
TMS320C54x Assembly
Language Tools

User’s Guide

1997 Digital Signal Processing Products

Printed in U.S.A., January 1997
SDS

SPRU102B

1997

G
uide

U
ser’s

Language Tools
TM

S
320C

54x A
ssem

bly

TMS320C54x
Assembly Language Tools

User’s Guide

Literature Number: SPRU102B
January 1997

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright  1997, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

The TMS320C54x Assembly Language Tools User’s Guide tells you how to
use these assembly language tools:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility

Before you can use this book, you should read the TMS320C54x Code
Generation Tools Getting Started to install the assembly language tools.

How to Use This Manual

The goal of this book is to help you learn how to use the Texas Instruments
assembly language tools specifically designed for the TMS320C54x DSPs.
This book is divided into four parts:

� Introductory information gives you an overview of the assembly
language development tools and also discusses common object file
format (COFF), which helps you to use the TMS320C54x tools more
efficiently. Read Chapter 2, Introduction to Common Object File Format,
before using the assembler and linker.

� Assembler description contains detailed information about using the
assembler. This section explains how to invoke the assembler and
discusses source statement format, valid constants and expressions,
assembler output, and assembler directives. It also summarizes the
TMS320C54x instruction set alphabetically and describes macro
elements.

� Additional assembly language tools describes in detail each of the
tools provided with the assembler to help you create assembly language
source files. For example, Chapter 9 explains how to invoke the linker, how
the linker operates, and how to use linker directives. Chapter 12 explains
how to use the hex conversion utility.

How to Use This Manual / Notational Conventions

iv

� Reference material provides supplementary information. This section
contains technical data about the internal format and structure of COFF
object files. It discusses symbolic debugging directives that the
TMS320C54x C compiler uses. Finally, it includes hex conversion utility
examples, assembler and linker error messages, and a glossary.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays appear in a
special typeface . Examples use a bold version of the special
typeface for emphasis; interactive displays use a bold version of the
special typeface to distinguish commands that you enter from items that
the system displays (such as prompts, command output, error messages,
etc.).

Here is a sample program listing:

2 0001 2f x .byte 47
3 0002 32 z .byte 50
4 0003 .text

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of command line syntax:

abs500 filename

abs500 is a command. The command invokes the absolute lister and has
one parameter, indicated by filename. When you invoke the absolute
lister, you supply the name of the file that the absolute lister uses as input.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. This is an example of a command
that has an optional parameter:

hex500 [–options] filename

The hex500 command has two parameters. The first parameter, –options,
is optional. Since options is plural, you may select several options. The
second parameter, filename, is required.

 Notational Conventions

v Read This First

� In assembler syntax statements, column 1 is reserved for the first
character of a label or symbol. If the label or symbol is optional , it is usually
not shown. If it is a required parameter, then it will be shown starting
against the left margin of the shaded box, as in the example below. No
instruction, command, directive, or parameter, other than a symbol or
label, should begin in column 1.

symbol .usect ” section name”, size in words [, blocking flag]
 [, alignment flag]

The symbol is required for the .usect directive and must begin in column 1.
The section name must be enclosed in quotes and the section size in
words must be separated from the section name by a comma. The
blocking flag and alignment flag are optional and, if used, must be
separated by commas.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

� Following are other symbols and abbreviations used throughout this
document.

Symbol Definition Symbol Definition

AR0–AR7 Auxiliary Registers
0 through 7

PC Program counter
register

B,b Suffix — binary integer Q,q Suffix — octal integer

H,h Suffix — hexadecimal
integer

SP Stack pointer register

LSB Least significant bit ST Status register

MSB Most significant bit

� ’C54x is used throughout this manual to collectively refer to the
TMS320C541, TMS320C542, TMS320C543, TMS320C544, TMS320C545,
TMS320C546, TMS320C547, TMS320C548, TMS320C549, and TMS320C545L
devices.

Note that .byte does not
begin in column 1.

Related Documentation From Texas Instruments

vi

Related Documentation From Texas Instruments

The following books describe the TMS320C54x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477–8924. When ordering,
please identify the book by its title and literature number.

TMS320C54x DSP Reference Set is composed of four volumes that can be
ordered as a set with literature number SPRU210. To order an individual
book, use the document-specific literature number:

TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals
(literature number SPRU131) describes the TMS320C54x 16-bit,
fixed-point, general-purpose digital signal processors. Covered
are its architecture, internal register structure, data and program
addressing, the instruction pipeline, DMA, and on-chip
peripherals. Also includes development support information, parts
lists, and design considerations for using the XDS510 emulator.

TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction
Set (literature number SPRU172) describes the TMS320C54x
digital signal processor mnemonic instructions individually. Also
includes a summary of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction
Set (literature number SPRU179) describes the TMS320C54x
digital signal processor algebraic instructions individually. Also
includes a summary of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 4: Applications Guide
(literature number SPRU173) describes software and hardware
applications for the TMS320C54x digital signal processor. Also
includes development support information, parts lists, and design
considerations for using the XDS510 emulator.

TMS320 DSP Development Support Reference Guide (literature number
SPRU011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

TMS320C54x Optimizing C Compiler User’s Guide (literature number
SPRU103) describes the ’C54x C compiler. This C compiler accepts
ANSI standard C source code and produces TMS320 assembly
language source code for the ’C54x generation of devices.

 Related Documentation From Texas Instruments / Trademarks

vii Read This First

TMS320C5xx C Source Debugger User’s Guide (literature number
SPRU099) tells you how to invoke the ’C54x emulator, EVM, and
simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C54x Code Generation Tools Getting Started Guide (literature
number SPRU147) describes how to install the TMS320C54x assembly
language tools and the C compiler for the ’C54x devices. The installation
for MS-DOS , OS/2 , SunOS , Solaris , and HP-UX 9.0x systems
is covered.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of ’320 digital signal processors. A myriad
of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise
cancellation, modems, etc.

Digital Signal Processing Applications with the TMS320 Family , Volumes
1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017)
Volumes 1 and 2 cover applications using the ’C10 and ’C20 families of
fixed-point processors. Volume 3 documents applications using both
fixed-point processors as well as the ’C30 floating-point processor.

Trademarks

HP-UX is a trademark of Hewlett-Packard Company.

MS-DOS is a registered trademark of Microsoft Corp.

PC-DOS and OS/2 are trademarks of International Business Machines Corp.

SunOS is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of Unix System Laboratories, Inc.

XDS510 is a trademark of Texas Instruments Incorporated.

If You Need Assistance

viii

If You Need Assistance. . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/mirrors/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

 Contents

ix

Contents

1 Introduction 1-1.
Provides an overview of the TMS320C54x software development tools.

1.1 Software Development Tools Overview 1-2.
1.2 Tools Descriptions 1-3.

2 Introduction to Common Object File Format 2-1.
Discusses the basic COFF concept of sections and how they can help you use the assembler
and linker more efficiently. Common object file format, or COFF, is the object file format used
by the TMS320C54x tools.

2.1 COFF File Types 2-2.
2.2 Sections 2-2.
2.3 How the Assembler Handles Sections 2-4.

2.3.1 Uninitialized Sections 2-4.
2.3.2 Initialized Sections 2-6.
2.3.3 Named Sections 2-7.
2.3.4 Subsections 2-8.
2.3.5 Section Program Counters 2-8.
2.3.6 An Example That Uses Sections Directives 2-9.

2.4 How the Linker Handles Sections 2-12.
2.4.1 Default Memory Allocation 2-13.
2.4.2 Placing Sections in the Memory Map 2-14.

2.5 Relocation 2-14.
2.6 Runtime Relocation 2-16.
2.7 Loading a Program 2-17.
2.8 Symbols in a COFF File 2-18.

2.8.1 External Symbols 2-18.
2.8.2 The Symbol Table 2-19.

3 Assembler Description 3-1.
Explains how to invoke the assembler and discusses source statement format, valid constants
and expressions, and assembler output.

3.1 Assembler Overview 3-2.
3.2 Assembler Development Flow 3-3.
3.3 Invoking the Assembler 3-4.

Contents

x

3.4 Naming Alternate Files and Directories for Assembler Input 3-6.
3.4.1 –i Assembler Option 3-6.
3.4.2 A_DIR Environment Variable 3-7.

3.5 Source Statement Format 3-9.
3.5.1 Source Statement Syntax 3-9.
3.5.2 Label Field 3-10.
3.5.3 Mnemonic Field 3-10.
3.5.4 Operand Field 3-11.
3.5.5 Instruction Field 3-12.
3.5.6 Comment Field 3-12.

3.6 Constants 3-13.
3.6.1 Binary Integers 3-13.
3.6.2 Octal Integers 3-13.
3.6.3 Decimal Integers 3-13.
3.6.4 Hexadecimal Integers 3-14.
3.6.5 Character Constants 3-14.
3.6.6 Assembly-Time Constants 3-14.
3.6.7 Floating-Point Constants 3-15.

3.7 Character Strings 3-15.
3.8 Symbols 3-16.

3.8.1 Labels 3-16.
3.8.2 Symbolic Constants 3-16.
3.8.3 Defining Symbolic Constants (–d Option) 3-17.
3.8.4 Predefined Symbolic Constants 3-17.
3.8.5 Substitution Symbols 3-18.
3.8.6 Local Labels 3-19.

3.9 Expressions 3-23.
3.9.1 Operators 3-24.
3.9.2 Expression Overflow and Underflow 3-24.
3.9.3 Well-Defined Expressions 3-25.
3.9.4 Conditional Expressions 3-26.
3.9.5 Relocatable Symbols and Legal Expressions 3-26.

3.10 Source Listings 3-28.
3.11 Cross-Reference Listings 3-32.

4 Assembler Directives 4-1.
Describes the directives according to function, and presents the directives in alphabetical order.

4.1 Directives Summary 4-2.
4.2 Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler Directives 4-7.
4.3 Directives That Define Sections 4-9.
4.4 Directives That Initialize Constants 4-11.
4.5 Directives That Align the Section Program Counter 4-15.
4.6 Directives That Format the Output Listing 4-17.
4.7 Directives That Reference Other Files 4-19.

 Contents

xi Contents

4.8 Conditional Assembly Directives 4-20.
4.9 Assembly-Time Symbol Directives 4-21.
4.10 Miscellaneous Directives 4-23.
4.11 Directives Reference 4-25.

5 Mnemonic Instruction Set Summary 5-1.
Summarizes the TMS320C54x mnemonic instruction set alphabetically.

5.1 Using the Summary Tables 5-2.
5.1.1 Table Entry Example 5-2.
5.1.2 Table Entry Explained 5-2.
5.1.3 Symbols and Acronyms 5-2.

5.2 Mnemonic and Algebraic Instruction Sets Cross-Reference 5-5.
5.3 Mnemonic Instruction Set Summary 5-14.

6 Algebraic Instruction Set Summary 6-1.
Summarizes the TMS320C54x algebraic instruction set functionally.

6.1 Using the Summary Tables 6-2.
6.1.1 Table Entry Example 6-2.
6.1.2 Table Entry Explained 6-2.
6.1.3 Symbols and Acronyms 6-2.

6.2 Algebraic and Mnemonic Instruction Sets Cross-Reference 6-5.
6.3 Algebraic Instruction Set Summary 6-18.

6.3.1 Arithmetic Operations 6-18.
6.3.2 Logical Operations 6-18.
6.3.3 Program Control Operations 6-19.
6.3.4 Load and Store Operations 6-19.
6.3.5 Algebraic Instruction Set Summary Tables 6-20.
6.3.6 Program Control Operations 6-32.

7 Macro Language 7-1.
Describes macro directives, substitution symbols used as macro parameters, and how to
create macros.

7.1 Using Macros 7-2.
7.2 Defining Macros 7-3.
7.3 Macro Parameters/Substitution Symbols 7-6.

7.3.1 Substitution Symbols 7-6.
7.3.2 Directives That Define Substitution Symbols 7-8.
7.3.3 Built-In Substitution Symbol Functions 7-9.
7.3.4 Recursive Substitution Symbols 7-10.
7.3.5 Forced Substitution 7-11.
7.3.6 Accessing Individual Characters of Subscripted Substitution Symbols 7-12.
7.3.7 Substitution Symbols as Local Variables in Macros 7-13.

7.4 Macro Libraries 7-14.
7.5 Using Conditional Assembly in Macros 7-15.

Contents

xii

7.6 Using Labels in Macros 7-17.
7.7 Producing Messages in Macros 7-19.
7.8 Formatting the Output Listing 7-21.
7.9 Using Recursive and Nested Macros 7-22.
7.10 Macro Directives Summary 7-25.

8 Archiver Description 8-1.
Contains instructions for invoking the archiver, creating new archive libraries, and modifying
existing libraries.

8.1 Archiver Overview 8-2.
8.2 Archiver Development Flow 8-3.
8.3 Invoking the Archiver 8-4.
8.4 Archiver Examples 8-6.

9 Linker Description 9-1.
Explains how to invoke the linker, provides details about linker operation, discusses linker
directives, and presents a detailed linking example.

9.1 Linker Overview 9-2.
9.2 Linker Development Flow 9-3.
9.3 Invoking the Linker 9-4.
9.4 Linker Options 9-6.

9.4.1 Relocation Capabilities (–a and –r Options) 9-8.
9.4.2 Disable Merge of Symbolic Debugging Information (–b Option) 9-10.
9.4.3 C Language Options (–c and –cr Options) 9-10.
9.4.4 Define an Entry Point (–e global_symbol Option) 9-11.
9.4.5 Set Default Fill Value (–f cc Option) 9-11.
9.4.6 Make All Global Symbols Static (–h and –g global_symbol Options) 9-12.
9.4.7 Define Heap Size (–heap constant Option) 9-12.
9.4.8 Alter the Library Search Algorithm (–i dir Option/C_DIR) 9-13.
9.4.9 Create a Map File (–m filename Option) 9-16.
9.4.10 Ignore the Memory Directive Fill Specification (–n Option) 9-16.
9.4.11 Name an Output Module (–o filename Option) 9-17.
9.4.12 Specify a Quiet Run (–q Option) 9-17.
9.4.13 Strip Symbolic Information (–s Option) 9-17.
9.4.14 Define Stack Size (–stack constant Option) 9-18.
9.4.15 Introduce an Unresolved Symbol (–u symbol Option) 9-18.
9.4.16 Specify a COFF Format (–v Option) 9-19.
9.4.17 Display a Message for Output Section Information (–w Option) 9-19.
9.4.18 Exhaustively Read Libraries (–x Option) 9-20.

9.5 Linker Command Files 9-21.
9.5.1 Reserved Names in Linker Command Files 9-23.
9.5.2 Constants in Command Files 9-23.

9.6 Object Libraries 9-24.

 Contents

xiii Contents

9.7 The MEMORY Directive 9-26.
9.7.1 Default Memory Model 9-26.
9.7.2 MEMORY Directive Syntax 9-26.

9.8 The SECTIONS Directive 9-30.
9.8.1 Default Configuration 9-30.
9.8.2 SECTIONS Directive Syntax 9-30.
9.8.3 Specifying the Address of Output Sections (Allocation) 9-33.

9.9 Specifying a Section’s Runtime Address 9-39.
9.9.1 Specifying Load and Run Addresses 9-39.
9.9.2 Uninitialized Sections 9-40.
9.9.3 Referring to the Load Address by Using the .label Directive 9-40.

9.10 Using UNION and GROUP Statements 9-43.
9.10.1 Overlaying Sections With the UNION Statement 9-43.
9.10.2 Grouping Output Sections Together 9-45.

9.11 Overlay Pages 9-46.
9.11.1 Using the MEMORY Directive to Define Overlay Pages 9-46.
9.11.2 Using Overlay Pages With the SECTIONS Directive 9-48.
9.11.3 Page Definition Syntax 9-49.

9.12 Default Allocation Algorithm 9-51.
9.12.1 Allocation Algorithm 9-51.
9.12.2 General Rules for Output Sections 9-52.

9.13 Special Section Types (DSECT, COPY, and NOLOAD) 9-54.
9.14 Assigning Symbols at Link Time 9-55.

9.14.1 Syntax of Assignment Statements 9-55.
9.14.2 Assigning the SPC to a Symbol 9-56.
9.14.3 Assignment Expressions 9-56.
9.14.4 Symbols Defined by the Linker 9-58.
9.14.5 Symbols Defined Only For C Support (–c or –cr Option) 9-58.

9.15 Creating and Filling Holes 9-59.
9.15.1 Initialized and Uninitialized Sections 9-59.
9.15.2 Creating Holes 9-59.
9.15.3 Filling Holes 9-61.
9.15.4 Explicit Initialization of Uninitialized Sections 9-62.

9.16 Partial (Incremental) Linking 9-63.
9.17 Linking C Code 9-65.

9.17.1 Runtime Initialization 9-65.
9.17.2 Object Libraries and Runtime Support 9-65.
9.17.3 Setting the Size of the Stack and Heap Sections 9-66.
9.17.4 Autoinitialization (ROM and RAM Models) 9-66.
9.17.5 The –c and –cr Linker Options 9-68.

9.18 Linker Example 9-69.

Contents

xiv

10 Absolute Lister Description 10-1.
Explains how to invoke the absolute lister to obtain a listing of the absolute addresses of an
object file.

10.1 Producing an Absolute Listing 10-2.
10.2 Invoking the Absolute Lister 10-3.
10.3 Absolute Lister Example 10-5.

11 Cross-Reference Lister Description 11-1.
Explains how to invoke the cross-reference lister to obtain a listing of symbols, their definitions,
and their references in the linked source files.

11.1 Producing a Cross-Reference Listing 11-2.
11.2 Invoking the Cross-Reference Lister 11-3.
11.3 Cross-Reference Listing Example 11-4.

12 Hex Conversion Utility Description 12-1.
Explains how to invoke the hex utility to convert a COFF object file into one of several standard
hexadecimal formats suitable for loading into an EPROM programmer.

12.1 Hex Conversion Utility Development Flow 12-2.
12.2 Invoking the Hex Conversion Utility 12-3.
12.3 Command File 12-7.

12.3.1 Examples of Command Files 12-8.
12.4 Understanding Memory Widths 12-9.

12.4.1 Target Width 12-10.
12.4.2 Data Width 12-10.
12.4.3 Memory Width 12-10.
12.4.4 ROM Width 12-11.
12.4.5 A Memory Configuration Example 12-14.
12.4.6 Specifying Word Order for Output Words 12-14.

12.5 The ROMS Directive 12-16.
12.5.1 When to Use the ROMS Directive 12-18.
12.5.2 An Example of the ROMS Directive 12-19.
12.5.3 Creating a Map File of the ROMS Directive 12-21.

12.6 The SECTIONS Directive 12-22.
12.7 Output Filenames 12-24.

12.7.1 Assigning Output Filenames 12-24.
12.8 Image Mode and the –fill Option 12-26.

12.8.1 The –image Option 12-26.
12.8.2 Specifying a Fill Value 12-27.
12.8.3 Steps to Follow in Image Mode 12-27.

 Contents

xv Contents

12.9 Building a Table for an On-Chip Boot Loader 12-28.
12.9.1 Description of the Boot Table 12-28.
12.9.2 The Boot Table Format 12-28.
12.9.3 How to Build the Boot Table 12-29.
12.9.4 Booting From a Device Peripheral 12-31.
12.9.5 Setting the Entry Point for the Boot Table 12-32.
12.9.6 Using the ’C54x Boot Loader 12-32.

12.10 Controlling the ROM Device Address 12-34.
12.10.1 Controlling the Starting Address 12-34.
12.10.2 Controlling the Address Increment Index 12-36.
12.10.3 The –byte Option 12-36.
12.10.4 Dealing With Address Holes 12-37.

12.11 Description of the Object Formats 12-38.
12.11.1 ASCII-Hex Object Format (–a Option) 12-39.
12.11.2 Intel MCS-86 Object Format (–i Option) 12-40.
12.11.3 Motorola Exorciser Object Format (–m1, –m2, –m3 Options) 12-41.
12.11.4 Texas Instruments SDSMAC Object Format (–t Option) 12-42.
12.11.5 Extended Tektronix Object Format (–x Option) 12-43.

12.12 Hex Conversion Utility Error Messages 12-44.

13 Mnemonic-to-Algebraic Translator Description 13-1.
Explains how to invoke the mnemonic-to-algebraic translator utility to convert a source file
containing mnemonic instructions to a source file containing algebraic instructions.

13.1 Translator Overview 13-2.
13.1.1 What the Translator Does 13-2.
13.1.2 What the Translator Does Not Do 13-2.

13.2 Translator Development Flow 13-3.
13.3 Invoking the Translator 13-4.
13.4 Translation Modes 13-5.

13.4.1 Literal Mode (–t Option) 13-5.
13.4.2 About Symbol Names in Literal Mode 13-5.
13.4.3 Expansion Mode (–e Option) 13-6.

13.5 How the Translator Works With Macros 13-8.
13.5.1 Directives in Macros 13-8.
13.5.2 Macro Local Variables 13-9.
13.5.3 Defining Labels When Invoking A Macro 13-10.

A Common Object File Format A-1.
Contains supplemental technical data about the internal format and structure of COFF object
files.

A.1 COFF File Structure A-2.
A.1.1 Overall Object File Structure A-2.
A.1.2 Typical Object File Structure A-3.
A.1.3 Impact of Switching Operating Systems A-4.

Contents

xvi

A.2 File Header Structure A-5.
A.3 Optional File Header Format A-6.
A.4 Section Header Structure A-7.
A.5 Structuring Relocation Information A-10.
A.6 Line-Number Table Structure A-12.
A.7 Symbol Table Structure and Content A-14.

A.7.1 Special Symbols A-16.
A.7.2 Symbol Name Format A-18.
A.7.3 String Table Structure A-18.
A.7.4 Storage Classes A-19.
A.7.5 Symbol Values A-20.
A.7.6 Section Number A-21.
A.7.7 Type Entry A-21.
A.7.8 Auxiliary Entries A-23.

B Symbolic Debugging Directives B-1.
Discusses symbolic debugging directives that the TMS320C54x C compiler uses.

C Hex Conversion Utility Examples C-1.
Illustrates command file development for a variety of memory systems and situations.

C.1 Base Code for the Examples C-2.
C.2 Example 1: Building A Hex Command File for Two 8-Bit EPROMs C-3.
C.3 Example 2: Avoiding Holes With Multiple Sections C-8.
C.4 Example 3: Generating a Boot Table for Non-LP Core Devices C-10.
C.5 Example 4: Generating a Boot Table for LP Core Devices C-17.

D Error Messages D-1.
Lists the error messages that the assembler and linker issue, and gives a description of the
condition(s) that caused each error.

E Glossary E-1.
Defines terms and acronyms used in this book.

 Figures

xvii Contents

Figures

1–1 TMS320C54x Software Development Flow 1-2.
2–1 Partitioning Memory Into Logical Blocks 2-3.
2–2 Object Code Generated by the File in Example 2–1 2-11.
2–3 Combining Input Sections to Form an Executable Object Module 2-13.
3–1 Assembler Development Flow 3-3.
4–1 The .space and .bes Directives 4-11.
4–2 The .field Directive 4-12.
4–3 Initialization Directives 4-14.
4–4 The .align Directive 4-16.
4–5 Allocating .bss Blocks Within a Page 4-31.
4–6 The .field Directive 4-45.
4–7 The .usect Directive 4-85.
8–1 Archiver Development Flow 8-3.
9–1 Linker Development Flow 9-3.
9–2 Memory Map Defined in Example 9–3 9-29.
9–3 Section Allocation Defined by Example 9–4 9-32.
9–4 Runtime Execution of Example 9–6 9-42.
9–5 Memory Allocation Shown in Example 9–7 and Example 9–8 9-44.
9–6 Overlay Pages Defined by Example 9–10 and Example 9–11 9-47.
9–7 RAM Model of Autoinitialization 9-67.
9–8 ROM Model of Autoinitialization 9-67.
10–1 Absolute Lister Development Flow 10-2.
10–2 module1.lst 10-9.
10–3 module2.lst 10-9.
11–1 Cross-Reference Lister Development Flow 11-2.
12–1 Hex Conversion Utility Development Flow 12-2.
12–2 Hex Conversion Utility Process Flow 12-9.
12–3 Data and Memory Widths 12-11.
12–4 Data, Memory, and ROM Widths 12-13.
12–5 ’C54x Memory Configuration Example 12-14.
12–6 Varying the Word Order 12-15.
12–7 The infile.out File From Example 12–1 Partitioned Into Four Output Files 12-20.
12–8 Sample Command File for Booting From a ’C54x EPROM 12-33.
12–9 Hex Command File for Avoiding a Hole at the Beginning of a Section 12-37.
12–10 ASCII-Hex Object Format 12-39.
12–11 Intel Hex Object Format 12-40.

Figures

xviii

12–12 Motorola-S Format 12-41.
12–13 TI-Tagged Object Format 12-42.
12–14 Extended Tektronix Object Format 12-43.
13–1 Translator Development Flow 13-3.
13–2 Literal Mode Process 13-5.
13–3 Expansion Mode Process 13-6.
13–4 Defining Labels 13-10.
13–5 Rewritten Source Code 13-10.
A–1 COFF File Structure A-2.
A–2 COFF Object File A-3.
A–3 Section Header Pointers for the .text Section A-9.
A–4 Line-Number Blocks A-12.
A–5 Line-Number Entries A-13.
A–6 Symbol Table Contents A-14.
A–7 Symbols for Blocks A-17.
A–8 Symbols for Functions A-17.
A–9 String Table A-18.
C–1 A Two 8-Bit EPROM System C-3.
C–2 Data From Output File C-6.
C–3 EPROM System for a ’C54x C-10.
C–4 EPROM System for a ’C54xLP C-17.

 Tables

xix Contents

Tables

3–1 Operators Used in Expressions (Precedence) 3-24.
3–2 Expressions With Absolute and Relocatable Symbols 3-26.
3–3 Symbol Attributes 3-32.
4–1 Directives That Define Sections 4-2.
4–2 Directives That Initialize Constants (Data and Memory) 4-3.
4–3 Directives That Align the Section Program Counter (SPC) 4-3.
4–4 Directives That Format the Output Listing 4-3.
4–5 Directives That Reference Other Files 4-5.
4–6 Directives That Control Conditional Assembly 4-5.
4–7 Directives That Define Symbols at Assembly Time 4-6.
4–8 Miscellaneous Directives 4-6.
4–9 Memory-Mapped Registers 4-62.
5–1 Symbols and Acronyms Used in the Instruction Set Summary 5-2.
6–1 Symbols and Acronyms Used in the Instruction Set Summary 6-2.
6–2 Add Instructions 6-5.
6–3 Subtract Instructions 6-6.
6–4 Multiply Instructions 6-6.
6–5 Multiply-Accumulate or Multiply-Subtract Instructions 6-7.
6–6 Double (32-bit Operand) Instructions 6-8.
6–7 Application-Specific Instructions 6-9.
6–8 AND Instructions 6-9.
6–9 OR Instructions 6-10.
6–10 XOR Instructions 6-10.
6–11 Shift Instructions 6-10.
6–12 Test Instructions 6-11.
6–13 Branch Instructions 6-11.
6–14 Call Instructions 6-11.
6–15 Interrupt Instructions 6-11.
6–16 Return Instructions 6-12.
6–17 Repeat Instructions 6-12.
6–18 Stack Manipulating Instructions 6-12.
6–19 Miscellaneous Program Control Instructions 6-13.
6–20 Load Instructions 6-14.
6–21 Store Instructions 6-15.
6–22 Conditional Store Instructions 6-15.
6–23 Parallel Load and Store Instructions 6-16.

Tables

xx

6–24 Parallel Store and Multiply Instructions 6-16.
6–25 Parallel Store and Add/Subtract Instructions 6-17.
6–26 Miscellaneous Load-Type and Store-Type Instructions 6-17.
6–27 Add Instructions 6-20.
6–28 Subtract Instructions 6-21.
6–29 Multiply Instructions 6-22.
6–30 Multiply-Accumulate or Multiply-Subtract Instructions 6-23.
6–31 Double (32-bit Operand) Instructions 6-25.
6–32 Application-Specific Instructions 6-27.
6–33 AND Instructions 6-28.
6–34 OR Instructions 6-29.
6–35 XOR Instructions 6-29.
6–36 Shift Instructions 6-30.
6–37 Test Instructions 6-31.
6–38 Branch Instructions 6-32.
6–39 Call Instructions 6-33.
6–40 Interrupt Instructions 6-33.
6–41 Return Instructions 6-34.
6–42 Repeat Instructions 6-35.
6–43 Stack-Manipulating Instructions 6-35.
6–44 Miscellaneous Program Control Instructions 6-36.
6–45 Load Instructions 6-37.
6–46 Store Instructions 6-38.
6–47 Conditional Store Instructions 6-39.
6–48 Parallel Load and Store Instructions 6-40.
6–49 Parallel Store and Multiply Instructions 6-41.
6–50 Parallel Store and Add/Subtract Instructions 6-41.
6–51 Miscellaneous Load-Type and Store-Type Instructions 6-42.
7–1 Functions and Return Values 7-9.
7–2 Creating Macros 7-25.
7–3 Manipulating Substitution Symbols 7-25.
7–4 Conditional Assembly 7-25.
7–5 Producing Assembly-Time Messages 7-26.
7–6 Formatting the Listing 7-26.
9–1 Operators Used in Expressions (Precedence) 9-57.
11–1 Symbol Attributes 11-6.
12–1 Options 12-4.
12–2 Boot-Loader Options 12-29.
12–3 Options for Specifying Hex Conversion Formats 12-38.
A–1 File Header Contents A-5.
A–2 File Header Flags (Bytes 18 and 19) A-5.
A–3 Optional File Header Contents A-6.
A–4 Section Header Contents for COFF1 Files A-7.
A–5 Section Header Contents for COFF2 Files A-7.

 Tables

xxi Contents

A–6 Section Header Flags A-8.
A–7 Relocation Entry Contents A-10.
A–8 Relocation Types (Bytes 8 and 9) A-11.
A–9 Line-Number Entry Format A-12.
A–10 Symbol Table Entry Contents A-15.
A–11 Special Symbols in the Symbol Table A-16.
A–12 Symbol Storage Classes A-19.
A–13 Special Symbols and Their Storage Classes A-20.
A–14 Symbol Values and Storage Classes A-20.
A–15 Section Numbers A-21.
A–16 Basic Types A-22.
A–17 Derived Types A-22.
A–18 Auxiliary Symbol Table Entries Format A-23.
A–19 Filename Format for Auxiliary Table Entries A-24.
A–20 Section Format for Auxiliary Table Entries A-24.
A–21 Tag Name Format for Auxiliary Table Entries A-24.
A–22 End-of-Structure Format for Auxiliary Table Entries A-25.
A–23 Function Format for Auxiliary Table Entries A-25.
A–24 Array Format for Auxiliary Table Entries A-26.
A–25 End-of-Blocks/Functions Format for Auxiliary Table Entries A-26.
A–26 Beginning-of-Blocks/Functions Format for Auxiliary Table Entries A-27.
A–27 Structure, Union, and Enumeration Names Format for Auxiliary Table Entries A-27.

Examples

xxii

Examples

2–1 Using Sections Directives 2-10.
2–2 Code That Generates Relocation Entries 2-15.
3–1 Example Source Statements 3-9.
3–2 $n Local Labels 3-19.
3–3 name? Local Labels 3-20.
3–4 Well-Defined Expressions 3-25.
3–5 Assembler Listing 3-30.
3–6 Assembler Cross-Reference Listing 3-32.
4–1 Sections Directives 4-10.
5–1 Table Entry for a Mnemonic Instruction 5-2.
6–1 Table Entry for an Algebraic Instruction 6-2.
7–1 Macro Definition, Call, and Expansion 7-4.
7–2 Calling a Macro With Varying Numbers of Arguments 7-7.
7–3 The .asg Directive 7-8.
7–4 The .eval Directive 7-8.
7–5 Using Built-In Substitution Symbol Functions 7-10.
7–6 Recursive Substitution 7-10.
7–7 Using the Forced Substitution Operator 7-11.
7–8 Using Subscripted Substitution Symbols to Redefine an Instruction 7-12.
7–9 Using Subscripted Substitution Symbols to Find Substrings 7-13.
7–10 The .loop/.break/.endloop Directives 7-16.
7–11 Nested Conditional Assembly Directives 7-16.
7–12 Built-In Substitution Symbol Functions Used in a Conditional

Assembly Code Block 7-16.
7–13 Unique Labels in a Macro 7-17.
7–14 Producing Messages in a Macro 7-20.
7–15 Using Nested Macros 7-22.
7–16 Using Recursive Macros 7-23.
9–1 Linker Command File 9-21.
9–2 Command File With Linker Directives 9-22.
9–3 The MEMORY Directive 9-27.
9–4 The SECTIONS Directive 9-32.
9–5 The Most Common Method of Specifying Section Contents 9-36.
9–6 Copying a Section From ROM to RAM 9-41.
9–7 The UNION Statement 9-43.
9–8 Separate Load Addresses for UNION Sections 9-43.

 Examples

xxiii Contents

9–9 Allocate Sections Together 9-45.
9–10 Memory Directive With Overlay Pages 9-46.
9–11 SECTIONS Directive Definition for Overlays in Figure 9–6 9-48.
9–12 Default Allocation for TMS320C54x Devices 9-51.
9–13 Linker Command File, demo.cmd 9-70.
9–14 Output Map File, demo.map 9-71.
12–1 A ROMS Directive Example 12-19.
12–2 Map File Output From Example 12–1 Showing Memory Ranges 12-21.
13–1 Treatment of Symbol Names in Literal Mode 13-5.
13–2 Expansion Mode 13-7.
13–3 Directives in Macros 13-8.
13–4 Macro Local Variables 13-9.
C–1 Assembly Code for Hex Conversion Utility Examples C-2.
C–2 A Linker Command File for Two 8-Bit EPROMs C-4.
C–3 A Hex Command File for Two 8-Bit EPROMs C-5.
C–4 Map File Resulting From Hex Command File in Example C–3 on page C-5 C-7.
C–5 Method One for Avoiding Holes C-8.
C–6 Method Two for Avoiding Holes C-9.
C–7 C Code for a ’C54x C-10.
C–8 Linker Command File to Form a Single Boot Section for a Non-LP ’C54x C-12.
C–9 Section Allocation Portion of Map File Resulting From the Command File

in Example C–8 C-13.
C–10 Hex Command File for Converting a COFF File C-15.
C–11 Map File Resulting From the Command File in Example C–10 C-16.
C–12 Hex Conversion Utility Output File Resulting From the Command File

in Example C–10 C-16.
C–13 C Code for a ’C54xLP C-17.
C–14 Linker Command File for a ’C54xLP C-19.
C–15 Section Allocation Portion of Map File Resulting From the Command File

in Example C–14 C-19.
C–16 Hex Command File for Converting a COFF File C-22.
C–17 Map File Resulting From the Command File in Example C–16 C-23.
C–18 Hex Conversion Utility Output File Resulting From the Command File

in Example C–16 C-23.

xxiv

1-1Introduction

Introduction

The TMS320C54x DSPs are supported by the following assembly language
tools:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference utility
� Hex conversion utility
� Mnemonic-to-algebraic translator utility

This chapter shows how these tools fit into the general software tools develop-
ment flow and gives a brief description of each tool. For convenience, it also
summarizes the C compiler and debugging tools; however, the compiler and
debugger are not shipped with the assembly language tools. For detailed
information on the compiler and debugger and for complete descriptions of the
TMS320C54x devices, refer to the books listed in Related Documentation
From Texas Instruments on page vi.

The assembly language tools create and use object files in common object file
format (COFF) to facilitate modular programming. Object files contain sepa-
rate blocks (called sections) of code and data that you can load into ’C54x
memory spaces. You can program the ’C54x more efficiently if you have a
basic understanding of COFF. Chapter 2, Introduction to Common Object File
Format, discusses this object format in detail.

Topic Page

1.1 Software Development Tools Overview 1-2.

1.2 Tools Descriptions 1-3.

Chapter 1

Software Development Tools Overview

 1-2

1.1 Software Development Tools Overview

Figure 1–1 illustrates the ’C54x software development flow. The shaded
portion of the figure highlights the most common path of software develop-
ment; the other portions are optional.

Figure 1–1. TMS320C54x Software Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C54x

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Mnemonic-to-
algebraic

translator utility

Assembler
source

Tools Descriptions

1-3Introduction

1.2 Tools Descriptions

� The C compiler translates C source code into ’C54x assembly language
source code. The compiler package includes the library-build utility , with
which you can build your own runtime libraries. The C compiler is not
shipped with the assembly language tools package.

� The assembler translates assembly language source files into machine
language COFF object files. Source files can contain instructions, assem-
bler directives, and macro directives. You can use assembler directives to
control various aspects of the assembly process, such as the source
listing format, data alignment, and section content.

� The linker combines relocatable COFF object files (created by the assem-
bler) into a single executable COFF object module. As it creates the
executable module, it adjusts references to symbols and resolves external
references. It also accepts archiver library members and output modules
created by a previous linker run. Linker directives allow you to combine
object file sections, bind sections or symbols to addresses or within
memory ranges, and define or redefine global symbols.

� The archiver collects a group of files into a single archive file. For
example, you can collect several macros into a macro library. The assem-
bler searches the library and uses the members that are called as macros
by the source file. You can also use the archiver to collect a group of object
files into an object library. The linker includes in the library the members
that resolve external references during the link.

� The mnemonic-to-algebraic translator utility converts an assembly
language source file containing mnemonic instructions to an assembly
language source file containing algebraic instructions.

� The library-build utility builds your own customized, C, runtime-support
library. Standard runtime-support library functions are provided as source
code in rts.src and as object code in rts.lib.

� The TMS320C54x DSP accepts COFF files as input, but most EPROM
programmers do not. The hex conversion utility converts a COFF object
file into TI-tagged, Intel, Motorola, or Tektronix object format. The
converted file can be downloaded to an EPROM programmer.

� The absolute lister accepts linked object files as input and creates .abs
files as output. You assemble .abs files to produce a listing that contains
absolute rather than relative addresses. Without the absolute lister,
producing such a listing would be tedious and require many manual opera-
tions.

Tools Descriptions

 1-4

� The cross-reference lister uses object files to produce a cross-reference
listing showing symbols, their definitions, and their references in the linked
source files.

The purpose of this development process is to produce a module that can be
executed in a ’C54x target system. You can use one of several debugging tools
to refine and correct your code. Available products include:

� An instruction-accurate software simulator
� An extended development system (XDS510) emulator
� An evaluation module (EVM)

For information about these debugging tools, see the TMS320C54x C Source
Debugger User’s Guide.

2-1Introduction to Common Object File Format

Introduction to Common Object File Format

The assembler and linker create object files that can be executed by a
TMS320C54x device. The format for these object files is called common object
file format (COFF).

COFF makes modular programming easier, because it encourages you to
think in terms of blocks of code and data when you write an assembly language
program. These blocks are known as sections. Both the assembler and the
linker provide directives that allow you to create and manipulate sections.

This chapter provides an overview of COFF sections. For additional informa-
tion, see Appendix A, Common Object File Format, which explains the COFF
structure.

Topic Page

2.1 COFF File Types 2-2.

2.2 Sections 2-2.

2.3 How the Assembler Handles Sections 2-4.

2.4 How the Linker Handles Sections 2-12.

2.5 Relocation 2-14.

2.6 Runtime Relocation 2-16.

2.7 Loading a Program 2-17.

2.8 Symbols in a COFF File 2-18.

Chapter 2

COFF File Types

 2-2

2.1 COFF File Types

The following types of COFF files exist:

� COFF0
� COFF1
� COFF2

Each COFF file type has a different header format. The data portions of the
COFF files are identical. For details about the COFF file structure, see Appen-
dix A, Common Object File Format.

The ’C54x assembler and C compiler create COFF2 files. The linker can read
and write all types of COFF files. By default, the linker creates COFF2 files.
Use the –v linker option to specify a different format. The linker supports
COFF0 and COFF1 files for older versions of the assembler and C compiler
only.

2.2 Sections

The object file is grouped into sections. Sections are blocks of code or data that
occupy contiguous space in the memory map. Each section of an object file
is separate and distinct. COFF object files always contain three default sec-
tions:

.text section usually contains executable code

.data section usually contains initialized data

.bss section usually reserves space for uninitialized variables

In addition, the assembler and linker allow you to create, name, and link named
sections that are used like the .data, .text, and .bss sections.

There are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections
are initialized; named sections created with the
.sect assembler directive are also initialized.

Uninitialized sections reserve space in the memory map for uninitialized
data. The .bss section is uninitialized; named sec-
tions created with the .usect assembler directive
are also uninitialized.

COFF File Types / Sections

Sections

2-3Introduction to Common Object File Format

Several assembler directives allow you to associate various portions of code
and data with the appropriate sections. The assembler builds these sections
during the assembly process, creating an object file organized as shown in
Figure 2–1.

One of the linker’s functions is to relocate sections into the target memory map;
this function is called allocation. Because most systems contain several types
of memory, using sections can help you use target memory more efficiently.
All sections are independently relocatable; you can place any section into any
allocated block of target memory. For example, you can define a section that
contains an initialization routine and then allocate the routine into a portion of
the memory map that contains ROM.

Figure 2–1 shows the relationship between sections in an object file and a
hypothetical target memory.

Figure 2–1. Partitioning Memory Into Logical Blocks

Object File

.bss

.data

.text

Target Memory

RAM

EEPROM

ROM

How the Assembler Handles Sections

 2-4

2.3 How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that
belong in a section. The assembler has five directives that support this func-
tion:

� .bss
� .usect
� .text
� .data
� .sect

The .bss and .usect directives create uninitialized sections; the .text, .data,
and .sect directives create initialized sections.

You can create subsections of any section to give you tighter control of the
memory map. Subsections are created using the .sect and .usect directives.
Subsections are identified with the base section name and a subsection name
separated by a colon. See subsection 2.3.4, Subsections, page 2-8, for more
information.

Note: Default Section Directive

If you don’t use any of the sections directives, the assembler assembles
everything into the .text section.

2.3.1 Uninitialized Sections

Uninitialized sections reserve space in ’C54x memory; they are usually allo-
cated into RAM. These sections have no actual contents in the object file; they
simply reserve memory. A program can use this space at runtime for creating
and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler direc-
tives.

� The .bss directive reserves space in the .bss section.

� The .usect directive reserves space in a specific, uninitialized named sec-
tion.

Each time you invoke the .bss directive, the assembler reserves more space
in the appropriate section. Each time you invoke the .usect directive, the as-
sembler reserves more space in the specified named section.

How the Assembler Handles Sections

2-5Introduction to Common Object File Format

The syntax for these directives is:

.bss symbol, size in words [, blocking flag] [, alignment flag]

symbol .usect ”section name ”, size in words [, blocking flag] [, alignment flag]

symbol points to the first word reserved by this invocation of the .bss
or .usect directive. The symbol corresponds to the name of
the variable that you’re reserving space for. It can be refer-
enced by any other section and can also be declared as a
global symbol (with the .global assembler directive).

size in words is an absolute expression.

� The .bss directive reserves size words in the .bss sec-
tion.

� The .usect directive reserves size words in section
name.

blocking flag is an optional parameter. If you specify a value greater than
0 for this parameter, the assembler associates size words
contiguously; the allocated space will not cross a page
boundary, unless size is greater than a page, in which case
the object will start on a page boundary.

alignment flag is an optional parameter. If you specify a value greater than
0 for this parameter, the section is aligned to a long word
boundary.

section name tells the assembler which named section to reserve space
in. For more information about named sections, see sub-
section 2.3.3, Named Sections, on page 2-7.

The .text, .data, and .sect directives tell the assembler to stop assembling into
the current section and begin assembling into the indicated section. The .bss
and .usect directives, however, do not end the current section and begin a new
one; they simply escape temporarily from the current section. The .bss and
.usect directives can appear anywhere in an initialized section without affect-
ing its contents.

Uninitialized subsections are created with the .usect directive. The assembler
treats uninitialized subsections in the same manner as uninitialized sections.
See subsection 2.3.4, Subsections, on page 2-8 for more information on
creating subsections.

How the Assembler Handles Sections

 2-6

2.3.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents
of these sections are stored in the object file and placed in ’C54x memory when
the program is loaded. Each initialized section is independently relocatable
and may reference symbols that are defined in other sections. The linker auto-
matically resolves these section-relative references.

Three directives tell the assembler to place code or data into a section. The
syntaxes for these directives are:

.text [value]

.data [value]

.sect ” section name” [, value]

When the assembler encounters one of these directives, it stops assembling
into the current section (acting as an implied end-current-section command).
It then assembles subsequent code into the designated section until it encoun-
ters another .text, .data, or .sect directive. The value, if present, specifies the
starting value of the section program counter. The starting value of the section
program counter can be specified only once; it must be done the first time the
directive for that section is encountered. By default, the SPC starts at 0.

Sections are built through an iterative process. For example, when the assem-
bler first encounters a .data directive, the .data section is empty. The state-
ments following this first .data directive are assembled into the .data section
(until the assembler encounters a .text or .sect directive). If the assembler
encounters subsequent .data directives, it adds the statements following
these .data directives to the statements already in the .data section. This
creates a single .data section that can be allocated contiguously into memory.

Initialized subsections are created with the .sect directive. The assembler
treats initialized subsections in the same manner as initialized sections. See
subsection 2.3.4, Subsections, on page 2-8 for more information on creating
subsections.

How the Assembler Handles Sections

2-7Introduction to Common Object File Format

2.3.3 Named Sections

Named sections are sections that you create. You can use them like the default
.text, .data, and .bss sections, but they are assembled separately.

For example, repeated use of the .text directive builds up a single .text section
in the object file. When linked, this .text section is allocated into memory as a
single unit. Suppose there is a portion of executable code (perhaps an initiali-
zation routine) that you don’t want allocated with .text. If you assemble this
segment of code into a named section, it is assembled separately from .text,
and you can allocate it into memory separately. You can also assemble initial-
ized data that is separate from the .data section, and you can reserve space
for uninitialized variables that is separate from the .bss section.

Two directives let you create named sections:

� The .usect directive creates sections that are used like the .bss section.
These sections reserve space in RAM for variables.

� The .sect directive creates sections, like the default .text and .data
sections, that can contain code or data. The .sect directive creates named
sections with relocatable addresses.

The syntaxes for these directives are:

symbol .usect ”section name”, size in words [, blocking flag] [, alignment flag]

.sect ”section name”

The section name parameter is the name of the section. You can create up to
32 767 separate named sections. A section name can be up to 200 characters.
For COFF1 formatted files, only the first 8 characters are significant. For the
.sect and .usect directives, a section name can refer to a subsection (see
subsection 2.3.4, Subsections, for details).

Each time you invoke one of these directives with a new name, you create a
new named section. Each time you invoke one of these directives with a name
that was already used, the assembler assembles code or data (or reserves
space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect direc-
tive and then try to use the same section with .sect.

How the Assembler Handles Sections

 2-8

2.3.4 Subsections

Subsections are smaller sections within larger sections. Like sections, sub-
sections can be manipulated by the linker. Subsections give you tighter control
of the memory map. You can create subsections by using the .sect or .usect
directive. The syntax for a subsection name is:

section name:subsection name

A subsection is identified by the base section name followed by a colon, then
the name of the subsection. A subsection can be allocated separately or
grouped with other sections using the same base name. For example, to
create a subsection called _func within the .text section, enter the following:

.sect ”.text:_func”

You can allocate _func separately or within all the .text sections.

You can create two types of subsections:

� Initialized subsections are created using the .sect directive. See subsec-
tion 2.3.2, Initialized Sections, on page 2-6.

� Uninitialized subsections are created using the .usect directive. See
subsection 2.3.1, Uninitialized Sections, on page 2-4.

Subsections are allocated in the same manner as sections. See Section 9.8,
The SECTIONS Directive, on page 9-30 for more information.

2.3.5 Section Program Counters

The assembler maintains a separate program counter for each section. These
program counters are known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Ini-
tially, the assembler sets each SPC to 0. As the assembler fills a section with
code or data, it increments the appropriate SPC. If you resume assembling into
a section, the assembler remembers the appropriate SPC’s previous value
and continues incrementing the SPC at that point.

The assembler treats each section as if it began at address 0; the linker relo-
cates each section according to its final location in the memory map. For more
information, see Section 2.5, Relocation, on page 2-14.

How the Assembler Handles Sections

2-9Introduction to Common Object File Format

2.3.6 An Example That Uses Sections Directives

Example 2–1 shows how you can build COFF sections incrementally, using
the sections directives to swap back and forth between the different sections.
You can use sections directives to begin assembling into a section for the first
time, or to continue assembling into a section that already contains code. In
the latter case, the assembler simply appends the new code to the code that
is already in the section.

The format in Example 2–1 is a listing file. Example 2–1 shows how the SPCs
are modified during assembly. A line in a listing file has four fields:

Field 1 contains the source code line counter.

Field 2 contains the section program counter.

Field 3 contains the object code.

Field 4 contains the original source statement.

How the Assembler Handles Sections

 2-10

Example 2–1. Using Sections Directives

Field 2Field 1 Field 3 Field 4

2 **
3 ** Assemble an initialized table into .data. **
4 **
5 0000 .data
6 0000 0011 coeff .word 011h,022h,033h

0001 0022
0002 0033

7 **
8 ** Reserve space in .bss for a variable. **
9 **
10 0000 .bss buffer,10
11 **
12 ** Still in .data. **
13 **
14 0003 0123 ptr .word 0123h
15 **
16 ** Assemble code into the .text section. **
17 **
18 0000 .text
19 0000 100f add: LD 0Fh,A
20 0001 f010 aloop: SUB #1,A

0002 0001
21 0003 f842 BC aloop,AGEQ

0004 0001’
22 **
23 ** Another initialized table into .data. **
24 **
25 0004 .data
26 0004 00aa ivals .word 0AAh, 0BBh, 0CCh

0005 00bb
0006 00cc

27 **
28 ** Define another section for more variables. **
29 **
30 0000 var2 .usect ”newvars”, 1
31 0001 inbuf .usect ”newvars”, 7
32 **
33 ** Assemble more code into .text. **
34 **
35 0005 .text
36 0005 110a mpy: LD 0Ah,B
37 0006 f166 mloop: MPY #0Ah,B

0007 000a
38 0008 f868 BC mloop,BNOV

0009 0006’
39 **
40 ** Define a named section for int. vectors. **
41 **
42 0000 .sect ”vectors”
43 0000 0011 .word 011h, 033h
44 0001 0033

How the Assembler Handles Sections

2-11Introduction to Common Object File Format

As Figure 2–2 shows, the file in Example 2–1 creates five sections:

.text contains ten 16-bit words of object code.

.data contains seven words of object code.

vectors is a named section created with the .sect directive; it contains
two words of initialized data.

.bss reserves 10 words in memory.

newvars is a named section created with the .usect directive; it reserves
eight words in memory.

The second column shows the object code that is assembled into these sec-
tions; the first column shows the line numbers of the source statements that
generated the object code.

Figure 2–2. Object Code Generated by the File in Example 2–1

100f
f010
0001
f842
0001’
110a
f166
000a
f868
0006’

43
44

0011
0033

No data—
10 words
reserved

No data—
eight words
reserved

Line Numbers

19
20
20
21
21
36
37
37
38
38

 6
 6
 6
14
26
26
26

10

30
31

Object Code Section

.text

0011
0022
0033
0123
00aa
00bb
00cc

.data

vectors

.bss

newvars

How the Linker Handles Sections

 2-12

2.4 How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses the
sections in COFF object files as building blocks; it combines input sections
(when more than one file is being linked) to create output sections in an execut-
able COFF output module. Second, the linker chooses memory addresses for
the output sections.

Two linker directives support these functions:

� The MEMORY directive allows you to define the memory map of a target
system. You can name portions of memory and specify their starting
addresses and their lengths.

� The SECTIONS directive tells the linker how to combine input sections
into output sections and where to place these output sections in memory.

Subsections allow you to manipulate sections with greater precision. You can
specify subsections with the linker’s SECTIONS directive. If you do not specify
a subsection explicitly, then the subsection is combined with the other sections
with the same base section name.

It is not always necessary to use linker directives. If you don’t use them, the
linker uses the target processor’s default allocation algorithm described in
Section 9.12, Default Allocation Algorithm, on page 9-51. When you do use
linker directives, you must specify them in a linker command file.

Refer to the following sections for more information about linker command files
and linker directives:

Section Number Section Name Page

9.5 Linker Command Files 9-21

9.7 The MEMORY Directive 9-26

9.8 The SECTIONS Directive 9-30

9.12 Default Allocation Algorithm 9-51

How the Linker Handles Sections

2-13Introduction to Common Object File Format

2.4.1 Default Memory Allocation

Figure 2–3 illustrates the process of linking two files.

Figure 2–3. Combining Input Sections to Form an Executable Object Module

FFT
(initialized

named section)

u_vars
(uninitialized

named section)

u_vars
(uninitialized

named section)

table_1
(initialized

named section)

table_1
(initialized

named section)

ÉÉÉÉÉ
Program Memory file1.obj

unused

Data Memory

ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉ
ÉÉÉÉÉ

file 2
.text

 file 1
table_1

file 1
.data

file 2
.data

file2
FFT

unused

file2
.bss

 file1
U_vars

 file2
U_vars

file1
.bss

.text

.data

.bss

.text

.data

.bss

 file 2
table_1

file2.obj

unconfigured

unconfigured

file 1
.text

In Figure 2–3, file1.obj and file2.obj have been assembled to be used as linker
input. Each contains the .text, .data, and .bss default sections; in addition,
each contains named sections. The executable output module shows the
combined sections. The linker combines file1.text with file2.text to form one
.text section, then combines the .data sections, then the .bss sections, and fi-
nally places the named sections at the end. The memory map shows how the
sections are put into memory; by default, the linker begins at address 080h and
places the sections one after the other as shown.

Relocation

 2-14

2.4.2 Placing Sections in the Memory Map

Figure 2–3 illustrates the linker’s default methods for combining sections.
Sometimes you may not want to use the default setup. For example, you may
not want all of the .text sections to be combined into a single .text section. Or
you may want a named section placed where the .data section would normally
be allocated. Most memory maps contain various types of memory (RAM,
ROM, EPROM, etc.) in varying amounts; you may want to place a section in
a specific type of memory.

For further explanation of section placement within the memory map, see
Section 9.7, The MEMORY Directive, on page 9-26 and Section 9.8, The SEC-
TIONS Directive, on page 9-30.

2.5 Relocation

The assembler treats each section as if it began at address 0. All relocatable
symbols (labels) are relative to address 0 in their sections. Of course, all sec-
tions can’t actually begin at address 0 in memory, so the linker relocates sec-
tions by:

� Allocating them into the memory map so that they begin at the appropriate
address

� Adjusting symbol values to correspond to the new section addresses

� Adjusting references to relocated symbols to reflect the adjusted symbol
values

The linker uses relocation entries to adjust references to symbol values. The
assembler creates a relocation entry each time a relocatable symbol is refer-
enced. The linker then uses these entries to patch the references after the
symbols are relocated. Example 2–2 contains a code segment for the ’C54x
that generates relocation entries.

How the Linker Handles Sections / Relocation

Relocation

2-15Introduction to Common Object File Format

Example 2–2. Code That Generates Relocation Entries
(a) Mnemonic example

 1 0100 X .set 0100h
 2 000000 .text
 3 000000 F073 B Y ; Generates a Relocation Entry

000001 0004’
 4 000002 F020 LD #X, A ; Generates a Relocation Entry

000003 0000!
 5 000004 F7E0 Y: RESET

(b) Algebraic example

 1 0100 X .set 0100h
 2 000000 .text
 3 000000 F073 goto Y ; Generates a Relocation Entry

000001 0004’
 4 000002 F020 A = #X ; Generates a Relocation Entry

000003 0000!
 5 000004 F7E0 Y: reset

In Example 2–2, both symbols X and Y are relocatable. Y is defined in the .text
section of this module; X is defined in another module. When the code is
assembled, X has a value of 0 (the assembler assumes all undefined external
symbols have values of 0), and Y has a value of 3 (relative to address 0 in the
.text section). The assembler generates two relocation entries, one for X and
one for Y. The reference to X is an external reference (indicated by the ! char-
acter in the listing). The reference to Y is to an internally defined relocatable
symbol (indicated by the ’ character in the listing).

After the code is linked, suppose that X is relocated to address 7100h. Sup-
pose also that the .text section is relocated to begin at address 7200h; Y now
has a relocated value of 7204h. The linker uses the two relocation entries to
patch the two references in the object code:

f073 B Y becomes f073
0004’ 7204’
f020 LD #X,A becomes f020
0000! 7100!

Each section in a COFF object file has a table of relocation entries. The table
contains one relocation entry for each relocatable reference in the section. The
linker usually removes relocation entries after it uses them. This prevents the
output file from being relocated again (if it is relinked or when it is loaded). A
file that contains no relocation entries is an absolute file (all its addresses are
absolute addresses). If you want the linker to retain relocation entries, invoke
the linker with the –r option.

Runtime Relocation

 2-16

2.6 Runtime Relocation

At times, you may want to load code into one area of memory and run it in
another. For example, you may have performance-critical code in a ROM-
based system. The code must be loaded into ROM, but it would run faster in
RAM.

The linker provides a simple way to handle this. Using the SECTIONS direc-
tive, you can optionally direct the linker to allocate a section twice: first to set
its load address, and again to set its run address. Use the load keyword for the
load address and the run keyword for the run address.

The load address determines where a loader will place the raw data for the
section. Any references to the section (such as labels in it) refer to its run
address. The application must copy the section from its load address to its run
address; this does not happen automatically simply because you specify a
separate run address. For an example that illustrates how to move a block of
code at runtime, see Example 9–6 on page 9-41.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and will load and run at the same address. If you provide
both allocations, the section is actually allocated as if it were two different sec-
tions of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant
address is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and
ignores the load address.

For a complete description of runtime relocation, see Section 9.9, Specifying
a Section’s Runtime Address, on page 9-39.

Loading a Program

2-17Introduction to Common Object File Format

2.7 Loading a Program

The linker produces executable COFF object modules. An executable object
file has the same COFF format as object files that are used as linker input; the
sections in an executable object file, however, are combined and relocated
into target memory.

To run a program, the data in the executable object module must be trans-
ferred, or loaded, into target system memory. Several methods can be used
for loading a program, depending on the execution environment. Two common
situations are described below.

� The TMS320C54x debugging tools, including the software simulator,
XDS51x emulator, and software development system, have built-in load-
ers. Each of these tools contains a LOAD command that invokes a loader;
the loader reads the executable file and copies the program into target
memory.

� You can use the hex conversion utility (hex500, which is shipped as part
of the assembly language package) to convert the executable COFF
object module into one of several object file formats. You can then use the
converted file with an EPROM programmer to burn the program into an
EPROM.

Symbols in a COFF File

 2-18

2.8 Symbols in a COFF File

A COFF file contains a symbol table that stores information about symbols in
the program. The linker uses this table when it performs relocation. Debugging
tools can also use the symbol table to provide symbolic debugging.

2.8.1 External Symbols

External symbols are symbols that are defined in one module and referenced
in another module. You can use the .def, .ref , or .global directives to identify
symbols as external:

.def Defined in the current module and used in another module

.ref Referenced in the current module, but defined in another
module

.global May be either of the above

The following code segment illustrates these definitions.

x: ADD #56h, A ; Define x
 B y ; Reference y
.def x ; DEF of x
.ref y ; REF of y

The .def definition of x says that it is an external symbol defined in this module
and that other modules can reference x. The .ref definition of y says that it is
an undefined symbol that is defined in another module.

The assembler places both x and y in the object file’s symbol table. When the
file is linked with other object files, the entry for x defines unresolved refer-
ences to x from other files. The entry for y causes the linker to look through the
symbol tables of other files for y’s definition.

The linker must match all references with corresponding definitions. If the
linker cannot find a symbol’s definition, it prints an error message about the
unresolved reference. This type of error prevents the linker from creating an
executable object module.

Symbols in a COFF File

2-19Introduction to Common Object File Format

2.8.2 The Symbol Table

The assembler always generates an entry in the symbol table when it encoun-
ters an external symbol (both definitions and references). The assembler also
creates special symbols that point to the beginning of each section; the linker
uses these symbols to relocate references to other symbols.

The assembler does not usually create symbol table entries for any symbols
other than those described above, because the linker does not use them. For
example, labels are not included in the symbol table unless they are declared
with .global. For symbolic debugging purposes, it is sometimes useful to have
entries in the symbol table for each symbol in a program. To accomplish this,
invoke the assembler with the –s option.

 2-20

3-1Assembler Description

Assembler Description

The assembler translates assembly language source files into machine lan-
guage object files. These files are in common object file format (COFF), which
is discussed in Chapter 2, Introduction to Common Object File Format, and Ap-
pendix A, Common Object File Format. Source files can contain the following
assembly language elements:

Assembler directives described in Chapter 4

Assembly language instructions described in Chapters 5 and 6

Macro directives described in Chapter 7

Topic Page

3.1 Assembler Overview 3-2.

3.2 Assembler Development Flow 3-3.

3.3 Invoking the Assembler 3-4.

3.4 Naming Alternate Files and Directories for Assembler Input 3-6.

3.5 Source Statement Format 3-9.

3.6 Constants 3-13.

3.7 Character Strings 3-15.

3.8 Symbols 3-16.

3.9 Expressions 3-23.

3.10 Source Listings 3-28.

3.11 Cross-Reference Listing 3-32.

Chapter 3

Assembler Overview

 3-2

3.1 Assembler Overview

This two-pass assembler does the following:

� Processes the source statements in a text file to produce a relocatable
object file

� Produces a source listing (if requested) and provides you with control over
this listing

� Allows you to segment your code into sections and maintain an SPC (sec-
tion program counter) for each section of object code

� Defines and references global symbols and appends a cross-reference
listing to the source listing (if requested)

� Assembles conditional blocks

� Supports macros, allowing you to define macros inline or in a library

Assembler Development Flow

3-3Assembler Description

3.2 Assembler Development Flow

Figure 3–1 illustrates the assembler’s role in the assembly language develop-
ment flow. The assembler accepts assembly language source files as input,
whether created by the assembler itself or by the C compiler.

Figure 3–1. Assembler Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C54x

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Mnemonic-to-
algebraic

translator utility

Assembler
source

Invoking the Assembler

 3-4

3.3 Invoking the Assembler

To invoke the assembler, enter the following:

asm500 [input file [object file [listing file]]] [–options]

asm500 is the command that invokes the assembler.

input file names the assembly language source file. If you do not supply
an extension, the assembler uses the default extension .asm. If
you do not supply an input filename, the assembler prompts you
for one.

The source file can contain mnemonic or algebraic instructions,
but not both. The default instruction set is mnemonic. To specify
the algebraic instruction set, use the –mg option.

object file names the object file that the assembler creates. If you do not
supply an extension, the assembler uses .obj as a default. If you
do not supply an object file, the assembler creates a file that uses
the input filename with the .obj extension.

listing file names the optional listing file that the assembler can create. If
you do not supply a listing filename, the assembler does not cre-
ate one unless you use the –l (lowercase L) option. In this case,
the assembler uses the input filename. If you do not supply an
extension, the assembler uses .lst as a default.

options identifies the assembler options that you want to use. Options
are not case-sensitive and can appear anywhere on the com-
mand line, following the command. Precede each option with a
hyphen. Single-letter options without parameters can be com-
bined: for example, –lc is equivalent to –l –c. Options that have
parameters, such as –i, must be specified separately.

–a creates an absolute listing. When you use –a, the assem-
bler does not produce an object file. The –a option is used
in conjunction with the absolute lister.

–c makes case insignificant in the assembly language files.
For example, –c will make the symbols ABC and abc
equivalent. If you do not use this option, case is significant
(default).

–d –dname [=value] sets the name symbol. This is equiva-
lent to inserting name .set [value] at the beginning of the
assembly file. If value is omitted, the symbol is set to 1. For
more information, see subsection 3.8.3, Defining
Symbolic Constants (–d Option), on page 3-17.

Invoking the Assembler

3-5Assembler Description

–hc –hc filename tells the assembler to copy the specified
file for the assembly module. The file is inserted before
source file statements. The copied file appears in the
assembly listing files.

–hi –hi filename tells the assembler to include the specified
file for the assembly module. The file is included before
source file statements. The included file does not ap-
pear in the assembly listing files.

–i specifies a directory where the assembler can find files
named by the .copy, .include, or .mlib directives. The for-
mat of the –i option is –ipathname. You can specify up to
10 directories in this manner; each pathname must be
preceded by the –i option. For more information, see
subsection 3.4.1, – i Assembler Option, on page 3-6.

–l (lowercase L) produces a listing file.

–mg specifies that the source file contains algebraic instruc-
tions.

–q (quiet) suppresses the banner and all progress infor-
mation.

–s puts all defined symbols in the object file’s symbol table.
The assembler usually puts only global symbols into the
symbol table. When you use –s, symbols defined as
labels or as assembly-time constants are also placed in
the table.

–x produces a cross-reference table and appends it to the
end of the listing file; also adds cross-reference informa-
tion to the object file for use by the cross-reference utility.
If you do not request a listing file, the assembler creates
one anyway.

Naming Alternate Files and Directories for Assembler Input

 3-6

3.4 Naming Alternate Files and Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from
external files. The .copy and .include directives tell the assembler to read
source statements from another file, and the .mlib directive names a library
that contains macro functions. Chapter 4, Assembler Directives, contains
examples of the .copy, .include, and .mlib directives. The syntax for these
directives is:

.copy ”filename”

.include ”filename”

.mlib ”filename”

The filename names a copy/include file that the assembler reads statements
from or a macro library that contains macro definitions. The filename may be
a complete pathname, a partial pathname, or a filename with no path informa-
tion. The assembler searches for the file in the following order:

1) The directory that contains the current source file. The current source file
is the file being assembled when the .copy, .include, or .mlib directive is
encountered.

2) Any directories named with the –i assembler option

3) Any directories set with the environment variable A_DIR

You can augment the assembler’s directory search algorithm by using the –i
assembler option or the A_DIR environment variable.

3.4.1 –i Assembler Option

The –i assembler option names an alternate directory that contains copy/
include files or macro libraries. The format of the –i option is as follows:

asm500 –i pathname source filename

You can use up to 10 –i options per invocation; each –i option names one path-
name. In assembly source, you can use the .copy, .include, or .mlib directive
without specifying path information. If the assembler doesn’t find the file in the
directory that contains the current source file, it searches the paths designated
by the –i options.

For example, assume that a file called source.asm is in the current directory;
source.asm contains the following directive statement:

.copy ”copy.asm”

Naming Alternate Files and Directories for Assembler Input

3-7Assembler Description

Assume that the file is stored in the following directory:

DOS or OS/2 c:\320tools\files\copy.asm

UNIX /320tools/files/copy.asm

Operating System Enter

DOS or OS/2 asm500 –ic:\320tools\files source.asm

UNIX asm500 –i/320tools/files source.asm

The assembler first searches for copy.asm in the current directory because
source.asm is in the current directory. Then the assembler searches in the
directory named with the –i option.

3.4.2 A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string
to. The assembler uses the environment variable A_DIR to name alternate
directories that contain copy/include files or macro libraries. The command for
assigning the environment variable is as follows:

Operating System Enter

DOS or OS/2 set A_DIR= pathname;another pathname ...

UNIX setenv A_DIR ” pathname;another pathname ...”

The pathnames are directories that contain copy/include files or macro
libraries. You can separate the pathnames with a semicolon or with blanks. In
assembly source, you can use the .copy, .include, or .mlib directive without
specifying path information. If the assembler doesn’t find the file in the direc-
tory that contains the current source file or in directories named by –i, it
searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy ”copy1.asm”

.copy ”copy2.asm”

Assume that the files are stored in the following directories:

DOS or OS/2 c:\320tools\files\copy1.asm
c:\dsys\copy2.asm

UNIX /320tools/files/copy1.asm
/dsys/copy2.asm

Naming Alternate Files and Directories for Assembler Input

 3-8

You could set up the search path with the commands shown in the following
table:

Operating System Enter

DOS or OS/2 set A_DIR=c:\dsys
asm500 –ic:\320tools\files source.asm

UNIX setenv A_DIR ”/dsys”
asm500 –i/320tools/files source.asm

The assembler first searches for copy1.asm and copy2.asm in the current
directory because source.asm is in the current directory. Then the assembler
searches in the directory named with the –i option and finds copy1.asm.
Finally, the assembler searches the directory named with A_DIR and finds
copy2.asm.

Note that the environment variable remains set until you reboot the system or
reset the variable by entering one of these commands:

Operating System Enter

DOS or OS/2 set A_DIR=

UNIX unsetenv A_DIR

Source Statement Format

3-9Assembler Description

3.5 Source Statement Format

TMS320C54x assembly language source programs consist of source state-
ments that can contain assembler directives, assembly language instructions,
macro directives, and comments. Source statement lines can be as long as
the source file format allows, but the assembler reads up to 200 characters per
line. If a statement contains more than 200 characters, the assembler trun-
cates the line and issues a warning.

Example 3–1. Example Source Statements
(a) Mnemonic instructions

SYM1 .set 2 ; Symbol SYM1 = 2.
Begin: LD #SYM1, AR1 ; Load AR1 with 2.

.word 016h ; Initialize word (016h)

(b) Algebraic instructions

SYM1 .set 2 ; Symbol SYM1 = 2.
Begin: AR1 = #SYM1 ; Load AR1 with 2.

.word 016h ; Initialize word (016h)

3.5.1 Source Statement Syntax

A source statement can contain four ordered fields. The general syntax for
source statements is as follows:

Mnemonic syntax:

[label] [:] mnemonic [operand list] [;comment]

Algebraic syntax:

[label] [:] instruction [;comment]

Follow these guidelines:

� All statements must begin with a label, a blank, an asterisk, or a semicolon.

� Labels are optional; if used, they must begin in column 1.

� One or more blanks must separate each field. Tab characters are equiva-
lent to blanks.

� Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

Source Statement Format

 3-10

3.5.2 Label Field

Labels are optional for all assembly language instructions and for most (but
not all) assembler directives. When used, a label must begin in column 1 of a
source statement. A label can contain up to 32 alphanumeric characters (A–Z,
a–z, 0–9, _, and $). Labels are case sensitive, and the first character cannot
be a number. A label can be followed by a colon (:); the colon is not treated as
part of the label name. If you don’t use a label, the first character position must
contain a blank, a semicolon, or an asterisk.

When you use a label, its value is the current value of the section program
counter (the label points to the statement it’s associated with). If, for example,
you use the .word directive to initialize several words, a label would point to
the first word. In the following example, the label Start has the value 40h.

 9 003F ; Assume some other code was assembled.
10 0040 000A Start: .word 0Ah,3,7
 0041 0003
 0042 0007

A label on a line by itself is a valid statement. The label assigns the current
value of the section program counter to the label; this is equivalent to the fol-
lowing directive statement:

label .set $; $ provides the current value of the SPC.

When a label appears on a line by itself, it points to the instruction on the next
line (the SPC is not incremented):

3 0050 Here:
4 0050 0003 .word 3

3.5.3 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field must not start
in column 1; if it does, it will be interpreted as a label. The mnemonic field can
contain one of the following opcodes:

� Machine-instruction mnemonic (such as ABS, MPYU, STH)
� Assembler directive (such as .data, .list, .set)
� Macro directive (such as .macro, .var, .mexit)
� Macro call

Source Statement Format

3-11Assembler Description

3.5.4 Operand Field

The operand field is a list of operands that follow the mnemonic field. An
operand can be a constant (see Section 3.6, Constants, on page 3-13), a sym-
bol (see Section 3.8, Symbols, on page 3-16), or a combination of constants
and symbols in an expression (see Section 3.9, Expressions, on page 3-23).
You must separate operands with commas.

� Operand Prefixes for Instructions

The assembler allows you to specify that a constant, symbol, or expres-
sion should be used as an address, an immediate value, or an indirect
value. The following rules apply to the operands of instructions.

� # prefix — the operand is an immediate value . If you use the # sign
as a prefix, the assembler treats the operand as an immediate value.
This is true even when the operand is a register or an address; the
assembler treats the address as a value instead of using the contents
of the address. This is an example of an instruction that uses an oper-
and with the # prefix:

Label: ADD #123,B

The operand #123 is an immediate value. The assembler adds 123
(decimal) to the contents of accumulator B.

� * prefix — the operand is an indirect address. If you use the * sign
as a prefix, the assembler treats the operand as an indirect address;
that is, it uses the contents of the operand as an address. This is an
example of an instruction that uses an operand with the * prefix:

Label: LD *AR4,A

The operand *AR4 specifies an indirect address. The assembler goes
to the address specified by the contents of register AR4 and then
moves the contents of that location to accumulator A.

� Immediate Value for Directives

The immediate value mode is primarily used with instructions. In some
cases, it can also be used with the operands of directives.

It is not usually necessary to use the immediate value mode for directives.
Compare the following statements:

ADD #10, A

.byte 10

In the first statement, the immediate value mode is necessary to tell the
assembler to add the value 10 to accumulator A. In the second statement,
however, immediate value is not used; the assembler expects the operand
to be a value and initializes a byte with the value 10.

Source Statement Format

 3-12

3.5.5 Instruction Field

The instruction field is a combination of the mnemonic and operand fields used
in mnemonic syntax. In algebraic syntax, you usually do not have a mnemonic
followed by operands. Rather, the operands are part of the overall statement.
The following items describe how to use the instruction field for mnemonic and
algebraic syntax:

� Generally, operands are not separated by commas. Some algebraic
instructions, however, consist of a mnemonic and operands. For algebraic
statements of this type, commas are used to separate operands. For ex-
ample, lms(Xmem, Ymem).

� Expressions that have more than one term that is used as a single operand
must be delimited with parentheses. This rule does not apply to state-
ments using a function call format, since they are already set off with pa-
rentheses. For example, A = B & #(1 << sym) << 5. The expression 1 <<
sym is used as a single operand and is therefore set off with parentheses.

� All register names are reserved.

� For algebraic instructions that consist of a mnemonic and operands, the
mnemonic word is reserved.

3.5.6 Comment Field

A comment can begin in any column and extends to the end of the source line.
A comment can contain any ASCII character, including blanks. Comments are
printed in the assembly source listing, but they do not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column
1, it can start with a semicolon (;) or asterisk (*). Comments that begin any-
where else on the line must begin with a semicolon. The asterisk identifies a
comment only if it appears in column 1.

Constants

3-13Assembler Description

3.6 Constants
The assembler supports six types of constants:

� Binary integer
� Octal integer
� Decimal integer
� Hexadecimal integer
� Character
� Assembly time
� Floating-point

The assembler maintains each constant internally as a 32-bit quantity.
Constants are not sign-extended. For example, the constant 0FFH is equal to
00FF (base 16) or 255 (base 10); it does not equal –1.

3.6.1 Binary Integers

A binary integer constant is a string of up to 16 binary digits (0s and 1s)
followed by the suffix B (or b). If fewer than 16 digits are specified, the
assembler right justifies the value and zero fills the unspecified bits. These are
examples of valid binary constants:

00000000B Constant equal to 010 or 016

0100000b Constant equal to 3210 or 2016

01b Constant equal to 110 or 116

11111000B Constant equal to 24810 or 0F816

3.6.2 Octal Integers

An octal integer constant is a string of up to 6 octal digits (0 through 7) prefixed
with a 0 (zero) or suffixed with Q or q. These are examples of valid octal con-
stants:

10Q Constant equal to 810 or 816

100000Q Constant equal to 32 76810 or 8 00016

226q Constant equal to 15010 or 9616

010 Constant equal to 810 or 816

3.6.3 Decimal Integers

A decimal integer constant is a string of decimal digits, ranging from –32 768
to 65 535. These are examples of valid decimal constants:

1000 Constant equal to 100010 or 3E816

–32768 Constant equal to –32 76810 or 8 00016

25 Constant equal to 2510 or 1916

Constants

 3-14

3.6.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to four hexadecimal digits fol-
lowed by the suffix H (or h). Hexadecimal digits include the decimal values 0–9
and the letters A–F and a–f. A hexadecimal constant must begin with a decimal
value (0–9). If fewer than four hexadecimal digits are specified, the assembler
right-justifies the bits. These are examples of valid hexadecimal constants:

78h Constant equal to 12010 or 007816

0FH Constant equal to 1510 or 000F16

37ACh Constant equal to 14 25210 or 37AC16

3.6.5 Character Constants

A character constant is a string of one or two characters enclosed in single
quotes. The characters are represented internally as 8-bit ASCII characters.
Two consecutive single quotes are required to represent each single quote
that is part of a character constant. A character constant consisting only of two
single quotes is valid and is assigned the value 0. If only one character is speci-
fied, the assembler right-justifies the bits. These are examples of valid charac-
ter constants:

’a’ Represented internally as 6116

’C’ Represented internally as 4316

’’’D’ Represented internally as 2 74416

Note the difference between character constants and character strings (Sec-
tion 3.7, Character Strings, on page 3-15, discusses character strings). A char-
acter constant represents a single integer value; a string is a list of characters.

3.6.6 Assembly-Time Constants

If you use the .set directive to assign a value to a symbol, the symbol becomes
a constant. To use this constant in expressions, the value that is assigned to
it must be absolute. For example:

shift3 .set 3
 LD #shift3,A

You can also use the .set directive to assign symbolic constants for register
names. In this case, the symbol becomes a synonym for the register:

AuxR1 .set AR1
 MVMM AuxR1, SP

Character Strings

3-15Assembler Description

3.6.7 Floating-Point Constants

A floating-point constant is a string of decimal digits, followed by an optional
decimal point, fractional portion, and exponent portion. The syntax for a float-
ing-point number is:

[+| –] [nnn] . [nnn [E| e [+| –] nnn]]

Replace nnn with a string of decimal digits. You can precede nnn with a + or
a –. You must specify a decimal point. For example, 3.e5 is valid, but 3e5 is
not valid. The exponent indicates a power of 10. These are examples of valid
character constants:

3.0
3.14
.3
–0.314e13
+314.59e–2

3.7 Character Strings

A character string is a string of characters enclosed in double quotes. Double
quotes that are part of character strings are represented by two consecutive
double quotes. The maximum length of a string varies and is defined for each
directive that requires a character string. Characters are represented inter-
nally as 8-bit ASCII characters.

These are examples of valid character strings:

”sample program” defines the 14-character string sample program.

”PLAN ””C””” defines the 8-character string PLAN ”C”.

Character strings are used for the following:

� Filenames, as in .copy ”filename”
� Section names, as in .sect ”section name”
� Data initialization directives, as in .byte ”charstring”
� Operands of .string directives

Constants / Character Strings

Symbols

 3-16

3.8 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol
name is a string of up to 200 alphanumeric characters (A–Z, a–z, 0–9, $,
and _). The first character in a symbol cannot be a number, and symbols can-
not contain embedded blanks. The symbols you define are case sensitive; for
example, the assembler recognizes ABC, Abc, and abc as three unique
symbols. You can override case sensitivity with the –c assembler option. A
symbol is valid only during the assembly in which it is defined, unless you use
the .global directive to declare it as an external symbol.

3.8.1 Labels

Symbols used as labels become symbolic addresses associated with loca-
tions in the program. Labels used locally within a file must be unique. Mne-
monic opcodes and assembler directive names (without the ”.” prefix) are valid
label names.

Labels can also be used as the operands of .global, .ref, .def, or .bss directives;
for example:

.global label1

label2 NOP
ADD label1,B
B label2

3.8.2 Symbolic Constants

Symbols can be set to constant values. By using constants, you can equate
meaningful names with constant values. The .set and .struct/.tag/.endstruct
directives enable you to set constants to symbolic names. Symbolic constants
cannot be redefined. The following example shows how these directives can
be used:

K .set 1024 ;constant definitions
maxbuf .set 2*K

item .struct ;item structure definition
.int value ;constant offsets value = 0
.int delta ;constant offsets delta = 1

i_len .endstruct

array .tag item ;array declaration
.bss array, i_len*K

The assembler also has several predefined symbolic constants; these are
discussed in the next section.

Symbols

3-17Assembler Description

3.8.3 Defining Symbolic Constants (–d Option)

The –d option equates a constant value with a symbol. The symbol can then
be used in place of a value in assembly source. The format of the –d option
is as follows:

asm500 –d name=[value]

The name is the name of the symbol you want to define. The value is the value
you want to assign to the symbol. If the value is omitted, the symbol is set to 1.

Within assembler source, you may test the symbol with the following direc-
tives:

Type of Test Directive Usage

Existence .if $isdefed(” name”)

Nonexistence .if $isdefed(” name”) = 0

Equal to value .if name = value

Not equal to value .if name != value

Note that the argument to the $isdefed built-in function must be enclosed in
quotes. The quotes cause the argument to be interpreted literally rather than
as a substitution symbol.

3.8.4 Predefined Symbolic Constants

The assembler has several predefined symbols, including the following:

� $, the dollar sign character, represents the current value of the section
program counter (SPC).

� Register symbols , including AR0 – AR7

� Symbols that are defined by using the .mmregs directive (see Table 4–9
on page 4-62 for a list of registers)

Symbols

 3-18

3.8.5 Substitution Symbols

Symbols can be assigned a string value (variable). This enables you to alias
character strings by equating them to symbolic names. Symbols that repre-
sent character strings are called substitution symbols. When the assembler
encounters a substitution symbol, its string value is substituted for the symbol
name. Unlike symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program;
for example:

.asg ”errct”, AR2 ;register 2

.asg ”*+”, INC ;indirect auto-increment

.asg ”*–”, DEC ;indirect auto-decrement

When you are using macros, substitution symbols are important because
macro parameters are actually substitution symbols that are assigned a macro
argument. The following code shows how substitution symbols are used in
macros:

add2 .macro ADDRA,ADDRB ;add2 macro definition

LD ADDRA, A
ADD ADDRB, A
STL A, ADDRB

.endm

*add2 invocation
add2 LOC1, LOC2 ;add ”LOC1” argument to a

;second argument ”LOC2”.
LD LOC1, A
ADD LOC2, A
STL A, LOC2

For more information about macros, see Chapter 7, Macro Language.

Symbols

3-19Assembler Description

3.8.6 Local Labels

Local labels are special labels whose scope and effect are temporary. Normal
labels must be unique (they can be declared only once), and they can be used
as constants in the operand field. Local labels, however, can be undefined and
defined again or automatically generated.

Up to ten local labels can be in effect at one time. After you undefine a local
label, you can define it and use it again. Local labels do not appear in the object
code symbol table.

A local label takes one of the following forms:

� $n
� name?

3.8.6.1 $n Form

In the $n form, n is a decimal digit in the range 0–9. For example, $4 and $1.

The label is made unique by undefining the label before using it again. Unde-
fine a label in one of these ways:

� Use the .newblock directive
� Change sections using a .sect, .text, or .data directive
� Enter an include file using the .include or .copy directive
� Leave an include file using the .include or .copy directive

Example 3–2 demonstrates the $n form.

Example 3–2. $n Local Labels

(a) Code that uses a local label legally

Label1: LD ADDRA, A ; Load Address A to Accumulator A.
SUB ADDRB, A ; Subtract Address B.
BC $1, ALT ; If less than zero, branch to $1;
LD ADDRB, A ; otherwise, load ADDRB to A
B $2 ; and branch to $2.

$1 LD ADDRA, A ; $1: load ADDRA to Accumulator A.
$2 ADD ADDRC, A ; $2: add ADDRC.

.newblock ; Undefine $1 so it can be used
; again.

BC $1, ALT ; If less than zero, branch to $1.
STL A, ADDRC ; Store ACC low in ADDRC.

$1 NOP

Symbols

 3-20

(b) Code that uses a local label illegally

Label1: LD ADDRA, A ; Load Address A to Accumulator A.
SUB ADDRB, A ; Subtract Address B.
BC $1, ALT ; If less than zero, branch to $1;
LD ADDRB, A ; otherwise, load ADDRB To A
B $2 ; and Branch to $2.

$1 LD ADDRA, A ; $1: Load ADDRA To Accumulator A.
$2 ADD ADDRC, A ; $2: Add ADDRC.

BC $1, ALT ; If less than 0, branch to $1.
STL A, ADDRC ; Store Acc low in ADDRC.

$1 NOP ; WRONG: $1 is multiply defined.

3.8.6.2 name? Form

In the name? form, name is any legal symbol name. For example, here?.

The assembler replaces the question mark with a unique number. When the
macro is expanded, you will not see the unique number in the listing file. Your
label appears with the question mark as it did in the macro definition. You can
see the label with its unique number in the cross-listing file. You cannot declare
this label as global.

The maximum label length is shortened to allow for the unique suffix. If the
macro is expanded fewer than 10 times, the maximum label length is 126 char-
acters. If the macro is expanded from 10 to 99 times, the maximum label length
is 125.

Example 3–3 demonstrates the name? form.

Example 3–3. name? Local Labels
(a) Source code

;***
; First definition of local label ’mylab’
;***

nop
mylab? nop

b mylab?
;***
; Include file has second definition of ’mylab’
;***

.copy ”a.inc”
;***
;Third definition of ’mylab’, reset upon exit from include
;***
mylab? nop

b mylab?

Symbols

3-21Assembler Description

Example 3–3.name? Local Labels (Continued)

(a) Source code (continued)

;***
; Fourth definition of ’mylab’ in macro, macros use
; different namespace to avoid conflicts
;***
mymac .macro
mylab? nop

b mylab?
.endm

;***
; Macro invocation
;***

mymac
;***
; Reference to third definition of ’mylab’, note that
; definition is not reset by macro invocation nor
; conflicts with same name defined in macro
;***

b mylab?;

; Changing section, allowing fifth definition of ’mylab’
;***

.sect ”Secto_One”
nop

mylab? .word 0
nop
nop
b mylab?

;***
;.newblock directive, allowing sixth definition of ’mylab’
;***

.newblock
mylab? .word 0

nop
nop
b mylab?

(b) Resulting assembly listing file

 1 ;***
 2 ; First definition of local label ’mylab’
 3 ;***
 4 0000 5500 nop
 5 0001 5500 mylab? nop
 6 0002 ff80 b mylab?
 7 ;***
 8 ; Include file has second definition of ’mylab’
 9 ;***
10 .copy ”a.inc”

A 1 0004 5500 mylab? nop

Symbols

 3-22

Example 3–3.name? Local Labels (Continued)

(b) Resulting assembly listing file (continued)

A 2 0005 ff80 b mylab?
0006 0004’

11 ;***
12 ;Third definition of ’mylab’, reset upon exit from include
13 ;***
14 0004 5500 mylab? nop
15 0005 ff80 b mylab?

0009 0007’
16 ;***
17 ; Fourth definition of ’mylab’ in macro, macros use
18 ; different namespace to avoid conflicts
19 ;***
20 mymac .macro
21 mylab? nop
22 b mylab?
23 .endm
24 ;***
25 ; Macro invocation
26 ;***
27 000a mymac

1 000a 5500 mylab? nop
1 000b ff80 b mylab?

000c 000a’
28 ;***
29 ; Reference to third definition of ’mylab’, note that
30 ; definition is not reset by macro invocation nor
31 ; conflicts with same name defined in macro
32 ;***
33 000d ff80 b mylab?

000e 0007’
34 ;***
35 ; Changing section, allowing fifth definition of ’mylab’
36 ;***
37 0000 .sect ”Secto_One”
38 0000 5500 nop
39 0001 0000 mylab? .word 0
40 0002 5500 nop
41 0003 5500 nop
42 0004 ff80 b mylab?

0005 0001+
43 ;***
44 ;.newblock directive, allowing sixth definition of ’mylab’
45 ;***
46 .newblock
47 0006 000 mylab? .word 0
48 0007 5500 nop
49 0008 5500 nop
50 0009 ff80 b mylab?

000a 0006+

Expressions

3-23Assembler Description

3.9 Expressions

An expression is a constant, a symbol, or a series of constants and symbols
separated by arithmetic operators. The range of valid expression values is
–32 768 to 32 767. Three main factors influence the order of expression evalu-
ation:

Parentheses Expressions that are enclosed in parentheses are
always evaluated first.

8 / (4 / 2) = 4, but 8 / 4 / 2 = 1

You cannot substitute braces ({ }) or brackets ([])
for parentheses.

 Precedence groups The ’C54x assembler uses the same order of pre-
cedence as the C language does as summarized
in Table 3–1. This differs from the order of prece-
dence of the ’C54x assembler. When parentheses
do not determine the order of expression evalu-
ation, the highest precedence operation is evalu-
ated first.

8 + 4 / 2 = 10 (4 / 2 is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not
determine the order of expression evaluation, the
expressions are evaluated as happens in the C
language.

8 / 4*2 = 4 , but 8 / (4*2) = 1

Expressions

 3-24

3.9.1 Operators

Table 3–1 lists the operators that can be used in expressions.

Note: Differences in Precedence From Other TMS320 Assemblers

Some other TMS320 processors use a different order of precedence than
the TMS320C54x, and occasionally different results may be produced from
the same source code for this reason. The ’C54x uses the same order of pre-
cedence as the C language.

Table 3–1. Operators Used in Expressions (Precedence)

Symbols Operators Evaluation

+ – ~ Unary plus, minus, 1s complement Right to left

* / % Multiplication, division, modulo Left to right

+ – Addition, subtraction Left to right

<< >> Left shift, right shift Left to right

< <= > >= Less than, LT or equal, greater than,
GT or equal

Left to right

 !=, =[=] Not equal to, equal to Left to right

& Bitwise AND Left to right

^ Bitwise exclusive OR Left to right

| Bitwise OR Left to right

Note: Unary +, –, and * have higher precedence than the binary forms.

3.9.2 Expression Overflow and Underflow

The assembler checks for overflow and underflow conditions when arithmetic
operations are performed at assembly time. It issues a Value Truncated warn-
ing whenever an overflow or underflow occurs. The assembler does not check
for overflow or underflow in multiplication.

Expressions

3-25Assembler Description

3.9.3 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The evaluation
of a well-defined expression must be absolute.

Example 3–4. Well-Defined Expressions

(a) Valid well-defined expressions

label1 .word 0
.word 1
.word 2

label2 .word 3

X .set 50h

goodsym1 .set 100h + X : Because value of X is defined before
; referenced, this is a valid well-defined
; expression

goodsym2 .set $; All references to previously defined local
goodsym3 .set label1 : labels, including the current SPC ($), are

; considered to be well-defined.

goodsym4 .set label2 – label1 ; Although label1 and label2 are not
; absolute symbols, because they are local
; labels defined in the same section, their
; difference can be computed by the assembler.
; The difference is absolute, so the
; expression is well-defined.

(b) Invalid well-defined expressions

.global Y

badsym1 .set Y ; Because Y is external and is not defined in
badsym2 .set 50h + Y ; the current file, its value is unknown to

; the assembler. Therefore, it cannot be used
; where a well-defined expression is needed.

badsym3 .set 50h + Z ; Although Z is defined in the current file,
Z .set 60h ; its definition appears after the expression

; in which it is used. All symbols and
; constants which appear in well-defined
; expressions must be defined before they are
; referenced.

Expressions

 3-26

3.9.4 Conditional Expressions

The assembler supports relational operators that can be used in any expres-
sion; they are especially useful for conditional assembly. Relational operators
include the following:

= Equal to = = Equal to

! = Not equal to

< Less than = Less than or equal to

> Greater than > = Greater than or equal to

Conditional expressions evaluate to 1 if true and 0 if false; they can be used
only on operands of equivalent types, for example, absolute value compared
to absolute value, but not absolute value compared to relocatable value.

3.9.5 Relocatable Symbols and Legal Expressions

Table 3–2 summarizes valid operations on absolute, relocatable, and external
symbols. An expression cannot contain multiplication or division by a relocat-
able or external symbol. An expression cannot contain unresolved symbols
that are relocatable to other sections.

Symbols or registers that have been defined as global with the .global directive
can also be used in expressions; in Table 3–2, these symbols and registers are
referred to as external.

Relocatable registers can be used in expressions; the addresses of these reg-
isters are relocatable with respect to the register section they were defined in,
unless they have been declared as external.

Table 3–2. Expressions With Absolute and Relocatable Symbols

If A is... and If B is... , then A + B is... and A – B is...

absolute absolute absolute absolute

absolute external external illegal

absolute relocatable relocatable illegal

relocatable absolute relocatable relocatable

relocatable relocatable illegal absolute †

relocatable external illegal illegal

external absolute external external

external relocatable illegal illegal

external external illegal illegal

† A and B must be in the same section; otherwise, this is illegal.

Expressions

3-27Assembler Description

Following are examples of expressions that use relocatable and absolute sym-
bols. These examples use four symbols that are defined in the same section:

.global extern_1 ; Defined in an external module
intern_1: .word ’”D’ ; Relocatable, defined in current module
LAB1: .set 2 ; LAB1 = 2
intern_2 ; Relocatable, defined in current module

� Example 1

The statements in this example use an absolute symbol, LAB1 (which is
defined above to have a value of 2). The first statement loads the value 51
into the accumulator:

LD #LAB1 + ((4+3) * 7), A ; ACC A = 51
LD #LAB1 + 4 + (3*7), A ; ACC A = 27

� Example 2

All legal expressions can be reduced to one of two forms:

relocatable symbol ± absolute symbol

or

absolute value

Unary operators can be applied only to absolute values; they cannot be
applied to relocatable symbols. Expressions that cannot be reduced to
contain only one relocatable symbol are illegal. The first statement in the
following example is valid; the statements that follow it are invalid.

LD extern_1 – 10, B ; Legal
LD 10–extern_1, B ; Can’t negate reloc. symbol
LD –(intern_1), B ; Can’t negate reloc. symbol
LD extern_1/10, B ; / isn’t additive operator
LD intern_1 + extern_1, B ; Multiple relocatables

� Example 3

The first statement below is legal; although intern_1 and intern_2 are
relocatable, their difference is absolute because they’re in the same
section. Subtracting one relocatable symbol from another reduces the
expression to relocatable symbol + absolute value. The second statement
is illegal because the sum of two relocatable symbols is not an absolute
value.

LD intern_1 – intern_2 + extern_1, B ; Legal
LD intern_1 + intern_2 + extern_1, B ; Illegal

� Example 4

An external symbol’s placement is important to expression evaluation.
Although the statement below is similar to the first statement in the previ-
ous example, it is illegal because of left-to-right operator precedence; the
assembler attempts to add intern_1 to extern_1.

LD intern_1 + extern_1 – intern_2, B ; Illegal

Source Listings

 3-28

3.10 Source Listings

A source listing shows source statements and the object code they produce.
To obtain a listing file, invoke the assembler with the –l (lowercase L) option.

Two banner lines, a blank line, and a title line are at the top of each source list-
ing page. Any title supplied by a .title directive is printed on the title line; a page
number is printed to the right of the title. If you don’t use the .title directive, the
name of the source file is printed. The assembler inserts a blank line below the
title line.

Each line in the source file may produce a line in the listing file that shows a
source statement number, an SPC value, the object code assembled, and the
source statement. A source statement may produce more than one word of
object code. The assembler lists the SPC value and object code on a separate
line for each additional word. Each additional line is listed immediately
following the source statement line.

Field 1: Source Statement Number

Line Number

The source statement number is a decimal. The assembler numbers
source lines as it encounters them in the source file; some state-
ments increment the line counter but are not listed. (For example,
.title statements and statements following a .nolist are not listed.)
The difference between two consecutive source line numbers indi-
cates the number of intervening statements in the source file that are
not listed.

Include File Letter

The assembler may precede a line with a letter; the letter indicates
that the line is assembled from an included file.

Nesting Level Number

The assembler may precede a line with a number; the number indi-
cates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the section program counter (SPC) value, which
is hexadecimal. All sections (.text, .data, .bss, and named sections)
maintain separate SPCs. Some directives do not affect the SPC and
leave this field blank.

Source Listings

3-29Assembler Description

Field 3: Object Code

This field contains the hexadecimal representation of the object
code. All machine instructions and directives use this field to list
object code. This field also indicates the relocation type by append-
ing one of the following characters to the end of the field:

! undefined external reference

’ .text relocatable

” .data relocatable

+ .sect relocatable

– .bss, .usect relocatable

Field 4: Source Statement Field

This field contains the characters of the source statement as they
were scanned by the assembler. The assembler accepts a maximum
line length of 200 characters. Spacing in this field is determined by
the spacing in the source statement.

Example 3–5 shows an assembler listing with each of the four fields identified.

Source Listings

 3-30

Example 3–5. Assembler Listing

(a) Mnemonic example

Field 1 Field 2 Field 3 Field 4

 1 .global RESET, INT0, INT1, INT2
 2 .global TINT, RINT, XINT, USER
 3 .global ISR0, ISR1, ISR2
 4 .global time, rcv, xmt, proc
 5
 6 initmac .macro
 7 * initialize macro
 8 SSBX OVM ; disable oflow
 9 LD #0, DP ; dp = 0
 10 LD #7, ARP ; arp = ar7
 11 LD #037h, A ; acc = 03fh
 12 RSBX INTM ; enable ints
 13 .endm
 14 ***
 15 * Reset and interrupt vectors *
 16 ***
 17 000000 .sect ”reset”
 18 000000 F073 RESET: B init
 000001 0008+
 19 000002 F073 INT0: B ISR0
 000003 0000!
 20 000004 F073 INT1: B ISR1
 000005 0000!
 21 000006 F073 INT2: B ISR2
 000007 0000!
 22
 23 *
 24 000000 .sect ”ints”
 25 000000 F073 TINT B time
 000001 0000!
 26 000002 F073 RINT B rcv
 000003 0000!
 27 000004 F073 XINT B xmt
 000005 0000!
 28 000006 F073 USER B proc
 000007 0000!
 29 ***
 30 * Initialize processor. *
 31 ***
 32 000008 init: initmac
 1 * initialize macro
 1 000008 F7B9 SSBX OVM ; disable oflow
 1 000009 EA00 LD #0, DP ; dp = 0
 1 00000a F4A7 LD #7, ARP ; arp = ar7
 1 00000b E837 LD #037h, A ; acc = 03fh
 1 00000c F6BB RSBX INTM ; enable ints

Source Listings

3-31Assembler Description

Example 3–5.Assembler Listing (Continued)

(b) Algebraic example

Field 1 Field 2 Field 3 Field 4

 1 .global RESET, INT0, INT1, INT2
 2 .global TINT, RINT, XINT, USER
 3 .global ISR0, ISR1, ISR2
 4 .global time, rcv, xmt, proc
 5
 6 initmac .macro
 7 * initialize macro
 8 OVM = 1 ; disable oflow
 9 DP = #0 ; dp = 0
 10 ARP = #7 ; arp = ar7
 11 A = #037h ; acc = 03fh
 12 INTM = 0 ; enable ints
 13 .endm
 14 ***
 15 * Reset and interrupt vectors *
 16 ***
 17 000000 .sect ”reset”
 18 000000 F073 RESET: goto init
 000001 0008+
 19 000002 F073 INT0: goto ISR0
 000003 0000!
 20 000004 F073 INT1: goto ISR1
 000005 0000!
 21 000006 F073 INT2: goto ISR2
 000007 0000!
 22
 23 *
 24 000000 .sect ”ints”
 25 000000 F073 TINT goto time
 000001 0000!
 26 000002 F073 RINT goto rcv
 000003 0000!
 27 000004 F073 XINT goto xmt
 000005 0000!
 28 000006 F073 USER goto proc
 000007 0000!
 29 ***
 30 * Initialize processor. *
 31 ***
 32 000008 init: initmac
 1 * initialize macro
 1 000008 F7B9 OVM = 1 ; disable oflow
 1 000009 EA00 DP = #0 ; dp = 0
 1 00000a F4A7 ARP = #7 ; arp = ar7
 1 00000b E837 A = #037h ; acc = 03fh
 1 00000c F6BB INTM = 0 ; enable ints

Cross-Reference Listings

 3-32

3.11 Cross-Reference Listings
A cross-reference listing shows symbols and their definitions. To obtain a
cross-reference listing, invoke the assembler with the –x option or use the
.option directive. The assembler will append the cross-reference to the end of
the source listing.

Example 3–6. Assembler Cross-Reference Listing

LABEL VALUE DEFN REF

INT0 0002+ 14 2
INT1 0004+ 15 2
INT2 0006+ 16 2
ISR0 REF 4 14
ISR1 REF 4 15
ISR2 REF 4 16
RESET 0000+ 13 2
RINT 0002+ 24 3
TINT 0000+ 23 3
VECS 0006+ 26 3
XINT 0004+ 27
init 0000+ 34 13

Label column contains each symbol that was defined or referenced
during the assembly.

Value column contains a 4-digit hexadecimal number, which is the
value assigned to the symbol or a name that describes the
symbol’s attributes. A value may also be followed by a charac-
ter that describes the symbol’s attributes. Table 3–3 lists these
characters and names.

Definition (DEFN) column contains the statement number that defines
the symbol. This column is blank for undefined symbols.

Reference (REF) column lists the line numbers of statements that refer-
ence the symbol. A blank in this column indicates that the sym-
bol was never used.

Table 3–3. Symbol Attributes

Character or Name Meaning

REF External reference (.global symbol)

UNDF Undefined

’ Symbol defined in a .text section

” Symbol defined in a .data section

+ Symbol defined in a .sect section

– Symbol defined in a .bss or .usect section

Cross-Reference Listings

3-33Assembler Description

Note that when the assembler generates a cross–reference listing for an
assembly file that contains .include directives, it keeps a record of the include
file and line number in which a symbol is defined/referenced. It does this by
assigning a letter reference (A, B, C, etc.) for each include file. The letters are
assigned in the order in which the .include directives are encountered in the
assembly source file.

For example, the following source files:

(a) incl0.asm

.global ABC
nop
nop

(b) incl1.asm

.global ABC
ld ABC,A

(c) incl2.asm

.global ABC
stl A,ABC

(d) xref.asm

.start:
 .include “incl0.asm”
 .include “incl1.asm”
 add #10,A
 .include “incl2.asm”

 nop
 nop
 b start

 .global start

 .bss ABC,2

Cross-Reference Listings

 3-34

produce the following cross–reference listing:

xref.asm PAGE 1

 1 000000 start:
 2 .include ”incl0.asm”
 3 .include ”incl1.asm”
 4 000003 F000 add #10,A
 000004 000A
 5 .include ”incl2.asm”
 6
 7 000006 F495 nop
 8 000007 F495 nop
 9 000008 F073 b start
 000009 0000’
 10
 11 .global start
 12
 13 000000 .bss ABC,2

xref.asm PAGE 2

LABEL VALUE DEFN REF

.TMS320C540 000001 0

.TMS320C541 000000 0

.TMS320C542 000000 0

.TMS320C543 000000 0

.TMS320C544 000000 0

.TMS320C545 000000 0

.TMS320C545LP 000000 0

.TMS320C546 000000 0

.TMS320C546LP 000000 0

.TMS320C548 000000 0
ABC 000000– 13 A 1 B 1 B 2
 C 1 C 2
__far_mode 000000 0
__lflags 000000 0
start 000000’ 1 9 11

The A in the cross–reference listing refers to incl0.asm (the first file included).
B refers to incl1.asm; C refers to incl2.asm.

4-1Assembler Directives

Assembler Directives

Assembler directives supply data to the program and control the assembly
process. Assembler directives enable you to do the following:

� Assemble code and data into specified sections
� Reserve space in memory for uninitialized variables
� Control the appearance of listings
� Initialize memory
� Assemble conditional blocks
� Define global variables
� Specify libraries from which the assembler can obtain macros
� Examine symbolic debugging information

This chapter is divided into two parts: the first part (Sections 4.1 through 4.10)
describes the directives according to function, and the second part
(Section 4.11) is an alphabetical reference.

Topic Page

4.1 Directives Summary 4-2.

4.2 Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler
Directives 4-7.

4.3 Directives That Define Sections 4-9.

4.4 Directives That Initialize Constants 4-11.

4.5 Directives That Align the Section Program Counter 4-15.

4.6 Directives That Format the Output Listing 4-17.

4.7 Directives That Reference Other Files 4-19.

4.8 Conditional Assembly Directives 4-20.

4.9 Assembly-Time Symbol Directives 4-21.

4.10 Miscellaneous Directives 4-23.

4.11 Directives Reference 4-25.

Chapter 4

Directives Summary

 4-2

4.1 Directives Summary

This section summarizes the assembler directives. The summaries are
grouped into the following categories:

� Directives that define sections
� Directives that initialize constants (data and memory
� Directives that align the section program counter (SPC)
� Directives that format the output listing
� Directives that reference other files
� Directives that control conditional assembly
� Directives that define symbols at assembly time
� Directives that perform miscellaneous functions

Besides the assembler directives documented here, the TMS320C54x C
compiler uses several directives for symbolic debugging and absolute listing.
Unlike other directives, symbolic debugging directives are not used in most
assembly language programs. Appendix B, Symbolic Debugging Directives,
discusses these directives; they are not discussed in this chapter. Absolute
listing directives are not entered by the user but are inserted into the source
program by the absolute lister. They are discussed in Chapter 10, Absolute
Lister Description.

Note: Labels and Comments in Syntax

Any source statement that contains a directive may also contain a label and
a comment. Labels begin in the first column (and they are the only thing that
should appear in the first column) and comments should be preceded by a
semicolon or a star if the comment is the only statement on the line. To im-
prove readability, labels and comments are not shown as part of the directive
syntax.

Table 4–1. Directives That Define Sections

Mnemonic and Syntax Description Page

.bss symbol, size in words [, blocking]
 [, alignment]

Reserve size words in the .bss (uninitialized data)
section

4-30

.data Assemble into the .data (initialized data) section 4-37

.sect ” section name” Assemble into a named (initialized) section 4-70

.text Assemble into the .text (executable code) section 4-81

symbol .usect ” section name”, size in words
 [, blocking] [,alignment flag]

Reserve size words in a named (uninitialized) section 4-83

Directives Summary

4-3Assembler Directives

Table 4–2. Directives That Initialize Constants (Data and Memory)

Mnemonic and Syntax Description Page

.bes size in bits Reserve size bits in the current section; note that a
label points to the last addressable word in the
reserved space

4-73

.byte value1 [, ... , valuen] Initialize one or more successive bytes in the current
section

4-33

.field value [, size in bits] Initialize a variable-length field 4-43

.float value [, ... , valuen] Initialize one or more 32-bit, IEEE single-precision,
floating-point constants

4-46

.int value1 [, ... , valuen] Initialize one or more 16-bit integers 4-52

.long value1 [, ... , valuen] Initialize one or more 32-bit integers 4-57

.space size in bits; Reserve size bits in the current section; note that a
label points to the beginning of the reserved space

4-73

.string ” string1” [, ... , ”stringn”] Initialize one or more text strings 4-76

.pstring ” string1” [, ... ,”stringn”] Initialize one or more text strings (packed). 4-76

.xfloat value1 [, ...,valuen] Initialize one or more 32-bit integers, IEEE single-
precision, floating-point constants, but do not align
on long word boundary.

4-46

.xlong value1 [, ...,valuen] Initialize one or more 32-bit integers, but do not
align on long word boundary.

4-57

.word value1 [, ... , valuen] Initialize one or more 16-bit integers. 4-52

Table 4–3. Directives That Align the Section Program Counter (SPC)

Mnemonic and Syntax Description Page

.align [size in words] Align the SPC on a word boundary specified by the
parameter, which must be a power of 2, or default to
page boundary. Aligns to word (1), even (2), etc.

4-27

Table 4–4. Directives That Format the Output Listing

Mnemonic and Syntax Description Page

.drlist Enable listing of all directive lines (default) 4-38

.drnolist Suppress listing of certain directive lines 4-38

Directives Summary

 4-4

Mnemonic and Syntax PageDescription

.fclist Allow false conditional code block listing (default) 4-42

.fcnolist Suppress false conditional code block listing 4-42

.length page length Set the page length of the source listing 4-54

.list Restart the source listing 4-55

.mlist Allow macro listings and loop blocks (default) 4-61

.mnolist Suppress macro listings and loop blocks 4-61

.nolist Stop the source listing 4-55

.option {B | L | M | R | T | W | X} Select output listing options 4-66

.page Eject a page in the source listing 4-68

.sslist Allow expanded substitution symbol listing 4-74

.ssnolist Suppress expanded substitution symbol listing
(default)

4-74

.tab size Set tab size 4-80

.title ” string” Print a title in the listing page heading 4-82

.width page width Set the page width of the source listing 4-54

Directives Summary

4-5Assembler Directives

Table 4–5. Directives That Reference Other Files

Mnemonic and Syntax Description Page

.copy [”]filename[”] Include source statements from another file 4-34

.def symbol1 [, ... , symboln] Identify one or more symbols that are defined in the
current module and may be used in other modules

4-47

.global symbol1 [, ... , symboln] Identify one or more global (external) symbols 4-47

.include [”]filename[”] Include source statements from another file 4-34

.mlib [”]filename[”] Define macro library 4-59

.ref symbol1 [, ... , symboln] Identify one or more symbols that are used in the cur-
rent module but may be defined in another module

4-47

Table 4–6. Directives That Control Conditional Assembly

Mnemonic and Syntax Description Page

.break [well-defined expression] End .loop assembly if condition is true. The .break
construct is optional.

4-58

.else well-defined expression Assemble code block if the .if condition is false. The
.else construct is optional.

4-50

.elseif well-defined expression Assemble code block if the .if condition is false and the
.elseif condition is true. The .elseif construct is
optional.

4-50

.endif End .if code block 4-50

.endloop End .loop code block 4-58

.if well-defined expression Assemble code block if the condition is true 4-50

.loop [well-defined expression] Begin repeatable assembly of a code block 4-58

Directives Summary

 4-6

Table 4–7. Directives That Define Symbols at Assembly Time

Mnemonic and Syntax Description Page

.asg [”]character string[”],
 substitution symbol

Assign a character string to a substitution symbol 4-28

.endstruct End structure definition 4-77

.equ Equate a value with a symbol 4-72

.eval well-defined expression,
 substitution symbol

Perform arithmetic on numeric substitution
symbols

4-28

.label symbol Define a load-time relocatable label in a section 4-53

.set Equate a value with a symbol 4-72

.struct Begin structure definition 4-77

.tag Assign structure attributes to a label 4-77

Table 4–8. Miscellaneous Directives

Mnemonic and Syntax Description Page

.algebraic Signifies that the file contains algebraic assembly
source

4-26

.emsg string Send user-defined error messages to the output
device

4-39

.end End program 4-41

.mmregs Enter memory-mapped registers into the symbol table 4-62

.mmsg string Send user-defined messages to the output device 4-39

.newblock Undefine local labels 4-65

.sblock [”]section name[”]
 [, ... , ”section name”]

Designates sections for blocking 4-69

.version [value] Specify the device for which processor instructions
are being built

4-86

.wmsg string Send user-defined warning messages to the output
device

4-39

Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler Directives

4-7Assembler Directives

4.2 Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler Directives

This section explains how the TMS320C54x assembler directives differ from
the TMS320C1x/C2x/C2xx/C5x assembler directives.

� The ’C54x .long and .float directives place the most significant word of the
value at the lower address, while the ’C1x/C2x/C2xx/C5x assembler direc-
tives place the least significant word at the lower address. Also, the ’C54x
.long and .float directives automatically align the SPC on an even word
boundary, while the C1x/C2x/C2xx/C5x assembler directives do not.

� Without arguments, the ’C54x and the ’C1x/C2x/C2xx/C5x assemblers
both align the SPC at the next 128-word boundary. However, the ’C54x
.align directive also accepts a constant argument, which must be a power
of 2, and this argument causes alignment of the SPC on that word bound-
ary. The .align directive for the ’C1x/C2x/C2xx/C5x assembler does not
accept this constant argument.

� The .even directive, which causes alignment at word boundaries when
used with the ’C1x/C2x/C2xx/C5x assembler, is not supported by the
’C54x assembler. The .align directive with an argument of 1 replaces the
.even directive.

� The .field directive for the ’C54x packs fields into words starting at the most
significant bit of the word. The ’C1x/C2x/C2xx/C5x assembler .field direc-
tive places fields into words starting at the least significant bit of the word.

� The .field directive for the ’C54x handles values of 1 to 32 bits, contrasted
with the ’C1x/C2x/C2xx/C5x assembler which handles values of 1 to 16
bits. With the ’C54x assembler, objects that are 16 bits or larger start on
a word boundary and are placed with the most significant bits at the lower
address.

� The ’C54x .bss and .usect directives have an additional flag called the
alignment flag which specifies alignment on an even word boundary. The
’C1x/C2x/C2xx/C5x .bss and .usect directives do not use this flag.

� The .string directive for the ’C54x initializes one character per word, unlike
the ’C1x/C2x/C2xx/C5x assembler .string, which packs two characters
per word. The new .pstring directive packs two characters per word, as the
former .string did.

Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler Directives

 4-8

� The following directives are new with the ’C54x assembler and are not
supported by the ’C1x/C2x/C2xx/C5x assembler:

Directive Usage

.xfloat Same as .float without automatic alignment

.xlong Same as .long without automatic alignment

.pstring Same as .string, but packs two chars/word

Directives That Define Sections

4-9Assembler Directives

4.3 Directives That Define Sections

These directives associate portions of an assembly language program with
the appropriate sections:

� .bss reserves space in the .bss section for uninitialized variables.

� .data identifies portions of code in the .data section. The .data section
usually contains initialized data.

� .sect defines initialized named sections and associates subsequent code
or data with that section. A section defined with .sect can contain code or
data.

� .text identifies portions of code in the .text section. The .text section
usually contains executable code.

� .usect reserves space in an uninitialized named section. The .usect
directive is similar to the .bss directive, but it allows you to reserve space
separately from the .bss section.

Chapter 2, Introduction to Common Object File Format, discusses COFF
sections in detail.

Example 4–1 shows how you can use sections directives to associate code
and data with the proper sections. This is an output listing; column 1 shows line
numbers, and column 2 shows the SPC values. (Each section has its own pro-
gram counter, or SPC.) When code is first placed in a section, its SPC equals
0. When you resume assembling into a section after other code is assembled,
the section’s SPC resumes counting as if there had been no intervening code.

The directives in Example 4–1 perform the following tasks:

.text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15,
and 16.

var_defs initializes words with the values 17 and 18.

.bss reserves 19 words.

xy reserves 20 words.

The .bss and .usect directives do not end the current section or begin new sec-
tions; they reserve the specified amount of space, and then the assembler
resumes assembling code or data into the current section.

Directives That Define Sections

 4-10

Example 4–1. Sections Directives

 1 **
 2 * Start assembling into the .text section *
 3 **
 4 0000 .text
 5 0000 0001 .word 1,2
 0001 0002
 6 0002 0003 .word 3,4
 0003 0004
 7
 8 **
 9 * Start assembling into the .data section *
 10 **
 11 0000 .data
 12 0000 0009 .word 9, 10
 0001 000A
 13 0002 000B .word 11, 12
 0003 000C
 14
 15 **
 16 * Start assembling into a named, *
 17 * initialized section, var_defs *
 18 **
 19 0000 .sect ”var_defs”
 20 0000 0011 .word 17, 18
 0001 0012
 21
 22 **
 23 * Resume assembling into the .data section *
 24 **
 25 0004 .data
 26 0004 000D .word 13, 14
 0005 000E
 27 0000 .bss sym, 19 ; Reserve space in .bss
 28 0006 000F .word 15, 16 ; Still in .data
 0007 0010
 29
 30 **
 31 * Resume assembling into the .text section *
 32 **
 33 0004 .text
 34 0004 0005 .word 5, 6
 0005 0006
 35 0000 usym .usect ”xy”, 20 ; Reserve space in xy
 36 0006 0007 .word 7, 8 ; Still in .text
 0007 0008

Directives That Initialize Constants

4-11Assembler Directives

4.4 Directives That Initialize Constants

Several directives assemble values for the current section:

� The .bes and .space directives reserve a specified number of bits in the
current section. The assembler fills these reserved bits with 0s.

You can reserve a specified number of words by multiplying the number of
bits by 16.

� When you use a label with .space, it points to the first word that
contains reserved bits.

� When you use a label with .bes, it points to the last word that contains
reserved bits.

Figure 4–1 shows the .space and .bes directives. Assume the following
code has been assembled for this example:

1
2 ** .space and .bes directives
3
4 0000 0100 .word 100h, 200h
 0001 0200
5 0002 Res_1: .space 17
6 0004 000f .word 15
7 0006 Res_2: .bes 20
8 0007 00ba .byte 0BAh

Res_1 points to the first word in the space reserved by .space. Res_2
points to the last word in the space reserved by .bes.

Figure 4–1. The .space and .bes Directives

17 bits
reserved

20 bits
reserved

Res_1 = 02h

Res_2 = 06h

� .byte places one or more 8-bit values into consecutive words of the current
section. This directive is similar to .word, except that the width of each
value is restricted to 8 bits.

Directives That Initialize Constants

 4-12

� The .field directive places a single value into a specified number of bits
in the current word. With .field, you can pack multiple fields into a single
word; the assembler does not increment the SPC until a word is filled.

Figure 4–2 shows how fields are packed into a word. For this example,
assume the following code has been assembled; notice that the SPC
doesn’t change for the first three fields (the fields are packed into the same
word):

 4 0000 6000 .field 3, 3
 5 0000 6400 .field 8, 6
 6 0000 6440 .field 16, 5
 7 0001 0123 .field 01234h,20
 0002 4000
 8 0003 0000 .field 01234h,32
 0004 1234

Figure 4–2. The .field Directive

0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0

0 1 1
15 14 13

15 12 11 10 9 8 7

6 5 4 3 2 0

0 1 1 0 0 1 0 0 0

15
6 bits

.field 8,6

.field 16,5

.field 3,3

5 bits

3 bits
0

0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1
15

.field 01234h,20

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15

.field 01234h,32

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
15

� .float and .xfloat calculate the single-precision (32-bit) IEEE floating-
point representation of a single floating-point value and store it in two con-
secutive words in the current section. The most significant word is stored
first. The .float directive automatically aligns to the long word boundary,
and .xfloat does not.

Directives That Initialize Constants

4-13Assembler Directives

� .int and .word place one or more 16-bit values into consecutive words in
the current section.

� .long and .xlong place 32-bit values into consecutive 2-word blocks in the
current section. The most significant word is stored first. The .long direc-
tive automatically aligns to a long word boundary, and the .xlong directive
does not.

� .string and .pstring place 8-bit characters from one or more character
strings into the current section. The .string directive is similar to .byte, plac-
ing an 8-bit character in each consecutive word of the current section. The
.pstring also has a width of 8 bits but packs two characters into a word. For
.pstring, the last word in a string is padded with null characters (0) if neces-
sary.

Note: The .byte, .word, .int, .long, .xlong, .string, .pstring, .float,
.xfloat, and .field Directives in a .struct/.endstruct Sequence

The .byte, .word, .int, .long, .xlong, .string, .pstring, .float, .xfloat. and .field
directives do not initialize memory when they are part of a .struct/.endstruct
sequence; rather, they define a member’s size. For more information about
the .struct/.endstruct directives, see Section 4.9, Assembly-Time Symbol
Directives, on page 4-21.

Figure 4–3 compares the .byte, .int, .long, .xlong, .float, .xfloat, .word, and
.string directives. For this example, assume that the following code has been
assembled:

1 0000 00aa .byte 0AAh, 0BBh
 0001 00bb
2 0002 0ccc .word 0CCCh
3 0003 0eee .xlong 0EEEEFFFh
 0004 efff
4 0006 eeee .long 0EEEEFFFFh
 0007 ffff
5 0008 dddd .int 0DDDDh
6 0009 3fff .xfloat 1.99999
 000a ffac
7 000c 3fff .float 1.99999
 000d ffac
8 000e 0068 .string ”help”
 000f 0065
 0010 006c
 0011 0070

Directives That Initialize Constants

 4-14

Figure 4–3. Initialization Directives
Word

0 C C C

D D D D

E E E E F F F F

0 0 6 8 0 0 6 5

Code

.byte OAAh, OBBh

.word OCCCh

.int DDDDh

.long EEEEFFFFh

.string ”help”

.float 1.99999

15 0 15 0

h e

3 F F F F F A C

0 E E E E F F F .xlong 0EEEEFFFh

.xfloat 1.999993 F F F F F A C

0 0 6 C 0 0 7 0
l p

10, 11

e, f

c, d

9, a

8

6, 7

3, 4

2

0, 1 0 0 A A 0 0 B B

Directives That Align the Section Program Counter

4-15Assembler Directives

4.5 Directives That Align the Section Program Counter

The .align directive aligns the SPC at a 1-word to 128-word boundary. This
ensures that the code following the directive begins on an x-word or page
boundary. If the SPC is already aligned at the selected boundary, it is not
incremented. Operands for the .align directive must equal a power of 2
between 20 and 216 (although directives beyond 27 are not meaningful). For
example:

Operand of 1 aligns SPC to word boundary

2 aligns SPC to long word/even boundary

128 aligns SPC to page boundary

The .align directive with no operands defaults to 128, that is, to a page
boundary.

Figure 4–4 demonstrates the .align directive. Assume that the following code
has been assembled:

 1 0000 4000 .field 2, 3
 2 0000 4160 .field 11, 8
 3 .align 2
 4 0002 0045 .string ”Errorcnt”
 0003 0072
 0004 0072
 0005 006f
 0006 0072
 0007 0063
 0008 006e
 0009 0074
 5 .align
 6 0100 0004 .byte 4

Directives That Align the Section Program Counter

 4-16

Figure 4–4. The .align Directive

80h

100h

(a) Current
SPC =
88h

(b) New SPC =
100h after
assembling
a .align
directive

128
words

00h

02h(a) Current
SPC =
00h

(b) New SPC =
02h after
assembling
a .align 2
directive

2 words

(a) Result of .align 2

(b) Result of .align without an argument

Directives That Format the Output Listing

4-17Assembler Directives

4.6 Directives That Format the Output Listing

The following directives format the listing file:

� The .drlist directive causes printing of the directive lines to the listing; the
.drnolist directive turns it off. You can use the .drnolist directive to
suppress the printing of the following directives:

.asg .eval, .length .mnolist .var

.break .fclist .mlist .sslist .width

.emsg .fcnolist .mmsg .ssnolist .wmsg

You can use the .drlist directive to turn the listing on again.

� The source code contains a listing of false conditional blocks that do not
generate code. The .fclist and .fcnolist directives turn this listing on and
off. You can use the .fclist directive to list false conditional blocks exactly
as they appear in the source code. You can use the .fcnolist directive to
list only the conditional blocks that are actually assembled.

� The .length directive controls the page length of the listing file. You can
use this directive to adjust listings for various output devices.

� The .list and .nolist directives turn the output listing on and off. You can
use the .nolist directive to stop the assembler from printing selected
source statements in the listing file. Use the .list directive to turn the listing
on again.

� The source code contains a listing of macro expansions and loop blocks.
The .mlist and .mnolist directives turn this listing on and off. You can use
the .mlist directive to print all macro expansions and loop blocks to the list-
ing, and the .mnolist directive to suppress this listing.

� The .option directive controls certain features in the listing file. This
directive has the following operands:

B limits the listing of .byte directives to one line.

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

R resets the B, M, T, and W options.

T limits the listing of .string directives to one line.

W limits the listing of .word directives to one line.

X produces a symbol cross-reference listing. (You can also obtain
a cross-reference listing by invoking the assembler with the
–x option.)

� The .page directive causes a page eject in the output listing.

Directives That Format the Output Listing

 4-18

� The .sslist and .ssnolist directives allow and suppress substitution sym-
bol expansion listing. These directives are useful for debugging the expan-
sion of substitution symbols.

� The .tab directive defines tab size.

� The .title directive supplies a title that the assembler prints at the top of
each page.

� The .width directive controls the page width of the listing file. You can use
this directive to adjust listings for various output devices.

Directives That Reference Other Files

4-19Assembler Directives

4.7 Directives That Reference Other Files

These directives supply information for or about other files:

� The .copy and .include directives tell the assembler to begin reading
source statements from another file. When the assembler finishes reading
the source statements in the copy/include file, it resumes reading source
statements from the current file. The statements read from a copied file are
printed in the listing file; the statements read from an included file are not
printed in the listing file.

� The .def directive identifies a symbol that is defined in the current module
and that can be used by another module. The assembler includes the sym-
bol in the symbol table.

� The .global directive declares a symbol external so that it is available to
other modules at link time. (For more information about global symbols,
see subsection 2.8.1, External Symbols, on page 2-18.) The .global direc-
tive does double duty, acting as a .def for defined symbols and as a .ref
for undefined symbols. The linker resolves an undefined global symbol
only if it is used in the program.

� The .mlib directive supplies the assembler with the name of an archive
library that contains macro definitions. When the assembler encounters
a macro that is not defined in the current module, it searches for it in the
macro library specified with .mlib.

� The .ref directive identifies a symbol that is used in the current module but
defined in another module. The assembler marks the symbol as an unde-
fined external symbol and enters it in the object symbol table so that the
linker can resolve its definition.

Conditional Assembly Directives

 4-20

4.8 Conditional Assembly Directives

Conditional assembly directives enable you to instruct the assembler to
assemble certain sections of code according to a true or false evaluation of an
expression. Two sets of directives allow you to assemble conditional blocks of
code:

� The .if /.elseif /.else/.endif directives tell the assembler to conditionally
assemble a block of code according to the evaluation of an expression.

.if expression marks the beginning of a conditional block and
assembles code if the .if condition is true.

.elseif expression marks a block of code to be assembled if the .if
condition is false and .elseif is true.

.else marks a block of code to be assembled if the .if
condition is false.

.endif marks the end of a conditional block and termi-
nates the block.

� The .loop/.break/.endloop directives tell the assembler to repeatedly
assemble a block of code according to the evaluation of an expression.

.loop expression marks the beginning a repeatable block of code.

.break expression tells the assembler to continue to repeatedly
assemble when the .break expression is false, and
to go to the code immediately after .endloop when
the expression is true.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for condi-
tional expressions. For more information about relational operators, see sub-
section 3.9.4, Conditional Expressions, on page 3-26.

Assembly-Time Symbol Directives

4-21Assembler Directives

4.9 Assembly-Time Symbol Directives

Assembly-time symbol directives equate meaningful symbol names to con-
stant values or strings.

� The .asg directive assigns a character string to a substitution symbol. The
value is stored in the substitution symbol table. When the assembler
encounters a substitution symbol, it replaces the symbol with its character
string value. Substitution symbols can be redefined.

.asg ”10, 20, 30, 40”, coefficients

.byte coefficients

� The .eval directive evaluates an expression, translates the results into a
character, and assigns the character string to a substitution symbol. This
directive is most useful for manipulating counters:

.asg 1 , x

.loop

.byte x*10h

.break x = 4

.eval x+1, x

.endloop

� The .label directive defines a special symbol that refers to the loadtime
address within the current section. This is useful when a section loads at
one address but runs at a different address. For example, you may want
to load a block of performance-critical code into slower off-chip memory
to save space, and move the code to high-speed on-chip memory to run.

� The .set and .equ directives set a constant value to a symbol. The symbol
is stored in the symbol table and cannot be refined. For example:

bval .set 0100h
.byte bval, bval*2, bval+12
B bval

The .set and .equ directives produce no object code. The two directives
are identical and can be used interchangeably.

Assembly-Time Symbol Directives

 4-22

� The .struct /.endstruct directives set up C-like structure definitions, and
the .tag directive assigns the C-like structure characteristics to a label.

The .struct /.endstruct directives allow you to organize your information
into structures, so that similar elements can be grouped together. Element
offset calculation is then left up to the assembler. The .struct/.endstruct
directives do not allocate memory. They simply create a symbolic template
that can be used repeatedly.

The .tag directive assigns a label to a structure. This simplifies the sym-
bolic representation and also provides the ability to define structures that
contain other structures. The .tag directive does not allocate memory, and
the structure tag (stag) must be defined before it’s used.

type .struct ; structure tag definition
X .int
Y .int
T_LEN .endstruct

COORD .tag type ; declare COORD (coordinate)

ADD COORD.Y, A

 .bss COORD, T_LEN ; actual memory allocation

Miscellaneous Directives

4-23Assembler Directives

4.10 Miscellaneous Directives

These directives enable miscellaneous functions or features:

� The .algebraic directive tells the assembler that the file contains algebraic
assembly source code. This must be the first line in the file if the –mg as-
sembler option is not used.

� The .end directive terminates assembly. It should be the last source
statement of a program. This directive has the same effect as an
end-of-file.

� The .mmregs directive defines symbolic names for the memory-mapped
register. Using .mmregs is the same as executing a .set for all
memory-mapped registers. See Table 4–9 on page 4-62 for a list of
memory-mapped registers.

� The .newblock directive resets local labels. Local labels are symbols of
the form $n or name?. They are defined when they appear in the label field.
Local labels are temporary labels that can be used as operands for jump
instructions. The .newblock directive limits the scope of local labels by re-
setting them after they are used. For more information about local labels,
see subsection 3.8.6, Local Labels, on page 3-19.

� The .sblock directive designates sections for blocking. Blocking is an
address alignment mechanism similar to page alignment, but weaker. A
blocked section is guaranteed not to cross a page boundary (128 words)
if it is smaller than a page, or to start on a page boundary if it is larger than
a page. Note that this directive allows specification of blocking for initial-
ized sections only, not uninitialized sections declared with .usect or the
.bss section. The section names may or may not be enclosed in quotes.

� The .version directive determines the processor for which instructions are
being built. Each ’C54x device has its own value.

These directives enable you to define your own error and warning messages:

� The .emsg directive sends error messages to the standard output device.
The .emsg directive generates errors in the same manner as the
assembler, incrementing the error count and preventing the assembler
from producing an object file.

� The .mmsg directive sends assembly-time messages to the standard
output device. The .mmsg directive functions in the same manner as the
.emsg and .wmsg directives but does not set the error count or the warning
count. It does not affect the creation of the object file.

Miscellaneous Directives

 4-24

� The .wmsg directive sends warning messages to the standard output
device. The .wmsg directive functions in the same manner as the .emsg
directive but increments the warning count, rather than the error count. It
does not affect the creation of the object file.

Directives Reference

4-25Assembler Directives

4.11 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are
organized alphabetically, one directive per page; however, related directives
(such as .if /.else/.endif) are presented together on one page. Following is an
alphabetical table of contents for the directives reference:

Directive Page Directive Page

.algebraic 4-26.

.align 4-27.

.asg 4-28.

.bes 4-73.

.break 4-58.

.bss 4-30.

.mmregs. 4-62.

.mmsg 4-39.

.mnolist 4-61.

.newblock 4-65.

.nolist 4-55.

.byte 4-33.

.copy 4-34.

.data 4-37.

.def 4-47.

.drlist 4-38.

.option 4-66.

.page 4-68.

.pstring 4-76.

.ref 4-47.

.sblock 4-69.

.drnolist 4-38.

.else 4-50.

.elseif 4-50.

.emsg 4-39.

.end 4-41.

.sect 4-70.

.set 4-72.

.space 4-73.

.sslist 4-74.

.ssnolist 4-74.

.endif 4-50.

.endloop 4-58.

.endstruct 4-77.

.equ 4-72.

.eval 4-28.

.string 4-76.

.struct 4-77.

.tab 4-80.

.tag 4-77.

.text 4-81.

.fclist 4-42.

.fcnolist 4-42.

.field 4-43.

.float 4-46.

.global 4-47.

.title 4-82.

.usect 4-83.

.version 4-86.

.width 4-54.

.wmsg 4-39.

.if 4-50.

.include 4-34.

.int. 4-52.

.label 4-53.

.length 4-54.

.word 4-52.

.xfloat 4-46.

.xlong 4-57.

.list 4-55.

.long 4-57.

.loop 4-58.

.mlib 4-59.

.mlist 4-61.

.algebraic File Contains Algebraic Assembly Source

4-26

Syntax
.algebraic

Description The .algebraic directive tells the assembler that this file contains algebraic as-
sembly source code. This directive must be the first line in the file if the –mg
option is not used.

Note: Mixing Algebraic and Mnemonic Assembly Code

Algebraic and mnemonic assembly code cannot be mixed within the same
source file.

The .algebraic directive does not provide a method for mixing algebraic and
mnemonic statements within the same source file. It provides a means of se-
lecting algebraic assembly without specifying the –mg assembler option.

 Align SPC on a 128–Word Boundary .align

4-27 Assembler Directives

Syntax
.align [size in words]

Description The .align directive aligns the section program counter (SPC) on the next
boundary, depending on the size in words parameter. The size may be any
power of 2, although only certain values are useful for alignment. An operand
of 128 aligns the SPC on the next page boundary, and this is the default if no
size is given. The assembler assembles words containing null values (0) up
to the next x-word boundary.

Operand of 1 aligns SPC to word boundary

2 aligns SPC to long word/even boundary

128 aligns SPC to page boundary

Using the .align directive has two effects:

� The assembler aligns the SPC on an x-word boundary within the current
section.

� The assembler sets a flag that forces the linker to align the section so that
individual alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 2, .align 4, and
a default .align.

 1 0000 0004 .byte 4
 2 .align 2
 3 0002 0045 .string ”Errorcnt”
 0003 0072
 0004 0072
 0005 006F
 0006 0072
 0007 0063
 0008 006E
 0009 0074
 4 .align
 5 0080 6000 .field 3,3
 6 0080 6A00 .field 5,4
 7 .align 2
 8 0082 6000 .field 3,3
 9 .align 8
 10 0088 5000 .field 5,4
 11 .align
 12 0100 0004 .byte 4

.asg/.eval Assign Character Strings to Substitution Symbols

4-28

Syntax
.asg [”]character string[”], substitution symbol
.eval well-defined expression, substitution symbol

Description The .asg directive assigns character strings to substitution symbols. Substitu-
tion symbols are stored in the substitution symbol table. The .asg directive can
be used in many of the same ways as the .set directive, but while .set assigns
a constant value (which cannot be redefined) to a symbol, .asg assigns a char-
acter string (which can be redefined) to a substitution symbol.

� The assembler assigns the character string to the substitution symbol.
The quotation marks are optional. If there are no quotation marks, the
assembler reads characters up to the first comma and removes leading
and trailing blanks. In either case, a character string is read and assigned
to the substitution symbol.

� The substitution symbol is a required parameter that must be a valid
symbol name. The substitution symbol may be 32 characters long and
must begin with a letter. Remaining characters of the symbol can be a
combination of alphanumeric characters, underscores, and dollar signs.

The .eval directive performs arithmetic on substitution symbols, which are
stored in the substitution symbol table. This directive evaluates the expression
and assigns the string value of the result to the substitution symbol. The .eval
directive is especially useful as a counter in .loop/.endloop blocks.

� The well-defined expression is an alphanumeric expression consisting of
legal values that have been previously defined, so that the result is an
absolute.

 Assign Character Strings to Substitution Symbols .asg/.eval

4-29 Assembler Directives

Example This example shows how .asg and .eval can be used.

 1 .sslist;show expanded sub. symbols
 2 *
 3 * .asg/.eval example
 4 *
 5 .asg *+, INC
 6 .asg AR0, FP
 7
 8 0000 f000 ADD #100, A
 0001 0064
 9 0002 6d90 MAR *FP+
MAR *AR0+
 10 0003 6d90 MAR *AR0+
 11
 12 .asg 0, x
 13 .loop 5
 14 .eval x+1, x
 15 .word x
 16 .endloop
1 .eval x+1, x
.eval 0+1, x
1 0004 0001 .word x
.word 1
1 .eval x+1, x
.eval 1+1, x
1 0005 0002 .word x
.word 2
1 .eval x+1, x
.eval 2+1, x
1 0006 0003 .word x
.word 3
1 .eval x+1, x
.eval 3+1, x
1 0007 0004 .word x
.word 4
1 .eval x+1, x
.eval 4+1, x
1 0008 0005 .word x
.word 5

.bss Reserve Space in the .bss Section

4-30

Syntax
.bss symbol size in words [, blocking flag] [, alignment flag]

Description The .bss directive reserves space for variables in the .bss section. This direc-
tive is usually used to allocate variables in RAM.

� The symbol is a required parameter. It defines a label that points to the first
location reserved by the directive. The symbol name should correspond
to the variable that you’re reserving space for.

� The size in words is a required parameter; it must be an absolute expres-
sion. The assembler allocates size words in the .bss section. There is no
default size.

� The blocking flag is an optional parameter. If you specify a value greater
than 0 for this parameter, the assembler allocates size words contigu-
ously. This means that the allocated space will not cross a page boundary
unless size is greater than a page, in which case, the object will start on
a page boundary.

� The alignment flag is an optional parameter. This flag causes the assem-
bler to allocate size on long word boundaries.

The assembler follows two rules when it allocates space in the .bss section:

Rule 1 Whenever a hole is left in memory (as shown in Figure 4–5), the
.bss directive attempts to fill it. When a .bss directive is assembled,
the assembler searches its list of holes left by previous .bss direc-
tives and tries to allocate the current block into one of the holes.
(This is the standard procedure whether the contiguous allocation
option has been specified or not.)

Rule 2 If the assembler does not find a hole large enough to contain the
requested space, it checks to see whether the blocking option is
requested.

� If you do not request blocking, the memory is allocated at the
current SPC.

� If you request blocking, the assembler checks to see whether
there is enough space between the current SPC and the page
boundary. If there is not enough space, the assembler creates
another hole and allocates the space on the next page.

 Reserve Space in the .bss Section .bss

4-31 Assembler Directives

The blocking option allows you to reserve up to 128 words in the .bss section
and ensure that they fit on one page of memory. (Of course, you can reserve
more than 128 words at a time, but they cannot fit on a single page.) The follow-
ing example code reserves two blocks of space in the .bss section.

memptr: .bss A,64,1
memptr1: .bss B,70,1

Each block must be contained within the boundaries of a single page; after the
first block is allocated, however, the second block cannot fit on the current
page. As Figure 4–5 shows, the second block is allocated on the next page.

Figure 4–5. Allocating .bss Blocks Within a Page

Memory

Memory allocated by first .bss direc-
tive; 64 words left in the first page

Hole in memory left because second
.bss directive required more than 64
words

Memory allocated by second .bss
directive; 58 words left in the second
page

Unused memory

127

a

b

256

0

Page
boundry

Section directives for initialized sections (.text, .data, and .sect) end the cur-
rent section and begin assembling into another section. The .bss directive,
however, does not affect the current section. The assembler assembles the
.bss directive and then resumes assembling code into the current section. For
more information about COFF sections, see Chapter 2, Introduction to Com-
mon Object File Format.

.bss Reserve Space in the .bss Section

4-32

Example In this example, the .bss directive is used to allocate space for two variables,
TEMP and ARRAY. The symbol TEMP points to 4 words of uninitialized space
(at .bss SPC = 0). The symbol ARRAY points to 100 words of uninitialized
space (at .bss SPC = 04h); this space must be allocated contiguously within
a page. Note that symbols declared with the .bss directive can be referenced
in the same manner as other symbols and can also be declared external.

 1 ***
 2 ** Assemble into the .text section. **
 3 ***
 4 0000 .text
 5 0000 e800 LD #0, A
 6 ***
 7 ** Allocate 4 words in .bss for TEMP. **
 8 ***
 9 0000 Var_1: .bss TEMP, 4
 10
 11 ***
 12 ** Still in .text **
 13 ***
 14 0001 f000 ADD #56h, A
 0002 0056
 15 0003 f066 MPY #73h, A
 0004 0073
 16
 17 ***
 18 ** Allocate 100 words in .bss for the **
 19 ** symbol named ARRAY; this part of **
 20 ** .bss must fit on a single page. **
 21 ***
 22 0004 .bss ARRAY, 100, 1
 23
 24 ***
 25 ** Assemble more code into .text. **
 26 ***
 27 0005 8000– STL A, Var_1
 28
 29 ***
 30 ** Declare external .bss symbols. **
 31 ***
 32 .global ARRAY, TEMP
 33 .end

 Initialize Bytes .byte

4-33 Assembler Directives

Syntax
.byte value1 [, ... , valuen]

Description The .byte directive places one or more bytes into consecutive words of the cur-
rent section. Each byte is placed in a word by itself; the 8 MSBs are filled with
0s. A value can be either:

� An expression that the assembler evaluates and treats as an 8-bit signed
number, or

� A character string enclosed in double quotes. Each character in a string
represents a separate value.

Values are not packed or sign-extended; each byte occupies the 8 least signifi-
cant bits of a full 16-bit word. The assembler truncates values greater than 8
bits. You can use up to 100 value parameters, but the total line length cannot
exceed 200 characters.

If you use a label, it points to the location where the assembler places the first
byte.

Note that when you use .byte in a .struct/.endstruct sequence, .byte defines
a member’s size; it does not initialize memory. For more information about
.struct/.endstruct, see Section 4.9, Assembly-Time Symbol Directives, on
page 4-21.

Example In this example 8-bit values (10, –1, abc, and a) are placed into consecutive
words in memory. The label strx has the value 100h, which is the location of
the first initialized word.

 1 0000 .space 100h * 16
 2 0100 000a STRX .byte 10, –1, ”abc”, ’a’
 0101 00ff
 0102 0061
 0103 0062
 0104 0063
 0105 0061

.copy/.include Read Source File

4-34

Syntax
.copy [”]filename[”]
.include [”]filename[”]

Description The .copy and .include directives tell the assembler to read source state-
ments from a different file. The statements that are assembled from a copy file
are printed in the assembly listing. The statements that are assembled from
an included file are not printed in the assembly listing, regardless of the num-
ber of .list/.nolist directives assembled. The assembler:

1) Stops assembling statements in the current source file.

2) Assembles the statements in the copied/included file.

3) Resumes assembling statements in the main source file, starting with the
statement that follows the .copy or .include directive.

The filename is a required parameter that names a source file. It may be
enclosed in double quotes and must follow operating system conventions.
You can specify a full pathname (for example, c:\dsp\file1.asm). If you do not
specify a full pathname, the assembler searches for the file in:

1) The directory that contains the current source file.
2) Any directories named with the –i assembler option.
3) Any directories specified by the environment variable A_DIR.

For more information about the –i option and A_DIR, see Section 3.4, Naming
Alternate Directories for Assembler Input, on page 3-6.

The .copy and .include directives can be nested within a file being copied or
included. The assembler limits nesting to ten levels; the host operating system
may set additional restrictions. The assembler precedes the line numbers of
copied files with a letter code to identify the level of copying. An A indicates the
first copied file, B indicates a second copied file, etc.

 Read Source File .copy/.include

4-35 Assembler Directives

Example 1 In this example, the .copy directive is used to read and assemble source state-
ments from other files; then the assembler resumes assembling into the cur-
rent file.

The original file, copy.asm, contains a .copy statement copying the file
byte.asm. When copy.asm assembles, the assembler copies byte.asm into its
place in the listing (note listing below). The copy file byte.asm contains a .copy
statement for a second file, word.asm.

When it encounters the .copy statement for word.asm, the assembler switches
to word.asm to continue copying and assembling. Then the assembler returns
to its place in byte.asm to continue copying and assembling. After completing
assembly of byte.asm, the assembler returns to copy.asm to assemble its
remaining statement.

copy.asm
(source file)

byte.asm
(first copy file)

word.asm
(second copy file)

.space 29

.copy ”byte.asm”

 **Back in original file
.pstring ”done”

** In byte.asm
.byte 32,1+ ’A’
.copy ”word.asm”

** Back in byte.asm
.byte 67h + 3q

** In word.asm
.word 0ABCDh, 56q

Listing file:

 1 0000 .space 29
 2 .copy ”byte.asm”
 A 1 ** In byte.asm
 A 2 0002 0020 .byte 32,1+ ’A’
 0003 0042
 A 3 .copy ”word.asm”
 B 1 * In word.asm
 B 2 0004 ABCD .word 0ABCDh, 56q
 0005 002E
 A 4 ** Back in byte.asm
 A 5 0006 006A .byte 67h + 3q
 3
 4 ** Back in original file
 5 0007 646F .pstring ”done”
 0008 6E65

.copy/.include Read Source File

4-36

Example 2 In this example, the .include directive is used to read and assemble source
statements from other files; then the assembler resumes assembling into the
current file. The mechanism is similar to the .copy directive, except that state-
ments are not printed in the listing file.

include.asm
(source file)

byte2.asm
(first include file)

word2.asm
(second include file)

.space 29

.include ”byte2.asm”

 **Back in original file
.string ”done”

** In byte2.asm
.byte 32,1+ ’A’
.include ”word2.asm”

** Back in byte2.asm
.byte 67h + 3q

** In word2.asm
.word 0ABCDh, 56q

Listing file:

 1 0000 .space 29
 2 .include ”byte2.asm”
 3
 4 ** Back in original file
 5 0007 0064 .string ”done”
 0008 006F
 0009 006E
 000a 0065

 Assign Character Strings to Substitution Symbols .data

4-37 Assembler Directives

Syntax
.data

Description The .data directive tells the assembler to begin assembling source code into
the .data section; .data becomes the current section. The .data section is nor-
mally used to contain tables of data or preinitialized variables.

The assembler assumes that .text is the default section. Therefore, at the
beginning of an assembly, the assembler assembles code into the .text section
unless you use a section control directive.

For more information about COFF sections, see Chapter 2, Introduc-
tion to Common Object File Format.

Example In this example, code is assembled into the .data and .text sections.

 1 ***
 2 ** Reserve space in .data. **
 3 ***
 4 0000 .data
 5 0000 .space 0CCh
 6
 7 ***
 8 ** Assemble into .text. **
 9 ***
 10 0000 .text
 ; constant into .data.
 11 0000 INDEX .set 0
 12 0000 e800 LD #INDEX, A
 13
 14 ***
 15 ** Assemble into .data. **
 16 ***
 17 000d Table: .data
 18 000d ffff .word –1 ; Assemble 16–bit
 19
 20 000e 00ff .byte 0FFh ; Assemble 8–bit
 21 ; constant into .data.
 22
 23 ***
 24 ** Assemble into .text. **
 25 ***
 26 0001 .text
 27 0001 000d” ADD Table, A
 28
 29 ***
 30 ** Resume assembling into the .data **
 31 ** section at address 0Fh. **
 32 ***
 33 000f .data

.drlist/.drnolist Controls Listing of Directives

4-38

Syntax
.drlist
.drnolist

Description Two directives enable you to control the printing of assembler directives to the
listing file:

The .drlist directive enables the printing of all directives to the listing file.

The .drnolist directive suppresses the printing of the following directives to the
listing file:

� .asg � .fcnolist � .sslist

� .break � .length � .ssnolist

� .emsg � .mlist � .var

� .eval � .mmsg � .width

� .fclist � .mnolist � .wmsg

By default, the assembler acts as if the .drlist directive had been specified.

Example This example shows how .drnolist inhibits the listing of the specified directives:

Source file:

 .asg 0, x
 .loop 2
 .eval x+1, x
 .endloop

 .drnolist

 .asg 1, x
 .loop 3
 .eval x+1, x
 .endloop

Listing file:

 1 .asg 0, x
 2 .loop 2
 3 .eval x+1, x
 4 .endloop
1 .eval 0+1, x
1 .eval 1+1, x
 5
 6 .drnolist
 7
 9 .loop 3
 10 .eval x+1, x
 11 .endloop

 Define Messages .emsg/.mmsg/.wmsg

4-39 Assembler Directives

Syntax
.emsg string
.mmsg string
.wmsg string

Description These directives allow you to define your own error and warning messages.
The assembler tracks the number of errors and warnings it encounters and
prints these numbers on the last line of the listing file.

The .emsg directive sends error messages to the standard output device in
the same manner as the assembler, incrementing the error count and prevent-
ing the assembler from producing an object file.

The .mmsg directive sends assembly-time messages to the standard output
device in the same manner as the .emsg and .wmsg directives, but it does not
set the error or warning counts, and it does not prevent the assembler from
producing an object file.

The .wmsg directive sends warning messages to the standard output device
in the same manner as the .emsg directive, but it increments the warning count
rather than the error count, and it does not prevent the assembler from
producing an object file.

Example In this example. the message ERROR –– MISSING PARAMETER is sent to
the standard output device.

Source file:

 .global PARAM
MSG_EX .macro parm1
 .if $symlen(parm1) = 0
 .emsg ”ERROR –– MISSING PARAMETER”
 .else
 add parm1, r7, r8
 .endif
 .endm

 MSG_EX PARAM

 MSG_EX

.emsg/.mmsg/.wmsg Define Messages

4-40

Listing file:

 1 .global PARAM
 2 MSG_EX .macro parm1
 3 .if $symlen(parm1) = 0
 4 .emsg ”ERROR –– MISSING
PARAMETER”
 5 .else
 6 add parm1, A
 7 .endif
 8 .endm
 9
 10 0000 MSG_EX PARAM
1 .if $symlen(parm1) = 0
1 .emsg ”ERROR –– MISSING
PARAMETER”
1 .else
1 0000 0000! add PARAM, A
1 .endif
 11
 12 0001 MSG_EX
1 .if $symlen(parm1) = 0
1 .emsg ”ERROR –– MISSING
PARAMETER”
 ***** USER ERROR ***** – : ERROR –– MISSING PARAMETER
1 .else
1 add parm1, A
1 .endif

 1 Error, No Warnings

In addition, the following messages are sent to standard output by the assem-
bler:

TMS320C54x COFF Assembler Version x.xx
Copyright (c) 1993–1994 Texas Instruments Incorporated
 PASS 1
 PASS 2
*** ERROR! line12: ***** USER ERROR ***** – : ERROR –– MISSING PARAMETER
 .emsg ”ERROR –– MISSING PARAMETER”

 1 Error, No Warnings

Errors in source – Assembler Aborted

 End Assembly .end

4-41 Assembler Directives

Syntax
.end

Description The .end directive is optional and terminates assembly. It should be the last
source statement of a program. The assembler ignores any source statements
that follow a .end directive.

This directive has the same effect as an end-of-file character. You can use .end
when you’re debugging and would like to stop assembling at a specific point
in your code.

Note: Ending a Macro

Use .endm to end a macro.

Example This example shows how the .end directive terminates assembly. If any source
statements follow the .end directive, the assembler ignores them.

Source File:

START: .space 300
TEMP .set 15
 .bss LOC1, 48h
 ABS A
 ADD #TEMP, A
 STL A, LOC1
 .end
 .byte 4
 .word CCCh

Listing file:

 1 0000 START: .space 300
 2 000F TEMP .set 15
 3 0000 .bss LOC1, 48h
 4 0013 F485 ABS A
 5 0014 F000 ADD #TEMP, A
 0015 000F
 6 0016 8000– STL A, LOC1
 7 .end

.fclist/.fcnolist Control the Listing of False Conditional Blocks

4-42

Syntax
.fclist
.fcnolist

Description Two directives enable you to control the listing of false conditional blocks.

The .fclist directive allows the listing of false conditional blocks (conditional
blocks that do not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until
a .fclist directive is encountered. With .fcnolist, only code in conditional blocks
that are actually assembled appears in the listing. The .if, .elseif, .else, and
.endif directives do not appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist
directive had been used.

Example This example shows the assembly language and listing files for code with and
without the conditional blocks listed:

Source File:

AAA .set 1
BBB .set 0
 .fclist
 .if AAA
 ADD #1024, A
 .else
 ADD #1024*10, A
 .endif

 .fcnolist
 .if AAA
 ADD #1024, A
 .else
 ADD #1024*10, A
 .endif

Listing file:

 1 0001 AAA .set 1
 2 0000 BBB .set 0
 3 .fclist
 4
 5 .if AAA
 6 0000 F000 ADD #1024, A
 0001 0400
 7 .else
 8 ADD #1024*10, A
 9 .endif
 10
 11 .fcnolist
 12
 14 0002 F000 ADD #1024, A
 0003 0400

 Initialize Field .field

4-43 Assembler Directives

Syntax
.field value [, size in bits]

Description The .field directive can initialize multiple-bit fields within a single word of
memory. This directive has two operands:

� The value is a required parameter; it is an expression that is evaluated and
placed in the field. If the value is relocatable, size must be 16.

� The size is an optional parameter; it specifies a number from 1 to 32, which
is the number of bits in the field. If you do not specify a size, the assembler
assumes that the size is 16 bits. If you specify a size of 16 or more, the field
will start on a word boundary. If you specify a value that cannot fit into size
bits, the assembler truncates the value and issues an error message. For
example, .field 3,1 causes the assembler to truncate the value 3 to 1; the
assembler also prints the message:

***warning – value truncated.

Successive .field directives pack values into the specified number of bits start-
ing at the current word. Fields are packed starting at the most significant part
of the word, moving toward the least significant part as more fields are added.
If the assembler encounters a field size that does not fit into the current word,
it writes out the word, increments the SPC, and begins packing fields into the
next word. You can use the .align directive with an operand of 1 to force the
next .field directive to begin packing into a new word.

If you use a label, it points to the word that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member’s
size; it does not initialize memory. For more information about .struct/
.endstruct, see Section 4.9, Assembly-Time Symbol Directives, on page 4-21.

.field Initialize Field

4-44

Example This example shows how fields are packed into a word. Notice that the SPC
does not change until a word is filled and the next word is begun. For more
examples of the .field directive, see page 4-12.

 1 ************************************
 2 ** Initialize a 14–bit field. **
 3 ************************************
 4 0000 2AF0 .field 0ABCh, 14
 5
 6 ************************************
 7 ** Initialize a 5–bit field **
 8 ** in a new word. **
 9 ************************************
 10 0001 5000 L_F: .field 0Ah, 5
 11
 12 ***********************************
 13 ** Initialize a 4–bit field **
 14 ** in the same word. **
 15 ************************************
 16 0001 5600 x: .field 0Ch, 4
 17
 18 ************************************
 19 ** 16–bit relocatable field **
 20 ** in the next word. **
 21 ************************************
 22 0002 0001’ .field x
 23
 24 ************************************
 25 ** Initialize a 32–bit field. **
 26 ************************************
 27 0003 0000 .field 04321h, 32
 0004 4321

 Initialize Field .field

4-45 Assembler Directives

Figure 4–6 shows how the directives in this example affect memory.

Figure 4–6. The .field Directive

0 0 1 0 1 0 1 0 1 1 1 1 0 0

0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0

0 1 0 1 0

0 1 0 1 0 1 1 0 0

0 0 0 0 10 0 0 00 0 00 0 0 0

14-bit field

5-bit field

4-bit field

15 0
Word Code

(a) 0

(b) 0

1

(c) 1

(d) 1

2

.field 0ABCh, 14

.field 00Ah, 5

.field 000Ch, 4

.field x

0 0 0 0 11 0 0 10 0 10 1 0 0

(e) 3

4

.field 04321,320 0 0 0 00 0 0 00 0 00 0 0 0

0 0 0 0 00 0 0 00 1 10 1 0 1

.float/.xfloat Initialize Floating-Point Value

4-46

Syntax
.float value1 [, ... , valuen]
.xfloat value1 [, ... , valuen]

Description The .float and .xfloat directives place the floating-point representation of one
or more floating-point constants into the current section. The value must be a
floating-point constant or a symbol that has been equated to a floating-point
constant. Each constant is converted to a floating-point value in IEEE single-
precision 32-bit format. Floating point constants are aligned on the long-word
boundaries unless the .xfloat directive is used. The .xfloat directive performs
the same function as the .float directive but does not align the result on the long
word boundary.

The 32-bit value consists of three fields:

Field Meaning

s A 1-bit sign field

e An 8-bit biased exponent

f A 23-bit fraction

The value is stored most significant word first, least significant word second,
in the following format:

s e f
31 30 23 22 0

When you use .float in a .struct/.endstruct sequence, .float defines a member’s
size; it does not initialize memory. For more information about .struct/
.endstruct, see Section 4.9, Assembly-Time Symbol Directives, on page 4-21.

Example This example shows the .float directive.

 1 0000 E904 .float –1.0e25
 0001 5951
 2 0002 4040 .float 3
 0003 0000
 3 0004 42F6 .float 123
 0005 0000

 Identify Global Symbols .global/.def/.ref

4-47 Assembler Directives

Syntax
.global symbol1 [, ... , symboln]
.def symbol1 [, ... , symboln]
.ref symbol1 [, ... , symboln]

Description The .globa l, .def , and .ref directives identify global symbols, which are defined
externally or can be referenced externally.

The .def directive identifies a symbol that is defined in the current module and
can be accessed by other files. The assembler places this symbol in the sym-
bol table.

The .ref directive identifies a symbol that is used in the current module but
defined in another module. The linker resolves this symbol’s definition at link
time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is,
it appears as a label or is defined by the .set, .bss, or .usect directive. As with
all symbols, if a global symbol is defined more than once, the linker issues a
multiple-definition error. .ref always creates a symbol table entry for a symbol,
whether the module uses the symbol or not; .global, however, creates an entry
only if the module actually uses the symbol.

A symbol may be declared global for two reasons:

� If the symbol is not defined in the current module (including macro, copy,
and include files), the .global or .ref directive tells the assembler that the
symbol is defined in an external module. This prevents the assembler from
issuing an unresolved reference error. At link time, the linker looks for the
symbol’s definition in other modules.

� If the symbol is defined in the current module, the .global or .def directive
declares that the symbol and its definition can be used externally by other
modules. These types of references are resolved at link time.

Example This example shows four files:

file1.lst and file3.lst are equivalent. Both files define the symbol Init and make
it available to other modules; both files use the external symbols x, y, and z.
file1.lst uses the .global directive to identify these global symbols; file3.lst uses
.ref and .def to identify the symbols.

file2.lst and file4.lst are equivalent. Both files define the symbols x, y, and z
and make them available to other modules; both files use the external symbol
Init. file2.lst uses the .global directive to identify these global symbols; file4.lst
uses .ref and .def to identify the symbols.

.global/.def/.ref Identify Global Symbols

4-48

file1.lst:

 1 ; Global symbol defined in this file
 2 .global INIT
 3 ; Global symbols defined in file2.lst
 4 .global X, Y, Z
 5 0000 INIT:
 6 0000 F000 ADD #56h, A
 0001 0056
 7 0002 0000! .word X
 8 ; .
 9 ; .
 10 ; .
 11 .end

file2.lst:

 1 ; Global symbols defined in this file
 2 .global X, Y, Z
 3 ; Global symbol defined in file1.lst
 4 .global INIT
 5 0001 X: .set 1
 6 0002 Y: .set 2
 7 0003 Z: .set 3
 8 0000 0000! .word INIT
 9 ; .
 10 ; .
 11 ; .
 12 .end

file3.lst:

 1 ; Global symbol defined in this file
 2 .def INIT
 3 ; Global symbols defined in file4.lst
 4 .ref X, Y, Z
 5 0000 INIT:
 6 0000 F000 ADD #56h, A
 0001 0056
 7 0002 0000! .word X
 8 ; .
 9 ; .
 10 ; .
 11 .end

 Identify Global Symbols .global/.def/.ref

4-49 Assembler Directives

file4.lst:

 1 ; Global symbols defined in this file
 2 .def X, Y, Z
 3 ; Global symbol defined in file3.lst
 4 .ref INIT
 5 0001 X: .set 1
 6 0002 Y: .set 2
 7 0003 Z: .set 3
 8 0000 0000! .word INIT
 9 ; .
 10 ; .
 11 ; .
 12 .end

.if/.elseif/.else/.endif Assign Character Strings to Substitution Symbols

4-50

Syntax
.if well-defined expression
.elseif well-defined expression
.else
.endif

Description The following directives provide conditional assembly:

The .if directive marks the beginning of a conditional block. The well-defined
expression is a required parameter.

� If the expression evaluates to true (nonzero), the assembler assembles
the code that follows the expression (up to a .elseif, .else, or .endif).

� If the expression evaluates to false (0), the assembler assembles code
that follows a .elseif (if present), .else (if present), or .endif (if no .elseif or
.else is present).

The .elseif directive identifies a block of code to be assembled when the .if
expression is false (0) and the .elseif expression is true (nonzero). When the
.elseif expression is false, the assembler continues to the next .elseif (if pres-
ent), .else (if present) or .endif (if no .elseif or .else is present). The .elseif
directive is optional in the conditional blocks, and more than one .elseif can be
used. If an expression is false and there is no .elseif statement, the assembler
continues with the code that follows a .else (if present) or a .endif.

The .else directive identifies a block of code that the assembler assembles
when the .if expression and all .elseif expressions are false (0). This directive
is optional in the conditional block; if an expression is false and there is no .else
statement, the assembler continues with the code that follows the .endif.

The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional assembly
block and the .elseif directive can be used more than once within a conditional
assembly block.

For information about relational operators, see subsection 3.9.4, Conditional
Expressions, on page 3-26.

 Assemble Conditional Blocks .if/.elseif/.else/.endif

4-51 Assembler Directives

Example This example shows conditional assembly.

 1 SYM1 .set 1
 2 SYM2 .set 2
 3 SYM3 .set 3
 4 SYM4 .set 4
 5
 6 If_4: .if SYM4 = SYM2 * SYM2
 7 0000 0004 .byte SYM4 ; Equal values
 8 .else
 9 .byte SYM2 * SYM2 ; Unequal values
 10 .endif
 11
 12 If_5: .if SYM1 <= 10
 13 0001 000a .byte 10 ; Less than / equal
 14 .else
 15 .byte SYM1 ; Greater than
 16 .endif
 17
 18 If_6: .if SYM3 * SYM2 != SYM4 + SYM2
 19 .byte SYM3 * SYM2 ; Unequal value
 20 .else
 21 0002 0008 .byte SYM4 + SYM4 ; Equal values
 22 .endif
 23
 24 If_7: .if SYM1 = 2
 25 .byte SYM1
 26 .elseif SYM2 + SYM3 = 5
 27 0003 0005 .byte SYM2 + SYM3
 28 .endif

.int/.word Initialize 16-bit Integer

4-52

Syntax
.int value1 [, ... , valuen]
.word value1 [, ... , valuen]

Description The .int and .word directives are equivalent; they place one or more values
into consecutive 16-bit fields in the current section.

The values can be either absolute or relocatable expressions. If an expression
is relocatable, the assembler generates a relocation entry that refers to the
appropriate symbol; the linker can then correctly patch (relocate) the refer-
ence. This allows you to initialize memory with pointers to variables or labels.

You can use as many values as fit on a single line. If you use a label, it points
to the first word that is initialized.

When you use .int or .word in a .struct/.endstruct sequence, they define a
member’s size; they do not initialize memory. For more information about
.struct/.endstruct, see Section 4.9, Assembly-Time Symbol Directives, on
page 4-21.

Example 1 In this example, the .int directive is used to initialize words.

 1 0000 .space 73h
 2 0000 .bss PAGE, 128
 3 0080 .bss SYMPTR, 3
 4 0008 E856 INST: LD #056h, A
 5 0009 000A .int 10, SYMPTR, –1, 35 + ’a’, INST
 000a 0080–
 000b FFFF
 000c 0084
 000d 0008’

Example 2 In this example, the .word directive is used to initialize words. The symbol
WordX points to the first word that is reserved.

 1 0000 0C80 WORDX: .word 3200, 1 + ’AB’, –0AFh, ’X’
 0001 4143
 0002 FF51
 0003 0058

 Create a Relocatable Label .label

4-53 Assembler Directives

Syntax
.label symbol

Description The .label directive defines a special symbol that refers to the loadtime
address rather than the runtime address within the current section. Most sec-
tions created by the assembler have relocatable addresses. The assembler
assembles each section as if it started at 0, and the linker relocates it to the
address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and
run at a different address. For example, you may wish to load a block of perfor-
mance-critical code into slower off-chip memory to save space, and then move
the code to high-speed on-chip memory to run it.

Such a section is assigned two addresses at link time: a load address and a
run address. All labels defined in the section are relocated to refer to the run-
time address so that references to the section (such as branches) are correct
when the code runs.

The .label directive creates a special label that refers to the loadtime address.
This function is useful primarily to designate where the section was loaded for
purposes of the code that relocates the section.

Example This example shows the use of a loadtime address label.

 .sect ”.EXAMP”
 .label EXAMP_LOAD ; load address of section.
START: ; run address of section.
 <code>
FINISH: ; run address of section end.
 .label EXAMP_END ; load address of section end.

For more information about assigning runtime and loadtime addresses in the
linker, see Section 9.9, Specifying a Section’s Runtime Address, on page 9-39.

.length/.width Set Listing Page Size

4-54

Syntax
.length page length
.width page width

Description The .length directive sets the page length of the output listing file. It affects the
current and following pages. You can reset the page length with another
.length directive.

� Default length: 60 lines
� Minimum length: 1 line
� Maximum length: 32 767 lines

The .width directive sets the page width of the output listing file. It affects the
next line assembled and the lines following; you can reset the page width with
another .width directive.

� Default width: 80 characters
� Minimum width: 80 characters
� Maximum width: 200 characters

The width refers to a full line in a listing file; the line counter value, SPC value,
and object code are counted as part of the width of a line. Comments and other
portions of a source statement that extend beyond the page width are trun-
cated in the listing.

The assembler does not list the .width and .length directives.

Example In this example, the page length and width are changed.

** Page length = 65 lines. **
** Page width = 85 characters. **

 .length 65
 .width 85

** Page length = 55 lines. **
** Page width = 100 characters. **

 .length 55
 .width 100

 Start/Stop Source Listing .list/.nolist

4-55 Assembler Directives

Syntax
.list
.nolist

Description Two directives enable you to control the printing of the source listing:

The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive
is encountered. The .nolist directive can be used to reduce assembly time and
the source listing size. It can be used in macro definitions to suppress the list-
ing of the macro expansion.

The assembler does not print the .list or .nolist directives or the source state-
ments that appear after a .nolist directive. However, it continues to increment
the line counter. You can nest the .list /.nolist directives; each .nolist needs a
matching .list to restore the listing.

By default, the source listing is printed to the listing file; the assembler acts as
if the .list directive had been specified.

Note: Creating a Listing File (–l Option)

If you don’t request a listing file when you invoke the assembler, the assem-
bler ignores the .list directive.

Example This example shows how the .copy directive inserts source statements from
another file. The first time this directive is encountered, the assembler lists the
copied source lines in the listing file. The second time this directive is encoun-
tered, the assembler does not list the copied source lines, because a .nolist
directive was assembled. Note that the .nolist, the second .copy, and the .list
directives do not appear in the listing file. Note also that the line counter is
incremented, even when source statements are not listed.

.list/.nolist Start/Stop Source Listing

4-56

Source file:

.copy ”copy2.asm”
* Back in original file

NOP
.nolist
.copy ”copy2.asm”
.list

* Back in original file
.string ”Done”

Listing file:

 1 .copy ”copy2.asm”
 A 1 * In copy2.asm (copy file)
 A 2 0000 0020 .word 32, 1 + ’A’
 0001 0042
 2 * Back in original file
 3 0002 F495 NOP
 7 * Back in original file
 8 0005 0044 .string ”Done”
 0006 006F
 0007 006E
 0008 0065

 Initialize Long Word .long/.xlong

4-57 Assembler Directives

Syntax
.long value1 [, ... , valuen]
.xlong value1 [, ... , valuen]

Description The .long and .xlong directives place one or more 32-bit values into consecu-
tive words in the current section. The most significant word is stored first. The
.long directive aligns the result on the long word boundary, while the .xlong
directive does not.

The value operand can be either an absolute or relocatable expression. If an
expression is relocatable, the assembler generates a relocation entry that
refers to the appropriate symbol; the linker can then correctly patch (relocate)
the reference. This allows you to initialize memory with pointers to variables
or with labels.

You can use up to 100 values, but they must fit on a single source statement
line. If you use a label, it points to the first word that is initialized.

When you use .long in a .struct /.endstruct sequence, .long defines a mem-
ber’s size; it does not initialize memory. For more information about .struct /
.endstruct, see Section 4.9, Assembly-Time Symbol Directives, on page 4-21.

Example This example shows how the .long and .xlong directives initialize double
words.

 1 0000 0000 DAT1: .long 0ABCDh, ’A’ + 100h, ’g’, ’o’
 0001 ABCD
 0002 0000
 0003 0141
 0004 0000
 0005 0067
 0006 0000
 0007 006F
 2 0008 0000’ .xlong DAT1, 0AABBCCDDh
 0009 0000
 000a AABB
 000b CCDD
 3 000c DAT2:

.loop/.break/.endloop Assign Character Strings to Substitution Symbols

4-58

Syntax
.loop [well-defined expression]
.break [well-defined expression]
.endloop

Description Three directives enable you to repeatedly assemble a block of code:

The .loop directive begins a repeatable block of code. The optional expression
evaluates to the loop count (the number of loops to be performed). If there is
no expression, the loop count defaults to 1024, unless the assembler first
encounters a .break directive with an expression that is true (nonzero) or
omitted.

The .break directive is optional, along with its expression. When the expres-
sion is false (0), the loop continues. When the expression is true (nonzero),
or omitted, the assembler breaks the loop and assembles the code after the
.endloop directive.

The .endloop directive terminates a repeatable block of code; it executes
when the .break directive is true (nonzero) or when number of loops performed
equals the loop count given by .loop

Example This example illustrates how these directives can be used with the .eval direc-
tive.

 1 .eval 0,x
 2 COEF .loop
 3 .word x*100
 4 .eval x+1, x
 5 .break x = 6
 6 .endloop
1 0000 0000 .word 0*100
1 .eval 0+1, x
1 .break 1 = 6
1 0001 0064 .word 1*100
1 .eval 1+1, x
1 .break 2 = 6
1 0002 00C8 .word 2*100
1 .eval 2+1, x
1 .break 3 = 6
1 0003 012C .word 3*100
1 .eval 3+1, x
1 .break 4 = 6
1 0004 0190 .word 4*100
1 .eval 4+1, x
1 .break 5 = 6
1 0005 01F4 .word 5*100
1 .eval 5+1, x
1 .break 6 = 6

 Define Macro Library .mlib

4-59 Assembler Directives

Syntax
.mlib [”]filename[”]

Description The .mlib directive provides the assembler with the name of a macro library.
A macro library is a collection of files that contain macro definitions. These files
are bound into a single file (called a library or archive) by the archiver. Each
member of a macro library may contain one macro definition that corresponds
to the name of the file. Macro library members must be source files (not object
files).

The filename of a macro library member must be the same as the macro name,
and its extension must be .asm. The filename must follow host operating sys-
tem conventions; it may be enclosed in double quotes. You can specify a full
pathname (for example, c:\dsp\macs.lib). If you do not specify a full pathname,
the assembler searches for the file in:

1) The directory that contains the current source file
2) Any directories named with the –i assembler option
3) Any directories specified by the environment variable A_DIR

For more information about the –i option and the environment variable, see
Section 3.4, Naming Alternate Directories for Assembler Input, on page 3-6.

When the assembler encounters a .mlib directive, it opens the library and
creates a table of the library’s contents. The assembler enters the names of
the individual library members into the opcode table as library entries. This
redefines any existing opcodes or macros that have the same name. If one of
these macros is called, the assembler extracts the entry from the library and
loads it into the macro table. The assembler expands the library entry in the
same way it expands other macros, but it does not place the source code into
the listing. Only macros that are actually called from the library are extracted,
and they are extracted only once.

.mlib Define Macro Library

4-60

Example This example creates a macro library that defines two macros, inc1 and zac1.
The file inc1.asm contains the definition of inc1, and zac1.asm contains the
definition of zac1.

inc1.asm zac1.asm

* Macro for incrementing
inc1 .macro
 ADD #1,A
 ADD #1,B
 .endm

* Macro for zero accumulators
zac1 .macoro
 SUB A,A
 SUB B,B
 .endm

Use the archiver to create a macro library:

ar500 –a mac inc1.asm zac1.asm

Now you can use the .mlib directive to reference the macro library and define
the inc1 and dec1 macros:

 1 .mlib ”mac.lib”
 2 0000 zac1 ; Macro call
1 0000 F420 SUB A,A
1 0001 F720 SUB B,B
 3 0002 inc1 ; Macro call
1 0002 F000 ADD #1,A
 0003 0001
1 0004 F300 ADD #1,B
 0005 0001

 Start/Stop Expansion Listing .mlist/.mnolist

4-61 Assembler Directives

Syntax
.mlist
.mnolist

Description Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the
listing file.

The .mnolist directive suppresses macro and .loop/.endloop block expan-
sions in the listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

Example This example defines a macro named STR_3. The first time the macro is
called, the macro expansion is not listed, because a .mnolist directive was
assembled. The second time the macro is called, the macro expansion is
listed, because a .mlist directive was assembled.

 1 STR_3 .macro P1, P2, P3
 2 .string ”:p1:”, ”:p2:”, ”:p3:”
 3 .endm
 4
 5 0000 STR_3 ”as”, ”I”, ”am”
1 0000 003A .string ”:p1:”, ”:p2:”, ”:p3:”
 0001 0070
 0002 0031
 0003 003A
 0004 003A
 0005 0070
 0006 0032
 0007 003A
 0008 003A
 0009 0070
 000a 0033
 000b 003A
 6 .mnolist
 7 000c STR_3 ”as”, ”I”, ”am”
 8 .mlist
 9 0018 STR_3 ”as”, ”I”, ”am”
1 0018 003A .string ”:p1:”, ”:p2:”, ”:p3:”
 0019 0070
 001a 0031
 001b 003A
 001c 003A
 001d 0070
 001e 0032
 001f 003A
 0020 003A
 0021 0070
 0022 0033
 0023 003A

.mmregs Assign Memory–Mapped Register Names as Global Symbols

4-62

Syntax
.mmregs

Description The .mmregs directive defines global symbolic names for the ’C54x registers
and places them in the global symbol table. It is equivalent to executing AL .set
8, AH .set 9, etc. The symbols are local and absolute. Using the .mmregs direc-
tive makes it unnecessary to define these symbols.

Table 4–9. Memory-Mapped Registers

Name
Hexadecimal-
Address Description

IMR 0000 Interrupt mask register

IFR 0001 Interrupt flag register

– 2–5 Reserved

ST0 0006 Status 0 register

ST1 0007 Status 1 register

AL 0008 A accumulator low (A [15:0])

AH 0009 A accumulator high (A [31:16])

AG 000A A accumulator guard (A [39:32])

BL 000B B accumulator low (B [15:0])

BH 000C B accumulator high (B [31:16])

BG 000D B accumulator guard (B [39:32])

T 000E Temporary register

TRN 000F Transition register

BK 0019 Circular size register

BRC 001A Block repeat counter

RSA 001B Block repeat start address

REA 001C Block repeat end address

PMST 001D PMST register

DRR0 0020 Data receive register 0

BDRR 0020 Data receive register

Note: Duplication of address values in the table supports the different names of the registers
as they are implemented on different ’C54x devices.

 Assign Memory-Mapped Register Names as Global Symbols .mmregs

4-63 Assembler Directives

Table 4–9. Memory-Mapped Registers (Continued)

Name
Hexadecimal-
Address Description

BDDR0 0020 BSP0 data receive register

DRR 0020 Data receive register

DXR0 0021 Data transmit register 0

BDXR 0021 Data transmit register

BDXR0 0021 Data transmit register

DXR 0021 Data transmit register

SPC0 0022 Serial port control register 0

BSPC 0022 Serial port control register

SPC 0022 Serial port control register

BSPCE 0023 BSP control extension register

BSPCE0 0023 BSP control extension register

SPCE 0023 BSP control extension register

TIM 0024 Timer register

PRD 0025 Period register

TCR 0026 Timer control register

PDWSR 0028 Program/data S/W wait-state register

SWWSR 0028 Program/data S/W wait-state register

IOWSR 0029 Bank-switching control register

BSCR 0029 Bank-switching control register

HPIC 002C HPI control register

DRR1 0030 Data receive register 1

TRCV 0030 Data receive register

DXR1 0031 Data transmit register 1

TDXR 0031 Data transmit register

Note: Duplication of address values in the table supports the different names of the registers
as they are implemented on different ’C54x devices.

.mmregs Assign Memory-Mapped Register Names as Global Symbols

4-64

Table 4–9. Memory-Mapped Registers (Continued)

Name
Hexadecimal-
Address Description

SPC1 0032 Serial port control register 1

TSPC 0032 Serial port control register

TRAD 0035 TDM receive address register

AXR 0038 ABU transmit address register

TCSR 0033 TDM channel select register

TRTA 0034 TDM receive/transmit register

AXR0 0038 ABU transmit address register

ARX 0038 ABU transmit address register

BKX 0039 ABU transmit buffer size register

BKX0 0039 ABU transmit buffer size register

ARR 003A ABU receive address register

ARR0 003A ABU receive address register

BKR 003B ABU receive buffer size register

AXR1 003C ABU transmit address register

BKX1 003D ABU transmit buffer size register

ARR1 003E ABU receive address register

BKR1 003F ABU receive buffer size register

BDRR1 0040 BSP data receive register

BDXR1 0041 Data transmit register

BSPC1 0042 BSP control register

BSPCE1 0043 BSP control extension register

CLKMD 0058 Clock modes register

XPC 001E Extended memory map register

Note: Duplication of address values in the table supports the different names of the registers
as they are implemented on different ’C54x devices.

 Terminate Local Symbol Block .newblock

4-65 Assembler Directives

Syntax
.newblock

Description The .newblock directive undefines any local labels currently defined. Local
labels, by nature, are temporary; the .newblock directive resets them and ter-
minates their scope.

A local label is a label in the form $n, where n is a single decimal digit. A local
label, like other labels, points to an instruction word. Unlike other labels, local
labels cannot be used in expressions. Local labels are not included in the sym-
bol table.

After a local label has been defined and (perhaps) used, you should use the
.newblock directive to reset it. The .text, .data, and named sections also reset
local labels. Local labels that are defined within an include file are not valid out-
side of the local file.

Example This example shows how the local label $1 is declared, reset, and then
declared again.

 1 .ref ADDRA, ADDRB, ADDRC
 2 0076 B .set 76h
 3
 4 0000 1000! LABEL1: LD ADDRA, A
 5 0001 F010 SUB #B, A
 0002 0076
 6 0003 F843 BC $1, ALT
 0004 0008’
 7 0005 1000! LD ADDRB, A
 8 0006 F073 B $2
 0007 0009’
 9
 10 0008 1000! $1 LD ADDRA, A
 11 0009 0000! $2 ADD ADDRC, A
 12 .newblock ; Undefine $1 to reuse
 13 000a F843 BC $1, ALT
 000b 000D’
 14 000c 8000! STL A, ADDRC
 15 000d F495 $1 NOP

.option Select Listing Options

4-66

Syntax
.option option list

Description The .option directive selects several options for the assembler output listing.
Option list is a list of options separated by vertical lines; each option selects
a listing feature. These are valid options:

B limits the listing of .byte directives to one line.

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

R resets the B, M, T, and W options.

T limits the listing of .string directives to one line.

W limits the listing of .word directives to one line.

X produces a symbol cross-reference listing. (You can also obtain a
cross-reference listing by invoking the assembler with the
–x option.)

Options are not case sensitive.

 Select Listing Options .option

4-67 Assembler Directives

Example This example shows how to limit the listings of the .byte, .word, .long, and
.string directives to one line each.

 1 **
 2 ** Limit the listing of .byte, .word, **
 3 ** .long, and .string directives to 1 **
 4 ** to 1 line each. **
 5 **
 6 .option B, W, L, T
 7 0000 00BD .byte –’C’, 0B0h, 5
 8 0004 AABB .long 0AABBCCDDh, 536 + ’A’
 9 0008 15AA .word 5546, 78h
 10 000a 0045 .string ”Extended Registers”
 11
 12 **
 13 ** Reset the listing options. **
 14 **
 15 .option R
 16 001c 00BD .byte –’C’, 0B0h, 5
 001d 00B0
 001e 0005
 17 0020 AABB .long 0AABBCCDDh, 536 + ’A’
 0021 CCDD
 0022 0000
 0023 0259
 18 0024 15AA .word 5546, 78h
 0025 0078
 19 0026 0045 .string ”Extended Registers”
 0027 0078
 0028 0074
 0029 0065
 002a 006E
 002b 0064
 002c 0065
 002d 0064
 002e 0020
 002f 0052
 0030 0065
 0031 0067
 0032 0069
 0033 0073
 0034 0074
 0035 0065
 0036 0072
 0037 0073

.page Eject Page in Listing

4-68

Syntax
.page

Description The .page directive produces a page eject in the listing file. The .page directive
is not printed in the source listing, but the assembler increments the line
counter when it encounters it. Using the .page directive to divide the source
listing into logical divisions improves program readability.

Example This example shows how the .page directive causes the assembler to begin
a new page of the source listing.

Source file:

 .title ”**** Page Directive Example ****”
; .
; .
; .
 .page

Listing file:

 TMS320C54x COFF Assembler Version x.xx Fri Aug 23 13:06:08 1996
 Copyright (c) 1993–1996 Texas Instruments Incorporated

 **** Page Directive Example **** PAGE 1

 2 ; .
 3 ; .
 4 ; .
 TMS320C54x COFF Assembler Version x.xx Fri Aug 23 13:06:08 1996
 Copyright (c) 1993–1996 Texas Instruments Incorporated

 **** Page Directive Example **** PAGE 2

 Specify Blocking for an Initialized Section .sblock

4-69 Assembler Directives

Syntax
.sblock [”]section name[”] [, ”section name”, . . .]

Description The .sblock directive designates sections for blocking. Blocking is an address
alignment mechanism similar to page alignment, but weaker. A blocked sec-
tion is guaranteed to not cross a page boundary (128 words) if it is smaller than
a page, or to start on a page boundary if it is larger than a page. This directive
allows specification of blocking for initialized sections only, not uninitialized
sections declared with .usect or the .bss directives. The section names may
optionally be enclosed in quotes.

Example This example designates the .text and .data sections for blocking.

1 **
2 ** Specify blocking for the .text **
3 ** and .data sections. **
4 **

 5 .sblock .text, .data

.sect Assign Character Strings to Substitution Symbols

4-70

Syntax
.sect ” section name”

Description The .sect directive defines a named section that can be used like the default
.text and .data sections. The .sect directive begins assembling source code
into the named section.

The section name identifies a section that the assembler assembles code into.
The name can be up to 200 characters and must be enclosed in double quotes.
A section name can contain a subsection name in the form section
name:subsection name. For COFF1 formatted files, only the first 8 characters
are significant.

For more information about COFF sections, see Chapter 2, Introduc-
tion to Common Object File Format.

 Assemble into Named Sections .sect

4-71 Assembler Directives

Example This example defines two special-purpose sections, Sym_Defs and Vars, and
assembles code into them.

 1 **
 2 ** Begin assembling into .text section. **
 3 **
 4 0000 .text
 5 0000 E878 LD #78h, A ; Assembled into .text
 6 0001 F000 ADD #36h, A ; Assembled into .text
 0002 0036
 7 **
 8 ** Begin assembling into Sym_Defs section. **
 9 **
 10 0000 .sect ”Sym_Defs”
 11 0000 3D4C .float 0.05 ; Assembled into Sym_Defs
 0001 CCCD
 12 0002 00AA X: .word 0AAh ; Assembled into Sym_Defs
 13 0003 F000 ADD #X, A ; Assembled into Sym_Defs
 0004 0002+
 14 **
 15 ** Begin assembling into Vars section. **
 16 **
 17 0000 .sect ”Vars”
 18 0010 WORD_LEN .set 16
 19 0020 DWORD_LEN .set WORD_LEN * 2
 20 0008 BYTE_LEN .set WORD_LEN / 2
 21 **
 22 ** Resume assembling into .text section. **
 23 **
 24 0003 .text
 25 0003 F000 ADD #42h, A ; Assembled into .text
 0004 0042
 26 0005 0003 .byte 3, 4 ; Assembled into .text
 0006 0004
 27 **
 28 ** Resume assembling into Vars section. **
 29 **
 30 0000 .sect ”Vars”
 31 0000 000D .field 13, WORD_LEN
 32 0001 0A00 .field 0Ah, BYTE_LEN
 33 0002 0000 .field 10q, DWORD_LEN
 0003 0008
 34

.set/.equ Define Assembly-Time Constant

4-72

Syntax
symbol .set value
symbol .equ value

Description The .set and .equ directives equate a constant value to a symbol. The symbol
can then be used in place of a value in assembly source. This allows you to
equate meaningful names with constants and other values.

� The symbol is a label that must appear in the label field.

� The value must be a well-defined expression; that is, all symbols in the
expression must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module
cannot be used in the expression. If the expression is relocatable, the symbol
to which it is assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value
is not part of the actual object code and is not written to the output file.

Symbols defined with .set can be made externally visible with the .def or .global
directive. In this way, you can define global absolute constants.

Example This example shows how symbols can be assigned with .set and .equ.

 1 **
 2 ** Equate symbol AUX_R1 to register AR1 **
 3 ** and use it instead of the register. **
 4 **
 5 0011 AUX_R1 .set AR1
 6 0000 7711 STM #56h, AUX_R1
 0001 0056
 7
 8 **
 9 ** Set symbol index to an integer expr. **
 10 ** and use it as an immediate operand. **
 11 **
 12 0035 INDEX .equ 100/2 +3
 13 0002 F000 ADD #INDEX, A
 0003 0035
 14
 15 **
 16 ** Set symbol SYMTAB to a relocatable expr. **
 17 ** and use it as a relocatable operand. **
 18 **
 19 0004 000A LABEL .word 10
 20 0005’ SYMTAB .set LABEL + 1
 21
 22 **
 23 ** Set symbol NSYMS equal to the symbol **
 24 ** INDEX and use it as you would INDEX. **
 25 **
 26 0035 NSYMS .set INDEX
 27 0005 0035 .word NSYMS

 Reserve Space .space/.bes

4-73 Assembler Directives

Syntax
.space size in bits
.bes size in bits

Description The .space and .bes directives reserve size number of bits in the current sec-
tion and fill them with 0s.

When you use a label with the .space directive, it points to the first word
reserved. When you use a label with the .bes directive, it points to the last word
reserved.

Example This example shows how memory is reserved with the .space and .bes direc-
tives.

 1 ***
 2 ** Begin assembling into .text section. **
 3 ***
 4 0000 .text
 5
 6 ***
 7 ** Reserve 0F0 bits (15 words in the **
 8 ** .text section. **
 9 ***
 10 0000 .space 0F0h
 11 000f 0100 .word 100h, 200h
 0010 0200
 12 ***
 13 ** Begin assembling into .data section. **
 14 ***
 15 0000 .data
 16 0000 0049 .string ”In .data”
 0001 006E
 0002 0020
 0003 002E
 0004 0064
 0005 0061
 0006 0074
 0007 0061
 17 ***
 18 ** Reserve 100 bits in the .data section; **
 19 ** RES_1 points to the first word that **
 20 ** contains reserved bits. **
 21 ***
 22 0008 RES_1: .space 100
 23 000f 000F .word 15
 24 0010 0008” .word RES_1
 25
 26 ***
 27 ** Reserve 20 bits in the .data section; **
 28 ** RES_2 points to the last word that **
 29 ** contains reserved bits. **
 30 ***
 31 0012 RES_2: .bes 20
 32 0013 0036 .word 36h
 33 0014 0012” .word RES_2

.sslist/.ssnolist Control Listing of Substitution Symbols

4-74

Syntax
.sslist
.ssnolist

Description Two directives enable you to control substitution symbol expansion in the list-
ing file:

The .sslist directive allows substitution symbol expansion in the listing file.
The expanded line appears below the actual source line.

The .ssnolist directive suppresses substitution symbol expansion in the list-
ing file.

By default, all substitution symbol expansion in the listing file is inhibited. Lines
with the pound (#) character denote expanded substitution symbols.

Example This example shows code that, by default, suppresses the listing of substitu-
tion symbol expansion, and it shows the .sslist directive assembled, instructing
the assembler to list substitution symbol code expansion.

(a) Mnemonic example

 1 000000 .bss ADDRX, 1
 2 000001 .bss ADDRY, 1
 3 000002 .bss ADDRA, 1
 4 000003 .bss ADDRB, 1
 5 ADD2 .macro ADDRA, ADDRB
 6 LD ADDRA, A
 7 ADD ADDRB, A
 8 STL A, ADDRB
 9 .endm
10
11 0000008094 STL A, *AR4+
12 000001 ADD2 ADDRX, ADDRY

1 0000011000– LD ADDRX, A
1 0000020001– ADD ADDRY, A
1 0000038001– STL A, ADDRY

13
14 .sslist
15
16 000004 8094 STL A, *AR4+
17 000005 8090 STL A, *AR0+
18
19 000006 ADD2 ADDRX, ADDRY

1 0000061000– LD ADDRA, A
LD ADDRX, A
1 0000070001– ADD ADDRB, A
ADD ADDRY, A
1 0000088001– STL A, ADDRB
STL A, ADDRY

 Control Listing of Substitute Symbols .sslist/.ssnolist

4-75 Assembler Directives

(b) Algebraic example

 1 000000 .bss ADDRX, 1
 2 000001 .bss ADDRY, 1
 3 000002 .bss ADDRA, 1
 4 000003 .bss ADDRB, 1
 5 ADD2 .macro ADDRA, ADDRB
 6 A = ADDRA
 7 A = A + ADDRB
 8 ADDRB = A
 9 .endm
10
11 0000008094 *AR4+ = A
12 000001 ADD2 ADDRX, ADDRY

1 0000011000– A = @ADDRX
1 0000020001– A = A + ADDRY
1 0000038001– @ADDRY = A

13
14 .sslist
15
16 000004 8094 *AR4+ = A
17 000005 8090 *AR0+ = A
18
19 000006 ADD2 ADDRX, ADDRY

1 0000061000– A = ADDRA
A = @ADDRX
1 0000070001– A = A + ADDRB
A = A + @ADDRY
1 0000088001– ADDRB = A
@ADDRY = A

.string/.pstring Initialize Text

4-76

Syntax
.string ” string1 ” [, ... , ” stringn ”]
.pstring ” string1 ” [, ... , ” stringn ”]

Description The .string and .pstring directives place 8-bit characters from a character
string into the current section. With the .string directive, each 8 bit character
has its own 16-bit word, but with the .pstring directive, the data is packed so
that each word contains two 8-bit bytes. Each string is either:

� An expression that the assembler evaluates and treats as a 16-bit signed
number, or

� A character string enclosed in double quotes. Each character in a string
represents a separate byte.

With .pstring, values are packed into words starting with the most significant
byte of the word. Any unused space is padded with null bytes.

The assembler truncates any values that are greater than 8 bits. You may have
up to 100 operands, but they must fit on a single source statement line.

If you use a label, it points to the location of the first word that is initialized.

Note that when you use .string in a .struct/.endstruct sequence, .string defines
a member’s size; it does not initialize memory. For more information about
.struct/.endstruct, see Section 4.9, Assembly-Time Symbol Directives, on
page 4-21.

Example This example shows 8-bit values placed into words in the current section.

 1 0000 0041 Str_Ptr: .string ”ABCD”
 0001 0042
 0002 0043
 0003 0044
 2 0004 0041 .string 41h, 42h, 43h, 44h
 0005 0042
 0006 0043
 0007 0044
 3 0008 4175 .pstring ”Austin”, ”Houston”
 0009 7374
 000a 696E
 000b 486F
 000c 7573
 000d 746F
 000e 6E00
 4 000f 0030 .string 36 + 12

 Declare Structure Type .struct/.endstruct/.tag

4-77 Assembler Directives

Syntax
[stag] .struct [expr]
[mem0] element [expr0]
[mem1] element [expr1]
 . . .
 . . .
 . . .
[memn] .tag stag [exprn]
 . . .
 . . .
 . . .
[memN] element [exprN]
[size] .endstruct

 label .tag stag

Description The .struct directive assigns symbolic offsets to the elements of a data struc-
ture definition. This enables you to group similar data elements together and
then let the assembler calculate the element offset. This is similar to a C struc-
ture or a Pascal record.

Note:

The .struct directive does not allocate memory. It merely creates a symbolic
template that can be used repeatedly.

The .endstruct directives terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures that
contain other structures. The .tag directive does not allocate memory. The
structure tag (stag) of a .tag directive must have been previously defined.

.struct/.endstruct/.tag Declare Structure Type

4-78

stag is the structure’s tag. Its value is associated with the beginning
of the structure. If no stag is present, the assembler puts the
structure members in the global symbol table with the value of
their absolute offset from the top of the structure. Stag is optional
for .struct, but required for .tag.

expr is an optional expression indicating the beginning offset of the
structure. Structures default to start at 0.

memn is an optional label for a member of the structure. This label is ab-
solute and equates to the present offset from the beginning of the
structure. A label for a structure member cannot be declared
global.

element is one of the following descriptors: .string, .byte, .word, .float, .tag,
or .field. All of these except .tag are typical directives that initialize
memory. Following a .struct directive, these directives describe
the structure element’s size. They do not allocate memory. A .tag
directive is a special case because a stag must be used (as in the
definition).

exprn is an optional expression for the number of elements described.
This value defaults to 1. A .string element is considered to be one
word in size, and a .field element is one bit.

size is an optional label for the total size of the structure.

Note: Directives That Can Appear in a .struct /.endstruct Sequence

The only directives that can appear in a .struct/.endstruct sequence are ele-
ment descriptors, conditional assembly directives, and the .align directive,
which aligns the member offsets on word boundaries. Empty structures are
illegal.

These examples show various uses of the .struct, .tag, and .endstruct direc-
tives.

 Declare Structure Types .struct/.endstruct/.tag

4-79 Assembler Directives

Example 1

 1 REAL_REC .struct ; stag
 2 0000 NOM .int ; member1 = 0
 3 0001 DEN .int ; member2 = 1
 4 0002 REAL_LEN .endstruct ; real_len = 4
 5
 6 0000 0001– ADD REAL + REAL_REC.DEN, A
 7 ; access structure element
 8
 9 0000 .bss REAL, REAL_LEN ; allocate mem rec

Example 2

 1 CPLX_REC .struct
 2 0000 REALI .tag REAL_REC ; stag
 3 0002 IMAGI .tag REAL_REC ; member1 = 0
 4 0004 CPLX_LEN .endstruct ; cplx_len = 4
 5
 6 COMPLEX .tag CPLX_REC ; assign structure attrib
 7
 8 0002 .bss COMPLEX, CPLX_LEN
 9
 10 0001 0002– ADD COMPLEX.REALI, A ; access structure
 11 0002 8002– STL A, COMPLEX.REALI
 12
 13 0003 0104– ADD COMPLEX.IMAGI, B ; allocate space

Example 3

 1 .struct ; no stag puts mems into
 2 ; global symbol table
 3 0000 X .int ; create 3 dim templates
 4 0001 Y .int
 5 0002 Z .int
 6 0003 .endstruct

Example 4

 1 BIT_REC .struct ; stag
 2 0000 STREAM .string 64
 3 0040 BIT7 .field 7 ; bits1 = 64
 4 0040 BIT9 .field 9 ; bits2 = 64
 5 0041 BIT10 .field 10 ; bits3 = 65
 6 0042 X_INT .int ; x_int = 67
 7 0043 BIT_LEN .endstruct ; length = 68
 8
 9 BITS .tag BIT_REC
 10 0000 0040– ADD BITS.BIT7, A ; move into acc
 11 0001 f030 AND #007Fh, A ; mask off garbage bits
 0002 007f
 12
 13 0000 .bss BITS, BIT_REC

.tab Define Tab Size

4-80

Syntax
.tab size

Description The .tab directive defines the tab size. Tabs encountered in the source input
are translated to size spaces in the listing. The default tab size is eight spaces.

Example Each of the following lines consists of a single tab character followed by an
NOP instruction.

Source file:

; default tab size
NOP
NOP
NOP

 .tab 4
NOP
NOP
NOP

 .tab 16
NOP
NOP
NOP

Listing file:

 1 ; default tab size
 2 0000 F495 NOP
 3 0001 F495 NOP
 4 0002 F495 NOP
 5
 7 0003 F495 NOP
 8 0004 F495 NOP
 9 0005 F495 NOP
 10
 12 0006 F495 NOP
 13 0007 F495 NOP
 14 0008 F495 NOP

 Assemble Into .text Sections .text

4-81 Assembler Directives

Syntax
.text

Description The .text directive tells the assembler to begin assembling into the .text sec-
tion, which usually contains executable code. The section program counter is
set to 0 if nothing has yet been assembled into the .text section. If code has
already been assembled into the .text section, the section program counter is
restored to its previous value in the section.

.text is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you specify a different
sections directives (.data or .sect).

For more information about COFF sections, see Chapter 2, Introduc-
tion to Common Object File Format.

Example This example assembles code into the .text and .data sections. The .data sec-
tion contains integer constants, and the .text section contains character
strings.
 1 ***
 2 ** Begin assembling into .data section.**
 3 ***
 4 0000 .data
 5 0000 000a .byte 0Ah, 0Bh
 0001 000b
 6
 7 **
 8 ** Begin assembling into .text section. **
 9 **
10 0000 .text
11 0000 0041 START: .string ”A”,”B”,”C”
 0001 0042
 0002 0043
12 0003 0058 END: .string ”X”,”Y”,”Z”
 0004 0059
 0005 005a
13
14 0006 0000’ ADD START, A
15 0007 0003’ ADD END, A
16 ***
17 ** Resume assembling into .data section.**
18 ***
19 0002 .data
20 0002 000c .byte 0Ch, 0Dh
 0003 000d
21 ***
22 ** Resume assembling into .text section.**
23 ***
24 0008 .text
25 0008 0051 .string ”Quit”
 0009 0075
 000a 0069
 000b 0074

.title Define Page Title

4-82

Syntax
.title ” string”

Description The .title directive supplies a title that is printed in the heading on each listing
page. The source statement itself is not printed, but the line counter is increm-
ented.

The string is a quote-enclosed title of up to 65 characters. If you supply more
than 65 characters, the assembler truncates the string and issues a warning.

The assembler prints the title on the page that follows the directive, and on sub-
sequent pages until another .title directive is processed. If you want a title on
the first page, the first source statement must contain a .title directive.

Example In this example, one title is printed on the first page and a different title on
succeeding pages.

Source file:

 .title ”**** Fast Fourier Transforms ****”
; .
; .
; .
 .title ”**** Floating–Point Routines ****”
 .page

Listing file:

 TMS320C54x COFF Assembler Version x.xx Fri Aug 23 16:25:49 1996
 Copyright (c) 1993–1996 Texas Instruments Incorporated

 **** Fast Fourier Transforms **** PAGE 1

 2 ; .
 3 ; .
 4 ; .
 TMS320C54x COFF Assembler Version x.xx Fri Aug 23 16:25:49 1996
 Copyright (c) 1993–1996 Texas Instruments Incorporated

 **** Floating–Point Routines **** PAGE 2

 Reserve Uninitialized Space .usect

4-83 Assembler Directives

Syntax
symbol .usect ” section name” , size in words [, blocking flag] [, alignment flag]

Description The .usect directive reserves space for variables in an uninitialized, named
section. This directive is similar to the .bss directive; both simply reserve space
for data and have no contents. However, .usect defines additional sections
that can be placed anywhere in memory, independently of the .bss section.

symbol points to the first location reserved by this invocation of the
.usect directive. The symbol corresponds to the name of
the variable for which you’re reserving space.

section name must be enclosed in double quotes. This parameter
names the uninitialized section. The name can be up to
200 characters. For COFF1 formatted files, only the first
8 characters are significant. A section name can contain
a subsection name in the form section name:subsection
name.

size in words is an expression that defines the number of words that are
reserved in section name.

blocking flag is an optional parameter. If specified and nonzero, the flag
means that this section will be blocked. Blocking is an
address mechanism similar to alignment, but weaker. It
means a section is guaranteed to not cross a page bound-
ary (128 words) if it is smaller than a page, and to start on
a page boundary if it is larger than a page. This blocking
applies to the section, not to the object declared with this
instance of the .usect directive.

alignment flag is an optional parameter. This flag causes the assembler
to allocate size on long word boundaries.

Other sections directives (.text, .data, and .sect) end the current section and
tell the assembler to begin assembling into another section. The .usect and the
.bss directives, however, do not affect the current section. The assembler
assembles the .usect and the .bss directives and then resumes assembling
into the current section.

Variables that can be located contiguously in memory can be defined in the
same specified section; to do so, repeat the .usect directive with the same sec-
tion name.

For more information about COFF sections, see Chapter 2, Introduc-
tion to Common Object File Format.

.usect Reserve Uninitialized Space

4-84

Example This example uses the .usect directive to define two uninitialized, named sec-
tions, var1 and var2. The symbol ptr points to the first word reserved in the var1
section. The symbol array points to the first word in a block of 100 words
reserved in var1, and dflag points to the first word in a block of 50 words in var1.
The symbol vec points to the first word reserved in the var2 section.

Figure 4–7 on page 4-85 shows how this example reserves space in two unini-
tialized sections, var1 and var2.

 1 **
 2 ** Assemble into .text section. **
 3 **
 4 0000 .text
 5 0000 E803 LD #03h, A
 6
 7 **
 8 ** Reserve 1 word in var1. **
 9 **
 10 0000 ptr .usect ”var1”, 1
 11
 12 **
 13 ** Reserve 100 words in var1. **
 14 **
 15 0001 array .usect ”var1”, 100
 16
 17 0001 F000 ADD #037h, A ; Still in .text
 0002 0037
 18
 19 **
 20 ** Reserve 50 words in var1. **
 21 **
 22 0065 dflag .usect ”var1”, 50
 23
 24 0003 F000 ADD #dflag, A ; Still in .text
 0004 0065–
 25
 26 **
 27 ** Reserve 100 words in var2. **
 28 **
 29 0000 vec .usect ”var2”, 100
 30
 31 0005 F000 ADD #vec, A ; Still in .text
 0006 0000–
 32 **
 33 ** Declare an external .usect symbol. **
 34 **
 35 .global array

 Reserve Uninitialized Space .usect

4-85 Assembler Directives

Figure 4–7. The .usect Directive

1 word

100 words

50 words

ptr

array

dflag

151 words reserved in var1

section var1 section var2

100 words

100 words reserved in var2

.version Determine Device

4-86

Syntax
.version value

Description The .version directive determines for which processor instructions are built.
Use one of the following for value:

541
542
543
545
545LP
546LP
548

5-1Mnemonic Instruction Set Summary

Mnemonic Instruction Set Summary

The TMS320C54x device supports general-purpose instructions as well as
arithmetic-intensive instructions that are particularly suited for DSP and other
numeric-intensive applications. There are two instruction sets—mnemonic
and algebraic. These two sets perform the same functions but with very differ-
ent syntax.

This chapter contains a summary of the mnemonic instruction set. Table en-
tries show the syntax for the instruction and describes the instruction opera-
tion. Section 5.1, Using the Summary Tables, shows a sample table entry and
describes the abbreviations used in the table. Section 5.2, Mnemonic and Al-
gebraic Instruction Sets Cross-Reference, on page 5-5 cross references the
mnemonic instruction set to the algebraic instruction set.

This chapter does not cover topics such as opcodes, instruction timing, or
addressing modes.

Topic Page

5.1 Using the Summary Tables 5-2.

5.2 Mnemonic and Algebraic Instruction Sets Cross-Reference 5-5.

5.3 Mnemonic Instruction Set Summary 5-14.

Chapter 5

Using the Summary Tables

 5-2

5.1 Using the Summary Tables

To help you read the summary table, this section provides an example of a
table entry and lists the acronyms used in the table.

5.1.1 Table Entry Example

This is how the AND mnemonic instruction appears in the summary table:

Example 5–1. Table Entry for a Mnemonic Instruction

Syntax Description

AND Smem, src
AND #lk, [SHIFT1,] src [,dst]
AND #lk, 16, src [,dst]
AND src [, SHIFT] [,dst]

AND With Accumulator

AND the data value or constant with the source accumulator (A or B). If a
shift is specified, left shift the data value before the AND. Store the result
in the destination accumulator, if specified; otherwise, store the result in the
source accumulator.

5.1.2 Table Entry Explained

The syntax column lists the syntax for the AND instruction. Alternative syntax
is shown in the lines following the first syntax. Abbreviations used in syntax are
found in subsection 5.1.3, Symbols and Acronyms, on page 5-2.

The description column briefly describes how the instruction functions. Often,
an instruction functions slightly differently with different parameters. For com-
plete information about an instruction, see the TMS320C54x User’s Guide.

5.1.3 Symbols and Acronyms

The following table lists the instruction set symbols and acronyms used
throughout this chapter.

Table 5–1. Symbols and Acronyms Used in the Instruction Set Summary

Symbol Definition

() Contents of

[] Optional items; the brackets are not part of the syntax

Prefix of constants used in immediate addressing

| | Parallel instructions

ARP Auxiliary register pointer

Using the Summary Tables

5-3Mnemonic Instruction Set Summary

Table 5–1. Symbols and Acronyms Used in the Instruction Set Summary (Continued)

Symbol Definition

ARX Auxiliary register (AR0–AR7)

ASM Accumulator shift mode (from ST1)

Borrow A literal that specifies to subtract with borrow

BRC Block repeat counter

Carry Carry bit

C16 Dual 16-bit/double-precision bit

CC Condition code

CMPT Compatibility mode bit

cond Conditional expression

data Data memory access which can be incremented under a single
repeat instruction

dbl 32-bit access

dmad 16-bit data immediate addressed value

DP Data page pointer

dst Destination accumulator (A or B)

dst Accumulator opposite the previous dst

dst1, dst2 If dst1 = A, then dst2 = B
If dst1 = B, then dst2 = A

dual Dual access

extpmad 23-bit immediate program-memory address

HI High half of the register

INTM Interrupt mask bit

K Short immediate value (less than 9 bits)

k3 3-bit immediate value (0 � k3 � 7)

k5 5-bit immediate value (–16 � k5 � 15)

k9 9-bit immediate value (0 � k9 � 511)

lk Long immediate value (16 bits)

Lmem 32-bit single-addressed mode value (direct or indirect) (long word
addressing)

mmr,
MMR

Memory-mapped register

Using the Summary Tables

 5-4

Table 5–1. Symbols and Acronyms Used in the Instruction Set Summary (Continued)

Symbol Definition

MMRx,
MMRy

Memory-mapped register, AR0–AR7 or SP

n Operand for the XC instruction indicating the number of instruc-
tions to conditionally execute
� 1 = One instruction executes
� 0 = Two instructions execute

N Status register for RSBX/SSBX instruction; either 0 or 1

OVM Overflow mode bit

PA 16-bit port immediate addressed value

PC Program counter

pmad 16-bit program immediate addressed value

port I/O port access

prog Program memory access

RC Repeat counter

rnd Round the expression

SBIT Status register bit for RSBX/SSBX instruction; 0 � SBIT � 15

SHIFT Shift value in –16 to +15 range

SHIFT1 Shift value in 0 to 15 range

SHIFT2 Shift value in 0 to 16 range

Sind Single indirect address mode

Smem 16-bit single-addressed mode value (direct or indirect)

SP Stack pointer register

src Source accumulator (A or B)

T A literal that specifies to use TREG as operand

TC Test/control flag bit

TREG Temporary register

TRN Transition register

TS Shift value held in TREG (–16, +31 range)

uns Unsigned operand

Xmem 16-bit dual addressed mode value (indirect only) used in dual oper-
and instructions and some single-operand instructions

Ymem 16-bit dual addressed mode value (indirect only) used mainly in
dual-operand instructions

Mnemonic and Algebraic Instruction Sets Cross-Reference

5-5Mnemonic Instruction Set Summary

5.2 Mnemonic and Algebraic Instruction Sets Cross-Reference

The following table cross references the mnemonic instruction set with the al-
gebraic instruction set. A summary of an instruction is shown on the indicated
page. See the TMS320C54x User’s Guide for detailed information about the
instruction sets.

To translate mnemonic code to algebraic code use the translator utility (see
Chapter 13, Mnemonic to Algebraic Translator Description).

Mnemonic Instruction Page Equivalent Algebraic Instruction Page

ABDST Xmem, Ymem 5-14 abdst (Xmem, Ymem) 6-27

ABS src [,dst] 5-14 dst = |src| 6-27

ADD Smem, src
ADD Smem, TS, src
ADD Smem, 16, src [,dst]
ADD Smem [,SHIFT], src [,dst]
ADD Xmem, SHIFT1, src
ADD Xmem, Ymem, dst
ADD #lk [,SHIFT2], src [,dst]
ADD #lk, 16, src [,dst]
ADD src [,SHIFT] [,dst]
ADD src, ASM [,dst]

5-14 src = src + Smem
src += Smem
src = src + Smem << TS
src += Smem << TS
dst = src + Smem << 16
dst += Smem << 16
dst = src + Smem [<< SHIFT]
dst += Smem [<< SHIFT]
src = src + Xmem << SHIFT1
src += Xmem << SHIFT1
dst = Xmem << 16 + Ymem << 16
dst = src + #lk [<< SHIFT1]
dst += #lk [<< SHIFT1]
dst = src + #lk << 16
dst += #lk << 16
dst = dst + src [<< SHIFT]
dst += src [<< SHIFT]
dst = dst + src << ASM
dst += src << ASM

6-20

ADDC Smem, src 5-14 src = src + Smem + Carry
rc += Smem + Carry

6-20

ADDM #lk, Smem 5-14 Smem = Smem + #lk
Smem += #lk

6-20

ADDS Smem, src 5-14 src = src + uns(Smem)
src += uns(Smem)

6-20

Mnemonic and Algebraic Instruction Sets Cross-Reference

 5-6

Mnemonic Instruction PageEquivalent Algebraic InstructionPage

AND Smem, src
AND #lk [, SHFT], src [,dst]
AND #lk, 16, src [,dst]
AND src [,SHIFT] [,dst]

5-14 src = src & Smems
src &= Smem
dst = src & #lk [<< SHIFT1]
dst &= #lk [<< SHIFT1]
dst = src & #lk << 16
dst &= #lk << 16
dst = dst & src [<< SHIFT]
dst &= src [<< SHIFT]

6-28

ANDM #lk, Smem 5-14 Smem = Smem & #lk
Smem & = #lk

6-28

B[D] pmad 5-14 [d]goto pmad 6-32

BACC[D] src 5-15 [d]goto src 6-32

BANZ[D] pmad, Sind 5-15 if (Sind != 0) [d]goto pmad 6-32

BC[D] pmad, cond [,cond [,cond]] 5-15 if (cond [,cond [,cond]]) [d]goto pmad 6-32

BIT Xmem, bit_code 5-15 TC = bit (Xmem, bit_code) 6-31

BITF Smem, #lk 5-15 TC = bitf (Smem, #lk) 6-31

BITT Smem 5-15 TC = bitt (Smem) 6-31

CALA[D] src 5-15 [d]call src 6-33

CALL[D] pmad 5-15 [d]call extpmad 6-33

CC[D] pmad, cond [,cond [,cond]] 5-15 if (cond [,cond [,cond]]) [d]call pmad 6-33

CMPL src [,dst] 5-15 dst = ~src 6-27

CMPM Smem, lk 5-15 TC = (Smem == #lk) 6-31

CMPR CC, ARx 5-16 TC = (AR0 == ARx) (==, <, >, !=)
TC = (AR0 > ARx)
TC = (AR0 < ARx)
TC = (AR0 != ARx)

6-31

CMPS src, Smem 5-16 cmps(src,Smem) 6-39

DADD Lmem, src [,dst] 5-16 dst = src + dbl (Lmem)
dst += dbl (Lmem)
dst = src + dual (Lmem)
dst += dual (Lmem)

6-25

DADST Lmem, dst 5-16 dst = dadst (Lmem, T) 6-25

DELAY Smem 5-16 delay(Smem) 6-27

Mnemonic and Algebraic Instruction Sets Cross-Reference

5-7Mnemonic Instruction Set Summary

Mnemonic Instruction PageEquivalent Algebraic InstructionPage

DLD Lmem, dst 5-16 dst = dbl (Lmem)
dst = dual(Lmem)

6-25

DRSUB Lmem, src 5-16 src = dbl (Lmem) – src
src = dual(Lmem) – src

6-25

DSADT Lmem, dst 5-17 dst = dsadt (Lmem, T) 6-25

DST src, Lmem 5-17 dbl(Lmem) = src
dual(Lmem) = src

6-25

DSUB Lmem, src 5-17 src = src – dbl (mem)
src –= dbl (Lmem)
src = src – dual(mem)
src –= dual (Lmem)

6-25

DSUBT Lmem, dst 5-17 dst = dbl (Lmem) – T
dst = dual (Lmem) – T

6-25

EXP src 5-17 T = exp(src) 6-27

FB[D] extpmad 5-18 far [d]goto extpmad 6-32

FBACC[D] src 5-18 far [d]goto src 6-32

FCALA[D] src 5-18 far [d]call src 6-33

FCALL[D] extpmad 5-18 far [d]call extpmad 6-33

FIRS Xmem, Ymem, pmad 5-18 firs (Xmem, Ymem, pmad) 6-27

FRAME K 5-18 SP = SP + K (–128 <= K <= 127)
SP += K (–128 <= K <= 127)

6-35

FRET[D] 5-18 far [d]return 6-34

FRETE[D] 5-18 far [d]return_enable 6-34

IDLE K 5-18 idle(K) (0 <= K <= 3) 6-36

INTR K 5-18 int (K) (0 <= K <= 31) 6-33

LD Smem, dst
LD Smem, TS, dst
LD Smem, 16, dst
LD Smem [,SHIFT], dst
LD Xmem, SHIFT1, dst
LD #K, dst
LD #lk [,SHIFT1], dst
LD #lk, 16, dst
LD src, ASM [,dst]
LD src [,SHIFT] ,dst

5-19 dst = Smem
dst = Smem << TS
dst = Smem << 16
dst = Smem [<< SHIFT]
dst = Xmem [<< SHIFT1]
dst = #K (0 <= K <= 255)
dst = #lk [<< SHIFT1]
dst = #lk << 16
dst = src << ASM
dst = src [<< SHIFT]

6-37

Mnemonic and Algebraic Instruction Sets Cross-Reference

 5-8

Mnemonic Instruction PageEquivalent Algebraic InstructionPage

LD Smem, T
LD Smem, DP
LD #k9, DP
LD #k5, ASM
LD #k3, ARP
LD Smem, ASM

5-19 T = Smem
DP = Smem
DP = #k9 (0 <= Kk9<= 511)
ASM = #k5 (–16 <= Kk5<= 15)
ARP = #k3 (0 <=k3K <= 7)
ASM = Smem (ASM = Smem[0:4])

6-37

LDM MMR, dst 5-19 dst = MMR
dst = mmr(MMR)

6-37

LD Xmem, dst
|| MAC Ymem [, dst]

LD Xmem, dst
|| MACR Ymem [, dst]

5-19 dst = Xmem [<< 16]
|| dst += T*Ymem)

dst = Xmem [<< 16]
|| dst = dst + T*Ymem)

dst = Xmem [<< 16]
|| dst = rnd(dst + T*Ymem)

6-40

LD Xmem, dst
|| MAS Ymem [,dst]

LD Xmem, dst
|| MASR Ymem [, dst]

5-19 dst = Xmem [<< 16]
|| dst –= T * Ymem

dst = Xmem [<< 16]
|| dst = dst – T * Ymem

dst = Xmem [<< 16]
|| dst = rnd(dst – T * Ymem)

6-40

LDR Smem, dst 5-19 dst = rnd(Smem) 6-37

LDU Smem, dst 5-19 dst = uns(Smem) 6-37

LMS Xmem, Ymem 5-19 lms(Xmem, Ymem) 6-27

LTD Smem 5-20 ltd(Smem) 6-37

MAC Smem, src
MAC Xmem, Ymem, src [,dst]
MAC #lk, src [,dst]
MAC Smem, #lk, src [,dst]
MACR Smem, src
MACR Xmem, Ymem, src [,dst]

5-20 dst = (src + T * Smem)
dst += T * Smem
dst = (src + Xmem * Ymem) [,T = Xmem]
dst += Xmem * Ymem [,T = Xmem]
dst = src + T * #lk
dst += T * #lk
dst = src + Smem * #lk [,T = Smem]
dst += Smem * #lk [,T = Smem]
dst = rnd(src + T * Smem)
dst = rnd(src + Xmem * Ymem) [,T = Xmem]

6-23

MACA Smem [,B]
MACA T, src [,dst]
MACAR Smem [,B]
MACAR T, src [,dst]

5-20 B = B + Smem * HI (A) [,T = Smem]
B += Smem * HI (A) [,T = Smem]
dst = src + T * HI (A)
dst += T * HI (A)
B = rnd(B + Smem * HI (A)) [,T = Smem]
dst = rnd(src + T * HI (A))

6-23

Mnemonic and Algebraic Instruction Sets Cross-Reference

5-9Mnemonic Instruction Set Summary

Mnemonic Instruction PageEquivalent Algebraic InstructionPage

MACD Smem, pmad, src 5-20 macd(Smem, pmad, src) 6-23

MACP Smem, pmad, src 5-20 macp(Smem, pmad, src) 6-23

MACSU Xmem, Ymem, src 5-20 src = src + uns(Xmem) * Ymem [,T = Xmem]
src += uns(Xmem) * Ymem [,T = Xmem]

6-23

MAR Smem
MAR *ARn+0
MAR *ARn–0

5-21 mar(Smem)
ARn = ARn + AR0
ARn += AR0
ARn = ARn – AR0
ARn –= AR0

6-36

MAS Smem, src
MAS Xmem, Ymem, src [,dst]
MASR Smem, src
MASR Xmem, Ymem, src [,dst]

5-21 src = src – T * Smem
src –= T * Smem
dst = src – Xmem * Ymem [,T = Xmem]
dst –= Xmem * Ymem [,T = Xmem]
src = rnd(src – T * Smem)
dst = rnd(src – Xmem * Ymem) [,T=Xmem]

6-23

MASA Smem [,B]
MASA T, src [,dst]
MASAR T, src [,dst]

5-21 B = B – Smem * HI (A) [,T = Smem]
B –= Smem * HI (A) [,T = Smem]
dst = src – T * HI (A)
dst –= T * HI (A)
dst = rnd(src – T * HI (A))

6-23

MAX dst 5-21 dst = max(a, b) 6-27

MIN dst 5-21 dst = min(a, b) 6-27

MPY Smem, dst
MPY Xmem, Ymem, dst
MPY Smem, #lk, dst
MPY #lk, dst
MPYR Smem, dst

5-21 dst = T * Smem
dst = Xmem * Ymem [,T = Xmem]
dst = Smem * #lk [,T = Smem]
dst = T * #lk
dst = rnd(T * Smem)

6-22

MPYA dst
MPYA Smem

5-22 dst = T * HI (A)
B = Smem * HI (A) [,T = Smem]

6-22

MPYU Smem, dst 5-22 dst = T * uns(Smem) 6-22

MVDD Xmem, Ymem 5-22 Ymem = Xmem 6-42

MVDK Smem, dmad 5-22 data(dmad) = Smem 6-42

MVDM dmad, MMR 5-22 MMR = data(dmad)
mmr(MMR) = data(dmad)

6-42

MVDP Smem, pmad 5-22 prog(pmad) = Smem 6-42

MVKD dmad, Smem 5-22 Smem = data(dmad) 6-42

Mnemonic and Algebraic Instruction Sets Cross-Reference

 5-10

Mnemonic Instruction PageEquivalent Algebraic InstructionPage

MVMD MMR, dmad 5-22 data(dmad) = MMR
data(dmad) = mmr(MMR)

6-42

MVMM MMRx, MMRy 5-22 MMRy = MMRx (0 <= x,y <= 8)
mmr(MMRy) = mmr(MMRx)

6-42

MVPD pmad, Smem 5-22 Smem = prog(pmad) 6-42

NEG src [,dst] 5-23 dst = –src 6-27

NOP 5-23 nop 6-36

NORM src [,dst] 5-23 dst = src << TS
dst = norm(src,TS)

6-27

OR Smem, src
OR #lk [,SHIFT2], src [,dst]
OR #lk, 16, src [,dst]
OR src [,SHIFT] [,dst]

5-23 src = src | Smem
src |= Smem
dst = src | #lk [<< SHIFT]
dst |= #lk [<< SHIFT]
dst = src | #lk << 16
dst |= #lk << 16
dst = dst | src [<< SHIFT]
dst |= src [<< SHIFT]

6-29

ORM #lk, Smem 5-23 Smem = Smem | #lk
Smem |= #lk

6-29

POLY Smem 5-23 poly(Smem) 6-27

POPD Smem 5-23 Smem = pop() 6-35

POPM MMR 5-23 MMR = pop()
mmr(MMR) = pop()

6-35

PORTR PA, Smem 5-23 Smem = port (PA) 6-42

PORTW Smem, PA 5-24 port (PA) = Smem 6-42

PSHD Smem 5-24 push(Smem) 6-35

PSHM MMR 5-24 push(MMR)
push(mmr(MMR))

6-35

RC[D] cond [,cond [,cond]] 5-24 if (cond [,cond] [,cond]) [d]return 6-34

READA Smem 5-24 Smem = prog(A) 6-42

RESET 5-24 reset 6-36

RET[D] 5-24 [d]return 6-34

RETE[D] 5-24 [d]return_enable 6-34

Mnemonic and Algebraic Instruction Sets Cross-Reference

5-11Mnemonic Instruction Set Summary

Mnemonic Instruction PageEquivalent Algebraic InstructionPage

RETF[D] 5-24 [d]return_fast 6-34

RND src [,dst] 5-24 dst = rnd(src) 6-27

ROL src 5-25 src = src \\ Carry 6-30

ROLTC src 5-25 roltc (src) 6-30

ROR src 5-25 src = src // Carry 6-30

RPT Smem
RPT #K
RPT #lk

5-25 repeat(Smem)
repeat(#k) (RC=#k) (0<=k<=255)
repeat(#lk) (RC=#lk) (0<=lk<=65535)

6-35

RPTB pmad
RPTBD pmad

5-25 [d]blockrepeat(pmad) 6-35

RPTZ dst, #lk 5-25 repeat(#lk) , dst = 0 6-35

RSBX N, SBIT 5-25 SBIT = 0
ST(N,SBIT)=0

6-36

SACCD src, Xmem, cond 5-25 if (cond) Xmem = HI (src) << ASM 6-39

SAT src 5-25 saturate(src) 6-27

SFTA src, SHIFT [,dst] 5-25 dst = src << C SHIFT 6-30

SFTC src 5-25 shiftc (src) 6-30

SFTL src, SHIFT [,dst] 5-26 dst = src << SHIFT 6-30

SQDST Xmem, Ymem 5-26 sqdst (Xmem, Ymem) 6-27

SQUR Smem, dst
SQUR A, dst

5-26 dst = Smem * Smem [, T = Smem]
dst = square(Smem) [, T = Smem]
dst = HI (A) * HI (A)
dst = square(HI (A))

6-22

SQURA Smem, src 5-26 src = src + square(Smem) [, T=Smem]
src += square(Smem) [, T = Smem]
src = src + Smem * Smem [, T=Smem]
src += Smem * Smem [, T = Smem]

6-23

SQURS Smem, src 5-26 src = src – square(Smem) [, T=Smem]
src –= square(Smem) [, T = Smem]
src = src – Smem * Smem [, T=Smem]
src –= Smem * Smem [, T = Smem]

6-23

SRCCD Xmem, cond 5-26 if (cond) Xmem = BRC 6-39

Mnemonic and Algebraic Instruction Sets Cross-Reference

 5-12

Mnemonic Instruction PageEquivalent Algebraic InstructionPage

SSBX N, SBIT 5-26 SBIT = 1
ST(N,SBIT)=1

6-36

ST T, Smem
ST TRN, Smem
ST #lk, Smem

5-26 Smem = T
Smem = TRN
Smem = #lk

6-38

STH src, Smem
STH src, ASM, Smem
STH src, SHIFT1, Xmem
STH src [,SHIFT], Smem

5-26 Smem = HI (src)
Smem = HI (src) << ASM
Xmem = HI (src) << SHIFT1
Smem = HI (src) << SHIFT

6-38

STL src, Smem
STL src, ASM, Smem
STL src, SHIFT1, Xmem
STL src [,SHIFT], Smem

5-26 Smem = src
Smem = src << ASM
Xmem = src << SHIFT1
Smem = src << SHIFT

6-38

STLM src, MMR 5-27 MMR = src
mmr(MMR) = src

6-38

STM #lk, MMR 5-27 MMR = #lk
mmr(MMR) = #lk

6-38

ST src, Ymem
|| ADD Xmem, dst

5-27 Ymem = HI (src) [<< ASM]
|| dst = dst +Xmem<<16

6-41

ST src, Ymem
|| LD Xmem, dst

ST src, Ymem
|| LD Xmem, T

5-27 Ymem = HI(src) [<< ASM]
|| dst = Xmem << 16

Ymem = HI (src) [<<ASM]
|| T = Xmem

6-40

ST src, Ymem
|| MAC Xmem, dst

ST src, Ymem
|| MACR Xmem, dst

5-27 Ymem = HI (src) [<< ASM]
|| dst = dst + T * Xmem

Ymem = HI (src) [<< ASM]
|| dst += T * Xmem

Ymem = HI (src) [<< ASM]
|| dst = rnd(dst + T * Xmem)

6-41

ST src, Ymem
|| MAS Xmem, dst

ST src, Ymem
|| MASR Xmem, dst

5-27 Ymem = HI (src) [<< ASM]
|| dst = dst – T * Xmem

Ymem = HI (src) [<< ASM]
|| dst –= T * Xmem

Ymem = HI (src) [<< ASM]
|| dst = rnd(dst – T * Xmem)

6-41

ST src, Ymem
|| MPY Xmem, dst

5-27 Ymem = HI (src) [<<ASM]
|| dst = T * Xmem

6-41

ST src, Ymem
|| SUB Xmem, dst

5-28 Ymem = HI (src) [<< ASM]
|| dst = Xmem << 16 – dst

6-41

Mnemonic and Algebraic Instruction Sets Cross-Reference

5-13Mnemonic Instruction Set Summary

Mnemonic Instruction PageEquivalent Algebraic InstructionPage

STRCD Xmem, cond 5-28 if (cond) Xmem = T 6-39

SUB Smem, src
SUB Smem, TS, src
SUB Smem, 16, src [,dst]
SUB Smem [,SHIFT], src[,dst]
SUB Xmem, SHIFT1, src
SUB Xmem, Ymem, dst
SUB #lk [,SHIFT1],src [,dst]
SUB #lk, 16, src [,dst]
SUB src [,SHIFT] [,dst]
SUB src, ASM[,dst]

5-28 src = src – Smem
src –= Smem
src = src – Smem << TS
src –= Smem << TS
dst = src – Smem << 16
dst –= Smem << 16
dst = src – Smem [<< SHIFT]
dst –= Smem [<< SHIFT]
src = src – Xmem << SHIFT
src –= Xmem << SHIFT
dst = Xmem << 16 – Ymem << 16
dst = src – #lk [<< SHIFT]
dst –= #lk [<< SHIFT]
dst = src – #lk << 16
dst –= #lk << 16
dst = dst – src << SHIFT
dst –= src << SHIFT
dst = dst – src << ASM
dst –= src << ASM

6-21

SUBB Smem,src 5-28 src = src – Smem – Borrow
src –= Smem – Borrow

6-21

SUBC Smem,src 5-28 subc(Smem, src) 6-21

SUBS Smem,src 5-28 src = src – uns(Smem)
src –= uns(Smem)

6-21

TRAP K 5-28 trap(k) 6-33

WRITA Smem 5-28 prog(A) = Smem 6-42

XC n , cond [,cond [,cond]] 5-29 if (cond [,cond [,cond]]) execute(n) (n = 1 or 2) 6-36

XOR Smem, src
XOR #lk, [SHIFT1,] src [,dst]
XOR src, [SHIFT] [,dst]

5-29 src = src ^ Smem
src ^= Smem
dst = src ^ #lk [<< SHIFT]
dst ^= #lk [<< SHIFT]
dst = src ^ #lk << 16
dst ^= #lk << 16
dst = dst ^ src [<< SHIFT]
dst ^= src [<< SHIFT]

6-29

XORM #lk, Smem 5-29 Smem = Smem ^ #lk
Smem ^= #lk

6-29

Mnemonic Instruction Set Summary

 5-14

5.3 Mnemonic Instruction Set Summary

Syntax Description

ABDST Xmem, Ymem Absolute Distance

Compute the distance of two vectors, based on the absolute value.

ABS src [,dst] Absolute Value of Accumulator

Load the absolute value of the source accumulator into the destination
accumulator. If no destination is given, load the absolute value into the
source accumulator.

ADD Smem, src
ADD Smem, TS, src
ADD Smem, 16, src [,dst]
ADD Smem [,SHIFT], src [,dst]
ADD Xmem, SHIFT1, src
ADD Xmem, Ymem, dst
ADD #lk [,SHIFT2], src [,dst]
ADD src [,SHIFT] [,dst]
ADD src, ASM [,dst]

Add to Accumulator

Add the value, shifted if indicated, to the value of the selected accumulator
(A or B) or to the mode value (Ymem). Store the result in the destination
accumulator, if specified; otherwise, store the result in the source accumu-
lator.

ADDC Smem, src Add to Accumulator With Carry

Add the value from the data memory location and the value of C to the
source accumulator. Store the result in the accumulator.

ADDM #lk, Smem Add to Memory Long Immediate

Add the value from a data memory location to the memory value. Store the
result in the data memory location specified by Smem.

ADDS Smem, src Add to Accumulator With Sign Extension Suppressed

Add the value from data memory to the source accumulator. Store the
result in the accumulator.

AND Smem, src
AND #lk, [SHIFT1,] src [,dst]
AND #lk, 16, src [,dst]
AND src [,SHIFT] [,dst]

AND With Accumulator

AND the data value or constant with the source accumulator (A or B). If
a shift is specified, left shift the data value before the AND. Store the result
in the destination accumulator, if specified; otherwise, store the result in
the source accumulator.

ANDM #lk, Smem AND Memory With Long Immediate

AND the data memory value with a constant. Store the result in the data
memory location specified by Smem.

B[D] pmad Branch Unconditionally

Pass control to the designated program memory address (pmad).

For a delayed branch (BD), the one 2-word instruction or the two 1-word
instructions following the branch instruction are fetched from program
memory and executed before the branch is taken.

Mnemonic Instruction Set Summary

5-15Mnemonic Instruction Set Summary

Syntax Description

BACC[D] src Branch to Address Specified by Accumulator

Pass control to the address residing in the lower part of the source accu-
mulator.

BANZ[D] pmad, Sind Branch on Auxiliary Register Not Zero

Pass control to the designated program memory address (pmad). If the
value of the current auxiliary register designated by Sind is not equal to 0,
branch to the specified program memory address; otherwise, add two to
the program counter and store the result in the program counter.

BC[D] pmad, cond [,cond [,cond]] Branch Conditionally With Optional Delay

If the specified condition is met, pass control to the designated program
memory address (pmad).

BIT Xmem, bit_code Test Bit

Copy the specified bit of the memory value into the TC bit of status register
ST0.

BITF Smem, #lk Test Bit Field Specified by Immediate Value

Test the specified bit of the data memory value by masking the data value
with an immediate value (lk).

BITT Smem Test Bit Specified by TREG

Copy the specified bit of the data memory value to the TC bit in status reg-
ister ST0. The four LSBs of TREG contain a bit code that specifies which
bit is copied.

CALA[D] src Call Subroutine at Location Specified by Accumulator

Increment the PC and push it onto the stack; then pass control to the ad-
dress residing in the lower part of the source accumulator.

CALL[D] pmad Call Unconditionally With Optional Delay

Pass control to the specified program memory address (pmad). Push the
return address onto the stack.

CC[D] pmad cond [,cond [,cond]] Call Conditionally With Optional Delay

If the specified conditions are met, push the return address onto the stack,
then pass control to the program memory address (pmad).

CMPL src [,dst] Complement Accumulator

Complement the value of the source accumulator (logical inversion). The
result is stored in the destination accumulator.

CMPM Smem, lk Compare Memory With Long Immediate

Compare the value to the constant specified in the instruction.

Mnemonic Instruction Set Summary

 5-16

Syntax Description

CMPR CC, ARx Compare Auxiliary Register With AR0

Compare the condition of the designated auxiliary register (ARx) to AR0
and place the result in the TC bit. The comparison is specified by the CC
value.

CMPS src, Smem Compare Select Max and Store

Compare the values located in the 16 MSBs and the 16 LSBs of the source
accumulator (considered 2s-complement values). Store the maximum
value in the memory location. Shift TRN left one bit.

DADD Lmem, src [,dst] Double Precision/Dual Mode Add to Accumulator

Add the value of the source accumulator to the value. The value of C16
determines how the instruction is treated.

The result is stored in the destination accumulator, if specified; otherwise,
the result is stored in the source accumulator.

DADST Lmem, dst Double Precision Load With TREG Add/Dual 16-Bit Load With
TREG Add/Subtract

The value of C16 determines the execution of the instruction:

� If C16 is not set, the value of TREG is left shifted 16 bits and ORed
with itself. The resulting value is added to the long memory word.

� If C16 is set, the 16 MSBs of the long memory location are added to
the value of TREG. At the same time, the value of TREG is subtracted
from the 16 LSBs of the memory location.

The result is stored in the destination accumulator.

DELAY Smem Memory Delay

Copy the value referenced by Smem into the next higher address.

DLD Lmem, dst Long Word Load to Accumulator

Load the destination accumulator with a 32-bit long operand value.

DRSUB Lmem, src Double Precision/Dual 16-Bit Subtract From Long Word

The value of C16 determines the execution of the instruction:

� If C16 is not set, the value of the source accumulator is subtracted
from the long memory word.

� If C16 is set, the source accumulator high is subtracted from the 16
MSBs of the long memory location. At the same time, the source
accumulator low is subtracted from the 16 LSBs of the memory loca-
tion.

The result is stored in the source accumulator.

Mnemonic Instruction Set Summary

5-17Mnemonic Instruction Set Summary

Syntax Description

DSADT Lmem, dst Long Load With TREG Add/Dual 16-Bit Load With TREG
Subtract/Add

The value of C16 determines the execution of the instruction:

� If C16 is not set, the value of TREG is left shifted 16 bits and ORed
with itself. The resulting value is subtracted from the 32-bit long
memory word.

� If C16 is set, the value of TREG is subtracted from the 16 MSBs of the
long memory location. At the same time, the value of TREG is added
to the 16 LSBs of the memory location.

The result is stored in the destination accumulator.

DST src, Lmem Store Accumulator in Long Word

Store the value of accumulator A or B in a long memory word.

DSUB Lmem, src Double Precision/Dual 16-Bit Subtract From Accumulator

The value of C16 determines the execution of the instruction:

� If C16 is not set, the value of the long memory word is subtracted from
the source accumulator.

� If C16 is set, the value of the 16 MSBs of the long memory location
is subtracted from the source accumulator high. At the same time, the
16 LSBs of the long memory location are subtracted from the source
accumulator low.

The result is stored in the accumulator.

DSUBT Lmem, dst Long Load With TREG Subtract/Dual 16-Bit Load With TREG
Subtract

The value of C16 determines the execution of the instruction:

� If C16 is not set, the value of TREG is left-shifted 16 bits and ORed
with itself. The resulting 32-bit value is subtracted from the 32-bit long
memory word.

� If C16 is set, the value of TREG is subtracted from the 16 MSBs of the
long memory word. At the same time, the value of TREG is subtracted
from the 16 LSBs of the memory location.

The result is stored in the destination accumulator.

EXP src Accumulator Exponent

Compute the exponent value defined as a signed 2s-complement value
in the –8 to +31 range, and store the result in TREG.

Mnemonic Instruction Set Summary

 5-18

Syntax Description

FB[D] extpmad Far Branch Unconditionally

For a far call, pass control to the designated program memory address
(pmad).

For a delayed branch, the one 2-word instruction or the two 1-word instruc-
tions following the branch instruction are fetched from program memory
and executed before the branch is taken.

FBACC[D] src Far Branch to Address Specified by Accumulator

For a far call, pass control to the address residing in the lower part of the
source accumulator.

FCALA[D] src Far Call Subroutine at Location Specified by Accumulator

For a far call, increment the PC and push it onto the stack; then pass
control to the address residing in the lower part of the source accumulator.

FCALL[D] extpmad Far Call Unconditionally With Optional Delay

For a far call, pass control to the specified program memory address
(pmad). Push the return address onto the stack.

FIRS Xmem, Ymem, pmad Symmetrical Finite Impulse Response Filter

Multiply the accumulator A[32–16] by the program memory value (pmad).
Accumulate the result in accumulator B. At the same time, add the two
data memory values (Xmem and Ymem), left shift the result 16 bits, and
store the result into accumulator A.

FRAME K Stack Pointer Immediate Offset

Perform a short immediate offset on the stack pointer.

FRET[D] Far Return With Optional Delay

For a far call, replace the program counter with the value addressed by the
stack pointer. Increment the stack pointer by 1. Execution continues from
this point.

FRETE[D] Enable Interrupts and Far Return From Interrupt With Optional
Delay

For a far call, replace the program counter with the value addressed by the
stack pointer. Execution continues from this point. RETE automatically
clears the global interrupt mask bit (INTM in ST1).

IDLE K Idle Until Interrupt

Forces the executing program to halt until an unmasked interrupt or reset
occurs. The PC is incremented only once, and the device remains in an
idle state (power-down mode) until it is interrupted.

INTR K Software Interrupt

Transfer program control to the corresponding interrupt vector specified
by K.

Mnemonic Instruction Set Summary

5-19Mnemonic Instruction Set Summary

Syntax Description

LD Smem, dst
LD Smem, TS, dst
LD Smem, 16, dst
LD Smem, [SHIFT,] dst
LD Xmem, SHIFT1, dst
LD #K, dst
LD #lk, [SHIFT1,] dst
LD #lk, 16, dst
LD src, ASM [,dst]
LD src, [SHIFT,] dst

Load Accumulator With Shift

Load destination accumulator with a data memory value or an immediate
value. This instruction has various shift capabilities. Accumulator-to-accu-
mulator move with immediate shift or accumulator shift mode is supported.

LD Smem, T
LD Smem, DP
LD Smem, ASM

Load TREG or Status Register

� Load a data memory value into TREG or the specified bit field of the
status register (DP or ASM).

LD #k9, DP
LD #k5, ASM
LD #k3, ARP

� Load an immediate value into the specified bit field of the status
register (DP, ASM, ARP).

LDM MMR, dst Load Memory-Mapped Register

Load the accumulator with a memory-mapped register value.

LD Xmem, dst1
|| MAC Ymem [,dst]

LD Xmem, dst1
|| MACR Ymem [,dst]

Multiply/Accumulate With/Without Rounding and Parallel Load

Multiply the value Ymem by the value of TREG and add the result of the
multiplication to the accumulator that is not the destination accumulator
(dst). At the same time, load the destination accumulator high with value
Xmem.

LD Xmem, dst
|| MAS Ymem [,dst2]

LD Xmem, dst
|| MASR Ymem [,dst]

Multiply/Subtract With/Without Rounding and Parallel Load

Multiply the value Ymem by the value of TREG and subtract the result of
the multiplication from the accumulator that is not the destination accumu-
lator (dst). At the same time, load the destination accumulator high with the
value Xmem.

LDR Smem, dst Load Memory Value in Accumulator High With Rounding

Load the data memory value into accumulator high.

LDU Smem, dst Load Memory Unsigned Value

Load the value into accumulator low. Guard bits and accumulator high are
cleared.

LMS Xmem, Ymem Least Mean Square Instruction

Set up the basis for computing the least mean square. Replace the value
of the accumulator B with the result of B plus Xmem multiplied by Ymem.
Replace the value of accumulator A with the result of A plus Xmem left-
shifted 16 bits and added to 215.

Mnemonic Instruction Set Summary

 5-20

Syntax Description

LTD Smem Load TREG and Memory Delay

Load the value into TREG, and copy the value to the next higher address.

MAC Smem, src
MACR Smem, src

Multiply/Accumulate With/Without Rounding

� Multiply TREG by the specified value and add the product to the
source accumulator. Store the result in the source accumulator.

MAC #lk, src [,dst] � Multiply TREG by the immediate value and add the product to the ac-
cumulator. Store the result in the destination accumulator, if specified;
otherwise, store the result in the source accumulator.

MAC Xmem, Ymem, src [,dst]
MACR Xmem, Ymem, src [,dst]

� Multiply Xmem and Ymem and add the product to the accumulator.
Store the result in the destination accumulator, if specified; otherwise,
store the result in the source accumulator.

MAC Smem, #lk, src [,dst] � Multiply two values and add the product to the accumulator. Store the
result in the destination accumulator, if specified; otherwise, store the
result in the source accumulator.

MACA Smem, [,B]
MACAR Smem, [,B]

Multiply by Accumulator A and Accumulate

� Multiply the high bits of accumulator A by the specified value, and add
the product to the value of accumulator B. Store the result in accumu-
lator B.

MACA T, src [,dst]
MACAR T, src [,dst]

� Multiply the high bits of accumulator A by the value of TREG, and add
the product to the value of the source accumulator (A or B). Store the
result in the destination accumulator, if specified; otherwise, store the
result in the source accumulator.

MACD Smem, pmad, src Multiply by Program Memory and Accumulate With Delay

Multiply two values. Add the product to the source accumulator value and
store the result in that accumulator. The data memory value is copied into
TREG and into the next higher address.

MACP Smem, pmad, src Multiply by Program Memory and Accumulate

Multiply two values. Add the product to the source accumulator value, and
store the result in that accumulator. The data memory value is copied into
TREG.

MACSU Xmem, Ymem, src Multiply Signed by Unsigned and Accumulate

Multiply an unsigned value (Xmem) by a signed value (Ymem), and add
the product to the source accumulator. Store the result in the source accu-
mulator. The unsigned value is stored in TREG.

Mnemonic Instruction Set Summary

5-21Mnemonic Instruction Set Summary

Syntax Description

MAR Smem
MAR *ARn+0
MAR *ARn–0

Modify Auxiliary Register

This instruction works in indirect addressing mode. The value of CMPT
determines the execution of the instruction:

� If CMPT = 1 and ARX = AR0 or ARX = null, modify the auxiliary
register pointed to by ARP. ARP is unchanged. If X is a nonnull value,
then modify the auxiliary register and place the value X into ARP.

� If CMPT = 0, modify ARX, but do not change ARP.

If direct addressing is used, MAR functions as a NOP.

MAS Smem, src
MASR Smem, src

Multiply and Subtract

� Multiply TREG by a value, and subtract the product from the accumu-
lator. Store the result in the source accumulator.

MAS Xmem, Ymem, src [,dst]
MASR Xmem, Ymem, src [,dst]

� Multiply two values (Xmem and Ymem), and subtract the product
from the accumulator. Store the result in the destination accumulator,
if specified; otherwise, store the result in the source accumulator.
After the instruction, TREG contains the Xmem value.

MASA Smem [,B]

Multiply by Accumulator A and Subtract

� Multiply the high bits of accumulator A by a value (Smem), and
subtract the product from accumulator B. Store the result in accumu-
lator B. After the instruction, TREG contains the Smem value.

MASA T, src [,dst]
MASAR T, src [,dst]

� Multiply the high bits of accumulator A by the TREG value. Subtract
the product from the source accumulator. Store the result in the des-
tination accumulator, if specified; otherwise, store the result in the
source accumulator.

MAX dst Accumulator Maximum

Compare the values of the accumulators, and store the maximum value
in the destination accumulator.

MIN dst Accumulator Minimum

Compare the values of the accumulators, and store the minimum value in
the destination accumulator.

MPY Smem, dst
MPYR Smem, dst
MPY #lk, dst

Multiply

� Multiply the value of TREG by the value of the data memory location
or by the constant. Store the result in the destination accumulator.

MPY Smem, #lk, dst � Multiply the value of the data memory location by the constant #lk.
Store the result in the destination accumulator.

MPY Xmem, Ymem, dst � Multiply the value of the data memory location Xmem by the data
memory location Ymem. Store the result in the destination accumula-
tor.

Mnemonic Instruction Set Summary

 5-22

Syntax Description

MPYA dst

Multiply by Accumulator A

� Multiply the high bits of accumulator A by the value of TREG. Store
the result in the destination accumulator.

MPYA Smem � Multiply the high bits of accumulator A by the value of the data
memory location. Store the result in accumulator B. After this instruc-
tion, TREG contains the Smem value.

MPYU Smem, dst Multiply Unsigned

Multiply the value of TREG by the value of the data memory location
Smem. Store the result in the destination accumulator.

MVDD Xmem, Ymem Move Data From Data Memory to Data Memory With X, Y
Addressing

Move the value of the data memory location addressed by Xmem to the
data memory location addressed by Ymem.

MVDK Smem, dmad Move Data From Data Memory to Data Memory With Destination
Addressing

Move the value of the addressed data memory location (Smem) to a data
memory location addressed by dmad.

MVDM dmad, MMR Move Data From Data Memory to Memory-Mapped Register

Move the value of the data memory location (dmad) to a memory-mapped
register (MMR).

MVDP Smem, pmad Move Data From Data Memory to Program Memory

Move a value (Smem) to a program memory location addressed by value
dmad.

MVKD dmad, Smem Move Data From Data Memory to Data Memory With Source
Addressing

Move the value of the data memory location dmad to the value Smem.

MVMD MMR, dmad Move Data From Memory-Mapped Register to Data Memory

Move the value found in the memory-mapped register MMR to the value
dmad.

MVMM MMRx, MMRy Move Data From Memory-Mapped Register to Memory-Mapped
Register

Move the value of the memory-mapped register MMRx to the memory-
mapped register MMRy.

MVPD pmad, Smem Move Data From Program Memory to Data Memory

Move the value found in the program memory address pmad to a data
memory location addressed by Smem.

Mnemonic Instruction Set Summary

5-23Mnemonic Instruction Set Summary

Syntax Description

NEG src [,dst] Negate Accumulator

Negate (1s complement) the value of the source accumulator (A or B). The
value is stored in the source accumulator or in the destination accumula-
tor, if given.

NOP No Operation

No operation is performed. Only the program counter is incremented.

NORM src [,dst] Normalization

Allow single cycle normalization of the accumulator once the EXP instruc-
tion has been executed. The shift value is defined by TREG[5:0] and
coded as a 2s-complement value.

OR Smem, src

OR With Accumulator

� OR the 16 LSBs of the source accumulator with the value of the
addressed data memory location. The result replaces the 16 LSBs of
the source accumulator, leaving the rest of the accumulator
unchanged.

OR #lk [,SHIFT2] , src [,dst]
OR #lk, 16, src [,dst]

� OR the source accumulator with an immediate addressed value, left-
shifted as indicated. Store in the destination accumulator, if specified;
otherwise, store in the source accumulator.

OR src [,SHIFT] [,dst] � OR the source accumulator with itself or the destination accumulator,
if specified, left shifted as indicated. Store in the destination accumu-
lator, if specified; otherwise, store in the source accumulator.

ORM #lk, Smem OR Memory With Constant

OR the value Smem with the constant lk. Store the result in Smem.

POLY Smem Polynomial Evaluation

Shift the value of the value Smem 16 bits to the left, and store the result
in accumulator B. At the same time, multiply the value of accumulator A
(17 MSBs) by the value of TREG, add it to accumulator B, and round the
result. Store the result in accumulator A.

POPD Smem Pop Top of Stack to Data Memory

Move the value of the data memory addressed by the stack pointer to the
memory specified by Smem. Increment the stack pointer by 1.

POPM MMR Pop Top of Stack to Memory-Mapped Register

Move the value of the data memory addressed by the stack pointer to the
specified memory-mapped register. Increment the stack pointer by 1.

PORTR PA, Smem Read Data From Port

Read a value from an external I/O port (PA) into the specified data memory
location (Smem).

Mnemonic Instruction Set Summary

 5-24

Syntax Description

PORTW Smem, PA Write Data to Port

Write a value to an external I/O port (PA) from the specified data memory
location (Smem).

PSHD Smem Push Data Memory Value Onto Stack

Decrement the stack pointer by 1. Move the value of the data memory
location (Smem) to the data memory location addressed by the stack
pointer.

PSHM MMR Push Memory-Mapped Register Onto Stack

Decrement the stack pointer by 1. Move the value of the selected memory
mapped register to the data memory location addressed by the stack
pointer.

RC[D] cond [,cond [,cond]] Return Conditionally With Optional Delay

If the specified condition is met, return from subroutine. Replace the
program counter with the data memory value addressed by the stack
pointer and increment the stack pointer by 1. If the condition is not met,
increment the PC by 1.

READA Smem Read Program Memory Addressed by Accumulator A

Transfer a 16-bit word from a program memory location to a data memory
location (Smem). The program memory address is specified by the 16
LSBs of accumulator A.

RESET Software Reset

Put the DSP into a known state.

RET[D] Return With Optional Delay

Replace the program counter with the value addressed by the stack
pointer. Increment the stack pointer by 1. Execution continues from this
point.

RETE[D] Enable Interrupts and Return From Interrupt With Optional Delay

Replace the program counter with the value addressed by the stack
pointer. Execution continues from this point. RETE automatically clears
the global interrupt mask bit (INTM in ST1).

RETF[D] Enable Interrupts and Fast Return From Interrupt

Replace the program counter with the value addressed by the stack
pointer. Execution continues at this point. RETF automatically sets the
global interrupt mask bit (INTM in ST1).

RND src [,dst] Round Accumulator

Rounds the content of src (either A or B) by adding 215. The rounded value
is stored in dst .

Mnemonic Instruction Set Summary

5-25Mnemonic Instruction Set Summary

Syntax Description

ROL src Rotate Accumulator Left

Rotate the source accumulator left one bit.

ROLTC src Rotate Accumulator Left With TC

Rotate the source accumulator left one bit.

ROR src Rotate Accumulator Right

Rotate the source accumulator right one bit.

RPT Smem
RPT #K
RPT #lk

Repeat Next Instruction

Set the repeat counter (RC) with the iteration value when RPT is executed.
Load the value or constant into the repeat counter. The instruction follow-
ing the RPT is repeated.

RPTB[D] pmad Block Repeat

The RPTB instruction allows a block of instructions to be repeated the
number of times specified by the memory-mapped block repeat counter
(BRC).

RPTZ dst, #lk Repeat Next Instruction With Clearing Accumulator

Clear the destination accumulator and load the value into the repeat
counter register (RC). Repeat the instruction following the RPTZ instruc-
tion n times, where n is the value of the RC plus 1.

RSBX N, SBIT Reset Status Register Bit

Clear the specified bit (SBIT) of the status register.

SACCD src, Xmem, cond Store Accumulator Conditionally

If the condition is met, store the source accumulator (A or B) left-shifted
as defined in Xmem. If the condition is not true, execute a read and a write
at the Xmem address with the same value. Regardless of the condition,
Xmem is always read and updated according to its modifier.

SAT src Saturate Accumulator

Regardless of the OVM value, saturate the source accumulator content
on 32 bits.

SFTA src, SHIFT [,dst] Shift Accumulator Arithmetically

Shift the source accumulator arithmetically. Store the result in the destina-
tion accumulator, if specified; otherwise, replace the value of the source
accumulator.

SFTC src Accumulator Conditional Shift

If the source accumulator has two significant sign bits, shift the accumula-
tor left one bit. If there are two sign bits, TC is cleared; otherwise, TC is set
to 1.

Mnemonic Instruction Set Summary

 5-26

Syntax Description

SFTL src, SHIFT [,dst] Shift Accumulator Logically

Shift the source accumulator logically. Store the result in the destination
accumulator, if specified; otherwise, replace the value of the source accu-
mulator.

SQDST Xmem, Ymem Square Distance

Used in repeat single mode, compute the distance between two vectors
based on the square value.

SQUR Smem, dst
SQUR A, dst

Square

Square the value of Smem, or the 16 MSBs of accumulator A and store
the result in the destination accumulator. Store the value of Smem in
TREG.

SQURA Smem, src Square and Accumulate

Store the value of Smem in the T register. Square the value of Smem and
add the result to the source accumulator. Store the result of the square/
addition in the source accumulator.

SQURS Smem, src Square and Subtract

Store the value of Smem in TREG. Square the value of Smem and subtract
the result from the source accumulator. Store the results of the square/
subtraction in the source accumulator.

SRCCD Xmem, cond Store Block Repeat Counter Conditionally

If the condition is true, store the value of the BRC in Xmem. If the condition
is false, execute a read and a write at the Xmem address with the same
value. Regardless of the condition, Xmem is always updated and read
according to its modifier.

SSBX N, SBIT Set Status Register Bit

Set the specified bit (SBIT) of the status register.

ST T, Smem
ST TRN, Smem
ST #lk, Smem

Store T, TRN, Immediate Value Into Memory

Store the value of TREG, TRN, or the immediate value in data memory.

STH src, Smem
STH src, ASM, Smem
STH src, SHIFT1, Xmem
STH src, [SHIFT,] Smem

Store Accumulator High Into Memory

Store the 16 MSBs of the source accumulator in data memory (Smem or
Xmem).

STL src, Smem
STL src, ASM, Smem
STL src, SHIFT1, Xmem
STL src, [SHIFT,] Smem

Store Accumulator Low Into Memory

Store the 16 LSBs of the source accumulator in data memory (Smem or
Xmem).

Mnemonic Instruction Set Summary

5-27Mnemonic Instruction Set Summary

Syntax Description

STLM src, MMR Store Accumulator Low Into Memory-Mapped Register

Store the 16 LSBs of the source accumulator into the memory-mapped
register. The upper nine bits of the effective address are cleared to 0,
regardless of the current value of DP or the upper nine bits of ARX.

STM #lk, MMR Store Immediate Value Into Memory-Mapped Register

Store the value into the specified memory-mapped register or any memory
location on data page 0 without modifying the DP field in status register
ST0.

ST src, Ymem
|| ADD Xmem, dst

Store Accumulator With Parallel Add

Store the value of the source accumulator shifted as defined by the ASM
field of ST1 in the memory location Ymem. At the same time, add the value
of the accumulator that is not the destination accumulator to the 16-bit left-
shifted data memory location Xmem, and store the result in the destination
accumulator.

ST src, Ymem
|| LD Xmem, dst

ST src, Ymem
|| LD Xmem, T

Store Accumulator With Parallel Load

Store the value of the source accumulator shifted as defined by the ASM
field of ST1 in the memory location Ymem. At the same time, load the value
Xmem into the destination accumulator or TREG.

ST src, Ymem
|| MAC Xmem, dst

ST src, Ymem
|| MACR Xmem, dst

Store Accumulator and Parallel Multiply/Accumulate With/Without
Rounding

Store the value of the source accumulator high shifted as defined by the
ASM field of ST1 in the memory location Ymem. At the same time, multiply
the value Xmem by the value of TREG, add the result to the value of the
destination accumulator, round if indicated, and store the final result in the
destination accumulator.

ST src, Ymem
|| MAS Xmem, dst

ST src, Ymem
|| MASR Xmem, dst

Store Accumulator and Parallel Multiply/Subtract With/Without
Rounding

Store the value of the source accumulator high shifted as defined by the
ASM field of ST1 in the memory location Ymem. At the same time, multiply
the value Xmem by the value of TREG, subtract the result from the value
of the destination accumulator, round if indicated, and store the result in
the destination accumulator.

ST src, Ymem
|| MPY Xmem, dst

Store Accumulator With Parallel Multiply

Store the value of the source accumulator high shifted as defined by the
ASM field of ST1 in the memory location Ymem. At the same time, multiply
the value of TREG by the 16-bit dual addressed mode value Xmem, and
store the result in the destination accumulator.

Mnemonic Instruction Set Summary

 5-28

Syntax Description

ST src, Ymem
|| SUB Xmem, dst

Store Accumulator With Parallel Subtract

Store the source accumulator high shifted as defined by the ASM field of
ST1 in the memory location Ymem. At the same time, left shift the value
Xmem 16 bits, subtract the value of the accumulator that is not the destina-
tion accumulator, and store the result in the destination accumulator.

STRCD Xmem, cond Store TREG Conditionally

If the condition is true, store the value of TREG in Xmem. Regardless of
the condition, Xmem is always read and updated according to its modifier.
If the condition is true, execute a read and a write at the Xmem address
with the same value.

SUB Smem, src
SUB Smem, TS, src
SUB Smem, 16, src, [,dst]
SUB Smem, [SHIFT,] src [,dst]
SUB Xmem, SHIFT1, src
SUB Xmem, Ymem, dst
SUB #lk, [SHIFT1,] src [,dst]
SUB #lk, 16, src [,dst]
SUB src [, SHIFT] [,dst]
SUB src, ASM [,dst]

Subtract From Accumulator

Subtract the value of a data memory location, a constant, or the source
accumulator (A or B), shifted if indicated, from the value of the source
accumulator (A or B) or from the value Ymem. Store the result in the
destination accumulator, if specified; otherwise, store the result in the
source accumulator.

SUBB Smem, src Subtract From Accumulator With Borrow

Subtract the value of the mode value from the value of the source accumu-
lator. Subtract the logical inversion of C from the result. The final result is
stored in the source accumulator.

SUBC Smem, src Subtract From Accumulator Conditionally

Subtract the mode value, left shifted 15 bits, from the value of the source
accumulator. If the result is greater than 0, left shift the result by 1, add 1,
and store the final result in the source accumulator. Otherwise, left shift the
value of the source accumulator by 1 and store the result in the source
accumulator.

SUBS Smem, src Subtract From Accumulator With Sign-Extension Suppressed

Subtract the mode value from the value of the source accumulator. The
result is stored in the source accumulator.

TRAP K Software Interrupt

Transfer program control to the interrupt routine specified by K. Decre-
ment the stack pointer by 1. Push the value of PC + 1 onto the data memory
addressed by the stack pointer.

WRITA Smem Write Data Memory Addressed by Accumulator A

Transfer a 16-bit word from a data memory location (Smem) to a program
memory location specified by the 16 LSBs of accumulator A.

Mnemonic Instruction Set Summary

5-29Mnemonic Instruction Set Summary

Syntax Description

XC n, cond [,cond [,cond]] Execute Conditionally

The value of n and the selected conditions determine the execution of the
instruction:

� If n = 1 and the condition is met, fetch and execute the next 1-word
instruction.

� If n = 2 and the condition is met, fetch and execute the next two 1-word
instructions or the next one 2-word instruction.

� If the condition is not met, execute one or two NOP instructions.

XOR Smem, src
XOR #lk, [SHIFT1,] src [,dst]
XOR src, [SHIFT] [,dst]

Exclusive-OR With Accumulator

Exclusive-OR the mode value, shifted if indicated, with the value of the
source accumulator (A or B). Store the result in the destination accumu-
lator, if specified; otherwise, store the result in the source accumulator.

XORM #lk, Smem Exclusive-OR Memory With Constant

Exclusive-OR the value of the data memory location with the value lk.
Store the result in the data memory location.

 5-30

6-1Algebraic Instruction Set Summary

Algebraic Instruction Set Summary

The TMS320C54x device supports general-purpose instructions as well as
arithmetic-intensive instructions that are particularly suited for DSP and other
numeric-intensive applications. There are two instruction sets—algebraic and
mnemonic. These two sets perform the same functions but with very different
syntax.

This chapter contains a summary of the algebraic instruction set. Table entries
show the syntax for the instruction and describes the instruction operation.
Section 6.1, Using the Summary Tables, shows a sample table entry and
describes the abbreviations used in the table. Section 6.2, Algebraic and
Mnemonic Instruction Sets Cross-Reference, on page 6-5 cross references
the mnemonic instruction set to the algebraic instruction set.

This chapter does not cover topics such as opcodes, instruction timing, or
addressing modes.

Topic Page

6.1 Using the Summary Tables 6-2.

6.2 Algebraic and Mnemonic Instruction Sets Cross-Reference 6-5.

6.3 Algebraic Instruction Set Summary 6-18.

Chapter 6

Using the Summary Tables

 6-2

6.1 Using the Summary Tables

To help you read the summary table, this section provides examples of table
entries and lists of acronyms.

6.1.1 Table Entry Example

This is how the AND function algebraic instruction appears in the summary
table:

Example 6–1. Table Entry for an Algebraic Instruction

Syntax Description

src = src & Smem
src &= Smem
dst = src & #lk [<< SHIFT1]
dst &= #lk [<< SHIFT1]
dst = src & #lk << 16
dst &= #lk << 16
dst = dst & src [<< SHIFT]
dst &= src [<< SHIFT]

AND With Accumulator

AND the data value or constant with the source accumulator (A or B). If a
shift is specified, left shift the data value before the AND. Store the result
in the destination accumulator, if specified; otherwise, store the result in the
source accumulator.

6.1.2 Table Entry Explained

The syntax column lists the syntax for the AND function instruction. Alternative
syntax is shown in the lines following the first syntax. Abbreviations used in
syntax are found in subsection 6.1.3, Symbols and Acronyms, on page 6-2.

The description column briefly describes how the instruction functions. Often,
an instruction functions slightly differently with different parameters. For com-
plete information about an instruction, see the TMS320C54x User’s Guide.

6.1.3 Symbols and Acronyms

The following table lists the instruction set symbols and acronyms used
throughout this chapter.

Table 6–1. Symbols and Acronyms Used in the Instruction Set Summary

Symbol Definition

() Contents of

[] Optional items; the brackets are not part of the syntax

Prefix of constants used in immediate addressing

Using the Summary Tables

6-3Algebraic Instruction Set Summary

Table 6–1. Symbols and Acronyms Used in the Instruction Set Summary (Continued)

Symbol Definition

| | Parallel instructions

ARP Auxiliary register pointer

ARX Auxiliary register (AR0–AR7)

ASM Accumulator shift mode (from ST1)

Borrow A literal that specifies to subtract with borrow

BRC Block repeat counter

Carry Carry bit

C16 Dual 16-bit/double-precision bit

CC Condition code

CMPT Compatibility mode bit

cond Conditional expression

data Data memory access which can be incremented under a single
repeat instruction

dbl 32-bit access

dmad 16-bit data immediate addressed value

DP Data page pointer

dst Destination accumulator (A or B)

dst Accumulator opposite the previous dst

dst1, dst2 If dst1 = A, then dst2 = B
If dst1 = B, then dst2 = A

dual Dual access

extpmad 23-bit immediate program-memory address

HI High half of the register

INTM Interrupt mask bit

K Short immediate value (less than 9 bits)

k3 3-bit immediate value (0 � k3 � 7)

k5 5-bit immediate value (–16 � k5 � 15)

k9 9-bit immediate value (0 � k9 � 511)

lk Long immediate value (16 bits)

Lmem 32-bit single-addressed mode value (direct or indirect) (long word
addressing)

mmr, MMR Memory-mapped register

Using the Summary Tables

 6-4

Table 6–1. Symbols and Acronyms Used in the Instruction Set Summary (Continued)

Symbol Definition

MMRx,
MMRy

Memory-mapped register, AR0–AR7 or SP

n Operand for the XC instruction indicating the number of instruc-
tions to conditionally execute
� 1 = One instruction executes
� 0 = Two instructions execute

N Status register for RSBX/SSBX instruction; either 0 or 1

OVM Overflow mode bit

PA 16-bit port immediate addressed value

PC Program counter

pmad 16-bit program immediate addressed value

port I/O port access

prog Program memory access

RC Repeat counter

rnd Round the expression

SBIT Status register bit for RSBX/SSBX instruction; 0 � SBIT � 15

SHIFT Shift value in –16 to +15 range

SHIFT1 Shift value in 0 to 15 range

SHIFT2 Shift value in 0 to 16 range

Sind Single indirect address mode

Smem 16-bit single-addressed mode value (direct or indirect)

SP Stack pointer register

src Source accumulator (A or B)

T A literal that specifies to use TREG as operand

TC Test/control flag bit

TREG Temporary register

TRN Transition register

TS Shift value held in TREG (–16, +31 range)

unx Unsigned operand

Xmem 16-bit dual addressed mode value (indirect only) used in dual oper-
and instructions and some single operand instructions

Ymem 16-bit dual addressed mode value (indirect only) used mainly in
dual operands instructions

Algebraic and Mnemonic Instruction Sets Cross-Reference

6-5Algebraic Instruction Set Summary

6.2 Algebraic and Mnemonic Instruction Sets Cross-Reference

The following tables cross reference the algebraic instruction set with the mne-
monic instruction set. A summary of an instruction is shown on the indicated
page. See the TMS320C54x User’s Guide for detailed information about the
instruction sets.

To translate mnemonic code to algebraic code use the translator utility (see
Chapter 13, Mnemonic-to-Algebraic Translator Description).

Table 6–2. Add Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

src = src + Smem
src += Smem
src = src + Smem << TS
src += Smem << TS
dst = src + Smem << 16
dst += Smem << 16
dst = src + Smem [<< SHIFT]
dst += Smem [<< SHIFT]
src = src + Xmem << SHIFT1
src += Xmem << SHIFT1
dst = Xmem << 16 + Ymem << 16
dst = src + #lk [<< SHIFT1]
dst += #lk [<< SHIFT1]
dst = src + #lk << 16
dst += #lk << 16
dst = dst + src [<< SHIFT]
dst += src [<< SHIFT]
dst = dst + src << ASM
dst += src << ASM

6-20 ADD Smem, src
ADD Smem, TS, src
ADD Smem, 16, src [,dst]
ADD Smem [,SHIFT], src [,dst]
ADD Xmem, SHIFT1, src
ADD Xmem, Ymem, dst
ADD #lk [,SHIFT2], src [,dst]
ADD #lk, 16, src [,dst]
ADD src [,SHIFT] [,dst]
ADD src, ASM [,dst]

5-14

src = src + Smem + Carry
src += Smem + Carry

6-20 ADDC Smem, src 5-14

Smem = Smem + #lk
Smem += #lk

6-20 ADDM #lk, Smem 5-14

src = src + uns(Smem)
src += uns(Smem)

6-20 ADDS Smem, src 5-14

Algebraic and Mnemonic Instruction Sets Cross-Reference

 6-6

Table 6–3. Subtract Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

src = src – Smem
src –= Smem
src = src – Smem << TS
src –= Smem << TS
dst = src – Smem << 16
dst –= Smem << 16
dst = src – Smem [<< SHIFT]
dst –= Smem [<< SHIFT]
src = src – Xmem << SHIFT
src –= Xmem << SHIFT
dst = Xmem << 16 – Ymem << 16
dst = src – #lk [<< SHIFT]
dst –= #lk [<< SHIFT]
dst = src – #lk << 16
dst –= #lk << 16
dst = dst – src [<< SHIFT]
dst –= src [<< SHIFT]
dst = dst – src << ASM
dst –= src << ASM

6-21 SUB Smem, src
SUB Smem, TS, src
SUB Smem, 16, src [,dst]
SUB Smem [,SHIFT] , src [,dst]
SUB Xmem, SHIFT1, src
SUB Xmem, Ymem, dst
SUB #lk [,SHIFT1] ,src [,dst]
SUB #lk, 16, src [,dst]
SUB src [,SHIFT] [,dst]
SUB src, ASM[,dst]

5-28

src = src – Smem – Borrow
src –= Smem – Borrow

6-21 SUBB Smem,src 5-28

subc(Smem, src) 6-21 SUBC Smem,src 5-28

src = src – uns(Smem)
src –= uns(Smem)

6-21 SUBS Smem,src 5-28

Table 6–4. Multiply Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

dst = T * Smem
dst = T * #lk
dst = rnd(T * Smem)
dst = Smem * #lk [,T = Smem]
dst = Xmem * Ymem [,T = Xmem]

6-22 MPY Smem, dst
MPY Xmem, Ymem, dst
MPY Smem, #lk, dst
MPY #lk, dst
MPYR Smem, dst

5-21

dst = T * HI (A)
B = Smem * HI (A) [,T = Smem]

6-22 MPYA dst
MPYA Smem

5-22

dst = T * uns(Smem) 6-22 MPYU Smem, dst 5-22

dst = Smem * Smem [,T = Smem]
dst = square(Smem) [,T = Smem]
dst = HI (A) * HI (A)
dst = square(HI (A))

6-22 SQUR Smem, dst
SQUR A, dst

5-26

Algebraic and Mnemonic Instruction Sets Cross-Reference

6-7Algebraic Instruction Set Summary

Table 6–5. Multiply-Accumulate or Multiply-Subtract Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

dst = (src + T * Smem)
src += T * Smem
dst = rnd(src + T * Smem)
dst = src + T * #lk
dst += T * #lk
dst = (src + Xmem * Ymem) [,T = Xmem]
dst += Xmem * Ymem [,T = Xmem]
dst = rnd(src + Xmem * Ymem) [,T = Xmem]
dst = src + Smem * #lk [,T = Smem]
dst += Smem * #lk [,T = Smem]

6-23 MAC Smem, src
MAC Xmem, Ymem, src [,dst]
MAC #lk, src [,dst]
MAC Smem, #lk, src [,dst]
MACR Smem, src
MACR Xmem, Ymem, src [,dst]

5-20

B = B + Smem * HI (A) [,T = Smem]
B += Smem * HI (A) [,T = Smem]
B = rnd(B + Smem * HI (A)) [,T = Smem]
dst = src + T * HI (A)
dst += T * HI (A)
dst = rnd(src + T * HI (A))

6-23 MACA Smem [,B]
MACA T, src [,dst]
MACAR Smem [,B]
MACAR T, src [,dst]

5-20

macd(Smem, pmad, src) 6-23 MACD Smem, pmad, src 5-20

macp(Smem, pmad, src) 6-23 MACP Smem, pmad, src 5-20

src = src + uns(Xmem) * Ymem [,T = Xmem]
src += uns(Xmem) * Ymem [,T = Xmem]

6-23 MACSU Xmem, Ymem, src 5-20

src = src – T * Smem
src –= T * Smem
src = rnd(src – T * Smem)
dst = src – Xmem * Ymem [,T = Xmem]
dst –= Xmem * Ymem [,T = Xmem]
dst = rnd(src – Xmem * Ymem) [,T=Xmem]

6-23 MAS Smem, src
MAS Xmem, Ymem, src [,dst]
MASR Smem, src
MASR Xmem, Ymem, src [,dst]

5-21

B = B – Smem * HI (A) [,T = Smem]
B –= Smem * HI (A) [,T = Smem]
dst = src – T * HI (A)
dst –= T * HI (A)
dst = rnd(src – T * HI (A))

6-23 MASA Smem [,B]
MASA T, src [,dst]
MASAR T, src [,dst]

5-21

src = src + square(Smem) [,T=Smem]
src += square(Smem) [,T = Smem]
src = src + Smem * Smem [,T=Smem]
src += Smem * Smem [,T = Smem]

6-23 SQURA Smem, src 5-26

src = src – square(Smem) [,T=Smem]
src –= square(Smem) [,T = Smem]
src = src – Smem * Smem [,T=Smem]
src –= Smem * Smem [,T = Smem]

6-23 SQURS Smem, src 5-26

Algebraic and Mnemonic Instruction Sets Cross-Reference

 6-8

Table 6–6. Double (32-bit Operand) Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

dst = src + dbl (Lmem)
dst += dbl (Lmem)
dst = src + dual (Lmem)
dst += dual (Lmem)

6-25 DADD Lmem, src [,dst] 5-16

dst = dadst (Lmem, T) 6-25 DADST Lmem, dst 5-16

dst = dbl (Lmem)
dst = dual(Lmem)

6-25 DLD Lmem, dst 5-16

src = dbl (Lmem) – src
src = dual(Lmem) – src

6-25 DRSUB Lmem, src 5-16

dst = dsadt (Lmem, T) 6-25 DSADT Lmem, dst 5-17

dbl (Lmem) = src
dual(Lmem) = src

6-25 DST src, Lmem 5-17

src = src – dbl (mem)
src –= dbl (Lmem)
src = src – dual(mem)
src –= dual (Lmem)

6-25 DSUB Lmem, src 5-17

dst = dbl (Lmem) – T
dst = dual (Lmem) – T

6-25 DSUBT Lmem, dst 5-17

Algebraic and Mnemonic Instruction Sets Cross-Reference

6-9Algebraic Instruction Set Summary

Table 6–7. Application-Specific Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

abdst (Xmem, Ymem) 6-27 ABDST Xmem, Ymem 5-14

dst = |src | 6-27 ABS src [,dst] 5-14

dst = ~src 6-27 CMPL src [,dst] 5-15

delay(Smem) 6-27 DELAY Smem 5-16

T = exp(src) 6-27 EXP src 5-17

firs (Xmem, Ymem, pmad) 6-27 FIRS Xmem, Ymem, pmad 5-18

lms(Xmem, Ymem) 6-27 LMS Xmem, Ymem 5-19

dst = max(A, B) 6-27 MAX dst 5-21

dst = min(A, B) 6-27 MIN dst 5-21

dst = –src 6-27 NEG src [,dst] 5-23

dst = src << TS
dst = norm(src,TS)

6-27 NORM src [,dst] 5-23

poly(Smem) 6-27 POLY Smem 5-23

dst = rnd(src) 6-27 RND src [,dst] 5-24

saturate(src) 6-27 SAT src 5-25

sqdst (Xmem, Ymem) 6-27 SQDST Xmem, Ymem 5-26

Table 6–8. AND Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

src = src & Smems
src &= Smem
dst = src & #lk [<< SHIFT1]
dst &= #lk [<< SHIFT1]
dst = src & #lk << 16
dst &= #lk << 16
dst = dst & src [<< SHIFT]
dst &= src [<< SHIFT]

6-28 AND Smem, src
AND #lk [,SHFT], src [,dst]
AND #lk, 16, src [,dst]
AND src [,SHIFT] [,dst]

5-14

Smem = Smem & #lk
Smem & = #lk

6-28 ANDM #lk, Smem 5-14

Algebraic and Mnemonic Instruction Sets Cross-Reference

 6-10

Table 6–9. OR Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

src = src | Smem
src |= Smem
dst = src | #lk [<< SHIFT]
dst |= #lk [<< SHIFT]
dst = src | #lk << 16
dst |= #lk << 16
dst = dst | src [<< SHIFT]
dst |= src [<< SHIFT]

6-29 OR Smem, src
OR #lk [,SHIFT2], src [,dst]
OR #lk, 16, src [,dst]
OR src [,SHIFT] [,dst]

5-23

Smem = Smem | #lk
Smem |= #lk

6-29 ORM #lk, Smem 5-23

Table 6–10. XOR Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

src = src ^ Smem
src ^= Smem
dst = src ^ #lk [<< SHIFT]
dst ^= #lk[<< SHIFT]
dst = src ^ #lk << 16
dst ^= #lk << 16
dst = dst ^ src[<< SHIFT]
dst ^= src[<< SHIFT]

6-29 XOR Smem, src
XOR #lk, [SHIFT1,] src [,dst]
XOR #lk, 16, src [,dst]
XOR src, [SHIFT] [,dst]

5-29

Smem = Smem ^ #lk
Smem ^= #lk

6-29 XORM #lk, Smem 5-29

Table 6–11. Shift Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

src = src \\ Carry 6-30 ROL src 5-25

roltc (src) 6-30 ROLTC src 5-25

src = src // Carry 6-30 ROR src 5-25

dst = src << C SHIFT 6-30 SFTA src, SHIFT [,dst] 5-25

shiftc (src) 6-30 SFTC src 5-25

dst = src << SHIFT 6-30 SFTL src, SHIFT [,dst] 5-26

Algebraic and Mnemonic Instruction Sets Cross-Reference

6-11Algebraic Instruction Set Summary

Table 6–12. Test Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

TC = bit (Xmem, bit_code) 6-31 BIT Xmem, bit_code 5-15

TC = bitf (Smem, #lk) 6-31 BITF Smem, #lk 5-15

TC = bitt (Smem) 6-31 BITT Smem 5-15

TC = (Smem == #lk) 6-31 CMPM Smem, lk 5-15

TC = (AR0 == ARx) (==, <, >, !=)
TC = (AR0 > ARx)
TC = (AR0 < ARx)
TC = (AR0 != ARx)

6-31 CMPR CC, ARx 5-16

Table 6–13. Branch Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

[d]goto pmad 6-32 B[D] pmad 5-14

[d]goto src 6-32 BACC[D] src 5-15

if (Sind != 0) [d]goto pmad 6-32 BANZ[D] pmad, Sind 5-15

if (cond [,cond] [,cond]) [d]goto pmad 6-32 BC[D] pmad, cond [,cond [,cond]] 5-15

[d]fgoto pmad 6-32 FB[D] extpmad 5-18

[d]fgoto src 6-32 FBACC[D] src 5-18

Table 6–14. Call Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

[d]call src 6-33 CALA[D] src 5-15

[d]call pmad 6-33 CALL[D] pmad 5-15

if (cond [,cond] [,cond]) [d]call pmad 6-33 CC[D] pmad, cond [,cond [,cond]] 5-15

[d]fcall src 6-33 FCALA[D] src 5-18

[d]fcall pmad 6-33 FCALL[D] extpmad 5-18

Table 6–15. Interrupt Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

int (K) (0 <= K <= 31) 6-33 INTR K 5-18

trap(k) 6-33 TRAP K 5-28

Algebraic and Mnemonic Instruction Sets Cross-Reference

 6-12

Table 6–16. Return Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

[d]freturn 6-34 FRET[D] 5-18

[d]freturn_enable 6-34 FRETE[D] 5-18

if (cond [,cond] [,cond]) [d]return 6-34 RC[D] cond [,cond [,cond]] 5-24

[d]return 6-34 RET[D] 5-24

[d]return_enable 6-34 RETE[D] 5-24

[d]return_fast 6-34 RETF[D] 5-24

Table 6–17. Repeat Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

repeat(Smem)
repeat(#k) (RC=#k) (0<=k<=255)
repeat(#lk) (RC=#lk) (0<=lk<=65535)

6-35 RPT Smem
RPT #K
RPT #lk

5-25

[d]blockrepeat(pmad) 6-35 RPTB pmad
RPTBD pmad

5-25

repeat(#lk) , dst = 0 6-35 RPTZ dst, #lk 5-25

Table 6–18. Stack Manipulating Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

SP = SP + K (–128 <= K <= 127)
SP += K (–128 <= K <= 127)

6-35 FRAME K 5-18

Smem = pop() 6-35 POPD Smem 5-23

MMR = pop()
mmr(MMR) = pop()

6-35 POPM MMR 5-23

push(Smem) 6-35 PSHD Smem 5-24

push(MMR)
push(mmr(MMR))

6-35 PSHM MMR 5-24

Algebraic and Mnemonic Instruction Sets Cross-Reference

6-13Algebraic Instruction Set Summary

Table 6–19. Miscellaneous Program Control Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

idle(K) (0 <= K <= 3) 6-36 IDLE K 5-18

mar(Smem)
ARn = ARn + AR0
ARn += AR0
ARn = ARn – AR0
ARn –= AR0

6-36 MAR Smem
MAR *ARn+0
MAR *ARn–0

5-21

nop 6-36 NOP 5-23

reset 6-36 RESET 5-24

SBIT = 0
ST(N,SBIT)=0

6-36 RSBX N, SBIT 5-25

SBIT = 1
ST(N,SBIT)=1

6-36 SSBX N, SBIT 5-26

if (cond [,cond [,cond]]) execute(n) (n = 1 or 2) 6-36 XC n , cond [,cond [,cond]] 5-29

Algebraic and Mnemonic Instruction Sets Cross-Reference

 6-14

Table 6–20. Load Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

dst = Smem
dst = Smem << TS
dst = Smem << 16
dst = Smem [<< SHIFT]
dst = Xmem [<< SHIFT1]
dst = #K (0 <= K <= 255)
dst = #lk [<< SHIFT1]
dst = #lk << 16
dst = src << ASM
dst = src [<< SHIFT]

6-37 LD Smem, dst
LD Smem, TS, dst
LD Smem, 16, dst
LD Smem [,SHIFT] , dst
LD Xmem, SHIFT1, dst
LD #K, dst
LD #lk [,SHIFT1] , dst
LD #lk, 16, dst
LD src, ASM [,dst]
LD src [,SHIFT] [,dst]

5-19

T = Smem
DP = Smem
ASM = Smem (ASM = Smem[0:4])
DP = #k9 (0 <= k9 <= 511)
ASM = #k5 (–16 <= k5 <= 15)
ARP = #k3 (0 <= k3 <= 7)

6-37 LD Smem, T
LD Smem, DP
LD #k9, DP
LD #k5, ASM
LD #k3, ARP
LD Smem, ASM

5-19

dst = MMR
dst = mmr(MMR)

6-37 LDM MMR, dst 5-19

dst = rnd(Smem) 6-37 LDR Smem, dst 5-19

dst = uns(Smem) 6-37 LDU Smem, dst 5-19

ltd(Smem) 6-37 LTD Smem 5-20

Algebraic and Mnemonic Instruction Sets Cross-Reference

6-15Algebraic Instruction Set Summary

Table 6–21. Store Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

Smem = T
Smem = TRN
Smem = #lk

6-38 ST T, Smem
ST TRN, Smem
ST #lk, Smem

5-26

Smem = HI (src)
Smem = HI (src) << ASM
Xmem = HI (src) << SHIFT1
Smem = HI (src) << SHIFT

6-38 STH src, Smem
STH src, ASM, Smem
STH src, SHIFT1, Xmem
STH src [,SHIFT], Smem

5-26

Smem = src
Smem = src << ASM
Xmem = src << SHIFT1
Smem = src << SHIFT

6-38 STL src, Smem
STL src, ASM, Smem
STL src, SHIFT1, Xmem
STL src [,SHIFT], Smem

5-26

MMR = src
mmr(MMR) = src

6-38 STLM src, MMR 5-27

MMR = #lk
mmr(MMR) = #lk

6-38 STM #lk, MMR 5-27

Table 6–22. Conditional Store Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

cmps(src,Smem) 6-39 CMPS src, Smem 5-16

if (cond) Xmem = HI (src) << ASM 6-39 SACCD src, Xmem, cond 5-25

if (cond) Xmem = BRC 6-39 SRCCD Xmem, cond 5-26

if (cond) Xmem = T 6-39 STRCD Xmem, cond 5-28

Algebraic and Mnemonic Instruction Sets Cross-Reference

 6-16

Table 6–23. Parallel Load and Store Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

dst = Xmem [<< 16]
|| dst = dst + T*Ymem

dst = Xmem [<< 16]
|| dst += T*Ymem

dst = Xmem [<< 16]
|| dst = rnd(dst + T * Ymem)

6-40 LD Xmem, dst
|| MAC Ymem [,dst]

LD Xmem, dst
|| MACR Ymem [,dst]

5-19

dst = Xmem [<< 16]
|| dst = dst – T * Ymem

dst = Xmem [<< 16]
|| dst –= T * Ymem

dst = Xmem [<< 16]
|| dst = rnd(dst – T * Ymem)

6-40 LD Xmem, dst
|| MAS Ymem [,dst]

LD Xmem, dst
|| MASR Ymem[,dst]

5-19

Ymem = HI (src) [<< ASM]
|| dst = Xmem << 16

Ymem = HI (src) [<<ASM]
|| T = Xmem

6-40 ST src, Ymem
|| LD Xmem, dst

ST src, Ymem
|| LD Xmem, T

5-27

Table 6–24. Parallel Store and Multiply Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

Ymem = HI (src) [<< ASM]
|| dst = dst + T * Xmem

Ymem = HI (src) [<< ASM]
|| dst += T * Xmem

Ymem = HI (src) [<< ASM]
|| dst = rnd(dst + T * Xmem)

6-41 ST src, Ymem
|| MAC Xmem, dst

ST src, Ymem
|| MACR Xmem, dst

5-27

Ymem = HI (src) [<< ASM]
|| dst = dst – T * Xmem

Ymem = HI (src) [<< ASM]
|| dst –= T * Xmem

Ymem = HI (src) [<< ASM]
|| dst = rnd(dst – T * Xmem)

6-41 ST src, Ymem
|| MAS Xmem, dst

ST src, Ymem
|| MASR Xmem, dst

5-27

Ymem = HI (src) [<<ASM]
|| dst = T * Xmem

6-41 ST src, Ymem
|| MPY Xmem, dst

5-27

Algebraic and Mnemonic Instruction Sets Cross-Reference

6-17Algebraic Instruction Set Summary

Table 6–25. Parallel Store and Add/Subtract Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

Ymem = HI (src) [<< ASM]
|| dst = dst +Xmem<<16

6-41 ST src, Ymem
|| ADD Xmem, dst

5-27

Ymem = HI (src) [<< ASM]
|| dst = Xmem << 16 – dst

6-41 ST src, Ymem
|| SUB Xmem, dst

5-28

Table 6–26. Miscellaneous Load-Type and Store-Type Instructions

Algebraic Instruction Page Equivalent Mnemonic Instruction Page

Ymem = Xmem 6-42 MVDD Xmem, Ymem 5-22

data(dmad) = Smem 6-42 MVDK Smem, dmad 5-22

MMR = data(dmad)
mmr(MMR) = data(dmad)

6-42 MVDM dmad, MMR 5-22

prog(pmad) = Smem 6-42 MVDP Smem, pmad 5-22

Smem = data(dmad) 6-42 MVKD dmad, Smem 5-22

data(dmad) = MMR
data(dmad) = mmr(MMR)

6-42 MVMD MMR, dmad 5-22

MMRy = MMRx (0 <= x,y <= 8)
mmr(MMRy) = mmr(MMRx)

6-42 MVMM MMRx, MMRy 5-22

Smem = prog(pmad) 6-42 MVPD pmad, Smem 5-22

Smem = port (PA) 6-42 PORTR PA, Smem 5-23

port (PA) = Smem 6-42 PORTW Smem, PA 5-24

Smem = prog(A) 6-42 READA Smem 5-24

prog(A) = Smem 6-42 WRITA Smem 5-28

Algebraic Instruction Set Summary

 6-18

6.3 Algebraic Instruction Set Summary

The ’54x algebraic instruction set can be divided into four basic types of opera-
tions:

� Arithmetic operations
� Logical operations
� Program-control operations
� Load and store operations

In this summary, each of the types of operations is divided into smaller groups
of instructions with similar functions.

6.3.1 Arithmetic Operations

The arithmetic operation instructions are grouped as follows:

Instruction Group See On Page

Add Table 6–27 6-20

Subtract Table 6–28 6-21

Multiply Table 6–29 6-22

Multiply accumulate Table 6–30 6-23

Multiply subtract Table 6–30 6-23

Double Table 6–31 6-25

Application specific Table 6–32 6-27

6.3.2 Logical Operations

The logical operation instructions are grouped as follows:

Instruction Group See On Page

AND Table 6–33 6-28

OR Table 6–34 6-29

XOR Table 6–35 6-29

Shift Table 6–36 6-30

Test Table 6–37 6-31

Algebraic Instruction Set Summary

6-19Algebraic Instruction Set Summary

6.3.3 Program Control Operations

The program control operation instructions are grouped as follows:

Instruction Group See On Page

Branch Table 6–38 6-32

Call Table 6–39 6-33

Interrupt Table 6–40 6-33

Return Table 6–41 6-34

Repeat Table 6–42 6-35

Stack manipulation Table 6–43 6-35

Miscellaneous Table 6–44 6-36

6.3.4 Load and Store Operations

The load and store operation instructions are grouped as follows:

Instruction Group See On Page

Load Table 6–45 6-37

Store Table 6–46 6-38

Conditional store Table 6–47 6-39

Parallel load and store Table 6–48 6-40

Parallel store and multiply Table 6–49 6-41

Parallel store and add/subtract Table 6–50 6-41

Miscellaneous Table 6–51 6-42

Algebraic Instruction Set Summary Tables

 6-20

6.3.5 Algebraic Instruction Set Summary Tables

Table 6–27. Add Instructions

Syntax Description

src = src + Smem
src += Smem
src = src + Smem << TS
src += Smem << TS
dst = src + Smem << 16
dst += Smem << 16
dst = src + Smem [<< SHIFT]
dst += Smem [<< SHIFT]
src = src + Xmem << SHIFT1
src += Xmem << SHIFT1
dst = Xmem << 16 + Ymem << 16
dst = src + #lk [<< SHIFT1]
dst += #lk [<< SHIFT1]
dst = src + #lk << 16
dst += #lk << 16
dst = dst + src [<< SHIFT]
dst += src [<< SHIFT]
dst = dst + src << ASM
dst += src << ASM

Add to Accumulator

Add the value, shifted if indicated, to the value of the selected
accumulator (A or B) or to the mode value (Ymem). Store the
result in the destination accumulator, if specified; otherwise, store
the result in the source accumulator.

src = src + Smem + Carry
src += Smem + Carry

Add to Accumulator With Carry

Add the value from the data memory location and the value of C
to the source accumulator. Store the result in the accumulator.

Smem = Smem + #lk
Smem += #lk

Add to Memory Long Immediate

Add the value from a data memory location to the memory value.
Store the result in the data memory location specified by Smem.

src = src + uns(Smem)
src += uns(Smem)

Add to Accumulator With Sign Extension Suppressed

Add the value from data memory to the source accumulator. Store
the result in the accumulator.

Algebraic Instruction Set Summary Tables

6-21Algebraic Instruction Set Summary

Table 6–28. Subtract Instructions

Syntax Description

src = src – Smem
src –= Smem
src = src – Smem << TS
src –= Smem << TS
dst = src – Smem << 16
dst –= Smem << 16
dst = src – Smem [<< SHIFT]
dst –= Smem [<< SHIFT]
src = src – Xmem << SHIFT
src –= Xmem << SHIFT
dst = Xmem << 16 – Ymem << 16
dst = src – #lk [<< SHIFT]
dst –= #lk [<< SHIFT]
dst = src – #lk << 16
dst –= #lk << 16
dst = dst – src [<< SHIFT]
dst –= src [<< SHIFT]
dst = dst – src << ASM
dst –= src << ASM

Subtract From Accumulator

Subtract the value of a data memory location, a constant, or the
source accumulator (A or B), shifted if indicated, from the value
of the source accumulator (A or B) or from the value Ymem. Store
the result in the destination accumulator, if specified; otherwise,
store the result in the source accumulator.

src = src – Smem – Borrow
src –= Smem – Borrow

Subtract From Accumulator With Borrow

Subtract the value of the mode value from the value of the source
accumulator. Subtract the logical inversion of C from the result.
The final result is stored in the source accumulator.

subc(Smem, src) Subtract From Accumulator Conditionally

Subtract the mode value, left shifted 15 bits, from the value of the
source accumulator. If the result is greater than 0, left shift the
result by 1, add 1, and store the final result in the source accumu-
lator. Otherwise, left shift the value of the source accumulator by
1 and store the result in the source accumulator.

src = src – uns(Smem)
src –= uns(Smem)

Subtract From Accumulator With Sign-Extension Sup-
pressed

Subtract the mode value from the value of the source accumula-
tor. The result is stored in the source accumulator.

Algebraic Instruction Set Summary Tables

 6-22

Table 6–29. Multiply Instructions

Syntax Description

dst = T * Smem
dst = rnd(T * Smem)
dst = T * #lk

Multiply

� Multiply the value of TREG by the value of the data memory
location or by the constant. Store the result in the destination
accumulator.

dst = Smem * #lk [,T = Smem] � Multiply the value of the data memory location by the
constant #lk. Store the result in the destination accumulator.

dst = Xmem * Ymem [,T = Xmem] � Multiply the value of the data memory location Xmem by the
data memory location Ymem. Store the result in the destina-
tion accumulator.

dst = T * HI (A)

Multiply by Accumulator A

� Multiply the high bits of accumulator A by the value of TREG.
Store the result in the destination accumulator.

B = Smem * HI (A) [,T = Smem] � Multiply the high bits of accumulator A by the value of the data
memory location. Store the result in accumulator B. After this
instruction, TREG contains the Smem value.

dst = T * uns(Smem) Multiply Unsigned

Multiply the value of TREG by the value of the data memory loca-
tion Smem. Store the result in the destination accumulator.

dst = Smem * Smem [,T = Smem]
dst = square(Smem) [,T = Smem]
dst = HI (A) * HI (A)
dst = square(HI (A))

Square

Square the value of Smem, or the 16 MSBs of accumulator A and
store the result in the destination accumulator. Store the value of
Smem in TREG.

Algebraic Instruction Set Summary Tables

6-23Algebraic Instruction Set Summary

Table 6–30. Multiply-Accumulate or Multiply-Subtract Instructions

Syntax Description

dst = src + T * Smem
dst += T * Smem
dst = rnd(src + T * Smem)

Multiply/Accumulate With/Without Rounding

� Multiply TREG by the specified value and add the prod-
uct to the source accumulator. Store the result in the
source accumulator.

dst = src + T * #lk
dst += T * #lk

� Multiply TREG by the immediate value and add the prod-
uct to the accumulator. Store the result in the destination
accumulator, if specified; otherwise, store the result in
the source accumulator.

dst = src + Xmem * Ymem [,T = Xmem]
dst += Xmem * Ymem [,T = Xmem]
dst = rnd(src + Xmem * Ymem) [,T = Xmem]

� Multiply Xmem and Ymem and add the product to the
accumulator. Store the result in the destination accumu-
lator, if specified; otherwise, store the result in the source
accumulator.

dst = src + Smem * #lk [,T = Smem]
dst += Smem * #lk [,T = Smem]

� Multiply two values and add the product to the accumula-
tor. Store the result in the destination accumulator, if
specified; otherwise, store the result in the source accu-
mulator.

B = B + Smem * HI (A) [,T = Smem]
B += Smem * HI (A) [, T = Smem]
B = rnd(B + Smem * HI (A)) [, T = Smem]

Multiply by Accumulator A and Accumulate

� Multiply the high bits of accumulator A by the specified
value, and add the product to the value of accumulator
B. Store the result in accumulator B.

dst = src + T * HI (A)
dst += T * HI (A)
dst = rnd(src + T * HI (A))

� Multiply the high bits of accumulator A by the value of
TREG, and add the product to the value of the source
accumulator (A or B). Store the result in the destination
accumulator, if specified; otherwise, store the result in
the source accumulator.

macd(Smem, pmad, src) Multiply by Program Memory and Accumulate With
Delay

Multiply two values. Add the product to the source accumu-
lator value and store the result in that accumulator. The data
memory value is copied into TREG and into the next higher
address.

macp(Smem, pmad, src) Multiply by Program Memory and Accumulate

Multiply two values. Add the product to the source accumu-
lator value, and store the result in that accumulator. The data
memory value is copied into TREG.

Algebraic Instruction Set Summary Tables

 6-24

Table 6–30. Multiply-Accumulate or Multiply-Subtract Instructions (Continued)

Syntax Description

src = src + uns(Xmem) * Ymem [,T = Xmem]
src += uns(Xmem) * Ymem [,T = Xmem]

Multiply Signed by Unsigned and Accumulate

Multiply an unsigned value (Xmem) by a signed value
(Ymem), and add the product to the source accumulator.
Store the result in the source accumulator. The unsigned
value is stored in TREG.

src = src – T * Smem
src –= T * Smem
src = rnd(src – T * Smem)

Multiply and Subtract

� Multiply TREG by a value, and subtract the product from
the accumulator. Store the result in the source accumu-
lator.

dst = src – Xmem * Ymem [, T = Xmem]
dst –= Xmem * Ymem [, T = Xmem]
dst = rnd(src – Xmem * Ymem) [, T=Xmem]

� Multiply two values (Xmem and Ymem), and subtract the
product from the accumulator. Store the result in the des-
tination accumulator, if specified; otherwise, store the
result in the source accumulator. After the instruction,
TREG contains the Xmem value.

B = B – Smem * HI (A) [, T = Smem]
B –= Smem * HI (A) [, T = Smem]

Multiply by Accumulator A and Subtract

� Multiply the high bits of accumulator A by a value
(Smem), and subtract the product from accumulator B.
Store the result in accumulator B. After the instruction,
TREG contains the Smem value.

dst = src – T * HI (A)
dst –= T * HI (A)
dst = rnd(src – T * HI (A))

� Multiply the high bits of accumulator A by the TREG
value. Subtract the product from the source accumulator.
Store the result in the destination accumulator, if speci-
fied; otherwise, store the result in the source accumula-
tor.

src = src + square(Smem) [, T=Smem]
src += square(Smem) [, T = Smem]
src = src + Smem * Smem [, T=Smem]
src += Smem * Smem [, T = Smem]

Square and Accumulate

Store the value of Smem in the T register. Square the value
of Smem and add the result to the source accumulator. Store
the result of the square/addition in the source accumulator.

src = src – square(Smem) [, T=Smem]
src –= square(Smem) [, T = Smem]
src = src – Smem * Smem [, T=Smem]
src –= Smem * Smem [, T = Smem]

Square and Subtract

Store the value of Smem in TREG. Square the value of Smem
and subtract the result from the source accumulator. Store the
results of the square/subtraction in the source accumulator.

Algebraic Instruction Set Summary Tables

6-25Algebraic Instruction Set Summary

Table 6–31. Double (32-bit Operand) Instructions

Syntax Description

dst = src + dbl (Lmem)
dst += dbl (Lmem)
dst = src + dual(Lmem)
dst += dual (Lmem)

Double Precision/Dual Mode Add to Accumulator

Add the value of the source accumulator to the value. The value
of C16 determines how the instruction is treated.

The result is stored in the destination accumulator, if specified;
otherwise, the result is stored in the source accumulator.

dst = dadst (Lmem, T) Double Precision Load With TREG Add/Dual 16-Bit Load
With TREG Add/Subtract

The value of C16 determines the execution of the instruction:

� If C16 is not set, the value of TREG is left-shifted 16 bits and
ORed with itself. The resulting value is added to the long
memory word.

� If C16 is set, the 16 MSBs of the long memory location are
added to the value of TREG. At the same time, the value of
TREG is subtracted from the 16 LSBs of the memory loca-
tion.

The result is stored in the destination accumulator.

dst = dbl (Lmem)
dst = dual(Lmem)

Long Word Load to Accumulator

Load the destination accumulator with a 32-bit long operand
value.

src = dbl (Lmem) – src
src = dual (Lmem) – src

Double Precision/Dual 16-Bit Subtract From Long Word

The value of C16 determines the execution of the instruction:

� If C16 is not set, the value of the source accumulator is sub-
tracted from the long memory word.

� If C16 is set, the source accumulator high is subtracted from
the 16 MSBs of the long memory location. At the same time,
the source accumulator low is subtracted from the 16 LSBs
of the memory location.

The result is stored in the source accumulator.

Algebraic Instruction Set Summary Tables

 6-26

Table 6–31. Double (32-bit Operand) Instructions (Continued)

Syntax Description

dst = dsadt (Lmem, T) Long Load With TREG Add/Dual 16-Bit Load With TREG
Subtract/Add

The value of C16 determines the execution of the instruction:

� If C16 is not set, the value of TREG is left-shifted 16 bits and
ORed with itself. The resulting value is subtracted from the
32-bit long memory word.

� If C16 is set, the value of TREG is subtracted from the 16
MSBs of the long memory location. At the same time, the
value of TREG is added to the 16 LSBs of the memory loca-
tion.

The result is stored in the destination accumulator.

dbl (Lmem) = src
dual(Lmem) = src

Store Accumulator in Long Word

Store the value of accumulator A or B in a long memory word.

src = src – dbl (mem)
src –= dbl (Lmem)
src = src – dual (mem)
src –= dual(Lmem)

Double Precision/Dual 16-Bit Subtract From Accumulator

The value of C16 determines the execution of the instruction:

� If C16 is not set, the value of the long memory word is sub-
tracted from the source accumulator.

� If C16 is set, the value of the 16 MSBs of the long memory
location is subtracted from the source accumulator high. At
the same time, the 16 LSBs of the long memory location are
subtracted from the source accumulator low.

The result is stored in the accumulator.

dst = dbl (Lmem) – T
dst = dual (Lmem) – T

Long Load With TREG Subtract/Dual 16-Bit Load With
TREG Subtract

The value of C16 determines the execution of the instruction:

� If C16 is not set, the value of TREG is left-shifted 16 bits and
ORed with itself. The resulting 32-bit value is subtracted from
the 32-bit long memory word.

� If C16 is set, the value of TREG is subtracted from the 16
MSBs of the long memory word. At the same time, the value
of TREG is subtracted from the 16 LSBs of the memory loca-
tion.

The result is stored in the destination accumulator.

Algebraic Instruction Set Summary Tables

6-27Algebraic Instruction Set Summary

Table 6–32. Application-Specific Instructions

Syntax Description

abdst (Xmem, Ymem) Absolute Distance

Compute the distance of two vectors, based on the absolute
value.

dst = |src | Absolute Value of Accumulator

Load the absolute value of the source accumulator into the des-
tination accumulator. If no destination is given, load the absolute
value into the source accumulator.

dst = ~src Complement Accumulator

Complement the value of the source accumulator (logical inver-
sion). The result is stored in the destination accumulator.

delay(Smem) Memory Delay

Copy the value referenced by Smem into the next higher address.

T = exp(src) Accumulator Exponent

Compute the exponent value defined as a signed 2s-complement
value in the –8 to +31 range, and store the result in TREG.

firs (Xmem, Ymem, pmad) Symmetrical Finite Impulse Response Filter

Multiply the accumulator A[32–16] by the program memory value
(pmad). Accumulate the result in accumulator B. At the same
time, add the two data memory values (Xmem and Ymem), left
shift the result 16 bits, and store the result into accumulator A.

lms(Xmem, Ymem) Least Mean Square Instruction

Set up the basis for computing the least mean square. Replace
the value of accumulator B with the result of B plus Xmem multi-
plied by Ymem. Replace the value of accumulator A with the result
of A plus Xmem left-shifted 16 bits and added to 215.

dst = max(A, B) Accumulator Maximum

Compare the values of the accumulators, and store the maximum
value in the destination accumulator.

dst = min(A, B) Accumulator Minimum

Compare the values of the accumulators, and store the minimum
value in the destination accumulator.

dst = –src Negate Accumulator

Negate (1s complement) the value of the source accumulator (A
or B). The value is stored in the source accumulator or in the des-
tination accumulator, if given.

Algebraic Instruction Set Summary Tables

 6-28

Table 6–32. Application-Specific Instructions (Continued)

Syntax Description

dst = src << TS
dst = norm(src,TS)

Normalization

Allow single cycle normalization of the accumulator once the EXP
instruction has been executed. The shift value is defined by
TREG[5:0] and coded as a 2s-complement value.

poly(Smem) Polynomial Evaluation

Shift the value of the value Smem 16 bits to the left, and store the
result in accumulator B. At the same time, multiply the value of
accumulator A (17 MSBs) by the value of TREG, add it to accumu-
lator B, and round the result. Store the result in accumulator A.

dst = rnd(src) Round Accumulator

Rounds the content of src (either A or B) by adding 215. The
rounded value is stored in dst .

saturate(src) Saturate Accumulator

Regardless of the OVM value, saturate the source accumulator
content on 32 bits.

sqdst (Xmem, Ymem) Square Distance

Used in repeat single mode, compute the distance between two
vectors based on the square value.

Table 6–33. AND Instructions

Syntax Description

src = src & Smem
src &= Smem
dst = src & #lk [<< SHIFT1]
dst &= #lk [<< SHIFT1]
dst = src & #lk << 16
dst &= #lk << 16
dst = dst & src [<< SHIFT]
dst &= src [<< SHIFT]

AND With Accumulator

AND the data value or constant with the source accumulator (A
or B). If a shift is specified, left shift the data value before the AND.
Store the result in the destination accumulator, if specified; other-
wise, store the result in the source accumulator.

Smem = Smem & #lk
Smem &= #lk

AND Memory With Long Immediate

AND the data memory value with a constant. Store the result in
the data memory location specified by Smem.

Algebraic Instruction Set Summary Tables

6-29Algebraic Instruction Set Summary

Table 6–34. OR Instructions

Syntax Description

src = src | Smem
src |= Smem

OR With Accumulator

� OR the 16 LSBs of the source accumulator with the value of
the addressed data memory location. The result replaces the
16 LSBs of the source accumulator, leaving the rest of the
accumulator unchanged.

dst = src | #lk [<< SHIFT]
dst |= #lk [<< SHIFT]

dst = src | #lk << 16
dst |= #lk << 16

� OR the source accumulator with an immediate addressed
value, left shifted as indicated. Store in the destination accu-
mulator, if specified; otherwise, store in the source accumu-
lator.

dst = dst | src [<< SHIFT]
dst |= src [<< SHIFT]

� OR the source accumulator with itself or the destination
accumulator, if specified, left shifted as indicated. Store in the
destination accumulator, if specified; otherwise, store in the
source accumulator.

Smem = Smem | #lk
Smem |= #lk

OR Memory With Constant

OR the value Smem with the constant lk. Store the result in
Smem.

Table 6–35. XOR Instructions

Syntax Description

src = src ^ Smem
src ^= Smem
dst = src ^ #lk [<< SHIFT]
dst ^= #lk [<< SHIFT]
dst = src ^#lk << 16
dst ^= #lk << 16
dst = dst ^ src [<< SHIFT]
dst ^= src [<< SHIFT]

Exclusive-OR With Accumulator

Exclusive-OR the mode value, shifted if indicated, with the value
of the source accumulator (A or B). Store the result in the destina-
tion accumulator, if specified; otherwise, store the result in the
source accumulator.

Smem = Smem ^ #lk
Smem ^= #lk

Exclusive-OR Memory With Constant

Exclusive-OR the value of the data memory location with the
value lk. Store the result in the data memory location.

Algebraic Instruction Set Summary Tables

 6-30

Table 6–36. Shift Instructions

Syntax Description

src = src \\ Carry Rotate Accumulator Left

Rotate the source accumulator left one bit.

roltc (src) Rotate Accumulator Left With TC

Rotate the source accumulator left one bit.

src = src // Carry Rotate Accumulator Right

Rotate the source accumulator right one bit.

dst = src << C SHIFT Shift Accumulator Arithmetically

Shift the source accumulator arithmetically. Store the result in the
destination accumulator, if specified; otherwise, replace the value
of the source accumulator.

shiftc (src) Accumulator Conditional Shift

If the source accumulator has two significant sign bits, shift the
accumulator left one bit. If there are two sign bits, TC is cleared;
otherwise, TC is set to 1.

dst = src << SHIFT Shift Accumulator Logically

Shift the source accumulator logically. Store the result in the des-
tination accumulator, if specified; otherwise, replace the value of
the source accumulator.

Algebraic Instruction Set Summary Tables

6-31Algebraic Instruction Set Summary

Table 6–37. Test Instructions

Syntax Description

TC = bit (Xmem, bit_code) Test Bit

Copy the specified bit of the memory value into the TC bit of status
register ST0.

TC = bitf (Smem, #lk) Test Bit Field Specified by Immediate Value

Test the specified bit of the data memory value by masking the
data value with an immediate value (lk).

TC = bitt (Smem) Test Bit Specified by TREG

Copy the specified bit of the data memory value to the TC bit in
status register ST0. The four LSBs of TREG contain a bit code
that specifies which bit is copied.

TC = (Smem == #lk) Compare Memory With Long Immediate

Compare the value to the constant specified in the instruction.

TC = (AR0 == ARx) (==, <, >, !=)
TC = (AR0 > ARx)
TC = (AR0 < ARx)
TC = (AR0 != ARx)

Compare Auxiliary Register With AR0

Compare the condition of the designated auxiliary register (ARx)
to AR0 and place the result in the TC bit. The comparison is speci-
fied by the CC value.

Algebraic Instruction Set Summary Tables

 6-32

6.3.6 Program Control Operations

Table 6–38. Branch Instructions

Syntax Description

[d]goto pmad Branch Unconditionally

Pass control to the designated program memory address (pmad).

For a delayed branch ([d]goto), the one 2-word instruction or the
two 1-word instructions following the branch instruction are
fetched from program memory and executed before the branch
is taken.

[d]goto src Branch to Address Specified by Accumulator

Pass control to the address residing in the lower part of the source
accumulator.

if (Sind != 0) [d]goto pmad Branch on Auxiliary Register Not Zero

Pass control to the designated program memory address (pmad).
If the value of the current auxiliary register designated by Sind is
not equal to 0, branch to the specified program memory address;
otherwise, add two to the program counter and store the result in
the program counter.

if (cond [,cond [cond]]) [d]goto pmad Branch Conditionally With Optional Delay

If the specified condition is met, pass control to the designated
program memory address (pmad).

far [d]goto extpmad Far Branch Unconditionally

For a far call, pass control to the designated program memory
address (pmad).

For a delayed branch, the one 2-word instruction or the two
1-word instructions following the branch instruction are fetched
from program memory and executed before the branch is taken.

far [d]goto src Far Branch to Address Specified by Accumulator

For a far call, pass control to the address residing in the lower part
of the source accumulator.

Algebraic Instruction Set Summary Tables

6-33Algebraic Instruction Set Summary

Table 6–39. Call Instructions

Syntax Description

[d]call src Call Subroutine at Location Specified by Accumulator

Increment the PC and push it onto the stack; then pass control to
the address residing in the lower part of the source accumulator.

[d]call extpmad Call Unconditionally With Optional Delay

Pass control to the specified program memory address (pmad).
Push the return address onto the stack.

if (cond [,cond [,cond]]) [d]call pmad Call Conditionally With Optional Delay

If the specified conditions are met, push the return address onto
the stack, then pass control to the program memory address
(pmad).

far [d]call src Far Call Subroutine at Location Specified by Accumulator

For a far call, increment the PC and push it onto the stack; then
pass control to the address residing in the lower part of the source
accumulator.

far [d]call extpmad Far Call Unconditionally With Optional Delay

For a far call, pass control to the specified program memory
address (pmad). Push the return address onto the stack.

Table 6–40. Interrupt Instructions

Syntax Description

int (K) (0 <= K <= 31) Software Interrupt

Transfer program control to the corresponding interrupt vector
specified by K.

trap(k) Software Interrupt

Transfer program control to the interrupt routine specified by K.
Decrement the stack pointer by 1. Push the value of PC + 1 onto
the data memory addressed by the stack pointer.

Algebraic Instruction Set Summary Tables

 6-34

Table 6–41. Return Instructions

Syntax

far [d]return Far Return With Optional Delay

For a far call, replace the program counter with the value
addressed by the stack pointer. Increment the stack pointer by 1.
Execution continues from this point.

far [d]return_enable Enable Interrupts and Far Return From Interrupt With
Optional Delay

For a far call, replace the program counter with the value
addressed by the stack pointer. Execution continues from this
point. RETE automatically clears the global interrupt mask bit
(INTM in ST1).

if (cond [,cond [,cond]]) [d]return Return Conditionally With Optional Delay

If the specified condition is met, return from subroutine. Replace
the program counter with the data memory value addressed by
the stack pointer and increment the stack pointer by 1. If the condi-
tion is not met, increment the PC by 1.

[d]return Return With Optional Delay

Replace the program counter with the value addressed by the
stack pointer. Increment the stack pointer by 1. Execution
continues from this point.

[d]return_enable Enable Interrupts and Return From Interrupt With Optional
Delay

Replace the program counter with the value addressed by the
stack pointer. Execution continues from this point. RETE auto-
matically clears the global interrupt mask bit (INTM in ST1).

[d]return_fast Enable Interrupts and Fast Return From Interrupt

Replace the program counter with the value addressed by the
stack pointer. Execution continues at this point. RETF automati-
cally sets the global interrupt mask bit (INTM in ST1).

Algebraic Instruction Set Summary Tables

6-35Algebraic Instruction Set Summary

Table 6–42. Repeat Instructions

Syntax Description

repeat(Smem)
repeat(#K) (RC=#k) (0<=k<=255)
repeat(#lk) (RC=#lk) (0<=lk<=65535)

Repeat Next Instruction

Set the repeat counter (RC) with the iteration value when RPT is
executed. Load the value or constant into the repeat counter. The
instruction following the RPT is repeated.

[d]blockrepeat(pmad) Block Repeat

The RPTB instruction allows a block of instructions to be repeated
the number of times specified by the memory-mapped block
repeat counter (BRC).

repeat(#lk) , dst = 0 Repeat Next Instruction With Clearing Accumulator

Clear the destination accumulator and load the value into the
repeat counter register (RC). Repeat the instruction following the
RPTZ instruction n times, where n is the value of the RC plus 1.

Table 6–43. Stack-Manipulating Instructions

Syntax

SP = SP + K (–128 <= K <= 127)
SP += K (–128 <= K <= 127)

Stack Pointer Immediate Offset

Perform a short immediate offset on the stack pointer.

Smem = pop() Pop Top of Stack to Data Memory

Move the value of the data memory addressed by the stack
pointer to the memory specified by Smem. Increment the stack
pointer by 1.

 MMR = pop()
mmr(MMR) = pop()

Pop Top of Stack to Memory-Mapped Register

Move the value of the data memory addressed by the stack
pointer to the specified memory-mapped register. Increment the
stack pointer by 1.

push(Smem) Push Data Memory Value Onto Stack

Decrement the stack pointer by 1. Move the value of the data
memory location (Smem) to the data memory location addressed
by the stack pointer.

push(MMR)
push(mmr(MMR))

Push Memory-Mapped Register Onto Stack

Decrement the stack pointer by 1. Move the value of the selected
memory mapped register to the data memory location addressed
by the stack pointer.

Algebraic Instruction Set Summary Tables

 6-36

Table 6–44. Miscellaneous Program Control Instructions

Syntax Description

idle(K) (0 <= K <= 3) Idle Until Interrupt

Forces the executing program to halt until an unmasked
interrupt or reset occurs. The PC is incremented only
once, and the device remains in an idle state (power-down
mode) until it is interrupted.

mar(Smem)
ARn = ARn + AR0
ARn += AR0
ARn = ARn – AR0
ARn –= AR0

Modify Auxiliary Register

This instruction works in indirect addressing mode. The
value of CMPT determines the execution of the instruction:

� If CMPT = 1 and ARX = AR0 or ARX = null, modify the
auxiliary register pointed to by ARP. ARP is
unchanged. If X is a nonnull value, then modify the
auxiliary register and place the value X into ARP.

� If CMPT = 0, modify ARX, but do not change ARP.

If direct addressing is used, MAR functions as a NOP.

nop No Operation

No operation is performed. Only the program counter is
incremented.

reset Software Reset

Put the DSP into a known state.

SBIT = 0
ST(N,SBIT)=0

Reset Status Register Bit

Clear the specified bit (SBIT) of the status register.

SBIT = 1
ST(N,SBIT)=1

Set Status Register Bit

Set the specified bit (SBIT) of the status register.

if (cond [,cond [,cond]]) execute(n) (n = 1 or 2) Execute Conditionally

The value of n and the selected conditions determine the
execution of the instruction:

� If n = 1 and the condition is met, fetch and execute the
next 1-word instruction.

� If n = 2 and the condition is met, fetch and execute the
next two 1-word instructions or the next one 2-word
instruction.

� If the condition is not met, execute one or two NOP
instructions.

Algebraic Instruction Set Summary Tables

6-37Algebraic Instruction Set Summary

Table 6–45. Load Instructions

Syntax Description

dst = Smem
dst = Smem << TS
dst = Smem << 16
dst = Smem [<< SHIFT]
dst = Xmem [<< SHIFT1]
dst = #K (0 <= K <= 255)
dst = #lk [<< SHIFT1]
dst = #lk << 16
dst = src << ASM
dst = src [<< SHIFT]

Load Accumulator With Shift

Load destination accumulator with a data memory value or an
immediate value. This instruction has various shift capabilities.
Accumulator–to-accumulator move with immediate shift or accu-
mulator shift mode is supported.

T = Smem
DP = Smem
ASM = Smem (ASM = Smem[0:4])

Load TREG or Status Register

� Load a data memory value into TREG or the specified bit field
of the status register (DP or ASM).

DP = #k9 (0 <= Kk9<= 511)
ASM = #k5 (–16 <= Kk5<= 15)
ARP = #k3 (0 <= k3 <= 7)

� Load an immediate value into the specified bit field of the sta-
tus register (DP, ASM, ARP).

dst = MMR Load Memory Mapped Register

Load the accumulator with a memory-mapped register value.

dst = rnd(Smem) Load Memory Value in Accumulator High With Rounding

Load the data memory value into accumulator high.

dst = uns(Smem) Load Memory Unsigned Value

Load the value into accumulator low. Guard bits and accumulator
high are cleared.

ltd(Smem) Load TREG and Memory Delay

Load the value into TREG, and copy the value to the next higher
address.

Algebraic Instruction Set Summary Tables

 6-38

Table 6–46. Store Instructions

Syntax Description

Smem = T
Smem = TRN
Smem = #lk

Store T, TRN, Immediate Value Into Memory

Store the value of TREG, TRN, or the immediate value in data
memory.

Smem = HI (src)
Smem = HI (src) << ASM
Xmem = HI (src) << SHIFT1
Smem = HI (src) << SHIFT

Store Accumulator High Into Memory

Store the 16 MSBs of the source accumulator in data memory
(Smem or Xmem).

Smem = src
Smem = src << ASM
Xmem = src << SHIFT1
Smem = src << SHIFT

Store Accumulator Low Into Memory

Store the 16 LSBs of the source accumulator in data memory
(Smem or Xmem).

MMR = src
mmr(MMR) = src

Store Accumulator Low Into Memory-Mapped Register

Store the 16 LSBs of the source accumulator into the memory-
mapped register. The upper nine bits of the effective address are
cleared to 0, regardless of the current value of DP or the upper
nine bits of ARX.

MMR = #lk
mmr(MMR) = #lk

Store Immediate Value Into Memory-Mapped Register

Store the value into the specified memory-mapped register or any
memory location on data page 0 without modifying the DP field in
status register ST0.

Algebraic Instruction Set Summary Tables

6-39Algebraic Instruction Set Summary

Table 6–47. Conditional Store Instructions

Syntax Description

cmps(src,Smem) Compare Select Max and Store

Compare the values located in the 16 MSBs and the 16 LSBs of
the source accumulator (considered 2s-complement values).
Store the maximum value in the memory location. Shift TRN left
one bit.

if (cond) Xmem = HI (src) << ASM Store Accumulator Conditionally

If the condition is met, store the source accumulator (A or B) left-
shifted as defined in Xmem. If the condition is not true, execute
a read and a write at the Xmem address with the same value.
Regardless of the condition, Xmem is always read and updated
according to its modifier.

if (cond) Xmem = BRC Store Block Repeat Counter Conditionally

If the condition is true, store the value of the BRC in Xmem. If the
condition is false, execute a read and a write at the Xmem address
with the same value. Regardless of the condition, Xmem is always
updated and read according to its modifier.

if (cond) Xmem = T Store TREG Conditionally

If the condition is true, store the value of TREG in Xmem. Regard-
less of the condition, Xmem is always read and updated accord-
ing to its modifier. If the condition is true, execute a read and a
write at the Xmem address with the same value.

Algebraic Instruction Set Summary Tables

 6-40

Table 6–48. Parallel Load and Store Instructions

Syntax Description

dst = Xmem [<< 16]
|| dst = dst + T*Ymem

dst = Xmem [<< 16]
|| dst += T*Ymem

dst = Xmem [<< 16]
|| dst = rnd(dst + T*Ymem)

Multiply/Accumulate With/Without Rounding and Parallel
Load

Multiply the value Ymem by the value of TREG and add the result
of the multiplication to the accumulator that is not the destination
accumulator (dst2). At the same time, load the destination accu-
mulator high with value Xmem.

dst = Xmem [<< 16]
|| dst = dst – T*Ymem

dst = Xmem [<< 16]
|| dst –= T*Ymem

dst = Xmem [<< 16]
|| dst = rnd(dst – T*Ymem)

Multiply/Subtract With/Without Rounding and Parallel Load

Multiply the value Ymem by the value of TREG and subtract the
result of the multiplication from the accumulator that is not the
destination accumulator (dst2). At the same time, load the
destination accumulator high with the value Xmem.

Ymem = HI(src) [<< ASM]
|| dst = Xmem << 16

Ymem = HI(src) [<<ASM]
|| T = Xmem

Store Accumulator With Parallel Load

Store the value of the source accumulator shifted as defined by
the ASM field of ST1 in the memory location Ymem. At the same
time, load the value Xmem into the destination accumulator or
TREG.

Algebraic Instruction Set Summary Tables

6-41Algebraic Instruction Set Summary

Table 6–49. Parallel Store and Multiply Instructions

Syntax Description

Ymem = HI (src) [<< ASM]
|| dst = dst + T * Xmem

Ymem = HI (src) [<< ASM]
|| dst += T * Xmem

Ymem = HI (src) [<< ASM]
|| dst = rnd(dst + T * Xmem)

Store Accumulator and Parallel Multiply/Accumulate With/
Without Rounding

Store the value of the source accumulator high shifted as defined
by the ASM field of ST1 in the memory location Ymem. At the
same time, multiply the value Xmem by the value of TREG, add
the result to the value of the destination accumulator, round if indi-
cated, and store the final result in the destination accumulator.

Ymem = HI (src) [<< ASM]
|| dst = dst – T * Xmem

Ymem = HI (src) [<< ASM]
|| dst –= T * Xmem

Ymem = HI (src) [<< ASM]
|| dst = rnd(dst – T * Xmem)

Store Accumulator and Parallel Multiply/Subtract With/
Without Rounding

Store the value of the source accumulator high shifted as defined
by the ASM field of ST1 in the memory location Ymem. At the
same time, multiply the value Xmem by the value of TREG, sub-
tract the result from the value of the destination accumulator,
round if indicated, and store the result in the destination accumu-
lator.

Ymem = HI (src) [<<ASM]
|| dst = T * Xmem

Store Accumulator With Parallel Multiply

Store the value of the source accumulator high shifted as defined
by the ASM field of ST1 in the memory location Ymem. At the
same time, multiply the value of TREG by the 16-bit dual
addressed mode value Xmem, and store the result in the destina-
tion accumulator.

Table 6–50. Parallel Store and Add/Subtract Instructions

Syntax Description

Ymem = HI (src) [<< ASM]
|| dst = dst +Xmem << 16

Store Accumulator With Parallel Add

Store the value of the source accumulator shifted as defined by
the ASM field of ST1 in the memory location Ymem. At the same
time, add the value of the accumulator that is not the destination
accumulator to the 16-bit left-shifted data memory location
Xmem, and store the result in the destination accumulator.

Ymem = HI (src) [<< ASM]
|| dst = Xmem << 16 – dst

Store Accumulator With Parallel Subtract

Store the source accumulator high shifted as defined by the ASM
field of ST1 in the memory location Ymem. At the same time, left
shift the value Xmem 16 bits, subtract the value of the accumula-
tor that is not the destination accumulator, and store the result in
the destination accumulator.

Algebraic Instruction Set Summary Tables

 6-42

Table 6–51. Miscellaneous Load-Type and Store-Type Instructions

Syntax Description

Ymem = Xmem Move Data From Data Memory to Data Memory With X, Y
Addressing

Move the value of the data memory location addressed by Xmem
to the data memory location addressed by Ymem.

data(dmad) = Smem Move Data From Data Memory to Data Memory With
Destination Addressing

Move the value of the addressed data memory location (Smem)
to a data memory location addressed by dmad.

MMR = data(dmad)
mmr(MMR) = data(dmad)

Move Data From Data Memory to Memory-Mapped Register

Move the value of the data memory location (dmad) to a memory-
mapped register (MMR).

prog(pmad) = Smem Move Data From Data Memory to Program Memory

Move a value (Smem) to a program memory location addressed
by value dmad.

Smem = data(dmad) Move Data From Data Memory to Data Memory With
Source Addressing

Move the value of the data memory location dmad to the value
Smem.

data(dmad) = MMR
data(dmad) = mmr(MMR)

Move Data From Memory-Mapped Register to Data Memory

Move the value found in the memory-mapped register MMR to the
value dmad.

MMRy = MMRx (0 <= x,y <= 8)
mmr(MMRy) = mmr(MMRx)

Move Data From Memory-Mapped Register to
Memory-Mapped Register

Move the value of the memory-mapped register MMRx to the
memory-mapped register MMRy.

Smem = prog(pmad) Move Data From Program Memory to Data Memory

Move the value found in the program memory address pmad to
a data memory location addressed by Smem.

Smem = port (PA) Read Data From Port

Read a value from an external I/O port (PA) into the specified data
memory location (Smem).

Algebraic Instruction Set Summary Tables

6-43Algebraic Instruction Set Summary

Table 6–51. Miscellaneous Load-Type and Store-Type Instructions (Continued)

Syntax Description

port (PA) = Smem Write Data to Port

Write a value to an external I/O port (PA) from the specified data
memory location (Smem).

Smem = prog(A) Read Program Memory Addressed by Accumulator A

Transfer a 16-bit word from a program memory location to a data
memory location (Smem). The program memory address is spe-
cified by the 16 LSBs of accumulator A.

prog(A) = Smem Write Data Memory Addressed by Accumulator A

Transfer a 16-bit word from a data memory location (Smem) to a
program memory location specified by the 16 LSBs of accumu-
lator A.

 6-44

7-1Macro Language

Macro Language

The assembler supports a macro language that enables you to create your
own instructions. This is especially useful when a program executes a
particular task several times. The macro language lets you:

� Define your own macros and redefine existing macros
� Simplify long or complicated assembly code
� Access macro libraries created with the archiver
� Define conditional and repeatable blocks within a macro
� Manipulate strings within a macro
� Control expansion listing

Topic Page

7.1 Using Macros 7-2.

7.2 Defining Macros 7-3.

7.3 Macro Parameters/Substitution Symbols 7-6.

7.4 Macro Libraries 7-14.

7.5 Using Conditional Assembly in Macros 7-15.

7.6 Using Labels in Macros 7-17.

7.7 Producing Messages in Macros 7-19.

7.8 Formatting the Output Listing 7-21.

7.9 Using Recursive and Nested Macros 7-22.

7.10 Macro Directives Summary 7-25.

Chapter 7

Using Macros

 7-2

7.1 Using Macros

Programs often contain routines that are executed several times. Instead of
repeating the source statements for a routine, you can define the routine as
a macro, then call the macro in the places where you would normally repeat
the routine. This simplifies and shortens your source program.

If you want to call a macro several times, but with different data each time, you
can assign parameters within a macro. This enables you to pass different
information to the macro each time you call it. The macro language supports
a special symbol called a substitution symbol, which is used for macro parame-
ters. In this chapter, we use the terms macro parameters and substitution sym-
bols interchangeably.

Using a macro is a three-step process.

Step 1: Define the macro. You must define macros before you can use them
in your program. There are two methods for defining macros:

� Macros can be defined at the beginning of a source file or in a
.copy/.include file. See Section 7.2, Defining Macros, for more
information.

� Macros can be defined in a macro library . A macro library is a
collection of files in archive format created by the archiver. Each
member of the archive file (macro library) contains one macro
definition corresponding to the member name. You can access
a macro library by using the .mlib directive. See Section 7.4,
Macro Libraries, on page 7-14 for more information.

Step 2: Call the macro. After defining a macro, you call it by using the macro
name as an opcode in the source program. This is referred to as a
macro call.

Step 3: Expand the macro. The assembler expands your macros when the
source program calls them. During expansion, the assembler
passes arguments by variable to the macro parameters, replaces
the macro call statement with the macro definition, and assembles
the source code. By default, the macro expansions are printed in the
listing file. You can turn off expansion listing by using the .mnolist
directive. See Section 7.8, Formatting the Output Listing, on page
7-21 for more information.

When the assembler encounters a macro definition, it places the macro name
in the opcode table. This redefines any previously defined macro, library entry,
directive, or instruction mnemonic that has the same name as the macro.

Defining Macros

7-3Macro Language

7.2 Defining Macros

You can define a macro anywhere in your program, but you must define the
macro before you can use it. Macros can be defined at the beginning of a
source file, in an .include/.copy file, or in a macro library. For more information
about macro libraries, see Section 7.4, Macro Libraries, on page 7-14.

Macro definitions can be nested, and they can call other macros, but all
elements of any macro must be defined in the same file. Nested macros are
discussed in Section 7.9, Using Recursive and Nested Macros, on page 7-22.

A macro definition is a series of source statements in the following format:

macname .macro [parameter1] [, ... , parametern]

model statements or macro directives

[.mexit]

.endm

macname names the macro. You must place the name in the
source statement’s label field. Only the first 32
characters of a macro name are significant. The
assembler places the macro name in the internal
opcode table, replacing any instruction or previous
macro definition with the same name.

.macro identifies the source statement as the first line of a
macro definition. You must place .macro in the op-
code field.

[parameters] are optional substitution symbols that appear as
operands for the .macro directive. Parameters are
discussed in Section 7.3, Macro Parameters/Sub-
stitution Symbols, on page 7-6.

model statements are instructions or assembler directives that are
executed each time the macro is called.

macro directives are used to control macro expansion.

Defining Macros

 7-4

[.mexit] functions as a goto .endm statement. The .mexit di-
rective is useful when error testing confirms that
macro expansion will fail.

.endm terminates the macro definition.

To include comments with your macro definition
that do not appear in the macro expansion, pre-
cede your comments with an exclamation point. To
include comments that do appear in the macro ex-
pansion, use an asterisk or semicolon. For more in-
formation about macro comments, see Section 7.7,
Producing Messages in Macros, on page 7-19.

Example 7–1 shows the definition, call, and expansion of a macro.

Example 7–1. Macro Definition, Call, and Expansion

(a) Mnemonic example

 1 *
 2
 3 * add3
 4 *
 5 * ADDRP = P1 + P2 + P3
 6
 7 add3 .macro P1, P2, P3, ADDRP
 8
 9 LD P1, A
10 ADD P2, A
11 ADD P3, A
12 STL A, ADDRP
13 .endm
14
15
16 .global abc, def, ghi, adr
17
18 000000 add3 abc, def, ghi, adr

 1
 1 000000 1000! LD abc, A
 1 000001 0000! ADD def, A
 1 000002 0000! ADD ghi, A
 1 000003 8000! STL A, adr

Defining Macros

7-5Macro Language

(b) Algebraic example

 1 *
 2
 3 * add3
 4 *
 5 * ADDRP = P1 + P2 + P3
 6
 7 add3 .macro P1, P2, P3, ADDRP
 8
 9 A = P1
10 A = A + P2
11 A = A + P3
12 ADDRP = A
13 .endm
14
15
16 .global abc, def, ghi, adr
17
18 000000 add3 abc, def, ghi, adr

 1
 1 000000 1000! A = @abc
 1 000001 0000! A = A + @def
 1 000002 0000! A = A + @ghi
 1 000003 8000! @adr = A

Macro Parameters/Substitution Symbols

 7-6

7.3 Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can
assign parameters within the macro. The macro language supports a special
symbol, called a substitution symbol, which is used for macro parameters.

7.3.1 Substitution Symbols

Macro parameters are substitution symbols that represent a character string.
These symbols can also be used outside of macros to equate a character
string to a symbol name.

Valid substitution symbols may be 32 characters long and must begin with a
letter. The remainder of the symbol can be a combination of alphanumeric
characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they
are defined in. You can define up to 32 local substitution symbols (including
substitution symbols defined with the .var directive) per macro. For more
information about the .var directive, see subsection 7.3.7, Substitution Sym-
bols as Local Variables in Macros, on page 7-13.

During macro expansion, the assembler passes arguments by variable to the
macro parameters. The character-string equivalent of each argument is as-
signed to the corresponding parameter. Parameters without corresponding
arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string
equivalent of all remaining arguments.

If you pass a list of arguments to one parameter, or if you pass a comma or
semicolon to a parameter, you must enclose the arguments in quotation
marks.

At assembly time, the assembler replaces the substitution symbol with its cor-
responding character string, then translates the source code into object code.

Example 7–2 shows the expansion of a macro with varying numbers of
arguments.

Macro Parameters/Substitution Symbols

7-7Macro Language

Example 7–2. Calling a Macro With Varying Numbers of Arguments

Macro definition

Parms .macro a,b,c
; a = :a:
; b = :b:
; c = :c:

.endm

Calling the macro:

Parms 100,label Parms 100,label,x,y
; a = 100 ; a = 100
; b = label ; b = label
; c = ” ” ; c = x,y

Parms 100, , x Parms ”100,200,300”,x,y
; a = 100 ; a = 100,200,300
; b = ” ” ; b = x
; c = x ; c = y

Parms ”””string”””,x,y
; a = ”string”
; b = x
; c = y

Macro Parameters/Substitution Symbols

 7-8

7.3.2 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.

The .asg directive assigns a character string to a substitution symbol.

The syntax of the .asg directive is:

.asg [”]character string[”], substitution symbol

The quotation marks are optional. If there are no quotation marks, the
assembler reads characters up to the first comma and removes leading and
trailing blanks. In either case, a character string is read and assigned to the
substitution symbol.

Example 7–3 shows character strings being assigned to substitution symbols.

Example 7–3. The .asg Directive

.asg AR0,FP ; frame pointer

.asg *AR1+,Ind ; indirect addressing

.asg *AR1+0b,Rc_Prop ; reverse carry propagation

.asg ”””string”””,strng ; string

.asg ”a,b,c”,parms ; parameters

The .eval directive performs arithmetic on numeric substitution symbols.

The syntax of the .eval directive is

.eval well-defined expression, substitution symbol

The .eval directive evaluates the expression and assigns the string value of
the result to the substitution symbol. If the expression is not well defined, the
assembler generates an error and assigns the null string to the symbol.

Example 7–4 shows arithmetic being performed on substitution symbols.

Example 7–4. The .eval Directive

.asg 1,counter

.loop 100

.word counter

.eval counter + 1,counter

.endloop

Macro Parameters/Substitution Symbols

7-9Macro Language

In Example 7–4 the .asg directive could be replaced with the .eval directive
without changing the output. In simple cases like this, you can use .eval and
.asg interchangeably. However, you must use .eval if you want to calculate a
value from an expression. While .asg only assigns a character string to a sub-
stitution symbol, the .eval directive evaluates an expression and assigns the
character string equivalent to a substitution symbol.

7.3.3 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make
decisions based on the string value of substitution symbols. These functions
always return a value, and they can be used in expressions. Built-in substitu-
tion symbol functions are especially useful in conditional assembly expres-
sions. Parameters to these functions are substitution symbols or character-
string constants.

In Table 7–1 function definitions, a and b are parameters that represent substi-
tution symbols or character string constants. The term string refers to the string
value of the parameter.

Table 7–1. Functions and Return Values

Function Return Value

$symlen (a) length of string a

$symcmp (a,b) < 0 if a < b 0 if a = b > 0 if a > b

$firstch (a,ch) index of the first occurrence of character constant ch in string a

$lastch (a,ch) index of the last occurrence of character constant ch in string a

$isdefed (a) 1 if string a is defined in the symbol table
0 if string a is not defined in the symbol table

$ismember (a,b) top member of list b is assigned to string a
0 if b is a null string

$iscons (a) 1 if string a is a binary constant
2 if string a is an octal constant
3 if string a is a hexadecimal constant
4 if string a is a character constant
5 if string a is a decimal constant

$isname (a) 1 if string a is a valid symbol name
0 if string a is not a valid symbol name

$isreg (a)† 1 if string a is a valid predefined register name
0 if string a is not a valid predefined register name

† For more information about predefined register names, see Section 3.8, Symbols, on page
3-16.

Macro Parameters/Substitution Symbols

 7-10

Example 7–5 shows built-in substitution symbol functions.

Example 7–5. Using Built-In Substitution Symbol Functions

.asg label, ADDR ; ADDR = label

.if ($symcmp(ADDR,”label”) = 0); evaluates to true
SUB ADDR, A
.endif
.asg ”x,y,z” , list ; list = x,y,z
.if ($ismember(ADDR,list)) ; addr = x, list = y,z
SUB ADDRA, A ; sub x
.endif

7.3.4 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to
substitute the corresponding character string. If that string is also a substitution
symbol, the assembler performs substitution again. The assembler continues
doing this until it encounters a token that is not a substitution symbol or until
it encounters a substitution symbol that it has already encountered during this
evaluation.

In Example 7–6, the x is substituted for z; z is substituted for y; and y is
substituted for x. The assembler recognizes this as infinite recursion and
ceases substitution.

Example 7–6. Recursive Substitution

.asg ”x”,z ; declare z and assign z = ”x”

.asg ”z”,y ; declare y and assign y = ”z”

.asg ”y”,x ; declare x and assign x = ”y”
 add x, A

* add x, A ; recursive expansion

Macro Parameters/Substitution Symbols

7-11Macro Language

7.3.5 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler.
The forced substitution operator, which is a set of colons, enables you to force
the substitution of a symbol’s character string. Simply enclose a symbol in
colons to force the substitution. Do not include any spaces between the colons
and the symbol.

The syntax for the forced substitution operator is

:symbol:

The assembler expands substitution symbols enclosed in colons before it
expands other substitution symbols.

You can use the forced substitution operator only inside macros, and you
cannot nest a forced substitution operator within another forced substitution
operator.

Example 7–7 shows how the forced substitution operator is used.

Example 7–7. Using the Forced Substitution Operator

force .macro x
.asg 0,x
.loop 8

AUX:x: .set x
.eval x+1,x
.endloop
.endm

The force macro would generate the following source code:

AUX0 .set 0
AUX1 .set 1

.

.

.
AUX7 .set 7

Macro Parameters/Substitution Symbols

 7-12

7.3.6 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitu-
tion symbol with subscripted substitution symbols. You must use the forced
substitution operator for clarity.

You can access substrings in two ways:

� :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one
character.

� :symbol (well-defined expression1, well-defined expression2):

In this method, expression1 represents the substring’s starting position,
and expression2 represents the substring’s length. You can specify
exactly where to begin subscripting and the exact length of the resulting
character string. The index of substring characters begins with 1, not 0.

Example 7–8 and Example 7–9 show built-in substitution symbol functions
used with subscripted substitution symbols.

Example 7–8. Using Subscripted Substitution Symbols to Redefine an Instruction

ADDX .macro ABC
.var TMP
.asg :ABC(1):,TMP
.if $symcmp(TMP,”#”) = 0
ADD ABC, A
.else
.emsg ”Bad Macro Parameter”
.endif
.endm

ADDX #100 ;macro call
ADDX *AR1 ;macro call

In Example 7–8, subscripted substitution symbols redefine the add instruction
so that it handles short immediates.

Macro Parameters/Substitution Symbols

7-13Macro Language

Example 7–9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strg1,strg2,pos
.var LEN1,LEN2,I,TMP
.if $symlen(start) = 0
.eval 1,start
.endif
.eval 0,pos
.eval 1,i
.eval $symlen(strg1),LEN1
.eval $symlen(strg2),LEN2
.loop
.break i = (LEN2 – LEN1 + 1)
.asg ”:strg2(I,LEN1):”,TMP
.if $symcmp(strg1,TMP) = 0
.eval i,pos
.break
.else
.eval i + 1,i
.endif
.endloop
.endm

.asg 0,pos

.asg ”ar1 ar2 ar3 ar4”,regs
substr 1,”ar2”,regs,pos
.word pos

In Example 7–9, the subscripted substitution symbol is used to find a substring
strg1, beginning at position start in the string strg2. The position of the sub-
string strg1 is assigned to the substitution symbol pos.

7.3.7 Substitution Symbols as Local Variables in Macros
If you want to use substitution symbols as local variables within a macro, you
can use the .var directive to define up to 32 local macro substitution symbols
(including parameters) per macro. The .var directive creates temporary substi-
tution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and after expansion they are lost.

.var sym1 [,sym2] ... [,symn]

The .var directive is used in Example 7–8 and Example 7–9 on page 7-13.

Macro Libraries

 7-14

7.4 Macro Libraries

One way to define macros is by creating a macro library. A macro library is a
collection of files that contain macro definitions. You must use the archiver to
collect these files, or members, into a single file (called an archive). Each
member of a macro library contains one macro definition. The files in a macro
library must be unassembled source files. The macro name and the member
name must be the same, and the macro filename’s extension must be .asm.
For example:

Macro Name Filename in Macro Library

simple simple.asm

add3 add3.asm

 You can access the macro library by using the .mlib assembler directive.

The syntax is:

.mlib macro library filename

When the assembler encounters the .mlib directive, it opens the library and
creates a table of the library’s contents. The assembler enters the names of
the individual members within the library into the opcode tables as library
entries; this redefines any existing opcodes or macros that have the same
name. If one of these macros is called, the assembler extracts the entry from
the library and loads it into the macro table.

The assembler expands the library entry in the same way it expands other
macros. You can control the listing of library entry expansions with the .mlist
directive. For more information about the .mlist directive, see Section 7.8, For-
matting the Output Listing, on page 7-21. Only macros that are actually called
from the library are extracted, and they are extracted only once. For more
information about the .mlib directive, see page 4-59.

You can create a macro library with the archiver by simply including the desired
files in an archive. A macro library is no different from any other archive, except
that the assembler expects the macro library to contain macro definitions. The
assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable
results.

Using Conditional Assembly in Macros

7-15Macro Language

7.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/
.break/.endloop . They can be nested within each other up to 32 levels deep.
The format of a conditional block is:

.if well-defined expression

[.elseif well-defined expression]

[.else well-defined expression]

.endif

The .elseif and .else directives are optional, and they can be used more than
once within a conditional assembly code block. When .elseif and .else are
omitted, and when the .if expression is false (0), the assembler continues to
the code following the .endif directive. For more information on the .if/
.elseif/.else/.endif directives, see page 4-50.

The .loop/.break/.endloop directives enable you to assemble a code block
repeatedly. The format of a repeatable block is:

.loop [well-defined expression]

[.break [well-defined expression]]

.endloop

The .loop directive’s optional expression evaluates to the loop count (the
number of loops to be performed). If the expression is omitted, the loop count
defaults to 1024 unless the assembler encounters a .break directive with an
expression that is true (nonzero). For more information on the .loop/
.break/.endloop directives, see page 4-58.

The .break directive and its expression are optional. If the expression evalu-
ates to false, the loop continues. The assembler breaks the loop when the
.break expression evaluates to true or when the .break expression is omitted.
When the loop is broken, the assembler continues with the code after the
.endloop directive.

Example 7–10, Example 7–11, and Example 7–12 show the .loop/.break/
.endloop directives, properly nested conditional assembly directives, and
built-in substitution symbol functions used in a conditional assembly code
block.

Using Conditional Assembly in Macros

 7-16

Example 7–10. The .loop/.break/.endloop Directives

.asg 1,x

.loop

.break (x == 10) ; if x == 10, quit loop/break with
; expression

.eval x+1,x

.endloop

Example 7–11. Nested Conditional Assembly Directives

.asg 1,x

.loop

.if (x == 10) ; if x == 10 quit loop

.break ; force break

.endif

.eval x+1,x

.endloop

Example 7–12. Built-In Substitution Symbol Functions Used in a Conditional Assembly
Code Block

.fcnolist
*
*Double Add or Subtract
*
DBL .macro ABC, ADDR, src ; add or subtract double

.if $symcmp(ABC,”+”)
dadd ADDR, src ; add double

.elseif $symcmp(ABC,”–”)
dsub ADDR, src ; subtract double

.else

.emsg ”Incorrect Operator Parameter”

.endif

.endm

*Macro Call
DBL –, OPZ, ALP

For more information about conditional assembly directives, see Section 4.8,
Conditional Assembly Directives, on page 4-20.

Using Labels in Macros

7-17Macro Language

7.6 Using Labels in Macros

All labels in an assembly language program must be unique, including labels
in macros. If a macro is expanded more than once, its labels are defined more
than once, which is illegal. The macro language provides a method of defining
labels in macros so that the labels are unique. Follow the label with a question
mark, and the assembler replaces the question mark with a unique number.
When the macro is expanded, you will not see the unique number in the listing
file. Your label appears with the question mark as it did in the macro definition.
You cannot declare this label as global.

The maximum label length is shortened to allow for the unique suffix. If the
macro is expanded fewer than 10 times, the maximum label length is 126 char-
acters. If the macro is expanded from 10 to 99 times, the maximum label length
is 125. The label with its unique suffix is shown in the cross-listing file.

The syntax for a unique label is:

 label?

Example 7–13 shows unique label generation in a macro.

Example 7–13. Unique Labels in a Macro
(a) Mnemonic example

 1 ; define macro
 2 MIN .macro AVAR, BVAR ; find minimum
 3
 4 LD AVAR, A
 5 SUB #BVAR, A
 6 BC M1?, ALT
 7 LD #BVAR, A
 8 B M2?
 9 M1? LD AVAR, A
10 M2?
11 .endm
12
13 ; call macro
14 000000 MIN 50, 100

1
1 000000 1032 LD 50, A
1 000001 F010 SUB #100, A

000002 0064
1 000003 F843 BC M1?, ALT

000004 0008’
1 000005 E864 LD #100, A
1 000006 F073 B M2?

000007 0009’
1 000008 1032 M1? LD 50, A
1 000009 M2?

Using Labels in Macros

 7-18

Example 7–13. Unique Labels in a Macro (Continued)

(b) Algebraic example

 1 ; define macro
 2 MIN .macro AVAR, BVAR ; find minimum
 3
 4 A = AVAR
 5 A = A – #BVAR
 6 if (ALT) goto M1?
 7 A = #BVAR
 8 goto M2?
 9 M1? A = AVAR
10 M2?
11 .endm
12
13 ; call macro
14 000000 MIN 50, 100

1
1 000000 1032 A = @50
1 000001 F010 A = A – #100

000002 0064
1 000003 F843 if (A:T) goto M1$1$

000004 0008’
1 000005 E864 A = #100
1 000006 F073 goto M2$1$

000007 0009’
1 000008 1032 M1$1$ A = @50
1 000009 M2$1$

Producing Messages in Macros

7-19Macro Language

7.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your
own assembly-time error and warning messages. These directives are
especially useful when you want to create messages specific to your needs.
The last line of the listing file shows the error and warning counts. These
counts alert you to problems in your code and are especially useful during
debugging.

.emsg sends error messages to the listing file. The .emsg directive
generates errors in the same manner as the assembler, incre-
menting the error count and preventing the assembler from
producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg
directive functions in the same manner as the .emsg directive
but does not set the error count or prevent the creation of an
object file.

.wmsg sends warning messages to the listing file. The .wmsg
directive functions in the same manner as the .emsg directive,
but it increments the warning count and does not prevent the
generation of an object file.

Macro comments are comments that appear in the definition of the macro but
do not show up in the expansion of the macro. An exclamation point in column
1 identifies a macro comment. If you want your comments to appear in the
macro expansion, precede your comment with an asterisk or semicolon.

Example 7–14 shows user messages in macros and macro comments that will
not appear in the macro expansion.

Producing Messages in Macros

 7-20

Example 7–14. Producing Messages in a Macro

 1 testparam .macro x,y
 2
 3 .if ($symlen(x) == 0)
 4 .emsg ”ERROR –– Missing Parameter”
 5 .mexit
 6 .elseif ($symlen(y) == 0)
 7 .emsg ”ERROR == Missing Parameter”
 8 .mexit
 9 .else
 10 ld y, A
 11 ld x, B
 12 add A, B
 13 .endif
 14 .endm
 15
 16 0000 testparam 1,2
1
1 .if ($symlen(x) == 0)
1 .emsg ”ERROR –– Missing Parameter”
1 .mexit
1 .elseif ($symlen(y) == 0)
1 .emsg ”ERROR == Missing Parameter”
1 .mexit
1 .else
1 0000 1002 ld 2, A
1 0001 1101 ld 1, B
1 0002 F500 add A, B
1 .endif
 17
 18 0003 testparam
1
1 .if ($symlen(x) == 0)
1 .emsg ”ERROR –– Missing Parameter”
 ***** USER ERROR ***** – : ERROR –– Missing Parameter
1 .mexit

 1 Error, No Warnings

Formatting the Output Listing

7-21Macro Language

7.8 Formatting the Output Listing
Macros, substitution symbols, and conditional assembly directives may hide
information. You may need to see this hidden information, so the macro
language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional
blocks in the output list file. You may want to turn this listing off or on within your
listing file. Four sets of directives enable you to control the listing of this
information:

� Macro and Loop Expansion Listing

.mlist expands macros and .loop/.endloop blocks. The .mlist direc-
tive prints all code encountered in those blocks.

.mnolist suppresses the listing of macro expansions and .loop/
.endloop blocks.

For macro and loop expansion listing, .mlist is the default.

� False Conditional Block Listing

.fclist causes the assembler to include in the listing file all condi-
tional blocks that do not generate code (false conditional
blocks). Conditional blocks appear in the listing exactly as
they appear in the source code.

.fcnolist suppresses the listing of false conditional blocks. Only the
code in conditional blocks that actually assemble appears in
the listing. The .if, .elseif, .else, and .endif directives do not
appear in the listing.

For false conditional block listing, .flist is the default.

� Substitution Symbol Expansion Listing

.sslist expands substitution symbols in the listing. This is useful for
debugging the expansion of substitution symbols. The ex-
panded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing.

For substitution symbol expansion listing, .ssnolist is the default.

� Directive Listing

.drlist causes the assembler to print to the listing file all directive
lines.

.drnolist suppresses the printing of the following directives in the list-
ing file: .asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist,
.mnolist, .fcnolist, .emsg, .wmsg, .mmsg, .length, .width, and
.break.

For directive listing, .drlist is the default.

Using Recursive and Nested Macros

 7-22

7.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means
that you can call other macros in a macro definition. You can nest macros up
to 32 levels deep. When you use recursive macros, you call a macro from its
own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention
to the arguments that you pass to macro parameters, because the assembler
uses dynamic scoping for parameters. This means that the called macro uses
the environment of the macro from which it was called.

Example 7–15 shows nested macros. Note that the y in the in_block macro
hides the y in the out_block macro. The x and z from the out_block macro,
however, are accessible to the in_block macro.

Example 7–15. Using Nested Macros

in_block .macro y,a
. ; visible parameters are y,a and
. ; x,z from the calling macro

.endm

out_block .macro x,y,z
. ; visible parameters are x,y,z
.

in_block x,y ; macro call with x and y as
 ; arguments

.

.
.endm
out_block ; macro call

Using Recursive and Nested Macros

7-23Macro Language

Example 7–16 shows recursive macros. The fact macro produces assembly
code necessary to calculate the factorial of n where n is an immediate value.
The result is placed in data memory address loc. The fact macro accomplishes
this by calling fact1, which calls itself recursively.

Example 7–16. Using Recursive Macros

(a) Mnemonic example

fact .macro N, loc ; n is an integer constant
; loc memory address = n!

.if N < 2 ; 0! = 1! = 1

ST #1, loc
.else
ST #N, loc ; n >= 2 so, store n at loc
 ; decrement n, and do the
.eval N – 1, N ; factorial of n – 1
fact1 ; call fact with current

; environment
.endif

.endm

fact1 .macro

.if N > 1
LD loc, T ; multiply present factorial
MPY #N, A ; by present position
STL A, loc ; save result
.eval N – 1, N ; decrement position
fact1 ; recursive call
.endif

.endm

Using Recursive and Nested Macros

 7-24

Example 7–16. Using Recursive Macros (Continued)

(b) Algebraic example

fact .macro N, loc ; n is an integer constant
; loc memory address = n!

.if N < 2 ; 0! = 1! = 1

@AR0 = #1
.else
@AR0 = #N ; n >= 2 so, store n at loc

; decrement n, and do the
.eval N – 1, N ; factorial of n – 1

 fact1 ; call fact1 with current
; environment

.endif

.endm

fact1 .macro

.if N > 1
T = @AR0 ; multiply present factorial
A = T * #N ; by present position
@AR0 = A ; save result
.eval N – 1, N ; decrement position
fact1 ; recursive call
.endif

.endm

Macro Directives Summary

7-25Macro Language

7.10 Macro Directives Summary

Table 7–2. Creating Macros

Mnemonic and Syntax Description

macname .macro [parameter1]...[parametern] Define macro.

.mlib filename Identify library containing macro definitions.

.mexit Go to .endm.

.endm End macro definition.

Table 7–3. Manipulating Substitution Symbols

Mnemonic and Syntax Description

.asg [“]character string[“], substitution symbol Assign character string to substitution symbol.

.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols.

.var substitution symbol1...[substitution symboln] Define local macro symbols.

Table 7–4. Conditional Assembly

Mnemonic and Syntax Description

.if well-defined expression Begin conditional assembly.

.elseif well-defined expression Optional conditional assembly block

.else Optional conditional assembly block

.endif End conditional assembly.

.loop [well-defined expression] Begin repeatable block assembly.

.break [well-defined expression] Optional repeatable block assembly.

.endloop End repeatable block assembly.

Macro Directives Summary

 7-26

Table 7–5. Producing Assembly-Time Messages

Mnemonic and Syntax Description

.emsg Send error message to standard output.

.wmsg Send warning message to standard output.

.mmsg Send warning or assembly-time message to standard
output.

Table 7–6. Formatting the Listing

Mnemonic and Syntax Description

.fclist Allow false conditional code block listing (default).

.fcnolist Inhibit false conditional code block listing.

.mlist Allow macro listings (default).

.mnolist Inhibit macro listings.

.sslist Allow expanded substitution symbol listing.

.ssnolist Inhibit expanded substitution symbol listing (default).

8-1Archiver Description

Archiver Description

The TMS320C54x archiver combines several individual files into a single
archive file. For example, you can collect several macros into a macro library.
The assembler will search the library and use the members that are called as
macros by the source file. You can also use the archiver to collect a group of
object files into an object library. The linker will include in the library the mem-
bers that resolve external references during the link.

Topic Page

8.1 Archiver Overview 8-2.

8.2 Archiver Development Flow 8-3.

8.3 Invoking the Archiver 8-4.

8.4 Archiver Examples 8-6.

Chapter 8

Archiver Overview

 8-2

8.1 Archiver Overview

The TMS320C54x archiver lets you combine several individual files into a sin-
gle file called an archive or a library. Each file within the archive is called a
member. Once you have created an archive, you can use the archiver to add,
delete, or extract members.

You can build libraries from any type of files. Both the assembler and the linker
accept archive libraries as input; the assembler can use libraries that contain
individual source files, and the linker can use libraries that contain individual
object files.

One of the most useful applications of the archiver is building libraries of object
modules. For example, you can write several arithmetic routines, assemble
them, and use the archiver to collect the object files into a single, logical group.
You can then specify the object library as linker input. The linker will search the
library and include members that resolve external references.

You can also use the archiver to build macro libraries. You can create several
source files, each of which contains a single macro, and use the archiver to
collect these macros into a single, functional group. The .mlib assembler direc-
tive lets you specify the name of a macro library; during the assembly process,
the assembler will search the specified library for the macros that you call.
Chapter 7, Macro Language, discusses macros and macro libraries in detail.

Archiver Development Flow

8-3Archiver Description

8.2 Archiver Development Flow

Figure 8–1 shows the archiver’s role in the assembly language development
process. Both the assembler and the linker accept libraries as input.

Figure 8–1. Archiver Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C54x

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Mnemonic-to-
algebraic
translator

Assembler
source

Invoking the Archiver

 8-4

8.3 Invoking the Archiver

To invoke the archiver, enter:

ar500 [–]command[option] libname [filename1 ... filenamen]

ar500 is the command that invokes the archiver.

command tells the archiver how to manipulate the library members.
A command can be preceded by an optional hyphen. You
must use one of the following commands when you invoke
the archiver, but you can use only one command per invo-
cation. Valid archiver commands are:

a adds the specified files to the library. This command does
not replace an existing member that has the same name
as an added file; it simply appends new members to the
end of the archive.

d deletes the specified members from the library.

r replaces the specified members in the library. If you don’t
specify filenames, the archiver replaces the library mem-
bers with files of the same name in the current directory.
If the specified file is not found in the library, the archiver
adds it instead of replacing it.

t prints a table of contents of the library. If you specify file-
names, only those files are listed. If you don’t specify any
filenames, the archiver lists all the members in the speci-
fied library.

x extracts the specified files. If you don’t specify member
names, the archiver extracts all library members. When
the archiver extracts a member, it simply copies the mem-
ber into the current directory; it doesn’t remove it from the
library.

Invoking the Archiver

8-5Archiver Description

option tells the archiver how to function. Specify as many of the
following options as you want:

–e tells the archiver not to use the default extension .obj for
member names. This allows the use of filenames without
extensions.

–q (quiet) suppresses the banner and status messages.

–s prints a list of the global symbols that are defined in the li-
brary. (This option is valid only with the –a, –r, and –d com-
mands.)

–v (verbose) provides a file-by-file description of the creation
of a new library from an old library and its constituent
members.

libname names an archive library. If you don’t specify an extension
for libname, the archiver uses the default extension .lib.

filename names individual member files that are associated with
the library. If you don’t specify an extension for a filename,
the archiver uses the default extension .obj.

It is possible (but not desirable) for a library to contain sev-
eral members with the same name. If you attempt to
delete, replace, or extract a member, and the library con-
tains more than one member with the specified name,
then the archiver deletes, replaces, or extracts the first
member with that name.

Archiver Examples

 8-6

8.4 Archiver Examples

The following are some archiver examples:

� Example 1

This example creates a library called function.lib that contains the files
sine.obj, cos.obj, and flt.obj.

ar500 –a function sine cos flt
TMS320C54x Archiver Version x.xx
Copyright (c) 1993–1996 Texas Instruments Incorporated

==> new archive ’function.lib’
==> building archive ’function.lib’

Because Example 1 and 2 use the default extensions (.lib for the library
and .obj for the members), it is not necessary to specify extensions in
these examples.

� Example 2

You can print a table of contents of function.lib with the –t option:

ar500 –t function
TMS320C54x Archiver Version x.xx
Copyright (c) 1993–1996 Texas Instruments Incorporated
 FILE NAME SIZE DATE
––––––––––––––––– ––––– –––––––––––––––––––––––

sine.obj 248 Mon Nov 19 01:25:44 1993
cos.obj 248 Mon Nov 19 01:25:44 1993
flt.obj 248 Mon Nov 19 01:25:44 1993

� Example 3

You can explicitly specify extensions if you don’t want the archiver to use
the default extensions; for example:

ar500 –av function.fn sine.asm cos.asm flt.asm
TMS320C54x Archiver Version x.xx
Copyright (c) 1993–1996 Texas Instruments Incorporated

==> add ’sine.asm’
==> add ’cos.asm’
==> add ’flt.asm’
==> building archive ’function.fn’

This creates a library called function.fn that contains the files sine.asm,
cos.asm, and flt.asm. (–v is the verbose option.)

Archiver Examples

8-7Archiver Description

� Example 4

If you want to add new members to the library, specify:

ar500 –as function tan.obj arctan.obj area.obj
TMS320C54x Archiver Version x.xx
Copyright (c) 1993–1996 Texas Instruments Incorporated

==> symbol defined: ’K2’
==> symbol defined: ’Rossignol’
==> building archive ’function.lib’

Because this example doesn’t specify an extension for the libname, the
archiver adds the files to the library called function.lib. If function.lib didn’t
exist, the archiver would create it. (The –s option tells the archiver to list the
global symbols that are defined in the library.)

� Example 5

If you want to modify a library member, you can extract it, edit it, and re-
place it. In this example, assume there’s a library named macros.lib that
contains the members push.asm, pop.asm, and swap.asm.

ar500 –x macros push.asm

The archiver makes a copy of push.asm and places it in the current
directory, but it doesn’t remove push.asm from the library. Now you can
edit the extracted file. To replace the copy of push.asm in the library with
the edited copy, enter:

ar500 –r macros push.asm

Archiver Examples

 8-8

9-1Linker Description

Linker Description

The TMS320C54x linker creates executable modules by combining COFF
object files. The concept of COFF sections is basic to linker operation.
Chapter 2, Introduction to Common Object File Format, discusses the COFF
format in detail.

Topic Page

9.1 Linker Overview 9-2.

9.2 Linker Development Flow 9-3.

9.3 Invoking the Linker 9-4.

9.4 Linker Options 9-6.

9.5 Linker Command Files 9-21.

9.6 Object Libraries 9-24.

9.7 The MEMORY Directive 9-26.

9.8 The SECTIONS Directive 9-30.

9.9 Specifying a Section’s Runtime Address 9-39.

9.10 Using UNION and GROUP Statements 9-43.

9.11 Overlay Pages 9-46.

9.12 Default Allocation Algorithm 9-51.

9.13 Special Section Types (DSECT, COPY, and NOLOAD) 9-54.

9.14 Assigning Symbols at Link Time 9-55.

9.15 Creating and Filling Holes 9-59.

9.16 Partial (Incremental) Linking 9-63.

9.17 Linking C Code 9-65.

9.18 Linker Example 9-69.

Chapter 9

Linker Overview

 9-2

9.1 Linker Overview

The TMS320C54x linker allows you to configure system memory by allocating
output sections efficiently into the memory map. As the linker combines object
files, it preforms the following tasks:

� Allocates sections into the target system’s configured memory.
� Relocates symbols and sections to assign them to final addresses.
� Resolves undefined external references between input files.

The linker command language controls memory configuration, output section
definition, and address binding. The language supports expression assign-
ment and evaluation. You configure system memory by defining and creating
a memory model that you design. Two powerful directives, MEMORY and
SECTIONS, allow you to:

� Allocate sections into specific areas of memory.
� Combine object file sections.
� Define or redefine global symbols at link time.

Linker Development Flow

9-3Linker Description

9.2 Linker Development Flow

Figure 9–1 illustrates the linker’s role in the assembly language development
process. The linker accepts several types of files as input, including object
files, command files, libraries, and partially linked files. The linker creates an
executable COFF object module that can be downloaded to one of several
development tools or executed by a TMS320C54x device.

Figure 9–1. Linker Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C54x

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Mnemonic-to-
algebraic
translator

Assembler
source

Invoking the Linker

 9-4

9.3 Invoking the Linker

The general syntax for invoking the linker is:

lnk500 [–options] filename1. ... filenamen

lnk500 is the command that invokes the linker.

options can appear anywhere on the command line or in a linker
command file. (Options are discussed in Section 9.4, Linker Op-
tions, on page 9-6.)

filenames can be object files, linker command files, or archive libraries.
The default extension for all input files is .obj ; any other exten-
sion must be explicitly specified. The linker can determine
whether the input file is an object or ASCII file that contains
linker commands. The default output filename is a.out.

There are three methods for invoking the linker:

� Specify options and filenames on the command line. This example links
two files, file1.obj and file2.obj, and creates an output module named
link.out.

lnk500 file1.obj file2.obj –o link.out

� Enter the lnk500 command with no filenames and no options; the linker
prompts for them:

Command files :
Object files [.obj] :
Output file [a.out] :
Options :

� For command files, enter one or more command filenames.

� For object files, enter one or more object filenames. The default exten-
sion is .obj. Separate the filenames with spaces or commas; if the last
character is a comma, the linker prompts for an additional line of object
filenames.

� The output file is the name of the linker output module. This overrides
any –o options entered with any of the other prompts. If there are no
–o options and you do not answer this prompt, the linker creates an
object file with a default filename of a.out.

� The options prompt is for additional options, although you can also
enter them in a command file. Enter them with hyphens, just as you
would on the command line.

Invoking the Linker

9-5Linker Description

� Put filenames and options in a linker command file. For example, assume
that the file linker.cmd contains the following lines:

–o link.out
file1.obj
file2.obj

Now you can invoke the linker from the command line; specify the com-
mand filename as an input file:

lnk500 linker.cmd

When you use a command file, you can also specify other options and files
on the command line. For example, you could enter:

lnk500 –m link.map linker.cmd file3.obj

The linker reads and processes a command file as soon as it encounters
the filename on the command line, so it links the files in this order: file1.obj,
file2.obj, and file3.obj. This example creates an output file called link.out
and a map file called link.map.

Linker Options

 9-6

9.4 Linker Options
Linker options control linking operations. They can be placed on the command
line or in a command file. Linker options must be preceded by a hyphen (–).
The order in which options are specified is unimportant, except for the –l (low-
ercase L) and –i options. Options may be separated from arguments (if they
have them) by an optional space. The following summarize the linker options:

–a Produce an absolute, executable module. This is the
default; if neither –a nor –r is specified, the linker acts
as if –a were specified.

–ar Produce a relocatable, executable object module.

–b Disable merge of symbolic debugging information.

–c Use linking conventions defined by the ROM autoin-
itialization model of the TMS320C54x C compiler.

–cr Use linking conventions defined by the RAM autoin-
itialization model of the TMS320C54x C compiler.

–e global_symbol Define a global_symbol that specifies the primary
entry point for the output module.

–f fill_value Set the default fill value for holes within output sec-
tions; fill_value is a 16-bit constant.

–g global_symbol Make a global_symbol static (overrides –h).

–h Make all global symbols static.

–heap size Set heap size (for the dynamic memory allocation in
C) to size words and define a global symbol that speci-
fies the heap size. Default = 1K words.

–i dir Alter the library-search algorithm to look in dir before
looking in the default location. This option must
appear before the –l option. The directory or filename
must follow operating system conventions.

–k Ignore alignment flags in input sections.

–l filename Name an archive library file as linker input; filename
is an archive library name. This option must appear af-
ter the –i option. The directory or filename must follow
operating system conventions.

Linker Options

9-7Linker Description

–m filename Produce a map or listing of the input and output sec-
tions, including holes, and place the listing in filename.
The directory or filename must follow operating sys-
tem conventions. The directory or filename must fol-
low operating system conventions.

–n Ignore all fill specifications in memory directives.

–o filename Name the executable output module. The default file-
name is a.out. The directory or filename must follow
operating system conventions.

–q Request a quiet run (suppress the banner).

–r Produce a relocatable output module.

–s Strip symbol table information and line number entries
from the output module.

–stack size Set C system stack size to size words and define a
global symbol that specifies the stack size. The default
size is 1K words.

–u symbol Place an unresolved external symbol into the output
module’s symbol table.

–vn Specify the output COFF format. The default format is
COFF2.

–w Displays a message when an undefined output sec-
tion is created.

–x Force rereading of libraries. Resolves back refer-
ences.

Linker Options

 9-8

9.4.1 Relocation Capabilities (–a and –r Options)

The linker performs relocation, which is the process of adjusting all references
to a symbol when the symbol’s address changes. The linker supports two
options (–a and –r) that allow you to produce an absolute or a relocatable out-
put module. If neither –a nor –r is specified, the linker acts as if –a is specified
by default.

� Producing an Absolute Output Module (–a Option)

When you use the –a option without the –r option, the linker produces an
absolute, executable output module. Absolute files contain no relocation
information. Executable files contain the following:

� Special symbols defined by the linker (subsection 9.14.4, Symbols
Defined by the Linker, on page 9-58 describes these symbols)

� An optional header that describes information such as the program
entry point

� No unresolved references

The following example links file1.obj and file2.obj and creates an absolute
output module called a.out:

lnk500 –a file1.obj file2.obj

Note: –a and –r Options

If you do not use the –a or the –r option, the linker acts as if you specified –a.

Linker Options

9-9Linker Description

� Producing a Relocatable Output Module (–r Option)

When you use the –r option without the –a option, the linker retains reloca-
tion entries in the output module. If the output module will be relocated (at
load time) or relinked (by another linker execution), use –r to retain the
relocation entries.

The linker produces a file that is not executable when you use the –r option
without –a. A file that is not executable does not contain special linker sym-
bols or an optional header. The file may contain unresolved references,
but these references do not prevent creation of an output module.

The following example links file1.obj and file2.obj and creates a relocat-
able output module called a.out:

lnk500 –r file1.obj file2.obj

The output file a.out can be relinked with other object files or relocated at
load time. (Linking a file that will be relinked with other files is called partial
linking.) For more information, see Section 9.18, Linker Example, on page
9-69.

� Producing an Executable Relocatable Output Module (–ar)

If you invoke the linker with both the –a and –r options, the linker produces
an executable, relocatable object module. The output file contains the
special linker symbols, an optional header, and all resolved symbol refer-
ences; however, the relocation information is retained.

The following example links file1.obj and file2.obj and creates an execut-
able, relocatable output module called xr.out:

lnk500 –ar file1.obj file2.obj –o xr.out

You can string the options together (lnk500 –ar) or enter them separately
(lnk500 –a –r).

� Relocating or Relinking an Absolute Output Module

The linker issues a warning message (but continues executing) when it
encounters a file that contains no relocation or symbol table information.
Relinking an absolute file can be successful only if each input file contains
no information that needs to be relocated (that is, each file has no unre-
solved references and is bound to the same virtual address that it was
bound to when the linker created it).

Linker Options

 9-10

9.4.2 Disable Merge of Symbolic Debugging Information (–b Option)

By default, the linker eliminates duplicate entries of symbolic debugging
information. Such duplicate information is commonly generated when a C
program is compiled for debugging. For example:

–[header.h]–
typedef struct
{
 <define some structure members>
} XYZ;

–[f1.c]–
#include ”header.h”
...

–[f2.c]–
#include ”header.h”
...

When these files are compiled for debugging, both f1.obj and f2.obj will have
symbolic debugging entries to describe type XYZ. For the final output file, only
one set of these entries is necessary. The linker eliminates the duplicate
entries automatically.

Use the –b option if you do not want the linker to keep such duplicate entries.
Using the –b option has the effect of the linker running faster and using less
machine memory.

9.4.3 C Language Options (–c and –cr Options)

The –c and –cr options cause the linker to use linking conventions that are
required by the C compiler.

� The –c option tells the linker to use the ROM autoinitialization model.
� The –cr option tells the linker to use the RAM autoinitialization model.

For more information about linking C code, see Section 9.17, Linking C Code,
on page 9-65 and subsection 9.17.5, The –c and –cr Linker Options, on page
9-68.

Linker Options

9-11Linker Description

9.4.4 Define an Entry Point (–e global_symbol Option)

The memory address at which a program begins executing is called the entry
point. When a loader loads a program into target memory, the program counter
must be initialized to the entry point; the PC then points to the beginning of the
program.

The linker can assign one of four possible values to the entry point. These
values are listed below in the order in which the linker tries to use them. If you
use one of the first three values, it must be an external symbol in the symbol
table.

� The value specified by the –e option. The syntax is:

–e global_symbol

Where global_symbol defines the entry point and must appear as an
external symbol in one of the input files.

� The value of symbol _c_int00 (if present). _c_int00 must be the entry point
if you are linking code produced by the C compiler.

� The value of symbol _main (if present).

� Zero (default value).

This example links file1.obj and file2.obj. The symbol begin is the entry point;
begin must be defined as external in file1 or file2.

lnk500 –e begin file1.obj file2.obj

9.4.5 Set Default Fill Value (–f cc Option)

The –f option fills the holes formed within output sections or initializes uninitial-
ized sections when they are combined with initialized sections. This allows you
to initialize memory areas during link time without reassembling a source file.
The argument cc is a 16-bit constant (up to four hexadecimal digits). If you do
not use –f, the linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCD.

lnk500 –f 0ABCDh file1.obj file2.obj

Linker Options

 9-12

9.4.6 Make All Global Symbols Static (–h and –g global_symbol Options)

The –h option makes all symbols defined with the .global assembler directive
static. This effectively hides the symbols, because static symbols are not vis-
ible to externally linked modules. This allows external symbols with the same
name (in different files) to be treated as unique. The –g option retains
global_symbol as a global even if the –h option is used. The –h option will not
modify symbols that were made global with the –g linker option.

The –h option effectively nullifies all .global assembler directives. All symbols
become local to the module in which they are defined, so no external refer-
ences are possible. For example, assume that b1.obj, b2.obj, and b3.obj are
related and reference a global variable GLOB. Also assume that d1.obj,
d2.obj, and d3.obj are related and reference a separate global variable GLOB.
By using the –h option and partial linking, you can link the related files without
conflict.

lnk16 –h –r b1.obj b2.obj b3.obj –o bpart.out
lnk16 –h –r d1.obj d2.obj d3.obj –o dpart.out

The –h option guarantees that bpart.out and dpart.out do not have global sym-
bols and therefore, that two distinct versions of GLOB exist. The –r option is
used to allow bpart.out and dpart.out to retain their relocation entries. These
two partially linked files can then be linked together safely with the following
command:

lnk16 bpart.out dpart.out –o system.out

9.4.7 Define Heap Size (–heap constant Option)

The C compiler uses an uninitialized section called .sysmem for the C runtime
memory pool used by malloc(). You can set the size of this memory pool at
link time by using the –heap option. Specify the size as a constant immediately
after the option:

lnk500 –heap 0x0800 /* defines a 2k heap (.sysmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in
one of the input files.

The linker also creates a global symbol __SYSMEM_SIZE and assigns it a
value equal to the size of the heap. The default size is 1K words.

For more information about linking C code, see Section 9.17, Linking C Code,
on page 9-65.

Linker Options

9-13Linker Description

9.4.8 Alter the Library Search Algorithm (–i dir Option/C_DIR)

Usually, when you want to specify a library as linker input, you simply enter the
library name as you would any other input filename; the linker looks for the
library in the current directory. For example, suppose the current directory
contains the library object.lib. Assume that this library defines symbols that are
referenced in the file file1.obj. This is how you link the files:

lnk500 file1.obj object.lib

If you want to use a library that is not in the current directory, use the –l (lower-
case L) linker option. The syntax for this option is;

–l filename

The filename is the name of an archive library; the space between –l and the
filename is optional.

You can augment the linker’s directory search algorithm by using the –i linker
option or the environment variable. The linker searches for object libraries in
the following order:

1) It searches directories named with the –i linker option.

2) It searches directories named with the environment variable C_DIR.

3) If C_DIR is not set, it searches directories named with the assembler’s
environment variable, A_DIR.

4) It searches the current directory.

Linker Options

 9-14

9.4.8.1 Name an Alternate Library Directory (–i Option)

The –i option names an alternate directory that contains object libraries. The
syntax for this option is:

–i dir

The dir names a directory that contains object libraries; the space between –i
and the directory name is optional.

When the linker is searching for object libraries named with the –l option, it
searches through directories named with –i first. Each –i option specifies only
one directory, but you can use several –i options per invocation. When you use
the –i option to name an alternate directory, it must precede the –l option on
the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and
lib2.lib. The table below shows the directories that r.lib and lib2.lib reside in,
how to set environment variable, and how to use both libraries during a link.
Select the row for your operating system:

Operating System Pathname Invocation Command

DOS or OS/2 \ld and \ld2 lnk500 f1.obj f2.obj –i\ld –i\ld2 –lr.lib –llib2.lib

UNIX /ld and /ld2 lnk500 f1.obj f2.obj –i/ld –i/ld2 –lr.lib –llib2.lib

Linker Options

9-15Linker Description

9.4.8.2 Name an Alternate Library Directory (C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string
to. The linker uses an environment variable named C_DIR to name alternate
directories that contain object libraries. The commands for assigning the envi-
ronment variable are:

Operating System Enter

DOS or OS/2 set C_DIR= pathname;another pathname ...

UNIX setenv C_DIR ” pathname;another pathname ...”

The pathnames are directories that contain object libraries. Use the –l option
on the command line or in a command file to tell the linker which libraries to
search for.

For example, assume that two archive libraries called r.lib and lib2.lib reside
in ld and ld2 directories. The table below shows the directories that r.lib and
lib2.lib reside in, how to set the environment variable, and how to use both
libraries during a link. Select the row for your operating system:

Operating System Pathname Invocation Command

DOS or OS/2 \ld and \ld2 set C_DIR=\ld;\ld2
lnk500 f1.obj f2.obj –l r.lib –l lib2.lib

UNIX /ld and /ld2 setenv C_DIR ”/ld ;/ld2”
lnk500 f1.obj f2.obj –l r.lib –l lib2.lib

Note that the environment variable remains set until you reboot the system or
reset the variable by entering:

Operating System Enter

DOS or OS/2 set C_DIR=

UNIX unsetenv C_DIR

The assembler uses an environment variable named A_DIR to name alterna-
tive directories that contain copy/include files or macro libraries. If C_DIR is not
set, the linker will search for object libraries in the directories named with
A_DIR. Section 9.6, Object Libraries, on page 9-24 contains more information
about object libraries.

Linker Options

 9-16

9.4.9 Create a Map File (–m filename Option)

The –m option creates a linker map listing and puts it in filename. The syntax
for the –m option is:

–m filename

The linker map describes:

� Memory configuration
� Input and output section allocation
� The addresses of external symbols after they have been relocated

The map file contains the name of the output module and the entry point; it may
also contain up to three tables:

� A table showing the new memory configuration if any nondefault memory
is specified

� A table showing the linked addresses of each output section and the input
sections that make up the output sections

� A table showing each external symbol and its address. This table has two
columns: the left column contains the symbols sorted by name, and the
right column contains the symbols sorted by address

This example links file1.obj and file2.obj and creates a map file called map.out:

lnk500 file1.obj file2.obj –m map.out

Example 9–14 on page 9-71 shows an example of a map file.

9.4.10 Ignore the Memory Directive Fill Specification (–n Option)

The –n option forces the linker to ignore any MEMORY directive fill specifica-
tion. This option can be used in the development stage of a project to avoid
generating large .out files, which can result from the use of MEMORY directive
fill specifications.

Linker Options

9-17Linker Description

9.4.11 Name an Output Module (–o filename Option)

The linker creates an output module when no errors are encountered. If you
do not specify a filename for the output module, the linker gives it the default
name a.out. If you want to write the output module to a different file, use the
–o option. The syntax for the –o option is:

–o filename

The filename is the new output module name.

This example links file1.obj and file2.obj and creates an output module named
run.out:

lnk500 –o run.out file1.obj file2.obj

9.4.12 Specify a Quiet Run (–q Option)

The –q option suppresses the linker’s banner when –q is the first option on the
command line or in a command file. This option is useful for batch operation.

9.4.13 Strip Symbolic Information (–s Option)

The –s option creates a smaller output module by omitting symbol table
information and line number entries. The –s option is useful for production
applications when you must create the smallest possible output module.

This example links file1.obj and file2.obj and creates an output module,
stripped of line numbers and symbol table information, named nosym.out:

lnk500 –o nosym.out –s file1.obj file2.obj

Using the –s option limits later use of a symbolic debugger and may prevent
a file from being relinked.

Linker Options

 9-18

9.4.14 Define Stack Size (–stack constant Option)

The TMS320C54x C compiler uses an uninitialized section, .stack, to allocate
space for the runtime stack. You can set the size of the .stack section at link
time with the –stack option. Specify the size as a constant immediately after
the option:

lnk500 –stack 0x1000 /* defines a 4K stack (.stack section) */

If you specified a different stack size in an input section, the input section stack
size is ignored. Any symbols defined in the input section remain valid; only the
stack size will be different.

When the linker defines the .stack section, it also defines a global symbol,
__STACK_SIZE, and assigns it a value equal to the size of the section. The
default stack size is 1K words.

9.4.15 Introduce an Unresolved Symbol (–u symbol Option)

The –u option introduces an unresolved symbol into the linker’s symbol table.
This forces the linker to search a library and include the member that defines
the symbol. The linker must encounter the –u option before it links in the mem-
ber that defines the symbol.

For example, suppose a library named rts.lib contains a member that defines
the symbol symtab; none of the object files being linked reference symtab.
However, suppose you plan to relink the output module, and you would like to
include the library member that defines symtab in this link. Using the –u option
as shown below forces the linker to search rts.lib for the member that defines
symtab and to link in the member.

lnk500 –u symtab file1.obj file2.obj rts.lib

If you do not use –u, this member is not included because there is no explicit
reference to it in file1.obj or file2.obj.

Linker Options

9-19Linker Description

9.4.16 Specify a COFF Format (–v Option)

The –v option specifies the format the linker will use to create the COFF object
file. The COFF object file is the output of the linker. The format specifies how
information in the object file is layed out.

The linker can read and write COFF0, COFF1, and COFF2 formats. By de-
fault, the linker creates COFF2 files. To create a different output format, use
the –v option where n is 0 for COFF0 or 1 for COFF1.

For more information about COFF files see Chapter 2,
Introduction to Common Object File Format, and Appendix A, Com-
mon Object File Format.

9.4.17 Display a Message for Output Section Information (–w Option)

The –w option displays additional messages pertaining to the creation of
memory sections. Additional messages are displayed in the following circum-
stances:

� In a linker command file, you can set up a SECTIONS directive that de-
scribes how input sections are combined into output sections. However,
if the linker encounters one or more input sections that do not have a corre-
sponding output section defined in the SECTIONS directive, the linker
combines the input sections that have the same name into an output sec-
tion with that name. By default, the linker does not display a message to
tell you when this has occurred.

If this situation occurs and you use the –w option, the linker displays a mes-
sage when it creates a new output section.

� If you do not use the –heap and –stack options, the linker creates the .sys-
mem and .stack, respectively, sections for you. Each section has a default
size of 0x400 words. You might not have enough memory available for one
or both of these sections. In this case, the linker issues an error message
saying a section could not be allocated.

If you use the –w option, the linker displays another message with more
details, which includes the name of the directive to allocate the .sysmem or
.stack section yourself.

For more information about the SECTIONS directive, see Section 9.8, The
SECTIONS Directive, on page 9-30. For more information about the default
actions of the linker, see Section 9.12, Default Allocation Algorithm, on page
9-51.

Linker Options

 9-20

9.4.18 Exhaustively Read Libraries (–x Option)

The linker normally reads input files, including archive libraries, only once
when they are encountered on the command line or in the command file. When
an archive is read, any members that resolve references to undefined symbols
are included in the link. If an input file later references a symbol defined in a
previously read archive library, the reference will not be resolved.

With the –x option, you can force the linker to reread all libraries. The linker
rereads libraries until no more references can be resolved. Linking using the
–x option may be slower, so you should use it only as needed. For example,
if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a
reference to a symbol defined in a.lib, you can resolve the mutual dependen-
cies by listing one of the libraries twice, as in:

lnk500 –la.lib –lb.lib –la.lib

or you can force the linker to do it for you:

lnk500 –x –la.lib –lb.lib

Linker Command Files

9-21Linker Description

9.5 Linker Command Files

Linker command files allow you to put linking information in a file; this is useful
when you invoke the linker often with the same information. Linker command
files are also useful because they allow you to use the MEMORY and
SECTIONS directives to customize your application. You must use these
directives in a command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

� Input filenames, which specify object files, archive libraries, or other com-
mand files. (If a command file calls another command file as input, this
statement must be the last statement in the calling command file. The
linker does not return from called command files.)

� Linker options, which can be used in the command file in the same manner
that they are used on the command line

� The MEMORY and SECTIONS linker directives. The MEMORY directive
defines the target memory configuration. The SECTIONS directive con-
trols how sections are built and allocated.

� Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the lnk500 command and follow
it with the name of the command file:

lnk500 command_filename

The linker processes input files in the order that it encounters them. If the linker
recognizes a file as an object file, it links it. Otherwise, it assumes that a file
is a command file and begins reading and processing commands from it.
Command filenames are case sensitive, regardless of the system used.

Example 9–1 shows a sample linker command file called link.cmd. (Sub-
section 2.4.2, Placing Sections in the Memory Map, on page 2-14 contains
another example of a linker command file.)

Example 9–1. Linker Command File

a.obj /* First input filename */

b.obj /* Second input filename */

–o prog.out /* Option to specify output file */

–m prog.map /* Option to specify map file */

Linker Command Files

 9-22

The sample file in Example 9–1 contains only filenames and options. (You can
place comments in a command file by delimiting them with /* and */.) To invoke
the linker with this command file, enter:

lnk500 link.cmd

You can place other parameters on the command line when you use a
command file:

lnk500 –r link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters it, so a.obj and
b.obj are linked into the output module before c.obj and d.obj.

You can specify multiple command files. If, for example, you have a file called
names.lst that contains filenames and another file called dir.cmd that contains
linker directives, you could enter:

lnk500 names.lst dir.cmd

One command file can call another command file; this type of nesting is limited
to 16 levels. If a command file calls another command file as input, this
statement must be the last statement in the calling command file.

Blanks and blank lines are insignificant in a command file except as delimiters.
This also applies to the format of linker directives in a command file.
Example 9–2 shows a sample command file that contains linker directives.
(Linker directive formats are discussed in later sections.)

Example 9–2. Command File With Linker Directives

a.obj b.obj c.obj /* Input filenames */

–o prog.out –m prog.map /* Options */

MEMORY /* MEMORY directive */

{

 RAM: origin = 100h length = 0100h

 ROM: origin = 01000h length = 0100h

}

SECTIONS /* SECTIONS directive */

{

 .text: > ROM

 .data: > ROM

 .bss: > RAM

}

Linker Command Files

9-23Linker Description

9.5.1 Reserved Names in Linker Command Files

The following names are reserved as keywords for linker directives. Do not use
them as symbol or section names in a command file.

align GROUP origin
ALIGN l (lowercase L) ORIGIN
attr len page
ATTR length PAGE
block LENGTH range
BLOCK load run
COPY LOAD RUN
DSECT MEMORY SECTIONS
f NOLOAD spare
fill o type
FILL org TYPE
group UNION

9.5.2 Constants in Command Files

Constants can be specified with either of two syntax schemes: the scheme
used for specifying decimal, octal, or hexadecimal constants used in the
assembler (see Section 3.6, Constants, on page 3-13) or the scheme used for
integer constants in C syntax.

Examples:

Decimal Octal Hexadecimal

Assembler Format: 32 40q 20h

C Format: 32 040 0x20

Object Libraries

 9-24

9.6 Object Libraries

An object library is a partitioned archive file that contains complete object files
as members. Usually, a group of related modules are grouped together into
a library. When you specify an object library as linker input, the linker includes
any members of the library that define existing unresolved symbol references.
You can use the archiver to build and maintain libraries. Chapter 8, Archiver
Description, contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable mod-
ule. Normally, if an object file that contains a function is specified at link time,
it is linked whether it is used or not; however, if that same function is placed
in an archive library, it is included only if it is referenced.

The order in which libraries are specified is important because the linker
includes only those members that resolve symbols that are undefined when
the library is searched. The same library can be specified as often as neces-
sary; it is searched each time it is included. Alternatively, the –x option can be
used. A library has a table that lists all external symbols defined in the library;
the linker searches through the table until it determines that it cannot use the
library to resolve any more references.

The following examples link several files and libraries. Assume that:

� Input files f1.obj and f2.obj both reference an external function named
clrscr

� Input file f1.obj references the symbol origin

� Input file f2.obj references the symbol fillclr

� Member 0 of library libc.lib contains a definition of origin

� Member 3 of library liba.lib contains a definition of fillclr

� Member 1 of both libraries defines clrscr

For example, if you enter the following, the references are resolved as shown:

lnk500 f1.obj liba.lib f2.obj libc.lib

� Member 1 of liba.lib satisfies both references to clrscr because the library
is searched and clrscr is defined before f2.obj references it.

� Member 0 of libc.lib satisfies the reference to origin.

� Member 3 of liba.lib satisfies the reference to fillclr.

Object Libraries

9-25Linker Description

As another example, if you enter the following, all the references to clrscr are
satisfied by member 1 of libc.lib:

lnk500 f1.obj f2.obj libc.lib liba.lib

If none of the linked files reference symbols defined in a library, you can use
the –u option to force the linker to include a library member. The next example
creates an undefined symbol rout1 in the linker’s global symbol table:

lnk500 –u rout1 libc.lib

If any member of libc.lib define rout1, the linker includes those members.

It is not possible to control the allocation of individual library members; mem-
bers are allocated according to the SECTIONS directive default allocation
algorithm.

Subsection 9.4.8, Alter the Library Search Algorithm (–i dir Option/C_DIR), on
page 9-13, describes methods for specifying directories that contain object
libraries.

The MEMORY Directive

 9-26

9.7 The MEMORY Directive

The linker determines where output sections should be allocated in memory;
it must have a model of target memory to accomplish this task. The MEMORY
directive allows you to specify a model of target memory so that you can define
the types of memory your system contains and the address ranges they
occupy. The linker maintains the model as it allocates output sections and uses
it to determine which memory locations can be used for object code.

The memory configurations of TMS320C54x systems differ from application
to application. The MEMORY directive allows you to specify a variety of
configurations. After you use MEMORY to define a memory model, you can
use the SECTIONS directive to allocate output sections into defined memory.

Refer to Section 2.4, How the Linker Handles Sections, on page 2-12 for
details on how the linker handles sections. Refer to Section 2.5, Relocation,
on page 2-14 for information on the relocation of sections.

9.7.1 Default Memory Model

The assembler enables you to assemble code for the TMS320C54x device.
The assembler inserts a field in the output file’s header, identifying the device.
The linker reads this information from the object file’s header. If you do not use
the MEMORY directive, the linker uses a default memory model specific to the
named device. For more information about the default memory model, see
subsection 9.12.1, Allocation Algorithm, on page 9-51.

9.7.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically
present in the target system and can be used by a program. Each memory
range has a name, a starting address, and a length.

’C54x devices have separate memory spaces that occupy the same address
ranges. In the default model, one space is dedicated to program areas, while
a second is dedicated to data (the number of separate address spaces
depends on the customized configuration of your chip. See the TMS320C54x
User’s Guide for more information.)

The linker allows you to configure these address spaces separately by using
the MEMORY directive’s PAGE option. In the default model, PAGE 0 refers to
program memory, and PAGE 1 refers to data memory. The linker treats these
two pages as completely separate memory spaces. The ’C54x supports as
many as 255 PAGES, but the number available to you depends on the configu-
ration you have chosen.

The MEMORY Directive

9-27Linker Description

When you use the MEMORY directive, be sure to identify all the memory
ranges that are available for object code. Memory defined by the MEMORY
directive is configured memory; any memory that you do not explicitly account
for with the MEMORY directive is unconfigured memory. The linker does not
place any part of a program into unconfigured memory. You can represent non-
existent memory spaces by simply not including an address range in a
MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY
(uppercase), followed by a list of memory range specifications enclosed in
braces. The MEMORY directive in Example 9–3 defines a system that has 4K
words of ROM at address 0h in program memory, 32 words of RAM at address
60h in data memory, and 512 words at address 200h in data memory.

Example 9–3. The MEMORY Directive

/**/
/* Sample command file with MEMORY directive */
/**/
file1.obj file2.obj /* Input files */
–o prog.out /* Options */

MEMORY
{
 PAGE 0: ROM: origin = C00h, length = 1000h

 PAGE 1: SCRATCH: origin = 60h, length = 20h
ONCHIP: origin = 80h, length = 1000h

}

origins lengths

MEMORY
directive

PAGE
options

names

You could then use the SECTIONS directive to tell the linker where to link the
sections. For example, you could allocate the .text and .data sections into the
memory area named ROM and allocate the .bss section into B2 or B0B1.

You normally use the MEMORY directive in conjunction with the SECTIONS
directive to control allocation of output sections. After you use the MEMORY
directive to specify the target system’s memory model, you can use the
SECTIONS directive to allocate output sections into specific named memory
ranges or into memory that has specific attributes. For example, you could
allocate the .text and .data sections into the area named ROM and allocate the
.bss section into the area name ONCHIP.

The MEMORY Directive

 9-28

The general syntax for the MEMORY directive is:

MEMORY
{

PAGE 0 : name 1 [(attr)] : origin = constant , length = constant;
PAGE n : name n [(attr)] : origin = constant , length = constant;

}

PAGE identifies a memory space. You can specify up to 255 pages,
depending on your configuration; usually, PAGE 0 specifies pro-
gram memory, and PAGE 1 specifies data memory. If you do not
specify a PAGE, the linker acts as if you specified PAGE 0. Each
PAGE represents a completely independent address space. Con-
figured memory on PAGE 0 can overlap configured memory on
PAGE 1.

name Names a memory range. A memory name may be one to eight
characters; valid characters include A–Z, a–z, $, ., and _. The
names have no special significance to the linker; they simply iden-
tify memory ranges. Memory range names are internal to the linker
and are not retained in the output file or in the symbol table.
Memory ranges on separate pages can have the same name; with-
in a page, however, all memory ranges must have unique names
and must not overlap.

attr Specifies one to four attributes associated with the named range.
Attributes are optional; when used, they must be enclosed in pa-
rentheses. Attributes restrict the allocation of output sections into
certain memory ranges. If you do not use any attributes, you can
allocate any output section into any range with no restrictions. Any
memory for which no attributes are specified (including all memory
in the default model) has all four attributes. Valid attributes include:

R specifies that the memory can be read
W specifies that the memory can be written to
X specifies that the memory can contain executable code
I specifies that the memory can be initialized

origin Specifies the starting address of a memory range; enter as origin,
org, or o. The value, specified in bytes, is a 16-bit constant and may
be decimal, octal, or hexadecimal.

The MEMORY Directive

9-29Linker Description

length Specifies the length of a memory range; enter as length, len, or l.
The value, specified in bytes, is a 16-bit constant and may be deci-
mal, octal, or hexadecimal.

fill Specifies a fill character for the memory range; enter as fill or f. Fills
are optional. The value is a 2-byte integer constant and may be
decimal, octal, or hexadecimal. The fill value will be used to fill
areas of the memory range that are not allocated to a section.

Note: Filling Memory Ranges

If you specify fill values for large memory ranges, your output file will be very
large because filling a memory range (even with 0s) causes raw data to be
generated for all unallocated blocks of memory in the range.

The following example specifies a memory range with the R and W attributes
and a fill constant of 0FFFFh:

MEMORY
{

RFILE (RW) : o = 02h, l = 0FEh, f = 0FFFFh
}

Figure 9–2 illustrates the memory map shown in Example 9–3.

Figure 9–2. Memory Map Defined in Example 9–3

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Data Memory

on-chip
RAM

SCRATCH

00000h

0005Fh
00060h
0007Fh
00080h

00FFFh
01000h

0FFFFh

Program Memory

ROM on-chip
ROM

00000h

00C00h

0FF80h

0FFFFh

ONCHIP

The SECTIONS Directive

 9-30

9.8 The SECTIONS Directive

The SECTIONS directive:

� Describes how input sections are combined into output sections

� Defines output sections in the executable program

� Specifies where output sections are placed in memory (in relation to each
other and to the entire memory space)

� Permits renaming of output sections

Refer to Section 2.4, How the Linker Handles Sections, on page 2-12 for
details on how the linker handles sections. Refer to Section 2.5, Relocation,
on page 2-14 for information on the relocation of sections. Refer to subsection
2.3.4, Subsections, on page 2-8 for information on defining subsections;
subsections allow you to manipulate sections with greater precision.

9.8.1 Default Configuration

If you do not specify a SECTIONS directive, the linker uses a default algorithm
for combining and allocating the sections. Section 9.12, Default Allocation
Algorithm, on page 9-51 describes this algorithm in detail.

9.8.2 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word
SECTIONS (uppercase), followed by a list of output section specifications
enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS
{

name : [property, property, property,...]
name : [property, property, property,...]
name : [property, property, property,...]

}

The SECTIONS Directive

9-31Linker Description

Each section specification, beginning with name, defines an output section.
(An output section is a section in the output file.) After the section name is a
list of properties that define the section’s contents and how the section is allo-
cated. The properties may be separated by optional commas. Possible prop-
erties for a section are:

� Load allocation , which defines where in memory the section is to be
loaded
Syntax: load = allocation or

allocation or
 > allocation

� Run allocation , which defines where in memory the section is to be run
Syntax: run = allocation or

run > allocation

� Input sections , which define the input sections that constitute the output
section
Syntax: { input_sections }

� Section type , which defines flags for special section types
Syntax: type = COPY or

type = DSECT or
type = NOLOAD

For more information on section types, see Section 9.13, Special Section
Types (DSECT, COPY, and NOLOAD), on page 9-54.

� Fill value , which defines the value used to fill uninitialized holes
Syntax: fill = value or

name: ... { ... } = value
For more information on creating and filling holes, see Section 9.15, Creat-
ing and Filling Holes, on page 9-59.

Example 9–4 shows a SECTIONS directive in a sample linker command file.
Figure 9–3 shows how these sections are allocated in memory.

The SECTIONS Directive

 9-32

Example 9–4. The SECTIONS Directive

/**/
/* Sample command file with SECTIONS directive */
/**/
file1.obj file2.obj /* Input files */
–o prog.out /* Options */

SECTIONS
{
 .text: load = ROM, run = 800h
 .const: load = ROM
 .bss: load = RAM
 .vectors: load = FF80h
 {
 t1.obj(.intvec1)
 t2.obj(.intvec2)
 endvec = .;
 }
 .data: align = 16
}

SECTIONS
directive

section
specifications

Figure 9–3 shows the five output sections defined by the sections directive in
Example 9–4: .vectors, .text, .const, .bss, and .data.

Figure 9–3. Section Allocation Defined by Example 9–4

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ROM

RAM

.vectors

.text

– bound at 0FF80h

– allocated in ROM

.const – allocated in ROM

.bss – allocated in RAM

.data – aligned on 16-word
 boundary

00h

The .text section combines the .text sections from
file1.obj and file2.obj. The linker combines all sec-
tions named .text into this section. The application
must relocate the section to run at 0800h.

The .const section combines the .const sections
from file1.obj and file2.obj.

The .bss section combines the .bss sections from
file1.obj and file2.obj.

The .vectors section is composed of the .intvec1
section from t1.obj and the .intvec2 section from
t2.obj.

The .data section combines the .data sections from
file1.obj and file2.obj. The linker will place it any-
where there is space for it (in RAM in this illustration)
and align it to a 16-word boundary.

FF80h

The SECTIONS Directive

9-33Linker Description

9.8.3 Specifying the Address of Output Sections (Allocation)

The linker assigns each output section two locations in target memory: the
location where the section will be loaded and the location where it will be run.
Usually, these are the same, and you can think of each section as having only
a single address. In any case, the process of locating the output section in the
target’s memory and assigning its address(es) is called allocation. For more
information about using separate load and run allocation, see Section 9.9,
Specifying a Section’s Runtime Address, on page 9-39.

If you do not tell the linker how a section is to be allocated, it uses a default
algorithm to allocate the section. Generally, the linker puts sections wherever
they fit into configured memory. You can override this default allocation for a
section by defining it within a SECTIONS directive and providing instructions
on how to allocate it.

You control allocation by specifying one or more allocation parameters. Each
parameter consists of a keyword, an optional equal sign or greater-than sign,
and a value optionally enclosed in parentheses. If load and run allocation is
separate, all parameters following the keyword LOAD apply to load allocation,
and those following RUN apply to run allocation. Possible allocation
parameters are:

Binding allocates a section at a specific address.

.text: load = 0x1000

Memory allocates the section into a range defined in the MEMORY
directive with the specified name (like ROM) or attributes.

.text: load > ROM

Alignment uses the align keyword to specify that the section should
start on an address boundary.

.text: align = 0x80

To force the output section containing the assignment to also
be aligned, assign . (dot) with an align expression. For exam-
ple, the following will align bar.obj, and it will force outsect to
align on a 0x40 boundary:

SECTIONS
{

outsect: { bar.obj(.bss)
. = align(0x40);

}
}

The SECTIONS Directive

 9-34

Blocking uses the block keyword to specify that the section must fit
between two address boundaries: if the section is too big, it
will start on an address boundary.

.text: block(0x80)

Page specifies the memory page to be used (see Section 9.11,
Overlay Pages, on page 9-46).

.text: PAGE 0

For the load (usually the only) allocation, you may simply use a greater-than
sign and omit the load keyword:

.text: > ROM .text: {...} > ROM

.text: > 0x1000

If more than one parameter is used, you can string them together as follows:

.text: > ROM align 16 PAGE 2

Or, if you prefer, use parentheses for readability:

.text: load = (ROM align(16) page (2))

9.8.3.1 Binding

You can supply a specific starting address for an output section by following
the section name with an address:

.text: 0x1000

This example specifies that the .text section must begin at location 1000h. The
binding address must be a 16-bit constant.

Output sections can be bound anywhere in configured memory (assuming
there is enough space), but they cannot overlap. If there is not enough space
to bind a section to a specified address, the linker issues an error message.

Note: Binding and Alignment or Named Memory are Incompatible

You cannot bind a section to an address if you use alignment or named
memory. If you try to do so, the linker issues an error message.

The SECTIONS Directive

9-35Linker Description

9.8.3.2 Named memory

You can allocate a section into a memory range that is defined by the
MEMORY directive. This example names ranges and links sections into them:

MEMORY
{
 ROM (RIX) : origin = C00h, length = 1000h
 RAM (RWIX) : origin = 80h, length = 1000h
}

SECTIONS
{
 .text : > ROM
 .data ALIGN(128) : > RAM
 .bss : > RAM

In this example, the linker places .text into the area called ROM. The .data and
.bss output sections are allocated into RAM. You can align a section within a
named memory range; the .data section is aligned on a 128-word boundary
within the RAM range.

Similarly, you can link a section into an area of memory that has particular
attributes. To do this, specify a set of attributes (enclosed in parentheses)
instead of a memory name. Using the same MEMORY directive declaration,
you can specify:

SECTIONS
{
 .text: > (X) /* .text ––> executable memory */
 .data: > (RI) /* .data ––> read or init memory */
 .bss : > (RW) /* .bss ––> read or write memory */
}

In this example, the .text output section can be linked into either the ROM or
RAM area because both areas have the X attribute. The .data section can also
go into either ROM or RAM because both areas have the R and I attributes.
The .bss output section, however, must go into the RAM area because only
RAM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated,
although the linker uses lower memory addresses first and avoids fragmenta-
tion when possible. In the preceding examples, assuming that no conflicting
assignments exist, the .text section would start at address 0. If a section must
start on a specific address, use binding instead of named memory.

The SECTIONS Directive

 9-36

9.8.3.3 Alignment and blocking

You can tell the linker to place an output section at an address that falls on an
n-word boundary, where n is a power of 2. For example:

.text: load = align(128)

allocates .text so that it falls on a page boundary.

Blocking is a weaker form of alignment that allocates a section anywhere
within a block of size n. If the section is larger than the block size, the section
will begin on that boundary. As with alignment, n must be a power of 2. For
example:

bss: load = block(0x80)

allocates .bss so that the section either is contained in a single 128K-word
page or begins on a page.

You can use alignment or blocking alone or in conjunction with a memory area,
but alignment and blocking cannot be used together.

9.8.3.4 Specifying input sections

An input section specification identifies the sections from input files that are
combined to form an output section. The linker combines input sections by
concatenating them in the order in which they are specified. The size of an
output section is the sum of the sizes of the input sections that comprise it.

Example 9–5 shows the most common type of section specification; note that
no input sections are listed.

Example 9–5. The Most Common Method of Specifying Section Contents

SECTIONS
{

.text:

.data:

.bss:
}

In Example 9–5 the linker takes all the .text sections from the input files and
combines them into the .text output section. The linker concatenates the .text
input sections in the order that it encounters them in the input files. The linker
performs similar operations with the .data and .bss sections. You can use this
type of specification for any output section.

The SECTIONS Directive

9-37Linker Description

You can explicitly specify the input sections that form an output section. Each
input section is identified by its filename and section name:

SECTIONS
{
 .text : /* Build .text output section */
 {
 f1.obj(.text) /* Link .text section from f1.obj */
 f2.obj(sec1) /* Link sec1 section from f2.obj */
 f3.obj /* Link ALL sections from f3.obj */
 f4.obj(.text,sec2) /* Link .text and sec2 from f4.obj */
 }
}

It is not necessary for input sections to have the same name as each other or
as the output section they become part of. If a file is listed with no sections, all
of its sections are included in the output section. If any additional input sections
have the same name as an output section, but are not explicitly specified by
the SECTIONS directive, they are automatically linked in at the end of the out-
put section. For example, if the linker found more .text sections in the preced-
ing example, and these .text sections were not specified anywhere in the
SECTIONS directive, the linker would concatenate these extra sections after
f4.obj(sec2).

The specifications in Example 9–5 are actually a shorthand method for the
following:

SECTIONS
{
 .text: { *(.text) }
 .data: { *(.data) }
 .bss: { *(.bss) }
}

The specification *(.text) means the unallocated .text sections from all the
input files. This format is useful when:

� You want the output section to contain all input sections that have a speci-
fied name, but the output section name is different than the input sections’
name.

� You want the linker to allocate the input sections before it processes addi-
tional input sections or commands within the braces.

The SECTIONS Directive

 9-38

The following example illustrates the two purposes above:

SECTIONS
{
 .text : {
 abc.obj(xqt)
 *(.text)
 }
 .data : {
 *(.data)
 fil.obj(table)
 }
}

In this example, the .text output section contains a named section xqt from file
abc.obj, which is followed by all the .text input sections. The .data section con-
tains all the .data input sections, followed by a named section table from the
file fil.obj. This method includes all the unallocated sections. For example, if
one of the .text input sections was already included in another output section
when the linker encountered *(.text), the linker could not include that first .text
input section in the second output section.

Specifying a Section’s Runtime Address

9-39Linker Description

9.9 Specifying a Section’s Runtime Address

At times, you may want to load code into one area of memory and run it in
another. For example, you may have performance-critical code in a ROM-
based system. The code must be loaded into ROM, but it would run faster in
RAM.

The linker provides a simple way to accomplish this. You can use the
SECTIONS directive to direct the linker to allocate a section twice: once to set
its load address and again to set its run address. For example:

.fir: load = ROM, run = RAM

Use the load keyword for the load address and the run keyword for the run
address.

Refer to Section 2.6, Runtime Relocation, on page 2-16 for an overview on
runtime relocation.

9.9.1 Specifying Load and Run Addresses

The load address determines where a loader will place the raw data for the
section. All references to the section (such as labels in it) refer to its run
address. The application must copy the section from its load address to its run
address; this does not happen automatically when you specify a separate run
address.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and will load and run at the same address. If you provide
both allocations, the section is allocated as if it were two sections of the same
size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides
a way to overlay sections; see subsection 9.10.1, Overlaying Sections With the
UNION Statement, on page 9-43.)

If either the load or run address has additional parameters, such as alignment
or blocking, list them after the appropriate keyword. Everything related to allo-
cation after the keyword load affects the load address until the keyword run is
seen, after which, everything affects the run address. The load and run alloca-
tions are completely independent, so any qualification of one (such as align-
ment) has no effect on the other. You may also specify run first, then load. Use
parentheses to improve readability.

Specifying a Section’s Runtime Address

 9-40

The examples below specify load and run addresses:

.data: load = ROM, align = 32, run = RAM

(align applies only to load)

.data: load = (ROM align 32), run = RAM

(identical to previous example)

.data: run = RAM, align 32,
load = align 16

(align 32 in RAM for run; align 16 anywhere for load)

9.9.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so their only significant
address is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and
ignores the load address. Otherwise, if you specify only one address, the linker
treats it as a run address, regardless of whether you call it load or run. The
example below specifies load and run addresses for an uninitialized section:

.bss: load = 0x1000, run = RAM

A warning is issued, load is ignored, and space is allocated in RAM. All of the
following examples have the same effect. The .bss section is allocated in RAM.

.bss: load = RAM

.bss: run = RAM

.bss: > RAM

9.9.3 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol in a section refers to its runtime address.
However, it may be necessary at runtime to refer to a load-time address.
Specifically, the code that copies a section from its load address to its run
address must have access to the load address. The .label directive defines a
special symbol that refers to the section’s load address. Thus, whereas normal
symbols are relocated with respect to the run address, .label symbols are relo-
cated with respect to the load address. For more information on the .label
directive, see page 4-53.

Example 9–6 shows the use of the .label directive.

Specifying a Section’s Runtime Address

9-41Linker Description

Example 9–6. Copying a Section From ROM to RAM

;–––
; define a section to be copied from ROM to RAM
;–––
 .sect ”.fir”
 .label fir_src ; load address of section
fir: ; run address of section
 <code here> ; code for the section

 .label fir_end ; load address of section end

;–––
; copy .fir section from ROM into RAM
;–––
 .text

 STM fir_src, AR1 ; get load address
 RPT #(fir_end – fir_src – 1)
 MVDP *AR1+, fir ; copy address to program memory

;–––
; jump to section, now in RAM
;–––
 CALL fir

Linker Command File

/**/
/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE */
/**/

MEMORY
{
 PAGE 0 : ONCHIP : origin = 0800h, length = 02400h
 PAGE 0 : PROG : origin = 02C00h, length = 0D200h
 PAGE 1 : DATA : origin = 0800h, length – 0F800h
}

SECTIONS
{
 .text: load = PROG PAGE 0
 .fir: load = DATA PAGE 1, run ONCHIP PAGE 0
}

Specifying a Section’s Runtime Address

 9-42

Figure 9–4 illustrates the runtime execution of this example.

Figure 9–4. Runtime Execution of Example 9–6

ONCHIP

 fir (relocated
to run here)

PROG

.text

DATA

.fir
(loads here)

Program Memory Data Memory

 800h

2C00h

FE00h

 800h

Using UNION and GROUP Statements

9-43Linker Description

9.10 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and
UNION. Unioning sections causes the linker to allocate them to the same run
address. Grouping sections causes the linker to allocate them contiguously in
memory.

9.10.1 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section to run
at the same address. For example, you may have several routines you want
in on-chip RAM at various stages of execution. Or you may want several data
objects that will not be active at the same time to share a block of memory. The
UNION statement within the SECTIONS directive provides a way to allocate
several sections at the same runtime address.

In Example 9–7, the .bss sections from file1.obj and file2.obj are allocated at
the same address in RAM. In the memory map, the union occupies as much
space as its largest component. The components of a union remain indepen-
dent sections; they are simply allocated together as a unit.

Example 9–7. The UNION Statement

SECTIONS
{
 .text: load = ROM
 UNION: run = RAM
 {
 .bss1: { file1.obj(.bss) }
 .bss2: { file2.obj(.bss) }
 }
 .bss3: run = RAM { globals.obj(.bss) }

Allocation of a section as part of a union affects only its run address. Under no
circumstances can sections be overlaid for loading. If an initialized section is
a union member (an initialized section has raw data, such as .text), its load
allocation must be separately specified. For example:

Example 9–8. Separate Load Addresses for UNION Sections

 UNION: run = RAM
 {
 .text1: load = ROM, { file1.obj(.text) }
 .text2: load = ROM, { file2.obj(.text) }
 }

Using UNION and GROUP Statements

 9-44

Figure 9–5. Memory Allocation Shown in Example 9–7 and Example 9–8

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ROM

RAM

.text 2 (run)

.text 1 (load)

.text 1 (run)

.text 2 (load)

Copies at
 runtime

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ROM

RAM

.text

.bss2

.bss1

.bss3

Allocation for Example 9–7 Allocation for Example 9–8

Sections cannot
load as a union.

Sections can run
as a union. This is
runtime allocation
only.

Since the .text sections contain data, they cannot load as a union, although
they can be run as a union. Therefore, each requires its own load address. If
you fail to provide a load allocation for an initialized section within a union, the
linker issues a warning and allocates load space anywhere it fits in configured
memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is
redundant to specify a load address for the union itself. For purposes of allo-
cation, the union is treated as an uninitialized section: any one allocation speci-
fied is considered a run address, and, if both are specified, the linker issues
a warning and ignores the load address.

Note: UNION and Overlay Page Are Not the Same

The UNION capability and the overlay page capability (see Section 9.11,
Overlay Pages, on page 9-46) may sound similar because they both deal
with overlays. They are, in fact, quite different. UNION allows multiple sec-
tions to be overlaid within the same memory space. Overlay pages, on the
other hand, define multiple memory spaces. It is possible to use the page
facility to approximate the function of UNION, but this is cumbersome.

Using UNION and GROUP Statements

9-45Linker Description

9.10.2 Grouping Output Sections Together

The SECTIONS directive has a GROUP option that forces several output sec-
tions to be allocated contiguously. For example, assume that a section named
term_rec contains a termination record for a table in the .data section. You can
force the linker to allocate .data and term_rec together:

Example 9–9. Allocate Sections Together

SECTIONS
{
 .text /* Normal output section */
 .bss /* Normal output section */
 GROUP 1000h : /* Specify a group of sections */
 {
 .data /* First section in the group */
 term_rec /* Allocated immediately after .data */
 }
}

You can use binding, alignment, or named memory to allocate a GROUP in the
same manner as a single output section. In the preceding example, the
GROUP is bound to address 1000h. This means that .data is allocated at
1000h, and term_rec follows it in memory.

Note: You Cannot Specify Addresses for Sections Within a GROUP

When you use the GROUP option, binding, alignment, or allocation into
named memory can be specified for the group only. You cannot use binding,
named memory, or alignment for sections within a group.

Overlay Pages

 9-46

9.11 Overlay Pages

Some target systems use a memory configuration in which all or part of the
memory space is overlaid by shadow memory. This allows the system to map
different banks of physical memory into and out of a single address range in
response to hardware selection signals. In other words, multiple banks of
physical memory overlay each other at one address range. You may want the
linker to load various output sections into each of these banks or into banks
that are not mapped at load time.

The linker supports this feature by providing overlay pages. Each page repre-
sents an address range that must be configured separately with the MEMORY
directive. You can then use the SECTIONS directive to specify the sections to
be mapped into various pages.

9.11.1 Using the MEMORY Directive to Define Overlay Pages

To the linker, each overlay page represents a completely separate memory
comprising the full 16-bit range of addressable locations. This allows you to
link two or more sections at the same (or overlapping) addresses if they are
on different pages.

Pages are numbered sequentially, beginning with 0. If you do not use the
PAGE option, the linker allocates initialized sections into PAGE 0 (program
memory) and uninitialized sections into PAGE 1 (data memory).

For example, assume that your system can select between two banks of physi-
cal memory for data memory space: address range A00h to FFFFh for PAGE 1
and 0A00h to 2BFF for PAGE 2. Although only one bank can be selected at
a time, you can initialize each bank with different data. This is how you use the
MEMORY directive to obtain this configuration:

Example 9–10. Memory Directive With Overlay Pages

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

MEMORY
{
 PAGE 0 : ONCHIP : origin = 0800h, length = 0240h
 : PROG : origin = 02C00h, length = 0D200h
 PAGE 1 : OVR_MEM : origin = 0A00h, length = 02200h
 : DATA : origin = 02C00h, length = 0D400h
 PAGE 2 : OVR_MEM : origin = 0A00h, length = 02200h
}

Overlay Pages

9-47Linker Description

Example 9–10 defines three separate address spaces. PAGE 0 defines an
area of on-chip program memory and the rest of program memory space.
PAGE 1 defines the first overlay memory area and the rest of data memory
space. PAGE 2 defines another area of overlay memory for data space. Both
OVR_MEM ranges cover the same address range. This is possible because
each range is on a different page and therefore represents a different memory
space.

Figure 9–6 shows overlay pages defined by the MEMORY directive in
Example 9–10 and the SECTIONS directive in Example 9–11.

Figure 9–6. Overlay Pages Defined by Example 9–10 and Example 9–11

Run address
for f1, f2, f3,

f4

ONCHIP

PROG

.text

800h

FC00h

2C00h

Program Memory
Page 0

f1.obj (.text)
f2.obj (.text)

OVR_MEM

DATA

.bss

A00h

2C00h

f3.obj (.text)
f4.obj (.text)

OVR_MEM
A00h

2C00h

Data Memory
Page 1

Data Memory
Page 2

Overlay Pages

 9-48

9.11.2 Using Overlay Pages With the SECTIONS Directive

Assume that you are using the MEMORY directive as shown in Example 9–10.
Further assume that your code consists of, besides the usual sections, four
modules of code that you want to load in data memory space but that you
intend to run in the on-chip RAM in program memory space. Example 9–11
shows how to use the SECTIONS directive overlays accordingly.

Example 9–11. SECTIONS Directive Definition for Overlays in Figure 9–6

SECTIONS
{
 UNION : run = ONCHIP
 {
 S1 : load = OVR_MEM PAGE 1
 {
 s1_load = 0A00h;
 s1_start = .;
 f1.obj (.text)
 f2.obj (.text)
 s1_length = . – s1_start;
 }
 S2 : load = OVR_MEM PAGE 2
 {
 s2_load = 0A00h;
 s2_start = .;
 f3.obj (.text)
 f4.obj (.text)
 s2_length = . – s2_start;
 }
 }

 .text: load = PROG PAGE 0
 .data: load = PROG PAGE 0
 .bss : load = DATA PAGE 1
}\

The four modules of code are f1, f2, f3, and f4. The modules f1 and f2 are com-
bined into output section S1, and f3 and f4 are combined into output section
S2. The PAGE specifications for S1 and S2 tell the linker to link these sections
into the corresponding pages. As a result, they are both linked to load address
A00h, but in different memory spaces. When the program is loaded, a loader
can configure hardware so that each section is loaded into the appropriate
memory bank.

Output sections S1 and S2 are placed in a union that has a run address in
on-chip RAM. The application must move these sections at runtime before
executing them. You can use the symbols s1_load and s1_length to move sec-
tion S1, and s2_load and s2_length to move section S2. The special symbol
”.” refers to the current run address, not the current load address.

Overlay Pages

9-49Linker Description

Within a page, you can bind output sections or use named memory areas in
the usual way. In Example 9–11, S1 could have been allocated:

S1 : load = 01200h, page = 1 { . . . }

This binds S1 at address 1200h in page 1. You can also use page as a qualifier
on the address. For example:

S1 : load = (01200h PAGE 1) { . . . }

If you do not specify any binding or named memory range for the section, the
linker allocates the section into the page wherever it can (just as it normally
does with a single memory space). For example, S2 could also be specified
as:

S2 : PAGE 2 { . . . }

Because OVR_MEM is the only memory on page 2, it is not necessary (but
acceptable) to specify = OVR_MEM for the section.

9.11.3 Page Definition Syntax

To specify overlay pages as illustrated in Example 9–10 and Example 9–11,
use the following syntax for the MEMORY directive:

MEMORY
{

PAGE 0 : name 1 [(attr)] : origin = constant , length = constant;
PAGE n : name n [(attr)] : origin = constant , length = constant;

}

Each page is introduced by the keyword PAGE and a page number, followed
by a colon and a list of memory ranges the page contains. Bold portions must
be entered as shown. Memory ranges are specified in the normal way. You can
define up to 255 overlay pages.

Because each page represents a completely independent address space,
memory ranges on different pages can have the same name. Configured
memory on any page can overlap configured memory on any other page.
Within a single page, however, all memory ranges must have unique names
and must not overlap.

Overlay Pages

 9-50

Memory ranges listed outside the scope of a PAGE specification default to
PAGE 0. Consider the following example:

MEMORY
{ ROM : org = 0h len = 1000h
 EPROM : org = 1000h len = 1000h
 RAM : org = 2000h len = 0E000h
 PAGE1: XROM : org = 0h len = 1000h
 XRAM : org = 2000h len = 0E000h
}

The memory ranges ROM, EPROM, and RAM are all on PAGE 0 (since no
page is specified). XROM and XRAM are on PAGE 1. Note that XROM on
PAGE 1 overlays ROM on PAGE 0, and XRAM on PAGE 1 overlays RAM on
PAGE 0.

In the output link map (obtained with the –m linker option), the listing of the
memory model is keyed by pages. This provides an easy method of verifying
that you specified the memory model correctly. Also, the listing of output sec-
tions has a PAGE column that identifies the memory space into which each
section will be loaded.

Default Allocation Algorithm

9-51Linker Description

9.12 Default Allocation Algorithm

The MEMORY and SECTIONS directives provide flexible methods for build-
ing, combining, and allocating sections. However, any memory locations or
sections that you choose not to specify must still be handled by the linker. The
linker uses default algorithms to build and allocate sections within the specifi-
cations you supply. Subsections 9.12.1, Allocation Algorithm, and 9.12.2,
General Rules for Output Sections, describe default allocation.

9.12.1 Allocation Algorithm

If you do not use the MEMORY and SECTIONS directives, the linker allocates
output sections as though the following definitions are specified.

Example 9–12. Default Allocation for TMS320C54x Devices

MEMORY
{

PAGE 0: PROG: origin = 0x0080 length = 0xFF00
PAGE 1: DATA: origin = 0x0080 length = 0xFF80

}
SECTIONS
{

.text: PAGE = 0

.data: PAGE = 0

.cinit: PAGE = 0 ;cflag option only

.bss: PAGE = 1
}

All .text input sections are concatenated to form a .text output section in the
executable output file, and all .data input sections are combined to form a .data
output section. The .text and .data sections are allocated into configured
memory on PAGE 0, which is the program memory space. All .bss sections are
combined to form a .bss output section. The .bss section is allocated into con-
figured memory on PAGE 1, which is the data memory space.

If the input files contain initialized named sections, the linker allocates them
into program memory following the .data section. If the input files contain unini-
tialized named sections, the linker allocates them into data memory following
the .bss section. You can override this by specifying an explicit PAGE in the
SECTIONS directive.

If you use a SECTIONS directive, the linker performs no part of the default
allocation. Allocation is performed according to the rules specified by the
SECTIONS directive and the general algorithm described in subsection
9.12.2, General Rules for Output Sections.

Default Allocation Algorithm

 9-52

9.12.2 General Rules for Output Sections

An output section can be formed in one of two ways:

Rule 1 As the result of a SECTIONS directive definition.

Rule 2 By combining input sections with the same names into an out-
put section that is not defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive (rule 1), this
definition completely determines the section’s contents. (See Section 9.8, The
SECTIONS Directive, on page 9-30 for examples of how to define an output
section’s content.)

An output section can also be formed when input sections are not specified by
a SECTIONS directive (rule 2). In this case, the linker combines all such input
sections that have the same name into an output section with that name. For
example, suppose the files f1.obj and f2.obj both contain named sections
called Vectors and that the SECTIONS directive does not define an output
section for them. The linker combines the two Vectors sections from the input
files into a single output section named Vectors, allocates it into memory, and
includes it in the output file.

After the linker determines the composition of all output sections, it must allo-
cate them into configured memory. The MEMORY directive specifies which
portions of memory are configured; if there is no MEMORY directive, the linker
uses the default configuration.

The linker’s allocation algorithm attempts to minimize memory fragmentation.
This allows memory to be used more efficiently and increases the probability
that your program will fit into memory. This is the algorithm:

1) Output sections for which you have supplied a specific binding address
are placed in memory at that address.

2) Output sections that are included in a specific, named memory range or
that have memory attribute restrictions are allocated. Each output section
is placed into the first available space within the named area, considering
alignment where necessary.

3) Any remaining sections are allocated in the order in which they are
defined. Sections not defined in a SECTIONS directive are allocated in the
order in which they are encountered. Each output section is placed into the
first available memory space, considering alignment where necessary.

Default Allocation Algorithm

9-53Linker Description

Note: The PAGE Option

If you do not use the PAGE option to explicitly specify a memory space for
an output section, the linker allocates the section into PAGE 0. This occurs
even if PAGE 0 has no room and other pages do. To use a page other than
PAGE 0, you must specify the page with the SECTIONS directive.

Special Section Types (DSECT, COPY, and NOLOAD)

 9-54

9.13 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special type designations to output sections: DSECT,
COPY, and NOLOAD. These types affect the way that the program is treated
when it is linked and loaded. You can assign a type to a section by placing the
type (enclosed in parentheses) after the section definition. For example:

SECTIONS
{
 sec1 2000h (DSECT) : {f1.obj}
 sec2 4000h (COPY) : {f2.obj}
 sec3 6000h (NOLOAD) : {f3.obj}
}

� The DSECT type creates a dummy section with the following qualities:

� It is not included in the output section memory allocation. It takes up no
memory and is not included in the memory map listing.

� It can overlay other output sections, other DSECTs, and unconfigured
memory.

� Global symbols defined in a dummy section are relocated normally.
They appear in the output module’s symbol table with the same value
they would have if the DSECT had actually been loaded. These sym-
bols can be referenced by other input sections.

� Undefined external symbols found in a DSECT cause specified
archive libraries to be searched.

� The section’s contents, relocation information, and line number infor-
mation are not placed in the output module.

In the preceding example, none of the sections from f1.obj are allocated,
but all of the symbols are relocated as though the sections were linked at
address 2000h. The other sections can refer to any of the global symbols
in sec1.

� A COPY section is similar to a DSECT section, except that its contents and
associated information are written to the output module. The .cinit section
that contains initialization tables for the TMS320C54x C compiler has this
attribute under the RAM model.

� A NOLOAD section differs from a normal output section in one respect: the
section’s contents, relocation information, and line number information
are not placed in the output module. The linker allocates space for it, and
it appears in the memory map listing.

Assigning Symbols at Link Time

9-55Linker Description

9.14 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols
and assign values to them at link time. You can use this feature to initialize a
variable or pointer to an allocation-dependent value.

9.14.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assign-
ment statements in the C language:

symbol = expression; assigns the value of expression to symbol

symbol + = expression; adds the value of expression to symbol

symbol – = expression; subtracts the value of expression from symbol

symbol * = expression; multiplies symbol by expression

symbol / = expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new
symbol and enters it into the symbol table. The expression must follow the
rules defined in subsection 9.14.3, Assignment Expressions. Assignment
statements must terminate with a semicolon.

The linker processes assignment statements after it allocates all the output
sections. Therefore, if an expression contains a symbol, the address used for
that symbol reflects the symbol’s address in the executable output file.

For example, suppose a program reads data from one of two tables identified
by two external symbols, Table1 and Table2. The program uses the symbol
cur_tab as the address of the current table. cur_tab must point to either Table1
or Table2. You could accomplish this in the assembly code, but you would need
to reassemble the program to change tables. Instead, you can use a linker
assignment statement to assign cur_tab at link time:

prog.obj /* Input file */
cur_tab = Table1; /* Assign cur_tab to one of the tables */

Assigning Symbols at Link Time

 9-56

9.14.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the SPC
during allocation. The linker’s “.” symbol is analogous to the assembler’s $
symbol. The “.” symbol can be used only in assignment statements within a
SECTIONS directive because “.” is meaningful only during allocation, and
SECTIONS controls the allocation process.

The “.” symbol refers to the current run address, not the current load address,
of the section.

For example, suppose a program needs to know the address of the beginning
of the .data section. By using the .global directive, you can create an external
undefined variable called Dstart in the program. Then assign the value of “ . ”
to Dstart:

SECTIONS
{
 .text: {}
 .data: { Dstart = .; }
 .bss: {}
}

This defines Dstart to be the first linked address of the .data section. (Dstart
is assigned before .data is allocated.) The linker will relocate all references to
Dstart.

A special type of assignment assigns a value to the “.” symbol. This adjusts
the SPC within an output section and creates a hole between two input sec-
tions. Any value assigned to “.” to create a hole is relative to the beginning of
the section, not to the address actually represented by “.”. Assignments to “.”
and holes are described in Section 9.15, Creating and Filling Holes, on page
9-59.

9.14.3 Assignment Expressions

These rules apply to linker expressions:

� Expressions can contain global symbols, constants, and the C language
operators listed in Table 9–1.

� All numbers are treated as long (32-bit) integers.

� Constants are identified by the linker in the same way as by the assembler.
That is, numbers are recognized as decimal unless they have a suffix (H
or h for hexadecimal and Q or q for octal). C language prefixes are also
recognized (0 for octal and 0x for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

Assigning Symbols at Link Time

9-57Linker Description

� Symbols within an expression have only the value of the symbol’s
address. No type-checking is performed.

� Linker expressions can be absolute or relocatable. If an expression con-
tains any relocatable symbols (and zero or more constants or absolute
symbols), it is relocatable. Otherwise, the expression is absolute. If a sym-
bol is assigned the value of a relocatable expression, it is relocatable; if
it is assigned the value of an absolute expression, it is absolute.

The linker supports the C language operators listed in Table 9–1 in order of
precedence. Operators in the same group have the same precedence.
Besides the operators listed in Table 9–1, the linker also has an align operator
that allows a symbol to be aligned on an n-word boundary within an output sec-
tion (n is a power of 2). For example, the expression

. = align(16);

aligns the SPC within the current section on the next 16-word boundary.
Because the align operator is a function of the current SPC, it can be used only
in the same context as “.” —that is, within a SECTIONS directive.

Table 9–1. Operators Used in Expressions (Precedence)

Symbols Operators Evaluation

+ – ~ Unary plus, minus, 1s complement Right to left

* / % Multiplication, division, modulo Left to right

+ – Addition, subtraction Left to right

<< >> Left shift, right shift Left to right

< <= > >= Less than, LT or equal, greater than,
GT or equal

Left to right

 !=, =[=] Not equal to, equal to Left to right

& Bitwise AND Left to right

^ Bitwise exclusive OR Left to right

| Bitwise OR Left to right

Note: Unary +, –, and * have higher precedence than the binary forms.

Assigning Symbols at Link Time

 9-58

9.14.4 Symbols Defined by the Linker

The linker automatically defines several symbols that a program can use at
runtime to determine where a section is linked. These symbols are external,
so they appear in the link map. They can be accessed in any assembly lan-
guage module if they are declared with a .global directive. Values are assigned
to these symbols as follows:

.text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
 (It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

9.14.5 Symbols Defined Only For C Support (–c or –cr Option)

__STACK_SIZE is assigned the size of the .stack section.

__SYSMEM_SIZE is assigned the size of the .sysmem section.

Creating and Filling Holes

9-59Linker Description

9.15 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections
that have nothing linked into them. These areas are called holes . In special
cases, uninitialized sections can also be treated as holes. The following text
describes how the linker handles such holes and how you can fill holes (and
uninitialized sections) with a value.

9.15.1 Initialized and Uninitialized Sections

An output section contains one of the following:

� Raw data for the entire section
� No raw data

A section that has raw data is referred to as initialized. This means that the
object file contains the actual memory image contents of the section. When the
section is loaded, this image is loaded into memory at the section’s specified
starting address. The .text and .data sections always have raw data if anything
was assembled into them. Named sections defined with the .sect assembler
directive also have raw data.

By default, the .bss section and sections defined with the .usect directive have
no raw data (they are uninitialized). They occupy space in the memory map
but have no actual contents. Uninitialized sections typically reserve space in
RAM for variables. In the object file, an uninitialized section has a normal sec-
tion header and may have symbols defined in it; however, no memory image
is stored in the section.

9.15.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when
you force the linker to leave extra space between input sections within an out-
put section. When such a hole is created, the linker must follow the first guide-
line above and supply raw data for the hole.

Holes can be created only within output sections. Space can exist between
output sections, but such space is not holes. There is no way to fill or initialize
the space between output sections.

To create a hole in an output section, you must use a special type of linker
assignment statement within an output section definition. The assignment
statement modifies the SPC (denoted by “.”) by adding to it, assigning a greater
value to it, or aligning it on an address boundary. The operators, expressions,
and syntaxes of assignment statements are described in Section 9.14, Assign-
ing Symbols at Link Time, on page 9-55.

Creating and Filling Holes

 9-60

The following example uses assignment statements to create holes in output
sections:

SECTIONS
{
 outsect:
 {
 file1.obj(.text)
 . += 100h; /* Create a hole with size 100h */
 file2.obj(.text)
 . = align(16); /* Create a hole to align the SPC */
 file3.obj(.text)
 }
}

The output section outsect is built as follows:

� The .text section from file1.obj is linked in.

� The linker creates a 256-word hole.

� The .text section from file2.obj is linked in after the hole.

� The linker creates another hole by aligning the SPC on a 16-word
boundary.

� Finally, the .text section from file3.obj is linked in.

All values assigned to the “ . ” symbol within a section refer to the relative
address within the section. The linker handles assignments to the “ . ” symbol
as if the section started at address 0 (even if you have specified a binding
address). Consider the statement . = align(16) in the example. This statement
effectively aligns file3.obj .text to start on a 16-word boundary within outsect.
If outsect is ultimately allocated to start on an address that is not aligned,
file3.obj .text will not be aligned either.

Note that the “.” symbol refers to the current run address, not the current load
address, of the section.

Expressions that decrement “.” are illegal. For example, it is invalid to use the
–= operator in an assignment to “.”. The most common operators used in
assignments to “.” are += and align.

If an output section contains all input sections of a certain type (such as .text),
you can use the following statements to create a hole at the beginning or end
of the output section:

.text: { .+= 100h; } /* Hole at the beginning */

.data: {
 *(.data)
 . += 100h; } /* Hole at the end */

Creating and Filling Holes

9-61Linker Description

Another way to create a hole in an output section is to combine an uninitialized
section with an initialized section to form a single output section. In this case,
the linker treats the uninitialized section as a hole and supplies data for it. The
following example illustrates this method:

SECTIONS
{

outsect:
{
file1.obj(.text)
file1.obj(.bss) /* This becomes a hole */
}

}

Because the .text section has raw data, all of outsect must also contain raw
data (rule 1). Therefore, the uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with initial-
ized sections. If several uninitialized sections are linked together, the resulting
output section is also uninitialized.

9.15.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw
data to fill it. The linker fills holes with a 16-bit fill value that is replicated through
memory until it fills the hole. The linker determines the fill value as follows:

1) If the hole is formed by combining an uninitialized section with an initialized
section, you can specify a fill value for the uninitialized section. Follow the
section name with an = sign and a 16-bit constant:

SECTIONS
{
 outsect:
 {
 file1.obj(.text)
 file2.obj(.bss) = 00FFh /* Fill this hole */
 } /* with 0FFh */
}

2) You can also specify a fill value for all the holes in an output section by sup-
plying the fill value after the section definition:

SECTIONS
{
 outsect: fill = 0FF00h /* fills holes with 0FF00h */
 {
 . += 10h; /* This creates a hole */
 file1.obj(.text)
 file1.obj(.bss) /* This creates another hole*/
 }
}

Creating and Filling Holes

 9-62

3) If you do not specify an initialization value for a hole, the linker fills the hole
with the value specified with –f. For example, suppose the command file
link.cmd contains the following SECTIONS directive:

SECTIONS
{
 .text: { .= 100; } /* Create a 100 - word hole */
}

Now invoke the linker with the –f option:

lnk500 –f 0FFFFh link.cmd

This fills the hole with 0FFFFh.

4) If you do not invoke the linker with the –f option, the linker fills holes with 0s.

Whenever a hole is created and filled in an initialized output section, the hole
is identified in the link map along with the value the linker uses to fill it.

9.15.4 Explicit Initialization of Uninitialized Sections

An uninitialized section becomes a hole only when it is combined with an initial-
ized section. When uninitialized sections are combined with each other, the
resulting output section remains uninitialized.

However, you can force the linker to initialize an uninitialized section by speci-
fying an explicit fill value for it in the SECTIONS directive. This causes the
entire section to have raw data (the fill value). For example:

SECTIONS
{
 .bss: fill = 1234h /* Fills .bss with 1234h */
}

Note: Filling Sections

Because filling a section (even with 0s) causes raw data to be generated for
the entire section in the output file, your output file will be very large if you
specify fill values for large sections or holes.

Partial (Incremental) Linking

9-63Linker Description

9.16 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules.
This is known as partial linking or incremental linking. Partial linking allows you
to partition large applications, link each part separately, and then link all the
parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

� Intermediate files must have relocation information. Use the –r option
when you link the file the first time.

� Intermediate files must have symbolic information. By default, the linker
retains symbolic information in its output. Do not use the –s option if you
plan to relink a file, because –s strips symbolic information from the output
module.

� Intermediate link steps should be concerned only with the formation of out-
put sections and not with allocation. All allocation, binding, and MEMORY
directives should be performed in the final link step.

� If the intermediate files have global symbols that have the same name as
global symbols in other files and you wish them to be treated as static
(visible only within the intermediate file), you must link the files with the –h
option (See subsection 9.4.6, Make All Global Symbols Static (–h and –g
global_symbol Options), on page 9-12.)

� If you are linking C code, don’t use –c or –cr until the final link step. Every
time you invoke the linker with the –c or –cr option the linker will attempt
to create an entry point.

The following example shows how you can use partial linking:

Step 1: Link the file file1.com; use the –r option to retain relocation informa-
tion in the output file tempout1.out.

lnk500 –r –o tempout1 file1.com

file1.com contains:

SECTIONS
{
 ss1: {
 f1.obj
 f2.obj
 .
 .
 .
 fn.obj
 }
}

Partial (Incremental) Linking

 9-64

Step 2: Link the file file2.com; use the –r option to retain relocation informa-
tion in the output file tempout2.out.

lnk500 –r –o tempout2 file2.com

file2.com contains:

SECTIONS
{

ss2: {
g1.obj
g2.obj
 .
 .
 .
gn.obj
}

}

Step 3: Link tempout1.out and tempout2.out:

lnk500 –m final.map –o final.out tempout1.out tempout2.out

Linking C Code

9-65Linker Description

9.17 Linking C Code

The TMS320C54x C compiler produces assembly language source code that
can be assembled and linked. For example, a C program consisting of mod-
ules prog1, prog2, etc., can be assembled and then linked to produce an
executable file called prog.out:

lnk500 –c –o prog.out prog1.obj prog2.obj ... rts.lib

The –c option tells the linker to use special conventions that are defined by the
C environment. The archive library rts.lib contains C runtime-support func-
tions.

For more information about C, including the runtime environment and runtime-
support functions, see the TMS320C54x Optimizing C Compiler User’s Guide.

9.17.1 Runtime Initialization

All C programs must be linked with an object module called boot.obj. When a
program begins running, it executes boot.obj first. boot.obj contains code and
data for initializing the runtime environment. The module performs the follow-
ing tasks:

� Sets up the system stack

� Processes the runtime initialization table and autoinitializes global vari-
ables (in the ROM model)

� Disables interrupts and calls _main

The runtime-support object library, rts.lib, contains boot.obj. You can:

� Use the archiver to extract boot.obj from the library and then link the
module in directly.

� Include rts.lib as an input file (the linker automatically extracts boot.obj
when you use the –c or –cr option).

9.17.2 Object Libraries and Runtime Support

The TMS320C54x Optimizing C Compiler User’s Guide describes additional
runtime-support functions that are included in rts.lib. If your program uses any
of these functions, you must link rts.lib with your object files.

You can also create your own object libraries and link them. The linker includes
and links only those library members that resolve undefined references.

Linking C Code

 9-66

9.17.3 Setting the Size of the Stack and Heap Sections

C uses two uninitialized sections called .sysmem and .stack for the memory
pool used by the malloc() functions and the runtime stack, respectively. You
can set the size of these by using the –heap option or –stack option and speci-
fying the size of the section as a constant immediately after the option. The
default size for both is 1K words.

For more information, see Section 9.4.7, Define Heap Size (–heap constant
Option), on page 9-12 and subsection 9.4.14, Define Stack Size (–stack
constant Option), on page 9-18.

9.17.4 Autoinitialization (ROM and RAM Models)

The C compiler produces tables of data for autoinitializing global variables.
These are in a named section called .cinit. The initialization tables can be used
in either of two ways:

� RAM Model (–cr option)

Variables are initialized at load time. This enhances performance by
reducing boot time and by saving memory used by the initialization tables.
You must use a smart loader (i.e. one capable of initializing variables) to
take advantage of the RAM model of autoinitialization.

When you use –cr, the linker marks the .cinit section with a special attri-
bute. This attribute tells the linker not to load the .cinit section into memory.
The linker also sets the cinit symbol to –1; this tells the C boot routine that
initialization tables are not present in memory. Thus, no runtime initializa-
tion is performed at boot time.

When the program is loaded, the loader must be able to:

� Detect the presence of the .cinit section in the object file

� Detect the presence of the attribute that tells it not to copy the .cinit
section

� Understand the format of the initialization tables. (This format is
described in the TMS320C54x Optimizing C Compiler User’s Guide.)

The loader then uses the initialization tables directly from the object file to
initialize variables in .bss.

Linking C Code

9-67Linker Description

Figure 9–7 illustrates the RAM autoinitialization model.

Figure 9–7. RAM Model of Autoinitialization

.cinit

Object File

.bss

Loader

Memory

� ROM Model (–c option)

Variables are initialized at runtime. The .cinit section is loaded into
memory along with all the other sections. The linker defines a special sym-
bol called cinit that points to the beginning of the tables in memory. When
the program begins running, the C boot routine copies data from the tables
into the specified variables in the .bss section. This allows initialization
data to be stored in ROM and copied to RAM each time the program is
started.

Figure 9–8 illustrates the ROM autoinitialization model.

Figure 9–8. ROM Model of Autoinitialization

.cinit

Object File

.bss

Loader

Memory

Boot
routine

Initialization
tables

(possibly ROM)

Linking C Code

 9-68

9.17.5 The –c and –cr Linker Options

The following list outlines what happens when you invoke the linker with the
–c or –cr option.

� The symbol _c_int00 is defined as the program entry point. _c_int00 is the
start of the C boot routine in boot.obj; referencing _c_int00 ensures that
boot.obj is automatically linked in from the runtime-support library rts.lib.

� The .cinit output section is padded with a termination record to designate
to the boot routine (ROM model) or the loader (RAM model) when to stop
reading the initialization tables.

� In the ROM model (–c option), the linker defines the symbol cinit as the
starting address of the .cinit section. The C boot routine uses this symbol
as the starting point for autoinitialization.

� In the RAM model (–cr option):

� The linker sets the symbol cinit to –1. This indicates that the initializa-
tion tables are not in memory, so no initialization is performed at
runtime.

� The STYP_COPY flag (0010h) is set in the .cinit section header.
STYP_COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into memory.
The linker does not allocate space in memory for the .cinit section.

Linker Example

9-69Linker Description

9.18 Linker Example

This example links three object files named demo.obj, fft.obj, and tables.obj
and creates a program called demo.out. The symbol SETUP is the program
entry point.

Assume that target memory has the following configuration:

Program Memory

Address Range Contents
0080 to 7000 On-chip RAM_PG
C000 to FF80 On-chip ROM

Data Memory

Address Range Contents
0080 to 0FFF RAM block ONCHIP
0060 to FFFF Mapped external addresses EXT

The output sections are constructed from the following input sections:

� Executable code, contained in the .text sections of demo.obj, fft.obj, and
tables.obj must be linked into program ROM.

� Variables, contained in the var_defs section of demo.obj, must be linked
into data memory in block ONCHIP.

� Tables of coefficients in the .data sections of demo.obj, tables.obj and
fft.obj must be linked into RAM block ONCHIP in data memory. A hole is
created with a length of 100 and a fill value of 07A1Ch. The remainder of
block ONCHIP must be initialized to the value 07A1Ch.

� The .bss sections from demo.obj. tables.obj, and fft.obj, which contain
variables, must be linked into block RAM_PG of program RAM. The
unused part of this RAM must be initialized to 0FFFFh.

� The xy section from demo.obj, which contains buffers and variables, will
have the default linking into block ONCHIP of data RAM, since it was not
explicitly linked.

Example 9–13 shows the linker command file for this example. Example 9–14
shows the map file.

Linker Example

 9-70

Example 9–13. Linker Command File, demo.cmd

/***/
/*** Specify Linker Options ***/
/***/
–e coeff /* Define the program entry point */
–o demo.out /* Name the output file */
–m demo.map /* Create an output map */

/***/
/*** Specify the Input Files ***/
/***/

demo.obj
fft.obj
tables.obj

/***/
/*** Specify the Memory Configurations ***/
/***/

MEMORY
{
 PAGE 0: RAM_PG: origin=00080h length=06F80h
 ROM: origin=0C000h length=03F80h

 PAGE 1: ONCHIP: origin=00080h length=0F7Fh
 EXT: origin=01000h length=0EFFFh
}

/**/
/*** Specify the Output Sections ***/
/**/

SECTIONS
{
 .text: load = ROM, page = 0 /* link .text into ROM */

 var_defs: load = ONCHIP, page=1 /* defs in RAM */

 .data: fill = 07A1Ch, load=ONCHIP, page=1
 {
 tables.obj(.data) /* .data input */
 fft.obj(.data) /* .data input */
 . = 100h; /* create hole, fill with 07A1Ch */
 } /* and link with ONCHIP */

 .bss: load=RAM_PG,page=0,fill=0FFFFh
 /* Remaining .bss; fill and link */
}

/***/
/*** End of Command File ***/
/***/

Linker Example

9-71Linker Description

Invoke the linker with the following command:

lnk500 demo.cmd

This creates the map file shown in Example 9–14 and an output file called
demo.out that can be run on a TMS320C54x.

Example 9–14. Output Map File, demo.map

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: 0

MEMORY CONFIGURATION
 name origin length attributes fill
 –––––––– –––––––– ––––––––– –––––––––– ––––––––
PAGE 0: RAM_PG 00000080 000006f80 RWIX
 ROM 0000c000 000003f80 RWIX
PAGE 1: ONCHIP 00000080 000000f7f RWIX
 EXT 00001000 00000efff RWIX

SECTION ALLOCATION MAP
 output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
.text 0 0000c000 00000015
 0000c000 00000008 demo.obj (.text)
 0000c008 00000007 fft.obj (.text)
 0000c00f 00000006 tables.obj (.text)
var_defs 1 00000080 00000002
 00000080 00000002 demo.obj (var_defs)
.data 1 00000082 00000108
 00000082 00000000 tables.obj (.data)
 00000082 00000000 fft.obj (.data)
 00000082 00000100 ––HOLE–– [fill = 7a1c]
 00000182 00000008 demo.obj (.data)
.bss 0 00000080 0000007b
 00000080 00000013 demo.obj (.bss) [fill=ffff]
 00000093 00000000 fft.obj (.bss)
 00000093 00000068 tables.obj (.bss) [fill=ffff]
xy 1 0000018a 00000014 UNINITIALIZED
 0000018a 00000014 demo.obj (xy)

GLOBAL SYMBOLS
address name address name
–––––––– –––– –––––––– ––––
00000080 .bss 00000080 .bss
00000082 .data 00000082 .data
0000c000 .text 00000093 TEMP
00000097 ARRAY 00000097 ARRAY
00000093 TEMP 000000fb end
0000018a edata 0000018a edata
000000fb end 0000c000 .text
0000c015 etext 0000c015 etext

[8 symbols]

 9-72

10-1Absolute Lister Description

Absolute Lister Description

The absolute lister is a debugging tool that accepts linked object files as input
and creates .abs files as output. These .abs files can be assembled to produce
a listing that shows the absolute addresses of object code. Manually, this could
be a tedious process requiring many operations; however, the absolute lister
utility performs these operations automatically.

Topic Page

10.1 Producing an Absolute Listing 10-2.

10.2 Invoking the Absolute Lister 10-3.

10.3 Absolute Lister Example 10-5.

Chapter 10

Producing an Absolute Listing

 10-2

10.1 Producing an Absolute Listing

Figure 10–1 illustrates the steps required to produce an absolute listing.

Figure 10–1. Absolute Lister Development Flow

ÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

Assembler

Object
file

Linked object
file

Linker

First, assemble a source file.

Link the resulting object file.

Invoke the absolute lister; use the linked object
file as input. This creates a file with an .abs
extension.

Step 1:

Step 2:

Step 3:

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

Absolute

Assembler

lister

Absolute

.abs
file

Finally, assemble the .abs file; you must
invoke the assembler with the –a option. This
produces a listing file that contains absolute
addresses.

Step 4:

Assembler
source file

listing

Invoking the Absolute Lister

10-3Absolute Lister Description

10.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

abs500 [–options] input file

abs500 is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use.
Options are not case sensitive and can appear anywhere on the
command line following the command. Precede each option
with a hyphen (–). The absolute lister options are as follows:

–e enables you to change the default naming conventions
for filename extensions on assembly files, C source files,
and C header files. The three options are listed below.

� –ea [.]asmext for assembly files (default is .asm)
� –ec [.]cext for C source files (default is .c)
� –eh [.]hext for C header files (default is .h)

The “.” in the extensions and the space between the
option and the extension are optional.

–q (quiet) suppresses the banner and all progress infor-
mation.

input file names the linked object file. If you do not supply an extension,
the absolute lister assumes that the input file has the default
extension .out. If you do not supply an input filename when you
invoke the absolute lister, the absolute lister will prompt you for
one.

The absolute lister produces an output file for each file that was linked. These
files are named with the input filenames and an extension of .abs. Header files,
however, do not generate a corresponding .abs file.

Assemble these files with the –a assembler option as follows to create the
absolute listing:

asm500 –a filename .abs

The –e options affect both the interpretation of filenames on the command line
and the names of the output files. They should always precede any filename
on the command line.

Invoking the Absolute Lister

 10-4

The –e options are useful when the linked object file was created from C files
compiled with the debugging option (–g compiler option). When the debugging
option is set, the resulting linked object file contains the name of the source
files used to build it. In this case, the absolute lister will not generate a corre-
sponding .abs file for the C header files. Also, the .abs file corresponding to
a C source file will use the assembly file generated from the C source file rather
than the C source file itself.

For example, suppose the C source file hello.csr is compiled with debugging
set; this generates the assembly file hello.s. hello.csr also includes hello.hsr.
Assuming the executable file created is called hello.out, the following
command will generate the proper .abs file:

abs500 –ea s –c csr –eh hsr hello.out

An .abs file will not be created for hello.hsr (the header file), and hello.abs will
include the assembly file hello.s, not the C source file hello.csr.

Absolute Lister Example

10-5Absolute Lister Description

10.3 Absolute Lister Example

This example uses three source files. module1.asm and module2.asm both
include the file globals.def.

module1.asm

 .text
 .bss array,100
 .bss dflag, 2
 .copy globals.def
 ld #offset, A
 ld dflag, A

module2.asm

 .bss offset, 2
 .copy globals.def
 ld #offset, A
 ld #array, A

globals.def

 .global dflag
 .global array
 .global offset

The following steps create absolute listings for the files module1.asm and
module2.asm:

Step 1: First, assemble module1.asm and module2.asm:

asm500 module1
asm500 module2

This creates two object files called module1.obj and module2.obj.

Absolute Lister Example

 10-6

Step 2: Next, link module1.obj and module2.obj. using the following linker
command file, called bttest.cmd:

/**/
/* File bttest.cmd –– COFF linker command file */
/* for linking TMS320C54x modules */
/*********************************** ************/
–o bttest.out /* Name the output file */
–m bttest.map /* Create an output map */

/**/
/* Specify the Input Files */
/**/
module1.obj
module2.obj

/**/
/* Specify the Memory Configurations */
/**/
MEMORY
{
 PAGE 0: ROM: origin=2000h length=2000h
 PAGE 1: RAM: origin=8000h length=8000h
}

/**/
/* Specify the Output Sections */
/**/
SECTIONS
{
 .data: >RAM
 .text: >ROM
 .bss: >RAM
}

Invoke the linker:

lnk500 bttest.cmd

This creates an executable object file called bttest.out; use this new
file as input for the absolute lister.

Absolute Lister Example

10-7Absolute Lister Description

Step 3: Now, invoke the absolute lister:

abs500 bttest.out

This creates two files called module1.abs and module2.abs:

module1.abs:

 .nolist
array .setsym 08000h
dflag .setsym 08064h
offset .setsym 08066h
.data .setsym 08000h
edata .setsym 08000h
.text .setsym 02000h
etext .setsym 02007h
.bss .setsym 08000h
end .setsym 08068h
 .setsect ”.text”,02000h
 .setsect ”.data”,08000h
 .setsect ”.bss”,08000h
 .list
 .text
 .copy ”module1.asm”

module2.abs:

 .nolist
array .setsym 08000h
dflag .setsym 08064h
offset .setsym 08066h
.data .setsym 08000h
edata .setsym 08000h
.text .setsym 02000h
etext .setsym 02007h
.bss .setsym 08000h
end .setsym 08068h
 .setsect ”.text”,02003h
 .setsect ”.data”,08000h
 .setsect ”.bss”,08066h
 .list
 .text
 .copy ”module2.asm”

Absolute Lister Example

 10-8

These files contain the following information that the assembler
needs when you invoke it in step 4:

� They contain .setsym directives, which equate values to global
symbols. Both files contain global equates for the symbol dflag.
The symbol dflag was defined in the file globals.def, which was
included in module1.asm and module2.asm.

� They contain .setsect directives, which define the absolute
addresses for sections.

� They contain .copy directives, which tell the assembler which
assembly language source file to include.

The .setsym and .setsect directives are not useful in normal assem-
bly; they are useful only for creating absolute listings.

Absolute Lister Example

10-9Absolute Lister Description

Step 4: Finally, assemble the .abs files created by the absolute lister
(remember that you must use the –a option when you invoke the
assembler):

asm500 –a module1.abs
asm500 –a module2.abs

This creates two listing files called module1.lst and module2.lst; no
object code is produced. These listing files are similar to normal list-
ing files; however, the addresses shown are absolute addresses.

The absolute listing files created are module1.lst (see Figure 10–2)
and module2.lst (see Figure 10–3).

Figure 10–2. module1.lst

TMS320C54x COFF Assembler Version x.xx Wed Oct 16 12:00:05 1996
 Copyright (c) 1993–1996 Texas Instruments Incorporated

module1.abs PAGE 1

 15 2000 .text
 16 .copy ”module1.asm”
 A 1 2000 .text
 A 2 8000 .bss array, 100
 A 3 8064 .bss dflag, 2
 A 4 .copy globals.def
 B 1 .global dflag
 B 2 .global array
 B 3 .global offset
 A 5 2000 F020 ld #offset, A
 2001 8066!
 A 6 2002 1064– ld dflag, A

 No Errors, No Warnings

Figure 10–3. module2.lst

TMS320C54x COFF Assembler Version x.xx Wed Oct 16 12:00:17 1996
 Copyright (c) 1993–1996 Texas Instruments Incorporated

module2.abs PAGE 1

 15 2003 .text
 16 .copy ”module2.asm”
 A 1 8066 .bss offset, 2
 A 2 .copy globals.def
 B 1 .global dflag
 B 2 .global array
 B 3 .global offset
 A 3 2003 F020 ld #offset, A
 2004 8066–
 A 4 2005 F020 ld #array, A
 2006 8000!

 No Errors, No Warnings

 10-10

11-1Cross-Reference Lister Description

Cross-Reference Lister Description

The cross-reference lister is a debugging tool. This utility accepts linked object
files as input and produces a cross-reference listing as output. This listing
shows symbols, their definitions, and their references in the linked source files.

Topic Page

11.1 Producing a Cross-Reference Listing 11-2.

11.2 Invoking the Cross-Reference Lister 11-3.

11.3 Cross-Reference Listing Example 11-4.

Chapter 11

Producing a Cross-Reference Listing

 11-2

11.1 Producing a Cross-Reference Listing

Figure 11–1.Cross-Reference Lister Development Flow

ÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

Assembler

Cross-reference
lister

Object

Linked object
file

Cross-reference
listing

Linker

First, invoke the assembler with the –x option.
This option produces a cross-reference table
in the listing file and adds to the object file
cross-reference information. By default, the
assembler cross-references only global sym-
bols. If you use the –s option when invoking
the assembler, it will cross-reference local
variables as well.

Link the object file (.obj) to obtain an execut-
able object file (.out).

Invoke the cross-reference lister. The follow-
ing section provides the command syntax for
invoking the cross-reference lister utility.

Step 1:

Step 2:

Step 3:

file

Assembler
source file

Invoking the Cross-Reference Lister

11-3Cross-Reference Lister Description

11.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct
options and then linked into an executable file. Assemble the assembly lan-
guage files with the –x option. This option creates a cross-reference listing and
adds cross-reference information to the object file. By default, the assembler
cross-references only global symbols, but if assembler is invoked with the –s
option, local symbols are also added. Link the object files to obtain an execut-
able file.

To invoke the cross-reference lister, enter the following:

xref500 [–options] [input filename [output filename]]

xref500 is the command that invokes the cross-reference utility.

options identifies the cross-reference lister options you want to
use. Options are not case sensitive and can appear any-
where on the command line following the command. Pre-
cede each option with a hyphen (–). The cross-reference
lister options are as follows:

–l (lowercase L) specifies the number of lines per
page for the output file. The format of the –l option
is –lnum, where num is a decimal constant. For
example, –l30 sets the number of lines per page in
the output file to 30. The space between the option
and the decimal constant is optional. The default is
60 lines per page.

–q (quiet) suppresses the banner and all progress
information.

input filename is a linked object file. If you omit the input filename, the
utility prompts for a filename.

output filename is the name of the cross-reference listing file. If you omit
the output filename, the default filename will be the input
filename with an .xrf extension.

Cross-Reference Listing Example

 11-4

11.3 Cross-Reference Listing Example

==

Symbol: done

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
x.asm STAT ’000c 380c 18 14

==

Symbol: f1

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
x.asm STAT 3.45e+00 3.45e+00 4

==

Symbol: g3

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
x.asm EDEF ffff ffff 3 9
y.asm EREF 0000 ffff 3 6

==

Symbol: start

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
x.asm STAT ’0000 3800 12 17

==

Symbol: table

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
x.asm STAT –1000 3000 21 13

==

Symbol: y

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
x.asm EREF 0000 380d 7 10
y.asm EDEF ’0000 380d 5 1

==

Cross-Reference Listing Example

11-5Cross-Reference Lister Description

The terms defined below appear in the preceding cross-reference listing:

Symbol Name Name of the symbol listed

Filename Name of the file where the symbol appears

RTYP The symbol’s reference type in this file. The possible refer-
ence types are:

STAT The symbol is defined in this file and is not
declared as global.

EDEF The symbol is defined in this file and is declared
as global.

EREF The symbol is not defined in this file but is refer-
enced as a global.

UNDF The symbol is not defined in this file and is not
declared as global.

AsmVal This hexadecimal number is the value assigned to the
symbol at assembly time. A value may also be preceded
by a character that describes the symbol’s attributes.
Table 11–1 lists these characters and names.

LnkVal This hexadecimal number is the value assigned to the
symbol after linking.

DefLn The statement number where the symbol is defined.

RefLn The line number where the symbol is referenced. If the line
number is followed by an asterisk(*), then that reference
may modify the contents of the object. If the line number
is followed by a letter (such as A, B, or C), the symbol is
referenced in a file specified by a .include directive in the
assembly source. “A” is assigned to the first file specified
by a .include directive; “B” is assigned to the second file,
etc. A blank in this column indicates that the symbol was
never used.

Cross-Reference Listing Example

 11-6

Table 11–1. Symbol Attributes

Character Meaning

’ Symbol defined in a .text section

” Symbol defined in a .data section

+ Symbol defined in a .sect section

– Symbol defined in a .bss or .usect section

= Symbol defined in a .reg section

12-1Hex Conversion Utility Description

Hex Conversion Utility Description

The TMS320C54x assembler and linker create object files that are in common
object file format (COFF). COFF is a binary object file format that encourages
modular programming and provides more powerful and flexible methods for
managing code segments and target system memory.

Most EPROM programmers do not accept COFF object files as input. The hex
conversion utility converts a COFF object file into one of several standard
ASCII hexadecimal formats, suitable for loading into an EPROM programmer.
The utility is also useful in other applications requiring hexadecimal conversion
of a COFF object file (for example, when using debuggers and loaders). This
utility also supports the on-chip boot loader built into the target device, auto-
mating the code creation process for the ’C54x.

The hex conversion utility can produce these output file formats:

� ASCII-Hex, supporting 16-bit addresses
� Extended Tektronix (Tektronix)
� Intel MCS-86 (Intel)
� Motorola Exorciser (Motorola-S), supporting 16-bit, 24–bit, and 32–bit

addresses
� Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

Topic Page

12.1 Hex Conversion Utility Development Flow 12-2.
12.2 Invoking the Hex Conversion Utility 12-3.
12.3 Command File 12-7.
12.4 Understanding Memory Widths 12-9.
12.5 The ROMS Directive 12-16.
12.6 The SECTIONS Directive 12-22.
12.7 Output Filenames 12-24.
12.8 Image Mode and the –fill Option 12-26.
12.9 Building a Table for an On-Chip Boot Loader 12-28.
12.10 Controlling the ROM Device Address 12-34.
12.11 Description of the Object Formats 12-38.
12.12 Hex Conversion Utility Error Messages 12-44.

Chapter 12

Hex Conversion Utility Development Flow

 12-2

12.1 Hex Conversion Utility Development Flow

Figure 12–1 highlights the role of the hex conversion utility in the assembly lan-
guage development process.

Figure 12–1. Hex Conversion Utility Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C54x

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Mnemonic-to-
algebraic
translator

Assembler
source

Invoking the Hex Conversion Utility

12-3Hex Conversion Utility Description

12.2 Invoking the Hex Conversion Utility

There are two basic methods for invoking the hex conversion utility:

� Specify the options and filenames on the command line. The following
example converts the file firmware.out into TI-Tagged format, producing
two output files, firm.lsb and firm.msb.

hex500 –t firmware –o firm.lsb –o firm.msb

� Specify the options and filenames in a command file. You can create
a batch file that stores command line options and filenames for invoking
the hex conversion utility. The following example invokes the utility using
a command file called hexutil.cmd:

hex500 hexutil.cmd

In addition to regular command line information, you can use the hex
conversion utility ROMS and SECTIONS directives in a command file.

To invoke the hex conversion utility, enter:

hex500 [–options] filename

hex500 is the command that invokes the hex conversion utility.

–options supplies additional information that controls the hex conversion
process. You can use options on the command line or in a com-
mand file.

� All options are preceded by a dash and are not case sensi-
tive.

� Several options have an additional parameter that must be
separated from the option by at least one space.

� Options with multicharacter names must be spelled exactly
as shown in this document; no abbreviations are allowed.

� Options are not affected by the order in which they are used.
The exception to this rule is the –q option, which must be
used before any other options.

Table 12–1 lists all the options and directs you to detailed in-
formation. Table 12–2 on page 12-29 lists options that apply only
to the on-chip boot loader. The boot loader is discussed in
Section 12.9.3, Building a Table for an On-Chip Boot Loader, on
page 12-29.

filename names a COFF object file or a command file (for more informa-
tion on command files, see Section 12.3, Command Files, on
page 12-7).

Invoking the Hex Conversion Utility

 12-4

Table 12–1. Options

(a) General options

The general options control the overall operation of the hex conversion utility.

Option Description Page

–byte Number bytes sequentially 12-36

–map filename Generate a map file 12-21

–o filename Specify an output filename 12-24

–q Run quietly (when used, it must appear before
other options)

12-7

(b) Image options

The image options create a continuous image of a range of target memory.

Option Description Page

–fill value Fill holes with value 12-27

–image Specify image mode 12-26

–zero Reset the address origin to zero 12-35

(c) Memory options

The memory options configure the memory widths for your output files.

Option Description Page

–memwidth value Define the system memory word width (default 16
bits)

12-10

–order {LS | MS} Specify the memory word ordering 12-14

–romwidth value Specify the ROM device width (default depends on
format used)

12-11

Invoking the Hex Conversion Utility

12-5Hex Conversion Utility Description

(d) Output formats

The output formats specify the format of the output file.

Option Description Page

–a Select ASCII-Hex 12-39

–i Select Intel 12-40

–m1 Select Motorola–S1 12-41

–m2 or –m Select Motorola–S2 (default) 12-41

–m3 Select Motorola–S3 12-41

–t Select TI-Tagged 12-42

–x Select Tektronix 12-43

(e) Boot-loader options for all ’C54x devices

The boot-loader options for all ’C54x devices control how the hex conversion
utility builds the boot table.

Option Description Page

–boot Convert all sections into bootable form (use instead
of a SECTIONS directive)

12-29

–bootorg PARALLEL Specify the source of the boot loader table as the
parallel port

12-29

–bootorg SERIAL Specify the source of the boot loader table as the
serial port

12-29

–bootorg value Specify the source address of the boot loader table 12-29

–bootpage value Specify the target page number of the boot loader
table

12-29

–e value Specify the entry point for the boot loader table 12-29

Invoking the Hex Conversion Utility

 12-6

(f) Boot-loader options for the ’C54xLP devices only

The boot-loader options for ’C54xLP devices control how the hex conversion
utility builds the boot table.

Option Description Page

–bootorg WARM Specify the source of the boot loader table as the
table currently in memory

12-29

–bootorg COMM Specify the source of the boot loader table as the
communications port

12-29

–spc value Set the serial port control register value 12-29

–spce value Set the serial port control extension register value 12-29

–arr value Set the ABU receive address register value 12-29

–bkr value Set the ABU transmit buffer size register value 12-29

–tcsr value Set the TDM serial port channel select register val-
ue

12-29

–trta value Set the TDM serial port receive/transmit address
register value

12-29

–swwsr value Set the Software Wait State Reg value for PAR-
ALLEL/WARM boot mode

12-29

–bscr value Set the Bank-Switch Control Reg value for PAR-
ALLEL/WARM boot mode

12-29

Command File

12-7Hex Conversion Utility Description

12.3 Command File

A command file is useful if you plan to invoke the utility more than once with
the same input files and options. It is also useful if you want to use the ROMS
and SECTIONS hex conversion utility directives to customize the conversion
process.

Command files are ASCII files that contain one or more of the following:

� Options and filenames. These are specified in a command file in exactly
the same manner as on the command line.

� ROMS directive. The ROMS directive defines the physical memory con-
figuration of your system as a list of address-range parameters. (For more
information about the ROMS directive, see Section 12.5, The ROMS
Directive, on page 12-16.)

� SECTIONS directive. The SECTIONS directive specifies which sections
from the COFF object file should be selected. (For more information about
the SECTIONS directive, see Section 12.6, The SECTIONS Directive, on
page 12-22.) You can also use this directive to identify specific sections
that will be initialized by an on-chip boot loader. (For more information on
the on-chip boot loader, see Section 12.9.3, Building a Table for an
On-Chip Boot Loader, on page 12-29.)

� Comments. You can add comments to your command file by using the /*
and */ delimiters. For example:

/* This is a comment */

To invoke the utility and use the options you defined in a command file, enter:

hex500 command_filename

You can also specify other options and files on the command line. For exam-
ple, you could invoke the utility by using both a command file and command
line options:

hex500 firmware.cmd –map firmware.mxp

The order in which these options and file names appear is not important. The
utility reads all input from the command line and all information from the com-
mand file before starting the conversion process. However, if you are using the
–q option, it must appear as the first option on the command line or in a
command file.

The –q option suppresses the utility’s normal banner and progress informa-
tion.

Command File

 12-8

12.3.1 Examples of Command Files

� Assume that a command file named firmware.cmd contains these lines:

firmware.out /* input file */
–t /* TI–Tagged */
–o firm.lsb /* output file */
–o firm.msb /* output file */

You can invoke the hex conversion utility by entering:

hex500 firmware.cmd

� This example converts a file called appl.out into four hex files in Intel for-
mat. Each output file is one byte wide and 16K bytes long. The .text section
is converted to boot loader format.

appl.out /* input file */
–i /* Intel format */
–map appl.mxp /* map file */

ROMS
{
 ROW1: origin=01000h len=04000h romwidth=8
 files={ appl.u0 appl.u1 }
 ROW2: origin 05000h len=04000h romwidth=8
 files={ app1.u2 appl.u3 }
}

SECTIONS
{ .text: BOOT
 .data, .cinit, .sect1, .vectors, .const:
}

Understanding Memory Widths

12-9Hex Conversion Utility Description

12.4 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by
allowing you to specify memory and ROM widths. In order to use the hex con-
version utility, you must understand how the utility treats word widths. Four
widths are important in the conversion process: target width, data width,
memory width, and ROM width. The terms target word, data word, memory
word and ROM word, refer to a word of such a width.

Figure 12–2 illustrates the three separate and distinct phases of the hex con-
version utility’s process flow.

Figure 12–2. Hex Conversion Utility Process Flow

Raw data in COFF files is repre-
sented in target-width-sized
words. For the ’C54x this is 16
bits. The target width is fixed
and cannot be changed.

Phase III

Phase II

Phase I

Output file(s)

(i.e. Intel, Tektronix, etc..).
according to the specified format

and are written to a file(s)
specified by the –romwidth option
broken up according to the size
The memwidth-sized words are

–memwidth option.
according to size specified by the

representation is divided into words
The data-width-sized internal

by the default data width (16 bits).
truncated to the size specified

The raw data in the COFF file is

COFF input file

Understanding Memory Widths

 12-10

12.4.1 Target Width

Target width is the unit size (in bits) of raw data fields in the COFF file. This
corresponds to the size of an opcode on the target processor. The width is fixed
for each target and cannot be changed. The TMS320C54x targets have a
width of 16 bits.

12.4.2 Data Width

Data width is the logical width (in bits) of the data words stored in a particular
section of a COFF file. Usually, the logical data width is the same as the target
width. The data width is fixed at 16 bits for the TMS320C54x and cannot be
changed.

12.4.3 Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the
memory system is physically the same width as the target processor width: a
16-bit processor has a 16-bit memory architecture. However, some
applications, such as boot loaders, require target words to be broken up into
multiple, consecutive, narrower memory words. Moreover, with certain pro-
cessors like the ’C54x, the memory width can be narrower than the target
width.

The hex conversion utility defaults memory width to the target width (in this
case, 16 bits).

You can change the memory width by:

� Using the –memwidth option. This changes the memory width value for
the entire file.

� Setting the memwidth parameter of the ROMS directive. This changes
the memory width value for the address range specified in the ROMS
directive and overrides the –memwidth option for that range. See Section
12.5, The ROMS Directive, on page 12-16.

For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 16 only in exceptional
situations: for example, when you need to break single target words into con-
secutive, narrower memory words. Situations in which memory words are nar-
rower than target words are most common when you use on-chip boot load-
ers—several of which support booting from narrower memory. For example,
a 16-bit TMS320C54x can be booted from 8-bit memory or an 8-bit serial port,
with each 16-bit value occupying two memory locations (this would be speci-
fied as –memwidth 8).

Understanding Memory Widths

12-11Hex Conversion Utility Description

Figure 12–3 demonstrates how the memory width is related to the data width.

Figure 12–3. Data and Memory Widths

–memwidth 16 (default) –memwidth 8

AABB

AA

BB

1122

Data width = 16 (fixed)

Memory widths (variable)
data width = 16

Source file
.word 0AABBh
.word 01122h

11

22
. . .

. . .

0AABBh
01122h
. . .

Data after
phase I

of hex500

Data after
phase II

of hex500

. . .

12.4.4 ROM Width

ROM width specifies the physical width (in bits) of each ROM device and corre-
sponding output file (usually one byte or eight bits). The ROM width deter-
mines how the hex conversion utility partitions the data into output files. After
the target words are mapped to the memory words, the memory words are bro-
ken into one or more output files. The number of output files is determined by
the following formula, where memory width � ROM width:

number of files = memory width � ROM width

For example, for a memory width of 16, you could specify a ROM width of 16
and get a single output file containing 16-bit words. Or you can use a ROM
width value of 8 to get two files, each containing 8 bits of each word.

Understanding Memory Widths

 12-12

The default ROM width that the hex conversion utility uses depends on the out-
put format:

� All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the
default ROM width for these formats is 8 bits.

� TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16
bits.

Note: The TI-Tagged Format Is 16 Bits Wide

You cannot change the ROM width of the TI-Tagged format. The TI-Tagged
format supports a 16-bit ROM width only.

You can change ROM width (except for TI-Tagged) by:

� Using the –romwidth option. This changes the ROM width value for the
entire COFF file.

� Setting the romwidth parameter of the ROMS directive. This changes the
ROM width value for a specific ROM address range and overrides the
–romwidth option for that range. See Section 12.5, The ROMS Directive,
on page 12-16.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format
(16 bits for TI-Tagged or 8 bits for all others), the utility simply writes multibyte
fields into the file.

Figure 12–4 illustrates how the target, memory, and ROM widths are related
to one another.

Understanding Memory Widths

12-13Hex Conversion Utility Description

Figure 12–4. Data, Memory, and ROM Widths

0AABBh

Data width = 16 (fixed)

Source file
.word 0AABBCDDh
.word 01122344h

. . .

01122h
. . .

Data after
phase I

of hex500

Data after
phase II

of hex500

Data after
phase III

of hex500

–memwidth 16 –memwidth 8

AABB

11

22

AA

BB

1122

Memory widths (variable)

Output files

–romwidth 16

–romwidth 8

–romwidth 8

–o file.wrd AABB1122

–o file.b0

–o file.b1 AA 11

BB 22

–o file.byt BBAA2211

. . .

. . .

. . .

. . .

. . .

. . .

Understanding Memory Widths

 12-14

12.4.5 A Memory Configuration Example

Figure 12–5 shows a typical memory configuration example. This memory
system consists of two 128K � 8-bit ROM devices.

Figure 12–5. ’C54x Memory Configuration Example

Upper 8 bits (data)

Lower 8 bits (data)

System memory width 16 bits

ROM width
8 bits8 bits

ROM width

ROM1
128K x 8

ROM0
128K x 8

’C54x
CPU

Source file
word AABBh

AABBh

AAh BBh

Data width = 16 bits

12.4.6 Specifying Word Order for Output Words

When memory words are narrower than target words (memory width < 16), tar-
get words are split into multiple consecutive memory words. There are two
ways to split a wide word into consecutive memory locations in the same hex
conversion utility output file:

� –order MS specifies big-endian ordering, in which the most significant
part of the wide word occupies the first of the consecutive locations

� –order LS specifies little-endian ordering, in which the the least signifi-
cant part of the wide word occupies the first of the consecutive locations

By default, the utility uses little-endian format because the ’C54x boot loaders
expect the data in this order. Unless you are using your own boot loader pro-
gram, avoid the using –order MS.

Understanding Memory Widths

12-15Hex Conversion Utility Description

Note: When the –order Option Applies

� This option applies only when you use a memory width with a value less
than 16. Otherwise, –order is ignored.

� This option does not affect the way memory words are split into output
files. Think of the files as a set: the set contains a least significant file and
a most significant file, but there is no ordering over the set. When you list
filenames for a set of files, you always list the least significant first, regard-
less of the –order option.

Figure 12–6 demonstrates how –order affects the conversion process. This
figure, and the previous figure, Figure 12–4, explain the condition of the data
in the hex conversion utility output files.

Figure 12–6. Varying the Word Order

Target width = 16 (fixed)

Memory widths (variable)

Source file
.word 0AABBh
.word 01122h

. . .

. . .

.

–memwidth 8
–order LS (default)

AA
BB

11
22

–memwidth 8
–order MS

BB
AA

22
11

0AABBh
01122h

The ROMS Directive

 12-16

12.5 The ROMS Directive

The ROMS directive specifies the physical memory configuration of your sys-
tem as a list of address-range parameters.

Each address range produces one set of files containing the hex conversion
utility output data that corresponds to that address range. Each file can be
used to program one single ROM device.

The ROMS directive is similar to the MEMORY directive of the TMS320C54x
linker: both define the memory map of the target address space. Each line
entry in the ROMS directive defines a specific address range. The general
syntax is:

ROMS
{

[PAGE n:]
romname: [origin =value,] [length =value,] [romwidth =value,]

[memwidth =value,] [fill =value,]
[files ={filename1, filename2, ...}]

romname: [origin =value,] [length =value,] [romwidth =value,]
[memwidth =value,] [fill =value,]
[files ={filename1, filename2, ...}]

...
}

ROMS begins the directive definition.

PAGE identifies a memory space for targets that use program- and
data-address spaces. If your program has been linked nor-
mally, PAGE 0 specifies program memory and PAGE 1 speci-
fies data memory. Each memory range after the PAGE com-
mand belongs to that page until you specify another PAGE. If
you don’t include PAGE, all ranges belong to page 0.

romname identifies a memory range. The name of the memory range
may be one to eight characters in length. The name has no sig-
nificance to the program; it simply identifies the range. (Dupli-
cate memory range names are allowed.)

The ROMS Directive

12-17Hex Conversion Utility Description

origin specifies the starting address of a memory range. It can be
entered as origin, org, or o. The associated value must be a
decimal, octal, or hexadecimal constant. If you omit the origin
value, the origin defaults to 0.

The following table summarizes the notation you can use to
specify a decimal, octal, or hexadecimal constant:

Constant Notation Example

Hexadecimal 0x prefix or h suffix 0x77 or 077h

Octal 0 prefix 077

Decimal No prefix or suffix 77

length specifies the length of a memory range as the physical length
of the ROM device. It can be entered as length, len, or l. The
value must be a decimal, octal, or hexadecimal constant. If you
omit the length value, it defaults to the length of the entire
address space.

romwidth specifies the physical ROM width of the range in bits (see
subsection 12.4.4, ROM Width, on page 12-11). Any value you
specify here overrides the –romwidth option. The value must
be a decimal, octal, or hexadecimal constant that is a power of
2 greater than or equal to 8.

memwidth specifies the memory width of the range in bits (see subsection
12.4.3, Memory Width, on page 12-10). Any value you specify
here overrides the –memwidth option. The value must be a
decimal, octal, or hexadecimal constant that is a power of 2
greater than or equal to 8. When using the memwidth param-
eter, you must also specify the paddr parameter for each sec-
tion in the SECTIONS directive.

fill specifies a fill value to use for the range. In image mode, the hex
conversion utility uses this value to fill any holes between sec-
tions in a range. The value must be a decimal, octal, or hexade-
cimal constant with a width equal to the target width. Any value
you specify here overrides the –fill option. When using fill, you
must also use the –image command line option. See subsec-
tion 12.8.2, Specifying a Fill Value, on page 12-27.

The ROMS Directive

 12-18

files identifies the names of the output files that correspond to this
range. Enclose the list of names in curly braces and order them
from least significant to most significant output file.

The number of file names should equal the number of output
files that the range will generate. To calculate the number of
output files, refer to Section 12.4.4, ROM Width, on page
12-11. The utility warns you if you list too many or too few file-
names.

Unless you are using the –image option, all of the parameters defining a range
are optional; the commas and equals signs are also optional. A range with no
origin or length defines the entire address space. In image mode, an origin and
length are required for all ranges.

Ranges on the same page must not overlap and must be listed in order of
ascending address.

12.5.1 When to Use the ROMS Directive

If you don’t use a ROMS directive, the utility defines a single default range that
includes the entire program address space (PAGE 0). This is equivalent to a
ROMS directive with a single range without origin or length.

Use the ROMS directive when you want to:

� Program large amounts of data into fixed-size ROMs . When you spe-
cify memory ranges corresponding to the length of your ROMs, the utility
automatically breaks the output into blocks that fit into the ROMs.

� Restrict output to certain segments . You can also use the ROMS direc-
tive to restrict the conversion to a certain segment or segments of the tar-
get address space. The utility does not convert the data that falls outside
of the ranges defined by the ROMS directive. Sections can span range
boundaries; the utility splits them at the boundary into multiple ranges. If
a section falls completely outside any of the ranges you define, the utility
does not convert that section and issues no messages or warnings. In this
way, you can exclude sections without listing them by name with the
SECTIONS directive. However, if a section falls partially in a range and
partially in unconfigured memory, the utility issues a warning and converts
only the part within the range.

� Use image mode. When you use the –image option, you must use a
ROMS directive. Each range is filled completely so that each output file in
a range contains data for the whole range. Gaps before, between, or after
sections are filled with the fill value from the ROMS directive, with the value
specified with the –fill option, or with the default value of 0.

The ROMS Directive

12-19Hex Conversion Utility Description

12.5.2 An Example of the ROMS Directive

The ROMS directive in Example 12–1 shows how 16K words of 16-bit memory
could be partitioned for four 8K � 8-bit EPROMs.

Example 12–1. A ROMS Directive Example

infile.out
–image
–memwidth 16

ROMS
{
 EPROM1: org = 04000h, len = 02000h, romwidth = 8
 files = { rom4000.b0, rom4000.b1 }

 EPROM2: org = 06000h, len = 02000h, romwidth = 8,
 fill = 0FFh,
 files = { rom6000.b0, rom6000.b1 }
}

In this example, EPROM1 defines the address range from 4000h through
5FFFh. The range contains the following sections:

This section Has this range

.text 4000h through 487Fh

.data 5B80H through 5FFFh

The rest of the range is filled with 0h (the default fill value). The data from this
range is converted into two output files:

� rom4000.b0 contains bits 0 through 7
� rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 6000h through 7FFFh. The range
contains the following sections:

This section Has this range

.data 6000h through 633Fh

.table 6700h through 7C7Fh

The rest of the range is filled with 0FFh (from the specified fill value). The data
from this range is converted into two output files:

� rom6000.b0 contains bits 0 through 7
� rom6000.b1 contains bits 8 through 15

The ROMS Directive

 12-20

Figure 12–7 shows how the ROMS directive partitions the infile.out file into
four output files.

Figure 12–7. The infile.out File From Example 12–1 Partitioned Into Four Output Files

ÉÉÉÉ
ÉÉÉÉ

rom4000.b0

rom6000.b0

rom4000.b1

rom6000.b1

04000h
(org)

06000h

.text

.data

.table

.text .text

.data .data

.table

.data

0FFh

infile.out

 memwidth = 16 bits

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

0h
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

0h

04000h

0487Fh

05B80h

0633Fh

06700h

07C7Fh

04880h

05B80h

06340h
06700h

07C80h
07FFFh

EPROM1

05FFFh

ÉÉÉÉ
ÉÉÉÉ

0FFh

Output Files:COFF File:

 width = 8 bits len =
2000h (8K)

ÉÉÉÉ
ÉÉÉÉ

.table

.data

0FFh

ÉÉÉÉ
ÉÉÉÉ

0FFh

EPROM2

The ROMS Directive

12-21Hex Conversion Utility Description

12.5.3 Creating a Map File of the ROMS Directive

The map file (specified with the –map option) is advantageous when you use
the ROMS directive with multiple ranges. The map file shows each range, its
parameters, names of associated output files, and a list of contents (section
names and fill values) broken down by address. Following is a segment of the
map file resulting from the example in Example 12–1.

Example 12–2. Map File Output From Example 12–1 Showing Memory Ranges

–––
00004000..00005fff Page=0 Width=8 ”EPROM1”
–––

OUTPUT FILES: rom4000.b0 [b0..b7]
rom4000.b1 [b8..b15]

CONTENTS: 00004000..0000487f .text
00004880..00005b7f FILL = 00000000
00005b80..00005fff .data

–––
00006000..00007fff Page=0 Width=8 ”EPROM2”
–––

OUTPUT FILES: rom6000.b0 [b0..b7]
rom6000.b1 [b8..b15]

CONTENTS: 00006000..0000633f .data
00006340..000066ff FILL = 000000ff
00006700..00007c7f .table
00007c80..00007fff FILL = 000000ff

The SECTIONS Directive

 12-22

12.6 The SECTIONS Directive

You can convert specific sections of the COFF file by name with the
SECTIONS directive. You can also specify those sections you want the utility
to configure for loading from an on-chip boot loader, and those sections that
you want to locate in ROM at a different address than the load address speci-
fied in the linker command file. If you:

� Use a SECTIONS directive, the utility converts only the sections that you
list in the directive and ignores all other sections in the COFF file.

� Don’t use a SECTIONS directive, the utility converts all initialized sections
that fall within the configured memory. The TMS320C54x compiler-gener-
ated initialized sections include: .text, .const, .cinit, and .switch.

Uninitialized sections are never converted, whether or not you specify them
in a SECTIONS directive.

Note: Sections Generated by the C Compiler

The TMS320C54x C compiler automatically generates these sections:

� Initialized sections: .text, .const, .cinit, and .switch.

� Uninitialized sections: .bss, .stack, and .sysmem.

Use the SECTIONS directive in a command file. (For more information about
using a command file, see Section 12.3, Command Files, on page 12-7.) The
general syntax for the SECTIONS directive is:

SECTIONS
{

sname: [paddr =value]
sname: [paddr=boot]
sname: [= boot],
...

}

The SECTIONS Directive

12-23Hex Conversion Utility Description

SECTIONS begins the directive definition.

sname identifies a section in the COFF input file. If you specify a sec-
tion that doesn’t exist, the utility issues a warning and ignores
the name.

paddr specifies the physical ROM address at which this section
should be located. This value overrides the section load
address given by the linker. (See Section 12.10, Controlling the
ROM Device Address, on page 12-34).This value must be a
decimal, octal, or hexadecimal constant; it can also be the word
boot (to indicate a boot table section for use with the on-chip
boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a
paddr parameter.

= boot configures a section for loading by the on-chip boot loader. This
is equivalent to using paddr =boot . Boot sections have a physi-
cal address determined both by the target processor type and
by the various boot-loader-specific command line options.

The commas are optional. For similarity with the linker’s SECTIONS directive,
you can use colons after the section names (in place of the equal sign on the
boot keyboard). For example, the following statements are equivalent:

SECTIONS { .text: .data: boot }

SECTIONS { .text, .data = boot }

In another example, the COFF file contains six initialized sections: .text, .data,
.const, .vectors, .coeff, and .tables. Suppose you want only .text and .data to
be converted. Use a SECTIONS directive to specify this:

SECTIONS { .text, .data }

To configure both of these sections for boot loading, add the boot keyword:

SECTIONS { .text = boot, .data = boot }

Note: Using the –boot Option and the SECTIONS Directive

When you use the SECTIONS directive with the on-chip boot loader, the
–boot option is ignored. You must explicitly specify any boot sections in the
SECTIONS directive. For more information about –boot and other command
line options associated with the on-chip boot loader, see Table 12–2, page
12-29.

Output Filenames

 12-24

12.7 Output Filenames

When the hex conversion utility translates your COFF object file into a data for-
mat, it partitions the data into one or more output files. When multiple files are
formed by splitting data into byte-wide or word-wide files, filenames are always
assigned in order from least to most significant. This is true, regardless of tar-
get or COFF endian ordering, or of any –order option.

12.7.1 Assigning Output Filenames

The hex conversion utility follows this sequence when assigning output file-
names:

1) It looks for the ROMS directive. If a file is associated with a range in the
ROMS directive and you have included a list of files (files = {. . .}) on that
range, the utility takes the filename from the list.

For example, assume that the target data is 16-bit words being converted
to two files, each eight bits wide. To name the output files using the ROMS
directive, you could specify:

ROMS
{
 RANGE1: romwidth=8, files={ xyz.b0 xyz.b1 }
}

The utility creates the output files by writing the least significant bits (LSBs)
to xyz.b0 and the most significant bits (MSBs) to xyz.b1.

2) It looks for the –o options. You can specify names for the output files by
using the –o option. If no filenames are listed in the ROMS directive and
you use –o options, the utility takes the filename from the list of –o options.
The following line has the same effect as the example above using the
ROMS directive:

–o xyz.b0 –o xyz.b1

Note that if both the ROMS directive and –o options are used together, the
ROMS directive overrides the –o options.

Output Filenames

12-25Hex Conversion Utility Description

3) It assigns a default filename. If you specify no filenames or fewer names
than output files, the utility assigns a default filename. A default filename
consists of the base name from the COFF input file plus a 2- to 3-character
extension. The extension has three parts:

a) A format character, based on the output format:

a for ASCII-Hex
i for Intel
t for TI-Tagged
m for Motorola-S
x for Tektronix

b) The range number in the ROMS directive. Ranges are numbered
starting with 0. If there is no ROMS directive, or only one range, the
utility omits this character.

c) The file number in the set of files for the range, starting with 0 for the
least significant file.

For example, assume coff.out is for a 16-bit target processor and you are
creating Intel format output. With no output filenames specified, the utility
produces two output files named coff.i0 and coff.i1.

If you include the following ROMS directive when you invoke the hex con-
version utility, you would have two output files:

ROMS
{

range1: o = 1000h l = 1000h
range2: o = 2000h l = 1000h

}

These Output Files Contain This Data

coff.i01 1000h through 1FFFh

coff.i11 2000h through 2FFFh

Image Mode and the –fill Option

 12-26

12.8 Image Mode and the –fill Option

This section points out the advantages of operating in image mode and
describes how to produce output files with a precise, continuous image of a
target memory range.

12.8.1 The –image Option

With the –image option, the utility generates a memory image by completely
filling all of the mapped ranges specified in the ROMS directive.

A COFF file consists of blocks of memory (sections) with assigned memory
locations. Typically, all sections are not adjacent: there are gaps between sec-
tions in the address space for which there is no data. When such a file is con-
verted without the use of image mode, the hex conversion utility bridges these
gaps by using the address records in the output file to skip ahead to the start
of the next section. In other words, there may be discontinuities in the output
file addresses. Some EPROM programmers do not support address disconti-
nuities.

In image mode, there are no discontinuities. Each output file contains a contin-
uous stream of data that corresponds exactly to an address range in target
memory. Any gaps before, between, or after sections are filled with a fill value
that you supply.

An output file converted by using image mode still has address records
because many of the hexadecimal formats require an address on each line.
However, in image mode, these addresses will always be contiguous.

Note: Defining the Ranges of Target Memory

If you use image mode, you must also use a ROMS directive. In image mode,
each output file corresponds directly to a range of target memory. You must
define the ranges. If you don’t supply the ranges of target memory, the utility
tries to build a memory image of the entire target processor address space—
potentially a huge amount of output data. To prevent this situation, the utility
requires you to explicitly restrict the address space with the ROMS directive.

Image Mode and the –fill Option

12-27Hex Conversion Utility Description

12.8.2 Specifying a Fill Value

The –fill option specifies a value for filling the holes between sections. The fill
value must be specified as an integer constant following the –fill option. The
width of the constant is assumed to be that of a word on the target processor.
For example, for the ’C54x, specifying –fill 0FFh results in a fill pattern of
00FFh. The constant value is not sign extended.

The hex conversion utility uses a default fill value of zero if you don’t specify
a value with the fill option. The –fill option is valid only when you use –image;
otherwise, it is ignored.

12.8.3 Steps to Follow in Image Mode

Step 1: Define the ranges of target memory with a ROMS directive. See Sec-
tion 12.5, The ROMS Directive, on page 12-16 for details.

Step 2: Invoke the hex conversion utility with the –image option. To number
the bytes sequentially, use the –byte option; to reset the address
origin to zero for each output file, use the –zero option. See subsec-
tion 12.10.3, The –byte Option, on page 12-36 for details on the
–byte option, and page 12-35 for details on the –zero option. If you
don’t specify a fill value with the ROMS directive and you want a val-
ue other than the default of zero, use the –fill option.

Building a Table for an On-Chip Boot Loader

 12-28

12.9 Building a Table for an On-Chip Boot Loader

Some DSP devices, such as the ’C54x, have a built-in boot loader that initial-
izes memory with one or more blocks of code or data. The boot loader uses
a special table (a boot table) stored in memory (such as EPROM) or loaded
from a device peripheral (such as a serial or communications port) to initialize
the code or data. The hex conversion utility supports the boot loader by auto-
matically building the boot table.

12.9.1 Description of the Boot Table

The input for a boot loader is the boot table. The boot table contains records
that instruct the on-chip loader to copy blocks of data contained in the table to
specified destination addresses. Some boot tables also contain values for ini-
tializing various processor control registers. The boot table can be stored in
memory or read in through a device peripheral.

The hex conversion utility automatically builds the boot table for the boot
loader. Using the utility, you specify the COFF sections you want the boot
loader to initialize, the table location, and the values for any control registers.
The hex conversion utility identifies the target device type from the COFF file,
builds a complete image of the table according to the format required by that
device, and converts it into hexadecimal in the output files. Then, you can burn
the table into ROM or load it by other means.

The boot loader supports loading from memory that is narrower than the nor-
mal width of memory. For example, you can boot a 16-bit TMS320C54x from
a single 8-bit EPROM by using the –memwidth option to configure the width
of the boot table. The hex conversion utility automatically adjusts the table’s
format and length. See the boot loader example in the TMS320C54x User’s
Guide for an illustration of a boot table.

12.9.2 The Boot Table Format

The boot table format is simple. Typically, there is a header record containing
the width of the table and possibly some values for various control registers.
Each subsequent block has a header containing the size and destination
address of the block followed by data for the block. Multiple blocks can be
entered; a termination block follows the last block. Finally, the table can have
a footer containing more control register values. See the boot loader section
in the TMS320C54x User’s Guide for more information.

Building a Table for an On-Chip Boot Loader

12-29Hex Conversion Utility Description

12.9.3 How to Build the Boot Table

Table 12–2 summarizes the hex conversion utility options available for the
boot loader.

Table 12–2. Boot-Loader Options

(a) Options for all ’C54x devices

Option Description

–boot Convert all sections into bootable form (use instead of a
SECTIONS directive)

–bootorg PARALLEL Specify the source of the boot loader table as the parallel
port

–bootorg SERIAL Specify the source of the boot loader table as the serial port

–bootorg value Specify the source address of the boot loader table

–bootpage value Specify the target page number of the boot loader table

–e value Specify the entry point for the boot loader table

(b) Options for ’C54xLP devices only

Option Description

–bootorg WARM Specify the source of the boot loader table as the table cur-
rently in memory

–bootorg COMM Specify the source of the boot loader table as the commu-
nications port

–spc value Set the serial port control register value

–spce value Set the serial port control extension register value

–arr value Set the ABU receive address register value

–bkr value Set the ABU transmit buffer size register value

–tcsr value Set the TDM serial port channel select register value

–trta value Set the TDM serial port receive/transmit address register
value

–swwsr value Set the software wait state register value for PARALLEL/
WARM boot mode

–bscr value Set the bank-switch control register value for PARALLEL/
WARM boot mode

Building a Table for an On-Chip Boot Loader

 12-30

12.9.3.1 Building the Boot Table

To build the boot table, follow these steps:

Step 1: Link the file . Each block of the boot table data corresponds to an
initialized section in the COFF file. Uninitialized sections are not con-
verted by the hex conversion utility (see Section 12.6, The SEC-
TIONS Directive, on page 12-22).

When you select a section for placement in a boot-loader table, the
hex conversion utility places the section’s load address in the des-
tination address field for the block in the boot table. The section con-
tent is then treated as raw data for that block.

The hex conversion utility does not use the section run address.
When linking, you need not worry about the ROM address or the
construction of the boot table—the hex conversion utility handles
this.

Step 2: Identify the bootable sections . You can use the –boot option to tell
the hex conversion utility to configure all sections for boot loading.
Or, you can use a SECTIONS directive to select specific sections to
be configured (see Section 12.6, The SECTIONS Directive, on page
12-22). Note that if you use a SECTIONS directive, the –boot option
is ignored.

Step 3: Set the ROM address of the boot table . Use the –bootorg option
to set the source address of the complete table. For example, if you
are using the ’C54x and booting from memory location 8000h,
specify –bootorg 8000h. The address field in the the hex conversion
utility output file will then start at 8000h.

If you use –bootorg SERIAL or –bootorg PARALLEL, or if you do not
use the –bootorg option at all, the utility places the table at the origin
of the first memory range in a ROMS directive. If you do not use a
ROMS directive, the table will start at the first section load address.
There is also a –bootpage option for starting the table somewhere
other than page 0.

Step 4: Set boot-loader-specific options. Set such options as entry point
and memory control registers as needed.

Step 5: Describe your system memory configuration . See Section 12.4,
Understanding Memory Widths, on page 12-9 and Section 12.5,
The ROMS Directive, on page 12-16 for details.

Building a Table for an On-Chip Boot Loader

12-31Hex Conversion Utility Description

12.9.3.2 Leaving Room for the Boot Table

The complete boot table is similar to a single section containing all of the
header records and data for the boot loader. The address of this “section” is
the boot table origin. As part of the normal conversion process, the hex conver-
sion utility converts the boot table to hexadecimal format and maps it into the
output files like any other section.

Be sure to leave room in your system memory for the boot table, especially
when you are using the ROMS directive. The boot table cannot overlap other
nonboot sections or unconfigured memory. Usually, this is not a problem; typi-
cally, a portion of memory in your system is reserved for the boot table. Simply
configure this memory as one or more ranges in the ROMS directive, and use
the –bootorg option to specify the starting address.

12.9.4 Booting From a Device Peripheral

You can choose to boot from a serial or parallel port by using the SERIAL or
PARALLEL keyword with the –bootorg option. Your selection of a keyword
depends on the target device and the channel you want to use. For example,
to boot a ’C54x from its serial port, specify –bootorg SERIAL on the command
line or in a command file. To boot a ’C54x from one of its parallel ports, specify
–bootorg PARALLEL.

Note: On-Chip Boot Loader Concerns

� Possible memory conflicts. When you boot from a device peripheral,
the boot table is not actually in memory; it is being received through the
device peripheral. However, as explained in Step 3 on page 12-30, a
memory address is assigned.

If the table conflicts with a nonboot section, put the boot table on a differ-
ent page. Use the ROMS directive to define a range on an unused page
and the –bootpage option to place the boot table on that page. The boot
table will then appear to be at location 0 on the dummy page.

� Why the System Might Require an EPROM Format for a Peripheral
Boot Loader Address. In a typical system, a parent processor boots a
child processor through that child’s peripheral. The boot loader table
itself may occupy space in the memory map of the parent processor. The
EPROM format and ROMS directive address correspond to those used
by the parent processor, not those that are used by the child.

Building a Table for an On-Chip Boot Loader

 12-32

12.9.5 Setting the Entry Point for the Boot Table

After completing the boot load process, program execution starts at the ad-
dress of the first block loaded (the default entry point). By using the –e option
with the hex conversion utility, you can set the entry point to a different address.

For example, if you want your program to start running at address 0123h after
loading, specify –e 0123h on the command line or in a command file. You can
determine the –e address by looking at the map file that the linker generates.

Note: Valid Entry Points

The value must be a constant; the hex conversion utility cannot evaluate
symbolic expressions like c_int00 (default entry point assigned by the
TMS320C54x C compiler).

When you use the –e option, the utility builds a dummy block of length 1 and
data value 0 that loads at the specified address. Your blocks follow this dummy
block. Since the dummy block is loaded first, the dummy value of 0 is over-
written by the subsequent blocks. Then, the boot loader jumps to the –e option
address after the boot load is completed.

When using the –bootorg WARM option, the –e option sets the address of
where the boot table is loaded in ROM.

12.9.6 Using the ’C54x Boot Loader

This subsection explains and gives an example on using the hex conversion
utility with the boot loader for ’C54x devices. The ’C54x boot loader has six dif-
ferent modes. You can select these modes by using the –bootorg and –mem-
width options:

Mode –bootorg Setting –memwidth Setting

8-bit parallel I/O –bootorg PARALLEL –memwidth 8

16-bit parallel I/O –bootorg PARALLEL –memwidth 16

8-bit serial RS232 –bootorg SERIAL –memwidth 8

16-bit serial RS232 –bootorg SERIAL –memwidth 16

8-bit parallel EPROM –bootorg 0x8000 –memwidth 8

16-bit parallel EPROM –bootorg 0x8000 –memwidth 16

8-bit parallel –bootorg WARM –memwidth 8

16-bit parallel –bootorg WARM –memwidth 16

8-bit I/O –bootorg COMM –memwidth 8

Building a Table for an On-Chip Boot Loader

12-33Hex Conversion Utility Description

You should set the –romwidth equal to the –memwidth unless you want to have
multiple output files.

The ’C54x can boot through either the serial or parallel interface with either 8-
or 16-bit data. The format is the same for any combination: the boot table con-
sists of a field containing the destination address, a field containing the length,
and a block containing the data.

You can boot only one section. If you are booting from an 8-bit channel, 16-bit
words are stored in the table with the MSBs first; the hex conversion utility
automatically builds the table in the correct format.

� To boot from a serial port, specify –bootorg SERIAL when invoking the util-
ity. Use either –memwidth 8 or –memwidth 16.

� To load from a parallel I/O port, invoke the utility by specifying –bootorg
PARALLEL. Use either –memwidth 8 or –memwidth 16.

� To boot from external memory (EPROM), specify the source address of
the boot memory by using the –bootorg option. Use either –memwidth 8
or –memwidth 16.

For example, the command file in Figure 12–8 allows you to boot the .text sec-
tion of abc.out from a byte-wide EPROM at location 0x8000.

Figure 12–8. Sample Command File for Booting From a ’C54x EPROM

abc.out /* input file */
–o abc.i /* output file */
–i /* Intel format */
–memwidth 8 /* 8-bit memory */
–romwidth 8 /* outfile is bytes, not words */
–bootorg 0x8000 /* external memory boot */

SECTIONS { .text: BOOT }

Controlling the ROM Device Address

 12-34

12.10 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device
address. The EPROM programmer burns the data into the location specified
by the hex conversion utility output file address field. The hex conversion utility
offers some mechanisms to control the starting address in ROM of each sec-
tion and/or to control the address index used to increment the address field.
However, many EPROM programmers offer direct control of the location in
ROM in which the data is burned.

12.10.1 Controlling the Starting Address

Depending on whether or not you are using the boot loader, the hex conversion
utility output file controlling mechanisms are different.

� Nonboot-loader mode. The address field of the hex conversion utility
output file is controlled by the following mechanisms listed from low to high
priority:

1) The linker command file . By default, the address field of the hex
conversion utility output file is a function of the load address (as given
in the linker command file) and the hex conversion utility parameter
values. The relationship is summarized as follows:

out_file_addr† = load_addr � (data_width � mem_width)

out_file_addr is the address of the output file.

load_addr is the linker-assigned load address.

data_width is specified as 16 bits for the TMS320C54x devices.
See subsection 12.4.2, Data Width, on page 12-10.

mem_width is the memory width of the memory system. You can
specify the memory width by the –memwidth option
or by the memwidth parameter inside the ROMS
directive. See subsection 12.4.3, Memory Width, on
page 12-10.

† If paddr is not specified

The value of data width divided by memory width is a correction factor
for address generation. When data width is larger than memory width,
the correction factor expands the address space. For example, if the
load address is 0�1 and data width divided by memory width is 2, the
output file address field would be 0�2. The data is split into two con-
secutive locations the size of the memory width.

Controlling the ROM Device Address

12-35Hex Conversion Utility Description

2) The paddr parameter of the SECTIONS directive. When the paddr
parameter is specified for a section, the hex conversion utility
bypasses the section load address and places the section in the
address specified by paddr. The relationship between the hex conver-
sion utility output file address field and the paddr parameter can be
summarized as follows:

out_file_addr† = paddr_val + (load_addr – sect_beg_load_addr) � (data_width � mem_width)

out_file_addr is the address of the output file.

paddr_val is the value supplied with the paddr parameter
inside the SECTIONS directive.

sec_beg_load_addr is the section load address assigned by the
linker.

† If paddr is not specified

The value of data width divided by memory width is a correction factor
for address generation. The section beginning load address factor
subtracted from the load address is an offset from the beginning of the
section.

3) The –zero option. When you use the –zero option, the utility resets
the address origin to 0 for each output file. Since each file starts at 0
and counts upward, any address records represent offsets from the
beginning of the file (the address within the ROM) rather than actual
target addresses of the data.

You must use the –zero option in conjunction with the –image option
to force the starting address in each output file to be zero. If you spe-
cify the –zero option without the –image option, the utility issues a
warning and ignores the –zero option.

� Boot-Loader Mode. When the boot loader is used, the hex conversion
utility places the different COFF sections that are in the boot table into con-
secutive memory locations. Each COFF section becomes a boot table
block whose destination address is equal to the linker-assigned section
load address.

The address field of the the hex conversion utility output file is not related to
the section load addresses assigned by the linker. The address fields are
simply offsets to the beginning of the table, multiplied by the correction fac-
tor (data width divided by memory width).

Controlling the ROM Device Address

 12-36

The beginning of the boot table defaults to the linked load address of the
first bootable section in the COFF input file, unless you use one of the fol-
lowing mechanisms, listed here from low to high priority. Higher priority
mechanisms override the values set by low priority options in an overlap-
ping range.

1) The ROM origin specified in the ROMS directive. The hex conver-
sion utility places the boot table at the origin of the first memory range
in a ROMS directive.

2) The –bootorg option. The hex conversion utility places the boot table
at the address specified by the –bootorg option if you select boot load-
ing from memory. Neither –bootorg PARALLEL nor –bootorg SERIAL
affect the address field.

12.10.2 Controlling the Address Increment Index

By default, the hex conversion utility increments the output file address field
according to the memory width value. If memory width equals 16, the address
increments on the basis of how many 16-bit words are present in each line of
the output file.

12.10.3 The –byte Option

Some EPROM programmers may require the output file address field to
contain a byte count rather than a word count. If you use the –byte option, the
output file address increments once for each byte. For example, if the starting
address is 0h, the first line contains eight words, and you use no –byte option,
the second line would start at address 8 (8h). If the starting address is 0h, the
first line contains eight words, and you use the –byte option, the second line
would start at address 16 (010h). The data in both examples are the same;
–byte affects only the calculation of the output file address field, not the actual
target processor address of the converted data.

The –byte option causes the address records in an output file to refer to byte
locations within the file, whether the target processor is byte-addressable or
not.

Controlling the ROM Device Address

12-37Hex Conversion Utility Description

12.10.4 Dealing With Address Holes

When memory width is different from data width, the automatic multiplication
of the load address by the correction factor might create holes at the beginning
of a section or between sections.

For example, assume you want to load a COFF section (.sec1) at address
0x0100 of an 8-bit EPROM. If you specify the load address in the linker com-
mand file at location 0x0100, the hex conversion utility will multiply the address
by 2 (data width divided by memory width = 16/8 = 2), giving the output file a
starting address of 0x0200. Unless you control the starting address of the
EPROM with your EPROM programmer, you could create holes within the
EPROM. The programmer will burn the data starting at location 0x0200
instead of 0x0100. To solve this, you can:

� Use the paddr parameter of the SECTIONS directive. This forces a sec-
tion to start at the specified value. Figure 12–9 shows a command file that
can be used to avoid the hole at the beginning of .sec1.

Figure 12–9. Hex Command File for Avoiding a Hole at the Beginning of a Section

–i
a.out
–map a.map

ROMS
{
 ROM : org = 0x0100, length = 0x200, romwidth = 8,
 memwidth = 8
}

SECTIONS
 {

sec1: paddr = 0x100
}

Note: If your file contains multiple sections, and, if one section uses a paddr parameter,
then all sections must use the paddr parameter.

� Use the –bootorg option or use the ROMS origin parameter (for boot
loading only). As described on page 12-35, when you are boot loading,
the EPROM address of the entire boot-loader table can be controlled by
the –bootorg option or by the ROMS directive origin. For another example,
see Section C.4, Example 3: Generating a Boot Table for Non-LP Core De-
vices, on page C-10.

Description of the Object Formats

 12-38

12.11 Description of the Object Formats

The hex conversion utility converts a COFF object file into one of five object
formats that most EPROM programmers accept as input: ASCII-Hex, Intel
MCS-86, Motorola-S, Extended Tektronix, or TI-Tagged.

Table 12–3 specifies the format options.

� If you use more than one of these options, the last one you list overrides
the others.

� The default format is Tektronix (–x option).

Table 12–3. Options for Specifying Hex Conversion Formats

Option Format
Address

Bits
Default
Width

–a ASCII-Hex 16 8

–i Intel 32 8

–m1 Motorola-S1 16 8

–m2 or –m Motorola-S2 24 8

–m3 Motorola-S3 32 8

–t TI-Tagged 16 16

–x Tektronix 32 8

Address bits determine how many bits of the address information the format
supports. Formats with 16-bit addresses support addresses up to 64K only.
The utility truncates target addresses to fit in the number of available bits.

The default width determines the default output width. You can change the
default width by using the –romwidth option or by using the romwidth param-
eter in the ROMS directive. You cannot change the default width of the TI-
Tagged format, which supports a 16-bit width only.

Description of the Object Formats

12-39Hex Conversion Utility Description

12.11.1 ASCII-Hex Object Format (–a Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists
of a byte stream with bytes separated by spaces. Figure 12–10 illustrates the
ASCII-Hex format.

Figure 12–10. ASCII-Hex Object Format

^B $AXXXX,
 XX XX XX XX XX XX XX XX XX XX. . .^C

Nonprintable
start code

Nonprintable
end codeAddress

Data byte

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an
ASCII ETX character (ctrl-C, 03h). Address records are indicated with
$AXXXX, in which XXXX is a 4-digit (16-bit) hexadecimal address. The
address records are present only in the following situations:

� When discontinuities occur
� When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the –image
and –zero options. The output created is a list of byte values.

Description of the Object Formats

 12-40

12.11.2 Intel MCS-86 Object Format (–i Option)

The Intel object format supports 16-bit addresses and 32-bit extended
addresses. Intel format consists of a 9-character (4-field) prefix—which
defines the start of record, byte count, load address, and record type—the
data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record

01 End-of-file record

04 Extended linear address record

Record type 00, the data record, begins with a colon (:) and is followed by the
byte count, the address of the first data byte, the record type (00), and the
checksum. Note that the address is the least significant 16 bits of a 32-bit
address; this value is concatenated with the value from the most recent 04
(extended linear address) record to create a full 32-bit address. The checksum
is the 2s complement (in binary form) of the preceding bytes in the record,
including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed
by the byte count, the address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16
address bits. It begins with a colon (:), followed by the byte count, a dummy
address of 0h, the record type (04), the most significant 16 bits of the address,
and the checksum. The subsequent address fields in the data records contain
the least significant bits of the address.

Figure 12–11 illustrates the Intel hexadecimal object format.

Figure 12–11. Intel Hex Object Format

:2000000000000100020003000400050006000700080009000A000B000C000D000E000F0068
:2000200010001100120013001400150016001700180019001A001B001C001D001E001F0048
:2000400000000100020003000400050006000700080009000A000B000C000D000E000F0028
:2000600010001100120013001400150016001700180019001A001B001C001D001E001F0008
:00000001FF

Start
character

Byte
count

Checksum

Data
records

Record
type

Address
Most significant 16 bits

Extended linear
address record

End-of-file
record

Description of the Object Formats

12-41Hex Conversion Utility Description

12.11.3 Motorola Exorciser Object Format (–m1, –m2, –m3 Options)

The Motorola S1, S2, and S3 formats support 16-bit, 24–bit, and 32–bit
addresses, respectively. The formats consist of a start-of-file (header) record,
data records, and an end-of-file (termination) record. Each record is made up
of five fields: record type, byte count, address, data, and checksum. The
record types are:

Record Type Description

S0 Header record

S1 Code/data record for 16–bit addresses (S1 format)

S2 Code/data record for 24–bit addresses (S2 format)

S3 Code/data record for 32–bit addresses (S3 format)

S7 Termination record for 32–bit addresses (S3 format)

S8 Termination record for 24–bit addresses (S2 format)

S9 Termination record for 16–bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and
byte count itself.

The checksum is the least significant byte of the 1s complement of the sum
of the values represented by the pairs of characters making up the byte count,
address, and the code/data fields.

Figure 12–12 illustrates the Motorola-S object format.

Figure 12–12. Motorola-S Format

S1130000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC
S1130010FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED
S1130020FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDC
S1130030FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCC
S1130040FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBC
S9030000FC

Byte
Count

Checksum

Data
Records

Address

Header
Record

Termination
Record

S00B00004441544120492F4FF3

Type

Description of the Object Formats

 12-42

12.11.4 Texas Instruments SDSMAC Object Format (–t Option)

The TI-Tagged object format supports 16-bit addresses. It consists of a start-
of-file record, data records, and end-of-file record. Each of the data records is
made up of a series of small fields and is signified by a tag character. The sig-
nificant tag characters are:

Tag Character Description

K followed by the program identifier

7 followed by a checksum

8 followed by a dummy checksum (ignored)

9 followed by a 16-bit load address

B followed by a data word (four characters)

F identifies the end of a data record

* followed by a data byte (two characters)

Figure 12–13 illustrates the tag characters and fields in TI-Tagged object for-
mat.

Figure 12–13. TI-Tagged Object Format

K000COFFTOTI90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EF3DF
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EE37F
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F245F
:

Tag charactersProgram
identifier

Load
address

Data
words Checksum

Data
records

End-of-file
record

Start-of-file
record

If any data fields appear before the first address, the first field is assigned
address 0000h. Address fields may be expressed for any data byte, but none
is required. The checksum field, which is preceded by the tag character 7, is
a 2s complement of the sum of the 8-bit ASCII values of characters, beginning
with the first tag character and ending with the checksum tag character (7 or
8). The end-of-file record is a colon (:).

Description of the Object Formats

12-43Hex Conversion Utility Description

12.11.5 Extended Tektronix Object Format (–x Option)

The Tektronix object format supports 32-bit addresses and has two types of
records:

data record contains the header field, the load address, and the
object code.

termination record signifies the end of a module.

The header field in the data record contains the following information:

Item

Number of
ASCII

Characters Description

% 1 Data type is Tektronix format

Block length 2 Number of characters in the record, minus the %

Block type 1 6 = data record
8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the
record except the % and the checksum itself.

The load address in the data record specifies where the object code will be
located. The first digit specifies the address length; this is always 8. The
remaining characters of the data record contain the object code, two charac-
ters per byte.

Figure 12–14 illustrates the Tektronix object format.

Figure 12–14. Extended Tektronix Object Format

%15621810000000202020202020

Block length
15h = 21

Checksum: 21h = 1+5+6+8+1+0+0+0+0+0+0+0+
2+0+2+0+2+0+2+0+2+0+2+0

Load address: 10000000h

Header
character

Block type: 6
(data)

Object code: 6 bytes

Length of
load address

Hex Conversion Utility Error Messages

 12-44

12.12 Hex Conversion Utility Error Messages

section mapped to reserved memory message

Description A section or a boot-loader table is mapped into a reserved
memory area listed in the processor memory map.

Action Correct the section or boot-loader address. Refer to the
TMS320C54x User’s Guide for valid memory locations.

sections overlapping

Description Two or more COFF section load addresses overlap or a boot
table address overlaps another section.

Action This problem may be caused by an incorrect translation from
load address to hex output file address that is performed by the
hex conversion utility when memory width is less than data
width. See Section 12.4, Understanding Memory Widths, on
page 12-9 and Section 12.10, Controlling the ROM Device Ad-
dress, on page 12-34.

unconfigured memory error

Description This error could have one of two causes:

� The COFF file contains a section whose load address falls
outside the memory range defined in the ROMS directive.

� The boot-loader table address is not within the memory
range defined by the ROMS directive.

Action Correct the ROM range as defined by the ROMS directive to
cover the memory range as needed, or modify the section load
address or boot-loader table address. Remember that if the
ROMS directive is not used, the memory range defaults to the
entire processor address space. For this reason, removing the
ROMS directive could also be a workaround.

13-1

Mnemonic-to-Algebraic Translator Description

The TMS320C54x mnemonic-to-algebraic translator utility converts assembly
code written in the mnemonic instruction set to code written in the algebraic
instruction set.

Topic Page

13.1 Translator Overview 13-2.

13.2 Translator Development Flow 13-3.

13.3 Invoking the Translator 13-4.

13.4 Translation Modes 13-5.

13.5 How the Translator Works With Macros 13-8.

Chapter 13

Translator Overview

 13-2

13.1 Translator Overview

The TMS320C54x mnemonic-to-algebraic translator utility converts mnemon-
ic assembly instructions into algebraic assembly instructions. Mnemonic
instructions usually consist of a keyword and operands. Algebraic instructions
usually consist of operands and operators. Algebraic instructions resemble
higher-level programming language instructions.

The translator requires error-free code. When the translator encounters unrec-
ognized instructions or macro invocations, it prints a message to standard out-
put and does not translate the line of code.

The translator accepts assembly code source files containing mnemonic
instructions and produces assembly code source files containing algebraic
instructions. The input file can have no extension or an extension of asm. The
output file will have the same name as the input file with an extension of cnv.

13.1.1 What the Translator Does

The translator accomplishes the following:

� Replaces a mnemonic with an algebraic representation of what the
instruction does as defined by the language specifications. The algebraic
representation might consist of more than one line of code.

� Reformats mnemonic instruction operands into algebraic syntax as de-
scribed in the language specifications. This reformatting includes the fol-
lowing:

� Data memory address (dma) accesses are prefixed with a @ symbol.

� The mnemonic indirect shorthand * is replaced with *AR0.

� When necessary, constants are prefixed with a # symbol.

� Algebraic expressions that are used as a single operand and have
more than one term are enclosed in parentheses.

13.1.2 What the Translator Does Not Do

The translator has the following limitations:

� The translator cannot convert macro definitions. It ignores them. Optional-
ly, the translator replaces macro invocations with the expanded macro, re-
placing the formal parameters with the actual arguments used at invoca-
tion.

� The translator attempts to translate any macro that has the same name
as a mnemonic instruction. Insure that macro names are different from
mnemonic instructions.

Translator Development Flow

13-3Mnemonic-to-Algebraic Translator Description

13.2 Translator Development Flow

Figure 8–1 shows the translator’s role in the assembly language development
process. The assembler accepts mnemonic or algebraic syntax.

Figure 13–1. Translator Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C54x

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Mnemonic-to-
algebraic
translator

Assembler
source

Invoking the Translator

 13-4

13.3 Invoking the Translator

To invoke the translator, enter:

mnem2alg [option] inputfile

mnem2alg is the command that invokes the translator.

option specifies the translator mode (see Section 13.4, Translation
Modes, on page 13-5). The options are:

–t Literal mode, which is the default if no option is specified

–e Expansion mode

inputfile names the assembly source file you want to translate. If you
do not specify an extension, asm is assumed.

Translation Modes

13-5Mnemonic-to-Algebraic Translator Description

13.4 Translation Modes

The translator runs in one of the following modes:

Literal Keeps the original mnemonic instruction, commented out, fol-
lowed by the translated instruction

Expansion Expands and preprocesses macro invocations and replaces
substitution symbols

13.4.1 Literal Mode (–t Option)

When running in the default literal mode (–t option), the translator translates
instructions without any preprocessing. The translator does not process mac-
ros, nor does it expand substitution symbols. When the translator does not rec-
ognize a macro invocation or instruction, it prints a message to standard output
and does not translate the code. The translator creates a file with the same
name as the assembler source file and an extension of cnv.

Figure 13–2. Literal Mode Process

menm2alg filename.asmCommand:

Translator

Converted file: filename.cnv

Translation:

13.4.2 About Symbol Names in Literal Mode

In literal mode, the translator treats symbol names defined by .asg as labels
and not as the value they represent. In the following example, the source code
is translated as shown, with sym treated as a data memory address:

Example 13–1. Treatment of Symbol Names in Literal Mode
(a) Source code:

sym .asg *AR2
LD sym,B

(b) Converted code:

sym .asg *AR2
B = @sym

Translation Modes

 13-6

13.4.3 Expansion Mode (–e Option)

Expansion mode is invoked using the –e option. In expansion mode, the trans-
lator preprocesses macros and substitution symbols and then translates
instructions. The translator invokes the assembler with a switch that prepro-
cesses the input to expand macros and insert substitution symbols. The as-
sembler creates a file with an exp extension. The exp file is passed back to the
translator for processing. The translator creates a file with the same name as
the assembler source file and an extension of cnv.

Since the translator invokes the assembler in expansion mode, you must in-
clude the assembler executable in your path. The assembler executable ver-
sion must be 1.11 or above. If the assembler encounters errors during prepro-
cessing, the translator aborts and no output is produced.

Figure 13–3. Expansion Mode Process
menm2alg –e filename.asmCommand:

Translator

Converted file: filename.cnv

Translation:

Assembly with switch: Assembler

filename.expIntermediate file:

The following example demonstrates how expansion mode works. In the inter-
mediate file, the macro invocation is commented out and the expanded macro
is inserted in its place, with the actual arguments substituted in. Although the
macro definition was not translated, the resulting cnv file can be assembled
by the algebraic assembler to produce output. The assembler does not pro-
cess macro definitions (for the same reasons the translator does not translate
definitions). The exp intermediate file that the assembler produces is deleted
after the translation is complete.

Translation Modes

13-7Mnemonic-to-Algebraic Translator Description

Example 13–2. Expansion Mode

(a) Source code

file.asm

.asg *AR0,sym

mymac .macro parm1,parm2
LD parm1,parm2
ADD sym,5,parm2,B
.endm

mymac sym,A

(b) Intermediate code

file.exp – after preprocessing
 before translation

.asg *AR0,sym

mymac .macro parm1,parm2
LD parm1,parm2
ADD sym,5,parm2,B
.endm

; mymac sym,A
LD *AR0,A
ADD *AR0,5,A,B

(c) Converted code

file.cnv – after translation

sym .asg *AR0

mymac .macro parm1,parm2
LD parm1,parm2
ADD sym,5,parm2,B
.endm

; mymac sym,A
A = *AR0
B = A + *AR0 << 5

How the Translator Works With Macros

 13-8

13.5 How the Translator Works With Macros

This section describes how the translator works with macros. The following
subjects are discussed:

� Directives in macros
� Macro local variables
� Defining labels when invoking a macro

13.5.1 Directives in Macros

When macro invocations are expanded, directives in macro definitions are not
copied to the intermediate file. Instead, the macro is inlined, and the code is
no longer in a macro environment. The following source code preprocesses
to the intermediate code as shown:

Example 13–3. Directives in Macros

(a) Source code

mymac .macro parm1
.var temp
.eval parm1, temp
.word temp
.endm

mymac 5

(b) Intermediate code

mymac .macro parm1
.var temp
.eval parm1,temp
.word temp
.endm

; mymac 5
.word 5

How the Translator Works With Macros

13-9Mnemonic-to-Algebraic Translator Description

13.5.2 Macro Local Variables

When macro local variables are encountered, they are changed so that re-
peated calls to the macro do not generate identical labels. The following
source code preprocesses to the intermediate code as shown:

Example 13–4. Macro Local Variables

(a) Source code

mymac .macro parm1
lab? .word parm1

.endm

mymac 4
mymac 40
mymac 400

(b) Intermediate code

mymac .macro parm1
lab? .word parm1

.endm

; mymac 4
lab01 .word 4
; mymac 40
lab02 .word 40
; mymac 400
lab03 .word 400

The local label name is appended with nn, where nn is the number of the macro
invocation. Insure that there are no other labels that could be identical to a gen-
erated macro local label.

How the Translator Works With Macros

 13-10

13.5.3 Defining Labels When Invoking A Macro

If there is a label associated with a macro invocation, that label is not used after
expansion and translation. This is because the label is commented out with the
macro invocation. The following source code preprocesses to the intermediate
code as shown:

Figure 13–4. Defining Labels

(a) Source code:

mymac .macro
.word F403
.endm

LABEL mymac

(b) Intermediate code:

mymac .macro
.word F403
.endm

;LABEL mymac
.word F403

LABEL is not defined when the code is assembled. Insure that label definitions
do not appear on the same line as the macro invocations. Rewrite the source
code in the example above as follows:

Figure 13–5. Rewritten Source Code

mymac .macro
.word F403
.endm

LABEL
mymac

 Running Title—Attribute Reference

A-1 Chapter Title—Attribute Reference

Appendix A

Common Object File Format

The compiler, assembler, and linker create object files in common object file
format (COFF). COFF is an implementation of an object file format of the same
name that was developed by AT&T for use on UNIX-based systems. This for-
mat is used because it encourages modular programming and provides more
powerful and flexible methods for managing code segments and target system
memory.

Sections are a basic COFF concept. Chapter 2, Introduction to Common Ob-
ject File Format, discusses COFF sections in detail. If you understand section
operation, you will be able to use the assembly language tools more efficiently.

This appendix contains technical details about COFF object file structure.
Much of this information pertains to the symbolic debugging information that
is produced by the C compiler. The purpose of this appendix is to provide sup-
plementary information about the internal format of COFF object files.

Topic Page

A.1 COFF File Structure A-2.

A.2 File Header Structure A-5.

A.3 Optional File Header Format A-6.

A.4 Section Header Structure A-7.

A.5 Structuring Relocation Information A-10.

A.6 Line-Number Table Structure A-12.

A.7 Symbol Table Structure and Content A-14.

Appendix A

COFF File Structure

A-2

A.1 COFF File Structure

The elements of a COFF object file describe the file’s sections and symbolic
debugging information. These elements are:

� A file header
� Optional header information
� A table of section headers
� Raw data for each initialized section
� Relocation information for each initialized section
� Line-number entries for each initialized section
� A symbol table
� A string table

A.1.1 Overall Object File Structure

The assembler and linker produce object files with the same COFF structure;
however, a program that is linked for the final time does not usually contain
relocation entries. Figure A–1 illustrates the overall object file structure.

Figure A–1. COFF File Structure

file header

optional file header

section 1 header

section n header

section 1
raw data

section n
raw data

section 1
relocation information

section n
relocation information

section 1
line numbers

section n
line numbers

symbol table

string table

section headers

raw data
(executable code
and initialized data)

relocation
information

line-number
entries

 COFF File Structure

A-3 Common Object File Format

A.1.2 Typical Object File Structure

Figure A–2 shows a typical example of a COFF object file that contains the
three default sections, .text, .data, and .bss, and a named section (referred to
as <named>). By default, the tools place sections into the object file in the
following order: .text, .data, initialized named sections, .bss, and uninitialized
named sections. Although uninitialized sections have section headers, notice
that they have no raw data, relocation information, or line-number entries. This
is because the .bss and .usect directives simply reserve space for uninitialized
data; uninitialized sections contain no actual code.

Figure A–2. COFF Object File

file header

.text
section header

.data
section header

.bss
section header

<named> section
section header

.text
raw data

.data
raw data

<named> section
raw data

.text
relocation information

.data
relocation information

<named> section
relocation information

.text
line numbers

.data
line numbers

<named> section
line numbers

symbol table

string table

section headers

raw data

relocation
information

line-number
entries

COFF File Structure

A-4

A.1.3 Impact of Switching Operating Systems

The ’C54x COFF files are recognized by all operating system versions of the
development tools. When you switch from one operating system to another,
only the file header information in the COFF files needs to be byte swapped.
The raw data in the COFF files does not need any changes.

The ’C54x development tools can detect the difference in the file headers and
automatically compensate for it. This is true if using only ’C54x development
tools.

To tell the difference between COFF files, you can look at the magic number
in the optional file header. Bytes 0 and 1 contain the magic number. For the
SunOS� or HP-UX� operating systems, the magic number is 108h. For the
DOS operating system, the magic number is 801h.

 File Header Structure

A-5 Common Object File Format

A.2 File Header Structure
The file header contains 22 bytes of information that describe the general
format of an object file. Table A–1 shows the structure of the COFF file header.

Table A–1. File Header Contents

Byte
Number Type Description

0–1 Unsigned short integer Version id; indicates version of COFF file
structure

2–3 Unsigned short integer Number of section headers

4–7 Long integer Time and date stamp; indicates when the file
was created

8–11 Long integer File pointer; contains the symbol table’s
starting address

12–15 Long integer Number of entries in the symbol table

16–17 Unsigned short integer Number of bytes in the optional header. This
field is either 0 or 28; if it is 0, then there is no
optional file header

18–19 Unsigned short integer Flags (see Table A–2)

20–21 Unsigned short integer Target id; magic number indicates the file
can be executed in a TMS320C54x system

Table A–2 lists the flags that can appear in bytes 18 and 19 of the file header.
Any number and combination of these flags can be set at the same time (for
example, if bytes 18 and 19 are set to 0003h, F_RELFLG and F_EXEC are
both set.)

Table A–2. File Header Flags (Bytes 18 and 19)

Mnemonic Flag Description

F_RELFLG 0001h Relocation information was stripped from the file.

F_EXEC 0002h The file is relocatable (it contains no unresolved
external references).

F_LNNO 0004h Line numbers were stripped from the file.

F_LSYMS 0010h Local symbols were stripped from the file.

F_LENDIAN 0100h The file has the byte ordering used by ’C54x
devices (16 bits per word, least significant byte first)

F_SYMMERGE 1000h Duplicate symbols were removed.

Optional File Header Format

A-6

A.3 Optional File Header Format

The linker creates the optional file header and uses it to perform relocation at
download time. Partially linked files do not contain optional file headers.
Table A–3 illustrates the optional file header format.

Table A–3. Optional File Header Contents

Byte
Number Type Description

0–1 Short integer Magic number (for SunOS or HP-UX it is
108h; for DOS it is 801h)

2–3 Short integer Version stamp

4–7 Long integer Size (in words) of executable code

8–11 Long integer Size (in words) of initialized words

12–15 Long integer Size (in words) of uninitialized data

16–19 Long integer Entry point

20–23 Long integer Beginning address of executable code

24–27 Long integer Beginning address of initialized data

 Section Header Structure

A-7 Common Object File Format

A.4 Section Header Structure

COFF object files contain a table of section headers that define where each
section begins in the object file. Each section has its own section header. The
COFF1 and COFF2 file types contain different section header information.
Table A–4 shows the section header contents for COFF1 files. Table A–5
shows the section header contents for COFF2 files.

Table A–4. Section Header Contents for COFF1 Files

Byte Type Description

0–7 Character 8-character section name, padded with nulls

8–11 Long integer Section’s physical address

12–15 Long integer Section’s virtual address

16–19 Long integer Section size in words

20–23 Long integer File pointer to raw data

24–27 Long integer File pointer to relocation entries

28–31 Long integer File pointer to line-number entries

32–33 Unsigned short integer Number of relocation entries

34–35 Unsigned short integer Number of line-number entries

36–37 Unsigned short integer Flags (see Table A–6)

38 Character Reserved

39 Character Memory page number

Table A–5. Section Header Contents for COFF2 Files

Byte Type Description

0–7 Character 8-character section name, padded with nulls

8–11 Long integer Section’s physical address

12–15 Long integer Section’s virtual address

16–19 Long integer Section size in words

20–23 Long integer File pointer to raw data

24–27 Long integer File pointer to relocation entries

28–31 Long integer File pointer to line-number entries

32–35 Unsigned long Number of relocation entries

36–39 Unsigned long Number of line-number entries

40–43 Unsigned long Flags (see Table A–6)

44–45 Short Reserved

46–47 Character Memory page number

Section Header Structure

A-8

Table A–6 lists the flags that can appear in the section header. The flags can
be combined. For example, if the flag’s word is set to 024h, both
STYP_GROUP and STYP_TEXT are set.

Table A–6. Section Header Flags

Mnemonic Flag Description

STYP_REG 0000h Regular section (allocated, relocated, loaded)

STYP_DSECT 0001h Dummy section (relocated, not allocated, not loaded)

STYP_NOLOAD 0002h Noload section (allocated, relocated, not loaded)

STYP_GROUP 0004h Grouped section (formed from several input sections)

STYP_PAD 0008h Padding section (loaded, not allocated, not relocated)

STYP_COPY 0010h Copy section (relocated, loaded, but not allocated; relo-
cation and line-number entries are processed normally)

STYP_TEXT 0020h Section that contains executable code

STYP_DATA 0040h Section that contains initialized data

STYP_BSS 0080h Section that contains uninitialized data

STYP_ALIGN 0700h Section that is aligned on a page boundary

Note: The term loaded means that the raw data for this section appears in the object file.

The flags are in:

Bytes For This COFF Format

36 and 37 COFF1

40 to 43 COFF2

 Section Header Structure

A-9 Common Object File Format

Figure A–3 illustrates how the pointers in a section header would point to the
elements in an object file that are associated with the .text section.

Figure A–3. Section Header Pointers for the .text Section

.text

.text
Section
Header

.text
raw data

.text
relocation information

.text
line-number entries

• • •
0–7 8–11 12–15 16–19 20–23 24–27 28–31 32–33 34–35 36–37 38 39

As Figure A–2 on page A-3 shows, uninitialized sections (created with the
.bss and .usect directives) vary from this format. Although uninitialized
sections have section headers, they have no raw data, relocation information,
or line-number information. They occupy no actual space in the object file.
Therefore, the number of relocation entries, the number of line-number en-
tries, and the file pointers are 0 for an uninitialized section. The header of an
uninitialized section simply tells the linker how much space for variables it
should reserve in the memory map.

Structuring Relocation Information

A-10

A.5 Structuring Relocation Information

A COFF object file has one relocation entry for each relocatable reference.
The assembler automatically generates relocation entries. The linker reads
the relocation entries as it reads each input section and performs relocation.
The relocation entries determine how references within each input section are
treated.

COFF file relocation information entries use the 12-byte format shown in
Table A–7.

Table A–7. Relocation Entry Contents

Byte
Number Type Description

0–3 Long integer Virtual address of the reference

4–7 Unsigned long integer Symbol table index

8–9 Unsigned short integer For COFF1 files: Reserved

For COFF2 files: Additional byte used for
extended address calculations

10–11 Unsigned short integer Relocation type (see Table A–8)

The virtual address is the symbol’s address in the current section before relo-
cation; it specifies where a relocation must occur. (This is the address of the
field in the object code that must be patched.)

Following is an example of code that generates a relocation entry:

0002 .global X
0003 0000 FF80 B X

0001 0000!

In this example, the virtual address of the relocatable field is 0001.

The symbol table index is the index of the referenced symbol. In the
preceding example, this field would contain the index of X in the symbol table.
The amount of the relocation is the difference between the symbol’s current
address in the section and its assembly-time address. The relocatable field
must be relocated by the same amount as the referenced symbol. In the
example, X has a value of 0 before relocation. Suppose X is relocated to
address 2000h. This is the relocation amount (2000h – 0 = 2000h), so the
relocation field at address 1 is patched by adding 2000h to it.

You can determine a symbol’s relocated address if you know which section it
is defined in. For example, if X is defined in .data and .data is relocated by
2000h, X is relocated by 2000h.

 Structuring Relocation Information

A-11 Common Object File Format

If the symbol table index in a relocation entry is –1 (0FFFFh), this is called an
internal relocation. In this case, the relocation amount is simply the amount by
which the current section is being relocated.

The relocation type specifies the size of the field to be patched and describes
how to calculate the patched value. The type field depends on the addressing
mode that was used to generate the relocatable reference. In the preceding
example, the actual address of the referenced symbol (X) will be placed in a
16-bit field in the object code. This is a 16-bit direct relocation, so the relocation
type is R_RELWORD. Table A–8 lists the relocation types.

Table A–8. Relocation Types (Bytes 8 and 9)

Mnemonic Flag Relocation Type

R_ABS 0000h No relocation

R_RELBYTE 000Fh 8-bit direct reference to symbol’s address

R_REL13 002Ah 13-bit direct reference

R_RELWORD 0010h 16-bit direct reference to symbol’s address

R_PARTLS7 0028h 7 LSBs of an address

R_PARTMS9 0029h 9 MSBs of an address

Line-Number Table Structure

A-12

A.6 Line-Number Table Structure

The object file contains a table of line-number entries that are useful for
symbolic debugging. When the C compiler produces several lines of assembly
language code, it creates a line-number entry that maps these lines back to
the original line of C source code that generated them. Each single line-
number entry contains 6 bytes of information. Table A–9 shows the format of
a line-number entry.

Table A–9. Line-Number Entry Format

Byte
Number Type Description

0–3 Long integer This entry may have one of two values:

1) If it is the first entry in a block of line-number entries,
it points to a symbol entry in the symbol table.

2) If it is not the first entry in a block, it is the physical ad-
dress of the line indicated by bytes 4–5.

4–5 Unsigned
short integer

This entry may have one of two values:

1) If this field is 0, this is the first line of a function entry.

2) If this field is not 0, this is the line number of a line in
C source code.

Figure A–4 shows how line-number entries are grouped into blocks.

Figure A–4. Line-Number Blocks

Symbol Index 1

physical address

physical address

Symbol Index n

physical address

physical address

0

line number

line number

0

line number

line number

As Figure A–4 shows, each entry is divided as follows:

� For the first line of a function, bytes 0–3 point to the name of a symbol or
a function in the symbol table, and bytes 4–5 contain a 0, which indicates
the beginning of a block.

 Line-Number Table Structure

A-13 Common Object File Format

� For the remaining lines in a function, bytes 0–3 show the physical address
(the number of words created by a line of C source) and bytes 4–5 show
the address of the original C source, relative to its appearance in the C
source program.

The line-number entry table can contain many of these blocks.

Figure A–5 illustrates line-number entries for a function named XYZ. As
shown, the function name is entered as a symbol in the symbol table. The first
portion on XYZ’s block of line-number entries points to the function name in
the symbol table. Assume that the original function in the C source contained
three lines of code. The first line of code produces 4 words of assembly lan-
guage code, the second line produces 3 words, and the third line produces 10
words.

Figure A–5. Line-Number Entries

0

1

2

3

0

4

7

XYZ

•

•

line-number
entries

symbol table

(Note that the symbol table entry for XYZ has a field that points back to the
beginning of the line-number block.)

Because line numbers are not often needed, the linker provides an option (–s)
that strips line-number information from the object file; this provides a more
compact object module.

Symbol Table Structure and Content

A-14

A.7 Symbol Table Structure and Content

The order of symbols in the symbol table is very important; they appear in the
sequence shown in Figure A–6.

Figure A–6. Symbol Table Contents

filename 1

function 1

local symbols
for function 1

function 2

local symbols for
function 2

filename 2

function 1

local symbols
for function 1

static variables

defined global symbols

undefined global symbols

Static variables refer to symbols defined in C that have storage class static out-
side any function. If you have several modules that use symbols with the same
name, making them static confines the scope of each symbol to the module
that defines it (this eliminates multiple-definition conflicts).

 Symbol Table Structure and Content

A-15 Common Object File Format

The entry for each symbol in the symbol table contains the symbol’s:

� Name (or a pointer into the string table)
� Type
� Value
� Section it was defined in
� Storage class
� Basic type (integer, character, etc.)
� Derived type (array, structure, etc.)
� Dimensions
� Line number of the source code that defined the symbol

Section names are also defined in the symbol table.

All symbol entries, regardless of class and type, have the same format in the
symbol table. Each symbol table entry contains the 18 bytes of information
listed in Table A–10. Each symbol may also have an 18-byte auxiliary entry;
the special symbols listed in Table A–11 on page A-16 always have an auxiliary
entry. Some symbols may not have all the characteristics listed above; if a par-
ticular field is not set, it is set to null.

Table A–10. Symbol Table Entry Contents

Byte
Number Type Description

0–7 Character This field contains one of the following:

1) An 8-character symbol name, padded with nulls

2) A pointer into the string table if the symbol name
is longer than 8 characters

8–11 Long integer Symbol value; storage class dependent

12–13 Short integer Section number of the symbol

14–15 Unsigned short
integer

Basic and derived type specification

16 Character Storage class of the symbol

17 Character Number of auxiliary entries (always 0 or 1)

Symbol Table Structure and Content

A-16

A.7.1 Special Symbols

The symbol table contains some special symbols that are generated by the
compiler, assembler, and linker. Each special symbol contains ordinary
symbol table information as well as an auxiliary entry. Table A–11 lists these
symbols.

Table A–11. Special Symbols in the Symbol Table

Symbol Description

.file File name

.text Address of the .text section

.data Address of the .data section

.bss Address of the .bss section

.bb Address of the beginning of a block

.eb Address of the end of a block

.bf Address of the beginning of a function

.ef Address of the end of a function

.target Pointer to a structure or union that is returned by a function

.nfake Dummy tag name for a structure, union, or enumeration

.eos End of a structure, union, or enumeration

etext Next available address after the end of the .text output section

edata Next available address after the end of the .data output section

end Next available address after the end of the .bss output section

Several of these symbols appear in pairs:

� .bb/.eb indicate the beginning and end of a block.

� .bf/.ef indicate the beginning and end of a function.

� nfake/.eos name and define the limits of structures, unions, and enumera-
tions that were not named. The .eos symbol is also paired with named
structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the compiler
assigns it a name so that it can be entered into the symbol table. These names
are of the form nfake, where n is an integer. The compiler begins numbering
these symbol names at 0.

 Symbol Table Structure and Content

A-17 Common Object File Format

A.7.1.1 Symbols and Blocks

In C, a block is a compound statement that begins and ends with braces. A
block always contains symbols. The symbol definitions for any particular block
are grouped together in the symbol table and are delineated by the .bb/.eb
special symbols. Blocks can be nested in C, and their symbol table entries can
be nested correspondingly. Figure A–7 shows how block symbols are grouped
in the symbol table.

Figure A–7. Symbols for Blocks

.bb

symbols for
block 1

.eb

.bb

symbols for
block 2

.eb

Symbol Table

Block 1:

Block 2:

A.7.1.2 Symbols and Functions

The symbol definitions for a function appear in the symbol table as a group,
delineated by .bf/.ef special symbols. The symbol table entry for the function
name precedes the .bf special symbol. Figure A–8 shows the format of symbol
table entries for a function.

Figure A–8. Symbols for Functions

function name

.bf

symbols for
the function

.ef

If a function returns a structure or union, a symbol table entry for the special
symbol .target will appear between the entries for the function name and the
.bf special symbol.

Symbol Table Structure and Content

A-18

A.7.2 Symbol Name Format

The first eight bytes of a symbol table entry (bytes 0–7) indicate a symbol’s
name:

� If the symbol name is eight characters or less, this field has type character.
The name is padded with nulls (if necessary) and stored in bytes 0–7.

� If the symbol name is greater than 8 characters, this field is treated as two
long integers. The entire symbol name is stored in the string table. Bytes
0–3 contain 0, and bytes 4–7 are an offset into the string table.

A.7.3 String Table Structure

Symbol names that are longer than eight characters are stored in the string
table. The field in the symbol table entry that would normally contain the sym-
bol’s name contains, instead, a pointer to the symbol’s name in the string table.
Names are stored contiguously in the string table, delimited by a null byte. The
first four bytes of the string table contain the size of the string table in bytes;
thus, offsets into the string table are greater than or equal to four.

Figure A–9 is a string table that contains two symbol names, Adaptive-Filter
and Fourier-Transform. The index in the string table is 4 for Adaptive-Filter and
20 for Fourier-Transform.

Figure A–9. String Table

‘A’ ‘d’ ‘a’ ‘p’

‘t’ ‘i’ ‘v’ ‘e’

‘-’ ‘F’ ‘i’ ‘l’

‘t’ ‘e’ ‘r’ ‘\0’

‘F’ ‘o’ ‘u’ ‘r’

‘i’ ‘e’ ‘r’ ‘-’

‘T’ ‘r’ ‘a’ ‘n’

‘s’ ‘f’ ‘o’ ‘r’

‘m’ ‘\0’

38

 Symbol Table Structure and Content

A-19 Common Object File Format

A.7.4 Storage Classes

Byte 16 of the symbol table entry indicates the storage class of the symbol.
Storage classes refer to the method in which the C compiler accesses a
symbol. Table A–12 lists valid storage classes.

Table A–12. Symbol Storage Classes

Mnemonic Value Storage Class Mnemonic Value Storage Class

C_NULL 0 No storage class C_UNTAG 12 Union tag

C_AUTO 1 Automatic variable C_TPDEF 13 Type definition

C_EXT 2 External symbol C_USTATIC 14 Uninitialized static

C_STAT 3 Static C_ENTAG 15 Enumeration tag

C_REG 4 Register variable C_MOE 16 Member of an enumeration

C_EXTDEF 5 External definition C_REGPARM 17 Register parameter

C_LABEL 6 Label C_FIELD 18 Bit field

C_ULABEL 7 Undefined label C_BLOCK 100 Beginning or end of a block;
used only for the .bb and .eb
special symbols

C_MOS 8 Member of a structure C_FCN 101 Beginning or end of a func-
tion; used only for the .bf and
.ef special symbols

C_ARG 9 Function argument C_EOS 102 End of structure; used only
for the .eos special symbol

C_STRTAG 10 Structure tag C_FILE 103 Filename; used only for the
.file special symbol

C_MOU 11 Member of a union C_LINE 104 Used only by utility programs

Some special symbols are restricted to certain storage classes. Table A–13
lists these symbols and their storage classes.

Symbol Table Structure and Content

A-20

Table A–13. Special Symbols and Their Storage Classes

Special
Symbol

Restricted to This
Storage Class

Special
Symbol

Restricted to This
Storage Class

.file C_FILE .eos C_EOS

.bb C_BLOCK .text C_STAT

.eb C_BLOCK .data C_STAT

.bf C_FCN .bss C_STAT

.ef C_FCN

A.7.5 Symbol Values

Bytes 8–11 of a symbol table entry indicate a symbol’s value. A symbol’s value
depends on the symbol’s storage class; Table A–14 summarizes the storage
classes and related values.

Table A–14. Symbol Values and Storage Classes

Storage Class Value Description Storage Class Value Description

C_AUTO Stack offset in bits C_UNTAG 0

C_EXT Relocatable address C_TPDEF 0

C_STAT Relocatable address C_ENTAG 0

C_REG Register number C_MOE Enumeration value

C_LABEL Relocatable address C_REGPARM Register number

C_MOS Offset in bits C_FIELD Bit displacement

C_ARG Stack offset in bits C_BLOCK Relocatable address

C_STRTAG 0 C_FCN Relocatable address

C_MOU Offset in bits C_FILE 0

If a symbol’s storage class is C_FILE, the symbol’s value is a pointer to the next
.file symbol. Thus, the .file symbols form a one-way linked list in the symbol
table. When there are no more .file symbols, the final .file symbol points back
to the first .file symbol in the symbol table.

The value of a relocatable symbol is its virtual address. When the linker
relocates a section, the value of a relocatable symbol changes accordingly.

 Symbol Table Structure and Content

A-21 Common Object File Format

A.7.6 Section Number

Bytes 12–13 of a symbol table entry contain a number that indicates which
section the symbol was defined in. Table A–15 lists these numbers and the
sections they indicate.

Table A–15. Section Numbers

Mnemonic
Section
Number Description

N_DEBUG –2 Special symbolic debugging symbol

N_ABS –1 Absolute symbol

N_UNDEF 0 Undefined external symbol

N_SCNUM 1 .text section (typical)

N_SCNUM 2 .data section (typical)

N_SCNUM 3 .bss section (typical)

N_SCNUM 4–32,767 Section number of a named section, in the order in
which the named sections are encountered

If there were no .text, .data, or .bss sections, the numbering of named sections
would begin with 1.

If a symbol has a section number of 0, –1, or –2, it is not defined in a section.
A section number of –2 indicates a symbolic debugging symbol, which
includes structure, union, and enumeration tag names; type definitions; and
the filename. A section number of –1 indicates that the symbol has a value but
is not relocatable. A section number of 0 indicates a relocatable external
symbol that is not defined in the current file.

A.7.7 Type Entry

Bytes 14–15 of the symbol table entry define the symbol’s type. Each symbol
has one basic type and one to six derived types.

Following is the format for this 16-bit type entry:

Derived
Type

6

Derived
Type

5

Derived
Type

4

Derived
Type

3

Derived
Type

2

Derived
Type

1

Basic
Type

2 2 2 2 2 2 4
Size
(in bits):

Bits 0–3 of the type field indicate the basic type. Table A–16 lists valid basic
types.

Symbol Table Structure and Content

A-22

Table A–16. Basic Types

Mnemonic Value Type

T_NULL 0 Type not assigned

T_CHAR 2 Character

T_SHORT 3 Short integer

T_INT 4 Integer

T_LONG 5 Long integer

T_FLOAT 6 Floating point

T_DOUBLE 7 Double word

T_STRUCT 8 Structure

T_UNION 9 Union

T_ENUM 10 Enumeration

T_MOE 11 Member of an enumeration

T_UCHAR 12 Unsigned character

T_USHORT 13 Unsigned short integer

Bits 4–15 of the type field are arranged as six 2-bit fields that can indicate one
to six derived types. Table A–17 lists the possible derived types.

Table A–17. Derived Types

Mnemonic Value Type

DT_NON 0 No derived type

DT_PTR 1 Pointer

DT_FCN 2 Function

DT_ARY 3 Array

An example of a symbol with several derived types would be a symbol with a
type entry of 00000000110100112. This entry indicates that the symbol is an
array of pointers to short integers.

 Symbol Table Structure and Content

A-23 Common Object File Format

A.7.8 Auxiliary Entries

Each symbol table entry may have one or no auxiliary entry. An auxiliary sym-
bol table entry contains the same number of bytes as a symbol table entry (18),
but the format of an auxiliary entry depends on the symbol’s type and storage
class. Table A–18 summarizes these relationships.

Table A–18. Auxiliary Symbol Table Entries Format

Type Entry

Name
Storage
Class

Derived
Type 1

Basic
Type Auxiliary Entry Format

.file C_FILE DT_NON T_NULL Filename (see Table A–19)

.text, .data, .bss C_STAT DT_NON T_NULL Section (see Table A–20)

tagname C_STRTAG
C_UNTAG
C_ENTAG

DT_NON T_NULL Tag name (see Table A–21)

.eos C_EOS DT_NON T_NULL End of structure (see Table A–22)

fcname C_EXT
C_STAT

DT_FCN (See note 1) Function (see Table A–23)

arrname (See note 2) DT_ARY (See note 1) Array (see Table A–24)

.bb, .eb C_BLOCK DT_NON T_VOID Beginning and end of a block (see
Table A–25 and Table A–26)

.bf, .ef C_FCN DT_NON T_VOID Beginning and end of a function (see
Table A–25 and Table A–26)

Name related to a
structure, union, or
enumeration

(See note 2) DT_PTR
DT_ARR
DT_NON

T_STRUCT
T_UNION
T_ENUM

Name related to a structure, union, or
enumeration (see Table A–27)

Notes: 1) Any type except T_MOE
2) C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF

In Table A–18, tagname refers to any symbol name (including the special
symbol nfake). Fcname and arrname refer to any symbol name.

A symbol that satisfies more than one condition in Table A–18 should have a
union format in its auxiliary entry. A symbol that satisfies none of these condi-
tions should not have an auxiliary entry.

Symbol Table Structure and Content

A-24

A.7.8.1 Filenames

Each of the auxiliary table entries for a filename contains a 14-character file-
name in bytes 0–13. Bytes 14–17 are unused.

Table A–19. Filename Format for Auxiliary Table Entries

Byte
 Number Type Description

0–13 Character File name

14–17 — Unused

A.7.8.2 Sections

Table A–20 illustrates the format of auxiliary table entries.

Table A–20. Section Format for Auxiliary Table Entries

Byte
 Number Type Description

0–3 Long integer Section length

4–6 Unsigned short integer Number of relocation entries

7–8 Unsigned short integer Number of line-number entries

9–17 — Not used (zero filled)

A.7.8.3 Tag Names

Table A–21 illustrates the format of auxiliary table entries for tag names.

Table A–21. Tag Name Format for Auxiliary Table Entries

Byte
 Number Type Description

0–5 — Unused (zero filled)

6–7 Unsigned short integer Size of structure, union, or enumeration

8–11 — Unused (zero filled)

12–15 Long integer Index of next entry beyond this function

16–17 — Unused (zero filled)

 Symbol Table Structure and Content

A-25 Common Object File Format

A.7.8.4 End of Structure

Table A–22 illustrates the format of auxiliary table entries for ends of
structures.

Table A–22. End-of-Structure Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–5 — Unused (zero filled)

6–7 Unsigned short integer Size of structure, union, or enumeration

8–17 — Unused (zero filled)

A.7.8.5 Functions

Table A–23 illustrates the format of auxiliary table entries for functions.

Table A–23. Function Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–7 Long integer Size of function (in bits)

8–11 Long integer File pointer to line number

12–15 Long integer Index of next entry beyond this function

16–17 — Unused (zero filled)

Symbol Table Structure and Content

A-26

A.7.8.6 Arrays

Table A–24 illustrates the format of auxiliary table entries for arrays.

Table A–24. Array Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–5 Unsigned short integer line-number declaration

6–7 Unsigned short integer Size of array

8–9 Unsigned short integer First dimension

10–11 Unsigned short integer Second dimension

12–13 Unsigned short integer Third dimension

14–15 Unsigned short integer Fourth dimension

16–17 — Unused (zero filled)

A.7.8.7 End of Blocks and Functions

Table A–25 illustrates the format of auxiliary table entries for the ends of blocks
and functions.

Table A–25. End-of-Blocks/Functions Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 — Unused (zero filled)

4–5 Unsigned short integer C source line number

6–17 — Unused (zero filled)

 Symbol Table Structure and Content

A-27 Common Object File Format

A.7.8.8 Beginning of Blocks and Functions

Table A–26 illustrates the format of auxiliary table entries for the beginnings
of blocks and functions.

Table A–26. Beginning-of-Blocks/Functions Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 — Unused (zero filled)

4–5 Unsigned short integer C source line number

6–11 — Unused (zero filled)

12–15 Long integer Index of next entry past this block

16–17 — Unused (zero filled)

A.7.8.9 Names Related to Structures, Unions, and Enumerations

Table A–27 illustrates the format of auxiliary table entries for the names of
structures, unions, and enumerations.

Table A–27. Structure, Union, and Enumeration Names Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–5 — Unused (zero filled)

6–7 Unsigned short integer Size of the structure, union, or enu-
meration

8–17 — Unused (zero filled)

16–17 — Unused (zero filled)

A-28

 Running Title—Attribute Reference

B-1 Chapter Title—Attribute Reference

Appendix A

Symbolic Debugging Directives

The TMS320C54x assembler supports several directives that the
TMS320C54x C compiler uses for symbolic debugging:

� The .sym directive defines a global variable, a local variable, or a function.
Several parameters allow you to associate various debugging information
with the symbol or function.

� The .stag , .etag , and .utag directives define structures, enumerations,
and unions, respectively. The .member directive specifies a member of a
structure, enumeration, or union. The .eos directive ends a structure, enu-
meration, or union definition.

� The .func and .endfunc directives specify the beginning and ending lines
of a C function.

� The .block and .endblock directives specify the bounds of C blocks.

� The .file directive defines a symbol in the symbol table that identifies the
current source file name.

� The .line directive identifies the line number of a C source statement.

These symbolic debugging directives are not usually listed in the assembly
language file that the compiler creates. If you want them to be listed, invoke
the compiler shell with the –g option, as shown below:

cl500 –g input file

This appendix contains an alphabetical directory of the symbolic debugging
directives. With the exception of the .file directive, each directive contains an
example of C source and the resulting assembly language code.

Appendix B

.block/.endblock Define a Block

B-2

Syntax
.block beginning line number
.endblock ending line number

Description The .block and .endblock directives specify the beginning and end of a C
block. The line numbers are optional; they specify the location in the source
file where the block is defined.

Block definitions can be nested. The assembler will detect improper block
nesting.

Example Following is an example of C source that defines a block, and the resulting
assembly language code.

C source:

.

.

.
{ /* Beginning of a block */

int a,b;
a = b;

} /* End of a block */
.
.
.

Resulting assembly language code:

.block 6

.sym _a,0,4,1,16

.sym _b,1,4,1,16

.line 5
 LD *SP(1),A ; cycle 3
 STL A,*SP(0) ; cycle 4

.endblock 8

 Supply a File Identifier .file

B-3 Symbolic Debugging Directives

Syntax
.file ” filename”

Description The .file directive allows a debugger to map locations in memory back to lines
in a C source file. The filename is the name of the file that contains the original
C source program. The first 14 characters of the filename are significant.

You can also use the .file directive in assembly code to provide a name in the
file and improve program readability.

Example In the following example, the filename text.c contained the C source that pro-
duced this directive.

.file ”text.c”

.func/.endfunc Define a Function

B-4

Syntax
.func beginning line number
.endfunc ending line number

Description The .func and .endfunc directives specify the beginning and end of a C func-
tion. The line numbers are optional; they specify the location in the source file
where the function is defined. Function definitions cannot be nested.

Example Following is an example of C source that defines a function, and the resulting
assembly language code:

C source:

power(x, n) /* Beginning of a function */
int x,n;
{

int i, p;
p = 1;
for (i = 1; i <= n; ++i)

p = p * x;
return p; /* End of function */

}

 Define a Function .func/.endfunc

B-5 Symbolic Debugging Directives

Resulting assembly language code:

 8 .global _power
 9 .sym _power,_power,36,2,0
 10 .func 3
 11
 12 ;***
 13 ;* FUNCTION DEF: _power *
 14 ;***
 15 0000 _power:
 16 0000 eefd FRAME #–3 ; cycle 1
 17 0001 f495 nop ;* A assigned to _x
 19 .sym _x,8,4,17,16
 20 .sym _n,4,4,9,16
 21 .sym _x,0,4,1,16
 22 .sym _i,1,4,1,16
 23 .sym _p,2,4,1,16
 24 .line 2
 25 0002 8000 STL A,*SP(0) ; cycle 3
 26 .line 4
 27 0003 7602 ST #1,*SP(2) ; cycle 4
 0004 0001
 28 .line 5
 29 0005 7601 ST #1,*SP(1) ; cycle 6
 0006 0001
 30 0007 f7b8 SSBX SXM ; cycle 8
 31 0008 f495 nop
 32 0009 1004 LD *SP(4),A ; cycle 10
 33 000a 0801 SUB *SP(1),A ; cycle 11
 34 000b f843 BC L3,ALT ; cycle 12
 000c 0018’
 35 ; branch occurs ; cycle 17
 36 000d L2:
 37 .line 6
 38 000d 4400 LD *SP(0),16,A ; cycle 1
 39 000e 3102 MPYA *SP(2) ; cycle 2
 40 000f 8102 STL B,*SP(2) ; cycle 3
 41 .line 5
 42 0010 6b01 ADDM #1,*SP(1) ; cycle 4
 0011 0001
 43 0012 f7b8 SSBX SXM ; cycle 6
 44 0013 f495 nop
 45 0014 1004 LD *SP(4),A ; cycle 8
 46 0015 0801 SUB *SP(1),A ; cycle 9
 47 0016 f842 BC L2,AGEQ ; cycle 10
 0017 000d’
 48 ; branch occurs ; cycle 15
 49 0018 L3:
 50 .line 7
 51 0018 1002 LD *SP(2),A ; cycle
 52 .line 8
 53 0019 ee03 FRAME #3 ; cycle 1
 54 001a fc00 RET ; cycle 2
 55 ; branch occurs ; cycle 7
 56 .endfunc 10,000000000h,

.line Create a Line Number Entry

B-6

Syntax
.line line number [, address]

Description The .line directive creates a line number entry in the object file. Line number
entries are used in symbolic debugging to associate addresses in the object
code with the lines in the source code that generated them.

The .line directive has two operands:

� The line number indicates the line of the C source that generated a portion
of code. Line numbers are relative to the beginning of the current function.
This is a required parameter.

� The address is an expression that is the address associated with the line
number. This is an optional parameter; if you don’t specify an address, the
assembler will use the current SPC value.

Example The .line directive is followed by the assembly language source statements
that are generated by the indicated line of C source. For example, assume that
the lines of C source below are line 4 and 5 in the original C source; line 5 pro-
duces the assembly language source statements that are shown below.

C source:

for (i = 1; i <= n; ++i)
 p = p * x;

Resulting assembly language code:

 31 .line 5
 32 000a 4403 LD *SP(3),16,A ; cycle 1
 33 000b 3101 MPYA *SP(1) ; cycle 2
 34 000c 8101 STL B,*SP(1) ; cycle 3
 35 .line 4
 36 000d 6b00 ADDM #1,*SP(0) ; cycle 4
 000e 0001
 37 000f f7b8 SSBX SXM ; cycle 6
 38 0010 f495 nop
 39 0011 1002 LD *SP(2),A ; cycle 8
 40 0012 0800 SUB *SP(0),A ; cycle 9
 41 0013 f842 BC L2,AGEQ ; cycle 10
 0014 000a’
 42 ; branch occurs ; cycle 15
 43 0015 L3:
 44 .line 7
 45 0015 ee05 FRAME #5 ; cycle 1
 46 0016 fc00 RET ; cycle 2
 47 ; branch occurs ; cycle 7
 48 .endfunc 9,000000000h,5
 49
 50

 Define a Member .member

B-7 Symbolic Debugging Directives

Syntax
.member name, value [, type, storage class, size, tag, dims]

Description The .member directive defines a member of a structure, union, or enumera-
tion. It is valid only when it appears in a structure, union, or enumeration defini-
tion.

� Name is the name of the member that is put in the symbol table. The first
32 characters of the name are significant.

� Value is the value associated with the member. Any legal expression
(absolute or relocatable) is acceptable.

� Type is the C type of the member. Appendix A, Common Object File For-
mat, contains more information about C types.

� Storage class is the C storage class of the member. Appendix A, Common
Object File Format, contains more information about C storage classes.

� Size is the number of bits of memory required to contain this member.

� Tag is the name of the type (if any) or structure of which this member is a
type. This name must have been previously declared by a .stag, .etag, or
.utag directive.

� Dims may be one to four expressions separated by commas. This allows
up to four dimensions to be specified for the member.

The order of parameters is significant. The name and value are required
parameters. All other parameters may be omitted or empty. (Adjacent commas
indicate an empty entry.) This allows you to skip a parameter and specify a
parameter that occurs later in the list. Operands that are omitted or empty
assume a null value.

Example Following is an example of a C structure definition and the corresponding as-
sembly language statements:

C source:

struct doc {
char title;
char group;
int job_number;

} doc_info;

Resulting assembly language code:

 .stag _doc,64
 .member _title ,0,2,8,16
 .member _group ,16,2,8,16
 .member _job_number ,32,4,8,16
 .eos

.stag/.etag/.utag/.eos Define a Structure

B-8

Syntax
.stag name [, size]

member definitions
.eos
.etag name [, size]

member definitions
.eos
.utag name [, size]

member definitions
.eos

Description The .stag directive begins a structure definition. The .etag directive begins an
enumeration definition. The .utag directive begins a union definition. The .eos
directive ends a structure, enumeration, or union definition.

� Name is the name of the structure, enumeration, or union. The first 32
characters of the name are significant. This is a required parameter.

� Size is the number of bits the structure, enumeration, or union occupies
in memory. This is an optional parameter; if omitted, the size is unspeci-
fied.

The .stag, .etag, or.utag directive should be followed by a number of .member
directives, which define members in the structure. The .member directive is
the only directive that can appear inside a structure, enumeration, or union
definition.

The assembler does not allow nested structures, enumerations, or unions.
The C compiler unwinds nested structures by defining them separately and
then referencing them from the structure they are referenced in.

Example 1 Following is an example of a structure definition.

C source:

struct doc
{

char title;
char group;
int job_number;

} doc_info;

Resulting assembly language code:

.stag _doc,96

.member _title,0,2,8,32

.member _group,32,2,8,32

.member _job_number,64,4,8,32

.eos

 Define a Structure .stag/.etag/.utag/.eos

B-9 Symbolic Debugging Directives

Example 2 Following is an example of a union definition.

C source:

union u_tag {
 int val1;
 float val2;
 char valc;
} valu;

Resulting assembly language code:

 .utag _u_tag,96
 .member _val1,0,2,8,32
 .member _val2,32,4,8,32
 .member _valc,64,4,8,32
 .eos

Example 3 Following is an example of an enumeration definition.

C Source:

{
 enum o_ty { reg_1, reg_2, result } optypes;
}

Resulting assembly language code:

 .etag _o_ty,32
 .member _reg_1,0,11,16,32
 .member _reg_2,1,11,16,32
 .member _result,2,11,16,32
 .eos

.sym Define a Symbol

B-10

Syntax
.sym name, value [, type, storage class, size, tag, dims]

Description The .sym directive specifies symbolic debug information about a global vari-
able, local variable, or a function.

� Name is the name of the variable that is put in the object symbol table. The
first 32 characters of the name are significant.

� Value is the value associated with the variable. Any legal expression
(absolute or relocatable) is acceptable.

� Type is the C type of the variable. Appendix A, Common Object File For-
mat, contains more information about C types.

� Storage class is the C storage class of the variable. Appendix A, Common
Object File Format, contains more information about C storage classes.

� Size is the number of words of memory required to contain this variable.

� Tag is the name of the type (if any) or structure of which this variable is a
type. This name must have been previously declared by a .stag, .etag, or
.utag directive.

� Dims may be up to four expressions separated by commas. This allows
up to four dimensions to be specified for the variable.

The order of parameters is significant. The name and value are required
parameters. All other parameters may be omitted or empty (adjacent commas
indicate an empty entry). This allows you to skip a parameter and specify a
parameter that occurs later in the list. Operands that are omitted or empty
assume a null value.

Example These lines of C source produce the .sym directives shown below:

C source:

struct s { int member1, member2; } str;
int ext;
int array[5][10];
long *ptr;
int strcmp();

main(arg1,arg2)
int arg1;
char *arg2;

{
register r1;

}

 Define a Symbol .sym

B-11 Symbolic Debugging Directives

Resulting assembly language code:

.global _array

.bss _array,50,0,0

.sym _array,_array,244,2,800,,5,10

.global _ptr

.bss _ptr,1,0,0

.sym _ptr,_ptr,21,2,16

.global _str

.bss _str,2,0,1

.sym _str,_str,8,2,32,_s

.global _ext

.bss _ext,1,0,0

.sym _ext,_ext,4,2,16

B-12

 Running Title—Attribute Reference

C-1 Chapter Title—Attribute Reference

Appendix A

Hex Conversion Utility Examples

The flexible hex conversion utility offers many options and capabilities. Once
you understand the proper ways to configure the EPROM system and the
requirements of the EPROM programmer, you will find that converting a file for
a specific application is easy.

Topic Page

C.1 Base Code for the Examples C-2.

C.2 Example 1: Building a Hex Command File
for Two 8-Bit EPROMs C-3.

C.3 Example 2: Avoiding Holes With Multiple Sections C-8.

C.4 Example 3: Generating a Boot Table for Non-LP Core Devices C-10. . .

C.5 Example 4: Generating a Boot Table for LP Core Devices C-17.

Appendix C

Base Code for the Examples

C-2

C.1 Base Code for the Examples

The three major examples in this appendix show how to develop a hex com-
mand file for multiple EPROM memory systems, avoid holes, and generate a
boot table. The examples use the assembly code shown in Example C–1.

Example C–1. Assembly Code for Hex Conversion Utility Examples

**
* Assemble two words into section, ”sec1” *
**

.sect ”sec1”

.word 1234h

.word 5678h

**
* Assemble two words into section, ”sec2” *
**

.sect ”sec2”

.word 0aabbh

.word 0ccddh

.end

 Example 1: Building a Command File for Two 8-Bit EPROMS

C-3 Hex Conversion Utility Examples

C.2 Example 1: Building A Hex Command File for Two 8-Bit EPROMs

Example 1 shows how to build the hex command file you need for converting
a COFF object file for the memory system shown in Figure C–1. In this system,
there are two external 64K � 8-bit EPROMs interfacing with a ’C54x target
processor. Each of the EPROMs contributes 8 bits of a 16-bit word for the tar-
get processor.

Figure C–1. A Two 8-Bit EPROM System

Lower 8 bits

Upper 8 bits

EPROM system memory width 16 bits

ROM width
8 bits8 bits

ROM width

ROM1
64K � 8

ROM0
64K � 8

Width 16 Bits

C54x
CPU

By default, the hex conversion utility uses the linker load address as the base
for generating addresses in the converted output file. However, for this
application, the code will reside at physical EPROM address 0x0010, rather
than the address specified by the linker (0x1400). The circuitry of the target
board handles the translation of this address space. The paddr parameter allo-
cates a section and burns the code at EPROM address 0x0010.

The paddr parameter is specified within the SECTIONS directive (see Section
12.6, The SECTIONS Directive, on page 12-22 for details.). If you use the
paddr parameter to specify a load address for one section included in the con-
version, then you must specify a paddr for each section included in the conver-
sion. When setting the paddr parameter, you must ensure that the specified
addresses do not overlap the linker-assigned load addresses of sections that
follow.

In Example 1, two sections are defined: sec1 and sec2. You can easily add a
paddr parameter for each of these sections from within the SECTIONS direc-
tive. However, the task may become unmanageable for large applications with
many sections, or in cases where section sizes may change often during code
development.

Example 1: Building a Command File for Two 8-Bit EPROMS

C-4

To work around this problem, you can combine the sections at link stage, creat-
ing a single section for conversion. To do this, use the linker command shown
in Example C–2.

Example C–2. A Linker Command File for Two 8-Bit EPROMs

test.obj
–o test.out
–m test.map

MEMORY
{
 PAGE 0 : EXT_PRG ; org = 0x1400 , len = 0xEB80
}

SECTIONS
{
 outsec: { *(sec1)
 *(sec2) } > EXT_PRG PAGE 0
}

The EPROM programmer in this example has the following system require-
ments:

� EPROM system memory width must be 16 bits.

� ROM1 contains the upper 8 bits of a word.

� ROM0 contains the lower 8 bits of a word.

� The hex conversion utility must locate code starting at EPROM address
0x0010.

� Intel format must be used.

� Byte increment must be selected for addresses in the hex conversion
utility output file (memory width is the default).

Use the following options to set up the requirements of the system:

Option Description

–i Create Intel format

–byte Select byte increment for addresses in converted
output file

–memwidth 16 Set EPROM system memory width to 16

–romwidth 8 Set physical ROM width to 8

 Example 1: Building a Command File for Two 8-Bit EPROMS

C-5 Hex Conversion Utility Examples

With the memory width and ROM width values above, the utility will automati-
cally generate two output files. The ratio of memory width to ROM width deter-
mines the number of output files. The ROM0 file contains the lower 8 of the 16
bits of raw data, and the ROM1 file contains the upper 8 bits of the correspond-
ing data.

Example C–3 shows the hex command file with all of the selected options.

Example C–3. A Hex Command File for Two 8-Bit EPROMs

test.out /* COFF object input file */
–map example1.mxp

/*––*/
/* Set parameters for EPROM programmer */
/*––*/

–i /* Select Intel format */
–byte /* Select byte increment for addresses */

/*––*/
/* Set options required to describe EPROM memory system */
/*––*/

–memwidth 16 /* Set EPROM system memory width */
–romwidth 8 /* Set physical width of ROM device */

ROMS
{
 PAGE 0 : EPROM : origin = 0x00, length = 0x10000,
 files = {low8.bit, upp8.bit}
}

SECTIONS
{ outsec: paddr = 0x10 }

Figure C–2 (a) shows the contents of the converted file for ROM0 (low8.bit)
containing the lower 8 bits. Figure C–2 (b) shows the contents of the converted
file for ROM1 (upp8.bit) containing the upper 8 bits of data.

Example 1: Building a Command File for Two 8-Bit EPROMS

C-6

Figure C–2. Data From Output File

(a) low8.bit (Lower Bits)

Data from converted output file

:040010003478BBDDA8
:00000001FF

Corresponding map in EPROM — ROM0 (See Example C–1 on page
C-2)

0x0010

DD

BB

78

34

(b) upp8.bit (Upper Bits)

Data from converted output file

:040010001256AACC0E
:00000001FF

Corresponding map in EPROM — ROM1 (See Example C–1 on page
C-2)

0x0010

CC

AA

56

12

 Example 1: Building a Command File for Two 8-Bit EPROMS

C-7 Hex Conversion Utility Examples

To illustrate precisely how the utility performs the conversion, specify the –map
option. Although not required, the –map option generates useful information
about the output. The resulting map is shown in Example C–4.

Example C–4. Map File Resulting From Hex Command File in Example C–3 on page C-5

**
TMS320C54x COFF/Hex Converter Version x.xx
**
Fri Oct 11 15:10:53 1996

INPUT FILE NAME: <test.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS
 Default data width: 16
 Default memory width: 16
 Default output width: 8

OUTPUT TRANSLATION MAP
–––
00000000..0000ffff Page=0 ROM Width=8 Memory Width=16 ”EPROM”
–––
 OUTPUT FILES: low8.bit [b0..b7]
 upp8.bit [b8..b15]

 CONTENTS: 00000010..00000013 Data Width=2 outsec

Example 2: Avoiding Holes With Multiple Sections

C-8

C.3 Example 2: Avoiding Holes With Multiple Sections

When the memory width is less than the data width, holes may appear at
the beginning of a section or between sections. This is due to multiplication
of the load address by a correction factor. See Section 12.10, Controlling
the ROM Device Address, on page 12-34 for more information.

You must eliminate the holes between converted sections. The sections
can be made contiguous in one of two ways:

� Specify a paddr value for each section listed in a SECTIONS directive.
This forces the hex conversion utility to use that specific address for the
output file address field. You must ensure that the section addresses do
not overlap. Example C–5 (a) shows a linker command file for this method.
The linker should be executed with this command file; then, the hex
conversion utility should be executed with the set of commands shown in
Example C–5 (b).

� Link the sections together into one output section for conversion.
Example C–6 (a) shows a linker command file for this method. The linker
should be executed with this command file; then, the hex conversion utility
should be executed with the set of commands shown in Example C–6 (b).

Example C–5. Method One for Avoiding Holes

(a) Linker command file

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
 PAGE 0: DARAM: org = 0x0080 , length = 0x1370
 EXT: org = 0x1400 , length = 0xEB80
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
 sec1 : load = EXT PAGE 0
 sec2 : load = EXT PAGE 0
}

 Example 2: Avoiding Holes With Multiple Sections

C-9 Hex Conversion Utility Examples

(b) Hex command file

–i
test.out
–map example.mxp

ROMS
{
 PAGE 0: ROM: org = 0x0000, length = 0x800, romwidth = 8, memwidth = 8
}

SECTIONS
{
 sec1: paddr = 0x0000
 sec2: paddr = 0x0004
}

Example C–6. Method Two for Avoiding Holes

(a) Linker command file

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
 PAGE 0: DARAM: org = 0x0080 , length = 0x1370
 EXT: org = 0x1400 , length = 0xEB80
}

SECTIONS
{
 outsec: { *(sec1)
 *(sec2) } > EXT PAGE 0
}

(b) Hex command file

–i
test.out
–map example.mxp

ROMS
{
 PAGE 0: ROM : org = 0x0100, length = 0x0800, romwidth = 8, memwidth = 8,
 files = {examp2_2.hex}
}

SECTIONS
{
 outsec: paddr = 0x100
}

Example 3: Generating a Boot Table for Non-LP Core Devices

C-10

C.4 Example 3: Generating a Boot Table for Non-LP Core Devices

Example 3 shows how to use the linker and the hex conversion utility to build
a boot load table for the ’C54x devices. The assembly code used in this section
is shown in Example C–1 on page C-2.

Note:

This example is for non-LP ’C54x devices only.

For ’C54xLP devices, see Section C.5, Example 4: Generating a Boot Table
for LP Core Devices, on page C-17.

Example C–7. C Code for a ’C54x

 int array[]={1,2,3,4};

 main()
 {
 array[0] = 5;
 }

Figure C–3 shows the EPROM memory system for which the output file will be
generated. In this application, the single ’C54x device is booted from a 128K
� 8-bit EPROM. The requirement of the system is that the boot table must
reside at EPROM memory address 0.

Figure C–3. EPROM System for a ’C54x

8 bits
ROM width

ROM0
 128K � 8

Width 16 bits

’C54x
CPU

8 bits
EPROM system memory width

 Example 3: Generating a Boot Table for Non-LP Core Devices

C-11 Hex Conversion Utility Examples

The on-chip boot loader loads only a single block. This may present a problem
when you are loading C code compiled with the TMS320C54x C compiler. The
TMS320C54x C compiler creates several sections or blocks when it compiles
C source code. Some applications may require that all sections associated
with the program be included in the boot to have a complete executable
program. In this case, the individual sections must be combined into a single
section for boot.

The hex conversion utility does not combine individual sections; therefore, you
must use the linker to group those sections.

The sections that the compiler creates are divided into two categories: initial-
ized sections (sections that contain data or code) and uninitialized sections
(sections that reserve space but contain no actual data). Initialized sections
created by the TMS320C54x C compiler include .text, .cinit, .const, and .data.
Uninitialized sections are ignored by the hex conversion utility and are not
converted.

Most applications require that .text and .cinit sections are included in the boot.
This allows code and information for the C boot routine (c_int00 defined in
boot.asm) to load and run, initializing the C environment and branching to the
main function in the applications code.

The .text and .cinit sections must be linked together as a single section in the
linker command file. The .cinit section contains the initialization data and
tables for all global or static C symbols that were declared with an initial value
(i.e. int x = 5;). Note that the linker handles the .cinit section differently than
the other sections.

When the linker encounters a .cinit section specified as an output section in
the link, it automatically:

� Sets the symbol cinit to point to the start of the included .cinit section
� Appends a single word to the end of the section

This last word contains a zero that is used to mark the end of the initialization
table. However, if .cinit is included as an input section only, the linker sets cinit
to –1, indicating that no initialization tables were loaded. Therefore, the C boot
routine, c_int00, does not attempt to initialize any of the global or static C
symbols.

When linking the .cinit section into an output section other than .cinit, the linker
does not perform the automatic functions listed above. Therefore, these func-
tions must be implemented explicitly within the linker command file.
Example C–8 shows a linker command file that places .text and .cinit into a
single output section named boot_sec.

Example 3: Generating a Boot Table for Non-LP Core Devices

C-12

Example C–8. Linker Command File to Form a Single Boot Section for a Non-LP ’C54x

–c
–l rts.lib
–m boot1.map
–o boot.out

MEMORY
{

PAGE 0 : PROG : origin = 001400h, length = 01000h

PAGE 1 : DATA : origin = 0080h, length = 01000h
}

SECTIONS
{

boot_sec: { *(.text)

/*–––––––––––––––––––––––––––––––––––––*/
/* Set start address for C init table */
/*–––––––––––––––––––––––––––––––––––––*/

 cinit = .;

/*–––––––––––––––––––––––––––––––––––––*/
/* Include all cinit sections */
/*–––––––––––––––––––––––––––––––––––––*/

 *(.cinit)

/*–––––––––––––––––––––––––––––––––––––*/
/* Reserve a single space for the zero */
/* word to mark end of C init */
/*–––––––––––––––––––––––––––––––––––––*/

 .+=1;

 }

fill = 0x0000, /* Make sure fill value is 0 */
load = PROG PAGE 0

.data : {} > DATA PAGE 1

.bss : {} > DATA PAGE 1

.const : {} > DATA PAGE 1

.sysmem : {} > DATA PAGE 1

.stack : {} > DATA PAGE 1
}

Example C–9 shows a portion of the map file generated when the linker is
executed with the command file in Example C–8.

 Example 3: Generating a Boot Table for Non-LP Core Devices

C-13 Hex Conversion Utility Examples

Example C–9. Section Allocation Portion of Map File Resulting From the Command File
in Example C–8

SECTION ALLOCATION MAP

 output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
boot_sec 0 00001400 0000006e

00001400 00000004 boot.obj (.text)
00001404 0000002b rts.lib : boot.obj (.text)
0000142f 00000035 : exit.obj (.text)
00001464 00000006 boot.obj (.cinit)
0000146a 00000003 rts.lib : exit.obj (.cinit)
0000146d 00000001 ––HOLE–– [fill = 0000]

.data 1 00000080 00000000 UNINITIALIZED
00000080 00000000 boot.obj (.data)
00000080 00000000 rts.lib : exit.obj (.data)
00000080 00000000 : boot.obj (.data)

.bss 1 00000080 00000025 UNINITIALIZED
00000080 00000004 boot.obj (.bss)
00000084 00000000 rts.lib : boot.obj (.bss)
00000084 00000021 : exit.obj (.bss)

.const 1 00000080 00000000 UNINITIALIZED

.sysmem 1 00000080 00000000 UNINITIALIZED

.stack 1 000000a5 00000400 UNINITIALIZED
000000a5 00000000 rts.lib : boot.obj (.stack)

GLOBAL SYMBOLS

address name address name
–––––––– –––– –––––––– ––––
00000080 .bss 00000080 edata
00000080 .data 00000080 .data
00000400 __STACK_SIZE 00000080 _array
0000145e _abort 00000080 .bss
00000080 _array 000000a5 end
00001448 _atexit 00000400 __STACK_SIZE
00001404 _c_int00 00001400 _main
0000142f _exit 00001404 _c_int00
00001400 _main 0000142f _exit
00001464 cinit 00001448 _atexit
00000080 edata 0000145e _abort
000000a5 end 00001464 cinit

[12 symbols]

Example 3: Generating a Boot Table for Non-LP Core Devices

C-14

Notice that the linker placed a hole at the end of the section boot_sec with a
fill value of 0, as specified in the command file. Also, the global symbol cinit
coincides with the start of the first .cinit section included in the link. When the
linker is executed with the command file in Example C–8 on page C-12, the
linker issues warnings that the output file contains no .text section and that the
global symbol cinit is being redefined. These warnings may be ignored in this
instance.

Executing the linker with the command file in Example C–8 on page C-12
yields a COFF file that can be used as input to the hex conversion utility to build
the desired boot table.

The hex conversion utility has options that describe the requirements for the
EPROM programmer and options that describe the EPROM memory system.
For Example 3, assume that the EPROM programmer has only one require-
ment: that the hex file be in Intel format.

In the EPROM memory system illustrated in Figure C–3 on page C-10, the
EPROM system memory width is 8 bits, and the physical ROM width is 8 bits.
You must set the following options in the hex command file to reflect the
requirements of the system:

Option Description

–i Create Intel format.

–memwidth 8 Set EPROM system memory width to 8.

–romwidth 8 Set physical ROM width to 8.

Because the application requires the building of a boot table for parallel boot
mode, you must set the following options in the hex command file to reflect the
requirements of the system:

Option Description

–boot Create a boot load table.

–bootorg 0x0000 Place boot table at address 0x0000.

 Example 3: Generating a Boot Table for Non-LP Core Devices

C-15 Hex Conversion Utility Examples

Example C–10. Hex Command File for Converting a COFF File

c54x.out /* Input COFF file */
–i /* Select Intel format */

–map c54x.mxp

–o c54x.hex /* Name the hex output file */

–memwidth 8 /* Set EPROM system memory width */
–romwidth 8 /* Set physical ROM width */

–boot /* Make all sections bootable */
–bootorg 0x0000 /* Place boot table in EPROM */

/* starting at address 0x0000 */

ROMS
{

PAGE 0 : ROM : origin = 0x0000, length = 0x20000
}

In Example 3, memory width and ROM width are the same; therefore, the hex
conversion utility creates a single output file. The number of output files is
determined by the ratio of memwidth to romwidth.

Example C–11 shows the map file boot.map, resulting from executing the
command file in Example C–10, which includes the –map option.

Example 3: Generating a Boot Table for Non-LP Core Devices

C-16

Example C–11. Map File Resulting From the Command File in Example C–10

**
TMS320C54x COFF/Hex Converter Version x.xx
**
Fri Oct 11 15:27:46 1996

INPUT FILE NAME: <c54x.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS
Default data width: 16
Default memory width: 8 (MS––>LS)
Default output width: 8

BOOT LOADER PARAMETERS
Table Address: 0000, PAGE 0

OUTPUT TRANSLATION MAP
––
00000000..0001ffff Page=0 Memory Width=8 ROM Width=8 ”ROM”
––
 OUTPUT FILES: c54x.hex [b0..b7]

 CONTENTS: 00000000..000000f7 BOOT TABLE
 boot_sec : dest=00001400 size=0000007a
width=00000002

The hex conversion utility output file boot.hex, resulting from the command file
in Example C–10, is shown in Example C–12.

Example C–12. Hex Conversion Utility Output File Resulting From the Command File in
Example C–10

:200000001400007976F800800005FC00771800A66BF8001803FF68F80018FFFEF7B8F7BED9
:20002000F4A0F6B7F6B5F6B6F020146DF1000001F84D142BF07314257EF80012F00000010C
:2000400047F800117E9200F80011F00000017EF80011F00000016C89141AF0741400F074CF
:2000600014674A117211008410F80011FA4514444A16EEFF4811F00000868816F495F49527
:2000800010EEFFFFF4E36CE9FFFF143E10F80085F845144B10F80085F4E3F495F073144C0F
:2000A000F7B811F80084F3100020FA4B145BF4954A11F2731465F495E80172110084491198
:2000C00080E10086F3000001E80081F800848A11FC00EEFFE801F074142FEE01FC0000045D
:1800E00000800001000200030004000100840000000100850000000073
:00000001FF

 Example 4: Generating a Boot Table for LP Core Devices

C-17 Hex Conversion Utility Examples

C.5 Example 4: Generating a Boot Table for LP Core Devices

Example 4 shows how to use the linker and the hex conversion utility to build
a boot load table for the ’C54xLP devices. For the ’C54xLP devices, you can
specify multiple sections. It is not necessary, therefore, to group sections at link
time as with the non-lp devices. The assembly code used in this section is
shown in Example C–1 on page C-2.

Note:

This example is for ’C54xLP devices only.

For non-LP ’C54x devices, see Section C.4, Example 3: Generating a Boot
Table for Non-LP Core Devices, on page C-10.

Example C–13. C Code for a ’C54xLP

 int array[]={1,2,3,4};

 main()
 {
 array[0] = 5;
 }

Figure C–4 shows the EPROM memory system for which the output file will be
generated. In this application, the single ’C54xLP device is booted from a 128K
� 8-bit EPROM. The requirements of the system are that the boot table must
reside at EPROM memory address 0.

Figure C–4. EPROM System for a ’C54xLP

8 bits
ROM width

ROM0
 128K � 8

Width 16 bits

’C54xLP
CPU

8 bits
EPROM system memory width

Example 4: Generating a Boot Table for LP Core Devices

C-18

The sections that the compiler creates are divided into two categories: initial-
ized sections (sections that contain data or code) and uninitialized sections
(sections that reserve space but contain no actual data). Initialized sections
created by the TMS320C54x C compiler include .text, .cinit, .const, and .data.
Uninitialized sections are ignored by the hex conversion utility and are not
converted.

Most applications require that .text and .cinit sections are included in the boot.
This allows code and information for the C boot routine (c_int00 defined in
boot.asm) to load and run, initializing the C environment and branching to the
main function in the applications code.

The .cinit section contains the initialization data and tables for all global or
static C symbols that were declared with an initial value (i.e. int x = 5;). Note
that the linker handles the .cinit section differently than the other sections.

When the linker encounters a .cinit section specified as an output section in
the link, it automatically:

� Sets the symbol cinit to point to the start of the included .cinit section
� Appends a single word to the end of the section

This last word contains a zero that is used to mark the end of the initialization
table. However, if .cinit is included as an input section only, the linker sets cinit
to –1, indicating that no initialization tables were loaded. Therefore, the C boot
routine, c_int00, does not attempt to initialize any of the global or static C
symbols.

When linking the .cinit section into an output section other than .cinit, the linker
does not perform the automatic functions listed above. Therefore, these func-
tions must be implemented explicitly within the linker command file.
Example C–14 shows a linker command file for a ’C54xLP device.

 Example 4: Generating a Boot Table for LP Core Devices

C-19 Hex Conversion Utility Examples

Example C–14. Linker Command File for a ’C54xLP

–c
c54xlp.obj
–l rts.lib
–m c54xlp.map
–o c54xlp.out

MEMORY
{

PAGE 0 : PROG : origin = 001400h, length = 01000h

PAGE 1 : DATA : origin = 0080h, length = 01000h
}

SECTIONS
{

.text : {} > PROG PAGE 0

.cinit : {} > PROG PAGE 0

.data : {} > DATA PAGE 1

.bss : {} > DATA PAGE 1

.const : {} > DATA PAGE 1

.sysmem : {} > DATA PAGE 1

.stack : {} > DATA PAGE 1
}

Example C–15 shows the map file generated when the linker is executed with
the command file in Example C–14. Linking with this command file creates a
COFF file you use as input to the hex conversion utility to build the desired boot
table.

Example C–15. Section Allocation Portion of Map File Resulting From the Command File
in Example C–14

OUTPUT FILE NAME: <c54xlp.out>
ENTRY POINT SYMBOL: ”_c_int00” address: 00001404

MEMORY CONFIGURATION

name origin length used attributes fill
–––––––– –––––––– ––––––––– –––––––– –––––––––– ––––––––

PAGE 0: PROG 00001400 000001000 0000007a RWIX

PAGE 1: DATA 00000080 000001000 00000426 RWIX

Example 4: Generating a Boot Table for LP Core Devices

C-20

Example C–15. Section Allocation Portion of Map File Resulting From the Command File
in Example C–14 (Continued)

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
.text 0 00001400 0000006d

00001400 00000004 c54xlp.obj (.text)
00001404 0000002b rts.lib : boot.obj (.text)
0000142f 0000003e : exit.obj (.text)

.cinit 0 0000146d 0000000d
0000146d 00000006 c54xlp.obj (.cinit)
00001473 00000006 rts.lib : exit.obj (.cinit)
00001479 00000001 ––HOLE–– [fill = 0000]

.data 1 00000080 00000000 UNINITIALIZED
00000080 00000000 c54xlp.obj (.data)
00000080 00000000 rts.lib : exit.obj (.data)
00000080 00000000 : boot.obj (.data)

.bss 1 00000080 00000026 UNINITIALIZED
00000080 00000004 c54xlp.obj (.bss)
00000084 00000000 rts.lib : boot.obj (.bss)
00000084 00000022 : exit.obj (.bss)

.const 1 00000080 00000000 UNINITIALIZED

.sysmem 1 00000080 00000000 UNINITIALIZED

.stack 1 000000a6 00000400 UNINITIALIZED
000000a6 00000000 rts.lib : boot.obj (.stack)

GLOBAL SYMBOLS

address name address name
–––––––– –––– –––––––– ––––
00000080 .bss 00000001 __lflags
00000080 .data 00000080 _array
00001400 .text 00000080 .data
0000144b C$$EXIT 00000080 .bss
00000400 __STACK_SIZE 00000080 edata
00000085 __cleanup_ptr 00000085 __cleanup_ptr
00000001 __lflags 000000a6 end
00001467 _abort 00000400 __STACK_SIZE
00000080 _array 00001400 .text
0000144e _atexit 00001400 _main
00001404 _c_int00 00001404 _c_int00
0000142f _exit 0000142f _exit
00001400 _main 0000144b C$$EXIT
0000146d cinit 0000144e _atexit
00000080 edata 00001467 _abort
000000a6 end 0000146d etext
0000146d etext 0000146d cinit
ffffffff pinit ffffffff pinit

[18 symbols]

 Example 4: Generating a Boot Table for LP Core Devices

C-21 Hex Conversion Utility Examples

The hex conversion utility has options that describe the requirements for the
EPROM programmer and options that describe the EPROM memory system.
For Example 4, assume that the EPROM programmer has only one require-
ment: that the hex file be in Intel format.

In the EPROM memory system illustrated in Figure C–4 on page C-17, the
EPROM system memory width is 8 bits and the physical ROM width is 8 bits.
The following options are selected to reflect the requirements of the system:

Option Description

–i Create Intel format.

–memwidth 8 Set EPROM system memory width to 8.

–romwidth 8 Set physical ROM width to 8.

Because the application requires the building of a boot table for parallel boot
mode, the following options must be selected as well:

Option Description

–boot Create a boot load table.

–bootorg 0x0000 Place boot table at address 0x0000.

Example 4: Generating a Boot Table for LP Core Devices

C-22

Example C–16. Hex Command File for Converting a COFF File

c54xlp.out /* Input COFF file */
–i /* Select Intel format */

–map c54xlp.mxp /* Name hex utility map file */

–o c54xlp.hex /* Name the hex output file */

–memwidth 8 /* Set EPROM system memory width */
–romwidth 8 /* Set physical ROM width */

–boot /* Make all sections bootable */
–bootorg 0x0000 /* Place boot table in EPROM */

/* starting at address 0x0000 */

ROMS
{

PAGE 0 : ROM : origin = 0x0000, length = 0x20000
}

In Example 4, memory width and ROM width are the same; therefore, the hex
conversion utility creates a single output file. The number of output files is
determined by the ratio of memwidth to romwidth.

Example C–17 shows the map file c54xlp.mxp, resulting from executing the
command file in Example C–16, which includes the –map option.

 Example 4: Generating a Boot Table for LP Core Devices

C-23 Hex Conversion Utility Examples

Example C–17. Map File Resulting From the Command File in Example C–16

**
TMS320C54x COFF/Hex Converter Version 1.20
**
Sat Sep 21 17:01:13 1996

INPUT FILE NAME: <c54xlp.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS
Default data width: 16
Default memory width: 8 (MS––>LS)
Default output width: 8

BOOT LOADER PARAMETERS
Table Address: 0000, PAGE 0

OUTPUT TRANSLATION MAP
–––
00000000..0001ffff Page=0 Memory Width=8 ROM Width=8 ”ROM”
–––

OUTPUT FILES: c54xlp.hex [b0..b7]

CONTENTS: 00000000..00000109 BOOT TABLE
 .text : dest=00001400 size=0000006d
width=00000002
 .cinit : dest=0000146d size=0000000d
width=00000002

The hex conversion utility output file c54xlp.hex, resulting from the command
file in Example C–16, is shown in Example C–18.

Example C–18. Hex Conversion Utility Output File Resulting From the Command File in
Example C–16

:2000000008AA7FFFF800FFFFFFFF006C0000140076F800800005FC00771800A66BF800189D
:2000200003FF68F80018FFFEF7B8F7BEF4A0F6B7F6B5F6B6F020146DF1000001F84D142B46
:20004000F07314257EF80012F000000147F800117E9200F80011F00000017EF80011F000BA
:2000600000016C89141AF0741400F07414674A117211008410F80011FA4514444A16EEFFA6
:200080004811F00000868816F495F49510EEFFFFF4E36CE9FFFF143E10F80085F845144B40
:2000A00010F80085F4E3F495F073144CF7B811F80084F3100020FA4B145BF4954A11F27334
:2000C0001465F495E80172110084491180E10086F3000001E80081F800848A11FC00EEFF90
:0A00E000E801F074142FEE01FC009B
:2000EA00000C0000146D0004008000010002000300040001008400000001008500000000D0
:00000001FF

C-24

D-1

Appendix A

Error Messages

This appendix lists the assembler and linker error messages in numeric and
alphabetical order. Some messages have error-type numbers associated with
them. These messages are listed first. If an error-type has multiple messages,
the messages are in alphabetical order. The messages without numbers are
listed in alphabetical order.

Most error messages have a Description of the problem and an Action that
suggests possible remedies. Where the error message itself is an adequate
description, you may find only the Action suggested. Where the Action is
obvious from the description (to inspect and correct your code), the Action is
omitted.

When the assembler completes its second pass, it reports any errors that it
encountered during the assembly. It also prints these errors in the listing file
(if one is created); an error is printed following the source line that incurred it.
Most assembler errors are fatal errors. If an error is not fatal or if it is a macro
error, this is noted in the assembler listing file. The assembler issues the follow-
ing types of error messages:

� Fatal
� Nonfatal
� Macro

In the linker messages, the symbol (...) represents the name of an object that
the linker is attempting to interact with when an error occurs. The linker issues
the following types of error messages:

� Syntax and command errors
� Allocation errors
� I/O errors

Appendix D

Error Messages

D-2

E0000

Attempt to nest repeat block
Comma required to separate arguments
Illegal combination of shift operands
Illegal instruction
Illegal repeat block open – check delay slot
Illegal repeat block open – missing ’repeat’
Illegal shift for parallel operation
Left parenthesis expected
Matching right parenthesis is missing
Missing opening brace
Missing right quote of string constant
No matching right parenthesis
Open repeat block at EOF
Right parenthesis expected
Syntax Error
Syntax requires parentheses
Unrecognized character type
Unrecognized special character

Description These are errors about general syntax. The required syntax is
not present.

Action Correct the source per the error message text.

E0001

Section sym is not an initialized section
Section sym is not defined

Description These are errors about invalid symbol names. A symbol is
invalid for the context in which it is used.

Action Correct the source per the error message text.

 Error Messages

D-3 Error Messages

E0002

Invalid directive specification
Invalid mnemonic specification

Description These errors are about invalid mnemonics. The instruction,
macro, or directive specified was not recognized.

Action Check the directive or instruction used.

Invalid instruction for specified processor version

Description The indicated instruction is not allowed for the processor ver-
sion specified with the .version directive.

Action Check the instruction and .version directive.

E0003

Cluttered character operand encountered
Cluttered string constant operand encountered
Cluttered identifier operand encountered
Condition must be EQ, LT, GT, or NEQ
Condition must be srcLT, LEQ, GT, GEQ
Condition must be srcEQ, NEQ, LT, LEQ, GT, or GEQ
Expecting ARn for src,dst
Expecting shift or accumulator
Illegal auxiliary register specified
Illegal condition operand
Illegal condition operand or combination
Illegal indirect memaddr specification
Illegal operand
Illegal smem operand
Immediate value out of range
Incorrect bit symbol for specified status register
Invalid binary constant specified
Invalid constant specification
Invalid decimal constant specified
Invalid float constant specified

Error Messages

D-4

Invalid hex constant specified
Invalid immediate expression or shift value
Invalid immediate or shift value
Invalid octal constant specified
Invalid Operand 2
Invalid operand x
Invalid shift value
Must add AR0 to destination
Must subtract AR0 from destination”);
Operand must be the A accumulator
Operand must be the B accumulator
Shift value must be 16
Shift value out of range
Syntax error – Operand nnn
The accumulator arguments must be the same
The dst accumulator arguments must be the same
The dst,src1 arguments must be the same
The smem operands must be the same

Description These are errors about invalid operands. The instruction,
parameter, or other operand specified was not recognized.

Action Correct the source per the error message text.

E0004

Absolute, well-defined integer value expected
Accumulator specified in second half of parallel instruction may

not be the same as the first
Data size must be equal to pointer size
Expecting accumulator A or B
Expecting ASM or shift value
Expecting dual memory addressing
Identifier operand expected
Illegal character argument specified
Illegal combination of Smem operands
Illegal endian flag specified
Illegal floating-point expression
Illegal operand
Illegal shift operation
Illegal string constant operand specified
Illegal structure reference

 Error Messages

D-5 Error Messages

Incorrect bit symbol fdor specified status register
Invalid data size for relocation
Invalid float constant specified
Invalid identifier, sym , specified
Invalid macro parameter specified
Invalid operand, ”char”
Must add to the destination operand
No parameters available for macro arguments
Not expecting direct operand op
Not expecting indirect operand op
Not expecting immediate value operand op
Operand must be auxiliary register or SP
Operand must be auxiliary register
Operand must be T
Offset Addressing modes not legal for MMRs
Pointer too big for this data size
Register must be ARn or SP
Single character operand expected
String constant or substitution symbol expected
String operand expected
Structure/Union tag symbol expected
Substitution symbol operand expected
The accumulator operands must be different
The operands must be SP

Description These errors are about illegal operands. The instruction,
parameter or other operand specified was not legal for this
syntax.

Action Correct the source per the error message text.

E0005

Missing field value operand
Missing operand(s)

Description These are errors about missing operands; a required oper-
and is not supplied.

Action Correct the source so that all required operands are declared.

Error Messages

D-6

E0006

.break must occur within a loop
Conditional assembly mismatch
Matching .endloop missing
Matching .macro missing
No matching .if specified
No matching .endif specified
No matching .endloop specified
No matching .loop specified
Open block(s) inside macro
Unmatched .endloop directive
Unmatched .if directive

Description These are errors about unmatched conditional assembly
directives. A directive was encountered that requires a
matching directive but the assembler could not find the
matching directive.

Action Correct the source per the error message text.

E0007

Conditional nesting is too deep
Loop count out of range

Description These are errors about conditional assembly loops. Condi-
tional block nesting cannot exceed 32 levels.

Action Correct the .macro/.endmacro, .if/.elseif/.else/.endif or .loop/
.break/.endloop source.

 Error Messages

D-7 Error Messages

E0008

Bad use of .access directive
Matching .struct directive is not present
Matching .union directive is not present

Description These are errors about unmatched structure definition direc-
tives. In a .struct/.endstruct sequence, a directive was
encountered that requires a matching directive but the
assembler could not find the matching directive.

Action Check the source for mismatched structure definition direc-
tives and correct.

E0009

Cannot apply bitwise NOT to floats
Illegal struct/union reference dot operator
Missing structure tag
Section ”name” is not an initialized section
Structure or union tag symbol expected
Structure or union tag symbol not found
Unary operator must be applied to a constant

Description These are errors about an illegally used operator. The opera-
tor specified was not legal for the given operands.

Action Correct the source per the error message text so that all
required operands are declared.

E0100

Label missing
.setsym requires a label

Description These are errors about required labels. The given directive
requires a label, but none is specified.

Action Correct the source by specifying the required label.

Error Messages

D-8

E0101

Labels are not allowed with this directive
Standalone labels not permitted in structure/union defs
Description These are errors about invalid labels. The given directive

does not permit a label, but one is specified.

Description Remove the invalid label.

E0102

Local label number defined differently in each pass
Local label number is multiply defined
Local label number is not defined in this section
Local labels can’t be used with directives
The accumulator operands must be different
Description These are errors about the illegal use of local labels.

Action Correct the source per the error message text. Use .newblock
to reuse local labels.

E0200

Bad term in expression
Binary operator can’t be applied
Difference between segment symbols not permitted
Divide by zero
Division by zero is illegal
Expression evaluation failed
Expression must be absolute integer value
Offset expression must be integer value
Operation cannot be performed on given operands
Unary operator can’t be applied
Value of expression has changed due to jump expansion
Well–defined expression required
Description These are errors about general expressions. An illegal oper-

and combination was used, or an arithmetic type is required
but not present.

Action Correct the source per the error message text.

 Error Messages

D-9 Error Messages

E0201

Absolute operands required for FP operations!
Cannot apply bitwise NOT to floats
Floating–point divide by zero
Floating–point overflow
Floating–point underflow
Floating–point expression required
Illegal floating–point expression
Invalid floating–point operation

Description These are errors about floating-point expressions. A float-
ing-point expression was used where an integer expression is
required, an integer expression was used where a float-
ing-point expression is required, or a floating-point value is
invalid.

Action Correct the source per the error message text.

E0300

Cannot equate an external symbol to an external
Cannot redefine this section name
Cannot tag an undefined symbol
Empty structure or union definition
Illegal structure or union tag
Missing closing ’}’ for repeat block
Redefinition of ”sym” attempted
Structure member previously defined
Structure tag can’t be global
Symbol can’t be defined in terms of itself
Symbol expected
Symbol expected in label field
Symbol, sym , has already been defined
Symbol, sym , is not defined in this source file
Symbol, sym , is operand to both .ref and .def
Structure/union member, sym , not found
The following symbols are undefined:

Error Messages

D-10

Union member previously defined
Union tag can’t be global

Description These are errors about general symbols. An attempt was
made to redefine a symbol or to define a symbol illegally.

Action Correct the source per the error message text.

E0301

Cannot redefine local substitution symbol
Substitution Stack Overflow
Substitution symbol not found

Description These are errors about general substitution symbols. An
attempt was made to redefine a symbol or to define a symbol
illegally.

Action Correct the source per the error message text. Make sure that
the operand of a substitution symbol is defined either as a
macro parameter or with a .asg or .eval directive.

E0400

Symbol table entry is not balanced

Description A symbolic debugging directive does not have a complement-
ing directive (i.e., a .block without an .endblock).

Action Check the source for mismatched conditional assembly
directives.

E0500

Macro argument string is too long
Missing macro name
Too many variables declared in macro

Description These are errors about general macros. A macro definition
was probably corrupted.

Action Correct the source per the error message text.

 Error Messages

D-11 Error Messages

E0501

Macro definition not terminated with .endm
Matching .endm missing
Matching .macro missing
.mexit directive outside macro definition
No active macro definition
Description These are errors about macro definition directives. A macro

directive does not have a complementing directive (that is, a
.macro without a .endm).

Action Correct the source per the error message text.

E0600

Bad archive entry for macro name
Bad archive name
Can’t read a line from archive entry
library name macro library not found
library name is not in archive format
Description These are errors about macro library accessing. A problem

was encountered reading from or writing to a macro library
archive file. It is likely that the creation of the archive file was
not done properly.

Action Make sure that the macro libraries are unassembled assem-
bler source files. Also make sure that the macro name and
member name are the same, and the extension of the file is
.asm.

E0700

Illegal structure/union member
No structure/union currently open
.sym not allowed inside structure/union
Description These are errors about the illegal use of symbolic debugging

directives; a symbolic debugging directive is not used in an
appropriate place.

Action Correct the source per the error message text.

Error Messages

D-12

E0800

Delayed branch – too many words in delay slot
Delayed branch – control flow in delay slot

Description These are errors about branch instructions. These errors are
normally target specific.

Action Correct the source per the error message text.

E0801

Instructions not permitted in structure/union definitions

Description An invalid instruction was encountered in a structure or union
definition.

Action Correct the source by removing the invalid instruction(s).

E0802

Expecting parallel instruction
Incorrect instruction used in parallel
Illegal form of LD used in parallel

Description These are errors about illegal used parallel instructions.

Action Correct the source per the error message text.

E0900

Can’t include a file inside a loop or macro
Illegal structure member
Illegal structure definition contents
Invalid load–time label
Invalid structure/union contents

 Error Messages

D-13 Error Messages

.setsect only valid if absolute listing produced (use –a option)

.setsym only valid if absolute listing produced (use –a option)

.var allowed only within macro definitions
Description These are errors about illegally used directives. Specific

directives were encountered where they are not permitted
because they will cause a corruption of the object file. Many
directives are not permitted inside of structure or union defini-
tions.

Action Correct the source per the error message text.

E1000

Include/Copy file not found or opened
Description The specified filename cannot be found.

Action Check spelling, pathname, environment variables, etc.

E1300

Copy limit has been reached
Exceeded limit for macro arguments
Macro nesting limit exceeded
Description These errors are about general assembler limits that have

been exceeded. The nesting of .copy/.include files in limited
to 10 levels. Macro arguments are limited to 32 parameter.
Macro nesting is limited to 32 levels.

Action Check the source to determine how limits have been
exceeded.

W0000

No operands expected. Operands ignored
Trailing operands ignored
*+ARn addressing is for write-only
Description These are warnings about operands. The assembler encoun-

tered operands that it did not expect.

Action Check the source to determine what caused the problem and
whether you need to correct the source.

Error Messages

D-14

W0001

Field value truncated to value
Field width truncated to size in bits
Line too long, will be truncated
Power of 2 required, next larger power of 2 assumed
Section Name is limited to 8 characters
String is too long – will be truncated
Value truncated
Value truncated to byte size
Value out of range

Description These are warnings about truncated values. The expression
given was too large to fit within the instruction opcode or the
required number of bits.

Action Check the source to make sure the result will be acceptable,
or change the source if an error has occurred.

W0002

Address expression will wrap–around
Expression will overflow, value truncated

Description These are warnings about arithmetic expressions. The
assembler has done a calculation that will produce the indi-
cated result, which may or may not be acceptable.

Action Verify the result will be acceptable, or change the source if an
error has occurred.

W0003

.sym for function name required before .func

Description This is a warning about problems with symbolic debugging
directives. A .sym directive defining the function does not
appear before the .func directive.

Action Correct the source.

 Error Messages

D-15 Error Messages

A

absolute symbol (...) being redefined
Description An absolute symbol cannot be redefined.

Action Check the syntax of all expressions, and check the input di-
rectives for accuracy.

adding name (...) to multiple output sections
Description The input section is mentioned twice in the SECTIONS direc-

tive.

ALIGN illegal in this context
Description Alignment of a symbol is performed outside of a SECTIONS

directive.

alignment for (...) must be a power of 2
Description Section alignment was not a power of 2.

Action Make sure that in hexadecimal, all powers of 2 consist of the
integers 1, 2, 4, or 8 followed by a series of zero or more 0s.

alignment for (...) redefined
Description More than one alignment is supplied for a section.

attempt to decrement DOT
Description A statement such as .–= value is supplied; this is illegal.

Assignments to dot can be used only to create holes.

B

bad fill value
Description The fill value must be a 16-bit constant.

binding address (...) for section (...) is outside all memory on page
(...)
Description Not every section falls within memory configured with the

MEMORY directive.

Action If you are using a linker command file, check that MEMORY
and SECTIONS directives allow enough room to ensure that
no sections are being placed in unconfigured memory.

Error Messages

D-16

binding address (...) for section (...) overlays (...) at (...)

Description Two sections overlap and cannot be allocated.

Action If you are using a linker command file, check that MEMORY
and SECTIONS directives allow enough room to ensure that
no sections are being placed in unconfigured memory.

binding address for (...) redefined

Description More than one binding value is supplied for a section.

binding address (...) incompatible with alignment for section (...)

Description The section has an alignment requirement from an .align
directive or previous link. The binding address violates this
requirement.

blocking for (...) must be a power of 2

Description Section blocking is not a power of 2

Action Make sure that in hexadecimal, all powers of 2 consist of the
integers 1, 2, 4, or 8 followed by a series of zero or more 0s.

blocking for (...) redefined

Description More than one blocking value is supplied for a section.

C

–c requires fill value of 0 in .cinit (... overridden)

Description The .cinit tables must be terminated with 0, therefore, the fill
value of the .cinit section must be 0.

cannot complete output file (...), write error

Description This usually means that the file system is out of space.

cannot create output file (...)

Description This usually indicates an illegal filename.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

 Error Messages

D-17 Error Messages

cannot resize (...), section has initialized definition in (...)

Description An initialized input section named .stack or .heap exists, pre-
venting the linker from resizing the section.

cannot specify a page for a section within a GROUP

Description A section was specified to a specific page within a group. The
entire group is treated as one unit, so the group may be speci-
fied to a page of memory, but the sections making up the
group cannot be handled individually.

cannot specify both binding and memory area for (...)

Description Both binding and memory were specified. The two are mutu-
ally exclusive.

Action If you wish the code to be placed at a specific address, use
binding only.

can’t align a section within GROUP – (...) not aligned

Description A section in a group was specified for individual alignment.
The entire group is treated as one unit, so the group may be
aligned or bound to an address, but the sections making up
the group cannot be handled individually.

can’t align within UNION – section (...) not aligned

Description A section in a union was specified for individual alignment.
The entire union is treated as one unit, so the union may be
aligned or bound to an address, but the sections making up
the union cannot be handled individually.

can’t allocate (...), size ... (page ...)

Description A section can’t be allocated, because no existing configured
memory area is large enough to hold it.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections are being placed in unconfigured
memory.

Error Messages

D-18

can’t create map file (...)

Description Usually indicates an illegal filename.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

can’t find input file filename

Description The file, filename, is not in your PATH, is misspelled, etc.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

can’t open (...)

Description The specified file does not exist.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

can’t open filename

Description The specified file does not exist.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

can’t read (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

can’t seek (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

can’t write (...)

Description Disk may be full or protected.

Action Check disk volume and protection.

command file nesting exceeded with file (...)

Description Command file nesting is allowed up to 16 levels.

 Error Messages

D-19 Error Messages

E

–e flag does not specify a legal symbol name (...)

Description The –e option is not supplied with a valid symbol name as an
operand.

entry point other than _c_int00 specified

Description For –c or –cr option only. A program entry point other than the
value of _c_int00 was supplied. The runtime conventions of
the compiler assume that _c_int00 is the one and only entry
point.

entry point symbol (...) undefined

Description The symbol used with the –e option is not defined.

errors in input – (...) not built

Description Previous errors prevent the creation of an output file.

F

fail to copy (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

fail to read (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

fail to seek (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

Error Messages

D-20

fail to skip (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

fail to write (...)

Description The disk may be full or protected.

Action Check disk volume and protection.

file (...) has no relocation information

Description You have attempted to relink a file that was not linked with –r.

file (...) is of unknown type, magic number = (...)

Description The binary input file is not a COFF file.

fill value for (...) redefined

Description More than one fill value is supplied for an output section. Indi-
vidual holes can be filled with different values with the section
definition.

I

–i path too long (...)

Description The maximum number of characters in an –i path is 256.

illegal input character

Description There is a control character or other unrecognized character
in the command file.

illegal memory attributes for (...)

Description The attributes are not some combination of R, W, I, and X.

 Error Messages

D-21 Error Messages

illegal operator in expression

Description Review legal expression operators.

illegal option within SECTIONS

Description The –l (lowercase L) option is the only option allowed within a
SECTIONS directive.

illegal relocation type (...) found in section(s) of file (...)

Description The binary file is corrupt.

internal error (...)

Description This linker has an internal error.

invalid archive size for file (...)

Description The archive file is corrupt.

invalid path specified with –i flag

Description The operand of the –i option (flag) is not a valid file or path-
name.

invalid value for –f flag

Description The value for –f option (flag) is not a 2-byte constant.

invalid value for –heap flag

Description The value for –heap option (flag) is not a 2-byte constant.

invalid value for –stack flag

Description The value for –stack option (flag) is not a 2-byte constant.

invalid value for –v flag

Description The value for –v option (flag) is not a constant.

I/O error on output file (...)

Description The disk may be full or protected.

Action Check disk volume and protection.

Error Messages

D-22

L

length redefined for memory area (...)
Description A memory area in a MEMORY directive has more than one

length.

library (...) member (...) has no relocation information
Description The library member has no relocation information. It is

possible for a library member to not have relocation informa-
tion; this means that it cannot satisfy unresolved references in
other files when linking.

line number entry found for absolute symbol
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

load address for uninitialized section (...) ignored
Description A load address is supplied for an uninitialized section. Unini-

tialized sections have no load addresses—only run address-
es.

load address for UNION ignored
Description UNION refers only to the section’s run address.

load allocation required for initialized UNION member (...)
Description A load address is supplied for an initialized section in a union.

UNIONs refer to runtime allocation only. You must specify the
load address for all sections within a union separately.

M

–m flag does not specify a valid filename
Description You did not specify a valid filename for the file you are writing

the output map file to.

making aux entry filename for symbol n out of sequence
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

 Error Messages

D-23 Error Messages

memory area for (...) redefined

Description More than one named memory allocation is supplied for an
output section.

memory page for (...) redefined

Description More than one page allocation is supplied for a section.

memory attributes redefined for (...)

Description More than one set of memory attributes is supplied for an out-
put section.

memory types (...) and (...) on page (...) overlap

Description Memory ranges on the same page overlap.

Action If you are using a linker command file, check that MEMORY
and SECTIONS directives allow enough room to ensure that
no sections are being placed in unconfigured memory.

missing filename on –l; use –l <filename>

Description No filename operand is supplied for the –l (lowercase L)
option.

misuse of DOT symbol in assignment instruction

Description The ”.” symbol is used in an assignment statement that is out-
side the SECTIONS directive.

N

no allocation allowed for uninitialized UNION member

Description A load address was supplied for an uninitialized section in a
union. An uninitialized section in a union gets its run address
from the UNION statement and has no load address, so no
load allocation is valid for the member.

Error Messages

D-24

no allocation allowed with a GROUP–allocation for section (...)
ignored

Description A section in a group was specified for individual allocation.
The entire group is treated as one unit, so the group may be
aligned or bound to an address, but the sections making up
the group cannot be handled individually.

no input files

Description No COFF files were supplied. The linker cannot operate with-
out at least one input COFF file.

no load address specified for (...); using run address

Description No load address is supplied for an initialized section. If an ini-
tialized section has a run address only, the section is allo-
cated to run and load at the same address.

no run allocation allowed for union member (...)

Description A UNION defines the run address for all of its members; there-
fore, individual run allocations are illegal.

no string table in file filename

Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

no symbol map produced – not enough memory

Description Available memory is insufficient to produce the symbol list.
This is a nonfatal condition that prevents the generation of the
symbol list in the map file.

 Error Messages

D-25 Error Messages

O

–o flag does not specify a valid file name : string
Description The filename must follow the operating system file naming

conventions.

origin missing for memory area (...)
Description An origin is not specified with the MEMORY directive. An

origin specifies the starting address of a memory range.

out of memory, aborting
Description Your system does not have enough memory to perform all

required tasks.

Action Try breaking the assembly language files into multiple smaller
files and do partial linking. See Section 9.16, Partial (Incre-
mental) Linking, on page 9-63.

output file has no .bss section
Description This is a warning. The .bss section is usually present in a

COFF file. There is no requirement for it to be present.

output file has no .data section
Description This is a warning. The .data section is usually present in a

COFF file. There is no requirement for it to be present.

output file has no .text section
Description This is a warning. The .text section is usually present in a

COFF file. There is no requirement for it to be present.

output file (...) not executable
Description The output file created may have unresolved symbols or other

problems stemming from other errors. This condition is not fa-
tal.

overwriting aux entry filename of symbol n
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

Error Messages

D-26

P

PC-relative displacement overflow at address (...) in file (...)
Description The relocation of a PC-relative jump resulted in a jump dis-

placement too large to encode in the instruction.

R

–r incompatible with –s (–s ignored)
Description Both the –r option and the –s option were used. Since the –s

option strips the relocation information and –r requests a relo-
catable object file, these options are in conflict with each oth-
er.

relocation entries out of order in section (...) of file (...)
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

relocation symbol not found: index (...), section (...), file (...)
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

S

section (...) at (...) overlays at address (...)
Description Two sections overlap and cannot be allocated.

Action If you are using a linker command file, check that MEMORY
and SECTIONS directives allow enough room to ensure that
no sections overlap.

section (...) enters unconfigured memory at address (...)
Description A section can’t be allocated because no existing configured

memory area is large enough to hold it.

Action If you are using a linker command file, check that MEMORY
and SECTIONS directives allow enough room to ensure that
no sections are being placed in unconfigured memory.

 Error Messages

D-27 Error Messages

section (...) not built
Description Most likely there is a syntax error in the SECTIONS directive.

section (...) not found
Description An input section specified in a SECTIONS directive was not

found in the input file.

section (...) won’t fit into configured memory
Description A section can’t be allocated, because no configured memory

area exists that is large enough to hold it.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections are being placed in unconfigured
memory.

seek to (...) failed
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

semicolon required after assignment
Description There is a syntax error in the command file.

statement ignored
Description There is a syntax error in an expression.

symbol referencing errors — (...) not built
Description Symbol references could not be resolved. Therefore, an

object module could not be built.

symbol (...) from file (...) being redefined
Description A defined symbol is redefined in an assignment statement.

T

too few symbol names in string table for archive n
Description The archive file may be corrupt.

Action If the input file is corrupt, try recreating the archive.

Error Messages

D-28

too many arguments – use a command file

Description You used more than ten arguments on a command line or in
response to prompts.

too many –i options, 7 allowed

Action More than seven –i options were used. Additional search di-
rectories can be specified with a C_DIR or A_DIR environ-
ment variable.

type flags for (...) redefined

Description More than one section type is supplied for a section. Note that
type COPY has all of the attributes of type DSECT, so DSECT
need not be specified separately.

type flags not allowed for GROUP or UNION

Description A type is specified for a section in a group or union. Special
section types apply to individual sections only.

U

–u does not specify a legal symbol name

Description The –u option did not specify a legal symbol name that exists
in one of the files that you are linking.

unexpected EOF(end of file)

Description There is a syntax error in the linker command file.

undefined symbol (...) first referenced in file (...)

Description Either a referenced symbol is not defined, or the –r option was
not used. Unless the –r option is used, the linker requires that
all referenced symbols be defined. This condition prevents
the creation of an executable output file.

Action Link using the –r option or define the symbol.

 Error Messages

D-29 Error Messages

undefined symbol in expression

Description An assignment statement contains an undefined symbol.

unrecognized option (...)

Action Check the list of valid options.

Z

zero or missing length for memory area (...)

Description A memory range defined with the MEMORY directive did not
have a nonzero length.

D-30

 Running Title—Attribute Reference

E-1 Chapter Title—Attribute Reference

Appendix A

Glossary

A
absolute address: An address that is permanently assigned to a

TMS320C54x memory location.

absolute lister: A debugging tool that accepts linked files as input and
creates .abs files as output. These .abs files can be assembled to pro-
duce a listing that shows the absolute addresses of object code. Without
the tool, an absolute listing can be prepared with the use of many manual
operations.

algebraic: An instruction that the assembler translates into machine code.

alignment: A process in which the linker places an output section at an
address that falls on an n-bit boundary, where n is a power of 2. You can
specify alignment with the SECTIONS linker directive.

allocation: A process in which the linker calculates the final memory
addresses of output sections.

archive library: A collection of individual files that have been grouped into
a single file.

archiver: A software program that allows you to collect several individual
files into a single file called an archive library. The archiver also allows
you to delete, extract, or replace members of the archive library, as well
as to add new members.

ASCII: American Standard Code for Information Exchange. A standard
computer code for representing and exchanging alphanumeric informa-
tion.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, direc-
tives, and macro directives. The assembler substitutes absolute opera-
tion codes for symbolic operation codes, and absolute or relocatable
addresses for symbolic addresses.

assembly-time constant: A symbol that is assigned a constant value with
the .set directive.

Appendix E

Glossary

E-2

assignment statement: A statement that assigns a value to a variable.

autoinitialization: The process of initializing global C variables (contained
in the .cinit section) before beginning program execution.

auxiliary entry: The extra entry that a symbol may have in the symbol table
and that contains additional information about the symbol (whether it is
a filename, a section name, a function name, etc.).

B
binding: A process in which you specify a distinct address for an output sec-

tion or a symbol.

block: A set of declarations and statements that are grouped together with
braces.

.bss: One of the default COFF sections. You can use the .bss directive to
reserve a specified amount of space in the memory map that can later
be used for storing data. The .bss section is uninitialized.

C
C compiler: A program that translates C source statements into assembly

language source statements.

COFF: Common object file format. A binary object file format that promotes
modular programming by supporting the concept of sections.

command file: A file that contains options, filenames, directives, or com-
ments for the linker or hex conversion utility.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comments are
not compiled, assembled, or linked; they have no effect on the object file.

common object file format: See COFF.

conditional processing: A method of processing one block of source code
or an alternate block of source code, according to the evaluation of a
specified expression.

configured memory: Memory that the linker has specified for allocation.

constant: A numeric value that can be used as an operand.

cross-reference listing: An output file created by the assembler that lists
the symbols that were defined, what line they were defined on, which
lines referenced them, and their final values.

 Glossary

E-3 Glossary

D
.data: One of the default COFF sections. The .data section is an initialized

section that contains initialized data. You can use the .data directive to
assemble code into the .data section.

directives: Special-purpose commands that control the actions and
functions of a software tool (as opposed to assembly language instruc-
tions, which control the actions of a device).

E

emulator: A hardware development system that emulates TMS320C54x
operation.

entry point: The starting execution point in target memory.

executable module: An object file that has been linked and can be
executed in a TMS320C54x system.

expression: A constant, a symbol, or a series of constants and symbols
separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
is defined in a different program module.

F

field: For the TMS320C54x, a software-configurable data type whose length
can be programmed to be any value in the range of 1–16 bits.

file header: A portion of a COFF object file that contains general information
about the object file (such as the number of section headers, the type of
system the object file can be downloaded to, the number of symbols in
the symbol table, and the symbol table’s starting address).

G

global: A kind of symbol that is either 1) defined in the current module and
accessed in another, or 2) accessed in the current module but defined
in another.

GROUP: An option of the SECTIONS directive that forces specified output
sections to be allocated contiguously (as a group).

Glossary

E-4

H

hex conversion utility: A program that accepts COFF files and converts
them into one of several standard ASCII hexadecimal formats suitable
for loading into an EPROM programmer.

high-level language debugging: The ability of a compiler to retain sym-
bolic and high-level language information (such as type and function
definitions) so that a debugging tool can use this information.

hole: An area between the input sections that compose an output section
that contains no actual code or data.

I

incremental linking: Linking files that will be linked in several passes. Often
this means a very large file that will have sections linked and then will
have the sections linked together.

initialized section: A COFF section that contains executable code or initial-
ized data. An initialized section can be built up with the .data, .text, or
.sect directive.

input section: A section from an object file that will be linked into an
executable module.

L

label: A symbol that begins in column 1 of a source statement and corre-
sponds to the address of that statement.

line-number entry: An entry in a COFF output module that maps lines of
assembly code back to the original C source file that created them.

linker: A software tool that combines object files to form an object module
that can be allocated into TMS320C54x system memory and executed
by the device.

listing file: An output file, created by the assembler, that lists source state-
ments, their line numbers, and their effects on the SPC.

loader: A device that loads an executable module into TMS320C54x system
memory.

 Glossary

E-5 Glossary

M
member: The elements or variables of a structure, union, archive, or enu-

meration.

macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The source statements that are substituted for the
macro call and are subsequently assembled.

macro library: An archive library composed of macros. Each file in the
library must contain one macro; its name must be the same as the macro
name it defines, and it must have an extension of .asm.

magic number: A COFF file header entry that identifies an object file as a
module that can be executed by the TMS320C54x.

map file: An output file, created by the linker, that shows the memory
configuration, section composition, and section allocation, as well as
symbols and the addresses at which they were defined.

memory map: A map of target system memory space, which is partitioned
into functional blocks.

mnemonic: An instruction name that the assembler translates into machine
code.

model statement: Instructions or assembler directives in a macro definition
that are assembled each time a macro is invoked.

N
named section: An initialized section that is defined with a .sect directive.

O
object file: A file that has been assembled or linked and contains machine-

language object code.

object format converter: A program that converts COFF object files into
Intel format or Tektronix format object files.

Glossary

E-6

object library: An archive library made up of individual object files.

operands: The arguments, or parameters, of an assembly language
instruction, assembler directive, or macro directive.

optional header: A portion of a COFF object file that the linker uses to
perform relocation at download time.

options: Command parameters that allow you to request additional or
specific functions when you invoke a software tool.

output module: A linked, executable object file that can be downloaded and
executed on a target system.

output section: A final, allocated section in a linked, executable module.

overlay page: A section of physical memory that is mapped into the same
address range as another section of memory. A hardware switch deter-
mines which range is active.

P

partial linking: The linking of a file that will be linked again.

Q

quiet run: Suppresses the normal banner and the progress information.

R

RAM model: An autoinitialization model used by the linker when linking C
code. The linker uses this model when you invoke the linker with the –cr
option. The RAM model allows variables to be initialized at load time
instead of runtime.

raw data: Executable code or initialized data in an output section.

relocation: A process in which the linker adjusts all the references to a sym-
bol when the symbol’s address changes.

ROM model: An autoinitialization model used by the linker when linking C
code. The linker uses this model when you invoke the linker with the –c
option. In the ROM model, the linker loads the .cinit section of data tables
into memory, and variables are initialized at runtime.

 Glossary

E-7 Glossary

ROM width: The width (in bits) of each output file, or, more specifically, the
width of a single data value in the file. The ROM width determines how
the utility partitions the data into output files. After the target words are
mapped to memory words, the memory words are broken into one or
more output files. The number of output files is determined by the ROM
width.

run address: The address where a section runs.

S
section: A relocatable block of code or data that will ultimately occupy con-

tiguous space in the TMS320C54x memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header; the header
points to the section’s starting address, contains the section’s size, etc.

section program counter: See SPC.

sign extend: To fill the unused MSBs of a value with the value’s sign bit.

simulator: A software development system that simulates TMS320C54x
operation.

source file: A file that contains C code or assembly language code that will
be compiled or assembled to form an object file.

SPC (Section Program counter): An element of the assembler that keeps
track of the current location within a section; each section has its own
SPC.

static: A kind of variable whose scope is confined to a function or a program.
The values of static variables are not discarded when the function or pro-
gram is exited; their previous value is resumed when the function or pro-
gram is re-entered.

storage class: Any entry in the symbol table that indicates how to access
a symbol.

string table: A table that stores symbol names that are longer than 8 charac-
ters (symbol names of 8 characters or longer cannot be stored in the
symbol table; instead, they are stored in the string table). The name por-
tion of the symbol’s entry points to the location of the string in the string
table.

structure: A collection of one or more variables grouped together under a
single name.

Glossary

E-8

subsection: A smaller section within a section offering tighter control of the
memory map. See also section.

symbol: A string of alphanumeric characters that represents an address or
a value.

symbolic debugging: The ability of a software tool to retain symbolic infor-
mation so that it can be used by a debugging tool such as a simulator or
an emulator.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

T
tag: An optional type name that can be assigned to a structure, union, or

enumeration.

target memory: Physical memory in a TMS320C54x system into which exe-
cutable object code is loaded.

.text: One of the default COFF sections. The .text section is an initialized
section that contains executable code. You can use the .text directive to
assemble code into the .text section.

U
unconfigured memory: Memory that is not defined as part of the memory

map and cannot be loaded with code or data.

uninitialized section: A COFF section that reserves space in the memory
map but that has no actual contents. These sections are built up with the
.bss and .usect directives.

UNION: An option of the SECTIONS directive that causes the linker to allo-
cate the same address to multiple sections.

union: A variable that may hold objects of different types and sizes.

unsigned: A kind of value that is treated as a positive number, regardless
of its actual sign.

W
well-defined expression: An expression that contains only symbols or

assembly-time constants that have been defined before they appear in
the expression.

word: A 16-bit addressable location in target memory.

Index

Index-1

Index

; in assembly language source 3-12
operand prefix 3-11
$ symbol for SPC 3-17
* in assembly language source 3-12
* operand prefix 3-11

A
–a

archiver command 8-4
assembler option 3-4
hex conversion utility option 12-39
linker option 9-8

A_DIR environment variable 3-7, 9-13, 9-15
absolute address, defined E-1
absolute lister

creating the absolute listing file 3-4, 10-2
defined E-1
described 1-3
development flow 10-2
example 10-5 to 10-10
invoking 10-3
options 10-3

absolute listing
–a assembler option 3-4
producing 10-2

absolute output module
producing 9-8
relocatable 9-9

acronyms and symbols
algebraic 6-2 to 6-4
mnemonic 5-2 to 5-4

.algebraic, assembler directive 4-23

algebraic
defined E-1
instruction set 6-1 to 6-44
source file 3-5
translation from mnemonic 13-1 to 13-10

.algebraic assembler directive, reference 4-26

.align assembler directive
aligning SPC 4-15
compatibility with C1x/C2x/C2xx/C5x 4-7
reference 4-27

alignment
defined E-1
linker 9-36
reference 4-27
SPC 4-15 to 4-16

allocation
alignment 4-27, 9-36
binding 9-34 to 9-72
blocking 9-36
default algorithm 9-51 to 9-53
defined E-1
described 2-3
GROUP 9-45
memory default 2-13, 9-35
sections 9-33 to 9-38
UNION 9-43
variables 4-30

alternate directories
linker 9-14
naming with –i option 3-6
naming with A_DIR 3-7
naming with directives 3-6 to 3-8

–ar linker option 9-9
ar500 command 8-4

Index

Index-2

archive library
alternate directory 9-13
back referencing 9-20
defined E-1
exhaustively reading 9-20
macros 4-59
object 9-24 to 9-25
types of files 8-2

archiver 1-3
commands 8-4
defined E-1
examples 8-6 to 8-8
in the development flow 8-3
invoking 8-4
options 8-5
overview 8-2

arithmetic operators 3-24

–arr hex conversion utility option 12-29

array definitions A-26

ASCII, defined E-1

ASCII-Hex object format 12-39

.asg assembler directive
described 4-21
listing control 4-17, 4-38
reference 4-28
use in macros 7-8

asm500 command 3-4

assembler
character strings 3-15
constants 3-13 to 3-15
cross-reference listings 3-5, 3-32
defined E-1
described 1-3
error messages D-1 to D-30
expressions 3-23, 3-24, 3-25
handling COFF sections 2-4 to 2-11
in the development flow 3-3
invoking 3-4
macros 7-1 to 7-26
options

additional usage information
–d 3-17
–i 3-6
–l 3-28
–x 3-32

listing of 3-4 to 3-5
output listing

example 3-30
formatting directives 4-17 to 4-18

assembler (continued)
overview 3-2
relocation

at runtime 2-16
described 2-14 to 2-15
during linking 9-8

sections directives 2-4 to 2-11
source listings 3-28 to 3-31
symbols 3-16, 3-18

assembly-time constant
defined E-1
described 3-14
reference 4-72

assignment statement
defined E-2
expressions 9-56 to 9-57

attr MEMORY specification 9-28
attributes 3-32, 9-28
autoinitialization

defined E-2
described 9-66 to 9-67
specifying type 9-10

auxiliary entry
defined E-2
described A-23 to A-28

B
–b linker option 9-10
.bes assembler directive 4-11, 4-73
big-endian ordering 12-14
binary integer constants 3-13
binding

defined E-2
named memory 9-34
sections 9-34

–bkr hex conversion utility option 12-29
block

auxiliary table entry A-26, A-27
defined E-2
described A-17
reference B-3

.block symbolic debugging directive B-3
blocking 4-30, 9-36
–boot hex conversion utility option 12-29
boot.obj 9-65, 9-68
–bootorg hex conversion utility option 12-29, 12-31
–bootpage hex conversion utility option 12-29

Index

Index-3

.break assembler directive
described 4-20
listing control 4-17, 4-38
reference 4-58
use in macros 7-15

–bscr hex conversion utility option 12-29
.bss

assembler directive
compatibility with C1x/C2x/C2xx/C5x 4-7
described 4-9
in sections 2-4
linker definition 9-58
reference 4-30

defined E-2
holes 9-61
initializing 9-61
section 4-9, 4-30, A-3

–byte, hex conversion utility option 12-36
.byte assembler directive

described 4-11
limiting listing with the .option directive 4-17,

4-66
reference 4-33

C
C

memory pool 9-12, 9-66
system stack 9-18, 9-66

–c
assembler option 3-4
linker option 9-10, 9-58

C code, linking 9-65 to 9-68
C compiler

block definitions B-3
COFF technical details A-1
defined E-2
enumeration definitions B-9
file identification B-4
function definitions B-5
line-number entries B-7
line-number information A-12 to A-13
linking 9-10, 9-65 to 9-68
member definitions B-8
special symbols A-16 to A-17
storage classes A-19
structure definitions B-9
symbol table entries B-11
union definitions B-9

C_DIR environment variable 9-13 to 9-15

_c_int00, 9-11, 9-68

character
constant 3-14
string 3-15

.cinit
section 9-66 to 9-67
tables 9-66

cinit symbol 9-66 to 9-67

COFF
auxiliary entries A-23 to A-28
conversion to hexadecimal format 12-1 to 12-44
default allocation 9-51
defined E-2
file structure A-2 to A-4
file types 2-2
headers

file A-5
optional A-6
section A-7 to A-9

in the development flow 9-3, 12-2
initialized sections 2-6
line number entries B-7
linker 9-1
loading a program 2-17
object file example A-3
relocation 2-14 to 2-15, A-10 to A-11
runtime relocation 2-16
sections

allocation 2-3
assembler 2-4 to 2-11
described 2-2 to 2-3
initialized 2-6
linker 2-12 to 2-14
named 2-7, 9-59
special types 9-54
uninitialized 2-4 to 2-5

storage classes A-19
string table A-18
symbol table

structure and content A-14 to A-28
symbol values A-20

symbolic debugging A-12 to A-13
symbols 2-18 to 2-20, A-16 to A-17
technical details A-1 to A-28
type entry A-21
uninitialized sections 2-4 to 2-5

Index

Index-4

command file
defined E-2
hex conversion utility 12-7 to 12-8
linker

constants in 9-23
described 9-21 to 9-23
examples 9-69 to 9-72
invoking 9-4
reserved words 9-23

comment
defined E-2
field 3-12
in a linker command file 9-22
in assembly language source code 3-12
in macros 7-19
that extend past page width 4-54

conditional blocks 7-15

conditional processing
assembly directives

described 4-20
in macros 7-15 to 7-16
maximum nesting levels 7-15
reference 4-50

blocks
listing reference 4-42
reference 4-50

defined E-2
expressions 3-26

configured memory
defined E-2
described 9-52

.const 9-32

constant
assembly-time 3-14, 4-72
binary integers 3-13
character 3-14
decimal integers 3-13
defined E-2
described 3-13
floating-point 4-46
hexadecimal integers 3-14
in command files 9-23
octal integers 3-13
symbolic 3-16, 3-17

.copy assembler directive 3-6, 4-19, 4-34

copy file
.copy directive

described 3-6
reference 4-34

–hc assembler option 3-5
–i option

described 3-6
reference 3-5

COPY section 9-54

–cr linker option 9-10, 9-58

cross-reference lister
creating the cross-reference listing 11-2
example 11-4
in the development flow 11-2
invoking 11-3
options 11-3
symbol attributes 11-6

cross-reference listing
assembler option 3-5
defined E-2
described 3-32
producing with the .option directive 4-17, 4-66
producing with the cross-reference

lister 11-1 to 11-6

D

–d
archiver command 8-4
assembler option 3-4, 3-17

.data
defined E-3
described 2-4
reference 4-37
section A-3
section definition 4-9
symbols 9-58

data memory 9-26

decimal integer constants 3-13

.def assembler directive
described 4-19
identifying external symbols 2-18
reference 4-47

Index

Index-5

default
allocation 9-51
fill value for holes 9-11
memory allocation 2-13
MEMORY configuration 9-51
MEMORY model 9-26
SECTIONS configuration 9-30, 9-51

development
flow 1-2, 3-3, 8-3, 9-3
tools 1-2

directives
assembler 4-1 to 4-25

absolute lister 10-8
assembly-time constants 4-72
assembly-time symbols 4-21 to 4-22
compatibility with C1x/C2x/C2xx/C5x 4-7
conditional assembly 4-20
default directive 2-4
example 2-9 to 2-11
miscellaneous 4-23 to 4-24
summary table 4-2 to 4-6
that align the section program counter (SPC),

4-15, 4-27
that define sections 2-4, 4-9 to 4-10
that format the output listing 4-17 to 4-18,

4-82
that initialize constants 4-11 to 4-14
that reference other files 4-19

defined E-3
linker

MEMORY 2-12, 9-26 to 9-29
SECTIONS 2-12, 9-30 to 9-38

symbolic debugging B-3 to B-13

directory search algorithm
assembler 3-6
linker 9-13

.drlist assembler directive
described 4-17
reference 4-38
use in macros 7-21

.drnolist assembler directive
described 4-17
reference 4-38
use in macros 7-21

DSECT section 9-54

dummy section 9-54

E
–e

absolute lister option 10-3
archiver option 8-5
hex conversion utility option 12-32

.edata linker symbol 9-58

.else assembler directive
described 4-20
reference 4-50
use in macros 7-15

.elseif assembler directive
described 4-20
reference 4-50
use in macros 7-15

.emsg
assembler directive

described 4-23
listing control 4-17, 4-38
reference 4-39

macro directive 7-19

emulator, defined E-3

.end
assembler directive 4-23, 4-41
linker symbol 9-58

.endblock symbolic debugging directive B-3

.endfunc symbolic debugging directive B-5

.endif assembler directive
described 4-20
reference 4-50
use in macros 7-15

.endloop assembler directive
reference 4-58
use in macros 7-15

.endm macro directive 7-3

.endstruct assembler directive 4-22, 4-77

entry point
defined E-3
value assigned 9-11, 9-68

enumeration definitions B-9

environment variables
A_DIR 3-7, 9-13
C_DIR 9-13, 9-15

.eos symbolic debugging directive B-9

.equ assembler directive 4-21, 4-72

Index

Index-6

error messages
displayed by tools D-1 to D-30
generating 4-23
hex conversion utility 12-44
producing in macros 7-19

.etag symbolic debugging directive B-9

.etext linker symbol 9-58

.eval assembler directive
described 4-21
listing control 4-17, 4-38
reference 4-28
use in macros 7-8

evaluation of expressions 3-23

executable module, defined E-3

executable output 9-8, 9-9

expression
absolute and relocatable 3-26, 3-27
arithmetic operators in 3-24
conditional 3-26
conditional operators in 3-26
defined E-3
described 3-23
illegal 3-26
linker 9-56 to 9-57
overflow 3-24
precedence of operators 3-23
relocatable symbols in 3-26
underflow 3-24
well-defined 3-25

external symbol
defined E-3
described 2-18
reference 4-47
relocatable 3-26

F
–f linker option 9-11

.fclist assembler directive
described 4-17
listing control 4-17, 4-38
reference 4-42
use in macros 7-21

.fcnolist assembler directive
described 4-17
listing control 4-17, 4-38
reference 4-42
use in macros 7-21

field, defined E-3
.field assembler directive

compatibility with C1x/C2x/C2xx/C5x 4-7
described 4-12
reference 4-43

file
copy 3-5
identification B-4
include 3-5

file header
defined E-3
structure A-5

.file symbolic debugging directive B-4
filenames

as character strings 3-15
copy/include files 3-6
extensions, changing defaults 10-3
list file 3-4
macros, in macro libraries 7-14
object code 3-4

files ROMS specification 12-18
fill

MEMORY specification 9-29
ROMS specification 12-17
value

default 9-11
explicit initialization 9-62
overriding the MEMORY specification 9-16
setting 9-11

–fill hex conversion utility option 12-27
.float assembler directive

compatibility with C1x/C2x/C2xx/C5x 4-7
described 4-12
reference 4-46

floating-point constants 4-46
.func symbolic debugging directive B-5
function definitions A-17, A-26, A-27, B-5

G
–g linker option 9-12
global

defined E-3
symbols 9-12

.global assembler directive
described 4-19
identifying external symbols 2-18
reference 4-47

Index

Index-7

GROUP
defined E-3
linker directive 9-45

H
–h linker option 9-12
–hc assembler option 3-5
–heap linker option

.sysmem section 9-66
described 9-12

hex conversion utility
command file 12-7 to 12-8
controlling the ROM device

address 12-34 to 12-37
data width 12-10
defined E-4
described 1-3
development flow 12-2
error messages 12-44
examples

avoiding holes with multiple
sections C-8 to C-9

building a hex command file for two 8-bit
EPROMS C-3 to C-7

generating a boot table
’C54xLP devices C-17 to C-24
non-LP ’C54x devices C-10 to C-16

image mode 12-26 to 12-27
invoking 12-3 to 12-6
memory width 12-10 to 12-11
object formats 12-38 to 12-43
on-chip boot loader 12-28 to 12-33
options 12-4 to 12-6
ordering memory words 12-14 to 12-15
output filenames 12-24
ROM width 12-11 to 12-13
ROMS directive 12-16 to 12-21
SECTIONS directive 12-22 to 12-23
target width 12-10

hex500 command 12-3
hexadecimal integer constants 3-14
–hi assembler option 3-5
high-level language debugging, defined E-4

hole
creating 9-59 to 9-61
default fill value 9-11
defined E-4
fill value

ignoring fill specs 9-16
linker SECTIONS directive 9-31

filling 9-61 to 9-62
in output sections 9-59 to 9-62
in uninitialized sections 9-62

I
–i

assembler option 3-5, 3-6
hex conversion utility option 12-40
linker option 9-14

I MEMORY attribute 9-28

.if assembler directive
described 4-20
reference 4-50
use in macros 7-15

–image hex conversion utility option 12-26
.include assembler directive 3-6, 4-19, 4-34

include files 3-5, 3-6, 4-34

incremental linking
defined E-4
described 9-63 to 9-64

initialized, subsection 2-6

initialized section
.data 2-6
.sect 2-6
.text 2-6
.data section 4-37
defined E-4
described 2-6, 9-59
.sect section 4-70
.text section 4-81

input
linker 9-3, 9-24 to 9-25
section

defined E-4
described 9-36 to 9-38

Index

Index-8

instruction set
acronyms and symbols

algebraic 6-2 to 6-4
mnemonic 5-2 to 5-4

algebraic 6-1 to 6-44
cross-reference

algebraic-to-mnemonic 6-5 to 6-17
mnemonic-to-algebraic 5-5 to 5-13

mnemonic 5-1 to 5-30
summary table

algebraic 6-18 to 6-44
mnemonic 5-14 to 5-30

using the summary table
algebraic 6-2
mnemonic 5-2

.int assembler directive 4-13, 4-52

Intel object format 12-40

K
keywords

allocation parameters 9-33
load 2-16, 9-33, 9-39
run 2-16, 9-33, 9-39 to 9-41

L
–l

assembler option 3-5, 3-28
cross-reference lister option 11-3

label
case sensitivity 3-4
cross-reference list 3-32
defined E-4
field 3-10
in assembly language source 3-10
local 3-19, 4-65
symbols used as 3-16
syntax 3-10
using with .byte directive 4-33

.label assembler directive 4-21, 4-53

length
MEMORY specification 9-29
ROMS specification 12-17

.length assembler directive
described 4-17
listing control 4-17, 4-38
reference 4-54

library search algorithm 9-13

library-build utility, described 1-3

.line symbolic debugging directive B-7

line-number, table structure A-12 to A-13

line-number entry
defined E-4
directive B-7

linker
assigning symbols 9-55
assignment expressions 9-55, 9-56 to 9-57
C code 9-10, 9-65 to 9-68
COFF 9-1
command files 9-4, 9-21 to 9-23, 9-69
configured memory 9-52
defined E-4
described 1-3
error messages D-1 to D-30
examples 9-69 to 9-72
GROUP statement 9-43, 9-45
handling COFF sections 2-12 to 2-14
in the development flow 9-3
input 9-3, 9-21 to 9-23
invoking 9-4 to 9-5
keywords 9-23, 9-39 to 9-41, 9-49
loading a program 2-17
MEMORY directive 2-12, 9-26 to 9-29
object libraries 9-24 to 9-25
operators 9-57
options

described 9-8 to 9-20
summary table 9-6 to 9-7

output 9-3, 9-17, 9-69
overlay pages 9-46
overview 9-2
partial linking 9-63 to 9-64
section runtime address 9-39
sections

in memory map 2-14
output 9-52
special 9-54

SECTIONS directive 2-12, 9-30 to 9-38
symbols 2-18 to 2-20, 9-55, 9-58
unconfigured memory 9-54
UNION statement 9-43 to 9-44

.list assembler directive 4-17, 4-55

lister
absolute 10-1 to 10-10
cross-reference 11-1 to 11-6

Index

Index-9

listing
cross-reference listing 4-17, 4-66
file

creating with the –l option 3-5
defined E-4
described 4-17 to 4-18
format 3-28 to 3-31

formatting 4-17
little-endian ordering 12-14
lnk500 command 9-4
load address of a section

described 9-39
referring to with a label 9-40 to 9-42

load linker keyword 2-16, 9-39 to 9-41
loader, defined E-4
loading a program 2-17
local labels 3-19
logical operators 3-24
.long assembler directive

compatibility with C1x/C2x/C2xx/C5x 4-7
described 4-13
limiting listing with the .option directive 4-17,

4-66
reference 4-57

.loop assembler directive
described 4-20
reference 4-58
use in macros 7-15

M
–m, linker option 9-16
–m1, hex conversion utility option 12-41
–m2, hex conversion utility option 12-41
–m3, hex conversion utility option 12-41
macro

comments 7-4, 7-19
conditional assembly 7-15 to 7-16
defined E-5
defining 7-3
described 7-2
directives summary 7-25
disabling macro expansion listing 4-17, 4-66
formatting the output listing 7-21
labels 7-17 to 7-18
libraries 7-14, 8-2
.mlib assembler directive 3-6, 4-19, 4-59
.mlist assembler directive 4-17, 4-61

macro (continued)
nested 7-22 to 7-24
parameters 7-6 to 7-13
producing messages 7-19
recursive 7-22 to 7-24
substitution symbols 7-6 to 7-13
using a macro 7-2

.macro assembler directive
described 7-3
summary table 7-25

macro call, defined E-5
macro definition, defined E-5
macro expansion, defined E-5
macro library, defined E-5
magic number, defined E-5
_main 9-11
malloc(), 9-12, 9-66
map file

creating 9-16
defined E-5
example 9-71

member
defined E-5
directive B-8

.member symbolic debugging directive B-8
memory

allocation
default 2-13
described 9-51 to 9-53

map
defined E-5
described 2-14

model 9-26
named 9-35
pool, C language 9-12, 9-66
unconfigured 9-27
widths

described 12-10 to 12-11
ordering memory words 12-14 to 12-15
ROM width 12-11 to 12-13, 12-17
target width 12-10

word ordering 12-14 to 12-15
MEMORY linker directive

default model 9-26, 9-51
described 2-12, 9-26 to 9-29
ignoring fill specifications 9-16
overlay pages 9-46 to 9-50
PAGE option 9-26 to 9-28, 9-53
syntax 9-26 to 9-29

Index

Index-10

messages, error D-1 to D-30
.mexit macro directive 7-3
–mg assembler option 3-5
.mlib assembler directive

described 4-19, 7-14
reference 4-59
use in macros 3-6

.mlist assembler directive
described 4-17
listing control 4-17, 4-38
reference 4-61
use in macros 7-21

.mmregs assembler directive 4-23, 4-62

.mmsg
assembler directive

described 4-23
listing control 4-17, 4-38
reference 4-39

macro directive 7-19
mnem2alg command 13-4
mnemonic

defined E-5
field 3-10
instruction set 5-1 to 5-30
translation to algebraic 13-1 to 13-10

.mnolist assembler directive
described 4-17
listing control 4-17, 4-38
reference 4-61
use in macros 7-21

model statement, defined E-5
Motorola-S object format 12-41

N
–n linker option 9-16
name MEMORY specification 9-28
named section

COFF format A-3
defined E-5
described 2-7
.sect directive 2-7, 4-70
.usect directive 2-7, 4-83

nested macros 7-22
.newblock assembler directive 4-23, 4-65
.nolist assembler directive 4-17, 4-55
NOLOAD section 9-54

O
–o linker option 9-17
object

code source listing 3-29
formats

address bits 12-38
ASCII-Hex 12-39
Intel 12-40
Motorola-S 12-41
output width 12-38
Tektronix 12-43
TI-Tagged 12-42

library
altering search algorithm 9-13
defined E-6
described 9-24 to 9-25
runtime support 9-65
using the archiver to build 8-2

object file, defined E-5
object format converter, defined E-5
octal integer constants 3-13
on-chip boot loader

boot table 12-28 to 12-33
booting from device peripheral 12-31
booting from EPROM 12-33
booting from the parallel port 12-33
booting from the serial port 12-33
controlling ROM device address 12-35 to 12-37
description 12-28, 12-32 to 12-34
modes 12-32
options

–e 12-32
summary 12-29

setting the entry point 12-32
using the boot loader 12-32 to 12-34

operands
defined E-6
field 3-11
immediate addressing 3-11
label 3-16
local label 3-19
prefixes 3-11
source statement format 3-11

operator precedence order 3-24
.option assembler directive 4-17, 4-66
optional header

defined E-6
format A-6

Index

Index-11

options
absolute lister 10-3
archiver 8-5
assembler 3-4
cross-reference lister 11-3
defined E-6
hex conversion utility 12-4 to 12-6
linker 9-6 to 9-20
translator 13-4

–order hex conversion utility option 12-15

ordering memory words 12-14 to 12-15

origin
MEMORY specification 9-28
ROMS specification 12-17

output
assembler 3-1
executable 9-8 to 9-9
hex conversion utility 12-24
linker 9-3, 9-17, 9-69
listing

described 4-17 to 4-18
directive listing 4-17, 4-38
enable 4-17, 4-55
false conditional block listing 4-17, 4-42
list options 4-17, 4-66
macro listing 4-17, 4-59, 4-61
page eject 4-17, 4-68
page length 4-17, 4-54
page width 4-18, 4-54
substitution symbol listing 4-18, 4-74
suppress 4-17, 4-55
tab size 4-18, 4-80
title 4-18, 4-82

module
defined E-6
name 9-17

section
allocation 9-33 to 9-38
defined E-6
displaying a message 9-19
rules 9-52

overflow in an expression 3-24

overlay page
defined E-6
described 9-46 to 9-50
using the SECTIONS directive 9-48 to 9-49

overlaying sections 9-43 to 9-44

P
paddr SECTIONS specification 12-23

page
eject 4-68
length 4-54
title 4-82
width 4-54

.page assembler directive 4-17, 4-68

PAGE option MEMORY directive 9-26 to 9-28,
9-49 to 9-51, 9-53

PAGE ROMS specification 12-16

pages
overlay 9-46 to 9-50
PAGE syntax 9-49 to 9-51

parentheses in expressions 3-23

partial linking
defined E-6
described 9-63 to 9-64

precedence groups 3-23

predefined names, –d assembler option 3-4

prefixes for operands 3-11

program memory 9-26

.pstring assembler directive
described 4-13
reference 4-76

Q
–q

absolute lister option 10-3
archiver option 8-5
assembler option 3-5
cross-reference lister option 11-3
linker option 9-17

quiet run
defined E-6
described 3-5
linker 9-17

R
–r

archiver command 8-4
linker option 9-9, 9-63 to 9-64

R MEMORY attribute 9-28

Index

Index-12

RAM model
autoinitialization 9-66
defined E-6

raw data, defined E-6
recursive macros 7-22
.ref assembler directive

described 4-19
identifying external symbols 2-18
reference 4-47

register symbols 3-17
relational operators 3-26
relocatable

output module 9-9
symbols 3-26

relocation
at runtime 2-16
capabilities 9-8 to 9-9
defined E-6
sections 2-14 to 2-15
structuring information A-10 to A-11

reserved words 9-23
resetting local labels 4-65
ROM

device address 12-34 to 12-35
model

autoinitialization 9-67
defined E-6

width
defined E-7
described 12-11 to 12-13

romname ROMS specification 12-16
ROMS hex conversion utility

directive 12-16 to 12-21
romwidth ROMS specification 12-17
rts.lib 9-65, 9-68
run address

defined E-7
of a section 9-39 to 9-41

run linker keyword 2-16, 9-39 to 9-41
runtime initialization and support 9-65

S
–s

archiver option 8-5
assembler option 3-5
linker option 9-17, 9-63 to 9-64

.sblock assembler directive 4-23, 4-69

.sect
assembler directive 2-4, 4-9, 4-70
section 4-9

section
allocation 9-51 to 9-53
COFF 2-2 to 2-3
creating your own 2-7
defined E-7
in the linker SECTIONS directive 9-31
initialized 2-6
named 2-2, 2-7
number A-21
overlaying with UNION directive 9-43 to 9-44
relocation 2-14 to 2-15, 2-16
special types 9-54
specifications 9-31
specifying a runtime address 9-39 to 9-42
specifying linker input sections 9-36 to 9-38
uninitialized 2-4 to 2-5

initializing 9-62
specifying a run address 9-40

section header
defined E-7
described A-7 to A-9

section program counter, defined E-7

SECTIONS
hex conversion utility directive 12-22 to 12-23
linker directive

alignment 9-36
allocation 9-33 to 9-38
binding 9-34
blocking 9-36
default

allocation 9-51 to 9-53
model 9-28

described 2-12, 9-30 to 9-38
fill value 9-31
GROUP 9-45
input sections 9-31, 9-36 to 9-38
.label directive 9-40 to 9-42
load allocation 9-31
memory 9-35 to 9-72
overlay pages 9-46 to 9-50
reserved words 9-23
run allocation 9-31

Index

Index-13

SECTIONS (continued)
section specifications 9-31
section type 9-31
specifying 2-16, 9-39 to 9-42
syntax 9-30
uninitialized sections 9-40
UNION 9-43 to 9-45
use with MEMORY directive 9-26

.set assembler directive 4-21, 4-72

.setsect assembler directive 10-8

.setsym assembler directive 10-8

sign extend, defined E-7

simulator, defined E-7

sname SECTIONS specification 12-23

source
file

defined E-7
specifying algebraic instructions 3-5

listings 3-28 to 3-31
statement

field 3-29
number 3-28
syntax 3-9

source statement
format 3-10 to 3-12
number in source listing 3-28

.space assembler directive 4-11, 4-73

SPC
aligning

by creating a hole 9-59
to word boundaries 4-15 to 4-16, 4-27

assembler symbol 3-10
assembler’s effect on 2-9 to 2-11
assigning a label to 3-10
defined E-7
described 2-8
linker symbol 9-56, 9-59
maximum number of 2-8
predefined symbol for 3-17
value

associated with labels 3-10
shown in source listings 3-28

–spc hex conversion utility option 12-29

–spce hex conversion utility option 12-29

special section types 9-54

special symbols A-16 to A-17

.sslist assembler directive
described 4-18
listing control 4-17, 4-38
reference 4-74
use in macros 7-21

.ssnolist assembler directive
described 4-18
listing control 4-17, 4-38
reference 4-74
use in macros 7-21

.stack 9-18, 9-19, 9-66

–stack linker option 9-18, 9-66

__STACK_SIZE 9-18, 9-58

.stag
assembler directive 4-22, 4-77
symbolic debugging directive B-9

static
defined E-7
symbols 9-12
variables A-14

storage class
defined E-7
described A-19

.string assembler directive
compatibility with C1x/C2x/C2xx/C5x 4-7
described 4-13
limiting listing with the .option directive 4-17,

4-66
reference 4-76

string functions 7-9

string table
defined E-7
described A-18

stripping
line number entries 9-17
symbolic information 9-17

.struct assembler directive 4-22, 4-77

structure
.tag 4-22, 4-77
defined E-7
definitions A-25, B-9

style and symbol conventions, v

subsection, defined E-8

subsections
initialized 2-6
overview 2-8
uninitialized 2-5

Index

Index-14

substitution symbols
arithmetic operations on 4-21, 7-8
as local variables in macros 7-13
assigning character strings to 3-18, 4-21
built-in functions 7-9
described 3-18
directives that define 7-8 to 7-9
expansion listing 4-18, 4-74
forcing substitution 7-11
in macros 7-6 to 7-13
maximum number per macro 7-6
passing commas and semicolons 7-6
recursive substitution 7-10
subscripted substitution 7-12 to 7-13
.var macro directive 7-13

–swwsr hex conversion utility option 12-29

.sym symbolic debugging directive B-11

symbol
attributes 3-32
defined E-8
definitions A-17
names A-18
table

creating entries 2-19
defined E-8
described 2-19
entry from .sym directive B-11
index A-10
placing unresolved symbols in 9-18, 9-19
special symbols used in A-16 to A-17
stripping entries 9-17
structure and content A-14 to A-28
values A-20

unresolved 9-18, 9-19

symbolic constants 3-17

symbolic debugging
–b linker option 9-10
defined E-8
disable merge for linker 9-10
enumeration definitions B-9
file identification B-4
function definitions B-5
line-number entries B-7
member definitions B-8
producing error messages in macros 7-19
–s assembler option 3-5

symbolic debugging (continued)
stripping symbolic information 9-17
structure definitions B-9
symbols B-11
table structure and content A-14 to A-28
union definitions B-9

symbols
assigning values to

at link time 9-55 to 9-58
described 4-22
reference 4-72

case 3-4
character strings 3-15
cross-reference lister 11-6
cross-reference listing 3-32
defined

by the assembler 2-18 to 2-20, 3-4
by the linker 9-58
only for C support 9-58

described 2-18 to 2-20, 3-16
external 2-18, 4-47
global 9-12
number of statements that reference 3-32
predefined 3-17
relocatable symbols in expressions 3-26
reserved words 9-23
setting to a constant value 3-16
statement number that defines 3-32
substitution 3-18
used as labels 3-16
value assigned 3-32

syntax
assignment statements 9-55
source statement 3-9

.sysmem section 9-12
__SYSMEM_SIZE 9-12, 9-58
system stack 9-18, 9-66

T
–t

archiver command 8-4
hex conversion utility option 12-42

.tab assembler directive 4-18, 4-80
tag, defined E-8
.tag assembler directive 4-22, 4-77
target memory, defined E-8
target width 12-10
–tcsr hex conversion utility option 12-29

Index

Index-15

Tektronix object format 12-43

.text
assembler directive

described 2-4, 4-9
linker definition 9-58
reference 4-81

defined E-8
section 4-9, 4-81, A-3

TI-Tagged object format 12-42

.title assembler directive 4-18, 4-82

translator
described 13-2
development flow 13-3
input files 13-2
invoking 13-4
limitations 13-2
modes 13-5 to 13-7
options 13-4
output files 13-2

–trta hex conversion utility option 12-29

type entry A-21

U
–u linker option 9-18

unconfigured memory
defined E-8
described 9-27
DSECT type 9-54

underflow in an expression 3-24

uninitialized, subsection 2-5

uninitialized section
.bss 2-5
.usect 2-5
.bss section 4-30
defined E-8
described 2-4 to 2-5, 9-59
initialization of 9-62
specifying a run address 9-40
.usect section 4-83

UNION
defined E-8
linker directive 9-43 to 9-45

union
defined E-8
symbolic debugging directives B-9

unsigned, defined E-8

.usect assembler directive
compatibility with C1x/C2x/C2xx/C5x 4-7
described 2-4, 4-9
reference 4-83

.utag symbolic debugging directive B-9

V
–v

archiver option 8-5
linker option 9-19

.var macro directive
described 7-13
listing control 4-17, 4-38

variables, local, substitution symbols used as 7-13

.vectors 9-32

.version assembler directive 4-86

W
W MEMORY attribute 9-28

–w option, linker 9-19

well-defined expression
defined E-8
described 3-25

.width assembler directive
described 4-18
listing control 4-17, 4-38
reference 4-54

.wmsg
assembler directive

described 4-24
listing control 4-17, 4-38

macro directive 7-19

word
alignment 4-27
defined E-8

.word assembler directive
described 4-13
limiting listing with the .option directive 4-17,

4-66
reference 4-52

Index

Index-16

X
–x

archiver command 8-4
assembler option 3-5, 3-32
hex conversion utility option 12-43
linker option 9-20

X MEMORY attribute 9-28
.xfloat assembler directive

described 4-12
reference 4-46

.xlong assembler directive
described 4-13
reference 4-57

xref500 command 11-3

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright  1997, Texas Instruments Incorporated

