
 SPVU027 Graphics Products

TMS340 Graphics Library

TMS340 Graphics Library
User’s Guide

SPVU027
August 1990

Printed on Recycled Paper

Copyright  1990, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without notice.
TI advises its customers to obtain the latest version of the relevant information
to verify, before placing orders, that the information being relied upon is current.

TI warrants performance of its semiconductor products to current specifications
in accordance with TI’s standard warranty. Testing and other quality control tech-
niques are utilized to the extent TI deems necessary to support this warranty. Un-
less mandated by government requirements, specific testing of all parameters
of each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or represent that license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process
in which such semiconductor products or services might be or are used.

Texas Instruments products are not intended for use in life-support appliances,
devices, or systems. Use of a TI product in such applications without the written
consent of the appropriate TI officer is prohibited.

 Running Title

iii

Preface

Read This First

How to Use This Manual

This document contains the following chapters:

Chapter 1 Introduction
Briefly introduces the TMS340 Graphics Library and describes the related
software and hardware development tools.

Chapter 2 Getting Started
Contains instructions for installing the graphics library on PC systems, de-
scribes the files that are shipped with the library package, provides exam-
ples of compiling, assembling and linking C programs that call the library
functions, and illustrates the use of the archiver utility with the library.

Chapter 3 Graphics Library Overview
Describes the text and graphics capabilities of the library, the bit-mapped
fonts bundled with the library, the library’s relationship to the TIGA Core and
Extended Primitives, and the system implementation issues involved in
porting or extending the library.

Chapter 4 Graphics Operations
Presents the library’s conventions regarding coordinate systems, the map-
ping of pixels to coordinates, operations on pixels, clipping, and the geomet-
ric figures and rendering styles supported by the library.

Chapter 5 Bit-Mapped Text
Describes the text capabilities of the library, the types of fonts supported,
the internal structure of the database for each font, and an alphabetical list-
ing of the available fonts.

Chapter 6 Core Primitives
Provides a page-by-page alphabetical listing of the TIGA Core Primitives
included as part of the graphics library, along with detailed descriptions and
programming examples.

Preface

iv Preface

Chapter 7 Extended Primitives
Provides a page-by-page alphabetical listing of the TIGA Extended Primi-
tives included as part of the graphics library, along with detailed descriptions
and programming examples.

Appendix A Data Structures
Describes the key data structures in the graphics library environment.

Appendix B Reserved Symbols
Lists the global symbols defined within the graphics library.

Appendix C Glossary
Defines the technical terms used in this manual.

Related Documentation

The following documents are available from Texas Instruments:

TMS34010 User’s Guide (literature number SPVU001A)

Describes the internal architecture, hardware interfaces, program-
mable registers and instruction set of the TMS34010 32-bit graphics
processor chip.

TMS34020 User’s Guide (literature number SPVU019)

Describes the internal architecture, hardware interfaces, program-
mable registers and instruction set of the TMS34020 32-bit graphics
processor chip.

TMS340 Family Code Generation Tools User’s Guide (literature
number SPVU020)

Describes the C compiler, assembler, linker, and archiver for the
TMS340x0 Graphics System Processors.

TIGA-340 Interface User’s Guide (literature number SPVU015A)

Describes the architecture of the TIGA (Texas Instruments Graphics
Architecture) software interface between a host processor and a
TMS340 graphics processor, which includes the applications interface,
communications driver, and graphics manager.

TMS340 Family Third Party Guide (literature number SPVB066C)

Lists the TMS340x0-based hardware and software products available
from third parties.

 Preface

v

TMS34010 Software Development Board User’s Guide (literature
number SPVU002)

Describes the TMS34010 SDB, which is a PC add-in graphics card that
serves as a hardware platform for developing and testing TMS34010
software.

TMS34020 Software Development Board User’s Guide (literature
number SPVU016)

Describes the TMS34020 SDB, which is a PC AT add-in graphics card
that serves as a hardware platform for developing and testing
TMS34020 software.

TMS34092 VGA Interface Chip User’s Guide (literature number
SPVU026)

Describes the TMS34092, which is a memory and pixel pipeline periph-
eral for low-cost PC video adapters with VGA pass-through capability
and TMS34010 graphics processing power.

TMS34010 CCITT Data Compression Library User’s Guide (literature
number SPVU009)

Describes a library of TMS340x0 assembly-coded functions for com-
pressing and decompressing black-and-white images according to the
Consultative Committee for International Telegraph and Telephone
Group 3 and Group 4 standards.

TMS34010/8514 Adapter Interface Emulation User’s Guide (literature
number SPVU010)

Describes the library of TMS340x0 functions for emulating IBM’s
8514/A Adapter Interface.

TMS34010 Applications Guide (literature number SPVA007A)

Provides examples of hardware and software applications developed
for the TMS34010.

TMS34010 XDS User’s Guide (literature number SPVU008)

Describes the XDS (extended development system) for emulating the
TMS34010 Graphics System Processor chip in a target hardware envi-
ronment.

TMS34020 XDS User’s Guide (literature number SPVU028)

Describes the XDS (extended development system) for emulating the
TMS34020 Graphics System Processor chip in a target hardware envi-
ronment.

Preface

vi Preface

TMS34070 User’s Guide (literature number SPPU016A)

Describes the TMS34070 16-color palette chip used on the TMS34010
software development board.

TMS340 Family Assembler Support for the TMS34082 (literature num-
ber SPVU029)

Summarizes the TMS34082 Floating-Point Processor internal instruc-
tion set.

To obtain any of TI’s product literature listed above, please contact the Tex-
as Instruments Customer Response Center at toll-free telephone number
(800) 232–3200.

You may also find the documents listed below to be helpful. The list is orga-
nized according to subject:

TMS34010 and TMS34020 Graphics System Processors

Asal, Mike, Graham Short, Tom Preston, Derek Roskell, and Karl Gut-
tag. “The Texas Instruments 34010 Graphics System Processor.” IEEE
Computer Graphics & Applications, vol. 6, no. 10 (October 1986),
pages 24–39.

Guttag, Karl, Jerry Van Aken, and Mike Asal. “Requirements for a VLSI
Graphics Processor.” IEEE Computer Graphics & Applications, vol. 6,
no. 1 (January 1986), pages 32–47.

Killebrew, Carrell R., Jr., “The TMS34010 Graphics System Processor.”
Byte, vol. 11, no. 12 (December 1986), pages 193–204.

Peterson, Ron, Carrell R. Killebrew, Jr., Tom Albers and Karl Guttag.
“Taking the Wraps off the 34020. ” Byte, vol. 11, no. 9 (September
1986), pages 257–272.

The C Programming Language

American National Standards Institute. Draft Proposed American Na-
tional Standard for Information Systems — Programming Language C.
Document no. X3J11/88–002, January 11, 1988.

Kernighan, Brian, and Dennis Ritchie. The C Programming Language.
Second Edition. Englewood Cliffs, New Jersey: Prentice-Hall, 1988.

Kochan, Stephen G. Programming in C. Hasbrouck Heights, New
Jersey: Hayden Book Company, 1983.

Sobelman, Gerald E., and David E. Krekelberg. Advanced C: Tech-
niques and Applications. Indianapolis, Indiana: Que Corporation, 1985.

 Preface

vii

Computer Graphics Algorithms

Blinn, James, “How Many Ways Can You Draw a Circle?” IEEE Com-
puter Graphics and Applications, vol. 7, no. 8 (August 1987), pages
39–44.

Bresenham, J. E. “Algorithm for Computer Control of a Digital Plotter.”
IBM Systems Journal, vol. 4, no. 1 (1965), pages 25–30.

Bresenham, J. E. “A Linear Algorithm for Incremental Display of Circu-
lar Arcs.” Communications of the ACM, vol. 20, no. 2 (February 1977),
pages 100–106.

Foley, James, and Andries van Dam. Fundamentals of Computer
Graphics. Reading, Massachussetts: Addison-Wesley, 1982.

Ingalls, D. H. “The Smalltalk Graphics Kernel.” Special issue on Small-
talk. Byte, vol. 6, no. 8 (August 1981), pages 168–194.

Knuth, Donald E., “Digital Halftones by Dot Diffusion.” ACM Transac-
tions on Graphics, vol. 6, no. 4 (October 1987), pages 245–273.

Newman, William M., and Robert F. Sproull. Principles of Interactive
Computer Graphics. 2nd ed. New York: McGraw-Hill, 1979.

Pike, Rob. “Graphics in Overlapping Bitmap Layers.” ACM Transac-
tions on Graphics, vol. 2 (April 1983), pages 135–160.

Pitteway, M. L. V. “Algorithm for Drawing Ellipses or Hyperbolae with a
Digital Plotter.” Computer Journal, vol. 10, no. 3 (November 1967),
pages 24–35.

Porter, T., and T. Duff. “Composing Digital Images.” Computer Graph-
ics, SIGGRAPH Proceedings, vol. 18, no. 3 (July 1984), pages
253–259.

Sproull, Robert F., and Ivan E. Sutherland. “A Clipping Divider.” Fall
Joint Computer Conference, 1968, Thompson Books, Washington, D.
C., pages 765–775.

Van Aken, Jerry R. “An Efficient Ellipse-Drawing Algorithm.” IEEE Com-
puter Graphics & Applications, vol. 4, no. 9 (September 1984), pages
24–35.

Van Aken, Jerry R., and Mark Novak. “Curve-Drawing Algorithms for
Raster Displays.” ACM Transactions on Graphics, vol. 4, no. 2 (April
1985), pages 147–169.

Van Aken, Jerry R., and Carrell R. Killebrew, Jr., “Better Bit-Mapped
Lines.” Byte, vol. 13, no. 3, March 1988, pages 249–253.

Video Memories and Displays

Preface

viii Preface

Conrac Corporation. Raster Graphics Handbook. 2nd ed. New York:
Van Nostrand Reinhold Company Inc., 1985.

Pinkham, Ray, Mark Novak, and Karl Guttag. “Video RAM Excels at
Fast Graphics.” Electronic Design, vol. 31, no. 17 (August 1983), pages
161–182.

Whitton, Mary C. “Memory Design for Raster Graphics Displays.” IEEE
Computer Graphics & Applications, vol. 4, no. 3 (March 1984), pages
48–65.

Style and Symbol Conventions

This document uses the following conventions.

Program listings, program examples, interactive displays, filenames,
and symbol names are shown in a special font. Examples use a bold
version of the special font for emphasis. Here is a sample program list-
ing:

main ()
{

set_config(0, 1);
clear_screen(–1);
set_text_xy(5, 5);
text_outp(”hello, world”);

}

Trademarks

Aegis, Domain/IX, and Apollo are trademarks of Apollo Computer, Inc.
EGA and VGA are trademarks of IBM Corp.
Macintosh and MPW are trademarks of Apple Computer Corp.
MS and MS-DOS are trademarks of Microsoft Corp.
NEC is a trademark of NEC Corp.
Sony is a trademark of Sony Corp.
Sun 3, Sun 4, and Sun Workstation are trademarks of Sun Microsystems, Inc.
UNIX and COFF are trademarks of AT&T Bell Laboratories.
VAX, VMS, and Ultrix are trademarks of Digital Equipment Corp.
XDS, TIGA, and TIGA-340 are trademarks of Texas Instruments, Inc.

ix

Contents

1 Introduction 1-1.
1.1 Supported Cross-Development Systems 1-2.
1.2 An Overview of Development Tools 1-3.

2 Getting Started 2-1.
2.1 Supported Graphics Cards 2-3.
2.2 Installation 2-4.

2.2.1 Library Directory Structure 2-4.
2.2.2 Dearchiving the Library Files and Subdirectories 2-6.
2.2.3 Running the Library Demos 2-6.

2.3 Using and Modifying the Library 2-7.
2.3.1 Writing Your Own Application Program 2-7.
2.3.2 Porting the Library 2-8.
2.3.3 Developing Custom Graphics Functions 2-10.

2.4 Symbolic Debugging 2-12.
2.5 TMS34010 and TMS34020 Code Compatibility 2-13.
2.6 Conversion Between TIGA and Library Font Formats 2-14.

3 Graphics Library Overview 3-1.
3.1 Graphics Capabilities 3-3.
3.2 Core and Extended Primitives 3-4.
3.3 Differences Between TIGA and TMS340 Graphics Library Routines 3-9. . .
3.4 Graphics Library Environment 3-11.
3.5 Bit-Mapped Fonts 3-12.
3.6 Application Programming Issues 3-14.

3.6.1 Specifying Complete Argument Lists 3-14.
3.6.2 Library Globals 3-14.
3.6.3 Portability of C Source Code 3-14.
3.6.4 Stack Growth 3-15.
3.6.5 Library Code Size 3-15.

3.7 System Implementation Issues 3-16.
3.7.1 Register Usage Conventions 3-16.
3.7.2 Interrupts 3-18.

Contents

x Table of Contents

3.7.3 System-Level Hardware Functions 3-19.
3.7.4 Functions with System Dependencies 3-19.
3.7.5 TMS34010 and TMS34020 Code Compatibility 3-21.
3.7.6 Floating-Point Compatibility 3-21.
3.7.7 Silicon Revision Number 3-22.

4 Graphics Operations 4-1.
4.1 Graphics Function-Naming Conventions 4-2.
4.2 Coordinate Systems 4-4.
4.3 Area-Filling Conventions 4-6.
4.4 Vector-Drawing Conventions 4-9.
4.5 Rectangular Drawing Pen 4-11.
4.6 Area-Fill Patterns 4-13.
4.7 Line-Style Patterns 4-15.
4.8 Operations on Pixels 4-17.

4.8.1 Transparency 4-17.
4.8.2 Plane Mask 4-18.
4.8.3 Pixel-Processing Operations 4-19.

4.9 Clipping Window 4-21.
4.10 Pixel-Size Independence 4-22.

5 Bit-Mapped Text 5-1.
5.1 Bit-Mapped Font Parameters 5-2.
5.2 Font Data Structure 5-5.

5.2.1 Font Header Information 5-5.
5.2.2 Font Pattern Table 5-8.
5.2.3 Location Table 5-10.
5.2.4 Offset/Width Table 5-10.

5.3 Proportionally Spaced Versus Block Fonts 5-11.
5.4 Font Table 5-12.
5.5 Text Attributes 5-13.
5.6 Available Fonts 5-14.

5.6.1 Installable Font Names 5-15.
5.6.2 Alphabetical Listing of Fonts 5-16.

6 Core Primitives 6-1.

7 Extended Primitives 7-1.

A Data Structures A-1.
A.1 BITMAP Structure Definition A-3.
A.2 CONFIG Structure Definition A-4.

 Contents

xi

A.3 ENCODED_RECT Structure Definition A-5.
A.4 ENVIRONMENT Structure Definition A-6.
A.5 ENVTEXT Structure Definition A-7.
A.6 FONT Structure Definition A-8.
A.7 FONTINFO Structure Definition A-9.
A.8 MODEINFO Structure Definition A-10.
A.9 OFFSCREEN_AREA Structure Definition A-11.
A.10 PAGE Structure Definitions A-12.
A.11 PALET Structure Definition A-13.
A.12 PATTERN Structure Definition A-14.

B Reserved Symbols B-1.
B.1 Symbols in Core Primitives Library B-2.
B.2 Symbols in Extended Primitives Library B-5.
B.3 Global Font Names B-8.

C Glossary C-1.

Running Title

xii Table of Contents

Figures

1–1 TMS340x0 Software Development Flow 1-3.

4–1 Screen Coordinates and Drawing Coordinates 4-4.

4–2 Mapping of Pixels to Coordinate Grid 4-5.

4–3 A Filled Rectangle 4-6.

4–4 A Filled Polygon 4-7.

4–5 An Outlined Polygon 4-10.

4–6 A Line Drawn by a Pen 4-12.

4–7 A 16-by-16 Area-Fill Pattern 4-14.

4–8 Three Connected Styled Lines 4-16.

5–1 Bit-Mapped Font Attributes 5-4.

5–2 Data Structure for Bit-Mapped Fonts 5-5.

5–3 Bit-Mapped Font Representation 5-9.

6–1 Outcodes for Line Endpoints 6-8.

 Running Title

xiii

Tables

3–1 Summary of Library Functions 3-5.

3–2 Library Global Variables 3-11.

3–3 Summary of Available Fonts 3-12.

4–1 Geometric Types 4-2.

4–2 Rendering Styles 4-3.

4–3 Checklist of Available Geometric Types and Rendering Styles 4-3.

4–4 Boolean Pixel-Processing Operation Codes 4-19.

4–5 Arithmetic Pixel-Processing Operation Codes 4-20.

5–1 Text-Related Functions 5-1.

5–2 Font Database Summary 5-14.

5–3 Installable Font Names 5-15.

6–1 Pixel-Processing Operations 6-32.

6–2 Pixel-Processing Operations 6-62.

xiv Table of Contents

1-1

Chapter 1

Introduction

The TMS340 Graphics Library is a collection of software functions that ex-
ecute on the TMS34010 and TMS34020 Graphics System Processors. The
functions in the library are designed to be called from C programs executing
on a TMS340 graphics processor, but they can also be called from TMS340
assembly language programs that mimic the C compiler’s calling conven-
tions. The library provides capabilities for outputting text and graphics to
video monitors and other raster graphics display devices controlled by
TMS340 graphics processors. Library functions are provided for performing
pixel-aligned block transfers (or “PixBlts”), for printing bit-mapped text, and
for drawing lines, polygons, ellipses, arcs and other figures.

The TMS34010 and TMS34020 are advanced single-chip, 32-bit graphics
microprocessors. They combine 32-bit general-purpose processing power
with features that accelerate computer graphics applications and decrease
the size and cost of graphics systems. Both are software-compatible mem-
bers of the TMS340 Family of graphics products from Texas Instruments.

The TMS34010 and TMS34020 are well supported by a full set of hardware
and software development tools. The available software tools include a C
compiler, assembler, linker and archiver. These are described in the
TMS340 Family Code Generation Tools User’s Guide. Hardware tools in-
clude full-speed hardware emulators and IBM PC-compatible software de-
velopment boards. These are described in the user’s guides for the
TMS34010 and TMS34020 extended development systems (XDSs) and
software development boards (SDBs).

Texas Instruments bundles software debugging tools with its software de-
velopment board products for the TMS34010 and TMS34020. In addition,
a variety of debugging tools are available from third parties. Consult the
TMS340 Family Third Party Guide for an up-to-date listing of debugging
tools from third parties.

Texas Instruments provides a hotline to assist you with technical questions
about TMS340 Family products and development tools. The telephone
number for the hotline is (713) 274-2340.

Supported Cross-Development Systems

1-2 Introduction

1.1 Supported Cross-Development Systems

The compilation, assembly, and linking of software modules for execution
on a TMS340x0 (TMS34010 or TMS34020) processor is performed on a
system other than the target TMS340x0 display system. The TMS340x0
software tools can be installed on the following systems:

IBM-PC or 100% compatible system
with PC-DOS or MS-DOS
with OS/2

VAX
VMS
Ultrix

Apollo Workstations
Domain/IX
AEGIS

Sun-3 and Sun-4 Workstations with Unix

Macintosh with MPW

 An Overview of Development Tools

1-3

1.2 An Overview of Development Tools

Figure 1–1 shows the flow of TMS340x0 software development with the
TMS340 Family Code Generation Tools. The most widely used software de-
velopment paths are highlighted in the figure; the other paths are optional.

Figure 1–1. TMS340x0 Software Development Flow

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

Archiver

Macro Source
Files

Macro Library

ÍÍ
ÍÍ
ÍÍ
ÍÍ

LinkerLinker

C Source
Files

C Compiler

Assembler
Source

Object
Format

Converter

EPROM
Programmer TMS340x0

XDS
Emulator

Software
Development

Board

ÍÍ
ÍÍ
ÍÍ

Assembler
Source

ÍÍ
ÍÍ
ÍÍ

COFF Object
Files

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

Executable
COFF Object

File

Archiver

Assembler

An Overview of Development Tools

1-4 Introduction

The TMS340 Graphics Library (lower right side of Figure 1–1) in object form
is linked with applications programs written in C and compiled using the C
compiler. (The library can also be linked with applications written in assem-
bly language that mimic the C compiler’s subroutine-calling conventions.)
The graphics library complements the runtime-support and floating-point li-
braries shipped with the C compiler. Other libraries available from Texas In-
struments as separate products include the CCITT Image Compression/
Decompression Library and the 8514 Adapter Interface Emulation Function
Library.

The complete C and assembly language source code for the TMS340
Graphics Library is provided. This makes possible another development
path in which the programmer modifies the original library source code to
accommodate the requirements of a proprietary application. The modified
source library can be compiled, assembled, and archived to form a new ob-
ject library that can be linked with an application.

The C compiler at the top right of Figure 1–1 accepts C source code and
produces TMS340x0 assembly source code. The C compiler consists of
four stages: a preprocessor, a parser, a code generator, and an optional op-
timizer.

The assembler near the top center of Figure 1–1 translates TMS340x0 as-
sembly language source files into machine language object files. The object
files are in COFF (common object file format), as described in the TMS340
Family Code Generation Tools User’s Guide.

The archiver is used to collect a group of files (source or object) into a single
archive file. The resulting archive file is referred to as a source or object li-
brary, as appropriate.

The linker shown in the middle of Figure 1–1 combines object files into a
single executable object module. As the linker creates the executable mod-
ule, it performs relocation and resolves external references. The linker ac-
cepts relocatable COFF object files and object libraries as input. The linker
is capable of extracting the modules it requires from object libraries con-
structed using the archiver.

The resulting executable TMS340x0 program can be executed either on a
proprietary TMS340x0-based display system or on one of the hardware
products provided by Texas Instruments to support software development.
The TMS34010 and TMS34020 Software Development Boards from Texas
Instruments are high-performance graphics cards that can be inserted into
IBM-compatible PCs. The SDBs and accompanying software-debugging
tools are sufficient to support the software development needs of many
applications. More extensive software and hardware development capabili-
ties are provided in the XDS (extended development system) products for
the TMS34010 and TMS34020. For more information, refer to the user’s
guides for these products.

2-1

Chapter 2

Getting Started

This chapter tells you how to install and use the TMS340 Graphics Library.
The installation procedures for the IBM PC (or compatible) are described.
The procedures for installing the library on VAX, Apollo, Sun and Macintosh
systems are similar, but the details are presented in the readme.1st

documentation files on the distribution media containing the library soft-
ware.

Installation and testing of the library package should be straightforward if
you have either of the following:

1) One of the TMS34010- or TMS34020-based graphics cards supported
by Texas Instruments (listed in the next section)

2) A proprietary port of the library from a graphics card manufacturer

If you are planning to port the library yourself to a proprietary card, you may
want to begin by checking out the library on a card to which it has already
been ported, if one is available to you.

A collection of library-based demonstration programs is included in both
source and executable form. You can verify that your graphics card works
correctly by running the programs on it. Once this is done, you can verify
that your graphics library and the other TMS340 software tools are confi-
gured correctly by recompiling and relinking the demos. At this point, you
should be ready to begin developing your own application programs, port-
ing the library to a new graphics card, or adding proprietary functions to the
graphics library.

Also described in this chapter is the organization of the library files, which
are partitioned into several subdirectories. The library directory structure
isolates the system-dependent library functions from the system-independ-
ent ones. This serves to clearly identify which files need to be modified when
the library is ported to a new graphics card. The directory structure also al-
lows the library to be used simultaneously for development with two or more
TMS34010- or TMS34020-based graphics cards. For instance, your sys-
tem might contain both a proprietary graphics card that you are in the pro-
cess of developing, and a software development board from TI to support
initial software development.

Getting Started

2-2 Getting Started

The procedure for converting bit-mapped fonts between the TIGA and
TMS340 Graphics Library file formats is described at the end of this chapter.
Distributed with the graphics library are 108 fonts that have already been
converted to the library’s format.

 Supported Graphics Cards

2-3

2.1 Supported Graphics Cards
At the time of this writing, the distribution media for the TMS340 Graphics
Library contain hardware-specific support for the following TMS34010- and
TMS34020-based graphics cards from Texas Instruments:

1) TMS34010 TDB (TIGA Development Board) and compatibles. This
TMS34010-based PC add-in card contains a TMS34092 VGA Interface
Chip, which is a memory and pixel pipeline peripheral for low-cost PC
video adapters using the TMS34010. VGA pass-through capability is
provided. The current library implementation supports the TDB with a
minimum memory configuration of 512 kilobytes of video RAM (and no
DRAM). The card is physically socketed for up to 1 megabyte of video
RAM and up to 1 megabyte of DRAM. The TDB is software-configur-
able to drive 640-by-480 and 1024-by-768-resolution analog RGB
monitors at 1, 2, 4, and 8 bits/pixel.

2) TMS34010 SDB (Software Development Board). This PC add-in card
serves as a hardware platform for developing and testing TMS34010
software. It contains 256 kilobytes of video RAM and 512 kilobytes of
DRAM and is configured to drive a 640-by-480-resolution RGB monitor
at 4 bits/pixel.

3) TMS34020 SDB (Software Development Board). This PC AT add-in
card serves as a hardware platform for developing and testing
TMS34020 software. The card provides VGA pass-through capability
and can be configured for a data bus width of 8 or 16 bits. On-card
memory consists of 1 megabyte of video RAM and 1 megabyte of
DRAM, and the video output is software-configured to drive
640-by-480- and 1024-by-768-resolution RGB monitors at 4 and 8 bits/
pixel. The card is socketed for an optional TMS34082 Floating-Point
Coprocessor.

Ports to additional TMS340x0-based graphics cards may be available by
the time you read this. Refer to the documentation files on the library distri-
bution media for updates. You may also wish to consult the TMS340 Graph-
ics Bulletin Board System (telephone number (713) 274-2417) or your
graphics card vendor for the latest developments.

The VGA pass-through capability provided by some TMS340 graphics pro-
cessor cards permits a single monitor to be shared between application pro-
grams that run through the TIGA interface and programs that run through
the VGA. In a graphics development environment, however, two monitors
are virtually a necessity. When debugging a program that runs on a graphics
card under either the TIGA or the graphics library environment, one monitor
is typically used to display the graphics card’s output and a second monitor,
driven by the PC display adapter, is used to display the debugger status.

Installation

2-4 Getting Started

2.2 Installation

To install the TMS340 Graphics Library on the hard disk of your IBM PC or
compatible, create a directory named c:\glib340 . (You can pick another
name if you prefer, but you will later have to modify the makelib.bat batch
file.) Switch to directory \glib340 and download all the files from the distri-
bution floppy disks to this directory.

Among the downloaded files are several compressed archive files, identi-
fied by their *.zip file name extensions. The following is a list of the archive
files and their contents:

corprims.zip Core Primitives Library functions

extprims.zip Extended Primitives Library functions

include.zip Include files (with *.h and *.inc extensions)

fonts.zip Bit-mapped fonts (108 fonts in 20 typefaces)

tdb10.zip Support for TMS34010 TIGA Development Board

sdb10.zip Support for TMS34010 Software Development Board

sdb20.zip Support for TMS34020 Software Development Board

The last three archive files above contain hardware-specific support for
TMS34010- and TMS34020-based graphics cards from Texas Instruments.
If you do not require support for a particular card at this time, you may delete
the corresponding *.zip file from your hard disk directory. (The file will still
be on your distribution floppy disks if you later find that you need it.)

2.2.1 Library Directory Structure

Each of the *.zip archive files listed above contains not only files, but also
the directory structure to contain the files. When dearchived, each archive
file creates a subdirectory to the main library directory, \glib340 , with the
same name as the archive file. For example, the subdirectory contained in
archive file corprims.zip is \glib340\corprims . When you dearchive
all the *.zip files in the \glib340 directory, the following directory structure
will be created:

glib340 Main library directory
....corprims Core Primitives Library
....extprims Extended Primitives Library
....include Include files (*.h and *.inc)
....fonts Bit-mapped fonts
....tdb10 TMS34010 TDB-specific support
........oemprims TMS34010 TDB hardware-dependent functions

 Installation

2-5

........demos Demo programs for TMS34010 TDB

....sdb10 TMS34010 SDB-specific support

........oemprims TMS34010 SDB hardware-dependent functions

........demos Demo programs for TMS34010 SDB

....sdb20 TMS34020 SDB-specific support

........oemprims TMS34020 SDB hardware-dependent functions

........demos Demo programs for TMS34020 SDB

The hardware-dependent functions contained in the \oemprims directories
are really part of the Core Primitives Library but are segregated from the
hardware-independent core primitives in the \corprims directory for con-
venience. If you port the TMS340 Graphics Library to a proprietary
TMS34010- or TMS34020-based graphics card, you will need to modify
only the handful of hardware-independent functions in the \oemprims di-
rectory. The functions in the \corprims and \extprims directories can be
used without modification.

Wherever possible, the graphics library uses the same source files as TIGA.
The source files for all library functions that differ in implementation from
their TIGA counterparts are isolated in the \oemprims directory. The source
files for all the library functions contained in the \corprims and \extprims

directories are identical to their TIGA counterparts. However, the
coredefs.c source file in the \corprims directory, which defines the li-
brary’s global variables env, pattern, and sysfont, differs from the TIGA ver-
sion of this file, which defines additional variables not used in the library.

The graphics library’s \include directory contains C and assembly lan-
guage include files (with *.h and *.inc file name extensions). Some of
these files differ from the TIGA include files with the same names. The files
in the \include directory are similar to the original TIGA include files but
have been edited to eliminate references to TIGA functions and data struc-
tures not used in the library. These edits have been made strictly for the
sake of clarity, and you should be able to directly replace the library’s include
files with the original TIGA files if you choose. (The exception to this state-
ment is the oem.inc file, which is discussed in Section 2.5.)

The \fonts directory contains the 108 bit-mapped fonts that are distributed
with the library. These fonts have been converted to the file format required
for use with the library. The method for converting files between the TIGA
and graphics library font formats is straightforward and is described in Sec-
tion 2.6.

2.2.2 Dearchiving the Library Files and Subdirectories

The procedure for dearchiving the contents of all the *.zip files in the
\glib340 directory is to enter the following single MS-DOS command:

Installation

2-6 Getting Started

for %x in (*.zip) do pkunzip –d –o %x

Alternately, if you wish to dearchive the *.zip files one at a time, you may
do so. For example, to dearchive the Extended Primitives Library (and
create the \extprims subdirectory), enter the following MS-DOS com-
mand:

pkunzip –d –o extprims.zip

Note that the dearchiving utility pkunzip.exe used above is included in the
distribution floppy disks containing the library. For a brief explanation of the
capabilities of the pkunzip.exe utility, enter the MS-DOS command
“pkunzip” with no command-line arguments.

2.2.3 Running the Library Demos

Once you have dearchived the subdirectories, you can test your graphics
card by running the appropriate set of demonstration programs. The demos
for a particular card are contained in the subdirectory for that card. For ex-
ample, the demos for the TMS34010 TIGA Development Board reside in
the subdirectory \glib340\tdb10\demos . You can invoke the batch file
demo.bat in this subdirectory to run the demos for you.

In each \demos subdirectory is a copy of the COFF loader utility, gspl.exe .
The demo.bat batch file described in the preceding paragraph uses the
loader to download a TMS340x0 executable file in COFF format from disk
to the graphics card and execute it. The gspl.exe loader is configurable,
and each \demos directory contains a copy of the loader configured for a
particular TMS34010- or TMS34020-based graphics card. The configura-
tion data is stored in a second file, gspl.ini , that resides in the same
\demos subdirectory as the gspl.exe file. For more details on the use of the
loader, refer to the description in the gspl.doc text file in the main library
directory, \glib340 .

 Using and Modifying the Library

2-7

2.3 Using and Modifying the Library

You may plan to use the TMS340 Graphics Library in some or all of the fol-
lowing ways:

Write your own application program that calls the functions in the library.

Port the library to a proprietary graphics card.

Write customized graphics functions to be used as extensions to the
standard library.

Each of these three usages of the library is discussed, in turn, below.

2.3.1 Writing Your Own Application Program

If you plan to write your own applications program to call the functions in the
graphics library, you may want to begin by verifying that your software tools
are configured correctly to compile and link programs that run on the
TMS340 graphics processor. A convenient way to do this is to compile and
link the demonstration programs contained in the \demos subdirectory for
the target graphics card. The makedem.bat batch file that resides in the
\demos subdirectory is available to automate the process of rebuilding the
demos. To update the demos, change to the appropriate \demos subdirec-
tory and enter “makedem” at the MS-DOS command line. Running this
batch file automatically compiles and links any demos that need to
be updated. If you have just installed the graphics library on your
system, makedem.bat will update all the demos.

The makedem.bat batch file invokes the make.exe utility program that is dis-
tributed with the graphics library. A make program is a utility for automating
program development. It can automatically update an executable file when-
ever changes are made to one of its source or object files. For example, if
you make an edit to demo source file test01.c and run the makedem.bat

batch file again, the make utility will detect the fact that the test01.c file is
more recent than the test01.obj relocatable object file, and will update this
file. It will then detect that the new test01.obj file is more recent than the
test01.out executable file, and update this file as well. Specified as a com-
mand-line argument to the make program is the name of a make description
file, typically with a *.mak file name extension. This file specifies to the make
utility which modules are required to update the executable file. The Texas
Instruments make utility is similar to the one from Microsoft but has some
additional capabilities described in the make.doc text file that resides in the
main library directory.

The makedem.bat batch file, which invokes the make utility, specifies the
make description file demos.mak as the input file to the make utility. The

Using and Modifying the Library

2-8 Getting Started

demos.mak file in turn refers to the lc.cmd link command file, which directs
the linker to the object library archive files that need to be linked with
the demo program. These object archives include the corprims.lib ,
extprims.lib, and oemprims.lib libraries shipped with the TMS340
Graphics Library, and also the rts.lib and flib.lib libraries shipped with
the TMS340 Family C Compiler.

At this point, you should be able to create your own C-language program
(perhaps by modifying an existing demo program), and compile and link it.
If you name the source file “test.c”, you can invoke the maketst.bat batch
file, which resides in the \demos subdirectory, to automatically compile, link,
and execute the program for you. You can verify this by copying one of the
demo source files to test.c and entering “maketst” at the MS-DOS com-
mand line.

2.3.2 Porting the Library

To port the TMS340 Graphics Library to a proprietary TMS34010- or
TMS34020-based graphics card, you will need to modify the hardware-de-
pendent functions in the Core Primitives Library. For convenience, these
functions have been isolated in the \oemprims subdirectory corresponding
to each of the graphics cards supported in the library. The functions located
in the \corprims and \extprims directories do not in general require port-
ing.

The \oemprims directory also isolates all graphics library functions that dif-
fer in implementation from their TIGA counterparts. The source code files
for the functions in the \corprims and \extprims directories are identical
to those distributed in the TIGA interface package.

As an example, the following is a list of the C and assembly-language
source code files contained in the \oemprims directory for the TMS34010
TIGA Development Board:

clearfrm.asm Source code for clear_frame_buffer routine

clearpag.asm Source code for clear_page routine

clearscr.asm Source code for clear_screen function

delay.asm Called indirectly by set_config routine

getneare.asm Source code for get_nearest_color routine

nullpatn.asm Referred to within set_config routine

getrev.asm Called by set_config routine

setdptch.asm Called by set_config routine

 Using and Modifying the Library

2-9

trapvect.asm Source code for get_vector and set_vector routines

config.c Source code for set_config routine

getmode.c Source code for get_modeinfo routine

getpalet.c Source code for get_palet and get_palet_entry routines

initpale.c Source code for init_palet routine

initvide.c Called by set_config routine

oem.c Data structures accessed by set_config routine

oemdata.c Data structures accessed by set_config routine

pagewait.c Source code for page_flip, page_busy, and wait_scan
routines

setpalet.c Source code for set_palet and set_palet_entry routines

oem.h C include file containing system-dependent parameters

oem.inc Assembly-language include file containing system-
dependent parameters

The lists for the TMS34010 and TMS34020 SDBs are similar.

The oem.h include file defines the hardware-dependent data structure,
SETUP. The oemdata.c file contains an array of SETUP structures, each
of which contains the parameters needed to configure the graphics card in
a particular graphics mode. These parameters include screen width and
height, pixel size, video timing, display pitch, video page (or frame buffer)
addresses, and any card-specific initialization data. The SETUP structure
for a proprietary graphics card may need to be customized to accommodate
the proprietary features of that card. For instance, the SETUP structure can
be modified to contain the initial values loaded into on-card registers.

The getrev.asm file listed above contains the getrev routine that is called
by the library function set_config to obtain the silicon revision number of
the TMS34010 or TMS34020 processor. Both the TIGA and TMS340
Graphics Library versions of getrev obtain the revision number by execut-
ing the assembly language instruction REV. The graphics library version of
this file, however, differs from TIGA in that it also contains a default illegal
opcode interrupt service routine (ISR) that is installed at the time the pro-
gram is loaded into TMS340 graphics processor memory. The primary pur-
pose of this ISR is to support the earliest versions of the TMS34010, which
treat REV as an illegal opcode. If your graphics card contains a TMS34020,
or a later version of the TMS34010 that recognizes REV as a valid instruc-
tion, you can delete the ISR from the getrev.asm file if you wish. (At the time
of this writing, one potential reason for removing the ISR is that not all

Using and Modifying the Library

2-10 Getting Started

TMS34010 and TMS34020 debuggers understand how to deal intelligently
with an ILLOP trap vector installed at load time.) If you delete the ISR, you
will also need to modify the lc.cmd link command file that resides in the
\demos directory. As shipped with the library, lc.cmd is set up to install the
ILLOP trap vector at the time a library-based application is loaded into
TMS340 graphics processor memory. Refer to the SECTIONS directive at
the end of lc.cmd .

2.3.3 Developing Custom Graphics Functions

For the benefit of programmers who wish to modify the existing graphics
functions or write their own custom functions, the TMS340 Graphics Library
is distributed in both source and object form. Before undertaking develop-
ment of new functions, you may wish to verify that the software tools are
configured correctly by recompiling the object library files from the existing
source files. The makelib.bat batch file in the main library directory,
\glib340 , automates the process of remaking the object libraries. This
batch file creates the following object library archive files:

corprims.lib Resides in \corprims subdirectory.

extprims.lib Resides in \extprims subdirectory.

oemprims.lib Resides in \oemprims subdirectory for specified
target graphics card.

Each archive file is built using the gspar.exe archive utility program de-
scribed in the TMS340 Family Code Generation Tools User’s Guide. The
makelib.bat batch file also recompiles and relinks the demo programs for
the target graphics card. Note that the core and extended primitives con-
tained in the \corprims and \extprims subdirectories are hardware-inde-
pendent and run without modification on any of the graphics cards currently
supported by the library. The hardware-specific core primitives are con-
tained in the \oemprims directory for each supported card.

The makelib.bat batch file can be invoked from the main library directory,
\glib340 , with an MS-DOS command-line argument specifying the target
graphics card. For example, to configure the library to run on the TMS34010
TIGA Development Board, the MS-DOS command is

makelib tdb10

If you intend to configure the library for one of the other supported graphics
cards, you can obtain instructions on how to do this by entering the MS-
DOS command “makelib” with no command-line arguments.

Once the object library has been remade by the makelib.bat batch file, it
can be updated to reflect changes in the source files. For example, if you

 Using and Modifying the Library

2-11

edit the cpw.asm source file in the \corprims directory and invoke
makelib.bat a second time, the batch file will detect that cpw.asm has been
updated and will update the corresponding object file, cpw.obj , contained
in the corprims.lib object archive. (None of the other object files will be
updated unless they need to be.)

The makelib.bat batch file invokes the make.exe utility program,
described previously. Each of the object archives—corprims.lib ,
extprims.lib, and oemprims.lib —is built by a make description file with
a *.mak filename extension that resides in the same subdirectory as the ob-
ject archive file. You may want to use an existing make description file as
a model for writing a make description file to build your proprietary object
library.

Symbolic Debugging

2-12 Getting Started

2.4 Symbolic Debugging

If you have access to a symbolic debugger, you may wish to try stepping
through one or more of the demo programs provided with the graphics li-
brary. As distributed, the executable demo programs contain embedded
symbolic information for the demo code itself, but not for the graphics library
functions they are linked with.

The object libraries corprims.lib , extprims.lib, and oemprims.lib

are distributed without embedded symbols in order to reduce the storage
requirements of the distributed package. If you have a symbolic debugger
and you need to access the symbols for one or more library functions, you
can recompile the source code for those functions with the symbols option
enabled and update the object libraries. The procedure for retaining sym-
bolic information during the compilation, assembly, and linking stages is de-
scribed in the TMS340 Family Code Generation Tools User’s Guide.

If you are releasing a software product based on the graphics library, you
should be aware that including embedded symbols in the object or execut-
able files may significantly increase their storage requirements on disk and
increase the time required to download the code to the TMS340 graphics
processor. (The symbolic information is removed by the COFF loader, and
it therefore has no impact either on the size of the code downloaded to the
TMS340 graphics processor for execution, or on the execution speed of the
code.)

 TMS34010 and TMS34020 Code Compatibility

2-13

2.5 TMS34010 and TMS34020 Code Compatibility

The core and extended primitives contained in the \corprims and
\extprims directories are, by default, configured to generate
TMS34010-compatible code. Note that TMS34010-compatible code also
runs on the TMS34020, although it does not take advantage of TMS34020
graphics acceleration features not available on the TMS34010.

If you desire, you can configure the core and extended primitives to utilize
the TMS34020’s graphics acceleration features, but the library thus confi-
gured will not execute on the TMS34010.

The mechanism for configuring the library involves conditional assembly
constants GSP_34010 and GSP_34020, defined in the include file
oem.inc , which resides in the \include directory. By default, this file de-
fines GSP_34010 and GSP_34020 as having the values 1 and 0, respec-
tively, which enables TMS34010-compatible code. (This code also runs on
the TMS34020.) To configure the library for TMS34020-specific code, edit
the oem.inc file to define GSP_34010 and GSP_34020 as having the val-
ues 0 and 1, respectively, and recompile the library using the makelib.bat

batch file described previously. The resulting object code will execute cor-
rectly on the TMS34020, but not on the TMS34010.

The \oemprims directories for the various supported graphics cards also
contain oem.h and oem.inc files that define conditional assembly constants
GSP_34010 and GSP_34020. As distributed, these files should already de-
fine the two constants correctly to accommodate the target graphics card,
and you do not need to modify them. However, if you are porting the library
to a proprietary graphics card, you should know that the role of these con-
stants in the \oemprims directory is slightly different from that in the
\corprims and \extprims directories. In the case of the \oemprims direc-
tory, the two constants are specific to the processor on the target graphics
card. In other words, if the graphics card contains a TMS34010, the con-
stants GSP_34010 and GSP_34020 in the oem.h and oem.inc files must
be defined as 1 and 0, respectively. If the graphics card contains a
TMS34020, the constants GSP_34010 and GSP_34020 must be defined
as 0 and 1, respectively. Hardware-specific functions configured to execute
on the TMS34010 will not run correctly on the TMS34020, and vice versa.

Conversion Between TIGA and Library Font Formats

2-14 Getting Started

2.6 Conversion Between TIGA and Library Font Formats

The bit-mapped fonts distributed with the TMS340 Graphics Library reside
in the \fonts directory. Each font archive file is identified by its *.lib ex-
tension; each archive file contains all the fonts in a particular typeface. The
archive is built with the gspar.exe archive utility program described in the
TMS340 Family Code Generation Tools User’s Guide.

As described in Chapter 1, these fonts are identical to those distributed with
the TIGA-340 Interface package, although the font file format differs from
that of TIGA. Each TIGA font is distributed as a binary image file with a
*.fnt file name extension. Each font in the TMS340 Graphics Library is dis-
tributed as a file in COFF format with an *.obj file name extension. The
conversion between the TIGA and graphics library formats is straightfor-
ward with the binsrc.exe and cof2bin.exe conversion utilities that are
distributed with the library and reside in the \fonts subdirectory. For more
information on these utilities, refer to the binsrc.doc and cof2bin.doc

documentation files in the \ fonts subdirectory.

For example, to convert the austin25 font from graphics library format to
TIGA format, use the following MS-DOS command to extract the aus-

tin25.obj file from the austin.lib font archive with the gspar.exe utility:

gspar –x austin.lib austin25.obj

Then use this MS-DOS command to convert the austin25.obj file, in
COFF format, to binary format with the cof2bin.exe utility:

cof2bin austin25.obj austin25.fnt

where the output file, austin25.fnt , is in the binary format used by TIGA.

To continue the example, convert the TIGA font file austin25.fnt to the
graphics library format in two steps. First, use the binsrc.exe utility to con-
vert the TIGA font file to a TMS340 assembly language source file with the
following MS-DOS command:

binsrc –a austin25.fnt austin25.asm

If you inspect the resulting source file, austin25.asm , you will notice that
the label assigned to the font data structure is austin25, which is the file
name as well. By convention, the file name (and the label) matches the glob-
al name assigned to this font within the graphics library. To convert from as-
sembly source to COFF format, invoke the TMS340 assembler in the usual
manner:

gspa austin25.asm austin25.obj

The resulting output file, austin25.obj , is in the COFF format used for the
fonts distributed with the graphics library.

3-1

Chapter 3

Graphics Library Overview

The TMS340 Graphics Library is a collection of software functions for draw-
ing text and graphics on a bit-mapped display controlled by a TMS340 Fam-
ily Graphics System Processor. The library represents a subset of the core
and extended primitives available to applications running under the
TIGA-340 Interface environment, as described in the TIGA-340 Interface
User’s Guide. The TMS340 Graphics Library package currently supports
two software-compatible TMS340 graphics processors, the TMS34010 and
TMS34020. Full source code is provided for all library functions. Also dis-
tributed with the library are a number of demonstration programs and a col-
lection of bit-mapped fonts. The library can easily be ported to run on display
systems spanning a broad range of display resolutions and pixel depths.

The graphics library is intended to be used with Release 4.00 or above of
the TMS340 Family Code Generation Tools from Texas Instruments, as de-
scribed in the TMS340 Family Code Generation Tools User’s Guide. These
software development tools include a C compiler, assembler, linker, archiv-
er, and additional utilities.

The library, as distributed, is configured to run on several TMS34010- and
TMS34020-based graphics boards, including the TMS34010 and
TMS34020 Software Development Boards available from Texas Instru-
ments. An up-to-date list of display hardware to which the library has al-
ready been ported is available in the documentation files on the magnetic
media on which the library is distributed. Porting the library to additional
TMS340 graphics processor-based displays is straightforward; the system
implementation issues involved in porting or extending the library are ad-
dressed later in this chapter.

The TMS340 Graphics Library contains all of the extended primitives dis-
tributed with the TIGA-340 Interface package, but only a subset of the TIGA
core primitives. This is due to the differences between the TIGA environ-
ment and that of the graphics library. TIGA provides a convenient interface
for dividing processing tasks between the TMS340 graphics processor and
a host processor. Graphics applications executing through TIGA can im-
prove their performance by utilizing the processing power of the host and

 Graphics Library Overview

3-2 Graphics Library Overview

the TMS340 graphics processor together in parallel. Refer to the TIGA-340
Interface User’s Guide for details.

In contrast to TIGA, the TMS340 Graphics Library is designed to support
the development both of applications that reside completely on the TMS340
graphics processor and of applications that rely on proprietary software in-
terfaces for TMS340 graphics processor communications with other pro-
cessors.

The environment of the TMS340 Graphics Library is simpler than TIGA’s in
two respects:

1) TIGA executes on two processors, the host and the TMS340 graphics
processor, which operate in parallel. The graphics library, on the other
hand, executes on the TMS340 graphics processor alone.

2) TIGA utilizes interrupts, whereas the graphics library does not. Where
necessary, graphics library functions poll interrupt requests, but the in-
terrupts are disabled.

The TMS340 Graphics Library offers the following benefits:

Convenient access to TMS340 graphics processor capabilities and
performance for evaluation by potential developers

A simple, single-processor environment for learning about and proto-
typing with the TMS340 graphics processor

Working examples of graphics functions written in assembly code for
the TMS340 graphics processor

An easily portable software package for shaking out new
TMS340x0-based hardware designs

Library routines that can be utilized as defined, or adapted to serve pro-
prietary needs

A library of graphics functions that run independently of the TIGA
dual-processor environment

A simplified environment for initial development and debugging of soft-
ware that executes under the TIGA Graphics Manager

Regarding the last item above, developers of proprietary graphics exten-
sions to the standard TIGA primitives may find the simpler environment of
the TMS340 Graphics Library to be more convenient for the initial testing
and debugging of customized code. Once a proprietary graphics function
has been successfully tested within the library environment, it can be sub-
jected to further testing within the more complex TIGA environment. Porting
a function from the graphics library to TIGA is in most cases trivial because
of the similarity of the two graphics environments.

 Graphics Capabilities

3-3

3.1 Graphics Capabilities

The functions in the TMS340 Graphics Library are designed to execute over
a wide range of display resolutions and pixel depths. The range of screen
resolutions supported by the library spans the available raster display tech-
nology. The pixel sizes supported by the library are 1, 2, 4, 8, 16, and 32 bits.

The library achieves this level of display independence by exploiting the in-
herent graphics capabilities of the TMS34010 and TMS34020 graphics pro-
cessors. Software executing on a TMS340 processor can configure display
parameters such as display dimensions and pixel size by simply loading the
parameters into dedicated hardware registers. The processor’s graphics in-
structions automatically make the adjustments necessary to accommodate
the parameters of the display.

By default, library functions that output graphics to the display simply over-
write destination pixels with source pixels. The library, however, supports
several optional methods for combining source and destination pixel values
to produce the final pixel values written to the screen:

A variety of Boolean and arithmetic operations are supported for com-
bining source and destination pixels.

Designated bits within pixels can be masked off to protect the bits
against modification during writes.

Objects written to the screen can contain transparent regions through
which the original background is visible.

The three capabilities above are not mutually exclusive. They can be confi-
gured independently by calls to library functions, and used in any combina-
tion when drawing to the display.

The library has been carefully designed to make the behavior of the graph-
ics functions predictable in all cases. The library follows well-defined con-
ventions for mapping pixels to x-y coordinates, for determining which pixels
are contained within the boundaries of filled regions, and for selecting thin,
but connected, sets of pixels to approximate lines and arcs.

All graphics output is automatically clipped to the boundaries of the display.
A clipping window can be defined that restricts graphics output to a rectan-
gular region of the display.

 Core and Extended Primitives

3-4 Graphics Library Overview

3.2 Core and Extended Primitives

The TMS340 Graphics Library is divided into two sub-libraries, the Core
Primitives Library and the Extended Primitives Library. TIGA similarly di-
vides the library functions into a set of core primitives that are permanently
installed as part of the Graphics Manager, and a set of extended primitives
that can be installed as an extension to the core primitives. The distinction
between core and extended primitives is of less importance in the TMS340
Graphics Library environment than in TIGA but is maintained for the sake
of uniformity with the TIGA environment and documentation.

Within the graphics library environment, the differences between core and
extended primitives are primarily functional. The core primitives are, in gen-
eral, dedicated to initializing, configuring, and interrogating the graphics en-
vironment but provide only rudimentary capabilities for drawing to the dis-
play. The extended primitives provide a broader range of text and graphics
output capabilities, including the abilities to draw text in a variety of propor-
tionally spaced fonts and to draw graphics objects such as lines, ellipses,
arcs and polygons.

Table 3–1 is a comprehensive, alphabetical listing of the functions available
in the TMS340 Graphics Library. The rightmost column identifies the func-
tion as belonging to either the core or extended primitives. The Core Primi-
tives and Extended Primitives Libraries are described in Chapters 6 and 7
of this user’s guide as separate, but related libraries.

 Core and Extended Primitives

3-5

Table 3–1. Summary of Library Functions

Function Name Description Type

bitblt Transfer bit-aligned block Ext

clear_frame_buffer Clear frame buffer Core

clear_page Clear current drawing page Core

clear_screen Clear screen Core

cpw Compare point to clipping window Core

cvxyl Convert x-y position to linear address Core

decode_rect Decode rectangular image Ext

delete_font Delete font Ext

draw_line Draw line Ext

draw_oval Draw oval Ext

draw_ovalarc Draw oval arc Ext

draw_piearc Draw pie arc Ext

draw_point Draw point Ext

draw_polyline Draw polyline Ext

draw_rect Draw rectangle Ext

encode_rect Encode rectangular image Ext

field_extract Extract field from TMS340 graphics pro-
cessor memory

Core

field_insert Insert field into TMS340 graphics pro-
cessor memory

Core

fill_convex Fill convex polygon Ext

fill_oval Fill oval Ext

fill_piearc Fill pie arc Ext

fill_polygon Fill polygon Ext

fill_rect Fill rectangle Ext

frame_oval Fill oval frame Ext

frame_rect Fill rectangular frame Ext

get_colors Get colors Core

get_config Get hardware configuration information Core

get_env Get graphics environment information Ext

get_fontinfo Get font information Core

get_modeinfo Get graphics mode information Core

get_nearest_color Get nearest color Core

 Core and Extended Primitives

3-6 Graphics Library Overview

Table 3–1. Summary of Library Functions (Continued)

Function Name Description Type

get_offscreen_memory Get off-screen memory Core

get_palet Get entire palette Core

get_palet_entry Get single palette entry Core

get_pixel Get pixel Ext

get_pmask Get plane mask Core

get_ppop Get pixel processing operation code Core

get_textattr Get text attributes Ext

get_text_xy Get text x-y position Core

get_transp Get transparency flag Core

get_vector Get trap vector Core

get_windowing Get window clipping mode Core

get_wksp Get workspace information Core

gsp2gsp Transfer from one location to another
within TMS340 graphics processor
memory

Core

in_font Verify characters in font Ext

init_palet Initialize palette Core

init_text Initialize text Core

install_font Install font Ext

lmo Find leftmost one Core

move_pixel Move pixel Ext

page_busy Get page busy status Core

page_flip Flip display and drawing pages Core

patnfill_convex Fill convex polygon with pattern Ext

patnfill_oval Fill oval with pattern Ext

patnfill_piearc Fill pie arc with pattern Ext

patnfill_polygon Fill polygon with pattern Ext

patnfill_rect Fill rectangle with pattern Ext

patnframe_oval Fill oval frame with pattern Ext

patnframe_rect Fill rectangular frame with pattern Ext

patnpen_line Draw line with pen and pattern Ext

patnpen_ovalarc Draw oval arc with pen and pattern Ext

patnpen_piearc Draw pie arc with pen and pattern Ext

patnpen_point Draw point with pen and pattern Ext

 Core and Extended Primitives

3-7

Table 3–1. Summary of Library Functions (Continued)

Function Name Description Type

patnpen_polyline Draw polyline with pen and pattern Ext

peek_breg Peek at B-file register Core

pen_line Draw line with pen Ext

pen_ovalarc Draw oval arc with pen Ext

pen_piearc Draw pie arc with pen Ext

pen_point Draw point with pen Ext

pen_polyline Draw polyline with pen Ext

poke_breg Poke value into B-file register Core

put_pixel Put pixel Ext

rmo Find rightmost one Core

seed_fill Seed fill Ext

seed_patnfill Seed fill with pattern Ext

select_font Select font Ext

set_bcolor Set background color Core

set_clip_rect Set clipping rectangle Core

set_colors Set foreground and background colors Core

set_config Set hardware configuration Core

set_draw_origin Set drawing origin Ext

set_dstbm Set destination bit map Ext

set_fcolor Set foreground color Core

set_palet Set multiple palette entries Core

set_palet_entry Set single palette entry Core

set_patn Set fill pattern Ext

set_pensize Set pen size Ext

set_pmask Set plane mask Core

set_ppop Set pixel processing operation code Core

set_srcbm Set source bit map Ext

set_textattr Set text attributes Ext

set_text_xy Set text x-y position Core

set_transp Set transparency mode Core

set_vector Set trap vector Core

set_windowing Set window clipping mode Core

set_wksp Set workspace information Core

 Core and Extended Primitives

3-8 Graphics Library Overview

Table 3–1. Summary of Library Functions (Concluded)

Function Name Description Type

styled_line Draw styled line Ext

styled_oval Draw styled oval Ext

styled_ovalarc Draw styled oval arc Ext

styled_piearc Draw styled pie arc Ext

swap_bm Swap source and destination bit maps Ext

text_out Output text Core

text_outp Output text at current x-y position Core

text_width Get width of text string Ext

transp_off Turn transparency off Core

transp_on Turn transparency on Core

wait_scan Wait for scan line Core

zoom_rect Zoom rectangle Ext

 Differences Between TIGA and TMS340 Graphics Library Routines

3-9

3.3 Differences Between TIGA and TMS340 Graphics Library
Routines

The list of functions in Table 3–1 is a subset of the functions available in the
TIGA environment. Not included in the TMS340 Graphics Library are the
TIGA functions for managing host-to-TMS340 graphics processor commu-
nications, interrupts, cursors, dynamic linking, and dynamic memory man-
agement. The TIGA memory management functions are distinguished by
their names from the host processor’s ANSI-standard C memory manage-
ment functions. Because of the single-processor environment of the
TMS340 Graphics Library, however, library-based software applications
can simply call the standard memory management functions distributed
with the C compiler for the TMS340 graphics processor.

The source code for the following six functions differs between the TIGA
and the TMS340 Graphics Library implementations:

get_config
get_modeinfo
page_busy
page_flip
set_config
wait_scan

The get_config function retrieves system configuration information in the
form of a CONFIG data structure. The TIGA version of the function includes
the size of TIGA’s communications buffer as part of the CONFIG structure.
The buffer size is obtained from a global communications structure that is
defined in TIGA’s environment but not in the TMS340 Graphics Library’s en-
vironment. The graphics library version of get_config sets the communica-
tions buffer size in the CONFIG structure to null.

The get_modeinfo function returns a block of information characterizing the
designated graphics mode in the form of a MODEINFO data structure. The
TIGA version implements this function entirely on the host processor,
whereas the graphics library version runs entirely on the TMS340 graphics
processor.

The set_config function configures the display hardware and initializes the
graphics software environment. Typically, this function should be called be-
fore any of the other library functions are called. The TIGA and graphics li-
brary versions of set_config differ somewhat because of the differences be-
tween the TIGA and graphics library environments. For example, the TIGA
version of set_config initializes the cursor management parameters; the
graphics library does not include cursor management functions.

The page_flip, page_busy, and wait_scan routines in TIGA and the graph-
ics library are functionally equivalent but differ in the way that they respond

 Differences Between TIGA and TMS340 Graphics Library Routines

3-10 Graphics Library Overview

to display interrupt requests. The TIGA implementations rely on an interrupt
service routine invoked by the TMS340 graphics processor’s display inter-
rupt. The graphics library implementations of these functions poll the dis-
play interrupt request and assume that the display interrupt is disabled.

 Graphics Library Environment

3-11

3.4 Graphics Library Environment

The global variables maintained within the TMS340 Graphics Library are a
subset of those maintained within the TIGA Graphics Manager, which is the
TMS340 graphics processor-resident portion of the TIGA software inter-
face. These variables are accessible by the functions within the library. If
developers add proprietary functions to the library, the new functions can
access the library’s global variables as well.

A list of global variables is presented in Table 3–2. The corresponding type
definitions for the variables are given in Appendix A.

Table 3–2. Library Global Variables

Type Global Name Description

CONFIG config Current configuration

PALET DEFAULT_PALET[16] Default color palette

ENVIRONMENT env Graphics environment

ENVTEXT envtext Text environment

MODEINFO *modeinfo Graphics mode informa-
tion

OFFSCREEN_AREA *offscreen List of off-screen buffers

PAGE *page List of video pages

PALET palet[] Palette currently in use

PATTERN pattern Current area-fill pattern

FONT *sysfont System font

TMS340 graphics processor-based applications linked with the TMS340
Graphics Library can access these globals directly or, if emulation of the
TIGA applications environment is important, indirectly. Host-resident appli-
cations running through TIGA have no direct access to the global variables
on the TMS340 graphics processor. TIGA provides indirect access to the
globals in the TMS340 processor’s environment through functions such as
get_config, get_fontinfo, and get_env. The same functions provided by
TIGA to indirectly access the TMS340 graphics processor environment are
available in the TMS340 Graphics Library.

The entire graphics environment is initialized by the set_config function,
which must be called before any of the other functions in the graphics library
are called. The initial call to set_config should specify a nonzero value for
the second argument; this causes the drawing environment to be initialized.
Refer to the description of the set_config function in Chapter 6 for more in-
formation.

 Bit-Mapped Fonts

3-12 Graphics Library Overview

3.5 Bit-Mapped Fonts

A total of 108 bit-mapped fonts are distributed with the TMS340 Graphics
Library for use with the text functions in the library. The font package distrib-
uted with the library consists of 20 different typefaces, each of which is avail-
able in a variety of font sizes.

Table 3–3 is a list of the fonts distributed with the library. Most of the type-
faces are proportionally spaced, although a few have uniform horizontal
spacing. The global symbol is the external name of the font, and the xx ap-
pended to each symbol is replaced with the font size. For instance, global
symbol arrows25 refers to Arrows font size 25.

Table 3–3. Summary of Available Fonts

Face Name Global Symbol Number of Font
Sizes

Horizontal Spacing

Arrows arrowsxx 2 uniform

Austin austinxx 6 proportional

Corpus Christi corpusxx 5 uniform

Devonshire devonsxx 3 proportional

Fargo fargoxx 3 proportional

Galveston galvesxx 6 proportional

Houston houstnxx 6 proportional

Luckenbach luckenxx 1 proportional

Math mathxx 6 proportional

San Antonio sanantxx 3 proportional

System sysxx 2 block

Tampa tampaxx 4 proportional

TI Art Nouveau ti_artxx 5 proportional

TI Bauhaus ti_bauxx 9 proportional

TI Cloister ti_cloxx 2 proportional

TI Dom Casual ti_comxx 5 proportional

TI Helvetica ti_helxx 12 proportional

TI Park Avenue ti_prkxx 8 proportional

TI Roman ti_romxx 12 proportional

TI Typewriter Elite ti_typxx 8 uniform

Two VGA-style block fonts are provided for emulating cell-mapped text gen-
erated by a CRT controller with a character ROM. These are the System
fonts listed near the middle of Table 3–3.

 Bit-Mapped Fonts

3-13

The fonts in Table 3–3 are identical to the ones distributed with the
TIGA-340 Interface package. In the case of TIGA, the fonts are stored as
binary files with .fnt file-name extensions. The .fnt files can be down-
loaded to buffers in the TMS340 graphics processor’s local memory at run-
time. In the TMS340 Graphics Library, the fonts are distributed as COFF ob-
ject files with .obj file-name extensions that can be linked with programs
that execute on the TMS340 graphics processor.

The conversion between the TIGA .fnt and graphics library .obj formats
is straightforward using the binsrc and cof2bin utilities discussed in Section
2.6.

 Application Programming Issues

3-14 Graphics Library Overview

3.6 Application Programming Issues

Some of the issues that may be of interest to you if you are planning to write
application programs based on the TMS340 Graphics Library are dis-
cussed below. These issues include source code portability, stack growth,
and library code size.

3.6.1 Specifying Complete Argument Lists

As a general rule—and in particular, to ensure portability to the TIGA appli-
cations environment—the application program should explicitly specify all
arguments to library functions, even if some of those arguments are ig-
nored.

For example, the set_dstbm (set destination bit map) library function ac-
cepts five arguments. If the first argument is 0, however, the function ig-
nores the values of the remaining four arguments. The recommended prac-
tice in a case such as this is to specify all arguments, although dummy val-
ues can, of course, be used for those arguments that are ignored:

 set_dstbm(0, 0, 0, 0, 0);

While a function call such as

 set_dstbm(0); /*wrong*/

that omits the last four arguments may execute correctly in some instances,
this approach is discouraged for the sake of broader portability.

3.6.2 Library Globals

As described in Section 3.4, if emulation of the TIGA applications environ-
ment is seen as important, the global variables defined within the library
should not be accessed directly by application programs. Both TIGA and
the TMS340 Graphics Library provide the same functions for accessing the
contents of these variables indirectly.

3.6.3 Portability of C Source Code

Some forethought may be required to ensure that C code written for the
TMS340x0 is portable. This may be an issue, for instance, to an applica-
tions programmer who plans eventually to port C routines developed in the
TMS340 Graphics Library environment to TIGA.

As an example, the TMS340 Family C Compiler defines an integer of type
int as 32 bits. A TIGA application program, however, may be compiled to run
on a PC by the Microsoft C Compiler, which defines an int as 16 bits. Fortu-
nately, both the TMS340 and Microsoft compilers define types short and
long as 16 and 32 bits, respectively. Specifying all integers as type short

 Application Programming Issues

3-15

or long greatly enhances portability between the two environments. This
is the main reason that TIGA (and the TMS340 Graphics Library) specifies
all integer function arguments, return values, and structure members as be-
ing of type short or long, rather than of type int.

3.6.4 Stack Growth

Probably the worst potential offenders in the library in regard to stack growth
are the fill_polygon and patnfill_polygon functions. These functions allocate
temporary storage on the system stack, and the amount of storage in-
creases with the number of edges in the polygon. The actual amount of
stack space allocated for each edge is 16 bytes. If the number of edges is
quite large, the stack may overflow.

At the time of this writing, the size of the default stack allocated by the
TMS340 Family C Compiler is 4000 bytes. This should be sufficient to han-
dle polygons having in excess of 200 edges each.

3.6.5 Library Code Size

The TMS340 Family Linker is intelligent enough to link in only the object
modules it requires from the library archive files. Some customers, howev-
er, ask how large the object code is for the entire library. Presumably, they
plan to place the entire library in ROM.

The precise memory requirement varies from one system to another be-
cause of differences in the size of the system-dependent code and data. At
the time of writing, the TMS340 Graphics Library occupies roughly 35 kilo-
bytes of TMS340 graphics processor memory in machine code form. This
figure includes all routines in the library and other data such as graphics
mode initialization structures—but excludes the fonts. The breakdown for
the current port of the library to the TMS34010 Software Development
Board is as follows:

 function code = 25.6 kilobytes
 other data = 9.3 kilobytes
 TOTAL = 35.0 kilobytes

As you might expect, the 108 bit-mapped fonts take up a lot of storage:

bit-mapped fonts = 729.2 kilobytes

The worst memory hogs are the fonts with the largest point sizes. If memory
space requirements are tight, you may need to select with care the fonts you
use.

 System Implementation Issues

3-16 Graphics Library Overview

3.7 System Implementation Issues
The TMS340 Graphics Library can be easily customized for proprietary
software applications and hardware systems based on the TMS340 graph-
ics processor. This section explains how to port the library to proprietary
hardware systems, add proprietary functions, or reconfigure the library for
other purposes. These topics are covered:

1) Register Usage Conventions

2) Interrupts

3) System-Level Hardware Functions

4) Functions with System Dependencies

5) TMS34010 and TMS34020 Code Compatibility

6) Floating-Point Compatibility

7) Silicon Revision Number

3.7.1 Register Usage Conventions

To use proprietary assembly language functions in conjunction with the li-
brary functions, follow the library’s conventions regarding usage of the
TMS340 graphics processor’s registers.

When an assembly language routine is called from a program compiled with
the TMS340 Family C Compiler, certain registers are in known states. Here
are descriptions of those known states:

System Stack Pointer

The SP points to the top of the system stack.

Status Register

The C environment always leaves the field-1 sign and extension pa-
rameters in the status register defined as follows:

FE1 = 0 (field 1 is zero-extended)
FS1 = 0 (field 1 is 32 bits in length)

The field-0 parameters FE0 and FS0 are undefined.

A-File Registers

Register A14 points to the top of the C program stack.

B-File Registers

DPTCH—Contains screen pitch (difference in starting memory ad-
dresses of any two successive scan lines in display memory).

 System Implementation Issues

3-17

OFFSET—Contains memory address of pixel at top left corner of
screen.

WSTART—Contains screen coordinates of pixel at top left corner of
current clipping window.

WEND—Contains screen coordinates of pixel at bottom right corner of
current clipping window.

COLOR0—Contains current background color (pixel-replicated to 32
bits).

COLOR1—Contains current foreground color (pixel-replicated to 32
bits).

I/O Registers

CONTROL—The PPOP field contains the current pixel processing
code. The T field is a 1 if transparency is enabled, and 0 otherwise.
The W field is always set to 3 (clip to window, no WV interrupt re-
quest). The PBH and PBV bits are always 0.

CONVDP—Corresponds to screen pitch in DPTCH register.

PMASK—Contains current plane mask (pixel-replicated to 16 bits for a
TMS34010 and to 32 bits for a TMS34020).

PSIZE—Contains current pixel size for screen.

The above assumptions apply to functions called from C programs. They
do not apply to interrupt service routines, because such routines may inter-
rupt a function that is using one of these registers for another purpose.

Prior to returning, a function called from a program compiled with the
TMS340 Family C Compiler must restore the following registers to their
original state at entry:

Status register fields FE1 and FS1 must be restored. Fields FE0 and
FS0 need not be restored.

All A-file registers except A8 must be restored. Register A14, the C pro-
gram stack pointer, must be updated to point to the top of the current
program stack. Refer to the description of the function-calling conven-
tions in the TMS340 Family Code Generation Tools User’s Guide.

In general, all B-file registers must be restored. Certain B-file registers,
however, may be altered by attribute control functions. For instance, the
set_colors function alters the contents of B8 (COLOR0) and B9 (COL-
OR1), set_clip_rect alters B5 (WSTART) and B6 (WEND), and
page_flip alters B4 (OFFSET).

In general, I/O registers such as CONTROL, DPYCTL, CONVDP, and
INTENB should be restored before returning to the calling program.

 System Implementation Issues

3-18 Graphics Library Overview

The contents of certain I/O registers, however, may be altered by attrib-
ute control functions. For instance, the set_ppop function alters the
PPOP field in CONTROL, the transp_on and transp_off functions alter
the state of the T bit in CONTROL, and set_pmask alters the contents
of PMASK. As a rule, these registers are not modified by graphics out-
put functions.

Take care when you write graphics routines that modify only bits 5–14 of the
TMS340 graphics processor’s CONTROL register. These 10 bits are identi-
cal in the TMS34010 and TMS34020, and software that accesses only
these bits can safely ignore the differences between the two processors.
The same cannot be said of the other 6 CONTROL bits, which control disab-
ling of the processor’s instruction cache, the TMS34010’s DRAM refresh-
ing, and the TMS34020’s transparency mode. TI recommends that when
you write to a part of the register, you first set the appropriate field size in
the status register to only the portion of the register that is actually to be mo-
dified. This avoids disturbing the other CONTROL bits. TI discourages
reading the entire CONTROL register, modifying a selected field, and writ-
ing back the entire register. While the latter method may appear to operate
correctly in some environments, the resulting code will not be as portable
or robust as code that uses the recommended method.

Refer to the TMS340 Family Code Generation Tools User’s Guide for a de-
scription of the rules imposed by the TMS340 Family C Compiler on function
calls.

3.7.2 Interrupts

The assembly language routines within the library use the TMS340 graph-
ics processor’s A14 register as general-purpose, temporary storage. Inter-
rupt service routines should make no assumptions regarding the state of
A14 at the time an interrupt occurs. In particular, they should not assume
that A14 points to the top of the C program stack. An interrupt service rou-
tine written in C must allocate its own program stack. This can be done in
one of several ways. For instance, the ISR can temporarily allocate extra
space on the system stack, and utilize this space as program stack. Alter-
nately, a temporary program stack for interrupts can be allocated statically
as a global array. The latter method is suitable only if the ISR code is not
required to be reentrant.

The library routines themselves do not use interrupts. Several library func-
tions make use of the TMS340 graphics processor’s WV (window violation)
interrupt request, but they assume that the WV interrupt is disabled.

Similarly, the library’s page_flip, page_busy, and wait_scan functions poll
the DI (display interrupt) request but assume that the display interrupt is dis-

 System Implementation Issues

3-19

abled. (In other words, the DIE bit in the INTENB register should be 0 if the
library implementations of these functions are used.) An operating environ-
ment or application program that includes a display interrupt service routine
may have difficulty coexisting with these three functions as currently im-
plemented in the library.

The TIGA implementations of the page_flip, page_busy, and wait_scan
functions are functionally equivalent to those in the TMS340 Graphics Li-
brary but rely on interrupts rather than polling. This is because the TIGA ver-
sions of these functions must share the TMS340 graphics processor’s dis-
play interrupt with other features such as real-time cursor management.
Refer to the TIGA-340 Interface User’s Guide for more information on the
TIGA versions of these functions.

3.7.3 System-Level Hardware Functions

Several TMS340 graphics processor hardware functions are most appro-
priately controlled by systems-level software such as an operating system
or control program, if one is present. The graphics library as distributed,
however, assumes that no such software is present. Based on this assump-
tion, when the set_config function initializes the drawing environment, it
also initializes the following hardware functions:

1) The IE (interrupt enable) bit in the status register is set to 0.

2) The INTENB (interrupt enable) register is set to 0.

3) The CD (cache disable) bit in the CONTROL register is set to 0.

4) The DRAM refresh rate and refresh mode are initialized. This involves
loading the RM and RR fields in the TMS34010’s CONTROL register,
or the RR field in the TMS34020’s CONFIG register.

If the library is ported to an environment in which these hardware functions
are controlled outside of the graphics library, the code for initializing the pa-
rameters above should be deleted from the set_config routine.

3.7.4 Functions with System Dependencies

Most of the functions in the TMS340 Graphics Library are independent of
system-specific features such as pixel size, frame buffer dimensions, and
color palette hardware. This is true of all functions in the Extended Primi-
tives Library. Several functions in the Core Primitives Library, however, per-
form system-dependent operations and must be ported from one TMS340
hardware configuration to another. The system-dependent library functions
are listed below according to the types of hardware dependencies they
have.

 System Implementation Issues

3-20 Graphics Library Overview

First, the following function performs all the hardware-specific initialization
of the video timing registers, screen refresh, DRAM refresh, pixel size,
screen dimensions, and so on:

set_config

These six functions depend on the hardware palette configuration:

get_nearest_color

get_palet

get_palet_entry

init_palet

set_palet

set_palet_entry

The implementation of these two functions depends on whether the
TMS340 graphics processor’s interrupt vectors are mapped into RAM or
ROM:

set_vector

get_vector

The following functions may use the bulk initialization capability of some vid-
eo RAMs:

clear_frame_buffer

clear_page

Bulk initialization is a method of rapidly clearing a portion of a display
memory that is composed of video RAMs that support both memory-to-seri-
al-register and serial-register-to-memory cycles. First, a single row is
loaded from the memory array within each video RAM to the serial register;
this is accomplished with a single memory-to-register cycle. Next, the con-
tents of the serial register are rapidly copied to a series of rows; this is ac-
complished with a sequence of register-to-memory transfers.

The next function is typically implemented with a FILL instruction in a
TMS34010-based system but may use the faster VFILL instruction if im-
plemented in a TMS34020-based system with video RAMs that support
block write cycles:

clear_screen

The following functions need to be recompiled for the target processor
(TMS34010 or TMS34020), but the source code does not require porting:

page_flip

 System Implementation Issues

3-21

wait_scan

Finally, these routines are included for convenience with the system-de-
pendent functions, even though they are themselves system-independent:

get_config

page_busy

3.7.5 TMS34010 and TMS34020 Code Compatibility

Conditional assembly statements embedded in the assembly code for cer-
tain graphics functions control whether the functions are assembled to ex-
ecute TMS34010 or TMS34020 code. The details of how to configure the
library at assembly time are described in Section 2.5.

By default, the library as distributed is configured to generate
TMS34010-compatible code. This code is upward-compatible with the
TMS34020. That is, it will run correctly on the TMS34020 as well as on the
TMS34010, although it may not take full advantage of certain graphics ac-
celeration features unique to the TMS34020. Guidelines for writing upward-
compatible TMS340 graphics processor code are given in the user’s guides
for the TMS34010 and TMS34020.

If you prefer, however, the library can easily be configured to generate
TMS34020-specific code. The current library contains implementations of
a number of graphics functions that can be configured to take advantage
of graphics acceleration features available only on the TMS34020. These
features are unavailable on the TMS34010, and the code that uses these
features does not execute correctly on the TMS34010.

If you write your own processor-dependent functions, you have an alterna-
tive to the conditional assembly method currently used to statically confi-
gure the library. The software can perform a runtime check to dynamically
determine whether it is running on a TMS34010 or TMS34020 and can ex-
ecute the appropriate TMS34010- or TMS34020-specific code. This ap-
proach is typically used in instances in which the code that performs the run-
time check is not speed-critical. Moving a runtime check inside the inner
loop of a speed-critical assembly-coded graphics function, for instance,
would probably be inappropriate.

If you are writing a proprietary function as an extension to the existing
graphics library, you can perform a runtime processor check by reading
the device_rev field of the global structure config. The same information is
available to application programs in the device_rev field of the CONFIG
structure retrieved by the get_config function.

 System Implementation Issues

3-22 Graphics Library Overview

3.7.6 Floating-Point Compatibility

Versions 4.0 and above of the TMS340 Family C Compiler can be confi-
gured to generate either TMS340-compatible or IEEE-compatible floating-
point values, as described in the TMS340 Family Code Generation Tools
User’s Guide. The graphics library does not utilize any of the floating-point
math routines distributed with the C compiler. The applications programmer
can configure proprietary code to use either of the two floating-point formats
without concern for the effect this choice will have on the graphics library
functions.

The IEEE-compatible format is defined in the IEEE Standard 754 for Binary
Floating-Point Arithmetic. The TMS340-compatible format is similar to the
IEEE, except that it uses an explicit leading 1 in the mantissa in place of the
implicit leading 1 used in the IEEE format. For more information, refer to the
TMS340 Family Code Generation Tools User’s Guide.

3.7.7 Silicon Revision Number

The TMS340x0 REV assembly-language instruction generates a silicon re-
vision number that identifies the processor as a TMS34010 or TMS34020
and also indicates the silicon revision. One of the initialization operations
performed by the library’s set_config function is to load the revision number
into the device_rev field of the global structure config mentioned earlier.
(Refer to the description of the CONFIG data structure in Appendix A.)

The earliest TMS34010 devices do not recognize the REV instruction; they
treat it as an illegal opcode. To permit the TMS340 Graphics Library to run
without mishap on these early devices, the library includes an illegal opcode
interrupt service routine that emulates execution of the REV instruction.

If your graphics card contains a TMS34020, or a later version of the
TMS34010 that recognizes REV as a valid instruction, you may choose to
delete the illegal opcode ISR from the library. Please refer to subsection
2.3.2 for details.

4-1

Chapter 4

Graphics Operations

The TMS340 Graphics Library supports the drawing of a variety of two-di-
mensional geometric objects such as points, lines, polygons, ellipses, arcs,
pie-slice wedges, and polygons.

Geometric objects can be rendered in a variety of styles. Filled primitives
such as polygons and ellipses can be filled with either a solid color or a
two-dimensional area-fill pattern. Vector primitives that produce 1-pix-
el-thick lines and arcs can be drawn either in a single color or with a one-di-
mensional line-style pattern. A rectangular drawing pen (or brush) is avail-
able for producing thicker lines and arcs; the area swept out by the pen is
filled with either a solid color or an area-fill pattern.

The library follows a set of strict conventions in order to make the behavior
of the drawing functions (library functions that produce graphics output)
predictable in all cases. These conventions cover the following:

The naming of the functions
The mapping of x–y coordinates onto the screen (a display surface ad-
dressed as a two-dimensional array of pixels)
Defining the paths followed by vector primitives such as lines and arcs
Defining the pixels covered by area-fill primitives such as polygons and
ellipses

The library supports a variety of methods for combining source and destina-
tion pixel values during drawing operations. Pixels are combined according
to how the user configures the library’s plane mask, transparency attribute,
and pixel-processing operation code.

All graphics output is automatically clipped either to the screen or to a rect-
angular clipping window located within the screen limits.

Graphics-Function Naming Conventions

4-2 Graphics Operations

4.1 Graphics-Function Naming Conventions

A set of conventions has been adopted for naming graphics functions in the
Extended Primitives Library that draw geometric objects such as lines and
ellipses. Each object can be rendered in a variety of styles, and the render-
ing style also is reflected in the function name. The name assigned to the
function is a concatenation of a modifier (such as rect for rectangle) denot-
ing a geometric type and another modifier (such as fill) designating a ren-
dering style. For example, the fill_rect function fills a rectangle with a solid
color.

Table 4–1 is a list of the geometric types supported by the library. The left
column specifies the function-name modifier corresponding to each type.

Table 4–1. Geometric Types

Function Name Geometric Type

 line A straight line

 oval An ellipse in standard position (major and minor axes aligned with the
x–y coordinate axes)

 ovalarc An arc from an ellipse in standard position

 point A single point

 polygon A filled region bounded by a series of connected straight edges

 polyline A series of connected straight lines

 piearc A pie-slice-shaped wedge bounded by an arc (from an ellipse in stan-
dard position) and two straight edges (connecting the ends of the arc
to the center of the ellipse)

 rect A rectangle with vertical and horizontal sides

 seed A pixel of a particular color designating a connected region of pixels
of the same color

Table 4–2 is a list of the graphics rendering styles supported by the library.
The left column specifies the function-name modifier corresponding to each
style.

 Graphics-Function Naming Conventions

4-3

Table 4–2. Rendering Styles

Function Name Rendering Style

 draw Draws a line, arc, or outline a single pixel thick with the current fore-
ground color.

 styled Similar to “draw” except that the line, arc, or outline is drawn with
a repeating 32-bit line-style pattern that is rendered in the current
foreground and background colors. Alternately, background pixels
in the pattern are skipped.

 pen Traces a line or curve with a rectangular drawing pen, and fills the
area swept out by the pen with the current foreground color.

 patnpen Similar to “pen” except that the area swept out by the pen is filled
with a 16-by-16 area-fill pattern in the current foreground and back-
ground colors.

 fill Fills the interior of an object with the current foreground color.

 patnfill Similar to “fill” except that the object is filled with a 16-by-16 area-fill
pattern in the current foreground and background colors.

 frame Fills a frame with the current foreground color. The area enclosed
by the frame is not modified.

 patnframe Similar to “frame” except that the frame is filled with a 16-by-16
area-fill pattern in the current foreground and background colors.

Not all combinations of geometric type and rendering style are available in
the library. Table 4–3 is a checklist indicating which combinations are sup-
ported.

Table 4–3. Checklist of Available Geometric Types and Rendering Styles

Rendering Style

Geometric Type draw styled pen patnpen fill patnfill frame patnframe

line √ √ √ √

oval √ √ √ √ √ √

ovalarc √ √ √ √

piearc √ √ √ √ √ √

point √ √ √

polygon √ √

polyline √ √ √

rect √ √ √ √ √

seed √ √

Coordinate Systems

4-4 Graphics Operations

4.2 Coordinate Systems

Figure 4–1 shows the conventions used by the library to map x–y coordi-
nates onto the screen.

Figure 4–1. Screen Coordinates and Drawing Coordinates

Edge of screen

Screen origin

y

x

y’

x’

Drawing origin

The screen coordinate system maps the pixels on the display surface to x
and y coordinates. By convention, the screen origin is located in the top left
corner of the screen. The x axis is horizontal, and x increases from left to
right. The y axis is vertical, and y increases from top to bottom.

A drawing coordinate system is also defined. All drawing operations (both
graphics and text output) take place relative to the drawing origin. Unlike the
screen origin, which remains fixed, the drawing origin can be moved relative
to the screen. The directions of the x and y axes match those of the screen
coordinate system.

The drawing origin is aligned with the screen origin immediately after initial-
ization of the graphics environment by the set_config function. The drawing
origin may be displaced in x and y from the screen origin by means of a call
to the set_draw_origin function. All subsequent drawing operations are
specified relative to the new drawing origin. While Figure 4–1 shows the
drawing origin lying within the boundaries of the screen, the origin may also
be moved to a position above, below or to the side of the screen. Only ob-
jects that are drawn on the screen and within the clipping window (to be de-
scribed) will be visible.

 Coordinate Systems

4-5

Figure 4–2 is a close-up of several pixels in the vicinity of the drawing origin
that illustrates the relationship of the pixels on the screen to the coordinate
grid lines. Each vertical or horizontal grid line corresponds to an integer x
or y coordinate value. Centered within each square of the grid is a pixel,
drawn as a circle.

The draw and styled functions within the library (refer to Table 4–2) identify
a pixel by the integer x–y coordinates at the top left corner of its grid square.
For instance, the pixel designated by the function call

draw_point(2, 1);

is, in fact, centered at (2.5, 1.5) and is darkened in Figure 4–2.

Figure 4–2. Mapping of Pixels to Coordinate Grid
Drawing origin

4

3

2

1

Y

X
543210

The graphics library represents x–y coordinates as 16-bit signed integers.
Valid coordinate values are limited to the range –16384 to +16383. Restrict-
ing the values to this range provides one guard bit to protect against over-
flow during 16-bit arithmetic operations.

Area-Filling Conventions

4-6 Graphics Operations

4.3 Area-Filling Conventions

The fill, frame, and pen functions within the library designate a pixel as being
part of a filled region if the center of the pixel falls within the boundary of that
region.

Figure 4–3 shows an example of a filled region — a rectangle of width 5 and
height 3. The top left corner of the rectangle is located at coordinates (4, 2).
The function call to fill this particular rectangle is

fill_rect(5, 3, 4, 2);

The pixels selected to fill the rectangle are indicated in the figure.

Figure 4–3. A Filled Rectangle

Drawing origin

94

5

2

0

Y

X

w=5

h=3

 Area-Filling Conventions

4-7

As a second example, a filled polygon is shown in Figure 4–4. The five
straight edges of the polygon separate the interior of the polygon, which is
filled, from the exterior. (This figure was drawn using the fill_polygon func-
tion.)

Figure 4–4. A Filled Polygon

9

5

2

0

Y

X

8753

Drawing origin

Area-Filling Conventions

4-8 Graphics Operations

By convention, a pixel is considered to be part of the interior if its center falls
within the boundary of the polygon. If the center falls precisely on a bound-
ary, the pixel is inside if and only if the polygon interior is immediately to its
right (x-increasing direction). Pixels with centers along a horizontal edge
are a special case and are inside if and only if the polygon interior is immedi-
ately below (y-increasing direction).

The names of graphics functions that follow the area-filling conventions de-
scribed in this section include the modifiers fill, pen, or frame.

 Vector-Drawing Conventions

4-9

4.4 Vector-Drawing Conventions

Mathematically ideal points, lines, and arcs are defined to be infinitely thin.
Since these figures contain no area, they would be invisible if drawn using
the conventions described above for filled areas. A different set of conven-
tions must be used to make points, lines and arcs visible. These are referred
to as vector-drawing conventions to distinguish them from the area-filling
conventions. Vector-drawing conventions apply to all library functions
whose names include the modifiers draw or styled.

The vector-drawing conventions associate the point specified by the integer
coordinate pair (x, y) with the pixel that lies just to the lower right of this point;
that is, the pixel whose center lies at coordinates (x+1/2, y+1/2). For exam-
ple, the function call

draw_point(2, 1);

draws the pixel centered at (2.5, 1.5), as shown in Figure 4–2.

As a second example, the polygon from Figure 4–4 is shown again in
Figure 4–5, but this time it is outlined rather than filled. (This figure was
drawn using the draw_polyline function.) The integer coordinate points se-
lected to represent the edges of the polygon are indicated as small black
dots. The pixel to the lower right of each point is turned on to represent the
edge of the polygon.

Vector-Drawing Conventions

4-10 Graphics Operations

Figure 4–5. An Outlined Polygon

9

5

2

0

Y

X

8753

Drawing origin

A line or arc drawn using the vector-drawing conventions consists of a thin,
but connected set of pixels selected to follow the ideal line or arc as closely
as possible. Each pixel is horizontally, vertically, or diagonally adjacent to
its neighbor on either side, with no holes or gaps in between. The resulting
line or arc is only a single pixel in thickness.

 Rectangular Drawing Pen

4-11

4.5 Rectangular Drawing Pen

The graphics functions that follow the vector-drawing conventions above
can draw only lines and arcs that are a single pixel in thickness. To draw
lines and arcs of arbitrary thickness, a logical pen (or brush) is defined. Li-
brary functions that use the pen include the modifier pen as part of their
names.

The drawing pen is rectangular, and its position is defined by the integer
coordinates at its top left corner. When a pen of integer width w and height
h draws a point at (x, y), the rectangle’s top left corner lies at (x, y), and its
bottom right corner lies at (x+w, y+h). The rectangular area covered by the
pen is filled either with a solid color or with an area-fill pattern, depending
on the function called.

Figure 4–6 shows a line from (1, 4) to (7, 1) drawn by a pen of width 1 and
height 2. The pen is initially positioned at the bottom left of the figure, with
its top left corner at (1, 4). As the pen moves along the line, the pen is always
located with its top left corner touching the ideal line. The area swept out by
the pen as it traverses the line from start to end is filled according to the
area-filling conventions described previously. The pixels interior to the line
are indicated in the figure.

Rectangular Drawing Pen

4-12 Graphics Operations

Figure 4–6. A Line Drawn by a Pen

position
final
Pen’s

position
Pen’s initial

Ideal line

1

4

1

0

Y

X
7

Drawing origin

When the pen’s width and height are both 1, a line or arc drawn by the pen
is similar in appearance to one drawn using the vector-drawing conventions
discussed previously. The pen, however, conforms to the area-filling con-
ventions, and a pen function can track the perimeter of a filled figure more
faithfully than the corresponding vector-drawing function can.

For instance, consider an ellipse defined by some width w, height h, and
top-left-corner coordinates (x, y). The ellipse is filled by the function call

fill_oval(w, h, x, y);

If the filled ellipse is outlined by calling draw_oval, which is a vector-drawing
function, with the same arguments, the outline may not conform to the edge
of the filled area, and gaps may appear between the filled area and the out-
line. Calling the pen_oval function with the same arguments, however,
draws an outline that follows the edge of the filled area precisely, remaining
flush to the ellipse at all points along the perimeter.

 Area-Fill Patterns

4-13

4.6 Area-Fill Patterns

Graphics functions that include the modifier patn as part of their names fill
geometric figures with a two-dimensional pattern rather than a solid color.
Currently, the only area-fill patterns supported are two-color patterns that
are 16 pixels wide by 16 pixels high.

The tiling of patterns to the screen is currently fixed relative to the top left
corner of the screen. In other words, changing the drawing origin causes no
shift in the mapping of the pattern to the screen, although the geometric ob-
jects filled with the pattern are themselves positioned relative to the drawing
origin. The screen-relative x and y coordinate values at the top left corner
of each instance of the pattern are multiples of 16.

Before an area on the screen is filled with a particular pattern, the pattern
must be installed by calling the set_patn function. The pattern is specified
as a 16-by-16 bit map, as shown in Figure 4–7, and is stored in memory as
an array of 256 contiguous bits. The bits within a pattern bit map are listed
in left-to-right order within a row, and the rows are listed in top-to-bottom or-
der. For instance, the top row in the figure contains bits 0 (left) to 15 (right);
bit 255 is located in the bottom right corner. The shaded squares in
Figure 4–7 represent to 1s in the source bit map, and white squares repre-
sent to 0s. When a pattern is drawn to the screen, screen pixels correspond-
ing to 1s in the bit map are replaced by the foreground color, and 0s by the
background color.

Area-Fill Patterns

4-14 Graphics Operations

Figure 4–7. A 16-by-16 Area-Fill Pattern

 Line-Style Patterns

4-15

4.7 Line-Style Patterns

Graphics functions that include the modifier styled as part of their names
draw lines and arcs using a line-style pattern. A line-style pattern is a 1-di-
mensional pattern of two colors. The pattern controls the color of each
successive pixel output to the screen as a line or arc is drawn.

The line-style pattern is specified as a 32-bit mask containing a repeating
pattern of 1s and 0s. The pattern bits are consumed in the order 0,1,...,31,
where 0 is the LSB. If the line is more than 32 pixels long, the pattern is re-
peated modulo 32 as the line is drawn. A bit value of 1 in the pattern mask
means that the corresponding pixel is drawn in the foreground color, while
a 0 means that the pixel is drawn in the background color. As an option,
background pixels can be skipped over rather than drawn.

When a line-style pattern function such as styled_line is called, either a new
pattern mask is specified, or an old one is reused. The latter option supports
the drawing of continuous patterns across a series of connecting lines. After
the styled_line function has been used to draw a line n pixels in length, the
original pattern has been rotated left (n–1) modulo 32 bits. The rotated pat-
tern is always saved by the function before returning. The saved pattern is
ready to be used as the pattern for a second line that continues from the end
point of the first line. The last pixel plotted in the first line is identical to the
first pixel in the second line.

For example, three connected styled lines are shown in Figure 4–8. Dark-
ened pixels correspond to 1s in the line-style mask, and white pixels corre-
spond to 0s. The lines in the Figure 4–8 are drawn by the following three
function calls:

styled_line(2, 1, 7, 1, 1, 0xF3F3F3F3);
styled_line(7, 1, 10, 4, 3, 0);
styled_line(10, 4, 10, 8, 3, 0);

The first call loads the line-style mask 0xF3F3F3F3, and draws a line from
(2, 1) to (7, 1). The last two calls reuse the mask loaded by the first call and
draw lines from (7, 1) to (10, 4) to (10, 8).

Line-Style Patterns

4-16 Graphics Operations

Figure 4–8. Three Connected Styled Lines

8

4

1

102

9

0

Y

X
7

Drawing origin

 Operations on Pixels

4-17

4.8 Operations on Pixels

Drawing (or graphics output) operations consist of replacing one or more
pixels on the screen with new pixel values. By default, a specified source
pixel simply replaces a designated destination pixel. The graphics library,
however, provides several optional methods for processing the source and
destination pixel values to determine the final pixel value written to the
screen.

Transparency is a pixel attribute that, when enabled, permits objects
written onto the screen to have transparent regions through which the
original background pixels are preserved.

The plane mask specifies which bits within pixels can be modified dur-
ing pixel operations.

Boolean and arithmetic pixel-processing operations specify how
source and destination pixel values are combined.

These three methods for processing pixels can be used independently or
in conjunction with each other. Transparency, plane masking, and pixel pro-
cessing are orthogonal in the sense that they can be used in any combina-
tion, and each is controlled independently of the other two. These attributes
affect all drawing operations, including those that involve text, geometric
objects, and pixel arrays.

Immediately following initialization of the drawing environment by the
set_config function, the following defaults are in effect:

Transparency is disabled (all pixels are opaque).

The plane mask is 0 (all bits within pixels can be modified).

The pixel-processing operation is replace (the source pixel value sim-
ply replaces the destination pixel).

Transparency, plane masking, and pixel processing are described individu-
ally below. Refer to the user’s guides for the TMS34010 and TMS34020 for
additional information.

4.8.1 Transparency

Pixel transparency is useful in applications involving text, area-fill patterns,
and pixel arrays in which only the shapes, and not the extraneous pixels sur-
rounding them, are to be drawn to the screen. When a rectangular pixel
array containing a shape is written to the screen, the pixel transparency at-
tribute can be enabled to avoid modifying destination pixels in the rectangu-
lar region surrounding the shape. In effect, the source pixels surrounding
the shape are treated as though they are transparent rather than opaque.

Operations on Pixels

4-18 Graphics Operations

The library’s default transparency mode is enabled and disabled by calls to
the transp_on and transp_off functions. In TMS34020-based systems, ad-
ditional transparency modes may be selected by means of the set_transp
function. Only the default mode is available in TMS34010-based systems.
Refer to the TMS34020 User’s Guide for information on the additional
modes.

When transparency is enabled in the default mode, a pixel that has a value
of 0 is considered to be transparent, and it will not overwrite a destination
pixel. The check for a 0-valued pixel is applied not to the original source pix-
el value, but to the pixel value resulting from pixel processing and plane
masking. In the case of pixel processing operations such as AND, MIN, and
replace, a source pixel value of 0 ensures that the result of the operation will
be a transparent pixel, regardless of the destination pixel value.

4.8.2 Plane Mask
The plane mask specifies which bits within a pixel are protected from modifi-
cation, and affects all operations on pixels. The plane mask has the same
number of bits as a pixel in the display memory. A value of 1 in a particular
plane mask bit means that the corresponding bit in a pixel is protected from
modification. Pixel bits corresponding to 0s in the plane mask can be modi-
fied.

The plane mask allows the bits within the pixels on the screen to be manipu-
lated as bit planes (or color planes) that can be modified independently of
other planes. A useful way to think of planes is as laminations or layers par-
allel to the display surface. The number of planes is the same as the number
of bits in a pixel.

For example, at 4 bits per pixel, three contiguous planes can be dedicated
to 8-color graphics, while the fourth is used to overlay text in a single color.
The plane mask permits the text layer to be manipulated independently of
the graphics layers, and vice versa.

During a write to a pixel in memory, the 1s in the plane mask designate
which bits in the pixel are write-protected; only pixel bits corresponding to
0s in the plane mask are modified. During a pixel read, 1s designate which
bits within a pixel are always read as 0, regardless of their values in
memory; only pixel bits corresponding to 0s in the plane mask are read as
they appear in memory.

The plane mask can be modified by means of a call to the library’s
set_pmask function.

4.8.3 Pixel-Processing Operations
During drawing operations, source and destination pixels are combined ac-
cording to a specified Boolean or arithmetic operation and written back to

 Operations on Pixels

4-19

the destination pixel. The library supports 16 Boolean pixel-processing op-
erations (or “raster ops”) and 6 arithmetic operations. The Booleans are
performed in bitwise fashion on operand pixels, while the arithmetic opera-
tions treat pixels as unsigned integers.

 A 5-bit PPOP code specifies one of the 22 pixel-processing operations, as
shown in Table 4–4 and Table 4–5. Legal PPOP codes are in the range 0
to 21. As shown in the two tables, codes for Boolean operations are in the
range 0 to 15, and codes for arithmetic operations are in the range 16 to 21.

Table 4–4. Boolean Pixel-Processing Operation Codes

PPOP Code Description

0 replace destination with source

1 source AND destination

2 source AND NOT destination

3 set destination to all 0s

4 source OR NOT destination

5 source EQU destination

6 NOT destination

7 source NOR destination

8 source OR destination

9 destination (no change)

10 source XOR destination

11 NOT source AND destination

12 set destination to all 1s

13 NOT source OR destination

14 source NAND destination

15 NOT source

Operations on Pixels

4-20 Graphics Operations

Table 4–5. Arithmetic Pixel-Processing Operation Codes

PPOP Code Description

16 source plus destination (with overflow)

17 source plus destination (with saturation)

18 destination minus source (with overflow)

19 destination minus source (with saturation)

20 MAX(source, destination)

21 MIN(source, destination)

The result of an arithmetic pixel-processing operation is undefined at
screen pixel sizes of 1 and 2 bits on the TMS34010, and at a pixel size of
1 bit on the TMS34020.

 The PPOP code can be altered with a call to the set_ppop function.

 Clipping Window

4-21

4.9 Clipping Window

The graphics output produced by the library’s drawing functions is always
confined to the interior of a rectangular clipping window that occupies all or
a portion of the screen. All library drawing functions automatically inhibit at-
tempted writes to pixels outside this window.

The width, height, and position of the clipping window can be modified by
a call to the set_clip_rect function. The function call

set_clip_rect(w, h, x, y);

defines the window to be a rectangle of width w and height h whose top left
corner lies at coordinates (x, y). The x–y coordinates are specified relative
to the drawing origin in effect at the time the function is called. The four sides
of the clipping window are parallel to the x and y axes. If a clipping rectangle
is specified that lies partially outside the screen boundaries, the
set_clip_rect function automatically trims the window to the limits of the
screen.

The default clipping window covers the entire screen. This default is in effect
immediately following initialization of the drawing environment by the
set_config function.

Pixel-Size Independence

4-22 Graphics Operations

4.10 Pixel-Size Independence

The TMS34010 can support pixel sizes of 1, 2, 4, 8, and 16 bits, and the
TMS34020 can support pixel sizes of 1, 2, 4, 8, 16, and 32 bits. Any particu-
lar TMS340 graphics processor-based display hardware system, however,
may support only a subset of the pixel sizes that the processor itself can
handle. Possible hardware limitations include the amount of video RAM in
the system and the pixel sizes supported by the color palette device.

With the exception of the handful of system-dependent functions described
in subsection 3.7.4, the graphics library functions are written to be indepen-
dent of the pixel size. The library achieves pixel-size independence by tak-
ing advantage of special graphics hardware internal to the TMS34010 and
TMS34020 processor chips. Changing the pixel size in software is not much
more difficult than loading the processor’s PSIZE (pixel size) register with
a new value.

Application programs based on the graphics library are potentially able to
execute on display systems that support a variety of pixel sizes. Ideally, an
application program should be flexible enough to take advantage of the
large number of colors available in systems with large pixel sizes, yet also
run satisfactorily in systems that are limited to small pixel sizes. In practice,
this ideal may be difficult to achieve.

For instance, an application written to run on a 1-bit-per-pixel display should
be able to run with little modification at 2, 4, 8, 16, or 32 bits per pixel. This
is achieved, however, by restricting the application’s choice of colors to
black and white, regardless of the number of colors supported by the display
hardware.

At the other end of the spectrum, consider an application that is written to
control a true color display with 8 bits of red, green, and blue intensity per
pixel. The application writer may be able to stretch the program to reason-
ably accommodate pixel sizes of 16 or even 8 bits per pixel, although at
some loss in image quality. This can be done by using certain well-known
halftoning or ordered-dithering algorithms to simulate a larger palette of col-
ors. The application is unlikely, however, to run satisfactorily on a 1-bit-per-
pixel display.

To summarize, the graphics library’s high degree of pixel-size indepen-
dence represents a powerful and useful feature. This does not automatical-
ly guarantee that all applications that call the library will not themselves con-
tain inherent color dependencies.

5-1

Chapter 5

Bit-Mapped Text

The TMS340 Family Graphics Library supports the display of text in a vari-
ety of styles and sizes. At the low end, block fonts emulate the cell-mapped
text produced by a character-ROM display. For desktop publishing applica-
tions, proportionally spaced WYSIWYG (what you see is what you get) text
allows you to preview a page on the screen as it will appear when typeset.

Table 5–1 lists the text-related functions available in both the Core and Ex-
tended Primitives Libraries. Refer to the individual descriptions of these
functions in Chapters 6 and 7 for details.

Table 5–1. Text-Related Functions

Function Description Type

delete_font
get_fontinfo
get_textattr
get_text_xy
init_text
install_font
select_font
set_textattr
set_text_xy
text_out
text_outp
text_width

Remove a font from the font table
Return font physical information
Return text rendering attributes
Get text x-y position
Initialize text drawing environment
Install font into font table
Select an installed font for use
Set text rendering attributes
Set text x-y position
Render an ASCII string
Output text at current x-y position
Return the width of an ASCII string

Ext
Core
Ext
Core
Core
Ext
Ext
Ext
Core
Core
Core
Ext

A font is a complete assortment of characters of a particular size and style
(or typeface). The library currently supports fonts represented in
bit-mapped form, although other representations (stroke and outline font
formats, for example) may be supported in the future.

A bit-mapped representation of a font encodes the shape of each character
in a bit map—a two-dimensional array of bits representing a rectangular
image. The 1s in the bit map represent the body of the character, while the
0s represent the background. The character shape is drawn to the screen
by expanding each bit to the pixel depth of the screen: 1s are expanded to
the foreground color, and 0s to the background color.

Bit-Mapped Font Parameters

5-2 Bit-Mapped Text

5.1 Bit-Mapped Font Parameters
Figure 5–1 illustrates the parameters that characterize a bit-mapped char-
acter shape. These parameters are defined as follows:

Base Line The base line is an invisible reference line corre-
sponding to the bottom of the characters, not includ-
ing the descenders.

Ascent The ascent is measured as the number of vertical
pixels from the base line to the top of the highest
character (or more precisely, the top of the font rect-
angle, defined below). For example, in Figure 5–1,
the ascent is 16 pixels.

Descent The descent is measured as the number of vertical
pixels from the base line to the bottom of the lowest
descender. For example, in Figure 5–1, the descent
is six pixels.

Leading The leading is the number of vertical pixels between
the descent line of one row of characters and the as-
cent line of the row just beneath it. For example, in
Figure 5–1, the leading is five pixels. The term lead-
ing derives from the time that typesetters used strips
of lead to separate rows of characters in their printing
presses.

Character Origin The character origin is the point in the character
whose coordinates designate the position of the
character when it is drawn on the screen. The posi-
tion of the origin relative to the body of the character
depends on the state of the library’s text alignment at-
tribute. In the default state, the origin lies at the top
left corner of the character. Alternately, as shown in
Figure 5–1, the origin can be located at the intersec-
tion of the base line with the left edge of the character,
excluding any portion of the character which kerns to
the left of the origin (as in the case of the descender of
the character j in the figure). The base line origin is
useful when multiple fonts are mixed in a single line of
text, in which case the base lines for all characters
should coincide.

Character Height The character height is the sum of the ascent, the de-
scent, and the leading. For example, in Figure 5–1,
the character height is 16+6+5=27 pixels. Character

 Bit-Mapped Font Parameters

5-3

height is constant for all characters within a particular
font but can vary between fonts.

Character Width The character width is the distance from the charac-
ter origin of the current character to the origin of the
next character to its right. This width typically spans
both the character image and the space separating
the character image from the next character. The
character width can vary from one character to the
next within a font. For example, in Figure 5–1, the
widths of the characters A and j are 18 and 6, respec-
tively.

Character Rectangle The character rectangle is a rectangle enclosing the
character image. This image corresponds to the por-
tion of the font data structure containing the bit map
for the character shape. The sides of the rectangle
are defined by the image width and the font height, as
defined below. For example, in Figure 5–1, the char-
acter rectangle for the letter A is 16 pixels wide by 22
pixels high.

Font Height The font height is the the sum of the ascent and de-
scent parameters for the font.

Character Offset The character offset is the horizontal displacement
from the character origin to the left edge of the char-
acter image. If the offset is negative, the character
image extends to the left of the character origin. For
example, in Figure 5–1, the descender of the low-
er-case j has an offset of –2. In the case of an espe-
cially narrow character, such as a lower-case i or l, a
positive offset may be required to position the left
edge of the character image to the right of the origin.

Image Width The image width is the width of the bit map within the
font data structure that contains the shape of the
character. This width may not include the blank
space separating the character from the characters
to its left or right when it is displayed. In general, the
image width varies from character to character within
a font. For example, in Figure 5–1, the image widths
of the characters A and j are 16 and 5, respectively.

Bit-Mapped Font Parameters

5-4 Bit-Mapped Text

Figure 5–1. Bit-Mapped Font Attributes

width
j imageA image width

5

6

16

height
character

A character origin
descent

j character origin

ascent

width
j characterA character width

offset

next character origin

base
line

leading

 Font Data Structure

5-5

5.2 Font Data Structure

The data structure for bit-mapped fonts that is used within both TIGA and
the TMS340 Graphics Library is shown in Figure 5–2. The header portion
is fixed in size and specifies font parameters such as ascent, descent, and
so on. The other three parts—the pattern, location, and offset/width
tables—vary in size from one font to the next. The pattern table is a bit map
containing the shapes of the characters in the font. Each entry in the loca-
tion table is an offset indicating where in the bit map the shape of a particular
character is located. The offset/width table gives the character width, as de-
fined above, for each character and also the character offset from the origin
to the left edge of the character image. In general, the larger a particular font
appears on the screen, the larger the data structure must be to represent
it.

Figure 5–2. Data Structure for Bit-Mapped Fonts

Header

Pattern Table

Location Table

Offset/Width Table

5.2.1 Font Header Information

The header information is organized according to the FONT structure de-
fined in the following C typedef declaration:

typedef struct
{
 unsigned short magic; /* bit–mapped font code 0x8040 */
 long length; /* length of font data in bytes */
 char facename[30]; /* ASCII string name of font */
 short deflt; /* default for missing character */
 short first; /* first ASCII code in font */
 short last; /* last ASCII code in font */
 short maxwide; /* maximum character width */
 short maxkern; /* maximum kerning amount */
 short charwide; /* block font character width */
 short avgwide; /* average character width */
 short charhigh; /* character height */
 short ascent; /* ascent of highest character */
 short descent; /* longest descender */
 short leading; /* separation between text rows */
 long rowpitch; /* bit pitch of pattern table */
 long oPatnTbl; /* offset to pattern table */
 long oLocTbl; /* offset to location table */
 long oOwTbl; /* offset to offset/width table */
} FONT;

The fields of the FONT struct (font structure header) are defined as follows:

Font Data Structure

5-6 Bit-Mapped Text

1) magic

This field contains the value 0x8040, a code that designates the FONT
structure for bit-mapped fonts above. If alternate data structures for
stroke or outline fonts are supported in the future, these will be distin-
guished by alternate magic codes.

2) length

The length of the entire font specified in 8-bit bytes. The length includes
the entire data structure from the start of the magic field to the end of the
offset/width table. The length parameter provides a convenient means
for a program to determine how much memory to allocate for a font with-
out having to analyze the internal details of the font data structure.

3) facename

A 30-character string consisting of a font name of up to 29 characters,
and a terminating null character. Some examples: “TI Roman”, “TI Hel-
vetica”.

4) deflt

The ASCII code of the default character to be used in place of a charac-
ter missing from the font. When a missing character is encountered in
an ASCII string, the default character is printed in its place. The default
character must be implemented in the font. Typical choices for a default
character include a space (ASCII code 32), period (46), and question
mark (63). A value of 0 for the deflt field is a special case indicating that
nothing is to be printed in place of the missing character; it is simply ig-
nored.

A missing character is any character that is not implemented in the font.
By definition, all characters with ASCII codes in the ranges [1...first–1]
and [last+1...255] are missing. (Note that ASCII code 0, or null, is re-
served for use as a string terminator.) If a particular character in the
range [first...last] is missing from the font, the offset/width table entry for
the character is –1.

5) first

The ASCII code of the first character implemented in the font. For exam-
ple, ASCII character codes 0 through 31 may represent control func-
tions that are nonprinting. If the first implemented character in a font is a
space, with an ASCII code of 32, then the first field is set to 32.

6) last

ASCII code of last character implemented in font.

 Font Data Structure

5-7

7) maxwide

The maximum character width. This is the width of the widest character
in the font.

8) maxkern

The maximum amount by which any character in the font kerns, ex-
pressed a positive horizontal distance measured in pixels. The des-
cender of a character such as a lower-case j may extend or kern be-
neath the character to its left. The amount of kerning is measured as the
offset from the character origin to the left edge of the character image.
For example, if the maximum amount any character in the font kerns to
the left of the origin is 3, the maxkern value is specified as +3.

9) charwide

The fixed character width in the case of a block font. For a proportionally
spaced font, this field is set to 0, in which case the width for each individ-
ual character appears as an entry in the offset/width table.

10) avgwide

Average width of all characters implemented in the font. This value is
the sum of all the character widths divided by the number of characters
in the font. This parameter is useful for selecting a best-fit font at a par-
ticular target display resolution.

11) charhigh

The font height. This is the sum of the ascent and descent fields, and is
a constant across all characters within a particular font.

12) ascent

The distance in pixels from the base line to top of the highest character,
specified as a positive number.

Font Data Structure

5-8 Bit-Mapped Text

13) descent

The distance in pixels from base line to bottom of lowest descender,
specified as a positive number.

14) leading

The vertical spacing in pixels from the bottom of one line of text to the
top of the next line of text, specified as a positive number.

15) rowpitch

The pitch per row of the pattern table. This is the difference in bit ad-
dresses from the start of one row in the pattern table bit map to the start
of the next row. The TMS340 graphics processor’s addresses point to
bit boundaries in memory, and each row must start on an even 16-bit
word boundary; hence, the rowpitch value is always a multiple of 16.

16) oPatnTbl

The pattern table offset. This is the difference in bit addresses from the
start of the FONT structure (magic field) to the start of the pattern table.
This field is expressed as a positive value that is an even multiple of 16
(the word size).

17) oLocTbl

The location table offset. This is the difference in bit addresses from the
start of the FONT structure (magic field) to the start of the location table.
This field is expressed as a positive value that is an even multiple of 16
(the word size).

18) oOwTbl

The offset/width table offset. This is the difference in bit addresses from
the start of the FONT structure (magic field) to the start of the offset/
width table. This field is expressed as a positive value that is an even
multiple of 16 (the word size).

5.2.2 Font Pattern Table

The font pattern table is a two-dimensional bit map organized as shown in
Figure 5–3. The table contains the character images for all characters im-
plemented in the font, concatenated in order from left to right. The width of
the table (number of bits per row) is the sum of the individual character
widths and must be less than or equal to the pitch specified in the rowpitch
field of the FONT structure. The number of rows is equal to the value con-
tained in the charhigh field. The total number of bits in the bit map is ob-
tained by multiplying rowpitch by charhigh. The base address of the table
is the address of the bit located in the top left corner of the bit map. The top
row of the bit map contains the top row of each character shape, stored in

 Font Data Structure

5-9

left-to-right order; the second row from the top contains the second row of
each character shape, and so on.

Figure 5–3. Bit-Mapped Font Representation

Row pitch

Characters not shown

Font height

Font Data Structure

5-10 Bit-Mapped Text

5.2.3 Location Table

The location table specifies the locations of the images for the individual
characters in the pattern table. Each location table entry is 16 bits. One
entry is provided for each character code in the range [first...last]. The
table contains one additional entry, and the total number of entries is
(last – first + 2).

The table entry for each character is the bit displacement from the base ad-
dress of the pattern table (the address of the leftmost bit in the top row of
the bit map in Figure 5–3) to the top left corner of the corresponding charac-
ter image. The image width for a particular image is just the difference be-
tween the location table entries for that character and for the character that
immediately follows it. The location table contains entries for all character
codes from first to last, and an additional entry that is used to calculate the
image width of the last character. The final location table entry is the offset
of the first bit past the right edge of the top row in Figure 5–3.

If a particular ASCII character n in the range [first...last] is missing from the
font, the image width is 0. In other words, location table entries n–first and
n–first+1 contain the same offset value.

5.2.4 Offset/Width Table

The offset/width table contains the character offset and character width for
all characters in the range [first...last] that are implemented in the font. (Re-
fer to the definitions of the terms character offset and character width earlier
in this section.) Each offset/width table entry is 16 bits. One entry is pro-
vided for each character code in the range [first...last]. The table also con-
tains one final entry that is always set to –1, and the total number of entries
is (last – first + 2).

The table entry for each character implemented in the font is an 8-bit char-
acter offset concatenated with an 8-bit character width. The offset is in the
8 MSBs of the word, and the width is in the 8 LSBs. If a particular ASCII
character in the range [first...last] is missing from the font, the correspond-
ing 16-bit entry is set to –1.

 Proportionally Spaced Versus Block Fonts

5-11

5.3 Proportionally Spaced Versus Block Fonts

Two varieties of fonts are distinguished by the value of the charwide field
in FONT structure. A proportionally spaced font is identified by a charwide
value of 0, while a nonzero charwide value identifies a block font. The sys-
tem font, which is permanently installed in the font table as font number 0,
is always a block font. The installable fonts may be either proportionally
spaced or block fonts.

In the case of a proportionally spaced font, the character width is permitted
to vary from one character to the next. The character image may cover only
a portion of the character width. In other words, the character image does
not necessarily overwrite the spaces separating successive characters in
a string displayed on the screen. To replace an old line of text on the screen
with a new line, the old line typically must be erased completely. If this is
not done, portions of the old characters may be visible between the new
characters. Also, the space (ASCII code 32) character causes the charac-
ter pointer to move to the right on the screen but may not cause any pixels
to actually be modified. Using space characters from a proportionally
spaced font to erase a line of text is generally an ineffective technique.

In the case of a block font, on the other hand, the character width is uniform
across all characters implemented in the font. The character image com-
pletely spans the character width, even in the case of a space character.
Writing a string of characters, which may include spaces, to the screen com-
pletely overwrites an old line of characters lying beneath it.

This discussion assumes that the pixel-processing replace operation is in
effect and that transparency is disabled. Different effects can be achieved
by altering pixel processing and transparency, as described in the user’s
guides for the TMS34010 and TMS34020. The replace operation with
transparency enabled may be particularly useful in applications requiring
proportionally spaced text.

Font Table

5-12 Bit-Mapped Text

5.4 Font Table

The system font, permanently installed in the library’s font table as font
number 0, is always a block font. Additional fonts can be installed in the
table and can be any combination of proportionally spaced and block fonts.
The installable fonts are assigned table indices 1, 2, and so on by the library
as they are installed, and the fonts are thereafter identified by these indices
during text operations.

The font table is simply an array of pointers to the data structures for the
installed fonts. The maximum number of entries available in the font table
is fixed for a particular system but may vary from one system to another. In
all systems, the font table will be large enough to contain at least 16 installed
fonts (in addition to the permanently installed system font). An attempt to
install an additional font in a table that is already full will return an error code.
Refer to the description of the install_font function in Chapter 7 for details.

 Text Attributes

5-13

5.5 Text Attributes

The library provides application programs with direct control over three text
attributes:

1) Text Alignment

The position of the character origin (see definition in Section 5.1) for
each character is located at the base line or top edge of the character.
The default is the top edge.

2) Additional Intercharacter Spacing

An amount by which the default character width (see definition) speci-
fied within the font data structure is increased. The default is 0.

3) Intercharacter Gaps

The gaps between horizontally adjacent characters, which can be auto-
matically filled with the background color. When this attribute is en-
abled, one line of proportionally spaced text can be cleanly written di-
rectly on top of another without first erasing the text underneath. When
the attribute is disabled, only the rectangular area immediately sur-
rounding each character image (see definition of image width) is filled
with the background color. By default, the filling of intercharacter gaps is
disabled.

Only proportionally spaced fonts are affected by the state of these attrib-
utes. In the case of a block font, the text alignment is always to the top left
corner of each character, the intercharacter spacing is fixed at the charwide
value defined in the font structure, and intercharacter gaps are always filled.

Available Fonts

5-14 Bit-Mapped Text

5.6 Available Fonts

The TMS340 Graphics Library includes a bit-mapped font database con-
sisting of 20 typefaces available in a variety of sizes. The size of a font is
given in terms of its height in pixels. This height is specified as the sum of
its ascent and descent parameters. The available fonts are summarized in
Table 5–2.

Several of the fonts in Table 5–2 are labeled as monospaced (represented
as an M in the rightmost column) rather than proportionally spaced. A
monospaced font is characterized by uniform character width across the
font but is otherwise to be distinguished from the block fonts described pre-
viously. The monospaced fonts in Table 5–2 use the same font data struc-
ture as the proportionally spaced fonts. In particular, the charwide field is 0,
and the structure includes an offset/width table.

Table 5–2. Font Database Summary

Font Name Font Size in Pixels Type†

Arrows 25 31 M

Austin 11 15 20 25 38 50 P

Corpus Christi 15 16 26 29 49 M

Devonshire 23 28 41 P

Fargo 22 26 38 P

Galveston 12 15 21 22 28 42 P

Houston 14 17 20 26 38 50 P

Luckenbach 07 P

Math 16 19 24 32 44 64 P

San Antonio 22 28 40 P

System 16 24 B

Tampa 18 22 30 42 P

TI Art Nouveau 22 28 41 54 82 P

TI Bauhaus 11 14 17 19 22 24 28 43 56 P

TI Cloister 27 40 P

TI Dom Casual 23 25 30 42 46 P

TI Helvetica 11 15 18 20 22 24 28 32 36 42 54 82 P

TI Park Avenue 15 18 21 23 25 28 43 54 P

TI Typewriter Elite 11 14 16 18 20 22 26 38 M

TI Roman 11 14 16 18 20 22 26 30 33 38 52 78 P

05 09 10 12 14 16 18 20 24 28 32 36 40 48 72

Point size equivalents at 640 × 480 screen resolution

† P = Proportional spacing M = Mono spacing B = Block font

 Available Fonts

5-15

5.6.1 Installable Font Names

The application program must be linked with the fonts that are used by the
application. Within the program, each font is referred to by an external
name that uniquely identifies it. The external names for the available fonts
are presented in Table 5–3. These names refer to the fonts from a C pro-
gram. To refer to the fonts from a TMS340 assembly language program,
precede each font name with an underscore character.

Table 5–3. Installable Font Names

Font Name External Name

Arrows font sizes 25 and 31: arrows25, arrows31

Austin font sizes 11 through 50: austin11, austin15, austin20, austin25, austin38, aus-
tin50

Corpus Christi font sizes 15 through 49: corpus15, corpus16, corpus26, corpus29, corpus49

Devonshire font sizes 23 through 41: devons23, devons28, devons41

Fargo font sizes 22 through 38: fargo22, fargo26, fargo38

Galveston font sizes 12 through 42: galves12, galves15, galves21, galves22, galves28,
galves42

Houston font sizes 14 through 50: houstn14, houstn17, houstn20, houstn26, houstn38,
houstn50

Luckenbach font size 7: lucken07

Math font sizes 16 through 64: math16, math19, math24, math32, math44, math64

San Antonio font sizes 22 through 40: sanant22, sanant28, sanant40

System font sizes 16 and 24 sys16, sys24

Tampa font sizes 18 through 42: tampa18, tampa22, tampa30, tampa42

TI Art Nouveau font sizes 22 through 82: ti_art22, ti_art28, ti_art41, ti_art54, ti_art82

TI Bauhaus font sizes 11 through 56: ti_bau11, ti_bau14, ti_bau17, ti_bau19, ti_bau22,
ti_bau24, ti_bau28, ti_bau43, ti_bau56

TI Cloister font sizes 27 and 40: ti_clo27, ti_clo40

TI Dom Casual font sizes 23 through 46: ti_dom23, ti_dom25, ti_dom30, ti_dom42, ti_dom46

TI Helvetica font sizes 11 through 82: ti_hel11, ti_hel15, ti_hel18, ti_hel20, ti_hel22, ti_hel24,
ti_hel28, ti_hel32, ti_hel36, ti_hel42, ti_hel54, ti_hel82

TI Park Avenue font sizes 15 through 54: ti_prk15, ti_prk18, ti_prk21, ti_prk23, ti_prk25, ti_prk28,
ti_prk43, ti_prk54

TI Roman font sizes 11 through 78: ti_rom11, ti_rom14, ti_rom16, ti_rom18, ti_rom20,
ti_rom22, ti_rom26, ti_rom30, ti_rom33, ti_rom38,
ti_rom52, ti_rom78

TI Typewriter Elite font sizes 11 through 38: ti_typ11, ti_typ14, ti_typ16, ti_typ18, ti_typ20, ti_typ22,
ti_typ26, ti_typ38

Available Fonts

5-16 Bit-Mapped Text

The System font sizes 16 and 24 appearing near the middle of Table 5–2
are the only two block fonts. One of these is typically designated as the sys-
tem font (the permanently installed font number 0) in a particular graphics
mode. These fonts can also be installed in the font table in the same manner
as the other fonts in Table 5–2.

The following example demonstrates how to access an external FONT
structure from a C program. The global name of the TI Helvetica size 22
font, ti_hel22, is declared as an external structure of type FONT. (The refer-
ence must be resolved by linking the font with the program.) The font pointer
is passed to the font table via the install_font function, and the select_font
function is used to select the font. Finally, the text_out function is used to
print the string “hello, world” to the screen in the selected font.

#include <gsptypes.h> /* defines FONT structure */

extern FONT ti_hel22;

main()
{
 short n;

 set_config(0, !0);
 clear_screen(–1);

 n = install_font(&ti_hel22);
 select_font(n);
 text_out(10, 10, ”hello, world”);
}

5.6.2 Alphabetical Listing of Fonts

Each of the fonts included with the library is described briefly in the remain-
der of this section. Each typeface is presented separately, along with the
list of available font sizes, spacing, and recommendations regarding the
use of the face. Illustrations of each font are also presented at approximate-
ly true scale to indicate the relative dimensions of the various font sizes
available for each typeface. The actual physical size of a font will vary, de-
pending on the dimensions of the display device.

Example

 Arrows Fonts arrows

5-17

Monospace
Original character set, no typesetter’s equivalent
Graphic accents, arrows, and symbols suitable for use in memos, transpar-
encies, posters, flyers, and newsletters.
25 and 31 pixels

Spacing
Derivation
Description

Sizes

Example

 austin Austin Fonts

5-18 Bit-Mapped Text

Proportional
Original typeface, no typesetter’s equivalent
An upright, bold-weight, sans-serif typeface. Suited to many purposes.
Smaller sizes serve well for general usage as body text or headings, while
larger sizes are ideal for headlines and titles.
11, 15, 20, 25, 38, and 50 pixels

Spacing
Derivation
Description

Sizes

Austin Fonts austin

5-19

Example

 austin Austin Fonts

5-20 Bit-Mapped Text

Corpus Christi Fonts corpus

5-21

Monospace
Original character set, no typesetter’s equivalent
Designed as a terminal display font. 16-pixel size renders a standard
80-column display at 640 × 480 resolution. 29-pixel renders a 40-column
display at the same resolution. Light- to bold-weight, depending on size.
15, 16, 26, 29, 49 pixels

Spacing
Derivation
Description

Sizes

Example

 corpus Corpus Christi Fonts

5-22 Bit-Mapped Text

Devonshire Fonts devonshire

5-23

Proportional
Original character set, no typesetter’s equivalent
A light-weight, stylized serif typeface. Elongated ascenders and descend-
ers distinguish this font. Suitable for invitations, newsletters, flyers, or any-
thing requiring a formal appearance.
23, 28, and 41 pixels

Spacing
Derivation
Description

Sizes
Example

 devons Devonshire Fonts

5-24 Bit-Mapped Text

Fargo Fonts fargo

5-25

Proportional
Original character set, no typesetter’s equivalent
An upright, medium-weight serif face. Small sizes suited for diagrams and
labels. Larger sizes are well suited to headlines and posters.
22, 26, and 38 pixels

Spacing
Derivation
Description

Sizes
Example

 fargo Fargo Fonts

5-26 Bit-Mapped Text

Galveston Fonts galveston

5-27

Proportional
Original character set, no typesetter’s equivalent
An upright, bold-weight serif face. Suited to many purposes. Smaller sizes
serve well for general usage as body text or headings, while larger sizes are
ideal for headlines and titles.
12, 15, 21, 22, 28, and 42 pixels

Spacing
Derivation
Description

Sizes

Example

 galves Galveston Fonts

5-28 Bit-Mapped Text

Houston Fonts houston

5-29

Proportional
Original character set, no typesetter’s equivalent
An upright, light-to-medium-weight serif typeface. Suited to many pur-
poses. Smaller sizes serve well for general usage as body text or headings
while larger sizes are ideal for headlines and titles.
14, 17, 20, 26, 38, and 50 pixels

Spacing
Derivation
Description

Sizes
Example

 houstn Houston Fonts

5-30 Bit-Mapped Text

Luckenbach Fonts luckenbach

5-31

Proportional
Original character set, no typesetter’s equivalent
Designed as the smallest legible font at 640 × 480 resolution. Useful for dia-
grams or any other task requiring very small text.
7 pixels

Spacing
Derivation
Description

Sizes
Example

 math Math Fonts

5-32 Bit-Mapped Text

Proportional
Original character set, no typesetter’s equivalent
Math and Greek symbols, including subscripts and superscripts. Light- to
medium-weight, depending on size.
16, 19, 24, 32, 44, and 64 pixels

Spacing
Derivation
Description

Sizes
Example

Math Fonts math

5-33

 sanant San Antonio Fonts

5-34 Bit-Mapped Text

Proportional
Original character set, no typesetter’s equivalent
A serif typeface with hollow (commonly called in-line) uprights. Distinctive
and semiformal in appearance, ideal for memos, newsletters, flyers, and
headings.
22, 28, and 40 pixels

Spacing
Derivation
Description

Sizes
Example

San Antonio Fonts san antonio

5-35

 sys System Fonts

5-36 Bit-Mapped Text

Monospaced (block font)
Original character set, no typesetter’s equivalent
Designed to emulate character-ROM fonts displayed by text terminals. The
smaller size is suitable for low- to medium-resolution displays. The larger
size is suitable for high-resolution displays of 1024-by-768 and above. The
characters defined within this font are compatible with the IBM EGA/VGA
extended character set.
16 and 24 pixels

Spacing
Derivation
Description

Sizes
Example

System Fonts sys

5-37

 tampa Tampa Fonts

5-38 Bit-Mapped Text

Proportional
Original character set, no typesetter’s equivalent
A bold- to medium-weight serif typeface. Small sizes suited for diagrams
and labels. Larger sizes are well suited to headlines and posters.
18, 22, 30, and 42 pixels

Spacing
Derivation
Description

Sizes
Example

Tampa Fonts tampa

5-39

 ti_art ti_art

5-40 Bit-Mapped Text

Proportional
Art Nouveau
A bold-weight, stylized serif typeface. Very ornate; perfect for flyers, post-
ers, and newsletters.
22, 28, 41, 54, and 82 pixels

Spacing
Derivation
Description

Sizes
Example

ti art ti_art

5-41

 ti_bau ti_bauhaus

5-42 Bit-Mapped Text

Proportional
Bauhaus Medium
A medium-weight sans-serif typeface. General purpose font suited to all
uses. Commonly seen on business cards, letterheads, magazines, and oth-
er publications.
11, 14, 17, 19, 22, 24, 28, 43, 56 pixels

Spacing
Derivation
Description

Sizes
Example

ti bauhaus ti_bau

5-43

 ti_bau ti_bauhaus

5-44 Bit-Mapped Text

ti cloister ti_clo

5-45

Proportional
Cloister Black
A highly stylized, bold-weight Olde English typeface. Best suited for invita-
tions, posters, and flyers. Very decorative.
27 and 40 pixels

Spacing
Derivation
Description

Sizes

 ti_dom ti_dom

5-46 Bit-Mapped Text

Proportional
Dom Casual
A bold-weight semi-cursive typeface. Distinctive and informal. Ideal for
newsletters, posters, and flyers.
23, 25, 30, 42, and 46 pixels

\

Spacing
Derivation
Description

Sizes

ti dom ti_dom

5-47

 ti_hel ti_helvetica

5-48 Bit-Mapped Text

Proportional
Helvetica
A light-weight sans-serif typeface. Patterned after one of the most widely
used typefaces in the United States. Appropriate for use in all business-re-
lated applications, particularly correspondence and newsletters.
11, 15, 18, 20, 22, 24, 28, 32, 36, 42, 54, and 82 pixels

Spacing
Derivation
Description

Sizes
Example

ti helvetica ti_hel

5-49

 ti_hel ti_helvetica

5-50 Bit-Mapped Text

ti park ti_prk

5-51

Proportional
Park Avenue/Zapf Chancery
A medium-weight, ornate cursive typeface. Suited to many purposes. Com-
monly seen on wedding invitations but appropriate wherever a formal font
is desired.
15, 18, 21, 23, 25, 28, 43, and 54 pixels

Spacing
Derivation
Description

Sizes
Example

 ti_prk ti_park

5-52 Bit-Mapped Text

ti park ti_prk

5-53

 ti_rom ti_roman

5-54 Bit-Mapped Text

Proportional
Times-Roman
A light- to medium-weight serif typeface. Patterned after the most widely
used typeface in the United States and most English speaking countries.
Appropriate for use in all business-related applications, particularly corre-
spondence and newsletters.
11, 14, 16, 18, 20, 22, 26, 30, 33, 38, 52, and 78 pixels

Spacing
Derivation
Description

Sizes
Example

ti roman ti_rom

5-55

 ti_rom ti_roman

5-56 Bit-Mapped Text

ti roman ti_rom

5-57

 ti_typ ti_typewriter

5-58 Bit-Mapped Text

Monospace
Typewriter Elite
A light-weight serif typeface. Small sizes suited to correspondence and
newsletters. Larger sizes perfect for labels and headlines.
11, 14, 16, 18, 20, 22, 26, and 38 pixels

Spacing
Derivation
Description

Sizes
Example

ti typewriter ti_typ

5-59

 ti_typ TI Typewriter Elite Fonts

5-60 Bit-Mapped Text

6-1

Chapter 6

Core Primitives

This chapter describes the functions in the Core Primitives Library. The Ex-
tended Primitives Library is described in the next chapter.

Remember to call the set_config function (a member of the Core Primitives
Library) to initialize the drawing environment before you call any of the other
functions in the Core and Extended Primitives Libraries.

The table below summarizes the 50 functions in the Core Primitives Library.
The remainder of this chapter is an alphabetical, detailed description of the
syntax, usage, and operation of each function. These descriptions are aug-
mented by complete example programs that can be compiled and run ex-
actly as written.

Function Name Description

clear_frame_buffer Clear frame buffer

clear_page Clear current drawing page

clear_screen Clear screen

cpw Compare point to clipping window

cvxyl Convert x-y position to linear address

field_extract Extract field from TMS340 graphics processor
memory

field_insert Insert field into TMS340 graphics processor
memory

get_colors Get colors

get_config Get hardware configuration information

get_fontinfo Get font information

get_modeinfo Get graphics mode information

get_nearest_color Get nearest color

get_offscreen_memory Get off-screen memory

get_palet Get entire palette

get_palet_entry Get single palette entry

get_pmask Get plane mask

Core Primitives

6-2 Core Primitives

Function Name Description

get_ppop Get pixel processing operation code

get_text_xy Get text x-y position

get_transp Get transparency flag

get_vector Get trap vector

get_windowing Get window clipping mode

get_wksp Get workspace information

gsp2gsp Transfer from one location to another within
TMS340 graphics processor memory

init_palet Initialize palette

init_text Initialize text

lmo Find leftmost one

page_busy Get page busy status

page_flip Flip display and drawing pages

peek_breg Peek at B-file register

poke_breg Poke value into B-file register

rmo Find rightmost one

set_bcolor Set background color

set_clip_rect Set clipping rectangle

set_colors Set foreground and background colors

set_config Set hardware configuration

set_fcolor Set foreground color

set_palet Set multiple palette entries

set_palet_entry Set single palette entry

set_pmask Set plane mask

set_ppop Set pixel processing operation code

set_text_xy Set text x-y position

set_transp Set transparency mode

set_vector Set trap vector

set_windowing Set window clipping mode

set_wksp Set workspace information

text_out Output text

text_outp Output text at current x-y position

transp_off Turn transparency off

transp_on Turn transparency on

wait_scan Wait for scan line

 Clear Frame Buffer clear_frame_buffer

6-3

void clear_frame_buffer(color)
unsigned long color; /* pixel value */

The clear_frame_buffer function rapidly clears the entire display memory
by setting it to the specified color. If the display memory contains multiple
display pages (for example, for double-buffered animation) all pages are
cleared.

Argument color is a pixel value. Given a screen pixel depth of N bits, the
pixel value contained in the N LSBs of the argument is replicated throughout
the display memory. In other words, the pixel value is replicated 32/N times
within each 32-bit longword in the display memory. Pixel size N is restricted
to the values 1, 2, 4, 8, 16, and 32 bits.

If the value of argument color is specified as –1, the function clears the dis-
play memory to the current background color. (In order to clear the frame
buffer to all 1s when the pixel size is 32 bits, set the background color to
0xFFFFFFFF and call the clear_frame_buffer function with an argument of
–1.)

This function can rapidly clear the screen in hardware configurations that
support bulk initialization of the display memory. Bulk initialization is sup-
ported by video RAMs that can perform serial-register-to-memory cycles.
The serial register in each video RAM is loaded with initialization data and
copied internally to a series of rows in the memory array. Whether the func-
tion utilizes bulk initialization or some other functionally equivalent method
of clearing the screen varies from one implementation to the next.

Off-screen areas of the display memory may also be affected by this func-
tion; data stored in such areas may be lost as a result. The clear_screen
function is similar in operation but does not affect data contained in
off-screen areas.

If the graphics display system reserves an area of the display memory to
store palette information (as is the case in configurations that use the
TMS34070 color palette chip), this area is left intact by the function.

Syntax

Description

clear_frame_buffer Clear Frame Buffer

6-4 Core Primitives

Use the clear_frame_buffer function to clear the display memory to the de-
fault background color. Use the text_out function to print a couple of words
to the screen.

main()
{
 set_config(0, !0);
 clear_frame_buffer (–1);
 text_out(10, 10, ”Hello world.”);
}

Example

Clear Current Drawing Page clear_page

6-5

void clear_page(color)
unsigned long color; /* pixel value */

The clear_page function rapidly clears the entire drawing page by setting
it to the specified pixel value. If the display memory contains multiple display
pages (for example, for double-buffered animation), only the current draw-
ing page is cleared.

Given a screen pixel depth of N bits, the pixel value contained in the N LSBs
of argument color is replicated throughout the drawing page. In other words,
the pixel value is replicated 32/N times within each 32-bit longword in the
page. Pixel size N is restricted to the values 1, 2, 4, 8, 16, and 32 bits.

If the value of argument color is specified as –1, the function clears the page
to the current background color. (In order to clear the drawing page to all
1s when the pixel size is 32 bits, set the background color to 0xFFFFFFFF
and call the clear_page function with an argument of –1.)

This function can rapidly clear the screen in hardware configurations that
support bulk initialization of the display memory. Bulk initialization is sup-
ported by video RAMs that can perform serial-register-to-memory cycles.
The serial register in each video RAM is loaded with initialization data and
copied internally to a series of rows in the memory array. Whether the func-
tion utilizes bulk initialization or some other functionally equivalent method
of clearing the screen varies from one implementation to the next.

The clear_page function can affect off-screen as well as on-screen areas
of the display memory. Data stored in off-screen areas may be lost as a re-
sult. The clear_screen function is similar in operation but does not affect
data contained in off-screen areas. The clear_page function may clear the
screen more rapidly than the clear_screen function, depending on the im-
plementation.

If the graphics display system reserves an area of the display memory to
store palette information (as is the case in configurations that use the
TMS34070 color palette chip), this area is left intact by the function.

Syntax

Description

clear_page Clear Current Drawing Page

6-6 Core Primitives

Use the clear_page function to clear alternating drawing pages in an appli-
cation requiring double-buffered animation. The graphics mode selected by
the set_config function is assumed to support more than one video page.
The text_out function is used to make the letters abc rotate in a clockwise
direction around the digits 123.

#define GMODE 0 /* double–buffered graphics mode */
#define RADIUS 64 /* radius of rotating text */

main()
{
 long x, y;
 short disppage, drawpage;

 set_config(GMODE, !0);
 drawpage = 0;
 disppage = 1;
 x = RADIUS << 16;
 y = 0;
 for (; ;) {

page_flip(disppage ^= 1, drawpage ^= 1);
x –= y >> 5;
y += x >> 5;
while (page_busy())
 ;
clear_page (–1);
text_out(RADIUS, RADIUS, ”123”);
text_out(RADIUS+(x>>16), RADIUS+(y>>16), ”abc”);

 }
}

Example

Clear Screen clear_screen

6-7

void clear_screen(color)
unsigned long color; /* pixel value */

The clear_screen function clears the entire current drawing page by setting
it to the specified pixel value. If the display memory contains multiple display
pages (for example, for double-buffered animation), only the current draw-
ing page is cleared.

Given a screen pixel depth of N bits, the pixel value contained in the N LSBs
of argument color is replicated throughout the visible screen. In other words,
the pixel value is replicated 32/N times within each 32-bit longword in the
area of display memory corresponding to the visible screen. Pixel size N is
restricted to the values 1, 2, 4, 8, 16, and 32 bits.

If the value of argument color is specified as –1, the function clears the page
to the current background color. (In order to clear the screen to all 1s when
the pixel size is 32 bits, set the background color to 0xFFFFFFFF and call
the clear_screen function with an argument of –1.)

The clear_screen function does not affect data contained in off-screen
areas of the display memory. The clear_page function is similar in operation
but may affect data contained in off-screen areas; data stored in such areas
may be lost as a result. The clear_page function may clear the screen more
rapidly than the clear_screen function, depending on the implementation.

Use the clear_screen function to clear the screen to the default background
color prior to printing the text “Hello world.” on the screen.

main()
{
 set_config(0, !0);
 clear_screen (–1);
 text_out(10, 10, ”Hello world.”);
}

Syntax

Description

Example

cpw Compare Point to Clipping Window

6-8 Core Primitives

short cpw(x, y)
short x, y; /* pixel coordinates */

The cpw function returns a 4-bit outcode indicating the specified pixel’s po-
sition relative to the current clipping window. The outcode indicates whether
the pixel is located above or below, to the left or right of, or inside the window.

Arguments x and y are the coordinates of the pixel, specified relative to the
current drawing origin.

The clipping window is rectangular. As shown in Figure 6–1, the area sur-
rounding the clipping window is partitioned into 8 regions.

Figure 6–1. Outcodes for Line Endpoints

0000

Window

X=X Max.X=X Min.

Y=Y Max.

Y=Y Min.

101010001001

00100001

01100101 0100

+y

+x

Each of the 8 regions is identified by a unique 4-bit outcode. The outcode
values for the 8 regions and for the window itself are encoded as follows:

01XX2 if the point lies above the window
10XX2 if the point lies below the window
XX012 if the point lies left of the window
XX102 if the point lies right of the window
00002 if the point lies within the window

The outcode is right-justified in the 4 LSBs of the return value and zero-ex-
tended.

Refer to the user’s guide for the TMS34010 or TMS34020 for a detailed de-
scription of the outcodes.

Syntax

Description

Compare Point to Clipping Window cpw

6-9

Use the cpw function to animate a moving object that bounces off the sides
of the clipping window. When a check of the object’s x–y coordinates indi-
cates that it has strayed outside the window, the sign of the object’s x or y
component of velocity, as appropriate, is reversed. The moving object is an
asterisk rendered in the system font. The asterisk is erased by overwriting
it with a blank. Note that the system font is a block font; overwriting an aster-
isk with a blank from a proportionally spaced font might not have the same
effect.

#define WCLIP 130 /* width of clipping window */
#define HCLIP 100 /* height of clipping window */

main()
{
 short x, y, vx, vy;

 set_config(0, !0);
 clear_screen(–1);
 set_clip_rect(WCLIP, HCLIP, 0, 0);
 vx = 2;
 vy = 1;
 for (x = y = 0; ; x += vx, y += vy) {

text_out(x, y, ”*”);
if (cpw(x, 0))
 vx = –vx;
if (cpw(0, y))
 vy = –vy;
wait_scan(HCLIP);
text_out(x, y, ” ”);

 }
}

Example

cvxyl Convert x-y Position to Linear Address

6-10 Core Primitives

typedef unsigned long PTR; /* 32–bit GSP memory address */

PTR cvxyl(x, y)
short x, y; /* x–y coordinates */

The cvxyl function returns the 32-bit address of a pixel in the TMS340
graphics processor’s memory, given the x and y coordinates of the pixel on
the screen.

Arguments x and y are the coordinates of the specified pixel, defined rela-
tive to the current drawing origin. If the coordinates correspond to an off-
screen location, the calling program is responsible for ensuring that the
coordinates correspond to a valid pixel location.

Use the cvxyl function to determine the base addresses of the all the video
pages available in graphics mode 0. The page_flip function is used repeat-
edly to flip to a new page before the cvxyl function is called. The text_out
function is used to print out the 32-bit memory address of each page.

#include <gsptypes.h>

main()
{
 short x, y, n, digit;
 long p;
 char *s, c[80];
 CONFIG cfg;
 FONTINFO fntinf;

 set_config(0, 1);
 clear_screen(–1);
 get_config(&cfg);
 get_fontinfo(–1, &fntinf);
 x = y = 10;
 text_out(x, y, ”video page addresses:”);
 for (n = 0; n < cfg.mode.num_pages; n++) {

page_flip(0, n);
s = &c[strlen(strcpy(c, ” 0x00000000”))];
for (p = cvxyl (0, 0); p; p /= 16) {

digit = p & 15;
* –– s = (digit < 10) ? (digit + ’0’) : (digit + ’A’ – 10);

}
y += fntinf.charhigh;
page_flip(0, 0);
text_out(x, y, c);

 }
}

Syntax

Description

Example

Extract Field from GSP Memory field_extract

6-11

typedef unsigned long PTR; /* 32–bit GSP memory address */

unsigned long field_extract(gptr, fs)
PTR gptr; /* GSP memory pointer */
unsigned short fs; /* field size */

The field_extract function returns the contents of a field located in memory.

Argument gptr is a pointer containing the 32-bit address of a field in the
TMS340 graphics processor’s memory. Argument fs specifies the length of
the field and is restricted to values in the range 1 to 32 bits.

The function definition places no restrictions on the alignment of the ad-
dress; the field is permitted to begin at any bit address. Given an fs value
of N and a gptr value of A, the specified field consists of contiguous bits A
through A+N–1 in memory.

The contents of the field are placed in the N LSBs of the return value and
zero-extended.

Use the field_extract function to examine a field from an I/O register located
in the TMS340 graphics processor’s memory. Retrieve the contents of the
PPOP field, a 5-bit field that begins in bit 10 of the CONTROL register.

#define CONTROL 0xC00000B0 /* address of GSP CONTROL reg. */
#define XOR 10 /* PPOP = XOR */

main()
{
 unsigned long ppop;
 static char c[] = ”PPOP = ????”;

 set_config(0, !0);
 clear_screen(–1);
 set_ppop(XOR); /* load PPOP field */
 ppop = field_extract (CONTROL+10, 5); /* read it back */
 ltoa(ppop, &c[7]);
 text_out(10, 10, c);
}

Syntax

Description

Example

field_insert Insert Field into GSP Memory

6-12 Core Primitives

typedef unsigned long PTR; /* 32–bit GSP memory address */

void field_insert(gptr, fs, val)
PTR gptr; /* GSP memory pointer */
short fs; /* field size */
unsigned long val; /* data to be inserted */

The field_insert function writes a specified value to a field located in the
TMS340 graphics processor’s memory.

Argument gptr is a pointer containing the 32-bit address of a field in the
TMS340 graphics processor’s memory. Argument fs specifies the length of
the field and is restricted to values in the range 1 to 32 bits. Argument val
specifies the value to be written.

The function definition places no restrictions on the alignment of the ad-
dress; the field is permitted to begin at any bit address. Given an fs value
of N, and a gptr value of A, the specified field consists of contiguous bits A
through A+N–1 in memory. The N LSBs of argument val are copied into the
specified field in memory; the remaining bits of the argument are ignored
by the function.

Use the field_insert function to load a value into a field in an I/O register
located in the TMS340 graphics processor’s memory. The PPOP field is a
5-bit field that begins in bit 10 of the CONTROL register. Use the get_ppop
function to read back the PPOP field, and use the text_out function to print
its value.

#define CONTROL 0xC00000B0 /* I/O register address */
#define NOT_OR 13 /* NOT src OR dst ––> dst */

main()
{
 static char c[] = ”PPOP = ????”;

 set_config(0, !0);
 clear_screen(–1);
 field_insert (CONTROL+10, 5, NOT_OR); /* load PPOP field */
 ltoa(get_ppop(), &c[7]); /* read it back */
 text_out(10, 10, c);
}

Syntax

Description

Example

Get Colors get_colors

6-13

void get_colors(fcolor, bcolor)
unsigned long *fcolor; /* pointer to foreground color */
unsinged long *bcolor; /* pointer to background color */

The get_colors function retrieves the pixel values corresponding to the cur-
rent foreground and background colors.

Arguments fcolor and bcolor are pointers to long integers into which the
function loads the foreground and background colors, respectively. Each
pixel value is right-justified within its destination longword and zero-ex-
tended.

Use the get_colors function to retrieve the default foreground and back-
ground pixel values assigned by the set_config function. Use the text_out
function to print the values on the screen.

#include <gsptypes.h> /* defines FONTINFO structure */

static FONTINFO fontinfo;

main()
{
 unsigned long fcolor, bcolor;
 short x, y;
 static char c1[40] = ”white = ”, c2[40] = ”black = ”;

 set_config(0, !0);
 clear_screen(–1);
 get_fontinfo(0, &fontinfo);
 get_colors (&fcolor, &bcolor); /* retrieve colors */
 ltoa(fcolor, &c1[8]);
 x = y = 10;
 text_out(x, y, c1);
 ltoa(bcolor, &c2[8]);
 y += fontinfo.charhigh;
 text_out(x, y, c2);
}

Syntax

Description

Example

get_config Get Hardware Configuration Information

6-14 Core Primitives

typedef struct
{

long disp_pitch;
short disp_vres;
short disp_hres
short screen_wide
short screen_high;
short disp_psize;
long pixel_mask;
short palet_gun_depth;
long palet_size;
short palet_inset;
short num_pages;
short num_offscrn_areas;
long wksp_addr;
long wksp_pitch;

} MODEINFO;

typedef struct
{

short version_number;
long comm_buff_size;
long sys_flags;
long device_rev;
short num_modes;
short current_mode;
long program_mem_start;
long program_mem_end;
long display_mem_start;
long display_mem_end;
long stack_size;
long shared_mem_size;
HPTR shared_host_addr;
PTR shared_gsp_addr;
MODEINFO mode;

} CONFIG;

void get_config(config)
CONFIG *config; /* hardware configuration info */

The get_config function retrieves a list of parameters that describe the char-
acteristics of both the hardware configuration and the current graphics
mode.

Argument config is a pointer to a structure of type CONFIG, into which the
function copies parameter values describing the configuration of the display
hardware. The last field in the CONFIG structure is a structure of type
MODEINFO, which contains parameters describing the currently selected
graphics mode.

Syntax

Description

Get Hardware Configuration Information get_config

6-15

The fields of the CONFIG structure are defined as follows:

version_number TIGA revision number, assigned by Texas Instru-
ments Incorporated.

comm_buff_size Size, in bytes, of the TIGA communications buffer.
The contents of this field are undefined in TMS340
Graphics Library applications.

sys_flags Bits 0–7 indicate which of up to 8 TMS34082 Floa-
ting-Point Coprocessors are present in the system.
Bits 8–15 are reserved.

device_rev This is the TMS340 graphics processor silicon revi-
sion number, as generated by the processor’s REV
instruction.

num_modes Number of graphics modes for boards that allow the
switching between different display setups.

current_mode Mode number corresponding to the current graphics
mode.

program_mem_start Start address of program memory.
program_mem_end End address of program memory.
display_mem_start Start address of display memory.
display_mem_end End address of display memory.
stack_size Size in bytes of the block of memory allocated for

both the system stack and program stack. The two
stacks grow toward each other from opposite ends of
the block.

shared_mem_size Size in bytes of dual-ported memory that is shared
between the host processor and the TMS340 graph-
ics processor.

shared_host_addr If shared_mem_size is nonzero, this is the start ad-
dress in host memory of the shared memory; other-
wise, it is undefined.

shared_gsp_addr If shared_mem_size is nonzero, this is the start ad-
dress in TMS340 graphics processor memory of the
shared memory; otherwise, it is undefined.

The fields of the MODEINFO structure are defined as follows:

disp_pitch The display pitch is the difference in memory ad-
dresses of two vertically adjacent pixels on the
screen.

disp_vres The display vertical resolution is the number of scan
lines on the screen.

disp_hres The display horizontal resolution is the number of
pixels per scan line on the screen.

get_config Get Hardware Configuration Information

6-16 Core Primitives

screen_wide The width of the active screen in millimeters. In sys-
tems in which this dimension is unknown, set to 0.

screen_high The height of the active screen in millimeters. In sys-
tems in which this dimension is unknown, set to 0.

disp_psize Pixel size (in bits).
pixel_mask Contains a mask of the active bits within a pixel. Pix-

el sizes are restricted to powers of 2 in the range 1 to
 32. Not all bits within each pixel are necessarily
used,
however. For example, if the pixel size is 8 bits,
but only the video RAM sockets corresponding to
the 6 LSBs of each pixel are actually populated,
pixel_mask is set to 0x3F.

palet_gun_depth Number of bits per gun in the color palette.
palet_size Number of entries in the color palette.
palet_inset For most systems, this field is set to 0. For

TMS34070-based boards, which store the palette in
the frame buffer, this field contains the length in bits of
the palette data that precedes the pixel data for each
scan line.

num_pages Number of video pages (or frame buffers) in display
memory. Some systems provide multiple pages to
support flickerless animation.

num_offscrn_areas This is the number of off-screen memory blocks
available. This field specifies the number of two-di-
mensional pixel arrays available in off-screen por-
tions of the display memory. (See description of
get_offscreen_memory function.)

wksp_addr Starting linear address in memory of the off-screen
workspace area, which is 1 bit per pixel but has the
same horizontal and vertical dimensions as the
screen.

wksp_pitch Pitch of off-screen workspace area. If 0, then no off-
screen workspace is currently allocated.

Note that the structures described above may change in subsequent revi-
sions. To minimize the impact of such changes, write your application pro-
grams to refer to the elements of the structure symbolically by their field
names, rather than as offsets from the start of the structure. The include files
provided with the library will be updated in future revisions to track any such
changes in data structure definitions.

Get Hardware Configuration Information get_config

6-17

Use the get_config function to retrieve the pixel size for the current graphics
mode. Use the text_out function to print the pixel size on the screen.

#include <gsptypes.h> /* defines CONFIG structure */

main()
{
 CONFIG cfg;
 unsigned long psize;
 static char c[] = ”pixel size = ????”;

 set_config(0, !0);
 clear_screen(–1);
 get_config (&cfg);
 psize = cfg.mode.disp_psize; /* pixel size in bits */
 ltoa(psize, &c[13]);
 text_out(10, 10, c);
}

Example

get_fontinfo Get Font Information

6-18 Core Primitives

typedef struct
{
 char facename[30];
 short deflt;
 short first;
 short last;
 short maxwide;
 short avgwide;
 short maxkern;
 short charwide;
 short charhigh;
 short ascent;
 short descent;
 short leading;
 FONT *fontptr;
 short id;
} FONTINFO;

short get_fontinfo(id, pfontinfo)
short id; /* font identifier */
FONTINFO *pfontinfo; /* font information */

The get_fontinfo function copies a structure whose elements describe the
characteristics of the designated font. The font must have been previously
installed in the font table.

Argument id is an index that identifies the font. The system font is always
designated as font 0; that is, it is identified by an id value of 0. The system
font is installed in the font table during initialization of the drawing environ-
ment by the set_config function. Additional fonts may be installed in the font
table by means of calls to the install_font function. The install_font function
returns an identifier value that is subsequently used to refer to the font. The
currently selected font is designated by an id value of –1.

Argument pfontinfo is a pointer to a structure of type FONTINFO, into which
the function copies parameter values that characterize the font designated
by argument id.

The function returns a nonzero value if the structure is successfully copied;
otherwise, 0 is returned.

The fields of the FONTINFO structure are defined as follows:

facename String containing font name.
deflt ASCII code of default character.
first ASCII code of first character implemented in font.
last ASCII code of last character implemented in font.
maxwide Maximum character width.
avgwide Average width of characters.

Syntax

Description

Get Font Information get_fontinfo

6-19

maxkern Maximum character kerning amount.
charwide Width of characters (0 in the case of a proportionally

spaced font).
charhigh Character height (sum of ascent, descent, and lead-

ing).
ascent Ascent (distance in pixels from base line to top of

highest character).
descent Descent (distance in pixels from base line to bottom

of lowest descender).
leading Leading (vertical spacing in pixels from bottom of one

line of text to top of next line of text).
fontptr Address of font in TMS340 graphics processor’s

memory.
id Font identifier (font table index).

Note that the structure described above may change in subsequent revi-
sions. To minimize the impact of such changes, write your application pro-
grams to refer to the elements of the structure symbolically by their field
names, rather than as offsets from the start of the structure. The include files
provided with the library will be updated in future revisions to track any such
changes in data structure definitions.

Use the get_fontinfo function to retrieve the face name, character width, and
character height of the system font. Use the text_out function to print the
three font parameters on the screen.

#include <gsptypes.h> /* defines FONTINFO structure */

main()
{
 FONTINFO fntinf;
 short x, y;
 char c[80];

 set_config(0, !0);
 clear_screen(–1);
 get_fontinfo (0, &fntinf);
 x = y = 10;
 text_out(x, y, fntinf.facename);
 y += fntinf.charhigh;
 strcpy(c, ”character width = ”);
 ltoa(fntinf.charwide, &c[18]);
 text_out(x, y, c);
 y += fntinf.charhigh;
 strcpy(c, ”character height = ”);
 ltoa(fntinf.charhigh, &c[19]);
 text_out(x, y, c);
}

Example

get_modeinfo Get Graphics Mode Information

6-20 Core Primitives

short get_modeinfo(index, modeinfo)
short index; /* graphics mode index */
MODEINFO *modeinfo; /* graphics mode information */

The get_modeinfo function copies a structure whose elements describe the
characteristics of the designated graphics mode.

Argument index is a number that identifies one of the graphics modes sup-
ported by the display hardware configuration. The index values are as-
signed to the available graphics modes by the display hardware vendor.
Each configuration supports one or more graphics modes, which are num-
bered in ascending order beginning with 0.

Argument modeinfo is a pointer to a structure of type MODEINFO, into
which the function copies parameter values that characterize the graphics
mode designated by argument index.

The function returns a nonzero value if the mode information is successfully
retrieved. If an invalid index is specified, the function returns 0.

The number of graphics modes supported by a particular display configura-
tion is specified in the num_modes field of the CONFIG structure returned
by the get_config function. Given that the number of supported modes is
some number N, the modes are assigned indices from 0 to N–1.

The get_modeinfo function has no effect on the current graphics mode set-
ting. The display is configured in a particular graphics mode by means of
a call to the set_config function.

The fields of the MODEINFO structure are defined as follows:

disp_pitch The display pitch is the difference in memory ad-
dresses of two vertically adjacent pixels on the
screen.

disp_vres The display vertical resolution is the number of scan
lines on the screen.

disp_hres The display horizontal resolution is the number of pix-
els per scan line on the screen.

screen_wide The width of the active screen in millimeters. In sys-
tems in which this dimension is unknown, set to 0.

screen_high The height of the active screen in millimeters. In sys-
tems in which this dimension is unknown, set to 0.

disp_psize Pixel size (in bits).
pixel_mask Contains a mask of the active bits within a pixel. Pixel

sizes are restricted to powers of 2 in the range 1 to
 32. Not all bits within each pixel are necessarily
used, however. For example, if the pixel size is 8 bits,
but only the video RAM sockets corresponding to the

Syntax

Description

Get Graphics Mode Information get_modeinfo

6-21

6 LSBs of each pixel are actually populated, the pix-
el_mask is set to 0x3F.

palet_gun_depth Number of bits per gun in the color palette.
palet_size Number of entries in the color palette.
palet_inset For most systems, this field is set to 0. For

TMS34070-based boards, which store the palette in
the frame buffer, this field contains the length in bits of
the palette data that precedes the pixel data for each
scan line.

num_pages Number of display pages in display memory. Some
systems provide multiple pages to support flickerless
animation.

num_offscrn_areas This is the number of off-screen memory blocks
available. This field specifies the number of
two-dimensional pixel arrays available in off-screen
portions of the display memory. (See description of
get_offscreen_memory function).

wksp_addr Starting linear address in memory of the off-screen
workspace area, which is 1 bit per pixel but has the
same horizontal and vertical dimensions as the
screen.

wksp_pitch Pitch of off-screen workspace area. If 0, then no
off-screen workspace is currently allocated.

Note that the structures described above may change in subsequent revi-
sions. To minimize the impact of such changes, write your application pro-
grams to refer to the elements of the structure symbolically by their field
names, rather than as offsets from the start of the structure. The include files
provided with the library will be updated in future revisions to track any such
changes in data structure definitions.

get_modeinfo Get Graphics Mode Information

6-22 Core Primitives

Use the get_modeinfo function to retrieve a list of the screen resolutions
corresponding to the graphics modes supported by the display hardware
configuration. Use the text_out function to print the list on the screen.

#include <gsptypes.h> /* MODEINFO, CONFIG and FONTINFO */

main()
{
 MODEINFO modinf;
 CONFIG cfg;
 FONTINFO fntinf;
 char c[80];
 short x, y, mode, i;

 set_config(0, !0);
 clear_screen(–1);
 get_config(&cfg);
 get_fontinfo(0, &fntinf);
 x = y = 10;
 for (mode = 0; get_modeinfo (mode, &modinf); mode++) {
 i = strlen(strcpy(c, ”mode ”));

i += ltoa(mode, &c[i]);
strcpy(&c[i], ”: ”);
i = strlen(c);
i += ltoa(modinf.disp_hres, &c[i]);
strcpy(&c[i], ”–by–”);
i = strlen(c);
ltoa(modinf.disp_vres, &c[i]);
text_out(x, y, c);
y += fntinf.charhigh;

 }
}

Example

Get Nearest Color get_nearest_color

6-23

unsigned long get_nearest_color(r, g, b, i)
unsigned char r, g, b; /* red, green and blue components */
unsigned char i; /* gray–scale intensity */

The get_nearest_color function searches the current palette and returns
the pixel value whose color is closest to that specified by the input argu-
ments.

If the current graphics mode supports a color display, arguments r, g, and
b represent the 8-bit red, green, and blue components of the target color.
Each component value corresponds to an intensity value in the range 0 to
255, where 255 is the brightest intensity and 0 is the darkest.

In the case of a gray-scale display, argument i represents a gray-scale in-
tensity in the range 0 to 255.

The pixel value returned by the function is right-justified and zero-extended.

In the case of a gray-scale palette, the return value is the palette index value
whose intensity is closest to that specified in argument i.

In the case of a color palette, the function performs a more complex calcula-
tion. The function calculates the magnitude of the differences between the
r, g, and b argument values and the red, green, and blue components, re-
spectively, of each individual color available in the palette. Each of the three
differences (red, green, and blue) is multiplied by an individual weighting
factor, and the sum of the weighted differences is treated as the effective
distance of the color palette entry from the color specified by arguments r,
g, and b. The palette entry corresponding to the smallest weighted sum is
selected as being nearest to the specified color. The function returns the
palette index value corresponding to the selected color.

Use the get_nearest_color function to determine the pixel values around
the perimeter of a color wheel. Use the fill_piearc function from the Ex-
tended Primitives Library to render the wheel. The wheel is partitioned into
the following six regions of color transition:

1) red to yellow
2) yellow to green
3) green to cyan
4) cyan to blue
5) blue to magenta
6) magenta to red

Each region spans a 60-degree arc of the wheel.

Syntax

Description

Example

get_nearest_color Get Nearest Color

6-24 Core Primitives

color_wheel(t, r, g, b, i)
short t;
unsigned char r, g, b, i;
{
 long val;

 val = get_nearest_color (r, g, b, i);
 set_fcolor(val);
 fill_piearc(140, 110, 10, 10, t, 1);
}

main()
{
 short t;
 unsigned char r, g, b;

 set_config(0, !0);
 clear_screen(–1);
 for (t = 0, r = 255, g = b = 15; t < 60; t++, g += 4)

color_wheel(t, r, g, b, g); /* red to yellow */
 for (; t < 120; t++, r –= 4)

color_wheel(t, r, g, b, r); /* yellow to green */
 for (; t < 180; t++, b += 4)

color_wheel(t, r, g, b, b); /* green to cyan */
 for (; t < 240; t++, g –= 4)

color_wheel(t, r, g, b, g); /* cyan to blue */
 for (; t < 300; t++, r += 4)

color_wheel(t, r, g, b, r); /* blue to magenta */
 for (; t < 360; t++, b –= 4)

color_wheel(t, r, g, b, b); /* magenta to red */
}

Get Off-Screen Memory get_offscreen_memory

6-25

typedef unsigned long PTR; /* 32–bit GSP memory address */

typedef struct {
 PTR addr;
 unsigned short xext, yext;
} OFFSCREEN_AREA;

void get_offscreen_memory(num_blocks, offscreen)
short num_blocks; /* number of off–screen buffers
*/
OFFSCREEN_AREA *offscreen;/* list of off–screen buffers */

The get_offscreen_memory function returns a list of off-screen buffers lo-
cated in the TMS340 graphics processor’s display memory.

Argument num_blocks specifies the number of off-screen buffer areas to be
listed. Argument offscreen is an array to contain the list of off-screen
buffers. Each element of the offscreen array is a structure of type
OFFSCREEN_AREA.

The fields of the OFFSCREEN_AREA structure are defined as follows:

addr base address of off-screen buffer
xext x extent (width in pixels) of off-screen buffer
yext y extent (height in pixels) of off-screen buffer

An off-screen buffer is a two-dimensional array of pixels, the rows of which
may not be contiguous in memory. The pixel size is the same as that of the
screen, and each off-screen buffer has the same pitch as the screen. The
pitch is the difference in memory addresses between two vertically adjacent
pixels in the buffer.

If an off-screen buffer is used as the off-screen workspace (see the descrip-
tion of the set_wksp and get_wksp functions), this buffer is always the first
buffer listed in the offscreen array.

Let N represent the number of off-screen buffers available in a particular
graphics mode. If argument num_blocks is greater than N, only the first N
elements of the offscreen array will be loaded with valid data. If argument
num_blocks is less than N, only the first num_blocks elements of the
offscreen array will be loaded with valid data. The number of off-screen
areas available in the current mode is specified in the num_offscrn_areas
field of the CONFIG structure returned by the get_config function.

After the display memory (usually video RAM) has been partitioned into one
or more video pages (or frame buffers), some number of rectangular, non-
contiguous blocks of display memory are typically left over. These blocks
may not be suitable for general use (for example, for storing a program) but
may be of use to some applications as temporary storage for graphical infor-
mation such as the areas behind pull-down menus on the screen.

Syntax

Description

get_offscreen_memory Get Off-Screen Memory

6-26 Core Primitives

Use the get_offscreen_memory function to list the first (up to) 5 off-screen
buffers available in the current graphics mode. Use the text_out function to
print the x and y extents of each buffer on the screen.

#include <gsptypes.h> /* OFFSCREEN_AREA, CONFIG, FONTINFO */
#define MAXBUFS 5 /* max. number of buffers needed */

main()
{
 OFFSCREEN_AREA offscrn[MAXBUFS];
 CONFIG cfg;
 FONTINFO fntinf;
 short x, y, i, k, nbufs;
 char c[80];

 set_config(0, !0);
 clear_screen(–1);
 get_config(&cfg);
 get_fontinfo(–1, &fntinf);
 if ((nbufs = cfg.mode.num_offscrn_areas) > MAXBUFS)

nbufs = MAXBUFS;
 get_offscreen_memory (nbufs, offscrn);
 if (!nbufs)

text_out(10, 10, ”No off–screen buffers available.”);
 else

for (i = 0, x = y = 10; i < nbufs; i++) {
 k = strlen(strcpy(c, ”Buffer ”));
 k += ltoa(i, &c[k]);
 k += strlen(strcpy(&c[k], ”: xext = ”));
 k += ltoa(offscrn[i].xext, &c[k]);
 k += strlen(strcpy(&c[k], ”, yext = ”));
 ltoa(offscrn[i].yext, &c[k]);
 text_out(x, y, c);
 y += fntinf.charhigh;
}

}

Example

Get Entire Palette get_palet

6-27

typedef struct { unsigned char r, g, b, i; } PALET;

void get_palet(palet_size, palet)
short palet_size; /* number of palette entries */
PALET *palet; /* list of palette entries */

The get_palet function copies multiple palette entries into an array.

Argument palet_size is the number of palette entries to load into the target
array.

Argument palet is an array of type PALET. Each array element is a structure
containing r, g, b, and i fields. Each field specifies an 8-bit red, green, blue,
or gray-scale intensity value in the range 0 to 255, where 255 is the brightest
intensity and 0 is the darkest. In the case of a graphics mode for a color dis-
play, the red, green, and blue component intensities are loaded into the r,
g, and b fields, respectively, while the i field is set to 0. In the case of a
gray-scale mode, the intensities are loaded into the i fields, and the r, g, and
b fields are set to 0.

If argument palet_size specifies some number N that is less than the num-
ber of entries in the palette, only the first N palet entries are loaded into the
array. If the number N of palette entries is less than the number specified
in palet_size, only the first N elements of the array are modified. The num-
ber of palette entries in the current graphics mode is specified in the pa-
let_size field of the CONFIG structure returned by the get_config function.

The 8-bit r, g, b, and i values retrieved for each palette entry represent the
color components or gray-scale intensity actually output by the physical dis-
play device. For example, assume that the r, g, b, and i values of a particular
palette entry are set by the set_palet or set_palet_entry functions to the fol-
lowing values: r = 0xFF, g = 0xFF, b = 0xFF, and i = 0. If the display hardware
supports only 4 bits of red, green, and blue intensity per gun, the values read
by a call to get_palet or get_palet_entry are: r = 0xF0, g = 0xF0, b = 0xF0,
and i = 0.

Syntax

Description

get_palet Get Entire Palette

6-28 Core Primitives

Use the get_palet function to get the r, g, b, and i components of the first 8
colors in the default palette. Use the text_out function to print the values on
the screen.

#include <gsptypes.h> /* PALET, CONFIG and FONTINFO */
#define MAXSIZE 8 /* max. number of LUT entries to print */

main()
{
 PALET lut[16];
 CONFIG cfg;
 FONTINFO fntinf;
 short k, n, size, x, y;
 char *s, c[80];

 set_config(0, !0);
 clear_screen(–1);
 get_config(&cfg);
 if ((size = cfg.mode.palet_size) > MAXSIZE)

size = MAXSIZE;
 get_palet (size, lut); /* get up to 8 palette entries */
 get_fontinfo(–1, &fntinf);
 x = y = 10;
 for (k = 0; k < size; k++, y += fntinf.charhigh) {

n = strlen(strcpy(c, ”color ”));
n += ltoa(k, &c[n]);
n += strlen(strcpy(&c[n], ”: r=”));
n += ltoa(lut[k].r, &c[n]);
n += strlen(strcpy(&c[n], ”, g=”));
n += ltoa(lut[k].g, &c[n]);
n += strlen(strcpy(&c[n], ”, b=”));
n += ltoa(lut[k].b, &c[n]);
n += strlen(strcpy(&c[n], ”, i=”));
n += ltoa(lut[k].i, &c[n]);
text_out(x, y, c);

 }
}

Example

Get Single Palette Entry get_palet_entry

6-29

short get_palet_entry(index, r, g, b, i)
long index; /* index to palette entry */
unsigned char *r, *g, *b; /*red, green and blue components*/
unsigned char *i; /* gray–scale intensity */

The get_palet_entry routine returns the red, green, blue, and gray-scale in-
tensity components of a specified entry in the palette.

The palette entry is specified by argument index, which is an index into the
color look-up table, or palette. If the palette contains N entries, valid indices
are in the range 0 to N–1. The number of palette entries in the current graph-
ics mode is specified in the palet_size field of the CONFIG structure re-
turned by the get_config function.

Arguments r, g, b, and i are pointers to the red, green, blue, and gray-scale
intensity values, respectively, that are retrieved by the function. Each inten-
sity is represented as an 8-bit value in the range 0 to 255, where 255 is the
brightest intensity and 0 is the darkest. In the case of a graphics mode for
a color display, the red, green, and blue component intensities are loaded
into the r, g, and b fields, respectively, while the i field is set to 0. In the case
of a gray-scale mode, the intensity is loaded into the i field, and the r, g, and
b fields are set to 0.

If argument index is in the valid range, the function returns a nonzero value,
indicating that the components of the palette entry have been successfully
retrieved. If argument index is invalid, the return value is 0, indicating that
no palette entry corresponds to the specified index.

Syntax

Description

get_palet_entry Get Single Palette Entry

6-30 Core Primitives

Use the get_palet_entry function to get the r, g, b, and i components of the
first 8 colors in the default palette. Use the text_out function to print the val-
ues on the screen.

#include <gsptypes.h> /* CONFIG and FONTINFO struct’s */
#define MAXSIZE 8 /* max. number of LUT entries to print */

main()
{
 CONFIG cfg;
 FONTINFO fntinf;
 long k, size;
 unsigned char r, g, b, i;
 short n, x, y;
 char *s, c[80];

 set_config(0, !0);
 clear_screen(–1);
 get_config(&cfg);
 if ((size = cfg.mode.palet_size) > MAXSIZE)

size = MAXSIZE;
 get_fontinfo(–1, &fntinf);
 x = y = 10;
 for (k = 0; k < size; k++, y += fntinf.charhigh) {

get_palet_entry (k, &r, &g, &b, &i);
n = strlen(strcpy(c, ”color ”));
n += ltoa(k, &c[n]);
n += strlen(strcpy(&c[n], ”: r=”));
n += ltoa(r, &c[n]);
n += strlen(strcpy(&c[n], ”, g=”));
n += ltoa(g, &c[n]);
n += strlen(strcpy(&c[n], ”, b=”));
n += ltoa(b, &c[n]);
n += strlen(strcpy(&c[n], ”, i=”));
n += ltoa(i, &c[n]);
text_out(x, y, c);

 }
}

Example

Get Plane Mask get_pmask

6-31

unsigned long get_pmask()

The get_pmask function returns the value of the plane mask. The size of the
plane mask in bits is the same as the pixel size.

Given a pixel size of N bits, the plane mask is right-justified in the N LSBs
of the return value and zero-extended. The screen pixel size in the current
graphics mode is specified in the disp_psize field of the CONFIG structure
returned by the get_config function.

The plane mask designates which bits within a pixel are protected against
writes and affects all operations on pixels. During writes, the 1s in the plane
mask designate bits in the destination pixel that are protected against modi-
fication, while the 0s in the plane mask designate bits that can be altered.
During reads, the 1s in the plane mask designate bits in the source pixel that
are read as 0s, while the 0s in the plane mask designate bits that can be
read from the source pixel as is.

The plane mask is set to its default value of 0 during initialization of the draw-
ing environment by the set_config function. The plane mask can be altered
with a call to the set_pmask function.

The plane mask corresponds to the contents of the TMS340 graphics pro-
cessor’s PMASK register. The effect of the plane mask in conjunction with
the pixel-processing operation and the transparency mode is described in
the user’s guides for the TMS34010 and TMS34020.

Use the get_pmask function to verify that the plane mask is initialized to 0
by a call to the set_config function. Use the text_out function to print the
default plane mask value to the screen.

main()
{
 unsigned long pmask;
 short digit;
 char *s1, *s2;

 set_config(0, !0);
 clear_screen(–1);
 s2 = &s1[strlen(s1 = ”plane mask = 0x00000000”)];
 for (pmask = get_pmask (); pmask; pmask /= 16) {

digit = pmask & 15;
* – –s2 = (digit < 10) ? (digit + ’0’) : (digit + ’A’ – 10);

 }
 text_out(10, 10, s1);
}

Syntax

Description

Example

get_ppop Get Pixel-Processing Operation Code

6-32 Core Primitives

unsigned short get_ppop()

The get_ppop function returns the pixel-processing operation code. The
5-bit PPOP code determines the manner in which pixels are combined
(Boolean or arithmetic operation) during drawing operations.

The PPOP code is right-justified in the 5 LSBs of the return value and zero-
extended.

Legal PPOP codes are in the range 0 to 21. The source and destination pix-
el values are combined according to the selected Boolean or arithmetic op-
eration, and the result is written back to the destination pixel. As shown in
Table 6–1, Boolean operations are in the range 0 to 15, and arithmetic oper-
ations are in the range 16 to 21.

Table 6–1. Pixel-Processing Operations

PPOP Code Description

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

replace destination with source
source AND destination
source AND NOT destination
set destination to all 0s
source OR NOT destination
source EQU destination
NOT destination
source NOR destination
source OR destination
destination (no change)
source XOR destination
NOT source AND destination
set destination to all 1s
NOT source or destination
source NAND destination
NOT source
source plus destination (with overflow)
source plus destination (with saturation)
destination minus source (with overflow)
destination minus source (with saturation)
MAX(source, destination)
MIN(source, destination)

The PPOP code is set to its default value of 0 (replace operation) during ini-
tialization of the drawing environment by the set_config function. The PPOP
code can be altered with a call to the set_ppop function.

The pixel-processing operation code corresponds to the 5-bit PPOP field
in the TMS340 graphics processor’s CONTROL register. The effects of the
22 different codes are described in more detail in the user’s guides for the
TMS34010 and TMS34020.

Syntax

Description

Get Pixel-Processing Operation Code get_ppop

6-33

Use the get_ppop function to verify that the pixel-processing operation code
is initialized to 0 (replace destination with source) by a call to the set_config
function. Use the text_out function to print the default PPOP code to the
screen.

main()
{
 unsigned long ppop;
 char *s, c[80];

 set_config(0, !0);
 clear_screen(–1);
 ppop = get_ppop ();
 strcpy(c, ”PPOP code = ”);
 ltoa(ppop, &c[12]);
 text_out(10, 10, c);
}

Example

get_text_xy Get Text x–y Position

6-34 Core Primitives

void get_text_xy(x, y)
short *x, *y; /* text x–y coordinates */

The get_text_xy function retrieves the x–y coordinates at the current text
drawing position. This is the position at which the next character (or string
of characters) will be drawn if a subsequent call is made to the text_outp
function. Both the text_outp and text_out functions automatically update
the text position to be the right edge of the last string output to the screen.

Arguments x and y are pointers to variables of type short. The x and y coor-
dinate values copied by the function into these variables correspond to the
current text position on the screen, specified relative to the current drawing
origin. The x coordinate corresponds to the left edge of the next string output
by the text_outp function. The y coordinate corresponds either to the top of
the string, or to the base line, depending on the state of the text alignment
attribute (see the description of the set_textattr function).

Use the get_text_xy function to print four short lines of text in a stairstep
pattern on the screen. Each time the text_outp function outputs the string
“step” to the screen, the get_text_xy function is called next to obtain the cur-
rent text position. The y coordinate of this position is incremented by a call
to the set_text_xy function, and the next call to the text_outp function prints
the string at the new position.

#include <gsptypes.h>

main()
{
 short x, y, i;
 FONTINFO fntinf;

 set_config(0, 1);
 clear_screen(–1);
 get_fontinfo(–1, &fntinf);
 x = y = 0;
 for (i = 4; i; i––) {

set_text_xy(x, y);
text_outp(”step”);
get_text_xy (&x, &y);
y += fntinf.charhigh;

 }
}

Syntax

Description

Example

Get Transparency Flag get_transp

6-35

short get_transp()

The get_transp function returns a value indicating whether transparency is
enabled. A nonzero value is returned if transparency is enabled; 0 is re-
turned if transparency is disabled.

Transparency is an attribute that affects drawing operations. If transparen-
cy is enabled and the result of a pixel-processing operation is 0, the destina-
tion pixel is not altered. If transparency is disabled, the destination pixel is
replaced by the result of the pixel-processing operation, regardless of the
value of that result. To avoid modifying destination pixels in the rectangular
region surrounding each character shape, transparency can be enabled
before the text_out or text_outp function is called.

The transparency attribute value returned by the function corresponds to
the T bit in the TMS340 graphics processor’s CONTROL register. The effect
of transparency in conjunction with the pixel-processing operation and the
plane mask is described in the user’s guides for the TMS34010 and
TMS34020.

Use the get_transp function to verify that transparency is disabled by a call
to the set_config function. Use the text_out function to print the value re-
turned by the get_transp function to the screen.

main()
{
 unsigned long transp;
 char *s, c[80];

 set_config(0, !0);
 clear_screen(–1);
 transp = get_transp ();
 strcpy(c, ”transparency = ”);
 ltoa(transp, &c[15]);
 text_out(10, 10, c);
}

Syntax

Description

Example

get_vector Get Trap Vector

6-36 Core Primitives

typedef unsigned long PTR; /* 32–bit GSP memory address */

PTR get_vector(trapnum)
short trapnum; /* trap number */

The get_vector function returns one of the TMS340 graphics processor’s
trap vectors. This function provides a portable means of obtaining the entry
point to a trap service routine, regardless of whether the actual trap vector
is located in RAM or ROM.

Argument trapnum specifies a trap number in the range –32768 to 32767
for a TMS34020, and 0 to 31 for a TMS34010.

The value returned by the function is the 32-bit address contained in the
designated trap vector.

Use the get_vector function to retrieve whatever address happens to be in
trap vector 0. Use the text_out function to print the value returned by the
get_vector function to the screen as an 8-digit hexadecimal number.

main()
{
 unsigned long vector;
 short digit;
 char *s1, *s2;

 set_config(0, !0);
 clear_screen(–1);
 s2 = &s1[strlen(s1 = ”trap 0 vector = 0x00000000”)];
 for (vector = get_vector (0); vector; vector /= 16) {

digit = vector & 15;
* – –s2 = (digit < 10) ? (digit + ’0’) : (digit + ’A’ – 10);

 }
 text_out(10, 10, s1);
}

Syntax

Description

Example

Get Window-Clipping Mode get_windowing

6-37

short get_windowing()

The get_windowing function returns a 2-bit code designating the current
window-checking mode. This function is provided for the sake of backward
compatibility with early versions of TIGA.

The four windowing modes are:

002 Window clipping disabled
012 Interrupt request on write to pixel inside window
102 Interrupt request on write to pixel outside window
112 Clip to window

The library’s drawing functions assume that the TMS340 graphics proces-
sor is configured in windowing mode 3. Changing the windowing mode from
this default may result in undefined behavior.

The 2-bit code for the window-clipping mode corresponds to the W field in
the TMS340 graphics processor’s CONTROL register. The effects of the W
field on window-clipping operations are described in the user’s guides for
the TMS34010 and TMS34020.

Immediately following initialization of the drawing environment by the
set_config function, the system is configured in windowing mode 3, which
is the default.

Syntax

Description

get_wksp Get Workspace Information

6-38 Core Primitives

typedef unsigned long PTR;/* 32–bit GSP memory address */

short get_wksp(addr, pitch)
PTR *addr; /* pointer to workspace address
*/
PTR *pitch; /* pointer to workspace pitch
*/

The get_wksp function retrieves the parameters that define the current
off-screen workspace. None of the current TIGA core or extended primitives
use this workspace; it is provided to support future graphics extensions that
require storage for edge flags or region-of-interest masks. Not all display
configurations may have sufficient memory to support an off-screen work-
space.

Argument addr is the base address of the off-screen workspace. Argument
pitch is the difference in memory addresses of two adjacent rows in the
off-screen workspace.

A nonzero value is returned by the function if a valid off-screen workspace
is currently allocated. A value of 0 is returned if no off-screen workspace is
allocated; in this case, the workspace address and pitch are not retrieved
by the function.

The off-screen workspace is a 1-bit-per-pixel bit map of the same width and
height as the screen. If the display hardware provides sufficient off-screen
memory, the workspace can be allocated statically at link time. By conven-
tion, the workspace pitch retrieved by the get_wksp function is nonzero
when a workspace is allocated; the pitch can be checked following initializa-
tion to determine whether a workspace is statically allocated. The work-
space can be allocated dynamically by calling the set_wksp function with
the address of a valid workspace in memory and a nonzero pitch; it can be
deallocated by calling set_wksp with a pitch of 0.

Syntax

Description

Transfer from GSP to GSP gsp2gsp

6-39

void gsp2gsp(src, dst, length)
char *src, *dst; /* source and destination arrays */
unsigned long length; /* number of bytes to copy */

The gsp2gsp function copies the specified number of bytes from one region
of the TMS340 graphics processor’s memory to another.

Argument src is a pointer to the source array, and argument dst is a pointer
to the destination array. Argument length is the number of contiguous 8-bit
bytes to be transferred from the source to the destination.

If the source and destination arrays overlap, the function is intelligent
enough to adjust the order in which the bytes are transferred so that no
source byte is overwritten before it has been copied to the destination.

Unlike the standard character string function strncpy, the gsp2gsp function
does not restrict the alignment of the source and destination addresses to
even byte boundaries in memory. Arguments src and dst may point to any
bit boundaries in memory.

Use the gsp2gsp function to copy three characters from a source string to
a destination string. The source and destination strings overlap. Use the
text_out function to print the resulting string, “ABCBC”, to the screen.

main()
{
 static char c[80] = ”AAABC”;

 set_config(0, !0);
 clear_screen(–1);
 gsp2gsp (&c[2], c, 3);
 text_out(10, 10, c);
}

Syntax

Description

Example

init_palet Initialize Palette

6-40 Core Primitives

void init_palet()

The init_palet function initializes the first 16 entries of the palette to the EGA
default colors:

Index Color

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

black
blue
green
cyan
red
magenta
brown
light gray
dark gray
light blue
light green
light cyan
light red
light magenta
yellow
white

If the palette contains more than 16 entries, the function replicates the 16
colors through the remainder of the palette. At 2 bits/pixel, palette indices
0–3 are assigned the default colors black, green, red, and white. At 1 bit/pix-
el, palette indices 0 and 1 are assigned the default colors black and white.
If the palette is fixed, the function has no effect.

The palette is also initialized to the default colors above during initialization
of the drawing environment by the set_config function.

Use the init_palet function to restore the default colors.

main()
{
 short i;

 set_config(0, !0);
 clear_screen(–1);
 for (i = 0; i < 16; i++) /* overwrite default colors */

set_palet_entry(i, i, i, i, i);
 init_palet (); /* restore default colors */
}

Syntax

Description

Example

Initialize Text init_text

6-41

void init_text()

The init_text function removes all installed fonts from the font table and se-
lects the system font (font 0) for use in subsequent text operations. It also
resets all text drawing attributes to their default states.

The set_config function also initializes the font table and text attributes as
part of its initialization of the drawing environment.

Use the init_text function to discard all installed fonts from the font table and
select the default font. The install_font and select_font functions from the
Extended Primitives Library are used to install and select a proportionally
spaced font. The TI Roman font size 16 must be linked with the program.

#include <gsptypes.h> /* defines FONT and FONTINFO structures */

extern FONT ti_rom16; /* font name */

main()
{
 FONTINFO fontinfo;
 short x, y, index;

 set_config(0, !0);
 clear_screen(–1);
 x = y = 10;
 index = install_font(&ti_rom16);
 select_font(index);
 get_fontinfo(–1, &fontinfo);
 text_out(x, y, ”Hello world.”); /* print in TI Roman 16 */
 y += fontinfo.charhigh;
 init_text ();
 text_out(x, y, ”Hello world.”); /* print in system font */
}

Syntax

Description

Example

lmo Find Leftmost One

6-42 Core Primitives

short lmo(n)
unsigned long n; /* 32–bit integer */

The lmo function calculates the bit number of the leftmost 1 in argument n.
The argument is treated as a 32-bit number whose bits are numbered from
0 to 31, where bit 0 is the LSB (the rightmost bit position) and bit 31 is the
MSB (the leftmost bit position).

For nonzero arguments, the return value is in the range 0 to 31. If the argu-
ment is 0, a value of –1 is returned.

Use the lmo function to return the bit number of the leftmost 1 in the integer
value 1234.

#include <gsptypes.h> /* defines FONTINFO structure */

static FONTINFO fontinfo;

main()
{
 long x, n;
 short m;
 char c[80];

 set_config(0, !0);
 clear_screen(–1);
 get_fontinfo(–1, &fontinfo);
 x = 1234;
 n = lmo (x);
 strcpy(c, ”The leftmost 1 in ”);
 m = strlen(c);
 ltoa(x, &c[m]);
 text_out(10, 10, c);
 strcpy(c, ”is bit number ”);
 m = strlen(c);
 ltoa(n, &c[m]);
 text_out(10, 10+fontinfo.charhigh, c);
}

Syntax

Description

Example

Page Busy Status page_busy

6-43

short page_busy()

The page_busy function returns a nonzero value as long as a previously re-
quested video page flip has not yet occurred. This function is used in con-
junction with the page_flip function to achieve flickerless, double-buffered
animation.

Before the page_busy function is called, the page_flip function is called to
request the page flip, which is scheduled to occur when the bottom line of
the screen has been scanned on the monitor. The page_flip function returns
immediately without waiting for the requested page flip to be completed,
and the page_busy function is used thereafter to monitor the status of the
request. Between the call to the page_flip function and the time the page
flip actually occurs, the page_busy function returns a nonzero value. After
the page flip has occurred, the page_busy returns a value of 0 (until the next
time page_flip is called).

Double buffering is a technique used to achieve flickerless animation in
graphics modes supporting more than one video page. The TMS340 graph-
ics processor alternately draws to one page (or frame buffer) while the other
page is displayed on the screen of the monitor. When the processor has
finished drawing, the new page is ready to be displayed on the screen in
place of the old. The actual flipping (or switching) of display pages is
delayed until the vertical blanking interval, however, to avoid causing the
image on the screen to flicker.

The rationale for providing separate page_flip and page_busy functions is
to make the time between between a page-flip request and the actual com-
pletion of the page flip available to the application program for performing
background calculations. For example, the main loop of a 3D animation pro-
gram can be structured as follows:

 for (disp = 1, draw = 0; ; disp ^= 1, draw ^= 1) {
page_flip(disp, draw);
< Perform 3D background calculations . >
while (page_busy())
 ;
< Draw updated 3D scene . >

 }

If the page_flip function is used alone without the page_busy function, the
programmer risks drawing to a page that is still being displayed on the
screen.

Syntax

Description

page_busy Page Busy Status

6-44 Core Primitives

Use the page_busy function to smoothly animate an object rotating in a
circle. The best effect is achieved in a graphics mode that provides double
buffering (more than one video page). If the mode supports only a single
page, the program will still run correctly, but the display may flicker.

#define RADIUS 60 /* radius of circle of rotation */
#define N 4 /* angular increment = 1>>N radians */

main()
{
 short disp, draw;
 long x, y;

 set_config(0, !0);
 x = RADIUS << 16;
 y = 0;
 for (disp = 0, draw = 1; ; disp ^= 1, draw ^= 1) {

page_flip(disp, draw);
x –= y >> N;
y += x >> N;
while (page_busy ())
 ;
clear_page(–1);
text_out((x>>16)+RADIUS, (y>>16)+RADIUS, ”*”);

 }
}

Example

Flip Display and Drawing Pages page_flip

6-45

void page_flip(disp, draw)
short disp, draw; /* display and drawing pages */

The page_flip function is used to switch between alternate video pages.
This function is used in conjunction with the page_busy function to achieve
flickerless, double-buffered animation.

Argument disp is a nonnegative value indicating the number of the video
page to be displayed—that is, output to the monitor screen. Argument draw
is a nonnegative value indicating the number of the video page to be drawn
to; this page is the target of all graphics output directed to the screen. All
graphics modes support at least one video page, page number 0. In graph-
ics modes supporting more than one page, the pages are numbered 0, 1,
and so on.

Valid values for arguments disp and draw are restricted to video page num-
bers supported by the current graphics mode. If either argument is invalid,
the function behaves as if both arguments are 0; that is, page 0 is selected
as both the display page and drawing page. This behavior permits pro-
grams written for double-buffered modes to be run in single-buffered
modes. Although the single-buffered display may flicker, the program will
execute at nearly the same frame rate as in the double-buffered mode.

The number of pages in a particular graphics mode is specified in the
num_pages field of the CONFIG structure returned by the get_config func-
tion. If the num_pages field contains some value N, the N pages are num-
bered 0 through N–1.

The page_flip function requests that a page flip be performed but returns
immediately without waiting for the requested page flip to be completed.
Upon return from the function, all subsequent screen drawing operations
are directed toward the page specified by argument draw. The monitor dis-
play, however, is not updated to the page specified by argument disp until
the start of the next vertical blanking interval (which occurs when the moni-
tor finishes scanning the last line on the screen). Between the call to the
page_flip function and the time the page flip actually occurs, the page_busy
function returns a nonzero value. This is true regardless of whether the disp
and draw arguments are the same or whether the new display page is the
same as the old display page. After the page flip has occurred, the
page_busy returns a value of 0 (until the next time page_flip is called).

Double buffering is a technique used to achieve flickerless animation in
graphics modes supporting more than one video page. The TMS340 graph-
ics processor alternately draws to one page (or frame buffer) while the other
page is displayed on the screen of the monitor. When the processor has
finished drawing, the new page is ready to be displayed on the screen in
place of the old. The actual flipping (or switching) of display pages is

Syntax

Description

page_flip Flip Display and Drawing Pages

6-46 Core Primitives

delayed until the vertical blanking interval, however, to avoid causing the
image on the screen to flicker.

Use the page_flip function to smoothly animate two moving rectangles. Use
the fill_rect function from the Extended Primitives Library to draw the rect-
angles. The selected graphics mode is assumed to be double-buffered—
that is, to support more than one video page. If the mode supports only a
single page, the program will still run correctly, but the display may flicker.

#define RADIUS 60 /* radius of circle of rotation */
#define XOR 10 /* pixel processing operation code */
#define N 5 /* angular increment = 1>>N radians */

main()
{
 short disp, draw;
 long x, y;

 set_config(1, !0);
 set_ppop(XOR);
 x = RADIUS << 16;
 y = 0;
 for (disp = 0, draw = 1; ; disp ^= 1, draw ^= 1) {

page_flip (disp, draw);
x – = y >> N;
y += x >> N;
while (page_busy())
 ;
clear_screen(–1);
fill_rect(2*RADIUS, RADIUS/4, 10, RADIUS+(y>>16));
fill_rect(RADIUS/4, 2*RADIUS, RADIUS+(x>>16), 10);

 }
}

Example

Peek at B-File Register peek_breg

6-47

unsigned long peek_breg(breg)
short breg; /* B–file register number */

The peek_breg function returns the contents of a B-file register. Argument
breg is a number in the range 0 to 15 that designates a register in the
TMS340 graphics processor’s B file. Argument values 0 through 14 corre-
spond to registers B0 through B14. An argument value of 15 designates the
SP (system stack pointer). The function ignores all but the 4 LSBs of argu-
ment breg. The return value is 32 bits.

Use the peek_breg function to read the contents of register B9, also referred
to as the COLOR1 register. Register B9 contains the foreground color in pix-
el-replicated form. For example, at 4 bits per pixel, a foreground pixel value
of 7 is replicated 8 times to form the 32-bit value 0x77777777.

main()
{
 unsigned long n;
 short digit;
 char *s1, *s2;

 set_config(0, !0);
 clear_screen(–1);
 s2 = &s1[strlen(s1 = ”COLOR1 = 0x00000000”)];
 for (n = peek_breg (9); n; n /= 16) {

digit = n & 15;
* – –s2 = (digit < 10) ? (digit + ’0’) : (digit + ’A’ – 10);

 }
 text_out(10, 10, s1);
}

Syntax

Description

Example

poke_breg Poke Value into B-File Register

6-48 Core Primitives

void poke_breg(breg, val)
short breg; /* B–file register number */
unsigned long val; /* 32–bit register contents */

The poke_breg function loads a 32-bit value into a B-file register. Argument
breg is a number in the range 0 to 15 that designates a register in the
TMS340 graphics processor’s B file. Argument values 0 through 14 corre-
spond to registers B0 through B14. An argument value of 15 designates the
SP (system stack pointer). The function ignores all but the 4 LSBs of argu-
ment breg. Argument val is a 32-bit value that is loaded into the designated
register.

Use the poke_breg function to load the value 0 into the TMS340 graphics
processor’s register B6, also referred to as the WEND register. Use the
fill_rect function from the Extended Primitives Library to draw a filled rectan-
gle that is specified to be larger than the clipping window. Register B6 con-
tains the upper x and y limits for the clipping window. Following the
poke_breg call, the clipping window contains only the single pixel at (0, 0).
Obviously, the set_clip_rect function provides a safer and more portable
means to adjust the clipping window than the one used in this example.

main()
{
 set_config(0, !0);
 clear_screen(–1);
 poke_breg (6, 0);
 fill_rect(100, 100, 0, 0);
}

Syntax

Description

Example

Find Rightmost One rmo

6-49

short rmo(n)
unsigned long n; /* 32–bit integer */

The rmo function calculates the bit number of the rightmost 1 in argument
n. The argument is treated as a 32-bit number whose bits are numbered
from 0 to 31, where bit 0 is the LSB (the rightmost bit position) and bit 31
is the MSB (the leftmost bit position).

For nonzero arguments, the return value is in the range 0 to 31. If the argu-
ment is 0, a value of –1 is returned.

Use the rmo function to calculate the bit number of the rightmost 1 for each
integer in the range 1 to 127. Represent the result graphically as a series
of 127 adjacent vertical lines. Use the fill_rect function from the Extended
Primitives Library to draw the vertical lines.

main()
{
 unsigned long i;
 short n;

 set_config(0, !0);
 clear_screen(–1);
 for (i = 1; i < 128; i++) {

n = rmo(i);
fill_rect(1, 8*n, 10+i, 10);

 }
}

Syntax

Description

Example

set_bcolor Set Background Color

6-50 Core Primitives

void set_bcolor(color)
unsigned long color; /* background pixel value */

The set_bcolor function sets the background color for subsequent drawing
operations.

Argument color specifies the pixel value to be used to draw background pix-
els. Given a pixel size of N bits, the pixel value is contained in the N LSBs
of the argument; the higher-order bits are ignored.

The function creates a 32-bit replicated pixel value and loads the result into
the TMS340 graphics processor’s register B8, also referred to as the
COLOR0 register. For example, given a pixel size of 4 bits and a pixel value
of 6, the replicated pixel value is 0x66666666.

Use the set_bcolor function to swap the foreground and background colors.

main()
{
 unsigned long fcolor, bcolor;

 set_config(0, !0);
 clear_screen(–1);
 get_colors(&fcolor, &bcolor);
 set_fcolor(bcolor);
 set_bcolor (fcolor);
 text_out(10, 10, ”Swap COLOR0 and COLOR1.”);
}

Syntax

Description

Example

Set Clipping Rectangle set_clip_rect

6-51

void set_clip_rect(w, h, xleft, ytop)
unsigned short w, h; /* width, height of clip window */
short xleft, ytop; /* coordinates at top left corner */

The set_clip_rect function specifies the position and size of the rectangular
clipping window for subsequent drawing operations.

Arguments w and h specify the width and height of the clipping window in
pixels. Arguments xleft and ytop specify the x and y coordinates at the
top-left corner of the window, relative to the drawing origin in effect at the
time set_clip_rect is called.

If the specified clipping window extends beyond the screen boundaries, the
effective window is limited by the function to that portion of the specified win-
dow that actually lies on the screen.

A call to the set_draw_origin function (in the Extended Primitives Library)
has no effect on the position of the clipping window until the set_clip_rect
function is called. During initialization of the drawing environment by the
set_config function, the clipping window is set to its default limits, which are
the entire screen.

The function updates the contents of the TMS340 graphics processor’s reg-
isters B5 and B6, which are also referred to as the WSTART (window start)
and WEND (window end) registers. These registers are described in the
user’s guides for the TMS34010 and TMS34020.

Use the set_clip_rect function to specify a clipping window of width 192 pix-
els and height 128 pixels. Use the draw_line function to draw a series of
concentric rays that emanate from a point within the window, but which ex-
tend beyond the window. The rays are automatically clipped to the limits of
the window. Note that the call to set_clip_rect follows the call to the
set_draw_origin function, and that the x–y coordinates (–80, –80) passed
as arguments to set_clip_rect are specified relative to the drawing origin at
(88, 88).

Syntax

Description

Example

set_clip_rect Set Clipping Rectangle

6-52 Core Primitives

main()
{
 int i;
 long x, y;

 set_config(0, !0);
 clear_screen(–1);
 set_draw_origin(88, 88);
 set_clip_rect (192, 128, –80, –80);
 x = 160 << 16;
 y = 0;
 for (i = 0; i <= 100; i + +) {

draw_line(0, 0, x>>16, y>>16);
x –= y >> 4;
y += x >> 4;

 }
}

Set Foreground and Background Colors set_colors

6-53

void set_colors(fcolor, bcolor)
unsigned long fcolor; /* foreground pixel value */
unsigned long bcolor; /* background pixel value */

The set_colors function specifies the foreground and background colors to
be used in subsequent drawing operations.

Arguments fcolor and bcolor contain the pixel values used to draw the fore-
ground and background colors, respectively. Given a pixel size of N bits, the
pixel value is contained in the N LSBs of each argument; the higher-order
bits are ignored.

The function creates 32-bit replicated pixel values and loads the results into
the TMS340 graphics processor’s registers B8 and B9, also referred to as
the COLOR0 and COLOR1 registers. For example, given a pixel size of 4
bits and a pixel value of 3, the replicated pixel value is 0x33333333.

Use the set_colors function to swap the default foreground and background
colors. Use the text_out function to print a string of text with the colors
swapped.

main()
{
 long white, black;

 set_config(0, !0);
 clear_screen(–1);
 get_colors(&white, &black);
 set_colors (black, white);
 text_out(8, 8, ”Black text on white background.”);
}

Syntax

Description

Example

set_config Set Hardware Configuration

6-54 Core Primitives

short set_config(graphics_mode, init_draw)
short graphics_mode; /* graphics mode */
short init_draw; /* initialize drawing environment */

The set_config function configures the display system in the specified
graphics mode. Both the display hardware and graphics software environ-
ment are initialized. With few exceptions, set_config should be called before
any of the other functions in the graphics library are called.

Argument graphics_mode specifies the graphics mode. All display systems
provide at least one graphics mode, mode 0. In display systems supporting
multiple modes, the modes are numbered 0, 1, and so on.

Argument init_draw specifies whether the function initializes the drawing
environment to its default state. If init_draw is nonzero, the environment is
initialized; otherwise, the drawing environment remains unaltered.

The value returned by the function is nonzero if argument graphics_mode
corresponds to a valid graphics mode—that is, a mode supported by the
display system. If the specified mode number is invalid, the function per-
forms no operation and returns a value of 0.

The number of modes available for a particular hardware configuration is
specified in the num_modes field of the CONFIG structure returned by the
get_config function. The modes are numbered 0 through num_modes – 1.

Following a call to set_config, the display system remains in the specified
graphics mode until a subsequent call to set_config is made. Associated
with each mode is a particular display resolution, pixel size, and so on.

The set_config function configures the following system parameters:

horizontal and vertical video timing
video-RAM screen-refresh cycles
screen pixel size in bits
screen dimensions (width and height in pixels)
location in memory of one or more video pages (or frame buffers)
default clipping window (entire screen)
default color palette (See description of init_palet function.)
default display and drawing pages (page 0 for both)
default off-screen workspace (which may be null)

If a nonzero value is specified for argument init_draw, the parameters of the
drawing environment are initialized as follows:

Pixel transparency is disabled.
The pixel-processing operation code is set to its default value of 0 (the
code for the replace operation).
The plane mask is set to its default value of 0, which enables all bit
planes.

Syntax

Description

Set Hardware Configuration set_config

6-55

The foreground color is set to light gray and the background color to
black.
The screen is designated as both the source bit map and destination
bit map.
The drawing origin is set to screen coordinates (0, 0), which correspond
to the pixel at the top left corner of the screen.
The pen width and height are both set to 1.
The current area-fill pattern is set to its default state, which is to fill with
solid foreground color.
The current line-style pattern is set to its default value, which is all 1s.
All installed fonts are removed, and font 0, the permanently installed
system font, is selected.
The text x-y position coordinates are set to (0,0).
The text attributes are set to their initial states:

alignment = 0 (top left)
additional intercharacter spacing = 0
intercharacter gaps = 0 (leave gaps)

Use the set_config function to sequence the display through all available
graphics modes. Use the draw_rect function to draw a box around the vis-
ible screen area, and use the text_out function to print the mode number
and screen width and height to the screen. Use the wait_scan function to
insert a delay of 120 frames between mode switches.

#include <gsptypes.h> /* MODEINFO, CONFIG and FONTINFO */
#define NFRAMES 120 /* delay in frames between modes */

main()
{
 CONFIG cfg;
 char c[80];
 short mode, i, w, h;

 for (;;)
for (mode = 0; set_config (mode, !0); mode++) {
 clear_screen(–1);
 get_config(&cfg);
 w = cfg.mode.disp_hres;
 h = cfg.mode.disp_vres;
 draw_rect(w–1, h–1, 0, 0);
 i = strlen(strcpy(c, ”graphics mode ”));
 i += ltoa(mode, &c[i]);
 strcpy(&c[i], ”...”);
 i = strlen(c);
 i += ltoa(w, &c[i]);
 strcpy(&c[i], ”–by–”);
 i = strlen(c);
 ltoa(h, &c[i]);
 text_out(10, 10, c);
 for (i = NFRAMES; i; i – –) /* delay loop */

wait_scan(h);
}

}

Example

set_fcolor Set Foreground Color

6-56 Core Primitives

void set_fcolor(color)
unsigned long color; /* foreground pixel value */

The set_fcolor function sets the foreground color for subsequent drawing
operations.

Argument color specifies the pixel value to be used to draw foreground pix-
els. Given a pixel size of N bits, the pixel value is contained in the N LSBs
of the argument; the higher-order bits are ignored.

The function creates a 32-bit replicated pixel value and loads the result into
the TMS340 graphics processor’s register B9, also referred to as the COL-
OR1 register. For example, given a pixel size of 8 bits and a pixel value of
5, the replicated pixel value is 0x05050505.

Use the set_fcolor function to swap the foreground and background colors.

main()
{
 unsigned long fcolor, bcolor;

 set_config(0, !0);
 clear_screen(–1);
 get_colors(&fcolor, &bcolor);
 set_fcolor (bcolor);
 set_bcolor(fcolor);
 text_out(10, 10, ”Swap COLOR0 and COLOR1.”);
}

Syntax

Description

Example

Set Multiple Palette Entries set_palet

6-57

typedef struct { unsigned char r, g, b, i; } PALET;

void set_palet(count, index, palet)
long count; /* number of palette entries */
long index; /* index to starting entry */
PALET *palet; /* list of palette data */

The set_palet function loads multiple palette entries from a specified list of
colors.

Argument count specifies the number of contiguous palette entries to be
loaded. Argument index designates the palette entry at which loading is to
begin. Argument palet is an array containing the colors to be loaded into the
palette. The palet array must contain at least count elements. The palette
entry identified by index is loaded from palet [0], and so on.

Argument palet is an array of type PALET. Each array element is a structure
containining r, g, b, and i fields. Each field specifies an 8-bit red, green, blue,
or gray-scale intensity value in the range 0 to 255, where 255 is the brightest
intensity and 0 is the darkest. In the case of a graphics mode for a color dis-
play, the r, g, and b fields from each array element are loaded into the red,
green, and blue component intensities for the corresponding palette entry;
the i field from the element is ignored, and the gray-scale intensity compo-
nent for the palette entry is set to 0. In the case of a gray-scale mode, the
i field from each array element is loaded into the gray-scale intensity value
for the corresponding palette entry; the r, g, and b fields from the element
are ignored, and the red, green, and blue intensities for the palette entry are
set to 0.

The range of palette entries to be loaded is checked by the function to en-
sure that it does not overflow the palette. If the starting index plus the num-
ber of entries (count) is greater than the palette size, the function decreases
the count value by the appropriate amount.

The entire palette may be loaded at once by specifying a count equal to the
number of palette entries, and an index of 0. The number of palette entries
in the current graphics mode is specified in the palet_size field of the CON-
FIG structure returned by the get_config function.

The 8-bit r, g, b, and i values contained in the palet array are modified by
the function to represent the color components or gray-scale intensity ac-
tually output by the physical display device. For example, assume that the
r, g, b, and i values of a particular array element are specified as follows:
r = 0xFF, g = 0xFF, b = 0xFF, and i = 0. If the display hardware supports only
4 bits of red, green, and blue intensity per gun, the values actually loaded
into the palette by the set_palet function are: r = 0xF0, g = 0xF0, b = 0xF0,
and i = 0.

Syntax

Description

set_palet Set Multiple Palette Entries

6-58 Core Primitives

In systems that store the palette data in display memory (such as those us-
ing the TMS34070 color palette), this function updates every palette area
in the frame buffer. If the system contains multiple display pages, the func-
tion updates the palette area for every page.

Use the set_palet function to load a gray-scale palette into the first 16 color
palette entries. Use the fill_rect function from the Extended Primitives Li-
brary to fill a series of rectangles in intensities increasing from left to right.
Note that this example requires a color palette with a capacity of at least 16
entries.

#include <gsptypes.h> /* defines PALET struct */

main()
{
 int n;
 PALET p[16];

 set_config(0, !0);
 clear_screen(–1);
 for (n = 0; n < 15; n ++)

p[n].r = p[n].g = p[n].b = p[n].i = 16*n;
 set_palet (16, 0, p);
 for (n = 0; n < 15; n ++) {

set_fcolor(n);
fill_rect(12, 80, 8+12*n, 8);

 }
}

Example

Set Single Palette Entry set_palet_entry

6-59

short set_palet_entry(index, r, g, b, i)
long index; /* index to palette entry */
unsigned char r, g, b; /* red, green and blue components */
unsigned char i; /* gray–scale intensity */

The set_palet_entry function updates a single entry in the color palette.

Argument index identifies the palette entry to be updated. Arguments r, g,
b, and i specify 8-bit red, green, blue, and gray-scale intensity values in the
range 0 to 255, where 255 is the brightest intensity and 0 is the darkest. If
the current graphics mode supports a color display, arguments r, g, and b
are the red, green, and blue component intensities. In the case of a
gray-scale display, argument i is the gray-scale intensity.

If the palette contains N entries, the valid range of argument index is 0
through N–1. The number of palette entries in the current graphics mode
is specified in the palet_size field of the CONFIG structure returned by the
get_config function.

If argument index specifies an invalid value, the function aborts (returns im-
mediately) and returns a value of 0; otherwise, a nonzero value is returned.

In systems that store the palette data in display memory (such as those us-
ing the TMS34070 color palette), this function updates every palette area
in the frame buffer. If the system contains multiple display pages, the func-
tion updates the palette area for every page.

Use the set_palet_entry function to load a gray-scale palette into the first
16 color palette entries. Use the fill_rect function from the Extended Primi-
tives Library to fill a series of rectangles in intensities increasing from left to
right. Note that this example requires a color palette with a capacity of at
least 16 entries.

main()
{
 int n;

 set_config(0, !0);
 clear_screen(–1);
 for (n = 0; n < 15; n ++)

set_palet_entry (n, 16*n, 16*n, 16*n, 16*n);
 for (n = 0; n < 15; n ++) {

set_fcolor(n);
fill_rect(12, 80, 8+12*n, 8);

 }
}

Syntax

Description

Example

set_pmask Set Plane Mask

6-60 Core Primitives

void set_pmask(pmask)
unsigned long pmask; /* plane mask */

The get_pmask function sets the plane mask to the specified value. The
size of the plane mask in bits is the same as the pixel size.

Argument pmask contains the plane mask. Given a pixel size of N bits, the
plane mask is right-justified in the N LSBs of the argument; the higher-order
bits are ignored by the function.

The plane mask designates which bits within a pixel are protected against
writes and affects all operations on pixels. During writes, the 1s in the plane
mask designate bits in the destination pixel that are protected against modi-
fication, while the 0s in the plane mask designate bits that can be altered.
During reads, the 1s in the plane mask designate bits in the source pixel that
are read as 0s, while the 0s in the plane mask designate bits that can be
read from the source pixel as is.

The plane mask is set to its default value of 0 during initialization of the draw-
ing environment by the set_config function. The plane mask can be altered
with a call to the set_pmask function.

The plane mask corresponds to the contents of the TMS340 graphics pro-
cessor’s PMASK register. The effect of the plane mask in conjunction with
the pixel-processing operation and the transparency mode is described in
the user’s guides for the TMS34010 and TMS34020.

Syntax

Description

Set Plane Mask set_pmask

6-61

Use the set_pmask function to demonstrate the effects of enabling and dis-
abling particular bit planes. For each bit plane, print a line of text with all but
the one plane enabled; print another line of text with only the one plane en-
abled. This example assumes that the display has at least 4 bit planes – that
is, a pixel size of at least 4 bits.

#include <gsptypes.h> /* defines CONFIG and FONTINFO */
#define MINPSIZE 4 /* minimum pixel size */

main()
{
 CONFIG cfg;
 FONTINFO fntinf;
 unsigned long pmask;
 short x, y, n;
 char c[80];

 set_config(0, !0);
 clear_screen(–1);
 get_config(&cfg);
 get_fontinfo(–1, &fntinf);
 x = y = 10;
 for (pmask = 1; pmask != 1<<MINPSIZE; pmask <<= 1) {

/* Enable all planes except one. */
set_pmask (pmask);
n = strlen(strcpy(c, ”all planes enabled except ”));
ltoa(lmo(pmask), &c[n]);
text_out(x, y, c);
y += fntinf.charhigh;

/* Disable all planes except one. */
set_pmask(~pmask);
n = strlen(strcpy(c, ”all planes disabled except ”));
ltoa(lmo(pmask), &c[n]);
text_out(x, y, c);
y += fntinf.charhigh;

 }
}

Example

set_ppop Set Pixel-Processing Operation Code

6-62 Core Primitives

void set_ppop(ppop)
short ppop; /* pixel processing operation code */

The set_ppop function specifies the pixel-processing operation to be used
for subsequent drawing operations. The specified Boolean or arithmetic op-
eration determines the manner in which source and destination pixel values
are combined during drawing operations.

Argument ppop is a pixel-processing operation code in the range 0 to 21.
The PPOP code is right-justified in the 5 LSBs of the argument; the higher-
order bits are ignored by the function.

Legal PPOP codes are in the range 0 to 21. The source and destination pix-
el values are combined according to the selected Boolean or arithmetic op-
eration, and the result is written back to the destination pixel. As shown in
Table 6–2, Boolean operations are in the range 0 to 15, and arithmetic oper-
ations are in the range 16 to 21.

Table 6–2. Pixel-Processing Operations

PPOP Code Description

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

replace destination with source
source AND destination
source AND NOT destination
set destination to all 0s
source OR NOT destination
source EQU destination
NOT destination
source NOR destination
source OR destination
destination (no change)
source XOR destination
NOT source AND destination
set destination to all 1s
NOT source or destination
source NAND destination
NOT source
source plus destination (with overflow)
source plus destination (with saturation)
destination minus source (with overflow)
destination minus source (with saturation)
MAX(source, destination)
MIN(source, destination)

When initialized by the set_config function, the PPOP code is set to its de-
fault value of 0 (replace operation). The PPOP code can be altered with a
call to the set_ppop function.

The pixel-processing operation code corresponds to the 5-bit PPOP field
in the TMS340 graphics processor’s CONTROL register. The effects of the
22 different codes are described in more detail in the user’s guides for the
TMS34010 and TMS34020.

Syntax

Description

Set Pixel-Processing Operation Code set_ppop

6-63

Use the set_ppop function to set the current pixel-processing operation
code to 10 (exclusive-OR). Use the fill_rect function from the Extended
Primitives Library to fill two rectangles that partially overlap. The overlap-
ping region shows the effect of exclusive-ORing identical source and desti-
nation pixel values.

#define XOR 10 /* pixel processing operation code */

main()
{

set_config(0, !0);
clear_screen(–1);

set_ppop (XOR);
fill_rect(100, 20, 10, 50);
fill_rect(20, 100, 50, 10);

}

Example

set_text_xy Set Text x–y Position

6-64 Core Primitives

void set_text_xy(x, y)
short x, y; /* text x–y coordinates */

The set_text_xy function sets the text-drawing position to the specified x-y
coordinates. This is the position at which the next character (or string of
characters) will be drawn if a subsequent call is made to the text_outp func-
tion. Both the text_outp and text_out functions automatically update the text
position to be the right edge of the last string output to the screen.

Arguments x and y are the coordinates of the new text position on the
screen, specified relative to the current drawing origin. Argument x is the x
coordinate at the left edge of the next string output by the text_outp function.
Argument y is the y coordinate at either the top of the string, or the base line,
depending on the state of the text alignment attribute (see the description
of the set_textattr function).

Use the set_text_xy function to set the text-drawing position to x-y coordi-
nates (10, 20). Use the text_outp function to print a text string to the screen
starting at these coordinates.

main()
{
 set_config(0, 1);
 clear_screen(–1);
 set_text_xy (10, 20);
 text_outp(”hello, world”);
}

Syntax

Description

Example

Set Transparency Mode set_transp

6-65

void set_transp(mode)
short mode; /* transparency mode */

The set_transp function, if implemented, changes the transparency mode.
When the transparency attribute is enabled, the transparency mode sets
the conditions under which a pixel is determined to be transparent. During
a graphics output operation, a nontransparent pixel replaces the original
destination pixel but a transparent pixel does not.

The set_transp function is implemented only on TMS34020 systems. Cur-
rently, the modes supported on TMS34020 systems are

mode = 0 Transparent if result equal to zero
mode = 1 Transparent if source equal to COLOR0
mode = 5 Transparent if destination equal to COLOR0

Argument mode must be set to one of these values. Specifying an invalid
mode number may result in undefined behavior.

On TMS34010 systems, the set_transp function is not implemented, and
only transparency mode 0 is supported.

The enabling and disabling of transparency, regardless of the mode se-
lected, is performed by two other functions, transp_on and transp_off. Refer
to the descriptions of these functions for more information.

Immediately after initialization of the drawing environment by the set_config
function, the system is configured in transparency mode 0, which is the de-
fault.

Syntax

Description

set_vector Set Trap Vector

6-66 Core Primitives

typedef unsigned long PTR; /* 32–bit GSP memory address */

PTR set_vector(trapnum, gptr)
unsigned short trapnum; /* trap number */
PTR gptr; /* pointer to GSP memory */

The set_vector function loads one of the TMS340 graphics processor’s trap
vectors with a pointer to a location in the processor’s memory. This function
provides a portable means of loading the entry point to a trap service rou-
tine, regardless of whether the actual trap vector is located in RAM or ROM.

Argument trapnum specifies a trap number in the range –32768 to 32767
for a TMS34020, and 0 to 31 for a TMS34010. Argument gptr is a pointer
containing the 32-bit memory address to be loaded into the trap vector.

The value returned by the function is the original 32-bit TMS340 graphics
processor address contained in the designated trap vector at the time of the
call.

Use the set_vector function to load the trap-3 vector with the address of a
trap service routine. The service routine simply increments a global counter.
The progress of the count is displayed graphically on the screen as a mov-
ing asterisk. Note that the C compiler recognizes “c_int03” as the name of
an interrupt routine and terminates the routine with a RETI (return from in-
terrupt) rather than a RETS (return from subroutine) instruction.

Syntax

Description

Example

Set Trap Vector set_vector

6-67

#include <gsptypes.h> /* defines CONFIG and FONTINFO */
static long count;

c_int03()
{
 count++;
}

main()
{
 int n;
 char c[40];

 set_config(0, !0);
 clear_screen(–1);
 for (n = 0; n < 32; n ++)

c[n] = ’ ’;
 c[32] = ’\0’;

 /* Install trap service routine. */
 count = 0;
 set_vector (3, c_int03);

 /* Trap once per loop. */
 for (n = 0; ;) {

asm(” TRAP 3 ”);
c[n] = ’ ’;
c[n = count/32 & 31] = ’*’;
text_out(10, 10, c);

 }
}

set_windowing Set Window-Clipping Mode

6-68 Core Primitives

void set_windowing(mode)
short mode;

The set_windowing function loads the specified value into the 2-bit window-
ing field contained in the CONTROL I/O register. This function is provided
for the sake of backward compatibility with early versions of TIGA.

The four windowing modes are

002 No windowing.
012 Interrupt request on write in window.
102 Interrupt request on write outside window.
112 Clip to window.

Take care in using this function. The library’s drawing functions assume that
the TMS340 graphics processor is configured in windowing mode 3.
Changing the windowing mode from this default may result in undefined be-
havior. The code specified for the window-clipping mode corresponds to the
2-bit W field in the TMS340 graphics processor’s CONTROL register. The
effects of the W field on window-clipping operations are described in the
user’s guides for the TMS34010 and TMS34020.

Immediately following initialization of the drawing environment by the
set_config function, the system is configured in windowing mode 3, which
is the default.

Syntax

Description

Set Workspace Information set_wksp

6-69

typedef unsigned long PTR; /* 32–bit GSP memory address */

void set_wksp(addr, pitch)
PTR addr; /* starting address */
PTR pitch; /* workspace pitch */

The set_wksp function specifies an off-screen workspace. None of the cur-
rent TIGA core or extended primitives makes use of this workspace; it is pro-
vided to support future graphics extensions that require storage for edge
flags or region-of-interest masks.

Argument addr is the base address of the off-screen workspace. Argument
pitch is the difference in memory addresses of two adjacent rows in the
off-screen workspace. The pitch is required to be a power of two and a multi-
ple of 16. The exception to this requirement is that the pitch argument is spe-
cified as 0 in the event that no workspace is allocated (in which case the val-
ue of the addr argument is a “don’t care.”)

The off-screen workspace is a 1-bit-per-pixel bit map of the same width and
height as the screen. If the display hardware provides sufficient off-screen
memory, the workspace can be allocated statically at link time. By conven-
tion, the workspace pitch retrieved by the get_wksp function is nonzero
when a workspace is allocated; the pitch can be checked following initializa-
tion to determine whether a workspace is statically allocated. The work-
space can be allocated dynamically by calling the set_wksp function with
the address of a valid workspace in memory and a nonzero pitch; it can be
deallocated by calling set_wksp with a pitch of 0.

Not all TMS340 graphics processor-based display configurations may con-
tain sufficient memory to allocate (statically or dynamically) an off-screen
workspace. For this reason, proprietary extensions to the Core Primitives
Library that require use of the workspace may be unable to execute on
some systems.

Syntax

Description

text_out Output Text

6-70 Core Primitives

short text_out(x, y, s)
short x, y; /* starting coordinates */
unsigned char *s; /* character string */

The text_out function draws a character string to the screen in the currently
selected font.

Arguments x and y are the starting coordinates of the string, relative to the
current drawing origin. Argument s is a string of 8-bit ASCII characters ter-
minated by a null (0) character.

The string is rendered in the currently selected font using the current
text-drawing attributes.

Argument x is the x coordinate at the left edge of the string. Argument y is
the y coordinate at either the top of the string or the base line, depending
on the state of the text alignment attribute. During initialization of the draw-
ing environment by the set_config function, the alignment is set to its default
position, at the top left corner. The attribute can be modified by means of
a call to the set_textattr function.

The return value is the x coordinate of the next character position to the right
of the string. If the string lies entirely above or below the clipping rectangle,
the unmodified starting x coordinate is returned.

Use the text_out function to write a single line of text to the screen in the
system font.

main()
{
 set_config(0, !0);
 clear_screen(–1);
 text_out (10, 10, ”Hello world.”);
}

Syntax

Description

Example

Output Text at Current x–y Position text_outp

6-71

void text_outp(s)
unsigned char *s;

The text_outp function outputs text to the screen, starting at the current text
drawing position. The specified string of characters is rendered in the cur-
rently selected font and with the current text-drawing attributes. The text po-
sition must have been specified by a previous call to the set_text_xy,
text_out or text_outp function.

Argument s is a string of 8-bit ASCII character codes terminated by a null
(0) character.

After printing the text on the screen, the function automatically updates the
text position to be the position of the next character to the right of the string
just printed. A subsequent call to the text_outp function will result in the next
string being printed beginning at this position.

Unlike the text_out function, the text_outp function does not return a value.

Use the text_outp function to mix two fonts in the same line of of text. The
TI Roman size 20 and TI Helvetica size 22 fonts will be used. Use the
set_textattr function to align the text to the base line.

#include <gsptypes.h> /* FONT type definition */

extern FONT ti_rom20, ti_hel22; /* 2 different fonts */

static FONTINFO fontinfo;

main()
{
 int i, j;

 set_config(0, 1);
 clear_screen(–1);
 i = install_font(&ti_rom20);
 j = install_font(&ti_hel22);
 set_textattr(”%1a”, 0, 0);
 select_font(i);
 get_fontinfo(0, &fontinfo);
 set_text_xy(0, fontinfo.charhigh);
 text_outp (” Concatenate”);
 select_font(j);
 text_outp(” one font”);
 select_font(i);
 text_outp(” with another.”);
}

Syntax

Description

Example

transp_off Turn Transparency Off

6-72 Core Primitives

void transp_off()

The transp_off function disables transparency for subsequent drawing op-
erations.

Transparency is an attribute that affects drawing operations. Several trans-
parency modes are supported. During initialization of the drawing environ-
ment by the set_config function, transparency is disabled and the transpar-
ency mode is set to the default, mode 0. The TMS34010 supports only
transparency mode 0, but the TMS34020 supports additional modes. Refer
to the description of the set_transp function for details.

In transparency mode 0, if transparency is enabled and the result of a pixel-
processing operation is 0, the destination pixel is not altered. If transparen-
cy is disabled, the destination pixel is replaced by the result of the pixel-pro-
cessing operation, regardless of the value of that result. For instance, to
avoid modifying destination pixels in the rectangular region surrounding
each character shape, you can enable transparency before you call the
text_out or text_outp function.

The effect of transparency in conjunction with the pixel-processing opera-
tion and the plane mask is described in the user’s guides for the TMS34010
and TMS34020.

Use the transp_off function to demonstrate the effect of disabling transpar-
ency. Use the draw_rect function from the Extended Primitives Library to
construct a background pattern. To show that the background pattern is pre-
served in the rectangle surrounding each character, use the text_out func-
tion to draw a line of text to the screen with transparency enabled. Also,
draw a line of text to the screen with transparency disabled to show that the
background pattern is overwritten.

Syntax

Description

Example

Turn Transparency Off transp_off

6-73

#include <gsptypes.h> /* defines FONTINFO structure */

main()
{
 short x, y;
 FONTINFO fntinf;

 set_config(0, !0);
 clear_screen(–1);
 get_fontinfo(–1, &fntinf);
 for (x = y = 0; x < 200; x += 15)

draw_rect(8, 80, x, y);
 x = y = 10;
 transp_on();
 text_out(x, y, ”Transparency enabled.”);
 transp_off ();
 text_out(x, y+fntinf.charhigh, ”Transparency disabled.”);
}

transp_on Turn Transparency On

6-74 Core Primitives

void transp_on()

The transp_on function enables transparency for subsequent drawing op-
erations.

Transparency is an attribute that affects drawing operations. Several trans-
parency modes are supported. During initialization of the drawing environ-
ment by the set_config function, transparency is disabled and the transpar-
ency mode is set to the default, mode 0. The TMS34010 supports only
transparency mode 0, but the TMS34020 supports additional modes. Refer
to the description of the set_transp function for details.

In transparency mode 0, if transparency is enabled and the result of a pixel-
processing operation is 0, the destination pixel is not altered. If transparen-
cy is disabled, the destination pixel is replaced by the result of the pixel-pro-
cessing operation, regardless of the value of that result. For instance, to
avoid modifying destination pixels in the rectangular region surrounding
each character shape, you can enable transparency before you call the
text_out or text_outp function.

The effect of transparency in conjunction with the pixel-processing opera-
tion and the plane mask is described in the user’s guides for the TMS34010
and TMS34020.

Use the transp_on function to demonstrate the effect of enabling transpar-
ency. Use the draw_rect function from the Extended Primitives Library to
construct a background pattern. To show that the background pattern is
overwritten in the rectangle surrounding each character, use the text_out
function to draw a line of text to the screen with transparency disabled. Also,
draw a line of text to the screen with transparency enabled to show that the
background pattern is preserved.

Syntax

Description

Example

Turn Transparency On transp_on

6-75

#include <gsptypes.h> /* defines FONTINFO structure */

main()
{
 short x, y;
 FONTINFO fntinf;

 set_config(0, !0);
 clear_screen(–1);
 get_fontinfo(–1, &fntinf);
 for (x = y = 0; y < 80; y += 13)

draw_rect(180, 7, x, y);
 x = y = 10;
 text_out(x, y, ”Transparency is off.”);
 transp_on ();
 text_out(x, y+fntinf.charhigh, ”Transparency is on.”);
}

wait_scan Wait for Scan Line

6-76 Core Primitives

void wait_scan(line)
short line; /* scan line number */

The wait_scan function waits for the monitor to scan a designated line on
the screen.

Argument line is the scan line number. Scan lines are numbered in ascend-
ing order, starting with line 0 at the top of the screen. Given a display of N
lines, valid arguments are in the range 0 to N–1. If argument line is less than
0, the function uses the value 0 in place of the argument value. If argument
line is greater than the bottom scan line, the function uses the number of the
bottom scan line in place of the argument value.

The number of scan lines on the screen in the current graphics mode is spe-
cified in the disp_vres field of the CONFIG structure returned by the
get_config function.

Once the function is called, it does not return control to the calling routine
until the designated line is scanned by the monitor’s electron beam. Control
is returned at the start of the horizontal blanking interval that follows the
scan line.

This function is used to synchronize drawing operations with the position of
the electron beam on the monitor screen. For example, when drawing an
animated sequence of frames, transitions from one frame to the next ap-
pear smoother if an area of the screen is not being drawn at the same time
it is being scanned on the monitor.

The wait_scan function is typically used to achieve a limited degree of
smooth animation in graphics modes that provide only a single video page
(or frame buffer). The page_flip and page_busy functions support double
buffering in modes that provide more than one page. Double buffering,
when available, is usually preferred for animation applications.

Syntax

Description

Wait for Scan Line wait_scan

6-77

Use the wait_scan function to smoothly animate a rotating asterisk. The po-
sition of the asterisk is updated once per frame. Before drawing the asterisk
in its updated position, the wait_scan function is utilized to delay erasing the
asterisk until the area just beneath it is being scanned. The asterisk is
erased by overwriting it with a space character. This technique works well
with the system font, which is a block font, but might produce unexpected
results if used with a proportionally spaced font.

#include <gsptypes.h> /* defines FONTINFO structure */
#define RADIUS 60 /* radius of revolution */

main()
{
 long x, y;
 short i, j;
 FONTINFO fntinf;

 set_config(0, !0);
 clear_screen(–1);
 get_fontinfo(–1, &fntinf);
 x = RADIUS << 16;
 y = 0;
 for (i = j = 0; ;) {

wait_scan (j+fntinf.charhigh);
text_out(i, j, ” ”);
i = RADIUS + (x >> 16);
j = RADIUS + (y >> 16);
text_out(i, j, ”*”);
x –= y >> 4;
y += x >> 4;

 }
}

Example

6-78 Core Primitives

7-1

Chapter 7

Extended Primitives

This chapter describes the functions in the Extended Primitives Library. The
Core Primitives Library is described in the preceding chapter.

Remember to call the set_config function (a member of the Core Primitives
Library) to initialize the drawing environment before you call any of the other
functions in the Core and Extended Primitives Libraries.

The table below summarizes the 58 functions in the Extended Primitives Li-
brary. The remainder of this chapter is an alphabetical, detailed description
of the syntax, usage, and operation of each function. These descriptions are
augmented by complete example programs that can be compiled and run
exactly as written.

 Function Name Description

bitblt Transfer bit-aligned block

decode_rect Decode rectangular image

delete_font Delete font

draw_line Draw line

draw_oval Draw oval

draw_ovalarc Draw oval arc

draw_piearc Draw pie arc

draw_point Draw point

draw_polyline Draw polyline

draw_rect Draw rectangle

encode_rect Encode rectangular image

fill_convex Fill convex polygon

fill_oval Fill oval

fill_piearc Fill pie arc

fill_polygon Fill polygon

fill_rect Fill rectangle

frame_oval Fill oval frame

Extended Primitives

7-2 Extended Primitives

 Function Name Description

frame_rect Fill rectangular frame

get_env Get graphics environment information

get_pixel Get pixel

get_textattr Get text attributes

in_font Verify characters in font

install_font Install font

move_pixel Move pixel

patnfill_convex Fill convex polygon with pattern

patnfill_oval Fill oval with pattern

patnfill_piearc Fill pie arc with pattern

patnfill_polygon Fill polygon with pattern

patnfill_rect Fill rectangle with pattern

patnframe_oval Fill oval frame with pattern

patnframe_rect Fill rectangular frame with pattern

patnpen_line Draw line with pen and pattern

patnpen_ovalarc Draw oval arc with pen and pattern

patnpen_piearc Draw pie arc with pen and pattern

patnpen_point Draw point with pen and pattern

patnpen_polyline Draw polyline with pen and pattern

pen_line Draw line with pen

pen_ovalarc Draw oval arc with pen

pen_piearc Draw pie arc with pen

pen_point Draw point with pen

pen_polyline Draw polyline with pen

put_pixel Put pixel

seed_fill Seed fill

seed_patnfill Seed fill with pattern

select_font Select font

set_draw_origin Set drawing origin

set_dstbm Set destination bit map

set_patn Set fill pattern

set_pensize Set pen size

set_srcbm Set source bit map

set_textattr Set text attributes

 Extended Primitives

7-3

 Function Name Description

styled_line Draw styled line

styled_oval Draw styled oval

styled_ovalarc Draw styled oval arc

styled_piearc Draw styled pie arc

swap_bm Swap source and destination bit maps

text_width Get width of text string

zoom_rect Zoom rectangle

bitblt Transfer Bit-Aligned Block

7-4 Extended Primitives

void bitblt(w, h, xs, ys, xd, yd)
short w, h; /* width and height of both bit maps */
short xs, ys; /* source array coordinates */
short xd, yd; /* destination array coordinates */

The bitblt function copies a two-dimensional array of pixels from the current
source bit map to the current destination bit map. The source and destina-
tion bit maps are specified by calling the set_srcbm and set_dstbm func-
tions before calling the bitblt function. Calling the set_config function with
the init_draw argument set to true causes both the source and destination
bit maps to be set to the default bit map, which is the screen.

The source and destination arrays are assumed to be rectangular, two-di-
mensional arrays of pixels. The two arrays are assumed to be of identical
width and height. The bitblt function accepts source and destination arrays
that have the same pixel size. If the pixel sizes are not equal, the pixel size
for either the source or the destination must be 1. Other combinations of
source and destination pixel sizes are not accepted by the function.

Arguments w and h specify the width and height common to the source and
destination arrays. Arguments xs and ys specify the x-y coordinates of the
top left corner (lowest memory address) of the source array as a displace-
ment from the origin (base address) of the source bit map. Arguments xd
and yd specify the x-y coordinates of the top left corner of the destination
array as a displacement from the origin of the destination bit map.

If the source and destination pixel sizes are equal, then pixels in the source
array are copied to the destination. During the copying process, the pixels
may be modified, depending on the current pixel-processing operation,
transparency mode, and plane mask.

If the source bit map’s pixel size is 1 and the destination pixel size is greater
than 1, source pixels are expanded to color in the destination array. During
the expansion process, pixels corresponding to 1s in the source bit map are
expanded to the current foreground color before being drawn to the destina-
tion; 0s are expanded to the current background color.

If the destination bit map’s pixel size is 1 and the source pixel size is greater
than 1, bitblt performs a contract function on the source before writing to
the destination. During the contraction process, destination pixels are set
to 0 if they correspond to source pixels that are equal to the background col-
or; all other destination pixels are set to 1.

When the source or destination bit map is the screen, the specified source
or destination coordinates are defined relative to the current drawing origin.
In the case of a linear bit map contained in an off-screen buffer, the bitblt
function calculates the memory address of a pixel from the specified x and
y coordinates as follows:

Syntax

Description

 Transfer Bit-Aligned Block bitblt

7-5

address = baseaddr + y*(pitch) + x*(psize)

where baseaddr, pitch, and psize are the argument values passed to the
set_dstbm or set_srcbm function.

When the destination bit map is set to the screen, the function clips the des-
tination bit map to the current rectangular clipping window. When the source
bit map is set to the screen and any portion of the source array lies in nega-
tive screen coordinate space, the source rectangle is clipped to positive x-y
coordinate space; in most systems this means that the source is clipped to
the top and left edges of the screen. The resulting clipped source rectangle
is copied to the destination rectangle and justified to the lower right corner
of the specified destination rectangle. Portions of the destination array cor-
responding to clipped portions of the source are not modified.

The clipping window for a linear bit map encloses the pixels in the x-y coordi-
nate range (0,0) to (xext, yext), where xext and yext are arguments passed
to set_dstbm or set_srcbm. The bitblt function itself performs no clipping in
the case of a linear bit map; responsibility for clipping is left to the calling
routine.

If both source and destination bit maps are set to the screen, then the func-
tion correctly handles the case in which the rectangular areas containing the
source and destination bit maps overlap. In other words, the order in which
the pixels of the source are copied to the destination is automatically ad-
justed to prevent any portion of the source from being overwritten before it
has been copied to the destination.

Use the bitblt function to color-expand an image contained in a 1-bit-per-pix-
el bit map to the screen. The original image is 16 pixels wide, 40 pixels high,
and has a pitch of 16. Use the zoom_rect function to zoom the screen image
by a factor of 5.

Example

bitblt Transfer Bit-Aligned Block

7-6 Extended Primitives

 Transfer Bit-Aligned Block bitblt

7-7

#define PITCH 16 /* pitch of image bit map */
#define W 16 /* width of image bit map */
#define H 40 /* height of image bit map */
#define IMAGEDEPTH 1 /* pixel depth of image bit map */
#define SCREENDEPTH 4 /* pixel depth of screen */
#define ZOOM 5 /* zoom factor */

typedef enum { FIELDWIDTH = 1 } BIT;

static BIT image[] = {
 0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,
 0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,
 0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,
 0,0,1,1,0,0,0,1,1,1,1,1,0,0,0,0,
 0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,
 0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,
 0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,
 0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,
 0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,
 0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,
 1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,
 1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,
 1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,
 1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,
 1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,
 1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
 0,1,1,1,1,1,0,1,1,1,1,1,0,0,0,0,
 1,1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,
};

main()
{
 char buf[ZOOM*W*SCREENDEPTH/8]; /* zoom_rect buffer */

 set_config(0, !0);
 clear_screen(0);
 set_srcbm(image, PITCH, W, H, IMAGEDEPTH);
 bitblt (W, H, 0, 0, 10, 10);
 set_srcbm(0);
 zoom_rect(W, H, 10, 10, ZOOM*W, ZOOM*H, 20+W, 10, buf);
}

decode_rect Decode Rectangular Image

7-8 Extended Primitives

typedef unsigned long PTR; /* 32–bit GSP memory address */

short decode_rect(xleft, ytop, buf)
short xleft, ytop; /* top left corner */
PTR buf; /* image buffer */

The decode_rect function restores a previously compressed image to the
screen. The image was previously encoded by the encode_rect function.
The image is rectangular and is restored at the same width, height, and pixel
size as the image originally encoded by the encode_rect function.

The first two arguments, xleft and ytop, specify the x and y coordinates at
the top left corner of the destination rectangle and are defined relative to the
drawing origin.

The final argument, buf, is a pointer to a buffer in the TMS340 graphics pro-
cessor’s memory in which the compressed image is stored.

The function returns a nonzero value if it has successfully decoded the
image; otherwise, the return value is 0.

Refer to the description of the encode_rect function for a discussion of the
format in which the compressed image is saved.

Use the decode_rect function to decompress multiple copies of a rectangu-
lar image that was previously captured from the screen by the encode_rect
function.

Syntax

Description

Example

 Decode Rectangular Image decode_rect

7-9

#define MAXSIZE 4096 /* max picture size in bytes */

static char image[MAXSIZE];

main()
{
 short w, h, x, y, n;
 char *s;

 set_config(0, !0);
 clear_screen(–1);

 /* Create an image on the screen. */
 w = 100;
 h = 80;
 x = 10;
 y = 10;
 frame_rect(w, h, x, y, 4, 3);
 frame_oval(w–8, h–6, x+4, y+3, 4, 3);
 s = ”IMAGE”;
 n = text_width(s);
 text_out(x+(w–n)/2, y+h/2, s);

 /* Compress image. */
 encode_rect(w, h, x, y, image, sizeof(image), 0);

 /* Now decompress the image several times. */
 for (n = x ; n <= x + w; n += 16)

decode_rect (n, n, image);
}

delete_font Delete Font

7-10 Extended Primitives

short delete_font(id)
short id; /* font identifier */

The delete_font function removes from the font table the installed font des-
ignated by an identifier. The font is identified by argument id, which contains
the value returned from the install_font function at the time the font was in-
stalled.

A nonzero value is returned if the font was successfully removed. A value
of 0 is returned if argument id is invalid; that is, if id does not correspond to
an installed font.

If the font removed was also the one selected for current text drawing opera-
tions, the system font is automatically selected by the function. A request
to delete the system font (id = 0) will be ignored by the function, and a value
of 0 will be returned.

Use the delete_font function to delete a font that was previously installed.
First, install and select three fonts. The first and third fonts installed by the
example program are proportionally spaced fonts. The second font is a
block font. The three fonts are used to write three lines of text to the screen.
At this point, the block font is deleted with the delete_font function, and
another proportionally spaced font is installed in its place. An additional
three lines of text are written to the screen using the three installed fonts.
This example includes the C header file gsptypes.h , which defines the
FONT and FONTINFO structures. The TI Roman font sizes 11, 14, and 16
must be linked with the program.

Syntax

Description

Example

 Delete Font delete_font

7-11

#include <gsptypes.h> /* defines FONT and FONTINFO structures */

#define NFONTS 3 /* number of fonts installed */
#define NLINES 2 /* number of lines of text per font */

extern FONT sys16, ti_rom11, ti_rom14, ti_rom16;/* 4 font names */

main()
{
 FONTINFO fontinfo;
 short index[NFONTS];
 int i, j, x, y;

 set_config(0, !0);
 clear_screen(0);
 index[0] = install_font(&ti_rom11);
 index[1] = install_font(&sys16); /* install block font */
 index[2] = install_font(&ti_rom16);
 x = y = 10;
 for (i = 0; i < 2; i++) {
 for (j = 0; j < NFONTS; j++) {
 select_font(index[j]);
 get_fontinfo(index[j], &fontinfo);
 text_out(x, y, ”Output text in new font.”);
 y += fontinfo.charhigh;
 }
 y += fontinfo.charhigh;
 delete_font (index[1]); /* delete block font */
 index[1] = install_font(&ti_rom14);
 }
}

draw_line Draw Line

7-12 Extended Primitives

void draw_line(x1, y1, x2, y2)
short x1, y1; /* start coordinates */
short x2, y2; /* end coordinates */

The draw_line function uses Bresenham’s algorithm to draw a straight line
from the starting point to the ending point. The line is one pixel thick and is
drawn in the current foreground color.

Arguments x1 and y1 specify the starting x and y coordinates of the line, and
arguments x2 and y2 specify the ending coordinates.

In the case of a line that is more horizontal than vertical, the number of pixels
used to render the line is 1 + |x2 – x1|. The number of pixels for a line that
is more vertical than horizontal is 1 + |y2 –y1|.

Use the draw_line function to draw a line from (10, 20) to (120, 80).

main()
{
 short x1, y1, x2, y2;

 set_config(0, !0);
 clear_screen(0);
 x1 = 10;
 y1 = 20;
 x2 = 120;
 y2 = 80;
 draw_line (x1, y1, x2, y2);
}

Syntax

Description

Example

 Draw Oval draw_oval

7-13

void draw_oval(w, h, xleft, ytop)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */

The draw_oval function draws the outline of an ellipse, given the enclosing
rectangle in which the ellipse is inscribed. The ellipse is in standard position,
with its major and minor axes parallel to the coordinate axes. The outline
of the ellipse is one pixel thick and is drawn in the current foreground color.

The four arguments specify the rectangle enclosing the ellipse:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

Use the draw_oval function to draw an ellipse. The ellipse is 130 pixels wide
and 90 pixels high. Also, draw a rectangle that circumscribes the ellipse.

main()
{
 short w, h, x, y;

 set_config(0, !0);
 clear_screen(0);
 w = 130;
 h = 90;
 x = 10;
 y = 10;
 draw_oval (w, h, x, y);
 draw_rect(w, h, x, y);
}

Syntax

Description

Example

draw_ovalarc Draw Oval Arc

7-14 Extended Primitives

void draw_ovalarc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The draw_ovalarc function draws an arc taken from an ellipse. The ellipse
is in standard position, with the major and minor axes parallel to the coordi-
nate axes. The ellipse from which the arc is taken is specified in terms of
the enclosing rectangle in which it is inscribed. The arc is one pixel thick and
is drawn in the current foreground color.

The first four arguments specify the rectangle enclosing the ellipse from
which the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in inte-
ger degrees:

Argument theta specifies the starting angle and is measured from the
center of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent – that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, posi-
tive angles are in the clockwise direction, and negative angles are counter-
clockwise. Argument theta is treated as modulus 360. If the value of argu-
ment arc is outside the range [–359,+359], the entire ellipse is drawn.

Syntax

Description

 Draw Oval Arc draw_ovalarc

7-15

Use the draw_ovalarc function to draw an arc that extends from 21 degrees
to 300 degrees. The ellipse from which the arc is taken is 130 pixels wide
and 90 pixels high. Also, draw a rectangle enclosing the arc and draw two
rays from the center of the ellipse through the start and end points of the arc.

#define PI 3.141592654
#define K (PI/180.0) /* convert degrees to radians */

main()
{
 extern double cos(), sin();
 double a, b;
 short w, h, x, y;

 set_config(0, !0);
 clear_screen(0);
 w = 130;
 h = 90;
 x = 40;
 y = 50;
 draw_rect(w, h, x, y);
 draw_ovalarc (w, h, x, y, 21, 300–21);

 /* Now draw the two rays. */
 set_draw_origin(x+w/2, y+h/2);
 a = w;
 b = h;
 x = a*cos(21.0*K) + 0.5;
 y = b*sin(21.0*K) + 0.5;
 draw_line(0, 0, x, y);
 text_out(x, y, ” 21”); /* label ray at 21 degrees */
 x = a*cos(300.0*K) + 0.5;
 y = b*sin(300.0*K) + 0.5;
 draw_line(0, 0, x, y);
 text_out(x, y, ” 300”); /* label ray at 300 degrees */
}

Example

draw_piearc Draw Pie Arc

7-16 Extended Primitives

void draw_piearc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The draw_piearc function draws an arc taken from an ellipse. Two straight
lines connect the two end points of the arc with the center of the ellipse. The
ellipse is in the standard position, with the major and minor axes parallel to
the coordinate axes. The ellipse from which the arc is taken is specified in
terms of the enclosing rectangle in which it is inscribed. The arc and the two
lines are all one pixel thick and are drawn in the current foreground color.

The first four arguments specify the rectangle enclosing the ellipse from
which the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in inte-
ger degrees:

Argument theta specifies the starting angle and is measured from the
center of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent – that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, posi-
tive angles are in the clockwise direction, and negative angles are counter-
clockwise. Argument theta is treated as modulus 360. If the value of argu-
ment arc is outside the range [–359,+359], the entire ellipse is drawn.

Syntax

Description

 Draw Pie Arc draw_piearc

7-17

Use the draw_piearc function to draw a pie chart corresponding to a slice
of an ellipse from 21 degrees to 300 degrees. The ellipse is 130 pixels wide
and 90 pixels high. Draw an enclosing rectangle of the same dimensions.

main()
{
 short w, h, x, y;

 set_config(0, !0);
 clear_screen(0);
 w = 130;
 h = 90;
 x = 10;
 y = 10;
 draw_piearc (w, h, x, y, 21, 300–21);
 draw_rect(w, h, x, y);
}

Example

draw_point Draw Point

7-18 Extended Primitives

void draw_point(x, y)
short x, y; /* pixel coordinates */

The draw_point function draws a point represented as a single pixel. Argu-
ments x and y specify the x-y coordinates of the designated pixel and are
defined relative to the drawing origin. The pixel is drawn in the current fore-
ground color.

Use the draw_point function to draw a circle of radius 60 in the top left corner
of the screen. Each point on the circle is separated from its two neighbors
by angular increments of approximately 1/8 radian.

Syntax

Description

Example

 Draw Point draw_point

7-19

#define TWOPI 411775 /* fixed–point 2*PI */
#define HALF 32768 /* fixed–point 1/2 */
#define RADIUS 60 /* radius of circle */
#define N 3 /* angular increment = 1/2**N
 radians */

typedef long FIX; /* fixed–pt with 16–bit fraction */

main()
{
 short x, y;
 int i;
 FIX u, v, xc, yc;

 set_config(0, !0);
 clear_screen(0);
 u = 0;
 v = RADIUS << 16; /* convert to fixed–pt */
 xc = yc = v + HALF; /* fixed–pt center coord’s */
 for (i = (TWOPI << N) >> 16; i >= 0; i––) {

x = (u + xc) >> 16;
y = (v + yc) >> 16;
draw_point (x, y);
u – = v >> N;
v + = u >> N;

 }
}

draw_polyline Draw Polyline

7-20 Extended Primitives

typedef struct { short x, y; } POINT;

void draw_polyline(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The draw_polyline function draws multiple, connected lines. An array of in-
teger x-y coordinates representing the polyline vertices is specified as one
of the arguments. A straight line is drawn between each pair of adjacent ver-
tices in the array. Each line is constructed with Bresenham’s algorithm, is
one pixel thick, and is drawn in the current foreground color.

Argument n specifies the number of vertices in the polyline; the number of
lines drawn is n–1.

Argument vert is an array of x-y coordinates representing the polyline ver-
tices in the order in which they are to be traversed. The x-y coordinate pairs
0 through n–1 of the vert array contain the coordinates for the n vertices.
The function draws a line between each adjacent pair of vertices in the
array. Each vertex is represented by a 16-bit x-coordinate value followed by
a 16-bit y-coordinate value. Coordinates are specified relative to the draw-
ing origin.

Note that for the polyline to form a closed polygon, the calling program must
ensure that the first and last vertices in the vert array are the same.

Syntax

Description

 Draw Polyline draw_polyline

7-21

Use the draw_polyline function to draw a three-segment polyline. The four
vertices are located at coordinates (0, 0), (60, 70), (120, 10), and (120, 80).

#define NVERTS 4 /* number of vertices */

typedef struct { short x, y; } POINT;

static POINT xy[NVERTS] =
{
 { 0, 0 }, { 60, 70 }, { 120, 10 }, { 120, 80 }
};

main()
{
 set_config(0, !0);
 clear_screen(0);
 draw_polyline (NVERTS, xy);
}

Example

draw_rect Draw Rectangle

7-22 Extended Primitives

void draw_rect(w, h, xleft, ytop)
short w, h; /* rectangle width and height */
short xleft, ytop; /* top left corner */

The draw_rect function draws the outline of a rectangle. The rectangle con-
sists of two horizontal and two vertical lines. Each line is one pixel thick and
is drawn in the current foreground color.

The four arguments specify the rectangle:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

The draw_rect function is equivalent to the following four calls to the
draw_line function:

draw_line(xleft, ytop, xleft+w, ytop);

draw_line(xleft, ytop+h, xleft+w, ytop+h);

draw_line(xleft, ytop+1, xleft, ytop+h–2);

draw_line(xleft+w, ytop+1, xleft+w, ytop+h–2);

Use draw_rect function to draw a rectangle that is 130 pixels wide and 90
pixels high.

main()
{
 set_config(0, !0);
 clear_screen(0);
 draw_rect (130, 90, 10, 10);
}

Syntax

Description

Example

 Encode Rectangular Image encode_rect

7-23

typedef unsigned long PTR; /* 32–bit GSP memory address */

unsigned long encode_rect(w, h, xleft, ytop, buf, bufsize,
 scheme)

short w, h; /* rectangle width and height */
short xleft, ytop; /* top left corner */
PTR buf; /* image buffer */
unsigned long bufsize; /* buffer capacity in bytes */
unsigned short scheme; /* encoding scheme */

The encode_rect function uses the specified encoding scheme to save an
image in compressed form. The image to be saved is contained in a speci-
fied rectangular portion of the screen. The function compresses the image
and saves it in a specified destination buffer.

Once an image has been encoded by the encode_rect function, it can be
decompressed and restored to a designated area of the screen by the de-
code_rect function. The image is restored at the same width, height, and
pixel size as the original image saved by the encode_rect function.

The first four arguments specify the rectangular region of the screen con-
taining the original image:

Arguments w and h specify the width and height (in pixels) of the rectan-
gle containing the image.

Arguments xleft and ytop specify the x and y coordinates at the top left
corner of the rectangle and are defined relative to the drawing origin.

The next two arguments specify the destination array for the compressed
image:

Argument buf is a pointer to the destination array.

Argument bufsize is the storage capacity of the buf array in bytes.

The final argument, scheme, specifies the encoding scheme to be used.
Currently, only run-length encoding is supported, for which the value of
scheme must be specified as 0.

The value returned by the function is the number of 8-bit bytes required to
encode the image, including the header. If the return value is nonzero and
positive, but less than or equal to the size of the output buffer (as specified
by the bufsize argument), then the encoding is complete. If the value re-
turned by the function is greater than bufsize, the specified buffer was not
large enough to contain the encoded data. In this case, the encode_rect
function should be called again with a larger buffer. A value of 0 is returned
if the function is unable to perform any encoding. This can happen if argu-
ment bufsize is specified as 0 or if the intersection of the rectangle to be en-
coded and the clipping rectangle is empty.

If the original image lies only partially within the current clipping window,
only the portion of the image lying within the window is encoded. When the

Syntax

Description

encode_rect Encode Rectangular Image

7-24 Extended Primitives

encoded image is later restored by the decode_rect function, only the en-
coded portion of the image is restored. Relative to the enclosing rectangle,
this portion of the restored image occupies the same position as in the origi-
nal image. If the original image lies entirely outside the clipping window, the
encoded image is empty.

Currently, the only encoding scheme supported by the function is run-length
encoding. This is a simple but effective image-compression technique that
stores each horizontal line of the image as a series of color transitions. The
color for each transition is paired with the number of times the color is re-
peated (the length of the run) before the next color transition. To illustrate,
a run of 7 yellow pixels followed by a run of 5 red pixels could be stored as
 [7] [yellow] [5] [red]. As expected, the greatest amount of compression
is achieved in the case of images that contain large regions of uniform color.

The compressed image format consists of a 20-byte header followed by the
data representing the image in compressed form. The header structure is
invariant across all encoding schemes and is defined as follows:
typedef struct {
 unsigned short magic; /* magic number */
 unsigned long length; /* length of data in bytes */
 unsigned short scheme; /* encoding scheme */
 short width, height; /* dimensions of image rectangle */
 short psize; /* pixel size of image */
 short flags; /* usage varies with scheme */
 unsigned long clipadj; /* x–y clipping adjustments */
} ENCODED_RECT;

The fields of the ENCODED_RECT data structure above are used as fol-
lows:
magic A TIGA data structure identifier. The value for this data struc-

ture is 0x8101.
length The length of the entire compressed image in bytes, including

the header. This value is useful for allocating memory for a data
structure and for reading it from a disk.

scheme The type of encoding scheme that was used to encode the rect-
angle. Only one scheme is currently supported: scheme = 0 —
run-length encoding.

width The width of the rectangle containing the original image.
height The height of the rectangle containing the original image.
psize The original pixel size of the encoded image. This value is 1, 2,

4, 8, 16, or 32.
flags Reserved for future enhancements. Bits in this field are cur-

rently set to 0.
clipadj Set to 0 except in the case in which the top left corner of the

original image rectangle is located above or to the left of the
clipping window. In this case, the clipadj field contains the con-
catenated x and y displacements of the top left corner of the

 Encode Rectangular Image encode_rect

7-25

clipping window from the top left corner of the image. (The x
displacement is in the 16 LSBs, and the y displacement in the
16 MSBs.) If the left edge of the window is to the right of the left
edge of the image, the x displacement is set to the positive dis-
tance between these two edges; otherwise it is 0. If the top
edge of the window is below the top edge of the image, the y
displacement is set to the positive distance between these two
edges; otherwise it is 0.

The encoded image immediately follows the clipadj field. This data is of vari-
able length, and its format depends on the encoding scheme used to com-
press the image.

The run-length encoded image consists of a number of run-length encoded
horizontal scan lines; the number of lines is given by the height entry in the
ENCODED_RECT structure. Each line is encoded according to the follow-
ing format:

 [REPSIZ] [OPSIZ] [OPCODE] [DATA] [OPCODE] [DATA]...

The REPSIZ and OPSIZ fields, which appear at the start of each line, are
defined as follows:
REPSIZ Bits 0–2 specify the size of the repeating data. Repeating data

can be 1, 2, 4, 8, 16, or 32 bits in length. REPSIZ is the log to the
base 2 of the data size (that is, 1 shifted left by the value of REP-
SIZ will give the size of the repeating data).

OPSIZ Bits 3–7 specify the length in bits of the OPCODE entry. This
can be a value between 1 and 32 indicating the signed integer
size of OPCODE. For example, if the value of OPSIZ is 8, then
OPCODES are 8-bit signed integers. If OPSIZ is 3, then OP-
CODES are 3-bit signed integers. Beginning with bit 8, the re-
mainder of the line consists of a variable number of [OPCODE]
[DATA] sequences. If the opcode value is positive, it indicates a
repeating sequence and will be followed by 1, 2, 4, 8, 16, or 32
bits worth of repeating data, as indicated by REPSIZ. If the op-
code is negative, then it is followed by n pixels of absolute (un-
encoded) data, where n is the absolute value of the OPCODE,
and the pixel size is specified in the PSIZE field of the EN-
CODED_RECT structure.

Within each line of the image, the absolute value of all the opcodes read
equals the width of the encoded rectangle. This fact is utilized by the
decode_rect function during decompression of the image.

Use the encode_rect function to capture a rectangular image from the
screen. Verify that the image buffer used by the encode_rect function is
large enough to contain the entire compressed image. Use the decode_rect

Example

encode_rect Encode Rectangular Image

7-26 Extended Primitives

function to decompress the image to a different region of the screen to verify
that the image was captured correctly by the encode_rect function.

#define MAXSIZE 4096 /* max picture size in bytes */

static char picture[MAXSIZE];

main()
{
 short w, h, x, y, n;
 char *s;

 set_config(0, !0);
 clear_screen(0);

 /* Create an image on the screen. */
 w = 100;
 h = 80;
 x = 10;
 y = 10;
 frame_rect(w, h, x, y, 1, 1);
 frame_oval(w, h, x, y, 4, 3);
 draw_line(x+w/2, y, x, y+h–1);
 draw_line(x+w/2, y, x+w–1, y+h–1);
 s = ”IMAGE”;
 n = text_width(s);
 text_out(x+(w–n)/2, y+h/2, s);

 /* Compress image, and verify buffer doesn’t overflow. */
 n = encode_rect (w, h, x, y, picture, sizeof(picture), 0);
 if (n > MAXSIZE) {

text_out(x, y+h+20, ”Image buffer too small!”);
exit(1);

 }

 /* Now decompress the image. */
 decode_rect(x+w, y+h, picture);
}

 Fill Convex Polygon fill_convex

7-27

typedef struct { short x, y; } POINT;

void fill_convex(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The fill_convex function fills a convex polygon with a solid color. The poly-
gon is specified by a list of points representing the polygon vertices in the
order in which they are traversed in tracing the boundary of the polygon. The
polygon is filled with the current foreground color.

Argument n specifies the number of vertices in the polygon, which is the
same as the number of sides.

Argument vert is an array of integer x-y coordinates representing the poly-
gon vertices in the order in which they are to be traversed. The x-y coordi-
nate pairs 0 through n–1 of the vert array contain the coordinates for the n
vertices. The function assumes that an edge connects each adjacent pair
of vertices in the array and also assumes that vertex n–1 is connected to
vertex 0 by an edge. Each vertex is represented by a 16-bit x-coordinate
value followed by a 16-bit y-coordinate value. Coordinates are specified rel-
ative to the drawing origin.

The fill_convex function is similar to the fill_polygon function but is special-
ized for rapid drawing of convex polygons. It also executes more rapidly and
supports realtime applications such as animation. The function assumes
that the polygon contains no concavities; if this requirement is violated, the
polygon may be drawn incorrectly.

In order to conveniently support 3D applications, the fill_convex function
automatically culls back faces. A polygon is drawn only if its front side is visi-
ble—that is, if it is facing toward the viewer. The direction in which the poly-
gon is facing is determined by the order in which the vertices are listed in
the vert array. If the vertices are specified in clockwise order, the polygon
is assumed to be facing forward. If the vertices are specified in counter-
clockwise order, the polygon is assumed to face away from the viewer and
is therefore not drawn.

The back-face test is done by first comparing vertices n–2, n–1, and 0 to
determine whether the polygon vertices are specified in clockwise (front
facing) or counterclockwise (back facing) order. This test assumes the poly-
gon contains no concavities. If the three vertices are collinear, the back-face
test is performed again using the next three vertices, n–1, 0, and 1. The test
repeats until three vertices are found that are not collinear. If all the vertices
are collinear, the polygon is invisible.

Syntax

Description

fill_convex Fill Convex Polygon

7-28 Extended Primitives

Use the fill_convex function to fill a triangle. The three vertices are at coordi-
nates (10, 10), (130, 10), and (70, 90).

#define NVERTS 3 /* number of vertices */

typedef struct { short x, y; } POINT;

static POINT xy[NVERTS] =
{
 { 10, 10 }, { 130, 10 }, { 70, 90 }
};

main()
{
 set_config(0, !0);
 clear_screen(0);
 fill_convex (NVERTS, xy);
}

Example

 Fill Oval fill_oval

7-29

void fill_oval(w, h, xleft, ytop)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */

The fill_oval function fills an ellipse with a solid color. The ellipse is in stan-
dard position, with its major and minor axes parallel to the coordinate axes.
The ellipse is specified in terms of the enclosing rectangle in which the el-
lipse is inscribed. The ellipse is filled with the current foreground color.

The four arguments specify the rectangle enclosing the ellipse:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

Use the fill_oval function to draw an ellipse that is 130 pixels wide and 90
pixels high. Also, draw the outline of a rectangle that encloses the ellipse
without touching it.

main()
{
 set_config(0, !0);
 clear_screen(0);
 fill_oval (130, 90, 10, 10);
 draw_rect(130+3, 90+3, 10–2, 10–2);
}

Syntax

Description

Example

fill_piearc Fill Pie Arc

7-30 Extended Primitives

void fill_piearc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* extent of angle (degrees) */

The fill_piearc function fills a pie-slice-shaped wedge with a solid color. The
wedge is bounded by an arc and two straight edges. The two straight edges
connect the end points of the arc with the center of the ellipse. The arc is
taken from an ellipse in standard position, with its major and minor axes par-
allel to the coordinate axes. The ellipse is specified by the enclosing rectan-
gle in which it is inscribed. The wedge is filled with the current foreground
color.

The first four arguments specify the rectangle enclosing the ellipse from
which the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

The last two arguments define the limits of the arc and are specified in inte-
ger degrees:

Argument theta specifies the starting angle and is measured from the
center of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent – that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, posi-
tive angles are in the clockwise direction, and negative angles are counter-
clockwise. Argument theta is treated as modulus 360. If the value of argu-
ment arc is outside the range [–359,+359], the entire ellipse is filled.

Syntax

Description

 Fill Pie Arc fill_piearc

7-31

Use the fill_piearc function to draw a pie chart corresponding to a slice of
an ellipse from 21 degrees to 300 degrees. The ellipse is 130 pixels wide
and 90 pixels high. Also, draw a rectangle that encloses the ellipse without
touching it.

main()
{
 short w, h, x, y;

 set_config(0, !0);
 clear_screen(0);
 w = 130;
 h = 90;
 x = 10;
 y = 10;
 fill_piearc (w, h, x, y, 21, 300–21);
 draw_rect(w+3, h+3, x–2, y–2);
}

Example

fill_polygon Fill Polygon

7-32 Extended Primitives

typedef struct { short x, y; } POINT;

void fill_polygon(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The fill_polygon function fills an arbitrarily shaped polygon with a solid color.
The polygon is specified by a list of points representing the polygon vertices
in the order in which they are traversed in tracing the boundary of the poly-
gon. The interior of the polygon is determined according to the parity (or
odd- even) rule. A pixel is considered to be part of the filled region represent-
ing the polygon if an infinite, arbitrarily oriented ray emanating from the cen-
ter of the pixel crosses the boundary of the polygon an odd number of times.
The polygon is filled with the current foreground color.

Argument n specifies the number of vertices in the polygon, which is the
same as the number of sides.

Argument vert is an array of integer x-y coordinates representing the poly-
gon vertices in the order in which they are to be traversed. The x-y coordi-
nate pairs 0 through n–1 of the vert array contain the coordinates for the n
vertices. The function assumes that an edge connects each adjacent pair
of vertices in the array and also assumes that vertex n–1 is connected to
vertex 0 by an edge. Each vertex is represented by a 16-bit x-coordinate
value followed by a 16-bit y-coordinate value. Coordinates are specified rel-
ative to the drawing origin.

No restrictions are placed on the shape of the polygons filled by this func-
tion. Edges may cross each other. Filled areas can contain holes (this is ac-
complished by connecting a hole to the outside edge of the polygon by an
infinitely thin region of the polygon). Two or more filled regions can be dis-
connected from each other (or more precisely, be connected by infinitely
thin regions of the polygon).

Syntax

Description

 Fill Polygon fill_polygon

7-33

Use the fill_polygon function to fill a polygon that has a hole, two discon-
nected regions, and two edges that cross each other.

#define NVERTS 14 /* number of vertices */

typedef struct { short x, y; } POINT;

static POINT xy[NVERTS] = {
 { 150, 170 }, { 30, 150 }, { 150,30 }, { 30, 50 },
 { 150, 170 }, { 140, 70 }, { 260,70 }, { 200, 160 },
 { 140, 70 }, { 200, 80 }, { 220, 120 }, { 180, 120 },
 { 200, 80 }, { 140, 70 },
};

main()
{
 set_config(0, !0);
 clear_screen(0);
 fill_polygon (NVERTS, xy);
}

Example

fill_rect Fill Rectangle

7-34 Extended Primitives

void fill_rect(w, h, xleft, ytop)
short w, h; /* rectangle width and height */
short xleft, ytop /* top left corner */

The fill_rect function fills a rectangle with a solid color. The rectangle is filled
with the current foreground color.

The four arguments specify the rectangle:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

Use the fill_rect function to fill a rectangle that is 130 pixels wide and 90 pix-
els high.

main()
{
 set_config(0, !0);
 clear_screen(0);
 fill_rect (130, 90, 10, 10);
}

Syntax

Description

Example

 Fill Oval Frame frame_oval

7-35

void frame_oval(w, h, xleft, ytop, dx, dy)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short dx, dy; /* frame thickness in x, y */

The frame_oval function fills an ellipse-shaped frame with a solid color. The
frame consists of a filled region between two concentric ellipses. The outer
ellipse is specified in terms of the enclosing rectangle in which it is inscribed.
The frame thickness is specified separately for the x and y dimensions. The
portion of the screen enclosed by the frame is not altered. The frame is filled
with the current foreground color.

The first four arguments define the rectangle enclosing the outer edge of
the elliptical frame:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle, and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

The last two arguments control the thickness of the frame:

Arguments dx and dy specify the horizontal and vertical separation be-
tween the outer and inner ellipses, respectively.

Use the frame_oval function to draw an elliptical frame. The outer border
of the frame is an ellipse that is 130 pixels wide and 90 pixels high. The thick-
ness of the frame in the x and y dimensions is 16 and 12, respectively. Also,
outline the outer border of the frame with the draw_rect function.

Syntax

Description

Example

frame_oval Fill Oval Frame

7-36 Extended Primitives

main()
{
 short w, h, x, y, dx, dy;

 set_config(0, !0);
 clear_screen(0);
 w = 130;
 h = 90;
 x = 10;
 y = 10;
 dx = 16;
 dy = 12;
 frame_oval (w, h, x, y, dx, dy);
 draw_rect(w+1, h+1, x–1, y–1);
}

 Fill Rectangular Frame frame_rect

7-37

void frame_rect(w, h, xleft, ytop, dx, dy)
short w, h; /* rectangle width and height */
short xleft, ytop; /* top left corner */
short dx, dy /* frame thickness in x, y */

The frame_rect function fills a rectangular-shaped frame with a solid color.
The frame consists of a filled region between two concentric rectangles.
The outer edge of the frame is a rectangle specified in terms of its width,
height, and position. The frame thickness is specified separately for the x
and y dimensions. The portion of the screen enclosed by the frame is not
altered. The frame is filled with the current foreground color.

The first four arguments define the rectangle enclosing the outer edge of
the elliptical frame:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

The last two arguments control the thickness of the frame:

Arguments dx and dy specify the horizontal and vertical separation be-
tween the outer and inner rectangles, respectively.

Use the frame_rect function to draw an rectangular frame. The outer border
of the frame is a rectangle that is 127 pixels wide and 89 pixels high. The
thickness of the frame in the x and y dimensions is 15 and 10, respectively.
Also draw a diamond shape inside the frame with four calls to the draw_line
function. The vertices of the diamond touch the center of each of the four
inner edges of the frame.

Syntax

Description

Example

frame_rect Fill Rectangular Frame

7-38 Extended Primitives

main()
{
 short w, h, x, y, dx, dy;

 set_config(0, !0);
 clear_screen(0);
 w = 127;
 h = 89;
 x = 10;
 y = 10;
 dx = 15;
 dy = 10;
 frame_rect (w, h, x, y, dx, dy);
 draw_line(x+w/2, y+dy, x+w–dx–1, y+h/2);
 draw_line(x+w–dx–1, y+h/2, x+w/2, y+h–dy–1);
 draw_line(x+w/2, y+h–dy–1, x+dx, y+h/2);
 draw_line(x+dx, y+h/2, x+w/2, y+dy);
}

 Get Graphics Environment Information get_env

7-39

typedef unsigned long PTR; /*32-bit address*/
typedef struct
{
 PTR addr;
 unsigned short pitch
 unsigned short xext, yext;
 unsigned short psize;
} BITMAP;
typedef struct
{
 unsigned long xyorigin;
 unsigned long pensize;
 BITMAP *srcbm, *dstbm;
 unsigned long stylemask;
} ENVIRONMENT;

void get_env(env)
ENVIRONMENT *env; /* graphics environment pointer */

The get_env function retrieves the current graphics environment informa-
tion. Although the library contains other functions that manipulate individual
environment parameters, this function retrieves the entire graphics environ-
ment as a single structure.

Argument env is a pointer to a structure of type ENVIRONMENT. The func-
tion copies the graphics environment information into the structure pointed
to by this argument.

The fields of the ENVIRONMENT structure are defined as follows:
xyorigin Current drawing origin in y::x format, set by call to

set_draw_origin function
pensize Current pen size in y::x format, set by call to set_pen_size

function
patnaddr Address of current pattern, set by call to set_patnaddr

function
srcbm Address of current source bit map structure, set by call to

set_srcbm function
dstbm Address of current destination bit map structure, set by call

to set_dstbm function
stylemask Line-style mask used by styled_line function.

Syntax

Description

get_env Get Graphics Environment Information

7-40 Extended Primitives

In y::x format, 16-bit x and y components are concatenated to form a 32-bit
value. The x component is followed by the y component. Note that the struc-
ture described above may change in subsequent revisions. To minimize the
impact of such changes, write application programs to refer to the elements
of the structure symbolically by their field names, rather than as offsets from
the start of the structure. The include files provided with the library will be
updated in future revisions to track any such changes in data structure defi-
nitions.

Use the get_env function to verify the initial state of the graphics environ-
ment parameters immediately following a call to the set_config function.
Use the text_out function to print the parameter values on the screen. This
example includes the C header file gsptypes.h , which defines the ENVI-
RONMENT and FONTINFO structures.

Example

 Get Graphics Environment Information get_env

7-41

#include <gsptypes.h> /* define ENVIRONMENT and FONTINFO */

main()
{
 ENVIRONMENT env;
 FONTINFO fontinfo;
 char c[80];
 short val;
 int n, h, x, y;

 set_config(0, !0);
 clear_screen(0);
 get_fontinfo(0, &fontinfo);
 h = fontinfo.charhigh;
 x = y = 10;
 get_env (&env); /* get graphics environment */

 text_out(x, y, ”INITIAL GRAPHICS ENVIRONMENT:”);

 strcpy(c, ”x origin = ”);
 n = strlen(c);
 ltoa(val = env.xyorigin, &c[n]);
 text_out(x, y += h, c);

 strcpy(c, ”y origin = ”);
 n = strlen(c);
 ltoa(env.xyorigin>>16, &c[n]);
 text_out(x, y += h, c);

 strcpy(c, ”pen width = ”);
 n = strlen(c);
 ltoa(val = env.pensize, &c[n]);
 text_out(x, y += h, c);

 strcpy(c, ”pen height = ”);
 n = strlen(c);
 ltoa(env.pensize>>16, &c[n]);
 text_out(x, y += h, c);

 strcpy(c, ”source bit map = ”);
 n = strlen(c);
 ltoa(env.srcbm, &c[n]);
 text_out(x, y += h, c);

 strcpy(c, ”destination bit map = ”);
 n = strlen(c);
 ltoa(env.dstbm, &c[n]);
 text_out(x, y += h, c);

 strcpy(c, ”line-style pattern = ”);
 n = strlen(c);
 ltoa(env.stylemask, &c[n]);
 text_out(x, y += h, c);
}

get_pixel Get Pixel

7-42 Extended Primitives

unsigned long get_pixel(x, y)
short x, y; /* pixel coordinates */

The get_pixel function returns the value of the pixel at x-y coordinates (x,
y) on the screen. The coordinates are defined relative to the drawing origin.
Given a pixel size of n bits, the pixel is contained in the n LSBs of the return
value; the 32–n MSBs are set to 0.

Use the get_pixel function to rotate a text image on the screen by 180 de-
grees. This example includes the C header file gsptypes.h , which defines
the FONTINFO structure.

#include <gsptypes.h> /* defines FONTINFO structure */

main()
{
 FONTINFO fontinfo;
 short xs, ys, xd, yd, w, h;
 long val;
 char *s;

 set_config(0, !0);
 clear_screen(0);
 s = ”Rotate text by 180 degrees.”;
 get_fontinfo(0, &fontinfo);
 w = text_width(s);
 h = fontinfo.charhigh;
 xs = ys = 0;
 text_out(xs, ys, s);
 for (yd = 2*h+1; ys <= h; ys++, yd––)
 for (xs = 0, xd = w–1; xs <= w; xs++, xd––) {
 val = get_pixel (xs, ys);
 put_pixel(val, xd, yd);
 }
}

Syntax

Description

Example

 Get Text Attributes get_textattr

7-43

short get_textattr(pcontrol, count, val)
char *pcontrol; /* control string */
short count; /* val array length */
short *val; /* array of attribute values */

The get_textattr function retrieves the text rendering attributes. The three
text attributes currently supported are text alignment, additional interchar-
acter spacing, and intercharacter gaps.

Argument pcontrol is a control string specifying the attributes (one or more)
to be retrieved. Argument count is the number of attributes designated in
the pcontrol string and is also the number of attributes stored in the val array.
Argument val is the array into which the designated attributes are stored.
The attribute values are stored into the consecutive elements of the val
array, beginning with val [0], in the order in which they appear in the pcontrol
string.

The function returns a value indicating the number of attributes actually
loaded into the val array.

The following attributes are currently supported:

 Symbol Attribute Description Option Value
 %a alignment 0 = top left, 1 = base line
 %e additional intercharacter spacing 16-bit signed integer
 %f intercharacter gaps 0 = leave gaps, 1 = fill gaps

Use the get_textattr function to verify the initial state of the text attributes
immediately following a call to the set_config function. Use the text_out
function to print the attribute values on the screen. This example includes
the C header file gsptypes.h , which defines the FONTINFO structure.

Syntax

Description

Example

get_textattr Get Text Attributes

7-44 Extended Primitives

#include <gsptypes.h> /* define FONTINFO structure */

main()
{
 ENVIRONMENT env;
 FONTINFO fontinfo;
 char c[80];
 short val[3];
 int n, h, x, y;

 set_config(0, !0);
 clear_screen(–1);
 get_fontinfo(0, &fontinfo);
 h = fontinfo.charhigh;
 x = y = 10;
 get_textattr (”%a%e%f”, 3, val); /* get text attributes */

 text_out(x, y, ”DEFAULT TEXT ATTRIBUTES:”);
 y += h;

 strcpy(c, ”text alignment = ”);
 n = strlen(c);
 ltoa(val[0], &c[n]);
 text_out(x, y, c);
 y += h;

 strcpy(c, ”extra interchar spacing = ”);
 n = strlen(c);
 ltoa(val[1], &c[n]);
 text_out(x, y, c);
 y += h;

 strcpy(c, ”interchar gaps = ”);
 n = strlen(c);
 ltoa(val[1], &c[n]);
 text_out(x, y, c);
}

 Verify Characters in Font in_font

7-45

short in_font(start_code, end_code)
short start_code; /* starting character code */
short end_code; /* ending character code */

The in_font function returns a value indicating whether the current font de-
fines all the characters within a specified range of ASCII codes.

The two arguments specify the range of characters:

Argument start_code specifies the ASCII code at the start of the range.
(This is the first character included in the range.)

Argument end_code specifies the ASCII code at the end of the range.
(This is the last character included in the range.)

The value of start_code should be less than or equal to the value of
end_code. Valid arguments are restricted to the range 1 to 255.

The value returned by the function is 0 if the current font defines all charac-
ters in the range specified by the arguments. Otherwise, the return value is
the ASCII code of the first character (lowest ASCII code) in the specified
range that is undefined in the current font.

Use the in_font function to determine whether the system font defines all
characters from ASCII code 32 to ASCII code 126. Use the text_out func-
tion to print the result of the test on the screen.

main()
{
 int n;
 unsigned char v, c[80];

 set_config(0, 1);
 clear_screen(–1);
 if (v = in_font (’ ’, ’~’)) {

n = strlen(strcpy(c, ”ASCII character code ”));
n += ltoa(v, &c[n]);
strcpy(&c[n], ” is undefined.”);
text_out(10, 10, c);

 } else
text_out(10, 10, ”Characters ’ ’ to ’~’ are defined.”);

}

Syntax

Description

Example

install_font Install Font

7-46 Extended Primitives

short install_font(pfont)
FONT *pfont; /* font structure pointer */

The install_font function installs a font in the font table and returns an identi-
fier (ID) of type short. The ID can be used to refer to the font in subsequent
text operations.

Argument pfont is a pointer to a structure of type FONT. (The FONT struc-
ture is described in Appendix A.) The install_font function merely adds the
address of the font to the font table. It does not select the font.

The ID returned is nonzero if the installation was successful. If unsuccess-
ful, 0 is returned.

The maximum size of the font table is a constant that can vary from system
to system. In all systems, the font table will be large enough to contain at
least 16 installed fonts (in addition to the permanently installed system font).
Once the font table is full, an attempt to install an additional font will be ig-
nored, and a value of 0 will be returned.

Use the install_font function to install a proportionally spaced font. Use the
text_out function to print a sample of the font on the screen. This example
program includes the gsptypes.h file, which defines the FONT and FON-
TINFO structures. The TI Roman font size 20 must be linked with the pro-
gram.

#include <gsptypes.h> /* defines FONT and FONTINFO structures */

extern FONT ti_rom20; /* proportionally–spaced font */

main()
{
 FONTINFO fontinfo;
 short x, y, id;

 set_config(0, !0);
 clear_screen(0);
 id = install_font (&ti_rom20); /* install the font */
 get_fontinfo(id, &fontinfo);
 select_font(id);
 x = y = 10;
 text_out(x, y, ”The quick brown fox jumped”);
 y += fontinfo.charhigh;
 text_out(x, y, ”over the lazy sleeping dog.”);
}

Syntax

Description

Example

 Move Pixel move_pixel

7-47

void move_pixel(xs, ys, xd, yd)
short xs, ys; /* source pixel coordinates */
short xd, yd; /* destination pixel coordinates */

The move_pixel function copies a pixel from one screen location to another.
Arguments xs and ys are the x and y coordinates of the source pixel. Argu-
ments xd and yd are the x and y coordinates of the destination pixel. Coordi-
nates are defined relative to the drawing origin.

Use the move_pixel function to rotate text image on screen by 90 degrees.
This example includes the C header file gsptypes.h , which defines the
FONTINFO structure.

#include <gsptypes.h> /* define FONTINFO structure */

main()
{
 FONTINFO fontinfo;
 short xs, ys, xd, yd, w, h;
 char *s;

 set_config(0, !0);
 clear_screen(0);
 s = ”Rotate 90 degrees.”;
 get_fontinfo(0, &fontinfo);
 w = text_width(s);
 h = fontinfo.charhigh;
 xs = h;
 ys = 0;
 text_out(xs, ys, s);
 for (xd = yd = h; ys < h; ys++, xd = h–ys, yd = h)
 for (xs = h; xs < w+h; xs++, yd++)
 move_pixel (xs, ys, xd, yd);
}

Syntax

Description

Example

patnfill_convex Fill Convex Polygon with Pattern

7-48 Extended Primitives

typedef struct { short x, y; } POINT;

void patnfill_convex(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The patnfill_convex function fills a convex polygon with the current area-fill
pattern. The polygon is specified by a list of points representing the polygon
vertices in the order in which they are traversed in tracing the boundary of
the polygon.

Argument n specifies the number of vertices in the polygon, which is the
same as the number of sides.

Argument vert is an array of integer x-y coordinates representing the poly-
gon vertices in the order in which they are to be traversed. The x-y coordi-
nate pairs 0 through n–1 of the vert array contain the coordinates for the
n vertices. The function assumes that an edge connects each adjacent pair
of vertices in the array and that an edge connects vertex n–1 to vertex 0.
Each vertex is represented by a 16-bit x-coordinate value followed by a
16-bit y-coordinate value. Coordinates are specified relative to the drawing
origin.

The patnfill_convex function is similar to the patnfill_polygon function but is
specialized for rapid drawing of convex polygons. It also executes more rap-
idly and supports realtime applications, such as animation. The function as-
sumes that the polygon contains no concavities; if this requirement is vio-
lated, the polygon may be drawn incorrectly.

In order to conveniently support 3D applications, the patnfill_convex func-
tion automatically culls back faces. A polygon is drawn only if its front side
is visible—that is, if it is facing toward the viewer. The direction in which the
polygon is facing is determined by the order in which the vertices are listed
in the vert array. If the vertices are specified in clockwise order, the polygon
is assumed to be facing forward. If the vertices are specified in counter-
clockwise order, the polygon is assumed to face away from the viewer and
is therefore not drawn.

The back-face test is done by first comparing vertices n–2, n–1, and 0 to
determine whether the polygon vertices are specified in clockwise (front
facing) or counterclockwise (back facing) order. This test assumes the poly-
gon contains no concavities. If the three vertices are collinear, the back-face
test is made again using the next three vertices, n–1, 0, and 1. The test re-
peats until three vertices are found that are not collinear. If all the vertices
are collinear, the polygon is invisible.

Syntax

Description

 Fill Convex Polygon with Pattern patnfill_convex

7-49

Use the patnfill_convex function to fill a quadrilateral with a pattern. The four
vertices are located at (96, 16), (176, 72), (96, 128), and (16, 72). This ex-
ample includes the C header file gsptypes.h , which defines the PATTERN
structure.

#include <gsptypes.h> /* define PATTERN structure */
#define NVERTS 4 /* number of vertices in quadrilateral */

typedef struct { short x, y; } POINT;

static short snowflake[16] =
{
 0x0000, 0x01C0, 0x19CC, 0x188C, 0x0490, 0x02A0, 0x31C6,
0x3FFE,
 0x31C6, 0x02A0, 0x0490, 0x188C, 0x19CC, 0x01C0, 0x0000,
0x0000,
};
static PATTERN fillpatn = { 16, 16, 1, (PTR)snowflake };
static POINT xy[NVERTS] =
{
 { 96, 16 }, { 176, 72 }, { 96, 128 }, { 16, 72 },
};

main()
{
 set_config(0, !0);
 clear_screen(0);
 set_patn(&fillpatn);
 patnfill_convex (NVERTS, xy);
}

Example

patnfill_oval patnfill_oval

7-50 Extended Primitives

void patnfill_oval(w, h, xleft, ytop)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */

The patnfill_oval function fills an ellipse with the current area-fill pattern. The
ellipse is in standard position, with its major and minor axes parallel to the
coordinate axes. The ellipse is specified in terms of the enclosing rectangle
in which the ellipse is inscribed.

The four arguments specify the rectangle enclosing the ellipse:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

Use the patnfill_oval function to fill an ellipse that is 144 pixels wide by 96
pixels high with a 16-by-16 area-fill pattern. This example includes the C
header file gsptypes.h , which defines the PATTERN structure.

#include <gsptypes.h> /* define PATTERN structure */

typedef struct { unsigned short row[16]; } PATNBITS;

static PATNBITS patnbits = /* brick pattern */
{
 0xFFFF, 0xD555, 0x8000, 0xC001, 0x8000, 0xC001, 0x8000,
0xD555,
 0xFFFF, 0x55D5, 0x0080, 0x01C0, 0x0080, 0x01C0, 0x0080,
0x55D5,
};
static PATTERN current_patn = { 16, 16, 1, (PTR)&patnbits };

main()
{
 set_config(0, !0);
 clear_screen(0);
 set_patn(¤t_patn);
 patnfill_oval (144, 96, 16, 16);
}

Syntax

Description

Example

 Fill Pie Arc with Pattern patnfill_piearc

7-51

void patnfill_piearc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* extent of angle (degrees) */

The patnfill_piearc function fills a pie-slice-shaped wedge with an area-fill
pattern. The wedge is bounded by an arc and two straight edges. The two
straight edges connect the end points of the arc with the center of the el-
lipse. The arc is taken from an ellipse in standard position, with its major and
minor axes parallel to the coordinate axes. The ellipse is specified by the
enclosing rectangle in which it is inscribed. The wedge is filled with the cur-
rent area-fill pattern.

The first four arguments specify the rectangle enclosing the ellipse from
which the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in inte-
ger degrees:

Argument theta specifies the starting angle and is measured from the
center of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent – that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, posi-
tive angles are in the clockwise direction, and negative angles are counter-
clockwise. Argument theta is treated as modulus 360. If the value of argu-
ment arc is outside the range [–359,+359], the entire ellipse is filled.

Use the patnfill_piearc function to draw a pie chart 144 pixels wide by 96
pixels high with a 16-by-16 area-fill pattern. The pie chart contains four pie
slices. This example includes the C header file gsptypes.h , which defines
the PATTERN structure.

Syntax

Description

Example

patnfill_piearc Fill Pie Arc with Pattern

7-52 Extended Primitives

#include <gsptypes.h> /* define PATTERN structure */
#define W 130 /* width of pie chart */
#define H 90 /* height of pie chart */
#define X 10 /* left edge of pie chart */
#define Y 10 /* top edge of pie chart */

typedef struct { unsigned short row[16]; } PATNBITS;

/* Two contrasting area–fill patterns */
static PATNBITS patnbits[2] =
{
 { 0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111,
 0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222,
0x1111},
 { 0xFFFF, 0x1111, 0x1111, 0x1111, 0xFFFF, 0x1111, 0x1111, 0x1111,
 0xFFFF, 0x1111, 0x1111, 0x1111, 0xFFFF, 0x1111, 0x1111,
0x1111},
};

main()
{
 static PATTERN piepatn = { 16, 16, 1, (PTR)0 };

 set_config(0, !0);
 clear_screen(0);
 piepatn.data = (PTR)&patnbits[0];
 set_patn(&piepatn);
 patnfill_piearc(W, H, X, Y, 30, 160–30); /* slice #1 */
 piepatn.data = (PTR)&patnbits[1];
 set_patn(&piepatn);
 patnfill_piearc (W, H, X, Y, 160, 230–160); /* slice #2 */
 piepatn.data = (PTR)&patnbits[0];
 set_patn((PTR)&piepatn);
 patnfill_piearc(W, H, X, Y, 230, 320–230); /* slice #3 */
 piepatn.data = (PTR)&patnbits[1];
 set_patn(&piepatn);
 patnfill_piearc(W, H, X+20, Y, 320, 390–320); /* slice #4 */
}

 Fill Polygon with Pattern patnfill_polygon

7-53

typedef struct { short x, y; } POINT;

void patnfill_polygon(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The patnfill_polygon function fills an arbitrarily shaped polygon with the cur-
rent area-fill pattern. The polygon is specified by a list of points representing
the polygon vertices in the order in which they are traversed in tracing the
boundary of the polygon. The interior of the polygon is determined accord-
ing to the parity (or odd-even) rule. A pixel is considered to be part of the
filled region representing the polygon if an infinite, arbitrarily oriented ray
emanating from the center of the pixel crosses the boundary of the polygon
an odd number of times.

Argument n specifies the number of vertices in the polygon, which is the
same as the number of sides.

Argument vert is an array of integer x–y coordinates representing the poly-
gon vertices in the order in which they are to be traversed. The x-y coordi-
nate pairs 0 through n–1 of the vert array contain the coordinates for the n
vertices. The function assumes that an edge connects each adjacent pair
of vertices in the array and also assumes that an edge connects vertex n–1
to vertex 0. Each vertex is represented by a 16-bit x-coordinate value fol-
lowed by a 16-bit y-coordinate value. Coordinates are specified relative to
the drawing origin.

No restrictions are placed on the shape of the polygons filled by this func-
tion. Edges may cross each other. Filled areas can contain holes (this is ac-
complished by connecting a hole to the outside edge of the polygon by an
infinitely thin region of the polygon). Two or more filled regions can be dis-
connected from each other (or more precisely, be connected by infinitely
thin regions of the polygon).

Syntax

Description

patnfill_polygon Fill Polygon with Pattern

7-54 Extended Primitives

Use the patnfill_polygon function to fill a polygon that has a hole, two discon-
nected regions, and two edges that cross each other. This example includes
the C header file gsptypes.h , which defines the PATTERN structure.

#include <gsptypes.h> /* define PATTERN structure */
#define NVERTS 14 /* 14 vertices in polygon */

typedef struct { short x, y; } POINT;

static short patnbits[16] = /* squares pattern */
{
 0x00FF, 0x0081, 0x1881, 0x3C81, 0x3C81, 0x1881, 0x0081,
0x00FF,
 0xFF00, 0x8100, 0x8118, 0x813C, 0x813C, 0x8118, 0x8100,
0xFF00,
};
static PATTERN current_patn = { 16, 16, 1, (PTR)patnbits };
static POINT xy[NVERTS] = {
 { 150, 170 }, { 30, 150 }, { 150,30 }, { 30, 50 },
 { 150, 170 }, { 140, 70 }, { 260,70 }, { 200, 160 },
 { 140, 70 }, { 200, 80 }, { 220, 120 }, { 180, 120 },
 { 200, 80 }, { 140, 70 },
};

main()
{
 set_config(0, !0);
 clear_screen(0);
 set_patn(¤t_patn);
 patnfill_polygon (NVERTS, xy);
}

Example

 Fill Rectangle with Pattern patnfill_rect

7-55

void patnfill_rect(w, h, xleft, ytop)
short w, h; /* rectangle width and height */
short xleft, ytop /* top left corner */

The patnfill_rect function fills a rectangle with the current area-fill pattern.

The four arguments specify the rectangle:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

Use the patnfill_rect function to fill a rectangle that is 144 pixels wide by 96
pixels high with a 16-by-16 area-fill pattern. This example includes the C
header file gsptypes.h , which defines the PATTERN structure.

#include <gsptypes.h> /* define PATTERN structure */

typedef struct { unsigned short row[16]; } PATNBITS;

static PATNBITS patnbits =
{
 0x0000, 0x01C0, 0x19CC, 0x188C, 0x0490, 0x02A0, 0x31C6,
0x3FFE,
 0x31C6, 0x02A0, 0x0490, 0x188C, 0x19CC, 0x01C0, 0x0000,
0x0000,
};
static PATTERN current_patn = { 16, 16, 1, (PTR)&patnbits };

main()
{
 set_config(0, !0);
 clear_screen(0);
 set_patn(¤t_patn);
 patnfill_rect (144, 96, 16, 16);
}

Syntax

Description

Example

patnframe_oval Fill Oval Frame with Pattern

7-56 Extended Primitives

void patnframe_oval(w, h, xleft, ytop, dx, dy)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short dx, dy; /* frame thickness in x, y */

The patnframe_oval function fills an ellipse-shaped frame with the current
area-fill pattern. The frame consists of a filled region between two concen-
tric ellipses. The outer ellipse is specified in terms of the enclosing rectangle
in which it is inscribed. The frame thickness is specified separately for the
x and y dimensions. The portion of the screen enclosed by the frame is not
altered.

The first four arguments define the rectangle enclosing the outer edge of
the elliptical frame:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

The last two arguments control the thickness of the frame:

Arguments dx and dy specify the horizontal and vertical separation, re-
spectively, between the outer and inner ellipses.

Syntax

Description

 Fill Oval Frame with Pattern patnframe_oval

7-57

Use the patnframe_oval function to draw an elliptical frame rendered with
an area-fill pattern. The elliptical frame is superimposed upon a filled rectan-
gle. Both the rectangle and the outer boundary of the elliptical frame are of
width 130 and height 90. This example includes the C header file
gsptypes.h , which defines the PATTERN structure.

#include <gsptypes.h> /* define PATTERN structure */

static short fillpatn[] = { /* 16–by–16 area–fill pattern */
 0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222,
0x1111,
 0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111
};
static PATTERN framepatn = { 16, 16, 1, (PTR)fillpatn };

main()
{
 short w, h, x, y, dx, dy;

 set_config(0, !0);
 clear_screen(0);
 w = 130;
 h = 90;
 x = 10;
 y = 10;
 dx = w/4;
 dy = h/4;
 set_patn(&framepatn);
 fill_rect(w, h, x, y);
 patnframe_oval (w, h, x, y, dx, dy);
}

Example

patnframe_rect Fill Rectangular Frame with Pattern

7-58 Extended Primitives

void patnframe_rect(w, h, xleft, ytop, dx, dy)
short w, h; /* rectangle width and height */
short xleft, ytop; /* top left corner */
short dx, dy /* frame thickness in x, y */

The patnframe_rect function fills a rectangle-shaped frame with the current
area-fill pattern. The frame consists of a filled region between two concen-
tric rectangles. The outer edge of the frame is a rectangle specified in terms
of its width, height, and position. The frame thickness is specified separately
for the x and y dimensions. The portion of the screen enclosed by the frame
is not altered.

The first four arguments define the rectangle enclosing the outer edge of
the elliptical frame:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

The last two arguments control the thickness of the frame:

Arguments dx and dy specify the horizontal and vertical separation, re-
spectively, between the outer and inner rectangles.

Syntax

Description

 Fill Rectangular Frame with Pattern patnframe_rect

7-59

Use the patnframe_rect function to draw a rectangular frame rendered with
a 16-by-16 area-fill pattern. Also, outline the outer and inner borders of the
frame with the draw_rect function. This example includes the C header file
gsptypes.h , which defines the PATTERN structure.

#include <gsptypes.h> /* define PATTERN structure */

static short fillpatn[] = { /* 16–by–16 area–fill pattern */
 0x0000, 0x0000, 0x7C7C, 0x4444, 0x4444, 0x4444, 0x7FFC,
0x0440,
 0x0440, 0x0440, 0x7FFC, 0x4444, 0x4444, 0x4444, 0x7C7C,
0x0000,
};

main()
{
 static PATTERN framepatn = { 16, 16, 1, (PTR)fillpatn };
 short w, h, x, y, dx, dy;

 set_config(0, !0);
 clear_screen(0);
 w = 144;
 h = 96;
 x = 16;
 y = 16;
 dx = 32;
 dy = 16;
 set_patn(&framepatn);
 patnframe_rect (w, h, x, y, dx, dy);
 draw_rect(w+2, h+2, x–1, y–1);
 draw_rect(w–2*dx–2, h–2*dy–2, x+dx+1, y+dy+1);
}

Example

patnpen_line Draw Line with Pen and Pattern

7-60 Extended Primitives

void patnpen_line(x1, y1, x2, y2)
short x1, y1; /* start coordinates */
short x2, y2; /* end coordinates */

The patnpen_line function draws a line with a pen and an area-fill pattern.
The thickness of the line is determined by the width and height of the rectan-
gular drawing pen. The area covered by the pen to represent the line is filled
with the current area-fill pattern.

Arguments x1 and y1 specify the starting x and y coordinates of the line. Ar-
guments x2 and y2 specify the ending x and y coordinates of the line.

The pen is a rectangle whose width and height can be modified by means
of the set_pensize function. At each point on the line drawn by the patn-
pen_line function, the pen is located with its top left corner touching the line.
The area covered by the pen as it traverses the line from start to end is filled
with a pattern.

Use the patnpen_line function to draw two lines. The first line goes from
(16, 16) to (144, 112), and the second line goes from (144, 112) to (144, 16).
Use the set_pensize function to set the pen dimensions to 24-by-16. This
example includes the C header file gsptypes.h , which defines the PAT-
TERN structure.

Syntax

Description

Example

 Draw Line with Pen and Pattern patnpen_line

7-61

#include <gsptypes.h> /* define PATTERN structure */

static short spiral[16] =
{ /* 16x16 area–fill pattern */
 0x0000, 0x3FFC, 0x7FFE, 0x0006, 0x0006, 0x1FC6, 0x3FE6,
0x3066,
 0x3066, 0x33E6, 0x31C6, 0x3006, 0x3006, 0x3FFE, 0x1FFC,
0x0000,
};
static PATTERN fillpatn = { 16, 16, 1, (PTR)spiral };

main()
{
 set_config(0, !0);
 clear_screen(0);
 set_pensize(24, 16);
 set_patn(&fillpatn);
 patnpen_line (16, 16, 144, 112);
 patnpen_line (144, 112, 144, 16);
}

 patnpen_ovalarc Draw Oval Arc with Pen and Pattern

7-62 Extended Primitives

void patnpen_ovalarc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The patnpen_ovalarc function draws an arc of an ellipse with a pen and an
area-fill pattern. The ellipse from which the arc is taken is in standard posi-
tion, with the major and minor axes parallel to the coordinate axes. The el-
lipse is specified in terms of the enclosing rectangle in which it is inscribed.
The area swept out by the pen as it traverses the arc is filled with the current
area-fill pattern. The thickness of the arc is determined by the width and
height of the rectangular drawing pen.

The pen is a rectangle whose width and height can be modified by means
of the set_pensize function. At each point on the arc drawn by the
patnpen_ovalarc function, the pen is located with its top left corner touching
the arc. The area covered by the pen as it traverses the arc from start to end
is filled with a pattern.

The first four arguments specify the rectangle enclosing the ellipse from
which the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in inte-
ger degrees:

Argument theta specifies the starting angle and is measured from the
center of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent – that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, posi-
tive angles are in the clockwise direction, and negative angles are counter-
clockwise. Argument theta is treated as modulus 360. If the value of argu-
ment arc is outside the range [–359,+359], the entire ellipse is drawn.

Syntax

Description

Draw Oval Arc with Pen and Pattern patnpen_ovalarc

7-63

Use the patnpen_ovalarc function to draw an arc taken from an ellipse. Set
the pen dimensions to 24-by-16, and set the width and height of the ellipse
to 144 and 112, respectively. Use the draw_oval function to superimpose
a thin ellipse having the same width and height on the path taken by the pen
in tracing the arc. This example includes the C header file gsptypes.h ,
which defines the PATTERN structure.

#include <gsptypes.h> /* define PATTERN structure */

static short stripes[16] =
{

 /* 16x16 area–fill pattern */
 0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222,
0x1111,
 0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222,
0x1111,
};
static PATTERN fillpatn = { 16, 16, 1, (PTR)stripes };

main()
{
 short w, h, x, y;

 set_config(0, !0);
 clear_screen(0);
 set_pensize(24, 16);
 set_patn(&fillpatn);
 w = 144;
 h = 112;
 x = 16;
 y = 16;
 patnpen_ovalarc (w, h, x, y, 35, 255–45);
 draw_oval(w, h, x, y);
}

Example

patnpen_piearc Draw Pie Arc with Pen and Pattern

7-64 Extended Primitives

void patnpen_piearc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The patnpen_piearc function draws a pie-slice-shaped wedge from an el-
lipse with a pen and an area-fill pattern. The wedge is formed by an arc of
the ellipse and by two straight lines that connect the two end points of the
arc with the center of the ellipse. The ellipse from which the arc is taken is
in standard position, with the major and minor axes parallel to the coordi-
nate axes. The ellipse is specified in terms of the enclosing rectangle in
which it is inscribed. The area swept out by the pen as it traverses the perim-
eter of the wedge is filled with the current area-fill pattern. The thickness of
the arc and of two lines drawn to represent the wedge is determined by the
width and height of the rectangular drawing pen.

The pen is a rectangle whose width and height can be modified by means
of the set_pensize function. As the pen traverses the arc from start to end,
the pen is located with its top left corner touching the arc. The two lines con-
necting the arc start and end points with the center of the ellipse are drawn
in similar fashion, with the top left corner of the pen touching each line as
it traverses the line from start to end.

The first four arguments specify the rectangle enclosing the ellipse from
which the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in inte-
ger degrees:

Argument theta specifies the starting angle and is measured from the
center of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent – that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, posi-
tive angles are in the clockwise direction, and negative angles are counter-
clockwise. Argument theta is treated as modulus 360. If the value of argu-
ment arc is outside the range [–359,+359], the entire ellipse is drawn.

Syntax

Description

Draw Pie Arc with Pen and Pattern patnpen_piearc

7-65

Use the patnpen_piearc function to draw an arc taken from an ellipse. Set
the pen dimensions to 16-by-16. Use the pen_piearc function to superim-
pose a “thin” pie slice on the path taken by the pen in tracing the “fat” pie
slice. Both the fat and thin slices are taken from the same ellipse, which has
width 144 and height 112. The arc extends from 33 degrees to 295 degrees.
This example includes the C header file gsptypes.h , which defines the
PATTERN structure.

#include <gsptypes.h> /* define PATTERN structure */

static short stripes[16] =
{

 /* 16x16 area–fill pattern */
 0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222,
0x1111,
 0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222,
0x1111,
};
static PATTERN fillpatn = { 16, 16, 1, (PTR)stripes };

main()
{
 short w, h, x, y;

 set_config(0, !0);
 clear_screen(0);
 set_patn(&fillpatn);
 w = 144;
 h = 112;
 x = 16;
 y = 16;
 set_pensize(16, 16);
 patnpen_piearc (w, h, x, y, 33, 295–33);
 set_pensize(1, 1);
 pen_piearc(w, h, x, y, 33, 295–33);
}

Example

patnpen_point Draw Point with Pen and Pattern

7-66 Extended Primitives

void patnpen_point(x, y)
short x, y; /* pen coordinates */

The patnpen_point function draws a point with a pen and an area-fill pat-
tern. Arguments x and y specify where the top left corner of the rectangular
drawing pen is positioned. The resulting figure is a rectangle the width and
height of the pen and filled with the current area-fill pattern.

Use the patnpen_point function to draw a sine wave of amplitude 60. Each
point on the wave is separated from the next by an angular increment of ap-
proximately 1/16 radian. This example includes the C header file
gsptypes.h , which defines the PATTERN structure.

Syntax

Description

Example

Draw Point with Pen and Pattern patnpen_point

7-67

#include <gsptypes.h> /* define PATTERN structure */
#define FOURPI 823550 /* fixed–point 4*PI */
#define HALF 32768 /* fixed–point 1/2 */
#define AMPL 60 /* sine wave amplitude */
#define N 4 /* angular increment = 1/2**N radians */

typedef long FIX; /* fixed–pt with 16–bit fraction */

static short stripes[16] =
{

 /* 16x16 area–fill pattern */
 0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222,
0x1111,
 0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222,
0x1111,
};
static PATTERN fillpatn = { 16, 16, 1, (PTR)stripes };

main()
{
 int i;
 short x, y;
 FIX u, v;

 set_config(0, !0);
 clear_screen(0);
 set_patn(&fillpatn);
 set_pensize(1, 32);
 set_draw_origin(10, 10+AMPL);

 u = AMPL << 16; /* convert to fixed–pt */
 v = 0;
 for (i = (FOURPI << N) >> 16, x = 0 ; i >= 0; i––, x++) {

y = (v + HALF) >> 16;
patnpen_point (x, y); /* draw next point */
u += v >> N;
v –= u >> N;

 }
}

patnpen_polyline Draw Polyline with Pen and Pattern

7-68 Extended Primitives

typedef struct { short x, y; } POINT;

void patnpen_polyline(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The patnpen_polyline function draws multiple, connected lines with a pen
and an area-fill pattern. The thickness of the lines is determined by the width
and height of the rectangular drawing pen. An array of integer x-y coordi-
nates representing the polyline vertices is specified as one of the argu-
ments. A line is drawn between each pair of adjacent vertices in the array.
The area covered by the rectangular drawing pen as it traverses each line
is drawn in the current area-fill pattern.

Argument n specifies the number of vertices in the polyline; the number of
lines drawn is n–1.

Argument vert is an array of x-y coordinates representing the polyline ver-
tices in the order in which they are to be traversed. The x-y coordinate pairs
0 through n–1 of the vert array contain the coordinates for the n vertices.
The function draws a line between each adjacent pair of vertices in the
array. Each vertex is represented by a 16-bit x-coordinate value followed by
a 16-bit y-coordinate value. Coordinates are specified relative to the draw-
ing origin.

For the polyline to form a closed polygon, the calling program must ensure
that the first and last vertices in the vert array are the same.

Syntax

Description

Draw Polyline with Pen and Pattern patnpen_polyline

7-69

Use the patnpen_polyline function to draw a polyline with four vertices. Also
use the pen_polyline function to superimpose a “thin” line on the “fat” line
to mark the position of the pen relative to the specified polyline. The vertex
coordinates given to both polyline functions are (16, 16), (64, 128), (128,
48), and (160, 48). This example includes the C header file gsptypes.h ,
which defines the PATTERN structure.

#include <gsptypes.h> /* define PATTERN structure */
#define NVERTS 4 /* number of vertices in polyline */

typedef struct { short x, y; } POINT;

static short amoeba[16] =
{

 /* 16x16 area–fill pattern */
 0x1008, 0x0C30, 0x03C0, 0x8001, 0x4002, 0x4002, 0x2004,
0x2004,
 0x2004, 0x2004, 0x4002, 0x4002, 0x8001, 0x03C0, 0x0C30,
0x1008,
};
static PATTERN fillpatn = { 16, 16, 1, (PTR)amoeba };
static POINT xy[NVERTS] =
{
 { 16, 16 }, { 64, 128 }, { 128, 48 }, { 160, 48 },
};

main()
{
 set_config(0, !0);
 clear_screen(0);
 set_patn(&fillpatn);
 set_pensize(24, 32);
 patnpen_polyline (NVERTS, xy); /* fat polyline */
 set_pensize(2, 2);
 pen_polyline(NVERTS, xy); /* thin polyline */
}

Example

pen_line Draw Line with Pen

7-70 Extended Primitives

void pen_line(x1, y1, x2, y2)
short x1, y1; /* start coordinates */
short x2, y2; /* end coordinates */

The pen_line function draws draw a line with a pen and a solid color. The
thickness of the line is determined by the width and height of the rectangular
drawing pen. The area covered by the pen to represent the line is filled with
the current foreground color.

Arguments x1 and y1 specify the starting x and y coordinates of the line. Ar-
guments x2 and y2 specify the ending x and y coordinates of the line.

The pen is a rectangle whose width and height can be modified by means
of the set_pensize function. At each point on the line drawn by the pen_line
function, the pen is located with its top left corner touching the line. The area
covered by the pen as it traverses the line from start to end is filled with a
solid color.

Use the pen_line function to draw a thick line from (16, 16) to (128, 80) with
a 5-by-3 pen. Use the draw_oval function to draw a small circle around the
start point of the line.

main()
{
 short x1, y1, x2, y2, r;

 set_config(0, !0);
 clear_screen(0);
 set_pensize(5, 3);
 x1 = 16;
 y1 = 16;
 x2 = 128;
 y2 = 80;
 pen_line (x1, y1, x2, y2);
 r = 7;
 draw_oval(2*r, 2*r, x1–r, y1–r);
}

Syntax

Description

Example

Draw Oval Arc with Pen pen_ovalarc

7-71

void pen_ovalarc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The pen_ovalarc function draws an arc of an ellipse with a pen and a solid
color. The ellipse from which the arc is taken is in standard position, with the
major and minor axes parallel to the coordinate axes. The ellipse is speci-
fied in terms of the enclosing rectangle in which it is inscribed. The area
swept out by the pen as it traverses the arc is filled with the current fore-
ground color. The thickness of the arc is determined by the width and height
of the rectangular drawing pen.

The pen is a rectangle whose width and height can be modified by means
of the set_pensize function. At each point on the arc drawn by the
 pen_ovalarc function, the pen is located with its top left corner touching the
arc. The area covered by the pen as it traverses the arc from start to end
is filled with a solid color.

The first four arguments specify the rectangle enclosing the ellipse from
which the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in inte-
ger degrees:

Argument theta specifies the starting angle and is measured from the
center of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent—that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, posi-
tive angles are in the clockwise direction, and negative angles are counter-
clockwise. Argument theta is treated as modulus 360. If the value of argu-
ment arc is outside the range [–359,+359], the entire ellipse is drawn.

Syntax

Description

pen_ovalarc Draw Oval Arc with Pen

7-72 Extended Primitives

Use the pen_ovalarc function to draw two thick arcs taken from an ellipse
of width 132 and height 94. Also, draw the ellipse with the draw_oval func-
tion.

main()
{
 short w, h, x, y;

 set_config(0, !0);
 clear_screen(0);
 w = 132;
 h = 94;
 x = 10;
 y = 10;
 draw_oval(w, h, x, y);
 set_pensize(9, 9);
 pen_ovalarc (w, h, x, y, 0, 90);
 set_pensize(6, 6);
 pen_ovalarc(w, h, x, y, 135, 210–135);
}

Example

Draw Pie Arc with Pen pen_piearc

7-73

void pen_piearc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The pen_piearc function draws a pie-slice-shaped wedge from an ellipse
with a pen and a solid color. The wedge is formed by an arc of the ellipse
and by two straight lines that connect the two end points of the arc with the
center of the ellipse. The ellipse from which the arc is taken is in standard
position, with the major and minor axes parallel to the coordinate axes. The
ellipse is specified in terms of the enclosing rectangle in which it is inscribed.
The area swept out by the pen as it traverses the perimeter of the wedge
is filled with the current foreground color. The thickness of the arc and two
lines drawn to represent the wedge is determined by the width and height
of the rectangular drawing pen.

The pen is a rectangle whose width and height can be modified by means
of the set_pensize function. As the pen traverses the arc from start to end,
the pen is located with its top left corner touching the arc. The two lines con-
necting the arc start and end points with the center of the ellipse are drawn
in similar fashion, with the top left corner of the pen touching each line as
it traverses the line from start to end.

The first four arguments specify the rectangle enclosing the ellipse from
which the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in inte-
ger degrees:

Argument theta specifies the starting angle and is measured from the
center of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent—that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, posi-
tive angles are in the clockwise direction, and negative angles are counter-
clockwise. Argument theta is treated as modulus 360. If the value of argu-
ment arc is outside the range [–359,+359], the entire ellipse is drawn.

Syntax

Description

pen_piearc Draw Pie Arc with Pen

7-74 Extended Primitives

Use the pen_piearc function to draw two pie slices taken from an ellipse of
width 132 and height 94. Also, draw the ellipse with the draw_oval function.

main()
{
 short w, h, x, y;

 set_config(0, !0);
 clear_screen(0);
 w = 132;
 h = 94;
 x = 10;
 y = 10;
 draw_oval(w, h, x, y);
 set_pensize(7, 6);
 pen_piearc (w, h, x, y, 0, 90);
 set_pensize(4, 3);
 pen_piearc(w, h, x, y, 155, 250–155);
}

Example

Draw Point with Pen pen_point

7-75

void pen_point(x, y)
short x, y; /* pen coordinates */

The pen_point function draws a point with a pen and a solid color. Argu-
ments x and y specify where the top left corner of the rectangular drawing
pen is positioned. The resulting figure is a rectangle the width and height
of the pen and filled with the current foreground color.

Use the pen_point function to draw a series of rectangular pens of increas-
ing size.

main()
{
 short w, h, x, y;

 set_config(0, !0);
 clear_screen(0);
 x = y = 10;
 w = h = 1;
 for (; x < 140; w += 3, h += 2, x += 2*w, y += h) {
 set_pensize(w, h);
 pen_point (x, y);
 }
}

Syntax

Description

Example

pen_polyline Draw Polyline with Pen

7-76 Extended Primitives

typedef struct { short x, y; } POINT;

void pen_polyline(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The pen_polyline function draws multiple, connected lines with a pen and
a solid color. The thickness of the lines is determined by the width and height
of the rectangular drawing pen. An array of x-y coordinates representing the
polyline vertices is specified as one of the arguments. A line is drawn be-
tween each pair of adjacent vertices in the array. The area covered by the
rectangular drawing pen as it traverses each line is drawn in the current
foreground color.

Argument n specifies the number of vertices in the polyline; the number of
lines drawn is n–1.

Argument vert is an array of integer x-y coordinates representing the poly-
line vertices in the order in which they are to be traversed. The x-y coordi-
nate pairs 0 through n–1 of the vert array contain the coordinates for the
n vertices. The function draws a line between each adjacent pair of vertices
in the array. Each vertex is represented by a 16-bit x-coordinate value fol-
lowed by a 16-bit y-coordinate value. Coordinates are specified relative to
the drawing origin.

Note that for the polyline to form a closed polygon, the calling program must
ensure that the first and last vertices in the vert array are the same.

Use the pen_polyline function to draw a “fat” polyline. The polyline vertices
are at coordinates (10, 10), (64, 96), (100, 48), and (140, 48).

Syntax

Description

Example

Draw Polyline with Pen pen_polyline

7-77

#define NVERTS 4 /* number of vertices in polyline */

typedef struct { short x, y; } POINT;

static POINT xy[NVERTS] =
{
 { 10, 10 }, { 64, 96 }, { 100, 48 }, { 140, 48 }
};

main()
{
 set_config(0, !0);
 clear_screen(0);
 set_pensize(5, 4);
 pen_polyline (NVERTS, xy);
}

put_pixel Put Pixel

7-78 Extended Primitives

void put_pixel(val, x, y)
unsigned long val; /* pixel value */
short x, y; /* pixel coordinates */

The put_pixel function sets a pixel on the screen to a specified value. Argu-
ment val is the value written to the pixel. Arguments x and y are the coordi-
nates of the pixel, defined relative to the drawing origin. If the screen pixel
size is n bits, the pixel value is contained in the n LSBs of argument val; the
higher-order bits of val are ignored.

Use the put_pixel function to rotate a text image on the screen by 45 de-
grees. This example includes the C header file gsptypes.h , which defines
the FONTINFO structure.

#include <gsptypes.h> /* define FONTINFO structure */

main()
{
 FONTINFO fontinfo;
 short xs, ys, xd, yd, w, h;
 unsigned long val;
 char *s;

 set_config(0, !0);
 clear_screen(0);
 s = ”45–degree slant”;
 get_fontinfo(0, &fontinfo);
 w = text_width(s);
 h = fontinfo.charhigh;
 xs = ys = 0;
 text_out(xs, ys, s);
 for (xd = h, yd = h; ys < h; ys++, xd = h–ys, yd = ys+h)
 for (xs = 0; xs < w; xs++, xd++, yd++) {
 val = get_pixel(xs, ys);
 put_pixel (val, xd, yd);
 }
 }

Syntax

Description

Example

Seed Fill seed_fill

7-79

void seed_fill(x, y, buf, maxbytes)
short x, y; /* seed pixel coordinates */
char *buf; /* temporary buffer */
short maxbytes; /* buffer capacity in bytes */

The seed_fill function fills a connected region of pixels on the screen with
a solid color, starting at a specified seed pixel. All pixels that are part of the
connected region that includes the seed pixel are filled with the current fore-
ground color.

The seed color is the original color of the specified seed pixel. All pixels in
the connected region match the seed color before being filled with the fore-
ground color.

The connected region filled by the function always includes the seed pixel.
To be considered part of the connected region, a pixel must both match the
seed color and be horizontally or vertically adjacent to another pixel that is
part of the connected region. (Having a diagonally adjacent neighbor that
is part of the region is not sufficient.)

Arguments x and y specify the coordinates of the seed pixel, defined relative
to the current drawing origin.

The last two arguments specify the temporary buffer used as a working stor-
age during the seed fill. Argument buf is an array large enough to contain
the temporary data that the function uses. Argument maxbytes is the num-
ber of 8-bit bytes available in the buf array. Working storage requirements
can be expected to increase with the complexity of the connected region
being filled.

The seed_fill function aborts (returns immediately) if any of these condi-
tions are detected:

The seed pixel matches the current foreground color.

The seed pixel lies outside the current clipping window.

The storage buffer space specified by argument maxbytes is insuffi-
cient to continue.

In the last case, the function may have filled some portion of the connected
region prior to aborting.

Syntax

Description

seed_fill Seed Fill

7-80 Extended Primitives

Use the seed_fill function to fill a connected region of pixels on the screen.
Use the draw_rect function to draw a maze, the interior of which is filled by
the seed_fill function.

#define MAXBYTES 2048 /* size of temp buffer in bytes */

static char buf[MAXBYTES]; /* seed–fill temp buffer */

main()
{
 set_config(0, !0);
 clear_screen(0);

 /* Construct a maze consisting of 6 rectangles. */
 draw_rect(120, 80, 10, 10);
 draw_rect(10, 30, 35, 5);
 draw_rect(55, 10, 5, 40);
 draw_rect(10, 55, 65, 5);
 draw_rect(85, 10, 5, 65);
 draw_rect(10, 80, 95, 5);

 /* Now seed fill the interior of the maze. */
 seed_fill (20, 20, buf, MAXBYTES);
}

Example

Seed Fill with Pattern seed_patnfill

7-81

void seed_patnfill(x, y, buf, maxbytes)
short x, y; /* seed pixel coordinates */
char *buf; /* temporary buffer */
short maxbytes; /* buffer capacity in bytes */

The seed_patnfill function fills a connected region of pixels with a pattern,
starting at a specified seed pixel. All pixels that are part of the connected
region that includes the seed pixel are filled with the current area-fill pattern.

The seed color is the original color of the specified seed pixel. All pixels in
the connected region match the seed color before being filled with the pat-
tern.

The connected region filled by the function always includes the seed pixel.
To be considered part of the connected region, a pixel must both match the
seed color and be horizontally or vertically adjacent to another pixel that is
part of the connected region. (Having a diagonally adjacent neighbor that
is part of the region is not sufficient.)

Arguments x and y specify the coordinates of the seed pixel, defined relative
to the current drawing origin.

The last two arguments specify a buffer used as a working storage during
the seed fill. Argument buf is an array large enough to contain the tempo-
rary data that the function uses. Argument maxbytes is the number of 8-bit
bytes available in the buf array. Working storage requirements can be ex-
pected to increase with the complexity of the connected region being filled.

The seed_patnfill function aborts (returns immediately) if any of these con-
ditions are detected:

The seed pixel matches either the current foreground color or back-
ground color. (The area-fill pattern is rendered in these two colors.)

The seed pixel lies outside the current clipping window.

The storage buffer space specified by maxbytes is insufficient to contin-
ue.

In the last case, the function may have filled some portion of the connected
region prior to aborting.

Syntax

Description

seed_patnfill Seed Fill with Pattern

7-82 Extended Primitives

Use the seed_patnfill function to fill a connected region of pixels on the
screen with a pattern. Use the draw_rect function to draw a maze, the interi-
or of which is filled by the seed_patnfill function. Note that the two colors in
the area-fill pattern, white and blue, differ from the original color of the con-
nected region, black. If either color in the pattern matches the seed pixel col-
or, the seed_patnfill function will return immediately without drawing any-
thing. This example includes the C header file gsptypes.h , which defines
the PATTERN structure, and the header file colors.h , which defines the
color BLUE.

#include <gsptypes.h> /* define PATTERN structure */
#include ”colors.h” /* define color ”BLUE” */
#define MAXBYTES 2048 /* size of temp buffer in bytes */

static char buf[MAXBYTES]; /* seed–fill temp buffer */
static short snowflake[16] = { /* area–fill pattern */
 0x0000, 0x01C0, 0x19CC, 0x188C, 0x0490, 0x02A0, 0x31C6,
0x3FFE,
 0x31C6, 0x02A0, 0x0490, 0x188C, 0x19CC, 0x01C0, 0x0000,
0x0000,
};
static PATTERN fillpatn = { 16, 16, 1, (PTR)snowflake };

main()
{
 short w, h, x, y, n;

 set_config(0, !0);
 clear_screen(0);
 set_patn(&fillpatn);

 /* Construct a maze consisting of 6 rectangles. */
 draw_rect(120, 80, 10, 10);
 draw_rect(10, 30, 35, 5);
 draw_rect(55, 10, 5, 40);
 draw_rect(10, 55, 65, 5);
 draw_rect(85, 10, 5, 65);
 draw_rect(10, 80, 95, 5);

 /* Fill the interior of the maze with a pattern. */
 set_bcolor(BLUE);
 seed_patnfill (20, 20, buf, MAXBYTES);
}

Example

Select Font select_font

7-83

short select_font(id)
short id; /* font identifier */

The select_font function selects one of the installed fonts for use by the text
functions. The input argument, id, is valid only if it identifies a font currently
installed in the font table. Argument id must either be a valid identifier value
returned by a previous call to the install_font function, or be 0, indicating se-
lection of the system font.

A value of 0 is returned if the argument id is not valid; in this case, the func-
tion returns without attempting to select a new font. A nonzero value is re-
turned if the selection is successful.

Use the select_font function to select a previously installed font. Use the in-
stall_font function to install three proportionally spaced fonts, and for each
of the three fonts in turn, select the font and use it to print a couple of lines
of text to the screen. This example includes the C header file gsptypes.h ,
which defines the FONT and FONTINFO structures.

Syntax

Description

Example

select_font Select Font

7-84 Extended Primitives

#include <gsptypes.h> /* define FONT and FONTINFO struct’s */
#define NFONTS 3 /* number of fonts installed */

extern FONT ti_rom11, ti_rom14, ti_rom16; /* 3 font names */

main()
{
 FONTINFO fontinfo;
 short i, n, x, y, index[NFONTS];

 set_config(0, !0);
 clear_screen(0);

 /* Install 3 proportionally–spaced fonts. */
 index[0] = install_font(&ti_rom11);
 index[1] = install_font(&ti_rom14);
 index[2] = install_font(&ti_rom16);

 /* Now select each of the three fonts in turn. */
 x = y = 10;
 for (i = 0; i < NFONTS; i++) {

n = select_font(index[i]); /* select next font */
if (!n) {
 select_font (0); /* select system font */
 text_out(x, y, ”ERROR–– Font not installed!”);
 exit(1);
}
get_fontinfo(index[i], &fontinfo);
text_out(x, y, ”The quick brown fox jumped”);
y += fontinfo.charhigh;
text_out(x, y, ”over the lazy sleeping dog.”);
y += fontinfo.charhigh;

 }
}

Set Drawing Origin set_draw_origin

7-85

void set_draw_origin(x, y)
short x, y; /* new drawing origin */

The set_draw_origin function sets the position of the drawing origin for all
subsequent drawing operations to the screen. The coordinates specified for
all drawing functions are defined relative to the drawing origin. The x and
y axes for drawing operations pass through the drawing origin, with x in-
creasing to the right, and y increasing in the downward direction.

Arguments x and y are the horizontal and vertical coordinates of the new
drawing origin relative to the screen origin at the top left corner of the
screen.

Use the set_draw_origin function to move the drawing origin to various loca-
tions on the screen. In each case, verify that subsequent text and graphics
output are positioned relative to the current origin.

main()
{
 short x, y, w;
 char *s;

 set_config(0, !0);
 clear_screen(0);
 s = ”abc”;
 w = text_width(s);

 for (y = 10; y < 100; y += 50)
 for (x = 10; x < 100; x += 65) {
 set_draw_origin (x, y);
 draw_line(0, 0, 60–1, 45–1);
 draw_line(0, 45–1, 60–1, 0);
 text_out(30–w/2, 10, ”abc”);
 frame_rect(60, 45, 0, 0, 1, 1);
 frame_oval(60, 45, 0, 0, 3, 3);
 }
}

Syntax

Description

Example

set_dstbm Set Destination Bit Map

7-86 Extended Primitives

typedef long PTR; /* 32-bit address */

void set_dstbm(baseaddr, pitch, xext, yext, psize)
PTR baseaddr; /* bit map base address */
short pitch; /* bit map pitch */
short xext, yext; /* x and y extents */
short psize; /* pixel size */

The set_dstbm function sets the destination bit map for subsequent draw-
ing functions. Currently, only the bitblt function can write to a bit map other
than the screen. All other drawing functions abort (return without drawing
anything) if the destination bit map is set to a bit map other than the screen.

Argument baseaddr is a pointer to the destination bit map. Invoking the
function with a baseaddr value of 0 sets the destination bit map to the
screen and causes the last four arguments to the function to be ignored. A
nonzero baseaddr is interpreted as a pointer to a linear bit map; in other
words, the destination bit map is contained in an off-screen buffer. The spe-
cified bit map should begin on an even pixel boundary in memory. For in-
stance, when the pixel size is 32 bits, the 5 LSBs of the bit map’s base ad-
dress should be 0s.

Argument pitch is the difference in bit addresses from the start of one row
of the bit map to the next. The bitblt function requires that the destination
pitch be specified as a positive, nonzero multiple of the destination bit map’s
pixel size. The bitblt function executes more rapidly if the pitch is further
restricted to be a multiple of 16.

Arguments xext and yext define the upper limits of the effective clipping win-
dow for a linear destination bit map. The pixel having the lowest memory
address in the window is the pixel at (0, 0), whose address is baseaddr. The
pixel having the highest memory address in the window is the pixel at (xext,
yext), whose address is calculated as
 address = baseaddr + yext*(pitch) + xext*(psize)
 In the case of a linear bit map, responsibility for clipping is left to the calling
program.

Syntax

Description

Set Destination Bit Map set_dstbm

7-87

Use the set_dstbm function to designate an off-screen buffer as the destina-
tion bit map. Contract an image from the screen to 1 bit per pixel and store
the contracted image in the off-screen buffer. Next, expand the image from
1 bit per pixel to the screen pixel size and copy to another area of the screen
below the original image. This example includes the C header file
gsptypes.h , which defines the FONT and FONTINFO structures.

#include <gsptypes.h> /* define FONT and FONTINFO */
#define MAXBYTES 4096 /* size of image buffer in bytes */

static char image[MAXBYTES];
static FONTINFO fontinfo;

main()
{
 short w, h, x, y, pitch;
 char *s;

 set_config(0, !0);
 clear_screen(0);

 /* Print one line of text to screen. */
 x = y = 10;
 s = ”Capture this text image.”;
 text_out(x, y, s);
 w = text_width(s);
 get_fontinfo(0, &fontinfo);
 h = fontinfo.charhigh;

 /* Make sure buffer is big enough to contain image. */
 pitch = ((w + 15)/16)*16;
 if (pitch*h/8 > MAXBYTES) {
 text_out(x, y+h, ”Image too big!”);
 exit(1);
 }

 /* Capture text image from screen. */
 set_dstbm (image, pitch, w, h, 1); /* off-screen bit map */
 bitblt(w, h, x, y, 0, 0); /* contract */

 /* Now copy text image to another area of screen. */
 swap_bm();
 bitblt(w, h, 0, 0, x, y+h); /* expand */
}

Example

set_patn Set Fill Pattern

7-88 Extended Primitives

typedef long PTR; /* 32-bit address */
typedef struct
{

unsigned short width, height;
unsigned short depth;
PTR data;

} PATTERN;

void set_patn(ppatn)
PATTERN *ppatn;

The set_patn function sets the fill pattern for subsequent drawing opera-
tions. This pattern is used for drawing functions such as patnfill_rect and
patnfill_oval that fill regions with patterns. All pattern-filling functions are
easily identified by their function names, which include the four-letter des-
criptor patn.

Argument ppatn is a pointer to a PATTERN structure.

The fields of the PATTERN structure are defined as follows:

Fields width and height specify the dimensions of the pattern.

Field depth specifies the pixel size of the pattern.

Field data is a pointer to a bit map containing the actual pattern.

Only two-color 16-by-16 patterns are currently supported by the pattern-fill
drawing functions. This means that the fields width, height, and depth of the
PATTERN structure pointed to by argument ppatn must be specified as 16,
16, and 1, respectively. The data field is assumed to be a pointer to a
16-by-16, 1-bit-per-pixel bit map. A bit value of 1 in the pattern bit map speci-
fies that the foreground color be used to draw the corresponding pixel; a bit
value of 0 specifies the background color. The first pattern bit controls the
pixel in the top left corner of the pattern; the last pattern bit controls the pixel
in the bottom right corner.

The tiling of patterns to the screen is currently fixed relative to the top left
corner of the screen. In other words, changing the drawing origin causes no
shift in the mapping of the pattern to the screen, although the boundaries
of the geometric primitives themselves (rectangles, ovals, and so on) are
positioned relative to the drawing origin. The pixel at screen coordinates
(x, y) is controlled by the bit at coordinates (x mod 16, y mod 16) in the pat-
tern bit map.

The entire PATTERN structure is saved by the set_patn function, and the
original structure pointed to by argument ppatn need not be preserved fol-
lowing the call to the function. However, the actual bit map containing the
pattern is not saved by the function; this bit map must be preserved by the
calling program as long as the pattern remains in use.

Syntax

Description

Set Fill Pattern set_patn

7-89

During initialization of the drawing environment by the set_config function,
the area-fill pattern is set to its default state, which is to fill with solid fore-
ground color.

Use set_patn function to change the area-fill pattern. With each change in
pattern, call the patnfill_rect function to tile the screen with alternating star
and heart patterns. This example includes the C header file gsptypes.h ,
which defines the PATTERN structure.

#include <gsptypes.h> /* define PATTERN structure */

typedef struct { short row[16]; } PATNBITS;

static PATTERN fillpatn = { 16, 16, 1, (PTR)0 };
static PATNBITS patnbits[2] =
{
 {
 0x0000, 0x0000, 0x0E38, 0x1F7C, /* heart pattern */
 0x3FFE, 0x3FFE, 0x3FFE, 0x3FFE,
 0x1FFC, 0x0FF8, 0x07F0, 0x03E0,
 0x01C0, 0x0080, 0x0000, 0x0000
 },
 {
 0xFFFF, 0xFF7F, 0xFF7F, 0xFF7F, /* star pattern */
 0xFE3F, 0xFE3F, 0x8000, 0xE003,
 0xF007, 0xFC1F, 0xFC1F, 0xF80F,
 0xF9CF, 0xF3E7, 0xF7F7, 0xFFFF
 }
};

main()
{
 short x, y, index;

 set_config(0, !0);
 clear_screen(0);
 index = 0;
 for (x = 16; x < 160; x += 32)
 for (y = 16; y < 96; y += 32) {
 fillpatn.data = (PTR)&patnbits[index ^= 1];
 set_patn (&fillpatn);
 patnfill_rect(32, 32, x, y);
 }
}

Example

set_pensize Set Pen Size

7-90 Extended Primitives

void set_pensize(w, h)
short w, h; /* pen width and height */

The set_pensize function sets the dimensions of the pen for subsequent
drawing operations. The pen is a rectangular shape that is used by drawing
functions such as pen_line and pen_ovalarc to sweep out wide lines and
arcs. All functions that utilize the pen are easily identified by their function
names, which include the three-letter descriptor pen.

Arguments w and h specify the width and height of the pen. The width and
height are specified in terms of pixels.

A mathematically ideal line is infinitely thin. Conceptually, a function such
as pen_line renders a wide line by positioning the top left corner of the pen
to coincide with the ideal line as the pen is moved from one end of the line
to the other. The area swept out by the pen is filled with either a solid color
(for instance, pen_line) or pattern (for instance, patnpen_line). Arcs are ren-
dered in similar fashion.

Use set_pensize function to change dimensions of rectangular drawing
pen. Draw a point and a line to show the effect of the change in pen size.

main()
{
 set_config(0, !0);
 clear_screen(0);

 /* Draw point and line with default pen. */
 pen_point(10, 10);
 pen_line(20, 10, 100, 30);

 /* Set pen dimensions to 8x6. */
 set_pensize (8, 6);

 /* Draw new point and line. */
 pen_point(10, 30);
 pen_line(30, 30, 110, 50);
}

Syntax

Description

Example

Set Source Bit Map set_srcbm

7-91

typedef long PTR; /* 32-bit address */

void set_srcbm(baseaddr, pitch, xext, yext, psize)
PTR baseaddr; /* bit map base address */
short pitch; /* bit map pitch */
short xext, yext; /* x and y extents */
short psize; /* pixel size */

The set_srcbm function sets the source bit map for subsequent drawing
functions. Currently, only the bitblt and zoom_rect functions can access a
source bit map other than the screen.

Argument baseaddr is a pointer to the source bit map. Invoking the function
with a baseaddr value of 0 designates the screen as the source bit map. In
this case, the last four arguments are ignored by the function. A nonzero
baseaddr is interpreted as a pointer to a linear bit map; that is, the source
bit map is contained in an off-screen buffer. The specified bit map should
begin on an even pixel boundary in memory. For instance, when the pixel
size is 32 bits, the 5 LSBs of the bit map’s base address should all be 0s.

Argument pitch is the difference in bit addresses from the start of one row
of the linear bit map to the next. The bitblt function requires that the source
pitch be specified as a positive, nonzero multiple of the source bit map’s pix-
el size. The bitblt function executes more rapidly if the pitch is further re-
stricted to be a multiple of 16. The zoom_rect function requires that the
source pitch be specified as a positive, nonzero multiple of 16. In the case
of a 32-bit source pixel size, zoom_rect requires a multiple-of-32 pitch.

Arguments xext and yext define the upper limits of the effective clipping
window for the linear bit map. The pixel having the lowest memory address
in the window is the pixel at (0,0), whose address is baseaddr. The pixel
having the highest memory address in the window is the pixel at (xext,yext),
whose address is calculated as
 address = baseaddr + yext*(pitch) + xext*(psize)
 In the case of a linear bit map, responsibility for clipping is left to the applica-
tion program.

Syntax

Description

set_srcbm Set Source Bit Map

7-92 Extended Primitives

Use the set_srcbm function to designate an off-screen buffer as the source
bit map. Expand the image from 1 bit per pixel to the screen pixel size and
copy the image to the screen.

#define W 23 /* width of image in pixels */
#define H 9 /* height of image in pixels */
#define PITCH 32 /* pitch of image in bits */
#define DEPTH 4 /* screen pixel size */
#define MAXBYTES DEPTH*W/8 /* zoom_rect buffer size in bytes */

static short image[H*PITCH/16] = {
 0xFFFF, 0x007F, 0x0001, 0x0040, 0x45D5, 0x005C,
 0x4455, 0x0054, 0x44DD, 0x0054, 0x4455, 0x0054,
 0xDDD5, 0x005D, 0x0001, 0x0040, 0xFFFF, 0x007F,
};
static char buf[4*W/8]; /* temp buffer for zoom_rect */

main()
{
 short x, y;

 set_config(0, !0);
 clear_screen(0);

 /* Expand image to screen. */
 x = y = 10;
 set_srcbm (image, PITCH, W, H, 1); /* off-screen bit map */
 bitblt(W, H, 0, 0, x, y);

 /* Blow the image up so it’s big enough to see. */
 set_srcbm(0, 0, 0, 0, 0); /* screen */
 zoom_rect(W, H, x, y, 3*W, 3*H, x, y+2*H, buf);
}

Example

Set Text Attributes set_textattr

7-93

short set_textattr(pcontrol, count, val)
char *pcontrol; /* control string */
short count; /* val array length */
short *val; /* array of attribute values */

The set_textattr function sets text-rendering attributes. The function pro-
vides control over text attributes such as alignment, additional intercharact-
er spacing, and intercharacter gaps. The attributes specified by the function
remain in effect during subsequent calls to the install_font, select_font, and
delete_font functions.

Argument pcontrol is a control string specifying the attributes (one or more)
to be updated. Argument count is the number of elements in the val array
and is also the number of asterisks in the control string. Argument val is the
array containing the attribute values designated by asterisks in the control
string. The attribute values are contained in the consecutive elements of the
val array, beginning with val [0], in the order in which they appear in the
pcontrol string.

The following attributes are currently supported:

Symbol Attribute Description Option Value
 %a alignment 0 = top left, 1 = base line
 %e additional intercharacter spacing 16-bit signed integer
 %f fill gaps 0 = leave gaps, 1 = fill gaps
 %r reset all options ignored

Values associated with attributes can be specified either as immediate val-
ues in the control string or as values in the val array. When an attribute value
is passed as a string literal, it should be placed between the percent (%)
character and the attribute symbol. When an attribute value is passed as
a val array element, an asterisk (*) is placed between the percent character
and the attribute symbol. Upon encountering the asterisk, the function will
retrieve the value from the val array and increment its internal pointer to the
next val array element.

The value returned by the function is the number of attributes successfully
set.

Only the text attributes of proportionally spaced fonts can be modified by
this function; the attributes of block fonts are fixed. Block fonts are charac-
terized by uniform horizontal spacing between adjacent characters. Block
fonts are always aligned to the top left corner of the character cell; that is,
the position of a string of block text is always specified in terms of the x-y
coordinates at the top left corner of the first character in the string. The inter-
character gaps between block-font characters are always filled with the
background color.

Syntax

Description

set_textattr Set Text Attributes

7-94 Extended Primitives

The system font, font 0, is always a block font. Fonts installed by calls to the
install_font function (identified by font indices 1, 2, and so on) may be se-
lected to be either block fonts or proportionally spaced fonts.

In the case of a proportionally spaced font, text alignment in the y dimension
can be set either to the top of the character or to the base line of the charac-
ter. Text alignment in the x dimension is fixed at the left edge of the charac-
ter. Immediately following initialization of the drawing environment by the
set_config function, the alignment is to the top left corner of the character,
which is the default.

The additional intercharacter spacing attribute specifies how many extra
pixels of space are to be added (or subtracted in the case of a negative val-
ue) to the default horizontal separation between adjacent characters, as
specified in the FONT data structure. Immediately following initialization of
the drawing environment by the set_config function, the additional inter-
character spacing is 0, which is the default.

The intercharacter gaps attribute controls whether the gaps between hori-
zontally adjacent characters are automatically filled with the background
color. When this attribute is enabled, one line of proportionally spaced text
may be cleanly written directly on top of another without first erasing the text
underneath. Immediately following initialization of the drawing environment
by the set_config function, the filling of intercharacter gaps is disabled,
which is the default.

Set the text alignment mode to top-left-corner position. This can accom-
plished by assigning the value 1 to attribute symbol %a by means of the
literal method:

set_textattr (”%1a”, 0, 0);

Note that in the example above the third argument is ignored by the func-
tion.

The same effect can be achieved by passing the attribute value in the val
array. An asterisk is placed between the “%” and the “a” in the control string,
and val [0] contains the attribute value, 1:

short val[1];
val[0] = 1;
set_textattr (”%*a”, 1, val);

The following example sets two attributes in a single call to set_textattr. It
sets the text alignment mode to base line position using a literal value em-
bedded in the control string, and sets the additional intercharacter spacing
to –21 by passing the value through the val array:

short val[1];
val[0] = –21;
set_textattr (”%0a%*e”, 1, val);

Examples

Set Text Attributes set_textattr

7-95

The same effect can be achieved by passing both values through the val
array:

short val[1];
val[0] = 0;
val[1] = –21;
set_textattr (”%*a%*e”, 2, val);

Finally, the following function call resets all text attributes to their default val-
ues:

set_textattr (”%0r”,0,0);

styled_line Draw Styled Line

7-96 Extended Primitives

void styled_line(x1, y1, x2, y2, style, mode)
short x1, y1; /* start coordinates */
short x2, y2; /* end coordinates */
long style; /* 32-bit line style pattern */
short mode /* 1 of 4 drawing modes */

The styled_line function uses Bresenham’s algorithm to draw a styled line
from the specified start point to the specified end point. The line is a single
pixel thick and is drawn in the specified line-style pattern.

Arguments x1 and y1 specify the starting coordinates of the line. Arguments
x2 and y2 specify the ending coordinates. Coordinates are specified relative
to the drawing origin. The last two arguments, style and mode, specify the
line style and drawing mode.

Argument style is a long integer containing a 32-bit repeating line-style pat-
tern. Pattern bits are consumed in the order 0,1,...,31, where 0 is the right-
most bit (the LSB). The pattern is repeated modulo 32 as the line is drawn.
A bit value of 1 in the pattern specifies that the foreground color is used to
draw the corresponding pixel. A bit value of 0 in the pattern means that the
corresponding pixel is either drawn in the background color (drawing
modes 1 and 3) or not drawn (modes 0 and 2).

The function supports four drawing modes:
mode 0 – Does not draw background pixels (leaves gaps); loads new

line-style pattern from style argument.
mode 1 – Draws background pixels, and loads new line-style pattern

from style argument.
mode 2 – Does not draw background pixels (leaves gaps); reuses old

line-style pattern (ignores style argument).
mode 3 – Draws background pixels and reuses old line-style pattern (ig-

nores style argument).

Drawing modes 2 and 3 support line-style pattern reuse in instances in
which the pattern must be continuous across two or more connecting lines.
During the course of drawing a line of length n (in pixels), the original line-
style pattern is rotated left (n–1) modulo 32 bits. The rotated pattern is al-
ways saved by the function before returning. The saved pattern is ready to
be used as the pattern for a new line that continues from the end of the line
just drawn.

During initialization of the drawing environment by the set_config function,
the line-style pattern is set to its default value, which is all 1s.

The current line-style pattern can be obtained by calling the get_env func-
tion. See the get_env function description for more information.

Syntax

Description

Draw Styled Line styled_line

7-97

Use the styled_line function to draw four connected lines. The line-style pat-
tern is continuous from one line segment to the next.

#define DOTDASH 0x18FF18FF /* dot–dash line-style pattern */
#define NEW 0 /* mode = load new line style */
#define OLD 2 /* mode = re–use old line style */

main()
{
 set_config(0, !0);
 clear_screen(0);
 styled_line (10, 10, 140, 10, DOTDASH, NEW);
 styled_line (140, 10, 140, 60, 0, OLD);
 styled_line (140, 60, 95, 60, 0, OLD);
 styled_line (95, 60, 55, 100, 0, OLD);
}

Example

styled_oval Draw Styled Oval

7-98 Extended Primitives

void styled_oval(w, h, xleft, ytop, style, mode)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
long style; /* 32-bit line-style pattern */
short mode; /* selects 1 of 4 drawing modes */

The styled_oval function draws the styled outline of an ellipse, given the en-
closing rectangle in which the ellipse is inscribed. The outline of the ellipse
is only one pixel in thickness and is drawn using a 32-bit line-style pattern.
The ellipse is in standard position, with its major and minor axes parallel to
the coordinate axes.

The first four arguments specify the rectangle enclosing the ellipse:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

If either the width or height is 0, the oval is not drawn.

The line-style pattern is specified in argument style, a long integer contain-
ing a 32-bit repeating line-style pattern. Pattern bits are consumed in the
order 0,1,...,31, where bit 0 is the LSB. The pattern is repeated modulo 32,
as the ellipse is drawn. A bit value of 1 in the pattern specifies that the fore-
ground color is used to draw the corresponding pixel. A bit value of 0 means
that the corresponding pixel is either drawn in the background color (modes
1 and 3) or not drawn (modes 0 and 2). The ellipse is drawn in the clockwise
direction on the screen, beginning at the rightmost point of the ellipse if
w < h, or at the bottom of the ellipse if w ≥ h.

The function supports four drawing modes:
mode 0 – Does not draw background pixels (leaves gaps); loads new

line-style pattern from style argument.
mode 1 – Draws background pixels and loads new line-style pattern from

style argument.
mode 2 – Does not draw background pixels (leaves gaps); reuses old

line-style pattern (ignores style argument).
mode 3 – Draws background pixels and reuses old line-style pattern (ig-

nores style argument).

The (rotated) pattern is always saved by the function before returning. This
pattern is available to draw a subsequent arc or line.

During initialization of the drawing environment by the set_config function,
the line-style pattern is set to its default value, which is all 1s.

Syntax

Description

Draw Styled Oval styled_oval

7-99

Use the styled_oval function to render the outline of an ellipse with a 32-bit
repeating line-style pattern.

#define DOTDASH 0x18FF18FF /* dot–dash line-style pattern */

main()
{
 set_config(0, !0);
 clear_screen(0);
 styled_oval (130, 90, 10, 10, DOTDASH, 0);
}

Example

styled_ovalarc Draw Styled Oval Arc

7-100 Extended Primitives

void styled_ovalarc(w, h, xleft, ytop, theta, arc, style,
mode)

short w, h; /* width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */
long style; /* 32-bit line-style pattern */
short mode; /* selects 1 of 4 drawing modes */

The styled_ovalarc function draws a styled arc taken from an ellipse. The
ellipse is in standard position, with the major and minor axes parallel to the
x and y axes. The arc is drawn one pixel in thickness using the specified re-
peating line-style pattern. The ellipse from which the arc is taken is specified
in terms of the enclosing rectangle in which it is inscribed.

The first four arguments specify the rectangle enclosing the ellipse from
which the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin. If either
the width or height is 0, the arc is not drawn.

The next two arguments define the limits of the arc and are specified in inte-
ger degrees:

Argument theta specifies the starting angle and is measured from the
center of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent – that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, posi-
tive angles are in the clockwise direction, and negative angles are counter-
clockwise. Argument theta is treated as modulus 360. If the value of argu-
ment arc is outside the range [–359,+359], the entire ellipse is drawn.

Argument style is a long integer containing a 32-bit repeating line-style pat-
tern. Pattern bits are consumed in the order 0,1,...,31, where 0 is the right-
most bit (the LSB). The pattern is repeated modulo 32 as the line is drawn.
A bit value of 1 in the pattern specifies that the foreground color is used to
draw the corresponding pixel. A bit value of 0 in the pattern means that the
corresponding pixel is either drawn in the background color (drawing
modes 1 and 3) or not drawn (modes 0 and 2).

Syntax

Description

Draw Styled Oval Arc styled_ovalarc

7-101

The function supports four drawing modes:
mode 0 – Does not draw background pixels (leaves gaps); loads new

line-style pattern from style argument.
mode 1 – Draws background pixels and loads new line-style pattern from

style argument.
mode 2 – Does not draw background pixels (leaves gaps); reuses old

line-style pattern (ignores style argument).
mode 3 – Draws background pixels and reuses old line-style pattern (ig-

nores style argument).

The (rotated) pattern is always saved by the function before returning. This
pattern is available to draw a subsequent arc or line.

Use the styled_ovalarc function to draw two arcs that are rendered with a
dot-dot-dash line-style pattern. Use the styled_line function to draw a line
connecting the two arcs. The line-style pattern is continuous at the joints be-
tween the arcs and the line.

#define DOTDOTDASH 0x3F333F33 /* ..–..– line-style pattern */
#define NEW 0 /* mode = load new line style */
#define OLD 2 /* mode = re–use old line style */

main()
{
 set_config(0, !0);
 clear_screen(0);
 styled_ovalarc(70, 70, 10, 65, 180, 90, DOTDOTDASH, NEW);
 styled_line(45, 65, 85, 65, –1, OLD);
 styled_ovalarc (110, 110, 30, –45, 90, –90, –1, OLD);
}

Example

styled_piearc Draw Styled Pie Arc

7-102 Extended Primitives

void styled_piearc(w, h, xleft, ytop, theta, arc, style,

mode)
short w, h; /* width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */
long style; /* 32-bit line-style pattern */
short mode; /* selects 1 of 4 drawing modes */

The styled_piearc function draws a styled arc taken from an ellipse. Two
straight, styled lines connect the two end points of the arc with the center
of the ellipse. The ellipse is in standard position, with the major and minor
axes parallel to the x and y axes. The arc and the two lines from the center
are drawn one pixel in thickness using the specified repeating line-style pat-
tern. The ellipse from which the arc is taken is specified in terms of the en-
closing rectangle in which it is inscribed.

The first four arguments specify the rectangle enclosing the ellipse from
which the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner
of the rectangle and are defined relative to the drawing origin.

If either the width or height is 0, the arc is not drawn.

The next two arguments define the limits of the arc and are specified in inte-
ger degrees:

Argument theta specifies the starting angle and is measured from the
center of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent – that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, posi-
tive angles are in the clockwise direction, and negative angles are counter-
clockwise. Argument theta is treated as modulus 360. If the value of argu-
ment arc is outside the range [–359,+359], the entire ellipse is drawn.

Argument style is a long integer containing a 32-bit repeating line-style pat-
tern. Pattern bits are consumed in the order 0,1,...,31, where 0 is the right-
most bit (the LSB). The pattern is repeated modulo 32 as the line is drawn.
A bit value of 1 in the pattern specifies that the foreground color is used to
draw the corresponding pixel. A bit value of 0 in the pattern means that the
corresponding pixel is either drawn in background color (drawing modes 1
and 3) or not drawn (modes 0 and 2).

Syntax

Description

Draw Styled Pie Arc styled_piearc

7-103

The function supports four drawing modes:
mode 0 – Does not draw background pixels (leaves gaps); loads new

line-style pattern from style argument.
mode 1 – Draws background pixels and loads new line-style pattern from

style argument.
mode 2 – Does not draw background pixels (leaves gaps); reuses old

line-style pattern (ignores style argument).
mode 3 – Draws background pixels and reuses old line-style pattern (ig-

nores style argument).

Use the styled_piearc function to draw a pie slice taken from an ellipse of
width 130 and height 90. The slice traverses a 237-degree arc of the ellipse
extending from –33 degrees to –270 degrees, drawn in the counterclock-
wise direction around the perimeter of the ellipse.

#define DOTDOTDASH 0x3F333F33 /* line-style pattern */

main()
{
 set_config(0, !0);
 clear_screen(0);
 styled_piearc (130, 90, 10, 10, –33, –270+33, DOTDOTDASH, 0);
}

Example

swap_bm Swap Source and Destination Bit Maps

7-104 Extended Primitives

void swap_bm()

The swap_bm function swaps the source and destination bit maps. To move
pixels back and forth between two bit maps, this function is more convenient
than calling both the set_srcbm and set_dstbm functions.

Use the swap_bm function to swap the source and destination bit maps. Ini-
tially, the destination bit map is designated as an off-screen buffer, and the
source bit map is the screen. A line of text is rendered on the screen, and
its image is contracted from the screen pixel depth to one bit per pixel and
stored in the off-screen buffer by a call to the bitblt function. Following a call
to swap_bm, the destination bit map is the screen, and the source bit map
is the off-screen buffer. The captured image is copied to the screen three
times by three calls to the bitblt function. This example includes the C head-
er file gsptypes.h , which defines the FONT and FONTINFO structures.

Syntax

Description

Example

Swap Source and Destination Bit Maps swap_bm

7-105

#include <gsptypes.h> /* define FONT and FONTINFO */
#define MAXBYTES 2048 /* size of image buffer in bytes */

static char image[MAXBYTES];
static FONTINFO fontinfo;

main()
{
 short w, h, x, y, pitch;
 char *s;

 set_config(0, !0);
 clear_screen(0);

 /* Print one line of text to screen. */
 x = y = 10;
 s = ”TEXT IMAGE”;
 text_out(x, y, s);
 w = text_width(s);
 get_fontinfo(0, &fontinfo);
 h = fontinfo.charhigh;

 /* Make sure buffer is big enough to contain image. */
 pitch = ((w + 15)/16)*16;
 if (pitch*h/8 > MAXBYTES) {
 text_out(x, y+h, ”Image won’t fit!”);
 exit(1);
 }

 /* Capture text image from screen. */
 set_dstbm(image, pitch, w, h, 1); /* off-screen bit map */
 bitblt(w, h, x, y, 0, 0); /* contract */

 /* Now copy text image to 3 other areas of screen. */
 swap_bm();
 bitblt(w, h, 0, 0, x, y+h); /* expand copy #1 */
 bitblt(w, h, 0, 0, x, y+2*h); /* expand copy #2 */
 bitblt(w, h, 0, 0, x, y+3*h); /* expand copy #3 */
}

text_width Get Width of Text String

7-106 Extended Primitives

short text_width(s)
unsigned char *s; /* character string */

The text_width returns the width of the string in pixels, as if it were rendered
using the current selected font and the current set of text-drawing attributes.
Argument s is a string of 8-bit ASCII character codes terminated by a null
(0) character code.

Use the text_width function to enclose a line of text in a rectangular frame.
This example includes the C header file gsptypes.h , which defines the
FONTINFO structure.

#include <gsptypes.h> /* define FONTINFO structure */
#define DX 5 /* frame thickness in x dimension */
#define DY 4 /* frame thickness in y dimension */

main()
{
 FONTINFO fontinfo;
 short w, h, x, y;
 char *s;

 set_config(0, !0);
 clear_screen(0);
 s = ”Enclose this text.”;
 get_fontinfo(0, &fontinfo);
 w = text_width (s);
 h = fontinfo.charhigh;
 x = y = 10;
 text_out(x+2*DX, y+2*DY, s);
 frame_rect(w+4*DX, h+4*DY, x, y, DX, DY);
}

Syntax

Description

Example

Zoom Rectangle zoom_rect

7-107

void zoom_rect(ws, hs, xs, ys, wd, hd, xd, yd, rowbuf)
short ws, hs; /* source width and height */
short xs, ys; /* source top left corner */
short wd, hd /* destination width and height */
short xd, yd; /* destination top left corner */
char *rowbuf; /* temporary row buffer */

The zoom_rect function expands or shrinks a two-dimensional source array
of pixels to fit the dimensions of a rectangular destination array on the
screen. The source array may be either a rectangular area of the screen or
a pixel array contained in an off-screen buffer. The width and height of the
source array are specified independently from (and in general differ from)
those of the destination array. Horizontal zooming is accomplished by repli-
cating or collapsing (by deleting, for instance) columns of pixels from the
source array to fit the width of the destination array. Vertical zooming is ac-
complished by replicating or collapsing rows of pixels from the source array
to fit the height of the destination array. This type of function is sometimes
referred to as a stretch blit.

The source and destination arrays are contained within the currently se-
lected source and destination bit maps; these bit maps are selected by call-
ing the set_srcbm and set_dstbm functions before calling zoom_rect. Call-
ing the set_config function with the init_draw argument set to a nonzero val-
ue causes both the source and destination bit maps to be set to the default
bit map, which is the screen. The zoom_rect function requires that the pixel
sizes for the source and destination bit maps be the same. The destination
bit map must be the screen.

The first four arguments define the source array:

Arguments ws and hs specify the width and height of the source array.

Arguments xs and ys specify the x and y displacements of the top left
corner of the source array from the origin. If the source bit map is the
screen, the current drawing origin is used. If the source bit map is an
off-screen buffer, the origin lies at the bit map’s base address, as speci-
fied to the set_srcbm function.

The next four arguments define the destination array on the screen:

Arguments wd and hd specify the width and height of the destination
array.

Arguments xd and yd specify the x and y coordinates at the top left cor-
ner of the source array, defined relative to the drawing origin.

The final argument, rowbuf, is a buffer large enough to contain one com-
plete row of either the destination array or the source array, whichever has
the greater width. (A buffer the width of the screen will always be sufficient.)

Syntax

Description

zoom_rect Zoom Rectangle

7-108 Extended Primitives

The required storage capacity in 8-bit bytes is calculated by multiplying the
array width by the pixel size and dividing the result by 8.

Each of the following conditions is treated as an error that causes the
zoom_rect function to abort (return immediately) without drawing anything:

The destination is not the screen.

The source and destination pixel sizes are not the same.

The widths and heights specified for the source and destination arrays
are not all nonnegative. No value is returned by the function in any
event.

Only the portion of the destination rectangle lying within the current clipping
window is modified by this function. The source rectangle, however, is per-
mitted to lie partially or entirely outside the clipping window, in which case
the pixels lying within the source rectangle are zoomed to the destination,
regardless of whether they are inside or outside the window. The applica-
tions programmer is responsible for constraining the size and position of the
source rectangle to ensure that it encloses valid pixel values.

The only exception to this behavior occurs when the left or top edge of the
source rectangle lies in negative screen coordinate space, in which case
the function automatically clips the source rectangle to positive x-y coordi-
nate space; in most systems, this means that the source is clipped to the
top and left edges of the screen. The resulting clipped source rectangle is
zoomed to the destination rectangle and justified to the lower right corner
of the specified destination rectangle. Portions of the destination rectangle
corresponding to clipped portions of the source are not modified.

If the desired effect is to zoom a 1-bit-per-pixel bit map to the screen and
the screen pixel size is greater than 1, the zoom operation must be done in
two stages. First, the bitblt function is called to expand the original bit map
to a color pixel array contained in an off-screen buffer. Second, the
zoom_rect function is called to zoom the expanded pixel array from the
off-screen buffer to the screen.

Shrinking in the horizontal direction causes some number of horizontally-
adjacent source pixels to be collapsed to a single destination pixel. Similar-
ly, shrinking in the vertical direction causes some number of vertically adja-
cent rows of source pixels to be collapsed to a single row in the destination
array. When several source pixels are collapsed to a single destination pix-
el, they are combined with each other and with the destination background
pixel according to the selected pixel-processing operation code. For exam-
ple, the replace operation simply selects a single source pixel to represent
all the source pixels in the region being collapsed. A better result can often
be obtained by using a Boolean-OR operation (at 1 bit per pixel) or a max
operation (at multiple bits per pixel).

Zoom Rectangle zoom_rect

7-109

The function internally disables transparency during the zoom operation but
restores the original transparency state prior to returning.

The zoom_rect function may yield unexpected results for the following pix-
el- processing operation codes:

PPOP Code Operation
7 ~src AND ~dst
11 ~src AND dst
13 ~src OR dst
14 ~src OR ~dst
15 ~src

 When used in conjunction with the zoom_rect function, selecting these op-
erations causes the source array to be 1s complemented not once, as might
be expected, but twice.

The buffer specified by the rowbuf argument is not used if all three of the
following conditions are satisfied:

1) The pixel-processing operation code is 0 (replace).

2) The destination width and height are both greater than or equal to the
source width and height.

3) The top of the destination rectangle does not lie above the top of the
screen (in negative-y screen space).

Use the zoom_rect function to blow up an area-fill pattern for closer inspec-
tion. The image is zoomed by a factor of 3. This example includes the C
header file gsptypes.h , which defines the PATTERN structure.

Example

zoom_rect Zoom Rectangle

7-110 Extended Primitives

#include <gsptypes.h> /* define PATTERN structure */
#define W 48 /* width of source rectangle */
#define H 32 /* height of source rectangle */
#define X 12 /* left edge of source rectangle */
#define Y 12 /* top edge of source rectangle */
#define Z 3 /* zoom factor */
#define DEPTH 4 /* screen pixel size */
#define MAXBYTES DEPTH*Z*W/8 /* zoom_rect buffer size in bytes
*/

static short tinyblobs[16] =
{ /* 16x16 area–fill pattern */
 0x1008, 0x0C30, 0x03C0, 0x8001, 0x4002, 0x4002, 0x2004,
0x2004,
 0x2004, 0x2004, 0x4002, 0x4002, 0x8001, 0x03C0, 0x0C30,
0x1008,
};
static PATTERN fillpatn = { 16, 16, 1, (PTR)tinyblobs };
static char buf[MAXBYTES];

main()
{
 set_config(0, !0);
 clear_screen(0);
 set_patn(&fillpatn);
 patnfill_rect(W, H, X, Y);
 frame_rect(W, H, X, Y, 1, 1);
 zoom_rect (W, H, X, Y, Z*W, Z*H, X+W+10, Y, buf);
}

A-1

Appendix A

Data Structures

This appendix describes the data structures defined and used within the
TMS340 Graphics Library. The following is a list of all the structure types to
be discussed:

Structure Type Description
BITMAP Bit map (actually a two-dimensional pixel array)
CONFIG Information about display system and graphics

mode
ENCODED_RECT Header for image compressed by encode_rect

function
ENVIRONMENT Information about drawing environment
ENVTEXT Information about text environment
FONT Header for a bit-mapped font
FONTINFO Information about a bit-mapped font
MODEINFO Information about a particular graphics mode
OFFSCREEN_AREA Information about a particular off-screen buffer
PAGE Information about a particular video page
PALET Information about a particular palette entry
PATTERN Information about a particular area-fill pattern

Certain library functions retrieve information about the graphics environ-
ment and copy that information into one of the structures listed above. The
following is a list of these functions and the structures they use to present
information to the application program:

Function Structure Type
get_config CONFIG
get_env ENVIRONMENT
get_fontinfo FONTINFO
get_modeinfo MODEINFO
get_offscreen_memory OFFSCREEN_AREA
get_palet PALET

Note that the definitions of the structure types above may change in subse-
quent revisions of TIGA and the TMS340 Graphics Library. To minimize the
impact of such revisions, write your application programs to refer to the ele-

Data Structures

A-2 Data Structures

ments of the structure symbolically by their field names, rather than as off-
sets from the start of the structure. The include files provided with the library
and with TIGA will be updated, as necessary, in future revisions to track any
such changes in data structure definitions.

Within the graphics library, information about the graphics environment is
available in the form of global variables that are structures. The global vari-
ables and the corresponding structure types are listed below:

Global Variable Structure Type Global Variable Description
config CONFIG Information about display

system and current graphics
mode

DEFAULT_PALET[] PALET Default 16-color palette
env ENVIRONMENT Current drawing environment
envtext ENVTEXT Current text environment
*modeinfo MODEINFO Pointer to information about

current graphics mode
*offscreen OFFSCREEN_AREA Pointer to array of off-screen

buffers available in current
graphics mode

*page PAGE Pointer to array of video pages
available in current graphics
mode

palet[] PALET Array of current palette entries
pattern PATTERN Current area-fill pattern
*sysfont FONT Pointer to system font

An asterisk in the left column indicates that the associated variable is a
pointer; a pair of square brackets indicates that the variable is an array.
These global variables are accessible to all library functions and to any pro-
prietary library extensions added by the user. While application programs
running under the TMS340 Graphics Library may also directly access these
globals, applications running in the TIGA environment cannot. If emulation
of the TIGA environment is important to your applications, access the library
globals indirectly through inquiry functions such as get_config and get_env.
This practice will enhance the portability of applications between the graph-
ics library and TIGA.

The type PTR, which appears in several of the structure definitions that fol-
low, is defined as follows:

 typedef unsigned long PTR;

Type PTR is a 32-bit pointer to a location in the TMS340 graphics proces-
sor’s memory.

 BITMAP Structure Definition

A-3

A.1 BITMAP Structure Definition

The BITMAP data structure contains information describing a two-dimen-
sional array of pixels. The following is the C typedef statement describing
the structure:

typedef struct
{
 PTR addr; /* pixel array base address
*/
 unsigned short pitch; /* pitch in bits */
 unsigned short xext, yext; /* x and y extents */
 unsigned short psize; /* pixel size in bits */
} BITMAP;

The fields of the data structure are utilized as follows:

addr 32-bit base address of pixel array in TMS340 graphics proces-
sor’s memory

pitch Difference in starting addresses between adjacent rows of pixel
array

xext The extent of pixel array in x dimension (pixels per row)

yext The extent of pixel array in y dimension (number of rows)

psize The depth (number of bits per pixel) of pixel array

The BITMAP structure is used in the definition of the ENVIRONMENT struc-
ture. For more information, refer to the description of the get_env function
in Chapter 7.

CONFIG Structure Definition

A-4 Data Structures

A.2 CONFIG Structure Definition

The CONFIG data structure contains information about the display system
and graphics mode. The following is the C typedef statement describing the
structure:

typedef struct
{
 unsigned short version_number; /* TIGA revision number */
 unsigned long comm_buff_size; /* undefined in graphics library */
 unsigned long sys_flags; /* coprocessor presence flags */
 unsigned long device_rev; /* GSP silicon revision number */
 unsigned short num_modes; /* number of graphics modes */
 unsigned short current_mode; /* current graphics mode */
 unsigned long program_mem_start; /* start of program memory */
 unsigned long program_mem_end; /* end of program memory */
 unsigned long display_mem_start; /* start of display memory */
 unsigned long display_mem_end; /* end of display memory */
 unsigned long stack_size; /* max. stack size in bytes */
 unsigned long shared_mem_size; /* undefined in graphics library */
 HPTR shared_host_addr; /* undefined in graphics library */
 PTR shared_gsp_addr; /* undefined in graphics library */
 MODEINFO mode; /* graphics mode information */
} CONFIG;

The HPTR type is a 32-bit pointer to a location in the host processor’s
memory. The graphics library’s global variable config is a structure of type
CONFIG. This global contains information describing the display system
and the current graphics mode. For more information on the CONFIG struc-
ture, refer to the description of the get_config function in Chapter 6.

 ENCODED_RECT Structure Definition

A-5

A.3 ENCODED_RECT Structure Definition

The ENCODED_RECT data structure defines the header information at the
beginning of a compressed image encoded by the encode_rect function.
The following is the C typedef statement describing the structure:

typedef struct
{
 unsigned short magic; /* magic number */
 unsigned long length; /* length of data in bytes */
 unsigned short scheme; /* encoding scheme */
 short width, height; /* dimensions of image rectangle */
 short psize; /* pixel size of image */
 short flags; /* usage varies with scheme */
 unsigned long clipadj; /* x–y clipping adjustments */
} ENCODED_RECT;

For more information, refer to the description of the encode_rect function
in Chapter 7.

ENVIRONMENT Structure Definition

A-6 Data Structures

A.4 ENVIRONMENT Structure Definition

The ENVIRONMENT data structure specifies the values of the parameters
in the drawing environment. The following is the C typedef statement de-
scribing the structure:

typedef struct
{
 unsigned long xyorigin; /* x–y drawing origin */
 unsigned long pensize; /* width and height of pen */
 BITMAP *srcbm, *dstbm; /* source and destination bit maps */
 unsigned long stylemask; /* line–style pattern */
} ENVIRONMENT;

The graphics library’s global variable env is a structure of type ENVIRON-
MENT and contains information describing the current drawing environ-
ment. The ENVIRONMENT structure is also the format in which the get_env
function retrieves the information describing the current drawing environ-
ment. For more information, refer to the description of the ENVIRONMENT
data structure in the description of the get_env function in Chapter 7.

 ENVTEXT Structure Definition

A-7

A.5 ENVTEXT Structure Definition

The ENVTEXT data structure contains information describing the current
text environment. The following is the C typedef statement describing the
structure:

typedef struct
{
 short installed; /* number of fonts installed */
 short allocated; /* number of slots allocated */
 FONT **font; /* pointer to font table */
 FONT *selected; /* pointer to current font */
 short align; /* alignment (top left or baseline) */
 short charextra; /* additional intercharacter spacing */
 long effects; /* special effects */
 short xposn, yposn; /* current text x–y coordinates */
} ENVTEXT;

The graphics library’s global variable envtext is a structure of type ENV-
TEXT that describes the current text attributes and provides access to the
installed fonts. The fields of the ENVTEXT structure are utilized as follows:

installed The number of fonts currently installed in the font table (in addi-
tion to font 0, which is permanently installed)

allocated The maximum number of fonts that can be installed in the font
table, in addition to font 0

font A pointer to the start of the font table, which is a table of pointers
to all currently installed fonts

selected A pointer to the currently selected font

align Text alignment attribute (0 = align to top left corner of first char-
acter in string, 1 = align to character origin at base line)

charextra Extra intercharacter spacing attribute (value added to default
spacing specified in font structure)

effects Reserved for future use

xposn x coordinate of position at which next call to text_outp will start
printing

yposn y coordinate of position at which next call to text_outp will start
printing

By convention, the allocated field above must contain a value of 16 or great-
er. In other words, the font table will always be large enough to permit at
least 16 fonts to be installed, in addition to font 0, which is the permanently
installed system font.

FONT Structure Definition

A-8 Data Structures

A.6 FONT Structure Definition

The FONT data structure defines the header information at the start of a
bit-mapped font. The following is the C typedef statement describing the
structure:

typedef struct
{
 unsigned short magic; /* font type code */
 long length; /* length of font in bytes */
 char facename[30]; /* string containing name of font */
 short deflt; /* ASCII code of default character */
 short first; /* ASCII code of first character */
 short last; /* ASCII code of last character */
 short maxwide; /* maximum character width */
 short maxkern; /* maximum character kerning amount */
 short charwide; /* width of characters (0 if proportional)
*/
 short avgwide; /* average width of characters */
 short charhigh; /* character height */
 short ascent; /* ascent (how far above base line) */
 short descent; /* descent (how far below base line) */
 short leading; /* leading (row bottom to next row top) */
 long rowpitch; /* bits per row of char patterns */
 long oPatnTbl; /* bit offset to pattern table */
 long oLocTbl; /* bit offset to location table */
 long oOwTbl; /* bit offset to offset/width table */
} FONT;

The graphics library’s global variable sysfont is a pointer to the system font,
which begins with a header of type FONT. The FONT structure is also used
in the definition of the ENVTEXT and FONTINFO structures. For more infor-
mation, refer to the discussion of the FONT structure in Chapter 5.

 FONTINFO Structure Definition

A-9

A.7 FONTINFO Structure Definition

The FONTINFO structure defines the format in which the get_fontinfo func-
tion retrieves information describing the designated font. The following is
the C typedef statement describing the structure:

typedef struct
{
 char facename[30]; /* string containing name of font */
 short deflt; /* ASCII code of default character */
 short first; /* ASCII code of first character */
 short last; /* ASCII code of last character */
 short maxwide; /* maximum character width */
 short avgwide; /* average width of characters */
 short maxkern; /* maximum kerning amount */
 short charwide; /* width of characters (0=proportional) */
 short charhigh; /* character height */
 short ascent; /* ascent (how far above base line) */
 short descent; /* descent (how far below base line) */
 short leading; /* leading (row bottom to next row top) */
 FONT *fontptr; /* address of font in GSP memory */
 short id; /* font identifier (font table index) */
} FONTINFO;

The FONTINFO structure is the format in which the get_fontinfo retrieves
the information describing the specified installed font. For more information,
refer to the description of the get_fontinfo function in Chapter 6.

MODEINFO Structure Definition

A-10 Data Structures

A.8 MODEINFO Structure Definition

The MODEINFO data structure contains information describing a particular
graphics mode. The following is the C typedef statement describing the
structure:

typedef struct
{
 unsigned long disp_pitch; /* display pitch */
 unsigned short disp_vres; /* number of scan lines */
 unsigned short disp_hres; /* pixels per scan line */
 short screen_wide; /* screen width in centimeters */
 short screen_high; /* screen height in centimeters */
 unsigned short disp_psize; /* pixel size in bits */
 unsigned long pixel_mask; /* pixel mask */
 unsigned short palet_gun_depth; /* bits per gun */
 unsigned long palet_size; /* number of palette entries */
 short palet_inset; /* palette offset from frame */
 unsigned short num_pages; /* number of display pages */
 short num_offscrn_areas; /* number of offscreen buffers */
 unsigned long wksp_addr; /* offscreen workspace address */
 unsigned long wksp_pitch; /* offscreen workspace pitch */
 unsigned short vram_block_write; /* VRAM block write flag */
} MODEINFO;

The graphics library’s global variable modeinfo is a pointer to a structure of
type MODEINFO that describes the current graphics mode. The MODEIN-
FO structure is the format in which the get_modeinfo function retrieves the
information describing the specified graphics mode. Also, the MODEINFO
structure is used in the definition of the CONFIG structure. For more infor-
mation, refer to the description of the get_modeinfo function in Chapter 6.

 OFFSCREEN_AREA Structure Definition

A-11

A.9 OFFSCREEN_AREA Structure Definition

The OFFSCREEN_AREA structure contains information describing a par-
ticular off-screen buffer area within the display memory. The following is the
C typedef statement describing the structure:

typedef struct
{
 PTR addr; /* base address of off–screen buffer */
 unsigned short xext, yext; /* x and y extents of buffer */
} OFFSCREEN_AREA;

By convention, the pitch and pixel size of an off-screen buffer are always
identical to those used for the display. These values can be obtained from
the mode.disp_pitch and mode.disp_psize fields of the CONFIG structure
retrieved by the get_config function.

The graphics library’s global variable offscreen is a pointer to an array of
type OFFSCREEN_AREA that specifies all the off-screen buffers available
in the current graphics mode. For more information, refer to the discussion
of the get_offscreen_memory function in Chapter 6.

PAGE Structure Definition

A-12 Data Structures

A.10 PAGE Structure Definition

The PAGE data structure contains information describing a particular video
page (or frame buffer). The following is the C typedef statement describing
the structure:

typedef struct
{
 unsigned long BaseAddr; /* base address of start of page
*/
 unsigned long DpyStart; /* display start value of page */
} PAGE;

The graphics library’s global variable page is a pointer to an array of type
PAGE that describes all the video pages available in the current graphics
mode. The length of this array is specified in the num_pages field value re-
trieved by the get_config function; the length is also available in the global
structure config, as element config.mode.num_pages. The fields of the
PAGE structure are utilized as follows:

BaseAddr The base address of the video page; that is, the 32-bit memory
address of the pixel in the top left corner of the monitor screen

DpyStart The display start address, which is the address of the first pixel
output to refresh the monitor

The BaseAddr and DpyStart fields usually contain identical values. The ex-
ception occurs in the case of a display system utilizing a TMS34070 Color
Palette device in either frame-load or line-load mode. In a system with a
TMS34070, the display starting value loaded into the TMS34010’s
DPYSTRT register or into the TMS34020’s DPYSTL and DPYSTH regis-
ters does not correspond to the page’s base address; it corresponds in-
stead to the start of the palette information that precedes the page in display
memory. Note that the palet_inset field retrieved by the get_config function
(this value is also available in the global structure config as element
config.mode.palet_inset) is specified as the difference between the
BaseAddr and DpyStart values given for the page:

palet_inset = BaseAddr – DpyStart

The array of page information pointed to by global variable page is utilized
by the set_config and page_flip functions, described in Chapter 6.

 PALET Structure Definition

A-13

A.11 PALET Structure Definition

The PALET data structure contains the R-G-B and intensity components of
a particular palette entry. The following is the C typedef statement describ-
ing the structure:

typedef struct
{
 unsigned char r; /* red component */
 unsigned char g; /* green component */
 unsigned char b; /* blue component */
 unsigned char i; /* intensity component */
} PALET;

The graphics library’s global variable DEFAULT_PALET is an array of type
PALET containing the 16 default palette entries, as described in the discus-
sion of the init_palet function in Chapter 6. Library global palette is an array
of type PALET that contains the palette currently in use. The length of this
array is specified in the palet_size field value retrieved by the get_config
function; the length is also available in the global structure config, as ele-
ment config.mode.palet_size. For more information on the PALET struc-
ture, refer to the discussion of the get_palet and set_palet functions in
Chapter 6.

PATTERN Structure Definition

A-14 Data Structures

A.12 PATTERN Structure Definition

The PATTERN data structure contains information describing an area-fill
pattern. The following is the C typedef statement describing the structure:

typedef struct
{
 unsigned short width; /* width of pattern */
 unsigned short height; /* height of pattern */
 unsigned short depth; /* depth (bits/pixel) */
 PTR data; /* pointer to data */
 int (*hsrv)(); /* horizontal fill routine */
 int (*srv)(); /* general fill routine */
} PATTERN;

The graphics library’s global variable pattern is a structure of type PAT-
TERN which specifies the current area-fill pattern. The set_patn function
accepts as its sole argument a pointer to a structure of type PATTERN. (The
function uses only the first four fields of the PATTERN structure pointed to.)
The fields of the PATTERN data structure are utilized as follows:

width Number of pixels per row of pixel array containing pattern

height Number of rows in pixel array containing pattern

depth Depth (number of bits per pixel) in pixel array containing pattern

data Pointer to pixel array containing pattern

hsrv Pointer to function that renders horizontal lines (sometimes
called spans) of regions to be filled with patterns

srv Pointer to function that renders two-dimensional cells having
same width and height as pattern array itself

Currently, patterns are restricted to width 16, height 16, and depth 1. The
hsrv field points to a routine that is called from assembly language. This rou-
tine renders a single horizontal line (or span) of a region to be filled, and it
expects the B-file registers to be set up as they would be for a FILL XY in-
struction. For an example of such a routine, refer to the patnline.asm

source file in the graphics library’s \extprims directory.

B-1

Appendix B

Reserved Symbols

This appendix contains a list of the global symbols defined within the
TMS340 Graphics Library. These symbols should be treated as reserved.
In order to ensure correct operation of your application programs and pro-
prietary library extensions, avoid defining global symbols that conflict with
those in the library.

The graphics library’s reserved symbols are partitioned into three lists. The
symbols in the Core and Extended Primitives Libraries are listed separately
below, as are the global names for the bit-mapped fonts.

The symbols in the Core and Extended Primitives Libraries that are preced-
ed by “_dm_” are TIGA direct-mode entry points. Refer to the TIGA-340 In-
terface User’s Guide for more information.

Symbols in Core Primitives Library

B-2 Reserved Symbols

B.1 Symbols in Core Primitives Library

ILLOP_PC_IN_A0
_bottom_of_stack
_clear_frame_buffer
_clear_page
_clear_screen
_config
_cpw
_cvxyl
_DEFAULT_PALET
_default_setup
_delay
_dm_clear_frame_buffer
_dm_clear_page
_dm_clear_screen
_dm_cpw
_dm_cvxyl
_dm_get_nearest_color
_dm_gsp2gsp
_dm_init_palet
_dm_lmo
_dm_peek_breg
_dm_poke_breg
_dm_rmo
_dm_set_bcolor
_dm_set_clip_rect
_dm_set_colors
_dm_set_fcolor
_dm_set_palet_entry
_dm_set_pmask
_dm_set_ppop
_dm_set_text_xy
_dm_set_windowing
_dm_set_wksp
_dm_text_outp
_end_of_dram
_env
_envtext
_field_extract
_field_insert
_getrev
_get_colors

 Symbols in Core Primitives Library

B-3

_get_config
_get_fontinfo
_get_modeinfo
_get_nearest_color
_get_offscreen_memory
_get_palet
_get_palet_entry
_get_pmask
_get_ppop
_get_text_xy
_get_transp
_get_vector
_get_windowing
_get_wksp
_gsp2gsp
_init_palet
_init_text
_init_video_regs
_lmo
_modeinfo
_mode_setup
_monitorinfo
_null_patn_line
_num_modes
_oemdata
_oemmsg
_offscreen
_page
_page_busy
_page_flip
_palet
_pattern
_peek_breg
_poke_breg
_rmo
_setup
_set_bcolor
_set_clip_rect
_set_colors
_set_config
_set_dpitch
_set_fcolor
_set_palet

Symbols in Core Primitives Library

B-4 Reserved Symbols

_set_palet_entry
_set_pmask
_set_ppop
_set_text_xy
_set_vector
_set_windowing
_set_wksp
_stack_size
_start_of_dram
_sysfont
_text_out
_text_outp
_transp_off
_transp_on
_wait_scan

 Symbols in Extended Primitives Library

B-5

B.2 Symbols in Extended Primitives Library

_arcstyle
_arc_draw
_arc_fill
_arc_pen
_arc_quad
_arc_quadrant
_arc_slice
_bitblt
_decode_rect
_delete_font
_dm_bitblt
_dm_draw_line
_dm_draw_oval
_dm_draw_ovalarc
_dm_draw_piearc
_dm_draw_point
_dm_draw_polyline
_dm_draw_rect
_dm_fill_convex
_dm_fill_oval
_dm_fill_piearc
_dm_fill_polygon
_dm_fill_rect
_dm_frame_oval
_dm_frame_rect
_dm_get_pixel
_dm_move_pixel
_dm_patnfill_convex
_dm_patnfill_oval
_dm_patnfill_piearc
_dm_patnfill_polygon
_dm_patnfill_rect
_dm_patnframe_oval
_dm_patnframe_rect
_dm_patnpen_line
_dm_patnpen_ovalarc
_dm_patnpen_piearc
_dm_patnpen_point
_dm_patnpen_polyline
_dm_pen_line
_dm_pen_ovalarc

Symbols in Extended Primitives Library

B-6 Reserved Symbols

_dm_pen_piearc
_dm_pen_point
_dm_pen_polyline
_dm_put_pixel
_dm_seed_fill
_dm_seed_patnfill
_dm_set_draw_origin
_dm_set_patn
_dm_set_pensize
_dm_styled_oval
_dm_styled_ovalarc
_dm_styled_piearc
_dm_zoom_rect
_draw_eliparc
_draw_line
_draw_oval
_draw_ovalarc
_draw_piearc
_draw_point
_draw_polyline
_draw_rect
_encode_rect
_fill_convex
_fill_eliparc
_fill_oval
_fill_piearc
_fill_polygon
_fill_rect
_frame_oval
_frame_rect
_get_env
_get_pixel
_get_textattr
_install_font
_in_font
_move_pixel
_onarc
_patnfill_convex
_patnfill_oval
_patnfill_piearc
_patnfill_polygon
_patnfill_rect
_patnframe_oval

 Symbols in Extended Primitives Library

B-7

_patnframe_rect
_patnpen_line
_patnpen_ovalarc
_patnpen_piearc
_patnpen_point
_patnpen_polyline
_patn_line
_pen_eliparc
_pen_line
_pen_ovalarc
_pen_piearc
_pen_point
_pen_polyline
_put_pixel
_seed_fill
_seed_patnfill
_select_font
_set_draw_origin
_set_dstbm
_set_patn
_set_pensize
_set_srcbm
_set_textattr
_sin_tbl
_styled_line
_styled_oval
_styled_ovalarc
_styled_piearc
_swap_bm
_text_width
_trig_values
_zoom_rect

Global Font Names

B-8 Reserved Symbols

B.3 Global Font Names

_arrows25, _arrows31
_austin11, _austin15, _austin20, _austin25, _austin38, _austin50
_corpus15, _corpus16, _corpus26, _corpus29, _corpus49
_devons23, _devons28, _devons41
_fargo22, _fargo26, _fargo38
_galves12, _galves15, _galves21, _galves22, _galves28, _galves42
_houstn14, _houstn17, _houstn20, _houstn26, _houstn38, _houstn50
_lucken07
_math16, _math19, _math24, _math32, _math44, _math64
_sanant22, _sanant28, _sanant40
_sys16, _sys24
_tampa18, _tampa22, _tampa30, _tampa42
_ti_art22, _ti_art28, _ti_art41, _ti_art54, _ti_art82
_ti_bau11, _ti_bau14, _ti_bau17, _ti_bau19, _ti_bau22, _ti_bau24,
_ti_bau28, _ti_bau43, _ti_bau56
_ti_clo27, _ti_clo40
_ti_dom23, _ti_dom25, _ti_dom30, _ti_dom42, _ti_dom46
_ti_hel11, _ti_hel15, _ti_hel18, _ti_hel20, _ti_hel22, _ti_hel24,
_ti_hel28, _ti_hel32, _ti_hel36, _ti_hel42, _ti_hel54, _ti_hel82
_ti_prk15, _ti_prk18, _ti_prk21, _ti_prk23, _ti_prk25, _ti_prk28,
_ti_prk43, _ti_prk54
_ti_rom11, _ti_rom14, _ti_rom16, _ti_rom18, _ti_rom20, _ti_rom22,
_ti_rom26, _ti_rom30, _ti_rom33, _ti_rom38, _ti_rom52, _ti_rom78
_ti_typ11, _ti_typ14, _ti_typ16, _ti_typ18, _ti_typ20, _ti_typ22,
_ti_typ26, _ti_typ38

C-1

Appendix C

Glossary

A
archive file: A file which is formed by concatenating several files, often

using an encoding method that compresses the original files.

area-fill pattern: A two-dimensional pattern of pixels used to fill regions
bounded by lines and curves.

ascent: Font metric; the distance in pixels from the base line to the top
of the highest character in the font.

ASCII character code: American Standard Code for Information Ex-
change. A standard code for representing both control and graphic char-
acters. Each character is represented by a 7-bit code, or by an 8-bit code
if a parity bit is included. This code is widely used for information ex-
change among data processing and communications systems.

B
background color: The color to which the 0s in bit maps and area-fill pat-

terns are set; also the color in which the pixels within the rectangles sur-
rounding bit-mapped character shapes are drawn. The pixel value corre-
sponding to the background color is pixel-replicated and loaded into the
COLOR0 register of the TMS340 graphics processor.

base line: An invisible reference line corresponding to the bottom of the
characters in a font, excluding the descenders.

binary image file: A file containing the binary image of a program or a
block of data exactly as it appears when loaded into memory.

binsrc: A utility program for converting a binary image file to a C or as-
sembly language file.

BitBlt: Bit-aligned block transfer. A BitBlt operation copies a bit map from
one location in memory to another. The copy operation may involve com-

Glossary

C-2 Glossary

bining each pair of corresponding source and destination bits according
to one of 16 possible Boolean operations. (Also see PixBlt.)

bit map: The digital representation of an image in which bits are mapped
to pixels. This is a special case of a pixel array in which the pixel size is
1 bit. (See pixel array.)

bit-mapped font: A digital representation of a font in which the character
shapes are stored as bit maps.

blanking interval: The time during which the monitor’s electron beam is
extinguished during the horizontal and vertical retrace periods.

block font: A font that emulates the cell-mapped text output by older,
character-ROM-driven terminals and by display adapters such as the
VGA.

block write cycle: A type of video-RAM write cycle that is typically used
to rapidly fill an area of the frame buffer with a particular pixel value. Block
write cycles are supported by TI’s TMS44C251 1-megabit video RAM.
Prior to the block write cycle, a 4-bit color latch within each VRAM is
loaded with 4 bits of pixel data. During the block write cycle, the level in-
put to the VRAM on each of its 4 data pins controls whether the color latch
is written to a particular region of the memory; in other words, up to 16
bits may be written within the VRAM during a single block write cycle.

Bresenham’s algorithm: An algorithm first described by J. E. Bresen-
ham that is widely used for drawing straight lines on raster displays.

bulk initialization: A method for rapidly replicating a pixel value through
all or a portion of video memory. This method can be utilized only with
video RAM devices that support serial-register-to-memory cycles.

C
clipping window: The rectangular region on the screen to which graph-

ics output is restricted. No drawing is allowed to occur outside the current
clipping window.

COFF: Common Object File Format. Originally defined by AT&T, this for-
mat is used for the object files created by the TMS340 Family assembler,
C compiler and linker. Details are presented in the TMS340 Family Code
Generation Tools User’s Guide.

cof2bin: A utility program for converting a COFF file to a binary image
file.

color lookup table: (See palette.)

color palette: (See palette.)

 Glossary

C-3

conditional assembly statements: Directives to the assembler that
control whether particular blocks of assembly language statements are
assembled or ignored.

conditional compilation statements: Directives to the compiler that
control whether particular blocks of high-level-language statements are
compiled or ignored.

Core Primitives Library: The TMS340 Graphics Library consists of two
parts, the Extended Primitives and the Core Primitives. This is similar to
TIGA. The Core Primitives include the functions for initializing and query-
ing the graphics environment, as well as rudimentary text and graphics
capabilities.

D
DAC: Digital-to-analog converter. A device that converts a digital input

code to an analog output voltage or current. The output level is the ana-
log representation of the digital value input to the device.

dearchive: The process of extracting the original files from an archive file.

descent: Font metric; the distance in pixels from the base line to the bot-
tom of the lowest descender in the font.

display memory: The portion of memory that can be displayed. The dis-
play memory contains one or more video pages that can be output to a
monitor. In a TMS34010- or TMS34020-based display system, the dis-
play memory typically consists of video RAM devices.

display page: The video page that is currently displayed on the monitor.

double buffering: A technique for achieving flickerless animation that re-
quires two video pages (or frame buffers). While the graphics processor
draws to one page, the alternate page is displayed on the monitor. When
the graphics output to the drawing page is completed, the old drawing
page becomes the new display page, and vice versa.

DRAM refresh: Dynamic random-access memory refresh. The operation
of maintaining data stored in DRAM devices. Data are stored in DRAMs
as electrical charges across a grid of capacitive cells, and the charge
stored in a cell will leak off over time unless it is refreshed.

drawing coordinate system: The x–y coordinate system in which all
drawing (graphics output) operations are specified. The drawing origin
can be moved relative to the fixed screen origin. The x coordinates in-
crease from left to right, and y coordinates from top to bottom.

drawing origin: The position of the x-y origin on the display surface, used
as a reference for positioning graphics output. The drawing origin can

Glossary

C-4 Glossary

move relative to the screen origin, which is fixed in the top left corner of
the screen.

drawing page: The video page that is currently the designated target of
all graphics output commands.

E
em, em space: Font metric; equal to the square of the type size used.

Extended Primitives Library: The TMS340 Graphics Library consists of
two parts, the Extended Primitives and the Core Primitives. This is similar
to TIGA. The Extended Primitives comprise most of the sophisticated
graphics functions, including lines, curves, fills, patterns and proportion-
ally-spaced text.

F
field: 1) A group of contiguous bits in a register or memory that are dedi-

cated to a particular function or represent a single entity. 2) A soft-
ware-configurable data type in a TMS34010 or TMS34020 whose length
can be programmed to be any value in the range 1 to 32 bits.

font: A complete assortment of characters of a particular size and type-
face.

font size: The size of a bit-mapped font in the graphics library, specified
in terms of the height in pixels. This height is equal to the sum of the font’s
ascent and descent parameters.

font table: A data structure within the TMS340 Graphics Library that con-
tains pointers to all currently installed fonts.

foreground color: The color to which solid lines, curves, and filled areas
are set; the color to which the 1s in bit maps and area-fill patterns are set;
also the color in which bit-mapped character shapes are drawn. The pixel
value corresponding to the foreground color is pixel-replicated and
loaded into the COLOR1 register of the TMS340 graphics processor.

frame: In the case of a noninterlaced display, the screen image output to
the raster display monitor during a single vertical sweep of the electron
beam. In the case of an interlaced display, a frame is composed of two
fields, each of which requires a separate vertical sweep.

frame buffer: A portion of memory used to buffer rasterized data to be
output to a CRT display monitor. This term sometimes refers either to a
video page or to the entire display memory.

frame time: The time required to display a single frame on a monitor. In
the case of a noninterlaced display, the frame time corresponds to the

 Glossary

C-5

time required to complete a full vertical sweep. This is typically about
1/60 second.

G
graphics mode: A software-controlled configuration of a hardware dis-

play system to select a specified set of display characteristics such as
pixel size, screen resolution, monitor-specific video timings, and number
of video pages. Each display system to which the TMS340 Graphics Li-
brary has been ported supports one or more graphics modes.

gray scale: A scale of light intensities ranging from black to white in more
or less uniform steps.

GSP: Graphics System Processor. Texas Instruments’ TMS340 Family
currently includes two GSPs, the TMS34010 and the TMS34020.

gspcl: A shell utility program provided with the TMS340 Family Code
Generation Tools that automatically runs one or more program source
files through the C compiler, assembler, or linker.

gspl: A COFF loader utility program provided for use with the TMS340
Graphics Library. The utility downloads an executable file from the PC
to a TMS34010- or TMS34020-based graphics card and executes it.

gun, electron gun: The element of a cathode-ray tube that emits the
electrons that form the beam that sweeps over the phosphors on the
screen. The strength of the beam is modulated by the applied signal. In
the case of a color monitor, the CRT typically contains separate guns to
illuminate the red, green, and blue phosphors.

H
halftone: A process for converting a gray-scale image to black-and-white

patterns of fine dots, the size or density of which in each small region cor-
responds to the intensity level of the original image in that region.

header: A preamble to a file or data structure that contains information
about the contents of the file or data structure.

I
interlaced display: A raster display in which the displayed image con-

sists of two fields of scan lines. Odd-numbered scan lines, which make
up the odd field, are output at one time, and the even-numbered scan
lines, which make up the even field, are output at another time. The lines
of the two fields are interlaced on the display to form a single frame or
image.

Glossary

C-6 Glossary

interrupt vector: A fixed 32-bit location in the TMS340 graphics proces-
sor’s memory that contains the address of a trap or interrupt service rou-
tine. (Also see trap vector.)

ISR: Interrupt service routine.

K
kerning: Font metric; the amount by which a descender (such as the tail

of a lower-case y) extends into the em space of the character to its left.
(See em.)

L
leading: Font metric; the vertical spacing between the bottom of one line

of text (as measured from the lowest descender in the font) to the top of
the next line of text below it (as measured from the highest ascender in
the font).

line-style pattern: A mask of 1s and 0s that are used to control the ap-
pearance of a styled line. As the line is drawn, the mask is rotated one
bit per pixel, and the rightmost bit in the mask determines whether the
next pixel is drawn in the foreground or the background color.

loader: A utility that loads an executable program or code module into a
processor’s memory; the loader typically causes the processor to begin
executing the program.

long word: A 32-bit logical word in the TMS340 graphics processor’s
memory or a register.

LSB: Least significant bit. The lowest-order bit in a memory field or regis-
ter.

M
magic number: The value contained in a field located at the beginning

of a file or data structure that identifies the type and revision number of
the file or data structure.

make utility: A utility program that automates program development. A
make utility can update an executable file automatically whenever
changes are made to one of its source or object files.

monospaced font: A font in which the character-to-character horizontal
spacing is uniform for all characters.

 Glossary

C-7

MSB: Most significant bit. The highest-order bit in a memory field or regis-
ter.

O
object file: A file that has been assembled or linked, and contains ma-

chine language object code that can be either relocatable or mapped to
absolute addresses.

OEM: Original equipment manufacturer. A company that configures sys-
tems for resale.

off-screen memory: Frequently used to refer to the portion of the display
memory that is not displayed and is therefore available for other uses,
such as buffering data. The term is sometimes used to refer to non-dis-
play memory utilized for similar purposes.

off-screen workspace: A workspace in memory that has the same width
and height as the screen but is only 1 bit per pixel.

on-screen memory: The portion of the display memory that is actually
displayed; the memory comprising the video page or pages.

ordered dither: A halftoning algorithm, widely used in raster displays,
that represents intensities as regular dot patterns of varying densities.

outcode: A 4-bit code that represents the position of a point relative to a
rectangular clipping window. Refer to the user’s guide for the TMS34010
or TMS34020 for details.

outline font: A computer representation of a font in which each character
shape is specified as one or more filled regions bounded by curves.

P
palette: A digital lookup table used in a computer graphics display to

translate the pixel values from the display memory into the red, green
and blue components of the pixel as it is displayed.

pattern: (See area-fill pattern, line-style pattern.)

pen, drawing pen: A rectangular shape used within the graphics library
to model a physical drawing pen or brush. In tracing the path of a line or
curve, the area swept out by the pen is filled.

pitch: The difference in memory addresses from the start of one row of
a two-dimensional pixel array to the next row of the array. This value is
the same for each pair of adjacent rows in the array.

Glossary

C-8 Glossary

PixBlt: Pixel-aligned block transfer. A PixBlt operation copies a pixel
array from one location in memory to another. The copy operation may
involve combining each pair of corresponding source and destination
pixels according to a Boolean or arithmetic operation. (Also see BitBlt.
)

pixel: A picture element of a raster display device.
1) A physical pixel is the smallest individually controllable point of light

on a CRT display.
2) In a bit-mapped display system, a logical pixel is the digital representa-

tion in memory of the attributes of the physical pixel to be displayed
at the corresponding location on a CRT display.

pixel array: A two-dimensional array of pixels characterized by a base
address, x and y extents, a pitch, and a depth (number of bits per pixel).
A pixel array with a depth of 1 bit is often referred to as a bit map. A pixel
array is sometimes referred to as a pixel map or pixmap.

pixel processing: The merging of a source pixel value with a destination
pixel value according to a Boolean or arithmetic operation.

pixel-replicated format: The TMS340 graphics processor’s architecture
requires that the values loaded into the PMASK (plane mask), COLOR0
(background color), and COLOR1 (foreground color) registers be speci-
fied in pixel-replicated format. In this format, each n-bit pixel is replicated
32/n times through the length of the 32-bit register.

pixel size: The length of a logical pixel in bits. Also referred to as the pixel
depth.

plane mask: A mask that specifies which bits in a pixel are protected from
modification. This mask is the same number of bits in length as a pixel
and affects all operations on pixels. The graphics library follows the con-
vention that a mask bit that is a 1 designates a write-protected pixel bit,
while pixel bits corresponding to 0s in the plane mask can be modified.

polyline: A set of connected lines. In the graphics library, a polyline is
specified as a list of points, and a line is drawn between each pair of adja-
cent points in the list.

port: A device-specific implementation of a software product. All de-
vice-specific functions of the TMS340 Graphics Library are isolated in a
small portion of the library software to facilitate the porting of the library
to TMS34010- and TMS34020-based graphics systems.

proportionally spaced font: A font in which each character is permitted
to vary in width from the others, and the spacing from one character to
the next is dependent on the width of the character.

 Glossary

C-9

R
raster: A rectangular grid of picture elements (or pixels) whose colors and

intensity levels are manipulated to represent images.

raster display: A display device with a flat surface consisting of a regular,
two-dimensional grid of picture elements (or pixels), each of which is indi-
vidually addressable.

rasterize: To convert a geometric shape such as a line, curve, or filled re-
gion from its mathematical representation to a set of pixels that represent
the shape on a raster display. The accuracy of the representation is nec-
essarily limited by the resolution of the display.

raster-op: Raster operation. Also referred to as a pixel processing opera-
tion. (See also pixel processing.)

resolution: The resolution of a raster display device, given in terms of the
number of pixels (or dots) per unit length (measured in inches or millime-
ters). The width and height of a display monitor in pixels is frequently re-
ferred to informally as the “resolution” of the monitor.

RGB monitor: Red-green-blue monitor. This is a CRT monitor capable
of displaying colors, and having separate inputs for the signals that drive
the red, green, and blue guns of the CRT.

run-length encoding: An image-compression technique that encodes
each scan line of an image as a series of color transitions. The color for
each transition is paired with the number of pixels in the run prior to the
next color transition.

S
scan line: A horizontal line output to a raster scan display. The term is

also used to refer to a row of logical pixels in memory that are to be output
to a particular scan line of the display.

screen coordinate system: The x–y coordinate system in which the ab-
solute position of the pixels on the screen is specified. The screen origin
is fixed in the top left corner of the screen. The x coordinates increase
from left to right, and y coordinates from top to bottom.

screen origin: The x-y origin at the top left corner of the screen, which
serves as an absolute reference point for referring to pixels on the
screen.

screen refresh: The operation of streaming the contents of the display
memory to the monitor in synchronization with the sweep of the electron

Glossary

C-10 Glossary

beam. In a video RAM system, a screen-refresh cycle typically occurs
during the horizontal blanking interval that precedes each active scan
line to download the logical pixels in the scan line to the video RAMs’ seri-
al registers.

SDB: Software Development Board. Texas Instruments provides SDBs
for developing software to run on TMS34010- and TMS34020-based
systems.

seed fill: A fill operation that fills a connected region of pixels on the
screen with a solid color or pattern, beginning at a specified seed pixel.
All pixels that are part of the connected region that includes the seed pixel
are filled.

serial register: A register within a video RAM device that contains the
data corresponding to a row in memory that is output from the serial port
to refresh the screen. The data in the register may be serially clocked out
at a rate independent of activity at the video RAM’s random-access port.

source file: An ASCII text file that contains either C language or
TMS340x0 assembly language source code that can be compiled or as-
sembled to generate an object file.

stroke font: A computer representation of a font in which each character
shape is specified as a series of line segments (or strokes).

styled line: A rasterized line that is drawn with a line-style pattern. Bre-
senham’s algorithm is used to select a thin, but connected, set of pixels
to represent the line. The color of each pixel in the set is governed by the
corresponding bit in the line-style pattern. (See line-style pattern.)

symbolic debugger: A debugger utility with the capability of utilizing
symbolic information retained during the compilation and linking pro-
cesses.

system font: The graphics library’s default font. This font is permanently
installed as font 0 and is always a block font.

T
TDB: TMS34010 TIGA Development Board. This TMS34010-based PC

add-in card from Texas Instruments contains a TMS34092 VGA Inter-
face Chip, drives analog RGB monitors at resolutions of 640×480 and
1024×768, and supports pixel sizes of 1, 2, 4, and 8 bits.

TIGA, TIGA-340: Texas Instruments Graphics Architecture. A combined
software and hardware standard for graphics systems defined by TI.
TIGA is a standard approach to managing communications between the

 Glossary

C-11

PC host and the TMS340 graphics processor. At the core of TIGA is an
interprocessor communications protocol that links an application or envi-
ronment driver to a library of graphics functions that execute on the
TMS340 processor.

TMS340: Product name for a family of graphics system processors and
peripherals manufactured by Texas Instruments.

TMS34010: First-generation graphics system processor.

TMS34020: Second-generation graphics system processor.

TMS34070: A low-cost color palette device supporting displays with 4 bits
per pixel.

TMS34082: Floating-point coprocessor that interfaces directly to the
TMS34020 graphics processor.

TMS34092: TI’s VGA Interface Chip. The TMS34092 is a memory and
pixel pipeline peripheral for low-cost PC video adapters using the
TMS34010. VGA pass-through capability is provided.

transparency: A pixel attribute which, when enabled, permits objects
written to the screen to have transparent regions through which the origi-
nal background pixels are preserved. Transparency is useful in graphics
applications involving text, area-fill patterns, and pixel arrays in which
only the shapes, and not the extraneous pixels surrounding them, are
drawn to the screen.

trap vector: A fixed 32-bit location in the TMS340 graphics processor’s
memory that contains the address of a trap or interrupt service routine.
(Also see interrupt vector.)

typeface, face: A collection of fonts that have common features such as
style and weight, but which differ in size.

V
VGA: Video Graphics Array. A display adapter from IBM.

video page: The portion of display memory that contains an image that
can be output to the monitor screen or other display surface.

video RAM, VRAM: Video random-access memory. A dual-ported dy-
namic memory device for computer graphics applications. One interface
supports random read and write accesses to the memory; the other inter-
face provides an independently clocked serial data stream to refresh a
display.

W
word: A 16-bit logical word in GSP memory or a register.

Glossary

C-12 Glossary

workspace: (See off-screen workspace.)

X
XDS System: Extended Development Support System. Texas Instru-

ments’ XDS in-circuit emulation systems support the development of
TMS34010- and TMS34020-based systems.

Z
zoom: To scale an image so that it is either magnified or reduced in size.

Index-1

Index

A
application program, 2-1, 2-7, 3-14—3-15,

3-19, 3-21, 4-22, 5-13, 5-15, 6-16, 6-19,
6-21, 6-43, 7-91, A-1, A-2

archive file, 2-4
area-fill, pattern, 3-11, 4-1, 4-3, 4-11,

4-13—4-14, 4-17, 6-55, 7-60, 7-62, 7-64,
7-66, 7-68, 7-81, 7-82, 7-89, 7-109, A-1,
A-2, A-14, C-1, C-4, C-11

area-filling conventions, 4-6—4-8,
4-9—4-10, 4-11—4-12

argument lists, 3-14
ascent, 5-2, 5-3, 5-5, 5-7, 5-14, C-1

B
back-face test, 7-27
background color, 4-13
binsrc, 2-14, 3-13, C-1
bit-mapped font, 2-2, 2-4, 2-5, 2-14, 3-1,

3-12—3-13, 3-15, 5-2—5-4, 5-5, 5-6, 5-9,
5-14, A-1, A-8, C-2

block font, 3-12, 5-1, 5-7, 5-11, 5-12, 5-13,
5-14, 5-16, 6-77, 7-93, 7-94, C-2, C-10

block write cycle, 3-20
Bresenham’s algorithm, 7-12
brush, 4-1, 4-11, C-7
bulk initialization, 3-20
Bulletin Board System, 2-3

C
character

height, 5-2, 5-3, 5-5
offset, 5-3, 5-10
origin, 5-2, 5-3, 5-5, 5-7, 5-13
width, 5-3, 5-5, 5-7, 5-8, 5-10, 5-13, 5-14

character rectangle, 5-3
clipping, 3-3, 3-5, 3-6, 3-7, 3-17, 4-1, 4-4,

4-21, 7-79, 7-81, 7-86, 7-91, 7-108, C-2
code compatibility, 2-13, 3-16, 3-21
code size, 3-15—3-16
cof2bin, 2-14, 3-13, C-2
COFF loader, 2-6, 2-12, C-5
color dependencies, 4-22
conditional assembly, 2-13
coordinate, 4-1, 4-2, 4-5, 4-6, 4-9, 4-11,

4-12, 4-13, 4-21, 5-2
drawing, 4-4, C-3
pixel, 6-8, 6-10
screen, 3-17, 4-4, 6-55, C-9
x–y, 3-3, 6-8, 6-9, 6-34, 6-51, 6-64, 6-70

core primitives, 2-4, 2-5, 2-8, 3-1, 3-4—3-8,
3-19, 5-1, 6-1—6-2, C-3

Customer Response Center, vi

D
debugger, 2-10, 2-12, C-10
debugging tools, 1-1, 1-4
demonstration program, 2-6

Index

Index-2

descent, 5-2, 5-3, 5-5, 5-8, 5-14, C-3
destination bit map, 7-4
directory structure, 2-4
double buffering, 6-45

E
elliptical arc, 7-14
extended primitives, 2-4, 2-6, 2-10, 3-1,

3-4—3-8, 3-19, 4-2, 5-1, 7-1—7-3, C-4

F
facename, 5-6
floating-point, 1-4, 2-3, 3-16, 3-21—3-22
font pattern table, 5-8
font size, 3-12, 5-14, 5-15, 5-16, 6-41, 7-10,

7-46, C-4
font table, 5-1, 5-11, 5-12, 5-16, 7-10, 7-46,

7-83, A-7, C-4
foreground color, 4-13
frame thickness, 7-37

G
geometric type, 4-2, 4-3
global variables, 2-5, 3-11, 3-14, A-2
graphics mode, 2-9
gspar.exe, 2-14
gspl, 2-6, C-5
gspl.exe, 2-6

H
hardware dependencies, 3-19
hardware emulator, 1-1
hardware-dependent functions, 2-5
header, 5-5—5-8, 7-60, 7-63, 7-65, 7-66,

7-69, 7-78, 7-82, 7-83, 7-87, 7-89, 7-104,
7-106, 7-109, A-1, A-5, A-8, C-5

hotline, 1-1

I
illegal opcode, 2-9

interrupt service routine, 2-9

image width, 5-3, 5-10, 5-13
installable font name, 5-15—5-16
installation, 2-4
intercharacter spacing, 5-2, 5-13, 7-43, 7-93,

7-94, A-7

K
kern, 5-2, 5-7, C-6

L
leading, 3-22, 5-2, 5-3, 5-8, 6-19, C-6
leftmost one, 6-42
line-style, pattern, 4-1, 4-3, 4-15—4-16,

6-55, 7-96, 7-97, 7-98, 7-100, 7-101,
7-102, 7-103, C-6, C-10

link command file, 2-8
location table, 5-5, 5-8, 5-10

M
magic, 5-6, 5-8, 7-24
make description file, 2-7
make utility, C-6
make.exe, 2-7
makedem.bat, 2-7
missing character, 5-6
monospaced, 5-14, C-6

O
offset/width table, 5-5, 5-6, 5-7, 5-8,

5-10—5-14
origin, 5-5

character, 5-2, 5-3, 5-7, 5-13, 7-94
drawing, 3-7, 4-4, 4-5, 4-6, 4-7, 4-10,

4-12, 4-13, 4-16, 4-21, 6-8, 6-10, 6-34,
6-51, 6-55, 6-64, 6-70, 7-62, 7-64,
7-68, 7-71, 7-73, 7-76, 7-78, 7-79,
7-81, 7-85, 7-88, 7-96, 7-98, 7-100,
7-102, 7-107, C-3

screen, 4-4, C-9
outcode, 6-8

P
page flip, 6-43

Index

Index-3

palette, 3-6, 3-7, 3-11, 3-19, 3-20, 4-22, 6-3,
6-5, 6-16, 6-21, 6-23, 6-27, 6-28, 6-29,
6-30, 6-40, 6-54, 6-57, 6-58, 6-59, A-1,
A-2, A-12, A-13, C-7

pattern, 2-5, 5-5, 7-88, 7-90
area-fill, 3-11, 4-1, 4-3, 4-11, 4-13—4-14,

4-17, 6-55, 7-60, 7-62, 7-64, 7-66,
7-68, 7-81, 7-82, 7-89, 7-109, A-1, A-2,
A-14, C-1, C-4, C-11

line-style, 4-1, 4-3, 4-15—4-16, 6-55,
7-96, 7-97, 7-98, 7-100, 7-101, 7-102,
7-103, C-6, C-10

pattern table, 5-5, 5-8—5-9, 5-10
pen, 3-6, 3-7, 4-1, 4-3, 4-6, 4-8, 4-11—4-12,

6-55, 7-60, 7-62, 7-63, 7-64, 7-65, 7-66,
7-68, 7-69, 7-70, 7-71, 7-73, 7-75, 7-76,
7-90, C-7

pie chart, 7-31
pitch, 2-9, 3-16, 3-17, 5-8, 5-9, 7-86, 7-87,

7-91, 7-92, A-3, A-11, C-7
pixel processing, 3-3, 3-6, 3-7, 3-17, 4-18,

5-11, C-8
pixel-processing operation, 4-1, 4-17,

4-19—4-22, 5-11, 6-54, 6-72, 6-74, 7-4,
7-108, 7-109

pkunzip.exe, 2-6
plane mask, 3-6, 3-7, 3-17, 4-1, 4-17, 4-18,

6-31, 6-35, 6-54, 6-60, 6-72, 6-74, 7-4,
C-8

polygon, 4-7
polyline, 4-9
porting, 2-1, 2-8, 2-13, 3-1, 3-2, 3-16, 3-20,

C-8
proportionally spaced, 3-4, 5-7, 5-11, 5-12,

5-13, 5-14, 6-9, 6-19, 6-41, 7-10, 7-46,
7-93, 7-94, C-8

proprietary extension, 6-69

R
raster-op, C-9
register usage conventions, 3-16—3-18

rendering style, 4-2, 4-3
rightmost one, 6-49
run-length encoding, 7-23
runtime check, 3-21

S
SDB, 1-1, 2-3, 2-5, 2-9, C-10
seed fill, 7-79
SETUP structure, 2-9
silicon revision number, 2-9, 3-16, 3-22
Software Development Board, 2-3
source bit map, 7-4
stack growth, 3-15
symbolic information, 2-12, C-10
system dependencies, 3-19—3-21
system font, 5-16

T
TDB (TIGA Development Board), 2-3
text alignment, 5-2, 5-13, 7-43, 7-94, A-7
text attributes, 5-13
TIGA, 2-2, 2-5, 2-8, 2-9, 2-14, 3-1, 3-2, 3-4,

3-9—3-10, 3-11, 3-13, 3-14, 3-15, 3-19,
5-5, 6-15, 6-37, 7-24, A-1, A-2, C-3, C-4

transparency, 3-6, 3-7, 3-8, 3-17, 3-18, 4-1,
4-17—4-18, 5-11, 6-31, 6-35, 6-54, 6-60,
6-65, 6-72, 6-74, 7-4, 7-109, C-11

trap vector, 6-36

V
vector-drawing conventions, 4-9—4-10, 4-11,

4-12
VGA pass-through, 2-3
video RAM, 3-20

X
XDS, 1-1

Z
zoom, 7-107

Index

Index-4

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 6189 HOUSTON, TEXAS

POSTAGE WILL BE PAID BY ADDRESSEE

Technical Publications Manager
Texas Instruments Incorporated
P.O. Box 1443, MS640
Houston, Texas 77001

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

(Fold and Staple Before Mailing)

SCORESCORE

PERF

PERF

B
IN

D
IN

G
 T

A
B

B
IN

D
IN

G
 T

A
B

REPLY CARD FOR 6.3 X 8.5 BOOK

