
~TEXAS
INSTRUMENTS

TMS34010 C Compiler

1988 Graphics Products

TMS34010 C Compiler
Reference Guide

• TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without
notice. TI advises its customers to obtain the latest version of the relevant in­
formation to verify, before placing orders, that the information being relied
upon is current.

TI warrants performance of its semiconductor products to current specifica­
tions in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this
warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or represent that license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellec­
tual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor p'roducts or services might be or are
used.

Copyright © 1988, Texas Instruments Incorporated

Contents

Section

1
1.1
1.2
1.3
1.4

2
2.1
2.2
2.3
2.4

3
3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.4
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.6

4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Introduction
Software Development Tools Overview
Related Documentation
Style and Symbol Conventions
Getting Started

Compiler Installation
Installing the C Compiler on IBM/TI PCs with PC/MS-DOS
Installing the C Compiler on VAX/VMS
Installing the C Compiler on UNIX Systems
Installing the C Compiler on Macintosh/MPW Systems

C Compiler Operation
Preprocessor (gspcpp) Description

Invoking the C Preprocessor
General Information
Specifying Alternate Directories for Include Files

Parser (gspcc) Description
Invoking the Parser
General Information

Code Generator (gspcg) Description
Invoking the Code Generator ..
Pointers to Named Variables (-a Option)
Small Code Model (-s Option)
Checking for Stack Overflow (-x option)

Compiling and Assembling a Program
Linking a C Program

Runtime Initialization and Runtime Support
Sample Linker Command File
Autoinitialization (ROM and RAM Models)
The -c and -cr Linker Options

Archiving a C Program

The TMS34010 C Language
Identifiers, Keywords, and Constants
TMS34010 C Data Types
Object Alignment
Conversions
Expressions
Declarations
Initialization of Static and Global Variables
asm Statement
Lexical Scope Rules

Page

1-1
1-2
1-4
1-5
1-6

2-1
2-2
2-3
2-4
2-5

3-1
3-2
3-2
3-3
3-4
3-6
3-6
3-7
3-8
3-8
3-9
3-10
3-10
3-11
3-13
3-13
3-14
3-15
3-15
3-16

4-1
4-2
4-4
4-6
4-6
4-7
4-8
4-10
4-10
4-11

iii

5
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.4.1
5.4.2
5.4.3
5.5
5.6
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.8
5.8.1
5.8.2

Runtime Environment
Memory Model

Sections
Stack Management .
Dynamic Memory Allocation
RAM and ROM Models
Allocating Memory for Static and Global Variables
Packing Structures and Manipulating Fields
Array Alignment . .

Register Conventions
Dedicated Registers
Using Registers
Register Variables

Function Structure and Calling Conventions
Responsibilities of a Calling Function .
Responsibilities of a Called Function ..
Setting up the Local Frame
Accessing Arguments and Local Variables
Returning Structures from Functions

Interfacing C with Assembly Language
Assembly Language Modules
Inline Assembly Language
Modifying Compiler Output

Interrupt Handling
Integer Expression Analysis .
Floating-Point Support

Floating-Point Formats ..
Double':' Precision Functions
Single- Precision Functions
Conversion Functions
Floating -Point Errors

System Initialization
Initializing the Stack
Autoinitialization of Variables and Constants

6 Runtime-Support Functions
6.1 Header Files
6.1.1 Diagnostic Messages (assert.h)
6.1.2 Character Typing and Conversion (ctype.h)
6.1.3 Limits (float.h and limits.h)
6.1.4 Floating-Point Math (math.h, errno.h)
6.1.5 Nonlocal Jumps (setjmp.h)
6.1.6 Variable Arguments (stdarg.h)
6.1.7 Standard Definitions (stddef.h)
6.1.8 General Utilities (stdlib.h)
6.1.9 String Functions (string.h)
6.1.10 Time Functions (time. h)
6.2 Summary of Runtime-Support Functions and Macros
6.3 Functions Reference

A
B

iv

Error Messages
C Preprocessor Directives

5-1
5-2
5-2
5-3
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-6
5-7
5-8
5-8
5-9
5-10
5-10
5-11
5-12
5-12
5-15
5-15
5-16
5-17
5-17
5-17
5-19
5-20
5-21
5-21
5-22
5-22
5-23

6-1
6-2
6-2
6-3
6-3
6-5
6-5
6-6
6-6
6-6
6-7
6-8
6-9
6-14

A-1
B-1

Illustrations

Figure Page

1-1 TMS34010 Software Development Flow .. 1-2
3-1 Compiling a C Program .. 3-1
3-2 Input and Output Files for the C Preprocessor .. 3-2
3-3 Input and Output Files for the C Parser " 3-6
3-4 Input and Output Files for the C Code Generator 3-8
3-5 An Example of a Linker Command File 3-14
5-1 The Program and System Stacks 5-3
5-2 An Example of a Function Call .. 5-8
5-3 Single- Precision Format .. 5-18
5-4 Double-Precision Format .. 5-18
5-5 Format of Initialization Records in the .cinit Section 5-24
5-6 ROM Model of Autoinitialization .. 5-25
5-7 RAM Model of Autoinitialization .. 5-26

Table

6-1
6-2

Tables

Macros that Supply Integer Type Range Limits (Iimits.h)
Macros that Supply Floating-Point Range Limits (float.h)

Page

6-3
6-4

v

Preface

The TMS34010 C Compiler Reference Guide contains the following sections:

Section 1 Introduction

Overviews the TMS34010 development tools and the code development
process, lists related documentation, describes style and symbol conventions
used in this document, and provides a walkthrough.

Section 2 Software Installation

Contains instructions for installing the C compiler on VAX/VMS, VAX/Ultrix,
VAX/System V, IBM-PC/PC-DOS, and TI-PC/MS-DOS systems.

Section 3 Compiler Operation

Describes the three major components of the C compiler (preprocessor, parser,
and code generator), contains instructions for invoking these components in­
dividually or for invoking batch files to compile and assemble a C source file,
discusses linking C programs, and discusses archiving C programs.

Section 4 TMS34010 C Language

Discusses the differences between the C language supported by the
TMS34010 C compiler and standard Kernighan and Ritchie C.

Section 5 Runtime Environment

Contains technical information on how the compiler uses the TMS3401 0 ar­
chitecture; discusses memory and register conventions, stack organization,
function-call conventions, and system initialization; provides information
needed for interfacing assembly language to C programs.

Section 6 Runtime-Support Functions

Describes the header files that are included with the C compiler, as well as the
macros, functions, and types that they declare, summarizes the runtime­
support functions according to category (header), and provides an alphabet­
ical reference of the runtime-support functions.

Appendix A Error Messages

Shows the format of compiler error messages and lists all the error messages
that are fatal.

Appendix B Preprocessor Directives

Describes the standard preprocessor directives that the compiler supports.

vi

Section 1

Introduction

The TMS34010 Graphics System Processor is an advanced 32-bit micro­
processor optimized for graphics systems. The TMS3401 0 is a member of the
TMS340 family of computer graphics products from Texas Instruments.

The TMS3401 0 is well supported by a full set of hardware and software de­
velopment tools, including a C compiler, a full-speed emulator, a software
simulator, and an IBM/TI-PC development board. (Section 1.1 describes
these tools.)

This reference guide describes the TMS34010 C compiler. Its main purpose
is to present the details and characteristics of this particular C compiler; it as­
sumes that you already know how to write C programs. We suggest that you
obtain a copy of The C Programming Language, by Brian W. Kernighan and
Dennis M. Ritchie (published by Prentice- Hall); use this reference guide as a
supplement to the Kernighan and Ritchie book.

The TMS3401 0 C compiler can be installed on the following systems:

• pes:
IBM-PC with PC-DOS
TI-PC with MS-DOS

• VAX:
VMS
Ultrix

• Apollo Workstations:
Domain/IX
AEGIS

• Sun-3 Workstations with Unix

• Macintosh with MPW

Topics in this introductory section include:

Section Page
1.1 Software Development Tools Overview ... 1-2
1.2 Related Documentation .. 1 -4
1.3 Style and Symbol Conventions .. 1-5
1.4 Getting Started ... 1 -6

1-1

Introduction - Software Development Tools Overview

1.1 Software Development Tools Overview

1-2

Object
Libraries

Figure 1-1 illustrates the TMS3401 0 software development flow. The center
portion of the figure highlights the most common path of software develop­
ment; the other portions are optional.

................
..
..

................

..

Figure 1-1. TMS34010 Software Development Flow

Introduction - Software Development Tools Overview

The following list describes the tools that are shown in Figure 1 -1.

• The C compiler accepts C source code and produces TMS34010 as­
sembly language source code. The C compiler has three parts: a pre­
processor, a parser, and a code generator. Section 3 describes compiler
invocation and operation.

• The assembler translates assembly language source files into machine
language object files.

• The archiver allows you to collect a group of files into a single archive
file. (An archive file is called a library.) It also allows you to modify a
library by deleting, replacing, extracting, or adding members. One of the
most useful applications of the archiver is to build a library of object
modules. Two object libraries and a source library are included with the
C compiler:

flib.lib contains floating-point arithmetic routines.
rts.lib contains standard runtime-support functions.
rts.src contains the source for the functions in rts .lib.

Several application-specific object libraries are available as separate GSP
products:

The math/graphics function library contains math functions
for performing algebraic, trigonometric, and transcendental oper­
ations as well as graphics functions for performing viewport man­
agement, bit-mapped text, graphics output, color-palette control,
three-dimensional transformations, and graphics initialization.
The font library contains a variety of proportionally spaced and
monospaced fonts. You can use the functions in the graphics li­
brary to display the fonts.
The CCITT data compression function library contains
CCITT -compatible routines for compressing and decompressing
monochrome image data.
The 8514 adaptor emulation function library contains rou-
tines for use with the IBM PS/2 high-resolution display. '

These functions and routines can be called from C programs. You can
also create your own object libraries. To use an object library, you must
specify the library name as linker input; the linker will include the library
members that define any functions called from a C program.

• The linker combines object files into a single executable object module.
As the linker creates the executable module, it performs relocation and
resolves external references. The linker accepts relocatable COFF object
files and object libraries as input.

• The main purpose of this development process is to produce a module
that can be executed in a TMS3401 0 target system. You can use one
of several debugging tools to refine and correct your code. Available
products include: a software simulator that runs on PCs, a PC-based
software development board (SOB), and a realtime in-circuit
XDS/22 emulator.

• An object format converter is also available; it converts a COFF ob­
ject file into an Intel, Tektronix, or TI-tagged object-format file that can
be downloaded to an EPROM programmer.

1-3

Introduction - Related Documentation

1.2 Related Documentation

1-4

You should obtain a copy of The C Programming Language (by Brian
W. Kernighan and Dennis M. Ritchie, published by Prentice- Hall, Englewood
Cliffs, New Jersey, 1978) to use with this manual.

You may find these two books useful as well:

• Kochan, Steve G. Programming in C, Hayden Book Company.

• Sobelman, Gerald E. and David E. Krekelberg. Advanced C: Techniques
and Applications, Que Corporation, 1985.

The following books, which describe the TMS34010 and related support
tools, are available from Texas Instruments. To obtain TI literature, please call
the Texas Instruments Customer Response Center (CRC) at 1 -800-232-3200.

• The TMS34010 Assembly Language Tools User's Guide (literature
number SPVU004) tells you how to use the TMS34010 assembler,
linker, archiver, object format converter, and simulator.

• The TMS34010 Math/Graphics Function Library User's Guide
(literature number SPVU006) describes a collection of mathematics and
graphics functions that can be called from C programs.

• The TMS34010 CCITT Data Compression Function Library Us­
er's Guide (literature number SPVU009) describes a collection of
CCITT -compatible routines for compressing and decompressing mono­
chrome image data.

• The TMS34010 Font Library User's Guide (literature number
SPVU007) describes a set of fonts that are available for use in a
TMS34010-based graphics system.

• The TMS34010 User's Guide (literature number SPVU001) discusses
hardware aspects of the TMS3401 0 such as pin functions, architecture,
stack operation, and interfaces, and contains the TMS3401 0 instruction
set.

• The TMS34010 Application Guide (literature number SPVA007) is a
collection of individual application reports. Each report pertains to a
specific TMS34010 application. Typical applications discuss topics
such as using a TMS3401 0 in a 512 x 512-pixel minimum-chip system,
designing TMS34010-based systems that are compatible with various
graphics standards, and interfacing the TMS3401 0 to a variety of host
processors.

• The TMS34010 Software Development Board User's Guide (lit­
erature number SPVU002) describes using the TMS3401 0 software de­
velopment board (a high-performance, PC-based graphics card) for
testing and developing TMS3401 O-based graphics systems.

Introduction - Style and Symbol Conventions

1.3 Style and Symbol Conventions

• In this document, program listings or examples, interactive displays,
filenames, file contents, and symbol names are shown in a special
font. Examples may use a bold version of the special font
for emphasis. Here is a sample declaration:

#include <memory.h>
int free(pointer)
char *pointer;

Some examples show screen displays in the special font; the part of
the display that you enter is shown in the bold special font. In the
following example, you enter the first line to invoke the parser; the next
three lines are messages that the parser prints to the screen.

gspcc program
C Compiler, Version 3.xx
(c) Copyright 1988, Texas Instruments Incorporated

"program.c" ==> main

• In syntax descriptions, the instruction, command, or directive is in a bold
face font. Parameters are in italics. Here is an example of directive
syntax:

#line integer-constant {" filename"]

#line is a preprocessor directive. This directive has two parameters, in­
dicated by integer-constant and "filename". When you use #Iine, the
first parameter must be an actual integer constant; the second parameter
must be the name of a file, enclosed in double quotes.

• Square brackets ([]) indicate an optional parameter. Here's an exam­
ple of a command that has three optional parameters:

gspcpp [input file {output file]] {options]

Square brackets are also used as part of the pathname specification for
VMS path names; in this case, the brackets are actually part of the path­
name (they aren't optional).

1-5

Introduction - Getting Started

1.4 Getting Started

1-6

The TMS34010 C compiler has three parts: a preprocessor, a parser, and a
code generator. The compiler produces an assembly language source file that
must be assembled and linked. The simplest way to compile and assemble a
C program is to use the gspc batch file which is included with the compiler.
This section provides a quick walkthrough so that you can get started without
reading the entire reference guide.

1) Create a sample file called function. c that contains the following
code:

/*********************************/
/* function.c */
/* (Sample file for walkthrough) */
/*********************************/
#include "stdlib.h"
int abs(i)

(

}

int i;

register int temp ,= i;
if (temp < 0) temp *= -1;
return (temp);

2) Invoke the gspc .bat batch file to compile and assemble function. c;
enter:

gspc function

The gspc command invokes the batch file, which in turn invokes the C
preprocessor, C parser, C code generator, and the assembler. In this
example, function. c is the input source file. Do not specify an ex­
tension for the input file; the batch file assumes that the input file has
an extension of .c.

After you invoke the batch file, it will print the following progress mes­
sages:

---[function]---
C Pre-Processor,
(c) Copyright 1988,
C Compiler,
(c) Copyright 1988,

"f\lnction.c" ==)
C Codegen,
(c) Copyright 1988,

"function.c" ==)
COFF Assembler,
(c) Copyright 1988,
PASS 1
PASS 2

Version 3.xx
Texas Instruments

Version 3.xx
Texas Instruments
abs

Version 3.xx
Texas ,Instruments
abs

Version 3.xx
Texas Instruments

No, Errors, No Warnings

Incorporated

Incorporated

Incorporated

Incorporated

Successful Compile of Module function

Introduction - Getting Started

Each component of the compiler creates a file that the next component
uses as input (for example, the preprocessor creates an input file for the
parser). Each component names its output file by using the source fi­
lename with special extensions that indicate which component created
the file.

This example uses and creates the following files:

a) The source file function. c is input for the preprocessor; the pre­
processor creates a modified C source file called function. cpp.

b) function. cpp is input for the parser; the parser creates an inter­
mediate file called function. if.

c) function. if is input for the code generator; the code generator
creates an assembly language file called function. asm.

d) function. asrn is input for the assembler; the assembler creates
an object file called function. obj.

3) The final output of the batch file is an object file. This example creates
an object file called function. obj. To create an executable object
module, link the object file created by the batch file with the runtime­
support library rts .1ib:

gsp1nk -c function -0 function. out -1 rts.1ib

This examples uses the -c linker option because the code came from a
C program. The -I option tells the linker that the input file rts .1ib is
an object library. The -0 option names the output module, func­
tion. out; if you don't use the -0 option, the linker names the output
module a.out.

You can find more information about invoking the compiler, the assembly
language tools, and the batch files in the following sections:

Section Page
3.1 Preprocessor (gspcpp) Description .. 3-2
3.2 Parser (gspcc) Description ... 3-6
3.3 Code Generator (gspcg) Description .. 3-8
3.4 Compiling and Assembling a Program ... 3-11
3.5 Linking a C Program ... 3-13

1-7

Introduction

1-8

Section 2

Compiler Installation

This section contains step-by-step instructions for installing the TMS34010
C compiler. The compiler can be installed on the following systems:

• DOS Systems
IBM-PC with PC-DOS1 (versions 2.1 and up)
TI-PC with MS-DOS2 (versions 2.1 and up)

• UN IX3 Systems
VAX/Ultrix
Apollo Domain/IX
Apollo AEGIS
Sun-3

• DEC VAX/VMS4

., Apple Macintosh/M PW5

You will find the installation instructions for these systems in the following
sections:

Section Page
2.1 PC Installations ... 2-2
2.2 VAX/VMS Installation , .. 2-3
2.3 UNIX Systems Installation ... 2-4
2.4 Macintosh/MPW Installation .. 2-5

Note:

In order to use the TMS34010 C compiler, you must also have the
TMS34010 assembler and linker.

PC- DOS is a trademark of International Business Machines.

2 MS-DOS is a trademark of Microsoft Corporation.

3 UNIX is a registered trademark of AT&T.

4 VAX and VMS are trademarks of Digital Equipment Corporation.

5 Macintosh and MPW are trademarks of Apple Computer, Inc.

2-1

Compiler Installation - MS/PC-DOS Systems

2.1 Installing the C Compiler on IBM/TI PCs with PC/MS-DOS

2-2

The C compiler package is shipped on double-sided, dual-density diskettes.
The compiler executes in batch mode, and requires 512K bytes of RAM.

These instructions are for both hard-disk systems and dual floppy drive sys­
tems (however, we recommend that you use the compiler on a hard-disk sys­
tem). On a dual-drive system, the PC/MS-DOS system diskette should be in
drive B. The instructions use these symbols for drive names:

A: Floppy-disk drive for hard disk systems; source drive for dual-drive sys-
tems.

B: Destination or system disk for dual-drive systems.
C: Winchester (hard disk) for hard-disk systems. (E: on TI PCs.)

Follow these instructions to install the software:

1) Make backups of the product diskettes.

2) Create a directory to contain the C compiler. If you're using a dual-drive
system, put the disk that will contain the tools into drive B.

• On hard-disk systems, enter:

MD C:\GSPTOOLS

• On dual-drive systems, enter:

MD B:\GSPTOOLS

3) Copy the C compiler package onto the hard disk or the system disk. Put
the product diskette in drive A; if you're using a dual-drive system, put
the disk that will contain the tools into drive B.

• On hard-disk systems, enter:

COPY A:*.* C:\GSPTOOLS*.*

• On dual-drive systems, enter:

COPY A:*.* B:\GSPTOOLS*.*

4) Repeat steps 1 through 3 for each product diskette.

Compiler Installation - VAX/VMS Systems

2.2 Installing the C Compiler on VAX/VMS

The TMS34010 C compiler tape was created with the VMS BACKU P utility
at 1600 BPI. These tools were developed on version 4.5 of VMS. If you are
using an earlier version of VMS, you may need to relink the object files; refer
to the Release Notes for relinking instructions.

Follow these instructions to install the compiler:

1) Mount the tape on your tape drive.

2) Execute the following VMS commands. Note that you must create a
destination directory to contain the package; in this example,
DEST: directory represents that directory. Replace TAPE with the
name of the tape drive you are using.

3)

$ allocate TAPE:
$ mount/for/den=1600 TAPE:
$ backup TAPE:gspc.bck DEST[:directory]
$ dismount TAPE:
$ dea110c TAPE:

The product tape contains a file called setup. com. This file sets up
VMS symbols that allow you to execute the tools in the same manner
as other VMS commands. Enter the following command to execute the
file:

$ @setup DEST:directory

This sets up symbols that you can use to call the various tools. As the
file is executed, it will display the defined symbols on the screen.

You may want to include the commands from setup. com in your lo­
gin. com file. This automatically defines symbols for running the tools
each time you log in.

2-3

Compiler Installation - UNIX Systems

2.3 Installing the C Compiler, on UNIX Systems

2-4

The TMS3401 0 C compiler product tape was made at 1600 BPI using the tar
utility. Follow these instructions to install the compiler:

1) Mount the tape on your tape drive.

2) Make sure that the directory that you'll store the tools in is the current
directory.

3) Enter the tar command for your system; for example,

tar x

This copies the entire tape into the directory.

Note to Apollo Users:

These tools can run under either the AEGIS system or Domain/IX. How­
ever, when you install the tools, you must use Domain/IX because the tape
is in tar format and only Domain/IX has a tar command. If you are not ac­
customed to using Domain/IX, you can run the tools under AEGIS after
they are installed.

Compiler Installation - Macintosh/M PW Systems

2.4 Installing the C Compiler on Macintosh/M PW Systems

The C compiler package is shipped on a double-sided, BOOk, 3 1/2" diskette.
The disk contains three folders:

• Tools,
• Includes, and
• Libraries.

Use the Finder to display the disk contents and copy the files into your M PW
environment:

1} The Tools directory contains all the programs and the batch files for
running the compiler. Copy this directory in with your other MPW tools
(MPW tools are usually in the folder {MPW}Tools.}

2) The Includes directory contains the header files (. h files) for the run­
time-support functions. Many of these files have names that conflict
with commonly-used MPW header files, so you should keep these
header files separate from the MPW files. Copy the contents of the In­
clude directory into a new folder, and use the C-DIR environment vari­
able (see Section 3.1.3 on page 3-4) to create a path to this folder.

3} The Libraries folder contains the compiler's runtime-support object and
source libraries. You can copy these files into the folder that you created
for the header files, or you can copy them into a new folder. If you copy
them into a new folder, use the C-DIR environment variable to create a
path to this folder as well. '

2-5

Compiler Installation

2-6

Section 3

C Compiler Operation

Figure 3-1 illustrates the three-step process of compiling a C program.

Figure 3-1. Compiling a C Program

Step 1: The input for the preprocessor is a C source file (as described in
Kernighan and Ritchie). The preprocessor produces a modified version of the
source file.

Step 2: The input for the parser is the modified source file produced by the
preprocessor. The parser produces an intermediate file.

Step 3: The input for the code generator is the intermediate file produced
by the parser. The code generator produces an assembly language source file.

After you compile a program, you must assemble and link it with the
TMS34010 assembler and linker.

Topics in this section include:

Section Page
3.1 Preprocessor (gspcpp) Description .. 3-2
3.2 Parser (gspcc) Description ... 3-6
3.3 Code Generator (gspcg) Description .. 3-8
3.4 Compiling and Assembling a Program ... 3-11
3.5 Linking a C Program ... 3-13
3.6 Archiving a C Program .. 3-16

3-1

Compiler Operation - Preprocessor Description

3.1 Preprocessor (gspcpp) Description

The first step in compiling a TMS34010 C program is invoking the C pre­
processor. The preprocessor handles macro definitions and substitutions,
#include files, line number directives, and conditional compilation. As Figure
3-2 shows, the preprocessor uses a C source file as input, and produces a
modified source file that can be used as input for the C parser.

C source
file
(.c)

II ••••• , •••••••••••• '"

•••••••••••••••• II •••••

•••••• II •••••••••••• II •
•••••••• •••••• II •••• It.

Figure 3-2. Input and Output Files for the C Preprocessor

3.1.1 Invoking the C Preprocessor

3-2

To invoke the preprocessor, enter:

gspcpp [input file [output file]] [options]

gspcpp is the command that invokes the preprocessor.

input file names a C source file that the preprocessor uses as input. If you
don't supply an extension, the preprocessor assumes that the
extension is .c. If you don't specify an input file, the pre­
processor will prompt you for one.

output file names the modified source file that the preprocessor creates. If
you don't supply a filename for the output file, the preprocessor
uses the input filename with an extension of .cpp.

options affect the way the preprocessor processes your input file. An
option is a single letter preceded by a hyphen; some options
have additional fields which follow the option with no interven­
ing spaces. Options are not case sensitive. Valid options in­
clude:

-c copies comments to the output file. If you don't use this
option, the preprocessor strips comments. There is no
reason to keep comments unless you plan to inspect the
. cpp file.

Compiler Operation - Preprocessor Description

-dname[=def] defines name as if it were #defined in a C source
file (as in #def ine name def). You can use name in #if
and #ifdef statements without explicitly defining it in the
C source. The =def is optional; if you don't use it, name
has a value of 1. You can use this option multiple times
to define several names; be sure to separate mUltiple -d
options with spaces.

-idir adds dir to the list of directories to be searched for
#include files. (See Section 3.1.3, page 3-4.)

-p prevents the preprocessor from producing line number
and file information.

-q is the "quiet" option; it suppresses the banner and status
information.

Note that options can appear anywhere on the command line.

3.1.2 General Information

• This preprocessor is the same preprocessor that is described in Kerni­
ghan and Ritchie; additional information can be found in that book. This
preprocessor supports the same preprocessor directives that are de­
scribed in Kernighan and Ritchie (Appendix B summarizes these direc­
tives). All preprocessor directives begin with the character #, which
must appear in column 1 of the source statement. Any number of blanks
and tabs may appear between the # sign and the directive name.

• The C preprocessor maintains and recognizes five predefined macro
names:

__ LINE _ _ represents the current line number (maintained as a dec­
imal integer).

__ FILE _ _ represents the current filename (maintained as a C str­
ing).

__ DATE _ _ represents the date that the module was compiled
(maintained as a C string).

__ TIME _ _ represents the time that this module was compiled
(maintained as a C string).

-gspc identifies the compiler as the TMS3401 0 C compiler; this
symbol is defined as the constant 1.

You can use these names in the same manner as any other defined name.
For example,

printf ("%s %s", __ TIME __ , __ DATE __) ;

would translate into a line such as:

printf(%s %s", "Jan 14 1988", "13:58:17"};

• The preprocessor produces self-explanatory error messages. The line
number and the filename where the error occurred are printed along with
a diagnostic message.

3-3

Compiler Operation - Preprocessor Description

3.1.3 Specifying Alternate Directories for Include Files

The #include preprocessor directive tells the preprocessor to read source
statements from another file. The syntax for this directive is:

#include "filename" or #include <filename>

The filename names an include file that the preprocessor reads statements
from; you can enclose the filename in double quotes or in angle brackets. The
filename can be a complete pathname or a filename with no path information.

• If you provide path information for filename, the preprocessor uses that
path and does not look for the file in any other directories.

• If you do not provide path information and you enclose the filename in
angle brackets, the preprocessor searches for the file in:

1) Any directories named with the -i preprocessor option.
2) Any directories set with the environment variable C-DIR.

Note that if you enclose the filename in angle brackets, the preprocessor
does not search for the file in the current directory.

C/!) If you do not provide path information and you enclose the filename in
double quotes, the preprocessor searches for the file in:

1) The directory that contains the current source file. (The current
source file refers to the file that is being processed when the pre­
processor encounters the #include directive.)

2) Any directories named with the -i preprocessor option.
3) Any directories set with the environment variable C-DIR.

You can augment the preprocessor's directory search algorithm by using the
-i preprocessor option or the environment variable C-DIR.

3.1.3.1 -i Preprocessor Option

3-4

The -i preprocessor option names an alternate directory that contains include
files. The format of the -i option is:

gspcpp - ipathname

You can use up to 10 -i options per invocation; each -i option names one
pathname. In C source, you can use the #include directive without specifying
any path information for the file; instead, you can specify the path information
with the -i option. For example, assume that a file called source. c is in the
current directory; source. c contains the following directive statement:

#include "alt.c"

The table below lists the complete path name for alt. c and shows how to
invoke the preprocessor; select the row for your operating system.

Compiler Operation - Preprocessor Description

DOS:

VMS:
UNIX:
MPW:

Pathname for alto c Invocation Command

c:\gsp\files\alt.c gspcpp -ic:\gsp\files source.c

[gsp. files] al t. c gspcpp -i[gsp.files] source.c

/gsp/files/alt.c gspcpp -i/gsp/files source.c

:gsp :files :alt .c gspcpp -i :gsp :files source.c

Note that the include filename is enclosed in double quotes. The preprocessor
first searches for alt. c in the current directory, because source. c is in the
current directory. Then, the preprocessor searches the directory named with
the -i option.

3.1.3.2 Environment Variable

DOS:

VMS:

UNIX:

MPW:

An environment variable is a system symbol that you define and assign a string
to. The preprocessor uses an environment variable named C-DIR to name
alternate directories that contain include files. The commands for assigning
the environment variable are:

set C-DIR=pathname;another pathname ...

assign "pathname;another pathname ... " C-DIR

UNIX: setenv C-DIR "pathname;another pathname '" "

MPW: set C-DIR ":pathname;another: pathname ... "
export C-DIR

The pathnames are directories that contain include files. You can separate
pathnames with a semicolon or with blanks. In C source, you can use the
#include directive without specifying any path information; instead, you can
specify the path information with C-D I R.

For example, assume that a file called source. c contains these statements:

#include <altl.c>
#include <alt2.c>

The table below lists the complete pathnames for these files and shows how
to invoke the preprocessor; select the row for your operating system.

Pathnames for altl. c and alt2.c Invocation Command

c:\gsp\files\altl.c
c:\gsys\alt2.c

set C-DIR=c:\gsys c:\exec\files
gspcpp -ic:\gsp\files source.c

[gsp.files]altl.c assign C-DIR " [gsys] [exec.files]"
[gsys]alt2.c gspcpp -i[gsp.files] source.c

/gsp/files/altl.c setenv C_DIR "/gsys /exec/files
/gsys/alt2.c gspcpp -i\gsp\files source. c I

:gsp :files :altl .c set C-DIR " :gsys :files "
:gsys :alt2 .c export C_DIR

gspcpp -i:gsp :files source.c

Note that the include filenames are enclosed in angle brackets. The pre­
processor first searches for these files in the directories named with C-DIR
and finds al t2. c. Then, the preprocessor searches in the directories named
with the -i option and finds altl. c.

3-5

Compiler Operation - Preprocessor/Parser Description

The environment variable remains set until you reboot the system or reset the
variable by entering:

DOS: set C-DIR=
VMS: deassign C-DIR
UNIX: setenv C-DIR " "
MPW: unset C-DIR

3.2 Parser (gspcc) Description

The second step in compiling a TMS3401 0 C program is invoking the C par­
ser. The parser reads the modified source file produced by the preprocessor,
parses the file, checks the syntax, and produces an intermediate file that can
be used as input for the code generator. (Note that the input file can also be
a C source file that has not been preprocessed.) Figure 3-3 illustrates this
process.

Figure 3-3. Input and Output Files for the C Parser

3.2.1 Invoking the Parser

3-6

To invoke the parser, enter:

gspcc [input file [output file}} [options}

gspcc is the command that invokes the parser.

input file names the modified C source file that the parser uses as input.
If you don't supply an extension, the parser assumes that the
extension is .cpp. If you don't specify an input file, the parser
will prompt you for one.

output file names the intermediate file that the parser creates. If you don't
supply a filename for the output file, the parser uses the input
filename with an extension of .if.

Compiler Operation - Parser Description

options affect the way the parser processes the input file. An option is
a single letter preceded by a hyphen. Options can appear any­
where on the command line and are not case sensitive. Valid
options include:

-q is the "quiet" option; it suppresses the banner and status
information.

-z tells the parser to retain the input file (the intermediate file
created by the preprocessor). If you don't specify -z, the
parser deletes the . cpp input file. (The parser never
deletes files with the .c extension.)

3.2.2 General Information

• Most errors are fatal; that is, they prevent the parser from generating an
intermediate file and must be corrected before you can finish compiling
a program. Some errors, however, merely produce warnings which hint
of problems but do not prevent the parser from producing an intermedi­
ate file.

• As the parser encounters function definitions, it prints a progress mes­
sage that contains the name of the source file and the name of the
function. Here is an example of a progress message:

"filename.e": => main

This type of message shows how far the compiler has progressed in its
execution, and helps you to identify the locations of an error. You can
use the -q option to suppress these messages.

• If the input file has an extension of • cpp, the parser deletes it upon
completion unless you use the -z option. If the input file has an exten­
sion other than . cpp, the parser does not delete it.

• The intermediate file is a binary file; do not try to inspect or modify it in
any way.

3-7

Compiler Operation - Code Generator Description

3.3 Code Generator (gspcg) Description

The third step in compiling a TMS34010 C program is invoking the C code
generator. As Figure 3-4 shows, the code generator converts the intermediate
file produced by the parser into an assembly language source file. You can
modify this output file or use it as input for the TMS34010 assembler. The
code generator produces reentrant relocatable code which, after assembling
and linking, can be stored in ROM.

intermediate
file
(.if)

'"'1"" til"" ,.,""" , ,., "~" ,

t •••••••••••••••••••••••
I •••••••• , •••••••• , ••••

Figure 3-4. Input and Output Files for the C Code Generator

3.3.1 Invoking the Code Generator

3-8

To invoke the code generator, enter:

gspcg [input file [output file [temp file}}} [options}

gspcg is the command that invokes the code generator.

input file names the intermediate file that the code generator uses as input.
If you don't supply an extension, the code generator assumes
that the extension is . if. If you don't specify an input file, the
code generator will prompt you for one.

output file names the assembly language source file that the code generator
creates. If you don't supply a filename for the output file, the
code generator uses the input filename with an extension of
.ssm.

tempfile names a temporary file that the code generator creates and uses.
The default filename for the temporary file is the input filename
appended with an extension of . tmp. The code generator de­
letes this file after using it.

Compiler Operation - Code Generator Description

options affect the way the code generator processes the input file. An
option is a single letter preceded by a hyphen. Options can ap­
pear anywhere on the command line and are not case sensitive.
Valid options include:

-a indicates that the program may contain assignments in
the form *ptr = ... , where ptr is a pointer to a named
variable. (See Section 3.3.2 below.)

-0 places high-level-language debugging directives in the
output file. See Appendix B of the TMS34010 Assembly
Language Tools User's Guide for more information about
these directives.

-q is the "quiet" option; it suppresses the banner and status
information.

-r periodically writes a register-status table to the output
file. This table is a list of assembly language comments
that names each register that the code generator is cur­
rently using; it also shows the type of each register's
current contents. The table is printed between statements
whenever the contents of registers could change. This is
very useful if you want to modify the assembly language
output.

-s uses the small code model. (See Section 3.3.3 on the
next page.)

-v produces code that can run in a multiprocess environ­
ment, where all variables may be considered volatile. Use
this option when you compile modules that access vari­
ables which may be modified by another task (process).
In general, code generated this way is significantly less
efficient.

-x checks for overflow conditions of the runtime stack. The
C compiler uses two stacks that grow together; unless
you use the -x option, there is no automatic checking for
stack overflow at run time. (See Section 3.3.4 on the
next page.)

-z retains the input file (the intermediate file created by the
parser). This option is useful for creating several output
files with different options; for example, you might want
to use the same intermediate file to create one file that
contains symbolic debugging directives (-0 option) and
one without them. Note that if you do not specify the -z
option, the code generator deletes the input (intermedi­
ate) file.

3.3.2 Pointers to Named Variables (-a Option)

You don't have to use -a if ptr doesn't point to a named variable. For ex­
ample, it is not necessary to use -a if ptr points to an element of a dynamically
allocated or statically allocated array. Note that structures are n:"lt considered
to be named variables.

3-9

Compiler Operation - Code Generator Description

When you don't use the -a option, the compiler:

• Remembers that a register contains a constant or the value of a named
variable, so it does not regenerate code to load that value into a register,
and

• Assumes that an assignment of the form *ptr = .•• does not assign
a value to a named variable.

Under normal circumstances, the compiler cannot know which named variable
an assignment will affect. Thus, when the compiler encounters such an as­
signment, it must forget the contents of all the registers that it assumed con­
tained the values of named variables. When you use the -a option, the
compiler generates less efficient code because it forgets these registers' con­
tents and has to regenerate the code; thus, you should use this option spar­
ingly.

3.3.3 Small Code Model (-s Option)

The compiler normally generates CALLA instructions; if you use -s, the com­
piler generates CALLR instructions. CALLR instructions are shorter and faster
than CALLA instructions, but they limit the CALL range to ±32K words of the
current PC.

Be sure that if you use the small code model, you don't generate calls outside
of the 32K-word range; otherwise, your code won't run. You can verify that
you conform to this limit by checking the link map (32K words translates to
Ox80000 in bit addresses).

You can mix small-model code with other code as long as the small-model
code conforms to the CALL restrictions. For example, if a module contains a
group of functions that only call each other, and the size of this compiled
module is 32K words or less, you can compile it with the -s option. You can
then link this module with modules that weren't compiled with -s, as long as
the small-code module doesn't call any code that is more than 32K words
away. Small-model code can call functions outside the small-code module,
as long as the called function is within the 32K-word limit.

3.3.4 Checking for Stack Overflow (-x option)

3-10

When you use -x, the code generator checks for stack overflow at the begin­
ning of each function (after allocating the local frame). It does this by calling
another function, s$check, that compares the two stack pointers.

• If the stacks don't overlap, s$check simply returns.
• If the stacks collide, s$check takes a TRAP 29. You can modify s$check

to perform some other type of action; the source module for s$check is
scheck. aSIn, which is a member of rts. src.

Note that there is usually no way to recover from a stack overflow. If the stack
overflows, you can't use it, and thus you can't use C code for the abort proc­
ess.

Compiler Operation - Compiling and Assembling a Program

3.4 Compiling and Assembling a Program

The compiler creates a single assembly language source file as output, which
you can assemble and link to form an executable object module. You can
compile several C source programs, assemble each of them, and then link them
together. (The TMS34010 Assembly Language Tools User's Guide describes
the TMS3401 0 assembler and linker.)

Example 3-1 and Example 3-2 show two different methods for compiling and
assembling a C program. Both of these examples compile and assemble a C
source file called program. c and create an object file called program. obj.
Example 3-1 shows how you can accomplish this by invoking the pre­
processor, the parser, the code generator, and the assembler in separate steps.
Example 3-2 shows how you can use a batch file for compiling and assembl­
ing a file in one step.

Example 3-1. Method 1 - Invoking Each Tool Individually

1) Invoke the preprocessor; use program. c for input:

gspcpp program
C Pre-Processor, Version 3.xx
(c) Copyright 1988, Texas Instruments Incorporated

This creates an output file called program. cpp.

2) Invoke the parser; use program. cpp for input:

gspcc Jilrogram
C Comp~ler, Version 3.xx
(c) Copyright 1988, Texas Instruments Incor~orated

"program.c" ==) main

This creates an output file called program. if.

3) Invoke the code generator; use program. if for input:

gspcg program
C Codegen, Version 3.xx
(c) Copyright 1988, Texas Instruments Incorporated

"program.c" ==) main

This creates an output file called program. asm.

4) Assemble program. asm:

gspa program
COFF Assembler, Version 3.xx
(c) Copyright 1988, Texas Instruments Incorporated
PASS 1
PASS 2

No Errors, No Warnings

This creates an output file named program. obj

Two batch files, gspc and gspq, are included as part of the TMS34010 C
compiler package. The batch files expect C source files as input; each pro­
duces object files that can be linked. The batch files are essentially the same;
however, gspc produces diagnostic and· progress messages while gspq is a

3-11

Compiler Operation - Compiling and Assembling a Program

"quiet" batch file that produces no messages. In addition, gspq deletes the
intermediate asm file. To invoke the batch files, enter:

gspc input file or gspq input file

gspc/gspq name the batch files that invoke the tools.

input file names a C source file. If you don't specify a filename, the batch
files will prompt you for one. Each batch file expects the input
file to have an extension of .c. Do not specify an extension
for the input file; doing so may harm the input file.

The batch files only accept filenames as input; you cannot pass command
options to the batch file. (If you want to use options, you must modify the
batch files.) The batch files use the input filename to create and name the
intermediate files and the output object file. The output file has the same
name as the input filename, except the output file has an extension of .obj.
You can specify multiple input files to the batch file; for example,

gspc filel file2 file ...

Example 3-2 uses the gspc batch file to compile and assemble a C source file
named program. c. (You could also use gspq, but it would not produce the
messages shown in Example 3-2.)

Example 3-2. Method 2 - Using the Batch File

3-12

gspc program
---[program]---
C Pre-Processor, Version 3.xx
(c) Copyright 1988 Texas Instruments Incorporated
C Compiler, Version 3.xx
(c) Copyright 1988 Texas Instruments Incorporated

"program.c" ==) main
C Codegen, Version 3.xx
(c) Copyright 1988 Texas Instruments Incorporated

"program.c" ==) main
COFF Assembler, Version 3.xx
(c) Copyright 1988 Texas Instruments Incorporated
PASS 1
PASS 2

No Errors, No Warnings
Successful Compile of Module program

Note that the batch files do not create listing files. If you used gspc, you can
create a listing file by invoking the assembler again with the -I option (lower­
case L) and using filename. asm as the input file. For example,

gspc program
gspa program -1

(You can't do this if you use gspq, because gspq deletes the. asm file.) If
you want to create a listing file each time you use gspc, modify the batch file
so that it invokes the assembler with the -I option.

Compiler Operation - Linking a C Program

3.5 Linking a C Program
The TMS34010 C compiler and assembly language tools support modular
programming by allowing you to compile and assemble individual modules
and then link them together. To link compiled and assembled code, enter:

gsplnk

-c/-cr

filenames
grams.

gsplnk -c filenames -0 name.out -I rts.lib [-I flib.lib]
or

gsplnk -cr filenames -0 name. out -I rts.lib [-I flib.lib]

is the command that invokes the linker.

are options that tell the linker to use special conventions that
are defined by the C environment.

are object files created by compiling and assembling C pro-

-0 name. out names the output file. If you don't use the -0 option, the linker
creates an output file with the default name of a. out.

rts.lib/ rts .lib is an archive library that contains C runtime-support
flib.lib functions, and flib.lib is the floating-point arithmetic li­

brary. (The -I option tells the linker that a file is an object li­
brary.) Both libraries are shipped with the C compiler. It
you're linking C code, you must use rts .lib; you only need
f lib .lib if you're using the floating-point functions. Who..:
never you specify a library as linker input, the linker includes
and links only those library members that resolve undefined
references.

For example, you can link a C program consisting of modules progl, prog2,
and prog3' (the output file is named prog. out):

qsp1nk -c proq1 proq2 prog3 -1 rts.1ib -0 proq.out

The linker uses a default allocation algorithm to allocate your program into me­
mory. You can use the MEMORY and SECTIONS directives to customize the
allocation process. For more information about the linker, see the TMS34010
Assembly Language Tools User's Guide.

3.5.1 Runtime Initialization and Runtime Support

All C programs must be linked with the boot. obj object module; this module
contains code for the C boot routine. The boot. obj module is a member of
the runtime-support object library, rts .lib. To use the module, simply use
-c or -cr and include the library in the link:

qsp1nk -c -1 rts.1ib ...

The linker automatically extracts boot. obj and links it in when you use the
-c or -cr option.

When a C program begins running, it must execute boot. obj first. The
symbol -c-intOO is the starting point in boot. obj; if you use the -c or -cr
option, then -c-intOO is automatically defined as the entry point for the
program. If your program begins running from reset, you should set up the
reset vector to generate a branch to -c_intOO so that the TMS34010 exe­
cutes boot. obj first. The boot. obj module contains code and data for ini­
tializing the runtime environment; the module performs the following tasks:

Compiler Operation - linking a C Program

• Sets up the system stack.
• Processes the runtime initialization table and autoinitializes global vari-

ables (in the ROM model).

• Calls --main.
e Calls exit when main returns.

Section 6 describes additional runtime-support functions that are included in
rts .lib. If your program uses any of these functions, you must link
rts .lib with your object files.

3.5.2 Sample linker Command File

3-14

Figure 3-5 shows a typical linker command file that can be used to link a C
program. The command file in this example is named link. cmd.

/***/
/* Linker command file link.cmd */
/***/
-c /* ROM autoinitialization model */
-m example.map /* Create a map file */
-0 example. out /* Output file name */
main.obj /* First C module */
sub.obj /* Second C module */
asm.obj /* Assembly language module */
-1 rts.lib /* Runtime-support library */
-1 flib.lib /* Floating-Eoint library */
-1 matrix. lib /* Object Ii rary */

Figure 3-5. An Example of a Linker Command File

• The command file first lists several linker options:

-c is one of the options that can be used to link C code; it tells the
linker to use the ROM model of autoinitialization.

-m tells the linker to create a map file; the map file in this example is
named example. map.

-0 tells the linker to create an executable object module; the module
in this example is named example. out.

• Next, the command file lists all the object files to be linked. This C pro­
qram consists of two C modules, main. c and sub. c, which were
ompiled and assembled to create two object files called main. obj and

sub. obj. This example also links in an assembly language module
called asm. obj.

One of these files must define the symbol main, because boot. obj calls
main as the start of your C program. All of these object files are linked
in.

• Finally, the command file lists all the object libraries that the linker must
search. (The libraries are specified with the -I linker option.) Since this
is a C program, the runtime-support library rts .lib must be included.
If a program uses floating-point routines, it must also link in flib .lib

Compiler Operation - Linking a C Program

(the floating-point support library). This program uses several routines
from an archive library called rnatr ix .lib, so it is also named as linker
input. Note that only the library members that resolve undefined refer­
ences are linked in.

To link the program using this command file, simply enter:

gsplnk link.cmd

This example uses the default memory allocation described in Section 9 of the
TMS34010 Assembly Language Tools User's Guide. If you want to specify
different MEMORY and SECTIONS definitions, refer to that user's guide.

3.5.3 Autoinitialization (ROM and RAM Models)

The C compiler produces tables of data for autoinitializing global variables.
(Section 5.8.2.1, page 5-25, discusses the format of these tables.) These ta­
bles are in a named section called .cinit. The initialization tables can be used
in either of two ways:

• ROM Model (-c linker option)

Global variables are initialized at run time. The .cinit section is loaded
into memory along with all the other sections. The linker defines a spe­
cial symbol called cinit that points to the beginning of the tables in
memory. When the program begins running, the C boot routine copies
data from the tables into the specified variables in the .bss section. This
allows initialization data to be stored in ROM and then copied to RAM
each time the program is started.

For more information about the ROM model, see Section 5.8.2.2 on
page 5-26.

• RAM Model (-cr linker option)

Global variables are initialized at load time. A loader copies the initial­
ization routine into the variables in the .bss section; thus, no runtime
initialization is performed at boot time. This enhances performance by
reducing boot time and saving memory used by the initialization tables.

For more information about the RAM model, see Section 5.8.2.3 on page
5-27.

3.5.4 The -c and -cr Linker Options

The following list outlines what happens when you invoke the linker with the
-c or -cr option.

• The symbol -c-intOO is defined as the program entry point; it identifies
the beginning of the C boot routine in boot. obj. When you use -c or
-cr, -c-intOO is automatically referenced; this ensures that boot. obj
is automatically linked in from the runtime-support library rts. lib.

• The .cinit output section is padded with a termination record so that the
boot routine (ROM model) or the loader (RAM model) can identify the
end of the initialization tables.

3-15

Compiler Operation - Linking/Archiving Compiler Output

• In the ROM model (-c option), the linker defines the symbol cinit as
the starting address of the .cinit section. The C boot routine uses this
symbol as the starting point for autoinitialization.

• In the RAM model (-cr option):

The linker sets the symbol cinit to -1. This indicates that the
initialization tables are not in memory, so no initialization is per­
formed at run time.

The STYP-COPY flag (010h) is set in the .cinit section header.
STYP-COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into
memory. The linker does not allocate space in memory for the .cinit
section.

3.6 Archiving a C Program

3-16

An archive file (or library) is a partitioned file that contains complete files as
members. The TMS34010 archiver is a software utility that allows you to
collect a group of files together into a single archive file. The archiver also
allows you to manipulate a library by adding members to it or by extracting,
deleting, or replacing members. The TMS34010 Assembly Language Tools
User's Guide contains complete instructions for using the archiver.

After compiling and assembling multiple files, you can use the archiver to
collect the object files into a library. You can specify an archive file as linker
input. The linker is able to discern which files in a library resolve external ref­
erences, and it links in only those library members that it needs. This is useful
for creating a library of related functions; the linker links in only the functions
that a program calls. The library rts. lib is an example of an object library.

You can also use the archiver to collect C source programs into a library. The
C compiler cannot choose individual files from a library; you must extract them
before compiling them. However, this can be useful for managing files and
for transferring source files between systems. The library rts. src is an ex­
ample of an archive file that contains source files.

For more information about the archiver, see the TMS34010 Assembly Lan­
guage Tools User's Guide.

Section 4

i URi t, 1

The C language that the TMS34010 C compiler supports is based on the
Unix6 System V C language that is described by Kernighan and Ritchie, with
several additions and enhancements to provide compatibility with ANSI C.
The most significant differences are:

" The addition of enum data type.
• A member of a structure can have the same name as a member of another

structure (unique names aren't required).
• Pointers to bit fields within structures are allowed.
• Structures and unions may be passed as parameters to functions, re-

turned by functions, and assigned directly.

This section compares the C language compiled by the TMS3401 0 C compiler
to the C language described by Kernighan and Ritchie. It presents only the
differences in the two forms of the C language. The TMS3401 0 C compiler
supports standard Kernighan and Ritchie C except as noted in this section.

Throughout this section, references to Kernighan and Ritchie's ~ Reference
Manual (Appendix A of The C Programming Language) are shown in the left
margin.

Topics in this section include:

Section Page
4.1 Identifiers, Keywords, and Constants .. 4-2
4.2 TMS34010 C Data Types ... 4-4
4.3 Object Alignment ... 4-6
4.4 Conversions .. 4-6
4.5 Expressions ... 4-7
4.6 Declarations .. 4-8
4.7 Initialization of Static and Global Variables ... 4-10
4.8 asm Statement ... 4-10
4.9 Lexical Scope Rules ... 4-11

6 UNIX is a registered trademark of AT&T.

4-1

TMS34010 C Language - Identifiers, Keywords, and Constants

4.1 Identifiers, Keywords, and Constants
K&R 2.2 -Identifiers

• In TMS34010 C, the first 31 characters of an identifier are sig­
nificant (in K&R C, 8 characters are significant). This also applies to
external names.

• Case is significant; uppercase characters are different from lowercase
characters in all TMS3401 0 tools. This also applies to external names.

K&R 2.3 - Keywords

TMS34010 C reserves three additional keywords:

asm
void
enum

K&R 2.4.1 -Integer Constants

• All integer constants are of type int (signed, 32 bits long) unless they
have an L or U suffix. If the compiler encounters an invalid digit in a
constant (such as an 8 or 9 in an octal constant), it issues a warning
message.

• You can append a letter suffix to an integer constant to specify its type:

Use U as a suffix to declare an unsigned integer constant.
Use L as a suffix to declare a long integer constant.
Combine the suffixes to declare an unsigned long integer constant.

Suffixes can be upper or lower case.

• Here are some examples of integer constants:

1234; /* int */
OxFFFFFFFFui /* unsigned int */
OLi /* lon9 int */
077613LU; /* uns~gned long int */

K&R 2.4.3 - Character Constants

In addition to the escape codes listed in K&R, the TMS3401 0 C compiler re­
cognizes the escape code \v in character and string constants as a vertical
tab character (ASCII code 11).

K&R 2.4.4 - Floating-Point Constants

4-2

TMS34010 C supports both single-precision and double-precision floating­
point constants. You can append a letter suffix to a floating-point constant
to specify its type.

• A floating-point constant that is used in an expression is normally
treated as a double-precision constant (type double). If you want to use
a single-precision constant, use F as a suffix to identify the constant as
type float.

• ANSI standard C supports a long double type that can provide more
precision than a double. Long doubles are specified with an L suffix
(like long ints). TMS34010 C does not directly support long doubles;

TMS34010 C Language - Identifiers, Keywords, and Constants

it treats them as ordinary doubles. The L suffix is supported to provide
compatibility with ANSI C.

Examples of floating-point constants include:

1.234; /* double */
1.0e14F; /* float */
3.14159L; /* double */

Suffixes can be upper or lower case.

Added type - Enumeration Constants

An enumeration constant is an additional type of integer constant that
is not described by K&R. An identifier that is declared as an enumerator can
be used in the same manner as an integer constant. (For more information
about enumerators, see Section 4.6 on page 4-8.)

K&R 2.5 - String Constants

• K&R C does not limit the length of string constants; however,
TMS34010 C limits the length of string constants to 255 bytes.

• All characters after an embedded null byte in a string constant are ig­
nored; in other words, the first null byte terminates the string. However,
this does not apply to strings used to initialize arrays of characters.

• Identical string constants are stored as a single string, not as
separate strings as in K& R C. However, this does not apply to strings
used to autoinitialize arrays of characters.

4-3

TMS34010 C Language - Data Types

4.2 TMS34010 C Data Types
K&R 4.0 - Equivalent Types

• The char data type is signed. A separate type, unsigned char, is sup­
ported.

• long and int are functionally equivalent types. Either of these types can
be declared unsigned.

• double and long double are functionally equivalent types.

• The properties of enum types are identical to those of unsigned int.

K&R 4.0 - Additional Types

• An additional type, called void, can be used to declare a function that
returns no value. The compiler checks that functions declared as void
do not return values and that they are not used in expressions. Func­
tions are the only type of objects that can be declared void. .

• The compiler also supports a type that is a pointer to void (void *).
An object of type void * can be converted to and from a pointer to an
object of any other type without explicit conversions (casts). However,
such a pointer cannot be used indirectly to access the object that it
points to without a conversion. For example,

void *p, *malloc();
char *c;
int i;

p
p
p
c
i

i

malloc();
c;
&i;
malloc();
*p;

*(int *)p;

/*
/*
/*
/*
/*

/*

Legal */
Legal, no cast needed
Legal, no cast needed
Legal, no cast needed
Illegal, dereferencing
void pointer
Legal, dereferencing
casted void pointer

*/
*/
*/

*/

*/

K&R 4.0 - Derived Types

4-4

TMS34010 C allows any type declaration to have up to six derived types.
Constructions such as pointer to, array of, and function returning can be
combined and applied a maximum of six times.

For example:

int (* (*n[] []) ()) ();

translates as:

1 } an array of
2} arrays of
3) pointers to

·4) functions returning
5) pointers to
6) functions returning integers

It has six derived types, which is the maximum allowed.

TMS34010 C Language - Data Types

Structures, unions, and enumerations are not considered derived types for the
purposes of these limits.

An additional constraint is that the derived type cannot contain more than
three array derivations. Note that each dimension in a multidimensional array
is a separate array derivation; thus, arrays are limited to three dimensions in
any type definition. However, types can be combined using typedefs to pro­
duce any dimensioned array.

For example, the following construction declares x as a four-dimensional ar­
ray:

txpedef int dim2[] []i
d~m2 x[] [] i

K&R 2.6 - Summary of TMS34010 Data Types
Type Size

char 8 bits, signed ASCII
unsigned char 8 bits, ASCII
short 16 bits
unsigned short 16 bits
int 32 bits
unsigned int 32 bits
long 32 bits
unsigned long 32 bits
pointers 32 bits
float 32 bits

Range: + 5.88 x 1 O(-39) through
±1.70 x 1038

double 64 bits
Range: + 1.11 x 1 O(-308) through

± 8.99 x 10308

enum 1-32 bits

4-5

TMS34010 C Language - Object Alignment/Conversions/Expressions

4.3 Object Alignment

• All objects except structure members and array members are aligned on
a 16-bit (one-word) boundary. In other words, with the exception of
structure and array members, all objects begin at bit addresses whose
four LSBs are zeros. In addition, because of the TMS34010's bit ad­
dressability, a pointer can point to any bit address. Signed objects of
less than 16 bits are sign-extended to 16 bits. Unsigned objects of less
than 16 bits are zero-extended to 16 bits.

• Structure or array members are not aligned to 16-bit boundaries. How­
ever, the structure or array itself begins at a 16-bit boundary. In the case
of an array of structures, only the first structure in the array is constrained
to begin on a 16-bit boundary.

For additional information on array alignment, see Packing Structures and
Manipulating Fields, Packing Structures and Manipulating Fields, on page
5-5. .

4.4 Conversions
K&R 6.1

K&R 6.3

4-6

Integer objects are always widened to 32 bits when passed as arguments to a
function. Signed objects of less than 32 bits are sign-extended to 32 bits;
unsigned objects of less t~an 32 bits are zero-extended to 32 bits.

The type char is signed and is therefore sign-extended when widened to in­
teger type. Sign extension can be disabled by using the type unsigned char.

• Types float and double are converted to type integer by truncation.

• In K&R C, all floating-point arithmetic is performed on double-precision
values. In ANSI and TMS3401 0 C, however, single-precision values can
be used for calculating any expression in which both operands have type
float. If either operand in an expression has type double, the other op­
erand is converted to a double and the arithmetic is performed on dou­
ble-precision values. Floating-point constants have type double unless
they have an F suffix; also, integers have type float when they are im­
plicitly converted. Single-precision arithmetic is significantly faster, but
causes a loss of precision. The following examples illustrate cases in
which a single-precision value is used as-is or is converted to a double:

float f;
double d;
int i;

f + f; /* Single Precision */
f + d; /* Double Precision */
f + 1; /* Single Precision */
f + 1.0; /* Double Precision */
f + l.OF; /* Single Precision */
d * (f + i) ; /* Add using Single, multiply */

/* using Double */

TMS34010 C Language - Conversions/Expressions

K&R 14.4

Pointers and integers (or longs) may be freely converted, since each occupies
32 bits of storage. Pointers to one data type can also be converted to pointers
to another data type,since the TMS3401 0 has no alignment restrictions and
all pointers are the same size.

4.5 Expressions

Added type - Void Expressions

A function of type void has no value (returns no value) and cannot be called
in any way except as a separate statement or as the left operand of the comma
operator. Functions can be declared or typecast as void.

K&R 7.1- Primary Expressions

In TMS3401 0 C, functions can return structures or unions.

The restriction of three array dimensions does not apply to expressions, be­
cause [] is treated as an operator.

K&R 7.2 - Unary Operators in Expressions

The value yielded by the sizeD! operator is calculated as the total number of
bits used to store the object divided by eight. (Eight is the number of bits in
a character.) Sizeo! can be legally applied to enum objects and bit fields: if
the result is not an integer, it is rounded up to the nearest integer.

4-7

TMS34010 C Language - Declarations

4.6 Declarations

K&R 8.1 - Register Variables

o A function can have a maximum of eight register variables; the limit ap­
plies to the combination of register arguments and local register vari­
ables.

o Any scalar type variable that is less than 32 bits (such as int, float, or
pointer) can be declared as a register. Other types (such as struct,
double, or arrays) cannot be declared as registers.

o A register declaration of an invalid type or a declaration after the first
eight registers have been declared is treated as a normal auto declaration.

o Function arguments can be declared as type register. Such arguments
are passed on the stack in the normal way; the function pops them off
into registers and they are treated like normal register variables for the
duration of the function.

/(&R 8.2 - Type Specifiers in Declarations

o In addition to the type-specifiers listed in K&R, objects may be declared
with enum specifiers.

o TMS34010 C allows more type name combinations than K&R C.
The adjectives long and short can be used with or without the word int;
the meaning is the same in either case. The word unsigned can be used
in conjunction with any integer type or alone; if alone, int is implied.
long float is a synonym for double. Otherwise, only one type specifier
is allowed in a declaration.

/(&R 8.4 - Passing/Returning Structures to/from Functions

o Contrary to K&R, TMS3401 0 C allows functions to return structures and
unions.

o Structures and unions can be used as function parameters and can be
directly assigned.

/(&R 10 - External Definitions

Formal parameters to a function may be declared as type struct, union, or
enum (in addition to the normal function declarations), since TMS34010 C
allows you to pass such objects to functions.

/(&R 8.5, K&14.1 - Structure and Union Declarations

4-8

o Since the TMS34010 is bit-addressable, structure members are not
aligned in any way. The statement in K&R about alignment or bounda­
ries for structure members does not apply to TMS34010 C. Any field
with width zero (normally used to force alignment) is ignored. However,
bit fields are limited to a width of 32 bi~s.

o Any integer type may be declared as a field. Fields are treated as signed
unless declared otherwise. Also, contrary to K&R, pointers to fields are
legal in TMS3401 0 C.

TMS34010 C Language - Declarations

• K&R states that structure and union member names must be mutually
distinct. In TMS3401 0 C, members of different structures or un­
ions can have the same name. However, this requires that references
to the member be fully qualified through all levels of nesting.

o TMS34010 C allows assignment to and from structures, passing struc­
tures as parameters, and returning structures from functions.

• K&R contains a statement about the compiler determining the type of a
structure reference by the member name. Since TMS3401 0 C does not
require member names to be unique, this statement does not apply. All
structure references must be fully qualified as members of the structure
or union in which they were declared.

Added Type - Enumeration Declarations

Enumerations allow the use of named integer constants in TMS3401 0 C. The
syntax of an enumeration declaration is similar to that of a structure or union.
The keyword enum is substituted for struct or union, and a list of enumerators
is substituted for the list of members.

Enumeration declarations have a tag, as do structure and union declarations.
This tag may be used in future declarations, without repeating the entire dec­
laration.

The list of enumerators is simply a comma-separated list of identifiers. Each
identifier can be followed by an equal sign and an integer constant. If there
is no enumerator followed by an = sign and a value, then the first enumerator
is assigned the value 0, the next is 1, the next is 2, etc. An identifier with an
assigned value assumes that value; the next enumerator is assigned that value
+ 1, the next is the preceding value + 1, etc. The assigned value may be ne­
gative, but the increments are still by positive 1.

The size of an object of type enum is determined as follows: if any of the ob­
ject's enumerators have negative values, the object occupies 32 bits. Other­
wise, the object occupies the minimum number of bits required to represent
the largest enumerator value and is considered to be unsigned.

Unlike structure and union members, enumerators share their name space with
ordinary variables and, therefore, must not conflict with variables or other en­
umerators in the same scope.

Enumerators can appear wherever integer constants are required; thus, they
can be used in arithmetic expressions, case expressions, etc.· In addition, ex­
plicit integer expressions may be assigned to variables of type enum. The
compiler does no range checking to insure the value will fit in the enumeration
field. The compiler does, however, issue a warning message if an enumerator
of one type is assigned to a variable of another.

Here's an example of an enumerator declaration:

enum color
red,
blue,
green 10,
orange,
purple -2,
cyan } :X;

4-9

TMS34010 C Language - Declarations/Initializing Variables/asm

This statement declares x as a variable of type enum. The enumerators and
their assigned values are:

red: 0
blue: 1
green: 10
orange: 11
purple: -2
cyan: -1

32 bits are allocated for the variable x. Legal operations on these enumerators
include:

x = blue;
x blue + red;
x 100;
ired; /* assume i is an int */
x i + cyan;

4.7 Initialization of Static and Global Variables
K&R 8.6

An important difference between K&R C and TMS34010 C is that external
and static variables are not preinitialized to zero unless the program
explicitly does so or it is specified by the linker.

If a program requires external and static variables to be preinitialized, you can
use the linker to accomplish this. In the linker control file, use a fill value of
o in the .bss section:

SECTIONS (

}
.bss (OxOO;

4.8 asm Statement
A dditional Statement

4-10

TMS34010 C supports another statement that is not mentioned in K&R: the
asm statement. The compiler copies asm statements from the C source di­
rectly into the assembly language output file. The syntax of the asm statement
is:

asm (" assembly language statement");

The assembly language statement must be enclosed in double quotes. All the
usual character string escape codes retain their definitions. The assembler
statement is copied directly to the assembler source file. Note that the as­
sembly language statement must begin with a label, a blank, or a comment
indicator (asterisk or semicolon).

Each asm statement injects one line of assembly language into the compiler
output. A series of asm commands places the sequential statements into the
output with no intervening code.

asm statements do not follow the syntactic restrictions of normal statements
and can appear anywhere in the C source, even outside blocks.

TMS34010 C Language - asm Statement/Lexical Scope Rules

Warning:

Be extremely careful not to disrupt the C environment with asm
commands. The compiler does not check the inserted in­
structions. Inserting jumps and labels into C code can cause
unpredictable results in variables manipulated in or around the
inserted code. The asm command is provided so you can access
features of the hardware, which by definition C is unable to
access. Specifically, do not use this command to change the
value of a C variable; however, you can use it safely to read the
current value of a variable.

In addition, do not use the asm command to insert assembler
directives which would change the assembly environment.

The asm command is very useful in the context of register variables. A register
variable is a variable in a C program that is declared by the user to reside in a
nachine register. TMS34010 C allows up to eight machine registers to be
allocated to register variables. These eight registers, combined with the asm
command, provide a means of manipulating data independently of the C en­
vironment.

4.9 Lexical Scope Rules
K&R 11.1

The lexical scope rules in K&R also apply to TMS3401 0 C, except that struc­
tures and unions each have distinct name spaces for their members. In addi­
tion, the name space of both enumeration variables and enumeration
constants is the same as for ordinary variables.

4-11

TMS34010 C Language

Section 5

Runtime Environment

This section describes the TMS34010 C runtime environment. To ensure
successful execution of C programs, it is critical that all runtime code maintain
this environment. If you write assembly language functions that interface to
C code, follow the guidelines in this section.

Topics in this section include:

Section Page
5.1 Memory Model .. 5-2
5.2 Register Conventions .. 5-6
5.3 Function Structure and Calling Conventions .. 5-8
5.4 Interfacing C with Assembly Language ... 5-12
5.5 Interrupt Handling .. 5-16
5.6 Integer Expression Analysis ... 5-17
5.7 Floating- Point Support .. 5-17
5.8 System Initialization ... 5-22

5-1

Runtime Environment - Memory Model

5.1 Memory Model
TMS34010 C treats memory as a single linear block that is partitioned into
subblocks of code and data. Each block of memory generated by a C program
will be placed into a contiguous block in the appropriate memory space.

Note that the linker, not the compiler, defines the memory map and allocates
code and data into target memory. The compiler assumes nothing about the
types of memory that are available, about any locations that are not available
(holes), or about any locations that are reserved for I/O or control purposes.
The compiler produces relocatable code, which allows the linker to allocate
code and data into the appropriate memory spaces. Each block of code and
data could be allocated individually into memory, but this is not a general
practice (an exception to this is memory-mapped I/O, although physical me­
mory locations can be accessed with C pointer types).

5.1.1 Sections

5-2

The compiler produces three relocatable blocks of code and data; these blocks,
called sections, can be allocated into memory in a variety of ways, to conform
to a variety of system configurations. For more information about sections,
please read Section 3 (Introduction to Common Object File Format) of the
TMS34010 Assembly Language Tools User's Guide.

There are two basic types of sections:

• Initialized sections contain data or executable code.
• Uninitialized sections reserve space in memory (usually RAM). A

program can use this space at run time for creating and storing variables.

The C compiler creates two initialized sections, .text and .cinit; it creates one
uninitialized section, .bss.

• The .text section is an initialized section that contains all the executa­
ble code as well as string literals and floating-point constants.

• The .cinit section is an initialized section that contains tables for ini­
tializing variab,les and constants.

• The .bss section is an uninitialized section; in a C program, it serves
three purposes:

It reserves space for global and static variables. At boot time, the
C boot routines copies data out of the .cinit section (which may
be in ROM) and uses it for initializing variables in .bss.

It reserves space for the system stack and the program stack.

It reserves space for use by the dynamic memory functions (malloc,
calloc, and realloc).

Note that the assembler creates an additional section called .data; the C envi­
ronment does not use this section. The linker takes the individual sections
from different modules and combines sections with the same name to create
four output sections. The complete program is made up of the compiler's
three output sections plus the assembler's .data section. You can place these
output sections anywhere in the address space, as needed, to meet system

Runtime Environment - Memory Model

requirements. The .text, .cinit, and .data sections are usually linked into either
ROM or RAM. The .bss section must be linked into some type of RAM.

For more information about allocating sections into memory, see Section 9
(the Linker Description) of the TMS34010 Assembly Language Tools User's
Guide.

5.1.2 Stack Management

The C compiler uses two stacks; Figure 5-1 illustrates these stacks in memory.

T
STACK SIZE
(defaulfsize is

200

1
00)

SYS _STACK array in .bss:

A13 (FP)

A14 (STK)

SP

Figure 5-1. The Program and System Stacks

• The program stack is used for passing parameters toa function and
for allocating the local frame for a function.

• The system stack is used for saving the status of the calling function
(that is, for saving the values in registers) and the return address.

The C initialization routine, boot. c, allocates memory for both stacks in the
.bss section. This memory is allocated as a single, static array named
SYS-STACK. The boot routine defines a constant named STACK-SIZE that
determines the size of SYS-STACK. The default stack size is 2000 bytes. You
can change the amount of memory that is reserved for the stack by following
these steps:

1) Extract boot. c from the source library rts. src.

2) Edit boot. c; change the value of the constant STACK-SIZE to the de­
sired stack size.

3) Recompile boot. c and replace the resulting object file, boot. obj, in
the object library rts. lib

4) Replace the copy of boot. c that's in rts. src with the edited version.

The two stacks grow toward each other. The program stack grows from the
bottom of the array (the lowest address) to higher addresses; the system stack
grows from the top of the array (the highest address) down to lower ad­
dresses. Do not modify the way the stacks grow!

The compiler uses three registers to manage the stack:

SP is the stack pointer for the system stack.
A14 (STK) is the stack pointer for the program stack.

5-3

Runtime Environment - Memory Model

A13 (FP) is the frame pointer; it points to the beginning of the current
local frame. (The local frame is an area on the program stack
used for storing arguments and local variables.)

The C environment automatically manipulates these registers when a C func­
tion is called. If you interface assembly language routines to C, be sure to use
the registers in the same way that the C compiler uses them.

5.1.3 Dynamic Memory Allocation

The runtime-support library supplied with the compiler contains several func­
tions (such as malloc, calloc, and realloc) that allow you to dynamically allo­
cate memory for variables at run time. This is accomplished by declaring a
large memory pool, or heap, and then using the functions to allocate memory
from the heap. Dynamic allocation is not a standard part of the C language;
it is provided by standard runtime-support functions.

A C module called memory. c reserves space for this memory pool in the .bss
section. The module also defines a constant MEMORY-SIZE that determines
the size of the memory pool; the default size is 1000 bytes. You can change
the size of the memory pool by following these steps:

1) Extract memory. c from the source library rts. src.

2) Edit memory. c; change the value of the constant MEMORY-SIZE to the
desired memory pool size.

3) Recompile and assemble memory. c and replace the resulting object file,
memory. obj, in the object library rts .lib.

4) Replace the copy of memory. c that's in rts. src with the edited ver­
sion.

5.1.4 RAM and ROM Models

5-4

The C compiler produces code that is suitable for use as firmware in a
ROM-based system. In such a system, the initialization tables in the .cinit
section are stored in ROM. At system initialization time, the C boot routine
copies data from these tables from ROM to the initialized variables in .bss
(RAM).

In situations where a program is loaded directly from an object file into mem­
ory and then run, you can avoid having the .cinit section occupy space in
memory. A loader can read the initialization tables directly from the object file
(instead of from ROM) and perform the initialization directly at load time (in­
stead of at run time). You can specify this to the linker by using the -cr linker
option.

For more information about autoinitialization, refer to Section 5.8.2 on page
5-23.

Runtime Environment - Memory Model

5.1.5 Allocating Memory for Static and Global Variables

A unique, contiguous space is allocated in the .bss section for each external
or static variable that is declared in a C program. The linker determines the
address of the global variables when it allocates the .bss section. The compiler
ensures that space for these variables is allocated in multiples of words, so that
each variable is aligned on a word boundary. You should allocate .bss into
RAM when you link the program.

5.1.6 Packing Structures and Manipulating Fields

When the compiler allocates space for a structure, it allocates the exact
amount of memory needed to contain all of the structure's members. Fields
are allocated as many bits as requested; enumerated types are allocated as few
bits as possible to hold the maximum value of that type; bytes are allocated
eight bits, and so on.

The C compiler follows standard C practice for mapping structures, with one
exception: a field of width zero does not force word alignment. Because of
the TMS34010's bit-addressability, word alignment in a structure does not
necessarily produce more efficient code. However, a field that straddles word
boundaries does take longer to access, since the TMS3401 0 must fetch more
than one word. You should be very careful when you're defining structures
or arrays of structures; try to avoid defining fields that cross word boundaries.

If a structure is declared as an external or static variable, it is always placed
on a word boundary and is allocated space rounded up to a word boundary.
However, when an array of structures is declared, no rounding of size is used;
exactly enough space is allocated to hold each structure element in contig­
uous bits of memory.

5.1.7 Array Alignment

In ANSI standard C, as well as K&R C, arrays are expected to always align their
elements on a word boundary, with the exception of bytes, which may be
aligned on a byte boundary. The TMS34010's bit-addressability makes this
restriction both unimportant and inefficient; so, in TMS34010 C, arrays have
no internal alignment. Each array element is allocated exactly as much space
as needed, with no space between adjacent elements.

Note:

Like structures, a carefully defined array (with no elements overlapping
word boundaries) will allow the program to run faster. Pixel arrays are
usually aligned in this manner.

If an array is declared as an external or static variable, the first element of the
array is placed on a word boundary and the array is allocated space rounded
up to a word boundary.

This method of handling an array allows more control over the environment
than standard C allows. Bit arrays and pixel arrays are directly accessible (a
necessity for a graphics environment), and memory-mapped I/O is more
straightforward.

5-5

Runtime Environment - Register Conventions

5.2 Register Conventions
Strict conventions associate specific registers with specific operations in the
C environment. If you plan to interface assembly language routines to a C
program, it is important that you understand these register conventions.

5.2.1 Dedicated Registers

The C environment reserves three registers. Do not modify these registers in
any other manner than that described in Section 5.3, Function Structure and
Calling Conventions, page 5-8.

SP
A14 (STK)
A13 (FP)

points to the top of the system stack.
points to the program stack.
points to the beginning of the currently active frame.

In addition, the C compiler assumes certain information about bits in the status
register. Specifically, it assumes that FS1 (field size 1) is 32 within a C func­
tion. FSO, however, can be changed in a function without being restored.

5.2.2 Using Registers

5-6

A function can usually use registers AO through A 12, however:

• When a function is called, it must save the contents of each register that
it uses; it must restore these registers before it returns to the caller. Re­
gister A8 is the only exception; its contents do not have to be saved or
restored.

• If a function returns an integer value or a pointer, the value must be
placed in A8.

The code generator uses the A-file registers for the following purposes:

Expression analysis
Return value/Scratch
User register variables

AO through A11
A8
A9,A10,A11,A12,AO,A2,A4,A6

The C compiler doesn't use registers 80 through 814.

Expression-analysis registers are allocated from high to low registers, based
on availability and current use. (All integer expression analysis uses 32-bit

. math.)

Note:

The compiler constantly tracks the contents of registers and attempts to
reuse register data whenever possible. Therefore, it is inadvisable to use
inline assembly language or any other method to modify a register that a
function is using. Use the -r code generator option to produce informa­
tion about register use.

Runtime Environment - Register Conventions

5.2.3 Register Variables

The C compiler uses up to eight register variables within a function. The
compiler allocates the first four variables from registers A9 through A12 in
ascending order; the other variables are allocated from other available registers.
If more than eight register variables are declared, the excess are treated as
normal variables. A register variable can contain any integer type, a pointer to
any type, or a float (doubles or structures are not allowed); however, register
variables of type short and char are treated as long integers.

Using register variables can greatly increase code efficiency for some state­
ments (in some cases, the code may be twice as efficient). Since the compiler
does not track operations involving register variables, you can manipulate
them as desired (even with asm statements).

5-7

Runtime Environment - Function Structure ana Calling Conventions

5.3 Function Structure and Calling Conventions

A13

A14'

sp'

The C compiler imposes a strict set of rules on function calls. Except for spe­
cial runtime-support functions, any function that calls or is called by a C
function must follow these rules. Failure to adhere to these rules can disrupt
the C environment and cause a program to fail.

Figure 5-2 illustrates a typical function call. Parameters are passed to this
function, the function uses local variables, but no value is returned.

Before Call
After Passing

Arguments
Upon Entry After Saving

Used Registers

Figure 5-2. An Example of a Function Call

After Allocating
Local Frame

5.3.1 Responsibilities of a Calling Function

5-8

A function performs the following tasks when it calls another function. The
steps below show examples of the code that the compiler might generate for
a particular step. For these code examples, assume that a C function calls
another function f that has three arguments; the function call is:

f(argl, arg2, arg3);

1) If the called function returns a double or a float, the caller allocates space
on the program stack for the return value. The caller must allocate this
space even if it doesn't use the return value.

2) It saves the program stack pointer (A 14) on the system stack. The caller
generates the following:

MOVE STK, -*SP, 1

(This is only done when the caller passes arguments or when the called
function returns a float or a double - that is, when the program stack is
affected.)

Runtime Environment - Function Structure and Calling Conventions

3) It pushes the arguments on the program stack in reverse order (pushes
the rightmost declared argument first and pushes the leftmost declared
argument last). If the called function does not have any arguments, the
canc. iiiu~t iivt jJ ... :;h ~~'i. !f th~ ~~lIed function expects one or more
arguments, the caller must push at least one argument. The caller
generates the following code when it pushes the arguments:

MOVE @-arg3, *STK+, 1
MOVE @_arg2, *STK+, 1
MOVE @_argl, *STK+, 1

All integer types that are passed as arguments are widened to 32-bit in­
tegers. All floating-point arguments are converted to double-precision
values. Structures are rounded up to the next word boundary.

4) If the called function returns a structure, the caller pushes the address
of the structure onto the program stack. (For more information about
functions that return structures, see Section 5.3.5.)

5) It calls the function by generating the following instruction:

CALLA -f

Note that within a called function, FS1 must equal 32.

The called function restores the program stack pointer (effectively popping the
arguments), so there is no need for the calling function to perform any cleanup
after the function call.

5.3.2 Responsibilities of a Called Function

A called function must perform the following tasks. The steps below show
examples of the code that the compiler might generate for a particular step.

1) If the function modifies any registers, it saves them on the system stack.
If it uses the FP, it must save it with the other registers. If the called
function must save multiple registers on the system stack, it can use the
M MTM instruction as shown below:

MMTM SP, AS, A7, FP

It is not necessary to save register A8 or the status register. Note that
the C compiler doesn't use registers 80-814 so that assembly-language
functions can use them.

2) It executes the code for the function.

3) If the function returns an integer or a pointer, it returns the value in reg­
ister A8; for example,

MOVE @result, A8, 1

If the function returns a double or a float, then the caller has allocated
space on the program stack for the return value; the called function co­
pies the value into that space. If the function returns a structure, see
Section 5.3.5.

4) It restores the caller's environment.

a) If the function has arguments or returns a float or a double, it must
restore the caller's stack. To do this, it moves the value out of the
system stack to the program stack pointer (register A14). The STK
is stored on the system stack below the saved registers and the old

5-9

Runtime Environment - Function Structure and Calling Conventions

pc. STK is accessed as *SP(offset), where the offset = [number
of saved registers + 1] times 32. If the calling function saved three
registers, it would restore STK with the following instruction:

MOVE *SP(128), STK, 1

b) It restores the saved registers. If local variables were allocated, it
must also restore the FP along with the other registers. If the
called function must restore mUltiple registers, it can use the
MMFM instruction as shown below:

MMFM SP, AS, A7, FP

It is not necessary to restore the status register; however, if FS1
has been changed, it must be restored to the value 32 and FEO
must equal O.

5) It executes an RETS instruction. If the function has arguments or returns
a value on the stack, it executes an RETS 2 instruction; this pops both
the return address and the caller's old STK off the stack. If the function
has no arguments and doesn't return a float or a double, it can execute
an RETS 0 instruction.

5.3.3 Setting up the Local Frame

In addition to the actions listed in Section 5.3.2, a called C function that has
arguments or local variables must perform the following actions to setup the
local frame. These additional steps are performed immediately following step
1 above.

1) It sets the new frame pointer to the current program stack pointer (A14):

MOVE STK, FP

2) It allocates the frame by adding its size to the program stack pointer:

ADDI 128, STK

If the called function has no local variables or arguments, then it has no need
for local temporary storage and these steps are not necessary.

5.3.4 Accessing Arguments and Local Variables

5-10

A function accesses its arguments and local variables indirectly through the
FP (A13). The FP always points to the bottom of the local frame (where the
first local variable is). The first local variable is accessed as *FP (0). Other
local variables are addressed with increasing offsets, up to a maximum of
32,768. Arguments are accessed similarly, but with negative offsets from the
FP (up to a maximum of -32,767). The first argument is accessed as
*FP (-32).

Runtime Environment - Function Structure and Calling Conventions

Note:

All integer arguments are widened to 32-bit integers. All floating-point
arguments are cunverted to doubles. All structures that are passed as ar­
guments are rounded up to the next word boundary.

5.3.5 Returning Structures from Functions

A special convention applies to functions that return structures. The caller
allocates space for the structure, and passes the address of the return spar:e
by pushing the address on the stack just before calling the function. To return
a structure, the called function then copies the structure to the memory block
that the address points to.

This methods allows the caller to be smart about telling the called function
where to return the structure. For example, consider the following statement:

s=f();

where s is a structure and f is a function that returns a structure. The caller
can simply push the address of s onto the stack and call f. Function f then
copies the return structure directly into s, performing the assignment auto",:
matically.

If the caller does not use the return value, then it pushes a value of 0 onto the
stack instead of pushing an address. This tells the function not to copy the
return structure.

Be careful to properly declare functions that return structures, both when they
are called (so the caller pushes the address correctly) and when they are de­
fined (so the function knows where to copy the reSUlt).

5-11

Runtime Environment - Interfacing C with Assembly Language

5.4 Interfacing C with Assembly Language
There are three ways to use assembly language in conjunction with C code:

• Use separate modules of assembled code and link them with compiled
C modules (see Section 5.4.1). This is the most versatile method.

• Use in line assembly language, imbedded directly in th~ C source (see
Section 5.4.2).

• Modify the assembly language code that the compiler produces (see
Section 5.4.3).

5.4.1 Assembly Langua"ge Modules

5-12

Interfacing with assembly language functions is straightforward if you follow
the calling conventions defined in Section 5.3 and the register conventions
defined in Section 5.2. C code can access variables and call functions that
are defined in assembly language, and assembly code can access C variables
and call C functions.

Follow these guidelines to interface assembly language and C:

1) All functions, whether they are written in C or assembly language, must
follow the conventions outlined in Section 5.3 (page 5-8).

2) You must preserve any registers that are modified by a function, except
register A8. When returning from a function, FS1 must equal 32.

3) Interrupt routines must save all the registers they use. (For more infor­
mation about interrupt handling, see Section 5.5, page 5-16.)

4) If the caller passes arguments or if the called function returns a float or
a double, save the program stack pointer (A14) by pushing it on the
system stack, then push any arguments on the program stack in reverse
order.

5) Functions must return values correctly according to their C declarations.
Integers and pointers are returned in register A8. All floating-point val­
ues are returned on the stack. Section 5.3.5 discusses returning struc­
tures.

6) No assembly language module should use the .cinit section for any
purpose other than autoinitialization of global variables. The C boot
routine (boot. c) assumes that the .cinit section consists entirely of
initialization tables. Disrupting the tables by putting other information
in .cinit can cause unpredictable results.

7) The compiler prefixes all identifiers with an underscore (_). This means
that you must prefix the name of all objects that are to be accessible from
C with - when writing assembly language. For example, a C object
called x is called -x in assembly. For identifiers that are to be used only
in an assembly language module or modules, any name that does not
begin with a leading underscore may be safely used without conflicting
with a C identifier.

8) Any object or function declared by an assembly language routine that is
to be accessed or called from C must be declared with the .global as-

Runtime Environment - Interfacing C with Assembly Language

sembler directive. This defines the symbol as external and allows the
linker to resolve references to it.

Similarly, to access a C function or object from assembly, declare the C
object with .global, thus creating an undefined external reference that
the linker must resolve.

5.4.1.1 An Example of an Assembly Language Function

Example 5-1 illustrates a C function called main which calls an assembly
language function called aSIn-func. The aSIn-func function has one argu­
ment which is a pointer to an integer. aSIn-func calls another C function
called c-func with one argument which is a global variable named gvar.
aSIn-func takes the value returned from c_func and stores it in the integer
pointed to by its single argument.

Example 5-1. An Assembly Language Function

extern int aSIn-func(); /* declare external asm function */
int gvar; /* define global variable */

main()
{

int i, j;
i = aSIn-func(&i);

FP
STK

.set

.set

.global

. global

. global

-asIn-func:
MMTM
MOVE
MOVE
MOVE
MOVE
CALLA
MOVE

MOVE

MMFM
RETS

(a) C Program

A13
A14
-gvar
-c_func
-asIn-func

SP,A7,FP
STK,FP
*FP(-32),A7,1
STK -*SP 1
@-g~ar,*STK+,l
-c_func
A8,*A7,1

*SP(96),STK,1

SP,A7,FP
2

frame pointer
program stack pointer
declare global variable
declare C function
declare this function

save registers on SP
set up FP
get argument
function call: save STK
push argument
call function
result in A8

restore caller's STK
(pop arguments)
restore saved registers
return & pop caller's STK

(b) Assembly Language Program

In the C program in Example 5-1, the extern declaration of asmfunc is op­
tional, since the function returns an int. Like C functions, assembly functions
need only be declared if they return non-integers.

In the assembly language code in Example 5-1, note the underscores on all
the C symbol names when used in the assembly code.

5-13

Runtime Environment - Interfacing C with Assembly Language

5.4.1.2 Defining Variables in Assembly Language

It is sometimes useful for a C program to access variables that are defined in
assembly language. There are several methods for defining a variable in as­
sembly language; accessing the variable is straightforward:

In Assembly Language:
1) Define the variable:

a) Use the .bss directive to define the variable in the .bss section.
Ol b) Define the variable in a named, initialized section (.sect).
or c) Define the variable in a named, uninitialized section (.usect).

2) Use the .global directive to make the definition external.
3) Remember to precede the variable name with an underscore.

In C:
4) Declare the variable as extern, and access it normally.

The C compiler uses the first method by defining variables in the .bss section.

Example 5-2 a shows examples that use these three methods to define vari­
ables. Example 5-2 b shows how you can use C code to access the first var­
iable defined in Example 5-2 a; you can access the other variables similarly.

Example 5-2. Accessing an Assembly-Language Variable from C

5-14

** Method 1:
** Define variable var in the .bss section
**

.bss -var, 32

. global -var
Define the variable
Declare it as external

** Method 2:
** Define variable table in a named, initialized section
**

-table
.sect
.word
.word
.word

"more_vars"
01234h
05678h
09ABCh
-table

Define the variable

. global Declare it as external

** Method 2:
** Define variable buffer in a named, uninitialized
** section
**
-buffer .usect "ramvars" , 32

. global -buffer
Declare the variable
Declare it as external

(a) Assembly Language Program

/* This examples shows you can access the variable */
/* named var, which was defined above; you can */
/* access the other variables similarly. */

extern int var;
var = 1;

/* External variable */
/* Use the variable */

(b) C Program

Runtime Environment - Interfacing C with Assembly Language

You can use a named section to define as many variables as you like (in the
same way that the compiler uses .bss for multiple variables). It is not neces­
sary to use a .sect or .usect section for each new variable unless you want to
allocate it in memory separately from other variables. For example, you may
want to define a lookup table in its own named section if you don't want to
allocate it into RAM with the .bss section.

5.4.2 Inline Assembly Language

Within a C program, you can use the asm statement to inject a single line
of assembly language into the assembly language file that the compiler cre­
ates. A series of asm statements places sequential lines of assembly language
into the compiler output with no intervening C code. See Section 4.8, page
4-10, for more information about the asm statement.

Warning:

When you use asm statements, be extremely careful not to dis­
rupt the C environment. The compiler does not check or ana­
lyze the inserted instructions.

Inserting jumps or labels into the C code may produces unpre­
dictable results by confusing the register-tracking algorithms
that the code generator uses. The asm statement is provided
so that you can access features of the hardware which would
be otherwise inaccessible from C.

Do not change the value of a C variable; however, you can
safely read the current value of any variable.

In addition, do not use the asm statement to insert assembler
directives that would change the assembly environment.

The asm statement is also useful for inserting comments in the compiler out­
put; simply start the assembly language statement with an asterisk:

asm("*** this is an assembly language comment ***");

5.4.3 Modifying Compiler Output

You can inspect and change the assembly language output that the compiler
produces by compiling the source and then editing the output file before as­
sembling it. The warnings in Section 5.4.2 about disrupting the C environ­
ment also apply to modifying compiler output.

5-15

Runtime Environment - Interrupt Handling

5.5 Interrupt Handling

5-16

C code can be interrupted and returned to without disrupting the C environ­
ment, as long as you follow the guidelines in this section. When the C envi­
ronment is initialized, the startup routine does not enable or disable interrupts.
(If the system is initialized via a hardware reset, interrupts are disabled.) If
your system uses interrupts, it is your responsibility to handle any required
enabling or masking of interrupts. Such operations have no effect on the C
environment, and can be easily incorporated with asm statements.

The C compiler uses a special naming convention for interrupt functions; such
functions have names with the following format:

c-intnn

where nn is a two-digit number between 00 and 99 (for example, c-intOl).
Following this convention assures that the compiler treats the function as an
interrupt function. The name c-intOO is reserved for the system reset inter­
rupt. This special interrupt routine initializes the system and calls the function
main; c_intOO does not save any registers since it has no caller.

Interrupt routines for any interrupt except c-intOO must save any register
used (with the exception of SP and STK), including AB. In a normal function,
it is not necessary to save AB; however, in the case of an interrupt, AB must
be saved. The compiler uses the RETI instruction to return from an interrupt;
RETI restores the ST register of an interrupted function.

A C interrupt routine is like any other C function - it can have local variables
and register variables, it can access global variables, and it can call other
functions. However, an interrupt routine should be declared without any ar­
guments and it should not be called directly.

Any interrupt function can be used to handle any interrupt or multiple inter­
rupts. The compiler does not generate any code specific to the particular in­
terrupt, with the exception of the system reset interrupt (e-intOO), which must
be used as system reset and cannot have any local variables (since it is as­
sumed that at system reset the stack has not yet been allocated).

To associate an interrupt function with an interrupt, the address of the inter­
rupt must be placed in the proper interrupt vector. You can accomplish this
by using the assembler and the linker to create a simple table of addresses at
the proper location.

Runtime Environment - Integer Expressions/Floating-Point Support

5.6 Integer Expression Analysis

All integer expression analysis is performed in the A-file registers using the
TMS34010's 32-bit math instructions. All multiplication and division oper­
ations are performed in odd registers; for this reason, only Al, A3, A5, and A7
are used for general-purpose expression registers.

Expressions are evaluated according to standard C precedence rules. When a
binary operator is analyzed, the order of analysis is based on the relative
complexity of the operands. The compiler tries to evaluate sUbexpressions in
a way that prevents saving temporary results (which are calculated in regis­
ters) off in memory. This does not apply to those operators that specify a
particular order of evaluation (such as the comma, &&, and 11), which are al­
ways evaluated in the correct order.

If the compiler runs out of registers to use, it selects a u~ed register and saves
its contents on the local frame, temporarily freeing the register for reuse.

5.7 Floating-Point Support

The TMS34010 C compiler supports floating-point functions for both sin­
gle-precision (32-bit) and double-precision (64-bit) values. All floating­
point arguments are passed on the stack; floating-point return values are
returned on the stack. Single-precision values are converted to doubles when
they are passed to functions. Operations between two single-precision oper­
ands are performed in single-precision. Operations between a single-precision
operand and a double-precision operand are performed in double-precision.

A custom package of floating-point routines is included with the C compiler;
these functions do not follow standard C calling conventions. The calling
conventions for these routines follow a classic operand stack:

• The compiler pushes the floating-point arguments onto the argument
stack, then generates a call to a floating-point function.

• The floating-point function pops the arguments off the stack, performs
the operation, and pushes the results back onto the stack.

Some floating-point functions expect integer arguments or return integer val­
ues; all integers are passed and returned in register A8.

Section 5.7.1 describes the floating-point formats used for these routines;
Section 5.7.2 through Section 5.7.5 list the floating-point routines.

5.7.1 Floating-Point Formats

The compiler is unaware of the internal floating-point format; the only re­
striction the compiler places on a floating-point number is the representation
of the number. This allows you to customize a floating-point package for your
environment. Section 5.7.1.1 and Section 5.7.2 describe the floating-point
format used by the floating-point routines that are included with the C com­
piler.

5-17

Runtime Environment - Floating-Point Support

5.7.1.1 Single-Precision Floating-Point Format

31 32

MSB

Figure 5-3 illustrates the single-precision floating-point format. Single­
precision values are represented in 32 bits: a sign bit (bit 31), an 8-bit biased
exponent (bits 23-30), and a 23-bit mantissa (bits 0-22).

23 22 o

LSB

Figure 5-3. Single-Precision Format

Given a sign bit s, an exponent e, and a mantissa f, the value V of the float­
ing-point number X= (s,e,f) is:

• If s=O, e=255, and f=O, the V = + 00

• If s=1, e=255, and f=O, the V = -00

• If 0<e<255 and f:l:O, then V = (-1)S x 2e-127(.f); V is not valid if
X= (s,e,f) is not a normalized floating-point number

• If s=O, e=O, and f=O, the V = 0
• For all other cases, V = not valid

Precision of single-precision values is greater than six decimal digits; the range
includes:

• Positive values: 5.87747 x 10-39 to 1.70141 x 1038

• Negative values: -1.70141 x 1038 to -5.87747 x 10-39

• 0
• ±oo

5.7.1.2 Double-Precision Floating-Point Format

63 62

Figure 5-4 illustrates the double-precision floating-point format. Double­
precision values are represented in 64 bits: a sign bit (bit 63) an 11-bit biased
exponent (bits 52-62), and a 52-bit mantissa (bits 0-51).

52 51 o

.!~'... ~:'. ,"
MSB

5-18

LSB

Figure 5-4. Double-Precision Format

Given a sign bit s, an exponent e, and a mantissa f, the value V of the float­
ing-point number X= (s,e,f) is:

• If s=O, e=2047, and f=O, the V = +00

• If s=1, e=2047, and f=O, the V = -00

Runtime Environment - Floating-Point Support

• If 0<e<2047 and f#:O, then V = (-1)S x 2e-1023(.f): V is not valid if
X= (s,e,f) is not a normalized floating-point number

• If s=O, e=O, and f=O, the V = 0
• For all other cases, V = not valid

Precision of double-precision values is greater than 15 decimal digits; the
range includes:

• Positive values: 1 .11 254 x 10-308 to 8.98847 x 10308

• Negative values: -8.98847 x 10308 to -1.11254 x 10-308

• 0
• ±oo

5.7.2 Double-Precision Functions

Assume that dl and d2 are double-precision floating-point values on the
stack; dl is pushed first.

Function

FD$ADD

FD$SUB

FD$SUB-R

FD$MUL

FD$DIV

FD$DIV-R

FD$INC

FD$INCR

FD$DEC

FD$DECR

FD$GE

FD$LE

FD$GT

FD$LT

FD$EQ

FD$NE

FD$NEG

FD$ZERO

Action

Return dl + d2

Return dl - d2

Return d2 - dl

Return dl * d2

Return dl / d2

Return d2 / dl

Return dl + 1.0

Return dl + 1.0 (Note: dl is not popped.)

Return dl - 1.0

Return dl - 1.0 (Note: dl is not popped.)

Return dl ;:: d2 (Return 1 or 0 in AS and set status.)

Return dl ~ d2 (Return 1 or 0 in A8 and set status.)

Return dl > d2 (Return 1 or 0 in AS and set status.)

Return dl < d2 (Return 1 or 0 in AS and set status.)

Return dl == d2 (Return 1 or 0 in AS and set status.)

Return dl 1= d2 (Return 1 or 0 in AS and set status.)

Return -dl (Note: FD$NEG is also used for single­
precision.)

Returns 1 jf dl = 0

5-19

Runtime Environment - Floating-Point Support

5.7.3 Single-Precision Functions

5-20

Assume that f1 and f2 are single-precision floating-point values on the stack;
f 1 is pushed first.

Function

FS$ADD

FS$SUB

FS$SUB-R

FS$MUL

FS$DIV

FS$DIV-R

FS$INC

FS$INCR

FS$DEC

FS$DECR

FS$GE

FS$LE

FS$GT

FS$LT

FS$EQ

FS$NE

FS$ZERO

Action

Return f1 + f2

Return f 1 - f2

Return f2 - f1

Return f1 * f2

Return f1 / f2

Return f2 / f1

Return f1 + 1.0

Return f1 + 1.0 (Note: f1 is not popped.)

Return f1 - 1.0

Return f 1 - 1.0 (Note: f 1 is not popped.)

Return f1 ~ f2 (Return 1 or 0 in A8 and set status.)

Return f1 ~ f2 (Return 1 or 0 in A8 and set status.)

Return f1 > f2 (Return 1 or 0 in A8 and set status.)

Return f1 < f2 (Return 1 or 0 in A8 and set status.)

Return f1 == f2 (Return 1 or 0 in A8 and set status.)

Return f1 1= f2 (Return 1 or 0 in A8 and set status.)

Returns 1 if f1 = 0

Runtime Environment - Floating-Point Support

5.7.4 Conversion Functions

Assume that:

• f and d are single-precision or double-precision floating-point values
on the stack,

• i is an integer that is passed in AS, and
• u is an unsigned integer that is passed in AS.

Function

FD$DTOF

FD$DTOI

FD$DTOU

FD$FTOD

FD$FTOI

FD$FTOU

FD$UTOD

FD$ITOD

FO$UTOF

FD$ITOF

Action

Convert d to single precision and return on stack.

Convert d to a signed integer and return in AS.

Convert d to an unsigned integer and return in AS.

Convert f to double precision and return on stack.

Convert f to a signed integer and return in AS.

Convert f to an unsigned integer and return in AS.

Convert u to double precision and return on stack.

Convert i to double precision and return on stack.

Convert u to single precision and return on the stack.

Convert i to single precision and return on the stack.

5.7.5 Floating-Point Errors

You can customize this function in any way you wish; write your own function
and use the archiver to include the function into the floating-point library.

Function Action

-fp-error Called whenever a floating-point exception occurs.

5-21

Runtime Environment - System Initialization

5.8 System Initialization
Before you can run a C program, the C runtime environment must be created.
This task is performed by the C boot routine, which is a function called
e-intOO. The boot. obj module, which is a member of the rts .lib library,
contains the e-intOO routine. (The source for the boot module is boot. c in
the rts. src library.)

The e-intOO routine can be called by reset hardware to begin running the
system. The boot. obj module must be combined with the C object modules
at link time; this occurs by default when you use the -c or -cr linker options
and include rts .lib as one of the linker input files. When C programs are
linked, the linker sets the entry point value in the executable output module
to the symbol -c-intOO; this symbol points to the beginning of the e-intOO
routine.

The e-intOO function performs the following tasks in order to initialize the C
envi ron ment:

1) Reserves space in the .bss section for the program stack and the system
stack and sets up the initial stack and frame pointers.

2) Autoinitializes global variables by copying the data from the initialization
tables in .cinit to the storage allocated for the variables in .bss. (Note
that in the RAM initialization model, a loader performs this step before
the program runs - it is not performed by the boot routine.)

3) Calls the function main to begin running the C program.

You can replace or modify the boot routine to meet your system requirements.
However, the boot routine must perform the three operations listed above in
order to correctly initialize the C environment.

5.8.1 Initializing the Stack

5-22

C code uses two stacks to manage the runtim6 environment:

• The system stack is used to save the status of a calling function or of
an interrupted function. The system stack starts at the highest address
in the stack space and grows toward lower addresses.

The SP register is a dedicated register that points to the system stack.
The TMS34010 instruction set supports several instructions for manip­
ulating the system stack, including:

MMTM (save registers)
MMFM (restore registers)
CALLA or CALL (call a function)
RETS or RETI (return from a function or interrupt)

• The program stack is used for local frame generation during a function
call; it is used for passing arguments to functions and for allocating local
(temporary) variables for a called function. The program stack is con­
trolled entirely through software. The TMS34010 does not dedicate a
register to point to the program stack; however, the C compiler uses re­
gister A 14 (STK) as the program-stack pointer.

Runtime Environment - System Initialization

The boot routine allocates memory for both stacks in the .bss section; this
memory is allocated as a single, static array named SYS-STACK. The boot
routine defines a constant named STACK-SIZE that determines the size of the
SYS-STACK array; the default stack size is 2000 bytes. (For information about
changing the stack size, see Section 5.1.2 on page 5-3.)

The two stacks share the space by growing towards each other from opposite
sides of the array. A stack overflow occurs if the stacks collide; although there
is no way to recover from a stack overflow, you can check for overflow con­
ditions by invoking the code generator with the -x option.

5.8.2 Autoinitialization of Variables and Constants

Some global variables must have initial values assigned to them before a C
program starts running. The process of retrieving these variables' data and
initializing them with the data is called autoinitialization.

The compiler builds tables in a special section called .cinit that contain data
for initializing global and static variables. Each compiled module contains
these initialization tables. The linker combines them into a single table (a
single .cinit section) that the boot routine uses to initialize all the variables that
need values before the program starts running.

Note:

In standard C, global and static variables which are not explicitly initialized
are set to 0 before program execution. The TMS3401 0 C compiler does
not adhere to this convention. Any variable which must have an initial
value of 0 must be explicitly initialized.

There are two methods for copying the autoinitialization data into memory;
these methods are called the ROM and RAM models of autoinitialization. The
remainder of this section contains specific information about autoinitialization;
Section 5.8.2.1 describes the format of the initialization tables, Section 5.8.2.2
describes the ROM model, and Section 5.8.2.3 describes the RAM model.

5-23

Runtime Environment - System Initialization

5.8.2.1 Initialization Tables

5-24

The tables in the .cinit section consist of initialization records of varying sizes.
Figure 5-5 shows the format of the .cinit section and of an initialization record .

• clnlt Section

initialization record 1
.:.:: '
::::::::::::!rti.ij~i!i;ljgn:::r~PQ#.~:::g::::::::f:::

Initialization record 3

•
•
•

initialization record n

Figure 5-5. Format of Initialization Records in the .cinit Section

• The first field of an initialization record is the size in words of the in­
itialization data.

• The second field is the starting address of the variable within the .bss
section, where the data must be copied. (It points to the variable's space
in .bss.)

• These first two fields are followed by one or more words of data. During
autoinitialization, this data is copied to .bss at the specified address.

Each variable that must be autoinitialized has an initialization re­
cord in the .cinit section.

For example, suppose that two initialized variables are defined in C as follows:

int i = 23·
int a [5'] =' {I, 2, 3, 4, 5};

rhe initialization tables would appear as follows:

.word 2 ; size in words of i

.long -i address of i in .bss

.long 2~ 2 words of data for

.word

.long

.long

10
-a
1,2,3,4,5

initializing i
size in words of a
address of a in .bss
10 words of data for
initializing a

The .cinit section must contain only initialization tables in this format. If you
interface assembly language modules to your C program, do not use the .cinit
section for any other purpose.

Runtime Environment - System Initialization

When you use the -c or -cr linker option, the linker links together the .cinit
sections from all the C modules and appends a null word to the end of the
composite .cinit section. This terminating record appears as a record with a
size field of 0, marking the end of the initialization tables.

5.8.2.2 ROM Autoinitialization Model

The ROM model is the default method of autoinitialization; to use this model,
invoke the linker with the -c option.

In this method, global variables are initialized at run time. The .cinit section
is loaded into memory (possibly ROM) along with all the other sections. The
linker defines a special symbol called cinit that points to the beginning of
the initialization tables in memory. When the program begins running, the C
boot routine copies data from the tables (pointed to by cinit) into the spe­
cified variables in .bss. This allows initialization data to be storpn in ROM and
then copied to RAM each time the program is started.

Figure 5-6 illustrates the ROM model of autoinitialization.

Object File Memory

Figure 5-6. ROM Model of Autoinitialization

5-25

: <>-'. ·i'-
-.,.-a.- .""

Runtime Environment - System Initialization

5.8.2.3 RAM Autoinitialization Model

5-26

The RAM model, specified with the -cr linker option, allows variables to be
initialized at load time instead of at run time. This enhances system perform­
ance by reducing boot time and by saving the memory that would ordinarily
be used by the initialization tables.

When you use the -cr linker option, the linker sets the STYP-COPY bit in the
.cinit section's header; this tells the loader not to load the .cinit section into
memory. (The .cinit section occupies no space in the memory map.) The
linker also sets the cinit symbol to -1 (normally, cinit would point to the
beginning of the initialization tables). This indicates to the boot routine that
the initialization tables are not present in memory; accordingly, no runtime in­
itialization is performed at boot time.

Note that you must use a smart loader to take advantage of the RAM model.
When the program is loaded, the loader must be able to:

• Detect the presence of the .cinit section in the object file.
• Find out that STYP-COPY is set in the .cinit section header, so that it

knows not to copy the .cinit section into memory.
• Understand the format of the initialization tables.

The loader then uses the initialization tables directly from the object file to in­
itialize variables in .bss.··-

Figure 5-7 illustrates the RAM model of autoinitialization.

Object File Memory

Figure 5-7. RAM Model of Autoinitialization

Section 6

Runtime-Support Functions

Some of the tasks that a C program must perform (such as floating-point
arithmetic, string operations, and dynamic memory allocation) are not part of
the C language. The runtime-support functions, which are included with the
C compiler, are standard functions that perform these tasks. The runtime­
support library rts .lib contains the object code for each of the functions
described in this section; the library rts. src contains the source to these
functions as well as to other functions and routines. If you use any of the
runtime-support functions, be sure to include rts. lib as linker input when
you link your C program.

This section is divided into three parts:

• Part 1 describes header files and discusses their functions.

• Part 2 summarizes the runtime-support functions according to category.

• Part 3 is an alphabetical reference.

You can find these topics on the following pages:

Section Page
6.1 Header Files .. 6-2
6.2 Summary of Runtime-Support Functions and Macros 6-9
6.3 Functions Reference ... 6-14

6-1

Runtime-Support Functions - Header Files

6.1 Header Files
Each runtime-support function is declared in a header file. Each header file
declares:

• A set of related functions,
• Any types that you need to use the functions, and
• Any macros that you need to use the functions.

The header files that declare the runtime-support functions are:

assert.h limits.h stddef.h
ctype.h math.h stdlib.h
errno.h setjmp.h string.h
float.h stdarg.h time.h

In order to use a runtime-support function, you must first use the #include
preprocessor directive to include the header file that declares the function.
For example, the isdigit function is declared by the ctype. h header. Before
you can use the isdigit function, you must first include the ctype. h file:

#include <ctype.h>

val = isdigit(num)j

You can include headers in any order. You must include a header before you
reference any of the functions or objects that it declares.

Section 6.1.1 through Section 6.1.10 describe the header files that are in­
cluded with the TMS34010 C compiler. Section 6.2 (page 6-9) lists the
functions that these headers declare.

6.1.1 Diagnostic Messages (assert.h)

6-2

The assert. h header defines the assert macro, which inserts diagnostic fail­
ure messages into programs at runtime. The assert macro tests a runtime ex­
pression. If the expression is true, the program continues running. If the
expression is false, the macro outputs a message that contains the expression,
the source file name, and the line number of the statement that contains the
expression; then, the program terminates (via the abort function).

The assert.h header refers to another macro named NDEBUG (assert.h
does not define NDEBUG). If you have defined NDEBUG as a macro name
when you include assert. h, then the assp-rt macro is turned off and does
nothing. If NDEBUG is not defined, then the assert macro is enabled.

The assert macro is defined as follows:

#ifdef NDEBUG
#define assert(ignore)
#else
#define assert(expr) \
if (I(expr» {printf(ltAssertion failed, (expr), file %s,\

line %d\nlt, -FILE __ , --LINE-)j abort()j)
#endif

Runtime-Support Functions - Header Files

6.1.2 Character Typing and Conversion (ctype.h)

The ctype. h header declares functions that test (type) and convert charac­
ters.

For example, a character-typing function may test a character to determine
whether it is a letter, if it is a printing character, if it is a hexadecimal digit, etc.
These functions return a value of true (a nonzero value) or false (0).

The character-conversion functions convert characters to lower case, upper
case, or ASCII. These functions return the converted character.

Character-typing functions have names in the form isxxx (for example,
isdigit). Character-conversion functions have names in the form toxxx (for
example, toupper).

The ctype. h header also contains macro definitions that perform these same
operations; the macros run faster than the corresponding functions. The typ­
ing macros expand to a lookup operation in an array of flags (this array is de­
fined in ctype. c). The macros have the same name as the corresponding
functions, but each macro is prefixed with an underscore (for example,
-isdigit).

6.1.3 Limits (float.h and limits.h)

The float. h and limits. h headers define macros that expand to useful
limits and parameters of the TMS3401 O's numeric representations. Table 6-1
and Table 6-2 list these macros and the limits they are associated with.

Table 6-1. Macros that Supply Integer Type Range Limits (Iimits.h)

Macro Value Description

CHAR-BIT 8 Number of bits in type char

SCHAR-MIN -128 Minimum value for a signed char

SCHAR-MAX 127 Maximum value for a signed char

UCHAR-MAX 255 Maximum value for an unsigned c!'".ar

CHAR-MIN SCHAR-MIN Minimum value for a char

CHAR-MAX SCHAR-MAX Maximum value for a char

SHRT-MIN -32768 Minimum value for a short int

SHRT-MAX 32767 Maximum value for a short int

USHRT-MAX 65535 Maximum value for an unsigned short int

INT-MIN -2147483648 Minimum value for an int

I NT-MAX 2147483647 Maximum value for an int

UINT-MAX 4294967295 Maximum value for an unsigned int

LONG-MIN -2147483648 Minimum value for a long int

LONG-MAX 2147483647 Maximum value for a long int

ULONG-MAX 4294967295 Maximum value for an unsigned long int

6-3

Runtime-Support Functions - Header Files

Table 6-2. Macros that Supply Floating-Point Range Limits (float.h)

Macro Value Description

FLT-RADIX 2 Base or radix of exponent representation

FLT-ROUNDS 0 Rounding mode for floating-point addition (rounds to
nearest integer)

FLT-DIG 6 Number of decimal digits of precision for a float

FLT-MANT-DIG 23 Number of base- FL T -RADIX digits in the mantissa of a
float

FLT-MIN-EXP -126 Smallest exponent (base 2) for a float

FL T -MAX-EXP 127 Largest exponent (base 2) for a float

FLT-EPSILON 1.1920929E-07F Minimum positive float x such that 1.0 + x #: .1.0

FLT-MIN 5.8774720E-39F Minimum positive float

FLT-MAX 1.7014116E+38F Maximum positive float

FLT -MI N-1 O-EXP -39 Minimum negative integer such that 10 raised to that
power is in the range of normalized floats

FLT-MAX-10-EXP 38 Maximum positive integer such that 10 raised to that
power is in the range of normalized floats

DBL-DIG 15 Number of decimal digits of precision for a double or
LDBL-DIG a long double

DBL-MANT-DIG 52 Number of base- FL T -RADIX digits in the mantissa
LDBL-MANT-DIG of a double or a long double

DBL-MIN-EXP -1022 Smallest exponent (base 2) for a double or long double
LDBL-MIN-EXP

DBL-MAX-EXP 1023 Largest exponent (base 2) for a double or long double
LDBL-MAX-EXP

DBL-EPSILON 2.22044604925031 r E-16
LDBL-EPSILON Minimum positive double or long double x such that 1.0

+ x #: .1.0

DBL-MIN 1.112536929253692fE-308
LDBL-MIN Minimum positive double or long double

DBL-MAX 8.988465674311620E+307
LDBL-MAX

DBL-MIN-10-EXP
LDBL-MIN-10-EXP

DBL-MAX-10-EXP
LDBL-MAX-10-EXP

Key to prefixes:
FLT- applies to type float
DBL- applies to type double
LDBL-applies to type long double

6-4

Maximum positive double or long double

-308 Minimum negative integer such that 10 raised
to that power is in the range of normalized doubles or
long doubles

307 Maximum positive integer such that 10 raised
to that power is in the range of normalized doubles or
long doubles

Runtime-Support Functions - Header Files

6.1.4 Floating-Point Math (math.h, errno.h)

The math. h header defines several trigonometric, exponential, and hyperbolic
math functions. These math functions expect double-precision floating-point
arguments and return double-precision floating-point values.

The math. h header also defines three macros that can be used with the math
functions for reporting errors:

• EDOM
• ERANGE
• HUGE-VAL

Errors can occur in a math function if the invalid parameter values are passed
to the function or if the function returns a result that is outside the defined
range for the type of the result. When this happens, a variable named errno
is set to the value of one of the following macros:

• EDOM, for domain errors (invalid parameter), or
• ERANGE, for range errors (invalid result).

C code that calls a math function can read the value of errno to check for
error conditions. The errno variable is declared in errno. h, and defined in
errno.c.

When a function produces a floating-point return value that is too large to be
represented, it returns HUGE-VAL instead.

6.1.5 Nonlocal Jumps (setjmp.h)

The setjmp. h header declares a function, a macro, and a type that are used
for bypassing the normal function call and return conventions.

• The type that is declared is jmp-buf, which is an array type suitable for
holding the information needed to restore a calling environment.

• The setjmp macro saves its calling environment in its jmp-buf argu­
ment, for later use by the /ongjmp function. The next invocation of
longjmp, even in a different function, causes a jump back to the point
at which setjmp was called.

6-5

Runtime-Support Functions - Header Files

6.1.6 Variable Arguments (stdarg.h)

Some functions can have a variable number of arguments whose types can
differ; such a function is called a variable-argument function. The stdarg. h
header declares three macros and a type that help you to use variable­
argument functions:

• The three macros are va-start and va-arg, and va-end. These macros
are used when the number and type of arguments may vary each time a
function is called.

• The type, va-list, is a pointer type that can hold information for
va-start, va-end, and va-argo

A variable-argument function can use the objects declared by stdarg. h to
step through its argument list at run time, when it knows the number and
types of arguments actually passed to it.

6.1.7 Standard Definitions (stddef.h)

The stddef . h header defines two types and two macros. The types include:

• ptrdiff-t, a signed integer type that is the data type resulting from the
subtraction of two pointers; and

• size-t, an unsigned integer type that is the data type of the sizeof oper­
ator.

The macros include:

• The NULL macro, which expands to a null pointer constant(O), and
• The offsetof(type, identifier) macro, which expands to an integp.r that

has type size-to The result is the value of an offset in bytes to a structure
member (identifier) from the beginning of its structure (type).

These types and macros are used by several of the runtime-support functions.

6.1.8 General Utilities (stdlib.h)

6-6

The stdlib. h header declares several functions, one macro, and two types.
The types include:

• div-t, a structure type that is the type of the value returned by the div
function, and

• Idiv-t, a structure type that is the type of the value returned by the Idiv
function.

In TMS34010 C, ints and longs are the same size, so div-t and Idiv-t share
a common definition:

typedef struct (int quot, rem; } div_t, Idiv_t;

The stdlib. h header also declares many of the common library functions:

Runtime-Support Functions - Header Files

• Memory management functions that allow you to allocate and deallocate
packets of memory. The amount of memory that these functions can use
is defined by the constant MEMORY-SIZE in the runtime-support module
memory. c. (This module is archived in the file rts. src.) By default,
the amount of memory available for allocation is 1000 bytes. You can
change this amount by modifying MEMORY-SIZE and recompiling me­
mory.c.

• String conversion functions that convert strings to numeric represent­
ations.

• Searching and sorting functions that allow you to search and sort arrays.

• Sequence-generation functions that allow you to generate a pseudo­
random sequence and allow you to choose a starting point for a se­
quence.

• Program-exit functions that allow your program to terminate normally
or abnormally.

• Integer-arithmetic that is not provided as a standard part of the C lan­
guage.

6.1.9 String Functions (string.h)

The str ing. h header declares standard functions that allow you to perform
the following tasks with character arrays (strings):

• Move or copy entire strings or portions of strings,

• Concatenate strings,
• Compare strings,
• Search strings for characters or other strings, and
• Find the length of a string.

In C, all character strings are terminated with a 0 (null) character. The string
functions named strxxx all operate according to this convention. Additional
functions which are also declared in string. h allow you to perform corre­
sponding operations on arbitrary sequences of bytes (data objects), where a
o value does not terminate the object. These functions have names such as
memxxx.

When you use functions that move or copy strings, be sure that the destination
is large enough to contain the result.

6-7

Runtime-Support Functions - Header Files

6.1.10 Time Functions (time.h)

6-8

The time. h header declares one macro, several types, and functions that
manipulate dates and time. The functions deal with several types of time:

• Calendar time represents the current date (according to the Gregorian
calendar) and time.

• Local time is the calendar time expressed for a specific time zone.
• Daylight savings time is a variation of local time.

The time. h header declares one macro, CLK-TCK, which is the number per
second of the value returned by the clock function.

The header declares three types:

• clock-t, an arithmetic type that represents time,

• time-t, an arithmetic type that represents time, and

• struct tm . is a structure that holds the components of calendar time,
called broken-down time. The structure has the following members:

int tm-sec; /* seconds after the minute (0-59) */
int tm-min; /* minutes after the hour (0-59) */
int tm-hour; /* hours after midnight (0-23) */
int tm-mday; /* day of the month (1-31) */
int tm-mon; /* months since January (0-11) */
int tm-year; /* years since 1900 (0-99) */
int tm-wday; /* days since Saturday (0-6) */
int tm-ydaYi /* days since January 1 (0-365) */
int tm-isdsti /* Daylight Savings Time flag - */

tm-isdst can have one of three values:

A positive value if Daylight Savings Time is in effect.
Zero if Daylight Savings Time is not in effect.
A negative value if the information is not available.

All of the time functions depend on the clockO and timeO functions, which
you must customize for your system.

Runtime-Support Functions - Summary

6.2 Summary of Runtime-Support Functions and Macros

Error Message Macro
Header File: assert. h

Macro and Syntax Description

void assert(e~pression) Inserts diagnostic messages into programs
int express~on;

Character Typing and Conversion Functions
Header File: ctype. h

Function and Syntax Description

int isalnum(c) Tests c to see if it's an alphanumeric-ASCII character
char C;

int isalpha(c)
char c;

Tests c to see if it's an alphabetic-ASCII character

int isascii(c) Tests c to see if it's an ASCII character
char c;

int iscntrl(c) Tests c to see if it's a control character
char c;

int isdiqit(c) Tests c to see if it's a numeric character
char Ci

int isqraph(c) Tests c to see if it's any printing character except
char c; a space

int islower(c) Tests c to see if it's a lowercase alphabetic
char c; ASCII character

int isprint(c) Tests c to see if it's a printable ASCII character
char c; (including spaces)

int ispunct(c) Tests c to see if it's an ASCII punctuation character
char C;

int isspace(c) Tests c to see if it's an ASCII spacebar, tab (horizontal
char C; or vertical), carriage return, formfeed, and newline characters

int isupper(c) Tests c to see if it's an uppercase ASCII alphabetic
char Ci character

int isxdiqit(c)
char Ci

Tests c to see if it's a hexadecimal digit

char toascii(c) Masks c into a legal ASCII value
char Ci

char tolower(c) Converts c to lowercase if it's uppercase
char C;

char toupper(c) Converts c to uppercase if it's lowercase
char c;

Floating-Point Math Functions
Header File: math.h

Function and Syntax Description
double acos(x) Returns the arc cosine of a floating-point value x

double Xi

double asin(x) Returns the arc sine of a floating-point value x
double x;

double atan(x) Returns the arc tangent of a floating-point value x
double x;

double atan2(y,x)
double y,x;

Returns the inverse tangent of y Ix

6-9

Runtime-Support Functions - Summary

Floating-Point Math Functions (Continued)

Macro and Syntax Description

double ceil(x) Returns the smallest integer greater than or equal to x
double x;

double cos(x) Returns the cosine of a floating-point value x
double x;

double cosh(x) Returns the hyperbolic cosine of a floating-point value x
double x;

double exp(x) Returns the exponential function of a real number x
double x;

double fabs(x) Returns the absolute value of a floating-point value x
double x;

double floor(x) Returns the largest integer less than or equal to x
double x;

double fmod(x, y) Returns the floating-point remainder of x/y
double x, y;

double' frexp(value, exp) Breaks a floating-point value into a normalized fraction and
double value; an integer power of 2
int *exp;

double Idexp(x,
double x;

exp) Multiplies a floating-point number by an integer power of 2

int exp;

double log(x) Returns the natural logarithm of a real number x
double x;

double loglO(x) Returns the base-1 0 logarithm of a real number x
double x;

double modf(value, iptr) Breaks a floating-point number into into a signed integer and
double value; a signed fraction
int *iptr;

double pow(x, y)
double x, y;

Returns x raised to the power y

double sin(x) Returns the sine of a floating-point value x
double x;

double sinh(x) Returns the hyperbolic sine of a floating-point value x
double x;

double sqrt(x)
double x;

Returns the nonnegative square root of a real number x

double tan (x) Returns the tangent of a floating-point value x
double x;

double tanh ex) Returns the hyperbolic tangent of a floating-point value x
double x;

Variable Argument Functions and Macros
Header File: stdarg. h

Function/Macro and Syntax Description

type va-arg(ap, type) Accesses the next argument of type type in a
va-list ap; variable-argument list

void va-end(ap) Resets the calling mechanism after using va-arg
va-list ap;

void va-start(ap, parmN) Initializes ap to point to the first operand in the
va-list ap; variable-argument list

6-10

Runtime-Support Functions - Summary

General Utilities
Header File: stdlib _ h

Function and Syntax Description
int abs(j)

int j;
Returns the absolute value of j

void abort () Terminates a program abnormally
void atexit(fun) Registers the function point to by fun. to be called without

void (*fun) (); arguments at normal program termination
double atof(nptr) Converts an ASCII string to a floating-point value

char *nptr;
int atoi(nptr)

char *nptr;
Converts an ASCII string to an integer value

long int atol(nptr)
c ar *nptr;

Converts an ASCII string to a long integer

void *bsearch(key, base, nme lb, size, compar)
void *key, *base; Searches through an array of nmemb objects for a member
size-t nmemb, size; that matches the object that key points to
int (*compar) () ;

void *calloc(nmemb, size) Allocates and clears memory for nmemb objects. each of
size-t nmemb, size size bytes

div-t div(numer, denom) Divides numer by denom
int numer, denom

void exit(status) Terminates a program normally
int status;

void free(ptr) Deallocates memory space allocated by malloc. calloc. or
void *ptr; realloc

long int labs(j) Returns the absolute value of j
long int j;

Idiv_t Idiv(numer, denom)
long int numer, denom

Divides numer by denom

int Itoa(n, buffer) Converts n to the equivalent ASCII string
long n;
char *buffer;

void *malloc(size) Allocates memory for an object of size bytes
size-t size;

void minit() Resets all the memory previously allocated by malloc, calloc,
or realloc

char *movmem(src,dest,count)
char *src, *dest;
int count;

Moves count bytes from one address to another

70Id qsort(base, nmemb, size compar)
void *base; Sorts an array of nmemb members; base points to the first
size-t nmemb, size; member of the unsorted array and size specifies the size
int (*compar)(); of each member

int rand() Returns a sequence of pseudo-random integers in the range
o to RAN D-MAX

void *realloc(ptr, size) Changes the size of an allocated memory space
void *I?tr-
size-t sl.ze;

void srand(seed) Uses seed to reset the random number generator so that
unsigned int seed; a subsequent call to rand produces a new sequence of pseu-

do-random numbers
double strtod(n~tr, endptr) Converts an ASCII string to a floating-point value

char *nptr, * endptr;
long int strtol(nptr, endPtr

1
base)

char *nptr, **endptr; Converts an ASCII string to a long integer
int base;

unsigned long int strtoul(np r, endptr, base)
char *nptr,
int base;

**endptr; Converts an ASCII string to an unsigned long integer

6-11

Runtime-Support Functions - Summary

String Functions

Header File: string.h

Function and Syntax Description
void *memchr(5, c, n) Finds the first occurrence of c in the first n characters of an

void *5; object
int c;
5ize_t n;

int memcmp(51, 52, n) Compares the first n characters of 51 to object 2
void *51, *52;
5ize_t n;

void *memcpY(51, 52, n) Copies n characters from 51 to object 2
void *51, *52;
5ize_t n;

void *memmove(51, 52, n) Moves n characters from 51 to object 2
void *51, *52;
5ize-t n;

void *memset(5, c, n) Copies the value of c into the first n characters of an object
void *5;
int c;
5ize_t n;

char *strcat(51, 52) Appends 51 to the end of 52
char *51, *52;

char *strchr(5, c) Finds the first occurrence of character c in 5
char *5;
int c;

int strcmp(51, 52) Compares strings and returns one of the following values:
char *51, *52; <0 if 51 is less than 52 =0 if 51 is equal to 52 >0 if 51

is greater than 52

int *strcoll(51, 52) Compares strings and returns one of the following values,
char *51, *52; depending on the locale in the program:

<0 if 51 is less than 52 =0 if 51 is equal to 52 >0 if 51
is greater than 52

char *strcpY(51, 52) Copies string 52 into 51
char *51, *52;

5ize-t strcspn(51, 52) Returns the length of the initial segment of 51 that is
char *51, *51; entirely made up of characters that are not In 52

char *strerror(errnum) Maps the error number in errnum to an error message
int errnum; string

5ize-t strlen(5) Returns the length of a string
char *5;

char *strncat(51, 52, n) Appends up to n characters from 51 to s2
char *51, *52;
5ize-t n;

int *strncmp(51, 52, n) Compares up to n characters in two strings
char *51, *52;
5ize-t n;

char *strncpY(51, 52, n) Copies up to n characters of a string to a new location
char *51, *s2;
5ize-t n;

char *strpbrk(51, 52) Locates the first occurrence in 51 of any character from
char *51, *52; s2

6-12

Runtime-Support Functions - Summary

String Functions (continued)

Header File: string.h

Function and Syntax Description
char *strrchr(s ,c) Finds the last occurrence of character in s

char *s;
int c;

size-t strspn(sl, s2) Returns the length of the initial segment of sl, which is
char *sl, *s2; entirely made up of characters from s2

char *strstr(sl, s2) Finds the first occurrence of a string in another string
char *sl, *s2;

char *strtok(sl, s2) Breaks a string into a series of tokens, each delimited by a
char *sl, *s2; character from a second string

Time Functions

Header File: time. h

Function and Syntax Description
char *asctime(timeptr) Converts a time to a string

struct tm *timeptr;

c1ock_t clock() Determines the processor time used

char *ctime(timeptr) Converts calendar time to local time
struct tm *timeptr;

double difftime(time1,timeO) Returns the difference between two calendar times
time_t time1, timO;

struct tm *gmtime(timer) Converts calendar time Greenwich Mean Time
time-t *timer;

struct tm *localtime(timer) Converts calendar time to local time
time-t *timer;

time-t mktime(timeptr) Converts local time to calendar time
struct tm *timeptr;

size-t strftime(s, maxsize, Formats a time into a character string
format, timeptr)

char *s, *format;
size-t maxsize;
struct tm *timeptr;

time_t time(timer) Returns the current calendar time
time-t *timer;

6-13

Runtime-Support Functions - Functions Reference

6.3 Functions Reference

6-14

The remainder of this chapter is a reference. Generally, the functions are or­
ganized alphabetically, one function per page; however, related functions
(such as isalpha and isascii) are presented together on one page. Here's an
alphabetical table of contents for the functions reference:

Function Page
abort .. 6-16
abs ... 6-17
acos ... 6-18
asctime .. 6-19
asin .. 6-20
assert ... 6-21
atan .. 6-22
atan2 ... 6-23
atexit .. 6-24
atof .. 6-25
atoi ... 6-25
atol ... 6-25
bsearch .. 6-26
calloc ... 6-27
ceil ... 6-28
clock .. 6-29
cos ... 6-30
cosh ... 6-31
ctime .. 6-32
difftime .. 6-33
div .. 6-34
exit ... 6-35
exp ... ; ... 6-36
fabs .. 6-37
floor ... 6-38
fmod .. 6-39
free ... 6-40
frexp .. 6-41
gmtime .. 6-42
isalnum .. 6-43
isalpha ... 6-43
isascii ... 6-43
iscntrl ... 6-43
isdigit ... 6-43
isgraph .. 6-43
islower ... 6-43
isprint ... ~ .. 6-43
ispunct .. 6-43
isspace .. 6-43
isupper .. 6-43
isxdigit ... 6-43
labs .. 6-17
Idexp .. 6-44
Idiv ... 6-34
localtime ... 6-45

Runtime-Support Functions - Functions Reference

log .. 6-46
log1 0 ... 6-47
Itoa ... 6-48
malloe .. 6-49
memehr ... 6-50

mememp : ... 6-51
memepy ... 6-52
memmove ... 6-53
memset .. 6-54
minit ... 6-55

mktime .. 6-56
modf .. 6-57
movmem ... 6-58
pow ... 6-59
qsort .. 6-60

rand ... 6-61
realloe .. 6-62
sin .. 6-63
sinh .. 6-64
sqrt ... 6-65

srand .. 6-61
streat .. 6-66
strehr ... 6-67
stremp ... 6-68
streoll ... 6-69

strepy ... 6-69
strespn ... 6-70
strerror ... 6-71
strftime .. 6-72
strlen .. 6-73
strneat .. : .. 6-74
strnemp ... 6-75
strnepy .. 6-76
strpbrk ... 6-77
strrehr .. 6-78
strspn ... 6-79
strstr ... 6 -80
strtod ... 6-81
strtok ... 6-82
strtol .. 6-81

strtoul .. 6-81
tan .. 6-83
tanh ... 6-84
time .. 6-85
toaseii .. 6-86

tolower .. 6-87
toupper .. 6-87
va-arg ... 6-88
va-end .. 6-88
va-start ... 6-88

6-15

abort

Syntax #include <stdlib.h>

void abort ()

Abnormal Termination

Defined in exit. c in rts. src

Description The abort function usually terminates a program with an error code. The
TMS34010 implementation of the abort function calls the exit function with
a value of 0, and is defined as follows:

void abort ()
(

exit(O);

This makes the abort function functionally equivalent to the exit function.

6-16

Absolute Value abs/labs

Syntax #include <stdlib.h>

int abs(j}
int ji

long int labs(k)
long int ki

Defined in abs. c in rts. src

Description The C compiler supports two functions that return the absolute value of an
integer:

• The abs function returns the absolute value of an integer, j.

• The labs function returns the absolute value of a long integer, k.

Since int and long int are functionally equivalent types in TMS3401 0 C, the
abs and labs functions are also functionally equivalent.

6-17

acos

Syntax

Defined in

Description

Example

6-18

#include <math.h>

double acos(x)
double X;

asin.obj in rts.lib

Arc Cosine

The acos function returns the arc cosine of a floating-point argument, x.
X must be in the range [-1,1]. The return value is an angle in the range
[O,n] radians.

double realval, radians;

realval = 1.0;
radians = acos(rea1va1)i
return (radians); /* acos returns n/2 */

Internal Time to String

Syntax #include <time.h>

char *asctime(timeptr)
struct tm *timeptr;

Defined in actime. c in rts. src

asctime

Description The asctime function converts a broken-down time into a string with the
following form:

Mon Jan 11 11:18:36 1988 \n\O

The function returns a pointer to the converted string.

For more information about the functions and types that the time. h
header declares, see Section 6.1.10 on page 6-7.

6-19

asin

Syntax #include <math.h>

double asin(x)
double X;

Arc Sine

Defined in asin. obj in rts .lib

Description The asin function returns the arc sine of a floating-point argument, x. X

must be in the range [-1,1]. The return value is an angle in the range
[-n/2,n/2] radians.

Example double realval, radians;

realval 1. 0;
radians = asin(realval)i /* asin returns n/2 */

6-20

Insert Diagnostic Information Macro assert

Syntax #include <assert.h>

void assert(expression)
int expression;

Defined in assert. h as macros

Description The assert macro tests an expression; depending on the value of the ex­
pression, assert either aborts execution and issues a message or continues
execution. This macro is useful for debugging.

Example

• If expression is false, the assert macro writes information about the
particular call that failed to the standard output, and then aborts exe­
cution.

• If expression is true, the assert macro does nothing.

The header file that declares the assert macro refers to another macro,
NDEBUG. If you have defined NDEBUG as a macro name when the as­
sert . h header is included in the source file, then the assert macro is de­
fined as:

#define assert(ignore)

If NDEBUG is not defined when assert. h is included, then the assert
macro is defined as:

#define assert(expr) \
if (! (expr» {

printf("Assertion failed, (expr), file %s,
line %d\n", __ FILE ____ LINE __)

abort (); }

In this example, an integer i is divided by another integer j. Since divid­
ing by 0 is an illegal operation, the example uses the assert macro to test j
before the division. If j =0, assert issues a message and aborts the program.

int i, j;
assert(j);
q = i/j;

6-21

atan

Syntax #include <math.h>

double atan(x)
double X;

Defined in atan.obj in rts .lib

Polar Arc Tangent

Description The atan function returns the arc tangent of a floating-point argument, x.
The return value is an angle in the rang~ [-n/2,n/2] radians.

Exalnple double realval, radians;

realval 0.0;
radians = atan(realval); /* return value a */

6-22

Cartesian Arc Tangent

Syntax #include <math.h>

double atan2(y, x)
double y, X;

Defined in atan. obj in rts .lib

atan2

Description The atan2 function returns th~ inverse tangent of y Ix. The function uses
the signs of the arguments to determine the quadrant of the return value.
Both arguments cannot be O. The return value is an angle in the range
[-rr,rr] radians.

EXBlnpie double rvalu, rvalv;
double radians;

rvalu
rvalv
radians

0.0;
1. 0; = atan2(rvalr, rvalu)i 1* return value a *1

6-23

ate,dt

Syntax #include <stdlib.h>

void atexit(fun)
void (*fun) () ;

Exit without Arguments

Defined in exit. c in rts. src

Doscription The atexit function registers the function that is pointed to by fun, to be
called without arguments at normal program termination. Up to 32 func­
tions can be registered.

6-24

When the program exits through a call to the exit function, the functions
that were registered are called, without arguments, in reverse order of their
registration.

ASCII to Number atof/atoi/atol

Syntax #include <stdlib.h>

double atof(nptr)
char *nptr;

int atoi(nptr)
char *nptr;

long int atol(nptr)
char *nptr;

Defined in atof . c and atoi. c in rts. src

Description Three functions convert ASCII strings to numeric representations:

• The atof function converts a string to a floating-point value. Argu­
ment nptr points to the string; the string must have the following
format:

[space] [sign] digits [.digits] [el£ [sign] integer]

• The atoi function converts a string to an integer. Argument nptr
points to the string; the string must have the following format:

[space] [sign] digits

• The atol function converts a string to a long integer. Argument nptr
points to the string; the string must have the following format:

[space] [sign] digits

The space is indicated by a space (from the space bar), a horizontal or ver­
tical tab, a carriage return, a form feed, or a newline. Following the space
is an optional sign, and then digits that represent the integer portion of the
number. The fractional part of the number follows, then the exponent, in­
cluding an optional sign.

The first character that cannot be part of the number terminates the string.

Since int and long are functionally equivalent in TMS3401 0 C, the atoi and
atol functions are also functionally equivalent.

The functions do not handle any overflow resulting from the conversion.

6-25

bsearch

Syntax

Array Search

#include <stdlib.h>

void *bsearch(key, base, nmemb, size, compar)
void *key, *base;
size_t nrnemb, size;
int (*cornpar){);

Defined in bsearch. c in rts. src

Description The bsearch function searches through an array of nmemb objects for a
member that matches the object that key points to. Argument base points
to the first member in the array; size specifies the size (in bytes) of each
member.

6-26

The contents of the array must be in ascending, sorted order. If a match is
found, the function returns a pointer to the matching member of the array;
if no match is found, the function returns a null pointer (0).

Argument cornpar points to a function that compares key to the array el­
ements. The comparison function should be declared as:

int cmp(ptrl, ptr2)
void *ptrl, *ptr2;

The cmp function compares the objects that ptrl and ptr2 point to, and
returns one of the following values:

< 0 if *ptrl is less than *ptr2.
o if *ptrl is equal to *ptr2.

> 0 if *ptrl is greater than *ptr2.

Allocate and Clear Memory calloc

Syntax #include <stdlib.h>

void *ca11oc(nmemb, size)
size-t nmemb; /* number of items to allocate */
size-t size; /* size (in bytes) of each item */

Defined in memory. c in rts. src

Description The calloc function allocates size bytes for each of nmemb objects, and
returns a pointer to the space. The function initializes the allocated memory
to all Os. If it cannot allocate the memory (that is, if it runs out of memory),
it returns a null pointer (0).

Example

The memory that calloc uses is in a special memory pool or heap. A C
module called memory. c reserves memory for the heap in the .bss section.
The constant MEMORY-SIZE defines the size of the heap as 1000 bytes. If
necessary, you can change the size of the heap by change the value of
MEMORY-SIZE and reassembling memory. c. For more information, see
Section 5.1.3, Dynamic Memory Allocation, on page 5-4.

This example uses the calloc routine to allocate and clear 10 bytes.

ptr = calloc(10,2) ; /* Allocate and clear 10 bytes */

6-27

ceil

Syntax #include <math.h>

double ceil(x)
double Xi

Defined in floor. obj in rts .lib

Ceiling

Description The ceil function returns a double-precision number that represents the
smallest integer greater than or equal to x.

Example extern double ceil () ;

6-28

double answeri

answer = ceil(3.1415); /* answer = 4.0 */

answer = ceil(-3.5); /* answer = -3.0 */

Processor Time clock

Syntax #include <time.h>

clock-t clock()

Defined in clock. c in rts. src

Description The clock function determines the amount of processor time used. It re­
turns an approximation of the processor time used by a program since the
program began running. The time in seconds is the return value divided
by the value of the macro CLK-TCK.

If the processor time is not available or cannot be represented, the clock
function returns the value of (clock-t) -1.

Note:

The clock function is target-system specific, so you must write your
own clock function. You must also define the CLK-TCK macro ac­
cording to the granularity of your clock, so that the value returned by
clock () (number of clock ticks) can be divided by CLK-TCK to pro­
duce a value in seconds.

For more information about the functions and types that the time. h
header declares, see Section 6.1.10 on page 6-7.

6-29

cos

Syntax

Defined in

Description

Example

6-30

#include <math.h>

double cos (x)
double X;

sin.obj in rts .lib

Cosine

The cos function returns the cosine of a floating-point number, x. x is
an angle expressed in radians. An argument with a large magnitude may
produce a result with little or no significance.

double radians, cval;

radians = 3.1415927;
eval = eos(radians)i

/* cos returns cval */

/* return value = -1.0 */

Hyperbolic Cosine

Syntax #include <math.h>

double cosh(x)
double X;

Defined in sinh.obj in rts.lib

cosh

DescriptiQn The cosh function returns the hyperbolic cosine of a floating-point number,
x. A range error occurs if the magnitude of the argument is too large.

Example double x, y;

x 0.0;
y = cosh(x); /* return value 1.0 */

6-31

ctime

Syntax #include <time.h>

char *ctime(timer)
time-t *timer;

Calendar Time

Defined in ctime. c in rts. src

Description The ctime function converts a calendar time (pointed to by timer) to local
time, in the form of a string. This is equivalent to:

6-32

asctime(localtime(timer))

The function returns the pointer returned by the asctime function with that
broken-down time as an argument.

For more information about the functions and types that the time. h
header declares, see Section 6.1.10 on page 6-7.

Time Difference

Syntax #include <time.h>

double difftime(timel, timeO)
time-t timel, timeO;

Defined in difftime. c in rts. src

difftime

Description The difftime function calculates the difference between two calendar times,
timel minus timeO. The return value expresses seconds.

For more information about the functions and types that the time. h
header declares, see Section 6.1.10 on page 6-7.

6-33

div/ldiv

Syntax #include <stdlib.h>

div_t div(numer, denom)
int numer, denom;

ldiv_t ldiv(numer, denom)
long int numer, denom;

Division

Defined in div. c in rts. src

Description Two functions support integer division by returning numer divided by de­
nom. You can use these functions to get both the quotient and the re­
mainder in a single operation.

6-34

• The div function performs integer division. The input arguments are
integers; the function returns the quotient and the remainder in a
structure of type div-t. The structure is defined as follows:

typedef struct
{

int quot;
int rem;

div_t;

/* quotient */
/* remainder */

• The Idiv function performs long integer division. The input argu­
ments are long integers; the function returns the quotient and the re­
mainder in a structure of type Idiv-t. The structure is defined as
follows:

typedef struct
{

long int quot;
long int rem;

ldiv-ti

/* quotient */
/* remainder */

If the division produces a remainder, then the sign of the quotient is the
same as the algebraic quotient, and the magnitude of the resulting quotient
is the largest integer less than the magnitude of the algebraic quotient.

Since ints and longs are equivalent types in TMS3401 0 C, these functions
are also equivalent ..

Normal Termination

Syntax #include <stdlib.h>

void exit(status)
int status;

Defined in exit. c in rts. src

exit

Description When a program exits through a call to the exit function, the atexit function
calls the functions (without arguments) that were registered in reverse or­
der of their registration.

The exit function does return.

6-35

exp

Syntax #include <math.h>

double exp(x)
double X;

Defined in. exp. obj in rts .lib

Exponential

Description The exp function returns the exponential function of real number x. The
return value is the number e raised to the power x. A range error occurs if
the magnitude of x is too large.

Example double x, y;

x 2.0;
Y = exp(x)i /* y 7.38, which is e**2.0 */

6-36

Absolute Value

Syntax #include <math.h>

double fabs(x)
double X;

Defined in fabs.obj in rts.lib

fabs

Description The fabs function returns the absolute value of a floating-point number, x.

Example double x, y;

x -57.5;
Y = fabs(x)i /* return value +57.5 */

6-37

floor

Syntax #include <math.h>

double floor(x)
double X;

Defined in floor. obj in rts .lib

Floor

Description The floor function returns a double-precision number that represents the
largest integer less than or equal to x.

Exar.nple double answer;

6-38

answer = floor(3.14IS); /* answer = 3.0 */

answer = floor(-3.S}; /* answer = -4.0 */

Floating-Point Remainder

Syntax #include <math.h>

double fmod(x, y)
double x, Yi

Defined in fmod. obj in rts .lib

fmod

Description The fmod function returns the floating-point remainder of x divided by y.
If y=O, the function returns O.

Exalnple double x, y, ri

x 11. 0 i
Y 5.0;
r = fmod(x, y); /* fmod returns 1.0 */

6-39

free

Syntax #include <stdlib.h>

void free(ptr}
void *ptr;

Defined in memory. c in rts. src

Deallocate Memory

Description The free function deallocates memory space (pointed to by ptr) that was
previously allocated by a malloc, calloc, or realloc call. This makes the
memory space available again. If you attempt to free unallocated space, the
function takes no action and returns. For more information, see Section
5.1 .3, Dynamic Memory Allocation, on page 5-4.

Example This example allocates 10 bytes and then frees them.

6-40

char *x;
x = malloc(lO);
free (x) ;

/* allocate 10 bytes
/* free 10 bytes

*/
*/

Fraction and Exponent

Syntax #include <math.h>

double frexp(value, exp)
double value; /* input floating-point number */
int *exp; /* pointer to exponent */

Defined in frexp.obj in rts.lib

frexp

Description The frexp function breaks a floating-point number into a normalized fraction
and an integer power of 2. The function returns a value with a magnitude
in the range [~,1} or 0, so that value = x x 2(**exp). The frexp function
stores the power in the int pointed to by expo If value is 0, both parts of
the result are 0.

Example double fraction;
int exp;

fraction = frexp(3.0, &exp);

/* after execution, fraction is .75 and exp is 2 */

6-41

gmtime

Syntax #include <time.h>

struct tm *gmtime(timer)
time_t *timeri

Greenwich Mean Time

Defined in gmtime. c in rts. src

Description The gmtime function converts a calendar time (pointed to by timer) into
a broken-down time which is expressed as Greenwich Mean Time.

6-42

For more information about the functions and types that the time. h
header declares, see Section 6.1 .10 on page 6 -7.

Character Typing isxxxxx

Syntax #include <ctype.h>

int isalnum(c)
char c;

int isalpha(c)
char c;

int isascii(c)
char c;

int iscntrl(c)
char c;

int isdigit(c)
char c;

int isgraph(c)
char c;

int islower(c)
char c;

int isprint(c)
char c;

int ispunct(c)
char c;

int isspace(c)
char c;

int isupper(c)
char c;

int isxdigit(c}
char c;

Defined in isxxx.c and ctype.c in rts.src
Also defined in ctype. h as macros

Description These functions test a single argument c to see if it is a particular type of
character - alphabetic, alphanumeric, numeric, ASCII, etc. If the test is true
(the character is the type of character that it was tested to be), the function
returns a nonzero value; if the test is false, the function returns O. The
character typing functions include:

isalnum. identifies alphanumeric ASCII characters (tests for any character

isalpha

isascii
iscntrl
isdigit
isgraph
islower
isprint

ispunct
isspace

isupper
isxdigit

for which isalpha or isdigit is true).
identifies alphabetic ASCII characters (tests for any character for
which islower or isupper is true).
identifies ASCII characters (any character between 0-127).
identifies control characters (ASCII character 0-31 and 127).
identifies numeric characters ('0' - '9')
identifies any non -space character.
identifies lowercase alphabetic ASCII characters.
identifies printable ASCII characters, including spaces (ASCII
characters 32-126).
identifies ASCII punctuation characters.
identifies ASCII spacebar, tab (horizontal or vertical), carriage
return, formfeed, and newline characters.
identifies uppercase ASCII alphabetic characters.
identifies hexadecimal digits (0-9, a-f, A-F).

The C compiler also supports a set of macros that perform these same
functions. The macros have the same names as the functions, but are pre­
fixed with an underscore; for example, -isascii is the macro equivalent of
the isascii function. In general, the macros execute more efficiently than the
functions.

6-43

Idexp

Syntax #include <math.h>

double ldexp(x, exp)
double Xi
int eXPi

Multiply by a Power of Two

Defined in 'ldexp. obj in rts .lib

Description The Idexp function multiplies a floating-point number by a power of 2 and
returns X x 2exP. exp can be a negative or a positive value. A range error
may occur if the result is too large.

Exan1ple double result;

6-44

result = ldexp(l.5, 5); /* result is 48.0 */

result = ldexp(6.0, -3); /* result is 0.75 */

Local Time

Syntax #include <time.h>

struct tm *localtime(timer)
time-t *timer;

localtime

Defined in localtime.c in rts.src

Description The local time function converts a calendar time (pointed to by timer) into
a broken-down time which is expressed as local time. The function returns
a pointer to the converted time.

For more information about the functions and types that the time. h
header declares, see Section 6.1.10 on page 6-7.

6-45

log

Syntax #include <math.h>

double !og(x)
double X;

Defined in log. obj . c in rts .lib

Natural Logarithm

Description The log function returns the natural logarithm of a real number, x. A do­
main error occurs if x is negative; a range error occurs if x is O.

Example float x, y;

6-46

x 2.718282;
Y = log (x); /* Return value 1. 0 */

Common Logarithm

Syntax #include <math.h>

double loglO(x)
double Xi

Defined in log. obj . c in rts .lib

log10

Description The log10 function returns the base-10 logarithm of a real number, x. A
, domain error occurs if x is negative; a range error occurs if x is O.

Example float x, y;

x 10.0;
Y = log(x); /* Return value 1.0 */

6-47

Itoa

Syntax #include <stdlib.h>

int ltoa(n, buffer)

long Integer to ASCII

long ni /* number to convert */
char *bufferi /* buffer to put result in */

Defined in 1 toa. c in rts. src

Description The Itoa function converts a long integer to the equivalent ASCII string. If
the input number n is negative, a leading minus sign is output. The Itoa
function returns the number of characters placed in the buffer.

6-48

Allocate Memory malloc

Syntax #include <stdlib.h>

void *malloc(size)
size-t size; /* size of block in bytes */

Defined in memory. c in rts. src

Description The malloc function allocates space for an object of size bytes and returns
a pointer to the space. If malloc cannot allocate the packet (that is, if it runs
out of memory), it returns a null pointer (0). This function does not modify
the memory it allocates.

The memory that malloc uses is in a special memory pool or heap. A C
module called memory. c reserves memory for the heap in the .bss section.
The constant MEMORY-SIZE defines the size of the heap as 1000 bytes. If
necessary, you can change the size of the heap by change the value of
MEMORY-SIZE and reassembling memory. c. For more information, see
Section 5.1.3, Dynamic Memory Allocation, on page 5-4.

6-49

memchr

Syntax #include <string.h>

void *memchrCs, c, n)
void *s;
char c i
size-t ni

Find First Occurrence of Byte

Defined in rnernchr. c in rts. src

Description The memchr function finds the first occurrence of c in the first n characters
of the object that s points to. If the character is found, memchr returns a
pointer to the located character; otherwise, it returns a null pointer (0).

6-50

The memchr function is similar to strchr, except the object that memchr
searches can contain values of 0, and c can be O.

Memory Compare

Syntax #include <string.h)

int memcmp{51, 52, n)
void *51, *52;
size-t n;

Defined in memcmp. c in rts. src

memcmp

Description The memcmp function compares the first n characters of the object that 52
points to with the object that 51 points to. The function returns one of the
following values:

< 0 if *51 is less than *52.
o if *51 is equal to *52.

> 0 if *51 is greater than *52.

The memcmp function is similar to strncmp, except the objects that
memcmp compares can contain values of O.

6-51

memcpy

Syntax

Memory Block Copy - Nonoverlapping

#include <string.h>

void *memcpy(sl, s2, n)
void *s1, *s2;
size-t n;

Defined in memmov. c in rts. src

Description The memcpy function copies n characters from the object that s2 points to
into the object that s 1 points to. If you attempt to copy characters of
overlapping objects, the function's behavior is undefined. The function re­
turns the value of s l.

6-52

The memcpy function is similar to strncpy, except the objects that memcpy
copies can contain values of O.

Memory Block Copy - Overlapping

Syntax #inc1ude <string.h>

void *memmove(sl, 52, n)
void *sl, *s2;
size-t n;

Defined in memmov. c in rts. src

memmove

Description The memmove function moves n characters from the object that s2 points
to into the object that s 1 points to; the function returns the value of 5 l.
The memmove function correctly copies characters between overlapping
objects.

6-53

memset

Syntax #include <string.h>

void *memset(s, c, n)
void *s;
char c;
size-t n;

Defined in memset. c in rts. src

Duplicate Value in Memory

Description The memset function copies the value of c into the first n characters of the
object that s points to. The function returns the value of s.

6-54

Reset Dynamic Memory Pool minit

Syntax #include <stdlib.h>

void minit()

Defined in memory. c in rts. src

Description The minit function resets all the space that was previously allocated by calls
to themalloc.calloc. or realloc functions.

Note:

Calling the minig function makes all the memory space in the heap
available again. Any objects that you allocated previously will
be lost; don't try to access them.

The memory that minit uses is in a special memory pool or heap. A C mo­
dule called memory. c reserves memory for the heap in the .bss section. The
constant MEMORY-SIZE defines the size of the heap as 1000 bytes. If nec­
essary, you can change the size of the heap by change the value of
MEMORY_SIZE and reassembling memory. c. For more information, see
Section 5.1.3, Dynamic Memory Allocation, on page 5-4.

6-55

mktime

Syntax

Defined in

Description

Example

6-56

#include <time.h>

time_t *mktime{timeptr)
struct tm *timeptr;

mktime.c in rts.src

Convert to Calendar Time

The mktime function converts a broken-down time, expressed as local time,
into proper calendar time. The timeptr argument points to a structure that
holds the broken-down time.

The function ignores the original values of tm.....wday and tm.....yday, and
does not restrict the other values in the structure. After successful com­
pletion, tm.....wday and tm.....yday are set appropriately, and the other com­
ponents in the structure have values within the restricted ranges. The final
value of tm-mday is not sent until tm.....mon and tm.....year are determined.

The return value is encoded as a value of type time-to If the calendar time
cannot be represented, the function returns the value -1.

This example determines the day of the week that July 4, 2001, falls on.

#include <time.h>
static const char *const wday[] = (

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday" };

struct tm time-str;

time-str.tm.....year
time_str.tm-mon
time_str.tm-mday
time-str.tm.....hour
time_str.tm-min
time-str.tm.....sec
time-str.tm.....isdst

mktime(&time-str) ;

2001 - 1900;
7 ;
4 ;
0;
0;
1;
1;

printf ("result is %s\n", wday[time-str.tm.....wday])i

/* After calling this function, time-str.tm.....wday
contains the day of the week for July 4, 2001 */

For more information about the functions and types that the time. h
header declares, see Section 6.1 .10 on page 6 -7.

Signed Integer and Fraction

Syntax #include <math.h>

double modf(va1ue, iptr)
double value;
int *iptr;

Defined in modf. obj in rts .lib

modf

Description The modf function breaks a value into a signed integer and a signed frac­
tion. Each of the two parts has the same sign as the input argument. The
function returns the fractional part of value and stores the integer as a
double at the object pointed to by iptr.

EX8lnple double value, ipart, fpart;

value -3.1415;

fpart = modf(va1ue, &ipart);

/* After execution, ipart contains -3.0, */
/* and fpart contains -0.1415. */

6-57

movmem

Syntax

Defined in

Description

6-58

Move Memory

#include <stdlib.h>

char *movmem(src,dest,count)
char *src; /* source address ~/
char *dest; /* destination address */
char count; /* number of bytes to move */

movmem. c in rts. src

The movmem function moves count bytes of memory from the object that
src points to into the object that dest points to. The source and desti­
nation areas can be overlapping.

Raise to· a Power

Syntax #include <math.h>

double pow(x , y)
double X, Yi /* Raise x to power Y */

Defined in pow. obj in rts .lib

pow

Description The pow function returns x raised to the power y. A domain error occurs
if x=o and ySO, or if x is negative and y is not an integer. A range error
may occur.

Example double x I y I Z;

x 2.0;
Y 3.0;
Z = pow(x , y); /* return value 8.0 */

6-59

qsort

Syntax #include <stdlib.h>

void qsort (base, nmemb, size, compar)
void *base;
size-t nmemb, size;
int (*compar)();

Array Sort

Defined in qsort. c in rts. src

Description The qsort function sorts an array of nmemb members. Argument base
points to the first member of the unsorted array; argument size specifies
the size of each member.

6-60

This function sorts the array in ascending order.

Argument compar points to a function that compares key to the array el­
ements. The comparison function should be declared as:

int cmp{ptrl, ptr2)
void *ptrl, *ptr2;

The cmp function compares the objects that ptrl and ptr2 point to, and
returns one of the following values:

< 0 if *ptrl is less than *ptr2.
o if *ptrl is equal to *ptr2.

> 0 if *ptrl is greater than *ptr2.

Random Integer rand/srand

Syntax #include <stdlib.h>

int rand()

void srand(seed)
unsigned int seed;

Defined in rand. c in rts. src

Description Two functions work together to provide pseudo-random sequence gener­
ation:

• The rand function returns pseudo-random integers in the range
Q-RAN D-MAX.

• The srand function sets the value of seed so that a subsequent call
to the rand function produces a new sequence of pseudo~random
numbers. The srand function does not return a value.

If you call rand before calling srand, rand generates the same sequence it
would produce if you first called srand with a seed value of 1. If you call
srand with the same seed value, rand generates the same sequence of
numbers.

6-61

realloc

Syntax #include <stdlib.h>

void *realloc(ptr, size)

Change Heap Size

void *ptr; /* pointer to object to change */
size-t size; /* new size (in bytes) of packet */

Defined in memory. c in rts. src

Description The realloc function changes the size of the allocated memory pointed to
by ptr, to the size specified in bytes by size. The contents of the memory
space (up to the lesser of the old and new sizes) is not changed.

6-62

• If ptr is 0, then realloc behaves like malloc.

• If ptr points to unallocated space, the function takes no action and
returns.

• If the space cannot be allocated, the original memory space is not
changed and realloc returns O.

• If size=O and ptr is not null, then realloc frees the space that ptr
points to.

If, in oreler to allocate more space, the entire object must be moved, realloc
returns a pointer to the new space. Any memory freed by this operation is
deallocated. If an error occurs, the function returns a null pointer (0).

The memory that realloc uses is in a special memory pool or heap. A C
module called memory. c reserves memory for the heap in the .bss section.
The constant MEMORY-SIZE defines the size of the heap as 1000 bytes. If
necessary, you can change the size of the heap by change the value of
MEMORY_SIZE and reassembling memory. c. For more information, see
Section 5.1.3, Dynamic Memory Allocation, on page 5-4.

Sine

Syntax

Defined in

Description

Example

#include <math.h>

double sin (x)
double X;

sin.obj in rts. lib

sin

The sin function returns the sine of a floating-point number, x. X is an
angle expressed in radians. An argument with a large magnitude may pro­
duce a result with little or no significance.

double radian, sval; /* sval is returned by sin */

radian = 3.1415927;
sva1 = sin(radian); /* -1 is returned by sin */

6-63

sinh

Syntax #include <math.h>

double sinh(x)
double X;

Defined in sinh.obj in rts .lib

Hyperbolic Sine

Description The sinh function returns the hyperbolic sine of a floating-point number,
x. A range error occurs if the magnitude of the argument is too large.

Example double X, y;

X 0.0;
y = sinh(x); /* return value 0.0 */

6-64

Square Root

Syntax #include <math.h>

double sqrt(x)
double X;

Defined in sqrt. obj in rts .lib

sqrt

Description The sqrt function returns the nonnegative square root of a real number x.
A domain error occurs if the argument is negative.

Example double X, y;

X 100.0;
Y = sqrt(x); /* return value 10.0 */

6-65

strcat

Syntax #include <string.h>

char *strcat(s1, s2)
char *s1, *s2;

Defined in strcat. c in rts. src

Concatenate Strings

Description The strcat function appends a copy of s2 to (including a terminating null
character) to the end of s1. The initial character of s2 overwrites the null
character that originally terminated s 1. The function returns the value of
s1.

6-66

Find First Occurrence of Character

Syntax #include <string.h>

char *strchr(s, c)
char *s;
char c;

Defined in strchr . c in rts. src

strchr

Description The strchr function finds the first occurrence of c (which is first converted
to a char) in s. If strchr finds the character, it returns a pointer to the
character; otherwise, it returns a null pointer (0).

6-67

strcmp/strcoll

Syntax #include <string.h>

int strcoll(sl, s2)
char *s1, *s2;

int strcmp(sl, s2)
char *s1, *s2;

Defined in strcmp. c in rts. src

String Compare

Description The strcmp and strcoll functions compare s2 with s 1. The functions are
equivalent; both functions are supported to provide compatibility with ANSI
C.

The functions return one of the following values:

< 0 if *s1 is less than *s2.
o if *s1 is equal to *s2.

> 0 if *s1 is greater than *s2.

6-68

String Copy

Syntax #include (string.h>

char *strcpy(sl, s2)
char *s1, *s2;

Defined in strcpy. c in rts. src

strcpy

Description The strcpy function copies s2 (including a terminating null character) into
s1. If you attempt to copy strings that overlap, the function's behavior is
undefined. The function returns a pointer to the destination string.

6-69

strcspn

Syntax

Find Number of Unmatching Characters

#include <string.h>

size-t strcspn(sl, s2}
char *sl, *s2;

Defined in strcspn. c in rts. src

Description The strcspn function returns the length of the initial segment of sl which
is entirely made up of characters that are not in s2. If the first character in
sl is in s2, the function returns O.

6-70

String Errors strerror

Syntax

Defined in

Description

#include <string.h)

char *strerror(errnum)
int errnum;

strerror. c in rts. src

The strerror function returns the string "function error". This function
is supplied to provide ANSI compatibility.

6-71

strftime

Syntax

Format Time

#include <time.h>

size_t *strftime(s, maxsize, format, timeptr)
char *s, *format;
size-t maxsize;
struct tm *timeptr;

Defined in strftime. c in rts. src

Description The strftime function formats a time (pointed to by timeptr) according
to a format string, and returns the formatted time in the string s. Up to
maxsize characters can be written to s. The format parameter is a string
of characters that tells the strftime function how to format the time; the
following list shows the valid characters and describes what each character
expands to.

6-72

Character is replaced by ...
%a the locale's abbreviated weekday name
%A the locale's full weekday name
%b the locale's abbreviated month name
%8 the locale's full month name
%c the locale's appropriate date and time representation
%d the day of the month as a decimal number (0-31)
%H the hour (24- hour clock) as a decimal number (00-23)
%1 the hour (12-hour clock) as a decimal number (01-12)
%j the day of the year as a decimal number (001-366)
%m the month as a decimal number (01-12)
%M the minute as a decimal number (00-59)
%p the locale's equivalent of either AM or PM
%5 the second as a decimal number (00-50)
%U the week number of the year (Sunday is the first day of the week)

%x
%X
%y
%y
%Z
%%

as a decimal number (00-52)
the locale's appropriate date representation
the locale's appropriate time representation
the year without century as a decimal number (00-99)
the year with century as a decimal number
the time zone name, or by no characters if no time zone exists
%

For more information about the functions and types that the time. h
header declares, see Section 6.1.10 on page 6-7.

Find String Length

Syntax #include <string.h>

size-t strlenCs)
char *s;

Defined in strlen. c in rts. src

strlen

Description The strlen function returns the length of s. In C, a character string is ter­
minated by the first byte with a value of 0 (a null character). The returned
result does not include the terminating null character.

6-73

strncat

Syntax #include <string.h>

char *strncat(51, 52, n)
char *sl, *s2;
size-t n;

Defined in strncat. c in rts. src

Concatenate Strings

Description The strncat function appends up to n characters of s2 (including a termi­
nating null character) to the end of 51. The initial character of 52 over­
writes the null character that originally terminated 51; strncat appends a null
character to result. The function returns the value of s1.

6-74

Compare Strings strncmp

Syntax

Defined in

Description

#include <string.h>

int strncmp(sl, s2, n)
char *s1, *s2;
size-t nj

strncmp. c in rts. src

The strncmp function compares up to n characters of s2 with s1. The
function returns one of the following values:

< 0 if *s1 is less than *s2.
o if *s1 is equal to *s2.

> 0 if *s1 is greater than *s2.

6-75

strncpy

Syntax #include <string.h)

char *strncPY(51, 52, n}
char *sl, *s2;
size-t n;

Defined in strncpy. c in rts. src

String Copy

Description The strncpy function copies up to n characters from s2 into s1. If s2 is n
characters long or longer, the null character that terminates s2 is not co­
pied. If you attempt to copy characters from overlapping strings, the func­
tion's behavior is undefined. If s2 is shorter than n characters, strncpy
appends null characters to s 1 so that s 1 contains n characters. The func­
tion returns the value of s 1.

, 6-76

Find Any Matching Character

Syntax #inc1ude <string.h>

char *strpbrk(sl, s2)
char *sl, *s2;

Defined in strpbrk. c in rts. src

strpbrk

Description The strpbrk function locates the first occurrence in s 1 of any character in
s2. If strpbrk finds a matching character, it returns a pointer to that char­
acter; otherwise, it returns a null pointer (0).

6-77

strrchr

Syntax

Find Last Occurrence of Character

#include <string.h>

char *strrehrCs ,e)
char *s;
int c;

Defined in strrchr. c in rts. src

Description The strrchr function finds the last occurrence of c in s. If strrchr finds the
character, it returns a pointer to the character; otherwise, it returns a null
pointer (0).

6-78

Find Number of Matching Characters

Syntax #include <string.h)

size-t *strspn(sl, s2)
int *sl, *s2;

Defined in strspn. c in rts. src

strspn

Description The strspn function returns the length of the initial segment of s 1 which
is entirely made up of characters in s2. If the first character of s1 is not in
s2, the strspn function returns O.

6-79

strstr

Syntax #include <string.h>

char *strstrCsl, s2)
char *sl, *s2;

Defined in strstr. c in rts. src

Find Matching String

Description The strstr function finds the first occurrence of s2 in s 1 (excluding the ter­
minating null character). If strstr finds the matching string, it returns a
pointer to the located string; if it doesn't find the string, it returns a null
pointer. If s2 points to a string with length 0, then strstr returns s1.

6-80

String to Number strtod/strtol/strtoul

Syntax #include <stdlib.h>

double strtod(nptr, endptr)
char *nptr;
char **endptr;

long int strtol(nptr, endptr, base)
char *nptr;

. char * * endptr ;
int base;

unsigned long int strtoul(nptr, endptr, base)
char *nptr;
char **endptr;
int base;

Defined in strtod. c in rts. src
strtol. c in rts. src
strtoul. c in rts. src

Description Three functions convert ASCII strings to numeric values. For each function,
argument nptr points to the original string. Argument endptr points to a
pointer; the functions set this pointer to point to the first character after the
converted string. The functions that convert to integers also have a third
argument, base.

• The strtod function converts a string to a floating-point value. The
string must have the following format:

[space] [sign] digits [.digits] [elE [sign] integer]

The function returns the converted string; if the original string is
empty or does not have the correct format, the function returns a O.
If the converted string would cause an overflow, the function returns
±HUGE-VAL; if the converted string woul.d cause an underflow, the
function returns O. If the converted string causes an overflow or an
underflow, errno is set to the value of ERANGE.

• The strtol function converts a string to a long integer. The string
must have the following format:

[space] [sign] digits [.digits] [elE [sign] integer]

• The strtoul function converts a string to a long integer. The string
must be specified in the following format:

[space] [sign] digits [.digits] [elE [sign] integer]

The space is indicated by a spacebar, horizontal or vertical tab, carriage re­
turn, form feed, or newline. Following the space is an optional sign, and
then digits that represent the integer portion of the number. The fractional
part of the number follows, then the exponent, including an optional sign.

The first unrecognized character terminates the string. The pointer that
endptr points to is set to point to this character.

6-81

strtok

Syntax #include <string.h)

char *strtok(sl, s2}
char *sl, *s2;

Defined in strtok. c in rts. src

Break String into Tokens

Description Successive calls to the strtok function break s 1 into a series of tokens, each
delimited by a character from s2. Each call returns a pointer to the next
token.

6-82

Tangent

Syntax #include <math.h>

double tan(x)
double X;

Defined in tan. obj in rts .lib

tan

Description The tan function returns the tangent of a floating-point number, x. X is
an angle expressed in radians. An argument with a large magnitude may
produce a result with little or no significance.

Example double x, y;

X 3.1415927/4.0;
y = tan(x); /* return value 1.0 */

6-83

tanh

Syntax #include <math.h>

double tanh(x)
double X;

Defined in tanh. obj in rts .lib

Hyperbolic Tangent

Description The tanh function returns the hyperbolic tangent of a floating-point num­
ber, x.

Example double X, y;

x 0.0;
y = tanh(x); /* return value 0.0 */

6-84

Time

Syntax #include <time.h>

time_t time(timer)
time-t *timerj

time

Defined in time. c in rts. src

Description The time function determines the current calendar time, represented in sec­
onds. If the calendar time is not available, the function returns -1. If timer
is not a null pointer, the function also assigns the return value to the object
that timer points to.

For more information about the functions and types that the time. h
header declares, see Section 6.1.10 on page 6-7.

Note:

The time function is target-system specific, so you must write your own
time function.

6-85

toascii

Syntax #include <ctype.h>

int toascii(c)
char c;

Defined in toascii. c in rts. src

Convert to ASCII

Description The toascii function ensures that c is a valid ASCII character by masking the
lower seven bits. There is also a toascii macro.

6-86

Convert Case tolower/toupper

Syntax

Defined in

Description

#include <ctype.h>

int to!ower(c)
char Ci

int toupper(c)
char Ci

tolower. c in rts. src
toupper. c in rts. src

Two functions convert the case of a single alphabetic character, c, to upper
or lower case:

• The tolower function converts an uppercase argument to lowercase.
If c is already in lowercase, to lower returns it unchanged.

• The toupper function converts a lowercase argument to uppercase.
If c is already in uppercase, toupper returns it unchanged.

The functions have macro equivalents named -tolower and -toupper.

6-87

va-a rg Iva-end /va-sta rt
Va riable-Argu ment

Macros/Function

Syntax

Description

Example

6-88

#include <stdarg.h)

type va-arg(ap, type)
void va-end(ap)
void va-start (ap, parmN)

va-list *ap

Some functions can be called with a varying number of arguments that have
varying types. Such a function, called a variable-argument function, can
use the following macros to step through its argument list at run time. The
ap parameter points to an argument in the variable-argument list.

• The va-start macro initializes ap to point to the first argument in an
argument list for the variable-argument function. The parmN param­
eter points to the rightmost parameter in the fixed, declared list.

• The va-arg macro returns the value of the next argument 'in a call to
a variable-argument function. Each time you call va-arg, it modifies
ap so that successive arguments for the variable-argument function
can be returned by successive calls to va-arg (va-arg modifies ap to
point to the next argument in the list). The type parameter is a type
name; it is the type of the current argument in the list.

• The va-end macro resets the stack environment after va-start and
va-arg are used.

Note that you must call va-start to initialize ap before calling va-arg or
va-end.

int printf(fmt) /* Has 1 fixed argument and */
char *fmt /* additional variable arguments */

int i;
char *s;
long 1;

va-list ap;

va_start(ap, fmt); /* initialize */

/* Get next argument,
i va-arg(ap, int) ;

/* Get next argument,
s = va-arg (ap, char *) ;

/* Get next argument,
1 va-arg (ap, long) ;

va-end(ap) /* Reset */

an integer */

a string */

a long */

Appendix A

Error Messages

Compiler error messages are displayed in the following format, which shows
the line number in which the error occurs and the text of the message:

"name.c", line n : error message

These types of errors are not fatal.

The errors listed below cause the compiler to abort immediately.

• > > cannot allocate sufficient memory

The compiler requires a minimum of 512K bytes of memory to run; this
message indicates that this amount is not available. Supply more dy­
namic RAM.

8 » can't open "filename" as source

The compiler cannot find the file name as entered. Check for spelling
errors and check to see that the named file actually exists.

• > > can't open "filename" as intermediate file

The compiler cannot create the output file. This is usually caused byei­
ther an error in the syntax of the filename or a full disk.

• > > illegal extension "ext" on output file

The intermediate file cannot have a ".c" extension.

• » fatal errors found: no intermediate file produced

This message is printed after an unsuccessful compilation. Correct the
errors (other messages will indicate particular errors) and try compilation
again.

• » cannot recover from earlier errors: pborting

An error has occurred that prevents the compiler from continuing.

A-1

Appendix A - Error Messagess

A-2

Appendix B

C Preprocessor Directives

The C preprocessor provided with this package is standard and follows Ker­
nighan and Ritchie exactly. This appendix summarizes the directives that the
preprocessor supports. Generally, the directives are organized alphabetically,
one directive per page; however, related directives (such as #if/#else) are
presented together on one page. Here's an alphabetical table of contents for
the preprocessor directives reference:

Directive Page
#define ... 8-2
#else ... 8-3
#endif ... 8-3
#if ... 8-3
#ifdef .. 8-3
#ifndef .. 8-3
#include ... ~ ... 8-5
#Iine ... 8-6
#undef ... 8-2

B-1

#define/#undef Define/Undefine Constant Directives

Syntax #define name[(arg, ... ,arg)] token-string

#undef name

Description The preprocessor supports two directives for defining and undefining con­
stants:

Example

B-2

• The #define directive assigns a string to a constant. Subsequent
occurrences of name are replaced by token-string. The name can be
immediately followed by an argument list; the arguments are sepa­
rated by commas, and the list is enclosed in parentheses. Each oc­
currence of an argument is replaced by the corresponding set of
tokens from the comma-separated string.

When a macro with arguments is expanded, the arguments are placed
into the expanded token-string unchanged. After the entire token­
string is expanded, the preprocessor scans again for names to expand
at the beginning of the newly created token-string, which allows for
nested macros.

Note that there is no space between name and the open parenthesis
at the beginning of the argument list. A trailing semicolon is not re­
quired; if used, it is treated as part of the token-string.

• The #undef directive undefines the constant name; that is, it causes
the preprocessor to forget the definition of name.

The following example defines the constant f:

#define f(a,b,c) 3*a+b-c

The following line of code uses the definition of f:

f(27,begin,minus)

This line is expanded to:

3*27+begin-minus

To undefine f, enter:

#undef f

Conditional Processing
Directives #if /#ifdef /#ifndef /#else/#end if

Syntax #if constant-expression
code to compile if condition is true

[#else
code to compile if condition is false]

#endif

#ifdef name
code to compile if name is defined

[#else
code to compile if name is not defined]

#endif

#ifndef name
code to compile if name is not defined

[#else
code to compile if name is defined]

#endif

Description The C preprocessor supports several conditional processing directives:

• Three directives can begin a conditional block:

The #if directive tests an expression. The code following an #if
directive (up to an #else or an #endif) is compiled if the con­
stant-expression evaluates to a nonzero value. All binary non­
assignment C operators, the 7: operator, the unary -, I, and %
operators are legal in constant-expression. The precedence of
the operators is the same as in the definition of the C language.
The preprocessor also supports a unary operator named de­
fined, which can be used in constant-expression in one of two
forms:

1) defined«name» or
2) def ined <name>

This allows the the utility of #ifdef and #ifndef in an #if directive.
Only these operators, integer constants, and names which are
known by the preprocessor should be used in constant­
expression. In particular, the sizeof operator should not be used.

The #ifdef directive tests to see if name is a defined constant.
The code following an #ifdef directive (up to an #else or an
#endif) is compiled if name is defined (by the #define directive)
and it has not been undefined by the #undef directive.

The #ifndef directive tests to see if name is not a defined con­
stant. The code following an #ifndef directive (up to an #else:
or an #endif) is compiled if name is not defined (by the #define
directive) or if it was undefined by the #undef directive.

8-3

#if /#ifdef /#ifndef /#else/#end if
Conditional Processing

Directives

8-4

• The #else directive. begins an alternate block of code that is compiled
if:

The condition tested by #if is false.
The name tested by #ifdef is not defined.
The name tested by #ifndef is defined.

Note that the #else portion of a conditional block is optional; if the
#if, #ifdef, or#ifndef test is not successful, then the preprocessor
continues with the code following the #endif.

• The #endif directive ends a conditional block. Each #if, #ifdef, and
#ifndef directive must have a matching #endif. Conditional compila­
tion sequences can be nested.

Include Code from Another File Directive #include

Syntax #include "filename"

or

#include <filename>

Description The #include directive tells the preprocessor to read source statements from
another file. The preprocessor includes (at the point in the code where
#include is encountered) the contents of the filename, which are then pro­
cessed. You can enclose the filename in double quotes or in angle brackets.

The filename can be a complete path name or a filename with no path in­
formation.

CD If you provide path information for filename, the preprocessor uses
that path and does not look for the file in any other directories.

o If you do not provide path information and you enclose the filename
in double quotes, the preprocessor searches for the file in:

1) The directory that contains the current source file. (The current
source file refers to the file that is being processed when the
preprocessor encounters the #include directive.)

2) Any directories named with the -i preprocessor option.
3) Any directories named with the C-DIR environment variable.

(i) If you do not provide path information and you enclose the filename
in angle brackets, the preprocessor searches for the file in:

1) Any directories named with the -i preprocessor option.
2) Any directories named with the C-DIR environment variable.

Note:

If vou enclose the filename in angle brackets, the preprocessor d'1es not
search tor the file in the current direc'

For more information about the -i option and the environment variable, read
Section 3.1.3 on page 3-4.

8-5

#Iine . Line Control Directive

Syntax #line integer-constant ["filename"]

Description The #Iine directive generates line control information for the next pass of
the compiler. The integer-constant is the line number of the next line, and
the filename is the file where that line exists. If you do not provide a filen­
ame, the current filename (specified by the last #line directive) is un­
changed.

This directive effectively sets the __ LINE __ and __ FILE __ symbols.

B-6

A

-a (code generator option) 3-9
abort 6-16
abort macro 6-16
abs function 6-17
acos function 6-18
alternate directories 3-4
archiver 1 -3, 3-16
array alignment 5-5
ASCII conversion functions 6-25
asctime macro 6-19
asin macro 6-20
asm 4-2
assembler 1 -3, 3-11, 3-12
assert macro 6-21, 6-2
assert.h header 6-2, 6-9
atan function 6-22
atan2 function 6-23
atexit function 6-24
atof 6-25
atof function 6-25
atoi 6-25
atoi function 6-25
atol 6-25
atol function 6-25
autoinitialization 3-13-3-16

B

RAM model 3-13-3-16
ROM model 3-13-3-16

batch files 3-11, 3-12
boot.obj 3-13, 3-15
broken-down time 6-8
bsearch function 6-26

c
-c (preprocessor option) 3-2
C compiler 1 -3
-c option (linker) 3-13-3-16
calendar time 6-8
calloc function 6-27

Index

C-DIR (environment variable) 3-4, 3-6
ceil function 6-28
character constants 4-2
character conversions 4-6
character typing/conversion

functions 6-3, 6-9
isalnum 6-43
isalpha 6-43
isascii 6-43
iscntrl 6-43
isdigit 6-43
isgraph 6-43
islower 6-43
isprint 6-43
ispunct 6-43
isspace 6-43
isupper 6-43
isxdigit 6-43

.cinit section 3-15
-e-intOO 3-13, 3-15
CLK-TCK macro 6-29, 6-8
clock function 6-29
clock-t type 6-8
code generator 3-8

gspcg 3-8
invocation 3-8
options 3-9

-a 3-9
-0 3-9
-q 3-9
-r 3-9
-s 3-9
-v 3-9
-x 3-9
-z 3-9

Index-1

compiler operation 3-1 -3-16
constants

character 4-2
enumeration 4-2
floating-point 4-2
integer 4-2

cos function 6-30
cosh function 6-31
-cr option (linker) 3-13-3-16
ctime function 6-32
ctype.h header 6-3, 6-9

D

-d (preprocessor option) 3-2
daylight savings time 6-8
#define directive 8-2
diagnostic messages 6-2

assert 6-21
NDE8UG 6-21

difftime function 6-33
div function 6-34
div-t type 6-6

E

EDOM macro 6-5
#else directive 8-3
#endif directive 8-3
entry points I

-e-intOO 3-13, 3-15
for C code 3-13,3-15
reset vector 3-13

enum 4-2
enumeration constants 4-2
environment variable 3-4
EPROM programmers 1-3
ERANGE macro 6-5
error messages A-1
exit function 6-35

Index-2

exp function 6-36
explicit pointer conversions 4-7

F

fabs function 6-37
fatal errors A-1
field manipulation 5-5
float.h header 6-3, 6-4
floating-point constants 4-2
floating-point conventions 5-17
floating-point conversions 4-6
floating-point math functions 6-5, 6-9

acos 6-18
asin 6-20
atan 6-22
atan2 6-23
ceil 6-28
cos 6-30
cosh 6-31
exp 6-36
fabs 6-37
floor 6-38
fmod 6-39
frexp 6-41
Idexp 6-44
log 6-46
log10 6-47
pow 6-59
sin 6-63
sinh 6-64
sqrt 6-65
tan 6-83
tanh 6-84

floor function 6-38
fmod function 6-39
font library 1 -4
FP 5-4
frame pointer 5-4
free function 6-40
frexp function 6-41
function call conventions 5-8

G

general utility functions 6-6
abs 6-17 .
bsearch 6-26
div 6-34
labs 6-17
Idiv 6-34
qsort 6-60
rand 6-61
srand 6-61

global variables 4-10
gmtime function 6-42
gregorian time 6-8
gspcc 3-6
gspcg 3-8
gspcpp 3-2

H

hardware requirements (PC systems) 2-2
header files 6-2-6-8
HUGE-VAL macro 6-5

-i (preprocessor option) 3-3
-i option (preprocessor) 3-4
identifiers 4-2
#if directive B-3
#ifdef directive B-3
#ifndef directive B-3
#include 3-4
#include directive B-5
include files 3-4
inline assembly construct (asm) 4-11
installation 2-1

Macintosh/MPW 2-5
PCs 2-2
System V 2-4

Ultrix 2-4
VMS 2-3

instruction set 1 -4
integer constants 4-2
integer conversions 4-6
integer expression analysis 5-17
integer return values 5-6
interfacing C with assembly

language 5-12
assembly language modules 5-12
defining variables in assembly lan­

guage 5-14
interrupt handling 5-16
invoking ...

batch files 3-12
invoking the ...

assembler 3-11
batch files 3-11
code generator 3-8
linker 3-13
parser 3-6
preprocessor

isalnum function
isalpha function
isascii function
iscntrl function
isdigit function
isgraph function
islower function
isprint function
ispunct function
isspace function
isupper function
isxdigit function

K

3-2
6-43

6-43
6-43
6-43
6-43

6-43
6-43

6-43
6-43
6-43
6-43
6-43

Kernighan and Ritchie
preprocessor 3-2
support tools 1 -1
The C Programming Language

1-4
keywords 4-2

1 -1,

Index-3

L

labs function 6-17
Idexp function 6-44
Idiv function 6-34
Idiv-t type 6-6
limits

floating-point types 6-3, 6-4
integer types 6-3

limits.h header 6-3
#Iine directive 8-6
linker 1 -3, 3-13-3-16
linker command file 3-14
linking C code 3-13-3-16
listing files (assembler) ;3-12
local time 6-8
localtime function r 45
log function 6-46
log10 function 6-47
Itoa function 6-48

M

Macintosh/MPW 2-5
malloc function 6-49
math.h header 6-5, 6-9
memchr function 6-50
memcmp function 6-51
memcpy function 6-52
memmove function 6-53
memory management functions 6-27

calloc 6-27
free 6-40
malloc 6-49
minit 6-55
movmem 6-58
realloc 6-62

memory model 5-2
memset function 6-54
minit function 6-55
mktime function 6-56
modf 6-57
modf function 6-57
movmem function 6-58

Index-4

N

NDE8UG macro 6-21,6-2
nonlocal-jump functions 6-5
NULL macro 6-6

o
-0 (code generator option) 3-9
object alignment 4-6
object format converter 1 -3
object libraries 3-13
offsetof macro 6-6
operation of the compiler 3-1-3-16

p

-p (preprocessor option) 3-3
pa~er (gspcc) 3-6

invocation 3-6
options 3-7

-q 3-7
-z 3-7

PC installation 2-2
pow function 6-59
predefined names 3-3
preprocessor (gspcpp) 3-2

invocation 3-2
options 3-2

-c 3-2
-d 3-2
-i 3-3
-p 3-3
-q 3-3

preprocessor directives 8-1-8-6
directives

primary expressions 4-7
program stack 5-3
program termination functions 6-16

atexit 6-24
exit 6-35

ptrdiff-t type 6-6

Q

-q (code generator option) 3-9
-q (parser option) 3-7
-q (preprocessor option) 3-3
qsort function 6-60

R

-r (code generator option) 3-9
RAM model of

autoinitialization 3-13-3-16
rand function 6-61
realloc function 6-62
register conventions 5-6
register variables 4-8, 5-7
reserved registers 5-6
reset vector 3 -1 3
ROM model of

autoinitialization 3-13-3-16
rts.lib 3-13, 3-15, 6-1
rts.src 6-1
runtime environment 5-1-5-27

interfacing C with assembly
language 5-12

assembly language
modules 5-12

defining variables in assembly lan-
guage 5-14

runtime initialization 3-13
runtime support 3-13
runtime-support functions 6-1 -6-88

5

-s (code generator option) 3-9
SOB 1-4
setjmp.h header 6-5
sin function 6-63
sinh function 6-64
size-t type 6-6
software development board 1 -4
software installation 2-1
SP 5-3
sqrt function 6-65

srand function 6-61
stacks 5-3
static variables
stdarg.h header
stddef.h header
stdlib.h header
STK 5-3

4-10
6-6,6-10
6-6

6-6, 6-11

strcat function 6-66
strchr function 6-67
strcmp function 6-68
strcoll function 6-68
strcpy function 6-69
strcspn function 6-70
strerror function 6-71
strftime function 6-72
string functions 6-7

memchr 6-50
memcmp 6-51
memcpy 6-52
memmove 6-53
memset 6-54
strcat 6-66
strchr 6-67
strcmp 6-68
strcoll 6-68
strcpy 6-69
strcspn 6-70
strerror 6-71
strlen 6-73
strncat 6-74
strncmp 6-75
strncpy 6-76
strpbrk 6-77
strrchr 6-78
strspn 6-79
strstr 6-80
strtod 6-81
strtok 6-82
strtol 6-81
strtoul 6-81

string.h header 6-7,6-12,6-13
strlen function 6-73
strncat function 6-74
strncmp function 6-75
strncpy function 6-76
strpbrk function 6-77
strrchr function 6-78
strspn function 6-79
strstr function 6-80
strtod function 6-81
strtok function 6-82

Index-5

strtol function 6-81
strtoul function 6-81
structure packing 5-5
structures 4-7
style and symbol conventions 1 -5
system initialization 5-22
system stack 5-3
System V installation 2-4

T

tan function 6-83
tanh function 6-84
time function 6-85
time functions 6-8

asctime 6-19
CLK-TCK 6-29
clock 6-29
ctime 6-32
difftime 6-33
gmtime 6-42
localtime 6-45
mktime 6-56
strftime 6-72
time 6-85

time.h header 6-8, 6-13
time-t type 6-8
tm structure 6-8
TMS34010 C language 4-1
toascii macro 6-86

toascii 6-86
to lower function 6-87
toupper function 6-87

tolower 6-87
toupper 6-87

u
Ultrix installation 2-4
#undef directive 8-2
unions 4-7

Index-6

v
-v (code generator option) 3-9
va-arg macro 6-88
va-end function 6-88
va-list type 6-6
variable-argument functions 6-6, 6-88

directives
#define B-2
#else 8-3
#endif 8-3
#if 8-3
#ifdef 8-3
#ifndef B-3
#include B-5
#Iine 8-6
#undef B-2

va-arg 6-88
va-end 6-88
va-start 6-88

va-start macro 6-88
VAX installation 2-3
void 4-2

x
-x (code generator option) 3-9

z
-z (code generator option) 3-9
-z (parser option) 3-7

August 1988 Reader Response Card

TMS34010 C Compiler Reference Guide

We want to provide you with the best documentation possible - please help us by answering these
questions and returning this card.

Is this manual adequate in helping you to use the TMS3401 0 C compiler for your application?

Were you familiar with the C programming language before you used the TMS3401 0 C compiler?

Are the references to other C-Ianguage documentation (Le., Kernighan and Ritchie) adequate?

What kinds of examples would you like us to include in this manual?

How would you change this manual to make it more accurate or easier to use?

What information would you add to or delete from the Reference Card?

Additional comments:

Thank you for taking the time to fill out this card.

Your Name:

Company and Application:

Address:

Would you like a reply?

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 6189 HOUSTON, TEXAS

POSTAGE WILL BE PAID BY ADDRESSEE

Product Documentation Services Manager
Texas Instruments Incorporated
P.O. Box 1443, MIS 640
Houston, Texas 77251-9879

11 ••• 11 ••• 1 •• 1.1.1.1"11111.1 •• 1 •• 1.1 ••• 11.1 ••• 1.1.1

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Printed in U.S.A., August 1988
1604903·9704

"'!1
TEXAS

INSTRUMENTS

SPVU005A

