
~TEXAS
INSTRUMENTS

TMS320C30 C Compiler

1989 1989 Digital Signal Processing Products

TAfS320C30 C Compiler
Reference Guide

• TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without notice.
TI advises its customers to obtain the latest version of the relevant information
to verify, before placing orders, that the information being relied upon is current.

TI warrants performance of its semiconductor products to current specifications
in accordance with TI's standard warranty. Testing and other quality control tech­
niques are utilized to the extentTl deems necessary to support this warranty. Un­
less mandated by government requirements, specific testing of all parameters of
each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or representthat license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.

TRADEMARKS

PC-DOS is a trademark of International Business Machines.

VAX and VMS are trademarks of Digital Equipment Corporation.

UNIX is a trademark of American Telephone and Telegraph.

SPOX is a trademark of Spectron Microsystems, Incorporated.

Preface

Read This First
::::::m:::::: i!::i~::!i!m:E~H!a[m:i:::::~

This preface summarizes the chapters, lists related documentation, and de­
scribes the style and symbol conventions used in this book.

How to Use This Manual

This document contains the following chapters:

Chapter 1 Introduction and Installation
Provides an overview of the TMS320C30 software development tools, a
walkthrough, and installation information.

Chapter 2 C Compiler Operation
Describes how to operate the C compiler and the Cl30 program. Contains
instructions for invoking Cl30, which compiles, assembles, and links a C
source file, and for invoking the individual compiler components. Discusses
the interlist utility, filename specifications, compiler options, and using the
linker and archiver with the compiler.

Chapter 3 TMS320C30 C Language
Discusses the differences between the C language supported by the
TMS320C30 C compiler and standard Kernighan and Ritchie C language.

Chapter 4 Runtime Environment
Contains technical information on how the compiler uses the TMS320C30
architecture; discusses memory and register conventions, stack organiza­
tion, function-call conventions, system initialization, and TMS320C30 C
compiler optimizations; provides information needed for interfacing assem­
bly language to C programs.

Chapter 5 Runtime-Support Functions
Describes the header files that are included with the C compiler, as well as
the macros, functions, and types that they declare, summarizes the
runtime-support functions according to category (header), and provides an
alphabetical reference of the runtime-support functions.

iii

Read This First

Appendix A Compiler Error Messages
Provides the format of compiler error messages and lists all the fatal error
messages.

Appendix B Preprocessor Directives
Describes the standard preprocessor directives that the compiler supports.

Appendix C Increasing Code Generation Efficiency
Presents guidelines for writing C programs that take advantage of the
TMS320C30 C compiler optimizations.

Related Documentation

iv

You should obtain a copy of The C Programming Language (first edition),
by Brian W. Kernighan and Dennis M. Ritchie, published by Prentice-Hall,
Englewood Cliffs, New Jersey, 1978, to use with this manual.

You may find these two books useful as well:

Programming in C Kochan, Steve G. Hayden Book Company.

Advanced C: Techniques and Applications Sobelman, Gerald E. and
David E. Krekelberg. Que Corporation, 1985.

The following books, which describe the TMS320C30 and related support
tools, are available from Texas Instruments:

Q The Third-Generation TMS320 User's Guide (literature number
SPRU031) discusses hardware aspects of the TMS320 family
third-generation devices, including the TMS320C30. Topics in this
user's guide include pin functions, architecture, stack operation, and
interfaces; the manual also includes the TMS320C30 assembly lan­
guage instruction set.

Q The TMS320C30 Assembly Language Tools User's Guide (litera­
ture number SPRU035) describes the assembly language tools (as­
se'mbler, linker, archiver, and code conversion utility), assembler
directives, macros, common object file format, and symbolic debugging
directives.

Preface

Read This First

Style and Symbol Conventions

This document uses the following conventions:

Q Program listings, program examples, interactive displays, filenames,
and symbol names are shown in a special font. Examples use a bold
version of the special font for emphasis. Here is a sample program seg­
ment:

extern float siner]; /* This is the object */
float *siney = sine; /* Declare a C pointer

to point to it */
f = siney[4] ; /* Access sine like a

normal array */

Q In syntax descriptions, the instruction, command, or directive is in a
bold face font and parameters are in italics. Portions of a syntax that
are in bold face should be entered as shown; portions of a syntax that
are in italics describe the type of information that should be entered.
Here is an example of a command syntax:

Ink30 filenames

Ink30 is a command. This command has one parameter, indicated by
filenames. When you use Ink30, the first parameter must be a filename.

Q Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don't enter the brackets themselves. Here's an example of a command
that has two optional parameters:

cl30 [options] [filenames]

cl30 is a command. This command has two optional parameters, indi­
cated by options and filenames. When you use c130, no parameters are
n~cessary; however, if you do indicate parameters, they should appear
in this order.

v

vi Preface

Contents

1 Introduction and Installation 1-1
1 .1 Software Development Tools Overview 1-2
1.2 TMS320C30 C Compiler Overview 1-4
1.3 Getting Started .. 1-6
1.4 Compiler Installation .. 1-8

1.4.1 Installing the C Compiler on IBM-PCs with PC-DOS. 1-8
1.4.2 Installing the C Compiler on VAXJVMS 1-9
1.4.3 Installing the C Compiler on Workstations with UNIX 1-9
1.4.4 Installing the C Compiler on Macintosh with MPW 1-10

2 C Compiler Operation .. 2-1
2.1 C Compiler Overview .. 2-2
2.2 Invoking the C Compiler .. 2-3
2.3 Filename Specifications 2-4
2.4 Options. .. 2-6

2.4.1 Option Conventions .. 2-6
2.4.2 Option Descriptions 2-7

2.5 Running the Linker with CL30 2-11
2.5.1 -z CL30 option 2-11
2.5.2 -c CL30 Option 2-12
2.5.3 -c and -cr Linker Options 2-12

2.6 Using the C_OPTION Environment Variable 2-13
2.7 Interlist Utility Operation 2-14

2.7.1 Invoking the Interlist Utility Using the -s CL30 Option. 2-14
2.7.2 Invoking the Interlist Utility Outside CL30 2-15

2.8 Operating the Preprocessor, the Parser, and the
Code Generator Individually. .. 2-16
2.8.1 Preprocessing C Code 2-17
2.8.2 Parsing C Code .. 2-21
2.8.3 Generating Assembly Language Code 2-22

2.9 Linking a C Program. .. 2-24
2.9.1 Runtime Initialization and Runtime Support 2-24
2.9.2 Sample Linker Command File .. 2-25

vii

Contents

2.9.3 Autoinitialization (RAM and ROM Models) 2-26
2.9.4 The -c and -cr Linker Options 2-27

2.10 Using the Archiver with C .. 2-28

3 TMS320C30 C Language .. 3-1
3.1 Identifiers, Keywords, and Constants .. 3-2
3.2 TMS320C30 C Data Types. .. 3-4
3.3 Object Alignment .. 3-6
3.4 Expressions. .. 3-6
3.5 Declarations .. 3-7
3.6 Initialization of Static and Global Variables 3-10
3.7 Lexical Scope Rules , , 3-10
3.8 asm Statement .. 3-11

4 Runtime Environment. .. 4-1

viii

4.1 Memory Model .. 4-2
4.1 .1 Sections. .. 4-2
4.1.2 Big and Small Memory Models 4-3
4.1 .3 C System Stack .. 4-5
4.1 .4 Dynamic Memory Allocation 4-6
4.1.5 RAM and ROM Models 4-7

4.2 Object Representation 4-8
4.2.1 Storage of Data Types .. 4-8
4.2.2 Long Immediate Values .. 4-8
4.2.3 Addressing Global Variables 4-8
4.2.4 Character String Constants .. 4-9
4.2.5 The Constant Table 4-10

4.3 Register Conventions 4-12
4.3.1 Expression Analysis Registers 4-12
4.3.2 Return Values 4-13
4.3.3 Register Variables .. 4-13
4.3.4 Other Registers 4-14

4.4 Function Structure and Calling Conventions 4-15
4.4.1 Responsibilities of a Calling Function 4-15
4.4.2 Responsibilities of a Called Function. 4-16
4.4.3 Setting Up the Local Frame .. 4-16
4.4.4 Accessing Arguments and Local Variables 4-16
4.4.5 Returning Structures from Functions 4-17

4.5 Interfacing C with Assembly Language 4-18
4.5.1 Assembly Language Modules 4-18
4.5.2 Inline Assembly Language 4-22

Table of Contents

Contents

4.5.3 Modifying Compiler Output 4-22
4.6 Interrupt Handling .. 4-23

4.6.1 Saving Registers During Interrupts 4-23
4.6.2 Using C Interrupt Routines 4-23
4.6.3 Assembly Language Interrupt Routines 4-24

4.7 Expression Analysis 4-25
4.8 Runtime-Support Math Routines 4-26
4.9 Optimization. .. 4-28
4.10 System Initialization 4-30

4.10.1 Autoinitialization of Variables and Constants 4-30

5 Runtime-Support Functions 5-1
5.1 Header Files .. 5-2

5.1.1 Diagnostic Messages {assert. h} 5-2
5.1.2 Character Typing and Conversion {ctype. h} 5-3
5.1.3 Limits{float.handlimits.h} 5-3
5.1.4 Floating-Point Math {math. h} 5-5
5.1.5 Error Reporting {errno. h} .. 5-6
5.1.6 Variable Arguments {stdarg. h} 5-6
5.1.7 Standard Definitions {stddef.h} 5-6
5.1.8 GeneraIUtilities{stdlib.h} 5-7
5.1.9 String Functions {string.h} 5-7
5.1.10 Time Functions {time.h} 5-8

5.2 Summary of Runtime-Support Functions and Macros 5-9
5.3 Functions Reference 5-16

A Error Messages .. A-1

B Preprocessor Directives .. B-1

C Increasing Code Generation Efficiency C-1

ix

1-1

2-1

2-2

2-3

2-4

2-5

4-1
4-2

4-3
4-4

4-5
4-6
4-7

4-8

x

Win %%0 J§W!§

1 i! 1 li Ii :::: : ill: :; l: E:

TMS320C30 Software Development Flow 1-2

CL30 Overview ... 2-2

CL30 Overview with the Linker 2-11

An Example of an Interlisted Assembly File 2-14

Compiling a C Program 2-16

An Example of a Linker Command File 2-25

Stack Use During a Function Call .. 4-15

An Assembly Language Function .. 4-20

Accessing(a Variable Defined in .bss from C 4-21

Accessing a Variable that is not Defined in .bss from C 4-21

Summary of Runtime-Support Math Functions. 4-27

Format of Initialization Records in the .cinit Section 4-31

RAM Model of Autoinitialization 4-33

ROM Model of Autoinitialization 4-34

Table of Contents

~;&

r i ::: :E i

Tables
m::ewam: : l::::::~

2-1 Options Summary Table 2-6
3-1 Summary of TMS320C30 Data Types (K&R 2.6) 3-5
4-1 List of the Registers the Compiler Uses 4-12
5-1 Macros that Supply Integer Type Range Limits (limits. h) 5-4

5-2 Macros that Supply Floating-Point Range Limits (float .h) 5-5

xi

xii Table of Contents

::::

Chapter 1

Introduction and Installation
rr 1 1

ii!!iim:::: ! mm

The TMS320C30 is a high-performance CMOS floating-point microproces­
sor, optimized for digital signal processing applications. The TMS320C30
is a member of the third generation of TMS320 family digital signal proces­
sors.,

The TMS320C30 is fully supported by a complete set of hardware and soft­
ware development tools, including a C compiler, an assembler, linker, and
archiver, a software simulator, and a full-speed emulator. Section1.1
describes these tools.

This reference guide describes the TMS320C30 C compiler. Its main pur­
pose is to present the details and characteristics of this particular C compil­
er; it assumes that you already know how to write C programs. We suggest
that you obtain a copy of The C Programming Language, by Brian W.
Kernighan and Dennis M. Ritchie (published by Prentice-Hall); use this ref­
erence guide as a supplement to the Kernighan and Ritchie book.

Texas Instruments provides a hotline to assist you with technical questions
about the TMS320 family products and developmenttools. The phone num­
ber is 713-274-2320.

The TMS320C30 C compiler can be installed on the following systems:

[J IBM-PC/PC-DOS and compatibles

[J VAX/VMS

[J VAx/ULTRIX

[J Workstations with UNIX

[J Macintosh with MPW

Topics in this Chapter include:

Section Page
1.1 Software Development Tools Overview 1-2
1.3 Getting Started 1-7
1.4 Compiler Installation 1-9

1-1

Software Development Tools Overview
Ji~:lX~":IJi$M~,l!W:.WX· "~ ;$;~~::&-;s-»».W/~~.».~.w@P.W/..::::::::x.~#.MX~~~/;:;:::::>::~::~::-~'::.~.«~:;::(~~m:;

1.1 Software Development Tools Overview

Figure 1-1 illustrates the TMS320C30 software development flow. The
shaded portion of the figure highlights the typical software development
path; the other portions are optional.

Figure 1-1. TMS320C30 Software Development Flow

",.-------...
(h b· , I ot er 0 ject I
\ libraries J
"----------"

1-2

XDS
Emulator TMS320C30 Simulator

Macro
Source Files

EPROM
Programmer

Introduction and Installation

Software Development Tools Overview

The following list describes the tools that are shown in Figure 1-1.

Q The C compiler accepts C source code and produces TMS320C30
assembly language source code. A Cl30 program and an interlist util­
it yare included in the compiler package.The Cl30 program enables
you to automatically compile, assemble, and link source modules. The
interlist utility interweaves C source· statements with assembly lan­
guage output. Chapter 2 describes compiler, Cl30, and interlist invoca­
tion and operation.

Q The assembler translates assembly language source files into ma­
chine language object files.

Q The archiver allows you to collect a group of files into a single archive
file. (An archive file is also called a library.) Additionally, the archiver
allows you to modify a library by deleting, replacing, extracting, or add­
ing members. One of the most useful applications of the archiver is to
build a library of object modules.

One object library, rts.lib, is shipped with the C compiler. This library
contains standard runtime-support functions, compiler utility functions,
and math functions that can be called in C programs. You can also
create your own object libraries. To use an object library, you must
specify the library name as linker input; the linker will include the mem­
bers in the library that define the functions you call in a C program.

Q The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts· relocatable COFF object files
and object libraries as input.

Q The main purpose of this development process is to produce a module
that can be executed in a TMS320C30 target system. You can use one
of several debugging tools to refine and correct your code before down­
loading it to a TMS320C30 system. These debugging tools share a
common screen-oriented interface that displays and maintains ma­
chine status information and controls execution of the system that is be­
ing developed. Note that only linked object files can be executed.

• The simulator is a software program that simulates TMS320C30
functions. The simulator can execute linked COFF object modules.

• The XDS emulator is a PC-resident, realtime, in-circuit emulator
with the same screen-oriented interface as the software simulator.

Q An object format converter is also available; it converts a COFF object
file into an Intel word, extended Tektronix hex, or TI-tagged object for­
mat file that can be downloaded to an EPROM programmer.

1-3

Software Development Tools Overview

1-4

A software platform is also available for augmenting your TMS320C30 C
compiler:

Q SPOX

SPOX is a high-level software interface designed specifically for digital
signal processing and control applications. It is a system of software
components that you can combine according to your needs. SPOX pro­
vides the common operating system functions of memory manage­
ment, I/O, and multi-tasking. SPOX differs from traditional operating
systems by supplying an optimized math and DSP library as well as
real-time stream I/O. SPOX is available from Spectron Microsystems,
Incorporated.

Introduction and Installation

TMS320C30 C Compiler Overview

1.2 TMS320C30 C Compiler Overview
The TMS320C30 C compiler is a full-feature optimizing compiler that trans­
lates standard Kernighan and Ritchie C programs into TMS320C30
assembly language source. The following list describes key characteristics
of the compiler:

1::1 Standard Kernighan and Ritchie C with Extensions

The compiler compiles standard C programs as defined by Kernighan
and Ritchie's The C Programming Language (first edition). The com­
piler supports these standard extensions: enumeration types, structure
assignments, passing structures to functions, and returning structures
from functions. A future release of the compiler will support the full ANSI
standard. For more information, refer to Chapter 3.

1::1 32-:Bit Data Sizes

All data sizes (char, short, int, long, float, and double) are 32 bits. This
allows all types of data to take full advantage of the TMS320C30's
32-bit integer and floating-point arithmetic capabilities. For more infor­
mation, refer to Section 3.2 on page 3-4.

1::1 Big and Small Memory Models

The compiler supports two memory models.The small memory model
enables the compiler to efficiently access memory by restricting the
global data space to a single 64K-word data page. The big memory
model allows unlimited space. For more information, refer to Section
4.1 on page 4-2.

1::1 Optimization

The compiler uses several advanced techniques for generating
efficient, compact code from C source. For more information the C
compiler's optimization techniques, refer to Section 4.9 on page 4-28
and Appendix C.

1::1 Assembly Source Output

The compiler generates assembly language source that is easily in- .
spected, enabling you to see the code generated from the C source
files.

1::1 COFF Object Files

The COFF format allows you to define you system's memory map at link
time. This maximizes performance by enabling you to link C code and
data objects into specific memory areas. COFF also provides rich sup­
port for source-level debugging.

1-5

TMS320C30 C Compiler Overview

1-6

o ROM-able Code

For stand-alone embedded applications, the compiler enables you to
link all code and initialization data into ROM.

o ANSI Standard Runtime Support

The compiler package comes with a complete runtime library. All library
functions conform to the ANSI C library standard. The library includes
functions for string manipulation, dynamic memory allocation, data con­
version, timekeeping, trigonometry, exponential, and hyperbolic
functions. Functions for I/O and signal handling are not included be­
cause these are target-system specific. For more information, refer to
Chapter 5.

o Flexible Assembly Language Interface

The compiler has straight-forward calling conventions, allowing you to
easily write assembly and C functions that call each other. For more in­
formation, refer to Chapter 4.

o CL30 Compiler Shell Program

The compiler package includes a Cl30 shell program which enables
you to compile, assemble, and link programs in a single step. For more
information, refer to Chapter 2.

o Source Interlist Utility

The compiler package includes a utility that interlists your original C
source statements into the assembly language output of the compiler.
This utility provides you with an easy method for inspecting the
assembly code generated for each C statement. For more information,
refer to Section 2.7 on page 2-14.

Introduction and Installation

Getting Started

1.3 Getting Started
The TMS320C30 C compiler has three parts: a preprocessor, a parser, and
a code generator. The compiler produces a single assembly language
source file that must be assembled and linked. The simplest way to compile,
assemble, and link a C program is to use the CL30 program which is
included with the compiler. This section provides a quick walkthrough so
that you can get started without reading the entire reference guide.

1) Create a sample file called function. c that contains the following
code:

/*************************************/
/* function.c */
/* (Sample file for walkthrough) */
/*************************************/
'include "stdlib.h"

int abs(i)
int i;

register int temp = i;
if (temp < 0) temp = -temp;
return (temp);

2) Invoke Cl30 to run the compiler and assembler.

c130 function ~

Cl30 prints the following information as it compiles the program:

[function]
C Pre-Processor, Version 2.00
(c) Copyright 1987, 1989, Texas Instruments Inc.
TMS320C30 C Compiler, Version 2.00
(c) Copyright 1987, 1989, Texas Instruments Inc.

"function.c" ==> abs
TMS320C30 C Codegen, Version 2.00
(c) Copyright 1987, 1989, Texas Instruments Inc.

"function.c" ==> abs
TMS320C30 COFF Assembler, Version 2.00
(c) Copyright 1987, 1989, Texas Instruments Inc.
PASS 1
PASS 2

No Errors, No Warnings

Cl30 runs the three compiler passes and the assembler as follows:

cpp30 -7 C Preprocessor
cc30 -7 C Parser
cg30 -7 Code Generator
asm30 -7 Assembler

1-7

Getting Started

1-8

By default, Cl30 deletes the assembly language output file from the
compiler after it's assembled. If you wish to inspect the assembly lan­
guage output of the compiler, use the -k option on Cl30.

3) Also by default, Cl30 creates a COFF object file as output; however,
if you use the -z option, the output will be an executable object module.
The following examples walk you through the two ways of achieving an
executable object module:

a) The example above creates an object file called function. obj. To
create an executable object module, link the object file with the
runtime-support library rts . lib:

1nk30 -c function -0 function. out -1 rts.1ib ~

This examples uses the -c linker option because the code came
from a C program. The -I option tells the linker that the input file
rts . lib is an object library. The -,() option names the output mod­
ule, function. out; if you don't use the -0 option, the linker names
the output module a. out.

b) In this example, Cl30 runs the linker directly by using the -z option,
followed by the linker options.

c130 function -z -0 function. out -1 rts.1ib ~

This example runs the three compiler passes, the assembler, and
the linker as follows:

cpp30 ---7 C Preprocessor
cc30 ---7 C Parser
cg30 ---7 Code Generator
asm30 ---7 Assembler
Ink30 ---7 Linker

4) The TMS320C30 includes an interlist utility. This program inter­
weaves the C source statements as comments in the assembly lan­
guage compiler output, allowing you to inspect the assembly language
generated for each line of C. To run the interlist utility, invoke Cl3a with
the -s option. For example:

c130 function -z -s -0 function.out -1 rts.1ib ~

The output of the interlist utility is written to the assembly language file
created by the compiler. (The Cl3a -s option implies -k; that is, when
you use the interlist utility, the assembly file is automatically retained.)

For more information about invoking the C compiler, the interlist utility and
the Cl3a program, refer to Chapter 2.

Introduction and Installation

Compiler Installation

1.4 Compiler Installation
This section contains step-by-step instructions for installing the
TMS320C30 C compiler. Refer to the following sections for installation infor­
mation:

Section
1.4.1
1.4.2
1.4.3
1.4.3
1.4.4

Installing on . . . Page
IBM PCs 1-9
DEC VAXNMS 1-10
VAXlULTRIX 1-10
Workstations with Unix .. 1-10
Macintosh with MPW 1-11

1.4.1 Installing the C Compiler on IBM-PCs with PC-DOS
The C compiler package is shipped on double-sided, dual-density diskettes.
The compiler executes in batch mode and requires 512K bytes of RAM.

These instructions are for both hard-disk systems and dual floppy drive
systems (however, we recommend that you use the compiler on a hard-disk
system). On a dual-drive system, the PC-DOS system diskette should be
in drive B. The instructions use these symbols for drive names:
A: Floppy disk drive for hard disk systems; source drive for dual-drive

systems.
B: Destination or system disk for dual-drive systems.
C: Winchester (hard disk) for hard-disk systems.

Follow these instructions to install the software:

1) Make backups of the product diskettes.

2) Create a directory to contain the C compiler. If you're using a dual-drive
system, put the disk that will contain the tools into drive B.

t;l On hard-disk systems, enter:
MD C:\C30TOOLS ~

t;l On dual-drive systems, enter:
MD B:\C30TOOLS ~

3) Copy the C compiler package onto the hard disk or the system disk. Put
the product diskette in drive A; if you're using a dual-drive system, put
the disk that will contain the tools into drive B.

t;l On hard-disk systems, enter:
copy A:*.* C:\C30TOOLS*.* ~

t;l On dual-drive systems, enter:
l

COpy A:*.* B:\C30TOOLS*.* ~

4) Repeat steps 1 through 3 for each product diskette.

1-9

Compiler Installation

1.4.2 Installing the C Compiler on VAXIVMS

The TMS320C30 C compilertape was created with the VMS BACKUP utility
at 1600 BPI. These tools were developed on version 4.5 of VMS. If you are
using an earlier version of VMS, you may need to relink the object files; refer
to the release notes for relinking instructions.

Follow these instructions to install the compiler:

1) Mount the tape on your tape drive.

2) Execute the following VMS commands. Note that you must create a
destination directory to contain the package; in this example,
DEST: directory represents that directory. Replace TAPE with the
name of the tape drive you are using.

$ allocate TAPE:
$ mount/for/den=1600 TAPE:
$ backup TAPE:c30.bck/select=[master.c30c ...] DEST: [directory ...]
$ dismount TAPE:
$ dealloc TAPE:

3) The product tape contains a file called set up. com. This file sets up VMS
symbols that allow you to execute the tools in the same manner as other
VMS commands. Enter the following command to execute the file:

$ @setup DEST:directory ~

This sets up symbols that you can use to call the various tools. As the file
is executed, it will display the defined symbols on the screen.

1.4.3 Installing the C Compiler on Workstations with UNIX

1-10

The TMS320C30 C compiler product tape was made using the tar utility.
Follow these instructions to install the compiler:

1) Mount the tape on your tape drive.

2) Make sure that the directory you store the tools in is the current
directory.

3) Enter the tar command for your system; for example,

tar x ~

This copies the entire tape into the directory. The tar command varies
from system to system; consult your system documentation for proper
use of the tar command.

Introduction and Installation

Compiler Installation

1.4.4 Installing the C Compiler on Macintosh with MPW

The TMS320C30 compiler package runs only under the Macintosh
Programmer's Workshop (MPW). MPW is a complete software develop­
ment environment for Macintosh Computers that can be purchased through
for Apple. These tools cannot be run on a Macintosh without MPW.

The C compiler is shipped on a double-sided, BOOk, 3 1/2" diskette. The disk
contains three folders:

GSS
Use the Finderto display the disk contents and copy the files into your MPW
environment:

1) The Tools directory contains all the programs and the batch files for run­
ning the compiler. Copy this directory in with your other MPW tools
(MPW tools are usually in the folder {MPW}Tools.)

2) The Includes directory contains the header files (. h files) for the run­
time-support functions. Many of these files have names that conflict with
commonly-used MPW header files, so you should keep these header
files separate from the MPW files. Copy the contents of the Includes di­
rectory into a new folder, and use the C_DI R environment variable. For
information describing how to create a path to this folder, refer to Sec­
tion 2.B.1.1 on page 2-1B.

3) The Libraries folder contains the compiler's runtime-support object and
source libraries. You can copy these files into the folder that you created
for the header files, or you can copy them into a new folder. If you copy
them into a new folder, use the C_DIR environment variable to create
a path to this folder as well.

1-11

1-12 Introduction and Installation

r I 1

Chapter 2

C Compiler Operation
r I r

m m ilium m::::m

The TMS320C30 C compiler is made up of three programs: the
preprocessor, the parser, and the code generator. After compiling a pro­
gram, you must assemble and link it with the TMS320C30 assembler and
linker. The Cl30 program, included with the compiler, enables you to auto­
matically compile, assemble, and link one or more source modules.

The compiler package also includes a utility that interlists your original C
source statements into the assembly language output of the compiler,
enabling you to inspect the assembly code generated for each C statement.
The interlist utility is explained in Section 2.7.

If you choose to run the three compiler steps individually, Section 2.8 de­
scribes how to run the preprocessor, parser, and code generator
individually.

Topics in this chapter include:

Section Page
2.1 C Compiler Overview. 2-2
2.2 Invoking the C Compiler 2-3
2.3 Filename Specifications .. 2-4
2.4 Options .. 2-6
2.5 Running the Linker with Cl30 2-11
2.6 Using the C_OPTION Environment Variable 2-13
2.7 Interlist Utility Operation 2-14
2.8 Operating the Preprocessor, the Parser, and the Code

Generator Individually 2-16
2.9 Linking a C Program 2-24
2.1 0 Using the Archiver with C 2-28

2-1

C Compiler Overview

2.1 C Compiler Overview

The TMS320C30 C compiler is made up the preprocessor, the parser, and
the code generator.

After you have compiled a program, you must assemble and link it with the
TMS320C30 assembler and linker. A program called CL30 is provided with
the compiler which automatically runs one or more source modules through:

r:i the three compiler passes,
r:i the assembler, and
r:i if the -z option is used, the linker.

Figure 2-1 illustrates CL30 with and without the -z option.You can invoke
CL3D with compiler, assembler, and linker options, and CL30 will automati­
cally vector the options to the appropriate program. You may also set CL30
default options by using the C_OPTION environment variable; these de­
faults options are used every time you run CL30.

Figure 2-1. CL30 Overview

_ Preprocessor... Parser ... Code
Generator -

CCompiler

[Assembler }
with the -z option

[} Executable
Linker Object Code

2-2 C Compiler Operation

Invoking the C Compiler

2.2 Invoking the C Compiler

To run the compiler, enter

m~~

cl30 is the command that invokes the compiler and assembler.

options affect the way the compiler processes input files.

filenames are one or more C source files, assembly source files, or ob-
ject files.

-z option that runs the linker.

link_options affect the way the linker processes input files.

Options and filenames can be specified in any order on the command line,
but if you use the-z option, it must follow all filenames and compiler options.

2-3

Filename Specifications

2.3 Filename Specifications

2-4

The input files specified on the command line can be e source files, assem­
bly source files, or object files. el30 uses filename extensions to determine
the file type.

Extension File Type File Description

.c C source compiled, assembled, and (linked)

.asm assembly assembled and (linked)
source

.s* (extension assembly assembled and (linked)
begins with s) source

.0* (extension object file linked
begins with 0)

none (.c assumed) C source compiled, assembled, and (linked)

Extensions and filenames are not case sensitive. Files without extensions
are assumed to be e source files and a .c extension is appended. You can
override these file type interpretations by using the -f option as follows:

-fafi/e for an assembly file
-fe file for a e source file
-fofile for an object file

You can use wildcard specifications to compile multiple files. Wildcard
specifications vary by system; use the appropriate form.

You can compile and assemble source files with a single command. Here
are some examples.

1) To compile all the files in a directory, enter:

c130 *.c ~

2) To compile a source file named hilev. c and two assembly files called
lowlev. asm and lowlev2 . asm, enter:

c130 hilev lowlevl.asm lowlev2.asm ~

C Compiler Operation

Filename Specifications

As CL30 encounters each source file, it prints the filename in square
brackets [for c files] or angle brackets dor asm files>. Progress information
is output from each of the compiler passes unless the -q option is specified.
If you use the --q option, only the source filenames print. If you use the-qq
option, no progress information prints except error messages. For example,
the output from compiling a single module might be:

$ c130 symtab ~
[symtab]
C Pre-Processor
(c) Copyright 1987, 1989, Texas

TMS320C30 C Compiler
(c) Copyright 1987, 1989, Texas

"symtab.c":==> main
"symtab. c": ==> lookup

TMS320C30 C Codegen
(c) Copyright 1987, 1989, Texas

"symtab. c": ==> main
"symtab. c": ==> lookup

TMS320C30 COFF Assembler
(c) Copyright 1987, 1989, Texas

PASS 1
PASS 2

No Errors, No Warnings

Version 2.00
Instruments Incorporated

Version 2.00
Instruments Incorporated

Version 2.00
Instruments Incorporated

Version 2.00
Instruments Incorporated

Using the quiet option (--q) to compile multiple files, you might get:

$ c130 -q symtab fi1e seek.asm ~
[symtab]
[file]
<seek.asm>

2-5

Options

2.4 Options
Command line options control the operation of both Cl30 and the programs
it calls.

2.4.1 Option Conventions

Options are either single letters or two-letter pairs, are not case sensitive,
and are preceded by a hyphen. Single-letter options without parameters can
be combined: for example, -sgq is equivalent to -s -g -q. Two-letter pair
options that have the same first letter can be combined: for example, -mrb
is equivalent to -mr and -mb. Options that have parameters, such as -<1,
must be specified separately.

Table 2-1 summarizes the following options: general, preprocessor, as­
sembler, runtime model, filename, linker, and environment variable options.
Section 2.4.2 provides an in-depth description of each of these ,?ptions.

Table 2-1. Options Summary Table

General Options
Usage: cl30 [-options] filenames ... [-z link options ... 1 -

-c no linking (negates -z) -q quiet

-dname predefine name -qq super quiet

-g symbolic debugging -s C source interlist

-kdir> #include search path -uname undefine name

-k keep .asm file -z link, options follow

-n compile only

Preprocessor Options -p <options ... >

-pc preprocess only II -pp I no #Iine directive

Assembler Options -a <options ... >

-al assembly listing file -ax cross-reference file

-as keep labels as symbols -ap preprocess first

Runtime Model Options

-ma assumes aliased variables

-mb enables the big memory model

-mm enables the short multiply

-mn normal optimization, even with debug

2-6 C Compiler Operation

Options
"'

Table 2-1. Options Summary Table (Continued)

-a

-c

-esym

-h

-I lib

-ofile

-s

Runtime Model Options (continued)

-mr lists register use information

-mv volatile variables

-mx avoids TMX silicon bugs

-f options (File Specifiers)

-fa file

-fcfile

-fofile

assembly language file
(default for .asm or .s*)

C source file
(default for .c or no ext)

object file (default for .0*)

Linker Options (all options following -z go to the linker)

absolute output -ar relocatable output

ROM initialization -cr RAM initialization

entry point -fva/ fill value

global symbols static -idir library search path

library name -mfile map filename

output filename -r relocatable output

strip symbol table -usym undefine sym

Environment Variables

setenv C OPTION "options" to set default options

setenv C_DIR "dirs" to set cpp and linker search paths

2.4.2 Option Descriptions

This section contains descriptions of general, compiler, preprocessor, as­
sembler, runtime model, and linker options.

~ General Options

-c suppresses the linking option; it causes Cl30 to not run the
linker even if -z is specified. This option is especially useful when
you have -z specified in the C_OPTION environment variable
and you don't want to link. For more information, refer to Section
2.6 on page 2-13.

2-7

Options

2-8

-g causes the compiler to generate symbolic directives for use with
a high-level language debugger.

-idir adds dir to the list of directories to be searched for #include files.
You can use this option multiple times to define several
directories; be sure to separate -i options with spaces. Note that
if you don't specify a directory name, the preprocessor ignores
the -i option.

-k keeps the .asm file. Normally, Cl30 deletes the output assembly
language file after assembly is finished, but using -k allows you
to retain the assembly source output from the compiler.

-n causes Cl30 to compile only. If you use -n, the specified source
files are compiled but not assembled or linked. This option over­
rides -z and -c. The output of -n is assembly source output from
the compiler.

-q suppresses banners and progress information from all the tools.
Only source filenames and error messages are output.

-qq suppresses all output except error messages.

-s invokes the interlist utility, which interweaves C source state-
ments into the assembly language output of the compiler, allow­
ing you to inspect the code generated for each C statement. This
option implies that the -k option is specified. For more informa­
tion about the interlist utility, refer to Section 2.7 on page 2-14.

-z enables the linking option; it causes Cl30 to run the linker on
specified object files. -z must follow all source files and compiler
options on the command line. All arguments that follow -z on the
command line are passed to and interpreted by the linker.

-f -f options override default interpretations for source file exten­
sions. If your naming conventions do not conform to those of
Cl30, you can use -f options to specify exactly which files are C
source files, assembly files, or object files. You can insert an op­
tional space between the -f option and the filename.

-fafi/e This file is an assembly source file.

-fcfile This file is C source file.

-fofile This file is an object file.

If you have a C source file called cfile. s and an assembly file
called assy, use -f to force the correct interpretation:

c130 -fc cfile.s -fa assy

Note that -f cannot be applied to a wildcard file specification.

C Compiler Operation

Options

[Ji Compiler Options

-dname[=def] pre-defines name for the preprocessor. This is equiva­
lent to inserting #define name def at the top of each C
source file. If the optional [def] if omitted,
-dname[=def] sets name equal to 1.

-uname undefines the predefined constant name.

[Ji Preprocessor Options

-pc causes the compiler to preprocess only. -pc runs the preproces­
sor on the specified source files and retains the comments. The
remaining compiler passes, the assembler, and the linker are not
run.

-pp suppresses line and file information. -pp causes the preproces­
sor to suppress its normal location directives of the form:

#123 file.c.

-pp is sometimes useful when compiling machine-generated
code.

[Ji Assembler Options

-al invokes the assembler with the -I (lowercase "L") option to pro­
duce an assembly listing file.

-ap enables preprocessing. -ap runs the C preprocessor on the
assembly source before assembling them.

-as retains labels. Label definitions are written to the COFF symbol
table for use with symbolic debugging.

-ax invokes the assembler with the -x option to produce a symbolic
cross-reference in the listing file.

For more information about assembler options, see Section 4.2, page
4-3 in the TMS320C30 Assembly Language Tools User's Guide.

[Ji Runtime Model Options

-ma assumes variables are aliased. The compiler assumes that
pointers may alias (point to) named variables and therefore
aborts register optimizations whenever an assignment is made
through a pointer.

-mb selects the big memory model. -mb allows unlimited space for
global data, static data, and constants. In the small memory
model, which is the default, this space is limited to 64k words. For
more information, refer to Section 4.1 on page 4-2.

2-9

2-10

-mm enables the short multiply. -mm generates MPYI instructions for
integer multiples rather than runtime-support calls. If your appli­
cation does not need 32x32-bit integer multiplication, use -mm
to enable the MPYI instruction because it is significantly faster
(but it performs only 24x24-bit multiplication). For more informa­
tion, refer to Section 4.8 on page 4-26.

-mn normal optimazation, even with debug. When you generate sym­
bolic debugging information with the -g switch, the code genera­
tor disables certain optimizations that inhibit debugging. You can
use -mn to re-enable these optimizations and generate exactly
the same code as without -g.

-mr lists register use information. After the code generator compiles
each C statement, -mr lists register contents tables as com­
ments in the assembly file. -mr is useful for inspecting code that
is difficult to follow due to register tracking optimizations.

-mv assumes variables are volatile. Disables registertracking optimi­
zations. Variables are always read from memory each time they
are accessed.

-mx avoids early silicon bugs. -mx enables the code generator to
work around some of the known hardware bugs in early
TMX320C30 devices.

[J Linker Options

All command line input following -z is passed to the linker. Table 2-1,
on page 2-6, summarizes the linker options. For more information
about linker options, see Section 9.3, page 9-4, in the TMS320C30
Assembly Language Tools User's Guide.

C Compiler Operation

Running the Linker with CL30

2.5 Running the Linker with CL30

el3o, by default, does not run the linker; however, you can enable the linker
by using the -z option.

Figure 2-2. eL30 Overview with the Linker

CSource
File

2.5.1 -z CL30 option

II [
CCompiler

--=--

} [
Assembler

with the -z option

When using -z to enable linking, remember:

Assembly
Language

Source File

Object
Code

[::J -c suppresses -z, so do not use -c if you want linking enabled,

i

[::J -z must follow all source files and compiler options on the command
line,and

[::J -z divides the command line into compiler options (before -z) and linker
options (following -z)

All arguments that follow -z on the command line are passed to the linker.
These arguments can be linker command files, additional object files, linker
options, or libraries.

2-11

Running the Linker with CL30

The order in which the linker processes arguments can be important,
especially for command files and libraries. When you use Cl30 to run the
linker, it passes arguments to the linker in the following order.

1) Object file names from the command line,

2) Arguments following -z on the command line, and

3) Arguments following -z from the C_OPTION environment variable.

For example, to compile and link all the .c files in a directory enter:

c130 -sq -rom *.c -zc.cmd -0 prog.out -1 rts.1ib

First, el30 compiles all the files with *.e extensions using the -sq and -mm
options. Second, because -z is specified, the linker runs the resulting object
files using the the linker command file e.emd, the -0 option to name the out­
put file, and the -I option to include the runtime-support library.

For more information about linker operation, refer to Section 2.9 on page
2-24 in this manual and Chapter 9, Linker Description, in the TMS320C30
Assembly Language Tools User's Guide. For more information about linker
options, refer to Section 9.3 in the TMS320C30 Assembly Language Tools
User's Guide.

2.5.2 -c CL30 Option

Passing the -c option to Cl30 overrides -z and disables linking. This option
is helpful when you have specified -z in the C_OPTION environment vari­
able and want to selectively disable linking with --c on the command line.

2.5.3 -c and -cr Linker Options

2-12

The -c linker option has a different function than, and is independent of,
the -c CL30 option. By default, Cl30 automatically uses the --c option that
tells the linker to use C source linking conventions (ROM model of initializa­
tion). If you want to use --cr (RAM model of initialization) rather than --c, you
can pass --cr as a linker option.

C Compiler Operation

Using the C_OPTION Environment Variable

2.6 Using the C _OPTION Environment Variable

You can set up default options for CL30 using the C_OPTION environment
variable. After CL30 reads the entire command line, it reads the C_OPTION
environment variable and processes it.

Options in the environment variable are specified in the same way and have
the same meaning as they do on the command line.

For example, if you want to always run quietly, enable symbolic debugging,
and link, then set up the C_OPTION environment variable as follows:

Host

DOS

UNIX

VAX/VMS

MPW

Enter:

set C_OPTION=-qg-z

setenv C_OPTION "-qg -z"

assign "-qg -z" C_OPTION

set C_OPTION "-qg -z"; export C_OPTION

Using the -z option in the environment variable enables linking. In the exam­
ples above, each time you run CL30, it will run the linker. Any options follow­
ing -z on the command line are passed to the linker; likewise, any options
following -z on the options line are passed to the linker. This enables you
to use the environment variable to specify default compiler and linker op­
tions and then specify additional compiler and linker options on the CL30
command line. If you have set -z in the environment variable and want to
compile (or assemble) only, use the -c option of CL30. These additional
examples assume C_OPTION is set as shown above:

c130 *.c
c130 -c *.c
c130 *.c -z c.cmd
c130 -c *.c -z c.cmd

compiles and links
only compiles
compiles and links using a command file
only compiles (-c overrides -z)

2-13

Interlist Utility Operation

2.7 Interlist Utility Operation
The compiler package includes a utility that interlists your original C source
statements into the assembly language output of the compiler. The interlist
utility enables you to inspect the assembly code generated for each C state­
ment.

2.7.1 Invoking the Interlist Utility Using the -s CL30 Option

The easiest way to invoke the interlist utility is to use the -s CL30 option.
To compile and run the interlist utility on a program called function. c, en­
ter:

c130 -5 function

The interlist runs a separate pass between the code generator and the as­
sembler. It reads both the assembly and C source files, merges them, and
writes the C statements into the assembly file as comments (beginning with
»»). The output assembly file is assembled normally. The -s option auto­
matically prevents CL30 from deleting the interlisted assembly language
file.

Figure 2-3 shows a typical interlisted assembly file.

Figure 2-3. An Example of an Interlisted Assembly File

; »» main ()
;»» int i, j;

* FUNCTION DEF: main *

main:

PUSH FP
LDI SP, FP
ADDI 2, SP

;»» i += j;
LDI *+FP(1),R3
ADDI *+FP(2),R3
STI R3,*+FP(1)

;»» j = i + 123;
ADDI 123,R3
STI R3,*+FP(2)
SUBI 2,SP
RETS

2-14 C Compiler Operation

/nter/ist Utility Operation

2.7.2 Invoking the Interlist Utility Outside el30

Even if you are not using CL30, you can still use the interlist utility. After you
have compiled a program, you can run the interlist utility as a standalone
program from the command line. To run the interlist utility from the command
line, the syntax is:

clist

asmfile

outfi/e

options

is the command that invokes the interlist utility.

is the assembly language output from the compiler.

names the interlisted output file. If you omit this, the file has
the same name as the assembly file with the the extension .c/.

control the operation of the utility as follows:

-b removes blanks and useless lines (lines containing
comments or lines containing only (or }).

-r removes symbolic debugging directives.

-q removes banner and status information.

The interlist utility uses the .line directives produced by the code generator
to associate assembly code with C source. For this reason, you must
specify symbolic debugging when compiling the program if you want to in­
terlist it. If you do not want the debugging directives in the output, use the
-r option to remove them from the interlisted file.

The following example shows how to compile and interlist function. c.

Function To invoke, enter: Comments

compile cl30 -gk function compile, use debug, keep assembly

interlist clist -r function interlist, remove debug

The output from this example is function. cl.

2-15

The Preprocessor, Parser, and Code Generator

2.8 Operating the Preprocessor, the Parser, and the
Code Generator Individually

The TMS320C30 C compiler is made up of three distinct programs: the pre­
processor, the parser, and the code generator. This section provides infor­
mation about how to run the individual programs.

lJi The input for the preprocessor is a C source file (as described in
Kernighan and Ritchie). The preprocessor produces a modified version
of the source file. Section 2.8.1 describes how to run the preprocessor.

lJi The input for the parser is the modified source file produced by the pre-
processor. The parser produces an intermediate file. Section 2.8.2
describes how to run the parser.

lJi The input for the code generator is the intermediate file produced by
the parser. The code generator produces an assembly language source
file. Section 2.8.3 describes how to run the code generator.

Figure 2-4. Compiling a C Program

C source
file (.c)

2-16

Refer to the following sections for more information:

Section Page
2.8.1 Preprocessing C Code 2-17
2.8.2 Parsing C Code .. 2-21
2.8.3 Generating Assembly Language Code 2-22

C Compiler Operation

The Parser, and Code Generator

2.8.1 Preprocessing C Code

The first step in compiling a TMS320C30 C program is to invoke the C pre­
processor. The preprocessor handles macro definitions and substitutions,
#include files, line number directives, and conditional compilation. As
Figure 2-4 shows, the preprocessor uses a C source file as input, and pro­
duces a modified source file that can be used as input for the C parser.

To invoke the preprocessor as a standalone program, enter:

cpp30 is the command that invokes the preprocessor.

input file names a C source file that the preprocessor uses as input. If
you don't supply an extension, the preprocessor assumes
that the extension is .c. If you don't specify an input file, the
preprocessor will prompt you for one.

output file names the modified source file that the preprocessor creates.
If you don't supply a filename forthe outputfile, the preproces­
sor uses the input filename with an extension of .cpp.

options affect the way the preprocessor processes your input file.Op­
tions are not case sensitive. Valid options include:

-c copies comments to the output file. If you don't use
this option, the preprocessor strips comments.

-clname(=def] See Compiler Options, page 2-9.

-idir adds dir to the list of directories to be searched for
#include files. See Compiler Options, page 2-9.

-p suppresses line number and file information.

-q suppresses the banner and status information.

This preprocessor is described in Kernighan and Ritchie; additional infor­
mation can be found in that book. The preprocessor supports the same pre­
processor directives that are summarized in Appendix B of that book. All
preprocessor directives begin with the character #, which must appear in
column 1 of the source statement. Any number of blanks and tabs may
appear between the # sign and the directive name.

2-17

The Preprocessor, Parser, and Code Generator

The C preprocessor maintains and recognizes five predefined macro
names:

represents the current line number (maintained as a decimal
integer).

__ FILE __ represents the current filename (maintained as a C string).

__ DATE __ represents the date that the module was compiled (main­
tained as a C string).

__ TlME __ represents the time when this module was compiled (main­
tained as a C string).

320C30 identifies the compiler as the TMS320C30 C compiler; this
symbol is defined as the constant 1.

You can use these names in the same manner as any other defined name.
For example,

printf ("%5 %5", TIME DATE);

would translate into a line such as:

printf(%5 %5", "May 1 1989", "13:58:17");

The preprocessor produces self-explanatory error messages. The line
number and the filename where the error occurred are printed along with
a diagnostic message.

2.8.1.1 Specifying Alternate Directories for Include Files

2-18

The #include preprocessor directive tells the preprocessor to read source
statements from another file. The syntax for this directive is:

#include "filename" or #include <filename>

The filename names an include file that the preprocessor reads statements
from; you can enclose the filename in double quotes or in angle brackets.
The filename can be a complete path name or a filename with no path infor­
mation.

o If you provide path information for filename, the preprocessor uses that
path and does not look for the file in any other directories.

o If you do not provide path information and you enclose the filename in
double quotes, the preprocessor searches for the file in this order:

1) The directory that contains the current source file. (The current
source file refers to the file that is being processed when the prepro­
cessor encounters the #include directive.)

2) Any directories named with the -i preprocessor option.
3) Any directories set with the environment variable C_DIR.

C Compiler Operation

The Preprocessor. Parser. and Code Generator

Q If you do not provide path information and you enclose the filename in
angle brackets, the preprocessor searches for the file in:

1) Any directories named with the -i preprocessor option.
2) Any directories set with the environment variable C_DIR.

Note that if you enclose the filename in angle brackets, the preproces­
sor does not search for the file in the current directory.

You can augment the preprocessor's directory search algorithm by using
the -i preprocessor option or the environment variable C_DIR.

2.8.1.2 -i Preprocessor Option

The -i preprocessor option names an alternate directory that contains
include files. The format of the -i option is:

cpp30 -i pathname

You can use up to 10 -i options per invocation; each -i option names one
pathname. In C source, you can use the #include directive without specify­
ing any path information for the file; instead, you can specify the path infor­
mation with the -i option. For example, assume that a file called source. c
is in the current directory; source. c contains the following directive state­
ment:
#include "alt.c"

The table below lists the complete pathname for alt. c and shows how to
invoke the preprocessor; select the row for your operating system.

Pathname for alt. c Invocation Command

DOS c:\C30\files\alt.c cpp30 -ic:\C30\files source.c

VMS [C30.files]alt.c cpp30 -i [C30. files] source.c

UNIX /C30/files/alt.c cpp30 -i/C30/files source.c

MPW :C30:files:alt.c cpp30 -i:C30 :files source.c

Note that the include filename is enclosed in double quotes. The preproces­
sor first searches for alt. c in the current directory, because source. c is
in the current directory. Then, the preprocessor searches the directory
named with the -i option.

2.8.1.3 Environment Variable

An environment variable is a system symbol that you define and assign a
string to. The preprocessor uses an environment variable named C_DIR to

2-19

The Preprocessor, Parser, and Code Generator

2-20

name alternate directories that contain include files. The commands for as­
signing the environment variable are:

DOS: set C_DIR= pathname;another pathname ...

VMS: assign "pathname;another pathname ... " C_DIR

UNIX: setenv C_DIR "pathname;another pathname ... "

MPW: set
export

C_DIR "pathname;another: pathname ... "
C DIR

The pathnames are directories that contain include files. You can separate
path names with a semicolon or with blanks. In C source, you can use the
#include directive without specifying any path information; instead, you can
specify the path information with C_DIR.

For example, assume that a file called source. c contains these statements:

#include <altl.c>
#include <alt2.c>

The table below lists the complete path names for these files and shows how
to invoke the preprocessor; select the row for your operating system.

Pathname for altl. c
and alt2.c

DOS c:\C30\files\altl.c
c:\sys\alt2.c

VMS [C30.files]altl.c
[sys]alt2.c

UNIX /C30/files/altl.c
/ygs/alt2.c

MPW :C30: files :altl .c
:sys:alt2.c

Invocation Command

set C DIR=c:\sys c:\exec\files
cpp30--ic:\C30\files source.c

assign C DIR "[sys] [exec.files]"
cpp30 -i[C30.files] source.c

setenv C DIR "/sys /exec/files
'cpp30 -i\C30\files source.c

set C_DIR " :sys :files "
export C_DIR
cpp30 -i:C30 :files source.c

Note that the include filenames are enclosed in angle brackets. The prepro­
cessorfirst searches for these files in the directories named with C_DIR and
finds al t2 . c. Then, the preprocessor searches in the directories named
with the -i option and finds altl. c.

The environment variable remains set until you reboot the system or reset
the variable by entering:

DOS: set C DIR=

VMS: deassign C DIR

UNIX: setenv C DIR " "
MPW: unset C DIR

C Compiler Operation

The Preprocessor, Parser, and Code Generator

2.8.2 Parsing C Code

The second step in compiling a TMS320C30 C program is to invoke the C
parser. The parser reads the modified source file produced by the prepro­
cessor, parses the file, checks the syntax, and produces an intermediate file
that can be used as input for the code generator. (Note that the input file can
also be a C source file that has not been preprocessed.)

To invoke the parser as a standalone program, enter:

cc30 is the command that invokes the parser.

input file names the preprocessed C source file that the parser uses as
input. If you don't supply an extension, the parser assumes
that the extension is .cpp. If you don't specify an input file, the
parser will prompt you for one.

output file names the intermediate file that the parser creates. If you
don't supply a filename for the output file, the parser uses the
input filename with an exterlsion of .if.

options affectthe way the parser processes the inputfile. Valid options
include:

-q suppresses the banner and status information.

-z tells the parser to retain the input file (the
intermediate file created by the preprocessor). If you
don't specify -z, the parser deletes the. cpp input file.
(The parser never deletes files with the .c extension.)

Most errors are fatal; that is, they prevent the parser from generating an in­
termediate file and must be corrected before you can finish compiling a pro­
gram. Some errors, however, merely produce warnings that hint of prob­
lems but do not prevent the parser from producing an intermediate file.

When the parser encounters function definitions, it prints a progress mes­
sage that contains the name of the source file and the name of the function.
Here is an example of a progress message:

''filename.c'~ => main

This type of message shows how far the compiler has progressed in its ex­
ecution and helps you to identify the locations of an error. You can use the
-q option to suppress these messages.

If the input file has an extension of . cpp, the parser deletes it upon comple­
tion unless you use the -z option. If the input file has an extension other than
. cpp, the parser does not delete it.

2-21

The Preprocessor, Parser, and Code Generator

The intermediate file is a binary file; do not try to inspect or modify it in any
way.

2.8.3 Generating Assembly Language Code

2-22

The third step in compiling a TMS320C30 C program is to invoke the C code
generator. As Figure 2-4 on page 2-16 shows, the code generator con­
verts the intermediate file produced by the parser into an assembly lan­
guage source file. You can modify this output file or use it as input for the
TMS320C30 assembler. The code generator produces re-entrant relocat­
able code, which, after assembling and linking, can be stored in ROM.

To invoke the code generator as standalone, enter:

cg30 is the command that invokes the code generator.

input file names the intermediate file that the code generator uses as
input. If you don't supply an extension, the code generator as­
sumes thatthe extension is .if. If you don't specify an input file,
the code generator will prompt you for one.

output file names the assembly language source file that the code gen­
erator creates. If you don't supply a filename for the output file,
the code generator uses the input filename with an extension
of .asm.

tempfile names a temporary file that the code generator creates and
uses. The default filename for the temporary file is the input
filename appended with an extension of .tmp. The code gen­
erator deletes this file after using it.

options affect the way the code generator processes the input file.
Valid options include:

-a

-b

-m

assumes variables are aliased. For more informa­
tion, refer to Section 2.4 on page 2-9

tells the compiler to generate code for the big
memory model.

enables the short mUltiply. For more information,
refer to Section 2.4 on page 2-9.

C Compiler Operation

The Preprocessor, Parser, and Code Generator

-n normal optimization, even with debug. When you
generate symbolic debugging information with the-g
switch, the code generator disables certain optimiza~
tions that inhibit debugging. You can use -mn to re­
enable these optimizations and generate exactly the
same code as without -g.

-0 tells the code generator to place symbolic debugging
directives in the output file. See Appendix B of the
TMS320C30 Assembly Language Tools User's
Guide for more information about these directives.

-q suppresses the banner and status information.

-v assumes variables are volatile.Variables are always
read from memory each time they are accessed. For
more information, refer to Section 2.4 on page 2-9

-x avoids early silicon bugs. -x enables the code gener­
ator to work around some of the known hardware
bugs in early TMX320C30 devices.

-z tells the code generator to retain the input file (the in­
termediate file created by the parser). This option is
useful for creating several output files with different
options; for example, you might want to use the same
intermediate file to create one file that contains sym­
bolic debugging directives (-0 option) and one that
doesn't. Note that if you do not specify the -z option,
the code generator deletes the input (intermediate)
file.

2-23

Linking a C Program

2.9 Linking a C Program
The TMS320C30 C compiler and assembly language tools support modular
programming by allowing you to compile and assemble individual modules
and then link them together. To link compiled and assembled code, enter:

Ink30 is the command that invokes the linker.

-c/-cr are options that tell the linker to use special conventions
that are defined by the C environment. Note that when you
use CL30 to link, CL30 passes -c to the linker automatical­
ly.

filenames are object files created by compiling and assembling C pro­
grams.

-0 name. out names the output file. If you don't use the -0 option, the
linker creates an output file with the default name of
a.out.

rts.lib rts . lib is an archive library that contains C runtime-sup­
port functions. (The -I option tells the linker that a file is an
object library.) The library is shipped with the C compiler. If
you're linking C code, you must use rts . lib. Whenever
you specify a library as linker input, the linker includes and
links only those library members that resolve undefined ref­
erences.

For example, you can link a C program consisting of modules prog1,
prog2, and prog3 (the output file is named prog. out):

Ink30 -c prog1 prog2 prog3 -1 rts.1ib -0 prog.out~

The linker uses a default allocation algorithm to allocate your program into
memory. You can use the MEMORY and SECTIONS linker directives to
customize the allocation process.

2.9.1 Runtime Initialization and Runtime Support

2-24

All C programs must be linked with the boot. obj object module; this module
contains code for the C boot routine. The boot. obj module is a member of
the runtime-support object library, rts . lib. To use the module, simply use
-c or -cr and include the library in the link:

Ink30 -c -1 rts .lib ...

C Compiler Operation

Linking a C Program

The linker automatically extracts boot. obj and links it in when you use the
-c or -cr option.

When a C program begins running, it must execute boot. obj first. The sym­
bol _ c _ int 0 0 is the starting point in boot. ob j; if you use the -c or -cr
option, then _ c _ int 0 0 is automatically defined as the entry point for the pro­
gram.lf your program begins running from reset, you should set up the reset
vector to generate a branch to _ c _ int 0 0 so that the TMS320C30 executes
boot. obj first. The boot. obj module contains code and data for initializing
the runtime environment; the module performs the following tasks:

Il Sets up the system stack.
Il Processes the runtime initialization table and autoinitializes global

variables (in the ROM model).
Il Disables interrupts and calls _main.
Il Calls exit when main returns.

Chapter 5 describes additional runtime-support functions that are included
in rts . lib. If your program uses any of these functions, you must link
rts • lib with your object files.

2.9.2 Sample Linker Command File

Figure 2-5 shows a typical linker command file that can be used to link a
C program. The command file in this example is named link. cmd.

Figure 2-5. An Example of a Linker Command File

/**/
/* Linker command file link.cmd */
/**/

-c
-m example.map
-0 example.out
main.obj
sub.obj
asm.obj
-1 rts • lib
-1 matrix. lib

/* ROM autoinitialization model
/* Create a map file
/* Output file name
/* First C module
/* Second C module
/* Assembly language module
/* Runtime-support library
/* Object library

Il The command file first lists several linker options:

-c tells the linkerto use the ROM model of autoinitialization.

*/
*/
*/
*/
*/
*/
*/
*/

-m tells the linker to create a map file; the map file in this example is
named example . map.

-0 tells the linker to create an executable object module; the module
in this example is named example. out.

2-25

Linking a C Program

!:;J Next, the command file lists all the object files to be linked. This C pro­
gram consists of two C modules, main. c and sub. c, which were com­
piled and assembled to create two object files called main. obj and
sub.obj. This example also links in an assembly language module
called asm. obj.

One of these files must define the symbol main, because boot. ob j calls
main as the start of your C program. All of these object files are linked in.

!:;J Finally, the command file lists all the object libraries that the linker must
search. (The libraries are specified with the -I linker option.) Because
this is a C program, the runtime-support library rts . lib must be in­
cluded. This program uses several routines from an archive library
called mat rix . lib, so it is also named as linker input. Note that only the
library members that resolve undefined references are linked in.

To link the program using this command file, simply enter:

lnk30 link.cmd ~

This example uses the default memory allocation described in Chapter 9 of
the TMS320C30 Assembly Language Tools User's Guide. If you want to
specify different MEMORY and SECTIONS definitions, refer to that user's
guide.

2.9.3 Autoinitialization (RAM and ROM Models)

2-26

The C compiler produces tables of data for autoinitializing global variables.
Section 4.10.1.1, page 4-31, discusses the format of these tables. These
tables are in a named section called .cinit. The initialization tables can be
used in either of two ways:

!:;J RAM Model (-cr linker option)

Global variables are initialized at load time. A loader copies the initial­
ization data into the variables in the .bss section; thus, no runtime
initialization is performed at boot time. This enhances performance by
reducing boot time and saving memory used by the initialization tables.

For more information aboutthe RAM model, refer to Section 4.1 0.1.2 on
page 4-32.

C Compiler Operation

Linking a C Program .
[,l ROM ModeJ (-c linker option)

Global variables are initialized at run time. The .cinit section is loaded
into memory along with all the other sections. The linker defines a spe­
cial symbol called cinit that points to the beginning of the tables in
memory. When the program begins running, the C boot routine copies
data from the tables into the specified variables in the .bss section. This
allows initialization data to be stored in ROM and then copied to RAM
each time the program is started.

For more information about the ROM model, refer to Section 4.10.1.3
on page 4-33.

2.9.4 The -c and -cr Linker Options

The following list outlines what happens when you invoke the linker with the
-c or -cr option.

[,l The symbol_ c _ int 00 is defined as the program entry point; it identifies
the beginning of the C boot routine in boot. obj. When you use -c or
-cr, _c_intOO is automatically referenced; this ensures that boot. obj
is automatically linked in from the runtime-support library rts . lib.

[,l The .cinit output section is padded with a termination record so that the
loader (RAM model) or the boot routine (ROM model) knows when to
stop reading the initialization tables.

[,l In the RAM model (-cr option):

• The linker sets the symbol cini t to -1. This indicates thatthe initial­
ization tables are not in memory, so no initialization is performed at
run time.

• The STYP _COpy flag (010h) is set in the .cinit section header.
STYP _COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into
memory. The linker does not allocate space in memory for the .cinit
section.

[,l In the ROM model (-c option), the linker defines the symbol cinit as
the starting address of the .cinit section. The C boot routine uses this
symbol as the starting point for autoinitialization.

2-27

Using the Archiver with C

2.10 Using the Archiver with C

2-28

An archive file (or library) is a partitioned file that contains complete files as
members. The TMS320C30 archiver is a software utility that allows you to
collect files into a single archive file. The archiver also allows you to manipu­
late a library by adding members to it or by extracting, deleting, or replacing
members. The TMS320C30 Assembly Language Tools User's Guide con­
tains complete instructions for using the archiver.

After compiling and assembling multiple files, you can use the archiver to
collect the object files into a library. You can specify an archive file as linker
input. The linker is able to discern which files in a library resolve external ref­
erences, and it links in only those library members that it needs. This is use­
ful for creating a library of related functions; the linker links in only the func­
tions that a program calls. The library rts . lib is an example of an object
library.

You can also use the arch iver to collect C source programs into a library. The
C compiler cannot choose individual files from a library; you must extract
them before compiling them. However, this can be useful for managing files
and for transferring source files between systems. The library rts. src is
an example of an archive file that contains source files.

For more information about the archiver, see the TMS320C30 Assembly
Language Tools User's Guide.

C Compiler Operation

Chapter 3

TMS320C30 C Language
nil I !III Rill 1

The C language that the TMS320C30 C compiler supports is based on the
Unix System V C language that is described by Kernighan and Ritchie, with
several additions and enhancements to provide compatibility with ANSI C.
The most significant differences are:

o The data type enum has been added.

o A member of a structure can have the same name as a member of
another structure (unique names aren't required).

o Structures and unions can be passed as parameters to functions, re-
turned from functions, and assigned directly.

This chapter compares the two forms of C language and presents only the
differences between them. The TMS320C30 C compiler supports standard
Kernighan and Ritchie C except as noted.

References to Kernighan and Ritchie's C Reference Manual (Appendix A
of The C Programming Language) are used throughout this chapter.

Topics in this chapter include:

Section Page
3.1 Identifiers, Keywords, and Constants 3-2
3.2 TMS320C30 C Data Types 3-4
3.3 Object Alignment 3-6
3.4 Expressions.. 3-6
3.5 Declarations ... 3-7
3.6 Intialization of Static and Global Variables 3-10
3.7 Lexical Scope Rules 3-10
3.8 asm Statement ... 3-11

3-1

:::

Identifiers, Keywords, and Constants

3.1 Identifiers, Keywords, and Constants

K&R2.2

K&R2.3

Identifiers

[l In TMS320C30 C, the first 31 characters of an identifier are
significant (in K&R C, 8 characters are significant). This also applies
to external names.

[l Case is significant; uppercase characters are different from lower­
case characters in all TMS320C30 tools. This also applies to external
names.

Keywords

TMS320C30 C reserves three additional keywords:

asm
void
enum

K&R 2.41 Integer Constants

[l All integer constants are of type int (signed, 32 bits long) unless they
have an Lor U suffix. If the compiler encounters an invalid digit in a con­
stant (such as an 8 or 9 in an octal constant), it issues a warning
message.

[l You can append a letter suffix to an integer constant to specify its type:

• Use U as a suffix to declare an unsigned integer constant.
• Use L as a suffix to declare a long integer constant.
• Combine the suffixes to declare an unsigned long integer constant.

Suffixes can be upper or lower case.

[l Here are some examples of integer constants:
1234;
OxFFFFFFFFu;
OL;
077613LU;

/* int
/* unsigned int
/* long int
/* unsigned long int

*/
*/
*/
*/

K&R 2.43 Character Constants

In addition to the escape codes listed in K&R, the TMS320C30 C compiler
recognizes the escape code \v in character and string constants as a
vertical tab character (ASCII code 11).

Added Type - Enumeration Constants

3-2

An enumeration constant is an additional type of integer constant that
is not described by K&R. An identifier that is declared as an enumerator can
be used in the same manner that an integer constant can be used. (For more
information about enumerators, refer to Section 3.5 on page 3-7.)

TMS320C30 C Language

K&R2.5

Identifiers, Keywords, and Constants

String Constants

I:l K&R C does not limit the length of string constants; however,
TMS320C30 C limits the length of string constants to 255 bytes.

I:l Any characters that follow an embedded null byte within a string
constant are ignored; in other words, the first null byte terminates a
string.

This does not apply to strings used to initialize arrays of characters.

I:l Identical string constants are stored as a single string, not as
separate strings as in K&R C.

This does not apply to strings used for autoinitialization of arrays of
characters.

3-3

TMS320C30 C Data Types

3.2 TMS320C30 C Data Types
K&R4.0

K&R4.0

K&R4.0

3-4

Added Type and Equivalent Types

Q The char data type is signed. A separate type, unsigned char, is also
supported.

Q char, short, long, and int are functionally equivalent types. Any of these
types can be declared unsigned.

Q The properties of enum types are identical to those of unsigned into

Added Types

Q An additional type, called void, can be used to declare a function that
returns no value. The compiler checks that functions declared as void
do not return values and that they are not used in expressions. Func­
tions are the only type of objects that can be declared void.

Q The compiler also supports a type that is a pOinter to void (void *). An
object of type void * can be converted to and from a pointer to an object
of any other type without explicit conversions (casts). However, such a
pointer cannot be used indirectly to access the object that it points to
without a conversion. For example,

void
char
int
p
p
p
c
i

i

*p, *malloc () ;
*c;
i;

malloc () i
C;
&ii
malloc () i
*Pi

* (int *)pi

Derived Types

/* Legal
/* Legal, no cast needed
/* Legal, no cast needed
/* Legal, no cast needed
/*Illegal, dereferencing

void pointer
/* Legal, dereferencing

casted void pointer

*/
*/
*/
*/

*/

*/

TMS320C30 C allows any type declaration to have up to six derived types.
Constructions such as pointer to, array of, and function returning can be
combined and applied a maximum of six times.

For example:
int (* (*n [1 (1) ()) ();

translates as:
1) an array of
2) arrays of
3) pointers to
4) functions returning
5) pointers to
6) functions returning integers

TMS320C30 C Language

TMS320C30 C Data Types

It has six derived types, which is the maximum allowed.

Structures, unions, and enumerations are not considered derived types for
the purposes of these limits.

An additional constraint is that the derived type cannot contain more than
three array derivations~ Note that each dimension in a multidimensional
array is a separate array derivation; thus, arrays are limited to three dimen­
sions in any type definition. However, types can be combined using typedefs
to produce any dimensioned array.

For example, the following construction declares x as a four-dimensional
array:
typedef int dim2[] [];
dim2 x[] [];

Table 3-1. Summary of TMS320C30 Data Types (K&R 2.6)

Type Size

char 8 bits, signed ASCII

unsigned char 8 bits, ASCII

short 16 bits

unsigned short 16 bits

int 32 bits

unsigned int 32 bits

long 32 bits

unsigned long 32 bits

pointers 32 bits

float 32 bits
Range: ±S.88 x 10(-39) through

±1.70 x 1038

double 64 bits
Range: ±1.11 x 10(-308) through

±8.99 x 10308

enum 1-32 bits

3-5

Object Alignment/Expressions

3.3 Object Alignment

o All objects except bit fields are aligned on 32-bit (one word) boundaries.
Bit fields are always unsigned and can be from 1 to 32 bits in length. Ad­
jacent fields are packed into adjacent bits of a word, but they do not
overlap words; if a field would overlap into the next word, the entire field
is placed into the next word. (A bit field never crosses a word boundary.)
Fields are packed as they are encountered; the least significant bits of
a structure word are filled first.

o When the compiler allocates space for a structure, it allocates as many
words as are needed to hold all of the structure's members. In an array
of structures, each structure begins on a word boundary.

3.4 Expressions

Added type - Void Expressions

K&R7.2

3-6

A function of type void has no value (returns no value) and cannot be called
in any way except as a separate statement or as the left operand of the
comma operator. Functions can be declared or typecast as void.

Unary Operators in Expressions

The value yielded by the sizeof operator is calculated as the total number
of bits used to store the object divided by 32. (32 is the number of bits in a
character.) Sizeofcan be legally applied to bit fields. If the result is not an
integer, it is rounded up to the nearest integer. For example,

sizeof(int) == sizeof(short) == sizeof(char) ==
sizeof(long) == sizeof(float) == sizeof(double) == 1

TMS320C30 C Language

Declarations

3.5 Declarations
K&R8.1

K&RB.2

K&R8.4

K&R10

Register Variables

~ The TMS320C30 C compiler allows you to use up to eight register vari­
ables in a function:

• Two TMS320C30 registers (R4 and RS) are reserved for the first
two integer register variables in a function.

• Two registers (R6 and R7) are reserved for float or double register
variables.

• Four registers (AR4-AR7) are reserved for pointer register vari­
ables.

For more information about register variables, refer to Section 4.3,
Register Conventions, on page 4-12.

~ All integer types (signed or unsigned), floats, doubles, and pointers, can
be declared as registers.

Type Specifiers in Declarations

In addition to the type specifiers listed in K&R, objects can be declared with
enum specifiers.

TMS320C30 C allows more type name combinations than K&R C allows.
The adjectives long and short can be used with or without the word int; the
meaning is the same in either case. The word unsigned can be used in con­
junction with any integer type or alone; if alone, int is implied. Long float is
a synonym for double. Otherwise, only one type specifier is allowed in a dec­
laration.

Passing/Returning Structures to/from Functions

Contrary to K&R, TMS320C30 C allows functions to return structures and
unions.

Structures and unions can be used as parameters to functions, can be di­
rectly assigned, and can be returned from functions.

External Definitions

Formal parameters to a function can be declared as type struct, union, or
enum (in addition to the normal function declarations) because TMS320C30
C allows these types of objects to be passed to functions.

K&R 8.5, K&R 14.1 Structure and Union Declarations

Bit fields are limited to a maximum size of 32 bits. Any integer type can be
declared as a field. Fields are always treated as unsigned, regardless of def­
inition.

3-7

Declarations

K&R states that structure and union member names must be mutually dis­
tinct. In TMS320C30 C, members of different struct~res or unions can
have the same name. However, this requires that references to the mem-
ber be fully qualified through all levels of nesting. !

TMS320C30 C allows assignment to and from structures, passing struc­
tures as parameters, and returning structures from functions.

K&R states that the compiler determines the type of structure reference by
the member name. Because TMS320C30 C does not require member
names to be unique, this statement does not apply. All structure references
must be fully qualified as members of the structure or union in which they
were declared.

Added Type - Enumeration Dec/aratlons

3-8

Enumerations allow the use of named integer constants in TMS320C30 C.
The syntax of an enumeration declaration is similar to that of a structure or
union. The keyword enum is substituted for struct or union, and a list of
enumerators is substituted for the list of members.

Enumeration declarations have a tag, as do structure and union declara­
tions. This tag can be used in future declarations without repeating the entire
declaration.

The list of enumerators is simply a comma-separated list of identifiers. Each
identifier can be followed by an equal sign and an integer constant. If no enu­
merator is followed by an = sign and a value, then the first enumerator is
assigned the value 0, the next is 1, the next is 2, etc. An identifier with an
assigned value assumes that value, and subsequent enumerators continue
counting by one from there. The assigned value can be negative, but count­
ing still continues by positive one.

Unlike structure and union members, enumerators share their name space
with ordinary variables and, therefore, must not conflict with variables or
other enumerators in the same scope.

Enumerators can appear wherever integer constants are required and,
therefore, can be used in arithmetic expressions, case expressions, etc. In
addition, explicit integer expressions can be assigned to variables of type
enum. The compiler does no range checking to insure the value will fit in the
enumeration field. The compiler does, however, issue a warning message
if an enumerator of one type is assigned to a variable of another.

TMS320C30 C Language

Here's an example of an enumeration declaration:
enum color {

red,
blue,
green = 10,
orange,
purple = -2,
cyan) x;

Declarations

This statement declares x as a variable of type enum. The enumerators and
their assigned values are:

red: 0
blue: 1
green: 10
orange: 11
purple: -2
cyan: -1

32 bits are allocated for the variable x. Legal operations on these enumera­
tors include:
x = blue;
x = blue + red;
x = 100;
ired;
x = i + cyan;

/* assume i is an int */

3-9

Initialization of Static and Global Variables

3.6 Initialization of Static and Global Variables

K&R8.6
An important difference between K&R C and TMS320C30 C is that external
and static variables are not preinitialized to zero unless the program ex­
plicitly does so or unless it is specified by the linker.

If a program requires external and static variables to be preinitialized, you
can use the linker to accomplish this. In the linker control file, use a fill value
of 0 in the .bss section:
SECTIONS {

.bss {} OxOO;

3.7 Lexical Scope Rules

K&R 11.1

3-10

The lexical scope rules stated in K&R apply to TMS320C30 C also, except
that structures and unions each have distinct name spaces for their mem­
bers. In addition, the name space of both enumeration variables and enu­
meration constants is the same as for ordinary variables.

TMS320C30 C Language

3.8 asm Statement
Additional Statement

asm Statement

TMS320C30 C has another statement not mentioned in K&R: the asm
statement. The compiler copies asm statements from the C source directly
into the assembly language output file. The syntax of the asm statement is:

asm(" assembler text');

The assembler text must be enclosed in double quotes. All the usual charac­
ter string escape codes retain their definitions. The assembler text is copied
directly to the assembler source file. Note that the assembler source state­
ment must begin with a label, a blank, or a comment indicator (asterisk or
semicolon).

Each asm statement injects one line of assembly language into the compiler
output. A series of asm commands places the statements sequentially into
the output with no intervening code.

Asm statements do notfollowthe syntactic restrictions of normal statements
and can appear anywhere in the C source, even outside blocks. However,
they are ignored when they appear in a list of declarations.

Note:

Be extremely careful not to disrupt the C environment with asm commands.
The compiler does not check the inserted instructions. Inserting jumps and
labels into C code can cause unpredictable results in variables manipulated
in or around the inserted code. The asm command is provided so you can
access features of the hardware, which by definition C is unable to access.
Specifically, do not use this command to change the value of a C variable;
however, you can use it safely to read the current value of a variable.

The asm command is very useful in the context of register variables. A regis­
ter variable is a variable in a C program that is declared to reside in a ma­
chine register. The TMS320C30 C compiler allows up to 8 machine registers
to be allocated to register variables. These 8 registers, combined with the
asm command, provide a means of manipulating data independently of the
C environment.

3-11

3-12 TMS320C30 C Language

Chapter 4

Runtime Environment
! ! TI 1 TIl

!i!!!i!E!!!ii

This chapter describes the TMS320C30 C runtime environment. To ensure
successful execution of C programs, it is critical that all runtime code main­
tain this environment. If you write assembly language functions that
interface to C code, follow the guidelines in this section.

Topics in this chapter include:

Section Page
4.1 Memory Model .. 4-2
4.2 Object Representation 4-8
4.3 Register Conventions .. 4-12
4.4 Function Structure and Calling Conventions 4-15
4.5 Interfacing C with Assembly Language 4-18
4.6 Interrupt Handling 4-23
4.7 Expression Analysis 4-25
4.8 Runtime-Support Math Routines .. 4-26
4.9 Optimization....................................... 4-28
4.10 System Initialization .. 4-30

4-1

liB

Memory Model

4.1 Memory Model
The C compiler treats memory as a single linear block of memory that is par­
titioned into subblocks of code and data. Each block of code or data that a
C program generates will be placed in its own contiguous space in memory.
The compiler assumes thatthe full 24-bit address space is available in target
memory.

Note that the linker, not the compiler, defines the memory map and allo­
cates code and data into target memory. The compiler assumes nothing
about the types of memory that are available, about any locations that are
not available (holes), or about any locations that are reserved for I/O orcon­
trol purposes. The compiler produces relocatable code, which allows the
linker to allocate code and data into the appropriate memory spaces. For
example, you can use the linker to allocate global variables into fast internal
RAM, or to allocate executable code into internal ROM.

4.1.1 Sections

4-2

The compiler produces five relocatable blocks of code and data; these
blocks, called sections, can be allocated into memory in a variety of ways
to conform to a variety of system configurations. For more information about
sections, read Chapter 3, Introduction to Common Object File Format, of the
TMS320C30 Assembly Language Tools User's Guide.

There are two basic types of sections:

[Ji Initialized sections contain data tables or executable code. The C
compiler creates two initialized sections, .text and .cinit.

• The .text section is an initialized section that contains all the
executable code as well as string literals.

• The .cinit section is an initialized section that contains tables for
initializing variables and constants.

[Ji Un initialized sections reserve space in memory (usually in RAM). A
program can use this space at run time for creating and storing vari­
ables. The C compiler creates three uninitialized sections, .bss, .stack,
and .sysmem.

• The .bss section is an uninitialized section. It reserves space for
global and static variables, and in the small model (described in
Section 4.1.2), it reserves space for tables of long immediate con­
stants. At program startup time, the C boot routine copies data out
of the .cinit section (which may be in ROM) and stores it in .bss.

• The .stack section is an un initialized section. It allocates memory
for the system stack, which is used to pass arguments to functions
and to allocate local variables.

Runtime Environment

Memory Model

• The .sysmem section is an uninitialized section. It allocates
memory for use by the dynamic memory functions malloe, ealloe,
and realloe. If a C program does not use these functions, then the
compiler does not create the .sysmem section.

Note that the assembler creates an additional section called .data; the C
compiler does not use this section. The linker takes the individual sections
from different modules and combines sections with the same name to create
six output sections. The complete program is made up of these five output
sections, plus the assembler's .data section. You can place these output
sections anywhere in the address space, as needed, to meet system re­
quirements. The .text, .cinit, and .data sections are usually linked into either
ROM or RAM. The .bss, .stack, and .sysmem sections should be linked into
some type of RAM.

For more information about allocating sections into memory, refer to
Chapter 9, Linker Description, in the TMS320C30 Assembly Language
Tools User's Guide.

4.1.2 Big and Small Memory Models

The compiler supports two memory models that affect the treatment of the
.bss section:

a The small memory model, which is the default model, requires the
entire .bss section to fit in a single 64K memory page (65,536 words).
This means that the total space for all static and global data in the pro­
gram must be less than 64K and that the .bss section cannot span any
64K address boundaries. The compiler sets the Data Page Pointer reg­
ister (DP) during runtime initialization to point to the beginning of .bss.
Then, the compiler can access all objects in .bss (global and static vari­
ables, plus constant tables) with direct addressing (@symbol) without
modifying the DP.

a The big memory model does not restrict the size of .bss; unlimited
space is available for global and static data. However, when the
compiler accesses any global or static object that is stored in .bss, it
must first ensure that the DP correctly identifies the memory page
where the object is stored. To accomplish this, the compiler must explic­
itly set the DP register (using an LDP instruction) each time a global or
static object is accessed. This task incurs one extra instruction word (for
the LDP instruction) and three additional cycles (one to execute the LDP
and a two-cycle pipeline delay if the object is accessed by the next
instruction).

4-3

Memory Model

4-4

Here's an example of assembly language code that uses the LDP in­
struction to set up the DP register before accessing a global variable.

*** Assume that x is a global variable ***
LDP x ; -1 extra word, 1 cycle
LDI @_x,RO ; 3 cycles (2 pipeline delays)

To use the big model, invoke the compiler with the -mb option; for more
information, refer to Section 2.4 on page 2-6.

Neither model restricts the size of the .text or .cinit sections.

Both models restrict the size of a single function to 32K (32768 words of
code) or less; this allows the compiler to generate relative conditional jumps
over the entire range of a function.

Note:

Be sure all code in the system is compiled under the same model.
Mixed-model code will not run. The runtime-support library that is provided
with the compiler (rts . lib) is compiled with the small model. To use the
library under the big model, you must:

1) Extract all the source files from the source archive rts. src.

2) Recompile these extracted files; be sure to invoke the code generator
with the -b option.

3) Archive the object files into a new library.

Neither model restricts the size ofthe dynamic memory area in the .sysmem
section because dynamically allocated objects are accessed with indirect,
rather than direct, addressing. Thus, if you have large data objects, it is ad­
vantageous to allocate them dynamically rather than declare them as static
or global variables; for more information, refer to Section 4.1.4 on page
4-6.

Under the small model, be careful when linking the .bss section; it must be
less than 64K words and it cannot span any 64K page boundaries. Neither
the compiler nor the linker checks for restrictions on .bss against the model
used. If you choose to use the small model and your code does not conform
to small-model restrictions, the code will not run. If you want to verify that
the .bss section is fully contained within a 64K memory page, check the link
map after linking.

Runtime Environment

4.1.3 C System Stack

The C compiler uses a stack to:

Oi Allocate local variables,

Oi Pass arguments to functions, and

Oi Save temporary results.

The compiler uses two registers to manage the stack:

SP is the stack pointer; it marks the top of the stack.

Memory Model

AR3 is the frame pointer (FP); it points to the beginning of the current
local frame. (A local frame is an area on the stack that is used for stor­
ing arguments and local variables.) Each function invocation causes
a new local frame to be created at the top of the stack.

The C environment automatically manipulates these registers when a C
function is called. If you interface assembly language routines to C, be sure
to use the registers in the same way that the C compiler uses them.

The C initialization module, boot. asm, allocates memory for the stack in an
uninitialized, named section called .stack. This module also defines a con­
stant named STACK SIZE that determines the size of the stack. The default
stack size is 400h (1 K words); this size allows the stack to fit into one of the
on-chip RAM blocks. You can change the amount of memory that is re­
served for the stack by following these steps:

1) Extract boot. asm from the source library rt s . s rc.

2) Edit boot. asm; change the value ofthe constant STACK_SIZE to the de­
sired stack size.

3) Reassemble boot. asm and replace the resulting object file, boot. obj,
in the object library rt s . lib.

4) Replace the copy of boot. asm that's in rts. src with the new, edited
version.

At system initialization, the SP is set to a designated address for the bot­
tom-of-stack. This address is the first location in the .stack section. Thus,
the actual position of the stack is determined at link time, because the
position of the stack depends on where the .stack section is allocated. If you -
allocate the stack as the last section in memory (highest address), the stack
has unlimited space in which to grow (within the limits of system memory).

4-5

Memory Model

Note:

The compiler provides no means to check for stack overflow during compi­
lation or at run time. If the stack overflows, your system will probably crash.
Be sure that you allow enough space for the stack to grow; either set
STACK_SIZE to an appropriate amount or allocate the .stack section last.

4.1.4 Dynamic Memory Allocation

4-6

The runtime-support library supplied with the compiler contains several
functions (such as malloe, ealloe, and realloe) that allow you to dynami­
cally allocate memory for variables at run time. This is accomplished by
declaring a large memory pool, or heap, and then using the functions to allo­
cate memory from the heap. Dynamic allocation is not a standard part of the
C language; it is provided by standard runtime-support functions.

An assembly language module called sysmem. asm defines this memory
pool as an uninitialized, named section called .sysmem. The module also
defines a constant named SYSMEM SIZE that determines the size ofthe
memory pool; the default size is 800h (2K words). You can change the size
of the memory pool by following these steps:

1) Extract sysmem.asm from the source library rts. sre.

2) Edit sysmem. asm; change the value of the constant __ SYSMEM_SIZE

to the desired memory pool size.

3) Reassemble sysmem. asm and replace the resulting object file,
sysmem.obj, in the object library rts . lib.

4) Replace the copy of sysmem.asmthat's in rts. sre with the new, edited
version.

Dynamically allocated objects are not addressed directly (they are always
accessed with pointers), and the memory pool is in a separate section;
therefore, the dynamic memory pool can have an unlimited size, even in the
small memory model. The size of the pool does not affect the 64K limit on
global and static variables. This allows you to use the more efficient small
memory model even if you declare large data objects. To conserve space
in .bss, you can allocate large arrays from the heap instead of declaring
them as global or static. For example, instead of a declaration such as:

struet big table[10000];

use a pointer, and call the malloe function:

struet big *table;
table = (struet big *) malloe (10000 * sizeof (struet big));

Runtime Environment

Memory Model

Note:

If you don't use dynamic allocation-that is, if you don't use ealloe,
malloe, and similar functions-then it is not necessary to allocate the .sys­
mem section at link time.

4.1.5 RAM and ROM Models

The C compiler produces code that is suitable for use as firmware in a
ROM-based system. In such a system, the initialization tables in the .cinit
section are stored in ROM. At system initialization time, the C boot routine
copies data from these tables (in ROM) to the initialized variables in .bss (in
RAM).

In situations where a program is loaded directly from an object file into
memory and then run, you can avoid having the .cinit section occupy space
in memory. Your loader can read the initialization tables directly from the ob­
ject file (instead of from ROM) and perform the initialization directly at load
time (instead of at run time). You can specify this to the linker by using the
--cr linker option.

For more information about autoinitialization, refer to Section 4.1 0 on page
4-30.

4-7

Object Representation

4.2 Object Representation

4.2.1 Storage of Data Types

[J All basic types are 32-bits wide and stored in individual words of
memory. No packing is performed, except for bit fields, which are
packed into words. Bit fields are allocated from the LSB to the MSB in
the order in which they are declared.

[J No object has any type of alignment requirement; any object can be
stored on any 32-bit word boundary. Objects that are members of struc­
tures or arrays are stored just as they are individually. Members are not
packed into structures or arrays (unless the members are bit fields).

[J The integral types char, short, int, and long are all equivalent, as are
their unsigned counterparts. Objects of type enum are also represented
in 32-bit words.

[J The float and double types are equivalent; both types specify objects
represented in the TMS320C30's 32-bit floating-point format.

4.2.2 Long Immediate Values

The TMS320C30 instruction set has no immediate operands that are longer
than 16 bits. The compiler occasionally needs to use constants that are too
long to be immediate operands. This occurs with signed integer constants
that have more than 15 significant non-sign bits, with unsigned integers that
have more than 16 significant bits, or with floating-point constants that have
more than 11 significant non-sign bits in the mantissa. The compiler uses
the. word and .float assembler directives to build a table in memory that con­
tains all such constants. Constants in the table are then accessed like global
variables, using direct addressing. Section 4.2.5, page 4-1 0, describes the
structure of the constant table.

4.2.3 Addressing Global Variables

4-8

The compiler generates the addresses of global or static symbols for index­
ing arrays or manipulating pointers. Because these addresses may be up
to 24 bits wide, and immediate operands are limited to 16 bits, these ad­
dresses are treated like long constants as described in Section 4.2.2. The
compiler generates addresses into the constant table using the .word as­
sembler directive. Section 4.2.5, page 4-10, describes the structure of the
constant table.

Runtime Environment

Object Representation

4.2.4 Character String Constants

In C, a character string constant can be used in one of two ways:

o It can initialize an array of characters; for example:

char sl] = "abc";

When a string is used as an initializer, it is simply treated as an initialized
array; each character is a separate initializer. For more information
about autoinitialization, refer to Section 4.10 on page 4-30.

o It can be used as a pointer; for example:

printf ("abc") ;

When a string is used as a pointer, the string itself is defined in the .text
section using the .byte assembler directive, along with a unique label
that points to the string; the terminating 0 byte is included. For example,
the following line defines the string abc, along with the terminating byte;
the label SL5 points to the string:

SL5 .byte "abc", °
String labels have the form SLn, where n is a number assigned by the
compiler, beginning with 0 and increasing by 1 for each defined string.
All strings used in a source module are defined at the end of the com­
piled assembly language module.

The label SLn represents the address of the string constant (a pointerto
the string). Like all addresses of static objects, this address must be
stored in the constant table in order to be accessed. Thus, in addition to
storing the string itself in the .text section, the compiler uses the follow­
ing directive statement to store the string's address in the constant
table:

.word SLn

If the same string is used more than once within a source module, the
string will not be duplicated in memory. All uses of an identical string
constant share a single definition of the string.

Note:

Each source module can have a maximum of 400 unique string constants;
the code generator aborts with an error message if this limit is exceeded.

4-9

Object Representation

Because strings are stored in .text (possibly ROM) and shared, it is bad
practice for a program to modify a string constant. The following code is an
example of incorrect string use:

char *a = "abc";
all] = 'x'; /* Incorrect! */

4.2.5 The Constant Table

4-10

The constant table contains definitions of all the objects that the compiler
must access, but are too wide to be used as immediate operands. Such ob­
jects include:

Q Integer constants that are wider than 16 bits.

Q Floating-point constants that have exponents larger than 4 bits or man-
tissas larger than 11 .

Q Addresses of global variables.

Q Addresses of string constants.

The constant table is simply a block of memory that contains all such
objects. The compiler builds the constanttable at the end ofthe source mod­
ule by using the .word and .float assembler directives. Each entry in the table
occupies one word. The label CONST points to the beginning of the table. For
example:

CONST: .word
. float
.word
.word

O1l223344h
3.1459265
globvar

SL23

;32 bit constant
;floating-point constant
;address of global
;address of string

Objects in the table are accessed with direct addressing; for example:

LDI @CONST+offset,RO

In this example, offset is the index into the constant table of the required
object. As with string constants, identical constants used within a source
module share a single entry in the table.

In the big memory model, the constant table is built in the .text section (and
is not copied into RAM). The compiler must insure that the OP register is cor­
rectly loaded before accessing an object in the table, just as with accessing
global variables. This requires an LOP instruction before each access to the
constant table.

The small model, however, avoids the overhead of loading OP by requiring
that all directly addressable objects, including all global variables as well as
the constant table, are stored in the same memory page. Of course, global
variables must be stored in RAM. Forthe code to be ROM-able, the constant

Runtime Environment

Object Representation

table must be in ROM. In order to get them on the same page, the boot rou­
tine must copy the constant table from permanent storage in ROM to the
global page in RAM. The compiler accomplishes this by placing the data for
the constant table in the .cinit section and allocating space for the table itself
in .bss. Thus, the table is automatically built into RAM through the autoinitial­
ization process.

As with all autoinitialization, you can avoid the extra use of memory required
for the .cinit section by using the --cr linker option and using a smart loader
to perform the initialization directly from the object file. For more information
about autoinitialization, refer to Section 4.10 on page 4-30.

Note:

1) The total size of the constant table in one module is limited to 1000 en­
tries. If this limit is exceeded, the code generator aborts with an error
message.

2) Note that the small memory model restricts the total size of the global
data page, including the constant tables, to 64K words.

4-11

Register Conventions

4.3 Register Conventions

Strict conventions associate specific registers with specific operations in the
C environment. If you plan to interface assembly language routines to a C
program, you must follow these register conventions.

The C compiler uses the following registers:

Table 4-1. List of the Registers the Compiler Uses

Register Description

RO Integer and floating-point expression register, also, scalar return
values

R1 Integer and floating-point expression register

R2 Integer and floating-point expression register

R3 Integer and floating-point expression register

R4 Integer register variable

R5 Integer register variable

R6 Floating-paint register variable

R7 Floating-point register variable

ARO Pointer expression register

AR1 Pointer expression register

AR2 Pointer expression register

AR3 Frame pointer (FP)

AR4 Pointer register variable

AR5 Pointer register variable

AR6 Pointer register variable

AR7 Pointer register variable

IRO Used for extended addressing on local frame

IR1 Used for extended addressing on local frame

SP Stack pointer

4.3.1 Expression Analysis Registers

4-12

The compiler uses registers RO-R3 and ARO-AR2 to evaluate expres­
sions and store temporary results. The compiler keeps track of the current
contents of each register and attempts to allocate registers for expressions
in a way that preserves useful contents in the registers whenever possible.
This allows the compiler to reuse register data and take advantage of the

Runtime Environment

Register Conventions

TMS320C30's efficient register addressing modes and to avoid unneces­
sary accesses of variables and constants.

When a function is called, the compiler forgets the contents of the expres­
sion registers. The contents of any register that is being used for temporary
storage is saved off to the local frame before the function is called. This pre­
vents the called function from ever having to save and restore expression
registers.

If the compiler needs another register for an expression evaluation, a regis­
ter that is being used for temporary storage can be saved on the local frame
and used for the expression analysis. Typical expressions seldom require
more than four expression registers.

4.3.2 Return Values

When a value of any scalar type (integer, pointer, or floating-point) is
returned from a function, the value is placed in register RO when the function
returns.

4.3.3 Register Variables

Specific registers are reserved for variables that are declared with the regis­
ter storage class specifier. The register designation tells the compiler to
store the associated variable in a register if possible, for efficient access.
Register storage can be specified for any type of automatic variables, both
function arguments and local variables. There are several registers for each
type of register variable:

Register Description

R4, R5 are used for integer register variables.

R6, R7 are used for floating-point register variables.

AR4-AR7 are used for pointer register variables.

These registers are allocated in the order that they are declared; for exam­
ple, the first integer variable declared as register is assigned to R4, and the
second is assigned to R5. If a function declares more register variables than
the number of registers that are available for that type, the excess variables
are treated as automatic variables.

Using register variables can significantly increase the efficiency of a func­
tion, especially when values are frequently assigned to a particular variable
(var = •••).

Any function that uses register variables must save the contents of each
register used on entrance to the function and restore them on exit. This

4-13

Register Conventions

ensures that a called function does not disrupt the register variables of the
calling function.

Unused register variables can be freely manipulated using inline assembly
language.

4.3.4 Other Registers

4-14

Q The stack pOinter (SP) and frame pointer (AR3) are used to manage the
local frame.

Q The page pointer (DP) is used to access global and static variables.
Called functions must preserve the values in these registers.

Q Index registers IRO and IR1 are used for indirect addressing when an
offset of more than 8 bits (±255) is required. They are treated like ex­
pression registers and need not be saved by called functions.

Q The block-repeat registers (RS, RE, and RC) are used to copy struc­
tures. They need not be saved by called functions.

Runtime Environment

Function Structure and Calling Conventions
::::::w.;~W..x::x:;:;Sf~::-';::_-~:::'::::::::-_'_",_'_~:::'_~ ::::::: _______ ="""9.'l';~;s;.;m;;~ =:;:::"w.;,::!'z:::;:::-:;s:- o::w:: ... :,·~·'("!":::: ;m;:;::x-/)'~

4.4 Function Structure and Calling Conventions
The C compiler imposes a strict set of rules on function calls. Except for
special runtime-support functions, any function that calls or is called by a C
function must follow these rules. Failure to adhere to these rules can disrupt
the C environment and cause the program to fail.

Figure 4-1 illustrates a typical function call. In this example, parameters are
passed to the function and the function uses local variables.

Figure 4-1. Stack Use During a Function Call

Before CALL

Low

High

Frame
Pointer (FP)

Stack
Pointer (SP)

Push Arguments,
Call Function

FP

SP

Allocate
Local Frame

Old
FP

FP

SP

4.4.1 Responsibilities of a Calling Function

A function performs the following tasks when it calls another function.

1) The caller pushes the arguments on the stack in reverse order (the right­
most declared argument is pushed first and the leftmost is pushed last).
This places the leftmost argument at the top of the stack when the
function is called.

2) The caller calls the function.

3) When the called function is complete, the caller pops the arguments off
the stack with the following instruction:

SUBI n,sp

n is the number of argument words that were pushed.

4-15

Function Structure and Calling Conventions

4.4.2 Responsibilities of a Called Function

A called function must perform the following tasks.

1) If the called function modifies any of the following registers, it must save
them on the stack.

Save as integers

R4 R5 AR4
AR5 AR6 AR7
FP

Save as floating-point

R6
R7

The called function may modify any other registers without saving them.

2) It executes the code for the function.

3) It restores all saved registers.

4) If the function returns an integer, pOinter, or float, it places the return
value in RO. If the function returns a structure, refer to Section 4.4.5 on
page 4-17.

4.4.3 Setting Up the Local Frame

Called C functions perform additional actions in order to manage the local
frame. Note that if the function has no local variables, and no need for local
temporary storage, these actions are not taken.

1) The called function sets up the local frame; this is the first action taken
by the called function. The local frame is allocated as follows:

a) The old frame pointer is saved on the stack.

b) The new frame pointer is set to the current SP.

c) The frame is allocated by adding its size to the SP.

2) Before returning, the called function deallocates the frame by subtract­
ing its size from SP and restores the old FP by popping it.

4.4.4 Accessing Arguments and Local Variables

4-16

A function accesses its arguments and local variables indirectly through the
FP, which always points to the the bottom of the local frame. Because the
FP actually points to the old FP, the first local variable is addressed as
*+FP (1) . Other local variables are addressed with increasing offsets, up to
a maximum of 255. Local objects with offsets larger than 255 are accessed
by first loading their offset into an index register (IRn) and addressing them
as *+FP (IRn).

Runtime Environment

Function Structure and Calling Conventions

Arguments are addressed in a similar way, but with negative offsets from
the FP. The return address is stored at the location directly below the FP,
so the first argument is addressed as *-FP (2). Other arguments are ad­
dressed with increasing offsets, up to a maximum of 255 words. The IR
registers are also used to access arguments with offsets larger than 255.

Note:

It is best to avoid using locals and arguments with offsets larger than 255
words. The sequence used to access such variables is:

LDI offset, IRn

*+FP (IRn) , ...

This sequence incurs one additional instruction and three additional clock
cycles each time it is used. If you must use a larger local frame, try to put
the most frequently used variables within the first 255 words of the frame.

4.4.5 Returning Structures from Functions

A special convention applies to functions that return structures. The caller
allocates space for the structure and then passes the address of the return
space to the called function in register ARO. To return a structure, the called
function then copies the structure to the memory block that ARO points to.

In this way, the caller can be "smart" about telling the called function where
to return the structure. For example, in the statement s = f () , where s is
a structure and f is a function that returns a structure, the caller can simply
place the address of sin ARO and call f. Function f then copies the return
structure directly into s, performing the assignment automatically.

If the caller does not use the return value, ARO is set to o. This directs the
called function not to copy the return structure.

You must be careful to properly declare functions that return structures both
at the point where they are called (so the caller properly sets up ARO) and
where they are defined (so the function knows to copy the result).

4-17

Interfacing C with Assembly Language

4.5 Interfacing C with Assembly Language
There are three ways to use assembly language in conjunction with C code:

Q Use separate modules of assembled code and link them with compiled
C modules (see Section 4.5.1). This is the most versatile method.

Q Use inline assembly language that is imbedded directly in the C source
(see Section 4.5.2, page 4-22).

Q Modify the assembly language code that the compiler produces (see
Section 4.5.3, page 4-22).

4.5.1 Assembly Language Modules

4-18

Interfacing with assembly language functions is straightforward if you follow
the calling conventions defined in Section 4.4 and the register conventions
defined in Section 4.3. C code can access variables and call functions that
are defined in assembly language, and assembly code can access C vari­
ables and call C functions.

Follow these guidelines to interface assembly language and C:

1) All functions, whether they are written in C or assembly language, must
follow the conventions outlined in Section 4.4, page 4-15).

2) You must preserve any dedicated registers that are modified by a func­
tion; dedicated registers include:

Dedicated Registers

R4 R5 R6 R7

AR4 AR5 AR6 AR7

SP FP (AR3)

All registers are saved as integers except R6 and R7, which are saved
as floating-point values. Note that if the SP is used normally, it does not
need to be explicitly preserved. In other words, the assembly function is
free to use the stack as long as anything that is pushed is popped back
off before the function returns (thus preserving SP).

All other registers (such as expression registers, index registers, status
registers, and block repeat registers) are not dedicated and can be used
freely without first being saved.

3) Interrupt routines must save all the registers they use. Expression reg­
isters RO-R3 must be saved as complete 40-bit values, because they
may contain either integers or floating-point values when the interrupt
occurs. For more information about interrupt handling, refer to Section
4.6 on page 4-23.

Runtime Environment

4) When calling a C function from assembly language, push any argu­
ments on the stack in reverse order. Pop them off after calling the func­
tion. When calling C functions, remember that only the dedicated regis­
ters listed above are preserved. C functions can change the contents
of any other register.

5) Functions must return values correctly according to their C declara­
tions. Integers, pointers, and floating-point values are returned in
register RO, and structures are returned as described in Section 4.4.5
on page 4-17.

6) No assembly module should use the .cinit section for any purpose other
than autoinitialization of global variables. The C startup routine in
boot. asm assumes that the .cinit section consists entirely of initializa­
tion tables. Disrupting the tables by putting other information in .cinit can
cause unpredictable results.

7) The compiler appends an underscore () to the beginning of all identifi­
ers. In assembly language modules, you must use a prefix of _ for all
objects that are to be accessible from C. For example, a C object named
x is called _x in assembly. For identifiers that are to be used only in an
assembly language module or modules, any name that does not begin
with a leading underscore may be safely used without conflicting with
a C identifier.

8) Any object or function declared in assembly that is to be accessed or
called from C must be declared with the .global directive in the assem­
bler. This defines the symbol as external and allows the linker to resolve
references to it.

Likewise, to access a C function or object from assembly, declare the C
object with .global. This creates an undefined external reference that
the linker will resolve.

4.5.1.1 An Example of an Assembly Language Function

The example in Section 4.2 illustrates a C function called main, which calls
an assembly language function called asmfunc. The asmfunc function takes
its single argument, adds it to the C global variable called gvar, and returns
the result.

4-19

Interfacing C with Assembly Language

Figure 4-2. An Assembly Language Function

(a) C program

extern int asmfunc () ; /* declare external asm function */
int gvar; /* define global variable */

main()
{

int i;

i = asmfunc(i); /* call function normally */
}

(b) Assembly language program

FP .set AR3 ; FP is AR3
. global - asmfunc ; Declare external function
. global _gvar ; Declare external variable

asmfunc: - PUSH FP ; Save old FP
LDI SP,FP ; Point to top of stack
LDI *-FP(2),RO ; Load argument into RO
LDP _gvar ; Set DP to page of gvar

; (BIG MODEL ONLY)
ADDI @ _gvar,RO ; Add gvar to argument in RO
POP FP ; Restore FP
RETS

In the C program in Figure 4-2, the extern declaration of asmfunc is option­
al because the function returns an int. Like C functions, assembly functions
need be declared only if they return non-integers.

In the assembly language code in Figure 4-2, note the underscores on all
the C symbol names. Note also that the OP needs to be set only when ac­
cessing global variables in the big model. For the small model, the LOP
instruction that loads the page pointer can be omitted.

4.5.1.2 Defining Variables in Assembly Language

4-20

It is sometimes useful for a C program to access variables that are defined
in assembly language. Accessing uninitialized variables from the .bss sec­
tion is straightforward:

a Use the .bss directive to define the variable.
a Use the .global directive to make the definition external.
a Remember to precede the name with an underscore.
a In C, declare the variable as extern and access it normally.

Runtime Environment

Interfacing C with Assembly Language
Figure 4-3 shows an example for accessing a variable defined in .bss.

Figure 4-3. Accessing a Variable Defined in .bss from C

(a) Assembly Language Program

; Note the use of underscores
; in the following lines

.bss _var,l ; Define the variable

.global var ; Declare it as external

(b) C Program

extern int var; /* External variable */
var = 1; /* Use the variable */

If a variable is not defined in the .bss section, it is more difficult to access
it from C. A common situation is a lookup table defined in assembly that you
don't want to put in RAM. In this case, you must define a pointer to the object
and access it indirectly from C.

The first step is to define the object. It is helpful, but not necessary, to p,ut
it in its own initialized section. Declare a global label that points to the begin­
ning of the object.

The object can be linked anywhere into the memory space. To access it in
C, you must declare an additional C variable to point to the object. Initialize
the pointer with the assembly language label declared for the object; re­
member to remove the underscore.

Figure 4-4 shows an example for accessing a variable that is not defined
in .bss.

Figure 4-4. Accessing a Variable that is not Defined in .bss from C

(a) Assembly Language Program

. global sine ; Declare variable as external

.sect "sine tab" ; Make a separate section -
sine: ; The table starts here - . float 0.0

. float 0.015987

. float 0.022145

(b) C Program

extern float sine [1 ; /* This is the object */
float *siney = sine; /* Declare a C pointer

to point to it */
f = siney[4]; /* Access sine like a

normal array */

4-21

Interfacing C with Assembly Language
...... $»

Note that a reference such as sine [4] will not work because the object is
not in .bss and a direct reference such as this generates incorrect code.

4.5.2 Inline Assembly Language

Within a C program, you can use the asm statement to inject a single line
of assembly language into the assembly language file that the compiler
creates. A series of asm statements places sequential lines of assembly
language into the compiler output with no intervening code. For more infor­
mation about the asm statement, refer to Section 3.8 on page 3-11 .

Note:

Inserting jumps or labels into C code may produce unpredictable results by
confusing the register-tracking algorithms that the code generator uses.
The asm statement is provided so that you can access features of the hard­
ware which would be otherwise inaccessible from C.

Do not change the value of a C variable; however, you can safely read the
current value of any variable.

In addition, do not use the asm statement to insert assembler directives that
would change the assembly environment.

The asm statement is also useful for inserting comments in the compiler out­
put; simply start the assembly code string with an asterisk (*) as shown be­
low:

asm("**** this is an assembly language comment");

4.5.3 Modifying Compiler Output

4-22

You can inspect and change the assembly language output that the compiler
produces by compiling the source and then editing the output file before
assembling it. The note in Section 4.5.2 about disrupting the C environment
also apply to modification of compiler output.

Runtime Environment

4.6 Interrupt Handling
As long as you follow the guidelines in this section, C code can be inter­
rupted and returned to without disrupting the C environment. When the C
environment is initialized, the startup routine does not enable or disable
interrupts. (If the system is initialized via a hardware reset, interrupts are dis­
abled). If your system uses interrupts, it is your responsibility to handle any
required enabling or masking of interrupts. Such operations have no affect
on the C environment and can be easily incorporated with asm statements.

4.6.1 Saving Registers During Interrupts

When C code is interrupted, the interrupt routine must preserve the contents
of all machine registers. A problem arises with the extended-precision reg­
isters used for expression analysis (RO-R3): these registers can contain
either integer or floating-point values, and an interrupt routine cannot deter­
mine the type of value in a register. Thus, an interrupt routine must preserve
all 40 bits of any of these registers that it modifies. This involves saving both
the integer part (lower 32 bits) and the floating-point part (upper 32 bits). You
can avoid this problem by not using these registers for handling interrupts.

The following code saves and restores all 40 bits of a register:

PUSH
PUSHF

RO
RO

; Save bottom 32 bits
; Save top 32 bits

POPF RO ; Restore top 32 bits
POP RO ; Restore bottom 32 bits

If the interrupt routine modifies R6 or R7, which are reserved for the float­
ing-point register variables, only the floating-point contents must be
preserved. These registers can contain only floating-point values.

Any other registers that are modified by the interrupt routine can contain in­
tegers (or pointers) only, so only the integer part (lower 32 bits) must be
preserved.

4.6.2 Using C Interrupt Routines

Interrupts can be handled directly with C functions by using a special naming
convention. C interrupt functions have names with the following format

c intnn

nn is a two-digit interrupt number between 00 and 99 (for example, a valid
interrupt routine name is c _ intOl). By following this convention for naming
interrupt routines, you assure that the compiler uses the special register
preservation requirements that are discussed in Section 4.6.1.

4-23

Interrupt Handling

The name c_intOO is reserved for the system reset interrupt. This special
interrupt routine initializes the system and calls the function main; c_intOO
does not save any registers because it has no caller.

If a C interrupt routine does not call any other functions, only those registers
that are actually used in the interrupt handler are saved and restored. How­
ever, if a C interrupt routine does call other functions, these functions may
modify unknown registers that are not used in the interrupt handler itself. For
this reason, the routine saves all the expression registers if any other func­
tions are called. This uses many extra instructions; if you are sure that a
particular register will not be modified, you can hand-modify the compiled
code so that an unused register is not saved and restored.

A C interrupt routine is like any other C function in that it can have local vari­
ables and register variables; however, it should be declared with no
arguments. Interrupt handling functions should not be called directly.

4.6.3 Assembly Language Interrupt Routines

4-24

Interrupts can also be handled with assembly language code, as long as the
register conventions are followed. Like all assembly functions, interrupt rou­
tines can use the stack, access global C variables, and call C functions
normally. When calling C functions, be sure that all nondedicated registers
are preserved because the C function can modify any of them. Of course,
dedicated registers need not be saved because they are preserved by the
C function.

Runtime Environment

Expression Analysis

4.7 Expression Analysis

All C expressions are calculated using the registers designated for expres­
sion analysis:

Q Registers RO-R3 are used for expression evaluation.

Q Registers ARO-AR2 are used for indirection with pointers.

Expressions are evaluated according to standard C precedence rules.
When a binary operator is analyzed, the order of analysis of the operands
is based on their relative complexity. The compiler tries to evaluate subex­
pressions in a way that prevents saving temporary results, which are
calculated in registers, off to memory. This does not apply to those operators
that specify a particular order of evaluation (such as the comma, & &, and 11),
which are always evaluated in the correct order.

The compiler attempts to avoid using the address registers in evaluation
because pipeline delays can result from using auxiliary registers for both
computation and indirection. This is apparent in the code generated for
pointer arithmetic, where the arithmetic is evaluated in RO-R3, then moved
to an auxiliary register when the resulting pointer is actually used.

Floating-point expressions are evaluated using the on-chip floating-point
hardware. In general, this means that all floating-point operations are car­
ried out with full extended precision (40 bits). However, in some cases an
extended-precision temporary result in a register must be saved off to
memory, in which case only 32 bits of precision are preserved.

4-25

Runtime-Support Math Routines

4.8 Runtime-Support Math Routines

4-26

The TMS320C30 MPYI (multiply integer) instruction does not perform full
32-bit multiplication; it uses only the lower 24 bits of each operand. Standard
C requires full 32-bit multiplication. Therefore, a runtime-support function
called MPY _I is provided to implement 32-bit integer multiplication. This
function does notfollow the standard C calling sequence; instead, operands
are passed in registers RO and R1. The 32-bit product is returned in RO. The
compiler uses the TMS320C30 MPYI instruction only in cases where ad­
dress arithmetic is performed (such as during array indexing); because no
address can have more than 24 bits, a 24x24 multiply is sufficient. You can
use the -mm option to force the compilerto use MPYI instructions for all inte­
ger multiplies.

Because the TMS320C30 has no division instructions, integer and
floating-point division are performed via calls to additional runtime-support
functions called DIV _I and DIV _F. Another function called MOD_I performs
the integer modulo operation. Corresponding functions called DIV_U and
MOD_U are used for unsigned integer division and modulo. Like MPY _I,
these functions take their arguments from RO and R1 and return the result
in RO.

The runtime-support math functions can use volatile registers RO-R3 and
the index registers I RO and I R 1 without saving them. Any other registers that
are used must be saved. The versions of the functions supplied with the
compiler use no additional registers.

The runtime-support math functions are written in assembly language.
Object code for them is provided in the object library rts .lib. Any of these
functions that your program needs are linked in automatically if you name
rts . lib as input at link time.

The source code for these functions is in the source library rts. src. The
source code has comments that describe the operation and timing of the
functions. You can extract, inspect, and modify any of the math functions;
be sure you follow the speCial calling conventions and register saving rules
outlined in this section.

Runtime Environment

Runtime-Support Math Routines

Figure 4-5 summarizes the runtime-support math functions and names the
files that contain the functions.

Figure 4-5. Summary of Runtime-Support Math Functions

Function Description Source File

DIV_F Floating-point divide divf.asm

o IV_I Integer divide divi.asm

DIV_U Unsigned integer divide divu.asm

MOD_I Integer modulo modi.asm

MOD_U Unsigned integer modulo modu.asm

MPY_I 32x32 Integer multiply mpyi.asm

4-27

Optimization

4.9 Optimization

4-28

The TMS320C30 C compiler was designed with two major goals in mind:

[J For general purpose C code, the TMS320C30 C compiler produces
compiled code that performs nearly as well as hand-coded assembly
language.

[J For critical DSP algorithms, the TMS320C30 C compiler provides a sim­
ple and accessible programming environment so that applications de­
manding high performance can be implemented in assembly language.

The compiler performs a wide variety of optimizations to improve the
efficiency of compiled code. The degree of optimization relative to hand­
coded assembly language for a given program is extremely dependent on
how the program is written; if the code is written specifically with the C30
compiler in mind, the generated code can be nearly as efficient as assembly
language.

The following list describes some of the optimizations and highlights
particular strengths of the compiler:

[J Register Variables

By using register variables, the compiler generates excellent code for
expressions involving these variables. Register variables are particu­
larly valuable as pointers.

[J Register Tracking

The compiler tracks the contents of registers so it avoids reloading val­
ues if they are used again soon. Variables, constants, and structure ref­
erences (a.b) are tracked through straight-line code and forward
branches.

[J 3-0perand Instructions

By using 3-operand instructions whenever possible, the compiler
preserves the contents of the registers and allows more flexibility in ad­
dressing. These instructions are particularly effective in conjunction
with register variables.

[J Algebraic Reordering

The compiler reorders expressions into algebraic equivalents to allow
optimal evaluation. For example: -(a + b), which takes 3 instructions to
evaluate, is written as -a -b, which only takes 2 instructions.

Runtime Environment

Optimization
$~;;~

[J Jump Optimizations

The compiler unwinds jumps to jumps and eliminates dead code
(unlabeled code following an unconditional jump).

[J Loop Rotation

The compiler evaluates loop conditionals at the top and bottom of
loops, saving a costly extra jump into or out of a loop. In cases of simple
counting loops (tor (i= O;i< 10; ...))the initial entry conditional check is
optimized out.

[J Delayed Branches

Where possible, the compiler uses delayed branches for unconditional
branches, avoiding pipeline delays caused by standard branches.

[J Parallel Instructions

Because of the restrictive addressing requirements of the parallel in­
structions, it is difficult for the compiler to take advantage of them. How­
ever, in cases where two adjacent instructions fit the addressing re­
quirements, they are combined in parallel instructions. Also, the
compiler uses parallel instructions for structure move operations.

[J Autoincrement Addressing

For pointer expressions oftheform *p++, *p--, *++p, or *--p,thecom­
piler uses efficient autoincrement addressing modes.

Note:

If you use the -g option to generate symbolic debugging information, many
of these optimizations are disabled because they disrupt the debugger. If
you want to use symbolic debugging and still generate fully optimized code,
use the -mn option on CL30; -mn re-enables the optimizations disabled
by-g.

4-29

System Initialization

4.10 System Initialization

Before you can run a C program, the C runtime environment must be
created. This task is performed by the C boot routine, which is a function
called c_intOO. The runtime-support source library contains the source to
this routine in a module named boot. asm.

The c_intOO function can be called by reset hardware to begin running the
system. The function is in the runtime support library {rts . lib} and must
be combined with the C object modules at link time. This occurs by default
when you use the -c or -cr option in the linker and include rt s . lib as one
of the linker input files. When C programs are linked, the linker sets the entry
point value in the executable output module to the symbol c_intOO.

The c_intOO function performs the following tasks in order to initialize the C
environment:

1} Defines a section called . stack for the system stack and sets up the ini­
tial stack and frame pointers.

2} Autoinitializes global variables by copying the data from the initialization
tables in .cinit to the storage allocated for the variables in .bss. In the
small model, the constant tables are also copied from .cinit to .bss.

In the RAM initialization model, a loader performs this step before the
program runs {it is not performed by the boot routine}.

3} Small memory model only-sets up the page pointer DP to point to the
global storage page in .bss.

4} Calls the function main to begin running the C program.

You can replace or modify the boot routine to meet your system require­
ments. However, the boot routine must perform the four operations listed
above in order to correctly initialize the C environment.

4.10.1 Autoinitialization of Variables and Constants

4-30

Some global variables must have initial values assigned to them before a
C program starts running. The process of retrieving these variables' data
and initializing the variables with the data is called autoinitialization.

The compiler builds tables in a special section called .cinit that contains
data for initializing global and static variables. Each compiled module con­
tains these initialization tables. The linker combines them into a single table
{a single .cinit section}. The boot routine uses this table to initialize all the
variables that need values before the program starts running.

Runtime Environment

Note:

I n standard C, global and static variables that are not explicitly initialized are
set to 0 before program execution. The TMS320C30 C compiler does not
adhere to this convention. Any variable which must have an initial value of
o must be explicitly initialized.

In the small memory model, any tables of long constant values or constant
addresses must also be copied into the global data page at this time. Data
for these tables is incorporated into the initialization tables in .cinit and thus
is automatically copied at initialization time.

There are two methods for copying the autoinitialization data into memory;
these methods are called the RAM and ROM models of autoinitialization.
Section 4.10.1.1 describes the format of the initialization tables, Section
4.10.1.2 describes the RAM model of initialization, and Section 4.1 0.1.3 de­
scribes the ROM model of initialization.

4.10.1.1 Initialization Tables

The tables in .cinit consist of variable size initialization records. Figure 4-6
shows the format of the .cinit section and the initialization records.

Figure 4-6. Format of Initialization Records in the .cinit Section
.cinit Section

initialization record 1

initialization record 3

•
•
•

initialization record n

Initialization Record

a The first field of an initialization record is the size (in words) of the initial­
ization data.

a The second field is the starting address of the area within the .bss sec­
tion, where the initialization data must be copied. (This field points to a
variable's space in .bss.)

a These first two fields are followed by one or more words of data. During
autoinitialization, this data is copied to the specified address in .bss.

4-31

System Initialization

Each variable that must be autoinitialized has an initialization record
in the .cinit section.

For example, suppose two initialized variables are defined in C as follows:

int i = 23;
int a [5] = { 1, 2, 3, 4, 5 };

The initialization information for these variables is:

.sect ".cinit"
* Record for variable i

.word 1

. word i

.word 23

* Record for variable a
.word 5
.word a
.word 1,2,3,4,5

Initialization section

Length of data (1 word)
Address in .bss
Data

Length of data (5 words)
Address in .bss
Data

The .cinit must contain only initialization tables in this form. If you interface
assembly language modules to your C program, do not use the .cinit section
for any other purpose.

When you use the --c or --cr linker option, the linker links together the .cinit
sections from all the C modules and appends a null word to the end of the
composite .cinit section. This terminating record appears as a record with
a size field of 0, marking the end of the initialization tables.

4.10.1.2 RAM Initialization Model

4-32

The RAM model, specified with the --cr linker option, allows variables to be
initialized at load time instead of at run time. This enhances system perform­
ance by reducing boot time and by saving the memory that would ordinarily
be used by the initialization tables.

When you use the --cr linker option, the linker sets the STYP _COPY bit in
the .cinit section's header; this tells the loader notto load the .cinit section
into memory. (The .cinit section occupies no space in the memory map.)
The linker also sets the cinit section to -1 (normally, cinit would point
to the beginning of the initialization tables). This indicates to the boot routine
that the initialization tables are not present in memory; accordingly, no run­
time initialization is performed at boot time.

Note that you must use a smart loader to take advantage of the RAM model.
When the program is loaded, the loader must be able to:

[J Detect the presence of the .cinit section in the object file.

[J Find out that STYP _COPY is set in the .cinit section header, so that it
knows not to copy the .cinit section into memory.

[J Understand the format of the initialization tables.

Runtime Environment

L:JV..,'<::;1I1 Initialization

The loader then uses the initialization tables directly from the object file to
initialize variables in .bss.

Figure 4-7 illustrates the RAM model of autoinitialization.

Figure 4-7. RAM Model of Autoinitialization
Object File Memory

4.10.1.3 ROM Initialization Model

The ROM model is the default method of the autoinitialization; to use this
model, invoke the linker with the -c option.

In this method, global variables are initialized at run time. The .cinit section
is loaded into memory (possibly ROM) along with all the other sections. The
linker defines a special symbol called cinit that points to the beginning of
the initialization tables in memory. When the program begins running, the
C boot routine copies data from the tables (pointed to by cini t) into the spe­
cified variables in .bss. This allows initialization data to be stored in ROM
and then copied to RAM each time the program is started.

4-33

System Initialization

Figure 4-8 illustrates the ROM model of autoinitialization.

Figure 4-8. ROM Model of Autoinitialization
Object File Memory

4-34 Runtime Environment

Chapter 5

Runtime-Support Functions
__ ~'I' .. ~X!~.,.. " .', ,.. . ~@m" E r;.l~lliirM

~~.«'M~;:W.::::$::::::s"~··::f."*n'W~~.«::W··

:.:« :::::::::·:::w..:~ I:::::: ::::1::::::::: :m::::: :::::: leI::::

Some of the tasks that a C program must perform (such as floating-point
arithmetic, string operations, and dynamic memory allocation) are not part
of the C language. The runtime-support functions, which are included with
the C compiler, are standard functions that perform these tasks. The
runtime-support library rts . lib contains the object code for each of the
functions described in this chapter; the library rts. src contains the source
to these functions as well as to other functions and routines. If you use any
of the runtime-support functions, be sure to include rts .lib as linker input
when you link your C program.

This chapter is divided into three parts:

Q Part 1 describes header files and discusses their functions.

Q Part 2 summarizes the runtime-support functions according to
category.

Q Part 3 is an alphabetical reference.

Topics in this chapter include:

Section Page
5.1 Header Files ... 5-2
5.2 Summary of Runtime-Support Functions and Macros 5-9
5.3 Functions Reference 5-16

5-1

Header Files

5.1 Header Files

Each runtime-support function is declared in a header file. Each header file
declares:

r:Ii A set of related functions (or macros),

r:Ii Any types that you need to use the functions, and

r:Ii Any macros that you need to use the functions.

There are header files that declare the runtime-support functions:

assert.h
ctype.h
errno.h
float.h

limits. h
math.h
stdarg.h

stddef.h
stdlib.h
string.h
time.h

In order to use a runtime-support function, you must first use the #include
preprocessor directive to include the header file that declares the function.
For example, the isdigit function is declared by the ctype. h header. Before
you can use the isdigit function, you must first include the ctype. h file:

#include <ctype.h>

val = isdigit(num);

You can include headers in any order. You must include a header before you
reference any of the functions or objects that it declares.

Sections 5.1.1 through 5.1.10 describe the header files that are included
with the TMS320C30 C compiler. Section 5.2, page 5-9, lists the functions
that these headers declare.

5.1.1 Diagnostic Messages {assert.h}

5-2

The as sert . h header defines the assert macro, which inserts diagnostic
failure messages into programs at runtime. The assert macro tests a
runtime expression. If the expression is true, the program continues
running. If the expression is false, the macro outputs a message that
contains the expression, the source file name, and the line number of the
statement that contains the expression; then, the program terminates (via
the abort function).

The assert. h header refers to another macro named NDEBUG (assert. h
does not define NDEBUG). If you have defined NDEBUG as a macro name
when you include assert. h, then the assert macro is turned off and does
nothing. If NDEBUG is not defined, then the assert macro is enabled.

Runtime-Support Functions

The assert macro is defined as follows:

#ifdef NDEBUG
#define assert (ignore)
#else
#define assert (expr) \

Header Files

if (! (expr)) (printf("Assertion failed, (expr), file s,\
line d\n", FILE __ , __ LINE); abort (); }

#endif

5.1.2 Character Typing and Conversion (ctype. h)

The ctype. h header declares functions that test (type) and convert
characters.

For example, a character-typing function may test a character to determine
whether it is a letter, a printing character, a hexadecimal digit, etc. These
functions return a value of true (a nonzero value) or false (0).

The character-conversion functions convert characters to lowercase, upper
case, or ASCII and return the converted character.

Character-typing functions have names in the form isxxx (for example,
isdigi~. Character-conversion functions have names in the form toxxx (for
example, toupper').

The ctype. h header also contains macro definitions that perform these
same operations; the macros run faster than the corresponding functions.
The typing macros expand to a lookup operation in an array of flags (this
array is defined in ctype. c). The macros have the same name as the
corresponding functions, but each macro is prefixed with an underscore (for
example, _isdigi~.

5.1.3 Limits (float. h and limits. h)

The float. hand limits. h headers define macros that expand to useful
limits and parameters of the TMS320C30's numeric representations.
Table 5-1 and Table 5-2 list these macros and the limits they are
associated with.

5-3

Header Files

Table 5-1. Macros that Supply Integer Type Range Limits (limits. h)

Macro Value Description

CHAR_BIT 32 Number of bits in type char

SCHAR_MIN -2147483648 Minimum value for a signed char

SCHAR_MAX 2147483647 Maximum value for a signed char

UCHAR_MAX 4294967295 Maximum value for an unsigned char

CHAR_MIN SCHAR_MIN Minimum value for a char

CHAR_MAX SCHAR_MAX Maximum value for a char

SHRT_MIN -2147483648 Minimum value for a short int

SHRT_MAX 2147483647 Maximum value for a short int

USHRT_MAX 4294967295 Maximum value for an unsigned short int

INT_MIN -2147483648 Minimum value for an int

I NT_MAX 2147483647 Maximum value for an int

UINT_MAX 4294967295 Maximum value for an unsigned int

LONG_MIN -2147483648 Minimum value for a long int

LONG_MAX 2147483647 Maximum value for a long int

ULONG_MAX 4294967295 Maximum value for an unsigned long int

5-4 Runtime-Support Functions

Header Files

Table 5-2. Macros that Supply Floating-Point Range Limits (float. h)

Macro Value Description

FLT_RADIX 2 Base or radix of exponent representation

FLT_ROUNDS 1 Rounding mode for floating-point addition
(rounds to nearest integer)

FLT DIG 6 Number of decimal digits of precision for a float,
DBLDIG double, or long double
LDB[_DIG

FLT MANT DIG 24 Number of base-FLT_RADIX digits in the
DBL MANT- DIG mantissa of a float, double, or long double
LDB[_MANT_DIG

FLT MIN EXP -126 Minimum negative integer such that FLT_RADIX
DBLMIN-EXP raised to that power minus 1 is a normalized
LDB[_Mlf'CEXP float, double, or long double

FLT MAX EXP 128 Maximum negative integer such that FLT_RADIX
DBLMAX-EXP raised to that power minus 1 is a representive
LDBCMA5CEXP finite float, double, or long double

FLT EPSILON 1.1920929E-07 Minimum positive float, double, or long double
DBLEPSILON number x such that 1.0 + x"# 1.0 LDB[_EPSILON

FLT MIN 5.8774817E-39 Minimum positive float, double, or long double
DBLMIN
LDB[_MIN

FLT MAX 3.4028235E+38 Maximum positive float, double, or long double
DBLMAX
LDB[_MAX

FLT MIN 10 EXP -39 Minimum negative integers such that 10 raised to
DBLMIN-10EXP that power is in the range of normalized floats,
LDBCMlii;UO_EXP doubles, or long doubles

FLT MAX 10 EXP 38 Maximum positive integers such that 10 raised to
DBLMAX-10EXP that power is in the range of finite floats, doubles,
LDB[_MA5Uo_EXP or long doubles

Key to prefixes:
FL T _ applies to type float
DBL_ applies to type double
LDBL_ applies to type long double

5.1.4 Floating-Point Math (math. h)

The math. h header defines several trigonometric, exponential, and
hyperbolic math functions. These math functions expect double-precision
floating-point arguments and return double-precision floating-point values.

The math. h header also defines one macro named HUGE_VAL; the math
functions use this macro to represent out-or-range values. When a function
produces a floating-point return value that is too large to be represented, it
returns HUGE_VAL instead.

5-5

Header Files

5.1.5 Error Reporting (errno . h)

Errors can occur in a math function if the invalid parameter values are
passed to the function or if the function returns a result that is outside the
defined range for the type of the result. When this happens, a variable
named errno is set to the value of one of the following macros:

~ EDOM, for domain errors (invalid parameter), or

~ ERANGE, for range errors (invalid result).

C code that calls a math function can read the value of errno to check for
error conditions. The errno variable is declared in errno. h and defined in
errno. c.

5.1.6 Variable Arguments (stdarg.h)

Some functions can have a variable number of arguments whose types can
differ; such a function is called a variable-argument function. The stdarg . h

header declares three macros and a type that help you to use variable­
argument functions:

~ The three macros are va_start, va_arg, and va_end. These macros are
used when the number and type of arguments may vary each time a
function is called.

~ The type, va_list, is a pointer type that can hold information for va_start,
va_end, and va_argo

A variable-argument function can use the objects declared by stdarg . h to
step through its argument list at run time, when it knows the number and
types of arguments actually passed to it.

5.1.7 Standard Definitions (stddef . h)

5-6

The stddef . h header defines two types and two macros. The types include:

~ ptrdifLt, a signed integer type that is the data type resulting from the
subtraction of two pointers; and

~ size_t, an unsigned integer type that is the data type of the sizeof
operator.

The macros include:

~ The NULL macro, which expands to a null pointer constant(O), and

~ The offsetof(type, identifier) macro, which expands to an integer that
has type size_t. The result is the value of an offset in bytes to a structure
member (identifietj from the beginning of its structure (type).

These types and macros are used by several of the runtime-support
functions.

Runtime-Support Functions

Header Files

5.1.8 General Utilities (stcllib. h)

The stdlib. h header declares several functions, one macro, and two
types. The macro is named RAND_MAX. The types include:

a div_t, a structure type that is the type of the value returned by the div
function, and

a /div_t, a structure type that is the type of the value returned by the Idiv
function.

The stdlib. h header also declares many of the common library functions:

a Memory management functions that allow you to allocate and
deallocate packets of memory. The amount of memory that these
functions can use is defined by the constant __ SYSMEM_SIZE in the
runtime-support module sysmem. a sm. (This module is archived in the
file rt s . src.) By default, the amount of memory available for allocation
is 2048 words. You can change this amount by modifying
__ SYSMEM_SIZE and reassembling sysmem.asm.

a String conversion functions that convert strings to numeric
representations.

a Searching and sorting functions that allow you to search and sort
arrays.

a Sequence-generation functions that allow you to generate a pseudo­
random sequence and allow you to choose a starting pOint for a
sequence.

a Program-exit functions that allow your program to terminate normally
or abnormally.

a Integer-arithmetic that is not provided as a standard part of the C
language.

5.1.9 String Functions (string. h)

The st ring. h header declares standard functions that allow you to perform
the following tasks with character arrays (strings):

a Move or copy entire strings or portions of strings,
a Concatenate strings,
a Compare strings,
a Search strings for characters or other strings, and
a Find the length of a string.

In C, all character strings are terminated with a 0 (null) character. The string
functions named strxxxall operate according to this convention. Additional

5-7

Header Files

functions that are also declared in st ring. h allow you to perform
corresponding operations on arbitrary sequences of bytes (data objects),
where a 0 value does not terminate the object. These functions have names
such as memxxx.

When you use functions that move or copy strings, be sure that the
destination is large enough to contain the result.

5.1.10 Time Functions (time.h)

5-8

The time. h header declares one macro, several types, and functions that
manipulate dates and time. The functions deal with several types of time:

o Calendar time represents the cu rrent date (according to the Gregorian
calendar) and time.

o Local time is the calendar time expressed for a specific time zone.

o Daylight savings time is a variation of local time.

The time. h header declares one macro, CLK_ TCI<, which is the number
per second of the value returned by the clock function.

The header declares three types:

o clock_t, an arithmetic type that represents time;

o time_t, an arithmetic type that represents time, and

o tm is a structure that holds the components of calendar time, called
broken-down time. The structure has the following members:

int tm_sec; 1* seconds after the minute (0-59)
int tm_min; 1* minutes after the hour (0-59)
int tm_hour; 1* hours after midnight (0-23)
int tm~day; /* day of the month (1-31)
int tm~on; /* months since January (0-11)
int tm_year; /* years since 1900 (0-99)
int tm_wday; /* days since Saturday (0-6)
int tm_yday; 1* days since January 1 (0-369)­
int tm_isdst; 1* Daylight Savings Time f~ -

tm isdst can have one of three values:

• A positive value if Daylight Savings Time is in effect.

• Zero if Daylight Savings Time is not in effect.

• A negative value if the information is not available.

Note:

*/
*1
*1
*/
*/
*/
*/
*1
*1

All of the time functions depend on the clockO and timeO functions, which
you must customize for your system.

Runtime-Support Functions

Summary of Runtime-Support Functions and Macros -
5.2 Summary of Runtime-Support Functions and Macros

Refer to the following pages for information about functions and macros:

Function or Macro Page
Error Message Macro .. 5-10
Character Typing Conversion Functions 5-10
Floating-Point Math Functions 5-11
Variable Argument Functions and Macros 5-12
General Utilities .. 5-12
String Functions .. 5-14
Time Functions. .. 5-15

5-9

Summary of Runtime-Support Functions and Macros

Macro and Syntax

void assert (expression)
int expression;

Error Message Macro
(Header File: assert .h)

Description

Inserts diagnostic messages into programs

Character Typing Conversion Functions
(Header File: ctype .h)

Function and Syntax Description

int isalnum (c) Tests c to see if it's an alphanumeric-ASCII
char c: character

int isalpha (c) Tests c to see if it's an alphabetic-ASCII character
char c:

int isascii (c) Tests c to see if it's an ASCII character
char c:

int .iscntrl (c) Tests c to see if it's a control character
char c:

int isd.iq.it(c) Tests c to see if it's a numeric character
char c:

int isqraph (c) Tests c to see if it's any printing character except a
char c: space

int islower (c) Tests c to see if it's a lowercase alphabetic ASCII
char c: character

int .ispr.int (c) Tests c to see if it's a printable ASCII character
char c: (including spaces)

int ispunct (c) Tests c to see if it's an ASCII punctuation character
char c:

int is space (c) Tests c to see if it's an ASCII spacebar, tab
char c: (horizontal or vertical), carriage return, formfeed, or

newline characters

int isupper (c) Tests c to see if it's an uppercase ASCII alphabetic
char c: character

int isxdiq.it (c) Tests c to see if it's a hexadecimal digit
char c:

char toasci.i (c) Masks c into a legal ASCII value
char c:

char tolower (c) Converts c to lowercase if it's uppercase
char c:

char toupper (c) Converts c to uppercase if it's lowercase
char c:

5-10 Runtime-Support Functions

Function and Syntax

double acos (x)
double x;

double asin (x)
double x;

double atan (x)
double x;

double atan2 (y,x)
double y,xi

double ceil (x)
double x;

double cos (x)
double x;

double cosh (x)
double x;

double exp (x)
double x;

double fabs (x)
double x;

double f1.oor (x)
double x;

double fmod (x, y)
double x, y;

double frexp (value,exp)
double value;
int *exp;

double ldexp (x, exp)
double x;
int exp;

double 1.0<] (x)
double x;

double 1.0<]10 (x)
double x;

doublemodf (value, iptr)
double value;
int *iptr;

double pow (x, y)
double x, y;

double sin (x)
double x;

double sinh (x)
double x;

Summary of Runtime-Support Functions and Macros

Floating-Point Math Functions
(Header File: math.h)

Description

Returns the arc cosine of x

Returns the arc sine of x

Returns the arc tangent of x

Returns the inverse tangent of y / x

Returns the smallest integer greater than or equal
to x

Returns the cosine of x

Returns the hyperbolic cosine of x

Returns the exponential function of x

Returns the absolute value of x

Returns the largest integer less than or equal to x

Returns the floating-point remainder of x/y

Breaks value into a normalized fraction and an
integer power of 2

Multiplies x by an integer power of 2

Returns the natural logarithm of x

Returns the base-10 logarithm of x

Breaks value into into a signed integer and a
signed fraction

Returns x raised to the power y

Returns the sine of x

Returns the hyperbolic sine of x

5-11

Summary of Runtime-Support Functions and Macros

Function and Syntax

double sqrt (x)
double X;

double tan (x)
double x;

double tanh (x)
double x;

Floating-Point Math Functions
(continued)

Description

Returns the nonnegative square root of x

Returns the tangent of x

Returns the hyperbolic tangent of x

Variable Argument Functions and Macros
(Header File: stdarg. h)

Function/Macro and Syntax

type va arq (ap, type)
va Hrt ap;

void va end (ap)
va list ap;

void va_start(ap, parmN)
va list ap;

Function and Syntax

int abs (j)
int j;

void abort ()

void atexit (fun)
void (*fun) ();

double atof (nptr)
char *nptr;

int atoi (nptr)
char *nptr;

long int atol (nptr)
char *nptr;

Description

Accesses the next argument of type type in a
variable-argument list

Resets the calling mechanism after using va _ arg

Initializes ap to point to the first operand in the
variable-argument list

General Utilities
(Header File: stdHb. h)

Description

Returns the absolute value of j

Terminates a program abnormally

Registers the function pointed to by fun, to be
called with out arguments at normal program
termination

Converts a string to a floating-point value

Converts astring to an integer value

Converts astring to a long integer

void *bsearch (key, base, nmemb, size, compar)

void *key, *base;
size t nmemb, size;
int - (*compar) ();

void*calloc (nmemb, size)
size_t nmemb, size

5-12

Searches through an array of nmemb objects for
the object that key pOints to

Allocates and clears memory for nmemb objects,
each of size bytes

Runtime-Support Functions

Function and Syntax

div t div (numer, denom)
int numer, denom

void exit (status)
int status;

void free (ptr)
void *ptr;

long int labs (j)
long int j;

ldiv t ldiv (numer, denom)
long int numer, denom

int ltoa (n, buffer)
long n;
char *buffer;

void *malloc (size)
size t size

void minit ()

char *movmem (src,dest,count)
char *src, *dest;
int count;

Summary of Runtime-Support Functions and Macros

General Utilities
(continued)

, ill

Description

Divides numer by denom

Terminates a program normally

Deallocates memory space allocated by malloc,
calloc,Orrealloc

Returns the absolute value of j

Divides numer by denom

Converts n to the equivalent string

Allocates memory for an object of size bytes

Resets all the memory previously allocated by
malloc,calloc,orrealloc

Moves count bytes from src to dest

void qsort (base, nmemb, size, compar) Sorts an array of nmemb members; base points
void *base; to the first member of the unsorted array, and
size_t nmemb, size; size specifies the size of each member
int (*compar) () ;

int rand () Returns a sequence of pseudo-random integers in
the range 0 to RAND_MAX

void *realloc (ptr, size) Changes the size of an allocated memory space
void *ptr;
size t size;

void srand (seed) Resets the random number generator
unsigned int seed;

double strtod (nptr, endptr) Converts a string to a floating-point value
char *nptr, **endptr;

long int strtol (nptr, endptr, base) Converts a string to a long integer
char *nptr,**endptr;
int base;

unsignedlongint strtoul Converts a string to an unsigned long integer
char *nptr, **endptr;
int base; --

5-13

Summary of Runtime-Support Functions and Macros
.. Me: f

Function and Syntax

void *memchr(5, c, n)
void *s;
int c;
5ize t n;

int memcmp (51, 52, n)
void *51, *52;
5ize t n;

void *memcpy (51, 52, n)
void *51, *52;
5ize_t n;

void *memmove (51, 52, n)
void *51, *52;
5ize_t n;

void *memset (5, c, n)
void *5;
int c;
5ize_t n;

char *strcat (51, 52)
char *51, *82;

char *strchr (8, c)
char *3;
int c;

int strcmp (51, 52)
char *51, *52;
i5 greater than 52

int ·*strco~~ (51, 52)
char *81, *52;

char *strcpy (51, 52)
char *51, *52;

5ize_t strcspn (51, 52)
char *51, *51;

char *strerror (errnum)
int errnum;

5ize t str~en (5)
char *s;

char *strncat (51, 52, n)
char *51, *52;
5ize_t n;

int *strncmp (51, 52, n)
char *51, *52;
5ize t n;

5-14

String Functions
(Header File: 5tring. h)

Description

Finds the first occurrence of c in the first n charac-
ters of 5

Compares the first n characters of 51 to 52

Copies n characters from 51 to 52

Moves n characters from 51 to s2

Copies the value of c into the first n characters of 5

Appends 51 to the end of 52

Finds the first occurrence of character c in 5

Compares strings and returns one of the following
values: <0 if 51 is less than 52; =0 if 51 is equal
to 52; >0 if 51 is greater than 52

Compares strings and returns one of the following
values, depending on the locale: <0 if 51 is less
than 52; =0 if 51 is equal to 82; >0 if 81 is greater
than 52

Copies string 82 into 51

Returns the length of the initial segment of 51 that
is made up entirely of characters that are not in 82

Maps the error number in errnum to an error
message string

Returns the length of a string

Appends up to n characters from 51 to 52

Compares up to n characters in two strings

Runtime-Support Functions

Function and Syntax

char *strncpy (sl, s2, n)
char *sl, *s2;
size_t n;

char *strpbrk (sl, s2)
char *sl, *s2;

char *strrchr (s ,c)
char *s;
int c;

size t
char

strspn (sl, s2)
*sl, *s2;

char *strstr (sl, s2)
char *sl, *s2;

char *strtok (sl, s2)
char *sl, *s2;

Function and Syntax

char *asctime (timeptr)
struct tm *timeptr;

clock t clock ()

char *ctime (timeptr)
struct tm *timeptr;

double difftime (time1, timeO)
time t time1, timOi

struct tm *gmtime (timer)
time t *timer;

struct tm *localtime (timer)
time t *timer;

time t mktime (timeptr)
struct tm *timeptr;

Summary of Runtime-Support Functions and Macros

String Functions
(continued)

Description

Copies up to n characters of a s2 to sl

Locates the first occurrence in sl of any character
from s2

Finds the last occurrence of character c in s

Returns the length of the initial segment of s 1,
which is entirely made up of characters from s2

Finds the first occurrence of a s 2 to s 1

Breaks s 1 into a series of tokens, each delimited
by a character from s2

Time Functions
(Header File: time.h)

Description

Converts a time to a string

Determines the processor time used

Converts calendar time to local time

Returns the difference between two calendar times

Converts calendar time to Greenwich Mean Time

Converts calendar time to local time

Converts local time to calendar time

size t strftime (s, maxsize, format, timeptr)

char *s, *format;
size t maxsize;
struct tm *timeptr;

time t time (timer)
time t *timer;

Formats a time into a character string

Returns the current calendar time

5-15

Functions Reference

5.3 Functions Reference

5-16

The remainder of this chapter is a reference. Generally, the functions are
organized alphabetically, one function per page; however, related functions
(such as isalpha and isascii) are presented together on one page. Here's
an alphabetical table of contents for the functions reference:

Directive. .. Page
abort ... 5-18
abs .. 5-19
acos ... 5-20
asctime ... 5-21
asin .. 5-22

assert
atan .. .
atan2
atexit .. .
atof

atoi
atol
bsearch .. .
calloc .. .
ceil .. .

clock .. .
cos
cosh .. .
ctime .. .
difftime .. .

div .. .
exit
exp
fabs
floor

fmod .. .
free
frexp .. .
gmtime .. .
isalnum .. .

isalpha .. .
isascii
iscntrl .. .

:~~~~~h . :
islower
isprint
ispunct
isspace .. .
isupper .. .

5-23
5-24
5-25
5-26
5-27

5-27
5-27
5-28
5-29
5-30

5-31
5-32
5-33
5-34
5-35

5-36
5-37
5-38
5-39
5-40

5-41
5-42
5-43
5-44
5-45

5-45
5-45
5-45
5-45
5-45

5-45
5-45
5-45
5-45
5-45

isxdigit .. 5-45
labs .. 5-19
Idexp ... 5-47

Runtime-Support Functions

Functions Reference

Idiv ... 5-36
loealtime , ... ,.,"""',.,' 5-48

log .. , , , , . , , .. , .. , , , , , . . , .. , , . , , . , , .. 5-49
log10 , ... , , .. , .. , , .. , . , , .. , , . , , 5-50
Itoa ""',.,""',.,"', " , .. " .. , .. "., 5-51
malloe , , " , .. ,.... 5-52
memehr .. , , .. , , . , , 5-53

mememp , .. 5-54
memepy ,., ,',.,." .. , ,., .. "... 5-55
memmove , , , .. , .. , , .. ,. 5-56
memset , ... , , , . , , .. , , . , , .. ,. 5-57
minit , ... , , .. , .. , .. ,',., ... ,.... 5-58

mktime ... , ... , ... , .. , ... , , .. ".".,"",., ... ,.... 5-59
modf , , ,.,..... 5-60
movmem .. , . , . , , .. , , . , , , .. , .. , , .. , , . , , .. , . ,. 5-61
pow ... ,',." , ... , .. , 5-62
qsort , ... , , "." ,. 5-63

rand , . , . , , .. , , ... , . , , .. , , .. , , . , , . , , , . , , , , , . , , .. , , .. , 5-64
realloe , , , , . , , .. , 5-65
sin ... , , ,., ... " "....... 5-66
sinh , ... , ,." , , 5-67
sqrt , , .. ,.,',., .. " , 5-68

srand , , , ... , .. , ... , ... , , .. , , 5-64
streat . , , , .. , .. , , .. , .. , ... , 5-69
strehr , , , , 5-70
stremp , , ... , 5-71
streoll , , 5-71

strepy ,................................. 5-72
strespn ... 5-73
strerror ... 5-74
stritime .. ,...... 5-75
strlen ... 5-76

strneat .. 5-77
strnemp .. 5-78
strnepy , .. , 5-78
strpbrk .. 5-80
strrch .. 5-81

strspn , ... ,..................................... 5-82
strstr , , .. , ".,......... 5-83
strtod .. 5-84
strtok , 5-85
strtol ... 5-84

strtoul ... ,.. 5-84
tan ... , 5-86
tanh , , .. , , , 5-87
time .. 5-88
toaseii , ... , , ,................ 5-89

tolower , ,..... 5-90
toupper ... 5-90
va_arg , , 5-91
va end , , ... , 5-91
va=start .. 5-91

5-17

abort Abnormal Termination

Syntax #include <stdlib.h>

void abort()

Defined in exit. c in rts. src

Description The abort function usually terminates a program with an error code. The
TMS320C30 implementation of the abort function calls the exit function with
a value of 0, and is defined as follows:

5-18

void abort ()
{

exit(O);

This makes the abort function functionally equivalent to the exit function.

Runtime-Support Functions

Syntax #include <stdlib.h>

int abs(j)
int j;

long int labs(k)
long int k;

Absolute Value abs/labs

Defined in abs. c in rts. src

Description The C compiler supports two functions that return the absolute value of an
integer:

Q The abs function returns the absolute value of an integer, j.

Q The labs function returns the absolute value of a long integer, k.

Since intand long intare functionally equivalent types in TMS320C30 C, the
abs and labs functions are also functionally equivalent.

5-19

acos Arc Consine

Syntax #include <math.h>

double acos(x)
double x;

Defined in asin. obj in rts . lib

Description The acos function returns the arc cosine of a floating-point argument; x. x

must be in the range [-1,1]. The return value is an angle in the range [O,1t]
radians.

Example

5-20

double realval, radians;

return (rrealval = 1.0;
radians = acos(realval)i

return (radians); /* acos return 1t/2 */

Runtime-Support Functions

Syntax #include <time.h>

char *asctime(timeptr)
struct tm *timeptr;

Internal Time to String asctime

Defined in asctime. c in rts. src

Description The asctime function converts a broken-down time into a string with the
following form:

Mon Jan 11 11:18:36 1988 \n\O

The function returns a pointer to the converted string.

For more information about the functions and types that the time. h header
declares, refer to Section 5.1.10 on page 5-8.

5-21

asin Arc Sine

Syntax #include <math.h>

doub~e asin(x)
double X;

Defined in asin. obj in rts . lib

Description The asin function returns the arc sine of a floating-point argument; x. X must
be in the range [-1,1]. The return value is an angle in the range [-1tI2,1t/2]
radians.

Example double realval, radians;

realval = 1.0;

radians = asin(realval); /* asin returns 1t/2 */

5-22 Runtime-Support Functions

Syntax #include <assert.h>

void assert (expression)
int expression;

Insert Diagnostic Information Macro assert

Defined in assert.h as macros

Description The assert macro tests an expression; depending on the value of the ex­
pression, assert either aborts execution and issues a message or continues
execution. This macro is useful for debugging.

Example

I:l If expression is false, the assert macro writes information about the
particular call that failed to the standard output, and then aborts
execution.

I:l If expression is true, the assert macro does nothing.

The header file that declares the assert macro refers to another macro,
NDEBUG. If you have defined NDEBUG as a macro name when the as­
sert . h header is included in the source file, then the assert macro is defined
as:

#define assert (ignore)

If NDEBUG is not defined when assert. h is included, then the assert macro
is defined as:

#define assert (expr) \
if (! (expr» {

printf("Assertion failed, (expr), file %5,
line %d\n", FILE LINE __)

abort (); }

In this example, an integer i is divided by another integer j. Since dividing
by 0 is an illegal operation, the example uses the assert macro to test j be­
fore the division. If j= =0, assert issues a message and aborts the program.

int i, j;
assert(j);
q = i/j;

5-23

atan Polar Arc Tangent

Syntax #include <math. h>

double atan(x)
double x;

Defined in atan.obj in rts . lib

Description The atan function returns the arc tangent of a floating-point argument, x.

The return value is an angle in the range [-1t/2,1tI2] radians.

Example double realval, radians;

realval = 0.0;
radians = atan(realval); /* return value a */

5-24 Runtime-Support Functions

Syntax #include <math.h>

double atan2(y, x)
double y, x;

Defined in atan. obj in rts.lib

Cartesian Arc Tangent atan2

Description The atan2 function returns the inverse tangent of y 1 x. The function uses the
signs of the arguments to determine the quadrant of the return value. Both
arguments cannot be O. The return value is an angle in the range [-n,n]
radians.

Example double rvalu, rvalv;

double radians;

rvalu = 0.0;
rvalv = 1.0;
radians = atan2(rvalr, rvalu); 1* return value 0 *1

5-25

atexit Register Function Called by Exit ()

Syntax #include <stdlib.h>

void atexit(fun)
void (*fun) () ;

Defined in exi t. c in rts. src

Description The atexit function registers the function that is pointed to by fun, to be
called without arguments at normal program termination. Up to 32 functions
can be registered.

When the program exits through a call to the exit function, the functions that
were registered are called, without arguments, in reverse order of their
registration.

5-26 Runtime-Support Functions

Syntax #include <stdlib.h>

double atof(nptr)
char *nptr;

int atoi(nptr)
char *nptr;

long int atol(nptr)
char *nptr;

String to Number atof/atoi/atoI

Defined in atof . c and atoi. c in rts. src

Description Three functions convert strings to numeric representations:

[J The atof function converts a string to a floating-point value. Argument
nptr pOints to the string; the string must have the following format:

[space] [sign] digits [.digits] retE [sign] integer]

[J The atoi function converts a string to an integer. Argument nptr points
to the string; the string must have the following format:

[space] [sign] digits

[J The atol function converts a string to a long integer. Argument nptr
points to the string; the string must have the following format:

[space] [sign] digits

The space is indicated by a space (character), a horizontal or vertical tab,
a carriage return, a form feed, or a newline. Following the space is an option­
al sign, and then digits that represent the integer portion of the number. The
fractional part ofthe number follows, then the exponent, including an option­
al sign.

The first character that cannot be part of the number terminates the string.

Since intand /ongare functionally equivalent in TMS320C30 C, the atoi and
atol functions are also functionally equivalent.

The functions do not handle any overflow resulting from the conversion.

5-27

bsearch Array Search

Syntax #include <stdlib.h>

void *bsearch(key, base, nmemb, size, compar)
void *key, *base;
size t nmemb, size;
int - (*compar) ();

Defined in bsearch. c in rts. src

Description The bsearch function searches through an array of nmemb objects for a
member that matches the object that key points to. Argument base points
to the first member in the array; size specifies the size (in bytes) of each
member.

5-28

The contents of the array must be in ascending, sorted order. If a match is
found, the function returns a pointer to the matching member of the array;
if no match is found, the function returns a null pointer (0).

Argument compar points to a function that compares key to the array
elements. The comparison function should be declared as:

int cmp(ptrl, ptr2)
void *ptrl, *ptr2;

The cmp function compares the objects that prt 1 and ptr2 point to and re­
turns one of the following values:

< 0 if *ptrl is less than *ptr2.
o if *ptrl is equal to *ptr2.

> 0 if *ptrl is greater than *ptr2.

Runtime-Support Functions

Allocate and Clear Memory calloc

Syntax #include <stdlib.h>
void *ca~~oc(nmemb, size)

size t nmemb; /* number of items to allocate */
size=t size; /* size (in bytes) of each item */

Defined in memory. c in rts. src

Description The calloc function allocates size bytes for each of nmemb objects and re­
turns a pointer to the space. The function initializes the allocated memory
to all Os. If it cannot allocate the memory (that is, if it runs out of memory),
it returns a null pointer (0).

Example

The memory that calloc uses is in a special memory pool or heap. An assem­
bly language module called sysmem. asmdefines this memory pool as unini­
tialized named section called. sysmem. The constant __ SYSMEM_SIZE de­
fines the size of the heap as 2048 words. If necessary, you can change the
size of the heap by changing the value of __ SYSMEM_SIZE and reassem­
bling sysmem. asm. For more information, refer to Section 4.1.4, Dynamic
Memory Allocation, on page 4-6.

This example uses the calloc routine to allocate and clear 10 bytes.

prt = calloc (10,2) ; /*Allocate and clear 20 bytes */

5-29

ceil Ceiling

Syntax #include <math.h>

double ceil(x)
double X;

Defined in floor. obj in rts . lib

Description The ceil function returns a floating-point number that represents the small­
est integer greater than or equal to x.

Example extern double ceil();

double answer;

answer = ceil(3.141S); /* answer 4.0 */

answer = ceil(-3.S); /* answer -3.0 */

5-30 Runtime-Support Functions

Syntax #include <time.h>

clock _ t clock ()

Defined in clock.c in rts. src

Processor Time clock

Description The clock function determines the amount of processor time used. It returns
an approximation of the processor time used by a program since the pro­
gram began running. The time in seconds is the return value divided by the
value of the macro CLK_ TCK.

If the processor time is not available or cannot be represented, the clock
function returns the value of (clock_t) -1.

Note:

The clock function is target-system specific, so you must write your own
clock function. You must also define the CLK_ TCK macro according to the
granularity of your clock, so that the value returned by clock () (number of
clock ticks) can be divided by CLK_ TCK to produce a value in seconds.

For more information about the functions and types that the time. h header
declares, refer to Section 5.1.10 on page 5-8.

5-31

COS Cosine

Syntax #include <math.h>

double eos(x)
double X;

Defined in sin. ob j in rt s . lib

Description The cos function returns the cosine of a floating-point number, x. X is an
angle expressed in radians. An argument with a large magnitude may
produce a result with little or no significance.

Example

5-32

double radians, cval;
radians = 3.1415927;

eval = eos(radians);

/* cos returns cval */

/* return value = -1.0 */

Runtime-Support Functions

Syntax #include <math.h>

doub1e cosh(x)
double x;

Defined in sinh.obj in rts.lib

Hyperbolic Cosine cosh
SIS ...

Description The cosh function returns the hyperbolic cosine of a floating-point number,
x. A range error occurs if the magnitude of the argument is too large.

Example double x, y;

X = 0.0;
y = cosh(x); /* return value 1.0 */

5-33

ctime Calendar Time

Syntax #include <time.h>

char *ct~(timer)

time_t *timeri

Defined in ctime. c in rts. src

Description The ctime function converts a calendar time (pointed to by timer) to local
time, in the form of a string. This is equivalent to:
asctime(localtime(timer))

5-34

The function returns the pointer returned by the asctime function with that
broken-down time as an argument.

For more information about the functions and types that the time. h header
declares, refer to Section 5.1.10 on page 5-8.

Runtime-Support Functions

Syntax #include <time.h>

double difft~(t~l, t~O)

time_t timel, timeD;

Time Difference difftime

Defined in difftime. c in rts. src

Description The difftime function calculates the difference between two calendar times,
timel minus timeD. The return value expresses seconds.

For more information about the functions and types that the time. h header
declares, refer to Section 5.1.10 on page 5-8.

5-35

div/ldiv Division

Syntax #include <stdlib.h>

div t div(numer, denom)
int numer, denomi

l.div t l.div(numer, denom)
long int numer, denomi

Defined in di v. c in rts. src

Description Two functions support integer division by returning numer divided by denom.

5-36

You can use these functions to get both the quotient and the remainder in
a single operation.

Q The dlv function performs integer division. The input arguments are in­
tegers; the function returns the quotient and the remainder in a structure
of type div_t. The structure is defined as follows:

typedef struct
{

int quoti /* quotient */
int remi /* remainder */

div_ti

Q The Idlv function performs long integer division. The input arguments
are long integers; the function returns the quotient and the remainder
in a structure of type Idiv_t. The structure is defined as follows:

typedef struct
{

long int quoti
long int remi

ldiv_ti

/* quotient */
/* remainder */

If the division produces a remainder, then the sign of the quotient is the same
as the algebraic quotient, and the magnitude of the resulting quotient is the
largest integer less than the magnitude of the algebraic quotient.

Since ints and longs are equivalent types in TMS320C30 C, these functions
are also equivalent.

Runtime-Support Functions

Syntax #include <stdlib.h>

void exit (status)
int status;

Normal Termination exit

Defined in exit. c in rts. src

Description The exit function terminates a program normally. All functions registered by
the atexit function are called, in reverse order of their registration.

You can modify the exit function to perform application-specific shutdown
tasks. The unmodified function simply runs in an infinite loop until the sys­
tem is reset.

Note that the exit function cannot return to its caller.

5-37

exp Exponential

Syntax #include <math.h>

doubl.e exp (x)
double x;

Defined in exp . ob j in rt s . lib

Description The exp function returns the exponential function of real number x. The re­
turn value is the number e raised to the power x. A range error occurs if the
magnitude of x is too large.

Example

5-38

double x, y;

x = 2.0;
Y = exp(x); /* y 7.38, which is e**2.0 */

Runtime-Support Functions

Syntax #include <math.h>

double fabs(x)
double X;

Defined in fabs. obj in rts .lib

Absolute Value fabs

Description The fabs function returns the absolute value of a floating-point number, x.

Example double X, y;

X = -57.5;
y = fabs (x); /* return value +57.5 */

5-39

floor Floor

Syntax #include <math.h>

doub~e f~oor(x)

double X;

Defined in floor. obj in rts . lib

Description The floor function returns a floating-point number that represents the larg­
est integer less than or equal to x.

Example

5-40

double answer;

answer = f~oor(3.1415);
answer = f~oor(-3.5);

/* answer 3.0 */
1* answer -4.0 */

Runtime-Support Functions

Syntax #include <math.h>

double £mod(x, y)
double x, y;

Defined in fmod. ob j in rt s . lib

Floating-Point Remainder fmod

Description The fmod function returns the floating-point remainder of x divided by y. If
y= =0, the function returns O.

Example double x, y, r;

x = 11.0;
y = 5.0;
r = £mod(x, y); /* fmod returns 1.0 */

5-41

free Deallocate Memory

Syntax #include <stdlib.h>

void free (ptr)
void *ptr;

Defined in memory. c in rts. src

Description The free function deallocates memory space (pointed to by ptr) that was
previously allocated by a malloc, calloc, or realloc call. This makes the
memory space available again. If you attempt to free unallocated space, the
function takes no action and returns. For more information, refer to Section
4.1.4, Dynamic Memory Allocation, on page 4-6.

Example This example allocates 10 bytes and then frees them.

5-42

char *x;
x = malloc (10);
free(x);

/* allocate 10 bytes */
/* free 10 bytes */

Runtime-Support Functions

Syntax #include <math.h>
double frexp(value, exp)

Fraction and Exponent

double value; /* input floating-point number */
int *expi /* pointer to exponent */

Defined in frexp. obj in rts . lib

frexp

Description The frexp function breaks a floating-point number into a normalized fraction
and an integer power of 2. The function returns a value with a magnitude
in the range (1/2,1) or 0, so that val ue = = x X 2(**exp). The frexp function
stores the power in the int pointed to byexp. If val ue is 0, both parts of the
result are 0.

Example double fraction;
int exp;

fraction = frexp(3.0, &exp);

/* after execution, fraction is .75 and exp is 2 */

5-43

gmtime Greenwich Mean Time

Syntax #include <time.h>

struct tm *gmtime(timer)
time t *timer;

Defined in gmtime. c in rts. src

Description The gmtime function converts a calendar time (pointed to by timer) into a
broken-down time, which is expressed as Greenwich Mean Time.

5-44

For more information about the functions and types that the time. h header
declares, refer to Section 5.1.10 on page 5-8.

Runtime-Support Functions

Character Typing isxxx
----------=-----=---====----==----~~~~~.

Syntax #include <ctype.h>

int isalnum(c)
char c;

int isalpha(c)
char c;

int isascii(c)
char c;

int iscntrl(c)
char c;

int isdigit(c)
char c;

int isgraph(c)
char c;

int islower(c)
char c;

int isprint(c)
char c;

int ispunct(c)
char c;

int isspace(c)
char c;

int isupper(c)
char c;

int isxdigit(c)
char c;

Defined in isxxx. c and ctype. c in rts. src

Also defined in ctype. h as macros

Description These functions test a single argument c to see if it is a particular type of
character-alphabetic, alphanumeric, numeric, ASCII, etc. If the test is true
(the character is the type of character that it was tested to be), the function
returns a nonzero value; if the test is false, the function returns O. The char­
acter typing functions include:

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

identifies alphanumeric ASCII characters (tests for any char­
acter for which isalpha or isdigit is true).

identifies alphabetic ASCII characters (tests for any character
for which islower or isupper is true).

identifies ASC II characters (any character between 0-127).

identifies control characters (ASCII characters 0-31 and
127).

identifies numeric characters ('0'- '9')

identifies any non-space character.

5-45

isxxx Character Typing

5-46

islower

isprint

ispunct

isspace

isupper

isxdigit

identifies lowercase alphabetic ASCII characters.

identifies printable ASCII characters, including spaces (ASCII
characters 32-126).

identifies ASCII punctuation characters.

identifies ASCII spacebar, tab (horizontal or vertical), carriage
return, formfeed, and newline characters.

identifies uppercase ASCII alphabetic characters.

identifies hexadecimal digits (0-9, a-f, A-F).

The C compiler also supports a set of macros that perform these same func­
tions. The macros have the same names as the functions, but are prefixed
with an underscore; for example, _isascii is the macro equivalent of the
isascii function. In general, the macros execute more efficiently than the
functions.

Runtime-Support Functions

Syntax #include <math.h>

double ldexp (x, exp)
double X;
int exp;

Defined in ldexp. obj in rts . lib

Multiply by a Power of Two Idexp

Description The Idexp function multiplies a floating-point number by a power of 2 and
returns x X 2exp. exp can be a negative or a positive value. A range error
may occur if the result is too large.

Example double result;

result = ldexp(1.5, 5); /* result is 48.0 */

result = ldexp(6.0, -3); /* result is 0.75 */

5-47

localtime Local Time

Syntax #include <time.h>

struct tm *1oca1t~(t~r)

time_t *timer;

Defined in localtime. c in rts. src

Description The local time function converts a calendar time (pointed to by timer) into
a broken-down time, which is expressed as local time. The function returns
a pointer to the converted time.

5-48

For more information about the functions and types that the time. h header
declares, refer to Section 5.1.10 on page 5-8.

Runtime-Support Functions

Syntax #include <math.h>

double loq(x)
double x;

Defined in log. obj in rts . lib

Natural Logarithm log
f% ~x::::::::::~

Description The log function returns the natural logarithm of a real number, x. A domain
error occurs if x is negative; a range error occurs if x is O.

Description float x, y;

x = 2. 7l8282;
y = loq(x); /* Return value 1. 0 */

5-49

log10 Common Logarithm

Syntax #include <math.h>

doubl.e l.oglO(x)
double x;

Defined in log. ob j in rt s . lib

Description The log10 function returns the base-10 logarithm of a real number, x. A
domain error occurs if x is negative; a range error occurs if x is o.

Example

5-50

float x, y;

x = 10.0;
Y = l.og(x); /* Return value 1. a */

Runtime-Support Functions

Long Integer to ASCII Itoa

Syntax #include <stdlib.h>

int ltoa(n, buffer)
long n; /* number to convert */
char *buffer; /* buffer to put result in */

Defined in ltoa. c in rts. src

Description The Itoa function converts a long integer to the equivalent ASCII string. If
the input number n is negative, a leading minus sign is output. The Ito a
function returns the number of characters placed in the buffer.

5-51

malloe Allocate Memory

Syntax #include <stdlib.h>

void *malloc(size)
size_t size; /* size of block in bytes */

Defined in memory. c in rts. src

Description The malloc function allocates space for an object of size bytes and returns
a pointer to the space. If malloc cannot allocate the packet (that is, if it runs
out of memory), it returns a null pointer (0). This function does not modify
the memory it allocates.

5-52

The memory that malloc uses is in a special memory pool or heap. An as­
sembly language module called sysmem. asm defines this memory pool as
uninitialized named section called . sysmem. The constant SYS­

MEM_SIZE defines the size of the heap as 2048 words. If necessary, you can
change the size of the heap by changing the value of __ SYSMEM _SIZE and
reassembling sysmem. asm. For more information, refer to Section 4.1.4, Dy­
namic Memory Allocation, on page 4-6.

Runtime-Support Functions

Syntax #include <string.h>

void *memchr(s, c, n)
void *s;
char c;
size t n;

Find First Occurrence of Byte memchr

Defined in memchr. c in rts. src

Description The memchr function finds the first occurrence of c in the first n characters
of the object that s points to. If the character is found, memchr returns a
pointer to the located character; otherwise, it returns a null pointer (0).

The memchr function is similar to strchr, except the object that memchr
searches can contain values of 0, and c can be o.

5-53

memcmp Memory Compare

Syntax #include <string.h>

int memcmp(sl, s2, n)
void *sl, *s2;
size_t n;

Defined in memcmp. c in rts. src

Description The memcmp function compares the first n characters of the object that s2
points to with the object that sl points to. The function returns one of the
following values:

< 0 if *sl is less than *s2.
o if *sl is equal to *s2.

> 0 if * sl is greater than * s2.

The memcmp function is similar to strncmp, except the objects that
memcmp compares can contain values of O.

5-54 Runtime-Support Functions

Syntax

Memory Block Copy - Nonoverlapping

#include <8tring.h>

void *memcpy(sl, s2, n)
void *81, *82;
8ize_t n;

memcpy

Defined in memrnov. c in rt 8 . 8 rc

Description The memcpy function copies n characters from the object that 82 points to
into the object that 81 points to. If you attempt to copy characters of overlap­
ping objects, the function's behavior is undefined. The function returns the
value of 8l.

The memcpy function is similar to strncpy, except the objects that memcpy
copies can contain values of O.

5-55

memmove Memory Block Copy - Overlapping

Syntax #include <string.h>

void *memmove(sl, s2, n)
void *81, *82;
size_t n;

Defined in memmov. c in rts. src

Description The memmove function moves n characters from the object that s2 points
to into the object that 81 points to; the function returns the value of s1. The
memmove function correctly copies characters between overlapping
objects.

5-56 Runtime-Support Functions

Syntax #include <string.h>

void *memset(s, 0, n)
void *s;
char c;
size t n;

Defined in memset. c in rts. src

Duplicate Value in Memory memset

Description The memset function copies the value of c into the first n characters of the
object that s points to. The function returns the value of s.

5-57

minit Reset Dynamic Memory Pool

Syntax #include <stdlib.h>
void mini t ()

Defined in memory. c in rts. src

Description The minit function resets all the space that was previously allocated by calls
to themalloc.calloc. or realloc functions.

5-58

Note:

Calling the minit function makes all the memory space in the heap available
again. Any objects that you allocated previously will be lost; don't try
to access them.

The memory that minit uses is in a special memory pool or heap. An assem­
bly language module called sysmem. asmdefines this memory pool as unini­
tialized named section called. sysmem. The constant __ SYSMEM_S1ZE de­
fines the size of the heap as 2048 words. If necessary, you can change the
size of the heap by changing the value of __ SYSMEM _ S1 ZE and reassem­
bling sysmem. asm. For more information, refer to Section 4.1.4, Dynamic
Memory Allocation, on page 4-6.

Runtime-Support Functions

Syntax #include <time.h>

time _ t *mktime (timeptr)
struct tm *timeptr;

Convert to Calender Time mktime

Defined in mktime. c in rts. src

Description The mktime function converts a broken-down time, expressed as local time,
into proper calendar time. The timeptr argument points to a structure that
holds the broken-down time.

Example

The function ignores the original values of tm _ wday and tm .3day and does
not restrict the other values in the structure. After successful completion of
time conversions, tm _ wday and tm _yday are set appropriately, and the other
components in the structure have values within the restricted ranges. The
final value Oftm_mday is not sent until tm_mon and tm_year are determined.

The return value is encoded as a value of type time_t. If the calendar time
cannot be represented, the function returns the value -1.

This example determines the day of the week that July 4, 2001, falls on.

#include <time.h>
static const char *const wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday" I;

struct tm time_str;

time_str.tm_year 2001 - 1900;
time str.tm mon 7;
time-str.tm-mday 4;
time-str.tm-hour 0;
time str.tm min 0;
time-str.tm-sec 1;
time-str.tm-isdst 1;

mktime(&time_str);

printf ("result is %s\n", wday[time_str.tm_wday]);

/* After calling this function, time str.tm wday
contains the day of the week for-July 4~ 2001 */

For more information about the functions and types that the time. h header
declares, refer to Section 5.1.10 on page 5-8.

5-59

modf Signed Integer and Fraction

Syntax #include <math.h>

double mod£(value, iptr)
double value;
int *iptr;

Defined in modf. obj in rts . lib

Description The modf function breaks a value into a signed integer and a signed frac­
tion. Each of the two parts has the same sign as the input argument. The
function returns the fractional part of value and stores the integer as a
double at the object pointed to by iptr.

Example double value, ipart, fpart;

value = -3.1415;

£part = mod£(value, &ipart);

/* After execution, ipart contains -3.0, */
/* and fpart contains -0.1415. */

5-60 Runtime-Support Functions

Move Memory movmem

Syntax #include <stdlib.h>

char *movmem(src,dest,count)
char *src ; /* source address */
char *dest; /* destination address */
char count; /* number of bytes to move */

Defined in movmem. c in rts. src

Description The movmem function moves count bytes of memory from the object that
src points to into the object that dest points to. The source and destination
areas can be overlapping.

5-61

pow Raise to a Power

Syntax #include <math.h>

double pow (x, y)
double x, y; /* Raise x to power y */

Defined in pow. ob j in rt s . lib

Description The pow function returns x raised to the power y. A domain error occurs if
x = 0 and y ;5; 0, or if x is negative and y is not an integer. A range error
may occur.

Example

5-62

double x, y, z;

x = 2.0;
y = 3.0;
x = pow(x, y); /* return value 8.0 */

Runtime-Support Functions

Syntax #include <stdlib.h>

void qsort (base, nmemb, size, compar)
void *base;
size_t nmemb, size;
int (*compar) ();

Array Sort qsort

Defined in qsort. c in rts. src

Description The qsort function sorts an array of nmemb members. Argument base points
to the first member of the unsorted array; argument size specifies the size
of each member.

This function sorts the array in ascending order.

Argument compar pOints to a function that compares key to the array
elements. The comparison function should be declared as:

int cmp(ptrl, ptr2)
void *ptrl, *ptr2;

The cmp function compares the objects that ptrl and ptr2 point to and re­
turns one of the following values:

< 0 if *ptrl is less than *ptr2.
o if *ptrl is equal to *ptr2.

> 0 if *ptrl is greater than *ptr2.

5-63

rand/srand Random Integer
·~;:y..m.~="""_~r_'-= __ -=_~;"""" __ -= _____ -= __ -= __ == __ -= __ _

Syntax #include <stdlib.h>

int rand ()

void srand(seed)
unsigned int seed;

Defined in rand. c in rt s . src

Description Two functions work together to provide pseudo-random sequence
generation:

5-64

Q The rand function returns pseudo-random integers in the range
O-RAND_MAX.

Q The srand function sets the value of seed SO that a subsequent call to
the rand function produces a new sequence of pseudo-random num­
bers. The srand function does not return a value.

If you call rand before calling srand, rand generates the same sequence it
wou Id produce if you first called srand with a seed value of 1 . If you call srand
with the same seed value, rand generates the same sequence of numbers.

Runtime-Support Functions

Change Heap Size realloc
~j'(s!*,::.1 ~:::::::::::::::w~~m~:;mS!.;:;:;m'~~~~::?':-~~_~~~=-> __ _

Syntax #include <stdlib.h>

void *realloc(ptr, size)
void *ptr; /* pointer to object to change */
size_t size; /* new size (in bytes) of packet */

Defined in memory. c in rts. src

Description The realloc function changes the size of the allocated memory pointed to
by ptr, to the size specified in bytes by size. The contents of the memory
space (up to the lesser of the old and new sizes) is not changed.

[l If ptr is 0, then realloc behaves like malloc.

[l If ptr points to unallocated space, the function takes no action and
returns.

[l If the space cannot be allocated, the original memory space is not
changed and realloc returns O.

[l If size=O and ptr is not null, then realloc frees the space that ptr
points to.

If, in order to allocate more space, the entire object must be moved, realloc
returns a pointer to the new space. Any memory freed by this operation is
deallocated. If an error occurs, the function returns a null pointer (0).

The memory that realloc uses is in a special memory pool or heap. An as­
sembly language module called sysmem. asm defines this memory pool as
uninitialized named section called . sysmem. The constant __ SYS­
MEM _ SIZE defines the size of the heap as 2048 words. If necessary, you can
change the size ofthe heap by changing the value of __ SYSMEM _SIZE and
reassembling sysmem. asm. For more information, refer to Section 4.1.4, Dy­
namic Memory Allocation, on page 4-6.

5-65

sin Sine

Syntax #include <math.h>

doubl.e sin (x)
double x;

Defined in sin.obj in rts.lib

Description The sin function returns the sine of a floating-point number, x. x is an angle
expressed in radians. An argument with a large magnitude may produce a
result with little or no significance.

Example

5-66

double radian, sval; /* sval is returned by sin */

radian = 3.1415927;
sval = sin(radian); /* -1 is returned by sin */

Runtime-Support Functions

Syntax #include <rnath.h>

double s:i.nh(x)
double X;

Defined in sinh. obj in rts . lib

Hyperbolic Sine sinh

Description The sinh function returns the hyperbolic sine of a floating-point number, x.
A range error occurs if the magnitude of the argument is too large.

Example double X, y;

X = 0.0;
y = s:i.nh(x); /* return value 0.0 */

5-67

sqrt Square Root

Syntax #include <math.h>

doub~e sqrt (x)
double Xi

Defined in sqrt. obj in rts . lib

Description The sqrt function returns the nonnegative square root of a real number x.
A domain error occurs if the argument is negative.

Example double X, y;

x = 100.0;
y = sqrt (x); /* return value 10.0 */

5-68 Runtime-Support Functions

Syntax #include <5tring.h>

char *strcat(sl, s2)
char *51, *52;

Defined in 5trcat. c in rt5. 5rc

Concatenate Strings strcat

Description The strcat function appends a copy of 52 (including a terminating null char­
acter) to the end of 51. The initial character of 52 overwrites the null charac­
ter that originally terminated 51. The function returns the value of 51.

5-69

strchr Find First Occurrence of Character

Syntax #include <string.h>

char *strchr(s, c)
char *Si
char Ci

Defined in strchr. c in rts. src

Description The strchrfunction finds the first occurrence of c in s.lf strchrfinds the char­
acter, it returns a pointer to the character; otherwise, it returns a null pointer
(0).

5-70 Runtime-Support Functions

Syntax #include <8tring.h>

int strcoll(sl, s2)
char *81, *82;

int strcmp(sl, s2)
char *81, *82;

Defined in 8trcmp. c in rt8. 8rc

String Compare strcmp/strcoll

Description The strcmp and strcoll functions compare 82 with 81. The functions are
equivalent; both functions are supported to provide compatibility with ANSI
c.
The functions return one of the following values:

< 0 if *81 is less than *82.
o if *81 is equal to *82.

> 0 if *81 is greater than *82.

5-71

strcpy String Copy

Syntax #include <string.h>

char *strcpy(sl, s2)
char *sl, *s2;

Defined in strcpy. c in rts. src

Description The strcpy function copies s2 (including a terminating null character) into
s1. If you attempt to copy strings that overlap, the function's behavior is
undefined. The function returns a pointer to s1.

5-72 Runtime-Support Functions

Find Number of Unmatching Characters

Syntax #include <string.h>

size_t strcspn(sl, s2)
char *sl, *s2;

Defined in strcspn. c in rts. src

strcspn

Description The strcspn function returns the length of the initial segment of 81, which
is entirely made up of characters that are not in 82. If the first character in
81 is in s2, the function returns o.

5-73

strerror String Error

Syntax #include <string.h>

char *strerror(errnum)
int errnUffii

Defined in strerror. c in rts. src

Description The strerror function returns the string "function error". This function
is supplied to provide ANSI compatibility.

5-74 Runtime-Support Functions

Syntax

Format Time

#include <time.h>
size_t *strftime(s, maxsize, format, timeptr)

char *s, *format;
size_t maxsize;
struct tm *timeptr;

strftime

Defined in strftime. c in rts. src

Description The strftime function formats a time (pointed to by timeptr) according to
a format string, and returns the formatted time inthe string s. UptOmaxsize
characters can be written to s. The format parameter is a string of charac­
ters that tells the strftime function how to format the time; the following list
shows the valid characters and describes what each character expands to.

Character is rep/aced by ...
%a the abbreviated weekday name (Mon, Tue, ...)
%A the full weekday name
%b the abbreviated month name (Jan, Feb, ...)
%8 the locale's full month name
%c the date and time representation
%d the day of the month as a decimal number (0-31)
%H the hour (24-hour clock) as a decimal number (00-23)
%1 the hour (12-hour clock) as a decimal number (01-12)
%j the day of the year as a decimal number (001-366)
%m the month as a decimal number (01-12)
%M the minute as a decimal number (00-59)
%p the locale's equivalent of either AM or PM
%S the second as a decimal number (00-50)
%U the week number of the year (Sunday is the first day of the week) as a

decimal number (00-52)
%x the date representation
%X the time representation
%y the year without century as a decimal number (00-99)
% Y the year with century as a decimal number
%Z the time zone name, or by no characters if no time zone exists

For more information about the functions and types that the time. h header
declares, refer to Section 5.1.10 on page 5-8.

5-75

strlen Find String Length

Syntax #include <string.h>

size_t strl.en(s)
char *s;

Defined in strlen. c in rts. src

Description The strlen function returns the length of s. In C, a character string is termi­
nated by the first byte with a value of 0 (a null character). The returned result
does not include the terminating null character.

5-76 Runtime-Support Functions

Syntax #inc1ude <5tring.h>

char *strncat(sl, s2, n)
char *51, *52;
5ize_t n;

Defined in 5trncat. c in rt5. 5rc

Concatenate Strings strneat

Description The strncat function appends up to n characters of 52 (including a terminat­
ing null character) to the end of 51. The initial character of 52 overwrites the
null character that originally terminated 51; strncat appends a null character
to result. The function returns the value of 51.

5-77

strncmp Compare Strings

Syntax #include <string.h>

int strncmp(sl, 82, n)
char *sl, *s2;
size_t n;

Defined in strncmp. c in rts. src

Description The strncmp function compares up to n characters of s2 with s1. The
function returns one of the following values:

< 0 if *sl is less than *s2.
Oif *sl is equal to *s2.

> 0 if *sl is greater than *s2.

5-78 Runtime-Support Functions

Syntax #include <string.h>
char *strncpy(sl, s2, n)

char *sl, *s2;
size_t n;

Defined in strncpy. c in rts. src

String Copy strncpy

Description The strncpyfunction copies upto n characters from s2 into s1.lf s2 is nchar­
acters long or longer, the null character that terminates s2 is not copied. If
you attempt to copy characters from overlapping strings, the function's be­
havior is undefined. If s2 is shorter than n characters, strncpy appends null
characters to sl so that sl contains n characters. The function returns the
value of s1.

5-79

strpbrk Find Any Matching Character

Syntax #include <string.h>

char *strpbrk(sl, s2)
char *sl, *s2;

Defined in strpbrk. c in rts. src

Description The strpbrk function locates the first occurrence in sl of anycharacter in s2.

5-80

If strpbrk finds a matching character, it returns a pointer to that character;
otherwise, it returns a null pointer (0).

Runtime-Support Functions

Syntax #include <string.h>

char *strrchr(s ,c)
char *s;
int c;

Defined in strrchr. c in rts . src

Find Last Occurrence of Character strrchr

Description The strrchr function finds the last occurrence of c in s. If strrchr finds the
character, it returns a pointer to the character; otherwise, it returns a null
pointer (0).

5-81

strspn Find Number of Matching Characters

Syntax #include <string.h>

size t *strspn(sl, s2)
int *sl, *s2;

Defined in strspn. c in rts. src

Description The strspn function returns the length of the initial segment of sl which is
entirely made up of characters in s2. If the first character of sl is not in s2,
the strspn function returns O.

5-82 Runtime-Support Functions

Syntax #inc1ude <string.h>

char *strstr(sl, s2)
char *sl, *s2;

Defined in strstr. c in rts. src

Find Matching String strstr

Description The strstrfunction finds the first occurrence of s2 in sl (excluding the termi­
nating null character). If strstr finds the matching string, it returns a pointer
to the located string; if it doesn't find the string, it returns a null pointer. If s2

pointsto a string with length 0, then strstr returns s1.

5-83

strtod/strtol/strtoul String to Number

Syntax

sw

#include <stdlib.h>

doub1e strtod(nptr, endptr)
char *nptr;
char **endptr;

10ng int strto1(nptr, endptr, base)
char *nptr;
char **endptr;
int base;

unsigned long int strtou1(nptr, endptr, base)
char *nptr;
char **endptr;
int base;

Defined in strtod.cin rts.src

strtol. c in rts. src
strtoul. c in rts. src

Description Three functions convert ASCII strings to numeric values. For each function,
argument nptr points to the original string. Argument endptr points to a
pointer; the functions set this pointer to point to the first character after the
converted string.The functions that convert to integers also have a third ar­
gument, base.

5-84

El The strtod function converts a string to a floating-point value. The string
must have the following format:
[space] [sign] digits [.digits] [elE [sign] integer]
The function returns the converted string; ifthe original string is empty or
does not have the correct format, the function returns a o. If the con­
verted string would cause an overflow, the function returns
±HUGE_ VAL; if the converted string would cause an underflow, the
function returns O. If the converted string causes an overflow or an un­
derflow, errno is set to the value of ERANGE.

El The strtol function converts a string to a long integer. The string must
have the following format:
[space] [sign] digits [.digits] [elE [sign] integer]

El The strtoul function converts a string to an unsigned long integer. The
string must be specified in the following format:
[space] [sign] digits [.digits] [elE [sign] integer]

The space is indicated by a spacebar, horizontal or vertical tab, carriage re­
turn, form feed, or newline. Following the space is an optional sign, and then
digits that represent the integer portion of the number. The fractional part
of the number follows, then the exponent, including an optional sign.

The first unrecognized character terminates the string. The pointer that
endptr points to is set to point to this character.

Runtime-Support Functions

Syntax finclude <string.h>

char *strtok(sl, s2)
char *sl, *s2;

Defined in strtok. c in rts. src

Break String into Token strtok

Description Successive calls to the strtok function break sl into a series of tokens, each
delimited by a character from s2. Each call returns a pOinter to the next
token.

5-85

tan Tangent

Syntax #include <math.h>

doubl.e tan (x)
double Xi

Defined in tan. obj in rts . lib

Description The tan function returns the tangent of a floating-point number, x. X is an
angle expressed in radians. An argument with a large magnitude may
produce a result with little or no significance.

Example

5-86

double x, Yi

x = 3.1415927/4.0i
Y = tan(X)i /* return value 1.0 */

Runtime-Support Functions

Syntax #include <math.h>

double tanh (x)
double X;

Defined in tanh.obj in rts.lib

Hyperbolic Tangent tanh

Description The tanh function returns the hyperbolic tangent of a floating-point number,
X.

Example double X, y;

x = 0.0;
y = tanh (x) ; 1* return value 0.0 *1

5-87

time Time

Syntax #include <time.h>

time t time (timer)
time t *timer;

Defined in time. c in rts. src

Description The time function determines the current calendar time, represented in sec­
onds. If the calendar time is not available, the function returns -1. If timer
is not a null pOinter, the function also assigns the return value to the object
that timer points to.

5-88

For more information about the functions and types that the time. h header
declares, refer to Section 5.1.10 on page 5-8.

Note:

The time function is target-system specific, so you must write your own time
function.

Runtime-Support Functions

Syntax #include <ctype.h>

int toascii(c)
char c;

Defined in toascii. c in rts. src

Convert to ASCII toascii

Description The toascii function ensures that c is a valid ASCII character by masking the
lower seven bits. There is also an equivalent macro call_toascii.

5-89

tolower/toupper Convert Case

Syntax #include <ctype.h>

int tolower(c)
char c;

-int toupper(c)
char c;

Defined in tolower. c in rts. scr
toupper. c in rts. src

Description Two functions convert the case of a single alphabetic character, c, to upper
or lower case:

5-90

(J The tolower function converts an uppercase argument to lowercase.
If c is already in lowercase, tolower returns it unchanged.

(J The toupper function converts a lowercase argument to uppercase. If
c is already in uppercase, toupper returns it unchanged.

The functions have macro equivalents named _to lower and _toupper.

Runtime-Support Functions

Variable-Argument Macros/Function va_arg/va_endlva_start ----------""" ~~~~ ~~~

Syntax #include <stdarg.h>

type va arq(ap, type)
voId va end(ap)
void va-start (ap, parmN)
va_list -*ap

Description Some functions can be called with a varying number of arguments that have
varying types. Such a function, called a variable-argument function, can use
the following macros to step through its argument list at run time. The ap pa­
rameter points to an argument in the variable-argument list.

Example

a The va_start macro initializes ap to point to the first argument in an ar­
gument list for the variable-argument function. The parmN parameter
points to the rightmost parameter in the fixed, declared list.

a The va_arg macro returns the value of the next argument in a call to a
variable-argument function. Each time you call va_arg, it modifies ap so
that successive arguments for the variable-argument function can be
returned by successive calls to va_arg (va_arg modifies ap to point to
the next argument in the list). The type parameter is a type name; it is
the type of the current argument in the list.

a The va_end macro resets the stack environment after va_start and
va_arg are used.

Note that you must call va_start to initialize ap before calling va_arg or
va_end.

int printf(fmt) /* Has 1 fixed argument and */

char *fmt /* additional variable arguments */

va list api
va=start(ap, fmt)i

/* Get next arg, an integer */
i = va arg(ap, int)i

/* Get next arg, a string */
s = va arg(ap, char *)i

/* Get next arg, a long */
1 = va_arg(ap, long)i

/* Reset */

5-91

5-92 Runtime-Support Functions

Appendix A

Error Messages
:::l::l::::::::::::m::::::::::::::::lI::::+."!·:~:::"m::::::l.::m::::::,,:::::::::::::::::::::::.: :::I::;::::::::::':~

Compiler error messages are displayed in the following format, which
shows the line number in which the error occurs and the text of the message:

"name.c", line n : error message

These types of errors are not fatal.

Fatal Error messages

The errors listed below cause the compiler to abort immediately.

I:l »cannot allocate sufficient memory

The compiler requires a minimum of 512K bytes of memory to run; this
message indicates that this amount is not available. Supply more dy­
namic RAM.

I:l »can't open "filename" as source

The compiler cannot find the file name as entered. Check for spelling
errors and check to see that the named file actually exists.

I:l »can't open "filename" as intermediate file

The compiler cannot create the output file. This is usually caused by
either an error in the syntax of the filename or a full disk.

I:l »illegal extension "ext" on output file

The intermediate file cannot have a CI. C" extension.

I:l »fatal errors found: no intermediate file produced

This message is printed after an unsuccessful compilation. Correct the
errors (other messages will indicate particular errors) and try compila­
tion again.

I:l »cannot recover from earlier errors: aborting

An error has occurred that prevents the compiler from continuing.

A-1

A-2 Errors

::::::::::::: ::

Appendix B

Preprocessor Directives
• 111m!§. _ i;:wm::::

ieiii!m!:l!ii:! l:~ili::mliii'~ :: ill: 1m i'Sll:: EmE!:iii : %!X"imi'~

The C preprocessor provided with this package is standard and follows Ker­
nighan and Ritchie exactly. This appendix summarizes the directives that
the preprocessor supports. Generally, the directives are organized alpha­
betically, one directive per page; however, related directives (such as
#if/#else) are presented together on one page. Here's an alphabetical table
of contents for the preprocessor directives reference:

Directive Page
#define .. 8-2
#else ... 8-3
#endif .. 8-3
#if .. 8-3
#ifdef .. 8-3
#ifndef ... 8-3
#include .. 8-5
#line ... 8-6
#undef ... 8-2

B-1

#define/#undef DefinelUndefine Macros Directives

Syntax #define name[(arg, ... ,arg)] token-string

#undef name

Description The preprocessor supports two directives for defining and undefining
macros and constants:

Example

8-2

Q The #define directive assigns a string to a macro. Subsequent
occurrences of name are replaced by token-string. The name can be
immediately followed by an argument list; the arguments are separated
by commas, and the list is enclosed in parentheses. Each occurrence
of an argument is replaced by the corresponding set of tokens from the
comma-separated string.

When a macro with arguments is expanded, the arguments are placed
into the expanded token-string unchanged. After the entire token-string
is expanded, the preprocessor scans again for names to expand at the
beginning of the newly created token-string, which allows for nested
macros.

Note that there is no space between name and the open parenthesis at
the beginning of the argument list. A trailing semicolon is not required; if
used, it is treated as part of the token-string.

Q The #undef directive undefines the macro name; that is, it causes the
preprocessor to forget the definition of name.

The following example defines the constant f:

#define f(a,b,c) 3*a+b-c

The following line of code uses the definition of f:

f(27,begin,minus)

This line is expanded to:
3*27+begin-minus

To undefine f, enter:

#undef f

Preprocessor Directives

Syntax

Conditional Processing Directives #if/#ifdef/#ifndef/#else/#endif

#if constant-expression
code to compile if condition is true

[#else
code to compile if condition is false]

#endif

#ifdef name
code to compile if name is defined

[#else
code to compile if name is not definedj

#endif

#ifndef name
code to compile if name is not defined

[#else
code to compile if name is definedj

#end if

Description The C preprocessor supports five conditional processing directives:

a Three directives can begin a conditional block:

• The #if directive tests an expression. The code following an #if
directive (up to an #else or an #endif) is compiled if the constant-ex­
pression evaluates to a nonzero value. All binary non-assignment C
operators, the ?: operator, the unary -, !, and % operators are legal
in constant-expression. The precedence of the operators is the
same as in the definition of the C language. The preprocessor also
supports a unary operator named defined, which can be used in
constant-expression in one of two forms:

1) defined(name) or

2) defined name

This allows the the utility of #ifdef and #ifndef in an #if directive. Only
these operators, integer constants, and names which are known by
the preprocessor should be used in constant-expression. In
particular, the sizeof operator should not be used.

• The #ifdef directive tests to see if name is a defined constant. The
code following an #ifdef directive (up to an #else or an #endif) is
compiled if name is defined (by the #define directive) and it has not
been undefined by the #undef directive.

B-3

#if/#ifdef/#ifndef/#else/#endif Conditional Processing Directives
;; M

8-4

• The #ifndef directive tests to see if name is not a defined constant.
The code following an #ifndef directive (up to an #else or an #endif)
is compiled if name is not defined (by the #define directive) or if it
was undefined by the #undef directive.

[1 The #else directive begins an alternate block of code that is compiled
if:

• The condition tested by #if is false.

• The name tested by #ifdef is not defined.

II The name tested by #ifndef is defined.

Note that the #else portion of a conditional block is optional; if the #if,
#ifdef, or #ifndef test is not successful, then the preprocessor continues
with the code following the #endif.

[1 The #endif directive ends a conditional block. Each #if, #ifdef, and
#ifndef directive must have a matching #endif. Conditional compilation
sequences can be nested.

Preprocessor Directives

Include Code from Another File Directive #include

Syntax #include "filename"

or

#include <filename>

Description The #include directive tells the preprocessor to read source statements
from another file. The preprocessor includes (at the point in the code where
#include is encountered) the contents of the filename, which are then pro­
cessed. You can enclose the filename in double quotes or in angle brackets.

The filename can be a complete path name or a filename with no path infor­
mation.

Q If you provide path information for filename, the preprocessor uses that
path and does not look for the file in any other directories.

Q If you do not provide path information and you enclose the filename in
double quotes, the preprocessor searches for the file in:

1) The directory that contains the current source file. (The current
source file refers to the file that is being processed when the prepro­
cessor encounters the #include directive.)

2) Any directories named with the -i preprocessor option.
3) Any directories named with the C_DIR environment variable.

Q If you do not provide path information and you enclose the filename in
angle brackets, the preprocessor searches for the file in:

1) Any directories named with the -i preprocessor option.
2) Any directories named with the C_DIR environment variable.

Note:

If you enclose the filename in angle brackets, the preprocessor does not
search for the file in the current directory.

8-5

#line Line Control Directive

Syntax #line integer-constant ["filename']

Description The #Iine directive generates line control information for the next pass ofthe
compiler. The integer-constant is the line number of the next line, and the
filename is the file where that line exists. If you do not provide a filename,
the current filename (specified by the last #line directive) is unchanged.

This directive effectively sets the __ LINE __ and __ FILE __ symbols.

8-6 Preprocessor Directives

~::r:&:::
~~~:*::;;;§ 

Appendix C 

Increasing Code 
Generation Efficiency 

'mm ~"" ~~~~ 

The efficiency of the code generated by the TMS320C30 C compiler 
depends largely on how effectively you take advantage of the C compiler op­
timizations. The following list describes the key constructs that can vastly 
improve the compiler's effectiveness. 

Q Use register variables for often-used variables. This is particularly im­
portant for pointer variables (the compiler allocates four registers for 
pointer register variables). For example, the following code fragment 
exchanges one memory object with another: 

do 
{ 

} 

temp = *++src; 
*src = *++dest; 
*dest = temp; 

while (--n) 

Without register variables, this code takes 12 instructions and 19n 
cycles. With register variables, this code takes only 4 instructions and 
7ncycles. 

[J Avoid integer multiplies (or use the -m option). The TMS320C30 
MPYI instruction uses 24-bit operands, forcing the compiler to use run­
time support to do full 32-bit arithmetic. You can use the -m option, 
which forces the compiler to use MPYI, if you know 24-bit multiplies are 
sufficient for your application. 

Q Pre-compute subexpressions, especially array references in loops. 
Assign commonly used expressions to register variables where pos­
sible. 

[J Use *++ to step through arrays, rather than using an index to recalcu­
late the address each time through a loop. 

C-1 



Increasing Code Generation Efficiency 
tm 

main() 
{ 

As an example of pre-computing subexpressions and using * ++ to step 
through arrays, consider the following loops: 

float arlO], b[10]; 
int i; 

for (i = 0; i < 10; ++i) 
ali] = (a[i] * 20) + b[i]; 

Executes in 19 Cycles 

main() 
{ 

float a[10], b[10]; 
int i; 
register float *p = a, *q = b; 

for (i = 0; i < 10; ++i) 
*p++ = (*p * 20) + *q++; 

Executes in 12 Cycles 

[J Use structure assignments to copy blocks of data. The compiler 
generates very efficient code for structure assignments; therefore, nest 
objects within structures and use simple assignments to copy them. 

o Avoid large local frames, and declare the most often used local 
variables first. The compiler uses indirect addressing with an 8-bit off­
set to access local data. To access objects on the local frame that have 
offsets greater than 255, the compiler must first load the offset into an 
index register resulting in1 extra instruction and 2 cycles of pipeline 
delay. 

[J Avoid the big memory model. The big model is inefficient because the 
compiler reloads the data page pointer (DP) before each access to a 
global or static variable. If you have large array objects, use malloc ( ) 

to dynamically allocate and access the variables via pointers ratherthan 
declaring them globally. For example: 

int a[100000]; int *a= (int *)malloc(100000); / 

ali] = 10; /* 11 cycles */ ali] = 10; 1* 5 cycles * / 

Inefficient for Large Array Objects Efficient for Large Array Objects 

'C-2 Increasing Code Generation Efficiency 



a.out, 2-24 

abort function, 5-18 

abs function, 5-19 

absolute value, 5-19, 5-39 

1m: 

accessing arguments in a function, 4-16 

accessing local variables in a function, 4-16 

acos function, 5-20 

aliased variables, 2-22 

alignment, 3-6, 4-8 

alternate directories for include files, 2-18 

ANSI C, 1-5, 3-1, 5-71,5-74 

AR3 register. See FP register 

arc cosine, 5-20 

arc sine, 5-22 

arc tangent, 5-24 

archive library, 2-24 

archiver, 1-3, 2-28 

arguments, 4-15, 4-16 

array, 3-5 

ASCII conversion functions, 5-27 

asctime function, 5-21,5-34 

asin function, 5-22 

asm statement, 3-11 , 4-22, 4-23 

assembler, 1-3 
options 

-a1,2-9 
-ax, 2-9 

Index 

assembly language, 4-18 

assembly language interrupt routines, 4-24 

assert function, 5-23 

assert.h header, 5-2, 5-10 

atan function, 5-24 

atan2 function, 5-25 

atexit function, 5-26, 5-37 

atof function, 5-27 

atoi function, 5-27 

atol function, 5-27 

autoincrement addressing, 4-29 

autoinitialization, 2-25 
of constants, 4-30 
of variables, 4-30 
RAM model, 2-26, 4-32 
ROM model, 2-27, 4-33 

base-10 logarithm, 5-50 

big memory model, 1-4,2-22,4-3,4-10, C-2 

bit fields, 4-8 

block-repeat registers, 4-14 

boot routine, 4-30 

boot.asm, 4-5 

boot.obj, 2-24-2-25, 2-27 

broken-down time, 5-8, 5-34 
broken-down time function, 5-59 

bsearch function, 5-28 

.bss section, 4-2-4-7, 4-20 

Index-1 



Index 

C compiler, 1-3, 1-4 

C interrupt routines, 4-23 

C language. See TMS320C30 C Language 

-c linker option, 2-11,2-24,2-27,4-30 See 
linker options 

-c option, (CL30), 2-12 

c type.h header, 5-10 

C_DIR environment variable, 2-18, 2-19,8-5 

_c_intOO, 2-25, 2-27, 4-23, 4-30 

C_OPTION environment variable, 2-13 

calendar time, 5-8, 5-34, 5-35, 5-59, 5-88 

calling conventions. See function calling con-
ventions 

calloc function, 4-6, 5-29, 5-42, 5-58 

cc30,2-21 

ceil function, 5-30 

cg30,2-22 

character string constants, 4-9 

character typing conversion functions, 5-3, 
5-10 
isalnum, 5-45 
isalpha, 5-45 
isascii,5-45 
iscntrl, 5-45 
isdigit, 5-45 
isgraph,5-45 
islower, 5-45 
isprint, 5-45 
ispunct, 5-45 
isspace, 5-45 
isupper, 5-45 
isxdigit, 5-45 
toascii,5-89 
tolower, 5-90 
toupper, 5-90 

.cinit section, 2-27, 4-2, 4-4, 4-7, 4-19, 4-31, 
4-32 

CL30, 1-3, 1-5, 1-6, 2-3 
options 

-c,2-12 

Index-2 

-5,2-14 
-z,2-11 

overview, 2-2 

e130, 2-3 

clist,2-15 

CLK_ TCK macro, 5-8, 5-31 

clock function, 5-31 

cloclU type, 5-8 

code generator, 2-16, 2-22-2-28 
options 

-a, 2-22 
-b,2-22 
-m,2-22 
-0,2-23 
-q,2-23 
-v, 2-23 
-x, 2-23 
-z,2-23 
-n,2-23 

COFF, 1-3, 1-4, 4-2 

compare strings, 5-78 

compiler 
operation, 2-1-2-28 
overview, 2-2 

concatenate strings, 5-69, 5-77 

conditional compilation, 2-17 

conditional processing, 8-3 

CONSTsymbol,4-10 

constant table, 4-8, 4-1 0 

constants 
character, 3-2 
enumeration, 3-2 
integer, 3-2 
string, 3-3 

conversion, 5-3 

cos function, 5-32 

cosh function, 5-33 

cosine, 5-32 

epp30,2-17 

-cr linker option, 2-24, 2-26, 4-30 See linker 
options 

ctime function, 5-34 

ctype.h header, 5-3 



m 
data page pointer register, 4-3 

data pointer (DP), 4-3, 4-14, 4-30, C-2 

.data section, 4-3 

data size, 1-4 

data type storage, 4-8 

data types, 3-5, 4-8 
added, 3-4 
data sizes, 3-4 
derived, 3-4 
equivalent, 3-4 
name, 3-4 

__ DATE __ ,2-18 

daylight savings time, 5-8 

declarations, 3-7 

dedicated registers, 4-18 

#define preprocessor directive, 8-2 

delayed branches, 4-29 

derived types, 3-4, 3-5 

diagnostic information, 5-23 

diagnostic messages, 5-2 
assert, 5-23 
NDE8UG macro. See NDE8UG macro 

difftime function, 5-35 

div function, 5-36 

DIV _F function, 4-26, 4-27 

DIV _I function, 4-26, 4-27 

div_t type, 5-7 

DIV_U function, 4-27 

division, 4-26 

DIVU instruction, 4-26 

DP register, 4-14 

dynamic memory allocation, 4-6 

EDOM macro, 5-6 

#else preprocessor directive, 8-3-8-4 

emulator, 1-3 

#endif preprocessor directive, 8-3-8-4 

entry points 
c_intOO, 2-25 
for C code, 2-25 
reset vector, 2-25 

enum, 3-4, 3-7 

Index 

enumeration declarations, 3-7, 3-8 
environment variable. See C_OPTION 

environment variable (preprocessor), 2-19 

EPROM programmers, 1-3 
ERANGE macro, 5-6 

errno.h header, 5-6 
error message macros, 5-10 

assert, 5-23 

error messages, 2-18, 2-21, A-1 

error reporting, 5-6 
exit, 5-26 
exit function, 5-18, 5-37 

exp function, 5-38 

exponential function, 5-38 
exponential math function, 5-5 
expression analysis, 4-25 

expressions, 3-6 

external definitions, 3-7 
external variables, 3-10 

fabs function, 5-39 

fatal errors messages, A-1 
__ FILE __ ,2-18 

filename specifications, 2-4 

float.h header, 5-3 

floating-point math functions, 5-5, 5-11 
acos,5-20 
asin,5-22 
atan,5-24 
atan2,5-25 
ceil, 5-30 
cos, 5-32 
cosh, 5-33 
exp,5-38 
fabs,5-39 
floor, 5-40 

Index-3 



Index 

fmod,5-41 
frexp, 5-43 
Idexp, 5-47 
log, 5-49 
log10, 5-50 
modf,5-60 
pow, 5-62 
sin, 5-66 
sinh,5-67 
sqrt, 5-68 
tan, 5-86 
tanh,5-87 

floating-point register variables, 4-13 

floating-point remainder, 5-41 
floor function, 5-40 

fmod function, 5-41 

FP register, 4-5, 4-14, 4-16 

frame pointer, 4-16 

free function, 5-42 

frexp function, 5-43 

function calling conventions 
accessing arguments and local variables, 

4-16 
called function responsibilities, 4-16 
calling function responsibilities, 4-15 
returning structures, 4-17 
saving/restoring registers, 4-16 
stack use, 4-15-4-17 

function structure conventions. See function 
calling conventions 

-g option, 4-29 

general utility functions, 5-7, 5-12 
abort, 5-18 
abs, 5-19 
atexit, 5-26 
atof,5-27 
atoi,5-27 
atol,5-27 
bsearch, 5-28 
calloc, 5-29 
div, 5-36 
exit, 5-37 

Index-4 

free, 5-42 
labs, 5-19 
Idiv, 5-36 
Itoa, 5-51 
malloc, 5-52 
minit, 5-58 
movmem, 5-61 
qsort, 5-63 
rand,5-64 
realloc, 5-65 
srand,5-64 
strtod,5-84 
strtol,5-S4 
strtoul,5-84 

global variables, 3-10, 4-3, 4-30, 4-31 
addressing, 4-S 
reserved space, 4-2 

gmtime function, 5-44 
gregorian time, 5-8 

m 
hardware requirements-PC systems, 1-8 

header files, 5-2-5-8 
assert.h header, 5-2 
ctype.h header, 5-3 
errno.h header, 5-6 
float.h header, 5-3 
Iimits.h header, 5-3 
math.h header, 5-5 
stdarg.h header, 5-6 
stddef.h header, 5-6 
stdlib.h header, 5-7 
string.h header, 5-7 
time.h header, 5-8 

heap, 4-6, 5-52 

HUGE_VAL,5-5 
hyperbolic cosine, 5-33 

hyperbolic math function, 5-5 

hyperbolic sine, 5-67 

hyperbolic tangent, 5-S7 

D 
-i preprocessor option, 2-18, 2-19, 8-5 



identifiers, 3-2, 4-19 

#if preprocessor directive, 8-3 

#ifdef preprocessor directive, 8-3 

#include files, 2-17 

include files, 2-18 

#include preprocessor directive, 5-2 

index registers, 4-14, 4-26 

initialization, 4-30 

initialization tables, 4-31 
format, 4-31 

initialized sections, 4-2 

in line assembly construct (asm), 3-11 

installation 
Macintosh, 1-10 
PCs, 1-8 
VAXlUltrix, 1-9 
VAXlVMS, 1-9 
workstations with UNIX, 1-9 

integer division, 5-36 

integer multiplies, C-1 

integer register variables, 4-13 

interfacing C with assembly language, 4-18 
asm statement, 4-22 
assembly language modules, 4-18 
defining variables, 4-20 
inline assembly language, 4-22 
modifying compiler output, 4-22 

interlist utility, 1-3, 1-5, 1-7, 2-1, 2-14, 2-15 

intermediate file, 2-21 

interrupt handling, 4-23 
assembly language interrupt routines, 

4-24 
interrupt routines, 4-23 
saving registers, 4-23 

interrupt routines, 4-18, 4-23 

inverse tangent of y/x, 5-25 

invoking the 
C compiler, 2-3 
CL30 program, 2-3 
code generator, 2-22 
interlist utility, 2-14 
linker, 2-11,2-18 
parser, 2-21 

preprocessor, 2-17 
isalnum function, 5-45 
isalpha function, 5-45 

isascii function, 5-45 
iscntrl function, 5-45 
isdigit function, 5-45 

isgraph function, 5-45 
islower function, 5-45 

isprint function, 5-45 
ispunct function, 5-45 
iss pace function, 5-45 
isupper function, 5-45 
isxdigit function, 5-45 
isxxx function, 5-3, 5-45 

Kernighan and Ritchie, 1-4, 2-18, 3-1 
preprocessor, 2-17 
The C Programming Language, iv, 1-1 

keywords, 3-2 
Kochan, S., Programming in C, iv 

II 
labs function, 5-19 
Idexp function, 5-47 
Idiv function, 5-36 
Idiv_t type, 5-7 

lexical scope rules, 3-10 
limits 

floating-point types, 5-3 
integer types, 5-3 

limits.h header, 5-3 

line number directives, 2-17 
__ LlNE __ , 2-18 

linker, 1-3,2-11-2-12,2-28,4-2 
options, 2-10 

-c, 2-12, 2-27 
-cr, 2-12, 2-27 

linker command file, 2-25 
linking, 4-4 

linking C code, 2-24 

Index-5 



Index 

Ink30, 2-24, 2-26 

loader, 4-11 , 4-32 

local frame, 4-16 

local variables, 4-16 

localtime, 5-8, 5-34 

localtime function, 5-48, 5-59 

log function, 5-49 

log10 function, 5-50 

long immediate values, 4-8 

loop rotation, 4-29 

Itoa function, 5-51 

Macintosh installation, 1-10 

macro, 8-2 

macro definitions, 2-17 

main function, 4-30 

malloc function, 4-6, 5-42, 5-52, 5-58, C-2 

map file, 2-25 

math routines, 4-26-4-27 

math.h header, 5-5, 5-11 

member names, 3-8 

memchr function, 5-53 

memcmp function, 5-54 

memcpy function, 5-55 

memmove function, 5-56 

MEMORY linker directive, 2-24 

memory management functions 
calloc, 5-29 
free, 5-42 
malloc, 5-52 
minit, 5-58 
movmem, 5-61 
realloc, 5-65 

memory model, 4-2 
big memory model, 4-3 
dynamic memory allocation, 4-6 
RAM model, 4-7 
ROM model, 4-7 
sections, 4-2 
small memory model, 4-3 

Index-6 

stack,4-5 

memory pool, 5-52 
memset function, 5-57 

minit function, 5-58 

mktime function, 5-59 

-mn option, 4-29 

MOD_I function, 4-26, 4-27 

MOD_U function, 4-27 

modf function, 5-60 

MODU instruction, 4-26 

movmem function, 5-61 
MPY _I function, 4-27 

MPYI instruction, 4-26 

multiplication, 4-26 

m 
natural logarithm, 5-49 
NDE8UG macro, 5-2, 5-23 

normal optimization, 2-23 
NULL macro, 5-6 

object alignment, 3-6 
object format converter, 1-3 

object libraries, 2-24, 2-26 
object representation, 4-8 

addressing global variables, 4-8 
character string constants, 4-9 
constant table, 4-1 0 
data type storage, 4-8 
long immediate values, 4-8 

offsetof macro, 5-6 
optimization, 1-4,4-28 

options, 2-6-2-10 
conventions, 2-6 
general 

-0,2-7 
-f, 2-8 
-9,2-7 
-idir, 2-7 
-k,2-7 



-n,2-8 
-q,2-8 
-qq,2-8 
-5,2-8 
-z, 2-8, 2-11 

parallel instructions, 4-29 

parser, 2-16, 2-21 

PC installation, 1-8 

pointer register variables, 4-13 

pointers, 3-4 
data size, 3-4-3-6 

pow function, 5-62 

power, 5-62 

predefined macro names, 2-18 

preinitialized variables, 4-30 

preprocessor, 2-16, 2-17 
environment variable, 2-19 
options 

-c,2-17 
-dname[=def], 2-17 
-p,2-17 
-pc, 2-9 
-pp,2-9 
-q,2-17 
-i, 2-19, 8-5 
idir, 2-17 

predefined macro names, 2-18 

preprocessor directives, 2-18, 8-1 
#ifndef, 8-3-8-4 
#define, 8-2 
#else, 8-3-8-4 
#endif,8-3-8-4 
#if,8-3 
#ifdef,8-3 
#include, 8-5 
#undef,8-2 

program termination functions 
abort (exit), 5-18 
atexit, 5-26 
exit, 5-37 

progress information, 2-5 

progress messages, 2-21 

pseudo-random, 5-64 

ptrdifU type, 5-6 

-q option, 2-5, 2-21 

qsort function, 5-63 

Index 

RAM model of initialization, 2-26,4-31,4-32 

rand function, 5-64 

RAND_MAX macro, 5-7 

realloc function, 4-6, 5-42, 5-58, 5-65 

register conventions, 4-12 
AR3 (FP) register, 4-14 
block-repeat registers, 4-14 
DP register, 4-14 
expression analysis registers, 4-12 
FP (AR3) register, 4-14 
list of registers, 4-12 
register variables, 4-13 
return values, 4-13 
SP register, 4-14 

register tracking, 4-28 
register variables, 3-7, 3-11 , 4-13, 4-28, C-1 

registers, 4-23, 4-25, 4-26 

related documentation 
Advanced C: Techniques and Applica­

tions, iv 
Programming in C, iv 
The C Programming Language, iv 

responsibilities of a called function, 4-16 

responsibilities of a calling function, 4-15 
ROM model of initialization, 2-25, 2-27, 4-31, 

4-33 

rts.lib, 2-24-2-25,2-27,4-4,4-26,4-30,5-1 

rts.src, 4-5, 4-26, 5-1, 5-7 

runtime environment, 4-1~-34 
calling conventions. See function calling 

conventions 
expression analysis, 4-25 

Index-7 



Index 

function structure. See function calling 
conventions 

interfacing C with assembly language, 
4-18 
assembly language modules, 4-18 
defining variables, 4-20 . 
inline assembly language, 4-22 
modifying compiler output, 4-22 

interrupt handling, 4-23 
assembly language interrupt routines, 

4-24 
interrupt routines, 4-23 
saving registers, 4-23 

math routines, 4-26-4-27 
memory model, 4-2 

big memory model, 4-3 
dynamic memory allocation, 4-6 
RAM model, 4-7 
ROM model, 4-7 
sections, 4-2 
small memory model, 4-3 
stack,4-5 

object representation, 4-8 
addressing global variables, 4-8 
character string constants, 4-9 
constant table, 4-10 
data type storage, 4-8 
long immediate values, 4-8 

register conventions, 4-12 
expression analysis registers, 4-12 
list of registers, 4-12 
register variables, 4-13 
return values, 4-13 

system initialization, 4-30-4-34 
autoinitializing variables and constants, 

4-30 
initialization table format, 4-31 
RAM model, 4-32 

. ROM model, 4-33 

runtime initialization, 2-24 

runtime model, options 
-ma,2-9 
-mb,2-9 
-mm,2-9 
-mr,2-9 
-mv,2-9 

Index-8 

-mx,2-9 
runtime support, 2-24 

math routines, 4-26 
runtime support functions, 5-1-5-17 

descriptions, 5-16-5-17 
summary table, 5-9-5-17 

-s CL30 option, 2-14 
saving registers during interrupts, 4-23 
saving/restoring registers, 4-16 
searches, 5-28 
section 

.cinit,4-2 

. stack, 4-2 

.text, 4-2 

.bss,4-2 

.data,4-3 

.sysmem, 4-3 
sections, .stack, 4-30 
SECTIONS linker directive, 2-24 
short multiply, 2-22 
silicon bugs, 2-23 
simulator, 1-3 
sin function, 5-66 
sine, 5-66 
sinh function, 5-67 
size_t type, 5-6 
sizeof,3-6 
SLn,4-9 
small memory model, 1-4,4-3,4-10,4-30 
Sobelman and Krekelberg, Advanced C: 

Techniques and Applications, iv 
software development tools, 1-2-1-3 
sorts, 5-63 
SP register, 4-5, 4-14 
SPOX,1-5 
sqrt function, 5-68 
square root, 5-68 
srand function, 5-64 
stack overflow, 4-6 
.stack section, 4-2, 4-5-4-6, 4-30 



STACK_SIZE, 4-5-4-6 

static variables, 3-10, 4-30, 4-31 
addressing, 4-8 
reserved space, 4-2 

stdarg.h header, 5-6, 5-12 

stddef.h header, 5-6 

stdlib.h header, 5-7, 5-12 

strcat function, 5-69 

strchr function, 5-70 

strcmp function, 5-71 

strcoll function, 5-71 

strcpy function, 5-72 

strcspn function, 5-73 

strerror function, 5-74 

strftime function, 5-75 

string copy, 5-79 

string functions, 5-7, 5-14 
memchr, 5-53 
memcmp, 5-54 
memcpy, 5-55 
memmove, 5-56 
memset, 5-57 
strcat, 5-69 
strchr, 5-70 
strcmp, 5-71 
strcoll, 5-71 
strcpy, 5-72 
strcspn, 5-73 
strerror, 5-74 
strlen, 5-76 
strncat, 5-77 
strncmp, 5-78 
strncpy, 5-79 
strpbrk, 5-80 
strrchr, 5-81 
strspn, 5-82 
strstr, 5-83 
strtok, 5-85 

string label, 4-9 

string.h header, 5-7, 5-14 

strlen function, 5-76 

strncat function, 5-77 

strncmp function, 5-78 

strncpy function, 5-79 
strpbrk function, 5-80 
strrchr function, 5-81 
strspn function, 5-82 
strstr function, 5-83 
strtod function, 5-84 
strtok function, 5-85 
strtol function, 5-84 
strtoul function, 5-84 

Index 

structure conventions. See function calling 
conventions 

structures, 3-7, 3-8, 4-17 
STYP _COPY, 4-32 
STYP _CPY flag, 2-27 
symbol and style conventions, v 
symbolic debugging, 2-15, 4-29 
symbolic debugging directives, 2-23 

.sysmem, 4-4 

.sysmem section, 4-3, 4-6 

sysmem.asm, 4-6 
__ SYSMEM_SIZE, 4-5--4-6, 5-7 

system constants 
CONST,4-10 
__ SYSMEM_SIZE,4-5 

system initialization, 4-30--4-34 
autoinitializing variables and constants, 

4-30 
boot routine, 4-30 
initialization table format, 4-31 
RAM model, 4-32 
ROM model, 4-33 

system reset, 4-24 
system stack, 4-5 

D 
_320C30, 2-18 
3-operand instructions, 4-28 
tan function, 5-86 
tangent, 5-86 
tanh function, 5-87 
.text section, 4-2, 4-4 
time, 5-21 

Index-9 



Index 

time function, 5-88 

time functions, 5-8, 5-15 
asctime, 5-21 
clock,5-31 
ctime, 5-34 
difftime, 5-35 
gmtime, 5-44 
localtime, 5-48 
mktime, 5-59 
strftime, 5-75 
time, 5-88 

time.h header, 5-8, 5-15 

__ TIME __ , 2-18 

time_t type, 5-8 

tm structure, 5-8 

tm type. See broken-down time 

TMS320C30 C language, 3-1-3-12 
See also ANSI C language 
asm statement, 3-11 
constants, 3-2 
data types, 3-4-3-5 
declarations, 3-7-3-9 
enum. See enum 
expressions, 3-6 
external definitions, 3-7 
global variables, 3-10 
identifiers, 3-2 
keywords, 3-2 
lexical scope rules, 3-10 
object alignment, 3-6 
related documentation 

Advanced C: Techniques and Applica­
tions, iv, 3-1 

Programming in C, iv 
The C Programming Language, iv 

static variables, 3-10 

TMS320C30 target system, 1-3 

toascii function, 5-89 

Index-10 

tokens, 5-85 

tolower function, 5-90 
toupper function, 5-90 

trigonometric math function, 5-5 

m 
#undef preprocessor directive, B-2 

uninitialized sections, 4-2 

union, 3-8 

UNIX workstation installation, 1-9 

va_arg function, 5-91 

va_end function, 5-91 

va_start function, 5-91 

variable argument functions and macros, 
5-6,5-12 
va_arg, 5-91 
va_end, 5-91 
va_start, 5-91 

variable-argument function, 5-91 

variable-argument functions and macros, di-
rectives. See preprocessor directives 

VAXlUltrix installation, 1-9 
VAXlVMS installation, 1-9 

void, 3-4, 3-6 
volatile variables, 2-23 

wildcard,2-4 

13 
XDS emulator, 1-3 



TI Worldwide 
Sales Offices 
ALABAMA: H~: 500 Wynn O,ive, Suite 514. 
Huntsville. AL 35806, (2061 837-7530. 

ARIZONA: PhoenIx: 882& N. 23rd Ave., Phoenix, 
AZ 85021.18021 995-1007:TUCSON: 818 W. Miracle 
Mile, Suite 43. Tucson, A2 85705, (802) 292-2640. 

CAUFORNIA: irvine: 17891 Cartwright Dr., Irvine, CA 
92714, (7141 66().1200;....".; 1 Siarlll Gate 
Plaza, Rosevile. CA 95678. 19181 788-9208: 
s.n Diego: 4333 View Ridge Ave., Suite 100, 

~=-~:3~~1~~!6~.2J~9:~n!!. CI.,., CA 
95054. (408) 980-9000: T~: 690 Knox St., 
Torrance. CA 90502. (213) 217-7010; 
Wooct.nd ... : 21220 Erwin St., Woodland Hills. 
CA 91367. 1818) 704-7759. 

COLORADO: Awor.: 1400 S. Potomac Ava., 
Suit. 101, Aurora, CO 80012. (303) 368-8000. 

CONNECTICUT: W~: 9 a.nes Industria' Part. 
Rd .•• rnes Indu"';.' PIWk. WalllngfCN'd. 
CT 08492, (2031 269-0074. 

FLORIDA: Altamonte Sprtnp: 370 S. Nonh laka Blvd. 
Aft.monte Springs, FL 32701, (3051 260-2116: 
Ft. ~: 2950 N.W. 82nd St .• 
Ft. l.uderd .... FL 33309, (305) 973-8502; 
T ........ : 4803 Ge«ge Rd .• Suite 390. 
Tampa. FL 33634.18131885-7411. 

GEORGIA: Norcto.: 5515 Spalding Drive. Norcross, 
GA 30092, 14041 682-7900 

1UlN0IS: ~ HeIghts: 515 W. Algonquin, 
Arlington Heights, IL 80005, 13121 840-2925. 

INDIANA: Ft, W..,.,.: 2020 Inwood Dr .• 
Ft. Wayne, IN 48815, (2191 424-5174; 
c.nn.t: 550 Congressional Dr., Carmel. IN 48032, 
13171 573-6400, 

IOWA: CeMr ....... : 373 Collins Rd. NE, Suite 201, 
Cedar Rapids. IA 62402. 13191 395-9550. ' 

kANSAS: 0wMnd PwIr.: 7300 College Blvd .• lighton 
Plaza, Overland Park. KS 86210, 1913) 451-4511. 

MARYLAND:~: 8816 Centre Park Dr .• 
Columbia MD 21045, (301) 984-2003. 

MASSACHUSETTS: W.tthlim: 950 Winter St., 
Wattham. MA 02154.16171895-9100. 

MICHIGAN: ~ tal: 33737 W. 12 Mile Rd., 

~~:";o75 ~'!d ~~~ ~.3S~:.~9. 
Grand Rapids, MI 49508, 18181 957-4200. 

MINNESOTA: Eden ,.,...: 11000 W. 78th St .• 
Eden Preirie. MN 55344 (612) 828-9300. 

MISSOURI: St. louis: 11816 Borman Drive, 
St. Louis. MO 63148, (314) 589-7600. 

NEW JERSEY: ..... : 485E U.S. Route 1 South, 
Parkway Towers. I ... in. NJ 08830 (2011 7~ 1 050. 

NEW MEXICO: Albuquerque: 2820-0 Broadbent Pkwy 
NE. Albuquerque. NM 87107, (505) 345-2555. 

NEW YORk: Eut 8rncuM: 8385 ~Iamer Or .. 
east Syracu .. , NY 13067, 1316) 483-9291; 
...... : 1895 Walt Whitman Rd., P.O. Box 2936, 
Malvil". NY 11747. 15181454-6800; 
Pttt.tanI: 2851 Ck)ver St .• Pittsford. NY 14534, 
17161385-8770; 

~eO'f.1~,~~f;~~" Poughkeepsie. 

NORTH CAROlINA: Charlotte: 8 Woodlawn Green. 
Woodlawn Rd., Chartotte, NC 28210, 17041 

==~:~.3~~ ~:. ~:~I ~i':~~5~ Blvd .• Suite 100. 

OHIO: 1IMchwood: 23775 Commerce Park Rd., 
Beechwood. OH 44122, 12161484-8100: 
a..v.rcr..k: 4200 Colonel Glenn Hwy .• 
Beavercreek. OH 45431. 15131 427-6200. 

OREGON: a..v.rton: 8700 SW 105th St .• Suite 110, 
Beaverton. OR 97005. 15031 843-8758. 

PENNSyLVANIA: .... W: 670 Sentry Pkwy. 
Blue Ben. PA 19422. 12161 825-9500. 

PUERTO RICO: HMo by: Marcantil Plaza 8ldg., 
Suite 605. Hato Rev. PR 00918.18091753-8700. 

TENNESSEE: Johneon CIty: Erwin Hwy. 
P.O. Drewer 1255. Johnson City. TN 37805 
16161461-2192. 

TEXAS: AuI*,: 12501 Research Blvd .. Austin. TX 
78759. (5121 250-7855; RlchMdIOll: 1001 E. 
Campbell Rd., Richardson. TX 75081. 
12141 880-5082; Houston: 9100 Southwest Frwy., 
Suite 250. Houston. TX 77074, (713) 778-8592; 
s.n AntonIo: 1000 Central Parkway South. 
San Antonio. TX 78232, 15121496·1779. 

UTAH: Muny: 5201 South Green St., Suite 200, 
Murray. UT 84123, (601) 266-8972. 

WASHINGTON: Redmond: 5010 148th NE. ~dg B. 
Suite 107. Redmond. WA 98052. (206) 881·3080. 

WISCONSIN: arOoktwd: 450 N. Sunny Slope. Suite 
150. Brookfield. WI 53005. 14141 782-2899. 

CANADA: N .... : 301 Moodie Drive. Mallorn Center. 
Nepean. Ontario, Canada, K2H9C4. 
16131728-1970. RIchmond MIl: 280 Centre St. E .• 
Richmond Hilll4C181. Ontario, Caneda 
(418) 884-9181; St. 1AuNnt: VUIe St. Laurent 
Quebec. 9480 Trans Ceneda Hwy .. St. laurent, 
Quebec, Canada H4S 1 R7, 15 t 41 336-1 860. 

ARGENnNA: Texas Instruments Argentina Viamonte 
~l~rj4~~i:9;apital Federal. Buenos Aires. Argentina. 

AUSTRALIA I. NEW ZEALAND): Texas Instruments 
Australia Ltd.: 6-10 ralavera Rd .• North Ryde 
ISVdneyl, New South Wales. Australia 2113. 
2 + 887-1122; 6th Floor. 418 St. Kilda Roed. 
Melbourne. Victoria. Australia 3004. 3 + 287·4677; 
171 Philip Highway, Elizabeth. South Australia 5112. 
8 + 255-2086. 

AUSTRIA: rexa. Instruments Ges.m.b.H.: 
IndustriestJabe BI16, A·2345 Brunn/Gebirge, 
2236-B46210. 

BELGIUM: Texas Instruments N.V. Belgium S.A.: 11. 
Avenue Jule. Bondetlaan 1 1. 1140 Brussels. Belgium. 
102) 242-3080. 

BRAZIL: Texa. Instruments Electronicos do Srasil 
ltda.: Rua Pees lema, 524-7 Andar Pinheiros. 05424 
Sao Paulo. Brazil. 0815-6186. 

DENMARK: Texas Instruments AIS, Mairelundvej 46E. 
2730 Herlev, Denmark, 2 - 91 7400. 

FINLAND: Texas Instruments Finland OY: 
Ahertajant .. 3, P.O. Box 81. ESPOO. Finland, 1901 
0-481-422. 

FRANCE: Texas Instruments France: Paris Office. BP 
678-10 Avenue Morane-Saulnier. 78141 Velizy­
VlIIacoublay cedex 11130 701003. 

GERMANY (Fed. RepublIc of Germanyl: Texas 
Instruments Deutschland GmbH: Haggertystrasse 1. 
8050 Freising. 8161 +80-4591; Kurfuerstendamm 
195/196,1000 Berlin 15. 30+882-7385; III. Hagen 
43/Kibbelstrasse, .19.4300 Essen. 201-24250: 
Kirchhonrtenrtrasse 2. 3000 Hannover 51, 
511 +648021; MaytN!lchstrabe 1" 7302 Ostflldern 
2-Nelingen. 711 +34030 . 

~ 
TEXAS 

INSTRUMENTS 

~= :=Gs:=:aIC:r~'rC:m':1l~!~:~~th 
Hong Kong, (8521 3-7361223. 

IRELAND: Texa. Instruments (Ireland) Limited: 
7/8 Harcourt Street. Stillorgan. County Dublin. Eire, 
1 781677. 

ITALY: Texa. Instruments ItaNa S.p.A. Divilione 
Semicondunori: Via. Eur~. 40. 20093 Cologne 
Monze .. IMilano), 102) 253001; Via CasteUo della 
Magliena. 38, 00148 Rome. 1081 5222851; 
Via Amendola, 17. 40100 BoIognl. 10511 554004. 

JAPAN: Tokyo Marketing/Sales IHeadquarters): 
Texa. Instrument. Japan Ltd .• MS Shibaura Bldg., 9F, 
4-13-23 Shibaura, Minato-ku. Tokyo 108. Japan. 
03-769-8700. Texas In.truments Japan Ltd.: Nissho­
Iwai Bldg. 5F. 30 Imabashi 3-chome, Higashi-ku. 
Osaka 541. Japan, 06-294-1B81; Daini Toyota We.t 
Bldg. 7F, 10-27 Meleki 4-chome. Nakamura-ku. 
Nagoya 460. 062-683-8691; DaiieN Seimei Bldg. SF, 
3-1 0 Oyama-cha. Kanazawa 920. Ishikew.ken. 
0762-23·5471; Daiichi Olympic Tachikawa Bldg. SF. 
1-25-12 Akebono-cho. Tachikawa 190. Tokyo. 
0425-27-8428: Matsumoto Showa Bldg. SF, 2-11 
Fukashi '-choma. Matsumoto 390. Nagano-ken. 

~~:~-~~~~=;:~~~:,~~~i~:~h~~~:!o.6F. 
045-322-6741; Nihon $elmei KyotO Yasaka Bldg. 5F. 
843-2 Higeshi Shiokohjldori. Nishinotoh-In Higashi-iru. 
Shiokouji. Shimogyo-ku, Kyoto 600. 075-341-7713; 
2597-1. Aza HlI1Udai. Oaza Vasaka. Kit.uki 873. Oita­
ken, 09786-3-3211; Miho Plant. 2350 Kihara Miho­
mura, Inashiki-gun 300-04, Ibaragi-ken, 
0298-85-2541. 

KOREA: Texas Instruments Korea Ltd .• 28th FI., Trade 
Tower, "59. Samsung-Dong. Kangnem-ku, Seoul. 
Korea 2+551-2810. 

MEXICO: Texas Instruments de Mexico S.A.: Alfonso 
Reyes-115. Col. Hipodromo Conde.a. Mexico. O.F .• 
Mexico 06120. 525/525-3880. 

MIDDLE EAST: Texas Instruments: No. 13, 1st Floor 
Mannai Bldg., Diptomatic Area, P.O. Box 26335, 
Manama Bahrain. Arabian Gulf. 973 + 274681 . 

NETHERLANDS: rexas Instruments HoUand 8.V .. 
19 Hogehilweg. 1100 AZ Amsterdam-Zuidoost. 
Holland 20+5602911. 

NORWAY: Texas Instruments Norway AlS: P8106. 
Refstad 0585. Oslo 5. Norway. (21 155090. 

PEOPLES REPUBUC OF CHINA: Texas Instruments 
China Inc .• Beijing Representative Office, 7-05 Citic 
~~2'2~~.J~~~~~';.,:~wai Dajje. Beijing. China. (861) 

PHIUPPINES: Texas Instruments Asia Ltd.: 14th Floor. 
Sa- Lepanto Bldg .• Paseo da ROX8S. Makati. Metro 
Manila. Philippines. 817-60-31. 

PORTUGAL: Texa. Instruments EqujpamentO 

~mro~~r~i~:a0':t:~i~~~7~~a~:.op:~~:li~ Ulrich. 
2·948-1 003. 

SINGAPORE (+ INOlA. INDONESIA. MALAYSIA. 
THAILAND): Texa. Instruments Singapore (PTE) ltd .• 
Asia Pacific Division. 101 Thompson Rd. 123 .. 01, 
United Square. Singapore 1130. 350-8100, 

SPAIN: Texa. Instruments E.pana. S.A.: C/Jose 
Lazaro Galdiano No.6, Madrid 28038, 1/468.14.58. 

SWEDEN: Texas Instruments International Trade 
Corporation ISverlgefilialen): S·164-93. Stockholm, 
Swedan, 8 - 752 .. 5800. 

SWITZERLAND: Texas Instruments. Inc .• Reid.trasse 
6. CH-8953 Dietikon (Zuerich) Switzerland, 
1-740 2220. 

TAIWAN: TeXIS Instrument. Supply Co., 9th Floor 
Bank Tower, 205 Tun Hwa N. Rd .• Taipei, Taiwan. 
Republic of China. 2 + 713-9311. 

UNITED KINGDOM: Texas Instruments limited: 
Manton Lane. Bedford, MK41 7PA. England, 0234 
270111. 

A-189 



TI Sales Offices TI Distributors 
ALABAMA: Huntsville (205) 837-7530. 

:c~:~r=~~) 195-1007: 

CAUFORNIA: I ..... (7'4) _'200; 
R ...... 1e ('") 786-11208; 

::~t:I~.~~~~:\.~; 
To ..... nce (21) ah.7010; 
Woodland Hills (818) 704-n59. 

COLORADO: Aurora (303) 388-8000. 

CONNECTICUT: Wallingford (203) 269-G074. 

FLORIDA: Anamonte Springs (305) 280-2118; 
Ft. Lauderdale (305) 973-8502; 
Tampa (813) 885-7411. 

GEORGIA: Norcross (404) 662-7900. 

IWHOIS: Arlington Hetghtl (312) 640.2925. 

INDIANA: Carmel (311) 57306400; 
Ft. Wlyne (219) 424-5174. 

IOWA: Cedar RapidS (319) 395-9550. 

KANSAS: Overland Park (913) 451-4511. 

MARYLAND: Columbia (301) 964-2003. 

MASSACHUSETTS: W.nham (617) 895-9100. 

=:~:Jc:t.:id:(6'r~)r:7~~:' (313) 553--1569; 

MINNESOTA: Eden Pr,lrle (S12) 828-9300. 

MISSOURI: SL louis (314) 569-7600. 

NEW JERSEY: 1 •• lIn (201) 75D-1050. 

NEW MEXICO: Albuquerque (505) 345-2555. 

NEW YORK: East Syracus. (31S) 463-9291: 
Metvllie (518) 454-6600; 
Pittsford (716) 385-6no: 
Poughlk .. psle (914) 473-2900. 

NOATH CAROLINA: Ch.rlotte (704) 527..Q933: 
Rllelgh (919) 87602725. .';, 

OHIO: Be.chwood (216) 464-6100: 
ae • .,.r CrHk (513) 427-6200. 

OREGON: Be.verton (503) 643..s758. 

PENNSYLVANIA: Blue Bell (215) 825-9500. 

PUERTO RICO: H.to Rey (809) 753-8700. 

TENNESSEE: Johnson City (815) 461·2192. 

TEXAS: Austin (512) 250-7655: 
Houston (713) 771J.6592; 

:c;.h:~~::ro (r~,~) 6::s.srJd. 
UTAH: Murnl, (801) HW972. 

WASHINGTON: Redmond (206) 881·3080. 

WISCONSIN: Broolkfleld (414) 782·2899. 

~~~~~:d ::r~~~I-:(~\061~W.~~:;1970: 
St. Laurent. Quebec (514) 33&.1860.

TI Regional
Technology Centers
CALIFORNIA: Irvine (714) 66Q.8105:
Sint. CI.ra (408) 748·2220:

GEORGIA: Norcross (404) 662·7945.

IWNOIS Arlington Heights (312) 841).2909.

MASSACHUSETTS: Wanham (617) 895-9196.

TEXAS: Richardson (214) 68Q.5066.

CANADA: Nepeln. Ontario (613) 72fJ.1970.

TI AUTHORIZED DISTRIBUTORS
Arrow/Klerulff Electronics Group
Arrow (Canada)
Future Electronics (Canada)
GRS Electronics Co., Inc.
Hall·Mark Electronics
MarShall Industries
Newark Electronics
Schweber Electronics
Time Electronics
Wyle laboratories
Zeus Components

- OBSOLETE PRODUCT ONLY­
Rochestar Electronics, Inc.
Newburyport, Massachusetts
(S08) 462·9332

~~~~:~ko~):;~~~~6::~ J:~:~!t~(2~;~~81.9235: 
Schweber (205) 895-0480. 

~~,~3:'::(~~)::~f= ~::~t!~7~~:r~9M290: 
Schweber (602) 431-0030: Wyle (602) 861).2888. 

~A~~:~~ (~:)~6'~~;~?(;;'l')e8~~~: 
=~I~~:rt(~~~T}4~~1~'(~~~1}4~:S~1:: 

~,:J ::;:::g: S:1t;)~=g: ~'t.~~1880.8000' 
714) 86:J.9853: ~eus (714) 921·9000: ~818 889-3838: 

cramento: Hall-Mark (916) 824--9781: 
;;~:';~8\9~;~85a;i:~0: Schweber (918) 364-0222: 

Slin DI:,tO: Arrow/Klerulff J619~ 565-4800; 

~::!!~r \~~~) ~::~~: w;: (~~~f~~:~~O: 
San Francisco 8~ Am: Arrow/KJerulff ~408) 74s.&600, 

~:~;:~Zr \~:} ~~~~:; ~r:h~~~1O:Z7!::~~00: 
Zeus (408) 99(1.5121. 

COLORADO: Arrow/Klerulff (303) 790-4444; 
HIII-Mlrk (303) 790--1662: Mershlll (303) 451..s383: 
Schwaber (303) 799-0258: Wyle (303) 457·9953. 

CONNETICUT; Arrow/Klarulff (203) 265·7741: 
HilI-Mark (203) 271·2844: Marshall (203) 265-3822: 
Schwaber (203) 264...s700. 

FLORIDA: Ft. Lauderdale: 
ArrowIKlerulff (305) 4294200: Hall·Mark ~305) 971·9280: 

~:'~Sn~:: (::~~i!~-:g: (~~:::!0~502:) 977.7511: 
Hall8Mlrk (407) 83Q.5855j Marshall (407) 767·8585; 

~:~:'~~~~I~:la~18~~~~l~~~~7) 365-3000; 
Marshall (813) 57fJ.13~; Schweber (813) 541·5100. 

GEORGIA: Arrow/Klerulft (404) 449·8252; 
Hal18Mark (404) 447·8000: Marshall (404) 923·5750: 
Schweber (404) 449-9170. 

ILLINOIS: Arrow/Klerulft (312) 250-0500: 

=:~:,:rr3~~~Z;8~~~~~=:~:~I(~~~~) ~~7~~~: 
INDIANA: Indlanapolls: ArrowIKlerulff (317) 243-9353: 
Hall-Mark (317) 872-8875: Marshall (317) 297·0483: 
Schweber (317) 64:J.105O. 

IOWA: Arrow/Klerulft (319) 395-7230: 
Schweber (319) 373·1417. 

KANSAS: Kansas City: Arrow/KleruHf (913) 541·9542: 
Hall·Mlrk (913) 8~747: Marshlll (913) 492-3121: 
Schweber (913) 492·2922. 

+ 
TEXAS 

INSTRUMENTS 

MARYLAND; Arrow/Klerulff (301) ~j 

::~::;: \:V):.=; ~::'(J~ff'~7~: 
MASSACHUSElTS Arrow/KIoNIII (508) 85l1-0900; 

~::-::;:! ~~ ~l:'&; ~~"f~:h~='O; 
Wyto (8'7) 273-7300; Zous (8'7) 1163-8800. 

MICHIGAN: Detro": ArrowlKlerulff ~313) 482·2290: 

==13~~1~~li~~=:::'(g,~~):~~; 
Grand Rapids: Arrow/Klaru", (816) 243-0912. 

~!:.':.~~r~k)~.r~~:'!:~:ll ~J~O:i2211: 
Schweber (812) 941,&280. 

MISSOURI: SL Louis: Arrow/Klerulff (314) 567 ... 88: 
Hall·Mark (314) 2910$350: Marshall (314) 291-4650; 
Schweber (314) 73N528. 

NEW HAMPSHIRE: ArrowlKlerulff (803) 688-6968: 
Schweber (603) 62S.2250. 

~~ ~::~: ~Rr'r.=r:,l~(~='~Sao; 
HIII.'..:lrk (201) 575--4415. (201) 882·gn3, 

~:g:t ~~~lggl :=.!'~rg~~:o. 
NEW MEXICO: ArrowlKlerutff (505) 243-4556. 

:=.::~ '(:rM w:.~~: Halj.Mark (516) 737.Q600: 
Marshlll (516) 273-2424: Schweber (518) 334--7474: 
Zeus (914) 937·7400: 

=::~:::(71'W:;~~:;~~ :'!:~:1~T7~~3S.7620; 
Schweber (716) 424--2222. 
Syracuse: Marshall (607) 79(1.1811. 

N~:)rr2~~'~~~:I:.':!:('~g)r:~~~~:~j87"3132. 
l:lrshall (919) 87fJ.98U: Schwaber (919) 878-0000. 

OHIO: Cleveland: ArrowlKlerulff (216) 24(1.3990; 
~:~;:~-:r \~~W) =r~: Marshlll (216) 241).1788; 

Columbus: Hall·Uark (614) 8684313: 

:~~:jl f:~;):'~~':0~d:1.:~:'~i3) 43.1800. 

OKLAHOMA, Arrow/KIeNIII (918) 252-7537; 
Schweber (918) 622.fKJ03. 

~:;~~r(5:~I~~=0~~)(::~. 
PENNSYLVANIA: Arrow/KleruHf f412185fJ.7ooo. 

~~:Jh~~r<l~~~~=be~1(~1~~~~, 
(4'2) 963-8804. 

=~rkA~~~)~:T~It.~h<:11~~::)~~~ite,: 
~~I::~~J~tk~:~:i4~~l~~:J4.9957i 
Hall·Mlrk (214) 553-4300: 3arshall (214) 233..sZOOj 
Schweber (214) 681.5010: Wyle (214) 235-9953; 
Zeus (214) 783-7010: 

~~~:::~:M:..r::~f.~ltt5~~r=b~700; 
Hal ... Mlrk (713) 781..s1OO: Mlrshall (713) 89$.9200:
Schweber (713) 78W800: Wyle (713) 87g..9953.

~!~::a:c;~~e:~~~obe::'~:~~:'(~~,) 485-1551;
Wylo (80') 974-9953.

WASHINGTON: ArrowlKlerutff (206) 57s.4420:
Marshall (208) 486-5747: Wyle (206) 881·1150.

WISCONSIN: Arrow/Klarulff (414) 782-0150;
~:,'"w~::r \~~~) ~~~. Marshall (414) 797·8400;

CANADA: Calgary: Future (403) 235-5325;

~O'::~:'~:A~,:r~~:~e ~~:'8::~.5511;
Future (514) 694·7710:
Ottawa: Arrow Clnada (613) 22&-6903;
Future (613) 820.6313:
Quebec City: Arrow canada (418) 871.7500:
.Toronto: Arrow Canldl (416) 672·n69:
Future (416) 83&-4771: Marshall (416) 614-2181;
Vancouver: Arrow Canada (604) 291·2986:
Future {604} 294·1168.

Customer
Response Center
TOLL FREE: (800) 232-3200

OUTSIDE USA: \~~~ ~!~!' J:oo p.m. CST)

A·189

Printed in U.S.A., July 1989
1604910-9707

-II}
TEXAS

INSTRUMENTS

SPRU034A

