
'!I TEXAS
INSTRUMENTS

TAfS320C25 C Compiler

1989 1989 Digital Signal Processor Products

TMS320C25 C Compiler
Reference Guide

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without notice.
Tl advises its customers to obtain the latest version of the relevant information
to verify, before placing orders, that the information being relied upon is current.

Tl warrants performance of its semiconductor products to current specifications
in accordance with Tl's standard warranty. Testing and other quality control tech­
niques are utilized to the extent Tl deems necessary to support this warranty. Un­
less mandated by government requirements, specific testing of all parameters of
each device is not necessarily performed.

Tl assumes no liability for Tl applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does Tl warrant or represent that license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.

TRADEMARKS

OS/2 and PC-DOS are trademarks of International Business Machines Corp.

Macintosh and MPW are trademarks of Apple Computer Corp.

MS-DOS is a registered trademark of Microsoft Corp.

VAX, VMS and Ultrix are trademarks of Digital Equipment Corp.

UNIX is a trademark of AT&T Bell Laboratories, Inc.

Preface

Read This First

How to Use This Manual

This document contains the following chapters:

Chapter 1 Introduction and Installation
Provides an overview of the TMS320C25 development tools, describes the
code development process, and contains instructions for installing the C
compiler.

Chapter 2 Compiler Operation
Describes the three major components of the C compiler (preprocessor,
parser, and code generator), contains instructions for invoking individually
each of these components or for invoking a shell program to compile and
assemble a C source file. It also discusses linking and archiving C pro­
grams.

Chapter 3 TMS320C25 C Language
Discusses the differences between the C language supported by the
TMS320C25 C compiler and standard Kernighan and Ritchie C.

Chapter 4 Runtime Environment
Contains technical information on how the compiler uses the TMS320C25
architecture; discusses memory and register conventions, stack organiza­
tion, function-call conventions, and system initialization; provides informa­
tion needed for interfacing assembly language to C programs.

Chapter 5 Runtime-Support Functions
Describes the header files that are shipped with the C compiler, as well as
the macros, functions, and types thatthey declare; summarizes the runtime­
support functions according to category (header); and provides an alpha­
betical reference of the runtime-support functions.

Appendix A Fatal Errors
Shows the format of compiler error messages and lists all the error mes­
sages issued by fatal errors.

Appendix B Preprocessor Directives
Describes the standard preprocessor directives that the compiler supports.

iii

Read This First

Related Documentation

iv

You should obtain a copy of The C Programming Language (by Brian W.
Kernighan and Dennis M. Ritchie, published by Prentice-Hall, Englewood
Cliffs, New Jersey, 1978) to use with this manual.

You may find these two books useful as well:

Q Kochan, Steve G. Programming in C, Hayden Book Company.

Q Sobelman, Gerald E. and David E. Krekelberg. Advanced C:Tech-
niques and Applications, Que Corporation, 1985.

The following books, which describe the TMS320C25 and related support
tools, are available from Texas Instruments. To obtain Tl literature, please
call the Texas Instruments Customer Response Center (CRC) at
1-800-232-3200.

Q The TMS320 Family-Second Generation User's Guide (literature
number SPRU014) discusses hardware aspects of the TMS320 family
second-generation devices, including the TMS320C25. Topics in this
user's guide include pin functions, architecture, stack operation, and in­
terfaces; the manual also includes the TMS320C2x assembly language
instruction set.

[J The TMS320 Family-Second Generation Data Sheet(literature num­
ber SPRS010) contains the recommended operating conditions, elec­
trical specifications, and timing characteristics for the TMS32020 and
TMS320C25.

[J The TMS320C1x!TMS320C2x Assembly Language Tools User's­
Guide (literature number SPRU018) describes the assembly language
tools (assembler, linker, archiver, and object format converter), assem­
bler directives, macros, common object file format, and symbolic de­
bugging directives.

Preface

Read This First

Style and Symbol Conventions

This document uses the following conventions:

CJ In this document, program listings or examples, interactive displays, fi­
lenames, file contents, and symbol names are shown in a special
font. Examples may use a bold version of the special font for em­
phasis. Here is a sample declaration:

extern float sine[];
float *sine_p = sine;

f = sine y [4] ;

/* This is the object */
/* Declare a C pointer

to point to it */
/* Access sine like a

normal array */

Q In syntax descriptions, the instruction, command, or directive is in a
bold face font and parameters are in italics. Portions of a syntax that
are in bold face should be entered as shown; portions of a syntax that
are in italics describe the type of information that should be entered.

Q Square brackets ([and]) identify optionai information. if you use an
option, you specify the information within the brackets; you don't enter
the brackets themselves. Here is an example of the syntax to invoke a
program:

dspcc input file [output file] [options]

The dspcc program can use three inputs. The first input, input file, is
required. The second input output file, is optional. If you don't specify an
output filename the program uses the input filename with a different ex­
tension. The third input is optional and consists of a letter preceded with
a dash, that specifies the running mode.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path­
name (they don't represent options).

v

Read This First

Information about Cautions

vi

This book may contain cautions. A caution describes a situation that could
potentially damage your software or equipment.

Preface

Contents

4.1. 1 Sections . 4-2
4.1.2 Allocating Memory for Static and Global Variables 4-3
4.1.3 RAM and ROM Models . 4-3
4.1.4 Managing the Runtime Stack 4-4
4.1.5 Dynamic Memory Allocation 4-5
4.1.6 Packing Structures and Manipulating Fields 4-5

4.2 Register Conventions .. 4-6
4.2.1 Dedicated Registers 4-6
4.2.2 Using Registers ... 4-6
4.2.3 Register Variables 4-7

4.3 Function Call Conventions 4-8
4.3.1 Passing Parameters to a Function 4-8
4.3.2 Local Frame Generation 4-8
4.3.3 Function Termination 4-9

4.4 Interfacing C with Assembly Language 4-11
4.4.1 Assembly Language Modules 4-11
4.4.2 lnline Assembly Language 4-14
4.4.3 Modifying Compiler Output 4-15

4.5 Interrupt Handling .. 4-16
4.6 Integer Expression Analysis 4-18

4.6.1 Arithmetic Overflow and Underflow 4-18
4.6.2 Integer Division and Modulus 4-18

4.7 Floating-Point Expression Analysis 4-19
4.8 System Initialization .. 4-20

4.8.1 Runtime Stack ... 4-20
4.8.2 Autoinitialization .. 4-21

5 Runtime-Support Functions , 5-1
5.1 Header Files ... 5-2

5.1.1 Diagnostic Messages (assert.h) 5-2
5.1.2 Character Typing and Conversion (ctype.h) 5-3
5.1.3 Limits (float.h and limits.h) 5-3
5.1.4 Floating-Point Math (math.h) 5-5
5.1.5 Variable Arguments (stdarg.h) 5-6
5.1.6 Standard Definitions (stddef.h) 5-6
5.1.7 General Utilities (stdlib.h) 5-7
5.1.8 String Functions (string.h) 5-7

5.2 Summary of Runtime-Support Functions and Macros 5-8
5.3 Functions Reference ... 5-14

A Fatal Errors ... A-1

B C Preprocessor Directives .. B-1

viii Table of Contents

1-1 TMS320C25 Software Development Flow . 1-2

2-1 Compiling a C Program . 2-5

2-2 Input and Output Files for the C Preprocessor 2-6

2-3 Input and Output Files for the C Parser 2-11

2-4 Input and Output Files for the C Code Generator 2-13

2-5 An Example of a Linker Command File 2-16

2-6 ROM Model of Autoinitialization 2-18

2-7 RAM Model of Autoinitialization 2-19

4-1 An Assembly Language Function 4-12

(a) C program ... 4-12

(b) Assembly language program 4-13

4-2 Accessing from C a Variable Defined in .bss 4-13

(a) Assembly language program 4-13

(b) C program ... 4-14

4-3 Accessing from C a Variable not Defined in .bss 4-14

(a) Assembly language program 4-14

(b) C program .. 4-14

ix

Tables

5-1

5-2

5-3

5-4

5-5

5-6
5-7

5-8

x

Macros That Supply Limits for Characters and Integers 5-4
Macros That Supply Limits for Floating-Point Numbers 5-5

Error Message Macro . 5-8

Character Typing and Conversion Functions . 5-8

Floating-Point Math Functions . 5-9

Variable Argument Macros ... 5-1 O

General Utilities . 5-11

String Functions .. 5-12

Table of Contents

Examples
.. W.:x::W:-::"Wi$..WMM ... ;;::.. ,@ ._~::;.1$..~~~:ff~).=@~f:;-m@Wa.. ~~=~=*w.t.W;:~;:-:;:;::~w~:;:;~~:@;~·:§~~=~mm~::;~~:::.::.%w.:::~$...%t:::~::~.::.:::m@:OO~(:ii~~:;:-:::.:~lli:uzn:;:=:@Mhl,!?$;ffi!K&@

Method 1 - Invoking Each Tool Individually

Method 2 - Using the Shell Program

2-2

2-4

xi

xii Table of Contents

Chapter 1

Introduction and Installation
l!lill---------~mmm:Ufilll. -----------mi:· miih.~~n:~~*°~~A.::«$.=m
'"""*'""""'"""""~~"'=*"*"'"''"'-=*""""'*"=:*":==='*"'*""'*"=·~s:w:=w,.,w"""""'"'""m;""s:w,.,*"""""'""""'*"'·:n"'*""'l""**""~·,.,~""'*"""'"""::m""""""'""""""**""""'~"""'""~m:.:,.,·n,.,m"" .. *=*'""""=!*i'*'

The TMS320C25 is a high-performance CMOS microprocessor, optimized
for digital signal processing applications. The TMS320C25 is a member of
the second generation of the TMS320 family of digital signal processors.

The TMS320C25 is fully supported by a complete set of hardware and soft­
ware development tools (Section1 .1 describes these tools) including

0 a C compiler,

Q an assembler, a linker, and archiver,

Q a full-speed emulator,

Q a software simulator, and

Q a PC-resident software development system.

This reference guide describes the details and characteristics of the
TMS320C25 C compiler. It assumes that you already know how to write C
programs. We suggest that you obtain a copy of The C Programming Lan­
guage, by Brian W. Kernighan and Dennis M. Ritchie (published by
Prentice-Hall), as a supplement to this reference guide.

Topics in this introductory chapter include:

Section Page
1.1 Software Development Tools Overview . 1-2
1.2 Software Installation 1-4
1.3 Getting Started . 1-8

1-1

1.1 Software Development Tools Overview
Figure 1-1 illustrates the TMS320C25 software development flow. The cen­
ter portion of the figure highlights the most common path of software devel­
opment; the other portions are optional.

Figure 1-1. TMS320C25 Software Development Flow

1-2

XDS
Emulator

Software
Development TMS320C25

System
Simulator

Archiver

Object
Format

Converter

EPROM
Programmer

Introduction and Installation

Software Development Tools Overview

The following list describes the tools that are shown in Figure 1-1. Chapter
2, C Compiler Operation, contains instructions for compiling, assembling,
linking, and archiving C programs.

Q The C compiler accepts C source code and produces TMS320C25 as­
sembly language source code. The C compiler has three parts: a pre­
processor, a parser, and a code generator. Section 3 describes compiler
invocation and operation.

Q The assembler translates assembly language source files into ma­
chine language object files.

Q The archiver allows you to collect a group of files into a single archive
file. (An archive file is called a library.) It also allows you to modify a li­
brary by deleting, replacing, extracting, or adding members. One of the
most useful applications of the archiver is to build a library of object
modules. Two object libraries are shipped with the C compiler:

• flib. lib contains floating-point arithmetic routines.

• rts. lib contains standard runtime-support functions and com-
piler-utility functions.

These functions and routines can be called in C programs. You can also
create your own object libraries. To use an object library, you must spec­
ify the library name as linker input; the linker will include the library mem­
bers that define the functions you call in a C program.

Q The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF object files
and object libraries as input.

Q The main purpose of this development process is to produce a module
that can be executed in a TMS320C25targetsystem. You can use one
of several debugging tools to refine and correct your code; available
products include:

• A simulator,
• An extended development system (XDS) emulator, and
• A software development system (SWDS).

Q An object format converter is also available; it converts a COFF object
file into an Intel, Tektronix, or Tl-tagged object format file that can be
downloaded to an EPROM programmer.

1-3

Software Installation

1.2 Software Installation

This section contains step-by-step instructions for installing the
TMS320C25 C compiler on the following systems:

Q IBM PC
• PC-DOS (versions 3.x and up)
• OS/2

Q Digital Equipment Corporation VAX-11
• VMS operating system
• Ultrix operating system

Q Sun-3 Workstation
• Sun-OS (versions 4.x)

Q Macintosh
11 MPW

Note:

To use the TMS320C25 C compiler, you must also have version 5.0 (or lat­
er) of the TMS320C25 assembler and linker.

1.2.1 IBM PC with PC-DOS or OS/2

1-4

The C compiler package is shipped on double-sided, dual-density diskettes.
The compiler requires 512K bytes of available RAM.

These instructions are for both hard-disk systems and dual floppy drive sys­
tems (however, we recommend that you use the compiler on a hard-disk
system). On a dual-drive system, the system diskette should be in drive 8.
The instructions use these symbols for drive names:

A: Floppy diskette drive for hard disk systems; source drive for dual-
drive systems.

B: Destination or system diskette for dual-drive systems.

C: Winchester (hard disk) for hard-disk systems.

Follow these instructions to install the software:

1) Make backups of the product diskettes.

2) Create a directory to contain the C compiler. If you're using a dual-drive
system, put into drive B the diskette that will contain the tools .

Q On hard-disk systems, enter

Introduction and Installation

Software Installation

MD C:\DSPTOOLS ~

Q On dual-drive systems, enter

MD B:\DSPTOOLS ~

3) Copy the C compiler package onto the hard disk or formatted diskette.
Put the product diskette in drive A; if you're using a dual-drive system,
put the diskette that will contain the tools into drive B.

Q On hard-disk systems, enter

COPY A:*.* C: \DSPTOOLS*. * ~

Q On dual-drive systems, enter

COPY A:*.* B:\DSPTOOLS*. ~

4) Put the directory that contains the C tools into your system path.

Q On hard-disk systems, enter

PATH C:\DSPTOOLS; ~

Q On dual-drive systems, enter

PATH B:\DSPTOOLS; ~

1.2.2 VAX with VMS

The TMS320C25 C compiler tape was created with the VMS backup utility
at 1600 BPI. These tools were developed on version 4.5 of VMS. If you are
using an earlier version of VMS, you must relink the object files; refer to the
release notes for relinking instructions.

Follow these instructions to install the compiler:

1) Mount the tape on your tape drive.

2) Execute the following VMS commands. Note that you must create a
destination directory to contain the package; in this example,
DEST: DIRECTORY represents that directory. Replace TAPE with the
name of the tape drive you are using and DIRECTORY with the actual
name of the directory.

$ allocate TAPE:
$ mount/for/den=l600TAPE:
$backup TAPE:320.bck/SELECT=[MASTER.DSPC ...] DEST: [DIRECTORY ...]
$ dismount TAPE:
$ dealloc TAPE:

3) The product tape contains a file called set up. com. This file sets up VMS
symbols that allow you to execute the tools in the same manner as other
VMS commands. Enter the following command to execute the file:

1-5

Software Installation

$ @ setup DEST:directory ~

This sets up symbols that you can use to call the various tools. As the file
is executed, it displays the defined symbols on the screen.

1.2.3 VAX with Ultrix, Sun-3 with Sun-OS

1-6

The TMS320C25 C compiler product tape was made at 1600 BPI, using the
TAR command. Follow these instructions to install the compiler:

1) Mount the tape on your tape drive.

2) Set the directory where you will store the tools.

3) Enter the TAR command for your system; for example,

TAR x

This copies the entire tape into the directory. The TAR command varies
from system to system; consult your operating system documentation
for proper use of the TAR command.

Introduction and Installation

Software Installation

1.2.4 Macintosh with MPW

The C compiler is shipped on a double-sided, 800k, 3 1/2" disk. The disk
contains three folders.

88 Libraries

Use the Finder to display the disk contents and copy the files into your MPW
environment.

1) The Tools directory contains all the programs and the batch files for run­
ning the compiler. Copy this directory in with your other MPW tools
(MPW tools are usually in the folder {MPW}Tools.)

2) The Includes directory contains the header files (. h files) for the run­
time-support functions. Many of these files have names that conflict with
commonly-used MPW header files, so you should keep these header
files separate from the MPW files. Copy the contents of the Includes di­
rectory into a new folder, and use the C_DIR environment variable.

3) The Libraries folder contains the compiler's runtime-support object
and source libraries. You can copy these files into the folder that you
created for the header files, or you can copy them into a new folder. If
you copy them into a new folder, use the C_DIR environment variable
to create a path to this folder as well.

1-7

Started

1.3 Getting Started

1-8

The TMS320C25 C compiler has three parts: a preprocessor, a parser, and
a code generator. The compiler produces a single assembly language
source file that must be assembled. The simplest way to compile and as­
semble a C program is to use the shell program that is shipped with the com­
piler. This section provides a quick walkthrough so that you can get started
without reading the entire reference guide.

1) Create a sample file called function. c that contains the following
code:

/*********************************/
/* function.c */
/*(Sample file for walkthrough)*/
/*********************************/
int abs (i)
int i;
{

}

register int temp = i;
if (temp < 0) temp *= -1;
return (temp);

2) To invoke the shell program to compile and assemble function. c; en­
ter:

dspcl function ~

The shell program prints the following information as it compiles the pro­
gram:

dspcl function
[function}
C Pre-Processor Version 5.10
(c) Copyright 1987, 1989, Texas Instruments Incorporated

DSP C Compiler Version 5.10
(c) Copyright 1987, 1989, Texas Instruments Incorporated
"function.c": ==> abs

DSP C Codegen Version 5.10
(c) Copyright 1987, 1989, Texas Instruments Incorporated
"function.c": ==> abs

DSP COFF Assembler Version 5.10
(c) Copyright 1987, 1989, Texas Instruments Incorporated
PASS 1
PASS 2

No Errors, No Warnings

Introduction and Installation

Getting Started

The shell program compiles and assembles function. c by invoking
the following:

dspcpp ~ C Preprocessor
dspcc ~ C Parser
dspcg ~ Code Generator
dspa ~ Assembler

In this example, function. c is the input source file. Do not specify an
extension for the input file; the batch file assumes thatthe input file has a
.c extension.

Each tool creates a file that the next tool uses for input; the tools use the
filename of the source file (without the .c extension) to name the files
that they create. This example uses and creates the following files:

a) The source file function. c is input for the preprocessor; the pre­
processor creates a modified C source file called fun ct ion. cpp.

b) function. cpp is input for the parser; the parser creates an inter­
mediate file called function. if.

c) function. if is input for the code generator; the code generator
creates an assembly language file called function. asm.

d) function. asm is input for the assembler; the assembler creates an
object file called function. obj.

3) The final output is an object file. This example creates an object file
called function. obj. To create an executable object module, link the
object file created by the batch file with the runtime-support library
rts. lib:

dsplnk -c function -o function.out -1 rts.lib

This example uses the-clinker option because the code was originally
from a C program. It uses the -o option to name the output module
function. out. If you don't use the -o option, the linker names the out­
put module a. out.

1-9

1-10

Started

You can find more information about invoking the compilertools, the assem­
bly language tools, and the batch files in the following sections:

Section Page
2.1 Compiling and Assembling a Program 2-2
2.2 Invoking the Compiler Tools Individually 2-5
2.3 Linking a C Program 2-15
2.4 Archiving a C Program 2-20

Introduction and Installation

Chapter 2

C Compiler Operation
~.&:::r:r:::::::::::~::».%mw:a=::~~mm~~~™· ;u ~-t~%W'~%::::m2.:::J~:~~~:~~::::~::i
~.u-::::r~.f'"..::;:::{::::WW~#~..m:x'::i·x·:·iS:~~=~~~~·?< ·~· ~~..x:~::::w-h'~~w:·itYz~·~·s:::::::::w.M:::w:·m:(;m\·m<~t~.:::::::i

The TMS320C25 compiler is made up of three programs: the preprocessor,
the parser, and the code generator. After compiling a program, you must as­
semble and link it with the TMS320C25 assembler and linker.

If you choose to run the three compiler steps individually, Section 2.2 de­
scribes how to do so.

Topics in this chapter include

Section Page
2.1 Compiling and Assembling a Program 2-2
2.2 Invoking the Compiler Tools Individually 2-5
2.3 Linking a C Program 2-15
2.4 Archiving a C Program 2-20

2-1

Compiling and Assembling a Program
~~:::::::::X:..~"';:::;:::~~-;:::::~.::~~::.":,.'Z;¥$::::::i:::::w.;-;v;~:;::r.¢.»J:'~>.:'~.W~~«<W.<::;:"««'(~.:W'~~~~.x::i-«"..:'.:".::::::~.x.-:.-:.-:::.~.::::::::::::~.:".:'.:".::~,,.;:::::-.::.~:::-~:

2.1 Compiling and Assembling a Program

The compiler creates a single assembly language source file as output. You
can assemble and link this file to form an executable object module. You can
compile several C source programs, assemble each of them, and then link
them together. (The TMS320C1x/TMS32C2x Assembly Language Tools
User's Guide describes the TMS320C25 assembler and linker.)

Example 2-1 and Example 2-2 show two different methods for compiling
and assembling a C program. Both of these examples compile and as­
semble a C source file called program. c and create an object file called
program. obj. Example 2-1 shows how you can accomplish this by invok­
ing the preprocessor, the parser, the code generator, and the assembler in
separate steps. Example 2-2 shows how you can use a shell program for
compiling and assembling a file in one step.

Example 2-1. Method 1 - Invoking Each Tool Individually

2-2

1) Invoke the preprocessor; use program. c for input:

dspcpp program ~
C Pre-Processor, Version 5.10
(c) Copyright 1987, 1989 Texas Instruments Incorporated

This creates an output file called program. cpp.

2) Invoke the parser; use program. cpp for input:

dspcc program ~
DSP C Compiler, Version 5.10
(c) Copyright 1987, 1989 Texas Instruments Incorporated

"program.c" ==> abs

This creates an output file called program. if.

3) Invoke the code generator; use program.if for input:

dspcg program ~
DSP C Codegen, Version 5.10
(c) Copyright 1987, 1989 Texas Instruments Incorporated

"program.c" ==> abs

This creates an output file called program. asm

4) Assemble program. asm

dspa program ~
DSP COFF Assembler, Version 5.10
(c) Copyright 1987, 1989 Texas Instruments Incorporated

PASS 1
PASS 2

No Errors, No Warnings

This creates an output file named program. obj

C Compiler Operation

Compiling and Assembling a Program

A shell program is shipped as part of the TMS320C25 C compiler package.
The shell program expects C source or assembly source files as input, to
produce object files that can be linked. To invoke the shell program, enter:

dspcl

options

names the shell program that invokes the tools. If you do not
specify filenames or options, the shell displays a help screen
with the syntax of the shell command and its options.

are single letters preceded by hyphens. Options are not case
sensitive. Some options have additional fields which follow
the option with no intervening spaces. Valid options include:

-c no linking (negates -z)

-dNAME predefine NAME

-g symbolic debugging

-i dir #include search path

-k keep . asm file

-n compile only (no asm)

-q quiet

-qq super quiet

-s C source interlist

-uNAME undefine NAME

-z link options follow

Preprocessor (-p) options:

-pc preprocess only

-pp no #line directives

Runtime (-m) model options:

-ma aliased variables

-mr register use info

-mv volatile variables

Assembler options (-a options)

-al assembly listing file

-ap preprocess first

-as keep local symbols

2-3

Compiling and Assembling a Program
. ~~:*~~-· -=-~~~~~::::>-7/_.m;m:i:::;:;:..'-;(~~·~::~..x

-ax cross-reference file

filenames names C source or assembly files. An extension of . c indi­
cates a source file, an extension of .asm indicates an assem­
bly file. If you do not specify an extension, the shell assumes it
is a C source file (extension of . c}.

link options all options following the -z are passed directly to the linker.

object files names additional object files used in the link step.

The output files have the same name as the input files but with an extension
of obj. See Section 2.3 for linker options.

Example 2-2 shows how the shell program compiles and assembles a C
source file named program. c by invoking dspcpp, dspcc, dspcg, and
dspa.

Example 2-2. Method 2 - Using the Shell Program

2-4

dspcl program ~
[program]
C Pre-Processor,
(c) Copyright 1987,

DSP C Compiler,
(c) Copyright 1987,

"program.c" ==>
DSP C Codegen,
(c) Copyright 1987,

"program.c" ==>
DSP COFF Assembler,
(c) Copyright 1987,
PASS 1
PASS 2

1989

1989
abs

1989
abs

1989

No Errors, No Warnings

Version 5.10
Texas Instruments Incorporated

Version 5.10
Texas Instruments Incorporated

Version 5.10
Texas Instruments Incorporated

Version 5.10
Texas Instruments Incorporated

C Compiler Operation

Invoking the Compiler Tools Individually

2.2 Invoking the Compiler Tools Individually

Figure 2-1 illustrates the three-step process of compiling a C program.

Figure 2-1. Compiling a C Program

C source
file
(.c)

Step 1: The input for the preprocessor is a C source file (as described
in Kernighan and Ritchie). The preprocessor produces a modified
version of the source file.

Step 2: The input for the parser is the modified source file produced by
the preprocessor. The parser produces an intermediate file.

Step 3: The input for the code generator is the intermediate file produced
by the parser. The code generator produces an assembly lan­
guage source file.

2.2.1 Preprocessing C Code

The first step in compiling a TMS320C25 C program is invoking the C pre­
processor. The preprocessor handles macro definitions and substitutions,
#include files, line number directives, and conditional compilation. As Figure
3-2 shows, the preprocessor uses a C source file as input, and produces
a modified source file that is used as input for the C parser.

2-5

Invoking the Compiler Tools Individually

-idir adds dir to the list of directories to be searched for
#include files. You can use this option multiple times
to define several directories; be sure to separate mul­
tiple-i options with spaces. Note that if you don't
specify a directory name, the preprocessor ignores
the -i option. (For more information about alternate
directories, see Section 2.2.1.1.)

-p tells the preprocessor not to produce line number and
file information.

-q suppresses the banner and status information.

Note that options can appear anywhere on the command line.

This preprocessor is the same preprocessor that is described in Kernighan
and Ritchie; additional information can be found in that book. The prepro­
cessor supports the same preprocessor directives that are described in Ker­
nighan and Ritchie (Appendix 8 summarizes these directives). All prepro­
cessor directives begin with the #character, which must appear in column
1 of the source statement. Any number of blanks or tabs may appear be­
tween the# sign and the directive name.

The C preprocessor maintains and recognizes five predefined macro­
names:

__ LINE __ represents the current line number (maintained as a decimal in­
teger).

__ FILE __ represents the current filename (maintained as a C string).

__ DATE __ represents the date that the module was compiled (repre­
sented as a C character string).

__ TIME __ represents the time that this module was compiled (repre­
sented as a C character string).

_dsp identifies the code as TMS320C25 code; it is defined as the
constant 1.

You can use these names in the same manner as any other defined name.
For example,

printf ("%s %s" , TIME DATE } ;

could translate to a line such as:

printf ("%s %s", "Jan 14 1988", "13:58:17");

The preprocessor produces self-explanatory error messages. The line
number and the filename where the error occurred are printed along with
a diagnostic message.

2-7

Invoking the Compiler Tools Individually

2.2.1.1 Specifying Alternate Directories for Include Files

The #include preprocessor directive tells the preprocessor to read source
statements from another file. The syntax for this directive is:

#include "filename"

or

#include <filename>

The filename names an include file that the preprocessor reads statements
from; you can enclose the filename in double quotes or in angle brackets.
The filename can be a complete pathname or a filename with no path infor­
mation.

[J If you provide path information for filename, the preprocessor uses that
path and does not look for the file in any other directories.

[J If you don't provide path information and you enclose filename in
double quotes, the preprocessor searches for the file in

1) The directory that contains the current source file. (The current
source file refers to the file that is being processed when the prepro­
cessor encounters the #include directive.)

2) Any directories named with the -i preprocessor option.

3) Any directories set with the environment variable C_DIR.

[J If you don't provide path information and you enclose filename in angle
brackets, the preprocessor searches for the file in

1) Any directories named with the -i preprocessor option.

a) Any directories set with the environment variable C_DIR.

Note:

If you enclose the filename in angle brackets, the preprocessor does not
search for the file in the current directory.

You can augment the preprocessor's directory search algorithm by using
the -i preprocessor option or the environment variable C_DIR.

-i Preprocessor Option

2-8

The -i preprocessor option names an alternate directory that contains in­
clude files. The syntax for the -i option is

dspcpp -i pathname

C Compiler Operation

Invoking the Compiler Tools Individually

2-10

specify the path information with C_DIR. For example, assume that a file
called source. c contains these statements:

#include <altl.c>

#include <alt2.c>

Assume that the complete path and file information for these files is

Q c: \320\files\altl. c and c: \dsys\alt2. c (DOS systems)
Q [320.filesJaltl.c and [dsysJalt2.c (VMS system),
Q /320/files/altl.c and /dsys/alt2 .c (UNIX systems), or
Q drive:320:files:altl.c and drive:dsys:alt2.c (MPWsystems).

This is how you set the environment variable and invoke the preprocessor:

DOS: set C_DIR=c:\dsys; c:\exec\files

dspcpp -ic:\320\files source.c

VMS: assign "[dsys]; [exec.files]" C DIR

dspcpp -i[320.files] source.c

UNIX: setenv C_DIR "c:/dsys; c:/exec/files"

dspcpp -ic:/320/files source.c

MPW: set C_DIR ":dsys; :files"

export C_DIR

dspcpp drive/320/files source.c

Note that the include filenames are enclosed in angle brackets. The prepro­
cessor first searches in the directories named with the -i option and finds
altl. c. Then, the preprocessor searches in the directories named with
C_DIR and finds alt2. c.

The environment variable remains set until you reboot the system or reset
the variable by entering ,

DOS: set C_DIR=

VMS: deassign C_DIR

UNIX: setenv C_DIR""

MPW: unset C_DIR

C Compiler Operation

Invoking the Compiler Tools Individually
. .

options are single letters preceded by hyphens. Options can appear
anywhere on the command line and are not case sensitive.
Valid options include

-z tells the parser to retain the input file (the intermedi­
ate file created by the preprocessor). If you don't
specify-z, the parser deletes the . cpp input file. (The
parser never deletes files with the . c extension.)

-q suppresses the banner and status information.

Most errors are fatal; that is, they prevent generation of an intermediate file
and must be corrected before you can finish compiling a program. Some er­
rors, however, merely produce warnings that hint of problems but don't pre­
vent the parser from producing an intermediate file.

As the parser encounters function definitions, it prints a progress message
that contains the name of the source file and the name of the function. Here
is an example of a progress message:

filename: c : = > main

This type of message shows how far the compiler has progressed in its ex­
ecution and helps you to identify the locations of errors. Use the -q option
to suppress these messages.

If the input file has an extension of . cpp., the parser deletes it upon comple­
tion unless you use the-z option. If the input file has an extension other than
. cpp, the parser does not delete it.

2.2.3 Generating Assembly Language Code

2-12

The third step in compiling a TMS320C25 C program is invoking the C code
generator. As Figure 2-4 shows, the code generator converts the interme­
diate file produced by the parser into an assembly language source file. You
can modify this output file or use it as input for the TMS320C25 assembler.
The code generator produces reentrant, relocatable code that can be ex­
ecuted from ROM.

C Compiler Operation

Invoking the Compiler Tools Individually
::::~~~~~"XX.-:::m::::-.-s::::::::w..::::x::s$',~~;::xxz.~s:;y..x:;;;::sx::::::>"!<'S:::;;;:;;;:;:;xi;::-..::~~.::~::-:;-x.x::::xx:.~:::::V..m~~o;::::::-,;.,-:;::::::.~a~:~;::>-::::>~~.:::s::%>"J:.~~~~::

Figure 2-4. Input and Output Files for the C Code Generator

To invoke the code generator, enter:

dspcg is the command that invokes the code generator.

input file names the intermediate file that the code generator uses as
input. The code generator assumes that the input file has an
extensio"n of . if ; if you supply a different extension, the code
generator ignores it. If you don't specify an input file, the code
generator prompts you for one.

output file names the assembly language source file that the code gen­
erator creates. If you don't supply a filename for the output file,
the code generator uses the input filename with an extension
of .asm.

tempfile names a temporary file that the code generator creates and
uses. The default filename for the temporary file is the input
filename appended with an extension of . tmp. The code gen­
erator deletes this file after it uses it.

options are case-sensitive single letters preceded by hyphens. Valid
options include:

-o tells the code generator to place symbolic debugging
directives in the output file. See Appendix B of the
TMS320C1x!TMS320C2x Assembly Language
Tools User's Guide for more information about these
directives.

2-13

Invoking the Compiler Tools Individually

-q

-z

-r

2-14

suppresses the banner and status information.

tells the code generator to retain the input file (the in­
termediate file created by the parser). This option is
useful for creating several output files with different
options; for example, you might want to use the same
intermediate file to create one file that contains sym­
bolic debugging directives (-o option) and one with­
out them. Note that if you don't specify the -z option,
the code generator deletes the input (intermediate)
file.

writes register information to output file in the form of
comments.

C Compiler Operation

Linking a C Program
:::::~;i::;:;.~:w..x:~:~:::::;:::;.>;:~~:::::::~":J::::z:-.::::xm.-;.-::::::::».:::~::~.::.~m:::::::::::.-:..~-::::::::::::~:::::::::::::-...-...-/r,m::~'!-~~":.o~:::::::;:;-m:::;:;~":.":>'X:::::-~;-;:.~~.:-«<«~;ox;,>».~,...£~m<~~.w£~~..::~.::. ... ~®.-:::::::~.::.-;.-:-;~"::w...-~:~

When a C program begins running, it must execute boot. obj first. The sym­
bol _ c _into marks the starting point in boot . obj; if you use the -c or -er
option, then _c_into is automatically defined as the entry point for the pro­
gram. If your program begins running from reset, you can set up the reset
vector to generate a branch to _c_into so that the TMS320C25 executes
boot. obj first. The boot. obj module contains code and data for initializing
the runtime environment; the module performs the following tasks:

Q Sets up the system stack.

Q Processes the runtime initialization table and autoinitializes global vari-
ables (in the ROM model).

Q Calls main (the C program).

Q Calls exit if main returns.

The linker automatically extracts boot. obj from rts. lib and links it when
you use the -c or -er option.

Note:

You must specify rts. lib on the command line.

Chapter 5 describes additional runtime-support functions that are included
in rts. lib.

2.3.2 Sample linker Command File
Figure 2-5 shows a typical linker command file that can be used to link a
C program. The command file in this example is named link. cmd.

Figure 2-5. An Example of a Linker Command File

2-16

/***/
I Linker command file link.cmd */
/***/

-c
-m example. map
-o example.out

main.obj
sub.obj
asm.obj
-1 rts.lib
-1 flib. lib
-1 matrix.lib

/* ROM autoinitialization model */
/* Create a map file */
I* Output file name */

/* First C module
/* Second C module
I* Assembly language module
/* Runtime-support library
/* Floating-point library
/* Object library

*I
*I
*/
*I
*I
*I

C Compiler Operation

Linking a C Program
::x:;-..«"..::xx:::::;:;:~:::~~~::::::.::::::.::::r.::::r.r.r.r..::::-;x::~.:::•::~:::: ::::::.:::::::;::x:•r.:::::::::::;:::::::::;x~::xxY»"..::::::x::::::::~.:::•:::<=:~•:~::::::::::~=::::::::::::::::~'!i:::::::•>:::::::'-:::::::w.~ ::::::::::::::~":>~~·::::~~=:::::~:::::::::-.:-.:::-~~::-m::;;~~xx:•::.:::::::;:::::::::::::•:~•:•:::~::•::.:•:::•r.:::::•:•::r~::or.~~·:•>:~::::;:;:::i-;:::::::::::::;:~;:::::::::::::;::::::::r.:::::::::::::;::::::::r.::::::::

Q The command file in Figure 2-5 first lists several linker options:

-c is one of the options that can be used to link C code; it tells the
linker to use the ROM autoinitialization method.

-m tells the linker to create a map file; the map file in this example is
named example. map.

-o tells the linker to create an executable object module; the module
in this example is named example. out.

Q Next, the command file lists ail the object files to be linked. This C pro­
gram consists of two C modules, main. c and sub. c, which were com­
piled and assembled to create two object files called main. obj and
sub. obj. This example also links in an assembly language module
called asm. obj.

One of these files must define the symbol main, because boot . obj calls
main as the start of your C program. All of these single object files are
linked.

Q Finally, the command file lists all the object libraries that the linker must
search. (The libraries are specified with the -I linker option.) Because
this is a C program, the runtime-support library rts. lib must be in­
cluded. If a program uses floating-point routines, it must also link in
flib. lib (the floating-point library). This program uses several rou­
tines from an archive library called matrix. lib, so it is also named as
linker input. Note that only the library members that resolve undefined
references are linked.

To link the program, enter

dsplnk link.cmd

This example uses the default memory allocation described in Section 8.8
of the TMS320C 1 x/TMS320C2x Assembly Language Tools User's Guide.
If you want to specify different MEMORY and SECTIONS definitions, refer
to that user's guide.

2.3.3 Autoinitialization (ROM and RAM Models)

The C compiler produces tables of data for autoinitializing global variables.
(Section 4.8.2, page 4-19, discusses the format of these tables.) These
tables are in a named section called .cinit. The initialization tables can be
used in either of two ways:

Q ROM Model (-c option)

Global variables are initialized at runtime. The .cinit section is loaded
into memory along with all the other sections. The linker defines a spe-

2-17

Linking a C Program
~~;:;r~~«~~~.x::s.~~S$SSS~s::i:..-::o:i:'.-7hX".®7~:::::::;:;:.w.«~.«.W~hW~%:>:;::::~.::::::::::::::::::x~ .. -x~~~~::::;:::::::::;:;x::::::-;:;:.-:;:::::::::::;;.~».;:"®.~X.'*''5

cial symbol called cinit that points to the beginning of the tables in
memory. When the program begins running, the C boot routine copies
data from the tables into the specified variables in the .bss section. This
allows initialization data to be stored in ROM and then copied to RAM
each time the program is started.

Figure 2-6 illustrates the ROM autoinitialization model.

Figure 2-6. ROM Model of Autoinitialization

2-18

Object File Memory

loader

Q RAM Model (-er option)

Global variables are initialized at load time. This enhances performance
by reducing boot time and saving memory used by the initialization
tables. (Note that you must use a smart loader to take advantage of the
RAM model of autoinitialization.)

When you use-er, the linker marks the .cinit section with a special attrib­
ute. This attribute tells the linker not to allocate the .cinit section into
memory. The linker also sets the cini t symbol to -1 ; this tells the C boot
routine that initialization tables are notpresent in memory. Thus, no run­
time initialization is performed at boot time.

When the program is loaded, the loader must be able to

• Detect the presence of the .cinit section in the object file.

• Detect the presence of the attribute that tells it not to load the .cinit
section.

• Understand the format of the initialization tables (described in Sec­
tion 4.8.2 on page 4-19).

C Compiler Operation

Linking a C Program

The loader then uses the initialization tables directly from the object file
to initialize variables in .bss.

Figure 2-7 illustrates the RAM autoinitialization model.

Figure 2-7. RAM Model of Autoinitialization
Object File Memory

Loader

2.3.4 The -c and -er Linker Options

The following list outlines what happens when you invoke the linker with the
-c or-er option. These are the linking conventions required for C programs.

Q The symbol _c_intO is defined as the program entry point; it identifies
the beginning of the C boot routine in boot. obj. When you use -c or
-er, _c_intO is automatically referenced; this ensures that boot. obj is
automatically linked in from the runtime-support library.

Q The .cinit output section is padded with a termination record so that the
boot routine (ROM model) or the loader (RAM model) knows when to
stop reading the initialization tables.

Q In the ROM model (-c option), the linker defines the global symbol
cini t as the starting address of the .cinit section. The C boot routine
uses this symbol as the starting point for autoinitialization.

Q In the RAM model (-er option):

• The linker sets the symbol cini t to-1. This indicates thatthe initial­
ization tables are not in memory, so no initialization is performed at
runtime.

• The STYP _COPY flag (01 Oh) is set in the .cinit section header.
STYP _COPY is the special attribute that tells the loader to perform

2-19

Archiving a C Program
---m.--""""'--------------,~~X::"~~ .. ;;:;~~::. ..

autoinitialization directly and not to load the .cinit section into
memory. The linker does not allocate space in memory for the .cinit
section.

2.4 Archiving a C Program

2-20

An archive file (or library) is a partitioned file that contains complete files as
members. The TMS320C1 x/TMS320C2x archiver is a software utility that
allows you to collect a group of files together into a single archive file. The
archiver also allows you to manipulate a library by adding members to it or
by extracting, deleting, or replacing members. The TMS320C1x/
TMS320C2x Assembly Language Tools User's Guide contains complete in­
structions for using the archiver.

After compiling and assembling multiple files, you can use the archiver to
collect the object files into a library. You can specify an archive file as linker
input. The linker is able to discern which files in a library resolve external ref­
erences, and it links in only those library members that it needs. This is use­
ful for creating a library of related functions; the linker links in only the func­
tions that a program calls. The library rts. lib is an example of an object
library.

You can also use the archiver to collect C source programs into a library. The
C compiler cannot choose individual files from a library; you must extract
them before compiling them. However, this can be useful for file manage­
ment and portability. The library rts. src is an example of an archive file that
contains source files.

For more information about the archiver, see the TMS320C1 x/TMS320C2x
Assembly Language Tools User's Guide.

C Compiler Operation

Chapter 3

Tr,\Jl~~,?_O~~?N~ ~a.~g uage
............. ·.·,·.·,·.·.·.·.·.·.·.·.·,·,·.···································;;;•.•,•.;.·;·.;.::::::::;:::;:::::::.:::::::::::::::::::~::..:.·-··~::;:;:;:;. .•.•:·:·:·:·:·:·:·:·:;:;:::;:;:·:::::r.;:;:; ::~:::::::::: :·:···:·:·:·:·:·:·:·:·:··-;.;.·.;.·.;.;.;.;.;-::·:·:·'.·!·::·:·:·:·:·:·:·:::::·:::::::;:,~:::::::::·:

·.;.·.;.;.;.;.;.;.;.;.;.;.;.;.;.;-;.·.:-:-:-:-:-:~ :-:-:-:-;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.·.;.;.;.;.;.;.;.;.;.·.;.;.;.· ;.·.;.·.;.;.;.;.;.;.;.;.;.;.;.;.·.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.:-~:-:.;.;.;.·...-.· •. ·.·.·.··.·.··.·.·.·.·.·.•.·.·.·················""·'"•'•'·'·'<"·"'•"'·'•"•"•:·:·:·:·:·:·:·:·:·:-:·:-:-:-:·:-:-:-:-:-:-:.:-:.;-:-:-··.·.·.······
.-................. -.-.................. ,........ ,., ... ,., .• -,.,-•.• ..v ... ·.···········.-.·.-.·.······"""""•"•""•"•"'•"•"•''•"•""•"•"•"• ,.,-,.,.,., ,

The C language that the TMS320C25 C compiler supports is based on the
UNIX System V C language that is described by Kernighan and Ritchie, with
several additions and enhancements. The most significant differences are

CJ The addition of data type enum.

Q Unique member names are not required in structures.

CJ Structures and unions can be passed as parameters to functions and
assigned directly.

This chapter compares the C language compiled by TMS320C25 C to the
C language described by Kernighan and Ritchie. It presents only the differ­
ences in the two forms of the C language. The TMS320C25 C compiler sup­
ports standard Kernighan and Ritchie C except as noted in this section.

Throughout this chapter, references to Kernighan and Ritchie's C Refer­
ence Manual (Appendix A of The C Programming Language) are shown in
the left margin.

Topics in this chapter include

Section Page
3.1 Identifiers, Keywords, and Constants 3-2
3.2 Data Types .. 3-4
3.3 Object Alignment 3-6
3.4 Expressions .. 3-6
3.5 Declarations ... 3-6
3.6 Initialization of Static and Global Variables 3-9
3.7 asm Statement (lnline Assembly Language) 3-9

3-1

Identifiers, Keywords, and Constants
:<m-.<>~~~~'<'l""'' _,_,__. ·z~::::s:=..·:.%xx:::;:».:s:.'S:~:m-..f.::::::~~-xxx:~~~:::&~~:;.-:::::-/.:x:m"X::-;::::x-m~~~~~.:~x

3.1 Identifiers, Keywords, and Constants

K&R 2.2 - Identifiers

Q In TMS320C25 C, the first 31 characters of an identifier are signifi­
cant (in K&R C, 8 characters are significant). This also applies to exter­
nal names.

Q Case is significant; uppercase characters are different from lower­
case characters for identifier names in all TMS320C25 C tools. This
also applies to external names.

K&R 2.3 - Keywords

TMS320C25 C reserves three additional keywords:

asm
void
en um

K&R 2.4. 1 - Integer Constants

[J All integer constants are of type int (signed, 16 bits long) unless they
have an Lor U suffix. If the compiler encounters an invalid digit in a con­
stant (such as 8 or 9 in an octal constant), it issues a warning message.

[J You can append a letter suffix to an integer constant to specify what kind
of integer it is:

• Use U as a suffix to declare an unsigned integer constant.

• Use L as a suffix to declare a long constant.

• Combine the suffixes to declare an unsigned long integer
constant.

Note that the suffixes can be upper or lower case.

[J Here are some examples of integer constants:

1234;
OxFFFFFFFFu;
OL;
077613LU;

I* int
/* unsigned int
/* long int
/* unsigned long int

*/
*I
*/
*I

K&R 2.4.3 - Character Constants

3-2

In addition to the escape codes listed in K&R, the TMS320C25 C compiler
recognizes the escape code \v in character and string constants as a verti­
cal tab character (ASCII code 11).

TMS320C25 C Language

Identifiers, and Constants

K&R 2.4.4 - Floating-Point Constants

In TMS320C25 C, floats, doubles, and long doubles are single-precision
(32-bit) floating-point numbers. To provide compatibility with ANSI standard
C, the compiler allows you to append one of two suffixes to a floating-point
constant:

Q L identifies long double constants in ANSI C.

Q F identifies floats in ANSI C.

You can use either upper or lower case letters. Examples of floating-point
constants include:

1.234;
l.Oel4f;
3.14159L;

/* double
/* float
/* double

*/
*/
*/

Note that using a suffix does not change the way the compiler treats the
'""'' 1rrih0!"' 11\.,ollllV 1•

Added Type - Enumeration Constants

Enumeration constants are an additional type of integer constant that is
not described by K&R. An identifier declared as an enumerator can be used
in the same manner that an integer constant can be used. (For more infor­
mation about enumerators, see Section 3.5 on page 3-6.)

K&R 2.5 - String Constants

Q K&R C does not limit string constant length; however, TMS320C25 C
limits the length of string constants to 255 bytes.

Q All characters after an embedded null byte in a string constant are ig­
nored; in other words, the first null byte terminates the string. However,
this does not apply to strings used to initialize arrays of characters.

Q Identical string constants are stored as a single string, not as sepa­
rate strings as in K&R C. However, this does not apply to strings used
for autoinitialization of arrays of characters.

3-3

Data

3.2 Data Types

K&R 4.0 - Equivalent Types

Q The char data type is signed. A separate type, unsigned char, is also
supported.

Q long, int, short, and char. are all functionally equivalent types. Any of
these types can be declared unsigned.

Q float and double are functionally equivalent types.

Q The properties of enum types are identical to those of unsigned int.

K&R 4.0 - Added Types

Q An additional type, called void, can be used to declare a function that
returns no value. The compiler checks that functions declared as void
do not return values and that they are not used in expressions. Func­
tions are the only type of objects that can be declared void.

Q The compiler also supports a type that is a pointer to a void (void*).
An object of type void* can be converted to and from a pointer to an ob­
ject of any other type without explicit conversions (casts). However,
such a pointer cannot be used indirectly to access the object that it
points to without a conversion. For example,

void *p, *malloc();
char *c;
int i;

p = malloc(); /* Legal */
p = c; /* Legal */
p = &i; /* Legal */
c = malloc(); /* Legal */
i = *p; /* Illegal */
i = *(int *)p; /* Legal */

K&R 4.0 - Derived Types

3-4

TMS320C25 Callows any type declaration to have up to six derived types.
Constructions such as pointer to, array of, and function returning can be
combined and applied a maximum of six times.

TMS320C25 C Language

For example:

int (* (*n[] []) ()) ();

translates as
1) an array of
2) arrays of
3) pointers to
4) functions returning
5) pointers to
6) functions returning integers

It has six derived types, the maximum allowed.

Data

Structures, unions, and enumerations are not considered derived types for
the purposes of these limits.

Also, the derived type cannot contain more than three array derivations.
Note that each dimension in a multidimensional array is a separate array
derivation; thus, arrays are limited to three dimensions in any type definition.
I lovvever, types can be combined using typedefs to produce any dimen­
sioned array.

For example, the following construction declares x as a four-dimensional
array:

typedef int dim2[] [];
dim2 x [] [];

K&R 2.6 - Summary of TMS320C25 Data Types

Type Size

char 16 bits, signed

unsigned char 16 bits

short 16 bits

unsigned short 16 bits

int 16 bits

unsigned int 16 bits

long 16 bits

unsigned long 16 bits

pointers 16 bits

float 32 bits
double Range: + 1.17549435 x 10(-38) through

±3.40282347 x 10 38

en urn 16 bits

3-5

Object Alignment/Expressions/Declarations
:::::::::::;:;:~: :;::::::::::·:::::;:::;~:::;::~:::::;:;:::;,;:;;;;:::::::;:::;:: .,,,.;,;:;;:,;,,,,,,,,.;:;::x:::::::::::::::::::;,:,;:;,;,;;::::;:::::::::::::::::;1:1 :::·•:::'"''''"''"''''''"''''''''''''''''""''"'''''~'"''''''''''''"''"'''' ·:::::::w::::;:::::::::::::::::::::•:•:• ·:·:·:·:·:·:·::•·:::::~~~-:;:•:::•:•::::::;::::::

3.3 Object Alignment

All objects except bit fields are aligned on 16-bit (one word) boundaries. Bit
fields are always unsigned and can be from 1 to 16 bits in length. Adjacent
fields are packed into adjacent bits of a word, but they do not overlap words;
if a field would overlap into the next word, the entire field is placed into the
next word. (A bit field never crosses a word boundary.) Fields are packed
as they are encountered; the least significant bits of the structure word are
filled first.

When the compiler allocates space for a structure, it allocates as many
words as are needed to hold all of the structure's members. In an array of
structures, each structure begins on a word boundary.

3.4 Expressions

Added type - Void Expressions

A function of type void has no value (returns no value) and cannot be called
in any way except as a separate statement or as the left operand of the com­
ma operator. Functions can be declared or typecast as void.

K&R 7.2 - Unary Operators in Expressions

The value yielded by the sizeof operator is calculated as the total number
of bits used to store the object divided by 16 (16 is the number of bits in a
character). The sizeofoperator can be legally applied to enum objects and
bit fields; if the result is not an integer, it is rounded up to the nearest integer.

3.5 Declarations
K&R 8. 1 - Register Storage Class Specifiers

3-6

Q The first two local objects declared as type register in a function will be
allocated to TMS320C25 registers.

Q Any type variable (int, unsigned, char, pointer, float, array, etc.) can be
declared as a register, since this stores the address of that variable in
the register. Formal parameters to functions can also be declared as
type register.

Q Register declarations are ignored in nested blocks.

For more information about register variables, see Section 4.2.3 on page
4-7.

TMS320C25 C Language

Declarations

K&R 8.2 - Type Specifiers in Declarations

Q In addition to the type specifiers listed in K&R, objects can be declared
with enum specifiers.

Q TMS320C25 Callows more type name combinations than K&R Cal­
lows. The adjectives long and short can be used with or without the word
int; the meaning is the same in either case. The word unsigned can be
used in conjunction with any integer type or alone; if alone, int is implied.
long float is a synonym for double. Otherwise, only one type specifier
is allowed in a declaration.

K&R 8.4, K&R 10- Type Specifiers in Function Declarations

Q Structures and unions can be used as parameters to functions and can
be directly assigned.

Q Formal parameters to a function can be declared as type structor enum
(in addition to the normal function declarations), since TMS320C25 C
allows these types of objects to be passed to functions.

K&R 8.5, K&R 14.1 - Structure and Union Declarations

Q Bit fields are limited to a maximum size of 16 bits. Any integer type can
be declared as a field. Fields are always treated as unsigned, regard­
less of definition.

Q K&R states that structure and union member names must be mutually
distinct. In TMS320C25 C, members of different structures or
unions can have the same name. However, this requires that refer­
ences to any member of a structure or union be fully qualified through
all levels of nesting.

Q TMS320C25 C allows assignment to and from structures and passing
structures as parameters.

Q K&R contains a statement about the compiler determining the type of
a structure reference by the member name. Because TMS320C25 C
does not require member names to be unique, this statement does not
apply. All structure references must be fully qualified as members of the
structure or union in which they were declared.

Added Type - Enumeration Declarations

Enumerations allow the use of named integer constants in TMS320C25 C.
The syntax of an enumeration declaration is similar to that of a structure or
union. The keyword enum is substituted for structor union, and a list of enu­
merators is substituted for the list of members.

Enumeration declarations have a tag, as do structure and union declara­
tions. You can use this tag in future declarations without repeating the entire
declaration.

3-7

Declarations

3-8

The list of enumerators is simply a comma-separated list of identifiers. Each
identifier can be followed by an equal sign and an integer constant. If no enu­
merator is followed by an= sign and a value, then the first enumerator is as­
signed the value 0, the next is 1, the next is 2, etc. An identifier with an as­
signed value assumes that value, and subsequent enumerators continue
counting by one from there. The assigned value can be negative, but count­
ing still continues by positive one.

Unlike structure and union members, enumerators share their name space
with ordinary variables and, therefore, must not conflict with variables or oth­
er enumerators in the same scope.

Enumerators can appear wherever integer constants are required and,
therefore, can be used in arithmetic expressions, case expressions, etc. In
addition, explicit integer expressions can be assigned to variables of type
enum. The compiler does no range checking to insure the value will fit in the
enumeration field. The compiler does, however, issue a warning message
if an enumerator of one type is assigned to a variable of another.

Here's an example of an enumerator declaration:

enum color {
red,
blue,
green=lO,
orange,
purple=-2,
cyan } x;

This statement declares x as a variable of type enum. The enumerators and
their assigned values are:

red (0)
blue (1)
green (10)
orange (11)
purple (-2)
cyan (-1)

Sixteen bits are allocated forthe variable x. Legal operations on these enu­
merators include:

x = blue;
x = blue + red
x = 100;
i = red; /* assume i is an int */
x = i + cyan;

TMS320C25 C Language

Initialization of Static and Global Variableslasm Statement (lnline Assembly Language)
:::::::::X:::::-V . ;::::::::;w~w.~~~~...::::::-;:.>;::~-:;sw;-~'XS:i'.:t.1'~-::r.-»::'r.•:::::::::::::::::::::::;:;:::;:~~~~%.»:::;:::;:;::

3.6 Initialization of Static and Global Variables

K&RB.6

An important difference between K&R C and TMS320C25 C is that in
TMS320C25 C, external and static variables are not preinitialized to
zero unless the program explicitly does so or it is specified by the linker.

If a program requires external and static variables to be preinitialized, the
linker can be used to accomplish this. In the linker control file, use a fill value
of O in the .bss section:

SECTIONS
.bss { OxOO;

3.7 asm Statement (lnline Assembly Language)

Additional Statement

TMS320C25 C has another statement not mentioned in K&R: the asm
statement. The compiler copies asm statements from the C source directly
into the assembly language output file. The syntax of the asm statement is

asm ("assembler text ");

The assembler text must be enclosed in double quotes. All the usual charac­
ter string escape codes retain their definitions. The assembler text is copied
directly to the assembler source file. Note that the assembler source state­
ment must begin with a label, a blank, or a comment indicator (asterisk or
semicolon).

Each asm statement injects one line of assembly language into the compiler
output. A series of asm commands places the statements sequentially into
the output with no intervening code.

asm statements do notfollowthe syntactic restrictions of norma! statements
and can appear anywhere in the C source, even outside blocks.

3-9

3.8 Lexical Scope Rules

K&R 11.1

3-10

The lexical scope rules stated in K&R apply to TMS320C25 C also, except
that structures and unions each have distinct name spaces for their mem­
bers. In addition, the name space of both enumeration variables and enu­
meration constants is the same as for ordinary variables.

TMS320C25 C Language

Chapter 4

Runtime Environment

This section describes the TMS320C25 C runtime environment. To ensure
successful execution of C programs, it is critical that all runtime code main­
tain this environment. If you write assembly language functions that inter­
face to C code, follow the guidelines in this chapter.

Topics in this chapter include:

Section Page
4.1 Memory Model .. 4-2
4.2 Register Conventions 4-6
4.3 Function Call Conventions 4-8
4.4 Interfacing C with Assembly Language 4-11
4.5 Interrupt Handling ... 4-16
4.6 Integer Expression Analysis 4-18
4. 7 Floating-Point Expression Analysis 4-19
4.8 System Initialization ... 4-20

4-1

Cl The .bss section is an uninitialized section; in a C program, it serves
three purposes:

• It reserves space for global and static variables. At boot time, the
the C boot routine copies data out of the .cinit section (which may be
in ROM) and uses it for initializing variables in .bss.

• It reserves space for the system stack, which is used to pass argu­
ments to functions and to allocate local variables.

• It reserves space for use by the dynamic memory functions (malloc,
calloc, and realloc).

Note that the assembler creates three default sections (.text, .bss, and
.data); the C compiler, however, does not create a .data section because the
C environment does not use this section.

The linker takes the individual sections from different modules and com­
bines sections with the same name to create three output sections. The
complete program is made up of these three output sections, plus the .data
section that the assembler creates. You can place these output sections
anywhere in the address space, as needed, to meet system requirements.
The .text, .cinit, and .data sections are usually linked into either ROM or
RAM. The .bss section should be linked into some type of RAM.

For more information about allocating sections into memory, see Chapter
9 (the Linker Description) of the TMS320C1x!TMS320C2x Assembly Lan­
guage Tools User's Guide.

4.1.2 Allocating Memory for Static and Global Variables

A unique, contiguous space is allocated for each external or static variable
that is declared in a C program. The linker determines the address of the
space. The compiler ensures that space for these variables is allocated in
multiples of words so that each variable is aligned on a word boundary.

The C compiler expects global variables to be allocated into data memory.
(It reserves space for them in .bss.) Variables declared in the same module
are allocated into a single, contiguous block of memory.

4.1.3 RAM and ROM Models

The C compiler produces code that is suitable for use as firmware in a ROM­
based system. In such a system, the initialization tables in the .cinit section
are stored in ROM. At system initialization time, the C boot routine copies
data from these tables from ROM to the initialized variables in .bss (RAM).

In situations where a program is loaded directly from an object file into
memory and then run, you can avoid having the .cinit section occupy space

4-3

in memory. A loader can read the initialization tables directly from the object
file (instead of from ROM) and perform the initialization directly at load time
(instead of at run time). You can specify this to the linker by using the -er
linker option. For more information, see Section 2.3.3 on page 2-17 .

4.1.4 Managing the Runtime Stack

4-4

The C compiler uses a stack to:

0 Allocate local variables.
0 Pass arguments to functions, and
0 Save the processor status.

The runtime stack grows up from low addresses to higher addresses. The
compiler uses two auxiliary registers to manage this stack:

AR1 is the stack pointer (SP); it points to the current top of the stack or to
the word that follows the current top of the stack.

ARO is the frame pointer (FP); it points to the beginning of the current
frame. Each function invocation creates a new frame at the top of the
stack, from which local and temporary variables are allocated.

The C environment manipulates these registers automatically; if you write
any assembly language routines that use the runtime stack, be sure to use
these registers correctly. (For more information about using these registers,
see Section 4.2. on page 4-6; for more information about the stack, see
Section 4.3. on page 4-8.)

The C initialization routine, boot. asrn, allocates memory for the stack in
.bss. The routine also defines a constant named STACK_ SIZE that deter­
mines the amount of space reserved for the stack. The default stack size
is 1000 words. You can change the stack size by following these steps:

1) Extract boot. asrn from the source library rts. src.

2) Edit boot. asrn; change the value of the constant STACK_ SIZE to the de­
sired stack size.

3) Reassemble boot. asrn and replace the resulting object file, boot. obj,

in the object library rts. lib.

Note that the internal TMS320C25 stack is used only temporarily. Return
addresses that are pushed onto it by CALL instructions are popped off and
pushed onto the runtime stack.

Runtime Environment

4.1.5 Dynamic Memory Allocation

The runtime-support library supplied with the compiler contains several
functions (such as malloc, calloc, and realloc) that allow you to dynamically
allocate memory for variables at run time. This is accomplished by declaring
a large memory pool, or heap, and then using the functions to allocate
memory from the heap. Dynamic allocation is not a standard part of the C
language; it is provided by standard runtime-support functions.

AC module called memory. c reserves space forth is memory pool in the .bss
section. The module also defines a constant named MEMORY srzE that de­
termines the size of the memory pool; the default size is 1000 words. You
can change the size of the memory pool by following these steps:

1) Extract memory. c from the source library rts. src.

2) Edit memory. c; change the value of the constant MEMORY_SIZE to the
desired memory pool size.

3) Recompile and assemble :cnernory. c and replace the resulting object
file, memory. obj, in the object library rts. lib.

4.1.6 Packing Structures and Manipulating Fields

When the compiler allocates space for a structure, it allocates as many
words as are needed to hold all of the structure's members. In an array of
structures, each structure begins on a word boundary.

All non-field types are aligned on word boundaries. Fields are allocated as
many bits as requested. Adjacent fields are packed into adjacent bits of a
word, but they do not overlap words; if a field would overlap into the next
word, the entire field is placed into the next word. Fields are packed as they
are encountered; the least significant bits of the structure word are filled first.

4-5

Register Conventions

4.2 Register Conventions
Strict conventions associate specific registers with specific operations in the
C environment. If you plan to interface an assembly language routine to a
C program, it is important that you understand these register conventions.

4.2.1 Dedicated Registers

The C environment reserves three registers. Do not modify these registers
in any other manner than that described in Section 4.3, Function Call Con­
ventions (page 4-8).

ARO is the frame pointer. It points to the current activation record (the be­
ginning of the current frame).

AR1 is the stack pointer. It points to the top of the runtime stack orto the
word that follows the top of the stack.

AR2 is the local variable pointer. It is used for calculating the address of
local variables.

4.2.2 Using Registers

4-6

The auxiliary registers, the accumulator, the T and P registers, and miscella­
neous status registers can be used by assembly language functions; be
sure to follow these rules:

Q Auxiliary Registers (ARP and ARO-AR7)

• The ARP must contain a 1 when a function is entered and when a
function returns. It may contain other values during function execu­
tion.

• Registers ARO and AR 1 may be modified during function execution,
but they must be restored.

• Registers AR2, AR3, AR4, and AR5 may be modified and do not
need to be restored.

• Registers AR6 and AR? are used for register variables. If they are
modified, they must be saved and restored.

Q Status Register

• The C compiler assumes that the PM status bits are always set to 0.
If you change these bits, you must set them to 0 before returning
from the function.

• You can change the following status fields without restoring them:
DP, C, FSM, HM, INTM, OV, OVM, SXM, TC, TXM, ARB, CNV, FO,
and XF.

Runtime Environment

Register Conventions

Q Other Registers

• You can use the accumulator without saving and restoring the origi­
nal value. It is also used to return integers, pointers, and floating­
point values.

• You can use the P and T registers without saving and restoring their
original values.

4.2.3 Register Variables

The C compiler uses up to two register variables within a function. You must
declare the register variables in the argument list or in the first block of the
function. Register declarations in nested blocks are treated as normal vari­
ables.

The compiler uses AR6 and AR? for register variables:

Q AR6 is assigned to the first register variable.

Q AR? is assigned to the second variable.

Note that the address of the variable is placed into the allocated register to
simplify access. Thus, anytype of variable may be used as a register vari­
able.

Setting up a register variable at run time requires approximately four instruc­
tions per register variable. To use this feature efficiently, use register vari­
ables only if the variable will be accessed more than twice.

4-7

Function Call Conventions

4.3 Function Call Conventions
The C compiler imposes a strict set of rules on function calls. Except for spe­
cial runtime-support functions, any function that calls or is called by a C func­
tion must follow these rules. Failure to adhere to these rules can disrupt the
C environment and cause a program to fail.

4.3.1 Passing Parameters to a Function

If you pass parameters to a C function, you must follow these rules:

0 Push them on the runtime stack before you call the function.

0 Pass arguments in reverse order; that is, push the first (leftmost) param­
eter last, and push the last (rightmost) parameter first. This allows you
to pass a variable number of parameters.

0 If an argument is a floating-point value, push the least significant word
first.

0 Pass structures as multiples of words (they can be lengthened if neces­
sary).

4.3.2 Local Frame Generation

4-8

When a function is called, the compiler builds a frame (or activation record)
to store information on the runtime stack. The current function's frame is
called the local frame. The C environment uses the local frame for saving
information about the caller, passing arguments, and generating local vari­
ables. Each time you call a function, a new frame is generated to store infor­
mation about that function. When you return from a called function, the call­
er's frame is still on the stack so that you can continue to use that informa­
tion.

Register AR1 is the SP (stack pointer) and register ARO is the frame pointer
(FP). The SP points to the next available word on the stack; the FP points
to the local frame.

The compiler performs the following tasks when it builds the local frame:

1) Pops the return address (old PC value) from the TMS320C25 internal
stack and pushes it on the runtime stack.

2) Pushes the contents of the old FP onto the runtime stack and sets the
new FP to the current SP.

3) Increments the SP by the number of words needed to hold local vari­
ables, plus one word at the beginning of the frame for temporary stor­
age. (In the following code segment, the symbol srzE represents the
amount of this space.)

Runtime Environment

Function Call Conventions

4) If the function uses AR6 and AR7 (as register variables), it pushes their
contents onto the stack and then loads them with the addresses of ap­
propriate local variables.

Here is the TMS320C25 code that performs these tasks:

POPD *+
SAP. AF.0 I *+
SAP. ARl, *
LARK ARO, SIZE
LAR ARO, *0+
SAR AR6, *+
SAR AR7, *+

Pop return address
Push on system stack
Save old FP

FP = old SP, SP += SIZE
Save AR6
Save AR7

There are several points to keep in mind aboutthis method of frame genera­
tion:

Q When a function is entered, the compiler assumes that the ARP points
to the stack pointer (AR1).

Q There is no separate pointer to the argument list; the frame pointer 1s
used with negative offsets to point to the arguments, and with positive
offsets to point to local variables.

Q The frame pointer (ARO) points to a single word, which is allocated be­
fore the local variables. This word is used as a temporary memory loca­
tion to allow register-to-register transfers and is essential to creating
reentrant C functions. Note that this memory location can always be di­
rectly accessed through ARO.

Q The compiler uses AR2 to calculate the address of local variables. Gen­
erally, the offset of the local variables is placed in AR2, and ARO is add­
ed to it. This value is not preserved across function calls.

4.3.3 Function Termination

When a function is terminated, it must perform the following tasks to restore
the calling environment:

1) Handle return values that will be passed to the caller.

2) Restore AR6 and AR7 if it used them.

3) Deallocate space used for local variables and temporary memory. (In
the following code segment, the symbol SIZE represents the amount of
this space.)

4) Restore the old frame pointer.

5) Push the return address onto the TMS320C25 stack and return to the
caller.

4-9

Function Call Conventions

4-10

Here is the TMS320C25 code that performs these tasks:

LAR
LAR
SBRK
LAR
PSHD
RET

Note that

AR7 I

AR6,
SIZE
ARO,
*

*-
*-

*-

Restore AR7
Restore AR6
Deallocate frame
Restore FP
Put return address on internal stack
Return to caller

Q All return values are returned in the accumulator. Integers and pointers
are returned (properly sign extended) in the 16 LSBs of the accumula­
tor. Floating-point values use all 32 bits of the accumulator.

Q Because the accumulator contains the return value, it must not be modi­
fied by epilog code.

Q Arguments are not popped off the stack by the called function; they must
be popped by the caller. This allows you to pass any number of argu­
ments to a function, and the function need not know how many were
passed.

Q Upon return from a function, the ARP points to AR1.

Q Structures cannot be returned from functions.

Runtime Environment

Interfacing C with Assembly Language
~~.;;:;z:;:r..m'..mm~~~~-~u ~----"'""'""-"""'~=»!mww~,z ~

4.4 Interfacing C with Assembly Language
There are three ways to use assembly language in conjunction with C code:

[J Use separate modules of assembled code and link them with compiled
C modules (see Section 4.4.1). This is the most versatile method.

[J Use inline assembly language, embedded directly in the C source (see
Section 4.4.2, page 4-14).

[J Modify the assembly language code that the compiler produces (see
Section 4.4.3, page 4-15).

4.4.1 Assembly Language Modules
Interfacing with assembly language functions is straightforward if you follow
the calling conventions defined in Section 4.3 and the register conventions
defined in Section 4.2. C code can access variables and call functions de­
fined in assembly language, and assembly code can access C variables and
call C functions.

Follow these guldeilnes to interface assembly language and C:

1) All functions, whether they are written in C or assembly language, must
follow the conventions outlined in Section 4.2. (page 4-6).

2) You must preserve any dedicated registers modified by a function; dedi­
cated registers include

ARO (FP) AR6
AR1 (SP) AR?

Note that if SP is used normally, it does not need to be explicitly pre­
served. In other words, the assembly function is free to use the stack as
long as anything that is pushed is popped back off before the function
returns (thus preserving SP). Any register that is not dedicated can be
used freely without being saved. Upon return from the function, the ARP
must be 1.

3) Interrupt routines must save all the registers they use. (For more infor­
mation about interrupt handling, see Section 4.5, page 4-16.)

4) When calling a C function from assembly language, push any argu­
ments onto the stack in reverse order. Pop them off after calling the func­
tion.

5) When calling C functions, remember that only the dedicated registers
listed above are preserved. C functions can change the contents of any
other register.

6) Functions must return values correctly according to their C declara­
tions. Integers and pointers are returned in the accumulator, and floa­
ting-point values are returned on the stack.

4-11

Interfacing C with Assembly Language
:«~;:;::x::;:~::::::::~~;:::::::;;;,;;::::;::::::::::~::~~~:~~<;:"4~::::::::;:::::::::::;:::;:·:;:::::::~;:%::::::::::::::::~:;:;:~;:::;:;::::::::~~::;::::::~::~;;:~f<::~'>:'::;::~;~;: ::~;:::~":'<:,:;:;::;;:~:::~:;:f.:::~::K<~::: ;;:::;;;:::::;;,:;:;:::;:::;:;:;;,;;;;::::::::;::%:•~:~:::::::%:~::::~:::::::::::::;:;:;:;:~;;r.;;;:;:;:;:;;,:;:;:;:;:;:;:;:;:,:;:::;"

7) No assembly language module should use the .cinit section for any pur­
pose other than autoinitialization of global variables. The C startup rou­
tine in boot. asm assumes that the .cinit section consists entirely of ini­
tialization tables.

8) The compiler appends an underscore (_)to the beginning of all identifi­
ers. This means that you must prefix the name of all objects to be acces­
sible from C with_ when writing assembly language. For example, a C
object called xis called _x in assembly language. For identifiers to be
used only in an assembly language module or modules, any name that
does not begin with an underscore may be safely used without conflict­
ing with a C identifier.

9) Any object or function declared in assembly that is to be accessed or
called from C must be declared with the .global assembler directive.
This defines the symbol as external and allows the linker to resolve ref­
erences to it.

Similarly, to access a C function or object from assembly, declare the C
object with .global, thus creating an undefined external reference that
the linker will resolve.

4.4.1.1 An Example of an Assembly Language Function

The example in Figure 4-1 illustrates a C function called main, which calls
an assembly language function called asmtunc. The asmfunc function takes
its single argument, adds it to the C global variable called gvar, and returns
the result.

Figure 4-1. An Assembly Language Function

(a) C program

4-12

extern int asmfunc(); /*declare external asm function */
int gvar; /* define global variable */

main()
{

int i;
i = asmfunc(i); I* call function normally */

Runtime Environment

Figure 4-1. An Assembly Language Function (Continued)

(b) Assembly language program
asmfunc:

POPD *+
SAR ARO I *+
SAR ARl, *
LARK ARO, 1
LAR ARO, *O+,

LDPK gvar
SSXM
LAC gvar
LARK AR2, -3
MAR *0+
ADD *, ARO
SACL gvar

LARP ARl
SBRK 2
LAR ARO, *­
PSHD *
RET

AR2

Move return address to C stack
Save FP
Save SP
Size of frame
Set up FP and SP

Point to gvar
Set sign extension
Load gvar
Off set of argument
Point to argument
Add arg to gvar
Save in gvar

Pop off frame

Restore frame pointer
Move return addr to C25 stack

In the C program in Figure 4-1, the extern declaration of asmfunc is option­
al, since the function returns an int. Like C functions, assembly functions
need be declared only if they return noninteger values. In the assembly lan­
guage code in Figure 4-1, note the underscores on all the C symbol names
used in the assembly code.

4.4. 1.2 Defining Variables in Assembly Language

It is sometimes useful for a C program to access variables defined in assem­
bly language. Accessing uninitialized variables from the .bss section is
straightforward:

1) Use the .bss directive to define the variable.

2) Use the .global directive to make the definition external.

3) Remember to precede the name with an underscore.

4) In C, declare the variable as extern, and access it normally.

Figure 4-2 shows an example that accesses a variable defined in .bss.

Figure 4-2. Accessing from Ca Variable Defined in .bss

(a) Assembly language program

* Note the use of underscores in the following lines

.bss

.global
_var,l

var
Define the variable
Declare it as external

4-13

Interfacing C with Assembly Language

Figure 4-2. Accessing from Ca Variable Defined in .bss (Continued)

(b) C program

extern int var;
var = l;

/* External variable
I* Use the variable

*I
*I

You may not always want a variable to be in the .bss section; for example,
a common situation is a lookup table defined in assembly that you don'twant
to put in RAM. In this case, you must define a pointer to the object and ac­
cess it indirectly from C.

The first step is to define the object; it is helpful (but not necessary) to put
it in its own initialized section. Declare a global label that points to the begin­
ning of the object, and then the object can be linked anywhere into the
memory space. To access it in C, you must declare an additional C variable
to point to the object. Initialize the pointer with the assembly language label
declared for the object; remember to remove the underscore.

Figure 4-3 shows an example that accesses a variable that is not defined
in .bss.

Figure 4-3. Accessing from C a Variable not Defined in .bss

(a) Assembly language program

.global sine

.sect "sine tab"
Declare variable as external
Make a separate section

sine:
. float 0. 0
.float 0.015987
.float 0.022145

(b) C program

extern float sine[];
float *sine p = sine;
f = sine_p [4];

The table starts here

/* This is the object */
/* Declare pointer to point to it */
I* Access sine as normal array */

4.4.2 lnline Assembly Language

4-14

Within a C program, you can use the asm statement to inject a single line
of assembly language into the assembly language file that the compiler
creates. A series of asm statements places sequential lines of assembly lan­
guage into the compiler output with no intervening code.

Runtime Environment

Interfacing C with Assembly Language
;::::::::;:::::::::::::::::.;:::;::•:•~:::.:~~::::::::::;:~;;;;;: :;.:::::::::::::::::::::::;·;-;:.::-..:;:::::::;::::::::::::~~·:~::::~ :::::;:::;.::;;;;;?;:::;::;:;:;:;:;.;;;:;~::::::::::::.:::::::::::;:::::::•%:::;:::::::.::;.;:•;:::::;;::;:::.·:::. :·:·:·:·:·:·:·:·:·:::::::::•:::;;;:;::::.:.::::%::::::·.;:·:;.;:·:::;:;::::;;:;::::.:::::::::.::::::·:;:;::::.::;:;;::;:;:;:;:;::;::;::::.·:;:;:;:;:;:;:;:;::::::.;<:%:::::::?;::::. :;:;:;:;:;:::;~.;:;.%;.;:;:;:~;;;;;:::::::::;:;:;:.,.,·,·•·:·:

The asm statement is also useful for inserting comments in the compiler out­
put; simply start the assembly code string with an asterisk(*) as shown be­
low:

asm("**** this is an assembly language comment");

4.4.3 Modifying Compiler Output

You can inspect and change the assembly language outputthat the compiler
produces by compiling the source and then editing the output file before as­
sembling it. The warnings in Section 4.4.2 about disrupting the C environ­
ment also apply to modification of compiler output.

4-15

Interrupt Handling
· ~..:::::v..m~::x-0 =· ------~~~~-::::.:s,_m_.._

4.5 Interrupt Handling

4-16

Interrupts can be handled directlywith C functions by using the following re­
served function names, which are associated with the indicated interrupt:

c_intO system reset interrupt
c_int1 external interrupt 0
c_int2 external interrupt 1
c_int3 external interrupt 2
c_int4 internal timer interrupt
c_int5 serial port receive interrupt
c_int6 serial port send interrupt

Using one of these function names defines an interrupt routine for the appro­
priate interrupt. When the compiler encounters one of these function
names, it generates code that allows the function to be activated from an
interrupt trap. Note that this method provides more functionality than the
standard C signal mechanism. This does not prevent implementation of the
signal function, but it does allow these functions to be written entirely in C.

When an interrupt handling function is entered, the runtime-support function
1$$SAVE is called to save the complete context of the interrupted function.
All registers are saved. Upon return from the interrupt handling function, the
runtime-support function 1$$REST is called to restore the environment and
return to the interrupted function.

An interrupt routine may perform any task performed by any other function,
including accessing global variables, allocating local variables, and calling
other functions.

When you write interrupt routines, keep the following points in mind:

Q It is your responsibility to handle any special masking of interrupts (via
the IMR register). You can use inline assembly to enable or disable the
interrupts and modify the IMR register without corrupting the C environ­
ment.

Q An interrupt handling routine cannot have arguments. If any are de­
clared, they are ignored.

Q An interrupt handling routine can be called by normal C code, but it is
inefficient to do this because all the registers are saved.

Q An interrupt handling routine can handle a single interrupt or multiple
interrupts. The compiler does not generate code that is specific to acer­
tain interrupt, except for c_intO, which is the system reset interrupt.
When you enter this routine, you cannot assume that the runtime stack
is set up; therefore, you cannot allocate local variables, and you cannot
save any information on the runtime stack.

Runtime Environment

Integer Expression Analysis

4.6 Integer Expression Analysis

Most integer expressions are analyzed in the 16 LSBs of the accumulator
or in the P or T registers. TMS320C25 C follows Kernighan and Ritchie stan­
dard precedence rules for evaluating expressions; however, the order of ex­
pression analysis is based on the complexity of the operands. (Note that this
does not apply to operators such as the comma,&&, or II, which specify a
particular order of analysis.) The following rules determine which portion of
an expression is evaluated first:

1) If the expression contains a division or modulus operation, the right­
hand side of the expression is evaluated first. otherwise,

2) If either operand contains a function call, the function call is evaluated
first. otherwise,

3) If either operand contains a multiplication expression, the multiplication
is evaluated first. otherwise,

4) If rules 1-3 do not apply, the operand that appears to be more complex
is evaluated first. (Complexity is based on the number and types of op­
erations.)

4.6.1 Arithmetic Overflow and Underflow

The TMS320C25 performs 32-bit math with 16-bit values; thus, arithmetic
overflow and underflow cannot be handled in a predictable manner.
If code depends on a particular type of overflow/underflow handling, there
is no guarantee that this code will execute correctly. Generally, it is a good
practice to avoid such code because it is not portable.

4.6.2 Integer Division and Modulus

4-18

The TMS320C25 does not directly support integer division, so all division
and modulus operations are performed through calls to runtime-support
routines. These functions push the right-hand portion (divisor) of the opera­
tion onto the stack, and then place the left-hand portion (dividend) into the
16 LSBs of the accumulator. The function places the result in the accumula­
tor.

Runtime Environment

System initialization

4.8 System Initialization

Before you can run a C program, the C runtime environment must be
created. This task is performed by the C boot routine, which is a function
called c_intO. The runtime-support source library contains the source to this
routine in a module called boot. asm.

The c_intO function can be called by reset hardware to begin running the
system. The function is in the runtime-support library (rts. lib) and must
be combined with the C object modules at link time. This occurs by default
when you use the -c or-er linker option and include rt s. 1 ib as a linker in­
put file. When you use-c or-er, the linker sets the entry point in the execut­
able output module to the symbol_c_intO. The C boot routine performs three
tasks:

[J It reserves space in .bss for the runtime stack and sets up the initial
stack pointer and frame pointer.

[J It autoinitializes global variables by copying the data from the initializa­
tion tables in .cinit to the storage allocated for the variables in .bss.

Note that in the RAM autoinitialization model, a loader performs this
step before the program runs (it is not performed by the boot routine).

Q It calls the function main to begin running the C program.

You can replace or modify the C boot routine, if necessary, to meet the par­
ticular requirements of your system. However, you must be sure to perform
the preceding three steps correctly to initialize the C environment properly.

4.8.1 Runtime Stack

4-20

The runtime stack is allocated in a single contiguous block of memory and
grows up from low addresses to higher addresses. Register AR1 usually
points to the next available word in the stack (top of the stack plus one word).
The compiler can use this word as a temporary memory location, so it must
be saved by interrupt routines.

The code doesn't check to see if the runtime stack overflows. Stack overflow
occurs when the stack grows beyond the limits of the memory space that
was allocated for it. Be sure to allocate adequate memory for the stack.

The stack is allocated by the runtime-support module boot. asm as a static
array named SYS_STACK. (boot. asm is a member of the rts. src library.)
Set the size of this array to the size required for the stack. Other methods
of stack allocation can be used, but you must then rewrite the c_intO boot
function to comprehend the new configuration.

Runtime Environment

System Initialization

4.8.2 Autoinitialization

Before program execution, any global variables declared as preinitialized
must be initialized by the boot function. The compiler builds tables that con­
tain data for initializing global and static variables in a .cinit section in each
file. All compiled modules contain these initialization tables. The linker com­
bines them into a single table which is then used to initialize all the system
variables. (Do not place any other data in the .cinit section; this corrupts the
tables.)

The tables in the .cinit section consist of initialization records with varying
sizes. Each initialization record has the following format:

Offset

Word O

Word 1

Word 2 ... n

Contents

Length of initialization data (in words)

Address of variable to be initialized

Data to be copied into the variable

1) The first field (word 0) is the size in words of the initialization data for
the variable.

2) The second field (word 1) is the starting address of the area in the .bss
section into which the data must be copied.

3) The third field (words 2 through n) contains the data that is copied into
the variable to initialize it.

The .cinit section contains an initialization record for each variable that must
be initialized. For example, suppose two initialized variables are defined in
C as follows:

int i = 23;
int a [5] = { 1, 2, 3, 4, 5 } ;

The initialization tables would appear as follows:

.sect ".cinit" ; Initialization section
* Initialization record for variable i

.word 1 ; Length of data (1 word)

.word i ; Address in .bss

.word 23 ; Data to initialize i
* Initialization record for variable a

.word 5 ; Length of data (5 words)

. word a ; Address in . bss

.word T,2,3,4,5 ; Data to initialize a

The .cinit section contains only initialization tables in this format. When in­
terfacing assembly language modules, do not use the .cinit section for any
other use.

4-21

System Initialization _________________ ,,, __ """"" __ ,., ___ ,.,_,.,_, ---:<!&. ::S$!':::'S' -xm:m::::s~~::::!!:::'

When you link a program with the -c or -er option, the linker links the .cinit
sections from all the C modules together and appends a null word to the
end of the entire section. This appears as a record with a size field of O and
marks the end of the initialization tables.

4.8.2.1 ROM Initialization Model

The ROM model is the default model for autoinitialization. To use the ROM
model, invoke the linker with the -c option.

Under this method, the .cinit section is loaded into memory (possibly ROM)
along with all the other sections, and global variables are initialized at run
time. The linker defines a special symbol called cini t that points to the be­
ginning of the tables in memory. When the program begins running, the C
boot routine copies data from the tables (pointed to by cini t) into the speci­
fied variables in .bss. This allows initialization data to be stored in ROM and
then copied to RAM each time the program is started.

4.8.2.2 RAM Initialization Model

4-22

The RAM model, specified with the -er linker option, allows variables to be
initialized at load time instead of at runtime. This can enhance perform­
ance by reducing boot time and can save the memory used by the initializa­
tion tables. The RAM option requires the use of a smart loader to perform
the initialization as it copies the program from the object file into memory.

In the RAM model, the linker marks the .cinit section with a special attribute.
This means that the section is not loaded into memory and does not occupy
space in the memory map. The symbol cinit is set to-1 to indicate to the
C boot routine that the initialization tables are not present in memory; ac­
cordingly, no runtime initialization is performed at boot time.

Instead, when the program is loaded into memory, the loader must detect
the presence of the .cinit section and its special attribute. Instead of loading
the section into memory, the loader uses the initialization tables directly from
the object file to initialize the variables in .bss. To use the RAM model, the
loader must understand the format of the initialization tables so that it can
use them.

Runtime Environment

Chapter 5

Runtime-Support Functions
W.Wimmmiilll!l!l5Jm11=~1~~~~'™ ·:m:=:~~=::;:::::;.:::::m~~::::*.:rum~*% ·· · · ;.;: f~#".#"~~mmw.«~W.«:::~:::

Some of the tasks that a C program must perform (such as memory
allocation, string conversion, and string searches) are not part of the C
language. The runtime-support functions, which are included with the C
compiler, are standard functions that perform these tasks. The runtime­
support library rts. lib contains the object code for each of the functions
described in this chapter; the library rts. src contains the source to these
functions as well as to other functions and routines. if you use any of the
runtime-support functions, be sure to include rt s. lib as an input file when
you link your C program.

I

This chapter is divided into three parts:

Q Part 1 describes header files and discusses their functions.

a Part 2 summarizes the runtime-support functions according to
category.

Q Part 3 is an alphabetical reference.

You can find these topics on the following pages:

Section Page
5.1 Header Files .. 5-2
5.2 Summary of Runtime-Support Functions and Macros 5-8
5.3 Functions Reference .. 5-14

5-1

Header Files

5.1 Header Files
Each runtime-support function is declared in a header file. Each header file
declares

Q A set of related functions (or macros),

Q Any types that you need to use the functions, and

Q Any macros that you need to use the functions.

The header files that declare the runtime-support functions are:

assert.h
ctype.h
errno.h
float.h

limits. h
math.h
stdarg.h

stddef.h
stdlib.h
string.h

To use a runtime-support function, you must first use the #include
preprocessor directive to include the header file that declares the function.
For example, the isdigit function is declared by the ctype. h header. Before
you can use the isdigit function, you must first include the ctype. h file

#include <ctype.h>

val= isdigit(num)

You can include headers in any order. You must include a header before you
reference any of the functions or objects that it declares.

Sections 5.1.1 through 5.1.8 describe the header files included with the
TMS320C25 C compiler. Section 5.2, page 5-8, lists the functions that
these headers declare.

5.1.1 Diagnostic Messages (assert. h)

5-2

The assert. h header defines the assert macro, which provides a standard
method for allowing programs to create diagnostic failure messages at
runtime. The assert macro tests a runtime expression.

Q If the expression is true, the program continues running.

Q If the expression is false, a message is printed that contains the
expression, the source filename, and the line number of the statement
that contains the expression; then, the program terminates (via the
abort function).

The assert. h header refers to another macro named NDEBUG (assert. h
does not define NDEBUG - you must define it). If NDEBUG is defined as
a macro name when you include assert. h, then the assert macro is turned
off and has no effect.

Runtime-Support Functions

Header Files

5.1.2 Character Typing and Conversion (ctype. h)

The ctype. h header declares functions and defines macros that test or
convert ASCII characters:

Q The character-testing functions have names with the format isxxxx (for
example, isdigit). These functions return true (1) or false (0).

Q The character-conversion functions have names in the format toxxxx
(for example, toupper). They convert a character to lowercase,
uppercase, or ASCII, and return the converted character.

The ctype. h header also defines macro definitions that perform these
same operations. The typing functions expand to a lookup operation in an
array of flags (this array is defined in ctype. h). The macros have the same
names as the corresponding functions, prefixed with an underscore (for
example, _isascil).

Limits (float. h and

The float.hand limits. h headers define macros that expand to useful
limits and parameters of numeric representations. Table 5-1 and Table 5-2
list these macros and the limits they are associated with.

5-3

Header Files

Table 5-1. Macros That Supply Limits for Characters and Integers

Macro Value Description

CHAR_BIT 16 Maximum number of bits for the
smallest object that is not a bit field

SCHAR_MIN -32768 Minimum value for a signed char

SCHAR_MAX 32767 Maximum value for a signed char

UCHAR_MAX 65535 Maximum value for an unsigned char

CHAR_MIN SCHAR_MIN Minimum value for a char

CHAR_ MAX SCHAR_MAX Maximum value for a char

SHRT_MIN -32768 Minimum value for a short int

SHRT_MAX 32767 Maximum value for a short int

USHRT_MAX 65535 Maximum value for an unsigned short int

INT_MIN -32768 Minimum value for an int

INT_MAX 32767 Maximum value for an int

UINT_MAX 65535 Maximum value for an unsigned int

LONG_ MIN -32767 Minimum value for a long int

LONG_MAX 32767 Maximum value for a long int

ULONG_MAX 65535 Maximum value for an unsigned long int

5-4 Runtime-Support Functions

Header Files

Table 5-2" Macros That Supply Limits for Floating-Point Numbers

Macro Value

FLT_RADIX 2

FLT_ROUNDS

FLT_DIG. 6
DBL_ DIG
LDBL_DIG

FLT_MANT_DIG 24
DBL_MANT _DIG
LDBL_DIG

FLT_MIN_EXP -125
DBL_MIN_EXP
LDBL_MIN_EXP

FLT_iviAX_EXP 128
DBL_MAX_EXP
LDBL_MAX_EXP

FLT _EPSILON 1.19209290E-07F
DBL_EPSILON
LDBL_EPSILON

FLT_MIN 1.17549435E-38F
DBL_MIN
LDBL_MIN

FLT_MAX 3.40282347E+38F
DBL_MAX
LDBL_MAX

FLT_MIN_10_EXP -37
DBL_MIN_ 1 O_EXP
LDBL_MIN_10_EXP

FLT_MAX_10_EXP 38
DBL_MAX_ 1 O_EXP
LDBL_MAX_ 1 O_EXP

Key to prefixes:
FLT_ applies to type float
DBL_ applies to type double
LDBL_ applies to type long double

5.1.4 Floating-Point Math (math. h)

Description

Base or radix of exponent representation

Rounding mode for floating-point addition
(rounds to nearest integer)

Number of decimal digits of precision for a
float, double, or long double

Number of base-FLT_RADIX digits in the
mantissa of a float, double, or long double

Minimum negative integer such that FLT _RA­
DIX raised to that power minus 1 is a normal­
ized float, double, or long double

iviaxlmum intege; such that FLT_RADIX
raised to that power minus 1 is a representive
finite float, double, or long double

Minimum positive float, double, or long double

number x such that 1.0 + x ::;t:: 1.0

Minimum positive float, double, or long double

Maximum float, double, or long double

Minimum negative integer such that 10 raised
to that power is in the range of normalized
floats, doubles, or long doubles

Maximum integers such that 1 O raised to that
power is in the range of representable finite
floats, doubles, or long doubles

The math. h header defines several trigonometric, exponential, and
logarithmic functions. These math functions expect floating-point
arguments of type double and return floating-point values of type double.

5-5

Header Files

(In TMS320C25 C, a double is equivalent to a float and is actually a single­
precision number.)

Most of the math functions expect arguments to be within a certain range.
The math. h header also defines three macros that can be used with the
math functions for reporting range errors:

Q EDOM

Q ERANGE

Q HUGE_VAL

If the value of an argument is outside the expected range, a domain error
occurs, and the errno macro is setto the value of the EDOM macro. If a result
cannot be represented (usually because it's too large), or if a result over­
flows, a function returns the value of the HUGE VAL macro, and the errno
macro is set to the value of the ERANGE macro.

If the result of a floating-point math function cannot be represented as a floa­
ting-point value, a range error occurs.

5.1.5 Variable Arguments (stdarg. h)

A function can be called with a variable number of arguments with different
types. The stctarg. h header declares

Q A type, va_list, and

Q Three macros, va_start, va_arg, and va_end.

A variable-argument function can use the objects declared by stdarg. h to
advance through a list of arguments when the number and types of
arguments that are passed to it may vary.

The va_listtype is an array type that can hold information for the macros.

5.1.6 Standard Definitions (stddef. h)

5-6

The stddef. h header defines two types and three macros. The types
include

Q ptrdiff_t is a signed integer that is the result type from subtracting two
pointers.

Q size_t is an unsigned integer that is the result type of the sizeof
operator.

The macros include

Q NULL, which expands to a null pointer constant

Q offsetof(type, identifier), which expands to an integer that has type
size_t. The result is the value of an offset in bytes to a structure member
(identifier) from the beginning of its structure (type).

Q errno, which expands to the variable_ errno. This macro is used to re­
port errors from runtime-support functions.

Runtime-Support Functions

Header Files

These types and macros are used by several of the runtime-support
functions.

5.1. 7 General Utilities (stdlib. h)

The stctlib. h header declares several macros, as well as two types. The
macros include

Q EXIT_FAILURE

Q EXIT _SUCCESS, and

Q RAND_MAX.

The stdlib. h header declares several kinds of functions:

Q Memory management functions that allow you to allocate and
deallocate packets of memory. The amount of memory that these
functions can use is defined by the macro memory_size in the runtime­
support module memory. c. (This module is defined in the file rts. src.}
By default, the amount of memory available for aiiocation is i 000 words.
You can change this amount by modifying the memory_size macro and
recompiling memory. c.

Q String-conversion functions that convert strings to numeric
representations.

Q Searching and sorting functions that allow you to search and sort
arrays.

Q Sequence-generation functions that allow you to generate a pseudo­
random sequence and allow you to choose a starting point for a
sequence.

Q Function-exit functions that allow you to terminate functions normally
or abnormally.

5.1.8 String Functions (string. h)

The string. h header declares functions that allow you to perform the
following tasks with character arrays (strings):

Q Move or copy entire strings or portions of strings,
Q Concatenate strings,
Q Compare strings,
Q Search strings for characters or other strings, and
Q Find the length of a string.

When you use functions that move or copy strings, be sure that the
destination is large enough to contain the result.

5-7

Summary of Runtime-Support Functions and Macros

5.2 Summary of Runtime-Support Functions and Macros

Function or Macro Find on page ...

Error Message Macro 5-8

Character Typing and Conversion Functions 5-8

Floating-point Math Functions 5-9

Variable Argument Macros 5-1 O

General Utilities . 5-11

String Functions .. 5-13

Table 5-3. Error Message Macro

Macro and Syntax
void assert (expression)

int expression;

(Header File: assert. h)

Description
Inserts diagnostic messages into programs

Table 5-4. Character Typing and Conversion Functions

Function and Syntax
int isalnum (c)

char c:

int is alpha (c)
char c:

int isascii (c)
char c:

int iscntrl (c)
char c:

int isdigit(c)
char c:

int isgraph (c)
char c:

int is lower (c)
char c:

int isprint (c)
char c:

5-8

(Header File: ctype. h)

Description
Identifies alphanumeric-ASCII characters

Identifies alphabetic-ASCII characters

Identifies ASCII characters

Identifies control characters

Identifies numeric characters

Identifies any printing character except a space

Identifies lowercase alphabetic ASCII characters

Identifies printable ASCII characters (including
spaces}

Runtime-Support Functions

Summary of Runtime-Support Functions and Macros

Character Typings and Conversion Functions (continued)

Function and Syntax Description

int ispunct (c)
char c:

int isspace (c)
char c:

int isupper (c)
char c:

int isxdigit (c)
char c:

char toascii (c)
char c:

char tolower (c)
char c:

char toupper (c)
char c:

Identifies ASCII punctuation characters

Identifies ASCII spacebar, tab (horizontal or
vertical), carriage return, formfeed, and newline
characters

Identifies uppercase ASCII alphabetic characters

Identifies hexadecimal digits

Masks c into a 7-bit ASCII character

Converts an uppercase argument to lowercase

Converts a lowercase argument to uppercase

Table 5-5. Floating-Point Math Functions

Function and Syntax

double a cos (x)
double x;

double a sin (x)
double x;

double atan (x)
double x;

double atan2 (y,x)
double y,Xi

double ceil. (x)
double x;

double cos (x)
double x;

double co sh (x)
double x;

double exp (x)
double x;

double fabs (X)

double x;

double floor (x)
double x;

double fmod (x, y)
double x, y;

(Header File: math. h)

Description

Returns the arc cosine of a floating-point value

Returns the arc sine of a floating-point value

Returns the arc tangent of a floating-point value

Returns the inverse tangent of y Ix

Returns the smallest integer greater than or equal
to x

Returns the cosine of a floating-point value

Returns the hyperbolic cosine of a floating-point
value

Returns the exponential function of a real number

Returns the absolute value of a floating-point value

Returns the largest integer less than or equal to x

Returns the floating-point remainder of x/y

5-9

Floating-Point Math Functions (continued)

Function and Syntax
double frexp {value,exp)

double value;
int *exp;

double ldexp {x,
double x;
int exp;

double log {x)
double x;

double l.oqlO {X)

double x;

doublemodf {value,
double value;
int *iptr;

double pow {x,
double x, y;

double sin {x)
double x;

double sinh {x)
double x;

double sqrt {x)
double x;

double tan {x)
double x;

double tanh {x)
double x;

y)

exp)

iptr)

Description
Breaks a floating-point value into a normalized
fraction and an integer power of 2

Multiplies a floating-point number by an integer
power of 2

Returns the natural logarithm of a real number

Returns the base-10 logarithm of a real number

Breaks a floating-point number into a signed
integer and a signed fraction

Returns x raised to the power y

Returns the sine of a floating-point value

Returns the hyperbolic sine of a floating-point value

Returns the nonnegative square root of a real
number

Returns the tangent of a floating-point value

Returns the hyperbolic tangent of a floating-point
value

Table 5-6. Variable Argument Macros

Function and Syntax

type va_arq {ap, type)
va_list ap;

void va end {ap)
va list- ap;

void va_start{ap, parmN)
va list ap;

5-10

(Header File: stdarg. h)

Description
Accesses the next argument of type type in a
variable-argument list

Resets the calling mechanism after using va_arg

Initializes ap to point to the first operand in the
variable-argument list

Runtime-Support Functions

Summary of Runtime-Support Functions and Macros
~.:-;-,w..xxz:>/.::::.~~-:;:;,:.,w~i.-i:-,":>!-~:~mw,-:.~~~mss~~~~~~>W~mm.~~:>:'..'~4~~::::::~Y,:::;~;%X<~:>::~nh»~~~~».~v~~:;z;~/~:w~m::x~

Table 5-7. General Utilities

Function and Syntax

int abs (j)
int j;

void abort ()

void atexit (fun)
void (*fun) () ;

int atof (nptr)
char *nptr;

int atoi (nptr)
char *nptr;

long int atol (nptr)

(Header File: stdlib. h)

Description
Returns the absolute value of an integer

Terminates a program abnormally

Registers the function pointed to by fun, to be
called without arguments at normal program
termination

Converts an ASCII string to a floating-point value

Converts an ASCII string to an integer value

Converts an ASCII string to a long integer

void *bsearch (key, base, nmemb, size, compar)

void *key, *base;
size t nmemb, size;
int (*compar) ();

void*calloc (nmemb, size)
size_t nmemb, size

void exit (status)
int status;

void free (ptr)
void *ptr;

int labs (j)
int j;

int ltoa (n, buffer)
long n;
char *buffer;

void *malloc (size)
size t size

void *minit ()

char *movmem (src,dest,count)
char *src, *dest;
int count;

void qsort (base, nmemb, size, compar)

void *base;
size t nmemb, size;
int (*compar) ();

Searches through an array of nmemb objects for a
member that matches the object that key points to

Allocates and clears memory for nmemb objects

Terminates a program normally

Deallocates memory space allocated by malloc,
calloc, or realloc

Returns the absolute value of an integer

Converts a long integer to the equivalent ASCII
string

Allocates memory for an object of size bytes

Resets the memory pool used for dynamic
allocation

Moves count bytes from one address to another

Sorts an array of nmemb members; base points
to the first member of the unsorted array and size
specifies the size of each member

5-11

Summary of Runtime-Support Functions and Macros
,,,,,_.,,,.,,_,. .• ~.'h'.>'::x::'.:X:-.:>.~z.-..:;::.::-"~;::::::::-~..m;;;~X$,.O:.O:::.>:::::;:;:;::.:::;x;~w,..'™'~».™:;:;ox"™"Mm~*~.::::::::::.~.:-.::w..::::::::::.~-:-;~.:::l:l'nw~;m;::,.;;;z::::;m;

int strcmp (sl, s2) Compares strings and returns one of the following
char *sl, *s2; values: <0 if sl is less than s2; =0ifs1 is equal
is greater than s2 to s 2 >0 if s 1 is greater than s 2

int *strcoll (sl, s2) Compares strings and returns one of the following
char *sl, *s2; values, depending on the locale in the program: <0

if sl is less than s2; =0 if sl is equal to s2; >0 if
s 1 is greater than s 2

char *strcpy (sl, s2) Copies a string to a new location
char *sl, *s2;

size_t strcspn (sl, s2) Returns the length of the initial segment of string1
char *sl, *sl; that is entirely made up of characters that are not

in string2

char *strerror (errnum) Maps the error number in errnum to an error mes-
int errnum; sage string

size t strlen (s) Returns the length of a string
char *s;

char *strncat (sl, s2, n) Appends up to n characters from string1 to string2
char *sl, *s2;
size t n;

char *strncmp (sl, s2, n) Compares up to n characters in two strings
char *sl, *s2;
size_t n;

char *strncpy (sl, s2, n) Copies up to n characters of a string to a new loca-
char *sl, *s2; ti on
size_t n;

char *strpbrk (sl, s2) Locates the first occurrence in string1 of any char-
char *sl, *s2; acter from string2

char *strrchr (s, c) Finds the last occurrence of a character in a string
char *s;
int c;

size t strspn (sl, s2) Returns the length of the initial segment of string1
char *sl, *s2; which is entirely made up of characters from

string2

char *strstr (sl, s2) Finds the first occurrence of a string in another
char *sl, *s2; string

char *strtok (sl, s2) Breaks a string into a series of tokens, each delim-
char *sl, *s2; ited by a character from a second string

5-13

Functions Reference

5.3 Functions Reference

5-14

The remainder of this chapter is a reference. Generally, the functions are
organized alphabetically, one function per page; however, related functions
(such as isalpha and isascii) are presented together on one page. Here's
an alphabetical table of contents for the functions reference:

Function . Page
abort .. 5-16
abs ... 5-17
acos .. 5-18
asin ... 5-19
assert 5-20

atan .. 5-21
atan2 ... 5-22
atexit . 5-23
atof ... 5-24
atoi ... 5-24

atan .. 5-21
bsearch . 5-25
calloc ... 5-26
ceil ... 5-27
cos ... 5-28

cosh .. 5-29
exit ... 5-30
exp ... 5-31
fabs ... 5-32
floor .. 5-33

fmod .. 5-34
free ... 5-35
frexp .. 5-36
isalnum . 5-37
isalpha . 5-37

isascii . 5-37
iscntrl . 5-37
isdigit . 5-37
isgraph . 5-37
islower . 5-37

isprint .. .
ispunct . 5-37
isspace . 5-37
isupper . 5-37
isxdigit . 5-37

ldexp .. 5-39
log .. 5-40
log10 ... 5-41
ltoa ... 5-42
malloc .. 5-43

memchr . 5-44
memcmp . 5-45
memcpy . 5-46

Runtime-Support Functions

Functions Reference

memmove . 5-47
memset . 5-48

minit .. 5-49
modf .. 5-50
movmem .. 5-51
pow ... 5-52
qsort .. 5-53

rand .. 5-54
realloc . 5-55
sin .. 5-56
sinh ... 5-57
sqrt ... 5-58

srand ... 5-54
strcat . 5-59
strchr . 5-60
strcmp .. 5-61
strcoll ... 5-61

strcpy . 5-62
strcspr1 . 5-63
strerror . 5-64
strlen . 5-65
strncat . 5-66

strncmp . 5-67
strncpy . 5-68
strpbrk 5-69
strrchr . 5-70
strspn ... 5-71

strstr . 5-72
strtod . 5-73
strtok ... 5-74
strtol .. 5-73
strtoul . 5-73

tan .. 5-75
tanh .. 5-76
toascii . 5-77
tolower . 5-78
toupper . 5-78

va_arg .. 5-79
va end .. 5-79
va::::start ... 5-79

5-15

abort Abnormal Termination

Syntax #include <stdlib.h>

void abort ()

Defined in exit. c in rts. src

Description The abort function usually terminates a program with an error code. The
TMS320C30 implementation of the abort function calls the exit function with
a value of 0, and is defined as follows:

5-16

void abort ()
{

exit (0);

This makes the abort function functionally equivalent to the exit function.

Runtime-Support Functions

Syntax #include <stdlib.h>

int abs(j)
int j;

long int labs(k)
long int k;

Absolute Value of an Integer abs/labs

Defined in abs . c in rt s . s re

Description The C compiler supports two functions that return the absolute value of an
integer:

[J The abs function returns the absolute value of an integer, j.

Q The labs function returns the absolute value of a long integer, k.

Because int and long int are functionally equivalent types in TMS320C30
C, the abs and labs functions are also functionally equivalent.

5-17

acos Arc Cosine

Syntax #include <math.h>

double acos(x)
double x;

Defined in a sin. obj in rts. lib

Description The acos function returns the arc cosine of a floating-point argument, x. Ar­
gument x must be in the range [-1, 1). The return value is an angle in the

range [0,7t] radians.

Example double realval, radians;

realval = 1.0;
radians= acos(realval);
return (radians) /* acos returns p/2 */

5-18 Runtime-Support Functions

Syntax #include <math.h>

double asin(x)
double x;

Defined in a sin. obj in rts. lib

Arc Sine asin

Description The asin function returns the arc sine of a floating-point argument, x. Argu­
ment x must be in the range [-1, 1]. The return value is an angle in the range

[-7t/2,7t/2] radians.

Example double realval, radians;

realval = 1.0;

radians= asin(realval); /* asin returns 7t/2 *I

5-19

assert Insert Diagnostic Information Macro

Syntax #include <assert.h>
void assert(expression)

int expression;

Defined in assert.has macros

Description The assert macro tests an expression; depending on the value of the ex­
pression, assert either aborts execution and issues a message or continues
execution. This macro is useful for debugging.

Example

5-20

!Ji If expression is false, the assert macro writes information about the
particular call that failed to the standard output and then aborts
execution.

!Ji If expression is true, the assert macro does nothing.

The header file that declares the assert macro refers to another macro,
NDEBUG. If you have defined NDEBUG as a macro name when the
assert. h header is included in the source file, then the assert macro is de­
fined as
#define assert(ignore)

If NDEBUG is not defined when assert .his included, thenthe assert macro
is defined as

#define assert(expr) \
if (! (expr)) {

printf ("Assertion failed, (expr), file %s,
line %d\n", FILE LINE)

abort () ; }

In this example, an integer i is divided by another integer j. Because divid­
ing by O is an illegal operation, the example uses the assert macro to test
j before the division. If j=O, assert issues a message and aborts the pro­
gram.

int i, j;
assert(j);
q = i/j;

Runtime-Support Functions

Arc Tangent atan
:;~~%~w~::::m~~..::s::x:::.~,..,.....-::o:."X~.«:"..mx::::::m~~..m~w~~~~..:::::;w~X::::::-».:x:>W...-:s:::::.~~

Syntax #include <math.h>

double atan(x)
double x;

Defined in atan. obj in rts. lib

Description The atan function returns the arc tangent of a floating-point argument, x.

The return value is an angle in the range [-7t/2,7t/2] radians.

Example double realval, radians;

realval = 0.0;

radians= atan(realval); /* return value 0 */

5-21

atan2 Arc Tangent 2
~~- ·r.::-=-==='

Syntax #include <math.h>

double atan2(y, x)
double y, x;

Defined in atan. obj in rts.lib

Description The atan2 function returns the inverse tangent of y / x. The function uses the
signs of the arguments to determine the quadrant of the return value. Both
arguments cannot be 0. The return value is an angle in the range [-rt,rt]
radians.

Example double rvalu, rvalv;
double radians;

rvalu = 0.0;
rvalv = 1.0;
radians= atan2(rvalr, rvalu); /*return value 0 *I

5-22 Runtime-Support Functions

Syntax #include <stdlib.h>

void atexit(fun)
void (*fun)();

Exit Without Arguments atexit

Defined in exit. c in rts. src

Description The atexit function registers the function that is pointed to by fun, to be
called without arguments at normal program termination. Up to 32 functions
can be registered.

When the program exits through a call to the exit function, the functions that
were registered are called, without arguments, in reverse order of their
registration.

5-23

atof/atoi/atol ASCII to Number

Syntax #include <stdlib.h>

double atof(nptr)
char *nptr;

int atoi(nptr)
char *nptr;

long int atol(nptr)
char *nptr;

Description Three functions convert ASCII strings to numeric representations:

5-24

CJ The atof function converts a string to a floating-point value. The string
must have the following format:

[space] [sign] digits [.digits] [e/E [sign] integer]

CJ The atoi function converts a string to an integer. The string must have
the following format:

[space] [sign} digits

CJ The atol function converts a string to a long integer. The string must
have the following format:

[space] [sign} digits

The space is indicated by a spacebar, horizontal or vertical tab, carriage re­
turn, form feed, or newline. Following the space is an optional sign, and then
digits that represent the integer portion of the number. The fractional part
of the number follows, then the exponent, including an optional sign.

The first unrecognized character terminates the string.

Because int and long int are functionally equivalent in TMS320C25 C, the
atoi and atol functions are also functionally equivalent.

The functions do not handle any overflow resulting from the conversion.

Runtime-Support Functions

Syntax

Array Search bsearch

#include <stdlib.h>

void *bsearch(key, base, nmemb, size, compar)
void *key, *base;
size_t nmemb, size;
int (*compar) ();

Defined in bsearch. c in rts. src

Description The bsearch function searches through an array of nmemb objects for a
member that matches the object that key points to. Argument base points
to the first member in the array; size specifies the size (in bytes) of each
member.

The contents of the array must be in ascending, sorted order. If a match is
found, the function returns a pointer to the matching member of the array;
if no match is found, the function returns a null pointer (0).

Argument compar points to a function that compares key to the array
elements. The comparison function should be declared as

int cmp(ptrl, ptr2)
void *ptrl, *ptr2;

The cmp function compares the objects that prt 1 and pt r2 point to and re­
turns one of the following values:

< o if *ptrl is less than *ptr2.
o if *ptrl is equal to *ptr2.

> o if *ptrl is greater than *ptr2.

5-25

calloc Allocate and Clear Memory

Syntax #include <stdlib.h>

void *calloc(runemb, size)
size_t nmernb; /* number of items to allocate */
size_t size; /* size (in bytes) of each item */

Defined in memory. c in rts. src

Description The calloc function allocates size bytes for each of nmernb objects and re­
turns a pointer to the space. The function initializes the allocated memory
to all Os. If it cannot allocate the memory (that is, if it runs out of memory),
it returns a null pointer (0).

Example

The memory that calloc uses is in a special memory pool or heap. AC mod­
ule called memory. c reserves memory for the heap in the .bss section. The
constantMEMORY_srzE defines the size of the heap as 1000 bytes. If neces­
sary, you can change the size of the heap by changing the value of
MEMORY_SIZE and recompiling memory. c. For more information, refer to
Section 4.1.5, Dynamic Memory Allocation, on page 4-5.

This example uses the calloc routine to allocate and clear 1 O bytes.

prt = calloc (10,2) ; /*Allocate and clear 20 bytes */

5-26 Runtime-Support Functions

Syntax #include <math.h>

double ceil(x)
double x;

Defined in floor. obj in rts. lib

Ceiling ceil

Description The ceil function returns a double-precision number that represents the
smallest integer greater than or equal to x.

Example extern double ceil();

double answer;

answer= ceil(3.1415); /* answer 4.0 */

answer= ceil(-3.5); /* answer -3.0 */

5-27

COS Cosine

Syntax #include <math.h>

double cos(x)
double x;

Defined in sin. obj in rts. lib

Description The cos function returns the cosine of a floating-point number, x. x is an
angle expressed in radians. An argument with a large magnitude may
produce a result with little or no significance.

Example

5-28

double radians, cval;
radians = 3.1415927;

cval = cos(radians);

/* cos returns cval *I

/* return value= -1.0 *I

Runtime-Support Functions

Hyperbolic Cosine COSh ___________ ,,,,,_.~~..:;:;:-~~/"~~~..:;~~~~
Syntax #include <math.h>

double cosh(x)
double x;

Defined in sinh. obj in rts. lib

Description The cosh function returns the hyperbolic cosine of a floating-point number,
x. A range error occurs if the magnitude of the argument is too large.

Example double x, y;x = 0.0;
y = cosh(x); /*return value= 1.0 *I

5-29

exit Normal Termination

Syntax #include <stdlib.h>

void exit(status)
int status;

Defined in exit. c in rts. src

Description When a program exits through a call to the exit function, the atexit function
calls the registered functions (without arguments) in reverse order of their
registration.

The exit function does not return.

5-30 Runtime-Support Functions

Exponential exp
~~'$~%~==m->==-tm""w"":x:x='1~:rc>m< =--=-· ,. .. "" ... ·.·~~».~?.>m·.;:::x·xw .. ·w:-:·~'»Xi:~· ~

Syntax #include <math.h>

double exp(x)
double x;

Defined in exp. obj in rts. lib

Description The exp function returns the exponential function of real number x. The re­
turn value is the number e raised to the power x. A range error occurs if the
magnitude of x is too large.

Example double x, y;x = 2.0;
y = exp(x); /* y 7.38, which is e**2.0 */

5-31

fabs ·· · Absolute Value, Floating-Point

Syntax #include <math.h>

doubl.e fabs(x)
double x;

Defined in fabs. obj in rts. lib

Description The fabs function returns the absolute value of a floating-point number, x.

Example

5-32

double x, y;

x = -57.5;
y = fabs(x); /* return value +57.5 *I

Runtime-Support Functions

Syntax #include <math.h>

double floor(x)
double x;

Defined in floor. obj in rts. lib

Floor floor

Description The floor function returns a double-precision number that represents the
largest integer less than or equal to x.

Example double answer;

answer= floor(3.1415);
answer= floor(-3.5);

/* answer

/* answer

3.0
-4.0

*/
*/

5-33

fmod Floating-Point Remainder
-::;-;:mw.1Sf~~-:m-;sm.,.;;s;,_;:w..,.m;:;""'s:m-::i:.wm..m-~.«::~~.».::::»>>~~~~~~~~f.:W'A~..:OS::SWh~·5

Syntax #include <math.h>

doub1e fmod (x, y)

double x, y;

Defined in fmod. obj in rt s . lib

Description The fmod function returns the floating-point remainder of x divided by y. If
y=O, the function returns 0.

Example

5-34

double x, y, r; x = 11.0;

y = 5.0;

r = fmod(x, y); /* fmod returns 1.0 *I

Runtime-Support Functions

Deallocate Memory free
~-·--"""""'W"""""""""""""""'"°"""""""",__"=""""'"""""_._""""" _ ____,~-<r""""'"""""""""'""""'~~_,.. _,.,""""'""""""""

Syntax #include <stdlib.h>

void free (ptr)
void *ptr;

Defined in memory. c in rts. src

Description The free function deallocates memory space (pointed to by ptr) that was
previously allocated by a malloc, calloc, or realloc call. This makes the
memory space available again. If you attempt to free unallocated space, the
function takes no action and returns. For more information, refer to Section
4.1.5, Dynamic Memory Allocation, on page 4-5.

Example This example allocates 10 bytes and then frees them. char *x;

x = malloc (10);
free(x);

/* allocate 10 bytes

I* free 10 bytes
*I
*I

5-35

. frexp .FractiOn and Exponent

Syntax #include <math.h>

double frexp(value, exp)
double value; /* input floating-point number *I
int *exp; /* pointer to exponent */

Defined in frexp. obj in rt s . lib

Description The frexpfunction breaks a floating-point number into a normalized fraction
and an integer power of 2. The function returns a value with a magnitude
in the range [t/2, 1) or 0, so that value = x x 2(** exp). The frexp function
stores the power in the int pointed to by exp. If value is 0, both parts of the
result are 0.

Example double fraction;
int exp;
fraction= frexp(3.0, &exp);
I* after execution, fraction is .78375 and exp is 2 */

5-36 Runtime-Support Functions

Syntax #include <ctype.h>

int isalnum(c)
char c;

int isalpha(c)
char c;

int isascii(c)
char c;

int iscntrl(c)
char c;

int isdigit(c)
char c;

int isgraph(c)
char c;

int islower(c)
char c;

int isprint(c)
char c;

int ispunct(c)
char c;

int isspace(c)
char c;

int isupper(c)
char c;

int isxdigit(c)
char c;

Character Tests isxxxxx

Defined in isxxx. c and ctype. c in rts. src
Also defined in ctype. h as macros

Description These functions test a single argument c to see if it is a particular type of
character-alphabetic, alphanumeric, numeric, ASCII, etc. If the test is true
(the character is the type of character that it was tested to be), the function
returns a nonzero value; if the test is false, the function returns 0. The char­
acter typing functions include

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

identifies alphanumeric ASCII characters (tests for any char­
acter for which isalpha or isdigit is true).

identifies alphabetic ASCII characters (tests for any character
for which islower or isupper is true).

identifies ASCII characters (any character between 0-127).

identifies control characters (ASCII character 0-31 and
127).

identifies numeric characters ('O'- '9')

identifies any nonspace character.

5-37

isxxxxx Character Tests

5-38

islower

isprint

ispunct

isspace

isupper

isxdigit

identifies lowercase alphabetic ASCII characters.

identifies printable ASCII characters, including spaces (ASCII
characters 32-126).

identifies ASCII punctuation characters.

identifies ASCII spacebar, tab (horizontal or vertical), carriage
return, formfeed, and newline characters.

identifies uppercase ASCII alphabetic characters.

identifies hexadecimal digits (0-9, a-f, A-F).

The C compiler also supports a set of macros that perform these same func­
tions. The macros have the same names as the functions but are prefixed
with an underscore; for example, _isascii is the macro equivalent of the
isascii function. In general, the macros execute more efficiently than the
functions.

Runtime-Support Functions

Syntax #include <math.h>

double ldexp(x, exp)
double x;
int exp;

Defined in ldexp.obj in rts.lib

Multiply by a Power of Two ldexp

Description The ldexp function multiplies a floating-point number by a power of 2 and
returns x x 2exp. exp can be a negative or a positive value. A range error
may occur if the result is too large.

Example double result;
result= ldexp(l.5, 5);
result= ldexp(6.0, -3);

/* result is 48.0
/*result is 0.75

*I
*I

5-39

log .·Natural Logarithm

Syntax #include <math.h>

double log(x)
double x;

Defined in log. obj in rts. lib

Description The log function returns the natural logarithm of a real number, x. A domain
error occurs if x is negative; a range error occurs if x is 0.

Example

5-40

float x, y;

x = 2.718282;

y = log(x); /*Return value 1.0 *I

Runtime-Support Functions

Common Logarithm log10
------==•=m-~;f;~~ms ~==-ss·;~~~~~~~.::::~~;ss mt·ms:'d';ss-:r~:::-;;

Syntax #include <math.h>

double loglO(x)
double x;

Defined in log. obj in rts. lib

Description The log10 function returns the base-10 logarithm of a real number, x. A
domain error occurs if x is negative; a range error occurs if x is 0.

Example float x, y;

x = 10.0;
y = log(x); /* Return value 1.0 *I

5-41

ltoa Long Integer to ASCII

Syntax #include <stdlib.h>

int 1toa(n, buffer)
long n; /* number to convert
char *buffer; /* buffer to put result in

*/
*I

Defined in ltoa. c in rts. src

Description The ltoa function converts a long integer to the equivalent ASCII string. If
the input number n is negative, a leading minus sign is output. The ltoa
function returns the number of characters placed in the buffer.

5-42 Runtime-Support Functions

Syntax #include <stdlib.h>

void *malloc(size)

Allocate Memory malloc

size_t size; /* size of block in bytes */

Defined in memory. c in rts. src

Description The malloc function allocates space for an object of size bytes and returns
a pointer to the space. If malloc cannot allocate the packet (that is, if it runs
out of memory), it returns a null pointer (0). This function does not modify
the memory it allocates.

The memory that malloc uses is in a special memory pool or heap. AC mod­
ule called memory. c reserves memory for the heap in the .bss section. The
constant MEMORY_ srzE defines the size of the heap as 1000 bytes. If neces­
sary, you can change the size of the heap by changing the value of
MEMORY_SIZE and recompiling memory. c. For more information, refer to
Section 4.1.5, Dynamic Memory Allocation, on page 4-5.

5-43

memchr Find First Occurrence of Character

Syntax #include <string.h>

void *memchr(s, c, n)
void *s;
char c;
size_t n;

Defined in memchr. c in rts. src

Description The memchr function finds the first occurrence of c in the first n characters
of the object that s points to. If the character is found, memchr returns a
pointer to the located character; otherwise, it returns a null pointer (0).

The memchr function is similar to strchr, except the object that memchr
searches can contain values of 0, and c can be 0.

5-44 Runtime-Support Functions

Memory Compare memcmp
~;:;,."S:-. """""""""""""""'---=-· --5X:'~~/.i'm::-.::'~~~ ~:::' ~--~"""""

Syntax #include <string.h>

int memcmp(sl, s2, n)
void *sl, *s2;
size_t n;

Defined in memcmp. c in rts. src

Description The memcmp function compares the first n characters of the object that s2
points to with the object that sl points to. The function returns one of the
following values:

< o if *sl is less than *s2.
o if *sl is equal to *s2.

> o if *sl is greater than *s2.

The memcmp function is similar to strncmp, except that the objects
memcmp compares can contain zeros.

5-45

memcpy Memory Copy
---=-----=----.::::::-~~'-"'--"''·"~%m"..::SSS~:::w~..x:::::::.~~~x,:;::~~~~~~~i:::mm..v.:..~..:w::::::.-:-m

Syntax #include <string.h>

void *memcpy(sl, s2, n)
void *sl, *s2;
size_t n;

Defined in mernmov. c in rts. src

Description The memcpy function copies n characters from the object that s2 points to
into the object that sl points to. If you attempt to copy characters of overlap­
ping objects, the function's behavior is undefined. The function returns the
value of sl.

5-46

The memcpy function is similar to strncpy, except that the objects memcpy
copies can contain zeros.

Runtime-Support Functions

Syntax #include <string.h>

void *memmove(sl, s2, n)
void *sl, *s2;
size_t n;

Defined in memmov. c in rt s . s re

Memory Move memmove

Description The memmove function moves n characters from the object that s2 points
to into the object that sl points to; the function returns the value of sl. The
memmove function correctly copies characters between overlapping
objects.

5-47

memset Copy Character into Memory

Syntax #include <string.h>

void *memset(s, c, n)
void *s;
char c;
size_t n;

Defined in memset. c in rts. src

Description The rnernset function copies the value of c into the first n characters of the
object thats points to. The function returns the value of s.

5-48 Runtime-Support Functions

Reset All Dynamic Memory mi nit
-=-=-=-=-=-==--="""'~~=====va====-..w~~~

Syntax #include <stdlib.h>

void minit ()

Defined in memory. c in rts. src

Description The minit function resets all the space that was previously allocated by calls
to the malloc, calloc, or realloc functions.

The memory that min it uses is in a special memory pee! or heap. ,A, C modu!e
called memory.c reserves memory for the heap in the .bss section. The con­
stant MEMORY_ s rzE defines the size of the heap as 1000 bytes. If necessary,
you can change the size of the heap by changing the value of MEMORY_srzE

and reassembling memory. c. For more information, refer to Section 4.1.5,
Dynamic Memory Allocation, on page 4-5.

5-49

modf Signed Integer and Fraction

Syntax #include <math.h>

double modf(value, iptr)
double value;
int *iptr;

Defined in modf . obj in rt s . lib

Description The modf function breaks a value into a signed integer and a signed frac­
tion. Each of the two parts has the same sign as the input argument. The
function returns the fractional part of value and stores the integer as a
double at the object pointed to by iptr.

Exa111p/e double value, ipart, fpart;
value= -3.1415;

£part= modf(value, &ipart);

/*After execution, ipart contains -3.0, *I
/* and fpart contains -0.1415. */

5-50 Runtime-Support Functions

Move Memory movmem

Syntax #include <stdlib.h>

char *movmem(src,dest,count)
char *src ; /* source address */
char *dest; /* destination address */
char count; /* number of bytes to move */

Defined in movmem. c in rts. src

Description The movmem function moves count bytes of memory from the object that
src points to into the object that de st points to. The source and destination
areas can be overlapping.

5-51

pow Raise to a Power

Syntax #include <math.h>

double pow(x, y)
double x, y; /* Raise x to power y */

Defined in pow. obj in rts. lib

Description The pow function returns x raised to the power y. A domain error occurs if
x = O and y :::;; 0, or if x is negative and y is not an integer. A range error
may occur.

Example

5-52

double x, y, z;

x = 2.0;

y = 3.0;

x = pow(x, y); I* return value 8.0 *I

Runtime-Support Functions

Syntax

Fields

#include <stdlib.h>

void qsort (base, nmemb, size, compar)
void *base;
size t nmemb, size;
int - (*compar) ();

qsort. c in rts. src

Array Sort qsort
m WW.~.«:%

Description The qsortfunction sorts an array of nmemb members. Argument base points
to the first member of the unsorted array; argument size specifies the size
of each member.

This function sorts the array in ascending order.

Argument compar points to a function that compares key to the array
elements. The comparison function should be declared as

int cmp(ptrl, ptr2)
void *ptrl, *ptr2;

The cmp function compares the objects that ptrl and ptr2 point to and re­
turns one of the following values:

< o if *ptrl is less than *ptr2.
o if *ptrl is equal to *ptr2.

> o if *ptrl is greater than *ptr2.

5-53

rand/srand Pseudo-Random Integers

Syntax #include <stdlib.h>

int rand()

void srand(seed)
unsigned int seed;

Fields rand. c in rts. src

Description Two functions work together to provide pseudo-random sequence
generation:

5-54

a The rand function returns pseudo-random integers in the range
0-RAND_MAX.

a The srand function sets the value of seed so that a subsequent call to
the rand function produces a new sequence of pseudo-random num­
bers. The srand function does not return a value.

If you call rand before calling srand, rand generates the same sequence it
would produce if you first called srand with a seed value of 1 . If you call srand
with the same seed value, rand generates the same sequence of numbers.

Runtime-Support Functions

Syntax

Fields

#include <stdlib.h>

void *realloc(ptr, size)

Change Size of Allocated Memory realloc

void *ptr; /* pointer to object to change *I
size_t size; /* new size (in bytes) of packet */

memory. c in rts. src

Description The realloc function changes the size of the allocated memory pointed to
by ptr, to the size specified in bytes by size. The contents of the memory
space (up to the lesser of the old and new sizes) is not changed.

0 If ptr is 0, then realloc behaves like malloc.

0 If ptr points to unallocated space, the function takes no action and
returns.

0 If the space cannot be allocated, the original memory space is not
changed and realloc returns 0.

0 If size=O and ptr is not null, then realloc frees the space that ptr
points to.

If the entire object must be moved to allocate more space, realloc returns
a pointer to the new space. Any memory freed by this operation is deallo­
cated. If an error occurs, the function returns a null pointer (0).

The memory that realloc uses is in a special memory pool or heap. AC mod­
ule called memory. c reserves memory for the heap in the .bss section. The
constantMEMORY_srzE defines the size of the heap as 1000 bytes. If neces­
sary, you can change the size of the heap by changing the value of
MEMORY_ SIZE and recompiling memory. c. For more information, refer to
Section 4.1.5, Dynamic Memory Allocation, on page 4-5.

5-55

sin Sine

Syntax

Fields

#include <math.h>

double sin(x)
double x;

sin. obj in rts. lib

Description The sin function returns the sine of a floating-point number, x. Argument x
is an angle expressed in radians. An argument with a large magnitude may
produce a result with little or no significance.

Example

5-56

double radian, sval;

radian = 3.1415927;
sval = sin(radian);

/* sval is returned by sin */

/* -1 is returned by sin */

Runtime-Support Functions

Syntax

Fields

#include <math.h>

double sinh(x)
double x;

sinh. obj in rts. lib

Hyperbolic Sine sinh

Description The sinh function returns the hyperbolic sine of a floating-point number, x.

Example

A range error occurs if the magnitude of the argument is too large.

double x, y;
x = 0.0;
y = sinh(x); /* return value 0.0 */

5-57

sqrt Square Root

Syntax

Fields

#include <math.h>

double sqrt(x)
double x;

sqrt. obj in rts. lib

Description The sqrt function returns the nonnegative square root of a real number x.

Example

5-58

A domain error occurs if the argument is negative.

double x, y;
x = 100.0;
y = sqrt(x); /* return value 10.0 */

Runtime-Support Functions

Syntax

Fields

#include <string.h>

char *strcat(sl, s2)
char *sl, *s2;

strcat. c in rts. src

Concatenate Strings Streat

Description The strcat function appends a copy of s2 (including a terminating null char­
acter) to the end of sl. The initial character of s2 overwrites the null charac­
ter that originally terminated sl. The function returns the value of sl.

5-59

strchr Find First Occurrence of Character

Syntax

Fields

#include <string.h>

char *strchr(s, c)
char *s;
char c;

strchr. c in rts. src

Description The strchr function finds the first occurrence of c (which is first converted
to a char) in s. If strchr finds the character, it returns a pointer to the
character; otherwise, it returns a null pointer (0).

5-60 Runtime-Support Functions

String Compare strcmp/strcoll
,,,,_.,,,__,.._,,;mw~~,.,,__,..~1-~¥~;mm:ww,mmm,,,,_,.,.,,.,_.,_..,_,.M ___ ,,,_m_~,~~

Syntax

Fields

#include <string.h>

int strcoll(sl, s2)
char *sl, *s2;

int strcmp(sl, s2)
char *sl, *s2;

strcmp. c in rts. src

Description The strcmp and strcoll functions compare s2 with sl. The functions are
equivalent; both functions are supported to provide compatibility with ANSI
C.

The functions return one of the following values:

< o if *sl is less than *s2.
o if *sl is equal to *s2.

> o if *sl is greater than *s2.

5-61

strcpy String Copy

Syntax

Fields

m~MX-"' """""'""""

#include <string.h>

char *strcpy(sl, s2)
char *sl, *s2;

strcpy. c in rts. src

Description The strcpy function copies s2 (including a terminating null character) into
sl. If you attempt to copy strings that overlap, the function's behavior is
undefined. The function returns a pointer to the destination string.

5-62 Runtime-Support Functions

Find Number of Unmatching Characters strcspn
~n.»~~w.~i:;;;wH"~~~~~~xz::::::.::x-wn.;::r,xm.~~::.zx~~~;.;::::::x::::N::~"Y.::w.:x::.::w.«:";::w..x~.::=..»>::xxxx::sxxx::::::~"!:~w..::i:::-;:;:::;-.::~~m-..::%X:Y.~:>-;~

Syntax

Fields

#include <string.h>

size_t strcspn(sl, s2)
char *sl, *s2;

strcspn. c in rts. src

Description The strcspn function returns the length of the initial segment of sl which is
entirely made up of characters that are not in s2. If the first character in sl
is in s2, the function returns 0.

5-63

strerror String Errors

Syntax

Fields

#include <string.h>

char *strerror(errnum)
int errnum;

strerror. c in rts. src

Description The strerror function returns the string "fun ct ion error". This function
is supplied to provide ANSI compatibility.

5-64 Runtime-Support Functions

Syntax

Fields

#include <string.h>

size_t strl.en(s)
char *s;

strlen. c in rts. src

String Length strlen

Description The strlen function returns the length of s. In C, a character string is termi­
nated by the first byte with a value of O (a null character). The returned result
does not include the terminating null character.

5-65

strncat Concatenate Strings

Syntax #include <string.h>
char *strncat(sl, s2, n)

char *sl, *s2;
size_t n;

Fields strncat.c in rts.src

Description The strncat function appends up ton characters of s2 (including a terminat­
ing null character) to the end of sl. The initial character of s2 overwrites the
null character that originally terminated s 1; strncat appends a null character
to result. The function returns the value of sl.

5-66 Runtime-Support Functions

Syntax #include <string.h>

int strncmp(sl, s2, n)
char *sl, *s2;
size_t n;

Fields strncmp.c in rts.src

Compare Strings strncmp

Description The strncmp function compares up to n characters of s2 with sl. The
function returns one of the following values:

< o if *sl is less than *s2.
o if *sl is equal to *s2.

> o if *sl isgreaterthan *s2.

5-67

strncpy String Copy

Syntax #include <string.h>
char *strncpy(sl, s2, n)

char *sl, *s2;
size_t n;

Fields strncpy. c in rts. src

Description The strncpyfunction copies up ton characters from s2 into si. If s2 is n char­
acters long or longer, the null character that terminates s2 is not copied. If
you attempt to copy characters from overlapping strings, the function's be­
havior is undefined. If s2 is shorter than n characters, strncpy appends null
characters to sl so that sl contains n characters. The function returns the
value of sl.

5-68 Runtime-Support Functions

Syntax

Fields

#include <string.h>

char *st:cpbrk(sl, s2)
char *sl, *s2;

strpbrk. c in rts. src

Find Any Matching Character strpbrk
S'Sf

Description The strpbrk function locates the first occurrence in s 1 of anycharacter in s2.
If strpbrk finds a matching character, it returns a pointer to that character;
otherwise, it returns a null pointer (0).

5-69

strrchr Find Last Occurrence of Character

Syntax

Fields

#include <string.h>

char *strrchr(s ,c)
char *s;
int c;

strrchr. c in rts. src

Description The strrchr function finds the last occurrence of c in s. If strrchr finds the
character, it returns a pointer to the character; otherwise, it returns a null
pointer (0).

5-70 Runtime-Support Functions

Syntax

Fields

#include <string.h>

size t *strspn(sl, s2)
int *sl, *s2;

strspn. c in rts. src

Find Number of Matching Characters strspn

Description The strspn function returns the length of the initial segment of sl which is
entirely made up of characters in s2. If the first character of sl is not in s2,
the strspn function returns 0.

5-71

strstr Find Matching String

Syntax #include <string.h>

char *strstr(sl, s2)
char *sl, *s2;

Fields strstr. c in rts. src

Description The strstrfunction finds the first occurrence of s2 in sl (excluding the termi­
nating null character). If strstr finds the matching string, it returns a pointer
to the located string; if it doesn't find the string, it returns a null pointer. If s2
points to a string with length 0, then strstr returns sl.

5-72 Runtime-Support Functions

Syntax

Fields

#include <stdlib.h>

double strtod(nptr, endptr)
char *nptr;
char **endptr;

String to Number strtod/strtol/strtoul

long int strtol(nptr, endptr, base)
char *nptr;
char **endptr;
int base;

unsigned long int strtoul(nptr, endptr, base)
char *nptr;
char **endptr;
int base;

strtod. c in rts. src

strtol.c in rts.src

strtoul. c in rts. src

Description Three functions convert ASCII strings to numeric values. For each function,
argument nptr points to the original string. Argument endptr points to a
pointer; the functions set this pointer to point to the first character after the
converted string.The functions that convert to integers also have a third ar­
gument, base.

Q The strtod function converts a string to a floating-point value. The string
must have the following format:
[space] [sign] digits [.digits] [e/E [sign] integer]
The function returns the converted string; ifthe original string is empty or
does not have the correct format, the function returns a 0. If the con­
verted string would cause an overflow, the function returns
±HUGE_ VAL; if the converted string would cause an underflow, the
function returns 0. If the converted string causes an overflow or an un­
derflow, errno is set to the value of ERANGE.

Q The strtol function converts a string to a long integer. The string must
have the following format:

[space] [sign] digits [.digits] [e/E [sign] integer]
Q The strtoul function converts a string to an unsigned long integer. The

string must be specified in the following format:
[space] [sign] digits [.digits] [e/E [sign] integer]

The space is indicated by a spacebar, horizontal or vertical tab, carriage re­
turn, form feed, or new line. Following the space is an optional sign, and then
digits that represent the integer portion of the number. The fractional part
of the number follows, then the exponent, including an optional sign.

The first unrecognized character terminates the string. The pointer that
endptr points to is set to point to this character.

5-73

strtok Break String into Tokens

Syntax

Fields

el ~m~~-----~-%~~~w~m::::

#include <string.h>

char *strtok(sl, s2)
char *sl, *s2;

strtok. c in rts. src

Description Successive calls to the strtok function breaks i into a series of tokens, each
delimited by a character from s2. Each call returns a pointer to the next
token.

5-74 Runtime-Support Functions

Syntax

Fields

#include <math.h>

double tan(x)
double x;

tan. obj in rts. lib

Tangent tan

Description The tan function returns the tangent of a floating-point number, x. Argument
xis an angle expressed in radians. An argument with a large magnitude may
produce a result with little or no significance.

Example double x, y;

x = 3.1415927/4.0;
y = tan(x); /*return value 1.0 */

5-75

tanh Hyperbolic Tangent

Syntax

Fields

#include <math.h>

double tanh(x)
double x;

tanh. obj in rts. lib

Description The tanh function returns the hyperbolic tangent of a floating-point number,

Example

5-76

x.

double x, y;
x = 0.0;
y = tanh(x); /* return value 0.0 *I

Runtime-Support Functions

Syntax

Fields

#include <ctype.h>

int toascii(c)
char c;

toascii. c in rts. src

Convert to ASCII toascii

Description The toascii function ensures that c is a valid ASCII character by masking the
lower seven bits. There is also a toascii macro.

5-77

tolower/toupper Convert Case

Syntax

Fields

#include <ctype.h>

int tolower(c)
char c;

int toupper(c)
char c;

tolower. c in rts. scr

toupper. c in rts. src

Description Two functions convert the case of a single alphabetic character, c, to upper
or lower case:

5-78

Q The tolower function converts an uppercase argument to lowercase.
If c is already in lowercase, tolower returns it unchanged.

Q The toupper function converts a lowercase argument to uppercase. If
c is already in uppercase, toupper returns it unchanged.

The functions have macro equivalents named _tolower and _toupper.

Runtime-Support Functions

Variable-Argument Macros va _arg/va _ end/va_ start

Syntax #include <stdarg.h>

type va arg(ap, type)
void va-end(ap)
void va-start(ap, parmN)

va_list *ap

Description Some functions can be called with a varying number of arguments that have
varying types. Such a function, called a variable-argument function, can use
the following macros to step through its argument list at run time. The ap pa­
rameter points to an argument in the variable-argument list.

Example

Q The va_start macro initializes ap to point to the first argument in an ar­
gument list for the variable-argument function. The parmN parameter
points to the rightmost parameter in the fixed, declared list.

Q The va_arg macro returns the value of the next argument in a call to a
variable-argument function. Each time you call va_arg, it modifies ap so
that successive arguments for the variable-argument function can be
returned by successive calls to va_arg (va_arg modifies ap to point to
the next argument in the list). The type parameter is a type name; it is
the type of the current argument in the list.

Q The va_end macro resets the stack environment after va_start and
va_arg are used.

Note that you must call va_start to initialize ap before calling va_arg or
va_end.

int printf (fmt)
char *fmt

int i;
char *s;
long l;

va list ap;

/* Has 1 fixed argument and
/* additional variable arguments

va_start(ap,fmt); /*initialize

I* Get next argument, an integer

i = va _arg(ap, int);

I* Get next argument, a string

s = va_arg(ap, char *);
/* Get next argument, a long

1 = va_arg(ap, long);

*/
*I

*/

*I

*/

*I

5-79

va_arg/va_ end/va_ start Variable-Argument Macros

va_end(ap) /* Reset *I

Runtime-Support Functions

Appendix A

Fatal Errors

Compiler error messages are displayed in the following format, which
shows the line number in which the error occurs and the text of the message:

name.c, line n : error message

All the errors listed in this section cause the compiler to abort immediately.
Text in italics in these error messages is replaced with actual text from the
program, your own symbols, filenames, memory allocations, etc.

Cannot allocate sufficient memory:The compiler requires a minimum of
512K bytes of memory to run; this message indicates that this amount is not
available. Supply more dynamic RAM.

Can't open filename as source:The compiler cannot find the file name as
entered. Check for spelling errors and check to see that the named file ac­
tually exists.

Can't open filename as intermediate file:The compiler cannot create the
output file. This is usually caused by either an error in the syntax of the file­
name or by a full disk.

Illegal extension ext on output file: The intermediate file cannot have a
. c extension.

Fatal errors found: no intermediate file produced: This message is
printed after an unsuccessful compilation. Correct the errors (other mes­
sages indicate particular errors) and try compilation again.

Too many errors: aborting: An error has occurred that prevents the com­
piler from continuing.

Cannot recover from earlier errors: aborting: An error has occurred that
prevents the compiler from continuing.

A-1

A-2 Fatal Errors

#define/#undef Define!Undefine Constant Directives

Syntax #define name [(arg, ... ,arg)] token-string

#undef name

Description The preprocessor supports two directives for defining and undefining con­
stants:

Example

8-2

!Ji The #define directive assigns a string to a constant. Subsequent occur­
rences of name (which can be immediately followed by an argument list)
are replaced by token-string. The name can be immediately followed by
an argument list; the arguments are separated by commas, and the list
is enclosed in parentheses. Each occurrence of an argument is re­
placed by the corresponding set of tokens from the comma-separated
string.

When a macro with arguments is expanded, the arguments are placed
into the expanded token-string unchanged. After the entire token-string
is expanded, the preprocessor scans again for names to expand at the
beginning of the newly created token-string, which allows for nested
macros.

Note that there is no space between name and the open parenthesis at
the beginning of the argument list. A trailing semicolon is not required; if
used, it is treated as part of the token-string.

!Ji The #undef directive undefines the constant name; that is, it causes the
preprocessor to forget the definition of name.

The following example defines the constant f:

#define f(a,b,c) 3*a+b-c

The following line of code uses the definition off:

f(27,begin,minus)

This line is expanded to:

3*27+begin-minus

To undefine f, enter:

#undef f

C Preprocessor Directives

Conditional Processing Directives #if /#ifdef/#ifndef/#else/#endif

Syntax #if constant-expression
code to compile if condition is true

[#else
code to compile if condition is false]

#end if

#ifdef name
code to compile if name is defined

[#else
code to compile if name is not defined]

#end if

#ifndef name
code to compile if name is not defined

[#else
code to compile if name is defined]

#end if

Description The C preprocessor supports several conditional processing directives:

[J Three directives can begin a conditional block:

• The #if directive tests an expression. The code following an #if di­
rective (up to an #else or an #endif) is compiled if the constant-ex­
pressionevaluates to a nonzero value. All binary non-assignment C
operators, the?: operator, the unary-, !, and ! operators are legal in
constant-expression. The precedence of the operators is the same
as in the definition of the C language. The preprocessor also sup­
ports a unary operator named defined, which can be used in con­
stant-expression in one of two forms:

1) defined (<name>) or

2) defined <name>

This allows the utility of #ifdef and #ifndef in an #if directive. Only
these operators, integer constants, and names which are known by
the preprocessor should be used in constant-expression. In partic­
ular, the sizeof operator should not be used.

• The #ifdef directive tests to see if name is a defined macro. The
code following an #ifdef directive (up to an #else or an #endif) is
compiled if name is defined (by the #define directive) and it has not
been undefined by the #undef directive.

• The #ifndef directive tests to see if name is not a defined macro.
The code following an #ifndef directive (up to an #else or an #end if)

B-3

#if/#ifdef/#ifndef/#else/#endif Conditional Processing Directives

8-4

is compiled if name is not been defined (by the #define directive) or
if it has been undefined by the #undef directive.

Q The #else directive begins an alternate block of code that is compiled
if:

• The condition tested by #if is false.

• The name tested by #ifdef is not defined.

• The name tested by #ifndef is defined.

Note that the #else portion of a conditional block is optional; if the #if,
#ifdef, or #ifndef test is not successful, then the preprocessor continues
with the code following the #endif.

Q The #endif directive ends a conditional block. Each #if, #ifdef, and #ifn­
def directive must have a matching #endif. Conditional compilation se­
quences can be nested.

C Preprocessor Directives

Syntax #include " filename"
or
#include < filename>

Include Code from Another File Directive #include

Description The #include directive tells the preprocessor to read source statements
from another file. The preprocessor includes (at the point in the code where
#include is encountered) the contents of the filename, which are then pro­
cessed. You can enclose the filename in double quotes or in angle brackets.

The filename can be a complete pathname or a filename with no path infor­
mation.

CJ If you provide path information for filename, the preprocessor uses that
path and does not look for the file in any other directories.

CJ If you do not provide path information and you enclose the filename in
double quotes, the preprocessor searches for the file in

1) The directory that contains the current source file. (The current
source file refers to the file that is being processed vvhen the prepro­
cessor encounters the #include directive.)

2) Any directories named with the -i preprocessor option.

3) Any directories named with the C_DIR environment variable.

CJ If you do not provide path information and you enclose the filename in
angle brackets, the preprocessor searches for the file in

1) Any directories named with the -i preprocessor option.

2) Any directories named with the C_DIR environment variable.

Note:

If you enclose the filename in angle brackets, the preprocessor does not
search for the file in the current directory.

For more information about the-i option and the environment variable, read
Section 2.2.1 .1 on page 2-8.

B-5

#line Line Control Directive

Syntax #line integer-constant ["filename"]

Description The #line directive generates line control information for the next pass of the
compiler. The integer-constant is the line number of the next line, and the
filename is the file where that line exists. If you do not provide a filename,
the current filename (specified by the last #line directive) is unchanged.

This directive effectively sets the __ LINE __ and __ FILE __ symbols.

B-6 C Preprocessor Directives

-al shell program option, 2-3

alternate directories, 2-8

-ap shell program option, 2-3

ARO (SP), 4-4, 4-6, 4-8

AR1 (FP), 4-4, 4-6, 4-8

AR2, 4-6

archiver, 1-3, 2-20

-as shell program option, 2-4

asm statement, 3-9, 4-14

assembler, 1-3, 2-2, 2-3

assert macro, 5-2

assert.h header, 5-2, 5-8

autoinitialization, 2-17, 4-3, 4-21, 4-22
RAM model, 2-18, 4-21, 4-22
ROM model, 2-17, 4-21, 4-22

-ax shell program option, 2-4

bit addressing, 4-5

boot.obj, 2-15, 2-17, 2-19, 4-4

.bss section, 4-2, 4-3, 4-4

-c linker option, 2-15, 4-3

-c preprocessor option, 2-6

-c shell program option, 2-3

Index

C_DIR environment variable, 2-9

c_intO, 2-16

calloc function, 4-5

character typing conversion functions
isalnum, 5-37
isalpha, 5-37
isascii, 5-37
iscntrl, 5-37
isdigit, 5-37
isgraph, 5-37
islower, 5-37
isprint, 5-37
ispunct, 5-37
isspace, 5-37
isupper, 5-37
isxdigit, 5-37
toascii, 5-77
tolower, 5-78
to upper, 5-78

character typing/conversion functions, 5-3,
5-8

.cinit, 2-17

.cinit section, 4-2, 4-20, 4-21

code generator, 2-5
dspcg, 2-13
invocation, 2-13
options

-0, 2-13
-q, 2-14
-z, 2-14

compiler operation, 2-1-2-20

-er linker option, 2-15, 4-4

ctype.h header, 5-3, 5-8

lndex-1

Index

-d preprocessor option, 2-6

.data section, 4-3

data types, 3-5
data sizes, 3-5

dedicated registers, 4-6

#define directive, B-2

derived types, 3-4

diagnostic messages, 5-2
assert, 5-20
NDEBUG macro. See NDEBUG macro

div_t type, 5-7

division and modulus, 4-18

-dNAME shell program option, 2-3
dspcc, 2-11

dspcg, 2-13

dspcl, 2-3

dspcpp, 2-6

dynamic memory allocation, 4-5

#else directive, B-3

emulator, 1-3
#endif directive, B-3

entry points
C code, 2-16-2-20
_c_intO, 2-16
reset vector, 2-16

enum, 3-7

enumeration declaration, 3-7

environment variable, 2-9

EPROM programmer, 1-3

error message macros, 5-8
assert, 5-20

error messages, A-1

expression analysis
floating point, 4-19
integers, 4-18

external definitions, 3-7

external variables, 4-3

lndex-2

fatal errors, A-1

field manipulation, 4-5

float.h header, 5-3
floating-point expression analysis, 4-19
floating-point math functions, 5-9

acos, 5-18
asin,5-19
atan, 5-21
atan2, 5-22
ceil, 5-27
cos, 5-28
cosh, 5-29
exp, 5-31
fabs, 5-32
floor, 5-33
fmod, 5-34
frexp, 5-36
ldexp, 5-39
log, 5-40
log1 O, 5-41
modf, 5-50
pow, 5-52
sin, 5-56
sinh, 5-57
sqrt, 5-58
tan, 5-75
tanh, 5-76

FP register, 4-4, 4-6, 4-8

frame pointer, 4-6, 4-8
function call conventions, 4-8-4-22

local frame generation, 4-8
passing parameters, 4-8
terminating a function, 4-9
termination, 4-9

function calls, using the stack, 4-4

-g shell program option, 2-3

general utility functions, 5-7, 5-11
abort, 5-16
abs, 5-17
atexit, 5-23

bsearch, 5-25
calloc, 5-26
exit, 5-30
free, 5-35
labs, 5-17
malloc, 5-43
minit, 5-49
movmem, 5-51
qsort, 5-53
rand, 5-54
realloc, 5-55
srand, 5-54
strtod, 5-73
strtol, 5-73
strtoul, 5-73

global variables, 3-9, 4-3
reserved space, 4-2

m
hardware requirements (PC systems), 1-4

header files, 5-2-5-7
assert.h header, 5-2
ctype.h header, 5-3
float.h header, 5-3
limits.h header, 5-3
math.h header, 5-5
stdarg.h header, 5-6
stddef.h header, 5-6
stdlib.h header, 5-7
string.h header, 5-7

heap, 4-5

II
-i preprocessor option, 2-7, 2-8

-i shell program option, 2-3

identifiers, 3-2

#if directive, B-3

#ifdef directive, B-3

#ifndef directive, B-3

#include, 2-8

#include directive, B-5

includes, 2-8

Index

initialized sections, 4-2
inline assembly construct (asm), 3-9, 4-14
installation, 1-4

Macintosh, 1-4
MPW, 1-4, 1-7
OS/2, 1-4
PC, 1-4
PC-DOS, 1-4
Sun-3 workstation, 1-4
Sun-OS, 1-4, 1-6
Ultrix, 1-4, 1-6
VAX, 1-4
VMS, 1-4, 1-5

integer expression analysis, 4-18
division and modulus, 4-18
overflow and underflow, 4-18

interfacing C and assembly language,
4-11-4-15
asm statement, 4-14
assembly language modules, 4-11
defining variables in assembly language,

4-13
inline assembly language, 4-14
modifying compiler output, 4-15

interrupt handling, 4-16
invoking the

assembler, 1-4
batch files, 1-4
code generator, 2-5
linker, 2-15
parser, 2-5
preprocessor, 2-5

invoking the assembler, 2-2

-k shell program option, 2-3
Kernighan and Ritchie

preprocessor, 2-7
The C Programming Language, 1-1

keywords, 3-2

II
-I linker option, 2-15
ldiv_t type, 5-7

lndex-3

Index

limits
floating-point types, 5-3, 5-5
integer types, 5-3

limits.h header, 5-3

#line directive, B-6

linker, 1-3, 2-15-2-20

linker command file, 2-16

linking C code, 2-15-2-20

local frame generation, 4-8

local variable pointer, 4-6

-ma shell program option, 2-3

Macintosh installation, 1-7

malloc function, 4-5

math.h header, 5-5, 5-9
directives

#define, 8-2
#else, 8-3
#endif, 8-3
#if, 8-3
#ifdef, 8-3
#ifndef, 8-3
#include, 8-5
#line, 8-6
#undef, 8-2

floating-point math functions, 5-5

memory management functions
calloc, 5-26
free, 5-35
malloc, 5-43
minit, 5-49
movmem, 5-51
realloc, 5-55

memory model, 4-2-4-22
allocating variables, 4-3
dynamic memory allocation, 4-5
field manipulation, 4-5
RAM model, 4-3
ROM model, 4-3
runtime stack, 4-4
sections, 4-2
structure packing, 4-5

lndex-4

memory.c, 4-6

MEMORY _SIZE constant, 4-5

modulus, 4-18
-mr shell program option, 2-3
-mv shell program option, 2-3

m
-n shell program option, 2-3

name types, 3-4
NDEBUG macro, 5-2
NULL macro, 5-6

-o code generator option, 2-13
-o linker option, 2-15
object alignment, 3-6

object format converter, 1 -3
object libraries, 2-15
offsetof macro, 5-6
operation of the compiler, 2-1-2-20

overflow, 4-18

-p preprocessor option, 2-7

packing structures, 4-5
parser (dspcc), 2-11

invocation, 2-11
options, 2-12

-q, 2-12
-z, 2-12

passing parameters to a function, 4-8

PC installation, 1-4
-pc shell program option, 2-3

pointers, 3-5
data size, 3-5

-pp shell program option, 2-3
predefined names, 2-7
preprocessor (dspcpp}, 2-6, B-2

invocation, 2-6
options, 2-3, 2-6

-c, 2-6
-d, 2-6
-i, 2-7
-p, 2-7
-q, 2-7

preprocessor directives, B-1

program termination functions
abort (exit), 5-16
atexit, 5-23
exit, 5-30

ptrdiff_t type, 5-6

-q code generator option, 2-14
-q parser option, 2-12
-q prP.processor option, 2-7

-q shell program option, 2-3
-qq shell program option, 2-3

m
RAM model of autoinitialization, 2-15-2-20,

4-3
RAND_MAX macro, 5-7
realloc function, 4-5

register conventions, 4-6-4-22
dedicated registers, 4-6
register variables, 4-7

register variables, 3-9, 4-7
reserved registers, 4-6
reset vector, 2-16
ROM model of autoinitialization, 2-15-2-20,

4-3
rts.lib, 2-15-2-20, 5-1
rts.src, 4-4, 5-1, 5-7

runtime environment, 4-1-4-22
floating-point expression analysis, 4-19
function call conventions, 4-8-4-22
integer expression analysis, 4-18
interfacing C with assembly language,

4-11
assembly language modules, 4-11

Index

defining variables in assembly lan­
guage, 4-13

inline assembly language, 4-14
modifying compiler output, 4-15

interrupt handling. 4-16
memory model, 4-2-4-22

allocating variables, 4-3
dynamic memory a/location, 4-5
field manipulation, 4-5
RAM model, 4-3
ROM model, 4-3
sections, 4-2
structure packing, 4-5

register conventions, 4-6-4-22
runtime stack, 4-4
system initialization, 4-20-4-22

runtime initialization, 2-15
runtime stack, 4-20
runtime support, 2-15
runtime-support functions, 5-1-5-15

descriptions, 5-14-5-15
summary table, 5-8-5-15

-s shell program option, 2-3
sections, 4-2

.bss, 4-2, 4-3, 4-4

.cinit, 4-2, 4-3, 4-20, 4-21

.data, 4-3

.text, 4-3
shell program, options

-al, 2-3
-ap, 2-3
-as, 2-4
-ax, 2-4
-c, 2-3
-<lNAME, 2-3
-i, 2-3
-k, 2-3
-ma, 2-3
-mr, 2-3
-mv, 2-3
-n, 2-3
-pc, 2-3
-pp, 2-3

lndex-5

Index

-q, 2-3
-qq, 2-3
-s, 2-3
-uNAME, 2-3
-z, 2-3

simulator, 1-3

size_t type, 5-6

software development system, 1-3

software installation, 1-4

SP register, 4-4, 4-6, 4-8

stack, 4-4

stack management, 4-4

stack pointer, 4-4, 4-6, 4-8

STACK_ SIZE constant, 4-4

static variable, 3-9

static variables, 4-3
reserved space, 4-2

stdarg.h header, 5-6, 5-10

stddef.h header, 5-6

stdlib.h header, 5-7, 5-11

storage class specifiers, 3-6

string functions, 5-7, 5-12
memchr, 5-44
memcmp, 5-45
memcpy, 5-46
memmove, 5-47
memset, 5-48
strcat, 5-59
strch r, 5-60
strcmp, 5-61
strcoll, 5-61
strcpy, 5-62
strcspn, 5-63
strerror, 5-64
strlen, 5-65
strncat, 5-66
strncmp, 5-67
strncpy, 5-68
strpbrk, 5-69
strrchr, 5-70
strspn, 5-71
strstr, 5-72
strtok, 5-7 4

string.h header, 5-7, 5-12

lndex-6

structure packing, 4-5

Sun-3 installation, 1-6

system constraints
MEMORY _SIZE, 4-5
STACK_SIZE, 4-4

system initialization, 4-20-4-22
autoinitialization, 4-21
runtime stack, 4-20

system stack, 4-4

__ SYSTEM_SIZE, 5-7

II
-t code generator option, 2-14

.text section, 4-2

type specifiers, 3-7

-uNAME shell program option, 2-3

#undef directive, B-2

underflow, 4-18

uninitialized sections, 4-2

variable allocation, 4-3

variable argument functions, 5-6

variable argument functions and macros
va_arg, 5-79
va_end, 5-79
va_ start, 5-79

variable argument macros, 5-10

VAX installation, 1-5, 1-6

13
XDS emulator, 1-3

z code generator option, 2-14

-z parser option, 2-12

-z shell program option, 2-3

Printed in U.S.A., December 1989
1604909-9707

• TEXAS
INSTRUMENTS

SPRU024A

