
TMS320C54x Simulator
Getting Started Guide

Literature Number: SPRU137B
Manufacturing Part Number: 2617683-9741 revision C

November 1996

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright  1996, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

The TMS320C54x Simulator Getting Started Guide tells you how to install the
TMS320C54x simulator debugging tools on your system. It also gives you the
following information:

� How to set environment variables for parameters that you use often

� How to verify the software installation

� How to define and use a memory map for the TMS320C54x to simulate
ports

How to Use This Manual

The goal of this book is to get you started using the simulator specifically
designed for the TMS320C54x. Following are the topics covered in this getting
started guide:

For information about … See …

Setting up the debugger on a PC running Windows 3.1: installing
the simulator and debugger software, setting environment variables,
and verifying the installation

Chapter 1

Setting up the debugger on a SPARCstation running SunOS :
installing the simulator and debugger software, setting environment
variables, and verifying the installation

Chapter 2

Setting up the debugger on a an HP workstation running HP-UX :
installing the simulator and debugger software, setting environment
variables, and verifying the installation

Chapter 3

Release notes and enhancements Chapter 4

Defining and using a memory map for the TMS320C54x to simulate
ports

Chapter 5

Notational Conventions

iv

Notational Conventions

� The abbreviation ’C54x refers to any and all TMS320C54x devices except
where individually noted. The devices are:

TMS320C541 TMS320C542 TMS320C543 TMS320C545
TMS320C546 TMS320C548 TMS320C545LP TMS320LC541
TMS320LC542 TMS320LC543 TMS320LC545 TMS320LC546
TMS320LC548 TMS320VC541 TMS320VC542 TMS320VC543
TMS320VC545 TMS320VC546 TMS320VC548

� Program listings, program examples, and interactive displays are shown
in a special typeface . Examples use a bold version of the
special typeface for emphasis; interactive displays use a bold version
of the special typeface to distinguish commands that you enter from items
that the system displays (such as prompts, command output, error
messages, etc.).

Here is an example of a command that you might enter:

cd /cdrom/hp

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a command syntax:

wd index number [, window name]

wd is the command. This command has two parameters, index number
and window name.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of a command
that has an optional parameter:

emurst [options]

This command allows you to specify one or more options.

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

map { on | off }

This provides two choices: map on or map off .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

 Related Documentation From Texas Instruments

v Read This First

Related Documentation From Texas Instruments

The following books describe the TMS320C54x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477–8924. When ordering,
please identify the book by its title and literature number.

TMS320C5xx C Source Debugger User’s Guide (literature number
SPRU099) tells you how to invoke the ’C54x emulator, EVM, and
simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C54x Assembly Language Tools User’s Guide (literature number
SPRU102) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C54x generation of devices.

TMS320C54x Optimizing C Compiler User’s Guide (literature number
SPRU103) describes the ’C54x C compiler. This C compiler accepts
ANSI standard C source code and produces TMS320 assembly
language source code for the ’C54x generation of devices.

Related Documentation From Texas Instruments

vi

TMS320C54x DSP Reference Set is composed of four volumes that can be
ordered as a set with literature number SPRU210. To order an individual
book, use the document-specific literature number:

TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals
(literature number SPRU131) describes the TMS320C54x 16-bit,
fixed-point, general-purpose digital signal processors. Covered
are its architecture, internal register structure, data and program
addressing, the instruction pipeline, DMA, and on-chip
peripherals. Also includes development support information, parts
lists, and design considerations for using the XDS510 emulator.

TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction
Set (literature number SPRU172) describes the TMS320C54x
digital signal processor mnemonic instructions individually. Also
includes a summary of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction
Set (literature number SPRU179) describes the TMS320C54x
digital signal processor algebraic instructions individually. Also
includes a summary of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 4: Applications Guide
(literature number SPRU173) describes software and hardware
applications for the TMS320C54x digital signal processor. Also
includes development support information, parts lists, and design
considerations for using the XDS510 emulator.

 Trademarks

vii Read This First

Trademarks

320 Hotline On-line is a trademark of Texas Instruments Incorporated.

HP, HP-UX, HP 9000 Series 700, and PA-RISC are trademarks of
Hewlett-Packard Company.

IBM, PC, PC/AT, and PC-DOS are trademarks of International Business
Machines Corp.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft
Corporation.

OpenWindows, SunOS, Solaris, Sun Type 4, and Sun Type 5 are trademarks
of Sun Microsystems, Inc.

SPARC and SPARCstation are trademarks of SPARC International, Inc. and
are licensed exclusively to Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

X Window System is a trademark of the Massachusetts Institute of
Technology.

If You Need Assistance

viii

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.html

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/mirrors/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the book.

 Contents

ix

Contents

1 Installing the Simulator and C Source Debugger With Windows 3.1 1-1.
Lists the hardware and software you need to install the simulator and C source debugger;
provides installation instructions for PC systems running Windows 3.1.

1.1 System Requirements 1-2.
Hardware checklist 1-2.
Software checklist 1-3.

1.2 Step 1: Installing the Simulator and Debugger Software 1-4.
1.3 Step 2: Setting Up the Debugger Environment 1-5.

Modifying the PATH statement 1-6.
Setting up the environment variables 1-6.
Invoking the modified or new batch file 1-7.

1.4 Step 3: Verifying the Installation 1-8.

2 Installing the Simulator and C Source Debugger With SunOS 2-1.
Lists the hardware and software you need to install the simulator and C source debugger;
provides installation instructions for SPARCstations running SunOS.

2.1 System Requirements 2-2.
Hardware checklist 2-2.
Software checklist 2-2.

2.2 Step 1: Installing the Simulator and Debugger Software 2-4.
Mounting the CD-ROM 2-4.
Copying the files 2-5.
Unmounting the CD-ROM 2-5.

2.3 Step 2: Setting Up the Debugger Environment 2-6.
Modifying the path statement 2-6.
Setting up the environment variables 2-6.
Reinitializing your shell 2-8.

2.4 Step 3: Verifying the Installation 2-9.
2.5 Using the Debugger With the X Window System 2-10.

Using the special keys on the keyboard 2-10.
Changing the debugger font 2-11.
Color mappings on monochrome screens 2-11.

Contents

x

3 Installing the Simulator and C Source Debugger With HP-UX 3-1.
Lists the hardware and software you need to install the simulator and C source debugger;
provides installation instructions for HP workstations running HP-UX.

3.1 System Requirements 3-2.
Hardware checklist 3-2.
Software checklist 3-3.

3.2 Step 1: Installing the Simulator and Debugger Software 3-4.
Mounting the CD-ROM 3-4.
Copying the files and setting up the simulator 3-4.
Unmounting the CD-ROM 3-5.

3.3 Step 2: Setting Up the Debugger Environment 3-6.
Modifying the path statement 3-6.
Setting up the environment variables 3-6.
Reinitializing your shell 3-8.

3.4 Step 3: Verifying the Installation 3-9.
3.5 Using the Debugger With the X Window System 3-10.

Using the special keys on the keyboard 3-10.
Changing the debugger font 3-11.
Color mappings on monochrome screens 3-11.

4 Release Notes 4-1.
Details the features added or changed for this release.

COFF version 2 4-1.
Multiple MEMORY windows 4-1.
Multiple WATCH windows 4-2.
New and updated debugger commands 4-3.
Changes to the TMS320C5xx C Source Debugger User’s Guide 4-4.

5 Defining a Memory Map 5-1.
Provides instructions for defining and using a memory map to simulate ’C54x ports. The
memory map tells the debugger which areas of memory it can and cannot access. This chapter
replaces Chapter 6, Defining a Memory Map, in the TMS320C5xx C Source Debugger User’s
Guide.

5.1 The Memory Map: What It Is and Why You Must Define It 5-2.
Defining the memory map in a batch file 5-2.
Potential memory map problems 5-3.

5.2 A Sample Memory Map 5-4.
5.3 Identifying Usable Memory Ranges 5-5.

Notes on using the MA command 5-6.
Memory mapping with the simulator (PCs only) 5-8.

5.4 Customizing the Memory Map 5-9.
Mapping on-chip dual-access RAM from data memory to program memory 5-10.
Simulating data memory (ROM) 5-10.
Programming your memory 5-11.

 Contents

xi Contents

5.5 Enabling Memory Mapping 5-12.
5.6 Checking the Memory Map 5-13.
5.7 Modifying the Memory Map During a Debugging Session 5-14.

Returning to the original memory map 5-15.
5.8 Using Multiple Memory Maps for Multiple Target Systems (Emulator Only) 5-16.
5.9 Simulating I/O Space (Simulator Only) 5-17.

Connecting an I/O port 5-17.
Disconnecting an I/O port 5-21.

5.10 Simulating External Interrupts (Simulator Only) 5-22.
Setting up your input file 5-22.
Programming the simulator 5-24.

5.11 Simulating Peripherals (Simulator Only) 5-26.
5.12 Simulating Standard Serial Ports (Simulator Only) 5-27.

Setting up your transmit and receive operations 5-28.
Connecting I/O files 5-29.
Programming the simulator 5-30.

5.13 Simulating Buffered Serial Ports (Simulator Only) 5-31.
Setting up your transmit and receive operations 5-32.
Connecting I/O files 5-33.
Programming the simulator 5-33.

5.14 Simulating TDM Serial Ports (Simulator Only) 5-34.
Setting up your transmit and receive operations 5-35.
Connecting I/O files 5-36.
Programming the simulator 5-36.

Examples

xii

Examples

5–1 Sample Initialization Batch File for Use With the TMS320C54x Simulator 5-4.
5–2 Sample Memory Map for the TMS320C54x Using Memory Cache Capabilities 5-8.
5–3 Connecting Input and Output Ports to Input or Output Files 5-19.
5–4 Connecting an Input Port to an Input File 5-20.
5–5 Using the PINC Command to Connect the Input File 5-24.

1-1Installing the Simulator and C Source Debugger With Windows 3.1

Installing the Simulator and
C Source Debugger With Windows 3.1

This chapter helps you install the TMS320C54x simulator and the C source
debugger on PC systems running Microsoft Windows 3.1. After completing
the installation, see the TMS320C5xx C Source Debugger User’s Guide for
instructions on using the debugger.

With Windows, you can freely move or resize the debugger display on the
screen. If the resized display is bigger than the debugger requires, the extra
space is not used. If the resized display is smaller than the debugger requires,
the display is clipped. When the display is clipped, it cannot be scrolled.

You may want to create an icon to make it easier to invoke the debugger from
within the Windows environment. Refer to your Windows manual for details.

You should run Windows in either the standard mode or the 386-enhanced
mode to get the best results when using the ’C54x simulator.

Topic Page

1.1 System Requirements 1-2.

1.2 Step 1: Installing the Simulator and Debugger Software 1-4.

1.3 Step 2: Setting Up the Debugger Environment 1-5.

1.4 Step 3: Verifying the Installation 1-8.

Chapter 1

System Requirements

 1-2

1.1 System Requirements

The following checklists detail items that are shipped with the ’C54x C source
debugger and simulator and any additional items you need to use these tools.

Hardware checklist

Host An IBM PC/AT or 100% compatible ISA/EISA-based PC with
a hard-disk system and a 1.2M-byte floppy-disk drive; a 386 or high-
er is highly recommended

Memory Minimum of 640K bytes and at least 256K bytes of extended
memory

Monitor Monochrome or color monitor (color recommended)

Optional hardware A Microsoft-compatible mouse

An EGA- or VGA-compatible graphics display card and a large
(17-inch or 19-inch) monitor. The debugger has several options that
allow you to change the overall size of the debugger display. To use
a larger screen size, you must invoke the debugger with the ap-
propriate option. For more information about options, see the in-
vocation information in the TMS320C5xx C Source Debugger
User’s Guide.

Miscellaneous
materials

Blank, formatted disks

System Requirements

1-3Installing the Simulator and C Source Debugger With Windows 3.1

Software checklist

Operating system Windows version 3.1

Software tools ’C54x assembler and linker
Optional: ’C54x C compiler

Optional files
included with the
debugger package

siminit.cmd is a general-purpose batch file that contains debugger
commands. This batch file, shipped with the debugger, defines a
’C54x memory map. If this file is not present when you invoke the
debugger, then all memory is invalid at first. When you first start us-
ing the debugger, this memory map should be sufficient for your
needs. Later, you may want to define your own memory map. For
information about defining your own memory map, see Chapter 5,
Defining a Memory Map.

sim54x.cmd batch files (sim541.cmd, sim542.cmd, sim543.cmd,
sim545.cmd, sim546.cmd, sim548.cmd, and sim545lp.cmd) con-
tain commands that configure a memory map. Each file simulates
a different device—’C541, ’C542, ’C543, ’C545, ’C546, ’C548, or
’C545LP.

init.clr is a general-purpose screen configuration file. If init.clr isn’t
present when you invoke the debugger, the debugger uses the
default screen configuration.

init.25, init.43, and init.50 have been provided for basic 80�25,
80�43, and 80�50 screen sizes, respectively. The init.clr file
brings up the debugger in 80�25 mode. To bring up the debugger
in another mode, copy one of the init.xx files to the init.clr file. When
you first invoke the debugger, the default screen configuration
should be sufficient for your needs. Later, you may want to define
your own custom configuration.

The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors. When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration.

For information about these files and about setting up your own
screen configuration, see the information about customizing the de-
bugger display in the TMS320C5xx C Source Debugger User’s
Guide.

Step 1: Installing the Simulator and Debugger Software

 1-4

1.2 Step 1: Installing the Simulator and Debugger Software

This section explains how to install the simulator and debugger on a hard-disk
system.

1) Make a backup copy of each product disk.

2) On your hard disk or system disk, create a directory named sim54x. This
directory will contain the ’C54x software. Type:

MD C:\sim54x

3) Insert the debugger product disk into drive A. Copy the contents of the
disk:

COPY A:*.* C:\sim54x*.* /V

The Windows version of the debugger executable is called sim54xw.exe.

Step 2: Setting Up the Debugger Environment

1-5Installing the Simulator and C Source Debugger With Windows 3.1

1.3 Step 2: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must:

� Modify the PATH statement to identify the sim54x directory.

� Define environment variables so that the debugger can find the files it
needs.

Note:

Not only must you do these things before you invoke the debugger for the
first time, you must do them any time you power up or reboot your PC.

You can accomplish these tasks by entering individual DOS commands, but
it is simpler to put the commands in a batch file. You can edit your system’s
autoexec.bat file to accomplish these tasks. In some cases, however, modify-
ing the autoexec.bat may interfere with other applications running on your PC,
so you can create a separate batch file that performs these tasks.

Figure 1–1 (a) shows an example of an autoexec.bat file that contains the
suggested modifications (highlighted in bold type). Figure 1–1 (b) shows a
sample batch file that you could create instead of editing the autoexec.bat file.
For the purpose of discussion, assume that this sample file is named initdb.bat.
The subsections following the figure explain these modifications.

Figure 1–1. DOS-Command Setup for the Debugger

(a) Sample autoexec.bat file to use with the debugger and simulator

DATE

TIME

ECHO OFF

PATH=C:\DOS;C:\c5xxtool ;C:\sim54x

SET D_DIR=C:\sim54x

SET D_SRC=C:\c54xtool

SET D_OPTIONS=–b

SET C_DIR=C:\c54xcode

CLS

PATH statement

Environment
variables

(b) Sample batch file, initdb.bat, to use with the debugger and simulator

PATH=C:\sim54x;%PATH%

SET D_DIR=C:\sim54x

SET D_SRC=C:\c54xcode

SET D_OPTIONS=–b

PATH statement

Environment
variables

Step 2: Setting Up the Debugger Environment

 1-6

Modifying the PATH statement

Define a path to the debugger directory. The general format for doing this is:

PATH=C:\sim54x

This allows you to invoke the debugger without specifying the name of the di-
rectory that contains the debugger executable file.

� If you are modifying an autoexec.bat that already contains a PATH state-
ment, simply include ;C:\sim54x at the end of the statement, as shown in
Figure 1–1 (a).

� If you are creating an initdb.bat file, use a different format for the PATH
statement:

PATH=C:\sim54x;%PATH%

The addition of ;%path% ensures that this PATH statement will not undo
PATH statements in any other batch files (including the autoexec.bat file).

Setting up the environment variables

An environment variable is a special system symbol that a program uses for
finding or obtaining certain types of information. The debugger uses three en-
vironment variables, named D_DIR, D_SRC, and D_OPTIONS. Set up these
environment variables in your batch file as described in the following list. The
format for doing this is the same whether you edit the autoexec.bat file or
create an initdb.bat file.

� Identify the sim54x directory with D_DIR. Enter:

SET D_DIR=C:\sim54x

(Be careful not to precede the equal sign with a space.)

This directory contains auxiliary files (such as siminit.cmd) that the debug-
ger needs.

� Identify with D_SRC any directories that contain program source files that
you want to look at while you are debugging code. The general format for
doing this is:

SET D_SRC=pathname1;pathname2...

(Be careful not to precede the equal sign with a space.)

For example, if your ’C54x programs were in a directory named csource on
drive C, the D_SRC setup would be:

SET D_SRC=C:\CSOURCE

Step 2: Setting Up the Debugger Environment

1-7Installing the Simulator and C Source Debugger With Windows 3.1

� Identify with D_OPTIONS the invocation options that you want to use
regularly. Use this format:

SET D_OPTIONS= [filename] [options]

(Be careful not to precede the equal sign with a space.)

The filename identifies the optional object file for the debugger to load, and
options list the options you want to use at invocation. These are the op-
tions that you can identify with D_OPTIONS:

Option Brief Description

–b Select a screen size of 80 characters by 43 lines
(EGA or VGA)

–bb Select a screen size of 80 characters by 50 lines
(VGA only)

–bl# Select a screen length of # lines (default is 25)

–bw# Select a screen width of # characters (default is
80)

–i pathname Identify additional directories

–min Select the minimal debugging mode

–mv version Specify the memory map to use with the simulator

–profile Enter profiling environment

–s Load the symbol table only

–t filename Identify a new initialization file

–v Load without the symbol table

You can override D_OPTIONS by invoking the debugger with the –x op-
tion.

For more information about options, see the invocation instructions in the
TMS320C5xx C Source Debugger User’s Guide.

Invoking the modified or new batch file

� If you modify the autoexec.bat file, be sure to invoke it before invoking the
debugger for the first time. To invoke this file, enter:

AUTOEXEC

� If you create an initdb.bat file, you must invoke it before entering Windows.
You must invoke initdb.bat any time that you power up or reboot your PC.
To invoke this file, enter:

INITDB

Step 3: Verifying the Installation

 1-8

1.4 Step 3: Verifying the Installation

To ensure that you have correctly installed the simulator and debugger soft-
ware, follow these steps:

1) Start Windows.

2) In the Program Manager or File Manager, select Run... from the File menu.

3) In the Command Line field of the Run dialog box, enter:

c:\sim54x\sim54xw sample

You should see a display similar to this one:

DISASSEMBLY

MEMORYCOMMAND

>>>

C54x Debugger Version 2.15b

Copyright (c) 1989–1996 Texas Ins

Loading sample.out

 35 Symbols loaded

Done

AG 00 AHL 00000000

BG 00 BHL 00000000

PC 0119 SP 0000

AR0 0000 AR1 0000

AR2 0000 AR3 0000

AR4 0000 AR5 0000

AR6 0000 AR7 0000

BK 0000 BRC 0000

RSA 0000 REA 0000

ST0 1800 ST1 2900

IMR 0000 IFR 0000

T 0000 TRN 0000

PMST ffc0 RPTC 0000

0119 7718 c_int00: SIM #0011dh,SP

011b 6bf8 ADDM 003ffh,*(SP)

011e 68f8 ANDM 0fffeh,*(SP)

0121 f7b8 SSBX SXM

0122 f7be SSBX CPL

0123 f020 LD #00173h,0,A

0125 f100 ADD #00001h,0,A,B

0127 f84d BC 0013ch,BEQ

0129 f073 B 00136h

012b 7ef8 READA *(AR2)

012d f000 ADD #00001h,0,A,A

012f 47f8 RPT *(AR1)

0131 7e92 READA *AR2+

0132 00f8 ADD #(AR1),A

0134 f000 ADD #00001h,0,A,A

0000 0000 0000 0000 0000 0000 0000 1800

0007 2900 0000 0000 0000 0000 0000 0000

000e 0000 0000 0000 0000 0000 0000 0000

0015 0000 0000 0000 0000 0000 0000 0000

001c 0000 ffc0 0000 0000 0000 0000 0000

0023 0000 ffff ffff 0000 0000 0000 0000

Load Break Watch Memory MoD e Run=F5 Step=F8 Next=F10Color

CPU

Analys Pin

If you do not see a display, then your debugger or simulator may not be
installed properly. Go back through the installation instructions and be sure
that you have followed each step correctly, then reenter the command above.

2-1Installing the Simulator and C Source Debugger With SunOS

Installing the Simulator and
C Source Debugger With SunOS

This chapter helps you install the TMS320C54x simulator and the C source
debugger on a SPARCstation running SunOS. After completing the installa-
tion, see the TMS320C5xx C Source Debugger User’s Guide for instructions
on using the debugger.

Topic Page

2.1 System Requirements 2-2.

2.2 Step 1: Installing the Simulator and Debugger Software 2-4.

2.3 Step 2: Setting Up the Debugger Environment 2-6.

2.4 Step 3: Verifying the Installation 2-9.

2.5 Using the Debugger With the X Window System 2-10.

Chapter 2

System Requirements

 2-2

2.1 System Requirements

The following checklists detail items that are shipped with the ’C54x C source
debugger and simulator and additional items you need to use these tools.

Hardware checklist

Host A SPARCstation or a system that is 100% compatible with a
SPARCstation 2 class or higher

Monitor Monochrome or color monitor (color recommended)

Disk space 2M bytes of disk space

Required hardware CD-ROM drive

Optional hardware Mouse

Software checklist

Operating system SunOS version 4.1.3 (or higher) or SunOS version 5.x (also known
as Solaris 2.x) using an X Window System type window manager,
such as OpenWindows version 3.0 (or higher). If you are using
SunOS 5.x, you must have the Binary Compatibility Package (BCP)
installed; if you don’t, get your system administrator’s help.

Root privileges If you are running SunOS 4.1.x, 5.0, or 5.1, you must have root
privileges to mount and unmount the CD-ROM. If you do not have
root privileges, get help from your system administrator.

Software tools ’C54x assembler and linker
Optional: ’C54x C compiler

Optional files
included with the
debugger package

siminit.cmd is a general-purpose batch file that contains debugger
commands. This batch file, shipped with the debugger, defines a
’C54x memory map. If this file is not present when you invoke the
debugger, then all memory is invalid at first. When you first start us-
ing the debugger, this memory map should be sufficient for your
needs. Later, you may want to define your own memory map. For
information about defining your own memory map, see Chapter 5,
Defining a Memory Map.

sim54x.cmd batch files (sim541.cmd, sim542.cmd, sim543.cmd,
sim545.cmd, sim546.cmd, sim548.cmd, and sim545lp.cmd) con-
tain commands that configure a memory map. Each file simulates
a different device—’C541, ’C542, ’C543, ’C545, ’C546, ’C548, or
’C545LP.

init.clr is a general-purpose screen configuration file. If init.clr isn’t
present when you invoke the debugger, the debugger uses the
default screen configuration.

System Requirements

2-3Installing the Simulator and C Source Debugger With SunOS

init.25, init.43, and init.50 have been provided for basic 80�25,
80�43, and 80�50 screen sizes, respectively. The init.clr file
brings up the debugger in 80�25 mode. To bring up the debugger
in another mode, copy one of the init.xx files to the init.clr file. When
you first invoke the debugger, the default screen configuration
should be sufficient for your needs. Later, you may want to define
your own custom configuration.

The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors. When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration.

For information about these files and about setting up your own
screen configuration, see the information about customizing the de-
bugger display in the TMS320C5xx C Source Debugger User’s
Guide.

Step 1: Installing the Simulator and Debugger Software

 2-4

2.2 Step 1: Installing the Simulator and Debugger Software

This section explains how to install the simulator and debugger software on
your hard-disk system. The software package is shipped on a CD-ROM. To
install the software, you must mount the CD-ROM, copy the files, and unmount
the CD-ROM.

Note:

If you are running SunOS 4.1.x, 5.0, or 5.1, you must have root privileges to
mount or unmount the CD-ROM. If you do not have root privileges, get help
from your system administrator.

Mounting the CD-ROM

The steps to mount the CD-ROM vary according to your operating system
version:

� If you have a SunOS 4.1.x, load the CD-ROM into the drive. As root, enter
the following from a command shell:

mount –rt hsfs /dev/sr0 /cdrom
exit
cd /cdrom/sparc

� If you have SunOS 5.0 or 5.1, load the CD-ROM into the drive. As root,
enter the following from a command shell:

mount –rF hsfs /dev/sr0 /cdrom
exit
cd /cdrom/cdrom0/sparc

� If you have SunOS 5.2 or higher:

� If your CD-ROM drive is already attached, load the CD-ROM into the
drive and enter the following from a command shell:

cd /cdrom/cdrom0/sparc

� If you do not have a CD-ROM drive attached, you must shut down your
system to the PROM level, attach the CD-ROM drive, and enter the
following:

boot –r

After you log into your system, load the CD-ROM into the drive and
enter the following from a command shell:

cd /cdrom/cdrom0/sparc

Step 1: Installing the Simulator and Debugger Software

2-5Installing the Simulator and C Source Debugger With SunOS

Copying the files

After you have mounted the CD-ROM, you must create the directory that will
contain the debugger software and copy the software to that directory.

1) Create a directory named sim54x on your hard disk. To create this
directory, enter:

mkdir / your_pathname /sim54x

2) Copy the files from the CD-ROM to your hard-disk system:

cp –r * / your_pathname /sim54x

Unmounting the CD-ROM

You must unmount the CD-ROM after copying the files.

� If you have SunOS 4.1.x, 5.0, or 5.1, as root, enter the following from a
command shell:

cd
umount /cdrom
eject /dev/sr0
exit

� If you have SunOS 5.2 or higher, enter the following from a command
shell:

cd
eject

Step 2: Setting Up the Debugger Environment

 2-6

2.3 Step 2: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must:

� Modify the shell path variable to include the sim54x directory.

� Define environment variables so that the debugger can find the files it
needs.

� Reinitialize your shell.

Modifying the path statement

You must include the debugger directory in your shell path. To do this, you must
modify the shell configuration file in your home directory (for example, the
.cshrc file for a C shell). This file must include the pathname to your sim54x
directory in your path if it is not already there. The following statement is an
example of what a typical path-variable definition looks like:

set path = (. /bin /usr/ucb /usr/contrib/bin /usr/bin \
/usr/openwin/bin)

Following is an example of that path variable modified to include the pathname
to sim54x. The part of the path in bold type is the modification:

set path = (. /bin /usr/ucb /usr/contrib/bin /usr/bin \
/usr/openwin/bin /user/fred/sim54x)

You would use the path to your home directory in place of /user/fred .

Setting up the environment variables

An environment variable is a special system symbol that a program uses for
finding or obtaining certain types of information. The debugger uses four envi-
ronment variables, named D_DIR, D_SRC, D_OPTIONS, and DISPLAY (X
Window System only). You can set up these environment variables in your
shell configuration file. Follow these steps to set up the environment variables:

� Identify the sim54x directory with D_DIR. This directory contains auxiliary
files (such as siminit.cmd) that the debugger needs. The general format
for doing this is:

setenv D_DIR ” pathname”

For example, if the files are in a directory named /user/fred/sim54x, the
D_DIR setup would be:

setenv D_DIR ”/user/fred/sim54x”

(Be sure to enclose the directory name within quotes.)

Step 2: Setting Up the Debugger Environment

2-7Installing the Simulator and C Source Debugger With SunOS

� Identify with D_SRC any directories that contain program source files that
you want to look at while you are debugging code. The general format for
doing this is:

setenv D_SRC ” pathname1;pathname2...”

(Be sure to enclose the path names within one set of quotes.)

For example, if your ’C54x programs were in a directory named /user/fred/
c54xsource, the D_SRC setup would be:

setenv D_SRC ”/user/fred/c54xsource”

� Identify with D_OPTIONS the invocation options that you want to use
regularly. Use this format:

setenv D_OPTIONS ” [filename] [options]”

(Be sure to enclose the filename and options within one set of quotes.)

The filename identifies the optional object file for the debugger to load, and
options list the options you want to use at invocation. These are the op-
tions that you can identify with D_OPTIONS:

Option Brief Description

–b Select a screen size of 80 characters by 43 lines
(EGA or VGA)

–bb Select a screen size of 80 characters by 50 lines
(VGA only)

–d machine name Display debugger on a different machine

–i pathname Identify additional directories

–min Select the minimal debugging mode

–mv version Specify the memory map to use with the simulator

–profile Enter profiling environment

–s Load the symbol table only

–t filename Identify a new initialization file

–v Load without the symbol table

You can override D_OPTIONS by invoking the debugger with the –x op-
tion.

For more information about options, see the invocation instructions in the
TMS320C5xx C Source Debugger User’s Guide.

Step 2: Setting Up the Debugger Environment

 2-8

� If you are using the X Window System, you can display the debugger on
a different machine than the one the parallel debug manager and simula-
tor core are running on. To do so, you need to set up two environment vari-
ables:

� Be sure that the LD_LIBRARY_PATH environment variable is set to
the following:

LD_LIBRARY_PATH $OPENWINHOME/lib

If the LD_LIBRARY_PATH variable is not set correctly, use this com-
mand:

setenv LD_LIBRARY_PATH ”$OPENWINHOME/lib”

� Set up the DISPLAY environment variable. The general format for
doing this is:

setenv DISPLAY ” machinename”

You can also specify a different machine by using the –d debugger op-
tion (see the TMS320C5xx C Source Debugger User’s Guide for more
information). If you use both the DISPLAY environment variable and
–d, the –d option overrides DISPLAY.

Reinitializing your shell

When you modify your shell configuration file, you must ensure that the
changes are made to your current session. For example, if you are using a C
shell, use this command to reread the .cshrc file:

source ~/.cshrc

Step 3: Verifying the Installation

2-9Installing the Simulator and C Source Debugger With SunOS

2.4 Step 3: Verifying the Installation

To ensure that you have correctly installed the simulator and debugger soft-
ware, enter this command at the system prompt:

sim54x sample

You should see a display similar to this one:

DISASSEMBLY

MEMORYCOMMAND

>>>

C54x Debugger Version 2.15b

Copyright (c) 1989–1996 Texas Ins

Loading sample.out

 35 Symbols loaded

Done

AG 00 AHL 00000000

BG 00 BHL 00000000

PC 0119 SP 0000

AR0 0000 AR1 0000

AR2 0000 AR3 0000

AR4 0000 AR5 0000

AR6 0000 AR7 0000

BK 0000 BRC 0000

RSA 0000 REA 0000

ST0 1800 ST1 2900

IMR 0000 IFR 0000

T 0000 TRN 0000

PMST ffc0 RPTC 0000

0119 7718 c_int00: SIM #0011dh,SP

011b 6bf8 ADDM 003ffh,*(SP)

011e 68f8 ANDM 0fffeh,*(SP)

0121 f7b8 SSBX SXM

0122 f7be SSBX CPL

0123 f020 LD #00173h,0,A

0125 f100 ADD #00001h,0,A,B

0127 f84d BC 0013ch,BEQ

0129 f073 B 00136h

012b 7ef8 READA *(AR2)

012d f000 ADD #00001h,0,A,A

012f 47f8 RPT *(AR1)

0131 7e92 READA *AR2+

0132 00f8 ADD #(AR1),A

0134 f000 ADD #00001h,0,A,A

0000 0000 0000 0000 0000 0000 0000 1800

0007 2900 0000 0000 0000 0000 0000 0000

000e 0000 0000 0000 0000 0000 0000 0000

0015 0000 0000 0000 0000 0000 0000 0000

001c 0000 ffc0 0000 0000 0000 0000 0000

0023 0000 ffff ffff 0000 0000 0000 0000

Load Break Watch Memory MoD e Run=F5 Step=F8 Next=F10Color

CPU

Analys Pin

If you do not see a display, then your debugger or simulator may not be
installed properly. Go back through the installation instructions and be sure
that you have followed each step correctly, then reenter the command above.

Using the Debugger With the X Window System

 2-10

2.5 Using the Debugger With the X Window System

If you use the X Window System to run the ’C54x debugger, you need to know
about the keyboard’s special keys, the debugger font, and using the debugger
on a monochrome monitor.

Using the special keys on the keyboard

The debugger uses some special keys that you can map differently than your
particular keyboard. Some keyboards, such as the Sun Type 5 keyboard,
may have these special symbols on separate keys. Other keyboards, such as
the Sun Type 4 keyboard, do not have the special keys, but the functions are
available.

The special keys that the debugger uses are shown in the following table with
their corresponding keysym. A keysym is a label that interprets a keystroke;
it allows you to modify the action of a key on the keyboard.

Debugger Key Needed Keysym for That Function

F1 to F10 F1 to F10

PAGE UP Prior

PAGE DOWN Next

HOME Home

END End

INSERT Insert

→ Right

← Left

↑ Up

↓ Down

Use the X utility xev to check the keysyms associated with your keyboard. If
you need to change the keysym definitions, use the xmodmap utility. For ex-
ample, you could create a file that contains the following commands and use
that file with xmodmap to map a Sun Type 4 keyboard to the keys listed above:

keysym R13 = End
keysym Down = Down
keysym F35 = Next
keysym Left = Left
keysym Right = Right
keysym F27 = Home
keysym Up = Up
keysym F29 = Prior
keysym Insert = Insert

keysymkey code

Using the Debugger With the X Window System

2-11Installing the Simulator and C Source Debugger With SunOS

Refer to your X Window System documentation for more information about
using xev and xmodmap.

Changing the debugger font

You can change the font of the debugger screen by using the xrdb utility and
modifying the .Xdefaults file in your root directory. For example, to change the
’C54x debugger font to Courier, add the following line to the .Xdefaults file:

sim54x*font:courier

For more information about using xrdb to change the font, refer to your X
Window System documentation.

Color mappings on monochrome screens

Although a color monitor is recommended, you can use a monochrome moni-
tor. The following table shows the color mappings for monochrome screens:

Color
Appearance on

Monochrome Screen

black black

blue black

green white

cyan white

red black

magenta black

yellow white

white white

3-1Installing the Simulator and C Source Debugger With HP-UX

Installing the Simulator and C
Source Debugger With HP-UX

This chapter helps you install the TMS320C54x simulator and the C source
debugger on a HP 9000 series 700 PA-RISC system running HP-UX. After
completing the installation, see the TMS320C5xx C Source Debugger User’s
Guide for instructions on using the debugger.

Topic Page

3.1 System Requirements 3-2.

3.2 Step 1: Installing the Simulator and Debugger Software 3-4.

3.3 Step 2: Setting Up the Debugger Environment 3-6.

3.4 Step 3: Verifying the Installation 3-9.

3.5 Using the Debugger With the X Window System 3-10.

Chapter 3

System Requirements

 3-2

3.1 System Requirements

The following checklists detail items that are shipped with the ’C54x C source
debugger and simulator and additional items you need to use these tools.

Hardware checklist

Host An HP 9000 Series 700 PA-RISC system

Monitor Monochrome or color (color recommended)

Disk space 2M bytes of disk space

Required hardware CD-ROM drive

Optional hardware Mouse

System Requirements

3-3Installing the Simulator and C Source Debugger With HP-UX

Software checklist

Operating system HP-UX 9.x or later

Root privileges You must have root privileges to mount and unmount the CD-ROM.
If you do not have root privileges, get help from your system adminis-
trator.

Software tools ’C54x assembler and linker
Optional: ’C54x C compiler

Optional files
included with the
debugger package

siminit.cmd is a general-purpose batch file that contains debugger
commands. This batch file, shipped with the debugger, defines a
’C54x memory map. If this file is not present when you invoke the
debugger, then all memory is invalid at first. When you first start us-
ing the debugger, this memory map should be sufficient for your
needs. Later, you may want to define your own memory map. For
information about defining your own memory map, see Chapter 5,
Defining a Memory Map.

sim54x.cmd batch files (sim541.cmd, sim542.cmd, sim543.cmd,
sim545.cmd, sim546.cmd, sim548.cmd, and sim545lp.cmd) con-
tain commands that configure a memory map. Each file simulates
a different device—’C541, ’C542, ’C543, ’C545, ’C546, ’C548, or
’C545LP.

init.clr is a general-purpose screen configuration file. If init.clr isn’t
present when you invoke the debugger, the debugger uses the
default screen configuration.

init.25, init.43, and init.50 have been provided for basic 80�25,
80�43, and 80�50 screen sizes, respectively. The init.clr file
brings up the debugger in 80�25 mode. To bring up the debugger
in another mode, copy one of the init.xx files to the init.clr file. When
you first invoke the debugger, the default screen configuration
should be sufficient for your needs. Later, you may want to define
your own custom configuration.

The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors. When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration.

For information about these files and about setting up your own
screen configuration, see the information about customizing the de-
bugger display in the TMS320C5xx C Source Debugger User’s
Guide.

Step 1: Installing the Simulator and Debugger Software

 3-4

3.2 Step 1: Installing the Simulator and Debugger Software

This section explains how to install the simulator and debugger software on
your hard-disk system. The software package is shipped on a CD-ROM. To
install the software, you must mount the CD-ROM, copy the files, and unmount
the CD-ROM.

Note:

You must have root privileges to mount or unmount the CD-ROM. If you do
not have root privileges, get help from your system administrator.

Mounting the CD-ROM

As root, you can mount the CD-ROM using the UNIX mount command or the
SAM (system administration manager):

� To use the UNIX mount command, enter:

mount –rt cdfs /dev/dsk/ your_cdrom_device /cdrom
exit

Make the hp directory on the CD-ROM the current directory. For example,
if the CD-ROM is mounted at /cdrom, enter:

cd /cdrom/hp

� To use SAM to mount the CD-ROM, see the instructions in the HP docu-
mentation about SAM.

Copying the files and setting up the simulator

After you have mounted the CD-ROM, you must create the directory that will
contain the debugger software and copy the software to that directory.

1) Create a directory named sim54x on your hard disk. To create this
directory, enter:

mkdir sim54x

2) Make the hp directory on the CD-ROM the current directory. For example,
if the CD-ROM is mounted at /cdrom, enter:

cd /cdrom/hp

3) Copy the files from the CD-ROM to your hard-disk system:

cp –r * sim54x

Step 1: Installing the Simulator and Debugger Software

3-5Installing the Simulator and C Source Debugger With HP-UX

Unmounting the CD-ROM

You must unmount the CD-ROM after copying the files. As root, enter:

cd
umount /cdrom
exit

Step 2: Setting Up the Debugger Environment

 3-6

3.3 Step 2: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must:

� Modify the shell path variable to include the sim54x directory.

� Define environment variables so that the debugger can find the files it
needs.

� Reinitialize your shell.

Modifying the path statement

You must include the debugger directory in your shell path. To do this, you must
modify the shell configuration file in your home directory (for example, the
.cshrc file for a C shell). This file must include the pathname to your sim54x
directory in your path if it is not already there. The following statement is an
example of what a typical path-variable definition looks like:

set path = (. /bin /usr/ucb /usr/contrib/bin /usr/bin \
/usr/openwin/bin)

Following is an example of that path variable modified to include the pathname
to sim54x. The part of the path in bold type is the modification:

set path = (. /bin /usr/ucb /usr/contrib/bin /usr/bin \
/usr/openwin/bin /user/fred/sim54x)

You would use the path to your home directory in place of /user/fred .

Setting up the environment variables

An environment variable is a special system symbol that the debugger uses
for finding or obtaining certain types of information. The debugger uses four
environment variables, named D_DIR, D_SRC, D_OPTIONS, and DISPLAY
(X Window System only). You can set up these environment variables in your
shell configuration file. Follow these steps to set up the environment variables:

� Identify the sim54x directory with D_DIR. This directory contains auxiliary
files (such as siminit.cmd) that the debugger needs. The general format
for doing this is:

setenv D_DIR ” pathname”

For example, if the files are in a directory named /user/fred/sim54x, the
D_DIR setup would be:

setenv D_DIR ”/user/fred/sim54x”

(Be sure to enclose the directory name within quotes.)

Step 2: Setting Up the Debugger Environment

3-7Installing the Simulator and C Source Debugger With HP-UX

� Identify any directories that contain program source files that you want to
look at while you are debugging code with D_SRC. The general format for
doing this is:

setenv D_SRC ” pathname1;pathname2...”

(Be sure to enclose the path names within one set of quotes.)

For example, if your ’C54x programs were in a directory named /user/fred/
c54xsource, the D_SRC setup would be:

setenv D_SRC ”/user/fred/c54xsource”

� Identify with D_OPTIONS the invocation options that you want to use reg-
ularly. Use this format:

setenv D_OPTIONS ” [filename] [options]”

(Be sure to enclose the filename and options within one set of quotes.)

The filename identifies the optional object file for the debugger to load, and
options list the options you want to use at invocation. These are the op-
tions that you can identify with D_OPTIONS:

Option Brief Description

–b Select a screen size of 80 characters by 43 lines
(EGA or VGA)

–bb Select a screen size of 80 characters by 50 lines
(VGA only)

–d machine name Display debugger on a different machine

–i pathname Identify additional directories

–min Select the minimal debugging mode

–mv version Specify the memory map to use with the simulator

–profile Enter profiling environment

–s Load the symbol table only

–t filename Identify a new initialization file

–v Load without the symbol table

You can override D_OPTIONS by invoking the debugger with the –x op-
tion.

For more information about options, see the invocation instructions in the
TMS320C5xx C Source Debugger User’s Guide.

Step 2: Setting Up the Debugger Environment

 3-8

� If you are using the X Window System, you can display the debugger on
a different machine than the one the parallel debug manager and simula-
tor core are running on. To do so, you need to set up two environment vari-
ables:

� Be sure that the LD_LIBRARY_PATH environment variable is set to
the following:

LD_LIBRARY_PATH $OPENWINHOME/lib

If the LD_LIBRARY_PATH variable is not set correctly, use this com-
mand:

setenv LD_LIBRARY_PATH ”$OPENWINHOME/lib”

� Set up the DISPLAY environment variable. The general format for
doing this is:

setenv DISPLAY ” machinename”

You can also specify a different machine by using the –d debugger op-
tion (see the TMS320C5xx C Source Debugger User’s Guide for more
information). If you use both the DISPLAY environment variable and
–d, the –d option overrides DISPLAY.

Reinitializing your shell

When you modify your shell configuration file, you must ensure that the
changes are made to your current session. For example, if you are using a C
shell, use this command to reread the .cshrc file:

source ~/.cshrc

Step 3: Verifying the Installation

3-9Installing the Simulator and C Source Debugger With HP-UX

3.4 Step 3: Verifying the Installation

To ensure that you have correctly installed the simulator and debugger soft-
ware, enter this command at the system prompt:

sim54x sample

You should see a display similar to this one:

DISASSEMBLY

MEMORYCOMMAND

>>>

C54x Debugger Version 2.15b

Copyright (c) 1989–1996 Texas Ins

Loading sample.out

 35 Symbols loaded

Done

AG 00 AHL 00000000

BG 00 BHL 00000000

PC 0119 SP 0000

AR0 0000 AR1 0000

AR2 0000 AR3 0000

AR4 0000 AR5 0000

AR6 0000 AR7 0000

BK 0000 BRC 0000

RSA 0000 REA 0000

ST0 1800 ST1 2900

IMR 0000 IFR 0000

T 0000 TRN 0000

PMST ffc0 RPTC 0000

0119 7718 c_int00: SIM #0011dh,SP

011b 6bf8 ADDM 003ffh,*(SP)

011e 68f8 ANDM 0fffeh,*(SP)

0121 f7b8 SSBX SXM

0122 f7be SSBX CPL

0123 f020 LD #00173h,0,A

0125 f100 ADD #00001h,0,A,B

0127 f84d BC 0013ch,BEQ

0129 f073 B 00136h

012b 7ef8 READA *(AR2)

012d f000 ADD #00001h,0,A,A

012f 47f8 RPT *(AR1)

0131 7e92 READA *AR2+

0132 00f8 ADD #(AR1),A

0134 f000 ADD #00001h,0,A,A

0000 0000 0000 0000 0000 0000 0000 1800

0007 2900 0000 0000 0000 0000 0000 0000

000e 0000 0000 0000 0000 0000 0000 0000

0015 0000 0000 0000 0000 0000 0000 0000

001c 0000 ffc0 0000 0000 0000 0000 0000

0023 0000 ffff ffff 0000 0000 0000 0000

Load Break Watch Memory MoD e Run=F5 Step=F8 Next=F10Color

CPU

Analys Pin

If you do not see a display, then your debugger or simulator may not be
installed properly. Go back through the installation instructions and be sure
that you have followed each step correctly, then reenter the command above.

Using the Debugger With the X Window System

 3-10

3.5 Using the Debugger With the X Window System

If you use the X Window System to run the ’C54x debugger, you need to know
about the keyboard’s special keys, the debugger font, and using the debugger
on a monochrome monitor.

Using the special keys on the keyboard

The debugger uses some special keys that you can map differently than your
particular keyboard. Some keyboards, such as the Sun Type 5 keyboard, may
have these special symbols on separate keys. Other keyboards, such as the
Sun Type 4 keyboard, do not have the special keys, but the functions are avail-
able.

The special keys that the debugger uses are shown in the following table with
their corresponding keysym. A keysym is a label that interprets a keystroke;
it allows you to modify the action of a key on the keyboard.

Debugger Key Needed Keysym for That Function

F1 to F10 F1 to F10

PAGE UP Prior

PAGE DOWN Next

HOME Home

END End

INSERT Insert

→ Right

← Left

↑ Up

↓ Down

Use the X utility xev to check the keysyms associated with your keyboard. If
you need to change the keysym definitions, use the xmodmap utility. For ex-
ample, you could create a file that contains the following commands and use
that file with xmodmap to map a Sun Type 4 keyboard to the keys listed above:

keysym R13 = End
keysym Down = Down
keysym F35 = Next
keysym Left = Left
keysym Right = Right
keysym F27 = Home
keysym Up = Up
keysym F29 = Prior
keysym Insert = Insert

keysymkey code

Using the Debugger With the X Window System

3-11Installing the Simulator and C Source Debugger With HP-UX

Refer to your X Window System documentation for more information about
using xev and xmodmap.

Changing the debugger font

You can change the font of the debugger screen by using the xrdb utility and
modifying the .Xdefaults file in your root directory. For example, to change the
’C54x debugger font to Courier, add the following line to the .Xdefaults file:

sim54x*font:courier

For more information about using xrdb to change the font, refer to your X
Window System documentation.

Color mappings on monochrome screens

Although a color monitor is recommended, you can use a monochrome moni-
tor. The following table shows the color mappings for monochrome screens:

Color
Appearance on

Monochrome Screen

black black

blue black

green white

cyan white

red black

magenta black

yellow white

white white

4-1

Release Notes

This release of the TMS320C54x debugger contains general enhancements
as well as enhancements specific to the ’C54x simulator version of the debug-
ger. The following sections describe these enhancements.

COFF version 2

This release supports an expanded object file format called COFF2. The
debugger can handle COFF object files developed with assembly language
tools using the COFF0, COFF1, or COFF2 formats.

Multiple MEMORY windows

You can now open as many MEMORY windows as you want. The MEM
command has a new, optional window name parameter. When you open an
additional MEMORY window using the window name parameter, the debug-
ger appends the window name to the MEMORY window label. The new basic
syntax for the MEM command is:

mem expression [, display format] [, window name]

You can use the MEM command to:

� Open an additional MEMORY window
� Display a new memory range in an open MEMORY window

The window name parameter is optional if you are displaying a different
memory range in the default MEMORY window. Use the window name
parameter when you want to display a new memory range in one of the addi-
tional MEMORY windows.

Chapter 4

 4-2

Multiple WATCH windows

You can now access multiple WATCH windows. Use the window name param-
eter as described for each WATCH window command.

� The WA command has a new, optional window name parameter. When
you open a WATCH window using the window name parameter, the de-
bugger appends the window name to the WATCH window label. You can
create as many WATCH windows as you need. The basic syntax for the
WA command is:

wa expression [,[label] [, [display format] [, window name]]]

If you omit the window name parameter, the debugger displays the
expression in the default WATCH window (labeled WATCH).

� The WD command deletes a specific item from the WATCH window. The
WD command’s index number parameter must correspond to one of the
watch indexes listed in the WATCH window. The optional window name
parameter is used to specify a particular WATCH window. If you do not use
the window name parameter, the WD command deletes the item from the
default WATCH window. The basic syntax for the WD command is:

wd index number [, window name]

� The WR command deletes all items from a WATCH window and closes the
window.

� To close the default WATCH window, enter:

wr

� To close one of the additional WATCH windows, use this syntax:

wr window name

� To close all WATCH windows, enter:

wr *

Multiple WATCH Windows

4-3Release Notes

New and updated debugger commands

The debugger now supports the following commands on all platforms.

Change Directorycd, chdir

Syntax cd [directory name]
chdir [directory name]

Menu selection none

Environments basic debugger PDM profiling

Description The CD or CHDIR command changes the current working directory from within
the debugger. You can use relative pathnames as part of the directory name.
If you don’t use a directory name, the CD command displays the name of the
current directory. This command can affect any other command whose param-
eter is a filename, such as the FILE, LOAD, and TAKE commands, when used
with the USE command. You can also use the CD command to change the
current drive. For example:

cd c:
cd d:\csource
cd c:\sim54x

List Directory Contentsdir

Syntax dir [directory name]

Menu selection none

Environments basic debugger PDM profiling

Description The DIR command displays a directory listing in the display area of the
COMMAND window. If you use the optional directory name parameter, the
debugger displays a list of the specified directory’s contents. If you don’t use
a directory name, the debugger lists the contents of the current directory.

You can list only files that match a specific format within a directory by using
the asterisk (*) wildcard character. If the directory name ends in a partial file-
name with an asterisk, the debugger lists only the files which match the wild-
card string. For example, to list every file in the home directory that has a .cmd
extension, you would enter:

DIR /home/*.cmd

New and Updated Debugger Commands

 4-4

Toggle Safehalt Modesafehalt

Syntax safehalt {on | off }

Menu selection none

Environments basic debugger PDM profiling

Description This new command, SAFEHALT, places the debugger in safehalt mode. When
safehalt mode is off (the default), you can halt a running target device either
by pressing ESC or by clicking a mouse button. When safehalt mode is on, you
can halt a running target device only by pressing ESC ; mouse clicks are
ignored.

Changes to the TMS320C5xx C Source Debugger User’s Guide

The Debugger Options section in the TMS320C5xx C source Debugger User’s
Guide describes the options that you can use when invoking the debugger.
The –mv option has been added for the simulator version of the debugger.

The –mv option specifies which memory map the simulator loads. By default,
the simulator loads the memory map contained in the siminit.cmd file, which
is a generic memory map. Each of the provided memory maps simulates a dif-
ferent ’C54x device, as described in the following table:

Option
Device
Simulated

Initialization
File Used Peripherals Simulated

–mv541 ’C541 sim541.cmd Serial port 0, serial port 1, timer

–mv542 ’C542 sim542.cmd Buffered serial port, TDM serial port, timer

–mv543 ’C543 sim543.cmd Buffered serial port, TDM serial port, timer

–mv545 ’C545 sim545.cmd Buffered serial port, serial port 1, timer

–mv546 ’C546 sim546.cmd Buffered serial port, serial port 1, timer

–mv548 ’C548 sim548.cmd 2 Buffered serial ports, TDM serial port, timer, HPI

–mv545lp ’C545LP sim545lp.cmd Buffered serial port, serial port 1, timer, HPI

New and Updated Debugger Commands / Changes to the TMS320C5xx C Source Debugger User’s Guide

5-1

Defining a Memory Map

Note:

This chapter replaces Chapter 6, Defining a Memory Map, in the
TMS320C5xx C Source Debugger User’s Guide.

Before you begin a debugging session, you must supply the debugger with a
memory map. The memory map tells the debugger which areas of memory it
can and cannot access. You can use the Memory pulldown menu to enter the
commands described in this chapter.

Topic Page

5.1 The Memory Map: What It Is and Why You Must Define It 5-2.

5.2 A Sample Memory Map 5-4.

5.3 Identifying Usable Memory Ranges 5-5.

5.4 Customizing the Memory Map 5-9.

5.5 Enabling Memory Mapping 5-12.

5.6 Checking the Memory Map 5-13.

5.7 Modifying the Memory Map During a Debugging Session 5-14.

5.8 Using Multiple Memory Maps for Multiple Target Systems
(Emulator Only) 5-16.

5.9 Simulating I/O Space (Simulator Only) 5-17.

5.10 Simulating External Interrupts (Simulator Only) 5-22.

5.11 Simulating Peripherals (Simulator Only) 5-26.

5.12 Simulating Standard Serial Ports (Simulator Only) 5-27.

5.13 Simulating Buffered Serial Ports (Simulator Only) 5-31.

5.14 Simulating TDM Serial Ports (Simulator Only) 5-34.

Chapter 5

The Memory Map: What It Is and Why You Must Define It

 5-2

5.1 The Memory Map: What It Is and Why You Must Define It

A memory map tells the debugger which areas of memory it can and cannot
access. Memory maps vary, depending on the application. Typically, the map
matches the MEMORY definition in your linker command file.

Note:

When the debugger compares memory accesses against the memory map,
it performs this checking in software, not hardware. The debugger cannot
prevent your program from attempting to access nonexistent memory.

A special default initialization batch file included with the debugger package
defines a memory map for your version of the debugger. This memory map
may be sufficient when you first begin using the debugger. However, the de-
bugger provides a complete set of memory-mapping commands that let you
modify the default memory map or define a new memory map.

You can define the memory map interactively by entering the memory-map-
ping commands while you are using the debugger. However, this can be incon-
venient because, in most cases, you will set up one memory map before you
begin debugging and will use this map for all of your debugging sessions. The
easiest method of defining a memory map is to put the memory-mapping com-
mands in a batch file.

Defining the memory map in a batch file

There are two methods for defining the memory map in a batch file:

� Redefine the memory map defined in the initialization batch file.
� Define the memory map in a separate batch file of your own.

When you invoke the debugger, it follows these steps to find the batch file that
defines your memory map:

1) The debugger checks whether you have used the –t debugger option. If
the debugger finds the –t option, it executes the specified file. (Use the –t
option to specify a batch file other than the initialization batch file shipped
with the debugger.)

The Memory Map: What It Is and Why You Must Define It

5-3Defining a Memory Map

2) If you have not used the –t option, the debugger looks for the default initial-
ization batch file. The batch filename differs for each version of the debug-
ger:

� For the emulator, this file is called emuinit.cmd.
� For the EVM, this file is called evminit.cmd.
� For the simulator, this file is called siminit.cmd.

If the debugger finds the file corresponding to your tool, it executes the file.

3) If the debugger does not find the –t option or the initialization batch file, it
looks for a file called init.cmd. This search mechanism allows you to have
one initialization batch file for more than one debugger tool. To set up this
file, you can use the IF/ELSE/ENDIF commands (for more details, see the
Entering and Using Commands chapter in the TMS320C5xx C Source De-
bugger User’s Guide) to indicate which memory map applies to each tool.

Potential memory map problems

You may experience these problems if the memory map is not correctly de-
fined and enabled:

� Accessing invalid memory addresses. If you do not supply a batch file
containing memory-map commands, then the debugger is initially unable
to access any target memory locations. Invalid memory addresses and
their contents are highlighted in the data-display windows. (On color moni-
tors, invalid memory locations, by default, are displayed in red.)

� Accessing an undefined or protected area. When memory mapping is
enabled, the debugger checks each of its memory accesses against the
memory map. If you attempt to access an undefined or protected area, the
debugger displays an error message. For specific error messages, see
the Debugger and PDM Messages appendix in the TMS320C5xx C
Source Debugger User’s Guide.

� Loading a COFF file with sections that cross a memory range. Be sure
that the map ranges you specify in a COFF file match those that you define
with the MA command (described on page 5-5). Alternatively, you can
turn memory mapping off during a load by using the MAP OFF command
(see page 5-12).

� Accessing conflict and extra cycles (simulator only). If two memory
read access requests occur simultaneously during an execution, the simu-
lator may be unable to complete both requests within the same clock
cycle. If both locations belong to the same physical memory block and the
block is single-access memory, both requests cannot be processed within
the same clock cycle.

A Sample Memory Map

 5-4

5.2 A Sample Memory Map

Because you must define a memory map before you can run any programs,
it is convenient to define the memory map in the initialization batch files.
Example 5–1 shows the memory map commands that are defined in the initial-
ization batch file that accompanies the simulator. You can use the file as is, edit
it, or create your own memory map batch file. The files shipped with the emula-
tor and EVM are similar to that of the simulator.

Example 5–1. Sample Initialization Batch File for Use With the TMS320C54x Simulator

ma 0x0000, 0, 0x80, EX|RAM
ma 0xc000, 0, 0x1000, ROM
ma 0xd000, 0, 0x1000, EX|RAM

ma 0x0000, 1, 0x0060, RAM
ma 0x0060, 1, 0x0020, RAM
ma 0x0080, 1, 0x0380, RAM|DA
ma 0x0400, 1, 0x0400, EX|RAM

The MA commands (shown in Example 5–1) define valid memory ranges and
identify the read/write characteristics of the memory ranges. The MAP
command enables mapping (see Section 5.5, Enabling Memory Mapping, on
page 5-12). By default, mapping is enabled when you invoke the debugger.
Figure 5–1 illustrates the memory map defined in Example 5–1.

Figure 5–1. Sample Memory Map for Use With the TMS320C54x Simulator

0x0000
to 0x007F

0x0080
to 0xBFFF

0xC000
to 0xCFFF

0xD000
to 0xDFFF

0xE000
to 0xFFFF

0x0000
to 0x005F

0x0060
to 0x007F

0x0080
to 0x03FF

0x0800
to 0xFFFF

Available

Available Available

0x0400
to 0x07FF

Program memory Data memory

External
single-access RAM

Internal
single-access ROM

External
single-access RAM

External
single-access RAM

Internal RAM
for MMR

Internal
dual-access RAM

Internal RAM
scratch pad

Identifying Usable Memory Ranges

5-5Defining a Memory Map

5.3 Identifying Usable Memory Ranges

ma The debugger’s MA (memory add) command identifies valid ranges of target
memory. The syntax for this command is:

ma address, page, length, type

� The address parameter defines the starting address of a range. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label.

A new memory map must not overlap an existing entry. If you define a
range that overlaps an existing range, the debugger ignores the new
range and displays this error message in the display area of the COM-
MAND window:

Conflicting map range

� The page parameter is a 1-digit number that identifies the type of memory
(program, data, or I/O) that a range occupies:

To identify this page . . .
Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory . . .
Use this keyword as the type
parameter

Read-only memory R or ROM

Write-only memory W or WOM

Read/write memory R|W or RAM

Read/write external memory RAM|EX or R|W|EX

Read-only port P|R

Read/write port P|R|W

Single-access memory SA

Dual-access memory DA

Identifying Usable Memory Ranges

 5-6

Notes on using the MA command

� The debugger caches memory that is not defined as a port type (P|R, P|W,
or P|R|W). For ranges that you do not want cached, be sure to map them
as ports.

� When you are using the simulator, you can use the parameter values P|R,
P|W, and P|R|W to simulate I/O ports. See Section 5.9, Simulating I/O
Space, on page 5-17.

� Be sure that the map ranges that you specify in a common object file for-
mat (COFF) file match those that you define with the MA command. More-
over, a command sequence such as:

ma x,y,ram; ma x+y,z,ram

does not equal

ma x,y+z,ram

If you were planning to load two COFF blocks, where the first block
spanned the length of y and the second block spanned the length of z, you
would use the first MA command example. However, if you were planning
to load a COFF block that spanned the length of y + z, you would use the
second MA command example.

Alternatively, you could turn memory mapping off during a load by using
the MAP OFF command. Although the MAP OFF command can be useful,
you need to be sure that you use it correctly. See Section 5.5, Enabling
Memory Mapping, on page 5-12 for more information about using the MAP
OFF command.

� Although the address range for both of the following MA commands is the
same (0x0400 to 0x0800), one range is internal and the other range is ex-
ternal.

ma 0x0400, 0, 0x0800, ROM
ma 0x0400, 0, 0x0800, EX|ROM

When the simulator is operating in microcomputer mode (MP/MC = 0), the
internal program ROM is accessed. Otherwise, the external program
memory module is used.

� If a range of memory is configured as dual-access RAM (using the DA at-
tribute with the MA command), it means two simultaneous accesses
(read/write) can be performed during the same cycle to the block.

For example, the following command creates one dual-access RAM as a
data page. If an instruction performs two simultaneous accesses to two
addresses in this block, both accesses execute in one cycle.

ma 0x0100, 1, 0x0100, R|W|DA

Identifying Usable Memory Ranges

5-7Defining a Memory Map

� If a range of memory is configured as single-access RAM (using the SA
attribute with the MA command), it means only one access (read/write)
can be performed on any address in the block in one cycle. You can config-
ure more than one single-access RAM block. Simultaneous accesses to
different single-access RAM blocks during the same cycle are permitted.

For example, the following commands create two single-access RAM
blocks. The blocks are 0x100 in size. If an instruction performs two ac-
cesses, one in the first block (for example, address 0x110) and another in
the second block (for example, address 0x230), the instruction executes in
only one cycle.

ma 0x0100, 1, 0x0100, R|W|SA
ma 0x0200, 1, 0x0100, R|W|SA

Contrarily, if the blocks were combined into one block and configured as
one single block of 0x200 words (as shown in the following command), si-
multaneous accesses to addresses 0x110 and 0x230 would take two
cycles to complete.

ma 0x100, 1, 0x200, R|W|SA

Identifying Usable Memory Ranges

 5-8

Memory mapping with the simulator (PCs only)

Unlike the emulator and EVM, the ’C54x simulator has memory cache capabil-
ities that allow you to allocate as much memory as you need. However, to use
memory cache capabilities effectively with the ’C54x, do not allocate more
than 20K words of memory in your memory map. For example, the memory
map shown in Example 5–2 allocates 20K words of ’C54x program memory.

Example 5–2. Sample Memory Map for the TMS320C54x Using Memory Cache Capabilities

MA 0,0,0x2000,R|W
MA 0x2000,0,0x2000,R|W
MA 0xc000,0,0x1000,R|W

The simulator creates temporary files in a separate directory on your disk. For
example, when you enter an MA (memory add) command, the simulator
creates a temporary file in the root directory of your current disk. Therefore,
if you are currently running your simulator on the C drive, temporary files are
placed in the C:\ directory. This prevents the processor from running out of
memory space while you are executing the simulator.

Note:

If you execute the simulator from a floppy drive (for example, drive A), the
temporary files are created in the root directory of that floppy drive (for exam-
ple, the A:\ directory).

All temporary files are deleted when you exit the simulator using the QUIT
command. If, however, you exit the simulator with a soft reboot of your comput-
er, the temporary files are not deleted; you must delete these files manually.
(Temporary files usually have numbers for names.)

With the memory cache capabilities of the simulator, your memory map is now
restricted only by your PC’s capabilities. As a result, there should be sufficient
free space on your disk to run any memory map you want to use. If you use
the MA command to allocate 20K words (40K bytes) of memory in your
memory map, then your disk should have at least 40K bytes of free space
available. To do this, you can enter:

ma 0x0, 0, 0x5000, ram

Note:

You can also use the memory-cache capability feature for the data memory.

Customizing the Memory Map

5-9Defining a Memory Map

5.4 Customizing the Memory Map

The customizable ’C54x (cDSP) debugger allows you maximum flexibility in
configuring a memory map. Because the size and address of the memory map
is not fixed in the debugger, you can select any amount of ROM or RAM inter-
nally, externally, or both.

The following example shows how you can have both RAM and ROM mapped
to the same address:

ma 0xc000, 0, 0x1000, R ;Internal (on-chip) program ROM

ma 0xc000, 0, 0x1000, R|EX ;External (off-chip) program ROM

During execution or when the debugger performs memory accesses, the block
of memory accessed is based on the ’C54x MP/MC bit located in the PMST
register. When this bit is set to 0, the on-chip program ROM is enabled. When
it is set to 1, the off-chip program RAM is enabled.

The next example shows two blocks of RAM, one internal (on-chip) and one
external (off-chip), mapped to the same address.

ma 0x0080, 0, 0x0380, R|W ;Internal (on-chip) program RAM

ma 0x0080, 0, 0x0380, R|W|EX ;External (off-chip) program RAM

For the above example, the block of memory is accessed based on the OVLY
bit located in the PMST register during execution or when the debugger per-
forms memory accesses. When this bit is set to 1, the on-chip dual-access data
RAM is mapped to internal program space. When it is cleared to 0, the off-chip
program RAM is enabled.

The debugger accesses the three types of memory (data, program ROM, and
program RAM) according to the type of memory and the values of the MP/MC
bits. The following table summarizes how the debugger accesses memory:

Type of Memory Memory Access

Data Accesses internal memory block, then external memory
block.

Program ROM If MP/MC is set to 0, accesses internal memory block, then
external memory block; if MP/MC is set to 1, accesses exter-
nal memory block.

Program RAM If OVLY is set to 1, accesses internal memory block, then ex-
ternal memory block; if OVLY is set to 0, accesses external
memory block.

Customizing the Memory Map

 5-10

Mapping on-chip dual-access RAM from data memory to program memory

You can configure on-chip dual-access RAM as data memory or program
memory. The following steps describe how to map a block of data memory to
program memory:

Step 1: Set OVLY (the overlay bit) in the PMST register to 1.

Step 2: Define the data-memory map before you define the program-
memory map. It is essential to define the data-memory map for the
overlay mode.

Step 3: Add a dummy program-memory map in the same region as the ex-
ternal memory. To do this, use the EX attribute for the MA command.

Note:

The sizes of the data-memory map and the program-memory map must be
the same.

The following is an example of mapping the on-chip dual-access RAM to pro-
gram memory. The example shows the commands to set the mode to overlay.

ma 0x0080, 1, 0x0f80, R|W|DA

ma 0x0080, 0, 0x0f80, R|W|EX

?pmst=0xffc0 ; mp/mc=0, ovly=1

Simulating data memory (ROM)

With the ’C54x simulator, you can simulate the DROM bit in the ’C541, ’C543,
’C545, or ’C546 processor. This simulation allows you to map the on-chip pro-
gram memory (ROM) to the data memory. To map the program memory (ROM)
to the data memory, follow these steps:

Step 1: Set the DROM bit (bit 3) in the PMST register to 1.

Step 2: Invoke the simulator with the appropriate –mv54x option.

The following example shows how to set the DROM bit to 1 from the debugger:

?pmst=0x08 ; DROM bit is set to 1

Customizing the Memory Map

5-11Defining a Memory Map

Programming your memory

The most convenient time to set up your memory is during the initialization pro-
cess. However, you can edit your memory map while your program is running.

Use the OVLY and MP/MC bits of the PMST register to set the amount of exter-
nal and internal program memory you need. The values for the OVLY and MP/
MC bits are as follows:

� OVLY bit

0 = external program memory

1 = internal program memory

� MP/MC bit

0 = internal program memory (ROM)

1 = external program memory

You can edit the the values of the OVLY and MP/MC bits by using the debugger
or by programming the PMST register. To use the debugger to edit the values
of these bits, scroll down the CPU window until you see the PMST register. The
CPU window is editable; you can enter the values for each bit.

Enabling Memory Mapping

 5-12

5.5 Enabling Memory Mapping

map By default, mapping is enabled when you invoke the debugger. In some
instances, you may want to enable or disable memory explicitly. You can use
the MAP command to do this; the syntax for this command is:

map {on | off }

Disabling memory mapping can cause bus fault problems in the target system
because the debugger may attempt to access nonexistent memory.

Note:

When memory mapping is enabled, you cannot:

� Access memory locations that are not defined by an MA command.
� Modify memory areas that are defined as read only or as protected.

If you attempt to access memory in these situations, the debugger displays
this message in the COMMAND window display area:

Error in expression

Checking the Memory Map

5-13Defining a Memory Map

5.6 Checking the Memory Map

ml If you want to see which memory ranges are defined, use the ML (memory list)
command. The syntax for this command is:

ml

The ML command lists the page, starting address, ending address, and read/
write characteristics of each defined memory range.

For example, assume you issue the following MA commands:

ma 0,0, 0x3000, ROM
ma 0x4000, 0, 0x2000, EX|RAM
ma 0, 1, 0x4000, RAM
ma 0x8000, 1, 0x2000, EX|RAM
ma 0x6, 2, 0x3, P|R

If you enter the ML command, the debugger displays the following information
in the display area of the COMMAND window:

page 0 = program memory
page 1 = data memory

ending addressstarting address

page 2 = I/O space

Page Memory range Attributes
0 0000 – 2fff R
0 4000 – 5fff R|W|EX
1 0000 – 3fff R|W
1 8000 – 9fff R|W|EX
2 0006 – 0008 P|R

Modifying the Memory Map During a Debugging Session

 5-14

5.7 Modifying the Memory Map During a Debugging Session

If you need to modify the memory map during a debugging session, use these
commands.

md To delete a range of memory from the memory map, use the MD (memory
delete) command. The syntax for this command is:

md address, page

� The address parameter identifies the starting address of the range of
program, data, or I/O memory. If you supply an address that is not the
starting address of a range, the debugger displays this error message in
the display area of the COMMAND window:

Specified map not found

� The page parameter is a 1-digit number that identifies the type of memory
(program, data, or I/O) that the range occupies:

To identify this page,
Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

Note:

If you are using the simulator and want to use the MD command to remove
a simulated I/O port, you must first disconnect the port with the MI command
(see Disconnecting an I/O port, page 5-21).

mr If you want to delete all defined memory ranges from the memory map, use
the MR (memory reset) command. The syntax for this command is:

mr

This resets the debugger memory map.

ma If you want to add a memory range to the memory map, use the MA (memory
add) command. The syntax for this command is:

ma address, page, length, type

The MA command is described in detail on page 5-5.

Modifying the Memory Map During a Debugging Session

5-15Defining a Memory Map

Returning to the original memory map

If you modify the memory map, you may want to go back to the original memory
map without quitting and reinvoking the debugger. You can do this by resetting
the memory map and then using the TAKE command to read in your original
memory map from a batch file.

Suppose, for example, that you had set up your memory map in a batch file
named mem.map. You could enter these commands to go back to this map:

mr Reset the memory map
take mem.map Reread the default memory map

The MR command resets the memory map. (You could put the MR command
in the batch file, preceding the commands that define the memory map.) The
TAKE command tells the debugger to execute commands from the specified
batch file.

Using Multiple Memory Maps for Multiple Target Systems (Emulator Only)

 5-16

5.8 Using Multiple Memory Maps for Multiple Target Systems (Emulator Only)

If you are debugging multiple applications, you may need a memory map for
each target system. Here is the simplest method for handling this situation.

Step 1: Let the initialization batch file define the memory map for one of your
applications.

Step 2: Create a separate batch file that defines the memory map for the
additional target system. The filename is unimportant, but for this ex-
ample assume that the file is named filename.x. The general format
of this file’s contents should be:

mr Reset the memory map
MA commands Define the new memory map
map on Enable mapping

(Of course, you can include any other appropriate commands in this
batch file.)

Step 3: Invoke the debugger as usual.

Step 4: The debugger reads the initialization batch file during invocation.
Before you begin debugging, read in the commands from the new
batch file:

take filename.x

This redefines the memory map for the current debugging session.

You can also use the –t option instead of the TAKE command when
you invoke the debugger. The –t option allows you to specify a new
batch file to use instead of the default initialization batch file.

Simulating I/O Space (Simulator Only)

5-17Defining a Memory Map

5.9 Simulating I/O Space (Simulator Only)

In addition to adding memory ranges to the memory map, you can use the MA
command to add I/O ports to the memory map. To do this, use P|R (input port)
or P|R|W (input/output port) as the memory type. Use page 2 to simulate I/O
space. Then you can use the MC command to connect a port to an input or
output file. This simulates external I/O cycle reads and writes by allowing you
to read data in from a file and/or write data out to a file. Use page 1 for file
connects to data memory.

Connecting an I/O port

mc The MC (memory connect) command connects P|R or P|R|W to an input or
output file. MC also allows you to connect any data memory location (except
0x0000–0x001F) to an input or output file to read data from or write data into
the file. The syntax for this command is:

mc portaddress, page, length, filename, fileaccess

� The portaddress parameter defines the address of the I/O space or data
memory. This parameter can be an absolute address, any C expression,
the name of a C function, or an assembly language label.

The portaddress must be previously defined with the MA command (de-
scribed on page 5-5) and have a keyword of either P|R (input port) or
P|R|W (input/output port). The length of the address range defined for the
port (or peripheral frame) can be 0x1000 to 0x1FFF bytes and does not
have to be a multiple of 16.

� The page parameter is a 1-digit number that identifies the type of memory
(data or I/O) that the address occupies:

To identify this page . . .
Use this value as the page
parameter

Data memory 1

I/O space 2

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The filename parameter can be any file name. If you connect a port or
memory location to read from a file, the file must exist, or the MC command
will fail.

Simulating I/O Space (Simulator Only)

 5-18

� The fileaccess parameter identifies the access characteristics of the I/O
memory and data memory. The file access must be one of the keywords
identified below:

To identify this file access type . . .
Use this keyword as the
fileaccess parameter

Input port (I/O space) P|R

Simulator halt at EOF of input space
(I/O space)

R|P|NR

Output port (I/O space) P|W

Read-only internal memory R

Read-only external memory EX|R

Simulator halt at EOF of input file
for internal memory

R|NR

Simulator halt at EOF of input file
for external memory

EX|R|NR

Write-only internal memory W

Write-only external memory EX|W

For I/O memory locations, the file is accessed during a read or write instruction
to the associated port address. You can connect any I/O port to a file. A maxi-
mum of one input and one output file can be connected to a single port;
however, multiple ports can be connected to a single file.

For data memory locations, the debugger accesses the data as follows:

� When you are executing code:

� If you have specified a file, the debugger reads the data from the file
and updates the memory location with that data.

� If you have specified a file, the debugger writes the data to the memory
location, as well as to the file.

� When you are using the debugger:

� The debugger reads the data value from the memory location, not
from the connected file.

� If you have specified a file, the debugger writes the data to the memory
location, as well as to the file.

Simulating I/O Space (Simulator Only)

5-19Defining a Memory Map

If you use the NR parameter, the simulator halts execution when it reads an
EOF. The debugger displays the appropriate message in the display area of
the COMMAND window:

<addr> EOF reached – connected at port(I/O_PAGE)
or

<addr> EOF reached – connected at location (DATA_PAGE)

At this point, you can disconnect the file by using the MI command and attach
a new file by using the MC command. If you do not do anything, the file pointer
resets automatically to the beginning of the input file, and execution continues
until EOF is read.

If you do not specify the NR parameter, execution does not halt, and you are
not notified when EOF is reached. The file pointer resets automatically to the
beginning of the input file, and the simulator resumes reading from the file.

Example 5–3 shows how input and output ports can be connected to specific
memory blocks.

Example 5–3. Connecting Input and Output Ports to Input or Output Files

Assume that you have two data-memory blocks:

ma 0x100,1, 0x10, EX|RAM ;block1
ma 0x200,1, 0x10, RAM ;block2

� You could use the MC command to set up and connect an input file to
block1:

mc 0x100, 1, 0x1, my_input.dat, EX|R

� You could use the MC command to set up and connect an output file
to block2:

mc 0x205, 1, 0x1, my_output.dat, W

� You could use the MC command to halt simulator at EOF of input file:

mc 0x100, 1, 0x1, my_input.dat, EX|R|NR

or

mc 0x100, 1, 0x1, my_input.dat, R|NR

Simulating I/O Space (Simulator Only)

 5-20

Example 5–4 shows how to connect an input port to an input file named in.dat.

Example 5–4. Connecting an Input Port to an Input File

Assume that the file in.dat contains words of data in hexadecimal format,
one per line, like this:

0A00
1000
2000

.

.

.

Use MA and MC commands to set up and connect an input port:

MA 0x50,2,0x1,R|P Configure port address 50h
as an input port.

MC 0x50,2,0x1,in.dat,R Open file in.dat and
connect it to port address 50.

Assume that the following instruction is part of your program; it reads from
the file in.dat:

PORTR 050,data_mem Read file in.dat, and put the
value into the DATA_MEM location.

Notes:

1) You can connect a file only to configured location(s).

2) You cannot connect a file to program memory (page 0) locations.

3) You cannot connect a file to the core-memory map register area (0x0000
to 0x001F) of data memory (page 1).

4) While connecting a file to a set of locations:

� Locations must not spread across memory block boundaries.
� Two read-only files must not overlap.
� Two write-only files must not overlap.

Simulating I/O Space (Simulator Only)

5-21Defining a Memory Map

Disconnecting an I/O port

Before you can use the MD command to delete a port from the memory map,
you must use the MI command to disconnect the port.

mi The MI (memory disconnect) command disconnects a file from an I/O port. The
syntax for this command is:

mi portaddress, page, {R | W | EX}

The portaddress and page identify the port that will be closed. The read/write/
execute characteristics must match the parameter used when the port was
connected.

Simulating External Interrupts (Simulator Only)

 5-22

5.10 Simulating External Interrupts (Simulator Only)

The ’C54x simulator allows you to simulate the external interrupt signals INT0
to INT3 and allows you to select the clock cycle where you want an interrupt
to occur. To do this, you create a data file and connect it to one of the interrupt
pins, INT0 to INT3 or the BIO pin.

Note:

The interrupt interval is expressed as a function of CPU clock cycles. Simula-
tion begins at the first clock cycle.

Setting up your input file

To simulate interrupts, you must first set up an input file that lists interrupt inter-
vals. Your file must contain a clock cycle in one of the following formats:

For the INT0, INT1, INT2, and INT3 pins, use this format:

clock cycle [rpt {n | EOS}]

For the BIO pin, you must enter the square brackets around the clock cycle and
logic value. Use this format:

[clock cycle, logic value] [rpt {n | EOS}]

� The clock cycle parameter represents the CPU clock cycle in which you
want an interrupt to occur.

You can have two types of CPU clock cycles:
� Absolute . To use an absolute clock cycle, your cycle value must rep-

resent the actual CPU clock cycle in which you want to simulate an
interrupt. For example:

12 34 56

Interrupts are simulated at the 12th, 34th, and 56th CPU clock cycles.
No operation is performed on the clock cycle value; the interrupt oc-
curs exactly as the clock cycle value is written.

� Relative . You can also select a clock cycle that is relative to the time
at which the last event occurred. For example:

12 +34 55

Simulating External Interrupts (Simulator Only)

5-23Defining a Memory Map

This example shows three interrupts being simulated: at the 12th, 46th
(12 + 34), and 55th CPU clock cycles. A plus sign (+) before a clock
cycle adds that value to the total clock cycles preceding it. You can mix
both relative and absolute values in your input file.

� The logic value parameter is only for the BIO pin. You can force the signal
to go high or low at specified clock cycles. A value of 1 forces the signal
to go high, and a value of 0 forces the signal to go low. For example:

[12,1] [23,0] [45,1]

This causes the BIO pin to go high at the 12th cycle, low at the 23rd cycle,
and high again at the 45th cycle.

� The rpt {n | EOS} parameter is optional and represents a repetition value.
You can use two forms of repetition in simulating interrupts:

� Repeat a fixed number of times . You can format your input file to re-
peat a particular pattern a fixed number of times. For example:

5 (+10 +20) rpt 2

The values inside the parentheses represent the portion that is re-
peated. Therefore, an interrupt is simulated at the 5th, 15th (5 + 10),
35th (15 + 20), 45th (35 + 10), and 65th (45 + 20) CPU clock cycles.

The parameter n is a positive integer value.

� Repeat to the end of simulation . To repeat the same pattern
throughout the simulation, add the string EOS to the line. For example:

10 (+5 +20) rpt EOS

Interrupts are simulated at the 10th, 15th (10+5), 35th (15 + 20), 40th
(35 + 5), 60th (40 + 20), 65th (60 + 5), and 85th (65 + 20) CPU
cycles, continuing in that pattern until the end of simulation.

Simulating External Interrupts (Simulator Only)

 5-24

Programming the simulator

After creating your input file, you can use debugger commands to:

� Connect the interrupt pin to your input file
� List the interrupt pins
� Disconnect an interrupt pin from a file

Use these commands as described below, or use them from the PIN pulldown
menu.

pinc To connect your input file to the pin, use the following command:

pinc pinname, filename

� The pinname identifies the pin and must be one of the following: INT0,
INT1, INT2, INT3, or BIO.

� The filename is the name of your input file. Make sure you have set up your
input file as described in Setting up your input file on page 5-22.

Example 5–5 shows you how to connect your input file using the PINC com-
mand.

Example 5–5. Using the PINC Command to Connect the Input File

Suppose you want to generate an INT2 external interrupt at the 12th, 34th,
56th, and 89th clock cycles.

First, create a data file with an arbitrary name, such as myfile:

12 34 56 89

Then use the PINC command in the pin pulldown menu to connect the in-
put file to the INT2 pin.

pinc int2, myfile Connects your data file
to the specific interrupt pin

This command connects myfile to the INT2 pin. As a result, the simulator
generates an INT2 external interrupt at the 12th, 34th, 56th, and 89th clock
cycles.

Simulating External Interrupts (Simulator Only)

5-25Defining a Memory Map

pinl To verify that your input file is connected to the correct pin, use the PINL
command. The syntax for this command is:

pinl

The PINL command displays all of the unconnected pins first, followed by the
connected pins. For a pin that is connected, it displays the name of the pin and
the absolute pathname of the file in the COMMAND window.

COMMAND

>>>

INT1 NULL

INT3 NULL

INT4 NULL

BIO NULL

INT2 /320hll/myfile

PIN FILENAME
~~~~~~~~~~~~~~~~~~~~~~~~~~~

When you want to connect another file to an interrupt pin, the PINL command
is useful for looking up an unconnected pin.

pind To end the interrupt simulation, disconnect the pin. You can do this with the
following command:

pind pinname

The pinname parameter identifies the interrupt pin and must be one of the fol-
lowing: INT0, INT1, INT2, INT3, or BIO. The PIND command detaches the file
from the input pin. After executing this command, you can connect another file
to the same pin.



Simulating Peripherals (Simulator Only)

 5-26

5.11 Simulating Peripherals (Simulator Only)

With the ’C54x simulator, you can simulate the timer, a standard serial port, a
buffered serial port, or a TDM serial port, depending on the device you choose
to simulate. Each ’C54x device has a different set of peripherals. You can se-
lect the peripheral that you want to simulate by using the –mv option. Table 5–1
lists the option for each ’C54x device and the peripherals associated with that
option/device.

Table 5–1. Debugger Options for Loading a Simulator Memory Map

Option
Device
Simulated Peripherals Simulated

–mv541 ’C541 Serial port 0, serial port 1, timer

–mv542 ’C542 Buffered serial port, TDM serial port, timer

–mv543 ’C543 Buffered serial port, TDM serial port, timer

–mv545 ’C545 Buffered serial port, serial port 1, timer

–mv546 ’C546 Buffered serial port, serial port 1, timer

–mv548 ’C548 2 Buffered serial ports, TDM serial port, timer, HPI

–mv545lp ’C545LP Buffered serial port, serial port 1, timer, HPI

Detailed information about simulating the different types of serial ports is dis-
cussed in the following sections:

Type of Serial Port See This Section

Standard 5.12 on page 5-27

Buffered 5.13 on page 5-31

TDM 5.14 on page 5-34



Simulating Standard Serial Ports (Simulator Only)

5-27Defining a Memory Map

5.12 Simulating Standard Serial Ports (Simulator Only)

The ’C54x simulator supports standard serial port transmission and reception
by reading data from and writing data to the files associated with the DXR/
TDXR and DRR/TDRR registers, respectively.

The simulator also provides limited support for the simulation of the serial port
control signals (frame synchronization signals) with the help of external event
simulation capability. Frame synchronization signal values for receive and
transmit operations at various instants of time are fed through the files
associated with the pins.

The ’C54x simulator supports the following operations in the standard serial
port simulation:

� Internal clocks (1/4 CPU clock) and external clocks for the transmit
and receive operations.  External clocks are simulated by using the
DIVIDE command (described on page 5-28) in the files connected to the
FSX/TFSX and FSR/TFSR pins.

� External frame synchronization pulses  (FSX/TFSX transmit and FSR/
TFSR receive frame synchronization pulses). Transmit and receive op-
erations are initiated when these signals go high.

� The operations associated with the following memory-mapped registers:

Register Memory Bits Used Description

SPC 0x22 FO Format specifier (8/16 bits)

TSPC 0x32 MCM
XRST/RRST
XRDY/RRDY
XSREMPTY
RSRFULL

Internal/external clock
Transmit/receive reset
Transmit/receive ready
Transmit register empty flag
Receive register full flag

DXR
TDXR

0x20
0x30

All bits are used Transmit data register

DRR
TDRR

0x21
0x31

All bits are used Receive data register



Simulating Standard Serial Ports (Simulator Only)

 5-28

Setting up your transmit and receive operations

The ’C54x simulator supports the simulation of the following pins using exter-
nal event simulation. The pulses occurring on the FSX and FSR pins initiate
the standard serial port transmit and receive operations, respectively.

� FSR/TFSR—Frame synchronization pulses for the receive operation
� FSX/TFSX—Frame synchronization pulses for the transmit operation

Connect the files to the pins using the PINC (pin connect) command (de-
scribed on page 5-24). Use the following command syntax, selecting the ap-
propriate command for the pin you want:

pinc FSX, filename
pinc TFSX, filename
pinc FSR, filename
pinc TFSR, filename

The filename is the name of the file that contains the CPU clock cycle values
at which the pin value goes high. Use the following syntax in the files to define
clock cycles:

[clock cycle] rpt {n | EOS}

The square brackets are used only with logic values for the BIO pin. For more
information about defining clock cycles, see Section 5.10 on page 5-22.

Additionally, you can use the DIVIDE command to specify the divide-down ra-
tio for the device clock. Use the following syntax for the DIVIDE command in
the files:

DIVIDE r

The parameter r is a real number or integer specifying the ratio of the CPU
clock rate to the serial port clock rate. Use the divide ratio when the serial port
is configured to use the external clock. When you use the DIVIDE command,
it must be the first command in the file.

The following example specifies the clock ratio of the transmit clock and the
clock cycles for the occurrence of TFSX pulses (if this file is connected to the
TFSX pin):

DIVIDE 5
100  +200  +100

The DIVIDE command specifies the divide-down ratio of the clock against the
CPU clock. That is, the CLKX frequency is 1/5 of the CPU clock. The second
line indicates that the TFSX should go high at the 100th, 300th (100 + 200),
and 400th (300 + 100) CPU cycles. The TFSX pin goes high in the 500th,
1500th, and 2000th cycles of the serial port clock.



Simulating Standard Serial Ports (Simulator Only)

5-29Defining a Memory Map

Connecting I/O files

Input and output files are connected to DRR/TDRR and DXR/TDXR registers
for receive and transmit operations, respectively. To simulate the transmit op-
eration, data is written to the file that is connected to the DXR/TDXR register.
To simulate the receive operation, data is read from the file that is connected
to the DRR/TDRR register.

The input and output file formats for the standard serial port operation requires
at least one line containing an hexadecimal number. The following is an ac-
ceptable format for an input file:

0055
aa55
efef
dead

Note:

To simulate the standard serial port 0, use the DXR and DRR registers and
the FSX and FSR pins. To simulate the standard serial port 1, use the TDXR
and TDRR registers and the TFSX and TFSR pins.



Simulating Standard Serial Ports (Simulator Only)

 5-30

Programming the simulator

To simulate the standard serial port, configure the DXR/TDXR and DRR/
TDRR registers as the output port (OPORT) and the input port (IPORT), re-
spectively. Connect these ports to an output file and an input file. Also, connect
files to the TFSX/FSX and TFSR/FSR pins to specify the clock cycles during
which the frame synchronization pins go high.

To make these connections, use the following commands in the simulator ini-
tialization batch file (siminit.cmd):

ma DRR,1,1,R|P
ma DXR,1,1,W|P

mc DRR,1,1, receive filename ,READ
mc DXR,1,1, transmit filename ,WRITE

pinc FSX, fsx timing filename
pinc FSR, fsr timing filename

Variable Description

receive filename The file to read data from, which simulates the input port

transmit filename The file to write data to, which simulates the output port

fsx timing filename The file that contains the CPU cycles at which the FSX frame
synchronization pin goes high

fsr timing filename The file that contains the CPU cycles at which the FSR frame
synchronization pin goes high



Simulating Buffered Serial Ports (Simulator Only)

5-31Defining a Memory Map

5.13 Simulating Buffered Serial Ports (Simulator Only)

The ’C54x simulator supports buffered serial port transmission and reception
by reading data from and writing data to the files associated with the DXR and
DRR registers, respectively.

The simulator also provides limited support for the simulation of the serial port
control signals (frame synchronization signals) with the help of external event
simulation capability. Frame synchronization signal values for receive and
transmit operations at various instants of time are fed through the files
associated with the pins. The ’C54x simulator supports the following opera-
tions in the buffered serial port simulation:

� Automatic buffering and standard serial port modes

� Internal clocks (1/(CLKDV + 1) CPU clock) and external clocks for the
transmit and receive operations.  CLKDV is the clock divide-down ra-
tion.

� External frame synchronization pulses  (FSX and FSR frame synchro-
nization pulses): transmit and receive operations are initiated when these
signals go high.

� The operations associated with the following memory-mapped registers:

Register Memory Bits Used Description

SPC 0x22 FO
MCM
XRST/RRST
XRDY/RRDY
XSREMPTY
RSRFULL

Format specifier (8/16 bits)
Internal/external clock
Transmit/receive reset
Transmit/receive ready
Transmit register empty flag
Receive register full flag

DXR 0x21 All bits are used Transmit data register

DRR 0x20 All bits are used Receive data register

SPCE 0x23 CLKDV
FE
RH/TH
BXE/BRE
HALTX/HALTR

Clock divide-down ratio
Extended format specifier
Buffer half received or transmitted
Enable/disable automatic buffering
Switch to standalone mode after the
current half is transmitted/received

AXR 0x38 All bits are used Address register for transmit

ARR 0x3a All bits are used Address register for receive

BKX 0x39 All bits are used Block size register for the transmit

BKR 0x3b All bits are used Block size register for the receive



Simulating Buffered Serial Ports (Simulator Only)

 5-32

Setting up your transmit and receive operations

The ’C54x simulator supports the simulation of the following pins using exter-
nal event simulation. The pulses occurring on the FSX and FSR pins initiate
the buffered serial port transmit and receive operations, respectively.

� FSR—Frame synchronization pulses for the receive operation
� FSX—Frame synchronization pulses for the transmit operation

Connect the files to the pins using the PINC (pin connect) command (de-
scribed on page 5-24). Use the following command syntax, selecting the ap-
propriate command for the pin you want:

pinc FSX, filename
pinc FSR, filename

The filename is the name of the file that contains the CPU clock cycle values
at which the pin value goes high. Use the following syntax in the files to define
clock cycles:

[clock cycle] rpt {n | EOS}

The square brackets are used only with logic values for the BIO pin. For more
information about defining clock cycles, see Section 5.10 on page 5-22.

Additionally, you can use the DIVIDE command to specify the divide-down ra-
tio for the device clock. Use the following syntax for the DIVIDE command in
the files:

DIVIDE r

The parameter r is a real number or integer specifying the ratio of the CPU
clock rate to the serial port clock rate. Use the divide ratio when the serial port
is configured to use the external clock. When you use the DIVIDE command,
it must be the first command in the file.

The following example specifies the clock ratio of the transmit clock and the
clock cycles for the occurrence of TFSX pulses (if this file is connected to the
TFSX pin):

DIVIDE 5
100  +200  +100

The DIVIDE command specifies the divide-down ratio of the clock against the
CPU clock. That is, the CLKX frequency is 1/5 of the CPU clock. The second
line indicates that the TFSX should go high at the 100th, 300th (100 + 200),
and 400th (300 + 100) CPU cycles. The TFSX pin goes high in the 500th,
1500th, and 2000th cycles of the serial port clock.



Simulating Buffered Serial Ports (Simulator Only)

5-33Defining a Memory Map

Connecting I/O files

Input and output files are connected to DRR and DXR registers for receive and
transmit operations, respectively. To simulate the transmit operation, data is
written to the file that is connected to the DXR register. To simulate the receive
operation, data is read from the file that is connected to the DRR register.

The input and output file formats for the buffered serial port operation requires
at least one line containing a hexadecimal number. The following example
shows an acceptable format for an input file:

0055
aa55
efef
dead

Programming the simulator

To simulate the buffered serial port, configure the DXR and DRR registers as
the output port (OPORT) and the input port (IPORT), respectively. Connect
these ports to an output file and an input file. Also, connect files to the TFSX/
FSX and TFSR/FSR pins to specify the clock cycles during which the frame
synchronization pins go high.

To make these connections, use the following commands in the simulator ini-
tialization batch file (siminit.cmd):

ma DRR,1,1,R|P
ma DXR,1,1,W|P

mc DRR,1,1, receive filename ,READ
mc DXR,1,1, transmit filename ,WRITE

pinc FSX, fsx timing filename
pinc FSR, fsr timing filename

Variable Description

receive filename The file to read data from, which simulates the input port

transmit filename The file to write data to, which simulates the output port

fsx timing filename The file that contains the CPU cycles at which the FSX frame
synchronization pin goes high

fsr timing filename The file that contains the CPU cycles at which the FSR frame
synchronization pin goes high



Simulating TDM Serial Ports (Simulator Only)

 5-34

5.14 Simulating TDM Serial Ports (Simulator Only)

The ’C54x simulator supports TDM serial port transmission and reception by
reading data from and writing data to the files associated with the TDXR and
TDRR registers, respectively.

The simulator also provides limited support for the simulation of the TDM port
control signals (frame synchronization signals) with the help of external event
simulation capability. Frame synchronization signal values for receive and
transmit operations at various instants of time are fed through the files
associated with the pins.

The ’C54x simulator supports the following operations in the TDM serial port
simulation:

� TDM and standard serial port modes

� Internal clocks (1/4 CPU clock) and external clocks for the transmit
and receive operations.  External clocks are simulated by using the
DIVIDE command in the files connected to the TFSX and TFSR pins.

� External frame synchronization pulses  (TFSX transmit and TFSR re-
ceive frame synchronization pulses). Transmit and receive operations are
initiated when the signals for these values go high.

� The operations associated with the following memory-mapped registers:

Register Memory Bits Used Description

TSPC 0x32 TDM Multiprocessor/normal modeTSPC 0x32 TDM
MCM

Multi rocessor/normal mode
Internal/external clock

XRST/RRST Transmit/receive reset
XRDY/RRDY
XSREMPTY

Transmit/receive ready
T i i flXSREMPTY

RSRFULL
Transmit register empty flag
Recei e register f ll flagRSRFULL Receive register full flag

TCSR 0x33 All bits are used Channel select register

TRTA 0x34 All bits are used Receive/transmit address register

TRAD 0x35 All bits are used Receive address register

TDXR 0x31 All bits are used Transmit data register

TDRR 0x30 All bits are used Receive data register



Simulating TDM Serial Ports (Simulator Only)

5-35Defining a Memory Map

Setting up your transmit and receive operations

The ’C54x simulator supports the simulation of the following pins using exter-
nal event simulation. The pulses occurring on the TFSX and TFSR pins initiate
the TDM serial port transmit and receive operations, respectively.

� TFSR—Frame synchronization pulses for the receive operation
� TFSX—Frame synchronization pulses for the transmit operation

Connect the files to the pins using the PINC (pin connect) command (de-
scribed on page 5-24). Use the following command syntax, selecting the ap-
propriate command for the pin you want:

pinc TFSX, filename
pinc TFSR, filename

The filename is the name of the file that contains the CPU clock cycle values
at which the pin value goes high. Use the following syntax in the files to define
clock cycles:

[clock cycle] rpt {n | EOS}

The square brackets are used only with logic values for the BIO pin. For more
information about defining clock cycles, see Section 5.10 on page 5-22.

Additionally, you can use the DIVIDE command to specify the divide-down ra-
tio for the device clock. Use the following syntax for the DIVIDE command in
the files:

DIVIDE r

The parameter r is a real number or integer specifying the ratio of the CPU
clock rate to the serial port clock rate. Use the divide ratio when the serial port
is configured to use the external clock. When you use the DIVIDE command,
it must be the first command in the file.

The following example specifies the clock ratio of the transmit clock and the
clock cycles for the occurrence of TFSX pulses (if this file is connected to the
TFSX pin):

DIVIDE 5
100  +200  +100

The DIVIDE command specifies the divide-down ratio of the clock against the
CPU clock. That is, the CLKX frequency is 1/5 of the CPU clock. The second
line indicates that the TFSX should go high at the 100th, 300th (100 + 200),
and 400th (300 + 100) CPU cycles. The TFSX pin goes high in the 500th,
1500th, and 2000th cycles of the serial port clock.



Simulating TDM Serial Ports (Simulator Only)

 5-36

Connecting I/O files

Input and output files are connected to TDRR and TDXR registers for receive
and transmit operations, respectively. To simulate the transmit operation, data
is written to the file that is connected to the TDXR register. To simulate the re-
ceive operation, data is read from the file that is connected to the TDRR regis-
ter. Use the following syntax to create the files:

channel-address data

The parameter channel-address specifies the TDM channel in which transmis-
sion/reception takes place. The parameter data specifies the value that is writ-
ten or read from the file. Each field is in hexadecimal format and the fields are
separated by spaces. The following is an acceptable format for an input file:

10  0055
34  aa55
80  efef
01  dead

Programming the simulator

To simulate the TDM serial port, configure the TDXR and TDRR registers as
the output port (OPORT) and the input port (IPORT), respectively. Connect
these ports to an output file and an input file. Also, connect files to the TFSX/
FSX and TFSR/FSR registers to specify the clock cycles during which the
frame synchronization pins go high.

To make these connections, use the following commands in the simulator ini-
tialization batch file (siminit.cmd):

ma TDRR,1,1,R|P
ma TDXR,1,1,W|P

mc TDRR,1,1, receive filename ,READ
mc TDXR,1,1, transmit filename ,WRITE

pinc TFSX, fsx timing filename
pinc TFSR, fsr timing filename

Variable Description

receive filename The file to read data from, which simulates the input port

transmit filename The file to write data to, which simulates the output port

fsx timing filename The file that contains the CPU cycles at which the FSX frame
synchronization pin goes high

fsr timing filename The file that contains the CPU cycles at which the FSR frame
synchronization pin goes high



Index

Index-1

Index

A
absolute clock cycle 5-22
addresses

accessible locations 5-2
I/O address space, simulator 5-17 to 5-21
invalid memory 5-3
nonexistent memory locations 5-2
protected areas 5-3, 5-12
undefined areas 5-3, 5-12

arrow keys
for HP workstations 3-10
for SPARCstations 2-10

assembler
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

assistance from TI viii
autoexec.bat file

environmental variables 1-6
interfering with other applications 1-5
invoking 1-7
modifying 1-6
sample 1-5

B
–b debugger option

for HP workstations 3-7
for PC systems 1-7
for SPARCstations 2-7

batch files
autoexec.bat 1-5 to 1-7
.cshrc

for HP workstations 3-6 to 3-8
for SPARCstations 2-6 to 2-8

emuinit.cmd 5-16

batch files (continued)
init.clr

for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

init.cmd 5-3
initdb.bat 1-5 to 1-7
initialization

init.cmd 5-3
siminit.cmd 1-3, 2-2, 3-3

mem.map 5-15
memory map 5-15, 5-16
mono.clr

for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2, 2-3

screen sizes
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-3

sim54x.cmd
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

siminit.cmd
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

TAKE command 5-15, 5-16

–bb debugger option
for HP workstations 3-7
for PC systems 1-7
for SPARCstations 2-7

BIO pseudoregister 5-22 to 5-25

–bl debugger option 1-7



 

Index-2  

buffered serial port
connecting I/O files 5-33
programming the simulator 5-33
setting up transmit and receive opera-

tions 5-32 to 5-33
simulating 5-31 to 5-33

–bw debugger option 1-7

C
CD-ROM

mounting
for HP workstations 3-4
for SPARCstations 2-4

requirements
for HP workstations 3-2
for SPARCstations 2-2

retrieving files from
for HP workstations 3-4
for SPARCstations 2-5

unmounting
for HP workstations 3-5
for SPARCstations 2-5

CH (CHDIR) command 4-3

changes to the TMS320C5xx C Source Debugger
User’s Guide 4-4

CHDIR (CD) command 4-3

clock cycle types 5-22

COFF
formats accepted 4-1
loading 5-3
version 2, 4-1

color mapping with X Windows
for HP workstations 3-11
for SPARCstations 2-11

commands
memory 5-5 to 5-16
new for debugger 4-4
updated for debugger 4-3

compiler
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

connecting an I/O port 5-17 to 5-21

connecting I/O files
buffered serial ports 5-33
standard serial port 5-29

connecting I/O files (continued)
TDM serial ports 5-36

contacting Texas Instruments viii
.cshrc file

for HP workstations 3-6 to 3-8
for SPARCstations 2-6 to 2-8

current directory, changing 4-3
customizing the display

for HP workstations 3-3, 3-11
for PC systems 1-2, 1-3
for SPARCstations 2-2, 2-3, 2-11

D
–d debugger option

for HP workstations 3-7
for SPARCstations 2-7

D_OPTIONS environment variable
for HP workstations 3-7
for PC systems 1-7, 2-7

D_SRC environment variable
for HP workstations 3-7
for PC systems 1-6
for SPARCstations 2-7

D_DIR environment variable
for HP workstations 3-6
for PC systems 1-6
for SPARCstations 2-6

DA keyword 5-5
See also MA command

data memory
adding to memory map 5-5
deleting from memory map 5-14
simulating 5-10

debugger
displaying on a different machine 2-8, 3-8
enhancements 4-1 to 4-4
environment setup

for HP workstations 3-6 to 3-8
for PC systems 1-5 to 1-7
for SPARCstations 2-6 to 2-8

font changes
for HP workstations 3-11
for PC systems 1-2
for SPARCstations 2-11

installation of software
for HP workstations 3-4
for PC systems 1-4
for SPARCstations 2-4



Index

Index-3

debugger (continued)
installation verification

for HP workstations 3-9
for PC systems 1-8
for SPARCstations 2-9

using with the X Window System
for HP workstations 3-10 to 3-11
for SPARCstations 2-10 to 2-11

using with Windows 1-1

default
memory map

See also memory map, default
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

screen configuration file
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

defining a memory map. See memory map

DIR command 4-3

directories
auxiliary files

for HP workstations 3-6
for PC systems 1-6
for SPARCstations 2-6

changing current directory 4-3
debugger software

for HP workstations 3-4, 3-6
for PC systems 1-4, 1-6
for SPARCstations 2-5, 2-6

identifying additional source directories
for HP workstations 3-7
for PC systems 1-6
for SPARCstations 2-7

listing contents of current directory 4-3
relative pathnames 4-3
sim54x

for HP workstations 3-4, 3-6
for PC systems 1-4, 1-6
for SPARCstations 2-5, 2-6

disconnecting an I/O port 5-21

disk space requirements
for HP workstations 3-2
for SPARCstations 2-2

display
color mappings on monochrome

for HP workstations 3-11
for SPARCstations 2-11

display (continued)
font changes

for HP workstations 3-11
for PC systems 1-2
for SPARCstations 2-11

requirements
for HP workstations 3-2
for PC systems 1-2
for SPARCstations 2-2

DISPLAY environment variable
for HP workstations 3-8
for SPARCstations 2-8

DIVIDE command 5-28, 5-32, 5-35
divide-down ratio 5-28, 5-32, 5-35
DOS-command setup for the debugger 1-5
DROM bit in PMST rester 5-10

E
emuinit.cmd file 5-3
end key

for HP workstations 3-10
for SPARCstations 2-10

environment setup
for HP workstations 3-6 to 3-8
for PC systems 1-5 to 1-7
for SPARCstations 2-6 to 2-8

evminit.cmd file 5-3
EX attribute 5-5

See also MA command
EX|R keyword 5-18
EX|R|NR keyword 5-18
external frame synchronization signals

buffered serial port 5-32
standard serial port 5-28
TDM serial port 5-35

external interrupts 5-22 to 5-25
connecting input file 5-24
disconnecting pins 5-25
listing pins 5-25
PINC command 5-24
PIND command 5-25
PINL command 5-25
programming simulator 5-24 to 5-25
setting up input files 5-22 to 5-23

clock cycles 5-22
repetition of a pattern 5-23

simulating 5-22 to 5-25
EX|W keyword 5-18



 

Index-4  

F
file access keywords 5-18

FILE command, changing the current directory 4-3

files
connecting to

buffered serial port 5-33
I/O port 5-17 to 5-20
standard serial port 5-29
TDM serial port 5-36

disconnecting from I/O port 5-21

font changes
for HP workstations 3-11
for PC systems 1-2
for SPARCstations 2-11

frame synchronization pins
buffered serial port 5-32
standard serial port 5-28
TDM serial port 5-35

function key mapping
for HP workstations 3-10
for SPARCstations 2-10

G
graphics card requirements, for PC systems 1-2

H
hardware checklist

for HP workstations 3-2
for PC systems 1-2
for SPARCstations 2-2

home key
for HP workstations 3-10
for SPARCstations 2-10

host system
for HP workstations 3-2
for PC systems 1-2
for SPARCstations 2-2

HP systems
installation

software 3-4 to 3-5
verifying 3-9

requirements 3-2 to 3-3
setting up debugger environment 3-6 to 3-8

I
–i debugger option

for HP workstations 3-7
for PC systems 1-7
for SPARCstations 2-7

I/O memory
adding to memory map 5-5
deleting from memory map 5-14
simulating 5-17 to 5-21

I/O port
connecting 5-17 to 5-20
disconnecting 5-21

I/O space, simulating 5-17

identifying sim54x directory. See modifying PATH
statement

identifying usable memory ranges 5-5 to 5-8

IF/ELSE/ENDIF commands 5-3

init.25
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-3

init.43
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-3

init.50
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-3

init.clr file
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

init.cmd file 5-3

initdb.bat file
invoking 1-7
sample 1-5

initialization batch files
for HP workstations 3-3
for memory mapping 5-2 to 5-4
for PC systems 1-3
for SPARCstations 2-2
init.cmd 5-3

insert key
for HP workstations 3-10
for SPARCstations 2-10



Index

Index-5

installation
software

for HP workstations 3-4
for PC systems 1-4
for SPARCstations 2-4

verifying
for HP workstations 3-9
for PC systems 1-8
for SPARCstations 2-9

interrupt pins 5-22 to 5-25
interrupts, simulating 5-22 to 5-25
invalid memory addresses 5-3, 5-12
invoking the simulator

autoexec.bat file 1-7
.cshrc file

for HP workstations 3-8
for SPARCstations 2-8

initdb.bat file 1-7

K
keyboard mapping

for HP workstations 3-10
for SPARCstations 2-10

keysym labels
for HP workstations 3-10
for SPARCstations 2-10

L
LD_LIBRARY_PATH environment variable

for HP workstations 3-8
for SPARCstations 2-8

linker
command files, MEMORY definition 5-2
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

loading, COFF files, restrictions 5-3

M
MA command 5-4, 5-5, 5-9, 5-14

MAP command 5-12
mapping keys for use with X Windows

for HP workstations 3-10
for SPARCstations 2-10

mapping on-chip dual-access RAM to program
memory 5-10

MC command 5-17 to 5-20
MD command 5-14
MEM command 4-1
memory

batch file search order 5-2 to 5-3
commands

MA command 5-4, 5-5, 5-9, 5-14
MAP command 5-12
MC command 5-17 to 5-20
MD command 5-14
MI command 5-21
ML command 5-13
MR command 5-14

data memory, simulating 5-10
default map

for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

identifying usable ranges 5-5 to 5-8
invalid addresses 5-3
invalid locations 5-12
nonexistent locations 5-2
protected areas 5-3, 5-12
requirements, for PC systems 1-2
simulating

I/O memory 5-17 to 5-21
MC command 5-17 to 5-20
MI command 5-21

undefined areas 5-3, 5-12
valid types 5-5

MEMORY definition 5-2
memory map

adding ranges 5-5
batch file 5-15
checking 5-13
customizing 5-9 to 5-11
default 5-4
defining 5-2 to 5-8
deleting ranges 5-14
enabling/disabling 5-12
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2
listing current map 5-13
MA command 5-4, 5-5, 5-9, 5-14
MD command 5-14
ML command 5-13
modifying 5-2 to 5-14



 

Index-6  

memory map (continued)
MR command 5-14
multiple maps 5-16
potential problems 5-3
resetting 5-14
returning to default/original 5-15
sample 5-4
simulating I/O ports 5-17 to 5-20, 5-21

MEMORY window 4-1

memory-cache capability 5-8

MI command 5-21

–min debugger option
for HP workstations 3-7
for PC systems 1-7
for SPARCstations 2-7

ML command 5-13

modifying
batch file (autoexec.bat) 1-5 to 1-6
current directory 4-3
memory map 5-2 to 5-14
PATH statement

for HP workstations 3-6
for PC systems 1-6
for SPARCstations 2-6

mono.clr file
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2, 2-3

monochrome monitor color mapping with X Win-
dows
for HP workstations 3-11
for SPARCstations 2-11

mounting CD-ROM
for HP workstations 3-4
for SPARCstations 2-4

mouse requirements
for HP workstations 3-2
for PC systems 1-2
for SPARCstations 2-2

MP/MC bit in PMST register 5-9, 5-11

MR command 5-14

multiple MEMORY windows 4-1

multiple WATCH windows 4-2

–mv debugger option 4-4, 5-26
for HP workstations 3-7
for PC systems 1-7
for SPARCstations 2-7

N
new or updated debugger commands 4-3 to 4-4
nonexistent memory locations 5-2
notational conventions iv
notes on using the MA command 5-6 to 5-7

O
operating system

for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

optional files
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

OVLY bit in PMST register 5-9, 5-10, 5-11

P
page parameter

in MA command 5-5
in MC command 5-17
in MD command 5-14

page-down key
for HP workstations 3-10
for SPARCstations 2-10

page-up key
for HP workstations 3-10
for SPARCstations 2-10

PATH statement
for HP workstations 3-6
for PC systems 1-6
for SPARCstations 2-6

PC systems
installation

software 1-4
verifying 1-8

requirements 1-2 to 1-3
setting up debugger environment 1-5 to 1-7

peripherals, simulating 5-26
See also buffered serial port; standard serial port;

TDM serial port
permissions

for HP workstations 3-3
for SPARCstations 2-2

PINC command 5-24



Index

Index-7

PIND command 5-25

PINL command 5-25

port address, simulator 5-17 to 5-21

ports, simulating 5-17 to 5-20

P|R keyword 5-5, 5-18

–profile debugger option
for HP workstations 3-7
for PC systems 1-7
for SPARCstations 2-7

program memory
adding to memory map 5-5
deleting from memory map 5-14

programming the simulator
for simulating a buffered serial port 5-33
for simulating a standard serial port 5-30
for simulating a TDM serial port 5-36
for simulating external interrupts 5-24 to 5-25

programming your memory 5-11

P|R|W keyword 5-5

P|W keyword 5-18

R
R keyword 5-5, 5-18

RAM, on-chip dual-access, mapping 5-10

RAM|EX (R|W|EX) keyword 5-5

read-access conflict 5-3

receive operation
buffered serial port simulation 5-32
standard serial port simulation 5-28
TDM serial port simulation 5-35

reinitializing the shell
for HP workstations 2-8
for SPARCstations 3-8

related documentation v to vi

relative clock cycle 5-22

relative pathnames 4-3

repetition in simulating interrupts 5-23

requirements. See hardware checklist; software
checklist

retrieving files from CD-ROM
for HP workstations 3-4
for SPARCstations 2-5

R|NR keyword 5-18

root  privileges
for HP workstations 3-3
for SPARCstations 2-2

R|P|NR keyword 5-18

R|W keyword 5-5

S
–s debugger option

for HP workstations 3-7
for PC systems 1-7
for SPARCstations 2-7

SA keyword 5-5

SAFEHALT command 4-4
sample batch file 5-4

sample memory maps 5-4, 5-8

serial ports
programming

buffered 5-33
standard 5-30
TDM 5-36

simulating
buffered 5-31 to 5-33
standard 5-27 to 5-30
TDM 5-34 to 5-36

setting up transmit and receive operations
buffered serial port 5-32
standard serial port 5-28
TDM serial port 5-35

shell, reinitializing
for HP workstations 3-8
for SPARCstations 2-8

sim54x
command options

for HP workstations 3-7
for PC systems 1-7, 2-7

directory
for HP workstations 3-4
for PC systems 1-4, 1-6
for SPARCstations 2-5

verifying the software installation
for HP workstations 3-9
for PC systems 1-8
for SPARCstations 2-9

sim54x directory
for HP workstations 3-6
for PC systems 1-6
for SPARCstations 2-6



 

Index-8  

sim54x.cmd file
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

sim54xw.exe 1-4

siminit.cmd file
for HP workstations 3-3, 5-3
for PC systems 1-3, 5-3
for SPARCstations 2-2, 5-3

simulating
buffered serial port 5-31 to 5-33
data memory 5-10
I/O space 5-17
interrupts 5-22 to 5-25
peripherals 5-26 to 5-34
standard serial port 5-27 to 5-30
TDM serial port 5-34 to 5-36

simulator
enhancements 4-1 to 4-4
environment setup

for HP workstations 3-6 to 3-8
for PC systems 1-5 to 1-7
for SPARCstations 2-6 to 2-8

I/O memory 5-17 to 5-21
installation of software

for HP workstations 3-4
for PC systems 1-4
for SPARCstations 2-4

installation verification
for HP workstations 3-9
for PC systems 1-8
for SPARCstations 2-9

programming
buffered serial port 5-33
external interrupts 5-24 to 5-25
standard serial ports 5-30
TDM serial port 5-36

software checklist
for HP workstations 3-3
for PC systems 1-3
for SPARCstations 2-2

SPARCstations
installation

software 2-4 to 2-5
verifying 2-9

requirements 2-2 to 2-3
setting up debugger environment 2-6 to 2-8

special keys
for HP workstations 3-10
for SPARCstations 2-10

standard serial port
connecting I/O files 5-29 to 5-30
programming the simulator 5-30
setting up transmit and receive operations 5-28
simulating 5-27 to 5-30

synchronization, external frame
buffered serial port 5-32
standard serial port 5-28
TDM serial port 5-35

system commands
CD command 4-3
DIR command 4-3
SAFEHALT command 4-4
TAKE command 5-15

system requirements. See hardware checklist; soft-
ware checklist

T
–t debugger option

during debugger invocation 5-2
for HP workstations 3-7
for PC systems 1-7
for SPARCstations 2-7

TAKE command 5-15
reading new memory map 5-16

target system, SAFEHALT command 4-4

TDM serial port
connecting I/O files 5-36
programming the simulator 5-36
setting up transmit and receive operations 5-35
simulating 5-34 to 5-36

technical support viii

transmit operation
buffered serial port simulation 5-32
standard serial port simulation 5-28
TDM serial port simulation 5-35

U
utilities

xev
for HP workstations 3-10
for SPARCstations 2-10



Index

Index-9

utilities (continued)
xmodmap

for HP workstations 3-10
for SPARCstations 2-10

xrdb
for HP workstations 3-11
for SPARCstations 2-11

V
–v debugger option

for HP workstations 3-7
for PC systems 1-7
for SPARCstations 2-7

verifying the software installation
for HP workstations 3-9
for PC systems 1-8
for SPARCstations 2-9

W
W keyword 5-5, 5-18

WA command 4-2

WATCH window 4-2

WD command 4-2

window name parameter
MEMORY window 4-1
WATCH window 4-2

Windows systems. See PC systems
WR command 4-2

X
–x debugger option

for HP workstations 3-7
for PC systems 1-7
for SPARCstations 2-7

X Window System
displaying debugger on a different machine 2-8,

3-8
for HP workstations 3-10 to 3-11
for SPARCstations 2-10 to 2-11

.Xdefaults file
for HP workstations 3-11
for SPARCstations 2-11

xev utility
for HP workstations 3-10
for SPARCstations 2-10

xmodmap utility
for HP workstations 3-10
for SPARCstations 2-10

xrdb utility
for HP workstations 3-11
for SPARCstations 2-11


