
TMS37OC16 Central Processing Unit,
System, and Instruction Set
PRISM Module I.ibrary

1994 cMCU370lM Products
,

TMS370C16 Central Processing Unit,
System, and Instruction Set

Reference Guide

PRISM Module Library

March 1994

~TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated fTl) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders, that the
information being relied on is current.

TI warrants performance of its semiconductor products and related software to current
specifications in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices,
or systems. Use of TI product in such applications requires the written approval of the
appropriate TI officer. Certain applications using semiconductor devices may involve potential
risks of personal injury, property damage, or loss of life. In order to minimize these risks,
adequate design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards. Inclusion of TI products in such applications is understood to be
fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described h$rein. Nor does TI warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1994, Texas Instruments Incorporated

Overview

Preface

Read This First

Texas Instruments uses PRISM methodology, with its modular fabrication
processes, to integrate analog and digital functions on a single chip. The
process technologies currently include VLSI CMOS, nonvolatile memories
(EPROM/EEPROM), lateral DMOS, high-voltage analog CMOS, and
high-density analog CMOS

The 16-bit TMS37OC16 CPU is part of the cMCU370 TM family of
microcontroller devices. This manual provides information about the
TMS370C16 CPU architecture, features, operation, and assembly language
instruction set; it also includes helpful information about implementing a
TMS37OC16-based microcontroller design.

Related documentation is listed on page v.

ManualOrganaaUon
o Chapter 1 gives a brief overview of the TMS370C16 microcontroller

device.

o Chapter 2 describes the components and operation of the TMS370C16
CPU architecture, including CPU registers and memory organization.

o Chapter 3 describes the TMS37OC16 system configuration, registers,
device interrupts, and reset.

o Chapter 4 describes the different addressing modes used by the
instruction set.

o Chapter 5 lists and describes the TMS370C16 assembly language
instructions, execution sequence, effects, and examples.

o Appendix A, Glossary, explains and defines terms and abbreviations
used in this manual.

Read This First iii

Style, Symbols and Definitions

Style, Symbols, and Definitions

This document uses the following conventions.
o Abbreviations:

• 'C16: TMS370C16 CPU-based devices
• LSB, MSB: Least significant and most significant bits
• LSbyte, MSbyte: Least and most significant bytes
• Register and bit names: SCR1.7, for example

The register name (located to the left of the period) is an alpha
abbreviation (e.g., SSR = system status register, and SCR1 = system
control register 1). The bit number is to the right of the period (e.g.,
SCR1.7 is bit 7 of register SCR1 as shown in Figure 3-3 on page 3-7).

o Definitions of device and module as used in this manual:

• Device: The cMCU370 microcontroller; includes the TMS370C16
CPU along with all selected modules integrated on a single chip.

• Module: An element that provides a specific function (such as a serial
interface, memory, analog-to-digital conversion, timing, I/O, etc.). A list
of modules is provided in the documentation-title list on page v (in
this preface).

o Program listings and program examples are shown in a special
typeface similar to a typewriter's.

I

Note: Assembler Statements Are Not Case Sensitive

TMS370C16 assembly language statements are not case sensitive. You can
enter them in lowercase, uppercase, or a combination. To emphasize this,
assembly language statements are shown throughout this user's guide in
both uppercase and lowercase.

iv TMS370C16 CPU

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

o TMS37OC8 CPU, System, and Instruction Set Reference Guide

Volume 1 includes the following module reference guides.

• cMCU370 Microcontroller Products Introduction

• Clock Modules Reference Guide

• Watchdog and Real-Time Interrupt Module Reference Guide

• EEPROM/EPROM Modules Reference Guide

• TMS370C8 Timer Modules Reference Guide

• Serial Communications Interface Module Reference Guide

• Serial Peripheral Interface Module Reference Guide

• Analog-to-Digital Converter Module Reference Guide

o PRISM Module Library Reference Set, Volume 2

Volume 2 includes the following module reference guides.

• TMS370C16 Timer Modules Reference Guide

• Voltage Regulator Modules Reference Guide

• Gage Driver Modules Reference Guide

• Power Driver Modules Reference Guide

• Switch Interface Module Reference Guide

• Variable Reluctance Sensor Module Reference Guide

Some books on this list will be available at a later date.

Uterature
Number

SPNU042

SPNU032

Read This First v

If You Need Assistance . ..

If You Need Assistance • ••

" you want to •••

Ask questions about product
operation, or report suspected
problems

Request more information about
Texas Instruments products

Order Texas Instruments
documentation

Bulletin board number

Report mistakes in this document
or any other TI documentation

Information About Cautions

Do this •••

Call the TI microcontroller hotline:
(713) 274-2370
FAX: (713) 274-4203

Write to:
Texas Instruments Incorporated
Market Communications Manager, MS 6101
P.O. Box 1443
Houston, Texas 77251-1443

Call the TI Uterature Response Center:
(800) 477-8924

(713) 274-3700

Send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

or call the TI microcontroller hotline (phone
number at top of this table)

The information in a caution is provided for your protection. Please read each
caution carefully.

Trademarks

cMCU370 is a registered trademark of Texas Instruments Incorporated.

vi TMS37OC16 CPU

Contents

1 Introduction. • • . • . . • . • • . . . • .• 1·1
1.1 TMS370C16 CPU - Device-Specific Operation 1-2
1.2 CPU, System, and Instruction Set Features 1-3
1.3 TMS370C16 Control Registers ... 1-4

2 Architecture . • • • • . . • • . • . • . . • • • . . • 2·1
2.1 Programmer's Model .. 2-2
2.2 CPU Register File (RO - R15) .. 2-4

2.2.1 Frame Pointer, FP (RO) .. 2-5
2.2.2 Implied Register, 1M (R1) ... 2-5
2.2.3 Stack Pointer, SP (R13) .. 2-6
2.2.4 Status Register, ST (R14) .. 2-6
2.2.5 Zero Register, ZR (R15) ... 2-7

2.3 Program Counter (PC) and Address Bus. .. 2-8
2.4 Instruction Organization .. 2-10
2.5 System Stack ... 2-11

2.5.1 Stack Operation During Interrupts 2-12
2.5.2 Stack Use with a Call ... " 2-12

2.6 Data Organization and Memory Mapping 2-14

3 TMS370C16 System Configuration •...•..•............................•..•..••..• 3·1
3.1 System Configuration Overview .. 3-2
3.2 System Reset Operation " 3-3
3.3 CLKOUT Pin Function Selection .. 3-6
3.4 Parallel Signature Analysis Operation (CRC Generator) 3-6
3.5 System Configuration Registers .. 3-7

3.5.1 System Control Register 0 (SCRO) .. 3-8
3.5.2 System Control Register 1 (SCR1) .. 3-9
3.5.3 System Reset Status Register (SRSR) 3-10
3.5.4 System Status Register (SSR) 3-12
3.5.5 Parallel Signature Analysis Registers (PSARn) 3-13

3.6 General-Purpose Digital Pin Functions 3-14
3.6.1 Digital Output/Control Registers (OCRn) " 3-16
3.6.2 DigitallnputiStatus Registers (ISRn) 3-16
3.6.3 Digital Port Direction and Port Data Registers (xDIR and xDATA) 3-17

3.7 Interrupt and Exception Handling .. 3-19

Contents vii

Contents

3.7.1 Interrupt/Exception Sources .. 3-19
3.7.2 Vector Table ... 3-21
3.7.3 Reset and Interrupt Operation .. 3-21
3.7.4 Nonmaskable Interrupt (NMI) Processing 3-23
3.7.5 Peripheral Module Interrupt Processing 3-24
3.7.6 Software Exception (TRAPs, etc.) Processing 3-24

3.8 External and Power Module Interrupts .. 3-25
3.8.1 External Interrupt Pins .. 3-25
3.8.2 Power Module Interrupts .. 3-35
3.8.3 Phantom Interrupt Vector 3-37

3.9 Multiple Interrupt Servicing .. 3-38
3.10 TMS370C16 Interrupt Configurability Options 3-39
3.11 Low-Power and Idle Modes ... 3-40

3.11.1 Overview.. 3-40
3.11.2 Low-Power Wakeup Interrupt .. 3-40

4 Addressing Modes .. 4-1
4.1 Mode Summary .. 4-2
4.2 Implied Addressing ... 4-3
4.3 PC-Relative Addressing ... 4-4
4.4 Memory-Direct Addressing .. 4-5
4.5 Immediate Values. .. 4-7
4.6 Register-Direct Addressing .. 4-8
4.7 Register-Indirect Addressing ... 4-9

4.7.1 Register-Indirect Addressing, No Displacement
(Register Contents = Effective Address) 4-10

4.7.2 Register Indirect With Displacement (Offset) 4-13
4.8 Setting the Word Address for CALL, JMP, and FMOV Instructions 4-16

5 Assembly Language Instructions. .. 5-1
5.1 Instruction Set Summary .. 5-2
5.2 Instruction Set Summary Table ... 5-4
5.3 Instruction Descriptions in Alphabetical Order , 5-16

A Glossary .. A-1

viii TMS37OC16 CPU

Figures

2-1 Programmer's Model .. 2-3
2-2 Registers RO to R 15 .. 2-4
2-3 Program Counter to Address Bus Transition 2-8
2~ Relationship Between the PC and Memory Address 2-9
2-5 One-, Two-, and Three-Word Instruction Examples 2-10
2-6 Example of Stack Use to and From a Subroutine .. 2-13
2-7 Bit and Byte Numbering for Instructions, Registers, and Words 2-14
2-8 Differences in Memory and Register Byte Destinations .. 2-16
2-9 Data Organization Examples in Registers and Memory 2-17
2-10 Typical 16-Bit Memory Map .. 2-18
2-11 Location and Names of Control Registers 2-19
3-1 System Block Diagram .. 3-2
3-2 Reset State Diagram - Normal Run Mode .. 3-4
3-3 System Configuration Registers 3-7
3-4 Digital I/O Control and Status Registers 3-15
3-5 Vector Table Organization in Memory 3-20
3-6 Summary of Reset, NMI, Peripheral Interrupts, and Software Exception Operations ... 3-22
3-7 Interrupt-Frame Typical Configurations .. 3-27
3-8 Typical Interrupt Frame ... 3-28
4-1 Implied Addressing .. 4-3
4-2 PC-Relative Addressing .. 4-4
4-3 Memory-Direct Addressing (& Operator) ... 4-5
~ Operand Is Immediate Value (# Operator) .. 4-7
4-5 Register-Direct Addressing .. 4-8
4-6 Register Direct With CALL or JMP Instructions Addresses 128K Bytes 4-8
4-7 Register Indirect (Operand: *Rn) ... 4-10
4-8 Register Indirect With Predecrement (Operand: *-Rn) 4-11
4-9 Register Indirect with Postincrement (Operand: *Rn+) and Predecrement

(Operand: *-Rn) ... 4-12
4-10 Offset + Register in Word Format (Operand: *disp16[Rn]) 4-13
4-11 Offset + Register in Byte Format (Operand: *disp16[Rn]) 4-14
4-12 Offset + Register for JMP and CALL Instructions (Operand: *disp16[Rn]) 4-15
4-13 Using the? Operator to Set the Word Address for a CALL or JMP, Direct Register 4-16
4-14 Use the? Operator to Set the Word Address for an FMOV, Indirect Register , 4-17
5-1 Interpreting the Instruction Execution Detail " 5-16
5-2 B{COND} Instruction Displacements .. 5-29

Contents ix

Contents

5-3 BRBITO and BRBIT1 Instruction Displacements 5-31
5-4 CALL and RTS Instruction Example .. 5-35
5-5 DBNZ Displacement Computation ... , 5-43
5-6 Vector Table for TRAP Instruction ... 5-113

x TMS37OC16 CPU

Tables

1-1 TMS370C16 System Configuration Control Registers , 1-4
1-2 TMS370C16 Digital Pin Function Control Registers 1-4
1-3 TMS370C16 Typical Interrupt Control Registers 1-5
2-1 Status Register (ST) Bits .. 2-6
2-2 Instructions That Use a 17-Bit Address ... 2-9
2-3 Instructions That Use The Stack ... 2-11
3-1 CLKOUT Pin Function Options. .. 3-6
3-2 External Interrupt Types ... 3-26
3-3 External Interrupt Pin Functions .. 3-26
3-4 Type A Interrupt Control Bit Freeze Options 3-39
4-1 Addressing Mode Summary .. 4-2
4-2 Register Indirect Addressing Summary. .. 4-9
5-1 Abbreviations Used to Describe Instructions 5-2
5-2 Symbols Used to Describe Instructions .. 5-3
5-3 Branches Listed by Opcode ... 5-28

Contents xi

Notes and Cautions

Definitions of Device and Module Used In This Manual .. 1-2
Register Considerations .. 2-7
Word Address Definition .. 2-8
The SP Must Contain an Even Value , , 2-12
Word Address Definition ... 2-14
Avoid Interrupting a Reset With an NMI .. 3-23
INTx Used to Represent INT1-INT6 ... 3-26
Derivation of Memory-Direct Format (& Operator) .. 4-6
*Rn Can Be Used If *disp[Rn] Is Assembled ... 4-9
Decrement/Increment Considerations ... , 4-10
Assembler Statements Are Not Case Sensitive .. 5-16
The wbfd Column Values .. 5-18
PC's 16-Bit Word Address Translates to 17 -Bit Address Bus 5-34
Do Not Use Operand RS,IM:Rs .. 5-47
16-Bit Word Address Translates to 17 -Bit Address Bus .. 5-58
Use FMOV to Address 0-1 FFFFh (Up to 128K Bytes) 5-70
Considerations for >64K Bytes and Effect of Byte Size on Registers 5-109
Five Trap Words Are Reserved. .. 5-111
TRAP Enumerator Source .. 5-112

xii TMS370C16 CPU

Chapter 1

Introduction

The TMS370C16 microcontroller core is part of the PRISM Modular Ubrary.
With reusable engineering techniques, it can be combined with other building
blocks from the modular library to generate a diversified family of highly
integrated devices.

This chapter gives a brief overview of the 'C16 CPU - its device-specific
operation, its features, and its registers.

This chapter covers the following topics:

Topic Page

1-1

TMS37OC16 CPU - Device-Specific Operation

1.1 TMS370C16 CPU - Device-Specific Operation

The total integration concept of the cMCU microcontroller family makes multi­
ple configurations possible. Because of this flexibility, certain module features
are device specific and therefore cannot be presented as an absolute In this
document. You should refer to the specific device data sheet to determine the
features and functions available on your particular device. Here is a partial list
of these indefinable areas:

o Memory array size and memory map location for RAM, ROMIEPROM,
EEPROM, and peripheral file

o System clock (SYSCLK) operation

o Digital I/O pin functionality

o Interrupts (The number of available external and internal interrupts and
their associated vectors.)

o Low-power mode availability and interrupt exit capability.

Note: Definitions of Device and Module Used In This Manual

Device: The core microcontroller. It includes the CPU (TMS37OC16), along
with all selected modules, integrated on a single chip.

Module: An element that provides a specific function (such as a serial
interface, memory, analog-to-digital conversion, timing, I/O, etc.) A list of
modules is provided on page v of the preface.

1-2 TMS37OC16 CPU

CPU, System, and Instruction Set Features

1.2 CPU, System, and Instruction Set Features

The TMS370C16 CPU module consists of the following:

o 16-bit CPU containing the associated registers:
• Frame pointer
• Implied register
• Stack pointer
• Status register
• Zero register
• 16-bit program counter

o 17 -bit address space

o Various memory types supported by the 'C16 architecture

• RAM
• Peripheral file control registers
• Data EEPROM
• Program memory (ROM or EPROM)

o Seven possible reset sources

o Interrupt structure

• Software-selectable priority levels
• Nonmaskable Interrupt (NMI) options
• Variable number of interrupts, depending on the device configurations
• Individual interrupt vectors

o Two low-power modes

o Set of 126 instructions including byte, word, and long-word formats.

Introduction 1-3

TMS370C16 Control Registers

1.3 TMS370C16 Control Registers

The CPU and system functions are controlled by registers in three separate
frames as illustrated in the following three tables.

Table 1-1. TMS370C16 System Configuration Control Registers

0018h SCRO System Control Register 0 3.5.1 3-8

0019h SCR1 System Control Register 1 3.5.2 3-9

001Ah SRSR System Reset Status Register 3.5.3 3-10

001Bh SSR System Status Register 3.5.4 3-12

001Eh PSAR1 Parallel Signature Analysis Register 1 3.5.5 3-13
001Fh PSAR2 Parallel Signature Analysis Register 2 3.5.5 3-13

Table 1-2. TMS370C16 Digital Pin Function Control Registers

Register Described I"
Address Symbol Register Name Section Page

OO6Oh OCR1 Output/Control Register 1 3.6.1 3-16

0061h OCR2 Output/Control Register 2 3.6.1 3-16

0062h OCR3 Output/Control Register 3 3.6.1 3-16

0063h OCR4 Output/Control Register 4 3.6.1 3-16

0064h ISR1 Input/Status Register 1 3.6.2 3-16

0065h ISR2 Input/Status Register 2 3.6.2 3-16

0066h ISR3 Input/Status Register 2 3.6.2 3-16

0067h ISR4 Input/Status Register 2 3.6.2 3-16

0068h ADIR I/O Port A Direction Register 3.6.3 3-17

0069h ADATA I/O Port A Data Register 3.6.3 3-17

006Ah BDIR I/O Port B Direction Register 3.6.3 3-17
006Bh BDATA I/O Port B Data Register 3.6.3 3-17

006Ch CDIR I/O Port C Direction Register 3.6.3 3-17

006Dh CDATA I/O Port C Data Register 3.6.3 3-17

006Eh DDIR I/O Port D Direction Register 3.6.3 3-17
006Fh DDATA I/O Port D Data Register 3.6.3 3-17

1-4 TMS370C16 CPU

TMS37OC16 Control Registers

Table 1-{J. TMS370C16 Typical Interrupt Control Registers

Add

0070h

0071h

0072h

0073h

0074h

0075h

007Ch

007Dh

007Eh
007Fh

Register Deecrlbeclln
Symbol Register Name Section Page

INT1 Type A Interrupt 3.8.1.1 3-29

INT1 FLG Type A Interrupt Aag 3.8.1.1 3-29

INT2 Type B Interrupt 3.8.1.3 3-31

INT2FLG Type B Interrupt Flag 3.8.1.3 3-31

INT3 Type C Interrupt 3.8.1.5 3-33

INT3FLG Type C Interrupt Flag 3.8.1.5 3-33

PM2 ENABLE Power Module Interrupt Enable Register 2 3.8.2.1 3-35

PM2 FLAGS Power Module Interrupt Flag Register 2 3.8.2.2 3-36

PM1 ENABLE Power Module Interrupt Enable Register 1 3.8.2.1 3-35
PM1 FLAGS Power Module Interrupt Flag Register 1 3.8.2.2 3-38

Introduction 1-5

1-6 TMS37OC16 CPU

Chapter 2

Architecture

This chapter describes the programmer's model registers and how the 128K­
byte memory is organized and addressed. Topics in this chapter include:

Topic Page

2-1

Programmer's Model

2.1 Programmer's Model
The TMS370C16 programmer's model consists of a 16-bit program counter
and a 16-register file, which contains 11 general-purpose registers as well as
the frame pointer, Implied register, stack pointer, status register, and zero
register. These are shown in Figure 2-1. The 'C16 may access RAM,
EEPROM, EPROM, or ROM modules internally, depending on your device
configuration. The 'C16 may also access the system module (further
described in Section 3.1) that controls device operations such as stack
location, reset, Interrupts, I/O configurations, and the CLKOUT pin
initialization. The 'C16 CPU and system module interface through the system
address, data, and control buses to other modules such as the SPI, SCI, ADC,
and gage drivers, depending upon your specific device configuration.

Figure 2-1 shows the register file and the memory accessible by the
TMS37OC16 CPU. The 16-register file is located in the CPU and includes five
preassigned registers (RO, R1, R13, R14, and R15). This register file Is
discussed in further detail in Section 2.2, starting on page 2-4, and the status
register (R14) and its bits, shown in the bottom of Figure 2-1, are described
in more detail in subsection 2.2.4, page 2-6.

The program counter (PC), not part of the register file, contains the word
address of an opcode or operand. The word address is applied to address
lines A 16-A 1, with line AO set to 0 (effectively multiplying the actual byte
address by 2). This allows accessing data and executing code in a full 128K
bytes of memory. The word address is further described in Section 2.3 on page
2-8, which includes a list of instructions using a 17 -bit address (see Table 2-2
on page 2-9).

2-2 TMS37OC160PU

Figure 2-1. Programmer's Model

---1r--------------,
15

PC Program Counter

15 --
FP
1M

RO - Frame Pointer

R1 - Implied Register

o

o
RO
R1

R2

OOOOOh

R12
R13i-+----"'

R14 I
R15 I

I
I

-~-------------~

Status Register (81')

Legend:
C = Carry N = Negative
V = Overflow Z = Zero
L2 - LO = Interrupt priority level

The Status Register
is covered In detail
In subsection 2.2.4
on page 2-6.

Programmer's Model

Byte and Word
Addressable

o 0001 h

1 FFFFh

Architecture 2-3

CPU Register File (RO-R15)

2.2 CPU Register File eRG - R1S)

The TMS370C16 CPU contains 16 registers, RO - R15, that are not part of the
memory map. Of the 16 registers, five can be used for the specialized functions
listed in Figure 2-2 (registers RO, R1, R13, R14, and R15) or for general
purposes.

R2-R12, the 11 nonspecialized registers of the CPU register file, can be used
for data manipulation for bit, byte (least significant byte), or word values. Take
care when attempting to use any of the five specialized registers as general­
purpose registers. The zero register (R15) reads as a zero value at all times,
and write values will be ignored. Of the other specialized registers, RO and R1
can be used conditionally, but R13 (stack pointer) and R14 (status) should not
be used as general purpose at any time.

The values of the register file are not initialized by a reset. Your system soft­
ware should initialize these registers during a startup procedure.

Figure 2-2. Registers RO to R15

2-4 TMS37OC16 CPU

General
Purpose

CPU Register File (Ro-R16)

2.2.1 Frame Pointer, FP (RO)

The frame pointer can be used by high-level languages to allocate and deallo­
cate procedure stack frames from the system stack. This register is implicitly
used in the following instructions:

LINK

UNLINK

RTDU

2.2.2 Implied Register, 1M (R1)

Unk the FP to the current frame of the current SP
(stack pointer) by pushing the FP onto the stack,
setting the FP to the SP value, and then
allocating designated words of stack.

Deallocate the current system stack frame by
placing the FP contents in the SP and then
retrieving the previous FP value from the system
stack.

Unlink and deallocate the current system stack
frame by placing the FP value in the SP,
retrieving the previous FP and PC contents from
the stack (to return from a subroutine), and then
subtracting a displacement from the SP.

The implied register assists in dealing with 32-bit objects by serving as the
most significant word of the two-word value. Also, in division operations, the
I M holds the remainder.

The 1M is used implicitly by the following instructions:

ASRL

ASROL

SHLL

DIVS

DIVU

EXTS

LSRL

MPYS

Arithmetic shift right, longword (32-bit value)

Arithmetic shift right and round to 0, longword (32-bit value);
add 1 if N[ST] and C[ST] are both 1

Arithmetic shift left, longword (32-bit value)

Division, signed (16- and 32-bit)

Division, unsigned (16- and 32-bit)

Sign-extend word to 32 bits

Logically right-shift, longword (32-bit value)

Signed word multiplication

MPYU Unsigned word multiplication

TRUNCSL Test to see if register can be truncated from 32 to 16 bits

Architecture 2·5

CPU Register File (RO-R15)

2.2.3 Stack Pointer, SP (R13)

The stack pOinter identifies the top of the stack - the location within the
system stack to be used next (e.g., for storage of the current environment
during interrupt processing). The stack also holds the return address for
subroutine calls and provides a means of allocating procedure stack frames.

The SP is implicitly declared by the following instructions:

CALL

LINK

POP

PUSH

RTDU

RTI

RTS

TRAP

UNLINK

Jump to subroutine (return address on stack)

Unk to current stack frame (FP to stack, SP to FP, and allo­
cate requested words of space to the stack)

Pull values from top of stack to register(s)

Push values on top of stack from register(s)

Unlink and deallocate current stack frame (return to former PC
and new stack address)

Return from interrupt (retrieve PC and ST values from stack)

Return from subroutine (retrieve PC from staCk)

Generate one of 256 trap exceptions (push ST and PC + 1
onto stack, use vector offset and TRAP vector table to set PC,
and set interrupt level at ST to all 1 s)

Deallocate current stack frame (retrieve previous SP contents
from FP register and retrieve old FP contents from stack)

Section 2.5 on page 2-11 contains a detailed discussion of the system stack.

2.2.4 Status Register, ST (R14)

The status register contains CPU status information from operations
performed by the Arithmetic Logical Unit (ALU). The condition code bits Z
(zero), N (negative), C (carry), and V (overflow) are typically altered during
instruction execution. Status is based on the data object size - byte (8),
word (16), or longword (32 bits) - of the just-executed instruction. The ST
also contains the interrupt mask level bits L2 - LO.

Table 2-1. Status Register (ST) Bits
14 13 12 11 10 .."....,.,,.,,-,..........,,...,,,

\::;:::';1 = Reserved bits

2-6 TMS370C16 CPU

CPU Register File (RG-R15)

ST bit definitions:

Reserved (r): Bits reserved for future use. Data written to them are not
retained.

Z: Zero bit. Set to 1 when an instruction generates a zero-value byte, word, or
longword.

N: Negative bit. Generally set to the value of the most significant bit (e.g., sign
bit) of an instruction's result. This is bit b7 for byte, b15 for word, and
b31 for longword operations.

C: Carry bit. Set to 1 to indicate whether an unsigned overflow or underflow
(carry/borrow) occurred during an arithmetic operation. Testing
occurs as appropriate for the size of the data being operated on (byte,
word, or longword). Some shift instructions use the C bit as a
destination for the bit shifted. Bit load/store instructions treat the C bit
as a bit accumulator.

V: Overflow bit. Generally set to 1 if a signed twos-complement overflow or
underflow occurred during an arithmetic operation. Testing occurs as
appropriate for the size of the data being operated on (byte, word, or
longword).

L n: Interrupt-mask level bits (L2-LO). Coded to specify interrupt levels of
0002 - 1112 (o--7) with level 7 the highest priority and level 0 the
lowest. Chapter 3 covers interrupt handling in detail (see Sections
3.7,3.8,3.9, and 3.10, beginning on page 3-19).

2.2.5 Zero Register, ZR (R15)

The zero register's contents are always OOOOh. Thus, it is useful when a zero
constant value is required.

This register can be used with indexed addressing (format *disp[RnJ) to gener­
ate a direct address. When Rn is declared to be ZR (disp[ZRJ) , displacement
disp becomes the operand's address (disp + 0). Thus, operands *disp[ZRJ and
&disp are equivalent; use of the ampersand (&) operator for direct addressing
is further explained in Section 4.4 on page 4-5.

Note: Register Considerations

1. Do not use R14 (status register) as a general-purpose register.

2. R15 (zero register) will always be read as a zero value; writing operations
are ignored.

Architecture 2-7

Program Counter (PC) and Address Bus

2.3 Program Counter (PC) and Address Bus

The PC is a 16-bit register, not included in the register file, that contains the
word address of the instruction or instruction extension word that the CPU will
fetch next. Because the PC uses the word-address data type, the instruction
and the instruction extension words can be located at any even address in the
entire 128K-byte memory address space of the 'C16. The term word address
is defined in the note below.

Note: Word Address Definition

A word addrsss is a 16-bit pointer that maps into a 128K-byte address
space. Note that 17 bits are needed to fully address a 128K-byte space.
Because the 'C16 requires that words begin on an even-byte boundary, the
least significant bit of the word's address must be 0 with only the upper 16
bits of an address are required to access the word. A word address contains
these 16 bits.

The PC holds the 16 most significant bits of the 17 -bit memory address space.
All instructions are word aligned; thus, the least significant address bit (bit O)
of all program references always contains the value 0 (illustrated in
Figure 2-3).

Figure 2-3. Program Counter to Address Bus Transition

PC
(16 Bits)

Address Bus
(17 Bits)

15 o
;4 iff i 44

111111111111111/;
00000000000000000
A16 A1 AO

Because of a pipeline architecture, the PC typically pOints to a memory ad­
dress two words beyond the currently executing instruction or to its extension
word. This relationship is graphically shown in Figure 2-4.

2-8 TMS370C16 CPU

Program Counter (PC) and Address Bus

Figure 2~. Relationship Between the PC and Memory Address

The executing instruction or Corresponding 17 -bit
address bus value extension word is located

two words prior to the
interpreted PC value +

Points to memory
prlllJram Counter

Current 16-bit •••• 1111....1
PC contents W

address 10082h 1-----r----1
(08041h x2)

1007Eh
10080h
10082h
10084h
10086h

Figure 2-6 on page 2-13 describes execution flow during a jump to a
subroutine. It also shows PC values and their corresponding address bus
values. The note at the bottom of the figure explains the relationships.

The instructions in Table 2-2 use the PC register (thus generating a 17-bit
address).

Table 2-2. Instructions That Use a 17-Bit Address

Instruction

Bcond
BRBITO

BRBIT1

CALL

DBNZ

FMOV

JMP

RTDU

RTI

RTS

TRAP

Description

Branch conditionally

Branch if bit equals 0

Branch if bit is a 1

Jump to (call) a subroutine (linkage provided)

Decrement register; branch only if result is 0

Move (far) data to or from an address of up to 128K bytes

Jump unconditionally

Return from subroutine and deallocate

Return from interrupt

Return from subroutine

Generate one of 256 trap software interrupts; trap locations
begin at address 08000h

The PC is also involved in the processing of reset, peripheral interrupts, and
illegal opcode exceptions.

Architecture 2-9

Instruction Organization

2.4 Instruction Organization
Bits are organized as shown in Figure 2-7. Instructions utilize one-, two-, or
three-word formats as illustrated in Figure 2-5 for three different move
instructions.

Figure 2-5. One-, Two-, and Three-Word Instruction Examples

(8) One-Word Instruction

MOV R4,R6 Move R4 to R6

4 3

~ Destination Register

Source Register

Shaded Areas Contain Opcodes

(b) Two-Word Instruction

MOV #1000h,R6 Move lOOOh to R6
4 3

Immediate Value

(c> Three-Word Instruction

MOV #lOOOh,*LABEL[R6] Move lOOOh to LABEL + R6

Label Value

Immediate Value

2-10 TMS370C16 CPU

System Stack

2.5 System Stack

The stack is a dedicated area of last-in/first-out RAM that is:
o Located in the first 64K bytes of memory
o Used for the storage of data that can describe an operating environment

about to be exited or re-entered (such as the PC and ST values)
o Accessed by instructions that place data (PUSH instruction) into it from

registers or retrieve data (POP instruction) from it into registers
o Used during a peripheral interrupt to store the operating environment that

is to be exited (current ST and PC contents) before the address of the
interrupt service routine is fetched

o Pointed to by the stack pointer (SP)

Table 2-3 lists instructions that use the stack:

Table 2-3. Instructions That Use The Stack

Instruction Description

CALL Jump to subroutine; provide return
linkage

LINK

POP

PUSH

RTI
RTS

RTDU

TRAP

UNLINK

ILLEGAL

Unk frame pointer (FP) to current
stack; allocate stack space
Copy stack words into specified reg-
isters
Copy specified register words onto
the stack
Return from interrupt

Return from subroutine

Return from subroutine and
deallocate current stack space

Generate one of 256 trap exceptions

Unlink and deallocate stack frame

Generate trap exception; this is
caused when the instruction'S illegal
code of OOOOh is decoded (one of
several illegal opcodes that cause
this)

Detail

Push address of next instruction onto staCk,
then place destination value in PC (shown in
Figure 2-6, page 2-13)

Push FP onto stack, copy SP (old) to FP, then
add displacement to SP for new SP value
Specify range of registers affected

Specify range of registers affected

Pop PC and ST values from stack
Pop PC from stack (shown in Figure 2-6,
page 2-13; RTS is at step 3 in the figure)
Can be a return from a CALL but only if sub­
routine executed a LINK instruction without an
UNLINK instruction

Push ST and address of next instruction onto
stack. Retrieve trap subroutine address from
trap vector table and place in PC.

Place FP value in SP, then pop previous FP
value from stack
Push ST and address of next instruction onto
stack; place subroutine address from first trap
location in PC

Architecture 2·11

System Stack

2.5.1 Stack Operation During Interrupts

A major use of the stack is to provide return linkage for a context switch. Steps
of a typical context switch are as follows:

1) Context switch (e.g., interrupt) is recognized. Complete presently execut­
ing instruction.

2) Store present status register (S1) contents on the stack. Increment the
stack pOinter (SP) by two to the next memory address.

3) Store the present program counter value (PC) at the SP value (next ad­
dress after the location where the ST is stored). Increment the SP by two.

4) Enter and execute the service routine for the context switch. When the rou­
tine is complete, reverse the process in steps 1 through 3 above to return
to the environment present when the context switch was requested. This
return is usually through an RTI (return from interrupt) instruction.

5) Decrement the SP by two. Retrieve the previous PC value at that address,
and place it in the PC. Decrement the PC by two (this is explained in the
RTI instruction description).

6) Decrement the SP by two. Retrieve the previous ST value at that address,
and place it in the ST.

2.5.2 Stack Use with a Call
Figure 2-6 depicts how a stack is used when calling a subroutine with the
CALL Oump to subroutine) instruction and then later returning to the calling
environment. Numbered steps at the bottom of the figure correspond to circled
numbers in the figure to explain execution sequence.

The stack increments by two after each push of a word value onto the stack.
Conversely, the stack is decremented by two before each word is pulled
(popped) from a stack.

Note: The SP Must Contain an Even Value

Make sure that the value stored in the SP (R13) is an even value (a 0 in
address line AO). An odd value causes an illegal-access reset when the stack
is addressed.

All implicit stack references by these instructions generate word read/write
cycles to memory and thus are restricted to even addresses. The SP contents
are used for address lines AO - A1S; thus, they should always be an even
value. A nonaligned memory access generates a reset.

2-12 TMS37OC16 CPU

Figure 2-8. Example of Stack Use to and From a Subroutine

CD r CALL ~ubrOutine I
I Execution: I

PC -+ (SP)
I SP+2 -+ SP
I dest-+ PC I L. _______ .J

The CALL sequence:

Return
to main
program

STACK

,.. RTS Execution:-'
I SP - 2 -+ SP II

------"""" -+ PC ____ .J

from Values {PC I 6
subroutine at RTS

2 execution SP

Values {PC 4
after RTS

2 execution SP

System Stack

16 MSBs
17-bit address of

next instruction

~

0

2

1

CD The CALL SUBR instruction causes a branch to subroutine SUBR with return values stored
in the stack. Before the entry address of SUBR is placed in the PC:
1) The present PC value (now pointing four bytes past the address containing the CALL opcode)

is stored at the present contents in the stack pointer (SP).
2) The SP is incremented by two.

® The value of SUBR is placed in the PC. Execution begins at address COOOh and continues­
down to address COA4h, which contains the last instruction in the subroutine - RTS (return
from subroutine).

@ RTS returns the program back to the environment at the time of the CALL instruction by:
1) Decrementing the SP by two to point to the address containing the PC value at the time of the

CALL instruction.
2) Placing the contents at the SP value into the PC. Execution begins at the next instruction after

CALL.

Architecture 2-13

Data Organization and Memory Mapping

2.6 Data Organization and Memory Mapping

Data resides in memory and on-chip registers with the most significant bit in
the left-most position. Figure 2-7 shows the significance of bits and bytes.

Figure 2-7. Bit and Byte Numbering for Instructions, Registers, and Words

Bit No. = 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~---------~V~--------J'--------__ T~--------~~
MS Byte LS Byte

A word comprises two bytes:
- the most significant byte is on an even boundary, and
- the least significant byte occupies the next higher (odd)

byte address.

Note: Word Address Definition

A word address is a 16-bit pointer that maps into a 128K-byte address
space. Note that 17 bits are needed to fully address a 128K-byte space.
Because the 'C16 requires that words begin on an even-byte boundary, the
least significant bit of the word's address must be a 0; only the upper 16 bits
of an address are required to access the word. A word address contains
these 16 bits.

All word data in memory must be aligned on an even address.

For byte operations, the byte operand values are zero-extended to word
length, are operated on as words, and produce a word result. Register
destinations receive the entire word (the MSbyte zero-extended), but memory
destinations receive only the LSbyte of the result. Thus, a byte moved to a reg­
ister via the MOVB instruction zeroes the MSbyte of the register with the
moved byte in the LSbyte. The same byte moved to a memory address affects
only the destination byte addressed. This is illustrated in Figure 2-8 on page
2-16.

Figure 2-9 on page 2-17 shows how bits, bytes, and words are organized in
memory and in the register file. Shown in the figure are the least and most sig­
nificant bits and bytes. The accompanying explanations below the figure com­
plete the description.

Figure 2-10 on page 2-18 shows a typical memory configuration and how the
first and second 64K bytes of memory are divided into blocks for 1) byte and
word access in the lower 64K bytes of memory and 2) word-only access in
the higher 64K bytes.

2-14 TMS370C16 CPU

Data Organization and Memory Mapping

For purposes of this manual, these symbols have these meanings:

Symbol

(x)

« x))

Meaning

Contents of register x or
of memory at address x
Contents of memory
designated by contents
ofx

Example

(Rn) = the contents of Rn

(disp + (Rn)) = the contents within the
value found by adding the contents of Rn
with the displacement amount.

Architecture 2-15

Data Organization and Memory Mapping

Figure 2-8. Differences in Memory and Register ByteDestinations

MOVB *9[R4] ,M
Execution:

(0009h + (R4» -. (R6)

In this first example, a byte is moved to a register. The source
value is found at the address derived by the sum of the 0009h
displacement and the contents of R4, which contains 0402h.
Thus, the value at address 040Bh, the least significant
byte, is moved. Bits 15-8 of R6 are cleared.

RO
t--------i <D 2-word

instruc­
tion

<2l Derive source
t--"";"";;"";;"';---I l address

L 0009~
~.--­

..-- 040B

~-----I R1
t-------I R2

MOVB *9[R4] ,*R6
Execution:

(0009h + (R4» -. «R6)

Byte value at address
040Bh is copied to R6

C3> with bits 15-8 zero-filled

R3
R4
R5
R6

The above example is repeated, except that the destination
is changed to a memory address with the destination register
holding an indirect address. This example shows that the
move affects only the designated byte in the destination,

leaving the adjacent byte unchanged (no zero-filling occurs with a byte move to memory
- unlike a byte move to a registet).

<D 2-word {
instruc- J.....!:~~..::.....;~~.!:!2.-I

tion t-""';;''''';;''''';;''''';;''''---I
<2l Derive source

address

L ... 0009~ ±.MQ2.---
.--- 040B.-r-__ _

C3> Points to
address 0605h

Byte value at address
@) O4OBh is copied to

address 0605h

Value of byte 0604h unchanged

RO
t--------i

t-------I R1
t-------I R2

R3
R4
R5
R6

Note: A dashed line denotes the path of the value moved or copied. A solid line denotes a location pointer.

2-16 TMS370C16 CPU

Data Organization and Memory Mapping

Figure 2-9. Data Organization Examples in Registers and Memory

FP/RO

IM/R1

R2

R3

R4

~ R5
"- R6 Gl

:i R7

1 R8
::::l R9 Q.
(.)

R10

R11

R12

SP/R13

ST/R14

ZR/R15

Odd address
Reglste,.

For several instructions,
32-bit words are formed
by concatenating the 1M

and another register:

1M
~
0

i
~
.5
In
"E

Byte value in register is always ~ LSbyte.

Notes:
FP: Frame Pointer
1M: Implied Register
SP: Stack Pointer
ST: Status Register
ZR: Zero Register

I = Represents bit value
Byte value in memory
can be LSbyte or
MSbyte.

Data restrictions depend upon their location in a register or in memory (as
shown in Figure 2-9 above):

Data Size

Single Bit

Byte
(8 bits)

Word
(16 bits)

Long Word
(32 bits)

Register

Can be any bit in any register
in the register file.

The least significant byte of
any register in the register file.

Can be any register in the
register file.

Uses a register pair in the
register file with the most
significant word in the 1M
(implied register, R1).

Memory

Can be any bit in any byte in
the first 64K bytes of memory.

Can be any byte in the first
64K bytes of memory. Any
adjacent byte is not affected.

Can be any byte pair where
the most significant byte of
the word is at an even
address and the least signifi­
cant byte is at the next
higher byte address.

Not applicable.

Architecture 2-17

Data Organization and Memory Mapping

Figure 2-10.

'EB
~~
-c(/)
c:::~

:~
i ~c(
(/)

CD
-c
0
()

~
Q.
(/)

~
c:::
0
'E
~

Typical 16-Bit Memory Map

Typical Memory Configuration
OOOOOh 00001h-

....-""-....-....- 00801h
Actual DiviSion 02001h

"

of Memory

" " " "

Oxxxxh

I
~

OFFFEh OFFFFh l ----- 10000h 10000h
~
0
a:
Il.
W ...
0

~
0 a:

1xxxxh

I
I
I

" " Unused

" I
" " I

" I
" " I
1FFF~ I 1FFFFh

As shown in Figure 2-10, two 64K-byte areas concatenate to form 128K bytes
of addressable memory. The generic view on the left shows that the
lower-address half can be accessed as either byte or word, and the
higher-address half is accessible as word-only by such instructions as FMOV
and CALL. The right side of the figure is an example of possible code and data
utilization. The actual size of the memory module is device specific. See your
specific device data sheet to determine the size of the memory modules for
your particular device. The lowest memory addresses contain the control
registers, which are expanded in Figure 2-11 (next page).

2-18 TMS370C16 CPU

Data Organization and Memory Mapping

Figure 2-11. Location and Names of Control Registers

OOOOOh

00400h

OFFFEh
10000h

1FFFEh

,.....--------.- ------

, ,

OOOOOh-oooGFh

00010h-0001Fh

0OO20h-0002Fh

00030h-0003Fh

00040h-0004Fh

00050h-0005Fh

0OO60h-0006Fh

00070h-0007Fh

OOOSOh-0006Fh

00090h-0009Fh

OOOAOh-OOOBFh

OOOCOh-OOOFFh

00100h-0013Fh

00140h-0014Fh

, 00150h-0015Fh

, 00160h-003FFh

Reserved

System Configuration Registers (Section 3.5)

Clock Module & Watchdog Realtime Interrupt

ADC Module

SPI Module

SCI or J1850 Module

System Digital Pin Functions (Section 3.6)

System External Interrupts (Section 3.8)

EPROM/EEPROM Memory Module

Reserved

Reserved

Timer (16A) Module

Reserved

Gage Driver, Single Ended

Gage Driver, Dual Coil

Reserved

Figure 2-11 lists the 16 control-register groups in the lowest 1 K bytes of
memory. Each register group is 16 bytes and contains the working registers
for each module or for the system configuration. These registers are further
described in Section 3.5 on page 3-7.

Architecture 2-19

2-20 TMS370C16 CPU

I

Chapter 3

TMS370C16 System Configuration

This chapter discusses system configuration requirements, I/O, interrupts,
reset, and low-power modes of the TMS370C16 CPU. Features and options
are described, including the registers that control the configuration. This
chapter covers the following topics:

Topic Page

3-1

System Configuration Overview

3.1 System Configuration Overview

The system module controls device operations such as clock source, stack
location, reset, interrupts, and I/O. The actual number of external interrupts
and I/O pins is device specific; consult the data sheet for a particular device.
Certain device status information is also contained within the system module.
The system module block diagram is shown in Figure 3-1 .

Figure 3-1. System Block Diagram

System
Control

Registers

Reset

Stack Pointer Control

CLKOUT Control

Digital Pin Functions

Interrupts

r-----------------.,
, I

, Low Power Modes
------------......... (See Note 1)

EPROM/EEPROM
(See Note 2)

~ - .1

Notes: 1. See the Clock Modules Reference Guide.
2. See the EEPROM/EPROM Modules Reference Guide.

3-2 TMS370C16 CPU

System Reset Operation

3.2 System Reset Operation

The system reset operation ensures an orderly start-up sequence for the
TMS370C16 CPU-based device. Seven actions can cause a system reset to
the device; six of these are internally generated, while the RESET-pin interrupt
is controlled externally.

o RESET Pin. A negative edge can trigger a signal on this external pin.

o Watchdog (WD) limer Overflow. A watchdog-generated reset occurs if
the WD timer overflows or an improper value is written to either the WD
key register or the WD control register. (See your Watchdog Timer and
Real-Time Interrupt Reference Guide for details on these registers.)

o Software-Generated Reset. Writing a 0 to the RESETO bit (SCRO.6) or a
1 to the RESET1 bit (SCRO.7) causes a reset (SCRO is the system control
register 0, as shown in Figure 3-3 on page 3-7.)

o Illegal Address Access. Attempting to access a non memory (not imple­
mented) address causes a reset. (This action is device specific, relative
to the memory configuration.)

o Oscillator Reset. Operation of the oscillator outside of the recommended
operating range, as indicated by the OSCRST bit of the system reset
status register (subsection 3.5.3, page 3-10), causes the clock module to
issue a reset. See the Clock Modules Reference Guide for more informa­
tion.

o Vee Out-of-Range. Operation with Vee outside of the recommended
operating range may also act as a brownout indicator in addition to
ensuring proper operation on power-up sequences.

o Illegal Access. Attempting to access a word by using an odd address
causes a reset.

Once a reset source is activated, the external RESET pin is driven active low
for a minimum of eight SYSCLK cycles. This allows the 'C16 CPU-based
device to reset any external devices connected to the RESET pin. Normally,
the reset logic holds the 'C16 device in a reset state for eight SYSCLK cycles;
however, if a Vee out-of-range condition or oscillator failure occurs (or the
RESET external pin is held low), then the reset logic holds the device in a reset
state for as long as these conditions exist.

TMS370C16 System Configuration 3-3

System Reset Operation

Figure 3-2 shows the reset state diagram for the 'C16 device in the normal run
mode.

Figure 3-2. Reset State Diagram - Normal Run Mode

3-4 TMS370C16 CPU

Note: Reset actions
are indicated in the
system reset status
register described
on page 3-10.

System Reset Operation

After a reset, the program determines the source of the reset by reading the
contents of the system reset status register (SRSR, shown in Figure 3-3 on
page 3-7). There is one status bit for each of the seven sources that can
cause a reset.

Once a reset is activated, the following sequence of events occurs in the 'C16:

1} The CPU registers and module control registers are initialized to their
reset state. The ST interrupt mask bits are set to all 1 s to prevent any
interrupt request, including nonmaskable interrupts (NMls).

2} The correct index value to the trap table base address is computed.

3} The service-routine address is read from address 8002h.

4} The prefetch pipeline is reloaded.

The reset sequence takes six cycles from the time the reset is released until
the first opcode fetch begins. During a reset, RAM contents remain
unchanged, and the module control register bits are initialized to their reset
state.

To generate an external reset pulse on the RESET pin, a lOW-level pulse
duration of as little as a few nanoseconds is usually effective; however, pulses
of one SYSCLK cycle are recommended to guarantee that the device
acknowledges the reset. A typical reset circuit required for the 'C16
CPU-based device consists of a 1 O-kilohm pullup resistor from the RESET pin
to Vee. Only this single resistor is needed if a primary voltage regulator or
brownout detection circuit is on your device. See the specific device data sheet
to determine whether additional circuitry is required.

TMS370C16 System Configuration 3-5

CLKOUT Pin Function Selection / Parallel Signature Analysis Operation (CRC Generator)

3.3 CLKOUT Pin Function Selection

You can select the CLKOUT pin to operate as one of four different functions:

o Digitall/O
o Watchdog clock (WDCLK) output
o External clock (ECLK) output
o System clock (SYSCLK) output

The function is determined by two clock source control bits, CLKSRC1 and
CLKSRCO (SCR1.7 and SCR1.6 respectively, shown in Figure 3-3 on page
3-7). Table 3-1 illustrates the CLKOUT pin function selection options.

Table 3-1. CLKOUT Pin Function Options

CLKSRC1 CLKSRCO
Digital I/O

WDCLK
ECLK
SYSCLK

o
o

o
1

o

For more information, see subsection 3.5.2 on
system control register 1 on page 3-9, the specific
device data sheet, or the Clock Modules Reference
Guide.

3.4 Parallel Signature Analysis Operation (CRC Generator)

The TMS370C16 device contains an internal 16-bit parallel signature analysis
(PSA) circuit that provides a continuous cyclic redundancy check (CRC) func­
tion. Two associated registers, PSAR1 and PSAR2 (located at addresses
0001 Eh and 0001 Fh in the system configuration register), determine a unique
16-bit signature. (The system configuration register is further described in
Section 3.5 and in Figure 3-3 on the next page.)

When any memory location (RAM, EEPROM, ROM, EPROM, or control
register) is read, the contents of the PSA registers are updated (register bits
are described in subsection 3.5.5 on page 3-13). You can create a
predetermined signature by initializing the PSA registers to a known value and
then reading all memory locations. It is suggested that you read both PSA
registers as a single word {avoid multiple reads such as reading each byte
individuallYJ .

3-6 TMS370C16 CPU

System Configuration Registers

3.5 System Configuration Registers

The TMS370C16 system configuration registers are shown in Figure 3-3 and
are discussed in detail in the following sections. These registers can be
accessed in either byte or word mode.

Figure 3-3. System Configuration Registers

Register
Address Mnemonic

00010h

00011h

00012h

00013h

00014h

00015h

00016h

00017h

00018h SCRO

00019h SCRl

0001Ah SRSR

000lBh SSR

0001Ch

000lDh

000lEh PSARl PSA15 PSA14 PSA13

000lFh PSAR2 PSA7 PSA6 PSAS

PSA12

PSA4

PSA1l PSA10 PSA9 PSM

PSA3 PSA2 PSAl PSAO

Register
Name

System
Control

Register 0

System
COntrol

Register 1

System
Reset Statua

Register

System
Statua

Register

Parallel Sig­
nature Ana/y­

ala Reg. 1

Parallel Sig­
nature Analy-

ala Reg. 2

TMS370C16 System Configuration 3-7

System Configuration Registers

3.5.1 System Control Register 0 (SCRO)

Bit #

00018h

7

The system control register 0 (SCRO) controls the software reset capability of
TMS370C16 CPU-based devices.

System Control Register 0 (SCRO)

6 5 4 3 2 o ,------r----=

RW-O RW-1
R = Read, W = Write, -n = value after reset (0, 1, x = indeterminate)

Bits 7 & 6 RESET1/RESETO. Software Reset.

Bits 5-0

These bits, which control the software reset function of the device, must be
written to at the same time. Writing a 1 to RESET1 or a 0 to RESETO causes a
global reset to occur as shown in the following table:

RESET1 RESETO Resulting Action
0 0 Global reset
0 1
1 0 Global reset
1 Global reset

Reserved.
Writing to these bits has no effect, and reads are undefined.

3-8 TMS370C16 CPU

System Configuration Registers

3.5.2 System Control Register 1 (SCR1)

The system control register 1 (SCR1) controls the CLKOUT pin function and
the analog power supply enable.

System Control Register 1 (SCR1)

Bit # 7 6 5 4 3 2 o

00019h

r------r------T7~

RW-O RW-O RW-O
R = Read, W = Write, -n = value after reset (0, 1, x = indeterminate)

Bits 7 & 6 CLKSRC1-O. Clockout Pin Source Select.
These bits control the selection of the CLKOUT pin function.

CLKSRC1
o
o

Bits 5 & 4 Reserved.

CLKSRCO
o
1
o

CLOCKOUT Pin Function
Digital I/O mode
WDCLK clock output mode (watchdog clock)
ECLK output mode (external clock)
System Clock (SYSCLK) output mode

Writing to these bits has no effect, and reads are undefined.

Bit 3 VCCAON. VCCA (Analog Power Supply) Enable.
This bit controls the ability of the primary voltage regulator or the brown-out
detect circuit to turn the analog power supply 0/CC/J on and off.

0= Analog power supply is disabled.
1 = Analog power supply is enabled.

Bits 2-0 Reserved.
Writing to these bits has no effect, and reads are undefined.

TMS370C16 System Configuration 3-9

System Configuration Registers

3.5.3 System Reset Status Register (SRSR)

Bit #

0001Ah

7

PORST

The system reset status register (SRSR) contains system-reset history status
information. These bits should be cleared after being read.

System Reset Status Register (SRSR)

6 5 4 3 2 o

OSCRST

RC-x RC-x

R = Read, C = Clear only, -n = Value after reset (0, 1, x = Indeterminate)

Bit 7 PORST. Power On Reset Status.
This bit indicates the status of digital power to the chip. When a reset occurs
because Vcco is out of regulation, bit 7- PORST - is set. Reset is active
while V cco is out of regulation, and for eight cycles afterward. When this bit is
set to a 1 , all other bits are indeterminate.

0= No reset. Vcco is not out of regulation.
1 = Reset because Vcco out of regulation.

Bit 6 OSCRST. Oscillator Reset Status.
Reset occurred because of an oscillator fail condition. Ignore this bit if there is
no phase lock loop oscillator.

o = No oscillator fail conditions.
1 = Reset due to oscillator fail condition.

Bit 5 Reserved.
Writing to this bit has no effect, and reads are undefined.

Bit 4 ILLADR. Illegal Address Reset Status.
This reset occurs when an unimplemented memory address is accessed.

o = No illegal address conditions.
1 = Reset due to illegal address access.

Bit 3 ILLACC. Illegal Access Reset Status.
This reset occurs when a word access occurs on a byte (odd address value)
boundary.

o = No illegal access conditions
1 = Reset due to illegal access.

Bit 2 SWRST. Software Reset Status.
This reset occurs when a #1 is written to bit SCRO.7 or a 0 is written to bit
SCRO.6.

0= No reset.
1 = Software reset occurred.

3-10 TMS370C16 CPU

System Configuration Registers

Bit 1 WORST. Watchdog Reset Status.
See your Watchdog Timer and Real-Time Interrupt Module Reference Guide
to determine whether this bit applies to your device.

0= No reset.
1 = Reset due to watchdog timer overflow.

Bit 0 EXTRST. External Reset Status.

0= No reset.
1 = This bit is set when the external RESET pin is pulled low by any source,

including an internal reset.

TMS370C16 System Configuration 3-11

System Configuration Reg/tlte"

3.5.4 System Status Register (SSR)

BitN

0001Bh

7

The system status register (SSR) contains status information about the opera­
tional modes of the device.

System Status Register (SSR)

6 5 4 3 2 o

R-x
R .. Read. C = Clear only. -n = Value after reset (0, 1 , x .. Indeterminate)

Bits 7 & 6 Reserved.
Writing to these bits has no effect, and reads are undefined.

Bit 5 HPO. Hardware Protect Override.

Bits 4

The hardware protect override function allows protected EEPROM bits to be
written to and enables EPROM programming. To set this bit, external pin INT1
must be at 12 V on the riSing edge of RESET. If INT1 is less than 12 V, the bit is
a O. You can disable this function by writing a 0 to it.

o = Normal mode.
1 = HPO mode.

Reserved.
Writing to this bit has no effect, and reads are undefined.

Bit 3 VCCAOR. VCCA (Analog Power Supply) Out of Regulation.
This bit shows the status of the internal VCCA signal.

0= VCCA is within regulated range.
1 = VCCA is out of regulated range.

Bits 2-0 Reserved.
Writing to these bits has no effect, and reads are undefined.

3-12 TMS37OC16 CPU

System Configuration Registers

3.5.5 Parallel Signature Analysis Registers (PSARn)

BItN

0001Eh I

BItN

0001Fh I

7

PSA15

RW-O

The parallel signature analysis register 1 (PSAR1) contains the MSbyte of the
PSA, and the parallel signature analysis register 2 (PSAR2) contains the
LSbyte of the PSA.

Parallel Signature Analysis Register 1 (PSAR1)

6 5 4 3 2 1 0

PSA14 I PSA13 I PSA12 I PSA11 I PSA10 I PSA9 PSA9

RW-o RW-o RW-O RW-o RW-o RW-o RW-o

R. Read, W .. write, C= Clear only, -n= value after raaat (0, 1, or X= Indatarmlnata)

Bits 7-0

7

PSA7

RW-o

PSA15-PSAS. Parallel Signature Analysis Data Bits 15 - 8,
The value read from this register is the MSbyte of the most recent PSA
routine.

Parallel Signature Analysis Register 2 (PSAR2)

6 5 4 3 2 1 0

PSA8 PSA5 I PSA4 I PSA3 I PSA2 I PSA1 PSAO

RW-o RW-O RW-O RW-o RW-o RW-o RW-o

R= Read, W= write, C= Clear only, -n= value aftarraaat (0, 1, or X= Indeterminate)

Bits 7-0 PSA7-PSAO. Parallel Signature Analysis Data Bits 7 - O.
The value read from this register is the LSbyte of the most recent PSA
routine.

TMS37OC16 System Configuration 3·13

General-Purpose Digital Pin Functions

3.6 General.Purpose Digital Pin Functions

Device pins can be configured for general-purpose digital pin functions except
for those pins:

o That are device operation pins (VCC, Vss, RESET, INT1, etc.).
o That are requiredfor module-specific operation (for the SPI, ADC, gage

drivers, etc.)

The total number of digital pins available is device specific. Refer to the specific
device data sheet to determine the exact number of digital pins available, pin
locations, naming conventions, and control registers. This section describes
the different types of digital pin functions available and how they are controlled.

The digital I/O control and status register (Figure 3-4) allows a maximum of
32 output/control functions, 32 input/status functions, and 32 bidirectional I/O
pin functions. The output pin functions are also referred to as control pins -
they can be used to turn particular internal modules on or off and are not actual­
ly tied to an external pin. The input pin functions are also referred to as status
pins because they can be used to determine the status of internal signals on
the device as well as to serve as general-purpose input pins. For example, you
could use these configurations to tie an input/status function to the low-side
driver over-current detection circuitry, or to tie an output/control function inter­
nally to the V CCA analog voltage output to control the primary voltage regulator
during on and off VCCA'

The control registers for digital I/O (010) pins are located at addresses 0060h
to 006Fh and are shown in Figure 3-4.

Address Ports

0060h - 0063h Output 1 , 2, 3, 4

0064h - 0067h Input 1, 2, 3, 4

0068h - 006Fh I/O A, B, C, 0

Functions

OutpuVcontrol only. Pins for outpuVcontrol
ports 1, 2, 3, and 4

InpuVstatus only. Pins for InpuVstatus ports
1,2,3, and 4

Pins for I/O ports A, B, C, and 0, with each
port using one byte for I/O configuration and
one byte for pin value.

The following sections explain the operation of the 010 control registers. The
number of 010 control registers available depends on the 'C16 device.
Usually, all digital pins available are configured as bidirectional I/O pins, and
not output or input only. This configuration selection is determined during the
manufacture cycle and cannot be changed by software. See the specific
device data sheet for more information.

3-14 TMS370C16 CPU

General-Purpose Digital Pin Functions

Figure 3-4. Digital I/O Control and Status Registers
Reg

Addr Mnem

OOO6Oh OCR1

00061h OCR2

00062h OCR3

00063h OCR4

00064h ISR1

00065h ISR2

00066h ISR3

00067h ISR4

00068h ADIR

00069h ADATA

0006Ah BDIR

0006Bh BDATA

0006Ch CDIR

OOO6Oh CDATA

0006Eh DDIR

0006Fh DDATA

7 6 5 4

10UT7 10UT6 10UT5 10UT4

20UT7 20UT6 20UT5 20UT4

30UT7 30UT6 30UT5 30UT4

40UT7 40UT6 40UT5 40UT4

11NS7 11NS6 11NS5 11NS4

21NS7 21NS6 21NS5 21NS4

31NS7 31NS6 31NS5 31NS4

41NS7 41NS6 41NS5 41NS4

ADIR7 ADIR6 ADIR5 ADIR4

ADATA7 ADATA6 ADATA5 ADATA4

BDIR7 BDIR6 BDIR5 BDIR4

BDATA7 BDATA6 BDATA5 BDATA4

CDIR7 CDIR6 CDIR5 CDIR4

CDATA7 CDATA6 CDATA5 CDATA4

DDIR7 DDIR6 DDIR5 DDIR4

DDATA7 DDATA6 DDATA5 DDATA4

3 2

10UT3 10UT2

20UT3 20UT2

30UT3 30UT2

40UT3 40UT2

11NS3 11NS2

21NS3 21NS2

31NS3 31NS2

41NS3 41NS2

ADIR3 ADIR2

ADATA3 ADATA2

BDIR3 BDIR2

BDATA3 BDATA2

CDIR3 CDIR2

CDATA3 CDATA2

DDIR3 DDIR2

DDATA3 DDATA2

10UT1

20UT1

30UT1

40UT1

11NS1

21NS1

31NS1

41NS1

ADIR1

ADATA1

BDIR1

BDATA1

CDIR1

CDATA1

DDIR1

DDATA1

o

10UTO

20UTO

30UTO

40UTO

11NSO

21NSO

31NSO

41NSO

ADIRO

ADATAO

BDIRO

BDATAO

CDIRO

CDATAO

DDIRO

DDATAO

Reg
Name

Output!
Control
Register 1

Output!
Control
Register 2

Output!
Control
Register 3

Output!
Control
Register 4

Input!
Status
Register 1

Input!
Status
Register 2

Input!
Status
Register 3

Input!
Status
Register 4

I/O PortA
Direction
Register

I/O PortA
Data
Register

I/O Port B
Direction
Register

I/O Port B
Data
Register

I/O Port C
Direction
Register

I/O Port C
Data
Register

I/O Port D
Direction
Register

I/O Port D
Data
Register

Note: See the specific device data sheet for the actual digital pin Implementation.

TMS370C16 System Configuration 3-15

General-Purpose Digital Pin Functions

3.6.1 Digital Output/Control Registers (OCRn)

Bit #

OOO6Oh

7

Writing to bit(s) in the digital output/control registers (OCR1, OCR2, OCR3,
and OCR4) outputs values to the bit's corresponding function(s) - such as
communication to an internal module or an external pin. OCR1 is illustrated
below. OCR2. OCR3, and OCR4 operate identically to OCR1 but are not
shown.

Digital Output/Control Register 1 (OCR1)

6 5 4 3 2 o

10UT7 10UT6 10UT5 10UT4 10UT3 10UT2 10UT1 10UTO

RW-O RW-O RW-O RW-O RW-O RW-O RW-O RW-O
R = Read, W = Write, -n = Value after reset (0, 1, x = indeterminate)

Bits 7-0 1 OUT7 - 10UTO. Digital outputs to corresponding functions.
The values written to any of selected bit(s) 1 aUT7 to 1 aUTO control the state
output of the corresponding function(s).

o = Output a 0 01 OU value to the selected function.
1 = Output a 1 01 OH) value to the selected function.

3.6.2 Digital Input/Status Registers (ISRn)

Bit #

00064h

7

Reading a bit in one ofthe four digital input/status registers (ISR1, ISR2, ISR3,
and ISR4) reads the bit value at the corresponding input function. Functions
could be values from such points as a module flag, external pin, etc. ISR1 is
illustrated below. ISR2, ISR3, and ISR4 operate identically to ISR1 but are not
shown.

Digital Input/Status Register 1 (ISR1)

6 5 4 3 2 o

11NS7 11NSS 11NS5 11NS4 11NS3 11NS2 11NS1 11NSO

R-x R-x R-x R-x R-x R-x R-x R-x

R = Read, W = Write, -n = Value after reset (0, 1, x = indeterminate)

Bits 7-0 11NS7 -1INSO. Digital input/status at corresponding functions.
The values read at any selected bit(s} 11 NS7 -11 NSO show values at their
corresponding functions:

o = Read VIL on the corresponding function.
1 = Read VIH on the corresponding function.

3-16 TMS370C16 CPU

General-Purpose Digital Pin Functions

3.6.3 Digital Port Direction and Port Data Registers (xOIR and xDATA)

The TMS370C16 CPU has four digital ports - A, B, C, and D. Each port has
a pair of registers that work together. The direction register for the port
designates each bit in the corresponding data register as either an input or
output.

o The port direction register (ADIR, BDIR, CDIR, and DDIR for ports A to
D respectively) bit values designate a corresponding pin in the data regis­
ter as an input (clear bit to 0) or an output (set bit to 1).

o The port data register (ADATA, BDATA, CDATA, and DDATA for ports A
to D respectively) bits can be read from or written to, depending upon their
status as set in the port direction register.

For example, to read bit A7, clear bit ADIR7 to 0 (to become an input); then
read bit ADATA7. To write to A7, set ADIR7 to 1 (becomes an output) and write
a value to ADATA7. This applies to the other ports also (BDIRlBDATA, CDIR!
CDATA, and DDIRIDDATA).

Registers ADIR and ADATA are shown on the next page. The combinations
of BDIRlBDATA, CDIRlCDATA, and DDIR!DDATAoperate identically to ADI R!
ADATA but are not shown.

TMS370C16 System Configuration 3-17

General-Purpose Digital Pin Functions

I/O Port A Direction Register (ADIR)

Bit # 7 6 5 4 3 2 o

0006Ah ADIR7 ADIR6 ADIR5 ADIR4 ADIR3 ADIR2 ADIR1 ADIRO

RW-O RW-O RW-O RW-O RW-O RW-O RW-O RW-O
R = Read, W = Write, -n = Value after reset (0, 1, x = Indeterminate)

Bits 7-0 ADIR7-ADIRO. Control direction of pins A7-AO.

Bit #

0006Bh

The value written to anyone of these bits controls the direction of this
bidirectional pin.

o = The pin is an input.
1 = The pin is an output.

I/O Port A Data Register (ADATA)
7 6 5 4 3 2 o

ADATA7 ADATA6 ADATA5 ADATA4 ADATA3 ADATA2 ADATA1 ADATAO

RW-O RW-O RW-O RW-O RW-O RW-O RW-O RW-O
R = Read, W = Write, -n = Value after reset (0, 1, x = indeterminate)

Bits 7-0 ADATA7 - ADATAO. Data Value for pins A7 - AO.
If the pin has been selected as an input (xOlRn = 0). then the value read from
the corresponding bit is the value seen on the pin.

o = Value of selected bit is a 0 (VIL).
1 = Value of selected bit is a 1 (VIH)'

If the pin has been selected as an output, then the value written to the bit is
the value output on the corresponding pin.

o = Value of selected bit is a 0 (VOL).
1 = Value of selected bit is a 1 (VOH).

3-18 TMS370C16 CPU

Interrupt and Exception Handling

3.7 Interrupt and Exception Handling

TMS370C16 recognizes four interrupt/exception sources, summarized below.
The actual number of interrupt sources, as well as their associated interrupt
vector(s}, is device specific. This reference guide provides general information
for the entire product range of 'C16-based devices. Refer to the specific device
data sheet and module reference guide for more information.

3.7.1 Interrupt/exception Sources

o Resets (hardware initiated) are unarbitrated by the CPU and take
immediate priority over any other executing functions. All interrupts and
the NMI (discussed below) are disabled until being enabled by the reset's
service routine (at 08002h in the vector table). Resets are described in
further detail in Section 3.2 on page 3-3.

o Nonmaskable interrupts (NMls) (discussed in subsection 3.7.4 on page
3-23) are generated at an external interrupt pin. An NMI takes priority over
peripheral interrupts and software exceptions. It can be locked out by an
already executing NMI or a reset. Its service routine start address is lo­
cated in the vector table at 08006h. See the specific device data sheet for
more information on devices having more than one NMI.

o Peripheral Interrupts (discussed in subsection 3.7.5 on page 3-24) are
initiated by any of the peripheral modules attached to the CPU. They can
be masked off by the L2-LO interrupt level bits of the ST. Figure 3-5 on
page 3-20 illustrates the vector configuration.

o Software exceptions (discussed in subsection 3.7.6 on page 3-24) are
not arbitrated by the CPU. When these are executing, the ST L2-LO inter­
rupt level bits are set to all ones (1112> to mask out peripheral interrupts.

• A TRAP instruction's vector location corresponds to the trap number
in its opcode (Q-255). Thus, vector locations range from 08000h for
trap 0 up to address 081 FEh for trap 255.

• The other software exceptions (unimplemented opcodes and the
ILLEGAL instruction) trap to the address at 08000h.

Whenever an enabled interrupt/exception source requests service, the CPU
transfers program flow through a vector that points to the starting address (PC
value) of an interrupt/exception subroutine. This context switching transfer is
implemented as shown in Figure 3-5:

TMS370C16 System Configuration 3-19

Interrupt and Exception Handling

Figure 3-5. Vector Table Organization in Memory

Memory
Trap Number Address

+ +
08000h ,
oaOO2h

,

08004h ,
08006h

, , OOOOOh
08008h ,
0800Ah

,
0800ch ,
oaOOEh

,
08010h ,
oa012h

,
08014h O8OOOh
08016h
08018h oa200h

oa01Ah
oa01Ch
0801Eh •
08020h • •
08022h OFFFEh

10000h
oa024h
08026h
08028h
0802Ah •

•
0802Ch I

oa02Eh
08030h
08032h
08034h
08036h

to
oa040h

oa042h i 1FFFEh

TRAP #33
to

081FCh
TRA1254

081FEh

3-20 TMS370C16 CPU

3.7.2 Vector Table

Interrupt and Exception Handling

The vector table (shown in Figure 3-5) contains up to 256 entries, each of
which is the starting PC address of an interrupt service routine. The table
begins at address 08000h.

When an interrupt is acknowledged, the CPU acquires a vector offset value,
which is added to 08000h to locate the corresponding service-routine start
address. Each interrupt source is responsible for supplying this offset either
through hardware (NMls and peripheral interrupts) or software (resets, traps,
and illegal opcodes).

The single vector table contains the service-routine start addresses for all
exceptions and interrupts. Thus, resets, NMls, and peripheral interrupt vectors
are shared with software exception vectors.

The vector table grows upwards (to higher addresses). The table is only as
large as required (but no larger than 512 bytes). The final size of the table is
determined by the peripheral module requirements of the device and the
application's software use of traps (see your specific device data sheet for
size).

The 16-bit address of the first executable instruction in the interrupt handler
is a word address that is loaded into the PC and transformed into a 17 -bit
physical memory address by overlaying bits b15-bO onto address lines
A 16-A 1 and forcing AO to O.

3.7.3 Reset and Interrupt Operation

Figure 3-6 describes the step-by-step sequencing of resets and interrupts.

TMS370C16 System Configuration 3-21

Interrupt and Exception Handling

Figure 3-6. Summary of Reset, NMI, Peripheral Interrupts, and Software Exception
Operations

Reset Selected
NMI, Perlpheral*, or Software Exception

Selected

*Peripheral interrupts must be a level higher than the level in the ST interrupt-level bits
(l2 - LO) in order to execute. Thus. a level of 1112 locks out any peripheral interrupt.

3-22 TMS370C16 CPU

Interrupt and Exception Handling

3.7.4 Nonmaskable Interrupt (NMI) Processing

The NMI is nonmaskable in that it cannot be masked out by the L2 - LO
interrupt-level bits of the status register. However, NMla .redlaabled and will
be ignored if:

o An NMI is already executing, or
o A reset occurs.

Unless pre-empted by a reset, the NMI will occur on the next instruction
boundary if it is internally enabled and a valid external NMI signal is received.

During these two situations, all the ST interrupt-level bits are set to 1, locking
out recognition of a pending NMI. Any pending NMI cannot be activated unless
one of the following occurs to (re-)enable NMls:

o Execution of an RTI instruction,

o Execution of a TRAP instruction, or

o The clearing to 0 of one or more ofthe ST register interrupt-level bits (e.g.,
by an STRI instruction or any other instruction that changes these bits in
the ST register-R14).

Also, because ST register interrupt level bits (L2, L 1, and LO) are all 1 s after
an NMI occurs, all interrupt requests are ignored by the CPU until these bits
are cleared to zero (changed from their all-1 s status).

To summarize, the occurrence of an NMllocks out a pending NMI until the
present one is serviced. The RTI instruction is a simple method of re-enabling
NMls, and a pending NMI will be taken following the re-enabling by one of the
specified methods.

NMI processing takes several steps:

1) ST - (SP).
2) SP + 2 - SP.
3) PC - (SP).
4) SP +2-SP.
5) Look up the vector offset for the NMI trap address (08006h or as specified

in the specific device data sheet).
6) Execute NMI interrupt handler at that address.

TMS370C16 System Configuration 3-23

Interrupt and exception Handling

NMI processing begins with the CPU pushing first its ST register value and
then the current PC value onto the stack. The PC points to the word address
of the next executable instruction plus two words (four bytes). This is equal to:

17·blt word address bus value +4 PC I
2 = vau.

The PC-value 4-byte offset is due to pipelining prefetch, which leaves the PC
pointing four bytes beyond the next opcode, at an instruction boundary.

3.7.5 Peripheral Module Interrupt Processing

Peripheral interrupt requests are maskable by the CPU via the ST register's
interrupt-level bits (l2 - LO). During any exception/interrupt processing, these
bits are set to 1s, masking off all interrupt requests (except an NMI that was
previously enabled; this is explained in subsection 3.7.4).

A request whose level is greater than the interrupt-level mask value in the ST
register is acknowledged at the next instruction boundary. A request of the
same or lower level will not be acknowledged.

Execution of an unmasked peripheral interrupt is shown in Figure 3-6, starting
on the upper right (page 3-22).

3.7.6 Software Exception (TRAPs, etc.) Processing

A software exception is not arbitrated by the CPU. It occurs when one of the
following is executed:

o An illegal opcode
o A TRAP instruction
o An ILLEGAL instruction

During any software exception, the ST register's interrupt-level bits (l2 - LO)
are set to 1 s, masking off all interrupt requests (except an NMI if NMls are en­
abled; this is explained in subsection 3.7.4).

Software exceptions generate their own vector offset value:

o TRAPs use the 8-bit vector offset value (to be added to the vector base
address) assembled in the LSbyte of the instruction's opcode.

o The other software exceptions use a vector offset value of 0016 - the
same as a TRAP #0 instruction.

See descriptions for the TRAP and ILLEGAL instructions in Chapter 5 for
further vector information.

3-24 TMS37OC16 CPU

External and Power Module Interrupts

3.8 External and Power Module Interrupts

There are three types of external interrupts:
1} External interrupt pins (subsection 3.8.1)
2} Power module fault condition (subsection 3.8.2 on page 3-35)
3) Phantom interrupt controlled exit from an improper interrupt acknowledge

sequence (subsection 3.8.3 on page 3-37)

3.8.1 External Interrupt Pins

The 16-byte interrupt frame (shown in Figure 3-7 and Figure 3-8 on the fol­
lowing pages) controls up to eight external interrupt pins and up to 49 power
module interrupts. Pin interrupts can be any of three types: A, B, and C (these
are described in Table 3-2 on page 3-26). At least one type A interrupt in INT1
is required in any configuration. The actual makeup of the interrupt frame is
device specific; see the device-specific data sheet to determine the interrupt
types and control register addresses.

Rules concerning the 16-byte interrupt frame:

o The first two bytes (addresses 0070h and 0071 h) are a type A interrupt
(required for all interrupt frames).

o The next (higher addressed) 14 bytes can be any combination of:

• Two-byte sets of pin interrupt control/status bits, and/or

• Two-byte sets that contain power-module control/status bits that start
at the highest address in the interrupt frame (0007Fh) and are placed
contiguously from that address to lower addresses in the frame.
Figure 3-7 and Figure 3-8 contain several examples.

o The additional Interrupt control/flag bytes are contiguous and follow the
type A interrupt bytes that start in addresses 00070h and 00071 h, growing
to the higher addresses. The first interrupt bytes are INT1 and INT1 FLG
bytes, the second are INT2 and INT2 FLG, etc.

o Power module (PM) control and flag bytes start with PM1 at the highest
two addresses in the frame (0007Eh and 0007Fh). A second power
module (PM2) would be immediately before those for PM1, located at
0007Ch and 0007Dh. PM3 would precede PM2, etc.

Thus, the interrupt frame could contain merely the required single pair of type
A interrupt bytes only, as shown in example (a) of Figure 3-7, or a combination
of pin interrupts and power module interrupts as shown in examples (b) and
(c) in the figure. Example (d) in Figure 3-7 shows pin interrupts in all locations.
The mix and position of interrupt pin types and number of power module pins
depends upon device-specific design considerations.

TMS370C16 System Configuration 3-25

External and Power Module Interrupts

Figure 3-8 is also a typical example of an interrupt frame with all three pin
types and their bit names. It also contains two power module control and flag
bytes with bit names.

Table 3-2 describes the different external interrupt pin types. All types can be
configured for high or low priority, and all interrupt pins are configured to digital
inputs on reset. Descriptions of the different types of pins are given in the
subsections that follow.

Table 3-2. External Interrupt Types

Pin Conflgurable Minimum Digital Freeze Alternate
Type as NMI? Required I/O Blts1 Functions

Type A Yes 1 Input only Yes Vpp/HPO

TypeS Yes 0 I/O No -
TypeC No 0 I/O No -

1 Freeze bits are further explained in Section 3.10 on page 3·39.

Table 3-3. External Interrupt Pin Functions

NMI Bitt Data Out Data Dlr* Polarity' Priority Int Enable

nonmaskable Interrupt 1 N/A N/A

Interrupt High Priority 0 N/A N/A

Interrupt Low Priority 0 N/A N/A

Digital Output '0' 0 0 1

Digital Output '1' 0 1 1

Digital Input 0 N/A 0

t Type C Interrupts do not have an NMI bit. Assume a value of O. * Type A interrupts do not have a data direction bit. Assume a value of O.
§ Polarity values of 1 and 0 indicate rising and falling edges, respectively.
N/A = Not applicable

0, 1

0, 1

0, 1

N/A

N/A

N/A

Note: INTx Used to Represent INT1-INT6

N/A N/A

0 1

1 1

N/A 0

N/A 0

N/A 0

In the discussion of interrupt types A, S, and C (subsections 3.8.1.1 through
3.8.1 .6 on pages 3-29 to 3-34), the term INTx represents any of the possible
interrupt locations (INT1-INT6) as shown in Figure 3-7 and Figure 3-8. Any
of of these interrupt locations can contain any of the three pin-interrupt types
(A, S, or C) with one restriction: INT1 in address 00070h must always contain
atypeA.

3-26 TMS370C16 CPU

Figure 3-7. Interrupt-Frame Typical Configurations

70h

71h

72h

73h

74h

75h

76h

77h

78h

79h

7Ah

7Bh

7Ch

7Dh

7Eh

7Fh

70h

71h

72h

73h

74h

75h

76h

77h

INT1 Type A Pin Interrupt

INT1 FLG

(a) Single Interrupt (Minimum Configuration)

INT1 Type A Pin Interrupt
~----~--------~--~

INT1 FLG Type A Pin Interrupt Flags

~----------------~ INT2 Type A Pin Interrupt

78h PM4 Power Module 4 Enable
~------------------~

79h PM4 FLG Power Module 4 Flags

~----------------~ 7 Ah PM3 Power Module 3 Enable
~------------------~

7Bh PM3 FLAGS Power Module 3 Flags

~----------------~ 7Ch PM2 Power Module 2 Enable
~------------------~

7Dh PM2 FLAGS Power Module 2 Flags

~----------------~ 7Eh PM1 Power Module 1 Enable
~------------------~

7Fh PM1 FLAGS Power Module 1 Flags ~ ____________ ~ __ ..J

(c) Interrupts and Power Modules

70h

71h

72h

73h

74h

75h

76h

77h

78h

79h

7Ah

7Bh

7Ch

7Dh

7Eh

7Fh

70h

71h

72h

73h

74h

75h

76h

77h

78h

79h

7Ah

7Bh

7Ch

7Dh

7Eh

7Fh

External and Power Module Interrupts

INT1 Type A Pin Interrupt

INT1 FLG Type A Pin Interrupt Flags

INT2 Type C Pin Interrupt

INT2 FLG Type C Pin Interrupt Flags

INT3 Type C Pin Interrupt

INT3FLG Type C Pin Interrupt Flags

PM2 Power Module 2 Enable

PM2FLAGS Power Module 2 Flags

PM1 Power Module 1 Enable

PM1 FLAGS Power Module 1 Flags

(b) Interrupts and Power Modules

INT1 Type A Pin Interrupt

INT1 FLG Type A Pin Interrupt Flags

INT2 Type C Pin Interrupt

INT2FLG Type C Pin Interrupt Flags

INT3 Type A Pin Interrupt

INT3FLG Type A Pin Interrupt Flags

INT4 Type B Pin Interrupt

INT4FLG Type B Pin Interrupt Flags

INT5 Type C Pin Interrupt

INT5FLG Type C Pin Interrupt Flags

INT6 Type B Pin Interrupt

INT6 FLG Type B Pin Interrupt Flags

INT7 Type C Pin Interrupt

INT7FLG Type C Pin Interrupt Flags

INT8 Type C Pin Interrupt

INT8FLG Type C Pin Interrupt Flags

(d) All Interrupts, Mix of All Three Types

TMS370C16 System Configuration 3-27

External and Power Module Interrupts

Figure 3-8. Typical Interrupt Frame
Reg Register

Addr Mnem 7 6 5 4 3 2 0 Shown

00070h INT1 TYpe A
Interrupt

Type A
00071h INT1 FLG Interrupt

Flag

00072h INT2 TYpeB
Interrupt

TypeB
00073h INT2FLG Interrupt

Flag

00074h INT3 TypeC
Interrupt

TypeC
00075h INT3FLG Interrupt

Flag

00076h

00077h

00078h

00079h

0007Ah

0007Bh

PM2 Power
0007Ch ENABLE Moduie2

Enable

PM2 PMINT PMINT PMINT PMINT PMINT PMINT Power
0007Dh FLAGS FLAG 12 FLAG 11 FLAG 10 FLAG 9 FLAG 8 FLAG 7 Moduie2

Flage

PM1 PMSTS PMSTS PMSTS PMSTS PMSTS PMSTS Power
0007Eh

ENABLE ENAB5 ENAB4 ENAB3 ENAB2 ENAB1 ENABO Module 1
Enable

PM1 PMINT PMINT PMINT PMINT PMINT PMINT Power
0007Fh

FLAGS FLAGS FLAG 4 FLAG 3 FLAG 2 FLAG 1 FLAG 0 Module 1
Flags

3·28 TMS370C16 CPU

External and Power Module Interrupts

3.8.1.1 Type A Interrupt Pins

Bit #

00070h

7

Type A interrupt pins can be used as nonmaskable interrupts, normal inter­
rupts, or digital input pins. At least one type A interrupt pin is required on each
device and must be located in address 00070h (the first byte -I NT1 - in the
interrupt frame). A corresponding Type A flag bit is contained in the second
byte (described in subsection 3.8.1.2). Additional type A interrupts can be
implemented on a device's interrupt frame, their location specified by device
design (see applicable device data sheet). The example below shows the type
A interrupt at INTi. Bits take the name of the interrupt level (INT2, INT3, etc.).

Type A Interrupt (shown In INTi location)

6 5 4 3 2 o

R = Read, W = Write, C = Clear only, F = Freeze bit, -n = Value after reset (0, 1, x = Indeterminate)

Bit 7 Reserved.
Writing to this bit has no effect, and a read is undefined.

Bit 6 INTi PIN DATA. Interrupt Pin Data.
This bit reflects the current level on the interrupt pin, regardless of how the in­
terrupt pin is configured.

o = The pin is a low input.
1 = The pin is a high input.

Bit 5 INTi NMI. Nonmaskable Interrupt Enable.
This bit determines whether or not this pin can generate a nonmaskable inter­
rupt. A freeze bit can be configured to a 1 or 0 on ROM devices at the time of
device fabrication (see Section 3.10 on page 3-39).

o = The pin is a regular interrupt or a digital input.
1 = The pin is a nonmaskable interrupt.

Bits 4 & 3 Reserved.
Writing to these bits has no effect, and reads are undefined.

Bit 2 INTi POLARITY. Interrupt Polarity.
This bit determines whether interrupts are generated on the rising or falling
edge. A freeze bit can be configured to a 1 or 0 on ROM devices at the time of
device fabrication (see Section 3.10 on page 3-39).

0= The interrupt is generated on a falling edge (high-to-Iow transition).
1 = The interrupt is generated on a rising edge (low-to-high transition).

TMS37OC16 System Configuration 3-29

External and Power Module Interrupts
;;

Bit 1 INT1 PRIORITY. Interrupt Priority.
This bit determines which level interrupt is requested. The bit is ignored if the
NMI bit is set.

0= High-level interrupt. See the specific device data sheet.
1 = Low-level interrupt. See the specific device data sheet.

Bit 0 INT1 ENABLE. Interrupt Enable.
This bit enables or disables the maskable interrupt. The bit is ignored ifthe NMI
bit is set.

0= Disable interrupt (use pin as a digital input).
1 = Enable interrupt.

3.B.1.2 Type A External Interrupt Flag Bit

Bit # 7 ...----,-
00071 h INT1 FLAG

RC-O

The Type A external interrupt flag bit is the MSB of the byte that accompanies
and follows the Type A interrupt pin byte (described in subsection 3.8.1.1). The
example below shows INT1 FLAG bit.

Type A External Interrupt Flag (INT1 location)

6 5 4 3 2 o

R = Read. W = Write. C = Clear only. -n = Value after reset (0, 1, x = indeterminate)

Bit7

Bits 6-0

INT1 FLAG. Interrupt Flag.
This bit indicates that the selected transition has been detected. It is set,
whether the interrupt is enabled or not. The bit can be used for software polling
to see whether the selected edge has occurred. It can be cleared by software
or a system reset. If used as an interrupt, the bit does not have to be cleared.
The interrupt occurs once for each selected edge on the interrupt pin, even
though the bit is already set. However, clearing the bit will clear a pending
interrupt request from this interrupt pin. The interrupt flag bit is located in a
separate register from the interrupt control bits to prevent inadvertent clearing
of the flag bit when the control bits are changed with read/modify, write-type
instructions such as SBITO and SBIT1 (set bit to 0, set bit to 1 instructions).

o = No transition is detected.
1 = A transition is detected.

Reserved.
Writing to these bits has no effect, and reads are undefined.

3-30 TMS370C16 CPU

External and Power Module Interrupts

3.8.1.3 Type B Interrupt Pins

8;t# 7

Type B interrupt pins can be used as nonmaskable interrupts, normal
interrupts, digital input, or digital output pins. Any combination of Type B (as
well as Types A or C) interrupt-pin bytes can follow the two Type A interrupt
bytes in addresses 00070h and 00071 h, as specified by device design (see
applicable device data sheet). This Type B interrupt pin byte is followed by a
second byte containing the Type B interrupt flag bit (shown in subsection
3.8.1.4).

Type B Interrupt Pin Byte

6 5 4 3 2 o
nf~· ~~7r------~----~------~----~------~------~----~

INTxNMI INTx INTx INTx INTx INTx
DATA DIR DATA OUT POLARITY PRIORITY ENABLE

R-O RW-O RW-O RW-O RW-O RW-O RW-O
R., Read, W., Write, C., Clear only, --n., Value after reset (0, 1, x., indeterminate)

Bit 7 Reserved.
Writing to this bit has no effect, and a read is undefined.

Bit 6 INTx PIN. Interrupt x Pin Data.
This bit reflects the current level on the interrupt pin, regardless of how the in­
terrupt pin is configured.

o = The pin is a low input.
1 = The pin is a high input.

Bit 5 INTx NMI. Nonmaskable Interrupt x Enable.
This bit determines whether or not this pin can generate a nonmaskable inter­
rupt.

o = The pin is a regular interrupt or a digital 1/0.
1 = The pin is a nonmaskable interrupt.

Bit 4 INTx DATA DIR. Interrupt x Pin Data Direction.
When this interrupt pin is not enabled as an interrupt, the bit determines
whether the pin is a digital input or a digital output.

o = The pin is an input.
1 = The pin is an output.

Bit 3 INTx DATA OUT. Interrupt x Pin Output Data.
When used as a digital output pin, this readlwrite bit determines whether or not
this pin is a 1 or O.

o = The pin is a zero if used as a digital output.
1 = The pin is a one if used as a digital output.

TMS370C16 System Configuration 3-31

External and Power Module Interrupts

Bit 2 INTx POLARITY. Interrupt x Polarity.
This bit determines whether interrupts are generated on the rising or falling
edge.

0= The interrupt is generated on a falling edge (high-to-Iow transition).
1 = The interrupt is generated on a rising edge (Iow-to-high transition).

Bit 1 INTx PRIORITY. Interrupt x Priority.
This bit determines which level interrupt is requested. The bit is ignored if the
NMI bit is set.

o = High-level interrupt. See the specific device data sheet.
"-

1 = LOW-level interrupt. See the specific device data sheet.

Bit 0 INTx ENABLE. Interrupt x Enable.
This bit enables or disables the maskable interrupt. This bit is ignored if the
NMI bit is set.

0= Disable interrupt (Use pin as a digital input or output).
1 = Enable interrupt.

3.8.1.4 Type B External Interrupt Flag Bit

Bit #

0007xh

7

RC-O

This bit is the MSB of the byte following the Type B external interrupt pin byte
described in subsection 3.8.1 .3.

Type B Interrupt Flag Byte

6 5 4 3 2 o

R = Read, W = Write, C = Clear only, -n = Value after reset (0, 1, x = indeterminate)

Bit 7 INTx FLAG. Interrupt x Flag.

Bits 6-0

This bit indicates that the selected transition has been detected. It is set,
whether or not the interrupt is enabled. This bit can be used for software polling
to see whether the selected edge has occurred. It can be cleared only by soft­
ware or a system reset. If used as an interrupt, the bit does not have to be
cleared. The interrupt occurs once for each selected edge on the interrupt pin,
even though the bit is already set. Clearing the bit will, however, clear a pend­
ing interrupt request from this interrupt pin. The interrupt flag bit is located in a
separate register from the interrupt control bits to prevent inadvertent clearing
of the flag bit when the control bits are changed with read/modify/write-type
instructions such as SBITO and SBIT1 (set bit to 0, set bit to 1 instructions).

o = No transition is detected.
1 = A transition is detected.

Reserved.
Writing to these bits has no effect, and reads are undefined.

3-32 TMS370C16 CPU

External and Power Module Interrupts

3.B.1.5 Type C Interrupt Pins

Bit #

0007xh

7

Type C interrupt pins can be used as normal interrupts, digital input, or digital
output pins. Any combination of Type C (as well as Types A or B) interrupt-pin
bytes can follow the two Type A interrupt bytes in addresses 00070h and
00071 h, as specified by device design (see applicable device data sheet). This
Type C interrupt pin byte is followed by a second byte containing the Type C
interrupt flag bit (shown in subsection 3.8.1.6).

Type C Interrupt Pin Byte

6 5 4 3 2 o
INTx INTx INTx INTx INTx

DATA DIR DATA OUT POLARITY PRIORITY ENABLE

~ ~~ ~~ ~~ ~~ ~~

R = Read, W = Write, C = Clear only, -n = Value after reset (0, 1, x = indeterminate)

Bit 7 Reserved.
Writing to this bit has no effect, and a read is undefined.

Bit 6 INTx PIN. Interrupt x Pin Data.
This bit reflects the current level on the interrupt pin, regardless of how the in­
terrupt pin is configured.

o = The pin is a low input.
1 = The pin is a high input.

Bit 5 Reserved.
Writing to this bit has no effect, and a read is undefined.

Bit 4 INTx DATA DIR. Interrupt x Pin Data Direction.
When this interrupt pin is not enabled as an interrupt, the bit determines wheth­
er the pin is a digital input or a digital output.

o = The pin is an input.
1 = The pin is an output.

Bit 3 INTx DATA OUT. Interrupt x Pin Output Data.
When this pin is used as a digital output, this bit determines whether the pin is a
1 or O.

o = The pin is a 0 when used as a digital output.
1 = The pin is a 1 when used as a digital output.

Bit 2 INTx POLARITY. Interrupt x Polarity.
This bit determines whether interrupts are generated on the rising or falling
edge.

o = The interrupt is generated on a falling edge (high-to-Iow transition).
1 = The interrupt is generated on a rising edge (Iow-to-high transition).

TMS370C16 System Configuration 3-33

External and Power Module Interrupts

Bit 1 INTx PRIORITY. Interrupt x Priority.
This bit determines which level interrupt is requested.

o = High-level interrupt. See the specific device data sheet.
1 = Low-level interrupt. See the specific device data sheet.

Bit 0 INTx ENABLE. Interrupt x Enable.
This bit enables or disables the maskable interrupt.

0= Disable interrupt (use pin as a digital input or output).
1 = Enable interrupt.

3.8.1.6 Type C Interrupt Flag

Bit # 7

This bit is the MSB of the byte following the Type C external-interrupt pin byte
described in subsection 3.8.1.5.

Type C Interrupt Flag Byte

6 5 4 3 2 o
r-------.:

0007xh INTx FLAG

RC--O
R = Read, W = Write, C", Clear only, -n '" Value after reset (0, 1, x '" indeterminate)

Bit 7 INTx FLAG. Interrupt x Flag.

Bits 6-0

This bit indicates that the selected transition has been detected. It is set,
whether or not the interrupt is enabled. The bit can be used for software polling
to see whether the selected edge has occurred. It can be cleared only by soft­
ware or a system reset. If used as an interrupt, the bit does not have to be
cleared. The interrupt will occur once for each selected edge on the interrupt
pin, even though this bit is already set. Clearing this bit will, however, clear a
pending interrupt request from this interrupt pin. The interrupt flag bit is located
in a separate register from the interrupt control bits to prevent inadvertent
clearing of the flag bit when the control bits are changed with read/modify/
write-type instructions such as SBITO and SBIT1 (set bit to 0, set bit to 1
instructions) .

0= No transition is detected.
1 = A transition is detected.

Reserved.
Writing to these bits has no effect, and reads are undefined.

3-34 TMS370C16 CPU

External and Power Module Interrupts

3.8.2 Power Module Interrupts

Power modules sometimes have fault condition signals that generate
interrupts. These signals are routed to the interrupt module. Each interrupt
signal has one enable bit and one status flag. Each set of seven internal
interrupts has a single interrupt vector. The interrupt level is determined at
device fabrication; it cannot be programmed. The power module interrupt
registers reside in the same frame as the external interrupt registers.

3.B.2.1 Power Module Interrupt Enable Register

Bit #

0007Eh

7

RW-O

The power module interrupt enable registers contain interrupt enable bits
associated with any power modules that are available. See the specific device
data sheet to determine availability and naming conventions. Power Module
Enable 1 at address 0007Eh is shown as an example. Power Modules 2 and
3, etc., operate identically at their own addresses but are not shown (they
follow the numbering scheme shown in Figure 3-8 on page 3-28).

Power Module 1 Enable Interrupt Register (PM1 ENABLE)

6

PMSTS
ENA6

RW-O

5

PMSTS
ENA5

RW-O

4

PMSTS
ENA4

RW-O

3

PMSTS
ENA3

RW-O

2

PMSTS
ENA2

RW-O

PMSTS
ENA1

RW-O

o
PMSTS
ENAO

RW-O
R= Read, W= Write, C= Clear only. -n= Value after reset (0, 1. or x= Indeterminate)

Bit 7 PM INT ENA 1. Power Module Interrupt Enable 1 .
This bit designates whether or not the seven power module interrupt inputs are
able to generate an interrupt request. Note that if this bit is cleared, none of the
related seven interrupts in bits 6 - 0 can cause an interrupt. If this bit is set, then
an active and enabled interrupt in bits 6 - 0 can cause an interrupt and set the
corresponding bit in the power module flag register (described in subsection
3.8.2.2). The PM INT ENA 1 bit provides a quick means to temporarily disable
all power module interrupts from a group and then re-enable them using the bit
clear (SBITO) and bit set (SBIT1) instructions. The wakeup signal associated
with this interrupt is also disabled when the interrupt is disabled.

o = Power module interrupt is disabled.
1 = Power module interrupt is enabled.

Bits 6 - 0 PM STS ENA 6-(). Power Module Status Interrupt Enable.
These bits specify whether or not the power module interrupt sources are
enabled to set the PM INT FLAG 1 bit (subsection 3.8.2.2). To allow an
interrupt from a particular power module input, the corresponding PM STS
ENA x bit must be set, as well as the PM INT ENA 1 bit.

o = Power module interrupt is disabled.
1 = Power module interrupt is enabled.

TMS370C16 System Configuration 3-35

Externsl snd Power Module Interrupts

3.8.2.2 Power Module Interrupt Flag Register

Bit #

0007Fh

The power module interrupt flag registers contain the interrupt status flags
associated with the power modules that are used. See the specific device data
sheet to determine module availability and naming conventions. Power
Module Flag 1 is shown as an example. Power Modules 2 and 3, etc., operate
identically at their own addresses but are not shown (they follow the numbering
scheme shown in Figure 3-8 on page 3-28).

Power Module 1 Flag Register (PM1 FLAGS)

6

PMINT
STS6

5

PMINT
STS5

4

PMINT
STS4

3

PMINT
STS3

2

PMINT
STS2

RC-O R-x R-x R-x R-x R-x
R = Read, W = Write, C = Clear only, -n = Value after reset (0, 1, or x = Indeterminate)

PMINT
STS1

R-x

o
PMINT
STSO

R-x

Bit 7 PM1 INT FLAG. Power Module Interrupt Flag.
This bit is set any time one of the power module interrupt status bits is active
and its corresponding PM STS ENA x bit is also set. This flag can be cleared
only by writing a 0 (writing a 1 has no effect). Values read at this bit:

o = Power module interrupt has not occurred since flag last cleared.
1 = Power module interrupt has occurred since flag last cleared.

Bits 6 - 0 PM INT STS 6-0. Power Module Interrupt Status Flags.
These read-only bits reflect the status of the input source Signal to the power
module interrupts. If the source is in its active state causing an interrupt, this bit
will read a 1; otherwise, it will read a O.

o = Power module interrupt is inactive.
1 = Power module interrupt is active.

3-36 TMS370C16 CPU

External and Power Module Interrupts

3.8.3 Phantom Interrupt Vector

The phantom interrupt vector (shown at address 08004h in Figure 3-5 on
page 3-20) is a system interrupt integrity feature that allows a controlled exit
from an improper interrupt acknowledge sequence. For example, if the CPU
receives an interrupt request from a device module, the CPU then reads the
priority chain of the device modules to determine which module has a pending
interrupt. If the CPU finds no module with a pending interrupt, even though the
CPU received an interrupt request, the phantom interrupt vector is accessed.
Because this condition is considered to be an invalid operation, it is suggested
that the phantom interrupt vector point to a reset generating routine (software
reset) so that the device will resume operating from a known condition.

TMS370C16 System Configuration 3-37

Multiple Inte"upt Servicing

3.9 Multiple Interrupt Servicing

When multiple interrupts are pending simultaneously, the interrupt with the
highest level priority is serviced first. This order of service is established
through the physical daisy chain connections on the interrupts and by the
interrupt mask level in the ST, bits L2-LO.

When servicing an interrupt, the processor automatically sets the interrupt
mask bits L2-LO to 1. This prevents all other interrupts (except an NMI) from
being recognized during the execution of the interrupt service routine. If an
NMI causes its interrupt service routine to be entered, then even subsequent
NMls are disabled until the NMI interrupt service routine is exited with an RTI
(return from interrupt) instruction. Once the service routine is exited, the old
status register contents are popped from the stack. This returns the ST
interrupt mask bits to their original conditions, thus allowing pending interrupts
to be recognized.

An interrupt service routine can allow nested interrupts by modifying the ST
interrupt mask bits during interrupt service routine execution. This permits
other interrupts to be recognized during the service routine execution. When
a nested interrupt service routine completes, it returns to the previous interrupt
service routine when the RTI instruction executes. Too many nested interrupts
could overflow the stack, causing program failure.

3-38 TMS370C16 CPU

TMS370C16lnte"upt Configurability Options

3.10 TMS370C16 Interrupt Configurability Options

The Type A interrupt (described in subsection 3.8.1.1 on page 3-29) allows a
freeze option regarding:

o Nonmaskable interrupt functionality
o Active edge polarity of the interrupt

You can configure your device with freezable control bit mask options during
the final stages of the manufacturing process. This freeze option allows you
to configure the function of any available Type A interrupt on the device to meet
your system requirements. Freezable control bits can be frozen in either a 1
or 0 value. If a control bit is frozen, software control over that bit is disabled,
and the Type A interrupt will always operate relative to the frozen state of the
bit.

To configure your device with freezable control bit mask options at the time of
manufacture, complete a New Code Release Form (NCRF) indicating the
desired options. The NCRF is available through any local TI field sales office.

The two control bits in the Type A interrupt control register that can be
individually frozen during the manufacturing process are the INT1 NMI
(INTx.5) bit and the INT1 POLARITY (INTx.2) bit. Table 3-4 illustrates the
possible freeze options available and how Type A interrupt operation is
affected.

Table 3-4. Type A Interrupt Control Bit Freeze Options

INT1 NMI
(INTx.5)

Writeable

o (Frozen)

1 (Frozen)

Writeable

Writeable

INT1 POLARITY
(INTx.2)

Writeable

Writeable

Writeable

o (Frozen)

1 (Frozen)

Type A Interrupt Functionality

Fully software selectable.

Type A interrupt can never be configured as an NMI. Polarity is
software selectable.

Type A interrupt will always be configured as an NMI. Polarity is
software selectable.

Type A interrupt NMI functionality is software selectable. Polar­
ity is always on the falling edge only.

Type A interrupt NMI functionality is software selectable. Polar­
ity is always on the rising edge only.

TMS370C16 System Configuration 3-39

Low-Power and Idle Modes

3.11 Low-Power and Idle Modes

3.11.1 Overview

Low-power modes reduce the operating power by reducing or stopping the
internal clock signals used by various modules in the device. There are two
types of low-power modes: the halt and standby modes (see the Clock
Modules Reference Guide for implementation information.) A third mode, idle,
is not actually a low-power mode, but a wait state.

The TMS370C16 low-power (powerdown) modes are defined as follows:

o Halt mode provides the lowest level of power reduction by stopping all sys­
tem clocks.

o Standby mode provides an intermediate level of power reduction by stop­
ping the system clocks to the CPU. The oscillator and watchdog (if avail­
able) clocks are still active in the standby mode.

o Idle mode provides no power reduction at all. The CPU in effect, goes into
an infinite loop and executes the IDLE instruction until a reset occurs or
an enabled interrupt causes another operation to occur.

These modes can be permanently enabled or disabled through mask options
for ROM-based devices. If the device has the low-power mode disabled
through this mask option, writing to the low-power selection control bits in the
oscillator module has no effect. Once the low-power selection control bits are
initialized, executing an IDLE instruction causes the device to enter one of the
two low-power modes or the idle mode.

Note: Low-Power Modes Depend on Oscillator Module

The low-power modes for 'C16 CPU-based devices and the methods of
selection depend a great deal on the oscillator module used on the device.
See the specific device data sheet and the oscillator module user's guide for
more information on the availability and implementation of low-power
modes.

3.11.2 Low-Power Wakeup Interrupt

The TMS370C16 CPU-based architecture enables the device to be pulled out
of low-power modes through a maximum of 24 selectable actions, as well as
any power module interrupt that is present on the device. The actual number
and selection of the 24 wakeup actions is device specific. Typically, reset or
any enabled external interrupt, as well as any other enabled module interrupt

3-40 TMS37OC16 CPU

Low-Power and Idle Modes

(SCI, RXD, RTI, etc.), pulls the device out of a low-power mode. See the
specific device data sheet to determine exactly which actions allow the
low-power modes to be exited.

Remember that even though an interrupt is designed to allow an exit from the
low-power mode, that particular interrupt still must be enabled locally and
globally to actually bring the device out of the low-power mode. For example,
a device can have an SCI available and the SCI RXD interrupt selected to allow
low-power mode exit. If the SCI RXD interrupt is disabled locally or If global
interrupts are disabled, the low-power mode will not be exited. You must
ensure a low-power mode exit path is available before entering a low-power
mode.

TMS370C16 System Configuration 3-41

3-42 TMS370C16 CPU

Chapter 4

Addressing Modes

This chapter describes the addressing modes supported by the TMS37OC16
microcontroller instruction set and covers the following topics:

Topic Page

4-1

Mode Summary

4.1 Mode Summary

The various addressing modes of the TMS370C16 CPU and their syntax are
described in the pages listed in Table 4-1 below. To find which modes apply
to a specific instruction, consult the instruction-set summary table in Section
5.2, beginning on page 5-4.

Table 4-1. Addressing Mode Summary

Addre .. lng Mode

Implied

peRelatlve

Memory Direct

Immediate

Register Direct

Register Indirect t
No Displacement

With Displacement

Description

Operand is not required. Instruction operation
is implied in the mnemonic.

Operation is relative to the PC contents.

Operation is on a specified memory address.

Operate on a value specified in the operand.

Operate on the value in a register.

Operate on a value at an address in a register.

Register contents = effective address
(includes both predecrement and
postincrement modes)

Offset + register contents = effective
address (includes extra indirection with
CALL and JMP instructions)

Section Page

4.2 4-3

4.3 4-4

4.4 4-5

4.5 4-7

4.6 4-8

4.7 4-9

4.7.1 4-10

4.7.2 4-13

tSection 4.8 (page 4-16) describes how to set the word address in a register for using indirect ad­
dressing with the CALL, JMP, and FMOV instructions.

To deSignate contents, the following apply:

Symbol

(Ax) or (x)

((x))

4-2 TMS37OC16 CPU

Meaning

Contents of register x or of memory at address x

Contents of memory designated by contents of x

Example

(R4) or (LABEL)

(disp + (Rn))

Implied Addressing

4.2 Implied Addressing

This class of instructions does not require you to specify an operand. The
operands to be used are predetermined. For example, the implied instruction
RTS has two implied operands: the stack pOinter (SP) and the program
counter (PC). Other instructions using this form of address are RTI (return from
interrupt) and UNLINK (unlink and deallocate stack frame).

Figure 4-1. Implied Addressing

RTS

Execution:
(SP) - 2 (SP)
(SP) (PC)

Return from a subroutine. Subtract 2 from stack pointer. Move stack
word at stack pointer value to PC, which is interpreted into the value
on lines A 16 - A 1 with AO = 0 (calculates to COOOh X 2 = 18000h).

01 7FFCh J---:::-:-=~"7.'7"-==:--;----f
01 7FFEh I---=------f
018000hr-_____ ~

r

:~~~O 0 4 + Stack Pointer
R14 at RTS Execution

R15

I
+ Stack

@ F004
--=.2.
FOO2 -----.. F002h

@ New Sta~ FOO4h 1--__ +-___ 1
Address F006h 1--__ +-___ 1
is FOO2h

G)

RTS Is Final Instruction
in Subroutine 1R Q

16-Bit PC I: .. :'~::,:;ii, :b:::::;i.i'o,i;!.Qi:!i:;~1
I

@ ~ fO
Return Address (17 Address Lines) T

~----------------------4-111111 I I I I I I I I II I
A16 AO

Note: A dashed line denotes the path ofthe value moved or copied. A solid line denotes
a location pointer.

Addressing Modes 4-3

PC-Relst/ve Addressing

4.3 PC-Relative Addressing

This format adds or subtracts a value from the PC to derive the effective ad­
dress of the next instruction. Instructions using this format are Bcond, BRBITO,
BRBIT1 , and DBNZ.

Figure 4-2. PC-Relative Addressing

_Q SAMILaos

Execution:
(PC) + displacement ... (PC)

(if condition true)

If Condition Is
True, Branch
to Subroutine

.. SAME_NOS

If the status register Z[ST] = 1 (equal condition true),
branch to address SAME_NOS by adding 2 x a-bit displace­
ment to the PC value (presently pointing 2 words beyond
the BEQ instruction). This p~ovides a signed displacement
of + 129 words or -126 words from the BEQ instruction's
address. If Z[ST] • 0, go to the next instruction.

BEQ SAME NOS One-Word Instruction

.-PC Points Here

For Bcond, BRBITO, and BRBIT1 , a signed 8-bit value is added to the PC as
address lines A8-A 1 to redirect execution flow from the executing
instruction's 17 -bit physical memory address. For the DBNZ instruction, a four­
bit unsigned value in bits 7-4 of the instruction word is subtracted from the
PC's corresponding value for address lines A4-A 1. The following table shows
the displacement from the physical address of the PC.

Instruction

Bcond (where cond represents
the condition mnemonic)

BRBITO and BRBIT1

DBNZ

Maximum Displacement

+ 129 words after and -126 words be­
fore the physical address of the PC

+ 130 words after and -125 words be­
fore the physical address of the PC

Up to -15 words before the PC

The 8-bit displacement is contained in the LSB:

15 8 7 4 3 o

4-4 TMS370C16 CPU

Memo~-Du~Addr~mg

4.4 Memory-Direct Addressing

This addressing mode provides an easy way to deal directly with absolute
addresses or labeled addresses. It is available only for instruction formats in
which the indirect register with offset format (*disPts[Rnn is used (as ex­
plained in the note on the next page).

Figure 4-3. Memory-Direct Addressing (& Operator)

NOV lI'rABLl , lI'rABL2

Execution:
(TABL1) - (TABL2)

TABL1

TABL2

• • •
TABL3

MOYB I~ABL3,I~ABL2+1

Execution:

Move (copy) the entire contents (word value) at address
TABL 1 to address TABL2. Leave the source-address
contents unchanged. Consider TABL 1 and TABL2 to be
on even addre .. boundar Ie. in order to work correctly
with a move-word instruction.

TABL1
Copy Word
atTABL1 to
TABL2

TABL2

• • •
TABL3

(TABL3byte) - (TABL2+ 1 byte>

Move (copy) the byte contents at address TABL3 to the
byte at address TABL2+ 1. Leave the source-address
contents unchanged. TABL2 and TABL3 are on even
addre •• boundar I .. in this example.

Before

TABL1
J--------I

TABL2
t--------t

TABL3

After

TABL1

TABL2~~-=-

Copy Byte at TABL3 I
to Byte at TABL2+1 I

TABL3

Addressing Modes 4-5

Memory-Direct Addressing

Note: Derivation of Memory-Direct Format (& Operator)

The &LABEL-format instruction is derived by transforming the &LABEL
operand into the *displacement16[ZR]format (ZR = R15, the zero register).
Thus the zero register value does not change the source or destination
address, leaving it equal to the displacement16 value of LABEL.

For example:

MOV &LABEL,RIO

is assembled as if written as:

MOV *LABEL[ZR],RIO

and its timing is the same as for the *disp[Rn] format.

The second instruction example above moves the contents at LABEL (zero
offset) to R1 o. The corresponding opcode value in this example is 22h, and
the instruction needs three cycles to execute, as shown for the formats for
the MOV instruction, beginning on page 5-70.

The &LABEL format can be used with any instruction that uses the *disp[Rn]
operand (e.g., ADD, ADC, AND, CALL, CLR, etc.).

4-6 TMS370C16 CPU

Immediate Values

4.5 Immediate Values

This format contains a signed immediate number that will be operated on by
the instruction. The immediate value is preceded by an identifying pound sign
(#). The different types of immediate instructions are described below.

Figure 4-4. Operand Is Immediate Value (# Operator)

MOV U,al

Execution:
Immediate operand - (R3)

MOV N3,R3

Move (copy) the immediate value 3 to R3. The immediate
value operand is signified by a # prefix.

RO-R15

RO
t--------t
I--_____ ~ R1

Two-Word {
Instruction 0 0 0 3 -

R2

R3

extension Word (Up to 16
Blta)

Embedded 8-BIt Immediate

Embedded 4-Blt Immediate

t--------t R4
I--------t R5
1--_____ --1 R6

A 16-bit extension word following the instruction word con­
tains the immediate value:

The immediate value is in the LSbyte of the instruction
word:

Instructions using this format include TBITO, TBIT1, LINK,
RTOU, and TRAP.

The immediate value is in the four MSBs of the instruction
word's LSbyte:

_mm ... ;mm .. mm"mm~ _.< _ .. _ mm:mm;.mm.=,,,mm. __ . _. _.

Instructions using this format include ADO, ADOB, MOVO,
SUBO, SUBOB, STRI, and the shift instructions (SHL, SHLL,
ASR, ASRL, ASRO, ASROL, LSR, and LSRL).

Addressing Modes 4-7

Register-Direct Addressing

4.6 Register-Direct Addressing

Values within registers are operated upon. The effective address is within the
first 64K bytes exceptfor the CALL and JMP instructions, which address 128K
bytes.

Figure 4-5. Register-Direct Addressing

CD NOV R1,R3
<2> NOVB R3 , RS

Move (copy) the entire contents (word value) of R1 to R3. Leave the
source register (R1) unchanged. Later, move the LSbyte of R3 to the
LSbyte of R5; zero-extend the MSbyte of R5.

Execution:
CD (R1) - (R3)
<2> (R3 LSbyte) - (RS LSbyte)

zeroes - (RS MSbyte)

WOV R1,R3

• • •
MOVB R3,R5

RO
CD

CopyR1 r R1

R2
<2>

toR3L
R3

Copy LSbyte of R31 R4
to LSbyte of R5L

R5 (zero-extend
MSbyte of R5) R6

Figure 4-6. Register Direct With CALL or JMP Instructions Addresses 128K Bytes

When used with the CALL or JMP instructions, this mode addresses 128K byte. (as
shown above, address line A16 = 0). For JMP or CALL, place the new 16-bitvalue
into the PC, then overlay the PC value onto address lines A 16-A 1 with AO set to O.
Since this essentially multiplies the register contents by two, the register's contents
must be half the absolute memory address value. You can use the question mark
operator (?) to fill the register with this value (as shown in Section 4.8 on page 4-16).

JMP as

Execution:
(RS) - (PC)

Jump to the address stored In R5. This address is placed in
the PC and then overlaid on the address-bus lines (9FDOh x 2
= 13FAOh). The CALL acts similarly but also provides linkage
to the instruction following the CALL.

O6OOh
.......:=-....:..::=----1

0802h
....... -------1

0804h _____ --I

13FAOh

PC Points Here
Before Jump

New PC Value

1 17 Address Unes

4-8 TMS370016 CPU

CD 1
New 1

Value 1
to PC

RO-R15
RO
R1
R2

R3
R4
R5
R6

PC fO
AO

Register-Indirect Addressing

4.7 Register-Indirect Addressing

The forms of indirect addressing are listed in Table 4-2 below:

Table 4-2. Register-Indirect Addressing Summary

Indirect Addre88lng Mode Example Using MOV Description See On Page

No Displacement MOV *R1,R2 The effective address of the Figure 4-7 4-10
source is the value in R1. Move
(copy) contents at that address
to R2.

Predecrement, no displacement MOV *-R1,R2 Before the move, decrement Figure 4-7 4-10
the contents of R 1 by 2 (for Figure 4-8 4-11
word instructions - by 1 for
byte instructions). Then move
(indirect) the contents at the
address in R1 into register R2.

Postincrement, no displacement MOV *R1+,R2 Firat move (indirect) the con- Figure 4-9 4-12

With Displacement

tents at the address in R1 into
register R2. Then increment the
contents of R1 (by 2 for word
instruction s ...:.. by 1 for byte
instructions).

MOV *DISP[R1],R2 DISP = amount added to R1 to Section 4.7.2 4-13
compute the effective address Figure 4-10 4-13
of the source. Move contents at Figure 4-11 4-14
this effective address to R2.
Neither predecrement nor post-
increment is used with this
form.

Note: *Rn Can Be Used If *dlsp[Rn] Is Assembled

Several instructions do not provide an indirect register without displacement
(*Rn), but provide an indirect register with displacement (offset) (*disp[RnlJ.
However, with such instructions, the assembler accepts *Rn by assembling
the *Rn format into a *o[Rn] format.

For example, the assembler statement
is assembled as if written

ADD

ADD
*Rl,R2

*O[Rl],R2

Thus, the requested instruction becomes a two-word instruction with a zero
offset in the second word. In this case, timing is 3 cycles - the cycle count
for ADD *disp[Rs],Rd. (Note that an ADD *Rs, *Rdoperand cannot be used,
because there is no ADD *disp[Rs], *disp[Rd] instruction.)

Addressing Modes 4-9

Register-Indirect Addressing

4.7.1 Register Indirect Addressing, No Displacement
(Register Contents = Effective Address)

Register contents point to a memory address that contains the value to be op­
erated on. The register value is treated as a 16-bit memory address (address
line A 16 = 0) by all instructions except CALL, FMOV, and JMP (which use the
value as a word address and apply it to the PC, where it is shifted to a 17 -bit
word address). A method to derive the word address for indirect addressing
is shown in Section 4.8 on page 4-16.

Two other forms of indirect addressing are predecrement and postincrement
o In postincrement, the register containing the address is first accessed and

incremented afterwards (see Figure 4-9). This is used with instructions
such as MOV, CLR, CMP, STEA, and TST.

o In predecrement, the register containing the address is decremented
before the address is accessed (see Figure 4-8). This is used with the
MOV *-Rs,Rd format.

Note: Decrement/Increment Considerations

1 . The value incremented or decremented depends upon the size of the
instruction. This value is 2 for word instructions and 1 for byte instruc­
tions.

2. When initializing the stack pointer (SP or R14), always write an even
value to the SP register. An odd value can cause an error.

Figure 4-7. Register Indirect (Operand: *Rn)

NOV *Rl,R3

Execution:
«R1» (R3)

8OAOh

4-10 TMS370C16 CPU

The source register (R1) contains the addre •• where the
source value is located. Move the value at address BOAOh to
R3. Do not modify R1 or the value at address BOAOh.

Re~listelrs RO- R 15
Points to

RO <D Address
SOAOh R1

R2

r R3

I R4

__ (2) CopY~ R3.J R5
R6

Register-Indirect Addressing

Figure 4-8. Register Indirect With Predecrement (Operand: *-Rn)

NOV *-SP,Rll

Execution:
(R13) - 2 (R13)
«R13» (R11)

This example moves (copies) the word from the address
that is two less than the stack pointer's present contents
to R11. (Subtract 2 from R13; move the value atthat
address to R11).

<D

Registers RO-R15
(before move)

R11
R12

R13 (SP)

1--------1 R14

Points to
SOCO Decrement 13 by
8OB~ 2 (Result to R13)

L..-_____ R15

80BAh Address
80BCh 1--------1 80BEh

80BEh
8OAOh

I--"---='--~-"'""----I "
\ (2)

" Copy to R11 -------

Registers RO-R15
(after move)

R11
R12

R13 (SP)

t-------t R14
'--_____ R15

Note: A dashed line denotes the path of the value moved or copied. A solid line denotes
a location pointer.

Addressing Modes 4-11

Register-Indirect Addressing

Figure 4-9. Register Indirect with Postincrement (Operand: *Rn+) and
Predecrement (Operand: *-Rn)

<D
<2>

HOY *SP+,Rll
HOY *-8P,R11

Execution:
«R13)} -+

<D (R13}+2 -+

(R13}-2
<ID «R13)}

(R11)
(R13)

(R13)
(R11)

This example demonstrates the execution of both postincrement
addressing and predecrement addressing. The two instructions,
executed one after the other as shown, repeat exactly the same
function: they both move the value at address 8002h to R11.

MOV *SP+,R11 first implements the move, then increments the
SP by 2. Then, MOV *-SP,R11 first decrements the SP by two
and then repeats the same function. Note that the form of the pre­
decrement instruction shown here (MOV *-Rn,Rn) is the only
form of the predecrement instruction.

Note: A dashed line denotes the path ofthe value moved or copied. A solid line denotes
a location pointer.

4-12 TMS370C16 CPU

Register-Indirect Addressing

4.7.2 Register Indirect With Displacement (Offset)
These examples show a displacement added to a register's contents to derive
the location of the effective address. Figure 4-10 uses word format.
Figure 4-11 uses byte format. Except when used with the JMP or CALL
instructions (see Figure 4-12 on page 4-15), indirect addressing is restricted
to the first 64K bytes of memory.

Note that the register to be added to the displacement is contained in square
brackets (not parentheses).

With some instructions (e.g., JMP and CALL), access is to the full 128K bytes
of memory. As shown in Figure 4-13 (page 4-16), these instructions place the
value at the resulting effective address into the PC (where it is shifted to create
a 17 -bit memory address in order to access the full 128K-byte address range).

Figure 4-10. Offset + Register in Word Format (Operand: *disp16[Rn])
NOV *32 [R4] ,R6 The source value is found at the address derived by the sum of

. an immediate displacement value and the contents of the
Execution: source index register (R4). Thus, move the word value at

(32 + (R4» ~ R6 address 8420h (OO20h + 8400h) to RS. Modify only register RS.

AeClistelrs RO-R15

Two-Word {

Instruction :=======:~~==: l Derive Source

RO
~-----------; R1

8420h

L <D Address:
=+ 0020 <2>
~ +----

8420

I
I
I
I
I
I _________ -1

® Value at 8420h
Is Copied to R6

1-------------;

Note: A dashed line denotes the path of the value moved or copied. A solid line
denotes a location pointer.

R2

R3

R4
R5
R6

Addressing Modes 4-13

Register-Indirect Addressing

Figure 4-11. Offset + Register in Byte Format (Operand: *disp16[RnJ)

MDVB *103h[R'J ,R6

Execution:
(103h + (R4)) ... (R6)

This example is similar to Figure 4-10, except that a byte move
is requested (note that the byte is at an uneven address). The
source value is found at the address derived by adding the
0103h immediate value and the contents of R4, which contains

the 8402h offset. Thus, move the value at address 8505h, which is the LSbyte. However, byte
operations extend the byte to a zero-filled word and operate on the word. With a register des­
tination, the entire word is moved to fill the register (a move to a memory address changes only
the destination byte - see second example below).

<D
2-Word {
Instruc- ~.:::...:.:=-----=-=~:.e:....:;~

tion t-----'------I

8504h

<2> Derive Source
Addre?

L-+ 0103
~----

.---- 8S0S

AO
t-------I
I--------i A1
I--------i A2

A3

A4
AS
A6

t---- Byte Value at Address
8S0Sh Is Copied to A6

@ With Bits 1S-8 Zero-

MDVB *103h[R'J ,*R6

Execution:
(103h + (R4» ... «R6»

Filled

The above example is repeated, except that the destination
is changed to a memory address because the destination
register holds an indirect address. This example shows that
the move affects only the designated byte in the destination

memory address, leaving any adjacent byte unchanged (no zero-filling occurs as it would
with a register).

<D 2-Word {1Mc5VB-;'iOOh:iR4ii.*Rei1
Instruc- t------=.--:;.--I
tion

8S04h
1-----

8604h
1---.,,...--

<2> Derive Source
Address "7

L-+ 0103""'­
~ .. ---

850S

Byte Value at Address
® 8S0Sh Is Copied to

Address 8605h

Value of Byte 8604h Unchanged

AO
t-------I A1

t-------I
A2

A3

A4

AS

A6

Note: A dashed line denotes the path of the value moved or copied. A solid line denotes
a location pointer.

4-14 TMS37OC16 CPU

Register-Indirect Addressing

Figure 4-12. Offset + Register for JMP and CALL Instructions (Operand: *disp 16[Rn])

JMP *200h[RS]
The destination word address (new PC value) is found in a
memory address derived by adding the register contents and the
offset (displacement) in the operand. This sum (8700h in this
example) is a memory address that contains the word address
(FOOOh), which is placed in the PC and applied to address lines
A1~A1 with AO held to O.

Execution:
(200h + (RS» -. (PC»

R .. ",i<rt .. ,r<, RO-R15

Derive Source
<D Address:

0200 (2)
~

i @ /!:o~n:to
:::J 1---------1 Address 8700h ...,

~ 8700h:===========~ .. ~~!I~ PC

RO

R1

R2

R3

R4

R5
R6

value I
1EOOOh I

i _______ --<II.I-- II III ~ 1* I III I II r 0
Points to 1 EOOOh (FOOOh X 2) A 16 Address AO

Bus

Note: A dashed line denotes the path of the value moved or copied. A solid line denotes
a location pointer.

The format in Figure 4-12 has an extra level of indirection when used by either
the JMP or CALL instruction. The sum of the displacement and register value
is a memory address that contains a word address. This word address is
placed in the PC and then overlayed on address lines A 16-A 1 with AO set to
o (effectively multiplying the PC value by 2). A method to set the word address
for this operation is shown in Section 4.8 on the next page.

Note that with JMP and CALL, indirect register with offset goes to an address
to get the final word address. Compare this with the MOV instruction using
indirect register with offset for source: the sum of the offset and register is the
actual memory address that contains the value to be moved (not the value of
another memory address containing the source).

Addressing Modes 4-15

Setting the Word Address for CALL, JMP, and FMOV Instructions

4.8 Setting the Word Address for CALL, JMP, and FMOV Instructions

The CALL, JMP, and FMOV instructions address the full 128K-byte address
space. They apply their effective operand to address lines A 16-A 1 with AO
cleared to O. If you know the 17 -bit memory address and want to set up a corre­
sponding word address in a register or memory location, use the question­
mark (?) operator, which translates the 17-bit labeled memory address into a
16-bit word address (divides the memory address by 2). For example, use the
? operator with a MOV instruction to place the word address into a register.
Then use a CALL, JMP, or FMOV instruction to that register or memory loca­
tion. This is shown in Figure 4-13. This form uses a label representation of the
memory address, not an immediate value.

Figure 4-13. Using the? Operator to Set the Word Address for a Direct-Register
CALLorJMP

MOV
JMP

'?LABBL,RS
RS

Execution:

This example shows how the address can be set up for the jump
shown in Figure 4-7 on page 4-10. The jump is to a 17-blt
memory address; this means that the value brought into the PC
is shifted left one bit (multiplied by 2). Thus, the value brought to
the PC must be a 16-bit word address that is one-half the des­
tination 17-blt memory address. In this example, the word

1ft LABEL ... (RS)
(RS) ... (PC)

address is brought In from R5. To get the correct value in R5, use the question-mark (7) op­
erator when loading R5 with the destination address. This operator divides the value by 2,
setting up the correct address for the jump destination (as also needed in Figure 4-6). A
CALL direct to a register is treated like a JMP.

Memory Registers
<D MOV #?LABEL,RS Places------...

Label Address + 2 Into RS R3
(9FDOh = 13FAOh + 2) R4

R5

t----+----I R6 13FBCh~ ____ --I ®
13FBEh JMP RS Brings Value 9FDOh I

LABEL 13FAOh Ya LABEL to PC I

t 13FA2h@pCPlaceS9fdOonAddress l~lfmlWAl.,.Q PC
Bus, Shifted One Address Bitl.~ltfw".
Left ~..o

'-------------- LABEL = value 13FAOh. I I1III I I I I I I I I I I I
.,.A16 AO

Address Bus,................ 'f '
Resulting JMP Destination

Address Bus Value
of 13FAOh (2 x 9FDOh)

This method can also be used to set up the indirection register for the FMOV
instruction. The bits in the indirection register (either the source or destination)
are a word address to be applied to address bits A 16-A 1.

4-16 TMS37OC16 CPU

Setting the Word Address for CALL, JMp, and FMOV Instructions

Figure 4-14. Use the? Operator to Set the Word Address for an Indirect-Register FMOV

NOV t?LABBL2,RS
FMOV R2,*RS

Execution:
"h LABEL .-. (R5)

(R2) .-. «RS»

These two instructions set up the word address in a register to be
used as the destination for an FMOV instruction. The MOV
instruction uses the? operator to derive the word address for
memory address 13FOOh (in the second 64K bytes of memory)
and have this value ready to be placed in R5 at execution time.
The next instruction moves the contents of R2 indirect to this
word address in RS.

~~~~~~~} 9lPaOh (13FOO + 2) to R5 ..Reaisters RO-R15 
,,,,,-

LABEL2 13FOOh 

@Moveto \ 
Location ... - - - -t-..:..F_+ ti.......:...F_....:..F-i 
13FOOh 

_ ..... 
I 

/ 
/' 

.. 
1- - - - --i;'·I' ,·1',,1"., ·i·,··I·····,I· 1\11· ·1, ....... 
I 

RO 
R1 
R2 
R3 
R4 
R5 
R6 

t . 
@ Points to 13FOOh (9F80h X 2), 

Move R2 Contents to This Address 

I 
I 
I 
I 
I 

<2> 
Retrieve R2 Contents, 
and Place R5 Contents 
in PC 

+ .0 
I Ii I II I I I I I I I I I I I 

A 16 Address AO 
Bus 

Addressing Modes 4·17 



4-18 TMS370C16 CPU 



Chapter 5 
I 

Assembly Language Instructions 

This chapter describes the mnemonics and operation of the TMS370C16 
instruction set, organized in alphabetical order. The chapter begins with a table 
that summarizes each instruction and auxiliary tables that list the format 
protocol for the descriptions. Following these are full descriptions of each 
instruction. 

Topic Page 

5-1 



Instruction Set Summary 

5.1 Instruction Set Summary 

Section 5.2, starting on page 5-4, summarizes the TMS370C16's 
instructions. Table 5-1 and Table 5-2 list the abbreviations and symbols used 
in Section 5.2. 

Table 5-1. Abbreviations Used to Describe Instructions 

Abbreviation Meaning 

addr16 address; 16 bits in this example 

&addr variant to synthesize direct addressing in memory (assembles as *addr[ZR]) 

B byte opcode 

C[ST] carry flag in ST 

const4, const8 constant (4-bit, 8-bit, etc.) 

d, dest destination 

disp8, disp16 displacement (8-bit, 16-bit values shown) 

(disp[Rn]) contents at the effective address of displacement + value in Rn 

enumerator8 member of a list 

lEW instruction extension word 

imm unsigned immediate value; in operand syntax it is preceded by a 1# symbol; if followd by a number 
(imm4), number = size in bits (compare simm) 

1M implied register (R1) 

IW instruction word 

IM:Rd 32-bit concatenation of 1M and Rd 

FP frame pointer register (RO) 

L longword opcode 

LSB least significant bites) 

LSbyte least significant byte 

LSword least significant word 

MSB most significant bites) 

MSbyte most significant byte 

MSword least significant word 

N[ST] sign flag in ST 

NOTx ones complement of x 

Op opcode 

OpA 17-bit opcode address (address-bus location) 

PC program counter register 

prevA, (prevA) previous-cycle address bus value; (prevA) = contents of previous-cycle address bus value 

Rn register (n = register number, RO-R15) 

Rd, Rs, (Rs) , (Rd) registers, destination and source; (Rd) = contents of destination register; Rd7 = bit 7 of Rd, etc. 

«Rs)) , «Rd)) contents of address contained in Rs or Rd, respectively 

R FIRST. R LAST range of registers 

5-2 TMS370C16 CPU 



Instruction Set Summary 

Table 5-1. Abbreviations Used to Describe Instructions (concluded) 

Abbreviation Meaning 

*An, *Rn+, *-Rn- Indirection, contents of. *Rn = address value Is in Rn; *-Rn = predecrement; 

Rn(O-7) 

rtnA 

S 

s, src 

*Rn+ = postincrement 

bit range within a register (register bits 0-7 in this example) 

return address 

S = size of transfer with 1 .. byte and 0 = word; see explanation of "b" column for functional logic 
states in Figure 5-1 on page 5-16. 

source 

slmm 4, simm a 

SP 

signed immediate value (4-, a-bits, etc.) 

stack pointer register (R13) 

ST 

synth. Inst 

vector base 
address 

V[ST] 

W 

ZR 

Z[ST] 

status register (R14) 

synthetic Instruction (synthesized using another assembler format) 

starting (low) address of the interrupt vectors (an offset is added to this address to determine 
the address containing the vector of the interrupt) 

overflow I borrow flag in ST 

wordopcode 

zero register (R15) 

zero flag In ST 

Table 5-2. Symbols Used to Describe Instructions 

Symbol Meaning 

{ } option to select a value in brackets; for example, {x, y} = enter either x or y, or ADD{B} .. ADDB is an option-
al form of the ADD instruction (add byte VB. add word). 

A bitwise EXCLUSIVE OR (XA Y = true where corresponding bits are different) 

- ones complement (unary): toggle/invert bit values: (0 <-+ 1) 

- negate (twos complement) 

« left shift (e.g., (y) «6 = shift y6 bit positions to the left) 

» right shift (e.g., (x)>> 4 = shift x 4 bit positions to the right) - copied to or assigned to 

1# Immediate operand 

( ) contents of. For example, (SP) = contents of stack pointer; (Rd) .. contents of Rd. 

.. bit selection (s.blt4 = bit 41n s) 

I, + bitwise OR (xly = 0 H either x and y = 0) 

II? when a prefix to a label In assembly language, Indicates word address (one haH absolute address) 

& bitwise AND (x&y = 0 H either x or y = 0, but. 1 H both x and y .. 1). If used before a label or address value 
in essembly language syntax, it Indicates direct addressing (synthesizes as *Labe1(ZRJ). ,. Synthetic instruction 

Assembly Language Instructions 5-3 



Instruction Set Summary Table 

5.2 Instruction Set Summary Table 

Mnemonic 

ADC 
Rs,Rd 
*disp16[RsJ,Rd 

variant: 
&address,Rd 

ADD,ADDB 
Rs,Rd 
Rs, *disp16[Rd] 
Nlmm16,Rd 
*disp16[RsJ,Rd 

variants: 
Rs,&address 
&address,Rd 

ADQ,ADQ8 
#imm4,Rd 
#imm4,*disp16[Rd] 
variant: 
#imm4,&address 

AND,ANDB 
Rs,Rd 
Rs, rtdisp16[Rd] 
#imm 16, Rd 
#imm16, rtdisp16[Rd] 

variants: 
Rs,&address 
#imm 16,&address 

The following table summarizes each of the TMS370C16's assembly 
language instructions: mnemonics, operands, opcodes, execution cycles, 
affect on the status register, and a short description. Included under the 
Mnemonic column are operands called variants. These are derived by 
assembling another form of the instruction, usually using a form of the 
*disp16,[Rnjoperand (explained in the note on page 4-6). Variants can be con­
venient, but may require more cycles than another format. 

Opcodet Cycles Status* 
B W L (tel ZNCV Operation Description 

* * * * Add source plus carry to destination 
SA 1 (s) + (d) + (C[ST]) - (d) 
88 3 (an ADD/ADC sequence can be used for 

32-bit addition) 
88 3 

* * * * Add source to destination 
31 30 1 (s) + (d) - (d) 
33 32 5 
35 34 2 
37 36 3 

33 32 5 
37 36 3 

* * * * Add quick immediate to destination 
83 82 1 (s) + (d) - (d) 
85 84 5 (add short constant - source is 4-bit 

immediate value in opcode word) 
85 84 5 

* * - 0 
Logical AND source with destination 

41 40 1 (s) & (d) - (d) 
43 42 5 
45 44 2 
47 46 5 

43 42 5 
47 46 5 

Legend: t Data Size: B = affects byte W = affects word L = affects long word * Status Register Values: 
o = status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see instruction description) 

5-4 TM~7OC16 CPU 



Instruction Set Summary Table 

Opcodet Cycles Status:l: 
Mnemonic B W L (tel ZNCV Operation Description 

ASR,ASRL * * * 0 Arithmetic shift register right 
ASR #imm4,Rd B4 n+1 (d)>>n- (d) 
ASRL #imm4,IM:Rd B5 2n 
ASR Rs,Rd B6 n+3 (arithmetic right shift - source contains 
ASRL Rs,IM:Rd B7 2n+2 shift count n) 
ASRL Rs,IM:Rdwhere 

Rs =xxxOh B7 3 

ASRO, ASROL * * * 0 
Arithmetic right shift, round to 0: 

ASRO #imm4,Rd B8 n+2 (d)>>n- (d) 
ASROL #imm4,IM:Rd B9 IF N[ST]I = 1 and a 1 is shifted out 

N[S1] = 0 B9 2n+3 of LSB, 
N[ST] = 1 B9 2n+2 THEN Rd + 1 - Rd. 

ASRO Rs,Rd BA n+4 

ASROL Rs,IM:Rd BB (arithmetic right shift - source contains 
N[ST] = 0 BB 2n+3 shift count n - round to 0) 
N[ST] = 0 (Rs = 0) BB 3 
N[ST] = 1 BB 2n+4 
N[ST] = 1where 

(Rs = xxxOh) BB 3 

B{COND} dispB ---- IF cond = true, branch to PC + dispB;. 
otherwise, execute next instruction. 

aQQ~1J a[IilO~b QQOdiliQO Branch conditions; ST bit combinations: 
BC if carry set C2§ C= 1 
BEQ if equal C3 Z=1 
BGE If greater than or C9 3 NAV=O 

equal if 
BGT if greater than C7 branch Z I (N"V) = 0 
BHI if higher C5 taken C I Z=O 
BHS if higher or same C1§ C=O 
BLE if less than or equal C8 2 Z I (NAV) = 1 [Z OR (N XOR V) =1] 
BLO if lower C2§ if C= 1 
BLS if lower or the same C6 branch C I Z= 1 
BLT if less than CA not NAV= 1 
BN if negative CF taken N = 1 
BNC if carry clear C1§ C=O 
BNE if not equal C4 Z=O 
BNV if overflow clear CC V=O 
BP if positive CD N I Z=O 
BPZ if plus (not CE N=O 

negative) 
BR always CO --
BV if overflow set CB V= 1 

Legend: t Data Size: B = affects byte W = affects word l = affects long word 
:I: Status Register Values: 

o = status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see Instruction description) 

§ Two pairs of branch Instructions have the same opcodes: BHS and BNC are C1 h, and BC and BlO are C2h. 

Assembly Language Instructions 5-5 



Instruction Set Summary Table 

Opcodet Cycles Status* 
Mnemonic B W L (te> ZNCV Operation Description 

BRBITO ~ 5 ---- Branch If bit is O. 
#imm3,&addr,dispB 0 DO (branch Test bit imm3 in byte addr. 

1 01 taken) IF bit = 0, branch to PC + dispB; 
2 02 THEN (PC) + disp8.... (PC) 
3 03 4 ELSE, execute next sequential 
4 04 (branch instruction. 
5 05 not (The Imm3 value is contained in the 3 
6 06 taken) LSBs of the opcode.) 
7 07 

BRBIT1 ~ 5 ---- Branch if bit is 1. 
#imm3,&addr,dispB 0 08 (branch Test bit imm3 in byte addr. 

1 09 taken) IF bit = 1, branch to PC + disp8; 
2 OA THEN (PC) + disp8.... (PC) 
3 DB 4 ELSE, execute next sequential 
4 DC (branch instruction. 
5 DO not (The imm3value is contained in the 3 
6 DE taken) LSBs of the opcode.) 
7 OF 

CALL ---- Jump to subroutine, with linkage 
Rd EB 5 CALL Ret. 
addr EC 4 Next Instruction Address .... (SP) 
*disp 16{RdJ ED 5 (SP) + 2 .... (SP) 

variants: (Rd) .... (PC) 
*Rd ED 5 
&address ED 5 CALL *Rd is assembled as CALL *o{Rd]. 

CALL &address is assembled as 
CALL *address{RZ). 

(Both variant forms expect a word address 
at the destination.) 

CLR,CLRifd 10-0 Clear destination: 
Rd 03 02 1 0 .... (d) 
*Rd 05 04 2 
*Rd+ 07 06 2 Synthesized as MOV ZR,d. 
*disP16{RdJ 09 08 3 

variant: 
&address 09 08 3 

Legend: t Data Size: B = affects byte W = affects word L = affects long word * Status Register Values: 
o = status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see instruction description) 

, Synthetic Instruction 

5-6 TMS370C16 CPU 



Instruction Set Summary Table 

Opcodet Cycles Status* 
Mnemonic B W L (tc) ZNCV Operation Description 

CMP, CMPB * * * * Compare source to destination: 
RS,Rd 61 60 1 (d)- (s) 
#imm16,Rd 63 62 2 and set ST bits accordingly. 
*disp16{Rs},Rd 65 64 3 
*Rs+,Rd 67 66 3 
*disp 16{Rs}, *disp 16{Rd} 69 68 5 

variants: 
&address,Rd 65 64 3 
&address, *disp 16{Rd} 69 68 5 
*disp 16,{Rs},&address 69 68 5 
&address 1,&address2 69 68 5 

CMPC **** Compare source to destination: 
Rs,Rd 8E 1 (d) - «s - C[ST]» 
*disp 16{Rs}, Rd 8F 3 and set ST bits accordingly. 

variant: 
&address,Rd 8F 3 

COMPL, COMPLB'II **** Twos-complement (negate) destination 
Rn 2F 2E 1 (ZR) - (Rn) - (Rn) 

Synthesized as SUBR Rn,ZR. 

DBNZ Rs,disP4 A8 4 ---- Decrement register; branch if not 0: 
(branch (Rs) - 1 - (Rs) 
taken) IF Rs ¥- 0, branch to PC - disp4 

3 IF Rs = 0, execute next sequential 
(branch instruction without branching. 

not 
taken) 

DEC, DECB'II **** Decrement destination 
Rd 87 86 1 (d}-1 - (d). 
*disp16{Rd) 89 88 5 Synthesized as SUBQ #1,destination. 

variant: 
&address 89 88 5 

DIVS, DIVSL **0* Signed division: 
DIVS Rs,Rd A2 2-27& (d) + (Rs) - (Rd) (quotient). 
DIVSL Rs,IM:Rd A3 2-29 remainder - (1M). 

DIVU, DIVUL ***0 Unsigned division: 
DIVU Rs,Rd AD 3-21· (d) + (Rs) - (Rd) (quotient), 
DIVUL RS,IM:Rd A1 remainder - (1M). 

Legend: t Data Size: B = affects byte W = affects word L = affects long word * Status Register Values: 
o = status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see instruction description) 

'II Synthetic instruction 
§ Two pairs of branch instructions have the same opcodes: BHS and BNC are C1 h, and BC and BLO are C2h. 
& DIVS takes 2-27 cycles, with two exceptions explained in the instruction's detailed description. 

DIVSL takes 2-29 cycles,with eight exceptions explained in the instruction's detailed description . 
• DIVU and DIVUL take 3--21 cycles, with the exceptions explained in the instruction's detailed description. 

Assembly Language Instructions 5-7 



Instruction Set Summary Table 

Opcodet Cycles Status* 
Mnemonic B W L (tC> ZNCV Operation Description 

EXTS,EXTSB ***0 Extend sign of register value: 
EXTS IM:Rd AA 2 bit 15 value - bits 16 to 31 (word) 
EXTSB Rd AB 1 bit 7 value - bits 8 to 15 (byte) 

EXTZ, EXTZB' **-0 Extend (zero fill) register to next larger data 
EXTZ IM:Rd 1 size (byte - word or word - double word). 
EXTZB Rd 02 1 

03 Synthesized as MOV ZR,IM (word) and 
MOVB Rd,Rd (byte). 

FMOV **-0 Move far; indirect register accesses 128K 
Rs,*Rd F2 5 bytes: (Rs) - ((Rd)) 
*Rs,Rd F3 5 ((Rs)) - (Rd) 

IDLE FE 2 ---- Idle CPU (reaches idle state in 2 cycles). 

!LLEGAL 00 7 ---- Generate trap #0 exception. (81') al'ld 
(PC) of next instruction - stack; 
ones - (L.2-LO [Sn) 

INC,INCB' * * * * 
Increment destination 

Rd 83 82 1 (d) + 1 - (dJ 
*disp16{Rdj 85 84 5 Synthesized as ADQ #1,destination 

variant: 
&address 85 84 5 

INTPU RS,IM:Rd 7D **00 Perform a rounded straight-line interpola-
IfIM s Rd 9 tion between values in 1M and Rd using 
If 1M > Rd 10 interpolation fraction in Rs. 

JMP ---- Jump to destination: 
Rd E8 3 (d)- (PC). 
addr E9 3 
*disp 16{Rdj EA 4 JMP *Rd is assembled as JMP *O[Rd]. 

variant: JMP &address is assembled as 
*Rd EA 4 JMP *address{RZ]. (Both expect a word 
&address EA 4 address as the destination.) 

LDBIT, LDBITB --*- Read bit number s in d: 
#imm4,Rd 94 2 (Bit in d) - (C[Sn). 
#imm4, *disp16{Rd] 95 4 
Rs,Rd E4 3 
Rs, *disp16[Rd] E5 5 

variants: 
#imm4,&address 95 4 
Rs,&address E5 5 

LDEA ---- Load effective address: 
*disp16{Rsj,Rd FO 2 ((disp1 + (Rs)) - (Rd). 

variant: 
&address,Rd FO 2 

Legend: t Data Size: B = affects byte W .. affects word L = affects long word * Status Register values: 
o = status bit always cleared 1 = status bit always set 
- .. status bit unchanged by execution * .. other effect on status bit (see instruction description) 

• Synthetic Instruction 

5-8 /TMS370C16 CPU 



Instruction Set Summary Table 

Opcodet Cycles Status* 
Mnemonic B W L (tc) ZNCV Operation Description 

UMHS, LlMHSB **** Umit Rdto highest signed legal value (in s): 
*disp 16{RS},Rd 59 58 IF (v[STJI) = 1 and (N[STJI) = 1 or 

IfV[ST] = 1 5 IF (v[STJI) = 0 and (s) < (Rd), 
IfV[ST] = 0 6 THEN (s) - (Rd), 0 - (V[ST]) and 

variants: 1 - (C[ST]). 
&address,Rd 59 58 

IfV[ST] = 1 5 
IfV[ST] = 0 6 

UMHU, LIMHUB * * 0 * Umit Rdto highest unsigned lega/value 
*rlisp 16{Rs},Rd 5B 5A (in s): 

If C[ST] = 1 4 IF (C[ST]) = 1 or 
IfC[ST] = 0 5 IF (s) < (Rd), 

variants: THEN (s) - (Rd) and 1 - (v[STJI) 
&address,Rd 5B 5A ENOIF 

If C[ST] = 1 4 0- (C[ST]) 
IfC[ST] = 0 5 IF an LlMHUB instruction (byte), 

THEN 0 - RdB- 15. 

LlMLS, UMLSB **** Umit Rdto lowest signed value: 
*disp16{RS},Rd 50 5C IF (V[ST]) = 1 and (N[ST]) = 0, or 

IfV[ST] = 1 5 IF (V[ST]) = 0 and( s) >( Rd), 
IfV[ST] = 0 6 THEN (s) - (Ref), 0 - (V[ST]) and 

variants: 1 - (C[ST]). 
&address,Rd 50 5C 

IfV[ST] = 1 5 
IfV[ST] = 0 6 

UMLU, LlMLUB **** Umit Rd to lowest unsigned value: 
*disp16{RS},Rd 5F 5E IF (C[ST]) = 1 or (source) > (Rd), 

If C[ST] = 1 5 THEN (s) - (Ref) and 1 - (V[ST]) 
IfC[ST] = 0 6 ENOIF 

variants: 0- (C[ST]). 
&address,Rd 5F 5E 

If C[ST] = 1 5 
IfC[ST] = 0 6 

LINK ---- Unk frame painter to stack pointer: 
dispB F7 4 (FP) - «SP» 

(SP) - (FP) 
(SP) + 2 - (SP) 
(SP) + 2 x disp8 - (SP) 

Legend: t Data Size: B = affects byte W = affects word L = affects long word * Status Register Values: 
o • status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see instruction description) 

Assembly Language Instructions 5-9 



Instruction Set Summary Table 

Opcodet Cycles Status* 
Mnemonic B W L (te> ZNCV Operation Description 

LSR, LSRL ** *0 Logically right shift (Rd) by the count 
LSR #imm4,Rd BC 11+1 nin s: 
LSRL #imm4,IM:Rd BO 2n (Rd) » n - (Rd) 
LSR Rs,Rd BE n+3 
LSRL Rs,IM:Rd BF 2n+ 2 
LSRL Rs,IM:Rd (where BF 3 

Rs=XXXOh) 

MOV, MOVB **-0 Copy the source; place copy in destination: 
Rs,Rd 03 02 1 
Rs,"Rd 05 04 2 (s) - (d) 
Rs,*Rd+ 07 06 2 
Rs, *disp16[Rd} 09 08 3 
*Rs,Rd OB OA 2 
*Rs,*Rd 00 OC 3 
*Rs,*Rd+ OF OE 3 
*Rs, *disp16[Rd] 11 10 4 
*Rs+,Rd 13 12 3 
*Rs+,*Rd 15 14 3 
"Rs+, "Rd+ 17 16 4 
*Rs+, *disp16[Rd] 19 18 4 
#imm,Rd16 1B 1A 2 
#imm,*Rd16 10 1C 3 
#imm, *Rd16+ 1F 1E 3 
#imm, *disp16[Rd] 21 20 4 
*disp 16[Rs}, Rd 23 22 3 
*disp16[Rs}, *Rd 25 24 4 
*disp16[Rs}, *Rd+ 27 26 4 
*disp16[Rs}, *disp16[Rd} 29 28 5 
*-Rs,Rd 2B 2A 3 

variants: 
Rs.&address 09 08 3 
*Rs,&address 11 10 4 
*Rs+,&address 19 18 4 
*disp16[Rs},&address 29 28 5 
#imm,&address 
&address,Rd 21 20 4 
&address, *Rd 23 22 3 
&address, *Rd+ 25 24 4 
&address, *disp16[Rd] 27 26 4 
&address1,&address2 29 28 5 

29 28 5 

MOVa *0-0 imm4- (Rd) 
#im"'4,Rd 80 1 

Legend: t Data Size: B = affects byte W = affects word L = affects long word * Status Register Values: 
o = status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see instruction description) 

'II Synthetic instruction 

5-10 TMS37OC16 CPU 



Instruction Set Summary Table 

Opcodet Cycles Status* 
Mnemonic B W L (tc) ZNCV Operation Description 

MPYBWU * * 00 Unsigned 8-bit x 16-bit multiply with 
Rs,Rd AC 7 rounding: 

[(RsLSbyte) x (Ref) + SOh] + 256 - (Rd). 

MPYS, MPYSB **00 Multiply signed: 
MPYSB Rs,Rd A7 
Rd~ 0 10 (Rs) x (d) .... (d). 
Rd< 0 11 

MPYS Rs,IM:Rd A6 
Rd~ 0 13 
Rd< 0 14 

MPYU,MPYUB * * 00 Multiply unsigned: 
MPYUB Rs,Rd A5 8 (Rs) x (d) .... (d). 
MPYU Rs,IM:Rd A4 13 

NOP' 92 1 ---- No operation 
0 .... (ZR). 
Synthesized as SBITO #15,ZR 

NOT, NOTBlI **-0 Ones complement the destination 
Rd 2D 2C 1 -(Rd) 

Synthesized as XNOR ZR,Rd 

OR, ORB **-0 Logical inclusive OR source with dest: 
Rs,Rd 49 48 1 (s) I (d) .... (d). 
Rs, *disP16[Rd] 4B 4A 5 
#imm16,Rd 4D 4C 2 
#imm16, *disP16 [Rd] 4F 4E 5 

variants: 
Rs,&address 4B4A 5 
#imm 16,&address 4F4E 5 

POP 1 + 2n ---- Pop registers from the stack: 
R lAST,R FIRST FA (n = FOR index= Register_Last 

repeat TO Register _First BY -1, 
cycles) DO (SP) - 2 .... (SP) 

«SP)) .... (register(/ndex)). 

PUSH l+n ---- Push register values onto the stack: 
RFIRST,RlAST F9 (n= FOR index = Register ]irst 

repeat TO Register_Last BY +1, 
cycles) DO (register(index)) .... «SP)) 

(SP) + 2 .... (SP). 

Legend: t Data Size: B = affects byte W = affects word L = affects long word * Status Register Values: 
o = status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see instruction description) 

'I Synthetic instruction 

Assembly Language Instructions 5-11 



Instruction Set Summary Table 

Opcodet Cycles Status* 
Mnemonic B W L (tC> ZNCV Operation Description 

RTDU ---- Return from subroutine, unlink stack: 
disPs F8 5 (FP) - 2 .... (SP) 

«FP)) .... (FP) 
«SP)) .... (PC) 
«SP) - 2 x dispSj .... (SP). 

RTI FC 6 **** Return from interrupt: 
(SP) - 2 .... (SP) 
«SP)) .... (PC) 
(PC) - 2 .... (PC) 
(SP) - 2 .... (SP) 
«SP)) .... (ST). 

RTS FB 4 ---- Return from subroutine: 
(SP) -2 .... (SP) 
«SP» .... (PC). 

SBB **** Destination minus source and carry: 
RS,Rd 8C 1 (d) - (s) - (C[ST]I) .... (d). 
*disp16[RS},Rd 80 3 

variant: Subtract s and carry bit from d. 
&address,Rd 80 3 

SBITO, SBITOB ---- Set bit to 0: 
SBITO #imm4,Rd 92 1 O .... bitind. 
SBITOB #imm4, *disp16[Rd] 93 5 
SBITORs,Rd E2 2 (Value in s designates bit to clear.) 
SBITOB Rs, *disp16{RdJ E3 6 

variants: 
SBITOB #imm4,&address 93 5 
SBITOB Rs,&address E3 6 

SBIT1, SBIT1 B ---- Set bit to 1: 
SBIT1 #imm4,Rd 90 1 1-bitind. 
SBIT1 B #imm4 .. disp16{RdJ 91 5 
SBIT1 Rs,Rd ' EO 2 (Value in s designates bit to set.) 
SBIT1 B Rs, *disp16{RdJ E1 6 

variants: 
SBIT1 B #imm4,&address 91 5 
SBIT1 B Rs,&address E1 6 

SHL, SHLL **** Shift left register arithmetic: 
SHL #imm4,Rd SO n+2 (d)«n .... (d). 
SHLL #imm4,IM:Rd B1 2n+2 
SHLRs,Rd B2 n+3 (arithmetic left shift - source contains 
SHLL Rs,IM:Rd B3 2n+3 shift count n). 

Legend: t Data Size: B = affects byte W = affects word L = affects long word * Status Register Values: 
o • status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see instruction description) 

5-12 TMS37OC16 CPU 



Instruction Set Summary Table 

Opcodet Cycles Status* 
Mnemonic B W L (te) ZNCV Operation Description 

SHL4 **-- Shift left logical 4 bits: 
Rs,Rd 7A 2 Rs« 4- Rd. 

SHL8 **-- Shift left logical 8 bits: 
Rs,Rd 7B 2 Rs« 8-Rd. 

SHR8 *0-- Shift right 8 bits: 
Rs,Rd 7C 2 Rs» 8- Rd. 

STBIT, STBITB *- -- Store bit in ST, set to carry value: 
STBIT #imm4,Rd 96 2 - (bit in 0) - (Z[ST]) 
STBITB #imm4, *disp16{Rd} 97 6 (C[ST]) - (bit in 0). 
STBIT Rs,Rd E6 3 
STBITB Rs, *disp16{Rdj E7 7 (s designates which bit in d.) 

variants: 
STBITB #imm4,&address 97 6 
STBITB Rs,&address E7 7 

STEA -- -- Store effective address: 
*disP16{Rsj, *Rd+ F1 3 disp16 + (Rs) - (Rei) 

variant: (Rd) + 2 - (Rd). 
&address, *Rd+ F1 3 

STRI 0000 Store ST, set interrupt level: 
#imm4,Rd A9 2 (S1) - (Rd). 

imm4 - bits L2-LO of ST 
Os - bits Z, N, C, V of ST 

SUB, SUBB **** Subtract source from destination: 
Rs,Rd 39 38 1 (d) - (s) - (d). 
Rs, *disp16{Rdj 3B 3A 5 
#imm16,Rd 3D 3C 2 
*disp16{Rsj,Rd 3F 3E 3 

variants 
Rs,&address 3B 3A 5 
&address,Rd 3F 3E 3 

SUBQ,SUBQB **** Subtract quick immediate value from dest: 
#imm4,Rd 87 86 1 (d) - imm4 - (d). 
#imm4, *disp16{Rdj 89 88 5 

variant 
#imm4,&address 89 88 

SUBR, SUBRB **** Subtract with reverse destination: 
RA,RB 2F 2E 1 (RB) - (RA) - (RA). 

SWAPB **-0 Swap bytes, Rs to Rd: 
Rs,Rd FO 3 Rs (LSbyte) - Rd (MSbyte) 

Rs (MSbyte) - Rd (LSbyte) 

Legend: t Data Size: B = affects byte W = affects word L = affects long word * Status Register Values: 
o = status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see instruction description) 

Assembly Language Instructions 5-13 



Instruction Set Summary Table 

Opcodet Cycle. Statu.* 
Mnemonic B W L (tel ZNCV Operation Description 

TBITO *--- Test for multiple bits clear: 
#immB,&addr F4 3 IF immB .. 0 and immB& addr= 0, 

THEN 1 - (Z[ST]) 
ELSE 0 - (Z[ST]]) 

(test for bit(s) cleared in d; 
s = mask specifying bits to check.) 

TBIT1 *--- Test for multiple bits set: 
#immB,&addr F5 3 IF immB .. 0 and imm16 & (-addtJ = 0 

THEN 1 - (Z[ST]]) 
ELSE 0 - (Z[ST]]) 

(test for bit(s) set in d; 
s = mask specifying bits to check.) 

TBLU, TBLUB * * 00 Look up two consecutive values in a table of 
TSLUS Rs,IM,:Rd 7F unsigned data; perform a rounded 

Value 1 < Value 2 14 straight-line interpolation between the two 
Value 1 > Value 2 15 values according to an interpolation fraction. 

TBLU Rs,IM:Rd 7E 
Value 1 < Value 2 15 
Value 1 > Value 2 16 

TRAP ---- (ST) - ((SP)) 
immB FF 7 (SP) + 2 - (SP) 

Next inst. addr - ((SP)) 
(SP) + 2 - (SP) 
2 x -enumeratorB+ trap_base_addr ... (PC) 
1112 ... (ST bits L2-LO). 

immB value = trap number; ones-complement 
of trap number becomes enumeratorB which 
resides in LSbyte of opcode. 

trap_base_addr = base address of interrupt 
traps. 

TRUNCS,TRUNCSL * * 0 * Test whether signed data can be truncated 
TRUNCS Rd AE (represented in next smaller size - word or 

bits 15-7 equal 3 byte). If not possible, 1 - (V[ST]]). 
bits 15-7 not equal 4 

TRUNCSL IM:Rd AF 4 

TRUNCU ***0 Test whether an unsigned word can be trun-
Rd AD 2 cated and represented as a byte value. 

If not possible, 1 - (C[ST]]). 

Legend: t Data Size: B = affects byte W = affects word L = affects long word * Status Register Values: 
o = status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see Instruction description) 

5-14 TMS370C16 CPU 



Instruction Set Summary Table 

/ 

Opcodet Cycles Status* 
Mnemonic B W L {te> ZNCV Operation Description 

TST, TSTB' **-0 Test source: 
Rs 03 02 1 (s) - (ZR) 
*Rs OB OA 2 set Z[ST] and N[ST] accordingly. 
*Rs+ 13 12 3 
#imm16 1B 1A 2 Synthesized as MOV s,ZR. 
*disp16{Rs1 23 22 3 
*-Rs 2B 2A 3 

variant: 
&address 23 22 3 

UNLINK F6 3 ---- Unlink and deallocate stack frame: 
(FP) - (SP) 
((SP» - (FP). 

XNOR,XNORB **-0 Exclusive NOR source with destination: 
Rs,Rd 202C 1 -(s A d'J - (Rd). 

XOR,XORB **-0 Exclusive OR source with destination: 
RS,Rd 51 50 1 (s) A (d) _ (d). 
Rs, *disp16{Rd1 53 52 5 
#imm 16, Rd 55 54 2 
#imm16, *disp16{Rd] 57 56 5 

variants: 
Rs,&address 53 52 5 
#imm16,&address 57 56 5 

Lagend: t Data Size: B = affects byte W = affects word L = affects long word * Status Register Values: 
o = status bit always cleared 1 = status bit always set 
- = status bit unchanged by execution * = other effect on status bit (see instruction description) 

11 Synthetic instruction 

Assembly Language Instructions 5-15 



Instruction Descriptions In Alphabetical Order 

5.3 Instruction Descriptions In Alphabetical Order 

This section contains detailed descriptions of each TMS370C16 instruction, 
Including bus and signal-line content during each cycle. Variants on an 
instruction are not covered in this section, but are noted throughout the table 
in Section 5.2 (starting on page 5-4) and explained in the paragraph on page 
5-4. 

Figure 5-1. Interpreting the Instruction Execution Detail 

rzz.;J = "don't care" bits 

Instruction Execution Detail 

Machine-Code Word 
Bit Values ~ 

ADD{B} RS,Rd 
15 87 43 0 

Cycle 1 values --+ 
Cycle 2 values --+ 

Cy 

1 

2 

3 

4 

6 

AddI'888 

OpAi 4 

Address bus valu e ---1 

Data bus value 

Data 

lEW 

1 
I 

states: signals w b f d: Functional logic 

w: R/W signal 
b: B/W signal ( 
_ fer: 1 = byt 
f: FETCH sign 

(1 = read, 0 = write) -
S value = size of trans-
e, 0 = word) 
aI (0 = fetch of instruo-

tion or exte 
d: LlR signal (0 

nsionword) 
= decode) 

wbid 
1000 

~i~ 

Addraaa 

OpA+4 

OpA+6 

Data 

IW 

lEW 

wbfd 
1001 

1000 

} Assembler Format 

} 
2-word 
instruction 
(this example) 

NOTE: Abbreviat ions and symbols are 
5-1 and Table 5-2 (on defined in Table 

page 5-2). 

Note: Assembler Statements Are Not Case Sensitive 

TMS370C16 assembly language statements are not case sensitive. You can 
enter them in lowercase, uppercase, or a combination. To emphasize this, 
assembly language statements are shown throughout this user's guide in 
both uppercase and lowercase. 

5-16 TMS37OC16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Examples 

Add Source Word Plus Ca!?y to Destination ACe 

ADC 

(source16) + (destination16) + carry bit - (destination16) 

Rs,Rd 
*disp 16[Rsj, Rd 

Z cleared if the result is nonzero; unchanged otherwise 
N equals bit 15 of the result 
C set if an unsigned overflow occurred; cleared otherwise 
V set if a twos-complement overflow occurred, cleared otherwise 

Add the contents of the source operand and the value of the carry bit of the 
status register to the destination-register contents (sum remains in the 
destination register). Source and destination are 16-bit words. 

The operation facilitates 32-bit addition. Use an ADD instruction to add the 
least Significant words; then follow with an ADC Instruction, adding the most 
significant words as well as the carry-bit value (the C[ST] = 1 if the just-exe­
cuted ADD instruction included a carry). Thus, the ADD and ADC instructions 
must be sequential. 

The Z[ST] bit correctly reflects the result of 32-bit addition. The bit is set only 
if the previous operation (like the ADD instruction) set it. Thus, all status bits 
reflect a 32-bit result after an ADD/ADC sequence. 

LABEL ADC zr,rll 

LOAD_BUF ADC *lOOOh[r6] ,r7 

Add contents of ZR, Rll, 
and carry bit. store sum 
in Rll. Effectively a 
continuous increment of 
Rll depending on carry 
bit contents. 

Add contents at (R6) + 
lOOOh plus carry-bit 
value to R7 contents. 
Result to R7. 

Instruction Execution Detail 

ADC RS,Rd ADC itdisp16[RsJ,Rd 

Cy AddI'8l8 Data wbfd Address Data wbfd 
1 0pA+4 lEW 1000 0pA+4 rw 1001 

2 disp+Rs (dlsp+ Rs) 1011 

3 OpA+6 lEW 1000 

Assembly Language Instructions 5-17 



ADD Add Source to Destination 

Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Examples 

ADD{B} 

(source) + (destination) - (destination) 

Rs,Rd 
*disp16[Rs},Rd 
Rs, *disp16[Rd} 
#imm16,Rd 

Z set if the result is zero, cleared otherwise 
N equals bit 7 of the result (byte) or bit 15 of the result (word operation) 
C set if an unsigned overflow occurred; cleared otherwise 
V set if a twos-complement overflow occurred, cleared otherwise 

Add the contents of the source to the contents of the destination. 

For byte operations, sign extend the byte operands to word length, then oper­
ate on the word to produce a word result. The most significant byte of the result 
becomes either OOh for C[ S1] = 0, or 01 h for C[S1] = 1. Registers receive the 
entire word; nonregister destinations receive the least significant byte of the 
result. 

Status bits are set with respect to the size (byte/word) of the operation 
requested. 

LABEL ADD RS,RIO 

ADD *20Ih[ZR],R12 

ADDB *10[rS],r9 

ADD #BUFFER,rll 

Add the contents of RS & 
R101 store sum in RIO. 

Add contents of location 
201h and ZR to contents 
of R12, store sum in R12. 

Add byte contents at 10 + 
(RS) to R9.Sum goes to 
LSbyte of R9 with MSbyte 
of R9 zeroed" out. 

Add immediate value of 
BUFFER and R11. store 
results in R1l. 

5-18 TMS370C16 CPU 



Add Source to Destination ADD 

Instruction Execution Detail 

ADD{8} Rs,Rd ADD{8} #imm16,Rd 

Cy Addrwl Data wbld Addreaa Data wbfd 
1 OpA+4 lEW 1000 OpA+4 PH 1001 
5 0pa+6 lEW 1000 

I ADD{8} *disp16[Rsj,Rd I ADD{8} RS,*disp16[Rdj I 

Cy Add,... Data wbfd Addreas Data wbid 
1 OpA+4 IW 1001 OpA+4 PH 1001 

2 dlsp+Rs (dlsp+Rs) 1811 dlsp+Rd (dlsp+Rd) 1811 

3 OpA+6 lEW 1000 prevA (prevA) 1011 
4 dlsp + Ad re8U~ 0811 

5 OpA+6 lEW 1000 

Note: The wbfd Column Values 

Values for the wbfd column are listed in Figure 5-1 on page 5-16. , 

Assembly Language Instructions 5-19 



ADQ Add Quick Immediate to Destination 

Syntax 

Execution 

Modes Supported 

Status Blta 

Description 

Example. 

ADQ{B} 

immediate data + (destination) - (destination) 

#imm4,Rd 
#imm4, *disp16[RdJ 

Z set if the result is zero, cleared otherwise 
N equals MSB in result: bit 7 (byte operation) or bit 15 (word operation) 
C set if an unsigned overflow occurred; cleared otherwise 
V set if a twos-complement overflow occurred; cleared otherwise 

Add quick immediate data to the contents of the destination operand. (Quick 
immediate data is a 4-bit value contained in the instruction word). The value 
of (}-15 is zero-extended to a word for addition. ADO, with its 4-bit immediate 
operand, operates in oniy one cycie; whereas, ADD, with a i6-bit immediate 
operand, uses two cycles.) 

For byte operations, the byte operands are extended to word length, then 
operated on as words to produce a word result. The most significant byte of 
the result will be either OOh when C[ST] = 0 or 01 h when C[ST] = 1. Registers 
receive the entire word, while nonregister destinations receive the least 
significant byte of the result. 

Status bits are set with respect to the size (byte/Word) of the operation 
requested. 

LABEL ADO #BITS,R4 

ADO #4,&BUFFER 

Add value 'BITS' to R4. 
Store sum in R4. 

Add immediate value 4 
to ' BUFFER' • 

Instruction Execution Detail 

AOQ{B} #imm4,Rd #imm4,*disp16[Rd] I 

Cy Address Data wbfd Address Data wbfd 

1 0pA+4 lEW 1000 prevA (plevA) 1011 

2 disp + Rd (dlsp+ Rd) 1811 

3 OpA+4 rN 1001 

4 dlsp + Rd result 0811 

5 OpA+6 lEW 1000 

5-20 TMS37OC16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Examples 

Logicallr. AND Source With Destination AND 

AND{8} 

(source) & with (destination) - (destination) 

Rs,Rd 
Rs, *disp16[RdJ 
#imm16,Rd 
#imm 16, *disp 16[RdJ 

Z set if the result is zero, cleared otherwise 
N equals bit in result: bit 7 (byte operation) or bit 15 (word operation) 
C unchanged 
V cleared 

Logically AND the contents of the source with the contents of the destination. 

For byte operations, byte operands are zero-extended to words, operated on 
words, and produce a word result. The most significant byte of the result will 
always be OOh. Registers receive the entire word; while nonregister destina­
tions receive the least significant byte of the result. 

Status bits are set according to size (byte/word) of the operation. 

LABEL AND RS,RIO 

ready andb #clear8,r6 

AND #55AAh,R7 

AND the contents of RS 
and RIO. store result 
in RIO. 

AND byte value of CLEAR 
with R6. store LSbyte of 
result in R6, and clear 
MSbyte of R6. 

ADD value of 55AAh with 
contents of R7. store 
result in R7. 

Assembly Language Instructions 5-21 



AND Logical/rAND Source WithDestination 

Instruction Execution Detail 

Cy Address Data wbiCi Address Data wbid 
1 OpA+4 lEW 1000 OpA+4 IW 1001 
2 disp+Ad (dlsp+ Rd) 1 S 11 
3 prevA (prevA) 1 011 
4 dlsp + Ad resutt OSll 
5 OpA+6 lEW 1000 

ANO{8} #imm16,Rd 

Cy Address Data wbid Addres8 Data wbiCi 
1 OpA+4 IW 1000 OpA+4 data 1001 
2 OpA+6 lEW 1000 dlsp+Ad (dlsp + Ad) 1 S 11 

3 OpA+6 rw 1001 
4 disp + Ad resutt OS 11 
5 OpA+8 lEW 1000 

5·22 TMS370C16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Arithmetically, Shift Register Right ASR 

ASR{L} 

right-shift (destination) by source count - (destination) 

#imm4,Rd 
#imm4,IM:Rd 
Rs,Rd 
Rs,IM:Rd 

(word) 
(Iongword) 
(word) 
(Iongword) 

Z set if the result is zero, cleared otherwise 
N equals MSB in result: bit 15 of Rd (word operation) or bit 15 of 1M 

(Iongword operation) 
C equals the last bit shifted out of the register; cleared if the shift count in 

Rsis zero 
V cleared 

Arithmetically right shift the destination register's contents by the number of 
bit positions (0-15) specified in the source operand. Leave unchanged the 
preshift value of the most significant bit constant. If the shift count is in a regis­
ter, the count range (0-15) is defined by the 4 LSBs of the source register (Rs 
bits 15 - 4 are ignored). 

The following illustrates a right shift of the most significant bit into the register: 

1:!11:J~!~\~llillij,I~~:i~\1;1!:!!I:~jl!f'~!i~l\!!:~i!~i'~Th11;~!N!!!::l!!ji!!:f~!!!li:!!ii!l;I!1=> C[ST)t 
15 0 

(MSB of Ad or 1M) 

t The value of the last bit shifted out !;Ioes to the carry bit; this 
bit Is cleared if the shift count in As IS zero. 

Status bits are set with respect to the size of the word shifted (16 or 32 bits). 
Longword shifts always use register 1M as the most significant word of the 
32-bit object. The result of ASR (source),IM:IM is undefined. 

Assembly Language Instructions 5-23 



ASR Arithmetically Shift Register Right 

Examples LABEL ASR #6,R3 ; set R3 to sign bit value 

Before 

After 

R3 1,!:~I;o:!!!~';:'!:~!!I!!:i~!lo:I!:p::Oii:::ioi:j~!!j6!';Oi!:ll!jO'!:!~:!;1'!I:a 
~ 0 

R3 1!~~;I!!~'\!i:l~ii:l(j!'~':I;;!!\:i~j!jj:'I!j!!,:~'::l!:O'!:j;:!~:!':li!';!():!:!oijj;;IIO!:j'6':!!a~ijl-
I I I 
~ 

Sign bit extended 6 bit places 

ZNCV 

ST= 101010101 

ZNCV 

ST= 101110101 

Note that if the shift count was changed to 15, R3 would be aU ones. 

Label ASR #3,r3 Shift R3 three bits right 

shift asrl #2,im:r9 Shift the long word in 
registers IM:R9 right 

Instruction Execution Detail 

ASR #imm4,Rd 

p~~t Address Data wbiij 
n prevA (prevA) 1011 (repeat) 

n+l OpA+4 lEW 1000 

ASRL #imm4,IM:Rd 

p~~~t Address Data wbiij 
prevA (prevA) 1011 

2n-2 prevA (prevA) 1011 (repeet) 

2n OpA+4 lEW 1000 

p~~~t 
1,2 

n 
(repeet) 

n+1 

p~~t 
1,2,3 

2n-2 
(repeat) 

2n 

two bits 

ASR Rs,Rd 

Address Data wbiij 

prevA (prevA) 1011 

prevA (prevA) 1011 

OpA+4 lEW 1000 
To1eI cycles: n + 3 

ASRL Rs,IM:Rd 

Address Data wbiij 
prevA (prevA) 1011 

prevA (prevA) 1011 

OpA+4 lEW 1000 
Total cycles: 2n + 2, or 

3lfRsROh 

t A single number represents a given cycle, An expresSion of n repre­
sents the cycle count after the previous cycles, depending on the nth 
number of shifts or repeats, Bus and signal values shown are present 
during these intervals. 

5-24 TMS370C16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Arithmetically Right Shift Value, Round to Zero ASRO 

ASRO{L} (Fourth character is a numerical 0.) 

right shift (destination) by source count - (destination) 
IF N[ST] = 1 andC[ST] = 1, THEN (destination) + 1 - (destination) 

Rs,Rd 
Rs,IM:Rd 
#imm4,Rd 
#imm4,IM:Rd 

(word) 
(Iongword) 
(word) 
(Iongword) 

Z set if the result is zero, cleared otherwise 
N equals the most significant bit of the result 
C ASRO: cleared 

ASROL: set if an FFFF FFFFh result is rounded (incremented) to 
0000 OOOOh; cleared otherwise 

V cleared 

Shift the signed (arithmetic) destination register's contents to the right by the 
number of bit positions in the source operand while holding constant the most 
significant bit of the destination. Thus, the MSB is extended into the destination 
a number of times equal to the source value. The shift count of 1-15 is derived 
from the 4 LSBs of the source contents (Rs bits 15 - 4 are ignored). 

If, after shifting, the result is negative and a 1 was shifted out of the register, 
the result (destination) is incremented. This performs a mathematically correct 
signed division by a power of 2 (exponent of 2 = number of bits shifted). 

The following illustration depicts a right shift of the most significant bit into the 
destination register: 

== 
15 

(MSB of Rd or 1M) 
o 

The shift count is contained in the source (4 LSBs of Rs or bits 7-4 of the 
instruction when #imm4 is specified). A shift value of 00012 to 11112 corre­
sponds to a shift of 1 to 15; a shift value of 00002 indicates 16. 

Status bits are set with respect to the size (word/longword) of the operation. 
Longword shifts always use the 1M as the implied most significant word of the 
32-bit result. The result of ASROL (source),IM:IM is undefined. 

Assembly Language Instructions 5-25 



ASRO Arithmeticalx Right Shift Value, Round to Zero 

Example ASROL #4,IM:R2 ~ right shift Rl/R2 4 bits 

Before 

After 

1M (R1) 1!i.ill\lj\"I!jli~1fl:I!!I!I!;'I!!11!!;1,111;1·;!!g;!:I!::II!';I:I;llt~;I;111 

R2 1IIIl:Ill}111Q~11':f111'!1!litlll'I[I!IIfI!I!I,!!illl:1I111!!!tll!II!!I:ol~o:1 
, ' 

4 bits to be shifted out 

IM(R1)~~~~~I~I~!I~~l:~I!~'!~!i~()~'~'~1 ~ ~ 
R~!!li'lOf~~~I:~li!;!lll\lllli'~IO!ljlol~'~I!III'!I;l1;1'!1611!!~!ll!!':i!11~11,? 1 0 0 02 

Last bit to exit (1 }-------' .. 

ZNCV 

ST= 101010101 

ZNCV 

ST= 101110101 

Instruction Execyt!on Deta!! 

p~:/t 
1 

n 
(repeat) 

n+2 

I ASRO #imm4,Rd I 
l;itll!.I~wllll:l!tl!I!.li!lli11~:!1 

Addre88 Data wbfCi 

prevA (prevA) 101 1 

prevA (prevA) 1011 

OpA+4 lEW 1000 

ASROL 
#imm4,IM:Rd 

If N[ST]J = 0 

p~~t Addreas Data wbiCi 

prevA (prevA) 1 0 1 1 

2n-1 prevA (prevA) 1011 (repeat) 

2n+1 OpA+4 lEW 1000 

2n+2 

I ASRO Rs, Rd I 
Il~tilll!i:tl;j~i®!';I!!';illll!!:II:1 

~~t Addre88 Data wbiCi 

1,2 prevA (prevA) 1 011 

3 prevA (prevA) 1 011 

n prevA (prevA) 1 011 (repeat) 

n+2 OpA+4 lEW 1000 

Total cycles: n + 4 

ASROL Rs,IM:Rd 

If N[ST]J • 1 If N[ST]J • 0 If N[ST]J • 1 
p~~e/t t-Ad-d-re88--D-ata---:W=-b-:iC=Ci-t--Add-r-eas--Data---::W:-b~fCi=-t Addreas Oeta w b f Ci 

prevA (prevA) 1 0 1 1 1, 2 prevA (prevA) 1 0 1 1 prevA (prevA) 1 0 1 1 

prevA (prevA) 1 011 3 prevA (prevA) 1011 prevA (prevA) 1011 

prevA (prevA) 1 011 2n-l prevA (prevA) 1011 prevA (prevA) 101 1 (repeat) 

OpA+4 lEW 1000 2n+ 1 OpA+4 lEW 1000 prevA (prevA) 1011 

2n+2 OpA+4 lEW 1000 

Total cycles: 2n+3; or 3 W Rs • Oh Total cycles: 211+4: or 3 W Rs - Oh 

t A single number represents a given cycle; an expression of n represents a cycle or a period of cycles depending on the nth 
number of shifts or repeats. Bus and signal values shown are present during these intervals. 

5-26 TMS370C16 CPU 



Syntax 

Execution 

Mode Supported 

Status Bits 

Options 
Mnemonic 
BfCONOl 

BC 
BEQ 
BGE 
BGT 
BHI 
BHS 
BLE 
BLO 
BLS 

Branch on Condition 8{COND} 

B{COND} 
(where {COND} = condition option; see below) 

If condition is true: (PC) + displacement - (PC) 
(where PC = (BCONO _ OpA + 4) + 2) 

If condition is not true: continue at next instruction in succession 

<displacement 8> 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Condition for Branch 

Carry Set 
Equal or Zero 
Greater Than or Equalt 
Greater Thant 
Higher 
Higher or the Same 
Less Than or Equalt 
Lower 
Lower or the Same 

Mnemonic 
BfCONOl 

BLT 
BN 
BNC 
BNE 
BNV 
BP 
BPZ 
BR 
BV 

Condition for Branch 

Less Thant 
Negative (Minus)t 
Carry Is Clear 
Not Equal or Not Zero 
Overflow Is Cleart 
Positivet 
Plus (Not Negative)t 
Branch always (no condition) 
Overflow Is Sett 

t Signed operations (others are logical operations) 

Description If the condition (in ST) is true (one), branch to the address specified. If the 
condition is not true, go to the next instruction in succession. Table 5-3 
explains the conditions for each branch. 

The following explains the instruction's branch mechanics, considering the 
effect of the prefetch pipeline. A maximum signed displacement of + 127 and 
-128 words (+254/-256 bytes) can be indicated in the 8-bit signed 
displacement opcode field. However, this displacement value is figured from 
the PC value, which points two words past the16-bit word address of the 
BCOND instruction. This is graphically illustrated in Figure 5-2 (page 5-29) 
and explained below. 

When viewed from the 16-bit PC value, displacement can be figured as + 129 
words (forward) or -126 words (backward) from the location of the instruction. 
Actually, a + 127 or -128 value (translatable to words in displacement) is added 
to the PC value when the displacement is figured. Multiply this sum by 2 to 
determine the 17 -bit BCON D _ OpA address. See Figure 5-2 (page 5-29). 

To derive the 16-bit PC word address value from the 17-bit BCOND_OpA 
address, add 4 (the additional 4 bytes beyond the currently executing opcode) 
and divide by 2. Two methods of destination address calculations: 

Assembly Language Instructions 5-27 



B{COND} Branch on Condition 

o starting with the 17 -bit memory bus address: 
destination address = BCOND_OpA17 + 4 + (disp8Jn_bytes x 2) 

o starting with the 16-bit PC word value: 
destination address = (PC + disp8Jn_words) x 2 

where PC = (BCONO _OpA + 4) + 2. 

When a branch is not taken (condition false), a clock cycle is saved because 
the prefetch pipeline does not need to be completely refilled. 

Table 5-3. Branches Listed by Opcode 

Mnemonic Opcode 

BR "no. 
""VII 

BNC C1h 

BHS C1h 

BC C2h 

BLO C2h 

BEQ C3h 

BNE C4h 

BHI C5h 

BLS C6h , 
BGT C7h 

BLE C8h 

BGE C9h 

BLT CAh 
~ BV CBh 

BNV CCh 

BP CDh 

BPZ CEh 

" BN CFh 

Note: A= XOR, 1= OR 

Example LABEL MOV 
CMP 
BNE 
BHI 

• • • 
FAIL_MSG MOV 

5-28 TMS370C16 CPU 

ST Condition 
Description for Branch 

Branch (unconditional, always) 

Branch if carry clear C=O 

Branch if higher or the same C=O 

Branch if carry set C .. 1 

Branch if lower C = 1 

Branch if equal or zero Z=1 

Branch if not equal or not zero Z=O 

Branch if higher CIZ=O 

Branch if lower or the same C IZ= 1 

Branch if greater than ZI(N"V) .. O 

Branch if less than or equal ZI(N"V)=1 

Branch if greater than or equal N"V=O 

Branch if less than N" V= 1 

Branch if overflow set V=1 

Branch if overflow clear V=O 

Branch if positive N IZ=O 

Branch if plus (not negative) N=O 

Branch if negative (minus) N = 1 

*R4+,R2 
R2,R3 

Bring in value to R2 
Compare values 

FAIL_MSG 
LABEL 

R2,*R7 

If not = R3, send fail message 
If higher, go back 3 words and 
get next value 

store value 



Branch on Condition B{COND} 

Instruction Execution Detail 

B{COND} dispB 

Branch Not Taken Branch Taken 
Cy Address Deta 

prevA (prevA) 

20pA+4 lEW 

3 

w b iii Addreaa 
1011 prevA 

1000 OpA +4+2d1sp 

OpA + 6 + 2dlsp 

Note: For definitions, see Figure 5-1 on page 5-16. 

Data wbiii 

(prevA) 1 0 1 1 

WI/ 1001 

lEW 1000 

Figure 5-2. B{COND} Instruction Displacements 

.,- ----
,/ 

/ 
Displacement / 

Ul 
'E c: 
o .2 
~t:S 

<0 2 
C\l1ij 
.,... c: 
1-
.eS' 
oz 
08 
~cc 
c: E as 0 a:.j:: 

(Words) / 

-'] \ 
\ 
\ 
\ . 
\ . 
\ . 

\ 
\ 

\ 

Maximum Signed 8-Blt Displacements: 
s 
01111 11111 = +127 words 

1 
11000 00001 = -128 words 

+- Branch instruction 
t-----'--"""T"'--'-----f (Location BCONO _ OpA) 

+- PC points here 
(Location BCONO_OpA + 4) 

r 
Assembly Language Instructions 5-29 



BRBITO Branch" Bit Is Zero 

Syntax 

execution 

Mode Supported 

Status Bits 

Description 

Example 

BRBITO (Last character is a numerical 0.) 

IF bit number imm3 at byte addr = 0, then (PC) + disp8 - (PC) 
where PC = (BRBITO OpA + 6) + 2) t 

ELSE go to next instruction 

#imm3,&addr,disp8 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

(where: #imm3 is a number from 0-7, 
identifying the bit position) 

Test a bit (imm3 = bit number) at a byte destination address (addt). If bit = 0, 
branch to the specified location by adding the displacement to the PC (add 
byte value - see Figure 5-3 for details). If bit = 1, continue to the next instruc­
tion following the BRBITO. If no branch is taken, a clock cycle is saved because 
the prefetch pipeline does not have to be completely refilled. The destination 
value addresses only the first 64K bytes of memory (address line AO = 0). 

The bit syntax field must be in the range 0-7. It is located in the opcode byte 
(bits 10-8) specifying which bit to test in addr16 (the byte address). The imm3 
bit value identifies the byte bit according to the following format: 

765 4 320 

~ __ ....... I_&..I ---I1_.a..I_~ .... I~1 = Bit numbering of destination 

The instruction accesses bytes only, and it branches only if the bit tested is O. 

The imm3value is assembled into the three least significant bits of the opcode. 
This variable value accounts for the D8h-DFh opcode value that specifies the 
bit number checked in the destination. Opcode format: 

15 14 13 12 11 10 9 B 

I 1 I 1 I 0 1 1 I 1 I 0-7 value I = Bit values of BRBITO opcode 

Because the instruction optimally prefetches another word into the pipeline 
before calculating the destination address, execution flow can be redirected 
(branched to) by +130 words or -125 words (+260/-250 bytes) as shown in 
Figure 5-3. This is similar to the BCONO instructions, except that the PC is 
pointing six bytes from the address of the BRBITO instruction (instead of four 
bytes from the address of BCONO). (Compare Figure 5--2 and Figure 5-3.) 

Check the most significant bit at byte address 201. If a 0, go to location TEST; 
otherwise, continue at the next instruction: 

Label BRBITO 7,&0201,TEST 

tin the execution entry at the top of the page, the 6 in the OpA + 6 address value is 
larger than that used for the BCONO or OBNZ instructions because this instruction 
optimally prefetches another word into the pipeline before calculating a destination 
address. 

5-30 TMS3700160PU 



Branch If Bit Is Zero BABITO 

Figure 5-3. BRBITO and BRBIT1 Instruction Displacements 

Dls~cement _ - Maximum Signed 
ords) /'././ S Displacements: 

-
1Hl 1 

o 1111 1111 1 = +127 words '" 'E c:: 

1 
i .2 I 1 1000 0000 1 = -128 words 

/ 

I 

~i • / ~a I" ._ • I 
1~1 So • I 

01:: I s- o~ o~ com I 
.... lXi 

i~ ij +- Branch Instruction 
~ 

~.~ 
(BRBITO_ OpA) 

~ ii +- PC points here 

~1 
(Location BRBITO_OpA + 6) 

+.-
",0 Sf2 ~Ol 0- • +E: o~ • Sea com • Olfi f~ .,..1 T ~j a:~ 

f 

Instruction Execution Detail 

Opcode and DaaUnaUon 
Bit to Check 

Opcode Dest.BIt 
(hex) To Check Branch Not Taken Branch Taken 

Cy AddrMI Data wbiii Addrna Data wbiii 08 0 

1 addr (addr) 1111 addr (add!) 1111 08 1 

2 OpA+4 IW 1001 0pA+4 IW 1001 OA 2 

3 prey (preY) 1011 prey (prey) 1011 DB 3 

4 OpA+6 lEW 1000 0pA+ 4+ (2xdisp) IW 1001 DC 4 

15 0pA+6+ (2 x dlsp) lEW 1000 DO 15 

DE 6 

OF 7 

Nota: The Immediate value designating the bit to set Is contained In the three least significant bits of the 
opcode's left-hand byte. Values are shown In the table on the right. 

Assembly Language Instructions 5-31 



BRBIT1 Branch If Bit Is One 

Syntax BRBIT1 

execution IF bit number imm3 in address addr = 1, 
THEN (PC) + dispB- (PC) 

Mode Supported 

Status Bits 

Description 

[where PC = (BRBIT1 OpA + 6) + 2] t 

ELSE go to next instruction 
#imm3,&addr,dispB 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

(Where #imm3 is a number from 0-7, 
identifying the bit position) 

Test a bit (imm3 = bit number) in the byte destination address (addt}. If bit = 
1, branch to the specified location by adding the displacement to the PC (add 
byte value - see Figure 5-3 for details). If the bit = 0, continue to the next 
instruction after BRBIT1. If no branch is taken, a clock cycle Is saved because 
the prefetch pipeline does not have to be completely refilled. The destination 
value addresses only the first 64K bytes of memory (address line AO = 0). 

The bit syntax field is a 0-7 value in bits 0-2 of the opcode byte specifying 
which bit to test at addr16 (byte address). The imm3 bit value identifies the byte 
bit according to the following format: 

765 4 3 2 1 0 

I I I I I I I I = Bit numbering of destination 

The Instruction accesses bytes only, and it branches only If the bit tested is a 1. 

The imm3value is assembled into the three least significant bits ofthe opcode. 
This variable value accounts for the DOh-D7h opcode value that specifies the 
bit number checked in the destination. Opcode format: 

15 14 13 12 11 10 9 8 

I 1 I 1 I 0 I 1 I 0 I 0-7 value I = Bit values of BRBIT1 opcoc:le 

Because the instruction optimally prefetches another word into the pipeline 
before calculating the destination address, execution flow can be redirected 
to (branched to) a maximum distance of +130 words or -125 words 
(+260/-250 bytes) as shown in Figure 5-3. This is similar to the BRBITO in­
struction, exceptthatthe branch occurs ifthe bit is set. (The BRBITO instruction 
explanation immediately precedes these pages.) 

t In the execution entry at the top of the page, the 6 in OpA + 6 value is larger than 
that used for the BCONO or OBNZ instructions because this instruction optimally 
prefetches another word into the pipeline before calculating a destination address. 

5-32 TMS37OC16 CPU 



Example 

Branch If Bit Is One BRBIT1 

Check the least significant bit (0) in byte address 100. If it is a 1 , go to location 
RECOUNT; otherwise, continue at the next instruction: 

LABEL brbitl O,&100,RECQUNT 

Instruction execution Detail 

Branch Not Taken Branch Taken 
Cy Addreaa Data wbiii Addren Data wbiii 
1 addr (addr) 1 1 1 1 addr (addr) 1 1 1 1 

2 OpA+4 IW 1001 OpA+4 IW 1001 

3 prev (prev) 1011 prev (prev) 1 011 

4 OpA+6 lEW 1000 OpA+4+(2xdisp) IW 1001 

15 OpA+6+ (2 x disp) lEW 1000 

Not.: The immediate value designating the bit to set is contained in the 
three least significant bits of the opcode's left-hand byte, as 
shown in the table below. 

Opcocl. and O •• tlnatlon 
Bit to Check 

Opcode Dest. Bit to 
(Hex) Check 

00 

01 

D2 

03 

04 

DIS 

D6 

07 

o 

2 

3 

4 

15 

6 

7 

Assembly Language Instructions 5-33 



CALL Jump to a Subroutine CMth Linkage) 

Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

CALL 

CALL addr or CALL Rd: 
(PC) - 2 - ((SP» 
(SP) + 2 - (SP) 
(destination) - (PC) 

CALL *dlsp16[Rd] or CALL *Rd: 
(PC) - ((SP» 
(SP) + 2 - (SP) 
(disp + (Rd» - (PC) 

Rd 
*Rd 
addr 

(assembles same as CALL *OOOOh[Rd}) 

*disp 16[Rd} 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Jump to the subroutine pointed to by the destination operand. Provide linkage 
back to the next instruction after CALL by pushing the 16-bit word address (PC 
contents) of the next executable instruction onto the system stack. This return­
linkage word address (explained in note below) is derived from the memory 
opcode address (OpA) by these equations: 

o (CALL_ OpA + 2) + 2 for the 16-bit word address of CALL Rd 
o (CALL_OpA + 4) + 2 for the 16-bit word addresses of CALL addr16, 

CALL *disp[Rd}, and CALL *Rd. 

CALL addr contains a 16-bit word address (see note below) to specify the 
destination. These 16 bits are applied to bits A 16-A 1 of the address bus (as 
if shifted left one bit). Note: addr17must be an even value. See Figure 5-4 and 
Figure 4-12 on page 4-15. 

CALL Rd jumps to the subroutine at the word address in Rd (i.e., Rd 
contents - PC). (Note that CALL SP, CALL *dlsp 16[SP], and CALL *SP 
are undefined because SP is incremented before execution.) 

CALL *dlsp16[Rd] and *Rd use two levels of indirection to arrive at the 
destination (see Figure 4-12, page 4-15): 
1) Add displacement disp and the contents of Rdto compute a memory (not 

wore!) address (disp can be D-FFFFh). This also applies to CALL *Rd, 
which assembles as if written CALL *Oh[Rd}. (If Rd is ZR, then disp 16 is 
the destination address.) 

2) At this address, retrieve the word address of the destination, which 
through the PC, is applied to address bus lines A 15-A 1 with AO set to O. 

Note: PC's 16-Blt Word Address Translates to 17-Blt Address Bus 
The program counter's 16-bit word address is transformed into a 17-bit 
physical memory address by overlaying PC data bits 15-0 onto address 
lines A 16-A 1 and forcing AO to O. See Section 2.3 and Figure 5-4. 

5-34 TMS37OC16 CPU 



Example 

Jump to a Subroutine (With Unkage) CALL 

Use the RTS instruction to return from the CALL subroutine and continue with 
the execution of the instruction following the CALL. Use the RTDU instruction 
to return if and only if the subroutine executed a UNK instruction and did not 
execute an UNUNK instruction. 

Figure 5-4. CALL and RTS Instruction Examplet 

r-------, 
I CALL execution: I <D 

(PC) - «SP» 
I (SP)+2 - (SP) 
I dest- (PC) 

Retum 
addre88 
to Stack 
/--+ 

7 

Stack 

I---------------~*-/ 

vaJues{PCl4 2 0 

~ SP~. =A~==~l~==~O==~~= 
r-------, 

@ I RTS ExecutIon: I 
~ i (SP)-2-(SP) I '-L- «SP)) - (PC) I 

Retum 
From 

Subroutine 

L ______ ...J 

:~ {PC ~...;6;-...;O~---=.5 __ ..:3:....-...j 
execution SP. A 1 0 2 

afte~~ {PC ~_4-:----:2::----70 __ ....:::2:-f--i 
execution SP 1-. .....;A-'----'1'--_O-'----'O'--' 

t A dashed line denotes the path of the value moved or copied. A solid line denotee a location 
pointer. 

*The PC value placed on the stack is one half the 17-bit memory address value. This is equal 
to (addrees of CALL + 4) + 2. On the return, the RTS instruction overlays this stored quo­
tient onto the address bus (essentially multiplying it by 2). This value of one half the address 
bus value applies to all uses of the PC. This feature is more obvious with addresses above 
64K bytes (which require the full 17 address bits). 

Assembly Language Instructions 5-35 



CALL Jump to a Subroutine (With Unkage) 

Instruction Execution Detail 

CALL Rd CALL addr16 I CALL *disp16[Rd] 

Cy Addr888 Data wbfd Address Data wbfd Address Data wbfd 
1 prevA (prevA) 1011 SP rtnA+ 2 0011 SP rtnA+ 2 0011 

2 SP rtnA + 2 1001 prevA (prevA) 101 1 prevA (prevA) 101 1 

3 prevA lEW 1000 2caddr IW 1001 caddr dlsp + Rd 1 01 1 

4 2Rd IW 1001 2caddr +2 lEW 1000 2caddr IW 1001 

5 2Rd + 2 lEW 1000 2caddr +2 lEW 1000 

5-36 TMS370C16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

Clear Destination CLR 

CLR{B} Synthetic Instruction: Executes as MOV{S} ZR,destination 

(Zero Register) - (destination) 

Rd 
"'Rd 
"'Rd+ 
"'disp 16[RdJ 

Z set 
N cleared 
C unchanged 
V cleared 

Clear the destination to all zeroes by copying the contents of the R15 (zero 
register) to the destination. 

Register destinations are completely cleared to OOOOh, even though a byte 
operation is requested. 

The following demonstrates various applications: 

label CLRB R12 Clear R12 to all zeroes 
CLR R12 Clear R12 to all zeroes 
CLRB *Rll+ Clear byte at address 

in Rll~ increment Rll by 1 
CLR *Rll+ Clear contents at address 

in Rll ~ increment Rll by 2 

Assembly Language Instructions 5-37 



CLR Clear Destination 

Instruction Execution Detail 

CLR{B} Rd CLR{B} *Rd 

Cy Addr888 Data wbfd Addreaa Data wbfd 
1 0pA+4 lEW 1000 Rd 0 os 11 

2 OpA+4 lEW 1000 

CLR{8} *Rd+ CLR{B} *disp 16[Rd) 

"" Addres: Data wb'd Address Data wbid -, 
1 Rd 0 OS 11 OpA+4 IW 1001 

2 OpA+4 lEW 1000 disp+ Rd 0 OS 11 

3 OpA+6 lEW 1000 

5-38 TMS37OC16 CPU 



Syntax 
Execution 
Modes Supported 

Status Bits 

Description 

Example 

Compare Source to Destination CMP 

CMP{B} 
compute (destination) - (source); set ST bits according to results 

Rs,Rd *Rs+,Rd 
#imm16,Rd *disp1[RsJ,*disp2[RdJ 
*disp 16[RsJ, Rd 

Z set if result is zero; cleared otherwise 
N equals bit in result: bit 7 (byte operation) or bit 15 (word operation) 
C set if an unsigned underflow occurred; cleared otherwise 
V set if a twos-complement underflow occurred; cleared otherwise 

Compare the contents of the source operand to the destination operand and 
set the ST status bits accordingly. 

The compare is performed by subtracting the source contents from the des­
tination contents. Results of the operation are reflected in the ST status bits. 

For byte operations, only the least Significant bytes of the register operands 
are compared. Status bits are set with respect to the size (byte or word) of the 
operation. 
CMP{B} *Rn+,Rn is a special-case operand combination where both parts 
of the operand use the same register. The compare of*Rn and Rn occurs 
before Rn is postincremented. 

LABEL CMP R12,R4 
BEQ YES_EQ 

CALL NOT_EQ 

Is R12 equal to R4? 
Yes, go to equal subroutine 
No, go to not-equal subroutine 

Instruction Execution Detail r----------------y-----------------,---------------------, 
CMP{B} Rs,Rd CMP{B} #imm16,Rd CMP{B} *disp[RsJ,Rd 

Cy Address Data wbfd Address Data wbfd Address Data wbfd 

1 OpA+4 lEW 1000 OpA+4 IW 1 001 OpA+4 IW 1001 

2 OpA+6 lEW 1000 disp+ Rs (dlsp+ Rs) 1 S 11 

3 OpA+6 lEW 1000 

CMP{B} *Rs+,Rd CM P{B} *disp 1 [RsJ, *disp2[Rd] 

Cy Address Data wbfd Address Data wbfd 

1 Rs (Rs) 1 S 1 1 0pA+4 dlsp2 1001 

2 prevA (prevA) 1011 OpA+6 IW 1001 

3 OpA+4 lEW 1000 displ + Rs (dlspl + Rs) 1 S 11 

4 disp2+ Rd (dlsp2+ Rd) 1 S 11 

5 0pA+8 lEW 1000 

Assembly Language Instructions 5-39 



CMPC Compare Source Minus Carry to Destination 

Syntax CMPC 

Execution 

Modes Supported 

Status Bits 

Description 

(destination) - (source) - C[S1] bit; set ST codes accordingly 

Rs,Rd 
*disp16[Rs},Rd 

Z cleared if the result is non-zero; otherwise, unchanged 
N equals the most significant bit of the result 
C set if an unsigned underflow/borrow occurred; otherwise, cleared 
V set if a twos-complement underflow occurred; otherwise, cleared 

Compare the source value, minus the carry bit value, to the destination. Then 
set the ST codes according to the comparison. 

The comparison is done in the following steps: (1) subtract the carry bit value 
from the source, and then (2) subtract this result from the destination: 

(1) source (2) destination 
- c [Sn ~ - source' 

source' compare_result 

The ST codes reflect the operation, and the result is discarded (source, des­
tination not changed). 

This instruction is designed for 32-bit compares with the first words (LSwords) 
compared using the CMP instruction. The CMPC immediately follows the 
CMP instruction to compare the most significant words. If the CMPC 
comparison of the MSwords is true, the Z[S1] bit remains unchanged, 
reflecting the earlier comparison of the LSwords by the CMP. However, if an 
underflow/borrow occurred in the earlier LSword/CMP comparison, this will be 
included in the subtraction of the two MSwords during the CMPC comparison. 
Thus, two alike most significant values will show a zero Z[S1] bit because of 
the carry over from the least significant comparison. 

Therefore, all ST condition codes will reflect a 32-bit compare after a CMP/ 
CMPC sequen~ of compares is executed. 

5-40 TMS370C16 CPU 



Example 

LABEL CMP 
CMPC 
BEQ 

Compare Source Minus Carry to Destination CMPC 

Compare two 32-bit values - contents of R6/R7 with R8/R9 (two MSword/ 
LSword combinations). If equal, branch to subroutine EQUAL: 

R7,R9 
R6,R8 
EQUAL 

Compare LS words 
Compare MS words 
If equal, branch 

(MSword) (LSword) 

Instruction execution Detail 

CMPC RS,Rd CMPC *disp16[Rsj,Rd 

Cy Address Data wbfd Address Data wbfd 
1 OpA+4 lEW 1000 OpA+4 IW 1001 

2 disp+ Rs (dlsp+ Ra) 1 S 11 

3 0pA+6 lEW 1000 

Assembly Language Instructions 5-41 



COMPL Twos-Comelement (Negate) Destination 

Syntax 

Execution 

COMPL{B} Synthetic Instruction: Executes as SUBR{B} Rn,ZR 

(ZR) - (Rn) 
result -. (Rn) 

(effectively SUBR{B} Rn,ZR) 

Mode Supported Rn 

Status Bits 

Description 

Examples 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C cleared if the result is zero; set otherwise 
V set if a twos-complement underflow occurred; cleared otherwise 

Compute the negative value (perform a twos-complement negation) of the 
destination register's contents by subtracting its contents from zero and 
placing the result in the destination register. 

For byte operations, the byte operands are zero-extended to words, are 
operated on as words, and produce a word result. The most significant byte 
of the result will be either OOh for C[S1]=O or FFh for C[S1]=1. 

Status bits are set with respect to the size (byte or word) of the operation. 

Label compl Rll 
COMPLB r4 

Negate Rll (twos complement) 
Negate LS byte of R4. MS byte 
value depends on carry bit of 
ST as described above. 

Instruction Execution Detail 

5-42 TMS370C16 CPU 

COMPL{B} Rn 
(SUBR Rd,ZR) 

Address Data w b f Ii 
prevA (prevA) 1 0 1 1 



Syntax 

Execution 

Mode Supported 

Option 

Status Blta 

Description 

DBNZ 

(Rs) - 1 - (Rs) 
IF Rs .. O 

THEN (PC - disp4) - (PC) 

Decrement Register, Branch If Not Zero DBNZ 

(where PC = [(DBNZ address + 4) + 2J 
ELSE go to instruction following DBNZ 

Rs,disp4 

DBNZ RS,<displacement4> 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

First, decrement the Rs word by one. 

Then, If the result is nonzero, branch to the location pOinted to by subtracting 
the 4-bit displacement from the PC value. Note that this subtraction takes 
place when the PC is pointing to the four bytes following the DBNZ instruction; 

Figure 5-5. DBNZ Displacement Computation 

-13 
-12 
-11 
-10 
-9 
-8 
-7 
-6 
-5 

Location 
SUB STRT .-4 

- ~-3 
~ -2 

IfR11~0,Go -1 
Back 6 Words 0 

~+1 
+2 

• 

; If Rll ~ 0, go to SUB_STRT (this is 
used in example on page 5-44) 

Maximum Displacements From PC: 
I 1 1 1 1 I = -15 Words 

-15 
I-------.,"-T--------t -14 I 0 0 0 0 I = - 0 Word 

I-----+-""'T"-------t -13 
t----f-..,....-----i -12 
I----+-""'T"-------t -11 
t---+-~----I -10 

-9 
-6 
-7 
-6 
-5 
-4 
-3 
-2 +- Branch Instruction 
-1 (DBNZ Address) 
o +- PC Points Here 
• (DBNZ + 4 Bytes) 

Displacement Displacement 
From DBNZ (Words) From PC (Words) 

Assembly Language Instructions 5-43 



DBNZ Decrement Register, Branch" Not Zero 

Example 

thus, the displacement can redirect execution +2 words (a 00002 displace­
ment) or -13 words (11112> from the 17 -bit address of the DBNZ instruction 
(see Figure 5-5). In any case, the branch must be negative - to a previous 
address (lower memory address). 

But, if the result Is zero, do not branch; go to the next instruction. 

This instruction provides a loop counter with the source register containing the 
number of loops desired. This is graphically shown in the left side of 
Figure 5-5. 

MOV #100,Rll ; Set up to check 100 bytes 

******* Start of subroutine **** 

MOva *R3+,*R5+ 

• • 
• 

; Bring in byte (next byte) 

Subroutine manipulates byte, stores it 

• 
• • 

Now check if 100th byte read 

dbnz If Rll .. 0, go to SUB_STRT, 
get next byte and repeat; 
otherwise, exit. 

Instruction execution Detail 

Branch Not Tille." Branch Taken 
Cy Addre. Data wb;d Addl'8l8 Data wbiii 
1 prevA (prevA) 1011 prevA (plevA) 1011 

2 CpA +4+ (2xdlsp) IW 1001 prevA (prevA) 1011 

3 CpA + 6 + (2xdlsp) lEW 1000 prevA (plevA) 1011 

4 OpA+4 lEW 1000 

5-44 TMS37OC16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

Decrement Destination DEC 

DEC{B} Synthetic Instruction: Executes as SUBQ{BJ #1,dest 

(destination) -1 - destination 

Rd 
*disp 16[RdJ 

Z set if the result is zero; otherwise, cleared 
N equals bit in result: bit 7 (byte operation) or bit 15 (word operation) 
C set if an unsigned underflow occurred; otherwise, cleared 
V set if a twos-complement underflow occurred; otherwise, cleared 

Subtract one from the destination register or the destination address. Set the 
status bits with respect to the byte/word size of the result. 

For byte operations, the operand is zero-extended to word size, operated on 
as a word, and produces a word result. The most significant byte of the result 
is either: 

OOh for C[S1'] = 0 or 
FFh for C[S1'] = 1. 

Nonregister destinations receive the least significant byte of the result; 
registers receive the entire word. 

8611 
8811 
0064 

100 

LABEL DEC 
DEC 

R1 
*100[R1] 

subtract 1 from R1 
Subtract 1 from value at 
address computed as the 
sum of R1 contents and 

Instruction Execution Detail 

Cy Address Data wbfd 
1 OpAH lEW 1000 

2 

3 

4 

5 

DEC{8} *disp16{Rd] 
(SU8Q{8) #1, *disp16,{RdJ) 

Address Data wbfd 
prevA (prevA) 1011 

dlap+Rd (dlap+ Rd) 1811 

0pA+4 IW 1001 

dlsp+Rd result 0811 

OpA+6 lEW 1000 

Assembly Language Instructions 5-45 



DIVS Divide, Signed 

Syntax DIVS{L} 

Execution 

Modes Supported 

Status Bite 

Description 

(dest) + (src) 
quotient - (Rd) 
remainder - (I M) 

Rs,Rd 
RS,IM:Rd 

(word format only - divide 16-bit Rd by 16-bit Rs) 
(long format only - divide 32-bit IM:Rd by 16-bit Rs) 

Z if V[ST] = 1: bit Z[ST] is set if the 16-bit divisor is zero; cleared 
otherwise. 

if V[ST] = 0: bit Z[ST] is set if the 16-bit quotient Is zero; cleared 
otherwise. 

N equals V[ST] bit value XORed with the theoretical sign of the quotient 
(see last paragraph of Description, on page 5-47). 

C cleared 

V set if a twos-complement overflow of the 16-bit quotient occurs; 
cleared otherwise (see third paragraph and table in Description). 

Divide (as signed values) the source register into the destination register(s). 
Place the quotient in the destination register and the remainder In the Implied 
register (1M). The destination value to be divided is in one or two registers: 

o one for word (16-bit) by 16-bit) division: Rd + Rs 

o two for long (32-bit by 16-bit) division: IM:Rd + Rs (1M and Rd concate-
nated with 1M the most significant word) 

Note that the sign of the remainder is the same as the sign of the original 
dividend (destination register contents). Also, the result is assigned in the 
following sequence: the remainder goes to 1M first; then, the quotient goes to 
the destination. Thus, if 1M is a/sothe Rd in the destination of a long operation 
(in other words, DIVS Rs,IM:IM), then the remainder in the 1M is overwritten 
by the quotient. 

Twos-complement (signed) overflow occurs when the quotient does not fit 
into 16 bits. This occurs under the following conditions: 

Operation 

DIVS and DIVSL 

DIVSL 

Where 

Rs contains COOOh 

Rs bit 15 = 1M bit 15 (IRS)( 327681 s: IIM:Rdl) 
or 

Rs bit 15 .. 1M bit 15 (lRs)( 327691 s: IIM:Rdl) 

5-46 TMS37OC16 CPU 



Examples 

Divide, Signed DIVS 

When such overflows occur, Rs, 1M, and Rd will be left unchanged. 

The theoretical sign of the quotient is the XOR of the most significant bits of 
the dividend and divisor prior to division. In other words: 
o For DIVS, this is Rs bit 15 XORed with Rd bit 15 
o For DIVSL, this is Rs bit 15 XORed with I M bit 15 

, 

Note: Do Not Use Operand Rs,IM:Rs 

Using the operand RS,IM:Rs can produce an undefined result. Depending 
on the size of the instruction and the contents of 1M and Rs, it is possible to 
get a correct or incorrect result or an overflow. 

Label divs R8,R9 Signed divide of R9 by R8. 

LONGL DIVSL R8,IM:R2 

Result to R9; remainder to IM. 

Signed divide of concatenated 
IM:R2 by R8. Result to R2; 
remainder to IM. 

Instruction Execution Detail 

DIVS RS,Rd 

OJ AddreIa Data wb;ii 
1 prevA (prevA) 1011 

2-28 prevA (prevA) 1011 

t hi 0pA+4 lEW 1000 

t Word division (DIVS) takes 27 cycles, with the follow­
Ing two exceptions: 
DMdend Qbdag[ ~ Comment 

any ooooh 4 ov~ow 
8000h FFFFh 26 overflow 

The last line In the boxed table shows the logic values 
for the final cycle. 

DIVSL Rs,IM:Rd 

Cy AddreIa Data wb;ii 
1 prevA (plevA) 1011 

2-28 prevA (prevA) 1011 

*hI 0pA+4 lEW 1000 

* Longword division (DIVSL) takes 29 cycles, with the follOWing 
eight exceptions: 

DMdend Qbdag[ ~ Comment 
8000 OOOOh pos 8 overflow 
8000 OOOOh neg 7 overflow 
I/M:Rdl ~ IRsl x 65538 pos 8 overflow 
I/M:Rdl ~ IRsl X 85538 neg 9 overflow 
IM:Rd~ Rsx32788 pos 28 overflow 
IM:Rd ~ Rs X 32788 neg 28 overflow 
IM:Rd~ -Rs X 32788 pos 28 overflow 
IM:Rd S -Rs X 32788 neg 28 overflow 

The last line In the boxed table shows the logic values for the final 
cycle. 

Assembly Language Instructions 5-47 



DIVU DMds, Unsigned 

Syntax 

Execution 

Mode. Supported 

Statu. Bits 

De.crlptlon 

Example. 

DIW{L} 

(dest) + (src) 
quotient - (Rd) 
remainder - (1M) 

DIVU RS,Rd (word format only - divide 16-bit Rd by 16-bit Rs) 
DIVUL Rs,IM:Rd (long format only - divide 32-bit IM:Rd by 16-bit Rs) 

Z if C[Sl] = 1: set if the 16-bit divisor is zero; cleared otherwise 
if C[Sl] = 0: set if the 16-bit quotient is zero; cleared otherwise 

N if C[Sl] = 1: equals the most significant bit of the 16-bit divisor 
if C[Sl] = 0: equals the most significant bit of the 16-bit quotient 

C set if an unsigned overflow of the 16-bit quotient occurred; 
cleared otherwise 

V cleared 

Divide (as unsigned values) the source register into the destination register(s). 
Place the quotient in the destination register and the remainder in the implied 
register (1M). The destination value to be divided is in one or two registers: 

o one for word (16-bit by 16-bit) division: Rd + Rs 

o two for long (32-bit by 16-bit) division: IM:Rd + Rs (1M and Rd concate-
nated, with 1M the most significant word) 

The result assignment sequence is the remainder to 1M first and then the 
quotient to Rd. If Rd is also 1M (for example, DIVU RS,IM:IM), then the 
remainder in the 1M is overwritten by the quotient. 

Unsigned overflow occurs when the quotient does not fit in a 16-bit data object. 
This occurs for the following conditions: 

o DIVU and DIVUL: Rs contains OOOOh 
o DIVUL: Rs x 65,536 < IM:Rd (for example, Rs < 1M) 

When such overflows occur, Rs, 1M, and Rd will be left unchanged. 

LABEL DlVU R2,R3 

Long2 divul R4, IM:R2 

Signed divide of R3 by R2. 
Result to R3~ remainder 
to IM. 

Signed divide of concatenated 
IM and R2 by R4. Quotient to 
R2, remainder to IM. 

5-48 TMS370C16 CPU 



Divide, Unsigned DIVU 

Instruction Execution Detail 

DIVU Rs,Rd DIVUL Rs,IM:Rd 

Cy Addr ... Data wbid Addreu Data wbiCi 

1 prevA (prevA) 1011 prfNA (prevA) 1 011 

2-20 prevA (prevA) 1 011 prevA (prevA) 1011 

flnalt 0pA+4 lEW 1000 OpA+4 lEW 1000 

t Word division (DIW) takes 21 cycles unless the divisor is OOOOh; in 
which case, it takes only 5 cycles with an overflow occurring. The third line 
in the table shows final-cycle logic values. Longword division (DIWL) 
takes 21 cycles unless the divisor is OOOOh or unless IM:Rd ~ Rs x 
65536. These two DUVUL exceptions take only 4 cycles with an overflow 
occurring. The third line in the table shows the final-cycle logic values. 

Assembly Language Instructions 5-49 



EXTS Extend Signed Data 

Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Examples 

EXTS{B} 

value of (Rd7) - (Rd8-Rd16) 
or 

value of Rd15 - IMO-IM15 

(byte) 

(word) 

EXTSB Rd 
EXTS IM:Rd 

(for EXTSB only - byte operation) 
(for EXTS only - word operation) 

z set If the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C for EXTS: equals N[Sl] 

for EXTSB: cleared 
V cleared 

Sign-extend the data in the destination register to the next larger data size (for 
example, extend byte to word or word to 32-bit longword). 

For word to longword, implied register 1M is the destination for the most 
significant word of the 32-bit result. 

label exts im: r3 

extsb r3 

(sign) extend bit 15 of R3 
through the IM (R1) 

(sign) extend the value of R3's 
bit 7 through R3's MSbyte 

Instruction Execution Detail 

EXTSB Rd EXTS IM:Rd 

Cy AIIcI..- Data wbli Acldre88 Data wbli 
1 0pA.+4 lEW 1000 pnlVA (pravA) 1011 

2 0pA.+ 4 lEW 1000 

5-50 TMS37OC16 CPU 



Syntax 

Execution 

Mode. Supported 

Statu. Blta 

Oe.crlptlon 

Example. 

Extend Data With Zeroes EXTZ 

EXTZ{B} Synthetic Instruction: Executes as a MOV Instruction 

(RdJ -+ (RdJ 
(ZR) -+ (1M) 

Rd 
IM:Rd 

(For EXTZB: same as MOVB Rd,Rd.) 
(For EXTZ: same as MOV ZR,IM.) 

(For EXTZB only: byte operation.) 
(For EXTZ only: word operation. No matter what register Is specified, 
the instruction always clears the 1M register only.) 

Z set if the result is zero; cleared otherwise 
N equals bit 7 of Rd for EXTZB; cleared for EXTZ 
C unchanged 
V cleared 

Extend the unsigned data in the destination register to the next larger data 
size. This extends byte to word by zeroing the destination register's most 
significant byte and extends word to longword by clearing the concatenated 
1M register. In other words: 
o For the byte instruction (EXTZB) execution clears the MSbyte of the des­

tination register. 
o Forthe word instruction (EXTZ). execution clears only the 1M register (R1). 

no matter which register specified. 

Label EXTZB RS Clear MSbyte of RS 

Ext IM:rS Clear IM register 

Instruction Execution Detail 

EXTZB Rd 
(MOV8 Rd,Rd) I EXTZ IM:Rd 

(MOV ZR,IM) 

Assembly Language Instructions 5-51 



FMOV Move Far Data From Source to Destination 

Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

FMOV 

(source) - (destination) 

Rs,*Rd 
*Rs,Rd 

(where *Rs and *Rd mean indirect address) 

Z set if the transferred data was zero; cleared otherwise 
N equals the most significant bit of the transferred data 
C unchanged 
V cleared 

This instruction moves data to or from the upper half of the memory space. 
The indirection register *Rn accesses the full 128K bytes of memory and 
contains a word address. The other register addresses the first 64K bytes of 
memory and contains the specified memory address. . 

The content of the indirection register forms a 17 -bit physical memory address 
by overlaying register bits 15-0 onto address lines A 16-A 1 , then forcing AO 
to O. Because the indirection-register contents are one half the address bus 
value, the example below (and in Section 4.8, page 4-16) illustrates the use 
of the? operator to load this address value into the register. 

Move the contents of R2 into address 1 C400h: 

MOV 
FMOV 

#?lC400h,R4 
R2,*R4 

; place addr lC400h/2 in R4. 
; move contents of R2 to lC400h 

The first instruction places E200h (1 C400h + 2) into R4. During the FMOV 
instruction, the E200h is applied to address bus lines A1S-A1 with AO a 0, 
deriving the destination address 1 C400h. Note that the instruction: 

MOV #lC400h/2,R4 

would perform the same function as MOV #?1C400h,R4. 

Instruction Execution Detail 

FMOV Rs,*Rd FMOV *Rs,Rd 

Cy Addreas Data wbfCi Address Data wbfCi 
1 prevA (prevA) 1011 prevA (prevA) 1011 

2 prevA (prevA) 1011 prevA (prevA) 1011 

3 2Rd (2Rd) 1811 2Rs (2Rs) 1811 

4 prevA (prevA) 1011 prevA (prevA) 1011 

5 OpA+4 lEW 1000 0pA+4 lEW 1000 

5-52 TMS370C16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Examples 

Idle the CPU IDLE 

IDLE 

assert IDLE signal; 
while in Idle state, do nothing 

Operand not necessary for IDLE 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Idle the CPU by entering an internal endless "do nothing" loop. The system 
module then enters the idle, standby, or halt mode (these modes are discussed 
in Section 3.11 on page 3-40). 

Methods of exiting the idle state depend upon device configuration and the Idle 
low-power mode that was entered. 

Label IDLE Enter the idle state or the 
designated low power mode. 

Instruction Execution Detail 

Cy Addr_ 

1 prevA 

2 prevA 
while hlgh-z 
Idle 

Data 

(prevA) 

(prevA) 

hlgh-z 

wbfd 
1011 

1011 

hlgh-z 

As shown, it takes two cycles to enter the idle 
state. Once in that state, signals shown at the 
top of the table (Address, Data, W, b, i, d) 
remain in the high-impedance state. 

Assembly Language Instructions 5-53 



ILLEGAL Illegal Instruction 

Syntax ILLEGAL 

Execution (ST) - ((SP» 

Modes Supported 

Status Bits 

Description 

Example 

(SP) + 2 - (SP) 
(PC) + 1 - ((SP» 
(SP) + 2 - (SP) 
({TRAP 0)) - (PC) 
ones - L2-LO[Sl] 

Operand not necessary for ILLEGAL 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Generate a trap exception by pushing the current ST contents and the word 
address of the next executable instruction pius 2 onto the system stack. Then 
load the PC with the contents of the vector for TRAP 0 (traps are further de­
scribed in subsection 3.7.6 on page 3-24). It is preferred that the trap 0 vector 
point to a reset sequence. 

An RTI instruction retums execution to the interrupted execution flow. 

While ILLEGAL has an explicit opcode of OOOOh, the following opcodes will 
generate the same result and are also considered illegal: 

6Ah through 6Fh 70h through 79h 81 h 
98h through 9Fh EEh and EFh 

Label Illegal Load the PC with the Trap 0 
'illegal' vector, usually placed 
in code somewhere that should 
probably not be used during 
normal operation. It is suggested 
to have the Trap 0 routine contain 
a reset sequence. 

Instruction Execution Detail 

ILLEGAL 

Cy Adc!rMB Data wbiii" 
1 OpA+4 lEW 1001 

2 SP SA 0011 

3 SP+2 (rtnA+ 4) +2 0011 

4 prevA (prevA) 1011 

5 Trap 0 addr (Trap 0 addr) 1011 

8 Tr~ 0 II8CIor X 2 rw 1001 

7 (Ti'ap 0 vactar X 2) + 2 lEW 1000 

5-54 TMS37OC16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

Increment Destination INC 

INC{B} Synthetic Instruction: Executes as 
ADO{S} #1,dest (destination + 1- destination) 

AOQ{B} #1,dest 

Rd 
*disp 16[Rd] 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C set if an unsigned underflow occurred; cleared otherwise 
V set if a twos-complement underflow occurred; cleared otherwise 

Add one to the destination operand. Status bits are set with respect to the size 
(byte or word) of the operation. 

For byte operations: 
OBit C[ST] = 0 when the MSbyte is OOh, 

= 1 when the MSbyte is 01 h. 
o Byte operands are zero-extended to words, are operated on as words, and 

produce a word result. 
o Nonregister destinations receive the least significant byte of the result, 

while registers receive the entire word. 

For word operations, bit C[ST] = 1 when the destination increments from 
FFFFh to OOOOh. 

INCB R7 Increase contents of reqister 7 
by 1 

INCB *lOlh[ZR); Increase the contents of byte 
address 101h by 1 (ZR = 0) 

Instruction Execution Detail 

Cy Addr888 Data wbfd 

1 OpA+4 lEW 1000 

2 

3 
4 

5 

I NC{8} *disp16[Rd] 
(ADQ{B) #1.*disp16[RdJ) 

Address Oeta wbfd 

prevA (prevA) 1011 

disp+Rd (disp+ Rd) 1511 

0pA+4 IW 1001 

disp+Rd r8sutt 0511 

0pA+6 lEW 1000 

Assembly Language Instructions 5-55 



INTPU Interp!?/ate Unsigned Register With Rounding 

Syntax INTPU 

Execution 

Mode Supported 

Status B!ts 

Description 

IF (1M) > (Rd) 
THEN 

LSbyte of Rs x (I M - Rd) + 80h - temp 
temp + 256 - Rd 
(I M) - (Rd) - (Rd) 

ELSE 
LSbyte of Rs x (Rd -IM)+80h - temp 
temp + 256 - Rd 
(1M) + (Rd) - (Rd) 

Rs,/M:Rd 

Z set if the result is zero; cleared otherNise 

(8 bits x 16 bits -- 24 bits + SOh) 

(8 bits x 16 bits -- 24 bits + SOh) 

N equals the most significant bit of the result 
C cleared 
V cleared 

Perform a rounded straight line interpolation between the values contained in 
registers 1M and Rd according to the interpolation fraction in Rs. (Note that a 
c%n (:) separates 1M and Rd in the destination's syntax shown in the Mode 
Supported section.) 

The interpolation fraction is held in the least significant byte of Rs and has its 
radix point between bits 7 and 8. The most significant byte of Rs is ignored, 
and the contents of Rs are left unchanged. 

The contents of I M and Rd are treated as words, with all arithmetic operations 
being word size. Bytes can be used in these registers if the register's most sig­
nificant byte is zero. 

The internal multiply is 8 x 16 bits, where the 8-bit value is the fraction and the 
16-bit value is the difference between 1M and Rd. The product is a fixed-point 
value with the integer portion in bits 8-23 and the fraction in bits 0-7. Round 
up the product to word size by adding 80h, yielding a word value in bits 8-23. 
The most significant word of the rounded product is then combined with 1M, 
yielding the final interpolated result, which is then placed in Rd. 

The fractional portion of the temporary result is lost. The operand combination: 

INTPU Rs , IM: IM 

will always generate a result of OOOOh in 1M. 

Status bits are set with respect to a word result in Rd. 

5-56 TMS370C16 CPU 



Example 

Intereolate UnsifJ.ned RefJ.ister With RoundinfJ. INTPU 

This example performs a rounded interpolation between the OOOOh value in 
the I M register and 1 aaah in R6. The interpolation fraction of 256/2 is contained 
in R5. The result goes to R6, the destination register. 

LABEL 

MOV 
MOV 
MOV 
INTPU 

ZR,IM 
#1000h,R6 
#(256/2) ,R5 
R5,IR:R6 

OOOOh to the 1M register 
1000h to R6 
Interpolation fraction to R5 
Interpolate between values in 
in 1M and R6, with rounding~ 
result is in R6 

Instruction Execution Detail 

INTPU Rs,IM:Rd 

IM:S; Rd 1M> Rd 

Cy Address Data wblii Address Data wblii 
1 prevA (prevA) 1011 prevA (prevA) 1011 

2-8 prevA (prevA) 1011 prevA (prevA) 1011 

9 OpA+4 lEW 1000 prevA (prevA) 101 1 

10 0pA+4 lEW 1000 

Assembly Language Instructions 5-57 



JMP Jump to Destination 

Syntax 

Execution 

JMP 

JMP Rd 
JMP add 
JMP *disp[RdJ 
JMP *Rd 

destination - (PC) 
destination - (PC) 
disp + (Rd) - (PC) 
disp + (Rd) - (PC) with disp = OOOOh 

Modes Supported Rd 

Status Bits 

Description 

addr 
*disp 16[RdJ 
*Rd (assembles as JMP *OOOOh[Rd]) 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Jump to the destination operand. (For jump to a subroutine, see the CALL 
instruction, page 5-34.) 

JMP Rd jumps to the word address value (see note below) contained in 
register Rd (i.e., Rd contents - (PC». 

JMP addr jumps to the 17-bit address location (one half its value stored in 
the extension word as a 16-bit word address). 

JMP *disp16[RdJ and JMP *Rd (the latter is assembled as if written JMP 
*Oh[RdJ) use the following steps to derive the destination: 

1) For *disp16[RdJ, add the displacement (disp) and the contents of Rdto 
compute a memory address (displacement value can be o-FFFFh). 

2) At this memory address, obtain a word address and apply this to the PC. 
In turn, this value is applied to the address bus as a 17 -bit address. Note 
that this word address must be half the destination address-bus value. A 
graphic explanation of this instruction is shown in Figure 4-12 on page 
4-15. 

Note: 16·Bit Word Address Translates to 17-Blt Address Bus 
The word address is a 16-bit value transformed to a 17 -bit memory address, 
via the program counter, by overlaying data bits 0-15 onto address lines 
A 16-A 1 and forcing AO to O. This is further explained in Section 2.2 and its 
associated figures (page 2-4). Figure 4-13 (page 4-16) shows how to set the 
word address using the? operator. 

5-58 TMS370C16 CPU 



Jump to Destination JMP 

Examples LABEL JMP *R8 Jump to the address of 
«R8 » * 2. 

jmp &code7 Jump to the address of 
code7. 

JMP *extra[R7] Jump to the address of 
(extra + (R7» * 2 

Instruction Execution Detail 

JMP Rd JMP addr16 I JMP *disp16[Rd] or *Rd 

Cy Addre .. Data wbfd Address Data wbfd Addr888 Data I wbfd 

1 prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011 

2 2Rd IW 1001 2caddr IW 1001 dlsp+ Rd ceddr 1011 

3 (2Rd)+2 lEW 1000 (2caddr) +2 lEW 1000 2ceddr IW 1001 

4 (2caddr) +2 lEW 1000 

Assembly Language Instructions 5-59 



LDBIT Load Bit Into Cany Bit 

Syntax LDBIT{B} 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

value of bit in destination (specified by source mask) - C[Sl] 

#imm4.disp16[RdJ 
Rs, *diSp 16[RdJ 
Rs,Rd 
#imm4Rd 

I 

Z unchanged 
N unchanged 
C equals value of loaded bit 
V unchanged 

(byteon/y) 
(byteon/y) 
(wordon/y) 
(wordon/y) 

The value of a bit in the destination, specified by the source operand, is placed 
in the C6iry bit of the status register. The source operand is a vaiue in the 
range 0-15 contained either in the four least significant bits of a register or as 
an immediate value. Bit numbers correspond to the following formats: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I I I I I I I I I I = word bit numbering 

76543210 

I I I I I I I I I = byte bit numbering 

When the destination is a memory address, only byte memory accesses are 
performed. Useful values for byte operations are 0-7, which select one of the 
eight bits. When a value in the range 8-15 is used in byte operations, the 
addressed byte is read, but the C[Sl] bit is left equal to O. Useful values for 
word operations are 0-15. 

LDBIT is intended to be used with a BNC (branch if carry c/ear- C[Sl] 
equals 0) or a BC (branch if carry set- C[Sl] equals 1) instruction. 

Check if the most significant bit of byte (or word) address AOOOh is a 1: 

LDBITB #15,*AOOOh[ZR] Place MSB of addr AOOOh 
in C bit of status reg. 

Branch if MSB = 1 

(C bit - 1) 

5-60 TMS370C16 CPU 



Load Bit Into Car?! Bit LDBIT 

Instruction Execution Detail 

LDBIT # imm4,Rd LDBIT Rs,Rd 

Cy Addr888 Data Wbfd Addr888 Data wbfd Addr888 Data wbfd 
1 prevA (prevA) 1011 prevA (prevA) 1011 OpA+4 IW 1001 

2 OpA+4 lEW 1000 prevA (prevA) 1011 disp+Rd (dlsp+ Rd) 1111 

3 0pA+4 lEW 1000 prevA (prevA) 1011 

4 OpA+S lEW 1000 

LDBITB Rs, *disp16{Rd] 

Cy Address Data wbfd 
1 prevA (prevA) 1011 

2 OpA+4 IW 1001 

3 dlsp + Rd (dlsp+ Rd) 1111 

4 prevA (prevA) 1011 

5 OpA+S lEW 1000 

Assembly Language Instructions 5-61 



LDEA Load Effective Address 

Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Examples 

LDEA 

displacement value + (Rs) - (Ref) 

*disp 16[RS],Rd 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Load the destination register with the sum of the source-register contents plus 
the 16-bit displacement (offset) value. Note the following: 
o If disp16 is a label, its value is the memory address value elf disp16 (not 

the contents of disp 16). 
o If Rs is the ZR (zeio iegister), tilen execution ioads oniythe vaiue of disp 16 

into Rd. 

LABELl LDEA *BUFF7 [r2] ,R8 Load value of BUFF7 plus 
the contents of R2 into 
register R8. 

LABEL2 LDEA *BUFF7[zr],R8 Load value of BUFF7 into 
register R8. 

LABEL 3 LDEA &BUFF7,R8 Load value of BUFF7 into 
register R8 (assembles 
to same code as shown 
for LABEL2 instruction). 

Instruction Execution Detail 

LDEA "'disp16[RsJ,Rd 

Cy Addl'888 Data wbfd 
1 OpA+4 IW 1001 

2 OpA+6 lEW 1000 

5-62 TMS370C16 CPU 



Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Limit Register to Highest Signed Value LIMHS 

LIMHS{B} 

IF [{V[ST] = 1 andN[ST] = 1} or {V[ST] = 0 and (source) < (Rd)}] , 
THEN 

(source) - (Rd) 
zero - V[Sl] 
one - C[Sl] 

ELSE no change to Rd 

*disp 16[RsJ. Rd 

Z unchanged if Rd is not modified; otherwise, set if the contents of Rd 
are zero, and cleared if the contents of Rd are nonzero 
N equals the most significant bit of Rd if Rd is modified; otherwise, 

unchanged 
C set if Rd is modified; otherwise, unchanged 
V cleared if Rd is modified; otherwise, unchanged 

This instruction ensures that a register variable remains less than or equal to 
its maximum legal value. 

This instruction leaves the destination register with either its original contents 
or the value given by the contents of the source operand. The C[Sl] bit de­
clares that the contents of Rd has been modified. Two conditions warrant set­
ting the register to the contents of the source operand: 

o Upon entry, V[Sl] = 1 and N[Sl] = 1, which indicates that an unsigned 
overflow occurred before this instruction. 

o The signed data value at the source operand is less than the signed con­
tents of Rd. 

Byte operations test only the least significant byte of a register. If a byte in Rd 
is modified, the most significant byte of Rd is cleared. Status bits are set with 
respect to the size (byte or word) of the operation. 

Instruction Execution Detail 

I LlMHS{8} *disp16[RsJ,Rd I 

V[STII = 1 VaST] = 0 

Cy Address Data wbfd Address Data wbfd 
1 OpA+4 rN 1001 OpA+4 IW 1001 

2 dlsp+As (dlsp+ As) 1811 dlsp+As (dlsp+ As) 1811 

3 prevA (prevA) 1011 prevA (prevA) 1011 

4 prevA (prevA) 1011 prevA (prevA) 1011 

5 OpA+6 lEW 1000 prevA (prevA) 1011 

6 OpA+6 lEW 1000 

Assembly Language Instructions 5-63 



LIMHU Limit Register to Highest Unsigned Value 

Syntax LIMHU{B} 

Execution 

Mode Supported 

Status Bits 

Description 

IF [C[Sl] = 1 or (source) < (Rd)] , 
THEN 

source - (Rd) 
one -V[Sl] 

ENDIF 
zero - C[Sl] 
IF a byte instruction (LlMHUB), 

THEN 
zeroes - Rd bits 8-15 

ENDIF 
ELSE (Rd) remains unchanged 

*disp16[Rs],Rd 

Z set if the contents of Rd are zero; otherwise, cleared 
N equals the most significant bit of Rd 
C cleared 
V set if Rd is modified; otherwise, unchanged 

Use this instruction to ensure that a register variable remains less than or equal 
to its maximum legal value. 

This instruction leaves a register with either its original contents or the value 
given by the contents of the source operand. The V[Sl] bit declares that the 
contents of Rd have been modified. Two conditions warrant setting the register 
to the contents of the source operand: 

o Upon entry, C[Sl] = 1, indicating that an unsigned overflow occurred 
before this instruction. 

o The unsigned data value at the source operand is less than the unsigned 
contents of Rd. 

Byte operations test only the least significant byte of a register and always 
clear the most significant byte of Rd. Status bits are set with respect to the size 
(byte or word) of the operation. 

Instruction Execution Detail 

I LlMHU{B} *disp16[Rsj,Rd I 

C[ST] = 1 C[ST] = 0 

Cy Address Data wbfd Address Data wbTCi 

1 OpA+4 rN 1001 0pA+4 rN 1001 

2 dlsp+As (dlsp+ As) 1 S 11 dlsp+As (dlsp+ As) 1 S 11 

3 prevA (prevA) 1011 prevA (prevA) 1011 

4 OpA+6 lEW 1000 prevA (prevA) 1011 

5 OpA+6 lEW 1000 

5-64 TMS370C16 CPU 



Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Limit Register to Lowest Signed Value LIMLS 

LIMLS{B} 

IF [{V[ST] = 1 and N[ST] = O} or {V[ST] = 0 and (source) > (Rd)}] , 
THEN 

(source) - (Rd) 
zero - V[Sl] 
one- C[Sl] 

ELSE (Ad) remains unchanged 

*disp16[Rs},Rd 

Z unchanged if Rd is not modified; otherwise, set if the contents of Rd 
are zero, and cleared if the contents of Rd are nonzero 

N equals the most significant bit Rd if Rd is modified; otherwise, 
unchanged 

C set if Rd is modified; otherwise, unchanged 
V cleared if Rd is modified; otherwise, unchanged 

This instruction leaves the destination register with either its original contents 
or the value given by the contents of the source operand. The C[Sl] bit 
declares that the contents of Rd has been modified. Either of two conditions 
set the register to the contents of the source operand: 

o Upon entry, V[Sl] = 1 and N[Sl] = 0, indicating that an unsigned 
overflow occurred before this instruction. 

o Or when V[Sl] = 0, and the signed data value at the source operand is 
greater than the signed contents of Rd. 

Use this instruction to ensure that a register variable remains greater than or 
equal to its minimum legal value. 

Byte operations test only the least significant byte of a register. If a byte in Rd 
is modified, the most significant byte of Rd is cleared. Status bits are set with 
respect to the size (byte or word) of the operation. 

Instruction Execution Detail 

I UMLS{8} *disp16[RsJ,Rd I 

V[ST] = 1 V[ST] = 0 

Cy Address Data wbfd Address Data wbfd 

1 OpA+4 IW 1001 OpA+4 IW 1001 

2 disp+Rs (disp+ Rs) 1811 disp+Rs (disp+ Rs) 1811 

3 prevA (prevA) 1011 prevA (prevA) 1011 

4 prevA (prevA) 1011 prevA (prevA) 1011 

5 OpA+6 lEW 1000 prevA (prevA) 1011 

6 OpA+6 lEW 1000 

Assembly Language Instructions 5-65 



LIMLU Limit Register to Lowest Unsigned Value 

Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

LIM LU{B} 

IF [C[ ST]= 1 or (source) > (Rd) ], 
THEN 

(source) - (Rd) 
1 (one) - V[ST] 

ENDIF 
0- C[ST] 

IF a byte instruction (LIMLUB), 
THEN 0 - (Rd8-Rd15) 

ENDIF 

*disp16[Rsj,Rd 

Z set if the contents of Rd are zero; otherwise, cleared 
N equais the most signiiicant bit of Rd 
C cleared 
V set if Rd is modified; otherwise, unchanged 

This instruction will leave the destination register with either its original 
contents or the value given by the contents of the source operand. The V[ST] 
bit declares that the contents of Rd have been modified. Two conditions 
warrant setting the register to the contents of the source operand: 

o Upon entry, C[ST] = 1, which indicates that an unsigned overflow 
occurred prior to this instruction. 

o The unsigned data value at the source operand is greater than the 
unsigned contents of Rd. 

Use this instruction to ensure that a register variable remains greater than or 
equal to its minimum legal value. 

Byte operations test only the least significant byte of a register. If a byte in Rd 
is modified, the most significant byte of Rd is cleared. Status bits are set with 
respect to the size (byte or word) of the operation. 

Instruction Execution Detail 

I LlMLU{8} *disp16[Rsj,Rd I 

C[ST]) = 1 C[ST]) = 0 

Cy Address Data wbfd Address Data wbfd 

1 OpA+4 IW 1001 OpA+4 IW 1001 

2 dlsp+As (dlsp+ As) 1811 dlsp+As (dlsp+ As) 1811 

3 prevA (prevA) 1011 prevA (prevA) 1011 

4 OpA+6 lEW 1000 prevA (prevA) 1011 

5 OpA+6 lEW 1000 

5-66 TMS370C16 CPU 



Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

LINK 

(FP) - ((SP)) 
(SP) - (FP) 
(SP) + 2 - (SP) 
(SP) + (2 x displacement) - (SP) 

disp8 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Link and Allocate Stack Frame LIN K 

This instruction links the frame pOinter (FP) to the current system stack frame 
by executing these steps: 

1) Push the FP contents onto the system stack. 
2) Set the FP to the SP value. 
3) Allocate a displacement amount of words on the stack. 

The a-bit, unsigned, immediate displacement value is multiplied by 2 before 
being added to the SP, in order to keep the value of SP even. 

A stack frame of 0 to 255 words can be allocated. 

Instruction Execution Detail 

LINK disp8 

Cy Address Data wbfCi 
1 SP FP 0011 

2 prevA (prevA) 1011 

3 prevA (prevA) 1011 

4 OpA+4 lEW 1000 

Assembly Language Instructions 5-67 



LSR Logically Right-Shift Register Contents 

Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Examples 

LSR{L} 

Shift destination register to the right by a source-count amount of bits 

Rs,Rd 
#imm4,Rd 
Rs,IM:Rd 
#imm4,IM:Rd 

(word) 
(word) 
(Iongword) 
(Iongword) 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C equals the last bit shifted out of the register; cleared if the shift 

count in Rs is zero 
V cleared 

Logically right-shift the destination register's contents by the number of the bit 
count in the source operand. At the same time, shift (the same number of) 
zero(es) into the most significant bites). A four-bit field in the source operand 
contains the shift count of 0-15. 

Zero(es) 
15 

(MSB of Rd or 1M) 
o 

Bit 0 of Rd 

For shifts using Immediate values, source-operand immediate values of 
00012 to 11112 correspond to shift counts of 1-15, with a field value of 00002 
representing a shift of 16. For shift values In Rs, the four LSBs of 00002 to 
11112 represent a shift of 0 to 15. 

Status bits are set with respect to the size (word or longword) of the operation. 
Longword shifts imply the use of register I M as the most significant word of the 
32-bit object. The result of LSRL s,IM:IM is undefined. 

LABEL MOV #6,R12 
LSR R12,R3 

SHIFT_2 LSR #2,R8 

SHIFT 12 LSRL #12,IM:RS 

LSRL R3,IM:R2 

Place value of 6 in R12 
Shift R3 to the right 6 bits 

and fill the 6 MSBs with 
zeroes. 

Logically shift R8 by 2 bits. 

Logically right-shift the 
concatenated values in IM:RS 
by 12. 

The count value of the 4 LSBs 
of R3 are used to logically 
right-shift the IM:R2 
register pair. 

5-68 TMS370C16 CPU 



Instruction Execution Detail 

Cyclet 
Periodt 

n 
(repeat) 

n+1 

~ 
1 

2n-2 
(repeat) 

2n 

LSR Nimm4,Rd I 
1';j;;;!~g,(I:,~:!!lll!!!.!I;il:8~ '::1 

Addre88 Data wbfd 

prevA (prevA) 1011 

0pA+4 lEW 1000 

LSRL Nimm4,IM:Rd 

Addr888 Data wbid 

prevA (prevA) 1011 

prevA (prevA) 1011 

0pA+4 lEW 1000 

L0u..icallr. Riu..ht-Shift Rif!i..ister Contents LSR 

I LSR Rs,Rd 

~ Addre88 Data wbid 

1 prevA (prevA) 1011 

2 prevA (prevA) 1011 

n prevA (prevA) 1011 
(repeat) 

n+1 0pA+4 lEW 1000 

Total cycles: n + 3 

LSRL Rs,IM:Rd 

0fcIe1 
wbfd Periodt Addre88 Data 

1 prevA (prevA) 1011 

2 prevA (prevA) 1011 

3 prevA (prevA) 1011 

2n-2 
prevA (prevA) 1011 (repeat) 

2n 0pA+4 lEW 1000 

Total cycles: 2 + 2n. or 
3 WRs = xxxOh 

t A single number represents a given cycle; an expression of n represents 
a cycle or period of cycles, depending on the nth number of shifts or 
repeats. 

Assembly Language Instructions 5-69 



MOV Notes, Cautions, and Warnings 

Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

MOV{B} 

(source) - (destination) 

RS,Rd 
Rs,*Rd 
Rs,*Rd+ 
Rs, *disp 16[RdJ 
*Rs,Rd 
*Rs,*Rd 
*Rs,*Rd+ 
*Rs,*disp16[RdJ 
*Rs+,Rd 
*Rs+,*Rd 
*Rs+,*Rd+ 
*Rs+, *disp 16[Rd] 
#imm16,Rd 
#imm16,*Rd 
#imm 16, *Rd+ 
#imm 16, *disp 16[RdJ 
*disp 16[RsJ,Rd 
*disp 16[RsJ, *Rd 
*disp16[RsJ, *Rd+ 
*disp _ s 16[RsJ, *disp _ d16[RdJ 
*-Rs,Rd 

Z set if the transferred data was zero; otherwise, cleared 
N equals the most significant bit of the transferred data 
C unchanged 
V cleared 

Transfer data from the source operand to the destination operand. 

When byte data is moved to a register, the least significant byte receives the 
data, while the most significant byte is cleared. When data is moved from a 
register, only the least significant byte of the register is moved. 

Status bits are set with respect to the size (byte or word) of the operation. 

, 

Note: Use FMOV to Address 0 -1 FFFFh (Up to 128K Bytes) 

The MOV instruction moves (copies) between registers or from/to an 
address space within the first 64K bytes. Use the FMOV instruction to move 
data in the address space from 0 to 128K bytes. 

5-70 TMS370C16 CPU 



Examples 

Move Data From Source to Destination MOV 

Four special cases exist when the source operand is *(Rn) + and the 
destination operand is a mode using the same register. 

Instruction Operation (see Note) 

MOV *Rn+,Rn «Rn)) + size ... (Rn) 

MOV *Rn+,*Rn «Rn)) ... «Rn)); 
(Rn) + size -+ (Rn) 

MOV *Rn+,*Rn+ (Rn) -+ (Rn + size); 
Rn + 2 )( size ... Rn 

MOV *Rn+, *d[Rn] (Rn) ... (d + (Rn)); 
Rn+ size ... Rn 

Note: The "size" is the increment size (1 for byte, 2 for word). 

Label mov r2,r3 

zr,r5 

mov zr,*r9+ 

MOV *50h[ri],r2 

movb #1234h,*riO 

mov &BUFi,&BUF2 

MOVB &LOCi,&LOC2 

movb *-r7,im 

Move contents of R2 to R3. 

Clear contents of R5 

Clear the contents at the 
address in R9 then incre­
ment R9. 

Compute the source address 
by adding 50h and the contents 
of Ri. Move the contents at 
this address to R2. 

Move the value 34h into the 
indirect contents of riO. 
Force MS byte of riO to 
all zeroes. 

Move the word at location BUFi 
to word location BUF2. 

Move the byte value at LOCi 
to byte address LOC2. 

Decrement value in R7; the 
result is the source add­
ress. Move the LS byte at 
this address to the 1M with 
the MS byte of the 1M - O. 

Assembly Language Instructions 5-71 



MOV Move Data From Source to Destination 

Instruction Execution Detail 

MOV{S} Rs, Rd MOV{S} Rs, *Rd MOV{S} Rs, *Rd+ 

Cy Addr888 Data wbfd Address Data wbfd Addr888 Data wbfd 
1 OpA+4 lEW 1000 Rd Rs OS11 Rd Rs OS11 

2 OpA+4 lEW 1000 OpA+4 lEW 1000 

MOV{S} Rs,*disp16[Rd] MOV{S} *Rs,Rd MOV{S} *Rs, *Rd 

Cy Addr888 Data wbfd Address Data wbfd Addr888 Data wbfd 
1 OpA+4 IW 1001 RS (Rs) 1 S11 Rs (Rs) 1 S 11 

2 dlsp + Rd Rs 1011 OpA+4 lEW 1000 Rd (Rs) OS11 

3 OpA+6 lEW 1000 OpA+4 lEW 1000 

MOY{S} *Rs, *Rd+ MOV{S} *Rs,*disp16[Rd] MOV{S} *Rs+,Rd 

Cy Address Data wbfd Address Data wbid Address Data wbfd 
1 Rs (Rs) 1 S11 OpA+4 IW 1001 As (Rs) 1 S11 

2 Rd (Rs) OS11 Rs (Rs) 1 S11 prev (prev) 1011 

3 OpA+4 lEW 1000 dlsp + Ad (Rs) OSII OpA+4 lEW 1000 

4 OpA+6 lEW 1000 

MOY{S} *Rs+, *Rd MOV{S} *Rs+, *Rd+ MOV{S} *Rs+,*disp16[Rd] 

Cy Address Data wbfd Address Data wbfd Address Data wbid 
1 Rs (Rs) 1 S 11 Rs (As) 1 S11 Rs (Rs) 1 S 11 

2 Ad (Rs) OS11 prev (preY) 1011 OpA+4 IW 1001 

3 0pA+4 lEW 1000 Rd (Rs) OS11 disp + Rd (Rs) OS 11 

4 OpA+4 lEW 1000 OpA+6 lEW 1000 

5·72 TMS370C16 CPU 



Move Data From Source to Destination MOV 

MOV{B} #imm16,Rd MOV{B} #imm16,*Rd MOV{B} #imm16,*Rd+ 

Cy Addres8 Data wbfd Addreaa Data wbfd Addreaa Data wbfd 
1 OpA+4 IW 1 001 Rd data OS 11 Rd data 0811 

2 OpA+6 lEW 1000 OpA+4 IW 1001 OpA+4 IW 1001 

3 OpA+6 lEW 1000 OpA+6 lEW 1000 

MOV{B} #imm 16, *disp 16[Rd] MOV{B} *disp16[Rs],Rd MOV{B} *disp16[Rs], *Rd 

Cy Addres8 Data wbid Addreaa Data wbfd Addreaa Data wbfd 
1 OpA+4 data 1001 OpA+4 IW 1001 OpA+4 IW 1001 

2 dlsp + Rd data 0811 disp+Rs (disp+ Rs) 1811 dlsp+Ad (dlsp+Rs) 1 811 

3 OpA+6 IW 1001 OpA+6 lEW 1000 Rd (dlsp+Rs) 0811 

4 OpA+8 lEW 1000 OpA+6 lEW 1000 

MOV{B} *disp16[Rs],*Rd+ II MOV{S} *disp _ s 16{RsJ, *disp' d16{Rd} II MOV{B} *-Rs,Rd 

Cy Addres8 Data wbfd Address Data wbid Addres8 Data wbfd 
1 OpA+4 IW 1 001 0pA+4 dlsp2 1001 preY (prev) 1 011 

2 disp + Rs (disp+ Rs) 1 811 0pA+6 IW 1001 Rs - S (Rs - S) 1 811 

3 Rd (dlsp+Rs) 0811 dlspl + Rs (dlspl +Rs) 1 81 1 OpA+4 lEW 1000 

4 OpA+6 lEW 1000 dlsp2+Rd (dlspl + Ad) OS 11 

5 OpA+8 lEW 1000 

Assembly Language Instructions 5·73 



MOVQ Move Quick Immediate Data to Destination 

Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

MOVQ 

immediate data value - (destination) 

#imm4,Rd (4-bit value entered, zero extended; 16-bit word moved) 

Z set if the transferred data was zero; cleared otherwise 
N cleared 
C unchanged 
V cleared 

Transfer quick immediate data to the destination operand. Quick immediate 
data is a 4-bit value of 0-15, that has been zero-extended to word. This 
instruction requires one word and operates in one cycle; whereas, 
MOV #data,Rd takes up two words and two cycles. 

Note that a MOVQB is unnecessary, because MOVQ generates the same 
result in destination register Rd with the register's MSbyte cleared to zeroes. 

LABEL MOVQ #3,R12 ; Load the value 3 into R12. 

Instruction Execution Detail 

Mova #imm4,Rd 

Data wbfd I 
lEW 1000 

5-74 TMS370C16 CPU 



Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Examples 

Multiply, Unsigned With Rounding, 8 x 16 MPYBWU 

MPYBWU 

(LSbyte of Rs )( Rd) + 80h - (Temp) 
(Temp) + 256 - (Rd) 

RS,Rd 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C cleared 
V cleared 

(8 )( 16 - 24 + 000080h) 

Multiply the 8-bit value in the least significant byte of Rs by the 16-bit value in 
Rd. Add 000080h to the 24-bit intermediate product, and place the most 
significant word of the sum in Rd. 

During the multiply, the most significant byte of Rs is ignored, and the contents 
of Rs are left unchanged. 

The internal multiply is 8 bits x 16 bits, which generates a 24-bit intermediate 
result. Typically, this instruction is used when the 8-bit value in Rs is a fraction 
and Rd holds an integer. Hence, the product is a fixed point value with the inte­
ger portion in bits 8-23 and the fraction in bits 0-7. The value 0OOO80h is add­
ed to this temporary product to round it back to an integer, yielding a rounded 
integer value in bits 8-23. This rounded result is then placed in Rd. 

label MPYBWU R7,R8 Multiply the LS byte of R7 
by R8, then add 80h to the 
product. Place the MS word 
of this result in R8. 

Instruction execution Detail 

MPYBWU Rs,Rd -Cy Addraa Data wbfd 
1-8 prevA (prevA) 1011 

7 OpA+4 lEW 1000 

Assembly Language Instructions 5-75 

I 



MPYS Multip!y: Signed 

Syntax 

execution 

Modes Supported 

Status Bits 

Description 

Examples 

MPYS{B} 

Rs value x (destination) - (destination) 

RS,Rd 
RS,/M:Rd 

[byte only (8x 8- 16): 
[word only (16 x 16- 32): 

RsxRd- Rd] 
Rsx Rd-IM:Rd] 

Z set if the product is zero; cleared otherwise 
N equals the most significant bit of the product 
C cleared 
V cleared 

Perform a multiply of the signed contents of the destination register by the 
signed contents of the source register. The product of byte multiplication is 
placed in the destination register. The most significant word of the product of 
word multiplication is placed in the 1M register, and the least significant word 
is placed in the destination register. 

The result asSignment sequence places the most significant word of the prod­
uct in the 1M first and the least significant word to Rd second. If Rd Is also 1M 
(for example, MPYS Rs, IM:IM) , then the most significant word in IMis overwrit­
ten by the least significant word. 

Signed overflow on a multiple occurs when the product cannot be successfully 
truncated to the size of the operands without data loss. For MPYSB, this 0c­

curs when bits 15-7 of the product are not equal, and for MPYS when bits 
31-15 of the product are not equal. To detect this condition, follow an MPYS 
instruction with a TRUNCS instruction. This sequence will leave V[ST] and 
N[ST] correctly set for such signed overflows. 

Status bits are set with respect to the size (word or longword) of the product. 

LABEL MPYSB R3,R4 

MULT MPYS R8,IM:R9 

Multiply (signed) the LS bytes 
of R3 and R4. Store result in 
R4. 

Multiply (signed) R8 by R9. 
Place result in the concat­
tenated IM:R9 register pair. 

5-76 TMS37OC16 CPU 



Instruction Execution Detail 

MPYS Rs,IM:Rd 

Rd~O 

Cy AckIrM8 Data wbfd AddreM 

1-12 prevA (prevA) 1011 prevA 

13 OpA+4 lEW 1000 prevA 

14 OpA+4 

Rd <0 

Data wbfd Cy 

(prevA) 1011 1 

(prevA) 1011 2 

lEW 1000 :HI 

10 

11 

Multle'y, SI'lped MPYS 

MPYSB Rs,Rd 

Rd~O Rd < 0 
Addr_ Data wbfd Addr_ Data wbfd 

prevA (prevA) 1011 prevA (prevA) 1011 

prevA RdLSBX256 0011 prevA RdLSSX256 0011 

prevA (prevA) 1011 prevA (prevA) 1011 

0pA+4 lEW 1000 prevA RdLSBX256 1011 

OpA+4 lEW 1000 

Assembly Language Instructions 5-77 



M PYU Multiply, Unsigned 

Syntax MPYU{B} 

execution 

Modes Supported 

Status Bits 

Description 

Examples 

Rs value x (destination) - (destination) 

RS,Rd 
RS,/M:Rd 

[byt8only (8x 8-16): 
[word only (16x 16-32): 

RsxRd- Rd] 
Rsx Rd-IM:Rd] 

Z set if the product is zero; cleared otherwise 
N equals the most significant bit of the product 
C cleared 
V cleared 

Perform an unsigned multiply of the unsigned contents of the destination 
register by the unsigned contents of the source register. The product of byte 
multiplication is placed in the destination register. The most significant word 
of the product of word multiplication is placed in the 1M register, and the least 
significant word in the destination register. 

The result assignment sequence places the most significant word of the 
product in register 1M first and then the least Significant word to Rd second. If 
Rd is also the 1M (for example, MPYU Rs,/M:IM), then the most significant 
word in 1M is overwritten by the least significant word. 

Unsigned overflow on a multiply occurs when the product cannot be 
successfully truncated to the size of its operands without data loss. For 
MPYUB, this occurs when bits 15-8 of the product are not zero and for MPYU 
when bits 31-16 of the product are not zero. To detect this condition, follow an 
MPYUB instruction with a TRUNCU instruction, or follow an MPYU instruction 
with a CMP IM,ZR. These sequences will leave C[Sl]=1 for the signed 
overflows. 

Status bits are set with respect to the size (word or longword) of the product. 

label 

mult 

mpyub r3,r4 

mpyu r8,IM:r9 

Multiply (unsigned) the LS 
bytes of R3 and R4. store 
the result in R4. 

Multiply (unsigned) R8 by R9. 
store results in the IM:r9 
concatenated register pair. 

5-78 TMS370C16 CPU 



Multie,lr: Unsigned MPYU 

Instruction Execution Detail 

MPYU Rs,Rd MPYUB Rs,IM:Rd 

•••••• 
Cy Addr_ Data wbfd Cy Addr_ Data wbfd 

1-12 prevA (pre\IA) 1011 1 prevA (pre\IA) 1011 

13 OpA+4 lEW 1000 2 prevA RdLS8x256 0011 

3-8 prevA (pnIvA) 1011 

8 0pA+4 lEW 1000 

Assembly Language Instructions 5-79 



NOP No 0eflratlon 

Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

NOP Synthetic Instruction: Executes as S81TO #15,ZR 

zero - bit 15 of ZR 
(same as SBITO #15,ZRj 

Operand not necessary for NOP 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Perform no operation; CPU state is unchanged except for advancement of the 
PC to the next instruction address. This instruction takes one cycle. 

DELAY NOP , Causes one cycle delay 

Instruction Execution Detail 

AlkIre .. 

opA+4 

5-80 TMS37OC16 CPU 

NOP 
(SBITO #15,ZR) 

Data 

lEW 

wbfd 
1000 



Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Examples 

Ones Complement the Destination NOT 

NOT{B} Synthetic Instruction: Executes as XNOR{B1 ZR,Rd 

NOT((source) XOR (destination» - (destination) 

(executes same as XNOR{B} ZR,Rd) 

Rd 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C unchanged 
V cleared 

Perform a ones complement on the destination register's contents. Effectively, 
XOR (exclusively OR) the Rd with the all-zero ZR, then take a ones 
complement of the result (XNOR the Rd). 

For byte operations, the byte operands are zero-extended to words, are oper­
ated on as words, and produce a word result. The most significant byte of the 
result will always be FFh. 

Status bits are set with respect to the size (byte or word) of the operation. 

label NOTB IM Invert LS byte of the IM 

Invert NOT R12 Invert R12 

Instruction execution Detail 

NOT{B} Rd 
(XNOR{B) ZR,Rd) 

_",.8 ••• 

Iii :: Data wblCi 
lEW 1000 

Assembly Language Instructions 5-81 



OR Logical Inclusive OR Source With Destination 

Syntax 

Execution 

Modes Supported 

Status Blta 

Description 

Examples 

OR{B} 

(source) OR (destination) - (destination) 

RS,Rd 
Rs, *disp16[Rd] 
#imm16,Rd 
#imm 16,*disp 16[Rd] 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C unchanged 
V cleared 

Logically inclusive OR the contents of the source operand with the contents 
of the destination operand. 

For byte operations, the byte operands are zero-extended to words, are 
operated on as words, and produce a word result. The most significant byte 
of the result will always be COh. Nonregister destinations receive the least 
Significant byte of the result, while registers receive the entire word. 

Status bits are set with respect to the size (byte or word) of the operation. 

Label OR RS,R6 Logically OR the contents of 
RS and R6. store the value 
in R6. 

ORB #4h,&FLAG ~ set bit 2 of location FLAG. 

OR #EIGHT, &Flag OR mask value EIGHT with 
location Flag. 

Instruction Execution Detail 

OR{B} Rs,Rd I OR{B} Rs,*disp16[Rd] I OR{B} #lmm16,Rd I OR{B} #lmm16,*disp16[Rd} I 

Cy Add~ Data wblii Addr_ Data wblii ~ Data wblii Addr_ Data wblii 
1 OpA+4 lEW 1000 0pA+4 rw 1001 0pA+4 rw 1001 0pA+4 data 1001 

2 disp+Rd (dlsp+ Ad) 1811 OpA+6 lEW 1000 dlap+Rd (dlap+ Ad) 1811 

3 prevA (prevA) 1011 0pA+6 rw 1001 

4 disp+Rd result 0811 dlsp+Rd resuR 0811 

6 0pA+6 lEW 1000 OpA+6 lEW 1000 

5-82 TMS37OC16 CPU 



Syntax 

Execution 

Mode Supported 

Status Blta 

Description 

Example 

Pull (pop) Registers From the Stack POP 

POP 

FOR INDEX = Register_Last to Register_First BY -1, 
DO (SP) - 2 - (SP) 

«SP» - (registerqndex) 

RL,RF 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

(Register_Last and Register_First; Required: RL it RF) 

Starting at the SP value, pull words from the system stack into the register(s) 
starting with RL (Register_Last) through and including RF (Register_First). The 
enumerator of RL must be arithmetically greater than or equal to the enumera­
tor of RF (for example, POP R7,R5 is valid because 7 > 5). 

This instruction is most efficiently used for minimizing code space and 
execution time when restoring CPU context. It is faster than multiple 
MOV *-$P,Rd instructions and consumes only two bytes of program 
memory. 

If the SP (R13) is included in the RL-RFrange, the value retrieved and placed 
into the SP will take effect immediately and will direct the retrievals of any 
remaining registers in the range. Care must be taken to ensure that the SP 
value on the system stack will not corrupt the current context. A matched pair 
of instructions, PUSH RF,RL and POP RL,RF, executes correctly when the SP 
is included within the range. 

Label POP R12,R2 Pop the contents of the Stack 
into registers R12 to R2 

Instruction Execution Detail 

POP RL,RF 

Cyt Addreu Data wbfd 
n1 prevA (prevA) 1011 

n2 SP- 2n (SP- 2") 1011 

2"+ 1 0pA+4 lEW 1000 

t Both n1 and n2 are repeated during the exchange of one stack register 
to memory. The total number of exchanges (stack words stored) is 
multiplied by 2 and incremented for the cycle total (last line). 

Assembly Language Instructions 5-83 



PUSH Push Registers Onto the Stack 

Syntax PUSH 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

FOR index= Register_First to Register_last BY +1, 
DO (registerqndex») - ((SP)) 

(SP) + 2 - (SP) 

(Register_First and Register_Last; Required: Rt. a R,::) 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Push register contents onto the system, stack starting at the SP value. 
Registers to push are from RF (register_first) through and including RL 
(registerJast). The enumerator of RL must be arithmetically greater than or 
equal to the enumerator of RF (for example, PUSH R5,R7 is valid because 
7>5). 

This instruction is most efficiently used for minimizing code space and 
execution time when saving CPU contexts. It is always faster than multiple 
MOV Rs, * SP+ instructions and consumes only two bytes of program 
memory. 

SAVE PUSH R6,R3 Push the contents of R6, RS, 
R4, and R3 onto the Stack 

Instruction Execution Detail 

PUSH RF.RL 

Cyt Add_ Data wblii 
n SP+2(n-l) (rag) 0011 (repeat) 

n+l 0pA+4 lEW 1000 

tThe n Is the number of register-to-stack exchanges. 

5-84 TMS37OC16 CPU 



Syntax 

Execution 

Mode Supported 

Status Blta 

Description 

RTDU 

(FP) - 2 - (SP) 
((FP» - (FP) 
((SP» - (PC) 

Unlink Stack, Retum From Subroutine, and Deallocate RTDU 

(SP) - 2displacement - (SP) 

dispS 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Unlink and deallocate the current system stack frame: 

1) Load SP with the contents of the frame pOinter (FP) , 
2) Retrieve the previous value of FP from the system stack, 
3) Pull the return address from the system stack and place it in the PC, and 
4) Deallocate additional stack space by subtracting the 8-bit unsigned word 

displacement from the value of SP. 

Note that since the 8-bit value is a word displacement, it is internally multiplied 
by two to generate an even value and to keep the SP word aligned. 

The return address is a word address that is transformed to a 17 -bit physical 
memory address, via the program counter, by overlaying data bits 1 s-o onto 
address lines A 16-A 1 and forcing AO to O. This instruction can be a return 
mechanism for a CAll subroutine if and only ifthe subroutine executed a LINK 
instruction and did not execute an UNLINK instruction. 

Instruction Execution Detail 

RTDU dispB 

Cy Address Data wbfd 
1 prevA (prevA) 1011 

2 FP oldFP 1011 

3 FP-2 RtnA+2 1011 

4 R1nA IW 1001 

6 R1nA+2 lEW 1000 

Assembly Language Instructions 5-85 



RTI Return From Interrupt 

Syntax 

Execution 

Modes Supported 

Status Blta 

Description 

Example 

RTI 

(SP) - 2 - (SP) 
«SP» - (PC) 
(PC) - 2 - (PC) 
(SP) - 2 - (SP) 
«SP» - (S1) 

Operand not necessary for RTI 

Z . reflects the status data pulled from the system stack 
N reflects the status data pulled from the system stack 
C reflects the status data pulled from the system stack 
V reflects the status data pulled from the system stack 

Return from interrupts/exceptions by pulling the return address off the system 
stack into the PC, then pulling the previous status data off the system stack into 
the ST, and then enabling nonmaskable interrupts. 

This instruction is designed to be the return mechanism for peripheral 
interrupts, TRAPs, or illegal opcodes and their associated exception handling 
software. The PC must be decremented because interrupts/exceptions leave 
on the stack a PC value that points two words (four bytes) beyond the address 
of the next executable instruction in the interrupted stream. This effect is due 
to the pipeline prefetch ofthe CPU. The return address is a word address that 
is transformed to a 17 -bit physical memory address, via the program counter, 
by overlaying data bits 0 to 15 onto address lines A 16-A 1 and forcing line AO 
toaO. 

RETURN RTI Return to point of program 
flow when the interrupt 
()ccurred. 

Instruction Execution Detail 

RTI 

Cy Add_ Data wbfd 

1 prevA (plevA) 1011 

2 SP-2 (RtnA+4)+2 1011 

3 prevA (plevA) 1011 

4 RtnA rw 1001 

5 SP-4 oIdST 1011 

8 RtnA + 2 lEW 1000 

5-86 TMS37OC16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

RTS 

(SP) - 2 - (SP) 
((SP)} - (PC) 

Operand not necessary for RTS 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Return From Subroutine RTS 

Return from a subroutine by pulling the return address off the system stack into 
the PC. RTS uses the return linkage created by the CALL and normally is the 
final instruction of a subroutine entered through the CALL instruction. 

CALL and RTS work together to enter a subroutine and then later return to the 
instruction following the CALL when the subroutine is exited. The CALL 
instruction sets up this linkage by placing the PC value (a value that points to 
the instruction following the CALL) onto the stack before the subroutine is en­
tered. 

The return address is a word address that is transformed to a 17 -bit physical 
memory address, via the program counter, by overlaying data bits 0 -15 onto 
address lines A 1 - A 16 and forcing AO to O. This is illustrated in the CALl/RTS 
example in Figure 5--4 on page 5-35. 

RTS Return to the instruction 
immediately following the 
subroutine call. 

Instruction execution Detail 

RTS 

Cy Address Data wbfd 

1 prevA (prevA) 1011 

2 SP-2 RtnA+2 1011 

3 RtnA IW 1001 

4 RtnA + 2 lEW 1000 

Assembly Language Instructions 5-87 



see Subtract Source Less Ca!!y From Destination 

Syntax SBB 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

(destination) - (source) - carry-bit value - (destination) 

Rs,Rd 
"'disp16[Rsj,Rd 

Z set if the result is zero; unchanged otherwise 
N equals the most significant bit of the result 
C set if an unsigned underflow occurred; cleared otherwise 
V set if a twos complement underflow occurred; cleared otherwise 

Subtract the contents of the source operand, less the value of C[ S1'], from the 
destination register. 

This instruction is designed to aid 32-bit subtraction. A SUB will subtract the 
least significant words, and then a following SBB will subtract the most signifi­
cant words. Since the SBB instruction recognizes a previous underflowlbor­
row (C[S1']), the SUB and SBB instructions must be sequential. 

SBB handles Z[S1'] correctly for 32-bit subtraction. The Z[ S1'] bit is set if and 
only if the previous operation (typically a SUB) set it. Therefore, all status bits 
will reflect a 32-bit result after a SUB/SBB sequence of instructions is 
executed. 

label sbb ZR,R2 

sbb R5,R3 

sbb *lOh[ZR1,rl 

Subtract the carry bit value 
from R2. This is a conditional 
decrement of R2 depending 
contents of carry bit. 
Subtract R5 value minus carry 
bit from R3. Result to R3. 
Subtract lOh minus the carry 
bit from Rl. Result to Rl. 

Instruction Execution Detail 

see RS,Rd see "'disp16[RSj,Rd 

Cy Addreaa Data wbid Addreaa Data wbtd 
1 OpA+4 lEW 1000 OpA+4 rw 1001 

2 dlsp+Rs (dlsp+Rs) 1011 

3 OpA+6 lEW 1000 

5-88 TMS37OC16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Examples 

Set Bit to Zero SBITO 

SBITO{B} 

o (zero value) - (bit in destination) (bit number specified in source) 

#imm4,Rd 
#imm4, *disp16[Rd] 
Rs,Rd 
Rs, *disp16[Rd] 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

(word only) 
(byte only) 
(word only) 
(byte only) 

Clear to 0 a specified bit in the destination. The source value (0-7 for byte, 
0-15 for word) specifies which bit to clear in the destination, numbered as 
shown: 

15 14 13 12 11 10 9 8 I 7 6 5 4 3 2 1 0 

I I I I I I I I . I I I I I I I I 
Note that a zero (not the letter 0) follows SBIT in the mnemonic. The source 
value is contained in the 4 least significant bits of a register or in bits 4-7 of 
the instruction word when an immediate value. If the bit designation value for 
a byte is in the range 8-15, the instruction performs a read, no-modify, write 
sequence. 

Clear bit 4 of register R7: the first example demonstrates an immediate value, 
and the second demonstrates a register as a source. 

LABEL SBITO #4,R7 Clear 5th bit from right 
lor 

MOV #4,R6 Immediate bit valuetoR6 
SBITO R6,R7 Clear 5th bit from right 

Instruction execution Detail 

Cy Addreaa Data wbfd Address Data wbfd Address Data wbfd Addrs88 Data wbfd 
1 OpA+4 lEW 1000 prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011 

2 0pA+4 lEW 1000 dlsp+Rd (disp+ Rd) 1111 prevA (prevA) 1011 

3 OpA+6 IW 1010 dlsp + Rd (disp+ Rd) 1111 

4 dlsp+Rd resutt 0111 OpA+4 IW 1001 

5 OpA+6 lEW 1000 dlsp + Rd resutt 0111 

6 OpA+6 lEW 1000 

Assembly Language Instructions 5-89 



SBIT1 Set Bit to One 

Syntax SBIT1{B} 

Execution 

Modes Supported 

Status Bits 

Description 

Examples 

1 - (bit in destination) 

#imm4,Rd 
#imm4, *disp 16[RdJ 
RS,Rd 
Rs, *disp 16[RdJ 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

(bit number specified by source) 

(word only) 
(byte only) 
(word only) 
(byte only) 

Set to 1 a specified bit in the destination. The source value (0-7 for byte, 0-15 
for word) specifies which bit to set in the destination, numbered the same as 
for the SBITO{B} instruction. 

The source value is contained in the 4 least significant bits of a register or in 
bits 4-7 of the instruction word when an immediate value. If the bit designation 
value for a byte is in the range 8-15, the instruction performs a read, 
no-modify, write sequence. 

Set to 1 the sign bit for the (word) value in register R7: 

LABEL SBITI #15,R7 

Set to 1 the sign bit for the (byte) value in address 0701 h: 

LABEL SBITIB #7,&701h 

Instruction Execution Detail 

SBIT1 # imm4,Rd SBIT1 RS,Rd SBIT1B 
#imm4, *disp 16[RdJ SBIT1 B Rs, *disp16[Rd] 

Cy Addr_ Data wbld Addr_ Data wbld Address Data wbfd Addr_ Data wbid 
1 OpA+4 lEW 1000 prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011 

2 OpA+4 lEW 1000 disp+Rd (disp+ Rd) 1 1 1 1 prevA (prevA) 1011 

3 OpA+4 IW 1001 dlsp + Rd (dlsp+ Rd 1111 ) 

4 dlsp + Rd result 0111 OpA+4 IW 100 1 

5 OpA+6 lEW 1000 dis + Rd result 0111 

6 OpA+6 lEW 1000 

5-90 TMS370C16 CPU 



Syntax 

Execution 

Modes Supported 

Status Blta 

Description 

Shift Left Register Arithmetically SHL 

SHL{L} 

shift left the destination register{s) by source count - (destination register{s)) 

#imm4,Rd 
#imm4,IM:Rd 
Rs,Rd 
Rs,IM:Rd 

(word) 
(Iongword) 
(word) 
(Iongword) 

Z set if the result is zero, cleared otherwise 
N equals an XOR (exclusive OR) of the V[Sl] bit after a shift with the 

destination's most significant bit before shifting 
C set if a one is ever shifted out of the register; cleared otherwise 
V set if the most significant bit of the register ever changes during the shift; 

cleared otherwise 

Arithmetically shift left the destination register's signed contents by the 
number of bit positions speCified in the source operand. Shift zero{es) into the 
vacated least significant bit(s). The four least significant bits of the source 
operand contain the shift count (range of 0-15). 

For Immediate shifts, a source operand value of 00012 to 11112 indicates a 
shift count of 1 to 15; a source operand value of 00002 indicates a shift count 
of 16. If an immediate shift count of more than four bits (more than 15) is 
specified, the least-significant four hexadecimal bits (of the value specified) 
are assembled. 

The following depicts the movement within the destination register: 

Zero(es) 

(MSB of Rd or 1M) 

Assembly Language Instructions 5·91 



SHL Shift Left Register Arithmetically 

Example 

Before 

Aft.r 

The illustration below depicts a longword shift using the concatenation of 1M 
and Rd: 

SHL RS,IM:R6 ; RS - 4 (shift count) 

(4 zeroes) r- 15 0 
I (MSa of R6) 

L---------------------------I 
<== (4 bits) __ J 

15 
(MSa of 1M) 

o 

This instruction performs a mathematically correct multiply of the destination 
contents by a power of 2 (21_216). Another way to view execution is as a series 
of identical additions of the destination contents to itself - one addition (or 
doubling of itself) for each bit shifted. All of the status bits are "sticky" (the value 
remains the same after each shift). If any normal ADD operation overflow 
conditions occur during the ADD repetitions, this will be reflected in the C[S1'] 
or V[ S1'] condition code bits. The N [S1'] bit is correct for a repetitive add and 
will always be cleared if a twos-complement overflow occurs on a negative 
number. 

Status bits are set with respect to the size of the word shifted (16 or 32 bits). 
Longword shifts always use the I M as the most significant word of the 32-bit 
object. The result of SHL (source),IM:IM is undefined. 

SHL #4,R4 ;shift R4 bits to left 4 bits 

ZNCV 
R4 ST= 10 10 10 10 I 

16 0 
ZNCV 

R4 Os ST= 10 10 10 11 I 

The N[S1'] bit reflects an XOR of the sign bit before execution (a 1) and the 
V[S1'] after execution (a 1 because the sign changed at least once). 

5-92 TMS370C16 CPU 



Shift Left Register Arithmetically SHL 

Instruction Execution Detail 

Word Instructions (2 + n cycles) 

SHL #imm4,Rd SHL RS,Rd 

Cycle~ 
Period Address Data wbid 

Cycle~ 
Period Address Data wbid 

1 prevA (prevA) 1011 1,2 prevA (prevA) 1011 

n 
prevA (prevA) 1011 n 

prevA (prevA) 1011 
(repeat) (repeat) 

n+2 OpA+4 lEW 1000 n+2 OpA+4 lEW 1000 

Total cycles: n + 3 

Longword Instructions (2 + 2n cycles) 

SHLL #imm4,IM:Rd SHLL RS,IM:Rd 

Cycle~ 
Period Address Data wbfd 

Cycle~ 
Period Address Data wbfd 

1 prevA (prevA) 1011 1,2 prevA (prevA) 101 1 

2n 
prevA (prevA) 1011 

2n 
prevA (prevA) 1 01 1 (repeat) (repeat) 

2 + 211 OpA+4 lEW 1000 2 +211 OpA+4 lEW 1000 

Total cycles: 211 + 3 

t A single number represents a given cycle; an expression of n represents a 
cycle or period of cycles, depending on the nth number of shifts or repeats. 

Assembly Language Instructions 5-93 



SHL4 Shift Left L9Jl/C81 Four Bits 

Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

SHL4 

source shifted four bits to left - (destination) 

Rs,Rd 

z set if the result is zero; otherwise cleared 
N equals the result's most significant bit 
C unchanged 
V unchanged 

Logically left-shift the source register's contents four bit positions. Shift 
zero(es) Into the four least significant bits. Place the results of the shift into the 
destination register. Execution changes only Rd's contents. This instruction ef­
fectively multiplies the contents of Rs by 16 and places the unsigned product 
in Ad. 

This can also be represented as shifting four zeroes into Ad and copying bits 
11 - 0 of As into bits 15 - 4 of Rd as shown below: 

Label SHL4 R3,R1i 

-=-'---'----'-~ <== 0000 (4 zeroes) 
o 

L~gically shift R3 left 4 
bits then load the result 
into R11.Effectively this 
is a multiply of R3 by 16 with 
the results placed in R11. 

Instruction Execution Detail 

SHL4 RS,Rd 

Cy AddrM8 Data wbfd 

1 plWA (prevA) 1011 

2 OpA+4 lEW 1000 

5-94 TMS37OC16 CPU 



Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

Shift Left LOi/cal Eliht Bits SHL8 

SHL8 

source shifted eight bits to left - (destination) 

Rs,Rd 

Z set if the result is zero; otherwise, cleared 
N cleared 
C unchanged 
V unchanged 

Logically left-shift the source register's contents eight bit positions. Shift 
zero{es) into the eight least significant bits. Place the results of the shift into 
the destination register. Execution changes only Rd's contents. This 
instruction effectively multiplies the contents of Rs by 256 and places the 
unsigned product in Rd. 

This can also be represented as shifting eight zeroes into Rd and copying the 
LSbyte of the Rs into the MSbyte of Rd as shown below: 

Rsl~~ ______ ~I~:III~, ~,,~r.~AlI~:=f=lI=f~. 
15 7 __ 0 

Rs MSbyteto 
LSbyte 

-::-'--'--'---'--..L......J'--'-~ <:== 0000 0000 (8 zeroes) 
o 

Essentially, the least significant byte of Rs (before shift) is placed in the most 
significant byte of Rd with the least Significant byte of Rd cleared. 

LABEL SHL8 R6,R5 Logically shift R6 left 8 bits 
then load the result into R5. 
Effectively this is a 
multiply of R6 by 256 with 
the result placed in R5. 

Instruction Execution Detail 

SHLS Rs,Rd 

Cy Addre88 Data wbfd 
1 prevA (prevA) 1011 

2 OpA+4 lEW 1000 

Assembly Language Instructions 5-95 



SHR8 Shift Right Logical Eight Bits 

Syntax SHR8 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

source shifted eight bits to right - (destination) 

RS,Rd 

Z set if the result is zero; otherwise, cleared 
N cleared 
C unchanged 
V unchanged 

Logically right-shift the source register's contents eight bit positions. Shift 
zero(es) into the register's most significant eight bits. Place the results of the 
shift into the destination register. Execution changes only Rd's contents. This 
instruction effectively divides the contents of Rs by 256 and places the 
unsigned quotient in Rd. 

This can also be represented as shifting eight zeroes into Rd and copying the 
MSbyte of the Rs into the LSbyte of Rd as shown below: 

(8 zeroes) 0000 0000 

Note that the most significant byte of Rs (before shift) is placed in the least sig­
nificant byte of Rd with the least significant byte of Rd cleared. 

LABEL SHR8 R6,R5 Logically shift R6 right 8 bits 
then load the result into R5. 
Effectively this is a 
divide of R6 by 256 with 
result placed in R5 • 

.. Instruction Execution Detail 

SHR8 RS,Rd 

Cy Addresa Data wbfd 
1 prevA (prevA) 1011 

2 OpA+4 lEW 1000 

5-96 TMS370C16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

Store Bit In ST, Set to Carry' Value STBIT 

STBIT{B} 

ones complement the selected destination bit - (Z[ST]) 
(C[ST]) - (selected destination bit) 

#imm4, *disp 16[Rd] (byte only) 
Rs,Rd (word only) 
Rs, *disp 16[Rd] (byte only) 
#imm4,Rd (word only) 

Z set if bit tested is 0; cleared if bit is 1 
N unchanged 
C unchanged 
V unchanged 

The 3- or 4-bit source value is the number of the destination bit to be 
manipulated (bit-number range of 0-7 or 0-15, depending on byte or word 
instruction). (Bits are numbered as shown for the SBITO instruction on page 
5-89.) Execution sequence is as follows: 

1. Read the value of the selected destination bit and store the ones comple­
ment of this value in the Z bit of the status register. 

2. Store the status register's C bit value into the selected bit position in the 
destination. 

This sequence provides a means to check a semaphore in memory. And, if an 
"available" indication is found, the semaphore is then set to the needed value 
in order to gain control of a function (such as a bus, as shown in examples on 
next page, which use SBIT1 and SBITO to set up the Z[ST] value). 

Also, since the Z[ST] receives the ones complement of the bit value, a zero 
in the bit tested would cause a branch by the instruction BEQ. 

The source value is stored in bits 7-4 of the opcode or the least significant bits 
of a register. 

Useful single bit values are 0-7 for byte (destination a memory address onlYJ 
and 0-15 for word with destination in a register. When the bit-selection value 
for byte is 8-15, a read, no modify, write sequence executes and the Z[ST] 
bit is left equal to 1. Bits are numbered as shown for the SBITO instruction on 
page 5-89. 

This instruction makes possible a semaphore test operation by preceding the 
STBIT instruction with a SBIT1 or SBITO that sets or clears the C[ST] bit. In 
the following examples, address 1 OOOh is a dedicated word of 16 semaphores. 
A 1 at bit 2 of the address indicates that a bus is busy. The following code polls 
the semaphore for a 0, indicating that the bus is available: 

Assembly Language Instructions 5-97 



STBIT Store Bit In ST, Set to Car!/, Value 

Wait for Zero at Semaphore (Loop Until a Zero Is Found at Bit 2 of 1000h): 

LOOP SBITl 
STBITB 
BNZ 

• • • 

#CARRY,ST 
#2,*1000h[ZR] 
LOOP 

Set CARRY bit - 1 
Is semaphore 0 yet? 
Loop until bit #2-0 

when bit #2 of 1000h = zero, STBIT sets 
the bit to one to hold the bus~ now enter 
bus service routine and clear semaphore 
upon exit. 

• • • 
SBITO #2,*1000h[ZR] 

Exit, clear semaphore 

When the semaphore becomes a 0 (bus available), the STBIT instruction au­
tomatically sets it to a 1 (transfers the set C[ST] bitto the semaphore) to main­
tain bus possession by the new owner. When the bus is needed no longer, set 
the semaphore to 0 before exiting. 

The bus-busy indicator could be the opposite of that above: a 0, with a loop 
needed to find a 1. In this case, the C[ ST] bit is cleared (SBITO), and the condi­
tional branch loops on finding a 1 (inverted semaphore value). 

Wait for One at a Semaphore (Loop Until a One Is Found at Bit 2 of 
1000h): 

LOOP 

5-98 TMS370C16 CPU 

SBITO 
STBITB 
BEQ 

• 
• 
• 

#CARRY,ST 
#2,#1000h[ZR] 
LOOP 

~ set CARRY bit - 0 
~ Is semaphore 1 yet? 
Loop until bit #2-1 

when bit #2 of 1000h = one, the bus can be 
obtained~ enter bus service routine then 
set semaphore upon exit.~ 

SBITl 

• 
• 
• 

#2,#1000h[ZR] Exit, set semaphore 



Store Bit in ST, Set to Car!X Value STBIT 

Instruction Execution Detail 

STBIT #imm4,Rd STBIT Rs,Rd 

Cy Addrs88 Data wbfii Addr888 Data wbfd Addre88 Data wbfii Address Data wbiii 

1 prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011 

2 OpA+4 lEW 1000 prevA (prevA) 1011 disp+Rd (dlsp+ Rd) 1111 prevA (prevA) 1011 

3 OpA+4 lEW 1000 prevA (prevA) 1011 disp + Rd (dlsp+ Rd) 1111 

4 OpA+4 IW 1001 prevA (prevA) 1011 

5 dlsp+Rd result 0111 OpA+4 IW 1001 

6 OpA+6 lEW 1000 dlsp + Rd result 0111 

7 OpA+6 lEW 1000 

Assembly Language Instructions 5-99 



STEA Store Effective Address 

Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

STEA 

disp16+ (Rs) - (Rd) 
(Rd) + 2 - (Rd) 

*disp 16[Rsj, *Rd+ 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Sum the disP16 value and the contents of Rs, and indirectly store this in the 
address pointed to by the destination register. Then increment the destination 
register contents by 2. 

Given: R4 = 0002h and RS = 8000h. The following code moves the value 
6002h (the sum of the 6000h displacement and (R4)) into memory address 
8000h and increments RS to the value 8002h. 

Label STEA *6000h[r4],*rS+ 

Before After 

::1 o 0 0 2 ::1 000 2 
8 0 0 0 800 2 

sooohl N/A 8000hl 6 0 0 2 

Instruction Execution Detail 

I STEA '* disp16[Rsj,*Rd+ I 

Cy Addresa Data wbfd 

1 OpA+4 IW 1001 

2 Ad dlsp + As 0011 

3 OpA+6 lEW 1000 

5-100 TMS370C16 CPU 



Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

Store ST, Then Set Interrupt Level STRI 

STRI 

(ST) - (Ref) 
imm4 - (4 LS bits of the ST) 

#imm4,Rd 

Z cleared 
N cleared 
C cleared 
V cleared 

Store the contents of the ST into Rd. Then copy the three LSBs of imm4 into 
the three Interrupt-level bits of the ST and clear its Z, N, C, and V bits. 

The most significant byte of the ST is undefined because of ST reserved bits 
(these bits are undefined when read and don't retain data when written to). 

Label STRI #Olh,R2 Store the ST into R2, then 
set the 2 LS bits of the 
ST to Olb (01 binary). 

Instruction Execution Detail 

STRI #imm4,Rd 

Cy Address Data wblCi 
1 prevA (prevA) 1011 

2 OpA+4 lEW 1000 

Assembly Language Instructions 5·101 



SUB Subtract Source From Destiniation 

Syntax SUB{B} 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

(destination) - (source) - (destination) 

RS,Rd 
#imm16,Rd 
*disp16[Rsj,Rd 
Rs, *disp16{Rdj 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C set if an unsigned underflow occurred; cleared otherwise 
V set if a twos complement underflow occurred; cleared otherwise 

Subtract the contents of the source operand from the destination operand. 
Source contents are left unchanged. 

For byte operations, the byte operands are zero-extended to words, are 
operated on as words, and produce a word result. The most significant byte 
of the result will be either OOh for C[ST]=O or FFh for C[ST]=1. Nonregister 
destinations receive the least significant byte of the result, while registers 
receive the entire word. 

Status bits are set with respect to the size (byte or word) of the operation. 

label SUB R5,Ra Subtract contents of R5 from 
Ra. Store result in Ra. 

sbtrct SUB RIO, &LAST ; Subtract contents of RIO from 
the value in location LAST. 
Leave results in LAST. 

SUBB #5,R2 Subtract 5 from R2 contents, 
and set MSbyte of R2 = OOh. 

Instruction Execution Detail 

SUB{B} RS,Rd SUB{B} # imm16,Rd SUB{B} *disP16[Rs],Rd I SUB{B} Rs, *disP16[Rd] 

Cy Address Data wbiii Address Data wbfii Addr888 Data wbfii Address Data wbiii 
1 OpA+4 lEW 1000 OpA+4 IW 1001 OpA+4 IW 1001 OpA+4 IW 1001 

2 OpA+6 lEW 1000 dlsp+Rs (dlsp+Rs) 1511 dlsp+Rd (dlsp+ Rd) 1511 

3 OpA+6 lEW 1000 prevA (prevA) 1011 

4 disp + Rd resuH 0511 
5 OpA+6 lEW 1000 

5-102 TMS370C16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

Subtract Quick Immediate Value From Destination SUBQ 

SUBQ{B} 

(destination) - immediate data - (destination) 

#imm4,Rd 
#imm4, *disp16{RdJ 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C set if an unsigned underflow occurred; cleared otherwise 
V set if a twos complement underflow occurred; cleared otherwise 

Subtract the quick immediate data from the contents of the destination 
operand. Quick immediate data consists of a 4-bit value of 0-15, contained 
within the instruction word, which has been zero-extended to the correct data 
object size. The SUBQ #data,Rdinstruction takes one cycle to execute, while 
the SUB equivalent takes two cycles. 

For byte operations, the byte operands are zero-extended to words, are 
operated on as words, and produce a word result. The most significant byte 
of the result will be either OOh for C[ST]=O or FFh for C[ST] = 1. Nonregister 
destinations receive the least significant byte of the result, while registers 
receive the entire word. 

Status bits are set with respect to the size (byte or word) of the operation. 

label SUBQB #7,IM ; Subtract 7 from the 1M. 

SUBQ #FIVE,&FINISH ; Subtract FIVE's value 
from location FINISH 

Instruction Execution Detail 

SU8Q{8} #imm4,Rd II SU8Q{8} #imm4,*disp16[RdJ I 

Cy Addreas Data wbid" Addr888 Data wbid" 
1 OpA+4 lEW 1000 prevA (prevA) 1011 

2 dlsp+Rd (dlsp+ Rd) 1811 

3 OpA+4 IW 1001 

4 dlsp + Rd resu~ 0811 

5 OpA+6 lEW 1000 

Assembly Language Instructions 5-103 



SUBR Subtract With Reverse Destination 

Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

SUBR{B} 

(Register B) - (Register A) - (Register A) 

RA,Rs 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C set if an unsigned underflow occurred; cleared otherwise 
V set if a twos complement underflow occurred; cleared otherwise 

Subtract the contents of register A from the contents of register B and place 
the result back into register A. (Subtract source from destination, but place re­
sult back into source.) 

Note that when RB is the ZR, the instruction is equivalent to the instruction 
COMPL RA. 

For byte operations, the byte operands are zero-extended to words, are 
operated on as words, and produce a word result. The most significant byte 
of the result will be either OOh for C[S11I=O or FFh for C[S11I = 1. 

Status bits are set with respect to the size (byte or word) of the operation. 

label SUBR R3,R7 subtract R3 from R7, 
store result in R3. 

Instruction Execution Detail 

SUBR{B} RA,Rs 

5-104 TMS370C16 CPU 



Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

SWAPB 

(Rs (LSbyte» - (Rd (MSbyte) 

(Rs (MSbyte» - (Rd (LSbyte) 

RS,Rd 

Swap Bytes of Registers SWAPB 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C unchanged 
V cleared 

Copy (swap) the source register's most significant byte and its least significant 
byte with the opposite bytes of the destination register. The source register 
remains unchanged. 

LABEL SWAPB Rl,R2 

R2 = 1III:llilll[II~llI1111)iHllllllillil,i:1 1 1 1 1 1 1 1 R2 After Swap (R 1 
Doesn't Change) 

15 8 7 0 

Instruction Execution Detail 

SWAPB RS,Rd 

C Addre .. Data wbfd 
1 prevA Rs_LSbyte 0111 

2 prevA Rs_MSbyte 0111 

3 OpA+4 lEW 1000 

Assembly Language Instructions 5-105 



TBITO Test for Multiple Bits Clear 

Syntax TBITO 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

IF [(mask ;II! 0) and (mask ANOed to destination = 0)], 
THEN 1 - (Z[ST]) 
ELSE 0 - (Z[ST]) 

#imm8(mask) ,&addr16 (The & operator must be included as shown. 
The # operator in front of imm is optiona!.) 

Z set if tested bits are cleared; otherwise, a zero 
N unchanged 
C unchanged 
V unchanged 

This is a byte instruction only. 

For each logical 1 bit in the source mask, test the corresponding bit in the des­
tination-address byte. If all specified destination bits are Os, place a 1 in the 
Z bit of the status register. Otherwise, set the Z bit to O. Only the 1 bits in the 
mask are ANDed to set the Z bit. If the source mask is all zeroes (OOh), no bits 
are tested and bit Z[ST] is cleared. 

The destination byte is always in the first 64K bytes of memory and is 
addressed by a 16-bit value ( address line A 16 = 0). 

This instruction is designed to be followed by a SEQ (branch if equal) or SNE 
(branch not equal) instruction to form, respectively, a branch on multiple bits 
clear or branch on multiple bits not clear operation. 

While moving a block of bytes from one memory area to another, check each 
byte for all zeroes in bits 0, 1, 2, and 4. If all are zeroes, move the next byte 
and continue. If not all ones, do a bit check routine before moving the next byte. 

START MOVB 
MOVB 
TBITO 
BEQ 

JMP 

*R7,*RS ~Bring in (next) byte to check 
*RS+,4000h ~Place in memory for bit check 
OBh,&4000h ~Are bits 0, 1, 3 cleared? 
START If bits are clear, move next byte 

I f not clear, do bit check 
Start of bit checking 

START After check, get next byte 
Instruction Execution Detail 

Cy Address Data wbiCi 
1 addr (addr) 1 1 1 1 

2 OpA+4 rw 1001 

3 OpA+6 lEW 1000 

5-106 TMS370C16 CPU 



Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

Test for Multie.le Bits Set TBIT1 

TBIT1 

IF [(mask lid 0) and (mask_ones ANDed to inverted destination = 0)), 
THEN 1 - (Z[Sl]) 
ELSE 0 - (Z[Sl]) 
#imm8(mask),&addr16 (The & operator must be included as shown. 

The # operator in front of imm is optional.) 

Z set if tested bits are set (ones); otherwise, a zero 
N unchanged 
C unchanged 
V unchanged 

This is a byte instruction only. 

For each logical 1 bit in the source mask, test the corresponding bit in the des­
tination-address byte. If all specified destination bits are 1 s, place a 1 in the 
Z bit of the status register. Otherwise, setthe Z bitto O. Only bits corresponding 
to the 1 bits in the mask are tested to set the Z bit. If the source mask is all 
zeroes (OOh), no bits are tested and bit Z[ST] is cleared. 

The destination byte is always in the first 64K bytes of memory and is 
addressed by a 16-bit value (address line A16 = 0). 

This instruction is designed to be followed by a BEQ (branch if equal) or BNE 
(branch not equal) instruction to form, respectively, a branch on multiple bits 
set or branch on multiple bits not set operation. 

While moving a block of bytes from one memory area to another, check each 
byte for all 1 s in bits 4-7. If all are 1 s, move next byte and continue. If not all 
1 s, do a bit check routine before moving the next byte. 

START MOVB 
MOVB 
TBITI 
BEQ 

JMP 

*R7+,*R8 
*R8+,4000h 
OFOh,UOOOh 
START 

START 

Brinq in (next) byte 
Byte to memory 
Are bits 4-7 set? 
If bits set, move next byte 
I f not set, do bit check 
Start of bit check 

After check, qet next byte 

Instruction Execution Detail 

Cy Addr_ Data wbiij 

1 addr (addr) 1111 

2 0pA+4 IW 1001 

3 0pA+6 lEW 1000 

Assembly Language Instructions 5-107 



TBLU Table Lookup Unsigned, Interpel ate With Rounding 

Syntax 

execution 

Mode Supported 

Status Bits 

Description 

TBLU{B} 

(RS(MSbyte») + (Rd) - (1M) 
(RS(MSbyte») + (Rd) + size - (Rd) 
IF 1M> RD 
THEN 

RS(LSbyte) x (1M - Rd) + SOh - TEMP 
TEMP + 256 - Rd 

IM-Rd-Rd 
ELSE 

RS(LSbyte) x (1M - Rd) + SOh - TEMP 
TEMP + 256 - Rd 

1M + Rd - Rd 

RS,IM:Rd 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C cleared 
V cleared 

(8 bits x 16 bits - 24 bits + 80h) 

(8 bits x 16 bits - 24 bits + 80h) 

Look up two consecutive values in a table of unsigned data, referenced by Rd, 
and perform a rounded straight-line interpolation between them, according to 
the interpolation fraction in Rs. The result is rounded to fit the byte/word size 
of the instruction and then placed in Rd. 

The 16-bit address in Rd points to the first entry of the data table. This table 
is indexed by normalizing the most significant byte of Rs and adding it to Rd. 
This sum yields the address of the first of two consecutive entries in the table 
for which interpolation is to be computed. The two table entries are then 
read into I M and Rd respectively, as illustrated below. 

Data Table 
Lower Addresses Entry 0 1 Index to E"? nl (Fraction) 

(~I,;,., _____ -.lIIM '----

0000 0000 I • I:---------i,/ 

+ Pointer to First Entry in Table 

1 Pointer to First of Two Entries I 

""'-~I,;,, ______ -.JI Rd 

'--______ ---' Higher Addresses 

Note: Dotted line shows value moved; solid line indicates location pointed to. 

5-106 TMS370C16 CPU 



Table Lookup Unsigned, Interpolate With Rounding TBLU 

Notes: Considerations for >64K Bytes and Effect of Byte Size on 
Registers 

1. The calculated table pOinter in Rd is a 16-bit value that can address only 
the first 64K bytes of memory (A 16 = 0). Attempts to generate a result that 
points beyond the first 64K bytes of memory will wrap around to the 
beginning of the first 64K bytes of memory. 

2. If the instruction size is byte, the most significant bytes of I M and Rd will 
be cleared when the table entries are read. 

The interpolation fraction is held in the least significant byte of Rs and has its 
radix point between bits 7 and 8. The most significant byte of Rs is ignored 
during multiplication. The contents of Rs are left unchanged. 

The internal multiply is 8 x 16 where the 8-bit value is the fraction and the 16-bit 
value is the appropriate difference between the two table entries read into 1M 
and Rd. The product is a 24-bit fixed-point value with the integer portion in bits 
8-23 and the fraction in bits 0-7. This intermediate product is rounded up to 
word value in bits 8-23 by adding 000080h. This rounded result is then 
combined with 1M, yielding the final interpolated result, which is placed into Rd. 

The fractional portion of the intermediate product is lost. The operand 
combination TBLU{B} RS,IM:IM will always generate a result ofOOOOh in 1M. 
Undefined execution results in the combination TBLU{B} RS,IM:ZR; thus, 
it must be avoided. 

Status bits are set with respect to the size (byte/word) of the operation. 

Instruction Execution Detail 

TBLU Rs,IM:Rd 

Entry 1 s; Entry 2 Entry 1 > Entry 2 

Cy Addreaa Data wbfd Addreaa Data wbfd 
1,2 prevA (prevA) 0011 prevA (prevA) 0011 

3 prevA (prevA) 1011 prevA (prevA) 1011 

4 Rd+Ra_MS_byte (Rd + Rs_MS_byte) 1011 Rd + Ra_MS_byte (Ad + RI_MS_byte) 1011 

5 prevA (prevA) 1011 prevA (prevA) 1011 

8 Rd + Ra_MS_byte + 2 (Rd + RI_MS_byte + 2) 1011 Rd+Ra_MS_byte+2 (Rd + Ra_MS_byte + 2) 1011 

7-13 prevA (prevA) 1011 prevA (prevA) 1011 

14 prevA (prevA) 1011 prevA (prevA) 1011 

15 0pA+4 lEW 1000 prevA (prevA) 1011 

18 OpA+4 lEW 1000 

Assembly Language Instructions 5-109 



TBLU Table Lookup UnsignfJ(J, Intep,olate With Rounding 

Instruction Execution Detail (Concluded) 

TBLUB Rs,IM:Rd 

Entry 1 S Entry 2 Entry 1 > Entry 2 

Cy AddreI8 Data wblii Addr_ Data wbfd 

1.2 p!8VA (pr8vA) 0011 p!8VA (pr8vA) 0011 

3 Ad + AI_Me_byte (Ad + AI_MS_byte) 1111 Ad + AI_Me_byte (Ad + AI_Me_byte) 1111 

4 p!8VA (PAIVA) 1011 p!8VA (PAIVA) 1011 

5 Rd + AI_MS_byte + 1 (Ad + AI_MeJlyIe + 1) 1111 Rd + AI_Me_byte + 1 (Ad + AI_Me_byte + 1) 1111 

8 pAIVA (p!8VA) 1011 pAIVA (pr8vA) 1011 

7-13 p!8VA (p!8VA) 1011 pAIVA (p!8VA) 1011 

14 OpA+4 lEW 1000 pAIVA (p!8VA) 1011 

15 OpA+4 lEW 1000 

5-110 TMS37OC16 CPU 



Syntax 

Execution 

Mode Supported 

Status Blta 

Description 

TRAP 

(ST) - ((SP)) 
(SP) + 2 - (SP) 
(PC) + 1 - «SP)) 
(SP) + 2 - (SP) 

Execute a Trap Exception TRAP 

ones complement of enumerator x 2 - vector offset 
vector table base addr + vector offset - (PC) (subroutine address - PC) 
1s - L2-LO[Sl] 

immS [#immS = trap number (0-255); 
enumeratorS = ones complement of trap number] 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

The TRAP instruction operates as a software interrupt or exception. A 
256-word trap vector table, located at a vector-table base address, contains 
the start addresses of each trap subroutine (TRAP 0 being at the lowest ad­
dress in the table). This is shown graphically in Figure 5-8 on page 5-113. 

Note: Five Trap Words Are Reserved 

The 'C16 trap vector table contains mask ROM space reserved for TI use 
only-addresses 08036h-08040h, as shown in Figure 5-8 on page 5-113. 
This reserved area should not be used in your software algorithm, nor should 
it be used during mask ROM/firmware development. 

A summary of the trap exception steps: 

1) Push the current ST contents on to the stack; then increment the SP by 2. 
2) Add 1 to the PC value and place the result on the system stack (this will 

pOint two words beyond the next instruction). Increment the SP by 2. 
3) Calculate the vector offset (from the trap vector-table base address) by 

multiplying a ones complement of the instruction's enumerator by 2. (The 
enumerator is stored in the LSbyte of opcode as the ones complement of 
the trap number.) 

4) Load the PC with the trap vector-table base address + vector offset (ad-
dress containing the trap-subroutine start address). 

5) Load the PC with the subroutine start address. 
6) Load all 1 s into the srs three interrupt level bits (L2-LO) 

This instruction replicates a peripheral interrupt. In this manner, it is a software 
interrupt and requires you to provide an interrupVexception handler in 
software. Use an RTI instruction to retum to the interrupted execution flow. 

Assembly Language Instructions 5-111 



TRAP Execute a Trae Exceetion 

Example 

Note: TRAP Enumerator Source 

Note that the enumerator value as assembled in the LSbyte of the opcode 
is the Inverse (ones-complement) trap value. For example, TRAP 0 Is the in­
struction word FFFFh (FFh is the enumerator value) , TRAP 1 Is FFFEh (FEh 
the enumerator value), and TRAP 255 is FFOOh (OOh is the enumerator val­
ue). (This explains the ones-complement computation in the Execution 
equation above.) Traps are further explained in subsection 3.7.6 on page 
3-24. 

Label TRAP 32 Call TRAP 32 vector. Begin 
execution at the address 
stored at that location. 

Instruction execution Detail 

TRAP immB 

Cy Add,... Data wbfd 
1 OpAH lEW 1001 

2 SP ST 0011 

3 SP+2 (RtnA+4) +2 0011 

4 prevA (prevA) 1011 

5 (NOT fIIIUfII) X 2 + vector base_addr subroutine start address 1011 

8 subroutine start address x 2 IW 1001 

7 (subroutine start eddress x 2) + 2 lEW 1000 

5-112 TMS37OC16 CPU 



Figure 5-8. Vector Table for TRAP Instruction 

Memory 
Address • 08000h 

0s002h 
08004h 

1------

1------

08006h 1------

08006h 
OSOOAh 1------

OSOOCh 
1------

OSOOEh 
1------

08010h 
1------

08012h 
1------

08014h 
1------

08016h 
1------

08018h 
0801Ah 

1------

0801Ch 
1------

0801Eh 
1------

O8020h 
1------

08022h 
1------

1------
08024h 

1------
08026h 

1------
08028h 

1---------
0802Ah 

1--------' 
0802Ch 
0802Eh 
O803Oh 

08032h 
08034h 

08036h 

to 
O804Oh 

08042h 

081FCh 
081FEh 

1------

1------

1------

1------

1---------' 

1------,---

I---~--

, , 

Execute a T!!J? Exception TRAP 

00000h 

OBOOOh 
~..,.......:.,..::..,~..,:Z..":;;;.,,L,~"";:;"""~ 081FEh 

OFFFEh 
10000h 

1FFFEh 

Assembly Language Instructions 5-113 



TRUNCS Test for Truncation of Signed Data 

Syntax TRUNCS{L} 

Execution IF [valid truncation not possible] 

Modes Supported 

Status Bits 

Description 

THEN one - V[ST] 
ENDIF 

Rd 
IM:Rd 

(word only) 
(longword only) 

Z TRUNCS: set if the least Significant byte of Rd is zero; cleared 
otherwise 

TRUNCSL: set if Rd is zero; cleared otherwise 

N equals V[ST] XORed with the most significant bit of the original data 
object 

C cleared 

V TRUNCS: set if bits 15 to 7 of Rd are not the same; cleared 
otherwise 

TRUNCSL: set if all bits in 1M and bit 15 of Rd are not the same; 
cleared otherwise 

Test the signed data in the register(s) to determine If It is possible to accurately 
represent the data in the next smaller data object size. If not possible, set the 
V bit in the status register to a one. 

Use the BV (branch if overflow set with V[ST] = 1) or BNV (branch if overflow 
not set with V[ST] = 0) instructions to decide. 

Instruction Execution Detail 

TRUNCS Rd I TRUNCSL IM:Rd 

tMIIMIWAIII 
bits 7 - 15 are the same bits 7 - 15 are not"e earne 

Cy Address Data wblii Addr ... Data wblii Addr888 Data wblii 
1-2 prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011 

3 OpA+4 lEW 1000 prevA (prevA) 1011 prevA (prevA) 1011 

4 OpA+4 lEW 1000 0pA+4 lEW 1000 

5-114 TMS37OC16 CPU 



Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

Test for Truncation of UnsifJ!led Data TRUNCU 

TRUNCU 

IF [valid truncation not possible]. 
THEN. one - C[STII 

ENDIF 

Rd 

Z set if the least significant byte of Rd is zero; cleared otherwise 
N equals the value of bit 7 {most significant bit of the byte result} 
C set if bits 8 - 15 of Rd are not zero; cleared otherwise 
V cleared 

Test the unsigned data word in the destination register to determine if it can 
be accurately represented as a byte data object. If not possible. set the C bit 
in the status register to a 1 . 

Use the BC (branch if carry set with C[ST] = 1) or BNC (branch if carry clear 
with C[ST] = O) instructions to decide. 

LABEL TRUNCU R2 DOES MS BYTE OF R2 - O? 
BNC Byte_val~ YES, JUMP TO BYTE ROUTINE: 

OTHERWISE, CONTINUE 

Instruction Execution Detail 

TRUNCU Rd 

Cy Addreaa Data wbfd 
1 prevA (prevA) 1011 

2 OpA+4 lEW 1000 

Assembly Language Instructions 5-115 



TST Test Value of Source Operand 

Syntax 

Execution 

Modes Supported 

Statu8 Blta 

De8crlptlon 

Example 

TST{B} Synthetic Instruction: Executes as MOV s,ZR 

MOV s,ZR 

Rs 
*Rs 
*Rs+ 
#imm16 
*dips16[Rs] 
*-Rs 

Z set if the source is zero; cleared otherwise 
N equals the most significant bit of the source 
C unchanged 
V cleared 
Test the value of the source operand by moving (copying) it to the ZR (R15). 
Set the ST bits accordingly. The source value is not changed. 

Byte operations test only the least significant byte of a register. Status bits are 
set with respect to the size (byte or word) of the operation. 

TSTB *OAlh[ZR] Check byte address OAlh. 
Set status bits on result. 

Check TST 'VALUE Check word location VALUE. 
Set status bits on result. 

In8tructlon Execution Detail 

Cy AcId,.. Data wblii 
1 0pA+4 lEW 1000 

2 
3 

Cy AcId_ Data wbiii 
1 0pA+4 IW 1001 

2 0pA+6 lEW 1000 

3 

5-116 TMS37OC16 CPU 

Add,.. Data wbld 
As (Rs) OSll 

OpA+4 lEW 1000 

TST{B} *disp16[Rs} 
(MOV{8) *disp16[Rs},[ZRJ) 

AcIdreR Data wbiii 
0pA+4 IW 1001 

dlsp + As (dlsp + Rs) OSll 

0pA+6 lEW 1000 

Add,.. Data wblii 
Rs (Rs) OSll 

prevA (pravA) 1011 

0pA+4 lEW 1000 

AcIdreR Data wblii 
prevA (plevA) 1011 

As-S (Ra - S) 1811 

OpA+4 lEW 1000 



Syntax 

execution 

Modes Supported 

Status Blta 

Description 

UNLINK 

(FP) - (SP) 
((SP)) - (FP) 

Unlink and Deallocate Stack Frame UNLINK 

Operand not necessary for UNLINK 

Z unchanged 
N unchanged 
C unchanged 
V unchanged 

Ul"llink and deallocate the current system stack frame: 

1) Load the SP (R 13) with the contents of the FP (RO). 
2) Reload the FP with its previous value (from the system stack). 

Instruction execution Datall 

UNLINK 

Cy Addreie Data wbfa 
1 pI8\IA (preYA) 1011 

2 FP oIdFP 1011 

3 0pA+4 lEW 1000 

Assembly t.anguage Instructions 5·117 



XNOR Exclusive NOR Source WIth Destination 

Syntax 

Execution 

Mode Supported 

Status Bits 

Description 

Example 

XNOR{B} 

NOT (source XOR destination) - destination 

RS,Rd 

Z set If the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C unchanged 
V cleared 

Logically exclusive OR the contents of the source register with the contents 
of the destination register and return the ones complement of the result. 

For byte operations, the byte operands are zero-extended to words, are oper­
ated on as words, and produce a word result. The most significant byte of the 
result will always be FFh. Note that when Rs is ZR, the instruction is equivalent 
to NOT Rd. 

Status bits are set with respect to the size (byte or word) of the operation. 

Label XNOR R2 , Rll Exclusive OR the values in 
R2 with Rll. store results 
in Rl1. 

Instruction Execution Detail 

XNOR{B} RS,Rd _ .... 
Data 

lEW 1000 

5-118 TMS37OC16 CPU 



Syntax 

Execution 

Modes Supported 

Status Bits 

Description 

Example 

Exclusive OR Source With Destination XOR 

XOR{B} 

(source) XOR (destination) - (destination) 

Rs,Rd 
Rs,*disp16[Rd] 
#imm16,Rd 
#imm16,*disp16[Rd] 

Z set if the result is zero; cleared otherwise 
N equals the most significant bit of the result 
C unchanged 
V cleared 

Logically exclusive OR the source operand contents with the contents of the 
destination operand. Place results in the destination. 

For byte operations, the byte operands are zero-extended to words, are 
operated on as words, and produce a word result. The most significant byte 
of the result will always be OOh. Nonregister destinations receive the least 
significant byte of the result, while registers receive the entire word. 

Status bits are set with respect to the size (byte or word) of the operation. 

LABEL XORB #lOllOOllb,R2 Exclusive OR the LS 
byte of R2 with the 
source binary value. 
Place results in R2 
with the MS byte all 
zeroes. 

Instruction execution Detail 

XOR{B} Rs,Rd 

Cy Address Data wbfii Address Data wbfii Address Data wbld Addrs88 Data wbfii 
1 OpA+4 lEW 1000 OpA+4 IW 1001 OpA+4 IW 1001 OpA+4 IW 1001 

2 dlsp+Rd (dlsp+Rd) 1811 OpA+6 lEW 1000 dlsp+ Rd (disp+ Rd) 1 811 

3 prevA (prevA) 1011 prevA (prevA) 1011 

4 dlsp + Rd resutt 0811 dlsp + Rd resutt 0811 

5 OpA+6 lEW 1000 OpA+6 lEW 1000 

Assembly Language Instructions 5-119 



5-120 TMS37OC16 CPU 



Appendix A 

Glossary 

This appendix provides definitions of terms and concepts unique to cMCU '" 
devices. Other common terms are included if the use of those terms varies 
from generally accepted usage. 

absolute address: An addressing mode in which code or operands produce 
the actual address. 

AID pins: The 18 pins that connect the AID module to the external world; 
includes analog inputs ANo-15 and the high and low reference voltages, 
Vrefhi, and Vreflo. 

addressing mode: The method by which an instruction calculates the 
location of its required data. 

ANo-AN15 pins: The 16 analog input channels to the AID converter's digital 
inputs. 

analog-to-dlgltal (AID) converter: The cMCU370 AID Converter, which 
receives analog data from up to 16 multiplexed inputs. 

assembly language: A symbolic language that describes the binary 
machine code in a more readable form and that can be read by an 
assembler for conversion into machine code. 

asynchronous communications mode: A serial communications format 
that needs no synchronizing clock. This format begins with a start bit, is 
followed by data bits and an optional parity bit, and ends with one or two 
stop bits. This format is commonly used with RS-232-C communications 
and PC serial ports. 

A-1 



Glossary 

BCD: Binary coded decimal. Each 4-bit nibble expresses a digit from 0-9 
and usually packs two digits to a byte, giving a range of 0-99. 

baud: The communication speed for serial ports; equivalent to one bit per 
second. 

code address: A value that, when placed in the program counter, is placed 
on the 16 most significant address lines with the least significant address 
line set to O. This effectively multiplies the code value by 2 and makes it 
possible to address memory of up to 128K bytes. 

constant: A value that does not change during execution. 

CPU: Central proceSSing unit. The cMCU370 product's CPU is register-ori­
ented with a status register, program counter register, and stack pointer. 
The CPU uses the register file, accessed in one bus cycle, as working 
registers. The cMCU370 CPUs are the TMS370C8 (8 bit) and the 
TMS370C16 (16 bit). 

device: The entire microcontroller, consisting of the CPU and the selected 
modules integrated on a single chip. 

edge detection: A process that senses an active pulse transition on a given 
timer input and provides appropriate output. The active transition can be 
configured to be low-to-high or high-to-Iow. 

EEPROM: Electrically erasable programmable read only memory. Memory 
that can be programmed and erased under direct program control. 

freeze bit: A bit "frozen" to an un modifiable 1 or 0 value, according to cus­
tomer requirements, during manufacturing. 

A-2 TMS370C16 CPU 



III 

D 

Glossary 

halt mode: A mode that reduces operating power by stopping the internal 
clock, which stops processing in all the modules. This is the lowest-pow­
er mode in which all register contents are preserved. 

Idle mode: A mode in which the CPU stops processing and waits for the next 
interrupt. This is not a low-power mode. 

Immediate operand: An operand whose actual constant value is specified 
in the instruction. 

Instruction: The basic unit of programming that causes the execution of one 
operation; consists of an opcode and operands along with optional la­
bels and comments. 

INT1, INT2, and INT3 pins: Pins connected to external devices to allow 
them to interruptthe CPU.INT1 and INT2 can be software configured as 
non-maskable interrupts. 

Interrupt: A signal input to the CPU to stop the flow of a program and force 
the CPU to execute instructions at an address corresponding to the 
source of the interrupt. When the interrupt is finished, the CPU resumes 
execution at the point where it was interrupted. 

Isosynchronous communications mode: An SCI mode in which data 
transmission is synchronized by a clock Signal (SCICLI<) common to 
both the sender and receiver. The format is identical to the asynchronous 
mode and consists of a start bit, data bits, an optional parity bit, and a stop 
bit. 

machine code: The actual binary values read by the CPU for instruction 
execution; usually organized as hexadecimal bytes in an assembler 
listing. 

memory map: A map of the address space accessed by the TMS370C16 
processor, partitioned according to functionality (memory, registers, 
etc.). 

mnemonic: An alphanumeric symbol designed to aid human memory; 
commonly represents the opcode of an assembly language instruction. 

Glossary A-3 



Glossary 

m 

module: An element that provides a specific function such as a serial 
interface, memory area, AID conversion, etc. Such modules are 
integrated with the CPU to form a device for a specific application. 

multiprocessor communications: An SCI format option that enables one 
processor to efficiently send blocks of data to other processors on the 
same serial link. 

nested Interrupt: An interrupt that suspends the service routine of a prior 
interrupt. An executing interrupt can set the ST register's interrupt mask 
to prevent being suspended by another interrupt. 

NMI: Nonmaskable interrupt. An interrupt that causes a context switch, once 
the present instruction finishes execution. When executing, the NMI 
cannot be interrupted by other NMls or peripheral interrupts unless an 
RTI instruction occurs or an ST interrupt bit, L2 - LO, is cleared. 

offset: A signed value that is added to the base operand to give the final ad­
dress. 

opcode: Operation code. In most cases, the first byte of the machine code 
that describes to the CPU the type of operation and combination of oper­
ands. TMS370C16 instructions use 16-bit opcodes. 

operand: The part of an instruction designating where the CPU will fetch or 
store data. 

prescaler: A circuit that slows the rate of a clocking source to the counter. 

prototyplng device: A device used before a masked ROM device is 
available that has identical functions, pinout, size, and timings to the 
ROM device. Programmable memory such as EEPROM or EPROM is 
used in place of the masked ROM. 

PWM: Pulse width modulation. A serial signal in which the information is 
contained in the width of a pulse of a constant frequency signal. A 
cMCU370 device can output a PWM signal with a constant duty cycle 
without any program intervention by using the timer compare features, 

A-4 TMS37OC16 CPU 



Glossary 

ratlometrlc conversion: An analog-to-digital conversion in which the 
conversion value is a ratio of the Vref source to the analog input. As Vref 
is increased, the input voltage needed to give a certain conversion value 
changes, but all conversion values keep the same relationship to Vref. 

register file (RF): The 16-register file residing in the CPU. Several registers 
also serve, respectively, as the frame pOinter (RO), implied register (R 1), 
stack pOinter (R13), status register (R14), and zero register (R15). Each 
register is 16 bits. 

RESET pin: A pin that when held low starts hardware initialization and 
ensures an orderly software startup. 

serial communications Interface (SCI): An optional PRISM library module 
that provides a serial interface, programmable to be asynchronous or 
isosynchronous. Many timing, data format, and protocol factors are 
programmable and controlled by the SCI module in operation. 

SCICLK pin: Serial communications interface clock pin. A pin used as a 
synchronizing clock input or output in the isosynchronous mode, or as 
a general-purpose I/O pin. 

serial peripheral Interface {SPI}: An optional PRISM library module that 
provides a serial interface to facilitate communication between 
networked master and slave CPUs. As in the SCI, the SPI is set up by 
software; from then on, the CPU takes no part in timing, data format, or 
protocol. 

Signed Integer: A number system used to express positive and negative 
integers. 

SPI: See serial peripheral interface. 

stack: A designated part of memory used as a last-in, first-out memory for 
temporary variable storage; used during interrupts and calls to store the 
current program status. The area occupied by the stack is determined by 
the stack pointer and the application program. 

stack pointer {SP}: A CPU register that points to the last entry or top of the 
stack. The SP is automatically incremented before data!s pushed onto 
the stack and decremented after data is popped (pulled) tram the stack. 

Glossary A-5 



Glossary 

D 

III 

standby mode: A power reduction mode in which the CPU stops 
processing, but the on-chip oscillator remains active. Timers remain 
active and can cause the CPU to exit the standby mode. 

status register (ST): A CPU register that monitors the operation of the 
instructions and contains the global interrupt enable mask bits. 

TBA (trap table base address): The beginning address of the trap vectors. 
An algorithm value involving the trap enumeration value is added to this 
address to find the vector corresponding to the trap. See the TRAP 
instruction description in Chapter 5. 

TRAP: A trap-to-subroutine assembly language instruction that is a subrou­
tine call. Its operand is a trap number that identifies a location in the trap 
vector table, which contains the address of the subroutine. 

unsigned Integer: A number system used to express positive integers. 

watchdog timer: A timer option that can be programmed to generate an in­
terrupt when it times out. This provides a hardware monitor over the soft­
ware to prevent a "lost" program. 

A·6 TMS370C16 CPU 



Note: Boldface page numbers identify a primary 
reference 

? assembler operator, 4-16, 5-52 
& (ampersand) label address format, 4-6 

ND converter vector, 3-20 
abbreviations 

See also symbols 
meaning ·contents of·, 4-2 
used with instructions, 5-2 

accessing full 128K bytes, 4-16, 5-52 
ADATA register, 3-18 
ADC instruction, 5-19 
ADD instruction, 5-17 
add instructions 

32-bit add, 5-19 
ADC (add word plus carry), 5-19 
ADD (add source, destination), 5-17 
ADQ (add quick), 5-20 

ADD/ADC sequence, 5-19 
ADDB instruction, 5-17 
address bus, 2-2, 2-8 

example (JMP instruction), 4-8 
address modes, 4-2 

immediate, 4-7 
implied,4-3 
PC relative, 4-4 
register direct, 4-8 
register indirect, 4-9 

decrement/increment, 4-12 
displacement, 4-13 
no displacement, 4-10 
substitution using offset, 4-9 

summary, 4-2 

Index 

address, code. See code address 
address, illegal, 3-10 
addressing modes, summary, 4-2 
addressing, indirect. See indirect addressing 
ADIR register, 3-18 
ADQ instruction, 5-20 

synthetic use (INC{B}), 5-55 
ADQB instruction, 5-20 
ampersand (&) label address format, 4-6 
analog power supply, out of regulation, 3-12 
analog power supply control, 3-9 
AND instruction, 5-21 
ANDB instruction, 5-21 
architecture, 2-1 
arithmetic shift, 5-25 

ASR (artihmetic shift right), 5-23 
SHL (shift left arithmetic), 5-91 

ASR instruction, 5-23 
ASRO instruction, 5-25 
ASROL instruction, 5-25 
ASRL instruction, 5-23 
assembly language, 5-1 to 5-119 

abbreviation summary table, 5-2 
case sensitivity, iv, 5-16 
individual instruction descriptions, 5-17 to 5-119 
instruction summary table, 5-4 
symbol table, 5-2 

assistance (hot line, etc.), vi 

m 
B{COND} instructions 

BC, carry set, 5-27 
BEQ, on equal, 5-27 
BGE, greater than or equal, 5-27 

Index-1 



Index 

B{COND} instructions (continued) 
BGT, greater than, 5-27 
BHI, higher, 5-27 
BHS, higher or the same, 5-27 
BLE, less than or equal, 5-27 
BLO, lower than, 5-27 
BLS, lower or the same, 5-27 
BLT, less than, 5-27 
BN, on negative (minus), 5-27 
BNC, carry is clear, 5-27 
BNE, on not equal, 5-27 
BNV, overflow is clear, 5-27 
BP, on positive, 5-27 
BPZ, on plus (not negative), 5-27 
BR, branch always, 5-27 
BV, on overflow set, 5-27 
PC relative addressing example, 4-4 

bit, 2-17 
numbering, 2-14 
restrictions, 2-17 
value at manufacturing, 3-39 

bit set instructions 
SBITO (set bit to zero), 5-89 
SBIT1 (set bit to one), 5-90 

branch instructions 
B{COND} (conditional branch), 5-27 
BC, carry set, 5-27 
BEQ, on equal, 5-27 
BGE, greater than or equal, 5-27 
BGT, greater than, 5-27 
BHI, higher, 5-27 
BHS, higher or the same, 5-27 
BLE, less than or equal, 5-27 
BLO, lower than, 5-27 
BLS, lower or the same, 5-27 
BLT, less than, 5-27 
BN, on negative (minus), 5-27 
BNC, carry is clear, 5-27 
BNE, on not equal, 5-27 
BNV, overflow is clear, 5-27 
BP, on positive, 5-27 
BPZ, on plus (not negative), 5-27 
BR, branch always, 5-27 
BRBITO (branch if bit is zero), 5-30 
BRBIT1 (branch if bit is one), 5-32 
BV, on overflow set, 5-27 
logical, 5-28 
signed; 5-28 

Index-2 TMS370C16 CPU 

BRBITO instruction, 5-30 
execution redirection, 4-4 

BRBIT1 instruction, 5-32 
execution redirection, 4-4 

brownout 
detector, 3-5 
indicator, 3-3 

brownout-detector power control, 3-9 

byte, 2-14, 2-17 
restrictions, 2-17 

CALL instruction, 2-18, 5-34 
direct memory addressing example, 4-3 
example, 2-13 
return from CALL (RTS), 5-87 
use with stack, 2-12 

carry bit (S1'), 2-7 
loading, 5-60 

carry value with add, 5-19 

case sensitivity of assembler statements, iv, 5-16 

check for ones, 5-1 07 

check for zeroes, 5-106 

CLKOUTpin 
control, 3-9 
pin functions, options, 3-6 
SCR1 register, 3-9 

CLKSRC1/0 bits (clockout pin select), 3-9 

CLR instruction, 5-37 

CLRB instruction, 5-37 

cMCU family, iii 

CMP instruction, 5-39 

CMPB instruction, 5-39 

CMPC instruction, 5-40 

code address, 2-2 
creation, 4-16 
NMI usage, 3-24 
use of ? operator, 4-16 

code space, 2-18 

compare instructions 
CMP (compare source to destination), 5-39 
CMPC (compare source minus carry), 5-40 

COMPL instruction, 5·42 

COMPLB instruction, 5-42 



complement instructions 
COMPL (twos complement), 5-42 
NOT (ones complement), 5-81 

conditions for branching, 5-27 

configuration registers, system, 3-7 

control pins, 3-14 

control register, system, 3-8, 3-9 

copy/move instructions 
FMOV (move far), 5-52 
MOV (move within 0-64K bytes), 5-70 
MOVQ (move quick, immediate value), 5-74 

CRC (cyclic redundancy check) generator, 3-6 

CRC generator, 3-6 

cyclic redundancy check (CRC), 3-6 

m 
daisy-chain interrupt priority, 3-38 

data organization, 2-14, 2-17 
bit, byte, word restrictions, 2-17 

data registers, port, 3-17 

data truncation test 
TRUNCS instruction, 5-114 
TRUNCU instruction, 5-115 

DBNZ instruction, 5-43 
OCR register, 3-16 

DEC instruction, 5-45 

DECB instruction, 5-45 

decrement instructions 
DBNZ (decrement, branch if not zero), 5-43 
DEC (decrement destination), 5-45 

dedicated registers. See registers, specialized 

definition of words, Iv 

destinations, word and byte, 2-16 

device (definition 01), iv 

digital I/O pins, 3-14 

digital I/O registers, 3-15, 3-16 to 3-18 
OCR (digital output/control), 3-16 
DIR (port direction register), 3-17 
DSR (digital input status), 3-16 

digital input/status registers, 3-16 

digital inputs 
type A pin use, 3-29 
type B pin use, 3-31 
type C pin use, 3-33 

digital output control registers, 3-16 

digital port direction registers, 3-17 

digital power status, 3-10 

010 registers. See digital I/O registers 
DIR register, 3-17 

direct memory addressing, 4-5 
format derivation, 4-6 

direct register addreSSing, 4-8 

direction register, port, 3-17 

displacement for branch, 5-27 
division by shift, 5-25 
DIVS instruction, 5-46 
DIVSL instruction, 5-46 

DIVU instruction, 5-48 
DIVUL instruction, 5-48 

documentation, ordering, vi 

double word add, 5-19 

DSR register, 3-16 

ECLK (external clock), 3-6 
EEPROM programming, 3-12 

effective address storage, 5-1 00 

Index 

effective address store (LDEA instruction), 5-62 

emulation slave mode vector, 3-20 

emulation trap vectors, 3-20 

enabling NMls, 3-23 

exception routine, 3-19 

exception, software. See software exception 

execution steps for interrupts, 3-22 
exiting low-power mode, 3-40 

extension word (4-,8-, 16-bit), 4-7 

external interrupts, 3-28 
See also interrupts, external 
external pins, 3-26 
trap (illustrated), 3-20 
vectors (illustrated), 3-20 

external pin communication, 3-16 

external pins, 3-16 
INT1 (HPO application), 3-12 
RESET,3-3 

external reset, 3-11 

EXTRST bit (external reset status), 3-11 

EXTS instruction, 5-50 
EXTSB instruction, 5-50 

Index-3 



Index 

EXTZ instruction, 5-51 
EXTZB instruction, 5-51 

II 
failure 

digital power, 3-1 0 
oscillator, 3-1 0 

fast add, 5-20 
FMOV instruction, 2-18, 5-52 

set up code address example, 4-17 
FP (frame pointer), 2-4, 2-5 
frame pointer (FP), 2-4, 2·5 
freeze bit, 3-29, 3·39 

type A interrupt options, 3-39 

glossary, A-1 
See also Appendix A 

m 
halt mode, 3-40 

IDLE instruction, 5-53 
handling of interrupts, exceptions, 3-19 
hardware protect override, 3-12 
hot line, vi 
HPO bit (EEPROM programming), 3-12 

D 
I/O port registers, 3-18 
IDLE instruction, 5-53 
idle mode, 3-40 to 3-42 

IDLE instruction, 5-53 
ILLACC bit (illegal access reset status), 3-10 
I LLADR bit (illegal address reset status), 3-10 
illegal 

access reset, 3-1 0 
address access, 3-3 
address reset, 3-10 
opcode trap, 3-20 
opcodes, 3-24, 5-54 

illegal access, 3-3 
reset, 3-10 

Index-4 TMS370C16 CPU 

illegal address 
access, 3-3 
reset, 3-10 

ILLEGAL instruction, 5-54 
as software exception, 3-24 

illegal opcode, trap, 3-20 
1M (implied register), 2-5 
immediate add, quick, 5-20 
immediate addressing, 4-7 
implied addressing, 4-3 
implied register (1M), 2-4, 2·5 
INC instruction, 5-55 
INCB instruction, 5-55 
indirect addressing, register, memory, 2-16 
indirect register addressing, 4-9 

decrement/increment, 4-12 
displacement, 4-13 
no displacement, 4-1 0 
substitution using offset, 4-9 

INIT1 pin (EEPROM programming), 3-12 
instruction modes, 4-2 
instructions 

See also assembly language 
1 , 2, 3 word types, 2-10 
interpretation, 5-16 
organization (1, 2, 3 words), 2-10 
stack usage, 2-11 
use 17-bit address, 2-9 

internal module communication, 3-16 
interpolation 

INTPU instruction, 5-56 
TBLU instruction (table lookup), 5-108 

interrupt mask bits (51'), 2-7 
interrupts, 3-19 to 3-38 

daisy-chain priority, 3-38 
external, 3-25, 3-28 

frame, 3-25 
INTx pins, 3-28 
type A, 3-29, 3-30 
type B, 3-31,3-32 
type C, 3-33, 3-34 
vectors, 3-20 

external pins, 3-26 
frame, 3-25 
frames, examples, 3-27, 3-28 
hardware, 3-21 
I NTx pins, 3-28 
invalid,3-37 



interrupts (continued) 
multiple, 3-38 
nested routines, 3-38 
nonmaskable, 3-19 
peripheral, 3-19 
phantom, 3-37 
power module interrupts, 3-35 
priority chain, 3-37 
resets, 3-19 
routine description, 3-19 
servicing multiple, 3-38 
software, 3-21 
software exceptions, 3-19 
stack usage, 2-12 
steps of execution, 3-22 
trap table base address, 3-20, 3-21 
type A, 3-29, 3-30 
type B, 3-31, 3-32 
type C, 3-33, 3-34 

INTPU instruction, 5-56 

INTx pins, 3-28 

invalid interrupts, 3-37 

IJ 
JMP instruction, 5-58 

code address example, 4-16 
offset + register example, 4-15 
register direct example, 4-8 

jump 
to destination address (JMP), 5-58 
to subroutine (CALL), 5-34 

II 
LDBIT instruction, 5-60 

LDBITB instruction, 5-60 

LDEA instruction, 5-62 

LlMHS instruction, 5-63 

LlMHSB instruction, 5-63 

LlMHU instruction, 5-64 

LlMHUB instruction, 5-64 

limit register value to 
highest signed value (LMHS), 5-63 to 5-67 
highest unsigned value (LlMHU), 5-64 to 5-68 
lowest signed value (LlMLS), 5-65 to 5-69 
lowest unsigned value (LlMLU), 5-66 to 5-70 

LlMLS instruction, 5-65 

LlMLSB instruction, 5-65 
LlMLU instruction, 5-66 
LlMLUB instruction, 5-66 
LINK instruction, 5-67 
load effective address, 5-62 

Index 

load value into carry bit (LDBIT instruction), 5-60 
logic instructions 

AND (logical AND), 5-21 
OR (logical OR), 5-82 
XNOR (exclusive NOR), 5-118 
XOR (exclusive OR), 5-119 

logical AND, 5-21 
logical branch instructions, 5-28 
logical shift instructions 

SHL4 (shift left logical 4 bits), 5-94 
SHL8 (shift left logical 8 bits), 5-95 
SHR8 (shift right logical 8 bits), 5-96 

low-power modes, 3-40 to 3-42 
LSR instruction, 5-68 
LSRL instruction, 5-68 

II 
memory access, illegal, 3-10 
memory addressing, memory direct, 4-5 

format derivation, 4-6 
memory check, 3-6 

memory map, 2-3 
code and data space, 2-18 
typical,2-18 

modes of address, 4-2 
module (definition of), iv 
MOV instruction, 4-9, 5-70 

code address example, 4-16 
code address setup example, 4-17 
example, memory direct addressing, 4-5 
immediate value example, 4-7 
offset + register example, 4-13 
register decrement/increment example, 4-12 
register direct example, 4-8 
register indirect, postincrement example, 4-12 
register indirect, predecrement example, 4-11 
synthetic use, CLR{B} instruction, 5-37 
synthetic uses 

EXTZ{B} instruction, 5-51 
TST{B} instruction, 5-116 

use of ? operator, 4-17 

Index-5 



Index 

MOVB example, 2-16 
MOVB instruction, 5-70 

offset + register example, 4-14 
move within 128K bytes, 5-52 
move/copy instructions 

FMOV (move far), 5-52 
MOV (move within 64K bytes), 5-70 
MOVa (move quick, immediate value), 5-74 

MOVa instruction, 5-74 
MPYBWU instruction, 5-75 
MPYS instruction, 5-76 
MPYSB instruction, 5-76 
MPYU instruction, 5-78 
MPYUB instruction, 5-78 
multiple interrupt servicing, 3-38 
multipl5-bit check 

for Os, 5-1 06 
for 1s, 5-107 

m 
NCRF (New Code Release Form), 3-39 
negative bit (S1), 2-7 
New Code Release Form (NCRF), 3-39 
NMI (nonmaskable interrupt), 3-23 

disabling, 3-23 
enabling, 3-23 
execution summary, 3-22 
processing, 3-23 
processing steps, 3-23 
status register, 3-23 
use of type A interrupt pins, 3-29 
use of type B interrupt pins, 3-31 
use of type C interrupt pins, 3-33 
vector table, 3-21 

nonmaskable interrupt. See NMI 
non memory access, 3-3 
NOP instruction, 5-80 
normal run mode, 3-4 
NOT instruction, 5-81 
NOTB instruction, 5-81 

ones check, 5-107 

Index-6 TMS370C16 CPU 

opcodes, illegal, 5-54 

operator? (question mark), 4-16 

OR instruction, 5-82 

ORB instruction, 5-82 

oscillator 
failure, 3-10 
reset, 3-3 
reset status, 3-10 

oscillator module and low-power modes, 3-40 

OSCRST bit (osc reset status), 3-10 

overflow bit (ST), 2-7 

parallel signature analysis (PSA), 3-6 
PSAR1/2 registers, 3-13 

parallel signature analysis registers (PSAR1/2), 3-6 

PC. See program counter; program counter (PC) 

PC relative addressing, 4-4 

peripheral interrupt replication, 5-111 

peripheral interrupts 
description, 3-19 
execution summary, 3-22 
processing, 3-24 
replication, 5-111 
vector table, 3-21 

phantom interrupts, 3-37 
priority chain, 3-37 
vectors (illustrated), 3-20 

pins 
configuring, 3-14 
control, 3-14 
external,3-16 

INT1 (HPO application), 3-12 
RESET,3-3 

general-purpose, 3-14 
INT1 (HPO application), 3-12 
RESET,3-3 
status, 3-14 

pipeline, 5-27 

pipeline prefetch, 3-24 

PMx ENBL registers, 3-35 

PMx FLAGS registers, 3-36 



polling, interrupt occurance 
type A interrupt, 3-30 
type B interrupt, 3-32 
type C interrupt, 3-34 

POP instruction, 5-83 

PORST bit (power on reset), 3-10 

port data registers, 3-17 

port direction registers, 3-17 
postincrement register example, 4-12 

power control 
brown-out detector as controller, 3-9 
voltage regulator as controller, 3-9 

power module 
fault condition, 3-25 
interrupt enable (register), 3-35 
interrupts, 3-35 
pins, 3-25 

power module vectors, 3-20 
power on reset, 3-1 0 

power supply control (analog), 3-9 

power-saving mode 
exiting, 3-40 
halt, 3-40 
standby, 3-40 

predecrement register example, 4-11, 4-12 

prefetch pipeline, 5-27 

primary voltage regulator, 3-5 

priority chain, interrupts, 3-37 

PRISM technology, iii 
products, TI, vi 

program counter (PC), 2-2, 2-8 
address bus, 2-8 
addressing relative to PC, 4-4 
during interrupt routine, 3-19 
memory-address relationship, 2-9 

programmer's model, 2-2 

programming of EEPROMs, 3-12 

PSA,3-6 

PSAR1/PSAR2,3-6 

PSAR1/PSAR2 registers, 3-13 

PUSH instruction, 5-84 

question mark (?) operator, 4-16, 5-52 

quick add, 5-20 

iii 
reduce power mode 

exiting, 3-40 
halt,3-40 
standby, 3-40 

reduced clock cycles 
halt, 3-40 
standby, 3-40 

register direct addressing, 4-8 
register file. See registers, specialized 
register indirect addressing, 4-9 

decrement/increment, 4-12 
displacement, 4-13 
no displacement, 4-1 0 
substitution using offset, 4-9 

register shift, 5-25 
ASR (arithmetic shift right), 5-23 
SHL (shift left arithmetic), 5-91 

register shift instructions 
SHL4 (shift left logical 4 bits), 5-94 
SHL8 (shift left logical 8 bits), 5-95 
SHR8 (shift right logical 8 bits), 5-96 

register value limited to 

Index 

highest signed value (LMHS), 5-63 to 5-67 
highest unsigned value (LlMHU), 5-64 to 5-68 
lowest signed value (LlMLS), 5-65 to 5-69 
lowest unsigned value (LlMLU), 5-66 to 5-70 

registers, dedicated. See registers, specialized 
registers, general 

bit numbering, 2-14 
considerations, 2-7 
dedicated, 2-4 
system configuration, 3-7 

registers, port, 3-17 
registers, specialized, 2-4 

considerations, 2-7 
frame pointer, 2-5 
implied register, 2-5 
stack pointer, 2-6, 2-11 
status register, 2-6 
zero register, 2-7 

registers, system 
configuration, 3-7 
SCRO (system control 0), 3-8 
SCR1 (system control 1), 3-9 
SRSR (system reset status), 3-10 

regulator, voltage, 3-5 
replication of peripheral interrupt, 5-111 

Index-7 



Index 

reserved trap locations, 5-111 
reset 

cause 
external, 3-11 
Hlsgalaccess,3-10 
Hlsgaladdress,3-10 
oscillator fail, 3-10 
software, 3-10 
watchdog timer, 3-11 

description, 3-19 
event sequence, 3-5 
execution summary, 3-22 
external reset, 3-11 
illegal access ,3-1 0 
illegal address, 3-10 
oscillator fail, 3-10 
oscillator reset, 3-3 
pin, 3-3 
power on reset, 3-1 0 
pulse, S-count, 3-4 
register bits, 3-3, 3-S, 3-1 0, 3-12 
sequence, 3-5 
software, 3-10, 3-19, 3-21 
state diagram, 3-4 
status bits, 3-1 0 
status register, 3-5, 3-10 
system, 3-3 
system status (SRSR register), 3-10 
vector (illustration), 3-20 
vector table, 3-21 
watchdog timer, 3-11 

RESET pin, 3-3 

RESETO/1 bits (software reset control), 3-S 

return instructions 
from interrupt (RTI), 5-86 
from subroutine (RTS), 5-S7 

right shift, 5-25 

right shift (ASR instruction), 5-23 

round to zero, shift instruction, 5-25 

rounded interpolation 
INTPU, 5-56 
TBLU (table lookup), 5-108 

rounding for interpolation, 5-109 

RTDU instruction, 5-85 

RTI instruction, 5-86 
enabling NMls, 3-23 
function at end of Interrupt routine, 3-19 

Index-S TMS370C16 CPU 

RTS instruction, 5-S7 
implied addressing example, 4-3 

run mode, normal, 3-4 

SBB instruction, 5-88 
SBITO instruction, 5-89 

synthetic use (NOP), 5-80 
SBITOB instruction, 5-S9 
SBIT1 instruction, 5-90 
SBIT1 B instruction, 5-90 
SCI vector, 3-20 
SCRO register, 3-S 
SCR1 register, 3-9 
set/load a bit (LDBIT instruction), 5-60 
shift count, 5-23, 5-25 
shift instructions 

ASR (arithmetic shift right), 5-23 
ASRO (arithmetic right shift, round to zero), 5-25, 

5-30 
LSR (logically right shift), 5-68 
SHL (shift left arithmetic), 5-91 
SHL4 (shift left logical 4 bits), 5-94 
SHLS (shift left logicalS bits), 5-95 
SHRS (shift right 10gicaiS bits), 5-96 

shift, signed, 5-25 
ASR (arithmetic shift right), 5-23 
SHL (shift left arithmetic), 5-91 

SHL instruction, 5-91 
example, 5-92 

SHL4 instruction, 5-94 
SHLS instruction, 5-95 
SHLL instruction, 5-91 
SHRS instruction, 5-96 
sign extension 

EXTS (extend to next larger data size), 5-50 
EXTZ (extend unsigned with zeroes), 5-51 

signature analysis, 3-6 
registers PSARO/1 , 3-13 

signed branch instructions, 5-2S 
signed shift, 5-25 

ASR (artihmetic shift right), 5-23 
SHL (shift ieft arithmetic), 5-91 

software exception 
causes, 3-24 
description, 3-19 



software exception (continued) 
execution summary, 3-22 
ILLEGAL instruction, 5-54 
illegal instruction, 3-24 
processing, 3-24 
status register, 3-24 
TRAP instruction, 3-24, 5-111 

software reset, 3-1 0 
SP, stack pointer. See stack pointer (SP) 
specialized registers. See registers, specialized 
SPI vector, 3-20 
SRCO, 3-8 
SRC1,3-9 
SRSR register, 3-10 
SSR register, 3-12 
ST, status register. See status register (ST) 
stack,2-11 

See also stack instructions 
during interrupt routine, 3-19 
example, 2-13 
interrupt example, 2-12 
stack pointer. See stack pointer (SP) 
use with CALL, 2-12 

stack instructions, 2-11 
LINK (link and allocate stack), 5-67 
list, 2-11 
POP (pull from stack), 5-83 
PUSH (push onto stack), 5-84 
RTOU (unlink stack, return from subroutine), 5-85 
UNLINK (unlink, deallocate stack), 5-117 

stack pointer (SP), 2-4, 2-6, 2-11 
even-value requirement, 2-12 
example (RTS instruction), 4-3 

standby mode, 3-40 
IDLE instruction, 5-53 

status pins, 3-14 
status register (ST), 2-3, 2-4, 2-6 

during interrupt routine, 3-19 
during peripheral module interrupt, 3-24 
during software exception, 3-24 
enabling of NMls, 3-23 
set interrupt mask, 5-1 01 
store contents, 5-101 

status register instructions 
LOBT (load into carry bit), 5-60 
STBIT (store ST bit, set carry), 5-97 
STRI (store ST, set interrupt level), 5-101 

STBIT instruction, 5-97 

STBITB instruction, 5-97 
semaphore check examples, 5-98 

STEA instruction, 5-100 
straight-line interpolation 

INTPU, 5-56 
TBLU (table lookup), 5-108 

STRI instruction, 5-101 
SUB instruction, 5-102 
SUBB instruction, 5-102 
SUBQ instruction, 5-45, 5-103 

synthetic use (OEC{B}), 5-45 
SUBQB instruction, 5-103 
SUBR instruction, 5-104 

example, 2-13 
synthetic use (COMPL{B}), 5-42 

SUBRB instruction, 5-104 
subroutine return, 5-87 
subtract instructions 

Index 

SUB (subtract source from destination), 5-102 
SUBQ (subtract quick immediate from destina­

tion), 5-103 
SUBR (subtract with reverse destination), 5-104 

swap byte values, 5-105 
SWAPB instruction, 5-105 

example, 5-105 
SWRST bit (software reset status), 3-10 
symbolization, for ·contents of", 4-2 
symbols 

meaning ·contents of", 4-2 
that designate registers, iv 
used to define instructions, 5-3 

SYSCLK,3-3 
system 

block diagram, 3-2 
stack. See stack 

system clock 
CLKOUT pin, 3-6 
output, 3-6 

system configuration 
external interrupts, 3-25 
idle mode, 3-40 
interrupts, 3-19 
low-power modes, 3-40 
overview, 3-2 
registers, 3-7 

digital input/output (DIO), 3-14 
reset operation, 3-3 

system considerations. See Chapter 3 

Index-9 



Index 

system control register 0, 3·8 
system control register 1 , 3·9 
system reset status register, 3·10 
system status register, 3·12 

II 
TBITO instruction (with example), 5·106 
TBIT1 instruction (with example), 5·107 
TBLU instruction, 5·108 
TBLUB instruction, 5-108 
test for data truncation 

TRUNCS instruction, 5-114 
TRUNCU instruction, 5·115 

timer vectors, 3·20 
TMS370C16, system configuration, 3-1 
TRAP instruction, 5·111 

enabling NMls, 3-23 
enumerator calculation, 5-112 
software exception, 3·24 

trap locations, reserved, 5·111 
trap table, 3·20, 3-21 

base address (TBA), 3-21 
reserved locations, 5·111 

truncation possibility test 
TRUNCS instruction, 5·114 
TRUNCU instruction, 5·115 

TRUNCS instruction, 5·114 
TRUNCSL instruction, 5·114 
TRUNCU instruction, 5·115 
TST instruction, 5-116 
TSTB instruction, 5-116 
type A interrupt, 3·29, 3·30 
type B interrupt, 3·31,3·32 
type C interrupt, 3·33, 3-34 

m 
UNLINK instruction, 5·117 

variants (instruction), 5-4, 5·16 . 
Vee. out of range. 3·3 

Index· 1 0 TMS370C16 CPU 

VCCA status, 3·12 
VCCAON bit, 3·9 
VCCAOR bit, 3·12 
VCCO out of regulation, 3·10 
vector table (interrupts, reset, NMI, peripherals), 

3·21 
vectors, interrupt, description, 3·20 
voltage regulator, primary, 3·5 
voltag5·regulator power control, 3·9 
voltage, EEPROM programming, 3·12 

wait state (idle mode), 3-40 
exit, 3-40 

wakeup interrupt, 3·40 
watchdog timer 

overflow, 3-3 
reset, 3-3, 3·11 

watchdog/RTI vectors, 3-20 
WOCLK (watchdog clock), 3·6 
WORST bit (watchdog reset status), 3-11 
word, 2·14, 2·17 

restrictions, 2·17 
word access, 3-10 
word access reset, 3·3 
word address, 2-8 

with CALL instruction, 5-34 

II 
XNOR Instruction, 5·118 

synthetic use (NOT{B}), 5·81 
XOP trap, 3-20 
XOR instruction, 5-119 
XORB instruction, 5·119 

zero bit (ST), 2-7 
zero register (ZR), 2-4, 2·7 
zero rounding, shift instruction, 5·25 
zeroes check, 5·106 
ZR, zero register, 2·7 



-!I1lExAs 
INSTRUMENTS 

Printed in U.S.A. , March 1994 SPNU043 


