Implementation of a
CELP Speech Coder for
the TMS320C30 using
SPOX

APPLICATION REPORT: SPRA401
Mark D. Grosen
Spectron Microsystems, Inc

Digital Signal Processing Solutions

%‘ TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

Implementation of a CELP Speech

Abstract

Coder for the TMS320C30 using

SPOX

This chapter shows how a 4.8-kbps CELP (code-excited linear
prediction) can be quickly developed using SPOX. Using
TMS320C30 DSP power, the ease of use provided by C, and the
SPOX DSP library, an efficient and portable coder can be
developed quickly and compiled and executed on a variety of
hardware platforms.

The chapter's main sections include:
Q A 4.8-kbps CELP coder
Q Using SPOX in development

O Implementation
Input/Output

Spectrum Analysis

Pitch and codebook search

[|

[|

m Filters
[|

B Assembly language enhancements
[|

Performance

Certain applications require the TMS320C30’s high arithmetic
throughput but in the IEEE floating-point format. These
applications benefit from a custom chip that performs conversions
between the TMS320C30 native format and the single-precision
IEEE Standard 754-1985. This chapter describes this custom
chip.

SPRA401

The description includes the following specific topics:
External interfaces

Architectural overview

Converter operating modes

Interrupts

Software application examples

Hardware application examples

0O 0O 0o 0 0 0O O

JTAG/IEEE-1149.1 scan interface

Implementation of a CELP Speech Coder for the TMS320C30 using SPOX

*i’
SPRA401

Product Support

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. New users
must register with TI&ME before they can access the data sheet
archive. TI&ME allows users to build custom information pages
and receive new product updates automatically via email.

Email

For technical issues or clarification on switching products, please
send a detailed email to dsph@ti.com. Questions receive prompt
attention and are usually answered within one business day.

Implementation of a CELP Speech Coder for the TMS320C30 using SPOX 7

Introduction

Speech coders are critical to many speech transmission and store-and-forward systems. With
the emergence of universal standards, it is possible to develop systems that are interoperable. Quali-
ty and bit rate for speech coders vary from toll quality at 32 kilobits/second (kbps) (CCITT
ADPCM) to intelligible quality at 2.4 kbps (DOD LPC-10). Recently, a new standard for 4.8 kbps
with near toll-quality has been proposed and is based on code-excited linear prediction (CELP)
techniques [1,2]. Unfortunately, products based on new coding algorithms are often slow to appear
because of the considerable time and effort required to develop real-time implementations.

The purpose of this article is to demonstrate how a CELP coder based on this new standard
can be quickly developed using SPOX. Utilizing the power of the TMS320C30 DSP plus the ease
of use provided by C and the SPOX DSP library, an efficient and portable coder can be written in
a much shorter period of time than that required by conventional assembly language methods. Be-
cause of the portability of SPOX and C, the coder can also be compiled and executed on a variety
of hardware platforms.

A 4.8-kbps CELP Coder

CELP coders were first introduced by Atal and Schroeder in 1984 [3]. These coders offer
high quality at low bit rates, but at a high computational cost. Implementing the original systems
directly required several hundred million instructions per second (MIPS). Much of the research on
CELP techniques has concentrated on reducing this computational load to facilitate real-time im-
plementations.

The proposed U. S. Federal Standard 4.8-kbps CELP coder (USFS CELP), Version 2.3, uses
several techniques to reduce the complexity to a level where a one- or two-processor implementa-
tion is possible. These are the main characteristics of the coder:

® 240-sample frame size at 8-kHz sampling rate

* Tenth-order short-term predictor

— Calculated once per frame, open loop

— Autocorrelation with Hamming window

— LSP quantization

* Four subframes (60 samples)

— One tap pitch predictor
1) Closed loop analysis
2) Even/odd subframe delta search method

— 1024-element codebook
1) Overlapped by 2 (see Pitch and Codebook Search)
2) 75% of elements are zero

Block diagrams of the decoder and encoder are shown in Figure 1.

Figure 1. USFS CELP Decoder and Encoder Structures

PITCH LPC ADAPTIVE SYNTHESIZED
SYNTHESIS SYNTHESIS POSTFILTER SPEECH
GAIN ? A
% |
-
——
INDEX< - ‘+ l [_ _______ —]
CODEBOOK ——
UNPACK
A
l
FROM CHANNEL
" DECODER
HIGHPASS LPC LSP LSP
spreor ¥ _FLTER [~%) anaLysis [~ P auanTizaTion [P~ CODES "]
T l
(Optional)
- . |
|
y l
.| SHORT-TERM CODEBOOK]| | |
INVERSE FILTER PITCHVQ — “searcH || |
I T I
! t |
DELAY/ INDEX/ |
GAIN GAIN |
i |
L a0 - -
Y V'Y
PACK
[
v
TO CHANNEL
ENCODER
Bit allocations are given in Table 1 [2,4].
Table 1. 4.8-kbps CELP Parameters
Spectrum Pitch Codebook
Update 30 ms (240 samples) 7.5 ms (60) 7.5 ms (60)
Parameters 10 LSP 1 delay, 1 gain 1 of 1024 index, 1 gain
Bps 1133.3 1466.7 2000
Remaining 200 bps reserved for expansion, error protection, and synchronization

The standard also specifies an error protection scheme utilizing forward error-correcting
Hamming code and parameter smoothing.

The major computational parts of the algorithm are the pitch search and the codebook search,
both of which are performed four times per frame. An important technique to reduce the computa-
tions is the end-correction convolution technique (see Pitch and Codebook Search). This is a recur-
sive convolution method that reduces the number of multiply-adds by an order of magnitude.

In addition, the codebook is designed to have approximately 75% of the samples equal to
zero. This allows many of the convolution updates in the codebook search to be reduced to a simple
shift of a vector of samples. On DSP processors with circular addressing, this shift can be replaced
by using circular buffers.

To further reduce complexity, the pitch search is limited in range for every other subframe.
During even-numbered subframes, the optimal pitch value is performed over the range 20to 147
(128 values). On the odd subframes, the search is only over the range 16 from the previous pitch
value. This also decreases the bit rate with a negligible effect on speech quality.

If adequate processing power is not available, you can implement an interoperable coder by
using a subset of the full codebook. For example, if only the first 128 vectors from the codebook
could be used, the sub-optimal coder would work with an optimal coder if the same frame structure
and bit rate were used.

These techniques produce complexity estimates for the USFS CELP coder ranging from 5.3
MIPS to 16.0 MIPS for a 128-vector and 1024-vector codebook, respectively[4].

Using SPOX in Development

The computational complexity of CELP coders, even with use of the various techniques to
reduce it, has made real-time implementations impractical on first- and second-generation DSPs.
The recent introduction of the third-generation TMS320C30[5], however, makes it feasible to im-
plement the USFS CELP coder with one or two processors. Furthermore, because of the general-
purpose capabilities of the TMS320C30 and the availability of a C compiler and SPOX, develop-
ment of a real-time coder can be significantly expedited.

In particular, SPOX provides the following functions to facilitate software development.

® Cstandard I/O functions

— printf(), scanf()
— fopen(), fread(), fwrite()
® Stream I/O to move data efficiently
* Standard set of DSP math functions
— Filters
— Vector operations
— Windows
— Levinson-Durbin algorithm
® Processor independence

Both FORTRAN and C versions of the Version 2.3 USFS CELP coder were available as start-
ing points for the real-time implementation. The initial development was done on a Sun worksta-

tion equipped with SPOX/SUN [6] and the usual UNIX programming tools, such as the symbolic
debugger dbx. SPOX/SUN is a library of SPOX DSP math functions that can be used for develop-
ing SPOX applications on Sun workstations. The new version of the coder utilizing SPOX was
checked against the existing implementation for correctness. After the new version was debugged
on the workstation, the source code was recompiled employing the Texas Instruments TMS320C30
C compiler and linked with the SPOX/XDS library for the XDS1000 development system.

The same facilities for testing the code on the workstation were available on the XDS1000.
A SPOX stream function (see Input/Output section) read digitized speech from a disk file. Status
information was printed to the console screen. Command line arguments were used to vary the en-
coder’s parameters such as the codebook size.

The software development process for the USFS CELP coder followed three evolutionary
steps:

¢ C program using standard I/O

® C program using SPOX functions for faster math and I/O

® Cprogram using SPOX and assembly language optimizations

The first step was taken because an existing C implementation was available. The C standard
1/0 provided by SPOX made it possible to run the application code written in C directly on the
XDS1000. For example, functions (fscanf()) that read control information from a disk file on the
Sun also worked on the XDS1000 using the PC’s hard disk.

In general, it would have been easier to start with the SPOX library functions to implement
some of the common operations contained in the coder. Many of the functions needed (filtering,
correlation, dot-product) are in the SPOX DSP library. In this case, the C implementations of these
standard vector and filter functions in the existing program were replaced with the corresponding
SPOX functions. The SPOX functions, written in optimized assembly language, execute several
times faster than the corresponding C functions.

The last step was needed to meet real-time constraints. XDS1000 timing capabilities allowed
the identification of two time-critical sections of the code which were then rewritten in
TMS320C30 assembly code. Since the interface to the SPOX math functions is open, new math
functions can be written that work with SPOX data structures such as vectors and filters.

Implementation

Several major parts of the USFS CELP encoder are implemented with a mixture of C, SPOX,
and TMS320C30 assembly language functions. The decoder can be easily constructed from the
material presented here. An adaptive postfilter for the decoder is not described here.

The framework of the resulting encoder is shown in Figure 2. A description of the major
functions performed can be found in the following sections. Appendix A provides a short summary
of the SPOX functions employed in the next four sections (Input/Output, Spectrum Analysis, Fil-
ters, and Pitch and Codebook Search).

Figure 2. Structure of the Encoder Function

encoder (instream, outstream)

SS_Stream instream;
SS_Stream outstream;
{
while (SS_get(instream, SV_array(speech))) {
/* Apply a high pass filter to the input speech */
SF_apply(hpfilter, speech, speech);
/* Find the coefficients of the short—term prediction filter */
calculateLP(speech, invcoeffs);
/*
* Convert the direct form coefficients to line spectrum pairs.
* Then quantize the LSP’s and convert back to direct form.
*/
SV_a2lsp(invcoeffs, lsps);
quantizeLSP(lsps, qntzlsps);
SV_lsp2a(qntzlsps, invcoeffs);
/*
* For each of the 4 subframes, determine the pitch prediction
* parameters and codebook (excitation) parameters
*/
for (i = 0; 1 < 4; i++) {
genShortResidual(s[i], res(i]);/* generate short term residual */
pitchSearch(s([i], res[i]); /* find optimum pitch predictor */
genFullResidual(s(i], res[i]); /* generate residual */
codeSearch(res[i], reshat); /* find best codebook vector */
updateFilters(reshat); /* update filter states */
packParams(); /* pack parameters into output array */
SS_put(outstream, params);
}
Input/Output

Input speech samples are obtained by employing a function (SS_get()), which reads data
from a named stream (instream). The creation of instream during program initialization deter-
mines the source of the data. During development, the easiest source is a disk file with digitized
speech. When real-time testing is needed, a codec connected to a TMS320C30 serial port could be
utilized. For example, instream could be created to read from standard input with the following
code segment.

#define FRAMESIZE 240 * sizeof(Float)

instream = SS_create(DF_FILE, DF_STDIN, FRAMESIZE, NULL);
The output stream (outstream) consists of the packed frame parameters. It could also go to
a disk file or a serial port by using SS_put().

Spectrum Analysis

After preconditioning the signal with a highpass filter (see the Filters section), the coeffi-
cients of the short term prediction filter can be found by using the function calculateL.P() shown
below.

SV_Vector window, rc, error, cor, gammavec;

calculateLP(8, coeffs)

SV_Vector s, coeffs;

{
SV_window(s, window, 8); /* window the speech in—place */
SV_corr(s, s, cor); /* autocorrelation */
SV_autorc(cor, coeffs, rc, error); /* Levinson-Durbin */
SV_mul2(gammavec, coeffs); /* bandwidth expansion */

}

The vector window is initialized to contain the desired window; in this case, a Hamming win-
dow is used. The autocorrelation terms are stored in the vector cor that has the same length as the
order of the short term filter. SV_autorc() uses a Levinson-Durbin type algorithm to compute the
inverse filter coefficients. As a side effect, the reflection coefficients are also stored in rc. Finally,
a 15-Hz bandwidth expansion is produced by the multiplication of the inverse filter coefficient vec-
tor by a vector (gammavec) consisting of the terms

gli] = 0.994* for i=0,1, . .., m1
Efficient quantization is obtained by:
* Transforming the prediction coefficients into line spectrum pairs (LSPs)
® Then quantizing the LSPs

The conversions between prediction coefficients and LSPs are not currently in the SPOX li-
brary. The existing C implementation evaluates cosine values directly, which is too expensive com-
putationally. A more efficient routine (SV_a2lsp()), that employs table-lookup of cosine values,
has been written utilizing the algorithm outlined in [7]. The quantized LSPs are transformed back
to direct-form coefficients for use in the short-term predictor.

Filters

Three filters in the encoder can be realized by use of SPOX filter objects. The inverse filter
A(z) and the short term predictor 1/A(z) share the same filter coefficients. The former is an FIR filter
and the latter an all-pole filter. The final filter is the all-pole weighting filter W(z) with coefficients

given by 1/A(A 2), with A =0.8.

During the initialization of the encoder, the filters are created with the code fragment shown
below.

#define FILTERSIZE 11 * sizeof(Float)

SF_Filter invfilter, predfilter, wgtfilter;
SV_Vector invcoeffs, wgtcoeffs;
SA_Array array;

array = SA_create(SG_CHIP, FILTERSIZE, NULL);
invfilter = SF_create(array, NULL, NULL);
SF_bind(invfilter, invcoeffs, NULL);

array = SA_create(SG_CHIP, FILTERSIZE, NULL);
predfilter = SF_create(NULL, array, NULL);
SF_bind(predfilter, NULL, invcoeffs);

array = SA_create(SG_CHIP, FILTERSIZE, NULL);
wgtfilter = SF_create(NULL, array, NULL);
SF_bind(invfilter, NULL, wgtcoeffs);

Note that the inverse and prediction filters are both bound to the same coefficient vector. For
each new frame of speech, this vector is updated when it is passed to calculateLP().

An important consideration is that the filters are used more than once during a frame. A dif-
ferent signal is filtered each time, but the state (history) of the filter must be the same. This is ac-
complished before each filter operation by using the

* SF_getstate() function to recover a vector with the state of the filter at the end of the pre-

vious frame

* SF_setstate() function to restore the filter’s state

The following code segment shows how the short term prediction residual is generated for
the pitch search.

SF_setstate(predfilter, NULL, predstate);
Sv_fill(residual, 0.0);
SF_apply(predfilter, residual, residual); /* zero input of filter */

SV_sub3(residual, speech, residual); /* speech — history */

SF_setstate(invfilter, invstate, NULL);
SF_apply(invfilter, residual, residual); /* filter with inverse */

SF_setstate(wgtfilter, NULL, wgtstate);
SF_apply(wgtfilter, residual, residual); /* filter with weighting */

Pitch and Codebook Search

After the program finds the short-term predictor and generates the corresponding residual,
the pitch predictor and code book parameters are found for each of the four subframes. The pitch
and codebook search functions are similar: both search over a set of values to minimize an error
term. In this section, only the codebook search is illustrated (see Figure 3). Many of the functions,
however, can be applied to the pitch predictor calculations.

Figure 3. Codebook Search Block Diagram

r

h (RESIDUAL)
(WEIGHTING FILTER l
IMPULSE RESPONSE)

l —» CORRELATE | ERROR

CONVOLVE GAIN
CODEBOOK
DOT PRODUCT

The search in Figure 3 minimizes the distance between the input vector and one of many gen-
erated vectors. The quantity being minimized is the Euclidean norm:

e=|[r-rf o (1)
=r'r=-2r'r+r'r
where

= the original residual
= the synthesized residual

N>y

It can be seen from the vector definition that only two terms need to be computed — the corre-

lation of rand r and the energy of r ; this is because the energy of the original residual is invariant
over all the generated residuals. It appears that there would be N convolutions and 2N dot products
to perform for each sub-frame. Implemented directly, the codebook search would thus require 66
MIPS if N = 256 and a sub-frame length of 60 are specified.

Instead, the USFS CELP coder uses a specially structured codebook that greatly reduces the
computational load. The biggest savings comes from the elimination of all but one of the convolu-
tions for each subframe. The codebook is overlapped, as shown in Figure 4.

Figure 4. Structure of Overlapped Codebook

77 NNNNNNNNRNNNNRNRNN
R T A T AR AR A
Attty =
AR AR AT AR AR A A A AN

This structure permits a recursive convolution computation. The first codebook vector is
convolved normally with the weighting filter. Subsequent convolutions, however, make use of the
following relationships.

V(@) = 7'R(2) + 2 [1H(2) @)
Ri +1(2) = 2'V;44(2) + X1 [0]H(2)

where Ié,(z) is the Z-transform of the generated residual. Given the convolution of the pre-

vious codebook vector with the weighting filter, the convolution employing the next vector can be
found with only 120 (2 x 60) multiplies and adds.

This number can be further reduced by another property of the codebook. The vectors are
generated by center-clipping a gaussian noise source, which causes approximately 75% of the ele-
ments to be zero. Thus, 75% of the updates to the convolutions require no multiplications or addi-
tions; however, the convolution elements must still be shifted. The following function update()
implements the recursive update operation. Note that it must be called twice per codebook vector,
once for each new term.

update(x, res, wgtimpulse)

Float X;

SV_Vector res, wgtimpulse;

Float *rptr, *rptrml, *wptr;
Int len;

len = SV_getlength(res);
rptr = (Float *) SV_loc(res, len — 1);
rptrml = rptr - 1;

if ((x == 0.0) { /* no input, so just shift */
for (; len > 1; len—-) {
*rptr—— = *rptrml--—;

}
*rptr = 0.0;

}
else { /* update using new input */
wptr = (Float *) SV_loc(wgtimpulse, len — 1);
for (; len > 1; len—-) {
*rptr—— = *rptrml-- + x * *wptr—-—;
}
*rptr = x * *wptr;
}

Once the convolution has been determined, the corresponding error and gain can be found.

The following function calculates the error and gain terms.

Float error(res, reshat, gain)

SV_Vector res, reshat;
Float *gain;

Float cor, energy;

SV_dotp(reshat, reshat, &energy);
SV_dotp(reshat, res, &cor);

*gain = cor / energy;

return(*gain * cor);

The codebook search function with update() and error() functions is shown below. The

first convolution must be calculated directly, so it is done outside of the main for loop. The error
for each entry is compared against the current maximum; if it is greater than the maximum, this
entry becomes the new best vector. The process is repeated for each of the N vectors.

SV_Vector codebook, wgtimpulse;

codeSearch(res, reshat)

{

SV_Vector res, reshat;

Float errmax, gain, err;
Float *cbptr;
Int i, best;

findImpulse(wgtimpulse);
SV_setbase(codebook, FIRSTVEC);

convolve (codebook, wgtimpulse, reshat);
errmax = error(res, reshat, &gain);

best = 0;
cbptr = (Float *) SV_loc(codebook, 0) — 1;

for (i = 1; i < N; i++) (
update(*cbptr—-—, reshat, wgtimpulse);
update(*cbptr-—, reshat, wgtimpulse);
if ((err = error(res, reshat, &gain)) > errmax) {
errmax = err;
best = i;

}

After the search is completed, the gain of the best vector is recomputed and quantized. The
corresponding gain index and index of the codebook element can then be readied for transmission.

Assembly Language Enhancements

The codebook and pitch searches require the largest share of the computation cycles in the
encoder. One way to increase performance is to recode critical parts of these functions in assembly
language. One such function is the update() function described above for the recursive convolu-
tion computation.

An assembly language version of update() was written to take advantage of the parallel in-
structions and repeat block capabilities of the TMS320C30. The assembly language function uti-
lizes the same calling structure as the C version. The function was written using the assembly lan-
guage macros provided with SPOX to work with the vector, matrix, and filter objects in the DSP
library[8]. The new version of update() is listed in Figure 5.

Figure 5. Update Function Written in TMS320C30 Assembly Language

Synopsis:

void update(x, res, wgtimpulse)

SV_Vector res, wgtimpulse;

*
*
*
*
* Float X;
*
*
#

include <sv30.h>

FP .set
.global

.text

_update:
push
1di

Set the
ar0
arl
rc
r2

* % % % * * *

1di
SV_getl
1di
SV_get2

1df
bzd
subi
addi
1di

* General case

ar3
_update

FP
sp, FP

following registers by using vector object macros
— SV_loc(wgtimpulse, 0)

- SV_loc(res, 0)

— the length of the vectors

- x

*~FP(2), ar2

ar2, SV_LOCO, ar0

*—FP(3), ar2

ar2, SV_LEN|SV_LOCO, rc, arl

x
x is 0 so just shift

*~FP(4), rl
shift

1, rc

rc, arl
arl, ar2

~e ~e

arl —> res(l — 1]
ar2 —> res(i — 1]

~e ~e

when x I= 0.0

addi rc, ar0 ; ar0 —> wgt[l — 1]
subi 2, rc ; set loop count
mpy £ rl, *ar0--, r2 ;X * wgt[i]
addf r2, *—-ar2, r0
rptb 1p20
mpy £ rl, *ar0--, r2 s X * wgt[i]
1p20: addf r2, *--ar2, x0
|T stf r0, *arl—-—
bud end
stf r0, *arl—-—
mpy f rl, *ar0, ro0 ; res(0] = x*wgt[0]
stf r0, *arl
*
* Case for x == 0.0
*
shift: subi 2, rc ; loop 1 — 1 times
1df *——-ar2, r0 ; prime the pipe
rptb slp .
slp: 1df *——ar2, ro0
|l stf r0, *arl—-
stf r0, *arl—- ; final store
1df 0.0, ro0 ; first term = 0.0
stf r0, *arl
N .
end: pop FP

rets

Performance

A complete CELP encoder was implemented as described above. Two versions were tested:
* One encompassing C and standard SPOX functions
* One having C, SPOX, and two custom TMS320C30 assembly language functions

Table 2 shows the execution times for different combinations of codebook size, processor,
and implementation. To achieve near real-time performance for a codebook with 128 vectors, the
codebook and pitch search functions were completely rewritten in assembly language. Each func-
tion required approximately 130 lines of assembly code.

Table 2. Timing of Various Implementations of the CELP Encoder
for One Frame of Speech

Codebook Size Sun (C/SPOX) C30 (C/SPOX) C30 (C/SPOX/ASM)
128 16,000 ms 88.2 ms 39.0 ms
256 24,000 ms 114.6 ms 54.3 ms

Memory requirements for the program on the TMS320C30 were approximately 14,000
words for instructions and approximately 6,000 words for data. The application code required ap-
proximately 4500 words of instructions. The SPOX operating system and DSP math functions con-
sumed the remaining 9500 words of memory. This figure reflects many functions that are essential
for easing development but unnecessary for a real-time implementation. -

Once a real-time implementation has been achieved, the SPOX memory requirements can
be greatly reduced by porting (or customizing) SPOX to a custom hardware implementation. In this
case, the SPOX memory requirements can be reduced to approximately 4000 words, making a
12K-word implementation feasible (both data and instruction memory requirements).

These timings show that a real-time CELP coder can be implemented on a single
TMS320C30. They also illustrate the power of the TMS320C30 compared to a standard micropro-
cessor. Note that a TMS320C30 implementation has approximately 500,000 instruction cycles
available in a 30-ms frame.

Version 3.0 of the USFS CELP coder has significant improvements in computational com-
plexity, including:

¢ Ternary codebook to eliminate multiplications

* Shorter codebook

* Faster LSP conversion and quantization

Work to bring the SPOX implementation up to Version 3.0 is continuing. An investigation
of a two-processor implementation is also being performed.

Summary

A 4.8-kbps CELP coder based on a Department of Defense-proposed standard has been im-
plemented on a TMS320C30. Several of the functions used in the encoder were illustrated. A sub-
optimal implementation of the encoder using a 128-vector codebook is possible on only one
TMS320C30. Work is continuing on both the algorithm and the software implementation to im-
prove the coder’s real-time performance.

With SPOX, the encoder was developed in less than one month. The resulting source (with
the exception of two TMS320C30 assembly language functions) can be compiled and run on a Sun
workstation, a PC, or a TMS320C30 system such as the Texas Instruments XDS1000. This repre-
sents a considerable improvement in development time and effort over previous implementation
methods.

References

1) Kemp, D.P, Sueda, R. A, and Tremain, T.E,, “An Evaluation of 4800 bps Voice Cod-
ers,” Proceedings of ICASSP ’89, IEEE, May 1989.

2) Campbell,J. P, Welch, V.C,, and Tremain, T. E., “An Expandable Error-Protected 4800
bps CELP Coder,” Proceedings of ICASSP ’89, IEEE, May 1989.

3) Atal,B.S.,and Schroeder, M. R., “Stochastic Coding of Speech at Very Low Bit Rates,”
Proceedings of ICC '84, pages 1610-1613, 1984.

4) Tremain, T. E., Campbell, J. P, and Welch, V. C.,“A 4.8 kbps Code Excited Linear Pre-
dictive Coder,” Proceedings of Mobile Satellite Conference, pages 491-496, May 1988.

5) Texas Instruments, Inc., Third-Generation TMS320 User’s Guide, 1988.

6) Spectron MicroSystems, Inc., SPOX/SUN User s Guide, April 1989.

7) Soong, F. K., and Juang, B. H., “Line Spectrum Pair (LSP) and Speech Data Compres-
sion,” Proceedings of ICASSP ’84, pages 1.10.1-1.10.4, IEEE, 1984.

8) Spectron MicroSystems, Inc., Adding Math Functions to SPOX, March 1989.

Appendix A

The SPOX functions used in the code examples are briefly described below. Complete de-
scriptions can be found in Getting Started With SPOX and the SPOX Programming Reference Man-
ual. These manuals are supplied with the XDS1000. They are also available from Spectron Micro-
Systems, Inc.

Stream Functions
SS_get — get data from a stream into an array

Int SS_get(stream, array)
SS_Stream stream;
SA_Array array;

SS_put — put data from an array to a stream

Int SS_put(stream, array)
SS_Stream stream;
SA_Array array;

Vector Functions

SV_autorc — perform inverse filter calculations

Void SV_autorc(cor, inv, rc, alpha)

SV_Vector cor;
SV_Vector inv;
SV_Vector rc;
SV_Vector alpha;

SV_corr — calculate correlation of two vectors

SV_Vector SV_corr(srcl, src2, dst)
SV_Vector srcl;
SV_Vector src2;
SV_Vector dst;

SV_dotp — calculate the dot product of two vectors

SV_Vector SV_corr(srcl, src2, result)

SV_Vector srcl;
SV_Vector src2;
Float *result;

SV_fill -~ fill a vector with a value

SV_Vector SV_fill(vector, value)
SV_Vector vector;
Float value;

SV_getlength — return the length of a vector

Int SV_getlength(vector)
SV_Vector vector;

SV_loc — return the address of a vector element

Ptr SV_loc(vector, num)
SV_Vector vector;
Int num;

SV_mul2 — multiply elements of two vectors

SV_Vector SV_mul2(src, dst)
SV_Vector src;
SV_Vector dst;

SV_setbase — set the base of a vector

Void SV_setbase(vector, base)
SV_Vector vector;
Int base;

SV_sub3 — subtract elements of two vectors and store results in a third
vector

SV_Vector SV_sub3(srcl, src2, dst)
SV_Vector srcl;
SV_Vector src2;
SV_Vector dst;

SV_window — apply a symmetric window to a vector

SV_Vector SV_window(src, wnd, dst)
SV_Vector src;
SV_Vector wnd;
SV_Vector dst;

Filter Functions

SF_apply — apply a filter to a vector

SV_Vector SF_apply(filter, input, output)

SF_Filter filter;
SV_Vector input;
SV_Vector output;

SF_bind — bind coefficient vectors to a filter

Void SF_bind(filter, num, den)

SF_Filter filter;
SV_Vector num;
SV_Vector den;

SF_getstate — copy filter state arrays into vectors

Void SF_getstate(filter, hisinv, hisoutv)

SF_Filter filter;
SV_Vector hisinv;
SV_Vector hisoutv;

SF_setstate — copy vectors into filter state arrays

Void SF_setstate(filter, hisinv, hisoutv)
SF_Filter filter;
SV_Vector hisinv;
SV_Vector hisoutv;

