comment block before the loop.
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Example 2–37. FIR_Type2—Inner Loop Completely Unrolled

void fir2_u(const short input[restrict], const short coefs[restrict], short

out[restrict])

{

  int i, j;

  int sum;

 

  for (i = 0; i < 40; i++)

  {

    sum = coefs[0] * input[i + 15];

    sum += coefs[1] * input[i + 14];

    sum += coefs[2] * input[i + 13];

    sum += coefs[3] * input[i + 12];

    sum += coefs[4] * input[i + 11];

    sum += coefs[5] * input[i + 10];

    sum += coefs[6] * input[i + 9];

    sum += coefs[7] * input[i + 8];

    sum += coefs[8] * input[i + 7];

    sum += coefs[9] * input[i + 6];

    sum += coefs[10] * input[i + 5];

    sum += coefs[11] * input[i + 4];

    sum += coefs[12] * input[i + 3];

    sum += coefs[13] * input[i + 2];

    sum += coefs[14] * input[i + 1];

    sum += coefs[15] * input[i + 0];

 

    out[i] = (sum >> 15);

  }

}

Now the outer loop is software-pipelined, and the overhead of draining and fill-

ing the software pipeline occurs only once per invocation of the function rather

than for each iteration of the outer loop.

The heuristic the compiler uses to determine if it should unroll the loops needs

to know either of the following pieces of information. Without knowing either

of these the compiler will never unroll a loop.

� The exact trip count of the loop

� The trip count of the loop is some multiple of two

The first requirement can be communicated using the MUST_ITERATE prag-

ma. The second requirement can also be passed to the compiler through the

MUST_ITERATE pragma. In section 2.5.3.3, Communicating Trip-Count In-

formation to the Compiler, it is explained that the MUST_ITERATE pragma can

be used to provide information about loop unrolling. By using the third argu-

ment, you can specify that the trip count is a multiple or power of two.

#pragma MUST_ITERATE (n,n, 2);
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Example 2–38 shows how the compiler can perform simple loop unrolling of

replicating the loop body. The MUST_ITERATE pragma tells the compiler that

the loop will execute an even number of 20 or more times. This compiler will

unroll the loop once to take advantage of the performance gain that results

from the unrolling.

Example 2–38. Vector Sum

void vecsum(short *restrict a, const short *restrict b, const short *restrict

c, int n)

{

int i;

#pragma MUST_ITERATE (20, , 2);

for (i = 0; i < n; i++) a[i] = b[i] + c[i];

}

<compiler output for above code>

L2:    ; PIPED LOOP KERNEL

           ADD     .L1X    B7,A3,A3          ; |5| 

|| [ B0]   B       .S1     L2                ; @|5| 

||         LDH     .D1T1   *++A4(4),A3       ; @@|5| 

||         LDH     .D2T2   *++B4(4),B7       ; @@|5| 

   [!A1]   STH     .D1T1   A3,*++A0(4)       ; |5| 

||         ADD     .L2X    B6,A5,B6          ; |5| 

||         LDH     .D2T2   *+B4(2),B6        ; @@|5| 

   [ A1]   SUB     .L1     A1,1,A1           ; 

|| [!A1]   STH     .D2T2   B6,*++B5(4)       ; |5| 

|| [ B0]   SUB     .L2     B0,1,B0           ; @@|5| 

||         LDH     .D1T1   *+A4(2),A5        ; @@|5|

Note: When the interrupt threshold option is used, unrolling can be used
to regain lost performance. Refer to section 8.4.4 Getting the Most Perfor-
mance Out of Interruptible Code.

If the compiler does not automatically unroll the loop, you can suggest that the

compiler unroll the loop by using the UNROLL pragma. See the

TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more informa-

tion.
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2.5.3.5 Speculative Execution (–mh option)

The –mh option facilitates the compiler’s ability to remove prologs and epilogs.

Indirectly, it can reduce register pressure. With the possibility of reducing epi-

log code or elimination of redundant loops, use of this option can lead to better

code size and performance. This option may cause a loop to read past the end

of an array. Thus, the user assumes responsibility for safety. For a complete

discussion of the -mh option, including how to use it safely, see the

TMS320C6000 Optimizing C/C++ Compiler User’s Guide.

2.5.3.6 What Disqualifies a Loop from Being Software-Pipelined

In a sequence of nested loops, the innermost loop is the only one that can be

software-pipelined. The following restrictions apply to the software pipelining

of loops:

� If a register value is live too long, the code is not software-pipelined. See

section 5.6.6.2, Live Too Long, on page 5-67 and section 5.10, Live-Too-

Long Issues, on page 5-101 for examples of code that is live too long.

� If the loop has complex condition code within the body that requires more

than the five ’C6000 condition registers on the ’C62x and ’C67x, or six con-

dition registers for the ’C64x, the loop is not software pipelined. Try to elim-

inate or combine these conditions.

� Although a software pipelined loop can contain intrinsics, it cannot contain

function calls, including code that will call the run-time support routines.

The exceptions are function calls that will be inlined.

for (i = 0; i < 100; i++)

x[i] = x[i] % 5;

This will call the run-time support _remi routine.

� In general, you should not have a conditional break (early exit) in the loop.

You may need to rewrite your code to use if statements instead. In some,

but not all cases, the compiler can do this automatically. Use the if state-

ments only around code that updates memory (stores to pointers and ar-

rays) and around variables whose values calculated inside the loop and

are used outside the loop.
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In the loop in Example 2–39, there is an early exit. If dist0 or dist1 is less than

distance, then execution breaks out of the loop early. If the compiler could not

perform transformations to the loop to software pipeline the loop, you would

have to modify the code. Example 2–40 shows how the code would be modi-

fied so the compiler could software pipeline this loop. In this case however, the

compiler can actually perform some transformations and software pipeline this

loop better than it can the modified code in Example 2–40.

Example 2–39. Use of If Statements in Float Collision Detection (Original Code)

int colldet(const float *restrict x, const float *restrict p, float point,

float distance)

{

int I, retval = 0;

float sum0, sum1, dist0, dist1;

for (I = 0; I < (28 * 3); I += 6)

{

sum0 = x[I+0]*p[0] + x[I+1]*p[1] + x[I+2]*p[2];

sum1 = x[I+3]*p[0] + x[I+4]*p[1] + x[I+5]*p[2];

dist0 = sum0 - point;

dist1 = sum1 - point;

dist0 = fabs(dist0);

dist1 = fabs(dist1);

if (dist0 < distance)

{

retval = (int)&x[I + 0];

break;

}

if (dist1 < distance)

{

retval = (int)&x[I + 3];

break;

}

}

return retval;

}
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Example 2–40. Use of If Statements in Float Collision Detection (Modified Code)

int colldet_new(const float *restrict x, const float *restrict p, float

point, float distance)

{

int I, retval = 0;

float sum0, sum1, dist0, dist1;

for (I = 0; I < (28 * 3); I += 6)

{

sum0 = x[I+0]*p[0] + x[I+1]*p[1] + x[I+2]*p[2];

sum1 = x[I+3]*p[0] + x[I+4]*p[1] + x[I+5]*p[2];

dist0 = sum0 - point;

dist1 = sum1 - point;

dist0 = fabs(dist0);

dist1 = fabs(dist1);

if ((dist0<distance)&&!retval) retval = (int)&x[I+0];

if ((dist1<distance)&&!retval) retval = (int)&x[I+3];

}

return retval;

}

� The loop cannot have an incrementing loop counter. Run the optimizer

with the –o2 or –o3 option to convert as many loops as possible into down-

counting loops.

� If the trip counter is modified within the body of the loop, it typically cannot

be converted into a downcounting loop. If possible, rewrite the loop to not

modify the trip counter. For example, the following code will not software

pipeline:

for (i = 0; i < n; i++)

{

. . .

i += x;

}

� A conditionally incremented loop control variable is not software pipelined.

Again, if possible, rewrite the loop to not conditionally modify the trip count-

er. For example the following code will not software pipeline:

for (i = 0; i < x; i++)

{

. . .

if (b > a)

i += 2

}

� If the code size is too large and requires more than the 32 registers in the

‘C62x and ’C67x, or 64 registers on the ’C64x, it is not software pipelined.

Either try to simplify the loop or break the loop up into multiple smaller

loops.
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Compiler Optimization Tutorial

This chapter walks you through the code development flow and introduces you

to compiler optimization techniques that were introduced in Chapter 1. It uses

step-by-step instructions and code examples to show you how to use the soft-

ware development tools in each phase of development.

Before you start this tutorial, you should install Code Composer Studio.

The sample code that is used in this tutorial is included on the code generation

tools and Code Composer Studio CD-ROM. When you install your code gen-

eration tools, the example code is installed in c:\ti\tutorial\sim62xx\optimiz-

ing_c. Use the code in that directory to go through the examples in this chapter.

The examples in this chapter were run on the most recent version of the soft-

ware development tools that were available as of the publication of this book.

Because the tools are being continuously improved, you may get different re-

sults if you are using a more recent version of the tools.
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3.1 Introduction: Simple C Tuning

The ’C6000 compiler delivers the industry’s best ”out of the box” C perfor-

mance. In addition to performing many common DSP optimizations, the

’C6000 compiler also performs software pipelining on various MIPS intensive

loops. This feature is important for any pipelined VLIW machine to perform. In

order to take full advantage of the eight available independent functional units,

the dependency graph of every loop is analyzed and then scheduled by soft-

ware pipelining. The more information the compiler gathers about the depen-

dency graph, the better the resulting schedule. Because of this, the ’C6000

compiler provides many features that facilitate sending information to the com-

piler to ”tune” your C code.

These tutorial lessons focus on four key areas where tuning your C code can

offer great performance improvements. In this tutorial, a single code example

is used to demonstrate all four areas. The following example is the vector

summation of two weighted vectors.

Example 3–1. Vector Summation of Two Weighted Vectors

void lesson_c(short *xptr, short *yptr, short *zptr, short *w_sum, int N){
int i, w_vec1, w_vec2;
short w1,w2;

w1 = zptr[0];
w2 = zptr[1];
for (i = 0; i < N; i++){

w_vec1 = xptr[i] * w1;
w_vec2 = yptr[i] * w2;
w_sum[i] = (w_vec1 + w_vec2) >> 15;
}

}

3.1.1 Project Familiarization

In order to load and run the provided example project, you must select the ap-

propriate target from Code Composer Setup. The c_tutorial project was built

and saved as a CCS project file (c_tutorial.pjt). This project assumes a C62x

fast simulator little endian target. Therefore, you need to import the same tar-

get from Code Composer Setup:

Set Up Code Composer Studio for C62x Fast Simulator Little Endian

1) Click on Setup CCStudio to setup the target.

2) From the import configuration window, select C62xx Fast Sim Ltl Endian.
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3) Click on the ”Add to system configuration” button.

4) Click on the close button and exit setup.

5) Save the configuration on exit.

Load the Tutorial Project

6) Start Code Composer Studio.

7) From the Project menu, select Open.

Browse to: ti\tutorial\sim62xx\optimizing_c\

8) Select c_tutorial.pjt , and click Open.

Build tutor.out

From the Project menu, select Rebuild All.

Load tutor.out 

1) From the File menu, choose Load Program.

Browse to ti\tutorial\sim62xx\optimizing_c\debug\

2) Select tutor.out, and click Open to load the file.

The disassembly window with a cursor at c_int00 is displayed and high-

lighted in yellow.

Profile the c_tutorial project

1) From the menu bar, select Profiler–>Enable Clocks.

The Profile Statistics window shows profile points that are already set up

for each of the four functions, tutor1–4.

2) From the menu bar, select Debug–>Run.

This updates the Profile Statistics and Dis–Assembly window. You can

also click on the Run icon, or F5 key to run the program.

3) Click on the location bar at the top of the Profile Statistics window.

The second profile point in each file (the one with the largest line number) con-

tains the data you need. This is because profile points (already set up for you

at the beginning and end of each function) count from the previous profile

point. Thus, the cycle count data of the function is contained in the second pro-

file point.
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You can see cycle counts of 414, 98, 79, and 55 for functions in tutor1–4, run-

ning on the C62xx simulator. Each of these functions contains the same C

code but has some minor differences related to the amount of information to

which the compiler has access.

The rest of this tutorial discusses these differences and teaches you how and

when you can tune the compiler to obtain performance results comparable to

fully optimized hand–coded assembly.

3.1.2 Getting Ready for Lesson 1

Compile and rerun the project

1) From Project menu, choose Rebuild All, or click on the Rebuild All icon.

All of the files are built with compiler options, –gp –k –g –mh –o3 –fr C:\ti\tu-

torial\sim62xx\optimizing_c.

2) From the file menu, choose Reload Program.

This reloads tutor.out and returns the cursor to c_int00.

3) From the Debug menu, choose Run, or click the Run icon.

The count in the Profile Statistics window now equals 2 with the cycle

counts being an average of the two runs.

4) Right–click in the Profile Statistics window and select clear all.

This clears the Profile Statistics window.

5) From the Debug menu, select Reset DSP.

6) From the Debug menu, select Restart.

This restarts the program from the entry point. You are now ready to start

lesson 1.
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3.2 Lesson 1: Loop Carry Path From Memory Pointers

Open lesson_c.c

In the Project View window, right–click on lesson_c.c and select Open.

Example 3–2. lesson_c.c

void lesson_c(short *xptr, short *yptr, short *zptr, short *w_sum, int N) { 

int i, w_vec1, w_vec2; 

short w1,w2; 

w1 = zptr[0]; 

w2 = zptr[1]; 

for (i = 0; i < N; i++){ 

w_vec1 = xptr[i] * w1; 

w_vec2 = yptr[i] * w2; 

w_sum[i] = (w_vec1 + w_vec2) >> 15; 

} 

}

Compile the project and analyze the feedback in lesson_c.asm

When you rebuilt the project in Getting Ready for Lesson 1, each file was com-

piled with –k –gp –mh –o3. Because option –k was used, a *.asm file for each

*.c file is included in the rebuilt project.

1) From, the File menu, choose File –> Open. From the Files of Type drop–

down menu, select *.asm.

2) Select lesson_c.asm and click Open.

Each .asm file contains software pipelining information. You can see the

results in Example 3–3, Feedback From lesson_c.asm:
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Example 3–3. Feedback From lesson_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SOFTWARE PIPELINE INFORMATION

;*

;*      Known Minimum Trip Count         : 1

;*      Known Max Trip Count Factor      : 1

;*      Loop Carried Dependency Bound(^) : 10

;*      Unpartitioned Resource Bound     : 2

;*      Partitioned Resource Bound(*)    : 2

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     0        0

;*      .S units                     1        1

;*      .D units                     2*       1

;*      .M units                     1        1

;*      .X cross paths               1        0

;*      .T address paths             2*       1

;*      Long read paths              1        0

;*      Long write paths             0        0

;*      Logical  ops (.LS)           1        0     (.L or .S unit)

;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)

;*      Bound(.L .S .LS)             1        1

;*      Bound(.L .S .D .LS .LSD)     2*       1

;*

;*      Searching for software pipeline schedule at ...

;*         ii = 10 Schedule found with 1 iterations in parallel

;*      done

;*

;*      Collapsed epilog stages     : 0

;*      Collapsed prolog stages     : 0

;*

;*      Minimum safe trip count     : 1

;*

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SINGLE SCHEDULED ITERATION

;*

;*   C17:

;*              LDH     .D1T1   *A4++,A0          ;  ^ |32|

;*   ||         LDH     .D2T2   *B4++,B6          ;  ^ |32|

;*              NOP             2

;*      [ B0]   SUB     .L2     B0,1,B0           ; |33|

;*      [ B0]   B       .S2     C17               ; |33|

;*              MPY     .M1     A0,A5,A0          ;  ^ |32|

;*   ||         MPY     .M2     B6,B5,B6          ;  ^ |32|

;*              NOP             1

;*              ADD     .L1X    B6,A0,A0          ;  ^ |32|

;*              SHR     .S1     A0,15,A0          ;  ^ |32|

;*              STH     .D1T1   A0,*A3++          ;  ^ |32|

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
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A schedule with ii = 10, implies that each iteration of the loop takes ten cycles.

Obviously, with eight resources available every cycle on such a small loop, we

would expect this loop to do better than this.

Q Where are the problems with this loop?

A A closer look at the feedback in lesson_c.asm gives us the answer.

Q Why did the loop start searching for a software pipeline at ii=10 (for a

10–cycle loop)?

A The first iteration interval attempted by the compiler is always the maximum

of the Loop Carried Dependency Bound and the Partitioned Resource Bound.

In such a case, the compiler thinks there is a loop carry path equal to ten

cycles:

;* Loop Carried Dependency Bound(^) : 10

The ̂  symbol is interspersed in the assembly output in the comments of each

instruction in the loop carry path, and is visible in lesson_c.asm.

Example 3–4. lesson_c.asm

L2:    ; PIPED LOOP KERNEL

           LDH     .D1T1   *A4++,A0          ;  ^ |32|

||         LDH     .D2T2   *B4++,B6          ;  ^ |32|

           NOP             2

   [ B0]   SUB     .L2     B0,1,B0           ; |33|

   [ B0]   B       .S2     L2                ; |33|

           MPY     .M1     A0,A5,A0          ;  ^ |32|

||         MPY     .M2     B6,B5,B6          ;  ^ |32|

           NOP             1

           ADD     .L1X    B6,A0,A0          ;  ^ |32|

           SHR     .S1     A0,15,A0          ;  ^ |32|

           STH     .D1T1   A0,*A3++          ;  ^ |32|

You can also use a dependency graph to analyze feedback, for example:

Q Why is there a dependency between STH and LDH? They do not use any

common registers so how can there be a dependency?

A If we look at the original C code in lesson_c.c, we see that the LDHs corre-

spond to loading values from xptr and yptr, and the STH corresponds to storing

values into w_sum array.

Q Is there any dependency between xptr, yptr, and w_sum?
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A If all of these pointers point to different locations in memory there is no de-

pendency. However, if they do, there could be a dependency.

Because all three pointers are passed into lesson_c, there is no way for the

compiler to be sure they don’t alias, or point to the same location as each other.

This is a memory alias disambiguation problem. In this situation, the compiler

must be conservative to guarantee correct execution. Unfortunately, the re-

quirement for the compiler to be conservative can have dire effects on the per-

formance of your code.

We know from looking at the main calling function in tutor_d.c that in fact, these

pointers all point to separate arrays in memory. However, from the compiler’s

local view of lesson_c, this information is not available.

Q How can you pass more information to the compiler to improve its perfor-

mance?

A The next example, lesson1_c provides the answer:

Open lesson1_c.c and lesson1_c.asm

Example 3–5. lesson1_c.c

void lesson1_c(short * restrict xptr, short * restrict yptr, short *zptr, 

               short *w_sum, int N)

{

    int i, w_vec1, w_vec2;

    short w1,w2;

    w1 = zptr[0];

    w2 = zptr[1];

    for (i = 0; i < N; i++)

    {

        w_vec1 =  xptr[i] * w1;

        w_vec2 =  yptr[i] * w2;

        w_sum[i] = (w_vec1 + w_vec2) >> 15;

    }

}

The only change made in lesson1_c is the addition of the restrict type qualifier

for xptr and yptr. Since we know that these are actually separate arrays in

memory from w_sum, in function lesson1_c, we can declare that nothing else

points to these objects. No other pointer in lesson1_c.c points to xptr and no

other pointer in lesson1_c.c points to yptr. See the TMS320C6000 Optimizing

C/C++ Compiler User’s Guide for more information on the restrict type qualifi-

er. Because of this declaration, the compiler knows that there are no possible

dependency between xptr, yptr, and w_sum. Compiling this file creates feed-

back as shown in Example 3–6, lesson1_c.asm:
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Example 3–6. lesson1_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SOFTWARE PIPELINE INFORMATION

;*

;*      Known Minimum Trip Count         : 1

;*      Known Max Trip Count Factor      : 1

;*      Loop Carried Dependency Bound(^) : 0

;*      Unpartitioned Resource Bound     : 2

;*      Partitioned Resource Bound(*)    : 2

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     0        0

;*      .S units                     1        1

;*      .D units                     2*       1

;*      .M units                     1        1

;*      .X cross paths               1        0

;*      .T address paths             2*       1

;*      Long read paths              1        0

;*      Long write paths             0        0

;*      Logical  ops (.LS)           1        0     (.L or .S unit)

;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)

;*      Bound(.L .S .LS)             1        1

;*      Bound(.L .S .D .LS .LSD)     2*       1

;*

;*      Searching for software pipeline schedule at ...

;*         ii = 2  Schedule found with 5 iterations in parallel

;*      done

;*

;*      Collapsed epilog stages     : 4

;*      Prolog not entirely removed

;*      Collapsed prolog stages     : 2

;*

;*      Minimum required memory pad : 8 bytes

;*

;*      Minimum safe trip count     : 1

;*

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SINGLE SCHEDULED ITERATION

;*

;*   C17:

;*              LDH     .D1T1   *A0++,A4          ; |32|

;*   ||         LDH     .D2T2   *B4++,B6          ; |32|

;*              NOP             2

;*      [ B0]   SUB     .L2     B0,1,B0           ; |33|

;*      [ B0]   B       .S2     C17               ; |33|

;*              MPY     .M1     A4,A5,A3          ; |32|

;*   ||         MPY     .M2     B6,B5,B7          ; |32|

;*              NOP             1

;*              ADD     .L1X    B7,A3,A3          ; |32|

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
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At this point, the Loop Carried Dependency Bound is zero. By simply passing

more information to the compiler, we allowed it to improve a 10–cycle loop to

a 2–cycle loop.

Lesson 4 in this tutorial shows how the compiler retrieves this type of informa-

tion automatically by gaining full view of the entire program with program level

optimization switches.

A special option in the compiler, -mt, tells the compiler to ignore alias disambi-

guation problems like the one described in lesson_c. Try using this option to

rebuild the original lesson_c example and look at the results.

Rebuild lesson_c.c using the –mt option

1) From Project menu, choose Options.

The Build Options dialog window appears.

2) Select the Compiler tab.

3) In the Category box, select Advanced.

4) In the Aliasing drop-down box, select No Bad Alias Code.

The -mt option will appear in the options window.

5) Click OK to set the new options.

6) Select lesson_c.c by selecting it in the project environment, or double–

clicking on it in the Project View window.

7) From the Project menu, choose Build, or click on the Build icon.

If prompted, reload lesson_c.asm.

8) From the File menu, chooose Open and select lesson_c.asm.

You can now view lesson_c.asm in the main window. In the main window, you

see that the file header contains a description of the options that were used

to compile the file under Global File Parameters. The following line implies that

–mt was used:

;* Memory Aliases : Presume not aliases (optimistic)

9) Scroll down until you see the feedback embedded in the lesson_c.asm file.

You now see the following:

;* Loop Carried Dependency Bound(^) : 0

;* ii = 2 Schedule found with 5 iterations in parallel

This indicates that a 2–cycle loop was found. Lesson 2 will address information

about potential improvements to this loop.
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Table 3–1. Status Update: Tutorial example lesson_c lesson1_c

Tutorial Example Lesson_c Lesson1_c

Potential pointer aliasing info (discussed in Lesson 1) � �

Loop count info – minimum trip count (discussed in Lesson 2) � �

Loop count info – max trip count factor (discussed in Lesson 2) � �

Alignment info – xptr & yptr aligned on a word boundary (discussed in Lesson

3)

� �

Cycles per iteration (discussed in Lesson 1–3) 10 2
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3.3 Lesson 2: Balancing Resources With Dual-Data Paths

Lesson 1 showed you a simple way to make large performance gains in les-

son_c. The result is lesson1_c with a 2–cycle loop.

Q Is this the best the compiler can do? Is this the best that is possible on the

VelociTI architecture?

A Again, the answers lie in the amount of knowledge to which the compiler has

access. Let’s analyze the feedback of lesson1_c to determine what improve-

ments could be made:

Open lesson1_c.asm
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Example 3–7. lesson1_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SOFTWARE PIPELINE INFORMATION

;*

;*      Known Minimum Trip Count         : 1

;*      Known Max Trip Count Factor      : 1

;*      Loop Carried Dependency Bound(^) : 0

;*      Unpartitioned Resource Bound     : 2

;*      Partitioned Resource Bound(*)    : 2

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     0        0

;*      .S units                     1        1

;*      .D units                     2*       1

;*      .M units                     1        1

;*      .X cross paths               1        0

;*      .T address paths             2*       1

;*      Long read paths              1        0

;*      Long write paths             0        0

;*      Logical  ops (.LS)           1        0     (.L or .S unit)

;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)

;*      Bound(.L .S .LS)             1        1

;*      Bound(.L .S .D .LS .LSD)     2*       1

;*

;*      Searching for software pipeline schedule at ...

;*         ii = 2  Schedule found with 5 iterations in parallel

;*      done

;*

;*      Collapsed epilog stages     : 4

;*      Prolog not entirely removed

;*      Collapsed prolog stages     : 2

;*

;*      Minimum required memory pad : 8 bytes

;*

;*      Minimum safe trip count     : 1

;*

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SINGLE SCHEDULED ITERATION

;*

;*   C17:

;*              LDH     .D1T1   *A0++,A4          ; |32|

;*   ||         LDH     .D2T2   *B4++,B6          ; |32|

;*              NOP             2

;*      [ B0]   SUB     .L2     B0,1,B0           ; |33|

;*      [ B0]   B       .S2     C17               ; |33|

;*              MPY     .M1     A4,A5,A3          ; |32|

;*   ||         MPY     .M2     B6,B5,B7          ; |32|

;*              NOP             1

;*              ADD     .L1X    B7,A3,A3          ; |32|

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
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The first iteration interval (ii) attempted was two cycles because the Partitioned

Resource Bound is two. We can see the reason for this if we look below at the

.D units and the .T address paths. This loop requires two loads (from xptr and

yptr) and one store (to w_sum) for each iteration of the loop.

Each memory access requires a .D unit for address calculation, and a .T ad-

dress path to send the address out to memory. Because the ’C6000 has two

.D units and two .T address paths available on any given cycle (A side and B

side), the compiler must partition at least two of the operations on one side (the

A side). That means that these operations are the bottleneck in resources

(highlighted with an *) and are the limiting factor in the Partitioned Resource

Bound. The feedback in lesson1_c.asm shows that there is an imbalance in

resources between the A and B side due, in this case, to an odd number of op-

erations being mapped to two sides of the machine.

Q Is it possible to improve the balance of resources?

A One way to balance an odd number of operations is to unroll the loop. Now,

instead of three memory accesses, you will have six, which is an even number.

You can only do this if you know that the loop counter is a multiple of two; other-

wise, you will incorrectly execute too few or too many iterations. In tutor_d.c,

LOOPCOUNT is defined to be 40, which is a multiple of two, so you are able

to unroll the loop.

Q Why did the compiler not unroll the loop?

A In the limited scope of lesson1_c, the loop counter is passed as a parameter

to the function. Therefore, it might be any value from this limited view of the

function. To improve this scope you must pass more information to the compil-

er. One way to do this is by inserting a MUST_ITERATE pragma.  A MUST_IT-

ERATE pragma is a way of passing iteration information to the compiler. There

is no code generated by a MUST_ITERATE pragma; it is simply read at com-

pile time to allow the compiler to take advantage of certain conditions that may

exist.  In this case, we want to tell the compiler that the loop will execute a multi-

ple of 2 times; knowing this information, the compiler can unroll the loop auto-

matically.

Unrolling a loop can incur some minor overhead in loop setup. The compiler

does not unroll loops with small loop counts because unrolling may not reduce

the overall cycle count. If the compiler does not know what the minimum value

of the loop counter is, it will not automatically unroll the loop. Again, this is infor-

mation the compiler needs but does not have in the local scope of lesson1_c.

You know that LOOPCOUNT is set to 40, so you can tell the compiler that N

is greater than some minimum value. lesson2_c demonstrates how to pass

these two pieces of information.
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Open lesson2_c.c

Example 3–8. lesson2_c.c

void lesson2_c(short * restrict xptr, short * restrict yptr, short *zptr, 

               short *w_sum, int N)

{

    int i, w_vec1, w_vec2;

    short w1,w2;

    w1 = zptr[0];

    w2 = zptr[1];

    #pragma MUST_ITERATE(20, , 2);

    for (i = 0; i < N; i++)

    {

        w_vec1 =  xptr[i] * w1;

        w_vec2 =  yptr[i] * w2;

        w_sum[i] = (w_vec1+w_vec2) >> 15;

    }

}

In lesson2_c.c, no code is altered, only additional information is passed via the

MUST_ITERATE pragma. We simply guarantee to the compiler that the trip

count (in this case the trip count is N) is a multiple of two and that the trip count

is greater than or equal to 20.  The first argument for MUST_ITERATE is the

minimum number of times the loop will iterate. The second argument is the

maximum number of times the loop will iterate. The trip count must be evenly

divisible by the third argument. See the TMS320C6000 Optimizing C/C++

Compiler User’s Guide for more information about the MUST_ITERATE prag-

ma.

For this example, we chose a trip count large enough to tell the compiler that

it is more efficient to unroll. Always specify the largest minimum trip count that

is safe.

Open lesson2_c.asm and examine the feedback
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Example 3–9. lesson2_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SOFTWARE PIPELINE INFORMATION

;*

;*      Loop Unroll Multiple             : 2x

;*      Known Minimum Trip Count         : 10

;*      Known Maximum Trip Count         : 1073741823

;*      Known Max Trip Count Factor      : 1

;*      Loop Carried Dependency Bound(^) : 0

;*      Unpartitioned Resource Bound     : 3

;*      Partitioned Resource Bound(*)    : 3

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     0        0

;*      .S units                     2        1

;*      .D units                     3*       3*

;*      .M units                     2        2

;*      .X cross paths               1        1

;*      .T address paths             3*       3*

;*      Long read paths              1        1

;*      Long write paths             0        0

;*      Logical  ops (.LS)           1        1     (.L or .S unit)

;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)

;*      Bound(.L .S .LS)             2        1

;*      Bound(.L .S .D .LS .LSD)     2        2

;*

;*      Searching for software pipeline schedule at ...

;*         ii = 3  Schedule found with 5 iterations in parallel

;*      done

;*

;*      Epilog not entirely removed

;*      Collapsed epilog stages     : 2

;*

;*      Prolog not entirely removed

;*      Collapsed prolog stages     : 3

;*

;*      Minimum required memory pad : 8 bytes

;*

;*      Minimum safe trip count    : 4

Notice the following things in the feedback:

A schedule with three cycles (ii=3): You can tell by looking at the .D units and

.T address paths that this 3–cycle loop comes after the loop has been unrolled

because the resources show a total of six memory accesses evenly balanced

between the A side and B side. Therefore, our new effective loop iteration inter-

val is 3/2 or 1.5 cycles.

A Known Minimum Trip Count of 10: This is because we specified the count

of the original loop to be greater than or equal to twenty and a multiple of two

and after unrolling, this is cut in half. Also, a new line, Known Maximum Trip
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Count, is displayed in the feedback. This represents the maximum signed inte-

ger value divided by two, or 3FFFFFFFh.

Therefore, by passing information without modifying the loop code, compiler

performance improves from a 10–cycle loop to 2 cycles and now to 1.5 cycles.

Q Is this the lower limit?

A Check out Lesson 3 to find out!

Table 3–2. Status Update: Tutorial example lesson_c lesson1_c lesson2_c

Tutorial Example Lesson_c Lesson1_c Lesson2_c

Potential pointer aliasing info (discussed in Lesson 1) � � �

Loop count info – minimum trip count (discussed in Lesson 2) � � �

Loop count info – max trip count factor (discussed in Lesson 2) � � �

Alignment info – xptr & yptr aligned on a word boundry (dis-

cussed in Lesson 3)

� � �

Cycles per iteration (discussed in Lesson 1–3) 10 2 1.5
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3.4 Lesson 3: Packed Data Optimization of Memory Bandwidth

Lesson 2 produced a 3–cycle loop that performed two iterations of the original

vector sum of two weighted vectors. This means that each iteration of our loop

now performs six memory accesses, four multiplies, two adds, two shift opera-

tions, a decrement for the loop counter, and a branch. You can see this phe-

nomenon in the feedback of lesson2_c.asm.

Open lesson2_c.asm

Example 3–10. lesson2_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SOFTWARE PIPELINE INFORMATION

;*

;*      Loop Unroll Multiple             : 2x

;*      Known Minimum Trip Count         : 10

;*      Known Maximum Trip Count         : 1073741823

;*      Known Max Trip Count Factor      : 1

;*      Loop Carried Dependency Bound(^) : 0

;*      Unpartitioned Resource Bound     : 3

;*      Partitioned Resource Bound(*)    : 3

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     0        0

;*      .S units                     2        1

;*      .D units                     3*       3*

;*      .M units                     2        2

;*      .X cross paths               1        1

;*      .T address paths             3*       3*

;*      Long read paths              1        1

;*      Long write paths             0        0

;*      Logical  ops (.LS)           1        1     (.L or .S unit)

;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)

;*      Bound(.L .S .LS)             2        1

;*      Bound(.L .S .D .LS .LSD)     2        2

;*

;*      Searching for software pipeline schedule at ...

;*         ii = 3  Schedule found with 5 iterations in parallel

;*      done

;*

;*      Epilog not entirely removed 

;*      Collapsed epilog stages     : 2

;*

;*      Prolog not entirely removed 

;*      Collapsed prolog stages     : 3

;*

;*      Minimum required memory pad : 8 bytes

;*

;*      Minimum safe trip count     : 4

;*

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
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The six memory accesses appear as .D and .T units. The four multiplies ap-

pear as .M units. The two shifts and the branch show up as .S units. The decre-

ment and the two adds appear as .LS and .LSD units. Due to partitioning, they

don’t all show up as .LSD operations. Two of the adds must read one value

from the opposite side. Because this operation cannot be performed on the .D

unit, the two adds are listed as .LS operations.

By analyzing this part of the feedback, we can see that resources are most lim-

ited by the memory accesses; hence, the reason for an asterisk highlighting

the .D units and .T address paths.

Q Does this mean that we cannot make the loop operate any faster?

A Further insight into the ’C6000 architecture is necessary here.

The C62x fixed-point device loads and/or stores 32 bits every cycle. In addi-

tion, the C67x floating-point and ’C64x fixed-point device loads two 64-bit val-

ues each cycle. In our example, we load four 16-bit values and store two 16–bit

values every three cycles. This means we only use 32 bits of memory access

every cycle. Because this is a resource bottleneck in our loop, increasing the

memory access bandwidth further improves the performance of our loop.

In the unrolled loop generated from lesson2_c, we load two consecutive 16-bit

elements with LDHs from both the xptr and yptr array.

Q Why not use a single LDW to load one 32-bit element, with the resulting reg-

ister load containing the first element in one-half of the 32-bit register and the

second element in the other half?

A This is called Packed Data optimization. Two 16-bit loads are effectively per-

formed by one single 32-bit load instruction.

Q Why doesn’t the compiler do this automatically in lesson2_c?

A Again, the answer lies in the amount of information the compiler has access

to from the local scope of lesson2_c.

In order to perform a LDW (32–bit load) on the ’C62x and ’C67x cores, the ad-

dress must be aligned to a word address; otherwise, incorrect data is loaded.

An address is word–aligned if the lower two bits of the address are zero. Unfor-

tunately, in our example, the pointers, xptr and yptr, are passed into lesson2_c

and there is no local scope knowledge as to their values. Therefore, the com-

piler is forced to be conservative and assume that these pointers might not be

aligned. Once again, we can pass more information to the compiler, this time

via the _nassert statement.

Open lesson3_c.c
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Example 3–11. lesson3_c.c

#define WORD_ALIGNED(x) (_nassert(((int)(x) & 0x3) == 0))

void lesson3_c(short * restrict xptr, short * restrict yptr, short *zptr, 

               short *w_sum, int N)

{

    int i, w_vec1, w_vec2;

    short w1,w2;

    WORD_ALIGNED(xptr);

    WORD_ALIGNED(yptr);

    w1 = zptr[0];

    w2 = zptr[1];

    #pragma MUST_ITERATE(20, , 2);

    for (i = 0; i < N; i++)

    {

        w_vec1 =  xptr[i] * w1;

        w_vec2 =  yptr[i] * w2;

        w_sum[i] = (w_vec1+w_vec2) >> 15;

    }

}

By asserting that xptr and yptr addresses ”anded” with 0x3 are equal to zero,

the compiler knows that they are word aligned. This means the compiler can

perform LDW and packed data optimization on these memory accesses.

Open lesson3_c.asm
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Example 3–12. lesson3_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SOFTWARE PIPELINE INFORMATION

;*

;*      Loop Unroll Multiple             : 2x

;*      Known Minimum Trip Count         : 10

;*      Known Maximum Trip Count         : 1073741823

;*      Known Max Trip Count Factor      : 1

;*      Loop Carried Dependency Bound(^) : 0

;*      Unpartitioned Resource Bound     : 2

;*      Partitioned Resource Bound(*)    : 2

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     0        0

;*      .S units                     2*       1

;*      .D units                     2*       2*

;*      .M units                     2*       2*

;*      .X cross paths               1        1

;*      .T address paths             2*       2*

;*      Long read paths              1        1

;*      Long write paths             0        0

;*      Logical  ops (.LS)           1        1     (.L or .S unit)

;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)

;*      Bound(.L .S .LS)             2*       1

;*      Bound(.L .S .D .LS .LSD)     2*       2*

;*

;*      Searching for software pipeline schedule at ...

;*         ii = 2  Schedule found with 6 iterations in parallel

;*      done

;*

;*      Epilog not entirely removed

;*      Collapsed epilog stages     : 2

;*

;*      Prolog not removed

;*      Collapsed prolog stages     : 0

;*

;*      Minimum required memory pad : 8 bytes

;*

;*      Minimum safe trip count     : 8

;*

Success! The compiler has fully optimized this loop. You can now achieve two

iterations of the loop every two cycles for one cycle per iteration throughout.

The .D and .T resources now show four (two LDWs and two STHs for two itera-

tions of the loop).
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Table 3–3. Status Update: Tutorial example lesson_c lesson1_c lesson2_c lesson3_c

Tutorial Example Lesson_c Lesson1_c Lesson2_c Lesson3_c

Potential pointer aliasing info (discussed in Les-

son 1)

� � � �

Loop count info – minimum trip count (discussed

in Lesson 2)

� � � �

Loop count info – max trip count factor (dis-

cussed in Lesson 2)

� � � �

Alignment info – xptr & yptr aligned on a word

boundary (discussed in Lesson 3)

� � � �

Cycles per iteration (discussed in Lessons 1–3) 10 2 1.5 1
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3.5 Lesson 4: Program Level Optimization

In Lesson 3, you learned how to pass information to the compiler. This in-

creased the amount of information visible to the compiler from the local scope

of each function.

Q Is this necessary in all cases?

A The answer is no, not in all cases. First, if this information already resides

locally inside the function, the compiler has visibility here and restrict and

MUST_ITERATE statements are not usually necessary. For example, if xptr

and yptr are declared as local arrays, the compiler does not assume a depen-

dency with w_sum. If the loop count is defined in the function or if the loop sim-

ply described from one to forty, the MUST_ITERATE pragma is not necessary.

Secondly, even if this type of information is not declared locally, the compiler

can still have access to it in an automated way by giving it a program level view.

This module discusses how to do that.

The ’C6000 compiler provides two valuable switches, which enable program

level optimization: –pm and –op2. When these two options are used together,

the compiler can automatically extract all of the information we passed in the

previous examples. To tell the compiler to use program level optimization, you

need to turn on –pm and –op2.

Enable program level optimization

1) From the Project menu, choose Options, and click on the Basic category.

2) Select No External Refs in the Program Level Optimization drop-down

box. This adds –pm and –op2 to the command line.

View profile statistics

1) Clear the Profile Statistics window by right clicking on it and selecting Clear

All.

2) From the Project menu, choose Rebuild All.

3) From the File menu, choose Reload Program.

4) From the Debug menu, chose Run.

The new profile statistics should appear in the Profile Statistics window, as

in Example 3–13.
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Example 3–13. Profile Statistics

Location               Count  Average  Total  Maximum  Minimum

lesson_c.c line 27         1   5020.0   5020     5020     5020

lesson_c.c line 36         1     60.0     60       60       60

lesson1_c.c line 37        1     60.0     60       60       60

lesson2_c.c line 39        1     60.0     60       60       60

lesson3_c.c line 44        1     60.0     60       60       60

lesson1_c.c line 27        1     12.0     12       12       12

lesson2_c.c line 29        1     12.0     12       12       12

lesson3_c.c line 35        1     12.0     12       12       12

This is quite a performance improvement. The compiler automatically extracts

and acts upon all the information that we passed in Lessons 1 to 3. Even the

original untouched tutor1 is 100% optimized by discounting memory depen-

dencies, unrolling, and performing packed data optimization.

Table 3–4. Status Update: Tutorial example lesson_c lesson1_c lesson2_c lesson3_c

Tutorial Example Lesson_c Lesson1_c Lesson2_c Lesson3_c

Potential pointer aliasing info (discussed in Les-

son 1)

� � � �

Loop count info – minimum trip count (discussed

in Lesson 2)

� � � �

Loop count info – max trip count factor (dis-

cussed in Lesson 2)

� � � �

Alignment info – xptr & yptr aligned on a word

boundary (discussed in Lesson 3)

� � � �

Cycles per iteration (discussed in Lesson 1–3) 10 2 1.5 1

Cycles per iteration with program level optimiza-

tion (discussed in Lesson 4)

1 1 1 1

This tutorial has shown you that a lot can be accomplished by both tuning your

C code and using program level optimization. Many different types of tuning

optimizations can be done in addition to what was presented here.

We recommend you use Appendix A, Feedback Solutions, when tuning your

code to get “how to” answers on all of your optimizing C questions. You can

also use the Feedback Solutions Appendix as a tool during development. We

believe this offers a significant advantage to TI customers and we plan on con-

tinuing to drive a more developer–friendly environment in our future releases.



Lesson 5: Writing Linear Assembly

3-25Compiler Optimization Tutorial

3.6 Lesson 5: Writing Linear Assembly

When the compiler does not fully exploit the potential of the ’C6000 architec-

ture, you may be able to get better performance by writing your loop in linear

assembly. Linear assembly is the input for the assembly optimizer.

Linear assembly is similar to regular ’C6000 assembly code in that you use

’C6000 instructions to write your code. With linear assembly, however, you do

not need to specify all of the information that you need to specify in regular

’C6000 assembly code. With linear assembly code, you have the option of

specifying the information or letting the assembly optimizer specify it for you.

Here is the information that you do not need to specify in linear assembly code:

� Parallel instructions

� Pipeline latency

� Register usage

� Which functional unit is being used

If you choose not to specify these things, the assembly optimizer determines

the information that you do not include, based on the information that it has

about your code. As with other code generation tools, you might need to modify

your linear assembly code until you are satisfied with its performance. When

you do this, you will probably want to add more detail to your linear assembly.

For example, you might want to specify which functional unit should be used.

Before you use the assembly optimizer, you need to know the following things

about how it works:

� A linear assembly file must be specified with a .sa extension.

� Linear assembly code should include the .cproc and .endproc directives.

The .cproc and .endproc directives delimit a section of your code that you

want the assembly optimizer to optimize. Use .cproc at the beginning of

the section and .endproc at the end of the section. In this way, you can set

off sections of your assembly code that you want to be optimized, like pro-

cedures or functions.

� Linear assembly code may include a .reg directive. The .reg directive al-

lows you to use descriptive names for values that will be stored in regis-

ters. When you use .reg, the assembly optimizer chooses a register whose

use agrees with the functional units chosen for the instructions that oper-

ate on the value.

� Linear assembly code may include a .trip directive. The .trip directive

specifies the value of the trip count. The trip count indicates how many

times a loop will iterate.
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Let’s look at a new example, iircas4, which will show the benefit of using linear

assembly. The compiler does not not optimally partition this loop. Thus, the iir-

cas4 function does not improve with the C modification techniques we saw in

the first portion of the chapter. In order to get the best partition, we must write

the function in partitioned linear assembly.

In order to follow this example in Code Composer Studio, you must open the

ccs project , l_tutorial.pjt, located in c:\ti\tutorial\sim62xx\linear_asm. Build the

program and look at the software pipeline information feedback in the gener-

ated assembly files.

Example 3–14. Using the iircas4 Function in C

void iircas4_1(const int n, const short (* restrict c)[4], int (*d)[2],

               int *y)

{

    int k0, k1, i;

    int y0 = y[0];

    int y1 = y[1];

    _nassert(((int)(c) & 0x3) == 0));

    #pragma MUST_ITERATE(10);

    for (i = 0; i < n; i++)

    {

        k0      = c[i][1] * (d[i][1]>>16) + c[i][0] * (d[i][0]>>16) + y0;

        y0      = c[i][3] * (d[i][1]>>16) + c[i][2] * (d[i][0]>>16) + k0;

        k1      = c[i][1] * (d[i][0]>>16) + c[i][0] * (k0>>16) + y1;

        y1      = c[i][3] * (d[i][0]>>16) + c[i][2] * (k0>>16) + k1;

        d[i][1] = k0;

        d[i][0] = k1;

    }

    y[0] = y0;

    y[1] = y1;

}

Example 3–15 shows the assembly output from Example 3–14
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Example 3–15. Software Pipelining Feedback From the iircas4 C Code

;*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SOFTWARE PIPELINE INFORMATION

;*

;*      Known Minimum Trip Count         : 10

;*      Known Max Trip Count Factor      : 1

;*      Loop Carried Dependency Bound(^) : 2

;*      Unpartitioned Resource Bound     : 4

;*      Partitioned Resource Bound(*)    : 5

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     0        0

;*      .S units                     1        0

;*      .D units                     2        4

;*      .M units                     4        4

;*      .X cross paths               5*       3

;*      .T address paths             2        4

;*      Long read paths              1        1

;*      Long write paths             0        0

;*      Logical  ops (.LS)           2        1    (.L or .S unit)

;*      Addition ops (.LSD)          4        3    (.L or .S or .D unit)

;*      Bound(.L .S .LS)             2        1

;*      Bound(.L .S .D .LS .LSD)     3        3

;*

;*      Searching for software pipeline schedule at ...

;*         ii = 5  Schedule found with 4 iterations in parallel

;*      done

;*

;*      Epilog not entirely removed

;*      Collapsed epilog stages     : 2

;*

;*      Prolog not removed

;*      Collapsed prolog stages     : 0

;*

;*      Minimum required memory pad : 16 bytes

;*

;*      Minimum safe trip count     : 2

;*

;*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

From the feedback in the generated .asm file, we can see that the compiler

generated a suboptimal partition. Partitioning is placing operations and oper-

ands on the A side or B side. We can see that the Unpartioned Resource

Bound is 4 while the Partitioned Resource Bound is 5. When the Partitioned
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Resource Bound is higher, this usually means we can make a better partition

by writing the code in linear assembly.

Notice that there are 5 cross path reads on the A side and only 3 on the B side.

We would like 4 cross path reads on the A side and 4 cross path reads on the

B side.  This would allow us to schedule at an iteration interval (ii) of 4 instead

of the current ii of 5.  Example 3–16 shows how to rewrite the iircas4 ( ) function

Using Linear Assembly.
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Example 3–16. Rewriting the iircas4 ( ) Function in Linear Assembly

        .def    _iircas4_sa

_iircas4_sa:    .cproc  AI,C,BD,AY

        .no_mdep

        .reg    BD0,BD1,AA,AB,AJ0,AF0,AE0,AG0,AH0,AY0,AK0,AM0,BD00

        .reg    BA2,BB2,BJ1,BF1,BE1,BG1,BH1,BY1,BK1,BM1

        LDW     .D2     *+AY[0],AY0

        LDW     .D2     *+AY[1],BY1

        .mptr   C,  bank+0, 8

        .mptr   BD, bank+4, 8

LOOP:   .trip   10

        LDW     .D2T1   *C++, AA        ; a0 = c[i][0], a1 = c[i][1]

        LDW     .D2T1   *C++, AB        ; b0 = c[i][2], b1 = c[i][3]

        LDW     .D1T2   *BD[0], BD0     ; d0 = d[i][0]

        LDW     .D1T2   *BD[1], BD1     ; d1 = d[i][1]

        MPYH    .1      BD1, AA, AE0    ; e0 = (d1 >> 16) * a1

        MPYHL   .1      BD0, AA, AJ0    ; j0 = (d0 >> 16) * a0

        MPYH    .1      BD1, AB, AG0    ; g0 = (d1 >> 16) * b1

        MPYHL   .1      BD0, AB, AF0    ; f0 = (d0 >> 16) * b0

        ADD     .1      AJ0, AE0, AH0   ; h0 = j0 + e0

        ADD     .1      AH0, AY0, AK0   ; k0 = h0 + y0

        ADD     .1      AF0, AG0, AM0   ; m0 = f0 + g0

        ADD     .1      AM0, AK0, AY0   ; y0 = m0 + k0

        MV      .2      AA,BA2

        MV      .2      AB,BB2

        MV      .2      BD0,BD00

        STW     .D1T1   AK0, *BD[1]     ; d[i][1] = k0

        MPYH    .2      BD00, BA2, BE1  ; e1 = (d0 >> 16) * a1

        MPYHL   .2      AK0, BA2, BJ1   ; j1 = (k0 >> 16) * a0

        MPYH    .2      BD00, BB2, BG1  ; g1 = (d0 >> 16) * b1

        MPYHL   .2      AK0, BB2, BF1   ; f1 = (k0 >> 16) * b0

        ADD     .2      BJ1, BY1, BH1   ; h1 = j1 + y1

        ADD     .2      BH1, BE1, BK1   ; k1 = h1 + e1

        ADD     .2      BF1, BG1, BM1   ; m1 = f1 + g1

        ADD     .2      BM1, BK1, BY1   ; y1 = m1 + k1

        STW     .D1T2   BK1, *BD++[2]   ; d[i][0] = k1

        SUB     .1      AI,1,AI         ; i––

[AI]    B       .1      LOOP            ; for

        STW     .D2T1   AY0,*+AY[0]

        STW     .D2T2   BY1,*+AY[1]

        .endproc
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The following example shows the software pipeline feedback from

Example 3–16.

Example 3–17. Software Pipeline Feedback from Linear Assembly

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

;*   SOFTWARE PIPELINE INFORMATION

;*

;*      Loop label : LOOP

;*      Known Minimum Trip Count         : 10

;*      Known Max Trip Count Factor      : 1

;*      Loop Carried Dependency Bound(^) : 3

;*      Unpartitioned Resource Bound     : 4

;*      Partitioned Resource Bound(*)    : 4

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     0        0

;*      .S units                     1        0

;*      .D units                     4*       2

;*      .M units                     4*       4*

;*      .X cross paths               4*       4*

;*      .T address paths             3        3

;*      Long read paths              1        1

;*      Long write paths             0        0

;*      Logical  ops (.LS)           0        2    (.L or .S unit)

;*      Addition ops (.LSD)          5        5    (.L or .S or .D unit)

;*      Bound(.L .S .LS)             1        1

;*      Bound(.L .S .D .LS .LSD)     4*       3

;*

;*      Searching for software pipeline schedule at ...

;*         ii = 4  Schedule found with 5 iterations in parallel

;*      done

;*

;*      Epilog not entirely removed

;*      Collapsed epilog stages     : 3

;*

;*      Prolog not removed

;*      Collapsed prolog stages     : 0

;*

;*      Minimum required memory pad : 24 bytes

;*

;*      Minimum safe trip count     : 2

;*

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

Notice in Example 3–16 that each instruction is manually partitioned. From the

software pipeline feedback information in Example 3–17, you can see that a

software pipeline schedule is found at ii = 4.  This is a result of rewriting the

iircas4 ( ) function in linear assembly, as shown in Example 3–16.
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4.1 Understanding Feedback

The compiler provides some feedback by default. Additional feedback is gen-

erated with the -mw option. The feedback is located in the .asm file that the

compiler generates. In order to view the feedback, you must also enable -k

which retains the .asm output from the compiler. By understanding feedback,

you can quickly tune your C code to obtain the highest possible performance.

The feedback in Example 1–1 is for an innermost loop. On the ’C6000, C code

loop performance is greatly affected by how well the compiler can software

pipeline. The feedback is geared for explaining exactly what all the issues with

pipelining the loop were and what the results obtained were. Understanding

feedback will focus on all the components in the software pipelining feedback

window.

The compiler goes through three basic stages when compiling a loop. Here we

will focus on the comprehension of these stages and the feedback produced

by them. This, combined with the Feedback Solutions in Appendix A will send

you well on your way to fully optimizing your code with the ’C6000 compiler.

The three stages are:

1) Qualify the loop for software pipelining

2) Collect loop resource and dependency graph information

3) Software pipeline the loop

4.1.1 Stage 1: Qualify the Loop for Software Pipelining

The result of this stage will show up as the first three or four lines in the feed-

back window as long as the compiler qualifies the loop for pipelining:

Example 4–1.Stage 1 Feedback

;*      Known Minimum Trip Count         : 2

;*      Known Maximum Trip Count         : 2

;*      Known Max Trip Count Factor      : 2

� Trip Count. The number of iterations or trips through a loop.

� Minimum Trip Count. The minimum number of times the loop might exe-

cute given the amount of information available to the compiler.

� Maximum Trip Count. The maximum number of times the loop might exe-

cute given the amount of information available to the compiler.
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� Maximum Trip Count Factor. The maximum number that will divide

evenly into the trip count. Even though the exact value of the trip count is

not deterministic, it may be known that the value is a multiple of 2, 4, etc...,

which allows more agressive packed data and unrolling optimization.

The compiler tries to identify what the loop counter (named trip counter be-

cause of the number of trips through a loop) is and any information about the

loop counter such as minimum value (known minimum trip count), and wheth-

er it is a multiple of something (has a known maximum trip count factor).

If factor information is known about a loop counter, the compiler can be more

aggressive with performing packed data processing and loop unrolling opti-

mizations. For example, if the exact value of a loop counter is not known but

it is known that the value is a multiple of some number, the compiler may be

able to unroll the loop to improve performance.

There are several conditions that must be met before software pipelining is al-

lowed, or legal, from the compiler’s point of view. These conditions are:

� It cannot have too many instructions in the loop. Loops that are too big,

typically require more registers than are available and require a longer

compilation time.

� It cannot call another function from within the loop unless the called func-

tion is inlined. Any break in control flow makes it impossible to software

pipeline as multiple iterations are executing in parallel.

If any of the conditions for software pipelining are not met, qualification of the

pipeline will halt and a disqualification messages will appear. For more infor-

mation about what disqualifies a loop from being software-pipelined, see sec-

tion 2.5.3.6, on page 2-62.
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4.1.2 Stage 2: Collect Loop Resource and Dependency Graph Information

The second stage of software pipelining a loop is collecting loop resource and

dependency graph information. The results of stage 2 will be displayed in the

feedback window as follows:

Example 4–2.Stage 2 Feedback

;*      Loop Carried Dependency Bound(^) : 4

;*      Unpartitioned Resource Bound     : 4

;*      Partitioned Resource Bound(*)    : 5

;*      Resource Partition:

;*                                A–side   B–side

;*      .L units                     2        3

;*      .S units                     4        4

;*      .D units                     1        0

;*      .M units                     0        0

;*      .X cross paths               1        3

;*      .T address paths             1        0

;*      Long read paths              0        0

;*      Long write paths             0        0

;*      Logical  ops (.LS)           0        1     (.L or .S unit)

;*      Addition ops (.LSD)          6        3     (.L or .S or .D unit)

;*      Bound(.L .S .LS)             3        4

;*      Bound(.L .S .D .LS .LSD)     5*       4

� Loop carried dependency bound. The distance of the largest loop carry

path, if one exists. A loop carry path occurs when one iteration of a loop

writes a value that must be read in a future iteration. Instructions that are

part of the loop carry bound are marked with the ̂  symbol in the assembly

code saved with the –k option in the *.asm file. The number shown for the

loop carried dependency bound is the minimum iteration interval due to a

loop carry dependency bound for the loop.

Often, this loop carried dependency bound is due to lack of knowledge by

the compiler about certain pointer variables. When exact values of point-

ers are not known, the compiler must assume that any two pointers might

point to the same location. Thus, loads from one pointer have an implied

dependency to another pointer performing a store and vice versa. This can

create large (and usually unnecessary) dependency paths. When the

Loop Carried Dependency Bound is larger than the Resource Bound, this

is often the culprit. Potential solutions for this are shown in Appendix A,

Feedback Solutions.



Understanding Feedback

4-5FeedbackSolutions

� Unpartitioned resource bound across all resources. The best case re-

source bound minimum iteration interval before the compiler has parti-

tioned each instruction to the A or B side. In Example 4–2, the unparti-

tioned resource bound is 4 because the .S units are required for 8 cycles,

and there are 2 .S units.

� Partitioned resource bound across all resources. The mii after the in-

structions are partitioned to the A and B sides. In Example 4–2, after parti-

tioning, we can see that the A side .L, .S, and .D units are required for a

total of 13 cycles, making the partitioned resource bound �13/3� � 5. For

more information, see the description of Bound (.L .S .D .LS .LSD) later

in this section.

� Resource partition table. Summarizes how the instructions have been

assigned to the various machine resources and how they have been parti-

tioned between the A and B side. An asterisk is used to mark those entries

that determine the resource bound value – in other words the maximum

mii. Because the resources on the C6000 architecture are fairly orthogo-

nal, many instructions can execute 2 or more different functional units. For

this reason, the table breaks these functional units down by the possible

resource combinations. The table entries are described below:

� Individual Functional Units (.L .S .D .M) show the total number of

instructions that specifically require the .L, .S, .D, or .M functional

units. Instructions that can operate on multiple different functional

units are not included in these counts. They are described below in the

Logical Ops (.LS) and Addition Ops (.LSD) rows.

� .X cross paths represents the total number of AtoB and BtoA. When

this particular row contains an asterisk, it has a resource bottleneck

and partitioning may be a problem.

� .T address paths  represents the total number of address paths re-

quired by the loads and stores in the loop. This is actually different

from the number .D units needed as some other instructions may use

the .D unit. In addition, there can be cases where the number of .T ad-

dress paths on a particular side might be higher than the number of .D

units if .D units are partitioned evenly between A and B and .T address

paths are not.

� Long read path represents the total number of long read port paths .

All long operations with long sources use this port to do extended

width (40-bit) reads. Store operations share this port so they also

count toward this total. Long write path represents the total number of

long write port paths. All instructions with long (40bit) results will be

counted in this number.
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� Logical ops (.LS) represents the total number of instructions that can

use either the .L or .S unit.

� Addition ops (.LSD)  represents the total number of instructions that

can use either the .L or .S or .D unit.

� Bound (.L .S .LS) represents the resource bound value as deter-

mined by the number of instructions that use the .L and .S units. It is

calculated with the following formula:

Bound(.L .S .LS ) = ceil((.L + .S + .LS) / 2)

Where ceil represents the ceiling function. This means you always

round up to the nearest integer. In Example 4–2, if the B side needs:

3 .L unit only instructions

4 .S unit only instructions

1 logical .LS instruction

you would need at least  �8/2� cycles or 4 cycles to issue these.

� Bound (.L .S .D .LS .LSD)  represents the resource bound value as

determined by the number of instructions that use the .D, .L and .S

unit. It is calculated with the following formula:

Bound(.L .S .D .LS .LSD)

= ceil((.L + .S + .D + .LS + .LSD) / 3)

Where ceil represents the ceiling function. This means you always

round up to the nearest integer. In Example 4–2, the A side needs:

2 .L unit only instructions, 4 .S unit only instructions, 1 .D unit only in-

structions, 0 logical .LS instructions, and 6 addition .LSD instructions

You would need at least �13/3� cycles or 5 cycles to issue these.
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4.1.3 Stage 3: Software Pipeline the Loop

Once the compiler has completed qualification of the loop, partitioned it, and

analyzed the necessary loop carry and resource requirements, it can begin to

attempt software pipelining. This section will focus on the following lines from

the feedback example:

Example 4–3.Stage 3 Feedback

;*      Searching for software pipeline schedule at ...

;*         ii = 5  Register is live too long

;*         ii = 6  Did not find schedule

;*         ii = 7  Schedule found with 3 iterations in parallel

;*      done

;*

;*      Epilog not entirely removed

;*      Collapsed epilog stages     : 1

;*

;*      Prolog not removed

;*      Collapsed prolog stages     : 0

;*

;*      Minimum required memory pad : 2 bytes

;*

;*      Minimum safe trip count     : 2

� Iteration interval (ii). The number of cycles between the initiation of

successive iterations of the loop. The smaller the iteration interval, the

fewer cycles it takes to execute a loop. All of the numbers shown in each

row of the feedback imply something about what the minimum iteration in-

terval (mii) will be for the compiler to attempt initial software pipelining.

Several things will determine what the mii of the loop is and are described

in the following sections. The mii is simply the maximum of any of these

individual mii’s.

The first thing the compiler attempts during this stage, is to schedule the loop

at an iteration interval (ii) equal to the mii determined in stage 2: collect loop

resource and dependency graph information. In the example above, since the

A–side bound (.L, .S, .D, .LS, and .LSD) was the mii bottleneck, our example

starts with:

;*      Searching for software pipeline schedule at ...

;*         ii = 5  Register is live too long

If the attempt was not successful, the compiler provides additional feedback

to help explain why. In this case, the compiler cannot find a schedule at 11

cycles because register is live too long. For more information about live too

long issues, see section 5.10, on page 5-101.
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Sometimes the compiler finds a valid software pipeline schedule but one or

more of the values is live too long. Lifetime of a register is determined by the

cycle a value is written into it and by the last cycle this value is read by another

instruction. By definition, a variable can never be live longer than the ii of the

loop, because the next iteration of the loop will overwrite that value before it

is read.

The compiler then proceeds to:

ii = 6 Did not find schedule

Sometimes, due to a complex loop or schedule, the compiler simply cannot

find a valid software pipeline schedule at a particular iteration interval.

Regs Live Always : 1/5 (A/B–side)

Max Regs Live : 14/19

Max Cond Regs Live : 1/0

� Regs Live Always refers to the number of registers needed for variables

to be live every cycle in the loop. Data loaded into registers outside the

loop and read inside the loop will fall into this category.

� Max Regs Live refers to the maximum number of variable live on any one

cycle in the loop. If there are 33 variables live on one of the cycles inside

the loop, a minimum of 33 registers is necessary and this will not be pos-

sible with the 32 registers available on the ’C62x and ’C67x cores. In addi-

tion, this is broken down between A and B side, so if there is uneven parti-

tioning with 30 values and there are 17 on one side and 13 on the other,

the same problem will exist. This situation does not apply to the 64 regis-

ters available on the ’C64x core.

� Max Cond Regs Live tells us if there are too many conditional values

needed on a given cycle. The ’C62x and ’C67x cores have 2 A side and

3 B side condition registers available. The ’C64x core has 3 A side and 3

B side condition registers available.

After failing at ii = 6, the compiler proceeds to ii = 7:

ii = 7 Schedule found with 3 iterations in parallel

It is successful and finds a valid schedule with 3 iterations in parallel. This

means it is pipelined 3 deep. In other words, before iteration n has completed,

iterations n+1 and n+2 have begun.

Each time a particular iteration interval fails, the ii is increased and retried. This

continues until the ii is equal to the length of a list scheduled loop (no software

pipelining). This example shows two possible reasons that a loop was not soft-

ware pipelined. To view the full detail of all possible messages and their de-

scriptions, see Feedback Solutions in Appendix A.
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After a successful schedule is found at a particular iteration interval, more in-

formation about the loop is displayed. This information may relate to the load

threshold, epilog/prolog collapsing, and projected memory bank conflicts.

Speculative Load Threshold : 12

When an epilog is removed, the loop is run extra times to finish out the last it-

erations, or pipe–down the loop. In doing so, extra loads from new iterations

of the loop will speculatively execute (even though their results will never be

used). In order to ensure that these memory accesses are not pointing to inval-

id memory locations, the Load Threshold value tells you how many extra bytes

of data beyond your input arrays must be valid memory locations (not a

memory mapped I/O etc) to ensure correct execution. In general, in the large

address space of the ’C6000 this is not usually an issue, but you should be

aware of this.

 Epilog not entirely removed

 Collapsed epilog stages : 1

This refers to the number of epilog stages, or loop iterations that were re-

moved.  This can produce a large savings in code size. The –mh enables spec-

ulative execution and improves the compiler’s ability to remove epilogs and

prologs.  However, in some cases epilogs and prologs can be partially or en-

tirely removed without speculative execution. Thus, you may see nonzero val-

ues for this even without the –mh option.

Prolog not removed 

Collapsed prolog stages : 0

This means that the prolog was not removed.  For various technical reasons,

prolog and epilog stages may not be partially or entirely removed.

Minimum required memory pad : 2 bytes

The minimum required memory padding to use -mh is 2 bytes. See the

TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more informa-

tion on the -mh option and the minimum required memory padding.

Minimum safe trip count :2

This means that the loop must execute at lease twice to safely use the software

pipelined version of the loop.  If this value is less than the known minimum trip

count, two versions of the loop will be generated. For more information on elim-

inating redundant loops, see section 2.5.3.2, on page 2-55.
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4.2 Loop Disqualification Messages

4.2.1 Bad Loop Structure

Description

This error is very rare and may stem from the following:

� An asm statement inserted in the C code innerloop.

� Parallel instructions being used as input to the Linear Assembly Optimizer.

� Complex control flow such as GOTO statements, breaks, nested if state-

ments, if–else statements, and large if statements.

Solution

Remove any asm statements, complex control flow, or parallel instructions as

input to linear assembly.

4.2.2 Loop Contains a Call

Description

There are occasions when the compiler may not be able to inline a function call

that is in a loop.  This may be due to the compiler being unable to inline the

function call; the loop could not be software pipelined.

Solution

If the caller and the callee are C or C++, use –pm and –op2.  See the

TMS320C6000 Opimizing C/C++ Compiler User’s Guide for more information

on the correct usage of –op2. Do not use –oi0, which disables automatic inlin-

ing.

Add the inline keyword to the callee’s function definition.

4.2.3 Too Many Instructions

Oversized loops, typically, will not schedule due to too many registers needed.

This may also cause additional compilation time in the compiler. The limit on

the number of instructions is variable.

Solution

Use intrinsics in C code to select more efficient ’C6000 instructions.

Write code in linear assembly to pick exact ’C6000 instruction to be executed.
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For more information...

See section 2.5.1, Using Intrinsics, on page 2-23.

See Chapter 7, Optimizing Assembly Code via Linear Assembly.

4.2.4 Software Pipelining Disabled

Software pipelining has been disabled by a command–line option. Pipelining will

be turned off when using the –mu option, not using –o2/–o3, or using – ms2/–ms3.

 

4.2.5 Uninitialized Trip Counter

The trip counter may not have been set to an initial value.

4.2.6 Suppressed to Prevent Code Expansion

Software pipelining may be suppressed because of the –ms1 flag. When the

–ms1 flag is used, software pipelining is disabled in less promising cases to

reduce code size.  To enable pipelining, use –ms0 or omit the –ms flag alto-

gether.

4.2.7 Loop Carried Dependency Bound Too Large

If the loop has complex loop control, try –mh according to the recommenda-

tions in the TMS320C6000 Optimizing C/C++ Compiler User’s Guide.

4.2.8 Cannot Identify Trip Counter

The loop control is too complex. Try to simplify the loop.
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4.3 Pipeline Failure Messages

4.3.1 Address Increment Too Large

Description

A particular function the compiler performs when software pipelining is to allow

reordering of all loads and stores occurring from the same array or pointer.

This allows for maximum flexibility in scheduling. Once a schedule is found,

the compiler will return and add the appropriate offsets and increment/decre-

ments to each load and store. Sometimes, the loads and/or stores end up be-

ing offset too far from each other after reordering (the limit for standard load

pointers is +/– 32) . If this happens, the best bet is to restructure the loop so

that the pointers are closer together or rewrite the pointers to use register off-

sets that are precomputed.

Solution

Modify code so that the memory offsets are closer.

4.3.2 Cannot Allocate Machine Registers

Description

After software pipelining and finding a valid schedule, the compiler must allo-

cate all values in the loop to specific machine registers (A0–A15 and B0–B15

for the ’C62x and ’C67x, or A0–A31 and B0–B31 for the ’C64x). There are oc-

casions when software pipelining this particular ii is not possible. This may be

due to the loop schedule found requiring more registers than the ’C6000 has

available. The analyzing feedback example shows:

ii = 12 Cannot allocate machine registers

Regs Live Always : 1/5 (A/B–side)

Max Regs Live : 14/19

Max Cond Regs Live : 1/0

Regs Live Always refers to the number of registers needed for variables live

every cycle in the loop. Data loaded into registers outside the loop and read

inside the loop will fall into this category.

Max Regs Live refers to the maximum number of variables live on any one

cycle in the loop. If there are 33 variables live on one of the cycles inside the

loop, a minimum of 33 registers is necessary and this will not be possible with

the 32 registers available on the C62/C67 cores. 64 registers are available on

the ’C64x core. In addition, this is broken down between A and B side, so if

there is uneven partitioning with 30 values and there are 17 on one side and

13 on the other, the same problem will exist.
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Max Cond Regs Live tells us if there are too many conditional values needed

on a given cycle. The ’C62x/’C67x cores have 2 A side and 3 B side condition

registers available. The ’C64x core has 3 A side and 3 B side condition regis-

ters available.

Solution

Try splitting the loop into two separate loops. Repartition if too many instruc-

tions on one side.

For loops with complex control, try the –mh option.

Use symbolic register names instead of machine registers (A0–A15 and

B0–B15 for ’C62x and ’C67x, or A0–A31 and B0–B31 for ’C64x).

For More Information...

See section 5.9, Loop Unrolling (in Assembly), on page 5-94.

See section 2.5.3.4, Loop Unrolling (in C), on page 2-57.

TMS320C6000 C/C++ Compiler User’s Guide

4.3.3 Cycle Count Too High. Not Profitable

Description

In rare cases, the iteration interval of a software pipelined loop is higher than

a non-pipelined list scheduled loop.  In this case, it is more efficient to execute

the non-software pipelined version.

Solution

Split into multiple loops or reduce the complexity of the loop if possible.

Unpartition/repartition the linear assembly source code.

Add const and restrict keywords where appropriate to reduce dependences.

For loops with complex control, try the –mh option.

Probably best modified by another technique (i.e. loop unrolling).

Modify the register and/or partition constraints in linear assembly.

For more information...

See section 5.9, Loop Unrolling, on page 5-94.

TMS320C6000 C/C++ Compiler User’s Guide
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4.3.4 Did Not Find Schedule

Description

Sometimes, due to a complex loop or schedule, the compiler simply cannot

find a valid software pipeline schedule at a particular iteration interval.

Solution

Split into multiple loops or reduce the complexity of the loop if possible.

Unpartition/repartition the linear assembly source code.

Probably best modified by another technique (i.e. loop unrolling).

Modify the register and/or partition constraints in linear assembly.

For more information...

See section 5.9, Loop Unrolling, on page 5-94.

4.3.5 Iterations in Parallel > Max. Trip Count

Description

Not all loops can be profitably pipelined. Based on the available information

on the largest possible trip count, the compiler estimates that it will always be

more profitable to execute a non-pipelined version than to execute the pipe-

lined version, given the schedule that it found at the current iteration interval.

Solution

Probably best optimized by another technique (i.e. unroll the loop completely).

For more information...

See section 5.9, Loop Unrolling (in Assembly), on page 5-94.

See section 2.5.3.4, Loop Unrolling (in C), on page 2-57.

See section 2.5.3, Software Pipelining, on page 2-53.

4.3.6 Speculative Threshold Exceeded

Description

It would be necessary to speculatively load beyond the threshold currently

specified by the –mh option.

Solution

Increase the –mh threshold as recommended in the software pipeline feed-

back located in the assembly file.
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4.3.7 Iterations in Parallel > Min. Trip Count

Description

Based on the available information on the minimum trip count, it is not always

safe to execute the pipelined version of the loop. Normally, a redundant loop

would be generated. However, in this case, redundant loop generation has

been suppressed via the –ms0/–ms1 option.

Solution

Add MUST_ITERATE pragma or .trip to provide more information on the mini-

mum trip count

If adding –mh or using a higher value of –mhn could help, try the following

suggestions:

� Use –pm program level optimization to gather more trip count information.

� Use the MUST_ITERATE pragma or the .trip directive to provide minimum

trip count information.

For more information...

See section 2.5.3.3, Communicating Trip Count Information to the Compiler,

on page 2-56.

See section 5.2.5, The .trip Directive, on page 5-8.

4.3.8 Register is Live Too Long

Description

Sometimes the compiler finds a valid software pipeline schedule but one or

more of the values is live too long. Lifetime of a register is determined by the

cycle a value is written into it and by the last cycle this value is read by another

instruction. By definition, a variable can never be live longer than the ii of the

loop, because the next iteration of the loop will overwrite that value before it

is read.

After this message, the compiler prints out a detailed description of which val-

ues are live to long:

ii = 11 Register is live too long

|72| –> |74|

|73| –> |75|

The numbers 72, 73, 74, and 75 correspond to line numbers and they can be

mapped back to the offending instructions.
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Solution

Write linear assembly and insert MV instructions to split register lifetimes that

are live–too–long.

For more information...

See section 5.10.4.1, Split–Join–Path Problems, on page 5-104.

4.3.9 Too Many Predicates Live on One Side

Description

The C6000 has predicate, or conditional, registers available for use with condi-

tional instructions. There are 5 predicate registers on the ’C62x and ’C67x, and

6 predicate registers on the ’C64x. There are two or three on the A side and

three on the B side. Sometimes the particular partition and schedule combina-

tion, requires more than these available registers.

Solution

Try splitting the loop into two separate loops.

If multiple conditionals are used in the loop, allocation of these conditionals is

the reason for the failure. Try writing linear assembly and partition all instruc-

tions, writing to condition registers evenly between the A and B sides of the

machine. For the ’C62x and ’C67x, if there is an uneven number, put more on

the B side, since there are 3 condition registers on the B side and only 2 on

the A side.

4.3.10 Too Many Reads of One Register

Description

The ’C62x,’C64x, and ’C67x cores can read the same register a maximum of

4 times per cycle. If the schedule found happens to produce code that allows

a single register to be read more than 4 times in a given cycle, the schedule

is invalidated. This code invalidation is not common. If and when it does occur

on the ’C67x, it possibly due to some floating point instructions that have multi-

ple cycle reads.
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Solution

Split into multiple loops or reduce the complexity of the loop if possible.

Unpartition/repartition the linear assembly source code.

Probably best modified by another technique (i.e. loop unrolling).

Modify the register and/or partition constraints in linear assembly.

For more information...

See section 5.9, Loop Unrolling (in Assembly), on page 5-94.

See section 2.5.3.4, Loop Unrolling (in C), on page 2-57.

4.3.11 Trip var. Used in Loop – Can’t Adjust Trip Count

Description

If the loop counter (named trip counter because of the number of trips through

a loop) is modified within the body of the loop, it typically cannot be converted

into a downcounting loop (needed for software pipelining on the ’C6000). If

possible, rewrite the loop to not modify the trip counter by adding a separate

variable to be modified.

The fact that the loop counter is used in the loop is actually determined much

earlier in the loop qualification stage of the compiler. Why did the compiler try

to schedule this anyway? The reason has to do with the –mh option. This op-

tion allows for extraneous loads and facilitates epilog removal. If the epilog was

successfully removed, the loop counter can sometimes be altered in the loop

and still allow software pipelining. Sometimes, this isn’t possible after schedul-

ing and thus the feedback shows up at this stage.

Solution

Replicate the trip count variable and use the copy inside the loop so that the

trip counter and the loop reference separate variables.

Use the –mh option.

For more information...

See section 2.5.3.6, What Disqualifies a Loop From Being Software Pipelined,

on page 2-62.
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4.4 Investigative Feedback

4.4.1 Loop Carried Dependency Bound is Much Larger Than Unpartitioned
Resource Bound

Description

If the loop carried dependency bound is much larger than the unpartitioned re-

source bound, this can be an indicator that there is a potential memory alias

disambiguation problem. This means that there are two pointers that may or

may not point to the same location, and thus, the compiler must assume they

might. This can cause a dependency (often between the load of one pointer

and the store of another) that does not really exist. For software pipelined

loops, this can greatly degrade performance.

Solution

Use –pm program level optimization to reduce  memory pointer aliasing.

Add restrict declarations to all pointers passed to a function whose objects do

not overlap.

Use –mt option to assume no memory pointer aliasing.

Use the .mdep and .no_mdep assembly optimizer directives.

If the loop control is complex, try the -mh option.

For More Information...

See section 5.2, Assembly Optimizer Options and Directives, on page 5-4.

4.4.2 Two Loops are Generated, One Not Software Pipelined

Description

If the trip count is too low, it is illegal to execute the software pipelined version

of the loop.  In this case, the compiler could not guarantee that the minimum

trip count would be high enough to always safely execute the pipelined ver-

sion.  Hence, it generated a non-pipelined version as well. Code is generated,

so that at run-time, the appropriate version of the loop will be executed.

Solution

Check the software pipeline loop information to see what the compiler knows

about the trip count. If you have more precise information, provide it to the com-

piler using one of the following methods:
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� Use the MUST_ITERATE pragma to specify loop count information in c

code.

� Use the .trip directive to specify loop count information in linear assembly.

Alternatively, the compiler may be able to determine this information on its own

when you compile the function and callers with –pm and –op2.

For More Information...

See section 2.5.3.3, Communicating Trip Count Information to the Compiler,

on page 2-56.

See section 5.2.5, The .trip Directive, on page 5-8.

4.4.3 Uneven Resources

Description

If the number of resources to do a particular operation is odd, unrolling the loop

is sometimes beneficial. If a loop requires 3 multiplies, then a minimum itera-

tion interval of 2 cycles is required to execute this. If the loop was unrolled, 6

multiplies could be evenly partitioned across the A and B side, having a  mini-

mum ii of 3 cycles, giving improved performance.

Solution

Unroll the loop to make an even number of resources.

For More Information...

See section 5.9, Loop Unrolling (in Assembly), on page 5-94.

See section 2.5.3.4, Loop Unrolling (in C), on page 2-57.

4.4.4 Larger Outer Loop Overhead in Nested Loop

Description

In cases where the inner loop count of a nested loop is relatively small, the time

to execute the outer loop can start to become a large percentage of the total

execution time. For cases where this significantly degrades overall loop per-

formance, unrolling the inner loop may be desired.

Solution

Unroll the inner loop.
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Make one loop with the outer loop instructions conditional on an inner loop

counter

For More Information

See Chapter 5, Loop Unrolling (In C) (In Assembly), on page 5-118.

See section 5.14, Outer Loop Conditionally Executed With Inner Loop, on

page 5-136.

4.4.5 There are Memory Bank Conflicts

Description

In cases where the compiler generates 2 memory accesses in one cycle and

those accesses are either 8 bytes apart on a ’C620x device, 16  bytes apart

on a ’C670x device, or 32 bytes apart on a ’C640x device, AND both accesses

reside within the same memory block, a memory bank stall will occur. To avoid

this degradation, memory bank conflicts can be completely avoided by either

placing the two accesses in different memory blocks or by writing linear as-

sembly and using the .mptr directive to control memory banks.

Solution

Write linear assembly and use the .mptr directive

Link different arrays in separate memory blocks

For More Information

See section 5.2.4, The .mptr Directive, on page 5-5.

See section 5.9, Loop Unrolling (in Assembly), on page 5-94.

See section 2.5.3.4, Loop Unrolling (in C), on page 2-57.

See section 5.12, Memory Banks, on page 5-118

4.4.6 T Address Paths Are Resource Bound

Description

T address paths defined the number of memory accesses that must be sent

out on the address bus each loop iteration. If these are the resource bound for

the loop, it is often  possible to reduce the number of accesses by performing

word accesses (LDW/STW) for any short accesses being performed.

Solution
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Use word accesses for short arrays; declare int * (or use _nassert) and use

–mpy intrinsics to  multiply upper and lower halves of registers

Try to employ redundant load elimination technique if possible

Use LDW/STW instructions for accesses to memory

For More Information...

See section 2.5.2, Using Word Accesses for Short Data (C), on page 2-33.

See section 5.11, Redundant Load Elimination, on page 5-110.

See section 5.4, Using Word Access for Short Data (Assembly), on page 5-19.
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Optimizing Assembly Code
via Linear Assembly

This chapter describes methods that help you develop more efficient

assembly language programs, understand the code produced by the

assembly optimizer, and perform manual optimization.

This chapter encompasses phase 3 of the code development flow. After you

have developed and optimized your C code using the ’C6000 compiler, extract

the inefficient areas from your C code and rewrite them in linear assembly (as-

sembly code that has not been register-allocated and is unscheduled).

The assembly code shown in this chapter has been hand-optimized in order

to direct your attention to particular coding issues. The actual output from the

assembly optimizer may look different, depending on the version you are us-

ing.
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5.1 Linear Assembly Code

The source that you write for the assembly optimizer is similar to assembly

source code; however, linear assembly does not include information about

parallel instructions, instruction latencies, or register usage. The assembly op-

timizer takes care of the difficulties of streamlining your code by:

� Finding instructions that can be executed in parallel

� Handling pipeline latencies during software pipelining

� Assigning register usage

� Defining which unit to use

Although you have the option with the ’C6000 to specify the functional unit or

register used, this may restrict the compiler’s ability to fully optimize your code.

See the TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more in-

formation.

This chapter takes you through the optimization process manually to show you

how the assembly optimizer works and to help you understand when you might

want to perform some of the optimizations manually. Each section introduces

optimization techniques in increasing complexity:

� Section 5.3 and section 5.4 begin with a dot product algorithm to show you

how to translate the C code to assembly code and then how to optimize

the linear assembly code with several simple techniques.

� Section 5.5 and section 5.6 introduce techniques for the more complex al-

gorithms associated with software pipelining, such as modulo iteration in-

terval scheduling for both single-cycle loops and multicycle loops.

� Section 5.7 uses an IIR filter algorithm to discuss the problems with loop

carry paths.

� Section 5.8 and section 5.9 discuss the problems encountered with if-

then-else statements in a loop and how loop unrolling can be used to re-

solve them.

� Section 5.10 introduces live-too-long issues in your code.

� Section 5.11 uses a simple FIR filter algorithm to discuss redundant load

elimination.

� Section 5.12 discusses the same FIR filter in terms of the interleaved

memory bank scheme used by ’C6000 devices.

� Section 5.13 and section 5.14 show you how to execute the outer loop of

the FIR filter conditionally and in parallel with the inner loop.
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Each example discusses the:

� Algorithm in C code

� Translation of the C code to linear assembly

� Dependency graph to describe the flow of data in the algorithm

� Allocation of resources (functional units, registers, and cross paths) in lin-

ear assembly

Note:

There are three types of code for the ’C6000: C/C++ code (which is input for
the C/C++ compiler), linear assembly code (which is input for the assembly
optimizer), and assembly code (which is input for the assembler).

In the three sections following section 5.2, we use the dot product to demon-

strate how to use various programming techniques to optimize both perfor-

mance and code size. Most of the examples provided in this book use fixed-

point arithmetic; however, the three sections following section 5.2 give both

fixed-point and floating-point examples of the dot product to show that the

same optimization techniques apply to both fixed- and floating-point pro-

grams.
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5.2 Assembly Optimizer Options and Directives

All directives and options that are described in the following sections are listed

in greater detail in Chapter 4 of the TMS320C6000 Optimizing C/C++ Compil-

er User’s Guide.

5.2.1 The –on Option

Software pipelining requires the -o2 or -o3 option. Not specifying -o2 or -o3 fa-

cilitates faster compile time and ease of development through reduced opti-

mization.

5.2.2 The –mt Option and the .no_mdep Directive

Because the assembly optimizer has no idea where objects you are accessing

are located when you perform load and store instructions, the assembly opti-

mizer is by default very conservative in determining dependencies between

memory operations. For example, let us say you have the following loop de-

fined in a linear assembly file:

Example 5–1. Linear Assembly Block Copy

loop:

ldw *reg1++, reg2

add reg2, reg3, reg4

stw reg4, *reg5++

[reg6] add –1, reg6, reg6

[reg6] b loop

The assembly optimizer will make sure that each store to “reg5” completes be-

fore the next load of “reg1”. A suboptimal loop would result if the store to ad-

dress in reg5 in not in the next location to be read by “reg1”. For loops where

“reg5” is pointing to the next location of “reg1”, this is necessary and implies

that the loop has a loop carry path. See section 5.7, Loop Carry Paths, on page

5-77 for more information.

For most loops, this is not the case, and you can inform the assembly optimizer

to be more aggressive about scheduling memory operations. You can do this

either by including the “.no_mdep” (no memory dependencies) directive in

your linear assembly function or with the -mt option when you are compiling

the linear assembly file. Be aware that if you are compiling both C code and

linear assembly code in your application, that the -mt option has different

meanings for both C and linear assembly code. In this case, use the .no_mdep

directive in your linear assembly source files.
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For a full description on the implications of .no_mdep and the -mt option, refer

to Appendix B, Memory Alias Disambiguation. Refer to the TMS320C6000

Optimizing C/C++ Compiler User’s Guide for more information on both the -mt

option and the .no_mdep directive.

5.2.3 The .mdep Directive

Should you need to specify a dependence between two or more memory refer-

ences, use the .mdep directive. Annotate your code with memory reference

symbols and add the .mdep directive to your linear assembly function.

Example 5–2. Block copy With .mdep

.mdep ld1, st1

LDW *p1++ {ld1}, inp1 ; annotate memory reference ld1

; other code ...

STW outp2,*p2++ {st1} ; annotate memory reference st1

The .mdep directive indicates there is a memory dependence from the LDW

instruction to the STW instruction. This means that the STW instruction must

come after the LDW instruction. The .mdep directive does not imply that there

is a memory dependence from the STW to the LDW. Another .mdep directive

would be needed to handle that case.

5.2.4 The .mptr Directive

The .mptr directive gives the assembly optimizer information on how to avoid

memory bank conflicts. The assembly optimizer will rearrange the memory ref-

erences generated in the assembly code to avoid the memory bank conflicts

that were specified with the .mptr directive. This means that code generated

by the assembly optimizer will be faster by avoiding the memory bank conflicts.

Example 5–3 shows linear assembly code and the generated loop kernel for

a dot product without the .mptr directive.

Example 5–3. Linear Assembly Dot Product

dotp: .cproc ptr_a, ptr_b, cnt

.reg val1, val2, val3, val4

.reg prod1, prod2, sum1, sum2

zero sum1

zero sum2

loop: .trip 20, 20
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Example 5–3.Linear Assembly Dot Product (Continued)

ldh *ptr_a++, val1

ldh *ptr_b++, val2

mpy val1, val2, prod1

add sum1, prod1, sum1

ldh *ptr_a++, val1

ldh *ptr_b++, val2

mpy val3, val4, prod2

add sum2, prod2, sum2

[cnt] add –1, cnt, cnt

[cnt] b loop

add sum1, sum2, sum1

return sum1

.endproc

<loop kernel generated>

loop:     ; PIPED LOOP KERNEL

   [!A1]    ADD     .L2     B4,B6,B4

||          MPY     .M2X    B7,A0,B6

|| [ B0]    B       .S1     loop

||          LDH     .D2T2   *–B5(2),B6

||          LDH     .D1T1   *–A4(2),A0

   [ A1]    SUB     .S1     A1,1,A1

|| [!A1]    ADD     .L1     A5,A3,A5

||          MPY     .M1X    B6,A0,A3

|| [ B0]    ADD     .L2     –1,B0,B0

||          LDH     .D2T2   *B5++(4),B7

||          LDH     .D1T1   *A4++(4),A0

If the arrays pointed to by ptr_a and ptr_b begin on the same bank, then there

will be memory bank conflicts at every cycle of the loop due to how the LDH

instructions are paired.

By adding the .mptr directive information, you can avoid the memory bank con-

flicts. Example 5–4 shows the linear assembly dot product with the .mptr direc-

tive and the resulting loop kernel.
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Example 5–4. Linear Assembly Dot Product With .mptr

dotp: .cproc  ptr_a, ptr_b, cnt

.reg val1, val2, val3, val4

.reg prod1, prod2, sum1, sum2

zero sum1

zero sum2

.mptr ptr_a, x, 4

.mptr ptr_b, x, 4

loop: .trip 20, 20

ldh *ptr_a++, val1

ldh *ptr_b++, val2

mpy val1, val2, prod1

add sum1, prod1, sum1

ldh *ptr_a++, val3

ldh *ptr_b++, val4

mpy val3, val4, prod2

add sum2, prod2, sum2

[cnt] add –1, cnt, cnt

[cnt] b loop

add sum1, sum2, sum1

return  sum1

.endproc

<loop kernel generated>

loop:     ; PIPED LOOP KERNEL

   [!A1]    ADD     .L2     B4,B6,B4

||          MPY     .M2X    B8,A0,B6

|| [ B0]    B       .S1     loop

||          LDH     .D2T2   *B5++(4),B8

||          LDH     .D1T1   *–A4(2),A0

   [ A1]    SUB     .S1     A1,1,A1

|| [!A1]    ADD     .L1     A5,A3,A5

||          MPY     .M1X    B7,A0,A3

|| [ B0]    ADD     .L2     –1,B0,B0

||          LDH     .D2T2   *–B5(2),B7

||          LDH     .D1T1   *A4++(4),A0
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The above loop kernel has no memory bank conflicts in the case where ptr_a

and ptr_b point to the same bank. This means that you have to know how your

data is aligned in C code before using the .mptr directive in your linear assem-

bly code. The ’C6000 compiler supports pragmas in C/C++ that align your data

to a particular boundary (DATA_ALIGN, for example). Use these pragmas to

align your data properly, so that the .mptr directives work in your linear assem-

bly code.

5.2.5 The .trip Directive

The .trip directive is analogous to the _must_ITERATE pragma for C/C++. The

.trip directive looks like:

label:.trip minimum_value[, maximum value[, factor]]

For example if you wanted to say that the linear assembly loop will execute

some minimum number of times, use the .trip directive with just the first para-

meter. This example tells the assembly optimizer that the loop will iterate at

least ten times.

loop: .trip 10

You can also tell the assembly optimizer that your loop will execute exactly

some number of times by setting the minimum_value and maximum_value pa-

rameters to exactly the same value. This next example tells the assembly opti-

mizer that the loop will iterate exactly 20 times.

loop: .trip 20, 20

The maximum_value parameter can also tell the assembly optimizer that the

loop will iterate between some range. The factor parameter allows the assem-

bly optimizer to know that the loop will execute a factor of value times. For ex-

ample, the next loop will iterate either 8, 16, 24, 32, 40, or 48 times when this

particular linear assembly loop is called.

loop: .trip 8, 48, 8

The maximum_value and factor parameters are especially useful when your

loop needs to be interruptible. Refer to section 8.4.4, Getting the Most Perfor-

mance Out of Interruptible Code.
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5.3 Writing Parallel Code

One way to optimize linear assembly code is to reduce the number of execu-

tion cycles in a loop. You can do this by rewriting linear assembly instructions

so that the final assembly instructions execute in parallel.

5.3.1 Dot Product C Code

The dot product is a sum in which each element in array a is multiplied by the

corresponding element in array b. Each of these products is then accumulated

into sum. The C code in Example 5–5 is a fixed-point dot product algorithm.

The C code in Example 5–6 is a floating-point dot product algorithm.

Example 5–5. Fixed-Point Dot Product C Code

int dotp(short a[], short b[])

{

int sum, i;

sum = 0;

for(i=0; i<100; i++)

sum += a[i] * b[i];

return(sum);

}

Example 5–6. Floating-Point Dot Product C Code

float dotp(float a[], float b[])

{

int i;

float sum;

sum = 0;

for(i=0; i<100; i++)

sum += a[i] * b[i];

return(sum);

}
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5.3.2 Translating C Code to Linear Assembly

The first step in optimizing your code is to translate the C code to linear assem-

bly.

5.3.2.1 Fixed-Point Dot Product

Example 5–7 shows the linear assembly instructions used for the inner loop

of the fixed-point dot product C code. 

Example 5–7. List of Assembly Instructions for Fixed-Point Dot Product

 LDH .D1 *A4++,A2 ; load ai from memory

LDH .D1 *A3++,A5 ; load bi from memory

MPY .M1 A2,A5,A6 ; ai * bi

ADD .L1 A6,A7,A7 ; sum += (ai * bi)

SUB .S1 A1,1,A1 ; decrement loop counter

   [A1] B .S2 LOOP ; branch to loop

The load halfword (LDH) instructions increment through the a and b arrays.

Each LDH does a postincrement on the pointer. Each iteration of these instruc-

tions sets the pointer to the next halfword (16 bits) in the array. The ADD in-

struction accumulates the total of the results from the multiply (MPY) instruc-

tion. The subtract (SUB) instruction decrements the loop counter.

An additional instruction is included to execute the branch back to the top of

the loop. The branch (B) instruction is conditional on the loop counter, A1, and

executes only until A1 is 0.

5.3.2.2 Floating-Point Dot Product

Example 5–8 shows the linear assembly instructions used for the inner loop

of the floating-point dot product C code.

Example 5–8. List of Assembly Instructions for Floating-Point Dot Product

 LDW .D1 *A4++,A2 ; load ai from memory

LDW .D2 *A3++,A5 ; load bi from memory

MPYSP† .M1 A2,A5,A6 ; ai * bi

ADDSP† .L1 A6,A7,A7 ; sum += (ai * bi)

SUB .S1 A1,1,A1 ; decrement loop counter

   [A1] B .S2 LOOP ; branch to loop

† ADDSP and MPYSP are ’C67x (floating-point) instructions only.

The load word (LDW) instructions increment through the a and b arrays. Each

LDW does a postincrement on the pointer. Each iteration of these instructions

sets the pointer to the next word (32 bits) in the array. The ADDSP instruction
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accumulates the total of the results from the multiply (MPYSP) instruction. The

subtract (SUB) instruction decrements the loop counter.

An additional instruction is included to execute the branch back to the top of

the loop. The branch (B) instruction is conditional on the loop counter, A1, and

executes only until A1 is 0.

5.3.3 Linear Assembly Resource Allocation

The following rules affect the assignment of functional units for Example 5–7

and Example 5–8 (shown in the third column of each example):

� Load (LDH and LDW) instructions must use a .D unit.

� Multiply (MPY and MPYSP) instructions must use a .M unit.

� Add (ADD and ADDSP) instructions use a .L unit.

� Subtract (SUB) instructions use a .S unit.

� Branch (B) instructions must use a .S unit.

Note:

The ADD and SUB can be on the .S, .L, or .D units; however, for Example 5–7
and Example 5–8, they are assigned as listed above.

The ADDSP instruction in Example 5–8 must use a .L unit.

5.3.4 Drawing a Dependency Graph

Dependency graphs can help analyze loops by showing the flow of instruc-

tions and data in an algorithm. These graphs also show how instructions

depend on one another. The following terms are used in defining a depen-

dency graph.

� A node is a point on a dependency graph with one or more data paths

flowing in and/or out.

� The path shows the flow of data between nodes. The numbers beside

each path represent the number of cycles required to complete the instruc-

tion.

� An instruction that writes to a variable is referred to as a parent instruction

and defines a parent node.

� An instruction that reads a variable written by a parent instruction is re-

ferred to as its child and defines a child node.
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Use the following steps to draw a dependency graph:

1) Define the nodes based on the variables accessed by the instructions.

2) Define the data paths that show the flow of data between nodes.

3) Add the instructions and the latencies.

4) Add the functional units.

5.3.4.1 Fixed-Point Dot Product

Figure 5–1 shows the dependency graph for the fixed-point dot product

assembly instructions shown in Example 5–7 and their corresponding register

allocations.

Figure 5–1. Dependency Graph of Fixed-Point Dot Product
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� The two LDH instructions, which write the values of ai and bi, are parents

of the MPY instruction. It takes five cycles for the parent (LDH) instruction

to complete. Therefore, if LDH is scheduled on cycle i, then its child (MPY)

cannot be scheduled until cycle i + 5.

� The MPY instruction, which writes the product pi, is the parent of the ADD

instruction. The MPY instruction takes two cycles to complete.

� The ADD instruction adds pi (the result of the MPY) to sum. The output of

the ADD instruction feeds back to become an input on the next iteration

and, thus, creates a loop carry path. (See section 5.7 on page 5-77 for

more information on loop carry paths.)
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The dependency graph for this dot product algorithm has two separate parts

because the decrement of the loop counter and the branch do not read or write

any variables from the other part.

� The SUB instruction writes to the loop counter, cntr. The output of the SUB

instruction feeds back and creates a loop carry path.

� The branch (B) instruction is a child of the loop counter.

5.3.4.2 Floating-Point Dot Product

Similarly, Figure 5–2 shows the dependency graph for the floating-point dot

product assembly instructions shown in Example 5–8 and their corresponding

register allocations.

Figure 5–2. Dependency Graph of Floating-Point Dot Product
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� The two LDW instructions, which write the values of ai and bi, are parents

of the MPYSP instruction. It takes five cycles for the parent (LDW) instruc-

tion to complete. Therefore, if LDW is scheduled on cycle i, then its child

(MPYSP) cannot be scheduled until cycle i + 5.

� The MPYSP instruction, which writes the product pi, is the parent of the

ADDSP instruction. The MPYSP instruction takes four cycles to complete.

� The ADDSP instruction adds pi (the result of the MPYSP) to sum. The

output of the ADDSP instruction feeds back to become an input on the next

iteration and, thus, creates a loop carry path. (See section 5.7 on page

5-77 for more information on loop carry paths.)
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The dependency graph for this dot product algorithm has two separate parts

because the decrement of the loop counter and the branch do not read or write

any variables from the other part.

� The SUB instruction writes to the loop counter, cntr. The output of the SUB

instruction feeds back and creates a loop carry path.

� The branch (B) instruction is a child of the loop counter.

5.3.5 Nonparallel Versus Parallel Assembly Code

Nonparallel assembly code is performed serially, that is, one instruction follow-

ing another in sequence. This section explains how to rewrite the instructions

so that they execute in parallel.

5.3.5.1 Fixed-Point Dot Product

Example 5–9 shows the nonparallel assembly code for the fixed-point dot

product loop. The MVK instruction initializes the loop counter to 100. The

ZERO instruction clears the accumulator. The NOP instructions allow for the

delay slots of the LDH, MPY, and B instructions.

Executing this dot product code serially requires 16 cycles for each iteration

plus two cycles to set up the loop counter and initialize the accumulator; 100 it-

erations require 1602 cycles.

Example 5–9. Nonparallel Assembly Code for Fixed-Point Dot Product

MVK .S1 100, A1 ; set up loop counter

ZERO .L1 A7 ; zero out accumulator

LOOP:

LDH .D1 *A4++,A2 ; load ai from memory

LDH .D1 *A3++,A5 ; load bi from memory

NOP 4 ; delay slots for LDH

MPY .M1 A2,A5,A6 ; ai * bi

NOP ; delay slot for MPY

ADD .L1 A6,A7,A7 ; sum += (ai * bi)

SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to loop

NOP 5 ; delay slots for branch

;  Branch occurs here

Assigning the same functional unit to both LDH instructions slows perfor-

mance of this loop. Therefore, reassign the functional units to execute the

code in parallel, as shown in the dependency graph in Figure 5–3. The parallel

assembly code is shown in Example 5–10.
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Figure 5–3. Dependency Graph of Fixed-Point Dot Product with Parallel Assembly
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Example 5–10. Parallel Assembly Code for Fixed-Point Dot Product

MVK .S1 100, A1 ; set up loop counter

|| ZERO .L1 A7 ; zero out accumulator

LOOP:

LDH .D1 *A4++,A2 ; load ai from memory

|| LDH .D2 *B4++,B2 ; load bi from memory

SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to loop

NOP 2 ; delay slots for LDH

MPY .M1X A2,B2,A6 ; ai * bi

NOP ; delay slots for MPY

ADD .L1 A6,A7,A7 ; sum += (ai * bi)

;  Branch occurs here

Because the loads of ai and bi do not depend on one another, both LDH

instructions can execute in parallel as long as they do not share the same

resources. To schedule the load instructions in parallel, allocate the functional

units as follows:

� ai and the pointer to ai to a functional unit on the A side, .D1

� bi and the pointer to bi to a functional unit on the B side, .D2

Because the MPY instruction now has one source operand from A and one

from B, MPY uses the 1X cross path.
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Rearranging the order of the instructions also improves the performance of the

code. The SUB instruction can take the place of one of the NOP delay slots

for the LDH instructions. Moving the B instruction after the SUB removes the

need for the NOP 5 used at the end of the code in Example 5–9.

The branch now occurs immediately after the ADD instruction so that the MPY

and ADD execute in parallel with the five delay slots required by the branch

instruction.

5.3.5.2 Floating-Point Dot Product

Similarly, Example 5–11 shows the nonparallel assembly code for the floating-

point dot product loop. The MVK instruction initializes the loop counter to 100.

The ZERO instruction clears the accumulator. The NOP instructions allow for

the delay slots of the LDW, ADDSP, MPYSP, and B instructions.

Executing this dot product code serially requires 21 cycles for each iteration

plus two cycles to set up the loop counter and initialize the accumulator; 100 it-

erations require 2102 cycles.

Example 5–11. Nonparallel Assembly Code for Floating-Point Dot Product

MVK .S1 100, A1 ; set up loop counter

ZERO .L1 A7 ; zero out accumulator

LOOP:

LDW .D1 *A4++,A2 ; load ai from memory

LDW .D1 *A3++,A5 ; load bi from memory

NOP 4 ; delay slots for LDW

MPYSP .M1 A2,A5,A6 ; ai * bi

NOP 3 ; delay slots for MPYSP

ADDSP .L1 A6,A7,A7 ; sum += (ai * bi)

NOP 3 ; delay slots for ADDSP

SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to loop

NOP 5 ; delay slots for branch

;  Branch occurs here

Assigning the same functional unit to both LDW instructions slows perfor-

mance of this loop. Therefore, reassign the functional units to execute the

code in parallel, as shown in the dependency graph in Figure 5–4. The parallel

assembly code is shown in Example 5–12.
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Figure 5–4. Dependency Graph of Floating-Point Dot Product with Parallel Assembly
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Example 5–12. Parallel Assembly Code for Floating-Point Dot Product

MVK .S1 100, A1 ; set up loop counter

|| ZERO .L1 A7 ; zero out accumulator

LOOP:

LDW .D1 *A4++,A2 ; load ai from memory

|| LDW .D2 *B4++,B2 ; load bi from memory

SUB .S1 A1,1,A1 ; decrement loop counter

NOP 2 ; delay slots for LDW

  [A1] B .S2 LOOP ; branch to loop

MPYSP .M1X A2,B2,A6 ; ai * bi

NOP 3 ; delay slots for MPYSP

ADDSP .L1 A6,A7,A7 ; sum += (ai * bi)

;  Branch occurs here

Because the loads of ai and bi do not depend on one another, both LDW

instructions can execute in parallel as long as they do not share the same

resources. To schedule the load instructions in parallel, allocate the functional

units as follows:

� ai and the pointer to ai to a functional unit on the A side, .D1

� bi and the pointer to bi to a functional unit on the B side, .D2

Because the MPYSP instruction now has one source operand from A and one

from B, MPYSP uses the 1X cross path.
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Rearranging the order of the instructions also improves the performance of the

code. The SUB instruction replaces one of the NOP delay slots for the LDW

instructions. Moving the B instruction after the SUB removes the need for the

NOP 5 used at the end of the code in Example 5–11 on page 5-16.

The branch now occurs immediately after the ADDSP instruction so that the

MPYSP and ADDSP execute in parallel with the five delay slots required by

the branch instruction.

Since the ADDSP finishes execution before the result is needed, the NOP 3

for delay slots is removed, further reducing cycle count.

5.3.6 Comparing Performance

Executing the fixed-point dot product code in Example 5–10 requires eight

cycles for each iteration plus one cycle to set up the loop counter and initialize

the accumulator; 100 iterations require 801 cycles.

Table 5–1 compares the performance of the nonparallel code with the parallel

code for the fixed-point example.

Table 5–1. Comparison of Nonparallel and Parallel Assembly Code for Fixed-Point
Dot Product

Code Example 100 Iterations Cycle Count

Example 5–9 Fixed-point dot product nonparallel assembly 2 + 100 � 16 1602

Example 5–10 Fixed-point dot product parallel assembly 1 + 100 � 8 801

Executing the floating-point dot product code in Example 5–12 requires ten

cycles for each iteration plus one cycle to set up the loop counter and initialize

the accumulator; 100 iterations require 1001 cycles.

Table 5–2 compares the performance of the nonparallel code with the parallel

code for the floating-point example.

Table 5–2. Comparison of Nonparallel and Parallel Assembly Code for Floating-Point
Dot Product

Code Example 100 Iterations Cycle Count

Example 5–11 Floating-point dot product nonparallel assembly 2 + 100 � 21 2102

Example 5–12 Floating-point dot product parallel assembly 1 + 100 � 10 1001
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5.4 Using Word Access for Short Data and Doubleword Access for
Floating-Point Data

The parallel code for the fixed-point example in section 5.3 uses an LDH

instruction to read a[i]. Because a[i] and a[i+1] are next to each other in

memory, you can optimize the code further by using the load word (LDW)

instruction to read a[i] and a[i+1] at the same time and load both into a single

32-bit register. (The data must be word-aligned in memory.)

In the floating-point example, the parallel code uses an LDW instruction to read

a[i]. Because a[i] and a[i+1] are next to each other in memory, you can opti-

mize the code further by using the load doubleword (LDDW) instruction to read

a[i] and a[i+1] at the same time and load both into a register pair. (The data

must be doubleword-aligned in memory.) See the TMS320C6000 CPU and In-

struction Set User’s Guide for more specific information on the LDDW instruc-

tion.

Note:

The load doubleword (LDDW) instruction is available on the ’C64x (fixed
point) and ’C67x (floating-point) device.

5.4.1 Unrolled Dot Product C Code

The fixed-point C code in Example 5–13 has the effect of unrolling the loop by

accumulating the even elements, a[i] and b[i], into sum0 and the odd elements,

a[i+1] and b[i+1], into sum1. After the loop, sum0 and sum1 are added to pro-

duce the final sum. The same is true for the floating-point C code in

Example 5–14. (For another example of loop unrolling, see section 5.9 on

page 5-94.)

Example 5–13. Fixed-Point Dot Product C Code (Unrolled)

int dotp(short a[], short b[] )

{

int sum0, sum1, sum, i;

sum0 = 0;

sum1 = 0;

for(i=0; i<100; i+=2){

sum0 += a[i] * b[i];

sum1 += a[i + 1] * b[i + 1];

}

sum = sum0 + sum1;

return(sum);

}
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Example 5–14. Floating-Point Dot Product C Code (Unrolled)

float dotp(float a[], float b[])

{

int i;

float sum0, sum1, sum;

sum0 = 0;

sum1 = 0;

for(i=0; i<100; i+=2){

sum0 += a[i] * b[i];

sum1 += a[i + 1] * b[i + 1];

}

sum = sum0 + sum1;

return(sum);

}

5.4.2 Translating C Code to Linear Assembly

The first step in optimizing your code is to translate the C code to linear assem-

bly.

5.4.2.1 Fixed-Point Dot Product

Example 5–15 shows the list of ’C6000 instructions that execute the unrolled

fixed-point dot product loop. Symbolic variable names are used instead of ac-

tual registers. Using symbolic names for data and pointers makes code easier

to write and allows the optimizer to allocate registers. However, you must use

the .reg assembly optimizer directive. See the TMS320C6000 Optimizing

C/C++ Compiler User’s Guide for more information on writing linear assembly

code.

Example 5–15. Linear Assembly for Fixed-Point Dot Product Inner Loop with LDW

LDW *a++,ai_i1 ; load ai & a1 from memory

LDW *b++,bi_i1 ; load bi & b1 from memory

MPY ai_i1,bi_i1,pi ; ai * bi

MPYH ai_i1,bi_i1,pi1 ; ai+1 * bi+1

ADD pi,sum0,sum0 ; sum0 += (ai * bi)

ADD pi1,sum1,sum1 ; sum1 += (ai+1 * bi+1)

 [cntr] SUB cntr,1,cntr ; decrement loop counter

 [cntr] B LOOP ; branch to loop

The two load word (LDW) instructions load a[i], a[i+1], b[i], and b[i+1] on each

iteration.
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Two MPY instructions are now necessary to multiply the second set of array

elements:

� The first MPY instruction multiplies the 16 least significant bits (LSBs) in

each source register: a[i] � b[i].

� The MPYH instruction multiplies the 16 most significant bits (MSBs) of

each source register: a[i+1] � b [i+1].

The two ADD instructions accumulate the sums of the even and odd elements:

sum0 and sum1.

Note:

This is true only when the ’C6x is in little-endian mode. In big-endian mode,
MPY operates on a[i+1] and b[i+1] and MPYH operates on a[i] and b[i]. See
the TMS320C6000 Peripherals Reference Guide for more information.

5.4.2.2 Floating-Point Dot Product

Example 5–16 shows the list of ’C6x instructions that execute the unrolled

floating-point dot product loop. Symbolic variable names are used instead of

actual registers. Using symbolic names for data and pointers makes code eas-

ier to write and allows the optimizer to allocate registers. However, you must

use the .reg assembly optimizer directive. See the TMS320C6000 Optimizing

C/C++ Compiler User’s Guide for more information on writing linear assembly

code.

Example 5–16. Linear Assembly for Floating-Point Dot Product Inner Loop with LDDW

LDDW *a++,ai1:ai0 ; load a[i+0] & a[i+1] from memory

LDDW *b++,bi1:bi0 ; load b[i+0] & b[i+1] from memory

MPYSP ai0,bi0,pi0 ; a[i+0] * b[i+0]

MPYSP ai1,bi1,pi1 ; a[i+1] * b[i+1]

ADDSP pi0,sum0,sum0 ; sum0 += (a[i+0] * b[i+0])

ADDSP pi1,sum1,sum1 ; sum1 += (a[i+1] * b[i+1])

 [cntr] SUB cntr,1,cntr ; decrement loop counter

 [cntr] B LOOP ; branch to loop

The two load doubleword (LDDW) instructions load a[i], a[i+1], b[i], and b[i+1]

on each iteration.

Two MPYSP instructions are now necessary to multiply the second set of array

elements.

The two ADDSP instructions accumulate the sums of the even and odd

elements: sum0 and sum1.
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5.4.3 Drawing a Dependency Graph

The dependency graph in Figure 5–5 for the fixed-point dot product shows that

the LDW instructions are parents of the MPY instructions and the MPY instruc-

tions are parents of the ADD instructions. To split the graph between the A and

B register files, place an equal number of LDWs, MPYs, and ADDs on each

side. To keep both sides even, place the remaining two instructions, B and

SUB, on opposite sides.

Figure 5–5. Dependency Graph of Fixed-Point Dot Product With LDW
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Similarly, the dependency graph in Figure 5–6 for the floating-point dot prod-

uct shows that the LDDW instructions are parents of the MPYSP instructions

and the MPYSP instructions are parents of the ADDSP instructions. To split

the graph between the A and B register files, place an equal number of
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LDDWs, MPYSPs, and ADDSPs on each side. To keep both sides even, place

the remaining two instructions, B and SUB, on opposite sides.

Figure 5–6. Dependency Graph of Floating-Point Dot Product With LDDW
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5.4.4 Linear Assembly Resource Allocation

After splitting the dependency graph for both the fixed-point and floating-point

dot products, you can assign functional units and registers, as shown in the

dependency graphs in Figure 5–7 and Figure 5–8 and in the instructions in

Example 5–17 and Example 5–18. The .M1X and .M2X represent a path in the

dependency graph crossing from one side to the other.
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Figure 5–7. Dependency Graph of Fixed-Point Dot Product With LDW (Showing 
Functional Units)
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Example 5–17. Linear Assembly for Fixed-Point Dot Product Inner Loop With LDW 
(With Allocated Resources)

LDW .D1 *A4++,A2 ; load ai and ai+1 from memory

LDW .D2 *B4++,B2 ; load bi and bi+1 from memory

MPY .M1X A2,B2,A6 ; ai * bi

MPYH .M2X A2,B2,B6 ; ai+1 * bi+1

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to loop
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Figure 5–8. Dependency Graph of Floating-Point Dot Product With LDDW (Showing 
Functional Units)
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Example 5–18. Linear Assembly for Floating-Point Dot Product Inner Loop With LDDW 
(With Allocated Resources)

LDDW .D1 *A4++,A3:A2 ; load ai and ai+1 from memory

LDDW .D2 *B4++,B3:B2 ; load bi and bi+1 from memory

MPYSP .M1X A2,B2,A6 ; ai * bi

MPYSP .M2X A3,B3,B6 ; ai+1 * bi+1

ADDSP .L1 A6,A7,A7 ; sum0 += (ai * bi)

ADDSP .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to loop
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5.4.5 Final Assembly

Example 5–19 shows the final assembly code for the unrolled loop of the fixed-

point dot product and Example 5–20 shows the final assembly code for the

unrolled loop of the floating-point dot product.

5.4.5.1 Fixed-Point Dot Product

Example 5–19 uses LDW instructions instead of LDH instructions.

Example 5–19. Assembly Code for Fixed-Point Dot Product With LDW 
(Before Software Pipelining)

MVK .S1 50,A1 ; set up loop counter

|| ZERO .L1 A7 ; zero out sum0 accumulator

|| ZERO .L2 B7 ; zero out sum1 accumulator

LOOP:

LDW .D1 *A4++,A2 ; load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ; load bi & bi+1 from memory

SUB .S1 A1,1,A1 ; decrement loop counter

 

[A1] B .S1 LOOP ; branch to loop

NOP 2

MPY .M1X A2,B2,A6 ; ai * bi

|| MPYH .M2X A2,B2,B6 ; ai+1 * bi+1

NOP

ADD .L1 A6,A7,A7 ; sum0+= (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1+= (ai+1 * bi+1)

; Branch occurs here

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1

The code in Example 5–19 includes the following optimizations:

� The setup code for the loop is included to initialize the array pointers and

the loop counter and to clear the accumulators. The setup code assumes

that A4 and B4 have been initialized to point to arrays a and b, respectively.

� The MVK instruction initializes the loop counter.

� The two ZERO instructions, which execute in parallel, initialize the even

and odd accumulators (sum0 and sum1) to 0.

� The third ADD instruction adds the even and odd accumulators.
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5.4.5.2 Floating-Point Dot Product

Example 5–20 uses LDDW instructions instead of LDW instructions.

Example 5–20. Assembly Code for Floating-Point Dot Product With LDDW 
(Before Software Pipelining)

MVK .S1 50,A1 ; set up loop counter

|| ZERO .L1 A7 ; zero out sum0 accumulator

|| ZERO .L2 B7 ; zero out sum1 accumulator

LOOP:

LDDW .D1 *A4++,A2 ; load ai & ai+1 from memory

|| LDDW .D2 *B4++,B2 ; load bi & bi+1 from memory

SUB .S1 A1,1,A1 ; decrement loop counter

 

NOP 2

[A1] B .S1 LOOP ; branch to loop

MPYSP .M1X A2,B2,A6 ; ai * bi

|| MPYSP .M2X A3,B3,B6 ; ai+1 * bi+1

NOP 3

ADDSP .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADDSP .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

; Branch occurs here

NOP 3

ADDSP .L1X A7,B7,A4 ; sum = sum0 + sum1

NOP 3

The code in Example 5–20 includes the following optimizations:

� The setup code for the loop is included to initialize the array pointers and

the loop counter and to clear the accumulators. The setup code assumes

that A4 and B4 have been initialized to point to arrays a and b, respectively.

� The MVK instruction initializes the loop counter.

� The two ZERO instructions, which execute in parallel, initialize the even

and odd accumulators (sum0 and sum1) to 0.

� The third ADDSP instruction adds the even and odd accumulators.
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5.4.6 Comparing Performance

Executing the fixed-point dot product with the optimizations in Example 5–19

requires only 50 iterations, because you operate in parallel on both the even

and odd array elements. With the setup code and the final ADD instruction, 100

iterations of this loop require a total of 402 cycles (1 + 8 � 50 + 1).

Table 5–3 compares the performance of the different versions of the fixed-

point dot product code discussed so far.

Table 5–3. Comparison of Fixed-Point Dot Product Code With Use of LDW

Code Example 100 Iterations Cycle Count

Example 5–9 Fixed-point dot product nonparallel assembly 2 + 100 � 16 1602

Example 5–10 Fixed-point dot product parallel assembly 1 + 100 � 8 801

Example 5–19 Fixed-point dot product parallel assembly with LDW 1 + (50� 8)+ 1 402

Executing the floating-point dot product with the optimizations in

Example 5–20 requires only 50 iterations, because you operate in parallel on

both the even and odd array elements. With the setup code and the final

ADDSP instruction, 100 iterations of this loop require a total of 508 cycles (1

+ 10 � 50 + 7).

Table 5–4 compares the performance of the different versions of the floating-

point dot product code discussed so far.

Table 5–4. Comparison of Floating-Point Dot Product Code With Use of LDDW

Code Example 100 Iterations Cycle Count

Example 5–11 Floating-point dot product nonparallel assembly 2 + 100 � 21 2102

Example 5–12 Floating-point dot product parallel assembly 1 + 100 � 10 1001

Example 5–20 Floating-point dot product parallel assembly with LDDW 1 + (50� 10)+ 7 508
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5.5 Software Pipelining

This section describes the process for improving the performance of the as-

sembly code in the previous section through software pipelining.

Software pipelining is a technique used to schedule instructions from a loop

so that multiple iterations execute in parallel. The parallel resources on the

’C6x make it possible to initiate a new loop iteration before previous iterations

finish. The goal of software pipelining is to start a new loop iteration as soon

as possible.

The modulo iteration interval scheduling table is introduced in this section as

an aid to creating software-pipelined loops.

The fixed-point dot product code in Example 5–19 needs eight cycles for each

iteration of the loop: five cycles for the LDWs, two cycles for the MPYs, and one

cycle for the ADDs.

Figure 5–9 shows the dependency graph for the fixed-point dot product

instructions. Example 5–21 shows the same dot product assembly code in

Example 5–17 on page 5-24, except that the SUB instruction is now condition-

al on the loop counter (A1).

Note:

Making the SUB instruction conditional on A1 ensures that A1 stops decre-
menting when it reaches 0. Otherwise, as the loop executes five more times,
the loop counter becomes a negative number. When A1 is negative, it is non-
zero and, therefore, causes the condition on the branch to be true again. If the
SUB instruction were not conditional on A1, you would have an infinite loop.

The floating-point dot product code in Example 5–20 needs ten cycles for each

iteration of the loop: five cycles for the LDDWs, four cycles for the MPYSPs,

and one cycle for the ADDSPs.

Figure 5–10 shows the dependency graph for the floating-point dot product

instructions. Example 5–22 shows the same dot product assembly code in

Example 5–18 on page 5-25, except that the SUB instruction is now condition-

al on the loop counter (A1).

Note:

The ADDSP has 3 delay slots associated with it. The extra delay slots are
taken up by the LDDW, SUB, and NOP when executing the next cycle of the
loop. Thus an NOP 3 is not required inside the loop but is required outside
the loop prior to adding sum0 and sum1 together.
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Figure 5–9. Dependency Graph of Fixed-Point Dot Product With LDW 
(Showing Functional Units)
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Example 5–21. Linear Assembly for Fixed-Point Dot Product Inner Loop
(With Conditional SUB Instruction)

LDW .D1 *A4++,A2 ; load ai and ai+1 from memory

LDW .D2 *B4++,B2 ; load bi and bi+1 from memory

MPY .M1X A2,B2,A6 ; ai * bi

MPYH .M2X A2,B2,B6 ; ai+1 * bi+1

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

  [A1] SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to top of loop
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Figure 5–10. Dependency Graph of Floating-Point Dot Product With LDDW 
(Showing Functional Units)
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Example 5–22. Linear Assembly for Floating-Point Dot Product Inner Loop
(With Conditional SUB Instruction)

LDDW .D1 *A4++,A2 ; load ai and ai+1 from memory

LDDW .D2 *B4++,B2 ; load bi and bi+1 from memory

MPYSP .M1X A2,B2,A6 ; ai * bi

MPYSP .M2X A2,B2,B6 ; ai+1 * bi+1

ADDSP .L1 A6,A7,A7 ; sum0 += (ai * bi)

ADDSP .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

  [A1] SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to top of loop
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5.5.1 Modulo Iteration Interval Scheduling

Another way to represent the performance of the code is by looking at it in a

modulo iteration interval scheduling table. This table shows how a

software-pipelined loop executes and tracks the available resources on a

cycle-by-cycle basis to ensure that no resource is used twice on any given

cycle. The iteration interval of a loop is the number of cycles between the initia-

tions of successive iterations of that loop.

5.5.1.1 Fixed-Point Example

The fixed-point code in Example 5–19 needs eight cycles for each iteration of

the loop, so the iteration interval is eight.

Table 5–5 shows a modulo iteration interval scheduling table for the fixed-point

dot product loop before software pipelining (Example 5–19). Each row repre-

sents a functional unit. There is a column for each cycle in the loop showing

the instruction that is executing on a particular cycle:

� LDWs on the .D units are issued on cycles 0, 8, 16, 24, etc.

� MPY and MPYH on the .M units are issued on cycles 5, 13, 21, 29, etc.

� ADDs on the .L units are issued on cycles 7, 15, 23, 31, etc.

� SUB on the .S1 unit is issued on cycles 1, 9, 17, 25, etc.

� B on the .S2 unit is issued on cycles 2, 10, 18, 24, etc.

Table 5–5. Modulo Iteration Interval Scheduling Table for Fixed-Point Dot Product 
(Before Software Pipelining)

Unit / Cycle 0, 8, ... 1, 9, ... 2, 10, ... 3, 11, ... 4, 12, ... 5, 13, ... 6, 14, ... 7, 15, ...

.D1 LDW

.D2 LDW

.M1 MPY

.M2 MPYH

.L1 ADD

.L2 ADD

.S1 SUB

.S2 B

In this example, each unit is used only once every eight cycles.
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5.5.1.2 Floating-Point Example

The floating-point code in Example 5–20 needs ten cycles for each iteration

of the loop, so the iteration interval is ten.

Table 5–6 shows a modulo iteration interval scheduling table for the floating-

point dot product loop before software pipelining (Example 5–20). Each row

represents a functional unit. There is a column for each cycle in the loop show-

ing the instruction that is executing on a particular cycle:

� LDDWs on the .D units are issued on cycles 0, 10, 20, 30, etc.

� MPYSPs and on the .M units are issued on cycles 5, 15, 25, 35, etc.

� ADDSPs on the .L units are issued on cycles 9, 19, 29, 39, etc.

� SUB on the .S1 unit is issued on cycles 3, 13, 23, 33, etc.

� B on the .S2 unit is issued on cycles 4, 14, 24, 34, etc.

Table 5–6. Modulo Iteration Interval Scheduling Table for Floating-Point Dot Product 
(Before Software Pipelining)

Unit /

Cycle 0, 10, ... 1, 11, ... 2, 12, ... 3, 13, ... 4, 14, ... 5, 15, ... 6, 16, ... 7, 17, ... 8, 18, ... 9, 19, ...

.D1 LDDW

.D2 LDDW

.M1 MPYSP

.M2 MPYSP

.L1 ADDSP

.L2 ADDSP

.S1 SUB

.S2 B

In this example, each unit is used only once every ten cycles.
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5.5.1.3 Determining the Minimum Iteration Interval

Software pipelining increases performance by using the resources more effi-

ciently. However, to create a fully pipelined schedule, it is helpful to first deter-

mine the minimum iteration interval.

The minimum iteration interval of a loop is the minimum number of cycles you

must wait between each initiation of successive iterations of that loop. The

smaller the iteration interval, the fewer cycles it takes to execute a loop.

Resources and data dependency constraints determine the minimum iteration

interval. The most-used resource constrains the minimum iteration interval.

For example, if four instructions in a loop all use the .S1 unit, the minimum it-

eration interval is at least 4. Four instructions using the same resource cannot

execute in parallel and, therefore, require at least four separate cycles to

execute each instruction.

With the SUB and branch instructions on opposite sides of the dependency

graph in Figure 5–9 and Figure 5–10, all eight instructions use a different func-

tional unit and no two instructions use the same cross paths (1X and 2X).

Because no two instructions use the same resource, the minimum iteration in-

terval based on resources is 1.

Note:

In this particular example, there are no data dependencies to affect the
minimum iteration interval. However, future examples may demonstrate this
constraint.

5.5.1.4 Creating a Fully Pipelined Schedule

Having determined that the minimum iteration interval is 1, you can initiate a

new iteration every cycle. You can schedule LDW (or LDDW) and MPY (or

MPYSP) instructions on every cycle.

Fixed-Point Example

Table 5–7 shows a fully pipelined schedule for the fixed-point dot product ex-

ample.
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Table 5–7. Modulo Iteration Interval Table for Fixed-Point Dot Product 
(After Software Pipelining)

Loop Prolog

Unit / Cycle 0 1 2 3 4 5 6 7, 8, 9...

.D1
LDW

*
LDW

**
LDW

***
LDW

****
LDW

*****
LDW

******
LDW

*******

LDW

.D2
LDW

*
LDW

**
LDW

***
LDW

****
LDW

*****
LDW

******
LDW

*******

LDW

.M1
MPY

*
MPY

**

MPY

.M2
MPYH

*
MPYH

**

MPYH

.L1
ADD

.L2
ADD

.S1
SUB

*
SUB

**
SUB

***
SUB

****
SUB

*****
SUB

******

SUB

.S2
B

*
B

**
B

***
B

****
B

*****

B

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: The asterisks indicate the iteration of the loop; shading indicates the single-cycle loop.

The rightmost column in Table 5–7 is a single-cycle loop that contains the

entire loop. Cycles 0–6 are loop setup code, or loop prolog.

Asterisks define which iteration of the loop the instruction is executing each

cycle. For example, the rightmost column shows that on any given cycle inside

the loop:

� The ADD instructions are adding data for iteration n.

� The MPY instructions are multiplying data for iteration n + 2 (**).

� The LDW instructions are loading data for iteration n + 7 (*******).

� The SUB instruction is executing for iteration n + 6 (******).

� The B instruction is executing for iteration n + 5 (*****).

In this case, multiple iterations of the loop execute in parallel in a software pipe-

line that is eight iterations deep, with iterations n through n + 7 executing in par-

allel. Fixed-point software pipelines are rarely deeper than the one created by

this single-cycle loop. As loop sizes grow, the number of iterations that can

execute in parallel tends to become fewer.
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Floating-Point Example

Table 5–8 shows a fully pipelined schedule for the floating-point dot product

example.

Table 5–8. Modulo Iteration Interval Table for Floating-Point Dot Product 
(After Software Pipelining)

Loop Prolog

Unit /

Cycle 0 1 2 3 4 5 6 7 8 9, 10, 11...

.D1
LDDW

*
LDDW

**
LDDW

***
LDDW

****
LDDW

*****
LDDW

******
LDDW

*******
LDDW

********
LDDW

*********

LDDW

.D2
LDDW

*
LDDW

**
LDDW

***
LDDW

****
LDDW

*****
LDDW

******
LDDW

*******
LDDW

********
LDDW

*********

LDDW

.M1
MPYSP

*
MPYSP

**
MPYSP

***
MPYSP

****

MPYSP

.M2
MPYSP

*
MPYSP

**
MPYSP

***
MPYSP

****

MPYSP

.L1
ADDSP

.L2
ADDSP

.S1
SUB

*
SUB

**
SUB

***
SUB

****
SUB

*****
SUB

******

SUB

.S2
B

*
B

**
B

***
B

****
B

*****

B

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: The asterisks indicate the iteration of the loop; shading indicates the single-cycle loop.

The rightmost column in Table 5–8 is a single-cycle loop that contains the

entire loop. Cycles 0–8 are loop setup code, or loop prolog.

Asterisks define which iteration of the loop the instruction is executing each

cycle. For example, the rightmost column shows that on any given cycle inside

the loop:

� The ADDSP instructions are adding data for iteration n.

� The MPYSP instructions are multiplying data for iteration n + 4 (****).

� The LDDW instructions are loading data for iteration n + 9 (*********).

� The SUB instruction is executing for iteration n + 6 (******).

� The B instruction is executing for iteration n + 5 (*****).
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Note:

Since the ADDSP instruction has three delay slots associated with it, the re-
sults of adding are staggered by four. That is, the first result from the ADDSP
is added to the fifth result, which is then added to the ninth, and so on. The
second result is added to the sixth, which is then added to the 10th. This is
shown in Table 5–9.

In this case, multiple iterations of the loop execute in parallel in a software pipe-

line that is ten iterations deep, with iterations n through n + 9 executing in paral-

lel. Floating-point software pipelines are rarely deeper than the one created

by this single-cycle loop. As loop sizes grow, the number of iterations that can

execute in parallel tends to become fewer.

5.5.1.5 Staggered Accumulation With a Multicycle Instruction

When accumulating results with an instruction that is multicycle (that is, has

delay slots other than 0), you must either unroll the loop or stagger the results.

When unrolling the loop, multiple accumulators collect the results so that one

result has finished executing and has been written into the accumulator before

adding the next result of the accumulator. If you do not unroll the loop, then the

accumulator will contain staggered results.

Staggered results occur when you attempt to accumulate successive results

while in the delay slots of previous execution. This can be achieved without

error if you are aware of what is in the accumulator, what will be added to that

accumulator, and when the results will be written on a given cycle (such as the

pseudo-code shown in Example 5–23).

Example 5–23. Pseudo-Code for Single-Cycle Accumulator With ADDSP

LOOP: ADDSP x,sum,sum

  || LDW *xptr++,x

  ||[cond] B cond

  ||[cond] SUB cond,1,cond

Table 5–9 shows the results of the loop kernel for a single-cycle accumulator

using a multicycle add instruction; in this case, the ADDSP, which has three

delay slots (a 4-cycle instruction).
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Table 5–9. Software Pipeline Accumulation Staggered Results Due to Three-Cycle 
Delay 

Cycle # Pseudoinstruction
Current value of

pseudoregister sum Written expected result

0 ADDSP x(0), sum, sum 0 ;  cycle 4 sum = x(0)

1 ADDSP x(1), sum, sum 0 ;  cycle 5 sum = x(1)

2 ADDSP x(2), sum, sum 0 ;  cycle 6 sum = x(2)

3 ADDSP x(3), sum, sum 0 ;  cycle 7 sum = x(3)

4 ADDSP x(4), sum, sum x(0) ;  cycle 8 sum = x(0) + x(4)

5 ADDSP x(5), sum, sum x(1) ;  cycle 9 sum = x(1) + x(5)

6 ADDSP x(6), sum, sum x(6) ;  cycle 10 sum = x(2) + x(6)

7 ADDSP x(7), sum, sum x(7) ;  cycle 11 sum = x(3) + x(7)

8 ADDSP x(8), sum, sum x(0) + x(4) ;  cycle 12 sum = x(0) + x(8)

�

�

�

i + j† ADDSP x(i+j), sum, sum x(j) + x(j+4) + x(j+8) … x(i–4+j) ; cycle i + j + 4 sum = x(j) + x(j+4) +

x(j+8) … x(i–4+j) + x(i+j)

�

�

�

† where i is a multiple of 4

The first value of the array x, x(0) is added to the accumulator (sum) on cycle

0, but the result is not ready until cycle 4. This means that on cycle 1 when x(1)

is added to the accumulator (sum), sum has no value in it from x(0). Thus,

when this result is ready on cycle 5, sum will have the value x(1) in it, instead

of the value x(0) + x(1). When you reach cycle 4, sum will have the value x(0)

in it and the value x(4) will be added to that, causing sum = x(0) + x(4) on

cycle 8. This is continuously repeated, resulting in four separate accumula-

tions (using the register “sum”).

The current value in the accumulator “sum” depends on which iteration is be-

ing done. After the completion of the loop, the last four sums should be written

into separate registers and then added together to give the final result. This

is shown in Example 5–27 on page 5-43.
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5.5.2 Using the Assembly Optimizer to Create Optimized Loops

Example 5–24 shows the linear assembly code for the full fixed-point dot prod-

uct loop. Example 5–25 shows the linear assembly code for the full floating-

point dot product loop. You can use this code as input to the assembly optimiz-

er tool to create software-pipelined loops automatically. See the

TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more informa-

tion on the assembly optimizer.

Example 5–24. Linear Assembly for Full Fixed-Point Dot Product

.global _dotp

_dotp:  .cproc   a, b

.reg sum, sum0, sum1, cntr 

.reg ai_i1, bi_i1, pi, pi1

  

MVK 50,cntr ; cntr = 100/2

ZERO sum0 ; multiply result = 0

ZERO sum1 ; multiply result = 0

 

LOOP: .trip 50

LDW *a++,ai_i1 ; load ai & ai+1 from memory

LDW *b++,bi_i1 ; load bi & bi+1 from memory

MPY ai_i1,bi_i1,pi ; ai * bi

MPYH ai_i1,bi_i1,pi1 ; ai+1 * bi+1

ADD pi,sum0,sum0 ; sum0 += (ai * bi)

ADD pi1,sum1,sum1 ; sum1 += (ai+1 * bi+1)

 [cntr] SUB cntr,1,cntr ; decrement loop counter

 [cntr] B LOOP ; branch to loop

ADD sum0,sum1,sum ; compute final result

.return sum

.endproc

Resources such as functional units and 1X and 2X cross paths do not have

to be specified because these can be allocated automatically by the assembly

optimizer.
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Example 5–25. Linear Assembly for Full Floating-Point Dot Product

.global _dotp

_dotp:  .cproc   a, b

.reg sum, sum0, sum1, a, b 

.reg ai:ai1, bi:bi1, pi, pi1

  

MVK 50,cntr ; cntr = 100/2

ZERO sum0 ; multiply result = 0

ZERO sum1 ; multiply result = 0

 

LOOP: .trip 50

LDDW *a++,ai:ai1 ; load ai & ai+1 from memory

LDDW *b++,bi:bi1 ; load bi & bi+1 from memory

MPYSP a0,b0,pi ; ai * bi

MPYSP a1,b1,pi1 ; ai+1 * bi+1

ADDSP pi,sum0,sum0 ; sum0 += (ai * bi)

ADDSP pi1,sum1,sum1 ; sum1 += (ai+1 * bi+1)

 [cntr] SUB cntr,1,cntr ; decrement loop counter

 [cntr] B LOOP ; branch to loop

ADDSP sum,sum1,sum0 ; compute final result

.return sum

.endproc

5.5.3 Final Assembly

Example 5–26 shows the assembly code for the fixed-point software-pipe-

lined dot product in Table 5–7 on page 5-35. Example 5–27 shows the assem-

bly code for the floating-point software-pipelined dot product in Table 5–8 on

page 5-36. The accumulators are initialized to 0 and the loop counter is set up

in the first execute packet in parallel with the first load instructions. The aster-

isks in the comments correspond with those in Table 5–7 and Table 5–8, re-

spectively.

Note:

All instructions executing in parallel constitute an execute packet. An exe-
cute packet can contain up to eight instructions.

See the TMS320C6000 CPU and Instruction Set Reference Guide for more
information about pipeline operation.
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5.5.3.1 Fixed-Point Example

Multiple branch instructions are in the pipe. The first branch in the fixed-point

dot product is issued on cycle 2 but does not actually branch until the end of

cycle 7 (after five delay slots). The branch target is the execute packet defined

by the label LOOP. On cycle 7, the first branch returns to the same execute

packet, resulting in a single-cycle loop. On every cycle after cycle 7, a branch

executes back to LOOP until the loop counter finally decrements to 0. Once

the loop counter is 0, five more branches execute because they are already

in the pipe.

Executing the dot product code with the software pipelining as shown in

Example 5–26 requires a total of 58 cycles (7 + 50 + 1), which is a significant

improvement over the 402 cycles required by the code in Example 5–19.

Note:

The code created by the assembly optimizer will not completely match the
final assembly code shown in this and future sections because different ver-
sions of the tool will produce slightly different code. However, the inner loop
performance (number of cycles per iteration) should be similar.
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Example 5–26. Assembly Code for Fixed-Point Dot Product (Software Pipelined)
LDW .D1 *A4++,A2 ; load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ; load bi & bi+1 from memory

|| MVK .S1 50,A1 ; set up loop counter

|| ZERO .L1 A7 ; zero out sum0 accumulator

|| ZERO .L2 B7 ; zero out sum1 accumulator

 

[A1] SUB .S1 A1,1,A1 ; decrement loop counter

|| LDW .D1 *A4++,A2 ;* load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;* load bi & bi+1 from memory

 

[A1] SUB .S1 A1,1,A1 ;* decrement loop counter

||[A1] B .S2 LOOP ; branch to loop

|| LDW .D1 *A4++,A2 ;** load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;** load bi & bi+1 from memory

 

  [A1] SUB .S1 A1,1,A1 ;** decrement loop counter

||[A1] B .S2 LOOP ;* branch to loop

|| LDW .D1 *A4++,A2 ;*** load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;*** load bi & bi+1 from memory

 

 [A1] SUB .S1 A1,1,A1 ;*** decrement loop counter

||[A1] B .S2 LOOP ;** branch to loop

|| LDW .D1 *A4++,A2 ;**** load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;**** load bi & bi+1 from memory

MPY .M1X A2,B2,A6 ; ai * bi

|| MPYH .M2X A2,B2,B6 ; ai+1 * bi+1

||[A1] SUB .S1 A1,1,A1 ;**** decrement loop counter

||[A1] B .S2 LOOP ;*** branch to loop

|| LDW .D1 *A4++,A2 ;***** ld ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;***** ld bi & bi+1 from memory

MPY .M1X A2,B2,A6 ;* ai * bi

|| MPYH .M2X A2,B2,B6 ;* ai+1 * bi+1

||[A1] SUB .S1 A1,1,A1 ;***** decrement loop counter

||[A1] B .S2 LOOP ;**** branch to loop

|| LDW .D1 *A4++,A2 ;****** ld ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;****** ld bi & bi+1 from memory

LOOP:

  ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

|| MPY .M1X A2,B2,A6 ;** ai * bi

|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter

||[A1] B .S2 LOOP ;***** branch to loop

|| LDW .D1 *A4++,A2 ;******* ld ai & ai+1 fm memory

|| LDW .D2 *B4++,B2 ;******* ld bi & bi+1 fm memory

; Branch occurs here

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1
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5.5.3.2 Floating-Point Example

The first branch in the floating-point dot product is issued on cycle 4 but does

not actually branch until the end of cycle 9 (after five delay slots). The branch

target is the execute packet defined by the label LOOP. On cycle 9, the first

branch returns to the same execute packet, resulting in a single-cycle loop. On

every cycle after cycle 9, a branch executes back to LOOP until the loop count-

er finally decrements to 0. Once the loop counter is 0, five more branches

execute because they are already in the pipe.

Executing the floating-point dot product code with the software pipelining as

shown in Example 5–27 requires a total of 74 cycles (9 + 50 + 15), which is a

significant improvement over the 508 cycles required by the code in

Example 5–20.

Example 5–27. Assembly Code for Floating-Point Dot Product (Software Pipelined)

MVK .S1 50,A1 ; set up loop counter

|| ZERO .L1 A8 ; sum0 = 0

|| ZERO .L2 B8 ; sum1 = 0

|| LDDW .D1 A4++,A7:A6 ; load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ; load bi & bi + 1 from memory

 

LDDW .D1 A4++,A7:A6 ;* load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;* load bi & bi + 1 from memory

 

LDDW .D1 A4++,A7:A6 ;** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;** load bi & bi + 1 from memory

 

LDDW .D1 A4++,A7:A6 ;*** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;*** load bi & bi + 1 from memory

||[A1] SUB .S1 A1,1,A1 ; decrement loop counter

 

LDDW .D1 A4++,A7:A6 ;**** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;**** load bi & bi + 1 from memory

||[A1] B .S2 LOOP ; branch to loop

||[A1] SUB .S1 A1,1,A1 ;* decrement loop counter

 

LDDW .D1 A4++,A7:A6 ;***** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;***** load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ; pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1

||[A1] B .S2 LOOP ;* branch to loop

||[A1] SUB .S1 A1,1,A1 ;** decrement loop counter

 

LDDW .D1 A4++,A7:A6 ;****** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;****** load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ;* pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ;* pi1 = a1  b1

||[A1] B .S2 LOOP ;** branch to loop

||[A1] SUB .S1 A1,1,A1 ;*** decrement loop counter
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Example 5–27. Assembly Code for Floating-Point Dot Product (Software Pipelined)
(Continued)

LDDW .D1 A4++,A7:A6 ;******* load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;******* load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ;** pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ;** pi1 = a1  b1

||[A1] B .S2 LOOP ;*** branch to loop

||[A1] SUB .S1 A1,1,A1 ;**** decrement loop counter

LDDW .D1 A4++,A7:A6 ;******** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;******** load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ;*** pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ;*** pi1 = a1  b1

||[A1] B .S2 LOOP ;**** branch to loop

||[A1] SUB .S1 A1,1,A1 ;***** decrement loop counter

LOOP:

LDDW .D1 A4++,A7:A6 ;********* load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;********* load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ;**** pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ;**** pi1 = a1  b1

|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ;sum1 += (ai+1  bi+1)

||[A1] B .S2 LOOP ;***** branch to loop

||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter

; Branch occurs here

 

ADDSP .L1X A8,B8,A0 ; sum(0) = sum0(0) + sum1(0)

 

ADDSP .L2X A8,B8,B0 ; sum(1) = sum0(1) + sum1(1)

 

ADDSP .L1X A8,B8,A0 ; sum(2) = sum0(2) + sum1(2)

 

ADDSP .L2X A8,B8,B0 ; sum(3) = sum0(3) + sum1(3)

 

NOP ; wait for B0

 

ADDSP .L1X A0,B0,A5 ; sum(01) = sum(0) + sum(1)

 

NOP ; wait for next B0

 

ADDSP .L2X A0,B0,B5 ; sum(23) = sum(2) + sum(3)

 

NOP 3

 

ADDSP .L1X A5,B5,A4 ; sum = sum(01) + sum(23)

 

NOP 3 ;
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5.5.3.3 Removing Extraneous Instructions

The code in Example 5–26 and Example 5–27 executes extra iterations of

some of the instructions in the loop. The following operations occur in parallel

on the last cycle of the loop in Example 5–26:

� Iteration 50 of the ADD instructions

� Iteration 52 of the MPY and MPYH instructions

� Iteration 57 of the LDW instructions

The following operations occur in parallel on the last cycle of the loop in

Example 5–27:

� Iteration 50 of the ADDSP instructions

� Iteration 54 of the MPYSP instructions

� Iteration 59 of the LDDW instructions

In most cases, extra iterations are not a problem; however, when extraneous

LDWs and LDDWs access unmapped memory, you can get unpredictable re-

sults. If the extraneous instructions present a potential problem, remove the

extraneous load and multiply instructions by adding an epilog like that included

in the second part of Example 5–28 on page 5-47 and Example 5–29 on

page 5-48.

Fixed-Point Example

To eliminate LDWs in the fixed-point dot product from iterations 51 through 57,

run the loop seven fewer times. This brings the loop counter to 43 (50 – 7),

which means you still must execute seven more cycles of ADD instructions

and five more cycles of MPY instructions. Five pairs of MPYs and seven pairs

of ADDs are now outside the loop. The LDWs, MPYs, and ADDs all execute

exactly 50 times. (The shaded areas of Example 5–28 indicate the changes

in this code.)

Executing the dot product code in Example 5–28 with no extraneous LDWs

still requires a total of 58 cycles (7 + 43 + 7 + 1), but the code size is now larg-

er.

Floating-Point Example

To eliminate LDDWs in the floating-point dot product from iterations 51 through

59, run the loop nine fewer times. This brings the loop counter to 41 (50 – 9),

which means you still must execute nine more cycles of ADDSP instructions

and five more cycles of MPYSP instructions. Five pairs of MPYSPs and nine

pairs of ADDSPs are now outside the loop. The LDDWs, MPYSPs, and
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ADDSPs all execute exactly 50 times. (The shaded areas of Example 5–29 in-

dicate the changes in this code.)

Executing the dot product code in Example 5–29 with no extraneous LDDWs

still requires a total of 74 cycles (9 + 41 + 9 + 15), but the code size is now larg-

er.

Example 5–28. Assembly Code for Fixed-Point Dot Product (Software Pipelined 
With No Extraneous Loads) 

LDW .D1 *A4++,A2 ; load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ; load bi & bi+1 from memory

|| MVK .S1 43,A1 ; set up loop counter

|| ZERO .L1 A7 ; zero out sum0 accumulator

|| ZERO .L2 B7 ; zero out sum1 accumulator

 

  [A1] SUB .S1 A1,1,A1 ; decrement loop counter

|| LDW .D1 *A4++,A2 ;* load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;* load bi & bi+1 from memory

 

  [A1] SUB .S1 A1,1,A1 ;* decrement loop counter

||[A1] B .S2 LOOP ; branch to loop

|| LDW .D1 *A4++,A2 ;** load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;** load bi & bi+1 from memory

 

  [A1] SUB .S1 A1,1,A1 ;** decrement loop counter

||[A1] B .S2 LOOP ;* branch to loop

|| LDW .D1 *A4++,A2 ;*** load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;*** load bi & bi+1 from memory

 [A1] SUB .S1 A1,1,A1 ;*** decrement loop counter

||[A1] B .S2 LOOP ;** branch to loop

|| LDW .D1 *A4++,A2 ;**** load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;**** load bi & bi+1 from memory

MPY .M1X A2,B2,A6 ; ai * bi

|| MPYH .M2X A2,B2,B6 ; ai+1 * bi+1

||[A1] SUB .S1 A1,1,A1 ;**** decrement loop counter

||[A1] B .S2 LOOP ;*** branch to loop

|| LDW .D1 *A4++,A2 ;***** ld ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;***** ld bi & bi+1 from memory

MPY .M1X A2,B2,A6 ;* ai * bi

|| MPYH .M2X A2,B2,B6 ;* ai+1 * bi+1

||[A1] SUB .S1 A1,1,A1 ;***** decrement loop counter

||[A1] B .S2 LOOP ;**** branch to loop

|| LDW .D1 *A4++,A2 ;****** ld ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ;****** ld bi & bi+1 from memory
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Example 5–28. Assembly Code for Fixed-Point Dot Product (Software Pipelined 
With No Extraneous Loads) (Continued)

LOOP:

  ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

|| MPY .M1X A2,B2,A6 ;** ai * bi

|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter

||[A1] B .S2 LOOP ;***** branch to loop

|| LDW .D1 *A4++,A2 ;******* ld ai & ai+1 fm memory

|| LDW .D2 *B4++,B2 ;******* ld bi & bi+1 fm memory

; Branch occurs here

ADDs MPYs

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

|| MPY .M1X A2,B2,A6 ;** ai * bi

|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

1

1

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

|| MPY .M1X A2,B2,A6 ;** ai * bi

|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

2

2

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

|| MPY .M1X A2,B2,A6 ;** ai * bi

|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

3

3

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

|| MPY .M1X A2,B2,A6 ;** ai * bi

|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

4

4

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

|| MPY .M1X A2,B2,A6 ;** ai * bi

|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

5

5

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
6

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
7

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1
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Example 5–29. Assembly Code for Floating-Point Dot Product (Software Pipelined 
With No Extraneous Loads)

MVK .S1 41,A1 ; set up loop counter

|| ZERO .L1 A8 ; sum0 = 0

|| ZERO .L2 B8 ; sum1 = 0

|| LDDW .D1 A4++,A7:A6 ; load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ; load bi & bi + 1 from memory

 

LDDW .D1 A4++,A7:A6 ;* load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;* load bi & bi + 1 from memory

 

LDDW .D1 A4++,A7:A6 ;** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;** load bi & bi + 1 from memory

 

LDDW .D1 A4++,A7:A6 ;*** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;*** load bi & bi + 1 from memory

||[A1] SUB .S1 A1,1,A1 ; decrement loop counter

 

LDDW .D1 A4++,A7:A6 ;**** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;**** load bi & bi + 1 from memory

||[A1] B .S2 LOOP ; branch to loop

||[A1] SUB .S1 A1,1,A1 ;* decrement loop counter

 

LDDW .D1 A4++,A7:A6 ;***** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;***** load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ; pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1

||[A1] B .S2 LOOP ;* branch to loop

||[A1] SUB .S1 A1,1,A1 ;** decrement loop counter

 

LDDW .D1 A4++,A7:A6 ;****** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;****** load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ;* pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ;* pi1 = a1  b1

||[A1] B .S2 LOOP ;** branch to loop

||[A1] SUB .S1 A1,1,A1 ;*** decrement loop counter

LDDW .D1 A4++,A7:A6 ;******* load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;******* load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ;** pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ;** pi1 = a1  b1

||[A1] B .S2 LOOP ;*** branch to loop

||[A1] SUB .S1 A1,1,A1 ;**** decrement loop counter

LDDW .D1 A4++,A7:A6 ;******** load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;******** load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ;*** pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ;*** pi1 = a1  b1

||[A1] B .S2 LOOP ;**** branch to loop

||[A1] SUB .S1 A1,1,A1 ;***** decrement loop counter
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Example 5–29. Assembly Code for Floating-Point Dot Product (Software Pipelined 
With No Extraneous Loads) (Continued

1

ADDSPs MPYSPs

1

2

2

3

3

4

4

5

5

6

7

8

9

LOOP:

LDDW .D1 A4++,A7:A6 ;********* load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;********* load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ;**** pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ;**** pi1 = a1  b1

|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

||[A1] B .S2 LOOP ;***** branch to loop

||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter

; Branch occurs here

 

MPYSP .M1X A6,B6,A5 ; pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1

|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

 

MPYSP .M1X A6,B6,A5 ; pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1

|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

 

MPYSP .M1X A6,B6,A5 ; pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1

|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

 

MPYSP .M1X A6,B6,A5 ; pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1

|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

MPYSP .M1X A6,B6,A5 ; pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1

|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

 

ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

 

ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

 

 ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

 

ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
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Example 5–29. Assembly Code for Floating-Point Dot Product (Software Pipelined 
With No Extraneous Loads) (Continued)

ADDSP .L1X A8,B8,A0 ; sum(0) = sum0(0) + sum1(0)

 

ADDSP .L2X A8,B8,B0 ; sum(1) = sum0(1) + sum1(1)

 

ADDSP .L1X A8,B8,A0 ; sum(2) = sum0(2) + sum1(2)

 

ADDSP .L2X A8,B8,B0 ; sum(3) = sum0(3) + sum1(3)

 

NOP ; wait for B0

 

ADDSP .L1X A0,B0,A5 ; sum(01) = sum(0) + sum(1)

 

NOP ; wait for next B0

 

ADDSP .L2X A0,B0,B5 ; sum(23) = sum(2) + sum(3)

 

NOP 3

 

ADDSP .L1X A5,B5,A4 ; sum = sum(01) + sum(23)

 

NOP 3 ;
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5.5.3.4 Priming the Loop

Although Example 5–28 and Example 5–29 execute as fast as possible, the

code size can be smaller without significantly sacrificing performance. To help

reduce code size, you can use a technique called priming the loop. Assuming

that you can handle extraneous loads, start with Example 5–26 or

Example 5–27, which do not have epilogs and, therefore, contain fewer

instructions. (This technique can be used equally well with Example 5–28 or

Example 5–29.)

Fixed-Point Example

To eliminate the prolog of the fixed-point dot product and, therefore, the extra

LDW and MPY instructions, begin execution at the loop body (at the LOOP

label). Eliminating the prolog means that:

� Two LDWs, two MPYs, and two ADDs occur in the first execution cycle of

the loop.

� Because the first LDWs require five cycles to write results into a register,

the MPYs do not multiply valid data until after the loop executes five times.

The ADDs have no valid data until after seven cycles (five cycles for the

first LDWs and two more cycles for the first valid MPYs).

Example 5–30 shows the loop without the prolog but with four new instructions

that zero the inputs to the MPY and ADD instructions. Making the MPYs and

ADDs use 0s before valid data is available ensures that the final accumulator

values are unaffected. (The loop counter is initialized to 57 to accommodate

the seven extra cycles needed to prime the loop.)

Because the first LDWs are not issued until after seven cycles, the code in

Example 5–30 requires a total of 65 cycles (7 + 57+ 1). Therefore, you are re-

ducing the code size with a slight loss in performance.
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Example 5–30. Assembly Code for Fixed-Point Dot Product (Software Pipelined With 
Removal of Prolog and Epilog)

MVK .S1 57,A1 ; set up loop counter

  [A1] SUB .S1 A1,1,A1 ; decrement loop counter

|| ZERO .L1 A7 ; zero out sum0 accumulator

|| ZERO .L2 B7 ; zero out sum1 accumulator

  [A1] SUB .S1 A1,1,A1 ;* decrement loop counter

||[A1] B .S2 LOOP ; branch to loop

|| ZERO .L1 A6 ; zero out add input

|| ZERO .L2 B6 ; zero out add input

  [A1] SUB .S1 A1,1,A1 ;** decrement loop counter

||[A1] B .S2 LOOP ;* branch to loop

|| ZERO .L1 A2 ; zero out mpy input

|| ZERO .L2 B2 ; zero out mpy input

  [A1] SUB .S1 A1,1,A1 ;*** decrement loop counter

||[A1] B .S2 LOOP ;** branch to loop

  [A1] SUB .S1 A1,1,A1 ;**** decrement loop counter

||[A1] B .S2 LOOP ;*** branch to loop

  [A1] SUB .S1 A1,1,A1 ;***** decrement loop counter

||[A1] B .S2 LOOP ;**** branch to loop

LOOP:

  ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

|| MPY .M1X A2,B2,A6 ;** ai * bi

|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter

||[A1] B .S2 LOOP ;***** branch to loop

|| LDW .D1 *A4++,A2 ;******* ld ai & ai+1 fm memory

|| LDW .D2 *B4++,B2 ;******* ld bi & bi+1 fm memory

; Branch occurs here

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1
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Floating-Point Example

To eliminate the prolog of the floating-point dot product and, therefore, the

extra LDDW and MPYSP instructions, begin execution at the loop body (at the

LOOP label). Eliminating the prolog means that:

� Two LDDWs, two MPYSPs, and two ADDSPs occur in the first execution

cycle of the loop.

� Because the first LDDWs require five cycles to write results into a register,

the MPYSPs do not multiply valid data until after the loop executes five

times. The ADDSPs have no valid data until after nine cycles (five cycles

for the first LDDWs and four more cycles for the first valid MPYSPs).

Example 5–31 shows the loop without the prolog but with four new instructions

that zero the inputs to the MPYSP and ADDSP instructions. Making the

MPYSPs and ADDSPs use 0s before valid data is available ensures that the

final accumulator values are unaffected. (The loop counter is initialized to 59

to accommodate the nine extra cycles needed to prime the loop.)

Because the first LDDWs are not issued until after nine cycles, the code in

Example 5–31 requires a total of 81 cycles (7 + 59+ 15). Therefore, you are

reducing the code size with a slight loss in performance.

Example 5–31. Assembly Code for Floating-Point Dot Product (Software Pipelined With 
Removal of Prolog and Epilog)

MVK .S1 59,A1 ; set up loop counter

 

ZERO .L1 A7 ; zero out mpysp input

|| ZERO .L2 B7 ; zero out mpysp input

||[A1] SUB .S1 A1,1,A1 ; decrement loop counter

 

  [A1] B .S2 LOOP ; branch to loop

||[A1] SUB .S1 A1,1,A1 ;* decrement loop counter

|| ZERO .L1 A8 ; zero out sum0 accumulator

|| ZERO .L2 B8 ; zero out sum0 accumulator

 

  [A1] B .S2 LOOP ;* branch to loop

||[A1] SUB .S1 A1,1,A1 ;** decrement loop counter

|| ZERO .L1 A5 ; zero out addsp input

|| ZERO .L2 B5 ; zero out addsp input

 

  [A1] B .S2 LOOP ;** branch to loop

||[A1] SUB .S1 A1,1,A1 ;*** decrement loop counter

|| ZERO .L1 A6 ; zero out mpysp input

|| ZERO .L2 B6 ; zero out mpysp input
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Example 5–31. Assembly Code for Floating-Point Dot Product (Software Pipelined With 
Removal of Prolog and Epilog) (Continued)

  [A1] B .S2 LOOP ;*** branch to loop

||[A1] SUB .S1 A1,1,A1 ;**** decrement loop counter

  [A1] B .S2 LOOP ;**** branch to loop

||[A1] SUB .S1 A1,1,A1 ;***** decrement loop counter

LOOP:

LDDW .D1 A4++,A7:A6 ;********* load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;********* load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ;**** pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ;**** pi1 = a1  b1

|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

||[A1] B .S2 LOOP ;***** branch to loop

||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter

; Branch occurs here

 

ADDSP .L1X A8,B8,A0 ; sum(0) = sum0(0) + sum1(0)

 

ADDSP .L2X A8,B8,B0 ; sum(1) = sum0(1) + sum1(1)

 

ADDSP .L1X A8,B8,A0 ; sum(2) = sum0(2) + sum1(2)

 

ADDSP .L2X A8,B8,B0 ; sum(3) = sum0(3) + sum1(3)

 

NOP ; wait for B0

ADDSP .L1X A0,B0,A5 ; sum(01) = sum(0) + sum(1)

 

NOP ; wait for next B0

 

ADDSP .L2X A0,B0,B5 ; sum(23) = sum(2) + sum(3)

 

NOP 3

 

ADDSP .L1X A5,B5,A4 ; sum = sum(01) + sum(23)

 

NOP 3 ;
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5.5.3.5 Removing Extra SUB Instructions

To reduce code size further, you can remove extra SUB instructions. If you

know that the loop count is at least 6, you can eliminate the extra SUB instruc-

tions as shown in Example 5–32 and Example 5–33. The first five branch

instructions are made unconditional, because they always execute. (If you do

not know that the loop count is at least 6, you must keep the SUB instructions

that decrement before each conditional branch as in Example 5–30 and

Example 5–31.) Based on the elimination of six SUB instructions, the loop

counter is now 51 (57 – 6) for the fixed-point dot product and 53 (59 – 6) for

the floating-point dot product. This code shows some improvement over

Example 5–30 and Example 5–31. The loop in Example 5–32 requires 63

cycles (5 + 57 + 1) and the loop in Example 5–31 requires 79 cycles

(5 + 59 + 15).

Example 5–32. Assembly Code for Fixed-Point Dot Product (Software Pipelined 
With Smallest Code Size)

B .S2 LOOP ; branch to loop

|| MVK .S1 51,A1 ; set up loop counter

B .S2 LOOP ;* branch to loop

B .S2 LOOP ;** branch to loop

|| ZERO .L1 A7 ; zero out sum0 accumulator

|| ZERO .L2 B7 ; zero out sum1 accumulator

B .S2 LOOP ;*** branch to loop

|| ZERO .L1 A6 ; zero out add input

|| ZERO .L2 B6 ; zero out add input

B .S2 LOOP ;**** branch to loop

|| ZERO .L1 A2 ; zero out mpy input

|| ZERO .L2 B2 ; zero out mpy input

LOOP:

  ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)

|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

|| MPY .M1X A2,B2,A6 ;** ai * bi

|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter

||[A1] B .S2 LOOP ;***** branch to loop

|| LDW .D1 *A4++,A2 ;******* ld ai & ai+1 fm memory

|| LDW .D2 *B4++,B2 ;******* ld bi & bi+1 fm memory

; Branch occurs here

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1
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Example 5–33. Assembly Code for Floating-Point Dot Product (Software Pipelined 
With Smallest Code Size)

B .S2 LOOP ; branch to loop

|| MVK .S1 53,A1 ; set up loop counter

 

B .S2 LOOP ;* branch to loop

|| ZERO .L1 A7 ; zero out mpysp input

|| ZERO .L2 B7 ; zero out mpysp input

 

B .S2 LOOP ;** branch to loop

|| ZERO .L1 A8 ; zero out sum0 accumulator

|| ZERO .L2 B8 ; zero out sum0 accumulator

 

B .S2 LOOP ;*** branch to loop

|| ZERO .L1 A5 ; zero out addsp input

|| ZERO .L2 B5 ; zero out addsp input

 

B .S2 LOOP ;**** branch to loop

|| ZERO .L1 A6 ; zero out mpysp input

|| ZERO .L2 B6 ; zero out mpysp input

 

LOOP:

LDDW .D1 A4++,A7:A6 ;********* load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;********* load bi & bi + 1 from memory

|| MPYSP .M1X A6,B6,A5 ;**** pi = a0  b0

|| MPYSP .M2X A7,B7,B5 ;**** pi1 = a1  b1

|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)

|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

||[A1] B .S2 LOOP ;***** branch to loop

||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter

; Branch occurs here

 

ADDSP .L1X A8,B8,A0 ; sum(0) = sum0(0) + sum1(0)

 

ADDSP .L2X A8,B8,B0 ; sum(1) = sum0(1) + sum1(1)

 

ADDSP .L1X A8,B8,A0 ; sum(2) = sum0(2) + sum1(2)

 

ADDSP .L2X A8,B8,B0 ; sum(3) = sum0(3) + sum1(3)

 

NOP ; wait for B0

 

ADDSP .L1X A0,B0,A5 ; sum(01) = sum(0) + sum(1)

 

NOP ; wait for next B0

 

ADDSP .L2X  A0,B0,B5 ; sum(23) = sum(2) + sum(3)

 

NOP 3

 

ADDSP .L1X A5,B5,A4 ; sum = sum(01) + sum(23)

 

NOP 3 ;
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5.5.4 Comparing Performance

Table 5–10 compares the performance of all versions of the fixed-point dot

product code. Table 5–11 compares the performance of all versions of the

floating-point dot product code.

Table 5–10. Comparison of Fixed-Point Dot Product Code Examples

Code Example 100 Iterations Cycle Count

Example 5–9 Fixed-point dot product linear assembly 2 + 100 � 16 1602

Example 5–10 Fixed-point dot product parallel assembly 1 + 100 � 8 801

Example 5–19 Fixed-point dot product parallel assembly with LDW 1 + (50 � 8) + 1 402

Example 5–26 Fixed-point software-pipelined dot product 7 + 50 + 1 58

Example 5–28 Fixed-point software-pipelined dot product with no extrane-

ous loads

7 + 43 + 7 + 1 58

Example 5–30 Fixed-point software-pipelined dot product with no prolog or

epilog

7 + 57 + 1 65

Example 5–32 Fixed-point software-pipelined dot product with smallest

code size

5 + 57 + 1 63

Table 5–11. Comparison of Floating-Point Dot Product Code Examples

Code Example 100 Iterations Cycle Count

Example 5–11 Floating-point dot product nonparallel assembly 2 + 100 � 21 2102

Example 5–12 Floating-point dot product parallel assembly 1 + 100 � 10 1001

Example 5–20 Floating-point dot product parallel assembly with LDDW 1 + (50 � 10) + 7 508

Example 5–27 Floating-point software-pipelined dot product 9 + 50 + 15 74

Example 5–29 Floating-point software-pipelined dot product with no extra-

neous loads

9 + 41 + 9 + 15 74

Example 5–31 Floating-point software-pipelined dot product with no prolog

or epilog

7 + 59 + 15 81

Example 5–33 Floating-point software-pipelined dot product with small-

est code size

5 + 59 + 15 79
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5.6 Modulo Scheduling of Multicycle Loops

Section 5.5 demonstrated the modulo-scheduling technique for the dot

product code. In that example of a single-cycle loop, none of the instructions

used the same resources. Multicycle loops can present resource conflicts

which affect modulo scheduling. This section describes techniques to deal

with this issue.

5.6.1 Weighted Vector Sum C Code 

Example 5–34 shows the C code for a weighted vector sum.

Example 5–34. Weighted Vector Sum C Code

void w_vec(short a[],short b[],short c[],short m)

{

int i;

for (i=0; i<100; i++) {

c[i] = ((m * a[i]) >> 15) + b[i];

}

}

5.6.2 Translating C Code to Linear Assembly

Example 5–35 shows the linear assembly that executes the weighted vector

sum in Example 5–34. This linear assembly does not have functional units as-

signed. The dependency graph will help in those decisions. However, before

looking at the dependency graph, the code can be optimized further.

Example 5–35. Linear Assembly for Weighted Vector Sum Inner Loop

LDH *aptr++,ai ; ai

LDH *bptr++,bi ; bi

MPY m,ai,pi ; m * ai

SHR pi,15,pi_scaled ; (m * ai) >> 15

ADD pi_scaled,bi,ci ; ci = (m * ai) >> 15 + bi

STH ci,*cptr++ ; store ci

[cntr]SUB cntr,1,cntr ; decrement loop counter

[cntr]B LOOP ; branch to loop
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5.6.3 Determining the Minimum Iteration Interval

Example 5–35 includes three memory operations in the inner loop (two LDHs

and the STH) that must each use a .D unit. Only two .D units are available on

any single cycle; therefore, this loop requires at least two cycles. Because no

other resource is used more than twice, the minimum iteration interval for this

loop is 2.

Memory operations determine the minimum iteration interval in this example.

Therefore, before scheduling this assembly code, unroll the loop and perform

LDWs to help improve the performance.

5.6.3.1 Unrolling the Weighted Vector Sum C Code 

Example 5–36 shows the C code for an unrolled version of the weighted vector

sum.

Example 5–36. Weighted Vector Sum C Code (Unrolled)

void w_vec(short a[],short b[],short c[],short m)

{

int i;

for (i=0; i<100; i+=2) {

c[i] = ((m * a[i]) >> 15) + b[i];

c[i+1] = ((m * a[i+1]) >> 15) + b[i+1];

}

}
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5.6.3.2 Translating Unrolled Inner Loop to Linear Assembly

Example 5–37 shows the linear assembly that calculates c[i] and c[i+1] for the

weighted vector sum in Example 5–36.

� The two store pointers (*ciptr and *ci+1ptr) are separated so that one

(*ciptr) increments by 2 through the odd elements of the array and the

other (*ci+1ptr) increments through the even elements.

� AND and SHR separate bi and bi+1 into two separate registers.

� This code assumes that mask is preloaded with 0x0000FFFF to clear the

upper 16 bits. The shift right of 16 places bi+1 into the 16 LSBs.

Example 5–37. Linear Assembly for Weighted Vector Sum Using LDW

LDW *aptr++,ai_i+1 ; ai & ai+1

LDW *bptr++,bi_i+1 ; bi & bi+1

MPY m,ai_i+1,pi ; m * ai

MPYHL m,ai_i+1,pi+1 ; m * ai+1

SHR pi,15,pi_scaled ; (m * ai) >> 15

SHR pi+1,15,pi+1_scaled ; (m * ai+1) >> 15

AND bi_i+1,mask,bi ; bi

SHR bi_i+1,16,bi+1 ; bi+1

ADD pi_scaled,bi,ci ; ci = (m * ai) >> 15 + bi

ADD pi+1_scaled,bi+1,ci+1 ; ci+1 = (m * ai+1) >> 15 + bi+1

STH ci,*ciptr++[2] ; store ci

STH ci+1,*ci+1ptr++[2] ; store ci+1

[cntr]SUB cntr,1,cntr ; decrement loop counter

[cntr]B LOOP ; branch to loop

5.6.3.3 Determining a New Minimum Iteration Interval

Use the following considerations to determine the minimum iteration interval

for the assembly instructions in Example 5–37:

� Four memory operations (two LDWs and two STHs) must each use a .D

unit. With two .D units available, this loop still requires only two cycles.

� Four instructions must use the .S units (three SHRs and one branch). With

two .S units available, the minimum iteration interval is still 2.

� The two MPYs do not increase the minimum iteration interval.

� Because the remaining four instructions (two ADDs, AND, and SUB) can

all use a .L unit, the minimum iteration interval for this loop is the same as

in Example 5–35.

By using LDWs instead of LDHs, the program can do twice as much work in

the same number of cycles.
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5.6.4 Drawing a Dependency Graph

To achieve a minimum iteration interval of 2, you must put an equal number

of operations per unit on each side of the dependency graph. Three operations

in one unit on a side would result in an minimum iteration interval of 3.

Figure 5–11 shows the dependency graph divided evenly with a minimum it-

eration interval of 2.

Figure 5–11. Dependency Graph of Weighted Vector Sum
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5.6.5 Linear Assembly Resource Allocation

Using the dependency graph, you can allocate functional units and registers

as shown in Example 5–38. This code is based on the following assumptions:

� The pointers are initialized outside the loop.

� m resides in B6, which causes both .M units to use a cross path.

� The mask in the AND instruction resides in B10.

Example 5–38. Linear Assembly for Weighted Vector Sum With Resources Allocated

LDW .D2 *A4++,A2 ; ai & ai+1

LDW .D1 *B4++,B2 ; bi & bi+1

MPY .M1 A2,B6,A5 ; pi = m * ai

MPYHL .M2 A2,B6,B5 ; pi+1 = m * ai+1

SHR .S1 A5,15,A7 ; pi_scaled = (m * ai) >> 15

SHR .S2 B5,15,B7 ; pi+1_scaled = (m * ai+1) >> 15

AND .L2X B2,B10,B8 ; bi

SHR .S2 B2,16,B1 ; bi+1

ADD .L1X A7,B8,A9 ; ci = (m * ai) >> 15 + bi

ADD .L2 B7,B1,B9 ; ci+1 = (m * ai+1) >> 15 + bi+1

STH .D1 A9,*A6++[2] ; store ci

STH .D2 B9,*B0++[2] ; store ci+1

  [A1] SUB .L1 A1,1,A1 ; decrement loop counter

  [A1] B .S1 LOOP ; branch to loop

5.6.6 Modulo Iteration Interval Scheduling

Table 5–12 provides a method to keep track of resources that are a modulo

iteration interval away from each other. In the single-cycle dot product exam-

ple, every instruction executed every cycle and, therefore, required only one

set of resources. Table 5–12 includes two groups of resources, which are

necessary because you are scheduling a two-cycle loop.

� Instructions that execute on cycle k also execute on cycle k + 2, k + 4, etc.

Instructions scheduled on these even cycles cannot use the same

resources.

� Instructions that execute on cycle k + 1 also execute on cycle k + 3, k + 5,

etc. Instructions scheduled on these odd cycles cannot use the same

resources.

� Because two instructions (MPY and ADD) use the 1X path but do not use

the same functional unit, Table 5–12 includes two rows (1X and 2X) that

help you keep track of the cross path resources.
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Only seven instructions have been scheduled in this table.

� The two LDWs use the .D units on the even cycles.

� The MPY and MPYH are scheduled on cycle 5 because the LDW has four

delay slots. The MPY instructions appear in two rows because they use

the .M and cross path resources on cycles 5, 7, 9, etc.

� The two SHR instructions are scheduled two cycles after the MPY to allow

for the MPY’s single delay slot.

� The AND is scheduled on cycle 5, four delay slots after the LDW.
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Table 5–12. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10

.D1
LDW ai_i+1

*

LDW ai_i+1

**

LDW ai_i+1

***

LDW ai_i+1

****

LDW ai_i+1

*****

LDW ai_i+1

.D2
LDW bi_i+1

*

LDW bi_i+1

**

LDW bi_i+1

***

LDW bi_i+1

****

LDW bi_i+1

*****

LDW bi_i+1

.M1

.M2

.L1

.L2

.S1

.S2

1X

2X

Unit/Cycle 1 3 5 7 9 11

.D1

.D2

.M1
MPY pi

*

MPY pi

**

MPY pi

***

MPY pi

.M2
MPYHL pi+1

*

MPYHL pi+1

**

MPYHL pi+1

***

MPYHL pi+1

.L1
AND bi

*

AND bi

**

AND bi

***

AND bi

.L2

.S1
SHR pi_s

*

SHR pi_s

**

SHR pi_s

.S2
SHR pi+1_s

*

SHR pi+1_s

**

SHR pi+1_s

1X
MPY pi

*

MPY pi

**

MPY pi

***

MPY pi

2X
MPYHL pi+1

*

MPYHL pi+1

**

MPYHL pi+1

***

MPYHL pi+1

Note: The asterisks indicate the iteration of the loop; shaded cells indicate cycle 0.
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5.6.6.1 Resource Conflicts

Resources from one instruction cannot conflict with resources from any other

instruction scheduled modulo iteration intervals away. In other words, for a

2-cycle loop, instructions scheduled on cycle n cannot use the same resources

as instructions scheduled on cycles n + 2, n + 4, n + 6, etc. Table 5–13 shows

the addition of the SHR bi+1 instruction. This must avoid a conflict of resources

in cycles 5 and 7, which are one iteration interval away from each other.

Even though LDW bi_i+1 (.D2, cycle 0) finishes on cycle 5, its child, SHR bi+1,

cannot be scheduled on .S2 until cycle 6 because of a resource conflict with

SHR pi+1_scaled, which is on .S2 in cycle 7.

Figure 5–12. Dependency Graph of Weighted Vector Sum (Showing Resource Conflict)
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Table 5–13. Modulo Iteration Interval Table for Weighted Vector Sum With SHR
Instructions

ÁÁÁÁÁ
ÁÁÁÁÁ

Unit / CycleÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8 ÁÁÁÁÁ
ÁÁÁÁÁ

10, 12, 14, ...

.D1
LDW ai_i+1

*

LDW ai_i+1

**

LDW ai_i+1

***

LDW ai_i+1

****

LDW ai_i+1

*****

LDW ai_i+1

.D2
LDW bi_i+1

*

LDW bi_i+1

**

LDW bi_i+1

***

LDW bi_i+1

****

LDW bi_i+1

*****

LDW bi_i+1

.M1

.M2

.L1

.L2

.S1

.S2
SHR bi+1

*

SHR bi+1

**

SHR bi+1

1X

2X

Unit / Cycle 1 3 5 7 9 11, 13, 15, ...

.D1

.D2

.M1
MPY pi

*

MPY pi

**

MPY pi

***

MPY pi

.M2
MPYHL pi+1

*

MPYHL pi+1

**

MPYHL pi+1

***

MPYHL pi+1

.L1
AND bi

*

AND bi

**

AND bi

***

AND bi

.L2

.S1
SHR pi_s

*

SHR pi_s

**

SHR pi_s

.S2
SHR pi+1_s

*

SHR pi+1_s

**

SHR pi+1_s

1X
MPY pi

*

MPY pi

**

MPY pi

***

MPY pi

2X
MPYHL pi+1

*

MPYHL pi+1

**

MPYHL pi+1

***

MPYHL pi+1

Note: The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 5–12.
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5.6.6.2 Live Too Long

Scheduling SHR bi+1 on cycle 6 now creates a problem with scheduling the

ADD ci instruction. The parents of ADD ci (AND bi and SHR pi_scaled) are

scheduled on cycles 5 and 7, respectively. Because the SHR pi_scaled is

scheduled on cycle 7, the earliest you can schedule ADD ci is cycle 8.

However, in cycle 7, AND bi * writes bi for the next iteration of the loop, which

creates a scheduling problem with the ADD ci instruction. If you schedule

ADD ci on cycle 8, the ADD instruction reads the parent value of bi for the next

iteration, which is incorrect. The ADD ci demonstrates a live-too-long problem.

No value can be live in a register for more than the number of cycles in the loop.

Otherwise, iteration n + 1 writes into the register before iteration n has read that

register. Therefore, in a 2-cycle loop, a value is written to a register at the end

of cycle n, then all children of that value must read the register before the end

of cycle n + 2.

5.6.6.3 Solving the Live-Too-Long Problem

The live-too-long problem in Table 5–13 means that the bi value would have

to be live from cycles 6–8, or 3 cycles. No loop variable can live longer than

the iteration interval, because a child would then read the parent value for the

next iteration.

To solve this problem move AND bi to cycle 6 so that you can schedule ADD ci

to read the correct value on cycle 8, as shown in Figure 5–13 and Table 5–14.
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Figure 5–13. Dependency Graph of Weighted Vector Sum (With Resource Conflict
Resolved)
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Table 5–14. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10

.D1
LDW ai_i+1

*

LDW ai_i+1

**

LDW ai_i+1

***

LDW ai_i+1

****

LDW ai_i+1

*****

LDW ai_i+1

.D2
LDW bi_i+1

*

LDW bi_i+1

**

LDW bi_i+1

***

LDW bi_i+1

****

LDW bi_i+1

*****

LDW bi_i+1

.M1

.M2

.L1
ADD ci

*

ADD ci

.L2
AND bi

*

AND bi

**

AND bi

.S1

.S2
SHR bi+1

*

SHR bi+1

**

SHR bi+1

1X

2X

Unit/Cycle 1 3 5 7 9 11

.D1

.D2

.M1
MPY pi

*

MPY pi

**

MPY pi

***

MPY pi

.M2
MPYHL pi+1

*

MPYHL pi+1

**

MPYHL pi+1

***

MPYHL pi+1

.L1

.L2

.S1
SHR pi_s

*

SHR pi_s

**

SHR pi_s

.S2
SHR pi+1_s

*

SHR pi+1_s

**

SHR pi+1_s

1X
MPY pi

*

MPY pi

**

MPY pi

***

MPY pi

2X
MPYHL pi+1

*

MPYHL pi+1

**

MPYHL pi+1

***

MPYHL pi+1

Note: The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 5–13.
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5.6.6.4 Scheduling the Remaining Instructions

Figure 5–14 shows the dependency graph with additional scheduling

changes. The final version of the loop, with all instructions scheduled correctly,

is shown in Table 5–15.

Figure 5–14. Dependency Graph of Weighted Vector Sum (Scheduling ci +1)
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Table 5–15 shows the following additions:

� B LOOP (.S1, cycle 6)

� SUB cntr (.L1, cycle 5)

� ADD ci+1 (.L2, cycle 10)

� STH ci (cycle 9)

� STH ci+1 (cycle 11)

To avoid resource conflicts and live-too-long problems, Table 5–15 also

includes the following additional changes:

� LDW bi_i+1 (.D2) moved from cycle 0 to cycle 2.

� AND bi (.L2) moved from cycle 6 to cycle 7.

� SHR pi+1_scaled (.S2) moved from cycle 7 to cycle 9.

� MPYHL pi+1 moved from cycle 5 to cycle 6.

� SHR bi+1 moved from cycle 6 to 8.

From the table, you can see that this loop is pipelined six iterations deep, be-

cause iterations n and n + 5 execute in parallel.
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Table 5–15. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10, 12, 14, ...

.D1
LDW ai_i+1

*
LDW ai_i+1

**
LDW ai_i+1

***
LDW ai_i+1

****
LDW ai_i+1

*****
LDW ai_i+1

.D2
LDW bi_i+1

*
LDW bi_i+1

**
LDW bi_i+1

***
LDW bi_i+1

****
LDW bi_i+1

.M1

.M2
MPYHL pi+1

*
MPYHL pi+1

**
MPYHL pi+1

.L1
ADD ci

*
ADD ci

.L2
ADD  ci+1

.S1
B LOOP

*
B LOOP

**
B LOOP

.S2
SHR bi+1

*
SHR bi+1

1X
ADD ci

*
ADD ci

2X
MPYHL pi+1

*
MPYHL pi+1

**
MPYHL pi+1

Unit/Cycle 1 3 5 7 9 11, 13, 15, ...

.D1
STH ci

*
STH ci

.D2
STH ci+1

.M1
MPY pi

*
MPY pi

**
MPY pi

***
MPY pi

.M2

.L1
SUB cntr

*
SUB cntr

**
SUB cntr

***
SUB cntr

.L2
AND bi

*
AND bi

**
AND bi

.S1 SHR pi_s *
SHR pi_s

**
SHR pi_s

.S2
SHR pi+1_s

*
SHR pi+1_s

1X
MPY pi

*
MPY pi

**
MPY pi

***
MPY pi

2X

Note: The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 5–14.
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5.6.7 Using the Assembly Optimizer for the Weighted Vector Sum

Example 5–39 shows the linear assembly code to perform the weighted vector

sum. You can use this code as input to the assembly optimizer to create a soft-

ware-pipelined loop instead of scheduling this by hand.

Example 5–39. Linear Assembly for Weighted Vector Sum

.global _w_vec

_w_vec: .cproc a, b, c, m

.reg ai_i1, bi_i1, pi, pi1, pi_i1, pi_s, pi1_s 

.reg mask, bi, bi1, ci, ci1, c1, cntr

 

MVK –1,mask ; set to all 1s to create 0xFFFFFFFF

MVKH 0,mask ; clear upper 16 bits to create 0xFFFF

MVK 50,cntr ; cntr = 100/2

ADD 2,c,c1 ; point to c[1]

 

LOOP: .trip 50

LDW .D2 *a++,ai_i1 ; ai & ai+1

LDW .D1 *b++,bi_i1 ; bi & bi+1

MPY .M1 ai_i1,m,pi ; m * ai

MPYHL .M2 ai_i1,m,pi1 ; m * ai+1

SHR .S1 pi,15,pi_s ; (m * ai) >> 15

SHR .S2 pi1,15,pi1_s ; (m * ai+1) >> 15

AND .L2X bi_i1,mask,bi ; bi

SHR .S2 bi_i1,16,bi1 ; bi+1

ADD .L1X pi_s,bi,ci ; ci = (m * ai) >> 15 + bi

ADD .L2X pi1_s,bi1,ci1 ; ci+1 = (m * ai+1) >> 15 + bi+1

STH .D2 ci,*c++[2] ; store ci

STH .D1 ci1,*c1++[2] ; store ci+1

[cntr] SUB    cntr,1,cntr ; decrement loop counter

[cntr] B    LOOP ; branch to loop

.endproc
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5.6.8 Final Assembly

Example 5–40 shows the final assembly code for the weighted vector sum.

The following optimizations are included:

� While iteration n of instruction STH ci+1 is executing, iteration n + 1 of

STH ci is executing. To prevent the STH ci instruction from executing itera-

tion 51 while STH ci + 1 executes iteration 50, execute the loop only 49

times and schedule the final executions of ADD ci+1 and STH ci+1 after

exiting the loop.

� The mask for the AND instruction is created with MVK and MVKH in paral-

lel with the loop prolog.

� The pointer to the odd elements in array c is also set up in parallel with the

loop prolog.
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Example 5–40. Assembly Code for Weighted Vector Sum

LDW .D1 *A4++,A2 ; ai & ai+1

ADD .L2X A6,2,B0 ; set pointer to ci+1

  LDW .D2 *B4++,B2 ; bi & bi+1

|| LDW .D1 *A4++,A2 ;* ai & ai+1

MVK .S2 –1,B10 ; set to all 1s (0xFFFFFFFF)

  LDW .D2 *B4++,B2 ;* bi & bi+1

|| LDW .D1 *A4++,A2 ;** ai & ai+1

|| MVK .S1 49,A1 ; set up loop counter

|| MVKH .S2 0,B10 ; clr upper 16 bits (0x0000FFFF)

 

 MPY .M1X A2,B6,A5 ; m * ai

||[A1] SUB .L1 A1,1,A1 ; decrement loop counter

 

MPYHL .M2X A2,B6,B5 ; m * ai+1

||[A1] B .S1 LOOP ; branch to loop

|| LDW .D2 *B4++,B2 ;** bi & bi+1

|| LDW .D1 *A4++,A2 ;*** ai & ai+1

 

 SHR .S1 A5,15,A7 ; (m * ai) >> 15

|| AND .L2 B2,B10,B8 ; bi

|| MPY .M1X A2,B6,A5 ;* m * ai

||[A1] SUB .L1 A1,1,A1 ;* decrement loop counter

 

 SHR .S2 B2,16,B1 ; bi+1

|| ADD .L1X A7,B8,A9 ; ci = (m * ai) >> 15 + bi

|| MPYHL .M2X A2,B6,B5 ;* m * ai+1

||[A1] B .S1 LOOP ;* branch to loop

|| LDW .D2 *B4++,B2 ;*** bi & bi+1

|| LDW .D1 *A4++,A2 ;**** ai & ai+1

 

 SHR .S2 B5,15,B7 ; (m * ai+1) >> 15

|| STH .D1 A9,*A6++[2] ; store ci

|| SHR .S1 A5,15,A7 ;* (m * ai) >> 15

|| AND .L2 B2,B10,B8 ;* bi

||[A1] SUB .L1 A1,1,A1 ;** decrement loop counter

|| MPY .M1X A2,B6,A5 ;** m * ai

LOOP:

  ADD .L2 B7,B1,B9 ; ci+1 = (m * ai+1) >> 15 + bi+1

|| SHR .S2 B2,16,B1 ;* bi+1

|| ADD .L1X A7,B8,A9 ;* ci = (m * ai) >> 15 + bi

|| MPYHL .M2X A2,B6,B5 ;** m * ai+1

||[A1] B .S1 LOOP ;** branch to loop

|| LDW .D2 *B4++,B2 ;**** bi & bi+1

|| LDW .D1 *A4++,A2 ;***** ai & ai+1
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Example 5–40. Assembly Code for Weighted Vector Sum (Continued)

  STH .D2 B9,*B0++[2] ; store ci+1

|| SHR .S2 B5,15,B7 ;* (m * ai+1) >> 15

|| STH .D1 A9,*A6++[2] ;* store ci

|| SHR .S1 A5,15,A7 ;** (m * ai) >> 15

|| AND .L2 B2,B10,B8 ;** bi

||[A1] SUB .L1 A1,1,A1 ;*** decrement loop counter

|| MPY .M1X A2,B6,A5 ;*** m * ai

; Branch occurs here

 

ADD .L2 B7,B1,B9 ; ci+1 = (m * ai+1) >> 15 + bi+1

 

 STH .D2 B9,*B0 ; store ci+1
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5.7 Loop Carry Paths

Loop carry paths occur when one iteration of a loop writes a value that must

be read by a future iteration. A loop carry path can affect the performance of

a software-pipelined loop that executes multiple iterations in parallel. Some-

times loop carry paths (instead of resources) determine the minimum iteration

interval.

IIR filter code contains a loop carry path; output samples are used as input to

the computation of the next output sample.

5.7.1 IIR Filter C Code

Example 5–41 shows C code for a simple IIR filter. In this example, y[i] is an

input to the calculation of y[i+1]. Before y[i] can be read for the next iteration,

y[i+1] must be computed from the previous iteration.

Example 5–41. IIR Filter C Code

void iir(short x[],short y[],short c1, short c2, short c3)

{

int i;

for (i=0; i<100; i++) {

y[i+1] = (c1*x[i] + c2*x[i+1] + c3*y[i]) >> 15;

}

}
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5.7.2 Translating C Code to Linear Assembly (Inner Loop)

Example 5–42 shows the ’C6000 instructions that execute the inner loop of the

IIR filter C code. In this example:

� xptr is not postincremented after loading xi+1, because xi of the next

iteration is actually xi+1 of the current iteration. Thus, the pointer points to

the same address when loading both xi+1 for one iteration and xi for the

next iteration.

� yptr is also not postincremented after storing yi+1, because yi of the next

iteration is yi+1 for the current iteration.

Example 5–42. Linear Assembly for IIR Inner Loop

LDH *xptr++,xi ; xi+1

MPY c1,xi,p0 ; c1 * xi

LDH *xptr,xi+1 ; xi+1

MPY c2,xi+1,p1 ; c2 * xi+1

ADD p0,p1,s0 ; c1 * xi + c2 * xi+1

LDH *yptr++,yi ; yi

MPY c3,yi,p2 ; c3 * yi

ADD s0,p2,s1 ; c1 * xi + c2 * xi+1 + c3 * yi

SHR s1,15,yi+1 ; yi+1

STH yi+1,*yptr ; store yi+1

[cntr]SUB cntr,1,cntr ; decrement loop counter

[cntr]B LOOP ; branch to loop
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5.7.3 Drawing a Dependency Graph

Figure 5–15 shows the dependency graph for the IIR filter. A loop carry path

exists from the store of yi+1 to the load of yi. The path between the STH and

the LDH is one cycle because the load and store instructions use the same

memory pipeline. Therefore, if a store is issued to a particular address on cycle

n and a load from that same address is issued on the next cycle, the load reads

the value that was written by the store instruction.

Figure 5–15. Dependency Graph of IIR Filter
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5.7.4 Determining the Minimum Iteration Interval

To determine the minimum iteration interval, you must consider both resources

and data dependency constraints. Based on resources in Table 5–16, the

minimum iteration interval is 2.

Note:

There are six non-.M units available: three on the A side (.S1, .D1, .L1) and
three on the B side (.S2, .D2, .L2). Therefore, to determine resource
constraints, divide the total number of non-.M units used on each side by 3
(3 is the total number of non-.M units available on each side).

Based on non-.M unit resources in Table 5–16, the minimum iteration inter-
val for the IIR filter is 2 because the total non-.M units on the A side is 5 (5 � 3
is greater than 1 so you round up to the next whole number). The B side uses
only three non-.M units, so this does not affect the minimum iteration interval,
and no other unit is used more than twice.

Table 5–16. Resource Table for IIR Filter

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 2 MPYs 2 .M2 MPY 1

.S1 B 1 .S2 SHR 1

.D1 2 LDHs 2 .D2 STH 1

.L1,.S1, or .D1 ADD & SUB 2 .L2 or .S2, .D2 ADD 1

Total non-.M units 5 Total non-.M units 3

However, the IIR has a data dependency constraint defined by its loop carry

path. Figure 5–15 shows that if you schedule LDH yi on cycle 0:

� The earliest you can schedule MPY p2 is on cycle 5.

� The earliest you can schedule ADD s1 is on cycle 7.

� SHR yi+1 must be on cycle 8 and STH on cycle 9.

� Because the LDH must wait for the STH to be issued, the earliest the the

second iteration can begin is cycle 10.

To determine the minimum loop carry path, add all of the numbers along the

loop paths in the dependency graph. This means that this loop carry path is

10 (5 + 2 + 1 + 1 + 1).
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Although the minimum iteration interval is the greater of the resource limits and

data dependency constraints, an interval of 10 seems slow. Figure 5–16

shows how to improve the performance.

5.7.4.1 Drawing a New Dependency Graph

Figure 5–16 shows a new graph with a loop carry path of 4 (2 +1 + 1). because

the MPY p2 instruction can read yi+1 while it is still in a register, you can reduce

the loop carry path by six cycles. LDH yi is no longer in the graph. Instead, you

can issue LDH y[0] once outside the loop. In every iteration after that, the y+1

values written by the SHR instruction are valid y inputs to the MPY instruction.

Figure 5–16. Dependency Graph of IIR Filter (With Smaller Loop Carry)
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5.7.4.2 New ’C6x Instructions (Inner Loop)

Example 5–43 shows the new linear assembly from the graph in Figure 5–16,

where LDH yi was removed. The one variable y that is read and written is yi

for the MPY p2 instruction and yi+1 for the SHR and STH instructions.

Example 5–43. Linear Assembly for IIR Inner Loop With Reduced Loop Carry Path

LDH *xptr++,xi ; xi+1

MPY c1,xi,p0 ; c1 * xi

LDH *xptr,xi+1 ; xi+1

MPY c2,xi+1,p1 ; c2 * xi+1

ADD p0,p1,s0 ; c1 * xi + c2 * xi+1

MPY c3,y,p2 ; c3 * yi

ADD s0,p2,s1 ; c1 * xi + c2 * xi+1 + c3 * yi

SHR s1,15,y ; yi+1

STH y,*yptr++ ; store yi+1

[cntr]SUB cntr,1,cntr ; decrement loop counter

[cntr]B LOOP ; branch to loop

5.7.5 Linear Assembly Resource Allocation

Example 5–44 shows the same linear assembly instructions as those in

Example 5–43  with the functional units and registers assigned.

Example 5–44. Linear Assembly for IIR Inner Loop (With Allocated Resources)

LDH .D1 *A4++,A2 ; xi+1

MPY .M1 A6,A2,A5 ; c1 * xi

LDH .D1 *A4,A3 ; xi+1

MPY .M1X B6,A3,A7 ; c2 * xi+1

ADD .L1 A5,A7,A9 ; c1 * xi + c2 * xi+1

MPY .M2X A8,B2,B3 ; c3 * yi

ADD .L2X B3,A9,B5 ; c1 * xi + c2 * xi+1 + c3 * yi

SHR .S2 B5,15,B2 ; yi+1

STH .D2 B2,*B4++ ; store yi+1

  [A1] SUB .L1 A1,1,A1 ; decrement loop counter

  [A1] B .S1 LOOP ; branch to loop
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5.7.6 Modulo Iteration Interval Scheduling

Table 5–17 shows the modulo iteration interval table for the IIR filter. The SHR

instruction on cycle 10 finishes in time for the MPY p2 instruction from the next

iteration to read its result on cycle 11.

Table 5–17. Modulo Iteration Interval Table for IIR (4-Cycle Loop)

ÁÁÁÁ
ÁÁÁÁ
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ÁÁÁÁÁ
ÁÁÁÁÁ
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ÁÁÁÁÁ
ÁÁÁÁÁ

.M2 ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

.L1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

.L1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

SUB cntr
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

*
SUB cntr

ÁÁÁÁ
ÁÁÁÁ

.L2 ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

.L2 ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ADD s1
ÁÁÁÁ
ÁÁÁÁ

.S1
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

.S1
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
.S2
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

.S2
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
1X
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

1X
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
2X
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

2X
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ADD s1
ÁÁÁÁ
ÁÁÁÁ

Unit/Cycle
ÁÁÁÁÁ
ÁÁÁÁÁ

2
ÁÁÁÁ
ÁÁÁÁ

6
ÁÁÁÁÁ
ÁÁÁÁÁ

10, 14, 18, ...
ÁÁÁÁÁ
ÁÁÁÁÁ

Unit/Cycle
ÁÁÁÁ
ÁÁÁÁ

3
ÁÁÁÁÁ
ÁÁÁÁÁ

7
ÁÁÁÁÁ
ÁÁÁÁÁ

11, 15, 19, ...
ÁÁÁÁ
ÁÁÁÁ

.D1
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

.D1
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
.D2
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

.D2
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

STH yi+1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

.M1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

MPY p1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

*
MPY p1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

.M1

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
.M2
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

.M2
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁMPY p2

*
MPY p2ÁÁÁÁ

ÁÁÁÁ.L1
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ.L1

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ.L2
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ.L2

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

.S1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

B LOOP

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

*
B LOOP

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

.S1

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

.S2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

SHR yi+1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

.S2
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
1X ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

MPY p1
ÁÁÁÁÁ
ÁÁÁÁÁ

*
MPY p1

ÁÁÁÁÁ
ÁÁÁÁÁ

1X ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

2X
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

2X
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

MPY p2

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

*
MPY p2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: The asterisks indicate the iteration of the loop.
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5.7.7 Using the Assembly Optimizer for the IIR Filter

Example 5–45 shows the linear assembly code to perform the IIR filter. Once

again, you can use this code as input to the assembly optimizer to create a soft-

ware-pipelined loop instead of scheduling this by hand.

Example 5–45. Linear Assembly for IIR Filter

.global _iir

_iir: .cproc  x, y, c1, c2, c3

.reg xi, xi1, yi1

.reg p0, p1, p2, s0, s1, cntr

 

MVK 100,cntr ; cntr = 100

LDH .D2 *y++,yi1 ; yi+1

LOOP: .trip 100

LDH .D1 *x++,xi ; xi

MPY .M1 c1,xi,p0 ; c1 * xi

LDH .D1 *x,xi1 ; xi+1

MPY .M1X c2,xi1,p1 ; c2 * xi+1

ADD .L1 p0,p1,s0 ; c1 * xi + c2 * xi+1

MPY .M2X c3,yi1,p2 ; c3 * yi

ADD .L2X s0,p2,s1 ; c1 * xi + c2 * xi+1 + c3 * yi

SHR .S2 s1,15,yi1 ; yi+1

STH .D2 yi1,*y++ ; store yi+1

[cntr] SUB .L1 cntr,1,cntr ; decrement loop counter

[cntr] B .S1 LOOP ; branch to loop

.endproc
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5.7.8 Final Assembly

Example 5–46 shows the final assembly for the IIR filter. With one load of y[0]

outside the loop, no other loads from the y array are needed. Example 5–46

requires 408 cycles: (4�100) + 8.

Example 5–46. Assembly Code for IIR Filter

LDH .D1 *A4++,A2 ; xi

 

 LDH .D1 *A4,A3 ; xi+1

LDH .D2 *B4++,B2 ; load y[0] outside of loop

MVK .S1 100,A1 ; set up loop counter

  LDH .D1 *A4++,A2 ;* xi

  [A1] SUB .L1 A1,1,A1 ; decrement loop counter

||  MPY .M1 A6,A2,A5 ; c1 * xi

|| LDH .D1 *A4,A3 ;* xi+1

  MPY .M1X B6,A3,A7 ; c2 * xi+1

||[A1] B .S1 LOOP ; branch to loop

  MPY .M2X A8,B2,B3 ; c3 * yi

LOOP:

  ADD .L1 A5,A7,A9 ; c1 * xi + c2 * xi+1

||  LDH .D1 *A4++,A2 ;** xi

ADD .L2X B3,A9,B5 ; c1 * xi + c2 * xi+1 + c3 * yi

||[A1] SUB .L1 A1,1,A1 ;* decrement loop counter

|| MPY .M1 A6,A2,A5 ;* c1 * xi

|| LDH .D1 *A4,A3 ;** xi+1

  SHR .S2 B5,15,B2 ; yi+1

|| MPY .M1X B6,A3,A7 ;* c2 * xi+1

||[A1] B .S1 LOOP ;* branch to loop

  STH .D2 B2,*B4++ ; store yi+1

|| MPY .M2X A8,B2,B3 ;* c3 * yi

; Branch occurs here
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5.8 If-Then-Else Statements in a Loop

If-then-else statements in C cause certain instructions to execute when the if

condition is true and other instructions to execute when it is false. One way to

accomplish this in linear assembly code is with conditional instructions. Be-

cause all ’C6000 instructions can be conditional on one of five general-pur-

pose registers on the ’C62x and ’C67x and one of 6 on the ’C64x. Conditional

instructions can handle both the true and false cases of the if-then-else C

statement.

5.8.1 If-Then-Else C Code

Example 5–47 contains a loop with an if-then-else statement. You either add

a[i] to sum or subtract a[i] from sum.

Example 5–47. If-Then-Else C Code

int if_then(short a[], int codeword, int mask, short theta)

{

int i,sum, cond;

sum = 0;

for (i = 0; i < 32; i++){

cond = codeword & mask;

if (theta  ==  !(!(cond)))

    sum += a[i];

else

    sum –= a[i];

mask = mask << 1;

}

return(sum);

}

Branching is one way to execute the if-then-else statement: branch to the ADD

when the if statement is true and branch to the SUB when the if statement is

false. However, because each branch has five delay slots, this method

requires additional cycles. Furthermore, branching within the loop makes soft-

ware pipelining almost impossible.

Using conditional instructions, on the other hand, eliminates the need to

branch to the appropriate piece of code after checking whether the condition

is true or false. Simply program both the ADD and SUB as usual, but make

them conditional on the zero and nonzero values of a condition register. This

method also allows you to software pipeline the loop and achieve much better

performance than you would with branching.
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5.8.2 Translating C Code to Linear Assembly

Example 5–48 shows the linear assembly instructions needed to execute in-

ner loop of the C code in Example 5–47.

Example 5–48. Linear Assembly for If-Then-Else Inner Loop

AND codeword,mask,cond ; cond = codeword & mask

[cond]MVK 1,cond ; !(!(cond))

CMPEQ theta,cond,if ; (theta == !(!(cond)))

LDH *aptr++,ai ; a[i]

 [if] ADD sum,ai,sum ; sum += a[i]

 [!if] SUB sum,ai,sum ; sum –= a[i]

SHL mask,1,mask ; mask = mask << 1;

[cntr]ADD –1,cntr,cntr ; decrement counter

[cntr]B LOOP ; for LOOP

CMPEQ is used to create IF. The ADD is conditional when IF is nonzero (corre-

sponds to then); the SUB is conditional when IF is 0 (corresponds to else).

A conditional MVK performs the !(!(cond)) C statement. If the result of the

bitwise AND is nonzero, a 1 is written into cond; if the result of the AND is 0,

cond remains at 0.

Optimizing Assembly Code via Linear Assembly
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5.8.3 Drawing a Dependency Graph

Figure 5–17 shows the dependency graph for the if-then-else C code. This

graph illustrates the following arrangement:

� Two nodes on the graph contain sum: one for the ADD and one for the

SUB. Because some iterations are performing an ADD and others are

performing a SUB, each of these nodes is a possible input to the next itera-

tion of either node.

� The LDH ai instruction is a parent of both ADD sum and SUB sum, be-

cause both instructions read ai.

� CMPEQ if is also a parent to ADD sum and SUB sum, because both read

IF for the conditional execution.

� The result of SHL mask is read on the next iteration by the AND cond

instruction.

Figure 5–17. Dependency Graph of If-Then-Else Code

ADD

cntr

LOOP

1

B

1

CMPEQ

if

sum

1

SUB

!(!(cond))

1

MVK

A side B side

ADD

1

1

1

LDH

ai 5

5

mask1
1

sum1

1

SHL

cond

1

AND

1
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5.8.4 Determining the Minimum Iteration Interval

With nine instructions, the minimum iteration interval is at least 2, because a

maximum of eight instructions can be in parallel. Based on the way the depen-

dency graph in Figure 5–17 is split, five instructions are on the A side and four

are on the B side. Because none of the instructions are MPYs, all instructions

must go on the .S, .D, or .L units, which means you have a total of six

resources.

� LDH must be on a .D unit.

� SHL, B, and MVK must be on a .S unit.

� The ADDs and SUB can be on the .S, .L, or .D units.

� The AND can be on a .S or .L unit, or .D unit (’C64x only)

From Table 5–18, you can see that no one resource is used more than two

times, so the minimum iteration interval is still 2.

Table 5–18. Resource Table for If-Then-Else Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 0 .M2 0

.S1 SHL & B 2 .S2 MVK 1

.D1 LDH 1 .L2 CMPEQ 1

.L1, .S1, or .D1 ADD & SUB 2 .L2 or .S2 AND 1

.L2, .S2, or .D2 ADD 1

Total non-.M units 5 Total non-.M units 4

The minimum iteration interval is also affected by the total number of instruc-

tions. Because three units can perform nonmultiply operations on a given side,

a total of five instructions can be performed with a minimum iteration interval

of 2. Because only four instructions are on the B side, the minimum iteration

interval is still 2.



If-Then-Else Statements in a Loop

 5-90

5.8.5 Linear Assembly Resource Allocation

Now that the graph is split and you know the minimum iteration interval, you

can allocate functional units and registers to the instructions. You must ensure

that no resource is used more than twice.

Example 5–49 shows the linear assembly with the functional units and regis-

ters that are used in the inner loop.

Example 5–49. Linear Assembly for Full If-Then-Else Code

.global _if_then

_if_then: .cproc a, cword, mask, theta

.reg cond, if, ai, sum, cntr

 

MVK 32,cntr ; cntr = 32

ZERO sum ; sum = 0

LOOP: .trip 32

AND .S2X cword,mask,cond ; cond = codeword & mask

 [cond] MVK .S2 1,cond ; !(!(cond))

CMPEQ .L2 theta,cond,if ; (theta == !(!(cond)))

LDH .D1 *a++,ai ; a[i]

   [if] ADD .L1 sum,ai,sum ; sum += a[i]

  [!if] SUB .D1 sum,ai,sum ; sum –= a[i]

SHL .S1 mask,1,mask ; mask = mask << 1;

 [cntr] ADD .L2 –1,cntr,cntr ; decrement counter

 [cntr] B .S1 LOOP ; for LOOP

.return sum

.endproc
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5.8.6 Final Assembly

Example 5–50 shows the final assembly code after software pipelining. The

performance of this loop is 70 cycles (2 � 32 + 6).

Example 5–50. Assembly Code for If-Then-Else

MVK .S2 32,B0 ; set up loop counter

  [B0] ADD .L2 –1,B0,B0 ; decrement counter

  [B0] ADD .L2 –1,B0,B0 ; decrement counter

||[B0] B .S1 LOOP ; for LOOP

|| LDH .D1 *A4++,A5 ; a[i]

  SHL .S1 A6,1,A6 ; mask = mask << 1;

|| AND .S2X B4,A6,B2 ; cond = codeword & mask

  [B2] MVK .S2 1,B2 ; !(!(cond))

||[B0] ADD .L2 –1,B0,B0 ; decrement counter

||[B0] B .S1 LOOP ;* for LOOP

|| LDH .D1 *A4++,A5 ;* a[i]

  CMPEQ .L2 B6,B2,B1 ; (theta == !(!(cond)))

|| SHL .S1 A6,1,A6 ;* mask = mask << 1;

|| AND .S2X B4,A6,B2 ;* cond = codeword & mask

|| ZERO .L1 A7 ; zero out accumulator

LOOP:

  [B0] ADD .L2 –1,B0,B0 ; decrement counter

||[B2] MVK .S2 1,B2 ;* !(!(cond))

||[B0] B .S1 LOOP ;** for LOOP

|| LDH .D1 *A4++,A5 ;** a[i]

  [B1] ADD .L1 A7,A5,A7 ; sum += a[i]

||[!B1]SUB .D1 A7,A5,A7 ; sum –= a[i]

|| CMPEQ .L2 B6,B2,B1 ;* (theta == !(!(cond)))

|| SHL .S1 A6,1,A6 ;** mask = mask << 1;

|| AND .S2X B4,A6,B2 ;** cond = codeword & mask

; Branch occurs here
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5.8.7 Comparing Performance

You can improve the performance of the code in Example 5–50 if you know

that the loop count is at least 3. If the loop count is at least 3, remove the decre-

ment counter instructions outside the loop and put the MVK (for setting up the

loop counter) in parallel with the first branch. These two changes save two

cycles at the beginning of the loop prolog.

The first two branches are now unconditional, because the loop count is at

least 3 and you know that the first two branches must execute. To account for

the removal of the three decrement-loop-counter instructions, set the loop

counter to 3 fewer than the actual number of times you want the loop to

execute: in this case, 29 (32 – 3).

Example 5–51. Assembly Code for If-Then-Else With Loop Count Greater Than 3

 B .S1 LOOP ; for LOOP

|| LDH .D1 *A4++,A5 ; a[i]

|| MVK .S2 29,B0 ; set up loop counter

  SHL .S1 A6,1,A6 ; mask = mask << 1;

|| AND .S2X B4,A6,B2 ; cond = codeword & mask

  [B2] MVK .S2 1,B2 ; !(!(cond))

|| B .S1 LOOP ;* for LOOP

|| LDH .D1 *A4++,A5 ;* a[i]

  CMPEQ .L2 B6,B2,B1 ; (theta == !(!(cond)))

|| SHL .S1 A6,1,A6 ;* mask = mask << 1;

|| AND .S2X B4,A6,B2 ;* cond = codeword & mask

|| ZERO .L1 A7 ; zero out accumulator

LOOP:

  [B0] ADD .L2 –1,B0,B0 ; decrement counter

||[B2] MVK .S2 1,B2 ;* !(!(cond))

||[B0] B .S1 LOOP ;** for LOOP

|| LDH .D1 *A4++,A5 ;** a[i]

  [B1] ADD .L1 A7,A5,A7 ; sum += a[i]

||[!B1]SUB .D1 A7,A5,A7 ; sum –= a[i]

|| CMPEQ .L2 B6,B2,B1 ;* (theta == !(!(cond)))

|| SHL .S1 A6,1,A6 ;** mask = mask << 1;

|| AND .S2X B4,A6,B2 ;** cond = codeword & mask

; Branch occurs here

Example 5–51 shows the improved loop with a cycle count of 68 (2 � 32 + 4).

Table 5–19 compares the performance of Example 5–50 and Example 5–51.
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Table 5–19. Comparison of If-Then-Else Code Examples

Code Example Cycles Cycle Count

Example 5–50 If-then-else assembly code (2 � 32) + 6 70

Example 5–51 If-then-else assembly code with loop count greater than 3 (2 � 32) + 4 68
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5.9 Loop Unrolling

Even though the performance of the previous example is good, it can be im-

proved. When resources are not fully used, you can improve performance by

unrolling the loop. In Example 5–52, only nine instructions execute every two

cycles. If you unroll the loop and analyze the new minimum iteration interval,

you have room to add instructions. A minimum iteration interval of 3 provides

a 25% improvement in throughput: three cycles to do two iterations, rather

than the four cycles required in Example 5–51.

5.9.1 Unrolled If-Then-Else C Code

Example 5–52 shows the unrolled version of the if-then-else C code in

Example 5–47 on page 5-86.

Example 5–52. If-Then-Else C Code (Unrolled)

int unrolled_if_then(short a[], int codeword, int mask, short theta)

{

int i,sum, cond;

sum = 0;

for (i = 0; i < 32; i+=2){

cond = codeword & mask;

if (theta  ==  !(!(cond)))

    sum += a[i];

else

    sum –= a[i];

mask = mask << 1;

cond = codeword & mask;

if (theta  ==  !(!(cond)))

    sum += a[i+1];

else

    sum –= a[i+1];

mask = mask << 1;

}

return(sum);

}
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5.9.2 Translating C Code to Linear Assembly

Example 5–53 shows the unrolled inner loop with 16 instructions and the

possibility of achieving a loop with a minimum iteration interval of 3.

Example 5–53. Linear Assembly for Unrolled If-Then-Else Inner Loop

AND codeword,maski,condi ; condi = codeword & maski

[condi] MVK 1,condi ; !(!(condi))

CMPEQ theta,condi,ifi ; (theta == !(!(condi)))

LDH *aptr++,ai ; a[i]

[ifi] ADD sumi,ai,sumi ; sum += a[i]

[!ifi] SUB sumi,ai,sumi ; sum –= a[i]

SHL maski,1,maski+1 ; maski+1 = maski << 1;

AND codeword,maski+1,condi+1; condi+1 = codeword & maski+1

[condi+1]MVK 1,condi+1 ; !(!(condi+1))

CMPEQ theta,condi+1,ifi+1 ; (theta == !(!(condi+1)))

LDH *aptr++,ai+1 ; a[i+!]

 [ifi+1] ADD sumi+1,ai+1,sumi+1 ; sum += a[i+1]

[!ifi+1] SUB sumi+1,ai+1,sumi+1 ; sum –= a[i+1]

SHL maski+1,1,maski ; maski = maski+1 << 1;

 [cntr] ADD –1,cntr,cntr ; decrement counter

 [cntr] B LOOP ; for LOOP
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5.9.3 Drawing a Dependency Graph

Although there are numerous ways to split the dependency graph, the main

goal is to achieve a minimum iteration interval of 3 and meet these conditions:

� You cannot have more than nine non-.M instructions on either side.

� Only three non-.M instructions can execute per cycle.

Figure 5–18 shows the dependency graph for the unrolled if-then-else code.

Nine instructions are on the A side, and seven instructions are on the B side.

Figure 5–18. Dependency Graph of If-Then-Else Code (Unrolled)

ADD

cntr

Loop

1

B

1

CMPEQ

ifi+1

sumi+1

1

SUB

!(!(condi+1))

1

MVK

A side B side

ADD

1

1

1

LDH

ai+1

55

maski+1

1

1

sumi+11

1

SHL

condi+ 1

1

AND

LDH

ai

5

5

maski

SHL
1

CMPEQ

ifi

sumi

1

SUB

!(!(condi)

1

MVK

ADD

1

1

1

sumi1

1

condi

1

AND

1



Loop Unrolling

5-97Optimizing Assembly Code via Linear Assembly

5.9.4 Determining the Minimum Iteration Interval

With 16 instructions, the minimum iteration interval is at least 3 because a

maximum of six instructions can be in parallel with the following allocation

possibilities:

� LDH must be on a .D unit.

� SHL, B, and MVK must be on a .S unit.

� The ADDs and SUB can be on a .S, .L, or .D unit.

� The AND can be on a .S or .L unit, or .D unit (’C64x only)

From Table 5–20, you can see that no one resource is used more than three

times so that the minimum iteration interval is still 3.

Checking the total number of non-.M instructions on each side shows that a

total of nine instructions can be performed with the minimum iteration interval

of 3. because only seven non-.M instructions are on the B side, the minimum

iteration interval is still 3.

Table 5–20. Resource Table for Unrolled If-Then-Else Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 0 .M2 0

.S1 MVK and 2 SHLs 3 .S2 MVK and B 2

.D1 2 LDHs 2 .L2 CMPEQ 1

.L1 CMPEQ 1 .L2 pr.S2 AND 1

.L1 or .S1 AND 1 .L2 ,.S2, or .D2 SUB and 2 ADDs 3

.L1, .S1, or .D1 ADD and SUB 2

Total non-.M units 9 Total non-.M units 7

5.9.5 Linear Assembly Resource Allocation

Now that the graph is split and you know the minimum iteration interval, you

can allocate functional units and registers to the instructions. You must ensure

no resource is used more than three times.

Example 5–54 shows the linear assembly code with the functional units and

registers.
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Example 5–54. Linear Assembly for Full Unrolled If-Then-Else Code

.global _unrolled_if_then

_unrolled_if_then:  .cproc   a, cword, mask, theta

.reg cword, mask, theta, ifi, ifi1, a, ai, ai1, cntr

.reg cdi, cdi1, sumi, sumi1, sum

 

MV A4,a ; C callable register for 1st operand

MV B4,cword ; C callable register for 2nd operand

MV A6,mask ; C callable register for 3rd operand

MV B6,theta ; C callable register for 4th operand

MVK 16,cntr ; cntr = 32/2

ZERO sumi ; sumi = 0

ZERO sumi1 ; sumi+1 = 0

LOOP: .trip 32

AND .L1X cword,mask,cdi ; cdi = codeword & maski

  [cdi] MVK .S1 1,cdi ; !(!(cdi))

CMPEQ .L1X theta,cdi,ifi ; (theta == !(!(cdi)))

LDH .D1 *a++,ai ; a[i]

  [ifi] ADD .L1 sumi,ai,sumi ; sum += a[i]

 [!ifi] SUB .D1 sumi,ai,sumi ; sum –= a[i]

SHL .S1 mask,1,mask ; maski+1 = maski << 1;

AND .L2X cword,mask,cdi1 ; cdi+1 = codeword & maski+1

 [cdi1] MVK .S2 1,cdi1 ; !(!(cdi+1))

CMPEQ .L2 theta,cdi1,ifi1 ; (theta == !(!(cdi+1)))

LDH .D1 *a++,ai1 ; a[i+1]

 [ifi1] ADD .L2 sumi1,ai1,sumi1 ; sum += a[i+1]

[!ifi1] SUB .D2 sumi1,ai1,sumi1 ; sum –= a[i+1]

SHL .S1 mask,1,mask ; maski = maski+1 << 1;

 [cntr] ADD .D2 –1,cntr,cntr ; decrement counter

 [cntr] B .S2 LOOP ; for LOOP

ADD sumi,sumi1,sum ; Add sumi and sumi+1 for ret value

.return sum

.endproc



Loop Unrolling

5-99Optimizing Assembly Code via Linear Assembly

5.9.6 Final Assembly

Example 5–55 shows the final assembly code after software pipelining. The

cycle count of this loop is now 53: (3�16) + 5.

Example 5–55. Assembly Code for Unrolled If-Then-Else 

MVK .S2 16,B0 ; set up loop counter

 

LDH .D1 *A4++,A5 ; a[i]

||[B0] ADD .D2 –1,B0,B0 ; decrement counter

  LDH .D1 *A4++,B5 ; a[i+1]

||[B0] B .S2 LOOP ; for LOOP

||[B0] ADD .D2 –1,B0,B0 ; decrement counter

|| SHL .S1 A6,1,A6 ; maski+1 = maski << 1;

|| AND .L1X B4,A6,A2 ; condi = codeword & maski

  [A2] MVK .S1 1,A2 ; !(!(condi))

|| AND .L2X B4,A6,B2 ; condi+1 = codeword & maski+1

|| ZERO .L1 A7 ; zero accumulator

  [B2] MVK .S2 1,B2 ; !(!(condi+1))

|| CMPEQ .L1X B6,A2,A1 ; (theta == !(!(condi)))

|| SHL .S1 A6,1,A6 ; maski = maski+1 << 1;

|| LDH .D1 *A4++,A5 ;* a[i]

|| ZERO .L2 B7 ; zero accumulator

LOOP:

  CMPEQ .L2 B6,B2,B1 ; (theta == !(!(condi+1)))

||[B0] ADD .D2 –1,B0,B0 ; decrement counter

|| LDH .D1 *A4++,B5 ;* a[i+1]

||[B0] B .S2 LOOP ;* for LOOP

|| SHL .S1 A6,1,A6 ;* maski+1 = maski << 1;

|| AND .L1X B4,A6,A2 ;* condi = codeword & maski

  [A1] ADD .L1 A7,A5,A7 ; sum += a[i]

||[!A1]SUB .D1 A7,A5,A7 ; sum –= a[i]

||[A2] MVK .S1 1,A2 ;* !(!(condi))

|| AND .L2X B4,A6,B2 ;* condi+1 = codeword & maski+1

  [B1] ADD .L2 B7,B5,B7 ; sum += a[i+1]

||[!B1]SUB .D2 B7,B5,B7 ; sum –= a[i+1]

||[B2] MVK .S2 1,B2 ;* !(!(condi+1))

|| CMPEQ .L1X B6,A2,A1 ;* (theta == !(!(condi)))

|| SHL .S1 A6,1,A6 ;* maski = maski+1 << 1;

|| LDH .D1 *A4++,A5 ;** a[i]

; Branch occurs here

ADD .L1X A7,B7,A4 ; move to return register
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5.9.7 Comparing Performance

Table 5–21 compares the performance of all versions of the if-then-else code

examples.

Table 5–21. Comparison of If-Then-Else Code Examples

Code Example Cycles Cycle Count

Example 5–50 If-then-else assembly code (2 � 32) + 6 70

Example 5–51 If-then-else assembly code with loop count greater than 3 (2 � 32) + 4 68

Example 5–55 Unrolled if-then-else assembly code (3 � 16) + 5 53
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5.10 Live-Too-Long Issues

When the result of a parent instruction is live longer than the minimum iteration

interval of a loop, you have a live-too-long problem. Because each instruction

executes every iteration interval cycle, the next iteration of that parent over-

writes the register with a new value before the child can read it. Section 5.6.6.1,

Resource Conflicts, on page 5-65 showed how to solve this problem simply

by moving the parent to a later cycle. This is not always a valid solution.

5.10.1 C Code With Live-Too-Long Problem

Example 5–56 shows C code with a live-too-long problem that cannot be

solved by rescheduling the parent instruction. Although it is not obvious from

the C code, the dependency graph in Figure 5–19 on page 5-103 shows a split-

join path that causes this live-too-long problem.

Example 5–56. Live-Too-Long C Code

int live_long(short a[],short b[],short c, short d, short e)

{

int i,sum0,sum1,sum,a0,a2,a3,b0,b2,b3;

short a1,b1;

sum0 = 0;

sum1 = 0;

for(i=0; i<100; i++){

a0 = a[i] * c;

a1 = a0 >> 15;

a2 = a1 * d;

a3 = a2 + a0;

sum0 += a3;

b0 = b[i] * c;

b1 = b0 >> 15;

b2 = b1 * e;

b3 = b2 + b0;

sum1 += b3;

}

sum = sum0 + sum1;

return(sum);

}
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5.10.2 Translating C Code to Linear Assembly

Example 5–57 shows the assembly instructions that execute the inner loop in

Example 5–56.

Example 5–57. Linear Assembly for Live-Too-Long Inner Loop

LDH *aptr++,ai ; load ai from memory

LDH *bptr++,bi ; load bi from memory

MPY ai,c,a0 ; a0 = ai * c

SHR a0,15,a1 ; a1 = a0 >> 15

MPY a1,d,a2 ; a2 = a1 * d

ADD a2,a0,a3 ; a3 = a2 + a0

ADD sum0,a3,sum0 ; sum0 += a3

MPY bi,c,b0 ; b0 = bi * c

SHR b0,15,b1 ; b1 = b0 >> 15

MPY b1,e,b2 ; b2 = b1 * e

ADD b2,b0,b3 ; b3 = b2 + b0

ADD sum1,b3,sum1 ; sum1 += b3

  [cntr]SUB cntr,1,cntr ; decrement loop counter

  [cntr]B LOOP ; branch to loop

5.10.3 Drawing a Dependency Graph

Figure 5–19 shows the dependency graph for the live-too-long code. This

algorithm includes three separate and independent graphs. Two of the inde-

pendent graphs have split-join paths: from a0 to a3 and from b0 to b3.
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Figure 5–19. Dependency Graph of Live-Too-Long Code
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5.10.4 Determining the Minimum Iteration Interval

Table 5–22 shows the functional unit resources for the loop. Based on the re-

source usage, the minimum iteration interval is 2 for the following reasons:

� No specific resource is used more than twice, implying a minimum itera-

tion interval of 2.

� A total of five non-.M units on each side also implies a minimum iteration

interval of 2, because three non-.M units can be used on a side during each

cycle.

Table 5–22. Resource Table for Live-Too-Long Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 MPY 1 .M2 MPY 1

.S1 B and SHR 2 .S2 SHR 1

.D1 LDH 1 .D2 LDH 1

.L1, .S1, or .D1 2 ADDs 2 .L2, .S2, or .D2 2 ADDs and SUB 3

Total non-.M units 5 Total non-.M units 5

However, the minimum iteration interval is determined by both resources and

data dependency. A loop carry path determined the minimum iteration interval

of the IIR filter in section 5.7, Loop Carry Paths, on page 5-77. In this example,

a live-too-long problem determines the minimum iteration interval.

5.10.4.1 Split-Join-Path Problems

In Figure 5–19, the two split-join paths from a0 to a3 and from b0 to b3 create

the live-too-long problem. Because the ADD a3 instruction cannot be sched-

uled until the SHR a1 and MPY a2 instructions finish, a0 must be live for at least

four cycles. For example:

� If MPY a0 is scheduled on cycle 5, then the earliest SHR a1 can be sched-

uled is cycle 7.

� The earliest MPY a2 can be scheduled is cycle 8.

� The earliest ADD a3 can be scheduled is cycle 10.
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Because a0 is written at the end of cycle 6, it must be live from cycle 7 to

cycle 10, or four cycles. No value can be live longer than the minimum iteration

interval, because the next iteration of the loop will overwrite that value before

the current iteration can read the value. Therefore, if the value has to be live

for four cycles, the minimum iteration interval must be at least 4. A minimum

iteration interval of 4 means that the loop executes at half the performance that

it could based on available resources.

5.10.4.2 Unrolling the Loop

One way to solve this problem is to unroll the loop, so that you are doing twice

as much work in each iteration. After unrolling, the minimum iteration interval

is 4, based on both the resources and the data dependencies of the split-join

path. Although unrolling the loop allows you to achieve the highest possible

loop throughput, unrolling the loop does increase the code size.

5.10.4.3 Inserting Moves

Another solution to the live-too-long problem is to break up the lifetime of a0

and b0 by inserting move (MV) instructions. The MV instruction breaks up the

left path of the split-join path into two smaller pieces.

5.10.4.4 Drawing a New Dependency Graph

Figure 5–20 shows the new dependency graph with the MV instructions. Now

the left paths of the split-join paths are broken into two pieces. Each value, a0

and a0’, can be live for minimum iteration interval cycles. If MPY a0 is sched-

uled on cycle 5 and ADD a3 is scheduled on cycle 10, you can achieve a mini-

mum iteration interval of 2 by scheduling MV a0’ on cycle 8. Then a0 is live on

cycles 7 and 8, and a0’ is live on cycles 9 and 10. Because no values are live

more than two cycles, the minimum iteration interval for this graph is 2.
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Figure 5–20. Dependency Graph of Live-Too-Long Code (Split-Join Path Resolved)
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5.10.5 Linear Assembly Resource Allocation

Example 5–58 shows the linear assembly code with the functional units as-

signed. The choice of units for the ADDs and SUB is flexible and represents

one of a number of possibilities. One goal is to ensure that no functional unit

is used more than the minimum iteration interval, or two times.

The two 2X paths and one 1X path are required because the values c, d, and

e reside on the side opposite from the instruction that is reading them. If these

values had created a bottleneck of resources and caused the minimum itera-

tion interval to increase, c, d, and e could have been loaded into the opposite

register file outside the loop to eliminate the cross path.
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Example 5–58. Linear Assembly for Full Live-Too-Long Code

.global _live_long

_live_long: .cproc   a, b, c, d, e

.reg ai, bi, sum0, sum1, sum

.reg a0p, a_0, a_1, a_2, a_3, b_0, b0p, b_1, b_2, b_3, cntr

 

MVK 100,cntr ; cntr = 100

ZERO sum0 ; sum0 = 0

ZERO sum1 ; sum1 = 0

LOOP: .trip 100

LDH .D1 *a++,ai ; load ai from memory

LDH .D2 *b++,bi ; load bi from memory

MPY .M1 ai,c,a_0 ; a0 = ai * c

SHR .S1 a_0,15,a_1 ; a1 = a0 >> 15

MPY .M1X a_1,d,a_2 ; a2 = a1 * d

MV .D1 a_0,a0p ; save a0 across iterations

ADD .L1 a_2,a0p,a_3 ; a3 = a2 + a0

ADD .L1 sum0,a_3,sum0 ; sum0 += a3

MPY .M2X bi,c,b_0 ; b0 = bi * ci

SHR .S2 b_0,15,b_1 ; b1 = b0 >> 15

MPY .M2X b_1,e,b_2 ; b2 = b1 * e

MV .D2 b_0,b0p ; save b0 across iterations

ADD .L2 b_2,b0p,b_3 ; b3 = b2 + b0

ADD .L2 sum1,b_3,sum1 ; sum1 += b3

[cntr] SUB .S2 cntr,1,cntr ; decrement loop counter

[cntr] B .S1 LOOP ; branch to loop

ADD sum0,sum1,sum ; Add sumi and sumi+1 for ret value

.return sum

.endproc
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5.10.6 Final Assembly With Move Instructions

Example 5–59 shows the final assembly code after software pipelining. The

performance of this loop is 212 cycles (2 �100 + 11 + 1).

Example 5–59. Assembly Code for Live-Too-Long With Move Instructions 

LDH .D1 *A4++,A0 ; load ai from memory

|| LDH .D2 *B4++,B0 ; load bi from memory

MVK .S2 100,B2 ; set up loop counter

LDH .D1 *A4++,A0 ;* load ai from memory

|| LDH .D2 *B4++,B0 ;* load bi from memory

ZERO .S1 A1 ; zero out accumulator

|| ZERO .S2 B1 ; zero out accumulator

LDH .D1 *A4++,A0 ;** load ai from memory

|| LDH .D2 *B4++,B0 ;** load bi from memory

  [B2] SUB .S2 B2,1,B2 ; decrement loop counter

MPY .M1 A0,A6,A3 ; a0 = ai * c

|| MPY .M2X B0,A6,B10 ; b0 = bi * c

|| LDH .D1 *A4++,A0 ;*** load ai from memory

|| LDH .D2 *B4++,B0 ;*** load bi from memory

  [B2] SUB .S2 B2,1,B2 ; decrement loop counter

||[B2] B .S1 LOOP ; branch to loop

SHR .S1 A3,15,A5 ; a1 = a0 >> 15

|| SHR .S2 B10,15,B5 ; b1 = b0 >> 15

|| MPY .M1 A0,A6,A3 ;* a0 = ai * c

|| MPY .M2X B0,A6,B10 ;* b0 = bi * c

|| LDH .D1 *A4++,A0 ;**** load ai from memory

|| LDH .D2 *B4++,B0 ;**** load bi from memory

MPY .M1X A5,B6,A7 ; a2 = a1 * d

|| MV .D1 A3,A2 ; save a0 across iterations

|| MPY .M2X B5,A8,B7 ; b2 = b1 * e

|| MV .D2 B10,B8 ; save b0 across iterations

||[B2] SUB .S2 B2,1,B2 ;* decrement loop counter

||[B2] B .S1 LOOP ;* branch to loop

SHR .S1 A3,15,A5 ;* a1 = a0 >> 15

|| SHR .S2 B10,15,B5 ;* b1 = b0 >> 15

|| MPY .M1 A0,A6,A3 ;** a0 = ai * c

|| MPY .M2X B0,A6,B10 ;** b0 = bi * c

|| LDH .D1 *A4++,A0 ;***** load ai from memory

|| LDH .D2 *B4++,B0 ;***** load bi from memory
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Example 5–59. Assembly Code for Live-Too-Long With Move Instructions (Continued)

LOOP:

ADD .L1 A7,A2,A9 ;* a3 = a2 + a0

|| ADD .L2 B7,B8,B9 ;* b3 = b2 + b0

|| MPY .M1X A5,B6,A7 ;* a2 = a1 * d

|| MV .D1 A3,A2 ;* save a0 across iterations

|| MPY .M2X B5,A8,B7 ;* b2 = b1 * e

|| MV .D2 B10,B8 ;* save b0 across iterations

||[B2] SUB .S2 B2,1,B2 ;** decrement loop counter

||[B2] B .S1 LOOP ;** branch to loop

ADD .L1 A1,A9,A1 ; sum0 += a3

|| ADD .L2 B1,B9,B1 ; sum1 += b3

|| SHR .S1 A3,15,A5 ;** a1 = a0 >> 15

|| SHR .S2 B10,15,B5 ;** b1 = b0 >> 15

|| MPY .M1 A0,A6,A3 ;*** a0 = ai * c

|| MPY .M2X B0,A6,B10 ;*** b0 = bi * c

|| LDH .D1 *A4++,A0 ;****** load ai from memory

|| LDH .D2 *B4++,B0 ;****** load bi from memory

; Branch occurs here

ADD .L1X A1,B1,A4 ; sum = sum0 + sum1
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5.11 Redundant Load Elimination

Filter algorithms typically read the same value from memory multiple times and

are, therefore, prime candidates for optimization by eliminating redundant load

instructions. Rather than perform a load operation each time a particular value

is read, you can keep the value in a register and read the register multiple

times.

5.11.1 FIR Filter C Code

Example 5–60 shows C code for a simple FIR filter. There are two memory

reads (x[i+j] and h[i]) for each multiply. Because the ’C6000 can perform only

two LDHs per cycle, it seems, at first glance, that only one multiply-accumulate

per cycle is possible.

Example 5–60. FIR Filter C Code

void fir(short x[], short h[], short y[])

{

int i, j, sum;

for (j = 0; j < 100; j++) {

sum = 0;

for (i = 0; i < 32; i++)

sum += x[i+j] * h[i];

y[j] = sum >> 15;

}

}

One way to optimize this situation is to perform LDWs instead of LDHs to read

two data values at a time. Although using LDW works for the h array, the x array

presents a different problem because the ’C6x does not allow you to load

values across a word boundary.

For example, on the first outer loop (j = 0), you can read the x-array elements

(0 and 1, 2 and 3, etc.) as long as elements 0 and 1 are aligned on a 4-byte

word boundary. However, the second outer loop (j = 1) requires reading x-array

elements 1 through 32. The LDW operation must load elements that are not

word-aligned (1 and 2, 3 and 4, etc.).

5.11.1.1 Redundant Loads

In order to achieve two multiply-accumulates per cycle, you must reduce the

number of LDHs. Because successive outer loops read all the same h-array

values and almost all of the same x-array values, you can eliminate the redun-

dant loads by unrolling the inner and outer loops.

For example, x[1] is needed for the first outer loop (x[j+1] with j = 0) and for the

second outer loop (x[j] with j = 1). You can use a single LDH instruction to load

this value.
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5.11.1.2 New FIR Filter C Code

Example 5–61 shows that after eliminating redundant loads, there are four

memory-read operations for every four multiply-accumulate operations. Now

the memory accesses no longer limit the performance.

Example 5–61. FIR Filter C Code With Redundant Load Elimination

void fir(short x[], short h[], short y[])

{

int i, j, sum0, sum1;

short x0,x1,h0,h1;

for (j = 0; j < 100; j+=2) {

sum0 = 0;

sum1 = 0;

x0 = x[j];

for (i = 0; i < 32; i+=2){

x1 = x[j+i+1];

h0 = h[i];

sum0 += x0 * h0;

sum1 += x1 * h0;

x0 = x[j+i+2];

h1 = h[i+1];

sum0 += x1 * h1;

sum1 += x0 * h1;

}

y[j] = sum0 >> 15;

y[j+1] = sum1 >> 15;

}

}
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5.11.2 Translating C Code to Linear Assembly

Example 5–62 shows the linear assembly that perform the inner loop of the

FIR filter C code.

Element x0 is read by the MPY p00 before it is loaded by the LDH x0 instruc-

tion; x[j] (the first x0) is loaded outside the loop, but successive even elements

are loaded inside the loop.

Example 5–62. Linear Assembly for FIR Inner Loop

LDH .D2 *x_1++[2],x1 ; x1 = x[j+i+1]

LDH .D1 *h++[2],h0 ; h0 = h[i]

MPY .M1 x0,h0,p00 ; x0 * h0

MPY .M1X x1,h0,p10 ; x1 * h0

ADD .L1 p00,sum0,sum0 ; sum0 += x0 * h0

ADD .L2X p10,sum1,sum1 ; sum1 += x1 * h0

LDH .D1 *x++[2],x0 ; x0 = x[j+i+2]

LDH .D2 *h_1++[2],h1 ; h1 = h[i+1]

MPY .M2 x1,h1,p01 ; x1 * h1

MPY .M2X x0,h1,p11 ; x0 * h1

ADD .L1X p01,sum0,sum0 ; sum0 += x1 * h1

ADD .L2 p11,sum1,sum1 ; sum1 += x0 * h1

 [ctr] SUB .S2 ctr,1,ctr ; decrement loop counter

 [ctr] B .S2 LOOP ; branch to loop
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5.11.3 Drawing a Dependency Graph

Figure 5–21 shows the dependency graph of the FIR filter with redundant load

elimination.

Figure 5–21. Dependency Graph of FIR Filter (With Redundant Load Elimination)
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5.11.4 Determining the Minimum Iteration Interval

Table 5–23 shows that the minimum iteration interval is 2. An iteration interval

of 2 means that two multiply-accumulates are executing per cycle.

Table 5–23. Resource Table for FIR Filter Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 2 MPYs 2 .M2 2 MPYs 2

.S1  0 .S2 B 1

.D1 2 LDHs 2 .D2 2 LDHs 2

.L1, .S1, or .D1 2 ADDs 2 .L2, .S2, .D2 2 ADDs and SUB 3

Total non-.M units 4 Total non-.M units 6

1X paths 2 2X paths 2

5.11.5 Linear Assembly Resource Allocation

Example 5–63 shows the linear assembly with functional units and registers

assigned.

Example 5–63. Linear Assembly for Full FIR Code

.global _fir

_fir: .cproc   x, h, y

.reg x_1, h_1, sum0, sum1, ctr, octr

.reg p00, p01, p10, p11, x0, x1, h0, h1, rstx, rsth

 

ADD h,2,h_1 ; set up pointer to h[1]

MVK 50,octr ; outer loop ctr = 100/2

MVK 64,rstx ; used to rst x pointer each outer loop

MVK 64,rsth ; used to rst h pointer each outer loop

OUTLOOP:

ADD x,2,x_1 ; set up pointer to x[j+1]

SUB h_1,2,h ; set up pointer to h[0]

MVK 16,ctr ; inner loop ctr = 32/2

ZERO sum0 ; sum0 = 0

ZERO sum1 ; sum1 = 0

 [octr] SUB octr,1,octr ; decrement outer loop counter

LDH .D1 *x++[2],x0 ; x0 = x[j]
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Example 5–63. Linear Assembly for Full FIR Code (Continued)

LOOP: .trip 16

LDH .D2 *x_1++[2],x1 ; x1 = x[j+i+1]

LDH .D1 *h++[2],h0 ; h0 = h[i]

MPY .M1 x0,h0,p00 ; x0 * h0

MPY .M1X x1,h0,p10 ; x1 * h0

ADD .L1 p00,sum0,sum0 ; sum0 += x0 * h0

ADD .L2X p10,sum1,sum1 ; sum1 += x1 * h0

LDH .D1 *x++[2],x0 ; x0 = x[j+i+2]

LDH .D2 *h_1++[2],h1 ; h1 = h[i+1]

MPY .M2 x1,h1,p01 ; x1 * h1

MPY .M2X x0,h1,p11 ; x0 * h1

ADD .L1X p01,sum0,sum0 ; sum0 += x1 * h1

ADD .L2 p11,sum1,sum1 ; sum1 += x0 * h1

 [ctr] SUB .S2 ctr,1,ctr ; decrement loop counter

 [ctr] B .S2 LOOP ; branch to loop

SHR sum0,15,sum0 ; sum0 >> 15

SHR sum1,15,sum1 ; sum1 >> 15

STH sum0,*y++ ; y[j] = sum0 >> 15

STH sum1,*y++ ; y[j+1] = sum1 >> 15

SUB x,rstx,x ; reset x pointer to x[j]

SUB h_1,rsth,h_1 ; reset h pointer to h[0]

 [octr] B OUTLOOP ; branch to outer loop

.endproc

5.11.6 Final Assembly

Example 5–64 shows the final assembly for the FIR filter without redundant

load instructions. At the end of the inner loop is a branch to OUTLOOP that

executes the next outer loop. The outer loop counter is 50 because iterations

j and j + 1 execute each time the inner loop is run. The inner loop counter is

16 because iterations i and i + 1 execute each inner loop iteration.

The cycle count for this nested loop is 2352 cycles: 50 (16 � 2 + 9 + 6) + 2.

Fifteen cycles are overhead for each outer loop:

� Nine cycles execute the inner loop prolog.

� Six cycles execute the branch to the outer loop.

See section 5.13, Software Pipelining the Outer Loop, on page 5-131 for in-

formation on how to reduce this overhead.
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Example 5–64. Final Assembly Code for FIR Filter With Redundant Load Elimination 

MVK .S1 50,A2 ; set up outer loop counter

MVK .S1 80,A3 ; used to rst x ptr outer loop

|| MVK .S2 82,B6 ; used to rst h ptr outer loop

OUTLOOP:

LDH .D1 *A4++[2],A0 ; x0 = x[j]

|| ADD .L2X A4,2,B5 ; set up pointer to x[j+1]

|| ADD .D2 B4,2,B4 ; set up pointer to h[1]

|| ADD .L1X B4,0,A5 ; set up pointer to h[0]

|| MVK .S2 16,B2 ; set up inner loop counter

||[A2] SUB .S1 A2,1,A2 ; decrement outer loop counter

  LDH .D1 *A5++[2],A1 ; h0 = h[i]

|| LDH .D2 *B5++[2],B1 ; x1 = x[j+i+1]

|| ZERO .L1 A9 ; zero out sum0

|| ZERO .L2 B9 ; zero out sum1

  LDH .D2 *B4++[2],B0 ; h1 = h[i+1]

|| LDH .D1 *A4++[2],A0 ; x0 = x[j+i+2]

  LDH .D1 *A5++[2],A1 ;* h0 = h[i]

|| LDH .D2 *B5++[2],B1 ;* x1 = x[j+i+1]

  [B2] SUB .S2 B2,1,B2 ; decrement inner loop counter

||  LDH .D2 *B4++[2],B0 ;* h1 = h[i+1]

|| LDH .D1 *A4++[2],A0 ;* x0 = x[j+i+2]

  [B2] B .S2 LOOP ; branch to inner loop

|| LDH .D1 *A5++[2],A1 ;** h0 = h[i]

|| LDH .D2 *B5++[2],B1 ;** x1 = x[j+i+1]

  MPY .M1 A0,A1,A7 ; x0 * h0

||[B2] SUB .S2 B2,1,B2 ;* decrement inner loop counter

|| LDH .D2 *B4++[2],B0 ;** h1 = h[i+1]

|| LDH .D1 *A4++[2],A0 ;** x0 = x[j+i+2]

  MPY .M2 B1,B0,B7 ; x1 * h1

|| MPY .M1X B1,A1,A8 ; x1 * h0

||[B2] B .S2 LOOP ;* branch to inner loop

|| LDH .D1 *A5++[2],A1 ;*** h0 = h[i]

|| LDH .D2 *B5++[2],B1 ;*** x1 = x[j+i+1]

  MPY .M2X A0,B0,B8 ; x0 * h1

|| MPY .M1 A0,A1,A7 ;* x0 * h0

||[B2] SUB .S2 B2,1,B2 ;** decrement inner loop counter

|| LDH .D2 *B4++[2],B0 ;*** h1 = h[i+1]

|| LDH .D1 *A4++[2],A0 ;*** x0 = x[j+i+2]

1

2

3

4

5

6

7

8

9



Redundant Load Elimination

5-117Optimizing Assembly Code via Linear Assembly

Example 5–64 Final Assembly Code for FIR Filter With Redundant Load Elimination 
(Continued)

LOOP:

  ADD .L2X A8,B9,B9 ; sum1 += x1 * h0

|| ADD .L1 A7,A9,A9 ; sum0 += x0 * h0

|| MPY .M2 B1,B0,B7 ;* x1 * h1

|| MPY .M1X B1,A1,A8 ;* x1 * h0

||[B2] B .S2 LOOP ;** branch to inner loop

|| LDH .D1 *A5++[2],A1 ;**** h0 = h[i]

|| LDH .D2 *B5++[2],B1 ;**** x1 = x[j+i+1]

  ADD .L1X B7,A9,A9 ; sum0 += x1 * h1

|| ADD .L2 B8,B9,B9 ; sum1 += x0 * h1

|| MPY .M2X A0,B0,B8 ;* x0 * h1

|| MPY .M1 A0,A1,A7 ;** x0 * h0

||[B2] SUB .S2 B2,1,B2 ;*** decrement inner loop cntr

|| LDH .D2 *B4++[2],B0 ;**** h1 = h[i+1]

|| LDH .D1 *A4++[2],A0 ;**** x0 = x[j+i+2]

; inner loop branch occurs here

  [A2] B .S1 OUTLOOP ; branch to outer loop

|| SUB .L1 A4,A3,A4 ; reset x pointer to x[j]

|| SUB .L2 B4,B6,B4 ; reset h pointer to h[0]

SHR .S1 A9,15,A9 ; sum0 >> 15

|| SHR .S2 B9,15,B9 ; sum1 >> 15

STH .D1 A9,*A6++ ; y[j] = sum0 >> 15

STH .D1 B9,*A6++ ; y[j+1] = sum1 >> 15

NOP 2 ; branch delay slots

; outer loop branch occurs here
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5.12 Memory Banks

The internal memory of the ’C6000 family varies from device to device. See

the TMS320C6000 Peripherals Reference Guide to determine the memory

blocks in your particular device. This section discusses how to write code to

avoid memory bank conflicts.

Most ’C6x devices use an interleaved memory bank scheme, as shown in

Figure 5–22. Each number in the boxes represents a byte address. A load byte

(LDB) instruction from address 0 loads byte 0 in bank 0. A load halfword (LDH)

from address 0 loads the halfword value in bytes 0 and 1, which are also in

bank 0. An LDW from address 0 loads bytes 0 through 3 in banks 0 and 1.

Because each bank is single-ported memory, only one access to each bank

is allowed per cycle. Two accesses to a single bank in a given cycle result in

a memory stall that halts all pipeline operation for one cycle, while the second

value is read from memory. Two memory operations per cycle are allowed

without any stall, as long as they do not access the same bank.

Figure 5–22. 4-Bank Interleaved Memory
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For devices that have more than one memory block (see Figure 5–23), an

access to bank 0 in one block does not interfere with an access to bank 0 in

another memory block, and no pipeline stall occurs.
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Figure 5–23. 4-Bank Interleaved Memory With Two Memory Blocks
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If each array in a loop resides in a separate memory block, the 2-cycle loop

in Example 5–61 on page 5-111 is sufficient. This section describes a solution

when two arrays must reside in the same memory block.
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5.12.1 FIR Filter Inner Loop

Example 5–65 shows the inner loop from the final assembly in Example 5–64.

The LDHs from the h array are in parallel with LDHs from the x array. If x[1] is

on an even halfword (bank 0) and h[0] is on an odd halfword (bank 1),

Example 5–65 has no memory conflicts. However, if both x[1] and h[0] are on

an even halfword in memory (bank 0) and they are in the same memory block,

every cycle incurs a memory pipeline stall and the loop runs at half the speed.

Example 5–65. Final Assembly Code for Inner Loop of FIR Filter

LOOP:

  ADD .L2X A8,B9,B9 ; sum1 += x1 * h0

|| ADD .L1 A7,A9,A9 ; sum0 += x0 * h0

|| MPY .M2 B1,B0,B7 ;* x1 * h1

|| MPY .M1X B1,A1,A8 ;* x1 * h0

||[B2] B .S2 LOOP ;** branch to inner loop

|| LDH .D1 *A5++[2],A1 ;**** h0 = h[i]

|| LDH .D2 *B5++[2],B1 ;**** x1 = x[j+i+1]

  ADD .L1X B7,A9,A9 ; sum0 += x1 * h1

|| ADD .L2 B8,B9,B9 ; sum1 += x0 * h1

|| MPY .M2X A0,B0,B8 ;* x0 * h1

|| MPY .M1 A0,A1,A7 ;** x0 * h0

||[B2] SUB .S2 B2,1,B2 ;*** decrement inner loop cntr

|| LDH .D2 *B4++[2],B0 ;**** h1 = h[i+1]

|| LDH .D1 *A4++[2],A0 ;**** x0 = x[j+i+2]

It is not always possible to fully control how arrays are aligned, especially if one

of the arrays is passed into a function as a pointer and that pointer has different

alignments each time the function is called. One solution to this problem is to

write an FIR filter that avoids memory hits, regardless of the x and h array align-

ments.

If accesses to the even and odd elements of an array (h or x) are scheduled

on the same cycle, the accesses are always on adjacent memory banks. Thus,

to write an FIR filter that never has memory hits, even and odd elements of the

same array must be scheduled on the same loop cycle.
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In the case of the FIR filter, scheduling the even and odd elements of the same

array on the same loop cycle cannot be done in a 2-cycle loop, as shown in

Figure 5–24. In this example, a valid 2-cycle software-pipelined loop without

memory constraints is ruled by the following constraints:

� LDH h0 and LDH h1 are on the same loop cycle.

� LDH x0 and LDH x1 are on the same loop cycle.

� MPY p00 must be scheduled three or four cycles after LDH x0, because

it must read x0 from the previous iteration of LDH x0.

� All MPYs must be five or six cycles after their LDH parents.

� No MPYs on the same side (A or B) can be on the same loop cycle.

Figure 5–24. Dependency Graph of FIR Filter (With Even and Odd Elements of 
Each Array on Same Loop Cycle)
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Note: Numbers in bold represent the cycle the instruction is scheduled on.

The scenario in Figure 5–24 almost works. All nodes satisfy the above

constraints except MPY p10. Because one parent is on cycle 1 (LDH h0) and

another on cycle 0 (LDH x1), the only cycle for MPY p10 is cycle 6. However,

another MPY on the A side is also scheduled on cycle 6 (MPY p00). Other

combinations of cycles for this graph produce similar results.
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5.12.2 Unrolled FIR Filter C Code

The main limitation in solving the problem in Figure 5–24 is in scheduling a 2-

cycle loop, which means that no value can be live more than two cycles. In-

creasing the iteration interval to 3 decreases performance. A better solution

is to unroll the inner loop one more time and produce a 4-cycle loop.

Example 5–66 shows the FIR filter C code after unrolling the inner loop one

more time. This solution adds to the flexibility of scheduling and allows you to

write FIR filter code that never has memory hits, regardless of array alignment

and memory block.

Example 5–66. FIR Filter C Code (Unrolled)

void fir(short x[], short h[], short y[])

{

int i, j, sum0, sum1;

short x0,x1,x2,x3,h0,h1,h2,h3;

for (j = 0; j < 100; j+=2) {

sum0 = 0;

sum1 = 0;

x0 = x[j];

for (i = 0; i < 32; i+=4){

x1 = x[j+i+1];

h0 = h[i];

sum0 += x0 * h0;

sum1 += x1 * h0;

x2 = x[j+i+2];

h1 = h[i+1];

sum0 += x1 * h1;

sum1 += x2 * h1;

x3 = x[j+i+3];

h2 = h[i+2];

sum0 += x2 * h2;

sum1 += x3 * h2;

x0 = x[j+i+4];

h3 = h[i+3];

sum0 += x3 * h3;

sum1 += x0 * h3;

}

y[j] = sum0 >> 15;

y[j+1] = sum1 >> 15;

}

}
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5.12.3 Translating C Code to Linear Assembly

Example 5–67 shows the linear assembly for the unrolled inner loop of the FIR

filter C code.

Example 5–67. Linear Assembly for Unrolled FIR Inner Loop

LDH *x++,x1 ; x1 = x[j+i+1]

LDH *h++,h0 ; h0 = h[i]

MPY x0,h0,p00 ; x0 * h0

MPY x1,h0,p10 ; x1 * h0

ADD p00,sum0,sum0 ; sum0 += x0 * h0

ADD p10,sum1,sum1 ; sum1 += x1 * h0

LDH *x++,x2 ; x2 = x[j+i+2]

LDH *h++,h1 ; h1 = h[i+1]

MPY x1,h1,p01 ; x1 * h1

MPY x2,h1,p11 ; x2 * h1

ADD p01,sum0,sum0 ; sum0 += x1 * h1

ADD p11,sum1,sum1 ; sum1 += x2 * h1

LDH *x++,x3 ; x3 = x[j+i+3]

LDH *h++,h2 ; h2 = h[i+2]

MPY x2,h2,p02 ; x2 * h2

MPY x3,h2,p12 ; x3 * h2

ADD p02,sum0,sum0 ; sum0 += x2 * h2

ADD p12,sum1,sum1 ; sum1 += x3 * h2

LDH *x++,x0 ; x0 = x[j+i+4]

LDH *h++,h3 ; h3 = h[i+3]

MPY x3,h3,p03 ; x3 * h3

MPY x0,h3,p13 ; x0 * h3

ADD p03,sum0,sum0 ; sum0 += x3 * h3

ADD p13,sum1,sum1 ; sum1 += x0 * h3

 [cntr] SUB cntr,1,cntr ; decrement loop counter

 [cntr] B LOOP ; branch to loop
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5.12.4 Drawing a Dependency Graph

Figure 5–25 shows the dependency graph of the FIR filter with no memory

hits.

Figure 5–25. Dependency Graph of FIR Filter (With No Memory Hits)
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5.12.5 Linear Assembly for Unrolled FIR Inner Loop With .mptr Directive

Example 5–68 shows the unrolled FIR inner loop with the .mptr directive. The

.mptr directive allows the assembly optimizer to automatically determine if two

memory operations have a bank conflict by associating memory access infor-

mation with a specific pointer register.

If the assembly optimizer determines that two memory operations have a bank

conflict, then it will not schedule them in parallel. The .mptr directive tells the

assembly optimizer that when the specified register is used as a memory point-

er in a load or store instruction, it is initialized to point at a base location + <off-

set>, and is incremented a number of times each time through the loop.

Without the .mptr directives, the loads of x1 and h0 are scheduled in parallel,

and the loads of x2 and h1 are scheduled in parallel. This results in a 50%

chance of a memory conflict on every cycle.

Example 5–68. Linear Assembly for Full Unrolled FIR Filter

.global _fir

_fir: .cproc x, h, y

.reg x_1, h_1, sum0, sum1, ctr, octr

.reg p00, p01, p02, p03, p10, p11, p12, p13

.reg x0, x1, x2, x3, h0, h1, h2, h3, rstx, rsth

 

ADD h,2,h_1 ; set up pointer to h[1]

MVK 50,octr ; outer loop ctr = 100/2

MVK 64,rstx ; used to rst x pointer each outer loop

MVK 64,rsth ; used to rst h pointer each outer loop

OUTLOOP:

ADD x,2,x_1 ; set up pointer to x[j+1]

SUB h_1,2,h ; set up pointer to h[0]

MVK 8,ctr ; inner loop ctr = 32/2

ZERO sum0 ; sum0 = 0

ZERO sum1 ; sum1 = 0

 [octr] SUB octr,1,octr ; decrement outer loop counter

.mptr x,   x+0

.mptr x_1, x+2

.mptr h,   h+0

.mptr h_1, h+2

LDH .D2 *x++[2],x0 ; x0 = x[j]



Memory Banks

 5-126

Example 5–68. Linear Assembly for Full Unrolled FIR Filter (Continued)

LOOP:   .trip 8

LDH .D1 *x_1++[2],x1 ; x1 = x[j+i+1]

LDH .D1 *h++[2],h0 ; h0 = h[i]

MPY .M1X x0,h0,p00 ; x0 * h0

MPY .M1 x1,h0,p10 ; x1 * h0

ADD .L1 p00,sum0,sum0 ; sum0 += x0 * h0

ADD .L2X p10,sum1,sum1 ; sum1 += x1 * h0

LDH .D2 *x++[2],x2 ; x2 = x[j+i+2]

LDH .D2 *h_1++[2],h1 ; h1 = h[i+1]

MPY .M2X x1,h1,p01 ; x1 * h1

MPY .M2 x2,h1,p11 ; x2 * h1

ADD .L1X p01,sum0,sum0 ; sum0 += x1 * h1

ADD .L2 p11,sum1,sum1 ; sum1 += x2 * h1

LDH .D1 *x_1++[2],x3 ; x3 = x[j+i+3]

LDH .D1 *h++[2],h2 ; h2 = h[i+2]

MPY .M1X x2,h2,p02 ; x2 * h2

MPY .M1 x3,h2,p12 ; x3 * h2

ADD .L1 p02,sum0,sum0 ; sum0 += x2 * h2

ADD .L2X p12,sum1,sum1 ; sum1 += x3 * h2

LDH .D2 *x++[2],x0 ; x0 = x[j+i+4]

LDH .D2 *h_1++[2],h3 ; h3 = h[i+3]

MPY .M2X x3,h3,p03 ; x3 * h3

MPY .M2 x0,h3,p13 ; x0 * h3

ADD .L1X p03,sum0,sum0 ; sum0 += x3 * h3

ADD .L2 p13,sum1,sum1 ; sum1 += x0 * h3

[ctr] SUB .S2 ctr,1,ctr ; decrement loop counter

[ctr] B .S2 LOOP ; branch to loop

SHR sum0,15,sum0 ; sum0 >> 15

SHR sum1,15,sum1 ; sum1 >> 15

STH sum0,*y++ ; y[j] = sum0 >> 15

STH sum1,*y++ ; y[j+1] = sum1 >> 15

SUB x,rstx,x ; reset x pointer to x[j]

SUB h_1,rsth,h_1 ; reset h pointer to h[0]

 [octr] B OUTLOOP ; branch to outer loop

.endproc
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5.12.6 Linear Assembly Resource Allocation

As the number of instructions in a loop increases, assigning a specific register

to every value in the loop becomes increasingly difficult. If 33 instructions in

a loop each write a value, they cannot each write to a unique register because

the ’C62x and ’C67x have only 32 registers. This would also work on the ’C64x

which has 64 registers. As a result, values that are not live on the same cycles

in the loop must share registers.

For example, in a 4-cycle loop:

� If a value is written at the end of cycle 0 and read on cycle 2 of the loop,

it is live for two cycles (cycles 1 and 2 of the loop).

� If another value is written at the end of cycle 2 and read on cycle 0 (the next

iteration) of the loop, it is also live for two cycles (cycles 3 and 0 of the loop).

Because both of these values are not live on the same cycles, they can occupy

the same register. Only after scheduling these instructions and their children

do you know that they can occupy the same register.

Register allocation is not complicated but can be tedious when done by hand.

Each value has to be analyzed for its lifetime and then appropriately combined

with other values not live on the same cycles in the loop. The assembly opti-

mizer handles this automatically after it software pipelines the loop. See the

TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more informa-

tion.
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5.12.7 Determining the Minimum Iteration Interval

Based on Table 5–24, the minimum iteration interval for the FIR filter with no

memory hits should be 4. An iteration interval of 4 means that two multiply/ac-

cumulates still execute per cycle.

Table 5–24. Resource Table for FIR Filter Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 4 MPYs 4 .M2 4 MPYs 4

.S1  0 .S2 B 1

.D1 4 LDHs 4 .D2 4 LDHs 4

.L1, .S1, or .D1 4 ADDs 4 .L2, .S2, or .D2 4 ADDs and SUB 5

Total non-.M units 8 Total non-.M units 10

1X paths 4 2X paths 4

5.12.8 Final Assembly

Example 5–69 shows the final assembly to the FIR filter with redundant load

elimination and no memory hits. At the end of the inner loop, there is a branch

to OUTLOOP to execute the next outer loop. The outer loop counter is set to

50 because iterations j and j+1 are executing each time the inner loop is run.

The inner loop counter is set to 8 because iterations i, i + 1, i + 2, and i + 3 are

executing each inner loop iteration.

5.12.9 Comparing Performance

The cycle count for this nested loop is 2402 cycles. There is a rather large

outer-loop overhead for executing the branch to the outer loop (6 cycles) and

the inner loop prolog (10 cycles). Section 5.13 addresses how to reduce this

overhead by software pipelining the outer loop.

Table 5–25. Comparison of FIR Filter Code

Code Example Cycles Cycle Count

Example 5–64 FIR with redundant load elimination 50 (16 � 2 + 9 + 6) + 2 2352

Example 5–69 FIR with redundant load elimination and no

memory hits

50 (8 � 4 + 10 + 6) + 2 2402
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Example 5–69. Final Assembly Code for FIR Filter With Redundant Load Elimination 
and No Memory Hits

MVK .S1 50,A2 ; set up outer loop counter

MVK .S1 62,A3 ; used to rst x pointer outloop

|| MVK .S2 64,B10 ; used to rst h pointer outloop

OUTLOOP:

LDH .D1 *A4++,B5 ; x0 = x[j]

|| ADD .L2X A4,4,B1 ; set up pointer to x[j+2]

|| ADD .L1X B4,2,A8 ; set up pointer to h[1]

|| MVK .S2 8,B2 ; set up inner loop counter

||[A2] SUB .S1 A2,1,A2 ; decrement outer loop counter

  LDH .D2 *B1++[2],B0 ; x2 = x[j+i+2]

|| LDH .D1 *A4++[2],A0 ; x1 = x[j+i+1]

|| ZERO .L1 A9 ; zero out sum0

|| ZERO .L2 B9 ; zero out sum1

  LDH .D1 *A8++[2],B6 ; h1 = h[i+1]

|| LDH .D2 *B4++[2],A1 ; h0 = h[i]

  LDH .D1 *A4++[2],A5 ; x3 = x[j+i+3]

|| LDH .D2 *B1++[2],B5 ; x0 = x[j+i+4]

  LDH .D2 *B4++[2],A7 ; h2 = h[i+2]

|| LDH .D1 *A8++[2],B8 ; h3 = h[i+3]

||[B2] SUB .S2 B2,1,B2 ; decrement loop counter

  LDH .D2 *B1++[2],B0 ;* x2 = x[j+i+2]

|| LDH .D1 *A4++[2],A0 ;* x1 = x[j+i+1]

LDH .D1 *A8++[2],B6 ;* h1 = h[i+1]

|| LDH .D2 *B4++[2],A1 ;* h0 = h[i]

  MPY .M1X B5,A1,A0 ; x0 * h0

|| MPY .M2X A0,B6,B6 ; x1 * h1

|| LDH .D1 *A4++[2],A5 ;* x3 = x[j+i+3]

|| LDH .D2 *B1++[2],B5 ;* x0 = x[j+i+4]

  [B2] B .S1 LOOP ; branch to loop

|| MPY .M2 B0,B6,B7 ; x2 * h1

|| MPY .M1 A0,A1,A1 ; x1 * h0

|| LDH .D2 *B4++[2],A7 ;* h2 = h[i+2]

|| LDH .D1 *A8++[2],B8 ;* h3 = h[i+3]

||[B2] SUB .S2 B2,1,B2 ;* decrement loop counter

  ADD .L1 A0,A9,A9 ; sum0 += x0 * h0

|| MPY .M2X A5,B8,B8 ; x3 * h3

|| MPY .M1X B0,A7,A5 ; x2 * h2

|| LDH .D2 *B1++[2],B0 ;** x2 = x[j+i+2]

|| LDH .D1 *A4++[2],A0 ;** x1 = x[j+i+1]
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Example 5–69. Final Assembly Code for FIR Filter With Redundant Load Elimination 
and No Memory Hits (Continued)

LOOP:

  ADD .L2X A1,B9,B9 ; sum1 += x1 * h0

|| ADD .L1X B6,A9,A9 ; sum0 += x1 * h1

|| MPY .M2 B5,B8,B7 ; x0 * h3

|| MPY .M1 A5,A7,A7 ; x3 * h2

||[B2] LDH .D1 *A8++[2],B6 ;** h1 = h[i+1]

||[B2] LDH .D2 *B4++[2],A1 ;** h0 = h[i]

  ADD .L2 B7,B9,B9 ; sum1 += x2 * h1

|| ADD .L1 A5,A9,A9 ; sum0 += x2 * h2

|| MPY .M1X B5,A1,A0 ;* x0 * h0

|| MPY .M2X A0,B6,B6 ;* x1 * h1

||[B2] LDH .D1 *A4++[2],A5 ;** x3 = x[j+i+3]

||[B2] LDH .D2 *B1++[2],B5 ;** x0 = x[j+i+4]

  ADD .L2X A7,B9,B9 ; sum1 += x3 * h2

|| ADD .L1X B8,A9,A9 ; sum0 += x3 * h3

||[B2] B .S1 LOOP ;* branch to loop

|| MPY .M2 B0,B6,B7 ;* x2 * h1

|| MPY .M1 A0,A1,A1 ;* x1 * h0

||[B2] LDH .D2 *B4++[2],A7 ;** h2 = h[i+2]

||[B2] LDH .D1 *A8++[2],B8 ;** h3 = h[i+3]

||[B2] SUB .S2 B2,1,B2 ;** decrement loop counter

  ADD .L2 B7,B9,B9 ; sum1 += x0 * h3

|| ADD .L1 A0,A9,A9 ;* sum0 += x0 * h0

|| MPY .M2X A5,B8,B8 ;* x3 * h3

|| MPY .M1X B0,A7,A5 ;* x2 * h2

||[B2] LDH .D2 *B1++[2],B0 ;*** x2 = x[j+i+2]

||[B2] LDH .D1 *A4++[2],A0 ;*** x1 = x[j+i+1]

; inner loop branch occurs here

  [A2] B .S2 OUTLOOP ; branch to outer loop

|| SUB .L1 A4,A3,A4 ; reset x pointer to x[j]

|| SUB .L2 B4,B10,B4 ; reset h pointer to h[0]

|| SUB .S1 A9,A0,A9 ; sum0 –= x0*h0 (eliminate add)

SHR .S1 A9,15,A9 ; sum0 >> 15

|| SHR .S2 B9,15,B9 ; sum1 >> 15

STH .D1 A9,*A6++ ; y[j] = sum0 >> 15

STH .D1 B9,*A6++ ; y[j+1] = sum1 >> 15

NOP 2 ; branch delay slots

; outer loop branch occurs here
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5.13 Software Pipelining the Outer Loop

In previous examples, software pipelining has always affected the inner loop.

However, software pipelining works equally well with the outer loop in a nested

loop.

5.13.1 Unrolled FIR Filter C Code

Example 5–70 shows the FIR filter C code after unrolling the inner loop (identi-

cal to Example 5–66 on page 5-122).

Example 5–70. Unrolled FIR Filter C Code

void fir(short x[], short h[], short y[])

{

int i, j, sum0, sum1;

short x0,x1,x2,x3,h0,h1,h2,h3;

for (j = 0; j < 100; j+=2) {

sum0 = 0;

sum1 = 0;

x0 = x[j];

for (i = 0; i < 32; i+=4){

x1 = x[j+i+1];

h0 = h[i];

sum0 += x0 * h0;

sum1 += x1 * h0;

x2 = x[j+i+2];

h1 = h[i+1];

sum0 += x1 * h1;

sum1 += x2 * h1;

x3 = x[j+i+3];

h2 = h[i+2];

sum0 += x2 * h2;

sum1 += x3 * h2;

x0 = x[j+i+4];

h3 = h[i+3];

sum0 += x3 * h3;

sum1 += x0 * h3;

}

y[j] = sum0 >> 15;

y[j+1] = sum1 >> 15;

}

}
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5.13.2 Making the Outer Loop Parallel With the Inner Loop Epilog and Prolog

The final assembly code for the FIR filter with redundant load elimination and

no memory hits (shown in Example 5–69 on page 5-129) contained 16 cycles

of overhead to call the inner loop every time: ten cycles for the loop prolog and

six cycles for the outer loop instructions and branching to the outer loop.

Most of this overhead can be reduced as follows:

� Put the outer loop and branch instructions in parallel with the prolog.

� Create an epilog to the inner loop.

� Put some outer loop instructions in parallel with the inner-loop epilog.

5.13.3 Final Assembly

Example 5–71 shows the final assembly for the FIR filter with a software-pipe-

lined outer loop. Below the inner loop (starting on page 5-134), each instruc-

tion is marked in the comments with an e, p, or o for instructions relating to epi-

log, prolog, or outer loop, respectively.

The inner loop is now only run seven times, because the eighth iteration is

done in the epilog in parallel with the prolog of the next inner loop and the outer

loop instructions.
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Example 5–71. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined

MVK .S1 50,A2 ; set up outer loop counter

STW .D2 B11,*B15–– ; push register

|| MVK .S1 74,A3 ; used to rst x ptr outer loop

|| MVK .S2 72,B10 ; used to rst h ptr outer loop

|| ADD .L2X A6,2,B11 ; set up pointer to y[1]

LDH .D1 *A4++,B8 ; x0 = x[j]

|| ADD .L2X A4,4,B1 ; set up pointer to x[j+2]

|| ADD .L1X B4,2,A8 ; set up pointer to h[1]

|| MVK .S2 8,B2 ; set up inner loop counter

||[A2] SUB .S1 A2,1,A2 ; decrement outer loop counter

  LDH .D2 *B1++[2],B0 ; x2 = x[j+i+2]

|| LDH .D1 *A4++[2],A0 ; x1 = x[j+i+1]

|| ZERO .L1 A9 ; zero out sum0

|| ZERO .L2 B9 ; zero out sum1

  LDH .D1 *A8++[2],B6 ; h1 = h[i+1]

|| LDH .D2 *B4++[2],A1 ; h0 = h[i]

  LDH .D1 *A4++[2],A5 ; x3 = x[j+i+3]

|| LDH .D2 *B1++[2],B5 ; x0 = x[j+i+4]

OUTLOOP:

  LDH .D2 *B4++[2],A7 ; h2 = h[i+2]

|| LDH .D1 *A8++[2],B8 ; h3 = h[i+3]

||[B2] SUB .S2 B2,2,B2 ; decrement loop counter

  LDH .D2 *B1++[2],B0 ;* x2 = x[j+i+2]

|| LDH .D1 *A4++[2],A0 ;* x1 = x[j+i+1]

LDH .D1 *A8++[2],B6 ;* h1 = h[i+1]

|| LDH .D2 *B4++[2],A1 ;* h0 = h[i]

  MPY .M1X B8,A1,A0 ; x0 * h0

|| MPY .M2X A0,B6,B6 ; x1 * h1

|| LDH .D1 *A4++[2],A5 ;* x3 = x[j+i+3]

|| LDH .D2 *B1++[2],B5 ;* x0 = x[j+i+4]

  [B2] B .S1 LOOP ; branch to loop

|| MPY .M2 B0,B6,B7 ; x2 * h1

|| MPY .M1 A0,A1,A1 ; x1 * h0

|| LDH .D2 *B4++[2],A7 ;* h2 = h[i+2]

|| LDH .D1 *A8++[2],B8 ;* h3 = h[i+3]

||[B2] SUB .S2 B2,1,B2 ;* decrement loop counter
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Example 5–71. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined (Continued)

  ADD .L1 A0,A9,A9 ; sum0 += x0 * h0

|| MPY .M2X A5,B8,B8 ; x3 * h3

|| MPY .M1X B0,A7,A5 ; x2 * h2

|| LDH .D2 *B1++[2],B0 ;** x2 = x[j+i+2]

|| LDH .D1 *A4++[2],A0 ;** x1 = x[j+i+1]

LOOP:

  ADD .L2X A1,B9,B9 ; sum1 += x1 * h0

|| ADD .L1X B6,A9,A9 ; sum0 += x1 * h1

|| MPY .M2 B5,B8,B7 ; x0 * h3

|| MPY .M1 A5,A7,A7 ; x3 * h2

|| LDH .D1 *A8++[2],B6 ;** h1 = h[i+1]

|| LDH .D2 *B4++[2],A1 ;** h0 = h[i]

  ADD .L2 B7,B9,B9 ; sum1 += x2 * h1

|| ADD .L1 A5,A9,A9 ; sum0 += x2 * h2

|| MPY .M1X B5,A1,A0 ;* x0 * h0

|| MPY .M2X A0,B6,B6 ;* x1 * h1

|| LDH .D1 *A4++[2],A5 ;** x3 = x[j+i+3]

|| LDH .D2 *B1++[2],B5 ;** x0 = x[j+i+4]

  ADD .L2X A7,B9,B9 ; sum1 += x3 * h2

|| ADD .L1X B8,A9,A9 ; sum0 += x3 * h3

||[B2] B .S1 LOOP ;* branch to loop

|| MPY .M2 B0,B6,B7 ;* x2 * h1

|| MPY .M1 A0,A1,A1 ;* x1 * h0

|| LDH .D2 *B4++[2],A7 ;** h2 = h[i+2]

|| LDH .D1 *A8++[2],B8 ;** h3 = h[i+3]

||[B2] SUB .S2 B2,1,B2 ;** decrement loop counter

  ADD .L2 B7,B9,B9 ; sum1 += x0 * h3

|| ADD .L1 A0,A9,A9 ;* sum0 += x0 * h0

|| MPY .M2X A5,B8,B8 ;* x3 * h3

|| MPY .M1X B0,A7,A5 ;* x2 * h2

|| LDH .D2 *B1++[2],B0 ;*** x2 = x[j+i+2]

|| LDH .D1 *A4++[2],A0 ;*** x1 = x[j+i+1]

; inner loop branch occurs here

  ADD .L2X A1,B9,B9 ;e sum1 += x1 * h0

|| ADD .L1X B6,A9,A9 ;e sum0 += x1 * h1

|| MPY .M2 B5,B8,B7 ;e x0 * h3

|| MPY .M1 A5,A7,A7 ;e x3 * h2

|| SUB .D1 A4,A3,A4 ;o reset x pointer to x[j]

|| SUB .D2 B4,B10,B4 ;o reset h pointer to h[0]

||[A2] B .S1 OUTLOOP ;o branch to outer loop



Software Pipelining the Outer Loop

5-135Optimizing Assembly Code via Linear Assembly

Example 5–71. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined (Continued)

  ADD .D2 B7,B9,B9 ;e sum1 += x2 * h1

|| ADD .L1 A5,A9,A9 ;e sum0 += x2 * h2

|| LDH .D1 *A4++,B8 ;p x0 = x[j]

|| ADD .L2X A4,4,B1 ;o set up pointer to x[j+2]

|| ADD .S1X B4,2,A8 ;o set up pointer to h[1]

|| MVK .S2 8,B2 ;o set up inner loop counter

  ADD .L2X A7,B9,B9 ;e sum1 += x3 * h2

|| ADD .L1X B8,A9,A9 ;e sum0 += x3 * h3

||  LDH .D2 *B1++[2],B0 ;p x2 = x[j+i+2]

|| LDH .D1 *A4++[2],A0 ;p x1 = x[j+i+1]

||[A2] SUB .S1 A2,1,A2 ;o decrement outer loop counter

  ADD .L2 B7,B9,B9 ;e sum1 += x0 * h3

|| SHR .S1 A9,15,A9 ;e sum0 >> 15

|| LDH .D1 *A8++[2],B6 ;p h1 = h[i+1]

|| LDH .D2 *B4++[2],A1 ;p h0 = h[i]

SHR .S2 B9,15,B9 ;e sum1 >> 15

|| LDH .D1 *A4++[2],A5 ;p x3 = x[j+i+3]

|| LDH .D2 *B1++[2],B5 ;p x0 = x[j+i+4]

STH .D1 A9,*A6++[2] ;e y[j] = sum0 >> 15

|| STH .D2 B9,*B11++[2] ;e y[j+1] = sum1 >> 15

|| ZERO .S1 A9 ;o zero out sum0

|| ZERO .S2 B9 ;o zero out sum1

; outer loop branch occurs here

5.13.4 Comparing Performance

The improved cycle count for this loop is 2006 cycles: 50 ((7�4) + 6 + 6) + 6. The

outer-loop overhead for this loop has been reduced from 16 to 8 (6 + 6 – 4);

the –4 represents one iteration less for the inner-loop iteration (seven instead

of eight).

Table 5–26. Comparison of FIR Filter Code

Code Example Cycles Cycle Count

Example 5–64 FIR with redundant load elimination 50 (16 � 2 + 9 + 6) + 2 2352

Example 5–69 FIR with redundant load elimination and no memory

hits

50 (8 � 4 + 10 + 6) + 2 2402

Example 5–71 FIR with redundant load elimination and no memory

hits with outer loop software-pipelined

50 (7 � 4 + 6 + 6) + 6 2006



Outer Loop Conditionally Executed With Inner Loop

 5-136

5.14 Outer Loop Conditionally Executed With Inner Loop

Software pipelining the outer loop improved the outer loop overhead in the

previous example from 16 cycles to 8 cycles. Executing the outer loop condi-

tionally and in parallel with the inner loop eliminates the overhead entirely.

5.14.1 Unrolled FIR Filter C Code

Example 5–72 shows the same unrolled FIR filter C code that used in the

previous example.

Example 5–72. Unrolled FIR Filter C Code

void fir(short x[], short h[], short y[])

{

int i, j, sum0, sum1;

short x0,x1,x2,x3,h0,h1,h2,h3;

for (j = 0; j < 100; j+=2) {

sum0 = 0;

sum1 = 0;

x0 = x[j];

for (i = 0; i < 32; i+=4){

x1 = x[j+i+1];

h0 = h[i];

sum0 += x0 * h0;

sum1 += x1 * h0;

x2 = x[j+i+2];

h1 = h[i+1];

sum0 += x1 * h1;

sum1 += x2 * h1;

x3 = x[j+i+3];

h2 = h[i+2];

sum0 += x2 * h2;

sum1 += x3 * h2;

x0 = x[j+i+4];

h3 = h[i+3];

sum0 += x3 * h3;

sum1 += x0 * h3;

}

y[j] = sum0 >> 15;

y[j+1] = sum1 >> 15;

}

}
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5.14.2 Translating C Code to Linear Assembly (Inner Loop)

Example 5–73 shows a list of linear assembly for the inner loop of the FIR filter

C code (identical to Example 5–67 on page 5-123).

Example 5–73. Linear Assembly for Unrolled FIR Inner Loop

LDH *x++,x1 ; x1 = x[j+i+1]

LDH *h++,h0 ; h0 = h[i]

MPY x0,h0,p00 ; x0 * h0

MPY x1,h0,p10 ; x1 * h0

ADD p00,sum0,sum0 ; sum0 += x0 * h0

ADD p10,sum1,sum1 ; sum1 += x1 * h0

LDH *x++,x2 ; x2 = x[j+i+2]

LDH *h++,h1 ; h1 = h[i+1]

MPY x1,h1,p01 ; x1 * h1

MPY x2,h1,p11 ; x2 * h1

ADD p01,sum0,sum0 ; sum0 += x1 * h1

ADD p11,sum1,sum1 ; sum1 += x2 * h1

LDH *x++,x3 ; x3 = x[j+i+3]

LDH *h++,h2 ; h2 = h[i+2]

MPY x2,h2,p02 ; x2 * h2

MPY x3,h2,p12 ; x3 * h2

ADD p02,sum0,sum0 ; sum0 += x2 * h2

ADD p12,sum1,sum1 ; sum1 += x3 * h2

LDH *x++,x0 ; x0 = x[j+i+4]

LDH *h++,h3 ; h3 = h[i+3]

MPY x3,h3,p03 ; x3 * h3

MPY x0,h3,p13 ; x0 * h3

ADD p03,sum0,sum0 ; sum0 += x3 * h3

ADD p13,sum1,sum1 ; sum1 += x0 * h3

 [cntr] SUB cntr,1,cntr ; decrement loop counter

 [cntr] B LOOP ; branch to loop
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5.14.3 Translating C Code to Linear Assembly (Outer Loop)

Example 5–74 shows the instructions that execute all of the outer loop func-

tions. All of these instructions are conditional on inner loop counters. Two

different counters are needed, because they must decrement to 0 on different

iterations. 

� The resetting of the x and h pointers is conditional on the pointer reset

counter, prc.

� The shifting and storing of the even and odd y elements are conditional on

the store counter, sctr.

When these counters are 0, all of the instructions that are conditional on that

value execute.

� The MVK instruction resets the pointers to 8 because after every eight

iterations of the loop, a new inner loop is completed (8 � 4 elements are

processed).

� The pointer reset counter becomes 0 first to reset the load pointers, then

the store counter becomes 0 to shift and store the result.

Example 5–74. Linear Assembly for FIR Outer Loop

 [sctr] SUB sctr,1,sctr ; dec store lp cntr

[!sctr] SHR sum07,15,y0 ; (sum0 >> 15)

[!sctr] SHR sum17,15,y1 ; (sum1 >> 15)

[!sctr] STH y0,*y++[2] ; y[j] = (sum0 >> 15)

[!sctr] STH y1,*y_1++[2] ; y[j+1] = (sum1 >> 15)

[!sctr] MVK 4,sctr ; reset store lp cntr

 [pctr] SUB pctr,1,pctr ; dec pointer reset lp cntr

[!pctr] SUB x,rstx2,x ; reset x ptr

[!pctr] SUB x_1,rstx1,x_1 ; reset x_1 ptr

[!pctr] SUB h,rsth1,h ; reset h ptr

[!pctr] SUB h_1,rsth2,h_1 ; reset h_1 ptr

[!pctr] MVK 4,pctr ; reset pointer reset lp cntr

5.14.4 Unrolled FIR Filter C Code

The total number of instructions to execute both the inner and outer loops is

38 (26 for the inner loop and 12 for the outer loop). A 4-cycle loop is no longer

possible. To avoid slowing down the throughput of the inner loop to reduce the

outer-loop overhead, you must unroll the FIR filter again.

Example 5–75 shows the C code for the FIR filter, which operates on eight

elements every inner loop. Two outer loops are also being processed together,

as in Example 5–72 on page 5-136.
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Example 5–75. Unrolled FIR Filter C Code

void fir(short x[], short h[], short y[])

{

int i, j, sum0, sum1;

short x0,x1,x2,x3,x4,x5,x6,x7,h0,h1,h2,h3,h4,h5,h6,h7;

for (j = 0; j < 100; j+=2) {

sum0 = 0;

sum1 = 0;

x0 = x[j];

for (i = 0; i < 32; i+=8){

x1 = x[j+i+1];

h0 = h[i];

sum0 += x0 * h0;

sum1 += x1 * h0;

x2 = x[j+i+2];

h1 = h[i+1];

sum0 += x1 * h1;

sum1 += x2 * h1;

x3 = x[j+i+3];

h2 = h[i+2];

sum0 += x2 * h2;

sum1 += x3 * h2;

x4 = x[j+i+4];

h3 = h[i+3];

sum0 += x3 * h3;

sum1 += x4 * h3;

x5 = x[j+i+5];

h4 = h[i+4];

sum0 += x4 * h4;

sum1 += x5 * h4;

x6 = x[j+i+6];

h5 = h[i+5];

sum0 += x5 * h5;

sum1 += x6 * h5;

x7 = x[j+i+7];

h6 = h[i+6];

sum0 += x6 * h6;

sum1 += x7 * h6;

x0 = x[j+i+8];

h7 = h[i+7];

sum0 += x7 * h7;

sum1 += x0 * h7;

}

y[j] = sum0 >> 15;

y[j+1] = sum1 >> 15;

}

}
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5.14.5 Translating C Code to Linear Assembly (Inner Loop)

Example 5–76 shows the instructions that perform the inner and outer loops

of the FIR filter. These instructions reflect the following modifications:

� LDWs are used instead of LDHs to reduce the number of loads in the loop.

� The reset pointer instructions immediately follow the LDW instructions.

� The first ADD instructions for sum0 and sum1 are conditional on the same

value as the store counter, because when sctr is 0, the end of one inner

loop has been reached and the first ADD, which adds the previous sum07

to p00, must not be executed.

� The first ADD for sum0 writes to the same register as the first MPY p00.

The second ADD reads p00 and p01. At the beginning of each inner loop,

the first ADD is not performed, so the second ADD correctly reads the

results of the first two MPYs (p01 and p00) and adds them together. For

other iterations of the inner loop, the first ADD executes, and the second

ADD sums the second MPY result (p01) with the running accumulator. The

same is true for the first and second ADDs of sum1.



Outer Loop Conditionally Executed With Inner Loop

5-141Optimizing Assembly Code via Linear Assembly

Example 5–76. Linear Assembly for FIR With Outer Loop Conditionally Executed 
With Inner Loop

LDW *h++[2],h01 ; h[i+0] & h[i+1]

LDW *h_1++[2],h23 ; h[i+2] & h[i+3]

LDW *h++[2],h45 ; h[i+4] & h[i+5]

LDW .*h_1++[2],h67 ; h[i+6] & h[i+7]

LDW *x++[2],x01 ; x[j+i+0] & x[j+i+1]

LDW *x_1++[2],x23 ; x[j+i+2] & x[j+i+3]

LDW *x++[2],x45 ; x[j+i+4] & x[j+i+5]

LDW *x_1++[2],x67 ; x[j+i+6] & x[j+i+7]

LDH *x,x8 ; x[j+i+8]

 [sctr] SUB sctr,1,sctr ; dec store lp cntr

[!sctr] SHR sum07,15,y0 ; (sum0 >> 15)

[!sctr] SHR sum17,15,y1 ; (sum1 >> 15)

[!sctr] STH y0,*y++[2] ; y[j] = (sum0 >> 15)

[!sctr] STH y1,*y_1++[2] ; y[j+1] = (sum1 >> 15)

MV x01,x01b ; move to other reg file

MPYLH h01,x01b,p10 ; p10 = h[i+0]*x[j+i+1]

[sctr] ADD p10,sum17,p10 ; sum1(p10) = p10 + sum1

MPYHL h01,x23,p11 ; p11 = h[i+1]*x[j+i+2]

ADD p11,p10,sum11 ; sum1 += p11

MPYLH h23,x23,p12 ; p12 = h[i+2]*x[j+i+3]

ADD p12,sum11,sum12 ; sum1 +=  p12

MPYHL h23,x45,p13 ; p13 = h[i+3]*x[j+i+4]

ADD p13,sum12,sum13 ; sum1 += p13

MPYLH h45,x45,p14 ; p14 = h[i+4]*x[j+i+5]

ADD p14,sum13,sum14 ; sum1 += p14

MPYHL h45,x67,p15 ; p15 = h[i+5]*x[j+i+6]

ADD p15,sum14,sum15 ; sum1 += p15

MPYLH h67,x67,p16 ; p16 = h[i+6]*x[j+i+7]

ADD p16,sum15,sum16 ; sum1 += p16

MPYHL h67,x8,p17 ; p17 = h[i+7]*x[j+i+8]

ADD p17,sum16,sum17 ; sum1 += p17

MPY h01,x01,p00 ; p00 = h[i+0]*x[j+i+0]

[sctr] ADD p00,sum07,p00 ; sum0(p00) = p00 + sum0

MPYH h01,x01,p01 ; p01 = h[i+1]*x[j+i+1]

 ADD p01,p00,sum01 ; sum0 += p01
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Example 5–76. Linear Assembly for FIR With Outer Loop Conditionally Executed 
With Inner Loop (Continued)

MPY h23,x23,p02 ; p02 = h[i+2]*x[j+i+2]

ADD p02,sum01,sum02 ; sum0 += p02

MPYH h23,x23,p03 ; p03 = h[i+3]*x[j+i+3]

ADD p03,sum02,sum03 ; sum0 += p03

MPY h45,x45,p04 ; p04 = h[i+4]*x[j+i+4]

ADD p04,sum03,sum04 ; sum0 += p04

MPYH h45,x45,p05 ; p05 = h[i+5]*x[j+i+5]

ADD p05,sum04,sum05 ; sum0 += p05

MPY h67,x67,p06 ; p06 = h[i+6]*x[j+i+6]

ADD p06,sum05,sum06 ; sum0 += p06

MPYH h67,x67,p07 ; p07 = h[i+7]*x[j+i+7]

ADD p07,sum06,sum07 ; sum0 += p07

[!sctr] MVK 4,sctr ; reset store lp cntr

 [pctr] SUB pctr,1,pctr ; dec pointer reset lp cntr

[!pctr] SUB x,rstx2,x ; reset x ptr

[!pctr] SUB x_1,rstx1,x_1 ; reset x_1 ptr

[!pctr] SUB h,rsth1,h ; reset h ptr

[!pctr] SUB h_1,rsth2,h_1 ; reset h_1 ptr

[!pctr] MVK 4,pctr ; reset pointer reset lp cntr

 [octr] SUB octr,1,octr ; dec outer lp cntr

 [octr] B LOOP ; Branch outer loop

5.14.6 Translating C Code to Linear Assembly (Inner Loop and Outer Loop)

Example 5–77 shows the linear assembly with functional units assigned. (As

in Example 5–68 on page 5-125, symbolic names now have an A or B in front

of them to signify the register file where they reside.) Although this allocation

is one of many possibilities, one goal is to keep the 1X and 2X paths to a

minimum. Even with this goal, you have five 2X paths and seven 1X paths.

One requirement that was assumed when the functional units were chosen

was that all the sum0 values reside on the same side (A in this case) and all

the sum1 values reside on the other side (B). Because you are scheduling

eight accumulates for both sum0 and sum1 in an 8-cycle loop, each ADD must

be scheduled immediately following the previous ADD. Therefore, it is undesir-

able for any sum0 ADDs to use the same functional units as sum1 ADDs.

One MV instruction was added to get x01 on the B side for the MPYLH p10

instruction.



Outer Loop Conditionally Executed With Inner Loop

5-143Optimizing Assembly Code via Linear Assembly

Example 5–77. Linear Assembly for FIR With Outer Loop Conditionally Executed 
With Inner Loop (With Functional Units)

.global _fir

_fir: .cproc x, h, y

.reg x_1, h_1, y_1, octr, pctr, sctr

.reg sum01, sum02, sum03, sum04, sum05, sum06, sum07

.reg sum11, sum12, sum13, sum14, sum15, sum16, sum17

.reg p00, p01, p02, p03, p04, p05, p06, p07

.reg p10, p11, p12, p13, p14, p15, p16, p17

.reg x01b, x01, x23, x45, x67, x8, h01, h23, h45, h67

.reg y0, y1, rstx1, rstx2, rsth1, rsth2

 

ADD x,4,x_1 ; point to x[2]

ADD h,4,h_1 ; point to h[2]

ADD y,2,y_1 ; point to y[1]

MVK 60,rstx1 ; used to rst x pointer each outer loop

MVK 60,rstx2 ; used to rst x pointer each outer loop

MVK 64,rsth1 ; used to rst h pointer each outer loop

MVK 64,rsth2 ; used to rst h pointer each outer loop

MVK 201,octr ; loop ctr = 201 = (100/2) * (32/8) + 1

MVK 4,pctr ; pointer reset lp cntr = 32/8

MVK 5,sctr ; reset store lp cntr = 32/8 + 1

ZERO sum07 ; sum07 = 0

ZERO sum17 ; sum17 = 0

.mptr x,   x+0

.mptr x_1, x+4

.mptr h,   h+0

.mptr h_1, h+4

LOOP: .trip 8

LDW .D1T1 *h++[2],h01 ; h[i+0] & h[i+1]

LDW .D2T2 *h_1++[2],h23; h[i+2] & h[i+3]

LDW .D1T1 *h++[2],h45 ; h[i+4] & h[i+5]

LDW .D2T2 *h_1++[2],h67; h[i+6] & h[i+7]

LDW .D2T1 *x++[2],x01 ; x[j+i+0] & x[j+i+1]

LDW .D1T2 *x_1++[2],x23; x[j+i+2] & x[j+i+3]

LDW .D2T1 *x++[2],x45 ; x[j+i+4] & x[j+i+5]

LDW .D1T2 *x_1++[2],x67; x[j+i+6] & x[j+i+7]

LDH .D2T1 *x,x8 ; x[j+i+8]

 [sctr] SUB .S1 sctr,1,sctr ; dec store lp cntr

[!sctr] SHR .S1 sum07,15,y0 ; (sum0 >> 15)

[!sctr] SHR .S2 sum17,15,y1 ; (sum1 >> 15)

[!sctr] STH .D1 y0,*y++[2] ; y[j] = (sum0 >> 15)

[!sctr] STH .D2 y1,*y_1++[2] ; y[j+1] = (sum1 >> 15)
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Example 5–77. Linear Assembly for FIR With Outer Loop Conditionally Executed 
With Inner Loop (With Functional Units) (Continued)

MV .L2X x01,x01b ; move to other reg file

MPYLH .M2X h01,x01b,p10 ; p10 = h[i+0]*x[j+i+1]

[sctr] ADD .L2 p10,sum17,p10 ; sum1(p10) = p10 + sum1

MPYHL .M1X h01,x23,p11 ; p11 = h[i+1]*x[j+i+2]

ADD .L2X p11,p10,sum11 ; sum1 += p11

MPYLH .M2 h23,x23,p12 ; p12 = h[i+2]*x[j+i+3]

ADD .L2 p12,sum11,sum12 ; sum1 +=  p12

MPYHL .M1X h23,x45,p13 ; p13 = h[i+3]*x[j+i+4]

ADD .L2X p13,sum12,sum13 ; sum1 += p13

MPYLH .M1 h45,x45,p14 ; p14 = h[i+4]*x[j+i+5]

ADD .L2X p14,sum13,sum14 ; sum1 += p14

MPYHL .M2X h45,x67,p15 ; p15 = h[i+5]*x[j+i+6]

ADD .S2 p15,sum14,sum15 ; sum1 += p15

MPYLH .M2 h67,x67,p16 ; p16 = h[i+6]*x[j+i+7]

ADD .L2 p16,sum15,sum16 ; sum1 += p16

MPYHL .M1X h67,x8,p17 ; p17 = h[i+7]*x[j+i+8]

ADD .L2X p17,sum16,sum17 ; sum1 += p17

MPY .M1 h01,x01,p00 ; p00 = h[i+0]*x[j+i+0]

[sctr] ADD .L1 p00,sum07,p00 ; sum0(p00) = p00 + sum0

MPYH .M1 h01,x01,p01 ; p01 = h[i+1]*x[j+i+1]

ADD .L1 p01,p00,sum01 ; sum0 += p01

MPY .M2 h23,x23,p02 ; p02 = h[i+2]*x[j+i+2]

ADD .L1X p02,sum01,sum02 ; sum0 += p02

MPYH .M2 h23,x23,p03 ; p03 = h[i+3]*x[j+i+3]

ADD .L1X p03,sum02,sum03 ; sum0 += p03

MPY .M1 h45,x45,p04 ; p04 = h[i+4]*x[j+i+4]

ADD .L1 p04,sum03,sum04 ; sum0 += p04

MPYH .M1 h45,x45,p05 ; p05 = h[i+5]*x[j+i+5]

ADD .L1 p05,sum04,sum05 ; sum0 += p05
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Example 5–77. Linear Assembly for FIR With Outer Loop Conditionally Executed 
With Inner Loop (With Functional Units)(Continued)

MPY .M2 h67,x67,p06 ; p06 = h[i+6]*x[j+i+6]

ADD .L1X p06,sum05,sum06 ; sum0 += p06

MPYH .M2 h67,x67,p07 ; p07 = h[i+7]*x[j+i+7]

ADD .L1X p07,sum06,sum07 ; sum0 += p07

[!sctr] MVK .S1 4,sctr ; reset store lp cntr

 [pctr] SUB .S1 pctr,1,pctr ; dec pointer reset lp cntr

[!pctr] SUB .S2 x,rstx2,x ; reset x ptr

[!pctr] SUB .S1 x_1,rstx1,x_1 ; reset x_1 ptr

[!pctr] SUB .S1 h,rsth1,h ; reset h ptr

[!pctr] SUB .S2 h_1,rsth2,h_1 ; reset h_1 ptr

[!pctr] MVK .S1 4,pctr ; reset pointer reset lp cntr

 [octr] SUB .S2 octr,1,octr ; dec outer lp cntr

 [octr] B .S2 LOOP ; Branch outer loop

.endproc
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5.14.7 Determining the Minimum Iteration Interval

Based on Table 5–27, the minimum iteration interval is 8. An iteration interval

of 8 means that two multiply-accumulates per cycle are still executing.

Table 5–27. Resource Table for FIR Filter Code

(a) A side (b) B side

Unit(s) Total/Unit Unit(s) Total/Unit

.M1 8 .M2 8

.S1 7 .S2 6

.D1 5 .D2 6

.L1 8 .L2 8

Total non-.M units 20 Total non-.M units 20

1X paths 7 2X paths 5

5.14.8 Final Assembly

Example 5–78 shows the final assembly for the FIR filter with the outer loop

conditionally executing in parallel with the inner loop.
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Example 5–78. Final Assembly Code for FIR Filter

MV .L1X B4,A0 ; point to h[0] & h[1]

|| ADD .D2 B4,4,B2 ; point to h[2] & h[3]

|| MV .L2X A4,B1 ; point to x[j] & x[j+1]

|| ADD .D1 A4,4,A4 ; point to x[j+2] & x[j+3]

|| MVK .S2 200,B0 ; set lp ctr ((32/8)*(100/2))

  LDW .D1 *A4++[2],B9 ; x[j+i+2] & x[j+i+3]

|| LDW .D2 *B1++[2],A10 ; x[j+i+0] & x[j+i+1]

|| MVK .S1 4,A1 ; set pointer reset lp cntr

  LDW .D2 *B2++[2],B7 ; h[i+2] & h[i+3]

|| LDW .D1 *A0++[2],A8 ; h[i+0] & h[i+1]

|| MVK .S1 60,A3 ; used to reset x ptr (16*4–4)

|| MVK .S2 60,B14 ; used to reset x ptr (16*4–4)

  LDW .D2 *B1++[2],A11 ; x[j+i+4] & x[j+i+5]

|| LDW .D1 *A4++[2],B10 ; x[j+i+6] & x[j+i+7]

||[A1] SUB .L1 A1,1,A1 ; dec pointer reset lp cntr

|| MVK .S1 64,A5 ; used to reset h ptr (16*4)

|| MVK .S2 64,B5 ; used to reset h ptr (16*4)

|| ADD .L2X A6,2,B6 ; point to y[j+1]

  LDW .D1 *A0++[2],A9 ; h[i+4] & h[i+5]

|| LDW .D2 *B2++[2],B8 ; h[i+6] & h[i+7]

||[!A1] SUB .S1 A4,A3,A4 ; reset x ptr

  [!A1] SUB .S2 B1,B14,B1 ; reset x ptr

||[!A1] SUB .S1 A0,A5,A0 ; reset h ptr

|| LDH .D2 *B1,A8 ; x[j+i+8]

  ADD .S2X A10,0,B8 ; move to other reg file

|| MVK .S1 5,A2 ; set store lp cntr

  MPYLH .M2X A8,B8,B4 ; p10 = h[i+0]*x[j+i+1]

||[!A1] SUB .S2 B2,B5,B2 ; reset h ptr

|| MPYHL .M1X A8,B9,A14 ; p11 = h[i+1]*x[j+i+2]

  MPY .M1 A8,A10,A7 ; p00 = h[i+0]*x[j+i+0]

|| MPYLH .M2 B7,B9,B13 ; p12 = h[i+2]*x[j+i+3]

||[A2] SUB .S1 A2,1,A2 ; dec store lp cntr

|| ZERO .L2 B11 ; zero out initial accumulator

  [!A2] SHR .S2 B11,15,B11 ; (Bsum1 >> 15)

|| MPY .M2 B7,B9,B9 ; p02 = h[i+2]*x[j+i+2]

|| MPYH .M1 A8,A10,A10 ; p01 = h[i+1]*x[j+i+1]

||[A2] ADD .L2 B4,B11,B4 ; sum1(p10) = p10 + sum1

|| LDW .D1 *A4++[2],B9 ;* x[j+i+2] & x[j+i+3]

|| LDW .D2 *B1++[2],A10 ;* x[j+i+0] & x[j+i+1]

|| ZERO .L1 A10 ; zero out initial accumulator
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Example 5–78. Final Assembly Code for FIR Filter (Continued)

LOOP:

  [!A2] SHR .S1 A10,15,A12 ; (Asum0 >> 15)

||[B0] SUB .S2 B0,1,B0 ; dec outer lp cntr

|| MPYH .M2 B7,B9,B13 ; p03 = h[i+3]*x[j+i+3]

||[A2] ADD .L1 A7,A10,A7 ; sum0(p00) = p00 + sum0

|| MPYHL .M1X B7,A11,A10 ; p13 = h[i+3]*x[j+i+4]

|| ADD .L2X A14,B4,B7 ; sum1 += p11

|| LDW .D2 *B2++[2],B7 ;* h[i+2] & h[i+3]

|| LDW .D1 *A0++[2],A8 ;* h[i+0] & h[i+1]

  ADD .L1 A10,A7,A13 ; sum0 += p01

|| MPYHL .M2X A9,B10,B12 ; p15 = h[i+5]*x[j+i+6]

|| MPYLH .M1 A9,A11,A10 ; p14 = h[i+4]*x[j+i+5]

|| ADD .L2 B13,B7,B7 ; sum1 +=  p12

|| LDW .D2 *B1++[2],A11 ;* x[j+i+4] & x[j+i+5]

|| LDW .D1 *A4++[2],B10 ;* x[j+i+6] & x[j+i+7]

||[A1] SUB .S1 A1,1,A1 ;* dec pointer reset lp cntr

  [B0] B .S2 LOOP ; Branch outer loop

|| MPY .M1 A9,A11,A11 ; p04 = h[i+4]*x[j+i+4]

|| ADD .L1X B9,A13,A13 ; sum0 += p02

|| MPYLH .M2 B8,B10,B13 ; p16 = h[i+6]*x[j+i+7]

|| ADD .L2X A10,B7,B7 ; sum1 += p13

|| LDW .D1 *A0++[2],A9 ;* h[i+4] & h[i+5]

|| LDW .D2 *B2++[2],B8 ;* h[i+6] & h[i+7]

||[!A1] SUB .S1 A4,A3,A4 ;* reset x ptr

  MPY .M2 B8,B10,B11 ; p06 = h[i+6]*x[j+i+6]

|| MPYH .M1 A9,A11,A11 ; p05 = h[i+5]*x[j+i+5]

|| ADD .L1X B13,A13,A9 ; sum0 += p03

|| ADD .L2X A10,B7,B7 ; sum1 += p14

||[!A1] SUB .S2 B1,B14,B1 ;* reset x ptr

||[!A1] SUB .S1 A0,A5,A0 ;* reset h ptr

|| LDH .D2 *B1,A8 ;* x[j+i+8]

  [!A2] MVK .S1 4,A2 ; reset store lp cntr

|| MPYH .M2 B8,B10,B13 ; p07 = h[i+7]*x[j+i+7]

|| ADD .L1 A11,A9,A9 ; sum0 += p04

|| MPYHL .M1X B8,A8,A9 ; p17 = h[i+7]*x[j+i+8]

|| ADD .S2 B12,B7,B10 ; sum1 += p15

||[!A2] STH .D2 B11,*B6++[2] ; y[j+1] = (Bsum1 >> 15)

||[!A2] STH .D1 A12,*A6++[2] ; y[j] = (Asum0 >> 15)

|| ADD .L2X A10,0,B8 ;* move to other reg file

  ADD .L1 A11,A9,A12 ; sum0 += p05

|| ADD .L2 B13,B10,B8 ; sum1 += p16

|| MPYLH .M2X A8,B8,B4 ;* p10 = h[i+0]*x[j+i+1]

||[!A1] MVK .S1 4,A1 ;* reset pointer reset lp cntr

||[!A1] SUB .S2 B2,B5,B2 ;* reset h ptr

|| MPYHL .M1X A8,B9,A14 ;* p11 = h[i+1]*x[j+i+2]
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Example 5–78. Final Assembly Code for FIR Filter (Continued)

  ADD .L2X A9,B8,B11 ; sum1 += p17

|| ADD .L1X B11,A12,A12 ; sum0 += p06

|| MPY .M1 A8,A10,A7 ;* p00 = h[i+0]*x[j+i+0]

|| MPYLH .M2 B7,B9,B13 ;* p12 = h[i+2]*x[j+i+3]

||[A2] SUB .S1 A2,1,A2 ;* dec store lp cntr

  ADD .L1X B13,A12,A10 ; sum0 += p07

||[!A2] SHR .S2 B11,15,B11 ;* (Bsum1 >> 15)

|| MPY .M2 B7,B9,B9 ;* p02 = h[i+2]*x[j+i+2]

|| MPYH .M1 A8,A10,A10 ;* p01 = h[i+1]*x[j+i+1]

||[A2] ADD .L2 B4,B11,B4 ;* sum1(p10) = p10 + sum1

|| LDW .D1 *A4++[2],B9 ;** x[j+i+2] & x[j+i+3]

|| LDW .D2 *B1++[2],A10 ;** x[j+i+0] & x[j+i+1]

;Branch occurs here

  [!A2] SHR .S1 A10,15,A12 ; (Asum0 >> 15)

  [!A2] STH .D2 B11,*B6++[2] ; y[j+1] = (Bsum1 >> 15)

||[!A2] STH .D1 A12,*A6++[2] ; y[j] = (Asum0 >> 15)

5.14.9 Comparing Performance

The cycle count of this code is 1612: 50 (8 � 4 + 0) + 12. The overhead due

to the outer loop has been completely eliminated.

Table 5–28. Comparison of FIR Filter Code

Code Example Cycles Cycle Count

Example 5–61 FIR with redundant load elimination 50 (16 � 2 + 9 + 6) + 2 2352

Example 5–69 FIR with redundant load elimination and no memory

hits

50 (8 � 4 + 10 + 6) + 2 2402

Example 5–71 FIR with redundant load elimination and no memory

hits with outer loop software-pipelined

50 (7 � 4 + 6 + 6) + 6 2006

Example 5–74 FIR with redundant load elimination and no memory

hits with outer loop conditionally executed with inner

loop

50 (8 � 4 + 0) + 12 1612
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’C64x Programming Considerations

This chapter covers material specific to the TMS320C64x series of DSPs.  It

builds on the material presented elsewhere in this book, with additional infor-

mation specific to the VelociTI.2 extensions that the ’C64x provides.

Before reading this chapter, familiarize yourself with the programming con-

cepts presented earlier for the entire C6000 family, as these concepts also ap-

ply to the ’C64x.

The sample code that is used in this chapter is included on the Code Genera-

tion Tools and Code Composer Studio CD-ROM. When you install your code

generation tools, the example code is installed in the c6xtools directory. Use

the code in that directory to go through the examples in this chapter.
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6.1 Overview of ’C64x Architectural Enhancements

The ’C64x is a fixed-point digital signal processor (DSP) and is the first DSP

to add VelociTI.2 extensions to the existing high-performance VelociTI archi-

tecture. VelociTI.2 extensions provide the following features:

� Greater scheduling flexibility for existing instructions

� Greater memory bandwidth with double-word load and store instructions

� Support for packed 8-bit and 16-bit data types

� Support for non-aligned memory accesses

� Special purpose instructions for communications-oriented applications

6.1.1 Improved Scheduling Flexibility

The ’C64x improves scheduling flexibility using three different methods.  First,

it makes several existing instructions available on a larger number of units.

Second, it adds cross-path access to the D-unit so that arithmetic and logical

operations which use a cross-path may be scheduled there. Finally, it removes

a number of scheduling restrictions associated with 40-bit operations, allowing

more flexible scheduling of high-precision code.

6.1.2 Greater Memory Bandwidth

The ’C64x provides double-word load and store instructions (LDDW and

STDW) which can access 64 bits of data at a time.  Up to two double-word load

or store instructions can be issued every cycle. This provides a peak band-

width of 128 bits per cycle to on-chip memory.

6.1.3 Support for Packed Data Types

The ’C64x builds on the ’C62x’s existing support for packed data types by im-

proving support for packed signed 16-bit data and adding new support for

packed unsigned 8-bit data. Packed data types are supported using new pack/

unpack, logical, arithmetic and multiply instructions for manipulating packed

data.

Packed data types store multiple pieces of data within a single 32-bit register.

Pack and unpack instructions provide a method for reordering this packed

data, and for converting between packed formats. Shift and merge instructions

(SHLMB and SHRMB) also provide a means for reordering packed 8-bit data.

New arithmetic instructions include standard addition, subtraction, and com-

parison, as well as advanced operations such as minimum, maximum, and av-
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erage. New packed multiply instructions provide support for both standard

multiplies, as well as rounded multiplies and dot products. With packed data

types, a single instruction can operate on two 16-bit quantities or four 8-bit

quantities at once.

6.1.4 Non-aligned Memory Accesses

In order to capitalize on its memory and processing bandwidth, the ’C64x pro-

vides support for non-aligned memory accesses. Non-aligned memory ac-

cesses provide a method for accessing packed data types without the restric-

tions imposed by 32-bit or 64-bit alignment boundaries. The ’C64x can access

up to 64 bits per cycle at any byte boundary with non-aligned load and store

instructions (LDNW, LDNDW, STNW, and STNDW).

6.1.5 Additional Specialized Instructions

The ’C64x also provides a number of new bit-manipulation and other special-

ized instructions for improving performance on bit-oriented algorithms. These

instructions are designed to improve performance on error correction, encryp-

tion, and other bit-level algorithms. Instructions in this category include BITC4,

BITR, ROTL, SHFL, and DEAL. See the TMS320C6000 CPU and Instruction

Set User’s Guide for more details on these and related instructions.
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6.2 Accessing Packed-Data Processing on the ’C64x

6.2.1 Introduction to Packed Data Processing Techniques

Packed-data processing is a type of processing where a single instruction ap-

plies the same operation to multiple independent pieces of data. For example,

the ADD2 instruction performs two independent 16-bit additions between two

pairs of 16-bit values. This produces a pair of 16-bit results. In this case, a

single instruction, ADD2, is operating on multiple sets of data, the two indepen-

dent pairs of addends.

Packed-data processing is a powerful method for exploiting the inherent paral-

lelism in signal processing and other calculation-intensive code, while retain-

ing dense code. Many signal processing functions apply the same sets of op-

erations to many elements of data. Generally, these operations are indepen-

dent of each other. Packed-data processing allows the programmer to capital-

ize on this by operating on multiple pieces of data with a single compact stream

of instructions. This saves code size and dramatically boosts performance.

The ’C64x provides a rich family of instructions which are designed to work

with packed-data processing. At the core of this paradigm are packed data

types, which are designed to store multiple data elements in a single machine

register. Packed-data processing instructions are built around these data

types to provide a flexible, powerful, programming environment.

Note:

Although ’C6000 family supports both big-endian and little-endian operation,
the examples and figures in this section will focus on little endian operation
only. The packed-data processing extensions that the ’C64x provides will op-
erate in either big- or little-endian mode, and will perform identically on val-
ues stored in the register file. However, accesses to memory behave differ-
ently in big-endian mode.

6.2.2  Packed Data Types

Packed data types are the cornerstone of ’C64x packed-data processing sup-

port. Each packed data type packs multiple elements into a single 32-bit gener-

al purpose register. Table 6–1 below lists the packed data types that the ’C64x

supports. The greatest amount of support is provided for unsigned 8-bit and

signed 16-bit values.
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Table 6–1.  Packed data types

Element Size Signed/Unsigned Elements in 32-bit

word

Element type Level of support

8 bits

16 bits

unsigned

signed

4

2

unsigned char

short

high

high

8 bits

16 bits

signed

unsigned

4

2

char

unsigned short

limited

limited

6.2.3 Storing Multiple Elements in a Single Register

Packed data types can be visualized as 8-bit or 16-bit partitions inside the larg-

er 32-bit register. These partitions are merely logical partitions. As with all

’C64x instructions, instructions which operate on packed data types operate

directly on the 64 general purpose registers in the register file. There are no

special packed data registers. How data in a register is interpreted is deter-

mined entirely by the instruction that is using the data. Figure 6–1 and

Figure 6–2 illustrate how four bytes and two half-words are packed into a

single word.

Figure 6–1. Four Bytes Packed Into a Single General Purpose Register.

Byte 3 Byte 2 Byte 1 Byte 0 General purpose

register

32 bits

8 bits

Byte 2

8 bits

Byte 1

8 bits

Byte 0

8 bits

Byte 3
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Figure 6–2. Two Half–Words Packed Into a Single General Purpose Register.

Halfword 1

16 bits 16 bits

Halfword 0

Halfword 1 Halfword 0

32 bits

General purpose

register

Notice that there is no distinction between signed or unsigned data made in

Figure 6–1 and Figure 6–2. This is due to the fact that signed and unsigned

data are packed identically within the register. This allows the instructions

which are not sensitive to sign bits (such as adds and subtracts) to operate on

signed and unsigned data equally. The distinction between signed and un-

signed comes into play primarily when performing multiplication, comparing

elements, and unpacking data (since either sign or zero extension must be

performed).

Table 6–2 provides a summary of the operations that the ’C64x provides on

packed data types, and whether signed or unsigned types are supported. In-

structions which were not specifically designed for packed data types can also

be used to move, store, unpack, or repack data.
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Table 6–2.  Supported Operations on Packed Data Types

Operation Support for 8-bit Support for 16-bit Notes

Signed Unsigned Signed Unsigned

ADD/SUB Yes Yes Yes Yes

Saturated ADD Yes Yes *

Booleans Yes Yes Yes Yes Uses generic

boolean instruc-

tions

Shifts Yes Yes Right-shift only

Multiply * Yes Yes *

Dot Product * Yes Yes *

Max/Min/

Compare

Yes Yes CMPEQ works

with signed or

unsigned

Pack Yes Yes Yes Yes

Unpack Yes Yes Yes See Table 6–4

for 16-bit un-

packs

* = Only ‘signed-by-unsigned’ support in these categories.

6.2.4 Packing and Unpacking Data

The ’C64x provides a family of packing and unpacking instructions which are

used for converting between various packed and non-packed data types, as

well as for manipulating elements within a packed type. Table 6–4 lists the

available packing instructions and uses.
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Table 6–3.  Instructions for Manipulating Packed Data Types

Mnemonic Intrinsic Typical Uses With Packed Data

PACK2

PACKH2

PACKHL2

PACKLH2

_pack2

_packh2

_packhl2

_packlh2

Packing 16-bit portions of 32-bit quantities.

Rearranging packed 16-bit quantities.

Rearranging pairs of 16-bit quantities.

SPACK2 _spack2 Saturating 32-bit quantities down to signed 16-bit values, packing

them together.

SHR

SHRU

EXT

EXTU

(n/a)

(n/a)

_ext

_extu

Unpacking 16-bit values into 32-bit values

PACKH4

PACKL4

_packh4

_packl4

Unpacking 16-bit intermediate results into 8-bit final results.

De-interleaving packed 8-bit values.

UNPKHU4

UNPKLU4

_unpkhu4

_unpklu4

Unpacking unsigned 8-bit data into 16-bits.

Preparing 8-bit data to be interleaved.

SPACKU4 _spacku4 Saturating 16-bit quantities down to unsigned 8-bit values, packing

them together.

SHLMB

SHRMB

SWAP4

ROTL

_shlmb

_shrmb

_swap4

_rotl

Rearranging packed 8-bit quantities

The _packXX2 group of intrinsics work by extracting selected half-words from

two 32-bit registers, returning the results packed into a 32-bit word. This is pri-

marily useful for manipulating packed 16-bit data, although they may be used

for manipulating pairs of packed 8-bit quantites. Figure 6–3 illustrates the four

_packXX2() intrinsics, _pack2(), _packlh2(), _packhl2(), and _packh2(). (The

l and the h in the name refers to which half of each 32-bit input is being copied

to the output, similar to how the _mpyXX() intrisics are named.)
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Figure 6–3. Graphical Representation of _packXX2 Intrinsics

b_hi b_lo a_hi a_lo

b_lo a_lo

c = _pack2(b, a)

b_hi b_lo

b_hi a_hi

a_hi

c=_packh2(b, a)

a_lo

b_lob_hi a_hi a_lo

b_hi a_lo

c=_packhl2(b, a)

b_lo a_hi

c=_packlh2(b, a)

b_hi b_lo a_hi a_lo

b a

c
b a

c

b a

c

b a

c

The saturating pack intrinsic, _spack2, is closely related to the _pack2 intrin-

sic. The main difference is that the saturating pack first saturates the signed

32-bit source values to signed 16-bit quantities, and then packs these results

into a single 32-bit word. This makes it easier to support applications which

generate some intermediate 32-bit results, but need a signed 16-bit result at

the end. Figure 6–4 shows _spack2’s operation graphically.
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Figure 6–4. Graphical Representation of _spack2

hi lo c = _spack2(b, a)

Signed 32–bit

b

Signed 32–bit

a

Saturation step

Packing step

Signed

16–bit

Signed

16–bit

32 bits 32 bits

16 bits 16 bits

Notice that there are no special unpack operations for 16-bit data. Instead, the

normal 32-bit right-shifts and extract operations can be used to unpack 16-bit

elements into 32-bit quantities. Table 6–4 describes how to unpack signed and

unsigned 16-bit quantities.

Table 6–4.  Unpacking Packed 16-bit Quantities to 32-bit Values

Type Position C code Assembly code

Signed 16-bit Upper half dst = ((signed)src) >> 16; SHR  src, 16, dst

Lower half dst = _ext(src, 16, 16); EXT  src, 16,16, dst

Unsigned 16-bit Upper half dst = ((unsigned)src)>>16; SHRU src, 16, dst

Lower half dst = _ext (src, 16, 16); EXTU src, 16,16, dst

For 8-bit data, the ’C64x provides the _packX4, _spacku4, and _unpkX4 intrin-

sics for packing and unpacking data. The operation of these intrinsics is illus-

trated in Figure 6–5 and Figure 6–6. These intrinsics are geared around con-

verting between 8-bit and 16-bit packed data types. To convert between 32-bit

and 8-bit values, an intermediate step at 16-bit precision is required.
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Figure 6–5. Graphical Representation of 8–bit Packs (_packX4 and _spacku4)

b_3 b_1 a_3 a_1

c

c = _packh4(b, a)

b_3 b_1

b a

b a

c

b_2 b_0 a_2 a_0c = _packl4(b, a)

signed 16–bit signed 16–bit

c = _spacku4(b, a) sat(a_hi)sat(b_lo)sat(b_hi)

c

sat(a_lo)

Saturation

Unsigned 8-bit

signed 16–bit signed 16–bit

b a

b_2 b_0 a_3 a_2 a_1 a_0

b_3 b_2 b_1 b_0 a_3 a_2 a_1 a_0

sat(b_hi) sat(b_lo) sat(a_hi) sat(a_lo)
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Figure 6–6. Graphical Representation of 8–bit Unpacks (_unpkXu4)

a_3 a_2 a_1 a_0

a

00000000 a_3 00000000 a_2 b = unpkhu4(a);

00000000 b = unpklu4(a);00000000a_1 a_0

a_0a_3 a_2 a_1

b

a

b

The ’C64x also provides a handful of additional byte-manipulating operations

that have proven useful in various algorithms. These operations are neither

packs nor unpacks, but rather shuffle bytes within a word. Uses include con-

volution-oriented algorithms, complex number arithmetic, and so on. Opera-

tions in this category include the intrinsics _shlmb, _shrmb, _swap4, and _rotl.

The first three in this list are illustrated in Figure 6–7.
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Figure 6–7. Graphical Representation of (_shlmb, _shrmb, and _swap4)

a_3 a_2 a_1 a_0

a

b_1b_3 b_2

b

b_0

a_2 a_1 a_0 b_3 c = _shlmb(b, a)

c

c

b_1b_3 b_2

b

a_1a_3b_0 a_2

a

a_0

a_1a_2a_3b_0c = _shrmb(b, a)

a_1a_3 a_2 a_0

a_0a_2 a_3 a_1

b

a

b = _swap4(a)

6.2.5 Optimizing for Packed Data Processing

The ’C64x supports two basic forms of packed-data optimization, namely vec-

torization and macro operations.

Vectorization works by applying the exact same simple operations to several

elements of data simultaneously. Kernels such as vector sum and vector multi-

ply, shown in Example 6–1 and Example 6–2, exemplify this sort of computa-

tion.
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Example 6–1. Vector Sum

void vec_sum(const short *restrict a, const short *restrict b,

short *restrict c, int len)

{

int i;

for (i = 0; i < len; i++)

c[i] = b[i] + a[i];

}

Example 6–2. Vector Multiply

void vec_mpy(const short *restrict a, const short *restrict b,

short *restrict c, int len, int shift)

{

int i;

for (i = 0; i < len; i++)

c[i] = (b[i] * a[i]) >> shift;

}

This type of code is referred to as vector code because each of the input arrays

is a vector of elements, and the same operation is being applied to each ele-

ment.  Pure vector code has no computation between adjacent elements when

calculating results. Also, input and output arrays tend to have the same num-

ber of elements. Figure 6–8 illustrates the general form of a simple vector op-

eration that operates on inputs from arrays A and B, producing an output, C

(such as our Vector Sum and Vector Multiply kernels above perform).

Figure 6–8. Graphical Representation of a Simple Vector Operation

Item 0 Item 1 Item nItem 2

Item 1Item 0 Item 2 Item n

Item 1Item 0 Item 2 Item n

(oper)

. . .

. . .

. . .

Input A

Input B

Output C

(oper) (oper) (oper)
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Although pure vector algorithms exist, most applications do not consist purely

of vector operations as simple as the one shown above. More commonly, an

algorithm will have portions, which behave as a vector algorithm, and portions

which do not. These portions of the code are addressed by other packed-data

processing techniques.

The second form of packed data optimization involves combining multiple op-

erations on packed data into a single, larger operation referred to here as a

macro operation. This can be very similar to vectorization, but the key differ-

ence is that there is significant mathematical interaction between adjacent ele-

ments. Simple examples include dot product operations and complex multi-

plies, as shown in Example 6–3 and Example 6–4.

Example 6–3. Dot Product

int dot_prod(const short *restrict a, const short *restrict b, int len)

{

int i;

int sum = 0;

for (i = 0; i < len; i++)

sum += b[i] * a[i];

return sum;

}

Example 6–4. Vector Complex Multiply

void vec_cx_mpy(const short *restrict a, const short *restrict b,

short *restrict c)

{

int j; 

for (i = j = 0; i < len; i++, j += 2)

{

/* Real components are at even offsets, and imaginary components

are at odd offsets within each array. */

c[j+0] = (a[j+0] * b[j+0] – a[j+1] * b[j+1]) >> 16;

c[j+1] = (a[j+0] * b[j+1] + a[j+1] * b[j+0]) >> 16;

}

}

The data flow for the dot product is shown in Figure 6–9. Notice how this is sim-

ilar to the vector sum in how the array elements are brought in, but different

in how the final result is tabulated.
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Figure 6–9. Graphical Representation of Dot Product

Item 0 Item 1 Item nItem 2

Item 1Item 0 Item 2 Item n

. . .

. . .

Input A

Input B

sum

multiply multiply multiply multiply

As you can see, this does not fit the pure vector model presented in

Example 6–3. The Vector Complex Multiply also does not fit the pure vector

model, but for different reasons.

Mathematically, the vector complex multiply is a pure vector operation per-

formed on vectors of complex numbers, as its name implies. However, it is not,

in implementation, because neither the language type nor the hardware itself

directly supports a complex multiply as a single operation.

The complex multiply is built up from a number of real multiplies, with the com-

plex numbers stored in arrays of interleaved real and imaginary values. As a

result, the code requires a mix of vector and non–vector approaches to be opti-

mized. Figure 6–10 illustrates the operations that are performed on a single

iteration of the loop. As you can see, there is a lot going on in this loop.
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Figure 6–10. Graphical Representation of a Single Iteration of Vector Complex Multiply.
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Input B

Input A

The following sections revisit these basic kernels and illustrate how single in-

struction multiple data optimizations apply to each of these.

6.2.6 Vectorizing With Packed Data Processing

The most basic packed data optimization is to use wide memory accesses, in

other words, word and double-word loads and stores, to access narrow data

such as byte or half-word data. This is a simple form of vectorization, as de-

scribed above, applied only to the array accesses.

Widening memory accesses generally serves as a starting point for other vec-

tor and packed data operations. This is due to the fact that the wide memory

accesses tend to impose a packed data flow on the rest of the code around

them. This type of optimization is said to work from the outside in, as loads and
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stores typically occur near the very beginning and end of the loop body. The

following examples use this outside-in approach to perform packed data opti-

mization techniques on the example kernels.

Note:

The following examples assume that the compiler has not performed any
packed data optimizations. The most recent release of the ’C6000 Code
Generation Tools will apply many of the optimizations described in this chap-
ter automatically when presented with sufficient information about the code.

6.2.6.1 Vectorizing the Vector Sum

Consider the vector sum kernel presented in Example 6–1. In its default form,

it reads one half–word from the a[ ] array, one half-word from the b[ ] array,

adds them, and writes a single half–word result to the c[ ] array. This results

in a 2-cycle loop that moves 48 bits per iteration. When you consider that the

’C64x can read or write 128 bits every cycle, it becomes clear that this is very

inefficient.

One simple optimization is to replace the half-word accesses with double-word

accesses to read and write array elements in groups of four. When doing this,

array elements are read into the register file with four elements packed into a

register pair. The array elements are packed with, two elements in each regis-

ter, across two registers. Each register contains data in the packed 16-bit data

type illustrated in Figure 6–2.

For the moment, assume that the arrays are double-word aligned, as shown

in Example 6–5. For more information about methods for working with arrays

that are not specially aligned, see section 6.2.8. The first thing to note is that

the ’C6000 Code Generation Tools lack a 64-bit integral type. This is not a

problem, however, as the tools allow the use of double, and the intrinsics _lo(),

_hi(), _itod() to access integer data with double-word loads. To account for the

fact that the loop is operating on multiple elements at a time, the loop counter

must be modified to count by fours instead of by single elements.

The _amemd8 and _amemd8_const intrinsics tell the compiler to read the

array of shorts with double–word accesses. This causes LDDW and STDW in-

structions to be issued for the array accesses. The _lo() and _hi() intrinsics

break apart a 64-bit double into its lower and upper 32-bit halves. Each of these

halves contain two 16-bit values packed in a 32-bit word. To store the results,

the _itod() intrinsics assemble 32-bit words back into 64-bit doubles to be

stored. Figure 6–11 and Figure 6–12 show these processes graphically.

The adds themselves have not been addressed, so for now, the add is re-

placed with a comment.



Accessing Packed-Data Processing on the ’C64x

6-19’C64x Programming Considerations

Example 6–5. Vectorization: Using LDDW and STDW in Vector Sum

void vec_sum(const short *restrict a, const short *restrict b,
                 short *restrict c, int len)

{

int i;

unsigned a3_a2, a1_a0;

unsigned b3_b2, b1_b0;

unsigned c3_c2, c1_c0;

for (i = 0; i < len; i += 4)

{

a3_a2 = _hi(_amemd8_const(&a[i]));

a1_a0 = _lo(_amemd8_const(&a[i]));

b3_b2 = _hi(_amemd8_const(&b[i]));

b1_b0 = _lo(_amemd8_const(&b[i]));

        

/*  ...somehow, the ADD occurs here, 

with results in c3_c2, c1_c0... */

_amemd8(&c[i]) = _itod(c3_c2, c1_c0);

}

}

Figure 6–11.Array Access in Vector Sum by LDDW
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Figure 6–12. Array Access in Vector Sum by STDW
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This code now efficiently reads and writes large amounts of data. The next step

is to find a method to quickly add them. The _add2() intrinsic provides just that:

It adds corresponding packed elements in two different words, producing two

packed sums. It provides exactly what is needed, a vector addition.

Figure 6–13 illustrates.

Figure 6–13. Vector Addition

a[1] a[0]

+ +

a_lo

c_lo = _add2(b_lo, a_lo);

b_lo b[1] b[0]

c_lo c[1] = b[1] + a[1] c[0] = b[0] + a[0]

So, putting in _add2() to perform the additions provides the complete code

shown in Example 6–6.
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Example 6–6. Vector Addition (Complete)

void vec_sum(const short *restrict a, const short *restrict b,

short *restrict c, int len)

{

int i;

unsigned a3_a2, a1_a0;

unsigned b3_b2, b1_b0;

unsigned c3_c2, c1_c0;

for (i = 0; i < len; i += 4)

{

a3_a2 = _hi(_amemd8_const(&a[i]));

a1_a0 = _lo(_amemd8_const(&a[i]));

b3_b2 = _hi(_amemd8_const(&b[i]));

b1_b0 = _lo(_amemd8_const(&b[i]));

        

c3_c2 = _add2(b3_b2, a3_a2);

c1_c0 = _add2(b1_b0, a1_a0);

_amemd8(&c[i]) = _itod(c3_c2, c1_c0);

}

}

At this point, the vector sum is fully vectorized, and can be optimized further

using other traditional techniques such as loop unrolling and software pipelin-

ing. These and other optimizations are described in detail throughout Chapter

6.

6.2.6.2 Vectorizing the Vector Multiply

The vector multiply shown in Figure 6–8 is similar to the vector sum, in that the

algorithm is a pure vector algorithm. One major difference, is the fact that the

intermediate values change precision. In the context of vectorization, this

changes the format the data is stored in, but it does not inhibit the ability to vec-

torize the code.

The basic operation of vector multiply is to take two 16-bit elements, multiply

them together to produce a 32-bit product, right-shift the 32-bit product to pro-

duce a 16-bit result, and then to store this result. The entire process for a single

iteration is shown graphically in Figure 6–14.
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Figure 6–14. Graphical Representation of a Single Iteration of Vector Multiply.
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Notice that the values are still loaded and stored as 16-bit quantities. There-

fore, you should use the same basic flow as the vector sum. Example 6–7

shows this starting point. Figure 6–11 and Figure 6–12 also apply to this exam-

ple to illustrate how data is being accessed.
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Example 6–7. Using LDDW and STDW in Vector Multiply

void vec_mpy(const short *restrict a, const short *restrict b,

                 short *restrict c, int len, int shift)

{

int i;

unsigned a3_a2, a1_a0;

unsigned b3_b2, b1_b0;

unsigned c3_c2, c1_c0;

for (i = 0; i < len; i += 4)

{

a3_a2 = _hi(_amemd8_const(&a[i]));

a1_a0 = _lo(_amemd8_const(&a[i]));

b3_b2 = _hi(_amemd8_const(&b[i]));

b1_b0 = _lo(_amemd8_const(&b[i]));

        

/*  ...somehow, the Multiply and Shift occur here, 

with results in c3_c2, c1_c0... */

_amemd8(&c[i]) = _itod(c3_c2, c1_c0);

}

}

The next step is to perform the multiplication. The ’C64x intrinsic, _mpy2(),

performs two 16�16 multiplies, providing two 32-bit results packed in a 64-bit

double. This provides the multiplication. The _lo() and _hi() intrinsics allow

separation of the two separate 32-bit products. Figure 6–15 illustrates how

_mpy2() works.

Figure 6–15. Packed 16�16 Multiplies Using _mpy2
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* *
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b_lo b[1] b[0]
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pair

a[1] * b[1] a[0] * b[0]
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Once the 32-bit products are obtained, use standard 32-bit shifts to shift these

to their final precision. However, this will leave the results in two separate 32-bit

registers.
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The ’C64x provides the _pack family intrinsics to convert the 32-bit results into

16-bit results. The _packXX2() intrinsics, described in section 6.2.4, extract

two 16-bit values from two 32-bit registers, returning the results in a single

32-bit register. This allows efficient conversion of the 32-bit intermediate re-

sults to a packed 16-bit format.

In this case, after the right-shift, the affected bits will be in the lower half of the

32-bit registers. Use the _pack2() intrinsic to convert the 32-bit intermediate

values back to packed 16-bit results so they can be stored. The resulting C

code is shown in Example 6–8.

Example 6–8. Using _mpy2() and _pack2() to Perform the Vector Multiply

void vec_mpy1(const short *restrict a, const short *restrict b,

short *restrict c, int len, int shift)

{

int i;

unsigned a3_a2, a1_a0;                 /* Packed 16–bit values        */

unsigned b3_b2, b1_b0;                 /* Packed 16–bit values        */

double  c3_c2_dbl, c1_c0_dbl;         /* 32–bit prod in 64–bit pairs */

int     c3, c2, c1, c0;              /* Separate 32–bit products    */

unsigned c3_c2, c1_c0;                 /* Packed 16–bit values        */

for (i = 0; i < len; i += 4)

{

a3_a2 = _hi(_amemd8_const(&a[i]));

a1_a0 = _lo(_amemd8_const(&a[i]));

b3_b2 = _hi(_amemd8_const(&b[i]));

b1_b0 = _lo(_amemd8_const(&b[i]));

/* Multiply elements together, producing four products */

c3_c2_dbl = _mpy2(a3_a2, b3_b2);

c1_c0_dbl = _mpy2(a1_a0, b1_b0);

/* Shift each of the four products right by our shift amount */

c3 = _hi(c3_c2_dbl) >> shift;

c2 = _lo(c3_c2_dbl) >> shift;

c1 = _hi(c1_c0_dbl) >> shift;

c0 = _lo(c1_c0_dbl) >> shift;

/* Pack the results back together into packed 16–bit format */

c3_c2  = _pack2(c3, c2);

c1_c0  = _pack2(c1, c0);

/* Store the results. */

_amemd8(&c[i]) = _itod(c3_c2, c1_c0);

}

}
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This code works, but it is heavily bottlenecked on shifts. One way to eliminate

this bottleneck is to use the packed 16-bit shift intrinsic, _shr2(). This can be

done without losing precision, under the following conditions:

� If the shift amount is known to be greater than or equal to 16, use

_packh2() instead of _pack2() before the shift. If the shift amount is exactly

16, eliminate the shift. The _packh2 effectively performs part of the shift,

shifting right by 16, so that the job can be finished with a _shr2() intrinsic.

Figure 6–16 illustrates how this works.

� If the shift amount is less than 16, only use the _shr2() intrinsic if the 32-bit

products can be safely truncated to 16 bits first without losing significant

digits. In this case, use the _pack2() intrinsic, but the bits above bit 15 are

lost in the product. This is safe only if those bits are redundant (sign bits).

Figure 6–17 illustrates this case.
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Figure 6–16. Fine Tuning Vector Multiply (shift > 16)
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Figure 6–17. Fine Tuning Vector Multiply (shift < 16)
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Whether or not the 16-bit shift version is used, consider the vector multiply to

be fully optimized from a packed data processing standpoint. It can be further

optimized using the more general techniques such as loop-unrolling and soft-

ware pipelining that are discussed in Chapter 6.
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6.2.7 Combining Multiple Operations in a Single Instruction

The Dot Product and Vector Complex Multiply examples that were presented

earlier were both examples of kernels that benefit from macro operations, that

is, instructions which perform more than a simple operation.

The ’C64x provides a number of instructions which combine common opera-

tions together. These instructions reduce the overall instruction count in the

code, thereby reducing codesize and increasing code density. They also tend

to simplify programming. Some of the more commonly used macro operations

are listed in Table 6–5.

Table 6–5. Intrinsics Which Combine Multiple Operations in one Instruction

Intrinsic Instruction Operations combined

_dotp2 DOTP2 Performs two 16x16 multiplies and adds the products

together.

_dotpn2 DOTPN2 Performs two 16x16 multiplies and subtracts the sec-

ond product from the first.

_dotprsu2 DOTPRSU2 Performs two 16x16 multiplies, adds products togeth-

er, and shifts/rounds the sum.

_dotpnrsu2 DOTPNRSU2 Performs two 16x16 multiplies, subtracts the 2nd

product from the 1st, and shifts/rounds the difference.

_dotpu4

_dotpsu4

DOTPU4

DOTPSU4

Performs four 8x8 multiplies and adds products to-

gether.

_max2

_min2

MAX2

MIN2

Compares two pairs of numbers, and selects the

larger/smaller in each pair.

_maxu4

_minu4

MAXU4

MINU4

Compares four pairs of numbers, and selects the

larger/smaller in each pair.

_avg2 AVG2 Performs two 16-bit additions, followed by a right shift

by 1 with round.

_avgu4 AVGU4 Performs four 8-bit additions, followed a right shift by

1 with round.

_subabs4 SUBABS4 Finds the absolute value of the between four pairs of

8-bit numbers.

As you can see, these macro operations can replace a number of separate in-

structions rather easily. For instance, each _dotp2 eliminates an add, and each
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_dotpu4 eliminates three adds. The following sections describe how to write

the Dot Product and Vector Complex Multiply examples to take advantage of

these.

6.2.7.1 Combining Operations in the Dot Product Kernel

The Dot Product kernel, presented in Example 6–3, is one which benefits both

from vectorization as well as macro operations. First, apply the vectorization

optimization as presented earlier, and then look at combining operations to fur-

ther improve the code.

Vectorization can be performed on the array reads and multiplies that are this

kernel, as described in section 6.2.3. The result of those steps is the intermedi-

ate code shown in Example 6–9.

Example 6–9. Vectorized Form of the Dot Product Kernel

int dot_prod(const short *restrict a, const short *restrict b,

                 short *restrict c, int len)

{

int i;

unsigned a3_a2, a1_a0;             /* Packed 16–bit values        */

unsigned b3_b2, b1_b0;             /* Packed 16–bit values        */

double  c3_c2_dbl, c1_c0_dbl;      /* 32–bit prod in 64–bit pairs */

int     sum = 0;                  /* Sum to return from dot_prod */

for (i = 0; i < len; i += 4)

{

a3_a2 = _hi(_amemd8_const(&a[i]));

a1_a0 = _lo(_amemd8_const(&a[i]));

b3_b2 = _hi(_amemd8_const(&b[i]));

b1_b0 = _lo(_amemd8_const(&b[i]));

/* Multiply elements together, producing four products */

c3_c2_dbl = _mpy2(a3_a2, b3_b2);

c1_c0_dbl = _mpy2(a1_a0, b1_b0);

/* Add the four products to our running sum. */

sum += _hi(c3_c2_dbl);

sum += _lo(c3_c2_dbl);

sum += _hi(c1_c0_dbl);

sum += _lo(c1_c0_dbl);

}

return sum;

}
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While this code is fully vectorized, it still can be improved. The kernel itself is

performing two LDDWs, two MPY2, four ADDs, and one Branch. Because of

the large number of ADDs, the loop cannot fit in a single cycle, and so the ’C64x

datapath is not used efficiently.

The way to improve this is to combine some of the multiplies with some of the

adds. The ’C64x family of _dotp intrinsics provides the answer here.

Figure 6–18 illustrates how the _dotp2 intrinsic operates. Other _dotp intrin-

sics operate similarly.

Figure 6–18. Graphical Representation of the _dotp2 Intrinsic c = _dotp2(b, a)
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This operation exactly maps to the operation the dot product kernel performs.

The modified version of the kernel absorbs two of the four ADDs into _dotp in-

trinsics. The result is shown as Example 6–11. Notice that the variable c has

been eliminated by summing the results of the _dotp intrinsic directly.
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Example 6–10. Vectorized Form of the Dot Product Kernel

int dot_prod(const short *restrict a, const short *restrict b,

                 short *restrict c, int len)

{

int i;

unsigned a3_a2, a1_a0;             /* Packed 16–bit values        */

unsigned b3_b2, b1_b0;             /* Packed 16–bit values        */

int     sum = 0;                  /* Sum to return from dot_prod  */

for (i = 0; i < len; i += 4)

{

a3_a2 = _hi(_amemd8_const(&a[i]));

a1_a0 = _lo(_amemd8_const(&a[i]));

b3_b2 = _hi(_amemd8_const(&b[i]));

b1_b0 = _lo(_amemd8_const(&b[i]));

/* Perform dot–products on pairs of elements, totalling the 

results in the accumulator. */

sum += _dotp2(a3_a2, b3_b2);

sum += _dotp2(a1_a0, b1_b0);

}

return sum;

}

At this point, the code takes full advantage of the new features that the ’C64x

provides. In the particular case of this kernel, no further optimization should

be necessary. The tools produce an optimal single cycle loop, using the com-

piler version that was available at the time this book was written.

Example 6–11. Final Assembly Code for Dot–Product Kernel’s Inner Loop

L2:
   [ B0]   SUB     .L2     B0,1,B0           ; 
|| [!B0]   ADD     .S2     B8,B7,B7          ; |10| 
|| [!B0]   ADD     .L1     A7,A6,A6          ; |10| 
||         DOTP2   .M2X    B5,A5,B8          ; @@@@|10| 
||         DOTP2   .M1X    B4,A4,A7          ; @@@@|10| 
|| [ A0]   BDEC    .S1     L2,A0             ; @@@@@
||         LDDW    .D1T1   *A3++,A5:A4       ; @@@@@@@@@|10| 
||         LDDW    .D2T2   *B6++,B5:B4       ; @@@@@@@@@|10|
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6.2.7.2 Combining Operations in the Vector Complex Multiply Kernel

The Vector Complex Multiply kernel that was originally shown in Example 6–4

can be optimized with a technique similar to the one that used with the Dot

Product kernel in Section 8.2.4.1. First, the loads and stores are vectorized in

order to bring data in more efficiently. Next, operations are combined together

into intrinsics to make full use of the machine.

Example 6–12 illustrates the vectorization step. For details, consult the earlier

examples, such as the Vector Sum. The complex multiplication step itself has

not yet been optimized at all.
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Example 6–12. Vectorized form of the Vector Complex Multiply Kernel

void vec_cx_mpy(const short *restrict a, const short *restrict b,

                    short *restrict c, int len, int shift)

    {

        int i;

        unsigned a3_a2, a1_a0;             /* Packed 16–bit values        */

        unsigned b3_b2, b1_b0;             /* Packed 16–bit values        */

        short    a3, a2, a1, a0;           /* Separate 16–bit elements    */

        short    b3, b2, b1, b0;           /* Separate 16–bit elements    */

        short    c3, c2, c1, c0;           /* Separate 16–bit results     */

        unsigned c3_c2, c1_c0;             /* Packed 16–bit values        */

        for (i = 0; i < len; i += 4)

        {

            /* Load two complex numbers from the a[] array.               */

            /* The complex values loaded are represented as ’a3 + a2 * j’ */

            /* and ’a1 + a0 * j’.  That is, the real components are a3    */

            /* and a1, and the imaginary components are a2 and a0.        */

            a3_a2 = _hi(_amemd8_const(&a[i]));

            a1_a0 = _lo(_amemd8_const(&a[i]));

            /* Load two complex numbers from the b[] array.               */

            b3_b2 = _hi(_amemd8_const(&b[i]));

            b1_b0 = _lo(_amemd8_const(&b[i]));

            /* Separate the 16–bit coefficients so that the complex       */

            /* multiply may be performed.  This portion needs further     */

            /* optimization.                                              */

            a3 = ((signed) a3_a2) >> 16;

            a2 = _ext(a3_a2, 16, 16);

            a1 = ((signed) a1_a0) >> 16;

            a0 = _ext(a1_a0, 16, 16);

            b3 = ((signed) b3_b2) >> 16;

            b2 = _ext(b3_b2, 16, 16);

            b1 = ((signed) b1_b0) >> 16;

            b0 = _ext(b1_b0, 16, 16);

            /* Perform the complex multiplies using 16x16 multiplies.     */

            c3 = (b3 * a2 + b2 * a3) >> 16;    

            c2 = (b3 * a3 – b2 * a2) >> 16;

            c1 = (b1 * a0 + b0 * a1) >> 16;    

            c0 = (b1 * a1 – b0 * a0) >> 16;

            /* Pack the 16–bit results into 32–bit words.                 */

            c3_c2 = _pack2(c3, c2);

            c1_c0 = _pack2(c1, c0);

            /* Store the results. */

           _amemd8(&c[i]) = _itod(c3_c2, c1_c0);

        }

    }
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Example 6–12 still performs the complex multiply as a series of discrete steps

once the individual elements are loaded. The next optimization step is to com-

bine some of the multiplies and adds/subtracts into _dotp and _dotpn intrinsics

in a similar manner to the Dot Product example presented earlier.

The real component of each result is calculated by taking the difference be-

tween the product of the real components of both input and the imaginary com-

ponents of both inputs. Because the real and imaginary components for each

input array are laid out the same, the _dotpn intrinsic can be used to calculate

the real component of the output. Figure 6–19 shows how this flow would work.

Figure 6–19. The _dotpn2 Intrinsic Performing Real Portion of Complex Multiply.
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The calculation for the result’s imaginary component provides a different prob-

lem. As with the real component, the result is calculated from two products that

are added together. A problem arises, though, because it is necessary to multi-

ply the real component of one input with the imaginary component of the other

input, and vice versa. None of the ’C64x intrinsics provide that operation direct-

ly given the way the data is currently packed.
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The solution is to reorder the halfwords from one of the inputs, so that the imag-

inary component is in the upper halfword and the real component is in the lower

halfword. This is accomplished by using the _packlh2 intrinsic to reorder the

halves of the word. Once the half–words are reordered on one of the inputs,

the _dotp intrinsic provides the appropriate combination of multiplies with an

add to provide the imaginary component of the output.

Figure 6–20. _packlh2 and _dotp2 Working Together.
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Once both the real and imaginary components of the result are calculated, it

is necessary to convert the 32-bit results to 16-bit results and store them.  In

the original code, the 32-bit results were shifted right by 16 to convert them to

16-bit results.  These results were then packed together with _pack2 for stor-

ing. Our final optimization replaces this shift and pack with a single _packh2.

Example 6–13 shows the result of these optimizations.
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Example 6–13. Vectorized form of the Vector Complex Multiply

void vec_cx_mpy(const short *restrict a, const short *restrict b,

                    short *restrict c, int len, int shift)

{

int i;

unsigned a3_a2, a1_a0;             /* Packed 16–bit values     */

unsigned b3_b2, b1_b0;             /* Packed 16–bit values     */

int     c3,c2, c1,c0;             /* Separate 32–bit results  */

unsigned c3_c2, c1_c0;            /* Packed 16–bit values    */

for (i = 0; i < len; i += 4)

{

/* Load two complex numbers from the a[] array.               */

/* The complex values loaded are represented as ’a3 + a2 * j’  */

/* and ’a1 + a0 * j’.  That is, the real components are a3     */

/* and a1, and the imaginary components are a2 and a0.         */

a3_a2 = _hi(_amemd8_const(&a[i]));

a1_a0 = _lo(_amemd8_const(&a[i]));

/* Load two complex numbers from the b[] array.               */

b3_b2 = _hi(_amemd8_const(&b[i]));

b1_b0 = _lo(_amemd8_const(&b[i]));

/* Perform the complex multiplies using _dotp2/_dotpn2.      */

c3 = _dotpn2(b3_b2, a3_a2);                 /* Real     */

c2 = _dotp2 (b3_b2, _packlh2(a3_a2, a3_a2)); /* Imaginary */

c1 = _dotpn2(b1_b0, a1_a0);                  /* Real      */

c0 = _dotp2 (b1_b0, _packlh2(a1_a0, a1_a0));  /* Imaginary */

/* Pack the 16–bit results from the upper halves of the       */

/* 32–bit results into 32–bit words.                        */

c3_c2 = _packh2(c3, c2);

c1_c0 = _packh2(c1, c0);

/* Store the results. */

_amemd8(&c[i]) = _itod(c3_c2, c1_c0);

}

}

As with the earlier examples, this kernel now takes full advantage of the

packed data processing features that the ’C64x provides.  More general opti-

mizations can be performed as described in Chapter 6 to further optimize this

code.
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6.2.8 Non-Aligned Memory Accesses

In addition to traditional aligned memory access methods, the ’C64x also pro-

vides intrinsics for non-aligned memory accesses. Aligned memory accesses

are restricted to an alignment boundary that is determined by the amount of

data being accessed. For instance, a 64-bit load must read the data from a

location at a 64-bit boundary. Non-aligned access intrinsics relax this restric-

tion, and can access data at any byte boundary.

There are a number of tradeoffs between aligned and non-aligned access

methods. Table 6–6 lists the differences between both methods.

Table 6–6. Comparison Between Aligned and Non–Aligned Memory Accesses

Aligned Non–Aligned

Data must be aligned on a boundary

equal to its width.

Data may be aligned on any byte

boundary.

Can read or write bytes, half-words,

words, and double-words.

Can only read or write words and

double-words.

Up to two accesses may be issued per

cycle, for a peak bandwidth of 128 bits/

cycle.

Only one non-aligned access may be

issued per cycle, for a peak bandwidth

of 64 bits/cycle.

Bank conflicts may occur. No bank conflict possible, because no

other memory access may occur in par-

allel.

Because the ’C64x can only issue one non-aligned memory access per cycle,

programs should focus on using aligned memory accesses whenever pos-

sible. However, certain classes of algorithms are difficult or impossible to fit

into this mold when applying packed-data optimizations. For example, con-

volution-style algorithms such as filters fall in this category, particularly when

the outer loop cannot be unrolled to process multiple outputs at one time.
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6.2.8.1 Using Non-Aligned Memory Access Intrinsics

Non-aligned memory accesses are generated using the _memXX() and

_memXX_const() intrinsics. These intrinsics generate a non-aligned refer-

ence which may be read or written to, much like an array reference.

Example 6–14 below illustrates reading and writing via these intrinsics.

Example 6–14. Non–aligned Memory Access With _mem4 and _memd8

char   a[1000];  /* Sample array */

double d;

const short cs[1000];   

/* Store two bytes at a[69] and a[70] */

_mem2(&a[69]) = 0x1234;   

/* Store four bytes at a[9] through a[12] */

_mem4(&a[9]) = 0x12345678;   

/* Load eight bytes from a[115] through a[122] */

d = _memd8(&a[115]);

/* Load four shorts from cs[42] through cs[45] */

d = _memd8_const(&cs[42]);

It is easy to modify code to use non-aligned accesses. Example 6–15 below

shows the Vector Sum from Example 6–6 rewritten to use non-aligned

memory accesses. As with ordinary array references, the compiler will opti-

mize away the redundant references.
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Example 6–15. Vector Sum Modified to use Non–Aligned Memory Accesses

void vec_sum(const short *restrict a, const short *restrict b,

                 short *restrict c, int len)

{

int i;

unsigned a3_a2, a1_a0;

unsigned b3_b2, b1_b0;

unsigned c3_c2, c1_c0;

for (i = 0; i < len; i += 4)

{

a3_a2 = _hi(_memd8_const(&a[i]));

a1_a0 = _lo(_memd8_const(&a[i]));

b3_b2 = _hi(_memd8_const(&b[i]));

b1_b0 = _lo(_memd8_const(&b[i]));

        

c3_c2 = _add2(b3_b2, a3_a2);

c1_c0 = _add2(b1_b0, a1_a0);

_memd8(&c[i]) = _itod(c3_c2, c1_c0);

}

}
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6.2.8.2 When to Use Non-Aligned Memory Accesses

As noted earlier, the ’C64x can provide 128 bits/cycle bandwidth with aligned

memory accesses, and 64 bits/cycle bandwidth with non-aligned memory ac-

cesses. Therefore, it is important to use non–aligned memory accesses in

places where they provide a true benefit over aligned memory accesses. Gen-

erally, non-aligned memory accesses are a win in places where they allow a

routine to be vectorized, where aligned memory accesses could not. These

places can be broken down into several cases:

� Generic routines which cannot impose alignment,

� Single sample algorithms which update their input or output pointers by

only one sample

� Nested loop algorithms where outer loop cannot be unrolled, and

� Routines which have an irregular memory access pattern, or whose ac-

cess pattern is data-dependent and not known until run time.

An example of a generic routine which cannot impose alignment on routines

that call it would be a library function such as memcpy or strcmp. Single-sam-

ple algorithms include adaptive filters which preclude processing multiple out-

puts at once. Nested loop algorithms include 2-D convolution and motion es-

timation. Data-dependent access algorithms include motion compensation,

which must read image blocks from arbitrary locations in the source image.

In each of these cases, it is extremely difficult to transform the problem into one

which uses aligned memory accesses while still vectorizing the code. Often,

the result with aligned memory accesses is worse than if the code were not

optimized for packed data processing at all. So, for these cases, non-aligned

memory accesses are a win.

In contrast, non-aligned memory accesses should not be used in more general

cases where they are not specifically needed. Rather, the program should be

structured to best take advantage of aligned memory accesseswith a packed

data processing flow. The following checklist should help.

� Use signed short or unsigned char data types for arrays where possible.

These are the types for which the ’C64x provides the greatest support.

� Round loop counts, numbers of samples, and so on to multiples of 4 or 8

where possible. This allows the inner loop to be unrolled more readily to

take advantage of packed data processing.

� In nested loop algorithms, unroll outer loops to process multiple output

samples at once. This allows packed data processing techniques to be ap-

plied to elements that are indexed by the outer loop.
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Note:

The default alignment for global arrays is double–word alignment on the
C6400 CPU. Please consult the TMS320C6000 Optimizing C Compiler
User’s Guide for details.
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6.2.9 Performing Conditional Operations with Packed Data

The ’C64x provides a set of operations that are intended to provide conditional

data flow in code that operates on packed data.  These operations make it pos-

sible to avoid breaking the packed data flow with unpacking code and tradition-

al ’if’ statements.

Common conditional operations, such as maximum, minimum and absolute

value are addressed directly with their own specialized intrinsics. In addition

to these specific operations, more generalized compare and select operations

can be constructed using the packed compare intrinsics, _cmpXX2 and

_cmpXX4, in conjunction with the expand intrinsics, _xpnd2 and _xpnd4.

The packed compare intrinsics compare packed data elements, producing a

small bitfield which describes the results of the independent comparisons. For

_cmpeq2, _cmpgt2, and _cmplt2, the intrinsic returns a two bit field containing

the results of the two separate comparisons. For _cmpeq4, _cmpgtu4, and

_cmpltu4, the intrinsic returns a four bit field containing the results of the four

separate comparisons.  In both sets of intrinsics, a 1 bit signifies that the tested

condition is true, and a 0 signifies that it is false. Figure 6–21 and Figure 6–22

illustrate how these compare intrinsics work.

Figure 6–21. Graphical Illustration of _cmpXX2 Intrinsics

0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 000 0 0 0 0 0 0 00c

The _cmpXX2 operation

a_hi a_lo

b_hi b_lo

a

b

c = cmpXX2(a, b)

cmp cmp
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Figure 6–22. Graphical Illustration of _cmpXX4 Intrinsics

0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 000 0 0 0 0 0 0c

The _cmpXX4 operation

a_3

b_3 b_1

a

b

c = cmpXX4(a, b)

b_2 b_0

a_2 a_0a_1

cmp cmp cmp cmp

The expand intrinsics work from a bitfield such as the bitfield returned by the

compare intrinsics. The _xpnd2 and _xpnd4 intrinsics expand the lower 2 or

4 bits of a word to fill the entire 32-bit word of the result. The _xpnd2 intrinsic

expands the lower two bits of the input to two half–words, whereas _xpnd4 ex-

pands the lower four bits to four bytes. The expanded output is suitable for use

as a mask, for instance, for selecting values based on the result of a compari-

son. Figure 6–23 and Figure 6–24 illustrate.
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Figure 6–23. Graphical Illustration of _xpnd2 Intrinsic

a

b_hi b_lob b = xpnd2(a)

xpnd xpnd

Figure 6–24. Graphical Illustration of _xpnd4 Intrinsic

a

b_3b b = xpnd4(a)b_2 b_1 b_0
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Example 6–16 illustrates an example that can benefit from the packed

compare and expand intrinsics in action. The Clear Below Threshold kernel

scans an image of 8-bit unsigned pixels, and sets all pixels that are below a

certain threshold to 0.

Example 6–16. Clear Below Threshold Kernel

 void clear_below_thresh(unsigned char *restrict image, int count, 

                            unsigned char threshold)

    {

        int i;

  

        for (i = 0; i < count; i++)

        {

            if (image[i] <= threshold)

                image[i] = 0;

        }

    }

Vectorization techniques are applied to the code (as described in Section 8.2),

giving the result shown in Example 6–17. The _cmpgtu4() intrinsic compares

against the threshold values, and the _xpnd4() intrinsic generates a mask for

setting pixels to 0. Note that the new code has the restriction that the input

image must be double-word aligned, and must contain a multiple of 8 pixels.

These restrictions are reasonable as common image sizes have a multiple of

8 pixels.
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Example 6–17. Clear Below Threshold Kernel, Using _cmpgtu4 and _xpnd4 Intrinsics

void clear_below_thresh(unsigned char *restrict image, int count,

                     unsigned char threshold)

{

int i;

unsigned t3_t2_t1_t0;               /* Threshold (replicated)    */

unsigned p7_p6_p5_p4, p3_p2_p1_p0;     /* Pixels                */

unsigned c7_c6_c5_c4, c3_c2_c1_c0;    /* Comparison results      */

unsigned x7_x6_x5_x4, x3_x2_x1_x0;    /* Expanded masks          */

/* Replicate the threshold value four times in a single word */

temp       = _pack2(threshold, threshold);     

t3_t2_t1_t0  = _packl4(temp, temp);        

 

for (i = 0; i < count; i += 8)

{

/* Load 8 pixels from input image (one double–word).        */

p7_p6_p5_p4 = _hi(_amemd8(&image[i]));      

p3_p2_p1_p0 = _lo(_amemd8(&image[i]));      

/* Compare each of the pixels to the threshold.             */

c7_c6_c5_c4 = _cmpgtu4(p7_p6_p5_p4, t3_t2_t1_t0);  

c3_c2_c1_c0 = _cmpgtu4(p3_p2_p1_p0, t3_t2_t1_t0);  

/* Expand the comparison results to generate a bitmask.     */

x7_x6_x5_x4 = _xpnd4(c7_c6_c5_c4);

x3_x2_x1_x0 = _xpnd4(c3_c2_c1_c0);

            

/* Apply mask to the pixels.  Pixels that were less than or */

/* equal to the threshold will be forced to 0 because the   */

/* corresponding mask bits will be all 0s. The pixels that  */

/* were greater will not be modified, because their mask    */

/* bits will be all 1s.                                   */

p7_p6_p5_p4 = p7_p6_p5_p4 & x7_x6_x5_x4;      

p3_p2_p1_p0 = p3_p2_p1_p0 & x3_x2_x1_x0;      

/* Store the thresholded pixels back to the image.         */

_amemd8(&image[i]) = _itod(p7_p6_p5_p4, p3_p2_p1_p0);

}

}
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6.3 Linear Assembly Considerations

The ’C64x supports linear assembly programming via the C6000 Assembly

Optimizer. The operation of the Assembly Optimizer is described in detail in

the Optimizing C/C++ Compiler User’s Guide. This section covers ’C64x spe-

cific aspects of linear assembly programming.

6.3.1 Using BDEC and BPOS in Linear Assembly

The ’C64x provides two new instructions, BDEC and BPOS, which are de-

signed to reduce codesize in loops, as well as to reduce pressure on predica-

tion registers. The BDEC instruction combines a decrement, test, and branch

into a single instruction. BPOS is similar, although it does not decrement the

register. For both, these steps are performed in the following sequence.

� Test the loop register to see if it is negative. If it is negative, no further action

occurs. The branch is not taken and the loop counter is not updated.

� If the loop counter was not initially negative, decrement the loop counter

and write the new value back to the register file. (This step does not occur

for BPOS .)

� If the loop counter was not initially negative, issue the branch. Code will

begin executing at the branch’s destination after the branch’s delay slots.

From linear assembly, the branch appears to occur immediately, since lin-

ear assembly programming hides delay slots from the programmer.

This sequence of events causes BDEC to behave somewhat differently than

a separate decrement and predicated branch. First, the decision to branch oc-

curs before the decrement. Second, the decision to branch is based on wheth-

er the number is negative, rather than whether the number is zero. Together,

these effects require the programmer to adjust the loop counter in advance of

a loop.

Consider Example 6–18. In this C code, the loop iterates for count iterations,

adding 1 to iters each iteration. After the loop, iters contains the number of

times the loop iterated.



Linear Assembly Considerations

 6-48

Example 6–18. Loop Trip Count in C

    int count_loop_iterations(int count)
    {
        int iters, i;

        iters = 0;

        for (i = count; i > 0; i––)
            iters++;

        return iters;
    }

Without BDEC and BPOS, this loop would be written as shown in

Example 6–19 below. This example uses branches to test whether the loop

iterates at all, as well as to perform the loop iteration itself. This loop iterates

exactly the number of times specified by the argument ’count’.

Example 6–19. Loop Trip Count in Linear Assembly without BDEC

        .global _count_loop_iterations

_count_loop_iterations .cproc count

        .reg    i, iters, flag

        ZERO    iters               ; Initialize our return value to 0.

        CMPLT   count,  1,  flag

[flag]  B       does_not_iterate    ; Do not iterate if count

        MV      count,  i           ; i = count

loop:   .trip   1                   ; This loop is guaranteed to iterate at 

                                    ; least once.

        ADD     iters,  1,  iters   ; iters++

        SUB     i,      1,  i       ; i––

 [i]    B       loop                ; while (i > 0);

does_not_iterate:

        .return iters                   ; Return our number of iterations.

        .endproc

Using BDEC , the loop is written similarly. However, the loop counter needs to

be adjusted, since BDEC terminates the loop after the loop counter becomes

negative. Example 6–20 illustrates using BDEC to conditionally execute the

loop, as well as to iterate the loop. In the typical case, the loop count needs

to be decreased by 2 before the loop. The SUB and BDEC before the loop per-

form this update to the loop counter.
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Example 6–20. Loop Trip Count Using BDEC

        .global _count_loop_iterations

_count_loop_iterations .cproc count

        .reg    i, iters

        ZERO    iters               ; Initialize our return value to 0.

        SUB     count,  1,  i       ; i = count – 1;

        BDEC    loop,   i           ; Do not iterate if count < 1.

does_not_iterate:

        .return iters               ; Loop does not iterate, just return 0.

loop:   .trip   1                   ; This loop is guaranteed to iterate at 

                                    ; least once.

        ADD     iters,  1,  iters   ; iters++

        BDEC    loop,   i           ; while (i–– >= 0);

        .return iters               ; Return our number of iterations.

        .endproc

Another approach to using BDEC is to allow the loop to execute extra itera-

tions, and then compensate for these iterations after the loop. This is particu-

larly effective in cases where the cost of the conditional flow before the loop

is greater than the cost of executing the body of the loop, as in the example

above. Example 6–21 shows one way to apply this modification.

Example 6–21. Loop Tip Count Using BDEC With Extra Loop Iterations

        .global _count_loop_iterations

_count_loop_iterations .cproc count

        .reg    i, iters

        MVK     –1,     iters       ; Loop executes exactly 1 extra iteration,

                                    ; so start with the iteration count == –1.

        SUB     count,  1,  i       ; Force ”count==0” to iterate exactly once.

loop:   .trip   1                   ; This loop is guaranteed to iterate at 

                                    ; least once.

        ADD     iters,  1,  iters   ; iters++

        BDEC    loop,   i           ; while (i–– >= 0);

        .return iters               ; Return our number of iterations.

        .endproc
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6.3.1.1 Function Calls and ADDKPC in Linear Assembly

The ’C64x provides a new instruction, ADDKPC , which is designed to reduce

codesize when making function calls. This new instruction is not directly ac-

cessible from Linear Assembly. However, Linear Assembly provides the func-

tion call directive, .call, and this directive makes use of ADDKPC. The .call di-

rective is explained in detail in the TMS320C6000 Optimizing C/C++ Compiler

User’s Guide.

Example 6–22 illustrates a simple use of the .call directive. The Assembly Op-

timizer issues an ADDKPC as part of the function call sequence for this .call,

as shown in the compiler output in Example 6–23.

Example 6–22. Using the .call Directive in Linear Assembly

       .data

hello   .string ”Hello World”, 0

        .text

        .global _puts

        .global _main

_main   .cproc

        .reg    pointer

loop:

        MVKL    hello,  pointer     ; Generate a 32–bit pointer to the

        MVKH    hello,  pointer     ; phrase ”Hello World”.

        .call   _puts(pointer)      ; Print the string ”Hello World”.

        B       loop                ; Keep printing it.

        .endproc

Example 6–23. Compiler Output Using ADDKPC

loop:    

;    .call   _puts(pointer)    ; Print the string ”Hello World”.

      B       .S1   _puts      ; |15| 

      MVKL    .S1   hello,A4   ; |12|  Generate a 32–bit pointer to the

      ADDKPC  .S2   RL0,B3,2   ; |15| 

      MVKH    .S1   hello,A4   ; |13|  phrase ”Hello World”.

RL0:  ; CALL OCCURS            ; |15|
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6.3.1.2 Using .mptr and .mdep With Linear Assembly on the ’C64x

The Assembly Optimizer supports the .mptr and .mdep directives on the

’C64x. These directives allow the programmer to specify the memory access

pattern for loads and stores, as well as which loads and stores are dependent

on each other. Section 5.2, Assembly Optimizer Options and Directives, de-

scribes these directives in detail. This section describes the minor differences

in the behavior of the .mptr directive on ’C64x vs. other C6000 family members.

Most ’C64x implementations will have different memory bank structure than

existing ’C62x implementations in order to support the wider memory ac-

cesses that the ’C64x provides. Refer to the TMS320C6000 Peripherals Ref-

erence Guide (SPRU190) for specific information on the part that you are us-

ing.

Additionally, the ’C64x’s non-aligned memory accesses do not cause bank

conflicts. This is due to the fact that no other memory access can execute in

parallel with a non-aligned memory access. As a result, the.mptr directive has

no effect on non-aligned load and store instructions.

6.3.2 Avoiding Cross Path Stalls

6.3.2.1 Architectural Considerations

The C6000 CPU components consist of:

� Two general–purpose register files (A and B)

� Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)

� Two load–from–memory data paths (LD1 and LD2)

� Two store–to–memory data paths (ST1 and ST2)

� Two data address paths (DA1 and DA2)

� Two register file data cross paths (1X and 2X)

6.3.2.2 Register File Cross Paths

The functional unit is where the instructions (ADD, MPY etc.) are executed.

Each functional unit reads directly from and writes directly to the register file

within its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register

file A and the .L2, .S2, .D2, and .M2 units write to register file B.

The register files are also connected to the opposite–side register file’s func-

tional units via the 1X and 2X cross paths. These cross paths allow functional
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units from one data path to access a 32–bit operand from the opposite side’s

register file. The 1X cross path allows data path A’s functional units to read their

source from register file B. Similarly, the 2X cross path allows data path B’s

functional units to read their source from register file A. Figure 6–25 illustrates

how these register file cross paths work.

Figure 6–25. C64x Data Cross Paths
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C64x data cross paths

On the ’C64x, all eight of the functional units have access to the opposite side’s

register file via a cross path. Only two cross paths, 1X and 2X, exist in the

C6000 architecture. Therefore, the limit is one source read from each data

path’s opposite register file per clock cycle, or a total of two cross–path source

reads per clock cycle. The ’C64x pipelines data cross path accesses allowing

multiple functional units per side to read the same cross–path source simulta-

neously. Thus the cross path operand for one side may be used by up to two

of the functional units on that side in an execute packet. In the ’C62x/’C67x,

only one functional unit per data path, per execute packet can get an operand

from the opposite register file.

On the ’C64x, a delay clock cycle is introduced whenever an instruction at-

tempts to read a source register via a cross path where that register was up-

dated in the previous cycle. This is known as a cross path stall. This stall is in-

serted automatically by the hardware; no NOP instruction is needed. For more

information, see the TMS320C6000 CPU and Instruction Set Reference

Guide (SPRU189). This cross path stall does not occur on the ’C62x/’C67x.

This cross path stall is necessary so that the ’C64x can achieve clock rate

goals beyond 1GHz. It should be noted that all code written for the ’C62x/’C67x

that contains cross paths where the source register was updated in the pre-

vious cycle will contain one clock stall when running on the ’C64x. The code

will still run correctly, but it will take an additional clock cycle.



Linear Assembly Considerations

6-53’C64x Programming Considerations

It is possible to avoid the cross path stall by scheduling instructions such that

a cross path operand is not read until at least one clock cycle after the operand

has been updated. With appropriate scheduling, the ’C64x can provide one

cross path operand per data path per clock cycle with no stalls. In many cases,

the TMS320C6000 Optimizing C Compiler and Assembly Optimizer automati-

cally perform this scheduling as demonstrated in Example 6–24.

Below is a C implementation of a weighted vector sum. Each value of input

array a is multiplied by a constant, m, and then is shifted to the right by 15 bits.

This weighted input is now added to a second input array, b, with the weighted

sum stored in output array, c.

Example 6–24. Avoiding Cross Path Stalls: Weighted Vector Sum Example

int w_vec(short a[],short b[], short c[], short m, int n)
               {int i;
                       for (i=0; i<n; i++) {
                           c[i] = ((m * a[i]) >> 15) + b[i];
                                            }
               }

This algorithm requires two loads, a multiply, a shift, an add, and a store. Only

the .D units on the C6000 architecture are capable of loading/storing values

from/to memory. Since there are two .D units available, it would appear this

algorithm would require two cycles to produce one result considering three .D

operations are required. Be aware, however, that the input and output arrays

are short or 16–bit values. Both the ’C62x and ’C64x have the ability to load/

store 32–bits per .D unit. (The ’C64x is able load/store 64–bits per .D unit as

well.). By unrolling the loop once, it may be possible to produce two 16–bit re-

sults every two clock cycles.

Now, examine further a partitioned linear assembly version of the weighted

vector sum, where data values are brought in 32–bits at a time. With linear as-

sembly, it is not necessary to specify registers, functional units or delay slots.

In partitioned linear assembly, the programmer has the option to specify on

what side of the machine the instructions will execute. We can further specify

the functional unit as seen below in Example 6–25.
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Example 6–25. Avoiding Cross Path Stalls: Partitioned Linear Assembly

        .global _w_vec

_w_vec: .cproc  a, b, c, m

        .reg    ai_i1, bi_i1, pi, pi1, pi_i1, pi_s, pi1_s

        .reg    mask, bi, bi1, ci, ci1, c1, cntr

        MVK     –1, mask          

        MVKH    0, mask       ; generate a mask = 0x0000FFFF

        MVK     50, cntr      ; load loop count with 50 

        ADD     2, c, c1      ; c1 is offset by 2(16–bit values)from c   

LOOP:   .trip 50              ; this loop will run a minimum of 50 times

      LDW    .D2    *a++,ai_i1            ;load 32–bits (an & an+1) 

      LDW    .D1    *b++,bi_i1            ;load 32–bits (bn & bn+1)

      MPY    .M1    ai_i1, m, pi     ;multiply an by a constant ; prod0

      MPYHL  .M2    ai_i1, m, pi1    ;multiply an+1 by a constant; prod1

      SHR    .S1    pi, 15, pi_s     ;shift prod0 right by 15 –> sprod0

      SHR    .S2    pi1,15, pi1_s    ;shift prod1 right by 15 –> sprod1 

      AND    .L2X   bi_i1, mask, bi  ;AND bn & bn+1 w/ mask to isolate bn

      SHR    .S1    bi_i1, 16, bi1  ;shift bn & bn+1 by 16 to isolate bn+1

      ADD    .L2X   pi_s, bi, ci         ;add sprod0 + bn

      ADD    .L1X   pi1_s, bi1, ci1      ;add sprod1 + bn+1

      STH    .D2    ci, *c++[2]      ;store 16–bits (cn)

      STH    .D1    ci1, *c1++[2]      ;store 16–bits (cn+1)

[cntr]SUB           cntr, 1, cntr       ;decrement loop count

[cntr]B             LOOP          ;branch to loop if loop count > 0

        .endproc

In the implementation above, 16–bit values two at a time with the LDW instruc-

tion into a single 32–bit register. Each 16–bit value is multiplied in register ai_i1

by the short (16–bit) constant m. Each 32–bit product is shifted to the right by

15 bits. The second input array is also brought in two 16–bit values at a time

into a single 32–bit register, bi_i1. bi_i1 is ANDed with a mask that zeros the

upper 16–bits of the register to create bi (a single 16–bit value). bi_i1 is also

shifted to the right by 16 bits so that the upper 16–bit input value can be added

to the corresponding weighted input value.
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The code above is sent to the assembly optimizer with the following compiler

options: –o3, –mi, –mt, –k, and –mg. Since a specific C6000 platform was not

specified , the default is to generate code for the ’C62x. The –o3 option enables

the highest level of the optimizer. The –mi option creates code with an interrupt

threshold equal to infinity. In other words, interrupts will never occur when this

code runs. The –k option keeps the assembly language file and –mt indicates

that the programmer is assuming no aliasing. Aliasing allows multiple pointers

to point to the same object). The –mg option allows profiling to occur in the de-

bugger for benchmarking purposes.

Example 6–26 below, is the assembly output generated by the assembly opti-

mizer for the weighted vector sum loop kernel:

Example 6–26. Avoiding Cross Path Stalls: Vector Sum Loop Kernel

LOOP:    ; PIPED LOOP KERNEL

         AND   .L2X    A3,B6,B8    ;AND bn & bn+1 with mask to isolate bn

||       SHR   .S1     A0,0xf,A0     ; shift prod0 right by 15 –> sprod0

||       MPY   .M1X    B2,A5,A0      ; multiply an by constant ; prod0

|| [ A1] B     .S2     LOOP          ; branch to loop if loop count >0

|| [ A1] ADD   .L1     0xffffffff,A1,A1  ; decrement loop count

||       LDW   .D1T1   *A7++,A3          ; load 32–bits (bn & bn+1) 

||       LDW   .D2T2   *B5++,B2          ; load 32–bits (an & an+1) 

   [ A2] MPYSU .M1     2,A2,A2         ; 

|| [!A2] STH   .D2T2   B1,*B4++(4)     ; store 16–bits (cn+1) 

|| [!A2] STH   .D1T1   A6,*A8++(4)     ; store 16–bits (cn)

||       ADD   .L1X    A4,B0,A6        ; add sprod1 + bn+1

||       ADD   .L2X    B8,A0,B1        ; add sprod0 + bn

||       SHR   .S2     B9,0xf,B0   ; shift prod1 right by 15 –> sprod1

||       SHR   .S1     A3,0x10,A4  ; shift bn & bn+1 by 16 to isolate bn+1 

||       MPYHL .M2     B2,B7,B9    ; multiply an+1 by a constant ; prod1

This two–cycle loop produces two 16–bit results per loop iteration as planned.

If the code is used on the ’C64x, be aware that in the first execute packet that

A0 (prod0) is shifted to the right by 15, causing the result to be written back into

A0.  In the next execute packet and therefore the next clock cycle, A0 (sprod0)

is used as a cross path operand to the .L2 functional unit. If this code were run

on the ’C64x, it would exhibit a one cycle clock stall as described above. A0

in cycle 2 is being updated and used as a cross path operand in cycle 3. If the

code performs as planned, the two–cycle loop would now take three cycles to

execute.

The cross path stall can, in most cases, be avoided, if the  –mv6400 option is

added to the compiler options list. This option indicates to the compiler/assem-

bly optimizer that the code below will be run on the ’C64x core.
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In Example 6–27 below, the assembly output generated by the assembly opti-

mizer for the weighted vector sum loop kernel compiled with the –mv6400 –o3

–mt –mi –k –mg options:

Example 6–27. Avoiding Cross Path Stalls: Assembly Output Generated for Weighted
Vector Sum Loop Kernel

LOOP:    ; PIPED LOOP KERNEL

         STH   .D1T1   A6,*A8++(4)  ; store 16–bits (cn)  

||       ADD   .L2X    B9,A16,B9    ; add bn + copy of sprod0

||       MV    .L1     A3,A16       ; copy sprod0 to another register

||       SHR   .S1     A5,0x10,A3 ; shift bn & bn+1 by 16 to isolate bn+1  

|| [ B0] BDEC  .S2     LOOP,B0    ;branch to loop & decrement loop count

||       MPY   .M1X    B17,A7,A4    ; multiply an by a constant ; prod0 

||       MPYHL .M2     B17,B4,B16   ; multiply an+1 by a constant ; prod1 

||       LDW   .D2T2   *B6++,B17    ; load 32–bits (an & an+1)   

         STH   .D2T2   B9,*B7++(4)  ; store 16–bits (cn+1)  

||       ADD   .L1X    A3,B8,A6     ; add bn+1 + sprod1

||       AND   .L2X    A5,B5,B9   ; AND bn & bn+1 with mask to isolate bn  

||       SHR   .S2     B16,0xf,B8 ; shift prod1 right by 15 –> sprod1  

||       SHR   .S1     A4,0xf,A3  ; shift prod0 right by 15 –> sprod0

||       LDW   .D1T1   *A9++,A5     ; load 32–bits (bn & bn+1)

In Example 6–27, the assembly optimizer has created a two–cycle loop with-

out a cross path stall. The loop count decrement instruction and the conditional

branch to loop based on the value of loop count instruction have been replaced

with a single BDEC instruction. In the instruction slot created by combining

these two instructions into one, a MV instruction has been placed. The MV in-

struction copies the value in the source register to the destination register. The

value in A3 (sprod0) is placed into A16. A16 is then used as a cross path oper-

and to the .L2 functional unit. A16 is updated every two cycles. For example,

A16 is updated in cycles 2, 4, 6, 8 etc. The value of A16 from the previous loop

iteration is used as the cross path operand to the .L2 unit in cycles 2, 4, 6, 8

etc. This rescheduling prevents the cross path stall. Again, There are two–

cycle loop with two 16–bit results produced per loop iteration. Further opti-

mization of this algorithm can be achieved by unrolling the loop one more time.
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Structure of Assembly Code

An assembly language program must be an ASCII text file. Any line of

assembly code can include up to seven items:

� Label

� Parallel bars

� Conditions

� Instruction

� Functional unit

� Operands

� Comment

Topic Page

7.1 Labels 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2 Parallel Bars 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.3 Conditions 7-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4 Instructions 7-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.5 Functional Units 7-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.6 Operands 7-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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7.1 Labels

A label identifies a line of code or a variable and represents a memory address

that contains either an instruction or data.

Figure 7–1 shows the position of the label in a line of assembly code. The colon

following the label is optional.

Figure 7–1. Labels in Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

Labels must meet the following conditions:

� The first character of a label must be a letter or an underscore (_) followed

by a letter.

� The first character of the label must be in the first column of the text file.

� Labels can include up to 32 alphanumeric characters.

7.2 Parallel Bars

An instruction that executes in parallel with the previous instruction signifies

this with parallel bars (||). This field is left blank for an instruction that does not

execute in parallel with the previous instruction.

Figure 7–2. Parallel Bars in Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

Labels / Parallel Bars
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7.3 Conditions

Five registers on the ’C62x/’C67x are available for conditions: A1, A2, B0, B1,

and B2. Six registers on the ’C64x are available for conditions: A0, A1, A2, B0,

B1, and B2. Figure 7–3 shows the position of a condition in a line of assembly

code.

Figure 7–3. Conditions in Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

All ’C6000 instructions are conditional:

� If no condition is specified, the instruction is always performed.

� If a condition is specified and that condition is true, the instruction

executes. For example:

With this condition ... The instruction executes if ...

[A1] A1 ! = 0

[!A1] A1 = 0

� If a condition is specified and that condition is false, the instruction does

not execute.

With this condition ... The instruction does not execute if ...

[A1] A1 = 0

[!A1] A1! = 0
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7.4 Instructions

Assembly code instructions are either directives or mnemonics:

� Assembler directives are commands for the assembler (asm6x) that

control the assembly process or define the data structures (constants and

variables) in the assembly language program. All assembler directives

begin with a period, as shown in the partial list in Table 7–1. See the

TMS320C6000 Assembly Language Tools User’s Guide for a complete

list of directives.

� Processor mnemonics are the actual microprocessor instructions that

execute at runtime and perform the operations in the program. Processor

mnemonics must begin in column 2 or greater. For more information about

processor mnemonics, see the TMS320C6000 CPU and Instruction Set

User’s Guide.

Figure 7–4 shows the position of the instruction in a line of assembly code.

Figure 7–4. Instructions in Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

Table 7–1. Selected TMS320C6x Directives

Directives Description

.sect  “name ” Creates section of information (data or code)

.double value Reserve two consecutive 32 bits (64 bits) in memory and

fill with double-precision (64-bit) IEEE floating-point rep-

resentation of specified value

.float value Reserve 32 bits in memory and fill with single-precision

(32-bit) IEEE floating-point representation of specified

value

.int value

.long value

.word value

Reserve 32 bits in memory and fill with specified value

.short value

.half value
Reserve 16 bits in memory and fill with specified value

.byte value Reserve 8 bits in memory and fill with specified value

See the TMS320C6000 Assembly Language Tools User’s Guide for a com-

plete list of directives.
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7.5 Functional Units

The ’C6000 CPU contains eight functional units, which are shown in

Figure 7–5 and described in Table 7–2.

Figure 7–5. TMS320C6x Functional Units

Memory

Register

file A

.M2

.L2

.S2

.D2

Register

file B

.D1

.M1

.L1

.S1
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Table 7–2. Functional Units and Operations Performed  

Functional Unit Fixed–Point Operations Floating–Point Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare

   operations

32-bit logical operations

Leftmost 1 or 0 counting for 32 bits

Normalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations

Quad 8-bit arithmetic operations

Dual 16-bit min/max operations

Quad 8-bit min/max operations

Arithmetic operations

DP → SP, INT → DP, INT → SP

   conversion operations

.S unit (.S1, .S2) 32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field 

   operations

32-bit logical operations

Branches

Constant generation

Register transfers to/from control register

   file (.S2 only)

Byte shifts

Data packing/unpacking

Dual 16-bit compare operations

Quad 8-bit compare operations

Dual 16-bit shift operations

Dual 16-bit saturated arithmetic

   operations

Quad 8-bit saturated arithmetic

   operations

Compare

Reciprocal and reciprocal square–root

   operations

Absolute value operations

SP → DP conversion operations
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Table 7–2. Functional Units and Operations Performed (Continued)

Functional Unit Floating–Point OperationsFixed–Point Operations

.M unit (.M1, .M2) 16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with

   add/subtract operations

Quad 8 x 8 multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

32 X 32–bit fixed–point multiply operations

Floating–point multiply operations

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular

   address calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant

   offset (.D2 only)

Dual 16–bit arithmetic operations

Load and store double words with 5-bit

   constant

Load and store non-aligned words and

   double words

5-bit constant generation

32-bit logical operations

Load doubleword with 5–bit constant offset

Note: Fixed-point operations are available on all three devices. Floating-point operations and 32 x 32-bit fixed-point multiply are

available only on the ’C67x. Additonal ’C64x functions are shown in bold.

Figure 7–6 shows the position of the unit in a line of assembly code.

Figure 7–6. Units in the Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

Specifying the functional unit in the assembly code is optional. The functional

unit can be used to document which resource(s) each instruction uses.
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7.6 Operands

The ’C6000 architecture requires that memory reads and writes move data

between memory and a register. Figure 7–7 shows the position of the oper-

ands in a line of assembly code.

Figure 7–7. Operands in the Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

Instructions have the following requirements for operands in the assembly

code:

� All instructions require a destination operand.

� Most instructions require one or two source operands.

� The destination operand must be in the same register file as one source

operand.

� One source operand from each register file per execute packet can come

from the register file opposite that of the other source operand.

When an operand comes from the other register file, the unit includes an X,

as shown in Figure 7–8, indicating that the instruction is using one of the

cross paths. (See the TMS320C6000 CPU and Instruction Set Reference

Guide for more information on cross paths.)

Figure 7–8. Operands in Instructions

.L1   A0,A1,A3

.L1X   A0,B1,A3

All registers except B1 are on the same side of the CPU.

ADD

ADD

The ’C6000 instructions use three types of operands to access data:

� Register operands indicate a register that contains the data.

� Constant operands specify the data within the assembly code.

� Pointer operands contain addresses of data values.

Only the load and store instructions require and use pointer operands to

move data values between memory and a register.
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7.7 Comments

As with all programming languages, comments provide code documentation.

Figure 7–9 shows the position of the comment in a line of assembly code.

Figure 7–9. Comments in Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

The following are guidelines for using comments in assembly code:

� A comment may begin in any column when preceded by a semicolon (;).

� A comment must begin in first column when preceded by an asterisk (*).

� Comments are not required but are recommended.
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Interrupts

This chapter describes interrupts from a software-programming point of view.

A description of single and multiple register assignment is included, followed

by code generation of interruptible code and finally, descriptions of interrupt

subroutines.
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8.1 Overview of Interrupts 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.2 Single Assignment vs. Multiple Assignment 8-3. . . . . . . . . . . . . . . . . . . . . 
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8.1 Overview of Interrupts

An interrupt is an event that stops the current process in the CPU so that the

CPU can attend to the task needing completion because of another event.

These events are external to the core CPU but may originate on-chip or off-

chip. Examples of on-chip interrupt sources include timers, serial ports, DMAs

and external memory stalls. Examples of off-chip interrupt sources include

analog-to-digital converters, host controllers and other peripheral devices.

Typically, DSPs compute different algorithms very quickly within an asynchro-

nous system environment. Asynchronous systems must be able to control the

DSP based on events outside of the DSP core. Because certain events can

have higher priority than algorithms already executing on the DSP, it is some-

times necessary to change, or interrupt, the task currently executing on the

DSP.

The ’C6000 provides hardware interrupts that allow this to occur automatically.

Once an interrupt is taken, an interrupt subroutine performs certain tasks or

actions, as required by the event. Servicing an interrupt involves switching

contexts while saving all state of the machine. Thus, upon return from the inter-

rupt, operation of the interrupted algorithm is resumed as if there had been no

interrupt. Saving state involves saving various registers upon entry to the inter-

rupt subroutine and then restoring them to their original state upon exit.

This chapter focuses on the software issues associated with interrupts. The

hardware description of interrupt operation is fully described in the

TMS320C6000 CPU and Instruction Set Reference Guide.

In order to understand the software issues of interrupts, we must talk about two

types of code: the code that is interrupted and the interrupt subroutine, which

performs the tasks required by the interrupt. The following sections provide in-

formation on:

� Single and multiple assignment of registers

� Loop interruptibility

� How to use the ’C6000 code generation tools to satisfy different require-

ments

� Interrupt subroutines
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8.2 Single Assignment vs. Multiple Assignment

Register allocation on the ’C6000 can be classified as either single assignment

or multiple assignment. Single assignment code is interruptible; multiple as-

signment is not interruptible. This section discusses the differences between

each and explains why only single assignment is interruptible.

Example 8–1 shows multiple assignment code. The term multiple assignment

means that a particular register has been assigned with more than one value

(in this case 2 values). On cycle 4, at the beginning of the ADD instruction, reg-

ister A1 is assigned to two different values. One value, written by the SUB in-

struction on cycle 1, already resides in the register. The second value is called

an in-flight value and is assigned by the LDW instruction on cycle 2. Because

the LDW instruction does not actually write a value into register A1 until the end

of cycle 6, the assignment is considered in-flight.

In-flight operations cause code to be uninterruptible due to unpredictability.

Take, for example, the case where an interrupt is taken on cycle 3. At this point,

all instructions which have begun execution are allowed to complete and no

new instructions execute. So, 3 cycles after the interrupt is taken on cycle 3,

the LDW instruction writes to A1. After the interrupt service routine has been

processed, program execution continues on cycle 4 with the ADD instruction.

In this case, the ADD reads register A1 and will be reading the result of the

LDW, whereas normally the result of the SUB should be read. This unpredict-

ability means that in order to ensure correct operation, multiple assignment

code should not be interrupted and is thus, considered uninterruptible.

Example 8–1. Code With Multiple Assignment of A1

cycle

1 SUB .S1 A4,A5,A1 ; writes to A1 in single cycle

2 LDW .D1 *A0,A1 ; writes to A1 after 4 delay slots

3 NOP

4 ADD .L1 A1,A2,A3 ; uses old A1 (result of SUB)

5–6 NOP 2

7 MPY .M1 A1,A4,A5 ; uses new A1 (result of LDW)

Example 8–2 shows the same code with a new register allocation to produce

single assignment code. Now the LDW assigns a value to register A6 instead

of A1. Now, regardless of whether an interrupt is taken or not, A1 maintains

the value written by the SUB instruction because LDW now writes to A6. Be-

cause there are no in-flight registers that are read before an in-flight instruction

completes, this code is interruptible.
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Example 8–2. Code Using Single Assignment

cycle

1 SUB .S1 A4,A5,A1 ; writes to A1 in single cycle

2 LDW .D1 *A0,A6 ; writes to A1 after 4 delay slots

3 NOP

4 ADD .L1 A1,A2,A3 ; uses old A1 (result of SUB)

5–6 NOP 2

7 MPY .M1 A6,A4,A5 ; uses new A1 (result of LDW)

Both examples involve exactly the same schedule of instructions. The only dif-

ference is the register allocation. The single assignment register allocation, as

shown in Example 8–2, can result in higher register pressure (Example 8–2

uses one more register than Example 8–1).

The next section describes how to generate interruptible and non-interruptible

code with the ’C6000 code generation tools.
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8.3 Interruptible Loops

Even if code employs single assignment, it may not be interruptible in a loop.

Because the delay slots of all branch operations are protected from interrupts

in hardware, all interrupts remain pending as long as the CPU has a pending

branch. Since the branch instruction on the ’C6000 has 5 delay slots, loops

smaller than 6 cycles always have a pending branch. For this reason, all loops

smaller than 6 cycles are uninterruptible.

There are two options for making a loop with an iteration interval less than 6

interruptible.

1) Simply slow down the loop and force an iteration interval of 6 cycles. This

is not always desirable since there will be a performance degradation.

2) Unroll the loop until an iteration interval of 6 or greater is achieved. This

ensures at least the same performance level and in some cases can im-

prove performance (see section 5.9, Loop Unrolling and section 8.4.4,

Getting the Most Performance Out of Interruptible Code). The disadvan-

tage is that code size increases.

The next section describes how to automatically generate these different op-

tions with the ’C6000 code generation tools.
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8.4 Interruptible Code Generation

The ’C6000 code generation tools provide a large degree of flexibility for inter-

ruptibility. Various combinations of single and multiple assignment code can

be generated automatically to provide the best tradeoff in interruptibility and

performance for each part of an application. In most cases, code performance

is not affected by interruptibility, but there are some exceptions:

� Software pipelined loops that have high register pressure can fail to allo-

cate registers at a given iteration interval when single assignment is re-

quired, but might otherwise succeed to allocate if multiple assignment

were allowed. This can result in a larger iteration interval for single assign-

ment software pipelined loops and thus lower performance. To determine

if this is a problem for looped code, use the -mw feedback option. If you

see a “Cannot allocate machine registers” message after the message

about searching for a software pipeline schedule, then you have a register

pressure problem.

� Because loops with minimum iteration intervals less than 6 are not inter-

ruptible, higher iteration intervals might be used which results in lower per-

formance. Unrolling the loop, however, prevents this reduction in perfor-

mance (See section 8.4.4.)

� Higher register pressure in single assignment can cause data spilling to

memory in both looped code and non-looped code when there are not

enough registers to store all temporary values. This reduces performance

but occurs rarely and only in extreme cases.

The tools provide 3 levels of control to the user. These levels are described in

the following sections. For a full description of interruptible code generation,

see the TMS320C6000 Optimizing C/C++ Compiler User’s Guide.

8.4.1 Level 0 - Specified Code is Guaranteed to Not Be Interrupted

At this level, the compiler does not disable interrupts. Thus, it is up to you to

guarantee that no interrupts occur. This level has the advantage that the com-

piler is allowed to use multiple assignment code and generate the minimum

iteration intervals for software pipelined loops.

The command line option -mi (no value specified) can be used for an entire

module and the following pragma can be used to force this level on a particular

function:

#pragma FUNC_INTERRUPT_THRESHOLD(func, uint_max);
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8.4.2 Level 1 – Specified Code Interruptible at All Times

At this level, the compiler employs single assignment everywhere and never

produces a loop of less than 6 cycles.  The command line option –mi1 can be

used for an entire module and the following pragma can be used to force this

level on a particular function:

#pragma FUNC_INTERRUPT_THRESHOLD(func, 1);

8.4.3 Level 2 – Specified Code Interruptible Within Threshold Cycles

The compiler will disable interrupts around loops if the specified threshold

number is not exceeded. In other words, the user can specify a threshold, or

maximum interrupt delay, that allows the compiler to use multiple assignment

in loops that do not exceed this threshold. The code outside of loops can have

interrupts disabled and also use multiple assignment as long as the threshold

of uninterruptible cycles is not exceeded. If the compiler cannot determine the

loop count of a loop, then it assumes the threshold is exceeded and will gener-

ate an interruptible loop.

The command line option –mi (threshold) can be used for an entire module and

the following pragma can be used to specify a threshold for a particular func-

tion.

#pragma FUNC_INTERRUPT_THRESHOLD(func, threshold);
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8.4.4 Getting the Most Performance Out of Interruptible Code

As stated in Chapter 4 and Chapter 7, the .trip directive and the MUST_ITER-

ATE pragma can be used to specify a maximum value for the trip count of a

loop. This information can help to prevent performance loss when your loops

need to be interruptible as in Example 8–3.

For example, if your application has an interrupt threshold of 100 cycles, you

will use the -mi100 option when compiling your application. Assume that there

is a dot product routine in your application as follows:

Example 8–3. Dot Product With MUST_ITERATE Pragma Guaranteeing Minimum Trip
Count

int dot_prod(short *a, short *b, int n)

{

int i, sum = 0;

#pragma MUST_ITERATE (20);

for (i = 0; i < n; i++)

sum += a[i] * b[i];

return sum;

}

With the MUST_ITERATE pragma, the compiler only knows that this loop will

execute at least 20 times. Even with the interrupt threshold set at 100 by the

-mi option, the compiler will still produce a 6-cycle loop for this code (with only

one result computed during those six cycles) because the compiler has to ex-

pect that a value of greater than 100 may be passed into n.

After looking at the application, you discover that n will never be passed a value

greater than 50 in the dot product routine. Example 8–4 adds this information

to the MUST_ITERATE pragma as follows:
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Example 8–4. Dot Product With _nassert Guaranteeing Trip Count Range

int dot_prod(short *a, short *b, int n)

{

int i, sum = 0;

#pragma MUST_ITERATE (20,50);

for (i = 0; i < n; i++)

sum += a[i] * b[i];

return sum;

}

Now the compiler knows that the loop will complete in less than 100 cycles

when it generates a 1-cycle kernel that must execute 50 times (which equals

50 cycles). The total cycle count of the loop is now known to be less than the

interrupt threshold, so the compiler will generate the optimal 1-cycle kernel

loop. You can do the same thing in linear assembly code by specifying both

the minimum and maximum trip counts with the .trip directive.

Note:

The compiler does not take stalls (memory bank conflict, external memory
access time, cache miss, etc.) into account. Because of this, it is recom-
mended that you are conservative with the threshold value.

Let us now assume the worst case scenario - the application needs to be inter-

ruptible at any given cycle. In this case, you will build your application with an

interrupt threshold of one. It is still possible to regain some performance lost

from setting the interrupt threshold to one. Example 8–5 shows where the fac-

tor option in .trip and using the third argument of the MUST_ITERATE pragma

are useful. For more information, see section 2.5.3.4, Loop Unrolling.
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Example 8–5. Dot Product With MUST_ITERATE Pragma Guaranteeing Trip Count Range
and Factor of 2

int dot_prod(short *a, short *b, int n)

{

int i, sum = 0;

#pragma MUST_ITERATE (20,50,2);

for (i = 0; i < n; i++)

sum += a[i] * b[i];

return sum;

}

By enabling unrolling, performance has doubled from one result per 6-cycle

kernel to two results per 6-cycle kernel. By allowing the compiler to maximize

unrolling when using the interrupt threshold of one, you can get most of the

performance back. Example 8–6 shows a dot product loop that will execute a

factor of 4 between 16 and 48 times.

Example 8–6. Dot Product With MUST_ITERATE Pragma Guaranteeing Trip Count Range
and Factor of 4

int dot_prod(short *a, short *b, int n)

{

int i, sum = 0;

#pragma MUST_ITERATE (16,48,4);

for (i = 0; i < n; i++)

sum += a[i] * b[i];

return sum;

}

The compiler knows that the trip count is some factor of four. The compiler will

unroll this loop such that four iterations of the loop (four results are calculated)

occur during the six cycle loop kernel. This is an improvement of four times

over the first attempt at building the code with an interrupt threshold of one. The

one drawback of unrolling the code is that code size increases, so using this

type of optimization should only be done on key loops.
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8.5 Interrupt Subroutines

The interrupt subroutine (ISR) is simply the routine, or function, that is called

by an interrupt. The ’C6000 provides hardware to automatically branch to this

routine when an interrupt is received based on an interrupt service table. (See

the Interrupt Service Table in the TMS320C6000 CPU and Instruction Set Ref-

erence Guide.) Once the branch is complete, execution begins at the first exe-

cute packet of the ISR.

Certain state must be saved upon entry to an ISR in order to ensure program

accuracy upon return from the interrupt. For this reason, all registers that are

used by the ISR must be saved to memory, preferably a stack pointed to by

a general purpose register acting as a stack pointer. Then, upon return, all val-

ues must be restored. This is all handled automatically by the C/C++ compiler,

but must be done manually when writing hand-coded assembly.

8.5.1 ISR with the C/C++ Compiler

The C/C++ compiler automatically generates ISRs with the keyword interrupt.

The interrupt function must be declared with no arguments and should return

void. For example:

interrupt void int_handler()

 {

 unsigned int flags;

 ...

 }

 

Alternatively, you can use the interrupt pragma to define a function to be an

ISR:

#pragma INTERRUPT(func);

The result of either case is that the C/C++ compiler automatically creates a

function that obeys all the requirements for an ISR. These are different from

the calling convention of a normal C/C++ function in the following ways:

� All general purpose registers used by the subroutine must be saved to the

stack. If another function is called from the ISR, then all the registers

(A0–A15, B0–B15 for ’C62x and ’C67x, and A0–A31, B0–B31 for ’C64x)

are saved to the stack.

� A B IRP instruction is used to return from the interrupt subroutine instead

of  the B B3 instruction used for standard C/C++ functions

� A function cannot return a value and thus, must be declared void.

See the section on Register Conventions in the TMS320C6000 Optimizing

C/C++ Compiler User’s Guide for more information on standard function call-

ing conventions.
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8.5.2 ISR with Hand-Coded Assembly

When writing an ISR by hand, it is necessary to handle the same tasks the

C/C++ compiler does. So, the following steps must be taken:

� All registers used must be saved to the stack before modification. For this

reason, it is preferable to maintain one general purpose register to be used

as a stack pointer in your application. (The C/C++ compiler uses B15.)

� If another C routine is called from the ISR (with an assembly branch in-

struction to the _c_func_name label) then all registers must be saved to

the stack on entry.

� A B IRP instruction must be used to return from the routine. If this is the

NMI ISR, a B NRP must be used instead.

� An NOP 4 is required after the last LDW in this case to ensure that B0 is

restored before returning from the interrupt.

Example 8–7. Hand-Coded Assembly ISR

* Assume Register B0–B4 & A0 are the only registers used by the

* ISR and no other functions are called

STW  B0,*B15–– ; store B0 to stack

STW  A0,*B15–– ; store A0 to stack

STW  B1,*B15–– ; store B1 to stack

STW  B2,*B15–– ; store B2 to stack

STW  B3,*B15–– ; store B3 to stack

STW  B4,*B15–– ; store B4 to stack

* Beginning of ISR code

...

* End of ISR code

 

LDW  *++B15,B4 ; restore B4

LDW  *++B15,B3 ; restore B3

LDW  *++B15,B2 ; restore B2

LDW  *++B15,B1 ; restore B1

LDW  *++B15,A0 ; restore A0

|| B   IRP ; return from interrupt

LDW  *++B15,B0 ; restore B0

NOP  4 ; allow all multi–cycle instructions

     ; to complete before branch is taken
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8.5.3 Nested Interrupts

Sometimes it is desirable to allow higher priority interrupts to interrupt lower

priority ISRs. To allow nested interrupts to occur, you must first save the IRP,

IER, and CSR to a register which is not being used or to or some other memory

location (usually the stack). Once these have been saved, you can reenable

the appropriate interrupts. This involves resetting the GIE bit and then doing

any necessary modifications to the IER, providing only certain interrupts are

allowed to interrupt the particular ISR. On return from the ISR, the original val-

ues of the IRP, IER, and CSR must be restored.
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Example 8–8. Hand-Coded Assembly ISR Allowing Nesting of Interrupts

* Assume Register B0–B5 & A0 are the only registers used by the

* ISR and no other functions are called

STW B0,*B15–– ; store B0 to stack

|| MVC IRP, B0 ; save IRP

STW A0,*B15–– ; store A0 to stack

|| MVC IER, B1 ; save IER

|| MVK mask,A0 ; setup a new IER (if desirable)

STW B1,*B15–– ; store B1 to stack

|| MVC A0, IER ; setup a new IER (if desirable)

STW B2,*B15–– ; store B2 to stack

|| MVC CSR,A0 ; read current CSR

STW B3,*B15–– ; store B3 to stack

|| OR 1,A0,A0 ; set GIE bit field in CSR

STW B4,*B15–– ; store B4 to stack

STW B5,*B15–– ; store B5 to stack

|| MVC A0,CSR ; write new CSR with GIE enabled

STW B0,*B15–– ; store B0 to stack (contains IRP)

STW B1,*B15–– ; store B1 to stack (contains IER)

STW A0,*B15–– ; store A0 to stack (original CSR)

* Beginning of ISR code

...

* End of ISR code

B restore ; Branch to restore routine

; disable CSR in delay slots of branch

MVKL 0FFFEh,A0 ; create mask to disable GIE bit

MVKLH 0FFFFh,A0

MVC CSR,B5 ; read current CSR

AND A0,B5,B5 ; AND B5 with mask

MVC B5,CSR ; write new CSR with GIE disabled

restore ; restore routine begins at next line

LDW *++B15,A0 ; restore A0 (original CSR)

LDW *++B15,B1 ; restore B1 (contains IER)

LDW *++B15,B0 ; restore B0 (contains IRP)

LDW *++B15,B4 ; restore B4

LDW *++B15,B3 ; restore B3

LDW *++B15,B5 ; restore B5

LDW *++B15,B2 ; restore B2

|| MVC B0,IRP ; restore original IRP

B IRP ; return from interrupt

LDW *++B15,B1 ; restore B1

MVC B1,IER ; restore original IER

LDW *++B15,A0 ; restore A0

LDW *++B15,B0 ; restore B0

MVC A0,CSR ; restore original CSR

     ; to complete before branch is taken
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Linking Issues

This chapter contains useful information about other problems and questions

that might arise while building your projects, including:

� What to do with the relocation value truncated linker and assembler mes-

sages

� How to save on-chip memory by moving the RTS off-chip

� How to build your application with RTS calls either near or far

� How to change the default RTS data from far to near

Topic Page

9.1 How to Use Linker Error Messages 9-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.2 How to Save On-Chip Memory by Placing RTS Off-Chip 9-6. . . . . . . . . . 

Chapter 9
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9.1 How to Use Linker Error Messages

When you try to call a function which, due to how you linked your application,

is too far away from a call site to be reached with the normal PC-relative branch

instruction, you will see the following linker error message:

>> PC-relative displacement overflow. Located in file.obj,

section .text, SPC offset 000000bc

This message means that in the named object file in that particular section, is

a PC-relative branch instruction trying to reach a call destination that is too far

away. The SPC offset is the section program counter (SPC) offset within that

section where the branch occurs. For C code, the section name will be .text

(unless a CODE_SECTION pragma is in effect).

You might also see this message in connection with an MVK instruction:

>> relocation value truncated at 0xa4 in section .text,

file file.obj

Or, an MVK can be the source of this message:

>> Signed 16-bit relocation out of range, value truncated.

Located in file.obj, section .text, SPC offset 000000a4

9.1.1 How to Find The Problem

These messages are similar. The file is file.obj, the section is .text, and the

SPC offset is 0xa4. If this happens to you when you are linking C code, here

is what you do to find the problem:

� Recompile the C source file as you did before but include –s –al in the op-

tions list

cl6x <other options> –s –al file.c

This will give you C interlisted in the assembly output and create an assembler

listing file with the extension .lst.

� Edit the resulting .lst file, in this case file.lst.

� Each line in the assembly listing has several fields. For a full description

of those fields see section 3.10 of the TMS320C6000 Assembly Language

Tools User’s Guide. The field you are interested in here is the second one,

the section program counter (SPC) field. Find the line with the same SPC

field as the SPC offset given in the linker error message. It will look like:

245 000000bc 0FFFEC10!     B   .S1  _atoi      ; |56|
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9.1.1.1 Far Function Cells

In this case, the call to the function atoi is too far away from the location where

this code is linked.

It is possible that use of –s will cause instructions to move around some and

thus the instruction at the given SPC offset is not what you expect. The branch

or MVK nearest to that instruction is the most likely cause. Or, you can rebuild

the whole application with –s –al and relink to see the new SPC offset of the

error.

If you are tracing a problem in a hand-coded assembly file, the process is simi-

lar, but you merely re-assemble with the –l option instead of recompiling.

To fix a branch problem, your choices are:

� Use the –mr1 option to force the call to atoi, and all other RTS functions,

to be far.

� Compile with –ml1 or higher to force all calls to be far.

� Rewrite your linker command file (looking at a map file usually helps) so

that all the calls to atoi are close (within 0x100000 words) to where atoi is

linked.

9.1.1.2 Far Global Data

If the problem instruction is an MVK, then you need to understand why the

constant expression does not fit.

For C code, you might find the instruction looks like:

50 000000a4 0200002A%    MVK  (_ary–$bss),B4   ; |5|

In this case, the address of the C object ary is being computed as if ary is de-

clared near (the default), but because it falls outside of the 15-bit address

range the compiler presumes for near objects, you get the warning. To fix this

problem, you can declare ary to be far, or you can use the correct cl6x –ml n

memory model option to automatically declare ary and other such data objects

to be far. See chapter 2 of the TMS320C6000 Optimizing C/C++ Compiler

User’s Guide for more information on –ml n.

It is also possible that ary is defined as far in one file and declared as near in

this file. In that case, insure ary is defined and declared consistently to all files

in the project.
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Example 9–1. Referencing Far Global Objects Defined in Other Files

<file1.c>

/* Define ary to be a global variable not accessible via the data page */

/* pointer.                                                            */

far int ary;...

<file2.c>

/* In order for the code in file2.c to access ary correctly, it must be */

/* defined as ’extern far’.  ’extern’ informs the compiler that ary is  */

/* defined in some other file.  ’far’ informs the compiler that ary is  */

/* accessible via the data page pointer.  If the ’far’ keyword is       */

/* missing, then the compiler will incorrectly assume that ary is in    */

/* .bss and can be accessed via the data page pointer.                  */

extern far in ary;

...

    = ary;

...

9.1.1.3 The MVKL Mnemonic

If the MVK instruction is just a simple load of an address:

123 000000a4 0200002A!         MVK     sym,B4

Then the linker warning message is telling you that sym is greater than 32767,

and you will end up with something other than the value of sym in B4. In most

cases, this instruction is accompanied by:

124 000000a8 0200006A!         MVKH    sym,B4

When this is the case, the solution is to change the MVK to MVKL.

On any other MVK problem, it usually helps to look up the value of the sym-

bol(s) involved in the linker map file.
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9.1.2 Executable Flag

You may also see the linker message:

>> warning: output file file.out not executable

If this is due solely to MVK instructions, paired with MVKH, which have yet to

be changed to MVKL, then this warning may safely be ignored. The loaders

supplied by TI will still load and execute this .out file.

If you implement your own loader, please be aware this warning message

means the F_EXEC flag in the file header is not set. If your loader depends on

this flag, then you will have to fix your MVK instructions, or use the switches

described above to turn off these warnings.
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9.2 How to Save On-Chip Memory by Placing RTS Off-Chip

One of many techniques you might use to save valuable on-chip space is to

place the code and data needed by the runtime-support (RTS) functions in off-

chip memory.

Placing the RTS in off-chip memory has the advantage of saving valuable on-

chip space. However, it comes at a cost. The RTS functions will run much slow-

er. Depending on your application, this may or may not be acceptable. It is also

possible your application doesn’t use the RTS library much, and placing the

RTS off-chip saves very little on-chip memory.

Table 9–1. Definitions

Term Means

Normal RTS

functions

Ordinary RTS functions. Example: strcpy

Internal RTS

functions

Functions which implement atomic C operations such as divide or floating point math on the

C62x and C64x. Example: _divu performs 32-bit unsigned divide.

near calls Function calls performed with a ordinary PC-relative branch instruction. The destination of

such branches must be within 1 048 576 (0x100000) words of the branch. Such calls use 1

instruction word and 1 cycle.

far calls Function calls performed by loading the address of the function into a register and then

branching to the address in the register. There is no limit on the range of the call. Such calls

use 3 instruction words and 3 cycles.

 

9.2.1 How to Compile

Make use of shell (cl6x) options for controlling how RTS functions are called:

Table 9–2. Command Line Options for RTS Calls

Option Internal RTS calls Normal RTS calls

Default Same as user Same as user

–mr0 Near Near

–mr1 Far Far

By default, RTS functions are called with the same convention as ordinary

user-coded functions. If you do not use a –ml n option to enable one of large-

memory models, then these calls will be near. The option –mr0 causes calls
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to RTS functions to be near, regardless of the setting of the –ml n switch. This

option is for special situations, and typically isn’t needed. The option –mr1 will

cause calls to RTS functions to be far, regardless of the setting of the –ml n

switch.

Note these options only address how RTS functions are called. Calling func-

tions with the far method does not mean those functions must be in off-chip

memory. It simply means those functions can be placed at any distance from

where they are called.

9.2.2 Must #include Header Files

When you call a RTS function, you must include the header file which corre-

sponds to that function. For instance, when you call memcmp, you must #in-

clude <string.h>. If you do not include the header, the memcmp call looks like

a normal user call to the compiler, and the effect of using –mr1 does not occur.

9.2.3 RTS Data

Most RTS functions do not have any data of their own. Data is typically passed

as arguments or through pointers. However, a few functions do have their own

data. All of the ”is<xxx>” character recognition functions defined in ctype.h re-

fer to a global table. Also, many of the floating point math functions have their

own constant look-up tables.  All RTS data is defined to be far data, for exam-

ple, accessed without regard to where it is in memory. Again, this does not nec-

essarily mean this data is in off-chip memory.

Details on how to change access of RTS data are given in section 9.2.7
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9.2.4 How to Link

You place the RTS code and data in off-chip memory through the linking pro-

cess. Here is an example linker command file you could use instead of the

lnk.cmd file provided in the lib directory.

/*********************************************************************/

/* farlnk.cmd – Link command file which puts RTS off-chip            */

/*********************************************************************/

–c

–heap  0x2000

–stack 0x4000

 

/* Memory Map 1 – the default */

MEMORY

{

        PMEM:   o = 00000000h   l = 00010000h

        EXT0:   o = 00400000h   l = 01000000h

        EXT1:   o = 01400000h   l = 00400000h

        EXT2:   o = 02000000h   l = 01000000h

        EXT3:   o = 03000000h   l = 01000000h

        BMEM:   o = 80000000h   l = 00010000h

}

 

SECTIONS

{

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    /* Sections defined only in RTS.                                 */

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    .stack      >       BMEM

    .sysmem     >       BMEM

    .cio        >       EXT0

 

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    /* Sections of user code and data                                */

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    .text       >       PMEM

    .bss        >       BMEM

    .const      >       BMEM

    .data       >       BMEM

    .switch     >       BMEM

    .far        >       EXT2

 

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    /* All of .cinit, including from RTS, must be collected together */

    /* in one step.                                                  */

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    .cinit      >       BMEM
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    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    /* RTS code – placed off chip                                    */

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    .rtstext   { –lrts6200.lib(.text)   } > EXT0

 

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    /* RTS data – undefined sections – placed off chip               */

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    .rtsbss    { –lrts6200.lib(.bss)

                 –lrts6200.lib(.far)    } > EXT0

 

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    /* RTS data – defined sections – placed off chip                 */

    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

    .rtsdata   { –lrts6200.lib(.const)

                 –lrts6200.lib(.switch) } > EXT0

}

User sections (.text, .bss, .const, .data, .switch, .far) are built and allocated

normally.

The .cinit section is built normally as well. It is important to not allocate the RTS

.cinit sections separately as is done with the other RTS sections. All of the .cinit

sections must be combined together into one section for auto-initialization of

global variables to work properly.

The .stack, .sysmem, and .cio sections are entirely created from within the

RTS. So, you don’t need any special syntax to build and allocate these sec-

tions separately from user sections. Typically, you place the .stack (system

stack) and .sysmem (heap of memory used by malloc, etc.) sections in on-chip

memory for performance reasons. The .cio section is a buffer used by printf

and related functions. You can typically afford slower performance of such I/O

functions, so it is placed in off-chip memory.

The .rtstext section collects all the .text, or code, sections from RTS and allo-

cates them to external memory name EXT0. If needed, replace the library

name rts6200.lib with the library you normally use, perhaps rts6700.lib. The

–l is required, and no space is allowed between the –l and the name of the libra-

ry. The choice of EXT0 is arbitrary. Use the memory range which makes the

most sense in your application.

The .rtsbss section combines all of the undefined data sections together. Un-

defined sections reserve memory without any initialization of the contents of

that memory. You use .bss and .usect assembler directives to create unde-

fined data sections.
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The .rtsdata section combines all of the defined data sections together. De-

fined data sections both reserve and initialize the contents of a section. You

use the .sect assembler directive to create defined sections.

It is necessary to build and allocate the undefined data sections separately

from the defined data sections. When a defined data section is combined to-

gether with an undefined data section, the resulting output section is a defined

data section, and the linker must fill the range of memory corresponding to the

undefined section with a value, typically the default value of 0. This has the un-

desirable effect of making your resulting .out file much larger.

You may get a linker warning like:

>> farlnk.cmd, line 65: warning: rts6200.lib(.switch) not

found

That means none of the RTS functions needed by your application define a

.switch section. Simply delete the corresponding –l entry in the linker com-

mand file to avoid the message. If your application changes such that you later

do include an RTS function with a .switch section, it will be linked next to the

.switch sections from your code. This is fine, except it is taking up that valuable

on-chip memory. So, you may want to check for this situation occasionally by

looking at the linker map file you create with the –m linker option.

Note: Library Listed in Command File and On Command Line

If a library is listed in both a linker command file and as an option on the com-
mand line (including make files), check to see that the library is referenced
similarly.

For example, if you have:

.rtstext {–lrts6200.lib(text)} > EXT0

and you build with:

cl6x <options> <files> –z –1<path>rts6200.lib

you might receive an error message from the linker. In this case, check to see
that both references either contain the full pathname or assure that neither
of them don’t.

9.2.5 Example Compiler Invocation

A typical build could look like:

cl6x –mr1 <other options> <C files> –z –o app.out

–m app.map farlnk.cmd

In this one step you both compile all the C files and link them together. The

C6000 executable image file is named app.out and the linker map file is named

app.map.
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Refer to section 4.4.1 to learn about the linker error messages when calls go

beyond the PC relative boundary.

9.2.6 Header File Details

Look at the file linkage.h in the include directory of the release. Depending on

the value of the _FAR_RTS macro, the macro _CODE_ACCESS is set to force

calls to RTS functions to be either user default, near, or far. The _FAR_RTS

macro is set according to the use of the –mr n switch.

Table 9–3. How _FAR_RTS is Defined in Linkage.h With –mr

Option Internal RTS calls Normal RTS calls _FAR_RTS

Default Same as user Same as user Undefined

–mr0 Near Near 0

–mr1 Far Far 1

The _DATA_ACCESS macro is set to always be far.

The _IDECL macro determines how inline functions are declared.

All of the RTS header files which define functions or data include linkage.h

header file. Functions are modified with _CODE_ACCESS:

extern _CODE_ACCESS void  exit(int _status);

and data is modified with _DATA_ACCESS:

extern _DATA_ACCESS unsigned char _ctypes_[];

9.2.7 Changing RTS Data to near

If for some reason you do not want accesses of RTS data to use the far access

method, take these steps:

� Go to the include directory of the release.

� Edit linkage.h, and change the:

#define _DATA_ACCESS far

macro to

#define _DATA_ACCESS near

to force all access of RTS data to use near access, or

change it to

#define _DATA_ACCESS
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if you want RTS data access to use the same method used when accessing

ordinary user data.

� Copy linkage.h to the lib directory.

� Go to the lib directory.

� Replace the linkage.h entry in the source library:

ar6x –r rts.src linkage.h

� Delete linkage.h.

� Rename or delete the object library you use when linking.

� Rebuild the object library you use with the library build command listed in

the readme file for that release.

Note that you will have to perform this process each time you install an update

of the code generation toolset.
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_add2 intrinsic, 2-33

aliasing, 2-17

allocating resources

conflicts, 5-65

dot product, 5-23

if-then-else, 5-90, 5-97

IIR filter, 5-82

in writing parallel code, 5-11

live-too-long resolution, 5-106

weighted vector sum, 5-62

AND instruction, mask for, 5-74

arrays, controlling alignment, 5-120

assembler directives, 7-4

assembly code

comments in, 7-9

conditions in, 7-3

directives in, 7-4

dot product, fixed-point

nonparallel, 5-14
parallel, 5-15

final

dot product, fixed-point, 5-26, 5-46, 5-52, 5-55
dot product, floating-point, 5-48, 5-53, 5-56
FIR filter, 5-120, 5-129, 5-133–5-136,

5-147–5-150
FIR filter with redundant load elimination,

5-116
if-then-else, 5-91, 5-92, 5-99
IIR filter, 5-85
live-too-long, with move instructions, 5-108
weighted vector sum, 5-75

functional units in, 7-5

instructions in, 7-4

labels in, 7-2

linear

dot product, fixed-point, 5-10, 5-20, 5-24,
5-30, 5-39

dot product, floating-point, 5-21, 5-25, 5-31,
5-40

FIR filter, 5-112, 5-114, 5-123, 5-125
FIR filter, outer loop, 5-138
FIR filter, outer loop conditionally executed

with inner loop, 5-141, 5-143
FIR filter, unrolled, 5-137
if-then-else, 5-87, 5-90, 5-95, 5-98
IIR filter, 5-78, 5-82
live-too-long, 5-102, 5-107
weighted vector sum, 5-58, 5-60, 5-62

mnemonics in, 7-4

operands in, 7-8

optimizing (phase 3 of flow), description, 5-2

parallel bars in, 7-2

structure of, 7-1–7-11

writing parallel code, 5-4, 5-9

assembly optimizer

for dot product, 5-41

tutorial, 3-25

using to create optimized loops, 5-39

B
big-endian mode, and MPY operation, 5-21

branch target, for software-pipelined dot product,

5-41, 5-43

branching to create if-then-else, 5-86

C
C code

analyzing performance of, 2-11

basic vector sum, 2-16

dot product, 2-40

fixed-point, 5-9, 5-19
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floating-point, 5-20
FIR filter, 2-41, 2-59, 5-110, 5-122, 9-4

inner loop completely unrolled, 2-60
optimized form, 2-42
unrolled, 5-131, 5-136, 5-139
with redundant load elimination, 5-111

if-then-else, 5-86, 5-94

IIR filter, 5-77

live-too-long, 5-101

refining (phase 2 of flow), in flow diagram, 1-3

saturated add, 2-23

trip counters, 2-54

vector sum

with const keywords, _nassert, word reads,
2-33, 2-38, 2-39

with const keywords, _nassert, word reads,
unrolled, 2-58

with three memory operations, 2-57
word-aligned, 2-58

weighted vector sum, 5-58

unrolled version, 5-59
writing, 2-10

char data type, 2-10

child node, 5-11

cl6x command, 2-12

clock ( ) function, 2-11

code development flow diagram

phase 1: develop C code, 1-3

phase 2: refine C code, 1-3

phase 3: write linear assembly, 1-3

code development steps, 1-6

code documentation, 7-9

comments in assembly code, 7-9

compiler options

–o3, 2-56

–pm, 2-56

conditional execution of outer loop with inner loop,

5-138

conditional instructions to execute if-then-else, 5-87

conditional SUB instruction, 5-29

conditions in assembly code, 7-3

const keyword, in vector sum, 2-33

constant operands, 7-8

.cproc directive, 3-25

CPU elements, 1-2

D

.D functional units, 7-7

data types, 2-10

dependency graph

dot product, fixed-point, 5-12

dot product, fixed-point

parallel execution, 5-15
with LDW, 5-22, 5-24, 5-30

dot product, floating-point, with LDW, 5-23, 5-25,

5-31

drawing, 5-11

steps in, 5-12
FIR filter

with arrays aligned on same loop cycle, 5-121
with no memory hits, 5-124
with redundant load elimination, 5-113

if-then-else, 5-88, 5-96

IIR filter, 5-79, 5-81

live-too-long code, 5-103, 5-106

showing resource conflict, 5-65

resolved, 5-68
vector sum, 2-16

weighted, 5-61, 5-65, 5-68, 5-70
weighted vector sum, 5-68

destination operand, 7-8

dot product

C code, 5-9

fixed-point, 5-9
translated to linear assembly, fixed-point, 5-10
with intrinsics, 2-40

dependency graph of basic, 5-12

fixed-point

assembly code with LDW before software pi-
pelining, 5-26

assembly code with no extraneous loads, 5-46
assembly code with no prolog or epilog, 5-52
assembly code with smallest code size, 5-55
assembly code, fully pipelined, 5-42
assembly code, nonparallel, 5-14
C code with loop unrolling, 5-19
dependency graph of parallel assembly code,

5-15
dependency graph with LDW, 5-24
fully pipelined, 5-41
linear assembly for full code, 5-39
linear assembly for inner loop with conditional

SUB instruction, 5-30
linear assembly for inner loop with LDW, 5-20
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linear assembly for inner loop with LDW and
allocated resources, 5-24

nonparallel assembly code, 5-14
parallel assembly code, 5-15

floating-point

assembly code with LDW before software pi-
pelining, 5-27

assembly code with no extraneous loads, 5-48
assembly code with no prolog or epilog, 5-53
assembly code with smallest code size, 5-56
assembly code, fully pipelined, 5-43
C code with loop unrolling, 5-20
linear assembly for inner loop with conditional

SUB instruction, 5-31
fully pipelined, 5-43
linear assembly for full code, 5-40
linear assembly for inner loop with LDW, 5-21
linear assembly for inner loop with LDW and

allocated resources, 5-25
word accesses in, 2-40

double data type, 2-10

E

.endproc directive, 3-25

epilog, 2-53

execute packet, 5-40

execution cycles, reducing number of, 5-9

extraneous instructions, removing, 5-45

SUB instruction, 5-55

F

feedback, from compiler or assembly optimizer, 4-2

FIR filter

C code, 2-41, 5-110

optimized form, 2-42
unrolled, 5-136, 5-139
with inner loop unrolled, 5-131
with redundant load elimination, 5-111

final assembly, 5-147

for inner loop, 5-120
with redundant load elimination, 5-116
with redundant load elimination, no memory

hits, 5-129
with redundant load elimination, no memory

hits, outer loop software-pipelined, 5-133

linear assembly

for inner loop, 5-112
for outer loop, 5-138
for unrolled inner loop, 5-123
for unrolled inner loop with .mptr directive,

5-125
with inner loop unrolled, 5-137
with outer loop conditionally executed with in-

ner loop, 5-141, 5-143
software pipelining the outer loop, 5-131

using word access in, 2-41

with inner loop unrolled, 5-122

fixed-point, dot product

linear assembly for inner loop with LDW, 5-20

linear assembly for inner loop with LDW and allo-

cated resources, 5-24

float data type, 2-10

floating-point, dot product

dependency graph with LDW, 5-25

linear assembly for inner loop with LDDW, 5-21

linear assembly for inner loop with LDDW with

allocated resources, 5-25

flow diagram, code development, 1-3

functional units

fixed-point operations, 7-6

in assembly code, 7-7

list of, 7-6

operations performed on, 7-6

reassigning for parallel execution, 5-14, 5-16

functions

clock ( ), 2-11

printf ( ), 2-11

I
if-then-else

branching versus conditional instructions, 5-86

C code, 5-86, 5-94

final assembly, 5-91, 5-92, 5-99

linear assembly, 5-87, 5-90, 5-95, 5-98

IIR filter, C  code, 5-77

in-flight value, 8-3

inserting moves, 5-105

instructions, placement in assembly code, 7-4

int data type, 2-10

interrupt subroutines, 8-11–8-14

hand-coded assembly allowing nested interrupts,

8-14

nested interrupts, 8-13
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with hand-coded assembly, 8-12

with the C compiler, 8-11

interrupts

overview, 8-2

single assignment versus multiple assignment,

8-3–8-4

intrinsics

_add2 ( ), 2-33

_amem2(), 2-37

_amem2_const(), 2-37

_amem4(), 2-37

_amem4_const(), 2-37

_amemd8(), 2-36

_amemd8_const(), 2-36

_mem2(), 2-37

_mem2_const(), 2-37

_mem4(), 2-37

_mem4_const(), 2-37

_memd8(), 2-36

_memd8_const(), 2-36

_mpy ( ), 2-40

_mpyh ( ), 2-40

_mpyhl ( ), 2-33

_mpylh ( ), 2-33

described, 2-23

in saturated add, 2-23

memory access, 2-36

summary table, 2-24–2-26

iteration interval, defined, 5-32

K
–k compiler option, 2-14

kernel, loop, 2-53

L
.L functional units, 7-6

labels in assembly code, 7-2

linear, optimizing (phase 3 of flow), in flow diagram,

1-3

linear assembly, 3-25

code

dot product, fixed-point, 5-10
dot product, fixed-point, 5-14, 5-20, 5-24,

5-30, 5-39
dot product, floating-point, 5-21, 5-25, 5-31,

5-40

FIR filter, 5-112, 5-114, 5-123, 5-125
FIR filter with outer loop conditionally execut-

ed with inner loop, 5-141, 5-143
FIR filter, outer loop, 5-138
FIR filter, unrolled, 5-137
if-then-else, 5-90, 5-98
live-too-long, 5-107
weighted vector sum, 5-62

resource allocation

conflicts, 5-65
dot product, 5-23
if-then-else, 5-90, 5-97
IIR filter, 5-82
in writing parallel code, 5-11
live-too-long resolution, 5-106
weighted vector sum, 5-62

little-endian mode, and MPY operation, 5-21

live-too-long

code, 5-67

C code, 5-101
inserting move (MV) instructions, 5-105
unrolling the loop, 5-105

issues, 5-101

and software pipelining, 2-62
created by split-join paths, 5-104

load

doubleword (LDDW) instruction, 5-19

word (LDW) instruction, 5-19

long data type, 2-10

loop

carry path, described, 5-77

counter, handling odd-numbered, 2-38

unrolling

dot product, 5-19
for simple loop structure, 2-59
if-then-else code, 5-94
in FIR filter, 5-122, 5-125, 5-131, 5-136, 5-138
in live-too-long solution, 5-105
in vector sum, 2-57

Loop Disqualification Messages, 4-10

M
memory access, intrinsics, 2-36

memory bank scheme, interleaved, 5-118–5-120

memory dependency. See dependency

minimum iteration interval, determining, 5-34

for FIR code, 5-114, 5-128, 5-146

for if-then-else code, 5-89, 5-97
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for IIR code, 5-80

for live-too-long code, 5-104

for weighted vector sum, 5-59, 5-60

modulo iteration interval table

dot product, fixed-point

after software pipelining, 5-35
before software pipelining, 5-32

dot product, floating-point

after software pipelining, 5-36
before software pipelining, 5-33

IIR filter, 4-cycle loop, 5-83

weighted vector sum

2-cycle loop, 5-64, 5-69, 5-72
with SHR instructions, 5-66

modulo-scheduling technique, multicycle loops, 5-58

move (MV) instruction, 5-105

_mpy intrinsic, 2-40

_mpyh ( ) intrinsic, 2-40

_mpyhl intrinsic, 2-33

_mpylh intrinsic, 2-33

multicycle instruction, staggered accumulation, 5-37

multiple assignment, code example, 8-3

MUST_ITERATE, 2-33

N
_nassert intrinsic, 2-29

node, 5-11

O
–o compiler option, 2-13, 2-14, 2-53, 2-56

operands

placement in assembly code, 7-8

types of, 7-8

optimizing assembly code, introduction, 5-2

outer loop conditionally executed with inner loop,

5-136

OUTLOOP, 5-115, 5-128

P
parallel bars, in assembly code, 7-2

parent instruction, 5-11

parent node, 5-11

path in dependency graph, 5-11

performance analysis

of C code, 2-11

of dot product examples, 5-18, 5-28, 5-57

of FIR filter code, 5-128, 5-135, 5-149

of if-then-else code, 5-93, 5-100

pipeline in ’C6x, 1-2

–pm compiler option, 2-13, 2-14, 2-15, 2-20, 2-56

pointer operands, 7-8

pragma, MUST_ITERATE, 2-56

preparation for tutorial, 3-1

priming the loop, described, 5-51

printf ( ) function, 2-11

program-level optimization, 2-15

prolog, 2-53, 5-51, 5-53

pseudo-code, for single-cycle accumulator with

ADDSP, 5-37

R
redundant

load elimination, 5-110

loops, 2-55

.reg directive, 3-25, 5-20, 5-21

register

allocation, 5-127

operands, 7-8

resource

conflicts

described, 5-65
live-too-long issues, 5-67, 5-101

table

FIR filter code, 5-114, 5-128, 5-146
if-then-else code, 5-89, 5-97
IIR filter code, 5-80
live-too-long code, 5-104

S
.S functional units, 7-6

.sa extension, 3-25

_sadd intrinsic, 2-23, 2-30

scheduling table. See modulo iteration interval table

shell program (cl6x), 2-12

short

arrays, 2-38

data type, 2-10, 2-33

single assignment, code example, 8-4
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software pipeline, 2-53, 2-59

accumulation, staggered results due to 3-cycle

delay, 5-38

described, 5-29

when not used, 2-62

software-pipelined schedule, creating, 5-34

source operands, 7-8

split-join path, 5-101, 5-102, 5-104

stand-alone simulator (load6x), 2-11

symbolic names, for data and pointers, 5-20, 5-21

T
techniques

for priming the loop, 5-51

for refining C code, 2-23

for removing extra instructions, 5-45, 5-55

using intrinsics, 2-23

word access for short data, 2-33

TMS320C6x pipeline, 1-2

translating C code to ’C6x instructions

dot product

fixed-point, unrolled, 5-20
floating-point, unrolled, 5-21

IIR filter, 5-78

with reduced loop carry path, 5-82
weighted vector sum, 5-58

unrolled inner loop, 5-60

translating C code to linear assembly, dot product,

fixed-point, 5-10

trip count, 3-25

communicating information to the compiler, 2-56

.trip directive, 3-25

V
vector sum function

See also weighted vector sum

C code, 2-16

with const keywords, _nassert, word reads,
2-33

with const keywords, _nassert, word reads,
and loop unrolling, 2-58

with const keywords,_nassert, and word reads
(generic), 2-38, 2-39

with three memory operations, 2-57
word-aligned, 2-58

dependency graph, 2-16

handling odd-numbered loop counter with, 2-38

handling short-aligned data with, 2-38

rewriting to use word accesses, 2-33

VelociTI, 1-2

very long instruction word (VLIW), 1-2

W
weighted vector sum

C code, 5-58

unrolled version, 5-59
final assembly, 5-75

linear assembly, 5-73

for inner loop, 5-58
with resources allocated, 5-62

translating C code to assembly instructions, 5-60

word access

in dot product, 2-40

in FIR filter, 2-41

using for short data, 2-33–2-52
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