
TMS34010
C Compiler
User's Guide

."
TEXAS

INSTRUMENTS

SPVUOO5

TMS34010 C Col11piler
User's Guide

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the devices or the
device specifications identified in this publication without notice. TI advises
its customers to obtain the latest version of device specifications to verify,
before placing orders, that the information being relied upon by the customer
is current.

In the absence of written agreement to the contrary, TI assumes no liability for
TI applications assistance, customer's product design, or infringement of pat­
ents or copyrights of third parties by or arising from use of semiconductor
devices described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright. or other
intellectual property right of TI covering or relating to any combination, ma­
chine, or process in which such semiconductor devices might be or are used.

Copyright © 1986, Texas Instruments Incorporated

Contents

Section

1
1.1
1.2

TMS34010 C Compiler Package Product Overview
Applicable Documents
Documentation Conventions

Page

1-1
1-2
1-2

2 TMS34010 C Compiler Package Installation 2-1
2.1 Installation for Texas Instruments and IBM PC Systems 2-2
2.1.1 Hardware Requirements 2-2
2.1.2 Installation for TIPC and IBM PC Systems with Dual Diskette Drives 2-2
2.1.3 Installation for PC Systems with a Winchester Disk and Single Diskette

Drive 2-3
2.1.4 Tools Verification on PC Systems 2-4
2.2 VAXNMS Systems 2-6
2.2.1 Installation Procedure 2-6
2.2.2 Tools Verification 2-6
2.3 VAX/ULTRIX and VAX/UNIX System V 2-7
2.3.1 Instanation Procedure 2-7
2.3.2 Tools Verification on ULTRIX and UNIX Systems 2-7

3 Invocation and Operation of the TMS34010 C Compiler 3-1
3.1 The TMS3401 0 C Preprocessor (GSPCPP) 3-2
3.1.1 Invoking GSPCPP 3-2
3.1.2 GSPCPP Options 3-2
3.1.3 Operation of GSPCPP 3-3
3.2 The TMS3401 0 Parser (GSPCC) 3-3
3.2.1 Invoking the Parser 3-3
3.2.2 Operation of the Parser 3-4
3.3 ,The Code Generator (GSPCG) 3-4
3.3.1 Invoking GSPCG 3-4
3.3.2 GSPCG Options 3-5
3.3.3 Input Requirements 3-6
3.3.4 GSPCG Output 3-6
3.4 Batch Execution of the C Compiler ,3-6
3.5 Assembling a C Program 3-7
3.6 Archiving a C Program 3-7
3.7 Linking a C Program 3-7
3.7.1 Run-Time Initialization 3-7
3.7.2 Object Libraries and Run-Time Support 3-8
3.7.3 The -c Option in the Linker 3-8
3.7.4 Linker Command File 3-8

iii

4 The TMS34010 C language 4-1
4.1 Identifiers and Keywords 4-2
4.2 Constants 4-2
4.3 TMS34010 C Data Types 4-2
4.3.1 Derived Types 4-3
4.4 Object Alignment 4-4
4.5 Conversions 4-4
4.6 Expressions 4-4
4.6.1 Void Expressions 4-4
4.6.2 Primary Expressions 4-5
4.6.3 Unary Operators in Expressions 4-5
4.6.4 Assignment Operators in Expressions 4-5
4.7 Declarations 4-5
4.7.1 Storage Class Specifiers in Declarations 4-5
4.7.2 Type Specifiers in Declarations 4-6
4.7.3 Structure and Union Declarations 4-6
4.7.4 Enumeration Declarations 4-7
4.8 Initialization of Static and Global Variables 4-8
4.9 8sm Statement 4-8
4.10 Lexi~al Scope Rules 4-10

5 TMS34010 C Run-Time Environment 5-1
5.1 Memory Model 5-2
5.1.1 TMS34010 C Stacks 5-2
5.1.2 Global Variable Memory Allocation 5-3
5.1.3 Structure Packing and Field Manipulation 5-3
5.1.4 Array Alignment 5-3
5.2 Register Conventions 5-4
5.2.1 D.edicated Registers 5-4
5.2.2 Using Registers 5-4
5.2.3 Register Variables 5-5
5.3 Integer Expression Analysis 5-5
5.4 Floating Point Conventions 5-6
5.5 Function Call Conventions 5-7
5.5.1 Register Usage Within Functions 5-8
5.5.2 Passing Parameters 5-8
5.5.3 Local Frame Generation 5-9
5.5.4 Function Termination 5-10
5.5.5 Restoration of the CaUer's Environment 5-11
5.5.6 Return from Function 5-11
5.6 Interrupt Handling 5-11
5.7 System Initialization 5-12
5.7.1 System Stack 5-13
5.7.2 Program Stack 5-13
5.7.3 Initialization of Global Variables 5-13

iv

6
6.1
6.1.1
6.2
6.3
6.4

A
8
C
D
E

TMS34010 Run-Time Support
Memory Management

Specifying the Size of Memory to Manage
String Functions
Character Typing and Conversion Macros
Miscellaneous Functions

Fatal Errors
Reference Documents
C Preprocessor Directives
Floating Point Facility
Interfacing Assembly Language with C

6-1
6-2
6-2
6-2
6-3
6-3

A-1
8-1
C-1
D-1
E-1

v

Illustrations

Figure Page

1 -1 . TMS34010 C Compiler Package Interaction .. 1-1
5-1 . Typical Function Call with Parameters Passed, No Value Returned 5-8
D-1. Single-Precision Floating Point Format .. D-2
D-2. Double-Precision Floating Point Format .. D-3
D-3. Single-Precision Normalization .. D-5

Tables

Table Page

4-1. TMS34010 C Data Sizes .. 4-3
D-1. Floating Point Error Descriptions .. D-7

vi

1. TMS34010 C Compiler Package Product Overview

The C programming language has become one of the dominant languages for
high-level graphics software. Thus, C is a logical choice for systems, periph­
eral, and applications software developers using the TMS34010 Graphics
System Processor. GSP C, a compiler implementation for the TMS3401 0, has
been created to allow developers to tap this software base for high­
performance TMS34010 systems. GSP C accepts standard Kernighan and
Ritchie C source code and produces TMS34010 assembly language source
code.

The TMS3401 0 C Compiler Package consists of a C Preprocessor, a Parser,
and a Code Generator, as well as Run-Time Support and Floating Point Li­
braries. The TMS3401 0 Assembly Language Package supports the assembly,
archiving,- and linking of compiler-generated software. The resulting execut­
able code can be run on a TMS3401 0 target system. Target systems can in­
clude software simulators, software development boards, Texas Instruments
XDS (Extended Development Systems) units, or custom TMS3401 0 systems.
An illustration of this interaction is shown in Figure 1-1.

1MS34010
FONTS

LIBRARY

1MS34010
MATH/GRAPHICS

FUNCTION
UBRARY

Figure 1-1. TMS34010 C Compiler Package Interaction

1-1

TMS34010 C Compiler Package Product Overview

1.1 Applicable Documents

• Kernighan, B., and D. Ritchie. The C Programming Language, Pren­
tice- Hall, Englewood Cliffs, New Jersey, 1978.

• Kochan, Steve G. Programming in C, Hayden Book Company.

• Sobelman, Gerald E. and David E. Krekelberg. Advanced C: Techniques
and Applications, Que Corporation, 1985.

• TMS34010 User's Guide (SPPU005), covering all the hardware related
subjects: architecture, registers, addressing modes, etc.

• TMS34010 Assembly Language Tools User's Guide (SPDU076), cov­
ering the assembler, linker, archiver, and PROM programming utility.

• TMS34010 Software Development Board User's Guide (SPVU002),
describing a PC-based tool for developing and debugging programs for
the TMS3401 O.

• TMS34010 XDS/22 User's Guide (SPDU058) describing the most
powerful tool available for developing software for the TMS3401 O.

• TMS34010 Font Library User's Guide (SPVU005), describing the font
data structure and illustrating each of the available fonts.

1.2 Documentation Conventions

1-2

The documentation conventions used in this book include:

<> Angle brackets enclose user-supplied information that is to be typed
out; for example, <filename> indicates that the name of the file is to
be entered. The brackets themselves are not entered, except in the case
of #include statements used in illustrating the syntax of some macros
(see Section 6, TMS3401 0 Run-Time Support).

[] Square brackets enclose optional items.

A special fbnt is used for information displayed on the screen.

Underscoring is used to indicate the information you type in response to
prompts or other screen displays.

Italics are used to highlight function names, commands, code, and similar
items within a text line.

Boldface type is used to indicate emphasis.

In Section 4, text in the left margin gives references to corresponding sections
in Kernighan and Ritchie's book, The C Programming Language, or indicates
additional information not included in their book.

2. TMS34010 C Compiler Package Installation

The TMS3401 0 C Compiler operates under these operating systems:

• MS' - DOS Version 2.1 (or later)
• PC-DOS2 Version 2.1 (or later)

• VAXNMS3
• VAX/ULTRIX™3
• VAX/UNIX™4 System V

MS-DOS is a trademark of Microsoft Corporation.

2 PC-DOS is a trademark of International Business Machines.

3 VAX, VMS, and ULTRIX are trademarks of Digital Equipment Corporation.

4 UNIX is a trademark of AT&T Bell Laboratories.

2-1

TMS34010 C Compiler Package Installation

2.1 Installation for Texas Instruments and IBM PC Systems

2.1.1 Hardware Requirements

The TMS3401 0 C Compiler requires your system to be configured with 512K
bytes of RAM. It is also recommended that the system be configured with a
Winchester disk.

Note:

The MS- DOS/PC- DOS version of the TMS34010 C compiler is distrib­
uted on two floppy diskettes. The first step for the user is to make backup
copies of the software on blank diskettes. The backup diskettes should
be used in the system instead of the original diskettes. This will afford the
advantage of keeping the original copy free from accidental corruption.

2.1.2 Installation for TIPC and IBM PC Systems with Dual Diskette Drives

2-2

Warning:

Prior to proceeding, make sure the distribution diskettes have
write-protect tabs applied to prevent the risk of destroying the
information on the diskettes.

Use the DISKCOPY command to back up the software package onto your
blank diskettes. Follow these steps to perform this backup:

1) Insert the MS- DOS or PC- DOS system diskette in drive A:.

2) Enter:

DISKCOPY A: B:/FIV

3) The DISKCOPY function prompts you to place the source diskette in
drive A:. Place one of the distribution diskettes in drive A:.

4) You are now prompted to place the destination diskette in drive B:. Place
a blank diskette in drive B:.

The DISKCOPY function copies from the distribution diskette in drive
A: to the blank diskette in drive B:. The IF option formats the destination
diskette before copying, precluding the possibility of directory errors on
the backup diskette. The IV option checks the diskette for media errors.

5) Repeat steps 2 through 5 for each distribution diskette.

TMS34010 C Compiler Package Installation

2.1.3 Installation for PC Systems with a Winchester Disk and Single
Diskette Drive

This procedure is for backup of the distribution diskettes on a second set of
floppy diskettes using a single floppy disk drive. Additionally, it is recom­
mended that the distribution diskettes be backed up on the Winchester, both
for speed of access, as well as for safety of the software.

MS-DOS 2.1 and PC-DOS 2.1 are operating system versions that support a
hierarchical file system. For these systems it is recommended that a subdirec­
tory for TMS3401 0 development tools be created.

Warning:

Prior to proceeding, make sure the distribution diskettes have
write-protect tabs applied to prevent the risk of destroying the
information on the diskettes.

To back up the distribution diskettes using the single floppy disk drive, follow
these steps:

1) Making sure that the utility function DISKCOPY.COM is available for
execution, type:

DISKCOPY A: B:/F/V

2) The DISKCOPY function prompts you to place the source diskette in
drive A. Place one of the distribution diskettes in drive A:. The
DISKCOPY function accesses the disk to determine its type and format.

3) You are then prompted to replace the source diskette in drive A: with the
destination diskette. Place a blank diskette in drive A:. The IF option of
the DISKCOPY function causes the destination diskette to be formatted
before copying, precluding the possibility of directory errors on the
backup diskette. The IV option checks the diskette for media errors.

4) After DISKCOPY formats the. backup diskette, it prompts you to switch
back and forth between the source and destination diskettes, copying
the distribution diskette to the backup diskette. After each distribution
diskette has been copied, DISKCOPY prompts you for more diskettes to
copy. Respond YES until all the distribution diskettes are copied.

If you plan to place the TMS3401 0 software tools in a directory on the Win­
. chester disk as recommended, follow these steps:

1) Create a subdirectory to contain the TMS34010 development tools by
typing:

MKDIR \GSPTOOLS

2) Make the TMS34010 development tools directory the current directory
by typing:

CD \GSPTOOLS

2-3

TMS34010 C Compiler Package Installation

3) Place a distribution diskette in drive A:. Copy the contents of the dis­
tribution diskette by typing:

COPY A:*.* Li..

The IV option causes the system to verify that. after copying, the source
and the destination files are identical.

4) Repeat step 3 for each distribution diskette.

5) Makj3 sure the directory you placed the tools in (in this example,
GSPTOOLS) is in the current pathway.

2.1.4 Tools Verification on PC Systems

2-4

When the TMS3401 0 development tools have been backed up and/or copied
onto the Winchester disk, verify that your copies are executable. Use the batch
file GSPC.BAT provided in the package for this verification. This batch file
first calls the C preprocessor (GSPCPP), then the parser (GSPCC), the code
generator next (GSPCG), and finally the assembler (GSPA). The result is
linkable object code. When using this batch file, remember that you must have
installed the TMS34010 Assembly Language Package on your system; this
package includes the assembler (GSPA), the linker (GSPLNK), the simulator
(GSPSIM). and the archiver (GSPAR).

1) To verify that the compiler is properly installed, invoke GSPC.BAT to
compile the file TESTC34.C by typing:

GSPC TESTC34

2) The batch file responds with:

---[TESTC34]---
C Pre-Processor, <version number>

© Copyright 1985, 1986 Texas Instruments Inc.

GSP C Compiler, <version number>
© Copyright 1985, 1986 Texas Instruments Inc.

"TESTC34.C": ~~> MAIN

GSP C Codegen, <version number>
© Copyright 1985, 1986 Texas Instruments Inc.

"TESTC34.C": ~~> MAIN

GSP COFF Assembler, <version number>
© Copyright 1985, 1986 Texas Instruments Inc.

PASS 1
PASS 1.1 ON SECTION .text
PASS 2 .

No Errors, No Warnings

3) Verify the operation of the TMS34010 linker. The link command file
TESTC34.CMD is included in the package for linking the output of the
compiler and assembler together with the runtime support (RTS.LlB)
and floating point (FLlB.LlB) libraries. Type:

GSPLNK TESTC34.CMD

TMS34010 C Compiler Package Installation

The TMS3401 0 linker responds with:

GSP COFF Linker, <version number>
© Copyright 1985, 1986 Texas Instruments, Inc.

where <version number> is the version number of the current
TMS34010 linker.

4) Continue verification of the TMS3401 0 development tools by invoking
the TMS3401 0 simulator. Type:

GSPSIM TESTC34

The TMS34010 simulator responds by loading the linked output
TESTC34.0UT and displaying the register file and status information.
After the simulator's display has been placed on the screen, run the
linked output by typing:

RUN <return>

The simulator responds by displaying:

YOU'RE OK, WE'RE OK!!!

in white letters in the center of the scratch display area. Exit the simu­
lator by typing:

Q* <return>

5) Conclude the verification session by testing the object/source archiver.
Type:

GSPAR! RTS.L1B

The archiver responds by giving a table of contents for the runtime sup­
port library, similar to the following:

GSP Archiver <version number>
© Copyright 1985, 1986 Texas Instruments, Inc.

FILE NAME SIZE DATE
atof.obj 1216 Tue Aug 12 00 01 04 1986
atoi.obj 450 Tue Aug 12 00 01 04 1986
boot.obj 572 Tue Aug 12 00 01 04 1986

ctype.obj 464 Tue Aug 12 00 01 04 1986
Itoa.obj 424 Tue Aug 12 00 01 04 1986

memory.obj 1874 Tue Aug 12 00 01 04 1986
movmem.obj 382 Tue Aug 12 00 01 04 1986
printf.obj 878 Tue Aug 12 00 01 04 1986
strcat.obj 358 Tue Aug 12 00 01 04 1986
strchr.obj 352 Tue Aug 12 00 01 04 1986
strcmp.obj 360 Tue Aug 12 00 01 04 1986
strcpy.obj 350 Tue Aug 12 00 01 04 1986
strlen.obj 340 Tue Aug 12 00 01 04 1986

strncat.obj 374 Tue Aug 12 00 01 04 1986
strncmp.obj 376 Tue Aug 12 00 01 04 1986
strncpy.obj 372 Tue Aug 12 00 01 04 1986
strrchr.obj 352 Tue Aug 12 00 01 04 1986

fconvert.obj 342 Tue Aug 12 00 01 04 1986
setjmp.obj 332 Tue Aug 12 00 01 04 1986

2-5

TMS34010 C Compiler Package Installation

2.2 VAX/VMS Systems

The tape provided was made at 1600 BPI using the VMS BACKUP utility.
Follow the instructions in this section to install and verify the tools contained
on the tape.

2.2.1 Installation Procedure

1) Mount the tape on your tape drive.

2) Execute the following VMS commands. Note that you must create a
destination directory in which to put the tools. This example uses
DEST:<dest-directory> to indicate the destination. TAPE: is to be re­
placed with the name of the tape drive being used in the backup proce­
dure.

$ allocate
$ init/den;1600
$ mount/for
$ backup
$ dismount
$ dealloc

TAPE:
TAPE:gspc
TAPE:
TAPE:gspc.bck DEST:<dest-directory>
TAPE:
TAPE:

3) The product tape contains a command file called setup. com. This file is
used to set up VMS symbols that allow the tools to be executed in the
same manner as any other command. This command file must be run
as follows:

$ @setup DEST:<dest-directory>

This sets up symbols to be used to call the various tools. The symbols
defined are listed on the screen by the command file.

2.2.2 Tools Verification

2-6

The product tape contains a test file (testc34.c) that can be compiled and
compared with testc34.cmp to ensure that the C compiler has been installed
correctly and is functioning.

For example, enter:

$ gspcpp testc34
$ gspcc testc34
$ gspcg -* testc34

This produces an assembly language file testc34.asm, which should be exactly
like the file testc34.cmp shipped on the product tape.

TMS34010 C Compiler Package Installation

2,3 VAX/ULTRIX and VAX/UNIX System V

The tape provided was made at 1600 BPI using the tar utility. This section
instructs you in installing and verifying the tools contained on the tape.

2,3,1 Installation Procedure

1) Mount the tape on your tape drive.

2) Make the current directory the directory into which the tools will be re­
stored.

3) Enter the tar command appropriate for your system; for example:

tar~

This copies the entire tape into the current directory.

2,3,2 Tools Verification on ULTRIX and UNIX Systems

The product tape contains a test file (testc34.c) that can be compiled to en­
sure that the working C compiler has been installed. The tape contains the
correct output file to compare to the file created during the test.

For example, enter:

9MlQQQ testc34
~ testc34
~ .:l: testc34

This creates the assembly file testc34.asm, which can be compared to the
testc34.cmp file shipped on the tape.

2-7

TMS34010 C Compiler Package Installation

2-8

3. Invocation and Operation of the TMS3401 0 C Compiler

The TMS3401 0 C compiler consists of three parts:

• Preprocessor (GSPCPP)
• Parser (GSPCC)
• Code generator (GSPCG)

The output of the code generator must be assembled with the TMS34010
COFF (common object file format) assembler and linked with TMS34010 C
Run-Time Support using the COFF linker (GSPLNK) to produce executable
object code. Refer to the TMS34010 User's Guide and UNIX COFF doc­
umentation for details of the object file format.

Note:

Each of the tools discussed here has options available for use in the in­
vocation (command) line. These options are unique among themselves
and must be used as shown herein. Any other items included in the in­
vocation may be ignored or may cause errors.

3-1

Invocation and Operation of the TMS34010 C Compiler

3.1 The TMS34010 C Preprocessor (GSPCPP)

The C preprocessor, GSPCPP, is invoked as the first pass of the TMS3401 0
C compiler. GSPCPP handles macro definitions and substitutions, #include
files, line number directives, and conditional compilation. The preprocessor
requires the original C source file as input and produces as output a modified
source file suitable for input to GSPCC.

This preprocessor is the same preprocessor described in The C Programming
Language, by B. Kernighan and D. Ritchie (referred to hereafter as K&R).
Additional information can be found in that book.

3.1.1 Invoking GSPCPP

The preprocessor begins execution when the following command is entered:

where:

input file

output file

options

.9.2.I2.£E£ [input file] [output file] [option's]

is the name of the C source file used as the input file. If no
extension is given, an extension of .c is assumed. If no input
file is given, a prompt appears.

is the name of the file output by GSPCPP. The output file
can be omitted, in which case the name given to the out­
put-file defaults to the input-file name with an extension of
.cpp.

lists any of the available GSPCPP options (see Section
3.1.3). The options parameter can appear anywhere in the
invocation line and can be used multiple times.

3.1.2 GSPCPP Options

3-2

GSPCPP's options are case-sensitive, single-letter fields prefixed by hy­
phens (-). Some options have additional fields, which immediately follow the
option letter with no intervening spaces. The following list describes op­
tions available; each option is uppercase.

-p Tells the preprocessor not to produce the line number and
file :i3-P information used by the compiler. The compila­
tion is otherwise the same as if this information were
produced.

-C Copies comments to the output file. Otherwise, GSPCPP
strips comments.

-D<name>=def Defines name as if the following line appeared at the top
of the input file:

#define name def

The symbol name is then recognized for #if and #ifdef
statements, without having been explicitly defined in the
text of the program.

Invocation and Operation of the TMS34010 C Compiler

-I<dir>

The =del can be omitted, in which case name is defined
to the value 1 .

This option can be used multiple times for defining mul­
tiple names by separating the -D options by spaces.

(Uppercase i) Adds dir to the list of directories to be
searched for #include files. Omitting dir causes option -I
to be ignored. This option can be used mUltiple times,
each one separated by a space, to search more directories.

3.1.3 Operation of GSPCPP

GSPCPP maintains and recognizes the name - -LlNE- - as the current
line number (a decimal integer) and the name - -FILE- - as the current
file name (a C string). Note that these names begin with two underscore
characters and end with two underscore characters with no spaces be­
tween the characters. You can use these names in the same way as any
other defined name, including using them in macros.

All GSPCPP directives begin with the character #, which must appear in col­
umn 1. Any number of blanks and tabs are allowed between # and the di­
rective name. The directives are described in Appendix C, and additional
information can be found in K&R.

The error messages produced by the preprocessor are self-explanatory; the line
number and the filename where the error occurred are printed along with the
diagnostic.

3.2 The TMS34010 Parser (GSPCC)

The parser, GSPCC, is the second pass of the C compiler. It reads the output
of GSPCPP (the preprocessor), parses it perfo.rms syntax checking, and writes
an intermediate file for input to the code generator (GSPCG).

3.2.1 Invoking the Parser

The parser is invoked with the command:

~ [input filel [output filel 1:.ll

where:

input file

output file

-z

is the name of the input file. The default extension for the
input file is .cpp if none is specified. If no input file is given,
a prompt appears.

is the name of the output file. This is the intermediate file
used as input to the GSPCG. If this argument is omitted, the
intermediate file is given the same name as the input file with
the default extension .il.

is the option which retains the .cpp input file. The .cpp file
is deleted if -z is not specified. This parameter can be
placed anywhere in the invocation line.

3-3

Invocation and Operation of the TMS34010 C Compiler

3.2.2 Operation of the Parser

The parser reads the C program (optionally preprocessed) and checks for er­
rors, then outputs an intermediate file which is used as input to the code
generator.

Most errors are fatal; that is, they prevent generation of an intermediate file and
must be corrected before compilation can be completed. Some errors, how­
ever, merely produce warnings which hint of problems but do not prevent
compilation.

As function definitions are encountered, the parser prints a progress message
containing the name of the source file and the name of the function. For ex­
ample:

Iisource.c l' : => main

The message lets you know how far along the compiler is in its execution and
helps identify the location of errors.

After it finishes parsing, GSPCC deletes the input file if the input file's exten­
sion is .cpp and the -z option is not specified. Otherwise, the input file is kept.

3.3 The Code Generator (GSPCG)

The code generator (GSPCG) converts the intermediate code generated by'the
parser into assembly language source code suitable for direct input to the as­
sembler or for modification with a text editor. The code produced by GSPCG
is reentrant, relocatable, and can be stored in ROM.

3.3.1 Invoking GSPCG

3-4

The following command invokes GSPCG:

.'l§££9: [input file] [output file] [tempfile] [options]

where:

input file

output file

tempfile

options

is the name of the input file, which is the file output by
GSPCC with the extension.if. If this argument is not speci­
fied, a prompt appears.

is the name of the output file to be generated. The default
name for the file is the name of the input file appended with
the extension .8sm.

is the name of the temporary file generated and used by the
GSPCG. The default name is the input filename appended
with extension .tmp. This file is deleted after use by GSPCG.'

lists any of the available GSPCG options (see Section 3.3.2,
GSPCG Options). These options can appear anywhere in the
invocation line and are not restricted to follow the list of fi­
lenames.

Invocation and Operation of the TMS34010 C Compiler

3.3.2 GSPCG Options

The options parameter in the invocation command is a character preceded by
a hyphen in the format:

-x[x] ...

where x represents an option character. These option characters can appear
anywhere in the invocation line; they are not restricted to follow the list of
filenames given. Options can be strung together in any order.

The options available are:

-a Indicates there may be assignments of the form ·ptr= ... where ptr is a
pointer to a named variable. A module containing assignments of this
form can be compiled without this option, provided ptr does not point
to a named variable. For example, if ptr points to an element of a dy­
namically- or statically-allocated array, the assignment of values to the
array elements using the form ·ptr= ... does not require compilation of the
module with the -a option. Structures are also not considered to be
named variables.

The compiler normally remembers that a register contains a constant or
the value of a named variable, so it does not 'regenerate code to load that
value into a register. The compiler also assumes that an assignment of
the form ·ptr= ... does not assign a value to a named variable. Because
it cannot know the named variable that this assignment affects, if any, it
must forget the contents of all registers it assumed contained values of
named variables upon encountering such an assignment. Thus, when
the -a option is used, the compiler generates less efficient code, because
it forgets these registers' contents and has to regenerate the code.
However, this is very rarely a problem.

-0 Directs GSPCG to produce high-level-language debug directives in the
output code. See the assembler section of the TMS34010 Assembly
Language Tools User's Guide and the UNIX COFF documentation for
more information about the types of debug information produced.

-v Directs GSPCG to produce code which can run in a mUltiprocess envi­
ronment where all variables may be considered volatile. This flag should
be used to compile modules which access variables that could be modi­
fied by another task (process). In general, code generated this way is
somewhat less efficient.

-z Causes GSPCG to not delete the input file (intermediate file generated
by GSPCC). This could be useful for generation of several object mod­
ules with different GSPCG options.

-r Causes GSPCG to periodically write a register status table to the output
(assembly language) source file. The table is in the form of assembly
language comments, and lists each register currently used by GSPCG. It
also shows the type of each register's current contents. The table is
printed between statements whenever the contents of registers could
change. This is very useful if you want to modify the assembly language
output.

3-5

Invocation and Operation of the TMS34010 C Compiler

*

An example:

**
* AS - EXPRESSION FREE *
* A7 - USER VARIABLE FREE SYMBOL; -ABC *
* A9 - USER REGISTER USED *
**

Instructs GSP.CG to generate code which runs on certain preproduction
units of the TMS3401 O. This option is not needed when compiling code
·for production units of the TMS3401 O. Certain instructions not available
in preproduction units are not used when this option is invoked.

3.3.3 Input Requirements

GSPCG input must be the intermediate file produced by the parser. The out­
put'of the parser is fed, without modification, directly to the GSPCG.

3.3.4 GSPCG Output

GSPCG converts the intermediate file generated by the parser into assembly
lanQuage source code suitable for input to the assembler or for modification
with a text editor. This code is reentrant, relocatable, and can be stored in
ROM.

3.4 Batch Execution of the C Compiler

3-6

The C compiler package contains the batch file GSPC.BAT, which executes
the three phases of the compiler and the assembler. This batch file is invoked
as follows:

where:

input file

Example:

is the name of the C source file. The default extension of this
file is .c. A prompt appears if no file name is given.

.9.2E.£ PROGRAM

This example uses PROGRAM.C as the C source file and generates PRO­
GRAM.ASM as the assembly file and PROGRAM.OBJ as the object file.
PROGRAM.OBJ can be used as input to the linker, GSPLNK.

Invocation and Operation of the TMS34010 C Compiler

3.5 Assembling a C Program

The GSPC batch file automatically produces and assembles TMS34010 as­
sembly language source from C programs, The assembly language source file
is available under the name <input file>,ASM, If you wish to see an assembler
listing of the file, you must explicitly assemble this file using the -I option of
the GSP assembler, •

Appendix E is an example showing the assembly language produced from C
programs,

3.6 Archiving a C Program

C program object files may be archived using the GSPAR archiver program,
Libraries should be organized so that all references to external symbols or
functions are defined within the same library or in a following library, See the
TMS34010 Assembly Language Tools User's Guide for more information,

3.7 Linking a C Program

Modular code is an important concept in writing software because it simplifies
the tasks of debugging and porting, To make this modularization possible, the
programmer must have the capability to link separate modules into one exe­
cutable program, The TMS3401 0 C environment offers this capability by pro­
viding an assembler that produces object code which is linkable by the
TMS34010 linker.

In the simplest case, a C program consisting of modules prog1, prog2, etc, can
be linked to produce an executable output file called prog,out by invoking the
linker as follows:

gsplnk ~ ~ prog.out progl.obj prog2.obj ~ rts.lib [flib.libJ

For further information, refer to the TMS34010 Assembly Language Tools
User's Guide,

3.7.1 Run-Time Initialization

All C programs must be linked with an object module called boot.obj, which
contains code and data for initializing the run-time environment, This is the
first code executed when the program begins running, and it has the following
responsi bi I ities:

• Sets up the system stack.
• Processes the run-time initialization table and auto-initializes global

variables,

• Disables interrupts and calls -main.

Boot.obj is supplied in the run-time support object library RTS,LI B, If you use
the C code option with GSPLNK and include RTS,LlB in your link control file,
boot.obj is automatically linked in (see Section 3,7,3, The -c Option in the
Linker). Alternatively, you can use the archiver GSPAR to extract boot.obj
from the library and link it in explicitly.

3-7

Invocation and Operation of the TMS34010 C Compiler

3.7.2 Object Libraries and Run-Time Support

The archive library RTS.LlB contains code for boot.obj, plus all additional C
run-time support functions. These functions are described in Section 6,
TMS34010 Run-Time Support. If your program uses any of these functions,
RTS.LlB must be linked in with your object files.

Any program that uses floating point math must include the TMS34010
floating point library, which contains functions called by the compiled pro­
gram to perform floating point operations. This library is called FLlB.LlB (see
Appendix D for more information about the floating point library).

Note:

Programs that do not use floating point need not be linked with FLlB.LlB.

You can create your own object libraries and link them in. The linker operates
so that only those modules from the library that define unresolved references
will be included and linked. Refer to the detailed linker documentation in
TMS34010 Assembly Language Tools User's Guide.

3.7.3 The -c Option in the Linker

The linker has an option -c to ease linking C programs. Use the -c option on
the command line or in the link control file. The -c option has the following
effects:

• Forces -c-intOO to be the entry point. -c-intOO is the start of the
run-time initialization code in boot.obj. This also causes boot.obj to be
included from the archive library since boot.obj is the module that de­
fines the symbol -c-intOO.

• Adds two bytes of zero padding at the end of the .data section. This is
required to terminate the initialization tables.

3.7.4 Linker Command File

3-8

The following is an example of a typical command file for linking a C program.
The C program consists of two C modules, main.obj and sub.obj, and an as­
sembly language module, asm.obj. The program uses floating point and se­
veral routines from an archive library called matrix.lib.

-c
-m example.map
-0 example.out

main.obj
sub.obj
asm.obj
flib.lib
rts.lib
matrix. lib

/* linking a C program */
/* create a map file */
/* specify name of output file */

/* user's first C module */
/* user's secondC module */
/* user's asm module */
/* floating point library */
/* run-time support library */
/* user's archive library */

Invocation and Operation of the TMS34010 C Compiler

Example Description.
First, the desired linker options are listed:

-c Option used for linking C programs, as described in the previous sec­
tion. If -c is not used, its effects must be provided using other linker
directives.

-m Option used to create a map file. Follow the option with a string that
represents a valid file name.

-0 If no errors occur during link time, the linker creates an .out (executa-
ble) file. The default file name for this file is a.out. If you wish to alter
this default file name, use the -0 option followed by a string repres­
enting a valid file name.

Next, all the object files to be linked are listed, in any order. One of these files
must define the symbol main, because boot.obj calls main as the start of your
C program.

Note:

If any of the files are in assembly language, they may not contain .data
sections because this will corrupt the C auto-initialization environment.

Any included .obj files are linked into the resultant .out file, whether they are
used or not, while only referenced files from libraries are linked in.

Finally, all the archive object libraries that are to be searched are listed. Only
modules from the libraries that resolve unresolved references are included in
the output file.

3-9

Invocation and Operation of the TMS34010 C Compiler

3-10

4. The TMS3401 0 C Language

The C language compiled by the TMS3401 0 C compiler is based on the UNIX
System V C language as described by K&R with some additions and clarifica­
tions. The most significant differences are:

• Addition of enum data type.
• Unique member names in structures not required.
• Pointers to fields within structures are allowed.
• Structures and unions may be passed as parameters to functions, re­

turned by functions, and assigned directly.

This section is a comparison of the C language compiled by TMS3401 0 C and
the C language described by Kernighan and Ritchie (K&R C).

Note:

Only the differences in the two forms of the C language are discussed
here. The standard K&R C is followed except as contradicted by this sec­
tion. Section numbers from K&R's "C Reference Manual", Appendix A of
The C Programming Language, are shown in the left margin for reference.

4-1

The TMS34010 C Language

4.1 Identifiers and Keywords
K&R 2.2

K&R 2.3

TMS34010 C treats the first 31 characters of an identifier as significant, as
compared with eight in K&R C. This also applies to external names. Case is
significant: uppercase characters are different from lowercase characters for
identifier names in all TMS3401 0 C tools.

Three keywords exist in addition. to the list in K&R. The new keywords are:
asm, void, and enum.

4.2 Constants
K&R
2.4.1

K&R
2.4.3

Added
type

K&R 2.5

All integer constants are of type int (signed, 32-bit length). Invalid digits in
constants (i.e., 8 and 9 in octal) cause a warning message.

The escape code \v is recognized in character and string constants as a vertical
tab character (ASCII code 11). in addition to the escape codes listed in K&R.

Enumeration constants are a special type of integer constant not described by
K&R. An identifier declared as an enumerator can be used wherever an integer
constant can be used. See Section 4.7.4, page 4-6, for more information.

The maximum length of any string constant is 255 bytes in TMS34010 C,
where the length is unlimited in K&R C.

All characters after an embedded null byte in a string constant are ignored; in
other words, the first null byte terminates the string. However, this does not
apply to strings used to initialize arrays of characters.

Identical string constants are stored as a single string, not as separate strings
as in K&R C. However, this does not apply to strings used for any auto-ini­
tialization of arrays of characters.

4.3 TM 834010 C Data Types
K&R4.0

4-2

The char data type is signed. A separate type, unsigned char, is supported.
Long and int are functionally equivalent types, and either can be declared
unsigned. The properties of enum types are identical to those of unsigned
into There is an additional type called void, which.is used to declare a function
that returns no value. The compiler checks that functions declared as void do
not return values and that they are not used in expressions. Functions are the
only type of objects that may be declared void.

The tMS34010 C Language

4.3.1 Deri~ed Types

K&R 2.6

TMS34010 C allows any type declaration to have up to six derived types.
Constructions such as "pointer to", "array of", and "function returning" can
be combined and applied only this number of times.

For example:

int (* (*n l] l]) ()) () ;

translates as "an array of arrays of pointers to functions returning pointers to
functions returning integers." It has six derived types, the maximum allowed.

Structures, unions, and enumerations are not considered derived types for the
purposes of these limits.

Also, the derived type cannot contain more than three array derivations. Note
that each dimension in a multi-dimensional array is a separate array derivation;
thus, arrays are limited to three dimensions in any type definition. However,
types can be combined to produce any dimensioned array.

For example, the following construction declares x as a four-dimensional ar­
ray:

typedef int dim2l] l];
dim2 xl] l];

Table 4-1 summarizes TMS3401 0 C data types:

char
unsigned char
short
unsigned short
int
unsigned int
long
unsigned long
pointers
float

double

enum

Table 4-1. TMS34010 C Data Sizes

8 bits, signed ASCII
8 bits, ASCII

16 bits
16 bits
32 bits
32 bits
32 bits
32 bits
32 bits
32 bits range: + -5.88 x 1 O(-39) through

+-1.70 x 1038
64 bits range: + -1.11 x 1Q(-308) through

+ -8.99 x 10308
1-32 bits - see Section 4.7.4

4-3

The TMS34010 C Language

4.4 Object Alignment

All objects except structure members and array members are aligned on a
16-bit (one word) boundary. In other words, with the exception of structure
and array members, all objects begin at bit addresses whose four LSBs are
zeros. In addition, because of the TMS3401 O's bit addressability, pointers can
point to any bit address. Signed objects of less than 16 bits are sign-extended
to 16 bits. Unsigned objects of less than 16 bits are zero-extended to 16 bits.

Structure or array members are not aligned to 16-bit boundaries. However, the
structure or array itself begins at a 16-bit boundary. In the case of an array of
structures, only the first structure in the array is constrained to begin on a
16-bit boundary.

For additional information on array alignment, see Structure Packing and Field
Manipulation, 5-3.

4.5 Conversions

K&R 6.1 Integer objects are always widened to 32 bits when passed as arguments to a
function. Signed objects of less than 32 bits are sign-extended to 32 bits;
unsigned objects of less than 32 bits are zero-extended to 32 bits.

K&R6.3

K&R
14.4

The type char is signed and is therefore sign-extended when widened to in­
teger type. Sign extension can be disabled by using the type unsigned char.

Float and double types are converted to integer types by truncation.

All float variables are converted to doubles before arithmetic operations or
before being passed as arguments to a function. .

Pointers and integers (or longs) may be freely converted, since each occupies
32 bits of storage. Pointersto one data type can also be converted to pointers
to another data type, since the TMS3401 0 has no alignment restrictions and
all pointers are the same size.

4.6 Expressions

4.6.1 Void Expressions

Added
type

4-4

A function of type void has no value (returns no value) and cannot be called
in any way except as a separate statement or as the left operand of the comma
operator. Functions can be declared or typecast as void.

The TMS34010 C Language

4.6.2 Primary Expressions

K&R 7.1 In TMS34010 C, functions can return structures or unions. However, it is il­
legal to combine a function call with the structure-reference operator ".". Thus,
primary expressions of the form f(E).5 are not allowed. Note that this re­
striction does not apply to the indirect structure-reference operator " ", so
that f(E) s is legal.

The restriction of three array dimensions does not apply to expressions, be­
cause [] is treated as an operator.

4.6.3 Unary Operators in Expressions

K&R 7.2 The value yielded by the sizeof operator is calculated as the total number of
bits used to store the object divided by eight. (Eight is the number of bits in
a character.) Size of can be legally applied to enum objects and bit fields: if
the result is not an integer, it is rounded up to the nearest integer.

4.6.4 Assignment Operators in Expressions

K&R
7.14

The obsolete C assignment operator =op is recognized by TMS34010 C,
along with the current op=. Its use, however, causes a warning message to
be issued.

4.7 Declarations

4.7.1 Storage Class Specifiers in Declarations

K&R 8.1 The first four local objects declared as register in a function will be stored in
TMS34010 registers. A register can store float objects as well as objects of any
integer or pointer type, and will significantly improve the efficiency of ac­
cessing the object. See also Section 5.2, Register Conventions, page 5-4.

Register variables declared as short or char are treated as into

A register declaration of an invalid type or a declaration after the first four re­
gisters have been declared is treated as a normal auto declaration.

Note that functions' arguments declared as register are not implemented in this
release. The register class is ignored for argument variables.

4-5

The TMS34010 C Language

4.7.2 Type Specifiers in Declarations

K&R 8.2 In addition to the type-specifiers listed in K&R, objects may be declared with
enum-specifiers. Enumerations are described in Section 4.7.4, page 4-6.

K&R8.4

K&R 10

More type name combinations are allowed in TMS34010 C than in K&R C.
The adjectives long and short may be used with or without the word int; the
meaning is the same in either case. The word unsigned can be used in con­
junction with any integer type or alone; if alone, int is implied. Long float is
a synonym for double. Otherwise, only one type specifier is allowed in a
declaration.

Contrary to K&R, functions may return structures or unions in TMS34010 C.
In addition, structures and unions may be used as parameters to functions and
may be directly assigned.

Formal parameters to a function may be declared as struct or enum (in addi­
tion to the normal function declarations), since TMS34010 C allows these
types of objects to be passed to functions.

4.7.3 Structure and Union Declarations

K&R8.5

K&R
14.1 .

4-6

Since the TMS3401 0 is bit-addressable, no alignment of any kind occurs for
structure members. Ignore any comment in K&R about alignment or bounda­
ries for structure members. Note that a field with width zero, normally used to
force alignment. is ignored. It is true, however, that bit fields are limited to a
width of 32 bits (see Object Alignment, page 4-4, and Structure Packing and
Field Manipulation, page 5-3).

Any integer type may be declared asa field. Fields are treated as signed unless
declared otherwise. Also, contrary to K&R, pointers to fields are legal in
TMS34010 C.

K&R states that structure and union member names must be mutually distinct.
In TMS3401 0 C, members of different structures or unions may have the same
name. However, this requires that references to the member be fully qualified
through all levels of nesting.

Again, TMS34010 C allows assignment to and from structures, passing
structures as parameters, and returning structures from functions.

There is a comment in K&R regarding the compiler determining the type of a
structure reference by the member name. Since member names are not re­
quired to be unique in TMS3401 0 C, this is not valid. All structure references
must be fully qualified as members of the structure or union in which they
were declared.

The TMS34010 C Language

4.7.4 Enumeration Declarations

Addi­
tional

Enumerations allow the use of named integer constants in TMS34010 C. The
syntax of an enumeration declaration is very similar to that of a structure or
union. The keyword enum is substituted for struct or union, and a list of enu­
merators is substituted for the list of members.

Enumeration declarations have a "tag", as do structure and union declarations.
This tag may be used in future declarations, without repeating the entire dec­
laration.

The list of enumerators is simply a comma-separated list of identifiers. Each
identifier may be either alone or followed by an equal sign and an integer
constant. If no enumerators with "=" appear, then the values of the successive
enumerators begin at zero and increase by one for each identifier. An identifier
with an assigned value assumes that value, -and subsequent enumerators
continue counting by one from there. The assigned value may be negative,
but counting still continues by positive one.

An object of type enum has a size determined as follows: if any of the object's
enumerators have negative values, the object occupies 32 bits. Otherwise, the
object occupies the minimum number of bits required to represent the largest
enumerator value and is considered to be unsigned.

Unlike structure and union members, enumerators share their name space with
ordinary variables and, therefore, must not conflict with variables or other en­
umerators in the same scope.

Enumerators may appear wherever integer constants are required and, there­
fore, can participate in arithmetic expressions, case expressions, and so forth.
In addition, explicit integer expressions may be assigned to variables of type
enum. The compiler does no range checking to insure the value will fit in the
enumeration field. The compiler does, however, issue a warning message if
an enumerator of one type is assigned to a variable of another.

Example:

enum color (red,blue,green=10,orange,purple=-2,cyan} x;

This statement declares x as a variable of type enum The enumerators (with
their values in parentheses) are: red (0), blue (1), green (10), orange (11),
purple (-2), cyan (-1). The variable x is allocated 32 bits because of the ne­
gative values.

All the following are legal operations:

x = blue;
x = blue + red;
x 100;
ired; /*assume i has been declared an int*/
x = i + cyan;

4-7

The TMS34010 C Language '

4.8 Initialization of Static and Global Variables
K&RB.6 An important difference between K&R C and TMS3401 0 C is that external and

static variables are not pre-initialized to zero unless the program explicitly does
so or it is specified as an option in the linker, GSPLNK.

If a program requires that external and static variables be pre-initialized, the
linker can be used to do this. In the linker control file, use a fill value of 0 in
the .bss section:

SECTIONS

.bssO = bxOO;
}

4.9 8sm Statement
Addi­
tional

4·8

TMS34010 C has another "statement" not mentioned in K&R: the asm state­
ment. This statement allows assembly language text to be imbedded in the
output assembler source file. The form of the asm statement is:

asm("<assembler text)");

The assembler text is enclosed in double quotes. All the usual character string
escape codes have their normal meaning. The assembler text is copied directly
to the assembler source file. Note that for GSPA,' an assembler text statement
without a label must begin with a blank. '

The asm statement injects one line of assembly language into the output of
the codegen. A series of asm commands places the instructions sequentially
into the codegen output with no intervening code.

Asm statements do not follow the syntactic restrictions of normal statements
and can appear anywhere in the C source, even outside blocks. However, they
are ignored when they appear in a list of declarations.

The TMS34010 C Language

Warning:

Extreme care must be taken not to disrupt the C environment
with asm commands. No checking of the inserted instructions
is done. Insertion of jumps and labels into C code may cause
unpredictable results in variables manipulated in or around the
inserted code. This command is provided so you can access
features of the hardware, which by definition C is unable to
access. Specifically, this command should not be used to
change the value of a C variable; however, it can be used safely
to read the current value of a variable.

In addition, the asm construct should not be used to insert as­
sembler directives which would change the assembly environ­
ment.

The asm command is very useful in the context of register variables. A register
variable is a variable in a C program that is declared by the user to reside in a
machine register. The TMS3401 0 C compiler allows up to four machine reg­
isters to be allocated to register variables. These four registers, combined with
the asm command, provide a means of manipulating data independently of the
C environment.

4.10 Lexical Scope Rules

The lexical scope rules stated in K&R apply to TMS3401 0 C also, except that
structures and unions each have distinct name spaces for their members. In
addition, the name space of both enumeration variables and enumeration
constants is the same as for ordinary variables.

4-9

The TMS34010 C Language

4-10

5. TMS34010 C Run-Time Environment

5-1

TMS34010 C Run-Time Environment

5.1 Memory Model

TMS34010 C looks at memory as a single linear block partitioned into sub­
blocks containing various components of data and program code. Each vari­
able that is external or static is allocated a block of memory, as is each
function, Each block is contiguous and is limited in size only by the size of
memory available in the system. Dynamic memory allocation (mal/oc and
free) can be implemented by declaring a large global or static array and allo­
cating memory from it.

Note:

Placement of both code and data is done with the linker. Each item of
code or data can be' individually placed in memory, but generally this is
not necessary. Memory-mapped I/O can be an exception, but access to
such physical locations can usually be accomplished with C pointer types.

5.1.1 TMS34010 C Stacks

5-2

In TMS34010 C, there are two stacks: the program stack (STK) and the sys­
tem stack (SP). The program stack passes parameters to functions andallo­
cates local frames for functions. The system stack saves the status of the
calling .function; in other words, it saves registers. The two stacks are allocated .
by the boot module as a single static array called sys-stack. The program
stack pointer STK is set to the bottom of this array (the low address) and
grows· up to higher addresses, while the system stack is set to the top of the
array (the high address) and grows down to lower addresses. Thus, the two
stacks grow toward each other, as illustrated in Figure 5-1. This. arrangement
must not be altered by customizing the boot module.

Three registers are reserved for stack management:

SP Points to the top of the system stack
A14 (STK) Points to the top of the program stack
A13 (FP) Points to the beginning of the current frame (frame pointer)

Manipulation of these registers is done automatically for C functions by the C
environment; however, assembly language routines linked with C functions
must manipulate these registers according to the GSPC conventions.

TMS34010 C Run-Time Environment

5.1.2 Global Variable Memory Allocation

Each external or static variable declared in a C program is allocated an exclu­
sive contiguous space in memory by the compiler. Whereas the actual address
of the space is decided by the linker, the codegen provides that the space is
always allocated in multiples of words, and each variable is always aligned on
a word boundary.

5.1.3 Structure Packing and Field Manipulation

Structure elements are generally allocated space as needed to hold them.
Fields are allocated as many bits as requested, enumerated types are allocated
as few bits as possible to hold the maximum value of that type, bytes are al­
located eight bits, and so on. See also TMS34010 C .Data Sizes, page 4-3,
and Enumeration Declarations, page 4-6.

In the TMS3401 0, structure mapping is done according ~.o standard C practice
with one exception: a field of declared width zero does not cause a word
alignment. Because of the GSP's bit-addressability, word alignment in a
structure does not necessarily produce more efficient code. However, note that
fields which straddle word boundaries do take longer to access since both
words must be fetched by the processor; thus, it is advisable to define struc­
tures and arrays of structures carefully to avoid fields which cross word
boundaries.

If a structure is declared as an external or static variable, it is always placed
on a word boundary and is allocated space rounded up to a word boundary.
However, when an array of structures is declared, no rounding of size is used:
exactly enough space is allocated to hold each structure element in contig­
uous bits of memory.

5.1.4 Array Alignment

In ANSI standard C, as well as K&R C (Kernighan and Ritchie), arrays are
expected to always align their elements on a word boundary, with the excep­
tion of bytes, which may be aligned on a byte boundary. Because the
TMS34010 is bit-addressable, this restriction becomes both unimportant and
inefficient. Thus, in TMS34010 C, arrays have no internal alignment. Each el­
ement of the array is allocated exactly as much space as needed to hold the
contents with no space between adjacent elements.

Note:

Like structures, a carefully defined array (with no elements overlapping
word boundaries) will allow the program to run faster. In general, pixel
arrays are so aligned.

If an array is declared as an external or static variable, the first element of the
array is placed on a word boundary and the array is allocated space rounded
up to a word boundarY:

This method of handling an array allows more control over the environment
than standard C allows. Arrays of bits or pixels are now directly accessible (a.

5-3

TMS34010 C Run-Time Environment

necessity for a graphics environment), and memory-mapped I/O is much more
straightforward.

5.2 Register Conventions

Strict conventions are used to determine which registers are used for what
operations in the C environment. A good understanding of these conventions
is necessary to interface assembly language to a C program.

5.2.1 Dedicated Registers

Three registers are used exclusively by the C environment and cannot be mo­
dified by a user in any way other than those prescribed in Section 5.5, Func­
tion Call Conventions, page 5-7. These registers are:

SP
A14 (STK)
A13 (FP)

Pointer to the top of the system stack
Pointer to the program (user) stack
Pointer to the base of the currently active frame

5.2.2 Using Registers

5-4

Registers AO through A 12 are generally available for use by a function.
However, two conventions apply:

1) A function must save the contents of each register used on entrance to
the function and restore those contents on exiting the function. A8 is the
only exception; its contents do not have to be saved and restored.

2) If an integer value or a pointer is to be returned from a function; it must
be placed in A8.

The codegen uses the registers in the following fashion:

Address generation
Expression analysis
Holding constants
Return value/Scratch
User register variabJes

Note:

AO,A2,A4,A6
A1,A3,A5,A7
A1, A3, A5, A7, A9 through A12
A8
A9, A10, A11, A12

Registers BO through B14 are available for use by the assembly-language
programmer and are not used by the C compiler.

Address generation registers are allocated on a least-recently-used (LRU)
basis, with the low registers allocated first. Expression analysis registers are
allocated from high to low registers, based on availability and current use.
(Note that all integer expression analysis uses 32-bit math.) To hold con­
stants, both the user registers and the expression analysis registers can be
used and are allocated from high to low registers.

TMS34010 C Run-Time Environment

Note:

The codegen constantly keeps track of the contents of the registers and
will attempt to reuse register data if it is at all possible. Therefore, it is
inadvisable to modify with an in-line assembly construct (or with a mod­
ification of codegen output) any register already used in a function. Use
the -r option of the codegen to produce the compiler's information about
use of registers and to place it in the output file.

5.2.3 Register Variables

The codegen provides up to four active register variables at a time for each
function. These are requested via the register storage class. (Refer to Storage
Class Specifiers in Declarations, page 4-5, and K&R for more information.)
The codegen allocates these variables from registers A9 through A12 in as­
cending order; thus, the first variable declared register is placed in A9, the
second in A10, and so on. A register variable can contain any integer type, a
pointer to any type, or a float (doubles or structures are not allowed). If more
than four register variables are declared, the excess are treated as normal vari­
ables.

Register variables declared as short or char are treated as long.

Note:

Using register variables vastly increases the efficiency of code generated
for some statements, sometimes by a factor of two or more. Because the
codegen makes no attempt to keep track of operations involving register
variables, you are free to manipulate them by using in-line assembly lan­
guage.

5.3 Integer Expression Analysis

All integer expression analysis is performed in A file registers using the GSP
32-bit math instructions. Moreover, all multiplicative operations are performed
into odd registers. For this reason, only A1, A3, A5, and A7 are used for gen­
eral-purpose expression registers.

TMS34010 C follows exactly the standard precedence rules of K&R C. Order
of analysis, however, for any operator's operands is based on the relative
complexity of the operands: the more complex operand is always analyzed
first. In this way, thecodegen minimizes the number of operations which must
be performed to fully analyze an expression. (This does not apply to operators
which specify order of analysis of operands, such as the comma, &&, and II
operators.)

If the codegen runs out of registers for use, one of these used registers is se­
lected for reuse and its contents are saved on the system stack to be restored
later. This frees a register temporarily.

5-5

TMS34010 C Run-Time Environment

5.4 Floating Point Conventions

5-6

A floating point value is represented in 32 bits for single precision and in 64
bits for double precision. All operations are done in double precision, so single
precision (32-bit) values and integers are converted before any operations are
perform~d. The following functionality is provided:

• Addition, subtraction, mul~iplication, division, negation, increment, dec­
rement

• Cl;>mparisons
• Conversions

Unsigned integer to double, double to unsigned integer
Unsigned integer to float, float to unsigned integer
Signed integer to double, double to signed integer
Signed integer to float, float to signed integer
Float to double, double to float

• Error handling

The TMS3401 0 floating point package is a custom-coded package that does
not follow usual C calling conventions. The calling conventions for routines
work like a classic operand stack. First, the codegen pushes the floating point
argument(s) onto the argument stack, then generates a call to a floating point
function. The floating point function pops the arguments off the stack, per­
forms the operation and pushes the result back onto the stack. The compiler
has no knowledge of the interned format of the floating point numbers, and the
only restriction is on the size of the number. This allows you to customize a
floating point package for your environment.

Some floating point functions exp~ct integer arguments or return integer val­
ues. For floating point functions, all integers are passed and returned in reg­
ister A8.

The following functional definitions apply to the floating point package and
are used by the compiler. More detailed information about each one of the
functions can be found in Appendix O.

-FP-AOD. -FP-MINUS. -FP_DIV •. _FP_MUlT Each takes two
doubles and returns a double result.

-FP-NEGATE Returns the negated value of the operand passed.

-FP-COMPARE Takes two floats and a comparison operator (in A8) and

Note:

returns an integer result of 0 or 1 based on the compar­
ison; also sets the status ..

The compiler assumes that the status register is also appropriately set
upon return from the -FP-COMPARE function.

-FP-DECR Takes one double and returns two: the top of the stack
is the original argument decremented by one; the second
item on the stack is the original argument (unchanged).

TMS34010 C Run-Time Environment

-FP-INCR

-FP_ITOD

-FP-UTOD

-FP-DTOI

-FP-DTOU

- FP-ITOF

-FP-UTOF

-FP-FTOI

-FP-FTOU

-FP-FTOD

-FP-DTOF

fp-error

Takes one double and returns two: the top of the stack
is the original argument incremented by one; the second
item on the stack is the original argument (unchanged).

Converts the signed integer argument (in AS) to a dou­
ble return value.

Converts the unsigned integer argument (in AS) to a
double return value.

Converts the double argument to a signed integer return
value (in AS). .

Converts the double argument to an unsigned integer
return value (in AS).

Converts the signed integer argument (in AS) to a float
return value.

Converts the unsigned integer argument (in AS) to a
float return value.

Converts the float argument to a signed integer return
value (in AS).

Converts the float argument to an unsigned integer re­
turn value (in AS).

Converts the float argument to a double return value.

Converts the double argument to a float return value.

Called when an exception occurs in one of the float­
ing-point math routines. Takes one argument, the error
number. These numbers are defined by the floating point
package, as is the action of the function (see Appendix
D). This function is not generally called from user code
but by the floating point package. This function follows
standard calling conventions, so it can be defined en­
tirely in C.

5.5 Function Call Conventions

All function calls performed in the C. environment follow a strict set of rules
used by the compiler to avoid corruption of the run-time environment. The
rules depend on whether arguments are to be passed to a function, whether
the function returns a value, and the type of the return value (if any).

Figure 5-1 illustrates a function call.

5-7

TMS34010 C Run-Time Environment

BEFORE CALL
AFTER PASSING

ARGUMENTS UPON ENTRY
AFTER. SAVING AFTER ALLOCATING

. USED REGISTERS LOCAL FRAME

A13-+t------i A13 A13 A13 A13

AR~N

• •
AR~N

• •
AR~N

• •

A14-+1------i
AR~N

• •
A14 ARG 1 A14' ARG 1 A14' ARB 1 A13' ARB 1

LOCAL
FRAME

A14"

, ,- V
/

SP' SP'
OLD OLD

REGISTERS . REGISTERS

SP'
(A13) (A13)

OLD PC OLD PC OLD PC
SP

OLDA14 OLD A14 OLD A14 OLD A14
SP-+l------i

Figure 5-1. Typical Function Call with Parameters Passed, No Value Returned

5.5.1 Register Usage Within Functions

Each function must save the contents of each register used on entrance to the
function and restore those contents on exiting the function. AB is the only
exception; its contents do not have to be saved and restored.

If an integer value or a pointer is to be returned from a function, it must be
placed in AB.

Registers BO through B14 are available for use by the assembly-language
programmer and are not used by the C compiler.

5.5.2 Passing Parameters

5-8

Any parameters passed to a C function follow the strict rules used by the
compiler. These rules are in the following list.

Note:

If these rules are not followed, the Crun-time environment will be cor­
rupted and will crash at some later time.

1) If the function is defined not to have any parameters, none may be
passed.

2) If the function is defined to have one or more parameters, at least one
parameter must be passed to the function.,

TMS34010 C Run-Time Environment

3) If space must be allocated on the stack for a return value, it must be al­
located before any other function call setup action.

If the function returns a double, a float, or a structure type, space must
be allocated on the stack for the return value, regardless of whether the
caller will use the data.

4) Parameters to the function are passed in reverse order; that is, the last
parameter is pushed first and the first is pushed last. This feature allows
variable-length argument lists to be handled easily.

5) All integer types are widened to 32-bit integers. (See Conversions, page
4-4.)

6) All floating point values are converted to doubles.

7) Structures are "widened" to the next larger word boundary.

Note:

Passing structures to functions can be dangerous. The called function
must know the correct size of the structure in order to handle the call
properly. If the sizes do not match, unpredictable results occur. There is
no compile-time check for this in C.

8) The called routine does all cleanup of the stack, so the caller does not
need to do anything after the actual call to the function.

5.5.3 Local Frame Generation

The first steps taken by the called function are:

1) Saves any registers which are modified by the function (including the
frame pointer if the function has local variables). This is accomplished
via the MMTM instruction, pushing the original values of the used reg­
isters onto the system stack.

2) If there are local variables, sets the frame pointer (A13) to point to the
top of the program stack (A14) and then allocates the local frame by
incrementing the program stack.

5-9

TMS34010 C Run-Time Environment

Notes:

1. The status register is not saved.

2 .. There is not an explicit argument pointer in this scheme. The frame
pointer (A13) is located at the end of the argument list and at the
beginning of the local frame, so both arguments and local variables
can be indexed from the frame pointer.

3. Register AS is used as the return value register; and thus is never saved
in a normal function. Therefore, this register can be modified without
having to save it on the system stack.

5.5.4 Function Termination

5-10

At the termination of a function, the function:

1) Handles any return values to be passed to the caller.

2) Restores the caller's registers.

3) Restores the local frame of the caller.

There are three Cases of return value types and each has a method of handling:

Pointers or integer return values: Returned in register AB. Because of
this use of register A8, it is never saved at function entry. Thus, A8 may be
used as a scratch register between function calls. Note that since integer
values are not returned on the stack, it is not necessary for the caller to al­
locate space for them prior to passing parameters.

Floating point return values: Returned on the stack. Either a single or a
double precision value can be returned. Upon return, the value appears to
have been "pushed" on the stack. The space for the return value must be
allocated by the caller before the call, followed by a save of the program
stack pointer to the system stack.

Structure return values: Returned on the program stack, as floating point
values are. It is assumed that the space is allocated, and that the program .
stack pointer (STK) is saved on the system stack.

Note:

The size of a structure returned is rounded up to the next word boundary.
This makes handling easier. Upon return, the structure appears to have
been "pushed" on the stack.

TMS34010 C Run-Time Environment

5.5.5 Restoration of the Caller's Environment

It is the responsibility of the called function to restore the environment of the
caller before returning. In general, this involves restoration of the caller's reg­
isters and deletion of the local frame (including arguments).

The first task is to restore the caller's registers. This can be done with an
MMFM instruction, corresponding to the MMTM given at function entry.
Note that the status register need not be saved or restored. If local variables
were allocated, the frame pointer must also be restored and shouid be included
in the register list for the register save instructions.

There are two methods for deletion of local variables and arguments:

• Function returns value on stack, or has arguments. In the latter the old
program stack pointer is pushed on the stack (below the old value). To
restore the caller's stack, copy this value from the system stack (SP) to
the program stack pointer, A14 (STK).

• No arguments, no return value on stack. If a local frame was allocated,
decrement A14 by the size of the local frame and return. If no frame was
allocated, just return.

Note that the old program stack pointer is not saved for either (1) the case of
values returned on the stack or (2) the case of no arguments.

5.5.6 Return from Function

The last instruction executed by the function is a RETS. Normally, the' in­
struction has an argument of zero, but if the function had arguments or re­
turned a value on the stack, the instruction RETS 2 must be executed to pop
the caller's old program stack pointer off the stack,

5.6 Interrupt Handling

Interrupts can be handled directly with C functions through the use of re­
served function names. These names are of the form: .

c- int##

where two pound signs (##) indicate a two-digit interrupt number. For ex­
ample:

c-intOO (system reset interrupt)
c-intOl .,. c-int99

By naming a function in this way, the user specifies that the function is to be
used to handle an interrupt, and the codegen generates special code for an
interrupt routine.

Any register used (with the exception of SP and STK) is saved by the interrupt
handler, including AB. In a normal function, A8 need not be saved; however,
in the case of an interrupt, A8 must be saved.

To return from the interrupt, use the RETI instruction. This restores the status
of the interrupted function, .

5-11

TMS34010 C Run-Time Environment

An interrupt function may perform any task a normal function may perform:
access global variables, allocate local variables, call other functions, etc.

Notes:

1. It is your responsibility to handle any special masking of interrupts.
You can reenable the interrupts and do any masking required without
corrupting the C environment.

2. An interrupt handler must be declared with no arguments. If it is de­
clared to have arguments, the interrupt handler will not run correctly.

3. An interrupt handler may not be called by the user code. Because the
linkage is set up for handling interrupts, a C calling sequence will not
be handled correctly, and the system could crash.

4. c-intOO is used as the system reset interrupt. This routine initializes the
system and calls the user's main function. Note that when the user's
function is called, the interrupts are still disabled; thus, it is the user's
responsibility to enable interrupts if they are.needed.

5. Any interrupt handler can be used to handle any interrupt or multiple
interrupts. The codegen does not generate any code specific to the
particular interrupt, with the exception of the system reset interrupt
c-intOO, which must be used as system reset and cannot have any
local variables (since it is assumed that at system reset the stack has
not yet been allocated).

To attach an interrupt handler to an interrupt, the address of the in­
terrupt must be placed in the proper interrupt vector. This can be done
with the assembler and linker, creating a simple table of addresses and
linking to the proper location.

5.7 System Initialization

5-12

Before any C code may be run, the C run-time environment must be created.
This environment is represented in the program stack and the system stack,
so these must be properly constructed and initialized. In addition, any vari­
ables which were declared to be automatically initialized at program entry
must be initialized before calling user code.

Two stacks are used to manage the C run-time environment:

Program stack (STK)
System stack (SP)

These stacks must be initialized by the boot function before any user code is
executed. The stacks are located in the static array SYS-STACK, declared in
the module BOOT.C, and share the space by growing toward each other from
opposite ends of the space .. A stack overflow occurs when the stacks overlap.
The size of SYS-STACK may be changed by modifying source code and re­
compiling BOOT.C. There is no protection in the run-time code against stack
overflows, so stack size should be chosen with care.

TMS34010 C Run-Time Environment

5.7.1 System Stack

The system stack is pointed to by the SP register and grows toward low me­
mory. This stack is used by function calls to save the context of the calling
function, including any registers used by the called function. This stack is
supported directly by the TMS3401 0 instruction set, and register SP is dedi­
cated to stack management. The system stack is manipulated by C primarily
through the use of four commands:

• MMTM Save Registers
• MMFM Restore Registers
• CALLA (or CALL) Call a Function
• RETS (or RETI) Return from a Function (or Interrupt)

It is also used by interrupts to save the status of the interrupted function.

5.7.2 Program Stack

The program stack is used for frame generation; i.e., to pass arguments to
functions and allocate local (temporary) variables for the called functions. The
program stack is controlled entirely in software, using A14 to point to the
current "top of stack", and grows toward high memory. Thus, A14 is a dedi­
cated register in the C environment, and it must be carefully manipulated to
avoid system crashes.

5.7.3 Initialization of Global Variables

Before execution of your program, any global variables declared to be pre­
initialized must be initialized by the boot program. This is done through the
use of initialization tables placed in the .data section of the program object
module. Any module generated by the compiler may produce these tables,
and the linker appends them into one table.

Note:

Because the .data section is used by the codegen to contain initialization
tables only, you are not allowed to place any other data in this section.
Doing so causes corruption in the initialization table format, causing un­
predictable results.

Global and static variables that are not autoinitialized are not guaranteed to
be initialized to O.

5-13

TMS34010 C Run-Time Environment

5-14

6. TMS34010 Run-Time Support

6-1

TMS340~O Run-Time Support

6.1 Memory Management

Five routines are provided to implement C dynamic memory management.
These routines are:

malloe Allocates an area of a specified size in memory.

ealloe Allocates and clears an area of memory.

realloe Re-allocates a previously allocated memory area with a new size.

free De-allocates space allocated by cal/oc, mal/oc, or real/oc.

movmem Moves a specified number of bytes from one address to another.

6.1.1 Specifying the Size of Memory to Manage

The amount of memory managed by the memory management routines is
specified by the macro memory-size in the RTS (run-time support) module
memory.c, which contains the source code for all the memory management
routines. By modifying this value and recompiling the module, the amount of
memory used can be changed.

6.2 String Functions

6-2

Several functions are provided to allow manipulation of strings, search for
characters, and comparison of strings. These functions are:

streat *

strneat *

strehr

strrehr

stremp

strnemp

strepv *

strnepv *

strlen

Appends a string onto the end of another string.

Appends a string of up to n characters onto another string.

Searches for the first occurrence of a character in a string.

Searches for the last occurrence of a character in a string.

Compares two strings.

Compares up to n characters in two strings.

Copies a string to a new location.

Copies up to n characters of a string to a new location.

Returns the length of a string.

• When using functions that move or copy strings, ensure that the destination
is large enough to contain the result.

TMS3401 0 Run-Time Support

6.3 Character Typing and Conversion Macros

These macros determine the types of characters contained in variables, arrays,
constants, etc. The library file ctype.h must be included in your file to use the
functions. The character typing macros are:

isalnum

isalpha

isascii

iscntrl

isdigit

islower

isprint

ispunct

isspace

isupper

isxdigit

Detects alphanumeric ASCII characters.

Detects alphabetic ASCII characters.

Detects ASCII characters.

Detects control characters.

Detects numeric characters.

Detects lowercase alphabetic ASCII characters.

Detects printable ASCII characters.

Detects ASCII punctuation characters.

Detects ASCII spacebar, tab (horizontal or vertical), carriage
return, form feed, and newline characters.

Detects uppercase ASCII alphabetic characters.

Detects hexadecimal digit characters.

Conversion of uppercase characters to lowercase, and vice versa, and conver­
sion of non-ASCII characters to ASCII can be done with the following mac­
ros. Include the library file ctype.h to use them.

tolower

toupper

toascii

Converts uppercase alphabetic characters to lowercase.

Converts lowercase alphabetic characters to uppercase.

Converts non-ASCII characters to ASCII characters.

6.4 Miscellaneous Functions

setjmp

longjmp

Saves calling function's context in environment buffer.

Restores context of calling function from environment buffer.

6-3

atof Convert ASCII to Floating Point atof

Syntax double atof(nptr)
char *nptr;

Description This function converts a string of ASCII characters to floating-point values.

. 6-4

The string is given in the format:

[space] [sign]digits[.digits] [eIE[sign] integer]

The space shown in the format is white space and is indicated by a space­
bar, horizontal or vertical tab, carriage return, form feed, or newline. Fol­
lowing the space indicator is an optional sign, and then digits representing
the integer part of the number. The fractional part of the number follows,
then the exponent, including the option of a sign.

The first unrecognized character terminates the string.

The ata! function does not account for any overflow resulting from the
conversion .

atoi

Syntax

Description

Convert ASCII to Integer

double atoi(nptr)
char *nptr;

atoi

This function converts a string of ASCII characters to integer values. The
string is given in the format:

[space] [sign]digits

The space shown in the format is white space and is indicated by a space­
bar, horizontal or vertical tab, carriage return, form feed, or newline. Fol­
lowing the space indicator is an optional sign, and then digits representing
the number.

The first unrecognized character terminates the string.

The aloi function does not account for any overflow resulting from the
conversion.

6-5

calloc

Syntax

D~scription

Example

6·6

Allocate and Clear Mtitmory

#include <memory.h>
char ·calloc(num,size)

int num; /* number of items to clear * /
int size; /* size of each item * /

calloc

This routine allocates a packet of memory large enough to contain num
objects of the specified size and refUrns a pointer to it If it cannot allocate
the packet (i.e.; if it runs out of memory). it returns a null pointer (0). This
fuhctionalso initializes the allocated memory to all zeros. Refer to Section
e.1.1, Specifying the Size of Memory to Managlil, for more information on
allocating memory.

ptr = calloc(10,2) ; /* allocate/clear 10 words */

free Free Memory from Allocation

Syntax #include <memory.h>
int free(pointer)

char ·pointer;

free

Description This routine deallocates a packet of memory (pointed to by pointer) previ­
ously allocated by mal/oc, cal/oc, or real/oc. If you attempt to free a packet
not previously allocated, the function takes no action and returns. Refer to
Section 6.1.1, Specifying the Size of Memory to Manage, for more infor­
mation on allocating memory.

Example char *x;
x = malloc(lO);
free(x);

/* allocate 10 bytes */
/* free 10 bytes */

6-7

· isxxxxx Character Typing Macros isxxxxx

Syntax #include <ctype.h>
int isxxxxx(character)
char character;

Description These macros identify a particular type of character, such as alphabetic,

6-8

alphanumeric, numeric, ASCII, etc. If the argument character is one of the
characters designated by the macro name, the macro returns a nonzero in­
teger. Otherwise, it returns O. The character typing macros are:

isalnum

isalpha

isascii

iscntrl

isdigit

islower

isprint

ispunct

isspace

isupper

isxdigit

Detects alphanumeric ASCII characters.

Detects alphabetic ASCII characters.

Detects ASCII characters.

Detects control characters.

Detects numeric characters.

Detects lowercase alphabetic ASCII characters.

Detects printable ASCII characters.

Detects ASCII punctuation characters.

Detects ASCII spacebar, tab (horizontal or vertical), car­
riage return, formfeed, and newline characters.

Detects uppercase ASCII alphabetic characters.

Detects hexadecimal digit characters.

longjmp Restore Environment longjmp

Syntax #include <setjmp.h>
longjmp(env,val)
jmp-buf env; /* environment save buffer' /
int val; /* value to be returned by corresponding "setjmp" • /

Description This function restores the context of a calling function's environment. It
is used in conjunction with setjmp. These two functions provide transfer
of control from a nested series of functions back to a specified point with­
out using a series of return statements.

6-9

Itoa Convert Long to ASCII Itoa

Syntax int Itoa(n,buffer)
long n; /* number to convert * /
char *buffer; /* buffer to put result in * /

Description This function converts a long integer to the equivalent ASCII string. If the
input number is negative, a leading minus sign is output. The It08 function
returns the number of characters placed in the buffer.

6-10

malloc Allocate Memory

Syntax #include <memory.h>
char *malloc(size)
int size; /* size of block in bytes */

malloc

Description This routine allocates a packet of memory of a specified size and returns a
pointer to it. If mal/oc is unable to allocate the packet (i.e., if it runs out of
memory), it returns a null pointer (0). This function does not modify the
memory it allocates. Refer to Section 6.1 .1 , Specifying the Size of Memory
to Manage, for more information on allocating memory.

6-11

movmem Move Memory movmem

Syntax #include <memory.h>
char *movmem(src,dest,count);

char 'src ; /* source address 0/
char °dest; /* destination address * /
char count; /* number of bytes to move 0/

Description This routine moves count bytes of memory from source address to dest

6-12

address. The source and destination areas can be overlapping. Refer to
Section 6.1.1, Specifying the Size of Memory to Manage, for more infor­
mation on allocating memory.

realloc Re-allocate Memory realloc

Syntax #include <memory.h>
char *realloc(ptr,newlength)

char *ptr ; /*number of items to clear * /
int newlength ; /* new size of packet· /

Description This routine chan,ges the size of the allocated data area pointed to by the
first argument, ptr, to the size specified by the second argument,
newlength. It returns a pointer to the space allocated since the packet and
its contents may have to be moved in order to expand. Any memory freed
by this operation is deallocated. If an error occurs, the function returns zero.
Refer to Section 6.1.1, Specifying the Size of Memory to Manage, for more
information on allocating memory.

6-13

,
setjmp Saves Environment setimp

Syntax #include <setjmp.h>
int setjmp(env)
jmp-buf env;

Description This function saves the context of a calling function's environment. It is

6-14

used in conjunction with /ongjmp. These two functions provide transfer of
control from a nested series of functions back to a specified point without
using a series of return statements.

The setjmp function returns zero when called, but if /ongjmp is executed it
"returns" a second time, returning the value specified by the /ongjmp.

strcat Concatenate Strings

Syntax #include <string.h>
char ·strcat(string1 ,string2)
char ·string1, 'string2;

strcat

Description The strcat function appends a copy of string2 to the end of string 1 and re­
turns a pointer to the first character of string 1

6-15

strchr

Syntax

Description

6-16

. FindCharacterinString-FirstOccurrence

#inclu~e <string.h>
unsigned char *strchr(s,c)
unsigned char *s,c;

strchr

This function finds the firSt occurrence of the character c in the string.s and
returns a pointer to it. If the character is not found, strchr returns a null.

strchr is equivalent to other C compilers' index.

strcmp

Syntax

Description

Compare Strings

#include <string.h>
int strcmp(string1 ,string2)
char 'string1 ,'string2;

strcmp

This function compares two strings, character by character, and returns an
indicator of which string is lower in the ASCII character set. The indicators
are:

-1 if string 1 is less than string2
o if string 1 is equal to string2
1 if string 1 is greater than string2

6-17

strcpy Copy String

Syntax #include <string.h>
char *strcpy(to,from)
char. *to, *from;

strcpy

Description This function copies the string at the address from into the address to and
returns a pointer to this destination string.

6-18

strlen Length of String

Syntax #include <string.h>
unsigned int strlen(string)
char 'string;

strlen

Description The function returns the length of string. In C, a character string is termi­
nated by the first byte with a value of zero. The returned result does not
include the zero byte.

6-19

strncat Concatenate n Characters of String strncat

Syntax #include <string.h>
char 'strncat(string1 ,string2,max)
char 'string1, *string2;
unsigned int max;

Description This function appends a copy of string2, or the first max characters of

6-20

string2 (whichever is smaller), to the end of string 1. It also returns a
pointer to the destination string.

strncmp

Syntax

Description

Compare n Characters in String

#include <string.h>
char 'strncmp(string1 ,string2,n)
char 'string1, 'string2;
unsigned int n;

strncmp

This function compares two strings, character by character, and indicates
which string is lower in the ASCII character set. Only n characters are
compared; if either string has less than n characters, the comparison stops
at the end of the shorter string. The indicators are:

-1 if stringl is less than string2
o if stringl is equal to string2
1 if string 1 is greater than string2

6-21

strncgy

Syntax

Description

6-22

Cogy n Characters to String

#include <string.h>
char "strncpy(to,from,n)
char "to, "from;
unsigned int n;

strncgy

This function copies the string at address from into the address to. Only
n . characters are copied. If the input string is less than n characters, in
length, the remainder of the destination field is padded with zeros. If the
input string has n or more characters, the, string to will not be termi­
nated by an. end of string character. The strncpy function returns the
address cif the destination string.

strrchr Find Character in String-Last Occurrence

Syntax #include <string.h>
unsigned char 'strrchr(s,c)
unsigned char 's,c;

strrchr

Description This function finds the last occurrence of the character c in string sand
returns a pointer to it. If the character c is not found in the string, strrchr
returns a null.

stm;hr is equivalent to other C compilers' rindex.

6-23

toascii

Syntax

Description

6-24

Convert to ASCII

#include <ctype.h>
char toascii(c)
char c;

toascii

This macro converts the argument c to its ASCII equivalent by masking the
bottom seven bits.

tolower Convert to Lowercase

Syntax #include <ctype.h>
char tolower(c)
char c;

tolower

Description This macro converts the uppercase argument c to its lowercase form. If the
argument is already in lowercase, the macro returns the argument un-
changed. .

6-25

toupper Convert to Uppercase

Syntax #include <ctype.h>
char toupper(c)
char c;

toupper

Description This macro converts the lowercase argument c to its uppercase form. If the
argument is already in uppercase,the macro returns the argument un-
changed. .

6-26

A. Fatal Errors

Compiler error messages appear in a straightforward format showing the line
number in which the error occurs and the text of the message:

"name.c", line n: <error message>

Any of the errors shown in this section cause the compiler to abort imme­
diately. Text enclosed in single or double quotes in these error messages is
replaced with actual text from the program, your own symbols, filenames,
memory allocations, etc.

error: cannot allocate sufficient memory

The compiler requires a minimum of 512K bytes of memory to run; this
message indicates a lack of necessary memory. Supply more dynamic
RAM.

error: can't open "filename" as source

The compiler cannot find the file name as entered. Check for spelling
errors; check for the existence of the file named.

error: can't open "filename" as intermediate file

The compiler cannot create the output file. This is usually caused by ei­
ther an error in the syntax of the filename or a full disk.

error: illegal extension "ext" on output file

The intermediate file cannot have a ".c" extension.

·····fatal errors found: no intermediate file produced

This message is printed after an unsuccessful compilation. Correct the
errors (other messages will indicate particular errors) and try compilation
again.

cannot recover from earlier errors: goodbyel

An error has occurred that prevents the compiler from continuing.

A-1

Appendix A

A-2

B. Reference Documents

The following Texas Instruments publications provide additional information
about the TMS3401 0 and may be ordered from a TI Sales Office or authorized
distributor. '.

• TMS34010 User's Guide, (SPVU001)

• TMS34010 Assembly Language Tools User's Guide, (SPVU004)

• TMS34010 Data Sheet (SPPS011)

• TMS4161 Data Sheet

• TMS4461 Data Sheet

The following books or articles provide further background in C programming,
in graphics, and system concepts associated with graphics.

• Cody, William J., Jr., and William Waite, Software Manual for the Ele­
mentary Functions, P~enticeHall, Englewood Cliffs, New Jersey, 1980.

• Kernighan, B, and D. Ritchie. The C Programming Language, Prentice-
Hall, Englewood Cliffs; !'Jew Jersey, 1978. '

• Kochan, Steve G. Programmi,!g in C, Hayden Book Company.

• Sobelman, Gerald E., and David E. Krekelberg. Advanced C: Techniques
and Applications, Que Corporation, 1985.

• Harbison, S., and G. Steele. C: A Reference Manual, Prentice-Hall, En-
glewood Cliffs, New Jersey, 1984. .

8-1

Appendix B

B-2

C. C Preprocessor Directives

The C preprocessor provided with this package is standard and follows K&R
exactly. This appendix is simply an overview of the functionality of the direc­
tives.

. c-,

#define Macro Definition with Arguments #define

Syntax #define <name> (arg, ... ,arg) <token-string>

Description Subsequent occurrences of name followed immediately by a list of argu-

Example

C-2

ments separated by commas and enclosed in parentheses are replaced by
token-string, where each occurrence of an argument is replaced by the
corresponding set of tokens from the comma-separated ,string. When a
macro with arguments is expanded, the arguments are placed into the ex­
panded token-string unchanged. After the entire token-string has been ex­
panded, GSPCPP scans again for names to expand atthe beginning' of the
newly created token-string, which allows for' nested macros. '

Note that there is no space between name and the open parenthesis at the
beginning of the argument list. AI~o; there is no trailing semicolon (;).

#define f(a,b,c) 3*a+b-c

causes

f(27,begin,minus)

whenever it occurs in the code, to be expanded to

3*27+begin-minus

#else Reverse Conditional Compilation #else

Syntax #else

Description The lines of code between this directive and #endif will appear in the out­
put if and only if the test directive corresponding to this #else produces an
untrue result.

C-3

#endif End of Conditional Compilation #endif

Syntax #endif

Description Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef).

C-4.

Each test directive must have a matching #endif. Conditional compilation
sequences may be nested.

#if Begin Conditional Compilation #if

Syntax #if <constant-expression>

Description The lines of code between #if and #endif or #e/se will appear in the output
if and only if the constant-expression evaluates to a non-zero value. All bi­
nary non-assignment C operators, the 7: operator, the unary -,], and! op­
erators are all legal in constant-expression. The precedence of the operators
is the same as in the definition of the C language. There is also a unary
operator called defined, which can be used in constant-expression in these
two forms:

defined(<name», or

defined <name>

This allows the the utility of #ifdef and #ifndef in a #if directive. Only these
operators, integer constants, and names which are known by GSPCPP
should be used in constant-expression. In particular, the sizeof operator is
not available.

C-5

#ifdef Begin Conditional Compilation #ifdef

Syntax #ifdef <name>

Description Inserts the lines of code between #ifdef and #endif or #e/se into the output

C-6

if and only if name has been defined (by #define) and has not been the
subject of a subsequent #undef.

•

#ifndef Begin Conditional Compilation #ifndef

Syntax #ifndef <name>

Description The lines of code between #ifndef and #endif or #else will appear in the
output if and only if name has not been defined (by #define) or has been
the subject of a subsequent #undef.

C-7

#include

Syntax

File Inclusion

#include "filename"
or
#include <filename>

#include

Description Includes at this point in the code the contents of the given filename, which

C-8

will then be run ~hrough GSPCPP. Either double quotes or angle brackets
l'!re used to enclose filename.

The filename can include a pathname with directories and so forth. If no
directory is specified, the file is looked for in:

1) Current directory
2) Directories specified using -I option (see Section 3.1.3, Operation of

GSPCPP, page 3-3).

#Iine Line Number Specification #Iine

Syntax #line <integer-constant> ["<filename>"]

Description Causes generation of line control information for the next pass of the
compiler. integer-constant is the line number of the next line, and filename
is the file where that line exists. If no filename is given, the current filename
(given by the last #Iine directive) is unchanged.

This directive can be used to set the - - LI N E - - and - - FI LE '- -
symbols (see Section 3.1.3, Operation of GSPCPP).

C-9

#undef Cancellation of Definition #lmdef

Syntax #undef <name>

Description Causes the definition of name to be forgotten.

C-10

D. Floating Point Facility

The TMS3401 0 C floating-point package allows you to perform real number
arithmetic operations from C. The TMS3401 0 floating-point functions have a
special C assembly language interlace and, therefore, do not adhere to the C
function calling convention. The TMS3401 0 C compiler performs real number
arithmetic in double precision. The following operations are included in the
C floating point package:

• Addition, subtraction, multiplication, division, negation, increment. and
decrement for double-precision format

• Comparisons for double precision format

• Conversions

Signed/unsigned integer to double
Double to signed/unsigned integer
Signed/unsigned integer to float
Float to signed/unsigned integer
Float to double
Double to float

• Creation of a floating point number in either single- or double-precision
format from an ASCII string

• Error detection and exception handling.

These operations/conversions are described on the following pages.

D-1

Appendix 0

D.1 Single-Precision Floating-Point Format

0-2

The single-precision floating-point format supported by the TMS34010 C
floating-point RTS is a 32-bit format: a sign bit, an 8-bit biased exponent, and
a 23-bit mantissa. The three component fields are positioned in the 32-bit
field format as follows:

3130 2322 o
lsi EXP I MANTISSA

MSB LSB

Figure 0-1. Single-Precision Floating Point Format

Hence, the sign is in bit 31 of the 32-bit field, the exponent resides in bits 23
through 30, and the mantissa in bits 0 through 22.

Given a sign bit s, an exponent e, and a mantissa f, then the value V of the
floating point number X=(s,e,f) is as follows:

• If s = 0, e = 255, and f = 0, then V = +infinity

• If s = 1, e = 255, and f = 0, then V = -infinity

• If 0 < e < 255 and f '" 0, then V = (_1)s*2e-127 (.f)
(V = Not Valid if the number X=(s,e,f) is not a normalized floating point
number. See Floating Point Arithmetic, Rounding, and Normalization,
page D-4.)

• If s = 0, e = 0, and f = 0, then V = 0

• For all other cases, V = Not Valid

Precision in the single-precision format is greater than six decimal digits and
the range includes the following:

• 5.87747 x 10-39 to 1.70141 x 1038 (positive range)
(5.87747 E-39 to 1.70141 E38, in C format)

• -1.70141 * 1038 to -5.87747 * 10-39 (negative range)
(-1.70141 E38 to -5.87747 E-39, in C format)

• 0 (zero)

• + /- infinity

Appendix D

0.2 Double-Precision Floating-Point Format

The double precision floating point format supported by the TMS34010 C
floating point RTS is a 64-bit format: a sign bit. an 11-bit biased exponent, a
52-bit mantissa. The three component fields are positioned in the 64-bit field
format as follows:

6362 5251 o
lsi EXP I MANTISSA

MSB LSB

Figure 0-2. Double-Precision Floating Point Format

Hence, the sign bit is bit 63 of the 64-bit field, the exponent resides in bits
52 through 62, and the mantissa is in bits 0 through 51 .

Given an sign bit s, an exponent e, and a mantissa f, then the value V of the
floating point number X=(s,e,f) is as follows:

• If s = 0, e = 2047, and f = 0, then V = +infinity

• If s = 1, e = 2047, and f = 0, then V = -infinity

• If 0 < e < 2047 and f ¢ 0, then V = (_1)5 2e-1023(.f)
(V = Not Valid if the number X=(s,e,f) is not a normalized floating point
number. See Floating Point Arithmetic, Rounding, and Normalization,
page D-4.)

• If s = 0, e = 0, and f = 0, then V = 0

• For all other cases, V = Not Valid

Precision in the double- precision format is greater than fifteen decimal digits
and the range includes the following:

• 1.11254 x 10-308 to 8.98847 x 10308 (positive range)
(1.11254 E-308 to 8.98847 E308, in C format)

• -8.98847 x 1 0308 to -1 .11 254 x 10-308 (negative range)
(-8.98847 E308 to -1.11254 E-308, in C format)

• 0 (zero)

• + / - infinity

0-3

Appendix 0

0.3 Floating Point Arithmetic, Rounding, and Normalization

D-4

While floating point packages do not always implement a rounding scheme,
rounding does increase the precision of operations and conversions. The
TMS34010 C floating point RTS package implements rounding in any func­
tion where it is applicable. The particular scheme implemented in the
TMS34010 RTS package is known as "round toward infinity". This is the na­
tural rounding method whereby negative-valued floating point numbers are
rounded toward negative infinity and positive-valued numbers are rounded
toward positive infinity. Because all mantissas are unsigned, this type of
rounding is accomplished by adding one to the retained part of a mantissa
whenever the most significant bit discarded was a one. The exception to this
is when a floating point number is converted to an integer, in which case the
fractional part is truncated.

In addition to the "round toward infinity" feature, the TMS3401 0 C floating
point RTS package also implements extended real-number arithmetic. This
means that the subset of real numbers representable by the RTS package,
along with + / - infinity, form a well-ordered set. Moreover, it means that
arithmetic operations with + / - infinity as one or both operands can be per­
formed with certain error generating exceptions (see Table 0-1, page 0-7).
The extended real number system is critical to advanced mathematic and en­
gineering disciplines and its implementation can, therefore, be extremely use­
ful.

Note:

The implementation of extended real-number arithmetic does not affect
the arithmetic when neither operand is + / - infinity. Extended real arith­
metic is strictly an added feature.

Floating-point numbers which have an invalid value V are never generated by
TMS34010 C floating point functions. In addition, .all floating point numbers
generated by the TMS3401 0 C functions are normalized. Oenormalized num­
bers are considered to be invalid and as such are never generated by any
function.

Normalized floating-point numbers (with the exception of zero and +/- infin­
ity) have a one in the MSB of the mantissa. Oenormalized results are always
normalized before their return. If normalization cannot be accomplished in the
format's range, then the appropriate underflow error is generated. A float­
ing-point number is normalized by shifting the mantissa left until the MSB of
the mantissa is one and then subtracting the shift count from the exponent.
An example of single precision normalization is shown in Figure 0-3.

Appendix 0

31 23 22 o
11 101000001 1 00001111000011110000111

OENORMALIZEO FLOATING NUMBER

31 23 22 o
11 1 00111101 1 11110000111100001110000

SAME NUMBER AFTER NORMALIZATION

Figure 0-3. Single-Precision Normalization

,
Normalization for the double precision format is done in the same manner.

0.4 Floating Point Interface

Floating point functions do not adhere to the C calling convention and cannot
be called via a C function call. Each floating point function requires its argu­
ments to be in a particular order on the program stack: the 32 least-significant
bits of double precision numbers are pushed onto the stack first; the 32
most-significant bits are pushed on last. Integer arguments and results are
passed via register AB.

If you wish to call the functions directly (bypassing the C compiler), you must
do so via TMS3401 0 assembly language.

0.4.1 Floating Point Conversions

The TMS34010 C floating-point conversion functions can be classified into
two categories:

• The "exact" conversion functions: .

- FP -ITOD - signed integer to double
- FP - FTOD - float to double
- FP _ UTOD - unsigned integer to double

• The "best fit" conversion functions:

-FP-DTOF - double to float
- FP - FTOI - float to signed integer
- FP _ DTOI - double to signed integer
- FP -ITOF - signed integer to float
- FP - UTOF - unsigned integer to float

The "exact" conversion functions are such that the value Vs of the number in
the source format is exactly equal to Vd, the value of the number in the desti­
nation format. Hence, "exact" conversion functions never cause a loss of
precision, and a "faithful" representation of the source number in the destina­
tionformat is one that has the same value (Vs = Vd).

The "best fit" conversion functions are those which cannot always make the
conversion so that Vs = Vd. Hence, they must convert to the closest possible

0-5

Appendix 0

value representable in. th~ cjes1:inati.on format. Since the set of possible values
representable by the destination format is always finite (although very large),
this "best fit" value Vd does exist and is unique. A conversion error is gener­
ated whenever Vs lies outside the range of the destination format unless -1
< Vs < 1. A "faithful" representation of the. source number in the destination
format is defined as the unique number such that Vd best fits Vs.

·0.5 Floating-Point Error Exception Handling

D-6

Numerous errors are detectable by the TMS34010 C floating-point run-time
support functions, and you can trap every error that is detected. Each error Can
be trapped independently, so you are free to trap one type of error while ac­
cepting the default result on any or all others. This trapping is done by means
of a user-defimible error exception handling routine called fp-error. This rou­
tine is called by the floating point package whenever one of the detectable
errors occurs. For a complete list of detectable errors, see Table 0-1, page 0-7.
When an error is encountered, fp-error is called using the C calling conven­
tion, with an error number passed as an argument.

An example of fp-error might be:

void fp - error (err) int err;
(switch(err)

(
1:
2:
3: printf("CONVERSION ERROR"); return;
5:
6:
7: pr intf ("ARITHMETIC OVERFLOW"); return;

Note:

This example routine attempts no error recovery, but it would be useful in
debugging an algorithm.

Appendix 0

Table 0-1. Floating Point Error Descriptions

Error Functions
Code Generating Error Description

(decimal) the Error

1 -FP-DTOI Conversion error: Generated if destination format cannot
-FP-DTOU faithfully represent source value(essentially

2 -FP-DTOF an overflow occurs when trying to make the conversion
3 -FP-FTOI from source format to destination format).

-FP-FTOU

4 -FP-ADD Infinity - infinity: Default result is zero.

5 -FP-ADD Overflow: Generated when there is an
6 -FP-MUL overflow during an arithmetic operation (i.e.,
7 -FP-DIV the result is too big to be represented in the given format).

Default result is + / - infinity.

11 -FP-MUL Infinity x 0: default result is zero.

12 -FP-ADD Underflow: Generated when there is an underflow
13 -FP_MUL during an arithmetic operation (Le., the
14 _FP_DIV result is too small to be represented in the given format). De-

fault result is zero.

15 -FP-DIV Divide by zero: Default result is + / - infinity.

16 -FP-DIV Infinity/infinity: Default result is +/-1.

0.5.1 Default Error Exception Handler

The default error exception handler fp-error can be modified to meet your
specific needs. As supplied, the routine is as follows:

void fp-error (error_code)
int error - code;
[
return; /* does nothing */

}

0.6 Function Descriptions

This section contains a description of each of the TMS3401 0 C floating point
RTS (Run-Time Support) functions. Each function is covered in a one-page
summary describing its inputs, outputs, error detection, and argument passing.
Argument passing is described via a convention indicating arguments as de­
scribed below. The following notations and conventions are used in the
function summaries:

float
double
int
opcode

single-precision floating-point number (32 bits)
double-precision floating-point number (64 bits)
integer (32 bits)
32-bit operation code

0-7

Appendix 0

D-8

Note:

There are hever more than two inputs to a function, with the exception of
FP-COMPARE, which has three. Also, every function returns only one
result though it may be an integer, a single precision, or a double precision
number. Remember that single and double precision results are returned
via the argument stack, while integer results are returned via register AS.

FP ADD Double Precision Add FP ADD

Input(s) double1, dauble2

Output(s) double

Action double1 + double2 double

Description This function takes two double-precision floating-point numbers and forms
their sum.

Errors Overflow (error code # = 5)
Underflow (error code # = 12)
Infinity - Infinity (error code # = 4)

Example

This is an example of C code which generates a call to - FP -ADD.

main()
{
double a,b,c

c = a + b ;
} ;

/* declare three double
precision floating
point numbers */

/* end of main */

D-9

FP COMPARE Double Precision Compare _FP COMPARE

Input(s)

Output(s)

Action

Description

Errors

Example

0-10

double1, double2, op

int

If (double1 op double2). then 1 -+ int
Else 0 --> int
where op is defined as follows:

1 == equal
2 I = not equal
3 < = .less than or equal
4 < less than
5 > = greater than or equal
6 > greater than .

This function takes two double-precision floating-point numbers and
compares them according to a third input. op. The integer result is zero if
the comparison is false and one if it is true. The inputs doubleT and double2
are compared according to op, with doubleT being the leftmost argument.

None.

The subset of extended real numbers representable by the TMS34010
double-precision floating-point format forms a well ordered set.

The following is an example of C code which would generate a call to
...,FP-COMPARE.

main()
[

double a,b;

if (a < b) ;

/* declare two double
precision floating
point numbers * /

/* OP = 2 when -FP-COMPARE
is called * /
/* end of main * /

FP DEeR

Input(s)

Output(s)

Action

Description

Errors

Example

Double Precision Decrement -FP-DECR

double1

double1, double2

double1 - 1 -+ double2

This function takes a double-precision floating-point number and decre­
ments it by one. The original input is left untouched as the second item
on the stack. The result is at the top of the argument stack after execution
of this function.

None.

There are no errors generated in - FP - DECR because - FP - DECR merely
pushes a double-precision binary floating-point one onto the argument
stack and calls -FP-MINUS. Errors are therefore detected as in
-FP-MINUS.

The following is an example of C code which would generate a call to
-FP-DECR.

maine)
{
double a

a--;
}

/* declare one double
precision floating
point numbers

/* end of main

*/

*/

D-11

-FP-DIV

Input(s)

Output(s)

Action

Description

Errors

Example

0-12

Double Precision Divide -FP-DIV

double1, doubJe2

double

double2 / double1 -+ double

This function takes two double-precision floating-point numbers and forms
their quotient. The remainder is not returned.

Overflow (error code # = 7)
Underflow (error code # = 14)
Divide by zero (error code # = 15)
Infinity / Infinity (error code # = 16)

The following is an example of C code which would generate a call to
-FP-DIV.

main()
(
double a,b,c

c = a / b ;
}

/* declare three double
precision floating
point numbers * /

/* end of main */

-FP-DTOF Doubleto Single (Float) -FP-DTOF

Input(s) double

Output(s) float

Action double -+ float

Description This function converts a double-precision floating-point number to sin­
gle-precision floating-point format.

Errors Conversion Error (error code # = 2)

Example

The conversion error is generated only when the value V of the double
precision number (after rounding) is too big to be faithfully represented in
the single precision format.

The following is an example of C code which would generate a call to
-FP-DTOF.

main()
{

}

double a
float b

b = a ;

/* declare one double and one */
/* single-precision binary
floating-point number */

/* end of main */

0-13

-FP~DTOI DoubletoSigned Integer -FP-DTOI

Input(s) double

Output(s) int

Action double int

Description This function converts a double-precision floating-point number to a
signed 32-bit integer format.

Errors Conversion Error (error code # = 1)

Example

0-14

The conversion error is generated only when the value V of the double
precision number (after truncation) is too big to be faithfully represented in
the signed 32-bit binary integer format.

The following is an example of C code which would generate a call to
-FP-DTOI.

main()
{

}

double a
integer i

i = a

/* declare one double- */
/* ~recision floating­
po~nt number and one
integer */

/* end of m.ain */

-FP-DTOU

Input(s)

Output(s)

Action

Description

Errors

Example

Doubleto Unsigned Integer -FP-DTOU

double

unsigned int

double unsigned int

This function converts a double-precision floating-point number to an un­
signed 32-bit integer format.

Conversion Error (error code # = 1)

The conversion error is generated only when the value V of the double
precision number DI1 (after truncation) is too big to be faithfully repres­
ented in the signed 32-bit binary integer format.

The following is an example of C code which would generate a call to
-FP-DTOU.

main()
(
double a;
unsigned j ;

j = a
}

/* declare one double- */
/* precision floating­
point number and one
integer */

/* end of main */

0-15

fp-error

Syntax

Input(s)

Output(s)

Action

Error Exception Handler

void fp-error(err)
int err;

integer

User defined. (Default = no output)

User defined. (Default = no action)

fp-error

Description This function is a 'user-definable error exception handler. The default func­
tion provided with the TMS34010 C floating point package does nothing
more than pop the input off· the program stack and return to the calling
program.

Errors User defined. (Default = none)

0-16

FP FTOD

Input(s)

Output(s)

Action

Description

Errors

Example

Single(Float)toDouble FP-FTOD

float

double

float double

This function converts a single-precision floating-point number to dou­
ble-precision floating-point format.

None.

The following is an example of C code which would generate a call to
-FP-FTOD.

main()
[

}

double a
float b

a = b ;

/* declare one double and one
/* single precision binary
floating point number */

/* end of main */

0-17

-FP-FTOI

Input(s)

Output(s)

Action

Description

Errors

Example

0-18

Single(Float)tolnteger FP FTOI

float

int

float --+ int

This function converts a single-precision floating-point number to signed
32-bit integer format.

Conversion Error (error code # = 3)

The conversion error is generated only when the value V of the double­
precision number (after truncation) is too large to be faithfully represented
in the signed 32-bit integer format.

This example of C code generates a call to - FP - FTO!.

maine)
(

}

float a;
integer i

i = a i

/* declare one single */
/* precision floating
point number and one
integer */

/* end of main */

FP-FTOU SingleCFloat)toUnsignedlnteger -FP-FTOU

Input(s) float

Output(s) unsigned int

Action float'" unsigned int

Description This function converts a single-precision floating-point number to unsigned
32-bit integer format.

Errors Conversion Error (error code # = 3)

Example

The conversion error is generated only when the value V of the double
precision number (after truncation) is too large to be faithfully represented
in the signed 32-bit integer format.

This example of C code generates a call to - FP - FTOU.

main()
(
float a;
unsigned j ;

j = a
}

/* declare one single */
/* precision floating
point number and one
integer */

/* end of main */

D-19

-FP-INCR Double Precision Increment -FP-INCR

Input(s) double1

Output(s) double1, double2

Action double1 + 1 -+ double2

Description This function takes a double-precision floating-point number andincre­
ments it by one. The original input is not popped off the stack but is left
untouched as the second item on the stack. The result is at the top of the
program stack after execution of this function.

Errors None.

Example

0-20

There are no errors generated in - FP -INCR because the function merely
pushes a double-precision floating-point number onto the program stack
and calls -FP-ADD. Errors are therefore detected as in -FP-ADD.

This example of C code generates a call to -FP-INCR.

maine)
{
double a

a++;
}

/* declare one double
precision floating
point numbers

/* end of main

*/

*/

_FP_ITOD Integerto Double -FP-ITOD

Input(s) int

Output(s) double

Action int -+ double

Description This function converts a signed 32-bit integer to a double-precision float­
ing-point format.

Errors None.

Example

This example of C code generates a call to -FP-ITOD:

maine)
{

}

double a
integer i

a = i ;

/* declare one double */
/* precision floating
. point number and one

integer */

/* end of main */

0-21

FP ITOF

Input(s)

Output(s)

Action

Description

Errors

Example

D-22

IntegertoSingle (Float) -FP-ITOF

int

float

int -+ float

This function converts a signed 32-bit integer to a double-precision float­
ing-point format.

None.

This example generates a call to - FP -ITOF:

main()
{
float a
integer i

a i
}

/* declare one single */
/* precision floating
point number and one
integer */

/* end of main */

_FP_MINUS Double Precision Su btract -FP-MINUS

Input(s) doublel, double2

Output(s) double

Action double2 - double1 -+ double

Description This function takes two double-precision floating-point numbers and forms
their difference.

Errors None.

Example

There are no errors generated in -FP-MINUS because the function merely
negates the value of double1, then calls -FP-ADD. Errors are detected as
in -FP-ADD.

This example generates a call to -FP-MINUS:

main()
(
double a,b,c

c = a - b ;
}

/* declare three double
precision floating
point numbers * /

/* end of main * /

0-23

· -FP-MUL Double Precision Multiply -FP-MUL

Input(s) double1, double2

Output(s) double

Action double1 * double2 double

Description This function takes two double-precision floating-point numbers and forms
their product.

Errors Overflow (error code # = 6)
Underflow (error code # = 13)
Infinity * zero (error code # 11)

Example

This example generates a call to -FP-MUL:

0-24

main()
{
double a,b,c

c = a * b ;
}

/* declare three double
precision floating
point numbers */

/* end of main * /

Input(s)

Output(s)

Action

Description

Errors

Example

double

double

-(double) -+ double

Negate Value -FP-NEG

This function negates the value of a double-precision floating-point num­
ber.

None.

This example generates a call to -FP-NEG.

main()
[
double a,b

a = - b ;
}

/* declare two double
precision floating
point numbers * /

/* end of main */

0-25

-FP-UTOD Unsigned Integerto Double _FP UTOD

Input(s) unsigned int

Output(s) double

Action unsigned int -+ double

Description This function converts an unsigned 32-bit integer to double-precision
floating-point format.

Errors None.

Example

This example of C code generates a call to - FP - UTa D:

0-26

main()
[
double a;
unsigned j ;

a
}

/* declare one double */
/* precision floating

point number and one
integer */

/* end of main */

FP UTOF Unsigned Integerto Float -FP-UTOF

Input(s} unsigned int

Output(s} float

Action unsigned int -+ float

Description This function converts an unsigned 32-bit integer to single-precision float­
ing-point format.

Errors None.

Example

This example generates a call to - FP - UTOF:

main()
(

}

float a;
unsigned j ;

a

/* declare one single */
/* precision floating

point number and one
integer */

/* end of main */

0-27

Appendix 0

0-28

E. Interfacing Assembly Language with C

This appendix is an example of the operation of the TMS3401 0 C calling se­
quence. It serves as a guide for users who wish to interface assembly language
routines with routines written in GSP C. The assembly code shown herein was
generated by passing the set of C routines below through the TMS34010 C
compiler, which produced TMS34010 assembly language output. You are
encouraged to modify the C routines, recompile them, and study the resultant
assembly language output to see the effects of the modification.

II global definition II
int var3:
lonq var5;

mai n ()
f
char var!;
int var2;
lonq var4:
struct

f
i nt struct ._e I ement I;
int struct_element2:
char struct.element3 [12J;

I struct I;

/1 cal I a function with no parameters II
varl ; functionl (I:

II cal I a function with parameters II
function2 (varl, var2, var3, var4, var5):

/" cal I a function with a structure as a parameter "I
function3 (varl, structl, var2):

funct i on I ()

/1 no paramters II

return (l 0) ;
}

E·1

Appendix E

E·2

function2 (parmi, parm2, parm) , parm4, parmS)

char parmi;
int parm2, parm3;
long parm4. parmS;

/* local variables */
int local variable;

local .. variable : parmi;
local ... variable : parm2;
I oca I_ vari ab Ie: parm3;
local .. variable : parm4;
locat .. variable : parmS;

return;
1

function3 (parmi, struct .. parm, parm2)

char parmi;
struct

(

Int struct.elementl;
int struct_element2;
char struct_element3 [12];

} struct parmi
Int parm2;

/' local variables '/
int loca I .. var iab I e;
char local variable2;

local .. variable : parmi;
local .. varlable : struct_parm.struct_elementl;
I oca L .var I ab 1 e : st ruet _parm. struet .. e I e!Rent3 [101;
loeal_variable2 : parm2;

return;
}

Appendix E

The following assembly language code was produced by the TMS34010 C
compiler from the C routines on the previous pages. The comments were ad­
ded for your convenience.
fll •• i •••

• GSP C CO"PILER, Version 1.04, 86.200 •
•••
FP .set AI3
StK .set AI4

. fi Ie "foo.c"

.globl var3

.bss _var3,32,16

.qlobl var5

.bss _.var5,32,16

.globl _main
1 ••••• 1.1 •• 1 ••••••••••••• 1 •••••••••• 1 ••••• 11.1 ••••••••

I FUNCTION OEF : _main
1 •••••••••••••• , •••••••••••••••••••••• 1 ••••••••• 1 •••••

main:
SP,A7,FP
STK,FP
240,STK iallocate space for local variables

Since the first subroutine call has no parameters there is no preparation
CALLA _functionl ifunction returns int in A8
"OVE A8,A7 ireturn value in A8
"OVB A1,'FP imake assignment to varl (IFP(O))

Prepare for second subroutine call
"OVE STK,-'SP,1 ;Push the program stack pointer onto the

hardware stack. This allows the called
routine to be the one to clean up the
parameters and Its local data area. This
value is simply loaded from the hardware
stack back into the system stack.

;Push global variable var5 onto stack
iPush local variable var4 onto stack
iPush global variable var3 onto stack
iPush local variable var2 onto stack

"OVE
"OVE
"OVE
"OVE
"OVB
"OVE
CALLA

@_varS,'STK+,1
'FP(48),'STK+,1
@_var3,'STK+, I
'FP(16) • 'STK+, I
'FP,A7
A7,'STK+,1

;Push local variable varl (byte) onto stack

function2

Prepare for third subroutine call
"OVE STK,-tSP,1
"OVE IFP(16),'STK+,1 iPush local variable var2 onto stack

E-3

Appendix E

E-4

Push local variable structl (struct) onto stack
HOVE FP,A1
ADDl 80,A1
HOVK 5,A8

LL3: ;Loop to copy structl onto stack
HOVE 'A7+,'A14+,1
OSJS A8,LL3

HOVB IfP ,A 1 ;Push local variable varl (byte) onto stack·
HOVE A7.'STK+.1
CALLA _function3 ;Hake call

EPIO 1:
ADDI -240,STK ;Readjust frame PQinter to free locals
HHfH SP.A1.fP ;Restore all registers that were used
RETS 0 ;Pop off return address only

.globl Junctionl
••
• fUNCTION DEf : _.functionl
...................................... ,
functionl:

HOVK
EPIO_2:

IO.A8 ; return (10)

RETS o ;Pop off return address only

.globl _function2 , ... , " ,
• fUNCTION DEF : _function2
••
function2:

HHTH
HOVE
ADDK
HOVB
HOVE
HOVE
HOVE
HOVE
HOVE
HOVE
HOVE

SP.A7.fP
STK,FP
32.STK
·FP(-32).A7
Al,·fP(O).1
'fP(-64),'FP(O),1
·FP(-96),·FP(O),1
·FP(-I2B) ,A7, I

·A7,·FP,\
'fP(-160),A7,1
A7,'FP,1

;Save all registers to be used
;Create new local frame
;Only ·one 32 bit variable
iExtract parmi (8 bit char)
;local variable = par~1
ilocal variable = parm2
;local variable = parm3
;local variable = parm4

;local variable = parm5

Appendix E

ISP(96),STK,1

SP.A7,FP
2

• globl _function3

jFunctions that have parameters must clean
up their own stack. This is done by
placing the old system stack pointer
back into into STK. The 96 comes from
64 bits (A7 and FP) and 32 bits for
the return PC.

jRestore all registers that were used
jPOP off the return PC and the two words

of the old system stack pointer •

111"11'11"11111111'111."'.'.1.'.' •••••• ".".".,"
, FUNCTION DEF : _function3
'.11"""'.'1,.""."""."""" •• "",.",1."",
function3:

MMTM SP.A7.FP ;Save all register~ to be used
MOYE STK,FP jCreate new local frame
ADDI 48,STK jOne 32 bit variable and one char, chars

are stored in 16 bits for efficiency

MOVa 'FP(-32),A7 jExtract parmi (8 bit char)
MOVE A7,'FP,1

HOVE 'FP(-192).IFP(O),1 ilocal variable =
struct_parm.struct_elementl

HOVa 'FP(-48) ,A7 jlocal variable =
HOVE A1,'fP,\ struct __ parm. struct_e I ement3[10)

HOVE IFP(-224),A7,\ ; local variable2 =
HOVa A7,'fP(321 parm2

EPIO 4:
HOVE 'SP(96) ,STK, I
HMfM SP.A7.fP
RETS 2
• end

E-5

Appendix E

E-6

Index

A

array alignment 5-3
asm 4-2
assignment operators 4-5
atof 6-4
atoi 6-5
auto initialization 3-9

B

bit addressability 5-3
boot.obj 3-7

c
calloc 6-2, 6-6
character conversions 4-4
character typing macros 6-3, 6-8

isalnum
isalpha
isascii
iscntrl
isdigit
is lower
isprint
ispunct
isspace
isupper
isxdigit

code generator 3-4
GSPCG 3-4
invocation 3-4
options 3-5

-a 3-5
-0 3~5
-r 3-5
-v 3-5

-z 3-5
constants

character 4-2
enumeration 4-2
integer 4-2
string 4-2

conversion macros 6-3

D

data types 4-3
data sizes 4-3

declarations 4-5, 4-6
derived type 4-3
documentation conventions 1 -2

E

enum 4-2, 4-7
enumeration declaration 4-7

enum 4-7
error exception handling D-6
error messages A-1
explicit pointer conversions 4-4
external definitions 4-6

F

field manipulation 5-3
floating conversions 4-4
floating point conventions 5-6
floating point facility D-1
floating point functionality 5-6
floating point functions D-9

-FP-ADD D-9
-FP-COMPARE D-10
-FP-DECR D-11

Index-1

Index

-FP-OIV 0-12
-FP-OTOF 0-13
-FP-OTOI 0-14
-FP-OTOU 0-15
- fp_error 0-16
-FP-FTOO 0-17
-FP-FTOI 0-18
-FP-FTOU 0-19
_FP-INCR 0-20
-FP-ITOO 0-21
-FP-ITOF 0-22
-FP-MINUS 0-23
-FP-MUL 0-24
-FP-NEG 0-25
-FP-UTOO 0-26
-FP-UTOF 0-27

floating point library 3-8
floating point values in functions 5-9
FP 5-2
fp-error 0-6
frame pointer 5-2
free 6-2, 6-7
function call conventions 5-7
function return values 5-9, 5-10
function termination 5-10

G

global variables 4-8, 5-3, 5-13
GSPCC 3-3
GSPCG 3-4
GSPCPP 3-2
GSPCPP directives C-1

#define C-2
#else C-3
#endif C-4
#if C-5
#ifdef C-6
#ifndef C-7
#include C-8
#Iine C-9
#undef C-10

Index-2

identifiers 4-2
in-line assembly construct (asm) 4-9

statement 4-9
installation of software 2-1

hardware requirements, PC
systems 2-2

PC systems, dual diskettes 2-2
PC systems, Winchester disk 2-3
ULTRIX 2-7
UNIX System V 2-7
VMS 2-6

integer conversions 4-4
integer expression analysis 5-5
integer return values 5-4, 5-6
integers in functions 5-9
interrupt handling 5-11
isalnum 6-3
isalpha 6-3
isascii 6-3
iscntrl 6-3
isdigit 6-3
islower 6-3
isprint 6-3
ispunct 6-3
isspace 6-3
isupper 6-3
isxdigit 6-3
isxxxxx (character typing macros) 6-8

K

K&R 3-2
invocation 3-2
operation 3-3
options 3-2

-C 3-2
-0 3-2
-I 3-3

keywords 4-2

Revision­
December 1988
Printed in U.S.A.

• TEXAS
INSTRUMENTS SPVUOO5

