
TMS320C55x
Assembly Language Tools

User’s Guide

Literature Number: SPRU280H
July 2004

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale
in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from
a third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by
TI for that product or service voids all express and any implied warranties for the associated TI product
or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

iiiRead This First

Preface

��������	�
��	�

About This Manual

The TMS320C55x Assembly Language Tools User’s Guide tells you how to
use these assembly language tools:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility
� Disassembler
� Name utility

How to Use This Manual

The goal of this book is to help you learn how to use the Texas Instruments
assembly language tools specifically designed for the TMS320C55x� DSPs.
This book is divided into four parts:

� Introductory information gives you an overview of the assembly
language development tools and also discusses common object file
format (COFF), which helps you to use the TMS320C55x tools more
efficiently. Read Chapter 2, Introduction to Common Object File Format,
before using the assembler and linker.

� Assembler description contains detailed information about using the
mnemonic and algebraic assemblers. This section explains how to invoke
the assemblers and discusses source statement format, valid constants
and expressions, assembler output, and assembler directives. It also
describes macro elements.

� Additional assembly language tools describes in detail each of the
tools provided with the assembler to help you create assembly language
source files. For example, Chapter 8 explains how to invoke the linker, how
the linker operates, and how to use linker directives. Chapter 14 explains
how to use the hex conversion utility.

Notational Conventions

iv

� Reference material provides supplementary information. This section
contains technical data about the internal format and structure of COFF
object files. It discusses symbolic debugging directives that the C/C++
compiler uses. Finally, it includes hex conversion utility examples,
assembler and linker error messages, and a glossary.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays appear in a
special typeface. Examples use a bold version of the special
typeface for emphasis; interactive displays use a bold version of the
special typeface to distinguish commands that you enter from items that
the system displays (such as prompts, command output, error messages,
etc.).

Here is a sample program listing:

2 0001 2f x .byte 47
3 0002 32 z .byte 50
4 0003 .text

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of command line syntax:

abs55 filename

abs55 is a command. The command invokes the absolute lister and has
one parameter, indicated by filename. When you invoke the absolute
lister, you supply the name of the file that the absolute lister uses as input.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. This is an example of a command
that has an optional parameter:

hex55 [−options] filename

The hex55 command has two parameters. The first parameter, −options,
is optional. Since options is plural, you may select several options. The
second parameter, filename, is required.

Notational Conventions

vRead This First

� In assembler syntax statements, column 1 is reserved for the first
character of a label or symbol. If the label or symbol is optional , it is usually
not shown. If it is a required parameter, then it will be shown starting
against the left margin of the shaded box, as in the example below. No
instruction, command, directive, or parameter, other than a symbol or
label, should begin in column 1.

symbol .usect ” section name”, size in words [, blocking flag]
 [, alignment flag]

The symbol is required for the .usect directive and must begin in column 1.
The section name must be enclosed in quotes and the section size in
words must be separated from the section name by a comma. The
blocking flag and alignment flag are optional and, if used, must be
separated by commas.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

� Following are other symbols and abbreviations used throughout this
document.

Symbol Definition Symbol Definition

AR0−AR7 Auxiliary Registers
0 through 7

PC Program counter
register

B,b Suffix — binary integer Q,q Suffix — octal integer

H,h Suffix — hexadecimal
integer

SP Stack pointer register

LSB Least significant bit ST Status register

MSB Most significant bit

Note that .byte does not
begin in column 1.

Related Documentation From Texas Instruments

vi

Related Documentation From Texas Instruments

The following books describe the TMS320C55x devices and related support
tools.

TMS320C55x Optimizing C/C++ Compiler User’s Guide (literature number
SPRU281) describes the TMS320C55x C/C++ Compiler. This C/C++
compiler accepts ISO standard C/C++ source code and produces
assembly language source code for TMS320C55x devices.

TMS320C55x DSP CPU Reference Guide (literature number SPRU371)
describes the architecture, registers, and operation of the CPU for the
TMS320C55x digital signal processors (DSPs).

TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature
number SPRU374) describes the TMS320C55x DSP mnemonic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the algebraic
instruction set.

TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature
number SPRU375) describes the TMS320C55x DSP algebraic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the mnemonic
instruction set.

TMS320C55x Programmer’s Guide (literature number SPRU376) describes
ways to optimize C/C++ and assembly code for the TMS320C55x
DSPs and explains how to write code that uses special features and
instructions of the DSP.

Code Composer User’s Guide (literature number SPRU328) explains how to
use the Code Composer development environment to build and debug
embedded real-time DSP applications.

Trademarks

Code Composer Studio, TMS320C54x, C54x, TMS320C55x, and C55x are
trademarks of Texas Instruments.

http://www-s.ti.com/sc/techlit/spru281
http://www-s.ti.com/sc/techlit/spru371
http://www-s.ti.com/sc/techlit/spru374
http://www-s.ti.com/sc/techlit/spru375
http://www-s.ti.com/sc/techlit/spru376
http://www-s.ti.com/sc/techlit/spru328

Contents

vii

������	

1 Introduction 1-1.
Provides an overview of the software development tools.

1.1 Software Development Tools Overview 1-2.
1.2 Tools Descriptions 1-3.

2 Introduction to Common Object File Format 2-1.
Discusses the basic COFF concept of sections and how they can help you use the assembler
and linker more efficiently. Common object file format, or COFF, is the object file format used
by the tools.

2.1 Sections 2-2.
2.2 How the Assembler Handles Sections 2-4.

2.2.1 Uninitialized Sections 2-4.
2.2.2 Initialized Sections 2-6.
2.2.3 Named Sections 2-7.
2.2.4 Subsections 2-8.
2.2.5 Section Program Counters 2-8.
2.2.6 An Example That Uses Sections Directives 2-9.

2.3 How the Linker Handles Sections 2-12.
2.3.1 Default Memory Allocation 2-13.
2.3.2 Placing Sections in the Memory Map 2-14.

2.4 Relocation 2-15.
2.4.1 Relocation Issues 2-16.

2.5 Run-Time Relocation 2-17.
2.6 Loading a Program 2-18.
2.7 Symbols in a COFF File 2-19.

2.7.1 External Symbols 2-19.
2.7.2 The Symbol Table 2-20.

Contents

viii

3 Assembler Description 3-1.
Explains how to invoke the assembler and discusses source statement format, valid constants
and expressions, and assembler output.

3.1 Assembler Overview 3-2.
3.2 Assembler Development Flow 3-3.
3.3 Invoking the Assembler 3-4.
3.4 Invoking the Assembler Directly 3-8.
3.5 C55x Assembler Features 3-12.

3.5.1 Byte/Word Addressing 3-12.
3.5.2 Parallel Instruction Rules 3-15.
3.5.3 Variable-Length Instruction Size Resolution 3-15.
3.5.4 Memory Modes 3-16.
3.5.5 Assembler Warning On Use of MMR Address 3-18.

3.6 Naming Alternate Files and Directories for Assembler Input 3-19.
3.6.1 Using the −I Assembler Option 3-19.
3.6.2 Using the Environment Variables C55X_A_DIR and A_DIR 3-20.

3.7 Source Statement Format 3-22.
3.7.1 Source Statement Syntax 3-22.
3.7.2 Label Field 3-23.
3.7.3 Mnemonic Instruction Fields 3-23.
3.7.4 Algebraic Instruction Fields 3-25.
3.7.5 Comment Field 3-25.

3.8 Constants 3-26.
3.8.1 Binary Integers 3-26.
3.8.2 Octal Integers 3-26.
3.8.3 Decimal Integers 3-27.
3.8.4 Hexadecimal Integers 3-27.
3.8.5 Character Constants 3-27.
3.8.6 Floating-Point Constants 3-28.

3.9 Character Strings 3-29.
3.10 Symbols 3-30.

3.10.1 Labels 3-30.
3.10.2 Symbolic Constants 3-30.
3.10.3 Defining Symbolic Constants (−ad Option) 3-31.
3.10.4 Predefined Symbolic Constants 3-31.
3.10.5 Substitution Symbols 3-32.
3.10.6 Local Labels 3-33.

3.11 Expressions 3-36.
3.11.1 Operators 3-37.
3.11.2 Expression Overflow and Underflow 3-37.
3.11.3 Well-Defined Expressions 3-38.
3.11.4 Conditional Expressions 3-38.

Contents

ixContents

3.12 Built-in Functions 3-39.
3.13 Source Listings 3-41.
3.14 Debugging Assembly Source 3-45.
3.15 Cross-Reference Listings 3-47.

4 Assembler Directives 4-1.
Describes the directives according to function, and presents the directives in alphabetical order.

4.1 Directives Summary 4-2.
4.2 Directives Related to Sections 4-10.
4.3 Data Defining Directives 4-12.
4.4 Alignment Directives 4-16.
4.5 Listing Control Directives 4-18.
4.6 File Reference Directives 4-20.
4.7 Symbol Linkage Directives 4-20.
4.8 Conditional Assembly Directives 4-21.
4.9 Assembly-Time Symbol Directives 4-22.
4.10 Directives That Communicate Run-Time Environment Details 4-25.
4.11 Miscellaneous Directives 4-27.
4.12 Directives Reference 4-28.

5 Macro Language 5-1.
Describes macro directives, substitution symbols used as macro parameters, and how to
create macros.

5.1 Using Macros 5-2.
5.2 Defining Macros 5-3.
5.3 Macro Parameters/Substitution Symbols 5-6.

5.3.1 Directives That Define Substitution Symbols 5-7.
5.3.2 Built-In Substitution Symbol Functions 5-8.
5.3.3 Recursive Substitution Symbols 5-10.
5.3.4 Forced Substitution 5-11.
5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols 5-12. . . .
5.3.6 Substitution Symbols as Local Variables in Macros 5-13.

5.4 Macro Libraries 5-14.
5.5 Using Conditional Assembly in Macros 5-15.
5.6 Using Labels in Macros 5-17.
5.7 Producing Messages in Macros 5-19.
5.8 Formatting the Output Listing 5-21.
5.9 Using Recursive and Nested Macros 5-23.
5.10 Macro Directives Summary 5-26.

Contents

x

6 Running C54x Code on C55x 6-1.
Describes how to assemble a C54x application for use on the C55x.

6.1 C54x to C55x Development Flow 6-2.
6.1.1 Initializing the Stack Pointers 6-2.
6.1.2 Handling Differences in Memory Placement 6-2.
6.1.3 Updating a C54x Linker Command File 6-3.

6.2 Understanding the Listing File 6-4.
6.3 Handling Reserved C55x Names 6-6.

7 Migrating a C54x System to a C55x System 7-1.
Describes system considerations when porting C54x code to C55x.

7.1 Handling Interrupts 7-2.
7.1.1 Differences in the Interrupt Vector Table 7-2.
7.1.2 Handling Interrupt Service Routines 7-3.
7.1.3 Other Issues Related to Interrupts 7-4.

7.2 Assembler Options for C54x Code 7-5.
7.2.1 Assume SST is Disabled (−mt Option) 7-5.
7.2.2 Port for Speed Over Size (−mh Option) 7-6.
7.2.3 Optimized Encoding of C54x Circular Addressing (−−purecirc Option) 7-7.
7.2.4 Removing NOPs in Delay Slots (−atn and −mn Options) 7-9.

7.3 Using Ported C54x Functions with Native C55x Functions 7-10.
7.3.1 Run-Time Environment for Ported C54x Code 7-10.
7.3.2 C55x Registers Used as Temporaries 7-11.
7.3.3 C54x to C55x Register Mapping 7-12.
7.3.4 Caution on Using the T2 Register 7-12.
7.3.5 Status Bit Field Mapping 7-12.
7.3.6 Switching Between Run-Time Environments 7-14.
7.3.7 Example of C Code Calling C54x Assembly 7-15.
7.3.8 Example of C54x Assembly Calling C Code 7-19.

7.4 Output C55x Source 7-22.
7.4.1 Command-Line Options 7-22.
7.4.2 Processing .include/.copy Files 7-23.
7.4.3 Problems with the −−incl Option 7-24.
7.4.4 Handling .asg and .set 7-25.
7.4.5 Preserve Spacing with the .tab Directive 7-25.
7.4.6 Assembler-Generated Comments 7-25.
7.4.7 Handling Macros 7-28.
7.4.8 Handling the .if and .loop Directives 7-28.
7.4.9 Integration Within Code Composer Studio 7-29.

7.5 Non-Portable C54x Coding Practices 7-30.
7.6 Additional C54x Issues 7-32.

7.6.1 Handling Program Memory Accesses 7-33.
7.7 Assembler Messages 7-35.

Contents

xiContents

8 Linker Description 8-1.
Explains how to invoke the linker, provides details about linker operation, discusses linker direc-
tives, and presents a detailed linking example.

8.1 Linker Overview 8-2.
8.2 Linker Development Flow 8-3.
8.3 Invoking the Linker 8-4.
8.4 Linker Options 8-5.

8.4.1 Relocation Capabilities (−a and −r Options) 8-7.
8.4.2 Create an Absolute Listing File (−abs Option) 8-8.
8.4.3 Allocate Memory for Use by the Loader to Pass Arguments (−−args Option) 8-8
8.4.4 Disable Merge of Symbolic Debugging Information (−b Option) 8-9.
8.4.5 C Language Options (−c and −cr Options) 8-9.
8.4.6 Define an Entry Point (−e global_symbol Option) 8-10.
8.4.7 Set Default Fill Value (−f cc Option) 8-10.
8.4.8 Make a Symbol Global (−g global_symbol Option) 8-11.
8.4.9 Make All Global Symbols Static (−h Option) 8-11.
8.4.10 Define Heap Size (−heap constant Option) 8-12.
8.4.11 Alter the File Search Algorithm (−l Option, −i Option, and

C55X_C_DIR/C_DIR Environment Variables) 8-12.
8.4.12 Disable Conditional Linking (−j Option) 8-14.
8.4.13 Create a Map File (−m filename Option) 8-15.
8.4.14 Name an Output Module (−o filename Option) 8-15.
8.4.15 Strip Symbolic Information (−s Option) 8-16.
8.4.16 Define Stack Size (−stack size Option) 8-16.
8.4.17 Define Secondary Stack Size (−sysstack constant Option) 8-17.
8.4.18 Introduce an Unresolved Symbol (−u symbol Option) 8-17.
8.4.19 Specify a COFF Format (−v Option) 8-18.
8.4.20 Display a Message for Output Section Information (−w Option) 8-18.
8.4.21 Exhaustively Read and Search Libraries (−x and −priority Options) 8-19.
8.4.22 Creating an XML Link Information File (−−xml_link_info Option) 8-20.

8.5 Byte/Word Addressing 8-21.
8.6 Linker Command Files 8-22.

8.6.1 Reserved Names in Linker Command Files 8-24.
8.6.2 Constants in Command Files 8-25.

8.7 Object Libraries 8-26.
8.8 The MEMORY Directive 8-28.

8.8.1 Default Memory Model 8-28.
8.8.2 MEMORY Directive Syntax 8-28.

Contents

xii

8.9 The SECTIONS Directive 8-32.
8.9.1 Default Configuration 8-32.
8.9.2 SECTIONS Directive Syntax 8-32.
8.9.3 Memory Placement 8-35.
8.9.4 Allocating an Archive Member to an Output Section 8-40.
8.9.5 Memory Placement Using Multiple Memory Ranges 8-42.
8.9.6 Automatic Splitting of Output Sections Among Non-Contiguous

Memory Ranges 8-42.
8.10 Specifying a Section’s Load-Time and Run-Time Addresses 8-45.

8.10.1 Specifying Load and Run Addresses 8-45.
8.10.2 Uninitialized Sections 8-46.
8.10.3 Defining Load-Time Addresses and Dimensions at Link Time 8-46.
8.10.4 Why the Dot Operator Does Not Always Work 8-47.
8.10.5 Address and Dimension Operators 8-48.
8.10.6 Referring to the Load Address by Using the .label Directive 8-50.

8.11 Using UNION and GROUP Statements 8-53.
8.11.1 Overlaying Sections With the UNION Statement 8-53.
8.11.2 Grouping Output Sections Together 8-55.
8.11.3 Nesting UNIONs and GROUPs 8-56.
8.11.4 Checking the Consistency of Allocators 8-57.

8.12 Overlay Pages 8-59.
8.12.1 Using the MEMORY Directive to Define Overlay Pages 8-59.
8.12.2 Using Overlay Pages With the SECTIONS Directive 8-61.
8.12.3 Page Definition Syntax 8-62.

8.13 Default Allocation Algorithm 8-64.
8.13.1 Allocation Algorithm 8-64.
8.13.2 General Rules for Output Sections 8-65.

8.14 Special Section Types (DSECT, COPY, and NOLOAD) 8-67.
8.15 Assigning Symbols at Link Time 8-68.

8.15.1 Syntax of Assignment Statements 8-68.
8.15.2 Assigning the SPC to a Symbol 8-69.
8.15.3 Assignment Expressions 8-70.
8.15.4 Symbols Defined by the Linker 8-71.
8.15.5 Symbols Defined Only For C Support (−c or −cr Option) 8-72.

8.16 Creating and Filling Holes 8-73.
8.16.1 Initialized and Uninitialized Sections 8-73.
8.16.2 Creating Holes 8-73.
8.16.3 Filling Holes 8-75.
8.16.4 Explicit Initialization of Uninitialized Sections 8-76.

Contents

xiiiContents

8.17 Linker-Generated Copy Tables 8-77.
8.17.1 A Current Boot-Loaded Application Development Process 8-77.
8.17.2 An Alternative Approach 8-78.
8.17.3 Overlay Management Example 8-79.
8.17.4 Generating Copy Tables Automatically with the Linker 8-80.
8.17.5 The table() Operator 8-81.
8.17.6 Boot-Time Copy Tables 8-81.
8.17.7 Using the table() Operator to Manage Object Components 8-82.
8.17.8 Copy Table Contents 8-82.
8.17.9 General Purpose Copy Routine 8-84.
8.17.10 Linker Generated Copy Table Sections and Symbols 8-87.
8.17.11 Splitting Object Components and Overlay Management 8-89.

8.18 Partial (Incremental) Linking 8-91.
8.19 Linking C/C++ Code 8-93.

8.19.1 Run-Time Initialization 8-93.
8.19.2 Object Libraries and Run-Time Support 8-94.
8.19.3 Setting the Size of the Stack and Heap Sections 8-94.
8.19.4 Autoinitialization of Variables at Run Time 8-95.
8.19.5 Initialization of Variables at Load Time 8-96.
8.19.6 The −c and −cr Linker Options 8-97.

8.20 Linker Example 8-98.

9 Archiver Description 9-1.
Contains instructions for invoking the archiver, creating new archive libraries, and modifying
existing libraries.

9.1 Archiver Overview 9-2.
9.2 Archiver Development Flow 9-3.
9.3 Invoking the Archiver 9-4.
9.4 Archiver Examples 9-6.

10 Absolute Lister Description 10-1.
Explains how to invoke the absolute lister to obtain a listing of the absolute addresses of an
object file.

10.1 Producing an Absolute Listing 10-2.
10.2 Invoking the Absolute Lister 10-3.
10.3 Absolute Lister Example 10-5.

11 Cross−Reference Lister Description 11-1.
Explains how to invoke the cross-reference lister to obtain a listing of symbols, their definitions,
and their references in the linked source files.

11.1 Producing a Cross-Reference Listing 11-2.
11.2 Invoking the Cross-Reference Lister 11-3.
11.3 Cross-Reference Listing Example 11-4.

Contents

xiv

12 Disassembler Description 12-1.
Explains how to invoke the disassembler to obtain a listing of the COFF disassembly for object
files or linked executable files.

12.1 Invoking the Disassembler 12-2.
12.2 Disassembly Examples 12-4.

13 Object File Utilities Descriptions 13-1.
Explains how to invoke the object file display utility , the name utility, and the strip utility.

13.1 Invoking the Object File Display Utility 13-2.
13.2 XML Tag Index 13-3.
13.3 Example XML Consumer 13-9.

13.3.1 The Main Application 13-9.
13.3.2 xml.h Declaration of the XMLEntity Object 13-12.
13.3.3 xml.cpp Definition of the XMLEntity Object 13-13.

13.4 Invoking the Name Utility 13-16.
13.5 Invoking the Strip Utility 13-17.

14 Hex Conversion Utility Description 14-1.
Explains how to invoke the hex utility to convert a COFF object file into one of several standard
hexadecimal formats suitable for loading into an EPROM programmer..

14.1 Hex Conversion Utility Development Flow 14-2.
14.2 Invoking the Hex Conversion Utility 14-3.
14.3 Command File 14-6.

14.3.1 Examples of Command Files 14-7.
14.4 Understanding Memory Widths 14-8.

14.4.1 Target Width 14-9.
14.4.2 Data Width 14-9.
14.4.3 Memory Width 14-9.
14.4.4 ROM Width 14-10.
14.4.5 A Memory Configuration Example 14-13.
14.4.6 Specifying Word Order for Output Words 14-13.

14.5 The ROMS Directive 14-15.
14.5.1 When to Use the ROMS Directive 14-17.
14.5.2 An Example of the ROMS Directive 14-18.
14.5.3 Creating a Map File of the ROMS Directive 14-20.

14.6 The SECTIONS Directive 14-21.
14.7 Excluding a Specified Section 14-23.
14.8 Output Filenames 14-24.

14.8.1 Assigning Output Filenames 14-24.
14.9 Image Mode and the −fill Option 14-26.

14.9.1 The −image Option 14-26.
14.9.2 Specifying a Fill Value 14-27.
14.9.3 Steps to Follow in Image Mode 14-27.

Contents

xvContents

14.10 Building a Table for an On-Chip Boot Loader 14-28.
14.10.1 Description of the Boot Table 14-28.
14.10.2 The Boot Table Format 14-28.
14.10.3 How to Build the Boot Table 14-29.
14.10.4 Booting From a Device Peripheral 14-32.
14.10.5 Setting the Entry Point for the Boot Table 14-32.
14.10.6 Using the C55x Boot Loader 14-33.

14.11 Controlling the ROM Device Address 14-34.
14.11.1 Controlling the Starting Address 14-34.
14.11.2 Controlling the Address Increment Index 14-36.
14.11.3 Specifying Byte Count 14-36.
14.11.4 Dealing With Address Holes 14-37.

14.12 Description of the Object Formats 14-38.
14.12.1 ASCII-Hex Object Format (−a Option) 14-39.
14.12.2 Intel MCS-86 Object Format (−i Option) 14-40.
14.12.3 Motorola Exorciser Object Format (−m1, −m2, −m3 Options) 14-41.
14.12.4 Texas Instruments SDSMAC Object Format (−t Option) 14-42.
14.12.5 Extended Tektronix Object Format (−x Option) 14-43.

14.13 Hex Conversion Utility Error Messages 14-44.

A Common Object File Format A-1.
Contains supplemental technical data about the internal format and structure of COFF object
files

A.1 COFF File Structure A-2.
A.2 File Header Structure A-4.
A.3 Optional File Header Format A-5.
A.4 Section Header Structure A-6.
A.5 Structuring Relocation Information A-9.
A.6 Symbol Table Structure and Content A-11.

A.6.1 Special Symbols A-12.
A.6.2 Symbol Name Format A-13.
A.6.3 String Table Structure A-13.
A.6.4 Storage Classes A-14.
A.6.5 Symbol Values A-14.
A.6.6 Section Number A-15.
A.6.7 Auxiliary Entries A-15.

B Symbolic Debugging Directives B-1.
Discusses symbolic debugging directives that the TMS320C55x C/C++ compiler uses.

B.1 DWARF Debugging Format B-2.
B.2 COFF Debugging Format B-3.
B.3 Debug Directive Syntax B-4.

Contents

xvi

C XML Link Information File Description C-1.
Discusses the xml_link_info file contents including file element types and document elements.

C.1 XML Information File Element Types C-2.
C.2 Document Elements C-3.

C.2.1 Header Elements C-3.
C.2.2 Input File List C-4.
C.2.3 Object Component List C-5.
C.2.4 Logical Group List C-6.
C.2.5 Placement Map C-9.
C.2.6 Symbol Table C-11.

D Glossary D-1.
Defines terms and acronyms used in this book.

Figures

xviiContents

�����	

1−1 TMS320C55x Software Development Flow 1-2.
2−1 Partitioning Memory Into Logical Blocks 2-3.
2−2 Object Code Generated by the File in Example 2−1 2-11.
2−3 Combining Input Sections to Form an Executable Object Module 2-13.
3−1 Assembler Development Flow 3-3.
4−1 The .field Directive 4-13.
4−2 Initialization Directives 4-15.
4−3 The .align Directive 4-17.
4−4 Allocating .bss Blocks Within a Page 4-35.
4−5 The .field Directive 4-56.
4−6 The .usect Directive 4-100.
7−1 Run-Time Environments for Ported C54x Code and Native C55x Code 7-15.
8−1 Linker Development Flow 8-3.
8−2 Memory Map Defined in Example 8−3 8-31.
8−3 Section Allocation Defined by Example 8−4 8-34.
8−4 Run-Time Execution of Example 8−7 8-52.
8−5 Memory Allocation Shown in Example 8−8 and Example 8−9 8-54.
8−6 Memory Overlay Shown in Example 8−11 8-56.
8−7 Overlay Pages Defined by Example 8−12 and Example 8−13 8-60.
8−8 Autoinitialization at Run Time 8-95.
8−9 Initialization at Load Time 8-96.
9−1 Archiver Development Flow 9-3.
10−1 Absolute Lister Development Flow 10-2.
10−2 module1.lst 10-8.
10−3 module2.lst 10-9.
11−1 Cross-Reference Lister Development Flow 11-2.
14−1 Hex Conversion Utility Development Flow 14-2.
14−2 Hex Conversion Utility Process Flow 14-8.
14−3 Data and Memory Widths 14-10.
14−4 Data, Memory, and ROM Widths 14-12.
14−5 C55x Memory Configuration Example 14-13.
14−6 Varying the Word Order 14-14.
14−7 The infile.out File From Example 14−1 Partitioned Into Four Output Files 14-19.
14−8 Sample Command File for Booting From a C55x EPROM 14-33.
14−9 Hex Command File for Avoiding a Hole at the Beginning of a Section 14-37.
14−10 ASCII-Hex Object Format 14-39.

Figures

xviii

14−11 Intel Hex Object Format 14-40.
14−12 Motorola-S Format 14-41.
14−13 TI-Tagged Object Format 14-42.
14−14 Extended Tektronix Object Format 14-43.
A−1 COFF File Structure A-2.
A−2 COFF Object File A-3.
A−3 Section Header Pointers for the .text Section A-8.
A−4 Symbol Table Contents A-11.
A−5 String Table A-13.

Tables

xixContents

�����	

3−1 Operators Used in Expressions (Precedence) 3-37.
3−2 Assembler Built-In Math Functions 3-39.
3−3 Symbol Attributes 3-48.
4−1 Assembler Directives Summary 4-3.
5−1 Functions and Return Values 5-9.
5−2 Creating Macros 5-26.
5−3 Manipulating Substitution Symbols 5-26.
5−4 Conditional Assembly 5-26.
5−5 Producing Assembly-Time Messages 5-27.
5−6 Formatting the Listing 5-27.
7−1 ST0_55 Status Bit Field Mapping 7-12.
7−2 ST1_55 Status Bit Field Mapping 7-13.
7−3 ST2_55 Status Bit Field Mapping 7-13.
7−4 ST3_55 Status Bit Field Mapping 7-14.
7−5 cl55 Command-Line Options 7-22.
7−6 Compiler Options that Affect the Assembler 7-23.
8−1 Operators Used in Expressions (Precedence) 8-71.
11−1 Symbol Attributes 11-6.
13−1 XML Tag Index 13-3.
14−1 Hex Conversion Utility Options 14-4.
14−2 Boot-Loader Options 14-29.
14−3 Options for Specifying Hex Conversion Formats 14-38.
A−1 File Header Contents A-4.
A−2 File Header Flags (Bytes 18 and 19) A-4.
A−3 Optional File Header Contents A-5.
A−4 Section Header Contents A-6.
A−5 Section Header Flags A-7.
A−6 Relocation Entry Contents A-9.
A−7 Relocation Types (Bytes 10 and 11) A-10.
A−8 Symbol Table Entry Contents A-12.
A−9 Special Symbols in the Symbol Table A-12.
A−10 Symbol Storage Classes A-14.
A−11 Section Numbers A-15.
A−12 Section Format for Auxiliary Table Entries A-15.
B−1 Symbolic Debugging Directives B-4.

Examples

xx

�������	

2−1 Using Sections Directives 2-10.
2−2 Code That Generates Relocation Entries 2-15.
3−1 C55x Data Example 3-14.
3−2 C55x Code Example 3-14.
3−3 $n Local Labels 3-33.
3−4 name? Local Labels 3-35.
3−5 Well-Defined Expressions 3-38.
3−6 Assembler Listing 3-43.
3−7 Viewing Assembly Variables as C Types 3-45.
3−8 Sample Cross-Reference Listing 3-47.
4−1 Sections Directives 4-11.
5−1 Macro Definition, Call, and Expansion 5-4.
5−2 Calling a Macro With Varying Numbers of Arguments 5-7.
5−3 The .asg Directive 5-7.
5−4 The .eval Directive 5-8.
5−5 Using Built-In Substitution Symbol Functions 5-9.
5−6 Recursive Substitution 5-10.
5−7 Using the Forced Substitution Operator 5-11.
5−8 Using Subscripted Substitution Symbols to Redefine an Instruction 5-12.
5−9 Using Subscripted Substitution Symbols to Find Substrings 5-13.
5−10 The .loop/.break/.endloop Directives 5-16.
5−11 Nested Conditional Assembly Directives 5-16.
5−12 Built-In Substitution Symbol Functions Used in Conjuction With

Conditional Assembly Code Blocks.
5-16

5−13 Unique Labels in a Macro 5-17.
5−14 Producing Messages in a Macro 5-20.
5−15 Using Nested Macros 5-23.
5−16 Using Recursive Macros 5-24.
7−1 C Prototype of Called Function 7-15.
7−2 Assembly Function _firlat_veneer 7-16.
7−3 Prototype of Called C Function 7-19.
7−4 Original C54x Assembly Function 7-20.
7−5 Modified Assembly Function 7-21.
7−6 Contrived C54x Assembly File 7-27.
7−7 C55x Output For C54x Code Example in Example 7−6 7-27.
7−8 C55x Output Created from Combining −−alg & −−nomacx 7-28.

Examples

xxiContents

8−1 Linker Command File 8-23.
8−2 Command File With Linker Directives 8-24.
8−3 The MEMORY Directive 8-29.
8−4 The SECTIONS Directive 8-34.
8−5 The Most Common Method of Specifying Section Contents 8-39.
8−6 Using .label to Define a Load-Time Address 8-47.
8−7 Copying a Section From ROM to RAM 8-51.
8−8 The UNION Statement 8-53.
8−9 Separate Load Addresses for UNION Sections 8-53.
8−10 Allocate Sections Together 8-55.
8−11 Nesting GROUP and UNION Statements 8-56.
8−12 Memory Directive With Overlay Pages 8-59.
8−13 SECTIONS Directive Definition for Overlays in Figure 8−7 8-61.
8−14 Default Allocation for TMS320C55x Devices 8-64.
8−15 Using a UNION for Memory Overlay 8-79.
8−16 Produce Address for Linker Generated Copy Table 8-80.
8−17 Linker Command File to Manage Object Components 8-82.
8−18 TMS320C55x cpy_tbl.h File 8-83.
8−19 Run-Time-Support cpy_tbl.c File 8-85.
8−20 Controlling the Placement of the Linker-Generated Copy Table Sections 8-88.
8−21 Creating a Copy Table to Access a Split Object Component 8-89.
8−22 Split Object Component Driver 8-90.
8−23 Linker Command File, demo.cmd 8-99.
8−24 Output Map File, demo.map 8-100.
11−1 Cross−Reference Listing Example 11-4.
14−1 A ROMS Directive Example 14-18.
14−2 Map File Output From Example 14−1 Showing Memory Ranges 14-20.
C−1 Header Element for the hi.out Output File C-3.
C−2 Input File List for the hi.out Output File C-4.
C−3 Object Component List for the fl−4 Input File C-5.
C−4 Logical Group List for the fl−4 Input File C-8.
C−5 Placement Map for the fl−4 Input File C-10.
C−6 Symbol Table for the fl−4 Input File C-11.

Notes

xxii

����	

Default Section Directive 2-4.
asm55 and masm55 3-8.
Offsets in .struct and .union Constructs 3-12.
Labels and Comments in Syntax 4-2.
Use These Directives in Data Sections 4-12.
These Directives in a .struct/.endstruct Sequence 4-14.
Specifying an Alignment Flag Only 4-34.
Use These Directives in Data Sections 4-37.
Directives That Can Appear in a .cstruct /.endstruct Sequence 4-45.
Directives That Can Appear in a .union/.endunion Sequence 4-46.
Use These Directives in Data Sections 4-48.
Use These Directives in Data Sections 4-54.
Use These Directives in Data Sections 4-57.
Use These Directives in Data Sections 4-60.
Use These Directives in Data Sections 4-63.
Use These Directives in Data Sections 4-71.
Use This Directive in Data Sections 4-84.
Use These Directives in Data Sections 4-88.
Directives That Can Appear in a .struct /.endstruct Sequence 4-90.
Directives That Can Appear in a .union/.endunion Sequence 4-96.
Specifying an Alignment Flag Only 4-98.
Compiler Pragmas 7-15.
The −fr and −eo Options 7-22.
Loop Count Affects Translated Source Size 7-28.
The −a and −r Options 8-7.
Allocation of .stack and .sysstack Sections 8-16.
Allocation of .stack and .sysstack Sections 8-17.
Incompatibility with DWARF Debug, and COFFO and COFF1 8-18.
Allocation of .stack and .sysstack Sections 8-19.
Use Byte Addresses in Linker Command File 8-21.
Use Byte Addresses in Linker Command File 8-22.
Filenames and Option Parameters With Spaces or Hyphens 8-23.
Filling Memory Ranges 8-31.
Binding and Alignment or Named Memory are Incompatible 8-36.
Linker Command File Operator Equivalencies 8-48.
UNION and Overlay Page Are Not the Same 8-55.

Notes

xxiiiContents

The PAGE Option 8-66.
Allocation of .stack and .sysstack Sections 8-72.
Filling Sections 8-76.
Allocation of .stack and .sysstack Sections 8-94.
The TI-Tagged Format Is 16 Bits Wide 14-11.
When the −order Option Applies 14-14.
Sections Generated by the C/C++ Compiler 14-21.
Using the −boot Option and the SECTIONS Directive 14-22.
Defining the Ranges of Target Memory 14-26.
On-Chip Boot Loader Concerns 14-32.
Valid Entry Points 14-32.

xxiv

1-1

������������

The TMS320C55x� DSPs are supported by the following assembly language
tools:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference utility
� Object file display utility
� Name utility
� Strip utility
� Hex conversion utility
� Disassembler

This chapter shows how these tools fit into the general software tools
development flow and gives a brief description of each tool. For convenience,
it also summarizes the C compiler and debugging tools. For detailed
information on the compiler and debugger and for complete descriptions of the
TMS320C55x devices, see the books listed in Related Documentation From
Texas Instruments in the Preface.

The assembly language tools create and use object files in common object file
format (COFF) to facilitate modular programming. Object files contain
separate blocks (called sections) of code and data that you can load into
C55x� memory spaces. You can program the C55x more efficiently if you
have a basic understanding of COFF. Chapter 2, Introduction to Common
Object File Format, discusses this object format in detail.

Topic Page

1.1 Software Development Tools Overview 1-2.

1.2 Tools Descriptions 1-3.

Chapter 1

Software Development Tools Overview

 1-2

1.1 Software Development Tools Overview

Figure 1−1 illustrates the C55x software development flow. The shaded
portion of the figure highlights the most common path of software
development; the other portions are optional.

Figure 1−1. TMS320C55x Software Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex-conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C/C++
source

files

C55x

Executable
COFF

file

C/C++ compiler

Library-build
utility

Cross-reference
lister

Absolute lister
Debugging

tools

Run-time-
support
library

C++ name
demangler

Name utility

Disassembler

Tools Descriptions

1-3Introduction

1.2 Tools Descriptions

The following list describes the tools that are shown in Figure 1−1:

� The C/C++ compiler translates C/C++ source code into C55x assembly
language source code. The compiler package includes the library-build
utility , with which you can build your own runtime libraries.

� The assembler translates assembly language source files into machine
language COFF object files. The TMS320C55x tools include two
assemblers. The mnemonic assembler accepts C54x and C55x
mnemonic assembly source files. The algebraic assembler accepts C55x
algebraic assembly source files. Source files can contain instructions,
assembler directives, and macro directives. You can use assembler
directives to control various aspects of the assembly process, such as the
source listing format, data alignment, and section content.

� The linker combines relocatable COFF object files (created by the
assembler) into a single executable COFF object module. As it creates the
executable module, it binds symbols to memory locations and resolves all
references to those symbols. As well as object files, the linker source files
can be archiver library members, linker command files, and output
modules created by a previous linker run. Linker directives allow you to
combine object file sections, bind sections or symbols to addresses or
within memory ranges, and define or redefine global symbols.

� The archiver collects a group of files into a single archive file. For
example, you can collect several macros into a macro library. The
assembler searches the library and uses the members that are called as
macros by the source file. You can also use the archiver to collect a group
of object files into an object library. The linker incorporates into a linked
output file any object library members that are needed to resolve a
reference to an external symbol.

� The library-build utility builds your own customized C/C++
run-time-support library. Standard runtime-support library functions are
provided as source code in rts.src and as object code in rts55.lib, rts55x.lib
for the large model, and rts55z.lib for Phase2.

� The TMS320C55x Code Composer Studio debugger accepts COFF files
as input, but most EPROM programmers do not. The hex conversion
utility converts a COFF object file into TI-tagged, Intel, Motorola, or
Tektronix object format. The converted file can be downloaded to an
EPROM programmer.

Tools Descriptions

 1-4

� The absolute lister accepts linked object files as input and creates .abs
files as output. You assemble .abs files to produce a listing that contains
absolute rather than relative addresses. You can also create an absolute
listing with the linker −abs option. Without the absolute lister, producing
such a listing would be tedious and require many manual operations.

� The cross-reference lister uses object files to produce a cross-reference
listing showing symbols, their definitions, and their references in the linked
source files.

The purpose of this development process is to produce a module that can be
executed in a C55x target system. You can use one of several debugging tools
to refine and correct your code. Available products include:

� An instruction-accurate software simulator
� An XDS emulator

These debugging tools are accessed within Code Composer Studio. For more
information, see the Code Composer Studio User’s Guide.

2-1

������������ ��
����� ������
���
�����

The assembler and linker create object files that can be executed by a
TMS320C55x� device. The format for these object files is called common
object file format (COFF).

COFF makes modular programming easier, because it encourages you to
think in terms of blocks of code and data when you write an assembly language
program. These blocks are known as sections. Both the assembler and the
linker provide directives that allow you to create and manipulate sections.

This chapter provides an overview of COFF sections. For additional
information, see Appendix A, Common Object File Format, which explains the
COFF structure.

Topic Page

2.1 Sections 2-2.

2.2 How the Assembler Handles Sections 2-4.

2.3 How the Linker Handles Sections 2-12.

2.4 Relocation 2-15.

2.5 Runtime Relocation 2-17.

2.6 Loading a Program 2-18.

2.7 Symbols in a COFF File 2-19.

Chapter 2

Sections

 2-2

2.1 Sections

The smallest unit of an object file is called a section. A section is a block of code
or data that will ultimately occupy contiguous space in the memory map. Each
section of an object file is separate and distinct. COFF object files always
contain three default sections:

.text section contains executable code

.data section usually contains initialized data

.bss section usually reserves space for uninitialized variables

In addition, the assembler and linker allow you to create, name, and link named
sections that are used like the .data, .text, and .bss sections.

There are two basic types of sections:

initialized sections contain data or code. The .text and .data sections
are initialized; named sections created with the
.sect assembler directive are also initialized.

uninitialized sections reserve space for uninitialized data. The .bss
section is uninitialized; named sections created
with the .usect assembler directive are also
uninitialized.

Several assembler directives allow you to associate various portions of code
and data with the appropriate sections. The assembler builds these sections
during the assembly process, creating an object file organized as shown in
Figure 2−1.

One of the linker’s functions is to relocate sections into the target memory map;
this function is called allocation. Because most systems contain several types
of memory, using sections can help you use target memory more efficiently.
All sections are independently relocatable; you can place any section into any
allocated block of target memory. For example, you can define a section that
contains an initialization routine and then allocate the routine into a portion of
the memory map that contains ROM.

Sections

2-3Introduction to Common Object File Format

Figure 2−1 shows the relationship between sections in an object file and a
hypothetical target memory.

Figure 2−1. Partitioning Memory Into Logical Blocks

Object File

.bss

.data

.text

Target Memory

RAM

EEPROM

ROM

How the Assembler Handles Sections

 2-4

2.2 How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that
belong in a section. The assembler has several directives that support this
function:

� .bss
� .usect
� .text
� .data
� .sect

The .bss and .usect directives create uninitialized sections; the other
directives create initialized sections.

You can create subsections of any section to give you tighter control of the
memory map. Subsections are created using the .sect and .usect directives.
Subsections are identified with the base section name and a subsection name
separated by a colon. See subsection 2.2.4, Subsections, page 2-8, for more
information.

Note: Default Section Directive

If you don’t use any of the sections directives, the assembler assembles
everything into the .text section.

2.2.1 Uninitialized Sections

Uninitialized sections reserve space in processor memory; they are usually
allocated into RAM. These sections have no actual contents in the object file;
they simply reserve memory. A program can use this space at runtime for
creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler
directives.

� The .bss directive reserves space in the .bss section.

� The .usect directive reserves space in a specific, uninitialized named
section.

Each time you invoke the .bss directive, the assembler reserves more space
in the appropriate section. Each time you invoke the .usect directive, the
assembler reserves more space in the specified named section.

How the Assembler Handles Sections

2-5Introduction to Common Object File Format

The syntax for these directives is:

.bss symbol, size in words [, [blocking flag] [, alignment flag]]

symbol .usect ”section name ”, size in words [, [blocking flag] [, alignment flag]]

symbol points to the first word reserved by this invocation of the .bss
or .usect directive. The symbol corresponds to the name of
the variable that you’re reserving space for. It can be
referenced by any other section and can also be declared
as a global symbol (with the .global assembler directive).

size in words is an absolute expression.

� The .bss directive reserves size words in the .bss sec-
tion.

� The .usect directive reserves size words in section
name.

blocking flag is an optional parameter. If you specify a value other than
0 for this parameter, the assembler associates size words
contiguously; the allocated space will not cross a page
boundary, unless size is greater than a page, in which case
the object will start on a page boundary.

alignment flag is an optional parameter.

section name tells the assembler which named section to reserve space
in. For more information about named sections, see
subsection 2.2.3, Named Sections, on page 2-7.

The .text, .data, and .sect directives tell the assembler to stop assembling into
the current section and begin assembling into the indicated section. The .bss
and .usect directives, however, do not end the current section and begin a new
one; they simply escape temporarily from the current section. The .bss and
.usect directives can appear anywhere in an initialized section without
affecting its contents.

Uninitialized subsections can be created with the .usect directive. The
assembler treats uninitialized subsections in the same manner as uninitialized
sections. See subsection 2.2.4, Subsections, on page 2-8 for more
information on creating subsections.

How the Assembler Handles Sections

 2-6

2.2.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents
of these sections are stored in the object file and placed in processor memory
when the program is loaded. Each initialized section is independently
relocatable and may reference symbols that are defined in other sections. The
linker automatically resolves these section-relative references.

Three directives tell the assembler to place code or data into a section. The
syntaxes for these directives are:

.text [value]

.data [value]

.sect ” section name” [, value]

When the assembler encounters one of these directives, it stops assembling
into the current section (acting as an implied end-current-section command).
It then assembles subsequent code into the designated section until it
encounters another .text, .data, or .sect directive. The value, if present,
specifies the starting value of the section program counter. The starting value
of the section program counter can be specified only once; it must be done the
first time the directive for that section is encountered. By default, the SPC
starts at 0.

Sections are built through an iterative process. For example, when the
assembler first encounters a .data directive, the .data section is empty. The
statements following this first .data directive are assembled into the .data
section (until the assembler encounters a .text or .sect directive). If the
assembler encounters subsequent .data directives, it adds the statements
following these .data directives to the statements already in the .data section.
This creates a single .data section that can be allocated contiguously into
memory.

Initialized subsections can be created with the .sect directive. The assembler
treats initialized subsections in the same manner as initialized sections. See
subsection 2.2.4, Subsections, on page 2-8 for more information on creating
subsections.

How the Assembler Handles Sections

2-7Introduction to Common Object File Format

2.2.3 Named Sections

Named sections are sections that you create. You can use them like the default
.text, .data, and .bss sections, but they are assembled separately.

For example, repeated use of the .text directive builds up a single .text section
in the object file. When linked, this .text section is allocated into memory as a
single unit. Suppose there is a portion of executable code (perhaps an
initialization routine) that you don’t want allocated with .text. If you assemble
this segment of code into a named section, it is assembled separately from
.text, and you can allocate it into memory separately. You can also assemble
initialized data that is separate from the .data section, and you can reserve
space for uninitialized variables that is separate from the .bss section.

The following directives let you create named sections:

� The .usect directive creates sections that are used like the .bss section.
These sections reserve space in RAM for variables.

� The .sect directive creates sections, like the default .text and .data
sections, that can contain code or data. The .sect directive creates named
sections with relocatable addresses.

The syntax for these directives is shown below:

symbol .usect ”section name”, size in words [, [blocking flag] [, alignment]]

.sect ”section name”

The section name parameter is the name of the section. You can create up to
32 767 separate named sections. A section name can be up to 200 characters.
For the .sect and .usect directives, a section name can refer to a subsection
(see subsection 2.2.4, Subsections, for details).

Each time you invoke one of these directives with a new name, you create a
new named section. Each time you invoke one of these directives with a name
that was already used, the assembler assembles code or data (or reserves
space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect
directive and then try to use the same section with .sect.

How the Assembler Handles Sections

 2-8

2.2.4 Subsections

Subsections are smaller sections within larger sections. Like sections,
subsections can be manipulated by the linker. Subsections give you tighter
control of the memory map. You can create subsections by using the .sect or
.usect directive. The syntax for a subsection name is:

section name:subsection name

A subsection is identified by the base section name followed by a colon, then
the name of the subsection. A subsection can be allocated separately or
grouped with other sections using the same base name. For example, to
create a subsection called _func within the .text section, enter the following:

.sect ”.text:_func”

You can allocate _func separately or with other .text sections.

You can create two types of subsections:

� Initialized subsections are created using the .sect directive. See
subsection 2.2.2, Initialized Sections, on page 2-6.

� Uninitialized subsections are created using the .usect directive. See
subsection 2.2.1, Uninitialized Sections, on page 2-4.

Subsections are allocated in the same manner as sections. See Section 8.9,
The SECTIONS Directive, on page 8-32 for more information.

2.2.5 Section Program Counters

The assembler maintains a separate program counter for each section. These
program counters are known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data.
Initially, the assembler sets each SPC to 0. As the assembler fills a section with
code or data, it increments the appropriate SPC. If you resume assembling into
a section, the assembler remembers the appropriate SPC’s previous value
and continues incrementing the SPC at that point.

The assembler treats each section as if it began at address 0; the linker
relocates each section according to its final location in the memory map. For
more information, see Section 2.4, Relocation, on page 2-15.

How the Assembler Handles Sections

2-9Introduction to Common Object File Format

2.2.6 An Example That Uses Sections Directives

Example 2−1 shows how you can build COFF sections incrementally, using
the sections directives to swap back and forth between the different sections.
You can use sections directives to begin assembling into a section for the first
time, or to continue assembling into a section that already contains code. In
the latter case, the assembler simply appends the new code to the code that
is already in the section.

The format in Example 2−1 is a listing file. Example 2−1 shows how the SPCs
are modified during assembly. A line in a listing file has four fields:

Field 1 contains the source code line counter.

Field 2 contains the section program counter.

Field 3 contains the object code.

Field 4 contains the original source statement.

How the Assembler Handles Sections

 2-10

Example 2−1. Using Sections Directives

Field 2Field 1 Field 3 Field 4

2 **
3 ** Assemble an initialized table into .data. **
4 **
5 000000 .data
6 000000 0011 coeff .word 011h,022h,033h

000001 0022
000002 0033

7 **
8 ** Reserve space in .bss for a variable. **
9 **
10 000000 .bss buffer,10
11 **
12 ** Still in .data. **
13 **
14 000003 0123 ptr .word 0123h
15 **
16 ** Assemble code into the .text section. **
17 **
18 000000 .text
19 000000 A01E add: MOV 0Fh,AC0
20 000002 4210 aloop: SUB #1,AC0
21 000004 0450 BCC aloop,AC0>=#0

000006 FB
22 **
23 ** Another initialized table into .data. **
24 **
25 000004 .data
26 000004 00AA ivals .word 0AAh, 0BBh, 0CCh

000005 00BB
000006 00CC

27 **
28 ** Define another section for more variables. **
29 **
30 000000 var2 .usect ”newvars”, 1
31 000001 inbuf .usect ”newvars”, 7
32 **
33 ** Assemble more code into .text. **
34 **
35 000007 .text
36 000007 A114 mpy: MOV 0Ah,AC1
37 000009 2272 mloop: MOV T3,HI(AC2)
38 00000b 1E0A MPYK #10,AC2,AC1

00000d 90
39 00000e 0471 BCC mloop,!overflow(AC1)

000010 F8
40 **
41 ** Define a named section for int. vectors. **
42 **
43 000000 .sect ”vectors”
44 000000 0011 .word 011h, 033h
45 000001 0033

How the Assembler Handles Sections

2-11Introduction to Common Object File Format

As Figure 2−2 shows, the file in Example 2−1 creates five sections:

.text contains 17 bytes of object code.

.data contains seven words of object code.

vectors is a named section created with the .sect directive; it contains
two words of initialized data.

.bss reserves 10 words in memory.

newvars is a named section created with the .usect directive; it reserves
eight words in memory.

The second column shows the object code that is assembled into these
sections; the first column shows the line numbers of the source statements that
generated the object code.

Figure 2−2. Object Code Generated by the File in Example 2−1

A01E
4210
0450
FB
A114
5272
1E0A
90
0471
F8

44
45

0011
0033

No data—
10 words
reserved

No data—
eight words
reserved

Line Numbers

19
20
21
21
36
37
38
38
39
39

 6
 6
 6
14
26
26
26

10

30
31

Object Code Section

.text

0011
0022
0033
0123
00aa
00bb
00cc

.data

vectors

.bss

newvars

How the Linker Handles Sections

 2-12

2.3 How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses the
sections in COFF object files as building blocks; it combines input sections
(when more than one file is being linked) to create output sections in an
executable COFF output module. Second, the linker chooses memory
addresses for the output sections.

Two linker directives support these functions:

� The MEMORY directive allows you to define the memory map of a target
system. You can name portions of memory and specify their starting
addresses and their lengths.

� The SECTIONS directive tells the linker how to combine input sections
into output sections and where to place these output sections in memory.

Subsections allow you to manipulate sections with greater precision. You can
specify subsections with the linker’s SECTIONS directive. If you do not specify
a subsection explicitly, then the subsection is combined with the other sections
with the same base section name.

It is not always necessary to use linker directives. If you don’t use them, the
linker uses the target processor’s default memory placement algorithm
described in Section 8.13, Default Memory Placement Algorithm, on page
8-64. When you do use linker directives, you must specify them in a linker
command file.

Refer to the following sections for more information about linker command files
and linker directives:

Section Number Section Name Page

8.6 Linker Command Files 8-22

8.8 The MEMORY Directive 8-28

8.9 The SECTIONS Directive 8-32

8.13 Default Allocation Algorithm 8-64

How the Linker Handles Sections

2-13Introduction to Common Object File Format

2.3.1 Default Memory Allocation

Figure 2−3 illustrates the process of linking two files.

Figure 2−3. Combining Input Sections to Form an Executable Object Module

Memory map

 (.text)

Space for
variables

(.bss)

Initialized
data

(.data)

Init

Tables

Init

Tables

Executable
object module

file1
(.text)

file2
(.text)

file1
(.bss)

file2
(.bss)

file1
(.data)

file2
(.data)

file1.obj

.text

.bss

.data

file2.obj

.text

Init
(named section)

.bss

.data

Tables
(named section)

Executable
code

In Figure 2−3, file1.obj and file2.obj have been assembled to be used as linker
input. Each contains the .text, .data, and .bss default sections; in addition,
each contains named sections. The executable output module shows the
combined sections. The linker combines file1.text with file2.text to form one
.text section, then combines the .data sections, then the .bss sections, and
finally places the named sections at the end. The memory map shows how the
sections are put into memory; by default, the linker begins at address 080h and
places the sections one after the other as shown.

How the Linker Handles Sections

 2-14

2.3.2 Placing Sections in the Memory Map

Figure 2−3 illustrates the linker’s default methods for combining sections.
Sometimes you may not want to use the default setup. For example, you may
not want all of the .text sections to be combined into a single .text section. Or
you may want a named section placed where the .data section would normally
be allocated. Most memory maps contain various types of memory (RAM,
ROM, EPROM, etc.) in varying amounts; you may want to place a section in
a specific type of memory.

For further explanation of section placement within the memory map, see
Section 8.8, The MEMORY Directive, on page 8-28 and Section 8.9, The
SECTIONS Directive, on page 8-32.

Relocation

2-15Introduction to Common Object File Format

2.4 Relocation

The assembler treats each section as if it began at address 0. All relocatable
symbols (labels) are relative to address 0 in their sections. Of course, all
sections can’t actually begin at address 0 in memory, so the linker relocates
sections by:

� Allocating them into the memory map so that they begin at the appropriate
address

� Adjusting symbol values to correspond to the new section addresses

� Adjusting references to relocated symbols to reflect the adjusted symbol
values

The linker uses relocation entries to adjust references to symbol values. The
assembler creates a relocation entry each time a relocatable symbol is
referenced. The linker then uses these entries to patch the references after the
symbols are relocated. Example 2−2 contains a code segment for the C55x
that generates relocation entries.

Example 2−2. Code That Generates Relocation Entries

 1 .ref X
 2 .ref Z
 3 000000 .text
 4 000000 4A04 B Y
 5 000002 6A00 B Z ;Generates relocation entry

000004 0000!
 6 000006 7600 MOV #X,AC0 ;Generates relocation entry

000008 0008!
 7 00000a 9400 Y: reset

Relocation

 2-16

In Example 2−2, symbol X is relocatable since it is defined in another module.
Symbol Y is relative to the PC and relocation is not necessary. Symbol Z is
PC-relative and needs relocation because it is in a different file. When the code
is assembled, X and Z have a value of 0 (the assembler assumes all undefined
external symbols have values of 0). The assembler generates a relocation
entry for X and Z. The references to X and Z are external references (indicated
by the ! character in the listing).

Each section in a COFF object file has a table of relocation entries. The table
contains one relocation entry for each relocatable reference in the section. The
linker usually removes relocation entries after it uses them. This prevents the
output file from being relocated again (if it is relinked or when it is loaded). A
file that contains no relocation entries is an absolute file (all its addresses are
absolute addresses). If you want the linker to retain relocation entries, invoke
the linker with the −r option.

2.4.1 Relocation Issues

The linker may warn you about certain relocation issues.

In an assembly program, if an instruction with a PC-relative field contains a
reference to a symbol, label, or address, the relative displacement is expected
to fit in the instruction’s field. If the displacement doesn’t fit into the field
(because the referenced item’s location is too far away), the linker issues an
error. For example, the linker will issue an error message when an instruction
with an 8-bit, unsigned, PC-relative field references a symbol located 256 or
more bytes away from the instruction.

Similarly, if an instruction with an absolute address field contains a reference
to a symbol, label, or address, the referenced item is expected to be located
at an address that will fit in the instruction’s field. For example, if a function is
linked at 0x10000, its address cannot be encoded into a 16-bit instruction field.

In both cases, the linker truncates the high bits of the value.

To deal with these issues, examine your link map and linker command file. You
may be able to rearrange output sections to put referenced symbols closer to
the referencing instruction.

Alternatively, consider using a different assembly instruction with a wider field.
Or, if you only need the lower bits of a symbol, use a mask expression to zero
out the upper bits.

Run-Time Relocation

2-17Introduction to Common Object File Format

2.5 Run-Time Relocation

At times, you may want to load code into one area of memory and run it in
another. For example, you may have performance-critical code in a
ROM-based system. The code must be loaded into ROM, but it would run
faster in RAM.

The linker provides a simple way to handle this. Using the SECTIONS
directive, you can optionally direct the linker to allocate a section twice: first to
set its load address, and again to set its run address. Use the load keyword
for the load address and the run keyword for the run address.

The load address determines where a loader will place the raw data for the
section. Any references to the section (such as labels in it) refer to its run
address. The application must copy the section from its load address to its run
address; this does not happen automatically simply because you specify a
separate run address. For an example that illustrates how to move a block of
code at runtime, see Example 8−7 on page 8-51.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and will load and run at the same address. If you provide
both allocations, the section is actually allocated as if it were two different
sections of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant
address is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and
ignores the load address.

For a complete description of runtime relocation, see Section 8.10, Specifying
a Section’s Runtime Address, on page 8-45.

Loading a Program

 2-18

2.6 Loading a Program

The linker produces executable COFF object modules. An executable object
file has the same COFF format as object files that are used as linker input; the
sections in an executable object file, however, are combined and relocated so
that they can be loaded directly into target memory.

Several methods can be used for loading a program, depending on the
execution environment. Two common situations are described below.

� The TMS320C55x debugging tools, including the software simulator and
software development system, have built-in loaders. Each of these tools
contains a LOAD command that invokes a loader; the loader reads the
executable file and copies the program into target memory.

� You can use the hex conversion utility (hex55, which is shipped as part of
the assembly language package) to convert the executable COFF object
module into one of several object file formats. You can then use the
converted file with an EPROM programmer to burn the program into an
EPROM.

Symbols in a COFF File

2-19Introduction to Common Object File Format

2.7 Symbols in a COFF File

A COFF file contains a symbol table that stores information about symbols in
the program. The linker uses this table when it performs relocation. Debugging
tools can also use the symbol table to provide symbolic debugging.

2.7.1 External Symbols

External symbols are symbols that are defined in one module and referenced
in another module. You can use the .def, .ref , or .global directives to identify
symbols as external:

.def Defined in the current module and used in another module

.ref Referenced in the current module, but defined in another
module

.global May be either of the above

The following code segment illustrates these definitions.

 .def x ; DEF of x
 .ref y ; REF of y
x: ADD #86,AC0,AC0 ; Define x

 B y ; Reference y

The .def definition of x says that it is an external symbol defined in this module
and that other modules can reference x. The .ref definition of y says that it is
an undefined symbol that is defined in another module.

The assembler places both x and y in the object file’s symbol table. When the
file is linked with other object files, the entry for x defines unresolved
references to x from other files. The entry for y causes the linker to look through
the symbol tables of other files for y’s definition.

The linker must match all references with corresponding definitions. If the
linker cannot find a symbol’s definition, it prints an error message about the
unresolved reference. This type of error prevents the linker from creating an
executable object module.

Symbols in a COFF File

 2-20

2.7.2 The Symbol Table

The assembler always generates an entry in the symbol table when it
encounters an external symbol (both definitions and references). The
assembler also creates special symbols that point to the beginning of each
section; the linker uses these symbols to resolve the address of and
references to symbols that are defined in the section.

The assembler does not usually create symbol table entries for any symbols
other than those described above, because the linker does not use them. For
example, labels are not included in the symbol table unless they are declared
with .global. For symbolic debugging purposes, it is sometimes useful to have
entries in the symbol table for each symbol in a program; to accomplish this,
invoke the assembler with the −as option.

3-1

 �		������ ��	��������

The assembler translates assembly language source files into machine
language object files. These files are in common object file format (COFF),
which is discussed in Chapter 2, Introduction to Common Object File Format,
and Appendix A, Common Object File Format. Source files can contain the
following assembly language elements:

Assembler directives described in Chapter 4

Macro directives described in Chapter 5

Assembly language instructions described in the TMS320C55x�
Instruction Set Reference Guides

Topic Page

3.1 Assembler Overview 3-2.

3.2 Assembler Development Flow 3-3.

3.3 Invoking the Assembler 3-4.

3.4 Invoking the Assembler Directly 3-8.

3.5 C55x Assembler Features 3-12.

3.6 Naming Alternate Files and Directories for Assembler Input 3-19.

3.7 Source Statement Format 3-22.

3.8 Constants 3-26.

3.9 Character Strings 3-29.

3.10 Symbols 3-30.

3.11 Expressions 3-36.

3.12 Built-In Functions 3-39.

3.13 Source Listings 3-41.

3.14 Debugging Assembly Source 3-45.

3.15 Cross-Reference Listings 3-47.

Chapter 3

Assembler Overview

 3-2

3.1 Assembler Overview

TMS320C55x� has two assemblers:

� The mnemonic assembler accepts C54x� mnemonic and C55x�
mnemonic assembly source.

� The algebraic assembler accepts only C55x algebraic assembly source.

Each assembler does the following:

� Processes the source statements in a text file to produce a relocatable
C55x object file

� Produces a source listing (if requested) and provides you with control over
this listing

� Allows you to segment your code into sections and maintain an SPC
(section program counter) for each section of object code

� Defines and references global symbols and appends a cross-reference
listing to the source listing (if requested)

� Assembles conditional blocks

� Supports macros, allowing you to define macros inline or in a library

The mnemonic assembler generates error and warning messages for C54x
instructions that are not supported. Some C54x instructions do not map
directly to a single C55x instruction. The mnemonic assembler will translate
these instructions into an appropriate series of C55x instructions. The listing
file generated by the assembler (with the −l option) shows the translations that
have occurred. See Chapter 6 for more information on running C54x code on
C55x.

Assembler Development Flow

3-3 Assembler Description

3.2 Assembler Development Flow

Figure 3−1 illustrates the assembler’s role in the assembly language
development flow. The assembler accepts assembly language source files as
input, whether created by the assembler itself or by the C/C++ compiler.

Figure 3−1. Assembler Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C/C+
source

files

C55x

Executable
COFF

file

C/C++ compiler

Library-build
utility

Cross-reference
lister

Absolute lister

Debugging
tools

Runtime-
support
library

C++ name
demangler

Invoking the Assembler

 3-4

3.3 Invoking the Assembler

To invoke the assembler through the compiler, enter the following:

cl55 input file [−options]

cl55 is the command that invokes the assembler through the
compiler. The compiler considers any file with an .asm
extension to be an assembly file and calls the assembler.

input file names the assembly language source file. The source file must
contain eiter mnemonic or algebraic instructions. It cannot
contain both. The default instruction set is mnemonic. To specify
the algebraic instruction set, use the −mg option.

options identifies the assembler options that you want to use. Options
are not case-sensitive and can appear anywhere on the
command line, following the command. Precede each option
with a hyphen(s). Options must be specified separately.

The valid assembler options are as follows:

−@ −@=filename appends the contents of a file to the command
line. You can use this option to avoid limitations on command
line length imposed by the host operating system. Use an as-
terisk or a semicolon (* or ;) at the beginning of a line in the com-
mand file to embed comments. Comments that begin in any
other column must begin with a semicolon.

Within the command file, filenames or option parameters con-
taining embedded spaces or hyphens must be surrounded by
quotation marks. For example: “this-file.obj”

−aa creates an absolute listing. When you use −aa, the assembler
does not produce an object file. The −aa option is used in
conjunction with the absolute lister.

−ac makes case insignificant in the assembly language files. For
example, −ac makes the symbols ABC and abc equivalent. If
you do not use this option, case is significant (default). Case
significance is enforced primarily with symbol names, not with
mnemonics and register names.

−ad −ad=name [=value] sets the name symbol. This is equivalent
to inserting name .set value at the beginning of the assembly
file. If value is omitted, the symbol is set to 1. For more
information, see subsection 3.10.3, Defining Symbolic
Constants (−ad Option), on page 3-31.

Invoking the Assembler

3-5 Assembler Description

−ahc −ahc= filename tells the assembler to copy the specified
filename for the assembly module. The file is inserted before
source file statements. The copied file appears in the assembly
listing files.

−ahi −ahi= filename tells the assembler to include the specified
filename for the assembly module. The file is included before
source file statements. The included file does not appear in the
assembly listing files.

−al (lowercase L) produces asm listing file.

−apd performs preprocessing for assembly files, but instead of
writing preprocessed output, writes a list of dependency lines
suitable for input to a standard make utility. The list is written to
a file with the same name as the source file but with a .ppa
extension.

−api performs preprocessing for assembly files, but instead of
writing preprocessed output, writes a list of files included with
the #include directive. The list is written to a file with the same
name as the source file but with a .ppa extension.

−ar −ar[#] suppresses the assembler remark identified by #. A
remark is an informational assembler message that is less
severe than a warning. If you do not specify a value for #, all
remarks are suppressed. For a description of assembler
remarks, see Section 7.7 on page 7-35.

−as puts all local (defined) symbols in the object file’s symbol table.
The assembler usually puts only global symbols into the
symbol table. When you use −as, all symbols defined as labels
or as assembly-time constants are also placed in the table.

−ata (ARMS mode) tells the assembler to assume that the ARMS
status bit is initially set during the execution of this source file.
By default, the assembler assumes that the bit is disabled.

−atb Causes the assember to treat parallel bus conflict errors as
warnings.

−atc (CPL mode) tells the assembler to assume that the CPL status
bit is initially set during the execution of this source file. This
causes the assembler to enforce the use of SP-relative
addressing syntax. By default, the assembler assumes that the
bit is disabled.

Invoking the Assembler

 3-6

−ath causes the assembler to generate faster code rather than
smaller code when porting your C54x files. By default, the
assembler tries to encode for small code size.

−atl (C54x compatibility mode)tells the assembler to assume that
the C54x status bit is initially set during the execution of this
source file. By default, the assembler assumes that the bit is
disabled.

−atn causes the assembler to remove NOPs located in the delay
slots of C54x delayed branch/call instructions. For more
information, see Section 7.2.4 on page 7-9.

−atp causes the assembler to generate an assembly instruction
profile file with an extension of .prf. The file contents are usage
counts for each kind of instruction used in the assembly code.

−ats (mnemonic assembly only) loosens the requirement that a
literal shift count operand begin with a # character. This
provides compatibility with early versions of the mnemonic
assembler. When this option is used and the # is omitted, a
warning is issued advising you to change to the new syntax.

−att tells the assembler to assume that the SST status bit is zero
during the execution of this source file. By default, the
assembler assumes that the bit is enabled.

−atv tells the assembler to assume that all goto/calls are to be
encoded as 24-bit offset. By default, the assembler tries to
resolve all variable-length instructions to their smallest size.

−atw (algebraic assembly only) suppresses all assembler warning
messages.

−au −au=name undefines the predefined constant name, which
overrides any −adname options for the specified constant.

−aw Enables pipeline conflict warnings.

−ax produces a cross-reference file and appends it to the end of the
listing file; also adds cross-reference information to the object
file for use by the cross-reference utility. If you do not request
a listing file, the assembler creates one anyway.

Invoking the Assembler

3-7 Assembler Description

−g enables assembler source debugging in the C source
debugger. Line information is output to the COFF file for every
line of source in the assembly language source file. You cannot
use the −g option on assembly code that contains .line
directives. See section 3.14, Debugging Assembly Source, on
page 3-45 for more information.

−I specifies a directory where the assembler can find files named
by the .copy, .include, or .mlib directives. The format of the −I
option is −Ipathname. For more information, see subsection
3.6.1, −I Assembler Option, on page 3-19.

−mg causes the assembler to accept algebraic assembly files. You
must use the −mg option to assemble algebraic assembly input
files. Algebraic and mnemonic source code cannot be mixed in
a single source file.

−−purecirc (mnemonic assembly only) asserts to the assembler that the
C54x file uses C54x circular addressing (does not use the C55x
linear/circular mode bits). For more information, see section
7.2.3 on page 7-7.

−v −vdevice determines the processor for which instructions are
generated. For information on legal values, see the
TMS320C55x Optimizing C/C++ Compiler User’s Guide.

Invoking the Assembler Directly

 3-8

3.4 Invoking the Assembler Directly

Note: asm55 and masm55

To allow for future enhancement of the Code Generation Tools, direct
invocation of the algebraic (asm55) and mnemonic (masm55) assemblers
is deprecated. However, you can directly invoke the assemblers if desired.

To directly invoke the algebraic and mnemonic assemblers, enter the
following:

masm55 [input file [object file [listing file]]] [−options]

asm55 [input file [object file [listing file]]] [−options]

masm55
asm55

are the commands that invoke the assembler: masm55 invokes
the mnemonic assembler, and asm55 invokes the algebraic
assembler.

input file names the assembly language source file: masm55 assumes
that inputfile is a valid mnemonic assembly source file (no
algebraic instructions), and asm55 assumes that inputfile is a
valid algebraic assembly source file (no mnemonic instructions).
If you do not supply an extension, the assembler uses the default
extension .asm, unless the −f assembler option is used. If you do
not supply an input filename, the assembler prompts you for one.

object file names the C55x object file that the assembler creates. If you do
not supply an extension, the assembler uses .obj as a default. If
you do not supply an object file, the assembler creates a file that
uses the input filename with the .obj extension.

listing file names the optional listing file that the assembler can create.

� If you do not supply a listing file, the assembler does not
create one unless you use the −l (lowercase L) option or the
−x option. In this case, the assembler uses the input filename
with a .lst extension and places the listing file in the input file
directory.

� If you supply a listing file but do not supply an extension, the
assembler uses .lst as the default extension.

options identifies the assembler options that you want to use. Options
are not case-sensitive and can appear anywhere on the
command line, following the assembler name. Precede each
option with a hyphen(s). Options must be specified separately.

Invoking the Assembler Directly

3-9 Assembler Description

The valid assembler options are as follows:

−a creates an absolute listing. When you use −a, the assembler
does not produce an object file. The −a option is used in
conjunction with the absolute lister.

−c makes case insignificant in the assembly language files. For
example, −c will make the symbols ABC and abc equivalent.
If you do not use this option, case is significant (default). Case
significance is enforced primarily with symbol names, not with
mnemonics and register names.

−d −dname [=value] sets the name symbol. This is equivalent to
inserting name .set value at the beginning of the assembly file.
If value is omitted, the symbol is set to 1. For more information,
see subsection 3.10.3, Defining Symbolic Constants (−d
Option), on page 3-31.

−f suppresses the assembler’s default behavior of adding a .asm
extension to a source file name that does not already include
an extension.

−g enables assembler source debugging in the source debugger.
Line information is output to the COFF file for every line of
source in the assembly language source file. Note that you
cannot use the −g option on assembly code that already
contains .line directives (that is, code that was generated by the
C/C++ compiler run with −g or −−symdebug:dwarf).

−h
−help
−?

any of these options displays a listing of the available
assembler options.

−hc −hc filename tells the assembler to copy the specified file for the
assembly module. The file is inserted before source file
statements. The copied file appears in the assembly listing
files.

−hi −hi filename tells the assembler to include the specified file for
the assembly module. The file is included before source file
statements. The included file does not appear in the assembly
listing files.

−I specifies a directory where the assembler can find files named
by the .copy, .include, or .mlib directives. The format of the −I
option is −Ipathname. For more information, see subsection
3.6.1, −I Assembler Option, on page 3-19.

−l (lowercase L) produces a listing file.

Invoking the Assembler Directly

 3-10

−ma (ARMS mode) informs the assembler that the ARMS status bit
will be enabled during the execution of this source file. By
default, the assembler assumes that the bit is disabled.

−mc (CPL mode) informs the assembler that the CPL status bit will
be enabled during the execution of this source file. This causes
the assembler to enforce the use of SP-relative addressing
syntax. By default, the assembler assumes that the bit is
disabled.

−mh causes the assembler to generate faster code rather than
smaller code when porting your C54x files. By default, the
assembler tries to generate small code size. For more
information, see Section 7.2.2 on page 7-6. (Supported for cl55
only)

−mk specifies the C55x large memory model. This option sets the
__large_model symbol to 1. When this option is used, the
assembler marks the object file as a large model file. This
provides the linker with information to detect illegal
combinations of small model and large model object modules.

−ml (C54x compatibility mode) informs the assembler that the
C54CM status bit will be enabled during the execution of this
source file. By default, the assembler assumes that the bit is
disabled.

−mn (mnemonic assembly only) causes the assembler to remove
NOPs located in the delay slots of C54x delayed branch/call
instructions. For more information, see Section 7.2.4 on page
7-9.

−ms (mnemonic assembly only) loosens the requirement that a
literal shift count operand begin with a # character. This
provides compatibility with early versions of the mnemonic
assembler. When this option is used and the # is omitted, a
warning is issued advising you to change to the new syntax.

−mt (mnemonic assembly only) informs the assembler that the SST
status bit will be disabled during the execution of this ported
C54x source file. By default, the assembler assumes that the
bit is enabled. For more information, see Section 7.2.1 on page
7-5.

−mv causes the assembler to use the largest (P24) form of certain
variable-length instructions. By default, the assembler tries to
resolve all variable-length instructions to their smallest size.

−mw (algebraic assembly only) suppresses assembler warning
messages.

Invoking the Assembler Directly

3-11 Assembler Description

−−purecirc (mnemonic assembly only) asserts to the assembler that the
C54x file uses C54x circular addressing (does not use the C55x
linear/circular mode bits). For more information, see section
7.2.3 on page 7-7.

−q (quiet) suppresses the banner and all progress information.

−r −r[num] suppresses the assembler remark identified by num.
A remark is an informational assembler message that is less
severe than a warning. If you do not specify a value for num,
all remarks will be suppressed. For a description of assembler
remarks, see section 7.7 on page 7-35.

−s puts all defined symbols in the object file’s symbol table. The
assembler usually puts only global symbols into the symbol
table. When you use −s, symbols defined as labels or as
assembly-time constants are also placed in the table.

−u −uname undefines the predefined constant name, which
overrides any −d options for the specified constant.

−x produces a cross-reference table and appends it to the end of
the listing file; also adds cross-reference information to the
object file for use by the cross-reference utility. If you do not
request a listing file, the assembler creates one anyway.

C55x Assembler Features

 3-12

3.5 C55x Assembler Features

The sections that follow provide important information on features specific to
the C55x assembler:

� Byte/word addressing (Section 3.5.1)
� Parallel instruction rules (Section 3.5.2)
� Variable-length instructions (Section 3.5.3)
� Memory modes (Section 3.5.4)
� Warning on use of MMR addresses (Section 3.5.5)

3.5.1 Byte/Word Addressing

C55x memory is 8-bit byte-addressable for code and 16-bit word-addressable
for data. The assembler and linker keep track of the addresses, relative
offsets, and sizes of the bits in units that are appropriate for the given section:
words for data sections, and bytes for code sections.

Note: Offsets in .struct and .union Constructs

Offsets of fields defined in .struct or .union constructs are always counted in
words, regardless of the current section. The assembler assumes that a
.struct or .union is always used in a data context.

3.5.1.1 Definition of Code Sections

The assembler identifies a section as a code section if one of the following is
true:

� The section is introduced with a .text directive.
� The section has at least one instruction assembled into it.

If a section is not established with a .text, .data., or .sect directive, the
assembler assumes that it is a .text (code) section. Because the section type
determines the assembler’s offset and size computations, it is important to
clearly define your current working section as code or data before assembling
objects into the section.

C55x Assembler Features

3-13 Assembler Description

3.5.1.2 Assembly Programs and Native Units

The assembler and the linker assume that your code is written using word
addresses and offsets in the context of data segments, and byte addresses
and offsets in the context of code segments:

� If an address is to be sent via a program address bus (e.g., an address
used as the target of a call or a branch), the processor expects a full 24-bit
address. A constant used in this context should be expressed in bytes.

� If an address is to be sent via a data address bus (e.g., an address denotes
a location in memory to be read or written), the processor expects a 23-bit
word address. A constant used in this context should be expressed in
words.

� The PC-value column of the assembly listing file is counted in units that
are appropriate for the section being listed. For code sections, the PC is
counted in bytes; for data sections, it is counted in words.

For example:

1 000000 .text ; PC is counted in BYTES
2 000000 2298 MOV AR1,AR0
3 000002 4010 ADD #1,AC0
4
5 000000 .data ; PC is counted in WORDS
6 000000 0004 .word 4,5,6,7
 000001 0005 ; PC is 1 word
 000002 0006 ; PC is 2 words ...
 000003 0007
7 000004 0001 foo .word 1

� The data definition directives that operate on characters (.byte, .ubyte,
.char, .uchar, and .string) allocate one character per byte when in a code
section, and one character to a word when in a data section. However,
Texas Instruments highly recommends that you use data definition
directives (see Table 4−1 (b) on page 4-3 for a complete listing) only in
data sections.

� Directives that have a size parameter expressed in addressable units
expect this parameter to be expressed in bytes for a code section, and in
words for a data section.

For example,

.align 2

aligns the PC to a 2-byte (16-bit) boundary in a code section, and to a
2-word (32-bit) boundary in a data section.

C55x Assembler Features

 3-14

The code examples below display data and code for C55x.

Example 3−1. C55x Data Example

 .def Struct1, Struct2
 .bss Struct1, 8 ; allocate 8 WORDS for Struct1
 .bss Struct2, 6 ; allocate 6 WORDS for Struct2

 .text
 MOV *(#(Struct1 + 2)),T0 ; load 3rd WORD of Struct1
 MOV *(#1000h),T1 ; 0x1000 is an absolute WORD

 ; address (i.e., byte 0x2000)

Example 3−2. C55x Code Example

 .text
 .ref Func
 CALL #(Func + 3) ;jump to address “Func plus 3 BYTES”
 CALL #0x1000 ;0x1000 is an absolute BYTE address

3.5.1.3 Using Code as Data and Data as Code

The assembler does not support using a code address as if it were a data
address (e.g., attempting to read or write data to program space) except when
code has separate load and run memory placements. In those cases, code
must be aligned to a word address. See section 8.17, Linker-Generated Copy
Tables, on page 8-77 for more information.

Similarly, the assembler does not support using a data address as if it were a
code address (e.g., executing a branch to a data label). This functionality
cannot be supported because of the difference in the size of the addressable
units: a code label address is a 24-bit byte address while a data label address
is a 23-bit word address.

Consequently:

� You should not mix code and data within one section. All data (even
constant data) should be placed into a section separate from code.

� Applications that attempt to read and write bits into program sections are
dangerous and likely will not work.

C55x Assembler Features

3-15 Assembler Description

3.5.2 Parallel Instruction Rules

The assembler performs semantic checking of parallel pairs of instructions in
accordance with the rules specified in the TMS320C55x Instruction Set
Reference Guides.

The assembler may swap two instructions in order to make parallelism legal.
For example, both sets of instructions below are legal and will be encoded into
identical object bits:

AC0 = AC1 || T0 = T1 ^ #0x3333
T0 = T1 ^ #0x3333 || AC0 = AC1

3.5.3 Variable-Length Instruction Size Resolution

By default, the assembler will attempt to resolve all stand-alone,
variable-length instructions to their smallest possible size. For instance, the
assembler will try to choose the smallest possible of the three available
unconditional branch-to-address instructions:

goto L7
goto L16
goto P24

If the address used in a variable-length instruction is not known at assembly
time (for example, if it is a symbol defined in another file), the assembler will
choose the largest available form of the instruction. Of the three available
branch instructions above, goto P24 will be picked.

Size resolution is performed on the following instruction groups:

goto L7, L16, P24
if (cond) goto l4, L8, L16, P24
call L16, P24
if (cond) call L16, P24

In some cases, you may want the assembler to keep the largest (P24) form
of certain instructions. The P24 versions of certain instructions execute in
fewer cycles than the smaller version of the same instructions. For example,
“goto P24” uses 4 bytes and 3 cycles, while “goto L7” uses 2 bytes but 4 cycles.

Use the −mv assembler option or the .vli_off directive to keep the following
instructions in their largest form:

goto P24
call P24

C55x Assembler Features

 3-16

The −mv assembler option suppresses the size resolution of the above
instructions within the entire file. The .vli_off and .vli_on directives can be used
to toggle this behavior for regions of an assembly file. In the case of a conflict
between the command line option and the directives, the directives take
precedence.

All other variable-length instructions will continue to be resolved to their
smallest possible size by the assembler, despite the −mv option or .vli_off
directive.

The scope of the .vli_off and .vli_on directives is static and not subject to the
control flow of the assembly program.

3.5.4 Memory Modes

The assembler supports three memory mode bits (or eight memory modes):
C54x compatibility, CPL, and ARMS. The assembler accepts or rejects its
input based on the mode specified; it may also produce different encodings for
the same input based on the mode.

The memory modes correspond to the value of the C54CM, CPL, and ARMS
status bits. The assembler cannot track the value of the status bits. You must
use assembler directives and/or command line options to inform the
assembler of the value of these bits. An instruction that modifies the value of
the C54CM, CPL, or ARMS status bit must be immediately followed by an
appropriate assembler directive. When the assembler is aware of changes to
these bit values, it can provide useful error and warning messages about
syntax and semantic violations of these modes.

3.5.4.1 C54x Compatibility Mode

C54x compatibility mode is necessary when a source file has been converted
from C54x code. Until you modify your converted source code to be
C55x-native code, use the −ml command line option when assembling the file,
or use the .c54cm_on and .c54cm_off directives to specify C54x compatibility
mode for regions of code. The .c54cm_on and .c54cm_off directives take no
arguments. In the case of a conflict between the command line option and the
directive, the directive takes precedence.

The scope of the .c54cm_on and .c54cm_off directives is static and not subject
to the control flow of the assembly program. All assembly code between the
.c54cm_on and .c54cm_off directives is assembled in C54x compatibility
mode.

In C54x compatibility mode, AR0 is used instead of T0 (C55x index register)
in memory operands. For example, *(AR5 + T0) is invalid in C54x compatibility
mode; *(AR5 + AR0) should be used.

C55x Assembler Features

3-17 Assembler Description

3.5.4.2 CPL Mode

CPL mode affects direct addressing. The assembler cannot track the value of
the CPL status bit. Consequently, you must use the .cpl_on and .cpl_off
directives to model the CPL value. Issue one of these directives immediately
following any instruction that changes the value in the CPL bit. The .cpl_on
directive is similar to the CPL status bit set to 1; it is equivalent to using the −mc
command line option. The .cpl_off directive asserts that the CPL status bit is
set to 0. The .cpl_on and .cpl_off directives take no arguments. In the case of
a conflict between the command line option and the directive, the directive
takes precedence.

The scope of the .cpl_on, .cpl_off directives is static and not subject to the
control flow of the assembly program. All of the assembly code between the
.cpl_on and .cpl_off directives is assembled in CPL mode.

In CPL mode (.cpl_on), direct memory addressing is relative to the stack
pointer (SP). The dma syntax is *SP(dma), where dma can be a constant or
a relocatable symbolic expression. The assembler encodes the value of dma
into the output bits.

By default (.cpl_off), direct memory addressing (dma) is relative to the data
page register (DP). The dma syntax is @dma, where dma can be a constant
or a relocatable symbolic expression. The assembler computes the difference
between dma and the value in the DP register and encodes this difference into
the output bits.

The DP can be referenced in a file, but never defined in that file (it is set
externally). Consequently, you must use the .dp directive to inform the
assembler of the DP value before it is used. Issue this directive immediately
following any instruction that changes the value in the DP register. The syntax
of the directive is:

.dp dp_value

The dp_value can be a constant or a relocatable symbolic expression.

If the .dp directive is not used in a file, the assembler assumes that the value
of the DP is 0. The scope of the .dp directive is static and not subject to the
control flow of the program. The value set by the directive is used until the next
.dp directive is encountered, or until the end of the source file is reached.

Note that dma access to the MMR page and to the I/O page is processed
identically by the assembler whether CPL mode is specified or not. Access to
the MMR page is indicated by the mmap() qualifier in the syntax. Access to the
I/O page is indicated by the readport() and writeport() qualifiers. These dma
accesses are always encoded by the assembler as relative to the origin of 0.

C55x Assembler Features

 3-18

3.5.4.3 ARMS Mode

ARMS mode affects indirect addressing and is useful in the context of
controller code. The assembler cannot track the value of the ARMS status bit.
Consequently, you must use the .arms_on and .arms_off directives to model
the ARMS value to the assembler. Issue one of these directives immediately
following any instruction that changes the value in the ARMS bit. The .arms_on
directive models the ARMS status bit set to 1; it is equivalent to using the −ma
option. The .arms_off directive models the ARMS status bit set to 0. The
.arms_on and .arms_off directives take no arguments.

In the case of a conflict between the −ma option and the directive, the directive
takes precedence.

The scope of the .arms_on and .arms_off directives is static and not subject
to the control flow of the assembly program. All of the assembly code between
the .arms_on and .arms_off directives is assembled in ARMS mode.

By default (.arms_off), indirect memory access modifiers targeted to the
assembly code are selected.

In ARMS mode (.arms_on), short offset modifiers for indirect memory access
are used. These modifiers are more efficient for code size optimization.

3.5.5 Assembler Warning On Use of MMR Address

The mnemonic assembler (cl55) issues a “Using MMR address” warning when
a memory-mapped register (MMR) is used in a context where a
single-memory access operand (Smem) is expected. The warning indicates
that the assembler interprets the MMR usage as a DP-relative direct address
operand. For the instruction to work as written, DP must be 0. For example:

ADD SP, T0

Receives the “Using MMR address” warning as here:

“file.asm”, WARNING! at line 1: [W9999] Using MMR address

The assembler warns that the effect of this instruction is:

ADD value at address(DP + MMR address of SP), T0

The value of SP is accessed only if the DP is 0.

The best way to write this instruction, even though it is one byte longer, is:

ADD mmap(SP), T0

In a case where the DP is known to be 0 and such a reference is intentional,
you can avoid the warning by using the @ prefix:

ADD @SP, T0

This warning is not generated for C55x instructions inherited from C54x.

Naming Alternate Files and Directories for Assembler Input

3-19 Assembler Description

3.6 Naming Alternate Files and Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from
external files. The .copy and .include directives tell the assembler to read
source statements from another file, and the .mlib directive names a library
that contains macro functions. Chapter 4, Assembler Directives, contains
examples of the .copy, .include, and .mlib directives. The syntax for these
directives is:

.copy ”filename”

.include ”filename”

.mlib ”filename”

The filename names a copy/include file that the assembler reads statements
from or a macro library that contains macro definitions. If filename begins with
a number the double quotes are required. The filename may be a complete
pathname, a relative pathname, or a filename with no path information. The
assembler searches for the file in the following order:

1) The directory that contains the current source file. The current source file
is the file being assembled when the .copy, .include, or .mlib directive is
encountered.

2) Any directories named with the −I assembler option

3) Any directories set with the environment variables C55X_A_DIR and
A_DIR

4) Any directories set with the environment variables C55X_C_DIR and
C_DIR

You can augment the assembler’s directory search algorithm by using the −I
assembler option or the C55X_A_DIR and A_DIR environment variables.

3.6.1 Using the − I Assembler Option

The −I assembler option names an alternate directory that contains copy/
include files or macro libraries. The format of the −I option is as follows:

cl55 −Ipathname source filename

Each −I option names one pathname. There is no limit to the number of paths
that you can specify. In assembly source, you can use the .copy, .include, or
.mlib directive without specifying path information. If the assembler does not
find the file in the directory that contains the current source file, it searches the
paths designated by the −I options.

Naming Alternate Files and Directories for Assembler Input

 3-20

For example, assume that a file called source.asm is in the current directory;
source.asm contains the following directive statement:

.copy ”copy.asm”

Assume the following paths for the copy.asm file:

Windows c:\tools\files\copy.asm

UNIX /tools/files/copy.asm

Operating System Enter

Windows cl55 −Ic:\tools\files source.asm

UNIX cl55 −I/tools/files source.asm

The assembler first searches for copy.asm in the current directory because
source.asm is in the current directory. Then the assembler searches in the
directory named with the −I option.

3.6.2 Using the Environment Variables C55X_A_DIR and A_DIR

An environment variable is a system symbol that you define and assign a string
to. The assembler uses the environment variables to name alternate
directories that contain copy/include files or macro libraries.

The assembler looks for the C55X_A_DIR environment variable first and then
reads and processes it. If it does not find this variable, it reads the A_DIR
environment variable and processes it. If both variables are set, the settings
of the processor-specific variable are used. The processor-specific variable is
useful when you are using Texas Instruments tools for different processors at
the same time.

If the assembler doesn’t find C55X_A_DIR and/or A_DIR, it will then search
for C55X_C_DIR and C_DIR.

The command for assigning the environment variable is as follows:

Operating System Enter

Windows set A_DIR= pathname1 ;pathname2 ; . . .

UNIX (Bourne shell) set A_DIR ” pathname1 ;pathname2 ; . . .”; export A_DIR

The pathnames are directories that contain copy/include files or macro
libraries. You can separate the pathnames with a semicolon or with blanks. In
assembly source, you can use the .copy, .include, or .mlib directive without
specifying path information. If the assembler does not find the file in the
directory that contains the current source file or in directories named by the −I
option, it searches the paths named by the environment variable.

Naming Alternate Files and Directories for Assembler Input

3-21 Assembler Description

For example, assume that a file called source.asm contains these statements:

.copy ”copy1.asm”

.copy ”copy2.asm”

Assume that the files are stored in the following directories:

Windows c:\tools\files\copy1.asm
 c:\dsys\copy2.asm

UNIX /tools/files/copy1.asm
 /dsys/copy2.asm

You could set up the search path with the commands shown in the following
table:

Operating System Enter

Windows set A_DIR=c:\dsys
cl55 −Ic:\tools\files source.asm

UNIX (Bourne shell) A_DIR=”/dsys”;export A_DIR
cl55 −I/tools/files source.asm

The assembler first searches for copy1.asm and copy2.asm in the current
directory because source.asm is in the current directory. Then the assembler
searches in the directory named with the −I option and finds copy1.asm.
Finally, the assembler searches the directory named with A_DIR and finds
copy2.asm.

The environment variable remains set until you reboot the system or reset the
variable by entering one of these commands:

Operating System Enter

Windows set A_DIR=

UNIX unsetenv A_DIR

Source Statement Format

 3-22

3.7 Source Statement Format

TMS320C55x assembly language source programs consist of source
statements that can contain assembler directives, assembly language
instructions, macro directives, and comments. Source statement lines can be
as long as the source file format allows.

Example source statements are shown below.

(a) Mnemonic instructions

SYM1 .set 2 ; Symbol SYM1 = 2.
Begin: MOV #SYM1, AR1 ; Load AR1 with 2.

.data

.byte 016h ; Initialize word (016h)

(b) Algebraic instructions

SYM1 .set 2 ; Symbol SYM1 = 2.
Begin: AR1 = #SYM1 ; Load AR1 with 2.

.data

.byte 016h ; Initialize word (016h)

3.7.1 Source Statement Syntax

A source statement can contain four ordered fields. The general syntax for
source statements is as follows:

Mnemonic syntax:

[label] [:] mnemonic [operand list] [;comment]

Algebraic syntax:

[label] [:] instruction [;comment]

Follow these guidelines:

� All statements must begin with a label, blank, asterisk, or semicolon.

� A statement containing an assembler directive must be specified entirely
on one line.

� Labels are optional; if used, they must begin in column 1.

� One or more blanks must separate each field. Tab characters are
equivalent to blanks.

� Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

� A source line can be continued onto the next line by ending the first line
with a backslash (\) character.

Source Statement Format

3-23 Assembler Description

3.7.2 Label Field

Labels are optional for all assembly language instructions and for most (but
not all) assembler directives. When used, a label must begin in column 1 of a
source statement. A label can contain up to 32 alphanumeric characters (A−Z,
a−z, 0−9, _, and $). Labels are case sensitive, and the first character cannot
be a number. A label can be followed by a colon (:); the colon is not treated as
part of the label name. If you don’t use a label, the first character position must
contain a blank, a semicolon, or an asterisk.

When you use a label, its value is the current value of the section program
counter (the label points to the statement it’s associated with). If, for example,
you use the .word directive to initialize several words, a label on the same line
as the directive would point to the first word. In the following example, the label
Start has the value 40h.

 5 000000 .data
 6 00000000 ; Assume other code was assembled.
 7 ...
 8 ...
 9 000040000A Start: .word 0Ah,3,7
 0000410003
 0000420007

A label on a line by itself is a valid statement. The label assigns the current
value of the section program counter to the label.

When a label appears on a line by itself, it is assigned to the address of the
instruction on the next line (the SPC is not incremented):

3 000043 Here:
4 000043 0003 .word 3

3.7.3 Mnemonic Instruction Fields

In mnemonic assembly, the label field is followed by the mnemonic and
operand list fields. These fields are described in the next two sections.

3.7.3.1 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field must not start
in column 1; if it does, it will be interpreted as a label. The mnemonic field can
contain one of the following opcodes:

� Machine-instruction mnemonic (such as ABS, MPYU, STH)
� Assembler directive (such as .data, .list, .set)
� Macro directive (such as .macro, .var, .mexit)
� Macro call

Source Statement Format

 3-24

3.7.3.2 Operand List Field

The operand list field is a list of operands that follow the mnemonic field. An
operand can be a constant (see Section 3.8, Constants, on page 3-26), a
symbol (see Section 3.10, Symbols, on page 3-30), or a combination of
constants and symbols in an expression (see Section 3.11, Expressions, on
page 3-36). You must separate operands with commas.

� Operand Prefixes for Instructions

The assembler allows you to specify that a constant, symbol, or
expression should be used as an address, an immediate value, or an
indirect value. The following rules apply to the operands of instructions.

� # prefix — the operand is an immediate value . If you use the # sign
as a prefix, the assembler treats the operand as an immediate value.
This is true even when the operand is a register or an address; the
assembler treats the address as a value instead of using the contents
of the address. This is an example of an instruction that uses an
operand with the # prefix:

Label: ADD #123, AC0

The operand #123 is an immediate value. The instruction adds 123
(decimal) to the contents of the specified accumulator.

For instructions that have an embedded shift count, the # prefix on the
shift count operand is required. If you want the shift performed by the
instruction, you must use # on the shift count.

� * prefix — the operand is an indirect address. If you use the * sign
as a prefix, the assembler treats the operand as an indirect address;
that is, it uses the contents of the operand as an address. This is an
example of an instruction that uses an operand with the * prefix:

Label: MOV *AR4,AC0

The operand *AR4 specifies an indirect address. The assembler goes
to the address specified by the contents of register AR4 and then
moves the contents of that location to the specified accumulator.

Source Statement Format

3-25 Assembler Description

3.7.4 Algebraic Instruction Fields

In algebraic assembly, instructions are written in a form that resembles
algebraic mathematical expression. The semantics of the instruction are
embodied in the operators of the expression. The terms of the expression
specify what operands are being acted on.

The following items describe how to use the instruction field for algebraic
syntax:

� Generally, operands are not separated by commas. Some algebraic
instructions consist of a mnemonic and operands. For algebraic
statements of this type, commas are used to separate operands. For
example, lms(Xmem, Ymem, ACx, ACy).

� Expressions that have more than one term that is used as a single operand
must be delimited with parentheses. This rule does not apply to
statements using a function call format, since they are already enclosed
in parentheses. For example, AC0 = AC1 & #(1 << sym) << 5. The
expression 1 << sym is used as a single operand and must therefore be
delimited with parentheses.

� All register names are reserved.

3.7.5 Comment Field

A comment can begin in any column and extends to the end of the source line.
A comment can contain any ASCII character, including blanks. Comments are
printed in the assembly source listing, but they do not affect the content of an
assembled object file.

A source statement that contains only a comment is valid. If it begins in column
1, it can start with a semicolon (;) or asterisk (*). Comments that begin
anywhere else on the line must begin with a semicolon. The asterisk identifies
a comment only if it appears in column 1.

Constants

 3-26

3.8 Constants

The assembler supports six types of constants:

� Binary integer
� Octal integer
� Decimal integer
� Hexadecimal integer
� Character
� Assembly time
� Floating-point

The assembler maintains each constant internally as a 32-bit quantity.
Constants are not sign-extended. For example, the constant 0FFH is equal to
00FF (base 16) or 255 (base 10); it does not equal −1.

In C55x algebraic assembly source code, most constants must begin with a
’#’.

3.8.1 Binary Integers

A binary integer constant is a string of up to 32 binary digits (0s and 1s)
followed by the suffix B (or b). If fewer than 32 digits are specified, the
assembler right justifies the value and zero fills the unspecified bits. These are
examples of valid binary constants:

00000000B Constant equal to 010 or 016

0100000b Constant equal to 3210 or 2016

01b Constant equal to 110 or 116

11111000B Constant equal to 24810 or 0F816

3.8.2 Octal Integers

An octal integer constant is a string of up to 11 octal digits (0 through 7) prefixed
with a 0 (zero) or suffixed with Q or q. These are examples of valid octal
constants:

10Q Constant equal to 810 or 816

100000Q Constant equal to 32 76810 or 8 00016

226q Constant equal to 15010 or 9616

Or, you can use C notation for octal constants:

010 Constant equal to 810 or 816

0100000 Constant equal to 32 76810 or 8 00016

0226 Constant equal to 15010 or 9616

Constants

3-27 Assembler Description

3.8.3 Decimal Integers

A decimal integer constant is a string of decimal digits, ranging from
−4294967296 to 4294967295. These are examples of valid decimal
constants:

1000 Constant equal to 100010 or 3E816

−32768 Constant equal to −32 76810 or 8 00016

25 Constant equal to 2510 or 1916

3.8.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits
followed by the suffix H (or h). Hexadecimal digits include the decimal values
0−9 and the letters A−F and a−f. A hexadecimal constant must begin with a
decimal value (0−9). If fewer than eight hexadecimal digits are specified, the
assembler right-justifies the bits. These are examples of valid hexadecimal
constants:

78h Constant equal to 12010 or 007816

0FH Constant equal to 1510 or 000F16

37ACh Constant equal to 14 25210 or 37AC16

Or, you can use C notation for hexadecimal constants:

0x78 Constant equal to 12010 or 007816

0x0F Constant equal to 1510 or 000F16

0x37AC Constant equal to 14 25210 or 37AC16

3.8.5 Character Constants

A character constant is a string of up to 4 characters enclosed in single quotes.
The characters are represented internally as 8-bit ASCII characters. Two
consecutive single quotes are required to represent each single quote that is
part of a character constant. A character constant consisting only of two single
quotes is valid and is assigned the value 0. If less than four characters is
specified, the assembler right-justifies the bits. These are examples of valid
character constants:

’a’ Represented internally as 6116

’C’ Represented internally as 4316

’’’D’ Represented internally as 2 74416

Constants

 3-28

Note the difference between character constants and character strings
(Section 3.9, Character Strings, on page 3-29, discusses character strings).
A character constant represents a single integer value; a string is a list of
characters.

3.8.6 Floating-Point Constants

A floating-point constant is a string of decimal digits, followed by an optional
decimal point, fractional portion, and exponent portion. The syntax for a
floating-point number is:

[+|−] [nnn] . [nnn [E|e [+|−] nnn]]

Replace nnn with a string of decimal digits. You can precede nnn with a + or
a −. You must specify a decimal point. For example, 3.e5 is valid, but 3e5 is
not valid. The exponent indicates a power of 10. These are examples of valid
constants:

3.0
3.14
.3
−0.314e13
+314.59e−2

The .double directive converts a floating-point constant into a floating-point
value in IEEE double-precision 64-bit format. The .float directive converts a
floating-point constant into a floating-point value in IEEE single-precision
32-bit format. See pages 4-48 and 4-56 for more information on the .double
and .float directives, respectively.

Character Strings

3-29 Assembler Description

3.9 Character Strings

A character string is a string of characters enclosed in double quotes. Double
quotes that are part of character strings are represented by two consecutive
double quotes. The maximum length of a string varies and is defined for each
directive that requires a character string. Characters are represented
internally as 8-bit ASCII characters.

These are examples of valid character strings:

”sample program” defines the 14-character string sample program.

”PLAN ””C””” defines the 8-character string PLAN ”C”.

Character strings are used for the following:

� Filenames, as in .copy ”filename”
� Section names, as in .sect ”section name”
� Data definition directives, as in .byte ”charstring”
� Operands of .string directives

Character Strings

Symbols

 3-30

3.10 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol
name is a string of alphanumeric characters (A−Z, a−z, 0−9, $, and _). The
first character in a symbol cannot be a number, and symbols cannot contain
embedded blanks. The symbols you define are case sensitive; for example,
the assembler recognizes ABC, Abc, and abc as three unique symbols. You
can override case sensitivity with the −c assembler option. A symbol is valid
only during the assembly in which it is defined, unless you use the .global
directive to declare it as an external symbol.

3.10.1 Labels

Symbols used as labels become symbolic addresses associated with
locations in the program. Labels used locally within a file must be unique.

Labels can also be used as the operands of .global, .ref, .def, or .bss directives;
for example:

.global label1

label2 nop
ADD @label1,AC1,AC1
B label2

Reserved words are not valid label names.

3.10.2 Symbolic Constants

Symbols can be set to constant values. By using constants, you can equate
meaningful names with constant values. The .set and .struct/.tag/.endstruct
directives enable you to set constants to symbolic names. Symbolic constants
cannot be redefined. The following example shows how these directives can
be used:

K .set 1024 ;constant definitions
maxbuf .set 2*K
value .set 0.
delta .set 1.

item .struct ;item structure definition
.int value
.int delta

i_len .endstruct ;i_len=length of .struct (2)

array .tag item ;array declaration
.bss array, i_len*K

The assembler also has several predefined symbolic constants; these are
discussed in the next section.

Symbols

3-31 Assembler Description

3.10.3 Defining Symbolic Constants (−ad Option)

The −ad option equates a constant value with a symbol. The symbol can then
be used in place of a value in assembly source.

The format of the −ad option is as follows:

cl55 −adname=[value]

The name is the name of the symbol you want to define. The value is the value
you want to assign to the symbol. If the value is omitted, the symbol is set to 1.

Within assembler source, you can test the symbol with the following directives:

Type of Test Directive Usage

Existence .if $isdefed(”name”)

Nonexistence .if $isdefed(”name”) = 0

Equal to value .if name == value

Not equal to value .if name != value

Note that the argument to the $isdefed built-in function must be enclosed in
quotes. The quotes cause the argument to be interpreted literally rather than
as a substitution symbol.

3.10.4 Predefined Symbolic Constants

The assembler has several predefined symbols, including the following:

� $, the dollar sign character, represents the current value of the section
program counter (SPC).

� __large_model specifies the memory model in use. By default, the value
is 0 (small model). Using the −mk option sets this symbol to 1. You can use
this symbol to write memory-model independent code such as:

.if __large_model
AMOV #addr, XAR2 ; load 23-bit address
.else
AMOV #addr, AR2 ; load 16−bit address
.endif

For more information on the large memory model, see the TMS320C55x
Optimizing C Compiler User’s Guide.

Symbols

 3-32

� .TOOLS_vn specifies the version of the assembler in use. The n value
represents the version number displayed in the assembler’s banner. For
example, version 1.70 would be represented as .TOOLS_v170. You can
use this symbol to write code that will be assembled conditionally
according to the assembler version:

.if $isdefed(”.TOOLS_v170”)

.word 0x110

.endif

.if $isdefed(”.TOOLS_v160”)

.word 0x120

.endif

� The assembler sets up predefined symbols for you to refer to all of the
memory-mapped registers .

3.10.5 Substitution Symbols

Symbols can be assigned a string value (variable). This enables you to alias
character strings by equating them to symbolic names. Symbols that
represent character strings are called substitution symbols. When the
assembler encounters a substitution symbol, its string value is substituted for
the symbol name. Unlike symbolic constants, substitution symbols can be
redefined.

A string can be assigned to a substitution symbol anywhere within a program;
for example:

.asg ”errct”, AR2 ;register 2

.asg ”*+”, INC ;indirect auto-increment

.asg ”*−”, DEC ;indirect auto-decrement

When you are using macros, substitution symbols are important because
macro parameters are actually substitution symbols that are assigned a macro
argument. The following code shows how substitution symbols are used in
macros:

add2 .macro ADDRA,ADDRB ;add2 macro definition

MOV ADDRA,AC0
ADD ADDRB,AC0,AC0
MOV AC0,ADDRB
.endm

; add2 invocation
add2 LOC1, LOC2

; the macro will be expanded as follows:
MOV LOC1,AC0
ADD LOC2,AC0,AC0
MOV AC0,LOC2

For more information about macros, see Chapter 5, Macro Language.

Symbols

3-33 Assembler Description

3.10.6 Local Labels

Local labels are special labels whose scope and effect are temporary. A local
label can be defined in two ways:

� $n, where n is a decimal digit in the range of 0−9. For example, $4 and $1
are valid local labels.

� name?, where name is any legal symbol name as described above. The
assembler replaces the question mark with a period followed by a unique
number. When the source code is expanded, you will not see the unique
number in the listing file. Your label appears with the question mark as it
did in the macro definition. You cannot declare this label as global.

Normal labels must be unique (they can be declared only once), and they can
be used as constants in the operand field. Local labels, however, can be
undefined and defined again or automatically generated. Local labels cannot
be defined by directives.

A local label can be undefined, or reset, in one of four ways:

� By using the .newblock directive
� By changing sections (using a .sect, .text, or .data directive)
� By entering an include file (specifying the .include or .copy directive)
� By leaving an include file (reaching the end of an included file)

Example 3−3 demonstrates the $n form of local labels. This example assumes
that symbols ADDRA, ADDRB, ADDRC have been defined previously.

Example 3−3. $n Local Labels

(a) Code that uses a local label legally

Label1: MOV ADDRA,AC0 ; Load Address A to AC0.
SUB ADDRB,AC0,AC0 ; Subtract Address B.
BCC $1,AC0 < #0 ; If < 0, branch to $1
MOV ADDRB,AC0 ; otherwise, load ADDRB to AC0

 B $2 ; and branch to $2.
$1 MOV ADDRA,AC0 ; $1: load ADDRA to AC0.
$2 ADD ADDRC,AC0,AC0 ; $2: add ADDRC.

.newblock ; Undefine $1 so it can be used
; again.

BCC $1,AC0 < #0 ; If less than zero,
 ; branch to $1.

MOV AC0,ADDRC ; Store AC0 low in ADDRC.
$1 NOP

Symbols

 3-34

Example 3−3.$n Local Labels (Continued)

(b) Code that uses a local label illegally

Label1: MOV ADDRA,AC0
SUB ADDRB,AC0,AC0
BCC $1,AC0 < #0
MOV ADDRB,AC0

 B $2
$1 MOV ADDRA,AC0
$2 ADD ADDRC,AC0,AC0

BCC $1,AC0 < #0
MOV AC0,ADDRC

$1 NOP ; Wrong: $1 is multiply defined.

Local labels are especially useful in macros. If a macro contains a normal label
and is called more than once, the assembler issues a multiple-definition error.
If you use a local label and .newblock within a macro, however, the local label
is used and reset each time the macro is expanded.

Up to ten local labels of the $n form can be in effect at one time. Local labels
of the form name? are not limited. After you undefine a local label, you can
define it and use it again. Local labels do not appear in the object code symbol
table.

Example 3−4 demonstrates the name? form of a local label.

Symbols

3-35 Assembler Description

Example 3−4. name? Local Labels

; First definition of local label ’mylab’
nop

mylab? nop
B mylab?

; Include file has second definition of ’mylab’
.copy ”a.inc”

; Third definition of ’mylab’,reset upon exit from include

mylab? nop
B mylab?

; Fourth definition of ’mylab’ in macro, macros use
; different namespace to avoid conflicts

mymac .macro
mylab? nop

B mylab?
.endm

; Macro invocation

mymac

; Reference to third definition of ’mylab’, note that
; definition is not reset by macro invocation nor
; conflicts with same name defined in macro

B mylab?

; Changing section, allowing fifth definition of ’mylab’
.sect ”Secto_One”
nop
.data

mylab? .int 0
.text
nop
nop
B mylab?

;.newblock directive, allowing sixth definition of ’mylab’
.newblock
.data

mylab? .int 0
.text
nop
nop
B mylab?

Expressions

 3-36

3.11 Expressions

An expression is an operand or a series of operands separated by arithmetic
operators. An operand is an assembly-time constant or a link-time relocatable
symbol. The range of valid expression values is −4294967296 to
4294967295. Three main factors influence the order of expression
evaluation:

Parentheses Expressions that are enclosed in parentheses are
always evaluated first.

8 / (4 / 2) = 4, but 8 / 4 / 2 = 1

You cannot substitute braces ({ }) or brackets ([])
for parentheses.

 Precedence groups The C55x assembler uses the same order of
precedence as the C language does as
summarized in Table 3−1. This differs from the
order of precedence of other TMS320 assemblers.
When parentheses do not determine the order of
expression evaluation, the highest precedence
operation is evaluated first.

8 + 4 / 2 = 10 (4 / 2 is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not
determine the order of expression evaluation, the
expressions are evaluated as happens in the C
language.

8 / 4*2 = 4 , but 8 / (4*2) = 1

Expressions

3-37 Assembler Description

3.11.1 Operators

Table 3−1 lists the operators that can be used in expressions.

If you apply a relational operator to an undefined symbol, then the symbol
reference will be assigned a value of 0 for the purposes of the boolean
expression.

Table 3−1. Operators Used in Expressions (Precedence)

Symbols Operators Evaluation

+ − ~ ! Unary plus, minus, 1s complement,
logical negation

Right to left

* / % Multiplication, division, modulo Left to right

+ − Addition, subtraction Left to right

<< >> Left shift, right shift Left to right

< <= > >= Less than, LT or equal, greater than,
GT or equal

Left to right

 !=, =[=] Not equal to, equal to Left to right

& Bitwise AND Left to right

^ Bitwise exclusive OR Left to right

| Bitwise OR Left to right

Note: Unary +, −, and * have higher precedence than the binary forms.

3.11.2 Expression Overflow and Underflow

The assembler checks for overflow and underflow conditions when arithmetic
operations are performed at assembly time. It issues a Value Truncated
warning whenever an overflow or underflow occurs. The assembler does not
check for overflow or underflow in multiplication.

Expressions

 3-38

3.11.3 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The evaluation
of a well-defined expression must be absolute.

Example 3−5. Well-Defined Expressions

.data
label1 .word 0

.word 1

.word 2
label2 .word 3

X .set 50h

goodsym1 .set 100h + X : Because value of X is defined before
; referenced, this is a valid well-defined
; expression

goodsym2 .set $; All references to previously defined local
goodsym3 .set label1 : labels, including the current SPC ($), are

; considered to be well-defined.

goodsym4 .set label2 − label1 ; Although label1 and label2 are not
; absolute symbols, because they are local
; labels defined in the same section, their
; difference can be computed by the assembler.
; The difference is absolute, so the
; expression is well-defined.

3.11.4 Conditional Expressions

The assembler supports relational operators that can be used in any
expression, except with relocatable link-time operands; they are especially
useful for conditional assembly. Relational operators can be applied to
undefined or relocatable symbols. In the context of a conditional expression,
the undefined symbol will be replaced with a value of 0. Relational operators
include the following:

= Equal to = = Equal to

! = Not equal to

< Less than <= Less than or equal to

> Greater than > = Greater than or equal to

Conditional expressions evaluate to 1 if true and 0 if false; they can be used
only on operands of equivalent types, for example, absolute value compared
to absolute value, but not absolute value compared to relocatable value.

Built-in Functions

3-39 Assembler Description

3.12 Built-in Functions

The assembler supports built-in functions for conversions and various math
computations. Table 3−2 describes the built-in functions. Note that expr must
be a constant value. See Table 5−1 for a description of the assembler’s
non-mathematical built-in functions.

Table 3−2. Assembler Built-In Math Functions

Function Description

$acos (expr) returns the arc cosine of expr as a floating-point value

$asin (expr) returns the arc sine of expr as a floating-point value

$atan (expr) returns the arc tangent of expr as a floating-point value

$atan2 (expr) returns the arc tangent of expr as a floating-point value
(−pi to pi)

$ceil (expr) returns the smallest integer that is not less than the
expression

$cosh (expr) returns the hyperbolic cosine of expr as a floating-point
value

$cos (expr) returns the cosine of expr as a floating-point value

$cvf (expr) converts expr to floating-point value

$cvi (expr) converts expr to integer value

$exp (expr) returns the result of raising e to the expr power

$fabs (expr) returns absolute value of expr as a floating-point value

$floor (expr) returns the largest integer that is not greater than the
expression

$fmod (expr1, expr2) returns the remainder after dividing expr1 and expr2

$int (expr) returns 1 if expr has an integer result

$ldexp (expr1, expr2) returns the result of expr1 multiplied by 2 raised to the
expr2 power

$log10 (expr) returns the base 10 logarithm of expr

$log (expr) returns the natural logarithm of expr

$max (expr1, expr2) returns the maximum of 2 expressions

$min (expr1, expr2) returns the minimum of 2 expressions

Built-in Functions

 3-40

Table 3−2. Assembler Built-In Math Functions (Continued)

Function Description

$pow (expr1, expr2) raises expr1 to the power expr 2

$round (expr) returns the result of expr rounded to the nearest integer

$sgn (expr) returns the sign of expr

$sin (expr) returns the sine of expr as a floating-point value

$sinh (expr) returns the hyperbolic sine of expr as a floating-point
value

$sqrt (expr) returns the square root of expr as a floating-point value

$tan (expr) returns the tangent of expr as a floating-point value

$tanh (expr) returns the hyperbolic tangent of expr as a floating-point
value

$trunc (expr) returns the result of expr rounded toward zero

Source Listings

3-41 Assembler Description

3.13 Source Listings

A source listing shows source statements and the object code they produce.
To obtain a listing file, invoke the assembler with the −l (lowercase L) option.

Two banner lines, a blank line, and a title line are at the top of each source
listing page. Any title supplied by a .title directive is printed on the title line; a
page number is printed to the right of the title. If you don’t use the .title directive,
the name of the source file is printed. The assembler inserts a blank line below
the title line.

Each line in the source file may produce a line in the listing file that shows a
source statement number, an SPC value, the object code assembled, and the
source statement. A source statement may produce more than one word of
object code. The assembler lists the SPC value and object code on a separate
line for each additional word. Each additional line is listed immediately
following the source statement line.

Field 1: Source Statement Number

Line Number

The source statement number is a decimal. The assembler numbers
source lines as it encounters them in the source file; some state-
ments increment the line counter but are not listed. (For example,
.title statements and statements following a .nolist are not listed.)
The difference between two consecutive source line numbers indi-
cates the number of intervening statements in the source file that are
not listed.

Include File Letter

The assembler may precede a line with a letter; the letter indicates
that the line is assembled from an included file.

Nesting Level Number

The assembler may precede a line with a number; the number indi-
cates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the section program counter (SPC) value, which
is hexadecimal. All sections (.text, .data, .bss, and named sections)
maintain separate SPCs. Some directives do not affect the SPC and
leave this field blank.

Source Listings

 3-42

Field 3: Object Code

This field contains the hexadecimal representation of the object
code. All machine instructions and directives use this field to list
object code. This field also indicates the relocation type by
appending one of the following characters to the end of the field:

! undefined external reference

’ .text relocatable

” .data relocatable

+ .sect relocatable

− .bss, .usect relocatable

% complex relocation expression

Field 4: Source Statement Field

This field contains the characters of the source statement as they
were scanned by the assembler. Spacing in this field is determined
by the spacing in the source statement.

Example 3−6 shows an assembler listing with each of the four fields identified.

Source Listings

3-43 Assembler Description

Example 3−6. Assembler Listing

(a) Mnemonic example

Field 1 Field 2 Field 3 Field 4

 1 .global RSET, INT0, INT1, INT2
 2 .global TINT, RINT, XINT, USER
 3 .global ISR0, ISR1, ISR2
 4 .global time, rcv, xmt, proc
 5
 6 initmac .macro
 7 ;* initialize macro
 8 BSET #9,ST1_55 ;disable overflow
 9 MOV #0,DP ;set dp
 10 MOV #55,AC0 ;set AC0
 11 BCLR #11,ST1_55 ;enable ints
 12 .endm
 13 ***
 14 * Reset and interrupt vectors *
 15 ***
 16 000000 .sect ”rset”
 17 000000 6A00 RSET: B init
 000002 0010+
 18 000004 6A00 INT0: B ISR0
 000006 0000!
 19 000008 6A00 INT1: B ISR1
 00000a 0000!
 20 00000c 6A00 INT2: B ISR2
 00000e 0000!
 21
 22 *
 23 000000 .sect ”ints”
 24 000000 6A00 TINT B time
 000002 0000!
 25 000004 6A00 RINT B rcv
 000006 0000!
 26 000008 6A00 XINT B xmt
 00000a 0000!
 27 00000c 6A00 USER B proc
 00000e 0000!
 28 ***
 29 * Initialize processor. *
 30 ***
 31 000010 init: initmac
 1 * initialize macro
 1 000010 4693 BSET #9,ST1_55

000012 7800 MOV #0,DP
000014 0000

 1 000016 7600 MOV #55,AC0
000018 3708

 1 00001a 46B2 BCLR #11,ST1_55

Source Listings

 3-44

Example 3−6.Assembler Listing (Continued)

(b) Algebraic example

Field 1 Field 2 Field 3 Field 4

 1 .global RSET, INT0, INT1, INT2
 2 .global TINT, RINT, XINT, USER
 3 .global ISR0, ISR1, ISR2
 4 .global time, rcv, xmt, proc
 5
 6 initmac .macro
 7 ;* initialize macro
 8 bit(ST1, #ST1_SATD) = #1 ;disable oflow
 9 DP = #((01FFH & 0) << 7) ;set dp
 10 AC0 = #55 ;set AC0
 11 bit(ST1, #ST1_INTM) = #0 ;enable ints
 12 .endm
 13 ***
 14 * Reset and interrupt vectors *
 15 ***
 16 000000 .sect ”rset”
 17 000000 6A00 RSET: goto #(init)
 000002 0010+
 18 000004 6A00 INT0: goto #(ISR0)
 000006 0000!
 19 000008 6A00 INT1: goto #(ISR1)
 00000a 0000!
 20 00000c 6A00 INT2: goto #(ISR2)
 00000e 0000!
 21
 22 *
 23 000000 .sect ”ints”
 24 000000 6A00 TINT goto #(time)
 000002 0000!
 25 000004 6A00 RINT goto #(rcv)
 000006 0000!
 26 000008 6A00 XINT goto #(xmt)
 00000a 0000!
 27 00000c 6A00 USER goto #(proc)
 00000e 0000!
 28 ***
 29 * Initialize processor. *
 30 ***
 31 000010 init: initmac
 1 * initialize macro
 1 000010 4693 bit(ST1, #ST1_SATD) = #1
 1 000012 7800 DP = #((01FFH & 0) << 7)

000014 0000
 1 000016 7600 AC0 = #55

000018 3708
 1 00001a 46B2 bit(ST1, #ST1_INTM) = #0

Debugging Assembly Source

3-45 Assembler Description

3.14 Debugging Assembly Source

When you invoke cl55 with −g when compiling an assembly file, the assembler
provides symbolic debugging information that allows you to step through your
assembly code in a debugger rather than using the Disassembly window in
Code Composer Studio. This enables you to view source comments and other
source-code annotations while debugging.

The .asmfunc and .endasmfunc directives enable you to use C characteristics
in assembly code that makes the process of debugging an assembly file more
closely resemble debugging a C/C++ source file.

The .asmfunc and .endasmfunc directives (see page 4-32) allow you to name
certain areas of your code, and make these areas appear in the debugger as
C functions. Contiguous sections of assembly code that are not enclosed by
the .asmfunc and .endasmfunc directives are automatically placed in
assembler-defined functions named with this syntax:

 $filename:starting source line:ending source line$

If you want to view your variables as a user-defined type in C code, the types
must be declared and the variables must be defined in a C file. This C file can
then be referenced in assembly code using the .ref directive (see page 4-57).

Example 3−7 shows the cvar.c C program that defines an variable, svar, as the
structure type X. The svar variable is then referenced in the addfive.asm
assembly program and 5 is added to svar’s second data member.

Example 3−7. Viewing Assembly Variables as C Types

(a) C Program cvar.c

typedef struct
{
 int m1;
 int m2;
} X;

X svar = { 1, 2 };

Debugging Assembly Source

 3-46

Example 3−7.Viewing Assembly Variables as C Types (Continued)

(b) Assembly Program addfive.asm

;−−
; Tell the assembler we’re referencing variable ”_svar”, which is defined in
; another file (cvars.c).
;−−
 .ref _svar

;−−
; addfive() − Add five to the second data member of _svar
;−−
 .text
 .align 4
 .global addfive
addfive: .asmfunc
 ADD #5, *abs16(#(_svar+1)) ; add 5 to svar.m2
 RET ; return from function
 .endasmfunc

Compile both source files with the −g option and link them as follows:

cl55 −g cvars.c addfive.asm −z −l=lnk.cmd −l=rts55.lib −o=addfive.out

When you load this program into a symbolic debugger, addfive appears as a
C function. You can monitor the values in svar while stepping through main just
as you would any regular C variable.

Cross-Reference Listings

3-47 Assembler Description

3.15 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a
cross-reference listing, invoke the assembler with the −ax option or use the
.option directive. The assembler will append the cross-reference to the end of
the source listing.

When the assembler generates a cross−reference listing for an assembly file
that contains .include directives, it keeps a record of the include file and line
number in which a symbol is defined/referenced. It does this by assigning a
letter reference (A, B, C, etc.) for each include file. The letters are assigned in
the order in which the .include directives are encountered in the assembly
source file.

Example 3−8. Sample Cross-Reference Listing

LABEL VALUE DEFN REF

INT0 000004+ 25 5
INT1 000008+ 27 5
INT2 00000c+ 29 5
ISR0 REF 9 25
ISR1 REF 9 27
ISR2 REF 9 29
RINT 000004+ 37 7
RSET 000000+ 23 5
TINT 000000+ 35 7
XINT 000008+ 39 7
init 000010+ 45 23

Label column contains each symbol that was defined or referenced
during the assembly.

Value column contains a hexadecimal number, which is the value
assigned to the symbol or a name that describes the symbol’s
attributes. A value may also be followed by a character that
describes the symbol’s attributes. Table 3−3 lists these
characters and names.

Definition (DEFN) column contains the statement number that defines
the symbol. This column is blank for undefined symbols.

Reference (REF) column lists the line numbers of statements that
reference the symbol. A blank in this column indicates that the
symbol was never used.

Cross-Reference Listings

 3-48

Table 3−3. Symbol Attributes

Character or Name Meaning

REF External reference (.global symbol)

UNDF Undefined

’ Symbol defined in a .text section

” Symbol defined in a .data section

+ Symbol defined in a .sect section

− Symbol defined in a .bss or .usect section

4-1

�		������ ���������	

Assembler directives supply data to the program and control the assembly
process. Assembler directives enable you to do the following:

� Assemble code and data into specified sections
� Reserve space in memory for uninitialized variables
� Control the appearance of listings
� Initialize memory
� Assemble conditional blocks
� Declare global variables
� Specify libraries from which the assembler can obtain macros
� Provide symbolic debugging information

This chapter is divided into two parts: the first part (Sections 4.1 through 4.11)
describes the directives according to function, and the second part
(Section 4.12) is an alphabetical reference.

Topic Page

4.1 Directives Summary 4-2.

4.2 Directives That Define Sections 4-10.

4.3 Directives That Initialize Constants 4-12.

4.4 Directives That Align the Section Program Counter 4-16.

4.5 Directives That Format the Output Listing 4-18.

4.6 Directives That Reference Other Files 4-20.

4.8 Conditional Assembly Directives 4-21.

4.9 Assembly-Time Symbol Directives 4-22.

4.10 Directives That Define Specific Blocks of Code 4-25.

4.11 Miscellaneous Directives 4-27.

4.12 Directives Reference 4-28.

Chapter 4

Directives Summary

 4-2

4.1 Directives Summary

This section summarizes the assembler directives.

Assembler directives and their parameters must be specified entirely on one
line.

Besides the assembler directives documented here, the TMS320C55x�
software tools support the following directives:

� The assembler uses several directives for macros. The macro directives
are listed in this chapter, but they are described in detail in Chapter 5,
Macro Language.

� The absolute lister also uses directives. Absolute listing directives
(.setsym and .setsect) are not entered by you but are inserted into the
source program by the absolute lister. Chapter 10, Absolute Lister
Description, discusses these directives; they are not discussed in this
chapter.

� The C/C++ compiler uses directives for symbolic debugging. Unlike other
directives, symbolic debugging directives are not used in most assembly
language programs. Appendix B, Symbolic Debugging Directives,
discusses these directives; they are not discussed in this chapter. The
DWARF debugging directives are: .dwattr, .dwcfa, .dwcie, .dwendentry,
.dwendtag, .dwfde, .dwpsn, and .dwtag.

Note: Labels and Comments in Syntax

In most cases, a source statement that contains a directive may also contain
a label and a comment. Labels begin in the first column (they are the only
elements, except comments, that can appear in the first column), and
comments must be preceded by a semicolon or an asterisk if the comment
is the only statement on the line. To improve readability, labels and
comments are not shown as part of the directive syntax. For some directives,
however, a label is required and will be shown in the syntax.

Directives Summary

4-3Assembler Directives

Table 4−1. Assembler Directives Summary

(a) Directives that are related to sections

Mnemonic and Syntax Description Page

.bss symbol, size in words [, blocking]
 [, alignment]

Reserve size words in the .bss (uninitialized data)
section

4-34

.clink [” section name”] Enables conditional linking for the current or specified
section

4-39

.data Assemble into the .data (initialized data) section 4-47

.sect ” section name” Assemble into a named (initialized) section 4-82

.text Assemble into the .text (executable code) section 4-93

symbol .usect ” section name”, size in words
 [, blocking] [,alignment]

Reserve size words in a named (uninitialized) section 4-97

(b) Directives that define data

Mnemonic and Syntax Description Page

.byte value1 [, ... , valuen] Initialize one or more successive bytes or words in the
current section

4-37

.char value1 [, ... , valuen] Initialize one or more successive bytes or words in the
current section

4-37

.double value1 [, ... , valuen] Initialize one or more 64-bit, IEEE double-precision,
floating-point constants

4-48

.field value [, size in bits] Initialize a variable-length field 4-54

.float value [, ... , valuen] Initialize one or more 32-bit, IEEE single-precision,
floating-point constants

4-56

.half value1 [, ... , valuen] Initialize one or more 16-bit integers 4-60

.int value1 [, ... , valuen] Initialize one or more 16-bit integers 4-63

label: .ivec [address [, stack mode]] Initialize an entry in the interrupt vector table 4-64

.ldouble value1 [, ... , valuen] Initialize one or more 64-bit, IEEE double-precision,
floating-point constants

4-48

.long value1 [, ... , valuen] Initialize one or more 32-bit integers 4-71

.pstring ” string1” [, ... ,”stringn”] Initialize one or more packed text strings 4-88

.short value1 [, ... , valuen] Initialize one or more 16-bit integers 4-60

Directives Summary

 4-4

Table 4−1. Assembler Directives Summary (Continued)

(b) Directives that define data (Continued)

Mnemonic and Syntax Description Page

.space size in bits; Reserve size bits in the current section; note that a
label points to the beginning of the reserved space

4-84

.string ” string1” [, ... , ”stringn”] Initialize one or more text strings 4-88

.ubyte value1 [, ... , valuen] Initialize one or more successive unsigned bytes or
words in the current section

4-37

.uchar value1 [, ... , valuen] Initialize one or more successive unsigned bytes or
words in the current section

4-37

.uhalf value1 [, ... , valuen] Initialize one or more unsigned 16-bit integers 4-60

.uint value1 [, ... , valuen] Initialize one or more unsigned 16-bit integers 4-63

.ulong value1 [, ... , valuen] Initialize one or more unsigned 32-bit integers 4-71

.ushort value1 [, ... , valuen] Initialize one or more unsigned 16-bit integers 4-60

.uword value1 [, ... , valuen] Initialize one or more unsigned16-bit integers. 4-63

.word value1 [, ... , valuen] Initialize one or more 16-bit integers. 4-63

.xfloat value1 [, ...,valuen] Initialize one or more 32-bit, IEEE single-precision,
floating-point constants, but do not align on long
word boundary.

4-56

.xlong value1 [, ...,valuen] Initialize one or more 32-bit integers, but do not
align on long word boundary.

4-71

(c) Directives that effect alignment

Mnemonic and Syntax Description Page

.align [size] Align the SPC on a byte or word boundary specified
by the parameter; the parameter must be a power of
2, defaults to a 128 byte or 128 word boundary.

4-28

.even Equivalent to .align 2. 4-28

.localalign Align start of a local repeat block to allow maximum
localrepeat loop size

4-69

.sblock [”]section name[”]
 [, ... , ”section name”]

Designates sections for blocking 4-81

Directives Summary

4-5Assembler Directives

Table 4−1. Assembler Directives Summary (Continued)

(d) Directives that control the output listing

Mnemonic and Syntax Description Page

.drlist Enable listing of all directive lines (default) 4-49

.drnolist Suppress listing of certain directive lines 4-49

.fclist Allow false conditional code block listing (default) 4-53

.fcnolist Suppress false conditional code block listing 4-53

.length page length Set the page length of the source listing 4-67

.list Restart the source listing 4-68

.mlist Allow macro listings and loop blocks (default) 4-76

.mnolist Suppress macro listings and loop blocks 4-76

.nolist Stop the source listing 4-68

.option {B | L | M | R | T | W | X} Select output listing options 4-79

.page Eject a page in the source listing 4-80

.sslist Allow expanded substitution symbol listing 4-85

.ssnolist Suppress expanded substitution symbol listing
(default)

4-85

.tab size Set tab size 4-92

.title ” string” Print a specified title in the listing page heading 4-94

.width page width Set the page width of the source listing 4-67

(e) Directives that reference other files

Mnemonic and Syntax Description Page

.copy [”]filename[”] Include source statements from another file; copied
files are shown in the listing

4-40

.include [”]filename[”] Include source statements from another file; included
files are not shown in the listing

4-40

Directives Summary

 4-6

Table 4−1. Assembler Directives Summary (Continued)

(f) Directives that relate to symbols

Mnemonic and Syntax Description Page

.def symbol1 [, ... , symboln] Identify one or more symbols that are defined in the
current module and may be used in other modules

4-57

.global symbol1 [, ... , symboln] Identify one or more global (external) symbols 4-57

.ref symbol1 [, ... , symboln] Identify one or more symbols that are used in the
current module but may be defined in another module

4-57

(g) Directives that control conditional assembly

Mnemonic and Syntax Description Page

.break [conditional or boolean expression] End .loop assembly if condition is true. The .break
construct is optional.

4-72

.else Assemble code block if the .if condition is false. The
.else construct is optional. This directive can be used
as the default case in a conditional block.

4-61

.elseif conditional or boolean expression Assemble code block if the .if condition is false and the
.elseif condition is true. The .elseif construct is
optional.

4-61

.endif End .if code block 4-61

.endloop End .loop code block 4-72

.if boolean expression Assemble code block if the condition is true 4-61

.loop [well-defined expression] Begin repeatable assembly of a code block. The
well-defined expression is a loop count.

4-72

Directives Summary

4-7Assembler Directives

Table 4−1. Assembler Directives Summary (Continued)

(h) Directives that define macros

Mnemonic and Syntax Description Page

symbol .macro [macro parameters] Identify the source statement as the first line of a
macro definition. The macro can be invoked using
symbol.

4-73

.mlib [”]filename[”] Make specified macro library available in current
source file

4-74

.mexit Go to .endm. This directive is useful when error
testing confirms that macro expansion will fail.

5-3

.endm End .macro definition 4-52

.var Define a local macro substitution symbol 4-100

† For more information about macro directives, see Chapter 5, Macro Language.

(i) Directives that define symbols at assembly time

Mnemonic and Syntax Description Page

.asg [”]character string[”], substitution symbol Assign a character string to a substitution symbol 4-30

.cstruct Begin C structure definition 4-44

.cunion Begin C union definition 4-45

.endstruct End structure definition 4-44,
4-89

.endunion End union definition 4-44,
4-95

.equ Equate a value with a symbol 4-83

.eval well-defined expression,
 substitution symbol

Perform arithmetic on numeric substitution symbols 4-30

.label symbol Define a relocatable symbol that refers to the
load-time location of a section

4-66

.set Equate a value with a symbol 4-83

.struct Begin structure definition 4-89

.tag Assign structure attributes to a label 4-89

.union Begin union definition 4-95

Directives Summary

 4-8

Table 4−1. Assembler Directives Summary (Continued)

(j) Directives that communicate run-time environment details to the assembler

Mnemonic and Syntax Description Page

.dp DP_value Specifies the value of the DP register 4-49

 .lock_off Assert that the lock() modifier not legal; resume
default behavior

4-71

.lock_on Identify the beginning of a block of code that contains
read-modify-write instructions

4-71

.vli_off Identify the beginning of a block of code in which the
assembler uses the largest form of certain
variable-length instructions.

4-101

.vli_on Resume the default behavior of resolving
variable-length instructions to their smallest form

4-101

(k) Directives that relate to C55x addressing modes

Mnemonic and Syntax Description Page

.arms_off Resume the default behavior of the assembler using
indirect memory access modifiers

4-29

.arms_on Identify the beginning of a block of code to be
assembled in ARMS mode

4-29

.c54cm_off Resume the default behavior of C55x code 4-38

.c54cm_on Identify the beginning of a block of C54x compatibility
mode code (code that has been translated from C54x
code)

4-38

 .cpl_off Resume the default behavior of dma relative to DP 4-42

.cpl_on Identify the beginning of a block of code to be
assembled in CPL mode (dma relative to SP)

4-42

Directives Summary

4-9Assembler Directives

Table 4−1. Assembler Directives Summary (Continued)

(l) Directives that affect porting C54x mnemonic assembly

Mnemonic and Syntax Description Page

.port_for_size Resume the default behavior of optimizing C54x code
for smaller size

4-81

.port_for_speed Identify the beginning of a block of code in which the
assembler optimizes ported C54x code for speed

4-81

.sst_off Identify the beginning of a block of code in which the
assembler assumes that the SST bit is disabled

4-87

.sst_on Resume the default behavior of assuming that the
SST bit is enabled

4-87

(m) Miscellaneous directives

Mnemonic and Syntax Description Page

.asmfunc Identify the beginning of a block of code that contains
a function

4-32

.emsg string Send user-defined error messages to stdout 4-50

.end End program 4-52

.endasmfunc Identify the end of a block of code that contains a
function

4-32

.mmsg string Send user-defined messages to stdout 4-50

.newblock Undefine local labels 4-77

.noremark [num] Identify the beginning of a block of code in which the
assembler suppresses the num remark

4-78

.remark [num] Resume the default behavior of generating the
remark(s) previously suppressed by .noremark

4-78

.warn_off Identify the beginning of a block of code for which the
assembler’s warning messages are suppressed.

 4-102

.warn_on Resume the default behavior of reporting assembler
warning messages.

4-102

.wmsg string Send user-defined warning messages to stdout 4-50

Directives Related to Sections

 4-10

4.2 Directives Related to Sections

These directives associate portions of an assembly language program with
the appropriate sections or enable a flag for a specific section:

� .bss reserves space in the .bss section for uninitialized variables. The
specified size parameter must be in words, since it is a data section.

� .clink sets the STYP_CLINK flag in the type field for the named section.
The .clink directive can be applied to initialized or uninitialized sections.
The STYP_CLINK flag enables conditional linking by telling the linker to
leave the section out of the final COFF output of the linker if there are no
references found to any symbol in the section.

� .data identifies portions of code in the .data section. The .data section
usually contains initialized data. On C55x, data sections are
word-addressable.

� .sect defines initialized named sections and associates subsequent code
or data with that section. A section defined with .sect can contain
executable code or data.

� .text identifies portions of code in the .text section. The .text section
contains executable code. On C55x, code sections are byte-addressable.

� .usect reserves space in an uninitialized named section. The .usect
directive is similar to the .bss directive, but it allows you to reserve space
separately from the .bss section. The specified size parameter must be in
words, since it is a data section.

Chapter 2, Introduction to Common Object File Format, discusses COFF
sections in detail.

Example 4−1 shows how you can use section directives to associate code and
data with the proper sections. This is an output listing; column 1 shows line
numbers, and column 2 shows the SPC values. (Each section has its own
program counter, or SPC.) When code is first placed in a section, its SPC
equals 0. When you resume assembling into a section after other code is
assembled, the section’s SPC resumes counting as if there had been no
intervening code.

The directives in Example 4−1 perform the following tasks:

.text contains basic adding and loading instructions

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15,
and 16.

var_defs initializes words with the values 17 and 18.

Directives Related to Sections

4-11Assembler Directives

.bss reserves 19 words.

.usect reserves 20 words.

The .bss and .usect directives do not end the current section or begin new
sections; they reserve the specified amount of space, and then the assembler
resumes assembling code or data into the current section.

Example 4−1. Sections Directives

 1 **
 2 * Start assembling into the .text section *
 3 **
 4 000000 .text.
 5 000000 3CA0 MOV #10,AC0.
 6 000002 2201 MOV AC0,AC1 .
 7
 8 **
 9 * Start assembling into the .data section *
 10 **
 11 000000 .data
 12 000000 0009 .word 9, 10

000001 000A
 13 000002 000B .word 11, 12

000003 000C
 14
 15 **
 16 * Start assembling into a named, *
 17 * initialized section, var_defs *
 18 **
 19 000000 .sect ”var_defs”
 20 000000 0011 .word 17, 18

000001 0012
 21
 22 **
 23 * Resume assembling into the .data section *
 24 **
 25 000004 .data
 26 000004 000D .word 13, 14

000005 000E
 27 000000 .bss sym, 19 ; Reserve space in .bss
 28 000006 000F .word 15, 16 ; Still in .data

000007 0010
 29
 30 **
 31 * Resume assembling into the .text section *
 32 **
 33 000004 .text
 34 000004 2412 ADD AC1,AC2
 35 000000 usym .usect ”xy”, 20 ; Reserve space in xy
 36 000006 2220 MOV AC2,AC0 ; Still in .text

Data Defining Directives

 4-12

4.3 Data Defining Directives

This section describes several directives that assemble values for the current
section.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of these
directives in a section that includes C55x instructions will likely lead to the
generation of an invalid access to the data at execution. Consequently,
Texas Instruments highly recommends that these directives be issued only
within data sections.

� The .space directive reserves a specified number of bits in the current
section. The assembler fills these reserved bits with 0s.

You can reserve words by multiplying the desired number of words by 16.

When you use a label with .space, it points to the first byte (in a code
section) or word (in a data section) that contains reserved bits.

Assume the following code has been assembled:

 1
 2 ** .space directive
 3 000000 .data
 4 000000 0100 .word 100h, 200h
 000001 0200
 5 000002 Res_1: .space 17
 6 000004 000F .word 15
 7 ** reserve 3 words
 8 000005 Res_3: .space 3*16
 9 000008 000A .word 10

Res_1 points to the first word in the space reserved by .space.

� The .byte , .ubyte , .char , and .uchar directives place one or more 8-bit
values into consecutive words in the current data section. These directives
are similar to .word and .uword, except that the width of each value is
restricted to 8 bits.

� The .field directive places a single value into a specified number of bits
in the word (within data sections). With .field, you can pack multiple fields
into a single word; the assembler does not increment the SPC until a word
is filled. If a value can fit within a word, the assembler will guarantee that
it does not span a word address boundary.

Data Defining Directives

4-13Assembler Directives

Figure 4−1 shows how fields are packed into a word. For this example,
assume the following code has been assembled; notice that the SPC
doesn’t change for the first three fields (the fields are packed into the same
word):

 3 000000 .data
 4 000000 6000 .field 3, 3
 5 000000 6400 .field 8, 6
 6 000000 6440 .field 16, 5
 7 000001 0123 .field 01234h,20
 000002 4000
 8 000003 0000 .field 01234h,32
 000004 1234

Figure 4−1. The .field Directive

0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0

0 1 1
15 14 13

15 12 11 10 9 8 7

6 5 4 3 2 0

0 1 1 0 0 1 0 0 0

15
6 bits

.field 8,6

.field 16,5

.field 3,3

5 bits

3 bits
0

0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1
15

.field 01234h,20

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15

.field 01234h,32

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
15

� .float and .xfloat calculate the single-precision (32-bit) IEEE
floating-point representation of a single floating-point value and store it in
two consecutive words in the current section. The most significant word
is stored first. The .float directive automatically aligns to the nearest long
word boundary, and .xfloat does not.

� .int, .uint , .half , .uhalf , .short , .ushort , .word , and .uword place one or
more 16-bit values into consecutive words in the current section.

Data Defining Directives

 4-14

� .double and .ldouble calculate the double-precision (64-bit) IEEE
floating-point representation of one or more floating-point values and
store them in four consecutive words in the current section. The .double
directive automatically aligns to the long word boundary.

� The .ivec directive is used to initialize the entries in the interrupt vector
table.

� .long , .ulong , and .xlong place 32-bit values into two consecutive words
in the current section. The most significant word is stored first. The .long
directive automatically aligns to a long word boundary, and the .xlong
directive does not.

� .string and .pstring place 8-bit characters from one or more character
strings into the current section. The .string directive is similar to .byte. It
places 8-bit characters into consecutive words in the current data section.
The .pstring directive also has a width of 8 bits but packs one character
per byte. For .pstring, the last word in a string is padded with null
characters (0) if necessary.

Note: These Directives in a .struct/.endstruct Sequence

The directives listed above do not initialize memory when they are part of a
.struct/.endstruct sequence; rather, they define a member’s size. For more
information about the .struct/.endstruct directives, see Section 4.9,
Assembly-Time Symbol Directives, on page 4-22.

Figure 4−2 compares the .byte, .int, .long, .xlong, .float, .xfloat, .word, and
.string directives. For this example, assume that the following code has been
assembled:

1 000000 .data
2 000000 00AA .byte 0AAh, 0BBh
 000001 00BB
3 000002 0CCC .word 0CCCh
4 000003 0EEE .xlong 0EEEEFFFh
 000004 EFFF
5 000006 EEEE .long 0EEEEFFFFh
 000007 FFFF
6 000008 DDDD .int 0DDDDh
7 000009 3FFF .xfloat 1.99999
 00000a FFAC
8 00000c 3FFF .float 1.99999
 00000d FFAC
9 00000e 0068 .string ”help”
 00000f 0065
 000010 006c
 000011 0070

Data Defining Directives

4-15Assembler Directives

Figure 4−2. Initialization Directives

15 0 0 A

15 00

A 0 0

B 0 C

E0 E

C C

E E F F

EE EF

FE F F

DF D

D D

F3 F

FF F A

F3 FC

FF F A

0C 0 6

05 0 6

8 0 0 6

C 0 0 7

0
h e

l p

Word Code

0, 1

2

3, 4

6,7

8

9, a

c, d

e, f

10, 11

.byte

.word

.xlong

.long

.int

.xfloat

.float

.string

OAAh, OBBh

OCCCh

0EEEEFFFh

EEEEFFFFh

DDDDh

1.99999

1.99999

”help”

Alignment Directives

 4-16

4.4 Alignment Directives

These directives either align the section program counter (SPC) or deal with
alignment issues:

� The .align directive aligns the SPC at a byte boundary in code sections
or a word boundary in data sections. If the SPC is already aligned at the
selected boundary, it is not incremented. Operands for the .align directive
must equal a power of 2 between 20 and 216.

The .align directive with no operands defaults to a 128-byte boundary in a
code section, and a 128-word (page) boundary in a data section.

� The .even directive aligns the SPC so that it points to the next word (in
code sections) or long word (in data sections) boundary. It is equivalent
to specifying the .align directive with an operand of 2. Any unused bits in
the current byte or word are filled with 0s.

� The .localalign directive allows the maximum localrepeat loop size for the
specified loop.

� The .sblock directive designates sections for blocking. Blocking is an
address alignment mechanism similar to page alignment, but weaker. In
a code section, blocked code is guaranteed not to cross a 128-byte
boundary if it is smaller than 128 bytes, or to start on a 128-byte boundary
if it is larger than 128 bytes. In a data section, blocked code is guaranteed
not to cross a 128-word (page) boundary if it is smaller than a page, or to
start on a page boundary if it is larger than a page. Note that this directive
allows specification of blocking for initialized sections only, not
uninitialized sections declared with .usect or the .bss section.

Figure 4−3 demonstrates the .align directive. Assume that the following code
has been assembled:

 1 000000 .data
 2 000000 4000 .field 2, 3
 3 000000 4160 .field 11, 8
 4 .align 2
 5 000002 0045 .string ”Errorcnt”
 000003 0072
 000004 0072
 000005 006f
 000006 0072
 000007 0063
 000008 006e
 000009 0074
 6 .align
 7 000080 0004 .word 4

Alignment Directives

4-17Assembler Directives

Figure 4−3. The .align Directive

00h

80h

(a) Current
SPC

(b) New SPC =
80h after
assembling
a .align
directive

128
words

00h

02h(a) Current
SPC = 00h

(b) New SPC =
02h after
assembling
a .align 2
directive

2 words

(a) Result of .align 2

(b) Result of .align without an argument

Listing Control Directives

 4-18

4.5 Listing Control Directives

The following directives format the listing file:

� You can use the .drnolist directive to suppress the printing of the following
directives in the listing:

.asg .eval .length .mnolist .var

.break .fclist .mlist .sslist .width

.emsg .fcnolist .mmsg .ssnolist .wmsg

You can use the .drlist directive to turn on the listing of these directives
again.

� The listing file contains a listing of false conditional blocks that do not
generate code. The .fclist and .fcnolist directives turn this listing on and
off. You can use the .fclist directive to list false conditional blocks exactly
as they appear in the source code. This is the default behavior of the
assembler. You can use the .fcnolist directive to list only the conditional
blocks that are actually assembled.

� The .length directive controls the page length of the listing file. You can
use this directive to adjust listings for various output devices.

� The .list and .nolist directives turn the output listing on and off. You can
use the .nolist directive to stop the assembler from printing selected
source statements in the listing file. Use the .list directive to turn the listing
on again.

� The listing file contains a listing of macro expansions and loop blocks. The
.mlist and .mnolist directives turn this listing on and off. You can use the
.mlist directive to print all macro expansions and loop blocks to the listing
(the default behavior of the assembler), and the .mnolist directive to
suppress this listing.

� The .option directive controls certain features in the listing file. This
directive has the following operands:

A turns on listing of all directives and data, and subsequent
expansions, macros, and blocks

B limits the listing of .byte directives to one line.

D turns off the listing of certain directives (same effect as .drnolist)

H limits the listing of .half and .short directives to one line.

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

N turns off listing (performs .nolist)

Listing Control Directives

4-19Assembler Directives

O turns on listing (performs .list)

R resets the B, M, T, and W options.

T limits the listing of .string directives to one line.

W limits the listing of .word directives to one line.

X produces a symbol cross-reference listing. (You can also obtain
a cross-reference listing by invoking the assembler with the
−x option.)

� The .page directive causes a page eject in the output listing.

� The .sslist and .ssnolist directives allow and suppress substitution
symbol expansion listing. These directives are useful for debugging the
expansion of substitution symbols.

� The .tab directive defines tab size.

� The .title directive supplies a title that the assembler prints at the top of
each page.

� The .width directive controls the page width of the listing file. You can use
this directive to adjust listings for various output devices.

File Reference Directives

 4-20

4.6 File Reference Directives

The .copy and .include directives tell the assembler to begin reading source
statements from another file. When the assembler finishes reading the source
statements in the copy/include file, it resumes reading source statements from
the current file immediately following the point at which the .copy or .include
directive occurred. The statements read from a copied file are printed in the
listing file; the statements read from an included file are not printed in the listing
file.

4.7 Symbol Linkage Directives

These directives refer to the scope or visibility of a symbol:

� The .def directive identifies a symbol that is defined in the current module
and that can be used by another module. The assembler includes the
symbol in the symbol table.

� The .global directive declares a symbol external so that it is available to
other modules at link time. (For more information about global symbols,
see subsection 2.7.1, External Symbols, on page 2-19.) The .global
directive does double duty, acting as a .def for defined symbols and as a
.ref for undefined symbols. The linker resolves an undefined global symbol
only if it is used in the program.

� The .ref directive identifies a symbol that is used in the current module but
defined in another module. The assembler marks the symbol as an
undefined external symbol and enters it in the object symbol table so that
the linker can resolve its definition.

File Refernce Directives / Symbol Linkage Directives

Conditional Assembly Directives

4-21Assembler Directives

4.8 Conditional Assembly Directives

Conditional assembly directives enable you to instruct the assembler to
assemble certain sections of code according to a true or false evaluation of an
expression. Two sets of directives allow you to assemble conditional blocks of
code:

� The .if /.elseif /.else/.endif directives tell the assembler to conditionally
assemble a block of code according to the evaluation of a Boolean
expression. The expression must be entirely specified on the same line as
the directive.

.if expression marks the beginning of a conditional block and
assembles code if the .if condition is true.

.elseif expression marks a block of code to be assembled if the .if
condition is false and .elseif is true.

.else marks a block of code to be assembled if the .if
condition is false.

.endif marks the end of a conditional block and
terminates the block.

� The .loop/.break/.endloop directives tell the assembler to repeatedly
assemble a block of code according to the evaluation of a Boolean
expression. The expression must be entirely specified on the same line as
the directive.

.loop expression marks the beginning a block of code that is
assembled repeatedly up to the number of times
indicated by the expression. The expression is the
loop count.

.break expression tells the assembler to continue to repeatedly
assemble when the .break expression is false, and
to go to the code immediately after .endloop when
the expression is true.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for
conditional expressions. For more information about relational operators, see
subsection 3.11.4, Conditional Expressions, on page 3-38.

Assembly-Time Symbol Directives

 4-22

4.9 Assembly-Time Symbol Directives

Assembly-time symbol directives equate meaningful symbol names to
constant values or strings.

� The .asg directive assigns a character string to a substitution symbol. The
value is stored in the substitution symbol table. When the assembler
encounters a substitution symbol, it replaces the symbol with its character
string value. Substitution symbols can be redefined.

.asg ”10, 20, 30, 40”, coefficients

.byte coefficients

� The .cstruct/.cunion directives support ease of sharing of common data
structures between assembly and C code. The .cstruct/.cunion directives
can be used exactly like the existing .struct and .union directives except
that they are guaranteed to perform data layout matching the layout used
by the C compiler for C struct and union data types. In particular, the
.cstruct/.cunion directives force the same alignment and padding as used
by the C compiler when such types are nested within compound data
structures.

� The .eval directive evaluates an expression, translates the results into a
character, and assigns the character string to a substitution symbol. This
directive is most useful for manipulating counters:

.asg 1 , x

.loop

.byte x*10h

.break x = 4

.eval x+1, x

.endloop

� The .label directive defines a special symbol that refers to the loadtime
address within the current section. This is useful when a section loads at
one address but runs at a different address. For example, you may want
to load a block of performance-critical code into slower off-chip memory
to save space, and move the code to high-speed on-chip memory to run.

� The .set and .equ directives set a value to a symbol. The symbol is stored
in the symbol table and cannot be refined. For example:

bval .set 0100h
.int bval, bval*2, bval+12
B bval

The .set and .equ directives produce no object code. The two directives
are identical and can be used interchangeably.

Assembly-Time Symbol Directives

4-23Assembler Directives

� The .struct /.endstruct directives set up C-like structure definitions, and
the .tag directive assigns the C-like structure characteristics to a label.

The .struct /.endstruct directives allow you to organize your information
into structures, so that similar elements can be grouped together. Element
offset calculation is then left up to the assembler. The .struct/.endstruct
directives do not allocate memory. They simply create a symbolic template
that can be used repeatedly.

The .tag directive associates structure characteristics with a label symbol.
This simplifies the symbolic representation and also provides the ability to
define structures that contain other structures. The .tag directive does not
allocate memory, and the structure tag (stag) must be defined before it is
used.

 .data
type .struct ; structure tag definition
X .int
Y .int
T_LEN .endstruct

COORD .tag type ; declare COORD (coordinate)
 .bss COORD, T_LEN ; actual memory allocation

 .text
 ADD @(COORD.Y),AC0,AC0

� The .union/.endunion directives create a symbolic template that can be
used repeatedly, providing a way to manipulate several different kinds of
data in the same storage area. The union sets up a C-like union definition.
While it does not allocate any memory, it allows alternate definitions of size
and type that may be temporarily stored in the same memory space.

The .tag directive associates union characteristics with a label symbol. A
union can be defined and given a tag, and later it can be declared as a
member of a structure by using the .tag directive. A union can also be
declared without a tag, in which case all of its members are entered in the
symbol table, and each member must have a unique name.

Assembly-Time Symbol Directives

 4-24

A union can also be defined within a structure; any reference to such a
union must be made via with the structure that encloses it. For example:

 .data
s2_tag.struct ;structure tag definition

.union ;union is first structure member

.struct ;structure is union member
h1 .half ;h1, h2, and w1
h2 .uhalf ;exist in the same memory

.endstruct
w1 .word ;word is another union member

.endunion
w2 .word ;second structure member
s2_len.endstruct

XYZ .tag s2_tag
.bss XYZ,s2_len ;declare instance of structure

.text
ADD @(XYZ.h2),AC0,AC0

Directives That Communicate Run-Time Environment Details

4-25Assembler Directives

4.10 Directives That Communicate Run-Time Environment Details

These directives affect assembler assumptions while processing code. Within
the ranges marked by these directives the assembler’s default actions are
altered as specified.

� The .dp directive specifies the value of the DP register. The assembler
cannot track the value of the DP register; however, it needs to know the
value of DP in order to assemble direct memory access operands.
Consequently, this directive should be placed immediately following any
instruction that changes the DP register’s value. If the assembler is not
given any information on the value of the DP register, it assumes the value
is 0 when encoding direct memory operands.

� The .lock_on directive begins a block of code in which the assembler
allows the lock() modifier. The .lock_off directives ends this block of code
and resumes the default behavior of the assembler.

� The .vli_off directive begins a block of code in which the assembler uses
the largest (P24) forms of certain variable-length instructions. By default,
the assembler tries to resolve variable-length instructions to their smallest
form. The .vli_on directive ends this block of code and resumes the
default behavior of the assembler.

The following directives relate to C55x addressing modes:

� The .arms_on directive begins a block of code for which the assembler
will use indirect access modifiers targeted to code size optimization.
These modifiers are short offset modifiers. The .arms_off directive ends
the block of code.

� The .c54cm_on directive signifies to the assembler that the following
block of code has been converted from C54x code. The .c54cm_off
directive ends the block of code.

� The .cpl_on directive begins a block of code in which direct memory
addressing (DMA) is relative to the stack pointer. By default, DMA is
relative to the data page. The .cpl_off directive ends the block of code.

Directives That Communicate Run-Time Environment Details

 4-26

The following directives relate to porting C54x code:

� The .port_for_speed directive begins a block of code in which the
assembler encodes ported C54x code with a goal of achieving fast code.
By default, the assembler encodes C54x code with a goal of achieving
small code size. The .port_for_size directive ends the block of code.

� The .sst_off directive begins a block of code for which the assembler will
assume that the SST status bit is set to 0. By default, the assembler
assumes that the SST bit is set to 1. The .sst_on directive ends the block
of code.

Miscellaneous Directives

4-27Assembler Directives

4.11 Miscellaneous Directives

These directives enable miscellaneous functions or features:

� The .asmfunc directive begins a block of code that contains a function.
The .endasmfunc ends the function code and resumes the default
behavior of the assembler. These directives are used with the compiler
−gw option to generate debug information for separate functions.

� The .end directive terminates assembly. It should be the last source
statement of a program. This directive has the same effect as an
end-of-file.

� The .newblock directive resets local labels. Local labels are symbols of
the form $n or name?. They are defined when they appear in the label field.
Local labels are temporary labels that can be used as operands for jump
instructions. The .newblock directive limits the scope of local labels by
resetting them after they are used. For more information about local
labels, see subsection 3.10.6, Local Labels, on page 3-33.

� The .noremark directive begins a block of code in which the assembler
will suppress the specified assembler remark. A remark is an informational
assembler message that is less severe than a warning. The .remark
directive re-enables the remark(s) previously suppressed by .noremark.

� The .warn_on/.warn_off directives enable and disable the issuing of
warning messages by the assembler. By default, warnings are enabled
(.warn_on).

These three directives enable you to define your own error and warning
messages:

� The .emsg directive sends error messages to the standard output device.
The .emsg directive generates errors in the same manner as the
assembler, incrementing the error count and preventing the assembler
from producing an object file.

� The .mmsg directive sends assembly-time messages to the standard
output device. The .mmsg directive functions in the same manner as the
.emsg and .wmsg directives but does not increment the error count or the
warning count. It does not affect the creation of the object file.

� The .wmsg directive sends warning messages to the standard output
device. The .wmsg directive functions in the same manner as the .emsg
directive but increments the warning count, rather than the error count. It
does not affect the creation of the object file.

.align/.even

4-28

4.12 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are
organized alphabetically, one directive per page. Related directives (such as
.if /.else/.endif), however, are presented together on one page.

Align SPC on a Boundary.align/.even

Syntax .align [size]
.even

Description The .align directive aligns the section program counter (SPC) on the next
boundary, depending on the size parameter. The size may be any power of 2,
although only certain values are useful for alignment.

The size parameter should be in bytes for a code section, and in words for a
data section. If a size is not specified, the SPC is aligned on the next 128-byte
boundary for a code section, or the next 128-word (page) boundary for a data
section.

A hole may be created by the .align directive if the SPC, at the point at which
the directive occurs, is not on the desired byte or word boundary. In a data
section, the assembler zero-fills holes created by .align. In a code section,
holes are filled with NOP instructions.

The .even directive aligns the SPC on a word (code section) or long word (data
section) boundary. This directive is equivalent to the .align directive with an
operand of 2.

Using the .align directive has two effects:

� The assembler aligns the SPC on a boundary within the current section.

� The assembler sets a flag that instructs the linker to align the section so
that individual alignments remain intact when a section is loaded into
memory.

.arms_on/.arms_off

4-29 Assembly Directives

Example This example shows several types of alignment, including .even, .align 4, and
a default .align.

 1 000000 .data
 2 000000 0004 .word 4
 3 .even
 4 000002 0045 .string ”Errorcnt”
 000003 0072
 000004 0072
 000005 006F
 000006 0072
 000007 0063
 000008 006E
 000009 0074
 5 .align
 6 000080 6000 .field 3,3
 7 000080 6A00 .field 5,4
 8 .align 2
 9 000082 6000 .field 3,3
 10 .align 8
 11 000088 5000 .field 5,4
 12 .align
 13 000100 0004 .word 4

Display Code at Selected Address.arms_on/
.arms_off

Syntax .arms_on
.arms_off

Description The .arms_on and .arms_off directives model the ARMS status bit.

The assembler cannot track the value of the ARMS status bit. You must use
the assembler directives and/or command line options to communicate the
value of this mode bit to the assembler. An instruction that modifies the value
of the ARMS status bit should be immediately followed by the appropriate
assembler directive.

The .arms_on directive models the ARMS status bit set to 1; it is equivalent
to using the −ma command line option. The .arms_off directive models the
ARMS status bit set to 0. In the case of a conflict between the command line
option and the directive, the directive takes precedence.

By default (.arms_off), the assembler uses indirect memory access modifiers
targeted to the assembly code.

.asg/.eval

4-30

In ARMS mode (.arms_on), the assembler uses short offset modifiers for
indirect memory access. These modifiers are more efficient for code size
optimization.

The scope of the .arms_on and .arms_off directives is static and not subject
to the control flow of the assembly program. All assembly code between the
.arms_on line and the .arms_off line is assembled in ARMS mode.

Assign a Substitution Symbol.asg/.eval

Syntax .asg [”]character string[”], substitution symbol
.eval well-defined expression, substitution symbol

Description The .asg directive assigns character strings to substitution symbols.
Substitution symbols are stored in the substitution symbol table. The .asg
directive can be used in many of the same ways as the .set directive, but while
.set assigns a constant value (which cannot be redefined) to a symbol, .asg
assigns a character string (which can be redefined) to a substitution symbol.

� The assembler assigns the character string to the substitution symbol.
The quotation marks are optional. If there are no quotation marks, the
assembler reads characters up to the first comma and removes leading
and trailing blanks. In either case, a character string is read and assigned
to the substitution symbol.

� The substitution symbol must be a valid symbol name. The substitution
symbol may be 32 characters long and must begin with a letter. Remaining
characters of the symbol can be a combination of alphanumeric
characters, the underscore (_), and the dollar sign ($).

The .eval directive performs arithmetic on a provided provided expression and
assigns a string representation of the expression result to the substitution
symbol. This directive evaluates the expression and assigns the string value
of the result to the substitution symbol. The .eval directive is especially useful
as a counter in .loop/.endloop blocks.

� The well-defined expression is an alphanumeric expression consisting of
legal values that have been previously defined, so that the result is an
absolute.

� The substitution symbol must be a valid symbol name. The substitution
symbol may be 32 characters long and must begin with a letter. Remaining
characters of the symbol can be a combination of alphanumeric
characters, the underscore (_), and the dollar sign ($).

.asg/.eval

4-31 Assembly Directives

Example This example shows how .asg and .eval can be used.

 1 .sslist;show expanded sub. symbols
 2 *
 3 * .asg/.eval example
 4 *
 5 .asg *+, INC
 6 .asg AR0, FP
 7
 8 000000 7b00 ADD #100,AC0
 000002 6400
 9 000004 b403 AMAR (*FP+)
AMAR (AR0+)
 10
 11
 12 000000 .data
 13 .asg 0, x
 14 .loop 5
 15 .eval x+1, x
 16 .word x
 17 .endloop
1 .eval x+1, x
.eval 0+1, x
1 000000 0001 .word x
.word 1
1 .eval x+1, x
.eval 1+1, x
1 000001 0002 .word x
.word 2
1 .eval x+1, x
.eval 2+1, x
1 000002 0003 .word x
.word 3
1 .eval x+1, x
.eval 3+1, x
1 000003 0004 .word x
.word 4
1 .eval x+1, x
.eval 4+1, x
1 000004 0005 .word x
.word 5

.asmfunc/.endasmfunc

4-32

Mark Function Boundaries.asmfunc/
.endasmfunc

Syntax symbol .asmfunc
.endasmfunc

Description The .asmfunc and .endasmfunc directives mark function boundaries. These
directives are used with the compiler −g option (−−symdebug:DWARF) to
allow sections assembly code to be debugged in the same manner as C/C++
functions.

You should not use the same directives generated by the compiler (see
Appendix B) to accomplish assembly debugging; those directives should be
used only by the compiler to generate symbolic debugging information for
C/C++ source files.

The .asmfunc and .endasmfunc directives cannot be used when invoking the
compiler with the backwards-compatibility −−symdebug:coff option. This
option instructs the compiler to use the obsolete COFF symbolic debugging
format, which does not support these directives.

The symbol is a label that must appear in the label field.

Consecutive ranges of assembly code that are not enclosed within a pair of
.asmfunc and .endasmfunc directives are given a default name in the following
format:

$filename:beginning source line:ending source line$

.asmfunc/.endasmfunc

4-33 Assembly Directives

Example In this example the assembly source generates debug information for the
user_func section.

 1 000000 .sect ”.text”
 2 .align 4
 3 .global userfunc
 4 .global _printf
 5
 6 user_func: .asmfunc
 7 000000 4EFD AADD #−3, SP
 8 000002 FB00 MOV #(SL1 & 0xffff), *SP(#0)
 000004 0000%
 9 000006 6C00 CALL #_printf
 000008 0000!
 10 00000a 3C04 MOV #0, T0
 11 00000c 4E03 AADD #3, SP
 12 00000e 4804 RET
 13 .endasmfunc
 14
 15 000000 .sect ”.const”
 16 000000 0048 SL1: .string ”Hello World!”,10,0
 000001 0065
 000002 006C
 000003 006C
 000004 006F
 000005 0020
 000006 0057
 000007 006F
 000008 0072
 000009 006C
 00000a 0064
 00000b 0021
 00000c 000A
 00000d 0000

.bss

4-34

Reserve Space in the .bss Section.bss

Syntax .bss symbol, size in words [, [blocking flag] [, alignment flag]]

Description The .bss directive reserves space for variables in the .bss section. This
directive is typically used to allocate variables in RAM.

� The symbol is a required parameter. It defines a label that points to the first
location reserved by the directive. The symbol name corresponds to the
variable that you’re reserving space for.

� The size is a required parameter; it must be an absolute expression. The
assembler reserves size words in the .bss section. There is no default size.

� The blocking flag is an optional parameter. If you specify a non-zero value
for the parameter, the assembler reserves size words contiguously. This
means that the reserved space will not cross a page boundary unless size
is greater than a page, in which case, the object will start on a page
boundary.

� The alignment is an optional parameter. The alignment is a power of two
that specifies that the space reserved by this .bss directive is to be aligned
to the specified word address boundary.

Note: Specifying an Alignment Flag Only

To specify an alignment flag without a blocking flag, you either insert two
commas before the alignment flag, or specify 0 for the blocking flag.

The assembler follows two rules when it reserve space in the .bss section:

Rule 1 Whenever a hole is left in memory (as shown in Figure 4−4), the
.bss directive attempts to fill it. When a .bss directive is assembled,
the assembler searches its list of holes left by previous .bss
directives and tries to allocate the current block into one of the
holes. (This is the standard procedure whether the contiguous
allocation option has been specified or not.)

Rule 2 If the assembler does not find a hole large enough to contain the
requested space, it checks to see whether the blocking option is
requested.

� If you do not request blocking, the memory is allocated at the
current SPC.

� If you request blocking, the assembler checks to see whether
there is enough space between the current SPC and the page
boundary. If there is not enough space, the assembler creates
another hole and allocates the space at the beginning of the
next page.

.bss

4-35 Assembly Directives

The blocking option allows you to reserve up to 128 words in the .bss section
and ensure that they fit on one page of memory. (Of course, you can reserve
more than 128 words at a time, but they cannot fit on a single page.) The
following example code reserves two blocks of space in the .bss section.

memptr: .bss A,64,1
memptr1: .bss B,70,1

Each block must be contained within the boundaries of a single page; after the
first block is allocated, however, the second block cannot fit on the current
page. As Figure 4−4 shows, the second block is allocated on the next page.

Figure 4−4. Allocating .bss Blocks Within a Page

Memory

Memory allocated by first .bss directive;
64 words left in the first page

Hole in memory left because second .bss
directive required more than 64 words

Memory allocated by second .bss
directive; 58 words left in the second page

Unused memory

127

a

b

256

0

Page
boundary

Section directives for initialized sections (.text, .data, and .sect) end the
current section and begin assembling into another section. The .bss directive,
however, does not affect the current section. The assembler uses the .bss
directive to reserve space in the .bss section, but then resumes assembling
code into the current section (after the .bss has been processed). For more
information, see Chapter 2, Introduction to Common Object File Format.

.bss

4-36

Example In this example, the .bss directive is used to reserve space for two variables,
TEMP and ARRAY. The symbol TEMP points to 4 words of uninitialized space
(at .bss SPC = 0). The symbol ARRAY points to 100 words of uninitialized
space (at .bss SPC = 04h); this space must be placed contiguously within a
page. Note that symbols declared with the .bss directive can be referenced in
the same manner as other symbols and can also be declared external using
the .global directive.

 1 ***
 2 ** Assemble into the .text section. **
 3 ***
 4 000000 .text
 5 000000 3C00 MOV #0,AC0
 6 ***
 7 ** Allocate 4 words in .bss for TEMP. **
 8 ***
 9 000000 Var_1: .bss TEMP, 4
 10
 11 ***
 12 ** Still in .text **
 13 ***
 14 000002 7B00 ADD #86,AC0,AC0
 000004 5600
 15 000006 5272 MOV T3,HI(AC2)
 16 000008 1E73 MPYK #115,AC2,AC0
 00000a 80
 17
 18 ***
 19 ** Allocate 100 words in .bss for the **
 20 ** symbol named ARRAY; this part of **
 21 ** .bss must fit on a single page. **
 22 ***
 23 0000004 .bss ARRAY, 100, 1
 24
 25 ***
 26 ** Assemble more code into .text. **
 27 ***
 28 00000b C000− MOV AC0,Var_1
 29
 30 ***
 31 ** Declare external .bss symbols. **
 32 ***
 33 .global ARRAY, TEMP
 34 .end

.byte/.ubyte/.char/.uchar

4-37 Assembly Directives

Initialize Bytes.byte/.ubyte/
.char/.uchar

Syntax .byte value1 [, ... , valuen]
.ubyte value1 [, ... , valuen]
.char value1 [, ... , valuen]
.uchar value1 [, ... , valuen]

Description The .byte , .ubyte , .char , and .uchar directives place one or more 8-bit values
into consecutive words in the current data section.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .byte,
.ubyte, .char, and .uchar directives in a section that includes C55x
instructions will lead to an invalid access to the data at execution.
Consequently, it is highly recommended that these directives be used only
in data sections.

In data sections, each 8-bit value is placed in a word by itself; the 8 MSBs are
filled with 0s. A value can be:

� An expression that the assembler evaluates and treats as an 8-bit signed
or unsigned number

� A character string enclosed in double quotes. Each character in a string
represents a separate value.

Values are not packed or sign-extended. In word-addressable data sections,
each byte occupies the 8 least significant bits of a full 16-bit word. The
assembler truncates values greater than 8 bits.

If you use a label, it points to the location where the assembler places the first
byte.

Note that when you use these directives in a .struct/.endstruct sequence, they
define a member’s size; they do not initialize memory. For more information
about .struct/.endstruct, see section 4.9, Assembly-Time Symbol Directives,
on page 4-22.

Example In this example, 8-bit values (10, −1, abc, and a) are placed into consecutive
words in memory. The label strx has the value 100h, which is the location of
the first initialized word.

 1 000000 .data
 2 000000 .space 100h * 16
 3 000100 000a STRX .byte 10, −1, ”abc”, ’a’
 000101 00ff
 000102 0061
 000103 0062
 000104 0063
 000105 0061

.c54cm_on/.c54cm_off

4-38

Display Code at Selected Address.c54cm_on/
.c54cm_off

Syntax .c54cm_on
.c54cm_off

Description The .c54cm_on and .c54cm_off directives signify that a region of code has
been converted from C54x code. The .c54cm_on and .c54cm_off directives
model the C54CM status bit. The .c54cm_on directive models the C54CM
status bit set to 1; it is equivalent to using the −ml command line option. The
.c54cm_off directive models the C54CM status bit set to 0. In the case of a
conflict between the command line option and the directive, the directive takes
precedence.

The scope of the .c54cm_on and .c54cm_off directives is static and not subject
to the control flow of the assembly program. All assembly code between the
.c54cm_on and .c54cm_off directives is assembled in C54x compatibility
mode.

In C54x compatibility mode, AR0 is used instead of T0 in memory operands.
For example, *(AR5 + T0) is invalid in C54x compatibility mode; *(AR5 + AR0)
should be used.

.clink

4-39 Assembly Directives

Conditionally Leave Section Out of COFF Output.clink

Syntax .clink [”section name“]

Description The .clink directive asserts that the current or named section is a candidate
for removal when the linker performs dead code removal. The .clink directive
sets up conditional linking for a section by setting the STYP_CLINK flag in the
type field for section name. The .clink directive can be applied to initialized or
uninitialized sections.

If .clink is used without a section name, it applies to the current initialized
section. If .clink is applied to an uninitialized section, the section name is
required. The section name must be enclosed in double quotes. A section
name can contain a subsection name in the form of section name:subsection
name.

The STYP_CLINK flag tells the linker to leave the section out of the final COFF
output of the linker if there are no references found to any symbol in the
section.

A section in which the entry point of a C program is defined or which contains
the address of an interrupt service routine cannot be marked as a conditionally
linked section.

Example In this example, the Vars and Counts sections are set for conditional linking.

1 000000 .sect ”Vars”
2 ; Vars section is conditionally linked
3 .clink
4
5 000000 001A X: .word 01Ah
6 000001 001A Y: .word 01Ah
7 000002 001A Z: .word 01Ah
8 000000 .sect ”Counts”
9 ; Counts section is conditionally linked
10 .clink
11
12 000000 001A Xcount: .word 01Ah
13 000001 001A Ycount: .word 01Ah
14 000002 001A Zcount: .word 01Ah
15 ; By default, .text is unconditionally linked
16 000000 .text
17 ; Reference to symbol X cause the Vars section
18 ; to be linked into the COFF output
19 000000 3C00 MOV #0,AC0
20 000002 C000+ MOV AC0,X

.copy/.include

4-40

Copy Source File.copy/.include

Syntax .copy [”]filename[”]
.include [”]filename[”]

Description The .copy and .include directives tell the assembler to read source
statements from a different file. The statements that are assembled from a
copy file are printed in the assembly listing. The statements that are
assembled from an included file are not printed in the assembly listing. The
assembler:

1) Stops assembling statements in the current source file.

2) Begins assembling the statements in the copied/included file.

3) When the end of the copied/included file is reached, resumes assembling
statements in the main source file, starting with the statement that follows
the .copy or .include directive.

The filename is a required parameter that names a source file. It may be
enclosed in double quotes and must follow operating system conventions. If
filename starts with a number the double quotes are required.

You can specify a full pathname (for example, c:\dsp\file1.asm). If you do not
specify a full pathname, the assembler searches for the file in:

1) The directory that contains the current source file.
2) Any directories named with the −i assembler option.
3) Any directories specified by the environment variable A_DIR.

For more information about the −i option and A_DIR, see section 3.6, Naming
Alternate Directories for Assembler Input, on page 3-19.

The .copy and .include directives can be nested within a file being copied or
included. The assembler limits nesting to 32 levels; the host operating system
may set additional restrictions. The assembler precedes the line numbers of
copied files with a letter code to identify the level of copying. An A indicates the
first copied file, B indicates a second copied file, etc.

.copy/.include

4-41 Assembly Directives

Example 1 In this example, the .copy directive is used to read and assemble source state-
ments from other files; then the assembler resumes assembling into the cur-
rent file.

The original file, copy.asm, contains a .copy statement copying the file
byte.asm. When copy.asm assembles, the assembler copies byte.asm into its
place in the listing (note listing below). The copy file byte.asm contains a .copy
statement for a second file, word.asm.

When it encounters the .copy statement for word.asm, the assembler switches
to word.asm to continue copying and assembling. Then the assembler returns
to its place in byte.asm to continue copying and assembling. After completing
assembly of byte.asm, the assembler returns to copy.asm to assemble its
remaining statement.

copy.asm
(source file)

byte.asm
(first copy file)

word.asm
(second copy file)

.data

.space 29

.copy ”byte.asm”

 **Back in original file
.pstring ”done”

** In byte.asm

.data

.byte 32,1+ ’A’

.copy ”word.asm”
** Back in byte.asm

.byte 67h + 3q

** In word.asm

.data

.word 0ABCDh, 56q

Listing file:

 1 000000 .data
 2 000000 .space 29
 3 .copy ”byte.asm”
 A 1 ** In byte.asm
 A 2 000001 .data
 A 3 000002 0020 .byte 32,1+ ’A’
 000003 0042
 A 4 .copy ”word.asm”
 B 1 * In word.asm
 B 2 000004 .data
 B 3 000004 ABCD .word 0ABCDh, 56q
 000005 002E
 A 5 ** Back in byte.asm
 A 5 000006 006A .byte 67h + 3q
 4
 5 ** Back in original file
 6 000007 646F .pstring ”done”
 000008 6E65

.cpl_on/.cpl_off

4-42

Example 2 In this example, the .include directive is used to read and assemble source
statements from other files; then the assembler resumes assembling into the
current file. The mechanism is similar to the .copy directive, except that state-
ments are not printed in the listing file.

include.asm
(source file)

byte2.asm
(first include file)

word2.asm
(second include file)

.data

.space 29

.include ”byte2.asm”

 **Back in original file
.string ”done”

** In byte2.asm

.data

.byte 32,1+ ’A’

.include ”word2.asm”
** Back in byte2.asm

.byte 67h + 3q

** In word2.asm

.data

.word 0ABCDh, 56q

Listing file:

 1 000000 .data
 2 000000 .space 29
 3 .include ”byte2.asm”
 4
 5 ** Back in original file
 6 000007 0064 .string ”done”
 000008 006F
 000009 006E
 00000a 0065

Select Direct Addressing Mode.cpl_on/.cpl_off

Syntax .cpl_on
.cpl_off

Description The .cpl_on and .cpl_off directives model the CPL status bit.

The assembler cannot track the value of the CPL status bit; you must use the
assembler directives and/or command line option to model this mode for the
assembler. An instruction that modifies the value of the CPL status bit should
be immediately followed by the appropriate assembler directive.

The .cpl_on directive asserts that the CPL status bit is set to 1. When the
.cpl_on directive is specified before any other instructions or directives that
define object code, it is equivalent to using the −mc command line option. The
.cpl_off directive asserts that the CPL status bit is set to 0. In the case of a
conflict between the command line option and the directive, the directive takes
precedence.

.cpl_on/.cpl_off

4-43 Assembly Directives

The .cpl_on and .cpl_off directives take no arguments.

In CPL mode (.cpl_on), direct memory addressing is relative to the stack
pointer (SP). The dma syntax is *SP(dma), where dma can be a constant or
a linktime-known symbolic expression. The assembler encodes the value of
dma into the output bits.

By default (.cpl_off), direct memory addressing (dma) is relative to the data
memory local page pointer register (DP). The dma syntax is @dma, where
dma can be a constant or a relocatable symbolic expression. The assembler
computes the difference between dma and the value in the DP register and
encodes this difference into the output bits.

The assembler cannot track the value of the DP register; however, it must
assume a value for the DP in order to assemble direct memory access
operands. Consequently, you must use the .dp directive to model the DP value
for the assembler. Issue this directive immediately following any instruction
that changes the value in the DP register.

The scope of the .cpl_on and .cpl_off directives is static and not subject to the
control flow of the assembly program. All assembly code between the .cpl_on
line and the .cpl_off line is assembled in CPL mode.

.cstruct/.endstruct/.tag

4-44

Declare C Structure Type.cstruct/
.endstruct/.tag

Syntax [stag] .cstruct [expr]
[mem0] element [expr0]
[mem1] element [expr1]
 . . .
 . . .
 . . .
[memn] .tag stag [, exprn]
 . . .
 . . .
 . . .
[memN] element [exprN]
[size] .endstruct
label .tag stag

Description The .cstruct directive (along with .cunion on page 4-45) supports ease of
sharing of common data structures between assembly and C code. The
.cstruct directive can be used exactly like the .struct directive except that it is
guaranteed to perform data layout matching the layout used by the C compiler
for C struct data types. In particular, the .cstruct directive forces the same
alignment and padding as used by the C compiler when such types are nested
within compound data structures.

The .endstruct directives marks the end of a structure definition.

The .tag directive gives structure characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures that
contain other structures. The .tag directive does not allocate memory. The
structure tag (stag) of a .tag directive must have been previously defined.

Following are descriptions of the parameters used with the .cstruct, .endstruct,
and .tag directives:

� The stag is the structure’s tag. Its value is associated with the beginning
of the structure. If no stag is present, the assembler puts the structure
members in the global symbol table with the value of their absolute offset
from the top of the structure. A .stag is optional for .struct, but is required
for .tag.

� The expr is an optional expression indicating the beginning offset of the
structure. The default starting point for a structure is 0.

� The memn/N is an optional label for a member of the structure. This label
is absolute and equates to the present offset from the beginning of the
structure. A label for a structure member cannot be declared global.

.cunion/.endstruct/.tag

4-45 Assembly Directives

� The element is one of the following descriptors: .string, .byte, .char, .int,
.half, .short, .word, .long, .double, .float, .tag, or .field. All of these except
.tag are typical directives that initialize memory. Following a .struct
directive, these directives describe the structure element’s size. They do
not allocate memory. A .tag directive is a special case because stag must
be used (as in the definition of stag).

� The exprn/N is an optional expression for the number of elements
described. This value defaults to 1. A .string element is considered to be
one byte in size, and a .field element is one bit.

� The size is an optional label for the total size of the structure.

Note: Directives That Can Appear in a .cstruct /.endstruct Sequence

The only directives that can appear in a .cstruct/.endstruct sequence are
element descriptors, structure and union tags, conditional assembly
directives, and the .align directive, which aligns the member offsets on word
boundaries. Empty structures are illegal.

Declare C Structure Type.cunion
.endstruct/.tag

Syntax [stag] .cunion [expr]
[mem0] element [expr0]
[mem1] element [expr1]
 . . .
 . . .
 . . .
[memn] .tag stag [, exprn]
 . . .
 . . .
 . . .
[memN] element [exprN]
[size] .endstruct
label .tag stag

Description The .cunion directive (along with .cstruct on page 4-44) supports ease of
sharing of common data structures between assembly and C code. The
.cunion directive can be used exactly like the .union directive except that
.cunion is guaranteed to perform data layout matching the layout used by the
C compiler for C union data types. In particular, the .cunion directive forces the
same alignment and padding as used by the C compiler when union types are
nested within compound data structures.

.cunion/.endunion/.tag

4-46

A .cstruct definition can contain a .cunion definition, and .cstructs and .cunions
can be nested.

The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label, simplifying
the symbolic representation and providing the ability to define structures or
unions that contain other structures or unions. The .tag directive does not
allocate memory. The structure or union tag of a .tag directive must have been
previously defined.

� The utag is the union’s tag. is the union’s tag. Its value is associated with
the beginning of the union. If no utag is present, the assembler puts the
union members in the global symbol table with the value of their absolute
offset from the top of the union. In this case, each member must have a
unique name.

� The expr is an optional expression indicating the beginning offset of the
union. Unions default to start at 0. This parameter can only be used with
a top-level union. It cannot be used when defining a nested union.

� The memn/N is an optional label for a member of the union. This label is
absolute and equates to the present offset from the beginning of the union.
A label for a union member cannot be declared global.

� The element is one of the following descriptors: .byte, .char, .double, field,
.float, .half, .int, .long, .short, .string, .ubyte, .uchar, .uhalt, .uint, .ulong,
.ushort, .uword, and .word. An element can also be a complete declaration
of a nested structure or union, or a structure or union declared by its tag.
Following a .union directive, these directives describe the element’s size.
They do not allocate memory.

� The exprn/N is an optional expression for the number of elements
described. This value defaults to 1. A .string element is considered to be
one byte in size, and a .field element is one bit.

� The size is an optional label for the total size of the union.

Note: Directives That Can Appear in a .union/.endunion Sequence

The only directives that can appear in a .union/.endunion sequence are
element descriptors, structure and union tags, and conditional assembly
directives. Empty structures are illegal.

.data

4-47 Assembly Directives

Assemble Into .data Section.data

Syntax .data

Description The .data directive tells the assembler to begin assembling source code into
the .data section; .data becomes the current section. The .data section is
normally used to contain tables of data or preinitialized variables.

On C55x, data is word-addressable.

The assembler assumes that .text is the default section. Therefore, at the
beginning of an assembly, the assembler assembles code into the .text section
unless you use a section control directive.

For more information about COFF sections, see Chapter 2,
Introduction to Common Object File Format.

Example In this example, code is assembled into the .data (word-addressable) and .text
(byte-addressable) sections.

 1 ***
 2 ** Reserve space in .data. **
 3 ***
 4 000000 .data
 5 000000 .space 0CCh
 6
 7 ***
 8 ** Assemble into .text. **
 9 ***
 10 000000 .text
 11 INDEX .set 0
 12 000000 3C00 MOV #INDEX,AC0
 13
 14 ***
 15 ** Assemble into .data. **
 16 ***
 17 00000c .data
 18 00000d ffff Table: .word −1 ; Assemble 16−bit
 19 ; constant into .data.
 20 00000e 00ff .byte 0FFh ; Assemble 8−bit
 21 ; constant into .data
 22 ***
 23 ** Assemble into .text. **
 24 ***
 25 000002 .text
 26 000002 D600 ADD Table,AC0,AC0
 000004 00”
 27
 28 ***
 29 ** Resume assembling into the .data **
 30 ** section at address 0Fh. **
 31 ***
 32 00000f .data

.double/.ldouble

4-48

Initialize Double-Precision Floating-Point Value.double/.ldouble

Syntax .double value [, ... , valuen]
.ldouble value [, ... , valuen]

Description The .double and .ldouble directives place the IEEE double-precision
floating-point representation of one or more floating-point values into the
current section. Each value must be a floating-point constant or a symbol that
has been equated to a floating-point constant. Each constant is converted to
a floating-point value in IEEE double-precision 64-bit format. Floating-point
constants are aligned on a word boundary.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of
.double and .ldouble directives in a section that includes C55x instructions
will lead to an invalid access to the data at execution. Consequently, it is
highly recommended that these directives be used only in data sections.

The value consists of three fields:

Field Meaning

s A 1-bit sign field

e An 11-bit biased exponent

m A 52-bit mantissa

The value is stored most significant word first, least significant word second,
in the following format:

s e m
31 30 20 19 0

When you use .double or .ldouble in a .struct/.endstruct sequence, the
directives define a member’s size; they do not initialize memory. For more
information about .struct/ .endstruct, see section 4.9, Assembly-Time Symbol
Directives, on page 4-22.

Example This example shows the .double and .ldouble directives.

 1 000000 .data
 2 000000 C520 .double −1.0e25
 000001 8B2A
 000002 2C28
 000003 0291
 2 000004 407C .ldouble 456.0
 000005 8000
 000006 0000
 000007 0000

.drlist/.drnolist

4-49 Assembly Directives

Specify DP Value.dp

Syntax .dp dp_value

Description The .dp directive specifies the value of the DP register. The dp_value can be
a constant or a relocatable symbolic expression.

By default, direct memory addressing (dma) is relative to the data memory
local page pointer register (DP). The dma syntax is @dma, where dma can be
a constant or a relcoatable symbolic expression. The assembler computes the
difference between dma and the value in the DP register and encodes this
difference into the output bits.

The assembler cannot track the value of the DP register; however, it must
assume a value for the DP in order to assemble direct memory access
operands. Consequently, you must use the .dp directive to model the DP
value. Issue this directive immediately following any instruction that changes
the value in the DP register. If the assembler is not informed of the value of the
DP register, it assumes that the value is 0.

Control Listing of Directives.drlist/.drnolist

Syntax .drlist
.drnolist

Description Two directives enable you to control the printing of assembler directives to the
listing file:

The .drlist directive enables the printing of all directives to the listing file.

The .drnolist directive suppresses the printing of the following directives to the
listing file. The .drnolist directive has no affect within macros.

� .asg � .fcnolist � .ssnolist

� .break � .mlist � .var

� .emsg � .mmsg � .wmsg

� .eval � .mnolist

� .fclist � .sslist

By default, the assembler acts as if the .drlist directive had been specified.

.emsg/.mmsg/.wmsg

4-50

Example This example shows how .drnolist inhibits the listing of the specified directives:

Source file:

 .asg 0, x
 .loop 2
 .eval x+1, x
 .endloop

 .drnolist

 .asg 1, x
 .loop 3
 .eval x+1, x
 .endloop

Listing file:

 1 .asg 0, x
 2 .loop 2
 3 .eval x+1, x
 4 .endloop
1 .eval 0+1, x
1 .eval 1+1, x
 5
 6 .drnolist
 7
 9 .loop 3
 10 .eval x+1, x
 11 .endloop

Define Messages.emsg/.mmsg/
.wmsg

Syntax .emsg string
.mmsg string
.wmsg string

Description These directives allow you to define your own error and warning messages.
The assembler tracks the number of errors and warnings it encounters and
prints these numbers on the last line of the listing file.

The .emsg directive sends error messages to stdout in the same manner as
the assembler, incrementing the error count and preventing the assembler
from producing an object file.

The .mmsg directive sends assembly-time messages to stdout in the same
manner as the .emsg and .wmsg directives, but it does not set the error or
warning counts, and it does not prevent the assembler from producing an
object file.

.emsg/.mmsg/.wmsg

4-51 Assembly Directives

The .wmsg directive sends warning messages to stdout in the same manner
as the .emsg directive, but it increments the warning count rather than the error
count, and it does not prevent the assembler from producing an object file.

Example In this example. the message ERROR −− MISSING PARAMETER is sent to
the standard output device.

Source file:

 .global PARAM
MSG_EX .macro parm1
 .if $symlen(parm1) = 0
 .emsg ”ERROR −− MISSING PARAMETER”
 .else
 ADD parm1,AC0,AC0
 .endif
 .endm

 MSG_EX PARAM

 MSG_EX

Listing file:

 1 .global PARAM
 2 MSG_EX .macro parm1
 3 .if $symlen(parm1) = 0
 4 .emsg ”ERROR −− MISSING PARAMETER”
 5 .else
 6 ADD parm1,AC0,AC0
 7 .endif
 8 .endm
 9
 10 000000 MSG_EX PARAM
1 .if $symlen(parm1) = 0
1 .emsg ”ERROR −− MISSING PARAMETER”
1 .else
1 000000 D600 ADD PARAM,AC0,AC0
 000002 00!
1 .endif
 11
 12 000003 MSG_EX
1 .if $symlen(parm1) = 0
1 .emsg ”ERROR −− MISSING PARAMETER”
 “emsg.asm”, ERROR! at line 12: [***** USER ERROR ***** −]
 ERROR −− MISSING PARAMETER
1 .else
1 ADD parm1,AC0,AC0
1 .endif

 1 Error, No Warnings

.end

4-52

In addition, the following messages are sent to stdout by the assembler:

TMS32055xx COFF Assembler Version x.xx
Copyright (c) 2001 Texas Instruments Incorporated
 PASS 1
 PASS 2
“emsg.asm”, ERROR! at line 12: [***** USER ERROR ***** −] ERROR −− MISSING
 PARAMETER
 .emsg ”ERROR −− MISSING PARAMETER”

 1 Error, No Warnings

Errors in source − Assembler Aborted

End Assembly.end

Syntax .end

Description The .end directive is optional and terminates assembly. The assembler
ignores any source statements that follow a .end directive.

This directive has the same effect as an end-of-file character. You can use .end
when you are debugging and would like to stop assembling at a specific point
in your code.

Example This example shows how the .end directive terminates assembly. The assem-
bler ignores the .byte and .word statements that follow the .end directive.

Source File:

 .data
START: .space 300
TEMP .set 15
 .bss LOC1, 48h
 .data
 ABS AC0,AC0
 ADD #TEMP,AC0,AC0
 MOV AC0,LOC1
 .end
 .byte 4
 .word CCCh

Listing file:

 1 000000 .data
 2 000000 START: .space 300
 3 TEMP .set 15
 4 000000 .bss LOC1, 48h
 5 000000 .text
 5 000000 3200 ABS AC0,AC0
 6 000002 40F0 ADD #TEMP,AC0,AC0
 7 000004 C000− MOV AC0,LOC1
 8 .end

.fclist/.fcnolist

4-53 Assembly Directives

Control Listing of False Conditional Blocks.fclist/.fcnolist

Syntax .fclist
.fcnolist

Description Two directives enable you to control the listing of false conditional blocks.

The .fclist directive allows the listing of false conditional blocks (conditional
blocks that do not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until
a .fclist directive is encountered. With .fcnolist, only code in conditional blocks
that are actually assembled appears in the listing. The .if, .elseif, .else, and
.endif directives do not appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist
directive had been used.

Example This example shows the assembly language and listing files for code with and
without the conditional blocks listed:

Source File:

AAA .set 1
BBB .set 0
 .fclist
 .if AAA
 ADD #1024,AC0,AC0
 .else
 ADD #(1024*10),AC0,AC0
 .endif

 .fcnolist
 .if AAA
 ADD #1024,AC0,AC0
 .else
 ADD #(1024*10),AC0,AC0
 .endif

Listing file:

 1 AAA .set 1
 2 BBB .set 0
 3 .fclist
 4 .if AAA
 5 000000 7B04 ADD #1024,AC0,AC0
 000002 0000
 6 .else
 7 ADD #(1024*10),AC0,AC0
 8 .endif
 9
 10 .fcnolist
 11
 13 000004 7B04 ADD #1024,AC0,AC0
 000006 0000

.field

4-54

Initialize Field.field

Syntax .field value [, size in bits]

Description The .field directive can initialize multiple-bit fields within a single word (in data
sections).

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of the
.field directive in a section that includes C55x instructions will lead to an
invalid access to the data at execution. Consequently, it is highly
recommended that these directives be used only in data sections.

This directive has two operands:

� The value is a required parameter; it is an expression that is evaluated and
placed in the field. If the value is relocatable, size must be 16 or 24.

� The size is an optional parameter; it specifies a number from 1 to 32, which
is the number of bits in the field. If you do not specify a size, the assembler
assumes that the size is 16 bits. If you specify a size of 16 or more, the field
will start on a word boundary. If you specify a value that cannot fit into size
bits, the assembler truncates the value and issues a warning message.
For example, .field 3,1 causes the assembler to truncate the value 3 to 1;
the assembler also prints the message:

***warning − value truncated.

Successive .field directives pack values into the specified number of bits
starting at the current word (in a data section). Fields are packed starting at
the most significant part of the word, moving toward the least significant part
as more fields are added. If the assembler encounters a field size that does
not fit into the current word, it writes out the current word, increments the SPC,
and begins packing fields into the next word. You can use the .align directive
with an operand of 1 to force the next .field directive to begin packing into a new
word.

If you use a label, it points to the word that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member’s
size; it does not initialize memory. For more information about .struct/
.endstruct, see section 4.9, Assembly-Time Symbol Directives, on page 4-22.

.field

4-55 Assembly Directives

Example This example shows how fields are packed into a word. Notice that the SPC
does not change until a word is filled and the next word is begun.

 1 000000 .data
 2 ************************************
 3 ** Initialize a 14−bit field. **
 4 ************************************
 5 000000 2AF0 .field 0ABCh, 14
 6
 7 ************************************
 8 ** Initialize a 5−bit field **
 9 ** in a new word. **
 10 ************************************
 11 000001 5000 L_F: .field 0Ah, 5
 12
 13 ***********************************
 14 ** Initialize a 4−bit field **
 15 ** in the same word. **
 16 ************************************
 17 000001 5600 x: .field 0Ch, 4
 18
 19 ************************************
 20 ** 16−bit relocatable field **
 21 ** in the next word. **
 22 ************************************
 23 000002 0001“ .field x
 24
 25 ************************************
 26 ** Initialize a 32−bit field. **
 27 ************************************
 28 000003 0000 .field 04321h, 32
 000004 4321

.float

4-56

Figure 4−5 shows how the directives in this example affect memory.

Figure 4−5. The .field Directive

0 0 1 0 1 0 1 0 1 1 1 1 0 0

0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0

0 1 0 1 0

0 1 0 1 0 1 1 0 0

0 0 0 0 10 0 0 00 0 00 0 0 0

14-bit field

5-bit field

4-bit field

15 0
Word Code

(a) 0

(b) 0

1

(c) 1

(d) 1

2

.field 0ABCh, 14

.field 00Ah, 5

.field 000Ch, 4

.field x

0 0 0 0 11 0 0 10 0 10 1 0 0

(e) 3

4

.field 04321,320 0 0 0 00 0 0 00 0 00 0 0 0

0 0 0 0 00 0 0 00 1 10 1 0 1

Link-time value of x

Initialize Single-Precision Floating-Point Value.float/.xfloat

Syntax .float value1 [, ... , valuen]
.xfloat value1 [, ... , valuen]

Description The .float and .xfloat directives place the floating-point representation of one
or more floating-point constants into the current data section. The value must
be a floating-point constant or a symbol that has been equated to a
floating-point constant. Each constant is converted to a floating-point value in
IEEE single-precision 32-bit format.

Floating-point constants are aligned on the long-word boundaries unless the
.xfloat directive is used. The .xfloat directive performs the same function as the
.float directive but does not align the result on the long word boundary.

.global/.def/.ref

4-57 Assembly Directives

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .float
and .xfloat directives in a section that includes C55x instructions will lead to
an invalid access to the data at execution. Consequently, it is highly
recommended that these directives be used only in data sections.

The 32-bit value consists of three fields:

Field Meaning

s A 1-bit sign field

e An 8-bit biased exponent

m A 23-bit mantissa

The value is stored most significant word first, least significant word second,
in the following format:

s e f
31 30 23 22 0

When you use .float in a .struct/.endstruct sequence, .float defines a member’s
size; it does not initialize memory. For more information about .struct/
.endstruct, see section 4.9, Assembly-Time Symbol Directives, on page 4-22.

Example This example shows the .float directive.

 1 000000 .data
 2 000000 E904 .float −1.0e25
 000001 5951
 3 000002 4040 .float 3
 000003 0000
 4 000004 42F6 .float 123
 000005 0000

Identify Global Symbols.global

Syntax .global symbol1 [, ... , symboln]
.def symbol1 [, ... , symboln]
.ref symbol1 [, ... , symboln]

Description The .global , .def , and .ref directives identify global symbols, which are
defined externally or can be referenced externally.

The .def directive identifies a symbol that is defined in the current module and
can be accessed by other files. The assembler places this symbol in the
symbol table.

mnemonic

4-58

The .ref directive identifies a symbol that is used in the current module but
defined in another module. The linker resolves this symbol’s definition at link
time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is,
it appears as a label or is defined by the .set, .bss, or .usect directive. As with
all symbols, if a global symbol is defined more than once, the linker issues a
multiple-definition error. .ref always creates a symbol table entry for a symbol,
whether the module uses the symbol or not; .global, however, creates an entry
only if the module actually uses the symbol.

A symbol may be declared global for two reasons:

� If the symbol is not defined in the current module (including macro, copy,
and include files), the .global or .ref directive tells the assembler that the
symbol is defined in an external module. This prevents the assembler from
issuing an unresolved reference error. At link time, the linker looks for the
symbol’s definition in other object modules.

� If the symbol is defined in the current module, the .global or .def directive
declares that the symbol and its definition can be used externally by other
modules. These types of references are resolved at link time.

Example This example shows four files:

file1.lst and file3.lst are equivalent. Both files define the symbol Init and make
it available to other modules; both files use the external symbols x, y, and z.
file1.lst uses the .global directive to identify these global symbols; file3.lst uses
.ref and .def to identify the symbols.

file2.lst and file4.lst are equivalent. Both files define the symbols x, y, and z
and make them available to other modules; both files use the external symbol
Init. file2.lst uses the .global directive to identify these global symbols; file4.lst
uses .ref and .def to identify the symbols.

.global/.def/.ref

4-59 Assembly Directives

file1.lst:

 1 ; Global symbol defined in this file
 2 .global INIT
 3 ; Global symbols defined in file2.lst
 4 .global X, Y, Z
 5 000000 INIT:
 6 000000 7B00 ADD #86,AC0,AC0
 000002 5600
 7 000000 .data
 8 000000 0000! .word X
 9 ; .
 10 ; .
 11 ; .
 12 .end

file2.lst:

 1 ; Global symbols defined in this file
 2 .global X, Y, Z
 3 ; Global symbol defined in file1.lst
 4 .global INIT
 5 X: .set 1
 6 Y: .set 2
 7 Z: .set 3
 8 000000 .data
 9 000000 0000! .word INIT
 10 ; .
 11 ; .
 12 ; .
 13 .end

file3.lst:

 1 ; Global symbol defined in this file
 2 .def INIT
 3 ; Global symbols defined in file4.lst
 4 .ref X, Y, Z
 5 000000 INIT:
 6 000000 7B00 ADD #86,AC0,AC0
 000002 5600
 7 000000 .data
 8 000000 0000! .word X
 9 ; .
 10 ; .
 11 ; .
 12 .end

.half/.uhalf/.short/.ushort

4-60

file4.lst:

 1 ; Global symbols defined in this file
 2 .def X, Y, Z
 3 ; Global symbol defined in file3.lst
 4 .ref INIT
 5 X: .set 1
 6 Y: .set 2
 7 Z: .set 3
 8 000000 .data
 9 000000 0000! .word INIT
 10 ; .
 11 ; .
 12 ; .
 13 .end

Initialize 16-Bit Integers.half/.uhalf/
.short/.ushort

Syntax .half value1 [, ... , valuen]
.uhalf value1 [, ... , valuen]
.short value1 [, ... , valuen]
.ushort value1 [, ... , valuen]

Description The .half , .uhalf , .short , and .ushort directives place one or more values into
consecutive 16-bit fields in the current section. A value can be:

� An expression that the assembler evaluates and treats as an 16-bit signed
or unsigned number

� A character string enclosed in double quotes. Each character in a string
represents a separate value.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .half,
.uhalf, .short, and .ushort directives in a section that includes C55x
instructions will lead to an invalid access to the data at execution.
Consequently, it is highly recommended that these directives be used only
in data sections.

The values can be either absolute or relocatable expressions. If an expression
is relocatable, the assembler generates a relocation entry that refers to the
appropriate symbol; the linker can then correctly patch (relocate) the
reference. This allows you to initialize memory with pointers to variables or
labels.

The assembler truncates values greater than 16 bits. If you use a label, it points
to the first initialized word.

.if/.elseif/.else/.endif

4-61 Assembly Directives

When you use .half, .uhalf, .short, or .ushort in a .struct/.endstruct sequence,
they define a member’s size; they do not initialize memory. For more
information about .struct/.endstruct, see section 4.9, Assembly-Time Symbol
Directives, on page 4-22.

Example In this example, the .half directive is used to place 16-bit values (10, −1, abc,
and a) into memory; .short is used to place 16-bit values (8, −3, def, and b) into
memory. The label STRN has the value 106h, which is the location of the first
initialized word.

 1 000000 .data
 2 000000 .space 100h * 16
 3
 4 000100 000A .half 10, −1, ”abc”, ’a’
 000101 FFFF
 000102 0061
 000103 0062
 000104 0063
 000105 0061
 5 000106 0008 STRN .short 8, −3, ”def”, ’b’
 000107 FFFD
 000108 0064
 000109 0065
 00010a 0066
 00010b 0062

Assemble Conditional Blocks.if/.elseif/.else/
.endif

Syntax .if Boolean expression
.elseif Boolean expression
.else
.endif

Description These directives allow you to assemble conditional blocks of code. You can
nest conditional assembly blocks.

The .if directive marks the beginning of a conditional block. The Boolean
expression is a required parameter, and must be entirely specified on the
same line as the directive.

� If the expression evaluates to true (nonzero), the assembler assembles
the code that follows the expression (up to an .elseif, .else, or .endif in the
same lexical level).

� If the expression evaluates to false (0), the assembler assembles code
that follows a .elseif (if present), .else (if present), or .endif (if no .elseif or
.else is present).

.if/.elseif/.else/.endif

4-62

The .elseif directive identifies a block of code to be assembled when the .if
expression is false (0) and the .elseif expression is true (nonzero). When the
.elseif expression is false, the assembler continues to the next .elseif (if
present), .else (if present) or .endif (if no .elseif or .else is present). The .elseif
directive is optional in the conditional blocks, and more than one .elseif can be
used. If an expression is false and there is no .elseif statement, the assembler
continues with the code that follows a .else (if present) or a .endif.

The .else directive identifies a block of code that the assembler assembles
when the .if expression and all preceding .elseif expressions are false (0). This
directive is optional in the conditional block; if an expression is false and there
is no .else statement, the assembler continues with the code that follows the
.endif.

The .endif directive marks the end of a conditional block.

For information about relational operators, see subsection 3.11.4, Conditional
Expressions, on page 3-38.

Example This example shows conditional assembly.

 1 SYM1 .set 1
 2 SYM2 .set 2
 3 SYM3 .set 3
 4 SYM4 .set 4
 5 000000 .data
 6 If_4: .if SYM4 = SYM2 * SYM2
 7 000000 0004 .byte SYM4 ; Equal values
 8 .else
 9 .byte SYM2 * SYM2 ; Unequal values
 10 .endif
 11
 12 If_5: .if SYM1 <= 10
 13 000001 000a .byte 10 ; Less than / equal
 14 .else
 15 .byte SYM1 ; Greater than
 16 .endif
 17
 18 If_6: .if SYM3 * SYM2 != SYM4 + SYM2
 19 .byte SYM3 * SYM2 ; Unequal value
 20 .else
 21 000002 0008 .byte SYM4 + SYM4 ; Equal values
 22 .endif
 23
 24 If_7: .if SYM1 = 2
 25 .byte SYM1
 26 .elseif SYM2 + SYM3 = 5
 27 000003 0005 .byte SYM2 + SYM3
 28 .endif

.int/.uint/.word/.uword

4-63 Assembly Directives

Initialize 16-Bit Integer.int/.uint/.word/
.uword

Syntax .int value1 [, ... , valuen]
.uint value1 [, ... , valuen]
.word value1 [, ... , valuen]
.uword value1 [, ... , valuen]

Description The .int , .uint , .word , and .uword directives are equivalent; they place one
or more values into consecutive 16-bit fields in the current section. A value can
be either:

� An expression that the assembler evaluates and treats as an 16-bit signed
or unsigned number

� A character string enclosed in double quotes. Each character in a string
represents a separate value.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .int,
.uint, .word, and .uword directives in a section that includes C55x instructions
will lead to an invalid access to the data at execution. Consequently, it is
highly recommended that these directives be used only in data sections.

The values can be either absolute or relocatable expressions. If an expression
is relocatable, the assembler generates a relocation entry that refers to the
appropriate symbol; the linker can then correctly patch (relocate) the
reference. This allows you to initialize memory with pointers to variables or
labels.

If you use a label, it points to the first word that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define
a member’s size; they do not initialize memory. For more information about
.struct/.endstruct, see section 4.9, Assembly-Time Symbol Directives, on
page 4-22.

.ivec

4-64

Example 1 In this example, the .int directive is used to initialize words.

 1 000000 .data
 2 000000 .space 73h
 3 000000 .bss PAGE, 128
 4 000080 .bss SYMPTR, 3
 5 000000 .text
 6 0000007600 INST: MOV #86,AC0

0000025608
 7 000007 .data
 8 000008 000A .int 10, SYMPTR, −1, 35 + ’a’
 000009 0080−
 00000a FFFF
 00000b 0084

Example 2 In this example, the .word directive is used to initialize words. The symbol
WordX points to the first word that is reserved.

 1 000000 .data
 1 000000 0C80 WORDX: .word 3200, 1 + ’AB’, −0AFh, ’X’
 000001 4143
 000002 FF51
 000003 0058

Initialize Interrupt Table Entries.ivec

Syntax [label:] .ivec [address [, stack mode]]

Description The .ivec directive is used to initialize an entry in the interrupt vector table.

This directive has the following operands:

� The label, if specified, will be assigned the code (byte) address associated
with the directive, not the data (word) address as with other directives.

� The address specifies the address of the interrupt service routine. If an
address is not specified, 0 is used.

� You can specify a stack mode only for the reset vector, which must be the
first .ivec in the interrupt vector table. The stack mode can be identified as
follows:

C54X_STK This value specifies the 32-bit stack needed by
converted C54x code. This is the default if no value is
given for the stack mode.

USE_RETA This value specifies 16-bit plus register fast return
mode.

NO_RETA This value specifies 16-bit slow return mode.

.ivec

4-65 Assembly Directives

More information on the stack modes can be found in the TMS320C55x DSP
CPU Reference Guide. You can write these symbolic names in either upper
or lower case.

The .ivec directive aligns the SPC on an 8-byte boundary, so that you are not
forced to place an instruction between two .ivec entries. Any space added for
this alignment is filled with NOP instructions.

In general, a section that contains other data defining directives (such as
.word) is characterized as a data section. A data section is word-addressable
and cannot contain code. A section containing the .ivec directive is
characterized as a code section (byte-addressable), and can include other
instructions. Like an instruction, .ivec cannot be mixed with other data defining
directives.

The assembler issues a warning when it encounters a section that contains
an .ivec directive and an instruction larger than 4 bytes. This prevents you from
overfilling the last 4 bytes of an interrupt vector with an instruction that is too
big.

The assembler also issues a warning when it encounters more than one
instruction immediately after an .ivec. Only one instruction is executed before
branching to the ISR.

A section containing an .ivec directive is marked as an interrupt vector section.
The linker can recognize such sections, and does not add a non-parallel NOP
at the end of it, as it does for normal code sections.

Example This example shows the use of the .ivec directive.

 .sect ”vectors” ; start vectors section
 .ref start,nmi_isr,isr2 ; symbols referenced
 ; from other files
 .def rsv,no_isr ; symbols defined in this
 ; file
rsv: .ivec start,c54x_stk ; C54x compatibility
 ; stack mode
nmi .ivec nmi_isr ; standard usage
int3 .ivec ; one way to skip a vector
int4 .ivec no_isr ; better way to skip a vector
; ... and so on. Fill out all 32 vectors.
int31 .ivec no_isr ; last vector
 .text ; change to text section
no_isr B no_isr ; default ISR

Note the difference between int3 and int4. If the int3 vector is raised, the
example branches to 0, with unpredictable results. However, if the int4 vector
is raised, the example branches to the no_isr spin loop, which generates
predictable results.

.label

4-66

Create a Load-Time Address Label.label

Syntax .label symbol

Description The .label directive defines a special symbol that refers to the load-time
address rather than the run-time address within the current section. Most
sections created by the assembler have relocatable addresses. The
assembler assembles each section as if it started at 0, and the linker relocates
it to the address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and
run at a different address. For example, you may wish to load a block of
performance-critical code into slower off-chip memory to save space, and then
move the code to high-speed on-chip memory to run it.

Such a section is assigned two addresses at link time: a load address and a
run address. All labels defined in the section are relocated to refer to the
run-time address so that references to the section (such as branches) are
correct when the code runs.

The .label directive creates a special label that refers to the load-time address.
This function is useful primarily to designate where the section was loaded for
purposes of the code that moves the section from its load-time location to its
run-time location.

Example This example shows the use of a load-time address label.

 .sect ”.EXAMP”
 .label EXAMP_LOAD ; load address of section.
START: ; run address of section.
 <code>
FINISH: ; run address of section end.
 .label EXAMP_END ; load address of section end.

For more information about assigning run-time and load-time addresses in the
linker, see section 8.10, Specifying a Section’s Run-Time Address, on page
8-45.

.length/.width

4-67 Assembly Directives

Set Listing Page Size.length/.width

Syntax .length page length
.width page width

Description The .length directive sets the page length of the output listing file. It affects the
current and following pages. You can reset the page length with another
.length directive.

� Default length: 60 lines
� Minimum length: 1 line
� Maximum length: 32 767 lines

The .width directive sets the page width of the output listing file. It affects the
next line assembled and the lines following; you can reset the page width with
another .width directive.

� Default width: 80 characters
� Minimum width: 80 characters
� Maximum width: 200 characters

The width refers to a full line in a listing file; the line counter value, SPC value,
and object code are counted as part of the width of a line. Comments and other
portions of a source statement that extend beyond the page width are
truncated in the listing.

The assembler does not list the .width and .length directives.

Example In this example, the page length and width are changed.

** Page length = 65 lines. **
** Page width = 85 characters. **

 .length 65
 .width 85

** Page length = 55 lines. **
** Page width = 100 characters. **

 .length 55
 .width 100

.list/.nolist

4-68

Start/Stop Source Listing.list/.nolist

Syntax .list
.nolist

Description Two directives enable you to control the printing of the source listing:

The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive
is encountered. The .nolist directive can be used to reduce assembly time and
the source listing size. It can be used in macro definitions to suppress the
listing of the macro expansion.

The assembler does not print the .list or .nolist directives or the source
statements that appear after a .nolist directive. However, it continues to
increment the line counter. You can nest the .list/.nolist directives; each .nolist
needs a matching .list to restore the listing.

By default, the source listing is printed to the listing file; the assembler acts as
if the .list directive had been specified. However, if you don’t request a listing
file when you invoke the assembler, the assembler ignores the .list directive.

Example This example shows how the .copy directive inserts source statements from
another file. The first time this directive is encountered, the assembler lists the
copied source lines in the listing file. The second time this directive is encoun-
tered, the assembler does not list the copied source lines, because a .nolist
directive was assembled. Note that the .nolist, the second .copy, and the .list
directives do not appear in the listing file. Note also that the line counter is
incremented, even when source statements are not listed.

Source file:

.copy ”copy2.asm”
* Back in original file

NOP
.nolist
.copy ”copy2.asm”
.list

* Back in original file
.string ”Done”

.localalign

4-69 Assembly Directives

Listing file:

 1 .copy ”copy2.asm”
 A 1 * In copy2.asm (copy file)
 A 2 000000 .data
 A 3 000000 0020 .word 32, 1 + ’A’
 4 000001 0042
 2 * Back in original file
 3 000000 .text
 4 000000 90 NOP
 9 * Back in original file
 10 000004 .data
 11 000004 0044 .string ”Done”
 000005 006F
 000006 006E
 000007 0065

Create a Load-Time Address Label.localalign

Syntax .localalign

Description The assembler directive .localalign, meant to be placed right before a
localrepeat instruction, causes the first instuction in the body of the loop to be
aligned to a 4-byte alignment, which allows the maximum localrepeat loop
size. It operates by inserting enough single-cycle NOP instructions to get the
alignment correct. It also causes a 4-byte alignment to be applied to the
current section so the linker honors the necessary alignment for that loop body.
It takes no parameters.

Example 1 This example shows the behavior of a localrepeat loop without the .localalign
directive.

main: nop
 nop
 nop
 localrepeat {
 ac1 = #5
 ac2 = ac1
 }

The above source code produces this output:

 1 000000 20 main: nop
 2 000001 20 nop
 3 000002 20 nop
 4 000003 4A82 localrepeat {
 5 000005 3C51 AC1 = #5
 6 000007 2212 AC2 = AC1
 7 }

.localalign

4-70

Example 2 This example shows the source code from Example 1 after .localalign is
added.

main: nop
 nop
 nop
 .localalign
 localrepeat {
 ac1 = #5
 ac2 = ac1
 }

This example produces an aligned loop body before the localrepeat on line 5,
causing the loop body beginning at line 6 to now be 4-byte aligned; its address
went from 0x5 to 0x8:

 1 000000 20 main: nop
 2 000001 20 nop
 3 000002 20 nop
 4 .localalign
 5 000006 4A82 localrepeat {
 6 000008 3C51 AC1 = #5
 7 00000a 2212 AC2 = AC1
 8 }

A disassembly shows how NOPs were inserted:

TEXT Section .text, 0xC bytes at 0x0
000000: 20 NOP
000001: 20 NOP
000002: 20 NOP
000003: 5e80_21 NOP_16 || NOP
000006: 4a82 RPTBLOCAL 0xa
000008: 3c51 MOV #5,AC1
00000a: 2212 MOV AC1,AC2

By aligning the loop using the .localalign directive (or even by hand), the
localrepeat loops can achieve maximum size. Without this alignment, the
loops may need to be several bytes shorter due to how the instruction buffer
queue (IBQ) on the C55x processor is loaded.

While the directive can be used with short loops, .localalign really only needs
to be used on localrepeat loops that are near the limit of the localrepeat size.

.long/.ulong/.xlong

4-71 Assembly Directives

Enable read-modify-write Instruction Range.lock_on/
.lock_off

Syntax .lock_on
.lock_off

Description The .lock_on and .lock_off directives identify a range for use with
read-modify-write instructions. Within this range, the lock() modifier can be
specified in parallel with any read-modify-write instruction. If a lock() modifier
is not specified in parallel with a read-modify-write instruction that exists in a
.lock_on block, then the assembler will issue a remark diagnostic stating that
the operation is not guaranteed to be atomic. Outside of the range of the
.lock_on and .lock_off directives, the lock() modifier is illegal and
read-write-modify instructions are not flagged.

These directives are intended to be placed around a critical region (usually a
semaphore) of code where atomic access to a memory location must be
guaranteed.

By default, the assembler treats all code as being outside of a
.lock_on/.lock_off range.

Initialize 32-Bit Integer.long/.ulong/
.xlong

Syntax .long value1 [, ... , valuen]
.ulong value1 [, ... , valuen]
.xlong value1 [, ... , valuen]

Description The .long , .ulong , and .xlong directives place one or more 32-bit values into
consecutive words in the current section. The most significant word is stored
first. The .long and .ulong directives align the result on the long word boundary,
while the .xlong directive does not. A value can be:

� An expression that the assembler evaluates and treats as a 32-bit signed
or unsigned number

� A character string enclosed in double quotes. Each character in a string
represents a separate value.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .long,
.ulong, and .xlong directives in a section that includes C55x instructions will
lead to an invalid access to the data at execution. Consequently, it is highly
recommended that these directives be used only in data sections.

.loop/.break/.endloop

4-72

The value operand can be either an absolute or relocatable expression. If an
expression is relocatable, the assembler generates a relocation entry that
refers to the appropriate symbol; the linker can then correctly patch the
reference with its relocated value. This allows you to initialize memory with
pointers to variables or with labels.

If you use a label, it points to the first word that is initialized.

When you use the directives in a .struct /.endstruct sequence, they define a
member’s size; they do not initialize memory. For more information about
.struct / .endstruct, see section 4.9, Assembly-Time Symbol Directives, on
page 4-22.

Example This example shows how the .long and .xlong directives initialize double
words.

 1 000000 .data
 2 000000 0000 DAT1: .long 0ABCDh, ’A’ + 100h, ’g’, ’o’
 000001 ABCD
 000002 0000
 000003 0141
 000004 0000
 000005 0067
 000006 0000
 000007 006F
 3 000008 0000 .xlong DAT1, 0AABBCCDDh
 000009 0000“
 00000a AABB
 00000b CCDD
 4 00000c DAT2:

Assemble Code Block Repeatedly.loop/.break/
.endoop

Syntax .loop [well-defined expression]
.break [Boolean expression]
.endloop

Description These directives enable you to repeatedly assemble a block of code.

The .loop directive begins a repeatable block of code. The optional expression
evaluates to the loop count (the number of times to repeat the assembly of the
code contained in the loop). If there is no expression, the loop count defaults
to 1024, unless the assembler first encounters a .break directive with an
expression that is true (nonzero) or omitted.

The .break directive is optional, along with its expression. When the
expression is false (0), the loop continues. When the expression is true
(nonzero), or omitted, the assembler exits the loop and begins assembling the
code after the .endloop directive.

.macro/.endm

4-73 Assembly Directives

The .endloop directive marks the end of a repeatable block of code. The
assembler continues assembling the code after the .endloop when the loop is
exited or when the last iteration of the loop has been completed.

Example This example illustrates how these directives can be used with the .eval
directive.

 1 000000 .data
 2 .eval 0,x
 3 LAB_1 .loop
 4 .word x*100
 5 .eval x+1, x
 6 .break x = 6
 7 .endloop
1 000000 0000 .word 0*100
1 .eval 0+1, x
1 .break 1 = 6
1 000001 0064 .word 1*100
1 .eval 1+1, x
1 .break 2 = 6
1 000002 00C8 .word 2*100
1 .eval 2+1, x
1 .break 3 = 6
1 000003 012C .word 3*100
1 .eval 3+1, x
1 .break 4 = 6
1 000004 0190 .word 4*100
1 .eval 4+1, x
1 .break 5 = 6
1 000005 01F4 .word 5*100
1 .eval 5+1, x
1 .break 6 = 6

Define Macro.macro/.endm

Syntax macname .macro [parameter1] [, ... parametern]
model statements or macro directives
.endm

Description The .macro directive is used to define macros.

You can define a macro anywhere in your program, but you must define the
macro before you can use it. Macros can be defined at the beginning of a
source file, in an .include/.copy file, or in a macro library.

macname names the macro. You must place the name in the
source statement’s label field.

.macro identifies the source statement as the first line of a
macro definition. You must place .macro in the opcode
field.

.mlib

4-74

[parameters] are optional substitution symbols that appear as
operands for the .macro directive.

model statements are instructions or assembler directives that are
executed each time the macro is called.

macro directives are used to control macro expansion.

.endm marks the end of the macro definition.

Macros are explained in further detail in Chapter 5, Macro Language.

Define Macro Library.mlib

Syntax .mlib [”]filename[”]

Description The .mlib directive provides the assembler with the name of a macro library.
A macro library is a collection of files that contain macro definitions. The macro
definition files are bound into a single file (called a library or archive) by the
archiver.

Each file in a macro library contains one macro definition that corresponds to
the name of the file. The filename of a macro library member must be the same
as the macro name, and its extension must be .asm. The filename must follow
host operating system conventions; it can be enclosed in double quotes. You
can specify a full pathname (for example, c:\320tools\macs.lib). If you do not
specify a full pathname, the assembler searches for the file in the following
locations in the order given:

1) The directory that contains the current source file
2) Any directories named with the −i assembler option
3) Any directories specified by the C55X_A_DIR or A_DIR environment

variable

For more information about the −i option, C55X_A_DIR, and A_DIR, see
section 3.6, Naming Alternate Directories for Assembler Input, on page 3-19.

.mlib

4-75 Assembly Directives

When the assembler encounters a .mlib directive, it opens the library specified
by the filename and creates a table of the library’s contents. The assembler
enters the names of the individual library members into the opcode table as
library entries. This redefines any existing opcodes or macros that have the
same name. If one of these macros is called, the assembler extracts the entry
from the library and loads it into the macro table. The assembler expands the
library entry in the same way it expands other macros, but it does not place the
source code into the listing. Only macros that are actually called from the
library are extracted, and they are extracted only once.

For more information on macros and macro libraries, see Chapter 5, Macro
Language.

Example This example creates a macro library that defines two macros, incr and decr.
The file incr.asm contains the definition of incr, and decr.asm contains the defi-
nition of decr.

incr.asm decr.asm

* Macro for incrementing
incr .macro
 ADD #1,AC0,AC0
 ADD #1,AC1,AC1
 ADD #1,AC2,AC2
 ADD #1,AC3,AC3
 .endm

* Macro for decrementing
decr .macro
 SUB #1,AC0,AC0
 SUB #1,AC1,AC1
 SUB #1,AC2,AC2
 SUB #1,AC3,AC3
 .endm

Use the archiver to create a macro library:

ar55 −a mac incr.asm decr.asm

Now you can use the .mlib directive to reference the macro library and define
the incr and decr macros:

 1 .mlib ”mac.lib”
 2 000000 incr ; Macro call
1 000000 4010 ADD #1,AC0,AC0
1 000002 4011 ADD #1,AC1,AC1
1 000004 4012 ADD #1,AC2,AC2
1 000006 4013 ADD #2,AC3,AC3
 3 000008 decr ; Macro call
1 000008 4210 SUB #1,AC0,AC0
1 00000a 4211 SUB #1,AC1,AC1
1 00000c 4212 SUB #1,AC2,AC2
1 00000e 4213 SUB #1,AC3,AC3

.mlist/.mnolist

4-76

Start/Stop Macro Expansion Listing.mlist/.mnolist

Syntax .mlist
.mnolist

Description Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the
listing file.

The .mnolist directive suppresses macro and .loop/.endloop block
expansions in the listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

For more information on macros and macro libraries, see Chapter 5, Macro
Language.

Example This example defines a macro named STR_3. The second time the macro is
called, the macro expansion is not listed, because a .mnolist directive was
assembled. The third time the macro is called, the macro expansion is listed,
because a .mlist directive was assembled.

.newblock

4-77 Assembly Directives

 1 STR_3 .macro P1, P2, P3
 2 .data
 3 .string ”:p1:”, ”:p2:”, ”:p3:”
 4 .endm
 5
 6 000000 STR_3 ”as”, ”I”, ”am”
1 000000 .data
1 000000 003A .string ”:p1:”, ”:p2:”, ”:p3:”
 000001 0070
 000002 0031
 000003 003A
 000004 003A
 000005 0070
 000006 0032
 000007 003A
 000008 003A
 000009 0070
 00000a 0033
 00000b 003A
 7 .mnolist
 8 00000c STR_3 ”as”, ”I”, ”am”
 9 .mlist
 10 000018 STR_3 ”as”, ”I”, ”am”
1 000018 .data
1 000018 003A .string ”:p1:”, ”:p2:”, ”:p3:”
 000019 0070
 00001a 0031
 00001b 003A
 00001c 003A
 00001d 0070
 00001e 0032
 00001f 003A
 000020 003A
 000021 0070
 000022 0033
 000023 003A

Terminate Local Symbol Block.newblock

Syntax .newblock

Description The .newblock directive undefines any local labels currently defined. Local
labels, by nature, are temporary; the .newblock directive resets them and
terminates their scope.

A local label is a label in the form $n, where n is a single decimal digit. A local
label, like other labels, points to an instruction word. Unlike other labels, local
labels cannot be used in expressions. Local labels are not included in the
symbol table.

.noremark/.remark

4-78

A local label also can be defined with the ? wildcard. For a local label in the form
label? the assembler replaces ? with a unique label identifier.

After a local label has been defined and (perhaps) used, you should use the
.newblock directive to reset it. The .text, .data, and named sections also reset
local labels. Local labels that are defined within an include file are not valid
outside of the local file.

Example This example shows how the local label $1 is declared, reset, and then
declared again.

 1 .ref ADDRA, ADDRB, ADDRC
 2 foo .set 76h
 3
 4 000000 A000! LABEL1: MOV ADDRA,AC0
 5 000002 7C00 SUB #foo,AC0

0000047600
 6 00000662200 BCC $1,AC0 < #0
 7 000008 A000! MOV ADDRB,AC0
 8 00000a 4A02 B $2
 9
10 00000c A000! $1 MOV ADDRA,AC0
11 000003 D600 $2 ADD ADDRC,AC0,AC0

000010 00!
12 .newblock ; Undefine $1 to reuse
13 000011 6120 BCC $1,AC0 < #0
14 000013 C000! MOV AC0,ADDRC
15 000015 20 $1 NOP

Control Remarks.noremark/
.remark

Syntax .noremark num
.remark [num]

Description The .noremark directive suppresses the assembler remark identified by num.
A remark is an informational assembler message that is less severe than a
warning. For a description of remarks, see section 7.7 on page 7-35.

This directive is equivalent to using the −r[num] assembler option.

The .remark directive re-enables the remark(s) previously suppressed.

Example This example shows how to suppress the R5002 remark:

Original listing file:

 1 000000 20 RSBX CMPT
“file.asm”, REMARK at line 1: [R5002] Ignoring RSBX CMPT instruction
 2
 3 000001 4804 RETF
“file.asm”, REMARK at line 3: [R5004] Translation of RETF correct
only for non−interrupt routine

.option

4-79 Assembly Directives

Listing file with .noremark:

 1 .noremark 5002
 2 000000 20 RSBX CMPT
 3
 4 000001 4804 RETF
“file.asm”, REMARK at line 4: [R5004] Translation of RETF correct
only for non−interrupt routine

Select Listing Options.option

Syntax .option option list

Description The .option directive selects several options for the assembler output listing.
Option list is a list of options separated by vertical lines; each option selects
a listing feature. These are valid options:

B limits the listing of .byte directives to one line.

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

R resets the B, M, T, and W options.

T limits the listing of .string directives to one line.

W limits the listing of .word directives to one line.

X produces a symbol cross-reference listing. (You can also obtain a
cross-reference listing by invoking the assembler with the −x option.)

Options are not case sensitive.

Example This example shows how to limit the listings of the .byte, .word, .long, and
.string directives to one line each.

.page

4-80

 1 **
 2 ** Limit the listing of .byte, .word, **
 3 ** .long, and .string directives **
 4 ** to 1 line each. **
 5 **
 6 .option B, W, L, T
 7 000000 .data
 8 000000 00BD .byte −’C’, 0B0h, 5
 9 000004 AABB .long 0AABBCCDDh, 536 + ’A’
 10 000008 15AA .word 5546, 78h
 11 00000a 0045 .string ”Extended Registers”
 12
 13 **
 14 ** Reset the listing options. **
 15 **
 16 .option R
 17 00001c FFBD .byte −’C’, 0B0h, 5
 00001d 00B0
 00001e 0005
 18 000020 AABB .long 0AABBCCDDh, 536 + ’A’
 000021 CCDD
 000022 0000
 000023 0259
 19 000024 15AA .word 5546, 78h
 000025 0078
 20 000026 0045 .string ”Extended Registers”
 000027 0078
 000028 0074
 000029 0065
 00002a 006E
 00002b 0064
 00002c 0065
 00002d 0064
 00002e 0020
 00002f 0052
 000030 0065
 000031 0067
 000032 0069
 000033 0073
 000034 0074
 000035 0065
 000036 0072
 000037 0073

Eject Page in Listing.page

Syntax .page

Description The .page directive produces a page eject in the listing file. The .page directive
is not printed in the source listing, but the assembler increments the line
counter when it encounters it. Using the .page directive to divide the source
listing into logical divisions improves program readability.

.sblock

4-81 Assembly Directives

Example This example shows how the .page directive causes the assembler to begin
a new page of the source listing.

Source file:

 .title ”**** Page Directive Example ****”
; .
; .
; .
 .page

Listing file:

 TMS320C55x COFF Assembler Version x.xx
 Copyright (c) 2001 Texas Instruments Incorporated

 **** Page Directive Example **** PAGE 1

 2 ; .
 3 ; .
 4 ; .
 TMS320C55x COFF Assembler Version x.xx
 Copyright (c) 2001 Texas Instruments Incorporated

 **** Page Directive Example **** PAGE 2

Encode C54x Instructions for Speed or Size.port_for_speed/
.port_for_size

Syntax .port_for_speed
.port_for_size

Description The .port_for_speed and .port_for_size directives affect the way the
assembler encodes certain C54x instructions when ported to C55x. By
default, masm55 tries to encode C54x instructions to achieve small code size
(.port_for_size). Use .port_for_speed, or the −mh assembler option, to allow
the assembler to generate a faster encoding. For more information, see
section 7.2.2, Port for Speed Over Size, on page 7-6.

The .port_for_size directive models the default encoding of the assembler.

The .port_for_speed directive models the effect of the −mh assembler option.
In the case of a conflict between the command line option and the directive,
the directive takes precedence.

Consider using .port_for_speed just before a critical loop. After the loop, use
.port_for_size to return to the default encoding.

Specify Blocking for an Initialized Section.sblock

Syntax .sblock [”]section name[”] [, ”section name”, . . .]

Description The .sblock directive designates sections for blocking. Blocking is an address
alignment mechanism similar to page alignment, but weaker. A blocked code

.sect

4-82

section is guaranteed to not cross a 128-byte boundary if it is smaller than 128
bytes. It will start on a 128-byte boundary if it is larger than 128 bytes. A blocked
data section is guaranteed to not cross a 128-word (page) boundary if it is
smaller than a page. It will start on a page boundary if it is larger than a page.
This directive allows specification of blocking for initialized sections only, not
uninitialized sections declared with .usect or the .bss directives. The section
names may optionally be enclosed in quotes.

Example This example designates the .text and .data sections for blocking.

1 **
2 ** Specify blocking for the .text **
3 ** and .data sections. **
4 **

 5 .sblock .text, .data

Assemble Into Named Section.sect

Syntax .sect ” section name”

Description The .sect directive defines a named section that can be used like the default
.text and .data sections. The .sect directive begins assembling source code
into the named section.

The section name identifies a section that the assembler assembles code into.
The name must be enclosed in double quotes. A section name can contain a
subsection name in the form section name:subsection name.

For more information about COFF sections, see Chapter 2,
Introduction to Common Object File Format.

.set/.equ

4-83 Assembly Directives

Example This example defines a special-purpose section named Vars and assembles
code into it.

 1 **
 2 ** Begin assembling into .text section. **
 3 **
 4 000000 .text
 5 000000 7600 MOV #120,AC0 ; Assembled into .text
 000002 7808
 6 000004 7B00 ADD #54,AC0 ; Assembled into .text
 000006 3600
 7 **
 8 ** Begin assembling into Vars section. **
 9 **
 10 000000 .sect ”Vars”
 11 WORD_LEN .set 16
 12 DWORD_LEN .set WORD_LEN * 2
 13 BYTE_LEN .set WORD_LEN / 2
 14 000000 000E .byte 14
 15 **
 16 ** Resume assembling into .text section. **
 17 **
 18 000008 .text
 19 000008 7B00 ADD #66,AC0 ; Assembled into .text
 00000a 4200
 20 **
 21 ** Resume assembling into Vars section. **
 22 **
 23 000001 .sect ”Vars”
 24 000001 000D .field 13, WORD_LEN
 25 000002 0A00 .field 0Ah, BYTE_LEN
 26 000003 0000 .field 10q, DWORD_LEN
 000004 0008
 27

Define Assembly-Time Constant.set/.equ

Syntax symbol .set value
symbol .equ value

Description The .set and .equ directives equate a value to a symbol. The symbol can then
be used in place of a value in assembly source. This allows you to equate
meaningful names with constants and other values.

� The symbol is a label that must appear in the label field.

� The value must be a well-defined expression; that is, all symbols in the
expression must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module
cannot be used in the expression. If the expression is relocatable, the symbol
to which it is assigned is also relocatable.

.space

4-84

The value of the expression appears in the object field of the listing. This value
is not part of the actual object code and is not written to the output file.

Symbols defined with .set or .equ can be made externally visible with the .def
or .global directive. In this way, you can define global absolute constants.

Example This example shows how symbols can be assigned with .set and .equ.

 1 **
 2 ** Set symbol index to an integer expr. **
 3 ** and use it as an immediate operand. **
 4 **
 5 INDEX .equ 100/2 +3
 6 000000 7B00 ADD #INDEX,AC0,AC0
 000002 3500
 7
 8 **
 9 ** Set symbol SYMTAB to a relocatable expr. **
 10 ** and use it as a relocatable operand. **
 11 **
 12 000000 .data
 13 000000 000A LABEL .word 10
 14 SYMTAB .set LABEL + 1
 15
 16 **
 17 ** Set symbol NSYMS equal to the symbol **
 18 ** INDEX and use it as you would INDEX. **
 19 **
 20 NSYMS .set INDEX
 21 000001 0035 .word NSYMS

Reserve Space.space

Syntax .space size in bits

Description The .space directive reserves size number of bits in the current section and
fill them with 0s.

Note: Use This Directive in Data Sections

Because code and data sections are addressed differently, the use of .space
in a section that includes C55x instructions will lead to an invalid access to
the data at execution. Consequently, it is highly recommended that these
directives be used only in data sections.

When you use a label with the .space directive, it points to the first word
reserved (in a data section).

.sslist/.ssnolist

4-85 Assembly Directives

Example This example shows how memory is reserved with the .space directive.

 1 ***
 2 ** Begin assembling into .data section. **
 3 ***
 4 000000 .data
 5 000000 0049 .string ”In .data”
 000001 006E
 000002 0020
 000003 002E
 000004 0064
 000005 0061
 000006 0074
 000007 0061
 6 ***
 7 ** Reserve 100 bits in the .data section; **
 8 ** RES_1 points to the first word that **
 9 ** contains reserved bits. **
 10 ***
 11 000008 RES_1: .space 100
 12 00000f 000F .word 15
 13 000010 0008” .word RES_1
 14

Reserve Space.sslist/.ssnolist

Syntax .sslist
.ssnolist

Description Two directives enable you to control the inclusion of substitution symbol
expansion details in the listing file:

The .sslist directive provides substitution symbol expansion details in the
listing file. The expanded line appears below the actual source line.

The .ssnolist directive suppresses substitution symbol expansion deatils in
the listing file.

By default, all substitution symbol expansion in the listing file is inhibited. Lines
with the pound (#) character prefix denote details about expanded substitution
symbols.

.sslist/.ssnolist

4-86

Example This example shows code that, by default, suppresses the listing of substitu-
tion symbol expansion, and it shows the .sslist directive assembled, instructing
the assembler to list substitution symbol code expansion details.

(a) Mnemonic example

 1 000000 .bss ADDRX, 1
 2 000001 .bss ADDRY, 1
 3 000002 .bss ADDRA, 1
 4 000003 .bss ADDRB, 1
 5 ADD2 .macro ADDRA, ADDRB
 6 MOV ADDRA,AC0
 7 ADD ADDRB,AC0,AC0
 8 MOV AC0,ADDRB
 9 .endm
10
11 000000C083 MOV AC0,*AR4+
12 000002 ADD2 ADDRX, ADDRY

1 000002A000− MOV ADDRX,AC0
1 000004D600 ADD ADDRY,AC0,AC0

00000600−
1 000007C000− MOV AC0,ADDRY

13
14 .sslist
15
16 000009C083 MOV AC0,*AR4+
17 00000bC003 MOV AC0,*AR0+
18
19 00000d ADD2 ADDRX, ADDRY

1 00000dA000− MOV ADDRA,AC0
MOV ADDRX,AC0
1 00000fD600 ADD ADDRB,AC0,AC0
ADD ADDRY,AC0,AC0

00001100−
1 000012C000− MOV AC0,ADDRB
MOV AC0,ADDRY

.sst_off/.sst_on

4-87 Assembly Directives

(b) Algebraic example

 1 000000 .bss ADDRX, 1
 2 000001 .bss ADDRY, 1
 3 000002 .bss ADDRA, 1
 4 000003 .bss ADDRB, 1
 5 ADD2 .macro ADDRA, ADDRB
 6 AC0 = @(ADDRA)
 7 AC0 = AC0 + @(ADDRB)
 8 @(ADDRB) = AC0
 9 .endm
10
11 000000C083 *AR4+ = AC0
12 000002 ADD2 ADDRX, ADDRY

1 000002A000− AC0 = @(ADDRX)
1 000004D600 AC0 = AC0 + @(ADDRY)

00000600−
1 000007C000− @(ADDRY) = AC0

13
14 .sslist
15
16 000009C083 *AR4+ = AC0
17 00000bC003 *AR0+ = AC0
18
19 00000d ADD2 ADDRX, ADDRY

1 00000dA000− AC0 = @(ADDRA)
AC0 = @(ADDRX)
1 00000fD600 AC0 = AC0 + @(ADDRB)
AC0 = AC0 + @(ADDRY)

00001100−
1 000012C000− @(ADDRB) = AC0
@(ADDRY) = AC0

Specify SST Mode.sslist/.ssnolist

Syntax .sst_off
.sst_on

Description The .sst_off and .sst_on directives affect the way the assembler encodes
certain C54x instructions when ported to C55x. By default, masm55 assumes
that the SST bit (saturate on store) is enabled (.sst_on). The default encoding
generated by the assembler works whether or not the bit is actually enabled.
However, if your code does not enable the SST bit, you may want to use
.sst_off, or the −mt assembler option, to allow the assembler to generate a
more efficient encoding. For more information, see section 7.2.1, Assume SST
is Disabled, on page 7-5.

.string/.pstring

4-88

The .sst_on directive models the SST status bit set to 1, the default assumption
of the assembler. The .sst_off directive models the SST status bit set to 0; this
is equivalent to using the −mt assembler option. In the case of a conflict
between the command line option and the directive, the directive takes
precedence.

The scope of the .sst_on and .sst_off directives is static and not subject to the
control flow of the assembly program. All of the assembly code between the
.sst_off and the .sst_on directives is assembled with the assumption that SST
is disabled.

Initialize Text.string/.pstring

Syntax .string ” string1 ” [, ... , ” stringn ”]
.pstring ” string1 ” [, ... , ” stringn ”]

Description The .string and .pstring directives place 8-bit characters from a character
string into the current section. The .string directive places 8-bit characters into
consecutive words in the current section. The .pstring directive initializes data
in 8-bit chunks, but packs the contents of each string into two characters per
word. Each string is either:

� An expression that the assembler evaluates and treats as an 8- or 16-bit
signed number, or

� A character string enclosed in double quotes. Each character in a string
represents a separate byte.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .string
and .pstring directives in a section that includes C55x instructions will lead
to an invalid access to the data at execution. Consequently, it is highly
recommended that these directives be used only in data sections.

With .pstring, values are packed into words starting with the most significant
byte of the word. Any unused space is padded with null bytes.

You can specify the operand as an 8-bit constant, but the assembler will
truncate any values that are greater than 8 bits wide.

If you use a label, it points to the location of the first word (in a data section)
that is initialized.

Note that when you use .string in a .struct/.endstruct sequence, .string defines
a member’s size; it does not initialize memory. For more information about
.struct/.endstruct, see section 4.9, Assembly-Time Symbol Directives, on
page 4-22.

.struct/.endstruct/.tag

4-89 Assembly Directives

Example This example shows 8-bit values placed into words in the current section.

 1 000000 .data
 2 000000 0041 .string 41h, 42h, 43h, 44h
 000001 0042
 000002 0043
 000003 0044
 3 000004 0041 Str_Ptr: .string ”ABCD”
 000005 0042
 000006 0043
 000007 0044
 4 000008 4175 .pstring ”Austin”, ”Houston”
 000009 7374
 00000a 696E
 00000b 486F
 00000c 7573
 00000d 746F
 00000e 6E00
 5 00000f 0030 .string 36 + 12

Declare Structure Type.struct/
.endstruct/.tag

Syntax [stag] .struct [expr]
[mem0] element [expr0]
[mem1] element [expr1]
 . . .
 . . .
 . . .
[memn] .tag stag [, exprn]
 . . .
 . . .
 . . .
[memN] element [exprN]
[size] .endstruct
 label .tag stag

Description The .struct directive assigns symbolic offsets to the elements of a data
structure definition. This enables you to group similar data elements together
and then let the assembler calculate the element offset. This is similar to a C
structure or a Pascal record. A .struct definition may contain a .union definition,
and .structs and .unions may be nested. The .struct directive does not allocate
memory; it merely creates a symbolic template that can be used repeatedly.

The .endstruct directives marks the end of a structure definition.

.struct/.endstruct/.tag

4-90

The .tag directive gives structure characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures that
contain other structures. The .tag directive does not allocate memory. The
structure tag (stag) of a .tag directive must have been previously defined.

stag is the structure’s tag. Its value is associated with the beginning of
the structure. If no stag is present, the assembler puts the structure
members in the global symbol table with the value of their absolute
offset from the top of the structure. Stag is optional for .struct, but
required for .tag.

expr is an optional expression indicating the beginning offset of the
structure. Structures default to start at 0. This parameter can only
be used with a top-level structure. It cannot be used when defining
a nested structure. The expr specifies the padding to assume
between the top of the .struct and the first member of the .struct.

memn is an optional label for a member of the structure. This label is
absolute and equates to the present offset from the beginning of
the structure. A label for a structure member cannot be declared
global.

element is one of the following descriptors: .byte, .char, .double, field, .float,
.half, .int, .long, .short, .string, .ubyte, .uchar, .uhalt, .uint, .ulong,
.ushort, .uword, and .word. An element can also be a complete
declaration of a nested structure or union, or a structure or union
declared by its tag. Following a .struct directive, these directives
describe the element’s size. They do not allocate memory.

exprn is an optional expression for the number of elements described.
This value defaults to 1. A .string element is considered to be one
word in size, and a .field element is one bit.

size is an optional label for the total size of the structure.

Note: Directives That Can Appear in a .struct /.endstruct Sequence

The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, structure and union tags, conditional assembly
directives, and the .align directive, which aligns the member offsets on word
boundaries. Empty structures are illegal.

These examples show various uses of the .struct, .tag, and .endstruct
directives.

.struct/.endstruct/.tag

4-91 Assembly Directives

Example 1

 1 000000 .data
 2 REAL_REC .struct ; stag
 3 0000 NOM .int ; member1 = 0
 4 0001 DEN .int ; member2 = 1
 5 0002 REAL_LEN .endstruct ; real_len = 2
 6 000000 .text
 7 000000 D600 ADD @(REAL + REAL_REC.DEN),AC0,AC0
 000002 00−
 8 ; access structure element
 9
 10 000000 .bss REAL, REAL_LEN ; allocate mem rec

Example 2

 11 .data
 12 CPLX_REC .struct
 13 0000 REALI .tag REAL_REC ; stag
 14 0002 IMAGI .tag REAL_REC ; member1 = 0
 15 0004 CPLX_LEN .endstruct ; cplx_len = 4
 16
 17 COMPLEX .tag CPLX_REC ; assign structure attrib
 18
 19 000002 .bss COMPLEX, CPLX_LEN
 20 000003 .text
 21 000003 D600 ADD @(COMPLEX.REALI),AC0,AC0 ; access structure
 000005 00−
 22 000006 C000− MOV AC0,@(COMPLEX.REALI)
 23
 24 000008 D600 ADD @(COMPLEX.IMAGI),AC1,AC1 ; allocate space
 00000a 11−

Example 3

 1 000000 .data
 2 .struct ; no stag puts mems into
 3 ; global symbol table
 4 0000 X .int ; create 3 dim templates
 5 0001 Y .int
 6 0002 Z .int
 7 0003 .endstruct

.tab

4-92

Example 4

 1 000000 .data
 1 BIT_REC .struct ; stag
 2 0000 STREAM .string 64
 3 0040 BIT7 .field 7 ; bits1 = 64
 4 0040 BIT9 .field 9 ; bits2 = 64
 5 0041 BIT10 .field 10 ; bits3 = 65
 6 0042 X_INT .int ; x_int = 66
 7 0043 BIT_LEN .endstruct ; length = 67
 8
 9 BITS .tag BIT_REC
 10 000000 .text
 11 000000 D600 ADD @(BITS.BIT7),AC0,AC0 ; move into acc
 000002 00%
 12 000003 187F AND #127,AC0 ; mask off garbage bits
 000005 00
 13
 14 000000 .bss BITS, BIT_REC

Define Tab Size.tab

Syntax .tab size

Description The .tab directive defines the tab size. Tabs encountered in the source input
are translated to size spaces in the listing. The default tab size is eight spaces.

Example Each of the following lines consists of a single tab character followed by an
NOP instruction.

Source file:

; default tab size
NOP
NOP
NOP

 .tab 4
NOP
NOP
NOP

 .tab 16
NOP
NOP
NOP

.text

4-93 Assembly Directives

Listing file:

 1 ; default tab size
 2 000000 20 NOP
 3 000001 20 NOP
 4 000002 20 NOP
 5
 7 000003 20 NOP
 8 000004 20 NOP
 9 000005 20 NOP
 10
 12 000006 20 NOP
 13 000007 20 NOP
 14 000008 20 NOP

Assemble Into .text Section.text

Syntax .text

Description The .text directive tells the assembler to begin assembling into the .text
section. The assembler assumes that the .text section contains executable
code. The section program counter is set to 0 if nothing has yet been
assembled into the .text section. If code has already been assembled into the
.text section, the section program counter is restored to its previous value in
the section.

Because the .text section is a code section, it is byte-addressable. Data
sections are word-addressable.

.text is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you specify a different
sections directive (.data or .sect).

For more information about COFF sections, see Chapter 2,
Introduction to Common Object File Format.

.title

4-94

Example This example assembles code into the .text and .data sections. The .data sec-
tion contains integer constants, and the .text section contains executable
code.
 1 ***
 2 ** Begin assembling into .data section.**
 3 ***
 4 000000 .data
 5 000000 0041 START: .string ”A”,”B”,”C”
 000001 0042
 000002 0043
 6 000003 0058 END: .string ”X”,”Y”,”Z”
 000004 0059
 000005 005a
 7 **
 8 ** Begin assembling into .text section. **
 9 **
10 000000 .text
11 000000 D600 ADD START,AC0,AC0
 000002 00”
12 000003 D600 ADD END,AC0,AC0
 000005 00“
13 ***
14 ** Resume assembling into .data section.**
15 ***
16 000006 .data
17 000006 000a .byte 0Ah, 0Bh
 000007 000b
18 000008 000c .byte 0Ch, 0Dh
 000009 000d
19 ***
20 ** Resume assembling into .text section.**
21 ***
22 000006 .text
23 000006 2201 MOV AC0,AC1

Define Page Title.title

Syntax .title ” string”

Description The .title directive supplies a title that is printed in the heading on each listing
page. The source statement itself is not printed, but the line counter is
incremented.

The string is a quote-enclosed title of up to 65 characters. If you supply more
than 65 characters, the assembler truncates the string and issues a warning.

The assembler prints the title on the page that follows the directive, and on
subsequent pages until another .title directive is processed. If you want a title
on the first page, the first source statement must contain a .title directive.

.union/.endunion/.tag

4-95 Assembly Directives

Example In this example, one title is printed on the first page and a different title on
succeeding pages.

Source file:

 .title ”**** Fast Fourier Transforms ****”
; .
; .
; .
 .title ”**** Floating−Point Routines ****”
 .page

Listing file:

 COFF Assembler Version x.xx
 Copyright (c) 2001 Texas Instruments Incorporated

 **** Fast Fourier Transforms **** PAGE 1

 2 ; .
 3 ; .
 4 ; .
 COFF Assembler Version x.xx
 Copyright (c) 2001 Texas Instruments Incorporated

 **** Floating−Point Routines **** PAGE 2

Declare Union Type.union/
.endunion/.tag

Syntax [utag] .union [expr]
[mem0] element [expr0]
[mem1] element [expr1]
 . . .
 . . .
 . . .
[memn] .tag utagn [, exprn]
 . . .
 . . .
 . . .
[memN] element [exprN]
[size] .endunion
 label .tag utag

Description The .union directive assigns symbolic offsets to the elements of alternate data
structure definitions to be allocated in the same memory space. This enables
you to define several alternate structures and then let the assembler calculate
the element offset. This is similar to a C union. The .union directive does not
allocate any memory; it merely creates a symbolic template that can be used
repeatedly.

.union/.endunion/.tag

4-96

A .struct definition may contain a .union definition, and .structs and .unions
may be nested.

The .endunion directive marks the end of a union definition.

The .tag directive gives structure or union characteristics to a label, simplifying
the symbolic representation and providing the ability to define structures or
unions that contain other structures or unions. The .tag directive does not
allocate memory. The structure or union tag of a .tag directive must have been
previously defined.

utag is the union’s tag. Its value is associated with the beginning of the
union. If no utag is present, the assembler puts the union members
in the global symbol table with the value of their absolute offset
from the top of the union. In this case, each member must have a
unique name.

expr is an optional expression indicating the beginning offset of the
union. Unions default to start at 0. This parameter can only be used
with a top-level union. It cannot be used when defining a nested
union.

memn is an optional label for a member of the union. This label is absolute
and equates to the present offset from the beginning of the union.
A label for a union member cannot be declared global.

element is one of the following descriptors: .byte, .char, .double, field, .float,
.half, .int, .long, .short, .string, .ubyte, .uchar, .uhalt, .uint, .ulong,
.ushort, .uword, and .word. An element can also be a complete
declaration of a nested structure or union, or a structure or union
declared by its tag. Following a .union directive, these directives
describe the element’s size. They do not allocate memory.

exprn is an optional expression for the number of elements described.
This value defaults to 1. A .string element is considered to be one
word in size, and a .field element is one bit.

size is an optional label for the total size of the union.

Note: Directives That Can Appear in a .union/.endunion Sequence

The only directives that can appear in a .union/.endunion sequence are
element descriptors, structure and union tags, and conditional assembly
directives. Empty union definitions are illegal.

.usect

4-97 Assembly Directives

These examples show unions with and without tags.

Example 1

 1 .global employid
 2 000000 .data
 3 xample .union ; utag
 4 0000 ival .word ; member1 = 0
 5 0000 fval .float ; member2 = 0
 6 0000 sval .string ; member3 = 0
 7 0002 real_len .endunion ; real_len = 4
 8
 9 000000 .bss employid, real_len ;allocate memory
 10
 11 employid .tag xample
 12 000000 .text
 13 000000 D600 ADD @(employid.fval),ADD,ADD ; access union element
 000002 00−

Example 2

 1 000000 .data
 2 .union ; utag
 3 0000 x .long ; member1 = long
 4 0000 y .float ; member2 = float
 5 0000 z .word ; member3 = word
 6 0002 size_u .endunion ; real_len = 4
 7

Reserve Uninitialized Space.usect

Syntax symbol .usect ” section name” , size in words [, [blocking flag] [, alignment]]

Description The .usect directive reserves space for variables in an uninitialized, named
section. This directive is similar to the .bss directive; both simply reserve space
for data and have no contents. However, .usect defines additional sections
that can be placed anywhere in memory, independently of the .bss section.

symbol points to the first location reserved by this invocation of the
.usect directive. The symbol corresponds to the name of the
variable for which you’re reserving space.

section name must be enclosed in double quotes. This parameter names
the uninitialized section. For COFF0 and COFF1 formatted
files, only the first 8 characters are significant. A section
name can contain a subsection name in the form section
name:subsection name.

size in words is an expression that defines the number of words that are
reserved in section name.

mnemonic

4-98

blocking flag is an optional parameter. If specified and nonzero, the flag
means that this section will be blocked. Blocking is an
address mechanism similar to alignment, but weaker. It
means a section is guaranteed to not cross a page boundary
(128 words) if it is smaller than a page, and to start on a page
boundary if it is larger than a page. This blocking applies to
the section, not to the object declared with this instance of
the .usect directive.

alignment is an optional parameter that ensures that the space
allocated to the symbol begins on the specified boundary.
This boundary indicates the size of the slot in words and can
be set to any power of 2.

Note: Specifying an Alignment Flag Only

To specify an alignment flag without a blocking flag, you must insert two
commas before the alignment flag, as shown in the syntax.

Other sections directives (.text, .data, and .sect) end the current section and
tell the assembler to begin assembling into another section. The .usect and the
.bss directives, however, do not affect the current section. The assembler
assembles the .usect and the .bss directives and then resumes assembling
into the current section.

Variables that can be located contiguously in memory can be defined in the
same specified section; to do so, repeat the .usect directive with the same
section name.

For more information about COFF sections, see Chapter 2,
Introduction to Common Object File Format.

.usect

4-99 Assembly Directives

Example This example uses the .usect directive to define two uninitialized, named sec-
tions, var1 and var2. The symbol ptr points to the first word reserved in the var1
section. The symbol array points to the first word in a block of 100 words
reserved in var1, and dflag points to the first word in a block of 50 words in var1.
The symbol vec points to the first word reserved in the var2 section.

Figure 4−6 on page 4-100 shows how this example reserves space in two
uninitialized sections, var1 and var2.

 1 **
 2 ** Assemble into .text section. **
 3 **
 4 000000 .text
 5 000000 3C30 MOV #3,AC0
 6
 7 **
 8 ** Reserve 1 word in var1. **
 9 **
 10 000000 ptr .usect ”var1”, 1
 11
 12 **
 13 ** Reserve 100 words in var1. **
 14 **
 15 000001 array .usect ”var1”, 100
 16
 17 000002 7B00 ADD #55,AC0,AC0 ; Still in .text
 000004 3700
 18
 19 **
 20 ** Reserve 50 words in var1. **
 21 **
 22 000065 dflag .usect ”var1”, 50
 23
 24 000006 7B06 ADD #dflag,AC0,AC0 ; Still in .text
 000008 5000−
 25
 26 **
 27 ** Reserve 100 words in var2. **
 28 **
 29 000000 vec .usect ”var2”, 100
 30
 31 00000a 7B00 ADD #vec,AC0,AC0 ; Still in .text
 00000c 0000−
 32 **
 33 ** Declare an external .usect symbol. **
 34 **
 35 .global array

.var

4-100

Figure 4−6. The .usect Directive

1 word

100 words

50 words

ptr

array

dflag

151 words reserved in
var1

section var1 section var2

100 words

100 words reserved in
var2

Use Substitution Symbols as Local Variables.var

Syntax .var sym1 [,sym2, ... , symn]

Description The .var directive allows you to use substitution symbols as local variables
within a macro. With this directive, you can define up to 32 local macro
substitution symbols (including parameters) per macro.

The .var directive creates temporary substitution symbols with the initial value
of the null string. These symbols are not passed in as parameters, and they
are lost after expansion.

For more information on macros, see Chapter 5, Macro Language.

.vli_off/.vli_on

4-101 Assembly Directives

Suppress Variable-Length Instruction Resolution.vli_off/.vli_on

Syntax .vli_off
.vli_on

Description The .vli_off and .vli_on directives affect the way the assembler handles
variable-length instructions. The .vli_off directive is equivalent to using the
−mv command line option. In the case of a conflict between the command line
option and the directive, the directive takes precedence.

By default (.vli_on), the assembler attempts to resolve all stand-alone,
variable-length instructions to their smallest possible size.

Size resolution is performed on the following instruction groups:

goto L7, L16, P24
if (cond) goto l4
if (cond) goto L8, L16, P24
call L16, P24
if (cond) call L16, P24

In some cases, you may want the assembler to keep the largest (P24) form
of certain instructions. The P24 versions of certain variable-length instructions
execute in fewer cycles than the smaller version of the same instructions. Use
the .vli_off directive to keep the following instructions in their largest form:

goto P24
call P24

The .vli_off and .vli_on directives can be used to toggle this behavior for
regions of an assembly file. Note that all other variable-length instructions will
continue to be resolved to their smallest possible size by the assembler,
despite the use of the .vli_off directive.

The scope of the .vli_off and .vli_on directives is static and not subject to the
control flow of the assembly program.

.warn_on/.warn_off

4-102

Suppress Warning Messages.warn_off/
.warn_on

Syntax .warn_on
.warn_off

Description The .warn_off and .warn_on directives control the reporting of assembler
warning messages. By default (.warn_on), the assembler will generate
warning messages. The .warn_off directive suppresses assembler warning
messages and is equivalent to using the −mw command line option. In the
case of a conflict between the command line option and the directive, the
directive takes precedence.

The .warn_off and .warn_on directives can be used to toggle this behavior for
regions of an assembly file.

The scope of the .warn_off and .warn_on directives is static and not subject
to the control flow of the assembly program. Warnings will not be reported for
any assembly code between the .warn_off and .warn_on directives within a
file.

4-103 Assembly Directives

5-1

!���� "�������

The assembler supports a macro language that enables you to create your
own instructions. This is especially useful when a program executes a
particular task several times. The macro language lets you:

� Define your own macros and redefine existing macros
� Simplify long or complicated assembly code
� Access macro libraries created with the archiver
� Define conditional and repeatable blocks within a macro
� Manipulate strings within a macro
� Control expansion listing

Topic Page

5.1 Using Macros 5-2.

5.2 Defining Macros 5-3.

5.3 Macro Parameters/Substitution Symbols 5-6.

5.4 Macro Libraries 5-14.

5.5 Using Conditional Assembly in Macros 5-15.

5.6 Using Labels in Macros 5-17.

5.7 Producing Messages in Macros 5-19.

5.8 Formatting the Output Listing 5-21.

5.9 Using Recursive and Nested Macros 5-23.

5.10 Macro Directives Summary 5-26.

Chapter 5

Using Macros

 5-2

5.1 Using Macros

Programs often contain routines that are executed several times. Instead of
repeating the source statements for a routine, you can define the routine as
a macro, then call the macro in the places where you would normally repeat
the routine. This simplifies and shortens your source program.

If you want to call a macro several times, but with different data each time, you
can pass arguments to a macro through macro parameters. This enables you
to pass different information to the macro each time you call it. The macro
language supports a special symbol called a substitution symbol, which is
used for macro parameters.

Using a macro is a three-step process.

Step 1: Define the macro. You must define macros before you can use them
in your program. There are two methods for defining macros:

� Macros can be defined in a source file or in a .copy/.include file.
See Section 5.2, Defining Macros, for more information.

� Macros can be defined in a macro library. A macro library is a col-
lection of files in archive format created by the archiver. Each
member of the archive file (macro library) contains one macro
definition corresponding to the member name. You can access
a macro library by using the .mlib directive. See Section 5.4,
Macro Libraries, on page 5-14 for more information.

Step 2: Call the macro. After defining a macro, you can invoke it by using
the macro name as a mnemonic in the source program. This is re-
ferred to as a macro call.

Step 3: Expand the macro. The assembler expands your macros when the
source program calls them. During expansion, the assembler
passes arguments by variable to the macro parameters, replaces
the macro call statement with the macro definition, and assembles
the source code. By default, the macro expansions are printed in the
listing file. You can turn off expansion listing by using the .mnolist
directive. See Section 5.8, Formatting the Output Listing, on page
5-21 for more information.

When the assembler encounters a macro definition, it records the macro name
in the opcode table. This redefines any previously defined macro, library entry,
directive, or instruction mnemonic that has the same name as the macro. This
allows you to expand the functions of existing directives and instructions, as
well as to add new instructions.

Defining Macros

5-3Macro Language

5.2 Defining Macros

You can define a macro anywhere in your program, but you must define the
macro before you can use it. Macros can be defined in a source file, in an
.include/.copy file, or in a macro library. For more information about macro
libraries, see Section 5.4, Macro Libraries, on page 5-14.

Macro definitions can be nested, and they can call other macros, but all
elements of any macro must be defined in the same file. Nested macros are
discussed in Section 5.9, Using Recursive and Nested Macros, on page 5-23.

A macro definition is a series of source statements in the following format:

macname .macro [parameter1] [, ... , parametern]

model statements or macro directives

[.mexit]

.endm

macname names the macro. You must place the name in the
source statement’s label field. Only the first 32
characters of a macro name are significant. The
assembler records the macro name in the internal
opcode table, replacing any instruction or previous
macro definition with the same name.

.macro identifies the source statement as the first line of a
macro definition. You must place .macro in the
mnemonic field.

[parameters] are optional substitution symbols that appear as
operands for the .macro directive. Parameters are
discussed in Section 5.3, Macro
Parameters/Substitution Symbols, on page 5-6.

model statements are instructions or assembler directives that are
executed each time the macro is called.

macro directives are used to control macro expansion.

.mexit functions as a goto .endm statement. The .mexit
directive is useful when error testing confirms that
macro expansion will fail and completing the rest of
the macro is unnecessary.

.endm terminates the macro definition.

Defining Macros

 5-4

If you want to include comments with your macro definition but do not want
those comments to appear in the macro expansion, use an exclamation point
to precede your comments. If you do want your comments to appear in the
macro expansion, use an asterisk or semicolon. For more information about
macro comments, see Section 5.7, Producing Messages in Macros, on page
5-19.

Example 5−1 shows the definition, call, and expansion of a macro.

Example 5−1. Macro Definition, Call, and Expansion

(a) Mnemonic example

 1 *
 2
 3 * add3
 4 *
 5 * ADDRP = P1 + P2 + P3
 6
 7 add3 .macro P1, P2, P3, ADDRP
 8
 9 MOV P1,AC0
10 ADD P2,AC0,AC0
11 ADD P3,AC0,AC0
12 MOV AC0,ADDRP
13 .endm
14
15
16 .global abc, def, ghi, adr
17
18 000000 add3 abc, def, ghi, adr

 1
 1 000000 A000! MOV abc,AC0
 1 000002 D600 ADD def,AC0,AC0

000004 00!
 1 000005 D600 ADD ghi,AC0,AC0

000007 00!
 1 000008 C000! MOV AC0,adr

Defining Macros

5-5Macro Language

Example 5−1. Macro Definition, Call, and Expansion (Continued)

(b) Algebraic example

 1 *
 2
 3 * add3
 4 *
 5 * ADDRP = P1 + P2 + P3
 6
 7 add3 .macro P1, P2, P3, ADDRP
 8
 9 AC0 = @(P1)
10 AC0 = AC0 + @(P2)
11 AC0 = AC0 + @(P3)
12 @(ADDRP) = AC0
13 .endm
14
15
16 .global abc, def, ghi, adr
17
18 000000 add3 abc, def, ghi, adr

 1
 1 000000 A000! AC0 = @(abc)
 1 000002 D600 AC0 = AC0 + @(def)

000004 00!
 1 000005 D600 AC0 = AC0 + @(ghi)

000007 00!
 1 000008 C000! @(adr) = AC0

Macro Parameters/Substitution Symbols

 5-6

5.3 Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can
assign parameters within the macro. The macro language supports a special
symbol, called a substitution symbol, which is used for macro parameters.

Macro parameters are substitution symbols that represent a character string.
These symbols can also be used outside of macros to equate a character
string to a symbol name.

Valid substitution symbols can be up to 32 characters long and must begin with
a letter. The remainder of the symbol can be a combination of alphanumeric
characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they
are defined in. You can define up to 32 local substitution symbols (including
substitution symbols defined with the .var directive) per macro. For more
information about the .var directive, see subsection 5.3.6, Substitution
Symbols as Local Variables in Macros, on page 5-13.

During macro expansion, the assembler passes arguments by variable to the
macro parameters. The character-string equivalent of each argument is
assigned to the corresponding macro parameter. Parameters without
corresponding arguments are set to the null string. If the number of arguments
exceeds the number of parameters, the last parameter is assigned the
character-string equivalent of all remaining arguments.

If you pass a list of arguments to one parameter, or if you pass a comma or
semicolon to a parameter, you must surround these terms with quotation
marks.

At assembly time, the assembler replaces the macro parameter in the macro
definition with its corresponding character string, then translates the source
code into object code.

Example 5−2 shows the expansion of a macro with varying numbers of
arguments.

Macro Parameters/Substitution Symbols

5-7Macro Language

Example 5−2. Calling a Macro With Varying Numbers of Arguments

Macro definition

Parms .macro a,b,c
; a = :a:
; b = :b:
; c = :c:

.endm

Calling the macro:

Parms 100,label Parms 100,label,x,y
; a = 100 ; a = 100
; b = label ; b = label
; c = ” ” ; c = x,y

Parms 100, , x Parms ”100,200,300”,x,y
; a = 100 ; a = 100,200,300
; b = ” ” ; b = x
; c = x ; c = y

Parms ”””string”””,x,y
; a = ”string”
; b = x
; c = y

5.3.1 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.

The .asg directive assigns a character string to a substitution symbol.

The syntax of the .asg directive is:

.asg [”]character string[”], substitution symbol

The quotation marks are optional. If there are no quotation marks, the
assembler reads characters up to the first comma and removes leading and
trailing blanks. In either case, a character string is read and assigned to the
substitution symbol.

Example 5−3 shows character strings being assigned to substitution symbols.

Example 5−3. The .asg Directive

.asg AR0,FP ; frame pointer

.asg *AR1+,Ind ; indirect addressing

.asg *AR1+0b,Rc_Prop ; reverse carry propagation

.asg ”””string”””,strng ; string

.asg ”a,b,c”,parms ; parameters

Macro Parameters/Substitution Symbols

 5-8

The .eval directive performs arithmetic on numeric substitution symbols.

The syntax of the .eval directive is

.eval well-defined expression, substitution symbol

The .eval directive evaluates the expression and assigns the string value of
the result to the substitution symbol. If the expression is not well defined, the
assembler generates an error and assigns the null string to the symbol.

Example 5−4 shows arithmetic being performed on substitution symbols.

Example 5−4. The .eval Directive

.asg 1,counter

.loop 100

.word counter

.eval counter + 1,counter

.endloop

In Example 5−4 the .asg directive could be replaced with the .eval directive
without changing the output. In simple cases like this, you can use .eval and
.asg interchangeably. However, you must use .eval if you want to calculate a
value from an expression. While .asg only assigns a character string to a
substitution symbol, the .eval directive evaluates an expression and assigns
the character string equivalent to a substitution symbol.

5.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make
decisions based on the string value of substitution symbols. These functions
always return a value, and they can be used in expressions. Built-in
substitution symbol functions are especially useful in conditional assembly
expressions. Parameters to these functions are substitution symbols or
character-string constants.

Macro Parameters/Substitution Symbols

5-9Macro Language

In the function definitions shown in Table 5−1, a and b are parameters that
represent substitution symbols or character string constants. The term string
refers to the string value of the parameter. The symbol ch represents a
character constant.

Table 5−1. Functions and Return Values

Function Return Value

$symlen (a) length of string a

$symcmp (a,b) < 0 if a < b 0 if a = b > 0 if a > b

$firstch (a,ch) index of the first occurrence of character constant ch in string a

$lastch (a,ch) index of the last occurrence of character constant ch in string a

$isdefed (a) 1 if string a is defined in the symbol table
0 if string a is not defined in the symbol table

$ismember (a,b) top member of list b is assigned to string a
0 if b is a null string

$iscons (a) 1 if string a is a binary constant
2 if string a is an octal constant
3 if string a is a hexadecimal constant
4 if string a is a character constant
5 if string a is a decimal constant

$isname (a) 1 if string a is a valid symbol name
0 if string a is not a valid symbol name

$isreg (a)† 1 if string a is a valid predefined register name
0 if string a is not a valid predefined register name

$structsz (a) size of structure represented by structure tag a

$structacc (a) reference point of structure represented by structure tag a

† For more information about predefined register names, see Section 3.10, Symbols, on page
3-30.

Example 5−5 shows built-in substitution symbol functions.

Example 5−5. Using Built-In Substitution Symbol Functions

.asg label, ADDR ; ADDR = label

.if ($symcmp(ADDR,”label”) = 0); evaluates to true
SUB ADDR,AC0,AC0
.endif
.asg ”x,y,z” , list ; list = x,y,z
.if ($ismember(ADDR,list)) ; addr = x, list = y,z
SUB ADDR,AC0,AC0 ; sub x
.endif

Macro Parameters/Substitution Symbols

 5-10

5.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to
substitute the corresponding character string. If that string is also a substitution
symbol, the assembler performs substitution again. The assembler continues
doing this until it encounters a token that is not a substitution symbol or until
it encounters a substitution symbol that it has already encountered during this
evaluation.

In Example 5−6, the x is substituted for z; z is substituted for y; and y is
substituted for x. The assembler recognizes this as infinite recursion and
ceases substitution.

Example 5−6. Recursive Substitution

.asg ”x”,z ; declare z and assign z = ”x”

.asg ”z”,y ; declare y and assign y = ”z”

.asg ”y”,x ; declare x and assign x = ”y”
 ADD x,AC0,AC0 ; recursive expansion

Macro Parameters/Substitution Symbols

5-11Macro Language

5.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler.
The forced substitution operator, which is a set of colons, enables you to force
the substitution of a symbol’s character string. Simply enclose a symbol in
colons to force the substitution. Do not include any spaces between the colons
and the symbol.

The syntax for the forced substitution operator is

:symbol:

The assembler expands substitution symbols enclosed in colons before it
expands other substitution symbols.

You can use the forced substitution operator only inside macros, and you
cannot nest a forced substitution operator within another forced substitution
operator.

Example 5−7 shows how the forced substitution operator is used.

Example 5−7. Using the Forced Substitution Operator

force .macro x
.loop 8

AUX:x: .set x
.eval x+1,x
.endloop
.endm
force 0

The force macro would generate the following source code:

AUX0 .set 0
AUX1 .set 1

.

.

.
AUX7 .set 7

Macro Parameters/Substitution Symbols

 5-12

5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a
substitution symbol with subscripted substitution symbols. You must use the
forced substitution operator for clarity.

You can access substrings in two ways:

� :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one
character.

� :symbol (well-defined expression1 , well-defined expression2):

In this method, expression1 represents the substring’s starting position,
and expression2 represents the substring’s length. You can specify
exactly where to begin subscripting and the exact length of the resulting
character string. The index of substring characters begins with 1, not 0.

Example 5−8 and Example 5−9 show built-in substitution symbol functions
used with subscripted substitution symbols.

In Example 5−8, subscripted substitution symbols redefine the add instruction
so that it handles short immediates.

Example 5−8. Using Subscripted Substitution Symbols to Redefine an Instruction

ADDX .macro ABC
.var TMP
.asg :ABC(1):,TMP
.if $symcmp(TMP,”#”) = 0
ADD ABC,AC0,AC0
.else
.emsg ”Bad Macro Parameter”
.endif
.endm

ADDX #100 ;macro call
ADDX *AR1 ;macro call

Macro Parameters/Substitution Symbols

5-13Macro Language

In Example 5−9, the subscripted substitution symbol is used to find a substring
strg1, beginning at position start in the string strg2. The position of the
substring strg1 is assigned to the substitution symbol pos.

Example 5−9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strg1,strg2,pos
.var LEN1,LEN2,I,TMP
.if $symlen(start) = 0
.eval 1,start
.endif
.eval 0,pos
.eval 1,i
.eval $symlen(strg1),LEN1
.eval $symlen(strg2),LEN2
.loop
.break i = (LEN2 − LEN1 + 1)
.asg ”:strg2(i,LEN1):”,TMP
.if $symcmp(strg1,TMP) = 0
.eval i,pos
.break
.else
.eval i + 1,i
.endif
.endloop
.endm

.asg 0,pos

.asg ”ar1 ar2 ar3 ar4”,regs
substr 1,”ar2”,regs,pos
.data
.word pos

5.3.6 Substitution Symbols as Local Variables in Macros
If you want to use substitution symbols as local variables within a macro, you
can use the .var directive to define up to 32 local macro substitution symbols
(including parameters) per macro. The .var directive creates temporary
substitution symbols with the initial value of the null string. These symbols are
not passed in as parameters, and they are lost after expansion.

.var sym1 [,sym2] ... [,symn]

The .var directive is used in Example 5−8 and Example 5−9.

Macro Libraries

 5-14

5.4 Macro Libraries

One way to define macros is by creating a macro library. A macro library is a
collection of files that contain macro definitions. You must use the archiver to
collect these files, or members, into a single file (called an archive). Each
member of a macro library contains one macro definition. The files in a macro
library must be unassembled source files. The macro name and the member
name must be the same, and the macro filename’s extension must be .asm.
For example:

Macro Name Filename in Macro Library

simple simple.asm

add3 add3.asm

 You can access the macro library by using the .mlib assembler directive
(described on page 4-74). The syntax is:

.mlib macro library filename

The assembler expands the library entry in the same way it expands other
macros. You can control the listing of library entry expansions with the .mlist
directive. For more information about the .mlist directive, see Section 5.8,
Formatting the Output Listing, on page 5-21. Only macros that are actually
called from the library are extracted, and they are extracted only once.

You can use the archiver to create a macro library by simply including the
desired files in an archive. A macro library is no different from any other
archive, except that the assembler expects the macro library to contain macro
definitions. The assembler expects only macro definitions in a macro library;
putting object code or miscellaneous source files into the library may produce
undesirable results.

Using Conditional Assembly in Macros

5-15Macro Language

5.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/
.break/.endloop . They can be nested within each other up to 32 levels deep.
The format of a conditional block is:

.if Boolean expression

[.elseif Boolean expression]

[.else]

.endif

The .elseif and .else directives are optional in conditional assembly. The
.elseif directive can be used more than once within a conditional assembly
code block. When .elseif and .else are omitted, and when the .if expression is
false (0), the assembler continues to the code following the .endif directive. For
more information on the .if/ .elseif/.else/.endif directives, see page 4-61.

The .loop/.break/.endloop directives enable you to assemble a code block
repeatedly. The format of a repeatable block is:

.loop [well-defined expression]

[.break [Boolean expression]]

.endloop

The .loop directive’s optional expression evaluates to the loop count (the
number of loops to be performed). If the expression is omitted, the loop count
defaults to 1024 unless the assembler encounters a .break directive with an
expression that is true (nonzero). For more information on the .loop/
.break/.endloop directives, see page 4-72.

The .break directive and its expression are optional. If the expression
evaluates to false, the loop continues. The assembler breaks the loop when
the .break expression evaluates to true or when the .break expression is
omitted. When the loop is broken, the assembler continues with the code after
the .endloop directive.

Example 5−10, Example 5−11, and Example 5−12 show the .loop/.break/
.endloop directives, properly nested conditional assembly directives, and
built-in substitution symbol functions used in a conditional assembly code
block.

Using Conditional Assembly in Macros

 5-16

Example 5−10. The .loop/.break/.endloop Directives

.asg 1,x

.loop

.break (x == 10) ; if x == 10, quit loop/break with
; expression

.eval x+1,x

.endloop

Example 5−11. Nested Conditional Assembly Directives

.asg 1,x

.loop

.if (x == 10) ; if x == 10 quit loop

.break ; force break

.endif

.eval x+1,x

.endloop

Example 5−12. Built-In Substitution Symbol Functions Used in Conjuction With
Conditional Assembly Code Blocks

.ref OPZ

.fcnolist
*
*Double Add or Subtract
*
DB .macro ABC, ADDR, dst ; add or subtract double

.if $symcmp(ABC,”+”) == 0
ADD dbl(ADDR),dst ; add double

.elseif $symcmp(ABC,”−”) == 0
SUB dbl(ADDR),dst ; subtract double

.else

.emsg ”Incorrect Operator Parameter”

.endif

.endm

*Macro Call
DB −, @OPZ, AC0

For more information about conditional assembly directives, see Section 4.8,
Conditional Assembly Directives, on page 4-21.

Using Labels in Macros

5-17Macro Language

5.6 Using Labels in Macros

All labels in an assembly language program must be unique, including labels
in macros. If a macro is expanded more than once, its labels are defined more
than once. Defining labels more than once is illegal. The macro language
provides a method of defining labels in macros so that the labels are unique.
Follow the label with a question mark, and the assembler replaces the question
mark with a unique number. When the macro is expanded, you will not see the
unique number in the listing file. Your label appears with the question mark as
it did in the macro definition. You cannot declare this label as global.

The label with its unique suffix is shown in the cross-reference listing file.

The syntax for a unique label is:

 label?

Example 5−13 shows unique label generation in a macro.

Example 5−13. Unique Labels in a Macro

(a) Mnemonic example

 1 ; define macro
 2 MLAB .macro AVAR, BVAR ; find minimum
 3
 4 MOV AVAR,AC0
 5 SUB #BVAR,AC0,AC0
 6 BCC M1?,AC0 < #0
 7 MOV #BVAR,AC0
 8 B M2?
 9 M1? MOV AVAR,AC0
10 M2?
11 .endm
12
13 ; call macro
14 000000 MLAB 50, 100

1
1 000000 A064 MOV 50,AC0
1 000002 7C00 SUB #100,AC0,AC0

000004 6400
1 000006 6320 BCC M1?,AC0 < #0
1 000008 7600 MOV #100,AC0

00000a 6408
1 00000c 4A02 B M2?
1 00000e A064 M1? MOV 50,AC0
1 000010 M2?

Using Labels in Macros

 5-18

Example 5−13. Unique Labels in a Macro (Continued)

(b) Algebraic example

 1 ; define macro
 2 MLAB .macro AVAR, BVAR ; find minimum
 3
 4 AC0 = @(AVAR)
 5 AC0 = AC0 − #(BVAR)
 6 if (AC0 < #0) goto #(M1?)
 7 AC0 = #(BVAR)
 8 goto #(M2?)
 9 M1? AC0 = @(AVAR)
10 M2?
11 .endm
12
13 ; call macro
14 000000 MLAB 50, 100

1
1 000000 A064 AC0 = @(50)
1 000002 7000 AC0 = AC0 − #(100)

000004 6400
1 000006 7B20 if (AC0 < #0) goto #(M1?)
1 000008 6B00 AC0 = #(100)

00000a 6480
1 00000c 0082 goto #(M2?)
1 00000e A064 M1? AC0 = @(50)
1 000010 M2?

Producing Messages in Macros

5-19Macro Language

5.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your
own assembly-time error and warning messages. These directives are
especially useful when you want to create messages specific to your needs.
The last line of the listing file shows the error and warning counts. These
counts alert you to problems in your code and are especially useful during
debugging.

.emsg sends error messages to the listing file. The .emsg directive
generates errors in the same manner as the assembler,
incrementing the error count and preventing the assembler
from producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg
directive functions in the same manner as the .emsg directive
but does not set the error count or prevent the creation of an
object file.

.wmsg sends warning messages to the listing file. The .wmsg
directive functions in the same manner as the .emsg directive,
but it increments the warning count and does not prevent the
generation of an object file.

Macro comments are comments that appear in the definition of the macro but
do not show up in the expansion of the macro. An exclamation point in column
1 identifies a macro comment. If you want your comments to appear in the
macro expansion, precede your comment with an asterisk or semicolon.

Example 5−14 shows user messages in macros.

Producing Messages in Macros

 5-20

Example 5−14. Producing Messages in a Macro

 1 testparam .macro x,y
 2
 3 .if ($symlen(x) == 0)
 4 .emsg ”ERROR −− Missing Parameter”
 5 .mexit
 6 .elseif ($symlen(y) == 0)
 7 .emsg ”ERROR == Missing Parameter”
 8 .mexit
 9 .else
 10 MOV y,AC0
 11 MOV x,AC0
 12 ADD AC0,AC1
 13 .endif
 14 .endm
 15
 16 000000 testparam 1,2
1
1 .if ($symlen(x) == 0)
1 .emsg ”ERROR −− Missing Parameter”
1 .mexit
1 .elseif ($symlen(y) == 0)
1 .emsg ”ERROR == Missing Parameter”
1 .mexit
1 .else
1 000000 A004 MOV 2,AC0
1 000002 A102 MOV 1,AC1
1 000004 2401 ADD AC0,AC1
1 .endif
 17
 18 000006 testparam
1
1 .if ($symlen(x) == 0)
1 .emsg ”ERROR −− Missing Parameter”
 ***** USER ERROR ***** − : ERROR −− Missing Parameter
1 .mexit

 1 Error, No Warnings

Formatting the Output Listing

5-21Macro Language

5.8 Formatting the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide
information. You may need to see this hidden information, so the macro
language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional
blocks in the output list file. You may want to turn this listing off or on within your
listing file. Four sets of directives enable you to control the listing of this
information:

� Macro and Loop Expansion Listing

.mlist expands macros and .loop/.endloop blocks. The .mlist
directive prints all code encountered in those blocks.

.mnolist suppresses the listing of macro expansions and .loop/
.endloop blocks.

For macro and loop expansion listing, .mlist is the default.

� False Conditional Block Listing

.fclist causes the assembler to include in the listing file all
conditional blocks that do not generate code (false
conditional blocks). Conditional blocks appear in the listing
exactly as they appear in the source code.

.fcnolist suppresses the listing of false conditional blocks. Only the
code in conditional blocks that actually assemble appears in
the listing. The .if, .elseif, .else, and .endif directives do not
appear in the listing.

For false conditional block listing, .fclist is the default.

� Substitution Symbol Expansion Listing

.sslist expands substitution symbols in the listing. This is useful for
debugging the expansion of substitution symbols. The
expanded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing.

For substitution symbol expansion listing, .ssnolist is the default.

Formatting the Output Listing

 5-22

� Directive Listing

.drlist causes the assembler to print to the listing file all directive
lines.

.drnolist suppresses the printing of the following directives in the
listing file: .asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist,
.mnolist, .fcnolist, .emsg, .wmsg, .mmsg, .length, .width, and
.break.

For directive listing, .drlist is the default.

Using Recursive and Nested Macros

5-23Macro Language

5.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means
that you can call other macros in a macro definition. You can nest macros up
to 32 levels deep. When you use recursive macros, you call a macro from its
own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention
to the arguments that you pass to macro parameters, because the assembler
uses dynamic scoping for parameters. This means that the called macro uses
the environment of the macro from which it was called.

Example 5−15 shows nested macros. Note that the y in the in_block macro
hides the y in the out_block macro. The x and z from the out_block macro,
however, are accessible to the in_block macro.

Example 5−15. Using Nested Macros

in_block .macro y,a
. ; visible parameters are y,a and
. ; x,z from the calling macro

.endm

out_block .macro x,y,z
. ; visible parameters are x,y,z
.

in_block x,y ; macro call with x and y as
 ; arguments

.

.
.endm
out_block ; macro call

Using Recursive and Nested Macros

 5-24

Example 5−16 shows recursive macros. The fact macro produces assembly
code necessary to calculate the factorial of n where n is an immediate value.
The result is placed in data memory address loc. The fact macro accomplishes
this by calling fact1, which calls itself recursively.

Example 5−16. Using Recursive Macros

(a) Mnemonic example

fact .macro N, loc ; n is an integer constant
; loc memory address = n!

.if N < 2 ; 0! = 1! = 1

MOV #1,loc
.else
MOV #N,loc ; n >= 2 so, store n at loc

; decrement n, and do the
.eval N − 1, N ; factorial of n − 1

 fact1 ; call fact1 with current
; environment

.endif

.endm

fact1 .macro

.if N > 1
MOV loc,T3 ; multiply present factorial
MOV T3,HI(AC2) ; by present position
MPYK #N,AC2,AC0
MOV AC0,loc ; save result
.eval N − 1, N ; decrement position
fact1 ; recursive call
.endif

.endm

Using Recursive and Nested Macros

5-25Macro Language

Example 5−16. Using Recursive Macros (Continued)

(b) Algebraic example

fact .macro N, loc ; n is an integer constant
; loc memory address = n!

.if N < 2 ; 0! = 1! = 1

loc = #1
.else
loc = #N ; n >= 2 so, store n at loc

; decrement n, and do the
.eval N − 1, N ; factorial of n − 1

 fact1 ; call fact1 with current
; environment

.endif

.endm

fact1 .macro

.if N > 1
T3 = loc ; multiply present factorial
HI(AC2) = T3 ; by present position
AC0 = AC2 * #(N)
loc = AC0 ; save result
.eval N − 1, N ; decrement position
fact1 ; recursive call
.endif

.endm

Macro Directives Summary

 5-26

5.10 Macro Directives Summary

Table 5−2. Creating Macros

Mnemonic and Syntax Description

macname .macro [parameter1]...[parametern] Define macro.

.mlib filename Identify library containing macro definitions.

.mexit Go to .endm.

.endm End macro definition.

Table 5−3. Manipulating Substitution Symbols

Mnemonic and Syntax Description

.asg [“]character string[“], substitution symbol Assign character string to substitution symbol.

.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols.

.var substitution symbol1...[substitution symboln] Define local macro symbols.

Table 5−4. Conditional Assembly

Mnemonic and Syntax Description

.if Boolean expression Begin conditional assembly.

.elseif Boolean expression Optional conditional assembly block.

.else Optional conditional assembly block.

.endif End conditional assembly.

.loop [well-defined expression] Begin repeatable block assembly.

.break [Boolean expression] Optional repeatable block assembly.

.endloop End repeatable block assembly.

Macro Directives Summary

5-27Macro Language

Table 5−5. Producing Assembly-Time Messages

Mnemonic and Syntax Description

.emsg Send error message to standard output.

.wmsg Send warning message to standard output.

.mmsg Send warning or assembly-time message to standard
output.

Table 5−6. Formatting the Listing

Mnemonic and Syntax Description

.fclist Allow false conditional code block listing (default).

.fcnolist Inhibit false conditional code block listing.

.mlist Allow macro listings (default).

.mnolist Inhibit macro listings.

.sslist Allow expanded substitution symbol listing.

.ssnolist Inhibit expanded substitution symbol listing (default).

 5-28

6-1

�������
#$�
��� ��
##�

In addition to accepting TMS320C55x� source code, the C55x mnemonic
assembler also accepts TMS320C54x� mnemonic assembly. The C54x
instruction set contains 211 instructions; the C55x mnemonic instruction set
is a superset of the C54x instruction set. The table below contains statistics
on how the C54x instructions assemble with masm55:

original C54x instruction
assembles as:

% of total C54x
 instruction set

% of commonly-
used C54x instruc-
tions

one C55x instruction 85 95−99

two C55x instructions 10 1−3

more than two C55x
instructions

5 0−2

The data in the second column characterizes the assembly of an imaginary file
containing an instance of every C54x instruction. However, the instructions
that assemble as more than two instructions are not commonly used. The data
in the third column characterizes the assembly of a file containing the most
commonly used C54x instructions. Exact percentages depend on the specific
source file used.

Because of this compatibility, the C55x mnemonic assembler can assemble
C54x code to generate C55x object code, that upon execution, computes
exactly the same result. This assembler feature preserves your C54x source
code investment as you transition to the C55x.

This chapter does not explain how to take advantage of the new architecture
features of the C55x. For this type of information, see the TMS320C55x DSP
Programmer’s Guide.

Topic Page

6.1 C54x to C55x Development Flow 6-2.

6.2 Understanding the Listing File 6-4.

6.3 Handling Reserved C55x Names 6-6.

Chapter 6

C54x to C55x Development Flow

 6-2

6.1 C54x to C55x Development Flow

To run a C54x application on the C55x, you must:

� Assemble each function with cl55. Your C54x application should already
assemble without errors with the cl500 assembler. For information on cl55
options that support the porting of C54x code, see Section 7.2 on page
7-5.

� Initialize the stack pointers SP and SSP. See Section 6.1.1.

� Handle differences in memory placement. See Section 6.1.2.

� Update your C54x linker command file for C55x. See Section 6.1.3.

To use ported C54x functions along with native C55x functions, see Section
7.3, Using Ported C54x Functions with Native C55x Functions, on page 7-10.

6.1.1 Initializing the Stack Pointers

When you execute ported C54x code from reset, the appropriate run-time
environment is already in place. However, it is still necessary to initialize the
stack pointers SP (primary stack) and SSP (secondary system stack). For
example:

stack_size .set 0x400
stack: .usect ”stack_section”, stack_size
sysstack: .usect ”stack_section”, stack_size

AMOV #(stack+stack_size), XSP
MOV #(sysstack+stack_size), SSP

The stacks grow from high addresses to low addresses, so the stack pointers
must be initialized to the highest address. The primary stack and the
secondary system stack must be within the same 64K word page of memory.

Code that modifies the SP can be ported. Such modification can be done
directly or indirectly. In some case you will receive not receive warnings that
the SSP must also be modified.

6.1.2 Handling Differences in Memory Placement

This section describes the limitations on where you can place your code in
memory. All data must be placed in the first 64K words.

If your C54x code includes any of the following, all code must be placed in the
first 64K bytes:

� Indirect calls with CALA

� Modification of the repeat block address registers REA or RSA

C54x to C55x Development Flow

6-3Running C54x Code on C55x

� Indirect branches with BACC, if you do not use the −v option for specifying
the device revision.

If your C54x code includes either of the following, it can be placed in any 64K
byte block without crossing the 64K byte boundary:

� Indirect branches with BACC, provided you build with the appropriate the
−v option for specifying the device revision.

� Modification or use of the function return address on the stack in a
non-standard way (stack unwinding)

Otherwise, code can be placed anywhere in memory.

6.1.3 Updating a C54x Linker Command File

You must take the following information into consideration when updating a
C54x linker command file for use in a C55x system.

� In a C55x linker command file, all addresses and lengths (for both code
and data) are expressed in bytes. Note that data is expressed in bytes
even though it is addressed in words on the processor. Consequently, the
−heap and −stack options specify the bytes, not words, to be allocated.

� On C54x, memory is split into two different pages: page 0 for code and
page 1 for data. The address space on each page ranges from 0 to
0xFFFF (in words). The C55x has a single, unified address space ranging
from 0 to 0xFFFFFF.

� On C55x, all sections must have a unique address, and may not overlap.
On C54x, where code and data are on different pages, sections can have
the same address, and they can overlap.

� If you use DP-based direct memory addressing (DMA), be sure that you
don’t change the relationship between the DP boundaries and variables
accessed with DMA. On C54x, DP pages are 128 words long and must
begin on 128-word boundaries. C54x code ported by cl55 must adhere to
the same restriction. However, the restriction is expressed differently in
the linker command file. Because the linker uses byte addresses, a DP
page is 256 bytes long and must begin on a 256-byte boundary.

You can place variables on the same DP page by using the blocking
parameter of the .bss or .usect assembler directive. If you use the blocking
parameter, you don’t need to modify your linker command file.

To use the linker command file to arrange variables on the same DP page,
you must change a specification of 128 words to be 256 bytes. For
example, you must change a specification such as:

output_section ALIGN(128) { list of input sections }

Understanding the Listing File

 6-4

to be:

output_section ALIGN(256) { list of input sections }

6.2 Understanding the Listing File

The assembler’s listing file (created when invoking cl55 with the −al option)
provides additional information on how C54x instructions are mapped for the
C55x.

Consider the following example C54x source file:

 .global name

 ADD *AR2, A
 LD *AR3, B

 RPT #10
 MVDK *AR4+, name

 subm .macro mem1, mem2, reg
 LD mem1, reg
 SUB mem2, reg
 .endm

 subm name, *AR6, B

 MOV T1, AC3 ; native C55x instruction

The listing file shown below has explanations inserted for clarification.

The file begins with a comment on a C55x temporary register used in porting
the file.

16 ; Temporary Registers Used: XCDP

This comment appears only when temporary registers are necessary in the
porting of the code. The temporary registers are used in the encodings that
begin with a !REG! comment later in the file (as shown in line 7 of this example).

C54x instructions with the same syntax in C55x (such as the ADD instruction
below) appear without any special notation:

1 .global name
2
3 000000D641 ADD *AR2,A

00000200

Note that A in the example above is accepted even though it maps to AC0 on
the C55x.

Understanding the Listing File

6-5Running C54x Code on C55x

C54x instructions with a different syntax in C55x but a single-line mapping also
appear without any special notation:

4 000003A161 LD *AR3, B

The LD instruction above could be written as:

MOV *AR3, AC1

The code below shows a multiple-line instruction mapping that requires the
C55x instructions to be in a different order than the original source. Because
this multiple-line encoding requires the use of a C55x temporary register, it
starts with a !REG! line that echoes the original source. The multiple lines that
correspond to the mapping will begin and end with the original source line
number (7, in this case).

7 ******!REG! MVDK *AR4+, name
7 000005EC31 AMAR *(#(name)), XCDP ; port of

0000077E00 ; MVDK *AR4+, name
000009 0000!

5
6 00000b4C0A RPT #10
7 00000dEF83 MOV *AR4+, coef(*CDP+) ; port of

00000f05 ; MVDK *AR4+, name

To summarize, in the example above, the original C54x code:

RPT #10
MVDK *AR4+, name

was mapped to be:

AMAR *(#(name)),XCDP
RPT #10
MOV *AR4+, coef(*CDP+)

Multiple-line mappings that do not require temporary registers are marked with
a PORT comment.

A macro definition is simply echoed:

8
9 subm .macro mem1, mem2, reg
10 LD mem1, reg
11 SUB mem2, reg
12 .endm

A macro invocation is marked with a MACRO line. Within the macro
expansion, you may see any of the cases described above.

13
14 ******MACRO subm name, *AR6, B
14 000010A100% LD name, B
14 000012D7C1 SUB *AR6, B

00001411

Handling Reserved C55x Names

 6-6

Native C55x instructions appear without any special notation. For more
information on using ported C54x code with native C55x code, see Section 7.3,
Using Ported C54x Functions with Native C55x Functions, on page 7-10.

15
16 0000152253 MOV T1, AC3 ; native C55x

6.3 Handling Reserved C55x Names

Note that new C55x mnemonics and registers are reserved words. Your C54x
code should not contain symbol names that are now used as C55x mnemonics
or registers. For example, you should not use T3 as a symbol name.

Your C54x code also should not contain symbol names that are reserved
words in the C55x algebraic syntax. For example, you should not have a label
named return.

The C55x mnemonic assembler issues an error message when it encounters
a symbol name conflict.

7-1

!�������� �
#$� %&	��� �� �
##� %&	���

After you have ported your TMS320C54x� code as described in Chapter 6,
you must consider various system-level issues when moving your C54x code
to the TMS320C55x�. This chapter describes:

� How to handle differences related to interrupts

� How to use ported C54x functions with native C55x functions

� Non-portable C54x coding practices

Topic Page

7.1 Handling Interrupts 7-2.

7.2 Assembler Options for C54x Code 7-5.

7.3 Using Ported C54x Functions with Native C55x Functions 7-10.

7.4 Output C55x Source 7-22.

7.5 Non-Portable C54x Coding Practices 7-30.

7.6 Additional C54x Issues 7-32.

7.7 Assembler Messages 7-35.

Chapter 7

Handling Interrupts

 7-2

7.1 Handling Interrupts

This section describes issues related to interrupts.

7.1.1 Differences in the Interrupt Vector Table

The C54x interrupt table is composed of 32 vectors. Each vector contains 4
words of executable code. The C55x vector table is also composed of 32
vectors. The vectors in both tables are the same length, but on the C55x, the
length is counted as 8 bytes.

The order of the vectors in the interrupt vector table is documented in the data
sheet for the specific device in your system. Since the order of the vectors is
device-specific, any access to the IMR or IFR register needs to be updated
accordingly. Likewise, if you use the TRAP instruction, its operand may need
to be updated.

C54x and C55x handle the contents of their vectors in different ways. To
handle these differences, you must modify the C54x vectors themselves.

In the C55x vector table, the first byte is ignored, and the next three bytes are
interpreted as the address of the interrupt service routine (ISR). Use the .ivec
assembler directive to initialize a C55x vector entry, as shown in the examples
below. For more information on the .ivec directive, see the description on page
4-64.

Simple Branch to ISR

If the C54x vector contains:

B isr

Change the corresponding C55x vector to:

.ivec isr

Delayed Branch to ISR

If the C54x vector contains:

BD isr
inst_1 ; two instruction words of code
inst_2

The easiest solution is to write the vector as:

.ivec isr

and move the instructions inst1 and inst2 to the beginning of the ISR. If the
conversion of inst1 is a single C55x instruction that is 4 bytes or less, it can be
placed in the vector. However, inst2 must be moved to the ISR.

Handling Interrupts

7-3Migrating a C54x System to a C55x System

Vector Contains the Entire ISR

If the C54x vector contains the entire 4-word ISR, as in the examples shown
below, you have to create the 4-word ISR as a stand-alone routine:

; example 1
inst1
inst2
inst3
RETF

; example 2
inst1
RETFD
inst2
inst3

; example 3
CALL routine1
RETE
nop

You must then provide the address of that routine in the C55x vector table:

.ivec new_isr

7.1.2 Handling Interrupt Service Routines

An interrupt service routine needs to be changed only if when it is ported to
C55x it includes C54x instructions that map to more than one C55x instruction,
and one of the C55x instructions requires the use of a C55x register or bit as
a temporary.

In this case, the new C55x register needs to be preserved by the routine.

See Section 7.3.2, C55x Registers Used as Temporaries, on page 7-11 for the
list of C55x registers that can be used as temporaries in multiple-line
instruction mappings.

To ensure that an interrupt will work, you can preserve the entire list of
registers. Or, you can simply preserve the register(s) used:

1) Assemble the ISR using cl55 with the −al option to generate a listing file.

2) Check the listing to see if it includes a Temporary Registers Used
comment at the top of the file, such as:

16 ; Temporary Registers Used: XCDP

This comment provides a list of all temporary registers used in the porting
of the file. For more information, see Section 6.2, Understanding the
Listing File, on page 6-4.

Handling Interrupts

 7-4

3) If temporary registers are used, the appropriate register or bit must be
pushed on the stack at the beginning of the ISR, and popped off the stack
at the end.

7.1.3 Other Issues Related to Interrupts

You should be aware of the interrupt issues described below:

� When the assembler encounters RETE, RETED, FRETE, FRETED,
RETF, or RETFD, a warning will be issued. With these instructions, the
assembler is processing an interrupt service routine or the interrupt vector
table itself and may not be able to port the instructions correctly.

� INTR has the same mnemonic syntax for both C54x and C55x.
Consequently, the assembler cannot distinguish when an instruction is
intended for a native C55x interrupt (which is acceptable) or for a C54x
interrupt (for which the interrupt number may be wrong).

� If your code writes values to IPTR, a nine-bit field in the PMST indicating
the location of the interrupt vector table, you will need to modify your code
to reflect the changes in the C55x system.

Assembler Options for C54x Code

7-5Migrating a C54x System to a C55x System

7.2 Assembler Options for C54x Code
The cl55 assembler offers several options to provide additional support for the
porting of C54x assembly code to C55x. With these options, the assembler
can:

� Assume SST is disabled (−mt option)
� Port for speed over size (−mh option)
� Encode for C54x-specific circular addressing (−−purecirc option)
� Remove NOPs from delay slots (−mn option)

7.2.1 Assume SST is Disabled (−mt Option)

By default, the assembler assumes that the SST bit (saturate on store) is
enabled. For example, the SST assumption causes the assembler to port the
STH and STL instructions as follows:

C54x instruction Default C55x encoding Bytes

STH src, Smem MOV HI(ACx << #0), Smem 3

STL src, Smem MOV ACx << #0, Smem 3

The shift (<< #0) is used to achieve the same saturate-on-store behavior
provided by C54x. Even if SST is disabled in your code, this encoding still
works.

However, if the saturate behavior is not required, use the −mt assembler option
to generate a more optimal encoding:

C54x instruction C55x encoding with −mt Bytes

STH src, Smem MOV HI(ACx), Smem 2

STL src, Smem MOV ACx, Smem 2

The −mt option affects the entire file. To toggle SST mode within a file, use the
.sst_on and .sst_off assembler directives.

The .sst_on directive specifies that the SST status bit set to 1, the default
assumption of the assembler. The .sst_off directive specifies that the SST
status bit set to 0; this is equivalent to using the −mt assembler option. In the
case of a conflict between the command line option and the directive, the
directive takes precedence.

The scope of the .sst_on and .sst_off directives is static and not subject to the
control flow of the assembly program. All of the assembly code between the
.sst_off and the .sst_on directives is assembled with the assumption that SST
is disabled. To indicate that the SST bit is disabled without using the command
line option, place the .sst_off directive at the top of every source file.

Assembler Options for C54x Code

 7-6

7.2.2 Port for Speed Over Size (−mh Option)

By default, the assembler encodes C54x code with a goal of achieving small
code size. For example, consider the encoding of the MVMM and STM
instructions that write ARx registers. (In the STM instruction below, const is a
constant in the range of −15 to 15.)

C54x instruction Default C55x encoding Bytes

MVMM ARx, ARy MOV ARx, ARy 2

STM #const, ARx MOV #const, ARx 2

You can use the −mh assembler option to generate a “faster” encoding:

C54x instruction Default C55x encoding Bytes

MVMM ARx, ARy AMOV ARx, ARy 3

STM #const, ARx AMOV #const, ARx 3

The MOV instruction writes ARy in the execute phase of the pipeline. AMOV
writes ARy in the address phase, which is 4 cycles earlier. If the instruction
following MVMM or STM de-references ARy (for example, *AR3+), MOV
imposes a 4-cycle stall to wait for ARy to be written. AMOV does not impose
a stall. The AMOV encoding provides a significant gain in speed at the cost of
one byte of encoding space.

The −mh option affects the entire file. To toggle the “port for speed” mode within
a file, use the .port_for_speed and .port_for_size assembler directives.

The .port_for_size directive models the default encoding of the assembler.
The .port_for_speed directive models the effect of the −mh assembler option.
In the case of a conflict between the command line option and the directive,
the directive takes precedence.

Consider using .port_for_speed just before a critical loop. After the loop, use
.port_for_size to return to the default encoding.

Assembler Options for C54x Code

7-7Migrating a C54x System to a C55x System

7.2.3 Optimized Encoding of C54x Circular Addressing (−−purecirc Option)

If your ported C54x code uses C54x circular addressing without using the
C55x linear/circular addressing bits, use the −−purecirc option. This option
allows the assembler to generate the most optimal encoding for the circular
addressing code.

For the following example C54x code:

 RPTB end−1
 NOP ; 1
 MAC *AR5+, *AR3+0%, A
 NOP ; 2
 end

Building without −−purecirc generates this code:

 RPTB end−1
 NOP ; 1
 BSET AR3LC
 MACM T3 = *AR5+, *(AR3+AR0), AC0, AC0
 BCLR AR3LC
 NOP ; 2
 end:

Notice how the instructions for toggling the linear/circular bit for AR3 are still
inside the loop. Building with −−purecirc generates this code:

 BSET AR3LC
 RPTB P04_3
 NOP ; 1
 MACM T3 = *AR5+, *(AR3+AR0), AC0, AC0
 P04_3:
 NOP ; 2
 BCLR AR3LC
 end:

The instructions for toggling the linear/circular bit for AR3 are now outside of
the loop.

Certain coding practices can hinder the optimization of circular addressing
code, even when using the −−purecirc option:

� Unused labels

In the following code, the label “middle” is unused:

start:
 RPTB end−1
 LD *AR4, A
middle: ; unused label
 MAR *AR4−0%
end:

Assembler Options for C54x Code

 7-8

If the unused label is removed from the loop, the assembler can move the
circular bit operations for the MAR instruction out of the loop. Otherwise,
the circular instructions remain in the loop, causing the loop to be 4 bytes
larger and 4 cycles longer.

� Using a register for circular and non-circular purposes in the same loop

Consider the following code:

 RPTB end−1
 ; reference to AR3 (circular)
 MAC *AR5+, *AR3+0%, A

 ...

 ; reference to AR3 (non−circular)
 ST A, *AR3+
 || SUB *AR2, B

 ...
end:

Because the second AR3 reference is non-circular, the circular bit
operations of the MAC instruction cannot be moved outside of the loop.
When possible, if one indirect reference of an ARx within a loop uses
circular addressing, all indirect references of that register within that loop
should also use circular addressing.

Assembler Options for C54x Code

7-9Migrating a C54x System to a C55x System

7.2.4 Removing NOPs in Delay Slots (−atn and −mn Options)

When the −atn or the −mn option is specified, the assembler will remove NOP
instructions located in the delay slots of C54x delayed branch or call
instructions.

For example, with the −mn option, the following C54x code:

 CALLD func
 LD *AR2, A
 NOP
 ; call occurs here

will appear in the cl55 listing file as:

4 000000 A041 LD *AR2, A
2
3 000002 6C00 CALLD func
 000004 0000!
5 ****** DEL NOP
6 ; call occurs here

The DEL in the opcode field signifies the deleted NOP.

Using Ported C54x Functions with Native C55x Functions

 7-10

7.3 Using Ported C54x Functions with Native C55x Functions

When rewriting a C54x application to be completely native C55x code,
consider working on one function at a time, continually testing. If you encounter
a problem, you can easily find it in the changes recently made. Throughout this
process, you will be working with both ported C54x code and native C55x
code. Keep the following in mind:

� Avoid mixing C54x and C55x instructions within the same function.

� Transitions between ported C54x instructions and native C55x
instructions should occur only at function calls and returns.

� The C compiler provides the C54X_CALL pragma for C code calling
assembly. However, see the example in Section 7.3.7 for a detailed
description of using a veneer function when calling a ported C54x
assembly function from C code. For more information on C54X_CALL,
see the TMS320C55x Optimizing C Compiler User’s Guide.

7.3.1 Run-Time Environment for Ported C54x Code

A run-time environment is the set of presumptions and conventions that
govern the use of machine resources such as registers, status register bit
settings, and the stack. The run-time environment used by ported C54x code
differs from the environment used by native C55x code. When you execute
ported C54x code from reset, the appropriate run-time environment is already
in place. However, when shifting from one kind of code to the other, it is
important to be aware of the status bit and register settings that make up a
particular environment.

The following CPU environment is expected upon entry to a ported C54x
function.

� 32-bit stack mode.

� The SP and SSP must be initialized to point into memory reserved for a
stack. See Section 6.1.1, Initializing the Stack Pointers, on page 6-2.

Using Ported C54x Functions with Native C55x Functions

7-11Migrating a C54x System to a C55x System

� The status bits must be set as follows:

Status bit Set to

C54CM 1

M40 0

ARMS 0

RDM 0

ST2[7:0] (circular addressing bits) 0

� The upper bits of addressing registers (DPH, CDPH, ARnH, SPH) must
be set to 0.

� The BSAxx registers must be set to 0.

7.3.2 C55x Registers Used as Temporaries

The following C55x registers may be used as temporaries in multiple-line
mappings generated by cl55:

� T0
� T1
� AC2
� AC3
� CDP
� CSR
� ST0_55 (TC1 bit only)
� ST2_55

Interrupt routines using these registers must save and restore them. For more
information, see Section 7.1.2, Handling Interrupt Service Routines, on page
7-3.

Native C55x code that calls ported C54x code must account for the possibility
that ported code may overwrite these registers.

Using Ported C54x Functions with Native C55x Functions

 7-12

7.3.3 C54x to C55x Register Mapping

The following C54x registers map to C55x registers as shown below:

C54x register C55x register

T T3

A AC0

B AC1

ARn ARn

IMRn IERn

ASM (status bit in ST1) T2

7.3.4 Caution on Using the T2 Register

Under the C54CM mode, which is required when running C54x code
automatically ported by cl55, you cannot use the T2 register for any purpose
other than to strictly model the ASM field of ST1 exactly as cl55 ported code
does. Under C54CM, whenever the status register ST1_55 is written, the
lower 5 bits (the ASM field) are automatically copied with sign extension to T2.

When an interrupt occurs, ST1_55 is automatically saved and restored. When
the restore occurs, the automatic copy to T2 is restarted. Because of this
automatic overwrite on the interrupt, you cannot use T2 as a general-purpose
register even in sections of C54x code that do not use the ASM field.

7.3.5 Status Bit Field Mapping

The C55x status bit fields map to C54x status bit fields as shown below.

Table 7−1. ST0_55 Status Bit Field Mapping

Bit(s) C55x field C54x field (in ST0)

15 ACOV2 none

14 ACOV3 none

13 TC1 none

12 TC2 TC

11 CARRY C

10 ACOV0 OVA

9 ACOV1 OVB

8−0 DP DP

Using Ported C54x Functions with Native C55x Functions

7-13Migrating a C54x System to a C55x System

Table 7−2. ST1_55 Status Bit Field Mapping

Bit(s) C55x field C54x field (in ST1)

15 BRAF BRAF

14 CPL CPL

13 XF XF

12 HM HM

11 INTM INTM

10 M40 none

9 SATD OVM

8 SXMD SXM

7 C16 C16

6 FRCT FRCT

5 C54CM none

4−0 ASM ASM

Table 7−3. ST2_55 Status Bit Field Mapping

Bit(s) C55x field C54x field

15 ARMS none

14−13 Reserved none

12 DBGM none

11 EALLOW none

10 RDM none

9 Reserved none

8 CDPLC none

7−0 ARnLC none

Using Ported C54x Functions with Native C55x Functions

 7-14

Table 7−4. ST3_55 Status Bit Field Mapping

Bit(s) C55x field C54x field (in PMST)

15−8 Reserved none

7 CBERR none

6 MPNMC MP/MC_

5 SATA none

4 Reserved none

3 Reserved none

2 CLKOFF CLKOFF

1 SMUL SMUL

0 SST SST

7.3.6 Switching Between Run-Time Environments

The run-time environment defined in Section 7.3.1 is not complete because
it only defines registers and status bits that are new with C55x. Registers and
status bits that are not new with C55x inherit their conventions from the original
C54x code. (As shown in Section 7.3.3, some registers have new names.)

If the run-time environment for your native C55x code differs from the
environment defined for ported C54x code, you must ensure that, when
switching between environments, the proper adjustments are made for:

� preserving status bit field values
� preserving registers
� how arguments are passed
� how results are returned

Using Ported C54x Functions with Native C55x Functions

7-15Migrating a C54x System to a C55x System

Figure 7−1. Run-Time Environments for Ported C54x Code and Native C55x Code

Original C54x code
 run-time environment

Environment rules from Section 7.3.1

Ported C54x Code Run-Time Environment

Native C55x Code Run-Time Environment

C55x run-time environment as defined by
 you, or the C55x compiler, etc.

7.3.7 Example of C Code Calling C54x Assembly

This example describes a technique for handling a call from compiled C code
to a C54x assembly routine. In this example, an additional function is inserted
between the native C55x code and the ported C54x code. This function,
referred to as a veneer function, provides code to transition between the two
run-time environments.

Note: Compiler Pragmas

The compiler provides two pragmas to do this work for you: C54X_CALL and
C54X_FAR_CALL. If you use these pragmas, you do not need to write the
veneer yourself. Both the C54x and C55x C compiler run-time environments
are well-defined, which makes the techniques shown in this example more
concrete and easier to apply to your own situation.

Example 7−1. C Prototype of Called Function

short firlat(short *x, short *k, short *r, short *dbuf-
fer,
 unsigned short nx, unsigned short nk);

Using Ported C54x Functions with Native C55x Functions

 7-16

Example 7−2. Assembly Function _firlat_veneer

 .def _firlat_veneer
 .ref _firlat

_firlat_veneer:

; Saving Registers −−−−−−−−−−−−−−−−−−−−−−−−−
 PSH AR5
 ; PSH AR6 ; saved in ported C54x environment
 ; PSH AR7 ; ditto
 PSH T2
 PSH T3

; Passing Arguments −−−−−−−−−−−−−−−−−−−−−−−−
 PSH T1 ; push rightmost argument first
 PSH T0 ; then the next rightmost
 PSH AR3 ; and so on
 PSH AR2
 PSH AR1

 MOV AR0, AC0 ; leftmost argument goes in AC0

; Change Status Bits −−−−−−−−−−−−−−−−−−−−−−−
 BSET C54CM
 BCLR ARMS
 BCLR C16

; Call −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 CALL _firlat

; Restore Status Bits −−−−−−−−−−−−−−−−−−−−−−
 BCLR C54CM
 BSET ARMS
 BSET SXMD

; Capture Result −−−−−−−−−−−−−−−−−−−−−−−−−−−
 MOV AC0, T0

; Clear Arguments From the Stack −−−−−−−−−−−
 AADD #5, SP

; Restore Registers and Return −−−−−−−−−−−−−
 POP T3
 POP T2
 ; POP AR7
 ; POP AR6
 POP AR5

 RET

The veneer function is described below. It is separated into several parts to
allow for a description of each segment.

Using Ported C54x Functions with Native C55x Functions

7-17Migrating a C54x System to a C55x System

Example 7−2.Assembly Function _firlat_veneer (Continued)

(a) Saving registers

 PSH AR5
 ; PSH AR6 ; saved in ported C54x environment
 ; PSH AR7 ; ditto
 PSH T2
 PSH T3

If the C55x run-time environment expects that certain registers will not be
modified by a function call, these registers must be saved. In the case of the
C55x C compiler environment, registers XAR5−XAR7, T2, and T3 must be
saved. Because C54x code cannot modify the upper bits of the XARn
registers, only the lower bits need to be preserved. The instructions that push
AR6 and AR7 are commented out because the run-time environment of the
C54x ported code (as defined by the C54x C compiler) presumably saves
these registers. A more conservative approach would be to save these
registers anyway.

(b) Passing arguments

 PSH T1 ; push right−most argument first
 PSH T0 ; then the next argument
 PSH AR3 ; and so on
 PSH AR2
 PSH AR1

 MOV AR0, AC0 ; left−most argument goes in AC0

Arguments passed from native C55x code must be placed where the ported
C54x code expects them. In this case, all arguments are passed in registers.
According to the calling conventions of the C55x C compiler, the arguments
to the firlat() function will be passed, and the result returned, in the registers
shown below.

T0 AR0 AR1 AR2 AR3
short firlat(short *x, short *k, short *r, short *dbuffer,
 T0 T1
 unsigned short nx, unsigned short nk);

For more information on the C compiler’s calling conventions, see the
Run-Time Environment chapter of the TMS320C55x Optimizing C Compiler
User’s Guide.

Using Ported C54x Functions with Native C55x Functions

 7-18

The ported C54x environment expects the first argument to be in A (AC0 on
C55x) and the remaining arguments to be placed on the stack, in reverse order
of appearance in the argument list. The right-most argument (T1) is pushed
onto the stack first. The next argument (T0) is then pushed onto the stack. The
argument placement continues until the left-most argument (AR0) is reached.
This argument is copied to AC0.

Example 7−2.Assembly Function _firlat_veneer (Continued)

(c) Changing status bits

 BSET C54CM
 BCLR ARMS
 BCLR C16

It is necessary to change the status settings of the native C55x code to the
settings required by ported C54x code. These settings are shown in Section
7.3.1 on page 7-10. In this case, only the C54CM and ARMS bits need to be
changed.

Because of the requirements for executing the original C54x code, it may be
necessary to set the C16 bit to 0. This bit, ignored by C55x compiled code, is
assumed to be 0 by the C54x compiler. Setting the bit to 0 is the conservative
approach to account for this assumption.

(d) Function call

 CALL _firlat

Now that registers have been saved and status bits set, the call to ported C54x
code can be made.

(e) Restoring status bits

 BCLR C54CM
 BSET ARMS
 BSET SXMD

After the call, restore the status bits to the settings required by the native C55x
environment. Ported C54x code makes no assumption about the SXMD bit
(SXM on C54x) after a function call. However, C55x compiled code expects
this bit to be set to 1.

(f) Capturing results

 MOV AC0, T0

Using Ported C54x Functions with Native C55x Functions

7-19Migrating a C54x System to a C55x System

The ported C54x environment returns the result in AC0, while the native C55x
environment expects the result to be returned in T0. Consequently, the result
must be copied from AC0 to T0.

Example 7−2.Assembly Function _firlat_veneer (Continued)

(g) Clearing arguments from the stack

 AADD #5, SP

At this point, you should decrease the stack by the number of words originally
needed to push the function’s passed arguments. In this case, the amount is
5 words. Because the stack grows from high addresses to low addresses,
addition is used to change the stack pointer from a low address to a higher one.

(h) Restoring registers and returning

 POP T3
 POP T2
 ; POP AR7
 ; POP AR6
 POP AR5

 RET

Restore the registers saved at the beginning of the function, and return.

7.3.8 Example of C54x Assembly Calling C Code

This example contains a C54x assembly routine calling a compiled C routine.
Because the C routine is recompiled with the C55x C compiler, the assembly
routine must handle the differences between the ported C54x run-time
environment and the run-time environment used by the C55x compiler.

If you use a different run-time environment for your C55x code, your code
changes will differ slightly from those in this example. However, you must still
consider the issues addressed here.

Example 7−3. Prototype of Called C Function

int C_func(int *buffer, int length);
 ...

The assembly function performs some calculations not shown in this example
and calls the C function. The returned result is copied to the C global variable
named result. Further calculations, also not shown here, are then
performed.

Using Ported C54x Functions with Native C55x Functions

 7-20

Example 7−4. Original C54x Assembly Function

; Declare some data −−−−−−−−−−−−−−−−−

 .data
buffer: .word 0, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100
BUFLEN .set 11
 .text

; Assembly routine starts −−−−−−−−−−−−−

callsc:
; original C54x code ...

; Call C function (original C54x code) −−−−−−−−−−−−−

 ST #BUFLEN, *SP(0) ; pass 2nd arg on stack
 CALLD #_C_func
 LD #buffer, A ; pass 1st arg in A

; Effects of calling C:
; May modify A, B, AR0, AR2−AR5, T, BRC
; Will not modify AR1, AR6, AR7
; May modify ASM, BRAF, C, OVA, OVB, SXM, TC
; Will not modify other status bits
; Presume CMPT = 0, CPL = 1

 STL A, *(_result) ; Result is in accumulator A

; original C54x code ...

 RET

To use this assembly function on C55x, it is necessary to change the call to the
C function.

Using Ported C54x Functions with Native C55x Functions

7-21Migrating a C54x System to a C55x System

Example 7−5. Modified Assembly Function

; declare data as shown previously

; Assembly routine starts −−−−−−−−−−−

callsc:
; ported C54x code ...

; Call C function (Change to C55x compiler environment)

 AMOV #buffer,AR0 ; pass 1st ptr arg in AR0
 MOV #BUFLEN,T0 ; pass 1st int arg in T0
 ; compiler code needs C54CM=0, ARMS=1
 BCLR C54CM ; clear C54x compatibility mode
 BSET ARMS ; set AR mode
 BSET SXM ; set sign extension mode
 CALL _C_func ; no delayed call instruction

; Effects of calling C:
; May modify AC0−AC3, XAR0−XAR4, T0−T1
; May modify RPTC,CSR,BRCx,BRS1,RSAx,REAx
; Will not modify XAR5−XAR7,T2−T3,RETA
; May modify ACOV[0−3],CARRY,TC1,TC2,SATD,FRCT,ASM,
; SATA,SMUL
; Will not modify other status bits

 MOV T0, *(_result) ; Result is in T0

; could use *abs16(_result) if all globals are in the
; same 64K word page of data

; Change back to ported C54x environment −−−−−−−−−−

 BSET C54CM ; reset C54x compatibility mode
 BCLR ARMS ; disable AR mode

; ported C54x code ...

 RET

The arguments are passed according the calling conventions described in the
Run-Time Environment chapter of the TMS320C55x Optimizing C Compiler
User’s Guide. The status bits modified are the only ones that differ between
the C54x ported run-time environment and the native C55x environment (in
this case, as defined by the C55x C compiler).

The comments about the effects of calling C (the registers and status bits that
may or may not be modified) do not impact the code shown. But these effects
can impact the code around such a call.

For example, consider the XAR1 register. In the C54x compiler environment,
AR1 will not be modified by the call. In the C55x compiler environment, XAR1
may be modified. If code before the call to C_func loads a value into AR1, and
code after the call reads AR1 for that value, then the code, as written, will not
work on C55x. The best alternative is to use an XARn register that is saved
by C routines, such as XAR5.

Output C55x Source

 7-22

7.4 Output C55x Source
This section describes how to convert your C54x source code directly into
C55x source code instead of object code. This conversion preserves your
investment in C54x assembly code by using the same format, spacing,
comments, and (very often) symbolic references of the original source.

7.4.1 Command-Line Options

Table 7−5 shows the cl55 command-line options.

Table 7−5. cl55 Command-Line Options

Option Meaning

−−mnem Mnemonic output

−−alg Algebraic output

−−incl Write output for include files

−−nomacx Do not expand macros

−fr dir Name the directory for the output files

−eo .ext Name the extension of the output files

To get source output, you must use either −−mnem or −−alg. Otherwise, you
produce the usual object files. Most of the examples in this section use cl55
−−mnem even though cl55 −−alg can be used.

If you do not specify an extension for the output files, the names of the output
files are the same as those of the corresponding input files, but with a different
extension. If the first letter of an input file extension is “a” or “s,” or there is no
extension, the output file extension is .s55. Otherwise, the file is presumed to
be an include file, and the output file extension is .i55.

For more information on −−incl, see sections 7.4.2 and 7.4.3. For more
information on −−nomacx, see section 7.4.7, Handling Macros.

The example:

cl55 −q −−mnem −−incl −fr c55x_asm −eo .asm *.asm

Shows that all of your assembly files are processed, placing the output in the
directory c55x_asm, with the extension .asm instead of the default .s55. Any
include files that are created are also in c55x_asm but named according to the
default output file name method described above.

Note: The −fr and −eo Options

The −fr and −eo options have the same meanings for .obj files when cl55 is
used to compile and/or assemble files to object.

Output C55x Source

7-23Migrating a C54x System to a C55x System

Since object files are not created, some compiler options that would normally
affect the assembler do not apply. For instance, −al does not cause a listing
file to be created.

Table 7−6 shows a list of the compiler options that affect the assembler.

Table 7−6. Compiler Options that Affect the Assembler

Option Meaning Effect

−aa Enable absolute listing No

−ac Make case insignificant Yes

−adname Pre-define name Yes

−ahc<f> .copy file f Yes

−ahi<f> .include file f Yes

−al (Lowercase L) Produce asm listing file No

−ar[#] Suppress remark [#] Yes

−as Keep local symbols No

−ata Assert ARMS initially set No

−atc Assert CPL initially set No

−ath Port for speed over size Yes

−atl Assert C54x initially set No

−atn Remove NOP in delay slots Yes

−atp Generate profiling .prf file No

−att Assert SST is always zero Yes

−atv All branches/calls are encoded as 24-bit offset No

−atw Suppress all warnings Yes

−auname Undefine name Yes

−ax Produce cross-reference file No

If you use an option listed as not having an effect, it is silently ignored.

7.4.2 Processing .include/.copy Files

Only in this section, the term include file means a file included by either the
.include or the .copy directive. An include file must be read in order to correctly
process the file which includes it. This section addresses whether processing
of an include file results in the creation of a corresponding output file.

By default, an output file is not written out for an include file and the .include
statement itself remains unchanged. When the new .s55 file is re-assembled,
it includes a file that has not been processed. Because the assembler can read
C54x syntax, this does not affect correctness.

Output C55x Source

 7-24

The −−incl option changes this behavior. Under −−incl, an output file is written
out for each include file. The name of the new file is determined by the
command-line option you use and the extension you specify as described in
section 7.4.1, Command-Line Options. Furthermore, the .include statement is
modified to include the new output file.

For example, under −−incl,

 .include i1.inc

causes i1.i55 to be created and this statement is changed to

 .include i1.i55

There is one special case on naming an include file. If cl55 is invoked with the
−fr <dir> option and the name of the include file does not contain any directory
information, then the new include file is written out to the directory given by the
−fr option.

For example,

cl55 −−mnem −−incl input.asm −fr outdir

places the new i1.i55 (and input.i55) file in the directory outdir.

7.4.3 Problems with the −−incl Option

Consider this contrived example of three files:

; i1.inc−−−−−−−−−−−−−−−−−−−−−−
 .word x
; file1.asm−−−−−−−−−−−−−−−−−−
x .set 0
 .include il.inc
; file2.asm−−−−−−−−−−−−−−−−−−
x .set 1
 .include il.inc

Suppose you use −−incl when building both file1.asm and file2.asm. Whether
the new i1.i55 contains .word 0 or .word 1 depends on which file is built last.
(It will certainly be wrong for one of them.)

The −−incl option works only when every include file that is created is context
free. That is, it contains no dependencies on the files which include it. In this
case, i1.inc depends on the different values of x as defined in both file1.asm
and file2.asm.

If i1.inc is included by several different files, using −−incl causes i1.i55 to be
written out each time cl55 −−mnem is invoked on those files. Multiple
developers working on different files in the same directory need to be aware
that each time cl55 −−mnem −−incl is run, a new i1.i55 file is created.

Output C55x Source

7-25Migrating a C54x System to a C55x System

Another problem with −−incl relates to parallel makes. (If you don’t know what
a parallel make is, you can safely skip this paragraph.). Suppose you have a
set of .asm files, which all include i1.inc. Furthermore, suppose you have a
makefile that converts those files to C55x syntax with cl55 −−mnem and then
assembles the resulting .s55 files to object with just cl55. If you do this in
parallel, you end up with simultaneous writes and reads to i1.i55. Since this
does not work, you have to create the .i55 files with a serial make.

7.4.4 Handling .asg and .set

The .asg and .set lines are copied through unchanged. The use of symbols that
are defined by .asg and .set is largely retained. Generally, if an entire operand
can be copied unchanged from the old C54x instruction to the new C55x
instruction, then that operand is copied through. But, if that operand is modified
in any way, then the symbolic references may not show up.

7.4.5 Preserve Spacing with the .tab Directive

The assembler preserves the spacing of the original source line by copying it
from the source file. However, when the width of a C55x mnemonic or operand
field is wider than the original, some original spacing is omitted. To handle this
step correctly, the assembler must know how many spaces are occupied by
a tab. The default is 8 spaces. You may change this default with the directive
.tabnumber, where number is how many spaces a tab occupies in your
system.

7.4.6 Assembler-Generated Comments

Whenever source lines are deleted or added, the assembler uses a special
prefix or suffix comment to mark these lines. These lines can then easily be
found with the search features typically found in text editors, or scripting
languages such as Perl and awk.

The general form of the comments is “;+XX” where XX is a two letter code used
to specify the function the comment performs. These are described in the
following sections.

7.4.6.1 Multiple-Line Rewrites

Multiple-line rewrites appear at the front of the commented out original source
line. They are also tagged on the end of every line associated with the original
source line.

The two types of multiple-line rewrites are:

� ML − Multiple-line rewrite
� RL − Multiple-line rewrite that uses a temporary register

Output C55x Source

 7-26

7.4.6.2 Expanded Macro Invocations

Expanded macro invocations appear at the front of the macro invocation
(always MI) or multiple line rewrite within the macro expansion. They are also
tagged on the end of every line within the macro expansion.

The three types of expanded macro invocations are:

� MI − Single-line rewrite within an expanded macro
� MM − Multiple-line rewrite within an expanded macro
� RM − Multiple-line rewrite that uses a temporary register within an expand-

ed macro

7.4.6.3 Prefix Comments

The following comments appear at the front of the commented out lines:

� NP − Deleted NOP
� IF − .if/.endif and related directives, as well as associated false blocks
� LP − .loop/.break/.endloop and enclosing lines
� FN − Naming the file
� MS − Miscellaneous

7.4.6.4 Suffix Comments

The following comment is tagged at the end of changed lines:

� SA − Converted .set to .asg (only in algebraic output)

The following comment is tagged at the end of added lines:

� RK − Remark inserted with .mmsg directive

Output C55x Source

7-27Migrating a C54x System to a C55x System

7.4.6.5 Code Example For Assembler-Generated Comments

Example 7−6 shows a code example of assembler-generated comments.
Example 7−7 displays the C55x output for Example 7−6.

Example 7−6. Contrived C54x Assembly File

 .global name

 ADD *AR2, A ; same mnemonic
 LD *AR3, B ; different mnemonic

 RPT #10
 MVDK *AR4+, name ; multi−line rewrite

subm .macro mem1, mem2, reg ; macro definition
 ; copied through
 LD mem1, reg
 SUB mem2, reg
 endm

 subm name, *AR6, B ; macro invocation
 ; expanded

 MOV T1, AC3 ; native LEAD3 instruction

Example 7−7. C55x Output For C54x Code Example in Example 7−6

;+MS translation of try1.asm
;+MS Temporary Registers Used: XCDP
 trans_count 1 ;+MS do NOT remove!
 global name

 ADD *AR2, AC0, AC0 ; same mnemonic
 MOV *AR3, AC1 ; different mnemonic
;+RL MVDK *AR4+, name ; multi−line rewrite
 AMAR *(#name), XCDP ; +RL port of MVDK *AR4+, name

 RPT #10
 MOV *AR4+, *CDP+ ; +RL port of MVDK *AR4+, name

subm .macro mem1, mem2, reg ; macro definition
 ; copied through

 LD mem1, reg
 SUB mem2, reg
 .endm

;+MI subm name, *AR6, B ; macro invocation
 ; expanded

 MOV @#name, AC1 ;+MI
 SUB *AR6, AC1, AC1 ;+MI

 MOV T1, AC3 ; native LEAD3 instruction

Output C55x Source

 7-28

7.4.7 Handling Macros

Macro definitions are always copied through unchanged.

By default, macro invocations are expanded. You can disable this expansion
with the option −−nomacx.

If you combine −−alg −−nomacx your output file has invocations of macros
which use mnemonic syntax in a file that is otherwise algebraic syntax.
Therefore, at the top of such a file you see the following error message:

Example 7−8. C55x Output Created from Combining −−alg & −−nomacx

.emsg “This file will not assemble because it combines algebraic syntax with
 invocations of macros in mnemonic syntax. Please see the comment at
 the top of <output file> for more information.”

.end ; stops assembler processing

Also note that because this file cannot be assembled, this combination of
features cannot be tested. To attempt to assemble this file you must rewrite
the macros in C55x algebraic syntax, and remove this .emsg, .end, and
associated comment block.

If you assemble this file, you see the error message given in the .emsg. After
the message is displayed, the assembler stops running. To continue, you must
edit the file as instructed in the error message.

7.4.8 Handling the .if and .loop Directives

The problem with blocks of code controlled by the .if and .loop directives is that
these blocks do not necessarily stay together through translation. Delayed
branches or calls must move as part of the translation. If these delayed
branches or calls occur just before such a block, they move into it. If they are
near the end, they may leave the block.

The assembler will evaluate conditional expressions and comment out the .if,
.else, .elseif, and .endif directives, as well as the code in the false block(s). The
solution for .loop is to comment out every thing from the .loop to the .endloop,
including any .break directives, and follow that with as many iterations of the
.loop block as required.

Note: Loop Count Affects Translated Source Size

If the loop count is a large value, then there will be a large increase in the size
of the translated source versus the original source.

Output C55x Source

7-29Migrating a C54x System to a C55x System

7.4.9 Integration Within Code Composer Studio

Converting source from C54x to C55x is not a process integrated within Code
Composer Studio (CCStudio). None of the command line options described
in this section are available from within CCStudio. Use the command line
interface to cl55 to convert your C54x source to C55x, then add those new
C55x source files to your C55x CCStudio project.

Non-Portable C54x Coding Practices

 7-30

7.5 Non-Portable C54x Coding Practices

Some C54x coding practices cannot be ported to the C55x. The assembler will
warn you of certain detectable issues, but it cannot detect every issue. The
following coding practices are not portable:

� Any use of a constant as a memory address. For example:

B 42
ADD @42,A
SUB @symbol+10,b

� Memory initialized with constants that are later interpreted as code
addresses. For example:

table: .word 10, 20, 30
...
LD @table,A
CALA

� Using data as instructions. For example:

function:
 .word 0xabcd ; opcode for ???
 .word 0xdef0 ; opcode for ???
...
 CALL function

� Out-of-order execution, also known as pipeline tricking. The assembler
detects one instance of out-of-order execution: when an instruction
modifies the condition in the two instruction-words before the C54x XC
instruction. In this instance, the assembler will issue a remark. Other
cases of out-of order execution are not detected by the assembler.

� Code that creates or modifies code.

� Repeat blocks spanning more than one file.

� Branching/calling unlabeled locations. Or, modifying the return address to
return to unlabeled location. This includes instructions such as:

B $+10

� Using READA and WRITA instructions to access instructions and not
data. For more information, see Section 7.6.1, Handling Program Memory
Accesses, on page 7-33.

Non-Portable C54x Coding Practices

7-31Migrating a C54x System to a C55x System

� Using READA/WRITA with an accumulator whose upper bits are not zero.

The READA/WRITA instruction on C54x devices (other than ’C548 or
later) uses the lower 16 bits of the accumulator and ignores the upper 16
bits. ’C548 and later devices, however, use the lower 23 bits. The
assembler cannot easily know the device for which the code is targeted. It
assumes ’C548 or later. Consequently, code for ’C548 and later devices
will map with no problems. Code for devices other than these will not run.

� Label differences are not allowed in conditional assembly expressions.

Coding practices such as following will not work on C55x

Additional C54x Issues

 7-32

7.6 Additional C54x Issues

This section contains some additional system issues.

If your C54x code does any of the following, you may need to modify this code
to use native C55x instructions:

� Uses a *SP(offset) operand in the MMR slot of MMR instructions like LDM

� Copies blocks of code, usually from off-chip memory to on-chip memory

� Uses memory-mapped access to peripherals

� Uses repeat blocks larger than 32K after mapping to C55x

� Uses the branch conditions BIO/NBIO

You should also be aware of the following issues:

� The C5x-compatibility features of the C54x are not supported on C55x.

� RPT instructions, non-interruptible on C54x, can be interrupted on C55x.

� When an operation overflows into the guard bits, and then a left-shift
clears the guard bits, the C54x has the value of zero while the C55x has
a saturated value.

� The C54x and C55x mnemonic assembly languages differ significantly in
the representation of instruction parallelism.

The C55x implements two types of parallelism: implied parallelism within a
single instruction (using the :: operator), and user-defined parallelism
between two instructions (using the || operator). The C54x implements
only one type of parallelism, which is analogous to implied parallelism on
the C55x. However, C54x parallelism uses parallel bars (||) as its operator.
C55x parallelism is documented in the TMS320C55x DSP Mnemonic
Instruction Set Reference Guide.

Additional C54x Issues

7-33Migrating a C54x System to a C55x System

� When using indirect access with memory-mapped access instructions,
such as:

STM #0x1234, *AR2+

the C54x masks the upper 9 bits of the ARn register. This masking
effectively occurs both before and after the post-increment to AR2. For
example:

; AR2 = 0x127f
STM #0x1234, *AR2+ ; access location 0x7f
; AR2 = (0x7f + 1) & ~7f ==> 0

However, the C55x assembler maps this as:

AND #0x7f, AR2
MOV #0x1234, *AR2+ ; note no masking afterward

to account for the possibility of a memory-mapped address for AR2.

7.6.1 Handling Program Memory Accesses

The cl55 assembler supports C54x program memory access instructions
(FIRS, MACD, MACP, MVDP, MVPD, READA, WRITA) for accessing data, but
not for accessing code. When the assembler encounters one of these
instructions, it will issue a remark (R5017). On C54x, a code address is in
words, while on C55x, it is in bytes. To account for this difference when
handling program memory access instructions, the assembler does the
following actions:

� Generates a C55x instruction sequence with the assumption that the C54x
program memory access operand refers to a data (word) address, not a
code (byte) address.

� Places any data declaration found in a code section into its own data
section. This will most likely require changes to your linker command file.

For example, the following C54x input:

 .global ext
 MVDP *AR2, ext
table:
 .word 10

will be ported by cl55 to be:

 .global ext
 AMOV #ext, XCDP
 MOV *AR2, *CDP
 .sect “.data:.text”
table:
 .word 10

Additional C54x Issues

 7-34

In this example, the instructions generated for MVDP assume that ext is a data
(word) address. If the memory address used in your code actually is a code
address, the C55x instructions will not work. In this case, you should rewrite
the function to use native C55x instructions. For more information on using
native C55x instructions along with ported C54x code, see Section 7.3 on page
7-10.

The .word directive in this example is placed into a new section called
.data:.text. In general, groupings of data within a code section are placed into
subsections with the name .data:root_section, where root_section is the name
of the original code section used on C54x. Your linker command file should be
modified to account for these changes. A subsection can be allocated
separately or grouped with other sections using the same base name. For
example, to group all data sections and subsections:

 .data > RAM ; allocates all .data sections / subsections

For more information on subsections, see Section 2.2.4, Subsections, on page
2-8.

Assembler Messages

7-35Migrating a C54x System to a C55x System

7.7 Assembler Messages

When assembling C54x code, cl55 may generate any of the following remarks.
To suppress a particular remark or all remarks, use the −r assembler option
or the .noremark directive. For more information, see the description of
.noremark on page 4-78.

(R5001) Possible dependence in delay slot of RPTBD−−be sure
delay instructions do not modify repeat control registers.

Description This message occurs when the instructions in the delay slots
of a C54x RPTBD instruction perform indirect memory
references.

Action If these instructions modify the REA or RSA repeat address
control registers, the C55x instructions used to implement
RPTBD will not work. If the instructions do not modify REA or
RSA, you can either ignore this message or rewrite your code
to use RTPB.

(R5002) Ignoring RSBX CMPT instruction

Description This C54x instruction disables the ’C5x compatibility mode of
the C54x. Because C55x does not support ’C5x compatibility
mode, this instruction is ignored.

Action Remove this instruction from your code, or simply ignore this
message.

(R5003) C54x does not modify AR n, but C55x does

Description This message occurs when both memory operands of an
ADD or SUB instruction use the same ARn register but only
the second operand modifies the register. For example:

 SUB *AR3, *AR3+, A

Action On C54x, such an instruction will not modify AR3 by adding
one to it. On C55x, the same instruction will add one to
AR3.This difference in behavior may or may not affect your
code. To prevent this message from being issued, move the
ARn modification to the first operand:

 SUB *AR3+, *AR3, A

Assembler Messages

 7-36

(R5004) Port of RETF correct only for non-interrupt routine.

Description This message occurs when the assembler encounters RETF
and RETFD, the C54x fast interrupt return instructions.
Because it is possible to correctly use these instructions in
non-interrupt routines, the RETF instruction is mapped to the
C55x RET instruction.

Action If this instance of RETF or RETFD is actually used to return
from an interrupt, you need to consider the issues described
in R5005, and then rewrite this instruction using the C55x
RETI instruction.

(R5005) Port of [F]RETE is probably not correct. Consider
rewriting to use RETI instead.

Description This message occurs when the assembler encounters the
C54x RETE, RETED, FRETE, and FRETED instructions.
These instructions are mapped to the C55x RETI instruction.

Action The effects of RETI differ from the effects of the RETE instruc-
tions. For example, RETI automatically restores ST1_55,
ST2_55, and part of ST0_55. RETE does not. You may need
to adjust your code accordingly. Furthermore, you need to de-
termine if your C54x interrupt service routine contains any
multiple-line mappings using C55x temporary registers. If so,
you need to preserve the registers. For more information, see
Section 7.1.2 on page 7-3.

(R5006) This instruction loads the memory address itself, and not
the contents at that memory address

Description This message occurs when the first operand of an AMOV
instruction is a symbol without an operand prefix. For
example:

 AMOV symbol, XAR3 ; not written as #symbol

Action This instruction may seem to load the contents at the memory
address represented by symbol. However, the address of the
symbol itself is loaded. Use the # prefix to correct this issue:

 AMOV #symbol, XAR3

Assembler Messages

7-37Migrating a C54x System to a C55x System

(R5007) C54x and C55x port numbers are different

Description This message occurs when the assembler encounters C54x
PORTR and PORTW instructions. A C55x instruction
sequence will be encoded to perform the same function, but
the port number used will most likely be incorrect for C55x.

Action Consider rewriting the code to use a similar C55x instruction
that loads/stores the contents of a port address into a register:

 MOV port(#100), AC0 ; for PORTR
 MOV AC1, port(#200) ; for PORTW

(R5008) C54x directive ignored

Description Some C54x assembler directives are not needed on the
C55x. This message occurs when you use such a directive
(.version, .c_mode, .far_mode).

Action Remove this directive from your code, or simply ignore this
message.

(R5009) Modifying C54x IPTR in PMST will not update C55x IVPD/
IVPH. Replace with native C55x mnemonic (e.g., MOV #K,
mmap(IVPD)).

Description This message occurs when the assembler encounters a write
to the PMST register. On C54x, bits 15 through 7 of PMST
contain the upper 9 bits of the address of the interrupt vector
table. C55x uses the IVPD/IVPH registers for this role. The
IVPD/IVPH registers are described in the TMS320C55x DSP
CPU Reference Guide.

Action Replace the C54x instruction with a native C55x instruction.

(R5010) C54x and C55x interrupt enable/flag registers and bit
mapping are different. Replace with native C55x mnemonic.

Description This message occurs when the assembler encounters a write
to the IFR or IMR registers. The bit mappings of the C55x IFR
and IER (IMR on C54x) registers differ from the C54x map-
pings. These registers are described in the TMS320C55x
DSP CPU Reference Guide.

Action Replace the C54x instruction with a native C55x instruction.

Assembler Messages

 7-38

(R5011) C55x requires setting up the system stack pointer (SSP)
along with the usual C54x SP setup.

Description This message occurs when the assembler encounters a write
to the SP register. C55x has a primary system stack managed
by the SP as well as a secondary system stack managed by
SSP. This remark is a reminder that whenever SP is initial-
ized, SSP must be initialized also.

Action Initialize the SSP register.

(R5012) This instruction requires the use of C55x 32-bit stack
mode.

Description This message occurs when the assembler encounters the
FCALL[D] or FCALA[D] instructions. These instructions only
work in 32-bit stack mode. The stack configurations are de-
scribed in the TMS320C55x DSP CPU Reference Guide.
Note that 32-bit stack mode is the default mode upon device
reset, and you must explicitly set up your reset vector to use a
different stack mode. For more information, see the descrip-
tion of the .ivec directive on page 4-64.

Action Set the stack configuration accordingly.

(R5013) C55x peripheral registers are in I/O space. Use C55x port()
qualifier.

Description This message occurs when the assembler encounters the
use of a C54x peripheral register name. These registers are
not memory-mapped on C55x. Instead, they are located in I/O
space. To access C55x I/O space, you must use the port() op-
erand qualifier. For more information, see the TMS320C55x
DSP Mnemonic Instruction Set Reference Guide.

Action Use the port() qualifier accordingly.

Assembler Messages

7-39Migrating a C54x System to a C55x System

(R5014) On C54x, the condition set in the two instruction words
before an XC does not affect that XC. The opposite is true on C55x.

Description This message occurs when the assembler encounters an
instruction that modifies the condition in the two instruction-
words before the C54x XC instruction. On C54x, this code
depends on out-of-order execution in the pipeline. However,
this out-of-order execution will not occur on the C55x, so the
results will not be the same. Out-of-order execution is
considered a non-portable C54x coding practice, as
described in Section 7.5 on page 7-30. While there are many
possible cases of out-of-order execution, this is the only one
detected by the assembler.

Action Modify your code to account for the difference on C55x.

(R5015) Using hard-coded address for branch/call destination is
not portable from C54x.

Description This message occurs when the assembler encounters a
C54x instruction that includes a branch or call to a non-sym-
bolic, hard-coded address. Because code addresses are
words on C54x and bytes on C55x, the assembler cannot
know if the address accounts for the byte/word difference.

Action Modify your code to account for the difference on C55x.

(R5016) Using expression for branch/call destination is not porta-
ble from C54x.

Description This message occurs when the assembler encounters a
C54x branch or call instruction with an expression containing
an arithmetic operator (such as sym+1). Because code ad-
dresses are words on C54x and bytes on C55x, the
assembler cannot know if your code accounts for the byte/
word difference.

Action Modify your code to account for the difference on C55x.

Assembler Messages

 7-40

(R5017) Program memory access is supported when accessing
data, but not when accessing code. In addition, changes to your
linker command file are typically required.

Description This message occurs when the assembler encounters a
C54x program memory access instruction (FIRS, MACD,
MACP, MVDP, MVPD, READA, WRITA). For more informa-
tion, see Section 7.6.1 on page 7-33.

Action Modify your code and/or linker command file to account for
the C55x differences.

� Built-in parallelism within a single instruction.

Some instructions perform two different operations in parallel. Double
colons (::) are used to separate the two operations. This type of parallelism
is also called implied parallelism. These instructions are provided directly
by the device and are documented in the TMS320C55x DSP Mnemonic
Instruction Set Reference Guide. You cannot form your own implied
parallel instructions.

� User-defined parallelism between two independent instructions.

Two instructions may be paralleled by you, as allowed by the parallelism
rules described in the TMS320C55x DSP Mnemonic Instruction Set
Reference Guide. Parallel bars (||) are used to separate two instructions to
be executed in parallel.

The C54x implements only one type of parallelism. It is analogous to implied
parallelism on the C55x. However, C54x parallelism uses parallel bars (||) as
its operator.

The table below summarizes the parallelism operators on the C54x and C55x.

Kind of Parallelism C54x Operator C55x Operator

Implied || ::

User-defined N/A ||

8-1

"��'�� ��	��������

The TMS320C55x� linker creates executable modules by combining COFF
object files. The concept of COFF sections is basic to linker operation.
Chapter 2, Introduction to Common Object File Format, discusses the COFF
format in detail.

Topic Page

8.1 Linker Overview 8-2.

8.1 Linker Overview 8-2.

8.2 Linker Development Flow 8-3.

8.3 Invoking the Linker 8-4.

8.4 Linker Options 8-5.

8.5 Byte/Word Addressing 8-21.

8.6 Linker Command Files 8-22.

8.7 Object Libraries 8-26.

8.8 The MEMORY Directive 8-28.

8.9 The SECTIONS Directive 8-32.

8.10 Specifying a Section’s Load−Time and Run-Time Addresses 8-45. . . .

8.11 Using UNION and GROUP Statements 8-53.

8.12 Overlay Pages 8-59.

8.13 Default Allocation Algorithm 8-64.

8.14 Special Section Types (DSECT, COPY, and NOLOAD) 8-67.

8.15 Assigning Symbols at Link Time 8-68.

8.16 Creating and Filling Holes 8-73.

8.17 Linker-Generated Copy Tables 8-77.

8.18 Partial (Incremental) Linking 8-91.

8.19 Linking C/C++ Code 8-93.

8.20 Linker Example 8-98.

Chapter 8

Linker Overview

 8-2

8.1 Linker Overview

The TMS320C55x linker allows you to configure system memory by allocating
output sections efficiently into the memory map. As the linker combines object
files, it performs the following tasks:

� Resolves undefined external references between input files.
� Places sections into the target system’s configured memory.
� Relocates symbols and sections to assign them to final addresses.

The linker command language controls memory configuration, output section
definition, and address binding. The language supports expression
assignment and evaluation. You configure system memory by defining and
creating a memory model that you design. Two powerful directives, MEMORY
and SECTIONS, allow you to:

� Place sections into specific areas of memory.
� Combine object file sections.
� Define or redefine global symbols at link time.

Linker Development Flow

8-3Linker Description

8.2 Linker Development Flow

Figure 8−1 illustrates the linker’s role in the assembly language development
process. The linker accepts several types of files as input, including object
files, command files, libraries, and partially linked files. The linker creates an
executable COFF object module that can be downloaded to one of several
development tools or executed by a TMS320C55x device.

Figure 8−1. Linker Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C/C++
source

files

C55x

Executable
COFF

file

C/C++
compiler

Library-build
utility

Cross-reference
lister

Absolute lister

Debugging
tools

Run-time-
support
library

C++ name
demangler

Invoking the Linker

 8-4

8.3 Invoking the Linker

The general syntax for invoking the linker is:

cl55 −z [−options] filename1. ... filenamen

cl55 −z is the command that invokes the linker.

options can appear anywhere on the command line or in a linker
command file. (Options are discussed in Section 8.4, Linker
Options, on page 8-5.)

filenames can be object files, linker command files, or archive libraries.
The default extension for all input files is .obj ; any other
extension must be explicitly specified. The linker can determine
whether the input file is an object or ASCII file that contains
linker commands. The default output filename is a.out.

There are two methods for invoking the linker:

� Specify options and filenames on the command line. This example links
two files, file1.obj and file2.obj, and creates an output module named
link.out.

cl55 −z file1.obj file2.obj −o link.out

� Put filenames and options in a linker command file. Filenames that are
specified inside a linker command file must begin with a letter. For
example, assume that the file linker.cmd contains the following lines:

−o link.out
file1.obj
file2.obj

Now you can invoke the linker from the command line; specify the
command filename as an input file:

cl55 −z linker.cmd

When you use a command file, you can also specify other options and files
on the command line. For example, you could enter:

cl55 −z −m link.map linker.cmd file3.obj

The linker reads and processes a command file as soon as it encounters
the filename on the command line, so it links the files in this order: file1.obj,
file2.obj, and file3.obj. This example creates an output file called link.out
and a map file called link.map.

For information on invoking the linker for C/C++ files, see section 8.19, Linking
C/C++ Code, on page 8-93.

Linker Options

8-5Linker Description

8.4 Linker Options
Linker options control linking operations. They can be placed on the command
line or in a command file. Linker options must be preceded by a hyphen (−).
The order in which options are specified is unimportant, except for the −l
(lowercase L) and −i options. The following summarize the linker options:

−a produces an absolute, executable module. This is the
default; if neither −a nor −r is specified, the linker acts
as if −a were specified.

−abs produces an absolute listing file. You must use the −O
option (after −z) to specify the .out file for the absolute
lister, even if you use a linker command file that al-
ready uses −O.

−ar produces a relocatable, executable object module.

−−args=size allocates memory to be used by the loader to pass
arguments

−b disables merge of symbolic debugging information.

−c uses linking conventions defined by the ROM
autoinitialization model of the TMS320C55x C/C++
compiler.

−cr uses linking conventions defined by the RAM
autoinitialization model of the TMS320C55x C/C++
compiler.

−e=global_symbol defines a global_symbol that specifies the entry point
for the output module. If the −c or −cr option is used,
_c_int00 is used as the default entry point.

−f=fill_value sets the default fill value for holes within output
sections; fill_value is a 16-bit constant.

−g=global_symbol keeps a global_symbol global (overrides −h).

−h makes all global symbols static.

−help
−?

prints a help menu.

−heap=size sets heap size (for the dynamic memory allocation in
C/C++) to size bytes and define a global symbol that
specifies the heap size. The default size is 2K bytes.

−I=pathname alters the file-search algorithm to look in pathname
before looking in the default location. You should
specify all −I options before the −l option. The
directory or filename must follow operating system
conventions.

Linker Options

 8-6

−j disables conditional linking.

−l=filename names a file as linker input; filename can be an
archive, an object file, or a linker command file. You
should specify a file with −l only after you have set up
the search path with the −I option. The directory or
filename must follow operating system conventions.

−m=filename generates a map file listing of the input and output
sections, including holes, and symbols. The
generated file is named filename.

−o=filename names the executable output module. The default
filename is a.out. The directory or filename must
follow operating system conventions.

−priority causes the linker to search libraries in the order in
which they are specified when attempting to resolve
symbol references.

−r generates a relocatable output module.

−s strips symbol table information and line number
entries from the output module.

−stack= size sets the primary stack size to size bytes and define a
global symbol that specifies the stack size. The default
size is 1K bytes.

−sysstack= size sets the secondary system stack size to size bytes
and define a global symbol that specifies the
secondary system stack size. The default size is 1000
bytes.

−u=symbol inserts an unresolved external symbol into the output
module’s symbol table. This forces the linker to find a
definition of the symbol in order to complete the link.

−vn specifies the output COFF format, where n is 0, 1, or
2. The default format is COFF2.

−w displays a message when an undefined output
section is created by the linker.

−x forces rereading of libraries to resolve back
references.

−−xml_link_info= file generates a well-formed XML file containing detailed
information about the result of a link.

Linker Options

8-7Linker Description

8.4.1 Relocation Capabilities (−a and −r Options)

The linker performs relocation, which is the process of adjusting all references
to a symbol when the symbol’s address changes. The linker supports two
options (−a and −r) that allow you to produce an absolute or a relocatable
output module.

� Producing an Absolute Output Module (−a Option)

When you use the −a option without the −r option, the linker produces an
absolute, executable output module. Absolute files retain no relocation
information. Executable files contain the following:

� Special symbols defined by the linker (subsection 8.15.4, Symbols
Defined by the Linker, on page 8-71 describes these symbols)

� An optional header that describes information such as the program
entry point

� No unresolved symbol references

The following example links file1.obj and file2.obj and creates an absolute
output module called a.out:

cl55 −z −a file1.obj file2.obj

Note: The −a and −r Options

If you do not use the −a or the −r option, the linker acts as if you specified −a.

� Producing a Relocatable Output Module (−r Option)

When you use the −r option, the linker retains relocation entries in the
output module. If the output module will be relocated (at load time) or
relinked (by another linker execution), use −r to retain the relocation
entries.

The linker produces a file that is not executable when you use the −r option
without −a. A file that is not executable does not contain special linker
symbols or an optional header. The file may contain unresolved
references, but these references do not prevent creation of an output
module.

The following example links file1.obj and file2.obj and creates a
relocatable output module called a.out:

cl55 −z −r file1.obj file2.obj

The output file a.out can be relinked with other object files or relocated at
load time. (Linking a file that will be relinked with other files is called partial
or incremental linking.) For more information, see Section 8.20, Linker
Example, on page 8-98.

Linker Options

 8-8

� Producing an Executable Relocatable Output Module (−ar Option
Combination)

If you invoke the linker with both the −a and −r options, the linker produces
an executable, relocatable object module. The output file contains the
special linker symbols, an optional header, and all symbol references are
resolved; however, the relocation information is retained.

The following example links file1.obj and file2.obj and creates an
executable, relocatable output module called xr.out:

cl55 −z −ar file1.obj file2.obj −o xr.out

You can string the options together (cl55 −z −ar) or enter them separately
(cl55 −z −a −r).

� Relocating or Relinking an Absolute Output Module

The linker issues a warning message (but continues executing) when it
encounters a file that contains no relocation or symbol table information.
Relinking an absolute file can be successful only if each input file contains
no information that needs to be relocated (that is, each file has no
unresolved references and is bound to the same virtual address that it was
bound to when the linker created it).

8.4.2 Create an Absolute Listing File (−abs Option)

The −abs option produces an output file for each file that was linked. These
files are named with the input filenames and an extension of .abs. Header files,
however, do not generate a corresponding .abs file.

8.4.3 Allocate Memory for Use by the Loader to Pass Arguments (−−args Option)

The −−args option instructs the linker to allocate memory to be used by the
loader to pass arguments from the command line of the loader to the program.
The syntax of the −−args option is:

−args=size

The size is a number representing the number of bytes to be allocated in target
memory for command-line arguments.

By default, the linker creates the __c_args__ symbol and sets it to −1. When
you specify −−args=size, the following occur:

� The linker creates an uninitialized section named .args of size bytes.
� The __c_args__ symbol contains the address of the .args section.

The loader and the target boot code use the .args section and the __c_args__
symbol to determine whether and how to pass arguments fromt the host to the
target program.

Linker Options

8-9Linker Description

8.4.4 Disable Merge of Symbolic Debugging Information (−b Option)

By default, the linker eliminates duplicate entries of symbolic debugging
information. Such duplicate information is commonly generated when a C
program is compiled for debugging. For example:

−[header.h]−
typedef struct
{
 <define some structure members>
} XYZ;

−[f1.c]−
#include ”header.h”
...
−[f2.c]−
#include ”header.h”
...

When these files are compiled for debugging, both f1.obj and f2.obj will have
symbolic debugging entries to describe type XYZ. For the final output file, only
one set of these entries is necessary. The linker eliminates the duplicate
entries automatically.

Use the −b option if you want the linker to keep such duplicate entries. The
loader has to read in and maintain more information, so using −b may make
the loader slower.

8.4.5 C Language Options (−c and −cr Options)

The −c and −cr options cause the linker to use linking conventions that are
required by the C/C++ compiler.

� The −c option tells the linker to use the ROM autoinitialization model.
� The −cr option tells the linker to use the RAM initialization model.

The −c and −cr options insert an unresolved reference to _c_int00 if no −e
option is specified.

For more information about linking C/C++ code, see Section 8.19, Linking
C/C++ Code, on page 8-93 and subsection 8.19.6, The −c and −cr Linker
Options, on page 8-97.

Linker Options

 8-10

8.4.6 Define an Entry Point (−e global_symbol Option)

The memory address at which a program begins executing is called the entry
point. When a loader loads a program into target memory, the program counter
must be initialized to the entry point; the PC then points to the beginning of the
program.

The linker can assign one of four possible values to the entry point. These
values are listed below in the order in which the linker tries to use them. If you
use one of the first three values, it must be an external symbol in the symbol
table.

� The value specified by the −e option. The syntax is:

−e global_symbol

Where global_symbol defines the entry point and must appear as an
external symbol in one of the input files.

� The value of symbol _c_int00 (if present). _c_int00 must be the entry point
if you are linking code produced by the C/C++ compiler.

� The value of symbol _main (if present).

� Zero (default value).

This example links file1.obj and file2.obj. The symbol begin is the entry point;
begin must be defined and externally visible (accessible) in file1 or file2.

cl55 −z −e begin file1.obj file2.obj

8.4.7 Set Default Fill Value (−f cc Option)

The −f option fills the holes formed within output sections or initializes
uninitialized sections when they are combined with initialized sections. This
allows you to initialize memory areas during link time without reassembling a
source file. The syntax for the −f option is:

−f cc

The argument cc is a 16-bit constant (up to four hexadecimal digits). If you do
not use −f, the linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCD.

cl55 −z −f 0ABCDh file1.obj file2.obj

Linker Options

8-11Linker Description

8.4.8 Make a Symbol Global (−g global_symbol Option)

The −h option makes all global symbols static. If you have a symbol that you
want to remain global and you use the −h option, you can use the −g option
to declare that symbol to be global. The −g option overrides the effect of the
−h option for the symbol that you specify. The syntax for the −g option is:

−g global_symbol

8.4.9 Make All Global Symbols Static (−h Option)

The −h option makes all global symbols defined with the .global assembler
directive static. Static symbols are not visible to externally linked modules. By
making global symbols static, global symbols are essentially hidden. This
allows external symbols with the same name (in different files) to be treated
as unique.

The −h option effectively nullifies all .global assembler directives. All symbols
become local to the module in which they are defined, so no external
references are possible. For example, assume that b1.obj, b2.obj, and b3.obj
are related and reference a global variable GLOB. Also assume that d1.obj,
d2.obj, and d3.obj are related and reference a separate global variable GLOB.
By using the −h option and partial linking, you can link the related files without
conflict.

cl55 −z −h −r b1.obj b2.obj b3.obj −o bpart.out
cl55 −z −h −r d1.obj d2.obj d3.obj −o dpart.out

The −h option guarantees that bpart.out and dpart.out do not have global
symbols and therefore, that two distinct versions of GLOB exist. The −r option
is used to allow bpart.out and dpart.out to retain their relocation entries. These
two partially linked files can then be linked together safely with the following
command:

cl55 −z bpart.out dpart.out −o system.out

Linker Options

 8-12

8.4.10 Define Heap Size (−heap constant Option)

The C/C++ compiler uses an uninitialized section called .sysmem for the C
run-time memory pool used by malloc(). You can set the size of this memory
pool at link time by using the −heap option. The syntax for the −heap option
is:

−heap size

Specify the size in bytes as a constant immediately after the option:

cl55 −z −heap 0x0400 /* defines a heap size */

The linker creates the .sysmem section only if there is a .sysmem section in
one of the input files.

The linker also creates a global symbol __SYSMEM_SIZE and assigns it a
value equal to the size of the heap (in bytes). The default size is 2000 bytes.

For more information about linking C code, see Section 8.19, Linking C Code,
on page 8-93.

8.4.11 Alter the File Search Algorithm (−l Option, −i Option, and
C55X_C_DIR/C_DIR Environment Variables)

Usually, when you want to specify a file as linker input, you simply enter the
filename; the linker looks for the file in the current directory. For example,
suppose the current directory contains the library object.lib. Assume that this
library defines symbols that are referenced in the file file1.obj. This is how you
link the files:

cl55 −z file1.obj object.lib

If you want to use a file that is not in the current directory, use the −l (lowercase
L) linker option. The syntax for this option is:

−l [pathname] filename

The filename is the name of an archive, an object file, or a linker command file;
the space between −l and the filename is optional.

The −l option is not required when one or more members of an object library
are specified for input to an output section. For more information, see section
8.9.4, Allocating an Archive Member to an Output Section.

Linker Options

8-13Linker Description

You can augment the linker’s directory search algorithm by using the −i linker
option or the C_DIR or C55X_C_DIR environment variables. The linker
searches for input files in the following order:

1) It searches directories named with the −i linker option.

2) It searches directories named with C_DIR and C55X_C_DIR.

3) If C_DIR and C55X_C_DIR are not set, it searches directories named with
the assembler’s environment variables, C55X_A_DIR and A_DIR.

4) It searches the current directory.

8.4.11.1 Name an Alternate File Directory (−i Option)

The −i option names an alternate directory that contains input files. The syntax
for this option is:

−I pathname

The pathname names a directory that contains input files; the space between
−i and the directory name is optional.

When the linker is searching for input files named with the −l option, it searches
through directories named with −I first. Each −I option specifies only one
directory, but you can several −I options per invocation. When you use the −I
option to name an alternate directory, it must precede any −l option used on
the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and
lib2.lib. The table below shows the directories that r.lib and lib2.lib reside in,
how to set environment variable, and how to use both libraries during a link.
Select the row for your operating system:

Operating System Pathname Enter

Windows \ld and \ld2 cl55 −z f1.obj f2.obj −I\ld −I\ld2 −lr.lib −llib2.lib

UNIX (Bourne shell) /ld and /ld2 cl55 −z f1.obj f2.obj −I/ld −I/ld2 −lr.lib −llib2.lib

Linker Options

 8-14

8.4.11.2 Name an Alternate File Directory (C_DIR Environment Variable)

An environment variable is an operating system symbol that you define and
assign a string to. The linker uses environment variables named C_DIR and
C55X_C_DIR to name alternate directories that contain input files. The
command syntaxes for assigning the environment variable are:

Operating System Enter

Windows set C_DIR= pathname1 ;pathname2 ; . . .

UNIX (Bourne shell) C_DIR=” pathname1 ;pathname2 ; . . .”; export C_DIR

The pathnames are directories that contain input files. Use the −l option on the
command line or in a command file to tell the linker when to use the list of file
search directories to look for a particular input file.

In the example below, assume that two archive libraries called r.lib and lib2.lib
reside in the ld and ld2 directories. The table below shows the directories that
r.lib and lib2.lib reside in, how to set the environment variable, and how to use
both libraries during a link. Select the row for your operating system:

Operating System Pathname Invocation Command

Windows \ld and \ld2 set C_DIR=\ld;\ld2
cl55 −z f1.obj f2.obj −l r.lib −l lib2.lib

UNIX (Bourne shell) /ld and /ld2 C_DIR=”/ld;/ld2”; export C_DIR
cl55 −z f1.obj f2.obj −l r.lib −l lib2.lib

The environment variable remains set until you reboot the system or reset the
variable by entering:

Operating System Enter

Windows set C_DIR=

UNIX (Bourne shell) unset C_DIR

The assembler uses an environment variable named A_DIR to name
alternative directories that contain copy/include assembly source files or
macro libraries. If C_DIR is not set, the linker will search for input files in the
directories named with A_DIR. Section 8.7, Object Libraries, on page 8-26
contains more information about object libraries.

8.4.12 Disable Conditional Linking (−j Option)

The −j option disables removal of unreferenced sections. Only sections
marked as candidates for removal with the .clink assembler directive are
affected by conditional linking. See page 4-39 for details on setting up
conditional linking using the .clink directive.

Linker Options

8-15Linker Description

8.4.13 Create a Map File (−m filename Option)

The −m option creates a linker map listing and puts it in filename. The syntax
for the −m option is:

−m filename

Symbols defined in a data section have word address values, and symbols
defined in a code section have byte address values.

The linker map describes:

� Memory configuration
� Input and output section allocation
� The addresses of external symbols after they have been relocated

The map file contains the name of the output module and the entry point; it may
also contain up to three tables:

� A table showing the new memory configuration if any non-default memory
is specified

� A table showing the linked addresses of each output section and the input
sections that make up the output sections

� A table showing each external symbol and its address. This table is listed
twice: the left listing contains the symbols sorted by name, and the second
listing contains the symbols sorted by address

This example links file1.obj and file2.obj and creates a map file called file.map:

cl55 −z file1.obj file2.obj −m file.map

Example 8−24 on page 8-100 shows an example of a map file.

8.4.14 Name an Output Module (−o filename Option)

The linker creates an output module when no errors are encountered. If you
do not specify a filename for the output module, the linker gives it the default
name a.out. If you want to write the output module to a different file, use the
−o option. The syntax for the −o option is:

−o filename

The filename is the new output module name.

This example links file1.obj and file2.obj and creates an output module named
run.out:

cl55 −z −o run.out file1.obj file2.obj

Linker Options

 8-16

8.4.15 Strip Symbolic Information (−s Option)

The −s option creates a smaller output module by omitting symbol table
information and line number entries. The −s option is useful for production
applications when you do not want to disclose symbolic information to the
consumer.

This example links file1.obj and file2.obj and creates an output module,
stripped of line numbers and symbol table information, named nosym.out:

cl55 −z −o nosym.out −s file1.obj file2.obj

Using the −s option limits later use of a symbolic debugger.

8.4.16 Define Stack Size (−stack size Option)

The TMS320C55x C/C++ compiler uses an uninitialized section, .stack, to
allocate space for the run-time stack. You can set the size of the .stack section
at link time with the −stack option. The syntax for the −stack option is:

−stack size

Specify the size in bytes as a constant immediately after the option:

cl55 −z −stack 0x1000 /* defines a stack size */

If you specified a different stack size in an input section, the input section stack
size is ignored. Any symbols defined in the input section remain valid; only the
stack size will be different.

When the linker defines the .stack section, it also defines a global symbol,
__STACK_SIZE, and assigns it a value equal to the size of the section (in
bytes). The default stack size is 1000 bytes.

Note: Allocation of .stack and .sysstack Sections

The .stack and .sysstack sections must be allocated on the same 64K-word
data page.

Linker Options

8-17Linker Description

8.4.17 Define Secondary Stack Size (−sysstack constant Option)

The TMS320C55x C/C++ compiler uses an uninitialized section, .sysstack, to
allocate space for the secondary run-time stack. You can set the size of the
.sysstack section at link time with the −sysstack option. The syntax for the
−sysstack option is:

−sysstack size

Specify the size in bytes as a constant immediately after the option:

cl55 −z −sysstack 0x1000 /* defines secondary stack size */

When the linker defines the .sysstack section, it also defines a global symbol,
__SYSSTACK_SIZE, and assigns it a value equal to the size of the section
(in bytes). The default secondary stack size is 1000 bytes.

Note: Allocation of .stack and .sysstack Sections

The .stack and .sysstack sections must be allocated on the same 64K-word
data page.

8.4.18 Introduce an Unresolved Symbol (−u symbol Option)

The −u option introduces an unresolved symbol into the linker’s symbol table.
This forces the linker to search for the definition of that symbol among the
object files and libraries input to the linker. The linker must encounter the −u
option before it links in the member that defines the symbol.

For example, suppose a library named rts.lib contains a member that defines
the symbol symtab; none of the object files being linked reference symtab.
However, suppose you plan to relink the output module, and you would like to
include the library member that defines symtab in this link. Using the −u option
as shown below forces the linker to search rts.lib for the member that defines
symtab and to link in that member.

cl55 −z −u symtab file1.obj file2.obj rts.lib

If you do not use −u, this member is not included because there is no explicit
reference to it in file1.obj or file2.obj.

Linker Options

 8-18

8.4.19 Specify a COFF Format (−v Option)

The −v option specifies the format the linker will use to create the COFF object
file. The COFF object file is the output of the linker. The format specifies how
information in the object file is arranged.

The linker can read and write COFF0, COFF1, and COFF2 formats. By
default, the linker creates COFF2 files. To create a different output format, use
the −v option where n is 0 for COFF0 or 1 for COFF1.

Chapter 2, Introduction to Common Object File Format, and Appendix A,
Common Object File Format, provide further information on COFF.

Note: Incompatibility with DWARF Debug, and COFFO and COFF1

The code generation tools produce DWARF debug information by default.
Therefore the compiler produces debug sections with names that are not
compatible with the COFF0 and COFF1 formats. Specifying the −v0 or −v1
linker option causes a link-time error.

8.4.20 Display a Message for Output Section Information (−w Option)

The −w option displays additional messages pertaining to the default creation
of output sections. Additional messages are displayed in the following
circumstances:

� In a linker command file, you can set up a SECTIONS directive that
describes how input sections are combined into output sections. However,
if the linker encounters one or more input sections that do not have a
corresponding output section defined in the SECTIONS directive, the
linker combines the input sections that have the same name into an output
section with that name. By default, the linker does not display a message
to tell you when this has occurred.

If this situation occurs and you use the −w option, the linker displays a
message when it creates a new output section.

� If you do not use the −heap, −stack, and −sysstack options, the linker
creates the .sysmem, .stack, and .sysstack (respectively) sections for you.
The .sysmem section has a default size of 2000 bytes; the .stack and
.sysstack sections have a default size of 1000 bytes. You might not have
enough memory available for one or all of these sections. In this case, the
linker issues an error message saying a section could not be allocated.

If you use the −w option, the linker displays another message with more
details, which includes the name of the directive to allocate the .sysmem or
.stack section yourself.

Linker Options

8-19Linker Description

Note: Allocation of .stack and .sysstack Sections

The .stack and .sysstack sections must be allocated on the same 64K-word
data page.

For more information about the SECTIONS directive, see Section 8.9, The
SECTIONS Directive, on page 8-32. For more information about the default
actions of the linker, see Section 8.13, Default Allocation Algorithm, on page
8-64.

8.4.21 Exhaustively Read and Search Libraries (−x and −priority Options)

There are two ways to exhaustively search for unresolved symbols:

� Reread libraries if you cannot resolve a symbol reference (−x).
� Search libraries in the order that they are specified (−priority).

The linker normally reads input files, including archive libraries, only once
when they are encountered on the command line or in the command file. When
an archive is read, any members that resolve references to undefined symbols
are included in the link. If an input file later references a symbol defined in a
previously read archive library, the reference is not resolved.

With the −x option, you can force the linker to reread all libraries. The linker
rereads libraries until no more references can be resolved. Linking using −x
may be slower, so you should use it only as needed. For example, if a.lib
contains a reference to a symbol defined in b.lib, and b.lib contains a reference
to a symbol defined in a.lib, you can resolve the mutual dependencies by listing
one of the libraries twice, as in:

cl55 −z −la.lib −lb.lib −la.lib

or you can force the linker to do it for you:

cl55 −z −x −la.lib −lb.lib

The −priority option provides an alternate search mechanism for libraries.
Using −priority causes each unresolved reference to be satisfied by the first
library that contains a definition for that symbol. For example:

 objfile references A
 lib1 defines B
 lib2 defines A, B; obj defining A references B

 % cl55 −z objfile lib1 lib2

Under the existing model, objfile resolves its reference to A in lib2, pulling in
a reference to B, which resolves to the B in lib2.

Linker Options

 8-20

Under −priority, objfile resolves its reference to A in lib2, pulling in a reference
to B, but now B is resolved by searching the libraries in order and resolves B
to the first definition it finds, namely the one in lib1.

The −priority option is useful for libraries that provide overriding definitions for
related sets of functions in other libraries without having to provide a complete
version of the whole library.

For example, suppose you want to override versions of malloc and free
defined in the rts55.lib without providing a full replacement for rts55.lib. Using
−priority and linking your new library before rts55.lib guarantees that all
references to malloc and free resolve to the new library.

The −priority option is intended to support linking programs with DSP/BIOS
where situations like the one illustrated above occur.

8.4.22 Creating an XML Link Information File (−−xml_link_info Option)

The linker supports the generation of an XML link information file via the
−−xml_link_info file option. This option causes the linker to generate a
well-formed XML file containing detailed information about the result of a link.
The information included in this file includes all of the information that is
currently produced in a linker generated map file.

See Appendix C, XML Link Information File Description, for specifics on the
contents of the generated file.

Byte/Word Addressing

8-21Linker Description

8.5 Byte/Word Addressing

C55x memory is byte-addressable for code and word-addressable for data.
The assembler and linker keep track of the addresses, relative offsets, and
sizes of the bits in units that are appropriate for the given section: words for
data sections, and bytes for code sections.

Note: Use Byte Addresses in Linker Command File

All addresses and sizes supplied in the linker command file should be byte
addresses, for both code and data sections.

In the case of program labels, the unchanged byte addresses will be encoded
in the executable output and during execution sent over the program address
bus. In the case of data labels, the byte addresses will be divided by 2 in the
linker (converting them to word addresses) prior to being encoded in the
executable output and sent over the data address bus.

The .map file created by the linker shows code addresses and sizes in bytes,
and data addresses and sizes in words.

Linker Command Files

 8-22

8.6 Linker Command Files

Linker command files allow you to put linking information in a file; this is useful
when you invoke the linker often with the same information. Linker command
files are also useful because they allow you to use the MEMORY and
SECTIONS directives to customize your application. These directives can be
used only in a linker command file.

Note: Use Byte Addresses in Linker Command File

All addresses and sizes supplied in the linker command file should be byte
addresses, for both code and data sections.

Linker command files are ASCII files that contain one or more of the following:

� Input filenames, which specify object files, archive libraries, or other
command files.

� Linker options, which can be used in the command file in the same manner
that they are used on the command line.

� The MEMORY and SECTIONS linker directives. The MEMORY directive
defines the target memory configuration. The SECTIONS directive
controls how sections are built and allocated.

� Assignment statements, which define and assign values to global
symbols.

To invoke the linker with a command file, enter the cl55 −z command and follow
it with the name of the command file:

cl55 −z command_filename

The linker processes input files in the order that they are encountered. If a
library name is specified, the linker looks through the library to find the
definition of any symbol that is unresolved. If the linker recognizes a file as an
object file, it includes that file in the link. Otherwise, it assumes that a file is a
command file and begins reading and processing commands from it.
Command filenames are case sensitive, regardless of the system used.

Linker Command Files

8-23Linker Description

Example 8−1 shows a sample linker command file called link.cmd.
(Subsection 2.3.2, Placing Sections in the Memory Map, on page 2-14
contains another example of a linker command file.)

Example 8−1. Linker Command File

a.obj /* First input filename */

b.obj /* Second input filename */

−o prog.out /* Option to specify output file */

−m prog.map /* Option to specify map file */

The sample file in Example 8−1 contains only filenames and options. You can
place comments in a command file by delimiting them with /* and */. To invoke
the linker with this command file, enter:

cl55 −z link.cmd

You can place other parameters on the command line when you use a
command file:

cl55 −z −r link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters link.cmd, so
a.obj and b.obj are linked into the output module before c.obj and d.obj.

You can specify multiple command files. If, for example, you have a file called
names.lst that contains filenames and another file called dir.cmd that contains
linker directives, you could enter:

cl55 −z names.lst dir.cmd

One command file can call another command file; this type of nesting is limited
to 16 levels.

With the exception of filenames and option parameter, blanks and blank lines
are insignificant in a command file except as delimiters. This also applies to
the format of linker directives in a command file.

Note: Filenames and Option Parameters With Spaces or Hyphens

Within the command file, filenames and option parameters containing
embedded spaces or hyphens must be surrounded with quotation marks.
For example: “this-file.obj”

Linker Command Files

 8-24

Example 8−2 shows a sample command file that contains linker directives.
(Linker directive formats are discussed in later sections.)

Example 8−2. Command File With Linker Directives

a.obj b.obj c.obj /* Input filenames */

−o prog.out −m prog.map /* Options */

MEMORY /* MEMORY directive */

{

 RAM: origin = 100h length = 0100h

 ROM: origin = 01000h length = 0100h

}

SECTIONS /* SECTIONS directive */

{

 .text: > ROM

 .data: > RAM

 .bss: > RAM

}

8.6.1 Reserved Names in Linker Command Files

The following names are reserved as keywords for linker directives. Do not use
them as symbol or section names in a command file.

align GROUP origin
ALIGN l (lowercase L) ORIGIN
attr len page
ATTR length PAGE
block LENGTH range
BLOCK load run
COPY LOAD RUN
DSECT MEMORY SECTIONS
f NOLOAD spare
fill o type
FILL org TYPE
group UNION

Linker Command Files

8-25Linker Description

8.6.2 Constants in Command Files

Constants can be specified with either of two syntax schemes: the scheme
used for specifying decimal, octal, or hexadecimal constants used in the
assembler (see Section 3.8, Constants, on page 3-26) or the scheme used for
integer constants in C syntax.

Examples:

Decimal Octal Hexadecimal

Assembler Format: 32 40q 20h

C Format: 32 040 0x20

Object Libraries

 8-26

8.7 Object Libraries

An object library is a partitioned archive file that contains complete object files
as members. Usually, a group of related modules are grouped together into
a library. When you specify an object library as linker input, the linker includes
any members of the library that define existing unresolved symbol references.
You can use the archiver to build and maintain libraries. Chapter 9, Archiver
Description, contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable
module. Normally, if an object file that contains a function is specified at link
time, it is linked whether it is used or not; however, if that same function is
placed in an archive library, it is included only if it is referenced.

The order in which libraries are specified is important because the linker
includes only those members that resolve symbols that are undefined when
the library is searched. The same library can be specified as often as
necessary; it is searched each time it is included. Alternatively, the −x option
can be used. A library has a table that lists all external symbols defined in the
library; the linker searches through the table until it determines that it cannot
use the library to resolve any more references.

The following examples link several files and libraries. Assume that:

� Input files f1.obj and f2.obj both reference an external function named
clrscr

� Input file f1.obj references the symbol origin

� Input file f2.obj references the symbol fillclr

� Member 0 of library libc.lib contains a definition of origin

� Member 3 of library liba.lib contains a definition of fillclr

� Member 1 of both libraries defines clrscr

For example, if you enter the following, the references are resolved as shown:

cl55 −z f1.obj liba.lib f2.obj libc.lib

� Member 1 of liba.lib satisfies both references to clrscr because the library
is searched and clrscr is defined before f2.obj references it.

� Member 0 of libc.lib satisfies the reference to origin.

� Member 3 of liba.lib satisfies the reference to fillclr.

Object Libraries

8-27Linker Description

If, however, you enter the following, all the references to clrscr are satisfied by
member 1 of libc.lib:

cl55 −z f1.obj f2.obj libc.lib liba.lib

If none of the linked files reference symbols defined in a library, you can use
the −u option to force the linker to include a library member. The next example
creates an undefined symbol rout1 in the linker’s global symbol table:

cl55 −z −u rout1 libc.lib

If any member of libc.lib defines rout1, the linker includes that member.

The linker allows you to allocate individual members of an archive library into
a specific output section. For more information, see Section 8.9.4, Allocating
an Archive Member to an Output Section.

Section 8.4.11, Alter the File Search Algorithm, on page 8-12, describes
methods for specifying directories that contain object libraries.

The MEMORY Directive

 8-28

8.8 The MEMORY Directive

The linker determines where output sections should be allocated in memory;
it must have a model of target memory to accomplish this task. The MEMORY
directive allows you to specify a model of target memory so that you can define
the types of memory your system contains and the address ranges they
occupy. The linker maintains the model as it allocates output sections and uses
it to determine which memory locations can be used for object code. If a model
is not specified in a linker command file, then the linker uses the default
memory configuration.

The memory configurations of TMS320C55x systems differ from application
to application. The MEMORY directive allows you to specify a variety of
configurations. After you use MEMORY to define a memory model, you can
use the SECTIONS directive to allocate output sections into defined memory.

Refer to Section 2.3, How the Linker Handles Sections, on page 2-12 for
details on how the linker handles sections. Refer to Section 2.4, Relocation,
on page 2-15 for information on the relocation of sections.

8.8.1 Default Memory Model

The assembler enables you to assemble code for the TMS320C55x device.
The assembler inserts a field in the output file’s header, identifying the device.
The linker reads this information from the object file’s header. If you do not use
the MEMORY directive, the linker uses a default memory model. For more
information about the default memory model, see subsection 8.13.1, Default
Allocation Algorithm, on page 8-64.

8.8.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically
present in the target system and can be used by a program. Each memory
range has a name, a starting address, and a length.

By default, the linker uses a single address space on PAGE 0. However, the
linker allows you to configure separate address spaces by using the MEMORY
directive’s PAGE option. The PAGE option causes the linker to treat the
specified pages as completely separate memory spaces. C55x supports as
many as 255 PAGES, but the number available to you depends on the
configuration you have chosen.

The MEMORY Directive

8-29Linker Description

When you use the MEMORY directive, be sure to identify all the memory
ranges that are available for object code. Memory defined by the MEMORY
directive is configured memory; any memory that you do not explicitly account
for with the MEMORY directive is unconfigured memory. The linker does not
place any part of a program into unconfigured memory. You can represent
nonexistent memory spaces by simply not including an address range in a
MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY
(uppercase), followed by a list of memory range specifications enclosed in
braces. Example 8−3 shows a sample command file with MEMORY directive.

Example 8−3. The MEMORY Directive

/**/
/* Sample command file with MEMORY directive */
/**/
file1.obj file2.obj /* Input files */
−o prog.out /* Options */

MEMORY
{
 ROM: origin = 1C00h, length = 1000h

 SCRATCH: origin = 60h, length = 20h
 ONCHIP: origin = 80h, length = 1000h
}

Origins Lengths

MEMORY
directive

Names

The general syntax for the MEMORY directive is:

MEMORY
{

[PAGE 0 :] name 1 [(attr)] : origin = constant , length = constant;
[PAGE n :] name n [(attr)] : origin = constant , length = constant;

}

The MEMORY Directive

 8-30

PAGE identifies a memory space. You can specify up to 255 pages,
depending on your configuration; usually, PAGE 0 specifies
program memory, and PAGE 2 specifies peripheral memory. If you
do not specify a PAGE, the linker acts as if you specified PAGE 0.
Each PAGE represents a completely independent address space.
Configured memory on PAGE 0 can overlap configured memory
on PAGE 2.

name Names a memory range. A memory name may be one to any
number of characters. Valid characters include A−Z, a−z, $, ., and
_. The names have no special significance to the linker; they simply
identify memory ranges. Memory range names are internal to the
linker and are not retained in the output file or in the symbol table.
Memory ranges on separate pages can have the same name;
within a page, however, all memory ranges must have unique
names and must not overlap.

attr Specifies one to four attributes associated with the named range.
Attributes are optional; when used, they must be enclosed in
parentheses. Attributes restrict the allocation of output sections
into certain memory ranges. If you do not use any attributes, you
can allocate any output section into any range with no restrictions.
Any memory for which no attributes are specified (including all
memory in the default model) has all four attributes. Valid attributes
include:

R specifies that the memory can be read
W specifies that the memory can be written to
X specifies that the memory can contain executable code
I specifies that the memory can be initialized

origin Specifies the starting address of a memory range; enter as origin,
org, or o. The value, specified in bytes, is a 24-bit constant and may
be decimal, octal, or hexadecimal.

length Specifies the length of a memory range; enter as length, len, or l.
The value, specified in bytes, is a 24-bit constant and may be
decimal, octal, or hexadecimal.

fill Specifies a fill character for the memory range; enter as fill or f. Fills
are optional. The value is a 2-byte integer constant and may be
decimal, octal, or hexadecimal. The fill value will be used to fill
areas of the memory range that are not allocated to a section.

The MEMORY Directive

8-31Linker Description

Note: Filling Memory Ranges

If you specify fill values for large memory ranges, your output file will be very
large because filling a memory range (even with 0s) causes raw data to be
generated for all unallocated blocks of memory in the range.

The following example specifies a memory range with the R and W attributes
and a fill constant of 0FFFFh:

MEMORY
{

RFILE (RW) : o = 02h, l = 0FEh, f = 0FFFFh
}

You normally use the MEMORY directive in conjunction with the SECTIONS
directive to control allocation of output sections. After you use the MEMORY
directive to specify the target system’s memory model, you can use the
SECTIONS directive to allocate output sections into specific named memory
ranges or into memory that has specific attributes. For example, you could
allocate the .text and .data sections into the area named ROM and allocate the
.bss section into the area named ONCHIP.

Figure 8−2 illustrates the memory map shown in Example 8−3.

Figure 8−2. Memory Map Defined in Example 8−3

00000h

0005Fh
00060h
0007Fh
00080h

0107Fh
01080h

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉ
ÉÉÉÉÉ

Data Memory

On-chip
RAM

SCRATCH

0FFFFh

Program Memory

RO
M

On-chip
ROM

00000h

00C00h

01C00h

0FFFFh

ONCHIP

The SECTIONS Directive

 8-32

8.9 The SECTIONS Directive

The SECTIONS directive:

� Describes how input sections are combined into output sections

� Defines output sections in the executable program

� Specifies where output sections are placed in memory (in relation to each
other and to the entire memory space)

� Permits renaming of output sections

Refer to Section 2.3, How the Linker Handles Sections, on page 2-12 for
details on how the linker handles sections. Refer to Section 2.4, Relocation,
on page 2-15 for information on the relocation of sections. Refer to subsection
2.2.4, Subsections, on page 2-8 for information on defining subsections;
subsections allow you to manipulate sections with greater precision.

8.9.1 Default Configuration

If you do not specify a SECTIONS directive, the linker uses a default algorithm
for combining and allocating the sections. Section 8.13, Default Allocation
Algorithm, on page 8-64 describes this algorithm in detail.

8.9.2 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word
SECTIONS (uppercase), followed by a list of output section specifications
enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS
{

name : [property, property, property,...]
name : [property, property, property,...]
name : [property, property, property,...]

}

The SECTIONS Directive

8-33Linker Description

Each section specification, beginning with name, defines an output section.
(An output section is a section in the output file.) After the section name is a
list of properties that define the section’s contents and how the section is
allocated. The properties can be separated by optional commas. Possible
properties for a section are as follows:

� Load allocation defines where in memory the section is to be loaded.

Syntax: load = allocation or
allocation or
 > allocation

� Run allocation defines where in memory the section is to be run.

Syntax: run = allocation or
run > allocation

� Input sections define the input sections that constitute the output section.

Syntax: { input_sections }

� Section type defines flags for special section types.

Syntax: type = COPY or
type = DSECT or
type = NOLOAD

For more information on section types, see Section 8.14, Special Section
Types (DSECT, COPY, and NOLOAD), on page 8-67.

� Fill value defines the value used to fill uninitialized holes.

Syntax: fill = value or
name: ... { ... } = value

For more information on creating and filling holes, see Section 8.16,
Creating and Filling Holes, on page 8-73.

Example 8−4 shows a SECTIONS directive in a sample linker command file.
Figure 8−3 shows how these sections are allocated in memory.

The SECTIONS Directive

 8-34

Example 8−4. The SECTIONS Directive

/**/
/* Sample command file with SECTIONS directive */
/**/
file1.obj file2.obj /* Input files */
−o prog.out /* Options */

SECTIONS
{
 .text: load = ROM, run = 800h
 .const: load = ROM
 .bss: load = RAM
 .vectors: load = FF80h
 {
 t1.obj(.intvec1)
 t2.obj(.intvec2)
 endvec = .;
 }
 .data: align = 16
}

SECTIONS
directive

Section
specifications

Figure 8−3 shows the five output sections defined by the sections directive in
Example 8−4: .vectors, .text, .const, .bss, and .data.

Figure 8−3. Section Allocation Defined by Example 8−4

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ROM

RAM

.vectors

.text

− Bound at 0FF80h

− Allocated in ROM

.const − Allocated in ROM

.bss − Allocated in RAM

.data − Aligned on 16-byte
 boundary

00h

The .text section combines all input sections named
.text. The linker combines all sections named .text
into this section. The application must relocate the
section to run at 0800h.

The .const section combines all inout sections
named .const.

The .bss section combines all input sections named
.bss.

The .vectors section is composed of the .intvec1
section from t1.obj and the .intvec2 section from
t2.obj.

The .data section combines all input sections
named .data. The linker will place it anywhere there
is space for it (in RAM in this illustration) and align
it to a 16-byte boundary.

FF80h

The SECTIONS Directive

8-35Linker Description

8.9.3 Memory Placement

The linker assigns each output section two locations in target memory: the
location where the section will be loaded and the location where it will be run.
Usually, these are the same, and you can think of each section as having only
a single address. In any case, the process of locating the output section in the
target’s memory and assigning its address(es) is called memory placement or
allocation. For more information about using separate load and run
placements, see Section 8.10, Specifying a Section’s Run-Time Address, on
page 8-45.

If you do not tell the linker how a section is to be placed, it uses a default
algorithm to place the section. Generally, the linker puts sections wherever
they fit into configured memory. You can override this default placement for a
section by defining it within a SECTIONS directive and providing instructions
on how to place it.

You control allocation by specifying one or more allocation parameters. Each
parameter consists of a keyword, an optional equal sign or greater-than sign,
an optional split operator (>>), and a value optionally enclosed in parentheses.
If load and run allocation is separate, all parameters following the keyword
LOAD apply to load allocation, and those following RUN apply to run
allocation. Possible allocation parameters are:

Binding places a section at a specific address.

.text: load = 0x1000

Memory places the section into a range defined in the MEMORY
directive with the specified name (like ROM) or attributes.

.text: load > ROM

Alignment uses the align keyword to specify that the section should
start on an address boundary.

.text: align = 0x80

To force the output section containing the assignment to also
be aligned, assign . (dot) with an align expression. For
example, the following will align bar.obj, and it will force
outsect to align on a 0x40 byte boundary:

SECTIONS
{

outsect: { bar.obj(.bss)
. = align(0x40);

}
}

The SECTIONS Directive

 8-36

Splitting uses the split operator to list memory areas in which the
section can be placed.

.text: >> ROM1|ROM2|ROM3

Blocking uses the block keyword to specify that the section must fit
between two address boundaries: if the section is too big, it
will start on an address boundary.

.text: block(0x80)

Page specifies the memory page to be used (see Section 8.12,
Overlay Pages, on page 8-59).

.text: PAGE 0

For the load (usually the only) allocation, you may simply use a greater-than
sign and omit the load keyword:

.text: > ROM .text: {...} > ROM

.text: > 0x1000

If more than one parameter is used, you can string them together as follows:

.text: > ROM align 16 PAGE 2

Or, if you prefer, use parentheses for readability:

.text: load = (ROM align(16) page (2))

8.9.3.1 Binding

You can supply a specific starting address for an output section by following
the section name with an address:

.text: 0x1000

This example specifies that the .text section must begin at byte location 1000h.
The binding address must be a 24-bit constant.

Output sections can be bound anywhere in configured memory (assuming
there is enough space), but they cannot overlap. If there is not enough space
to bind a section to a specified address, the linker issues an error message.

Note: Binding and Alignment or Named Memory are Incompatible

You cannot bind a section to an address if you use alignment or named
memory. If you try to do so, the linker issues an error message.

The SECTIONS Directive

8-37Linker Description

8.9.3.2 Named Memory

You can allocate a section into a memory range that is defined by the
MEMORY directive (see section 8.8 on page 8-28). This example names
ranges and links sections into them:

MEMORY
{
 ROM (RIX) : origin = 0C00h, length = 1000h
 RAM (RWIX) : origin = 0080h, length = 1000h
}

SECTIONS
{
 .text : > ROM
 .data ALIGN(128) : > RAM
 .bss : > RAM

In this example, the linker places .text into the area called ROM. The .data and
.bss output sections are allocated into RAM. You can align a section within a
named memory range; the .data section is aligned on a 128-byte boundary
within the RAM range.

You can also specify a list of memory areas in which to place an output section.
For example, the following statement places .text in ROM1 or ROM2 or
ROM3. If .text won’t fit in ROM1, the linker tries ROM2, then ROM3. The areas
are always tried in the order in which they are specified.

 .text: > ROM1|ROM2|ROM3

Similarly, you can link a section into an area of memory that has particular
attributes. To do this, specify a set of attributes (enclosed in parentheses)
instead of a memory name. Using the same MEMORY directive declaration,
you can specify:

SECTIONS
{
 .text: > (X) /* .text −−> executable memory */
 .data: > (RI) /* .data −−> read or init memory */
 .bss : > (RW) /* .bss −−> read or write memory */
}

In this example, the .text output section can be linked into either the ROM or
RAM area because both areas have the X attribute. The .data section can also
go into either ROM or RAM because both areas have the R and I attributes.
The .bss output section, however, must go into the RAM area because only
RAM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated,
although the linker uses lower memory addresses first and avoids
fragmentation when possible. In the preceding examples, assuming that no
conflicting assignments exist, the .text section starts at address 0. If a section
must start on a specific address, use binding instead of named memory.

The SECTIONS Directive

 8-38

8.9.3.3 Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an
n-byte boundary, where n is a power of 2. For example, the following statement
allocates .text so that it falls on a 128-byte boundary:

.text: load = align(128)

Blocking is a weaker form of alignment that allocates a section anywhere
within a block of size n. If the section is larger than the block size, the section
begins on that boundary. As with alignment, n must be a power of 2. For
example, the following statement allocates .bss so that the section either is
contained in a single 128-byte page or begins on a page:

bss: load = block(0x80)

You can use alignment or blocking alone or in conjunction with a memory area.

8.9.3.4 Specifying Input Sections

An input section specification identifies the sections from input files that are
combined to form an output section. The size of an output section is the sum
of the sizes of the input sections that comprise it, plus any holes that are
created due to alignment or blocking of a given input section. The linker
combines input sections by concatenating them in the order in which they are
specified, unless alignment or blocking is specified for any of the input
sections.

When the linker encounters a simple object file reference (with no path
specification) in the linker command file, it will try to match the file to any
previously-specified input files. If the reference does not match one of the input
files, the linker will look for the object file in the current directory and load it if
it is found. To disable this functionality, do one of the following:

� Include a path specification with your object file reference in the linker
command file

� Specify the −l option in front of the input file to get the linker to link in the
search path for your input file

If alignment or blocking is specified for any input section, the input sections
within an output section are ordered as follows:

1) All aligned sections, from largest to smallest

2) All blocked sections, from largest to smallest

3) All other input sections from largest to smallest

The SECTIONS Directive

8-39Linker Description

Example 8−5 shows the most common type of section specification; note that
no input sections are listed.

Example 8−5. The Most Common Method of Specifying Section Contents

SECTIONS
{

.text:

.data:

.bss:
}

In Example 8−5 the linker takes all the .text sections from the input files and
combines them into the .text output section. The linker concatenates the .text
input sections in the order that it encounters them in the input files. The linker
performs similar operations with the .data and .bss sections. You can use this
type of specification for any output section.

You can explicitly specify the input sections that form an output section. Each
input section is identified by its filename and section name:

SECTIONS
{
 .text : /* Build .text output section */
 {
 f1.obj(.text) /* Link .text section from f1.obj */
 f2.obj(sec1) /* Link sec1 section from f2.obj */
 f3.obj /* Link ALL sections from f3.obj */
 f4.obj(.text,sec2) /* Link .text and sec2 from f4.obj */
 }
}

It is not necessary for input sections to have the same name as each other or
as the output section they become part of. If a file is listed with no sections, all
of its sections are included in the output section. If any additional input sections
have the same name as an output section, but are not explicitly specified by
the SECTIONS directive, they are automatically linked in at the end of the
output section. For example, if the linker found more .text sections in the
preceding example, and these .text sections were not specified anywhere in
the SECTIONS directive, the linker would concatenate these extra sections
after f4.obj(sec2).

The specifications in Example 8−5 are actually a shorthand method for the
following:

SECTIONS
{
 .text: { *(.text) }
 .data: { *(.data) }
 .bss: { *(.bss) }
}

The SECTIONS Directive

 8-40

The specification *(.text) means the unallocated .text sections from all the
input files. This format is useful when:

� You want the output section to contain all input sections that have a
specified name, but the output section name is different than the input
sections’ name.

� You want the linker to allocate the input sections before it processes
additional input sections or commands within the braces.

The following example illustrates the two purposes above:

SECTIONS
{
 .text : {
 abc.obj(xqt)
 *(.text)
 }
 .data : {
 *(.data)
 fil.obj(table)
 }
}

In this example, the .text output section contains a named section xqt from file
abc.obj, which is followed by all the .text input sections. The .data section
contains all the .data input sections, followed by a named section table from
the file fil.obj. This method includes all the unallocated sections. For example,
if one of the .text input sections was already included in another output section
when the linker encountered *(.text), the linker could not include that first .text
input section in the second output section.

8.9.4 Allocating an Archive Member to an Output Section

The linker command file syntax has been extended to provide a mechanism
for specifying one or more members of an object library for input to an output
section. In other words, the linker allows you to allocate one or more members
of an archive library into a specific output section. The syntax for such an
allocation is:

SECTIONS
{
 .output_sec
 {
 [−l]lib_name<obj1 [obj2...objn]> (.sec_name)
 }
}

The SECTIONS Directive

8-41Linker Description

In this syntax, the lib_name is the archive library. The −l option, which normally
implies a path search be made for the named file, is optional in this syntax
since the < > mechanism requires that the file from which the members are
selected must be an archive. In this case, the linker always utilizes a path
search to find the archive. However, if the specified lib_name contains any
path information, then a library path search is not performed when looking for
the library file.

For more information on the −l option, see section 8.4.11, Alter the File Search
Algorithm, on page 8-12.

Brackets (<>) are used to specify the archive member(s). The brackets may
contain one or more object files, separated by a space. The sec_name is the
archive section to be allocated.

For example:

SECTIONS

{
 .boot > BOOT1
 {
 /* This is the new support */
 −l rts55.lib<boot.obj> (.text)
 rts.lib< exit.obj strcpy.obj> (.text)
 }
 .rts > BOOT2
 {
 −l rts55.lib (.text)
 }
 .text > RAM
 {
 * (.text)
 }
}

In this example, boot.obj, exit.obj, and strcpy.obj are extracted from the
run-time-support library and placed in the .boot output section.

The remainder of the run-time-support library object that is referenced is
allocated to the .rts output section. An archive member, or list of members, can
now be specified via < >’s after the library name.

All other unallocated .text sections are placed in the .text section.

The SECTIONS Directive

 8-42

8.9.5 Memory Placement Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an
output section can be allocated. Consider the following example:

MEMORY
{
 P_MEM1 : origin = 02000h, length = 01000h
 P_MEM2 : origin = 04000h, length = 01000h
 P_MEM3 : origin = 06000h, length = 01000h
 P_MEM4 : origin = 08000h, length = 01000h
}

SECTIONS
{
 .text : { } > P_MEM1 | P_MEM2 | P_MEM4
}

The “|” operator is used to specify the multiple memory ranges. The .text output
section will be allocated as a whole into the first memory range in which it fits.
The memory ranges are accessed in the order specified. In this example, the
linker will first try to allocate the section in P_MEM1. If that attempt fails, the
linker will try to place the section into P_MEM2, and so on. If the output section
is not successfully allocated in any of the named memory ranges, the linker
issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly
handle an output section that grows beyond the available space of the memory
range in which it is originally allocated. Instead of modifying the linker
command file, you can let the linker move the section into one of the other
areas.

8.9.6 Automatic Splitting of Output Sections Among Non-Contiguous Memory
Ranges

The linker can split output sections among multiple memory ranges to achieve
an efficient allocation. Use the >> operator to indicate that an output section
can be split, if necessary, into the specified memory ranges. For example:

MEMORY
{
 P_MEM1 : origin = 02000h, length = 01000h
 P_MEM2 : origin = 04000h, length = 01000h
 P_MEM3 : origin = 06000h, length = 01000h
 P_MEM4 : origin = 08000h, length = 01000h
}

SECTIONS
{
 .text: { *(.text) } >> P_MEM1 | P_MEM2 | P_MEM3 | P_MEM4
}

The SECTIONS Directive

8-43Linker Description

In this example, the >> operator indicates that the .text output section can be
split among any of the listed memory areas. If the .text section grows beyond
the available memory in P_MEM1, it is split on an input section boundary, and
the remainder of the output section is allocated to P_MEM2 | P_MEM3 |
P_MEM4.

The “|” operator is used to specify the list of multiple memory ranges.

You can also use the >> operator to indicate that an output section can be split
within a single memory range. This functionality is useful when several output
sections must be allocated into the same memory range, but the restrictions
of one output section cause the memory range to be partitioned.

Consider the following example:

MEMORY
{
 RAM : origin = 01000h, length = 08000h
}

SECTIONS
{
 .special: { f1.obj(.text) } = 04000h
 .text: { *(.text) } >> RAM
}

The .special output section is allocated near the middle of the RAM memory
range. This leaves two unused areas in RAM: from 01000h to 04000h, and
from the end of f1.obj(.text) to 08000h. The specification for the .text section
allows the linker to split the .text section around the .special section and use
the available space in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory
ranges that match a specified attribute combination. For example:

MEMORY
{
 P_MEM1 (RWX) : origin = 01000h, length = 02000h
 P_MEM2 (RWI) : origin = 04000h, length = 01000h
}

SECTIONS
{
 .text: { *(.text) } >> (RW)
}

The linker attempts to allocate all or part of the output section into any memory
range whose attributes match the attributes specified in the SECTIONS
directive.

The SECTIONS Directive

 8-44

This SECTIONS directive has the same effect as:

SECTIONS
{
 .text: { *(.text) } >> P_MEM1 | P_MEM2
}

Certain output sections should not be split:

� The .cinit section, which contains the autoinitialization table for C/C++
programs

� The .pinit section, which contains the list of global constructors for C++
programs

� The .sysmem, .stack, and .sysstack sections, which are uninitialized
sections for the C memory pool used by the malloc() functions and the
run-time stacks, respectively.

� An output section with separate load and run allocations. The code that
copies the output section from its load-time allocation to its run-time
location cannot accommodate a split in the output section.

� An output section with an input section specification that includes an
expression to be evaluated. The expression may define a symbol that is
used in the program to manage the output section at run time.

� An output section that is a GROUP member. The intent of a GROUP
directive is to force contiguous allocation of GROUP member output
sections.

� An output section that has a START(), END(), or SIZE() operator applied
to it. These operators provide information about a section’s load or run
address and size. If the section were split, then the integrity of the operator
would be compromised.

� GROUPs and UNIONs, which are used to allocate address and dimension
operators.

If you use the >> operator in any of these situations, the linker issues a warning
and ignores the operator.

Specifying a Section’s Load-Time and Run-Time Addresses

8-45Linker Description

8.10 Specifying a Section’s Load-Time and Run-Time Addresses

At times, you may want to load code into one area of memory and run it in
another. For example, you may have performance-critical code in a
ROM-based system. The code must be loaded into ROM, but it would run
faster in RAM.

The linker provides a simple way to accomplish this. You can use the
SECTIONS directive to direct the linker to allocate a section twice: once to set
its load address and again to set its run address. For example:

.fir: load = ROM, run = RAM

Use the load keyword for the load address and the run keyword for the run
address.

Refer to Section 2.5, Run-Time Relocation, on page 2-17 for an overview on
run-time relocation.

8.10.1 Specifying Load and Run Addresses

The load address determines where a loader will place the raw data for the
section. All references to the section (such as labels in it) refer to its run
address. The application must copy the section from its load address to its run
address; this does not happen automatically when you specify a separate run
address.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and will load and run at the same address. If you provide
both allocations, the section is allocated as if it were two sections of the same
size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides
a way to overlay sections; see subsection 8.11.1, Overlaying Sections With the
UNION Statement, on page 8-53.)

If either the load or run address has additional parameters, such as alignment
or blocking, list them after the appropriate keyword. Everything related to
allocation after the keyword load affects the load address until the keyword run
is seen, after which, everything affects the run address. You may also specify
run first, then load. Use parentheses to improve readability.

If you specify alignment for either the load or run address, the alignment affects
both the load and run address. If you specify the align option for both the load
and run address, the linker redefines the section to the maximum value of both
addresses.

Specifying a Section’s Load-Time and Run-Time Addresses

 8-46

8.10.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so their only significant
address is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and
ignores the load address. If you specify only one address, the linker treats it
as a run address, regardless of whether you call it load or run. The example
below specifies load and run addresses for an uninitialized section:

.bss: load = 0x1000, run = RAM

A warning is issued, load is ignored, and space is allocated in RAM. All of the
following examples have the same effect. The .bss section is allocated in RAM.

.bss: load = RAM

.bss: run = RAM

.bss: > RAM

8.10.3 Defining Load-Time Addresses and Dimensions at Link Time

The code generation tools currently support the ability to load program code
in one area of (slow) memory and run it in another (faster) area. This is done
by specifying separate load and run addresses for an output section or
GROUP in the linker command file, then executing a sequence of instructions
(the copying code) that moves the program code from its load area to its run
area before it is needed.

There are several responsibilities that you take on when setting up a system
with this feature. One of these responsibilities is to determine the size and
run-time address of the program code to be moved. The current mechanisms
to do this involve the use of .label directives in the copying code as shown in
Example 8−6.

Specifying a Section’s Load-Time and Run-Time Addresses

8-47Linker Description

Example 8−6. Using .label to Define a Load-Time Address

 ; program code

 .sect ”.fir”
 .label fir_src ; load address of section
fir: ; run address of section
 <.fir section program code>

 .label fir_end ; load address of section end

 .text

; copying code
 MOV #fir_src, AR1
 MOV #fir
 RPT #(fir_end − fir_src − 1)
 MOV *AR1+, *CDP+
 CALL fir

This method of specifying the size and load address of the program code has
limitations. While it works fine for an individual input section that is contained
entirely within one source file, what if the program code section is spread over
several source files? What if you want to copy an entire output section from
load space to run space?

8.10.4 Why the Dot Operator Does Not Always Work

The dot operator (.) can be used to define symbols at link-time with a particular
address inside of an output section. It is interpreted like a PC. Whatever the
current offset within the current section is, that is the value associated with the
dot. Consider an output section specification within a SECTIONS directive:

outsect:
{
 s1.obj(.text)
 end_of_s1 = .;
 start_of_s2 = .;
 s2.obj(.text)
 end_of_s2 = .;
}

This statement creates three symbols:

� end_of_s1—the end address of .text in s1.obj
� start_of_s2—the start address of .text in s2.obj
� end_of_s2—the end address of .text in s2.obj

Specifying a Section’s Load-Time and Run-Time Addresses

 8-48

Suppose there is padding between s1.obj and s2.obj that is created as a result
of alignment. Then start_of_s2 is not really the start address of the .text section
in s2.obj, but it is the address before the padding needed to align the .text
section in s2.obj. This is due to the linker’s interpretation of the dot operator
as the current PC. It is also due to the fact that the dot operator is evaluated
independently of the input sections around it.

Another potential problem in the above example is that end_of_s2 may not
account for any padding that was required at the end of the output section. You
cannot reliably use end_of_s2 as the end address of the output section. One
way to get around this problem is to create a dummy section immediately after
the output section in question. For example:

GROUP
{
 outsect:
 {
 start_of_outsect = .;
 ...
 }
 dummy: { size_of_outsect = . − start_of_outsect; }
}

8.10.5 Address and Dimension Operators

Six new operators have been added to the linker command file syntax:

LOAD_START(sym)
START(sym)

Defines sym with the load-time start address of
related allocation unit

LOAD_END(sym)
END(sym)

Defines sym with the load-time end address of
related allocation unit

LOAD_SIZE(sym)
SIZE(sym)

Defines sym with the load-time size of related
allocation unit

RUN_START(sym) Defines sym with the run-time start address of
related allocation unit

RUN_END(sym) Defines sym with the run-time end address of
related allocation unit

RUN_SIZE(sym) Defines sym with the run-time size of related
allocation unit

Note: Linker Command File Operator Equivalencies

LOAD_START() and START() are equivalent, as are LOAD_END()/END()
and LOAD_SIZE()/SIZE().

Specifying a Section’s Load-Time and Run-Time Addresses

8-49Linker Description

The new address and dimension operators can be associated with several
different kinds of allocation units, including input items, output sections,
GROUPs, and UNIONs. The following sections provide some examples of
how the operators can be used in each case.

8.10.5.1 Input Items

Consider an output section specification within a SECTIONS directive:

outsect:
{
 s1.obj(.text)
 end_of_s1 = .;
 start_of_s2 = .;
 s2.obj(.text)
 end_of_s2 = .;
}

This can be rewritten using the START and END operators as follows:

outsect:
{
 s1.obj(.text) { END(end_of_s1) }
 s2.obj(.text) { START(start_of_s2), END(end_of_s2) }
}

The values of end_of_s1 and end_of_s2 will be the same as if you had used
the dot operator in the original example, but start_of_s2 would be defined after
any necessary padding that needs to be added between the two .text sections.
Remember that the dot operator would cause start_of_s2 to be defined before
any necessary padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls
for braces { } to enclose the operator list. The operators in the list are applied
to the input item that occurs immediately before the list.

8.10.5.2 Output Section

The START, END, and SIZE operators can also be associated with an output
section. Here is an example:

outsect: START(start_of_outsect), SIZE(size_of_outsect)
{
 <list of input items>
}

In this case, the SIZE operator defines size_of_outsect to incorporate any
padding that is required in the output section to conform to any alignment
requirements that are imposed.

The syntax for specifying the operators with an output section do not require
braces to enclose the operator list. The operator list is simply included as part
of the allocation specification for an output section.

Specifying a Section’s Load-Time and Run-Time Addresses

 8-50

8.10.5.3 GROUPs

Here is another use of the START and SIZE operators in the context of a
GROUP specification:

GROUP
{
 outsect1: { ... }
 outsect2: { ... }
} load = ROM, run = RAM, START(group_start), SIZE(group_size);

This can be useful if the whole GROUP is to be loaded in one location and run
in another. The copying code can use group_start and group_size as
parameters for where to copy from and how much is to be copied. This makes
the use of .label in the source code unnecessary.

8.10.5.4 UNIONs

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to
distinguish between the size of a UNION’s load space and the size of the space
where its constituents are going to be copied before they are run. Here is an
example:

UNION: run = RAM, LOAD_START(union_load_addr),
 LOAD_SIZE(union_ld_sz), RUN_SIZE(union_run_sz)
{
 .text1: load = ROM, SIZE(text1_size) { f1.obj(.text) }
 .text2: load = ROM, SIZE(text2_size) { f2.obj(.text) }
}

Here union_ld_sz is going to be equal to the sum of the sizes of all output
sections placed in the union. The union_run_sz value is equivalent to the
largest output section in the union. Both of these symbols incorporate any
padding due to blocking or alignment requirements.

8.10.6 Referring to the Load Address by Using the .label Directive

An alternative to using the address and dimension operators described in
section 8.10.5 is to use the .label assembler directive. The .label directive
defines a special symbol that refers to the section’s load address. Thus,
whereas normal symbols are relocated with respect to the run address, .label
symbols are relocated with respect to the load address. For more information
on the .label directive, see page 4-66.

Example 8−7 shows the use of the .label directive.

Specifying a Section’s Load-Time and Run-Time Addresses

8-51Linker Description

Example 8−7. Copying a Section From ROM to RAM

; define a section to be copied from ROM to RAM
 .sect ”.fir”
 .label fir_src ; load address of section
fir: ; run address of section
 <code here> ; code for the section

 .label fir_end ; load address of section end

; copy .fir section from ROM into RAM
 .text

 MOV #fir_src,AR1 ; get load address
 MOV BRC0,T1
 MOV T1,BRC1
 MOV #(fir_end − fir_src − 1),BRC0
 RPTB end
end MOV *AR1+,*CDP+
 MOV BRC1,T1
 MOV T1,BRC0

; jump to section, now in RAM
 CALL fir

Linker Command File

/**/
/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE */
/**/

MEMORY
{
 ONCHIP : origin = 000100h, length = 000700h
 PROG : origin = 000800h, length = 002400h
 DATA : origin = 002C00h, length = 00D200h
}

SECTIONS
{
 .text: load = PROG
 .fir: load = DATA, run ONCHIP
}

Specifying a Section’s Load-Time and Run-Time Addresses

 8-52

Figure 8−4 illustrates the run-time execution of Example 8−7.

Figure 8−4. Run-Time Execution of Example 8−7

ONCHIP

 fir (relocated
to run here)

PROG

.text

DATA

.fir
(loads here)

Program Memory

 800h

2C00h

FE00h

 100h

Using UNION and GROUP Statements

8-53Linker Description

8.11 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and
UNION. Specifying a lot of sections in a UNION causes the linker to allocate
them to the same run address. Putting sections in a GROUP causes the linker
to allocate them contiguously in memory.

8.11.1 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section to run
at the same address. For example, you may have several routines you want
in on-chip RAM at various stages of execution. Or you may want several data
objects that will not be active at the same time to share a block of memory. The
UNION statement within the SECTIONS directive provides a way to allocate
several sections at the same run-time address.

In Example 8−8, the .bss sections from file1.obj and file2.obj are allocated at
the same address in RAM. In the memory map, the union occupies as much
space as its largest component. The components of a union remain
independent sections; they are simply allocated together as a unit.

Example 8−8. The UNION Statement

SECTIONS
{
 .text: load = ROM
 UNION: run = RAM
 {
 .bss1: { file1.obj(.bss) }
 .bss2: { file2.obj(.bss) }
 }
 .bss3: run = RAM { globals.obj(.bss) }
 }

Allocation of a section as part of a union affects only its run address. Under no
circumstances can sections be overlaid for loading. If an initialized section is
a union member (an initialized section has raw data, such as .text), its load
allocation must be separately specified. For example:

Example 8−9. Separate Load Addresses for UNION Sections

 UNION: run = RAM
 {
 .text1: load = ROM, { file1.obj(.text) }
 .text2: load = ROM, { file2.obj(.text) }
 }

Using UNION and GROUP Statements

 8-54

Figure 8−5. Memory Allocation Shown in Example 8−8 and Example 8−9

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ROM

RAM

.text 2 (run)

.text 1 (load)

.text 1 (run)

.text 2 (load)

Copies at
 run time

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ROM

RAM

.text

.bss2

.bss1

.bss3

Allocation for Example 8−8 Allocation for Example 8−9

Sections cannot
load as a union.

Sections can run as
a union. This is run-
time allocation only.

Since the .text sections contain data, they cannot load as a union, although
they can be run as a union. Therefore, each requires its own load address. If
you fail to provide a load allocation for an initialized section within a union, the
linker issues a warning and allocates load space anywhere it fits in configured
memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is
redundant to specify a load address for the union itself. For purposes of
allocation, the union is treated as an uninitialized section: any one allocation
specified is considered a run address, and, if both are specified, the linker
issues a warning and ignores the load address.

The alignment and block attributes of a union are the maximum alignment and
block attributes of any of its members.

Using UNION and GROUP Statements

8-55Linker Description

Note: UNION and Overlay Page Are Not the Same

The UNION capability and the overlay page capability (see Section 8.12,
Overlay Pages, on page 8-59) may sound similar because they both deal
with overlays. They are, in fact, quite different. UNION allows multiple
sections to be overlaid within the same memory space. Overlay pages, on
the other hand, define multiple memory spaces. It is possible to use the page
facility to approximate the function of UNION, but this is cumbersome.

8.11.2 Grouping Output Sections Together

The SECTIONS directive has a GROUP option that forces several output
sections to be allocated contiguously. For example, assume that a section
named term_rec contains a termination record for a table in the .data section.
You can force the linker to allocate .data and term_rec together:

Example 8−10. Allocate Sections Together

SECTIONS
{
 .text /* Normal output section */
 .bss /* Normal output section */
 GROUP 1000h : /* Specify a group of sections */
 {
 .data /* First section in the group */
 term_rec /* Allocated immediately after .data */
 }
}

You can use binding, alignment, or named memory to allocate a GROUP in the
same manner as a single output section. In the preceding example, the
GROUP is bound to byte address 1000h. This means that .data is allocated
at byte 1000h, and term_rec follows it in memory.

The alignment and block attributes of a GROUP are the maximum alignment
and block attributes of any of its members.

An allocator for a GROUP is subject to the consistency checking rules listed
in Section 8.11.4.

Using UNION and GROUP Statements

 8-56

8.11.3 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the
SECTIONS directive. By nesting GROUP and UNION statements, you can
express different ways of laying out output sections in the same memory
space. Example 8−11 shows how two overlays of sections can be grouped
together.

Example 8−11. Nesting GROUP and UNION Statements

SECTIONS

 UNION:
 {
 GROUP
 { mysect1
 mysect2
 } load = ROM
 GROUP
 {
 mysect3
 mysect4

 } load = ROM
 } run = RAM
}

Figure 8−6. Memory Overlay Shown in Example 8−11

mysect3

mysect3

mysect2

mysect1

UNION
overlay

Layout 1
GROUP1

Layout 2
GROUP2

Load spaceRun space

Using UNION and GROUP Statements

8-57Linker Description

Given the linker control file in Example 8−11, the linker performs the following
allocations:

� The four sections (mysect1, mysect2, mysect3, mysect4) are assigned
unique, non-overlapping load addresses in the ROM memory region. This
assignment is determined by the particular load allocations given for each
section.

� Sections mysect1 and mysect2 are assigned the same run address in
RAM.

� Sections mysect3 and mysect4 are assigned the same run address in
RAM.

� The run addresses of mysect1/mysect2 and mysect3/mysect4 are
allocated contiguously, as directed by the GROUP statement (subject to
alignment and blocking restrictions).

To refer to groups and unions, linker diagnostic messages use the notation:

GROUP_n
UNION_n

In this notation, n is a sequential number (beginning at 1) that represents the
lexical ordering of the group or union in the linker control file, without regard
to nesting. Groups and unions each have their own counter.

8.11.4 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for
unions, groups, and sections. The following rules are used:

� Run allocations are only allowed for top-level sections, groups, or unions
(sections, groups, or unions that are not nested under any other groups
or unions). The linker uses the run address of the top-level structure to
compute the run addresses of the components within groups and unions.

� As discussed in Section 8.11.1, the linker does not accept a load allocation
for UNIONs.

� As discussed in Section 8.11.1, the linker does not accept a load allocation
for uninitialized sections.

� In most cases, you must provide a load allocation for an initialized section.
However, the linker does not accept a load allocation for an initialized
section that is located within a group that already defines a load allocator.

Using UNION and GROUP Statements

 8-58

� As a shortcut, you can specify a load allocation for an entire group, to
determine the load allocations for every initialized section or subgroup
nested within the group. However, a load allocation is accepted for an
entire group only if all of the following conditions are true:

� The group is initialized (i.e., it has at least one initialized member).

� The group is not nested inside another group that has a load allocator.

� The group does not contain a union containing initialized sections.

If the group contains a union with initialized sections, it is necessary to
specify the load allocation for each initialized section nested within the
group. Consider the following example:

SECTIONS
{
 GROUP: load = ROM, run = ROM
 {
 .text1:
 UNION:
 {
 .text2:
 .text3:
 }
 }
}

The load allocator given for the group does not uniquely specify the load
allocation for the elements within the union: .text2 and .text3. In this case,
the linker will issue a diagnostic message to request that these load
allocations be specified explicitly.

Overlay Pages

8-59Linker Description

8.12 Overlay Pages

Some target systems use a memory configuration in which all or part of the
memory space is overlaid by shadow memory. This allows the system to map
different banks of physical memory into and out of a single address range in
response to hardware selection signals. In other words, multiple banks of
physical memory overlay each other at one address range. You may want the
linker to load various output sections into each of these banks or into banks
that are not mapped at load time.

The linker supports this feature by providing overlay pages. Each page
represents an address range that must be configured separately with the
MEMORY directive. You can then use the SECTIONS directive to specify the
sections to be mapped into various pages.

8.12.1 Using the MEMORY Directive to Define Overlay Pages

To the linker, each overlay page represents a completely separate memory
comprising the full 24-bit range of addressable locations. This allows you to
link two or more sections at the same (or overlapping) addresses if they are
on different pages.

Pages are numbered sequentially, beginning with 0. If you do not use the
PAGE option, the linker allocates all sections into PAGE 0.

For example, assume that your system can select between two banks of
physical memory for data memory space: address range A00h to FFFFh for
PAGE 1 and 0A00h to 2BFF for PAGE 2. Although only one bank can be
selected at a time, you can initialize each bank with different data. This is how
you use the MEMORY directive to obtain this configuration:

Example 8−12. Memory Directive With Overlay Pages

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

MEMORY
{
 PAGE 0 : ONCHIP : origin = 0800h, length = 0240h
 : PROG : origin = 02C00h, length = 0D200h
 PAGE 1 : OVR_MEM : origin = 0A00h, length = 02200h
 : DATA : origin = 02C00h, length = 0D400h
 PAGE 2 : OVR_MEM : origin = 0A00h, length = 02200h
}

Overlay Pages

 8-60

Example 8−12 defines three separate address spaces. PAGE 0 defines an
area of on-chip program memory and the rest of program memory space.
PAGE 1 defines the first overlay memory area and the rest of data memory
space. PAGE 2 defines another area of overlay memory for data space. Both
OVR_MEM ranges cover the same address range. This is possible because
each range is on a different page and therefore represents a different memory
space.

Figure 8−7 shows overlay pages defined by the MEMORY directive in
Example 8−12 and the SECTIONS directive in Example 8−13.

Figure 8−7. Overlay Pages Defined by Example 8−12 and Example 8−13

Run address
for f1, f2, f3,

f4

ONCHIP

PROG

.text

800h

FC00h

2C00h

Program Memory
Page 0

f1.obj (.text)
f2.obj (.text)

OVR_MEM

DATA

.bss

A00h

2C00h

f3.obj (.text)
f4.obj (.text)

OVR_MEM
A00h

2C00h

Data Memory
Page 1

Data Memory
Page 2

Overlay Pages

8-61Linker Description

8.12.2 Using Overlay Pages With the SECTIONS Directive

Assume that you are using the MEMORY directive as shown in Example 8−12.
Further assume that your code consists of, besides the usual sections, four
modules of code that you want to load in data memory space but that you
intend to run in the on-chip RAM in program memory space. Example 8−13
shows how to use the SECTIONS directive overlays accordingly.

Example 8−13. SECTIONS Directive Definition for Overlays in Figure 8−7

SECTIONS
{
 UNION : run = ONCHIP
 {
 S1 : load = OVR_MEM PAGE 1
 {
 f1.obj (.text)
 f2.obj (.text)

 } LOAD_START(s1_load);
 S2 : load = OVR_MEM PAGE 2
 {
 s2_load = 0A00h;
 s2_start = .;
 f3.obj (.text)
 f4.obj (.text)
 s2_length = . − s2_start;
 } LOAD_START(s2_load), SIZE(s2_length)

 } RUN_START(union_start)
 .text: load = PROG PAGE 0
 .data: load = PROG PAGE 0
 .bss : load = DATA PAGE 1
}

The four modules of code are f1, f2, f3, and f4. The modules f1 and f2 are
combined into output section S1, and f3 and f4 are combined into output
section S2. The PAGE specifications for S1 and S2 tell the linker to link these
sections into the corresponding pages. As a result, they are both linked to load
address A00h, but in different memory spaces. When the program is loaded,
a loader can configure hardware so that each section is loaded into the
appropriate memory bank.

Output sections S1 and S2 are placed in a union that has a run address in
on-chip RAM. The application must move these sections at run time before
executing them. You can use the symbols s1_load and s1_length to move
section S1, and s2_load and s2_length to move section S2. The run address
for both sections is assigned to union_start applying the RUN_START()
operator to the UNION.

Overlay Pages

 8-62

Within a page, you can bind output sections or use named memory areas in
the usual way. In Example 8−13, S1 could have been allocated:

S1 : load = 01200h, page = 1 { . . . }

This binds S1 at address 1200h in page 1. You can also use page as a qualifier
on the address. For example:

S1 : load = (01200h PAGE 1) { . . . }

If you do not specify any binding or named memory range for the section, the
linker allocates the section into the page wherever it can (just as it normally
does with a single memory space). For example, S2 could also be specified
as:

S2 : PAGE 2 { . . . }

Because OVR_MEM is the only memory on page 2, it is not necessary (but
acceptable) to specify = OVR_MEM for the section.

8.12.3 Page Definition Syntax

To specify overlay pages as illustrated in Example 8−12 and Example 8−13,
use the following syntax for the MEMORY directive:

MEMORY
{

[PAGE 0 :] name 1 [(attr)] : origin = constant , length = constant;
[PAGE n :] name n [(attr)] : origin = constant , length = constant;

}

Each page is introduced by the keyword PAGE and a page number, followed
by a colon and a list of memory ranges the page contains. Bold portions must
be entered as shown. Memory ranges are specified in the normal way. You can
define up to 255 overlay pages.

Because each page represents a completely independent address space,
memory ranges on different pages can have the same name. Configured
memory on any page can overlap configured memory on any other page.
Within a single page, however, all memory ranges must have unique names
and must not overlap.

Overlay Pages

8-63Linker Description

Memory ranges listed outside the scope of a PAGE specification default to
PAGE 0. Consider the following example:

MEMORY
{ ROM : org = 0h len = 1000h
 EPROM : org = 1000h len = 1000h
 RAM : org = 2000h len = 0E000h
 PAGE1: XROM : org = 0h len = 1000h
 XRAM : org = 2000h len = 0E000h
}

The memory ranges ROM, EPROM, and RAM are all on PAGE 0 (since no
page is specified). XROM and XRAM are on PAGE 1. Note that XROM on
PAGE 1 overlays ROM on PAGE 0, and XRAM on PAGE 1 overlays RAM on
PAGE 0.

In the output link map (obtained with the −m linker option), the listing of the
memory model is keyed by pages. This provides an easy method of verifying
that you specified the memory model correctly. Also, the listing of output
sections has a PAGE column that identifies the memory space into which each
section will be loaded.

Default Allocation Algorithm

 8-64

8.13 Default Allocation Algorithm

The MEMORY and SECTIONS directives provide flexible methods for
building, combining, and allocating sections. However, any memory locations
or sections that you choose not to specify must still be handled by the linker.
The linker uses default algorithms to build and allocate sections within the
specifications you supply. Subsections 8.13.1, Allocation Algorithm, and
8.13.2, General Rules for Output Sections, describe default allocation.

8.13.1 Allocation Algorithm

If you do not use the MEMORY and SECTIONS directives, the linker allocates
output sections as though the following definitions are specified.

Example 8−14. Default Allocation for TMS320C55x Devices

MEMORY
{

ROM (RIX) : origin = 0100h, length = 0FEFFh
VECTOR (RIX) : origin = 0FFFF00h, length = 0100h
RAM (RWIX) : origin = 010100h, length = 0FFFFh

}
SECTIONS
{

.text > ROM

.switch > ROM

.const > ROM

.cinit > ROM

.vectors > VECTOR

.data > RAM

.bss > RAM

.sysmem > RAM

.stack > RAM

.sysstack > RAM

.cio > RAM
}

All .text input sections are concatenated to form a .text output section in the
executable output file, and all .data input sections are combined to form a .data
output section. The .text and .data sections are allocated into configured
memory on PAGE 0, which is the program memory space. All .bss sections are
combined to form a .bss output section. The .bss section is allocated into
configured memory on PAGE 1, which is the data memory space.

If you use a SECTIONS directive, the linker performs no part of the default
allocation. Allocation is performed according to the rules specified by the
SECTIONS directive and the general algorithm described in subsection
8.13.2, General Rules for Output Sections.

Default Allocation Algorithm

8-65Linker Description

8.13.2 General Rules for Output Sections

An output section can be formed in one of two ways:

Rule 1 As the result of a SECTIONS directive definition.

Rule 2 By combining input sections with the same names into an
output section that is not defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive (rule 1), this
definition completely determines the section’s contents. (See Section 8.9, The
SECTIONS Directive, on page 8-32 for examples of how to define an output
section’s content.)

An output section can also be formed when input sections are not specified by
a SECTIONS directive (rule 2). In this case, the linker combines all such input
sections that have the same name into an output section with that name. For
example, suppose the files f1.obj and f2.obj both contain named sections
called Vectors and that the SECTIONS directive does not define an output
section for them. The linker combines the two Vectors sections from the input
files into a single output section named Vectors, allocates it into memory, and
includes it in the output file.

After the linker determines the composition of all output sections, it must
allocate them into configured memory. The MEMORY directive specifies
which portions of memory are configured; if there is no MEMORY directive, the
linker uses the default configuration.

The linker’s allocation algorithm attempts to minimize memory fragmentation.
This allows memory to be used more efficiently and increases the probability
that your program will fit into memory. This is the algorithm:

1) Output sections for which you have supplied a specific binding address
are placed in memory at that address.

2) Output sections that are included in a specific, named memory range or
that have memory attribute restrictions are allocated. Each output section
is placed into the first available space within the named area, considering
alignment where necessary.

Default Allocation Algorithm

 8-66

3) Any remaining sections are allocated in the order in which they are
defined. Sections not defined in a SECTIONS directive are allocated in the
order in which they are encountered. Each output section is placed into the
first available memory space, considering alignment where necessary.

Note that the linker pads the end of the final .text section (the grouping of all
.text sections from object files in the application) with a non-parallel NOP.

Note: The PAGE Option

If you do not use the PAGE option to explicitly specify a memory space for
an output section, the linker allocates the section into PAGE 0. This occurs
even if PAGE 0 has no room and other pages do. To use a page other than
PAGE 0, you must specify the page with the SECTIONS directive.

Special Section Types (DSECT, COPY, and NOLOAD)

8-67Linker Description

8.14 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special type designations to output sections: DSECT,
COPY, and NOLOAD. These types affect the way that the program is treated
when it is linked and loaded. You can assign a type to a section by placing the
type (enclosed in parentheses) after the section definition. For example:

SECTIONS
{
 sec1 2000h (DSECT) : {f1.obj}
 sec2 4000h (COPY) : {f2.obj}
 sec3 6000h (NOLOAD) : {f3.obj}
}

� The DSECT type creates a dummy section with the following qualities:

� It is not included in the output section memory allocation. It takes up no
memory and is not included in the memory map listing.

� It can overlay other output sections, other DSECTs, and unconfigured
memory.

� Global symbols defined in a dummy section are relocated normally.
They appear in the output module’s symbol table with the same value
they would have if the DSECT had actually been loaded. These
symbols can be referenced by other input sections.

� Undefined external symbols found in a DSECT cause specified
archive libraries to be searched.

� The section’s contents, relocation information, and line number
information are not placed in the output module.

In the preceding example, none of the sections from f1.obj are allocated,
but all of the symbols are relocated as though the sections were linked at
byte address 2000h. The other sections can refer to any of the global
symbols in sec1.

� A COPY section is similar to a DSECT section, except that its contents and
associated information are written to the output module. The .cinit section
that contains initialization tables for the TMS320C55x C compiler has this
attribute under the RAM model. The .comment section created by pragma
IDENT is a COPY section.

� A NOLOAD section differs from a normal output section in one respect: the
section’s contents, relocation information, and line number information
are not placed in the output module. The linker allocates space for it, and
it appears in the memory map listing.

Assigning Symbols at Link Time

 8-68

8.15 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols
and assign values to them at link time. You can use this feature to initialize a
variable or pointer to an allocation-dependent value.

8.15.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of
assignment statements in the C language:

symbol = expression; assigns the value of expression to symbol

symbol + = expression; adds the value of expression to symbol

symbol − = expression; subtracts the value of expression from symbol

symbol * = expression; multiplies symbol by expression

symbol / = expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new
symbol and enters it into the symbol table. The expression must follow the
rules defined in subsection 8.15.3, Assignment Expressions. Assignment
statements must terminate with a semicolon.

The linker processes assignment statements after it allocates all the output
sections. Therefore, if an expression contains a symbol, the address used for
that symbol reflects the symbol’s address in the executable output file.

For example, suppose a program reads data from one of two tables identified
by two external symbols, Table1 and Table2. The program uses the symbol
cur_tab as the address of the current table. cur_tab must point to either Table1
or Table2. You could accomplish this in the assembly code, but you would need
to reassemble the program to change tables. Instead, you can use a linker
assignment statement to assign cur_tab at link time:

prog.obj /* Input file */
cur_tab = Table1; /* Assign cur_tab to one of the tables */

Assigning Symbols at Link Time

8-69Linker Description

8.15.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the SPC
during allocation. The linker’s “.” symbol is analogous to the assembler’s $
symbol. The “.” symbol can be used only in assignment statements within a
SECTIONS directive because “.” is meaningful only during allocation, and
SECTIONS controls the allocation process. (See Section 8.9, The SECTIONS
Directive, on page 8-32.) Note that the “.” symbol cannot be used outside of
the braces that define a single output section.

The “.” symbol refers to the current run address, not the current load address,
of the section.

For example, suppose a program needs to know the address of the beginning
of the .data section. By using the .global directive, you can create an external
undefined variable called Dstart in the program. Then assign the value of “ . ”
to Dstart:

SECTIONS
{
 .text: {}
 .data: { Dstart = .; }
 .bss: {}
}

This defines Dstart to be the first linked address of the .data section. (Dstart
is assigned before .data is allocated.) The linker will relocate all references to
Dstart.

A special type of assignment assigns a value to the “.” symbol. This adjusts
the SPC within an output section and creates a hole between two input
sections. Any value assigned to “.” to create a hole is relative to the beginning
of the section, not to the address actually represented by “.”. Assignments to
“.” and holes are described in Section 8.16, Creating and Filling Holes, on page
8-73.

Assigning Symbols at Link Time

 8-70

8.15.3 Assignment Expressions

These rules apply to linker expressions:

� Expressions can contain global symbols, constants, and the C language
operators listed in Table 8−1.

� All numbers are treated as long (32-bit) integers.

� Constants are identified by the linker in the same way as by the assembler.
That is, numbers are recognized as decimal unless they have a suffix (H
or h for hexadecimal and Q or q for octal). C language prefixes are also
recognized (0 for octal and 0x for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

� Symbols within an expression have only the value of the symbol’s
address. No type-checking is performed.

� Linker expressions can be absolute or relocatable. If an expression
contains any relocatable symbols (and zero or more constants or absolute
symbols), it is relocatable. Otherwise, the expression is absolute. If a
symbol is assigned the value of a relocatable expression, it is relocatable;
if it is assigned the value of an absolute expression, it is absolute.

The linker supports the C language operators listed in Table 8−1 in order of
precedence. Operators in the same group have the same precedence.
Besides the operators listed in Table 8−1, the linker also has an align operator
that allows a symbol to be aligned on an n-byte boundary within an output
section (n is a power of 2). For example, the expression

. = align(16);

aligns the SPC within the current section on the next 16-byte boundary.
Because the align operator is a function of the current SPC, it can be used only
in the same context as “.” —that is, within a SECTIONS directive.

Assigning Symbols at Link Time

8-71Linker Description

Table 8−1. Operators Used in Expressions (Precedence)

Symbols Operators Evaluation

+ − ~ Unary plus, minus, 1s complement Right to left

* / % Multiplication, division, modulo Left to right

+ − Addition, subtraction Left to right

<< >> Left shift, right shift Left to right

< <= > >= Less than, LT or equal, greater than,
GT or equal

Left to right

 !=, =[=] Not equal to, equal to Left to right

& Bitwise AND Left to right

^ Bitwise exclusive OR Left to right

| Bitwise OR Left to right

Note: Unary +, −, and * have higher precedence than the binary forms.

8.15.4 Symbols Defined by the Linker

The linker automatically defines several symbols that a program can use at run
time to determine where a section is linked. These symbols are external, so
they appear in the link map. They can be accessed in any assembly language
module if they are declared with a .global directive. Values are assigned to
these symbols as follows:

.text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
 (It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

Assigning Symbols at Link Time

 8-72

8.15.5 Symbols Defined Only For C Support (−c or −cr Option)

__STACK_SIZE is assigned the size of the .stack section.

__SYSSTACK_SIZE is assigned the size of the .sysstack section.

__SYSMEM_SIZE is assigned the size of the .sysmem section.

Note: Allocation of .stack and .sysstack Sections

The .stack and .sysstack sections must be allocated on the same 64K-word
data page.

Creating and Filling Holes

8-73Linker Description

8.16 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections
that have nothing linked into them. These areas are called holes . In special
cases, uninitialized sections can also be treated as holes. The following text
describes how the linker handles such holes and how you can fill holes (and
uninitialized sections) with a value.

8.16.1 Initialized and Uninitialized Sections

An output section contains one of the following:

� Raw data for the entire section
� No raw data

A section that has raw data is referred to as initialized. This means that the
object file contains the actual memory image contents of the section. When the
section is loaded, this image is loaded into memory at the section’s specified
starting address. The .text and .data sections always have raw data if anything
was assembled into them. Named sections defined with the .sect assembler
directive also have raw data.

By default, the .bss section and sections defined with the .usect directive have
no raw data (they are uninitialized). They occupy space in the memory map
but have no actual contents. Uninitialized sections typically reserve space in
RAM for variables. In the object file, an uninitialized section has a normal
section header and may have symbols defined in it; however, no memory
image is stored in the section.

8.16.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when
you force the linker to leave extra space between input sections within an
output section. When such a hole is created, the linker must follow the first
guideline above and supply raw data for the hole.

Holes can be created only within output sections. Space can exist between
output sections, but such space is not holes. There is no way to fill or initialize
the space between output sections with the SECTIONS directive.

To create a hole in an output section, you must use a special type of linker
assignment statement within an output section definition. The assignment
statement modifies the SPC (denoted by “.”) by adding to it, assigning a greater
value to it, or aligning it on an address boundary. The operators, expressions,
and syntaxes of assignment statements are described in Section 8.15,
Assigning Symbols at Link Time, on page 8-68.

Creating and Filling Holes

 8-74

The following example uses assignment statements to create holes in output
sections:

SECTIONS
{
 outsect:
 {
 file1.obj(.text)
 . += 100h; /* Create a hole with size 100h bytes */
 file2.obj(.text)
 . = align(16); /* Create a hole to align the SPC */
 file3.obj(.text)
 }
}

The output section outsect is built as follows:

� The .text section from file1.obj is linked in.

� The linker creates a 256-byte hole.

� The .text section from file2.obj is linked in after the hole.

� The linker creates another hole by aligning the SPC on a 16-byte
boundary.

� Finally, the .text section from file3.obj is linked in.

All values assigned to the “ . ” symbol within a section refer to the relative
address within the section. The linker handles assignments to the “ . ” symbol
as if the section started at address 0 (even if you have specified a binding
address). Consider the statement . = align(16) in the example. This statement
effectively aligns file3.obj .text to start on a 16-byte boundary within outsect.
If outsect is ultimately allocated to start on an address that is not aligned,
file3.obj .text will not be aligned either.

Note that the “.” symbol refers to the current run address, not the current load
address, of the section.

Expressions that decrement “.” are illegal. For example, it is invalid to use the
−= operator in an assignment to “.”. The most common operators used in
assignments to “.” are += and align.

If an output section contains all input sections of a certain type (such as .text),
you can use the following statements to create a hole at the beginning or end
of the output section:

.text: { .+= 100h; } /* Hole at the beginning */

.data: {
 *(.data)
 . += 100h; } /* Hole at the end */

Creating and Filling Holes

8-75Linker Description

Another way to create a hole in an output section is to combine an uninitialized
section with an initialized section to form a single output section. In this case,
the linker treats the uninitialized section as a hole and supplies data for it. The
following example illustrates this method:

SECTIONS
{

outsect:
{
file1.obj(.text)
file1.obj(.bss) /* This becomes a hole */
}

}

Because the .text section has raw data, all of outsect must also contain raw
data (rule 1). Therefore, the uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with
initialized sections. If several uninitialized sections are linked together, the
resulting output section is also uninitialized.

8.16.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw
data to fill it. The linker fills holes with a 16-bit fill value that is replicated through
memory until it fills the hole. The linker determines the fill value as follows:

1) If the hole is formed by combining an uninitialized section with an initialized
section, you can specify a fill value for the uninitialized section. Follow the
section name with an = sign and a 16-bit constant:

SECTIONS
{
 outsect:
 {
 file1.obj(.text)
 file2.obj(.bss) = 00FFh /* Fill this hole */
 } /* with 0FFh */
}

2) You can also specify a fill value for all the holes in an output section by
supplying the fill value after the section definition:

SECTIONS
{
 outsect:fill = 0FF00h /* fills holes with 0FF00h */
 {
 . += 10h; /* This creates a hole */
 file1.obj(.text)
 file1.obj(.bss) /* This creates another hole*/
 }
}

Creating and Filling Holes

 8-76

3) If you do not specify an initialization value for a hole, the linker fills the hole
with the value specified by the −f option. For example, suppose the
command file link.cmd contains the following SECTIONS directive:

SECTIONS
{
 .text: { .= 100; } /* Create a 100-byte hole */
}

Now invoke the linker with the −f option:

lnk500 −f 0FFFFh link.cmd

This fills the hole with 0FFFFh.

4) If you do not invoke the linker with the −f option, the linker fills holes with 0s.

Whenever a hole is created and filled in an initialized output section, the hole
is identified in the link map along with the value the linker uses to fill it.

8.16.4 Explicit Initialization of Uninitialized Sections

An uninitialized section becomes a hole only when it is combined with an
initialized section. When uninitialized sections are combined with each other,
the resulting output section remains uninitialized.

However, you can force the linker to initialize an uninitialized section by
specifying an explicit fill value for it in the SECTIONS directive. This causes
the entire section to have raw data (the fill value). For example:

SECTIONS
{
 .bss: fill = 1234h /* Fills .bss with 1234h */
}

Note: Filling Sections

Because filling a section (even with 0s) causes raw data to be generated for
the entire section in the output file, your output file will be very large if you
specify fill values for large sections or holes.

Linker-Generated Copy Tables

8-77Linker Description

8.17 Linker-Generated Copy Tables

The linker supports extensions to the linker command file syntax that enable
the following:

� Make it easier for you to copy objects from load-space to run-space at boot
time

� Make it easier for you to manage memory overlays at run time

� Allow you to split GROUPs and output sections that have separate load
and run addresses

8.17.1 A Current Boot-Loaded Application Development Process

In some embedded applications, there is a need to copy or download code
and/or data from one location to another at boot time before the application
actually begins its main execution thread. For example, an application may
have its code and/or data in FLASH memory and need to copy it into on-chip
memory before the application begins execution.

One way you can develop an application like this is to create a copy table in
assembly code that contains three elements for each block of code or data that
needs to be moved from FLASH into on-chip memory at boot time:

� The load location (load page id and address)
� The run location (run page id and address)
� The size

The process you follow to develop such an application might look like this:

1) Build the application to produce a .map file that contains the load and run
addresses of each section that has a separate load and run placement.

2) Edit the copy table (used by the boot loader) to correct the load and run
addresses as well as the size of each block of code or data that needs to
be moved at boot time.

3) Build the application again, incorporating the updated copy table.

4) Run the application.

This process puts a heavy burden on you to maintain the copy table (by hand,
no less). Each time a piece of code or data is added or removed from the
application, you must repeat the process in order to keep the contents of the
copy table up to date.

Linker-Generated Copy Tables

 8-78

8.17.2 An Alternative Approach

You can avoid some of this maintenance burden by using the LOAD_START(),
RUN_START(), and SIZE() operators that are already part of the linker
command file syntax . For example, instead of building the application to
generate a .map file, the linker command file can be annotated:

SECTIONS
{
 .flashcode: { app_tasks.obj(.text) }
 load = FLASH, run = PMEM,
 LOAD_START(_flash_code_ld_start),
 RUN_START(_flash_code_rn_start),
 SIZE(_flash_code_size)

 ...
}

In this example, the LOAD_START(), RUN_START(), and SIZE() operators
instruct the linker to create three symbols:

Symbol Description

_flash_code_ld_start load address of .flashcode section

_flash_code_rn_start run address of .flashcode section

_flash_code_size size of .flashcode section

These symbols can then be referenced from the copy table. The actual data
in the copy table will be updated automatically each time the application is
linked. This approach removes step 1 of the process described in section
8.17.1.

While maintenance of the copy table is reduced markedly, you must still carry
the burden of keeping the copy table contents in sync with the symbols that
are defined in the linker command file. Ideally, the linker would generate the
boot copy table automatically. This would avoid having to build the application
twice and free you from having to explicitly manage the contents of the boot
copy table.

For more information on the LOAD_START(), RUN_START(), and SIZE()
operators, see section 8.10.5, Address and Dimension Operators, on page
8-48.

Linker-Generated Copy Tables

8-79Linker Description

8.17.3 Overlay Management Example

Consider an application which contains a memory overlay that must be
managed at run time. The memory overlay is defined using a UNION in the
linker command file as illustrated in Example 8−15:

Example 8−15. Using a UNION for Memory Overlay

SECTIONS
{
 ...

 UNION
 {
 GROUP
 {
 .task1: { task1.obj(.text) }
 .task2: { task2.obj(.text) }

 } load = ROM, LOAD_START(_task12_load_start), SIZE(_task12_size)

 GROUP
 {
 .task3: { task3.obj(.text) }
 .task4: { task4.obj(.text) }

 } load = ROM, LOAD_START(_task34_load_start), SIZE(_task_34_size)

 } run = RAM, RUN_START(_task_run_start)

 ...
}

The application must manage the contents of the memory overlay at run time.
That is, whenever any services from .task1 or .task2 are needed, the
application must first ensure that .task1 and .task2 are resident in the memory
overlay. Similarly for .task3 and .task4.

To affect a copy of .task1 and .task2 from ROM to RAM at run time, the
application must first gain access to the load address of the tasks
(_task12_load_start), the run address (_task_run_start), and the size
(_task12_size). Then this information is used to perform the actual code copy.

Linker-Generated Copy Tables

 8-80

8.17.4 Generating Copy Tables Automatically with the Linker

The linker supports extensions to the linker command file syntax that enable
you to do the following:

� Identify any object components that may need to be copied from load
space to run space at some point during the run of an application

� Instruct the linker to automatically generate a copy table that contains (at
least) the load address, run address, and size of the component that
needs to be copied

� Instruct the linker to generate a symbol specified by you that provides the
address of a linker-generated copy table. For instance, Example 8−15 can
be written as shown in Example 8−16:

Example 8−16. Produce Address for Linker Generated Copy Table

SECTIONS
{
 ...

 UNION
 {
 GROUP
 {
 .task1: { task1.obj(.text) }
 .task2: { task2.obj(.text) }

 } load = ROM, table(_task12_copy_table)

 GROUP
 {
 .task3: { task3.obj(.text) }
 .task4: { task4.obj(.text) }

 } load = ROM, table(_task34_copy_table)

 } run = RAM

 ...
}

Using the SECTIONS directive from Example 8−16 in the linker command file,
the linker generates two copy tables named: _task12_copy_table and
_task34_copy_table. Each copy table provides the load page id, run page id,
load address, run address, and size of the GROUP that is associated with the
copy table. This information is accessible from application source code using
the linker-generated symbols, _task12_copy_table and _task34_copy_table,
which provide the addresses of the two copy tables, respectively.

Linker-Generated Copy Tables

8-81Linker Description

Using this method, you do not have to worry about the creation or maintenance
of a copy table. You can reference the address of any copy table generated
by the linker in C/C++ or assembly source code, passing that value to a general
purpose copy routine which will process the copy table and affect the actual
copy.

8.17.5 The table() Operator

You can use the table() operator to instruct the linker to produce a copy table.
A table() operator can be applied to an output section, a GROUP, or a UNION
member. The copy table generated for a particular table() specification can be
accessed through a symbol specified by you that is provided as an argument
to the table() operator. The linker creates a symbol with this name and assigns
it the address of the copy table as the value of the symbol. The copy table can
then be accessed from the application using the linker-generated symbol.

Each table() specification you apply to members of a given UNION must
contain a unique name. If a table() operator is applied to a GROUP, then none
of that GROUP’s members may be marked with a table() specification. The
linker detects violations of these rules and reports them as warnings, ignoring
each offending use of the table() specification. The linker does not generate
a copy table for erroneous table() operator specifications.

8.17.6 Boot-Time Copy Tables

The linker supports a special copy table name, BINIT (or binit), that you can
use to create a boot-time copy table. For example, the linker command file for
the boot-loaded application described in section 8.17.2 can be rewritten as
follows:

SECTIONS
{
 .flashcode: { app_tasks.obj(.text) }
 load = FLASH, run = PMEM,
 table(BINIT)
 ...
}

For this example, the linker creates a copy table that can be accessed through
a special linker-generated symbol, ___binit__, which contains the list of all
object components that need to be copied from their load location to their run
location at boot-time. If a linker command file does not contain any uses of
table(BINIT), then the ___binit__ symbol is given a value of −1 to indicate that
a boot-time copy table does not exist for a particular application.

Linker-Generated Copy Tables

 8-82

You can apply the table(BINIT) specification to an output section, GROUP, or
UNION member. If used in the context of a UNION, only one member of the
UNION can be designated with table(BINIT). If applied to a GROUP, then none
of that GROUP’s members may be marked with table(BINIT).The linker
detects violations of these rules and reports them as warnings, ignoring each
offending use of the table(BINIT) specification.

8.17.7 Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you
can apply the same table() operator to several different object components.
In addition, if you want to manage a particular object component in multiple
ways, you can apply more than one table() operator to it. Consider the linker
command file excerpt in Example 8−17:

Example 8−17. Linker Command File to Manage Object Components

SECTIONS
{
 UNION
 {
 .first: { a1.obj(.text), b1.obj(.text), c1.obj(.text) }
 load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)

 .second: { a2.obj(.text), b2.obj(.text) }
 load = EMEM, run = PMEM, table(_second_ctbl)
 }

 .extra: load = EMEM, run = PMEM, table(BINIT)

 ...
}

In this example, the output sections .first and .extra are copied from external
memory (EMEM) into program memory (PMEM) at boot time while processing
the BINIT copy table. After the application has started executing its main
thread, it can then manage the contents of the overlay using the two overlay
copy tables named: _first_ctbl and _second_ctbl.

8.17.8 Copy Table Contents

In order to use a copy table that is generated by the linker, you must be aware
of the contents of the copy table. This information is included in a new
run-time-support library header file, cpy_tbl.h, which contains a C source
representation of the copy table data structure that is automatically generated
by the linker.

Linker-Generated Copy Tables

8-83Linker Description

Example 8−18 shows the C55x copy table header file.

Example 8−18. TMS320C55x cpy_tbl.h File

/***/
/* cpy_tbl.h vxxxxx */
/* Copyright (c) 2003 Texas Instruments Incorporated */
/* */
/* Specification of copy table data structures which can be automatically */
/* generated by the linker (using the table() operator in the LCF). */
/***/
#ifndef _CPY_TBL
#define _CPY_TBL

#include <stdlib.h>

/***/
/* Copy Record Data Structure */
/***/
typedef struct copy_record
{
 unsigned long load_loc;
 unsigned long run_loc;
 unsigned long size;
} COPY_RECORD;

/***/
/* Copy Table Data Structure */
/***/
typedef struct copy_table
{
 unsigned short rec_size;
 unsigned short num_recs;
 COPY_RECORD recs[1];
} COPY_TABLE;

/***/
/* Prototype for general purpose copy routine. */
/***/
extern void copy_in(COPY_TABLE *tp);

/***/
/* Prototypes for I/O aware copy routines used in copy_in(). */
/***/
extern void cpy_io_to_io(void *from, void *to, size_t n);
extern void cpy_io_to_mem(void *from, void *to, size_t n);
extern void cpy_mem_to_io(void *from, void *to, size_t n);

#endif /* ! _CPY_TBL */

Linker-Generated Copy Tables

 8-84

For each object component that is marked for a copy, the linker creates a
COPY_RECORD object for it. Each COPY_RECORD contains at least the
following information for the object component:

� The load page id
� The run page id
� The load address
� The run address
� The size

The load page id and the load address are combined in the load_loc field of
the COPY_RECORD. Likewise, the run page id and the run address are
combined in the run_loc field of the COPY_RECORD. In both cases, the page
id is encoded in the most significant 8 bits of the load_loc and run_loc fields.
The actual load or run address is encoded in the least significant 3 bytes of the
load_loc and run_loc fields, respectively. A page id of 0 indicates that the
address represented refers to a location in normal C55x memory. A non-zero
page id indicates that the address represented refers to a location in I/O
memory.

The linker collects all COPY_RECORDs that are associated with the same
copy table into a COPY_TABLE object. The COPY_TABLE object contains the
size of a given COPY_RECORD, the number of COPY_RECORDs in the
table, and the array of COPY_RECORDs in the table. For instance, in the
BINIT example in section 8.17.6, the .first and .extra output sections will each
have their own COPY_RECORD entries in the BINIT copy table. The BINIT
copy table will then look like this:

COPY_TABLE __binit__ = { 12, 2,
 { <load page id and address of .first>,
 <run page id and address of .first>,
 <size of .first> },
 { <load page id and address of .extra>,
 <run page id and address of .extra>,
 <size of .extra> } };

8.17.9 General Purpose Copy Routine

The cpy_tbl.h file in Example 8−18 also contains a prototype for a general-
purpose copy routine, copy_in(), which is provided as part of the run-time-
support library. The copy_in() routine takes a single argument: the address of
a linker-generated copy table. The routine then processes the copy table data
object and performs the copy of each object component specified in the copy
table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support
source file shown in Example 8−19.

Linker-Generated Copy Tables

8-85Linker Description

Example 8−19. Run-Time-Support cpy_tbl.c File

/**/
/* cpy_tbl.c */
/* */
/* Copyright (c) 2003 Texas Instruments Incorporated */
/* */
/* General purpose copy routine. Given the address of a linker−generated */
/* COPY_TABLE data structure, effect the copy of all object components */
/* that are designated for copy via the corresponding LCF table() operator. */
/* */
/**/
#include <cpy_tbl.h>
#include <string.h>

/***/
/* Static Function Prototypes for I/O aware copy routines. */
/***/
static void cpy_io_to_io(void *from, void *to, size_t n);
static void cpy_io_to_mem(void *from, void *to, size_t n);
static void cpy_mem_to_io(void *from, void *to, size_t n);

/**/
/* COPY_IN() */
/**/
void copy_in(COPY_TABLE *tp)
{
 unsigned short i;
 for (i = 0; i < tp−>num_recs; i++)
 {
 COPY_RECORD *crp = &tp−>recs[i];
 int load_pgid = (int)(crp−>load_loc >> 24);
 unsigned char *load_addr = (unsigned char *)(crp−>load_loc & 0x7fffff);
 int run_pgid = (int)(crp−>run_loc >> 24);
 unsigned char *run_addr = (unsigned char *)(crp−>run_loc & 0x7fffff);
 unsigned int cpy_type = 0;

 /***/
 /* If page ID != 0, location is assumed to be in I/O memory. */
 /***/
 if (load_pgid) cpy_type += 2;
 if (run_pgid) cpy_type += 1;

Linker-Generated Copy Tables

 8-86

Example 8−19. Run-Time-Support cpy_tbl.c File (Continued)

 /***/
 /* Dispatch to appropriate copy routine based on whether or not load */
 /* and/or run location is in I/O memory. */
 /***/
 switch (cpy_type)
 {
 case 3: cpy_io_to_io(load_addr, run_addr, crp−>size); break;
 case 2: cpy_io_to_mem(load_addr, run_addr, crp−>size); break;
 case 1: cpy_mem_to_io(load_addr, run_addr, crp−>size); break;
 case 0: memcpy(run_addr, load_addr, crp−>size); break;
 }
 }
}

/***/
/* CPY_IO_TO_IO() − Move code/data from one location in I/O to another. */
/***/
static void cpy_io_to_io(void *from, void *to, size_t n)
{
 ioport unsigned char *src = (unsigned char *)from;
 ioport unsigned char *dst = (unsigned char *)to;
 register size_t rn;

 for (rn = 0; rn < n; rn++) *dst++ = *src++;
}

/***/
/* CPY_IO_TO_MEM() − Move code/data from I/O to normal system memory. */
/***/
static void cpy_io_to_mem(void *from, void *to, size_t n)
{
 ioport unsigned char *src = (unsigned char *)from;
 unsigned char *dst = (unsigned char *)to;
 register size_t rn;

 for (rn = 0; rn < n; rn++) *dst++ = *src++;
}

/***/
/* CPY_MEM_TO_IO() − Move code/data from normal memory to I/O. */
/***/
static void cpy_mem_to_io(void *from, void *to, size_t n)
{
 unsigned char *src = (unsigned char *)from;
 ioport unsigned char *dst = (unsigned char *)to;
 register size_t rn;

 for (rn = 0; rn < n; rn++) *dst++ = *src++;
}

Linker-Generated Copy Tables

8-87Linker Description

The load and run page id’s are unpacked from the load_loc and run_loc fields
and used to select the appropriate subroutine for copying from the source
memory type to the destination memory type. A page id of 0 indicates that the
specified address is in normal C55x memory, and a non-zero page id indicates
that the address is in I/O memory. The general-purpose copy routine utilizes
special copy routines if the code/data needs to be moved into and/or out of I/O
memory.

A pointer can be qualified with the ioport keyword to indicate that any memory
reads from that address need to be qualified with a readport() instruction
modifier or a port() operand modifier. Likewise, a memory write to such a
pointer needs to be qualified with a writeport() instruction modifier or a port()
operand modifier. By qualifying the pointer with the ioport keyword, the
compiler generates these I/O modifiers automatically.

8.17.10 Linker Generated Copy Table Sections and Symbols

The linker creates and allocates a separate input section for each copy table
that it generates. Each copy table symbol is defined with the address value of
the input section that contains the corresponding copy table.

The linker generates a unique name for each overlay copy table input section.
For example, table(_first_ctbl) would place the copy table for the .first section
into an input section called .ovly:_first_ctbl. The linker creates a single input
section, .binit, to contain the entire boot-time copy table.

Example 8−20 illustrates how you can control the placement of the
linker-generated copy table sections using the input section names in the
linker command file.

Linker-Generated Copy Tables

 8-88

Example 8−20. Controlling the Placement of the Linker-Generated Copy Table Sections

SECTIONS
{
 UNION
 {
 .first: { a1.obj(.text), b1.obj(.text), c1.obj(.text) }
 load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)

 .second: { a2.obj(.text), b2.obj(.text) }
 load = EMEM, run = PMEM, table(_second_ctbl)
 }

 .extra: load = EMEM, run = PMEM, table(BINIT)

 ...

 .ovly: { } > BMEM
 .binit: { } > BMEM
}

For the linker command file in Example 8−20, the boot-time copy table is
generated into a .binit input section, which is collected into the .binit output
section, which is mapped to an address in the BMEM memory area. The
_first_ctbl is generated into the .ovly:_first_ctbl input section and the
_second_ctbl is generated into the .ovly:_second_ctbl input section. Since the
base names of these input sections match the name of the .ovly output section,
the input sections are collected into the .ovly output section, which is then
mapped to an address in the BMEM memory area.

If you do not provide explicit placement instructions for the linker-generated
copy table sections, they are allocated according to the linker’s default
placement algorithm.

The linker does not allow other types of input sections to be combined with a
copy table input section in the same output section. The linker does not allow
a copy table section that was created from a partial link session to be used as
input to a succeeding link session.

Linker-Generated Copy Tables

8-89Linker Description

8.17.11 Splitting Object Components and Overlay Management

In previous versions of the linker, splitting sections that have separate load and
run placement instructions was not permitted. This restriction was because
there was no effective mechanism for you, the developer, to gain access to the
load address or run address of each one of the pieces of the split object
component. Therefore, there was no effective way to write a copy routine that
could move the split section from its load location to its run location.

However, the linker can access both the load location and run location of every
piece of a split object component. Using the table() operator, you can tell the
linker to generate this information into a copy table. The linker gives each piece
of the split object component a COPY_RECORD entry in the copy table object.

For example, consider an application which has 7 tasks. Tasks 1 through 3 are
overlaid with tasks 4 through 7 (using a UNION directive). The load placement
of all of the tasks is split among 4 different memory areas (LMEM1, LMEM2,
LMEM3, and LMEM4). The overlay is defined as part of memory area PMEM.
You must move each set of tasks into the overlay at run time before any
services from the set are used.

You can use table() operators in combination with splitting operators, >>, to
create copy tables that have all the information needed to move either group
of tasks into the memory overlay as shown in Example 8−21. Example 8−22
illustrates a possible driver for such an application.

Example 8−21. Creating a Copy Table to Access a Split Object Component

SECTIONS
{
 UNION
 {
 .task1to3: { *(.task1), *(.task2), *(.task3) }
 load >> LMEM1 | LMEM2 | LMEM4, table(_task13_ctbl)

 GROUP
 {
 .task4: { *(.task4) }
 .task5: { *(.task5) }
 .task6: { *(.task6) }
 .task7: { *(.task7) }

 } load >> LMEM1 | LMEM3 | LMEM4, table(_task47_ctbl)

 } run = PMEM

 ...

 .ovly: > LMEM4
}

Linker-Generated Copy Tables

 8-90

Example 8−22. Split Object Component Driver

#include <cpy_tbl.h>

extern COPY_TABLE task13_ctbl;
extern COPY_TABLE task47_ctbl;

extern void task1(void);
...
extern void task7(void);

main()
{
 ...
 copy_in(&task13_ctbl);
 task1();
 task2();
 task3();
 ...

 copy_in(&task47_ctbl);
 task4();
 task5();
 task6();
 task7();
 ...
}

The contents of the .task1to3 section are split in the section’s load space and
contiguous in its run space. The linker-generated copy table, _task13_ctbl,
contains a separate COPY_RECORD for each piece of the split section
.task1to3. When the address of _task13_ctbl is passed to copy_in(), each
piece of .task1to3 is copied from its load location into the run location.

The contents of the GROUP containing tasks 4 through 7 are also split in load
space. The linker performs the GROUP split by applying the split operator to
each member of the GROUP in order. The copy table for the GROUP then
contains a COPY_RECORD entry for every piece of every member of the
GROUP. These pieces are copied into the memory overlay when the
_task47_ctbl is processed by copy_in().

The split operator can be applied to an output section, GROUP, or the load
placement of a UNION or UNION member. The linker does not permit a split
operator to be applied to the run placement of either a UNION or of a UNION
member. The linker detects such violations, emits a warning, and ignores the
offending split operator usage.

Partial (Incremental) Linking

8-91Linker Description

8.18 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules.
This is known as partial linking or incremental linking. Partial linking allows you
to partition large applications, link each part separately, and then link all the
parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

� Intermediate files must have symbolic information. By default, the linker
retains symbolic information in its output. Do not use the −s option if you
plan to relink a file, because −s strips symbolic information from the output
module.

� Intermediate link steps should be concerned only with the formation of
output sections and not with allocation. All allocation, binding, and
MEMORY directives should be performed in the final link step.

� If the intermediate files have global symbols that have the same name as
global symbols in other files and you wish them to be treated as static
(visible only within the intermediate file), you must link the files with the −h
option (See subsection 8.4.9, Make All Global Symbols Static (−h and −g
global_symbol Options), on page 8-11.)

� If you are linking C code, don’t use −c or −cr until the final link step. Every
time you invoke the linker with the −c or −cr option the linker will attempt
to create an entry point.

The following example shows how you can use partial linking:

Step 1: Link the file file1.com; use the −r option to retain relocation
information in the output file tempout1.out.

cl55 −z −r −o tempout1 file1.com

file1.com contains:

SECTIONS
{
 ss1: {
 f1.obj
 f2.obj
 .
 .
 .
 fn.obj
 }
}

Partial (Incremental) Linking

 8-92

Step 2: Link the file file2.com; use the −r option to retain relocation
information in the output file tempout2.out.

cl55 −z −r −o tempout2 file2.com

file2.com contains:

SECTIONS
{

ss2: {
g1.obj
g2.obj
 .
 .
 .
gn.obj
}

}

Step 3: Link tempout1.out and tempout2.out:

cl55 −z −m final.map −o final.out tempout1.out temp-
out2.out

Linking C/C++ Code

8-93Linker Description

8.19 Linking C/C++ Code

The TMS320C55x C/C++ compiler produces assembly language source code
that can be assembled and linked. For example, a C/C++ program consisting
of modules prog1, prog2, etc., can be assembled and then linked to produce
an executable file called prog.out:

cl55 −z −c −o prog.out prog1.obj prog2.obj ... rts55.lib

To use the large memory model, you must specify the rts55x.lib run-time
library.

The −c option tells the linker to use special conventions that are defined by the
C/C++ environment. The run-time library contains C/C++ run-time-support
functions.

For more information about C/C++, including the run-time environment and
run-time-support functions, see the TMS320C55x Optimizing C/C++ Compiler
User’s Guide.

8.19.1 Run-Time Initialization

All C/C++ programs must be linked with an object module called boot.obj.
When a program begins running, it executes boot.obj first. boot.obj contains
code and data for initializing the run-time environment. The module performs
the following tasks:

� Sets up the system stack

� Sets up the primary and secondary system stacks

� Processes the run-time initialization table and autoinitializes global
variables (in the ROM model)

� Disables interrupts and calls _main

The run-time-support object library contains boot.obj. You can:

� Use the archiver to extract boot.obj from the library and then link the
module in directly.

� Include rts55.lib as an input file (the linker automatically extracts boot.obj
when you use the −c or −cr option).

� Include the appropriate run-time library as an input file (the linker
automatically extracts boot.obj when you use the −c or −cr option).

Linking C/C++ Code

 8-94

8.19.2 Object Libraries and Run-Time Support

The TMS320C55x Optimizing C/C++ Compiler User’s Guide describes
additional run-time-support functions that are included in rts55.lib and
rts55x.lib. If your program uses any of these functions, you must link the
appropriate run-time library with your object files.

You can also create your own object libraries and link them. The linker includes
and links only those library members that resolve undefined references.

8.19.3 Setting the Size of the Stack and Heap Sections

C uses uninitialized sections called .sysmem, .stack, and .sysstack for the
memory pool used by the malloc() functions and the run-time stacks,
respectively. You can set the size of these by using the −heap option, −stack
option, or −sysstack option and specifying the size of the section as a constant
immediately after the option. The default size for .sysmem is 2000 bytes. The
default size for .stack and .sysstack is 1000 bytes.

Note: Allocation of .stack and .sysstack Sections

The .stack and .sysstack sections must be allocated on the same 64K-word
data page.

For more information, see subsection 8.4.10, Define Heap Size (−heap
constant Option), on page 8-12, subsection 8.4.16, Define Stack Size (−stack
constant Option), on page 8-16, or subsection 8.4.17, Define Secondary Stack
Size (−sysstack), on page 8-17.

Linking C/C++ Code

8-95Linker Description

8.19.4 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization.
To use this method, invoke the linker with the −c option.

Using this method, the .cinit section is loaded into memory along with all the
other initialized sections. The linker defines a special symbol called cinit that
points to the beginning of the initialization tables in memory. When the program
begins running, the C/C++ boot routine copies data from the tables (pointed
to by .cinit) into the specified variables in the .bss section. This allows
initialization data to be stored in slow external memory and copied to fast
external memory each time the program starts.

Figure 8−8 illustrates the ROM autoinitialization model.

Figure 8−8. Autoinitialization at Run Time

.cinit

Object File

.bss

Loader

Memory

Boot
routine

Initialization
tables

(possibly ROM)

Linking C/C++ Code

 8-96

8.19.5 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot
time and by saving the memory used by the initialization tables. To use this
method, invoke the linker with the −cr option.

When you use the −cr linker option, the linker sets the STYP_COPY bit in the
.cinit section’s header. This tells the loader not to load the .cinit section into
memory. (The .cinit section occupies no space in the memory map.) The linker
also sets the cinit symbol to −1 (normally, cinit points to the beginning of the
initialization tables). This indicates to the boot routine that the initialization
tables are not present in memory; accordingly, no run-time initialization is
performed at boot time.

A loader must be able to perform the following tasks to use initialization at load
time:

� Detect the presence of the .cinit section in the object file.

� Determine that STYP_COPY is set in the .cinit section header, so that it
knows not to copy the .cinit section into memory.

� Understand the format of the initialization tables.(This format is described
in the TMS320C55x Optimizing C/C++ Compiler User’s Guide.)

The loader then uses the initialization tables directly from the object file to
initialize variables in .bss.

Figure 8−9 illustrates the initialization of variables at load time.

Figure 8−9. Initialization at Load Time

.cinit

Object File

.bss

Loader

Memory

Linking C/C++ Code

8-97Linker Description

8.19.6 The −c and −cr Linker Options

The following list outlines what happens when you invoke the linker with the
−c or −cr option.

� The symbol _c_int00 is defined as the program entry point. _c_int00 is the
start of the C/C++ boot routine in boot.obj; referencing _c_int00 ensures
that boot.obj is automatically linked in from the run-time-support library
rts55.lib.

� The .cinit output section is padded with a termination record to designate
to the boot routine (ROM model) or the loader (RAM model) when to stop
reading the initialization tables.

� When you autoinitialize at run time (−c option), the linker defines cinit as
the starting address of the .cinit section. The C/C++ boot routine uses this
symbol as the starting point for autoinitialization.

� When you initialize at load time (−cr option):

� The linker sets the symbol cinit to −1. This indicates that the
initialization tables are not in memory, so no initialization is performed
at run time.

� The STYP_COPY flag (0010h) is set in the .cinit section header.
STYP_COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into memory.
The linker does not allocate space in memory for the .cinit section.

Linker Example

 8-98

8.20 Linker Example

This example links three object files named demo.obj, fft.obj, and tables.obj
and creates a program called demo.out. The symbol SETUP is the program
entry point.

Assume that target memory has the following configuration:

Program Memory

Address Range Contents
0080 to 7000 On-chip RAM_PG
C000 to FF80 On-chip ROM

Data Memory

Address Range Contents
0080 to 0FFF RAM block ONCHIP
0060 to FFFF Mapped external addresses EXT

Byte Address Range Contents
 000100 to 007080 On-chip RAM_PG
 007081 to 008000 RAM block ONCHIP
 008001 to 00A000 Mapped external addresses EXT
 00C000 to 00FF80 On-chip ROM

The output sections are constructed from the following input sections:

� Executable code, contained in the .text sections of demo.obj, fft.obj, and
tables.obj must be linked into program ROM.

� Variables, contained in the var_defs section of demo.obj, must be linked
into data memory in block ONCHIP.

� Tables of coefficients in the .data sections of demo.obj, tables.obj and
fft.obj must be linked into RAM block ONCHIP in data memory. A hole is
created with a length of 100 bytes and a fill value of 07A1Ch. The
remainder of block ONCHIP must be initialized to the value 07A1Ch.

� The .bss sections from demo.obj. tables.obj, and fft.obj, which contain
variables, must be linked into block RAM_PG of program RAM. The
unused part of this RAM must be initialized to 0FFFFh.

� The xy section from demo.obj, which contains buffers and variables, will
have the default linking into block ONCHIP of data RAM, since it was not
explicitly linked.

Example 8−23 shows the linker command file for this example. Example 8−24
shows the map file.

Linker Example

8-99Linker Description

Example 8−23. Linker Command File, demo.cmd

/***/
/*** Specify Linker Options ***/
/***/
−e coeff /* Define the program entry point */
−o demo.out /* Name the output file */
−m demo.map /* Create an output map */

/***/
/*** Specify the Input Files ***/
/***/

demo.obj
fft.obj
tables.obj

/***/
/*** Specify the Memory Configurations ***/
/***/

MEMORY
{
 RAM_PG: origin=00100h length=06F80h
 ONCHIP: origin=007081h length=0F7Fh
 EXT: origin=08001h length=01FFFh
 ROM: origin=0C000h length=03F80h
}

/**/
/*** Specify the Output Sections ***/
/**/

SECTIONS
{
 .text: load = ROM /* link .text into ROM */

 var_defs: load = ONCHIP /* defs in RAM */

 .data: fill = 07A1Ch, load=ONCHIP
 {
 tables.obj(.data) /* .data input */
 fft.obj(.data) /* .data input */
 . = 100h; /* create hole, fill with 07A1Ch */
 } /* and link with ONCHIP */

 .bss: load=RAM_PG,fill=0FFFFh
 /* Remaining .bss; fill and link */
}

/***/
/*** End of Command File ***/
/***/

Linker Example

 8-100

Invoke the linker with the following command:

cl55 −z demo.cmd

This creates the map file shown in Example 8−24 and an output file called
demo.out that can be run on a TMS320C55x.

Example 8−24. Output Map File, demo.map

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: 0

MEMORY CONFIGURATION
 name org(bytes) len(bytes) used(bytes) attributes fill
 −−−−−−−− −−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−−− −−−−−−−−
 RAM_PG 00000100 000006f80 00000064 RWIX
 ONCHIP 00007081 000000f7f 00000104 RWIX
 EXT 00008000 000001fff 00000000 RWIX
 ROM 0000c000 000003f80 0000001f RWIX

SECTION ALLOCATION MAP
 output attributes/
section page org(bytes) org(words) len(bytes) len(words) input sections
−−−−−−−− −−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−−−−
.text 0 0000c000 0000001f

0000c000 0000000a tables.obj(.text)
0000c00a 00000008 fft.obj (.text)
0000c012 0000000c demo.obj (.text)
0000c01e 00000001 −−HOLE−− [fill = 2020]

var_defs 0 00003841 00000002
00003841 00000002 fft.obj (var_defs)

.data 0 00003843 00000080
00003843 00000001 tables.obj (.data)
00003844 00000004 fft.obj (.data)
00003848 0000007b −−HOLE−− [fill = 7a1c]
000038c3 00000000 demo.obj (.data)

.bss 0 00000080 00000002
00000080 00000002 demo.obj(.bss)[fill=ffff]
00000082 00000000 fft.obj (.bss)
00000082 00000000 tables.obj (.bss)

xy 0 00000082 00000030 UNINITIALIZED
00000082 00000030 demo.obj (xy)

GLOBAL SYMBOLS:
Sorted alphabetically by name Sorted by symbol address
abs. value/ abs. value/
byte addr word addr name byte addr word addr name
−−−−−−−−− −−−−−−−−− −−−−− −−−−−−−− −−−−−−−− −−−−
 00000080 .bss 00000080 .bss
 00003843 .data 00000082 end
0000c000 .text 00003843 .data
0000c016 ARRAY 00003843 TEMP
 00003843 TEMP 000038c3 edata
0000c012 _x42 0000c012 _x42
 000038c3 edata 0000c000 .text
 00000082 end 0000c016 . ARRAY
0000c01f etext 0000c01f etext

9-1

�������� ��	��������

The TMS320C55x� archiver combines several individual files into a single
archive file. For example, you can collect several macros into a macro library.
The assembler will search the library and use the members that are called as
macros by the source file. You can also use the archiver to collect a group of
object files into an object library. The linker will include in the library the
members that resolve external references during the link.

Topic Page

9.1 Archiver Overview 9-2.

9.2 Archiver Development Flow 9-3.

9.3 Invoking the Archiver 9-4.

9.4 Archiver Examples 9-6.

Chapter 9

Archiver Overview

 9-2

9.1 Archiver Overview

The TMS320C55x archiver lets you combine several individual files into a
single file called an archive or a library. Each file within the archive is called a
member. Once you have created an archive, you can use the archiver to add,
delete, or extract members.

You can build libraries from any type of files. Both the assembler and the linker
accept archive libraries as input; the assembler can use libraries that contain
individual source files, and the linker can use libraries that contain individual
object files.

One of the most useful applications of the archiver is building libraries of object
modules. For example, you can write several arithmetic routines, assemble
them, and use the archiver to collect the object files into a single, logical group.
You can then specify the object library as linker input. The linker will search the
library and include members that resolve external references.

You can also use the archiver to build macro libraries. You can create several
source files, each of which contains a single macro, and use the archiver to
collect these macros into a single, functional group. The .mlib assembler
directive lets you specify the name of a macro library; during the assembly
process, the assembler will search the specified library for the macros that you
call. Chapter 5, Macro Language, discusses macros and macro libraries in
detail.

Archiver Development Flow

9-3Archiver Description

9.2 Archiver Development Flow

Figure 9−1 shows the archiver’s role in the assembly language development
process. Both the assembler and the linker accept libraries as input.

Figure 9−1. Archiver Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C/C++
source

files

’C5000
processor

Executable
COFF

file

C/C++ compiler

Library-build
utility

Cross-reference
lister

Absolute lister

Debugging
tools

Runtime-
support
library

C++ name
demangler

Invoking the Archiver

 9-4

9.3 Invoking the Archiver

To invoke the archiver, enter:

ar55 [−]command [option] libname [filename1 ... filenamen]

 ar55 is the command that invokes the archiver.

command tells the archiver how to manipulate the library members.
A command can be preceded by an optional hyphen. You
must use one of the following commands when you invoke
the archiver, but you can use only one command per
invocation. Valid archiver commands are:

a adds the specified files to the library. This command does
not replace an existing member that has the same name
as an added file; it simply appends new members to the
end of the archive.

d deletes the specified members from the library.

r replaces the specified members in the library. If you don’t
specify filenames, the archiver replaces the library
members with files of the same name in the current
directory. If the specified file is not found in the library, the
archiver adds it instead of replacing it.

t prints a table of contents of the library. If you specify
filenames, only those files are listed. If you don’t specify
any filenames, the archiver lists all the members in the
specified library.

x extracts the specified files. If you don’t specify member
names, the archiver extracts all library members. When
the archiver extracts a member, it simply copies the
member into the current directory; it doesn’t remove it from
the library.

Invoking the Archiver

9-5Archiver Description

option tells the archiver how to function. Specify as many of the
following options as you want:

−q (quiet) suppresses the banner and status messages.

−s prints a list of the global symbols that are defined in the
library. (This option is valid only with the −a, −r, and −d
commands.)

−v (verbose) provides a file-by-file description of the creation
of a new library from an old library and its constituent
members.

libname names an archive library. If you don’t specify an extension
for libname, the archiver uses the default extension .lib.

filename names individual member files that are associated with
the library. You must specify a complete filename including
an extension, if applicable.

It is possible (but not desirable) for a library to contain
several members with the same name. If you attempt to
delete, replace, or extract a member, and the library
contains more than one member with the specified name,
then the archiver deletes, replaces, or extracts the first
member with that name.

Archiver Examples

 9-6

9.4 Archiver Examples

The following are some archiver examples:

� If you want to create a library called function.lib that contains the files
sine.obj, cos.obj, and flt.obj, enter:

ar55 −a function sine.obj cos.obj flt.obj
TMS320C55x Archiver Version x.xx
Copyright (c) 2001 Texas Instruments Incorporated

==> new archive ’function.lib’
==> building archive ’function.lib’

� You can print a table of contents of function.lib with the −t option:

ar55 −t function
TMS320C55x Archiver Version x.xx
Copyright (c) 2001 Texas Instruments Incorporated
 FILE NAME SIZE DATE
−−−−−−−−−−−−−−−−− −−−−− −−−−−−−−−−−−−−−−−−−−−−−

sine.obj 248 Mon Nov 19 01:25:44 2001
cos.obj 248 Mon Nov 19 01:25:44 2001
flt.obj 248 Mon Nov 19 01:25:44 2001

� If you want to add new members to the library, enter:

ar55 −as function atan.obj
TMS320C55x Archiver Version x.xx
Copyright (c) 2001 Texas Instruments Incorporated

==> symbol defined: ’symbol_name’
==> symbol defined: ’symbol_name’
==> building archive ’function.lib’

Because this example doesn’t specify an extension for the libname, the
archiver adds the files to the library called function.lib. If function.lib didn’t
exist, the archiver would create it. (The −s option tells the archiver to list the
global symbols that are defined in the library.)

� If you want to modify a library member, you can extract it, edit it, and
replace it. In this example, assume there’s a library named macros.lib that
contains the members push.asm, pop.asm, and swap.asm.

ar55 −x macros push.asm

The archiver makes a copy of push.asm and places it in the current
directory, but it doesn’t remove push.asm from the library. Now you can
edit the extracted file. To replace the copy of push.asm in the library with
the edited copy, enter:

ar55 −r macros push.asm

10-1

��	����� "�	��� ��	��������

The absolute lister is a debugging tool that accepts linked object files as input
and creates .abs files as output. These .abs files can be assembled to produce
a listing that shows the absolute addresses of object code. Manually, this could
be a tedious process requiring many operations; however, the absolute lister
utility performs these operations automatically.

Topic Page

10.1 Producing an Absolute Listing 10-2.

10.2 Invoking the Absolute Lister 10-3.

10.3 Absolute Lister Example 10-5.

Chapter 10

Producing an Absolute Listing

 10-2

10.1 Producing an Absolute Listing

Figure 10−1 illustrates the steps required to produce an absolute listing.

Figure 10−1. Absolute Lister Development Flow

ÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

Assembler

Object
file

Linked object
file

Linker

First, assemble a source file.

Link the resulting object file.

Invoke the absolute lister; use the linked object
file as input. This creates a file with an .abs
extension.

Step 1:

Step 2:

Step 3:

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

Absolute

Assembler

lister

Absolute

.abs
file

Finally, assemble the .abs file; you must
invoke the assembler with the −a option. This
produces a listing file that contains absolute
addresses.

Step 4:

Assembler
source file

listing

Invoking the Absolute Lister

10-3Absolute Lister Description

10.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

abs55 [−options] input file

abs55 is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use.
Options are not case sensitive and can appear anywhere on the
command line following the command. Precede each option
with a hyphen (−). The absolute lister options are as follows:

−e enables you to change the default naming conventions
for filename extensions on assembly files, C source files,
and C header files. The three options are listed below.

� −ea [.]asmext for assembly files (default is .asm)
� −ec [.]cext for C source files (default is .c)
� −eh [.]hext for C header files (default is .h)

The “.” in the extensions and the space between the
option and the extension are optional.

−q (quiet) suppresses the banner and all progress
information.

input file names the linked object file. If you do not supply an extension,
the absolute lister assumes that the input file has the default
extension .out. If you do not supply an input filename when you
invoke the absolute lister, the absolute lister will prompt you for
one.

The absolute lister produces an output file for each file that was linked. These
files are named with the input filenames and an extension of .abs. Header files,
however, do not generate a corresponding .abs file.

Assemble these files with the −a assembler option as follows to create the
absolute listing:

masm55 −a filename.abs

The −e options affect both the interpretation of filenames on the command line
and the names of the output files. They should always precede any filename
on the command line.

Invoking the Absolute Lister

 10-4

The −e options are useful when the linked object file was created from C files
compiled with the debugging option (−g compiler option). When the debugging
option is set, the resulting linked object file contains the name of the source
files used to build it. In this case, the absolute lister will not generate a
corresponding .abs file for the C header files. Also, the .abs file corresponding
to a C source file will use the assembly file generated from the C source file
rather than the C source file itself.

For example, suppose the C source file hello.csr is compiled with debugging
set; this generates the assembly file hello.s. hello.csr also includes hello.hsr.
Assuming the executable file created is called hello.out, the following
command will generate the proper .abs file:

abs55 −ea s −ec csr −eh hsr hello.out

An .abs file will not be created for hello.hsr (the header file), and hello.abs will
include the assembly file hello.s, not the C source file hello.csr.

Absolute Lister Example

10-5Absolute Lister Description

10.3 Absolute Lister Example

This example uses three source files. module1.asm and module2.asm both
include the file globals.def.

module1.asm

 .bss array,100
 .bss dflag, 2
 .copy globals.def
 .text
 MOV #offset,AC0
 MOV dflag,AC0

module2.asm

 .bss offset, 2
 .copy globals.def
 .text
 MOV #offset,AC0
 MOV #array,AC0

globals.def

 .global dflag
 .global array
 .global offset

The following steps create absolute listings for the files module1.asm and
module2.asm:

Step 1: First, assemble module1.asm and module2.asm:

masm55 module1
masm55 module2

This creates two object files called module1.obj and module2.obj.

Step 2: Next, link module1.obj and module2.obj using the following linker
command file, called bttest.cmd:

/**/
/* File bttest.cmd −− COFF linker command file */
/* for linking TMS320C55x modules */
/*********************************** ************/
−o bttest.out /* Name the output file */
−m bttest.map /* Create an output map */

/**/
/* Specify the Input Files */
/**/
module1.obj
module2.obj

Absolute Lister Example

 10-6

/**/
/* Specify the Memory Configurations */
/**/
MEMORY
{
 ROM: origin=2000h length=2000h
 RAM: origin=8000h length=8000h
}

/**/
/* Specify the Output Sections */
/**/
SECTIONS
{
 .data: >RAM
 .text: >ROM
 .bss: >RAM
}

Step 3: Invoke the linker:

cl55 −z bttest.cmd

This creates an executable object file called bttest.out; use this new
file as input for the absolute lister.

Step 4: Now, invoke the absolute lister:

abs55 bttest.out

This creates two files called module1.abs and module2.abs:

module1.abs:

 .nolist
array .setsym 0004000h
dflag .setsym 0004064h
offset .setsym 0004066h
.data .setsym 0004000h
__data_ .setsym 0004000h
edata .setsym 0004000h
__edata_ .setsym 0004000h
.text .setsym 0002000h
__text_ .setsym 0002000h
etext .setsym 000200fh
__etext_ .setsym 000200fh
.bss .setsym 0004000h
__bss_ .setsym 0004000h
end .setsym 0004068h
__end_ .setsym 0004068h
 .setsect ”.text”,0002000h
 .setsect ”.data”,0004000h
 .setsect ”.bss”,0004000h
 .list

Absolute Lister Example

10-7Absolute Lister Description

 .text
 .copy ”module1.asm”

module2.abs:

 .nolist
array .setsym 0004000h
dflag .setsym 0004064h
offset .setsym 0004066h
.data .setsym 0004000h
__data_ .setsym 0004000h
edata .setsym 0004000h
__edata_ .setsym 0004000h
.text .setsym 0002000h
__text_ .setsym 0002000h
etext .setsym 000200fh
__etext_ .setsym 000200fh
.bss .setsym 0004000h
__bss_ .setsym 0004000h
end .setsym 0004068h
__end_ .setsym 0004068h
 .setsect ”.text”,02006h
 .setsect ”.data”,04000h
 .setsect ”.bss”,04066h
 .list
 .text
 .copy ”module2.asm”

These files contain the following information that the assembler
needs when you invoke it in step 4:

� They contain .setsym directives, which equate values to global
symbols. Both files contain global equates for the symbol dflag.
The symbol dflag was defined in the file globals.def, which was
included in module1.asm and module2.asm.

� They contain .setsect directives, which define the absolute
addresses for sections.

� They contain .copy directives, which tell the assembler which
assembly language source file to include.

The .setsym and .setsect directives are not useful in normal
assembly; they are useful only for creating absolute listings.

Absolute Lister Example

 10-8

Step 5: Finally, assemble the .abs files created by the absolute lister
(remember that you must use the −a option when you invoke the
assembler):

masm55 −a module1.abs
masm55 −a module2.abs

This creates two listing files called module1.lst and module2.lst; no
object code is produced. These listing files are similar to normal
listing files; however, the addresses shown are absolute addresses.

The absolute listing files created are module1.lst (see Figure 10−2)
and module2.lst (see Figure 10−3).

Figure 10−2. module1.lst

TMS320C55x COFF Assembler Version x.xx Wed Oct 16 12:00:05 2001
 Copyright (c) 2001 Texas Instruments Incorporated

module1.abs PAGE 1

 21 002000 .text
 22 .copy ”module1.asm”
 A 1 004000 .bss array, 100
 A 2 004064 .bss dflag, 2
 A 3 .copy globals.def
 B 1 .global dflag
 B 2 .global array
 B 3 .global offset
 A 4 002000 .text

 A 5 002000 7640 MOV #offset,AC0
 002002 6608!
 A 6 002004 A000% MOV dflag,AC0

 No Errors, No Warnings

Absolute Lister Example

10-9Absolute Lister Description

Figure 10−3. module2.lst

TMS320C55x COFF Assembler Version x.xx Wed Oct 16 12:00:17 2001
 Copyright (c) 2001 Texas Instruments Incorporated

module2.abs PAGE 1

 21 002006 .text
 22 .copy ”module2.asm”
 A 1 004066 .bss offset, 2
 A 2 .copy globals.def
 B 1 .global dflag
 B 2 .global array
 B 3 .global offset

 A 3 002006 .text
 A 4 002006 7640 MOV #offset,AC0
 002008 6680−
 A 5 00200a 7640 MOV #array,AC0
 00200c 0080!

 No Errors, No Warnings

 10-10

11-1

��		(��)������ "�	��� ��	��������

The cross-reference lister is a debugging tool. This utility accepts linked object
files as input and produces a cross-reference listing as output. This listing
shows symbols, their definitions, and their references in the linked source files.

Topic Page

11.1 Producing a Cross-Reference Listing 11-2.

11.2 Invoking the Cross-Reference Lister 11-3.

11.3 Cross-Reference Listing Example 11-4.

Chapter 11

Producing a Cross-Reference Listing

 11-2

11.1 Producing a Cross-Reference Listing

Figure 11−1 shows the cross-reference lister development flow.

Figure 11−1.Cross-Reference Lister Development Flow

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ

Assembler

Cross-reference
lister

Object

Linked object
file

Cross-reference
listing

Linker

First, invoke the assembler with the −ax option.
This option produces a cross-reference table
in the listing file and adds to the object file
cross-reference information. By default, the
assembler cross-references only global
symbols. If you use the −as option when
invoking the assembler, it cross-references
local symbols as well.

Link the object file (.obj) to obtain an
executable object file (.out).

Invoke the cross-reference lister. The following
section provides the command syntax for
invoking the cross-reference lister utility.

Step 1:

Step 2:

Step 3:

file

Assembler
source file

Invoking the Cross-Reference Lister

11-3Cross−Reference Lister Description

11.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct
options and then linked into an executable file. Assemble the assembly
language files with the −ax option. This option creates a cross-reference listing
and adds cross-reference information to the object file.

By default, the assembler cross-references only global symbols, but if
assembler is invoked with the −as option, local symbols are also added. Link
the object files to obtain an executable file.

To invoke the cross-reference lister, enter the following:

xref55 [−options] [input filename [output filename]]

xref55 is the command that invokes the cross-reference utility.

options identifies the cross-reference lister options you want to
use. Options are not case sensitive and can appear
anywhere on the command line following the command.
Precede each option with a hyphen (−). The
cross-reference lister options are as follows:

−l (lowercase L) specifies the number of lines per
page for the output file. The format of the −l option
is −lnum, where num is a decimal constant. For
example, −l30 sets the number of lines per page in
the output file to 30. The space between the option
and the decimal constant is optional. The default is
60 lines per page.

−q (quiet) suppresses the banner and all progress
information.

input filename is a linked object file. If you omit the input filename, the
utility prompts for a filename.

output filename is the name of the cross-reference listing file. If you omit
the output filename, the default filename will be the input
filename with an .xrf extension.

Cross-Reference Listing Example

 11-4

11.3 Cross-Reference Listing Example

Example 11−1 shows an example of a cross-reference listing.

Example 11−1. Cross−Reference Listing Example

==

Symbol: INIT

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
file1.asm EDEF ’000000 000080 3 1
file2.asm EREF 000000 000080 2 11
==

Symbol: X

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
file1.asm EREF 000000 000001 2 5
file2.asm EDEF 000001 000001 5 1
==

Symbol: Y

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
file2.asm EDEF −000000 000080 7 1

==

Symbol: Z

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
file2.asm EDEF 000003 000003 9 1

==

Cross-Reference Listing Example

11-5Cross−Reference Lister Description

The terms defined below appear in the preceding cross-reference listing:

Symbol Name Name of the symbol listed

Filename Name of the file where the symbol appears

RTYP The symbol’s reference type in this file. The possible
reference types are:

STAT The symbol is defined in this file and is not
declared as global.

EDEF The symbol is defined in this file and is declared
as global.

EREF The symbol is not defined in this file but is
referenced as a global.

UNDF The symbol is not defined in this file and is not
declared as global.

AsmVal This hexadecimal number is the value assigned to the
symbol at assembly time. A value may also be preceded
by a character that describes the symbol’s attributes.
Table 11−1 lists these characters and names.

LnkVal This hexadecimal number is the value assigned to the
symbol after linking.

DefLn The statement number where the symbol is defined.

RefLn The line number where the symbol is referenced. If the line
number is followed by an asterisk(*), then that reference
may modify the contents of the object. If the line number
is followed by a letter (such as A, B, or C), the symbol is
referenced in a file specified by a .include directive in the
assembly source. “A” is assigned to the first file specified
by a .include directive; “B” is assigned to the second file,
etc. A blank in this column indicates that the symbol was
never used.

Cross-Reference Listing Example

 11-6

Table 11−1 lists the symbol attributes that appear in the cross-reference listing
example.

Table 11−1. Symbol Attributes

Character Meaning

’ Symbol defined in a .text section

” Symbol defined in a .data section

+ Symbol defined in a .sect section

− Symbol defined in a .bss or .usect section

= Symbol defined in a .reg section

12-1

��	�		������ ��	��������

The COFF disassembler accepts object files and executable files as input and
produces an assembly listing as output. This listing shows assembly
instructions, their opcodes, and the section program counter values.

The disassembly listing is useful for viewing the:

� Assembly instructions and their size
� Encoding of assembly instructions
� Output of a linked executable file

Topic Page

12.1 Invoking the Disassembler 12-2.

12.2 Disassembly Examples 12-4.

Chapter 12

Invoking the Disassembler

 12-2

12.1 Invoking the Disassembler

Before using the disassembler, consider using the assembler’s −s option (or
the shell’s −as option) to generate your object files. When files are assembled
with this option, local symbols are then included in the disassembly, creating
a more comprehensive listing.

To invoke the disassembler, enter the following:

dis55 [−options] [input filename [output filename]]

dis55 is the command that invokes the disassembler.

input filename is an object file (.obj) or an executable file (.out). If you omit
the input filename, the disassembler prompts for a file. If
you do not specify a file extension, the disassembler
searches for filename, filename.out, and then
filename.obj, in that order.

output filename is the name of the disassembly listing file. If you omit the
output filename, the listing is sent to standard output.

options identifies the disassembler options you want to use.
Options are not case sensitive and can appear anywhere
on the command line following the invocation. Precede
each option with a hyphen (−). The disassembler options
are as follows:

−a displays the branch destination address along with
labels.

−b displays data in bytes. By default, data is displayed
in words.

−c includes a COFF file description at the top of the
listing. This description includes information on the
memory model, relocation, line numbers, and local
symbols.

−d suppresses the display of data sections in the
listing.

−g (Algebraic) enables assembler source debugging
in the source debugger.

−h displays a listing of the available disassembler
options.

−i the disassembler will attempt to disassemble .data
sections into instructions.

Invoking the Disassembler

12-3Disassembler Description

−q (quiet) suppresses the banner and all progress
information.

−qq suppresses the banner, all progress information,
and the section header information added by the
disassembler.

−r causes the disassembler to use the compiler’s
convention of enabling the ARMS and CPL bits. By
default, the disassembler assumes that ARMS and
CPL are disabled. Use −r when disassembling any
file generated from C/C++ source.

−s suppresses the display of the opcode and section
program counter in the listing. When you use this
option along with −qq, the disassembly listing looks
like the original assembly source file.

−t suppresses the display of text sections in the
listing.

Disassembly Examples

 12-4

12.2 Disassembly Examples

This section provides examples of the various features of the disassembler.

Consider the following assembly source file called test.asm:

.global GLOBAL

.global FUNC
CONSTANT .set 1

.text
START MOV AR1,AR0

ADD #CONSTANT,AC0
last ADD #GLOBAL,AC0

.data

.word 4
foo .word 1

.word FUNC

The symbols GLOBAL and FUNC are defined in test2.asm:

.global GLOBAL

.global FUNC
GLOBAL .set 100
FUNC: RETURN

The examples below assume that test.asm and test2.asm have been
assembled and linked with the following commands:

masm55 −qs test.asm
masm55 −qs test2.asm
cl55 −z −q test.obj test2.obj −o test.out

� To create a standard disassembly listing of an object file, enter:

dis55 test.obj
TMS320C55x COFF Disassembler Version x.xx
Copyright (c) 1996−2001 Texas Instruments Incorporated
Disassembly of test.obj:

TEXT Section .text, 0x8 bytes at 0x0
000000: START:
000000: 2298 MOV AR1,AR0
000002: 4010 ADD #1,AC0
000004: last:
000004: 7b000000 ADD #0,AC0,AC0

DATA Section .data, 0x3 words at 0x0
000000: 0004 .word 0x0004
000001: foo:
000001: 0001 .word 0x0001
000002: 0000 .word 0x0000

Notice that the value 1 was encoded into the first ADD instruction, and that
the 16-bit ADD instruction was used. For the second ADD instruction, the

Disassembly Examples

12-5Disassembler Description

use of the global symbol GLOBAL caused the assembler to use the 32-bit
ADD instruction. The symbols GLOBAL and FUNC will be resolved by the
linker.

� You can view the COFF file information with the −c option. The −q option
suppresses the printing of the banner.

dis55 −qc test.obj

>> Target is C55x Phase 3, mem=small, call=c55_std
Relocation information may exist in file
File is not executable
Line number information may be present in the file
Local symbols may be present in the file

TEXT Section .text, 0x8 bytes at 0x0
000000: START:
000000: 2298 MOV AR1,AR0
000002: 4010 ADD #1,AC0
000004: last:
000004: 7b000000 ADD #0,AC0,AC0

DATA Section .data, 0x3 words at 0x0
000000: 0004 .word 0x0004
000001: foo:
000001: 0001 .word 0x0001
000002: 0000 .word 0x0000

� To create a standard disassembly listing of an executable file, enter:

dis55 −q test.out

TEXT Section .text, 0xB bytes at 0x100
000100: START:
000100: 2298 MOV AR1,AR0
000102: 4010 ADD #1,AC0
000104: last:
000104: 7b006400 ADD #100,AC0,AC0
000108: FUNC:
000108: 4804 RET
00010a: 20 NOP
00010b: ___etext__:
00010b: etext:

DATA Section .data, 0x3 words at 0x8000
008000: 0004 .word 0x0004
008001: foo:
008001: 0001 .word 0x0001
008002: 0108 .word 0x0108

The disassembly listing displays the addresses used by the instructions
and data, as well as the resolved symbol values in the ADD instruction and
in the final .word directive. Notice that the .word directive contains the
correct address of the function. The NOP in the .text section is used to pad
the section.

 12-6

13-1

�������
����*�������	���	��������	

This chapter describes how to invoke the following miscellaneous utilities:

� The object file display utility prints the contents of object files,
executable files, and/or archive libraries in both human readable and XML
formats.

� The name utility prints a list of names defined and referenced in a COFF
object or an executable file.

� The strip utility removes symbol table and debugging information from
object and executable files.

Topic Page

13.1 Invoking the Object File Display Utility 13-2.

13.2 XML Tag Index 13-3.

13.3 Example XML Consumer 13-9.

13.4 Invoking the Name Utility 13-16.

13.5 Invoking the Strip Utility 13-17.

Chapter 13

Invoking the Object File Display Utility

 13-2

13.1 Invoking the Object File Display Utility

The object file display utility, ofd55, is used to print the contents of object files
(.obj), executable files (.out), and/or archive libraries (.lib) in both human
readable and XML formats.

To invoke the object file display utility, enter the following:

ofd55 [−options] input filename [input filename]

ofd55 is the command that invokes the object file display utility.

input
filenames

names the assembly language source file. The file name must
contain a .asm extension.

options identify the object file display utility options that you want to use.
Options are not case sensitive and can appear anywhere on the
command line following the command. Precede each option with
a hyphen.

−g appends DWARF debug information to program
output.

−ofilename sends program output to filename rather than to the
screen.

−x displays output in XML format.

If the object file display utility is invoked without any options, it displays
information about the contents of the input files on the console screen.

XML Tag Index

13-3Object File Utilities Descriptions

13.2 XML Tag Index

Table 13−1 describes the XML tags that are generated by the object file display
utility.

Table 13−1. XML Tag Index

Tag Name Context Description

<addr> <line_entry> PC address

<row> PC address

<value> Machine address

<addr_class> <value> Address class

<addr_size> <compile_unit> Size of one machine address (octets)

<section> Size of one machine address (octets)

<alignment> <section> Alignment factor

<archive> <ofd> Archive file (.lib)

<attribute> <die> Attribute of a DWARF DIE

<aux_count> <symbol> Number of auxiliary entries for this symbol

<banner> <ofd> Tool name and version information

<block> <section> True if alignment is used as blocking factor

<value> Data block

<bss> <section> True if this section contains uninitialized data

<bss_size> <optional_file_header> Size of uninitialized data

<byte_swapped> <file_header> Endianness of build host is opposite of current host

<clink> <section> True if this section is conditionally linked

<column> <line_entry> Source column number

<compile_unit> <section> Compile unit

<const> <value> Constant

<copy> <section> True if this section is a copy section

<copyright> <ofd> Copyright notice

<cpu_flags> <file_header> CPU ags

<data> <section> True if this section contains initialized data

XML Tag Index

 13-4

Table 13−1. XML Tag Index

Tag Name DescriptionContext

<data_size> <optional_file_header> Size of initialized data

<data_start> <optional_file_header> Beginning address of initialized data

<destination> <register> Destination register

<die> <compile_unit> DWARF debugging information entry (DIE)

<dim_bound> <dimension> Dimension upper-bound

<dim_num> <dimension> Dimension number

<dimension> <symbol> Array dimension

<disp> <reloc_entry> Extra address encoding information

<dummy> <section> True if this section is a dummy section

<dwarf> <ti_coff> DWARF information

<endian> <file_header> Endianness of target machine

<entry_point> <optional_file_header> Entry point of executable program

<exec> <file_header> True if this file is executable

<fde> <section> A DWARF frame description entry (FDE)

<field_size> <reloc_entry> Size of the field to relocate

<file_header> <ti_coff> COFF file header

<file_length> <file_header> Size of this file

<file_name> <line_entry> Name of source file

<symbol> Name of source file

<file_offsets> <section> File offsets associated with this section

<flag> <value> Flag

<form> <attribute> Attribute form

<frame_size> <symbol> Size of function frame

<function> <line_numbers> Line number entries for one function

<icode> <section> True if this section has I-Code associated with it

<index> <symbol> Index of this symbol in the symbol table

XML Tag Index

13-5Object File Utilities Descriptions

Table 13−1. XML Tag Index

Tag Name DescriptionContext

<indirect_register> <memory> Indirect register used for calculating destination
address

<initial_location> <fde> Start of function referred to by the FDE

<internal> <reloc_entry> True if this relocation is internal

<kind> <symbol> Kind of symbol (defined, undefined, absolute, symbolic
debug)

<length> <symbol> Length of section

<line> <line_entry> Source line number

<symbol> First source line associated with this symbol

<line_count> <section> Number of line number entries

<symbol> Number of line number entries

<line_entry> <compile_unit> Line number entry

<line_numbers> Line number entry

<line_numbers> <section> Line number entries

<line_ptr> <file_offsets> File offset of line number entries

<symbol> File offset of line number entries

<lnno_strip> <file_header> True if line numbers were stripped from this file

<localsym_strip> <file_header> True if local symbols were stripped from this file

<magic> <optional_file_header> Optional file header magic number (0x0108)

<math_relative> <reloc_entry> True if this relocation is math relative

<memory> <row> SOE register is saved to memory

<name> <fde> Name of function referred to by the FDE

<function> Name of the current function

<ofd> Name of an object or archive file

<section> Name of this section

<symbol> Name of this symbol

<next_symbol> <symbol> Index of next symbol after mutlisymbol entity

XML Tag Index

 13-6

Table 13−1. XML Tag Index

Tag Name DescriptionContext

<noload> <section> True if this section is a no-load section

<object_file> <ofd> Object file (.obj, .out)

<ofd> Object file display (OFD) document

<offset> <memory> Offset of destination address from indirect register

<reloc_entry> Offset of the field from relocatable address

<optional_file_header> <ti_coff> Optional file header

<padded> <section> True if this section has been padded (C55x only)

<page> <section> Memory page

<pass> <section> True if this section is passed through unchanged

<physical_addr> <section> Physical (run) address of section

<raw_data_ptr> <file_offsets> File offset of raw data

<raw_data_size> <section> Size of raw data (octets)

<ref> <value> Reference

<register> <row> SOE register is saved to register

<register_mask> <symbol> Mask of saved SOE registers

<regular> <section> True if this section is a regular section

<reloc_count> <section> Number of relocation entries

<symbol> Number of relocation entries

<reloc_entry> <relocations> Relocation entry

<reloc_ptr> <file_offsets> File offset of relocation entries

<reloc_strip> <file_header> True if relocation information was stripped from this file

<relocations> <section> Relocation entries

<return_address_register> <fde> Register used to pass the return address of this
function

<row> <table> Table row

<section> <dwarf> DWARF section

XML Tag Index

13-7Object File Utilities Descriptions

Table 13−1. XML Tag Index

Tag Name DescriptionContext

<symbol> Section containing the definition of this symbol

<ti_coff> COFF section

<section_count> <file_header> Number of section headers

<size_in_addrs> <symbol> Number of machine-address-sized units in function

<size_in_bits> <symbol> Size of symbol (bits)

<source> <memory> Source register

<register> Source register

<start_symbol> <symbol> First symbol in multi-symbol entity

<storage_class> <symbol> Storage class of this symbol

<storage_type> <symbol> Storage type of this symbol

<string> <string_table> String table entry

<value> String

<string_table> <ti_coff> String table

<string_table_size> <string_table> Size of string table

<sym_merge> <file_header> True if debug type-symbols were merged

<symbol> <symbol_table> Symbol table entry

<symbol_count> <file_header> Number of entries in the symbol table

<symbol_relative> <reloc_entry> Relocation is relative to the specified symbol

<symbol_table> <ti_coff> Symbol table

<table> <fde> FDE table

<tag> <die> Tag name

<tag_index> <symbol> Reference to user-defined type

<target_id> <file_header> Target ID; magic number identifying the target
machine

<text> <section> True if this section contains code

<text_size> <optional_file_header> Size of executable code

XML Tag Index

 13-8

Table 13−1. XML Tag Index

Tag Name DescriptionContext

<text_start> <optional_file_header> Beginning address of executable code

<ti_coff> <object_file> TI COFF file

<tool_version> <optional_file_header> Tool version stamp

<type> <attribute> Attribute type

<reloc_entry> Type of relocation

<type_ref> <value> Type reference

<value> <attribute> Attribute value

<reloc_entry> Value

<symbol> Value

<vector> <section> True if this section contains a vector table (C55x only)

<version> <compile_unit> DWARF version

<file_header> Version ID; structure version of this COFF file

<virtual_addr> <reloc_entry> Virtual address to be relocated

<section> Virtual (load) address of section

<word_size> <reloc_entry> Number of address-sized units containing the
relocation field

<xml_version> <dwarf> Version of the DWARF XML language

<ti_coff> Version of the COFF XML language

Example XML Consumer

13-9Object File Utilities Descriptions

13.3 Example XML Consumer

In this section, we present an example of a small application that uses the XML
output of ofd55 to calculate the size of the executable code contained in an
object file.

The example contains three source files: codesize.cpp, xml.h, and xml.cpp.
When compiled into an executable named codesize, it can be used with ofd55
from the command line as follows:

% ofd55 −x a.out | codesize

Code Section Name: .text
Code Section Size: 44736

Code Section Name: .text2
Code Section Size: 64

Code Section Name: .text3
Code Section Size: 64

Total Code Size: 44864

13.3.1 The Main Application

The codesize.cpp file contains the main application for the object file display
utility example.

//***
// CODESIZE.CPP − An example application that calculates the size of the *
// executable code in an object file using the XML output *
// of the OFD utility. *
//***
#include ”xml.h”
#include <iostream>

using namespace std;

static void parse_XML_prolog(istream &in);

//***
// main() − List the names and sizes of the code sections (in octets), and *
// output the total code size. *
//***
int main()
{
 //−−
 // Build our tree of XML Entities from standard input (See xml.{cpp,h} for −
 // the definition of the XMLEntity object). −
 //−−
 parse_XML_prolog(cin);
 XMLEntity *root = new XMLEntity(cin);

Example XML Consumer

 13-10

 //−−
 // Fetch the XML Entities of the section roots. In other words, get a −
 // list of all the XMLEntity sub-trees named ”section” that are in the −
 // context of ”ofd−>object_file−>ti_coff”, where ”ofd” is the root of our −
 // XML document. −
 //−−
 CEntityList query_result;
 const char *section_query[] =
 { ”ofd”, ”object_file”, ”ti_coff”, ”section”, NULL };

 query_result = root−>query(section_query);

 //−−
 // Iterate over the section Entities, looking for code sections. −
 //−−
 CEntityList_CIt pit;
 unsigned long total_code_size = 0;

 for (pit = query_result.begin(); pit != query_result.end(); ++pit)
 {

 //−−−
 // Query for the name, text, and raw_data_size sub-entities of each −
 // section. XMLEntity::query() always returns a list, even if there −
 // will only ever be a maximum of one result. If the tag is not −
 // found, an empty list is returned. −
 //−−−
 const char *section_name_query[] = { ”section”, ”name”, NULL };
 const char *section_text_query[] = { ”section”, ”text”, NULL };
 const char *section_size_query[] = { ”section”, ”raw_data_size”, NULL };

 CEntityList sname_l;
 CEntityList stext_l;
 CEntityList ssize_l;

 sname_l = (*pit)−>query(section_name_query);
 stext_l = (*pit)−>query(section_text_query);
 ssize_l = (*pit)−>query(section_size_query);
 //−−−
 // If a ”text” flag was found, this is a code section. Output −
 // the section name and size, and add its size to our total code size −
 // counter. −
 //−−−
 if (stext_l.size() > 0)
 {
 unsigned long size;

 size = strtoul((*ssize_l.begin())−>value().c_str(), NULL, 16);

 cout << ”Code Section Name: ” << (*sname_l.begin())−>value() << endl;
 cout << ”Code Section Size: ” << size << endl;
 cout << endl;

 total_code_size += size;
 }

Example XML Consumer

13-11Object File Utilities Descriptions

 }

 //−−
 // Output the total code size, and clean up. −
 //−−
 cout << ”Total Code Size: ” << total_code_size << endl;
 delete root;

 return 0;
}

//***
// parse_XML_prolog() − Parse the XML prolog, and throw it away. *
//***
static void parse_XML_prolog(istream &in)
{
 char c;

 while (true)
 {
 //−−−
 // Look for the next tag; if it is not an XML directive, we’re done. −
 //−−−
 for (in.get(c); c != ’<’ && !in.eof(); in.get(c))
 ; // empty body

 if (in.eof()) return;
 if (in.peek() != ’?’) { in.unget(); return; }

 //−−−
 // Otherwise, read in the directive and continue. −
 //−−−
 for (in.get(c); c != ’>’ && !in.eof(); in.get(c))
 ; // empty body
 }
}

Example XML Consumer

 13-12

13.3.2 xml.h Declaration of the XMLEntity Object

The xml.h file contains the declaration of the XMLEntity object for the
codesize.cpp application.

//***
// XML.H − Declaration of the XMLEntity object. *
//***
#ifndef XML_H
#define XML_H
#include <list>
#include <string>

//***
// Type Declarations. *
//***
class XMLEntity;
typedef list<XMLEntity*> EntityList;
typedef list<const XMLEntity*> CEntityList;
typedef CEntityList::const_iterator CEntityList_CIt;
typedef EntityList::const_iterator EntityList_CIt;
8
//***
// CLASS XMLENTITY − A Simplified XML Entity Object. *
//***
class XMLEntity
{
 public:
 XMLEntity (istream &in, XMLEntity *parent=NULL);
 ~XMLEntity ();
 const CEntityList query (const char **context) const;
 const string &tag () const { return tag_m; }
 const string &value () const { return value_m; }

 private:
 void parse_raw_tag (const string &raw_tag);
 void sub_query (CEntityList &result, const char **context) const;

 string tag_m; // Tag Name
 string value_m; // Value
 XMLEntity *parent_m; // Pointer to parent in XML hierarchy
 EntityList children_m; // List of children in XML hierarchy
};
#endif

Example XML Consumer

13-13Object File Utilities Descriptions

13.3.3 xml.cpp Definition of the XMLEntity Object

The xml.cpp file contains the definition of the XMLEntity object for the
codesize.cpp application.

//***
// XML.CPP − Definition of the XMLEntity object. *
//***
#include ”xml.h”
#include <iostream>
#include <string>
#include <list>
#include <cstdlib>

//***
// XMLEntity::query() − Return the list of XMLEntities a list that reside *
// in the given XML context. *
//***
const CEntityList XMLEntity::query(const char **context) const
{
 CEntityList result;

 if (!*context) return result;

 sub_query(result, context);

 return result;
}

//***
// XMLEntity::sub_query() − Recurse through the XML tree looking for a match *
// to the current query. *
//***
void XMLEntity::sub_query(CEntityList &result, const char **context) const
{
 if (!context[0] || tag() != context[0]) return;

 if (!context[1])
 result.push_front(this);
 else
 {
 EntityList_CIt pit;

 for (pit = children_m.begin(); pit != children_m.end(); ++pit)
 (*pit)−>sub_query(result, context+1);
 }
 return;
}

//***
// XMLEntity::parse_raw_tag() − Cut out the tag name from the complete string *
// we found between the < > brackets. This throws out any attributes. *
//***
void XMLEntity::parse_raw_tag(const string &raw_tag)

Example XML Consumer

 13-14

{
 string attribute;
 int i;

 for (i = 0; i < raw_tag.size() && raw_tag[i] != ’ ’; ++i)
 tag_m += raw_tag[i];
}

//***
// XMLEntity::XMLEntity() − Recursively construct a tree of XMLEntities from *
// the given input stream. *
//***
XMLEntity::XMLEntity(istream &in, XMLEntity *parent) :
tag_m(””), value_m(””), parent_m(parent)
{
 string raw_tag;
 char c;
 int i;
 //−−
 // Read in the leading ’<’. −
 //−−
 in.get();

 //−−
 // Store the tag name and attributes in ”raw_tag”, then call −
 // process_raw_tag() to separate the tag name from the attributes and −
 // store it in tag_m. −
 //−−
 for (in.get(c); c != ’>’ && c != ’/’ && !in.eof(); in.get(c))
 raw_tag += c;

 parse_raw_tag(raw_tag);

 //−−
 // If we’re reading in an end−tag, read in the closing ’>’ and return. −
 //−−
 if (c == ’/’) { in.get(c); return; }

 //−−
 // Otherwise, parse our value. −
 //−−
 while (true)
 {
 //−−−
 // Read in the closing ’>’, then start reading in characters and add −
 // them to value_m. Stop when we hit the beginning of a tag. −
 //−−−
 for (in.get(c); c != ’<’; in.get(c)) value_m += c;

 //−−−
 // If we’re reading in a start tag, parse in the entire entity, and −
 // add it to our child list (recursive constructor call). −
 //−−−
 if (in.peek() != ’/’)
 {

Example XML Consumer

13-15Object File Utilities Descriptions

 //−−
 // Put back the opening ’<’, since XMLEntity() expects to read it. −
 //−−
 in.unget();
 children_m.push_front(new XMLEntity(in, this));
 }
 //−−−
 // Otherwise, read in our end tag, and exit. −
 //−−−
 else
 {
 for (in.get(c); c != ’>’; in.get(c))
 ; // empty body
 break;
 }
 }

 //−−
 // Strip off leading and trailing white space from our value. −
 //−−
 for (i = 0; i < value_m.size(); i++)
 if (value_m[i] != ’ ’ && value_m[i] != ’\n’) break;
 value_m.erase(0, i);

 for (i = value_m.size()−1; i >= 0; i−−)
 if (value_m[i] != ’ ’ && value_m[i] != ’\n’) break;
 value_m.erase(i+1, value_m.size()−i);
}

//***
// XMLEntity::~XMLEntity() − Delete a XMLEntity object. *
//***
XMLEntity::~XMLEntity()
{
 EntityList_CIt pit;

 for (pit = children_m.begin(); pit != children_m.end(); ++pit)
 delete (*pit);
}

Invoking the Name Utility

 13-16

13.4 Invoking the Name Utility

The name utility, nm55, is used to print the list of names defined and
referenced in a COFF object (.obj) or an executable file (.out). The value
associated with the symbol and an indication of the kind of symbol is also
printed.

To invoke the name utility, enter the following:

nm55 [−options] [input filename]

nm55 is the command that invokes the name utility.

input filename is a COFF object file (.obj), an executable file (.out), or an
archive file. For an archive file, the name utility processes
each object file in the archive.

options identifies the name utility options you want to use. Options
are not case sensitive and can appear anywhere on the
command line following the invocation. Precede each
option with a hyphen (−). The name utility options are as
follows:

−a prints all symbols.

−c also prints C_NULL symbols.

−d also prints debug symbols.

−f prepends file name to each symbol.

−g prints only global symbols.

−h shows the current help screen.

−l produces a detailed listing of the symbol
information.

−n sorts symbols numerically rather than
alphabetically.

−ofile outputs to the given file.

−p causes the name utility to not sort any symbols.

−q (quiet mode) suppresses the banner and all
progress information.

−r sorts symbols in reverse order.

−t also prints tag information symbols.

−u only prints undefined symbols.

Invoking the Strip Utility

13-17Object File Utilities Descriptions

13.5 Invoking the Strip Utility

The strip utility, strip55, is used to remove symbol table and debugging
information from object and executable files.

To invoke the strip utility, enter the following:

strip55 [−p] input filename [input filename]

strip55 is the command that invokes the strip utility.

input filename is a COFF object file (.obj) or an executable file (.out).

options identifies the strip utility options you want to use. Options
are not case sensitive and can appear anywhere on the
command line following the invocation. Precede each
option with a hyphen (−). The name utility option is as
follows:

−p removes all information not required for
execution. This option causes more information
to be removed than the default behavior, but the
object file is left in a state that cannot be linked.
This option should be used only with executable
(.out) files.

When the strip utility is invoked, the input object files are replaced with the
stripped version.

 13-18

14-1

+��,
�����	���,*�����&,��	��������

The TMS320C55x� assembler and linker create object files that are in
common object file format (COFF). COFF is a binary object file format that
encourages modular programming and provides more powerful and flexible
methods for managing code segments and target system memory.

Most EPROM programmers do not accept COFF object files as input. The hex
conversion utility converts a COFF object file into one of several standard
ASCII hexadecimal formats, suitable for loading into an EPROM programmer.
The utility is also useful in other applications requiring hexadecimal conversion
of a COFF object file (for example, when using debuggers and loaders). This
utility also supports the on-chip boot loader built into the target device,
automating the code creation process for the C55x.

The hex conversion utility can produce these output file formats:

� ASCII-Hex, supporting 16-bit addresses
� Extended Tektronix (Tektronix)
� Intel MCS-86 (Intel)
� Motorola Exorciser (Motorola-S), supporting 16-bit, 24-bit, and 32-bit

addresses
� Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

Topic Page

14.1 Hex Conversion Utility Development Flow 14-2.
14.2 Invoking the Hex Conversion Utility 14-3.
14.3 Command File 14-6.
14.4 Understanding Memory Widths 14-8.
14.5 The ROMS Directive 14-15.
14.6 The SECTIONS Directive 14-21.
14.7 Excluding a Specified Section 14-23.
14.8 Output Filenames 14-24.
14.9 Image Mode and the −fill Option 14-26.
14.10 Building a Table for an On-Chip Boot Loader 14-28.
14.11 Controlling the ROM Device Address 14-34.
14.12 Description of the Object Formats 14-38.
14.13 Hex Conversion Utility Error Messages 14-44.

Chapter 14

Hex Conversion Utility Development Flow

 14-2

14.1 Hex Conversion Utility Development Flow

Figure 14−1 highlights the role of the hex conversion utility in the assembly
language development process.

Figure 14−1. Hex Conversion Utility Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C/C++
source

files

C5000

Executable
COFF

file

C/C++ compiler

Library-build
utility

Cross-reference
lister

Absolute lister

Debugging
tools

Runtime-
support
library

C++ name
demangler

Invoking the Hex Conversion Utility

14-3Hex Conversion Utility Description

14.2 Invoking the Hex Conversion Utility

There are two basic methods for invoking the hex conversion utility:

� Specify the options and filenames on the command line. The following
example converts the file firmware.out into TI-Tagged format, producing
two output files, firm.lsb and firm.msb.

hex55 −t firmware −o firm.lsb −o firm.msb

� Specify the options and filenames in a command file. You can create
a batch file that stores command line options and filenames for invoking
the hex conversion utility. The following example invokes the utility using
a command file called hexutil.cmd:

hex55 hexutil.cmd

In addition to regular command line information, you can use the hex
conversion utility ROMS and SECTIONS directives in a command file.

To invoke the hex conversion utility, enter:

hex55 [−options] filename

hex55 is the command that invokes the hex conversion utility.

−options supplies additional information that controls the hex conversion
process. You can use options on the command line or in a
command file.

� All options are preceded by a dash and are not case sensi-
tive.

� Several options have an additional parameter that must be
separated from the option by at least one space.

� Options with multicharacter names must be spelled exactly
as shown in this document; no abbreviations are allowed.

� Options are not affected by the order in which they are used.
The exception to this rule is the −q option, which must be
used before any other options.

filename names a COFF object file or a command file (for more
information on command files, see Section 14.3, Command
Files, on page 14-6).

Invoking the Hex Conversion Utility

 14-4

Table 14−1. Hex Conversion Utility Options

(a) General options control the overall operation of the hex conversion utility.

Option Description Page

−exclude section_name Ignore specified section 14-23

−map filename Generate a map file 14-20

−o filename Specify an output filename 14-24

−q Run quietly (when used, it must appear before
other options)

14-6

(b) Image options create a continuous image of a range of target memory.

Option Description Page

−fill value Fill holes with value 14-27

−image Specify image mode 14-26

−zero Reset the address origin to zero 14-35

(c) Memory options configure the memory widths for your output files.

Option Description Page

−memwidth value Define the system memory word width (default
8 bits)

14-9

−order {LS | MS} Specify the memory word ordering 14-13

−romwidth value Specify the ROM device width (default
depends on format used)

14-10

Invoking the Hex Conversion Utility

14-5Hex Conversion Utility Description

Table 14−1. Hex Conversion Utility Options (Continued)

(d) Output formats specify the format of the output file.

Option Description Page

−a Select ASCII-Hex 14-39

−b Select binary

−i Select Intel 14-40

−m1 Select Motorola−S1 14-41

−m2 or −m Select Motorola−S2 (default) 14-41

−m3 Select Motorola–S3 14-41

−t Select TI-Tagged 14-42

−x Select Tektronix 14-43

(e) Boot-loader options for all C55x devices control how the hex conversion utility
builds the boot table.

Option Description Page

−boot Convert all sections into bootable form (use instead
of a SECTIONS directive)

14-30

−bootorg value Specify the source address of the boot loader table 14-30

−bootpage value Specify the target page number of the boot loader
table

14-30

−e value Specify the entry point at which to begin execution
after boot loading. The value can be an address or
a global symbol.

14-29

−parallel16 Specify a 16-bit parallel interface boot table
(−memwidth 16 and −romwidth 16)

14-32

−parallel32 Specify a 32-bit parallel interface boot table
(−memwidth 16 and −romwidth 32)

14-32

−serial8 Specify an 8-bit serial interface boot table
(−memwidth 8 and −romwidth 8)

14-32

−serial16 Specify a 16-bit serial interface boot table
(−memwidth 16 and −romwidth 16)

14-32

−vdevice:revision Specify the device and silicon revision number 14-33

Command File

 14-6

14.3 Command File

A command file is useful if you plan to invoke the utility more than once with
the same input files and options. It is also useful if you want to use the ROMS
and SECTIONS hex conversion utility directives to customize the conversion
process.

Command files are ASCII files that contain one or more of the following:

� Options and filenames. These are specified in a command file in exactly
the same manner as on the command line.

� ROMS directive. The ROMS directive defines the physical memory
configuration of your system as a list of address-range parameters. (For
more information about the ROMS directive, see Section 14.5, The ROMS
Directive, on page 14-15.)

� SECTIONS directive. The SECTIONS directive specifies which sections
from the COFF object file should be selected. (For more information about
the SECTIONS directive, see Section 14.6, The SECTIONS Directive, on
page 14-21.)

You can also use this directive to identify specific sections that will be
initialized by an on-chip boot loader. (For more information on the on-chip
boot loader, see Section 14.10.3, Building a Table for an On-Chip Boot
Loader, on page 14-29.)

� Comments. You can add comments to your command file by using the /*
and */ delimiters. For example:

/* This is a comment */

To invoke the utility and use the options you defined in a command file, enter:

 hex55 command_filename

You can also specify other options and files on the command line. For
example, you could invoke the utility by using both a command file and
command line options:

 hex55 firmware.cmd −map firmware.mxp

The order in which these options and file names appear is not important. The
utility reads all input from the command line and all information from the
command file before starting the conversion process. However, if you are
using the −q option, it must appear as the first option on the command line or
in a command file.

The −q option suppresses the utility’s normal banner and progress
information.

Command File

14-7Hex Conversion Utility Description

14.3.1 Examples of Command Files

� Assume that a command file named firmware.cmd contains these lines:

firmware.out /* input file */
−t /* TI−Tagged */
−o firm.lsb /* output file 1, LSBs of ROM */
−o firm.msb /* output file 2, MSBs of ROM*/

You can invoke the hex conversion utility by entering:

 hex55 firmware.cmd

� This example converts a file called appl.out into four hex files in Intel
format. Each output file is one byte wide and 16K bytes long. The .text
section is converted to boot loader format.

appl.out /* input file */
−i /* Intel format */
−map appl.mxp /* map file */

ROMS
{
 ROW1: origin=01000h len=04000h romwidth=8
 files={ appl.u0 appl.u1 }
 ROW2: origin 05000h len=04000h romwidth=8
 files={ app1.u2 appl.u3 }
}

SECTIONS
{ .text: BOOT
 .data, .cinit, .sect1, .vectors, .const:
}

Understanding Memory Widths

 14-8

14.4 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by
allowing you to specify memory and ROM widths. In order to use the hex
conversion utility, you must understand how the utility treats word widths. Four
widths are important in the conversion process: target width, data width,
memory width, and ROM width. The terms target word, data word, memory
word, and ROM word refer to a word of such a width.

Figure 14−2 illustrates the three separate and distinct phases of the hex
conversion utility’s process flow.

Figure 14−2. Hex Conversion Utility Process Flow

Raw data in COFF files is represented
in target-width-sized words. For C55x,
this is 8 bits. The target width is fixed
and cannot be changed.

Phase III

Phase II

Phase I

Output file(s)

(i.e. Intel, Tektronix, etc..).
according to the specified format

and are written to a file(s)
specified by the −romwidth option
broken up according to the size
The memwidth-sized words are

−memwidth option.
according to size specified by the

representation is divided into words
The data-width-sized internal

by the default data width (8 bits).
truncated to the size specified

The raw data in the COFF file is

COFF input file

Understanding Memory Widths

14-9Hex Conversion Utility Description

14.4.1 Target Width

Target width is the unit size (in bits) of raw data fields in the COFF file. This
corresponds to the size of an opcode on the target processor. The width is fixed
for each target and cannot be changed. The C54x targets have a width of 16
bits.The C55x targets are represented with a width of 16 bits.

14.4.2 Data Width

Data width is the logical width (in bits) of the data words stored in a particular
section of a COFF file. Usually, the logical data width is the same as the target
width. The data width is fixed at 8 bits for the TMS320C55x and cannot be
changed.

14.4.3 Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the
memory system is physically the same width as the target processor width: a
16-bit processor has a 16-bit memory architecture. However, some
applications require target words to be broken up into multiple, consecutive,
narrower memory words. Moreover, with certain processors like the C55x, the
memory width can be narrower than the target width.

The C55x hex conversion utility defaults memory width to 16 bits.

You can change the memory width by:

� Using the −memwidth option. This changes the memory width value for
the entire file.

� Setting the memwidth parameter of the ROMS directive. This changes
the memory width value for the address range specified in the ROMS
directive and overrides the −memwidth option for that range. See Section
14.5, The ROMS Directive, on page 14-15.

For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 16 only in exceptional
situations: for example, when you need to break single target words into
consecutive, narrower memory words. Situations in which memory words are
narrower than target words are most common when you use an on-chip boot
loader that supports booting from narrower memory. For example, a 16-bit
TMS320C55x can be booted from 8-bit memory or an 8-bit serial port, with
each 16-bit value occupying two memory locations (this would be specified as
−memwidth 8).

Understanding Memory Widths

 14-10

Figure 14−3 demonstrates how the memory width is related to the data width.

Figure 14−3. Data and Memory Widths

−memwidth 16 (default) −memwidth 8

AABB

AA

BB

1122

Data width = 16 (fixed)

Memory widths (variable)
data width = 16

Source file
.word 0AABBh
.word 01122h

11

22
. . .

. . .

0AABBh
01122h
. . .

Data after
phase I

of hex utility

Data after
phase II

of hex utility

. . .

14.4.4 ROM Width

ROM width specifies the physical width (in bits) of each ROM device and
corresponding output file (usually one byte or eight bits). The ROM width
determines how the hex conversion utility partitions the data into output files.
After the target words are mapped to the memory words, the memory words
are broken into one or more output files. The number of output files per address
range is determined by the following formula, where memory width � ROM
width:

number of files = memory width � ROM width

For example, for a memory width of 16, you could specify a ROM width of 16
and get a single output file containing 16-bit words. Or you can use a ROM
width value of 8 to get two files, each containing 8 bits of each word.

For more information on calculating the number of files per address range, see
Section 14.5, The ROMS Directive, on page 14-15.

Understanding Memory Widths

14-11Hex Conversion Utility Description

The default ROM width that the hex conversion utility uses depends on the
output format:

� All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the
default ROM width for these formats is 8 bits.

� TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16
bits.

Note: The TI-Tagged Format Is 16 Bits Wide

You cannot change the ROM width of the TI-Tagged format. The TI-Tagged
format supports a 16-bit ROM width only.

You can change ROM width (except for TI-Tagged) by:

� Using the −romwidth option. This changes the ROM width value for the
entire COFF file.

� Setting the romwidth parameter of the ROMS directive. This changes the
ROM width value for a specific ROM address range and overrides the
−romwidth option for that range. See Section 14.5, The ROMS Directive,
on page 14-15.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format
(16 bits for TI-Tagged or 8 bits for all others), the utility simply writes multibyte
fields into the file.

Figure 14−4 illustrates how the target, memory, and ROM widths are related
to one another.

Understanding Memory Widths

 14-12

Figure 14−4. Data, Memory, and ROM Widths

0AABBh

Data width = 16 (fixed)

Source file
.word 0AABBCDDh
.word 01122344h

. . .

01122h
. . .

Data after
phase I

of hex utility

Data after
phase II

of hex utility

Data after
phase III

of hex utility

−memwidth 16 −memwidth 8

AABB

11

22

AA

BB

1122

Memory widths (variable)

Output files

−romwidth 16

−romwidth 8

−romwidth 8

−o file.wrd AABB1122

−o file.b0

−o file.b1 AA 11

BB 22

−o file.byt BBAA2211

. . .

. . .

. . .

. . .

. . .

. . .

Understanding Memory Widths

14-13Hex Conversion Utility Description

14.4.5 A Memory Configuration Example

Figure 14−5 shows a typical memory configuration example. This memory
system consists of two 128K � 8-bit ROM devices.

Figure 14−5. C55x Memory Configuration Example

Upper 8 bits (data)

Lower 8 bits (data)

System memory width 16 bits

ROM width
8 bits8 bits

ROM width

ROM1
128K x 8

ROM0
128K x 8

CPU

Source file
word AABBh

AABBh

AAh BBh

Data width = 16 bits

14.4.6 Specifying Word Order for Output Words

When memory words are wider than ROM words (memory width > ROM
width), memory words are split into multiple consecutive ROM words. There
are two ways to split a wide word into consecutive memory locations in the
same hex conversion utility output file:

� −order MS specifies big-endian ordering, in which the most significant
part of the wide word occupies the first of the consecutive locations

� −order LS specifies little-endian ordering, in which the the least
significant part of the wide word occupies the first of the consecutive
locations

By default, the utility uses little-endian format because the C55x boot loaders
expect the data in this order. Unless you are using your own boot loader
program, avoid using −order MS.

Understanding Memory Widths

 14-14

Note: When the −order Option Applies

� The −order option applies only when you use a memory width with a value
greater than 16. Otherwise, −order is ignored.

� The −order option does not affect the way memory words are split into
output files. Think of the files as a set: the set contains a least significant
file and a most significant file, but there is no ordering over the set. When
you list filenames for a set of files, you always list the least significant first,
regardless of the −order option.

Figure 14−6 demonstrates how −order affects the conversion process. This
figure, and the previous figure, Figure 14−4, explain the condition of the data
in the hex conversion utility output files.

Figure 14−6. Varying the Word Order

Target width = 16 (fixed)

Memory widths (variable)

Source file
.word 0AABBh
.word 01122h

. . .

. . .

.

−memwidth 8
−order LS (default)

AA
BB

11
22

−memwidth 8
−order MS

BB
AA

22
11

0AABBh
01122h

The ROMS Directive

14-15Hex Conversion Utility Description

14.5 The ROMS Directive

The ROMS directive specifies the physical memory configuration of your
system as a list of address-range parameters.

Each address range produces one set of files containing the hex conversion
utility output data that corresponds to that address range. Each file can be
used to program one single ROM device.

If you do not use a ROMS directive, the utility defines a default memory
configuration that includes two address spaces (PAGE 0 and PAGE 1). Each
address space contains a single address range. PAGE 0 contains a default
range of the entire program address space, and PAGE 1 contains a default
range of the entire data address space.

The ROMS directive is similar to the MEMORY directive of the TMS320C55x
linker: both define the memory map of the target address space. Each line
entry in the ROMS directive defines a specific address range. The general
syntax is:

ROMS
{

[PAGE n:]
romname: [origin =value,] [length =value,] [romwidth =value,]

[memwidth =value,] [fill =value,]
[files ={filename1, filename2, ...}]

romname: [origin =value,] [length =value,] [romwidth =value,]
[memwidth =value,] [fill =value,]
[files ={filename1, filename2, ...}]

...
}

ROMS begins the directive definition.

PAGE identifies a memory space for targets that use program- and
data-address spaces. If your program has been linked
normally, PAGE 0 specifies program memory and PAGE 1
specifies data memory. Each memory range after the PAGE
command belongs to that page until you specify another PAGE.
If you don’t include PAGE, all ranges belong to page 0.

romname identifies a memory range. The name of the memory range
may be one to eight characters in length. The name has no
significance to the program; it simply identifies the range.
(Duplicate memory range names are allowed.)

The ROMS Directive

 14-16

origin specifies the starting address of a memory range. It can be
entered as origin, org, or o. The associated value must be a
decimal, octal, or hexadecimal constant. If you omit the origin
value, the origin defaults to 0.

The following table summarizes the notation you can use to
specify a decimal, octal, or hexadecimal constant:

Constant Notation Example

Hexadecimal 0x prefix or h suffix 0x77 or 077h

Octal 0 prefix 077

Decimal No prefix or suffix 77

length specifies the length of a memory range as the physical length
of the ROM device. It can be entered as length, len, or l. The
value must be a decimal, octal, or hexadecimal constant. If you
omit the length value, it defaults to the length of the entire
address space.

romwidth specifies the physical ROM width of the range in bits (see
subsection 14.4.4, ROM Width, on page 14-10). Any value you
specify here overrides the −romwidth option. The value must
be a decimal, octal, or hexadecimal constant that is a power of
2 greater than or equal to 8.

memwidth specifies the memory width of the range in bits (see subsection
14.4.3, Memory Width, on page 14-9). Any value you specify
here overrides the −memwidth option. The value must be a
decimal, octal, or hexadecimal constant that is a power of 2
greater than or equal to 8. When using the memwidth
parameter, you must also specify the paddr parameter for each
section in the SECTIONS directive.

fill specifies a fill value to use for the range. In image mode, the hex
conversion utility uses this value to fill any holes between
sections in a range. The value must be a decimal, octal, or
hexadecimal constant with a width equal to the target width.
Any value you specify here overrides the −fill option. When
using fill, you must also use the −image command line option.
See subsection 14.9.2, Specifying a Fill Value, on page 14-27.

The ROMS Directive

14-17Hex Conversion Utility Description

files identifies the names of the output files that correspond to this
range. Enclose the list of names in curly braces and order them
from least significant to most significant output file.

The number of file names should equal the number of output
files that the range will generate. To calculate the number of
output files, refer to Section 14.4.4, ROM Width, on page
14-10. The utility warns you if you list too many or too few
filenames.

Unless you are using the −image option, all of the parameters defining a range
are optional; the commas and equals signs are also optional. A range with no
origin or length defines the entire address space. In image mode, an origin and
length are required for all ranges.

Ranges on the same page must not overlap and must be listed in order of
ascending address.

14.5.1 When to Use the ROMS Directive

If you do not use a ROMS directive, the utility defines a default memory
configuration that includes two address spaces (PAGE 0 and PAGE 1). Each
address space contains a single address range. PAGE 0 contains a default
range of the entire program address space, and PAGE 1 contains a default
range of the entire data address space. If nothing is loaded into a particular
page, no output is created for that page.

Use the ROMS directive when you want to:

� Program large amounts of data into fixed-size ROMs . When you
specify memory ranges corresponding to the length of your ROMs, the
utility automatically breaks the output into blocks that fit into the ROMs.

� Restrict output to certain segments . You can also use the ROMS
directive to restrict the conversion to a certain segment or segments of the
target address space. The utility does not convert the data that falls
outside of the ranges defined by the ROMS directive. Sections can span
range boundaries; the utility splits them at the boundary into multiple
ranges. If a section falls completely outside any of the ranges you define,
the utility does not convert that section and issues no messages or
warnings. In this way, you can exclude sections without listing them by
name with the SECTIONS directive. However, if a section falls partially in
a range and partially in unconfigured memory, the utility issues a warning
and converts only the part within the range.

The ROMS Directive

 14-18

� Use image mode. When you use the −image option, you must use a
ROMS directive. Each range is filled completely so that each output file in
a range contains data for the whole range. Gaps before, between, or after
sections are filled with the fill value from the ROMS directive, with the value
specified with the −fill option, or with the default value of 0.

14.5.2 An Example of the ROMS Directive

The ROMS directive in Example 14−1 shows how 16K words of 16-bit memory
could be partitioned for four 8K � 8-bit EPROMs.

Example 14−1. A ROMS Directive Example

infile.out
−image
−memwidth 16

ROMS
{
 EPROM1: org = 04000h, len = 02000h, romwidth = 8
 files = { rom4000.b0, rom4000.b1 }

 EPROM2: org = 06000h, len = 02000h, romwidth = 8,
 fill = 0FFh,
 files = { rom6000.b0, rom6000.b1 }
}

In this example, EPROM1 defines the address range from 4000h through
5FFFh. The range contains the following sections:

This section Has this range

.text 4000h through 487Fh

.data 5B80H through 5FFFh

The rest of the range is filled with 0h (the default fill value). The data from this
range is converted into two output files:

� rom4000.b0 contains bits 0 through 7
� rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 6000h through 7FFFh. The range
contains the following sections:

This section Has this range

.data 6000h through 633Fh

.table 6700h through 7C7Fh

The ROMS Directive

14-19Hex Conversion Utility Description

The rest of the range is filled with 0FFh (from the specified fill value). The data
from this range is converted into two output files:

� rom6000.b0 contains bits 0 through 7
� rom6000.b1 contains bits 8 through 15

Figure 14−7 shows how the ROMS directive partitions the infile.out file into
four output files.

Figure 14−7. The infile.out File From Example 14−1 Partitioned Into Four Output Files

ÉÉÉÉ
ÉÉÉÉ

rom4000.b0

rom6000.b0

rom4000.b1

rom6000.b1

04000h
(org)

06000h

.text

.data

.table

.text .text

.data .data

.table

.data

0FFh

infile.out

 memwidth = 16 bits

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

0h

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

0h

04000h

0487Fh

05B80h

0633Fh

06700h

07C7Fh

04880h

05B80h

06340h
06700h

07C80h
07FFFh

EPROM1

05FFFh

ÉÉÉÉ
ÉÉÉÉ0FFh

Output Files:COFF File:

 width = 8 bits len =
2000h (8K)

ÉÉÉÉ
ÉÉÉÉ

.table

.data

0FFh

ÉÉÉÉ
ÉÉÉÉ0FFh

EPROM2

The ROMS Directive

 14-20

14.5.3 Creating a Map File of the ROMS Directive

The map file (specified with the −map option) is advantageous when you use
the ROMS directive with multiple ranges. The map file shows each range, its
parameters, names of associated output files, and a list of contents (section
names and fill values) broken down by address. Following is a segment of the
map file resulting from the example in Example 14−1.

Example 14−2. Map File Output From Example 14−1 Showing Memory Ranges

−−−
00004000..00005fff Page=0 Width=8 ”EPROM1”
−−−

OUTPUT FILES: rom4000.b0 [b0..b7]
rom4000.b1 [b8..b15]

CONTENTS: 00004000..0000487f .text
00004880..00005b7f FILL = 00000000
00005b80..00005fff .data

−−−
00006000..00007fff Page=0 Width=8 ”EPROM2”
−−−

OUTPUT FILES: rom6000.b0 [b0..b7]
rom6000.b1 [b8..b15]

CONTENTS: 00006000..0000633f .data
00006340..000066ff FILL = 000000ff
00006700..00007c7f .table
00007c80..00007fff FILL = 000000ff

The SECTIONS Directive

14-21Hex Conversion Utility Description

14.6 The SECTIONS Directive

You can convert specific sections of the COFF file by name with the
SECTIONS directive. You can also specify those sections you want the utility
to configure for loading from an on-chip boot loader, and those sections that
you want to locate in ROM at a different address than the load address
specified in the linker command file:

� If you use a SECTIONS directive, the utility converts only the sections that
you list in the directive and ignores all other sections in the COFF file.

� If you don’t use a SECTIONS directive, the utility converts all initialized
sections that fall within the configured memory. The TMS320C55x
compiler-generated initialized sections include: .text, .const, .cinit, and
.switch.

Uninitialized sections are never converted, whether or not you specify them
in a SECTIONS directive.

Note: Sections Generated by the C/C++ Compiler

The TMS320C55x C/C++ compiler automatically generates these sections:

� Initialized sections: .text, .const, .cinit, and .switch.

� Uninitialized sections: .bss, .stack, and .sysmem.

Use the SECTIONS directive in a command file. (For more information about
using a command file, see Section 14.3, Command Files, on page 14-6.) The
general syntax for the SECTIONS directive is:

SECTIONS
{

sname: [paddr =value]
sname: [paddr=boot]
sname: [= boot],
...

}

The SECTIONS Directive

 14-22

SECTIONS begins the directive definition.

sname identifies a section in the COFF input file. If you specify a
section that doesn’t exist, the utility issues a warning and
ignores the name.

paddr specifies the physical ROM address at which this section
should be located. This value overrides the section load
address given by the linker. (See Section 14.11, Controlling the
ROM Device Address, on page 14-34).This value must be a
decimal, octal, or hexadecimal constant. It can also be the word
boot (to indicate a boot table section for use with the on-chip
boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a
paddr parameter.

= boot configures a section for loading by the on-chip boot loader. This
is equivalent to using paddr =boot . Boot sections have a
physical address determined both by the target processor type
and by the various boot-loader-specific command line options.

The commas separating section names are optional. For more similarity with
the linker’s SECTIONS directive, you can use colons after the section names
(in place of the equal sign on the boot keyboard). For example, the following
statements are equivalent:

SECTIONS { .text: .data: boot }

SECTIONS { .text, .data = boot }

In the example below, the COFF file contains six initialized sections: .text,
.data, .const, .vectors, .coeff, and .tables. Suppose you want only .text and
.data to be converted. Use a SECTIONS directive to specify this:

SECTIONS { .text, .data }

To configure both of these sections for boot loading, add the boot keyword:

SECTIONS { .text = boot, .data = boot }

Note: Using the −boot Option and the SECTIONS Directive

When you use the SECTIONS directive with the on-chip boot loader, the
−boot option is ignored. You must explicitly specify any boot sections in the
SECTIONS directive. For more information about −boot and other
command-line options associated with the on-chip boot loader, see
Table 14−2, page 14-29.

Excluding a Specified Section

14-23Hex Conversion Utility Description

14.7 Excluding a Specified Section

The −exclude section_name option can be used to inform the hex utility to
ignore the specified section. If a SECTIONS directive is used, it overrides the
−exclude option.

For example, if a SECTIONS directive containing the section name mysect is
used and an −exclude mysect is specified, the SECTIONS directive takes
precedence and mysect is not excluded.

The −exclude option has a limited wildcard capability. The * character can be
placed at the beginning or end of the name specifier to indicate a suffix or
prefix, respectively. For example, −exclude sect* disqualifies all sections that
begin with the characters sect.

If you specify the −exclude option on the command line with the * wildcard,
enter quotes around the section name and wildcard. For example,
−exclude”sect*”. Using quotes prevents the * form being interpreted by the hex
conversion utility. If −exclude is in a command file, then the quotes should not
be specified.

Output Filenames

 14-24

14.8 Output Filenames

When the hex conversion utility translates your COFF object file into a data
format, it partitions the data into one or more output files. When multiple files
are formed by splitting data into byte-wide or word-wide files, filenames are
always assigned in order from least to most significant. This is true, regardless
of target or COFF endian ordering, or of any −order option.

14.8.1 Assigning Output Filenames

The hex conversion utility follows this sequence when assigning output
filenames:

1) It looks for the ROMS directive. If a file is associated with a range in the
ROMS directive and you have included a list of files (files = {. . .}) on that
range, the utility takes the filename from the list.

For example, assume that the target data is 16-bit words being converted
to two files, each eight bits wide. To name the output files using the ROMS
directive, you could specify:

ROMS
{
 RANGE1: romwidth=8, files={ xyz.b0 xyz.b1 }
}

The utility creates the output files by writing the least significant bits (LSBs)
to xyz.b0 and the most significant bits (MSBs) to xyz.b1.

2) It looks for the −o options. You can specify names for the output files by
using the −o option. If no filenames are listed in the ROMS directive and
you use −o options, the utility takes the filename from the list of −o options.
The following line has the same effect as the example above using the
ROMS directive:

−o xyz.b0 −o xyz.b1

Note that if both the ROMS directive and −o options are used together, the
ROMS directive overrides the −o options.

Output Filenames

14-25Hex Conversion Utility Description

3) It assigns a default filename. If you specify no filenames or fewer names
than output files, the utility assigns a default filename. A default filename
consists of the base name from the COFF input file plus a 2- to 3-character
extension (e.g., filename.abc). The extension has three parts:

a) A format character, based on the output format:

a for ASCII-Hex
i for Intel
t for TI-Tagged
m for Motorola-S
x for Tektronix

b) The range number in the ROMS directive. Ranges are numbered
starting with 0. If there is no ROMS directive, or only one range, the
utility omits this character.

c) The file number in the set of files for the range, starting with 0 for the
least significant file.

For example, assume coff.out is for a 16-bit target processor and you are
creating Intel format output. With no output filenames specified, the utility
produces two output files named coff.i00 and coff.i01.

If you include the following ROMS directive when you invoke the hex
conversion utility, you would have two output files:

ROMS
{

range1: o = 1000h l = 1000h
range2: o = 2000h l = 1000h

}

These Output Files Contain This Data

coff.i00 1000h through 1FFFh

coff.i10 2000h through 2FFFh

Image Mode and the −fill Option

 14-26

14.9 Image Mode and the −fill Option

This section points out the advantages of operating in image mode and
describes how to produce output files with a precise, continuous image of a
target memory range.

14.9.1 The −image Option

With the −image option, the utility generates a memory image by completely
filling all of the mapped ranges specified in the ROMS directive.

A COFF file consists of blocks of memory (sections) with assigned memory
locations. Typically, all sections are not adjacent: there are gaps between
sections in the address space for which there is no data. When such a file is
converted without the use of image mode, the hex conversion utility bridges
these gaps by using the address records in the output file to skip ahead to the
start of the next section. In other words, there may be discontinuities in the
output file addresses. Some EPROM programmers do not support address
discontinuities.

In image mode, there are no discontinuities. Each output file contains a
continuous stream of data that corresponds exactly to an address range in
target memory. Any gaps before, between, or after sections are filled with a fill
value that you supply.

An output file converted by using image mode still has address records
because many of the hexadecimal formats require an address on each line.
However, in image mode, these addresses will always be contiguous.

Note: Defining the Ranges of Target Memory

If you use image mode, you must also use a ROMS directive. In image mode,
each output file corresponds directly to a range of target memory. You must
define the ranges. If you don’t supply the ranges of target memory, the utility
tries to build a memory image of the entire target processor address
space—potentially a huge amount of output data. To prevent this situation,
the utility requires you to explicitly restrict the address space with the ROMS
directive.

Image Mode and the −fill Option

14-27Hex Conversion Utility Description

14.9.2 Specifying a Fill Value

The −fill option specifies a value for filling the holes between sections. The fill
value must be specified as an integer constant following the −fill option. The
width of the constant is assumed to be that of a word on the target processor.
For example, for the C55x, specifying −fill 0FFh results in a fill pattern of
00FFh. The constant value is not sign extended.

The hex conversion utility uses a default fill value of zero if you don’t specify
a value with the fill option. The −fill option is valid only when you use −image;
otherwise, it is ignored.

14.9.3 Steps to Follow in Image Mode

Step 1: Define the ranges of target memory with a ROMS directive. See
Section 14.5, The ROMS Directive, on page 14-15 for details.

Step 2: Invoke the hex conversion utility with the −image option. To number
the bytes sequentially, use the −byte option; to reset the address
origin to zero for each output file, use the −zero option. See section
14.11.3, The −byte Option, on page 14-36 for details on the −byte
option, and page 14-35 for details on the −zero option. If you don’t
specify a fill value with the ROMS directive and you want a value
other than the default of zero, use the −fill option.

Building a Table for an On-Chip Boot Loader

 14-28

14.10 Building a Table for an On-Chip Boot Loader

Some DSP devices, such as the C55x, have a built-in boot loader that
initializes memory with one or more blocks of code or data. The boot loader
uses a special table (a boot table) stored in memory (such as EPROM) or
loaded from a device peripheral (such as a serial or communications port) to
initialize the code or data. The hex conversion utility supports the boot loader
by automatically building the boot table.

14.10.1 Description of the Boot Table

The input for a boot loader is the boot table. The boot table contains records
that instruct the on-chip loader to copy blocks of data contained in the table to
specified destination addresses. Some boot tables also contain values for
initializing various processor control registers. The boot table can be stored in
memory or read in through a device peripheral.

The hex conversion utility automatically builds the boot table for the boot
loader. Using the utility, you specify the COFF sections you want the boot
loader to initialize, the table location, and the values for any control registers.
The hex conversion utility identifies the target device type from the COFF file,
builds a complete image of the table according to the format required by that
device, and converts it into hexadecimal in the output files. Then, you can burn
the table into ROM or load it by other means.

The boot loader supports loading from memory that is narrower than the
normal width of memory. For example, you can serially boot a 16-bit
TMS320C55x from a single 8-bit EPROM by using the −serial8−memwidth
option to configure the width of the boot table. The hex conversion utility
automatically adjusts the table’s format and length. See the boot loader
example in the TMS320C55x DSP CPU Reference Guide for an illustration
of a boot table.

14.10.2 The Boot Table Format

The boot table format is simple. Typically, there is a header record containing
values for various control registers. Each subsequent block has a header
containing the size and destination address of the block followed by data for
the block. Multiple blocks can be entered; a termination block follows the last
block. Finally, the table can have a footer containing more control register
values. See the boot loader section in the TMS320C55x DSP CPU Reference
Guide for more information.

Building a Table for an On-Chip Boot Loader

14-29Hex Conversion Utility Description

14.10.3 How to Build the Boot Table

Table 14−2 summarizes the hex conversion utility options available for the
boot loader.

Table 14−2. Boot-Loader Options

(a) Options for all C55x devices

Option Description

−boot Convert all sections into bootable form (use instead of a
SECTIONS directive)

−bootorg value Specify the source address of the boot loader table

−bootpage value Specify the target page number of the boot loader table

−e value Specify the entry point at which to begin execution after boot
loading. The value can be an address or a global symbol.

−parallel16 Specify a 16-bit parallel interface boot table (−memwidth 16
and −romwidth 16)

−parallel32 Specify a 32-bit parallel interface boot table (−memwidth 16
and −romwidth 32)

−serial8 Specify an 8-bit serial interface boot table (−memwidth 8 and
−romwidth 8)

−serial16 Specify a 16-bit serial interface boot table (−memwidth 16
and −romwidth 16)

−vdevice:revision Specify the device and silicon revision number

Building a Table for an On-Chip Boot Loader

 14-30

Table 14−2. Boot-Loader Options (Continued)

(b) Options for C55x LP devices only

Option Description

−arr value Set the ABU receive address register value

−bkr value Set the ABU transmit buffer size register value

−bootorg COMM Specify the source of the boot loader table as the
communications port

−bootorg WARM
or −warm

Specify the source of the boot loader table as the table
currently in memory

−bscr value Set the bank-switch control register value for
PARALLEL/WARM boot mode

−spc value Set the serial port control register value

−spce value Set the serial port control extension register value

−swwsr value Set the software wait state register value for
PARALLEL/WARM boot mode

−tcsr value Set the TDM serial port channel select register value

−trta value Set the TDM serial port receive/transmit address register
value

14.10.3.1 Building the Boot Table

To build the boot table, follow these steps:

Step 1: Link the file . Each block of the boot table data corresponds to an
initialized section in the COFF file. Uninitialized sections are not con-
verted by the hex conversion utility (see Section 14.6, The
SECTIONS Directive, on page 14-21).

When you select a section for placement in a boot-loader table, the
hex conversion utility places the section’s load address in the des-
tination address field for the block in the boot table. The section
content is then treated as raw data for that block.

The hex conversion utility does not use the section run address.
When linking, you need not worry about the ROM address or the
construction of the boot table—the hex conversion utility handles
this.

Building a Table for an On-Chip Boot Loader

14-31Hex Conversion Utility Description

Step 2: Identify the bootable sections . You can use the −boot option to tell
the hex conversion utility to configure all sections for boot loading.
Or, you can use a SECTIONS directive to select specific sections to
be configured (see Section 14.6, The SECTIONS Directive, on page
14-21). Note that if you use a SECTIONS directive, the −boot option
is ignored.

Step 3: Set the ROM address of the boot table . Use the −bootorg option
to set the source address of the complete table. For example, if you
are using the C55x and booting from memory location 8000h, specify
−bootorg 8000h. The address field in the the hex conversion utility
output file will then start at 8000h.

If you do not use the −bootorg option at all, the utility places the table
at the origin of the first memory range in a ROMS directive. If you do
not use a ROMS directive, the table will start at the first section load
address. There is also a −bootpage option for starting the table
somewhere other than page 0.

Step 4: Set boot-loader-specific options. Set entry point, parallel inter-
face, or serial interface options as needed. When using revision 1.0
silicon, you must specify the device and silicon revision number with
the −v5510:1 option due to differences in the rev 1.0 bootloader.

Step 5: Describe your system memory configuration . See Section 14.4,
Understanding Memory Widths, on page 14-8 and Section 14.5,
The ROMS Directive, on page 14-15 for details.

14.10.3.2 Leaving Room for the Boot Table

The complete boot table is similar to a single section containing all of the
header records and data for the boot loader. The address of this section is the
boot table origin. As part of the normal conversion process, the hex conversion
utility converts the boot table to hexadecimal format and maps it into the output
files like any other section.

Be sure to leave room in your system memory for the boot table, especially
when you are using the ROMS directive. The boot table cannot overlap other
nonboot sections or unconfigured memory. Usually, this is not a problem;
typically, a portion of memory in your system is reserved for the boot table.
Simply configure this memory as one or more ranges in the ROMS directive,
and use the −bootorg option to specify the starting address.

Building a Table for an On-Chip Boot Loader

 14-32

14.10.4 Booting From a Device Peripheral

You can choose to boot from a serial or parallel port by using the −parallel16,
−parallel32, −serial8, or −serial16 option. Your selection of an option depends
on the target device and the channel you want to use. For example, to boot a
C55x from its 16-bit McBSP port, specify −serial16 on the command line or in
a command file. To boot a C55x from one of its EMIF ports, specify −parallel16
or −parallel32.

Note: On-Chip Boot Loader Concerns

� Possible memory conflicts. When you boot from a device peripheral,
the boot table is not actually in memory; it is being received through the
device peripheral. However, as explained in Step 3 on page 14-31, a
memory address is assigned.

If the table conflicts with a nonboot section, put the boot table on a
different page. Use the ROMS directive to define a range on an unused
page and the −bootpage option to place the boot table on that page. The
boot table will then appear to be at location 0 on the dummy page.

� Why the System Might Require an EPROM Format for a Peripheral
Boot Loader Address. In a typical system, a parent processor boots a
child processor through that child’s peripheral. The boot loader table
itself may occupy space in the memory map of the parent processor. The
EPROM format and ROMS directive address correspond to those used
by the parent processor, not those that are used by the child.

14.10.5 Setting the Entry Point for the Boot Table

After completing the boot load process, execution starts at the default entry
point specified by the linker and contained in the COFF file. By using the −e
option with the hex conversion utility, you can set the entry point to a different
address.

For example, if you want your program to start running at address 0123h after
loading, specify −e 0123h on the command line or in a command file. You can
determine the −e address by looking at the map file that the linker generates.

Note: Valid Entry Points

The value can be a constant, or it can be a symbol that is externally defined
(for example, with a .global) in the assembly source.

Building a Table for an On-Chip Boot Loader

14-33Hex Conversion Utility Description

14.10.6 Using the C55x Boot Loader

This subsection explains how to use the hex conversion utility with the boot
loader for C55x devices. If you are using silicon revision 1.0, you must use the
−v5510:1 option. The C55x boot loader has several different boot table
formats.

Format Option

EMIF 16-bit −parallel16

EMIF 32-bit −parallel32

McBSP 8-bit −serial8

McBSP 16-bit −serial16

Mode −bootorg Setting −memwidth Setting

8-bit parallel I/O −bootorg PARALLEL −memwidth 8

16-bit parallel I/O −bootorg PARALLEL −memwidth 16

8-bit serial RS232 −bootorg SERIAL −memwidth 8

16-bit serial RS232 −bootorg SERIAL −memwidth 16

8-bit parallel EPROM −bootorg 0x8000 −memwidth 8

16-bit parallel EPROM −bootorg 0x8000 −memwidth 16

The C55x can also boot from a boot table in memory. To boot from external
memory (EPROM), specify the source address of the boot memory by using
the −bootorg option. Use either −memwidth 8 or −memwidth 16.

For example, the command file in Figure 14−8 allows you to boot the .text
section of abc.out from a byte-wide EPROM at location 0x8000.

Figure 14−8. Sample Command File for Booting From a C55x EPROM

abc.out /* input file */
−o abc.i /* output file */
−i /* Intel format */
−memwidth 8 /* 8-bit memory */
−romwidth 8 /* outfile is bytes, not words */
−bootorg 0x8000 /* external memory boot */

SECTIONS { .text: BOOT }

Controlling the ROM Device Address

 14-34

14.11 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device
address. The EPROM programmer burns the data into the location specified
by the hex conversion utility output file address field. The hex conversion utility
offers some mechanisms to control the starting address in ROM of each
section and/or to control the address index used to increment the address
field. However, many EPROM programmers offer direct control of the location
in ROM in which the data is burned.

14.11.1 Controlling the Starting Address

Depending on whether or not you are using the boot loader, the hex conversion
utility output file controlling mechanisms are different.

Non-Boot Loader Mode. The address field of the hex conversion utility output
file is controlled by the following mechanisms listed from low to high priority:

1) The linker command file . By default, the address field of the hex
conversion utility output file is a function of the load address (as given in
the linker command file) and the hex conversion utility parameter values.
The relationship is summarized as follows:

out_file_addr† = load_addr � (data_width � mem_width)

out_file_addr is the address of the output file.

load_addr is the linker-assigned load address.

data_width is specified as 16 bits for the TMS320C55x devices.
See subsection 14.4.2, Data Width, on page 14-9.

mem_width is the memory width of the memory system. You can
specify the memory width by the −memwidth option
or by the memwidth parameter inside the ROMS
directive. See subsection 14.4.3, Memory Width, on
page 14-9.

† If paddr is not specified

The value of data width divided by memory width is a correction factor for
address generation. When data width is larger than memory width, the
correction factor expands the address space. For example, if the load
address is 0�1 and data width divided by memory width is 2, the output file
address field would be 0�2. The data is split into two consecutive
locations the size of the memory width.

Controlling the ROM Device Address

14-35Hex Conversion Utility Description

2) The paddr parameter of the SECTIONS directive. When the paddr
parameter is specified for a section, the hex conversion utility bypasses
the section load address and places the section in the address specified
by paddr. The relationship between the hex conversion utility output file
address field and the paddr parameter can be summarized as follows:

out_file_addr† = paddr_val + (load_addr − sect_beg_load_addr) � (data_width � mem_width)

out_file_addr is the address of the output file.

paddr_val is the value supplied with the paddr parameter
inside the SECTIONS directive.

sec_beg_load_addr is the section load address assigned by the
linker.

† If paddr is not specified

The value of data width divided by memory width is a correction factor for
address generation. The section beginning load address factor subtracted
from the load address is an offset from the beginning of the section.

3) The −zero option. When you use the −zero option, the utility resets the
address origin to 0 for each output file. Since each file starts at 0 and
counts upward, any address records represent offsets from the beginning
of the file (the address within the ROM) rather than actual target addresses
of the data.

You must use the −zero option in conjunction with the −image option to
force the starting address in each output file to be zero. If you specify the
−zero option without the −image option, the utility issues a warning and
ignores the −zero option.

Boot Loader Mode. When the boot loader is used, the hex conversion utility
places the different COFF sections that are in the boot table into consecutive
memory locations. Each COFF section becomes a boot table block whose
destination address is equal to the linker-assigned section load address.

In a boot table, the address field of the the hex conversion utility output file is
not related to the section load addresses assigned by the linker. The address
fields of the boot table are simply offsets to the beginning of the table,
multiplied by the correction factor (data width divided by memory width). The
section load addresses assigned by the linker will be encoded into the boot
table along with the size of the section and the data contained within the
section. These addresses will be used to store the data into memory during
the boot load process.

Controlling the ROM Device Address

 14-36

The beginning of the boot table defaults to the linked load address of the first
bootable section in the COFF input file, unless you use one of the following
mechanisms, listed here from low to high priority. Higher priority mechanisms
override the values set by low priority options in an overlapping range.

1) The ROM origin specified in the ROMS directive. The hex conversion
utility places the boot table at the origin of the first memory range in a
ROMS directive.

2) The −bootorg option. The hex conversion utility places the boot table at
the address specified by the −bootorg option if you select boot loading
from memory.

14.11.2 Controlling the Address Increment Index

By default, the hex conversion utility increments the output file address field
according to the memory width value. If memory width equals 16, the address
increments on the basis of how many 16-bit words are present in each line of
the output file.

14.11.3 Specifying Byte Count

Some EPROM programmers require the output file address field to contain a byte
count rather than a word count. If you use the −byte option, the output file address
increments once for each byte. For example, if the starting address is 0h, the first
line contains eight words, and you do not use the −byte option, the second line
would start at address 8 (08h). In contrast, if the starting address is 0h, the first
line contains eight words, and you use the −byte option, the second line would
start at address 16 (010h). The data in both examples are the same; −byte affects
only the calculation of the output file address field, not the actual target processor
address of the converted data.

The −byte option causes the address records in an output file to refer to byte
locations within the file, whether or not the target processor is byte-addressable.

Controlling the ROM Device Address

14-37Hex Conversion Utility Description

14.11.4 Dealing With Address Holes

When memory width is different from data width, the automatic multiplication
of the load address by the correction factor might create holes at the beginning
of a section or between sections.

For example, assume you want to load a COFF section (.sec1) at address
0x0100 of an 8-bit EPROM. If you specify the load address in the linker
command file at location 0x0100, the hex conversion utility will multiply the
address by 2 (data width divided by memory width = 16/8 = 2), giving the output
file a starting address of 0x0200. Unless you control the starting address of the
EPROM with your EPROM programmer, you could create holes within the
EPROM. The programmer will burn the data starting at location 0x0200
instead of 0x0100. To solve this, you can:

� Use the paddr parameter of the SECTIONS directive. This forces a
section to start at the specified value. Figure 14−9 shows a command file
that can be used to avoid the hole at the beginning of .sec1.

Figure 14−9. Hex Command File for Avoiding a Hole at the Beginning of a Section

−i
a.out
−map a.map

ROMS
{
 ROM : org = 0x0100, length = 0x200, romwidth = 8,
 memwidth = 8
}

SECTIONS
 {

sec1: paddr = 0x100
}

If your file contains multiple sections and one section uses a paddr
parameter, then all sections must use the paddr parameter.

� Use the −bootorg option or use the ROMS origin parameter (for boot
loading only). As described on page 14-35, when you are boot loading,
the EPROM address of the entire boot-loader table can be controlled by
the −bootorg option or by the ROMS directive origin.

Description of the Object Formats

 14-38

14.12 Description of the Object Formats

The hex conversion utility converts a COFF object file into one of five object
formats that most EPROM programmers accept as input: ASCII-Hex, Intel
MCS-86, Motorola-S, Extended Tektronix, or TI-Tagged.

Table 14−3 specifies the format options.

� If you use more than one of these options, the last one you list overrides
the others.

� The default format is Tektronix (−x option).

Table 14−3. Options for Specifying Hex Conversion Formats

Option Format
Address

Bits
Default
Width

−a ASCII-Hex 16 8

−i Intel 32 8

−m1 Motorola-S1 16 8

−m2 or −m Motorola-S2 24 8

−m3 Motorola-S3 32 8

−t TI-Tagged 16 16

−x Tektronix 32 8

Address bits determine how many bits of the address information the format
supports. Formats with 16-bit addresses support addresses up to 64K only.
The utility truncates target addresses to fit in the number of available bits.

The default width determines the default output width. You can change the
default width by using the −romwidth option or by using the romwidth
parameter in the ROMS directive. You cannot change the default width of the
TI-Tagged format, which supports a 16-bit width only.

Description of the Object Formats

14-39Hex Conversion Utility Description

14.12.1 ASCII-Hex Object Format (−a Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists
of a byte stream with bytes separated by spaces. Figure 14−10 illustrates the
ASCII-Hex format.

Figure 14−10. ASCII-Hex Object Format

^B $AXXXX,
 XX XX XX XX XX XX XX XX XX XX. . .^C

Nonprintable
start code

Nonprintable
end codeAddress

Data byte

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an
ASCII ETX character (ctrl-C, 03h). Address records are indicated with
$AXXXX, in which XXXX is a 4-digit (16-bit) hexadecimal address. The
address records are present only in the following situations:

� When discontinuities occur
� When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the −image
and −zero options. The output created is a list of byte values.

Description of the Object Formats

 14-40

14.12.2 Intel MCS-86 Object Format (−i Option)

The Intel object format supports 16-bit addresses and 32-bit extended
addresses. Intel format consists of a 9-character (4-field) prefix—which
defines the start of record, byte count, load address, and record type—the
data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record

01 End-of-file record

04 Extended linear address record

Record type 00, the data record, begins with a colon (:) and is followed by the
byte count, the address of the first data byte, the record type (00), and the
checksum. Note that the address is the least significant 16 bits of a 32-bit
address; this value is concatenated with the value from the most recent 04
(extended linear address) record to create a full 32-bit address. The checksum
is the 2s complement (in binary form) of the preceding bytes in the record,
including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed
by the byte count, the address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16
address bits. It begins with a colon (:), followed by the byte count, a dummy
address of 0h, the record type (04), the most significant 16 bits of the address,
and the checksum. The subsequent address fields in the data records contain
the least significant bits of the address.

Figure 14−11 illustrates the Intel hexadecimal object format.

Figure 14−11. Intel Hex Object Format

:2000000000000100020003000400050006000700080009000A000B000C000D000E000F0068
:2000200010001100120013001400150016001700180019001A001B001C001D001E001F0048
:2000400000000100020003000400050006000700080009000A000B000C000D000E000F0028
:2000600010001100120013001400150016001700180019001A001B001C001D001E001F0008
:00000001FF

Start
character

Byte
count

Checksum

Data
records

Record
type

Address
Most significant 16 bits

Extended linear
address record

End-of-file
record

:020000040001F9

Description of the Object Formats

14-41Hex Conversion Utility Description

14.12.3 Motorola Exorciser Object Format (−m1, −m2, −m3 Options)

The Motorola S1, S2, and S3 formats support 16-bit, 24-bit, and 32-bit
addresses, respectively. The formats consist of a start-of-file (header) record,
data records, and an end-of-file (termination) record. Each record is made up
of five fields: record type, byte count, address, data, and checksum. The
record types are:

Record Type Description

S0 Header record

S1 Code/data record for 16-bit addresses (S1 format)

S2 Code/data record for 24-bit addresses (S2 format)

S3 Code/data record for 32-bit addresses (S3 format)

S7 Termination record for 32-bit addresses (S3 format)

S8 Termination record for 24-bit addresses (S2 format)

S9 Termination record for 16-bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and
byte count itself.

The checksum is the least significant byte of the 1s complement of the sum
of the values represented by the pairs of characters making up the byte count,
address, and the code/data fields.

Figure 14−12 illustrates the Motorola-S object format.

Figure 14−12. Motorola-S Format

S1130000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC
S1130010FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED
S1130020FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDC
S1130030FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCC
S1130040FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBC
S9030000FC

Byte
Count

Checksum

Data
Records

Address

Header
Record

Termination
Record

S00B00004441544120492F4FF3

Type

Description of the Object Formats

 14-42

14.12.4 Texas Instruments SDSMAC Object Format (−t Option)

The TI-Tagged object format supports 16-bit addresses. It consists of a
start-of-file record, data records, and end-of-file record. Each of the data
records is made up of a series of small fields and is signified by a tag character.
The significant tag characters are:

Tag Character Description

K followed by the program identifier

7 followed by a checksum

8 followed by a dummy checksum (ignored)

9 followed by a 16-bit load address

B followed by a data word (four characters)

F identifies the end of a data record

* followed by a data byte (two characters)

Figure 14−13 illustrates the tag characters and fields in TI-Tagged object
format.

Figure 14−13. TI-Tagged Object Format

K000COFFTOTI90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EF3DF
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EE37F
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F245F
:

Tag charactersProgram
identifier

Load
address

Data
words Checksum

Data
records

End-of-file
record

Start-of-file
record

If any data fields appear before the first address, the first field is assigned
address 0000h. Address fields may be expressed for any data byte, but none
is required. The checksum field, which is preceded by the tag character 7, is
a 2s complement of the sum of the 8-bit ASCII values of characters, beginning
with the first tag character and ending with the checksum tag character (7 or
8). The end-of-file record is a colon (:).

Description of the Object Formats

14-43Hex Conversion Utility Description

14.12.5 Extended Tektronix Object Format (−x Option)

The Tektronix object format supports 32-bit addresses and has two types of
records:

data record contains the header field, the load address, and the
object code.

termination record signifies the end of a module.

The header field in the data record contains the following information:

Item

Number of
ASCII

Characters Description

% 1 Data type is Tektronix format

Block length 2 Number of characters in the record, minus the %

Block type 1 6 = data record
8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the
record except the % and the checksum itself.

The load address in the data record specifies where the object code will be
located. The first digit specifies the address length; this is always 8. The
remaining characters of the data record contain the object code, two
characters per byte.

Figure 14−14 illustrates the Tektronix object format.

Figure 14−14. Extended Tektronix Object Format

%15621810000000202020202020

Block length
15h = 21

Checksum: 21h = 1+5+6+8+1+0+0+0+0+0+0+0+
2+0+2+0+2+0+2+0+2+0+2+0

Load address: 10000000h

Header
character

Block type: 6
(data)

Object code: 6 bytes

Length of
load address

Hex Conversion Utility Error Messages

 14-44

14.13 Hex Conversion Utility Error Messages

section mapped to reserved memory message

Description A section or a boot-loader table is mapped into a reserved
memory area listed in the processor memory map.

Action Correct the section or boot-loader address. Refer to the
TMS320C55x DSP CPU Reference Guide for valid memory
locations.

sections overlapping

Description Two or more COFF section load addresses overlap or a boot
table address overlaps another section.

Action This problem may be caused by an incorrect translation from
load address to hex output file address that is performed by the
hex conversion utility when memory width is less than data
width. See Section 14.4, Understanding Memory Widths, on
page 14-8 and Section 14.11, Controlling the ROM Device
Address, on page 14-34.

unconfigured memory error

Description This error could have one of two causes:

� The COFF file contains a section whose load address falls
outside the memory range defined in the ROMS directive.

� The boot-loader table address is not within the memory
range defined by the ROMS directive.

Action Correct the ROM range as defined by the ROMS directive to
cover the memory range as needed, or modify the section load
address or boot-loader table address. Remember that if the
ROMS directive is not used, the memory range defaults to the
entire processor address space. For this reason, removing the
ROMS directive could also be a workaround.

A-1

Appendix A

����� ������
���
�����

The compiler, assembler, and linker create object files in common object file
format (COFF). COFF is an implementation of an object file format of the same
name that was developed by AT&T for use on UNIX-based systems. This
format is used because it encourages modular programming and provides
more powerful and flexible methods for managing code segments and target
system memory.

Sections are a basic COFF concept. Chapter 2, Introduction to
Common Object File Format, discusses COFF sections in detail. If you
understand section operation, you will be able to use the assembly language
tools more efficiently.

This appendix contains technical details about COFF object file structure.
Much of this information pertains to the symbolic debugging information that
is produced by the C/C++ compiler. The purpose of this appendix is to provide
supplementary information about the internal format of COFF object files.

Topic Page

A.1 COFF File Structure A-2.

A.2 File Header Structure A-4.

A.3 Optional File Header Format A-5.

A.4 Section Header Structure A-6.

A.5 Structuring Relocation Information A-9.

A.6 Symbol Table Structure and Content A-11.

Appendix A

COFF File Structure

 A-2

A.1 COFF File Structure

The elements of a COFF object file describe the file’s sections and symbolic
debugging information. These elements are:

� A file header
� Optional header information
� A table of section headers
� Raw data for each initialized section
� Relocation information for each initialized section
� A symbol table
� A string table

The assembler and linker produce object files with the same COFF structure;
however, a program that is linked for the final time does not usually contain
relocation entries. Figure A−1 illustrates the overall object file structure.

Figure A−1. COFF File Structure

File header

Optional file header

Section 1 header

Section n header

Section 1
raw data

Section n
raw data

Section 1
relocation information

Section n
relocation information

Symbol table

String table

Section headers

Raw data
(executable code
and initialized data)

Relocation
information

COFF File Structure

A-3Common Object File Format

Figure A−2 shows a typical example of a COFF object file that contains the
three default sections, .text, .data, and .bss, and a named section (referred to
as <named>). By default, the tools place sections into the object file in the
following order: .text, .data, initialized named sections, .bss, and uninitialized
named sections. Although uninitialized sections have section headers, notice
that they have no raw data, relocation information, or line-number entries. This
is because the .bss and .usect directives simply reserve space for uninitialized
data; uninitialized sections contain no actual code.

Figure A−2. COFF Object File

File header

.text
section header

.data
section header

.bss
section header

<named> section
section header

.text
raw data

.data
raw data

<named> section
raw data

.text
relocation information

.data
relocation information

<named> section
relocation information

Symbol table

String table

Section headers

Raw data

Relocation
information

File Header Structure

 A-4

A.2 File Header Structure
The file header contains 22 bytes of information that describe the general
format of an object file. Table A−1 shows the structure of the COFF file header.

Table A−1. File Header Contents

Byte
Numbe r Type Description

0−1 Unsigned short integer Version ID; indicates version of COFF file
structure

2−3 Unsigned short integer Number of section headers

4−7 Long integer Time and date stamp; indicates when the file
was created

8−11 Long integer File pointer; contains the symbol table’s
starting address

12−15 Long integer Number of entries in the symbol table

16−17 Unsigned short integer Number of bytes in the optional header. This
field is either 0 or 28; if it is 0, then there is no
optional file header

18−19 Unsigned short integer Flags (see Table A−2)

20−21 Unsigned short integer Target ID; magic number indicates the file
can be executed in a TMS320C55x�
system

Table A−2 lists the flags that can appear in bytes 18 and 19 of the file header.
Any number and combination of these flags can be set at the same time (for
example, if bytes 18 and 19 are set to 0003h, both F_RELFLG and F_EXEC
are set.)

Table A−2. File Header Flags (Bytes 18 and 19)

Mnemonic Flag Description

F_RELFLG 0001h Relocation information was stripped from the file.

F_EXEC 0002h The file is relocatable (it contains no unresolved
external references).

0004h Reserved

F_LSYMS 0008h Local symbols were stripped from the file.

F_LITTLE 0100h The file has the byte ordering used by C55x
devices (16 bits per word, least significant byte
first)

F_SYMMERGE 1000h Duplicate symbols were removed.

Optional File Header Format

A-5Common Object File Format

A.3 Optional File Header Format

The linker creates the optional file header and uses it to perform relocation at
download time. Partially linked files do not contain optional file headers.
Table A−3 illustrates the optional file header format.

Table A−3. Optional File Header Contents

Byte
Number Type Description

0−1 Short integer Magic number (for SunOS or HP-UX it is
108h; for DOS it is 801h)

2−3 Short integer Version stamp

4−7 Long integer Size (in bytes) of executable code

8−11 Long integer Size (in bytes) of initialized .data sections

12−15 Long integer Size (in bytes) of uninitialized .bss
sections

16−19 Long integer Entry point

20−23 Long integer Beginning address of executable code

24−27 Long integer Beginning address of initialized data

Section Header Structure

 A-6

A.4 Section Header Structure

COFF object files contain a table of section headers that define where each
section begins in the object file. Each section has its own section header.
Table A−4 shows the section header contents for COFF files.

Section names that are longer than eight characters are stored in the string
table. The field in the symbol table entry that would normally contain the
symbol’s name contains, instead, a pointer to the symbol’s name in the string
table.

Table A−4. Section Header Contents

Byte Type Description

0−7 Character This field contains one of the following:

1) An 8-character section name, padded with
nulls

2) A pointer into the string table if the section
name is longer than 8 characters

8−11 Long integer Section’s physical address

12−15 Long integer Section’s virtual address

16−19 Long integer Section size in bytes

20−23 Long integer File pointer to raw data

24−27 Long integer File pointer to relocation entries

28−31 Long integer Reserved

32−35 Unsigned long Number of relocation entries

36−39 Unsigned long Reserved

40−43 Unsigned long Flags (see Table A−5)

44−45 Short Reserved

46−47 Unsigned short Memory page number

Table A−5 lists the flags that can appear in the section header. The flags can
be combined. For example, if the flag’s byte is set to 024h, both
STYP_GROUP and STYP_TEXT are set.

Section Header Structure

A-7Common Object File Format

Table A−5. Section Header Flags

Mnemonic Flag Description

STYP_REG 0000h Regular section (allocated, relocated, loaded)

STYP_DSECT 0001h Dummy section (relocated, not allocated, not loaded)

STYP_NOLOAD 0002h Noload section (allocated, relocated, not loaded)

STYP_GROUP 0004h Grouped section (formed from several input sections)

STYP_PAD 0008h Padding section (loaded, not allocated, not relocated)

STYP_COPY 0010h Copy section (relocated, loaded, but not allocated;
relocation entries are processed normally)

STYP_TEXT 0020h Section that contains executable code

STYP_DATA 0040h Section that contains initialized data

STYP_BSS 0080h Section that contains uninitialized data

STYP_CLINK 4000h Section that is conditionally linked

Note: The term loaded means that the raw data for this section appears in the object file.

Figure A−3 illustrates how the pointers in a section header would point to the
elements in an object file that are associated with the .text section.

Section Header Structure

 A-8

Figure A−3. Section Header Pointers for the .text Section

.text

.text
section
header

.text
Raw data

.text
Relocation information

• •
0−7 8−11 12−15 16−19 20−23 24−27 28−31 32−33 34−35 36−37 38 39

As Figure A−2 on page A-3 shows, uninitialized sections (created with the
.bss and .usect directives) vary from this format. Although uninitialized
sections have section headers, they have no raw data or relocation
information. They occupy no actual space in the object file. Therefore, the
number of relocation entries and the file pointers are 0 for an uninitialized
section. The header of an uninitialized section simply tells the linker how much
space for variables it should reserve in the memory map.

Structuring Relocation Information

A-9Common Object File Format

A.5 Structuring Relocation Information

A COFF object file has one relocation entry for each relocatable reference.
The assembler automatically generates relocation entries. The linker reads
the relocation entries as it reads each input section and performs relocation.
The relocation entries determine how references within each input section are
treated.

COFF file relocation information entries use the 12-byte format shown in
Table A−6.

Table A−6. Relocation Entry Contents

Byte
Number Type Description

0−3 Long integer Virtual address of the reference

4−7 Unsigned long integer Symbol table index

8−9 Unsigned short integer Additional byte used for extended
address calculations

10−11 Unsigned short integer Relocation type (see Table A−7)

The virtual address is the symbol’s address in the current section before
relocation; it specifies where a relocation must occur. (This is the address of
the field in the object code that must be patched.)

Following is an example of code that generates a relocation entry:

2 .global X
3 0000006A00 B X

0000010000!

In this example, the virtual address of the relocatable field is 0001.

The symbol table index is the index of the referenced symbol. In the
preceding example, this field would contain the index of X in the symbol table.
The amount of the relocation is the difference between the symbol’s current
address in the section and its assembly-time address. The relocatable field
must be relocated by the same amount as the referenced symbol. In the
example, X has a value of 0 before relocation. Suppose X is relocated to
address 2000h. This is the relocation amount (2000h − 0 = 2000h), so the
relocation field at address 1 is patched by adding 2000h to it.

You can determine a symbol’s relocated address if you know which section it
is defined in. For example, if X is defined in .data and .data is relocated by
2000h, X is relocated by 2000h.

Structuring Relocation Information

 A-10

If the symbol table index in a relocation entry is −1 (0FFFFh), this is called an
internal relocation. In this case, the relocation amount is simply the amount by
which the current section is being relocated.

The relocation type specifies the size of the field to be patched and describes
how to calculate the patched value. The type field depends on the addressing
mode that was used to generate the relocatable reference. In the preceding
example, the actual address of the referenced symbol (X) will be placed in a
16-bit field in the object code. This is a 16-bit direct relocation, so the relocation
type is R_RELWORD. Table A−7 lists the relocation types. The flag entries
given are octal values.

Table A−7. Relocation Types (Bytes 10 and 11)

Mnemonic Flag Relocation Type

R_ABS 0000 No relocation

R_REL24 0005 24-bit direct reference to symbol’s address

R_RELBYTE 0017 8-bit direct reference to symbol’s address

R_RELWORD 0020 16-bit direct reference to symbol’s address

R_RELLONG 0021 32-bit direct reference to symbol’s address

R_LD3_DMA 0170 7 MSBs of a byte, unsigned; used in DMA address

R_LD3_MDP 0172 7 bits spanning 2 bytes, unsigned; used as MDP register value

R_LD3_PDP 0173 9 bits spanning 2 bytes, unsigned; used as PDP register value

R_LD3_REL23 0174 23-bit unsigned value in 24-bit field

R_LD3_k8
R_LD3_k16

0210
0211

8-bit, unsigned direct reference
16-bit, unsigned direct reference

R_LD3_K8
R_LD3_K16

0212
0213

8-bit, signed direct reference
16-bit, signed direct reference

R_LD3_l8
R_LD3_l16

0214
0215

8-bit, unsigned, PC-relative reference
16-bit, unsigned, PC-relative reference

R_LD3_L8
R_LD3_L16

0216
0217

8-bit, signed, PC-relative reference
16-bit, signed, PC-relative reference

R_LD3_k4 0220 unsigned 4-bit shift immediate

R_LD3_k5
R_LD3_K5

0221
0222

unsigned 5-bit shift immediate
signed 5-bit shift immediate

R_LD3_k6
R_LD3_k12

0223
0224

unsigned 6-bit immediate
unsigned 12-bit immediate

Symbol Table Structure and Content

A-11Common Object File Format

A.6 Symbol Table Structure and Content

The order of symbols in the symbol table is very important; they appear in the
sequence shown in Figure A−4.

Figure A−4. Symbol Table Contents

Defined global symbols

Undefined global symbols

Static variables

...

Static variables refer to symbols defined in C/C++ that have storage class
static outside any function. If you have several modules that use symbols with
the same name, making them static confines the scope of each symbol to the
module that defines it (this eliminates multiple-definition conflicts).

The entry for each symbol in the symbol table contains the symbol’s:

� Name (or a pointer into the string table)
� Type
� Value
� Section it was defined in
� Storage class

Section names are also defined in the symbol table.

All symbol entries, regardless of class and type, have the same format in the
symbol table. Each symbol table entry contains the 18 bytes of information
listed in Table A−8. Each symbol may also have an 18-byte auxiliary entry; the
special symbols listed in Table A−9 on page A-12 always have an auxiliary
entry. Some symbols may not have all the characteristics listed above; if a
particular field is not set, it is set to null.

Symbol Table Structure and Content

 A-12

Table A−8. Symbol Table Entry Contents

Byte
Number Type Description

0−7 Character This field contains one of the following:

1) An 8-character symbol name, padded with nulls

2) A pointer into the string table if the symbol name
is longer than 8 characters

8−11 Long integer Symbol value; storage class dependent

12−13 Short integer Section number of the symbol

14−15 Unsigned short
integer

Reserved

16 Character Storage class of the symbol

17 Character Number of auxiliary entries (always 0 or 1)

A.6.1 Special Symbols

The symbol table contains some special symbols that are generated by the
compiler, assembler, and linker. Each special symbol contains ordinary
symbol table information as well as an auxiliary entry. Table A−9 lists these
symbols.

Table A−9. Special Symbols in the Symbol Table

Symbol Description

.file File name

.text Address of the .text section

.data Address of the .data section

.bss Address of the .bss section

etext Next available address after the end of the .text output section

edata Next available address after the end of the .data output section

end Next available address after the end of the .bss output section

Symbol Table Structure and Content

A-13Common Object File Format

A.6.2 Symbol Name Format

The first eight bytes of a symbol table entry (bytes 0−7) indicate a symbol’s
name:

� If the symbol name is eight characters or less, this field has type character.
The name is padded with nulls (if necessary) and stored in bytes 0−7.

� If the symbol name is greater than 8 characters, this field is treated as two
long integers. The entire symbol name is stored in the string table. Bytes
0−3 contain 0, and bytes 4−7 are an offset into the string table.

A.6.3 String Table Structure

Symbol names that are longer than eight characters are stored in the string
table. The field in the symbol table entry that would normally contain the
symbol’s name contains, instead, a pointer to the symbol’s name in the string
table. Names are stored contiguously in the string table, delimited by a null
byte. The first four bytes of the string table contain the size of the string table
in bytes; thus, offsets into the string table are greater than or equal to four.

The address of the string table is computed from the address of the symbol
table and the number of symbol table entries.

Figure A−5 is a string table that contains two symbol names, Adaptive-Filter
and Fourier-Transform. The index in the string table is 4 for Adaptive-Filter and
20 for Fourier-Transform.

Figure A−5. String Table

‘A’ ‘d’ ‘a’ ‘p’

‘t’ ‘i’ ‘v’ ‘e’

‘-’ ‘F’ ‘i’ ‘l’

‘t’ ‘e’ ‘r’ ‘\0’

‘F’ ‘o’ ‘u’ ‘r’

‘i’ ‘e’ ‘r’ ‘-’

‘T’ ‘r’ ‘a’ ‘n’

‘s’ ‘f’ ‘o’ ‘r’

‘m’ ‘\0’

38

Symbol Table Structure and Content

 A-14

A.6.4 Storage Classes

Byte 16 of the symbol table entry indicates the storage class of the symbol.
Storage classes refer to the method in which the C/C++ compiler accesses a
symbol. Table A−10 lists valid storage classes.

Table A−10. Symbol Storage Classes

Mnemonic Value Storage Class Mnemonic Value Storage Class

C_NULL 0 No storage class C_UNTAG 12 Reserved

C_AUTO 1 Reserved C_TPDEF 13 Reserved

C_EXT 2 External symbol C_USTATIC 14 Uninitialized static

C_STAT 3 Static C_ENTAG 15 Reserved

C_REG 4 Reserved C_MOE 16 Reserved

C_EXTREF 5 External definition C_REGPARM 17 Reserved

C_LABEL 6 Label C_FIELD 18 Reserved

C_ULABEL 7 Undefined label C_BLOCK 100 Reserved

C_MOS 8 Reserved C_FCN 101 Reserved

C_ARG 9 Reserved C_EOS 102 Reserved

C_STRTAG 10 Reserved C_FILE 103 Reserved

C_MOU 11 Reserved C_LINE 104 Used only by utility programs

The .text, .dat, and .bss symbols are restricted to the C_STAT storage class.

A.6.5 Symbol Values

Bytes 8−11 of a symbol table entry indicate a symbol’s value. The C_EXT,
C_STAT, and C_LABEL storage classes hold relocatable addresses.

If a symbol’s storage class is C_FILE, the symbol’s value is a pointer to the next
.file symbol. Thus, the .file symbols form a one-way linked list in the symbol
table. When there are no more .file symbols, the final .file symbol points back
to the first .file symbol in the symbol table.

The value of a relocatable symbol is its virtual address. When the linker
relocates a section, the value of a relocatable symbol changes accordingly.

Symbol Table Structure and Content

A-15Common Object File Format

A.6.6 Section Number

Bytes 12−13 of a symbol table entry contain a number that indicates which
section the symbol was defined in. Table A−11 lists these numbers and the
sections they indicate.

Table A−11. Section Numbers

Mnemonic
Section
Number Description

None −2 Reserved

N_ABS −1 Absolute symbol

N_UNDEF 0 Undefined external symbol

N_SCNUM 1 .text section (typical)

N_SCNUM 2 .data section (typical)

N_SCNUM 3 .bss section (typical)

N_SCNUM 4−32,767 Section number of a named section, in the order in
which the named sections are encountered

If there were no .text, .data, or .bss sections, the numbering of named sections
would begin with 1.

If a symbol has a section number of 0, −1, or −2, it is not defined in a section.
A section number of −1 indicates that the symbol has a value but is not
relocatable. A section number of 0 indicates a relocatable external symbol that
is not defined in the current file.

A.6.7 Auxiliary Entries

Each symbol table entry may have one or no auxiliary entry. An auxiliary
symbol table entry contains the same number of bytes as a symbol table entry
(18). Table A−12 illustrates the format of auxiliary table entries.

Table A−12. Section Format for Auxiliary Table Entries

Byte
 Number Type Description

0−3 Long integer Section length

4−6 Unsigned short integer Number of relocation entries

7−8 Unsigned short integer Number of line-number entries

9−17 — Not used (zero filled)

 A-16

B-1

Appendix A

%&��������������������������	

The assembler supports several directives that the TMS320C55x C/C++
compiler uses for symbolic debugging. These directives differ for the two
debugging formats, DWARF and COFF.

These directives are not meant for use by assembly-language programmers.
They require arguments that can be difficult to calculate manually, and their
usage must conform to a predetermined agreement between the compiler, the
assembler, and the debugger. This appendix documents these directives for
informational purposes only.

Topic Page

B.1 DWARF Debugging Format B-2.

B.2 COFF Debugging Format B-3.

B.3 Debug Directive Syntax B-4.

Appendix B

DWARF Debugging Format

 B-2

B.1 DWARF Debugging Format

A subset of the DWARF symbolic debugging directives is always listed in the
assembly language file that the compiler creates for program analysis
purposes. To list the complete set used for full symbolic debug, invoke the
compiler with the −g option, as shown below:

cl6x −g −k input_file

The −k option instructs the compiler to retain the generated assembly file.

To disable the generation of all symbolic debug directives, invoke the compiler
with the −symdebug:none option:

cl6x −−symdebug:none −k input_file

The DWARF debugging format consists of the following directives:

� The .dwtag and .dwendtag directives define a Debug Information Entry
(DIE) in the .debug_info section.

� The .dwattr directive adds an attribute to an existing DIE.

� The .dwpsn directive identifies the source position of a C/C++ statement.

� The .dwcie and .dwendentry directives define a Common Information
Entry (CIE) in the .debug_frame section.

� The .dwfde and .dwendentry directives define a Frame Description Entry
(FDE) in the .debug_frame section.

� The .dwcfa directive defines a call frame instruction for a CIE or FDE.

COFF Debugging Format

B-3Symbolic Debugging Directives

B.2 COFF Debugging Format

COFF symbolic debug is now obsolete. These directives are supported for
backwards-compatibility only. The decision to switch to DWARF as the
symbolic debug format was made to overcome many limitations of COFF
symbolic debug, including the absence of C++ support.

The COFF debugging format consists of the following directives:

� The .sym directive defines a global variable, a local variable, or a function.
Several parameters allow you to associate various debugging information
with the variable or function.

� The .stag , .etag , and .utag directives define structures, enumerations,
and unions, respectively. The .membe r directive specifies a member of a
structure, enumeration, or union. The .eos directive ends a structure,
enumeration, or union definition.

� The .func and .endfunc directives specify the beginning and ending lines
of a C/C++ function.

� The .block and .endblock directives specify the bounds of C/C++ blocks.

� The .file directive defines a symbol in the symbol table that identifies the
current source filename.

� The .line directive identifies the line number of a C/C++ source statement.

Debug Directive Syntax

 B-4

B.3 Debug Directive Syntax

Table B−1 is an alphabetical listing of the symbolic debugging directives. For
information on the C/C++ compiler, refer to the TMS320C55x Optimizing
C/C++ Compiler User’s Guide.

Table B−1. Symbolic Debugging Directives

Label Directive Arguments

.block [beginning line number]

.dwattr DIE label, DIE attribute name(DIE attribute value)[,DIE attribute name(attribute
value) [, ...]

.dwcfa call frame instruction opcode [, operand [, operand]]

CIE label .dwcie version, return address register

.dwendentry

.dwendtag

.dwfde CIE label

.dwpsn “ filename”, line number, column number

DIE label .dwtag DIE tag name, DIE attribute name(DIE attribute value)[,DIE attribute
name(attribute value) [, ...]

.endblock [ending line number]

.endfunc [ending line number [, register mask [, frame size]]]

.eos

.etag name [, size]

.file “ filename”

.func [beginning line number]

.line line number [, address]

.member name, value [, type, storage class, size, tag, dims]

.stag name [, size]

.sym name, value [, type, storage class, size, tag, dims]

.utag name [, size]

C-1

Appendix A

-!"�"��'���)���������
������	��������

The linker supports the generation of an XML link information file via the
−−xml_link_info file option. This option causes the linker to generate a
well-formed XML file containing detailed information about the result of a link.
The information included in this file includes all of the information that is
currently produced in a linker-generated map file.

As the linker evolves, the XML link information file may be extended to include
additional information that could be useful for static analysis of linker results.

This appendix enumerates all of the elements that are generated by the linker
into the XML link information file.

Topic Page

C.1 XML Information File Element Types C-2.

C.2 Document Elements C-3.

Appendix C

XML Information File Element Types

 C-2

C.1 XML Information File Element Types

These element types will be generated by the linker:

� Container elements represent an object that contains other elements
that describe the object. Container elements have an id attribute that
makes them accessible from other elements.

� String elements contain a string representation of their value.

� Constant elements contain a 32-bit unsigned long representation of their
value (with a 0x prefix).

� Reference elements are empty elements that contain an idref attribute
that specifies a link to another container element.

In section C.2, the element type is specified for each element in parentheses
following the element description. For instance, the <link_time> element lists
the time of the link execution (string).

Document Elements

C-3XML Link Information File Description

C.2 Document Elements

The root element, or the document element, is <link_info> . All other elements
contained in the XML link information file are children of the <link_info>
element. The following sections describe the elements that an XML
information file can contain.

C.2.1 Header Elements

The first elements in the XML link information file provide general information
about the linker and the link session:

� The <banner> element lists the name of the executable and the version
information (string).

� The <copyright> element lists the TI copyright information (string).

� The <link_time> element lists the time of the link execution (string).

� The <link_timestamp> is a timestamp representation of the link time
(unsigned 32-bit int)

� The <output_file> element lists the name of the linked output file
generated (string).

� The <entry_point> element specifies the program entry point, as
determined by the linker (container) with two entries:

� The <name> is the entry point symbol name, if any (string).

� The <address> is the entry point address (constant).

Example C−1. Header Element for the hi.out Output File

<banner>TMS320Cxx COFF Linker Version x.xx (Jan 6 2003)</banner>
<copyright>Copyright (c) 1996−2003 Texas Instruments Incorporated</copyright>
<link_time>Mon Jan 6 15:38:18 2003</link_time>
<output_file>hi.out</output_file>
<entry_point>
 <name>_c_int00</name>
 <address>0xaf80</address>
</entry_point>

Document Elements

 C-4

C.2.2 Input File List

The next section of the XML link information file is the input file list, which is
delimited with a <input_file_list> container element. The <input_file_list> can
contain any number of <input_file> elements.

Each <input_file> instance specifies the input file involved in the link. Each
<input_file> has an id attribute that can be referenced by other elements, such
as an <object_component>. An <input_file> is a container element enclosing
the following elements:

� The <path> element names a directory path, if applicable (string).

� The <kind> element specifies a file type, either archive or object (string).

� The <file> element specifies an archive name or filename (string).

� The <name> element specifies an object file name, or archive member
name (string).

Example C−2. Input File List for the hi.out Output File

<input_file_list>
 <input_file id=”fl−1”>
 <kind>object</kind>
 <file>hi.obj</file>
 <name>hi.obj</name>
 </input_file>
 <input_file id=”fl−2”>
 <path>/tools/lib/</path>
 <kind>archive</kind>
 <file>rtsxxx.lib</file>
 <name>boot.obj</name>
 </input_file>
 <input_file id=”fl−3”>
 <path>/tools/lib/</path>
 <kind>archive</kind>
 <file>rtsxxx.lib</file>
 <name>exit.obj</name>
 </input_file>
 <input_file id=”fl−4”>
 <path>/tools/lib/</path>
 <kind>archive</kind>
 <file>rtsxxx.lib</file>
 <name>printf.obj</name>
 </input_file>

...
</input_file_list>

Document Elements

C-5XML Link Information File Description

C.2.3 Object Component List

The next section of the XML link information file contains a specification of all
of the object components that are involved in the link. An example of an object
component is an input section. In general, an object component is the smallest
piece of object that can be manipulated by the linker.

The <object_component_list> is a container element enclosing any number
of <object_component> elements.

Each <object_component> specifies a single object component. Each
<object_component> has an id attribute so that it can be referenced directly
from other elements, such as a <logical_group>. An <object_component> is
a container element enclosing the following elements:

� The <name> element names the object component (string).

� The <load_address> element specifies the load-time address of the
object component (constant).

� The <run_address> element specifies the run-time address of the object
component (constant).

� The <size> element specifies the size of the object component (constant).

� The <input_file_ref> element specifies the source file where the object
component originated (reference).

Example C−3. Object Component List for the fl−4 Input File

<object_component id=”oc−20”>
 <name>.text</name>
 <load_address>0xac00</load_address>
 <run_address>0xac00</run_address>
 <size>0xc0</size>
 <input_file_ref idref=”fl−4”/>
</object_component>
<object_component id=”oc−21”>
 <name>.data</name>
 <load_address>0x80000000</load_address>
 <run_address>0x80000000</run_address>
 <size>0x0</size>
 <input_file_ref idref=”fl−4”/>
</object_component>
<object_component id=”oc−22”>
 <name>.bss</name>
 <load_address>0x80000000</load_address>
 <run_address>0x80000000</run_address>
 <size>0x0</size>
 <input_file_ref idref=”fl−4”/>
</object_component>

Document Elements

 C-6

C.2.4 Logical Group List

The <logical_group_list> section of the XML link information file is similar to
the output section listing in a linker generated map file. However, the XML link
information file contains a specification of GROUP and UNION output
sections, which are not represented in a map file. There are three kinds of list
items that can occur in a <logical_group_list>:

� The <logical_group> is the specification of a section or GROUP that
contains a list of object components or logical group members. Each
<logical_group> element is given an id so that it may be referenced from
other elements. Each <logical_group> is a container element enclosing
the following elements:

� The <name> element names the logical group (string).

� The <load_address> element specifies the load-time address of the
logical group (constant).

� The <run_address> element specifies the run-time address of the
logical group (constant).

� The <size> element specifies the size of the logical group (constant).

� The <contents> element lists elements contained in this logical group
(container). These elements refer to each of the member objects
contained in this logical group:

� The <object_component_ref> is an object component that is
contained in this logical group (reference).

� The <logical_group_ref> is a logical group that is contained in
this logical group (reference).

� The <overlay> is a special kind of logical group that represents a UNION,
or a set of objects that share the same memory space (container). Each
<overlay> element is given an id so that it may be referenced from other
elements (like from an <allocated_space> element in the placement map).
Each <overlay> contains the following elements:

� The <name> element names the overlay (string).

� The <run_address> element specifies the run−time address of
overlay (constant).

� The <size> element specifies the size of logical group (constant).

Document Elements

C-7XML Link Information File Description

� The <contents> container element lists elements contained in this
overlay. These elements refer to each of the member objects
contained in this logical group:

� The <object_component_ref> is an object component that is
contained in this overlay (reference).

� The <logical_group_ref> is a logical group that is contained in
this overlay (reference).

� The <split_section> is another special kind of logical group which
represents a collection of logical groups that is split among multiple
memory areas. Each <split_section> element is given an id so that it may
be referenced from other elements. The id consists of the following
elements.

� The <name> element names the split section (string).

� The <contents> element lists elements contained in this split section
(container). The <logical_group_ref> elements refer to each of the
member objects contained in this split section, and each element
referenced is a logical group that is contained in this split section
(reference).

Document Elements

 C-8

Example C−4. Logical Group List for the fl−4 Input File

<logical_group_list>
 ...
 <logical_group id=”lg−7”>
 <name>.text</name>
 <load_address>0x20</load_address>
 <run_address>0x20</run_address>
 <size>0xb240</size>
 <contents>
 <object_component_ref idref=”oc−34”/>
 <object_component_ref idref=”oc−108”/>
 <object_component_ref idref=”oc−e2”/>
 ...
 </contents>
 </logical_group>
 ...
 <overlay id=”lg−b”>
 <name>UNION_1</name>
 <run_address>0xb600</run_address>
 <size>0xc0</size>
 <contents>
 <object_component_ref idref=”oc−45”/>
 <logical_group_ref idref=”lg−8”/>
 </contents>
 </overlay>
 ...
 <split_section id=”lg−12”>
 <name>.task_scn</name>
 <size>0x120</size>
 <contents>
 <logical_group_ref idref=”lg−10”/>
 <logical_group_ref idref=”lg−11”/>
 </contents>
 ...
</logical_group_list>

Document Elements

C-9XML Link Information File Description

C.2.5 Placement Map

The <placement_map> element describes the memory placement details of
all named memory areas in the application, including unused spaces between
logical groups that have been placed in a particular memory area.

� The <memory_area> is a description of the placement details within a
named memory area (container). The description consists of these items:

� The <name> names the memory area (string).

� The <page_id> gives the id of the memory page in which this memory
area is defined (constant).

� The <origin> specifies the beginning address of the memory area
(constant).

� The <length> specifies the length of the memory area (constant).

� The <used_space> specifies the amount of allocated space in this
area (constant).

� The <unused_space> specifies the amount of available space in this
area (constant).

� The <attributes> lists the RWXI attributes that are associated with
this area, if any (string).

� The <fill_value> specifies the fill value that is to be placed in unused
space, if the fill directive is specified with the memory area (constant).

� The <usage_details> lists details of each allocated or available
fragment in this memory area. If the fragment is allocated to a logical
group, then a <logical_group_ref> element is provided to facilitate
access to the details of that logical group. All fragment specifications
include <start_address> and <size> elements.

� The <allocated_space> element provides details of an allocated
fragment within this memory area (container):

The <start_address> specifies the address of the fragment
(constant).

The <size> specifies the size of the fragment (constant).

The <logical_group_ref> provides a reference to the logical
group that is allocated to this fragment (reference).

� The <available_space> element provides details of an available
fragment within this memory area (container):

The <start_address> specifies the address of the fragment
(constant).

The <size> specifies the size of the fragment (constant).

Document Elements

 C-10

Example C−5. Placement Map for the fl−4 Input File

<placement_map>
 <memory_area>
 <name>PMEM</name>
 <page_id>0x0</page_id>
 <origin>0x20</origin>
 <length>0x100000</length>
 <used_space>0xb240</used_space>
 <unused_space>0xf4dc0</unused_space>
 <attributes>RWXI</attributes>
 <usage_details>
 <allocated_space>
 <start_address>0x20</start_address>
 <size>0xb240</size>
 <logical_group_ref idref=”lg−7”/>
 </allocated_space>
 <available_space>
 <start_address>0xb260</start_address>
 <size>0xf4dc0</size>
 </available_space>
 </usage_details>
 </memory_area>
 ...
</placement_map>

Document Elements

C-11XML Link Information File Description

C.2.6 Symbol Table

The <symbol_table> contains a list of all of the global symbols that are
included in the link. The list provides information about a symbol’s name and
value. In the future, the symbol_table list may provide type information, the
object component in which the symbol is defined, storage class, etc.

The <symbol> is a container element that specifies the name and value of a
symbol with these elements:

� The <name> element specifies the symbol name (string)

� The <value> element specifies the symbol value (constant)

Example C−6. Symbol Table for the fl−4 Input File

<symbol_table>
 <symbol>
 <name>_c_int00</name>
 <value>0xaf80</value>
 </symbol>
 <symbol>
 <name>_main</name>
 <value>0xb1e0</value>
 </symbol>
 <symbol>
 <name>_printf</name>
 <value>0xac00</value>
 </symbol>
 ...
</symbol_table>

 C-12

D-1

Appendix A

.��		��&

A
absolute address: An address that is permanently assigned to a

TMS320C55x� memory location.

absolute lister: A debugging tool that accepts linked files as input and
creates .abs files as output. These .abs files can be assembled to pro-
duce a listing that shows the absolute addresses of object code. Without
the tool, an absolute listing can be prepared with the use of many manual
operations.

algebraic: An instruction that the assembler translates into machine code.

alignment: A process in which the linker places an output section at an
address that falls on an n-bit boundary, where n is a power of 2. You can
specify alignment with the SECTIONS linker directive.

allocation: A process in which the linker calculates the final memory
addresses of output sections.

archive library: A collection of individual files that have been grouped into
a single file.

archiver: A software program that allows you to collect several individual
files into a single file called an archive library. The archiver also allows
you to delete, extract, or replace members of the archive library, as well
as to add new members.

ASCII: American Standard Code for Information Exchange. A standard
computer code for representing and exchanging alphanumeric informa-
tion.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, direc-
tives, and macro directives. The assembler substitutes absolute opera-
tion codes for symbolic operation codes, and absolute or relocatable
addresses for symbolic addresses.

assembly-time constant: A symbol that is assigned a constant value with
the .set directive.

Appendix D

Glossary

 D-2

assignment statement: A statement that assigns a value to a variable.

autoinitialization: The process of initializing global C variables (contained
in the .cinit section) before beginning program execution.

auxiliary entry: The extra entry that a symbol may have in the symbol table
and that contains additional information about the symbol (whether it is
a filename, a section name, a function name, etc.).

B
binding: A process in which you specify a distinct address for an output sec-

tion or a symbol.

block: A set of declarations and statements that are grouped together with
braces.

.bss: One of the default COFF sections. You can use the .bss directive to
reserve a specified amount of space in the memory map that can later
be used for storing data. The .bss section is uninitialized.

C
C compiler: A program that translates C source statements into assembly

language source statements.

COFF: Common object file format. A binary object file format that promotes
modular programming by supporting the concept of sections.

command file: A file that contains options, filenames, directives, or com-
ments for the linker or hex conversion utility.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comments are
not compiled, assembled, or linked; they have no effect on the object file.

common object file format: See COFF.

conditional processing: A method of processing one block of source code
or an alternate block of source code, according to the evaluation of a
specified expression.

configured memory: Memory that the linker has specified for allocation.

constant: A numeric value that can be used as an operand.

cross-reference listing: An output file created by the assembler that lists
the symbols that were defined, what line they were defined on, which
lines referenced them, and their final values.

Glossary

D-3Glossary

D
.data: One of the default COFF sections. The .data section is an initialized

section that contains initialized data. You can use the .data directive to
assemble code into the .data section.

directives: Special-purpose commands that control the actions and
functions of a software tool (as opposed to assembly language instruc-
tions, which control the actions of a device).

E
emulator: A hardware development system that emulates TMS320C55x

operation.

entry point: The starting execution point in target memory.

executable module: An object file that has been linked and can be
executed in a TMS320C55x system.

expression: A constant, a symbol, or a series of constants and symbols
separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
is defined in a different program module.

F
field: For the TMS320C55x, a software-configurable data type whose length

can be programmed to be any value in the range of 1−16 bits.

file header: A portion of a COFF object file that contains general information
about the object file (such as the number of section headers, the type of
system the object file can be downloaded to, the number of symbols in
the symbol table, and the symbol table’s starting address).

G
global: A kind of symbol that is either 1) defined in the current module and

accessed in another, or 2) accessed in the current module but defined
in another.

GROUP: An option of the SECTIONS directive that forces specified output
sections to be allocated contiguously (as a group).

Glossary

 D-4

H

hex conversion utility: A program that accepts COFF files and converts
them into one of several standard ASCII hexadecimal formats suitable
for loading into an EPROM programmer.

high-level language debugging: The ability of a compiler to retain sym-
bolic and high-level language information (such as type and function
definitions) so that a debugging tool can use this information.

hole: An area between the input sections that compose an output section
that contains no actual code or data.

I

incremental linking: Linking files that will be linked in several passes. Often
this means a very large file that will have sections linked and then will
have the sections linked together.

initialized section: A COFF section that contains executable code or initial-
ized data. An initialized section can be built up with the .data, .text, or
.sect directive.

input section: A section from an object file that will be linked into an
executable module.

L

label: A symbol that begins in column 1 of a source statement and corre-
sponds to the address of that statement.

line-number entry: An entry in a COFF output module that maps lines of
assembly code back to the original C source file that created them.

linker: A software tool that combines object files to form an object module
that can be allocated into TMS320C55x system memory and executed
by the device.

listing file: An output file, created by the assembler, that lists source state-
ments, their line numbers, and their effects on the SPC.

loader: A device that loads an executable module into TMS320C55x system
memory.

Glossary

D-5Glossary

M
macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The source statements that are substituted for the
macro call and are subsequently assembled.

macro library: An archive library composed of macros. Each file in the
library must contain one macro; its name must be the same as the macro
name it defines, and it must have an extension of .asm.

magic number: A COFF file header entry that identifies an object file as a
module that can be executed by the TMS320C55x.

map file: An output file, created by the linker, that shows the memory
configuration, section composition, and section allocation, as well as
symbols and the addresses at which they were defined.

member: The elements or variables of a structure, union, archive, or enu-
meration.

memory map: A map of target system memory space, which is partitioned
into functional blocks.

mnemonic: An instruction name that the assembler translates into machine
code.

model statement: Instructions or assembler directives in a macro definition
that are assembled each time a macro is invoked.

N
named section: An initialized section that is defined with a .sect directive.

O
object file: A file that has been assembled or linked and contains machine-

language object code.

object format converter: A program that converts COFF object files into
Intel format or Tektronix format object files.

Glossary

 D-6

object library: An archive library made up of individual object files.

operands: The arguments, or parameters, of an assembly language
instruction, assembler directive, or macro directive.

optional header: A portion of a COFF object file that the linker uses to
perform relocation at download time.

options: Command parameters that allow you to request additional or
specific functions when you invoke a software tool.

output module: A linked, executable object file that can be downloaded and
executed on a target system.

output section: A final, allocated section in a linked, executable module.

overlay page: A section of physical memory that is mapped into the same
address range as another section of memory. A hardware switch deter-
mines which range is active.

P

partial linking: The linking of a file that will be linked again.

Q

quiet run: Suppresses the normal banner and the progress information.

R

RAM model: An autoinitialization model used by the linker when linking C
code. The linker uses this model when you invoke the linker with the −cr
option. The RAM model allows variables to be initialized at load time
instead of runtime.

raw data: Executable code or initialized data in an output section.

relocation: A process in which the linker adjusts all the references to a sym-
bol when the symbol’s address changes.

ROM model: An autoinitialization model used by the linker when linking C
code. The linker uses this model when you invoke the linker with the −c
option. In the ROM model, the linker loads the .cinit section of data tables
into memory, and variables are initialized at runtime.

Glossary

D-7Glossary

ROM width: The width (in bits) of each output file, or, more specifically, the
width of a single data value in the file. The ROM width determines how
the utility partitions the data into output files. After the target words are
mapped to memory words, the memory words are broken into one or
more output files. The number of output files is determined by the ROM
width.

run address: The address where a section runs.

S
section: A relocatable block of code or data that will ultimately occupy con-

tiguous space in the TMS320C55x memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header; the header
points to the section’s starting address, contains the section’s size, etc.

section program counter: See SPC.

sign extend: To fill the unused MSBs of a value with the value’s sign bit.

simulator: A software development system that simulates TMS320C55x
operation.

source file: A file that contains C code or assembly language code that will
be compiled or assembled to form an object file.

SPC (Section Program counter): An element of the assembler that keeps
track of the current location within a section; each section has its own
SPC.

static: A kind of variable whose scope is confined to a function or a program.
The values of static variables are not discarded when the function or pro-
gram is exited; their previous value is resumed when the function or pro-
gram is re-entered.

storage class: Any entry in the symbol table that indicates how to access
a symbol.

string table: A table that stores symbol names that are longer than 8 charac-
ters (symbol names of 8 characters or longer cannot be stored in the
symbol table; instead, they are stored in the string table). The name por-
tion of the symbol’s entry points to the location of the string in the string
table.

structure: A collection of one or more variables grouped together under a
single name.

Glossary

 D-8

subsection: A smaller section within a section offering tighter control of the
memory map. See also section.

symbol: A string of alphanumeric characters that represents an address or
a value.

symbolic debugging: The ability of a software tool to retain symbolic infor-
mation so that it can be used by a debugging tool such as a simulator or
an emulator.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

T
tag: An optional type name that can be assigned to a structure, union, or

enumeration.

target memory: Physical memory in a TMS320C55x system into which exe-
cutable object code is loaded.

.text: One of the default COFF sections. The .text section is an initialized
section that contains executable code. You can use the .text directive to
assemble code into the .text section.

U
unconfigured memory: Memory that is not defined as part of the memory

map and cannot be loaded with code or data.

uninitialized section: A COFF section that reserves space in the memory
map but that has no actual contents. These sections are built up with the
.bss and .usect directives.

UNION: An option of the SECTIONS directive that causes the linker to allo-
cate the same address to multiple sections.

union: A variable that may hold objects of different types and sizes.

unsigned: A kind of value that is treated as a positive number, regardless
of its actual sign.

W
well-defined expression: An expression that contains only symbols or

assembly-time constants that have been defined before they appear in
the expression.

word: A 16-bit addressable location in target memory.

Index

Index-1

�����

−?
assembler option 3-9
linker option 8-5

; in assembly language source 3-25
operand prefix 3-24
$ symbol for SPC 3-31
−@ compiler option 3-4
* in assembly language source 3-25
* operand prefix 3-24

A
−a

archiver command 9-4
assembler option 3-9
disassembler option 12-2
hex conversion utility option 14-39
linker option 8-7
name utility option 13-16

−a option, hex conversion utility 14-5
A_DIR environment variable 3-20, 8-13, 8-14
C_DIR environment variable 8-12 to 8-14
−aa assembler option 3-4
−abs linker option 8-8
absolute address, defined D-1
absolute lister

creating the absolute listing file 3-8, 10-2
defined D-1
described 1-4
development flow 10-2
example 10-5 to 10-10
invoking 10-3
options 10-3

absolute listing
−aa assembler option 3-4, 3-9
−abs linker option 8-8
producing 10-2

absolute output module
producing 8-7
relocatable 8-8

−ac assembler option 3-4

−ad assembler option 3-4, 3-31

addressing, byte vs. word 3-12, 8-21

−ahc assembler option 3-5

−ahi assembler option 3-5

−al assembler option 3-5

algebraic, defined D-1

.align directive 4-16, 4-28

alignment 4-16 to 4-17, 4-28
defined D-1
linker 8-38

allocation 4-34
alignment 4-28, 8-38
binding 8-36 to 8-100
blocking 8-38
default algorithm 8-64 to 8-66
defined D-1
described 2-2
GROUP 8-55
memory default 2-13, 8-37
sections 8-35 to 8-44
UNION 8-53

alternate directories
linker 8-13
naming with −i option 3-19
naming with A_DIR 3-20
naming with directives 3-19 to 3-21

−apd assembler option 3-5

−api assembler option 3-5

−ar assembler option 3-5

−ar linker option 8-8

ar55 command 9-4

Index

Index-2

archive library
allocating individual members 8-40
alternate directory 8-12
back referencing 8-19
defined D-1
exhaustively reading 8-19
macros 4-74
object 8-26 to 8-27
types of files 9-2

archiver 1-3
commands 9-4
defined D-1
examples 9-6
in the development flow 9-3
invoking 9-4
options 9-5
overview 9-2

−−args linker option 8-8
arguments, passing to the loader 8-8
arithmetic operators 3-37
ARMS mode 3-18
ARMS status bit, setting, using −ata assembler

option 3-5
.arms_off directive 3-18, 4-25, 4-29
.arms_on directive 3-18, 4-25, 4-29
−arr hex conversion utility option 14-30
−as assembler option 3-5
ASCII, defined D-1
ASCII-Hex object format 14-39
.asg directive 4-22, 4-30

listing control 4-18, 4-49
use in macros 5-7

asm, listing file, creating with the −al option 3-5
asm55 command 3-8
.asmfunc directive 4-27, 4-32
assembler

assembly profiling file (−atp option) 3-6
built-in functions 3-39, 5-8
C54x status bit initially set (−atl option) 3-6
character strings 3-29
constants 3-26 to 3-28
cross-reference listing (−ax option) 3-6
cross-reference listings 3-11, 3-47
defined D-1
described 1-3
enable pipeline conflict warnings (−aw

option) 3-6
expressions 3-36, 3-37, 3-38

assembler (continued)
faster code when porting C54x (−ath option) 3-6
file inclusion, listing of (−api option) 3-5
handling COFF sections 2-4 to 2-11
in the development flow 3-3
invoking 3-4
macros 5-1 to 5-28
messages when assembling C54x 7-35
options 3-4, 3-8

C54x porting support 7-5
−g 3-7

output listing
directive listing 4-18 to 4-19, 4-49 to 4-103
example 3-43

overview 3-2
relocation

at run time 2-17
described 2-15 to 2-16
during linking 8-7

remarks 7-35
suppressing 4-78

remove NOPs in C54x code (−atn option) 3-6
sections directives 2-4 to 2-11
source listings 3-41 to 3-44, 6-4 to 6-6
suppress warning messages (−atw option) 3-6
suppressing remarks 3-5, 3-11, 4-78

on shift counts (−ats option) 3-6
symbols 3-30, 3-32
undefine predefined constant (−au option) 3-6
warning on using MMR 3-18

assembler directives 4-1 to 4-27
absolute lister

.setsect 10-7

.setsym 10-7
aligning the section program counter (SPC)

.align 4-28

.even 4-28
alignment 4-16 to 4-17

.align 4-16

.even 4-16
controlling the listing 4-18 to 4-19

.drlist 4-18

.drnolist 4-18

.fclist 4-18

.fcnolist 4-18

.length 4-18

.list 4-18

.mlist 4-18

.mnolist 4-18

.nolist 4-18

Index

Index-3

assembler directives, controlling the listing (contin-
ued)

.option 4-18

.page 4-19

.sslist 4-19

.ssnolist 4-19

.tab 4-19

.title 4-19

.width 4-19
default directive 2-4
defining assembly-time symbols 4-22 to 4-24

.asg 4-22, 4-30

.cstruct 4-22, 4-44

.cunion 4-22

.endstruct 4-23, 4-44, 4-89

.endunion 4-23, 4-46, 4-96

.equ 4-22, 4-83

.eval 4-22, 4-30

.label 4-22, 4-66

.set 4-22, 4-83

.struct 4-23, 4-89

.tag 4-23, 4-44, 4-46, 4-89, 4-96

.union 4-23, 4-46, 4-96
defining data 4-12 to 4-15

.byte 4-12

.char 4-12

.double 4-14

.field 4-12

.float 4-13

.half 4-13

.int 4-13

.ldouble 4-14

.long 4-14

.pstring 4-14

.short 4-13

.space 4-12

.string 4-14

.ubyte 4-12

.uchar 4-12

.uhalf 4-13

.uint 4-13

.ulong 4-14

.ushort 4-13

.uword 4-13

.word 4-13

.xfloat 4-13

.xlong 4-14
defining sections 4-10 to 4-11

.bss 2-4, 4-10 to 4-11, 4-34

.clink 4-10, 4-39

assembler directives, defining sections (continued)
.data 2-4, 4-10 to 4-11, 4-47
.sect 2-4, 4-10, 4-82
.text 2-4, 4-10 to 4-11, 4-93 to 4-103
.usect 2-4, 4-10 to 4-11, 4-97

defining specific blocks of code 4-25 to 4-26
.arms_off 4-25, 4-29
.arms_on 4-25, 4-29
.asmfunc 4-27, 4-32
.c54cm_off 4-25, 4-38
.c54cm_on 4-25, 4-38
.cpl_off 4-25, 4-42
.cpl_on 4-25, 4-42
.endasmfunc 4-27, 4-32
.lock_off 4-25, 4-71
.lock_on 4-25, 4-71
.port_for_size 4-26, 4-81
.port_for_speed 4-26, 4-81
.sst_off 4-26, 4-87
.sst_on 4-26, 4-87
.vli_off 4-25
.vli_on 4-25, 4-101

enabling conditional assembly 4-21
.break 4-21, 4-72
.else 4-21, 4-61
.elseif 4-21, 4-61
.endif 4-21, 4-61
.endloop 4-21, 4-72
.if 4-21, 4-61
.loop 4-21, 4-72

example 2-9 to 2-11
formatting the output listing

.drlist 4-49

.drnolist 4-49

.fclist 4-53

.fcnolist 4-53

.length 4-67

.list 4-68

.mlist 4-76

.mnolist 4-76

.nolist 4-68

.option 4-79

.page 4-80

.sslist 4-85

.ssnolist 4-85

.tab 4-92

.title 4-94

.width 4-67

Index

Index-4

assembler directives (continued)
initializing constants

.byte 4-37

.char 4-37

.double 4-48

.field 4-54

.float 4-56

.half 4-60

.int 4-63

.ldouble 4-48

.long 4-71

.pstring 4-88

.short 4-60

.space 4-84

.string 4-88

.ubyte 4-37

.uchar 4-37

.uhalf 4-60

.uint 4-63

.ulong 4-71

.ushort 4-60

.uword 4-63

.word 4-63

.xfloat 4-56

.xlong 4-71
miscellaneous 4-27

.dp 4-25, 4-49

.emsg 4-27, 4-50

.end 4-27, 4-52

.ivec 4-14, 4-64

.localalign 4-16, 4-69

.mmsg 4-27, 4-50

.newblock 4-27, 4-77

.noremark 4-27, 4-78

.remark 4-27, 4-78

.sblock 4-16, 4-81

.vli_off 4-101

.warn_off 4-27, 4-102

.warn_on 4-27, 4-102

.wmsg 4-27, 4-51
referencing other files 4-20

.copy 4-20, 4-40

.def 4-20, 4-57

.global 4-20, 4-58

.include 4-20, 4-40

.ref 4-20, 4-58
setting STYP_CLINK flag 4-10 to 4-11
summary table 4-2 to 4-9

assembly-time constants 4-83
defined D-1

assignment statement
defined D-2
expressions 8-70 to 8-71

−ata assembler option 3-5
−atb assembler option 3-5
−atc assembler option 3-5
−ath assembler option 3-6
−atl assembler option 3-6
−atn assembler option 3-6, 7-9
−atp assembler option 3-6
−ats assembler option 3-6
−ms assembler option 3-10
−att assembler option 3-6
attr MEMORY specification 8-30
attributes 3-48, 8-30
−atv assembler option 3-6
−atw assembler option 3-6
−au assembler option 3-6
autoinitialization

at load time, described 8-96
at run time, described 8-95
defined D-2
specifying type 8-9

auxiliary entry
defined D-2
described A-15 to A-16

−aw assembler option 3-6
−ax assembler option 3-6

B
−b

disassembler option 12-2
linker option 8-9

−b option, hex conversion utility 14-5
big-endian ordering 14-13
binary integer constants 3-26
binding

defined D-2
named memory 8-36
sections 8-36

−bkr hex conversion utility option 14-30
block, defined D-2
blocking 4-34, 8-38
−boot hex conversion utility option 14-5, 14-29
boot.obj 8-93, 8-97

Index

Index-5

boot-time copy table generated by linker 8-81 to
8-82

−bootorg hex conversion utility option 14-5, 14-29

−bootpage hex conversion utility option 14-5,
14-29

.break directive 4-21, 4-72
listing control 4-18, 4-49
use in macros 5-15

−bscr hex conversion utility option 14-30

.bss directive 4-10, 4-34
in sections 2-4
linker definition 8-71

.bss section 4-10, 4-34, A-3
defined D-2
holes 8-75
initializing 8-75

built-in functions 3-39, 5-8

byte addressing 3-12, 8-21

.byte directive 4-12, 4-37
limiting listing with .option directive 4-18, 4-79

−byte hex conversion utility option 14-36

C
C, system stack 8-17

−c
assembler option 3-9
disassembler option 12-2
linker option 8-9, 8-72
name utility option 13-16

C code
linking 8-93 to 8-97
memory pool 8-12, 8-94
system stack 8-16, 8-94

C compiler
COFF technical details A-1
defined D-2
linking 8-9, 8-93 to 8-97
special symbols A-12
storage classes A-14

−c option, linker 8-95

C/C++ compiler, symbolic debugging direc-
tives B-1 to B-14

_c_int00 8-10, 8-97

.c54cm_off directive 3-16, 4-25, 4-38

.c54cm_on directive 3-16, 4-25, 4-38

C54x code on C55x
development flow 6-2
differences in the interrupt vector table, .ivec

directive 4-64
initializing stack pointers 6-2
listing file description 6-4
memory placement differences 6-2
reserved C55x names 6-6
running on C55x 6-1 to 6-6
updating C54x linker command file 6-3

C54x code to C55x 7-25
assembler messages 7-35
C55x temporary registers 7-11
circular addressing option 7-7
code example 7-15, 7-19, 7-27
converting 7-22 to 7-29

C55x output 7-27
integration within Code Composer Stu-

dio 7-29
differences in interrrupt vector table 7-2
masm55 options 7-5
mixing ported C54x code with C55x 7-10
modifying interrupt service routines 7-3
non-portable C54x coding practices 7-30 to

7-40
out-of-order execution 7-30 to 7-40
porting for speed over size 7-6
register mapping 7-12
removing NOPs from delay slots 7-9
RETE instructions 7-4
RPT differences 7-32
run-time environment 7-10
status bit field mapping 7-12
switching run-time environments 7-14
unsupported C54x hardware features 7-32

C54x compatibility mode 3-16
−atl assembler option 3-6

C54X_STK stack mode 4-64
C55X_A_DIR environment variable 3-20, 8-13
C55X_C_DIR environment variable 8-13 to 8-14
Calls, encoding, using the −atv assembler

option 3-6
.char directive 4-12, 4-37
character

constant 3-27
string 3-29

circular addressing, C54x support 7-7
.clink directive 4-10, 4-39

auxiliary entries A-15 to A-16

Index

Index-6

default allocation 8-64
defined D-2
file structure A-2 to A-3
headers

file A-4
optional A-5
section A-6 to A-8

in the development flow 8-3, 14-2
initialized sections 2-6
linker 8-1
loading a program 2-18
object file example A-3
relocation 2-15 to 2-16, A-9 to A-10
run-time relocation 2-17
sections

allocation 2-2
assembler 2-4 to 2-11
described 2-2 to 2-3
linker 2-12 to 2-14
named 2-7, 8-73
special types 8-67
uninitialized 2-4 to 2-5

storage classes A-14
string table A-13
symbol table

structure and content A-11 to A-16
symbol values A-14

symbols 2-19 to 2-20, A-12
technical details A-1 to A-16
uninitialized sections 2-4 to 2-5

command file
appending to command line 3-4
defined D-2
hex conversion utility 14-6 to 14-7
linker

byte addresses in 8-21
constants in 8-25
described 8-22 to 8-25
examples 8-98 to 8-100
invoking 8-4
reserved words 8-24

comments
assembler-generated during conversion from

C54x to C55x code
code example 7-27
expanded macro invocations 7-26
general form 7-25
multiple-line rewrites 7-25

assembler-generated during conversion of C54x
to C55x code 7-25 to 7-27

comments (continued)
defined D-2
extending past page width 4-67
field 3-25
in a linker command file 8-23
in assembly language source code 3-25
in macros 5-19

compiler
command-line options 7-22
options that affect the assembler 7-23

conditional blocks 5-15
assembly directives 4-21
listing of false conditional blocks 4-53

conditional processing
assembly directives

in macros 5-15 to 5-16
maximum nesting levels 5-15

defined D-2
expressions 3-38

configured memory
defined D-2
described 8-65

.const 8-34
constant

assembly-time 4-83
binary integers 3-26
character 3-27
decimal integers 3-27
defined D-2
described 3-26
floating-point 4-56
hexadecimal integers 3-27
in command files 8-25
octal integers 3-26
symbolic 3-30, 3-31

converting, C54x code to C55x code 7-22 to 7-29
.copy directive 3-19, 4-20, 4-40
copy directive 7-23
copy file

.copy directive 3-19, 4-40
−hc assembler option 3-9
−i option 3-7, 3-9, 3-19
−ahc assembler option 3-5

copy routine, general-purpose 8-84 to 8-87
COPY section 8-67
copy tables automatically generated by linker 8-80

to 8-81
contents 8-82 to 8-84
sections and symbols 8-87 to 8-88

Index

Index-7

CPL mode 3-17

CPL status bit, setting, using −atc assembler
option 3-5

.cpl_off directive 3-17, 4-25, 4-42

.cpl_on directive 3-17, 4-25, 4-42

−cr linker option 8-9, 8-72, 8-96

cross-reference lister
creating the cross-reference listing 11-2
example 11-4
in the development flow 11-2
invoking 11-3
options 11-3
symbol attributes 11-6

cross-reference listing
assembler option 3-6, 3-11
defined D-2
described 3-47
producing with the .option directive 4-19, 4-79
producing with the cross-reference lister 11-1 to

11-6

.cstruct directive 4-22, 4-44

.cunion directive 4-22

D
−d

archiver command 9-4
assembler option 3-9, 3-31
disassembler option 12-2
name utility option 13-16

.data directive 4-10, 4-47

data memory 8-28

.data section 2-4, 4-10, 4-47, A-3
defined D-3
symbols 8-71

decimal integer constants 3-27

.def directive 4-20, 4-57
identifying external symbols 2-19

default
allocation 8-64
fill value for holes 8-10
memory allocation 2-13
MEMORY configuration 8-64
MEMORY model 8-28
SECTIONS configuration 8-32, 8-64

development
flow 1-2, 8-3, 9-3
tools 1-2

directives
.asg 7-25
.copy 7-23
.if, handling 7-28
.include 7-23
.loop, handling 7-28
.set 7-25
defined D-3
linker

MEMORY 2-12, 8-28 to 8-31
SECTIONS 2-12, 8-32 to 8-44

directory search algorithm
assembler 3-19
linker 8-13

dis55 command 12-2
disassembler

example 12-4
invoking 12-2
options 12-2

.double directive 4-14, 4-48

.dp directive 4-25, 4-49

.drlist directive 4-18, 4-49
use in macros 5-22

.drnolist directive 4-18, 4-49
same effect with .option directive 4-18
use in macros 5-22

DSECT section 8-67
dummy section 8-67

E
−e

absolute lister option 10-3
hex conversion utility option 14-32
linker option 8-10

−e hex conversion utility option 14-5
.edata linker symbol 8-71
.else directive 4-21, 4-62

use in macros 5-15
.elseif directive 4-21, 4-62

use in macros 5-15
.emsg directive 4-27, 4-50, 5-19

listing control 4-18, 4-49
emulator, defined D-3
encoding C54x code for speed 7-6

Index

Index-8

.end, linker symbol 8-71

.end directive 4-27, 4-52

.endasmfunc directive 4-27, 4-32

.endif directive 4-21, 4-62
use in macros 5-15

.endloop directive 4-21, 4-72
use in macros 5-15

.endm directive 5-3

.endstruct directive 4-23, 4-89

.endunion directive 4-23, 4-45, 4-95

entry point
defined D-3
value assigned 8-10, 8-97

environment variables
A_DIR 3-20, 8-13
C_DIR 8-12, 8-13, 8-14
C55X_A_DIR 3-20, 8-13
C55X_C_DIR 8-13

.equ directive 4-22, 4-83

error messages
generating 4-27, 4-50
hex conversion utility 14-44
producing in macros 5-19
using MMR address 3-18
when assembling C54x code 7-35

.etext linker symbol 8-71

.eval directive 4-22, 4-30
listing control 4-18, 4-49
use in macros 5-8

evaluation of expressions 3-36

.even directive 4-16, 4-28

−exclude hex conversion utility option 14-4, 14-23

executable module, defined D-3

executable output 8-7, 8-8

expanded macro invocations 7-26

expression
arithmetic operators in 3-37
conditional 3-38
conditional operators in 3-38
defined D-3
described 3-36
linker 8-70 to 8-71
overflow 3-37
precedence of operators 3-36
underflow 3-37
well-defined 3-38

external symbols 2-19
defined D-3

F
−f, name utility option 13-16
−f linker option 8-10
.fclist directive 4-18, 4-53

listing control 4-18, 4-49
use in macros 5-21

.fcnolist directive 4-18, 4-53
listing control 4-18, 4-49
use in macros 5-21

field, defined D-3
.field directive 4-12, 4-54
file

copy 3-5, 3-9
include 3-5, 3-9

file header
defined D-3
structure A-4

filenames
as character strings 3-29
copy/include files 3-19
extensions, changing defaults 10-3
list file 3-8
macros, in macro libraries 5-14
object code 3-8

files ROMS specification 14-17
fill

MEMORY specification 8-30
ROMS specification 14-16
value

default 8-10
explicit initialization 8-76
setting 8-10

−fill hex conversion utility option 14-4, 14-27
.float directive 4-13, 4-56
floating-point constants 4-56
functions, built-in 3-39, 5-9

G
−g

assembler option 3-7, 3-9
disassembler option 12-2
linker option 8-11
name utility option 13-16
object file display option 13-2

Index

Index-9

global
defined D-3
symbols 8-11

.global directive 4-20, 4-58
identifying external symbols 2-19

Go To, encoding, using the −atv assembler
option 3-6

GROUP
defined D-3
linker directive 8-55

H
−h

assembler option 3-9
disassembler option 12-2
linker option 8-11
name utility option 13-16

.half directive 4-13, 4-60
limiting listing with .option directive 4-18

−hc assembler option 3-9
−heap linker option

.sysmem section 8-94
described 8-12

−help
assembler option 3-9
linker option 8-5

hex conversion utility
command file 14-6 to 14-7
configuring memory widths

defining memory word width (mem-
width) 14-4

specifying output width (romwidth) 14-4,
14-11

controlling the boot table
16-bit parallel interface 14-5
16-bit serial interface 14-5
32-bit parallel interface 14-5
8-bit serial interface 14-5
identifying bootable sections −boot 14-5
setting the entry point −e 14-5
setting the ROM address −bootorg 14-5
specifying device and silicon revision −

v 14-5
specifying the target page number −boot-

page 14-5
controlling the ROM device address 14-34 to

14-37
data width 14-9

hex conversion utility (continued)
defined D-4
described 1-3
development flow 14-2
error messages 14-44
excluding a specified section 14-23
generating a map file 14-4, 14-20
generating a quiet run 14-4
ignore specified section 14-4
image mode 14-26 to 14-27

filling holes 14-4
invoking 14-4
numbering output locations by bytes 14-36
resetting address origin to 0 14-4

invoking 14-3 to 14-5
memory width 14-9 to 14-10
object formats 14-38 to 14-43
on-chip boot loader 14-28 to 14-33
options 14-4 to 14-5
ordering memory words 14-13 to 14-14
output filenames 14-4, 14-24
ROM width 14-10 to 14-12
ROMS directive 14-15 to 14-20
SECTIONS directive 14-21 to 14-22
specifying memory word ordering 14-4
target width 14-9

hex55 command 14-3

hexadecimal integer constants 3-27

−hi assembler option 3-9

high-level language debugging, defined D-4

hole
creating 8-73 to 8-75
default fill value 8-10
defined D-4
fill value, linker SECTIONS directive 8-33
filling 8-75 to 8-76
in output sections 8-73 to 8-76
in uninitialized sections 8-76

I
−i

assembler option 3-7, 3-9, 3-19
disassembler option 12-2
hex conversion utility option 14-40
linker option 8-13

I MEMORY attribute 8-30

−i option, hex conversion utility 14-5

Index

Index-10

.if directive 4-21, 4-61
handling 7-28
use in macros 5-15

−image hex conversion utility option 14-4, 14-26

.include directive 3-19, 4-20, 4-40

include directive 7-23

include files 3-5, 3-9, 3-19, 4-40

incremental linking
defined D-4
described 8-91 to 8-92

initialized section
defined D-4
described 8-73

initialized sections 2-6
.data 2-6, 4-47
.sect 2-6
.text 2-6, 4-93
.sect 4-82

input
linker 8-3, 8-26 to 8-27
section

defined D-4
described 8-38 to 8-40

.int directive 4-13, 4-63

Intel object format 14-40

interrupt service routines, modifying for C55x 7-3

interrupt vector table, differences between C54x and
C55x 4-64, 7-2

invoking, object file display utility 13-2

.ivec directive 4-14, 4-64, 7-2
C54X_STK mode 4-64
NO_RETA mode 4-64
USE_RETA mode 4-64

J
−j, linker option 8-14

K
keywords

allocation parameters 8-35
load 2-17, 8-35, 8-45
run 2-17, 8-35, 8-45 to 8-47

L
−l

assembler option 3-9, 3-41
cross-reference lister option 11-3
linker option 8-12
name utility option 13-16

label
case sensitivity 3-4, 3-9
cross-reference list 3-47
defined D-4
field 3-23
in assembly language source 3-23
local 3-33, 4-77
symbols used as 3-30
syntax 3-23
using with .byte directive 4-37

.label directive 4-22, 4-66
__large_model symbol 3-31
.ldouble directive 4-14, 4-48
length

MEMORY specification 8-30
ROMS specification 14-16

.length directive 4-18, 4-67
listing control 4-18

library search, using alternate mechanism, −priority
linker option 8-19

library search algorithm 8-12
library-build utility, described 1-3
line-number entry, defined D-4
linker

| operator 8-42
allocation to multiple memory ranges 8-42
archive members, allocating 8-40
assigning symbols 8-68
assignment expressions 8-68, 8-70 to 8-71
automatic splitting of output sections 8-42
>> operator 8-42
C code 8-9, 8-93 to 8-97
COFF 8-1
command files 8-4, 8-22 to 8-25, 8-98

editing for ported C54x code 6-3
configured memory 8-65
defined D-4
described 1-3
examples 8-98 to 8-100
generated copy tables. See linker-generated

copy tables
GROUP statement 8-53, 8-55

Index

Index-11

linker (continued)
handling COFF sections 2-12 to 2-14
in the development flow 8-3
input 8-3, 8-22 to 8-25
invoking 8-4
keywords 8-24, 8-45 to 8-47, 8-62
loading a program 2-18
MEMORY directive 2-12, 8-28 to 8-31
object libraries 8-26 to 8-27
operators 8-70
options

−−args 8-8
−c 8-95
−cr 8-96
described 8-7 to 8-20
summary table 8-5 to 8-6

output 8-3, 8-15, 8-98
overlay pages 8-59
overview 8-2
partial linking 8-91 to 8-92
section run-time address 8-45
sections

in memory map 2-14
output 8-65
special 8-67

SECTIONS directive 2-12, 8-32 to 8-44
symbols 2-19 to 2-20, 8-68, 8-71
table() operator 8-81, 8-82
unconfigured memory 8-67
UNION statement 8-53 to 8-55, 8-79

linker command file, editing for ported C54x
code 6-2

linker-generated copy tables 8-77 to 8-90
automatic 8-80 to 8-81
boot-loaded application process 8-77

alternative approach 8-78
boot-time copy table 8-81 to 8-82
contents 8-82 to 8-84
general-purpose copy routine 8-84 to 8-87
overlay management 8-89 to 8-90
overlay management example 8-79
sections and symbols 8-87 to 8-88
splitting object components 8-89 to 8-90
table() operator 8-81

manage object components 8-82

.list directive 4-18, 4-68
same effect with .option directive 4-19

lister
absolute 10-1 to 10-10
cross-reference 11-1 to 11-6

listing
cross-reference listing 4-19, 4-79
enabling 4-68
file 4-18 to 4-19, 4-49

creating with the −al option 3-5
creating with the −l option 3-9
defined D-4
format 3-41 to 3-44

list options 4-79
macro listing 4-74, 4-76
page eject 4-80
page length 4-67
page width 4-67
substitution symbols 4-85
suppressing 4-68
tab size 4-92
title 4-94

little-endian ordering 14-13
lnk55 command 8-4
load address of a section

described 8-45
referring to with a label 8-50 to 8-52

load linker keyword 2-17, 8-45 to 8-47
LOAD_START() linker operator 8-78
loader, defined D-4
loading a program 2-18
local labels 3-33
.localalign directive 4-16, 4-69
lock() modifier 4-71
.lock_off directive 4-25, 4-71
.lock_on directive 4-25, 4-71
logical operators 3-37
.long directive 4-14, 4-71

limiting listing with .option directive 4-18, 4-79
.loop directive 4-21, 4-72

use in macros 5-15
loop directive, handling 7-28

M
−m, linker option 8-15
−m1 option, hex conversion utility 14-5
−m1, hex conversion utility option 14-41
−m2, hex conversion utility option 14-41
−m2 option, hex conversion utility 14-5
−m3, hex conversion utility option 14-41
−m3 option, hex conversion utility 14-5

Index

Index-12

−ma assembler option 3-10, 3-18, 4-29
macro

comments 5-19
conditional assembly 5-15 to 5-16
defined D-5
defining 5-3
described 5-2
directives summary 5-26
disabling macro expansion listing 4-18, 4-79
formatting the output listing 5-21 to 5-22
labels 5-17 to 5-18
libraries 5-14, 9-2
.mlib assembler directive 3-19
.mlist assembler directive 4-76
nested 5-23 to 5-25
parameters 5-6 to 5-13
producing messages 5-19
recursive 5-23 to 5-25
substitution symbols 5-6 to 5-13
using a macro 5-2

macro call, defined D-5
macro definition, defined D-5
.macro directive 4-73, 5-3

summary table 5-26
macro expansion, defined D-5
macro library, defined D-5
macros, handling 7-28
magic number, defined D-5
_main 8-10
malloc() 8-12, 8-94
map file

creating 8-15
defined D-5
example 8-100

−map hex conversion utility option 14-4, 14-20
masm55 command 3-8
math functions 3-39
−mc assembler option 3-10, 3-17, 4-42
member, defined D-5
memory

allocation
default 2-13
described 8-64 to 8-66

map
defined D-5
described 2-14

model 8-28
named 8-37

memory (continued)
pool, C language 8-12, 8-94
unconfigured 8-29
widths

described 14-9 to 14-10
ordering memory words 14-13 to 14-14
ROM width 14-10 to 14-12, 14-16
target width 14-9

word ordering 14-13 to 14-14
MEMORY linker directive

default model 8-28, 8-64
described 2-12, 8-28 to 8-31
overlay pages 8-59 to 8-63
PAGE option 8-28 to 8-30, 8-66
syntax 8-28 to 8-31

memory modes
ARMS mode 3-18
C54x compatibility mode 3-16
CPL mode 3-17

memory ranges
allocation to multiple 8-42
defined 8-28
MEMORY directive 8-30

−memwidth hex conversion utility option 14-4
.mexit directive 5-3
−mg assembler option 3-7
−mh assembler option 3-10, 4-81, 7-6
migrating a C54x system to C55x 7-1 to 7-40
−mk assembler option 3-10
−ml assembler option 3-10, 4-38
.mlib directive 4-74, 5-14

use in macros 3-19
.mlist directive 4-18, 4-76

listing control 4-18, 4-49
use in macros 5-21

MMR addresses, assembler warning 3-18
.mmsg directive 4-27, 4-50, 5-19

listing control 4-18, 4-49
−mn assembler option 3-10, 7-9
mnemonic

defined D-5
field 3-23

.mnolist directive 4-18, 4-76
listing control 4-18, 4-49
use in macros 5-21

model statement, defined D-5
Motorola-S object format 14-41
−mt assembler option 3-10, 4-87, 7-5

Index

Index-13

multiple-line rewrites 7-25

−mv assembler option 3-10, 3-15, 4-101

−mw assembler option 3-10, 4-102

N
−n name utility option 13-16

name MEMORY specification 8-30

name utility
invoking 13-16
options 13-16

named sections 2-7
COFF format A-3
defined D-5
.sect directive 2-7, 4-82
.usect directive 2-7, 4-97

nested macros 5-23

.newblock directive 4-27, 4-77

nm55 command 13-16

nm55 utility, invoking 13-16

.no_remark directive 4-27

NO_RETA stack mode 4-64

.nolist directive 4-18, 4-68
same effect with .option directive 4-18

NOLOAD section 8-67

.noremark directive 4-78

O
−o

linker option 8-15
name utility option 13-16
object file display option 13-2

−o option, hex conversion utility 14-4

object
code source listing 3-42
file defined D-5
format

address bits 14-38
ASCII-Hex 14-39
Intel 14-40
Motorola-S 14-41
output width 14-38
Tektronix 14-43
TI-Tagged 14-42

format converter defined D-5

object (continued)
library

altering search algorithm 8-12
defined D-6
described 8-26 to 8-27
run-time support 8-94
using the archiver to build 9-2

object file display utility
invoking 13-2
options

−g 13-2
−o 13-2
−x 13-2

object formats
ASCII-Hex, selecting 14-5
binary, selecting 14-5
Intel, selecting 14-5
Motorola-S, selecting 14-5
Tektronix, selecting 14-5
TI-Tagged, selecting 14-5

octal integer constants 3-26
ofd6x command 13-2
on-chip boot loader

boot table 14-28 to 14-33
booting from device peripheral 14-32
controlling ROM device address 14-35 to 14-37
description 14-28, 14-33 to 14-35
modes 14-33
options

−e 14-32
summary 14-29

setting the entry point 14-32
using the boot loader 14-33 to 14-35

operands
defined D-6
field 3-24
label 3-30
local label 3-33
prefixes 3-24
source statement format 3-24

operator precedence order 3-37
.option directive 4-18, 4-79
optional header

defined D-6
format A-5

options
absolute lister 10-3
archiver 9-5
assembler 3-4, 3-8, 13-2

Index

Index-14

options (continued)
cross-reference lister 11-3
defined D-6
disassembler 12-2
hex conversion utility 14-4 to 14-5
linker 8-5 to 8-20
name utility 13-16
strip utility 13-17

−order hex conversion utility option 14-14

−order LS|MS hex conversion utility option 14-4

ordering memory words 14-13 to 14-14

origin
MEMORY specification 8-30
ROMS specification 14-16

output
executable 8-7 to 8-8
hex conversion utility 14-4, 14-24
linker 8-3, 8-15, 8-98
module

defined D-6
name 8-15

section
allocation 8-35 to 8-44
defined D-6
displaying a message 8-18
rules 8-65

output listing 4-18 to 4-19

output sections, splitting 8-42

overflow in an expression 3-37

overlay page
defined D-6
described 8-59 to 8-63
using the SECTIONS directive 8-61 to 8-62

overlaying sections 8-53 to 8-55
managing linker-generated copy tables 8-89 to

8-90

P
−p, name utility option 13-16, 13-17

paddr SECTIONS specification 14-22

page
eject 4-80
length 4-67
title 4-94
width 4-67

.page directive 4-19, 4-80

PAGE option MEMORY directive 8-28 to 8-30,
8-62 to 8-64, 8-66

PAGE ROMS specification 14-15
pages

overlay 8-59 to 8-63
PAGE syntax 8-62 to 8-64

parallel bus conflicts as warnings, using −atb
assembler option 3-5

parallel instructions
differences 7-32
rules 3-15

−parallel16 hex conversion utility option 14-5,
14-29, 14-32, 14-33

−parallel32 hex conversion utility option 14-5,
14-29, 14-32, 14-33

parentheses in expressions 3-36
partial linking

defined D-6
described 8-91 to 8-92

.port_for_size directive 4-26, 4-81, 7-6

.port_for_speed directive 4-26, 4-81, 7-6
precedence groups 3-36
predefined names

−adNAME assembler option 3-4
−d assembler option 3-9

prefixes for operands 3-24
preprocessing assembly files

dependency lines (−apd option) 3-5
files included (−api option) 3-5

−priority linker option 8-19
program memory 8-28
.pstring directive 4-14, 4-88
−−purecirc assembler option 3-7, 3-11, 7-7

Q
−q

absolute lister option 10-3
archiver option 9-5
assembler option 3-11
cross-reference lister option 11-3
disassembler option 12-3
name utility option 13-16

−q option, hex conversion utility 14-4
−qq, disassembler option 12-3
quiet run 3-11

defined D-6

Index

Index-15

R
−r

archiver command 9-4
assembler option 3-11
disassembler option 12-3
linker option 8-7, 8-91 to 8-92
name utility option 13-16

−r assembler option 4-78

R MEMORY attribute 8-30

R500n assembler remarks 7-35 to 7-40

RAM model, defined D-6

raw data, defined D-6

read-modify-write instructions 4-71

READA instruction 7-31

recursive macros 5-23

.ref directive 4-20, 4-58
identifying external symbols 2-19

register symbols 3-32

registers
C54x to C55x mapping 7-12
C55x temporaries 7-11

relational operators 3-38

relocatable, output module 8-7

relocation
at run time 2-17
capabilities 8-7 to 8-8
defined D-6
sections 2-15 to 2-16
structuring information A-9 to A-10

.remark directive 4-27, 4-78

remarks
generated by assembler 7-35 to 7-40
suppressing 4-78

reserved words
in C55x 6-6
linker 8-24

resetting local labels 4-77

RETE instructions 7-4

ROM
device address 14-34 to 14-37
model, defined D-6
width

defined D-7
described 14-10 to 14-12

romname ROMS specification 14-15

ROMS hex conversion utility directive 14-15 to
14-20

−romwidth hex conversion utility option 14-4, 14-11
romwidth ROMS specification 14-16
RPT differences 7-32
rts.lib 8-93, 8-97
run address

defined D-7
of a section 8-45 to 8-47

run linker keyword 2-17, 8-45 to 8-47
run-time environment

for ported C54x code 7-10
switching between C54x and C55x 7-14

−−run_abs linker option 8-8
RUN_START() linker operator 8-78
run-time initialization and support 8-93, 8-94

S
−s

archiver option 9-5
assembler option 3-11
disassembler option 12-3
linker option 8-16, 8-91 to 8-92

.sblock directive 4-16, 4-81
search libraries

using −priority linker option 8-19
using alternate mechanism 8-19

.sect directive 2-4, 4-10, 4-82

.sect section 4-10, 4-82
section header

defined D-7
described A-6 to A-8

section number A-15
section program counter, defined D-7
SECTIONS, linker directive

described 2-12
specifying 2-17

sections
allocation 8-64 to 8-66
COFF 2-2 to 2-3
creating your own 2-7
defined D-7
in the linker SECTIONS directive 8-33
initialized 2-6
named 2-2, 2-7
overlaying with UNION directive 8-53 to 8-55
relocation 2-15 to 2-16, 2-17

Index

Index-16

sections (continued)
special types 8-67
specifications 8-33
specifying a run-time address 8-45 to 8-52
specifying linker input sections 8-38 to 8-40
uninitialized 2-4 to 2-5

initializing 8-76
specifying a run address 8-46

SECTIONS hex conversion utilty directive 14-21 to
14-22

SECTIONS linker directive 8-32 to 8-44
alignment 8-38
allocation 8-35 to 8-44
allocation using multiple memory ranges 8-42
binding 8-36
blocking 8-38
default allocation 8-64 to 8-66
default model 8-30
fill value 8-33
GROUP 8-55
input sections 8-33, 8-38 to 8-40
.label directive 8-50 to 8-52
load allocation 8-33
memory 8-37 to 8-100
overlay pages 8-59 to 8-63
reserved words 8-24
run allocation 8-33
section specifications 8-33
section type 8-33
specifying 8-45 to 8-52
splitting of output sections 8-42
syntax 8-32
uninitialized sections 8-46
UNION 8-53 to 8-58
use with MEMORY directive 8-28

−serial16 hex conversion utility option 14-5, 14-29,
14-32, 14-33

−serial8 hex conversion utility option 14-5, 14-29,
14-32, 14-33

.set directive 4-22, 4-83

set directive 7-25

.setsect directive 10-7

.setsym directive 10-7

.short directive 4-13, 4-60

sign extend, defined D-7

simulator, defined D-7

SIZE() linker operator 8-78

sname SECTIONS specification 14-22

source file
assembler 13-2
defined D-7
listings 3-41 to 3-44, 6-4 to 6-6

source statement
field 3-42
format 3-23 to 3-25
number in source listing 3-41
syntax 3-22

.space directive 4-12, 4-84

SPC
aligning

by creating a hole 8-73
to word boundaries 4-16 to 4-17, 4-28

assembler symbol 3-23
assembler’s effect on 2-9 to 2-11
assigning a label to 3-23
defined D-7
described 2-8
linker symbol 8-69, 8-73
maximum number of 2-8
predefined symbol for 3-31
value

associated with labels 3-23
shown in source listings 3-41

−spc hex conversion utility option 14-30

−spce hex conversion utility option 14-30

special section types 8-67

special symbols A-12

.sslist directive 4-19, 4-85
listing control 4-18, 4-49
use in macros 5-21

.ssnolist directive 4-19, 4-85
listing control 4-18, 4-49
use in macros 5-21

SST disabled, masm55 option 7-5

SST status bit, setting, using −att assembler
option 3-6

.sst_off directive 4-26, 4-87, 7-5

.sst_on directive 4-26, 4-87, 7-5

.stack 8-16, 8-18, 8-94

−stack linker option 8-16, 8-94

stack mode, specifying with .ivec 4-64

stack pointers, initializing for ported C54x code 6-2

__STACK_SIZE 8-16, 8-72

Index

Index-17

static
defined D-7
symbols 8-11
variables A-11

status bits, C54x to C55x mapping 7-12

storage class
defined D-7
described A-14

.string directive 4-14, 4-88
limiting listing with .option directive 4-19, 4-79

string functions 5-9

string table
defined D-7
described A-13

strip utility
invoking 13-17
option 13-17

strip6x utility, invoking 13-17

stripping
line number entries 8-16
symbolic information 8-16

.struct directive 4-23, 4-89

structure
.tag 4-23
defined D-7
.tag 4-44, 4-89

style and symbol conventions v

subsections
defined D-8
initialized 2-6
overview 2-8
uninitialized 2-5

substitution symbols
arithmetic operations on 4-22, 5-8
as local variables in macros 5-13
assigning character strings to 3-32, 4-22
built-in functions 5-8
described 3-32
directives that define 5-7 to 5-8
expansion listing 4-19, 4-85
forcing substitution 5-11
in macros 5-6 to 5-13
maximum number per macro 5-6
passing commas and semicolons 5-6
recursive substitution 5-10
subscripted substitution 5-12 to 5-13
.var macro directive 5-13

suppressing assembler remarks 4-78

−swwsr hex conversion utility option 14-30

symbol table
creating entries 2-20
defined D-8
described 2-20
index A-9
placing unresolved symbols in 8-17
special symbols used in A-12
stripping entries 8-16
structure and content A-11 to A-16
values A-14

symbolic constants 3-31

symbolic debugging B-1 to B-14
−as assembler option 3-5
−b linker option 8-9
defined D-8
directives B-1 to B-14
disable merge for linker 8-9
producing error messages in macros 5-19
−s assembler option 3-11
stripping symbolic information 8-16
table structure and content A-11 to A-16

symbols
assembler-defined 3-4, 3-9
assigning values to 4-23, 4-45, 4-83, 4-89, 4-95

at link time 8-68 to 8-72
attributes 3-48
case 3-4, 3-9
character strings 3-29
cross-reference lister 11-6
cross-reference listing 3-47
defined D-8

by the assembler 2-19 to 2-20
by the linker 8-71
only for C support 8-72

described 2-19 to 2-20, 3-30
external 2-19, 4-57
global 8-11
names A-13
number of statements that reference 3-47
predefined

$ symbol 3-31
__large_model symbol 3-31
memory-mapped registers 3-32
.TOOLS symbol 3-32

reserved words 8-24
setting to a constant value 3-30
statement number that defines 3-47
substitution 3-32
unresolved 8-17

Index

Index-18

symbols (continued)
used as labels 3-30
value assigned 3-47

syntax
assignment statements 8-68
source statement 3-22

.sysmem section 8-12
__SYSMEM_SIZE 8-12, 8-72
.sysstack 8-17
−sysstack linker option 8-17
__SYSSTACK_SIZE 8-17, 8-72
system stack 8-16, 8-94
system stack, secondary 8-17

T
−t

archiver command 9-4
disassembler option 12-3
hex conversion utility option 14-42
name utility option 13-16

−t hex conversion utility option 14-5
.tab directive 4-19, 4-92
table() linker operator 8-81

used to manage object components 8-82
tag, defined D-8
.tag directive 4-23, 4-44, 4-45, 4-89, 4-95
target memory, defined D-8
target width 14-9
−tcsr hex conversion utility option 14-30
Tektronix object format 14-43
.text directive 2-4, 4-10

linker definition 8-71
.text section 4-10, 4-93, A-3

defined D-8
TI-Tagged object format 14-42
.title directive 4-19, 4-94
.TOOLS symbol 3-32
−trta hex conversion utility option 14-30

U
−u

assembler option 3-11
linker option 8-17
name utility option 13-16

.ubyte directive 4-12, 4-37

.uchar directive 4-12, 4-37

.uhalf directive 4-13, 4-60

.uint directive 4-13, 4-63

.ulong directive 4-14, 4-71
unconfigured memory

defined D-8
described 8-29
DSECT type 8-67

underflow in an expression 3-37
uninitialized sections 2-4 to 2-5

.bss 2-5, 4-34

.usect 2-5
defined D-8
described 8-73
initialization of 8-76
specifying a run address 8-46
.usect 4-97

UNION
defined D-8
linker directive 8-53 to 8-58

union
.tag 4-23, 4-45, 4-95
defined D-8

.union directive 4-23, 4-45, 4-95
UNION statement, memory overlay example 8-79
unsigned, defined D-8
USE_RETA stack mode 4-64
.usect directive 2-4, 4-10, 4-97
.usect section 4-10
.ushort directive 4-13, 4-60
Using MMR Address warning 3-18
.uword directive 4-13, 4-63

V
−v

archiver option 9-5
linker option 8-18

−v hex conversion utility option 14-5
.var directive 4-100, 5-13

listing control 4-18, 4-49
variable length instructions 3-15
variables, local, substitution symbols used as 5-13
.vectors 8-34
.vli_off directive 3-15, 4-25, 4-101
.vli_on directive 3-15, 4-25, 4-101

Index

Index-19

W
−w linker option 8-18
W MEMORY attribute 8-30
.warn_off directive 4-27, 4-102
.warn_on directive 4-27, 4-102
warning messages, using MMR address 3-18
well-defined expression

defined D-8
described 3-38

.width directive 4-19, 4-67
listing control 4-18

.wmsg directive 4-27, 4-51, 5-19
listing control 4-18, 4-49

word, defined D-8
word addressing 3-12, 8-21
word alignment 4-28
.word directive 4-13

limiting listing with .option directive 4-19, 4-79

WRITA instruction 7-31

X
−x

archiver command 9-4
assembler option 3-11, 3-47
hex conversion utility option 14-43
linker option 8-19

X MEMORY attribute 8-30
−x object file display option 13-2
−x option, hex conversion utility 14-5
.xfloat directive 4-13, 4-56
.xlong directive 4-14, 4-71
xref55 command 11-3

Z
−zero hex conversion utility option 14-4

Index-20

	Title Page - SPRU280H
	IMPORTANT NOTICE
	Read This Firsr
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Examples
	Notes
	Chapter 1: Introduction
	1.1 Software Development Tools Overview
	1.2 Tools Descriptions

	Chapter 2: Introduction to Common Object File Format
	2.1 Sections
	2.2 How the Assembler Handles Sections
	2.2.1 Uninitialized Sections
	2.2.2 Initialized Sections
	2.2.3 Named Sections
	2.2.4 Subsections
	2.2.5 Section Program Counters
	2.2.6 An Example That Uses Sections Directives

	2.3 How the Linker Handles Sections
	2.3.1 Default Memory Allocation
	2.3.2 Placing Sections in the Memory Map

	2.4 Relocation
	2.4.1 Relocation Issues

	2.5 Run-Time Relocation
	2.6 Loading a Program
	2.7 Symbols in a COFF File
	2.7.1 External Symbols
	2.7.2 The Symbol Table

	Chapter 3: Assembler Description
	3.1 Assembler Overview
	3.2 Assembler Development Flow
	3.3 Invoking the Assembler
	3.4 Invoking the Assembler Directly
	3.5 C55x Assembler Features
	3.5.1 Byte/Word Addressing
	3.5.1.1 Definition of Code Sections
	3.5.1.2 Assembly Programs and Native Units
	3.5.1.3 Using Code as Data and Data as Code

	3.5.2 Parallel Instruction Rules
	3.5.3 Variable-Length Instruction Size Resolution
	3.5.4 Memory Modes
	3.5.4.1 C54x Compatibility Mode
	3.5.4.2 CPL Mode
	3.5.4.3 ARMS Mode

	3.5.5 Assembler Warning On Use of MMR Address

	3.6 Naming Alternate Files and Directories for Assembler Input
	3.6.1 Using the -I Assembler Option
	3.6.2 Using the Environment Variables C55X_A_DIR and A_DIR

	3.7 Source Statement Format
	3.7.1 Source Statement Syntax
	3.7.2 Label Field
	3.7.3 Mnemonic Instruction Fields
	3.7.3.1 Mnemonic Field
	3.7.3.2 Operand List Field

	3.7.4 Algebraic Instruction Fields
	3.7.5 Comment Field

	3.8 Constants
	3.8.1 Binary Integers
	3.8.2 Octal Integers
	3.8.3 Decimal Integers
	3.8.4 Hexadecimal Integers
	3.8.5 Character Constants
	3.8.6 Floating-Point Constants

	3.9 Character Strings
	3.10 Symbols
	3.10.1 Labels
	3.10.2 Symbolic Constants
	3.10.3 Defining Symbolic Constants (-ad Option)
	3.10.4 Predefined Symbolic Constants
	3.10.5 Substitution Symbols
	3.10.6 Local Labels

	3.11 Expressions
	3.11.1 Operators
	3.11.2 Expression Overflow and Underflow
	3.11.3 Well-Defined Expressions
	3.11.4 Conditional Expressions

	3.12 Built-in Functions
	3.13 Source Listings
	3.14 Debugging Assembly Source
	3.15 Cross-Reference Listings

	Chapter 4: Assembler Directives
	4.1 Directives Summary
	4.2 Directives Related to Sections
	4.3 Data Defining Directives
	4.4 Alignment Directives
	4.5 Listing Control Directives
	4.6 File Reference Directives
	4.7 Symbol Linkage Directives
	4.8 Conditional Assembly Directives
	4.9 Assembly-Time Symbol Directives
	4.10 Directives That Communicate Run-Time Environment Details
	4.11 Miscellaneous Directives
	4.12 Directives Reference

	Chapter 5: Macro Language
	5.1 Using Macros
	5.2 Defining Macros
	5.3 Macro Parameters/Substitution Symbols
	5.3.1 Directives That Define Substitution Symbols
	5.3.2 Built-In Substitution Symbol Functions
	5.3.3 Recursive Substitution Symbols
	5.3.4 Forced Substitution
	5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols
	5.3.6 Substitution Symbols as Local Variables in Macros

	5.4 Macro Libraries
	5.5 Using Conditional Assembly in Macros
	5.6 Using Labels in Macros
	5.7 Producing Messages in Macros
	5.8 Formatting the Output Listing
	5.9 Using Recursive and Nested Macros
	5.10 Macro Directives Summary

	Chapter 6: Running C54x Code on C55x
	6.1 C54x to C55x Development Flow
	6.1.1 Initializing the Stack Pointers
	6.1.2 Handling Differences in Memory Placement
	6.1.3 Updating a C54x Linker Command File

	6.2 Understanding the Listing File
	6.3 Handling Reserved C55x Names

	Chapter 7: Migrating a C54x System to a C55x System
	7.1 Handling Interrupts
	7.1.1 Differences in the Interrupt Vector Table
	7.1.2 Handling Interrupt Service Routines
	7.1.3 Other Issues Related to Interrupts

	7.2 Assembler Options for C54x Code
	7.2.1 Assume SST is Disabled (-mt Option)
	7.2.2 Port for Speed Over Size (-mh Option)
	7.2.3 Optimized Encoding of C54x Circular Addressing (--purecirc Option)
	7.2.4 Removing NOPs in Delay Slots (-atn and -mn Options)

	7.3 Using Ported C54x Functions with Native C55x Functions
	7.3.1 Run-Time Environment for Ported C54x Code
	7.3.2 C55x Registers Used as Temporaries
	7.3.3 C54x to C55x Register Mapping
	7.3.4 Caution on Using the T2 Register
	7.3.5 Status Bit Field Mapping
	7.3.6 Switching Between Run-Time Environments
	7.3.7 Example of C Code Calling C54x Assembly
	7.3.8 Example of C54x Assembly Calling C Code

	7.4 Output C55x Source
	7.4.1 Command-Line Options
	7.4.2 Processing .include/.copy Files
	7.4.3 Problems with the --incl Option
	7.4.4 Handling .asg and .set
	7.4.5 Preserve Spacing with the .tab Directive
	7.4.6 Assembler-Generated Comments
	7.4.6.1 Multiple-Line Rewrites
	7.4.6.2 Expanded Macro Invocations
	7.4.6.3 Prefix Comments
	7.4.6.4 Suffix Comments
	7.4.6.5 Code Example For Assembler-Generated Comments

	7.4.7 Handling Macros
	7.4.8 Handling the .if and .loop Directives
	7.4.9 Integration Within Code Composer Studio

	7.5 Non-Portable C54x Coding Practices
	7.6 Additional C54x Issues
	7.6.1 Handling Program Memory Accesses

	7.7 Assembler Messages

	Chapter 8: Linker Description
	8.1 Linker Overview
	8.2 Linker Development Flow
	8.3 Invoking the Linker
	8.4 Linker Options
	8.4.1 Relocation Capabilities (- a and - r Options)
	8.4.2 Create an Absolute Listing File (-abs Option)
	8.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--args Option)
	8.4.4 Disable Merge of Symbolic Debugging Information (-b Option)
	8.4.5 C Language Options (-c and -cr Options)
	8.4.6 Define an Entry Point (-e global_symbol Option)
	8.4.7 Set Default Fill Value (-f cc Option)
	8.4.8 Make a Symbol Global (-g global_symbol Option)
	8.4.9 Make All Global Symbols Static (-h Option)
	8.4.10 Define Heap Size (-heap constant Option)
	8.4.11 Alter the File Search Algorithm (-l Option, -i Option, and C55X_ C_ DIR/ C_ DIR Environment Variables)
	8.4.11.1 Name an Alternate File Directory (-i Option)
	8.4.11.2 Name an Alternate File Directory (C_DIR Environment Variable)

	8.4.12 Disable Conditional Linking (-j Option)
	8.4.13 Create a Map File (-m filrname Option)
	8.4.14 Name an Output Module (-o filename Option)
	8.4.15 Strip Symbolic Information (-s Option)
	8.4.16 Define Stack Size (-stack size Option)
	8.4.17 Define Secondary Stack Size (-sysstack constant Option)
	8.4.18 Introduce an Unresolved Symbol (-u symbol Option)
	8.4.19 Specify a COFF Format (-v Option)
	8.4.20 Display a Message for Output Section Information (-w Option)
	8.4.21 Exhaustively Read and Search Libraries (-x and -priority Options)
	8.4.22 Creating an XML Link Information File (--xml_link_info Option)

	8.5 Byte/Word Addressing
	8.6 Linker Command Files
	8.6.1 Reserved Names in Linker Command Files
	8.6.2 Constants in Command Files

	8.7 Object Libraries
	8.8 The MEMORY Directive
	8.8.1 Default Memory Model
	8.8.2 MEMORY Directive Syntax

	8.9 The SECTIONS Directive
	8.9.1 Default Configuration
	8.9.2 SECTIONS Directive Syntax
	8.9.3 Memory Placement
	8.9.3.1 Binding
	8.9.3.2 Named Memory
	8.9.3.3 Alignment and Blocking
	8.9.3.4 Specifying Input Sections

	8.9.4 Allocating an Archive Member to an Output Section
	8.9.5 Memory Placement Using Multiple Memory Ranges
	8.9.6 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

	8.10 Specifying a Section’s Load-Time and Run-Time Addresses
	8.10.1 Specifying Load and Run Addresses
	8.10.2 Uninitialized Sections
	8.10.3 Defining Load-Time Addresses and Dimensions at Link Time
	8.10.4 Why the Dot Operator Does Not Always Work
	8.10.5 Address and Dimension Operators
	8.10.5.1 Input Items
	8.10.5.2 Output Section
	8.10.5.3 GROUPs
	8.10.5.4 UNIONs

	8.10.6 Referring to the Load Address by Using the .label Directive

	8.11 Using UNION and GROUP Statements
	8.11.1 Overlaying Sections With the UNION Statement
	8.11.2 Grouping Output Sections Together
	8.11.3 Nesting UNIONs and GROUPs
	8.11.4 Checking the Consistency of Allocators

	8.12 Overlay Pages
	8.12.1 Using the MEMORY Directive to Define Overlay Pages
	8.12.2 Using Overlay Pages With the SECTIONS Directive
	8.12.3 Page Definition Syntax

	8.13 Default Allocation Algorithm
	8.13.1 Allocation Algorithm
	8.13.2 General Rules for Output Sections

	8.14 Special Section Types (DSECT, COPY, and NOLOAD)
	8.15 Assigning Symbols at Link Time
	8.15.1 Syntax of Assignment Statements
	8.15.2 Assigning the SPC to a Symbol
	8.15.3 Assignment Expressions
	8.15.4 Symbols Defined by the Linker
	8.15.5 Symbols Defined Only For C Support (-c or -cr Option)

	8.16 Creating and Filling Holes
	8.16.1 Initialized and Uninitialized Sections
	8.16.2 Creating Holes
	8.16.3 Filling Holes
	8.16.4 Explicit Initialization of Uninitialized Sections

	8.17 Linker-Generated Copy Tables
	8.17.1 A Current Boot-Loaded Application Development Process
	8.17.2 An Alternative Approach
	8.17.3 Overlay Management Example
	8.17.4 Generating Copy Tables Automatically with the Linker
	8.17.5 The table() Operator
	8.17.6 Boot-Time Copy Tables
	8.17.7 Using the table() Operator to Manage Object Components
	8.17.8 Copy Table Contents
	8.17.9 General Purpose Copy Routine
	8.17.10 Linker Generated Copy Table Sections and Symbols
	8.17.11 Splitting Object Components and Overlay Management

	8.18 Partial (Incremental) Linking
	8.19 Linking C/C++ Code
	8.19.1 Run-Time Initialization
	8.19.2 Object Libraries and Run-Time Support
	8.19.3 Setting the Size of the Stack and Heap Sections
	8.19.4 Autoinitialization of Variables at Run Time
	8.19.5 Initialization of Variables at Load Time
	8.19.6 The -c and -cr Linker Options

	8.20 Linker Example

	Chapter 9: Archiver Description
	9.1 Archiver Overview
	9.2 Archiver Development Flow
	9.3 Invoking the Archiver
	9.4 Archiver Examples

	Chapter 10: Absolute Lister Description
	10.1 Producing an Absolute Listing
	10.2 Invoking the Absolute Lister
	10.3 Absolute Lister Example

	Chapter 11: Cross-Reference Lister Description
	11.1 Producing a Cross-Reference Listing
	11.2 Invoking the Cross-Reference Lister
	11.3 Cross-Reference Listing Example

	Chapter 12: Disassembler Description
	12.1 Invoking the Disassembler
	12.2 Disassembly Examples

	Chapter 13: Object File Utilities Descriptions
	13.1 Invoking the Object File Display Utility
	13.2 XML Tag Index
	13.3 Example XML Consumer
	13.3.1 The Main Application
	13.3.2 xml.h Declaration of the XMLEntity Object
	13.3.3 xml.cpp Definition of the XMLEntity Object

	13.4 Invoking the Name Utility
	13.5 Invoking the Strip Utility

	Chapter 14: Hex Conversion Utility Description
	14.1 Hex Conversion Utility Development Flow
	14.2 Invoking the Hex Conversion Utility
	14.3 Command File
	14.3.1 Examples of Command Files

	14.4 Understanding Memory Widths
	14.4.1 Target Width
	14.4.2 Data Width
	14.4.3 Memory Width
	14.4.4 ROM Width
	14.4.5 A Memory Configuration Example
	14.4.6 Specifying Word Order for Output Words

	14.5 The ROMS Directive
	14.5.1 When to Use the ROMS Directive
	14.5.2 An Example of the ROMS Directive
	14.5.3 Creating a Map File of the ROMS Directive

	14.6 The SECTIONS Directive
	14.7 Excluding a Specified Section
	14.8 Output Filenames
	14.8.1 Assigning Output Filenames

	14.9 Image Mode and the -fill Option
	14.9.1 The -image Option
	14.9.2 Specifying a Fill Value
	14.9.3 Steps to Follow in Image Mode

	14.10 Building a Table for an On-Chip Boot Loader
	14.10.1 Description of the Boot Table
	14.10.2 The Boot Table Format
	14.10.3 How to Build the Boot Table
	14.10.3.1 Building the Boot Table
	14.10.3.2 Leaving Room for the Boot Table

	14.10.4 Booting From a Device Peripheral
	14.10.5 Setting the Entry Point for the Boot Table
	14.10.6 Using the C55x Boot Loader

	14.11 Controlling the ROM Device Address
	14.11.1 Controlling the Starting Address
	14.11.2 Controlling the Address Increment Index
	14.11.3 Specifying Byte Count
	14.11.4 Dealing With Address Holes

	14.12 Description of the Object Formats
	14.12.1 ASCII-Hex Object Format (-a Option)
	14.12.2 Intel MCS-86 Object Format (-i Option)
	14.12.3 Motorola Exorciser Object Format (-m1, -m2, -m3 Options)
	14.12.4 Texas Instruments SDSMAC Object Format (-t Option)
	14.12.5 Extended Tektronix Object Format (-x Option)

	14.13 Hex Conversion Utility Error Messages

	Appendix A: Common Object File Format
	A.1 COFF File Structure
	A.2 File Header Structure
	A.3 Optional File Header Format
	A.4 Section Header Structure
	A.5 Structuring Relocation Information
	A.6 Symbol Table Structure and Content
	A.6.1 Special Symbols
	A.6.2 Symbol Name Format
	A.6.3 String Table Structure
	A.6.4 Storage Classes
	A.6.5 Symbol Values
	A.6.6 Section Number
	A.6.7 Auxiliary Entries

	Appendix B: Symbolic Debugging Directives
	B.1 DWARF Debugging Format
	B.2 COFF Debugging Format
	B.3 Debug Directive Syntax

	Appendix C: XML Link Information File Description
	C.1 XML Information File Element Types
	C.2 Document Elements
	C.2.1 Header Elements
	C.2.2 Input File List
	C.2.3 Object Component List
	C.2.4 Logical Group List
	C.2.5 Placement Map
	C.2.6 Symbol Table

	Appendix D: Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

