
TMS340 Family
C Source Debugger

User’s Guide

SPVU021A
2564010–9721 Rev. A

September 1991

Printed on Recycled Paper

Running Title

1-2 Chapter Title

1

TMS340 Family C Source Debugger
Reference Card

Phone Numbers
TI Customer Response Center
(CRC) Hotline: (800) 336–5236

Graphics Hotline: (713) 274–2340

Debugging TIGA Applications

Before invoking the debugger, install the TIGA communication
driver:

Development Board: TIGACD / D2
Execute TIGACOM on the target system.
Execute DEBUGCOM on the host system.

Emulator: TIGACD / D1

Invoking the Debugger

Development Board: db340 [filename] [–options]

 Emulator: db340emu [filename] [–options]

Debugger Options

Option Description

–b[bbbb] Screen size options.
Option Chars./Lines Notes
none 80 X 25 Default display
–b 80 X 43† Use any EGA

80 X 50‡ or VGA card
–bb 120 X 43
–bbb 132 X 43
–bbbb 80 X 60
–bbbbb 100 X 60

Supported on a
Video Seven
VEGA Deluxe
card

–i pathname Identifies additional directories that con-
tain source files.

–mc Tells the debugger to provide ’34082
support.

–mf Tells the debugger to expect IEEE floa-
ting–point format.

–mi Tells the debugger not to initialize the
program counter (PC) or the stack point-
er (SP). ††

† EGA card
‡ VGA card
†† Development Board Version only

2

Debugger Options

Option Description

–p port address Emulator only. If you used nondefault
switch settings, you must use –p.
Switch 1 Switch 2 Option
on on –p 220
on off none needed
off on –p 300
off off –p 3E0

–s Tells the debugger to load filename’s
symbol table only.

–t filename Specifies an initialization command file
to be used instead of init.cmd.

–v Loads only global symbols; later, local
symbols are loaded as needed. Affects
all loads.

–x Ignores options supplied with D_OP-
TIONS.

Summary of Debugger Commands

Command Description

? expression Evaluate expression

addr address
addr function name

Display code at address or
function name

alais [aliasname [”com-
mand string”]]

Associates one or more de-
bugger commands with a
single alias name.

asm Switch to assembly mode

ba address Set breakpoint at address

bd address Delete breakpoint at address

bl List all breakpoints

border [active]
 [,inactive] [,resize]

Change window border style

br Clear all breakpoints

c Switch to C/auto mode

calls Open the CALLS window

cd directory name
chdir directory name

Change current directory

cls Clear COMMAND display

cnext [expression] Single-step C code, step
over functions

color area, attr1 [,attr2 [,attr3
[,attr4]]]

Change screen colors,
delayed update

cstep [expression] Single-step C code

dasm address
dasm function name

Display disassembly at ad-
dress or function name

dir [directory] Show contents of directory

disp expression Open DISPlay window

Summary of Debugger Commands

3

Command Description

eval expression
e expression

Evaluate expression

file filename Display text file

fill address, length, data Fill memory

fpuregs Opens the FPU window to
display the ’34082 registers.

func function name
func address

Display function

go [address] Run to address

halt† Halt target system

ioregs Opens the I/O window to dis-
play the registers.

load object filename Load object file

ma address, length, type Add block to memory map

map {on | off} Enable / disable memory
mapping

md address Delete block from memory
map

mem expression Display memory at expres-
sion

mix Switch to mixed mode

ml List blocks in memory map

mod [module identifier] TIGA module identifier

move [X, Y [, width, length]] Move active window

mr Reset memory map

ms addresslength, filename Saves the parameter values
in a block of memory to a
system file.

next [expression] Single-step disassembly,
step over functions

prompt new prompt Change the prompt

quit Exit the debugger

reload object filename Load object file without sym-
bol table

reset Reset target system (emula-
tor) or reload gspmon (devel-
opment boards)

restart, rest Reset PC to program entry
point

return, ret Return to function’s caller

run [expression] Run program

runb† Benchmark code

runf† Run free from target

scolor area, attr1 [, attr2
[, attr3 [, attr4]]]

Change screen colors, im-
mediate update

sconfig [filename] Load saved screen configu-
ration

setf [datatype, display for-
mat]

Changes the display format
for a specific datatype.

† Emulator only

Summary of Debugger Commands

4

Command Description

size [width, length] Size active window

sload object filename Load object file’s symbol
table

sound on | off Beeps every time an error
message is displayed.

ssave [filename] Save current screen configu-
ration

step [expression] Single-step disassembly

system [operating–system
command [arg]]

Allows you to enter opera-
ting–system commands with-
out exiting the debugger.

take filename [, flag] Execute batch file

tba function name Set a tentative breakpoint
on a TIGA module

tbd breakpoint index Clear a tentative breakpoint

unalias aliasname Deletes an alias and its defi-
nition.

use directory name Use an additional directory

wa expression [, label] Add item to WATCH window

wd index number Delete item from WATCH
window

whatis symbol Query type of symbol

win WINDOW NAME Make WINDOW active
wr Reset WATCH window

zoom Makes the active window as
large as possible.

† Emulator only

Border Styles
(BORDER Command)

Index Style

0 Double-lined box
1 Single-lined box
2 Solid 1/2-tone top, double-lined sides/bottom
3 Solid 1/4-tone top, double-lined sides/bottom
4 Solid box, thin border
5 Solid box, heavy sides, thin top/bottom
6 Solid box, heavy borders
7 Solid 1/2-tone box
8 Solid 1/4-tone box

Colors and Attributes
(COLOR/SCOLOR Commands)

black blue green cyan
red magenta yellow white
bright blink

5

Area Names
(COLOR/SCOLOR Commands)

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

Window Size and Position Limits
(SIZE and MOVE Commands)

Screen
size Option

Valid
widths

Valid
lengths

Valid
X pos.

Valid
Y pos.

80 X 25 none 4–80 3–24 0–76 1–22

80X43†
80X50‡

–b 4–80 3–42
3–49

0–76 1–40
1–47

120X43 –bb 4–120 3–42 0–116 1–40

132X43 –bbb 4–132 3–42 0–128 1–40

80X60 –bbbb 4–80 3–59 0–76 1–57

100X60 –bbbbb 4–100 3–59 0–106 1–57

† EGA card
‡ VGA card

Memory Types (MA Command)

To identify this kind of
memory

Use this keyword as the
type parameter

read-only memory R, ROM, or READONLY

write-only memory W, WOM, or WRITEONLY

read/write memory RW or RAM

no-access memory PROTECT

Switching Modes

To do this
Use this
function key

Switch debugging modes in this order:

auto assembly mixed

6

Editing Text on the Command Line

To do this
Use these
function keys

Enter the current command (if you press
the return key in the middle of text, the
debugger truncates the input text at the
point where you press this key)

Move back over text without erasing
characters

or

Move forward through text without eras-
ing characters

Move back over text while erasing char-
acters

Move forward through text while erasing
characters

Insert text into the characters that are al-
ready on the command line

Using the Command History

To do this
Use these
function keys

Move backward, one command at a
time, through the command history

Move forward, one command at a time,
through the command history

Halting or Escaping From an Action

To do this
Use this
function key

Halt program execution

Close a pulldown menu

Undo an edit of the active field in a
data-display window (pressing this
key leaves the field unchanged)

Halt the display of a long list of data
in the COMMAND window display
area

7

Displaying Pulldown Menus

To do this
Use these
function keys

Display the Load menu

Display the Break menu

Display the Watch menu

Display the Memory menu

Display the Color menu

Display the MoDe menu

Display an adjacent menu or

Execute any of the choices from a
displayed pulldown menu

Press the high-
lighted letter corre-
sponding to your
choice

Running Code

To do this
Use these
function keys

Run code from the current PC (equiva-
lent to the RUN command without an ex-
pression parameter)

Single-step code from the current PC
(equivalent to the STEP command with-
out an expression parameter)

Single-step code from the current PC;
step over function calls (equivalent to
the NEXT command without an expres-
sion parameter)

Selecting or Closing a Window

To do this
Use these
function keys

Select the active window (pressing this
key makes each window active in turn;
stop pressing the key when the desired
window becomes active)

Close the CALLS or DISP window (the
window must be active before you can
close it)

Repeat the last command

Editing Data or Selecting the Active Field

To do this
Use this
function key

FILE or DISASSEMBLY window: Set
or clear a breakpoint

CALLS window: Display the source
to a listed function

Any data-display window: Edit the
contents of the current field

DISP window: Open an additional
DISP window to display a member
that is an array, structure, or pointer

8

Moving or Sizing a Window
Enter the MOVE or SIZE command without parameters, then
use the arrow keys:

To do this
Use these
function keys

Move the window down one line

Make the window one line longer

Move the window up one line

Make the window one line shorter

Move the window left one character
position

Make the window one character nar-
rower

Move the window right one character
position

Make the window one character
wider

Scrolling the Active Window’s Contents

To do this
Use these func-
tion keys

Scroll up through the window contents,
one window length at a time

Scroll down through the window con-
tents, one window length at a time

Move the field cursor up, one line at a
time

Move the field cursor down, one line at
a time

FILE window only: Scroll left, 8 char-
acters at a time

Other windows: Move the field cur-
sor left 1 field; at the first field on a
line, wrap back to the last fully dis-
played field on the previous line

FILE window only: Scroll right, 8
characters at a time

Other windows: Move the field cur-
sor right 1 field; at the last field on a
line, wrap around to the first field on
the next line

FILE window only: Adjust the window’s
contents so that the first line of the text
file is at the top of the window

FILE window only: Adjust the window’s
contents so that the last line of the text
file is at the bottom of the window

DISP windows only: Scroll up through
an array of structures

DISP windows only: Scroll down
through an array of structures

important notice

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders, that the
information being relied on is current.

TI warrants performance of its semiconductor products and related software to current
specifications in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices,
or systems. Use of TI product in such applications requires the written approval of the
appropriate TI officer. Certain applications using semiconductor devices may involve potential
risks of personal injury, property damage, or loss of life. In order to minimize these risks,
adequate design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards. Inclusion of TI products in such applications is understood to be
fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

WARNING

This equipment is intended for use in a laboratory test environment only. It generates, uses, and
can radiate radio frequency energy and has not been tested for compliance with the limits of
computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide
reasonable protection against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which case the user at his
own expense will be required to take whatever measures may be required to correct this
interference.

Copyright  1991, Texas Instruments Incorporated

 How to Use This Manual

iii Chapter Title—Attribute Reference

Preface

Read This First

What Is This Book About?
This book tells you how to use the the ’340 family C source debugger with
these debugging tools:

� The ’34020 emulator

� ’34010- and ’34020-based development boards that use TIGA
communication software (version 2.05 or later). This includes the Texas
Instruments ’34010 TIGA development board, ’34020 software
development board, and a number of third-party ’340 development
boards.

How to Use This Book

The goal of this book is to help you install the C source debugger and learn how
to use it. This book is divided into three distinct parts:

� Part I: Hands-On Information is presented first so that you can start
using your debugger the same day that you receive it.

� There are two versions of the debugger—one for development boards
and one for the emulator—and two sets of installation instructions
(Chapters 2 and 3). It is very important to use the correct
installation—Chapter 1 will help you to select the appropriate
installation chapter.

� Chapter 4 is a tutorial that introduces you to many of the debugger
features.

� Part II: Debugger Description contains detailed information about using
the debugger.

� Chapter 5 is analogous to a traditional manual introduction. It lists the
key features of the debugger, describes additional ’340 software tools,
and tells you how to prepare a ’340 program for debugging.

� The remaining chapters in Part II detail the individual topics that are
introduced in the tutorial. For example, Chapter 6 describes all of the
debugger’s windows and tells you how to move them and size them;
Chapter 7 describes everything you need to know about entering
commands.

How to Use This Manual

iv

� Part III: Reference Material provides supplementary information.

� Chapter 13 provides a complete reference to all the tasks introduced
in Parts I and II. This includes a functional and an alphabetical
reference of the debugger commands and a topical reference of
function key actions.

� Chapter 14 provides information about C expressions. The debugger
commands are powerful because they accept C expressions as
parameters; however, the debugger can also be used to debug
assembly language programs. The information about C expressions
will aid assembly language programmers who are unfamiliar with C.

� Part III also includes a glossary and an index.

The way you use this book should depend on your experience with similar
products. As with any book, it would be best for you to begin on page 1 and
read to the end. Because most people don’t read technical manuals from cover
to cover, here are some suggestions about what you should read.

� If you have used TI development tools or other debuggers before, then you
may want to:

� Read Chapter 1 to determine which version of the debugger you
should install.

� Use the appropriate installation chapter, as directed in Chapter 1.
� Complete the tutorial in Chapter 4.
� Read the alphabetical command reference in Chapter 13.

� If this is the first time that you have used a debugger or similar tool, then
you may want to:

� Read Chapter 1 to determine which version of the debugger you
should install.

� Use the appropriate installation chapter, as directed in Chapter 1.
� Complete the tutorial in Chapter 4.
� Read all of the chapters in Part II.

 Notational Conventions

v Chapter Title—Attribute Reference

Notational Conventions

This document uses the following conventions:

� The C source debugger has a very flexible command-entry system; there
are usually a variety of ways to perform any specific action. For example,
you may be able to perform the same action by typing in a command, using
the mouse, or using a function key. This document uses three symbols to
identify the methods that you can use to perform an action:

Symbol Description

Identifies an action that you perform by using the mouse.

Identifies an action that you perform by using function
keys.

Identifies an action that you perform by typing in a
command.

� The following symbols identify mouse actions. For simplicity, these
symbols represent a mouse with two buttons; however, you can use a
mouse with only one button or a mouse with more than two buttons.

Symbol Action

Point. Without pressing a mouse button, move the mouse to
point the cursor at a window or field on the display. (Note that
the mouse cursor displayed on the screen is not shaped like an
arrow; it’s shaped like a block.)

Press and hold. Press a mouse button. If your mouse has only
one button, press it. If your mouse has more than one button,
press the left button.

Release. Release the mouse button that you pressed.

Click. Press a mouse button and, without moving the mouse,
release the button.

Press, hold, and move. While pressing the left mouse button,
move the mouse.

� Debugger commands are not case sensitive; you can enter them in
lowercase, uppercase, or a combination. To emphasize this fact,

Notational Conventions

vi

commands are shown throughout this user’s guide in both uppercase and
lowercase.

� The debugger recognizes standard C numeric formats. Hexadecimal
numbers must be prefixed with 0x. Octal numbers must be prefixed with
0. Decimal numbers are not prefixed.

� Program listings and examples, interactive displays, and window contents
are shown in a special font. Some examples use a bold version
to identify code, commands, or portions of an example that you enter. Here
is an example:

Enter Result displayed in the COMMAND window

whatis giant struct zzz giant[100];

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

In this example, the left column identifies debugger commands that you
type in. The right column identifies the result that the debugger displays in
the COMMAND window display area.

� In syntax descriptions, the instruction or command is in a bold face font,
and most parameters are in italics. Portions of a syntax that are in bold
face should be entered as shown; portions of a syntax that are in italics
describe the kind of information that should be entered. Here is an
example of a command syntax:

wa expression [, label]

wa is the command. This command has two parameters, indicated by
expression and label. The first parameter must be an actual C expression;
the second parameter, which can be any string of characters, is optional.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of a command
that has an optional parameter:

run [expression]

The RUN command has one parameter, expression, which is optional.

 Related Documentation From Texas Instruments

vii Chapter Title—Attribute Reference

Related Documentation From Texas Instruments

The following books describe the TMS34010, TMS34020, and related support
tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Customer Response Center (CRC) at (800) 336–5236. When
ordering, please identify the book by its title and literature number.

TMS34010 TIGA Development Board User’s Guide (literature number
SPVU031) provides an in-depth description of TIGA development board
operation.

TMS34020 Software Development Board User’s Guide (literature number
SPVU034) provides an in-depth description of the software development
board operation.

TMS34020 Emulator Installation Guide (literature number SPVU032)
provides an in-depth description of emulator board operation.

TMS34010 User’s Guide (literature number SPVU001) discusses hardware
aspects of the ’34010, such as pin functions, architecture, stack operation,
interfaces, and instruction set.

TMS340 Graphics Library User’s Guide (literature number SPVU027)
describes the graphics operations library that is available for a ’340-based
graphics system.

TIGA Interface User’s Guide (literature number SPVU015) describes the
architecture of the TIGA (Texas Instruments Graphics Architecture)
software interface between a host processor and a ’340 graphics
processor, which includes the applications interface, communications
driver, and graphics manager.

TMS34020 User’s Guide (literature number SPVU019) describes hardware
aspects of the ’34020, such as pin functions, architecture, stack operation,
interfaces, and instruction set.

TMS340 Family Assembler Support for the TMS34082 (literature number
SPVU029) summarizes the ’34082 instruction set.

TMS340 Family Code-Generation Tools User’s Guide (literature number
SPVU020) describes the ’340 C compiler, assembler, linker, archiver, and
auxiliary tools that are available for developing ’34010 or ’34020 code.

Pixel Perspectives is a quarterly newsletter, published by the Computer
Video Products group of Texas Instruments Incorporated. This newsletter
describes new products, discusses support for existing products, and
identifies new documentation releases.

Related Documentation / Assistance / Trademarks

viii

If you are an assembly language programmer and would like more information
about C or C expressions, you may find this book useful:

The C Programming Language (second edition, 1988), by Brian W.
Kernighan and Dennis M. Ritchie, published by Prentice–Hall, Englewood
Cliffs, New Jersey.

If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about
Texas Instruments computer video
products

Call the CRC† hotline:
(800) 336–5236

Or write to
Texas Instruments Incorporated
Market Communications Manager, MS 736
P.O. Box 1443
Houston, Texas 77251–1443

Order Texas Instruments
documentation

Call the CRC† hotline:
(800) 336–5236

Ask questions about product
operation or report suspected
problems

Call the graphics hotline:
(713) 274–2340

Report mistakes in this document or
any other TI documentation

Send your comments to
Texas Instruments Incorporated
Technical Publications, MS 702
P.O. Box 1443
Houston, Texas 77251–1443

† Texas Instruments Customer Response Center; the number is toll free in the U.S.
and Canada.

Trademarks

TIGA is a trademark of Texas Instruments Incorporated.

PC-DOS is a trademark of International Business Machines.

MS-DOS and Windows are trademarks of Microsoft Corporation.

VEGA Deluxe is a trademark of Video Seven Incorporated.

ix Chapter Title—Attribute Reference

Contents

Part I: Hands-On Information

1 Identifying the Correct Installation for Your Development System 1-1.

 Illustrates key items necessary for both versions of the debugger, directs you to the appropriate installation
instructions, and describes the three general categories of ’340 debugging strategies.

1.1 Using the Development Board Version of the Debugger 1-2.
Where are the installation instructions? 1-3.

1.2 Using the Emulator Version of the Debugger 1-4.
Where are the installation instructions? 1-5.

1.3 Strategies for Debugging Your ’340 Application 1-6.
Standalone applications 1-6.
TIGA applications 1-6.
Non-TIGA host applications 1-7.

1.4 Using an Emulator and a Development Board in the Same System 1-8.

2 Installing the Debugger for Use With ’340-Based Development Boards 2-1.

Lists the hardware and software you’ll need to install and run the development board version of the debugger,
guides you through a 2-step installation process, and tells you how to invoke the development board version of the
debugger.

2.1 What You’ll Need 2-2.
Hardware checklist 2-2.
Software checklist 2-2.

2.2 Installing the Debugger Software 2-4.
2.3 Setting Up the Debugger Environment 2-4.

Invoking the new or modified batch file 2-5.
Modifying the PATH statement 2-6.
Setting up the environment variables 2-6.
Installing the TIGA communication driver 2-7.

2.4 Setting Up for TIGA Applications 2-8.
Pinout for serial cable connector 2-11.

2.5 Invoking the Debugger 2-12.
2.6 Exiting the Debugger 2-13.

Running Title—Attribute Reference

x

3 Installing the Debugger for Use With the ’34020 Emulator 3-1.

Lists the hardware and software you’ll need to install and run the emulator version of the debugger, guides you
through a 2-step installation process, and tells you how to invoke the emulator version of the debugger.

3.1 What You’ll Need 3-2.
Hardware checklist 3-2.
Software checklist 3-3.

3.2 Installing the Debugger Software 3-4.
3.3 Setting Up the Debugger Environment 3-4.

Invoking the new or modified batch file 3-5.
Modifying the PATH statement 3-6.
Setting up the environment variables 3-6.
Identifying the correct I/O switches 3-7.
Resetting the emulator 3-8.

3.4 Setting Up for TIGA Applications 3-9.
3.5 Invoking the Debugger 3-11.
3.6 Exiting the Debugger 3-12.

4 An Introductory Tutorial to the C Source Debugger 4-1.

Provides a step-by-step introduction to the debugger and its features.

How to use this tutorial 4-2.
A note about entering commands 4-3.
An escape route (just in case) 4-3.
Invoke the debugger and load the sample program’s object code 4-4.
Now what should I see? 4-5.
What’s in the DISASSEMBLY window? 4-6.
Select the active window 4-6.
Resize the active window 4-8.
Zoom the active window 4-9.
Move the active window 4-10.
Scroll through a window’s contents 4-11.
Display the C source version of the sample file 4-12.
Execute some code 4-12.
Become familiar with the three debugging modes 4-13.
Open another text file, then redisplay a C source file 4-15.
Use the basic RUN command 4-16.
Set some breakpoints 4-16.
Benchmark a section of code (emulator only) 4-18.
Watch some values and single-step through code 4-19.
Run code conditionally 4-21.
WHATIS that? 4-22.
Clear the COMMAND window display area 4-23.

 Running Title—Attribute Reference

xi Chapter Title—Attribute Reference

Display the contents of an aggregate data type 4-23.
Display data in another format 4-26.
Change some values 4-28.
Define a memory map 4-29.
Define your own command string 4-30.
Close the debugger 4-30.

Part II: Debugger Description

5 Overview of a Code Development and Debugging System 5-1.

Discusses features of the debugger, additional tools.

5.1 Description of the ’340 C Source Debugger 5-2.
Key features of the debugger 5-3.

5.2 Developing Code for the ’340 5-5.
5.3 Preparing Your Program for Debugging 5-8.

Assembling and/or compiling your program 5-8.
Program constraints for development board applications 5-10.

5.4 Debugging ’340 Programs 5-11.

6 The Debugger Display 6-1.

Describes the default displays, tells you how to switch between assembly language and C debugging, describes
the various types of windows on the display, and tells you how to move and size the windows.

6.1 Debugging Modes and Default Displays 6-2.
Auto mode 6-2.
Assembly mode 6-3.
Mixed mode 6-4.
Restrictions associated with debugging modes 6-4.

6.2 Descriptions of the Different Kinds of Windows and Their Contents 6-5.
COMMAND window 6-6.
DISASSEMBLY window 6-7.
FILE window 6-8.
CALLS window 6-9.
MEMORY window 6-11.
CPU window 6-12.
I/O window 6-13.
FPU window 6-14.
DISP windows 6-15.
WATCH window 6-16.

6.3 Cursors 6-17.

Running Title—Attribute Reference

xii

6.4 The Active Window 6-18.
Identifying the active window 6-18.
Selecting the active window 6-19.

6.5 Manipulating Windows 6-21.
Resizing a window 6-21.
Zooming a window 6-23.
Moving a window 6-24.

6.6 Manipulating a Window’s Contents 6-27.
Scrolling through a window’s contents 6-27.
Editing the data displayed in windows 6-29.

6.7 Closing a Window 6-30.

7 Entering and Using Commands 7-1.

Describes the rules for entering commands from the command line, tells you how to use the pulldown menus and
dialog boxes (for entering parameter values), describes general information about entering commands from batch
files, and describes the use of DOS-like system commands.

7.1 Entering Commands From the Command Line 7-2.
How to type in and enter commands 7-3.
Sometimes, you can’t type a command 7-4.
Using the command history 7-4.
Clearing the display area 7-5.

7.2 Using the Menu Bar and the Pulldown Menus 7-6.
Using the pulldown menus 7-7.
Escaping from the pulldown menus 7-8.
Entering parameters in a dialog box 7-8.
Using menu bar selections that don’t have pulldown menus 7-10.
How the menu selections correspond to commands 7-10.

7.3 Entering Commands From a Batch File 7-12.
7.4 Defining Your Own Command Strings 7-14.
7.5 Entering Operating-System Commands 7-16.

Entering a single command from the debugger command line 7-16.
Entering several commands from a system shell 7-17.
Additional system commands 7-18.

8 Defining a Memory Map 8-1.

Contains instructions for setting up a memory map that will enable the debugger to correctly access target memory.
Also includes hints about using batch files.

8.1 The Memory Map: What It Is and Why You Should Define It 8-2.
8.2 Sample Memory Maps 8-3.
8.3 Identifying Usable Memory Ranges 8-5.

 Running Title—Attribute Reference

xiii Chapter Title—Attribute Reference

8.4 Enabling Memory Mapping 8-6.
8.5 Checking the Memory Map 8-6.
8.6 Modifying the Memory Map During a Debugging Session 8-7.

Returning to the original memory map 8-8.
8.7 Using Multiple Memory Maps for Multiple Systems 8-9.

9 Loading, Displaying, and Running Code 9-1.

Tells you how to use the three debugger modes to view the type of source files that you’d like to see, how to load
source files and object files, how to run your programs, and how to halt program execution.

9.1 Code-Display Windows: Viewing Assembly Language Code, C Code, or Both 9-2.
Selecting a debugging mode 9-3.

9.2 Displaying Your Source Programs (or Other Text Files) 9-4.
Displaying assembly language code 9-4.
Displaying C code 9-6.
Displaying other text files 9-7.

9.3 Loading Object Code 9-8.
Loading code while invoking the debugger 9-8.
Loading code after invoking the debugger 9-8.

9.4 Where the Debugger Looks for Source Files 9-9.
9.5 Running Your Programs 9-10.

Defining the starting point for program execution 9-10.
Running code 9-11.
Single-stepping through code 9-12.
Running code while disconnected from the target 9-14.
Running code conditionally 9-15.

9.6 Halting Program Execution 9-16.
9.7 Benchmarking 9-17.

10 Loading TIGA Applications 10-1.

Describes special processes that are necessary for debugging TIGA applications.

10.1 Overview of the Dynamic-Load Process 10-2.
Debugging with Microsoft Windows (version 3.0) 10-3.

10.2 Setting a Tentative Breakpoint 10-4.
Clearing a tentative Breakpoint 10-4.
Using regular breakpoint commands while debugging TIGA modules 10-5.

10.3 Reloading TIGA Modules 10-6.
Using LOAD, RELOAD, SLOAD, and RESTART while debugging TIGA modules 10-6. . .

10.4 Identifying Symbols Used in TIGA Modules 10-7.

11 Managing Data 11-1.

Describes the data-display windows and tells you how to edit data (memory contents, register contents, and
individual variables).

11.1 Where Data Is Displayed 11-2.

Running Title—Attribute Reference

xiv

11.2 Basic Commands for Managing Data 11-2.
11.3 Basic Methods for Changing Data Values 11-4.

Editing data displayed in a window 11-4.
Advanced “editing”—using expressions with side effects 11-5.

11.4 Managing Data in Memory 11-6.
Displaying memory contents 11-6.
Displaying memory contents while you’re debugging C 11-8.
Saving memory values to a file 11-9.
Filling a block of memory 11-10.

11.5 Managing Register Data 11-11.
Displaying register contents 11-11.
Displaying and changing the contents of I/O registers 11-12.
Displaying and changing the contents of status bits 11-13.
Displaying and changing the contents of ’34082 registers 11-14.

11.6 Managing Data in a DISP (Display) Window 11-15.
Displaying data in a DISP window 11-15.
Closing a DISP window 11-17.

11.7 Managing Data in a WATCH Window 11-18.
Displaying data in the WATCH window 11-18.
Deleting watched values and closing the WATCH window 11-19.

11.8 Displaying Data in Alternative Formats 11-20.
Changing the default format for specific data types 11-20.
Changing the default format with ?, MEM, DISP, and WA 11-22.

12 Using Breakpoints 12-1.

Describes the use of software breakpoints to halt code execution.

12.1 Setting a Breakpoint 12-2.
12.2 Clearing a Breakpoint 12-4.
12.3 Finding the Breakpoints That Are Set 12-5.

13 Customizing the Debugger Display 13-1.

Contains information about the commands that you can use for customizing the display, and identifies the display
areas that you can modify.

13.1 Changing the Colors of the Debugger Display 13-2.
area names: common display areas 13-3.
area names: window borders 13-4.
area names: COMMAND window 13-4.
area names: DISASSEMBLY and FILE windows 13-5.
area names: data-display windows 13-6.
area names: menu bar and pulldown menus 13-7.

13.2 Changing the Border Styles of the Windows 13-8.
13.3 Saving and Using Custom Displays 13-9.

Changing the default display for monochrome monitors 13-9.

 Running Title—Attribute Reference

xv Chapter Title—Attribute Reference

Saving a custom display 13-10.
Loading a custom display 13-10.
Invoking the debugger with a custom display 13-11.
Returning to the default display 13-11.

13.4 Changing the Prompt 13-12.

Part III: Reference Material

14 Summary of Commands and Special Keys 14-1.

Provides a functional summary of the debugger commands and function keys; also provides a complete
alphabetical summary of all debugger commands.

14.1 Functional Summary of Debugger Commands 14-2.
Changing modes 14-3.
Managing windows 14-3.
Performing system tasks 14-3.
Displaying and changing data 14-4.
Displaying files and loading programs 14-4.
Managing breakpoints 14-5.
Loading TIGA applications 14-5.
Customizing the screen 14-5.
Memory mapping 14-6.
Running programs 14-6.

14.2 Alphabetical Summary of Debugger Commands 14-7.
14.3 Summary of Special Keys 14-38.

Editing text on the command line 14-38.
Using the command history 14-38.
Switching modes 14-39.
Halting or escaping from an action 14-39.
Displaying pulldown menus 14-39.
Running code 14-40.
Selecting or closing a window 14-40.
Moving or sizing a window 14-40.
Scrolling a window’s contents 14-41.
Editing data or selecting the active field 14-41.

15 Basic Information About C Expressions 15-1.

Many of the debugger commands accept C expressions as parameters. This chapter provides general information
about the rules governing C expressions and describes specific implementation features related to using C
expressions as command parameters.

15.1 C Expressions for Assembly Language Programmers 15-2.

Running Title—Attribute Reference

xvi

15.2 Restrictions and Features Associated With Expression Analysis in the Debugger 15-4. .
Restrictions 15-4.
Additional features 15-4.

 Running Title—Attribute Reference

xvii Chapter Title—Attribute Reference

A Troubleshooting and Technical Notes A-1.

Provides troubleshooting information for installation problems; gives additional board- and system-level technical
information.

A.1 Troubleshooting an Emulator Installation A-2.
A.2 Troubleshooting a Development Board Installation A-3.

Common serial link problems A-4.
Running the gspsetup utility A-5.

A.3 What the Debugger Does During Invocation A-6.
A.4 Using the Emulator With Target Systems That Hold HCS Inactive During Power-Up A-7.
A.5 Debugger and Monitor Communications (Development Boards Only) A-8.
A.6 Using a TIGA Communication Driver (Development Boards Only) A-10.

B Debugger Messages B-1.

Describes progress and error message that the debugger may display.

B.1 Associating Sound With Error Messages B-2.
B.2 Alphabetical Summary of Debugger Messages B-2.
B.3 Additional Instructions for Expression Errors B-19.
B.4 Additional Instructions for Hardware Errors B-19.

C Glossary C-1.

Defines acronyms and key terms used in this book.

Running Title—Attribute Reference

xviii

Figures

1–1 Key Items in a ’340-Based Development System 1-2.
1–2 Key Items in an Emulator System 1-4.
2–1 DOS-Command Set Up for the Debugger 2-5.
2–2 Components Required for Debugging a TIGA Application 2-8.
2–3 Serial Cable Pinout Connections 2-11.
3–1 DOS-Command Set Up for the Debugger 3-5.
3–2 Components Required for Debugging a TIGA Application 3-9.
5–1 The Debugger Display 5-2.
5–2 ’340 Software Development Flow 5-5.
5–3 Steps You Go Through to Prepare a Program 5-8.
6–1 Typical Assembly Display (for Auto Mode and Assembly Mode) 6-2.
6–2 Typical C Display (for Auto Mode Only) 6-3.
6–3 Typical Mixed Display (for Mixed Mode Only) 6-4.
6–4 Default Appearance of an Active and an Inactive Window 6-18.
7–1 The COMMAND Window 7-2.
7–2 The Menu Bar in the Debugger Display 7-6.
7–3 All of the Pulldown Menus 7-6.
8–1 Sample Memory Map for Use With a ’34010 Development Board 8-3.
8–2 Sample Memory Map for Use With the ’34020 Emulator

or a ’34020 Development Board 8-4.

 Running Title—Attribute Reference

xix Chapter Title—Attribute Reference

Tables

2–1 Debugger Options 2-12.
3–1 Using D_OPTIONS to Identify Nondefault I/O Address Space 3-7.
3–2 –x Options for the emurst Utility 3-8.
3–3 Debugger Options 3-11.
6–1 Width and Length Limits for Window Sizes 6-22.
6–2 Minimum and Maximum Limits for Window Positions 6-25.
2–1 Display Formats for Debugger Data 11-20.
2–2 Data Types for Displaying Debugger Data 11-20.
4–1 Colors and Other Attributes for the COLOR and SCOLOR Commands 13-2.
4–2 Summary of Area Names for the COLOR and SCOLOR Commands 13-3.
A–1 gspsetup Options A-5.

i Chapter Title—Attribute Reference

Identifying the Correct Installation
for Your Development System

The ’340 C source debugger is a software interface for ’340 debugging systems. There are two versions
of the debugger:

The development board version of the C source debugger works with ’340-based PC
development boards such as the ’34010 TIGA development board or the ’34020 software
development board. It also works with third-party boards that use a TIGA communication driver.

The emulator version of the C source debugger works with the ’34020 emulator.

Both versions of the debugger operate almost identically. However, the executable files that invoke
them are very different. The development board version will not work with the emulator, and vice versa.
Be sure to install the correct version of the debugger for your environment.

This chapter describes how these two versions of the debugger can be used in various environments.
It also tells you which installation chapter to use to make sure that you install the correct version of the
debugger for your environment.

Synopsis Topic
Page

This section shows the key items
in a development board system
and points you to the appropriate
installation instructions.

1.1 Using the Development Board Version of the Debugger iii
Where are the installation instructions? iv

This section shows the key items
in an emulator system and points
you to the appropriate installation
instructions

1.2 Using the Emulator Version of the Debugger v
Where are the installation instructions? vi

This section describes three ’340
application environments and
describes the debugger’s role in
each environment.

1.3 Strategies for Debugging Your ’340 Application vii
Standalone applications vii
TIGA applications vii
Non-TIGA host applications viii

Chapter 1

Running Title—Attribute Reference

ii

An emulator and development
board are not usually used in the
same system. However, when
they are, here’s some extra infor-
mation that you’ll need.

1.4 Using an Emulator and a Development Board ix
in the Same System

 Using the Development Board Version of the Debugger

iii Chapter Title—Attribute Reference

1.1 Using the Development Board Version of the Debugger

Figure 1–1 shows the key hardware and software items that you’ll need for
using the development board version of the C source debugger.

Figure 1–1. Key Items in a ’340-Based Development System

’34010 or ’34020
development board

IBM PC/AT

Hardware

TIGA

C source debugger

A C or assembly language
program that you
developed

Software

Using the Development Board Version of the Debugger

iv

The development board version of the debugger can be used with the
following boards:

� ’34010 TIGA development board (TDB). This board is a standard video
display adapter for ISA- and EISA-based PCs. The TDB provides an
environment for debugging ’34010 application software.

� ’34020 software development board (SDB). This board is a standalone,
high-performance, graphics-development board, compatible with the IBM
PC-AT bus (ISA compatible). The SDB provides an environment for
debugging ’34020 application software.

� Third-party ’34010- or ’34020-based boards that use version 2.05 (or
later) of the TIGA software interface.

Where are the installation instructions?

To install the development board version of the debugger, read
Chapter 2, Installing the Debugger for Use With ’340 Development
Boards.

Chapter 2 assumes that you have already installed your board and that you
have also installed TIGA:

� Installing the ’34010 TDB: Refer to the TMS34010 TIGA Development
Board User’s Guide, which accompanies the TDB.

� Installing the ’34020 SDB: Refer to the TMS34020 Software
Development Board User’s Guide, which accompanies the SDB.

� Installing third-party boards: Refer to the manufacturer’s instructions
accompanying your board.

� Installing TIGA: The documentation for installing TIGA usually
accompanies your development board. If this is not available, refer to the
TIGA Interface User’s Guide.

 Using the Emulator Version of the Debugger

v Chapter Title—Attribute Reference

1.2 Using the Emulator Version of the Debugger

Figure 1–2 shows the key hardware and software items that you’ll need for
using the emulator version of the C source debugger.

Figure 1–2. Key Items in an Emulator System

IBM PC/AT

Hardware

C source debugger

A C or assembly language program
that you developed

Software

’34020 emulator board

target system

target
cable

Using the Emulator Version of the Debugger

vi

You can use this version of the debugger with the Texas Instruments ’34020
emulator only. The emulator uses unique, scan-based TI emulation
technology and provides an environment for debugging code on a ’34020
board. The emulator does not contain a ’34020 processor, so it must be
connected to a target system that has a ’34020. Usually, the target system is
a board of your own design; for testing purposes, however, you can use the
’34020 SDB as a target system.

Where are the installation instructions?

To install the emulator version of the debugger, read Chapter 3, Installing
the Debugger for Use With the ’34020 Emulator.

Chapter 3 assumes that you have already installed the emulator board and
your target system. For emulator installation instructions, refer to the
TMS34020 Emulator Board Installation Guide, which accompanies the
emulator version of the debugger.

 Strategies for Debugging Your ’340 Application

vii Chapter Title—Attribute Reference

1.3 Strategies for Debugging Your ’340 Application

’340 applications fall into three general categories:

� Standalone applications
� TIGA applications
� Non-TIGA host applications

The ’340 C source debugger cannot be used with all three types of
applications. The following paragraphs describe these application categories
and tell you whether or not the debugger can be used.

Standalone applications

Standalone applications execute entirely on the ’340 processor. The program
you are debugging is composed of a single COFF object module. Only the
debugger loads and executes your program; there is no interaction between
your program and the PC.

Both versions of the C source debugger can be used without restriction in
standalone environments:

� Because your program does not interact with the PC, the development
board debugger is free to use the ’340 processor’s host interface (via the
TIGA communication driver routines).

� The emulator version of the debugger does not use or need the ’340
processor’s host interface. The emulator’s scan-based interface allows it
to control the ’340 system.

TIGA applications

For the purposes of debugging, a TIGA application is an application in which
you have written your own TIGA modules to supplement the standard
functions in the TIGA applications interface library. You can use the debugger
to refine your custom modules. In a TIGA application, the debugging
environment is split into two parts.

� The TIGA application resides on a target PC, with TIGA; TIGA relocates
code and loads it into ’340 memory.

� The debugger software resides on a host PC.

Strategies for Debugging Your ’340 Application

viii

These two parts must communicate with each other during program
execution. If you are using the emulator, the two parts communicate via the
emulation cable. If you are using a development system, the two parts must
communicate over a serial cable.

Both the emulator and development board versions of the debugger allow you
to debug TIGA applications. For more information about debugging TIGA
applications, refer to Chapter 10, Loading TIGA Applications.

Non-TIGA host applications

Non-TIGA host applications are similar to TIGA applications because they are
split into two parts:

� One part, like a standalone application, executes entirely on the ’340
processor.

� Another part executes on the PC.

These two parts must communicate with each other during program
execution.

The emulator version of the C source debugger can be used with non-TIGA
host applications as long as the debugger runs on a different PC or runs as a
separate task under a multitasking DOS extension. The debugger controls the
’340 processor through the emulator interface, leaving the host port free for
controlling communications between the two parts of the application software.
If the host system, rather than the emulator, loads the program that you plan
to debug, the debugger must load the symbols for the ’340 program (with the
SLOAD debugger command or the debugger –s option).

The development board version of the C source debugger is not compatible
with non-TIGA host applications, because the debugger requires exclusive
use of the host interface.

 Using an Emulator and a Development Board in the Same System

ix Chapter Title—Attribute Reference

1.4 Using an Emulator and a Development Board in the Same System

An emulator and a development board are not often used in the same
system—usually, you will want to use one or the other for debugging your ’340
application. However, it’s possible that you may want to use both an emulator
and a development board. For example, you may be using the ’34020 SDB as
a target system for the emulator.

If you use an emulator and a development board in the same system, it’s
important to note that:

� The debugger provides nearly identical functionality for the development
boards and for the emulator. Remember, though, that there are two
different versions of the debugger, and they are invoked with different
commands:

db340 Is the command that invokes the development board
version of the debugger.

db340emu Is the command that invokes the emulator version of the
debugger.

If you are using the SDB as a target system for the emulator, you should
use the emulator version of the debugger.

� If you use a development board separately from the emulator, you must
be sure that the emulator is running free while you are using the
development board version of the debugger. To do this, invoke the
emulator debugger, enter the RUNF command, then quit. Now you will be
able to invoke the development board debugger without interference from
the emulator.

If the emulator is not running free while you are using the development
board debugger, the development board’s ’340 processor could be halted
by the emulator. This prevents the development board software from
gaining control of the ’340.

i Chapter Title—Attribute Reference

Installing the Debugger for Use With
’340-Based Development Boards

If you are using the debugger with the ’34020 emulator, do not follow the installation
instructions in this chapter—turn to Chapter 3. If you are not sure which version of the
debugger you should install, read Chapter 1.

This chapter will help you install the development board version of the ’340 C source debugger. This
version of the debugger works with ’34010- and ’34020-based PC boards that use TIGA (version 2.05
or later). For example, it works with the ’34010 TDB and the ’34020 SDB.

In most cases, if you install the debugger as instructed in this chapter, it will operate properly. However,
if your debugger doesn’t seem to work properly, or if you are developing a nonstandard or advanced
application, refer to Appendix A, Technical Notes, for troubleshooting and supplementary information.

When you finish installing the debugger, turn to Chapter 4, An Introductory Tutorial to the C Source
Debugger.

Topic Page

The chapter begins with check-
lists of the hardware and software
you’ll need for installing the
debugger and using it with a ’340
development board.

2.1 What You’ll Need ii
Hardware checklist ii
Software checklist ii

Installing the debugger is a 2-step
process. After you install the
debugger software, you must
modify the DOS environment and
invoke several utilities. This en-
ables the debugger to operate
properly.

If you plan to debug TIGA applica-
tions, you must also follow the
steps in Section 2.4; otherwise,
skip this section.

2.2 Installing the Debugger Software iv

2.3 Setting Up the Debugger Environment iv
Invoking the new or modified batch file v
Modifying the PATH statement vi
Setting up the environment variables vi
Installing the TIGA communication driver vii

2.4 Setting Up for TIGA Applications viii
Pinout for serial cable connector xi

After you install the debugger, you
will need to know how to invoke
and exit the debugger.

2.5 Invoking the Debugger xii

2.6 Exiting the Debugger xiii

STOP

Chapter 2

What You’ll Need

ii

2.1 What You’ll Need

In addition to the items shipped with the C source debugger, you’ll need the
following items.

Hardware checklist

host An IBM PC/AT or 100% compatible ISA/EISA-bus PC with a hard-
disk system and a 1.2M floppy-disk drive

target If you plan to debug TIGA applications, you will also need a target
PC to run TIGA and the TIGA application

memory Minimum of 640K (debugger occupies approximately 400K)

display Monochrome or color (color recommended)

development board A ’340-based PC board

optional hardware Mouse (must be compatible with a Microsoft mouse)

An EGA- or VGA-compatible graphics display card

A 17” or 19” monitor. The C source debugger has several modes that
allow you to display varying amounts of information on your PC
monitor. If you have an EGA- or VGA-compatible graphics card and
a large monitor (17” or 19”), you can take advantage of some of the
debugger’s larger screen modes. (To use larger screen sizes, you
must invoke the debugger with the appropriate options; Table 2–1,
page xii, explains this in detail.)

A second monitor. Most development boards allow you to connect
the board to both your PC’s monitor and to a second display monitor.
The debugger display is shown on your PC’s display monitor. If you
want to display any graphics routines drawn by your ’340 code, you
must connect the development board to a second display monitor.

miscellaneous
materials

A blank, formatted disk

Software checklist

operating system MS-DOS or PC-DOS (version 3.0 or later)

software tools ’340 family C compiler, assembler, and linker (version 5.0 or later)

 What You’ll Need

iii Chapter Title—Attribute Reference

required files † gspmon.out contains ’340 routines that the debugger uses for
controlling the ’340 processor.

† tigacom.exe and debugcom.exe are two communication drivers re-
quired for serial communication in TIGA applications.

‡ tigacd loads the TIGA communication driver.

‡ If you plan to debug TIGA applications, you’ll need tigagm.out (the
TIGA graphics manager).

‡ If you are debugging extended primitives, you also need
extprims.rlm.

optional files † dbinit.cmd is a general-purpose batch file that contains debugger
commands. When you invoke the debugger, it will execute the com-
mands in dbinit.cmd.

Initially, dbinit.cmd disables memory mapping; if dbinit.cmd isn’t
present when you invoke the debugger, then all memory is invalid
at first. Two additional files, sdbmap.cmd and tdbmap.cmd, define
sample memory maps. When you first start to use the debugger, it
is usually not necessary to enable memory mapping. Later, you may
want to define your own memory map. For information about these
files and about setting up your own memory map, refer to Chapter
8, Defining a Memory Map.

† init.clr is a general-purpose screen configuration file. If init.clr isn’t
present when you invoke the debugger, the debugger uses the
default screen configuration.

The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors. When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration. For information about these files and about
setting up your own screen configuration, refer to Chapter 13, Cus-
tomizing the Display.

† Included as part of the debugger package
‡ Included as part of the TIGA software package

Note that the debugger operates correctly in a Windows 3.0 environment;
however, the mouse may not function properly.

You must use the TIGA software interface (version 2.05 or later). The
installation instructions in this chapter assume that you have already installed
TIGA according to the instructions provided with your third-party development
board or in the TIGA Interface User’s Guide.

Installing the Debugger Software / Setting Up the Debugger Environment

iv

2.2 Installing the Debugger Software

This section explains the simple process of installing the debugger software
on a hard disk system. The debugger package includes a single disk that
contains multiple directories. To install the debugger, you must copy the db
directory from the product disk.

Step 1: Make a backup copy of the product disk. (If necessary, refer to the
DOS manual that came with your computer.)

Step 2: On your hard disk or system disk, create a directory named db. This
directory will contain the ’340 C source debugger software.

MD C:\db

Step 3: Insert the product disk into drive A. Copy the contents of the db
directory:

COPY A:\db*.* C:\db*.* /V

2.3 Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must perform several steps:

1) Modify the PATH statement to identify the db directory.
2) Define environment variables so that the debugger can find the files it

needs.
3) Install the TIGA communication driver.

Not only must you do these things before you invoke the debugger for the first
time, you must do them any time you power up or reboot your PC.

You can accomplish these tasks by entering individual DOS commands, but
it’s simpler to put the commands in a batch file. You can edit your system’s
autoexec.bat file; in some cases, modifying the autoexec may interfere with
other applications running on your PC. So, if you prefer, you can create a
separate batch file that performs these tasks.

Figure 2–1 (a) shows an example of an autoexec.bat file that contains the
suggested modifications (highlighted in bold type). Figure 2–1 (b) shows a
sample batch file that you could create instead of editing the autoexec.bat file.
(For the purpose of discussion, assume that this sample file is named
initdb.bat.)

 Setting Up the Debugger Environment

v Chapter Title—Attribute Reference

Figure 2–1. DOS-Command Set Up for the Debugger

(a) Sample autoexec.bat file to use with the debugger

Install TIGA driver

DATE

TIME

ECHO OFF

PATH=C:\DOS;C:\340TOOLS;C:tiga;C:\db

SET D_DIR=C:\db

SET D_SRC=;C:\340code

SET D_OPTIONS=–b

SET C_DIR=C:\340TOOLS

CLS

tigacd

PATH statement

Environment
variables

Modifications:

(b) Sample initdb.bat file to use with the debugger

Install TIGA driver

PATH=C:\db;%path%

SET D_DIR=C:\db

SET D_SRC=C:\340code

SET D_OPTIONS=–b

tigacd

PATH statement

Environment
variables

Invoking the new or modified batch file

� If you modify the autoexec.bat file, be sure to invoke it before invoking the
debugger for the first time. To invoke this file, enter:

autoexec

� If you create an initdb.bat file, you must invoke it before invoking the
debugger for the first time. After that, you’ll need to invoke initdb.bat any
time that you power up or reboot your PC. To invoke this file, enter:

initdb

Setting Up the Debugger Environment

vi

Modifying the PATH statement

Step 1: Define a path to the debugger directory. The general format for doing
this is:

PATH=C:\db

This allows you to invoke the debugger without specifying the name
of the directory that contains the debugger executable file.

� If you are modifying an autoexec that already contains a PATH
statement, simply include ;C:\db at the end of the statement
as shown in Figure 2–1 (a).

� If you are using the initdb.bat file, use a different format for the
PATH statement:

PATH=C:\db;%path%

The addition of ;%path% ensures that this PATH statement
won’t undo PATH statements in any other batch files (including
the autoexec.bat file).

Setting up the environment variables

An environment variable is a special system symbol that the debugger uses
for finding or obtaining certain types of information. The debugger uses three
environment variables, named D_DIR, D_SRC, and D_OPTIONS. The next
three steps tell you how to set up these environment variables. The format for
doing this is the same for both the autoexec.bat file and initdb.bat files.

Step 2: Set up the D_DIR environment variable to identify the db directory:

SET D_DIR=C:\db

(Be careful not to precede the equal sign with a space.)

This directory contains auxiliary files (such as dbinit.cmd) that the
debugger needs.

Step 3: Set up the D_SRC environment variable to identify any directories
that contain program source files that you’ll want to look at while
you’re debugging code. The general format for this is:

SET D_SRC=C:\pathname1;pathname2...

(Be careful not to precede the equal sign with a space.)

For example, if your ’340 programs were in a directory named
340code, the D_SRC set up would be:

SET D_SRC=C:\340code

 Setting Up the Debugger Environment

vii Chapter Title—Attribute Reference

Step 4: You can use several options when you invoke the debugger. If you
use the same options over and over, it’s convenient to specify them
with D_OPTIONS. The general format for doing this is:

SET D_OPTIONS= [object filename] [debugger options]

(Be careful not to precede the equal sign with a space.)

This tells the debugger to load the specified object file and use the
specified options each time you invoke the debugger. These are the
options that you can identify with D_OPTIONS:

–b[bbbb] –i pathname

–s –v

For more information about debugger options, see Section 2.5 (page
xii). Note that you can override D_OPTIONS by invoking the
debugger with the –x option.

Installing the TIGA communication driver

Step 5: Install the TIGA communication driver by entering:

TIGACD

Note: TIGA Applications

If you will be debugging a TIGA application, you may want to wait to install
the TIGA communication driver until you have read the information in Section
2.4, Setting Up Serial Communications for TIGA Applications.

Setting Up for TIGA Applications

viii

2.4 Setting Up for TIGA Applications

If you plan to debug your own custom TIGA modules, you will need to run your
application and the debugger on separate PCs. If you do not plan to debug
your own custom TIGA modules, skip this section; turn to Section 2.5, Invoking
the Debugger, on page xii.

Figure 2–2 shows the various components that are needed on the TIGA
(target) side and the debugger (host) side.

Figure 2–2. Components Required for Debugging a TIGA Application

tigacd driver
’340 development board

tigacom driver
Object code and

debugcom driver
’340 debugger

gspmon.out
dbinit.cmd
gspsetup.exe
Object code and
target RLMs
Source files

Target PC Host PC

RS–232 serial cable

(TIGA version 2.05)

target RLMs
tigagm.out
extprims.rlm

tigagm.out
extprims.rlm

This system requires two serial communication drivers, tigacom and
debugcom:

debugcom emulates portions of the TIGA communication driver
(enabling the debugger to operate normally) and
communicates with tigacom over the serial port.

tigacom receives commands from debugcom and relays them to
TIGA. Any return values from TIGA are sent back across the
serial link to debugcom, which, in turn, relays these values to
the debugger.

Figure 2–3 (page xi) illustrates pinout connections for the host and target
serial-cable connections.

 Setting Up for TIGA Applications

ix Chapter Title—Attribute Reference

Follow these steps to set up the serial link between your TIGA application and
the debugger:

Step 1: Connect the target and host PCs with an RS–232 serial cable.

Step 2: Copy tigacom.exe from the product diskette to the target PC; put
tigacom.exe in the directory where the TIGA communication driver
resides.

Step 3: On the target PC, reinstall the TIGA communication driver:

TIGACD /D2

This enables the development-board version of the communication
driver’s debug mode. Later, if you need to disable this mode, enter:

TIGACD /D0

Step 4: On the target PC, install the tigacom driver by entering:

tigacom [Ccommunication port] [Bbaud rate]

where communication port and baud rate are single digits. The
communication port parameter can have any of these values:

Parameter value Represents this baud rate

1 COM1 (3F8h)—default

2 COM2 (2F8h)

3 COM3 (3E8h)

4 COM4 (2E8h)

The baud rate parameter can have any of these settings:

Parameter
value

Represents this
baud rate

Parameter
value

Represents this
baud rate

1 1200 5 19200—default

2 2400 6 38400

3 4800 7 57600

4 9600 8 115200

Note: TIGA Communication Driver

If you ever uninstall the TIGA communication driver (by entering tigacd
/u) and then reinstall it, you must also reinstall tigacom. The tigacom driver
will uninstall itself whenever it detects that the TIGA communication driver
has been unloaded.

Setting Up for TIGA Applications

x

Step 5: On the host PC, install the debugcom driver by entering:

debugcom [Ccommunication port] [Bbaud rate]

where communication port and baud rate can have the same values
as those listed for debugcom. You can use different COM port
settings for the two PCs, but the baud rates must be the same.

Step 6: For each module that you plan to debug, copy the source and object
code to the host PC. The source code can go in any directory, but the
object code must reside in the same directory as db340.exe (the db
directory).

Step 7: Be sure that you have copied tigagm.out and, if you are using TIGA
extended primitives, extprims.rlm to the directory on the target PC
that contains tigacd. Also copy them to the db directory on the host
PC.

Step 8: On the host PC, execute the gspsetup utility to verify that the serial
link is operating properly. Enter:

gspsetup –D

This will print the status of several tests. If no errors are reported, you
are ready to invoke the debugger. If gspsetup does not execute
properly, refer to Common serial link problems on page A-4.

Step 9: On the host PC, invoke the debugger:

db340

The debugger should come up in a state where the ’340 processor
is in an endless loop. Use the RUN command (or press F5) to start
the processor running.

Step 10: Verify that the debugger is working properly by reloading the TIGA
graphics manager. On the target PC, enter:

tigalnk /lx

The debugger should display a message indicating that it has
successfully loaded the TIGA graphics manager.

If “File Not Found” types of errors show up on the host PC, check your
setup against the illustration in Figure 2–2 (page viii). Be sure that all
of the files have been copied to the correct directories and that the
serial cable is set up correctly.

If the tigalnk utility produces other types of errors, you will need to
reboot the target PC and begin again with Step 4, using lower baud
rate settings for tigacom and debugcom.

You may have to try several baud rates until you determine which is
the highest baud rate you can use for reliable operation. In most

 Setting Up for TIGA Applications

xi Chapter Title—Attribute Reference

systems, the baud rate can be set as high as 115200 baud, but in
some 386 protected mode systems, mode switching restrictions
result in a maximum baud rate of 37400 to 57600 baud. The best
method for determining the optimum baud rate is to start at 115200
baud and work down until serial communications are stable.

Like the information in Section 2.3, you have to install tigacd, tigacom, and
debugcom whenever you power up or reboot the PC. Once you have
determined the correct baud rates for tigacom and debugcom, you may want
to enter the tigacd and tigacom commands into the target PC’s autoexec and
enter the debugcom command into the host PC’s autoexec (or whatever
initialization file you choose to use).

Pinout for serial cable connector

Figure 2–3 illustrates the pinout configuration for the RS-232 serial cable used
for communications between the host and target PCs. Note that pinouts are
shown for both a 9-pin and a 25-pin connector.,

Figure 2–3. Serial Cable Pinout Connections

(a) Connections for a 9-pin connector (a) Connections for a 25-pin connector

Host PC Target PC

pin 2

pin 3

pin 5

pin 3

pin 2

pin 5

Connector Connector

pins 7–8

pins 1–4–6

Host P2 Target PC

pin 3

pin 2

pin 7

pin 2

pin 3

pin 7

Connector Connector

pins 4–5

pins 6–8–20

Notes: 1) 9-pin connector: On the target end, pins 7 and 8 are tied together and pins 1, 4, and 6 are tied together.

2) 25-pin connector: On the target end, pins 4 and 5 are tied together and pins 6, 8 and 20 are tied together.

Invoking the Debugger

xii

2.5 Invoking the Debugger

Here’s the basic format for the command that invokes the debugger:

db340 [filename] [–options]

db340 is the command that invokes the development board version
of the debugger.

filename is an optional parameter that names an object file that the
debugger will load into memory during invocation. The
debugger looks for the file in the current directory; if the file
isn’t in the current directory, you must supply the entire
pathname. If you don’t supply an extension for the filename,
the debugger assumes that the extension is .out.

–options supply the debugger with additional information (see
Table 2–1).

You can also specify filename and option information with the D_OPTIONS
environment variable (see Setting up the environment variables, page vi).

Table 2–1.Debugger Options

Option Description

–b[bbbb] Screen-size options. By default, the debugger uses an 80-character-by-25-line
screen. If you have a special graphics card, however, you can choose one of several
larger screen sizes.

Option Characters/Lines Notes
none 80 by 25 This is the default display
–b 80 by 43 (EGA) Use any EGA or VGA card

80 by 50 (VGA)
–bb 120 by 43
–bbb 132 by 43
–bbbb 80 by 60
–bbbbb 100 by 60

Currently, the debugger supports these
modes on a Video Seven VEGA Deluxe
card.

–i pathname Additional directories. Replace pathname with an appropriate directory name. You
can specify several pathnames; use the –i option as many times as necessary:

db340 –i path1 –i path2 –i path3 . . .

Using –i is similar to using the D_SRC environment variable (described on page vi).
If you name directories with both –i and D_SRC, the debugger first searches through
directories named with –i. The debugger can track a cumulative total of 20 paths (in-
cluding paths specified with D_SRC and the debugger USE command).

–mc ’34082 support. –mc tells the debugger to provide ’34082 support. This allows you
to access ’34082 register values and tells the debugger to disassemble ’34082
coprocessor instructions.

 Invoking the Debugger / Exiting the Debugger

xiii Chapter Title—Attribute Reference

Table 2–1.Debugger Options (Continued)

Option Description

–mi Don’t initialize PC or SP. By default, the debugger automatically initializes the ’340
processor’s program counter (PC) and stack pointer (SP— register A15/B15) to a
section of memory assigned to these registers by the TIGA memory manager. The
–mi option allows you to leave the PC and SP uninitialized. However, if the PC and
SP are not pointing to valid RAM, you will not be able to invoke the debugger.

–mf Floating-point format. By default, the debugger expects source code to use ’340
floating-point format. The –mf option tells the debugger to expect IEEE floating-point
format (IEEE std 754-1985) instead.

If you are already using –mc, you don’t need to use –mf.

–s Load symbol table only. If you supply a filename when you invoke the debugger,
you can use the –s option to tell the debugger to load only the file’s symbol table (with-
out the file’s object code). This is similar to the debugger’s SLOAD command.

–v Load without symbol table. This option prevents the debugger from loading the en-
tire symbol table when you load an object file. The debugger loads only the global
symbols and later loads local symbols as it needs them. This speeds up the loading
time and consumes less memory space.

The –v option affects all loads, including loading when you invoke the debugger and
loading with the LOAD command within the debugger environment.

–x Ignore D_OPTIONS. –x tells the debugger to ignore any information supplied with
D_OPTIONS.

–t filename New initialization file. The –t option allows you to specify an initialization command
file that will be used instead of dbinit.cmd.

2.6 Exiting the Debugger

To exit the debugger and return to the operating system, enter this command:

quit

You don’t need to worry about where the cursor is or which window is
active—just type. If a program is running, press ESC to halt program execution
before you quit the debugger.

xiv

i Chapter Title—Attribute Reference

Installing the Debugger
for Use With the ’34020 Emulator

If you aren’t using the debugger with the ’34020 emulator, do not follow the installation
instructions in this chapter—turn to Chapter 2. If you are not sure which version of the
debugger you should install, read Chapter 1.

This chapter will help you install the emulator version of the ’340 C source debugger. This version of
the debugger works only with the ’34020 emulator.

In most cases, if you install the debugger as instructed in this chapter, it will operate properly. However,
if your debugger doesn’t seem to work properly, refer to Appendix A, Technical Notes. Also, if you are
developing a nonstandard or advanced application, refer to Appendix A for supplementary information.

When you finish installing the debugger, turn to Chapter 4, An Introductory Tutorial to the C Source
Debugger.

Synopsis Topic
Page

The chapter begins with check-
lists of the hardware and software
you’ll need for installing the
debugger and using it with the
’34020 emulator.

3.1 What You’ll Need ii
Hardware checklist ii
Software checklist iii

Installing the debugger is a 2-step
process. After you install the
debugger software, you must
modify the DOS environment and
reset the emulator. This enables
the debugger to operate properly.

3.2 Installing the Debugger Software iv

3.3 Setting Up the Debugger Environment iv
Invoking the new or modified batch file v
Modifying the PATH statement vi
Setting up the environment variables vi
Identifying the correct I/O switches vii
Resetting the emulator viii

3.4 Setting Up for TIGA Applications x

After you install the debugger, you
will need to know how to invoke
and exit the debugger.

3.5 Invoking the Debugger xii

3.6 Exiting the Debugger xiii

STOP

Chapter 3

What You’ll Need

ii

3.1 What You’ll Need

In addition to the items that are shipped with the ’340 C source debugger, you’ll
need the following.

Hardware checklist

host An IBM PC/AT or 100% compatible ISA/EISA-bus PC with a hard-
disk system and a 1.2M floppy-disk drive

target If you plan to debug TIGA applications, you will also need a target
PC to run TIGA and the TIGA application

memory Minimum of 640K (debugger occupies approximately 400K)

display Monochrome or color (color recommended)

emulator system The ’34020 emulator board and a ’34020 target system

optional hardware Mouse (must be compatible with a Microsoft mouse)

An EGA- or VGA-compatible graphics display card

A 17” or 19” monitor. The C source debugger has several modes that
allow you to display varying amounts of information on your PC
monitor. If you have an EGA- or VGA-compatible graphics card and
a large monitor (17” or 19”), you can take advantage of some of the
debugger’s larger screen modes. (To use larger screen sizes, you
must invoke the debugger with the appropriate options; Table 3–3,
page xii, explains this in detail.)

miscellaneous
materials

A blank, formatted disk

 What You’ll Need

iii Chapter Title—Attribute Reference

Software checklist

operating system MS-DOS or PC-DOS (version 3.0 or later)

software tools ’340 family C compiler, assembler, and linker (version 5.0 or later)

required files † emurst resets the ’34020 emulator

‡ If you plan to debug TIGA applications, you’ll need tigagm.out (the
TIGA graphics manager).

‡ If you are debugging extended primitives, you also need
extprims.rlm.

optional files † emuinit.cmd is a file that a contains debugger commands.When you
invoke the debugger, it will execute the commands in emuinit.cmd.
Initially, emuinit.cmd disables memory mapping; if emuinit.cmd isn’t
present when you invoke the debugger, then all memory is invalid
at first. When you first start to use the debugger, it is usually not nec-
essary to enable memory mapping. Later, you may want to define
your own memory map. For information about setting up your own
memory map, refer to Chapter 8, Defining a Memory Map.

† init.clr is a general-purpose screen configuration file. If this file isn’t
present when you invoke the debugger, the debugger uses the de-
fault screen configuration.

The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors.When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration. For information about these files and about
setting up your own screen configuration, refer to Chapter 13, Cus-
tomizing the Display.

† Included as part of the debugger package
‡ Included as part of the TIGA software package

The debugger operates correctly in a Windows 3.0 environment; however,
the mouse may not function properly.

Installing the Debugger Software / Setting Up the Debugger Environment

iv

3.2 Installing the Debugger Software

This section explains the simple process of installing the debugger software
on a hard disk system. The debugger package includes a single disk that
contains multiple directories. To install the debugger, you must copy the
emu34020 directory from the product disk.

Step 1: Make a backup copy of the product disk. (If necessary, refer to the
DOS manual that came with your computer.)

Step 2: On your hard disk or system disk, create a directory named
emu34020. This directory will contain the ’34020 debugger software.

MD C:\emu34020

Step 3: Insert the product disk into drive A. Copy the contents of the
emu34020 directory:

COPY A:\emu34020*.* C:\emu34020*.* /V

3.3 Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must:

1) Modify the PATH statement to identify the emu34020 directory.
2) Define environment variables so that the debugger can find the files it

needs.
3) Identify any nondefault I/O space used by the emulator.
4) Reset the emulator.

Not only must you do these things before you invoke the debugger for the first
time, you must do them any time you power up or reboot your PC.

You can accomplish these tasks by entering individual DOS commands, but
it’s simpler to put the commands in a batch file. You can edit your system’s
autoexec.bat file; in some cases, however, modifying the autoexec may
interfere with other applications running on your PC. So, if you prefer, you can
create a separate batch file that performs these tasks.

 Setting Up the Debugger Environment

v Chapter Title—Attribute Reference

Figure 3–1 (a) shows an example of an autoexec.bat file that contains the
suggested modifications (highlighted in bold type). Figure 3–1 (b) shows a
sample batch file that you could create instead of editing the autoexec.bat file.
(For the purpose of discussion, assume that this sample file is named
initdb.bat.) The subsections following the figure describe these commands.

Figure 3–1. DOS-Command Set Up for the Debugger

(a) Sample autoexec.bat file to use with the debugger

DATE

TIME

ECHO OFF

PATH=C:\DOS;C:\340TOOLS;C:\emu34020

SET D_DIR=C:\emu34020;C:\cmdfiles

SET D_SRC=C:\340source

SET D_OPTIONS= –b

SET C_DIR=C:\340tools

CLS

emurst
Reset the emulator

PATH statement

Environment variables

Modifications:

Identify I/O space

(b) Sample initdb.bat file to use with the debugger

PATH=C:\emu34020;%path%

SET D_DIR=C:\emu34020

SET D_SRC=C:\340source

SET D_OPTIONS= –b

emurstReset the emulator

PATH statement

Environment variables
Identify I/O space

Invoking the new or modified batch file

� If you modify the autoexec.bat file, you must invoke the file before invoking
the debugger for the first time. To invoke this file, enter:

autoexec

� If you create an initdb.bat file, you must invoke the file before invoking the
debugger for the first time. After that, you must invoke initdb.bat any time
that you power up or reboot your PC. To invoke this file, enter:

initdb

Setting Up the Debugger Environment

vi

Modifying the PATH statement

Step 1: Define a path to the debugger directory. The general format for doing
this is:

PATH=C:\emu34020

This allows you to invoke the debugger without specifying the name
of the directory that contains the debugger executable file.

� If you are modifying an autoexec that already contains a PATH
statement, simply include ;C:\emu34020 at the end of the
statement as shown in Figure 3–1 (a).

� If you are using the initdb.bat file, use a different format for the
PATH statement:

PATH=C:\emu34020;%path%

The addition of ;%path% ensures that this PATH statement
won’t undo PATH statements in any other batch files (including
the autoexec.bat file).

Setting up the environment variables

An environment variable is a special system symbol that the debugger uses
for finding or obtaining certain types of information. The debugger uses three
environment variables, named D_DIR, D_SRC, and D_OPTIONS. The next
three steps tell you how to set up these environment variables. The format for
doing this is the same for both the autoexec.bat and initdb.bat files.

Step 2: Set up the D_DIR environment variable to identify the emu34020
directory:

SET D_DIR=C:\emu34020

(Be careful not to precede the equal sign with a space.)

This directory contains auxiliary files (such as emuinit.cmd) that the
debugger needs.

Step 3: Set up the D_SRC environment variable to identify any directories
that contain program source files that you’ll want to look at while
you’re debugging code. The general format for this is:

SET D_SRC=C:\pathname1;pathname2...

(Be careful not to precede the equal sign with a space.)

For example, if you keep all of your C source files in a directory
named CSOURCE, the line will look like this:

SET D_SRC=C:\CSOURCE

 Setting Up the Debugger Environment

vii Chapter Title—Attribute Reference

Step 4: You can use several options when you invoke the debugger. If you
use the same options over and over, it’s convenient to specify them
with D_OPTIONS. The general format for doing this is:

SET D_OPTIONS= [object filename] [debugger options]

(Be careful not to precede the equal sign with a space.)

This tells the debugger to load the specified object file and use the
specified options each time you invoke the debugger. These are the
options that you can identify with D_OPTIONS:

–b[bbbb] –p port address –i pathname

–s –v

For more information about debugger options, see Section 3.5 (page
xii). Note that you can override D_OPTIONS by invoking the
debugger with the –x option.

If you specify a –p option, it will be used by both the debugger and
the emurst utility.

Identifying the correct I/O switches

Step 5: If you didn’t modify the emulator’s I/O switches when you installed
the emulator board, skip this step.

If you modified the I/O switch settings, you must use the debugger’s
–p option to identify the I/O space that the emulator is using. You can
do this each time you invoke the debugger, or you can specify this
information by using the D_OPTIONS environment variable as
shown in Table 3–1.

Table 3–1. Using D_OPTIONS to Identify Nondefault I/O Address Space

switch # Add this line to the

1 2 autoexec.bat or initdb.bat file

0x0220–0x023F on on SET D_OPTIONS=–P 220

0x0300–0x031F off on SET D_OPTIONS=–P 300

0x03E0–0x03FF off off SET D_OPTIONS=–P 3E0

Setting Up the Debugger Environment

viii

Resetting the emulator

Step 6: To reset the emulator, invoke the emurst utility that comes with the
debugger package. The general format for doing this is:

emurst [–x] [–p port address]

You can include the emurst command in the autoexec.bat or
initdb.bat file; the command format is the same for either type of file.

If you didn’t modify the I/O switches, it is not necessary to use either
of emurst’s parameters. If you modified the I/O switches, you can use
the –p option as shown in Table 3–2. If you already specified –p with
the D_OPTIONS environment variable, it is not necessary to use –p
with the emurst utility.

Table 3–2. –x Options for the emurst Utility

switch #

1 2 Invoke emurst with this option

0x0220–0x023F on on emurst –p 220

0x0300–0x031F off on emurst –p 300

0x03E0–0x03FF off off emurst –p 3E0

If you set emurst’s –p option with D_OPTIONS and need to override
it, invoke emurst from the DOS prompt by using both –x and –p:

emurst –x –p new port address

This tells emurst to ignore the port address supplied by D_OPTIONS
and to use the new one that was specified on the command line. A
port address specified with emurst must not differ from the
D_OPTIONS port address unless you also use emurst’s –x option.

Note that running emurst places the emulator board and the target cable buffer
pod in a disconnected state: the ’34020 does not perform emulation functions
and executes as if the emulator is not installed. Every time the target’s power
is cycled, the buffer pod automatically switches to the disconnect state.
However, if the debugger is not running when target power is cycled, a
mismatch state can occur between the pod and the controller. To avoid this
problem, always execute emurst after powering up the target system. Also,
after powering up the target system, you must reset the ’34020 before you can
use the debugger. If the debugger is running and you need to cycle the target
power, enter a RUNF command first. These situations also apply to

 Running Title—Attribute Reference

ix Chapter Title—Attribute Reference

applications where the target system and the emulator board are in different
PCs.

Setting Up for TIGA Applications

x

3.4 Setting Up for TIGA Applications

If you plan to debug your own custom TIGA modules, you will need to run your
application and the debugger on separate PCs. If you do not plan to debug
your own custom TIGA modules, skip this section; turn to Section 3.5, Invoking
the Debugger, on page xii.

Figure 3–2 shows the various components that are needed on the TIGA
(target) side and the debugger (host) side.

Figure 3–2. Components Required for Debugging a TIGA Application

tigacd driver
’340 board

Object code and

’340 debugger

init.cmd

Object code and
target RLMs
Source files

Target PC Host PC

emulator serial cable

(TIGA version 2.05)

target RLMs
tigagm.out
extprims.rlm tigagm.out

extprims.rlm

This system requires no special communication drivers. However, there are
a few additional installation steps that you must follow:

Step 1: Install the TIGA communications driver (tigacd) on the target PC. On
the target PC, enter:

TIGACD /D1

This enables the emulator version of the communication driver’s
debug mode. Later, if you need to disable this mode, enter:

TIGACD /D0

Step 2: For each module that you plan to debug, copy the source and object
code to the host PC. The source code can go in any directory, but the
object code must reside in the same directory as db340emu.exe (the
emu34020 directory).

 Setting Up for TIGA Applications

xi Chapter Title—Attribute Reference

Step 3: Be sure that you have copied tigagm.out and, if you are using TIGA
extended primitives, extprims.rlm to the directory on the target PC
that contains tigacd. Also copy them to the emu34020 directory on
the host PC.

Step 4: On the host PC, invoke the debugger:

db340emu

The debugger should come up in a state where the ’340 processor
is in an endless loop. Use the RUN command (or press F5) to start
the processor running.

Step 5: Verify that the debugger is working properly by reloading the TIGA
graphics manager. On the target PC, enter:

tigalnk /lx

The debugger should display a message indicating that it has
successfully loaded the TIGA graphics manager.

If “File Not Found” types of errors show up on the host PC, check
your setup against the illustration in Figure 3–2 (page x). Be sure
that all of the files have been copied to the correct directories and that
the serial cable is set up correctly.

Invoking the Debugger

xii

3.5 Invoking the Debugger

Here’s the basic format for the command that invokes the debugger:

db340emu [filename] [–options]

db340emu is the command that invokes the emulator version of the
debugger.

filename is an optional parameter that names an object file that the
debugger will load into memory during invocation. The
debugger looks for the file in the current directory; if the file
isn’t in the current directory, you must supply the entire
pathname. If you don’t supply an extension for the filename,
the debugger assumes that the extension is .out.

–options supply the debugger with additional information (see
Table 3–3).

You can also specify filename and option information with the D_OPTIONS
environment variable (see Setting up the environment variables, page vi).

Table 3–3.Debugger Options

Option Description

–b[bbbb] Screen-size options. By default, the debugger uses an 80-character-by-25-line
screen. If you have a special graphics card, however, you can choose one of several
larger screen sizes.

Option Characters/Lines Notes
none 80 by 25 This is the default display
–b 80 by 43 (EGA) Use any EGA or VGA card

80 by 50 (VGA)
–bb 120 by 43
–bbb 132 by 43
–bbbb 80 by 60
–bbbbb 100 by 60

Currently, the debugger supports these
modes on a Video Seven VEGA Deluxe
card.

–p port address Port address. –p identifies the I/O port address that the debugger uses for communi-
cating with the emulator. If you used the emulator’s default switch settings, you don’t
need to use the –p option. If you used nondefault switch settings, you must use
–p. Depending on your switch settings, replace port address with one of these val-
ues:

Switch 1 Switch 2 Option
on on –p 220
on off none needed (default setting)
off on –p 300
off off –p 3E0

–s Load symbol table only. If you supply a filename when you invoke the debugger,
you can use the –s option to tell the debugger to load only the file’s symbol table (with-
out the file’s object code). This is similar to the debugger’s SLOAD command.

 Invoking the Debugger / Exiting the Debugger

xiii Chapter Title—Attribute Reference

Table 3–3.Debugger Options (Continued)

Option Description

–i pathname Additional directories. –i identifies additional directories that contain your source
files. Replace pathname with an appropriate directory name. You can specify several
pathnames; use the –i option as many times as necessary:

db340emu –i path1 –i path2 –i path3 . . .

Using –i is similar to using the D_SRC environment variable (described on page vi).
If you name directories with both –i and D_SRC, the debugger first searches through
directories named with –i. The debugger can track a cumulative total of 20 paths (in-
cluding paths specified with D_SRC and the debugger USE command).

–mc ’34082 support. –mc tells the debugger to provide ’34082 support. This allows you
to access ’34082 register values and tells the debugger to disassemble ’34082
coprocessor instructions.

–mf Floating-point format. By default, the debugger expects source code to use ’340
floating-point format. The –mf option tells the debugger to expect IEEE floating-point
format (IEEE std 754-1985) instead.

If you are already using –mc, it is not necessary to use –mf.

–v Load without symbol table. This option prevents the debugger from loading the en-
tire symbol table when you load an object file. The debugger loads only the global
symbols and later loads local symbols as it needs them. This speeds up the loading
time and consumes less memory space.

The –v option affects all loads, including loading when you invoke the debugger and
loading with the LOAD command within the debugger environment.

–x Ignore D_OPTIONS. –x tells the debugger to ignore any information supplied with
D_OPTIONS.

–t filename New initialization file. The –t option allows you to specify an initialization command
file that will be used instead of emuinit.cmd.

3.6 Exiting the Debugger

To exit the debugger and return to the operating system, enter this command:

quit

You don’t need to worry about where the cursor is or which window is
active—just type. If a program is running, press ESC to halt program execution
before you quit the debugger.

i Chapter Title—Attribute Reference

An Introductory Tutorial
to the C Source Debugger

This chapter provides a step-by-step, hands-on demonstration of the ’340 C source debugger’s basic
features. This is not the kind of tutorial that you can take home to read— this tutorial is effective only
if you’re sitting at your PC, performing the lessons in the order they’re presented. This tutorial contains
two sets of lessons (11 in the first, 14 in the second) and takes about one hour to complete.

Chapter 4

How to Use This Tutorial

ii

Synopsis Topic
Page

Reading these sections will help
you get the most out of the tutorial.

How to use this tutorial ii
A note about entering commands iii
An escape route (just in case) iv

The first set of lessons introduces
you to basic debugger operation.
You’ll learn how to invoke the
debugger and load object code,
and you’ll become acquainted
with the main features of the
debugger display. You’ll also learn
how to view a C source file and
how to select one of the three de-
bugging modes.

Invoke the debugger v
and load the sample program’s object code
Now what should I see? vi
What’s in the DISASSEMBLY window? vii
Select the active window vii
Resize the active window ix
Zoom the active window x
Move the active window xi
Scroll through a window’s contents xii
Display the C source version of the sample file xiii
Execute some code xiii
Become familiar with the three debugging modes xiv

The second set of lessons shows
you how to execute your pro-
grams and concentrates on the
debugger’s advanced features:
setting breakpoints, benchmark-
ing code, and observing the ef-
fects of program execution on se-
lected variables, memory loca-
tions, and registers.

Open another text file, then redisplay a C source file xvi
Use the basic RUN command xvii
Set some breakpoints xvii
Benchmark a section of code (emulator only) xix
Watch some values and single-step through code xx
Run code conditionally xxii
WHATIS that? xxiii
Clear the COMMAND window display area xxiv
Display the contents of an aggregate data type xxiv
Display data in another format xxviii
Change some values xxx
Define a memory map xxxi
Close the debugger xxxii
Define your own command string xxxii

How to use this tutorial

This tutorial contains three basic types of information:

Primary actions Primary actions identify the main lessons in the
tutorial; they’re boxed so you can find them
easily. A primary action looks like this:

 A Note About Entering Commands / An Escape Route

iii Chapter Title—Attribute Reference

Make the CPU window the active window:

win CPU

Important information In addition to primary actions, important
information ensures that the tutorial works
correctly. Important information is marked like
this:

Important! The CPU window should still be
active from the previous step.

Alternative actions Alternative actions show additional methods for
performing the primary actions. Alternative
actions are marked like this:

Try This: Another way to display the current
code in MEMORY is to show memory beginning
from the current PC. . .

As you go through this tutorial, perform the primary actions and pay close
attention to the important information. To learn even more about using the
debugger, perform the alternative actions, too.

Important! This tutorial assumes that you have correctly and completely
installed your development board or emulator (including invoking any files or
DOS commands as instructed in the installation chapters).

A note about entering commands

Whenever this tutorial tells you to type a debugger command, just type— the
debugger automatically places the text on the command line. You don’t have
to worry about moving the cursor to the command line; the debugger takes
care of this for you. (There are a few instances when this isn’t true— for
example, when you’re editing data in the CPU or MEMORY window—but this
is explained later in the tutorial.)

Also, you don’t have to worry about typing commands in uppercase or
lowercase—either is fine. There are a few instances when a command’s
parameters must be entered in uppercase, and the tutorial points this out.

Running Title—Attribute Reference

iv

An escape route (just in case)

The steps in this tutorial create a path for you to follow. The tutorial won’t
purposely lead you off the path. But sometimes when people use new
products, they accidently press the wrong key, push the wrong mouse button,
or mistype a command. Suddenly, they’re off the path without any idea of
where they are or how they got there.

This probably won’t happen to you. But, if it does, you can almost always get
back to familiar ground by pressing ESC . If you were running a program when
you pressed ESC , you should also type RESTART . Then go back to the
beginning of whatever lesson you were in and try again.

 Invoke the Debugger and Load the Sample Program’s Object Code

v Chapter Title—Attribute Reference

Invoke the debugger and load the sample program’s object code

Included with the debugger is a demonstration program named sample. This
lesson shows you how to invoke the debugger and load the sample program.
You will use the –b option so that the debugger uses a larger display.

Important! If you are using the emulator, this step assumes that you are
using the default I/O switches or that you have identified the I/O switches with
the D_OPTIONS environment variable (as described in the installation
instructions in Chapter 3).

Invoke the debugger and load the sample program:

For a development board, enter:

db340 –b c:\db\sample

For the emulator, enter:

db340emu –b c:\emu34020\sample

Now What Should I See?

vi

Now what should I see?

Now you should see a display similar to this (it may not be exactly the same
display, but it should be close).

Load Brea

k

Watch Memory

DISASSEMBLY CPU

MEMORYCOMMAND

>>>

TMS340 Debugger Version 5.00

Copyright (c) 1990, Texas In-

strume

TMS340x0 Development Board

PC ffc00850
ST 00000010
A0 00000000
A1 00000000
A2 00000000
A3 c0000010
A4 00000000
A5 00000000
A6 00000000
A7 00000040
A8 00000000
A9 ffc45da0
A10 ffffffff
A11 00001795
A12 00000000
A13 ffc363e0
A14 ffc363e0
A15 ffffa000

ffc00850 0740 c_int00: SETF 32,0,0

ffc00860 09e9 MOVI –3972128,A9

ffc00890 4d2d MOVE A9,A13

ffc008a0 4d2e MOVE A9,A14

ffc008b0 09e9 MOVI –3908192,A9

ffc008e0 4d2f MOVE A9,SP

ffc008f0 09ea MOVI –1,A10

ffc00920 0b4a CMPI –1,A10

ffc00940 ca05 JRZ 0ffc009a0h

ffc00950 a3cf MOVE A14,*–SP,1

ffc00960 934e MOVE A10,*A14+,1

ffc00970 0d5f CALLA var_init

ffc009a0 0d5f CALLA main

ffc009d0 a3cf MOVE A14,*–SP,1

ffc009e0 182b MOVK 1,A11

00000000 4000 4001 4002 4003 40004 4005 4006

00000070 4007 4008 4009 400a 400b 400c 400d

000000e0 400e 400f 4010 4011 4012 4013 4014

00000150 4015 4016 4017 4018 4019 401a 401b

000001c0 401c 401d 401e 401f 4020 4021 4022

00000230 4023 4024 4025 4026 4027 4028 4029

MoDe Run=F5 Step=F8 Next=F10Colormenu bar with
pulldown menus

reverse assembly
of memory contents

register contents

memory contents

COMMAND window
display area

command line

current PC
(highlighted)

� If you don’t see a display, then your development board or emulator may
not be installed properly. Go back through the board installation
instructions and be sure that you followed each step correctly; then
reinvoke the debugger. If you still don’t see a display, use the
troubleshooting information in Appendix A.

� If you do see a display, check the first few lines of the DISASSEMBLY
window. If these lines aren’t the same—if, for example, they show ADD
instructions—then enter the following commands on the debugger
command line. (Just type; you don’t have to worry about where the cursor
is.)

1) Reset the ’340 processor:

reset

2) Load the sample program again:

Development board: load c:\db\sample
Emulator: load c:\emu34020\sample

 What’s in the DISASSEMBLY Window? / Select the Active Window

vii Chapter Title—Attribute Reference

What’s in the DISASSEMBLY window?

The DISASSEMBLY window always shows the reverse assembly of memory
contents; in this case, it shows an assembly language version of sample.out.
The MEMORY window displays the current contents of memory. Because you
loaded the object file sample.out when you invoked the debugger, memory
contains the object code version of the sample file.

This tutorial step demonstrates that the code shown in the DISASSEMBLY
window corresponds to memory contents. Initially, memory is displayed
starting at address 0; if you look at the first line of the DISASSEMBLY window,
you’ll see that its display starts at address 0xFFC0 0850.

Modify the MEMORY display to show the same object code that is dis-
played in the DISASSEMBLY window:

mem 0xffc00850

Notice that the first column in the DISASSEMBLY window corresponds to the
addresses in the MEMORY window; the second column in the DISASSEMBLY
window corresponds to the memory contents displayed in the MEMORY
window.

Try This: Another way to display the current code in MEMORY is to show
memory beginning from the current PC:

mem pc

Select the active window

This lesson shows you how to make a window into the active window. You can
move and resize any window; you can close some windows. Whenever you
type a command or press a function key to move, resize, or close a window,
the debugger must have some method of understanding which window you
want to affect. The debugger does this by designating one window at a time
to be the active window. Any window can be the active window, but only one
window can be active at a time.

Select the Active Window

viii

Make the CPU window the active window:

win CPU

Important! If this didn’t work, look at the way you entered the command. Did
you enter CPU in uppercase letters? For this command, it’s important that you
enter the parameter in uppercase as shown.

Important! Notice the appearance of the CPU window (especially its
borders) in contrast to the other, inactive windows. This is how you can tell
which window is active.

Try This: Pressing the F6 key “hops” through the windows in the display,
making each one active in turn. Press F6 as many times as necessary until
the CPU window becomes the active window again.

Try This: You can also use the mouse to make a window active:

1) Point to any location on the window’s border.

2) Click the left mouse button.

Be careful! If you point inside the window, the window becomes active when
you press the mouse button, but something else may happen as well:

� If you’re pointing inside the CPU window, then the register you’re pointing
at becomes active. The debugger then treats any text you type as a new
value for that register. Similarly, if you’re pointing inside the MEMORY
window, the address you’re pointing at becomes active.

Press ESC to get out of this.

� If you’re pointing inside the DISASSEMBLY or FILE window, you’ll set a
breakpoint on the statement that you were pointing to.

Point to the same statement; press the button again to delete the
breakpoint.

 Resize the Active Window

ix Chapter Title—Attribute Reference

Resize the active window
This lesson shows you how to resize the active window.

Important! The CPU window should still be active from the previous step.

Make the CPU window as small as possible:

size 4,3

This tells the debugger to make the window 4 characters by 3 lines, which is
the smallest a window can be. (If it were any smaller, the debugger wouldn’t
be able to display all four corners of the window.) If you try to enter smaller
values, the debugger will warn you that you’ve entered an Invalid window size.
The maximum width and length depend on which –b option you used when you
invoked the debugger. (If you’d like a complete list of the limits, see Table 6–1
on page 6-22.)

Make the CPU window larger:

size Enter the SIZE command without parameters

Make the window 3 lines longer

Make the window 4 characters wider

Press this key when you finish sizing the window

You can also use ↑ to make the window shorter and ← to make the window
narrower.

Try This: You can also use the mouse to resize the window (note that this
automatically causes the selected window to become the active window).

1) If you examine any window, you’ll see a highlighted, backwards “L” in the
lower right corner. Point to the lower right corner of the CPU window.

2) Press the left mouse button but don’t release it; move the mouse while
you’re holding in the button. This resizes the window.

3) Release the mouse button when the window reaches the desired size.

Zooming the Active Window

x

Zoom the active window

Another way to resize the active window is to zoom it. Zooming the window
makes it as large as possible.

Important! The CPU window should still be active from the previous steps.

Make the active window as large as possible:

zoom

The window should now be as large as possible, taking up the entire display
(except for the menu bar) and hiding all the other windows. You can “unzoom”
the window by entering the ZOOM command again.

Return the window to its previous size. (Even though the COMMAND
window is hidden by the CPU window, the ZOOM command will be recog-
nized.)

zoom

The window should now be back to the size it was before zooming.

Try This: You can also use the mouse to zoom the window.

Zoom the active window:

1) Point to the upper left corner of the active window.

2) Click the left mouse button.

Return the window to its previous size by repeating these steps.

 Move the Active Window

xi Chapter Title—Attribute Reference

Move the active window

This lesson shows you how to move the active window.

Important! The CPU window should still be active from the previous steps.

Move the CPU window to the upper left portion of the screen:

move 0,1 The debugger doesn’t let you move the window
to the very top—that would hide the menu bar

The MOVE command’s first parameter identifies the window’s new X position
on the screen. The second parameter identifies the window’s new Y position
on the screen. The maximum X and Y positions depend on which –b option
you used when you invoked the debugger. (For a complete list of the limits, see
Table 6–2 on page 6-25.)

Try This: You can use the MOVE command with no parameters and then use
arrow keys to move the window:

move
→ → → → Press → until the CPU window is back where it was

(it may seem like only the border is moving—this is normal)
ESC Press ESC when you finish moving the window

You can also use ↑ to move the window up, ↓ to move the window down,
and ← to move the window left.

Try This: You can also use the mouse to move the window (note that this
automatically causes the selected window to become the active window).

1) Point to the top edge or left edge of the window border.

2) Press the left mouse button but don’t release the button; move the mouse
while you’re holding in the button.

3) Release the mouse button when the window reaches the desired position.

Scroll Through a Window’s Contents

xii

Scroll through a window’s contents

Many of the windows contain more information than can possibly be displayed
at one time. You can view hidden information by moving through a window’s
contents. The easiest way to do this is to use the mouse to scroll the display
up or down.

If you examine most windows, you’ll see an up arrow near the top of the right
border and a down arrow near the bottom of the right border. These are scroll
arrows.

Scroll through the contents of the DISASSEMBLY window:

1) Point to either of the scroll arrows.

2) Press the left mouse button; continue pressing it until the dis-
play has scrolled several lines.

3) Release the button.

Try This: You can also use several of the keys to modify the display in the
active window.

Make the MEMORY window the active window:

win MEMORY

Now try pressing these keys; observe their effects on the window’s contents.

↓ ↑ PAGE DOWN PAGE UP

These keys don’t work the same for all windows; Section 14.3 (page 14-38)
summarizes the functions of all the special keys, key sequences, and how their
effects vary for the different windows.

 Display the C Source Version of the Sample File / Execute Some Code

xiii Chapter Title—Attribute Reference

Display the C source version of the sample file

Now that you can find your way around the debugger interface, you can get
familiar with some of the debugger’s more significant features. It’s time to load
some C code.

Display the contents of a C source file:

file sample.c

This opens a FILE window that displays the contents of the file sample.c
(sample.c was one of the files that contributed to making the sample object
file). You can always tell which file you’re displaying by the label in the FILE
window. Right now, the label should say FILE: sample.c.

Execute some code

Let’s run some code—not the whole program, just a portion of it.

Execute a portion of the sample program:

go main

You’ve just executed your program up to the point where main() is declared.
Notice how the display has changed:

� The current PC is highlighted in both the DISASSEMBLY and FILE
windows.

� The addresses and object code of the first four statements in the
DISASSEMBLY window are highlighted; this is because all four
statements are associated with the current C statement (line 53 in the FILE
window).

� The CALLS window, which tracks functions as they’re called, now shows
that the current function is main().

� The values of the program counter (PC), the stack pointer (SP), and
possibly some additional registers are highlighted in the CPU window
because they were changed by program execution.

Note: If you’re using the emulator and the program doesn’t stop after several
seconds, press ESC and refer to Section A.4 (page A-7).

Become Familiar With the Three Debugging Modes

xiv

Become familiar with the three debugging modes
The debugger has three basic debugging modes:

� Mixed mode shows both disassembly and C code at the same time.

� Auto mode shows disassembly or C code, depending on what part of your
program happens to be running.

� Assembly mode shows only the disassembly, no C code, even if you’re
executing C code.

When you opened the FILE window in a previous step, the debugger switched
to mixed mode; you should be in mixed mode now. (You can tell that you’re in
mixed mode if both the FILE and DISASSEMBLY windows are displayed.)

The following steps show you how to switch debugging modes.

Use the MoDe menu to select assembly mode:

1) Look at the top of the display: the first line shows a row of pull-
down menu selections.

2) Point to the word MoDe on the menu bar.

3) Press the left mouse button, but don’t release it; drag the
mouse downward until Asm (the second entry) is highlighted.

4) Release the button.

This switches to assembly mode. You should see the DISASSEMBLY window,
but not the FILE window.

Switch to auto mode:

1) Type . This displays and freezes the MoDe menu.

2) Now select C(auto). Choose one of these methods for doing this:

Press the arrow keys to move up/down through the menu; when
C(auto) is highlighted, press .

Type C .

Point the mouse cursor at C(auto), then press and release the left
mouse button.

lesson continues on the next page →

 Become Familiar With the Three Debugging Modes / Halfway Point

xv Chapter Title—Attribute Reference

You should be in auto mode now, and you should see the FILE window but not
the DISASSEMBLY window (because your program is in C code). Auto mode
automatically switches between an assembly or a C display, depending on
where you are in your program. Here’s a demonstration of that:

Run to a point in your program that executes assembly language code:

go meminit

You’re still in auto mode, but you should now see the DISASSEMBLY window.
The current PC should be at the statement that defines the meminit label.

Try This: You can also switch modes by typing one of these commands:

asm switches to assembly-only mode
c switches to auto mode
mix switches to mixed mode

Switch back to mixed mode.

You’ve finished the first half of the tutorial and the
first set of lessons.

If you’re lucky enough to be going to lunch or going home at this point, you may
want to close the debugger down. To do this, just type QUIT . When you
come back, reinvoke the debugger and load the sample program (page v).
Then turn to page xvi and continue with the second set of lessons.

Still here? Turn the page.

Open Another Text File, Then Redisplay a C Source File

xvi

Open another text file, then redisplay a C source file

In addition to what you already know about the FILE window and the FILE
command, you should also know that:

� You can display any text file in the FILE window.

� If you enter any command that requires the debugger to display a C source
file, it automatically displays that code in the FILE window (regardless of
whether the window is open or not and regardless of what is already
displayed in the FILE window).

Display a file that isn’t a C source file:

file init.cmd

This replaces sample.c in the FILE window with the init.cmd file (init.cmd
is a batch file that comes with the debugger).

Remember, you can tell which file you’re displaying by the label in the FILE
window. Right now, the label should say FILE: init.cmd.

Redisplay another C source file (sample1.c):

func call

Now the FILE window label should say FILE: sample1.c because the call()
function is in sample1.c.

 Use the Basic RUN Command / Set Some Breakpoints

xvii Chapter Title—Attribute Reference

Use the basic RUN command

The debugger provides you with several ways of running code, but it has one
basic run command.

Run your entire program:

run

Entered this way, the command basically means “run forever”. You may not
have that much time!

This isn’t very exciting: halt program execution:

Set some breakpoints

When you halted execution in the previous step, you should have seen
changes in the display similar to the changes you saw when you entered go
main earlier in the tutorial. When you pressed ESC , you had little control over
where the program stopped. Knowing that information changed was nice, but
what part of the program affected the information?

This information would be much more useful if you picked an explicit stopping
point before running the program. Then, when the information changed, you’d
have a better understanding of what caused the changes. You can stop
program execution in this way by setting breakpoints.

Important! This lesson assumes that you’re displaying the contents of
sample.c in the FILE window. If you aren’t, enter:

file sample.c

Set Some Breakpoints

xviii

Set a breakpoint and run your program:

1) Scroll to line 58 in the FILE window (the meminit() statement) and set
a breakpoint at that line:

a) Point the mouse cursor at the statement on line 58.

b) Click the left mouse button. Notice how the line is highlighted;
this identifies a breakpointed statement.

2) Reset the program entry point:

restart

3) Enter the run command:

run Program execution halts at the breakpoint

Once again, you should see that some statements are highlighted in the CPU
window, showing that they were changed by program execution. But this time,
you know that the changes were caused by code from the beginning of the
program to line 58 in the FILE window.

Clear the breakpoint:

1) Point the mouse cursor at the statement on line 58. (It should still
be highlighted from setting the breakpoint.)

2) Click the left mouse button. The line is no longer highlighted.

 Benchmark a Section of Code (Emulator Only)

xix Chapter Title—Attribute Reference

Benchmark a section of code (emulator only)

If you’re using the ’34020 emulator, you can use breakpoints to help you
benchmark a section of code. This means that you’ll ask the debugger to count
the number of CPU clock cycles that are consumed by a certain portion of
code.

Benchmark some code:

1) In sample.c (displayed in the FILE window), set two breakpoints: one
at line 58 (the meminit() statement) and one at line 66 (the for(;;); state-
ment).

2) Reset the program entry point:

restart

3) Enter the run command:

run This runs to the first breakpoint

4) Enter the runb command:

runb This runs to the second breakpoint
(this may take several seconds)

5) Now use the ? command to examine the contents of the CLK pseudo-
register:

? clk

The debugger now shows a number in the display area; this is the number of
CPU clock cycles consumed by the portion of code between the two
breakpointed C statements.

Important! The value in the CLK pseudoregister is valid only when you
execute the RUNB command and when that execution is halted on
breakpointed statements.

Delete both breakpoints:

br The BR (breakpoint reset) command deletes
all breakpoints that were set

emulator
only

Watch Some Values and Single-Step Through Code

xx

Watch some values and single-step through code

Now you know how to update the display without running your entire program;
you can set breakpoints to obtain information at specific points in your
program. But what if you want to update the display after each statement? No,
you don’t have to set a breakpoint at every statement—you can use
single-step execution.

For this lesson, you have to be at a specific point in the program— let’s go there
before we do anything else.

Set up for single-step example:

restart
go main

The debugger has another type of window called a WATCH window that’s very
useful in combination with single-step execution. What’s a WATCH window
for? Suppose you are interested in only a few specific register values, not all
of the registers shown in the CPU window. Or suppose you are interested in
a particular memory location or in the value of some variable. You can observe
these data items in a WATCH window.

Set up the WATCH window before you start the single-step execution.

Open a WATCH window:

wa a15, Stack Pointer
wa pc
wa *0xffc36440, Call:
wa i

You may have noticed that the WA (watch add) command can have one or two
parameters. The first parameter is the item that you’re watching. The second
parameter is an optional label.

If the WATCH window isn’t wide enough to display the PC value, resize the
window.

lesson continues on the next page →

 Watch Some Values and Single-Step Through Code

xxi Chapter Title—Attribute Reference

Now try out the single-step commands. Hint: Watch the PC in the FILE and
DISASSEMBLY windows; watch the value of i in the WATCH window.

Single-step through the sample program:

step 50

Try This: Notice that the step command single-stepped each assembly
language statement (in fact, you single-stepped through 50 assembly
language statements). Did you also notice that the FILE window displayed the
source for the call() function when it was called? The debugger supports more
single-step commands that have a slightly different flavor.

� For example, if you enter:

cstep 50

you’ll single-step 50 C statements, not assembly language statements
(notice how the PC “jumps” in the DISASSEMBLY window).

� Reset the program entry point and run to main().

restart
go main

Now enter the NEXT command, as shown below. You’ll be single-stepping
50 assembly language statements, but the FILE window doesn’t display
the source for the call() function when call() is executed.

next 50

(There’s also a CNEXT command that “nexts” in terms of C statements.)

Run Code Conditionally

xxii

Run code conditionally

Take a look at the code following the meminit() statement; this code is doing
a lot of work with a variable named i. You may want to check the value of i at
specific points instead of after each statement. To do this, you set breakpoints
at the statements you’re interested in and then initiate a conditional run.

First, clear out the WATCH window so that you won’t be distracted by any
superfluous data items.

Delete the first three data items from the WATCH window (don’t watch
them anymore):

wd 3
wd 1
wd 1

i was the fourth item added to the WATCH window in the previous tutorial step,
and it should now be the only remaining item in the window.

Set up for the conditional run examples

1) Set breakpoints at lines 59 and 61.

2) Reset the program entry point:

restart

3) Run the first part of the program

go main

4) Reset the value of i:

?i=0

Now initiate the conditional run:

run i<100

lesson continues on the next page →

 Run Code Conditionally / WHATIS That?

xxiii Chapter Title—Attribute Reference

This causes the debugger to run through the for loop as long as the value of
i is less than 100. Each time the debugger encounters the breakpoints in the
loop, it updates the value of i in the WATCH window.

When the conditional run completes, close the WATCH window.

Close the WATCH window:

wr

WHATIS that?

At some point, you might like to obtain some information about the types of
data in your C program. Maybe things won’t be working quite the way you’d
planned, and you’ll find yourself saying something like “... but isn’t that
supposed to point to an integer?” Here’s how you can check on this kind of
information—be sure to watch the COMMAND window display area as you
enter these commands.

Clear the COMMAND Window Display Area / Display the Contents of an Aggregate Data Type

xxiv

Use the WHATIS command to find the types of some of the variables de-
clared in the sample program:

whatis genum
enum yyy genum; genum is an enumerated type

whatis tiny6
struct { tiny6 is a structure

int u;
int v;
int x;
int y;
int z;

} tiny6;
whatis call

int call(); call is a function that returns an integer
whatis s

short s; s is a short unsigned integer
whatis bbb

struct bbb { bbb is a very long structure
int a;
int b;

Press to halt long listings

Clear the COMMAND window display area
After displaying all of these types, you may want to clean out the display area.
This is easy to do.

Clear the COMMAND window display area:

cls

Try This: Here are examples of two more DOS-like commands that you can
use in the debugger environment:

cd .. Change back to the main directory
dir Show a listing of the current directory

Display the contents of an aggregate data type
The WATCH window is convenient for watching single, or scalar, values. When
you’re debugging a C program, though, you may need to observe values that

 Running Title—Attribute Reference

xxv Chapter Title—Attribute Reference

aren’t scalar; for example, you might need to observe the effects of program
execution on an array. The debugger provides another type of window called
a DISP window where you can display the individual members of an array or
structure.

Show another structure in a DISP window:

disp big1

Now you should see a display like the one below. The newly opened DISP
window becomes the active window. Like the FILE window, you can always tell
what’s being displayed because of the way the DISP window is labeled. Right
now, it should say DISP: big1.

DISP: big 1
b1 1450748877
b2 1450748877
b3 1450748877
b4 1450748877
b5 1450748877
q1 [...]
q2 {...}
q3 0x2af3559e

lesson continues on the next page →

� Members b1, b2, b3, b4, and b5 are ints; you can tell because they’re
displayed as integers (shown as plain numbers without prefixes).

� Member q1 is an array; you can tell because q1 shows [. . .] instead of a
value.

� Member q2 is another structure; you can tell because q2 shows {. . .}
instead of a value.

� Member q3 is a pointer; you can tell because it is displayed as a
hexadecimal address (indicated by a 0x prefix) instead of an integer value.

Display the Contents of an Aggregate Data Type

xxvi

If a member of a structure or an array is itself a structure or an array, or even
a pointer, you can display its members (or the data it points to) in additional
DISP windows (referred to as the original DISP window’s children).

Display what q3 is pointing to:

1) Point at the address displayed next to the q3 label in big1’s
display.

2) Click the left mouse button.

This opens a second DISP window, labeled DISP: big1.q3, that shows
what q3 is pointing to (it’s pointing to another structure). Close this DISP
window by pressing F4 .

Display array q1 in another DISP window:

1) Point at the [. . .] displayed next to the q1 label in big1’s dis-
play.

2) Click the left mouse button.

This opens another DISP window labeled DISP: big1.q1.

Important! q1 is actually a 2-member array of structures. To view the two
different structures, use CONTROL PAGE DOWN and CONTROL PAGE UP . (Look at
the name of this DISP window when you’re switching.)

lesson continues on the next page →

Try This: Display structure q2 in another DISP window.

1) Close the additional DISP windows or move them out of the way so that
you can clearly see the original DISP window that you opened to display
big1.

2) Make big1’s DISP window the active window.

↓ ↑ 3) Use these arrow keys to move the field cursor (_) through the list of
big1’s members until the cursor points to q2.

F9 4) Now press F9 .

 Running Title—Attribute Reference

xxvii Chapter Title—Attribute Reference

This opens a window named DISP: big1.q2.

Close all of the DISP windows:

1) Make DISP: big1 the active window.

2) Press .

When you close the main DISP window, the debugger closes all of its children
as well.

Display Data in Another Format

xxviii

Display data in another format

Usually, when you add an item to the WATCH window or open a DISP window,
the data is shown in its natural format. This means that ints are shown as
integers, floats are shown as floating-point values, etc. Occasionally, you may
wish to view data in a different format. This can be especially important if you
want to show memory or register contents in another format.

One way to display data in another format is through casting (which is part of
the C language). In the expression below, the *(float *) portion of the
expression tells the debugger to treat address 0x1000 as type float
(exponential floating-point format).

Display memory contents in floating-point format:

disp *(float *)0x1000

This opens a DISP window to show memory contents in an array format. The
“array” member identifiers don’t necessarily correspond to actual
addresses—they’re relative to the first address you request with the DISP
command. In this case, the item displayed as item [0] is the contents of address
0x1000— it isn’t memory location 0. Note that you can scroll through the
memory displayed in the DISP window; item [1] is at 0x1010, item [–1] is at
0x0FE0.

You can also change display formats according to data type. This affects all
data of a specific C data type.

Change display formats according to data types by using the SETF (set
format) command:

1) For comparison, watch the following variables. Their C data types are
listed on the right.

wa str.f1 Type int
wa longstr.A Type float
wa d Type double
wa ac[1] Type char

2) You can list all the data types and their current display formats:

setf

 Display Data in Another Format

xxix Chapter Title—Attribute Reference

3) Now display the following data types with new formats:

setf int, c Ints as characters
setf float, o Floats as octal integers
setf double, x Doubles as hex integers
setf char, d Chars as decimal integers

4) List the data types to display formats again; note the changes in the
display:

setf

5) Add the variables to the WATCH window again; use labels to identify
the additions:

wa str.f1, NEWstr.f1
wa longstr.A, NEWlongstr.A
wa d, NEWd
wa ac[1], NEWac[1]

Notice the differences in the display formats between the first versions
you added and these new versions.

6) Now reset all data types back to their defaults:

setf *

A third way to display data in another format is to use the DISP, ?, MEM, or WA
command with an optional parameter that identifies the new display format.
The following examples are for ? and WA—DISP and MEM work similarly.

Use display formats with the ? and WA commands:

1) Evaluate a variable and display it as a character:

? small.ra[1],c

2) Add a variable to the watch window and display it as an octal integer:

wa longstr.a,,o

(Notice that because no label was used with WA, an extra comma was
inserted—otherwise, the o parameter would have been interpreted as
a label.)

To get ready for the next step, close the DISP and WATCH windows.

Change Some Values

xxx

Change some values

You can edit the values displayed in the MEMORY, CPU, WATCH, and DISP
windows.

Change a value in memory:

1) Move or close the WATCH window if it’s obscuring the
MEMORY window; then, display memory beginning with
address 0x1000:

mem 0x1000

2) Point to the contents of memory location 0x1000.

3) Click the left mouse button. This highlights the field to identify
it as the field that will be edited.

4) Type 0000.

5) Press to enter the new value.

6) Press to conclude editing.

Try This: Here’s another method for editing data. This method lets you edit
a few more values at once.

1) Make the CPU window the active window:

win CPU

↑ ↓ 2) Press the arrow keys until the field cursor (_) points to the PC contents.

F9 3) Press F9 .

4) Type ffc000000.

↓ 5) Press ↓ twice. You should now be pointing at the contents of register A2.

6) Type ffff.

7) Press to enter the new value.

ESC 8) Press ESC to conclude editing.

 Define a Memory Map

xxxi Chapter Title—Attribute Reference

Define a memory map

You can set up a memory map to tell the debugger which areas of memory it
can and can’t access. This is called memory mapping. By default, memory
mapping is disabled, which means that the debugger assumes that all of
memory is available for its use. For the purposes of the sample program, that’s
fine (which is why this lesson was saved for next-to-last).

Memory mapping is a simple process of identifying the memory space in your
application and identifying whether the spaces are read/write, protected, etc.
Here’s an example.

Enable memory mapping:

map on

Look at the DISASSEMBLY and MEMORY windows. Mapping is enabled, but
the actual memory map hasn’t been defined yet. So, all of the address values
in the MEMORY are highlighted as invalid (on color monitors, the default
method for indicating invalid memory contents is to show them in red).
Because memory contents is now invalid, the disassembly of memory in the
DISASSEMBLY window no longer shows assembly language code—each
line says Invalid address.

Define a memory map:

1) Use the MA (memory add) command to map a block of program
memory:

ma 0xffc00000,0x0010000,RAM

Program memory is now valid — the DISASSEMBLY window dis-
plays assembly language code again.

2) Add in a block of memory for ’340 I/O registers:

ma 0xc0000000,0x10000000,RAM

Try This: The debugger supports a memory list command that tells you how
memory is currently mapped:

ml

Look in the COMMAND window display area — you’ll see a listing of the two
areas that you defined.

Define Your Own Command String / Close the Debugger

xxxii

Define your own command string

If you find that you often enter a command with the same parameters, or often
enter the same commands in sequence, you will find it helpful to have a
shorthand method for entering these commands. The debugger provides an
aliasing feature that allows you to do this.

This lesson shows you how you can define an alias to set up a memory map,
defining the same map that was defined in the previous lesson.

Define an alias for setting up the memory map:

1) Use the ALIAS command to associate a nickname with the commands
used for defining a memory map:

alias mymap,”mr;ma 0xffc00000,0x0010000,RAM;
ma0xc0000000,0x10000000,RAM;ml”

(Note: Because of space constraints, the command is shown on two
lines.)

2) Now, to use this memory map, just enter the alias name:

mymap

This is equivalent to entering the following four commands:

mr
ma 0xffc00000,0x0010000,RAM
ma 0xc0000000,0x10000000,RAM
ml

Close the debugger

This is the end of the tutorial — close the debugger.

Close the debugger and return to DOS:

quit

i Chapter Title—Attribute Reference

Overview of a Code
 Development and Debugging System

The ’340 C source debugger is an advanced software interface that helps you to develop, test, and
refine ’340 C programs (compiled with the ’340 optimizing ANSI C compiler) and assembly language
programs. This chapter provides an overview of the C source debugger and describes the ’340 code
development environment.

Synopsis Topic
Page

The chapter provides an overview
of the debugger and the debug-
ging process and describes how
the debugging process fits in with
the overall code development
process.

5.1 Description of the ’340 C Source Debugger ii
Key features of the debugger iii

5.2 Developing Code for the ’340 v

5.3 Preparing Your Program for Debugging viii
Assembling and/or compiling your program viii
Program constraints for development board applications x

5.4 Debugging ’340 Programs xi

Chapter 5

Description of the ’340 C Source Debugger

ii

5.1 Description of the ’340 C Source Debugger

The ’340 C source debugger improves productivity by allowing you to debug
a program in the language it was written in. You can choose to debug your
programs in C, assembly language, or both. And, unlike many other
debuggers, the ’340 debugger’s higher level features are available even when
you’re debugging assembly language code.

The debugger is easy to learn and use. Its friendly window-, mouse-, and
menu-oriented interface reduces learning time and eliminates the need to
memorize complex commands. The debugger’s customizable displays and
flexible command entry let you develop a debugging environment that suits
your needs—you won’t be locked into a rigid environment. A shortened
learning curve and increased productivity reduce the software development
cycle, so you’ll get to market faster.

Figure 5–1 identifies several features of the debugger display.

Figure 5–1. The Debugger Display

pulldown
menus DISASSEMBLY

ffc00350 098f call: MMTM SP,A11,FP

ffc00370 4dcd MOVE STK,FP

ffc00380 93ee MOVE SP,*STK+,1

ffc00390 c10a JRUC call+496(0ffc00540h)

ffc003a0 b7ab MOVE @newvalue,A11,1

ffc003c0 078b MOVE A11,@str,1

ffc003f0 c01f JRUC call+672(0ffc005f0h)

ffc00400 b7ab MOVE @newvalue,A11,1

ffc00420 102b INC A11

ffc0

ffc0

ffc0

ffc0

ffc0

ffc0

ffc0

ffc0

Brea

k

Watch Memory

CALLS

MoDe

2: call()

1: main()

Run=F5 Step=F8 Next=F10ColorLoad

CPU
PC ffc00350
ST 20000010
A0 00000000
A1 00000080
A2 00000000
A3 c0000010
A4 00000000
A5 00000000
A6 00000000
A7 00000040
A8 00000000
A9 00000000
A10 ffffffff
A11 00001795
A12 00000000
A13 ffc363e0
A14 ffc36460
A15 ffc45cc0
B0 ffffffff

WATCH
1: str.a 0
2: F0 1.000000e
3: color GREEN

FILE: sample.c
00008 };
00009
00010 extern struct xxx str;
00011
00012 call(newvalue)
00013 int newvalue;
00014 {
00015 static int value = 0;
00016
00017 switch (newvalue & 3)
00018 {
00019 case 0 : str.a = newvalue ; break;
00020 case 1 : str.b = newvalue + 1; return
00021 case 2 : str.c = newvalue * 2;
00022 case 3 : xcall(newvalue); break;

COMMAND

>>>

whatis str

struct xxx str;

step

DISP: astr[7]
a 123
b 555
c 75435
f1 3
f2 6
f3 0x00f000a
f4 [...]

DISP: astr[7].f4
[0] 0
[1] 9
[2] 7
[3] 54
[4] 3
[5] 3
[6] 4
[7] 123
[8] 4
[9] 789

MEMORY [PROG]
0107 bf08 09f5
0109 bf09 09f5
010b bf00 be47
010d bf80 017c
010f b801 e388
0111 0114 7a89
0113 0118 7a89
0115 0040 8a89
0017 0163 7802
0019 bf80 017c
001b 8b88 a6a0
001d b801 a680
001f 0290 038b
0121 7b9a 0126
0123 8b89 7c02
0125 ef00 b801

disassembly
display

C source
display

interactive
command entry
and history
window

scrolling data
displays with

on-screen,
interactive

editing

function call
traceback

natural-format
data displays

 Description of the ’340 C Source Debugger

iii Chapter Title—Attribute Reference

Key features of the debugger

� Multilevel debugging.The debugger allows you to debug both C and
assembly language code. If you’re debugging a C program, you can
choose to view just the C source, the disassembly of the object code
created from the C source, or both. You can also use the debugger as an
assembly language debugger.

� Fully configurable, state-of-the-art, window-oriented interface. The
C source debugger separates code, data, and commands into
manageable portions. Use any of the default displays. Or, select the
windows you want to display, size them, and move them where you want
them.

� Comprehensive data displays. You can easily create windows for
displaying and editing the values of variables, arrays, structures,
pointers—any kind of data — in their natural format (float, int, char, enum,
or pointer). You can even display entire linked lists.

WATCH
1: str.a 0
2: F0 1.000000e
3: color GREEN

DISP: str
a 123
b 0
c 75435
f1 3
f2 6
f3 0x00f000a
f4 [...]

DISP: *str.f3
a 8327
b 666
c 87213
f1 45
f2 27
f3 0x00f000a
f4 [...]

DISP: *str.f3–>f3
a 75
b 3212
c 782
f1 7
f2 9
f3 0x00f000a
f4 [...]

� On-screen editing. Change any data value displayed in any
window —just point the mouse, click, and type.

� Continuous update. The debugger continuously updates information on
the screen, highlighting changed values.

� Powerful command set. Unlike many other debugging systems, this
debugger doesn’t force you to learn a large, intricate command set. The
’340 C source debugger supports a small but powerful command set that
makes full use of C expressions. One debugger command performs
actions that would take several commands in another system.

Description of the ’340 C Source Debugger

iv

� Flexible command entry. There are a variety of ways to enter
commands. You can type commands or use a mouse, function keys, or the
pulldown menus; choose the method that you like best. Want to re-enter
a command? No need to retype it—simply use the command history.

� Create your own debugger. The debugger display is completely
configurable, allowing you to create the interface that is best suited for
your use.

� If you’re using a color display, you can change the colors of any area
on the screen.

� You can change the physical appearance of display features such as
window borders.

� You can interactively set the size and position of windows in the
display.

Create and save as many custom configurations as you like, or use the
defaults. Use the debugger with a color display or a black-and-white
display. A color display is preferable; the various types of information on
the display are easier to distinguish when they are highlighted with color.

� Variety of screen sizes. The debugger’s default configuration is set up
for a typical PC display, with 25 lines by 80 characters. If you use a
sophisticated graphics card, you can take advantage of the debugger’s
additional screen sizes. A larger screen size allows you to display more
information and provides you with more screen space for organizing the
display—bringing the benefits of workstation displays to your PC.

� Plus, all the standard features you expect in a world-class debugger.
The debugger provides you with complete control over program execution
with features like conditional execution and single-stepping (including
single-stepping into or over function calls). You can set or clear a
breakpoint with a click of the mouse or by typing commands. You can
define a memory map that identifies the portions of target memory that the
debugger can access. You can choose to load only the symbol table
portion of an object file to work with systems that have code in ROM. The
debugger can execute commands from a batch file, providing you with an
easy method for entering often-used command sequences.

 Developing Code for the ’340

v Chapter Title—Attribute Reference

5.2 Developing Code for the ’340

The ’340 is supported by a complete set of hardware and software
development tools, including a C compiler, assembler, and linker. Figure 5–2
illustrates the ’340 code development flow. The figure highlights the most
common paths of software development; the other portions are optional.

Figure 5–2. ’340 Software Development Flow

’340
target

system

assembler
source

assembler

linker

object format
converter

C compiler

macro
libraries

software
libraries

COFF
object
files

C
source

files

EPROM
programmer

debugging
toolsexecutable

COFF
file

Developing Code for the ’340

vi

These tools use common object file format (COFF), which encourages
modular programming. COFF allows you to divide your code into logical
blocks, define your system’s memory map, and then link code into specific
memory areas. COFF also provides rich support for source-level debugging.

The following list describes the tools shown in Figure 5–2.

The ’340 optimizing ANSI C compiler is a full-featured optimizing compiler
that translates standard ANSI C programs into ’340 assembly language
source. Key characteristics include:

� Standard ANSI C. The ANSI standard is a precise definition of the C
language, agreed upon by the C community. The standard encompasses
most of the recent extensions to C. To an increasing degree, ANSI
conformance is a requirement for C compilers.

� Optimization. The compiler uses several advanced techniques for
generating efficient, compact code from C source.

� Assembly language output. The compiler generates assembly language
source that you can inspect (and modify, if desired).

� ANSI standard runtime support. The compiler package comes with a
complete runtime library that conforms to the ANSI C library standard. The
library includes functions for string manipulation, dynamic memory
allocation, data conversion, timekeeping, trigonometry, exponential, and
hyperbolic functions. Functions for I/O and signal handling are not
included, because they are application specific.

� Flexible assembly language interface. The compiler has straightforward
calling conventions, allowing you to easily write assembly and C functions
that call each other.

� Shell program. The compiler package includes a shell program that
enables you to compile, assemble, and link programs in a single step.

� Source interlist utility. The compiler package includes a utility that interlists
your original C source statements into the assembly language output of
the compiler. This utility provides you with an easy method for inspecting
the assembly code generated for each C statement.

C compiler

 Developing Code for the ’340

vii Chapter Title—Attribute Reference

The assembler translates ’340 assembly language source files into machine
language object files.

The archiver allows you to collect a group of files into a library. It also allows
you to modify a library by deleting, replacing, extracting, or adding members.
One of the most useful applications of the archiver is to build a library of object
modules. Several object libraries and a source library are included with the C
compiler.

The linker combines object files into a single, executable object module. As
the linker creates the executable module, it performs relocation and resolves
external references. The linker is a tool that allows you to define your system’s
memory map and to associate blocks of code with defined memory areas.

The main purpose of the development process is to produce a module that can
be executed in a ’340 target system. You can use one of a variety of
debugging tools to refine and correct your code. Each uses the ’340
debugger as a software interface:

� The emulator version of the debugger supports the TI realtime emulator
for the ’34020.

� The development board version of the debugger supports an entire class
of ’340-based PC development boards that use TIGA and a TIGA
communication driver. TI has two such boards: the ’34010 TIGA
development board and the ’34020 software development board.

An object format converter is also available; it converts a COFF object file
into an Intel, Tektronix, or TI-tagged object-format file that can be downloaded
to an EPROM programmer.

assembler

archiver

linker

debugging
tools

object
format

converter

Preparing Your Program for Debugging

viii

5.3 Preparing Your Program for Debugging

This section describes the steps that you must go through when preparing a
’340 program and discusses constraints that apply to development board
programs.

Assembling and/or compiling your program

Figure 5–3 illustrates the steps you must go through to prepare a program for
debugging.

Figure 5–3. Steps You Go Through to Prepare a Program

C Compiler

assembly
language

C
source

object
code

executable
object code

If you’re working with a C
program, start here

If you’re working with an
assembly language
program, start here

This is the file that you load
when you invoke the
debugger

Assembler

Linker

code

If you’re preparing to
debug a C program. . .

1) Compile the program; use the –g option. Use the
–mc option for ’34082 support. Use the –mf option
for IEEE floating-point support without the ’34082
support.

2) Assemble the resulting assembly language pro-
gram.

3) Link the resulting object file.

This produces an object file that you can load into the
debugger.

If you’re preparing to
debug an assembly
language program. . .

1) Assemble the assembly language source file.

2) Link the resulting object file.

This produces an object file that you can load into the
debugger.

 Preparing Your Program for Debugging

ix Chapter Title—Attribute Reference

You can compile, assemble, and link a program by invoking the compiler,
assembler, and linker in separate steps; or, you can perform all three actions
in a single step by using the GSPCL shell program. The TMS340 Code
Generation Tools User’s Guide contains complete instructions for invoking the
tools individually and for using the shell program.

For your convenience, here’s the basic command for invoking the shell
program when preparing a program for debugging:

gspcl [–options] –g [filenames] [–vnn] [–mc | –mf] [–z [link options]]

gspcl is the command that invokes the compiler and assembler.

options affect the way the shell processes input files.

filenames are one or more C source files, assembly language source files,
or object files. Filenames are not case sensitive.

–g is an option that tells the C compiler to produce symbolic
debugging information. When preparing a C program for
debugging, you must use the –g option.

–mc provides ’34082 support. If you plan to use the debugger’s –mc
option, then you must also use the –mc option when compiling
your code.

–mf provides IEEE support (without ’34082 support). If you plan to
use the debugger’s –mf option, then you must also use the –mf
option when compiling your code.

–v is an option that tells the tools to produce code for either the
’34010 or ’34020; the nn is a number that identifies the correct
device:
–v10 creates object code for the ’34010
–v20 creates object code for the ’34020

By default, the tools expect ’34020 source and create ’34020
object. So, if you are debugging a ’34020 program, it’s not
necessary to use the –v option. However, if you are debugging a
’34010 program, you must use the –v option.

–z is an option that invokes the linker. After compiling/assembling
your programs, you can invoke the linker in a separate step. If
you want the shell to automatically invoke the linker, however,
use –z.

link options affect the way the linker processes input files; use these options
only when you use –z.

Options and filenames can be specified in any order on the command line, but
if you use –z, it must follow all C/assembly language source filenames and
compiler options.

Preparing Your Program for Debugging

x

The shell identifies a file’s type by the filename’s extension.

Extension File Type File Description

.c C source compiled, assembled,
and linked

.asm assembly language
source

assembled and linked

.s* (any extension that
begins with s)

assembly language
source

assembled and linked

.o* (extension begins
with o)

object file linked

none (.c assumed) C source compiled, assembled,
and linked

Program constraints for development board applications

When preparing a ’340 program for debugging on a development board,
observe the following constraints:

� Your program should not modify these vectors or TRAP instructions:

Vector address TRAP instruction

0xFFFF FC40 TRAP 29
Used for debugger breakpoints

0xFFFF FBE0 TRAP 32 (’34020 only)
Used for debugger single stepping

� Your program should not rely on accessing previous stack contents that
were popped off the stack.

� 34020 only:

� Your program should not use the single-step interrupt.

� When an interrupt is serviced, the program counter and status register
values are pushed onto the stack. If a RUN command is executing
when the interrupt occurs, the single-step bit may be set in the status
register value that is pushed on the stack. The interrupt service routine
should not modify this bit.

 Debugging ’340 Programs

xi Chapter Title—Attribute Reference

5.4 Debugging ’340 Programs

Debugging a program is a multiple-step process. These steps are described
below, with references to parts of this book that will help you accomplish each
step.

Prepare a C program or
assembly language program
for debugging.

See Section 5.3, Preparing a
Program for Debugging,
page viii.

Step 1

Ensure that the debugger has
a valid memory map.

See Chapter 8, Defining a
Memory Map

Load the program’s object file. See Section 9.3, Loading
Object Code, page 9-8.

Run the loaded file. You can
run the entire program, run
parts of the program, or single-
step through the program.

See Running Your Programs
on page 9–10.

If you find a mistake in your source code, exit the debugger, edit
your source file, and return to step 1.

Stop the program at critical
points and examine important
information.

See Chapter 12, Using
Breakpoints, and Chapter
11, Managing Data.

Step 2

Step 3

Step 4

Step 5

Step 6

page

xii

i Chapter Title—Attribute Reference

The Debugger Display

The ’340 C source debugger has a window-oriented display. This chapter shows what windows can look
like and describes the basic types of windows that you’ll use.

Chapter 6

Running Title—Attribute Reference

ii

Synopsis Topic
Page

The debugger’s three modes use
a set of three default displays.
These modes control the types of
information that you can display
and the types of actions that you
can perform.

6.1 Debugging Modes and Default Displays iii
Auto mode iii
Assembly mode v
Mixed mode vi
Restrictions associated with debugging modes vi

The debugger can display eight
different types of windows. Each
has a unique purpose.

6.2 Descriptions of the Different Kinds of Windows vii
and Their Contents
COMMAND window viii
DISASSEMBLY window viii
FILE window x
CALLS window xi
MEMORY window xiii
CPU window xiv
I/O window xv
FPU window xvi
DISP windows xvii
WATCH window xviii

The windows in the debugger dis-
play aren’t fixed in position or size.
You can resize, move, and, in
some cases, close windows. The
window that you’re going to move,
resize, or close must be the active
window.

6.3 Cursors xix

6.4 The Active Window xx
Identifying the active window xx
Selecting the active window xxi

6.5 Manipulating Windows xxiii
Resizing a window xxiii
Zooming the active window xxv
Moving a window xxvi

6.6 Manipulating a Window’s Contents xxix
Scrolling through a window’s contents xxix
Editing the data displayed in windows xxx

6.7 Closing a Window xxxii

 Debugging Modes and Default Displays

iii Chapter Title—Attribute Reference

6.1 Debugging Modes and Default Displays

The debugger has three debugging modes:

� Auto mode
� Assembly mode
� Mixed mode

Each mode changes the debugger display by adding or hiding specific
windows. Some windows, such as the COMMAND window, may be present
in all modes. The following figures show the default displays for these modes
and show the windows that the debugger automatically displays for these
modes. In addition to the default windows shown in these illustrations, you can
also display DISP windows and the WATCH window (see Section 6.2, page
vii).

Auto mode
In auto mode, the debugger automatically displays whatever type of code is
currently running — assembly language or C. This is the default mode; when
you first invoke the debugger, you’ll see a display similar to Figure 6–1. Auto
mode has two types of displays:

� When the debugger is running assembly language code, you’ll see an
assembly display similar to the one in Figure 6–1. The DISASSEMBLY
window displays the reverse assembly of memory contents.

Debugging Modes and Default Displays

iv

Figure 6–1. Typical Assembly Display (for Auto Mode and Assembly Mode)

Load Brea

k

Watch Memory

DISASSEMBLY CPU

MEMORYCOMMAND

>>>

TMS340 Debugger Version 5.00

Copyright (c) 1990, Texas In-

strume

TMS340x0 Development Board

PC ffc00850
ST 00000010
A0 00000000
A1 00000000
A2 00000000
A3 c0000010
A4 00000000
A5 00000000
A6 00000000
A7 00000040
A8 00000000
A9 ffc45da0
A10 ffffffff
A11 00001795
A12 00000000
A13 ffc363e0
A14 ffc363e0
A15 ffffa000

ffc00850 0740 c_int00: SETF 32,0,0

ffc00860 09e9 MOVI –3972128,A9

ffc00890 4d2d MOVE A9,A13

ffc008a0 4d2e MOVE A9,A14

ffc008b0 09e9 MOVI –3908192,A9

ffc008e0 4d2f MOVE A9,SP

ffc008f0 09ea MOVI –1,A10

ffc00920 0b4a CMPI –1,A10

ffc00940 ca05 JRZ 0ffc009a0h

ffc00950 a3cf MOVE A14,*–SP,1

ffc00960 934e MOVE A10,*A14+,1

ffc00970 0d5f CALLA var_init

ffc009a0 0d5f CALLA main

ffc009d0 a3cf MOVE A14,*–SP,1

ffc009e0 182b MOVK 1,A11

00000000 4000 4001 4002 4003 40004 4005 4006

00000070 4007 4008 4009 400a 400b 400c 400d

000000e0 400e 400f 4010 4011 4012 4013 4014

00000150 4015 4016 4017 4018 4019 401a 401b

000001c0 401c 401d 401e 401f 4020 4021 4022

00000230 4023 4024 4025 4026 4027 4028 4029

MoDe Run=F5 Step=F8 Next=F10Color

� When the debugger is running C code, you’ll see a C display similar to the
one in Figure 6–2. (This assumes that the debugger can find your C
source file to display in the FILE window. If the debugger can’t find your
source, then it switches to mixed mode.)

 Debugging Modes and Default Displays

v Chapter Title—Attribute Reference

Figure 6–2. Typical C Display (for Auto Mode Only)

Load Brea

k

Watch Memory

COMMAND

FILE: sample.c

>>>

TMS340 Debugger Version 5.00

Copyright (c) 1990, Texas Instruments Incorporated

TMS340x0 Development Board

go main

CALLS

1: main()

00044 short aaas[10][5][2];

00045 char ac[10];

00046 int *pi;

00047 char *xpc;

00048 struct zzz giant[100];

00049

00050 extern call();

00051 exter meminit();

00052

00053 main()

00054 {

00055 register int i = 0;

00056 int j = 0; k = 0;

00057

0058 meminit();

MoDe Run=F5 Step=F8 Next=F10Color

When you’re running assembly language code, the debugger automatically
displays windows as described for assembly mode.

When you’re running C code, the debugger automatically displays the
COMMAND, CALLS, and FILE windows. If you like, you can also open a
WATCH, DISP, I/O, or FPU window.

Assembly mode

Assembly mode is for viewing assembly language programs only. In this
mode, you’ll see a display similar to the one shown in Figure 6–1. When you’re
in assembly mode, you’ll always see the assembly display, regardless of
whether C or assembly language is currently running.

Windows that are automatically displayed in assembly mode include the
MEMORY window, the DISASSEMBLY of memory contents, the CPU register
window, and the COMMAND window. If you like, you can also open a WATCH,
DISP, I/O, or FPU window.

Debugging Modes and Default Displays

vi

Mixed mode
Mixed mode is for viewing assembly language and C code at the same time.
Figure 6–3 shows the default display for mixed mode.

Figure 6–3. Typical Mixed Display (for Mixed Mode Only)

Brea

k

Watch Memory

DISASSEMBLY

MEMORY
00000000 4000 4001 4002 4003 40004 4005 4006

00000070 4007 4008 4009 400a 400b 400c 400d

000000e0 400e 400f 4010 4011 4012 4013 4014

00000150 4015 4016 4017 4018 4019 401a 401b

000001c0 401c 401d 401e 401f 4020 4021 4022

FILE: sample.c

COMMAND

>>>

file sample.c

go main

mix

CALLS

MoDe

1: main()

Run=F5 Step=F8 Next=F10ColorLoad

CPU
PC fffc0000
ST 00000010
A0 00000000
A1 00000000
A2 00000000
A3 c0000010
A4 00000000
A5 00000000
A6 00000000
A7 00000040
A8 00000000
A9 ffc45da0
A10 ffffffff00047 char *xpc;

0048 struct zzz giant[100];

00049

00050 extern call();

00051 exter meminit();

00052

00053 main()

fffc0000 098f main: MMTM SP,A7,A9,A11,FP

ffc00020 4dcd MOVE STK,FP

ffc00030 0b0e ADDI 64,STK

ffc00050 93ee MOVE SP,*STK+,1

ffc00060 4529 SUB A9,A9

ffc00070 832d MOVE A9,@j,1

ffc00080 b32d MOVE A9,@k,1

ffc000a0 0d5f CALLA meminit

ffc000d0 a3cf MOVE STK,*–SP,1

In mixed mode, the debugger displays all windows that can be displayed in
auto and assembly modes—regardless of whether you’re currently running
assembly language or C code. This is useful for finding bugs in C programs
that exploit specific architectural features of the ’340.

Restrictions associated with debugging modes
The assembly language code that the debugger shows you is the disassembly
(reverse assembly) of memory’s contents. If you load object code into memory,
then the assembly language code is the disassembly of that object code. If you
don’t load an object file, then the disassembly won’t be very useful.

Some commands are valid only in certain modes, especially if a command
applies to a window that is visible only in certain modes. In this case, entering
the command causes the debugger to switch to the mode that is appropriate
for the command. This applies to these commands:

dasm func mem

calls file disp

 Descriptions of the Different Kinds of Windows and Their Contents

vii Chapter Title—Attribute Reference

6.2 Descriptions of the Different Kinds of Windows and Their Contents

The debugger can show several types of windows. This section lists the
various types of windows and describes their characteristics.

Every window is identified by a name in its upper left corner. Each type of
window serves a specific purpose and has unique characteristics. There are
eight different windows, divided into three general categories:

� The COMMAND window provides an area for typing in commands and
for displaying various types of information such as progress messages,
error messages, or command output.

� Code-display windows are for displaying assembly language or C code.
There are three code-display windows:

� The DISASSEMBLY window displays the disassembly (assembly
language version) of memory contents.

� The FILE window displays any text file that you want to display; its
main purpose, however, is to display C source code.

� The CALLS window identifies the current function traceback (when C
code is running).

� Data-display windows are for observing and modifying various types of
data. There are six data-display windows:

� The MEMORY window displays the contents of a range of memory.

� The CPU window displays the contents of ’340 registers.

� The I/O window displays the contents of ’340 I/O registers.

� The FPU window displays the contents of ’34082 registers.

� A DISP window displays the contents of an aggregate type such as an
array or structure, showing the values of the individual members. You
can display up to 120 DISP windows at one time.

� A WATCH window displays selected data such as variables, specific
registers, or memory locations.

You can move or resize any of these windows; you can also edit any value in
a data-display window. Before you can perform any of these actions, however,
you must select the window you want to move, resize, or edit, and make it the
active window. For more information about making a window active, see
Section 6.4, The Active Window, on page xx.

The remainder of this section describes the individual windows.

Descriptions of the Different Kinds of Windows and Their Contents

viii

COMMAND window

COMMAND

>>>

TMS340 Debugger Version 5.00

Copyright (c) 1990, Texas Instruments Incorporated

TMS34010 Rev 1

Loading sample.out

go main

display
area

command
line

command line
cursor

Purpose Provides an area for entering commands

Provides an area for echoing commands and displaying
command output, errors, and messages

Editable? Command line is editable; command output isn’t

Modes All modes

Created Automatically

Affected by Any command entered on the command line
Any command displaying output in the display area
Any input that creates an error

The COMMAND window has two parts:

� Command line. This is where you enter commands. When you want to
enter a command, just type — no matter which window is active. The
debugger keeps a list of the last 100 commands that you entered. You can
select and re-enter commands from the list without retyping them.

� Display area. This area of the COMMAND window echoes the command
that you entered, shows any output from the command, and displays
debugger messages.

For more information about the COMMAND window and entering commands,
refer to Chapter 7, Entering and Using Commands.

DISASSEMBLY window

 Running Title—Attribute Reference

ix Chapter Title—Attribute Reference

DISASSEMBLY

memory
address

object
code

disassembly
(assembly language
constructed from object code)

ffc00820 09af RETS 0

ffc00850 0740 c_int00: SETF 32,0,0

ffc00860 09e9 MOVI –3972128,A9

ffc00890 4d2d MOVE A9,A13

ffc008a0 4d2e MOVE A9,A14

ffc008b0 09e9 MOVI –3908192,A9

ffc008eo 4d2f MOVE A9,SP

ffc008f0 09ea MOVI –1,A10

ffc00920 0b4a CMPI –1,A10

current PC

Purpose Displays the disassembly (or reverse assembly) of memory
contents

Editable? No; pressing the edit key (F9) or the left mouse button sets
a breakpoint on an assembly language statement

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by DASM and ADDR commands
Breakpoint and run commands

Within the DISASSEMBLY window, the debugger highlights:

� The statement that the PC is pointing to (if that line is in the current display)
� Any breakpointed statements
� The address and object code fields for all statements associated with the

current C statement, as shown below

DISASSEMBLY

ffc00000 098f main: MMTM SP,A7,A0,A11,FP

ffc00020 4dcd MOVE STK,FP

ffc00030 0b0e ADDI 64,STK

ffc00050 93ee MOVE SP,*STK+,1

current PC
FILE: t1.c

00049 extern call();

00059 exter meminit();

00060

00061 main()

These assembly lan-
guage statements

are associated with
this C statement

Descriptions of the Different Kinds of Windows and Their Contents

x

FILE window

FILE: sample.c

00001 struct xxx { int a,b,c; int f1 : 2; int f2 : 4; struct xx

00002 str, astr[10], aastr[

00003 union uuu { int u1, u2, u3, u4, u5[6]; struct xxx u6; }

00004 struct zzz { int b1,b2,be,b4,b5; struct xxx q1[2],q2; str

00005 big1, *big2, big3[6];

00006 struct { int x,y,z,; int **ptr; float *fptr; char ra[5

00007 enum yyy { RED, GREEN, BLUE } genum, *penum, aenum[5][4]

text
file

Purpose Shows any text file you want to display

Editable? No; if the FILE window displays C code, pressing the edit key
(F9) or the left mouse button sets a breakpoint on a C
statement

Modes Auto (C display only) and mixed

Created With the FILE command
Automatically when you’re in auto or mixed mode and
your program begins executing C code

Affected by FILE, FUNC, and ADDR commands
Breakpoint and run commands

You can use the FILE command to display the contents of any file within the
FILE window, but this window is especially useful for viewing C source files.
Whenever you single-step a program or run a program and halt execution, the
FILE window automatically displays the C source associated with the current
point in your program. This overwrites any other file that may have been
displayed in the window.

Within the FILE window, the debugger highlights:

� The statement that the PC is pointing to (if that line is in the current display)
� Any statements where you’ve set a breakpoint

 Descriptions of the Different Kinds of Windows and Their Contents

xi Chapter Title—Attribute Reference

CALLS window

CALLS

3: subx()

2: call()

1: main() current function

order of functions called

names of functions called

is at top of list

Purpose Lists the function you’re in, its caller, and its caller, etc., as
long as each function is a C function

Editable? No; pressing the edit key (F9) or the left mouse button
changes the FILE display to show the source associated with
the called function

Modes Auto (C display only) and mixed

Created Automatically when you’re displaying C code
With the CALLS command if you closed the window

Affected by Run and single-step commands

The display in the CALLS window changes automatically to reflect the latest
function call.

CALLS

1: **UNKNOWN

CALLS

1: main()

If you haven’t run any code, then no func-
tions have been called yet. You’ll also see

this if you’re running code but are not
currently running a C function.

In C programs, the first C function is main.

As your program runs, the contents of
the CALLS window change to reflect
the current routine that you’re in and

where the routine was called from.
When you exit a routine, its name is

popped from the CALLS list.

CALLS

2: xcall()

1: main()

CALLS

1: main()

Descriptions of the Different Kinds of Windows and Their Contents

xii

If a function name is listed in the CALLS window, you can easily display the
function in the FILE window:

1) Point the mouse cursor at the appropriate function name that is listed in
the CALLS window.

2) Click the left mouse button. This displays the selected function in the FILE
window.

1) Make the CALLS window the active window (see Section 6.4, The Active
Window, page xx).

↓ ↑ 2) Use the arrow keys to move up/down through the list of function names
until the appropriate function is indicated.

F9 3) Press F9 . This displays the selected function in the FILE window.

You can close and reopen the CALLS window.

� Closing the window is a two-step process:

1) Make the CALLS window the active window.

2) Press F4

� To reopen the CALLS window after you’ve closed it, enter the CALLS
command. The format for this command is:

calls

 Descriptions of the Different Kinds of Windows and Their Contents

xiii Chapter Title—Attribute Reference

MEMORY window

MEMORY

MEMORY
00000000 4000

00000010 4001

00000020 4002

00000030 4003

00000040 4004

00000050 4005

00000000 4000 4001 4002 4003 4004 4005

00000060 4006 4007 4008 4009 400a 400b

000000c0 400c 400d 400e 400f 4010 4011

00000120 4012 4013 4014 4015 4016 4017

00000180 4018 4019 401a 401b 401c 401d

000001e0 401e 401f 4020 4021 4022 4023

addresses data

The display
changes when you
resize the window

Purpose Displays the contents of memory

Editable? Yes—you can edit the data (but not the addresses)

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by The MEM command

The MEMORY window has two parts:

� Addresses. The first column of numbers identifies the addresses of the
first column of displayed data. No matter how many columns of data you
display, only one address column is displayed. Each address in this
column identifies the address of the data immediately to its right.

� Data. The remaining columns display the values at the listed addresses.
You can display more data by making the window wider and/or longer.

The first MEMORY window above has one column of data, so each new
address is incremented by 1016. Although the second window shows six
columns of data, there is still only one column of addresses; the first value
is at address 0x0000 0000, the second at address 0x0000 0010, etc.; the
seventh value (first value in the second row) is at address 0x0000 0060,
the eighth at address 0x0000 0070, etc.

As you run programs, some memory values change as the result of program
execution. The debugger highlights changed values. Depending on how you
configure memory for your application, some locations may be
invalid/unconfigured. The debugger also highlights these locations (by default,
it shows these locations in red).

Descriptions of the Different Kinds of Windows and Their Contents

xiv

If you want to view different memory locations, use the MEM command to
display a different block of memory. The basic syntax for this command is:

mem address

When you enter this command, the debugger changes the memory display so
that address becomes the first displayed location (it’s displayed in row 1,
column 1).

CPU window

register
name

register
contents

CPU
PC ffc00000 ST 20000010 A0 00000000

A1 00000080 A2 00000000 A3 00000010

A4 00000000 A5 00000000 A6 00000000

A7 00000040 A8 00000000 A9 ffc45da0

The display
changes when you
resize the window

CPU
PC ffc00000
ST 20000010
A0 00000000
A1 00000080
A2 00000000
A3 c0000010
A4 00000000
A5 00000000
A6 00000000
A7 00000040
A8 00000000
A9 ffc45da0
A10 ffffffff
A12 00001795
A13 ffc363e0
A14 ffc363e0
A15 ffc45d80
B0 ffffffff

Purpose Shows the contents of the ’340 registers

Editable? Yes—you can edit the value of any displayed register

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by Data-management commands

As you run programs, some values displayed in the CPU window change as
the result of program execution. The debugger highlights changed values.

 Descriptions of the Different Kinds of Windows and Their Contents

xv Chapter Title—Attribute Reference

I/O window

register
name

register
contents

I/O
VESYNC 0000 HESYNC 0000
VEBLNK 0000 HEBLNK 0000
VSBLNK 0000 HSBLNK 0000
VCOUNT 0000 HCOUNT 0000
VTOTAL 0000 HTOTAL 0000
DPYCTL 0000 DPYSTRT 0000
DPYINT 0000 DPYTAP 0000
DPYADR 0000 REFADR 0000
CONTROL 0000 PSIZE 0000
INTENB 0000 INTPEND 0000
CONVSP 0000 CONVDP 0000
HESERR 0000 SCOUNT 0000
CONVMP 0000 CONFIG 0000
SETVCNT 0000 SETHCNT 0000
HSTCTLL 0000 HSTCTLH 0000
HSTDATA 0000 BSFLTST 0000
HSTADR 00000000 BSFLTD 00000000
PMASK 00000000 DINC 00000000
DPYNX 00000000 DPYST 00000000
DPYMSK 0000

Purpose Shows the contents of the ’340 I/O registers

Editable? Yes—you can edit the value of any displayed register

Modes Auto (assembly display only), assembly, and mixed

Created With the IOREGS command

Affected by Data-management commands

As you run programs, some values displayed in this window may change as
the result of program execution. The debugger highlights changed values.

Descriptions of the Different Kinds of Windows and Their Contents

xvi

FPU window

register
name

register
contents

FPU
RA0 0.000000E+000 RB0 0.000000E+000
RA1 0.000000E+000 RB1 0.000000E+000
RA2 0.000000E+000 RB2 0.000000E+000
RA3 0.000000E+000 RB3 0.000000E+000
RA4 0.000000E+000 RB4 0.000000E+000
RA5 0.000000E+000 RB5 0.000000E+000
RA6 0.000000E+000 RB6 0.000000E+000
RA7 0.000000E+000 RB7 0.000000E+000
RA8 0.000000E+000 RB8 0.000000E+000
RA9 0.000000E+000 RB9 0.000000E+000
CSTATIS 00001000 CCPMFOG ffe00420

Purpose Shows the contents of the ’34082 registers

Editable? Yes—you can edit the value of any displayed register

Modes Auto (assembly display only), assembly, and mixed

Created With the FPUREGS command

Affected by Data-management commands

The FPU window shows the ’34082 A- and B-file registers in double-precision
scientific notation. It also shows the ’34082 status and configuration registers
as hexadecimal values.

As you run programs, some values displayed in this window may change as
the result of program execution. The debugger highlights changed values.

Note:

The FPU window can be displayed only if you’ve invoked the debugger with
the –mc option.

 Descriptions of the Different Kinds of Windows and Their Contents

xvii Chapter Title—Attribute Reference

DISP windows

DISP: str

a 84

b 86

c 172

f1 1

f2 7

f3 0x18740001

f4 [...]

structure
members

member
values

This member is an array, and
you can display its contents in

a second DISP window

DISP: str.f4

[0] 44276127

[1] 1778712578

[2] 555492660

[3] 356713217

[4] 138412802

[5] 182452229

[6] 35659888

[7] 37749506

[8] 134742016

[9] 138412801

Purpose Displays the members of a selected structure, array or
pointer, and the value of each member

Editable? Yes—you can edit individual values

Modes Auto (C display only) and mixed

Created With the DISP command

Affected by DISP command

A DISP window is similar to a WATCH window, but it shows the values of an
entire array or structure instead of a single value. Use the DISP command to
open a DISP window; the basic syntax is:

disp expression

Data is displayed in its natural format: :

� Integer values are displayed as decimal numbers.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

If any of the displayed members are arrays, structures, or pointers, you can
bring up additional DISP windows to display their contents—up to 120 DISP
windows can be open at once.

Descriptions of the Different Kinds of Windows and Their Contents

xviii

WATCH window

WATCH

1: A0 –1

2: X+X 4

3: PC 0x00400064

watch index

label current value

Purpose Displays the values of selected expressions

Editable? Yes—you can edit the value of any expression whose value
specifies a storage location (in registers or memory). In the
window above, for example, you could edit the value of PC but
couldn’t edit the value of X+X.

Modes Auto, assembly, and mixed

Created With the WA command

Affected by WA, WD, and WR commands

The WATCH window helps you to track the values of arbitrary expressions,
variables, and registers. Use the WA command for this; the syntax is:

wa expression [, label]

WA adds expression to the WATCH window. (If there’s no WATCH window,
then WA also opens a WATCH window).

To delete individual entries from the WATCH window, use the WD command.
To delete all entries at once and close the WATCH window, use the WR
command.

Although the CPU window displays register contents, you may not be
interested in the values of all these registers. In this situation, it is convenient
to use the WATCH window to track the values of the specific registers you’re
interested in.

 Cursors

xix Chapter Title—Attribute Reference

6.3 Cursors

The debugger display has three types of cursors:

� The command-line cursor is a block-shaped cursor that identifies the
current character position on the command line. Arrow keys do not affect
the position of this cursor.

COMMAND

>>>

file sample.c

go meminit

go call

go c_int00

restart

go main

command line cursor

� The mouse cursor is a block-shaped cursor that tracks mouse
movements over the entire display. This cursor is controlled by the mouse
driver installed on your system; if you haven’t installed a mouse, you won’t
see a mouse cursor on the debugger display.

� The current-field cursor identifies the current field in the active window.
This is the hardware cursor that is associated with your EGA or VGA card.
Arrow keys do affect this cursor’s movement.

CPU
B0 00f0007

6

B3 0000000

5

B6 0000000

0

B9 0000000

0

B1 0000075

5

B4 0000000

7

B7 0000000

0

B10 0000180

2

B2 0000000

3

B5 0000000

0

B8 0000000

0

B11 0000000

0

current field cursor

The Active Window

xx

6.4 The Active Window

The windows in the debugger display aren’t fixed in their position or in their
size. You can resize them, move them around, and, in some cases, close
them. The window that you’re going to move, resize, or close must be active.

You can move, resize, or close only one window at a time; thus, only one
window at a time can be the active window. Whether or not a window is active
doesn’t affect the debugger’s ability to update information in a window — it
affects only your ability to manipulate a window.

Identifying the active window

The debugger highlights the active window. When windows overlap on your
display, the debugger pops the active window to be on top of other windows.

You can alter the active window’s border style and colors if you wish;
Figure 6–4 illustrates the default appearance of an active window and an
inactive window.

Figure 6–4. Default Appearance of an Active and an Inactive Window

COMMAND

>>>

TMS340 Debugger Version 5.00

Copyright (c) 1990, Texas Instruments Incorporated

Loading sample.out

go main

COMMAND

>>>

TMS340 Debugger Version 5.00

Copyright (c) 1990, Texas Instrume

Loading sample.out

go main
This window is

highlighted to show
that it is active

This window is not
highlighted and is

not active

An active window (default appearance)

An inactive window (default appearance)

Note: On monochrome monitors, the border and selection corner are highlighted as shown in
the illustration. On color monitors, the border and selection corner are highlighted as
shown in the illustration, but they also change color (by default, they change from white to
yellow).

 The Active Window

xxi Chapter Title—Attribute Reference

Selecting the active window

You can use one of several methods for selecting the active window:

1) Point to any location within the boundaries or on any border of the desired
window.

2) Click the left mouse button.

Note that if you point within the window, you might also select the current field.
For example:

� If you point inside the CPU window, then the register you’re pointing at
becomes active, and the debugger treats any text that you type as a new
register value. If you point inside the MEMORY window, then the address
value you’re pointing at becomes active, and the debugger treats any text
that you type as a new memory value.

Press ESC to get out of this.

� If you point inside the DISASSEMBLY or FILE window, you’ll set a
breakpoint on the statement you’re pointing to.

Press the button again to clear the breakpoint.

F6 This key hops through the windows on your display, making each one active
in turn and making the previously active window inactive. Pressing this key
highlights one of the windows, showing you that the window is active. Pressing

F6 again makes a different window active. Press F6 as many times as
necessary until the desired window becomes the active window.

The Active Window

xxii

win The WIN command allows you to select the active window by name. The
format of this command is:

win WINDOW NAME

Note that the WINDOW NAME is in uppercase (matching the name exactly as
displayed). You can spell out the entire window name, but you really need
specify only enough letters to identify the window.

For example, to select the DISASSEMBLY window as the active window, you
could enter either of these two commands:

win DISASSEMBLY
or win DISA

If several windows of the same type are visible on the screen, don’t use the
WIN command to select one of them.

If you supply an ambiguous name (such as C, which could stand for CPU or
CALLS), the debugger selects the first window it finds whose name matches
the name you supplied. If the debugger doesn’t find the window you asked for
(because you closed the window or misspelled the name), then the WIN
command has no effect.

 Manipulating Windows

xxiii Chapter Title—Attribute Reference

6.5 Manipulating Windows

Windows don’t have a fixed size or position — you can change their sizes and
you can move them around. This section tells you how to do this.

Note:

You can resize or move any window, but first the window must be active. For
information about selecting the active window, refer to Section 6.4 (page xx).

Resizing a window

The minimum window size is three lines by four characters. The maximum
window size varies, depending on which screen size you’re using, but you
can’t make a window larger than the screen.

There are two basic ways to resize a window:

� You can resize a window by using the mouse.
� You can resize a window by using the SIZE command.

1) Point to the lower right corner of the window. This corner is
highlighted —here’s what it looks like:

COMMAND

>>>

TMS340 Debugger Version 5.00

Copyright (c) 1990, Texas Instr

Loading sample.out

go main lower right corner
(highlighted)

2) Grab the highlighted corner by pressing one of the mouse buttons; while
pressing the button, move the mouse in any direction. This resizes the
window.

3) Release the mouse button when the window reaches the desired size.

Manipulating Windows

xxiv

size The SIZE command allows you to size the active window. The format of this
command is:

size [width, length]

You can use the SIZE command in one of two ways:

Method 1 Supply a specific width and length

Method 2 Omit the width and length parameters and use arrow keys to
interactively resize the window.

SIZE, method 1: Use width and length parameters. Valid values for the
width and length depend on the screen size and the window position on the
screen. Table 6–1 lists the minimum and maximum window sizes.

Table 6–1.Width and Length Limits for Window Sizes

Screen size
Debugger
option Valid widths Valid lengths

80 characters by 25 lines none 4 through 80 3 through 24

80 characters by 43 lines (EGA)
80 characters by 50 lines (VGA)

–b 4 through 80 3 through 42
3 through 49

120 characters by 43 lines –bb 4 through 120 3 through 42

132 characters by 43 lines –bbb 4 through 132 3 through 42

80 characters by 60 lines –bbbb 4 through 80 3 through 59

100 characters by 60 lines –bbbbb 4 through 100 3 through 59

Note: To use a larger screen size, you must invoke the debugger with one of the –b options.

The maximum sizes assume that the window is in the upper left corner
(beneath the menu bar). If a window is in the middle of the display, for example,
you can’t size it to the maximum height and width—you can size it only to the
right and bottom screen borders.The easiest way to make a window as large
as possible is to zoom it, as described on page xxv.

If you want to use commands to make the CALLS window 8 characters wide
by 20 lines long, you could enter:

win CALLS
size 8, 20

 Manipulating Windows

xxv Chapter Title—Attribute Reference

SIZE, method 2: Use arrow keys to interactively resize the window. If you
enter the SIZE command without width and length parameters, you can use
arrow keys to size the window:

↓ Makes the active window one line longer.
↑ Makes the active window one line shorter.
← Makes the active window one character narrower.
→ Makes the active window one character wider.

When you’re finished using the cursor keys, you must press or .

For example, if you want to make the CPU window three lines longer and two
characters narrower, you can enter:

win CPU
size

↓ ↓ ↓ ← ← ESC

Zooming a window

Another way to resize the active window is to zoom it. Zooming a window
makes it as large as possible, so that it takes up the entire display (except for
the menu bar) and hides all the other windows. Unlike the SIZE command,
zooming is not affected by the window’s position in the display.

To “unzoom” a window, repeat the same steps you used to zoom it. This will
return the window to its prezoom size and position.

There are two basic ways to zoom a window:

� You can zoom a window by using the mouse.
� You can zoom a window by using the ZOOM command.

Manipulating Windows

xxvi

1) Point to the upper left corner of the window. This corner is
highlighted—here’s what it looks like:

COMMAND

>>>

TMS340 Debugger Version 5.00

Copyright (c) 1990, Texas Instr

Loading sample.out

go main

upper left corner
(highlighted)

2) Click the left mouse button.

zoom You can also use the ZOOM command to zoom/unzoom the window. The
format for this command is:

zoom

Moving a window

The windows in the debugger display don’t have fixed positions—you can
move them around.

There are two ways to move a window:

� You can move a window by using the mouse.
� You can move a window by using the MOVE command.

1) Point to the left or top edge of the window.

COMMAND

>>>

TMS340 Debugger Version 5.00

Copyright (c) 1990, Texas Instr

Loading sample.out

go main

Point to the top edge
or the left edge

 Manipulating Windows

xxvii Chapter Title—Attribute Reference

2) Grab the window by pressing the left mouse button, but don’t release the
button; now move the mouse in any direction.

3) Release the mouse button when the window is in the desired position.

move The MOVE command allows you to move the active window. The format of this
command is:

move [X position, Y position [, width, length]]

You can use the MOVE command in one of two ways:

Method 1 Supply a specific X position and Y position

Method 2 Omit the X position and Y position parameters and use arrow
keys to interactively resize the window

MOVE, method 1: Use the X position and Y position parameters. You can
move a window by defining a new XY position for the window’s upper left
corner. Valid X and Y positions depend on the screen size and the window size.
Table 6–2 lists the minimum and maximum XY positions.

Table 6–2.Minimum and Maximum Limits for Window Positions

Screen size
Debugger
option

Valid X
positions

Valid Y
positions

80 characters by 25 lines none 0 through 76 1 through 22

80 characters by 43 lines (EGA)
80 characters by 50 lines (VGA)

–b 0 through 76 1 through 40
1 through 47

120 characters by 43 lines –bb 0 through 116 1 through 40

132 characters by 43 lines –bbb 0 through 128 1 through 40

80 characters by 60 lines –bbbb 0 through 76 1 through 57

100 characters by 60 lines –bbbbb 0 through 106 1 through 57
Note: To use a larger screen size, you must invoke the debugger with one of the –b options.

The maximum values assume that the window is as small as possible; for
example, if a window is half as tall as the screen, you won’t be able to move
its upper left corner to an X position on the bottom half of the screen.

If you want to use commands to move the DISASSEMBLY position to a place
in the upper left area of the display, you might enter:

win DISASSEMBLY
move 5, 6

Manipulating Windows

xxviii

MOVE, method 2: Use arrow keys to interactively move the window. If you
enter the MOVE command without X position and Y position parameters, you
can use arrow keys to move the window:

↓ Moves the active window down one line.
↑ Moves the active window up one line.
← Moves the active window left one character position.
→ Moves the active window right one character position.

When you’re finished using the cursor keys, you must press or .

For example, if you want to move the COMMAND window up two lines and
right five characters, you can enter:

win COM
move

↑ ↑ → → → → → ESC

Note:

If you choose, you can resize a window at the same time you move it. To do
this, use the width and length parameters in the same way that they are used
for the SIZE command.

 Manipulating a Window’s Contents

xxix Chapter Title—Attribute Reference

6.6 Manipulating a Window’s Contents

Although you may be concerned with changing the way windows appear in the
display — where they are and how big/small they are — you’ll usually be
interested in something much more important: what’s in the windows. Some
windows contain more information than can be displayed on a screen; others
contain information that you’d like to change. This section tells you how to view
the hidden portions of data within a window and which data can be edited.

Note:

You can scroll and edit only the active window. For information about select-
ing the active window, refer to Section 6.4 (page xx).

Scrolling through a window’s contents

If you resize a window to make it smaller, you may hide information.
Sometimes, a window may contain more information than can be displayed on
a screen. In these cases, the debugger allows you to scroll information up and
down within the window.

There are two ways to view hidden portions of a window’s contents:

� You can use the mouse to scroll the contents of the window.
� You can use function keys and arrow keys.

You can use the mouse to point to the scroll arrows on the righthand side of
the active window. This is what the scroll arrows look like:

FILE: sample.c
00038 extern call();

00039 extern meminit();

00040 main()

00041 {

00042 register int i = 0;

00043 int j = 0, k = 0;

00044

00045 meminit();

00046 for (i = 0, i , 0x50000; i++)

00047 {

00048 call(i);

00049 if (i & 1) j += i;

00050 aai[k][k] = j;

00051 if (!(i & 0xFFFF)) k++;

00052 }

scroll up

scroll down

Manipulating a Window’s Contents

xxx

To scroll window contents up or down:

1) Point to the appropriate scroll arrow.

2) Press the left mouse button; continue to press it until the information you’re
interested in is displayed within the window.

3) Release the mouse button when you’re finished scrolling.

You can scroll up/down one line at a time by pressing the mouse button and
releasing it immediately.

In addition to scrolling, the debugger supports the following methods for
moving through a window’s contents.

PAGE UP

The page-up key scrolls up through the window contents, one window length
at a time. You can use CONTROL PAGE UP to scroll up through an array of
structures displayed in a DISP window.

PAGE DOWN

The page-down key scrolls down through the window contents, one window
length at a time. You can use CONTROL PAGE DOWN to scroll down through an
array of structures displayed in a DISP window.

HOME When the FILE window is active, pressing HOME adjusts the window’s
contents so that the first line of the text file is at the top of the window. You can’t
use HOME outside of the FILE window.

END When the FILE window is active, pressing END adjusts the window’s contents
so that the last line of the file is at the bottom of the window. You can’t use END

outside of the FILE window.

↑ Moves the field cursor up one line at a time.

↓ Moves the field cursor down one line at a time.

← In the FILE window, scrolls the display left eight characters at a time. In other
windows, moves the field cursor left one field; at the first field on a line, wraps
back to the last fully displayed field on the previous line.

→ In the FILE window, scrolls the display right eight characters at a time. In other
windows, moves the field cursor right one field; at the last field on a line, wraps
around to the first field on the next line.

Editing the data displayed in windows

You can edit the data displayed in the MEMORY, CPU, DISP, and WATCH
windows by using an overwrite “click and type” method or by using commands

 Manipulating a Window’s Contents

xxxi Chapter Title—Attribute Reference

that change the values. (This is described in detail in Section 11.3, Basic
Methods for Changing Data Values, page 11-4.)

Note:

In these windows, the “click and type” method of selecting data for
editing —pointing at a line and pressing F9 or clicking a mouse
button — does not allow you to modify data.

In the FILE and DISASSEMBLY windows, pressing F9 or a mouse
button sets or clears a breakpoint on any line of code that you select. You
can’t modify text in a FILE or DISASSEMBLY window.

In the CALLS window, pressing F9 or a mouse button shows the source
for the function named on the selected line.

Closing a Window

xxxii

6.7 Closing a Window

The debugger opens various windows on the display according to the
debugging mode you select. When you switch modes, the debugger may
close some windows and open others. Additionally, you may choose to open
DISP and WATCH windows.

Most of the windows remain open — you can’t close them. However, you can
close the CALLS, DISP, and WATCH windows.

� To close the CALLS window:

1) Make the CALLS window the active window.

2) Press .

� To close a DISP window:

1) Make the appropriate DISP window the active window.

2) Press .

If the DISP window that you close has any children, they are closed also.

� To close the WATCH window, enter:

wr

i Chapter Title—Attribute Reference

Entering and Using Commands

The debugger provides you with several methods for entering commands and accomplishing other
tasks within the debugger environment. There are several ways to enter commands: from the command
line, from pulldown menus, with a mouse, and with function keys. Mouse and function key use differs
from situation to situation, and is described throughout this book whenever applicable. Certain specific
rules apply to entering commands and using pulldown menus, however, and this chapter includes this
information.

Synopsis Topic
Page

Some of the alternative methods
for entering commands don’t
apply to all commands—however,
entering the command from the
command line is a method that
works for all commands.

7.1 Entering Commands From the Command Line iii
How to type in and enter commands iv
Sometimes, you can’t type a command v
Using the command history v
Clearing the display area vi

The pulldown menus and dialog
boxes provide you with another
easy method for entering com-
mands. You can use this method
even if you don’t have a mouse.

7.2 Using the Menu Bar and the Pulldown Menus vii
Using the pulldown menus viii
Escaping from the pulldown menus ix
Entering parameters in a dialog box ix
Using menu bar selections that don’t xi

have pulldown menus
How the menu selections correspond to commands xi

The debugger allows you to
execute often-needed command
sequences by keeping the
commands in a batch file. The
debugger also allows you to
perform some simple system
commands from within the
debugger environment.

7.3 Entering Commands From a Batch File xiii

7.4 Defining Your Own Command Strings xv

7.5 Entering Operating-System Commands xvii
Entering a single command from the debugger command line xvii
Entering several command from a system shell xviii
Additional system commands xix

Chapter 7

Running Title—Attribute Reference

ii

 Entering Commands From the Command Line

iii Chapter Title—Attribute Reference

7.1 Entering Commands From the Command Line

The debugger supports a complete set of commands that help you to control
and monitor program execution, customize the display, and perform other
tasks. These commands are discussed in the various sections throughout this
book, as they apply to the current topic. Chapter 14 summarizes all of the
debugger commands with an alphabetic reference.

Although there are a variety of methods for entering most of the commands,
all of the commands can be entered by typing them on the command line in
the COMMAND window. Figure 7–1 shows the COMMAND window.

Figure 7–1. The COMMAND Window

COMMAND

>>>

TMS340 Debugger Version 4.95

Copyright (C) 1990, Texas Instruments Incorporated

Loading sample.out

file sample.c

go main

display
area

command
line

The COMMAND window serves two purposes:

� The command line portion of the window provides you with an area for
entering commands. For example, the command line in Figure 7–1 shows
that a GO command was typed in (but not yet entered).

� The display area provides the debugger with an area for echoing
commands, displaying command output, or displaying errors and
messages for you to read. For example, the command output in
Figure 7–1 shows the messages that are displayed when you first bring
up the debugger and also shows that a FILE command was entered.

If you enter a command by using an alternate method (using the mouse, a
pulldown menu, or function keys), the COMMAND window doesn’t echo
the entered command.

Entering Commands From the Command Line

iv

How to type in and enter commands

You can type a command at almost any time; the debugger automatically
places the text on the command line when you type. When you want to enter
a command, just type—no matter which window is active. You don’t have to
worry about making the COMMAND window active or moving the field cursor
to the command line. When you start to type, the debugger usually assumes
that you’re typing a command and puts the text on the command line (except
under certain circumstances, which are explained on the next page).
Commands themselves are not case sensitive, although some parameters
(such as window names) are.

To execute a command that you’ve typed, just press . The debugger then:

1) Echoes the command to the display area,
2) Executes the command and displays any resulting output, and
3) Clears the command line when command execution completes.

Once you’ve typed a command, you can edit the text on the command line with
these keystrokes:

To... Press...

Move back over text without erasing characters or

Move forward through text without erasing
characters

Move back over text while erasing characters

Move forward through text while erasing
characters

Insert text into the characters that are already on
the command line

Note:

� You cannot use the arrow keys to move through or edit text on the
command line.

� Typing a command doesn’t make the COMMAND window the active
window.

� If you press when the cursor is in the middle of text, the debugger
truncates the input text at the point where you press .

 Entering Commands From the Command Line

v Chapter Title—Attribute Reference

Sometimes, you can’t type a command

At most times, you can press any alphanumeric or punctuation key on your
keyboard (any printable character); the debugger interprets this as part of a
command and displays the character on the command line. In a few instances,
however, pressing an alphanumeric key is not interpreted as information for
the command line.

� When you’re pressing the ALT key, typing certain letters causes the
debugger to display a pulldown menu.

� When a pulldown menu is displayed, typing a letter causes the debugger
to execute a selection from the menu.

� When you’re pressing the CONTROL key, pressing H or L moves the
command-line cursor backward or forward through the text on the
command line.

� When you’re editing a field, typing enters a new value in the field.

� When you’re using the MOVE or SIZE command interactively, pressing
keys affects the size or position of the active window. Before you can enter
any more commands, you must press ESC to terminate the interactive
moving or sizing.

� When you’ve brought up a dialog box, typing enters a parameter value for
the current field in the box.

Using the command history

The debugger keeps an internal list, or command history, of the commands
that you enter. It remembers the last 100 commands that you entered. If you
want to re-enter a command, you can move through this list, select a command
that you’ve already executed, and re-execute it.

Use these keystrokes to move through the command history.

To... Press...

Repeat the last command that you entered

Move forward through the list of executed commands, one by one

Move backward through the list of executed commands, one by one

Entering Commands From the Command Line

vi

As you move through the command history, the debugger displays the
commands, one by one, on the command line. When you see a command that
you want to execute, simply press to execute the command. You can also
edit these displayed commands in the same manner that you can edit new
commands.

Clearing the display area

Occasionally, you may want to completely blank out the display area of the
COMMAND window; the debugger provides a command for this:

cls Use the CLS command to clear all displayed information from the display area.
The format for this command is:

cls

 Using the Menu Bar and the Pulldown Menus

vii Chapter Title—Attribute Reference

7.2 Using the Menu Bar and the Pulldown Menus

In all three of the debugger displays, you’ll see a menu bar at the top of the
screen. The menu selections offer you an alternative method for entering
many of the debugger commands. Figure 7–2 points out the menu bar in a
mixed-mode display. There are several ways to use the selections on the
menu bar, depending on whether the selection has a pulldown menu or not.

Figure 7–2. The Menu Bar in the Debugger Display

Brea

k

Watch Memory

DISASSEMBLY

MEMORY
00000000 4000 4001 4002 4003 40004 4005 4006

00000070 4007 4008 4009 400a 400b 400c 400d

000000e0 400e 400f 4010 4011 4012 4013 4014

00000150 4015 4016 4017 4018 4019 401a 401b

000001c0 401c 401d 401e 401f 4020 4021 4022

FILE: sample.c

COMMAND

>>>

file sample.c

go main

mix

CALLS

MoDe

1: main()

Run=F5 Step=F8 Next=F10ColorLoad

CPU
PC fffc0000
ST 00000010
A0 00000000
A1 00000000
A2 00000000
A3 c0000010
A4 00000000
A5 00000000
A6 00000000
A7 00000040
A8 00000000
A9 ffc45da0
A10 ffffffff00047 char *xpc;

0048 struct zzz giant[100];

00049

00050 extern call();

00051 exter meminit();

00052

00053 main()

fffc0000 098f main: MMTM SP,A7,A9,A11,FP

ffc00020 4dcd MOVE STK,FP

ffc00030 0b0e ADDI 64,STK

ffc00050 93ee MOVE SP,*STK+,1

ffc00060 4529 SUB A9,A9

ffc00070 832d MOVE A9,@j,1

ffc00080 b32d MOVE A9,@k,1

ffc000a0 0d5f CALLA meminit

ffc000d0 a3cf MOVE STK,*–SP,1

menu bar

Several of the selections on the menu bar have pulldown menus; if they could
all be pulled down at once, they’d look like Figure 7–3.

Figure 7–3. All of the Pulldown Menus

Load
Load
Reload
Symbols

REstart
ReseT

File

Break
Add
Delete
Reset
List

Watch
Add
Delete
Reset

Memory
Add
Delete
Reset
List
Enable

Fill
Save

Color
Load
Save
Config

Border
Prompt

Mode
C (auto)
Asm
Mixed

Note that the menu bar and associated pulldown menus occupy fixed positions
on the display. Unlike windows, you can’t move, resize, or cover the menu bar
or pulldown menus.

Using the Menu Bar and the Pulldown Menus

viii

Using the pulldown menus

There are several ways to display the pulldown menus and then execute your
selections from them. Executing a command from a menu is similar to
executing a command by typing it in.

� If you select a command that has no parameters, then the debugger
executes the command as soon as you select it.

� If you select a command that has one or more parameters, the debugger
displays a dialog box when you make your selection. A dialog box offers
you the chance to type in the parameter values for the command.

The following paragraphs describe several methods for selecting commands
from the pulldown menus.

Mouse method 1

1) Point the mouse cursor at one of the appropriate selections in the menu
bar.

2) Press the left mouse button, but don’t release the button.

3) While pressing the mouse button, move the mouse downward until your
selection is highlighted on the menu.

4) When your selection is highlighted, release the mouse button.

Mouse method 2

1) Point the cursor at one of the appropriate selections in the menu bar.

2) Click the left mouse button. This displays the menu until you are ready to
make a selection.

 3) Point the mouse cursor at your selection on the pulldown menu.

4) When your selection is highlighted, click the left mouse button.

 Using the Menu Bar and the Pulldown Menus

ix Chapter Title—Attribute Reference

Keyboard method 1

ALT 1) Press the ALT key; don’t release it.

X 2) Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

X 3) Press and release the key that corresponds to the highlighted letter of your
selection in the menu.

Keyboard method 2

ALT 1) Press the ALT key; don’t release it.

X 2) Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

↓ ↑ 3) Use the arrow keys to move up and down through the menu.

4) When your selection is highlighted, press .

Escaping from the pulldown menus

� If you display a menu and then decide that you don’t want to make a
selection from this menu, you can:

� Press ESC .

or

� Point the mouse outside of the menu; press and then release the left
mouse button.

� If you pull down a menu and see that it is not the menu you wanted, you
can point the mouse at another entry and press the left mouse button, or
you can use the ← and → keys to display adjacent menus.

Entering parameters in a dialog box

Many of the debugger commands have parameters. When you execute these
commands from menus, you must have some way of providing parameter
values. The debugger allows you to do this by displaying a dialog box that
asks for these values.

Entering parameter values in a dialog box is much like entering commands on
the command line:

Using the Menu Bar and the Pulldown Menus

x

� If you press in the middle of a string of text, the debugger truncates
the string at that point.

� When you display a dialog box for the first time during a debugging
session, the parameter fields are empty. When you bring up the same
dialog box again, though, the box displays the last values that you entered.
(This is similar to having a command history.) If you want to use the same

value, just press .

� You can edit what you type (or values that remain from previous entry) in
the same way that you can edit text on the command line.

When the dialog box displays more than one parameter, you can use the arrow
keys to move from parameter to parameter. You can omit entries for optional
parameters, but the debugger won’t allow you to skip required parameters.

For example, the Add entry on the Watch menu is equivalent to the WA
command. This command has three parameters:

wa expression [, label] [, display format]

When you select Add from the menu, the debugger displays a dialog box that
asks you for this parameter information. The dialog box looks like this:

Watch add

Expression

Label

Format

You can enter an expression just as you would if you were typing the WA
command, and then press . The cursor moves down to the next parameter:

Watch add

Expression

Label

Format

A0+10

In this case, the next two parameters (label and format) are optional. If you
want to enter a parameter, you may do so; if you don’t want to use these
parameters, don’t type anything in their fields— just press . When you’ve
entered for the final parameter, the debugger closes the dialog box and
executes the command with the parameter values you supplied.

 Using the Menu Bar and the Pulldown Menus

xi Chapter Title—Attribute Reference

Using menu bar selections that don’t have pulldown menus
These three menu bar selections are single-level entries without pulldown
menus:

Run=F5 Step=F8 Next=F10

There are two ways to execute these choices.

1) Point the cursor at one of these selections in the menu bar.

2) Click the left mouse button.

This executes your choice in the same manner as typing in the associated
command without its optional expression parameter.

F5 Pressing this key is equivalent to typing in the RUN command without an
expression parameter.

F8 Pressing this key is equivalent to typing in the STEP command without an
expression parameter.

F10 Pressing this key is equivalent to typing in the NEXT command without an
expression parameter.

How the menu selections correspond to commands
The following sample screens illustrate the relationship of the debugger
commands to the menu bar and pulldown menus.

Run=F5

Step=F8

Next=F10

RUN command
(without a parameter)

NEXT command
(without a parameter)

STEP command
(without a parameter)

Break
Add
Delete
Reset
List

BA command

BD command

BR command

BL command

program execution
commands

breakpoint
commands

Using the Menu Bar and the Pulldown Menus

xii

Load
Load
Reload
Symbols

REstart
ReseT

File

RELOAD command

SLOAD command

RESTART command

RESET command

FILE command

LOAD command

Break
Add
Delete
Reset
List

BA command

BD command

BR command

BL command

Watch
Add
Delete
Reset

WA command

WD command

WR command

Memory
Add
Delete
Reset
List
Enable

Fill
Save

MA command

MD command

MR command

ML command

MAP command

FILL command

MS command

Color
Load
Save
Config

Border
Prompt

SCONFIG command

SSAVE command

SCOLOR command

BORDER command

PROMPT command

Mode
C (auto)
Asm
Mixed

C command

ASM command

MIX command

file/load commands

breakpoint
commands

watch commands

memory commands

screen-configuration
commands

mode commands

 Entering Commands From a Batch File

xiii Chapter Title—Attribute Reference

7.3 Entering Commands From a Batch File

You can place debugger commands in a batch file and execute the file from
within the debugger environment. This is useful, for example, for setting up a
memory map that contains several MA commands followed by a MAP
command that enables memory mapping.

take Use the TAKE command to tell the debugger to read and execute commands
from a batch file. A batch file can call another batch file; they can be nested
in this manner up to 10 deep. To halt the debugger’s execution of a batch file,
press ESC .

The format for the TAKE command is:

take batch filename [, suppress echo flag]

� The batch filename parameter identifies the file that contains commands.

� If you don’t supply an extension, .cmd is used.

� If you supply path information with the filename, the debugger looks
for the file only in the specified directory.

� If you don’t supply path information with the filename, the debugger
looks for the file in the current directory.

� If the debugger can’t find the file in the current directory, it looks in any
directories that you identified with the D_DIR environment variable.
You can set D_DIR within the DOS environment; the command for
doing this is

SET D_DIR=C:\pathname;C:\pathname

This allows you to name several directories that the debugger can
search. Remember that if you use D_DIR, you must set it before you
invoke the debugger— the debugger doesn’t recognize the DOS SET
command. If you often use the same directories, it may be convenient
to set D_DIR in your autoexec.bat file.

Entering Commands From a Batch File

xiv

� By default, the debugger echoes the commands in the COMMAND
window display area and updates the display as it reads commands from
the batch file.

� If you don’t use the suppress echo flag parameter, or if you use it but
supply a nonzero value, then the debugger behaves in the default
manner.

� If you would like to suppress the echoing and updating, use the value 0
for the suppress echo flag parameter.

 Defining Your Own Command Strings

xv Chapter Title—Attribute Reference

7.4 Defining Your Own Command Strings

The debugger provides a shorthand method of entering often-used
commands or command sequences. This processing is called aliasing.
Aliasing enables you to define an alias name for the command(s) and then
enter the alias name as if it were a debugger command.

To do this, use the ALIAS command. The syntax for this command is:

alias [alias name [, “command string”]]

The primary purpose of the ALIAS command is to associate the alias name
with the debugger command you’ve supplied as the command string.
However, the ALIAS command is versatile and can be used in several ways:

� Aliasing several commands. The command string can contain more
than one debugger command — just separate the commands with
semicolons.

For example, suppose you always began a debugging session by loading
the same object file, displaying the same C source file, and running to a
certain point in the code. You could define an alias to do all these tasks at
once:

alias init,”load test.out;file source.c;go main”

Now you could enter init instead of the three commands listed within
the quote marks.

� Supplying parameters to the command string. The command string
can define parameters that you’ll supply later. To do this, use a percent
sign and a number (%1) to represent the parameter that will be filled in
later. The numbers should be consecutive (%1, %2, %3) unless you plan
to reuse the same parameter value for multiple commands.

For example, suppose that every time you filled an area of memory you
also wanted to display that block in the MEMORY window:

alias mfil,”fill %1, %2, %3;mem %1”

Then you could enter:

mfil 0xff8000000,0x18,0x11112222

The first value (0xFF800 0000) would be substituted for the first FILL
parameter and the MEM parameter (%1). The second and third values
would be substituted for the second and third FILL parameters (%2 and
%3).

Defining Your Own Command Strings

xvi

� Listing all aliases. To display a list of all the defined aliases, enter the
ALIAS command with no parameters. The debugger will list the aliases
and their definitions in the COMMAND window.

For example, assume that the init and mfil aliases had been defined as
shown in the previous two examples. If you entered:

alias

you’d see:

Alias Command
–––
INIT ––> load test.out;file source.c;go
main
MFIL ––> fill %1,%2,%3;mem %1

� Finding the definition of an alias. If you know an alias name but are not
sure of its current definition, enter the ALIAS command with just an alias
name. The debugger will display the definition in the COMMAND window.

For example, if you had defined the init alias as shown in the first example
above, you could enter:

alias init

Then you’d see:

”INIT” aliased as ”load test.out; file source.c;go
main”

� Nesting alias definitions. You can include a defined alias name in the
command string of another alias definition. This is especially useful when
the command string would be longer than the debugger command line.

Notes:

Individual commands within a command string are limited to an expanded
length of 132 characters. The expanded length of the command includes the
length of any substituted parameter values.

To redefine an alias, re-enter the ALIAS command with the same alias name
and a new command string. To get rid of an alias, use the UNALIAS command:

unalias alias name

Alias definitions are lost when you exit the debugger. If you want to reuse
aliases, define them in a batch file.

 Entering Operating-System Commands

xvii Chapter Title—Attribute Reference

7.5 Entering Operating-System Commands

The debugger provides a simple method for entering operating-system
commands without explicitly exiting the debugger environment. To do this, use
the SYSTEM command. The format for this command is:

system [”operating-system command” [, flag]]

The SYSTEM command behaves in one of two ways, depending on whether
or not you supply an operating-system command as a parameter:

� If you enter the command with an operating-system parameter, then you
stay within the debugger environment.

� If you enter the command without parameters, the debugger opens a
system shell. This means that the debugger will blank the debugger
display and temporarily exit to the operating-system prompt.

Use the first method when you have only one command to enter; use the
second method when you have several commands to enter.

Entering a single command from the debugger command line

If you need to enter only a single operating-system command, supply it as a
parameter to the SYSTEM command. For example, in MS-DOS, if you want
to copy a file from another directory into the current directory, you might enter:

system ”copy a:\backup\sample.c sample.c”

If the operating-system command produces a display of some sort (such as
a message), the debugger will blank the upper portion of the debugger display
to show the information. In this situation, you can use the flag parameter to tell
the debugger whether or not it should hesitate after displaying the results of
the operating-system command. Flag may be a 0 or a 1:

0 The debugger immediately returns to the debugger environment after
the last item of information is displayed.

1 The debugger does not return to the debugger environment until you
press . (This is the default.)

Entering Operating-System Commands

xviii

In the example above, the debugger would open a system shell to display the
following message:

1 File(s) copied
Type Carriage Return To Return To Debugger

The message would be displayed until you pressed .

If you wanted the debugger to display the message and then return
immediately to the debugger environment, you could enter the command in
this way:

system ”copy a:\backup\sample.c sample.c”,0

Entering several commands from a system shell

If you need to enter several commands, enter the SYSTEM command without
parameters. The debugger will open a system shell and display the
operating-system prompt. At this point, you can enter any operating-system
command.

When you are finished entering commands and are ready to return to the
debugger environment, enter the appropriate information:

MS-DOS UNIX
exit exit or CONTROL D

Note:

On PC systems, available memory may limit the operating-system com-
mands that you can enter from a system shell. For example, you would not
be able to invoke another version of the debugger.

 Entering Operating-System Commands

xix Chapter Title—Attribute Reference

Additional system commands

The debugger also provides separate commands for changing directories and
for listing the contents of a directory.

cd Use the CHDIR (CD) command to change the current working directory. The
format for this command is:

chdir directory name
or cd directory name

This changes the current directory to the specified directory name. You can
use relative pathnames as part of the directory name. Note that this command
can affect any command whose parameter is a filename (such as the FILE,
LOAD, and TAKE commands).

dir Use the DIR command to list the contents of a directory. The format for this
command is:

dir [directory name]

This command displays a directory listing in the display area of the COMMAND
window. If you use the optional directory name parameter, the debugger
displays a list of the specified directory’s contents. If you don’t use this
parameter, the debugger lists the contents of the current directory.

You can use wildcards as part of the directory name.

i Chapter Title—Attribute Reference

Defining a Memory Map

Before you begin a debugging session, you must supply the debugger with a memory map. The memory
map tells the debugger which areas of memory it can and can’t access. Note that the commands
described in this chapter can also be entered using the Memory pulldown menu.

Synopsis Topic
Page

This chapter shows you how to set
up a memory map for your
system.

8.1 The Memory Map: ii
What It Is and Why You Should Define It

8.2 Sample Memory Maps iii

8.3 Identifying Usable Memory Ranges v

8.4 Enabling Memory Mapping vi

8.5 Checking the Memory Map vi

8.6 Modifying the Memory Map vii
During a Debugging Session
Returning to the original memory map viii

8.7 Using Multiple Memory Maps for Multiple Systems ix

Chapter 8

The Memory Map: What It Is and Why You Should Define It

ii

8.1 The Memory Map: What It Is and Why You Should Define It

A memory map tells the debugger which areas of memory it can and can’t
access. Memory maps vary, depending on the application; in general, the
memory map should identify ’340 local memory space plus additional memory
space on your board. For the emulator, the memory map may correspond to
the memory configuration of your target system. Typically, the map matches
the MEMORY definition in your linker command file.

When memory mapping is enabled, the debugger checks each of its memory
accesses against the provided memory map. If you attempt to access an
undefined or protected area, the debugger displays an error message.

Note:

When the debugger compares memory accesses against the memory map,
it performs this checking in software, not hardware. The debugger cannot
prevent your program from attempting to access nonexistent memory.

The debugger provides a complete set of memory-mapping commands. You
can define the memory map interactively by entering these commands while
you’re using the debugger. This can be inconvenient because, in most cases,
you’ll set up one memory map before you begin debugging and will use this
map for all of your debugging sessions. The easiest method for doing this is
to put the memory-mapping commands in a batch file.

Whenever you invoke the debugger, it looks for a special initialization batch
file. The batch file name differs for the two versions of the debugger. For the
emulator, this file is named emuinit.cmd. For the development boards, this file
is named dbinit.cmd.

If the debugger finds the file, the debugger automatically reads and executes
the commands in the file. If you plan to use the same memory map many times,
it may be convenient for you to define your memory map in this batch file.
However, you aren’t required to use the default initialization batch file. You can
use the –t debugger option to identify your own batch file.

The batch file shipped with the debugger disables memory mapping. This
means that the debugger doesn’t check to see if it is accessing valid memory;
in effect, the entire memory range is treated as valid. Before beginning the
debugging process in earnest, you will probably want to supply the debugger
with a memory map and enable mapping.

If memory mapping is enabled but you have not defined a memory map, the
debugger is initially unable to access memory. Invalid memory addresses and
their contents are highlighted in the data-display windows. (On color monitors,
invalid memory locations, by default, are displayed in red.)

 Sample Memory Maps

iii Chapter Title—Attribute Reference

8.2 Sample Memory Maps

This section contains sample memory maps for development boards and for
the emulator. You can use the sample maps if you wish, but that is not
necessary; the main purpose of showing them is to provide you with examples
to use as a starting point. These samples correspond to two files that are
shipped with the debugger, tdbmap.cmd and sdbmap.cmd:

� Figure 8–1 (a) shows the contents of tdbmap.cmd; Figure 8–1 (a) shows
the memory map defined by the commands in tdbmap.cmd. This memory
map can be used with a ’34010 development board such as the ’34010
TIGA development board.

� Figure 8–2 (a) shows the contents of sdbmap.cmd; Figure 8–2 (a) shows
the memory map defined by the commands in sdbmap.cmd. This memory
map can be used with the ’34020 emulator or with a ’34020 development
board such as the ’34020 software development board.

If you are using a third-party development board, you should refer to the board
documentation for additional memory map information. If you don’t find any
information to help you set up a memory map, then you may want to leave
memory mapping disabled.

Figure 8–1. Sample Memory Map for Use With a ’34010 Development Board

(a) Memory map commands (tdbmap.cmd) (a) Memory map for ’34010 local memory

map on
ma 0x00002000,0x30,RW
ma 0x00003000,0x40,WRITEONLY
ma 0x10000000,0x00800000,RAM
ma 0xc0000000,0x200,RAM
ma 0xff800000,0x00800000,RAM

control registers

palette registers

display memory

0x0000 0000
to 0x0000 1FFF

0x0000 2000
to 0x0000 202F

0x0000 2030
to 0x0000 2FFF

0x0000 3000
to 0x0000 303F

program/data memory

0x0000 3040
to 0x0FFF FFFF

0x1000 0000
to 0x107F FFFF

0x1080 0000
to 0xBFFF FFFF

0xC000 0000
to 0xC000 01FF

0xC000 0200
to 0xFF7F FFFF

0xFF80 0000
to 0xFFFF FFFF

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

I/O registers

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

Sample Memory Maps

iv

Figure 8–2. Sample Memory Map for Use With the ’34020 Emulator
or a ’34020 Development Board

(a) Memory map commands (sdbmap.cmd) (a) Memory map for ’34020 local memory

VRAM space

DRAM space

aliased VRAM/DRAM

I/O registers

palette address register

color palette RAM

pixel read mask register

0x0000 0000
to 0x007F FFFF

0x0080 0000
to 0x00FF FFFF

0x0100 0000
to 0xBFFF FFFF

0xC000 0000
to 0xCFFFFFFF

(RAM write mode)

palette address
(write mode)

palette address
(read only)

overlay registers

palette address
(register overlay read)

0xD000 0100
to 0xDFFFFFFF

aliased palette register

aliased hardware space0xE000 0020
to 0xEFFF FFFF

hardware space register

register addresses

interrupt and TRAP vectors0xF000 0000
to 0xFFFF FFFF

map on
ma 0x00000000,0x00800000,RAM
ma 0x00800000,0x00800000,RAM
ma 0x01000000,0xbf000000,RAM
ma 0xc0000000,0x10000000,RAM
ma 0xd0000000,0x20,RAM
ma 0xd0000020,0x20,RAM
ma 0xd0000040,0x20,RAM
ma 0xd0000060,0x20,WRITEONLY
ma 0xd0000080,0x20,READONLY
ma 0xd00000a0,0x20,RAM
ma 0xd00000c0,0x20,PROTECT
ma 0xd00000e0,0x20,READONLY
ma 0xd0000100,0x0fffff00,RAM
ma 0xe00000000,0x20,RAM
ma 0xe0000020,0x0fffffe0,RAM
ma 0xf0000000,0x10000000,RAM

addresses

addresses

0xD000 0000
to 0xD000 001F

0xD000 0020
to 0xD000 003F

0xD000 0040
to 0xD000 005F

0xD000 0060
to 0xD000 007F

0xD000 0080
to 0xD000 000F

0xD000 00A0
to 0xD000 00BF

0xD000 00E0
to 0xD000 00FF

0xE000 0000
to 0xEFFF FFFF

0xD000 00C0
to 0xD000 00DF

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved

 Identifying Usable Memory Ranges

v Chapter Title—Attribute Reference

8.3 Identifying Usable Memory Ranges

ma The debugger’s MA (memory add) command identifies valid ranges of target
memory. The syntax for this command is:

ma address, length, type

� The address parameter defines the starting address of a memory range.
This parameter can be an absolute address, any C expression, the name
of a C function, or an assembly language label.

� The length parameter defines the length, in bits, of the range. This
parameter can be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory Use this keyword as a type parameter

read-only memory R, ROM, or READONLY

write-only memory W, WOM, or WRITEONLY

read/write memory RW or RAM

no-access memory PROTECT

A new memory map must not overlap an existing entry. If you define a range
that overlaps an existing range, the debugger ignores the new range and
displays this error message in the COMMAND window display area:

Conflicting map range

Note:

When memory mapping is enabled, you cannot:

� Access memory locations that are not defined by an MA command
� Modify memory areas that are defined as read only or protected

If you attempt to access memory in these situations, the debugger displays
this message in the COMMAND window display area:

Error in expression

Enabling Memory Mapping / Checking the Memory Map

vi

8.4 Enabling Memory Mapping

map By default, mapping is not enabled when you invoke the debugger. In order to
use memory mapping, you must explicitly enable the memory mapping
capability. Use the MAP command to do this; the syntax is:

map on
or map off

Note that disabling memory mapping can cause bus fault problems in the
target because the debugger may attempt to access nonexistent memory.

8.5 Checking the Memory Map

ml If you want to see which memory ranges are defined, use the ML command.
The syntax for this command is:

ml

The ML command lists the starting address, ending address, and read/write
characteristics of each defined memory range. For example, if you’re using the
sample TDB memory map and you enter the ML command, the debugger
displays this:

Memory range Attributes
00002000 – 0000202f READ WRITE
00003000 – 0000303f WRITE
10000000 – 107fffff READ WRITE
ff800000 – ffffffff READ WRITE

ending addressstarting address

 Modifying the Memory Map During a Debugging Session

vii Chapter Title—Attribute Reference

8.6 Modifying the Memory Map During a Debugging Session

If you need to modify the memory map during a debugging session, use these
commands.

md To delete a range of memory from the memory map, use the MD (memory
delete) command. The syntax for this command is:

md address

The address parameter identifies the starting address of the range of memory.
If you supply an address that is not the starting address of a range, the
debugger displays this error message in the COMMAND window display area:

Specified map not found

mr If you want to delete all defined memory ranges from the memory map, use
the MR (memory reset) command. The syntax for this command is:

mr

This resets the debugger memory map.

ma If you want to add a memory range to the memory map, use the MA (memory
add) command. The syntax for this command is:

ma address, length, type

The MA command is described in detail on page v.

Modifying the Memory Map During a Debugging Session

viii

Returning to the original memory map

If you modify the memory map, you may want to go back to the original memory
map without quitting and reinvoking the debugger. You can do this by resetting
the memory map and then using the TAKE command to read in your original
memory map from a batch file.

Suppose, for example, that you had set up your memory map in a batch file
named mem.map. You could enter these commands to go back to this map:

mr Reset the memory map
take mem.map Reread the default memory map

The MR command resets the memory map. (Note that you could put the MR
command in the batch file, preceding the commands that define the memory
map.) The TAKE command tells the debugger to execute commands from the
specified batch file.

 Using Multiple Memory Maps for Multiple Target Systems

ix Chapter Title—Attribute Reference

8.7 Using Multiple Memory Maps for Multiple Systems

If you’re debugging multiple applications, you may need a memory map for
each target system. Here’s the simplest method for handling this situation.

Step 1: Let the dbinit.cmd or emuinit.cmd file define the memory map for one
of your applications.

Step 2: Create a separate batch file that defines the memory map for the
additional system. The filename is unimportant, but for the purposes
of this example, assume that the file is named filename.x. The
general format of this file’s contents should be

mr Reset the memory map
MA commands Define the new memory map
map on Enable mapping

(Of course, you can include any other appropriate commands in this
batch file.)

Step 3: Invoke the debugger as usual.

Step 4: The debugger reads init.cmd during invocation. Before you begin
debugging, read in the commands from the new batch file:

take filename.x

This redefines the memory map for the current debugging session.

page

x

i Chapter Title—Attribute Reference

Loading, Displaying, and
Running Code

The main purpose of a debugging system is to allow you to load and run your programs in a test
environment. This chapter tells you how to load your programs into the debugging environment, run
them on the target system, and view the associated source code. Note that many of the commands
described in this chapter can also be executed from the Load pulldown menu.

Synopsis Topic
Page

Depending on the debugging
mode you choose, the debugger
shows you assembly language
only, C code only, or both at the
same time.

9.1 Code-Display Windows: ii
Viewing Assembly Language Code, C Code, or Both
Selecting a debugging mode iii

To debug a program, you must
load the program’s object code
into memory. You’ll also need to
see the associated source code.

9.2 Displaying Your Source Programs iv
(or Other Text Files)
Displaying assembly language code iv
Displaying C code vi
Displaying other text files vii

9.3 Loading Object Code viii
Loading code while invoking the debugger viii
Loading code after invoking the debugger viii

9.4 Where the Debugger Looks for Source Files ix

Once you’ve loaded an object file,
there are several ways of running
the program during a debugging
session.

9.5 Running Your Programs x
Defining the starting point for program execution x
Running code xi
Single-stepping through code xii
Running code while disconnected from the target xiv
Running code conditionally xv

9.6 Halting Program Execution xvi

9.7 Benchmarking xvii

Chapter 9

Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

ii

9.1 Code-Display Windows:
Viewing Assembly Language Code, C Code, or Both

The debugger has three code-display windows:

� The DISASSEMBLY window displays the reverse assembly of program
memory contents.

� The FILE window displays any text file; its main purpose is to display C
source files.

� The CALLS window identifies the current function (when C code is
running).

You can view code in several different ways. The debugger has three different
code displays that are associated with the three debugging modes. The
debugger selects the appropriate display based on two factors:

� The mode you select and
� Whether your program is currently executing assembly language code or

C code.

Here’s a summary of the modes and displays; for a complete description of the
three debugging modes, refer to Section 6.1, Debugging Modes and Default
Displays (page iii).

Use this mode To view
The debugger uses these
code-display windows

assembly mode assembly language code only
(even if your program is
executing C code)

DISASSEMBLY

auto mode assembly language code
(when that’s what your
program is running)

DISASSEMBLY

auto mode C code only
(when that’s what your
program is running)

FILE
CALLS

mixed mode both assembly language and
C code

DISASSEMBLY
FILE
CALLS

You can switch freely between the modes. If you choose auto mode, then the
debugger displays C code or assembly language code, depending on the type
of code that is currently executing.

 Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

iii Chapter Title—Attribute Reference

Selecting a debugging mode

When you first invoke the debugger, it automatically comes up in auto mode.
You can then choose assembly or mixed mode. There are several ways to do
this.

The Mode pulldown menu provides an easy method for
switching modes. There are several ways to use the
pulldown menus; here’s one method:

1) Point to the menu name.

2) Press the left mouse button; do not release the button. Move the mouse
down the menu until your choice is highlighted.

3) Release the mouse button.

For more information about the pulldown menus, refer to Section 7.2, Using
the Pulldown Menus, on page vii.

F3 Pressing this key causes the debugger to switch modes in this order:

auto assembly mixed

Enter any of these commands to switch to the desired debugging mode:

c Changes from the current mode to auto mode.

asm Changes from the current mode to assembly mode.

mix Changes from the current mode to mixed mode.

If you are already in the desired mode when you enter a mode command, then
the command has no effect.

Mode

C

A

Mixed

sm

 (auto)

Displaying Your Source Programs (or Other Text Files)

iv

9.2 Displaying Your Source Programs (or Other Text Files)

The debugger displays two types of code:

� It displays assembly language code in the DISASSEMBLY window in
auto, assembly, or mixed mode.

� It displays C code in the FILE window in auto and mixed modes.

The DISASSEMBLY and FILE windows are primarily intended for displaying
code that the PC points to. By default, the FILE window displays the C source
for the current function (if any), and the DISASSEMBLY window shows the
current disassembly.

Sometimes it’s useful to display other files or different parts of the same file;
for example, you may want to set a breakpoint at an undisplayed line. The
DISASSEMBLY and FILE windows are not large enough to show the entire
contents of most assembly language and C files. You can scroll through the
windows. You can also tell the debugger to display specific portions of the
disassembly or C source.

Displaying assembly language code

The assembly language code in the DISASSEMBLY window is the reverse
assembly of program-memory contents. (This code doesn’t come from any of
your text files or from the intermediate assembly files produced by the
compiler.)

MEMORY
ffc001c0 403b

ffc001d0 0b2b

ffc00200 b7a7

ffc00220 24a7

ffc00230 40eb

ffc00240 8bab

ffc001c0 40eb ADD A7,A11

ffc001d0 0bsb ADDI –4151872,A11

ffc00200 b7a7 MOVE @k,A7,1

ffc00220 24a7 SLL 5,A&

ffc00230 40eb ADD A7,A11

ffc00240 8bab MOVE @j,*A11,1

DISASSEMBLY

addresses contents of
program memory
(object code)

disassembly of object
code in memory

 Displaying Your Source Programs (or Other Text Files)

v Chapter Title—Attribute Reference

When you invoke the debugger, it comes up in auto mode. If you load an object
file when you invoke the debugger, then the DISASSEMBLY window displays
the reverse assembly of the object file that’s loaded into memory. If you don’t
load an object file, the DISASSEMBLY window shows the reverse assembly
of whatever happens to be in memory.

In assembly and mixed modes, you can use these commands to display a
different portion of code in the DISASSEMBLY window.

dasm Use the DASM command to display code beginning at a specific point. The
syntax for this command is:

dasm address
or dasm function name

This command modifies the display so that address or function name is
displayed within the DISASSEMBLY window. The debugger continues to
display this portion of the code until you run a program and halt it.

addr Use the ADDR command to display assembly language code beginning at a
specific point. The syntax for this command is:

addr address
or addr function name

In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
DISASSEMBLY window. In mixed mode, ADDR affects both the
DISASSEMBLY and FILE windows.

Displaying Your Source Programs (or Other Text Files)

vi

Displaying C code

Unlike assembly language code, C code isn’t reconstructed from memory
contents—the C code that you view is your original C source. You can display
C code explicitly or implicitly:

� You can force the debugger to show C source by entering a FILE, FUNC,
or ADDR command.

� In auto and mixed modes, the debugger automatically opens a FILE
window if you’re currently running C code.

These commands are valid in C and mixed modes:

file Use the FILE command to display the contents of any text file. The syntax for
this command is:

file filename

This command uses the FILE window to display the contents of filename. The
debugger continues to display this file until you run a program and halt in a C
function. Although this command is most useful for viewing C code, you can
use the FILE command for displaying any text file. You can view only one text
file at a time.You can also access this command from the Load pulldown menu.

(Displaying a file doesn’t load that file’s object code. If you want to be able to
run the program, you must load the file’s associated object code as described
in Section 9.3 on page viii.)

func Use the FUNC command to display a specific C function. The syntax for this
command is:

func function name
or func address

FUNC modifies the display so that function name or address is displayed
within the window. If you supply an address instead of a function name, the
FILE window displays the function containing address and places the cursor
at that line.

Note that FUNC works similarly to FILE, but you don’t need to identify the name
of the file that contains the function.

 Displaying Your Source Programs (or Other Text Files)

vii Chapter Title—Attribute Reference

addr Use the ADDR command to display C code beginning at a specific point. The
syntax for this command is:

addr address
or addr function name

In a C display, ADDR works like the FUNC command, positioning the code
starting at address or at function name as the first line of code in the FILE
window. In mixed mode, ADDR affects both the FILE and DISASSEMBLY
windows.

Whenever the CALLS window is open, you can use the mouse or function keys
to display a specific C function. This is similar to the FUNC or ADDR command
but applies only to the functions listed in the CALLS window.

1) In the CALLS window, point to the name of C function.

2) Click the left mouse button.

(If the CALLS window is active, you can also use the arrow keys and F9 to
display the function; see the CALLS window discussion on page xi for details.)

Displaying other text files

The DISASSEMBLY window always displays the reverse assembly of memory
contents, no matter what is in memory.

The FILE window is primarily for displaying C code, but you can use the FILE
command to display any text file within the FILE window. You may, for example,
wish to examine system files such as autoexec.bat or init.cmd. You can also
view your original assembly language source files in the FILE window.

You are restricted to displaying files that are 65,518 bytes long or less.

Loading Object Code

viii

9.3 Loading Object Code

In order to debug a program, you must load the program’s object code into
memory. You can do this as you’re invoking the debugger, or you can do it after
you’ve invoked the debugger. (Note that you create an object file by compiling,
assembling, and linking your source files; see Section 5.3, Preparing Your
Program for Debugging, on page viii.)

Loading code while invoking the debugger
You can load an object file when you invoke the debugger (this has the same
effect as using the debugger’s LOAD command). To do this, enter:

development board: emulator:
db340 object filename db340emu object filename

If you want to load a file’s symbol table only, use the –s option (this has the
same effect as using the debugger’s SLOAD command). To do this, enter:

development board: emulator:
db340 –s object filename db340emu –s object filename

Loading code after invoking the debugger
After you invoke the debugger, you can use one of three commands to load
object code and/or the symbol table associated with an object file. Use these
commands as described below, or use them from the Load pulldown menu.

load Use the LOAD command to load both an object file and its associated symbol
table. In effect, the LOAD command performs both a RELOAD and an SLOAD.
The format for this command is:

load object filename

reload Use the RELOAD command to load only an object file without loading its
associated symbol table. This is useful for reloading a program when memory
has been corrupted. The format for this command is:

reload object filename

sload Use the SLOAD command to load only a symbol table. The format for this
command is:

sload object filename

SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point.

 Where the Debugger Looks for Source Files

ix Chapter Title—Attribute Reference

9.4 Where the Debugger Looks for Source Files

Some commands (FILE, LOAD, RELOAD, and SLOAD) expect a filename as
a parameter. If the filename includes path information, the debugger uses the
file from the specified directory and does not search for the file in any other
directory. If you don’t supply path information, though, the debugger must
search for the file. The debugger first looks for these files in the current
directory. You may, however, have your files in several different directories.

� If you’re using LOAD, RELOAD, or SLOAD, you have only two choices for
supplying the path information:

� Specify the path as part of the filename.

cd Alternatively, you can use the CD command to change the current
directory from within the debugger. The format for this command is:

cd directory name

� If you’re using the FILE command, you have several options:

� Within the DOS environment, you can name additional directories with
the D_SRC environment variable. The format for doing this is:

SET D_SRC=C:\pathname;C:\pathname

This allows you to name several directories that the debugger can
search. If you use the same directories often, it may be convenient to
set the D_SRC environment variable in your autoexec.bat file. If you
do this, then the list of directories is always available when you’re
using the debugger.

� When you invoke the debugger, you can use the – i option to name
additional source directories for the debugger to search. The format
for this is:

development board: emulator:
db340 –i pathname db340emu –i pathname

You can specify multiple pathnames by using several –i options (one
pathname per option). The list of source directories that you create
with –i options is valid until you quit the debugger.

use Within the debugger environment, you can use the USE command to
name additional source directories. The format for this command is:

use directory name

You can specify only one directory at a time.

In all cases, you can use relative pathnames such as ..\csource or ..\..\code.
The debugger can recognize a cumulative total of 20 paths specified with
D_SRC, –i, and USE.

Running Your Programs

x

9.5 Running Your Programs

To debug your programs, you must execute them on a ’340 device. The
debugger provides two basic types of commands to help you run your code:

� Basic run commands run your code without updating the display until you
explicitly halt execution. There are several ways to halt execution:

� Before you issue a run command, define a specific stopping point (for
example, set a breakpoint).

� Press ESC .
� Click the left mouse button.

� Single-step commands execute assembly language or C code, one
statement at time, and update the display after each execution.

Defining the starting point for program execution

All run and single-step commands begin executing from the current PC
(program counter). When you load an object file, the PC is automatically set
to the starting point for program execution. You can easily identify the current
PC by:

� Finding its entry in the CPU window

or

� Finding the appropriately highlighted line in the FILE or DISASSEMBLY
window. You can do this by executing one of these commands:

dasm PC
or addr PC

Sometimes you may want to modify the PC to point to a different position in
your program. There are two ways to do this:

rest If you executed some code and would like to rerun the program from the
original program entry point, use the RESTART (REST) command. The
format for this command is:

restart
or rest

Note that you can also access this command from the Load pulldown
menu.

 Running Your Programs

xi Chapter Title—Attribute Reference

?/eval You can directly modify the PC’s contents with one of these commands:

?PC=new value
or eval pc = new value

After halting execution, you can continue from the current PC by reissuing any
of the run or single-step commands.

Running code

The debugger supports several run commands.

run The RUN command is the basic command for running an entire program. The
format for this command is:

run [expression]

The command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press ESC or the left mouse button.

� If you supply a logical or relational expression, this becomes a conditional
run (see page xv).

� If you supply any other type of expression, the debugger treats the
expression as a count parameter. The debugger executes count
instructions, halts, then updates the display.

F5 Pressing this key runs code from the current PC. This is similar to entering a
RUN command without an expression parameter.

go Use the GO command to execute code up to a specific point in your program.
The format for this command is:

go [address]

If you don’t supply an address parameter, then GO acts like a RUN command
without an expression parameter.

ret The RETURN (RET) command executes the code in the current C function
and halts when execution returns to its caller. The format for this command is:

Running Your Programs

xii

return
or ret

Breakpoints do not affect this command, but you can halt execution by
pressing ESC or the left mouse button.

runb Use the RUNB (run benchmark) command to execute a specific section of
code and count the number of clock cycles consumed by the execution. The
format for this command is:

runb

Using the RUNB command to benchmark code is a multistep process,
described later in this chapter (Section 9.7, Benchmarking, on page xvii).

Single-stepping through code
Single-step execution is similar to running a program that has a breakpoint set
on each line. The debugger executes one statement, updates the display, and
halts execution. (You can supply a parameter that tells the debugger to
single-step more than one statement; the debugger updates the display after
each statement.) You can single-step through assembly language code or C
code.

The debugger supports several commands for single-stepping through a
program. Command execution may vary, depending on whether you’re
single-stepping through C code or assembly language code.

Note that the debugger ignores interrupts when you use the STEP command
to single-step through assembly language code.

Each of the single-step commands has an optional expression parameter that
works like this:

� If you don’t supply an expression, the program executes a single
statement, then halts.

� If you supply a logical or relational expression, this becomes a conditional
single-step execution (see page xv).

� If you supply any other type of expression, the debugger treats the
expression as a count parameter. The debugger single-steps count C or
assembly language statements (depending on the type of code you’re in).

step Use the STEP command to single-step through assembly language or C code.
The format for this command is:

step [expression]

emulator
only

 Running Your Programs

xiii Chapter Title—Attribute Reference

If you’re in C code, the debugger executes one C statement at a time. In
assembly or mixed mode, the debugger executes one assembly language
statement at a time.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

cstep The CSTEP command is similar to STEP, but CSTEP always single-steps in
terms of a C statement. If you’re in C code, STEP and CSTEP behave
identically. In assembly language code, however, CSTEP executes all
assembly language statements associated with one C statement before
updating the display. The format for this command is:

cstep [expression]

next
cnext

The NEXT and CNEXT commands are similar to the STEP and CSTEP
commands. The only difference is that NEXT/CNEXT never show single-step
execution of called functions—they always step to the next consecutive state-
ment. The formats for these commands are:

next [expression]
cnext [expression]

You can also single-step through programs by using function keys:

F8 Acts as a STEP command.

F10 Acts as a NEXT command.

The debugger allows you to execute several single-step commands from the
selections on the menu bar.

To execute a STEP:

1) Point to Step=F8 in the menu bar.

2) Click the left mouse button.

To execute a NEXT:

1) Point to Next=F10 in the menu bar.

2) Click the left mouse button.

Running Your Programs

xiv

Running code while disconnected from the target

runf Use the RUNF command to disconnect the emulator from the target system
while code is executing. The format for this command is:

runf

When you enter RUNF, the debugger clears all breakpoints, disconnects the
emulator from the target system, and causes the processor to begin execution
at the current PC. You can quit the debugger, or you can continue to enter
commands. However, any command that causes the debugger to access the
target at this time will produce an error.

RUNF is useful in a multiprocessor system. It’s also useful in a system in which
several target systems share an emulator; RUNF enables you to disconnect
the emulator from one system and connect it to another.

halt Use the HALT command to halt the target system after you’ve entered a RUNF
command. The format for this command is:

halt

When you invoke the debugger, it automatically executes a HALT command.
Thus, if you enter a RUNF, quit the debugger, and later reinvoke the debugger,
you will effectively reconnect the emulator to the target system and run the
debugger in its normal mode of operation. When you invoke the debugger, use
the –s option to preserve the current PC and memory contents.

reset The RESET command behaves differently for the two versions of the
debugger:

� For the development board version of the debugger, RESET reloads the
monitor (gspmon) but does not reset the ’340 processor.

� For the emulator version of the debugger, RESET resets the target
system. This is a software reset.

The format for this command is:

reset

emulator
only

 Running Your Programs

xv Chapter Title—Attribute Reference

Running code conditionally

The RUN, GO, and single-step commands have an optional expression
parameter that can be a relational or logical expression. This type of
expression has one of the following operators as the highest precedence
operator in the expression:

> > = <
< = = = ! =
&& | | !

When you use this type of expression with these commands, the command
becomes a conditional run. The debugger executes the command repeatedly
for as long as the expression evaluates to true.

You must use breakpoints with conditional runs; the expression is evaluated
each time the debugger encounters a breakpoint. Each time the debugger
evaluates the conditional expression, it updates the screen. The debugger
applies this algorithm:

top:
if (expression = = 0) go to end;
run or single-step (until breakpoint, ESC , or mouse button halts execution)
if (halted by breakpoint, not by ESC or mouse button) go to top

end:

Generally, you should set the breakpoints on statements that are related in
some way to the expression. For example, if you’re watching a particular
variable in a WATCH window, you may want to set breakpoints on statements
that affect that variable and use that variable in the expression.

Halting Program Execution

xvi

9.6 Halting Program Execution

Whenever you’re running or single-stepping code, program execution halts
automatically if the debugger encounters a breakpoint or if it reaches a
particular point where you told it to stop (by supplying a count or an address).
If you’d like to explicitly halt program execution, there are two ways to
accomplish this:

Click the left mouse button.

ESC Press the escape key.

After halting execution, you can continue program execution from the current
PC by reissuing any of the run or single-step commands.

 Benchmarking

xvii Chapter Title—Attribute Reference

9.7 Benchmarking

The debugger allows you to keep track of the number of CPU clock cycles
consumed by a particular section of code. The debugger maintains the count
in a pseudoregister named CLK.

Note:

The value in CLK is valid only after using a RUNB command that is terminated
by a breakpoint.

Benchmarking code is a multiple-step process:

Step 1: Set a breakpoint at the statement that marks the beginning of the
section of code you’d like to benchmark.

Step 2: Set a breakpoint at the statement that marks the end of the section
of code you’d like to benchmark.

Step 3: Enter any RUN command to execute code up to the first breakpoint.

Step 4: Now enter the RUNB command:

runb

When the processor halts at the second breakpoint, the value of CLK is valid.
To display it, use the ? command or enter it into the WATCH window with the
WA command. This value is valid until you enter another RUN command.

emulator
only

page

xviii

i Chapter Title—Attribute Reference

Loading TIGA Applications

If you are working with a TIGA application containing modules you have written yourself, you may want
to use the debugger to refine these modules. Conventional debugging strategies are not adequate for
this situation.

Since TIGA downloads and locates modules at runtime, under usual circumstances, the modules would
not be available to the debugger. However, TIGA and the debugger support a special feature which
informs the debugger when a module has been downloaded. Thus, allowing you to set a breakpoint
at the entry of your module. Therefore, when TIGA downloads your module, the TIGA application halts
and you have control of the module for debugging purposes. This feature is called dynamic loading.
Once a module has been dynamically loaded, you can use all of the basic debugger features to debug
your module.

Topic Page

This chapter discusses the pro-
cess of setting and clearing tenta-
tive breakpoints in TIGA applica-
tions.

10.1 Overview of the Dynamic-Load Process ii
Debugging with Microsoft Windows (version 3.0) iii

10.2 Setting a Tentative Breakpoint iv
Clearing a tentative breakpoint iv
Using regular breakpoint commands

while debugging TIGA modules v

10.3 Reloading TIGA Modulesvi
Using LOAD, RELOAD, and SLOAD

while debugging TIGA modules vi

10.4 Identifying Symbols Used in TIGA Modules vii

Chapter 10

Overview of the Dynamic–Load Process

ii

10.1 Overview of the Dynamic-Load Process

Below are the procedures you should follow to use dynamic loading:

Step 1: Be sure you have followed the installation procedures in the Setting
Up for TIGA Applications section in the appropriate installation
chapter:

� Be sure that you have installed the TIGA communications driver
(tigacd) on the target PC.

emulator: tigacd /d1

development boards: tigacd /d2

Remember, you must install tigacd whenever you power up or
reboot the target PC.

� Be sure you have copied the RLMs to the host PC (so that
they’re on both PCs). In addition, you may want to copy the C
source files to the host PC so that you’ll be able to view them
during debugging.

� Be sure you have copied tigagm.out and, if you are using TIGA
extended primitives, copy extprims.rlm to the directory on the
target PC containing tigacd. Also copy these files to the directory
on the host PC containing the debugger executable file.

� Development boards only: Be sure you have installed the serial
communication drivers—debugcom on the host PC and tigacom
on the target PC:

debugcom: debugcom [Ccommunication port] [Bbaud rate]

tigacom: tigacom [Ccommunication port] [Bbaud rate]

Remember, you must install these drivers whenever you power
up or reboot the host or target PC.

Be sure that the serial cable pinouts are correct.

Step 2: Start the debugger on the host system.

Step 3: Set tentative breakpoints on the TIGA module functions you wish to
debug. (Tentative breakpoints are a special type of breakpoint used
only for identifying TIGA module functions that will be dynamically
loaded. For more information, see page iv.)

Step 4: Start the TIGA application on the target system.

 Overview of the Dynamic–Load Process

iii Chapter Title—Attribute Reference

Step 5: As the TIGA application executes, TIGA will load code into the ’340
board. When a module is loaded into ’340 memory, the module will
automatically be loaded into the debugger (“dynamically loaded”).
When the breakpoint is reached, the TIGA application will halt.

Step 6: Now you can debug the module just as if it were any other type of
code.

Step 7: When you have finished done debugging the module, run past the
end of the module; this will restart the TIGA application.

Debugging with Microsoft Windows (version 3.0)

The dynamic-load capability is also useful for debugging the TIGA graphics
manager (tigagm.out) and the Windows driver engine (win30.rlm or
tigawin.rlm) while running Microsoft Windows. You can also debug TIGA
extensions that are downloaded by a Windows application. However, there are
a few restrictions and potential problems:

� The debugger and serial link driver will work only when Windows is run in
real (win /r) or standard (win /s) modes.

� Be sure the Windows driver engine (win30.rlm or tigawin.rlm) is copied
into the directory where the debugger executable file is located (on the
host PC). Also, if you plan to debug downloaded extensions, the
corresponding .rlm files must reside in the same directory as the debugger
executable file.

� You may need to set Windows to use the keyboard rather than a mouse.
If windows is set up for use with a mouse, it will poll the available serial
ports, looking for a mouse. This may corrupt the serial port settings used
by DEBUGCOM.

Setting a Tentative Breakpoint

iv

10.2 Setting a Tentative Breakpoint

Tentative breakpoints are a special type of breakpoint used only for identifying
TIGA modules that will be dynamically loaded. In this case, the debugger
identifies the breakpoints as unresolved symbols. Unresolved symbols are
treated as empty variables within the current symbol table.

tba The TBA command tells the debugger to look for your custom functions and
set tentative breakpoints at their entry points. The basic syntax for this
command is:

tba function name

The tentative breakpoint command adds the function name to a list of tentative
breakpoints and then evaluates the address. If a valid address is found, a
breakpoint is set immediately. Otherwise, when a TIGA module is loaded into
the debugger, the debugger processes the tentative breakpoint list by
attempting to find the function name in the new symbol table. Breakpoints will
be set at the addresses of the new modules.

Clearing a tentative breakpoint

tbd Once set, you may delete tentative breakpoints from functions that have not
yet been loaded by using the TBD command. The basic syntax for this
command is:

tbd breakpoint index

The breakpoint index parameter corresponds to index numbers displayed
next to the tentative breakpoints listed with the BL debugger command (refer
to page v for more details).

Note:

If a tentative breakpoint is resolved and active, it cannot be deleted with this
command. You must use the BD or BR command as explained on page v.

 Setting a Tentative Breakpoint

v Chapter Title—Attribute Reference

Using regular breakpoint commands while debugging TIGA modules

The debugger treats the dynamic-load feature and its tentative breakpoints
separately from other debugger features. However, you can use regular
breakpoint commands while debugging a dynamically loaded TIGA module.
Effects of using regular debugger commands with the TBA command are listed
below:

� The BL command lists both regular breakpoints and tentative
breakpoints.The tentative breakpoint list consists of any unresolved
symbols entered with the TBA command. Breakpoints are identified by
index numbers so that you can delete them with the TBD command if you
want.

� The BD command deletes only active breakpoints. Therefore, any
breakpoint that is unresolved at execution of the BD command and was
originally set through the TBA command will be left on the tentative
breakpoint list.

� The BR command deletes all regular and tentative breakpoints
(unresolved as well as resolved).

� If you are using RUNB (benchmarking) and you load a TIGA module, you
will receive inaccurate benchmark results.

Setting a Tentative Breakpoint

vi

10.3 Reloading TIGA Modules

The debugger maintains a list of the TIGA modules that have been dynamically
loaded. The last module loaded is the default module. Any of the modules in
this list can be selected again.

mod The MOD command allows you to select a TIGA module that has been
dynamically loaded. The basic syntax for this command is:

mod [TIGA module name]

The module you select becomes the default module. This insures that the
default module is searched first and thereby helps prevent misinterpretation
of identical variable names in multiple applications.

To obtain a list of all the modules that have been dynamically selected, enter
the MOD command with no parameter. This will also tell you which module is
the default module and identify any code that has been loaded with the LOAD
command.

Using LOAD, RELOAD, SLOAD, and RESTART while debugging TIGA modules

Do not use the LOAD, RELOAD, and RESTART commands. Doing so will
interfere with the TIGA application and you will have to restart your application.

You can, however, use the SLOAD command to load a module’s symbol table.

 Identifying Symbols Used in TIGA Modules

vii Chapter Title—Attribute Reference

10.4 Identifying Symbols Used in TIGA Modules

Multiple TIGA modules may use symbols with the same names. The debugger
provides a naming system to help you identify these symbols. The basic syntax
for identifying symbols is:

[{module name}] function[.variable]

For example, assume you have a TIGA module named draw containing a
function circle. In circle, you have a variable named radius that you want to
watch. To do so, enter:

wa {draw} circle.radius

If you choose not to specify a module name, all applications are checked,
beginning with the default (current) module. The first function found with the
specified name is used. Note that module names are case sensitive.

Note:

Variables contained in your TIGA application will replace duplicate variable
names in your current symbol table.

viii

i Chapter Title—Attribute Reference

Managing Data

The debugger allows you to examine and modify many different types of data related to the target
system and to your program. You can display and modify the values of:

Individual memory locations or a range of memory
’340 registers
Variables, including scalar types (ints, chars, etc.) and aggregate types (arrays, structures, etc.)

This chapter tells you how to display and change data.

Chapter 11

Running Title—Attribute Reference

ii

Synopsis Topic
Page

The chapter begins by describing
basic commands and editing
methods that apply to managing
all forms of data.

11.1 Where Data Is Displayed iii

11.2 Basic Commands for Managing Data iii

11.3 Basic Methods for Changing Data Values vi
Editing data displayed in a window vi
Advanced “editing”—using expressions with side effects vii

These sections discuss unique
details about displaying and
changing specific types of data.

11.4 Managing Data in Memory viii
Displaying memory contents viii
Displaying memory contents while you’re debugging C x
Saving memory values to a file xi
Filling a block of memory xii

11.5 Managing Register Data xiii
Displaying register contents xiii
Displaying and changing the contents of I/O registers xiv
Displaying and changing the contents of ’34082 registers xvi
Displaying and changing the contents of status bits xv

11.6 Managing Data in a DISP (Display) Window xvii
Displaying data in a DISP window xvii
Closing a DISP window xix

11.7 Managing Data in a WATCH Window xx
Displaying data in the WATCH window xx
Deleting watched values and closing the WATCH window xxi

The debugger allows you to dis-
play data in a variety of formats.

11.8 Displaying Data in Alternative Formats xxii
Changing the default format for specific data types xxii
Changing the default format with ?, MEM, DISP, and WA xxiv

 Where Data Is Displayed / Basic Commands for Managing Data

iii Chapter Title—Attribute Reference

11.1 Where Data Is Displayed

Four windows are dedicated to displaying the various types of data.

Type of data Window name and purpose

memory locations MEMORY window
Displays the contents of a range of data
memory or program memory

register values CPU window
Displays the contents of ’340 registers

pointer data or selected variables of an
aggregate type

DISP windows
Display the contents of aggregate types
and show the values of individual mem-
bers

selected variables (scalar types or indi-
vidual members of aggregate types)
and specific memory locations or regis-
ters

WATCH window
Displays selected data

This group of windows is referred to as data-display windows.

11.2 Basic Commands for Managing Data

The debugger provides special-purpose commands for displaying and
modifying data in dedicated windows. The debugger also supports several
general-purpose commands that you can use to display or modify any type of
data.

whatis If you want to know the type of a variable, use the WHATIS command. The
syntax for this command is:

whatis symbol

This lists symbol’s data type in the COMMAND window display area. The
symbol can be any variable (local, global, or static), a function name, structure
tag, typedef name, or enumeration constant.

Running Title—Attribute Reference

iv

Command Result displayed in the COMMAND window

whatis giant struct zzz giant[100];

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

? The ? (evaluate expression) command evaluates an expression and shows
the result in the COMMAND window display area. The basic syntax for this
command is:

? expression

The expression can be any C expression, including an expression with side
effects. However, you cannot use a string constant or function call in the
expression.

If the result of expression is scalar, then the debugger displays the result as
a decimal value in the COMMAND window. If expression is a structure or array,
? displays the entire contents of the structure or array; you can halt long listings
by pressing ESC .

Here are some examples that use the ? command.

Command Result displayed in the COMMAND window

? giant giant[0].b1 436547877
giant[0].b2 –791051538
giant[0].b3 1952557575
giant[0].b4 –1555212096
etc.

? j 4194425

? j=0x5a 90

 Basic Commands for Managing Data

v Chapter Title—Attribute Reference

Note that the DISP command (described in detail on page xvii) behaves like the
? command when its expression parameter does not identify an aggregate
type.

eval The EVAL (evaluate expression) command behaves like the ? command but
does not show the result in the COMMAND window display area. The syntax
for this command is:

eval expression
or e expression

EVAL is useful for assigning values to registers or memory locations in a batch
file (where it’s not necessary to display the result).

Basic Methods for Changing Data Values

vi

11.3 Basic Methods for Changing Data Values

The debugger provides you with a great deal of flexibility in modifying various
types of data. You can use the debugger’s overwrite editing capability, which
allows you to change a value simply by typing over its displayed value. You can
also use the data-management commands for more complex editing.

Editing data displayed in a window

Use overwrite editing to modify data in a data-display window; you can edit:

� Registers displayed in the CPU window
� Memory contents displayed in the MEMORY window
� Elements displayed in a DISP window
� Values displayed in the WATCH window

There are two similar methods for overwriting displayed data:

This method is sometimes referred to as the “click and type” method.

1) Point to the data item that you want to modify.

2) Click the left button. The debugger highlights the selected field. (Note that
the window containing this field becomes active when you press the
mouse button.)

ESC 3) Type the new information. If you make a mistake or change your mind,
press ESC or move the mouse outside the field and press/release the left
button; this resets the field to its original value.

4) When you finish typing the new information, press or any arrow key.
This replaces the original value with the new value.

1) Select the window that contains the field you’d like to modify; make this the
active window. (Use the mouse, the WIN command, or F6 . For more
detail, see Section 6.4, The Active Window, on page xx.)

2) Use arrow keys to move the cursor to the field you’d like to edit.

↑ Moves up 1 field at a time.
↓ Moves down 1 field at a time.
← Moves left 1 field at a time.
→ Moves right 1 field at a time.

 Basic Methods for Changing Data Values

vii Chapter Title—Attribute Reference

F9 3) When the field you’d like to edit is highlighted, press F9 . The debugger
highlights the field that the cursor is pointing to.

ESC 4) Type the new information. If you make a mistake or change your mind,
press ESC ; this resets the field to its original value.

5) When you finish typing the new information, press or any arrow key.
This replaces the original value with the new value.

Advanced “editing”—using expressions with side effects

Using the overwrite editing feature to modify data is straightforward. However,
there are other methods that take advantage of the fact that most debugger
commands accept C expressions as parameters, and that C expressions can
have side effects. When an expression has a side effect, it means that the
value of some variable in the expression changes as the result of evaluating
the expression.

This means that you can coerce many commands into changing values for
you. Specifically, it’s most helpful to use ? and EVAL to change data as well
as display it.

For example, if you want see what’s in register A3, you can enter:

? A3

You can also use this type of command to modify A3’s contents. Here are some
examples of how you might do this:

? A3++ Side effect: increments the contents of A3 by 1
eval ––A3 Side effect: decrements the contents of A3 by 1
? A3 = 8 Side effect: sets A3 to 8
eval A3/=2 Side effect: divides contents of A3 by 2

Note that not all expressions have side effects. For example, if you enter
? A3+4, the debugger displays the result of adding 4 to the contents of A3 but
does not modify A3’s contents. Expressions that have side effects must
contain an assignment operator or an operator that implies an assignment.
Operators that can cause a side effect are:

= += –= *= /=

%= &= ^= |= <<=

>>= ++ – –

Managing Data in Memory

viii

11.4 Managing Data in Memory

In mixed and assembly modes, the debugger maintains a MEMORY window
that displays the contents of memory. For details concerning the MEMORY
window, see the MEMORY window discussion (page xiii).

MEMORY

addresses data

ffc45a80 ffff ffff ffff ffff ffff ffff

ffc45ae0 ffff ffff b460 ffff 0010 c000

ffc45b40 0000 0000 b460 ffff 0010 c000

ffc45ba0 0010 c000 0000 0000 0080 0000

ffc45c00 0000 0000 0010 2000 b080 ffff

ffc45cc0 0010 c000 0000 0000 0080 0000

The debugger has commands that show the value at a specific location or
display a different range. The debugger allows you to change the values at
individual locations; refer to Section 11.3, Basic Methods for Changing Data
Values (page vi), for more information.

Note that by default, the memory window shows 16-bit values beginning at
even 16-bit boundaries. Because the ’340 devices are bit addressable, you
can display 16-bit values beginning at any bit boundary.

Displaying memory contents

The main way to observe memory contents is to view the display in the
MEMORY window. The amount of memory that you can display is limited by
the size of the MEMORY window (which is limited only by the screen size).
During a debugging session, you may need to display different areas of
memory within the window. The debugger provides two methods for doing this.

mem If you want to display a different memory range in the MEMORY window, use
the MEM command. The basic syntax for this command is:

mem expression

This makes expression the first entry in the MEMORY window. The end of the
range is defined by the size of the window: to show more memory locations,
make the window larger (see Resizing a window, page xxiii, for more
information).

 Managing Data in Memory

ix Chapter Title—Attribute Reference

The expression can be an absolute address, a symbolic address, or any C
expression. Here are several examples:

� Absolute address. Suppose that you want to display memory beginning
from the very first address. You might enter this command:

mem 0x00

Hint: MEMORY window addresses are shown in hexadecimal format. If
you want to specify a hex address, be sure to prefix the address number
with 0x.

� Symbolic address. You can use any defined C symbol as an expression
parameter. For example, if your program defined a symbol named SYM,
you could enter this command:

mem &SYM

Hint: Prefix the symbol with the & operator to use the address of the
symbol.

� C expression. If you use a C expression as a parameter, the debugger
evaluates the expression and uses the result as a memory address:

mem SP – A0 + label

You can also change the display of any data-display window—including the
MEMORY window—by scrolling through the window’s contents. See the
Scrolling through a window’s contents discussion (page xxix) for more details.

Managing Data in Memory

x

Displaying memory contents while you’re debugging C

If you’re debugging C code in auto mode, you won’t see a MEMORY
window—the debugger doesn’t show the MEMORY window in the C-only
display. However, there are several ways to display memory in this situation.

Hint: If you want to use the contents of an address as a parameter, be sure
to prefix the address with the C indirection operator (*).

� If you have only a temporary interest in the contents of a specific memory
location, you can use the ? command to display the value at this address.
For example, if you want to know the contents of memory location 20
(hex), you could enter:

? *0x20

The debugger displays the memory value in the COMMAND window
display area.

� If you want the opportunity to observe a specific memory location over a
longer period of time, you can display it in a WATCH window. Use the WA
command to do this:

wa *0x20

� You can also use the DISP command to display memory contents. The
DISP window shows memory in an array format with the specified address
as “member” [0]. In this situation, you can also use casting to display
memory contents in a different numeric format:

disp *(float *)0x20

 Managing Data in Memory

xi Chapter Title—Attribute Reference

Saving memory values to a file

ms Sometimes it’s useful to save a block of memory values to a file. You can use
the MS (memory save) command to do this; the files are saved in COFF
format. (For more information about COFF, refer to the TMS340 Family
Code-Generation Tools User’s Guide.) The syntax for the MS command is:

ms address, length, filename

� The address parameter identifies the first address in the block.

� The length parameter defines the length, in words, of the block. This
parameter can be any C expression.

� The filename is a system file.

For example, to save the values in data memory locations 0x0–0x10 to a file
named memsave, you could enter:

ms 0x0,0x10,memsave

To reload memory values that were saved in a file, use the LOAD command.
For example, to reload the values that were stored in memsave, enter:

load memsave

Managing Data in Memory

xii

Filling a block of memory

fill Sometimes it’s useful to be able to fill an entire block of memory at once. You
can do this by using the FILL command. The syntax for this command is:

fill address, length, data

� The address parameter identifies the first address in the block.
� The length parameter defines the number of 32-bit words to fill.
� The data parameter is the value that is placed in each word in the block.

For example, to fill locations 0xFF80 0000 to 0xFF80 0300 with the value
0x1234 ABCD, you would enter:

fill 0xff800000,0x18,0x1234abcd

If you want to check to see that memory has been filled as you have asked,
you can enter:

mem 0xff800000

This changes the MEMORY window display to show the block of memory
beginning at address 0xFF80 0000.

Note that the FILL command can also be executed from the Memory pulldown
menu.

 Managing Register Data

xiii Chapter Title—Attribute Reference

11.5 Managing Register Data

In mixed and assembly modes, the debugger maintains a CPU window that
displays the contents of the PC, the ST, and the A and B registers. For details
concerning the CPU window, see the CPU window discussion (page xiv).

CPU
PC ffc00000 ST 20000010 A0 00000000
A1 00000080 A2 00000000 A3 c0000010
A4 00000000 A5 00000000 A6 00000000
A7 00000040 A8 00000000 A9 ffc45da0
A10 ffffffff A11 00001795 A12 00000000
A13 ffc363e0 A14 ffc363e0 A15 ffc45d80
B0 ffffffff B1 00000000 B2 00000000
B3 00000000 B4 00000000 B5 00000000
B6 00000000 B7 00000000 B8 00000000
B9 00000000 B10 00000000 B11 00000000
B12 00000000 B13 00000000 B14 00000000

register
name

register
contents

In addition to the registers listed in the CPU window, you can display and
modify the contents of I/O registers, selected status bits. and ’34082 registers.
You can also access register A15/B15 as SP. Note that the B-file registers
cannot be accessed by name unless your program defines them as symbols.

The debugger provides commands that allow you to display and modify the
contents of registers. You can use the debugger’s overwrite editing capability
to modify the contents of any register or bit displayed in the CPU, I/O, FPU,
or WATCH window. You can use the data-management commands to modify
the CPU registers as well as registers that are not displayed in the CPU
window. Refer to Section 11.3, Basic Methods for Changing Data Values (page
vi), for more information.

Displaying register contents

The main way to observe register contents is to view the display in the CPU
window. However, you may not be interested in all of the registers; if you’re
interested in only a few registers, you might want to make the CPU window
small and use the extra screen space for the DISASSEMBLY or FILE display.
In this type of situation, there are several ways to observe the contents of the
selected registers.

� If you have only a temporary interest in the contents of a register, you can
use the ? command to display the register’s contents. For example, if you
want to know the contents of the SP, you could enter:

? SP

The debugger displays the SP’s current contents in the COMMAND
window display area.

Managing Register Data

xiv

� If you want to observe a register over a longer period of time, you can use
the WA command to display the register in a WATCH window. For
example, if you want to observe the status register, you could enter:

WA ST,Status Reg

This adds the ST to the WATCH window and labels it as Status Reg. The
register’s contents are continuously updated, just as if you were observing
the register in the CPU window.

These methods are also useful when you’re debugging C in auto mode,
because the debugger doesn’t show the CPU window in the C-only display.

Displaying and changing the contents of I/O registers
The simplest way to observe I/O register contents is to open the I/O window.
To do this, use the IOREGS command:

ioregs

You can also access individual I/O registers by name (names are not case
sensitive). All registers are 16 bits except BSFLTD, DPYNX, DPYST,
HSTADR, and PMASK. (Note that PMASK is a 16-bit register for the ’34010
and a 32-bit register for the ’34020.) You can access the 16 LSBs of a 32-bit
register by appending an L suffix to the register name; you can access the 16
MSBs by appending an H suffix to the register name.

Note:

Some of the registers displayed in the I/O window may be available only for
the ’34020. Additionally, for the ’34010, you can access the REFCNT register
as REFADR.

You can display or modify the contents of the I/O registers by using the ?,
EVAL, and WA commands.

� The simplest way to display the contents of one of these registers is to use
the ? command. For example, to display the contents of the PSIZE
register, enter:

? PSIZE

� To change the contents of a register, use ? or EVAL. For example, if you
want to set the pixel size to 4, enter:

? PSIZE = 4

� If you want to observe a register value on a regular basis but don’t want
to open the I/O window, you can use the WA command to add the register
value to the WATCH window. For example,

WA PSIZE,Pixel Size

 Managing Register Data

xv Chapter Title—Attribute Reference

Displaying and changing the contents of status bits

You can display or modify the following register bits:

Bit name Access as Bit name Access as

CD (cache disable) CD CF (cache flush) CF

HLT (halt) HLT IE (global interrupt enable) IE

V (overflow) STV Z (zero) STZ

C (carry) STC N (negative) STN

FS0 (field size 0) FS0 FE0 (field extension 0) FE0

FS1 (field size 1) FS1 FE1 (field extension 1) FE1

Note:

� Bit names are not case sensitive.

� Some bits can be accessed by name; others must be prefixed with ST.
Refer to the Access as column (above).

� For the ’34020, you can also access the RST bit of the HSTCTLH register.
(If you’re using a development board, don’t modify RST.)

When you are debugging assembly language routines, you may find it helpful
to add the status bits to the WATCH window. This enables you to observe the
processor state while running code.

Managing Register Data

xvi

Displaying and changing the contents of ’34082 registers

If you invoked the debugger with the –mc option, you can access ’34082
registers by opening the FPU window. To do this, use the FPUREGS
command:

fpuregs

You can also access these registers by name (for example, RA0, RA1, etc.);
they will be represented as double-precision scientific notation. You can
display integer and float representations of these registers by replacing the R
in the register name with I or F, respectively. For example:

� To display the integer value of RA0, enter:

? IA0

� To watch the float version of RB3, enter:

wa FB3

� You can also use the register values in expressions:

eval RA0 + FB5

In this case, the addition is done in double precision; the debugger
converts the float value in RB5 to a double.

 Managing Data in a DISP Window

xvii Chapter Title—Attribute Reference

11.6 Managing Data in a DISP (Display) Window

The main purpose of the DISP window is to display members of complex,
aggregate data types such as arrays and structures. The debugger shows
DISP windows only when you specifically request to see DISP windows with
the DISP command (described below). Note that you can have up to 120 DISP
windows open at once. For additional details about DISP windows, see the
DISP window discussion (page xvii).

DISP: str

a 84

b 86

c 172

f1 1

f2 7

f3 0x18740001

f4 [...]

structure
members

member
values

This member is an array, and
you can display its contents in

a second DISP window

DISP: str.f4

[0] 44276127

[1] 1778712578

[2] 555492660

[3] 356713217

[4] 138412802

[5] 182452229

[6] 35659888

[7] 37749506

[8] 134742016

[9] 138412801

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in a
DISP window. Refer to Section 11.3, Basic Methods for Changing Data Values
(page vi), for more information.

Displaying data in a DISP window

disp To open a DISP window, use the DISP command. The basic syntax for this
command is:

disp expression

If the expression is not an array, structure, or pointer (of the form *pointer
name), the DISP command behaves like the ? command. However, if
expression is one of these types, the debugger opens a DISP window to
display the values of the members.

If a DISP window contains a long list of members, you can use PAGE DOWN ,
PAGE UP , or arrow keys to scroll through the window. If the window contains an

array of structures, you can use CONTROL PAGE DOWN and CONTROL PAGE UP to
scroll through the array.

Managing Data in a DISP Window

xviii

Once you open a DISP window, you may find that a displayed member is
another one of these types. This is how you identify the members that are
arrays, structures, or pointers:

A member that is an array looks like this [. . .]
A member that is a structure looks like this {. . .}
A member that is a pointer looks like an address 0x00000000

You can display the additional data (the data pointed to or the members of the
array or structure) in additional DISP windows (these are referred to as
children). There are three ways to do this.

Use the DISP command again; this time, expression must identify the member
that has additional data. For example, if the first expression identifies a
structure named str and one of str’s members is an array named f4, you can
display the contents of the array by entering this command:

disp str.f4

This opens a new DISP window that shows the contents of the array. If str has
a member named f3 that is a pointer, you could enter:

disp *str.f3

This opens a window to display what str.f3 points to.

Here’s another method of displaying the additional data:

1) Point to the member in the DISP window.

2) Now click the left button.

Here’s the third method:

↑ ↓ 1) Use the arrow keys to move the cursor up and down in the list of members.

F9 2) When the cursor is on the desired field, press F9 .

When the debugger opens a second DISP window, the new window may at
first be displayed on top of the original DISP window—if so, you can move the
windows so that you can see both at once. If the new windows also have
members that are pointers or aggregate types, you can continue to open new
DISP windows.

 Managing Data in a DISP Window

xix Chapter Title—Attribute Reference

Closing a DISP window

Closing a DISP window is a simple, two-step process.

Step 1: Make the DISP window that you want to close active (see
Section 6.4, The Active Window, on page xx).

Step 2: Press F4 .

Note that you can close a window and all of its children by closing the original
window.

Note:

The debugger automatically closes any DISP windows when you execute a
LOAD or SLOAD command.

Managing Data in a WATCH Window

xx

11.7 Managing Data in a WATCH Window

The debugger doesn’t maintain a dedicated window that tells you about the
status of all the symbols defined in your program. Such a window might be so
large that it wouldn’t be useful. Instead, the debugger allows you to create a
WATCH window that shows you how program execution affects specific
expressions, variables, registers, or memory locations.

WATCH

1: A0 6

2: X+X 4

3: PC 0x00400064

watch index

label current value

The debugger displays a WATCH window only when you specifically request
a WATCH window with the WA command (described below). Note that there
is only one WATCH window. For additional details concerning the WATCH
window, see the WATCH window discussion (page xviii).

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in the
WATCH window. Refer to Section 11.3, Basic Methods for Changing Data
Values (page vi), for more information.

Note:

All of the watch commands described here can also be
accessed from the Watch pulldown menu. For more informa-
tion about using the the pulldown menus, refer to Section 7.2,
Using the Menu Bar and the Pulldown Menus (page vii).

Watch
Add
Delete
Reset

Displaying data in the WATCH window

The debugger has one command for adding items to the WATCH window.

wa To open the WATCH window, use the WA (watch add) command. The basic
syntax is:

wa expression [, label]

 Managing Data in a WATCH Window

xxi Chapter Title—Attribute Reference

When you first execute WA, the debugger opens the WATCH window. After
that, executing WA adds additional values to the WATCH window.

The expression parameter can be any C expression, including an expression
that has side effects. It’s most useful to watch an expression whose value will
change over time; constant expressions provide no useful function in the
watch window.

The label parameter is optional. When used, it provides a label for the watched
entry. If you don’t use a label, the debugger displays the expression in the label
field.

Deleting watched values and closing the WATCH window

The debugger supports two commands for deleting items from the WATCH
window.

wr If you’d like to close the WATCH window and delete all of the items in a single
step, use the WR (watch reset) command. The syntax is:

wr

wd If you’d like to delete a specific item from the WATCH window, use the WD
(watch delete) command. The syntax is:

wd index number

Whenever you add an item to the WATCH window, the debugger assigns it an
index number. (The illustration of the WATCH window on page xx points to
these watch indexes.) The WD command’s index number parameter must
correspond to one of the watch indexes in the WATCH window.

Note that deleting an item (depending on where it is in the list) causes the
remaining index numbers to be reassigned. Deleting the last remaining item
in the WATCH window closes the WATCH window.

Note:

The debugger automatically closes the WATCH window when you execute
a LOAD or SLOAD command.

Displaying Data in Alternative Formats

xxii

11.8 Displaying Data in Alternative Formats

By default, all data is displayed in its natural format. This means that:

� Integer values are displayed as decimal numbers.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

However, any data displayed in the COMMAND, MEMORY, WATCH, or DISP
window can be displayed in a variety of formats.

Changing the default format for specific data types

To display specific types of data in a different format, use the SETF command.
The syntax for this command is:

setf [data type, display format]

The display format parameter identifies the new display format for any data of
type data type. Table 2–1 lists the available formats and the corresponding
characters that can be used as the display format parameter. Table 2–2 lists
the C data types that can be used for the data type parameter. Only a subset
of the display formats applies to each data type, so Table 2–2 also shows valid
combinations of data types and display formats.

Table 2–1.Display Formats for Debugger Data

Display Format Parameter Display Format Parameter

Default for the data type * Hexadecimal x

ASCII character (bytes) c Octal o

Decimal d Valid address p

Exponential floating point e ASCII string s

Decimal floating point f Unsigned decimal u

Table 2–2.Data Types for Displaying Debugger Data

Valid Display Formats

Data Type c d o x e f p s u Default Display Format

char √ √ √ √ √ ASCII (c)

uchar √ √ √ √ √ Decimal (d)

short √ √ √ √ √ Decimal (d)

int √ √ √ √ √ Decimal (d)

uint √ √ √ √ √ Decimal (d)

 Displaying Data in Alternative Formats

xxiii Chapter Title—Attribute Reference

Table 2–2.Data Types for Displaying Debugger Data (Continued)

Valid Display Formats

Data Type c d o x e f p s u Default Display Format

long √ √ √ √ √ Decimal (d)

ulong √ √ √ √ √ Decimal (d)

float √ √ √ √ Exponential floating point (e)

double √ √ √ √ Exponential floating point (e)

ptr √ √ √ √ Address (p)

Here are some examples:

� To display all data of type short as an unsigned decimal, enter:

setf short, u

� To return all data of type short to its default display format, enter:

setf short, *

� To list the current display formats for each data type, enter the SETF
command with no parameters:

setf

You’ll see a display that looks something like this:

Display Format Defaults
Type char: ASCII
Type unsigned char: Decimal
Type int: Decimal
Type unsigned int: Decimal
Type short: Decimal
Type unsigned short: Decimal
Type long: Decimal
Type unsigned long: Decimal
Type float: Exponential floating point
Type double: Exponential floating point
Type pointer: Address

� To reset all data types back to their default display formats, enter :

setf *

Displaying Data in Alternative Formats

xxiv

Changing the default format with ?, MEM, DISP, and WA

You can also use the ?, MEM, DISP, and WA commands to show data in
alternative display formats. (The ? and DISP commands can use alternative
formats only for scalar types, arrays of scalar types, and individual members
of aggregate types.)

Each of these commands has an optional display format parameter that works
in the same way as the display format parameter of the SETF command.

When you don’t use a display format parameter, data is shown in its natural
format (unless you have changed the format for the data type with SETF).

Here are some examples:

� To watch the PC in decimal, enter:

wa pc,,d

� To display memory contents in octal, enter:

mem 0x0,o

� To display an array of integers as characters, enter:

disp ai,c

The valid combinations of data types and display formats listed for SETF also
apply to the data displayed with DISP, ?, WA, and MEM. For example, if you
want to use display format e or f, the data that you are displaying must be of
type float or type double. Additionally, you cannot use the s display format
parameter with the MEM command.

i Chapter Title—Attribute Reference

Using Breakpoints

During the debugging process, you may want to halt execution temporarily so that you can examine the
contents of selected variables, registers, and memory locations before continuing with program
execution. You can do this by setting breakpoints at critical points in your code. You can set breakpoints
in assembly language code and in C code. A breakpoint halts any program execution, whether you’re
running or single-stepping through code.

Breakpoints are especially useful in combination with conditional execution (described on page xv) and
benchmarking (emulator only; described on page xvii).

Note that the commands described in this chapter can also be executed from the Break pulldown menu.

Synopsis Topic
Page

This chapter describes the simple
processes of setting and clearing
software breakpoints and of ob-
taining a listing of all the break-
points that are set.

12.1 Setting a Breakpoint ii

12.2 Clearing a Breakpoint iv

12.3 Finding the Breakpoints That Are Set v

Chapter 12

Setting a Breakpoint

ii

12.1 Setting a Breakpoint

When you set a breakpoint, the debugger highlights the breakpointed line in
two ways:

� It prefixes the statement with the characters BP>.

� It shows the line in a bolder or brighter font. (You can use
screen-customization commands to change this highlighting method.)

If you set a breakpoint in the disassembly, the debugger also highlights the
associated C statement. If you set a breakpoint in the C source, the debugger
also highlights the associated statement in the disassembly. (If more than one
assembly language statement is associated with a C statement, the debugger
highlights the first of the associated assembly language statements.)

DISASSEMBLY
ffc000a0 0d5f BP> CALLA meminit
ffc000d0 a3cf MOVE STK,*–SP,1
ffc000e0 932e MOVE A9,*STK+,1
ffc000f0 0d5f CALLA call

FILE: sample.c
00057
00058 BP> meminit();
00059 for (i=0; i < 0x50000;
i++)
00060 {
00061 call(i);

A breakpoint is set at
this C statement;

notice how the line is
highlighted.

A breakpoint is also
set at the associated

assembly language
statement (it’s

highlighted, too).

Notes:

� You cannot set breakpoints in ROM.

� After execution is halted by a breakpoint, you can continue program
execution by reissuing any of the run or single-step commands.

� Up to 200 breakpoints can be set.

 Setting a Breakpoint

iii Chapter Title—Attribute Reference

There are three ways to set a breakpoint.

1) Point to the line of assembly language code or C code where you’d like to
set a breakpoint.

2) Click the left button.

Repeating this action clears the breakpoint.

1) Make the FILE or DISASSEMBLY window the active window.

↑ ↓ 2) Use the arrow keys to move the cursor to the line of code where you’d like
to set a breakpoint.

F9 3) Press the F9 key.

Repeating this action clears the breakpoint.

ba If you know the address where you’d like to set a breakpoint, you can use the
BA (breakpoint add) command. This command is useful because it doesn’t
require you to search through code to find the desired line. The syntax for the
BA command is:

ba address

This command sets a breakpoint at address. This parameter can be an
absolute address, any C expression, the name of a C function, or the name
of an assembly language label. You cannot set multiple breakpoints at the
same statement.

Clearing a Breakpoint

iv

12.2 Clearing a Breakpoint

There are several ways to clear a breakpoint. If you clear a breakpoint from
an assembly language statement, the breakpoint is cleared from any
associated C statement as well; similiarly, if you clear a breakpoint from a C
statement, the breakpoint is cleared from the associated statement in the
disassembly.

1) Point to a breakpointed assembly language or C statement.

2) Click the left button.

↑ ↓ 1) Use the arrow keys or the DASM command to move the cursor to a
breakpointed assembly language or C statement.

F9 2) Press the F9 key.

br If you want to clear all the breakpoints that are set, use the BR (breakpoint
reset) command. The syntax for the BR command is:

br

This command is useful because it doesn’t require you to search through code
to find the desired line.

bd If you’d like to clear one specific breakpoint and you know the address of this
breakpoint, you can use the BD (breakpoint delete) command. The syntax for
the BD command is:

bd address

This command clears the breakpoint at address. This parameter can be an
absolute address, any C expression, the name of a C function, or the name
of an assembly language label. If no breakpoint is set at address, the debugger
ignores the command.

 Finding the Breakpoints That Are Set

v Chapter Title—Attribute Reference

12.3 Finding the Breakpoints That Are Set

bl Sometimes you may need to know where breakpoints are set. For example,
the BD command’s address parameter must correspond to the address of a
breakpoint that is set. The BL (breakpoint list) command provides an easy way
to get a complete listing of all the breakpoints that are currently set in your
program. The syntax for this command is:

bl

The BL command displays a table of breakpoints in the COMMAND window
display area. BL lists all the breakpoints that are set, in the order in which you
set them. Here’s an example of this type of list:

 Address Symbolic Information
ffc000a0 in main, at line 58, ”c:\sdb\sample.c”

The address is the memory address of the breakpoint. The symbolic
information identifies the function, line number, and filename of the
breakpointed C statement:

� If the breakpoint was set in assembly language code, you’ll see only an
address unless the statement defines a symbol.

� If the breakpoint was set in C code, you’ll see the address together with
symbolic information.

para

vi

i Chapter Title—Attribute Reference

Customizing the Debugger Display

The debugger display is completely configurable; you can create the interface that is best suited for your
use. Besides being able to size and position individual windows, you can change the appearance of
many of the display features, such as window borders, how the current statement is highlighted, etc.
In addition, if you’re using a color display, you can change the colors of any area on the screen. Once
you’ve customized the display to your liking, you can save the custom configuration for use in future
debugging sessions.

Synopsis Topic
Page

The commands described in this
section are most useful if you
have a color display. If you are us-
ing a monochrome display, these
commands change the shades of
gray on your display.

13.1 Changing the Colors of the Debugger Display ii
area names: common display areas iii
area names: window borders iv
area names: COMMAND window iv
area names: DISASSEMBLY and FILE windows v
area names: data-display windows vi
area names: menu bar and pulldown menus vii

These sections are useful with
both color and monochrome
displays. They tell you how to
change the window border styles,
save and restore custom display
configurations, and customize the
command-line prompt.

13.2 Changing the Border Styles of the Windows viii

13.3 Saving and Using Custom Displays ix
Changing the default display for monochrome monitors ix
Saving a custom display x
Loading a custom display x
Invoking the debugger with a custom display xi
Returning to the default display xi

13.4 Changing the Prompt xii

Chapter 13

Changing the Colors of the Debugger Display

ii

13.1 Changing the Colors of the Debugger Display

You can use the debugger with a color or a monochrome display; the
commands described in this section are most useful if you have a color display.
If you are using a monochrome display, these commands change the shades
on your display. For example, if you are using a black-and-white display, these
commands change the shades of gray that are used.

color
scolor

You can use the COLOR or SCOLOR command to change the colors of areas
in the debugger display. The format for these commands is:

color area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]
scolor area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]

These commands are similar. However, SCOLOR updates the screen
immediately, and COLOR doesn’t update the screen (the new colors/attributes
take effect as soon as the debugger executes another command that updates
the screen). Typically, you might use the COLOR command several times and
follow that with an SCOLOR command to put all of the changes into effect at
once.

The area name parameter identifies the areas of the display that are affected.
The attributes identify how the areas are affected. Table 4–1 lists the valid
values for the attribute parameters.

Table 4–1. Colors and Other Attributes for the COLOR and SCOLOR Commands

(a) Colors

black blue green cyan

red magenta yellow white

(b) Other attributes

bright blink

The first two attribute parameters usually specify the foreground and
background colors for the area. If you do not supply a background color, the
debugger uses black as the background.

Table 4–2 lists valid values for the area name parameters. This is a long list;
the subsections following the table further identify these areas.

 Changing the Colors of the Debugger Display

iii Chapter Title—Attribute Reference

Table 4–2. Summary of Area Names for the COLOR and SCOLOR Commands

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

Note: Listing order is left to right, top to bottom.

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify either parameter. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed in Table 4–2 (left to right, top to bottom).

The remainder of this section identifies these areas.

area names: common display areas

blanks

CPU
PC ffc00000 ST 20000010 A0 00000000

A1 00000080 A2 00000000 A3 00000010

A4 00000000 A5 00000000 A6 00000000

A7 00000040 A8 00000000 A9 ffc45da0

background

Area identification Parameter name

Screen background (behind all windows) background

Window background (inside windows) blanks

Changing the Colors of the Debugger Display

iv

area names: window borders

COMMAND

>>>

(C) Copyright 1990, Texas Instr

Loading sample.out

 70 symbols loaded

file sample.c

go main

win_hiborder

WATCH

1: A14 0x00001802

2: X+X 4

3: PC 0x00400064

win_border

win_resize

an inactive
window

an active
window

Area identification Parameter name

Window border for any window that isn’t active win_border

The reversed “L” in the lower right corner of a resizable
window

win_resize

Window border of the active window win_hiborder

area names: COMMAND window

COMMAND

>>> go main

cmd_echo

cmd_inputcmd_prompt cmd_cursor

Done

file sample.c

wa eee

Name ”eee” not found
error_msg

Area identification Parameter name

Echoed commands in display area cmd_echo

Errors shown in display area error_msg

Command-line prompt cmd_prompt

Text that you enter on the command line cmd_input

Command-line cursor cmd_cursor

 Changing the Colors of the Debugger Display

v Chapter Title—Attribute Reference

area names: DISASSEMBLY and FILE windows

DISASSEMBLY

ffc00000 098f main: MMTM SP,A7,A9,A11,F

P

ffc00020 4dcd MOVE STK,FP

ffc00030 0b0e ADDI 64,STK

ffc00050 93ee MOVE SP,*STK+,1

ffc00060 4529 SUB A9,A9

asm_data

FILE: t1.c

asm_clabel

asm_label file_brk

file_line

file_text

file_pc

file_pc_brk

00053 extern call();

00054 extern meminit():

00055 main()

00056 {

*eof

asm_cdata

file_eof

Area identification Parameter name

Object code in DISASSEMBLY window that is associated
with current C statement

asm_cdata

Object code in DISASSEMBLY window asm_data

Addresses in DISASSEMBLY window asm_label

Addresses in DISASSEMBLY window that are associated
with current C statement

asm_clabel

Line numbers in FILE window file_line

End-of-file marker in FILE window file_eof

Text in FILE or DISASSEMBLY window file_text

Breakpointed text in FILE or DISASSEMBLY window file_brk

Current PC in FILE or DISASSEMBLY window file_pc

Breakpoint at current PC in FILE or DISASSEMBLY
window

file_pc_brk

Changing the Colors of the Debugger Display

vi

area names: data-display windows

MEMORY

field_textfield_label

field_edit

ffc00000 098f 0154 4dcd 0b0e 0040 93ee

ffc00060 4529 832d b32d 0020 0d5f 0800

ffc000c0 132d b32d 0020 0000 098f 0154

ffc00120 0040 93ee 0000 0020 0d5f 0000

ffc00180 0154 4dcd 0b0e b32d 0020 4000

ffc00130 0000 0020 0d5f 0000 0154 4dcd

field_error

field_hilite

Area identification Parameter name

Label of a window field (includes register names in CPU
window, addresses in MEMORY window, index numbers
and labels in WATCH window, member names in DISP
window)

field_label

Text of a window field (includes data values for all
data-display windows) and of most command output
messages in command window

field_text

Text of a highlighted field field_hilite

Text of a field that has an error (such as an invalid
memory location)

field_error

Text of a field being edited (includes data values for all
data-display windows)

field_edit

 Changing the Colors of the Debugger Display

vii Chapter Title—Attribute Reference

area names: menu bar and pulldown menus

menu_bar

menu_border

Load Break Watch
Add
Delete
Reset

Memory Color Mode

menu_entrymenu_cmd

menu_hilite
menu_hicmd

Area identification Parameter name

Top line of display screen; background to main menu
choices

menu_bar

Border of any pulldown menu menu_border

Text of a menu entry menu_entry

Invocation key for a menu or menu entry menu_cmd

Text for current (selected) menu entry menu_hilite

Invocation key for current (selected) menu entry menu_hicmd

Changing the Border Styles of the Windows

viii

13.2 Changing the Border Styles of the Windows

In addition to changing the colors of areas in the display, the debugger allows
you to modify the border styles of the windows.

border Use the BORDER command to change window border styles. The format for
this command is:

border [active window style] [, inactive window style] [, resize style]

This command can change the border styles of the active window, the inactive
windows, and any window that is being resized. The debugger supports nine
border styles. Each parameter for the BORDER command must be one of the
numbers that identifies these styles:

Index Style

0 Double-lined box

1 Single-lined box

2 Solid 1/2-tone top, double-lined sides and bottom

3 Solid 1/4-tone top, double-lined sides and bottom

4 Solid box, thin border

5 Solid box, heavy sides, thin top and bottom

6 Solid box, heavy borders

7 Solid 1/2-tone box

8 Solid 1/4-tone box

Here are some examples of the BORDER command. If desired, you can skip
parameters as shown in the examples.

border 6,7,8 Change style of active, inactive, and resize windows
border 1,,2 Change style of active and resize windows
border ,3 Change style of inactive window

You can execute the BORDER command as the Border selection on the Color
pulldown menu. The debugger displays a dialog box so that you can enter the
parameter values; in the dialog box, active window style is called foreground,
and inactive window style is called background.

 Saving and Using Custom Displays

ix Chapter Title—Attribute Reference

13.3 Saving and Using Custom Displays

The debugger allows you to save and use as many custom configurations as
you like.

When you invoke the debugger, it looks for a screen configuration file named
init.clr. This file defines how various areas of the display will appear. If the
debugger doesn’t find init.clr, it uses a default screen configuration. Initially,
init.clr defines a screen configuration that exactly matches the default
configuration.

The debugger supports two commands for saving and restoring custom
screen configurations into files. The filenames that you use for restoring
configurations must correspond to the filenames that you used for saving
configurations. Note that these are binary files, not text files, so you can’t edit
the files with a text editor.

Changing the default display for monochrome monitors

The default display is most useful with color monitors. The debugger highlights
changed values, messages, and other information with color; this may not be
particularly helpful if you are using a monochrome monitor.

The debugger package includes another screen configuration file named
mono.clr that defines a screen configuration that can be used with
monochrome monitors. The best way to use this configuration is to rename the
file:

1) Rename the original init.clr file—you might want to call it color.clr.

2) Now rename the mono.clr file. Call it init.clr. Now, whenever you invoke the
debugger, it will automatically come up with a customized screen
configuration for monochrome files.

If you aren’t happy with the way that this file defines the screen configuration,
you can customize it.

Saving and Using Custom Displays

x

Saving a custom display

ssave Once you’ve customized the debugger display to your liking, you can use the
SSAVE command to save the current screen configuration to a file. The format
for this command is:

ssave [filename]

This saves the screen colors, window positions, window sizes, and border
styles for all debugging modes. The filename parameter names the new
screen configuration file. You can include path information (including relative
pathnames); if you don’t supply path information, the debugger places the file
in the current directory.

If you don’t supply a filename, then the debugger saves the current
configuration into a file named init.clr in the current directory.

You can execute this command as the Save selection on the Color pulldown
menu.

Loading a custom display

sconfig You can use the SCONFIG command to restore the display to a particular
configuration. The format for this command is:

sconfig [filename]

This restores the screen colors, window positions, window sizes, and border
styles that were saved with the SSAVE command into filename. If you don’t
supply a filename, the debugger looks for the init.clr file. The debugger
searches for the specified file (or for init.clr) in the current directory and then
in directories named with the D_DIR environment variable.

You can execute this command as the Load selection on the Color pulldown
menu.

 Saving and Using Custom Displays

xi Chapter Title—Attribute Reference

Invoking the debugger with a custom display

If you set up the screen in a way that you like and always want to invoke the
debugger with this screen configuration, you have two choices for
accomplishing this:

� Save the configuration in init.clr.

� Add a line to the init.cmd file (the batch file that the debugger executes at
invocation time); this line should use the SCONFIG command to load the
custom configuration.

Returning to the default display

If you saved a custom configuration into init.clr but don’t want the debugger to
come up in that configuration, then rename the file or delete it. If you are in the
debugger, have changed the configuration, and would like to revert to the
default, just execute the SCONFIG command without a filename.

Changing the Prompt

xii

13.4 Changing the Prompt

prompt The debugger enables you to change the command-line prompt by using the
PROMPT command. The format of this command is:

prompt new prompt

The new prompt can be any string of characters, excluding semicolons and
commas. (If you type a semicolon or a comma, it terminates the prompt string.)

The SSAVE command doesn’t save the command-line prompt as part of a
custom configuration. The SCONFIG command doesn’t change the
command-line prompt. If you change the prompt, it stays changed until you
change it again, even if you use SCONFIG to load a different screen
configuration.

If you always want to use a different prompt, you can add a PROMPT
statement to the init.cmd file (the batch file that the debugger executes at
invocation time).

You can also execute this command as the Prompt selection on the Color
pulldown menu.

i Chapter Title—Attribute Reference

Summary of Commands
 and Special Keys

This chapter summarizes the debugger’s commands and special key sequences.

Synopsis Topic
Page

The chapter begins with a de-
scription of the various categories
of debugger commands and then
lists the various commands that
fall under these categories.

14.1 Functional Summary of Debugger Commands ii
Changing modes iii
Managing windows iii
Performing system tasks iii
Displaying and changing data iv
Displaying files and loading programs iv
Managing breakpoints v
Loading TIGA applications v
Customizing the screen v
Memory mapping vi
Running programs vi

The main portion of this chapter is
the alphabetical command refer-
ence. Each debugger command
is listed with its syntax, applicable
modes, its correspondence to a
pulldown menu (if any), and a
short description.

14.2 Alphabetical Summary of Debugger Commands vii

The chapter ends with a summary
of special keys and their functions
in the debugger environment.

14.3 Summary of Special Keys xxxviii
Editing text on the command line xxxviii
Using the command history xxxviii
Switching modes xxxix
Halting or escaping from an action xxxix
Displaying the pulldown menus xxxix
Running code xl
Selecting or closing a window xl
Moving or sizing a window xl
Scrolling through a window’s contents xli
Editing data or selecting the active field xli

Chapter 14

Functional Summary of Debugger Commands

ii

14.1 Functional Summary of Debugger Commands

This section summarizes the debugger commands according to these
categories:

� Changing modes. These commands enable you to switch freely between
the three debugging modes (auto, mixed, and assembly). You can select
these commands from the Mode pulldown menu, also.

� Managing windows. These commands enable you to select the active
window and move or resize the active window. You can perform these
functions with the mouse, also.

� Performing system tasks. These commands enable you to perform
several DOS-like functions and provide you with some control over the
target system.

� Displaying and changing data. These commands enable you to display
and evaluate a variety of data items. Some of these commands are
available on the Watch pulldown menu, also.

� Displaying files and loading programs. These commands enable you
to change the displays in the FILE and DISASSEMBLY windows and to
load object files into memory. Several of these commands are available
on the Load pulldown menu.

� Managing breakpoints. These commands provide you with a
command-line method for controlling software breakpoints. These
commands are available through the Break pulldown menu. You can also
set/clear breakpoints interactively.

� Customizing the screen. These commands allow you to customize the
debugger display, then save and later reuse the customized displays.
These commands are available from the Color pulldown menu, also.

� Memory mapping. These commands enable you to define the areas of
target memory that the debugger can access or to fill a memory range with
an initial value. These commands are available on the Memory pulldown
menu, also.

� Running programs. These commands provide you with a variety of
methods for running your programs in the debugger environment. The
basic run and single-step commands are available on the menu bar, also.

 Functional Summary of Debugger Commands

iii Chapter Title—Attribute Reference

Changing modes

To do this
Use this
command See page

Put the debugger in assembly mode asm ix

Put the debugger in auto mode for debugging C
code

c xi

Put the debugger in mixed mode mix xxi

Managing windows

To do this
Use this
command See page

Make the active window as large as possible zoom xxxvii

Select the active window win xxxvi

Reposition the active window move xxii

Resize the active window size xxx

Performing system tasks

To do this
Use this
command See page

Define your own command string alias viii

Associate a beeping sound with the display of error
messages

sound xxxi

Enter any operating-system command or exit to a
system shell

system xxxii

Delete an alias definition unalias xxxiv

Clear all displayed information from the COMMAND
window display area

cls xii

Change the current working directory from within the
debugger environment

cd/chdir xii

List the contents of the current directory or any other
directory

dir xv

Name additional directories that can be searched
when you load source files

use xxxv

Execute commands from a batch file take xxxiii

Reset the target system (emulator only) or reload
gspmon.out (development boards only)

reset xxv

Exit the debugger quit xxiv

Functional Summary of Debugger Commands

iv

Displaying and changing data

To do this
Use this
command See page

Change the default format for displaying data values setf xxix

Show the type of a data item whatis xxxvi

Evaluate and display the result of a C expression ? vii

Evaluate a C expression without displaying the
results

eval xvi

Display the values in an array or structure or display
the value that a pointer is pointing to

disp xv

Display a different range of memory in the MEMORY
window

mem xx

Open the FPU window fpuregs xvii

Open the I/O window ioregs xviii

Continuously display the value of a variable, regis-
ter, or memory location within the WATCH window

wa xxxv

Delete a data item from the WATCH window wd xxxvi

Delete all data items from the WATCH window and
close the WATCH window

wr xxxvii

Displaying files and loading programs

To do this
Use this
command See page

Display a text file in the FILE window file xvi

Display C and/or assembly language code at a
specific point

addr viii

Display assembly language code at a specific
address

dasm xiv

Display a specific C function func xvii

Reopen the CALLS window calls xi

Load an object file load xix

Load only the object-code portion of an object file reload xxiv

Load only the symbol-table portion of an object file sload xxxi

 Functional Summary of Debugger Commands

v Chapter Title—Attribute Reference

Managing breakpoints

To do this
Use this
command See page

Add a breakpoint ba ix

Delete a breakpoint bd ix

Display a list of all the breakpoints that are set bl x

Reset (delete) all breakpoints br xi

Loading TIGA applications

To do this
Use this
command See page

Load a previously loaded TIGA module or list the
modules that were dynamically loaded

mod xxi

Set a tentative breakpoint tba xxxiv

Clear a tentative breakpoint tbd xxxiv

Customizing the screen

To do this
Use this
command See page

Change the screen colors and update the screen
immediately

scolor xxvii

Change the screen colors, but don’t update the
screen immediately

color xiii

Change the border style of any window border x

Change the command-line prompt prompt xxiv

Save a custom screen configuration ssave xxxi

Load and use a previously saved custom screen
configuration

sconfig xxviii

Functional Summary of Debugger Commands

vi

Memory mapping

To do this
Use this
command See page

Initialize a block of memory fill xvii

Save a block of memory to a system file ms xxiii

Enable or disable memory mapping map xx

Add an address range to the memory map ma xix

Delete an address range from the memory map md xx

Reset (delete all ranges) the memory map mr xxiii

Display a list of the current memory map settings ml xxi

Running programs

To do this
Use this
command See page

Run a program run xxvi

Run a program up to a certain point go xviii

Single-step through assembly language or C code step xxxii

Single-step through assembly language or C code,
one C statement at a time

cstep xiv

Single-step through assembly language or C code;
step over function calls

next xxiii

Single-step through assembly language or C code
one C statement at a time; step over function calls

cnext xii

Run a program with benchmarking—count the
number of CPU clock cycles consumed by the
executing portion of code (emulator only)

runb xxvi

Execute code in a function and return to the
function’s caller

return xxv

Reset the program entry point restart xxv

Disconnect the emulator from the target system and
run free (emulator only)

runf xxvii

Halt the target system after executing a RUNF
command (emulator only)

halt xviii

Execute commands from a batch file take xxxiii

Reset the target system (emulator only) or reload
gspmon.out (development boards only)

reset xxv

 Alphabetical Summary of Debugger Commands

vii Chapter Title—Attribute Reference

14.2 Alphabetical Summary of Debugger Commands

Commands are not case sensitive; to emphasize this, command names are
shown in both uppercase and lowercase throughout this book.

Evaluate Expression?

Syntax ? expression [, display format]

Menu selection none

Description The ? (evaluate expression) command evaluates an expression and shows
the result in the COMMAND window display area. The expression can be any
C expression, including an expression with side effects; however, you cannot
use a string constant or function call in the expression.

If the result of expression is not an array or structure, then the debugger
displays the results in the COMMAND window. If expression is a structure or
array, ? displays the entire contents of the structure or array; you can halt long
listings by pressing ESC .

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point s ASCII string

f Decimal floating point u Unsigned decimal

Running Title—Attribute Reference

viii

Display Code at Selected Addressaddr

Syntax addr address
addr function name

Menu selection none

Description Use the ADDR command to display C code or the disassembly at a specific
point. ADDR’s behavior changes, depending on the current debugging mode:

� In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
DISASSEMBLY window.

� In a C display, ADDR works like the FUNC command, displaying the code
starting at address or at function name in the FILE window.

� In mixed mode, ADDR affects both the DISASSEMBLY and FILE
windows.

The address parameter is treated as a program-memory address.

Note:

ADDR affects the FILE window only if the specified address is in a C function.

Define Custom Command Stringalias

Syntax alias [alias name [, ”command string”]]

Menu selection none

Description The ALIAS command allows you to associate one or more debugger
commands with a single alias name. You can include as many debugger
commands in the command string as you like, as long you separate them with
semicolons and enclose the entire string of commands in quotation marks. You
can also identify debugger-command parameters by a percent sign followed
by a number (%1, %2, etc.). The total number of characters for an individual
command (expanded to include parameter values) is limited to 132.

Previously defined alias names can be included as part of the definition for a
new alias.

To find the current definition of an alias, enter the ALIAS command with the
alias name only. To see a list of all defined aliases, enter the ALIAS command
with no parameters.

 Alphabetical Summary of Debugger Commands

ix Chapter Title—Attribute Reference

Enter Assembly-Only Debugging Modeasm

Syntax asm

Menu selection MoDe→Asm

Description The ASM command changes from the current debugging mode to assembly
mode. If you’re already in assembly mode, the ASM command has no effect.

Breakpoint Addba

Syntax ba address

Menu selection Break→Add

Description The BA command sets a breakpoint at a specific address. This command is
useful because it doesn’t require you to search through code to find the desired
line. The address can be an absolute address, any C expression, the name
of a C function, or the name of an assembly language label.

Breakpoint Deletebd

Syntax bd address

Menu selection Break→ Delete

Description The BD command clears a breakpoint at a specific address. The address can
be an absolute address, any C expression, the name of a C function, or the
name of an assembly language label.

Alphabetical Summary of Debugger Commands

x

Breakpoint Listbl

Syntax bl

Menu selection Break→List

Description The BL command provides an easy way to get a complete listing of all the
breakpoints that are currently set in your program. It displays a table of
breakpoints in the COMMAND window display area. BL lists all the
breakpoints that are set, in the order in which you set them.

Change Style of Window Borderborder

Syntax border [active window style] [[,inactive window style] [,resize window style]

Menu selection Color→Border

Description The BORDER command changes the border style of the active window, the
inactive windows, and any window that you’re resizing. The debugger
supports nine border styles. Each parameter for the BORDER command must
be one of the numbers that identifies these styles:

Index Style

0 Double-lined box

1 Single-lined box

2 Solid 1/2-tone top, double-lined sides/bottom

3 Solid 1/4-tone top, double-lined sides/bottom

4 Solid box, thin border

5 Solid box, heavy sides, thin top/bottom

6 Solid box, heavy borders

7 Solid 1/2-tone box

8 Solid 1/4-tone box

Note that you can execute the BORDER command as the Border selection on
the Color pulldown menu. The debugger displays a dialog box so that you can
enter the parameter values; in the dialog box, active window style is called
foreground, and inactive window style is called background.

 Alphabetical Summary of Debugger Commands

xi Chapter Title—Attribute Reference

Breakpoint Resetbr

Syntax br

Menu selection Break→Reset

Description The BR command clears all breakpoints that are set.

Enter Auto Debugging Modec

Syntax c

Menu selection MoDe→C (auto)

Description The C command changes from the current debugging mode to auto mode. If
you’re already in auto mode, then the C command has no effect.

Open CALLS Windowcalls

Syntax calls

Menu selection none

Description The CALLS command displays the CALLS window. The debugger displays
this window automatically when you are in auto/C or mixed mode. However,
you can close the CALLS window; the CALLS command opens the window up
again.

Alphabetical Summary of Debugger Commands

xii

Change Directorycd, chdir

Syntax cd [directory name]
chdir [directory name]

Menu selection none

Description The CD or CHDIR command changes the current working directory from within
the debugger. You can use relative pathnames as part of the directory name.
If you you don’t use a pathname, the CD command displays the name of the
current directory. Note that this command can affect any other command
whose parameter is a filename, such as the FILE, LOAD, and TAKE
commands. You can also use the CD command to change the current drive.
For example:

cd a:
cd d:\csource
cd c:\emu34020

Clear Screencls

Syntax cls

Menu selection none

Description The CLS command clears all displayed information from the COMMAND
window display area.

Single-Step C, Next Statementcnext

Syntax cnext [expression]

Menu selection Next=F10 (in C code)

Description The CNEXT command is similar to the CSTEP command. It runs a program
one C statement at a time, updating the display after executing each
statement. If you’re using CNEXT to step through assembly language code,
the debugger won’t update the display until it has executed all assembly
language statements associated with a single C statement. Unlike CSTEP,
CNEXT steps over function calls rather than stepping into them—you don’t
see the single-step execution of the function call.

The expression parameter specifies the number statements that you want to
single-step. You can also use a conditional expression for conditional
single-step execution (Running code conditionally, page xv, discusses this in
detail).

 Alphabetical Summary of Debugger Commands

xiii Chapter Title—Attribute Reference

Change Screen Colorscolor

Syntax color area name, attribute1 [,attribute2 [,attribute3 [,attribute4]]]

Menu selection none

Description The COLOR command changes the color of specified areas of the debugger
display. COLOR doesn’t update the display; the changes take effect when
another command, such as SCOLOR, updates the display. The area name
parameter identifies the area of the display that is affected. The attributes
identify how the area is affected. The first two attribute parameters usually
specify the foreground and background colors for the area. If you do not supply
a background color, the debugger uses black as the background.

Valid values for the attribute parameters include:

black blue green cyan

red magenta yellow white

bright blink

Valid values for the area name parameters include:

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify the attribute. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed above (left to right, top to bottom).

Alphabetical Summary of Debugger Commands

xiv

Single-Step Ccstep

Syntax cstep [expression]

Menu selection Step=F8 (in C code)

Description The CSTEP single-steps through a program, one C statement at a time,
updating the display after executing each statement. If you’re using CSTEP
to step through assembly language code, the debugger won’t update the
display until it has executed all assembly language statements associated with
a single C statement.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number statements that you want to
single-step. You can also use a conditional expression for conditional
single-step execution (Running code conditionally, page xv, discusses this in
detail).

Display Selected Disassemblydasm

Syntax dasm address
dasm function name

Menu selection none

Description The DASM command displays code beginning at a specific point within the
DISASSEMBLY window. The address parameter is treated as a program-
memory address.

 Alphabetical Summary of Debugger Commands

xv Chapter Title—Attribute Reference

Show Directory Contentsdir

Syntax dir [directory name]

Menu selection none

Description The DIR command displays a directory listing in the display area of the
COMMAND window. If you use the optional directory name parameter, the
debugger displays a list of the specified directory’s contents. If you don’t use
the parameter, the debugger lists the contents of the current directory.

Open DISPlay Windowdisp

Syntax disp expression [, display format]

Menu selection none

Description The DISP command opens a DISP window to display the contents of an array,
structure, or pointer expressions to a scalar type (of the form *pointer). If the
expression is not one of these types, then DISP acts like a ? command. You
can have up to 120 DISP windows open at the same time.

Once you open a DISP window, you may find that a displayed member is itself
an array, structure, or pointer:

A member that is an array looks like this [. . .]
A member that is a structure looks like this {. . .}
A member that is a pointer looks like an address 0x00000000

You can display the additional data (the data pointed to or the members of the
array or structure) in another DISP window by using the DISP command again,
using the arrow keys to select the field and then pressing F9 , or pointing the
mouse cursor to the field and pressing the left mouse button.

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point s ASCII string

f Decimal floating point u Unsigned decimal

Alphabetical Summary of Debugger Commands

xvi

The display format parameter can be used only when you are displaying a
scalar type, an array of scalar type, or a individual member of an aggregate
type.

You can also use the DISP command with a typecast expression to display
memory contents in any format. Here are some examples:

disp *0
disp *(float *)123
disp *(char *)0x111

This shows memory in the DISP window as an array of locations; the location
that you specify with the expression parameter is member [0], and all other
locations are offset from that location.

Evaluate Expressioneval

Syntax eval expression
e expression

Menu selection none

Description The EVAL command evaluates an expression like the ? command does but
does not show the result in the COMMAND window display area. EVAL is
useful for assigning values to registers or memory locations in a batch file
(where it’s not necessary to display the result).

Display Text Filefile

Syntax file filename

Menu selection Load→File

Description The FILE command displays the contents of any text file in the FILE window.
The debugger continues to display this file until you run a program and halt in
a C function. This command is intended primarily for displaying C source code.
You can view only one text file at a time.

You are restricted to displaying files that are 65,518 bytes long or less.

 Alphabetical Summary of Debugger Commands

xvii Chapter Title—Attribute Reference

Fill Memoryfill

Syntax fill address, length,data

Menu selection Memory→Fill

Description The FILL command fills a block of memory with a specified value. This
command has three parameters:

� The address parameter identifies the beginning of the block.
� The length parameter defines the number of 32-bit words that will be filled.
� The data is the value that the memory block will be filled with.

Display ’34082 Registersfpuregs

Syntax fpuregs

Menu selection none

Environments basic debugger profiler

Description The FPUREGS command opens the FPU window to display ’34082 registers.
The window shows ’34082 A- and B-file registers in double-precision scientific
notation and status/configuration registers as hexadecimal values.

Note:

The FPU window can be displayed only if you’ve invoked the debugger with
the –mc option.

Display Functionfunc

Syntax func function name
func address

Menu selection none

Description The FUNC command displays a specified C function in the FILE window. You
can identify the function by its name or its address; an address parameter is
treated as a program-memory address. FUNC works similarly to FILE, but
when you use FUNC, you don’t need to identify the name of the file that
contains the function.

Alphabetical Summary of Debugger Commands

xviii

Run to Specified Addressgo

Syntax go [address]

Menu selection none

Description The GO command executes code up to a specific point in your program. The
address parameter is treated as program-memory address. If you don’t supply
an address, then GO acts like a RUN command without an expression
parameter.

Halt Target Systemhalt

Syntax halt

Menu selection none

Description The HALT command halts the target system after you’ve entered a RUNF
command. When you invoke the debugger, it automatically executes a HALT
command. Thus, if you enter a RUNF, quit the debugger, and later reinvoke
the debugger, you will effectively reconnect the emulator to the target system
and run the debugger in its normal mode of operation.

Note:

This command is for the emulator only; it does not work with the development
board version of the debugger. If you attempt to use the HALT command with
a development board, the debugger displays this error message:

––– Execution error

Display I/O registersioregs

Syntax ioregs

Menu selection none

Environments basic debugger profiler

Description The IOREGS command opens the I/O window to display the ’340 I/O registers.

 Running Title—Attribute Reference

xix Chapter Title—Attribute Reference

Load Object Fileload

Syntax load object filename

Menu selection Load→ Load

Description The LOAD command loads both an object file and its associated symbol table
into memory. In effect, the LOAD command performs both a RELOAD and an
SLOAD. Note that the LOAD command clears the old symbol table and closes
the WATCH and DISP windows.

Do not use the LOAD command while debugging TIGA applications.

Memory Map Addma

Syntax ma address, length, type

Menu selection Memory→Add

Description The MA command identifies valid ranges of target memory. This command has
three parameters:

� The address parameter defines the starting address of a range of memory.
This parameter can be an absolute address, any C expression, the name
of a C function, or an assembly language label.

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory
Use this keyword as the type
parameter

read-only memory R, ROM, or READONLY

write-only memory W, WOM, or WRITEONLY

read/write memory RW or RAM

no-access memory PROTECT

A new memory map must not overlap an existing entry. If you define a range
that overlaps an existing range, the debugger ignores the new range.

Alphabetical Summary of Debugger Commands

xx

Enable Memory Mappingmap

Syntax map {on | off}

Menu selection Memory→Enable

Description The MAP command enables or disables memory mapping. In some instances,
you may want to explicitly enable or disable memory. Note that disabling
memory mapping can cause bus fault problems in the target because the
debugger may attempt to access nonexistent memory.

Memory Map Deletemd

Syntax md address

Menu selection Memory→Delete

Description The MD command deletes a range of memory from the debugger’s memory
map. The address parameter identifies the starting address of a range of
memory.

Modify MEMORY Window Displaymem

Syntax mem expression [, display format]

Menu selection none

Description The MEM command identifies a new starting address for the block of memory
displayed in the MEMORY window. The debugger displays the contents of
memory at expression in the first data position in the MEMORY window. The
end of the range is defined by the size of the window. The expression can be
an absolute address, a symbolic address, or any C expression.

When you use the optional display format parameter, memory will be
displayed in one of the following formats:

 Alphabetical Summary of Debugger Commands

xxi Chapter Title—Attribute Reference

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point u Unsigned decimal

f Decimal floating point

Enter Mixed Debugger Modemix

Syntax mix

Menu selection MoDe→Mixed

Description The MIX command changes from the current debugging mode to mixed mode.
If you’re already in mixed mode, the MIX command has no effect.

Memory Map Listml

Syntax ml

Menu selection Memory→List

Description The ML command lists the memory ranges that are defined for the debugger’s
memory map. The ML command lists the starting address, ending address,
and read/write characteristics of each defined memory range.

TIGA Module Identifiermod

Syntax mod [TIGA module name]

Menu selection none

Description Once a module has been selected and dynamically loaded, it can be selected
with the MOD command. The newly selected module becomes the default
module, which helps avoid misinterpretation of variable names used in
multiple modules.

If you would like a list of the modules that have been dynamically loaded, enter
the MOD command with no parameters.

Alphabetical Summary of Debugger Commands

xxii

Move Active Windowmove

Syntax move [X position, Y position [, width, length]]

Menu selection none

Description The MOVE command moves the upper left corner of the active window to the
specified XY position. If you choose, you can resize the window while you
move it (see the SIZE command for valid width and length values). You can
use the MOVE command in one of two ways:

� By supplying a specific X position and Y position or
� By omitting the X position and Y position parameters and using function

keys to interactively move the window.

Valid X and Y positions depend on the screen size and the window size. These
are the minimum and maximum XY positions. The maximum values assume
that the window is as small as possible; for example, if a window was half as
tall as the screen, you wouldn’t be able to move its upper left corner to an X
position on the bottom half of the screen.

Screen size
Debugger
options

Valid X
positions

Valid Y
positions

80 characters by 25 lines none 0 through 76 1 through 22

80 characters by 43 lines (EGA)
80 characters by 50 lines (VGA)

–b 0 through 76 1 through 40
1 through 47

120 characters by 43 lines –bb 0 through 116 1 through 40

132 characters by 43 lines –bbb 0 through 128 1 through 40

80 characters by 60 lines –bbbb 0 through 76 1 through 57

100 characters by 60 lines –bbbbb 0 through 106 1 through 57

Note: To use larger screen sizes, you must invoke the debugger with the appropriate –b option.

If you enter the MOVE command without X position and Y position parameters,
you can use arrow keys to move the window:

↓ Moves the active window down one line.
↑ Moves the active window up one line.
← Moves the active window left one character position.
→ Moves the active window right one character position.

When you’re finished using the arrow keys, you must press or .

 Alphabetical Summary of Debugger Commands

xxiii Chapter Title—Attribute Reference

Memory Map Resetmr

Syntax mr

Menu selection Memory→Reset

Description The MR command resets the debugger’s memory map by deleting all defined
memory ranges from the map.

Save a Block of Memory to a Filems

Syntax ms address, length,filename

Menu selection Memory→Save

Description The MS command saves the values in a block of memory to a system file. The
command has three parameters:

� The address parameter identifies the beginning of the block.
� The length parameter defines the length, in words, of the block.
� The filename is a system file. Files are saved in COFF format.

Single-Step, Next Statementnext

Syntax next [expression]

Menu selection Next=F10 (in disassembly)

Description The NEXT command is similar to the STEP command. If you’re in C code, the
debugger executes one C statement at a time. In assembly or mixed mode,
the debugger executes one assembly language statement at a time. Unlike
STEP, NEXT never updates the display when executing called functions;
NEXT always steps to the next consecutive statement. Unlike STEP, NEXT
steps over function calls rather than stepping into them—you don’t see the
single-step execution of the function call.

The expression parameter specifies the number statements that you want to
single-step. You can also use a conditional expression for conditional
single-step execution (Running code conditionally, page xv, discusses this in
detail).

Alphabetical Summary of Debugger Commands

xxiv

Change Command-Line Promptprompt

Syntax prompt new prompt

Menu selection Color→Prompt

Description The PROMPT command changes the command-line prompt. The new prompt
can be any string of characters (note that a semicolon or comma ends the
string).

Exit Debuggerquit

Syntax quit

Menu selection none

Description The QUIT command exits the debugger and returns to the DOS environment.

Reload Object Codereload

Syntax reload object filename

Menu selection Load→Reload

Description The RELOAD command loads only an object file without loading its
associated symbol table. This is useful for reloading a program when target
memory has been corrupted.

Do not use the RELOAD command while debugging TIGA applications.

 Alphabetical Summary of Debugger Commands

xxv Chapter Title—Attribute Reference

Reset Target Systemreset

Syntax reset

Menu selection Load→ReseT

Description The RESET command works differently for the various ’340 debugging
systems:

� For the emulator, RESET resets the target system. This is a software
reset.

� For development boards, RESET reloads the monitor (gspmon) but does
not reset the ’340 device.

Reset PC to Program Entry Pointrestart

Syntax restart
rest

Menu selection Load→REstart

Description The RESTART or REST command resets the program to its entry point. (This
assumes that you have already used one of the load commands to load a
program into memory.)

Return to Function’s Callerreturn

Syntax return
ret

Menu selection none

Description The RETURN or RET command executes the code in the current C function
and halts when execution reaches the caller. Breakpoints do not affect this
command, but you can halt execution by pressing the left mouse button or
pressing ESC .

Alphabetical Summary of Debugger Commands

xxvi

Run Coderun

Syntax run [expression]

Menu selection Run=F5

Description The RUN command is the basic command for running an entire program. The
command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press the left mouse button or press ESC .

� If you supply a logical or relational expression, this becomes a conditional
run (described in detail on page xv).

� If you supply any other type of expression, the debugger treats the
expression as a count parameter. The debugger executes count
instructions, halts, and updates the display.

Run Benchmarkrunb

Syntax runb

Menu selection none

Description The RUNB command executes a specific section of code and counts the
number of CPU clock cycles consumed by the execution. In order to operate
correctly, execution must be halted by a breakpoint. After RUNB execution
halts, the debugger stores the number of cycles into the CLK pseudoregister.
For a complete explanation of the RUNB command and the benchmarking
process, read Section 9.7, Benchmarking, on page xvii.

Note: Emulator Only

This command is for the emulator only; it does not work with the development
board version of the debugger. If you attempt to use the RUNB command with
a development board, the debugger displays this error message:

––– Execution error

 Alphabetical Summary of Debugger Commands

xxvii Chapter Title—Attribute Reference

Run Freerunf

Syntax runf

Menu selection none

Description The RUNF command disconnects the emulator from the target system while
code is executing. When you enter RUNF, the debugger clears all breakpoints,
disconnects the emulator from the target system, and causes the processor
to begin execution at the current PC. You can quit the debugger, or you can
continue to enter commands. However, any command that causes the
debugger to access the target at this time produces an error.

The HALT command stops a RUNF; the debugger automatically executes a
HALT when the debugger is invoked.

Note: Emulator Only

This command is for the emulator only; it does not work with the development
board version of the debugger. If you attempt to use the RUNF command with
a development board, the debugger displays this error message:

––– Execution error

Change Screen Colorsscolor

Syntax scolor area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]

Menu selection Color→Config

Description The SCOLOR command changes the color of specified areas of the debugger
display and updates the display immediately. The area name parameter
identifies the area of the display that is affected. The attributes identify how the
area is affected. The first two attribute parameters usually specify the
foreground and background colors for the area. If you do not supply a
background color, the debugger uses black as the background.

Valid values for the attribute parameters include:

black blue green cyan

red magenta yellow white

bright blink

Alphabetical Summary of Debugger Commands

xxviii

Valid values for the area name parameters include:

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify the attribute. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed above (left to right, top to bottom).

Load Screen Configurationsconfig

Syntax sconfig [filename]

Menu selection Color→Load

Description The SCONFIG command restores the display to a specified configuration.
This restores the screen colors, window positions, window sizes, and border
styles that were saved with the SSAVE command into filename. If you don’t
supply a filename, the debugger looks for the init.clr file. The debugger
searches for the specified file in the current directory and then in directories
named with the D_DIR environment variable.

 Running Title—Attribute Reference

xxix Chapter Title—Attribute Reference

Set Default Data-Display Formatsetf

Syntax setf [data type, display format]

Menu selection none

Description The SETF command changes the display format for a specific data type. If you
enter SETF with no parameters, the debugger lists the current display format
for each data type.

� The data type parameter can be any of the following C data types:

char short uint ulong double
uchar int long float ptr

� The display format parameter can be any of the following characters:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point s ASCII string

f Decimal floating point u Unsigned decimal

Only a subset of the display formats can be used for each data type. Listed
below are the valid combinations of data types and display formats.

Data Valid Display Formats Data Valid Display Formats

Type c d o x e f p s u Type c d o x e f p s u

char (c) √ √ √ √ √ long (d) √ √ √ √ √

uchar (d) √ √ √ √ √ ulong (d) √ √ √ √ √

short (d) √ √ √ √ √ float (e) √ √ √ √

int (d) √ √ √ √ √ double (e) √ √ √ √

uint (d) √ √ √ √ √ ptr (p) √ √ √ √

To return all data types to their default display format, enter:

setf *

Running Title—Attribute Reference

xxx

Size Active Windowsize

Syntax size [width, length]

Menu selection none

Description The SIZE command changes the size of the active window. You can use the
SIZE command in one of two ways:

� By supplying a specific width and length or
� By omitting the width and length parameters and using function keys to

interactively resize the window.

Valid values for the width and length depend on the screen size and the
window position on the screen. These are the minimum and maximum window
sizes.

Screen size
Debugger
options Valid widths Valid lengths

80 characters by 25 lines none 4 through 80 3 through 24

80 characters by 43 lines (EGA)
80 characters by 50 lines (VGA)

–b 4 through 80 3 through 42
3 through 49

120 characters by 43 lines –bb 4 through 120 3 through 42

132 characters by 43 lines –bbb 4 through 132 3 through 42

80 characters by 60 lines –bbbb 4 through 80 3 through 59

100 characters by 60 lines –bbbbb 4 through 100 3 through 59

Note: To use larger screen sizes, you must invoke the debugger with the appropriate –b option.

The maximum sizes assume that the window is in the upper left corner
(beneath the menu bar). If a window is in the middle of the display, for example,
you can’t size it to the maximum height and width; you can size it only to the
right and bottom screen borders.

If you enter the SIZE command without width and length parameters, you can
use arrow keys to size the window:

↓ ↓ Makes the active window one line longer.
↑ Makes the active window one line shorter.
← Makes the active window one character narrower.
→ Makes the active window one character wider.

When you’re finished using the arrow keys, you must press or .

 Alphabetical Summary of Debugger Commands

xxxi Chapter Title—Attribute Reference

Load Symbol Tablesload

Syntax sload object filename

Menu selection Load→Symbols

Description The SLOAD command loads the symbol table of the specified object file.
SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point. Note that SLOAD closes the
WATCH and DISP windows.

Enable Error Beepsound

Syntax sound on | off

Menu selection none

Description You can cause a beep to sound every time a debugger error message is
displayed. This is useful if the COMMAND window is hidden (you wouldn’t see
the error message). By default, sound is off.

Save Screen Configurationssave

Syntax ssave [filename]

Menu selection Color→Save

Description The SSAVE command saves the current screen configuration to a file. This
saves the screen colors, window positions, window sizes, and border styles.
The filename parameter names the new screen configuration file. You can
include path information (including relative pathnames); if you don’t supply
path information, the debugger places the file in the current directory. If you
don’t supply a filename, then the debugger saves the current configuration into
a file named init.clr and places the file in the current directory.

Running Title—Attribute Reference

xxxii

Single-Stepstep

Syntax step [expression]

Menu selection Step=F8 (in disassembly)

Description The STEP command single-steps through assembly language or C code. If
you’re in C code, the debugger executes one C statement at a time. In
assembly or mixed mode, the debugger executes one assembly language
statement at a time.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional
single-step execution (Running code conditionally, page xv, discusses this in
detail).

Enter Operating-System Commandsystem

Syntax system [operating-system command [, flag]]

Menu selection none

Description The SYSTEM command allows you to enter operating-system commands
without explicitly exiting the debugger environment.

If you enter SYSTEM with no parameters, the debugger will open a system
shell and display the operating-system prompt. At this point, you can enter any
operating-system command. (In MS-DOS, available memory may limit the
commands that you can enter.) When you finish, enter the appropriate
information to return to the debugger environment:

MS-DOS UNIX
exit exit or CONTROL D

 Alphabetical Summary of Debugger Commands

xxxiii Chapter Title—Attribute Reference

If you prefer, you can supply the operating-system command as a parameter
to the SYSTEM command. If the result of the command is a message or other
display, the debugger will blank the top of the debugger display to show the
information. In this case, you can use the flag parameter to tell the debugger
whether or not it should hesitate after displaying the information. Flag may be
a 0 or a 1.

0 If you supply a value of 0 for flag, the debugger immediately returns to
the debugger environment after the last item of information is
displayed.

1 If you supply a value of 1 for flag, the debugger does not return to the
debugger environment until you press . (This is the default.)

Execute Batch Filetake

Syntax take batch filename [, suppress echo flag]

Menu selection none

Description The TAKE command tells the debugger to read and execute commands from
a batch file. The batch filename parameter identifies the file that contains
commands.

By default, the debugger echoes the commands to the output area of the
COMMAND window and updates the display as it reads the commands from
the batch file. This behavior can be changed by using the suppress echo flag:

� If you don’t use the suppress echo flag parameter, or if you use it but supply
a nonzero value, then the debugger behaves in the default manner.

� If you would like to suppress the echoing and updating, use the value 0 for
the suppress echo flag parameter.

Running Title—Attribute Reference

xxxiv

Set a Tentative Breakpoint on a TIGA Moduletba

Syntax tba function name

Menu selection none

Description The TBA command tells the debugger to look for function name in the TIGA
application and set a breakpoint on that function when the module is loaded
by the TIGA application.

Clear a Tentative Breakpointtbd

Syntax tbd breakpoint index

Menu selection none

Description The TBD command deletes a tentative breakpoint from the list of functions to
be watched for. The breakpoint index parameter corresponds to the index
numbers shown with the BL (breakpoint list) command. If a tentative
breakpoint is resolved and active, it cannot be deleted with this command;
instead, you must use the BR (breakpoint reset) command.

Remove Custom Command Stringunalias

Syntax unalias alias name

Menu selection none

Description The UNALIAS command deletes an alias and its definition.

 Alphabetical Summary of Debugger Commands

xxxv Chapter Title—Attribute Reference

Use Different Directoryuse

Syntax use directory name

Menu selection none

Description The USE command names an additional directory that the debugger can
search when looking for source files. You can specify only one directory at a
time.

Watch Value Addwa

Syntax wa expression [, label] [, display format]

Menu selection Watch→Add

Description The WA command displays the value of expression in the WATCH window. If
the WATCH window isn’t open, executing WA opens the WATCH window. The
expression parameter can be any C expression, including an expression that
has side effects.

It’s most useful to watch an expression whose value changes over time;
constant expressions provide no useful function in the watch window. The
label parameter is optional. When used, it provides a label for the watched
entry. If you don’t use a label, the debugger displays the expression in the label
field.

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point s ASCII string

f Decimal floating point u Unsigned decimal

If you want to use a display format parameter without a label parameter, just
insert an extra comma. For example:

wa PC,,d

Alphabetical Summary of Debugger Commands

xxxvi

Watch Value Deletewd

Syntax wd index number

Menu selection Watch→Delete

Description The WD command deletes a specific item from the WATCH window. The WD
command’s index number parameter must correspond to one of the watch
indexes listed in the WATCH window.

What Is This Data?whatis

Syntax whatis symbol

Menu selection none

Description The WHATIS command shows the data type of symbol in the COMMAND
window display area. The symbol can be any variable (local, global, or static),
a function name, structure tag, typedef name, or enumeration constant.

Select Active Windowwin

Syntax win WINDOW NAME

Menu selection none

Description The WIN command allows you to select the active window by name. Note that
the WINDOW NAME is in uppercase (matching the name exactly as
displayed). You can spell out the entire window name, but you really need to
specify only enough letters to identify the window.

If several of the same types of window are visible on the screen, don’t use the
WIN command to select one of them. If you supply an ambiguous name (such
as C, which could stand for CPU or CALLS), the debugger selects the first
window it finds whose name matches the name you supplied. If the debugger
doesn’t find the window you asked for (because you closed the window or
misspelled the name), then the WIN command has no effect.

 Running Title—Attribute Reference

xxxvii Chapter Title—Attribute Reference

WATCH Window Resetwr

Syntax wr

Menu selection Watch→Reset

Description The WR command deletes all items from the WATCH window and closes the
window.

Enlarge Active Windowzoom

Syntax zoom

Menu selection none

Description The ZOOM command makes the active window as large as possible. To
“unzoom” a window, enter the ZOOM command a second time; this returns the
window to its prezoom size and position.

Summary of Special Keys

xxxviii

14.3 Summary of Special Keys

The debugger provides function key, cursor key, and command key
sequences for performing a variety of actions:

� Editing text on the command line
� Using the command history
� Switching modes
� Halting or escaping from an action
� Displaying the pulldown menus
� Running code
� Selecting or closing a window
� Moving or sizing a window
� Scrolling through a window’s contents
� Editing data or selecting the active field

Editing text on the command line

To do this
Use these
function keys

Enter the current command (note that if you press the return key
in the middle of text, the debugger truncates the input text at the
point where you press this key)

Move back over text without erasing characters
or

Move forward through text without erasing characters

Move back over text while erasing characters

Move forward through text while erasing characters

Insert text into the characters already on the command line

Using the command history

To do this
Use these
function keys

Repeat the last command that you entered

Move backward, one command at a time, through the command
history

Move forward, one command at a time, through the command
history

 Summary of Special Keys

xxxix Chapter Title—Attribute Reference

Switching modes

To do this
Use this
function key

Switch debugging modes in this order:

auto assembly mixed

Halting or escaping from an action

The escape key acts as an end or undo key in several situations.

To do this
Use this
function key

� Halt program execution

� Close a pulldown menu

� Undo an edit of the active field in a data-display window
(pressing this key leaves the field unchanged)

� Halt the display of a long list of data in the COMMAND window
display area

Displaying pulldown menus

To do this
Use these
function keys

Display the Load menu

Display the Break menu

Display the Watch menu

Display the Memory menu

Display the Color menu

Display the MoDe menu

Display an adjacent menu or

Execute any of the choices from a displayed pulldown menu Press the high-
lighted letter cor-
responding to
your choice

Summary of Special Keys

xl

Running code

To do this
Use these
function keys

Run code from the current PC (equivalent to the RUN command
without an expression parameter)

Single-step code from the current PC (equivalent to the STEP
command without an expression parameter)

Single-step code from the current PC; step over function calls
(equivalent to the NEXT command without an expression param-
eter)

Selecting or closing a window

To do this
Use these
function keys

Select the active window (pressing this key makes each window
active in turn; stop pressing the key when the desired window
becomes active)

Close the CALLS or DISP window (the window must be active
before you can close it)

Repeat the last command

Moving or sizing a window

You can use the arrow keys to interactively move a window after entering the
MOVE or SIZE command without parameters.

To do this
Use these
function keys

� Move the window down one line

� Make the window one line longer

� Move the window up one line

� Make the window one line shorter

� Move the window left one character position

� Make the window one character narrower

� Move the window right one character position

� Make the window one character wider

 Summary of Special Keys

xli Chapter Title—Attribute Reference

Scrolling a window’s contents

These descriptions and instructions for scrolling apply to the active window.
Some of these descriptions refer to specific windows; if no specific window is
named, then the description/instructions refer to any window that is active.

To do this
Use these
function keys

Scroll up through the window contents, one window length at
a time

Scroll down through the window contents, one window length
at a time

Move the field cursor up one line at a time

Move the field cursor down one line at a time

� FILE window only: Scroll left 8 characters at a time

� Other windows: Move the field cursor left 1 field; at the first
field on a line, wrap back to the last fully displayed field on the
previous line

� FILE window only: Scroll right 8 characters at a time

� Other windows: Move the field cursor right 1 field; at the last
field on a line, wrap around to the first field on the next line

FILE window only: Adjust the window’s contents so that the first
line of the text file is at the top of the window

FILE window only: Adjust the window’s contents so that the last
line of the text file is at the bottom of the window

DISP windows only: Scroll up through an array of structures

DISP windows only: Scroll down through an array of structures

Editing data or selecting the active field

The F9 function key makes the current field (the field that the cursor is pointing
to) active. This has various effects, depending on the field.

To do this
Use this
function key

� FILE or DISASSEMBLY window: Set or clear a breakpoint

� CALLS window: Display the source to a listed function

� Any data-display window: Edit the contents of the current field

� DISP window: Open an additional DISP window to display a
member that is an array, structure, or pointer

xlii

i Chapter Title—Attribute Reference

Basic Information
 About C Expressions

Many of the debugger commands take C expressions as parameters. This allows the debugger to have
a relatively small yet powerful instruction set. Because C expressions can have side effects—that is,
the evaluation of some types of expressions can affect existing values—you can use the same
command to display or to change a value. This reduces the number of commands in the command set.

This chapter contains basic information that you’ll need to know in order to use C expressions as
debugger command parameters.

Synopsis Topic
Page

If you’re an experienced C pro-
grammer, skip this section.

15.1 C Expressions for Assembly Language Programmers ii

Because the C expressions you’ll
use are parameters to debugger
commands, some language
features may be inappropriate.
This section covers specific
implementation issues (including
necessary limitations and
additional features) related to
using C expressions as command
parameters.

15.2 Restrictions and Features Associated With iv
Expression Analysis in the Debugger
Restrictionsiv
Additional features iv

Chapter 15

C Expressions for Assembly Language Programmers

ii

15.1 C Expressions for Assembly Language Programmers

It’s not necessary for you to be an experienced C programmer in order to use
the debugger. However, in order to use the debugger’s full capabilities, you
might find it helpful to be familiar with the rules governing C expressions. You
should obtain a copy of The C Programming Language (first or second
edition) by Brian W. Kernighan and Dennis M. Ritchie, published by
Prentice-Hall, Englewood Cliffs, New Jersey. This book is referred to in the C
community and in Texas Instruments documentation as K&R.

Note:

A single value or symbol is a legal C expression.

K&R contains a complete description of C expressions; to get you started,
here’s a summary of the operators that you can use in expression parameters.

� Reference operators

–> indirect structure reference . direct structure reference
[] array reference * indirection (unary)
& address (unary)

� Arithmetic operators

+ addition (binary) – subtraction (binary)
* multiplication / division
% modulo – negation (unary)
(type) typecast

� Relational and logical operators

> greater than >= greater than or equal to
< less than <= less than or equal to
= = is equal to != is not equal to
&& logical AND || logical OR
! logical NOT (unary)

 C Expressions for Assembly Language Programmers

iii Chapter Title—Attribute Reference

� Increment and decrement operators

++ increment – – decrement

These unary operators can precede or follow a symbol. When the operator
precedes a symbol, the symbol value is incremented/decremented before
it is used in the expression; when the operator follows a symbol, the
symbol value is incremented/decremented after it is used in the
expression. Because these operators affect the symbol’s final value, they
have side effects.

� Bitwise operators

& bitwise AND | bitwise OR
^ bitwise exclusive-OR << left shift
>> right shift ~ 1s complement (unary)

� Assignment operators

= assignment += assignment with addition
–= assignment with subtraction /= assignment with division
%= assignment with modulo &= assignment with bitwise AND
^= assignment with bitwise XOR |= assignment with bitwise OR
<<= assignment with left shift >>= assignment with right shift
*= assignment with multiplication

These operators support a shorthand version of the familiar binary
expressions; for example, X = X + Y can be written in C as X += Y. Because
these operators affect a symbol’s final value, they have side effects.

Restrictions and Features Associated With Expression Analysis in the Debugger

iv

15.2 Restrictions and Features Associated With
Expression Analysis in the Debugger

The debugger’s expression analysis is based on C expression analysis. This
includes all mathematical, relational, pointer, and assignment operators.
However, there are a few limitations, as well as a few additional features not
described in K&R C.

Restrictions

The following restrictions apply to the debugger’s expression analysis
features.

� The sizeof operator is not supported.

� The comma operator (,) is not supported (commas are used to separate
parameter values for the debugger commands).

� Function calls and string constants are currently not supported in
expressions.

� The debugger supports a limited number of type casts—the following
forms are allowed.

(basic type)
(basic type * ...)
([structure/union/enum] structure/union/enum tag)
([structure/union/enum] structure/union/enum tag * ...)

Note that you can use up to six *s in a cast.

Additional features

� All floating-point operations are performed in double precision using
standard widening. (This is transparent.)

� All registers can be referenced by name.

� Void expressions are legal (treated like integers).

� The specification of variables and functions can be qualified with context
information. Local variables (including local statics) can be referenced
with the expression form:

function name.local name

This expression format is useful for examining the automatic variables of a
function that is not currently being executed. Unless the variable is static,

 Restrictions and Features Associated With Expression Analysis in the Debugger

v Chapter Title—Attribute Reference

however, the function must be somewhere in the current call stack. Note
that if you want to see local variables from the currently executing function,
you need not use this form; you can simply specify the variable name (just
as in your C source).

File-scoped variables (such as statics or functions) can be referenced with
the expression form:

filename.function name
or filename.variable name

This expression format is useful for accessing a file-scoped static variable
(or function) that may share its name with variables in other files.

Note that in this expression, filename does not include the file extension;
the debugger searches the object symbol table for any source filename
that matches the input name, disregarding any extension. Thus, if the
variable ABC is in file source.c, you can specify it as source.ABC.

These expression forms can be combined into an expression of the form:

filename.function name.variable name

� Any integral or void expression may be treated as a pointer and used with
the indirection operator (*). Here are several examples of valid use of a
pointer in an expression:

*123
*A5
*(A2 + 123)
*(I*J)

By default, the values are treated as integers (that is, these expressions
point to integer values).

� Any expression can be typecast to a pointer to a specific type (overriding
the default of pointing to an integer, as described above).

Hint: You can use casting with the WA and DISP commands to display
data in a desired format.

For example, the expression:

*(float *)10

treats 10 as a pointer to a floating-point value at location 10 in memory. In
this case, the debugger fetches the contents of memory location 10 and
treats the contents as a floating-point value. If you use this expression as a
parameter for the DISP command, the debugger displays memory
contents as an array of floating-point values within the DISP window,
beginning with memory location 10 as array member [0].

Restrictions and Features Associated With Expression Analysis in the Debugger

vi

Note how the first expression differs from the expression

(float)*10

In this case, the debugger fetches an integer from address 10 and
converts the integer to a floating-point value.

You can also typecast to user-defined types such as structures; for
example, the expression:

((struct STR *)10)–>field

In this case, the debugger treats memory location 10 as a pointer to a
structure of type STR (assuming that a structure is at address 10) and
accesses a field from that structure.

A-1 Chapter Title—Attribute Reference

Appendix A

Troubleshooting and Technical Notes

This appendix contains troubleshooting information and additional technical information about how the
debugger works with the emulator and with development boards. Most people will not need this informa-
tion. However, it is provided to help you if:

� You are having problems invoking the debugger
� The debugger does not seem to be operating properly
� You are using an advanced design or nonstandard application (if, for example, you have written

your own TIGA communication driver) and you need additional information about board operation
or system interfaces

In addition, if you need detailed technical information, you can refer to the user’s guide or installation
guide that accompanied your board.

Synopsis Topic
Page

If you followed the installation
instructions in the appropriate
chapter, your board and debugger
should operate properly. How-
ever, if you have problems with
your installation, the trouble-
shooting information may provide
a solution.

A.1 Troubleshooting an Emulator Installation A-2

A.2 Troubleshooting a Development Board Installation A-3
Common serial link problems A-4
Running the gspsetup utility A-5

This section lists the steps that the
debugger performs during the
invocation process.

A.3 What the Debugger Does During Invocation A-6

There are special considerations
for using targets that hold HCS
inactive during power-up. If you
are using the SDB as a target
system, read this section.

A.4 Using the Emulator With Target Systems A-7
That Hold HCS Inactive During Power-Up

These sections pertain to
development boards only. They
describe information about how
development boards communi-
cate with the debugger.

A.5 Debugger and Monitor Communications A-8

A.6 Using a TIGA Communication Driver A-10

Appendix A

Troubleshooting an Emulator Installation

A-2

A.1 Troubleshooting an Emulator Installation

Here are suggested solutions for problems that you may encounter with your
new emulator system.

� If you invoke the debugger and see this message:

CANNOT INITIALIZE TARGET SYSTEM ! !
– Check I/O configuration
– Check cabling and target power

use these questions to determine the problem area:

� Did you reset the emulator board before invoking the debugger? If not,
be sure to execute emurst before invoking the debugger again. For
more information, refer to Resetting the emulator on page viii.

� Are you identifying the correct I/O space? If you modified the emula-
tor’s I/O switches, be sure to use the emurst –p option and the
db340emu –p option with the correct port address parameter. For
more information, refer to Resetting the emulator on page viii and
Invoking the Debugger on page xii.

� Is the cable connected correctly between the emulator and the target
system? (If you check this, remember to be very careful with the target
cable connector.)

� If the debugger comes up correctly but does not recognize an execution
instruction (RUN, STEP, etc.), then the HSTCTLH register’s HLT bit might
be set. Clear the bit by modifying the contents of memory location
0xC000 0100 or by entering this command:

? HLT=0

� If the contents of memory seem to be incorrect, check the CONFIG regis-
ter to ensure that you have properly selected little-endian or big-endian
mode. During a reset, the four LSBs of the reset vector determine the
endian mode and the memory configuration. The target ’34020 will not be
completely reset until an execution command (RUN, STEP, etc.) is
executed. For more information about this type of problem, refer to the
TMS34020 Emulator Installation Guide.

 Troubleshooting a Development Board Installation

A-3 Chapter Title—Attribute Reference

A.2 Troubleshooting a Development Board Installation

Here are suggested solutions for problems that you may encounter with your
new development system.

� CANNOT FIND EVM MONITOR. This means that the debugger cannot
find the gspmon.out file. Be sure that the PATH statement and the D_DIR
environment variable were set up to identify the directory that contains
gspmon.out, and that the commands to do this have been executed. If you
are not sure, execute the DOS SET command without parameters:

set

This displays the current PATH and environment variable settings. If the
settings are incorrect, re-execute the autoexec or initdb.bat file that sets
these commands. Correct settings are shown in Section 2.3 on page iv.

� CANNOT LOAD EVM MONITOR. This means that there is a problem with
loading the gspmon.out file onto the development board. Execute the
gspsetup utility (see page A-4); gspsetup may report one of these errors
with TIGA communications:

� TIGA communications driver not installed. This means that tigacd
wasn’t executed; be sure to invoke the tigacd utility as described in
Installing the TIGA communication driver on page vii.

� gspsetup lists memory errors. If gspsetup lists memory errors, then
the development board is using the wrong TIGA communications
driver.

� CANNOT RESET EVM. This means that the debugger has loaded the
gspmon.out file onto the development board, but gspmon is not operating
correctly. There are two reasons that this might happen:

� If you are also using a ’34020 emulator in your system, then the
debugger may not be able to gain control of the ’34020. Run gspsetup.
If it reports that it is not able to gain control of the ’340 processor, check
to see if an emulator is connected to the target system. If so, refer to
Section 1.4 (page ix). If an emulator is not connected to the target sys-
tem, your board may be inoperable.

� The TIGA communication driver is not installed properly. Run
gspsetup to determine if this is the problem.

Troubleshooting a Development Board Installation

A-4

Common serial link problems

If you are using the development board version of the debugger for debugging
TIGA applications, you may experience some of these problems:

� GSPSETUP hangs for several seconds; the PC beeps three times, then
returns to DOS. This means that the serial link is not operating properly.
Uninstall the tigacom and debugcom drivers by entering:

tigacom /u
debugcom /u

Now reinstall tigacom and debugcom; use a lower baud rate and make
sure that you are using correct communication port settings.

� GSPSETUP or DB340 executes properly, but you encounter data
errors. There are two reasons that this may happen:

� TheTIGA communication driver may not be operating properly on the
target system. To check it, first, disable the TIGACD debug mode:

tigacd /d0

Now enter:

tigalnk /lx

If no errors are reported, you can assume that the TIGA communica-
tion driver is operating properly.

� You may be using a baud rate that is too high for the host and target
systems. Uninstall tigacom and debugcom (as described above), then
reinstall them with a lower baud rate.

� DB340 randomly locks up; the PC beeps three times, then returns to
DOS. There are three reasons that this may happen:

� An application or driver executing on the target system may have cor-
rupted the settings of the COM port (mouse drivers often use a COM
port).

� You may be using a baud rate that is too high for the host and target
systems. Uninstall tigacom and debugcom, then reinstall them with a
lower baud rate.

� You may be operating in a 386 protected mode. Latency times due to
mode switching result in a lowering of the maximum baud rate that is
available in real mode. Try uninstalling debugcom and tigacom, then
reinstalling them at a lower baud rate.

� Operation is not smooth (for example, scrolling is not smooth). Some-
times, the debugger will hang for a couple of seconds, and executing

 Troubleshooting a Development Board Installation

A-5 Chapter Title—Attribute Reference

gspsetup –d does not produce smooth output of test results. The most
common cause of this is hardware interrupts conflicting with PC time. The
best solution is to remove any software that may be causing these conflicts
from your target and host PC systems. Types of software that can cause
this problem include LAN drivers, print spoolers, and any other serial de-
vices (although a serial mouse has no noticeable effect).

Running the gspsetup utility

The gspsetup utility is used for verifying a proper serial link, but it can also be
used for other purposes. The general format for running gspsetup is:

gspsetup [–options]

The gspsetup program has several options; these are listed in Table A–1.

Table A–1. gspsetup Options

Option Description

–T Test TIGA’s host-to-’340 memory interface (this helps you to be sure
that the TIGA communications driver is operating correctly).

–t Don’t perform tests on memory interface (this is the opposite of –T).

–D Display information about tests and ’340 settings.

–d Don’t display information about tests and ’340 settings (this is the
opposite of –D).

–Maddress
–maddress

Tests memory at the specified address. This option is useful if
you’ve written your own version of a TIGA communication driver.
Use –m to check that the three 32-bit words beginning at address
are valid. If they are not valid, then gspsetup will display a message
stating that it is unable to communicate with the development board
via TIGA.

–H, –h, or –? Display gspsetup options.

For most applications, you can invoke gspsetup without options:

gspsetup

When you do this, gspsetup:

� Tests TIGA’s host-to-’340 memory interface (as if you had used –T),
� Turns the information display off (as if you had used –d), and
� Checks that the ’340 is running freely.

What the Debugger Does During Invocation

A-6

A.3 What the Debugger Does During Invocation

In some circumstances, you may find it helpful to know the steps that the
debugger goes through during the invocation process. These are the steps,
in order, that the debugger performs when you invoke it.

1) Reads options from the command line.

2) Reads any information specified with the D_OPTIONS environment vari-
able.

3) Reads information from the D_DIR and D_SRC environment variables.

4) This step depends on whether you’re using the development board or
emulator version of the debugger:

� Development board version: Initializes the target and downloads
gspmon.

� Emulator version: Resets the target system.

5) Looks for the init.clr screen configuration file (the debugger searches for
this file in directories named with D_DIR).

6) Initializes the debugger screen and windows but initially displays only the
COMMAND window.

7) Looks for the dbinit.cmd or emuinit.cmd batch file (the debugger searches
for this file in directories named with D_DIR). If the debugger finds the file,
it opens the file and reads and executes the commands it finds inside.

8) Loads any object filenames specified with D_OPTIONS or specified on the
command line during invocation.

9) Determines the initial mode (auto, assembly, or mixed) and displays the
appropriate windows on the screen.

At this point, the debugger is ready to process any commands that you enter.

 Information About Target Systems for the Emulator

A-7 Chapter Title—Attribute Reference

A.4 Using the Emulator With Target Systems That Hold HCS Inactive
During Power-Up

Note:

The information in this section applies only to target systems that hold HCS
inactive during power-up. This includes the ’34020 SDB.

In systems that hold HCS inactive during power-up, the HSTCTLH register’s
HLT bit is set whenever the debugger resets the ’34020. This causes the
’34020 to remain in a halt state until HLT is cleared. As a result, none of the
debugger execution commands (RUN, STEP, etc.) will advance execution of
your program. You can fix this situation by performing these steps:

1) Invoke the debugger.

2) Modify the reset vector (address 0xFFFF FFE0). If you have a reset
routine, modify the reset vector to point to the beginning this routine:

? *0xFFFFFFE0 = address of your reset routine

Be sure that the four LSBs of the new value indicate little endian/big endian
usage and RCA bus configuration (as appropriate).

If your program doesn’t have a reset routine, modify the reset vector to
point to c_int00:

? *0xFFFFFFE0 = c_int00

3) Clear the HLT bit:

? HLT=0

4) Execute a single instruction:

STEP

The ’34020 reset will now take effect:

� The 28 MSBs of the program counter are set to the contents of the 28
MSBs of the reset vector.

� The 4 LSBs of the CONFIG register are set to the 4 LSBs of the reset
vector.

5) Set the CONFIG register to an appropriate value. For example, if you are
using the ’34020 SDB as a target system, set CONFIG to 0x0C0A:

? CONFIG=0x0C0A

A batch file named emuinit.cmd is provided to help you perform these steps.

Debugger and Monitor Communications (Development Boards Only)

A-8

A.5 Debugger and Monitor Communications (Development Boards Only)

The debugger is made up of two separate programs:

� The first program, called the host debugger, is executed by the host PC.

� The second program, called the target monitor, is downloaded to the
development board by the debugger. The host debugger uses the monitor
to control the ’340 processor on the development board.

These two programs communicate through TIGA, using an area of develop-
ment board memory for passing commands and data back and forth.

In most cases, you need not be concerned with the communication between
the debugger and the target monitor. However, if you are debugging a sophisti-
cated source program (such as one that modifies certain trap vectors or uses
the ’34020’s single-step capabilities), then it may be necessary to have a
greater understanding of this communication process.

The target monitor is in a file named gspmon.out. Whenever you invoke the
debugger, it requests TIGA for a 4K–byte area of memory on the TIGA board.

If the target monitor is accidentally modified by a write to these memory loca-
tions, the debugger attempts to repair the target monitor and displays an error
message in the COMMAND window. If the debugger does not operate correct-
ly after this occurs, then it was unable to repair the target monitor. You must
reload the target monitor by entering the RESET and RESTART commands.

If the target monitor was corrupted because the ’340 stack used this memory,
exit the debugger and reinvoke it.

The target monitor gains control of the ’340 by having the host temporarily halt
the ’340 processor, changing the NMI vector to point to the beginning of the
monitor code, sending an NMI to the ’340, and then unhalting the ’340. The
’340 then immediately saves its current context (the contents of the PC and
ST) and jumps to the NMI routine (which now points to the monitor program).
The target monitor can then store the ’340 CPU registers and other information
in development board memory, where the host can access them.

When the debugger wants to resume execution of the source program, it
signals the target monitor to return from the NMI interrupt routine. The saved
PC and ST values are restored; this causes the source code to be executed,
and the ’340 runs freely again.

 Debugger and Monitor Communications (Development Boards Only)

A-9 Chapter Title—Attribute Reference

Because the ’340 needs to save its context on the stack, the data on the stack
below the top of the stack is invalid. The target monitor uses six 32-bit memory
locations:

Stack Area

valid

valid

valid

invalid

invalid

invalid

high ’340 memory

low ’340 memory

SP

6 32-bit
memory locations

When breakpoints are set in the source program, the debugger temporarily
replaces the program instruction at that memory address with a TRAP 29 in-
struction. (TRAP 29 must be reserved for the debugger’s use.) The debugger
changes the TRAP 29 vector to point to the target monitor code. When the ’340
executes the TRAP 29 instruction, it saves the current context and jumps to
the monitor code, which indicates to the host that a breakpoint was encoun-
tered. It is important that the program being debugged does not modify the
TRAP vector used for breakpoints.

When the debugger is used with a ’34020, it uses the single-step status bit (SS)
when it is necessary to execute only a single ’34020 instruction. The source
program should not modify the SS bit or the single-step vector (TRAP 32). The
’34010 mimics this single-step ability by examining the next instruction to be
executed and placing temporary breakpoints on all the possible PC destina-
tions. The ’34020 will also use this technique when it is about to single-step
an instruction that could save or modify the status register. However, the
debugger cannot anticipate when an interrupt is about to occur. Thus, when
a run command is executing, it is possible that an interrupt could occur, and
a copy of the ST with a set SS bit could be stored on the stack. This will not
cause problems for the debugger; however, it may cause problems for the
source program if it saves that ST and later uses it after the debugger is exited.

Using a TIGA Communication Driver (Development Boards Only)

A-10

A.6 Using a TIGA Communication Driver (Development Boards Only)
The development board version of the C source debugger uses TIGA as a
software interface between the host PC and the development board. The TIGA
communication driver is responsible for providing all hardware-specific
communication routines. Therefore, the debugger can be used without
restriction for almost any development board—provided that a TIGA
communication driver is available.

Use of the communication driver may differ, depending on whether you are
using a manufacturer-provided driver or you are developing a driver.

� If you already have a TIGA communication driver, load and configure it
according to the manufacturer’s instructions. Then execute the gspsetup
utility (described in Chapter 2). gspsetup tests to see that the host-to-’340
interface is operating correctly. (Note that gspsetup does not test for TIGA
compatibility and does not perform an extensive memory test.)

� If you do not intend to support TIGA, you can use utilities that come with
the debugger to create a communication driver that duplicates a small
subset of TIGA’s functionality. Follow these steps:

1) Be sure that you have copied the directory \db\hll from the original
debugger product diskette into the directory c:\db\hll.

You may need to modify the source files contained in this directory so
that they will better suit your application. Refer to the README file and
the source files for more information.

2) In order to create this driver, you will need the Microsoft C compiler
(version 5.1 or higher) and Microsoft assembler MASM (version 5.0 or
higher), or compatible tools. When these tools are installed, make the
c:\db\hll directory the current directory, then enter:

make

This creates an executable file called hllcd.exe. The executable form
of the driver is a small terminate-and-stay-resident program that you
install in PC memory before invoking the debugger. To install hllcd in
resident memory, enter:

hllcd

3) The driver will install itself in memory and make use of a single inter-
rupt vector in the PC interrupt vector table. The default interrupt vector
is 0x7F, but this vector can be changed by adding the following line to
your autoexec.bat:

SET TIGA=–i0xnn

where nn represents the hexadecimal value of the desired interrupt
vector.

 Using a TIGA Communication Driver (Development Boards Only)

A-11 Chapter Title—Attribute Reference

If necessary, you can remove the communication driver from memory by
entering:

hllcd /u

The README file that accompanies the debugger software describes the
files and utilities that are used for creating the communication driver. It also
describes the routines that are supported.

A-12

B-1 Chapter Title—Attribute Reference

Appendix A

Debugger Messages

This appendix contains an alphabetical listing of the progress and error messages that the debugger
might display in the COMMAND window display area. Each message contains both a description of the
situation that causes the message and an action to take if the message indicates a problem or error.

Synopsis Topic
Page

The debugger provides you with
a command that associates a
beeping sound with the display
of error messages.

B.1 Associating Sound With Error Messages B-2

The main portion of this appen-
dix is the alphabetical message
reference.

B.2 Alphabetical Reference of Debugger Messages B-2

These sections supplement the
actions provided with error mes-
sages.

B.3 Additional Instructions for Expression Errors B-19

B.4 Additional Instructions for Hardware Errors B-19

Appendix B

Associating Sound With Error Messages / Alphabetical Summary of Debugger Messages

B-2

B.1 Associating Sound With Error Messages

You can associate a beeping sound with the display of error messages. To do
this, use the SOUND command. The format for this command is:

sound on | off

By default, no beep is associated with error messages (SOUND OFF). The
beep is helpful if the COMMAND window is hidden behind other windows.

B.2 Alphabetical Summary of Debugger Messages

Symbols

‘]’ expected

Description This is an expression error—it means that the parameter
contained an opening [symbol but didn’t contain a closing]
symbol.

Action See Section B.3 (page B-19).

‘)’ expected

Description This is an expression error—it means that the parameter
contained an opening (symbol but didn’t contain a closing)
symbol.

Action See Section B.3 (page B-19).

A

Aborted by user

Description The debugger halted a long COMMAND display listing (from
WHATIS, DIR, ML, or BL) because you pressed the ESC key.

Action None required; this is normal debugger behavior.

 Running Title—Attribute Reference

B-3 Chapter Title—Attribute Reference

B

Breakpoint already exists at address

Description During single-step execution, the debugger attempted to set
a breakpoint where one already existed. (This isn’t necessari-
ly a breakpoint that you set—it may have been an internal
breakpoint that was used for single-stepping).

Action None should be required; you may want to reset the program
entry point (RESTART) and re-enter the single-step
command.

Breakpoint table full

Description 200 breakpoints are already set and there was an attempt to
set another. Note that the maximum limit of 200 breakpoints
includes internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Enter a BL command to see where you have breakpoints set
in your program. Use the BR command to delete all break-
points or use the BD command to delete individual unneces-
sary breakpoints.

C

Cannot allocate host memory

Description This is a fatal error—it means that the debugger is running out
of memory to run in.

Action You might try invoking the debugger with the –v option so that
fewer symbols will be loaded. Or you might want to relink your
program and link in fewer modules at a time.

Running Title—Attribute Reference

B-4

Corrupt call stack

Description The debugger tried to update the CALLS window and
couldn’t. This may be because a function was called that
didn’t return. Or, it could be that the call stack was overwritten
in memory.

Action If your program called a function that didn’t return, then this is
normal behavior (as long as you intended for the function not
to return). Otherwise, you may be overwriting program
memory.

Cannot change directory

Description The directory name specified with the CD command either
doesn’t exist or is not in the current or auxiliary directories.

Action Check the directory name that you specified. If this is really
the directory that you want, re-enter the CD command and
specify the entire pathname for that directory (for example,
specify C:\sdb, not just sdb).

Cannot edit field

Description Expressions that are displayed in the WATCH window cannot
be edited.

Action If you attempted to edit an expression in the WATCH window,
you may have actually wanted to change the value of a sym-
bol or register used in the expression. Use the ? or EVAL
command to edit the actual symbol or register. The expres-
sion value will automatically be updated.

Cannot find/open initialization file

Description The debugger can’t find the init.cmd file.

Action Be sure that init.cmd is in the sdb (for development boards) or
emu34020 (for the emulator) directory. If it isn’t, copy it from
the debugger product diskette. If init.cmd is in the correct
directory, verify that the D_DIR environment variable is set up
to identify the sdb or emu34020 directory. See Setting Up the
Debugger Environment in the appropriate installation
chapter.

 Running Title—Attribute Reference

B-5 Chapter Title—Attribute Reference

Cannot halt the processor

Description This is a fatal error—for some reason, pressing ESC didn’t
halt program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger again.

Cannot map into reserved memory: address

Description Memory at address 0xFFFF A500 through 0xFFFF D000 has
been reserved for the monitor program (gspmon).

Action Do not use the MA command to map into this reserved space.

Cannot open config file

Description The SCONFIG command can’t find the screen-customization
file that you specified.

Action Be sure that the filename was typed correctly. If it wasn’t,
re-enter the command with the correct name. If it was, re-ent-
er the command and specify full path information with the
filename.

Cannot open “filename”

Description The debugger attempted to show filename in the FILE win-
dow but could not find the file.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

Cannot open object file: “filename”

Description The file specified with the LOAD, SLOAD, or RELOAD
command is not an object file that the debugger can load.

Action Be sure that you’re loading an actual object file. Be sure that
the file was linked (you may want to run gspcl again to create
an executable object file).

Running Title—Attribute Reference

B-6

Cannot open new window

Description A maximum of 127 windows can be open at once. The last
request to open a window would have made 128, which isn’t
possible.

Action Close any unnecessary windows. Windows that can be
closed include WATCH, CALLS, and DISP. To close the
WATCH window, enter WD. To close the CALLS window or a
DISP window, make the desired window active and press

F4 .

Cannot read processor status

Description This is a fatal error—for some reason, pressing ESC didn’t
halt program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger again. If you are using the emulator,
check the cable connections, also.

Cannot reset the processor

Description This is a fatal error—for some reason, pressing ESC didn’t
halt program execution.

Action Exit the debugger. If you are using the development board,
invoke the autoexec or initdb.bat file, then invoke the debug-
ger again. If you are using the emulator, there may be a
problem with the target system; check the cable connections.

Cannot restart processor

Description If a program doesn’t have an entry point, then RESTART
won’t reset the PC to the program entry point.

Action Don’t use RESTART if your program doesn’t have an explicit
entry point.

Cannot set/verify breakpoint at address

Description Either you attempted to set a breakpoint in read-only or
protected memory, or there are hardware problems with the
target system or development board.

Action Check your memory map. If the address that you wanted to
breakpoint wasn’t in ROM, see Section B.4 (page B-19).

 Running Title—Attribute Reference

B-7 Chapter Title—Attribute Reference

Cannot step

� If you’re using a development board:

Description The monitor program has been overwritten or damaged by
program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger.

� If you’re using an emulator:

Description There is a problem with the target system.

Action See Section B.4 (page B-19).

Cannot take address of register

Description This is an expression error. C does not allow you to take the
address of a register.

Action See Section B.3 (page B-19).

Command “cmd” not found

Description The debugger didn’t recognize the command that you typed.

Action Re-enter the correct command. Refer to Chapter 14 or the
Quick Reference Card for a list of valid debugger commands.

Command timed out, emulator busy

� If you’re using a development board:

Description The monitor program has been overwritten or damaged by
program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger.

� If you’re using an emulator:

Description There is a problem with the target system.

Action See Section B.4 (page B-19).

Running Title—Attribute Reference

B-8

Conflicting map range

Description A block of memory specified with the MA command overlaps
an existing memory map entry. Blocks cannot overlap.

Action Use the ML command to list the existing memory map; this will
help you find the existing block that the new block would over-
lap. If the existing block is not necessary, delete it with the MD
command and re-enter the MA command. If the existing block
is necessary, re-enter the MA command with parameters that
will not overlap the existing block.

E

Emulator I/O address is invalid

Description The debugger was invoked with the –p option, and an invalid
port address was used.

Action For valid port address values, refer to Table 3–3 (page xii).

Error in expression

Description This is an expression error.

Action See Section B.3 (page B-19).

Execution error

� If you’re using a development board:

Description The monitor program has been overwritten or damaged by
program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger.

� If you’re using an emulator:

Description There is a problem with the target system.

Action See Section B.4 (page B-19).

 Running Title—Attribute Reference

B-9 Chapter Title—Attribute Reference

F

File not found

Description The filename specified for the FILE command was not found
in the current directory or any of the directories identified with
D_SRC.

Action Be sure that the filename was typed correctly. If it wasn’t,
re-enter the FILE command with the correct name. If it was,
re-enter the FILE command and specify full path information
with the filename.

File not found : “filename”

Description The filename specified for the LOAD, RELOAD, SLOAD, or
TAKE command was not found in the current directory or any
of the directories identified with D_SRC.

Action Be sure that the filename was typed correctly. If it wasn’t,
re-enter the command with the correct name. If it was, re-ent-
er the command and specify full path information with the
filename.

File too large (filename)

Description You attempted to load a file that was more than 65,518 bytes
long.

Action Try loading the file without the symbol table (SLOAD), or use
gspcl to relink the program with fewer modules.

Float not allowed

Description This is an expression error—a floating-point value was used
invalidly.

Action See Section B.3 (page B-19).

Function required

Description The parameter for the FUNC command must be the name of a
function in the program that is loaded.

Action Re-enter the FUNC command with a valid function name.

Running Title—Attribute Reference

B-10

I

Illegal cast

Description This is an expression error—the expression parameter uses
a cast that doesn’t meet the C language rules for casts.

Action See Section B.3 (page B-19).

Illegal left hand side of assignment

Description This is an expression error—the left hand side of an assign-
ment expression doesn’t meet C language assignment rules.

Action See Section B.3 (page B-19).

Illegal operand of &

Description This is an expression error—the expression attempts to take
the address of an item that doesn’t have an address.

Action See Section B.3 (page B-19).

Illegal pointer math

Description This is an expression error—some types of pointer math are
not valid in C expressions.

Action See Section B.3 (page B-19).

Illegal pointer subtraction

Description This is an expression error—the expression attempts to use
pointers in a way that is not valid.

Action See Section B.3 (page B-19).

Illegal structure reference

Description This is an expression error—either the item being referenced
as a structure probably is not a structure, or you are attempt-
ing to reference a nonexistent portion of a structure.

Action See Section B.3 (page B-19).

 Running Title—Attribute Reference

B-11 Chapter Title—Attribute Reference

Illegal use of structures

Description This is an expression error—the expression parameter is not
using structures according to the C language rules.

Action See Section B.3 (page B-19).

Illegal use of void expression

Description This is an expression error—the expression parameter does
not meet the C language rules.

Action See Section B.3 (page B-19).

Integer not allowed

Description This is an expression error—the command does will not
accept an integer as a parameter.

Action See Section B.3 (page B-19).

Invalid address
––– Memory access outside valid range: address

Description The debugger attempted to access memory at address,
which is outside the memory map.

Action Check your memory map to be sure that you access valid
memory.

Invalid argument

Description One of the command parameters does not meet the require-
ments for the command.

Action Re-enter the command with valid parameters. Refer to the
appropriate command description in Chapter 14.

Invalid attribute name

Description The COLOR and SCOLOR commands accept a specific set
of area names for their first parameter. The parameter
entered did not match one of the valid attributes.

Action Re-enter the COLOR or SCOLOR command with a valid area
name parameter. Valid area names are listed in Table 4–2
(page iii).

Running Title—Attribute Reference

B-12

Invalid color name

Description The COLOR and SCOLOR commands accept a specific set
of color attributes as parameters. The parameter entered did
not match one of the valid attributes.

Action Re-enter the COLOR or SCOLOR command with a valid color
parameter. Valid color attributes are listed in Table 4–1 (page
ii).

Invalid memory attribute

Description The third parameter of the MA command specifies the type, or
attribute, of the block of memory that MA adds to the memory
map. The parameter entered did not match one of the valid
attributes.

Action Re-enter the MA command. Use one of the following valid
parameters to identify the memory type:

R, ROM, READONLY (read-only memory)
W, WOM, WRITEONLY (write-only memory)
RW, RAM (read/write memory)
PROTECT (no-access memory)

Invalid object file

Description The file specified with the LOAD, SLOAD, or RELOAD
command either is not an object file that the debugger can
load, or it has been corrupted.

Action Be sure that you’re loading an actual object file. Be sure that
the file was linked (you may want to run gspcl again to create
an executable object file). If the file you attempted to load was
a valid executable object file, then it was probably corrupted;
recompile, assemble, and link with gspcl.

 Running Title—Attribute Reference

B-13 Chapter Title—Attribute Reference

Invalid watch delete
Description The debugger can’t delete the parameter supplied with the

WD command. Usually, this is because the watch index
doesn’t exist or because a symbol name, instead of a watch
index, was typed.

Action Re-enter the WD command. Be sure to specify the watch
index that matches the item you’d like to delete (this is the
number in the left column of the WATCH window). Remem-
ber, you can’t delete items symbolically—you must delete
them by number.

Invalid window position
Description The debugger can’t move the active window to the XY posi-

tion specified with the MOVE command. Either the XY param-
eters are not within the screen limits, or the active window
may be too large to move to the desired position.

Action You can use the mouse to move the window.

If you don’t have a mouse, enter the MOVE command
without parameters; then use the arrow keys to move the
window. When you finish, you must press ESC or .

If you prefer to use the MOVE command with parameters,
refer to Table 6–2 (page xxvii) for a list of the XY limits.
The minimum XY position is 0,1; the maximum position
depends on which screen size you’re using.

Invalid window size
Description The width and length specified with the SIZE or MOVE

command may be too large or too small. If valid width and
length were specified, then the active window is already at the
far right or bottom of the screen and so cannot be made larger.

Action You can use the mouse to size the window.

If you don’t have a mouse, enter the SIZE command with-
out parameters; then use the arrow keys to move the
window. When you finish, you must press ESC or .

If you prefer to use the SIZE command with parameters,
refer to Table 6–1 (page xxiv) for a list of valid sizes. The
minimum size is 4 by 3; the maximum size depends on
which screen size you’re using.

Running Title—Attribute Reference

B-14

L

Load aborted

Description This message always follows another message.

Action Refer to the message that preceded Load aborted.

Lost power (or cable disconnected)

Description Either the target cable is disconnected, or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see Section B.4 (page B-19).

Lost processor clock

Description Either the target cable is disconnected or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see Section B.4 (page B-19).

Lval required

Description This is an expression error—an assignment expression was
entered that requires a legal lefthand side.

Action See Section B.3 (page B-19).

N

Name “name” not found

Description The command cannot find the object named name.

Action If name is a symbol, be sure that it was typed correctly. If it
wasn’t, re-enter the command with the correct name. If it
was, then be sure that the associated object file is loaded.

If name was some other type of parameter, refer to the
command’s description for a list of valid parameters.

 Running Title—Attribute Reference

B-15 Chapter Title—Attribute Reference

M

Memory access error at address

� If you’re using a development board:

Description There is a problem with the TIGA communication driver.

Action If you’re using tigacd, exit the debugger. Reinstall tigacd and
invoke the debugger. If you’re using your own version of a
TIGA communication driver, be sure to follow the instructions
in Appendix A.

� If you’re using the emulator:

Description Either the processor is receiving a bus fault, or there are
problems with target system memory.

Action See Section B.4 (page B-19).

Memory map table full

Description Too many blocks have been added to the memory map. This
will rarely happen unless someone is adding blocks word by
word (which is inadvisable).

Action Stop adding blocks to the memory map. Consolidate any
adjacent blocks that have the same memory attributes.

P

Pointer not allowed

Description This is an expression error.

Action See Section B.3 (page B-19).

Processor is already running

Description One of the RUN commands was entered while the debugger
was running free from the target system.

Action Enter the HALT command to stop the free run, then re-enter
the desired RUN command.

Running Title—Attribute Reference

B-16

R

Register access error

� If you’re using a development board:

Description There is a problem with the TIGA communication driver.

Action If you’re using tigacd, exit the debugger. Reinstall tigacd and
invoke the debugger. If you’re using your own version of a
TIGA communication driver, be sure to follow the instructions
in Appendix A.

� If you’re using the emulator:

Description Either the processor is receiving a bus fault, or there are
problems with target system memory.

Action See Section B.4 (page B-19).

S

Specified map not found

Description The MD command was entered with an address or block that
is not in the memory map.

Action Use the ML command to verify the current memory map.
When you are using MD, you can specify only the first ad-
dress of a defined block.

Structure member not found

Description This is an expression error—an expression references a non-
existent structure member.

Action See Section B.3 (page B-19).

Structure member name required

Description This is an expression error—a symbol name followed by a
period but no member name.

Action See Section B.3 (page B-19).

 Running Title—Attribute Reference

B-17 Chapter Title—Attribute Reference

Structure not allowed

Description This is an expression error—the expression is attempting an
operation that cannot be performed on a structure.

Action See Section B.3 (page B-19).

T

Take file stack too deep

Description Batch files can be nested up to 10 levels deep. Batch files can
call other batch files, which can call other batch files, and so
on. Apparently, the batch file that you are TAKEing calls batch
files that are nested more than 10 levels.

Action Edit the batch file that caused the error. Instead of calling
another batch file from within the offending file, you may want
to copy the contents of the second file into the first. This will
remove a level of nesting.

Too many breakpoints

Description 200 breakpoints are already set, and there was an attempt to
set another. Note that the maximum limit of 200 breakpoints
includes internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Enter a BL command to see where you have breakpoints set
in your program. Use the BR command to delete all break-
points, or use the BD command to delete individual unneces-
sary breakpoints.

Too many memory maps

Description Too many blocks have been added to the memory map. This
will rarely happen unless someone is adding blocks word by
word (which is inadvisable).

Action Stop adding blocks to the memory map. Consolidate any
adjacent blocks that have the same memory attributes.

Running Title—Attribute Reference

B-18

Too many paths

Description More than 20 paths have been specified cumulatively with the
USE command, D_SRC environment variable, and –i debug-
ger option.

Action If you are entering the USE command before entering another
command that has a filename parameter, don’t enter the USE
command. Instead, enter the second command and specify
full path information for the filename.

W

Window not found

Description The parameter supplied for the WIN command is not a valid
window name.

Action Re-enter the WIN command. Remember that window names
must be typed in uppercase letters. Here are the valid window
names; the bold letters show the smallest acceptable abbre-
viations:

CALLS CPU DISP MEMORY

COMMAND DISASSEM-
BLY

FILE WATCH

U

User halt

Description The debugger halted program execution because you
pressed the ESC key.

Action None required; this is normal debugger behavior.

 Additional Instructions for Expression Errors and Hardware Errors

B-19 Chapter Title—Attribute Reference

B.3 Additional Instructions for Expression Errors

Whenever you receive an expression error, you should re-enter the command
and edit the expression so that it follows the C language expression rules. If
necessary, refer to a C language manual such as The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie.

B.4 Additional Instructions for Hardware Errors

If you continue to receive the messages that send you to this section, this indi-
cates persistent hardware problems.

� Development Boards

� The development board memory may not be properly configured—be
sure that you are using an appropriate value in the CONFIG register
(refer to the TMS34020 User’s Guide).

� Check to be sure that the HSTCTLH register’s RESET bit is not set
while you are using the debugger.

� Check to see that the stack pointer (register A15) is pointing to valid
memory.

� Check to see that you are refreshing VRAMs correctly (refer to the
TMS34020 User’s Guide).

� Emulator

� If a bus fault occurs, the emulator may not be able to access memory.

� The ’34020 must be reset before you can use the emulator. Most tar-
get systems reset the ’34020 at power-up; your target system may not
be doing this.

� Host accesses or retries that persist for longer than one second will
prevent the emulator from accessing memory. Check your host inter-
face code.

� The development board memory may not be properly configured—be
sure that you are using an appropriate value in the CONFIG register
(refer to the TMS34020 User’s Guide).

� Check to see that you are refreshing VRAMs correctly (refer to the
TMS34020 User’s Guide).

B-20

C-1 Chapter Title—Attribute Reference

Appendix A

Glossary

A
active window: The window that is currently selected for moving, sizing,

editing, closing, or some other function.

aggregate type: A C data type, such as a structure or array, where a variable
is composed of multiple variables, called members.

aliasing: A method of customizing debugger commands; aliasing provides
a shorthand method for entering often-used command strings.

ANSI C: A version of the C programming language that conforms to the C
standards defined by the American National Standards Institute.

assembly mode: A debugging mode that shows assembly language code
in the DISASSEMBLY and doesn’t show the FILE window, no matter
what type of code is currently running.

autoexec.bat: A batch file that contains DOS commands for initializing your
PC.

auto mode: A context-sensitive debugging mode that automatically
switches between shown assembly language code in the DISASSEM-
BLY window or C code in the FILE window, depending on what type of
code is currently running.

B
batch file: Either of two different types of files. One type of batch file contains

DOS commands for the PC to execute. A second type of batch file con-
tains debugger commands for the debugger to execute. The PC doesn’t
execute debugger batch files, and the debugger doesn’t execute PC
batch files.

benchmarking: A type of program execution that allows you to track the
number of CPU cycles consumed by a specific section of code.

Appendix C

Running Title—Attribute Reference

C-2

breakpoint: A point within your program where execution will halt because
of a previous request from you.

C

CALLS window: A window that lists the functions called by your program.

casting: A feature of C expressions that allows you to use one type of data
as if it were a different type of data.

children: Windows opened for aggregate types that are themselves mem-
bers of an aggregate type displayed in the DISP window.

click: Press and release a mouse button without moving the whole mouse.

CLK: A pseudoregister that shows the number of CPU cycles consumed
during benchmarking. The value in CLK is valid only after entering a
RUNB command but before entering another RUN command.

code-display windows: Windows that show code, text files, or code-specif-
ic information. This category includes the DISASSEMBLY, FILES, and
CALLS windows.

COFF: Common Object File Format. An implementation of the object file
format of the same name developed by AT&T. The ’340 family compiler,
assembler, and linker use and generate COFF files.

command line: The portion of the COMMAND window where you can enter
commands.

command-line cursor: Block-shaped cursor that identifies the current
character position on the command line.

COMMAND window: A window that provides a display area where you en-
ter commands and where the debugger echoes command entry , shows
command output, and lists progress or error messages.

CPU window: A window that displays the contents of ’340 on-chip registers,
including the program counter, status register, A-file registers, and B-file
registers.

current-field cursor: An icon that identifies the current field in the active
window.

cursor: An icon on the screen (such as a rectangle or a horizontal line) that
is used as a pointing device. The cursor is usually under mouse or
keyboard control.

 Running Title—Attribute Reference

C-3 Chapter Title—Attribute Reference

D
data-display windows: Windows for observing and modifying various

types of data. This category includes the MEMORY, CPU, DISP, and
WATCH windows.

D_DIR: An environment variable that identifies the directory containing the
commands and files necessary for running the debugger.

debugger: A window-oriented software interface that helps you to debug
’340 programs running on a ’340 development board or ’34020 emulator.

development board: A PC board that uses a ’34010 or ’34020 processor
and a TIGA communication driver.

disassembly: A reverse assembly of the contents of memory to form
assembly language code.

DISASSEMBLY window: A window that displays the disassembly of
memory contents.

DISP window: A window that displays the members of an aggregate data
type.

display area: The portion of the COMMAND window where the debugger
echoes command entry , shows command output, and lists progress or
error messages.

D_OPTIONS: An environment variable that you can use for identifying often-
used debugger options.

drag: To move the mouse while pressing one of the mouse buttons.

D_SRC: An environment variable that identifies directories containing
program source files.

E
EGA: Enhanced Graphics Adaptor. An industry standard for video cards.

EISA: Extended Industry Standard Architecture. A standard for PC buses.

emulator: A debugging tool that is external to the target system and pro-
vides direct control over the ’340 processor that is on the target system.

emurst: A utility that resets the emulator.

environment variable: A special system symbol that the debugger uses for
finding directories or obtaining debugger options.

Running Title—Attribute Reference

C-4

F
FILE window: A window that displays the contents of the current C code.

The FILE window is primarily intended for displaying C code but can be
used to display any text file.

G
gspcl: A shell utility that invokes the ’340 family compiler, assembler, and

linker to create an executable object file version of your program.

gspmon: The development board monitor program. It contains ’340 rou-
tines that the debugger uses for controlling the ’340 processor.

gspsetup: A utility that tests TIGA communications for the development
board version of the debugger.

H
hybrid applications: ’340 applications that are split into two parts. One part

runs entirely on the ’340 processor, a second part runs on the host PC.
The two parts communicate during program execution.

I
initdb.bat: As part of normal debugger use, you must enter DOS commands

to set up the debugger environment. The most convenient method for
doing this is to edit your PC’s autoexec.bat file or to create a separate
initdb.bat file that is used only for this purpose.

I/O switches: Hardware switches on the ’34020 emulator board that identify
the PC I/O memory space used for emulator debugger communications.

ISA: Industry Standard Architecture. A subset of the EISA standard.

M
memory map: A special set of commands that tells the debugger which

areas of memory can and can’t be accessed.

MEMORY window: A window that displays the contents of memory.

menu bar: A row of pulldown menu selections, found at the top of the debug-
ger display.

 Running Title—Attribute Reference

C-5 Chapter Title—Attribute Reference

mixed mode: A debugging mode that simultaneously shows both assembly
language code in the DISASSEMBLY window and C code in the FILE
window.

mouse cursor: Block-shaped cursor that tracks mouse movements over
the entire display.

P
PC: Either of two meanings, depending on the context and where it’s used

in this book: 1) In installation instructions or information relating to hard-
ware and boards, PC means Personal Computer (as in IBM PC). 2) In
general debugger and program-related information, PC means Program
Counter, which is the register that identifies the current statement in your
program.

point: To move the mouse cursor until it overlays the desired object on the
screen.

port address: The PC I/O memory space that the debugger uses for
communicating with the emulator. The port address is selected via
switches on the emulator board and communicated to the debugger with
the –p debugger option.

pulldown menu: A command menu that is accessed by name or with the
mouse from the menu bar at the top of the debugger display.

S
scalar type: A C type where the variable is a single variable itself, not

composed of other variables.

scroll: To move the contents of a window up, down, left, or right to view con-
tents that weren’t shown.

SDB: Software Development Board. A standalone, high-performance,
graphics-development board, compatible with the IBM PC-AT ISA bus.
Provides an environment for debugging ’34020 application software.

side effects: A feature of C expressions in which using an assignment oper-
ator in an expression affects the value of one of the components used
in the expression.

single-step: A form of program execution that allows you to see the effects
of each statement. The program is executed statement by statement; the
debugger pauses after each statement to update the data-display
windows.

Running Title—Attribute Reference

C-6

standalone applications: ’340 applications that execute entirely on the
’340 processor without interacting with the host PC.

symbol table: A file that contains the names of all variables and functions
in your ’340 program.

T
target system: A ’340 board that works with the emulator; the emulator

doesn’t contain a ’340 and so must use a ’340 target board. Usually, the
target system is a board that you have designed and that you debug us-
ing the emulator and debugger.

TDB: TIGA Development Board. A standard video display adapter for ISA-
and EISA-based PCs; provides an environment for debugging ’34010
application software.

TIGA: Texas Instruments Graphical Architecture. A software interface stan-
dard that allows a host process to communicate with the ’340 graphics
processor residing on your development board. The current implemen-
tation of TIGA is for the PC market and serves as an interface between
the ’340 and an 80x86 processor running under MS-DOS.

TIGA applications: A variation of a hybrid application in which the part of
the program that would be controlled by the ’340 is controlled by TIGA.

tigacd: The TIGA communication driver, which is a terminate-and-stay resi-
dent program that runs on a PC. It is specific to a particular board and
is supplied by the board manufacturer. The communication driver con-
tains functions that are invoked by the application’s calls to the applica-
tion interface. This enables communication via the PC bus to the target
’340 board.

TMS34010: The first–generation graphics system processor from Texas
Instruments.

TMS34020: The second–generation graphics system processor from Texas
Instruments.

TMS340: A collective term used to mean ’34010 or ’34020 or ’34010 and
’34020.

TRAP: A ’340 processor software interrupt.

V
VGA: Video Graphics Array. An industry standard for video cards.

 Running Title—Attribute Reference

C-7 Chapter Title—Attribute Reference

W

WATCH window: A window that displays the values of selected expres-
sions, symbols, addresses, and registers.

window: A defined rectangular area of virtual space on the display.

Running Title—Attribute Reference

C-8

Index-1

Index

? command, 4-18, 11-3, 14-7, 14-15, 14-35
display formats, 4-27, 11-22, 14-7
modifying PC, 9-10
side effects, 11-5

–? gspsetup option, A-5

A
absolute addresses, 11-7, 12-3

active window, 6-18—6-20
breakpoints, 12-3
current field, 4-7, 6-17
customizing its appearance, 13-4
default appearance, 6-18
effects on command entry, 7-3
identifying, 4-7, 6-18
selecting, 6-19, 14-36

function key method, 4-7, 6-19, 14-40
mouse method, 4-7, 6-19
WIN command, 4-6, 6-20

zooming, 4-9, 6-23, 14-37

additional software
development boards, 2-3
emulator, 3-3

ADDR command, 6-7, 6-8, 9-5, 9-7, 14-8

addresses
absolute addresses, 11-7, 12-3
accessible locations, 8-1
contents of (indirection), 11-8
hexadecimal notation, 11-7
in MEMORY window, 4-6, 11-7
nonexistent locations, 8-2
pointers in DISP window, 4-24
symbolic addresses, 11-7

aggregate types
displaying, 4-23, 6-15, 11-15—11-17

ALIAS command, 4-30, 7-14—7-15, 14-8

aliasing, 7-14—7-15

ANSI C, 5-6
archiver, 5-7
area names (for customizing the display)

code-display windows, 13-5
COMMAND window, 13-4
common display areas, 13-3
data-display windows, 13-6
menus, 13-7
summary of valid names, 13-3
window borders, 13-4

arithmetic operators, 15-2
arrays

displaying/modifying contents, 11-15
format in DISP window, 4-24, 11-16, 14-15
member operators, 15-2

arrow keys
editing, 11-4
moving a window, 4-10, 6-26, 14-40
scrolling, 6-28, 14-41
sizing a window, 4-8, 6-23, 14-40

ASM command, 4-14, 9-3, 14-9
pulldown selection, 7-11, 9-3

assembler, 2-2, 3-3, 5-7, 5-8
assembly language code

displaying, 6-2, 6-3, 9-2, 9-4
assembly mode, 4-13, 6-3

selection, 9-3
assignment operators, 11-5, 15-3
attributes, 13-2
auto mode, 4-13, 6-2—6-3

selection, 9-3
autoexec.bat

development boards, 2-4—2-7
emulator, 3-4—3-12
invoking, 2-5, 3-5
sample

development boards, 2-5
emulator, 3-5

Index

Index-2

B
–b debugger option

development boards, 2-12
effect on window positions, 6-25
effect on window sizes, 6-22
emulator, 3-11
with D_OPTIONS environment variable

development boards, 2-7
emulator, 3-7

BA command, 12-3, 14-9
pulldown selection, 7-10, 7-11

background, 13-3

batch files, 7-12
autoexec.bat

development boards, 2-4—2-7
emulator, 3-4—3-12

dbinit.cmd 2-3, 8-2, 8-9, A-6
displaying, 9-7
emuinit.cmd, 3-3, 8-2, 8-9, A-6, A-7
execution, 14-33
halting execution, 7-12
init.clr, 2-3, 3-3, 13-9
initdb.bat

development boards, 2-4—2-7
emulator, 3-4—3-12

invoking
autoexec.bat, 2-5, 3-5
initdb.bat, 2-5, 3-5

mem.map, 8-8
memory maps, 8-3, 8-4, 8-8, 8-9
mono.clr, 2-3, 3-3, 13-9
sdbmap.cmd, 2-3, 8-4
TAKE command, 7-12, 8-8, 8-9, 14-33
tdbmap.cmd, 2-3, 8-3

BD command, 12-4, 14-9
pulldown selection, 7-10, 7-11

benchmarking, 4-18, 9-17

bitwise operators, 15-3

BL command, 12-5, 14-10
pulldown selection, 7-10, 7-11

blanks, 13-3

BORDER command, 13-8, 14-10
pulldown selection, 7-11

borders
colors, 13-4
styles, 13-8

BR command, 4-18, 12-4, 14-11
pulldown selection, 7-10, 7-11

breakpoints, 12-1—12-6
active window, 4-7
adding, 14-9

function key method, 12-3, 14-41
mouse method, 12-3
with commands, 12-3

benchmarking with RUNB, 4-18, 9-17
clearing, 4-18, 12-4, 14-9, 14-11

function key method, 12-4, 14-41
mouse method, 12-4
with commands, 12-4

commands
BA command, 12-3, 14-9
BD command, 12-4, 14-9
BL command, 12-5, 14-10
BR command, 4-18, 12-4, 14-11

listing set breakpoints, 12-5, 14-10, 14-34
pulldown menu, 7-10, 7-11
setting, 4-16, 4-18, 12-2

function key method, 12-3, 14-41
mouse method, 12-3
with commands, 12-3

tentative breakpoints
TBA command, 14-34
TBD command, 14-34

C
C bit, 11-13
C command, 4-14, 9-3, 14-11

pulldown selection, 7-11, 9-3
C source

debugging, managing memory data, 11-8
displaying, 4-12, 9-4, 14-16

cache
disabling, 11-13
flushing, 11-13

CALLS command, 6-9, 6-10, 14-11
CALLS window, 4-12, 6-9, 9-7

closing, 6-10, 6-30, 14-40
opening, 6-10, 14-11

carry bit, 11-13
casting, 4-26, 11-8, 15-4
CD bit, 11-13
CF bit, 11-13
CHDIR (CD) command, 4-23, 7-18, 9-9, 14-12
clearing the display area, 4-23, 7-5, 14-12

 Index

Index-3

“click and type” editing, 6-29, 11-4

CLK pseudoregister, 4-18, 9-17

closing
a window, 6-30
CALLS window, 6-10, 6-30, 14-40
debugger, 2-13, 3-12, 14-24
DISP window, 4-25, 6-30, 11-17, 14-40
WATCH window, 6-30, 11-19, 14-37

CLS command, 4-23, 7-5, 14-12

CNEXT command, 9-13, 14-12

code-display windows, 6-5, 9-2
CALLS window, 6-9, 9-2, 9-7
DISASSEMBLY window, 4-6, 6-7, 9-2
effect of debugging modes, 9-2
FILE window, 6-8, 9-2

COLOR command, 13-2, 14-13

color.clr, 13-9

colors, 13-2
area names, 13-3—13-7

comma operator, 15-4

command history, 7-4
function key summary, 14-38

command line, 6-6, 7-2
changing the prompt, 13-12, 14-24
cursor, 6-17

customizing its appearance, 13-4, 13-12
editing, 7-3

function key summary, 14-38

COMMAND window, 6-5, 6-6, 7-2
colors, 13-4
command line, 4-5, 7-2

editing keys, 14-38
customizing, 13-4
display area, 4-5, 7-2

clearing, 14-12

commands
alphabetical summary, 14-7—14-37
batch files, 7-12
breakpoint commands, 12-3—12-6, 14-5
code-execution (run) commands, 9-10, 14-6
command line, 7-2
command strings, 7-14
customizing, 7-14
data-management commands, 11-2—11-22, 14-4
entering and using, 7-1—7-18
file-display commands, 9-4, 14-4
load commands, 9-8, 14-4
memory commands, 8-5—8-10

commands (continued)
memory map commands, 14-6
mode commands, 9-2, 14-3
pulldown menus, 7-6, 7-10
screen-customization commands, 13-1, 14-5
system commands, 7-16—7-18, 14-3
window commands, 6-20, 6-22, 6-25, 14-3

communication drivers, A-10—A-12
debugcom, 2-3
tigacd, 2-3
tigacom, 2-3

compiler, 2-2, 3-3, 5-6, 5-8
CONFIG register, A-7
constraints, 5-10
CPU window, 6-12, 11-2, 11-11—11-14

colors, 13-6
customizing, 13-6

CSTEP command, 4-20, 9-13, 14-14
current directory

changing, 7-18, 9-9, 14-12
current field

cursor, 6-17
dialog box, 7-4

current PC, 4-5, 6-7
finding, 9-10
selecting, 9-10

cursors, 6-17
command-line cursor, 6-17
current-field cursor, 6-17
mouse cursor, 6-17

customizing the display, 13-1—13-12
changing the prompt, 13-12, 14-24
colors, 13-2—13-7
init.clr, 2-3, 3-3
loading a custom display, 13-10, 14-28
mono.clr, 2-3, 3-3
saving a custom display, 13-10, 14-31
window border styles, 13-8

D
–D,–d gspsetup options, A-5
DASM command, 6-7, 9-5, 14-14
data-display windows, 4-23, 6-5, 11-2

colors, 13-6
CPU window, 6-12, 11-2, 11-11
DISP window, 6-15, 11-2, 11-15
FPUREGS window, 6-14

Index

Index-4

data-display windows (continued)
I/O window, 6-13
MEMORY window, 4-6, 6-11, 11-2, 11-6
WATCH window, 4-19, 6-16, 11-2, 11-18

data-management commands, 4-21, 4-23, 11-2
? command, 4-18, 11-3, 14-7, 14-15, 14-35
controlling data format, 4-26—4-27, 11-8
data-format control, 11-20—11-22
DISP command, 11-15, 14-15
EVAL command, 11-3
FILL command, 11-10
FPUREGS command, 14-17
IOREGS command, 14-18
MEM command, 4-6, 11-6, 14-21
MS command, 11-9
SETF command, 11-20—11-21, 14-29
side effects, 11-5
WA command, 4-19, 11-18, 14-35
WD command, 11-19, 14-36
WHATIS command, 4-22, 11-2, 14-36
WR command, 4-22, 11-19, 14-37

data memory
saving, 11-9

data types, 11-20

data-display windows
FPUREGS window, 14-17
I/O window, 14-18

db340 command, 1-8, 2-12—2-13, 4-4, 9-8, 9-9
options, 2-12—2-13

–b, 2-12
D_OPTIONS environment variable, 2-7
–i, 2-12
–s, 2-12
–v, 2-13
–z, 2-13

db340emu command, 1-8, 3-11—3-12, 4-4, 9-8, 9-9
options, 3-11—3-12

–b, 3-11
D_OPTIONS environment variable, 3-7
–i, 3-11
–p, 3-11
–s, 3-12
–v, 3-12
–z, 3-12

dbinit.cmd 2-3, 8-2, 8-9, A-6

D_DIR environment variable, 7-12, 13-10, 14-28
development boards, 2-6
effects on debugger invocation, A-6
emulator, 3-6

debugcom communication driver, 2-3
debugger

description, 5-2—5-4
development board version, 1-1, 2-1—2-14

environment setup, 2-4—2-7
installation, 2-1—2-14
invocation, 2-12—2-13
system overview, 1-2—1-3

development environments
non-TIGA host applications, 1-7
standalone applications, 1-6
TIGA applications, 1-6

emulator version, 1-1, 3-1—3-12
environment setup, 3-4—3-8
installation, 3-1—3-12
invoking, 3-11
system overview, 1-4

invocation, 4-4
development board, 2-12
emulator, 3-11—3-12

key features, 5-3—5-4
messages, B-1—B-20
system overview, 1-1—1-8

debugging modes, 4-13—4-14, 9-3
assembly mode, 6-3
auto mode, 6-2
default mode, 6-2, 9-2
mixed mode, 6-4
pulldown menu, 4-14, 9-3
restrictions, 6-4
selection, 4-13

commands, 9-3
function key method, 9-3, 14-39
mouse method, 9-3

decrement operator, 15-3
default

data formats, 11-20
debugging mode, 6-2, 9-2
display, 4-5, 6-2, 9-2, 13-11
file extensions, 5-8
memory map, 2-3, 3-3, 8-3
screen configuration file, 2-3, 3-3, 13-9

monochrome displays, 2-3, 3-3, 13-9
development boards

additional software, 2-3
TIGA, 2-3
Windows 3.0, 2-3

debugger installation, 2-1—2-14
emulator in same system, 1-8, A-3

development boards (continued)

 Index

Index-5

hardware requirements, 2-2
software requirements, 2-2
system interface, A-8—A-9
system overview, 1-2—1-3

development environments
non-TIGA host applications, 1-7
standalone applications, 1-6
TIGA applications, 1-6

dialog boxes, 7-8

DIR command, 4-23, 7-18, 14-15

directories
changing current directory, 7-18, 14-12
emu34020 directory, 3-4, 3-6
for auxiliary files

development boards, 2-6
emulator, 3-6

for debugger software
development boards, 2-4, 2-6
emulator, 3-4, 3-6

identifying current directory, 9-9
identifying source directories, 14-35

development boards, 2-6
emulator, 3-6

listing contents of current directory, 7-18, 14-15
relative pathnames, 7-18, 14-12
sdb directory, 2-4, 2-6
search algorithm, 7-12, 9-9, A-6

DISASSEMBLY window, 4-6, 6-7
colors, 13-5
customizing, 13-5
modifying display, 14-14

DISP command, 4-23, 6-15, 11-15, 14-15
display formats, 4-27, 11-22, 14-15

DISP window, 4-23, 6-15, 11-2, 11-15
closing, 4-25, 6-30, 11-17
colors, 13-6
customizing, 13-6
identifying arrays, structures, pointers, 14-15
opening, 11-15
opening another DISP window, 11-16

function key method, 4-25, 11-16, 14-41
mouse method, 4-24, 11-16
with DISP command, 11-16

display area, 6-6
clearing, 4-23, 7-5, 14-12

display formats, 4-26—4-27, 11-20—11-22
? command, 4-27, 11-22, 14-7
casting, 4-26
data types, 11-20

DISP command, 4-26, 4-27, 11-22, 14-15
enumerated types, 6-15
floating-point values, 6-15
integers, 6-15
MEM command, 4-27, 11-22, 14-21
pointers, 6-15
SETF command, 4-26, 11-20—11-21, 14-29
WA command, 4-26, 11-22, 14-35

display requirements, 2-2, 3-2
second monitor, 2-2

displaying
assembly language code, 9-4
batch files, 9-7
C code, 9-6
data in nondefault formats, 11-20—11-22
graphics routines, 2-2
source programs, 9-4
text files, 9-7

D_OPTIONS environment variable
development boards, 2-7
effects on debugger invocation, A-6
emulator, 3-7

DOS, setting up debugger environment
development boards, 2-5
emulator, 3-5

drawing graphics routines, 2-2
D_SRC environment variable, 9-9

development boards, 2-6
effects on debugger invocation, A-6
emulator, 3-6

E
edit key (F9), 6-29, 11-4, 14-41
editing

“click and type” method, 4-28, 11-4
command line, 7-3, 14-38
data values, 11-4, 14-41
dialog boxes, 7-9
expression side effects, 11-5
FILE, DISASSEMBLY, CALLS, 6-29
function key method, 11-4, 14-41
MEMORY, CPU, DISP, WATCH, 6-29
mouse method, 11-4
overwrite method, 11-4
window contents, 6-29

emu34020 directory, 3-4, 3-6
emuinit.cmd, 3-3, 8-2, 8-9, A-6, A-7
emulator, 1-5

Index

Index-6

additional software, 3-3
Windows 3.0, 3-3

debugger installation, 3-1—3-12
development board in same system, 1-8, A-3
hardware requirements, 3-2
resetting, 3-3, 3-8
software requirements, 3-3
system overview, 1-4—1-5
target system information, 1-8, A-7

emurst, 3-3, 3-8
–p option, 3-8
–x option, 3-8

end key
scrolling, 6-28, 14-41

entering commands
from pulldown menus, 7-6—7-11
on the command line, 7-2—7-5

entry point, 9-10
enumerated types, display format, 6-15
environment variables

D_DIR, 7-12, 13-10
development boards, 2-6
emulator, 3-6

D_OPTIONS
development boards, 2-7, 2-12
emulator, 3-7, 3-11

D_SRC, 9-9
development boards, 2-6
emulator, 3-6

for debugger options
development boards, 2-7, 2-12
emulator, 3-7, 3-11

identifying auxiliary directories
development boards, 2-6
identifying auxiliary directories, 3-6

identifying source directories
development boards, 2-6
emulator, 3-6

error messages
beeping, 14-31, B-2

EVAL command, 11-3, 14-16
modifying PC, 9-10
side effects, 11-5

executing code, 4-12, 9-10—9-15
See also run commands
benchmarking, 4-18, 9-12, 9-17
conditionally, 4-21, 9-15
function key method, 14-40

executing code (continued)

halting execution, 4-16, 9-16
program entry point, 4-16, 4-18, 9-10—9-15
single stepping, 4-20, 14-12, 14-14, 14-23, 14-32
while disconnected from the target system, 9-14,

14-27
executing commands, 7-3
exiting the debugger, 2-13, 3-12, 4-30, 14-24
expressions, 15-1—15-6

addresses, 11-7
evaluation

with ? command, 11-3, 14-7, 14-15, 14-35
with EVAL command, 11-3

expression analysis, 15-4
operators, 15-2—15-3
restrictions, 15-4
side effects, 11-5
void expressions, 15-4

extensions, 5-10

F
F4 key, 6-30, 11-17, 14-40
FE0 bit, 11-13
FE1 bit, 11-13
field

extension bits, 11-13
size bits, 11-13

FILE command, 4-12, 4-15, 6-8, 9-6, 14-16
changing the current directory, 7-18, 14-12
pulldown selection, 7-11

FILE window, 4-12, 4-15, 6-8, 9-6
colors, 13-5
customizing, 13-5

file/load commands
ADDR command, 9-5, 9-7, 14-8
CALLS command, 9-7, 14-11
DASM command, 9-5, 14-14
FILE command, 4-12, 4-15, 9-6, 14-16
FUNC command, 4-15, 9-6, 14-17
LOAD command, 4-5, 9-8, 14-19
pulldown menu, 7-11
RELOAD command, 9-8, 14-24
RESTART command, 14-25
SLOAD command, 9-8, 14-31

files
saving memory to a file, 11-9

FILL command, 11-10, 14-17, 14-23
pulldown selection, 7-11

floating point

 Index

Index-7

display format, 4-26, 6-15
operations, 15-4

FPUREGS command, 14-17
FPUREGS window, 6-14
FS0 bits, 11-13
FS1 bits, 11-13
FUNC command, 4-15, 6-8, 9-6, 14-17
function calls

displaying functions, 14-17
keyboard method, 6-10
mouse method, 6-10

executing function only, 14-25
in expressions, 11-5, 15-4
stepping over, 14-12, 14-23
tracking in CALLS window, 6-9—6-10, 9-7, 14-11

G
–g shell option, 5-8, 5-9
general-purpose registers, 11-11
global interrupt enable bit, 11-13
GO command, 4-12, 9-11, 14-18
graphics card requirements, 2-2, 3-2
graphics routines

drawing, 2-2
grouping/reference operators, 15-2
gspcl shell, 5-9
gspmon, 2-3, 9-14
gspsetup

options, A-5
running, A-5

H
–H,–h gspsetup options, A-5
HALT command, 9-14, 14-18
halting

batch file execution, 7-12
debugger, 2-13, 3-12, 14-24
HLT bit, 11-13
program execution, 2-13, 3-12, 4-16, 9-10, 9-16

function key method, 9-16, 14-39
mouse method, 9-16

target system, 14-18

hardware checklist
development boards, 2-2
emulator, 3-2

hexadecimal notation, addresses, 11-7
history

of commands, 7-4
HLT bit, 11-13, A-2, A-7
home key

scrolling, 6-28, 14-41
host debugger, A-8
host system, 2-2, 3-2
HSTCTLH register, 11-13, A-2

I
–i debugger option

development boards, 2-12, 9-9
emulator, 3-11, 9-9
with D_OPTIONS environment variable

development boards, 2-7
emulator, 3-7

I/O window, 6-13
IE bit, 11-13
increment operator, 15-3
index numbers

for data in WATCH window, 6-16, 11-19
indirection operator (*), 11-8
init.clr, 2-3, 3-3, 13-9, 13-10, 14-28, A-6
initdb.bat

development boards, 2-4—2-7
emulator, 3-4—3-12
invoking, 2-5, 3-5
sample

development boards, 2-5
emulator, 3-5

initialization files
naming an alternate file, 2-13, 3-12

installation
development board debugger, 2-4
emulator debugger, 3-4

integer
display format, 6-15

interrupts
enable bit, 11-13

Index

Index-8

invoking
autoexec.bat, 2-5, 3-5
custom displays, 13-11
debugger, 4-4

development boards, 2-12
emulator, 3-11

initdb.bat, 2-5, 3-5
shell program, 5-9

IOREGS command, 14-18

ISA, 2-2, 3-2

K
key sequences

displaying functions, 14-41
displaying previous commands (command

history), 14-38
editing

command line, 7-3, 14-38
data values, 6-29, 14-41

halting actions, 14-39
moving a window, 6-26, 14-40
opening additional DISP windows, 11-16, 14-41
pulldown selections, 14-39
running code, 9-11, 14-40
scrolling, 6-28, 14-41
selecting the active window, 6-19, 14-40
setting/clearing breakpoints, 14-41
single stepping, 9-13
sizing a window, 6-23, 14-40
switching debugging modes, 14-39

L
labels

for data in WATCH window, 4-19, 6-16, 11-19

limits
breakpoints, 12-2
command aliasing, 7-15
file size, 9-7
open DISP windows, 6-15
paths, 9-9
window positions, 6-25
window sizes, 6-22

linker, 2-2, 3-3, 5-7, 5-8
command files

MEMORY definition, 8-2

LOAD command, 4-5, 9-8, 14-19

load/file commands, 14-17
ADDR command, 9-5, 14-8
CALLS command, 9-7, 14-11
DASM command, 9-5, 14-14
FILE command, 4-12, 9-6, 14-16
FUNC command, 4-15, 9-6, 14-17
LOAD command, 4-5, 9-8, 14-19
pulldown menu, 7-11
RELOAD command, 9-8, 14-24
RESTART command, 14-25
SLOAD command, 9-8, 14-31

loading
batch files, 7-12
custom displays, 13-10
monitor program, 2-3
object code, 4-4, 9-8

after invoking the debugger, 9-8
symbol table only, 9-8, 14-31
while invoking the debugger, 9-8

development boards, 2-12
emulator, 3-11

without symbol table, 9-8, 14-24
logical operators, 15-2

conditional execution, 9-15

M
–M,–m gspsetup options, A-5
MA command, 8-5, 8-7, 14-19—14-20

pulldown selection, 7-11
managing data, 11-1—11-22

basic commands, 11-2—11-3
MAP command, 8-6, 14-20

pulldown selection, 7-11
MD command, 8-7, 14-20

pulldown selection, 7-11
MEM command, 4-6, 6-12, 11-6, 14-21

display formats, 4-27, 11-22, 14-20
memory

commands
FILL command, 11-10, 14-17, 14-23
MA command, 8-5, 8-7, 14-19—14-20
MAP command, 8-6, 14-20
MD command, 8-7, 14-20
ML command, 8-6, 14-20
MR command, 8-7, 14-23
MS command, 11-9
pulldown menu, 7-11

data formats, 11-20

 Index

Index-9

memory (continued)
default map, 2-3, 3-3, 8-3
displaying in different numeric format, 4-26, 11-8
filling, 11-10, 14-17, 14-23
invalid locations, 8-5
mapping, 8-1—8-10

adding ranges, 8-5, 14-19
dbinit.cmd, 2-3
defining a memory map, 8-2
deleting ranges, 8-7, 14-20
development boards

sdbmap.cmd, 2-3
tdbmap.cmd, 2-3

emuinit.cmd, 3-3
emulator, 3-3
enabling/disabling, 8-6
listing current map, 8-6
modifying, 8-7
multiple maps, 8-9
resetting, 8-7, 14-23
returning to default, 8-8

nonexistent locations, 8-2
requirements

development boards, 2-2
emulator, 3-2

saving, 11-9
valid types, 8-5

MEMORY window, 4-6, 6-11, 11-2, 11-6, 14-21
colors, 13-6
customizing, 13-6
modifying display, 14-21

menu bar, 4-5, 7-6
customizing its appearance, 13-7
items without menus, 7-10
using menus, 7-6—7-11

messages, B-1—B-20

MIX command, 4-14, 9-3, 14-21
pulldown selection, 7-11, 9-3

mixed mode, 4-13, 6-4
selection, 9-3

ML command, 8-6, 14-21
pulldown selection, 7-11

MOD command, 14-21

modes, 6-2—6-4
assembly mode, 6-3
auto mode, 6-2

modes (continued)
commands

ASM command, 4-14
C command, 4-14, 14-11
MIX command, 4-14, 14-21

mixed mode, 6-4
pulldown menu, 4-13, 4-14, 7-11, 9-3
restrictions, 6-4
selection, 4-13, 9-3

commands, 9-3
function key method, 9-3, 14-39
mouse method, 9-3

modifying
colors, 13-2—13-7
command line, 7-3
command-line prompt, 13-12
current directory, 7-18, 14-12
data values, 11-4
memory map, 8-7
window borders, 13-8

monitor program
default memory space, 2-3
loading, 2-3

mono.clr, 2-3, 3-3, 13-9

monochrome monitors, 13-9

mouse
cursor, 6-17
requirements, 2-2, 3-2

MOVE command, 4-10, 6-25, 14-22
effect on entering other commands, 7-4

moving a window, 6-24, 14-22
function key method, 4-10, 6-26, 14-40
mouse method, 4-10, 6-24
MOVE command, 4-10, 6-25
XY screen limits, 6-25

MR command, 8-7, 14-23
pulldown selection, 7-11

MS command, 11-9
pulldown selection, 7-11

MS-DOS, exiting from system shell, 14-32

N
N bit, 11-13

natural format, 4-26, 15-5

negative bit, 11-13

Index

Index-10

NEXT command, 4-20, 9-13, 14-23
from the menu bar, 7-10
function key entry, 7-10, 14-40

non-TIGA host applications, 1-7
nonexistent locations, 8-2

O
object files

creating, 9-8
loading, 14-19

after invoking the debugger, 9-8
development boards, 2-12
emulator, 3-11
symbol table only, 2-12, 14-31

development boards, 2-12
emulator, 3-12

while invoking the debugger, 4-4, 9-8
development boards, 2-12
emulator, 3-11

without symbol table, 9-8, 14-24
object format converter, 5-7
operators, 15-2—15-3

& operator, 11-7
* operator (indirection), 11-8
side effects, 11-5

overflow bit, 11-13
overwrite editing, 11-4

P
–p debugger option, 3-11

with D_OPTIONS environment variable
emulator, 3-7

–p emurst option, 3-8
page-up/page-down keys, scrolling, 6-28, 14-41
parameters

db340 command, 2-12—2-14
db34emu command, 3-11—3-12
entering in a dialog box, 7-8
gspcl shell, 5-9

PATH statement, 2-6, 3-6
pixel size, 11-12
pointers

display format, 6-15
displaying/modifying contents, 4-24, 11-15
format in DISP window, 4-24, 11-16, 14-15
natural format, 15-5
typecasting, 15-5

port address, 3-11
D_OPTIONS, 3-7

program
constraints, 5-10
entry point, 9-10

resetting, 14-25
execution, halting, 2-13, 3-12, 4-16, 9-10, 9-16,

14-39
preparation for debugging, 5-8

program counter (PC), 9-10, 11-11
displaying contents of, 4-6
finding the current PC, 6-7

program memory, saving, 11-9
PROMPT command, 13-12, 14-24

pulldown selection, 7-11
PSIZE register, 11-12
pulldown menus, 7-6

colors, 13-7
correspondence to commands, 7-10
customizing their appearance, 13-7
entering parameter values, 7-8
escaping, 7-8
function key methods, 7-8, 14-39
list of menus, 7-6
mouse methods, 7-7
moving to another menu, 7-8
usage, 7-7

Q
QUIT command, 2-13, 3-12, 4-30, 14-24

R
re-entering commands, 7-4, 14-38
registers

A and B files, 11-11
CLK pseudoregister, 4-18, 9-17
CONFIG register, A-7
displaying/modifying, 11-11—11-14
HSTCTLH register, 11-13
I/O registers, 11-12—11-13
program counter (PC), 11-11
PSIZE register, 11-12
stack pointer (SP), 11-11
status register (ST), 11-12, 11-13

relational operators, 15-2
conditional execution, 9-15

relative pathnames, 7-18, 9-9, 14-12

 Index

Index-11

RELOAD command, 14-24
pulldown selection, 7-11

repeating commands, 7-4, 14-38

required files
development boards

debugcom.exe, 2-3
gspmon.out, 2-3
tigacd, 2-3
tigacom.exe, 2-3

emulator, emurst, 3-3

required tools, 2-2, 3-3

reserved traps, 5-10

RESET command, 4-5, 9-14, 14-25
pulldown selection, 7-11

reset vector, A-7

resetting
’34020 processor, A-2
emulator, 3-3, 3-8
memory map, 14-23
program entry point, 14-25
target system, 4-5, 9-14, 14-25

RESTART (REST) command, 4-16, 4-18, 9-10,
14-25
pulldown selection, 7-11

restrictions. See limits and complaints

RETURN (RET) command, 9-11, 14-25

RST bit, 11-13

RUN command, 4-16, 9-11, 14-26
from the menu bar, 7-10
function key entry, 7-10, 9-11, 14-40
menu bar selections, 7-10
with conditional expression, 4-21

run commands, 4-12
CNEXT command, 9-13, 14-12
conditional parameters, 4-21
CSTEP command, 4-20, 9-13, 14-14
GO command, 9-11, 14-18
HALT command, 9-14, 14-18
menu bar selections, 7-10, 14-40
NEXT command, 4-20, 9-13, 14-23
RESET command, 9-14
RESTART command, 4-16, 4-18, 9-10
RETURN command, 9-11, 14-25
RUN command, 4-16, 9-11, 14-26
RUNB command, 4-18, 9-12, 9-17, 14-26
RUNF command, 9-14, 14-27
STEP command, 4-20, 9-12, 14-32

RUNB command, 4-18, 9-12, 9-17, 14-26

RUNF command, 1-8, 9-14, 14-27
running programs, 9-10—9-15

conditionally, 9-15
halting execution, 9-16
program entry point, 9-10—9-15
while disconnected from the target system, 9-14

S
–s debugger option

development boards, 2-12, 9-8
emulator, 3-12, 9-8
with D_OPTIONS environment variable

development boards, 2-7
emulator, 3-7

saving custom displays, 13-10
SCOLOR command, 13-2, 14-27

pulldown selection, 7-11
SCONFIG command, 13-10, 14-28

pulldown selection, 7-11
screen-customization commands

BORDER command, 13-8, 14-10
COLOR command, 13-2, 14-13
PROMPT command, 13-12, 14-24
pulldown menu, 7-11
SCOLOR command, 13-2, 14-27
SCONFIG command, 13-10, 14-28
SSAVE command, 13-10, 14-31

scrolling, 4-11, 6-27
function key method, 4-11, 6-28, 14-41
mouse method, 4-11, 6-28, 11-7

SDB, 1-1, 1-3
debugger installation, 2-1—2-14
system overview, 1-2—1-8
target system for emulator, 1-8, A-3, A-7

sdb directory, 2-4, 2-6
sdbmap.cmd, 2-3, 8-4
SETF command, 4-26, 11-20—11-21, 14-29
shell program, 5-9
side effects, 11-5, 15-3

valid operators, 11-5
single step

commands
CNEXT command, 9-13, 14-12
CSTEP command, 4-20, 9-13, 14-14
menu bar selections, 7-10
NEXT command, 4-20, 9-13, 14-23
STEP command, 4-20, 9-12, 14-32

Index

Index-12

single step (continued)
execution, 9-12

assembly language code, 9-12—9-13, 14-32
C code, 9-13, 14-14
function key method, 9-13, 14-40
mouse methods, 9-13
over function calls, 9-13, 14-12, 14-23

status bit, A-9

SIZE command, 4-8, 6-22, 14-30
effect on entering other commands, 7-4

sizeof operator, 15-4

sizes
displayable files, 9-7

sizing a window, 6-21
function key method, 4-8, 6-23, 14-40
mouse method, 4-8, 6-21
SIZE command, 4-8, 6-22
size limits, 6-22
while moving it, 6-25, 14-22

SLOAD command, 9-8, 14-31
pulldown selection, 7-11
–s debugger option

development boards, 2-12
emulator, 3-12

software checklist
development boards, 2-2
emulator, 3-3

software development board. See SDB

SOUND command, 14-31, B-2

SSAVE command, 13-10, 14-31
pulldown selection, 7-11

stack pointer (SP), 11-11

standalone applications, 1-6

status register (ST), 11-12
accessible bits

STC, 11-13
STN, 11-13
STV, 11-13
STZ, 11-13

STEP command, 4-20, 9-12, 14-32
from the menu bar, 7-10
function key entry, 7-10, 14-40

structures
direct reference operator, 15-2
displaying/modifying contents, 11-15
format in DISP window, 4-25, 11-16, 14-15
indirect reference operator, 15-2

switch settings
I/O address space, 3-7, 3-8, 3-11

symbol table
loading without object code, 2-12, 9-8, 14-31

development boards, 2-12
emulator, 3-12

symbolic addresses, 11-7

SYSTEM command, 7-16—7-17, 14-32

system commands, 7-16—7-18
ALIAS command, 14-8
CD command, 4-23, 7-18, 9-9, 14-12
CLS command, 4-23, 7-5, 14-12
DIR command, 4-23, 7-18, 14-15
from debugger command line, 7-16
QUIT command, 2-13, 3-12, 4-30, 14-24
RESET command, 4-5, 14-25
SOUND command, 14-31, B-2
SYSTEM command, 14-32
system shell, 7-17
TAKE command, 7-12, 8-8, 8-9, 14-33
UNALIAS command, 14-34
USE command, 9-9, 14-35

system overview, 1-1—1-8
emulator, 1-4—1-8
SDB, 1-2—1-3
TDB, 1-2—1-8
third-party boards, 1-2—1-3

system shells, 7-16—7-17

T
–t debugger option, 2-13, 3-12

–T,–t gspsetup options, A-5

TAKE command, 7-12, 8-8, 8-9, 14-33
reading new memory map, 8-9

target monitor, A-8

target system
holding HCS inactive during power-up, A-7
memory definition for debugger, 8-1—8-10
resetting, 4-5, 14-25
SDB, 1-8

TBA command, 14-34

TBD command, 14-34

TDB, 1-1, 1-3
debugger installation, 2-1—2-14
system overview, 1-2

tdbmap.cmd, 2-3, 8-3

 Index

Index-13

tentative breakpoints
TBA command, 14-34
TBD command, 14-34

terminating the debugger, 14-24

text files
displaying, 4-15, 9-7

third-party boards, 1-1, 1-3
debugger installation, 2-1—2-14
system overview, 1-2

TIGA
clearing tentative breakpoints, 14-34
communication driver. See tigacd
debugger applications, 1-6
development board. See TDB
development board (TDB), 1-3
development board use, 1-2—1-3, 2-3
loading custom modules, 14-21
setting tentative breakpoints, 14-34

tigacd, 2-3, A-10—A-12
installing, 2-7

tigacom communication driver, 2-3

TRAP 29, 5-10, A-9

TRAP 32, 5-10

troubleshooting
development board installation, A-3
emulator installations, A-2

type casting, 4-26, 15-4

type checking, 4-22, 11-2

U
UNALIAS command, 7-15, 14-34

UNIX, exiting from system shell, 14-32

USE command, 9-9, 14-35

V
V bit, 11-13

–v debugger option
development boards, 2-13
emulator, 3-12
with D_OPTIONS environment variable

development boards, 2-7
emulator, 3-7

–v shell option, 5-9

variables
aggregate values in DISP window, 4-23, 6-15,

11-15, 14-15
determining type, 11-2
displaying in different numeric format, 4-26, 15-5
displaying/modifying, 11-18
scalar values in WATCH window, 6-16,

11-18—11-19
versions

debugger. See debugger (development boards or
emulator)

GSPCL, 5-9
void expressions, 15-4

W
WA command, 4-19, 6-16, 11-18, 14-35

display formats, 4-26, 14-35
pulldown selection, 7-11

watch commands
pulldown menu, 7-11, 11-18
WA command, 4-19, 11-18, 14-35
WD command, 4-21, 11-19, 14-36
WR command, 4-22, 11-19, 14-37

WATCH window, 4-19, 6-16, 11-2, 11-18, 14-35,
14-36, 14-37
adding items, 11-18, 14-35
closing, 6-30, 11-19, 14-37
colors, 13-6
customizing, 13-6
deleting items, 11-19, 14-36
labeling watched data, 11-19, 14-35
opening, 11-18, 14-35

WD command, 4-21, 6-16, 11-19, 14-36
pulldown selection, 7-11

WHATIS command, 4-22, 11-2, 14-36
WIN command, 4-6, 6-20, 14-36
windows, 6-5—6-16

active window, 6-18—6-20
border styles, 13-8, 14-10
closing, 6-30
commands

ADDR command, 6-7, 6-8
CALLS command, 6-9
DASM command, 6-7
DISP command, 6-15
FILE command, 6-8
FUNC command, 6-8
MEM command, 6-11

Index

Index-14

windows, commands (continued)
MOVE command, 4-10
SIZE command, 4-8, 14-30
WA command, 6-16
WD command, 6-16
WIN command, 4-6, 6-20, 14-22, 14-36
WR command, 6-16
ZOOM command, 14-37

editing, 6-29
moving, 4-10, 6-24, 14-22

function keys, 6-26, 14-40
mouse method, 6-24
MOVE command, 6-25
XY positions, 6-25

resizing, 4-8, 6-21
function keys, 6-23, 14-40
mouse method, 6-21
SIZE command, 6-22
while moving, 6-25, 14-22

scrolling, 4-11, 6-27
size limits, 6-22

Windows 3.0
development board use, 2-3
emulator use, 3-3

WR command, 4-22, 6-16, 11-19, 14-37
pulldown selection, 7-11

X
–x debugger option

development boards, 2-13
emulator, 3-12

–x emurst option, 3-8

Z
Z bit, 11-13
–z shell option, 5-9
zero bit, 11-13
ZOOM command, 4-9, 6-23, 14-37
zooming a window, mouse method, 4-9

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2001, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/sc/docs/disclaim.htm

