TMS370C16 Central Processing Unit,
System, and Instruction Set
PRISM Module Library

Reference

Guide

1994 cMCU370™ Products

TMS370C16 Central Processing Unit,
System, and Instruction Set
Reference Guide

PRISM Module Library

March 1994

X3 15
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders, that the
information being relied on is current.

Tl warrants performance of its semiconductor products and related software to current
specifications in accordance with TlI's standard warranty. Testing and other quality control
techniques are utilized to the extent Tl deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Please be aware that Tl products are not intended for use in life-support appliances, devices,
or systems. Use of Tl product in such applications requires the written approval of the
appropriate Tl officer. Certain applications using semiconductor devices may involve potential
risks of personal injury, property damage, or loss of life. In order to minimize these risks,
adequate design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards. Inclusion of Tl products in such applications is understood to be
fully at the risk of the customer using Tl devices or systems.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1994, Texas Instruments Incorporated

Preface

Read This First

Overview
Texas Instruments uses PRISM methodology, with its modular fabrication
processes, to integrate analog and digital functions on a single chip. The
process technologies currently include VLSI CMOS, nonvolatile memories
(EPROM/EEPROM), lateral DMOS, high-voltage analog CMOS, and
high-density analog CMOS
The 16-bit TMS370C16 CPU is part of the cMCU370™ family of
microcontroller devices. This manual provides information about the
TMS370C16 CPU architecture, features, operation, and assembly language
instruction set; it also includes helpful information about implementing a
TMS370C16-based microcontroller design.
Related documentation is listed on page v.

Manual Organization

Chapter 1 gives a brief overview of the TMS370C16 microcontrolier
device.

Chapter 2 describes the components and operation of the TMS370C16
CPU architecture, including CPU registers and memory organization.

Chapter 3 describes the TMS370C16 system configuration, registers,
device interrupts, and reset.

Chapter 4 describes the different addressing modes used by the
instruction set.

Chapter 5 lists and describes the TMS370C16 assembly language
instructions, execution sequence, effects, and examples.

g 0o 0o 0 O O

Appendix A, Glossary, explains and defines terms and abbreviations
used in this manual.

Read This First fii

Style, Symbols and Definitions

Style, Symbols, and Definitions

iv

This document uses the following conventions.
[Abbreviations:

Q0

MW ’'C16: TMS370C16 CPU-based devices

Bl LSB, MSB: Least significant and most significant bits
B LSbyte, MSbyte: Least and most significant bytes

B Register and bit names: SCR1.7, for example

The register name (located to the left of the period) is an alpha
abbreviation (e.g., SSR = system status register, and SCR1 = system
control register 1). The bit number is to the right of the period (e.g.,
SCR1.7is bit 7 of register SCR1 as shown in Figure 3—3 on page 3-7).

Definitions of device and module as used in this manual:

M Device: The cMCU370 microcontroller; includes the TMS370C16
CPU along with all selected modules integrated on a single chip.

W Module: An element that provides a specific function (such as a serial
interface, memory, analog-to-digital conversion, timing, 1/0, etc.). Alist
of modules is provided in the documentation-title list on page v (in
this preface).

Program listings and program examples are shown in a special
typeface similar to a typewriter’s.

Note: Assembler Statements Are Not Case Sensitive

TMS370C16 assembly language statements are not case sensitive. You can
enter them in lowercase, uppercase, or a combination. To emphasize this,
assembly language statements are shown throughout this user’s guide in
both uppercase and lowercase.

TMS370C16 CPU

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments
Literature
Number

[TMS370C8 CPU, System, and Instruction Set Reference Guide SPNU042

ary
Volume 1 includes the following module reference guides.

cMCU370 Microcontroller Products Introduction

Clock Modules Reference Guide

Watchdog and Real-Time Interrupt Module Reference Guide
EEPROM/EPROM Modules Reference Guide

TMS370C8 Timer Modules Reference Guide

Serial Communications Interface Module Reference Guide
Serial Peripheral Interface Module Reference Guide
Analog-to-Digital Converter Module Reference Guide

[PRISM Module Library Reference Set, Volume 2 SPNU032

Volume 2 includes the following module reference guides.

TMS370C16 Timer Modules Reference Guide
Voltage Regulator Modules Reference Guide

Gage Driver Modules Reference Guide

Power Driver Modules Reference Guide

Switch Interface Module Reference Guide

Variable Reluctance Sensor Module Reference Guide

Some books on this list will be available at a later date.

Read This First \'

If You Need Assistance. . .

If You Need Assistance. . .

If you want to. . . Do this. ..

Ask questions about product Call the TI microcontroller hotline:
operation, or report suspected (713) 274-2370

problems FAX: (713) 274-4203

Request more information about Write to:

Texas Instruments products

Texas Instruments Incorporated

Market Communications Manager, MS 6101
P.O. Box 1443

Houston, Texas 77251-1443

Order Texas Instruments
documentation

Call the Ti Literature Response Center:
(800) 4778924

Bulletin board number

(713) 274-3700

Report mistakes in this document
or any other Tl documentation

Send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

or call the TI microcontroller hotline (phone
number at top of this table)

Information About Cautions

The information in a caution is provided for your protection. Please read each
caution carefully.

Trademarks

cMCU370 is a registered trademark of Texas Instruments Incorporated.

vi TMS370C16 CPU

Contents

1

Introduction ..ottt ittt ii ittt as e e s raaas 1-1
1.1 TMS370C16 CPU — Device-Specific Operationccovviiiviiinnnn. 1-2
1.2 CPU, System, and Instruction SetFeaturesccoiiiiiiiiiiininnn. 1-3
1.3 TMS370C16 Control Registerscciiiiiiiiiiirrininnrrenteeneernnnns 1-4
Architecturec.ciiiiiiiiiiiiiiicittiertrrtatsastanssenartrarassansnnnes 21
21 Programmer’s Modelc..oiiiiiiiiii e e e e 2-2
22 CPURegisterFile (RO—R15)ooiiiiiiiiiiiiiiiiiiiiii e iiiinnenaeans 2-4
221 Frame Pointer, FP (RO)ottt 2-5
222 ImpliedRegister, IM (R1) ...ttt iiiiiiiiiiieesnnnns 2-5
223 StackPointer, SP(R13)ccciiiiiiiii it et 2-6
224 StatusRegister, ST (R14)coiiiiiiiiiiiiiiiiiii it iiieenas 2-6
225 ZeroRegister,ZR (R15)vviiiiiiiiiiiii i it iineinnennn, 2.7
2.3 Program Counter (PC) and Address BUScoviiiiiiieinennnenenneennns. 2-8
2.4 Instruction Organizationccvueiieeireiinrneineenneenneenneenneans 2-10
25 System Stackt e e e e e i e 2-1
25.1 Stack Operation DuringInterruptscoiiiiiiiiiiiinn... 2-12
252 Stack UsewithaCallc.coiiiiiiiiii it i, 2-12
2.6 Data Organization and Memory Mappingccvvvviiinienrinnnernnnenns 2-14
TMS370C16 System Configurationciiieeiiiiiieiiiiiieererierrecnnnnenss 3-1
3.1 System Configuration OVerviewc.ciiiiiiiiiiiiiiieiiiieerinnenas 3-2
3.2 SystemResetOperationc.ciiiiiiiiiiiiiiiiiiiiii i e e 3-3
3.3 CLKOUTPinFunction Selectionc.cioiviiiiiiiiieiniierennneeenannenns 3-6
3.4 Parallel Signature Analysis Operation (CRC Generator)ccvvvvvvnnnn 3-6
3.5 System Configuration Registerscviiiiiiiiiiiiiiiiiiie e 3-7
3.5.1 System Control Register 0 (SCRO)coviiiiiiiii i, 3-8
3.56.2 System Control Register 1 (SCR1)ccoviiiiiiiiiiii i, 3-9
3.56.3 System Reset Status Register (SRSR)ccoovviiiiiiiinn.. 3-10
3.5.4 System Status Register (SSR)ccciiiiiiiiiiiiiii i 3-12
3.5.5 Parallel Signature Analysis Registers (PSARN)c.covvveen, 3-13
3.6 General-Purpose Digital Pin FUNCHIONSc.iiiitiiiiiiiiiiieienennnns 3-14
3.6.1 Digital Output/Control Registers (OCRN)ccoviiiiiiiiinnnnn. 3-16
3.6.2 Digital Input/Status Registers (ISRn)ccooiiiiiviiiiiiinn., 3-16
3.6.3 Digital Port Direction and Port Data Registers (xDIR and xDATA) 3-17
3.7 Interruptand ExceptionHandlingcciiiiii i 3-19

Contents vii

Contents

3.7.1 Interrupt/EXCeption SOUMCES vviiiiieitet et ieinniennnnnnnnennnnss 3-19

372 VectorTableciiiiiiiiiiiiiiiiireeiiinnnirnieeenennnnnns 3-21

3.7.3 ResetandInterruptOperationcovviiiiiiiiiiiiiiinininnens 3-21

3.7.4 Nonmaskable Interrupt (NMI) Processingcvvererenenennennn. 3-23

3.7.5 Peripheral Module Interrupt Processingcccvvviiiinnneiinn. 3-24

3.7.6 Software Exception (TRAPSs, etc.) Processingccovvivennnn... 3-24

3.8 External and Power Module Interruptsccoviiiiiiiiiiiii i, 3-25

3.811 BxernalInterruptPins ..o e 3-25

3.8.2 PowerModuleiInterruptscciiiiiiiiiiiii e 3-35

3.8.3 PhantominterruptVectorccoiiiiiiiiiiiiiiii e 3-37

3.9 MultipleInterrupt ServiCingc.ovviiiiiiii i i i i e i e 3-38

3.10 TMS370C16 Interrupt Configurability Optionsccviviviiins. 3-39

3.11 Low-PowerandidieModescoiiiiiiiiiiiiiiiiiiniiniiiinnnanenns 3-40

L T TP T © = - 3-40

3.11.2 Low-Power Wakeup INterruptc.oevriiiiiinininiinenninennns 3-40

4 AddressIngMOdesiiieeiiivncentrrennsensrsrarisanssrsensnnnnsrrnsns 41

4.1 MOOE SUMMANY ...ttt ittt eennneetsesnaannsenessnnnneesesnennnnnnns 4-2

4.2 Impliod AddresSiNgcvvviiiiiiiineeriiinnineeernnnnneersnnennnnnes 4-3

4.3 PC-Relative AdAressingccovtiiiiirineriiiiiiterrnnnnererrennnnennnes 4-4

4.4 Memory-Direct Addressingcvviiiiiie ittt it e e, 4-5

45 ImmediateValuescoviiiiiiiiiiiiiiis ittt it ienaiiaaenanaaas 4-7

4.6 Registor-Direct Addressingccviiiiiiiiiiiiiii i e e, 4-8

4.7 Register-Indirect Addressingcoeeiiiiiiiiiiir it iiiiinnas 4-9
4.7.1 Register-Indirect Addressing, No Displacement

(Register Contents = Effective Address)cccvviiiennnnn.. 4-10

4.7.2 Register Indirect With Displacement (Offset) 4-13

4.8 Setting the Word Address for CALL, JMP, and FMOV Instructions 4-16

5 Assembly Language INStructionscceiiiiiiiiieiniriiisnensieniisnsnenss 5-1

5.1 Instruction Set SuMMaAryiiiiiiitiiiiiiiii it e e 5-2

5.2 Instruction SetSummary Tableccoiiiiiiiiiiiiiiiiiii i i 5-4

5.3 Instruction Descriptions in Alphabetical Ordercooviiiivnrinnnnn.. 5-16

A Glossarycoiviviennnns et eieneesettuEr et tineetaE et s s e ey, A-1

viii TMS370C16 CPU

Programmer’s Modelottt i e e 2-3
Registers ROtO R15t i ittt it aes 2-4
Program Counter to Address Bus Transitionccooiiiiiiiiiiin.n, 2-8
Relationship Between the PC and Memory Addressccoiiiiviinnannn, 29
One-, Two-, and Three-Word Instruction Examplesoooiviiinn.. 2-10
Example of Stack Use to and From a Subroutinec0uas 2-13
Bit and Byte Numbering for Instructions, Registers,andWords 2-14
Differences in Memory and Register Byte Destinations00os 2-16
Data Organization Examples in Registersand Memorycovvina, 2-17
Typical 16-Bit MemMOry Mapooviiii ittt it iiiiiii i ciiei i eiinnsaans 2-18
Location and Names of Control Registerscoiiiiiiiiiiiiiiiinnent, 2-19
System Block Diagramoviiiiiiiii it e 3-2
Reset State Diagram — NormalRunModecooiiiiiiiiiiiiinieennnans, 3-4
System Configuration Registerscooii ittt 3-7
Digital I/O Control and Status Registerscooiiiiiiiiiiiiiiiiiiie e, 3-15
Vector Table Organization inMemoryccoviiiiiiiiiiir i iiiiiinnnnnses 3-20
Summary of Reset, NMI, Peripheral Interrupts, and Software Exception Operations ... 3-22
Interrupt-Frame Typical Configurationscooiiiiiiiiiiiiiiiinininernnnen, 3-27
Typical INterrUpt Frame ...ttt iiiiireenntereeensnnnsnnnennns 3-28
Impliod AdAressingvviiiiii ittt reiii e iianetres et taannnnnns 4-3
PC-Relative Addressingovviutttiiiiiiiii it iiinniiiiiiessisesaans 4-4
Memory-Direct Addressing (& Operator)covviiiiiiiiiiiiriiniieriinnes 4-5
Operand Is Immediate Value (# Operator)coviiiiiiiiiiiiiiiiieeiinns 4-7
Register-Direct Addressingcovviiiiiiiiiiiiiiiiiiiiiiiiinnsser s 4-8
Register Direct With CALL or JMP Instructions Addresses 128KBytes 4-8
Register Indirect (Operand: *RN)covtiiiiiiiiiiiiiiiiiie ittt iiiieseans 4-10
Register Indirect With Predecrement (Operand:*-Rn) coals, 4-11
Register Indirect with Postincrement (Operand: *Rn+) and Predecrement

(0] oY= = TaTo B =) PP 4-12
Offset + Register in Word Format (Operand: *disp16[Rn])c.ovvvinet 4-13
Offset + Register in Byte Format (Operand: *disp16[Rn])c.ccviivivennnn, 4-14
Offset + Register for JMP and CALL Instructions (Operand: *disp16[Rn]) 4-15
Using the ? Operator to Set the Word Address for a CALL or JMP, Direct Register 4-16
Use the ? Operator to Set the Word Address for an FMOV, Indirect Register 4-17
Interpreting the Instruction Execution Detailcoociiiiiiiiiiiinneen,, 5-16
B{COND} Instruction Displacementsccoiiiiiiiiiiiiieriininneeennnn. 5-29

Contents ix

Contents

P (A

BRBITO and BRBIT1 Instruction Displacementscccoiivivennen., 5-31
CALL and RTS Instruction Exampleccciiiiiiiiiiiiiiiiiiiierenennns 5-35
DBNZ Displacement Computationcovviiiiiiiiiiiiiiiiiiiriinnnennns 5-43

Vector Table for TRAP Instruction

TMS370C16 CPU

1-1 TMS370C16 System Configuration Control Registerst 1-4
1-2 TMS370C16 Digital Pin Function Control Registersco0vviuu. 1-4
1-3 TMS370C16 Typical Interrupt Control Regiistersccovviiinvriiiennnnnnn 1-5
2-1 Status Register (ST) Bitsovviii ittt i i e 2-6
2-2 Instructions ThatUse a17-Bit Addresscov ittt e 29
2-3 Instructions ThatUse The Stackccoiiiiiiiiiiiii e, 2-11
3-1 CLKOUT Pin FUNCtion OptioNSot viitiiiiiiiii i i ininnnssnnnns 3-6
32 Bxtoernal Interrupt TYpes ...ttt it i e e 3-26
33 External Interrupt PIN FUNCLIONS ...ttt i e i et e iennnnns 3-26
3-4 Type A Interrupt Control Bit Freeze Optionsccoviiiiiiiin i, 3-39
41 Addressing Mode SUMMArYcoeutiiiiiinneeeiiniestrenninsnsenseesssans 4-2
4-2 Register Indirect AddressingSummary ..ottt it it e, 4-9
5-1 Abbreviations Used to Describe Instructionscccoiiiiiiiiiiiiiiinen 5-2
52 Symbols Used to Describe Instructionsccoiiiiiiiiiini e, 5-3
5-3 Branches Listed by Opcodecoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiennenss 5-28

Contents Xi

Notes and Cautions

Definitions of Device and Module Used InThisManualcccviiiiiiiernnnnn., 1-2
Register Considerationsttt i it it i i e e i 2-7
Word Address Definition ...ttt ittt 2-8
The SP MustContainan Even Valuettt iiiiieiiinnanennns 2-12
Word Address Definition ...t it it it et et 2-14
Avoid Interruptinga Reset Withan NMI i i 3-23
INTx Usedto Represent INTT1—INT6ccooiiiiiiiiiii it it ittt i ine e ennnenns 3-26
Derivation of Memory-Direct Format (& Operator)cciiiiiiiiiiiiiininnnnnnnn. 4-6
*Rn Can Be Used If *disp[Rn] IsAssembledc ittt nnne, 4-9
Decrement/increment Considerationsccoiiiiiiiiiiiiiiiereiiiinenrerennns 4-10
Assembler Statements Are NotCase Sensitive ...ttt it iiiiii e 5-16
The WHfd COIUMN VAIUES vitte ettt ettt e ettt ettt e e e 5-18
PC’s 16-Bit Word Address Translates to 17-Bit Address Busccviiiviinnnnnn. 5-34
DoNotUse Operand RS,IMiRSttt i ittt it e ie e e iiiaanans 5-47
16-Bit Word Address Translates to 17-Bit Address Bus ..o, 5-58
Use FMOV to Address 0—1FFFFh (Upto 128KBytes)cciviviiiiinneninnnnn, 5-70
Considerations for >64K Bytes and Effect of Byte Size on Registers 5-109
Five Trap Words Are Reservedooiiiiiiiiiiiiiie it ittiene i ennanerannnnns 5-111

TRAP Enumerator Source

xii TMS370C16 CPU

Chapter 1

_Introduction

The TMS370C16 microcontroller core is part of the PRISM Modular Library.
With reusable engineering techniques, it can be combined with other building
blocks from the modular library to generate a diversified family of highly
integrated devices.

This chapter gives a brief overview of the 'C16 CPU — its device-specific
operation, its features, and its registers.

This chapter covers the following topics:

Topic Page

1-1

TMS370C16 CPU — Device-Specific Operation

1.1 TMS370C16 CPU — Device-Specific Operation

1-2

The total integration concept of the cMCU microcontroller family makes multi-
ple configurations possible. Because of this flexibility, certain module features
are device specific and therefore cannot be presented as an absolute in this
document. You should refer to the specific device data sheet to determine the
features and functions available on your particular device. Here is a partial list
of these indefinable areas:

[Memory array size and memory map location for RAM, ROM/EPROM,
EEPROM, and peripheral file

[System clock (SYSCLK) operation
[Digital I/O pin functionality

[Interrupts (The number of available external and internal interrupts and
their associated vectors.)

[Low-power mode availability and interrupt exit capability.

Note: Definitions of Device and Module Used In This Manual

Device: The core microcontroller. It includes the CPU (TMS370C16), along
with all selected modules, integrated on a single chip.

Module: An element that provides a specific function (such as a serial
interface, memory, analog-to-digital conversion, timing, 1/0, etc.) A list of
modules is provided on page v of the preface.

TMS370C16 CPU

CPU, System, and Instruction Set Features

1.2 CPU, System, and Instruction Set Features
The TMS370C16 CPU module consists of the following:

[16-bit CPU containing the associated registers:
Frame pointer

Implied register

Stack pointer

Status register

Zero register

16-bit program counter

(W]

17-bit address space

(W]

Various memory types supported by the 'C16 architecture

H RAM

B Peripheral file control registers

M Data EEPROM

B Program memory (ROM or EPROM)

(M

Seven possible reset sources

[Interrupt structure

W Software-selectable priority levels

Bl Nonmaskable Interrupt (NMI) options

M Variable number of interrupts, depending on the device configurations
B Individual interrupt vectors

(W]

Two low-power modes

(W

Set of 126 instructions including byte, word, and long-word formats.

Introduction 13

TMS370C16 Control Registers

1.3 TMS370C16 Control Registers

The CPU and system functions are controlled by registers in three separate
frames as illustrated in the following three tables.

Table 1—-1. TMS370C16 System Configuration Control Registers

Register Described In
Address Symbol Register Name Section Page

0018h SCRO System Control Register 0 3.5.1 3-8
0019h SCR1 System Control Register 1 35.2 3-9
001Ah SRSR System Reset Status Register 3.5.3 3-10
001Bh SSR System Status Register 354 312

.

e i
001Eh PSAR1 Parallel Signature Analysis Register 1 355 3-13
001Fh PSAR2 Parallel Signature Analysis Register 2 3.5.5 3-13

Table 1-2. TMS370C16 Digital Pin Function Control Registers

Register Described In
Address Symbol Register Name Section Page
0060h OCR1 Output/Control Register 1 3.6.1 3-16
0061h OCR2 Output/Control Register 2 3.6.1 3-16
0062h OCR3 Output/Control Register 3 3.6.1 3-16
0063h OCR4 Output/Control Register 4 3.6.1 3-16
0064h ISR1 Input/Status Register 1 3.6.2 3-16
0065h ISR2 Input/Status Register 2 3.6.2 3-16
0066h ISR3 Input/Status Register 2 3.6.2 3-16
0067h ISR4 Input/Status Register 2 362 3-8
0068h ADIR 1/O Port A Direction Register 3.6.3 3-17
0069h ADATA 1/0 Port A Data Register 3.6.3 3-17
006Ah BDIR 1/O Port B Direction Register 3.6.3 3-17
006Bh BDATA I/O Port B Data Register 3.6.3 3-17
006Ch CDIR 1/O Port C Direction Register 3.6.3 3-17
006Dh CDATA /O Port C Data Register 3.6.3 317
006Eh DDIR 1/O Port D Direction Register 36.3 3-17
006Fh DDATA 1/O Port D Data Register 3.6.3 3-17

1-4 TMS370C16 CPU

TMS370C16 Control Registers

Table 1-3. TMS370C16 Typical Interrupt Control Registers

Register Described in
Address Symbol Register Name Section Page
0070h INT1 Type A Interrupt 3.8.1.1 3-29
0071h INT1 FLG Type A Interrupt Flag 3811 3-29
0072h INT2 Type B Interrupt 3.8.13 3-31
0073h INT2 FLG Type B Interrupt Flag 3813 3-31
0074h INT3 Type C Interrupt 38.15 3-33
0075h INT3FLG Tyge C Interrupt Flag 38.15 333

007Ch PM2 ENABLE Power Module Interrupt Enable Register 2 3.8.2.1 3-35

007Dh PM2 FLAGS Power Module Interrupt Flag Register 2 3822 3-36
007Eh PM1 ENABLE Power Module Interrupt Enable Register 1 3.821 335
007Fh PM1 FLAGS Power Module Interrupt Flag Register 1 3.822 3-36

Introduction 1-5

TMS370C16 CPU

Chapter 2

Architecture

This chapter describes the programmer’s model registers and how the 128K-
byte memory is organized and addressed. Topics in this chapter include:

Topic Page

Programmer’s Model

2.1 Programmer’s Model

The TMS370C16 programmer’s model consists of a 16-bit program counter
and a 16-register file, which contains 11 general-purpose registers as well as
the frame pointer, implied register, stack pointer, status register, and zero
register. These are shown in Figure 2-1. The 'C16 may access RAM,
EEPROM, EPROM, or ROM modules internally, depending on your device

-configuration. The 'C16 may also access the system module (further

described in Section 3.1) that controls device operations such as stack
location, reset, interrupts, 1/O configurations, and the CLKOUT pin
initialization. The 'C16 CPU and system module interface through the system
address, data, and control buses to other modules such as the SPI, SCI, ADC,
and gage drivers, depending upon your specific device configuration.

Figure 2—1 shows the register file and the memory accessible by the
TMS370C16 CPU. The 16-register file is located in the CPU and includes five
preassigned registers (RO, R1, R13, R14, and R15). This register file is
discussed in further detail in Section 2.2, starting on page 2-4, and the status
register (R14) and its bits, shown in the bottom of Figure 2-1, are described
in more detail in subsection 2.2.4, page 2-6.

The program counter (PC), not part of the register file, contains the word
address of an opcode or operand. The word address is applied to address
lines A16-A1, with line AO set to 0 (effectively multiplying the actual byte
address by 2). This allows accessing data and executing code in a full 128K
bytes of memory. The word address is further described in Section 2.3 on page
2-8, which includes a list of instructions using a 17-bit address (see Table 2-2
on page 2-9).

2-2 TMS370C16 CPU

Programmer’s Model

Figure 2—1. Programmer’s Model

Memory
"""1/"'—-"“““‘"“""""' 00000h 7y 00001h
I
15 0 | |
& progan coune [|
I I
15 0 | I
RO — Frame Pointer [V |
R1 — Implied Register il I Byte and Word
R2 | Addressable
| v | y
° ' |
i | StackPointer |
o | — points tg stack
2 | located in nfemory. |
g ! |
P I 0 FFFEh 0 FFFFh
N : 1 .0000h 1 0001h
|
|
|
|
R12 :
R13
R14 |
v ZR R15 :
I
—_—N————————————]
1 FFFEh 11 FFFFh
Status Register (ST)
The Status Register
is covered in detail
. : S in subsection 2.2.4
15 8 7 6 5 4 3 2 1 0 onpage2s6.
Legend:
C = Cary N = Negative
V = Overflow Z = Zero

L2 -L0 = Interrupt priority level

Architecture 2-3

CPU Register File (RO-R15)

2.2 CPU Register File (RO - R15)

The TMS370C16 CPU contains 16 registers, R0 —R15, that are not part of the
memory map. Ofthe 16 registers, five can be used for the specialized functions
listed in Figure 2—2 (registers RO, R1, R13, R14, and R15) or for general
purposes.

R2-R12, the 11 nonspecialized registers of the CPU register file, can be used
for data manipulation for bit, byte (least significant byte), or word values. Take
care when attempting to use any of the five specialized registers as general-
purpose registers. The zero register (R15) reads as a zero value at all times,
and write values will be ignored. Of the other specialized registers, RO and R1
can be used conditionally, but R13 (stack pointer) and R14 (status) should not
be used as general purpose at any time.

The values of the register file are not initialized by a reset. Your system soft-
ware should initialize these registers during a startup procedure.

Figure 2-2. Registers RO to R15

2-4

General .<
Purpose

TMS370C16 CPU

CPU Register File (RO-R15)

2.2.1 Frame Pointer, FP (RO)

The frame pointer can be used by high-level languages to allocate and deallo-
cate procedure stack frames from the system stack. This register is implicitly
used in the following instructions:

LINK

UNLINK

RTDU

2.2.2 Implied Register, IM (R1)

Link the FP to the current frame of the current SP
(stack pointer) by pushing the FP onto the stack,
setting the FP to the SP value, and then
allocating designated words of stack.

Deallocate the current system stack frame by
placing the FP contents in the SP and then
retrieving the previous FP value from the system
stack.

Unlink and deallocate the current system stack
frame by placing the FP value in the SP,
retrieving the previous FP and PC contents from
the stack (to return from a subroutine), and then
subtracting a displacement from the SP.

The implied register assists in dealing with 32-bit objects by serving as the
most significant word of the two-word value. Also, in division operations, the
IM holds the remainder.

The IM is used implicitly by the following instructions:

ASRL
ASROL

SHLL
DIVS
DIiVU
EXTS
LSRL
MPYS
MPYU
TRUNCSL

Arithmetic shift right, longword (32-bit value)

Arithmetic shift right and round to 0, longword (32-bit value);
add 1 if N[ST] and C[ST] are both 1

Arithmetic shift left, longword (32-bit value)

Division, signed (16- and 32-bit)

Division, unsigned (16- and 32-bit)

Sign-extend word to 32 bits

Logically right-shift, longword (32-bit value)

Signed word multiplication

Unsigned word multiplication

Test to see if register can be truncated from 32 to 16 bits

Architecture 2-5

CPU Register File (RO-R15)

2.2.3 Stack Pointer, SP (R13)

The stack pointer identifies the top of the stack — the location within the
system stack to be used next (e.g., for storage of the current environment
during interrupt processing). The stack also holds the return address for
subroutine calls and provides a means of allocating procedure stack frames.

The SP is implicitly declared by the following instructions:

CALL Jump to subroutine (return address on stack)

LINK Link to current stack frame (FP to stack, SP to FP, and allo-
cate requested words of space to the stack)

POP Pull values from top of stack to register(s)

PUSH Push values on top of stack from register(s)

RTDU Unlink and deallocate current stack frame (return to former PC
and new stack address)

RTI Return from interrupt (retrieve PC and ST values from stack)

RTS Return from subroutine (retrieve PC from stack)

TRAP Generate one of 256 trap exceptions (push ST and PC + 1

onto stack, use vector offset and TRAP vector table to set PC,
and set interrupt level at ST to all 1s)

UNLINK Deallocate current stack frame (retrieve previous SP contents
from FP register and retrieve old FP contents from stack)

Section 2.5 on page 2-11 contains a detailed discussion of the system stack.

2.2.4 Status Register, ST (R14)

The status register contains CPU status information from operations
performed by the Arithmetic Logical Unit (ALU). The condition code bits Z
(zero), N (negative), C (carry), and V (overflow) are typically altered during
instruction execution. Status is based on the data object size —byte (8),
word (16), or longword (32 bits) — of the just-executed instruction. The ST
also contains the interrupt mask level bits L2 — LO.

Table 2—1. Status Register (ST) Bits
15 14 13 12 _11 1Q_ 9 8

2-6 TMS370C16 CPU

CPU Register File (RO-R15)

ST bit definitions:

Reserved (r): Bits reserved for future use. Data written to them are not
retained.

Z: Zero bit. Set to 1 when an instruction generates a zero-value byte, word, or
longword.

N: Negative bit. Generally set to the value of the most significant bit (e.g., sign
bit) of an instruction’s result. This is bit b7 for byte, b15 for word, and
b31 for longword operations.

C: Carry bit. Set to 1 to indicate whether an unsigned overflow or underflow
(carry/borrow) occurred during an arithmetic operation. Testing
occurs as appropriate for the size of the data being operated on (byte,
word, or longword). Some shift instructions use the C bit as a
destination for the bit shifted. Bit load/store instructions treat the C bit
as a bit accumulator.

V: Overflow bit. Generally set to 1 if a signed twos-complement overflow or
underflow occurred during an arithmetic operation. Testing occurs as
appropriate for the size of the data being operated on (byte, word, or
longword).

L n: Interrupt-mask level bits (L2-L0). Coded to specify interrupt levels of
0005 — 1115 (0-7) with level 7 the highest priority and level 0 the
lowest. Chapter 3 covers interrupt handling in detail (see Sections
3.7, 3.8, 3.9, and 3.10, beginning on page 3-19).

2.2.5 Zero Register,ZR (R15)

The zero register’s contents are always 0000h. Thus, it is useful when a zero
constant value is required.

This register can be used with indexed addressing (format *disp[Rn]) to gener-
ate a direct address. When Rnis declared to be ZR (disp[ZR]), displacement
dispbecomes the operand’s address (disp + 0). Thus, operands *disp[ZR]and
&disp are equivalent; use of the ampersand (&) operator for direct addressing
is further explained in Section 4.4 on page 4-5.

Note: Register Considerations
1. Do not use R14 (status register) as a general-purpose register.

2. R15 (zero register) will always be read as a zero value; writing operations
are ignored.

[']

Architecture 2-7

Program Counter (PC) and Address Bus

2.3 Program Counter (PC) and Address Bus

The PC is a 16-bit register, not included in the register file, that contains the
word address of the instruction or instruction extension word that the CPU will
fetch next. Because the PC uses the word-address data type, the instruction
and the instruction extension words can be located at any even address in the
entire 128K-byte memory address space of the 'C16. The term word address
is defined in the note below.

Note: Word Address Definition

A word address is a 16-bit pointer that maps into a 128K-byte address
space. Note that 17 bits are needed to fully address a 128K-byte space.
Because the 'C16 requires that words begin on an even-byte boundary, the
least significant bit of the word’s address must be 0 with only the upper 16
bits of an address are required to access the word. A word address contains
these 16 bits.

[J

The PC holds the 16 most significant bits of the 17-bit memory address space.
All instructions are word aligned; thus, the least significant address bit (bit 0)
of all program references always contains the value 0 (illustrated in
Figure 2-3).

Figure 2-3. Program Counter to Address Bus Transition

(16 Bits)

Address Bus
(17 Bits)

T

Because of a pipeline architecture, the PC typically points to a memory ad-
dress two words beyond the currently executing instruction or to its extension
word. This relationship is graphically shown in Figure 2—4.

TMS370C16 CPU

Program Counter (PC) and Address Bus

Figure 2—4. Relationship Between the PC and Memory Address

The executing instruction or
extension word is located
two words prior to the

interpreted PC value ™~

Program Counter

Current 16-bit
PC contents

Corresponding 17-bit
' address bus value

1007Eh

10080h

. /<] 10082h

Points to memo T 10084h
address 10082 I

(08041h % 2) i 10086h

Figure 2-6 on page 2-13 describes execution flow during a jump to a
subroutine. It also shows PC values and their corresponding address bus
values. The note at the bottom of the figure explains the relationships.

The instructions in Table 2-2 use the PC register (thus generating a 17-bit

address).

Table 2-2. Instructions That Use a 17-Bit Address

Instruction

Description

Bcond
BRBITO

BRBIT1
CALL
DBNZ
FMOV
JMP
RTDU
RTI
RTS
TRAP

Branch conditionally
Branch if bit equals 0

Branch if bitis a 1

Jump to (call) a subroutine (linkage provided)

Decrement register; branch only if result is 0

Move (far) data to or from an address of up to 128K bytes
Jump unconditionally

Return from subroutine and deallocate

Return from interrupt

Return from subroutine

Generate one of 256 trap software interrupts; trap locations
begin at address 08000h

The PC is also involved in the processing of reset, peripheral interrupts, and
illegal opcode exceptions.

Architecture 2-9

Instruction Organization

2.4 Instruction Organization

Bits are organized as shown in Figure 2-7. Instructions utilize one-, two-, or
three-word formats as illustrated in Figure 2-5 for three different move
instructions.

Figure 2-5. One-, Two-, and Three-Word Instruction Examples
(a) One-Word Instruction
MOV R4,R6 ;s Move R4 to R6

15 8 7 4 3 0
4 6

— Destination Register
Source Register
Shaded Areas Contain Opcodes

(b) Two-Word Instruction

MOV #1000h,R6 ; Move 1000h to R6
8 7 4 3 0
6

0 le— Immediate Value

(c) Three-Word Instruction

MOV #1000h,*LABEL[R6] ; Move 1000h to LABEL + R6

p— Label Value

IQ— Immediate Value

2-10 TMS370C16 CPU

System Stack

2.5 System Stack

The stack is a dedicated area of last-inffirst-out RAM that is:

[Located in the first 64K bytes of memory
Used for the storage of data that can describe an operating environment
about to be exited or re-entered (such as the PC and ST values)

registers or retrieve data (POP instruction) from it into registers

Qa
[Accessed by instructions that place data (PUSH instruction) into it from
u

Used during a peripheral interrupt to store the operating environment that
is to be exited (current ST and PC contents) before the address of the
interrupt service routine is fetched

(O Pointed to by the stack pointer (SP)

Table 23 lists instructions that use the stack:

Table 2-3. Instructions That Use The Stack

Instruction Description Detall
CALL Jump to subroutine; provide return Push address of next instruction onto stack,
linkage then place destination value in PC (shown in
Figure 2-6, page 2-13)
LINK Link frame pointer (FP) to current Push FP onto stack, copy SP (old) to FP, then
stack; allocate stack space add displacement to SP for new SP value
POP Copy stack words into specified reg- Specify range of registers affected
isters
PUSH Copy specified register words onto Specify range of registers affected
the stack
RTI Return from interrupt Pop PC and ST values from stack
RTS Return from subroutine Pop PC from stack (shown in Figure 26,
page 2-13; RTS is at step 3 in the figure)
RTDU Return from subroutine and Can be a return from a CALL but only if sub-
deallocate current stack space routine executed a LINK instruction without an
UNLINK instruction
TRAP Generate one of 256 trap exceptions Push ST and address of next instruction onto
stack. Retrieve trap subroutine address from
trap vector table and place in PC.
UNLINK Unlink and deallocate stack frame Place FP value in SP, then pop previous FP
value from stack
ILLEGAL Generate trap exception; this is Push ST and address of next instruction onto

caused when the instruction’s illegal
code of 0000h is decoded (one of
several illegal opcodes that cause
this)

stack; place subroutine address from first trap
location in PC

Architecture 2-11

System Stack

2.5.1 Stack Operation During Interrupts

A major use of the stack is to provide return linkage for a context switch. Steps
of a typical context switch are as follows:

1) Context switch (e.g., interrupt) is recognized. Complete presently execut-
ing instruction.

2) Store present status register (ST) contents on the stack. Increment the
stack pointer (SP) by two to the next memory address.

3) Store the present program counter value (PC) at the SP value (next ad-
dress after the location where the ST is stored). Increment the SP by two.

4) Enter and execute the service routine for the context switch. When the rou-
tine is complete, reverse the process in steps 1 through 3 above to return
to the environment present when the context switch was requested. This

~ return is usually through an RTI (return from interrupt) instruction.

5) Decrementthe SP by two. Retrieve the previous PC value at that address,
and place it in the PC. Decrement the PC by two (this is explained in the
RTI instruction description).

6) Decrementthe SP by two. Retrieve the previous ST value at that address,
and place it in the ST.

2.5.2 Stack Use with a Call

Figure 2—-6 depicts how a stack is used when calling a subroutine with the
CALL (jump to subroutine) instruction and then later returning to the calling
environment. Numbered steps at the bottom of the figure correspond to circled
numbers in the figure to explain execution sequence.

The stack increments by two after each push of a word value onto the stack.
Conversely, the stack is decremented by two before each word is pulled
(popped) from a stack.

Note: The SP Must Contain an Even Value

Make sure that the value stored in the SP (R13) is an even value (a O in
address line A0). An odd value causes anillegal-access reset when the stack
is addressed.

All implicit stack references by these instructions generate word read/write
cycles to memory and thus are restricted to even addresses. The SP contents
are used for address lines A0 — A15; thus, they should always be an even
value. A nonaligned memory access generates a reset.

2-12 TMS370C16 CPU

System Stack

Figure 2—6. Example of Stack Use to and From a Subroutine

Q rEAL Sibroutng |
| Execution:
PC — (SP)
| sps2—sP
| dest—PC
16 MSBsof N\ _~————————
17-bit pointer to
subroutine
8400h CALL SUBR
8402h o \‘ 0 o
8404h Next Instruction)
17-bit word—"" ® :)oints
dd.
adaress S To Subroutine Values 2100h
- SUBR atCALL{PC 4 2 0 2 |
executon (SP | 2 1 0 0 —
SUBR C000h 16 MSBs of
C002h} 17-bit address of
C004h next instruction
©) i'ﬁ"r's'Exe"éu't‘i&H:""l
SP-2-SP |
P —=PC__J
Values
1/ subroutine at RTS {PC 6 0 S 3
execution [SP| 2 1 0 2
Values {PC 4 2 0 2
after RTS
execution 2 100
The CALL sequence:

® The CALL SUBR instruction causes a branch to subroutine SUBR with return values stored
in the stack. Before the entry address of SUBR is placed in the PC:

1) The present PC value (now pointing four bytes past the address containing the CALL opcode)
is stored at the present contents in the stack pointer (SP).
2) The SP is incremented by two.

@ The value of SUBR is placed in the PC. Execution begins at address C000h and continues-
down to address COA4h, which contains the last instruction in the subroutine — RTS (return
from subroutine).

@ RTS returns the program back to the environment at the time of the CALL instruction by:

1) Decrementing the SP by two to point to the address containing the PC value at the time of the
CALL instruction.

2) Placing the contents at the SP value into the PC. Execution begins at the next instruction after
CALL.

Architecture 2-13

Data Organization and Memory Mapping

2.6 Data Organization and Memory Mapping

Data resides in memory and on-chip registers with the most significant bit in
the left-most position. Figure 2—7 shows the significance of bits and bytes.

Figure 2-7. Bit and Byte Numbering for Instructions, Registers, and Words

2-14

BitNo.= 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0

N Y

MS Byte LS Byte

A word comprises two bytes:
— the most significant byte is on an even boundary, and
— the least significant byte occupies the next higher (odd)
byte address.

Note: Word Address Definition

A word address is a 16-bit pointer that maps into a 128K-byte address
space. Note that 17 bits are needed to fully address a 128K-byte space.
Because the 'C16 requires that words begin on an even-byte boundary, the
least significant bit of the word’s address must be a 0; only the upper 16 bits
of an address are required to access the word. A word address contains
these 16 bits.

All word data in memory must be aligned on an even address.

For byte operations, the byte operand values are zero-extended to word
length, are operated on as words, and produce a word result. Register
destinations receive the entire word (the MSbyte zero-extended), but memory
destinations receive only the LSbyte of the result. Thus, a byte movedto areg-
ister via the MOVB instruction zeroes the MSbyte of the register with the
moved byte in the LSbyte. The same byte moved to a memory address affects
only the destination byte addressed. This is illustrated in Figure 2-8 on page
2-16.

Figure 2-9 on page 2-17 shows how bits, bytes, and words are organized in
memory and in the register file. Shown in the figure are the least and most sig-
nificant bits and bytes. The accompanying explanations below the figure com-
plete the description.

Figure 2—10 on page 2-18 shows a typical memory configuration and how the
first and second 64K bytes of memory are divided into blocks for 1) byte and
word access in the lower 64K bytes of memory and 2) word-only access in
the higher 64K bytes.

TMS370C16 CPU

Data Organization and Memory Mapping

For purposes of this manual, these symbols have these meanings:

Symbol Meaning Example

(x) Contents of register x or (Rn) = the contents of Rn
of memory at address x

((x)) Contents of memory (disp + (Rn)) = the contents within the
designated by contents value found by adding the contents of Rn
of x with the displacement amount.

Architecture 2-15

Data Organization and Memory Mapping

Figure 2-8. Differences in Memory and Register ByteDestinations

MOVB *9[R4],R6 In this first example, a byte is moved to a register. The source
Execution: value is found at the address derived by the sum of the 0009h
0009h + displacement and the contents of R4, which contains 0402h.
¢ R4) —~ (e Thus, the value at address 040Bh, the least significant

byte, is moved. Bits 15-8 of R6 are cleared.

Registers RO—R15

RO
® 2-word MOVB__*9[R41R6 .
instruc- @ Derive source
tion 0009 N address
L»
¢ g L
040B]
el
040A ~ “Byte vaive at address
040Bh is copied to R6

@ with bits 15-8 zero-filled

MOVB *9[R4],*R6 The above example is repeated, except that the destination
Execution: is changed to a memory address with the destination register
(000%h + (R4)) — ((R6)) holding an indirect address. This example shows that the
move affects only the designated byte in the destination,
leaving the adjacent byte unchanged (no zero-filling occurs with a byte move to memory
— unlike a byte move to a register).

Registers RO—R15
© 2word | ["yoVE + 9[RALRE RO
instruc- 00009 . @ Derive source R1
tion] address R2
L L o009 o A3
< N ;
a 2| R4
040A] F “I/ 08 6 5|~Rse
- address 0605h
0604 A Byte value at address

@ " 040Bh Is copied to
; address 0605h
Value of byte 0604h unchanged

Note: A dashed line denotes the path of the value moved or copied. A solid line denotes a location pointer.

2-16 TMS370C16 CPU

Data Organization and Memory Mapping

Figure 2-9. Data Organization Examples in Registers and Memory

FP/RO
IM/R1
R2

R3

R4

RS

Reé

R7

R8s

R9

R10
R11
R12
SP/R13
ST/R14
L ZR/R15

A

CPU Register File

Registers

E Bit Value

All words start on
an even address.

Odd address

Memory
For several instructions,
32-bit words are formed
by concatenating the IM
and another register:
31 16
[MSBs31-16 | IM
2
15 t 0 g
LSBs15-0 |Rs s
The IM holds the MS word. £
addr addr+1 >- -g
Byte value in register is always | o 12h ¢§‘o
/ LSbyte' 15 ! o} XX 14h
Notes: Word Value x0x 18h
FP: Frame Pointer ! xxx18h
IM: Implied Register 7 xx 1Ah
SP: Stack Pointer
ST Status Register
ZR: Zero Register -
Byte value in memory
l] = Represents bit value can be LSbyte or
MSbyte.

Data restrictions depend upon their location in a register or in memory (as
shown in Figure 2-9 above):

Data Size
Single Bit

Byte
(8 bits)

Word
(16 bits)

Long Word
(32 bits)

Register

Can be any bit in any register
in the register file.

The least significant byte of

any register in the register file.

Can be any register in the
register file.

Uses a register pair in the
register file with the most
significant word in the IM
(implied register, R1).

Memory

Can be any bit in any byte in
the first 64K bytes of memory.

Can be any byte in the first
64K bytes of memory. Any
adjacent byte is not affected.

Can be any byte pair where
the most significant byte of
the word is at an even
address and the least signifi-
cant byte is at the next
higher byte address.

Not applicable.

Architecture 2-17

Data Organization and Memory Mapping

Figure 2-10. Typical 16-Bit Memory Map

Typical Memory Configuration

As shown in Figure 2—10, two 64K-byte areas concatenate to form 128K bytes
of addressable memory. The generic view on the left shows that the
lower-address half can be accessed as either byte or word, and the
higher-address half is accessible as word-only by such instructions as FMOV
and CALL. The right side of the figure is an example of possible code and data
utilization. The actual size of the memory module is device specific. See your
specific device data sheet to determine the size of the memory modules for
your particular device. The lowest memory addresses contain the control

Control Registejrs (Figure 2—11)
T

Data EEPROM (256 Bytes)

RAM (1 024!4 Bytes)

f
!
!
Unu;sed
|
|
|
!

00001h

00801h

02001h

0och 1)

OFFFFh
10000h

1000¢h

o

1FFFFh

registers, which are expanded in Figure 2—11 (next page).

00000h
/ -
~ - -
(,*’ 00800h
Actual Division 02000h
of Memory
f ")
88
2a
vw
c
S g
oy
3 <
8
(7}
o < - ____ _OFFFEh
3 10000h
o 8
g
[77)
>
cC <
(o]
B
S
=
1.
" . <
N
AN
AN
N
AN
N
AN
AN
N
AN
AN
AN
\\‘\
1FFFEh
2-18 TMS370C16 CPU

ROM or EPROM (64K Bytes)

Data Organization and Memory Mapping

Figure 2-11. Location and Names of Control Registers

00000h
00400h

OFFFEh
1 0000h

1FFFEN

Control Registers

00000h—0000Fh
00010h—0001Fh
00020h—0002Fh
00030h—0003Fh
00040h—0004Fh
00050h—0005Fh
00060h—0006Fh
00070h—0007Fh
00080h—0008Fh
00090h—0009Fh
000AOh—000BFh
000C0h—000FFh
00100h—0013Fh
00140h—-0014Fh

"\, 00150h-0015Fh

* 00160h—003FFh

Reserved

System Configuration Registers (Section 3.5)

Clock Module & Watchdog Realtime Interrupt

ADC Module

SPI Module

SCI or J1850 Module

System Digital Pin Functions (Section 3.6)

System External Interrupts (Section 3.8)

EPROM/EEPROM Memory Module

Reserved

Reserved

Timer (16A) Module

Reserved

Gage Driver, Single Ended

Gage Driver, Dual Coil

Reserved

Figure 2—11 lists the 16 control-register groups in the lowest 1K bytes of
memory. Each register group is 16 bytes and contains the working registers
for each module or for the system configuration. These registers are further
described in Section 3.5 on page 3-7.

Architecture 2-19

2-20 TMS370C16 CPU

Chapter 3

TMS370C16 System Configuration

This chapter discusses system configuration requirements, 1/O, interrupts,
reset, and low-power modes of the TMS370C16 CPU. Features and options
are described, including the registers that control the configuration. This
chapter covers the following topics:

Topic Page

3-1

System Configuration Overview

3.1 System Configuration Overview

The system module controls device operations such as clock sourcs, stack
location, reset, interrupts, and 1/O. The actual number of external interrupts
and I/O pins is device specific; consult the data sheet for a particular device.
Certain device status information is also contained within the system module.
The system module block diagram is shown in Figure 3—1.

Figure 3—1. System Block Diagram

Q—-DI Reset
N 'I Digital Pin Functions
System
R%S?st{g:s 1—-—;' Stack Pointer Control
) Dl Interrupts
1——D| CLKOUT Control
LA R L)
L] L]
le N Low Power Modes '
peeceemmecemaem=n R (See Note 1) '
X EPROM/EEPROM X
' (See Note 2) '
L ewoomeoeseeeoeeeeeeeeeoeeeoesosesesseeee e)

Notes: 1. See the Clock Modules Reference Guide.
2. See the EEPROM/EPROM Modules Reference Guide.

3-2 TMS370C16 CPU

Systermn Reset Operation

3.2 System Reset Operation

The system reset operation ensures an orderly start-up sequence for the
TMS370C16 CPU-based device. Seven actions can cause a system reset to
the device; six of these are internally generated, while the RESET-pin interrupt
is controlled externally.

[RESET Pin. A negative edge can trigger a signal on this external pin.

[Watchdog (WD) Timer Overflow. A watchdog-generated reset occurs if
the WD timer overflows or an improper value is written to either the WD
key register or the WD control register. (See your Watchdog Timer and
Real-Time Interrupt Reference Guide for details on these registers.)

O Software-Generated Reset. Writing a 0 to the RESETO bit (SCR0.6) or a
1 tothe RESET1 bit (SCR0.7) causes areset (SCRO is the system control
register 0, as shown in Figure 3-3 on page 3-7.)

O lllegal Address Access. Attempting to access a nonmemory (not imple-
mented) address causes a reset. (This action is device specific, relative
to the memory configuration.)

O Oscillator Reset. Operation of the oscillator outside of the recommended
operating range, as indicated by the OSCRST bit of the system reset
status register (subsection 3.5.3, page 3-10), causes the clock module to
issue areset. See the Clock Modules Reference Guide for more informa-
tion.

[Vcc Out-of-Range. Operation with Vg outside of the recommended
operating range may also act as a brownout indicator in addition to
ensuring proper operation on power-up sequences.

[llegal Access. Attempting to access a word by using an odd address
causes a reset.

Once a reset source is activated, the external RESET pin is driven active low
for a minimum of eight SYSCLK cycles. This allows the '‘C16 CPU-based
device to reset any external devices connected to the RESET pin. Normally,
the reset logic holds the 'C16 device in a reset state for eight SYSCLK cycles;
however, if a Vgc out-of-range condition or oscillator failure occurs (or the
RESET external pin is held low), then the reset logic holds the device in areset
state for as long as these conditions exist.

TMS370C16 System Configuration 3-3

System Reset Operation

Figure 3—2 shows the reset state diagram for the 'C16 device in the normal run
mode.

Figure 3-2. Reset State Diagram — Normal Run Mode

Note: Reset actions
are indicated in the
system reset status
register described
on page 3-10.

3-4 TMS370C16 CPU

System Reset Operation

After a reset, the program determines the source of the reset by reading the
contents of the system reset status register (SRSR, shown in Figure 3-3 on
page 3-7). There is one status bit for each of the seven sources that can
cause a reset.

Once areset is activated, the following sequence of events occurs in the 'C16:

1) The CPU registers and module control registers are initialized to their
reset state. The ST interrupt mask bits are set to all 1s to prevent any
interrupt request, including nonmaskable interrupts (NMis).

2) The correct index value to the trap table base address is computed.
3) The service-routine address is read from address 8002h.
4) The prefetch pipeline is reloaded.

The reset sequence takes six cycles from the time the reset is released until
the first opcode fetch begins. During a reset, RAM contents remain
unchanged, and the module control register bits are initialized to their reset
state.

To generate an external reset pulse on the RESET pin, a low-level pulse
duration of as little as a few nanoseconds is usually effective; however, pulses
of one SYSCLK cycle are recommended to guarantee that the device
acknowledges the reset. A typical reset circuit required for the 'C16
CPU-based device consists of a 10-kilohm pullup resistor from the RESET pin
to Vc. Only this single resistor is needed if a primary voltage regulator or
brownout detection circuit is on your device. See the specific device data sheet
to determine whether additional circuitry is required.

TMS370C16 System Configuration 3-5

CLKOUT Pin Function Selection / Parallel Signature Analysis Operation (CRC Generator)

3.3 CLKOUT Pin Function Selection

You can select the CLKOUT pin to operate as one of four different functions:

[Digital I/O

[Watchdog clock (WDCLK) output
(O External clock (ECLK) output

[System clock (SYSCLK) output

The function is determined by two clock source control bits, CLKSRC1 and
CLKSRCO (SCR1.7 and SCR1.6 respectively, shown in Figure 3—3 on page
3-7). Table 3—1 illustrates the CLKOUT pin function selection options.

Table 3—1. CLKOUT Pin Function Options

CLKSRC1 CLKSRCO

Digital I/O 0 0
WDCLK 0 1
ECLK 1 0
SYSCLK 1 1

For more information, see subsection 3.5.2 on
system control register 1 on page 3-9, the specific
device data sheet, or the Clock Modules Reference
Guide.

3.4 Parallel Signature Analysis Operation (CRC Generator)

The TMS370C16 device contains an internal 16-bit parallel signature analysis
(PSA) circuit that provides a continuous cyclic redundancy check (CRC) func-
tion. Two associated registers, PSAR1 and PSAR2 (located at addresses
0001Eh and 0001Fh in the system configuration register), determine a unique
16-bit signature. (The system configuration register is further described in
Section 3.5 and in Figure 3—3 on the next page.)

When any memory location (RAM, EEPROM, ROM, EPROM, or control
register) is read, the contents of the PSA registers are updated (register bits
are described in subsection 3.5.5 on page 3-13). You can create a
predetermined signature by initializing the PSA registers to a known value and
then reading all memory locations. It is suggested that you read both PSA
registers as a single word (avoid multiple reads such as reading each byte
individually).

3-6 TMS370C16 CPU

System Configuration Registers

3.5 System Configuration Registers

The TMS370C16 system configuration registers are shown in Figure 3—-3 and
are discussed in detail in the following sections. These registers can be

accessed in either byte or word mode.

Figure 3-3. System Configuration Registers

Address

00010h

00011h

00012h

00013h

00014h

00015h

00016h

00017h

00018h

00018h

0001Bh

0001Ch

0001Dh

0001Eh

0001Fh

Register
Mnemonic

SCRO

SCR1

SRSR

SSR

PSAR1

PSAR2

RESETO

CLKSRC1 | CLKSRCO
A

PORST OSCRST ‘{v é; h(’:}d ILLADR ILLACC SWRST | WDRST | EXTRST
P

PSA14

PSA13

PSA12

PSA11

PSA10

PSA9

PSA8

PSA6

PSAS

PSA4

PSA3

PSA2

PSA1

PSA0

TMS370C16 System Configuration

Register
Name

System
Contro
Register 0

Register 1

System
FtesZt8t Status
Register

St

Register

Parallel Sig-
nature Analy-
sis Reg. 1

Parallel Sig-
nature Analy-
sis Reg. 2

System Configuration Registers

3.5.1 System Control Register 0 (SCRO0)

The system control register 0 (SCRO) controls the software reset capability of
TMS370C16 CPU-based devices.

System Control Register 0 (SCRO0)
4 3

Bit # 7 6

00018h RESET1 RESETO

RW-0 RW-1
R = Read, W = Write, —n = value after reset (0, 1, x = indeterminate)

Bits 7& 6 RESET1/RESETO. Software Reset.
These bits, which control the software reset function of the device, must be
written to at the same time. Writing a 1 to RESET1 ora 0 to RESETO causes a
global reset to occur as shown in the following table:

RESET1 RESETO Resulting Action
0 0 Global reset
0 1 —
1 0 Global reset
1 1 Global reset

Bits 5-0 Reserved.
Writing to these bits has no effect, and reads are undefined.

3-8 TMS370C16 CPU

System Configuration Registers

3.5.2 System Control Register 1 (SCR1)

Bit #

00019h

The system control register 1 (SCR1) controls the CLKOUT pin function and
the analog power supply enable.

System Control Register 1 (SCR1)

7 6 4 3 2 1 0
CLKSRC1 | CLKSRCO) VCCAON
RW-0 RW-0 RW-0

R = Read, W = Write, —n = value after reset (0, 1, x = indeterminate)

Bits 7 & 6

Bits 5 & 4

Bit3

Bits 2-0

CLKSRC1-0. Clockout Pin Source Select.
These bits control the selection of the CLKOUT pin function.

CLKSRC1 CLKSRCO CLOCKOUT Pin Function

0 0 Digital I/O mode

0 1 WDCLK clock output mode (watchdog clock)
1 0 ECLK output mode (external clock)

1 1 System Clock (SYSCLK) output mode

Reserved.
Wiriting to these bits has no effect, and reads are undefined.

VCCAON. Vcca (Analog Power Supply) Enable.
This bit controls the ability of the primary voltage regulator or the brown-out
detect circuit to turn the analog power supply (Vcca) on and off.

0 = Analog power supply is disabled.

1 = Analog power supply is enabled.

Reserved.
Writing to these bits has no effect, and reads are undefined.

TMS370C16 System Configuration 3-9

System Configuration Registers

3.5.3 System Reset Status Register (SRSR)

The system reset status register (SRSR) contains system-reset history status
information. These bits should be cleared after being read.

System Reset Status Register (SRSR)

Bit # 7 6 5 4 3 2 1 0
0001Ah PORST OSCRST ILLADR ILLACC SWRST WDRST EXTRST
RC—x RC—x RC—x RC—x RC—x RC—x RC—x

R = Read, C = Clear only, —n = Value after reset (0, 1, x = indeterminate)

Bit7 PORST. Power On Reset Status.
This bit indicates the status of digital power to the chip. When a reset occurs
because Vgcp is out of regulation, bit 7—PORST— is set. Reset is active
while Vgcp is out of regulation, and for eight cycles afterward. When this bit is
set to a 1, all other bits are indeterminate.

0 = No reset. Vgcp is not out of regulation.
1 = Reset because V¢cp out of regulation.

Bit 6 OSCRST. Oscillator Reset Status.
Reset occurred because of an oscillator fail condition. Ignore this bit if there is
no phase lock loop oscillator.

0 = No oscillator fail conditions.
1 = Reset due to oscillator fail condition.

Bit5 Reserved.
Writing to this bit has no effect, and reads are undefined.
Bit 4 ILLADR. lllegal Address Reset Status.

This reset occurs when an unimplemented memory address is accessed.
0 = No illegal address conditions.
1 = Reset due to illegal address access.

Bit 3 ILLACC. lilegal Access Reset Status.
This reset occurs when a word access occurs on a byte (odd address value)
boundary.

0 = Noillegal access conditions
1 = Reset due to illegal access.

Bit 2 SWRST. Software Reset Status.
This reset occurs when a #1 is written to bit SCR0.7 or a 0 is written to bit
SCRO.6.

0 = No reset.
1 = Software reset occurred.

3-10 TMS370C16 CPU

System Configuration Registers

Bit 1 WDRST. Watchdog Reset Status.

See your Watchdog Timer and Real-Time Interrupt Module Reference Guide
to determine whether this bit applies to your device.

0 = Noreset.
1 = Reset due to watchdog timer overfiow.
Bit0 EXTRST. External Reset Status.

0 = No reset.
1 = This bitis set when the external RESET pin is pulled low by any source,
including an internal reset.

TMS370C16 System Configuration 3-11

System Configuration Registers

3.5.4 System Status Register (SSR)

The system status register (SSR) contains status information about the opera-
tional modes of the device.

System Status Register (SSR)

Bit # 7 5 4 3

0001Bh HPO VCCAOR

RC—x R—x
R = Read, C = Clear only, —n = Value after reset (0, 1, x = indeterminate)

Bits7& 6 Reserved.
Writing to these bits has no effect, and reads are undefined.

Bit5 HPO. Hardware Protect Override.
The hardware protect override function allows protected EEPROM bits to be
written to and enables EPROM programming. To set this bit, external pin INT1
must be at 12V on the rising edge of RESET. IfINT1 isless than 12V, the bitis
a 0. You can disable this function by writing a 0 to it.

0 = Normal mode.

1 = HPO mode.
Bits 4 Reserved.
Writing to this bit has no effect, and reads are undefined.
Bit3 VCCAOR. Vcca (Analog Power Supply) Out of Regulation.

This bit shows the status of the internal Vg signal.
0 = Vcca is within regulated range.
1 =Vgca is out of regulated range.

Bits 2-0 Reserved.
Writing to these bits has no effect, and reads are undefined.

3-12 TMS370C16 CPU

System Configuration Registers

3.5.5 Parallel Signature Analysis Registers (PSARnN)

The parallel signature analysis register 1 (PSAR1) contains the MSbyte of the
PSA, and the parallel signature analysis register 2 (PSAR2) contains the
LSbyte of the PSA.

Parallel Signature Analysis Register 1 (PSAR1)

Bit # 7 6 5 4 3 2 1 0
0001Eh PSA15 PSA14 PSA13 PSA12 PSA11 PSA10 PSA9 PSA8
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read, W = Write, C = Clear only, —n = Value after reset (0, 1, or x = indeterminate)

Bits 7-0 PSA15-PSAS8. Parallel Signature Analysis Data Bits 15 — 8.
The value read from this register is the MSbyte of the most recent PSA
routine.

Parallel Signature Analysis Register 2 (PSAR2)

Bit # 7 6 5 4 3 2 1 0
0001Fh PSA7 PSA6 PSA5 PSA4 PSA3 PSA2 PSA1 PSA0
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R =Read, W= Write, C = Clear only, —n = Value after reset (0, 1, or x = indeterminate)

Bits 7-0 PSA7-PSAO. Parallel Signature Analysis Data Bits 7 — 0.
The value read from this register is the LSbyte of the most recent PSA
routine.

TMS370C16 System Configuration 3-13

General-Purpose Digital Pin Functions

3.6 General-Purpose Digital Pin Functions

3-14

Device pins can be configured for general-purpose digital pin functions except
for those pins:

[J That are device operation pins (Vcg, Vss, RESET, INT1, etc.).
[O That are required for module-specific operation (for the SPI, ADC, gage
drivers, etc.)

The total number of digital pins available is device specific. Refer to the specific
device data sheet to determine the exact number of digital pins available, pin
locations, naming conventions, and control registers. This section describes
the different types of digital pin functions available and how they are controlled.

The digital I/O control and status register (Figure 3—4) allows a maximum of
32 output/control functions, 32 input/status functions, and 32 bidirectional I/O
pin functions. The output pin functions are also referred to as control pins —
they can be used to turn particular internal modules on or off and are not actual-
ly tied to an external pin. The input pin functions are also referred to as status
pins because they can be used to determine the status of internal signals on
the device as well as to serve as general-purpose input pins. For example, you
could use these configurations to tie an input/status function to the low-side
driver over-current detection circuitry, or to tie an output/control function inter-
nally to the Vg ca analog voltage output to control the primary voltage regulator
during on and off Voca.

The control registers for digital /O (DIO) pins are located at addresses 0060h
to 006Fh and are shown in Figure 3—4.

Address Ports Functions
0060h — 0063h Output 1,2,3,4 Output/control only. Pins for output/control
ports 1,2, 3, and 4
0064h — 0067h Inputi, 2,3, 4 Input/status only. Pins for Input/status ports
1,2,3,and 4

0068h - 006Fh 1/O A, B,C,D Pins for 1/O ports A, B, C, and D, with each
port using one byte for I/O configuration and
one byte for pin value.

The following sections explain the operation of the DIO control registers. The
number of DIO control registers available depends on the 'C16 device.
Usually, all digital pins available are configured as bidirectional I/O pins, and
not output or input only. This configuration selection is determined during the
manufacture cycle and cannot be changed by software. See the specific
device data sheet for more information.

TMS370C16 CPU

General-Purpose Digital Pin Functions

Figure 3—4. Digital I/O Control and Status Registers

Addr

00060h

00061h

00062h

00063h

00064h

00065h

00066h

00067h

00068h

00069h

0006Ah

0006Bh

0006Ch

0008Dh

0006Eh

0006Fh

Reg

Mnem

OCR1

OCR2

OCR3

OCR4

ISR1

ISR2

ISR3

ISR4

ADIR

ADATA

BDIR

BDATA

CDIR

CDATA

DDIR

DDATA

7 6 5 4 3 2 1 0
10UT7 10UT6 10UTS 10UT4 10UT3 10UT2 10UT 10UTO
20UT7 20UT6 20UTs 20UT4 20UT3 20UT2 20UT1 20UTO0
30UT7 30UTe 30UTs 30UT4 30UT3 30UT2 30UT1 30UTO
40UT7 40UT6 40UTS 40UT4 40UT3 40UT2 40UT1 40UTO
1INS7 1INS6 1INS5 1INS4 1INS3 1INS2 1INS1 1INSO
2INS7 2INS6 2INS5 | 2INS4 | 2INS3 2INS2 | 2INS1 2INSO
3INS7 3INS6 3INS5 3INS4 3INS3 3INS2 3INS1 3INSO
4INS7 4INS6 4INS5 | 4INS4 | 4INS3 4INS2 | 4INS1 4INSO
ADIR7 ADIR6 ADIRS ADIR4 ADIR3 ADIR2 ADIR1 ADIRO

ADATA7 | ADATA6 | ADATAS | ADATA4 | ADATA3 | ADATA2 | ADATA1 | ADATAO
BDIR? BDIR6 BDIRS BDIR4 BDIR3 BDIR2 BDIR1 BDIRO
BDATA7 | BDATA6 | BDATAS | BDATA4 | BDATA3 | BDATA2 | BDATA1 | BDATAO
CDIR7 CDIR6 CDIRS CDIR4 CDIR3 CDIR2 CDIR1 CDIRO
CDATA7 | CDATA6 | CDATAS | CDATA4 | CDATA3 | CDATA2 | CDATA1 | CDATAO
DDIR7 DDIR6 DDIRS DDIR4 DDIR3 DDIR2 DDIR1 DDIR0
DDATA7 | DDATA6 | DDATA5 | DDATA4 | DDATA3 | DDATA2 | DDATA1 | DDATAO

Note: See the specific device data sheet for the actual digital pin implementation.

TMS370C16 System Configuration

Reg
Name

Output/
Control
Register 1
Output/
Control
Register 2
Output/
Control
Register 3
Output/
Control
Register 4

Input/
Status
Register 1
Input/
Status
Register 2
Input/
Status
Register 3
Input/
Status
Register 4

1/O Port A
Direction
Register
1/0 Port A
Data
Register
|//O PortB
Direction
Register
1/O Port B
Data
Register

I/O Port C
Direction
Register

/0 Port C
Data

Register

1/0 Port D
Direction
Register
/0 Port D
Data
Register

3-16

General-Purpose Digital Pin Functions

3.6.1 Digital Output/Control Registers (OCRn)

Writing to bit(s) in the digital output/control registers (OCR1, OCR2, OCRS3,
and OCR4) outputs values to the bit’s corresponding function(s) — such as
communication to an internal module or an external pin. OCR1 is illustrated
below. OCR2. OCRS3, and OCR4 operate identically to OCR1 but are not
shown.

Digital Output/Control Register 1 (OCR1)
Bit# 7 6 5 4 3 2 1 0

00060h | 1OUT7 | 10UT6 | 1OUT5 | 10UT4 | 10OUT3 | 10UT2 | 10UT1 10UTO

RW-0 RW-0 RW-0 RW—0 RW-0 RW-0 RW-0 RW-0
R = Read, W = Write, —n = Value after reset (0, 1, x = indeterminate)

Bits 7-0 10UT7 - 10UTO. Digital outputs to corresponding functions.
The values written to any of selected bit(s) 1OUT7 to 10UTO control the state
output of the corresponding function(s).

0 = Output a 0 (Vo) value to the selected function.
1 = Outputa 1 (Vop) value to the selected function.

3.6.2 Digital Input/Status Registers (ISRn)

Reading a bit in one of the four digital input/status registers (ISR1, ISR2, ISR3,
and ISR4) reads the bit value at the corresponding input function. Functions
could be values from such points as a module flag, external pin, etc. ISR1 is
illustrated below. ISR2, ISR3, and ISR4 operate identically to ISR1 but are not

shown.
Digital Input/Status Register 1 (ISR1)
Bit # 7 6 5 4 3 2 1 0
00064h | 1INS7 1INS6 1INS5 1INS4 1INS3 1INS2 1INS1 1INSO
R—x R-x R-x R-x R—x R-x R—x R—x

R = Read, W = Write, -n = Value after reset (0, 1, x = indeterminate)

Bits 7-0 1INS7-1INSO. Digital input/status at corresponding functions.
The values read at any selected bit(s) 1INS7—-1INSO show values at their
corresponding functions:

0 = Read V|_on the corresponding function.
1 = Read V|4 on the corresponding function.

3-16 TMS370C16 CPU

General-Purpose Digital Pin Functions

3.6.3 Digital Port Direction and Port Data Registers (xXDIR and xDATA)

The TMS370C16 CPU has four digital ports — A, B, C, and D. Each port has
a pair of registers that work together. The direction register for the port
designates each bit in the corresponding data register as either an input or
output.

[dJ The portdirection register (ADIR, BDIR, CDIR, and DDIR for ports A to
D respectively) bit values designate a corresponding pin in the data regis-
ter as an input (clear bit to 0) or an output (set bit to 1).

[The port data register (ADATA, BDATA, CDATA, and DDATA for ports A
to D respectively) bits can be read from or written to, depending upon their
status as set in the port direction register.

For example, to read bit A7, clear bit ADIR7 to 0 (to become an input); then
read bit ADATA?7. To write to A7, set ADIR7 to 1 (becomes an output) and write
avalue to ADATA?. This applies to the other ports also (BDIR/BDATA, CDIR/
CDATA, and DDIR/DDATA).

Registers ADIR and ADATA are shown on the next page. The combinations
of BDIR/BDATA, CDIR/CDATA, and DDIR/DDATA operate identically to ADIR/
ADATA but are not shown.

TMS370C16 System Configuration 3-17

General-Purpose Digital Pin Functions

I/O Port A Direction Register (ADIR)
Bit # 7 6 5 4 3 2 1 0

0006Ah ADIR7 ADIR6 ADIRS ADIR4 ADIR3 ADIR2 ADIR1 ADIRO

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
R = Read, W= Wirite, —n = Value after reset (0, 1, x = indeterminate)

Bits 7-0 ADIR7-ADIRO0. Control direction of pins A7—A0.
The value written to any one of these bits controls the direction of this
bidirectional pin.
0 = The pin is an input.
1 = The pin is an output.

I/O Port A Data Register (ADATA)
Bit # 7 6 5 4 3 2 1 0

0006Bh | ADATA7 ADATA6 ADATAS ADATA4 ADATA3 ADATA2 ADATA1 ADATAO

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
R = Read, W= Write, —n = Value after reset (0, 1, x = indeterminate)

Bits 7-0 ADATA? — ADATAO. Data Value for pins A7 — AO.

If the pin has been selected as an input (xDIRn = 0), then the value read from
the corresponding bit is the value seen on the pin.

0 = Value of selected bitis a 0 (V).
1 = Value of selected bitisa 1 (V|y).

If the pin has been selected as an output, then the value written to the bit is
the value output on the corresponding pin.

0 = Value of selected bitis a 0 (Vo).
1 = Value of selected bitis a 1 (Von).

3-18 TMS370C16 CPU

Interrupt and Exception Handling

3.7 Interrupt and Exception Handling

TMS370C16 recognizes four interrupt/exception sources, summarized below.
The actual number of interrupt sources, as well as their associated interrupt
vector(s), is device specific. This reference guide provides general information
for the entire product range of 'C16-based devices. Refer to the specific device
data sheet and module reference guide for more information.

3.7.1 Interrupt/Exception Sources

[Resets (hardware initiated) are unarbitrated by the CPU and take
immediate priority over any other executing functions. All interrupts and
the NMI (discussed below) are disabled until being enabled by the reset’s
service routine (at 08002h in the vector table). Resets are described in
further detail in Section 3.2 on page 3-3.

[d Nonmaskable interrupts (NMis) (discussed in subsection 3.7.4 on page
3-23) are generated at an external interrupt pin. An NMI takes priority over
peripheral interrupts and software exceptions. It can be locked out by an
already executing NMI or a reset. Its service routine start address is lo-
cated in the vector table at 08006h. See the specific device data sheet for
more information on devices having more than one NMI.

[d Peripheral interrupts (discussed in subsection 3.7.5 on page 3-24) are
initiated by any of the peripheral modules attached to the CPU. They can
be masked off by the L2—L0 interrupt level bits of the ST. Figure 3-5 on
page 3-20 illustrates the vector configuration.

[Software exceptions (discussed in subsection 3.7.6 on page 3-24) are
not arbitrated by the CPU. When these are executing, the ST L2—L0 inter-
rupt level bits are set to all ones (1115) to mask out peripheral interrupts.

B A TRAP instruction’s vector location corresponds to the trap number
in its opcode (0-255). Thus, vector locations range from 08000h for
trap O up to address 081FEh for trap 255.

B The other software exceptions (unimplemented opcodes and the
ILLEGAL instruction) trap to the address at 08000h.

Whenever an enabled interrupt/exception source requests service, the CPU
transfers program flow through a vector that points to the starting address (PC
value) of an interrupt/exception subroutine. This context switching transfer is
implemented as shown in Figure 3-5:

TMS370C16 System Configuration 3-19

Interrupt and Exception Handling

Figure 3-5. Veector Table Organization in Memory

Memory

Address Trap Number

'

08000h
08002h
08004h
08006h
08008h
0800Ah
0800Ch
0800Eh
08010h
08012h
08014h
08016h
08018h
0801Ah
0801Ch

0801Eh |

08020h
08022h
08024h
08026h
08028h
0802Ah
0802Ch
0802Eh
08030h
08032h
08034h
08036h
to
08040h
08042h

081FCh
081FEh

v

TRAP #0
TRAP #1

TRAP #2
TRAP #3
TRAP #4
TRAP #5
TRAP #6
TRAP #7
TRAP #8
TRAP #9
TRAP #10
TRAP #11
TRAP #12
TRAP #13
TRAP #14
TRAP #15
TRAP #16
TRAP #17
TRAP #18
TRAP #19
TRAP #20
TRAP #21
TRAP #22
TRAP #23
TRAP #24
TRAP #25
TRAP #26
TRAP #27

to
TRAP #32

f

TRAP #33
to
TRAP #254

v

TRAP #255

3-20 TMS370C16 CPU

00000h

08200h

OFFFEh
10000h

J 1FFFEN

Interrupt and Exception Handling

3.7.2 Vector Table

The vector table (shown in Figure 3-5) contains up to 256 entries, each of
which is the starting PC address of an interrupt service routine. The table
begins at address 08000h.

When an interrupt is acknowledged, the CPU acquires a vector offset value,
which is added to 08000h to locate the corresponding service-routine start
address. Each interrupt source is responsible for supplying this offset either
through hardware (NMIs and peripheral interrupts) or software (resets, traps,
and illegal opcodes).

The single vector table contains the service-routine start addresses for all
exceptions and interrupts. Thus, resets, NMis, and peripheral interrupt vectors
are shared with software exception vectors.

The vector table grows upwards (to higher addresses). The table is only as
large as required (but no larger than 512 bytes). The final size of the table is
determined by the peripheral module requirements of the device and the
application’s software use of traps (see your specific device data sheet for
size).

The 16-bit address of the first executable instruction in the interrupt handler
is a word address that is loaded into the PC and transformed into a 17-bit
physical memory address by overlaying bits b15-b0 onto address lines
A16—-A1 and forcing AO to 0.

3.7.3 Reset and Interrupt Operation

Figure 3—6 describes the step-by-step sequencing of resets and interrupts.

TMS370C16 System Configuration 3-21

Interrupt and Exception Handling

Figure 3—6. Summary of Reset, NMI, Peripheral Interrupts, and Software Exception
Operations

(|
Reset Selected NMI, Perlpheralg;;g:gware Exception

*Peripheral interrupts must be a level higher than the level in the ST interrupt-level bits
(L2 — L) in order to execute. Thus, a level of 1115 locks out any peripheral interrupt.

3-22 TMS370C16 CPU

Interrupt and Exception Handling

3.7.4 Nonmaskable Interrupt (NMI) Processing

The NMI is nonmaskable in that it cannot be masked out by the L2 — LO
interrupt-level bits of the status register. However, NMis are disabled and will
be ignored if:

[An NMI is already executing, or
[Areset occurs.

Unless pre-empted by a reset, the NMI will occur on the next instruction
boundary if it is internally enabled and a valid external NMI signal is received.

During these two situations, all the ST interrupt-level bits are set to 1, locking
out recognition of a pending NMI. Any pending NMI cannot be activated unless
one of the following occurs to (re-)enable NMis:

[Execution of an RTI instruction,
[Execution of a TRAP instruction, or

[The clearing to 0 of one or more of the ST register interrupt-level bits (e.g.,
by an STRI instruction or any other instruction that changes these bits in
the ST register—R14).

Also, because ST register interrupt level bits (L2, L1, and LO) are all 1s after
an NMI occurs, all interrupt requests are ignored by the CPU until these bits
are cleared to zero (changed from their all-1s status).

To summarize, the occurrence of an NMI locks out a pending NMI until the
present one is serviced. The RTI instruction is a simple method of re-enabling
NMiIs, and a pending NMI will be taken following the re-enabling by one of the
specified methods.

NMI processing takes several steps:

1) ST - (SP).
2) SP+2-SP.
3) PC— (SP).
4 SP+2-SP.

5) Look up the vector offset for the NMI trap address (08006h or as specified
in the specific device data sheet).

6) Execute NMI interrupt handler at that address.

TMS370C16 System Configuration 3-23

Interrupt and Exception Handling

NMI processing begins with the CPU pushing first its ST register value and
then the current PC value onto the stack. The PC points to the word address
of the next executable instruction plus two words (four bytes). This is equal to:

17-bit word address bus value +4

2 = PC value

The PC-value 4-byte offset is due to pipelining prefetch, which leaves the PC
pointing four bytes beyond the next opcode, at an instruction boundary.

3.7.5 Peripheral Module Interrupt Processing

Peripheral interrupt requests are maskable by the CPU via the ST register’s
interrupt-level bits (L2 — LO). During any exception/interrupt processing, these
bits are set to 1s, masking off all interrupt requests (except an NMI that was
previously enabled; this is explained in subsection 3.7.4).

A request whose level is greater than the interrupt-level mask value in the ST
register is acknowledged at the next instruction boundary. A request of the
same or lower level will not be acknowledged.

Execution of an unmasked peripheral interrupt is shown in Figure 36, starting
on the upper right (page 3-22).

3.7.6 Software Exception (TRAPSs, etc.) Processing

3-24

A software exception is not arbitrated by the CPU. It occurs when one of the
following is executed:

[Anillegal opcode
[A TRAP instruction
[AnILLEGAL instruction

During any software exception, the ST register’s interrupt-level bits (L2 — LO)
are set to 1s, masking off all interrupt requests (except an NMI if NMlis are en-
abled; this is explained in subsection 3.7.4).

Software exceptions generate their own vector offset value:

[TRAPs use the 8-bit vector offset value (to be added to the vector base
address) assembled in the LSbyte of the instruction’s opcode.

[The other software exceptions use a vector offset value of 001 — the
same as a TRAP #0 instruction.

See descriptions for the TRAP and ILLEGAL instructions in Chapter 5 for
further vector information.

TMS370C16 CPU

External and Power Module Interrupts

3.8 External and Power Module Interrupts

There are three types of external interrupts:

1) External interrupt pins (subsection 3.8.1)

2) Power module fault condition (subsection 3.8.2 on page 3-35)

3) Phantom interrupt controlled exit from an improper interrupt acknowledge
sequence (subsection 3.8.3 on page 3-37)

3.8.1 External Interrupt Pins

The 16-byte interrupt frame (shown in Figure 3-7 and Figure 3-8 on the fol-
lowing pages) controls up to eight external interrupt pins and up to 49 power
module interrupts. Pin interrupts can be any of three types: A, B, and C (these
are described in Table 3—2 on page 3-26). At least one type A interrupt in INT1
is required in any configuration. The actual makeup of the interrupt frame is
device specific; see the device-specific data sheet to determine the interrupt
types and control register addresses.

Rules concerning the 16-byte interrupt frame:

[Od The first two bytes (addresses 0070h and 0071h) are a type A interrupt
(required for all interrupt frames).

[The next (higher addressed) 14 bytes can be any combination of:
B Two-byte sets of pin interrupt control/status bits, and/or

Bl Two-byte sets that contain power-module control/status bits that start
at the highest address in the interrupt frame (0007Fh) and are placed
contiguously from that address to lower addresses in the frame.
Figure 3—7 and Figure 3-8 contain several examples.

[d The additional Interrupt controlfflag bytes are contiguous and follow the
type Ainterrupt bytes that start in addresses 00070h and 00071h, growing
to the higher addresses. The first interrupt bytes are INT1 and INT1 FLG
bytes, the second are INT2 and INT2 FLG, etc.

[d Power module (PM) control and flag bytes start with PM1 at the highest
two addresses in the frame (0007Eh and 0007Fh). A second power
module (PM2) would be immediately before those for PM1, located at
0007Ch and 0007Dh. PM3 would precede PM2, etc.

Thus, the interrupt frame could contain merely the required single pair of type
Ainterrupt bytes only, as shown in example (a) of Figure 3—7, or a combination
of pin interrupts and power module interrupts as shown in examples (b) and
(c) inthe figure. Example (d) in Figure 3—7 shows pin interrupts in all locations.
The mix and position of interrupt pin types and number of power module pins
depends upon device-specific design considerations.

TMS370C16 System Configuration 3-25

External and Power Module Interrupts

Figure 3-8 is also a typical example of an interrupt frame with all three pin
types and their bit names. It also contains two power module control and flag
bytes with bit names.

Table 3-2 describes the different external interrupt pin types. All types can be
configured for high or low priority, and all interrupt pins are configured to digital
inputs on reset. Descriptions of the different types of pins are given in the

subsections that follow.

Table 3-2. External Interrupt Types

Pin Configurable | Minimum | Digital | Freeze | Alternate
Type as NMI? Required /o Bits! | Functions
Type A Yes 1 Inputonly | Yes Vpp/HPO

Type B Yes 0 I/O No —

Type C No 0 I/O No —

1Freeze bits are further explained in Section 3.10 on page 3-39.
Table 3-3. External Interrupt Pin Functions
NMI Bit! | Data Out | Data Dir¥ | Polarity® | Priority | Int Enable
nonmaskable Interrupt 1 N/A N/A 0,1 N/A N/A

Interrupt High Priority 0 N/A N/A 0,1 0 1
Interrupt Low Priority 0 N/A N/A 0,1 1 1
Digital Output '0’ 0 0 1 N/A N/A 0
Digital Output '1’ 0 1 1 N/A N/A 0
Digital Input 0 N/A 0 N/A N/A 0

3-26

t Type C interrupts do not have an NMI bit. Assume a value of 0.
% Type A interrupts do not have a data direction bit. Assume a value of 0.
§ Polarity values of 1 and 0 indicate rising and falling edges, respectively.

N/A = Not applicable

Note:

INTx Used to Represent INT1—INT6

In the discussion of interrupt types A, B, and C (subsections 3.8.1.1 through
3.8.1.6 on pages 3-29 to 3-34), the term INTx represents any of the possible
interrupt locations (INT1-INT6) as shown in Figure 3—7 and Figure 3-8. Any
of of these interrupt locations can contain any of the three pin-interrupt types
(A, B, or C) with one restriction: INT1 in address 00070h must always contain
atype A.

TMS370C16 CPU

External and Power Module Interrupts

Figure 3-7. Interrupt-Frame Typical Configurations

70h INT1 Type A Pin Interrupt 70h INT1 Type A Pin Interrupt
71h INT1 FLG Type A Pin Interrupt Flags 71h INT1 FLG Type A Pin Interrupt Flags
72h d" 72h INT2 Type C Pin Interrupt
73h 73h INT2 FLG Type C Pin Interrupt Flags
74h 74h INT3 Type C Pin Interrupt
75h 75h INT3 FLG Type C Pin Interrupt Flags
76h 76h
77h 77h
78h 78h
7%h 79h Vo
7Ah 7Ah servé
7Bh 7Bh orve
7Ch 7Ch PM2 Power Module 2 Enable
7Dh 7Dh PM2 FLAGS Power Module 2 Flags
7Eh 7Eh PM1 Power Module 1 Enable
7Fh 7Fh PM1 FLAGS Power Module 1 Flags
(a) Single Interrupt (Minimum Configuration) (b) Interrupts and Power Modules
70h INT1 Type A Pin Interrupt 70h INT1 Type A Pin Interrupt
71h INT1 FLG Type A Pin Interrupt Flags 71h INT1 FLG Type A Pin Interrupt Flags
72h INT2 Type A Pin Interrupt 72h INT2 Type C Pin Interrupt
73h INT2 FLG Type A Pin Interrupt Flags 73h INT2 FLG Type C Pin Interrupt Flags
74h S Resbrels S 74h INT3 Type A Pin Interrupt
75h 75h INT3 FLG Type A Pin Interrupt Flags
76h 76h INT4 Type B Pin Interrupt
77h vy Reseved. .~ .+ 77h INT4 FLG Type B Pin Interrupt Flags
78h PM4 Power Module 4 Enable 78h INTS Type C Pin Interrupt
7%h PM4 FLG Power Module 4 Flags 79h INT5 FLG Type C Pin Interrupt Flags
7Ah PM3 Power Module 3 Enable 7Ah INT6 Type B Pin Interrupt
7Bh PM3 FLAGS Power Module 3 Flags 7Bh INT6 FLG Type B Pin Interrupt Flags
7Ch PM2 Power Module 2 Enable 7Ch INT7 Type C Pin Interrupt
7Dh PM2FLAGS Power Module 2 Flags 7Dh INT7 FLG Type C Pin Interrupt Flags
7Eh PM1 Power Module 1 Enable 7Eh INT8 Type C Pin Interrupt
7Fh PM1 FLAGS Power Module 1 Flags 7Fh INT8 FLG Type C Pin Interrupt Flags
(c) Interrupts and Power Modules (d) All Interrupts, Mix of All Three Types

TMS370C16 System Configuration 3-27

External and Power Module Interrupts

Figure 3-8. Typical Interrupt Frame

Addr

00070h

00071h

00072h

00073h

00074h

00075h

00076h

00077h

00078h

00079h

0007Ah

0007Bh

0007Ch

0007Dh

0007Eh

0007Fh

3-28

Reg
Mnem 7 6 5 4 3 2 1 0
INT1 INT1 PIN INT1 INT1 INT1
DATA POLARITY | PRIORITY | ENABLE
INT1 FLG
INT2 INT2PIN | INT2 I')'g.i g‘gﬁ INT2 INT2 INT2
DATA NMI POLARITY | PRIORITY | ENABLE
DIR ouT
INT2 FLG
INT3 INT3
INT3 INT3 INT3
INT3 DATA | DATA
i OUr | POLARITY | PRIORITY | ENABLE
INT3 FLG
PM2 PMSTS | PMSTS | PM STS | PMSTS | PMSTS | PMsTs | PmsTs
ENABLE ENAB13 | ENAB12 | ENAB11 | ENAB10 | ENABS | ENAB8 | ENAB7
PM2 PMINT | PMINT | PMINT | PMINT | PMINT | PMINT | PMINT
FLAGS FLAG13 | FLAG12 | FLAG11 | FLAG10 | FLAGS® | FLAGS | FLAG?
PM1 PMSTS | PMSTS | PMSTS | PMSTS | PMSTS | PMSTS | PMSTS
ENABLE ENABG | ENAB5 | ENAB4 | ENAB3 | ENAB2 | ENAB1 | ENABO
PM1 PMINT | PMINT | PMINT | PMINT | PMINT | PMINT | PMINT
FLAGS FLAG6 | FLAG5 | FLAG4 | FLAG3 | FLAG2 | FLAG1 | FLAGO
TMS370C16 CPU

Register
Shown

Type A
Interrupt

1 Type A
1 Interrupt
‘| Flag

Type B
Interrupt

Type B

Interrupt
| Flag

Type C
Interrupt

| Type C
| Interrupt
| Flag

Power
Module 2
Enable

Power
Module 2
Flags
Power

Module 1
Enable

Power
Module 1
Flags

External and Power Module Interrupts

3.8.1.1 Type A Interrupt Pins

Type A interrupt pins can be used as nonmaskable interrupts, normal inter-
rupts, or digital input pins. At least one type A interrupt pin is required on each
device and must be located in address 00070h (the first byte — INT1 — in the
interrupt frame). A corresponding Type A flag bit is contained in the second
byte (described in subsection 3.8.1.2). Additional type A interrupts can be
implemented on a device’s interrupt frame, their location specified by device
design (see applicable device data sheet). The exampie below shows the type
Aiinterrupt at INT1. Bits take the name of the interrupt level (INT2, INT3, etc.).

Type A Interrupt (shown in INT1 location)

6 5 2 1 0
INT1 PIN #l NT1 INT1 INT1

DATA INTINMI £/ #| POLARITY | PRIORITY | ENABLE
RO RWF—0 RWF—0 RW-0 RW-0

R =Read, W= Write, C = Clear only, F=Freeze bit, —n = Value after reset (0, 1, x = indeterminate)

Bit7

Bit 6

Bit5

Bits 4 &3

Bit2

Reserved.
Writing to this bit has no effect, and a read is undefined.

INT1 PIN DATA. interrupt Pin Data.
‘This bit reflects the current level on the interrupt pin, regardiess of how the in-
terrupt pin is configured.

0= The pinis a low input.

1= The pin is a high input.

INT1 NMI. Nonmaskable Interrupt Enable.
This bit determines whether or not this pin can generate a nonmaskable inter-
rupt. A freeze bit can be configured to a 1 or 0 on ROM devices at the time of
device fabrication (see Section 3.10 on page 3-39).

0= The pin is a regular interrupt or a digital input.

1 = The pin is a nonmaskable interrupt.

Reserved.
Writing to these bits has no effect, and reads are undefined.

INT1 POLARITY. interrupt Polarity.
This bit determines whether interrupts are generated on the rising or falling
edge. A freeze bit can be configured to a 1 or 0 on ROM devices at the time of
device fabrication (see Section 3.10 on page 3-39).
0 = The interrupt is generated on a falling edge (high-to-low transition).
1 = The interrupt is generated on a rising edge (low-to-high transition).

TMS370C16 System Configuration 3-29

External and Power Module Interrupts

Bit 1 INT1 PRIORITY. Interrupt Priority.
This bit determines which level interrupt is requested. The bit is ignored if the
NMI bit is set.

0 = High-level interrupt. See the specific device data sheet.
1 = Low-level interrupt. See the specific device data sheet.

Bit 0 INT1 ENABLE. Interrupt Enable.
This bit enables or disables the maskable interrupt. The bit is ignored if the NMI
bit is set.
0 = Disable interrupt (use pin as a digital input).
1 = Enable interrupt.

3.8.1.2 Type A External Interrupt Flag Bit

The Type A external interrupt flag bit is the MSB of the byte that accompanies
and follows the Type Ainterrupt pin byte (described in subsection 3.8.1.1). The
example below shows INT1 FLAG bit.

Type A External Interrupt Flag (INT1 location)
Bit # 7 6 5 4 3 2 1 0

00071h | INT1FLAG

RC-0
R = Read, W= Write, C = Clear only, —n = Value after reset (0, 1, x = indeterminate)

Bit 7 INT1 FLAG. Interrupt Flag.

This bit indicates that the selected transition has been detected. It is set,
whether the interrupt is enabled or not. The bit can be used for software polling
to see whether the selected edge has occurred. It can be cleared by software
or a system reset. If used as an interrupt, the bit does not have to be cleared.
The interrupt occurs once for each selected edge on the interrupt pin, even
though the bit is already set. However, clearing the bit will clear a pending
interrupt request from this interrupt pin. The interrupt flag bit is located in a
separate register from the interrupt control bits to prevent inadvertent clearing
of the flag bit when the control bits are changed with read/modify, write-type
instructions such as SBITO0 and SBIT1 (set bit to 0, set bit to 1 instructions).

0 = No transition is detected.
1 = Atransition is detected.

Bits 6—0 Reserved.
Writing to these bits has no effect, and reads are undefined.

3-30 TMS370C16 CPU

External and Power Module Interrupts

3.8.1.3 Type B Interrupt Pins

Type B interrupt pins can be used as nonmaskable interrupts, normal
interrupts, digital input, or digital output pins. Any combination of Type B (as
well as Types A or C) interrupt-pin bytes can follow the two Type A interrupt
bytes in addresses 00070h and 00071h, as specified by device design (see
applicable device data sheet). This Type B interrupt pin byte is followed by a
second byte containing the Type B interrupt flag bit (shown in subsection

3.8.1.4).
Type B Interrupt Pin Byte
Bit# 6 5 4 3 2 1 0
INTX INTx INTX INTx INTx
INTXPIN | INTXNMI | 5 TA DIR | DATA OUT | POLARITY | PRIORITY | ENABLE
R-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
R = Read, W= Write, C = Clear only, —n = Value after reset (0, 1, x = indeterminate)
Bit7 Reserved.

Writing to this bit has no effect, and a read is undefined.

Bit6 INTx PIN. Interrupt x Pin Data.
This bit reflects the current level on the interrupt pin, regardiess of how the in-
terrupt pin is configured.
0= The pinis a low input.
1 = The pinis a high input.

Bit5 INTx NMI. Nonmaskable Interrupt x Enable.
This bit determines whether or not this pin can generate a nonmaskable inter-
rupt.
0= The pin is a regular interrupt or a digital I/O.
1 = The pin is a nonmaskable interrupt.

Bit 4 INTx DATA DIR. Interrupt x Pin Data Direction.
When this interrupt pin is not enabled as an interrupt, the bit determines
whether the pin is a digital input or a digital output.
0 = The pinis an input.
1 = The pin is an output.

Bit3 INTx DATA OUT. Interrupt x Pin Output Data.
When used as a digital output pin, this read/write bit determines whether or not
this pinisa 1 or 0.

0= The pinis a zero if used as a digital output.
1= The pinis a one if used as a digital output.

TMS370C16 System Configuration 3-31

External and Power Module Interrupts

Bit2 INTx POLARITY. Interrupt x Polarity.
This bit determines whether interrupts are generated on the rising or falling
edge.
0 = The interrupt is generated on a falling edge (high-to-low transition).
1 = The interrupt is generated on a rising edge (low-to-high transition).

Bit 1 INTx PRIORITY. Interrupt x Priority.
This bit determines which level interrupt is requested. The bit is ignored if the
NMI bit is set.
0 = High-level interrupt. See the specific device data sheet.
1 = Low-level interrupt. See the specific device data sheet.

Bit0 INTx ENABLE. Interrupt x Enable.
This bit enables or disables the maskable interrupt. This bit is ignored if the
NMI bit is set.
0 = Disable interrupt (Use pin as a digital input or output).
1 = Enable interrupt.

3.8.1.4 Type B External Interrupt Flag Bit

This bit is the MSB of the byte following the Type B external interrupt pin byte
described in subsection 3.8.1.3.

Type B Interrupt Flag Byte

Bit # 7

0007xh | INTXFLAG [

RC-0
R = Read, W= Write, C = Clear only, —n = Value after reset (0, 1, x = indeterminate)
Bit 7 INTx FLAG. Interrupt x Flag.

This bit indicates that the selected transition has been detected. It is set,
whether or not the interrupt is enabled. This bit can be used for software polling
to see whether the selected edge has occurred. It can be cleared only by soft-
ware or a system reset. If used as an interrupt, the bit does not have to be
cleared. The interrupt occurs once for each selected edge on the interrupt pin,
even though the bit is already set. Clearing the bit will, however, clear a pend-
ing interrupt request from this interrupt pin. The interrupt flag bit is located in a
separate register from the interrupt control bits to prevent inadvertent clearing
of the flag bit when the control bits are changed with read/modify/write-type
instructions such as SBITO and SBIT1 (set bit to 0, set bit to 1 instructions).

0 = No transition is detected.
1 = Atransition is detected.

Bits 6-0 Reserved.
Writing to these bits has no effect, and reads are undefined.

3-32 TMS370C16 CPU

External and Power Module Interrupts

3.8.1.5 Type C Interrupt Pins

Type C interrupt pins can be used as normal interrupts, digital input, or digital
output pins. Any combination of Type C (as well as Types A or B) interrupt-pin
bytes can follow the two Type A interrupt bytes in addresses 00070h and
00071h, as specified by device design (see applicable device data sheet). This
Type C interrupt pin byte is followed by a second byte containing the Type C
interrupt flag bit (shown in subsection 3.8.1.6).

Type C Interrupt Pin Byte

6 4 3 2 1 0
NTXPIN INTX INTx INTx INTX INTX
DATADIR | DATAOUT | POLARITY | PRIORITY | ENABLE
R-0 RW-0 RW-0 AW-0 RW-0 RW-0

R = Read, W= Write, C = Clear only, —n = Value after reset (0, 1, x = indeterminate)

Bit 7

Bit 6

Bit5

Bit4

Bit3

Bit 2

Reserved.
Writing to this bit has no effect, and a read is undefined.

INTx PIN. Interrupt x Pin Data.

This bit reflects the current level on the interrupt pin, regardless of how the in-
terrupt pin is configured.

0= The pinis a low input.
1= The pinis a high input.

Reserved.
Wiriting to this bit has no effect, and a read is undefined.

INTx DATA DIR. Interrupt x Pin Data Direction.
When this interrupt pin is not enabled as an interrupt, the bit determines wheth-
er the pin is a digital input or a digital output.

0=

1 = The pinis an output.

The pin is an input.

INTx DATA OUT. Interrupt x Pin Output Data.
When this pin is used as a digital output, this bit determines whether the pinis a

1or0.

0= The pinis a 0 when used as a digital output.
1= The pinis a 1 when used as a digital output.

INTx POLARITY. Interrupt x Polarity.
This bit determines whether interrupts are generated on the rising or falling

edge.

0 = The interrupt is generated on a falling edge (high-to-low transition).
1 = The interrupt is generated on a rising edge (low-to-high transition).

TMS370C16 System Configuration

3-33

External and Power Module Interrupts

Bit 1 INTx PRIORITY. Interrupt x Priority.
This bit determines which level interrupt is requested.

0 = High-level interrupt. See the specific device data sheet.
1 = Low-level interrupt. See the specific device data sheet.
Bit 0 INTX ENABLE. Interrupt x Enable.
This bit enables or disables the maskable interrupt.

0 = Disable interrupt (use pin as a digital input or output).
1 = Enable interrupt.

3.8.1.6 Type C Interrupt Flag

This bit is the MSB of the byte following the Type C external-interrupt pin byte
described in subsection 3.8.1.5.

Type C Interrupt Flag Byte
Bit # 7 6 5 4 3 2 1

0007xh | INTx FLAG

RC-0
R = Read, W = Write, C = Clear only, —n = Value after reset (0, 1, x = indeterminate)

Bit7 INTx FLAG. Interrupt x Flag.

This bit indicates that the selected transition has been detected. It is set,
whether or not the interrupt is enabled. The bit can be used for software polling
to see whether the selected edge has occurred. It can be cleared only by soft-
ware or a system reset. If used as an interrupt, the bit does not have to be
cleared. The interrupt will occur once for each selected edge on the interrupt
pin, even though this bit is already set. Clearing this bit will, however, clear a
pending interrupt request from this interrupt pin. The interrupt flag bit is located
in a separate register from the interrupt control bits to prevent inadvertent
clearing of the flag bit when the control bits are changed with read/modify/
write-type instructions such as SBITO and SBIT1 (set bit to 0, set bit to 1
instructions).

0 = No transition is detected.
1 = Atransition is detected.

Bits 6-0 Reserved.
Writing to these bits has no effect, and reads are undefined.

3-34 TMS370C16 CPU

External and Power Module Interrupts

3.8.2 Power Module Interrupts

Power modules sometimes have fault condition signals that generate
interrupts. These signals are routed to the interrupt module. Each interrupt
signal has one enable bit and one status flag. Each set of seven internal
interrupts has a single interrupt vector. The interrupt level is determined at
device fabrication; it cannot be programmed. The power module interrupt
registers reside in the same frame as the external interrupt registers.

3.8.2.1 Power Module Interrupt Enable Register

Bit #

0007Eh

-0

The power module interrupt enable registers contain interrupt enable bits
associated with any power modules that are available. See the specific device
data sheet to determine availability and naming conventions. Power Module
Enable 1 at address 0007Eh is shown as an example. Power Modules 2 and
3, etc., operate identically at their own addresses but are not shown (they
follow the numbering scheme shown in Figure 3—8 on page 3-28).

Power Module 1 Enable Interrupt Register (PM1 ENABLE)
6 5 4 3 2 1 0

PM STS PMSTS PM STS PM STS PMSTS PM STS PM STS
ENA6 ENA S ENA 4 ENA3 ENA 2 ENA1 ENAO

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read, W= Write, C = Clear only, —n = Value after reset (0, 1, or x = indeterminate)

Bit7

Bits6-0

PM INT ENA 1. Power Module Interrupt Enable 1.

This bit designates whether or not the seven power module interrupt inputs are
able to generate an interrupt request. Note that if this bit is cleared, none of the
related seven interrupts in bits 6 — 0 can cause an interrupt. If this bit is set, then
an active and enabled interrupt in bits 6 — 0 can cause an interrupt and set the
corresponding bit in the power module flag register (described in subsection
3.8.2.2). The PM INT ENA 1 bit provides a quick means to temporarily disable
all power module interrupts from a group and then re-enable them using the bit
clear (SBITO) and bit set (SBIT1) instructions. The wakeup signal associated
with this interrupt is also disabled when the interrupt is disabled.

0= Power module interrupt is disabled.
1 = Power module interrupt is enabled.

PM STS ENA 6-0. Power Module Status Interrupt Enable.
These bits specify whether or not the power module interrupt sources are
enabled to set the PM INT FLAG 1 bit (subsection 3.8.2.2). To allow an
interrupt from a particular power module input, the corresponding PM STS
ENA x bit must be set, as well as the PM INT ENA 1 bit.

0= Power module interrupt is disabled.

1 = Power module interrupt is enabled.

TMS370C16 System Configuration 3-35

External and Power Module Interrupts

3.8.2.2 Power Module Interrupt Flag Register

3-36

Bit #

0007Fh

Bit7

The power module interrupt flag registers contain the interrupt status flags
associated with the power modules that are used. See the specific device data
sheet to determine module availability and naming conventions. Power
Module Flag 1 is shown as an example. Power Modules 2 and 3, etc., operate
identically at their own addresses but are not shown (they follow the numbering
scheme shown in Figure 3-8 on page 3-28).

Power Module 1 Flag Register (PM1 FLAGS)
7 6 5 4 3 2 1 0

PMINT PMINT PM INT PM INT PMINT PMINT PMINT
STS 6 STS§ STS 4 STS 3 §Ts 2 STS 1 STS 0

RC-0 R—x R—x R-x R—x R—x R—x R—x
R =Read, W= Write, C = Clear only, —n = Value after reset (0, 1, or x = indeterminate)

PM1 INT FLAG. Power Module Interrupt Flag.

This bit is set any time one of the power module interrupt status bits is active
and its corresponding PM STS ENA x bit is also set. This flag can be cleared
only by writing a 0 (writing a 1 has no effect). Values read at this bit:

0 = Power module interrupt has not occurred since flag last cleared.
1 = Power module interrupt has occurred since flag last cleared.

Bits 6—-0 PM INT STS 6-0. Power Module Interrupt Status Flags.

These read-only bits reflect the status of the input source signal to the power
module interrupts. If the source is in its active state causing an interrupt, this bit
will read a 1; otherwise, it will read a 0.

0 = Power module interrupt is inactive.
1 = Power module interrupt is active.

TMS370C16 CPU

External and Power Module Interrupts

3.8.3 Phantom Interrupt Vector

The phantom interrupt vector (shown at address 08004h in Figure 3-5 on
page 3-20) is a system interrupt integrity feature that allows a controlled exit
from an improper interrupt acknowledge sequence. For example, if the CPU
receives an interrupt request from a device module, the CPU then reads the
priority chain of the device modules to determine which module has a pending
interrupt. If the CPU finds no module with a pending interrupt, even though the
CPU received an interrupt request, the phantom interrupt vector is accessed.
Because this condition is considered to be an invalid operation, it is suggested
that the phantom interrupt vector point to a reset generating routine (software
reset) so that the device will resume operating from a known condition.

TMS370C16 System Configuration 3-37

Multiple Interrupt Servicing

3.9 Multiple Interrupt Servicing

When multiple interrupts are pending simultaneously, the interrupt with the
highest level priority is serviced first. This order of service is established
through the physical daisy chain connections on the interrupts and by the
interrupt mask level in the ST, bits L2-L0.

When servicing an interrupt, the processor automatically sets the interrupt
mask bits L2—L0 to 1. This prevents all other interrupts (except an NMI) from
being recognized during the execution of the interrupt service routine. If an
NMI causes its interrupt service routine to be entered, then even subsequent
NMIs are disabled until the NMI interrupt service routine is exited with an RTI
(return from interrupt) instruction. Once the service routine is exited, the old
status register contents are popped from the stack. This returns the ST
interrupt mask bits to their original conditions, thus allowing pending interrupts
to be recognized.

An interrupt service routine can allow nested interrupts by modifying the ST
interrupt mask bits during interrupt service routine execution. This permits
other interrupts to be recognized during the service routine execution. When
anested interrupt service routine completes, it returns to the previous interrupt
service routine when the RTI instruction executes. Too many nested interrupts
could overflow the stack, causing program failure.

3-38 TMS370C16 CPU

TMS370C16 Interrupt Configurability Options

3.10 TMS370C16 Interrupt Configurability Options

The Type A interrupt (described in subsection 3.8.1.1 on page 3-29) allows a
freeze option regarding:

1 Nonmaskable interrupt functionality
[Active edge polarity of the interrupt

You can configure your device with freezable control bit mask options during
the final stages of the manufacturing process. This freeze option allows you
to configure the function of any available Type A interrupt on the device to meet
your system requirements. Freezable control bits can be frozen in either a 1
or 0 value. If a control bit is frozen, software control over that bit is disabled,
and the Type A interrupt will always operate relative to the frozen state of the
bit.

To configure your device with freezable control bit mask options at the time of
manufacture, complete a New Code Release Form (NCRF) indicating the
desired options. The NCRF is available through any local Tl field sales office.

The two control bits in the Type A interrupt control register that can be
individually frozen during the manufacturing process are the INT1 NMI
(INTx.5) bit and the INT1 POLARITY (INTx.2) bit. Table 34 illustrates the
possible freeze options available and how Type A interrupt operation is
affected.

Table 3—4. Type A Interrupt Control Bit Freeze Options

INT1 NMI INT1 POLARITY
(INTx.5) (INTx.2) Type A Interrupt Functionality

Writeable Writeable Fully software selectable.

0 (Frozen) Wiriteable Type A interrupt can never be configured as an NMI. Polarity is
software selectable.

1 (Frozen) Writeable Type A interrupt will always be configured as an NMI. Polarity is
software selectable.

Writeable 0 (Frozen) Type A interrupt NMI functionality is software selectable. Polar-
ity is always on the falling edge only.

Writeable 1 (Frozen) Type A interrupt NMI functionality is software selectable. Polar-

ity is always on the rising edge only.

TMS370C16 System Configuration 3-39

Low-Power and Idle Modes

3.11 Low-Power and Idle Modes

3.11.1 Overview

Low-power modes reduce the operating power by reducing or stopping the
internal clock signals used by various modules in the device. There are two
types of low-power modes: the halt and standby modes (see the Clock
Modules Reference Guide for implementation information.) A third mode, idle,
is not actually a low-power mode, but a wait state.

The TMS370C16 low-power (powerdown) modes are defined as follows:

[Haltmode provides the lowest level of power reduction by stopping all sys-
tem clocks.

(1 Standby mode provides an intermediate level of power reduction by stop-
ping the system clocks to the CPU. The oscillator and watchdog (if avail-
able) clocks are still active in the standby mode.

(1 Idle mode provides no power reduction at all. The CPU in effect, goes into
an infinite loop and executes the IDLE instruction until a reset occurs or
an enabled interrupt causes another operation to occur.

These modes can be permanently enabled or disabled through mask options
for ROM-based devices. If the device has the low-power mode disabled
through this mask option, writing to the low-power selection control bits in the
oscillator module has no effect. Once the low-power selection control bits are
initialized, executing an IDLE instruction causes the device to enter one of the
two low-power modes or the idle mode.

Note: Low-Power Modes Depend on Oscillator Module

The low-power modes for ‘C16 CPU-based devices and the methods of
selection depend a great deal on the oscillator module used on the device.
See the specific device data sheet and the oscillator module user’s guide for
more information on the availability and implementation of low-power
modes.

L J

3.11.2 Low-Power Wakeup Interrupt

The TMS370C16 CPU-based architecture enables the device to be pulled out
of low-power modes through a maximum of 24 selectable actions, as well as
any power module interrupt that is present on the device. The actual number
and selection of the 24 wakeup actions is device specific. Typically, reset or
any enabled external interrupt, as well as any other enabled module interrupt

3-40 TMS370C16 CPU

Low-Power and Idle Modes

(SCI, RXD, RTI, etc.), pulls the device out of a low-power mode. See the
specific device data sheet to determine exactly which actions allow the
low-power modes to be exited.

Remember that even though an interrupt is designed to allow an exit from the
low-power mode, that particular interrupt still must be enabled locally and
globally to actually bring the device out of the low-power mode. For example,
adevice can have an SCl available and the SCI RXD interrupt selected to allow
low-power mode exit. If the SCI RXD interrupt is disabled locally or if global
interrupts are disabled, the low-power mode will not be exited. You must
ensure a low-power mode exit path is available before entering a low-power
mode.

TMS370C16 System Configuration 3-41

3-42 TMS370C16 CPU

Chapter 4

Addressing Modes

This chapter describes the addressing modes supported by the TMS370C16
microcontroller instruction set and covers the following topics:

Topic Page

4-1

Mode Summary

4.1 Mode Summary

The various addressing modes of the TMS370C16 CPU and their syntax are
described in the pages listed in Table 4—1 below. To find which modes apply
to a specific instruction, consult the instruction-set summary table in Section
5.2, beginning on page 5-4.

Table 4—1. Addressing Mode Summary

Addressing Mode Description Section Page

implied Operand is not required. Instruction operation 4.2 4-3
is implied in the mnemonic.

PC Relative Operation is relative to the PC contents. 4.3 4-4
Memory Direct Operation is on a specified memory address. 4.4 4-5
Immediate Operate on a value specified in the operand. 4.5 4-7
Register Direct Operate on the value in a register. 4.6 4-8
Register indirect 1 Operate on a value at an address in a register. 4.7 4-9

No Displacement Register contents = effective address 4.71 4-10

(includes both predecrement and
postincrement modes)

With Displacement Offset + register contents = effective 472 4413
address (includes extra indirection with
CALL and JMP instructions)

tSection 4.8 (page 4-16) describes how to set the word address in a register for using indirect ad-
dressing with the CALL, JMP, and FMOV instructions.

To designate contents, the following apply:

Symbol Meaning Example
(Rx) or (x) Contents of register x or of memory at address x (R4) or (LABEL)
((x)) Contents of memory designated by contents of x (disp + (Rn))

4-2 TMS370C16 CPU

Implied Addressing

4.2 Implied Addressing

This class of instructions does not require you to specify an operand. The
operands to be used are predetermined. For example, the implied instruction
RTS has two implied operands: the stack pointer (SP) and the program
counter (PC). Other instructions using this form of address are RTI (return from
interrupt) and UNLINK (unlink and deallocate stack frame).

Figure 4-1. Implied Addressing

RTS Return from a subroutine. Subtract 2 from stack pointer. Move stack
. word at stack pointer value to PC, which is interpreted into the value
Execution: on lines A16 — A1 with AO = 0 (calculates to CO00h x 2 = 18000h).
(SP)—-2 — (SP)
(SP) — (PC) Ri2
R13 F 0 0 4 |« StackPointer
R14 ! at RTS Execution
01 7FFCh CALL SUB_CHK 1
01 7FFER | <SUB_CHK address> R15 }
018000h !
4 v Stack
¢ S @ Foot FOOOh

SUB_

—_2

0}

RTS Is Final Instruction
in Subroutine

F002 —————— 5 F002h
CHK | Subroutine Start ®New Sta$ F004h

Address FO06h
is FOO2h F0O8h

®
Return Address (17 Address Lines)

FOOAh
FOOCh

®
€« ———|—+4+1

16-Bit PC

Note: Adashed line denotes the path of the value moved or copied. A solid line denotes

a location pointer.

Addressing Modes 4-3

PC-Relative Addressing

4.3 PC-Relative Addressing

This format adds or subtracts a value from the PC to derive the effective ad-
dress of the next instruction. Instructions using this format are Bcond, BRBITO,
BRBIT1, and DBNZ.

Figure 4-2. PC-Relative Addressing

BEQ SAME_NOS If the status register Z[ST] = 1 (equal condition true),
branch to address SAME_NOS by adding 2 x 8-bit displace-
Execution: ment to the PC value (presently pointing 2 words beyond
(PC) + displacement — (PC) the BEQ instruction). This provides a signed displacement
(if condition true) of +129 words or —126 words from the BEQ instruction’s

address. If Z[ST] = 0, go to the next instruction.

BEQ SAME NOS One-Word Instruction

If Condition Is
True, Branch
tp Subroutine

<4— PC Points Here

L SAME_NOS

For Bcond, BRBITO, and BRBIT1, a signed 8-bit value is added to the PC as
address lines A8-A1 to redirect execution flow from the executing
instruction’s 17-bit physical memory address. Forthe DBNZ instruction, a four-
bit unsigned value in bits 7—4 of the instruction word is subtracted from the
PC'’s corresponding value for address lines A4—A1. The following table shows
the displacement from the physical address of the PC.

Instruction Maximum Displacement

Becond (where cond represents +129 words after and —126 words be-
the condition mnemonic) fore the physical address of the PC

BRBITO and BRBIT1 +130 words after and —125 words be-
fore the physical address of the PC
DBNZ Up to —15 words before the PC

The 8-bit displacement is contained in the LSB:
15 8 7 4 3 0

4-4 TMS370C16 CPU

Memory-Direct Addressing

4.4 Memory-Direct Addressing

This addressing mode provides an easy way to deal directly with absolute
addresses or labeled addresses. It is available only for instruction formats in
which the indirect register with offset format (*disp;g [Rn]) is used (as ex-
plained in the note on the next page).

Figure 4-3. Memory-Direct Addressing (& Operator)

MOV &TABL1,&TABL2 Move (copy) the entire contents (word value) at address
. TABL1 to address TABL2. Leave the source-address
Execution: contents unchanged. Consider TABL1 and TABL2 to be
(TABL1) — (TABL2) on even address boundaries in order to work correctly
with a move-word instruction.
Before After
Copy Word
TABLA TABLA TABLT o
| TABL2
®
° |
TABL2| 1 1 F cC TABL2 -
[J
[J
[]
TABL3] 1 2 3 4 TABL3 1 2 3 4
MOVB &TABL3,&TABL2+1 Move (copy) the byte contents at address TABL3 to the
byte at address TABL2+1. Leave the source-address
Execution: contents unchanged. TABL2 and TABLS3 are on even
(TABL3pyte) — (TABL2+1pyte) address boundarles in this example.
Before After
TABL1] A 0o B B TABL1
®
[J
[]
TABL2] A 0 B B TABL2
o — — —— — —
: Copy Byte at TABL3 |
to Byte at TABL2+1 |
TABL3 ‘

TABL3

Addressing Modes 4-5

Memory-Direct Addressing

Note: Derivation of Memory-Direct Format (& Operator)

The &LABEL-format instruction is derived by transforming the &LABEL
operand into the *displacement16[ZR]format (ZR = R15, the zero register).
Thus the zero register value does not change the source or destination
address, leaving it equal to the displacement16 value of LABEL.

For example:
MOV &LABEL,R10

is assembled as if written as:
MOV *LABEL[ZR],R10
and its timing is the same as for the *disp[Rn] format.

The second instruction example above moves the contents at LABEL (zero
offset) to R10. The corresponding opcode value in this example is 22h, and
the instruction needs three cycles to execute, as shown for the formats for
the MOV instruction, beginning on page 5-70.

The &LABEL format can be used with any instruction that uses the *disp/Rn]
operand (e.g., ADD, ADC, AND, CALL, CLR, etc.).

4-6 TMS370C16 CPU

Immediate Values

4.5 Immediate Values

This format contains a signed immediate number that will be operated on by
the instruction. The immediate value is preceded by an identifying pound sign
(#). The different types of immediate instructions are described below.

Figure 4-4. Operand Is Immediate Value (# Operator)

MOV #3,R3 Move (copy) the immediate value 3 to R3. The immediate
value operand is signified by a # prefix.

Execution:
Immediate operand — (R3)

Registers RO—-R15

Two-Word MOV #3,R3
Instruction 0O 0 0 3

Extension Word (Up to 16 A 16-bit extension word following the instruction word con-
Bits) tains the immediate value:

Embedded 8-Bit Inmediate The immediate value is in the LSbyte of the instruction
word:

Instructions using this format include TBITO, TBIT1, LINK,
RTDU, and TRAP.

Embedded 4-Bit immediate The immediate value is in the four MSBs of the instruction
word’s LSbyte:

Instructions
SUBQ, SUBQB, STRI, and the shift instructions (SHL, SHLL,
ASR, ASRL, ASRO, ASROL, LSR, and LSRL).

Addressing Modes 4-7

Register-Direct Addressing

4.6 Register-Direct Addressing

Values within registers are operated upon. The effective address is within the
first 64K bytes exceptfor the CALL and JMP instructions, which address 128K

bytes.
Figure 4-5. Register-Direct Addressing
® MOV R1,R3 Move (copy) the entire contents (word value) of R1 to R3. Leave the
® MOVB R3,R5 source register (R1) unchanged. Later, move the LSbyte of R3 to the
! LSbyte of R5; zero-extend the MSbyte of R5.
Execution:
® (R1) - (R3) .
® (R3 LSbyte) — (R5 LSbyte) Registers RO—~R15
zeroes — (R5 MSbyte)

@
MOV R1,R3 Copy LSbyte of Ral
° to LSbyte of R5|__
° (zero-extend
hd MSbyte of R5)

MOVB R3,R5

Figure 4-6. Register Direct With CALL or JMP Instructions Addresses 128K Bytes

When used with the CALL or JMP instructions, this mode addresses 128K bytes (as
shown above, address line A16 = 0). For JMP or CALL, place the new 16-bit value
into the PC, then overlay the PC value onto address lines A16-A1 with A0 set to 0.
Since this essentially multiplies the register contents by two, the register’s contents
must be half the absolute memory address value. You can use the question mark
operator (?) to fill the register with this value (as shown in Section 4.8 on page 4-16).

JMP RS Jump to the address stored in R5. This address is placed in
the PC and then overlaid on the address-bus lines (9FDOh x 2
Execution: = 13FAOh). The CALL acts similarly but also provides linkage

(RS) — (PC) to the instruction following the CALL.
Registers R0O—R15

RO
0800h JMP__R5 R1
0802h R2
0804h g(e:f:oigtsmHere R3

re Ju
< \L P
o R6
13FACh New PC Value pew!
value |
to PC|

. ® {_
17 Address Lines «— rn‘rrm*rrrrm

A16 Address Bus Ao

4-8 TMS370C16 CPU

Register-indirect Addressing

4.7 Register-Indirect Addressing

The forms of indirect addressing are listed in Table 4-2 below:

Table 4-2. Register-Indirect Addressing Summary

Indirect Addressing Mode Example Using MOV Description See On Page

No Displacement MOV *R1,R2 The effective address of the Figure 4-7 4-10
source is the value in R1. Move
(copy) contents at that address
to R2.

Predecrement, no displacement MOV *R1,R2 Before the move, decrement Figure 4-7 4-10
the contents of R1 by 2 (for Figure 4-8 4-11
word instructions — by 1 for
byte instructions). Then move
(indirect) the contents at the
address in R1 into register R2.

Postincrement, no displacement MOV *R1+,R2 First move (indirect) the con- Figure 4-9 4-12

tents at the address in R1 into
register R2. Then increment the
contents of R1 (by 2 for word
instructions — by 1 for byte
instructions).

With Displacement

MOV *DISP[R1],R2 DISP = amount addedto R1to Section 4.7.2 4-13
compute the effective address Figure 4-10 4-13
of the source. Move contents at Figure 4-11 4-14
this effective address to R2.
Neither predecrement nor post-
increment is used with this
form.

Note: *Rn Can Be Used If *disp[Rn] Is Assembled

Several instructions do not provide an indirect register without displacement
(*Rn), but provide an indirect register with displacement (offset) (*disp[Rn]).
However, with such instructions, the assembler accepts *Rn by assembling
the *Rn format into a *0[Rn] format.

For example, the assembler statement ADD *R1,R2
is assembled as if written ADD *0[R1l],R2

Thus, the requested instruction becomes a two-word instruction with a zero
offset in the second word. In this case, timing is 3 cycles — the cycle count
for ADD *disp[Rs],Rd. (Note that an ADD *Rs,*Rdoperand cannot be used,
because there is no ADD *disp[Rs], *disp[Rd] instruction.)

Addressing Modes 4-9

Register-Indirect Addressing

4.7.1 Register Indirect Addressing, No Displacement
(Register Contents = Effective Address)

Register contents point to a memory address that contains the value to be op-
erated on. The register value is treated as a 16-bit memory address (address
line A16 = 0) by all instructions except CALL, FMOV, and JMP (which use the
value as a word address and apply it to the PC, where it is shifted to a 17-bit
word address). A method to derive the word address for indirect addressing
is shown in Section 4.8 on page 4-16.

Two other forms of indirect addressing are predecrement and postincrement.

[Inpostincrement, the register containing the address is first accessed and
incremented afterwards (see Figure 4-9). This is used with instructions
such as MOV, CLR, CMP, STEA, and TST.

[In predecrement, the register containing the address is decremented
before the address is accessed (see Figure 4-8). This is used with the
MOV *Rs,Rd format.

Note: Decrement/Increment Considerations

1. The value incremented or decremented depends upon the size of the
instruction. This value is 2 for word instructions and 1 for byte instruc-
tions.

2. When initializing the stack pointer (SP or R14), always write an even
value to the SP register. An odd value can cause an error.

Figure 4-7. Register Indirect (Operand: *Rn)

4-10

MOV *R1,R3 The source register (R1) contains the address where the

Execution:
(R1)) — (RY)

source value is located. Move the value at address 80AOh to
R3. Do not modify R1 or the value at address 80AOh.

Registers RO—R15

Points to

RO

MOV _mips | O Loarees

R1

R2

R3
r R4

80AOh

@ CopytoR3 _| R5
——————— R6

TMS370C16 CPU

Register-Indirect Addressing

Figure 4-8. Register Indirect With Predecrement (Operand: *-Rn)

MOV *—S8P,R11 This example moves (copies) the word from the address
that is two less than the stack pointer’s present contents
Execution: to R11. (Subtract 2 from R13; move the value at that
sms‘)’-z - 13; address to R11).
(R13)) — (RM Registers RO—R15
(before move)
[®
MOV *SPRi1
< <
Points & 80(_:0 Decrement R13 by
80BAh Ag:j " es: -—ZE 2 (Result to R13)
80BCh 80BEh
80BEh 1 ‘—{ Registers R0O—R15
~ -
BOAOh | 1 2 3 4 \\ (after move)

Note: A dashed line denotes the path of the value moved or copied. A solid line denotes
a location pointer.

Addressing Modes 4-11

Register-Indirect Addressing

Figure 4-9. Register Indirect with Postincrement (Operand: *Rn+) and

Predecrement (Operand: *-Rn)

@ MOV *SP+,R1l This example demonstrates the execution of both postincrement
® MOV *-SP,RIl addressing and predecrement addressing. The two instructions,

executed one after the other as shown, repeat exactly the same
function: they both move the value at address 8002h to R11.

MOV *SP+,R11 first implements the move, then increments the

decrement instruction shown here (MOV *-Rn,Rn) is the only

Registers R10—-R15
(before first move)

R11
R12

| R13 (SP)

R14
R15

Execution:
(R13) — (R11)
® (R13)+2 - (R13)
(R13)-2 — (R13) SPby2. Then, MOV *-SP,R11 first decrements the SP by two
@ ((R13) — (R11) and then repeats the same function. Note that the form of the pre-
form of the predecrement instruction.
® | MOV *SP+*Ri1 (Postdecrement)
® | _MOV_*SP*Ri1 (Predecrement)
< <
8000h
8002h [T
8004h

8006h
8008h

8002 SP Value at Execution of MOV *SP+R11
@ 3 __+2 Postincrement 2 After Contents of 8002h Moved to R11
8004 SP Value After Execution of MOV *SP+,R11
® { —2 Predecrement 2 Before MOV *~SP,R11
8002 SP Value When Contents of 8002h Moved to R11

Registers R10-R15
(after both moves)

R13 (SP)
R14
R15

Note: Adashed line denotes the path of the value moved or copied. A solid line denotes

a location pointer.

4-12 TMS370C16 CPU

Register-Indirect Addressing

4.7.2 Register Indirect With Displacement (Offset)
These examples show a displacement added to a register’s contents to derive
the location of the effective address. Figure 4-10 uses word format.
Figure 4-11 uses byte format. Except when used with the JMP or CALL
instructions (see Figure 4-12 on page 4-15), indirect addressing is restricted
to the first 64K bytes of memory.

Note that the register to be added to the displacement is contained in square
brackets (not parentheses).

With some instructions (e.g., JMP and CALL), access is to the full 128K bytes
ofmemory. As shown in Figure 4-13 (page 4-16), these instructions place the
value at the resulting effective address into the PC (where it is shifted to create
a 17-bit memory address in order to access the full 128K-byte address range).

Figure 4-10. Offset + Register in Word Format (Operand: *disp16[Rn])

MOV *32[R4],R6 The source value is found at the address derived by the sum of
. an immediate displacement value and the contents of the
Execution: source index register (R4). Thus, move the word value at
(32 + (R4) — R6 address 8420h (0020h + 8400h) to R6. Modify only register R6.
Registers R0O—-R15
RO
Two-Word { MOV_ *32[R4],R6 R1
Ingtruction 0 0 2 0 |7 Derive Source R2
Address:
< 9 18400 € ——F—— 1
8420
® r
Points to :
Address I
8420h '
I
|
-

@ Value at 8420h
Is Copied to R6

Note: A dashed line denotes the path of the value moved or copied. A solid line
denotes a location pointer.

Addressing Modes 4-13

Register-indirect Addressing

Figure 4-11. Offset + Register in Byte Format (Operand: *disp16[Rn])

MOVB *103h[R4],R6 This example is similar to Figure 4-10, except that a byte move
. is requested (note that the byte is at an uneven address). The
Execution: source value is found at the address derived by adding the

(103h + (R4)) —~ (R6) 0103h immediate value and the contents of R4, which contains
the 8402h offset. Thus, move the value at address 8505h, which is the LSbyte. However, byte
operations extend the byte to a zero-filled word and operate on the word. With a register des-
tination, the entire word is moved to fill the register (a move to a memory address changes only
the destination byte — see second example below).

Registers RO—R15

@ Derive Source

0 1 0 3 7] Addres‘s7
48402

Instruc-
tion

2-Word { MOVB *103h[R4],R6

Byte Value at Address
8505h Is Copied to R6
With Bits 15—-8 Zero-
Filled

MOVB *103h[R4],*R6 The above example is repeated, except that the destination
Execution: is changed to a memory address because the destination
(103h + (R4)) — ((R€)) register holds an indirect address. This example shows that
the move affects only the designated byte in the destination
memory address, leaving any adjacent byte unchanged (no zero-filling occurs as it would

with a register).
Registers RO—R15

O] RO
2-Word MOVB *103h[R4],*R6) R1

Instruc- Derive Source
tion 0 1 0 3 '—l Addre:s; R2
L L — o103 R3
) 3 +8402 ¢ ——— R4
RS

Ré

Byte Value at Address
8505h Is Copied to
Address 8605h

Value of Byte 8604h Unchanged

Note: A dashed line denotes the path of the value moved or copied. A solid line denotes
a location pointer.

4-14 TMS370C16 CPU

Register-Indirect Addressing

Figure 4-12. Offset + Register for JMP and CALL Instructions (Operand: *disp16[Rn])

JMP *200h[R5]

Execution:

The destination word address (new PC value) is found in a
memory address derived by adding the register contents and the
offset (displacement) in the operand. This sum (8700h in this

(200h + (R5)) — (PC)) ©xample) is a memory address that contains the word address

(FOOOh), which is placed in the PC and applied to address lines
A16-A1 with AO held to 0.

Registers RO—R15

i RO

IMP_*200h[RS] | o Derive Source n1

0 2 0 O —————» 0200 @ R2
+8500

< 8700 R3

Opoints to TR R4

Addf9888700h SRS R B R § e R5

R6

Points to 1E000h (FOOOh X 2) A16 Address A0
Bus

Note: A dashed line denotes the path of the value moved or copied. A solid line denotes
a location pointer.

The format in Figure 4-12 has an extra level of indirection when used by either
the JMP or CALL instruction. The sum of the displacement and register value
is a memory address that contains a word address. This word address is
placed in the PC and then overlayed on address lines A16—A1 with AQ set to
0 (effectively multiplying the PC value by 2). A method to set the word address
for this operation is shown in Section 4.8 on the next page.

Note that with JMP and CALL, indirect register with offset goes to an address
to get the final word address. Compare this with the MOV instruction using
indirect register with offset for source: the sum of the offset and register is the
actual memory address that contains the value to be moved (not the value of
another memory address containing the source).

Addressing Modes 4-15

Setting the Word Address for CALL, JMF, and FMOV Instructions

4.8 Setting the Word Address for CALL, JMP, and FMOV Instructions

The CALL, JMP, and FMQV instructions address the full 128K-byte address
space. They apply their effective operand to address lines A16—-A1 with AO
cleared to 0. If you know the 17-bit memory address and want to set up a corre-
sponding word address in a register or memory location, use the question-
mark (?) operator, which translates the 17-bit labeled memory address into a
16-bit word address (divides the memory address by 2). For example, use the
? operator with a MOV instruction to place the word address into a register.
Then use a CALL, JMP, or FMOV instruction to that register or memory loca-
tion. This is shown in Figure 4—13. This form uses a label representation of the
memory address, not an immediate value.

Figure 4-13. Using the ? Operator to Set the Word Address for a Direct-Register

CALL or JMP
MOV #?LABEL, R5 This example shows how the address can be set up for the jump
JMP R5 shown in Figure 4-7 on page 4-10. The jump is to a 17-bit
memory address; this means that the value brought into the PC
Execution: is shifted left one bit (muiltiplied by 2). Thus, the value brought to
% LABEL - (R5) the PC must be a 16-bit word address that is one-half the des-
(R8) —~ (PC) tination 17-bit memory address. In this example, the word

address is brought in from R5. To get the correct value in R5, use the question-mark (?) op-
erator when loading R5 with the destination address. This operator divides the value by 2,
setting up the correct address for the jump destination (as also needed in Figure 4-6). A
CALL direct to a register is treated like a JMP.

Memory Registers
® Mov #7LABELRS Places Ra
Label Address =+ 2 Into RS
(9FDOh = 13FAOh =+ 2) R4
1 RS
13FBCh 2 | r Re
13FBEh JMP R5 Brings Value 9FDOh |

LABEL 13FACh to PC
13FA2h @ PG Places 9fd0 on Address
Bus, Shifted One Address Bit 0
Left
= ¢— [TITITTITTITTITTT T |
LABEL = value 13FAOh A16 A0
Address Bus ~ g —
Resulting JMP Destination
Address Bus Value
of 13FAOh (2 x 9FDOh)

This method can also be used to set up the indirection register for the FMOV
instruction. The bits in the indirection register (either the source or destination)
are a word address to be applied to address bits A16—A1.

4-16 TMS370C16 CPU

Setting the Word Address for CALL, JMP, and FMOV Instructions

Figure 4-14. Use the ? Operator to Set the Word Address for an Indirect-Register FMOV

MOV
FMOV R2,*R5

Execution:
%LABEL — (RS5)
(R2) -- ((R5))

#?LABEL2,R5

These two instructions set up the word address in a register to be

used as the destination for an FMOV instruction. The MOV
instruction uses the ? operator to derive the word address for

memory address 13F00h (in the second 64K bytes of memory)
and have this value ready to be placed in R5 at execution time.

The next instruction moves the contents of R2 indirect to this
word address in RS5.

0800h| MOV #?LABEL2,R5 9]
FMOV R2,*R5 1\-\ RO
R1
> Move to
) < Location - —— — 7] Kk F F R2
13F00h | R3
’ v
/o
v
«— | |
LABEL2 13F00h | @
| Retrieve R2 Contents,
I and Place R5 Contents
| in PC
|
v

< MMTTTITTTTTTTITT

® Points to 13F00h (9F80h X 2),
Move R2 Contents to This Address

A16 Address
Bus

A0

Addressing Modes

4-17

4-18 TMS370C16 CPU

Chapter 5

Assembly Language Instructions

This chapter describes the mnemonics and operation of the TMS370C16
instruction set, organized in alphabetical order. The chapter begins with atable
that summarizes each instruction and auxiliary tables that list the format
protocol for the descriptions. Following these are full descriptions of each
instruction.

Topic Page

Instruction Set Summary

5.1 Instruction Set Summary

Section 5.2, starting on page 5-4, summarizes the TMS370C16’s
instructions. Table 5—1 and Table 5-2 list the abbreviations and symbols used
in Section 5.2.

Table 5—1. Abbreviations Used to Describe Instructions

Abbreviation Meaning
addr16 address; 16 bits in this example
&addr variant to synthesize direct addressing in memory (assembles as *addr{ZR])
B byte opcode
C[ST] carry flag in ST
const4, const8 constant (4-bit, 8-bit, etc.)
d, dest destination
disp8, disp16 displacement (8-bit, 16-bit values shown)
(disp[Rn]) contents at the effective address of displacement + value in Rn
enumerator8 member of a list
IEW instruction extension word
imm unsigned immediate value; in operand syntax it is preceded by a # symbol; if followd by a number
(imm4), number = size in bits (compare simm)
M implied register (R1)
W instruction word
IM:Rd 32-bit concatenation of IM and Rd
FP frame pointer register (R0)
L longword opcode
LSB least significant bit(s)
LSbyte least significant byte
LSword least significant word
MSB most significant bit(s)
MSbyte most significant byte
MSword least significant word
N[ST] sign flag in ST
NOTx ones complement of x
Op opcode
OpA 17-bit opcode address (address-bus location)
PC program counter register
prevA, (prevA) previous-cycle address bus value; (prevA) = contents of previous-cycle address bus value
Rn register (n = register number, R0O—R15)
Rd, Rs, (Rs), (Rd) registers, destination and source; (Rd) = contents of destination register; Rd7 = bit 7 of Rd, etc.
((Rs)), ((Rd)) contents of address contained in Rs or Rd, respectively
RFIRsT,RLAST range of registers

5-2 TMS370C16 CPU

Instruction Set Summary

Table 5-1. Abbreviations Used to Describe Instructions (concluded)

Abbreviation

Meaning

*Rn, *Rn+, *-Rn—

Rn(0-7)
fnA
S

8, src
simm4,simm8
SP

ST

synth. inst

vector base
address

VIST]
w

ZR
Z[ST]

indirection, contents of. *Rn = address value is in Rn; *-An = predecrement;
*Rn+ = postincrement

bit range within a register (register bits 0—7 in this example)
return address

S = size of transfer with 1 = byte and 0 = word; see explanation of "b” column for functional logic
states in Figure 5—1 on page 5-16.

source
signed immediate value (4-, 8-bits, etc.)

stack pointer register (R13)

status register (R14)

synthetic instruction (synthesized using another assembler format)

starting (low) address of the interrupt vectors (an offset is added to this address to determine
the address containing the vector of the interrupt)

overflow/borrow flag in ST
word opcode

zero register (R15)

zero flag in ST

Table 5-2. Symbols Used to Describe Instructions

Symbol Meaning

{} option to select a value in brackets; for example, {x, y} = enter either x or y, or ADD{B} = ADDB is an option-
al form of the ADD instruction (add byte vs. add word).

A bitwise EXCLUSIVE OR (x»y = true where corresponding bits are different)

~ ones complement (unary): toggle/invert bit values: (0 « 1)

- negate (twos complement)

<< left shift (e.g., () <<6 = shift y 6 bit positions to the left)

>> right shift (e.g., (x) >>4 = shift x 4 bit positions to the right)

- copied to or assigned to

immediate operand

() contents of. For example, (SP) = contents of stack pointer; (Rd) = contents of Rd.

. bit selection (s.bit4 = bit 4 in s)

)+ bitwise OR (x]y = 0if either xand y = 0)

#7 when a prefix to a label in assembly language, indicates word address (one half absolute address)

& bitwise AND (x&y = Oif either xor y = 0, but = 1 if both xand y = 1). If used before a label or address value
in assembly language syntax, it indicates direct addressing (synthesizes as *Label[ZR]).

1 Synthetic instruction

Assembly Language Instructions 5-3

Instruction Set Summary Table

5.2 Instruction Set Summary Table

The following table summarizes each of the TMS370C16’s assembly
language instructions: mnemonics, operands, opcodes, execution cycles,
affect on the status register, and a short description. Included under the
Mnemonic column are operands called variants. These are derived by
assembling another form of the instruction, usually using a form of the
*disp16,[Rn]operand (explained in the note on page 4-6). Variants can be con-
venient, but may require more cycles than another format.

Opcodet | Cycles | Status#

Mnemonic B W L| () ZNCV Operation Description
ADC * % % % | Add source plus carry to destination
Rs,Rd 8A 1 (s) + (d) + (C[ST]) — (d)
*disp16[Rs],Rd 8B 3 (an ADD/ADC sequence can be used for
variant: 32-bit addition)
&address,Rd 8B 3
ADD, ADDB * % % » | Add source to destination
Rs,Rd 31 30 1 (s)+ (d) — (d)
Rs,*disp16[Rd] 33 32 5
#imm16,Rd 35 34 2
*disp16[Rs],Rd 37 36 3
variants:
Rs,&address 33 32 5
&address,Rd 37 36 3
ADQ, ADQB * % % % | Add quick immediate to destination
#imm4,Rd 83 82 1 (s)+ (d) — (d)
#imm4,*disp16[Rd] 85 84 5 (add short constant — source is 4-bit
variant: immediate value in opcode word)
#imm4,&address 85 84 5
AND, ANDB * % — 0 | Logical AND source with destination
Rs,Rd 41 40 1 (s) & (d) — (d)
Rs, *disp16[Rd] 43 42 5
#imm16,Rd 45 44 2
#imm?16,*disp16[Rd] 47 46 5
variants:
Rs,&address 43 42 5
#imm16,&address 47 46 5

Legend: t DataSize: B =affectsbyte W = affectsword L = affects long word
} Status Register Values:
0 = status bit always cleared 1 = status bit always set
— = status bit unchanged by execution * = other effect on status bit (see instruction description)

5-4 TMS370C16 CPU

Instruction Set Summary Table

Opcodet | Cycles | Status#
Mnemonic B W L| () ZNCV Operation Description
ASR, ASRL » » » 0 | Arithmetic shift register right
ASR #imm4,Rd B4 n+1 (d)>>n— (d)
ASRL #imm4,IM:Rd B5| 2n
ASR Rs,Rd B6 n+3 (arithmetic right shift — source contains
ASRL Rs,IM:Rd B7 | 2n+2 shift count n)
ASRL Rs,IM:Rd where
Rs =xxx0h B7 3
ASRO, ASROL « » » 0 | Arithmetic right shift, round to 0:
ASRO #imm4,Rd B8 n+2 (d)y>>n— (d)
ASROL #imm4,IM:Rd B9 IF N[ST] = 1 and a 1 is shifted out
N[ST]=0 B9 | 2n+3 of LSB,
N[ST] =1 B9 | 2n+2 THEN Rd + 1 — Rd.
ASRO Rs,Rd BA n+4
ASROL Rs,IM:Rd BB (arithmetic right shift — source contains
N[ST] =0 BB | 2n+3 shift count n — round to 0)
N[ST]=0(Rs=0) BB 3
N[ST] =1 BB | 2n+4
N[ST] = 1where
(Rs = >00x0h) BB 3
B{COND} disp8 -——— IF cond = true, branch to PC + disp8;.
otherwise, execute next instruction.
BCOND Branch Condition Branch conditions; ST bit combinations:
BC if carry set c2§ C=1
BEQ if equal C3 Z=1
BGE if greater than or C9 3 N*V =0
equal if
BGT if greater than Cc7 branch Z|(N'V)=0
BHI if higher C5 taken Cc|zZ=0
BHS if higher or same ci$ C=0
BLE if less than or equal (07:] 2 Z | (N*V)=1 [ZOR (NXORV) =1]
BLO if lower c28 if C=1
BLS if lower or the same cé6 branch c|zZ=1
BLT if less than CA not N*V =1
BN if negative CF taken N=1
BNC if carry clear ci1§ C=0
BNE if not equal C4 Z=0
BNV if overflow clear CcC V=0
BP if positive CD N|Z=0
BPZ if plus (not CE N=0
negative)
BR always Co -—
BV if overflow set cB V=1

Legend: t Data Size:

0 = status bit always cleared
— = status bit unchanged by execution

B = affects byte W = affects word
$ Status Register Values:

L = affects long word

1 = status bit always set
* = other effect on status bit (see instruction description)
§ Two pairs of branch instructions have the same opcodes: BHS and BNC are C1h, and BC and BLO are C2h.

Assembly Language Instructions

Instruction Set Summary Table

Opcodef Cycles Status?
Mnemonic B W L[(t) ZNCV Operation Description
BRBITO imm3 5 ———— | Branch if bit is 0.
#imm3,&addr,dispg | 0 | DO (branch Test bit imm3 in byte adar.
1 D1 taken) IF bit = 0, branch to PC + disp8;
2 | D2 THEN (PC) + disp8 — (PC)
3 D3 4 ELSE, execute next sequential
4 D4 (branch instruction.
5 D5 not (The imm3 value is contained in the 3
6 D6 taken) LSBs of the opcode.)
7 | D7
BRBIT1 imm3 5 —— —— | Branchif bitis 1.
#imm3, &addr,disp8 0 D8 (branch Test bit imm3in byte adar.
1 D9 taken) IF bit = 1, branch to PC + disp8;
2 |DA THEN (PC) + disp8 — (PC)
3 DB 4 ELSE, execute next sequential
4 |IDC (branch instruction.
5 DD not (The imm3 value is contained in the 3
6 |DE taken) LSBs of the opcode.)
7 |DF
CALL —— —— | Jump to subroutine, with linkage
Rd EB 5 CALL Rd:
addr EC 4 Next Instruction Address — (SP)
*disp 16[Rd] ED 5 (SP) +2 — (SP)
variants: (Rd) — (PC)
*Rd ED 5
&address ED 5 CALL *Rd is assembled as CALL *0/Rd].
CALL &address is assembled as
CALL *address[RZ].
(Both variant forms expect a word address
at the destination.)
CLR, CLRB" 10 — 0 | Clear destination:
Rd 03 02 1 0— (d)
*Rd 05 04 2
*Rd+ 07 06 2 Synthesized as MOV ZR,d.
*disp16[Rd] 09 08 3
variant:
&address 09 08 3

Legend: t Data Size: B = affects byte W =affectsword L = affects long word
$ Status Register Values:
0 = status bit always cleared 1 = status bit always set
— = status bit unchanged by execution * = other effect on status bit (see instruction description)
1 Synthetic instruction

5-6 TMS370C16 CPU

Instruction Set Summary Table

Opcodet | Cycles | Status?
Mnemonic B W L[| (t) ZNCV Operation Description
CMP, CMPB * % % % | Compare source to destination:
Rs,Rd 61 60 1 @d) - (s)
#imm16,Rd 63 62 2 and set ST bits accordingly.
*disp16[Rs],Rd 65 64 3
*Rs+,Rd 67 66 3
*disp16[Rs],*disp16[Rd] 69 68 5
variants:
&address,Rd 65 64 3
&address,*disp16[Rd] 69 68 5
*disp16,[Rs],&address 69 68 5
&address1,&address2 69 68 5
CMPC * % % » | Compare source to destination:
Rs,Rd 8E 1 (d) - ((s —C[STD))
*disp16[Rs],Rd 8F 3 and set ST bits accordingly.
variant:
&address,Rd 8F 3
COMPL, COMPLB1 % % % » | Twos-complement (negate) destination
Rn 2F 2E 1 (ZR) — (Rn) — (Rn)
Synthesized as SUBR An,ZR.
DBNZ Rs,disp4 A8 4 —— — — | Decrement register; branch if not 0:
(branch (Rs)—1— (Rs)
taken) IF Rs % 0, branch to PC - disp4
3 IF Rs = 0, execute next sequential
(branch instruction without branching.
not
taken)
DEC, DECBY * % % % | Decrement destination
Rd 87 86 1 (d)—1— (d).
*disp16[Rd] 89 88 5 Synthesized as SUBQ #1,destination.
variant:
&address 89 88 5
DIVS, DIVSL * % 0 % | Signed division:
DIVS Rs,Rd A2 2-27A (d) = (Rs) — (Rd) (quotient),
DIVSL Rs,IM:Rd A3 | 2-29 remainder — (IM).
Divu, DIVUL %% % 0 | Unsigned division:
DIVU Rs,Rd A0 3-21¢ (d) = (Rs) — (Rd) (quotient),
DIVUL Rs,IM:Rd Al remainder — (IM).

Legend: t DataSize: B =affectsbyte W =affectsword L = affects long word
t Status Register Values:
0 = status bit always cleared 1 = status bit always set
— = status bit unchanged by execution * = other effect on status bit (see instruction description)
1 synthetic instruction
Two pairs of branch instructions have the same opcodes: BHS and BNC are C1h, and BC and BLO are C2h.
A DIVS takes 2-27 cycles, with two exceptions explained in the instruction’s detailed description.
DIVSL takes 2—-29 cycles,with eight exceptions explained in the instruction’s detailed description.
¢ DIVU and DIVUL take 3-21 cycles, with the exceptions explained in the instruction’s detailed description.

Assembly Language Instructions 5-7

Instruction Set Summary Table

Opcodet | Cycles | Status#
Mnemonic B W L (t) ZNCV Operation Description

EXTS, EXTSB * % %« 0 | Extend sign of register value:

EXTS IM:Rd AA 2 bit 15 value — bits 16 to 31 (word)
EXTSB Rd AB 1 bit 7 value — bits 8 to 15 (byte)

EXTZ, EXTZBY *x % — 0 | Extend (zero fill) register to next larger data
EXTZ IM:Rd 1 size (byte — word orword — double word).
EXTZB Rd 02 1

03 Synthesized as MOV ZR,/IM (word) and
MOVB Rd,Rd (byte).
FMOV * % — 0 | Move far; indirect register accesses 128K
Rs,*Rd F2 5 bytes: (Rs) — ((Rd))
*Rs,Rd F3 5 ((Rs)) = (Rd)
IDLE FE 2 —— —— | Idle CPU (reaches idle state in 2 cycles).
ILLEGAL 00 7 — — — — | Generate trap #0 exception, (ST) and
(PC) of next instruction —» stack;
ones — (L2-LO[STI)

INC,INCB1 * % % % | Increment destination
Rd 83 82 1 @d+1—(d
*disp16[Rd] 85 84 5 Synthesized as ADQ #1,destination

variant:

&address 85 84 5

INTPU Rs,IM:Rd 7D * % 0 0 | Perform a rounded straight-line interpola-
ifIM s Rd 9 tion between values in IM and Rd using
ifIM > Rd 10 interpolation fraction in Rs.

JMP ~— —— | Jump to destination:

Rd E8 3 (d) — (PC).

addr E9 3

*disp 16[Rd] EA 4 JMP *Rdis assembled as JMP *0[Rd].
variant: JMP &address is assembled as

*Ad EA 4 JMP *address[RZ]. (Both expect a word

&address EA 4 address as the destination.)

LDBIT, LDBITB — — % — | Read bit number sin @

#imm4,Rd 94 2 (Bit in a) — (CI[STI).
#imm4,*disp16[Rd] 95 4
Rs,ARd E4 3
Rs,*disp16[Rd] E5 5
variants:
#imm4,&address 95 4
Rs,&address ES 5
LDEA —— — — | Load effective address:
*disp16[Rs],Rd FO 2 ((disp1 + (Rs)) — (Rd).
variant:
&address,Rd FO 2

Legend: t Data Size:

$ Status Register Values:

0 = status bit always cleared

— = status bit unchanged by execution

1 Synthetic instruction

5-8 ‘'TMS370C16 CPU

B = affects byte W = affects word L = affects long word

1 = status bit always set
* = other effect on status bit (see instruction description)

Instruction Set Summary Table

Opcodet | Cycles | Statust
Mnemonic B W L[(t) |ZNCV Operation Description
LIMHS, LIMHSB * % % % | Limit Rdto highest signed /egalvalue (in s):

*disp 16 [Rs],Rd 59 58 IF (VISTI) =1 and (N[ST]) =1 or
If VIST] =1 5 IF (V[ST]) = 0 and (s) < (Rd),

If V[ST] =0 6 THEN (s) = (Rd), 0 — (V[ST]) and
variants: 1 — (C[ST]).

&address,Rd 59 58
HVIST] =1 5
KV[ST] =0 6

LIMHU, LIMHUB * % 0 » | Limit Rdto highest unsigned legalvalue

*disp 16 [Rs],Rd 5B 5A (in s):

Iif C[ST] =1 4 IF (C[ST]) =1 or
IfC[ST] =0 5 IF (s) < (Rd),
variants: THEN (s) — (Rd) and 1 — (V[ST])

&address,Rd 5B 5A ENDIF
K CIST] =1 4 0 — (C[STI)

HC[ST] =0 5 IF an LIMHUB instruction (byte),
THEN 0 — Rd8- 15.
LIMLS, LIMLSB * % % % | Limit Ad to lowest signed value:

*disp 16 [Rs],Rd 5D 5C IF (VIST]) =1 and (N[STI) =0, or
fVIST] =1 5 IF (V[STI) = 0 and(s) >(Rd),
fV[ST] =0 6 THEN (s) = (Rd), 0 — (V[ST]) and

variants: 1 — (C[STI).

&address,Rd 5D 5C
fVIST] =1 5
IfV[ST] =0 6

LIMLU, LIMLUB * % % % | Limit Rdto lowest unsigned value:

*disp 16 [Rs],Rd 5F S5E IF (C[STI) = 1 or (source) > (Rd),

If C[ST] =1 5 THEN (s) — (Rd) and 1 — (V[ST])
If C[ST] =0 6 ENDIF
variants: 0 — (C[STI).

&address,Rd 5F 5E
HCIST] =1 5
HC[STI=0 6

LINK —— —— | Link frame pointer to stack pointer:
disp8 F7 4 (FP) — ((SP))
(SP) — (FP)
(SP) +2 — (SP)
(SP) + 2 x disp8 — (SP)

Legend: t DataSize: B =affects byte W = affects word
$ Status Register Values:
0 = status bit always cleared
— = status bit unchanged by execution

L = affects long word

1 = status bit always set
* = other effect on status bit (see instruction description)

Assembly Language Instructions 59

Instruction Set Summary Table

Opcodet | Cycles | Status#
Mnemonic B W LI (t) ZNCV Operation Description
LSR, LSRL x% 0 | Logically right shift (Rd) by the count
LSR #imm4,Rd BC n+1 nins:
LSRL #imm4,IM:Rd BD 2n (Rd) >> n— (Rd)
LSR Rs,Rd BE n+3
LSRL Rs,/M:Rd BF | 2n+2
LSRL Rs,/M:Rd (where BF 3
Rs=00¢0h)

MOV, MOVB x % — 0 | Copy the source; place copy in destination:
Rs,Rd 03 02 1
Rs,*Rd 05 04 2 (s)— (d)
Rs,*Rd+ 07 06 2
Rs,*disp16[Rd] 09 08 3
*Rs,Rd 0B 0A 2
*Rs,*Rd 0D oC 3
*Rs,*Rd+ OF Ot 3
*Rs,*disp16[Rd] 11 10 4
*Rs+,Ad 13 12 3
*Rs+,*Rd 15 14 3
*Rs+,*Ad+ 17 16 4
*Rs+,*disp16[Rd] 19 18 4
#imm,Rd16 1B 1A 2
#imm,*Rd16 iD 1C 3
#imm,*Rd16+ 1F 1E 3
#imm,*disp16[Rd] 21 20 4
*disp16[Rs],Rd 23 22 3
*disp16[Rs],*Rd 25 24 4
*disp16[Rs],*Rd+ 27 26 4
*disp16[Rs],*disp16[Rd] 29 28 5
*-Rs,Rd 2B 2A 3
variants:
Rs.&address 09 08 3
*Rs,&address 11 10 4
*Rs+,&address 19 18 4
*disp16[Rs],&address 29 28 5
#imm,&address
&address,Rd 21 20 4
&address,*Rd 23 22 3
&address,*Rd+ 25 24 4
&address,*disp16[Rd] 27 26 4
&address1,&address2 29 28 5

29 28 5
Mova *0 -0 | imm4— (Rd)
#immy,Rd 80 1

Legend: t DataSize: B =affects byte W = affects word

} Status Register Values:
0 = status bit always cleared
- = status bit unchanged by execution

¥ Synthetic instruction

5-10 TMS370C16 CPU

L = affects long word

1 = status bit always set
* = other effect on status bit (see instruction description)

Instruction Set Summary Table

Opcodet | Cycles | Status#
Mnemonic B W L| (t) ZNCV Operation Description
MPYBWU *% 00 | Unsigned 8-bit x 16-bit multiply with
Rs,Rd AC 7 rounding:
[(RsLSbyte) x (Rd) + 80h]+256 — (Rd).
MPYS, MPYSB %% 00 | Multiply signed:
MPYSB Rs,Rd A7
Rd=0 10 (Rs) x (d) — (d).
Rd< 0 11
MPYS Rs,IM:Rd A6
Rd=z=0 13
Rd <0 14
MPYU, MPYUB *x% 00 | Multiply unsigned:
MPYUB Rs,Rd A5 8 (Rs) x (d) — (d).
MPYU Rs,IM:Rd A4 13
NOP1T 92 1 —— —— | No operation
0— (zR),
Synthesized as SBITO #15,ZR
NOT, NOTB1 %% — (0 | Ones complement the destination
Rd 2D 2C 1 ~(Rd)
Synthesized as XNOR ZR,Rd
OR, ORB x % — 0 | Logical inclusive OR source with dest:
Rs,Rd 49 48 1 (s)| @ — (d.
Rs,*dispyg[Rd] 4B 4A 5
#imm16,Rd 4D 4C 2
#imm16,*disp1g [Rd] 4F 4E 5
variants:
Rs,&address 4B4A 5
#imm16,&address 4F 4E 5
POP 1+2n | —— — - | Pop registers from the stack:
R LasT,RFIRST FA (n= FOR index = Register_Last
repeat TO Register_First BY —1,
cycles) DO (SP)-2 — (SP)
((SP)) — (register(index)).
PUSH 1+n | —— —— | Push register values onto the stack:
RFRsT, ALasT F9 (n= FOR index = Register_First
repeat TO Register_Last BY +1,
cycles) DO (register(index)) — ((SP))
(SP) + 2 — (SP).

Legend: t DataSize: B =affectsbyte W =affectsword L = affects long word
t Status Register Values:
0 = status bit always cleared 1 = status bit always set
— = status bit unchanged by execution * = other effect on status bit (see instruction description)
1 Synthetic instruction

Assembly Language Instructions 5-11

Instruction Set Summary Table

Opcodet | Cycles | Status#

Mnemonic B W L (t) ZNCV Operation Description
RTDU — — — — | Return from subroutine, unlink stack:
dispg F8 5 (FP) -2 — (SP)

((FP)) — (FP)
((SP)) — (PC)
((SP) —2 x disp8 — (SP).

RTI FC 6 % % % % | Return from interrupt:
(SP) -2 — (SP)
((SP)) —= (PC)
(PC)-2 — (PC)

(SP) -2 — (SP)
((SP)) — (ST).

RTS FB 4 — — — — | Return from subroutine:
(SP) -2 — (SP)
((SP)) — (PC).

SBB * % % » | Destination minus source and carry:
Rs,Rd 8C 1 (d) - (s) — (C[STI) — (d).
*disp16[Rs],Rd 8D 3

variant: Subtract s and carry bit from d.
&address,Rd 8D

SBITO, SBITOB ———— | Sethitto O:

SBITO #imma4,Rd 92 1 0 — bitin d.
SBITOB #imm4,*disp16[Rd] | 93 5
SBITO Rs,Rd E2 2 (Value in s designates bit to clear.)
SBITOB Rs,*disp16[Rd] E3 6
variants:
SBITOB #imm4,&address | 93 5
SBITOB Rs,&address E3 6
SBIT1, SBIT1B —— —— | Setbitto 1:
SBIT1 #imm4,Rd 90 1 1 — bitin d.
SBIT1B #imm4 »disp16[Rd] | 91 5
SBIT1 Rs,ARd EO 2 (Value in s designates bit to set.)
SBIT1B Rs,*disp16[Rd] E1 6
variants:
SBIT1B #imm4,&address | 91 5
SBIT1B Rs,&address E1 6
SHL, SHLL * % % % | Shift left register arithmetic:
SHL #imm4,Rd BO n+2 (d) <<n— (d).
SHLL #imm4,IM:Rd B1| 2n+2
SHL Rs,Rd B2 n+3 (arithmetic left shift — source contains
SHLL Rs,IM:Rd B3| 2n+3 shift count n).

Legend: t DataSize: B =affectsbyte W =affectsword L = affects long word
$ Status Register Values:
0 = status bit always cleared 1 = status bit always set
— = status bit unchanged by execution * = other effect on status bit (see instruction description)

5-12 TMS370C16 CPU

Instruction Set Summary Table

Opcodet | Cycles | Status#
Mnemonic B W L (t) ZNCV Operation Description
SHL4 * % — — | Shift left logical 4 bits:
Rs,Rd 7A 2 Rs << 4 — Ad.
SHL8 * » — — | Shift left logical 8 bits:
Rs,ARd 7B 2 Rs << 8 — Rd.
SHR8 %0 — — | Shift right 8 bits:
Rs,Rd 7C 2 Rs >> 8 = Rd.
STBIT, STBITB * — — — | Store bit in ST, set to carry value:
STBIT #imm4,Rd 96 2 ~(bitin d) — (Z[STI)
STBITB #imm4,*disp16[Rd] | 97 6 (CISTI) — (bitin a).
STBIT Rs,ARd E6 3
STBITB Rs,*disp16[Rd] E7 7 (s designates which bit in d.)
variants:
STBITB #imm4,&address | 97 6
STBITB Rs,&address E7 7
STEA —— — — | Store effective address:
*disp;6[Rs],*Rd+ F1 3 disp16 + (Rs) — (Rd)
variant: (Rd) + 2— (Rd).
&address,*Rd+ F1
STRI 00 0 0 | Store ST, set interrupt level:
#imm4,Rd A9 2 (ST) - (Rd).
imm4 — bits L2—-L0 of ST
0Os — bitsZ, N, C, Vof ST
SUB, SUBB * % % % | Subtract source from destination:
Rs,Rd 39 38 1 (d) — (s) — (d).
Rs,*disp16[Rd] 3B 3A 5
#imm16,Rd 3D 3C 2
*disp16[Rs],Rd 3F 3E 3
variants
Rs,&address 3B 3A 5
&address,Rd 3F 3E 3
SUBQ, SUBQB * % % % | Subtract quick immediate value from dest:
#imm4,Rd 87 86 1 (d) — imm4 — (d).
#imm4,*disp16[Rd] 89 88 5
variant
#imm4,&address 89 88
SUBR, SUBRB + % % » | Subtract with reverse destination:
RA,RB 2F 2E 1 (RB) — (RA) — (RA).
SWAPB *% — 0 | Swap bytes, Asto Ra:
Rs,Rd FD 3 Rs(LSbyte) — Rd(MSbyte)
Rs (MSbyte) — Rd (LSbyte)

Legend: t Data Size:

$ Status Register Values:
0 = status bit always cleared
— = status bit unchanged by execution

B = affects byte W = affects word

L = affects long word

1 = status bit always set
* = other effect on status bit (see instruction description)

Assembly Language Instructions

5-13

Instruction Set Summary Table

Opcodet | Cycles | Status#
Mnemonic B W L| () |ZNCV Operation Description
TBITO * — — — | Test for multiple bits clear:
#imm 8, &addr F4 3 IF imm8 = 0 and imm 8 & addr = 0,
THEN 1 — (Z[STI)
ELSE 0 — (Z[STI)
(test for bit(s) cleared in d;
s = mask specifying bits to check.)
TBIT1 * — — — | Test for multiple bits set:
#imm 8, &addr F5 3 IF imm8w= 0 and imm16 & (~addr) = 0
THEN 1 — (Z[STI)
ELSE 0 — (Z[[ST])
(test for bit(s) set in d;
s = mask specifying bits to check.)
TBLU, TBLUB *x% 00 | Look up two consecutive values in a table of
TBLUB Rs,/M,:Rd 7F unsigned data; perform a rounded
Value 1 < Value 2 14 straight-line interpolation between the two
Value 1 > Value 2 15 values according to an interpolation fraction.
TBLU Rs,IM:Rd 7E
Value 1 < Value 2 15
Value 1 > Value 2 16
TRAP ———= | (ST) = ((SP))
imm8 FF 7 (SP) + 2 — (SP)
Next inst. addr — ((SP))
(SP) +2 — (SP)
2 X ~enumerator8+ trap_base_addr — (PC)
1112 — (ST bits L2—-L0).
imm8 value = trap number; ones-complement
of trap number becomes enumerator8 which
resides in LSbyte of opcode.
trap_base_addr = base address of interrupt
traps.
TRUNCS, TRUNCSL %% 0 % | Test whether signed data can be truncated
TRUNCS Rd AE (represented in next smaller size — word or
bits 15-7 equal 3 byte). If not possible, 1 — (V[ST]).
bits 15-7 not equal 4
TRUNCSL IM:Rd AF 4
TRUNCU *% % 0 | Test whether an unsigned word can be trun-
Rd AD 2 cated and represented as a byte value.
If not possible, 1 — (C[ST]).

Legend: 1 Data Size:

B = affects byte W = affects word

1 Status Register Values:

0 = status bit always cleared

- = status bit unchanged by execution

5-14

TMS370C16 CPU

L=

1=
* =

affects long word

status bit always set
other effect on status bit (see instruction description)

Instruction Set Summary Table

Opcodet | Cycles | Status+
Mnemonic B W L| (t) ZNCV Operation Description
TST, TSTBY *% — (0 | Testsource:
Rs 03 02 1 (s) = (ZR)
*Rs 0B OA 2 set Z[ST] and N[ST] accordingly.
*Rs+ 13 12 3
#imm16 1B 1A 2 Synthesized as MOV s,ZR.
*disp16[Rs] 23 22 3
*_Rs 2B 2A 3
variant;
&address 23 22 3
UNLINK F6 3 —— — — | Unlink and deallocate stack frame:
(FP) — (SP)
((SP)) — (FP).
XNOR, XNORB x % — 0 | Exclusive NOR source with destination:
Rs,Rd 2D 2C 1 ~(s " d) — (Rd).
XOR, XORB * % — 0 | Exclusive OR source with destination:
Rs,Rd 51 50 1 (s)* (d — (d).
Rs,*disp16[Rd] 53 52 5
#imm16,Rd 55 54 2
#imm16,*disp16[Rd] 57 56 5
variants:
Rs,&address 53 52 5
#imm16,&address 57 56 5

Legend: t Data Size:

$ Status Register Values:
0 = status bit always cleared
- = status bit unchanged by execution

¥ Synthetic instruction

B = affects byte W = affects word

L = affects long word

1 = status bit always set
* = other effect on status bit (see instruction description)

Assembly Language Instructions

5-15

Instruction Descriptions in Alphabetical Order

5.3 Instruction Descriptions in Alphabetical Order

This section contains detailed descriptions of each TMS370C16 instruction,
Including bus and signal-line content during each cycle. Variants on an
instruction are not covered in this section, but are noted throughout the table

5-4.

in Section 5.2 (starting on page 5-4) and explained in the paragraph on page

Figure 5-1. Interpreting the Instruction Execution Detail
= "don’t care” bits

Cycle 1 values —»
Cycle 2 values —¥»

5-16

Instruction Execution Detail

Machine-Code Word I ADD{B} Rs,Rd

Bit Values ———»

15 87

43

(4

| ADD{B} #iym16,Rd | } Assembler Format
* J

2-word
instruction
(this example)

Address Data

C NI SN K

Address Data wbid
OpA+4 IEW 1000 || OpA+a4 W 1001
‘P‘f‘ OpA+6 IEW 1000

Address bus value ——/

Data bus value

Functional logic states: signalsw b f d:

w: R/W signal (1 = read, 0 = write)
b: B/W signal (S value = size of trans—
_ _fer. 1 = byte, 0 = word)
f. FETCH signal (0 = fetch of instruc—
_ _tion or extension word)
d: LIR signal (0 = decode)

NOTE: Abbreviations and symbols are
defined in Table 5—1 and Table 5-2 (on
page 5-2).

Note: Assembler Statements Are Not Case Sensitive

TMS370C16 assembly language statements are not case sensitive. You can
enter them in lowercase, uppercase, or a combination. To emphasize this,
assembly language statements are shown throughout this user’s guide in
both uppercase and lowercase.

TMS370C16 CPU

Add Source Word Plus Carry to Destination ADC

Syntax
Execution

Modes Supported

Status Bits

Description

Examples

ADC
(source16) + (destination16) + carry bit — (destination16)

Rs,Rd
*disp16[Rs],Rd

Z cleared if the result is nonzero; unchanged otherwise

N equals bit 15 of the result

C setif an unsigned overflow occurred; cleared otherwise

V setif a twos-complement overflow occurred, cleared otherwise

Add the contents of the source operand and the value of the carry bit of the
status register to the destination-register contents (sum remains in the
destination register). Source and destination are 16-bit words.

The operation facilitates 32-bit addition. Use an ADD instruction to add the
least significant words; then follow with an ADC instruction, adding the most
significant words as well as the carry-bit value (the C[ST] = 1 if the just-exe-
cuted ADD instruction included a carry). Thus, the ADD and ADC instructions
must be sequential.

The Z[ST] bit correctly reflects the result of 32-bit addition. The bit is set only
ifthe previous operation (like the ADD instruction) set it. Thus, all status bits
reflect a 32-bit result after an ADD/ADC sequence.

LABEL ADC zr,rll ; Add contents of ZR, R1ll,

s and carry bit. Store sum

; in R11l. Effectively a

; continuous increment of

; R1l1l depending on carry
bit contents.

Add contents at (R6) +
1000h plus carry-bit

;s value to R7 contents.

Result to R7.

LOAD_BUF ADC *1000h[r6],r7

~e weo weo

-

Instruction Execution Detail

| ADC Rs,Rd | ADC *disp16[Rs],Rd |

Cy | Address Data wbtd || Address Data wbtd
1| opa+4a IEW 1000 [OpA+4 w 1001
2 disp+Rs (disp+Rs) 1011
3 OpA + 6 IEW 1000

Assembly Language Instructions 5-17

ADD Add Source to Destination

Syntax ADD{B}
Execution (source) + (destination) — (destination)
Modes Supported Rs,Rd
*disp16[Rs],Rd
Rs,*disp16[Rd]
#imm16,Rd
Status Bits Z setif the result is zero, cleared otherwise

N equals bit 7 of the result (byte) or bit 15 of the result (word operation)
C setif an unsigned overflow occurred; cleared otherwise
V setif a twos-complement overflow occurred, cleared otherwise

Description Add the contents of the source to the contents of the destination.

For byte operations, sign extend the byte operands to word length, then oper-
ate on the word to produce a word result. The most significant byte of the resuit
becomes either 00h for C[ST] =0, or 01hfor C[ST] = 1. Registers receive the
entire word; nonregister destinations receive the least significant byte of the
result.

Status bits are set with respect to the size (byte/word) of the operation
requested.

Examples LABEL ADD R5,R10 Add the contents of R5 &

R10; store sum in R10.

ADD *201h[ZR],R12 Add contents of location
201h and ZR to contents
of R12, store sum in R12.

ADDB *10[r8],r9 Add byte contents at 10 +
(R8) to R9.Sum goes to
LSbyte of R9 with MSbyte
of R9 zeroed out.

ADD #BUFFER,rll Add immediate value of
BUFFER and R1ll. Store
results in R11.

WO We Ne NE NE Ne NE Ne Ne Ne W wWe we wo wo

5-18 TMS370C16 CPU

Add Source to Destination ADD

Instruction Execution Detail
| ADD{B} Rs,Rd | ADD{B} #imm16,Rd |

Cy | Address Data wbid Address Data wbfd
1 | opa+4 IEW 1000 || opa+4 [1001
Opa+6 IEW 1000

[ADD{B} *disp16[Rs],Rd | ADD{B} Rs,*disp16[Rd] |

Cy | Address Data wbtd Address Data wbid
1 OpA +4 w 1001 OpA +4 w 1001
2 | disp+Rs (disp+Rs) 1811 disp+Rd (disp +Rd) 1811
3 | OpA+6 IEW 1000 prevA (prevA) 1011
4 disp + Rd result 0S11
5 OpA + 6 IEW 1000

Note: The wbfd Column Values
Values for the wbfd column are listed in Figure 5-1 on page 5-16.

Assembly Language Instructions 5-19

ADQ Add Quick Immediate to Destination

Syntax

Execution

Modes Supported

Status Bits

Description

Examples

ADQ{B}
immediate data + (destination) — (destination)

#imm4,Rd
#imm4,*disp16[Rd]

Z setif the result is zero, cleared otherwise

N equals MSB in result: bit 7 (byte operation) or bit 15 (word operation)
C setif an unsigned overflow occurred; cleared otherwise

V setif a twos-complement overflow occurred; cleared otherwise

Add quick immediate data to the contents of the destination operand. (Quick
immediate data is a 4-bit value contained in the instruction word). The value
of 0-15 is zero-extended to a word for addition. ADQ, with its 4-bitimmediate

operand, operates in oniy one cycie; whereas, ADD, with a 16-bit inmediate
operand, uses two cycles.)

For byte operations, the byte operands are extended to word length, then
operated on as words to produce a word result. The most significant byte of
the result will be either 00hwhen C[ST] = 0 or 01hwhen C[ST] = 1. Registers
receive the entire word, while nonregister destinations receive the least
significant byte of the resuilt.

Status bits are set with respect to the size (byte/word) of the operation
requested.

to ’'BUFFER’.

LABEL ADQ #BITS,R4 ; Add value ’'BITS’ to R4.
; Store sum in R4.
ADD_4 ADQ #4,&BUFFER : Add immediate value 4
H

Instruction Execution Detail

| ADQ{B} #mmaRd | ADQ{B} #immd,*disp16[Rd] |

Cy | Address Data wbtd Address Data wbid
1| OpA+4 IEW 1000 prevA (prevA) 1011
2 disp+Rd (disp+ Rd) 1811
3 OpA + 4 w 1001
4 disp + Rd result 0811
5 OpA +6 IEW 1000

5-20 TMS370C16 CPU

Logically AND Source With Destination AND

Syntax
Execution

Modes Supported

Status Bits

Description

Examples

AND{B}
(source) & with (destination) — (destination)

Rs,Rd
Rs,*disp16[Rd]
#imm16,Rd
#imm186,*disp16[Rad]

Z setif the result is zero, cleared otherwise

N equals bit in result: bit 7 (byte operation) or bit 15 (word operation)
C unchanged

V cleared

Logically AND the contents of the source with the contents of the destination.

For byte operations, byte operands are zero-extended to words, operated on
words, and produce a word result. The most significant byte of the result will
always be 00h. Registers receive the entire word; while nonregister destina-
tions receive the least significant byte of the resuilt.

Status bits are set according to size (byie/word) of the operation.

LABEL AND R5,R10 AND the contents of RS
and R10. Store result
in R10.

ready andb #clear8,r6 ; AND byte value of CLEAR

result in R6, and clear
Msbyte of R6.

ADD value of 55AAh with
contents of R7. Store
result in R7.

’
’
; with R6. Store LSbyte of
’
i
AND #55AAh,R7 B
’

Assembly Language Instructions 5-21

AND Logically AND Source With Destination

Instruction Execution Detail

[AND{B} Rs,Rd | AND{B} Rs,*disp16/Rd] |

Cy | Address Data wbfd Address Data wbid
1 | OpA+4 IEW 1000 OpA +4 w 1001
2 disp+Rd (disp+Rd) 1S11
3 prevA (prevA) 1011
4 disp + Rd result 0S11
5 OpA + 6 IEW 1000

| AND{B} #mm16,Rd || AND{B} #imm16,*disp16/Rd] |

Cy | Address Data wbid Address Data wbtd
1 OpA + 4 w 1000 OpA+4 data 1001
2 | OpA+6 IEW 1000 || dsp+Rd (disp+Rd) 1§11
K] OpA +6 w 1001
4 disp + Rd result 0S11
5 OpA +8 IEW 1000

5-22 TMS370C16 CPU

Arithmetically Shift Register Right ASR

Syntax
Execution

Modes Supported

Status Bits

Description

ASR{L}

right-shift (destination) by source count — (destination)
#imm4,Rd (word)

#imm4,IM:Rd (longword)

Rs,Rd (word)

Rs,IM:Rd (longword)

Z setif the result is zero, cleared otherwise

N equals MSB in result: bit 15 of Rd (word operation) or bit 15 of IM
(longword operation)

C equals the last bit shifted out of the register; cleared if the shift count in
Rs s zero

V cleared

Arithmetically right shift the destination register’s contents by the number of
bit positions (0—15) specified in the source operand. Leave unchanged the
preshift value of the most significant bit constant. If the shift count is in a regis-
ter, the count range (0-15) is defined by the 4 LSBs of the source register (Rs
bits 15 — 4 are ignored).

The following illustrates a right shift of the most significant bit into the register:

cistt

(MSB of Rd or IM)
T The value of the last bit shifted out goes to the carry bit; this
bit is cleared if the shift count in Rs is zero.

Status bits are set with respect to the size of the word shifted (16 or 32 bits).
Longword shifts always use register IM as the most significant word of the
32-bit object. The result of ASR (source),IM:IM is undefined.

Assembly Language Instructions 5-23

ASR__ Arithmetically Shift Register Right

Examples LABEL ASR #6,R3 ; set R3 to sign bit value
ZNCV
Before R3 ST=
ZNCV
After R3 ST=
_ﬂ__/
Sign bit extended 6 bit places

Note that if the shift count was changed to 15, R3 would be all ones.

Label ASR #3,r3 ; Shift R3 three bits right
shift asrl #2,im:r9 ; Shift the long word in
; registers IM:R9 right
; two bits
Instruction Execution Detail
| ASR #mm4,Rd | | ASR Rs Rd]
Pot | Address Data wbid || pevedt | Address Data wbid
(wp’gm) prevA (prevA) 1011 1,2 prevA (prevA) 1011
n+1 |OpA+a IEW 1000 (,e;’ea‘) prevA (prevA) 1011
n+t | OpA+s EW 1000
Total cycles: n+ 3

| AsSRL Rs/M:Rd |

Cycle/ - Cycle/ -
Periodt | Address Data wbfd || Periodt | Address Data wbfd
1 prevA (prevA) 1011 1,2,3 prevA (prevA) 1011
(,2.’;30 prevA (prevA) 1011 (,2"";&21) prevA (prevA) 1011
2n OpA+4 IEW 1000 2n OpA+4 IEW 1000
Total cycles: 2n + 2, or
31t Rs = Oh

t Asingle number represents a given cycle. An expression of n repre-
sents the cycle count after the previous cycles, depending on the n th
number of shifts or repeats. Bus and signal values shown are present
during these intervals.

5-24 TMS370C16 CPU

Arithmetically Right Shift Value, Round to Zero ASRO

Syntax

Execution

Modes Supported

Status Bits

Description

ASRO{L} (Fourth character is a numerical 0.)

right shift (destination) by source count — (destination)
IF N[ST] = 1 and C[ST] = 1, THEN (destination) + 1 — (destination)

Rs,Rd (word)
Rs,IM:Rd (longword)
#imm4,Rd (word)
#imm4,IM:Rd (longword)

Z setif the result is zero, cleared otherwise
N equals the most significant bit of the result
C ASRO: cleared
ASROL: set if an FFFF FFFFh result is rounded (incremented) to
0000 0000h; cleared otherwise
V cleared

Shift the signed (arithmetic) destination register’s contents to the right by the
number of bit positions in the source operand while holding constant the most
significant bit of the destination. Thus, the MSB is extended into the destination
anumber of times equal to the source value. The shift count of 1—15is derived
from the 4 LSBs of the source contents (As bits 15 — 4 are ignored).

If, after shifting, the result is negative and a 1 was shifted out of the register,
the result (destination) is incremented. This performs a mathematically correct
signed division by a power of 2 (exponent of 2 = number of bits shifted).

The following illustration depicts a right shift of the most significant bit into the
destination register:

0

(MSB of Rd or IM)

The shift count is contained in the source (4 LSBs of Rs or bits 7—4 of the
instruction when #imm4 is specified). A shift value of 00015 to 11115 corre-
sponds to a shift of 1 to 15; a shift value of 00005 indicates 16.

Status bits are set with respect to the size (word/longword) of the operation.
Longword shifts always use the IM as the implied most significant word of the
32-bit result. The result of ASROL (source),IM:IM is undefined.

Assembly Language Instructions 5-25

ASRO Arithmetically Right Shift Value, Round to Zero

Example ASROL #4,IM:R2 ; right shift R1/R2 4 bits

ZNCV

sT= [o]ojojo]

Y
4 bits to be shifted out

ZNCV

sT-

Last bit to exit (1

Instruction Execution Detail

| ASRO #mm4,Rd | [AsrRo RsRd |
P?ﬂgg/f Address Data wbid || Perodt | Address Data wbid
1 prevA (prevA) 1011 1,2 prevA (prevAd) 1011
(mp';at) prevA (prevA) 1011 3 prevA (prevA) 1011

n+2 |OpA+4 IEW 1000 (mp’:m) prevA (prevA) 1011
n+2 | OpA+4 EW 1000

Total cycles: n+ 4
ASROL
s AS Rs,IM:R
#imma,IM-Rd ROL Rs,IM-Rd
ol I NIST] = 0 It N[ST] = 1 o If N[ST] = 0 It NIST] = 1
P%rylodf Address Data wbfd | Address Data wbfd P%yd%‘df Address Data wbid | Address Data wbfd
1 prevA (prevA) 1011 prevA (prevA) 1011 1,2 prevA (prevA) 1011 prevA (prevA) 1011
(;"o’;a‘t) prevA (prevA) 1011 | prevA (prevA) 1011 3 prevA (prevA) 1011 | prevA (prevA) 1011
2n+1 | OpA+4a EEW 1000 | prevA (prevA) 1011 (,?.’;;;0 prevA (prevA) 1011 | prevA (prevA) 1011
2n+2 OpA+4 IEW 1000 || 2n+1 | Opa+4 1EW 1000 | prevA (preva) 1011
2n+2 OpA+4 IEW 1000
Total cycles: 2n+3; or 3 if Rs = Oh Total cycles: 2n+4; or 3 if Rs =Oh

t A single number represents a given cycle; an expression of n represents a cycle or a period of cycles depending on the nth
number of shifts or repeats. Bus and signal values shown are present during these intervals.

5-26 TMS370C16 CPU

Branch on Conditon B{COND}

Syntax B{COND}
(where {COND} = condition option; see below)
Execution If condition is true: (PC) + displacement — (PC)
(where PC = (BCOND_OpA + 4) <+ 2)
If condition is not true: continue at next instruction in succession
Mode Supported <displacement 8>
Status Bits Z unchanged
N unchanged
C unchanged
V unchanged
Options
Mnemonic Mnemonic
BC Carry Set BLT Less Thant
BEQ Equal or Zero BN Negative (Minus)t
BGE Greater Than or Equalt BNC Carryls Clear
BGT Greater Thant BNE Not Equal or Not Zero
BHI Higher BNV Overflow Is Cleart
BHS Higher or the Same BP Positivet
BLE Less Than or Equalt BPZ Plus (Not Negative)t
BLO Lower BR Branch always g{no condition)
BLS Lower or the Same BV Overflow Is Set
t signed operations (others are logical operations)
Description If the condition (in ST) is true (one), branch to the address specified. If the

condition is not true, go to the next instruction in succession. Table 5-3
explains the conditions for each branch.

The following explains the instruction’s branch mechanics, considering the
effect of the prefetch pipeline. A maximum signed displacement of +127 and
—128 words (+254/-256 bytes) can be indicated in the 8-bit signed
displacement opcode field. However, this displacement value is figured from
the PC value, which points two words past the16-bit word address of the
BCOND instruction. This is graphically illustrated in Figure 5-2 (page 5-29)
and explained below. ‘

When viewed from the 16-bit PC value, displacement can be figured as +129
words (forward) or —126 words (backward) from the location of the instruction.
Actually, a +127 or—128 value (translatable to wordsin displacement) is added
to the PC value when the displacement is figured. Multiply this sum by 2 to
determine the 17-bit BCOND_OpA address. See Figure 5-2 (page 5-29).

To derive the 16-bit PC word address value from the 17-bit BCOND_OpA
address, add 4 (the additional 4 bytes beyond the currently executing opcode)
and divide by 2. Two methods of destination address calculations:

Assembly Language Instructions 5-27

B{COND} Branch on Condition

[starting with the 17-bit memory bus address:
destination address = BCOND_OpA17 + 4 + (disp8_in_bytes x 2)

[starting with the 16-bit PC word value:

destination address = (PC + disp8_in_words) x 2

where PC = (BCOND_OpA + 4) + 2.

When a branch is not taken (condition false), a clock cycle is saved because

the prefetch pipeline does not need to be completely refilled.

Table 5-3.Branches Listed by Opcode

Example

5-28

ST Condition
Mnemonic | Opcode Description for Branch
BR CCh Branch {unconditional, always)
(BNC Cih Branch if carry clear C=0
g BHS Cih Branch if higher or the same C=0
® BC C2h Branch if carry set C=1
§- * BLO C2h Branch if lower C=1
@ BEQ C3h Branch if equal or zero Z=1
§’ BNE C4h Branch if not equal or not zero Z=0
BHI C5h Branch if higher Cl|z=0
k BLS Cé6h Branch if lower or the same Cl|Z=1
(| BGT C7h | Branch if greater than ZIN~V)=0
@ BLE C8h Branch if less than or equal ZIN*V) =1
-% BGE C9h Branch if greater than or equal N*V=0
2 BLT CAh Branch if less than N*"V=1
o 4 BV CBh Branch if overfiow set V=1
g BNV CCh Branch if overflow clear V=0
”n BP CDh Branch if positive N|Z=0
BPZ CEh Branch if plus (not negative) N=0
\ BN CFh Branch if negative (minus) N=1
Note: “= XOR, |=OR
LABEL MOV *R4+,R2 ; Bring in value to R2
CMP R2,R3 ; Compare values
BNE FAIL_MSG ; If not = R3, send fail message
BHI LABEL ; If higher, go back 3 words and
° ; get next value
[J
[]
FAIL_MSG MOV R2,*R7 ; Store value

TMS370C16 CPU

Branch on Condition B{COND}

Instruction Execution Detail

| B{COND} disp8 |

Branch Not Taken Branch Taken
Cy | Address Data wbid Address Data wbfd
1 prevA (prevA) 1011 prevA (prevA) 1011
2 | OpA+4 IEW 1000 OpA + 4 +2disp w 1001
3 OpA +6+2disp IEW 1000

Note: For definitions, see Figure 5-1 on page 5-16.

Figure 5-2. B{COND} Instruction Displacements

Range of 0 to —128 words
from PC (BCOND_OpaA + 4)

Range of 0 to +127 words
from PC (BCOND_OpA + 4)

A

A

——— Maximum SS|gned 8-Bit

_
Ve
Displacement /
(Words) /
-128 .L :
g \
25 \
© =
&.\'I. § "~ \ .
28< N
[= 24 [
58 N
qg’)a' la ud \
g E \
c e | \\
a
~ -2| Bxxop disp8
(]
58
=%
QE
e
e
&< 4
o2
[
53
5@ o
SE
o g "~
1
T
+127
.

Assembly Language Instructions

Displacements:

o111 1111

+127 words

—128 words

<4 Branch instruction

(Location BCOND_OpA)

4 PC points here

(Location BCOND_OpA + 4)

5-29

BRBITO Branch If Bit Is Zero

Syntax
Execution

Mode Supported
Status Bits

Description

Example

BRBITO (Last character is a numerical 0.)

IF bit number imma3 at byte addr = 0, then (PC) + disp8 — (PC)
where PC = (BRBITO OpA + 6) + 2] T
ELSE go to next instruction

#imm3,&addr,disp8 (where: #imm3is a number from 0-7,
identifying the bit position)

Z unchanged

N unchanged

C unchanged

V unchanged

Test a bit (imm3 = bit number) at a byte destination address (addn). If bit =0,
branch to the specified location by adding the displacement to the PC (add
bytevalue — see Figure 5-3 for details). If bit = 1, continue to the next instruc-
tion following the BRBITO. If no branch is taken, a clock cycle is saved because
the prefetch pipeline does not have to be completely refilled. The destination
value addresses only the first 64K bytes of memory (address line A0 = 0).

The bit syntax field must be in the range 0-7. It is located in the opcode byte
(bits 10-8) specifying which bit to test in addr?6 (the byte address). The imm3
bit value identifies the byte bit according to the following format:

7 6 5§ 4 3 2 1 0
FCT T T T T T T+ Bit numbering of destination

The instruction accesses bytes only, and it branches only if the bit tested is 0.

The imm3value is assembled into the three least significant bits of the opcode.
This variable value accounts for the D8h—DFh opcode value that specifies the
bit number checked in the destination. Opcode format:
15 14 13 12 11 10 9 8
{1]1]o]1]1] o7vaue | = Bitvalues of BRBITO opcode

Because the instruction optimally prefetches another word into the pipeline
before calculating the destination address, execution flow can be redirected
(branched to) by +130 words or —125 words (+260/-250 bytes) as shown in
Figure 5-3. This is similar to the BCOND instructions, except that the PC is
pointing six bytes from the address of the BRBITO instruction (instead of four
bytes from the address of BCOND). (Compare Figure 5-2 and Figure 5-3.)

Check the most significant bit at byte address 201. If a 0, go to location TEST;
otherwise, continue at the next instruction:

Label BRBITO 7,&0201,TEST

tin the Execution entry at the top of the page, the 6 in the OpA + 6 address value is
larger than that used for the BCOND or DBNZ instructions because this instruction
optimally prefetches another word into the pipeline before calculating a destination
address.

5-30 TMS370C16 CPU

Branch If BitIs Zero BRBITO

Figure 5-3. BRBITO and BRBIT1 Instruction Displacements

— Maximum Signed
Dis '%c.-::;.m - “a Displacements:
~ .§ c " 128 :] 7z 0_ = +127 words
8 22 / 11000 0000 = —128 words
= Q g /
g E - § ~ b / ~
'Y | £ . /
N L o< .«
1 Q okE |
254 SE| T LT
w \
5} 13 T
S 5 g £ T *)
g & \ _3 | BRBITO opcode dispg <4— Branch instruction
& T (BRBITO_OpA)
s 2 T
g 2 -1]
8 r = 0 <4~ PC points here
§ < 9 (Location BRBITO_OpA + 6)
S + £
N O o
g 0| s % < ~ . ~
e5< 8% .
ol g (g od e od
55| §§ :
88 oc ¥ '
2= _ +127 .
o

Instruction Execution Detall

| BRBITO #imm3,&addr,disp8 |

Opcode and Destination

Bit to Check
Branch Not Taken Branch Taken 0&‘;‘;‘)’9 Dest BHt

Cy | Address Data wbfd Address Data wbfd D8)
1 addr (addr) 1111 addr (addn 1111 D9 1
2| OpA+4 w 1001 OpA +4 w 1001 DA 2
3 prev (orev) 1011 prev (prev) 1011 DB 3
4| OpA+s IEW 1000 | OpA+4+@xdisp) W 1001 4
5 OpA+6+(2xdisp) IEW 1000 5
DE 6
DF 7

Note: The immediate value designating the bit to set is contained in the three least significant bits of the
opcode’s left-hand byte. Values are shown in the table on the right.

Assembly Language Instructions 5-31

BRBIT1 Branch If Bit Is One

Syntax
Execution

Mode Supported

Status Bits

Description

BRBIT1

IF bit number imm3in address addr = 1,
THEN (PC) + disp8 — (PC)

[where PC = (BRBIT1 OpA + 6) + 2]
ELSE go to next instruction

#imma3,&addr,disp8 (where #imm3is a number from 0-7,
identifying the bit position)

Z unchanged

N unchanged

C unchanged

V unchanged

Test a bit (imm3 = bit number) in the byte destination address (add/). If bit =
1, branch to the specified location by adding the displacement to the PC (add
byte value — see Figure 5-3 for details). If the bit = 0, continue to the next
instruction after BRBIT1. If no branch is taken, a clock cycle is saved because
the prefetch pipeline does not have to be completely refilled. The destination
value addresses only the first 64K bytes of memory (address line A0 = 0).

The bit syntax field is a 0—7 value in bits 0—2 of the opcode byte specifying
which bit to test at addr16 (byte address). The imm3bit value identifies the byte
bit according to the following format:
7 6 5 4 3 2 1 0
| l | | | | | | | = Bit numbering of destination

The instruction accesses bytes only, and it branches onlyif the bit tested is a 1.

The imm3value is assembled into the three least significant bits of the opcode.
This variable value accounts for the DOh—D7h opcode value that specifies the
bit number checked in the destination. Opcode format:
15 14 13 12 11 10 9 8
[t]1]o]1]o] o-7vaue | = Bitvalues of BRBIT1 opcode

Because the instruction optimally prefetches another word into the pipeline
before calculating the destination address, execution flow can be redirected
to (branched to) a maximum distance of +130 words or —125 words
(+260/—250 bytes) as shown in Figure 5-3. This is similar to the BRBITO in-
struction, except that the branch occurs if the bitis set. (The BRBITO instruction
explanation immediately precedes these pages.)

tIn the Execution entry at the top of the page, the 6 in OpA + 6 value is larger than
that used for the BCOND or DBNZ instructions because this instruction optimally
prefetches another word into the pipeline before calculating a destination address.

5-32 TMS370C16 CPU

Branch If Bit Is One BRBIT1

Example Check the least significant bit (0) in byte address 100. If itis a 1, go to location
RECOUNT; otherwise, continue at the next instruction:

LABEL brbitl 0,&100,RECOUNT

Instruction Execution Detail

[BRBIT1 #imm3,&addr,disp8 |

Branch Not Taken Branch Taken
Cy Address Data wbfd Address Data wbfd
1 addr (addr) 1111 addr ddr) 1111
2 OpA +4 w 1001 OpA+4 w 1001
3 prev (prev) 1011 prev (prev) 1011
4 OpA +6 IEW 1000 |OpA+4+(2xdisp) W 1001
5 OpA+6+(2xdisp) IEW 1000

Note: The immediate value designating the bit to set is contained in the
three least significant bits of the opcode’s left-hand byte, as
shown in the table below.

Opcode and Destination
Bit to Check

Opcode Dest. Bit to
(Hex) Check

0

I88EBR2SB

Assembly Language Instructions 5-33

CALL _ Jump to a Subroutine (With Linkage)

Syntax
Execution

Modes Supported

Status Bits

Description

CALL

CALL addr or CALL Rd: CALL *disp16[Rd] or CALL *Rd:
(PC) -2 — ((SP)) (PC) — ((SP))
(SP) + 2 — (SP) (SP) + 2 — (SP)
(destination) — (PC) (disp + (Rd)) — (PC)

Rd

*@g (assembles same as CALL *0000h[Rd])

addr

*disp16[Rd]

Z unchanged

N unchanged

C unchanged
V unchanged

Jump to the subroutine pointed to by the destination operand. Provide linkage
back to the next instruction after CALL by pushing the 16-bit word address (PC
contents) of the next executable instruction onto the system stack. This return-
linkage word address (explained in note below) is derived from the memory
opcode address (OpA) by these equations:

[0 (CALL_OpA +2) + 2 for the 16-bit word address of CALL Rd
O (CALL_OpA + 4) + 2 for the 16-bit word addresses of CALL addris,
CALL *disp[Rd], and CALL *Rd.

CALL addr contains a 16-bit word address (see note below) to specify the
destination. These 16 bits are applied to bits A16—A1 of the address bus (as
if shifted left one bit). Note: addr17must be an even value. See Figure 5—4 and
Figure 4-12 on page 4-15.

CALL Rd jumps to the subroutine at the word address in Rd (i.e., Rd
contents — PC). (Note that CALL SP, CALL *disp16[SP], and CALL *SP
are undefined because SP is incremented before execution.)

CALL *disp16[Rd] and *Rd use two levels of indirection to arrive at the

destination (see Figure 4-12, page 4-15):

1) Add displacement disp and the contents of Rdto compute a memory (not
word) address (disp can be 0—FFFFh). This also applies to CALL *Rd,
which assembles as if written CALL *0h[Rd]. (If Rdis ZR, then disp16is
the destination address.)

2) At this address, retrieve the word address of the destination, which
through the PC, is applied to address bus lines A15-A1 with AQ set to 0.

B

Note: PC’s 16-Bit Word Address Translates to 17-Bit Address Bus
The program counter’s 16-bit word address is transformed into a 17-bit
physical memory address by overlaying PC data bits 15-0 onto address
lines A16—A1 and forcing A0 to 0. See Section 2.3 and Figure 54.

5-34 TMS370C16 CPU

Jump to a Subroutine (With Linkage) CALL

Use the RTS instruction to return from the CALL subroutine and continue with
the execution of the instruction following the CALL. Use the RTDU instruction
to return if and only ifthe subroutine executed a LINK instruction and did not
execute an UNLINK instruction.

Example

Figure 5—4. CALL and RTS Instruction Examplet

F————— A
| CALL Execution: I
(PC) — ((SP))
| (SP)+2—=(SP)
| dest—(PC) |
17-bit memory address "_7___—J Stack
8402
@ 8404
To S
Soutine a,Vg'}\'ff{Pc 4 2 o of
execution L SP A 1 0 0
SuUBRrRCOOO ¢+ o\
C002 ® r -
C004 | RTS Execution: |
| (SP)-2—(SP) |
((sP)) — (PC) |
L J
':!etum
m
8822 Sut:?ouﬁne
Values |pc| 6 0 5 3
Ad
o exm {SP A 1 0 2
Values [pc 4 2 0 of
R
Sxecuton {SP A1 0 0

1 A dashed line denotes the path of the value moved or copied. A solid line denotes a location
pointer.

$The PCvalue placed on the stack is one halfthe 17-bit memory address value. This is equal
to (address of CALL + 4) + 2. On the return, the RTS instruction overlays this stored quo-
tient onto the address bus (essentially multiplying it by 2). This value of one half the address
bus value applies to all uses of the PC. This feature is more obvious with addresses above
64K bytes (which require the full 17 address bits).

Assembly Language Instructions 5-35

CALL Jump to a Subroutine (With Linkage)

Instruction Execution Detail

| CALL Rd 1 CALL addr16 | CALL *disp16[Rd] |

Cy | Address Data wbid Address Data wbfd Address Data wbfd
1 prevA (prevA) 1011 SP nnA + 2 0011 SP nnA + 2 0011
2 SP nnA + 2 1001 prevA (prevA) 1011 prevA (prevA) 1011
3 prevA IEW 1000 2caddr w 1001 caddr disp + Rd 1011
4 2Rd w 1001 2caddr +2 IEW 1000 2caddr w 1001
5 2Rd + 2 IEW 1000 2caddr +2 IEW 1000

5-36 TMS370C16 CPU

Clear Destination CLR

Syntax CLR{B} Synthetic Instruction: Executes as MOV{B} ZR,destination
Execution (Zero Register) — (destination)
Modes Supported Rd
*Rd
*Rd+
*disp16[Rd]
Status Bits Z set
N cleared
C unchanged
V cleared
Description Clear the destination to all zeroes by copying the contents of the R15 (zero

register) to the destination.

Register destinations are completely cleared to 0000h, even though a byte
operation is requested.

Example The following demonstrates various applications:

label CLRB R12 Clear R12 to all zeroes
CLR R12 ; Clear R12 to all zeroes
CLRB *R11+ Clear byte at address
; in R11; increment R11 by 1
CLR *R11+ ; Clear contents at address
; in R11; increment R1l by 2

~e

~e

Assembly Language Instructions 5-37

CLR Clear Destination

Instruction Execution Detall

5-38

CLR{B} Rd

CLR{B} *Rd

Cy | Address Data wbid Address Data wbfd
1 OpA+4 IEW 1000 Rd 0 0811
2 OpA +4 IEW 1000
| CLR{B} *Rd+ | CLR{B} *disp16[Rd] |

Cy | Address Data whid Address Data whid
1 Rd 0 0S11 OpA + 4 w 1001
2 | OpA+4 IEW 1000 | disp+Rd 0 0S11
3 OpA+6 IEW 1000

TMS370C16 CPU

Compare Source to Destinaton CMP

Syntax
Execution
Modes Supported

Status Bits

Description

Example

CMP{B}

compute (destination) — (source); set ST bits according to resuits
Rs,Rd *As+,Rd

#imm16,Rd *disp1[Rs],*disp2[Rd]
*disp16[Rs],Rd

Z setif result is zero; cleared otherwise

N equals bit in result: bit 7 (byte operation) or bit 15 (word operation)
C setif an unsigned underflow occurred; cleared otherwise

V setif a twos-complement underflow occurred; cleared otherwise

Compare the contents of the source operand to the destination operand and
set the ST status bits accordingly.

The compare is performed by subtracting the source contents from the des-
tination contents. Results of the operation are reflected in the ST status bits.

For byte operations, only the least significant bytes of the register operands
are compared. Status bits are set with respect to the size (byte or word) of the
operation.

CMP{B} *Rn+,Rn is a special-case operand combination where both parts
of the operand use the same register. The compare of *Rn and Rn occurs
before Rn is postincremented.

LABEL CMP R12,R4 ; Is R12 equal to R4?
BEQ YES_EQ ; Yes, go to equal subroutine
CALL NOT EQ ; No, go to not—equal subroutine

Instruction Execution Detall

|

CMP{B} Rs,Rd | CMP{B} #imm16,Rd | CMP{B} *disp[Rs],Rd |

Cy | Address Data wbfd || Address Data wbfd Address Data wbfd

1 OpA +4 IEW OpA + 4 w 1001 OpA +4 w 1001

2 OpA +6 IEW 1000 disp+ Rs (disp + Rs) 1811
3 OpA+6 IEW 1000 °
[CMP{B} *Rs+,Rd | CMP{B} *disp1[Rs]*disp2[Rd] |

Cy | Address Data wbfd Address Data wbfd

1 Rs (Rs) 1811 OpA+4 disp2 1001

2| preva (prevA) 1011 OpA+6 w 1001

3 | OpA+4 EW 1000 || disp1+Rs (disp1 + Rs) 1811

4 disp2+Rd (disp2+ Rd) 1811

5 OpA +8 IEW 1000

Assembly Language Instructions 5-39

CMPC Compare Source Minus Carry to Destination

Syntax
Execution

Modes Supported

Status Bits

Description

CMPC
(destination) — (source) — C[ST] bit; set ST codes accordingly

Rs,Rd
*disp16[Rs],Ad

Z cleared if the result is non-zero; otherwise, unchanged

N equals the most significant bit of the resuilt

C setif an unsigned underflow/borrow occurred; otherwise, cleared
V setif a twos-complement underflow occurred; otherwise, cleared

Compare the source value, minus the carry bit value, to the destination. Then
set the ST codes according to the comparison.

The comparison is done in the following steps: (1) subtract the carry bit value
from the source, and then (2) subtract this result from the destination:

(1) source (2) destination
-_C[sT] source’
source’ /compare result

The ST codes reflect the operation, and the result is discarded (source, des-
tination not changed).

This instruction is designed for 32-bit compares with the first words (LSwords)
compared using the CMP instruction. The CMPC immediately follows the
CMP instruction to compare the most significant words. If the CMPC
comparison of the MSwords is true, the Z[ST] bit remains unchanged,
reflecting the earlier comparison of the LSwords by the CMP. However, if an
underflow/borrow occurred in the earlier LSword/CMP comparison, this will be
included in the subtraction of the two MSwords during the CMPC comparison.
Thus, two alike most significant values will show a zero Z[ST] bit because of
the carry over from the least significant comparison.

Therefore, all ST condition codes will reflect a 32-bit compare after a CMP/
CMPC sequence of compares is executed.

5-40 TMS370C16 CPU

Compare Source Minus Carry to Destinaton CMPC

Example Compare two 32-bit values — contents of R6/R7 with R8/R9 (two MSword/
LSword combinations). If equal, branch to subroutine EQUAL:

(MSword) (LSword)
LABEL CMP R7,R9 ; Compare LS words
CMPC R6,R8 ; Compare MS words
BEQ EQUAL ;s If equal, branch

Instruction Execution Detalil
| CMPC Rs,Ad | CMPC *disp16[Rs],Rd |

Cy | Address Data wbfd Address Data wbid
1 | OpA+4 IEW 1000 OpA +4 w 1001
2 disp+Rs (disp+ Rs) 1811
3 OpA+6 IEW 1000

Assembly Language Instructions 5-41

COMPL Twos-Complement (Negate) Destination

Syntax

Execution

COMPL{B} Synthetic Instruction: Executes as SUBR{B} Rn,ZR

(ZR) - (Rn) (effectively SUBR{B} Rn,ZR)
result — (Rn)

Mode Supported Rn

Status Bits y4
N
Cc
\'
Description

Examples

set if the result is zero; cleared otherwise

equals the most significant bit of the result

cleared if the resuilt is zero; set otherwise

set if a twos-complement underflow occurred; cleared otherwise

Compute the negative value (perform a twos-complement negation) of the

destination register’s contents by subtracting its contents from zero and
placing the result in the destination register.

For byte operations, the byte operands are zero-extended to words, are
operated on as words, and produce a word result. The most significant byte
of the result will be either 00h for C[ST]=0 or FFh for C[ST]=1.

Status bits are set with respect to the size (byte or word) of the operation.

Label compl R11

Negate R11l (twos complement)
Negate LS byte of R4. MS byte
value depends on carry bit of
ST as described above.

COMPLB r4

we we we weo

Instruction Execution Detail

5-42

COMPL{B} ARn
(SUBR Rd,ZR)

Cy

TMS370C16 CPU

Decrement Register, Branch If Not Zero DBNZ

Syntax DBNZ
Execution (Rs) — 1 — (Rs)
IFRs=0

THEN (PC - disp4) — (PC)
(where PC = [(DBNZ address + 4) + 2]
ELSE go to instruction following DBNZ

Mode Supported Rs,disp4
Option DBNZ Rs, <displacement4>

Status Bits Z unchanged
N unchanged
C unchanged
V unchanged

Description First, decrement the Rs word by one.

Then, If the result is nonzero, branch to the location pointed to by subtracting
the 4-bit displacement from the PC value. Note that this subtraction takes
place when the PC is pointing to the four bytes following the DBNZ instruction;

Figure 5-5. DBNZ Displacement Computation

A86B DBNZ R11,SUB_STRT ; If R11 # 0, go to SUB_STRT (this is
Opcode ; used in example on page 5-44)

/-— Maximum Displacements From PC:
13 Ve "™1111 ! = —15Words
- -15
-ﬁ / : 14 ' 0000' = -0Word
- [-13
' -12
-9 -1
-8) -10
-7 ! -9
)
Location :g \\ : :g
SUB_STRT — ¥ 3 \\, -8
-5
-2 \ —4
IfR115£0,Go -1 ! -3
Back6Words o | DBNZ op '<disp> RS -2 < Branch Instruction
+1 1 -1 (DBNZ Address)
+2 0 <« PC Points Here
4 4 (DBNZ + 4 Bytes)
Displacement Displacement
From DBNZ (Words) From PC (Words)

Assembly Language Instructions 5-43

DBNZ Decrement Register, Branch If Not Zero

Example

~e W= we YD ~e ~e ~e

~e wo we

thus, the displacement can redirect execution +2 words (a 00002 displace-
ment) or —13 words (11115) from the 17-bit address of the DBNZ instruction
(see Figure 5-5). In any case, the branch must be negative — to a previous
address (lower memory address).

But, if the result is zero, do not branch; go to the next instruction.

This instruction provides a loop counter with the source register containing the
number of loops desired. This is graphically shown in the left side of
Figure 5-5.

MoV #100,R11 ; Set up to check 100 bytes

*xkxxx*x Start of subroutine ***x

UB_STRT MOVB *R3+,*R5+ ; Bring in byte (next byte)

Subroutine manipulates byte, stores it

Now check if 100th byte read

dbnz R11,SUB_STRT ; If R1l =0, go to SUB_STRT,
; get next byte and repeat;
; otherwise, exit.

Instruction Execution Detall

5-44

[DBNZ Rs,disp4 |

Branch Not Taken Branch Taken
Cy Address Data wbfd | Address Data wbfd
1 prevA (prevA) 1011 prevA (prevA) 1011
2 | OpA +4+(2xdisp) w 1001 prevA (prevA) 1011
3 |OpA+6+(2xdisp) IEW 1000 | prevA (prevA) 1011
4 OpA +4 IEW 1000

TMS370C16 CPU

Decrement Destination DEC

Syntax
Execution

Modes Supported

Status Bits

Description

Example

DEC{B} Synthetic Instruction: Executes as SUBQ{B} #1,dest
(destination) — 1 — destination

Rd
*disp16[Rd]

Z setif the result is zero; otherwise, cleared

N equals bit in result: bit 7 (byte operation) or bit 15 (word operation)
C setif an unsigned underflow occurred; otherwise, cleared

V setif a twos-complement underflow occurred; otherwise, cleared

Subtract one from the destination register or the destination address. Set the
status bits with respect to the byte/word size of the resuit.

For byte operations, the operand is zero-extended to word size, operated on
as a word, and produces a word result. The most significant byte of the result
is either:

00h for C[ST] =0 or

FFh for C[ST] = 1.

Nonregister destinations receive the least significant byte of the result;
registers receive the entire word.

8611 LABEL DEC R1 ; Subtract 1 from R1
8811 DEC *100[R1] ; Subtract 1 from value at
0064 ; address computed as the

; sum of R1 contents and

100

Instruction Execution Detail

DEC{B} Rd DEC{B} *disp16[Rd]
(SUBQ{B} #1,Rd) (SUBQ{B} #1,*disp16,[Rd])

Cy | Address Data wbfd Address Data wbid
1 OpA+4 IEW 1000 prevA (prevA) 1011
2 disp + Rd (disp + Rd) 1811
3 OpA +4 w 1001
4 disp + Rd result 0S11
5 OpA +6 IEW 1000

Assembly Language Instructions 5-45

DIVS Divide, Signed

Syntax

Execution

Modes Supported

Status Bits

Description

DIVS{L}

(dest) < (src)
quotient — (Rd)
remainder — (IM)

Rs,Rd (word format only — divide 16-bit Rd by 16-bit Rs)
Rs,IM:Rd (long format only — divide 32-bit IM:Rd by 16-bit Rs)

Z ifV[STI = 1: bit Z[ST]is set if the 16-bit divisoris zero; cleared
otherwise.
if VIST] = 0: bit Z[ST] is set if the 16-bit quotient is zero; cleared
otherwise.

N equals V[ST] bit value XORed with the theoretical sign of the quotient
(see last paragraph of Description, on page 5-47).

C cleared

V setif a twos-complement overflow of the 16-bit quotient occurs;
cleared otherwise (see third paragraph and table in Description).

Divide (as signed values) the source register into the destination register(s).
Place the quotient in the destination register and the remainder in the implied
register (IM). The destination value to be divided is in one or two registers:

[one for word (16-bit) by 16-bit) division: Rd = Rs

[two for long (32-bit by 16-bit) division: IM:Rd < Rs (IM and Rd concate-
nated with IM the most significant word)

Note that the sign of the remainder is the same as the sign of the original
dividend (destination register contents). Also, the result is assigned in the
following sequence: the remainder goes to IM first; then, the quotient goes to
the destination. Thus, if IM is also the Rd in the destination of a long operation
(in other words, DIVS Rs,IM:IM), then the remainder in the IM is overwritten
by the quotient.

Twos-complement (signed) overflow occurs when the quotient does not fit
into 16 bits. This occurs under the following conditions:

Operation Where

Rs bit 15 = IM bit 15 (|Rs x 32769| = |IM:Rd|)

5-46 TMS370C16 CPU

Divide, Signed DIVS

When such overflows occur, Rs, IM, and Rd will be left unchanged.

The theoretical sign of the quotient is the XOR of the most significant bits of
the dividend and divisor prior to division. In other words:

[For DIVS, this is Rs bit 15 XORed with Rd bit 15

[For DIVSL, this is Rs bit 15 XORed with IM bit 15

Note: Do Not Use Operand Rs,IM:Rs

Using the operand Rs,IM:Rs can produce an undefined result. Depending
on the size of the instruction and the contents of IM and Rs, it is possible to
get a correct or incorrect result or an overflow.

Examples Label divs R8,R9 Signed divide of R9 by R8.

Result to R9; remainder to IM.
LONGL DIVSL R8,IM:R2 Signed divide of concatenated
IM:R2 by R8. Result to R2;

remainder to IM.

e we we we we we

Instruction Execution Detalil

| DIVS Rs,Rd | | DIVSL RsIM:Rd |

Cy Address Data wbid Cy Address Data wbid
1 prevA (prevA) 1011 1 prevA (prevA) 1011

prevA (prevA) 1011 2-28 prevA (prevA) 1011

tfinal | OpA+4 IEW 1000 $final | OpA+4 IEW 1000

t Word division (DIVS) takes 27 cycles, with the follow- + Longword division (DIVSL) takes 29 cycles, with the following

ing two exceptions: eight exceptions:
any 0oooh 4 overflow 8000 0000h pos 6 overfiow
8000h FFFFh 26 overflow 8000 0000h neg 7 overflow
The last line in the boxed table shows the logic values |IM:Rd| = |Rs| x 65536 pos 8 overflow
for the final cycle. |IM:Rd| = |Rs| x 65536 neg 9 overflow
IM:Rd = Rs x 32768 pos 28 overflow
IM:Rd < Rs x 32768 neg 28 overflow
IM:Rd = —Rs x 32768 pos 28 overfiow
IM:Rd < —Rs x 32768 neg 28 overflow

The last line in the boxed table shows the logic values for the final
cycle.

Assembly Language Instructions 5-47

DIVU _Divide, Unsigned

Syntax DIVU{L}

Execution (dest) < (src)
quotient — (Rd)
remainder — (IM)

Modes Supported DIVU Rs,Rd (word format only — divide 16-bit Rd by 16-bit Rs)
DIVUL Rs,IM:Rd (long format only — divide 32-bit IM:Rd by 16-bit Rs)

Status Bits Z if C[ST] = 1: set if the 16-bit divisor is zero; cleared otherwise
if C[ST] = 0: set if the 16-bit quotient is zero; cleared otherwise

N if C[STI] = 1: equals the most significant bit of the 16-bit divisor
if C[ST] = 0: equals the most significant bit of the 16-bit quotient
C setif an unsigned overflow of the 16-bit quotient occurred;
cleared otherwise
V cleared
Description Divide (as unsigned values) the source register into the destination register(s).
Place the quotient in the destination register and the remainder in the implied
register (IM). The destination value to be divided is in one or two registers:

[one for word (16-bit by 16-bit) division: Rd <+ Rs

[two for long (32-bit by 16-bit) division: IM:Rd = Rs (IM and Rd concate-
nated, with IM the most significant word)

The result assignment sequence is the remainder to IM first and then the
quotient to Rd. If Rd is also IM (for example, DIVU Rs,IM:IM), then the
remainder in the IM is overwritten by the quotient.

Unsigned overflow occurs when the quotient does not fitin a 16-bit data object.
This occurs for the following conditions:

(d DIVU and DIVUL: Rs contains 0000h
(J DIVUL: Rs x 65,536 < IM:Rd (for example, Rs < IM)

When such overflows occur, Rs, IM, and Rd will be left unchanged.

Examples LABEL DIVU R2,R3 ; Signed divide of R3 by R2.
s Result to R3; remainder
; to IM.

Long2 divul R4,IM:R2 ; Signed divide of concatenated

; IM and R2 by R4. Quotient to

’

R2, remainder to IM.

5-48 TMS370C16 CPU

Divide, Unsigned DIVU

Instruction Execution Detail

{ DIVU Rs,Rd | DivuL RsM:Rd |
Cy Address Data wbfd Address Data wbfd
1 prevA (prevA) 1011 prevA (prevA) 1011
2-20 prevA (prevA) 1011 prevA (prevA) 1011
finalt | OpA+4 IEW 1000 OpA + 4 IEW 1000
t Word division (DIVU) takes 21 cycles unless the divisor is 0000h; in

which case, it takes only 5 cycles with an overflow occurring. The third line
in the table shows final

cl
takes 21 cycles unless-(gue

e logic values. Longword division (DIVUL)
divisor is 0000h or unless IM:Rd > Rs x

65536. These two DUVUL exceptions take only 4 cycles with an overflow
occurring. The third line in the table shows the final-cycle logic values.

Assembly Language Instructions

5-49

EXTS Extend Signed Data

EXTS{B}

value of (Rd7) — (Rd8—Rd15)
or
value of Rd15 — IMO—-IM15

Syntax

Execution (byte)

(word)

EXTSB Rd
EXTS IM:Rd

Status Bits Z setif the result is zero; cleared otherwise
N equals the most significant bit of the result
C for EXTS: equals N[ST]
for EXTSB: cleared
V cleared

(for EXTSB only — byte operation)
(for EXTS only — word operation)

Modes Supported

Sign-extend the data in the destination register to the next larger data size (for
example, extend byte to word or word to 32-bit longword).

Description

For word to longword, implied register IM is the destination for the most
significant word of the 32-bit result.

Examples label exts im:r3 (sign) extend bit 15 of R3

through the IM (R1l)
extsb r3 (sign) extend the value of R3’'s
bit 7 through R3’s MSbyte

.
’
.
’
.
’
.
r
.
!

Instruction Execution Detail

| EXTS IM:Rd |

Cy | Address Data fd Address Data wbtd

1 | opa+a IEW [prevA (prevA) 1011

2 OpA +4 IEW 1000
5-50 TMS370C16 CPU

Extend Data With Zercoes EXTZ

Syntax

Execution

Modes Supported

Status Bits

Description

Examples

EXTZ{B} Synthetic Instruction: Executes as a MOV Instruction

(Rd) - (Rd) (For EXTZB: same as MOVB Rd,Rd.)

(ZR) —» (IM) (For EXTZ: same as MOV ZR,IM.)

Rd (For EXTZB only: byte operation.)

IM:Rd (For EXTZ only: word operation. No matter what register is specified,
the instruction always clears the IM register only.)

Z setif the result is zero; cleared otherwise

N equals bit 7 of Rd for EXTZB; cleared for EXTZ

C unchanged

V cleared

Extend the unsigned data in the destination register to the next larger data

size. This extends byte to word by zeroing the destination register’'s most

significant byte and extends word to longword by clearing the concatenated

IM register. In other words:

O Forthe byteinstruction (EXTZB) execution clears the MSbyte of the des-
tination register.

(O Forthe wordinstruction (EXTZ), execution clears onlythe IMregister (R1),
no matter which register specified.

Instruction Execution Detail

Label EXTZB RS ; Clear MSbyte of R5
i
Clear_ IM Ext IM:r5 ; Clear IM register
EXTZB Rd EXTZ IM:Rd
(MOVB Rd,Rd) (MOV ZR,IM)

Cy | Address Data wbfd Address Data

1 OpA + 4 IEW 1000 OpA+4 IEW 1000

Assembly Language Instructions 5-51

FMOV Move Far Data From Source to Destination

Syntax
Execution

FMOV

(source) — (destination)

Modes Supported Rs,*Rd (where *Rs and *Rd mean indirect address)

*Rs,ARd

Status Bits Z set if the transferred data was zero; cleared otherwise

N equals the most significant bit of the transferred data
C unchanged
V cleared

Description This instruction moves data to or from the upper half of the memory space.

Example

The indirection register *Rn accesses the full 128K bytes of memory and
contains a word address. The other register addresses the first 64K bytes of
memory and contains the specified memory address. ’

The content of the indirection register forms a 17-bit physical memory address
by overlaying register bits 15-0 onto address lines A16—-A1, then forcing A0
to 0. Because the indirection-register contents are one half the address bus
value, the example below (and in Section 4.8, page 4-16) illustrates the use
of the ? operator to load this address value into the register.

Move the contents of R2 into address 1C400h:
MoV #21C400h,R4 : place addr 1C400h/2 in R4.
FMOV R2,*R4 ; move contents of R2 to 1C400h

The first instruction places E200h (1C400h -+ 2) into R4. During the FMOV
instruction, the E200h is applied to address bus lines A15-A1 with A0 a 0,
deriving the destination address 1C400h. Note that the instruction:

MOV #1C400h/2,R4

would perform the same function as MOV #?1C400h,R4.

Instruction Execution Detail

5-52

| FMOV Rs,*Rd f FmoOV *Rs,Rd |

Cy | Address Data wbid || Address Data wbid
1 prevA (prevA) 1011 prevA (prevA) 1011
2| preva (prevA) 1011 prevA (PrevA) 1011
3 2Rd (2Rd) 1811 2Rs (2Rs) 1811
4 prevA (prevA) 1011 prevA (prevA) 1011
5 | opa+4 IEW 1000 || opa+4 IEW 1000

TMS370C16 CPU

ldle the CPU IDLE

Syntax

Execution

Modes Supported
Status Bits

Description

Examples

IDLE

assert IDLE signal;
while in idle state, do nothing

Operand not necessary for IDLE

Z unchanged
N unchanged
C unchanged
V unchanged

Idle the CPU by entering an internal endless "do nothing” loop. The system
module then enters theidle, standby, or halt mode (these modes are discussed
in Section 3.11 on page 3-40).

Methods of exiting the idle state depend upon device configuration and the idle
low-power mode that was entered.

Label IDLE ; Enter the idle state or the
; designated low power mode.

Instruction Execution Detail

As shown, it takes two cycles to enter the idle
| IDLE | state. Once in that state, signals shown at the
top of the table (Address, Data, w, b, f, d)
remain in the high-impedance state.

Cy | Address Data wbid

1 prevA (prevA) 1011
2 prevA (prevA) 1011
while

idle high-z high-z high-z

Assembly Language Instructions 5-53

ILLEGAL lllegal Instruction

Syntax
Execution

Modes Supported
Status Bits

Description

Example

ILLEGAL

(ST) — ((SP))

(SP) + 2 — (SP)
(PC) + 1 — ((SP))
(SP) + 2 — (SP)
((TRAP 0)) — (PC)
ones — L2—-LO[ST]

Operand not necessary for ILLEGAL

Z unchanged
N unchanged
C unchanged

V unchanged

Generate a trap exception by pushing the current ST contents and the word
address of the next executabie insiruction pius Z onto the system siack. Then
load the PC with the contents of the vector for TRAP O (traps are further de-
scribed in subsection 3.7.6 on page 3-24). It is preferred that the trap 0 vector
point to a reset sequence.

An RTI instruction returns execution to the interrupted execution flow.

While ILLEGAL has an explicit opcode of 0000h, the following opcodes will
generate the same result and are also considered illegal:

6Ah through 6Fh 70h through 78h 81h

98h through 9Fh EEh and EFh

Label Illegal ; Load the PC with the Trap 0
; 'illegal’ vector, usually placed
; in code somewhere that should
: probably not be used during
; normal operation. It is suggested
;s to have the Trap 0 routine contain
; a reset sequence.

Instruction Execution Detail

| ILLEGAL |

Cy Address Data wbid
1 OpA + 4 IEW 1001
2 SP SR 0011
3 SP+2 (MnA+4) 52 0011
4 prevA (prevA) 1011
5 Trap 0 addr (Trap 0 addr) 1011
[} Trap O vector x 2 w 1001
7 | (Trap O vector X 2) + 2 IEW 1000

5-54 TMS370C16 CPU

Increment Destination INC

Syntax

Execution

Modes Supported

Status Bits

Description

Example

INC{B} Synthetic Instruction: Executes as
ADQ{B} #1,dest (destination + 1 — destination)

ADQ{B} #1,dest

Rd
*disp16[Rd]

Z setif the result is zero; cleared otherwise

N equals the most significant bit of the result

C setif an unsigned underflow occurred; cleared otherwise

V setif a twos-complement underflow occurred; cleared otherwise

Add one to the destination operand. Status bits are set with respect to the size
(byte or word) of the operation.

For byte operations:
O Bit C[ST] = 0 when the MSbyte is 00h,
=1 when the MSbyte is 01h.
[0 Byteoperands are zero-extended to words, are operated on as words, and
produce a word result.
[0 Nonregister destinations recsive the least significant byte of the result,
while registers receive the entire word.

For word operations, bit C[ST] = 1 when the destination increments from
FFFFh to 0000h.

INCB R7 ; Increase contents of register 7
i byl

INCB *101h[ZR]; Increase the contents of byte
i

address 101h by 1 (ZR = 0)

Instruction Execution Detail

INC{B} Rd INC{B} *disp16[Rd]
(ADQ{B} #1,Rd) (ADQ{B} #1,*disp16[Rd])

Cy | Address Data wbfd Address Data wbfd
1 | opA+a EW 1000 prevA (prevA) 1011
2 disp+Rd (disp+Rd) 1S11
3 OpA+4 w 1001
4 disp + Rd result 0811
5 OpA+6 IEW 1000

Assembly Language Instructions 5-55

INTPU _ interpolate Unsigned Register With Rounding

Syntax
Execution

Mode Supported

Status Bits

Description

INTPU

IF (IM) > (Rd)
THEN

LSbyte of Rs x (IM — Rd) +80h — temp (8 bits x 16 bits — 24 bits + 80h)
temp - 256 — Rd
(IM) - (Rd) — (Rd)

ELSE
LSbyte of Rs x (Rd — IM)+80h — temp (8 bits x 16 bits — 24 bits + 80h)
temp =+~ 256 — Rd
(IM) + (Rd) — (Rd)

Rs,IM:Rd

Z setif the result is zero; cleared otherwise
N equals the most significant bit of the result
C cleared

V cleared

Perform a rounded straight line interpolation between the values contained in
registers IM and Rd according to the interpolation fraction in Rs. (Note that a
colon (:) separates IM and Rd in the destination’s syntax shown in the Mode
Supported section.)

The interpolation fraction is held in the least significant byte of Rs and has its
radix point between bits 7 and 8. The most significant byte of Rs is ignored,
and the contents of Rs are left unchanged.

The contents of IM and Rd are treated as words, with all arithmetic operations
being word size. Bytes can be used in these registers if the register’s most sig-
nificant byte is zero.

The internal multiply is 8 x 16 bits, where the 8-bit value is the fraction and the
16-bit value is the difference between IM and Rd. The product is a fixed-point
value with the integer portion in bits 8-23 and the fraction in bits 0~7. Round
up the product to word size by adding 80h, yielding a word value in bits 8-23.
The most significant word of the rounded product is then combined with IM,
yielding the final interpolated result, which is then placed in Rd.

The fractional portion of the temporary resultis lost. The operand combination:

INTPU Rs,IM:IM
will always generate a result of 0000h in IM.

Status bits are set with respect to a word result in Rd.

5-56 TMS370C16 CPU

Interpolate Unsigned Register With Rounding INTPU

Example This example performs a rounded interpolation between the 0000h value in
the IM register and 1000h in R6. The interpolation fraction of 256/2 is contained
in R5. The result goes to R6, the destination register.

in IM and R6, with rounding;
result is in R6

MoV ZR,IM ; 0000h to the IM register
MoV #1000h,R6 ; 1000h to R6
MOV #(256/2) ,R5 ; Interpolation fraction to R5
LABEL INTPU R5,IR:R6 ; Interpolate between values in
H
i

Instruction Execution Detall

[INTPU Rs/M:Ad |

M < Rd IM> Rd

Cy | Address Data wbfd | Address Data wbfd
1 prevA (prevA) 1011 prevA (prevA) 1011

2-8 | prevA (prevA) 1011 prevA (prevA) 1011
9 OpA+4 IEW 1000 prevA (prevA) 1011
10 OpA+4 EW 1000

Assembly Language Instructions 5-57

JMP Jump to Destination

Syntax JMP

Execution JMP Rd destination — (PC)
JMP add destination — (PC)
JMP *disp[Rd] disp + (Rd) — (PC)
JMP *Rd disp + (Rd) — (PC) with disp = 0000h

Modes Supported Rd
adar
*disp16[Rd]
*Rd (assembles as JMP *0000h[Rd])

Status Bits Z unchanged
N unchanged
C unchanged
V unchanged

Description Jump to the destination operand. (For jump to a subroutine, see the CALL
instruction, page 5-34.)

JMP Rd jumps to the word address value (see note below) contained in
register Rd (i.e., Rd contents — (PC)).

JMP addr jumps to the 17-bit address location (one half its value stored in
the extension word as a 16-bit word address).

JMP *disp16[Rd] and JMP *Rd (the latter is assembled as if written JMP
*0Oh[Rd]) use the following steps to derive the destination:

1) For *disp16[Rd], add the displacement (disp) and the contents of Rd to
compute a memory address (displacement value can be 0—FFFFh).

2) Atthis memory address, obtain a word address and apply this to the PC.
In turn, this value is applied to the address bus as a 17-bit address. Note
that this word address must be half the destination address-bus value. A
graphic explanation of this instruction is shown in Figure 4-12 on page
4-15.

Note: 16-Bit Word Address Translates to 17-Bit Address Bus

The word address is a 16-bit value transformed to a 17-bit memory address,
via the program counter, by overlaying data bits 0—15 onto address lines
A16—A1 and forcing A0 to 0. This is further explained in Section 2.2 and its
associated figures (page 2-4). Figure 4-13 (page 4-16) shows how to setthe
word address using the ? operator.

L J

5-58 TMS370C16 CPU

Jump to Destination JMP

Examples LABEL JMP *R8 ; Jump to the address of
i ((R8)) * 2.
jmp &code? ; Jump to the address of
;s code?.
JMP *extra[R7] ; Jump to the address of
; (extra + (R7)) * 2
Instruction Execution Detall
[JMP Rd | JMP addr16 I JMP *disp16[Rd] or *Rd |

Cy | Address Data wbid Address Data wbid Address Data | wbid
1 prevA (prevA) 1011 prevA (prevA) 1011 prevA (revA) 1011
2 2Rd w 1001 2caddr w 1001 disp + Rd caddr 1011
3 | @rd+2 Ew 1000 (2caddr) +2 IEW 1000 2caddr w 1001
4 (2caddr) +2 IEW 1000

Assembly Language Instructions

5-59

LDBIT Load Bit Into Carry Bit

Syntax
Execution

Modes Supported

Status Bits

Description

Example

LDBIT{B}

value of bit in destination (specified by source mask) — C[ST]
#imm4 »disp16[Rd] (byte only)

Rs,*disp16[Rd] (byte only)

Rs,Rd (word only)

#imm4 Rd (word only)

Z unchanged

N unchanged

C equals value of loaded bit

V unchanged

The value of a bit in the destination, specified by the source operand, is placed
in the cairy bit of the status register. The source operand is a vaiue in the
range 0—-15 contained either in the four least significant bits of a register or as
an immediate value. Bit numbers correspond to the following formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L1 1T T T P PP T Tl b J 1]] =wordbitnumberng

7 6 54 3 210
CTTTTTTT] =byte bit numbering

When the destination is a memory address, only byte memory accesses are
performed. Useful values for byte operations are 0—7, which select one of the
eight bits. When a value in the range 8-15 is used in byte operations, the
addressed byte is read, butthe C[ST] bit is left equal to 0. Useful values for
word operations are 0-15.

LDBIT is intended to be used with a BNC (branch if carry clear — C[ST]
equals 0) or a BC (branch if carry set— C[ST] equals 1) instruction.

Check if the most significant bit of byte (or word) address A00Oh is a 1:
LDBITB #15,*A000h([2R] Place MSB of addr A000h

in C bit of status regq.

Branch if MSB = 1

(C bit = 1)

BC A_ONE

w~e weo we we

5-60 TMS370C16 CPU

Load Bit Into Carry Bit

LDBIT

Instruction Execution Detail

LDBIT # imm4,Rd

LDBIT Rs,Rd

LDBITB

#imm4,*disp16[Rd]

Cy | Address Data wbid || Address Data wbtd || Address Data wbfd
1 prevA (prevA) 1011 prevA (prevA) 1011 || OpA+4 w 1001
2 | opa+s IEW 1000 prevA (prevA) 1011 || disp+Rd (disp+ Rd) 1111
3 OpA+4 IEW 1000 prevA (prevA) 1011
4 OpA+6 IEW 1000
LDBITB Rs,*disp16[Rd]
Cy | Address Data wbid
1 prevA (prevA) 1011
2 | OpA+4 w 1001
3 | disp+Rd (disp+Rd) 1111
4 prevA (prevA) 1011
5 | OpA+6 EW 1000
Assembly Language Instructions 5-61

LDEA Load Effective Address

Syntax

Execution

LDEA

displacement value + (Rs) — (Rad)

Mode Supported *disp16[Rs],Rd

Status Bits Z unchanged
N unchanged
C unchanged
V unchanged
Description Load the destination register with the sum of the source-register contents plus

Examples

the 16-bit displacement (offset) value. Note the following:

[O W disp16is alabel, its value is the memory address value of disp16 (not
the contents of disp16).

J if Rsisthe ZR (zeroregisier), then execution ioads oniythe vaiue of disp76
into Rd.

LABEL1 LDEA *BUFF7[r2],R8 Load value of BUFF7 plus
the contents of R2 into
register RS.

Load value of BUFF7 into
register RS.

Load value of BUFF7 into
register R8 (assembles
to same code as shown

for LABEL2 instruction).

LABEL2 LDEA *BUFF7[zr],R8

LABEL3 LDEA &BUFF7,R8

w6 We Ne N6 Ne we we wo we

Instruction Execution Detail

5-62

[LDEA *disp16/Rs],Rd |

Cy | Address Data wbid

1 | opAa+4a w 1001

2 | OpA+6 EW 1000
TMS370C16 CPU

Limit Register to Highest Signed Value LIMHS

Syntax

Execution

Mode Supported
Status Bits

Description

LIMHS{B}

IF [{VIST] = 1 and N[STI = 1} or {VISTI = 0 and (source) < (Rd)}] ,
THEN
(source) — (Rd)
zero — V[[ST]
one — C[[ST]
ELSE no change to Rd

*disp16[Rs],Rd

Z unchanged if Rd is not modified; otherwise, set if the contents of Rd

are zero, and cleared if the contents of Rd are nonzero

N equals the most significant bit of Rd if Rd is modified; otherwise,
unchanged

C setif Rd is modified; otherwise, unchanged

V cleared if Rd is modified; otherwise, unchanged

This instruction ensures that a register variable remains less than or equal to
its maximum legal value.

This instruction leaves the destination register with either its original contents

or the value given by the contents of the source operand. The C[ST] bit de-

clares that the contents of Rd has been modified. Two conditions warrant set-

ting the register to the contents of the source operand:

O Upon entry, V[ST] = 1 and N[ST] = 1, which indicates that an unsigned
overflow occurred before this instruction.

[The signed data value at the source operand is less than the signed con-
tents of Rd.

Byte operations test only the least significant byte of a register. If a byte in Rd
is modified, the most significant byte of Rd is cleared. Status bits are set with
respect to the size (byte or word) of the operation.

Instruction Execution Detail

| LIMHS{B} *disp16[Rs],Ad |

VIST] =1 V[ST] =0
Cy | Address Data wbfd | Address Data wbtd
1 OpA +4 w 1001 OpA+4 w 1001
2 | disp+Rs (disp+ Rs) 1811 disp+Rs (disp+ Rs) 1811
3 prevA (prevA) 1011 prevA (prevA) 1011
4 prevA (prevA) 1011 prevA (prevA) 1011
5 | OpA+6 IEW 1000 prevA (prevA) 1011
6 OpA+6 IEW 1000

Assembly Language Instructions 5-63

LIMHU Limit Register to Highest Unsigned Value

Syntax
Execution

Mode Supported
Status Bits

Description

LIMHU{B}

IF [C[ST] =1 or (source) < (Rd)],
THEN
source — (Rd)
one — V[ST]
ENDIF
zero — C[[ST]
IF a byte instruction (LIMHUB),
THEN
zeroes — Rd bits 8-15
ENDIF
ELSE (Rd) remains unchanged

*disp16[Rs],Rd

Z setif the contents of Rd are zero; otherwise, cleared
N equals the most significant bit of Rd

C cleared

V setif Rd is modified; otherwise, unchanged

Use this instruction to ensure that aregister variable remains less than or equal
to its maximum legal value.

This instruction leaves a register with either its original contents or the value

given by the contents of the source operand. The V[ST] bit declares that the

contents of Rd have been modified. Two conditions warrant setting the register

to the contents of the source operand:

O Upon entry, C[ST] = 1, indicating that an unsigned overflow occurred
before this instruction.

[d The unsigned data value at the source operand is less than the unsigned
contents of Rd.

Byte operations test only the least significant byte of a register and always

clear the most significant byte of Rd. Status bits are set with respect to the size

(byte or word) of the operation.

Instruction Execution Detail

| LIMHU{B} *disp16[Rs],Rd |

C[ST] =1 C[ST] =0
Cy | Address Data wbfd | Address Data wbtd
1 OpA + 4 w 1001 OpA +4 w 1001
2 | disp+Rs (disp+ Rs) 1811 disp+Rs (disp+ Rs) 1811
3 prevA (prevA) 1011 prevA (prevA) 1011
4 | opa+s IEW 1000 prevA (prevA) 1011
5 OpA +6 IEW 1000

5-64 TMS370C16 CPU

Limit Register to Lowest Signed Value LIMLS

Syntax

Execution

Mode Supported
Status Bits

Description

LIMLS{B}

IF [{VIST] =1 and N[ST] = 0} or {VIST] = 0 and (source) > (Rd)}],
THEN
(source) — (Rd)
zero — V[ST]
one — C[ST]
ELSE (Rd) remains unchanged

*disp16[Rs],Rd

Z unchanged if Rd is not modified; otherwise, set if the contents of Rd
are zero, and cleared if the contents of Rd are nonzero

N equals the most significant bit Rd if Rd is modified; otherwise,
unchanged

C setif Rd is modified; otherwise, unchanged

V cleared if Rd is modified; otherwise, unchanged

This instruction leaves the destination register with either its original contents
or the value given by the contents of the source operand. The C[ST] bit
declares that the contents of Rd has been modified. Either of two conditions
set the register to the contents of the source operand:

O Upon entry, V[ST] = 1 and N[ST] = 0, indicating that an unsigned
overflow occurred before this instruction.

[Orwhen V[ST] = 0, and the signed data value at the source operand is
greater than the signed contents of Rd.

Use this instruction to ensure that a register variable remains greater than or
equal to its minimum legal value.

Byte operations test only the least significant byte of a register. If a byte in Rd
is modified, the most significant byte of Rd is cleared. Status bits are set with
respect to the size (byte or word) of the operation.

instruction Execution Detail

[LMLS{B} *disp16[Rs],Rd]

VIST] =1 V[ST] =0
Cy | Address Data wbfd Address Data wbitd
1 | opa+4 w 1001 OpA+4 w 1001
2 | disp+Rs (disp+ Rs) 1811 disp+Rs (disp + Rs) 1811
3 prevA (prevA) 1011 prevA (prevA) 1011
4 prevA (prevA) 1011 prevA (prevA) 1011
5 | opA+6 IEW 1000 prevA (prevA) 1011
6 OpA +6 IEW 1000

Assembly Language Instructions 5-65

LIMLU Limit Register to Lowest Unsigned Value

Syntax

Execution

Mode Supported
Status Bits

Description

LIMLU{B}

IF [CL STI=1 or (source) > (Rd)],
THEN
(source) — (Rd)
1 (one) — V[ST]
ENDIF
0 — C[ST]

IF a byte instruction (LIMLUB),
THEN 0 — (Rd8-Rd15)

ENDIF

*disp16[Rs],Rd

Z setif the contents of Rd are zero; otherwise, cleared
N equais the most significant bit of Rd

C cleared

V setif Rd is modified; otherwise, unchanged

This instruction will leave the destination register with either its original

contents or the value given by the contents of the source operand. The V[ST]

bit declares that the contents of Rd have been modified. Two conditions

warrant setting the register to the contents of the source operand:

[dJ Upon entry, C[ST] = 1, which indicates that an unsigned overflow
occurred prior to this instruction.

[dJ The unsigned data value at the source operand is greater than the
unsigned contents of Rd.

Use this instruction to ensure that a register variable remains greater than or
equal to its minimum legal value.

Byte operations test only the least significant byte of a register. If a byte in Rd
is modified, the most significant byte of Rd is cleared. Status bits are set with
respect to the size (byte or word) of the operation.

Instruction Execution Detalil

[LIMLU{B} *disp16[Rs],Rd |

C[ST] =1 C[ST]=0
Cy | Address Data wbtd Address Data wbfd
1 OpA +4 w 1001 OpA + 4 w 1001
2 | disp+Rs (disp + Rs) 1811 disp+Rs (disp+ Rs) 1811
3 prevA (prevA) 1011 prevA (prevA) 1011
4 OpA +6 IEW 1000 prevA (prevA) 1011
5 OpA + 6 IEW 1000

5-66 TMS370C16 CPU

Link and Allocate Stack Frame LINK

Syntax

Execution

Mode Supported
Status Bits

Description

LINK

(FP) — ((SP))

(SP) — (FP)

(SP) +2 — (SP)

(SP) + (2 x displacement) — (SP)

disp8

Z unchanged
N unchanged
C unchanged
V unchanged

This instruction links the frame pointer (FP) to the current system stack frame
by executing these steps:

1) Push the FP contents onto the system stack.
2) Set the FP to the SP value.
3) Allocate a displacement amount of words on the stack.

The 8-bit, unsigned, immediate displacement value is multiplied by 2 before
being added to the SP, in order to keep the value of SP even.

A stack frame of 0 to 255 words can be allocated.

Instruction Execution Detail

| LINK disp8

Cy | Address Data wbtd
1 SP FP 0011
2 prevA (prevA) 1011
3 prevA (prevA) 1011
4 | OpA+4 IEW 1000

Assembly Language Instructions 5-67

LSR__Logically Right-Shift Register Contents

Syntax
Execution

Modes Supported

Status Bits

Description

Examples

LSR{L}

Shift destination register to the right by a source-count amount of bits
Rs,Rd (word)

#imm4,Rd (word)

Rs,IM:Rd (longword)

#imm4,IM:Rd (longword)

Z setif the result is zero; cleared otherwise

N equals the most significant bit of the result

C equals the last bit shifted out of the register; cleared if the shift
count in Rs is zero

V cleared

Logically right-shift the destination register’s contents by the number of the bit
count in the source operand. At the same time, shift (the same number of)
zero(es) into the most significant bit(s). A four-bit field in the source operand
contains the shift count of 0—15.

Zero(es)

15 0
(MSB of Rd or IM) Bit 0 of Rd

For shifts using immediate values, source-operand immediate values of
00012 to 11115 correspond to shift counts of 1—15, with a field value of 00002
representing a shift of 16. For shift values in Rs, the four LSBs of 00005 to
11115 represent a shift of 0 to 15.

Status bits are set with respect to the size (word or longword) of the operation.
Longword shifts imply the use of register IM as the most significant word of the
32-bit object. The result of LSRL s,IM:IM is undefined.

LABEL MOV #6,R12
LSR R12,R3

Place value of 6 in R12
Shift R3 to the right 6 bits
and fill the 6 MSBs with

zeroes.

SHIFT_2 LSR #2,R8 Logically shift R8 by 2 bits.

SHIFT 12 LSRL #12,IM:R5 Logically right-shift the
concatenated values in IM:R5
by 12.

LSRL R3,IM:R2 The count value of the 4 LSBs
of R3 are used to logically
right-shift the IM:R2
register pair.

NE NE Ne W Ne NE N N W Ne %O We we we wo

5-68 TMS370C16 CPU

Logically Right-Shift Register Contents LSR

Instruction Execution Detail

| LSR #mm4,Rd | { LSRR RsAd
le, — . / R
P%r?od‘ Address Data wbtd %7 Address Data wbfd
(repneat) prevA (prevA) 1011 1 prevA (prevA) 1011
n+1 | oOpA+a IEW 1000 2 prevA (prevAd) 1011
(rep’L ayy | PVA (prevA) 1011

n+1 OpA+4 IEW 1000
Total cycles: n + 3

LSRL #imm4,IM:Rd | { LSRL Rs,/M:Rd
le/ _ e Cycle/ _
Pgejﬂcodf Address Data wbid Period? | Address Data wbid
1 prevA (prevA) 1011 1 prevA (prevA) 1011
(rzp";zt) prevA (prevA) 1011 2 prevA (prevAd) 1011
2n OpAt4 IEW 1000 3 prevA (prevA) 1011
(r";’;;) prevA (prevA) 1011
2n OpA+4 IEW 1000
Total cycles: 2 + 2n, or
3 if Rs = x0h

t Asingle number represents a given cycle; an expression of n represents
a cycle or period of cycles, depending on the nth number of shifts or
repeats.

Assembly Language Instructions

5-69

MOV Notes, Cautions, and Warnings

Syntax
Execution

Modes Supported

Status Bits

Description

MOV{B}
(source) — (destination)

Rs,Rd

Rs,*Rd

Rs,*Rd+

Rs,*disp16[Rd]

*Rs,Rd

*Rs,*Rd

*Rs,*Rd+

*Rs,*disp16[Rd]

*Rs+,Rd

*Rs+,*Rd

*Rs+,*Rd+

*Rs+,*disp16[Rd]
#imm16,Rd

#imm16,*Rd

#imm16,*Rd+
#imm16,*disp16[Rd]
*disp16[Rs],Rd
*disp16[Rs],*Rd
*disp16[Rs],*Rd+
*disp_s16[Rs],*disp_d16[Rd]
*-Rs,Rd

Z setif the transferred data was zero; otherwise, cleared
N equals the most significant bit of the transferred data

C unchanged
V cleared

Transfer data from the source operand to the destination operand.

When byte data is moved to a register, the least significant byte receives the
data, while the most significant byte is cleared. When data is moved from a
register, only the least significant byte of the register is moved.

Status bits are set with respect to the size (byte or word) of the operation.

Note: Use FMOV to Address 0 - 1FFFFh (Up to 128K Bytes)

The MOV instruction moves (copies) between registers or from/to an
address space within the first 64K bytes. Use the FMOV instruction to move
data in the address space from O to 128K bytes.

5-70 TMS370C16 CPU

Move Data From Source to Destination MOV

Examples

Four special cases exist when the source operand is *(Rn)+ and the
destination operand is a mode using the same register.

Instruction

Operation (see Note)

MOV *Rn+,Rn
MOV *Rn+,*Rn

MOV *Rn+,*Rn+

MOV *Rn+,*d[Rn]

((Rn)) + size — (Rn)
((Rn)) = ((Rm));
(Rn) + size — (Rn)
(Rn) — (Rn + size);
Rn + 2 x size = Rn

(Rn) — (d + (Rn));
Rn + size —+ Rn

Note: The "size” is the increment size (1 for byte, 2 for word).

Label mov r2,r3
clr_ R5 mov 2r,r5
mov 2r,*r9+

MOV *50h[rl],r2

movb #1234h,*r10

mov &BUF1,&BUF2

MOVB &LOC1, &LOC2

movb *-r7,im

WO NE N NG NG Ve W WE WE NG WE WE WE e WE Ve WE WE NE We NE N WS We W We we we weo

Move contents of R2 to R3.
Clear contents of R5

Clear the contents at the
address in R9 then incre-
ment R9.

Compute the source address
by adding 50h and the contents
of Rl. Move the contents at
this address to R2.

Move the value 34h into the
indirect contents of rlo0.
Force MS byte of rl0 to
all zeroes.

Move the word at location BUF1
to word location BUF2.

Move the byte value at LOC1
to byte address LOC2.

Decrement value in R7; the
result is the source add-
ress. Move the LS byte at
this address to the IM with
the MS byte of the IM = 0.

Assembly Language Instructions 5-71

MOV Move Data From Source to Destination

instruction Execution Detall

MOV{B} Rs, *Rd |

[MOV{B} Rs, Rd |

MOV{B} Rs,*Rd+ |

Cy Address Data wbtd Address Data wbid Address Data wbfd
1 OpA+4 IEW 1000 Rd Rs 0811 Rd Rs 0811
2 OpA +4 IEW 1000 OpA + 4 IEW 1000

(MOV{B} Rs,*disp16[Rd]

|

MOV{B} *Rs,Rd

MOV{B} *Rs,*Rd

Cy Address Data wbifd Address Data wbfd Address Data wbid

1 "OpA + 4 w 1001 RS (Rs) 1811 Rs (Rs) 1811

2 disp + Rd Rs 1011 OpA+4 EW 1000 Rd (Rs) 0S11

3 OpA+6 IEW 1000 OpA+4 IEW 1000
[MOV{B} *Rs,*Rd+] MOV{B} *Rs,*disp16[Rd] “ MOV{B} *Rs+Rd

Cy Address Data wbid Address Data wbfd Address Data wbid
1 Rs (Rs) 1811 OpA +4 w 1001 Rs (Rs) 1811
2 Rd (Rs) 0S11 Rs (Rs) 1811 prev (prev) 1011
3 OpA + 4 IEW 1000 disp + Rd (Rs) 0S11 OpA +4 IEW 1000
4 OpA +6 IEW 1000
I MOV{B} *Rs+,*Rd MOV{B} *Rs+,*Rd+ MOV{B} *Rs+,*disp16[Rd] 1

Cy Address Data wbid Address Data wbfd Address Data wbid
1 Rs (Rs) 1811 Rs (Rs) 1811 Rs (Rs) 1811
2 Rd (Rs) 0S11 prev (prev) 1011 OpA + 4 w 1001
3 OpA +4 IEW 1000 Rd (Rs) 0811 disp + Rd (Rs) 0811
4 OpA +4 IEW 1000 OpA +6 IEW 1000

5-72 TMS370C16 CPU

Move Data From Source to Destinaton MOV

MOV{B} #imm16,Rd

| ™Movig} #imm16*Rd | MOV{B} #imm16*Rd+ |

Cy Address Data wbtd Address Data wbtd Address Data wbtd
1 OpA+4 w 1001 Rd data 0s11 Rd data 0S11
2 OpA +6 IEW 1000 OpA +4 w 1001 OpA+4 w 1001
3 OpA +6 IEW 1000 OpA+6 IEW 1000

[MOV{B} #imm16,*disp16[Rd] | MOV{B} *disp16[Rs,Rd [MOV{B} *disp16[Rs],*Rd |

Cy Address Data wbid Address Data wbfd Address Data wbid
1 OpA+4 data 1001 OpA+4 w 1001 OpA+4 w 1001
2 disp + Rd data 0sS11 disp +Rs (disp + Rs) 1811 disp + Rd (disp + Rs) 1811
3 OpA +6 w 1001 OpA +6 IEW 1000 Rd (disp + Rs) 0811
4 OpA +8 IEW 1000 OpA+6 IEW 1000

MOV{B} *disp16[Rs], *Rd+

[MovB} *disp_s16]Rs],*disp_d16(Rd] | MOV{B} *-Rs,Rd |

Cy Address Data wbfd Address Data wbid Address Data wbid
1 OpA+4 w 1001 OpA +4 disp2 1001 prev (prev) 1011
2 disp + Rs (disp +Rs) 1811 OpA +6 w 1001 Rs-S (Rs - S) 1811
3 Rd (disp +Rs) 0S11 disp1 +Rs (disp1 +Rs) 1811 OpA +4 IEW 1000
4 OpA +6 IEW 1000 disp2 +Rd (disp1 +Rd) 0S11
5 OpA +8 IEW 1000
Assembly Language Instructions 5-73

MOVQ Move Quick Immediate Data to Destination

Syntax
Execution

Mode Supported
Status Bits

Description

Example

MOVQ

immediate data value — (destination)
#imm4,Rd (4-bit value entered, zero extended; 16-bit word moved)

Z set if the transferred data was zero; cleared otherwise
N cleared

C unchanged

V cleared

Transfer quick immediate data to the destination operand. Quick immediate
data is a 4-bit value of 0—15, that has been zero-extended to word. This
instruction requires one word and operates in one cycle; whereas,
MOV #data,Rd takes up two words and two cycles.

Note that a MOVQB is unnecessary, because MOVQ generates the same
result in destination register Rd with the register’s MSbyte cleared to zeroes.

LABEL MOVQ #3,R12 ; Load the value 3 into R12.

Instruction Execution Detall

| movQ #mm4,Rd |

5-74 TMS370C16 CPU

Multiply, Unsigned With Rounding, 8 x 16 MPYBWU

Syntax

Execution

Mode Supported
Status Bits

Description

Examples

MPYBWU

(LSbyte of Rs x Rd) + 80h — (Temp) (8 x 16 — 24 + 000080h)
(Temp) < 256 — (Rd)

Rs,Rd

Z set if the result is zero; cleared otherwise
N equals the most significant bit of the result
C cleared

V cleared

Multiply the 8-bit value in the least significant byte of Rs by the 16-bit value in
Rd. Add 000080h to the 24-bit intermediate product, and place the most
significant word of the sum in Rd.

During the multiply, the most significant byte of Rs is ignored, and the contents
of Rs are left unchanged.

The internal multiply is 8 bits x 16 bits, which generates a 24-bit intermediate
result. Typically, this instruction is used when the 8-bit value in Rs is a fraction
and Rd holds an integer. Hence, the product is a fixed point value with the inte-
ger portion in bits 8-23 and the fraction in bits 0~7. The value 000080his add-
ed to this temporary product to round it back to an integer, yielding a rounded
integer value in bits 8-23. This rounded result is then placed in Rd.

label MPYBWU R7,R8 s Multiply the LS byte of R7
; by R8, then add 80h to the
; product. Place the MS word

of this result in RS8.

Instruction Execution Detall

[MPYBWU Rs,Rd

Cy | Address Data wbfd
1-8 | prevA (prevA) 1011
OpA +4 IEW 1000

Assembly Language Instructions 5-75

MPYS Muitiply, Signed

Syntax
Execution

Modes Supported

Status Bits

Description

Examples

MPYS{B}
Rs value x (destination) — (destination)

Rs,Rd [byte only (8 x 8 — 16): Rsx Rd— Rd]
Rs,IM:Rd [word only (16 x 16 — 32): Rs x Rd — IM:Rd]

Z set if the product is zero; cleared otherwise
N equals the most significant bit of the product
C cleared

V cleared

Perform a multiply of the signed contents of the destination register by the
signed contents of the source register. The product of byte multiplication is
placed in the destination register. The most significant word of the product of
word multiplication is placed in the /M register, and the least significant word
is placed in the destination register.

The result assignment sequence places the most significant word of the prod-
uct in the /M first and the least significant word to Rd second. If Rdis also IM
(for example, MPYS Rs, /M:IM), then the most significant word in IMis overwrit-
ten by the least significant word.

Signed overflow on a multiple occurs when the product cannot be successfully
truncated to the size of the operands without data loss. For MPYSB, this oc-
curs when bits 15—7 of the product are not equal, and for MPYS when bits
31-15 of the product are not equal. To detect this condition, follow an MPYS
instruction with a TRUNCS instruction. This sequence will leave V[ST] and
N[ST] correctly set for such signed overflows.

Status bits are set with respect to the size (word or longword) of the product.

LABEL MPYSB R3,R4 ; Multiply (signed) the LS bytes
: of R3 and R4. Store result in
: R4,

MULT MPYS R8,IM:R9 ; Multiply (signed) R8 by R9.

;s Place result in the concat-

; tenated IM:R9 register pair.

5-76 TMS370C16 CPU

Multiply, Signed MPYS

Instruction Execution Detalil
| MPYS Rs,M:Rd | { MPYsB RsRd |

Rd>0 Rd<0 Rd>0 Rd< 0
Cy |Address Data wbfd |Address Data wbfd || Cy | Address Data wbtd | Address Data wbfd
1-12 | prevA (prevA) 1011 | prevA (prevA) 1011 || 1 prevA (prevA) 1011 | preva (prevA) 1011
13 |opA+4a IEW 1000 | preva (prevA) 1011 || 2 | preva Roiggx256 0011 | prevA Rdisex256 0011
14 OpA+4 IEW 1000 || 3-8 | preva (PrevA) 1011 | preva (prevA) 1011
10 |opa+a JEW 1000 | prevA Rdiggx256 1011
1" OpA + 4 IEW 1000

Assembly Language Instructions 5-77

MPYU wMuttioly, Unsigned

Syntax
Execution

Modes Supported

Status Bits

Description

Examples

MPYU{B}
Rs value x (destination) — (destination)

Rs,Rd [byte only (8x 8—16): Rsx Rd— Rd]
Rs,IM:Rd [wordonly (16 x 16 +32): Rs x Rd — IM:Rd]

Z setif the product is zero; cleared otherwise
N equals the most significant bit of the product
C cleared

V cleared

Perform an unsigned multiply of the unsigned contents of the destination
register by the unsigned contents of the source register. The product of byte
multiplication is placed in the destination register. The most significant word
of the product of word multiplication is placed in the /M register, and the least
significant word in the destination register.

The result assignment sequence places the most significant word of the
product in register /M first and then the least significant word to Rd second. If
Rd is also the IM (for example, MPYU Rs,IM:IM), then the most significant
word in /M is overwritten by the least significant word.

Unsigned overflow on a multiply occurs when the product cannot be
successfully truncated to the size of its operands without data loss. For
MPYUB, this occurs when bits 15-8 of the product are not zero and for MPYU
when bits 3116 of the product are not zero. To detect this condition, follow an
MPYUB instruction with a TRUNCU instruction, or follow an MPYU instruction
with a CMP IM,ZR. These sequences will leave C[ST]=1 for the signed
overflows.

Status bits are set with respect to the size (word or longword) of the product.

label mpyub r3,r4 Multiply (unsigned) the LS
bytes of R3 and R4. Store
the result in R4.

mult mpyu r8,IM:r9 Multiply (unsigned) R8 by R9.
Store results in the IM:r9
concatenated register pair.

5-78 TMS370C16 CPU

MM@MUm@wd

MPYU

Instruction Execution Detail

| MPYU RsAd

I

| MPYUB Rs,IM:Rd |

Cy Address Data wbtd Cy Address Data wbfd
1-12 prevA (prevA) 1011 1 prevA (prevA) 1011
13 OpA+4 IEW 1000 2 prevA Rd sgx256 0011
3-8 prevA (prevA) 1011
8 OpA+4 IEW 1000

Assembly Language Instructions

5-79

NOP No Operation

Syntax NOP Synthetic Instruction: Executes as SBITO #15,ZR

Execution zero — bit 15 of ZR
(same as SBITO #15,ZR)

Mode Supported Operand not necessary for NOP

Status Bits Z unchanged
N unchanged
C unchanged
V unchanged

Description Perform no operation; CPU state is unchanged except for advancement of the
PC to the next instruction address. This instruction takes one cycle.

Example DELAY NOP ; Causes one cycle delay

Instruction Execution Detalil

NOP
(SBITO #15,ZR)

Cy | Address Data Yi
1 OopA +4 IEW 1000

5-80 TMS370C16 CPU

Ones Complement the Destination NOT

Syntax NOT{B} Synthetic Instruction: Executes as XNOR{B] ZR,Rd
Execution NOT((source) XOR (destination)) — (destination)

(executes same as XNOR{B} ZR,Rd)
Mode Supported Rd

Status Bits Z setif the result is zero; cleared otherwise
N equals the most significant bit of the result
C unchanged
V cleared
Description Perform a ones complement on the destination register’s contents. Effectively,

XOR (exclusively OR) the Rd with the all-zero ZR, then take a ones
complement of the result (XNOR the Rd).

For byte operations, the byte operands are zero-extended to words, are oper-
ated on as words, and produce a word result. The most significant byte of the
result will always be FFh.

Status bits are set with respect to the size (byte or word) of the operation.

Examples label NOTB IM Invert LS byte of the IM

.
r
.
I
.
’

Invert NOT R12 Invert R12

Instruction Execution Detalil

NOT{B} Rd
(XNOR{B} ZR,Rd)

Cy | Address Data wbtd
1| OpA+a IEW 1

Assembly Language Instructions 5-81

OR Logical Inclusive OR Source With Destination

Syntax OR{B}
Execution (source) OR (destination) — (destination)
Modes Supported Rs,Rd
Rs,*disp16[Rd]
#imm16,Rd
#imm16,*disp16[Rd]
Status Bits Z setif the result is zero; cleared otherwise
N equals the most significant bit of the result
C unchanged
V cleared
Description Logically inclusive OR the contents of the source operand with the contents
of the destination operand.
For byte operations, the byte operands are zero-extended to words, are
operated on as words, and produce a word result. The most significant byte
of the result will always be 00h. Nonregister destinations receive the least
significant byte of the result, while registers receive the entire word.
Status bits are set with respect to the size (byte or word) of the operation.
Examples Label OR R5,R6 ; Logically OR the contents of
; R5 and R6. Store the value
; in R6.
set_2 ORB #4h,&FLAG ; Set bit 2 of location FLAG.
Set_8 OR #EIGHT,&Flag ; OR mask value EIGHT with
;

location Flag.

Instruction Execution Detail

| OR{B} RsARd

| OR{B} Rs,*disp16[Rd] | OR{B} #imm16,Rd | OR{B} #imm16,*disp16[Rd] |

Cy | Address Data wbfd | Address Data wbfd || Address Data wbfd || Address Data wbid

1 OpA+4 IEW 000 OpA+4 w 1001 OpA+4 w 1001 OpA+4 data 1001

2 disp+Rd (disp+ Rd) 1811 OpA+86 IEW 1000 disp+Rd (disp+ Rd) 1811

3 prevA (prevA) 1011 OpA+6 w 1001

4 disp + Rd result 0S11 disp + Rd result 0S11

5 OpA +6 IEW 1000 OpA+8 IEW 1000
5-82 TMS370C16 CPU

Pull (Pop) Registers From the Stack POP

Syntax

Execution

Mode Supported

Status Bits

Description

Example

POP

FOR INDEX = Register_Last to Register_First BY —1,
DO (SP)-2— (SP)

((SP)) — (register jngex))
RL,RF (Register_Last and Register_First;, Required: RLz RF)
Z unchanged
N unchanged

C unchanged
V unchanged

Starting at the SP value, pull words from the system stack into the register(s)
starting with AL (Register_Last) through and including Rr (Register_First). The
enumerator of AL must be arithmetically greater than or equal to the enumera-
tor of RF (for example, POP R7,R5 is valid because 7 > 5).

This instruction is most efficiently used for minimizing code space and
execution time when restoring CPU context. It is faster than multiple
MOV *~SP,Rd instructions and consumes only two bytes of program
memory.

If the SP (R13) is included in the RL—RFrange, the value retrieved and placed
into the SP will take effect immediately and will direct the retrievals of any
remaining registers in the range. Care must be taken to ensure that the SP
value on the system stack will not corrupt the current context. A matched pair
of instructions, PUSH RF,RL and POP RL,RF, executes correctly when the SP
is included within the range.

Label POP R12,R2 ; Pop the contents of the Stack

; into registers R12 to R2

Instruction Execution Detall

| POP ALAF

Cyl | Address Data wbfd
ny prevA (prevA) 1011
np | sp-an (sP-20) 1011
2n+1 | OpA+4 IEW 1000

t Bothnqgand n2 are repeated during the exchange of one stack register
to memory. The total number of exchanges (stack words stored) is
multiplied by 2 and incremented for the cycle total (last line).

Assembly Language Instructions 5-83

PUSH Push Registers Onto the Stack

Syntax PUSH
Execution FOR index = Register_First to Register_Last BY +1,

DO (register(ngex)) — ((SP))

(SP) +2 — (SP)

Mode Supported RrRL (Register_First and Register_Last; Required: Ry = Rg)
Status Bits Z unchanged

N unchanged

C unchanged

V unchanged
Description Push register contents onto the system, stack starting at the SP value.

Registers to push are from RF (register_first) through and including AL
(register_last). The enumerator of RL must be arithmetically greater than or
equal to the enumerator of A (for example, PUSH R5,R7 is valid because
7>5).

This instruction is most efficiently used for minimizing code space and
execution time when saving CPU contexts. It is always faster than muitiple
MOV Rs,*SP+ instructions and consumes only two bytes of program
memory.

Example SAVE PUSH R6,R3 Push the contents of R6, R5,

R4, and R3 onto the Stack

~. we

Instruction Execution Detall

(PUSH REAL

cyt Address Data wbtd
(re:eat) SP +2(n-1) (reg) 0011
n+1 | OpA+4 EW 1000

1 The n is the number of register-to-stack exchanges.

5-84 TMS370C16 CPU

Unlink Stack, Return From Subroutine, and Deallocate RTDU

Syntax

Execution

Mode Supported
Status Bits

Description

RTDU

(FP)—2 — (SP)
((FP)) — (FP)

((SP)) = (PC)

(SP) — 2displacement — (SP)

disp8

Z unchanged
N unchanged
C unchanged
V unchanged

Unlink and deallocate the current system stack frame:

1) Load SP with the contents of the frame pointer (FP),

2) Retrieve the previous value of FP from the system stack,

3) Pull the return address from the system stack and place it in the PC, and

4) Deallocate additional stack space by subtracting the 8-bit unsigned word
displacement from the value of SP.

Note that since the 8-bit value is a word displacement, it is internally multiplied
by two to generate an even value and to keep the SP word aligned.

The return address is a word address that is transformed to a 17-bit physical
memory address, via the program counter, by overlaying data bits 150 onto
address lines A16—-A1 and forcing A0 to 0. This instruction can be a return
mechanism for a CALL subroutine ifand only ifthe subroutine executed a LINK
instruction and did not execute an UNLINK instruction.

Instruction Execution Detail

| RTDU disp8

Cy | Address Data wbid
1 prevA (prevA) 1011
2 FP old FP 1011
3 FP-2 RtnA+-2 1011
4 RtnA w 1001
5 RtnA +2 IEW 1000

Assembly Language Instructions 5-85

RT| Return From Interrupt

Syntax

Execution

Modes Supported

Status Bits

Description

Example

RTI

(SP)-2— (SP)
((SP)) — (PC)
(PC)—2— (PC)
(SP) -2 - (SP)
((SP)) = (ST)

Operand not necessary for RTI

Z reflects the status data pulled from the system stack
N reflects the status data pulled from the system stack
C reflects the status data pulled from the system stack
V reflects the status data pulled from the system stack

Return from interrupts/exceptions by pulling the return address off the system
stackinto the PC, then pulling the previous status data off the system stackinto
the ST, and then enabling nonmaskable interrupts.

This instruction is designed to be the return mechanism for peripheral
interrupts, TRAPS, or illegal opcodes and their associated exception handling
software. The PC must be decremented because interrupts/exceptions leave
on the stack a PC value that points two words (four bytes) beyond the address
of the next executable instruction in the interrupted stream. This effect is due
to the pipeline prefetch of the CPU. The return address is a word address that
is transformed to a 17-bit physical memory address, via the program counter,
by overlaying data bits O to 15 onto address lines A16—A1 and forcing line A0
toaO.

RETURN RTI Return to point of program
flow when the interrupt

occurred.

we wo weo

Instruction Execution Detail

| RTI |
Cy | Address Data wbfd
1 prevA (prevA) 1011
2| SP-2 (RtnA+4+2 1011
3 prevA (prevA) 1011
4 Rtn A w 1001
5 | sP-4 old ST 1011
8 | RtnA+2 IEW 1000

5-86 TMS370C16 CPU

Return From Subroutine RTS

Syntax

Execution

Modes Supported
Status Bits

Description

Example

RTS

(SP)—2— (SP)
((SP)) — (PC)

Operand not necessary for RTS

Z unchanged
N unchanged
C unchanged
V unchanged

Return from a subroutine by pulling the return address off the system stack into
the PC. RTS uses the return linkage created by the CALL and normally is the
final instruction of a subroutine entered through the CALL instruction.

CALL and RTS work together to enter a subroutine and then later return to the
instruction following the CALL when the subroutine is exited. The CALL
instruction sets up this linkage by placing the PC value (a value that points to
the instruction following the CALL) onto the stack before the subroutine is en-
tered.

The return address is a word address that is transformed to a 17-bit physical
memory address, via the program counter, by overlaying data bits 0 — 15 onto
address lines A1 — A16 and forcing A0 to 0. This is illustrated in the CALL/RTS
example in Figure 54 on page 5-35.

Return_1 RTS ;s Return to the instruction
; immediately following the
; subroutine call.

Instruction Execution Detail

| RTS |

Cy | Address Data wbid
1 prevA (prevA) 1011
2 SP-2 RiNA + 2 1011
3 RtnA w 1001
4 | RtnA+2 IEW 1000

Assembly Language Instructions 5-87

SBB Subtract Source Less Carry From Destination

Syntax SBB
Execution (destination) — (source) — carry-bit value — (destination)
Modes Supported Rs,Rd
*disp16[Rs],Rd
Status Bits Z setif the result is zero; unchanged otherwise

N equals the most significant bit of the resuit
C setif an unsigned underflow occurred; cleared otherwise
V setif a twos complement underflow occurred; cleared otherwise

Description Subtract the contents of the source operand, less the value of C[ST], from the
destination register.

This instruction is designed to aid 32-bit subtraction. A SUB will subtract the
least significant words, and then a following SBB will subtract the most signifi-
cant words. Since the SBB instruction recognizes a previous underflow/bor-
row (C[ST]), the SUB and SBB instructions must be sequential.

SBB handles Z[ST] correctly for 32-bit subtraction. The Z[ST] bit s set if and
only if the previous operation (typically a SUB) set it. Therefore, all status bits
will reflect a 32-bit result after a SUB/SBB sequence of instructions is

bit from R3. Result to R3.
Subtract 10h minus the carry
bit from R1l. Result to Rl.

sbb *10h[ZR],rl

executed.

Example label sbb ZR,R2 ; Subtract the carry bit value
; from R2. This is a conditional
; decrement of R2 depending
; contents of carry bit.

sbb R5,R3 ; Subtract R5 value minus carry

H
H
H

Instruction Execution Detail
| SBB Rs,Rd | sBB *disp16/Rs],Rd |

Cy | Address Data wbid || Address Data wbid
1 | opa+4a IEW 1000 || opA+4 w 1001
2 disp+Rs (disp+Rs) 1011
3 OpA +6 IEW 1000

5-88 TMS370C16 CPU

Set Bitto Zero SBITO

Syntax SBIT0{B}
Execution 0 (zero value) — (bit in destination) (bit number specified in source)
Modes Supported #imma,Rd (word only)
#imma,*disp16[Rd] (byte only)
Rs,Rd (word only)
Rs,*disp16[Rd] (byte only)
Status Bits Z unchanged

N unchanged
C unchanged
V unchanged

Description Clear to 0 a specified bit in the destination. The source value (0-7 for byte,
0-15 for word) specifies which bit to clear in the destination, numbered as
shown:

15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
HEEEEEEEEEEEEEEN
Note that a zero (not the letter O) follows SBIT in the mnemonic. The source
value is contained in the 4 least significant bits of a register or in bits 4—7 of
the instruction word when an immediate value. If the bit designation value for

a byte is in the range 8-15, the instruction performs a read, no-modify, write
sequence.

Examples Clear bit 4 of register R7: the first example demonstrates an immediate value,
and the second demonstrates a register as a source.

LABEL SBITO #4,R7 ; Clear 5th bit fromright
;or

MoV #4,R6 ; Immediate bit value toR6

SBITO R6,R7 ; Clear 5th bit from right

Instruction Execution Detail

. SBITOB .
SBITO #imm4,Rd SBITO Rs,Rd #imma,*disp16[Rd] SBITOB Rs,*disp16[Rd]

Cy | Address Data wbfd || Address Data wbid || Address Data wbid Address Data wbid
1 OpA+4 IEW 1000 prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011
2 OpA+4 IEW 1000 disp+Rd (disp+ Rd) 1111 prevA (prevA) 1011
3 OpA +6 W 1010 disp + Rd (disp+ Rd) 1111
4 disp + Rd result 0111 OpA + 4 w 1001
5 OpA +6 IEW 1000 disp + Rd result 0111
6 OpA +6 IEW 1000

Assembly Language Instructions 5-89

SBIT1 Set Bit to One

Syntax SBIT1{B}
Execution 1 — (bit in destination) (bit number specified by source)
Modes Supported #imm4,Rd (word only)
#imm4,*disp16[Rd] (byte only)
Rs,Rd (word only)
Rs,*disp16[Rd] (byte only)
Status Bits Z unchanged
N unchanged
C unchanged
V unchanged
Description Set to 1 a specified bit in the destination. The source value (0-7 for byte, 0—15

for word) specifies which bit to set in the destination, numbered the same as
for the SBITO{B} instruction.

The source value is contained in the 4 least significant bits of a register or in
bits 4—7 of the instruction word when an immediate value. If the bit designation
value for a byte is in the range 8—15, the instruction performs a read,
no-modify, write sequence.

Examples Set to 1 the sign bit for the (word) value in register R7:
LABEL SBIT1 #15,R7

Set to 1 the sign bit for the (byte) value in address 0701h:
LABEL SBIT1B #7,&701h

Instruction Execution Detail

, SBIT1B ,
SBIT1 # imm4,Rd SBIT1 Rs,Rd #imma, *disp16[Rd] SBIT1B Rs,*disp16[Rd]

Cy | Address Data wbfd | Address Data wbid || Address Data wbid Address Data wbid
1 | OpA+4 IEW 1000 || prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011
2 OpA+4 IEW 1000 [disp+Rd (disp+Rd) 1111 prevA (prevA) 1011
3 OpA +4 w 1001 | disp +Rd (‘"‘p)"“d 1111
4 disp + Rd result 0111 OpA +4 w 1001
5 OpA +6 IEW 1000 dis + Rd result 0111
6 OpA+6 IEW 1000

5-90 TMS370C16 CPU

Shift Left Register Arithmetically SHL

Syntax
Execution

Modes Supported

Status Bits

Description

SHL{L}

shift left the destination register(s) by source count — (destination register(s))

#imm4,Rd (word)
#imm4,IM:Rd (longword)
Rs,Rd (word)
Rs,IM:Rd (longword)

Z setif the result is zero, cleared otherwise

N equals an XOR (exclusive OR) of the V[ST] bit after a shift with the
destination’s most significant bit before shifting

C setif aone is ever shifted out of the register; cleared otherwise

V setif the most significant bit of the register ever changes during the shift;
cleared otherwise

Arithmetically shift left the destination register’s signed contents by the
number of bit positions specified in the source operand. Shift zero(es) into the
vacated least significant bit(s). The four least significant bits of the source
operand contain the shift count (range of 0-15).

For immediate shifts, a source operand value of 00015 to 11115 indicates a
shift count of 1 to 15; a source operand value of 0000, indicates a shift count
of 16. If an immediate shift count of more than four bits (more than 15) is
specified, the least-significant four hexadecimal bits (of the value specified)
are assembled.

The following depicts the movement within the destination register:

Zero(es)

15
(MSB of Rd or IM)

Assembly Language Instructions 5-91

SHL _ shift Left Register Arithmetically

Example

5-92

The illustration below depicts a longword shift using the concatenation of IM
and Rd:

SHL R5,IM:R6 ; R5 = 4 (shift count)

- -~ (4 zeroes)

15
| (MSB of Ré)
L

15
(MSB of IM)

This instruction performs a mathematically correct multiply of the destination
contents by a power of 2 (21-216), Another way to view execution is as a series
of identical additions of the destination contents to itself — one addition (or
doubling of itself) for each bit shifted. All of the status bits are "sticky” (the value
remains the same after each shift). If any normal ADD operation overflow
conditions occur during the ADD repetitions, this will be reflected in the C[ST]
or V[ST] condition code bits. The N[ST] bit is correct for a repetitive add and
will always be cleared if a twos-complement overflow occurs on a negative
number.

Status bits are set with respect to the size of the word shifted (16 or 32 bits).
Longword shifts always use the IM as the most significant word of the 32-bit
object. The result of SHL (source),IM:IM is undefined.

SHL #4,R4 ;shift R4 bits to left 4 bits
ZNCV

R4 sT= | o]o]o]o]
, ZNCV

R4 j4—0s sT= [o]ofo]1]

The N[ST] bit reflects an XOR of the sign bit before execution (a 1) and the
VIST] after execution (a 1 because the sign changed at least once).

TMS370C16 CPU

Shift Left Register Arithmetically SHL

Instruction Execution Detall

Word Instructions (2 + n cycles)

| SHL #mm4Rd | | SHL Rs,Rd |

Cycle/ _ o Cycle), o

Period! | Address Data wbfd | Periodt | Adaress Data wbid

1 prevA (prevA) 1011 1,2 prevA (prevA) 1011

(rep?eat) prevA (prevA) 1011 (repneat) prevA (prevA) 1011

n+2 | OpA+a EW 1000 n+2 | opa+sa EW 1000
Total cycles: n + 3

Longword Instructions (2 + 2n cycles)

| SHLL #mm4,M:Rd | I SHLL Rs,M:Rd |

Cycle/ Cycle/

Periodt | Address Data wbid || Period? | Address Data wbid
1 prevA (prevA) 1011 1,2 prevA (prevA) 1011

(repz)gat) prevA (prevA) 1011 (re;a)gat) prevA (prevA) 1011

2+2n OpA+4 IEW 1000 2+2n OpA+4 IEW 1000

t A single number represents a given cycle; an expression of n represents a
cycle or period of cycles, depending on the nth number of shifts or repeats.

Assembly Language Instructions 5-93

SHL4 shift Left Logical Four Bits

Syntax SHL4

Execution source shifted four bits to left — (destination)
Mode Supported Rs,Rd

Status Bits Z setif the result is zero; otherwise cleared
N equals the result’'s most significant bit
C unchanged
V unchanged

Description Logically left-shift the source register’'s contents four bit positions. Shift
zero(es) into the four least significant bits. Place the results of the shift into the
destination register. Execution changes only Rd'’s contents. This instruction ef-
fectively multiplies the contents of Rs by 16 and places the unsigned product
in Rd.

This can also be represented as shifting four zeroes into Rd and copying bits
11 — 0 of Rs into bits 15 — 4 of Rd as shown below:

Rs bits 11 -0 to
Rd bits 16 - 4

15 43 0

<= 0000 (4 zeroes)

Example Label SHL4 R3,R11 ; Logically shift R3 left 4
; bits then load the result
; into R11. Effectively this
; is a multiply of R3 by 16 with
; the results placed in R1l.

Instruction Execution Detail

| SHL4 RsAd |

Cy | Address Data wbfd
1 prevA (prevA) 1011
2 | OpA+4 IEW 1000

5-94 TMS370C16 CPU

Shift Left Logical Eight Bits SHLS

Syntax
Execution
Mode Supported

Status Bits

Description

Example

SHL8

source shifted eight bits to left — (destination)

Rs,Rd

Z setif the result is zero; otherwise, cleared
N cleared

C unchanged
V unchanged

Logically left-shift the source register’s contents eight bit positions. Shift
zero(es) into the eight least significant bits. Place the results of the shift into
the destination register. Execution changes only Rd’s contents. This
instruction effectively multiplies the contents of Rs by 256 and places the
unsigned product in Rd.

This can also be represented as shifting eight zeroes into Rd and copying the
LSbyte of the Rs into the MSbyte of Rd as shown below:

Rs L |
15 7 0
/ Rs MSbyte to
Rd LSbyte
Rd o

oJofo]ofo]o|o| o] <= 00000000 (8 zeroes)

9

0

Essentially, the least significant byte of Rs (before shift) is placed in the most
significant byte of Rd with the least significant byte of Rd cleared.

LABEL

Instruction Execution Detail

SHL8 R6,R5

we we we we =

| SHL8 RsRd

Cy | Address Data wbid
1 prevA (prevA) 1011
2 | OpA+4 IEW 1000

Logically shift R6 left 8 bits
then load the result into RS5.
Effectively this is a
multiply of R6 by 256 with
the result placed in R5.

Assembly Language Instructions 5-95

SHR8 shift Right Logical Eight Bits

Syntax
Execution

Mode Supported
Status Bits

Description

Example

SHR8

source shifted eight bits to right — (destination)
Rs,Rd

Z setif the result is zero; otherwise, cleared
N cleared

C unchanged

V unchanged

Logically right-shift the source register’s contents eight bit positions. Shift
zero(es) into the register’s most significant eight bits. Place the results of the
shift into the destination register. Execution changes only Rd'’s contents. This
instruction effectively divides the contents of Rs by 256 and places the
unsigned quotient in Rd.

This can also be represented as shifting eight zeroes into Rd and copying the
MSbyte of the Rs into the LSbyte of Rd as shown below:

15 ~
Rs LSbyte to
Rd MSbyte

(8 zeroes) 0000 0000 ==C¢0 [0[0[0 |0 [of0]0
15 89

Note that the most significant byte of Rs (before shift) is placed in the least sig-
nificant byte of Rd with the least significant byte of Rd cleared.

LABEL SHR8 R6,R5 ; Logically shift R6 right 8 bits
; then load the result into RS.
; Effectively this is a
; divide of R6 by 256 with
; result placed in R5.

i Instruction Execution Detail

| SHR8 RAsAd |

Cy | Address Data wbfd
1 prevA (prevA) 1011
2 | opA+4 IEW 1000

5-96 TMS370C16 CPU

Store Bit In ST, Set to Carry Value STBIT

Syntax
Execution

Modes Supported

Status Bits

Description

Example

STBIT{B}

ones complement the selected destination bit — (Z[STI)
(CISTI) — (selected destination bit)

#imm4,*disp16[Rd] (byte only)
Rs,Rd (word only)
Rs, *disp16[Rd] (byte only)
#imm4,Rd (word only)

Z setif bit tested is 0; cleared if bit is 1
N unchanged
C unchanged
V unchanged

The 3- or 4-bit source value is the number of the destination bit to be
manipulated (bit-number range of 0—7 or 0—15, depending on byte or word
instruction). (Bits are numbered as shown for the SBITO instruction on page
5-89.) Execution sequence is as follows:

1. Readthe value of the selected destination bit and store the ones comple-
ment of this value in the Z bit of the status register.

2. Store the status register’s C bit value into the selected bit position in the
destination.

This sequence provides a means to check a semaphore in memory. And, if an
“available” indication is found, the semaphore is then set to the needed value
in order to gain control of a function (such as a bus, as shown in examples on
next page, which use SBIT1 and SBITO to set up the Z[ST] value).

Also, since the Z[ST] receives the ones complement of the bit value, a zero
in the bit tested would cause a branch by the instruction BEQ.

The source value is stored in bits 7—4 of the opcode or the least significant bits
of a register.

Useful single bit values are 0-7 for byte (destination a memory address only)
and 0-15 for word with destination in a register. When the bit-selection value
for byte is 8-15, a read, no modify, write sequence executes and the Z[ST]
bit is left equal to 1. Bits are numbered as shown for the SBITO instruction on
page 5-89.

This instruction makes possible a semaphore test operation by preceding the
STBIT instruction with a SBIT1 or SBITO that sets or clears the C[ST] bit. In
the following examples, address 1000h is a dedicated word of 16 semaphores.
A1 at bit 2 of the address indicates that a bus is busy. The following code polls
the semaphore for a 0, indicating that the bus is available:

Assembly Language Instructions 5-97

STBIT Store Bit In ST, Set to Carry Value

5-98

Wait for Zero at Semaphore (Loop Until a Zero Is Found at Bit 2 of 1000h):

LoorP

we we we we

SBIT1 #CARRY, ST ; Set CARRY bit = 1
STBITB #2,*1000h[ZR] ; Is semaphore 0 yet?
BNZ LOOP ; Loop until bit #2=0

. « when bit #2 of 1000h = zero, STBIT sets
the bit to one to hold the bus; now enter
bus service routine and clear semaphore
upon exit.

SBITO #2,*1000h[ZR]

; Exit, clear semaphore

When the semaphore becomes a 0 (bus available), the STBIT instruction au-
tomatically setsittoa 1 (transfers the set C[ST] bit to the semaphore) to main-
tain bus possession by the new owner. When the bus is needed no longer, set
the semaphore to 0 before exiting.

The bus-busy indicator could be the opposite of that above: a 0, with a loop
neededtofinda 1. Inthis case, the C[ST] bitis cleared (SBITO0), and the condi-
tional branch loops on finding a 1 (inverted semaphore value).

Wait for One at a Semaphore (Loop Until a One Is Found at Bit 2 of
1000h):

TMS370C16 CPU

LOooP

~e we we

SBITO #CARRY, ST ; Set CARRY bit = 0
STBITB #2,#1000h[ZR] ; Is semaphore 1 yet?
BEQ LOOP Loop until bit #2=1

. when bit #2 of 1000h = one, the bus can be
obtained; enter bus service routine then
set semaphore upon exit.;

SBIT1 #2,#1000h[2ZR] ; Exit, set semaphore

Store Bit in ST, Set to Carry Value

STBIT

Instruction Execution Detail

STBIT #imm4,Rd

STBIT Rs,ARd

STBITB

#imm4, *disp16[Rd]

STBITB Rs,*disp16[Rd]

Cy | Address Data wbfd || Address Data wbid || Address Data wbfd Address Data wbid
1 prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011
2 |OpA+4 IEW 1000 prevA (prevA) 1011 disp + Rd (disp + Rd) 1111 prevA (prevA) 1011
3 OpA +4 IEW 1000 prevA (prevA) 1011 disp + Rd (disp + Rd) 1111
4 OpA + 4 w 1001 prevA (prevA) 1011
5 disp + Rd result 0111 OpA + 4 w 1001
6 OpA+6 IEW 1000 |f disp+Rd resutt 0111
7 OpA+6 IEW 1000
Assembly Language Instructions 5-99

STEA Store Effective Address

Syntax STEA
Execution disp16 + (Rs) — (Rd)
(Rd) + 2 — (Rd)

Mode Supported *disp16[Rs],*Rd+

Status Bits Z unchanged
N unchanged
C unchanged
V unchanged

Description Sum the disp;g value and the contents of Rs, and indirectly store this in the
address pointed to by the destination register. Then increment the destination
register contents by 2.

Example Given: R4 = 0002h and R5 = 8000h. The following code moves the value
6002h (the sum of the 6000h displacement and (R4)) into memory address
8000h and increments R5 to the value 8002h.

Label STEA *6000h([rd],*r5+
Before After
Ra[000 2 R4[000 2
R5| 8 000 R5| 8 00 2
8000h| N/A] goooh] 6 0 0 2 |

Instruction Execution Detail

| STEA * disp16[Rs],*Rd+ |

Cy | Address Data wbfd
1 | OpA+4 w 1001
2 Rd disp+Rs 0011
3 | opa+s IEW 1000

5-100 TMS370C16 CPU

Store ST, Then Set Interrupt Level STRI

Syntax

Execution

Mode Supported
Status Bits

Description

Example

STRI

(ST) — (Ra)
imm4 — (4 LS bits of the ST)

#imm4,Rd

Z cleared
N cleared
C cleared
V cleared

Store the contents of the ST into Rd. Then copy the three LSBs of imm4 into
the three interrupt-level bits of the ST and clear its Z, N, C, and V bits.

The most significant byte of the ST is undefined because of ST reserved bits
(these bits are undefined when read and don’t retain data when written to).

Label STRI #01h,R2 ; Store the ST into R2, then
; set the 2 LS bits of the
; ST to 01b (01 binary).

Instruction Execution Detall

[STRI #mm4Rd |

Cy | Address Data wbfd
1 prevA (prevA) 1011
2 | OpA+4 IEW 1000

Assembly Language Instructions 5-101

SUB Subtract Source From Destiniation

Syntax
Execution

Modes Supported

Status Bits

Description

Example

SuUB{B}
(destination) — (source) — (destination)

Rs,Rd
#imm16,Rd
*disp16[Rs],Rd
Rs, *disp16[Rd]

Z setif the result is zero; cleared otherwise

N equals the most significant bit of the result

C setif an unsigned underflow occurred; cleared otherwise

V setif atwos complement underflow occurred; cleared otherwise

Subtract the contents of the source operand from the destination operand.
Source contents are left unchanged.

For byte operations, the byte operands are zero-extended to words, are
operated on as words, and produce a word result. The most significant byte
of the result will be either 00h for C[ST]=0 or FFh for C[ST]=1. Nonregister
destinations receive the least significant byte of the result, while registers
receive the entire word.

Status bits are set with respect to the size (byte or word) of the operation.

label SUB R5,R8 ; Subtract contents of R5 from
; R8. Store result in RS.
sbtrct SUB R10,&LAST ; Subtract contents of R10 from
; the value in location LAST.
; Leave results in LAST.
SUBB #5,R2 ; Subtract 5 from R2 contents,
’

and set MSbyte of R2 = 00h.

Instruction Execution Detalil

| SUB{B} Rs,Rd

| suB{B} #immyg,Rd | SUB{B} *disp;g[Rs],Rd | SUB{B} Rs,*dispig[Ad] |

Cy | Address Data wbfd |l Address Data wbfd || Address Data wbfd Address Data wbid

1 |opA+4 EW 1000 [[OpA+4 w 1001 [opA+4 w 1001 OpA+4 w 1001

2 OpA+6 IEW 1000 || disp+Rs (disp+Rs) 1S11 || disp+Rd (disp+Rd) 1811

3 OpA+6 IEW 1000 prevA (prevA) 1011

4 disp + Rd result 0S11

5 OpA+6 IEW 1000
5-102 TMS370C16 CPU

Subtract Quick Immediate Value From Destination SUBQ

Syntax
Execution

Modes Supported

Status Bits

Description

Example

sSuUBQ{B}
(destination) — immediate data — (destination)

#imm4,Rd
#imma4,*disp16[Rd]

Z setif the result is zero; cleared otherwise

N equals the most significant bit of the result

C setif an unsigned underflow occurred; cleared otherwise

V setif a twos complement underflow occurred; cleared otherwise

Subtract the quick immediate data from the contents of the destination
operand. Quick immediate data consists of a 4-bit value of 0—15, contained
within the instruction word, which has been zero-extended to the correct data
object size. The SUBQ #data, Rdinstruction takes one cycle to execute, while
the SUB equivalent takes two cycles.

For byte operations, the byte operands are zero-extended to words, are
operated on as words, and produce a word result. The most significant byte
of the result will be either 00h for C[ST]=0 or FFh for C[ST]=1. Nonregister
destinations receive the least significant byte of the result, while registers
receive the entire word.

Status bits are set with respect to the size (byte or word) of the operation.

label SUBQB #7,IM ; Subtract 7 from the IM.

.
!

SUBQ #FIVE,&FINISH ; Subtract FIVE’s value
; from location FINISH

Instruction Execution Detail

| SUBQ{B} #imm4,Rd || SUBQ{B} #imm4,*disp16[Rd] |

Cy | Address Data wbfd Address Data wbid
1 OpA +4 IEW 1000 prevA (prevA) 1011
2 disp+Rd (disp+Rd) 1811
3 OpA +4 W 1001
4 disp + Rd result 0S11
5 OpA +6 IEW 1000

Assembly Language Instructions 5-103

SUBR Subtract With Reverse Destination

Syntax SUBR({B}
Execution (Register B) — (Register A) — (Register A)
Mode Supported Ra,Rs

Status Bits Z setif the result is zero; cleared otherwise
N equals the most significant bit of the resuit
C setif an unsigned underflow occurred; cleared otherwise
V setif a twos complement underflow occurred; cleared otherwise

Description Subtract the contents of register A from the contents of register B and place
the result back into register A. (Subtract source from destination, but place re-
sult back into source.)

Note that when Rs is the ZR, the instruction is equivalent to the instruction
COMPL Ra.

For byte operations, the byte operands are zero-extended to words, are
operated on as words, and produce a word result. The most significant byte
of the result will be either 00h for C[ST]=0 or FFh for C[ST]=1.

Status bits are set with respect to the size (byte or word) of the operation.

Example label SUBR R3,R7 ; Subtract R3 from R7,
; Store result in R3.

Instruction Execution Detall

| SUBR{B} RaRs |

1 OpA +4 IEW 1000

5-104 TMS370C16 CPU

Swap Bytes of Registers SWAPB

Syntax SWAPB

Execution (Rs (LSbyte)) — (Rd (MSbyts))
(Rs (MSbyte)) — (Rd (LSbyte))

Mode Supported Rs,Rd

Status Bits Z setif the result is zero; cleared otherwise
N equals the most significant bit of the result
C unchanged
V cleared

Description Copy (swap) the source register's most significant byte and its least significant
byte with the opposite bytes of the destination register. The source register
remains unchanged.

Example LABEL SWAPB R1,R2

Rl= (11111111

R2 After Swap (R1

R2 Doesn’t Change)

11111111)]|
0

Instruction Execution Detail

| SWAPB Rs,Rd

Address Data wbtd
prevA Rs_LSbyte 0111
prevA Rs_MSbyte 0111

OpA +4 IEW 1000

[A 3N VI N e)

Assembly Language Instructions 5-105

TBITO Test for Multiple Bits Clear

Syntax
Execution

Mode Supported

Status Bits

Description

Example

TBITO

IF [(mask = 0) and (mask ANDed to destination = 0)],

THEN 1 — (Z[ST])

ELSE 0 — (Z[ST])

#imm&8(mask),&addr16 (The & operator must be included as shown.
The # operator in front of imm is optional.)

set if tested bits are cleared; otherwise, a zero
unchanged
unchanged
unchanged

This is a byte instruction only.

For each logical 1 bit in the source mask, test the corresponding bit in the des-
tination-address byte. If all specified destination bits are Os, place a 1 in the
Z bit of the status register. Otherwise, set the Z bit to 0. Only the 1 bits in the
mask are ANDed to set the Z bit. If the source mask is all zeroes (00h), no bits
are tested and bit Z[ST] is cleared.

The destination byte is always in the first 64K bytes of memory and is
addressed by a 16-bit value (address line A16 = 0).

This instruction is designed to be followed by a BEQ (branch if equal) or BNE
(branch not equal) instruction to form, respectively, a branch on muiltiple bits
clear or branch on multiple bits not clear operation.

<0OZN

While moving a block of bytes from one memory area to another, check each
byte for all zeroes in bits 0, 1, 2, and 4. If all are zeroes, move the next byte
and continue. If not all ones, do a bit check routine before moving the next byte.

START MOVB *R7,*R8 ;Bring in (next) byte to check
MOVB *R8+,4000h ;Place in memory for bit check
TBITO 0Bh,&4000h ;Are bits 0, 1, 3 cleared?
BEQ START ; If bits areclear, move nextbyte
; Ifnotclear, dobitcheck
BIT_CHK . ; Startofbitchecking
JMP START ;s After check, get next byte

Instruction Execution Detail

| TBITO immg,&add

addr (add) 1111
OpA+4 w 1001

Cy | Address Data wbid
1
2
3 | OpA+6 EW 1000

5-106 TMS370C16 CPU

Test for Multiple Bits Set TBIT1

Syntax

Execution

Mode Supported

Status Bits

Description

Example

TBIT1

IF [(mask = 0) and (mask_ones ANDed to inverted destination = 0)],
THEN 1 — (Z[STI)

ELSE 0 — (Z[STI)

#imm8(mask),&addr16 (The & operator must be included as shown.
The # operator in front of imm is optional.)

Z set if tested bits are set (ones); otherwise, a zero

N unchanged

C unchanged

V unchanged

This is a byte instruction only.

For each logical 1 bit in the source mask, test the corresponding bit in the des-
tination-address byte. If all specified destination bits are 1s, place a 1 in the
Zbit of the status register. Otherwise, setthe Zbitto 0. Only bits corresponding
to the 1 bits in the mask are tested to set the Z bit. If the source mask is all
zeroes (00h), no bits are tested and bit Z[ST] is cleared.

The destination byte is always in the first 64K bytes of memory and is
addressed by a 16-bit value (address line A16 = 0).

This instruction is designed to be followed by a BEQ (branch if equal) or BNE
(branch not equal) instruction to form, respectively, a branch on multiple bits
set or branch on multiple bits not set operation.

While moving a block of bytes from one memory area to another, check each
byte for all 1s in bits 4—7. If all are 1s, move next byte and continue. If not all
1s, do a bit check routine before moving the next byte.

START MOVB *R7+, *R8 ; Bring in (next) byte
MOVB *R8+,4000h ; Byte to memory
TBIT1 0F0h,&4000h ; Are bits 4-7 set?
BEQ START ; If bits set, move next byte
; If not set, dobitcheck
BIT_CHK ;s Start of bit check
JMP START ; After check, get next byte

Instruction Execution Detail

| TBIT1 immg,&addr |

Cy | Address Data wbid
1 addr (addr) 1111
2 | OpA+4 w 1001
3 | OpA+6 IEW 1000

Assembly Language Instructions 5-107

TBLU _ Table Lookup Unsigned, Interpolate With Rounding

Syntax

Execution

Mode Supported
Status Bits

Description

TBLU{B}

(Rs(MSbyte)) + (Rd) — (IM)
(Rs(MSbyte)) + (Rd) + size — (Rd)
IF IM>RD
THEN

Rs(LSbyte) x (IM — Rd) + 80h — TEMP
TEMP + 256 — Rd

IM-Rd - Rd
ELSE

Rs(LSbyte) x (IM — Rd) + 80h — TEMP
TEMP = 256 — Rd

IM + Rd — Rd

Rs,IM:Rd

Z setif the result is zero; cleared otherwise
N equals the most significant bit of the resuilt

C cleared
V cleared

(8 bits x 16 bits — 24 bits + 80h)

(8 bits x 16 bits — 24 bits + 80h)

Look up two consecutive values in a table of unsigned data, referenced by Rd,
and perform a rounded straight-line interpolation between them, according to
the interpolation fraction in Rs. The result is rounded to fit the byte/word size

of the instruction and then placed in Rd.

The 16-bit address in Rd points to the first entry of the data table. This table
is indexed by normalizing the most significant byte of Rs and adding it to Rd.
This sum yields the address of the first of two consecutive entries in the table
for which interpolation is to be computed. The two table entries are then
read into IM and Rd respectively, as illustrated below.

Data Table

(Fraction) | Rs

I Index to Entry n|
\
N

—

[0000 0000 |

| Entry n 47

+ [Pointer to First Entry in Table TRd Entry n + Size —

I Pointer to First of Two Entries

Entry 0 Lower Addresses

~B

| Rd

Higher Addresses

Note: Dotted line shows value moved; solid line indicates location pointed to.

5-108 TMS370C16 CPU

Table Lookup Unsigned, Interpolate With Rounding TBLU

Notes: Considerations for >64K Bytes and Effect of Byte Size on
Registers

1. The calculated table pointer in Rd is a 16-bit value that can address only
the first 64K bytes of memory (A16 = 0). Attempts to generate a result that
points beyond the first 64K bytes of memory will wrap around to the
beginning of the first 64K bytes of memory.

2. If the instruction size is byte, the most significant bytes of IM and Rd will
be cleared when the table entries are read.

[J

The interpolation fraction is held in the least significant byte of Rs and has its
radix point between bits 7 and 8. The most significant byte of Rs is ignored
during multiplication. The contents of Rs are left unchanged.

The internal multiply is 8 x 16 where the 8-bit value is the fraction and the 16-bit
value is the appropriate difference between the two table entries read into IM
and Rd. The product is a 24-bit fixed-point value with the integer portion in bits
8-23 and the fraction in bits 0—7. This intermediate product is rounded up to
word value in bits 8-23 by adding 000080h. This rounded result is then
combined with IM, yielding the final interpolated result, which is placed into Rd.

The fractional portion of the intermediate product is lost. The operand
combination TBLU{B} Rs,IM:IM will always generate aresult of 0000h in IM.
Undefined execution results in the combination TBLU{B} Rs,IM:ZR; thus,
it must be avoided.

Status bits are set with respect to the size (byte/word) of the operation.

Instruction Execution Detail

TBLU Rs/M:Rd |

Entry1 < Entry 2 Entry1 > Entry 2

Cy Address Data wbtd Address Data wbtd
1,2 prevA (prevA) 0011 prevA (prevA) 0011
3 prevA (prevA) 1011 prevA (prevA) 1011
4 Rd + Rs_MS_byte (Rd + Rs_MS_byte) 1011 Rd + Rs_MS_byte (Rd + Rs_MS_byte) 1011
5 prevA (prevA) 1011 prevA (prevA) 1011
8 Rd +Rs_MS_byte +2 (Rd + Rs_MS_byte +2) 1011 | Rd+Rs_MS_byte+2 (Rd+Rs_MS_byte +2) 1011
7-13 prevA (prevA) 1011 prevA (prevA) 1011
14 prevA (prevA) 1011 prevA (prevA) 1011
15 OpA +4 IEW 1000 prevA (prevA) 1011
16 OpA+4 IEW 1000

Assembly Language Instructions 5-109

TBLU Table Lookup Unsigned, Interpolate With Rounding

5-110

instruction Execution Detall (Concluded)

| TBLUB Rs/M:Rd |

Entry1 < Entry2 Entry1 > Entry 2
Cy Address Data wbid Address ~ Data wbid
1,2 prevA (prevA) 0011 prevA (prevA) 0011
3 Rd + Rs_MS_byte (Rd + Rs_MS_byte) 1111 Rd + Re_MS_byte (Rd + Rs_MS_byte) 1111
4 prevA (prevA) 1011 prevA (prevA) 1011
5 | Rd+Rs_MS_byte+1 (Rd+Rs_MS_byte+1) 1111 |Rd+Rs_MS_byte+1 (Rd+Rs_MS_byte+1) 1111
6 prevA (prevA) 1011 prevA (prevA) 1011
7-13 prevA (prevA) 1011 prevA (prevA) 1011
14 OpA+4 IEW 1000 prevA (prevA) 1011
15 OpA +4 IEW 1000
TMS370C16 CPU

Execute a Trap Exception TRAP

Syntax
Execution

Mode Supported

Status Bits

Description

TRAP

(ST) — ((SP))

(SP) +2 — (SP)

(PC) + 1 — ((SP))

(SP) + 2 — (SP)

ones complement of enumerator X 2 — vector offset

vector table base addr + vector offset — (PC) (subroutine address — PC)
1s — L2-L0[ST]

imm8 [#imm8 = trap number (0-255);
enumerator8 = ones complement of trap number]

unchanged
unchanged
unchanged
unchanged

The TRAP instruction operates as a software interrupt or exception. A
256-word trap vector table, located at a vector-table base address, contains
the start addresses of each trap subroutine (TRAP 0 being at the lowest ad-
dress in the table). This is shown graphically in Figure 5-6 on page 5-113.

<OZN

Note: Five Trap Words Are Reserved

The 'C16 trap vector table contains mask ROM space reserved for Tl use
only—addresses 08036h—08040h, as shown in Figure 5—6 on page 5-113.
This reserved area should not be used in your software algorithm, nor should
it be used during mask ROM/firmware development.

A summary of the trap exception steps:

1) Push the current ST contents on to the stack; then increment the SP by 2.
2) Add 1 to the PC value and place the result on the system stack (this will
point two words beyond the next instruction). Increment the SP by 2.

3) Calculate the vector offset (from the trap vector-table base address) by
multiplying a ones complement of the instruction’s enumerator by 2. (The
enumerator is stored in the LSbyte of opcode as the ones complement of
the trap number.)

4) Load the PC with the trap vector-table base address + vector offset (ad-
dress containing the trap-subroutine start address).

5) Load the PC with the subroutine start address.

6) Load all 1s into the ST’s three interrupt level bits (L2—-L0)

This instruction replicates a peripheral interrupt. In this manner, it is a software
interrupt and requires you to provide an interrupt/exception handler in
software. Use an RTI instruction to return to the interrupted execution flow.

Assembly Language Instructions 5-111

TRAP Execute a Trap Exception

Note:

TRAP Enumerator Source

Note that the enumerator value as assembled in the LSbyte of the opcode
is the inverse (ones-complement) trap value. For example, TRAP 0 is the in-
struction word FFFFh (FFhis the enumerator value), TRAP 1 is FFFEh (FEh
the enumerator value), and TRAP 255 is FFOOh (00h is the enumerator val-
ue). (This explains the ones-complement computation in the Execution
equation above.) Traps are further explained in subsection 3.7.6 on page

; Call TRAP 32 vector. Begin
; execution at the address
; stored at that location.

3-24.
Example Label TRAP 32
Instruction Execution Detalil
| TRAP imm8 |

Cy Address Data wbfd
1 OpA +4 IEW 1001
2 SP ST 0011
3 SP+2 (RtnA+4) +2 0011
4 prevA (prevA) 1011
5 | (NOTenum) x 2 + vector base_addr subroutine start address 1011
6 subroutine start address x 2 w 1001
7 (subroutine start address x 2) + 2 IEW 1000

5-112 TMS370C16 CPU

Execute a Trap Exception TRAP

Figure 5-6. Vector Table for TRAP Instruction

Memory Trap Number Service Routine
Add+ress
08000h [TRAP #0)
08002h | TRAP #1 |
08004h TRAP #2 .‘ 00000h
08006h TRAP #3 5
08008h | TRAP #4 \
0800Ah | TRAP #5
0800Ch TRAP #6 |
0800Eh TRAP #7 |
08010h | TRAP #8 '
08012h TRAP #9 ' 08000h
08014h | TRAP #10 , 081FEh
08016h [TRAP #11 !
08018h [TRAP #12 !
0801Ah | TRAP #13 !
0801Ch | TRAP #14 !
0801Eh | TRAP #15 ' OFFEER
08020h | TRAP #16 ' 10000h
08022h | TRAP #17 !
08024h | TRAP #18 !
08026h | TRAP #19 !
08028h | TRAP #20 !
0802Ah | TRAP #21 !
0802Ch | TRAP #22 !
0802Eh [TRAP #23 !
08030h | TRAP #24 !
08032h | TRAP #25 !
08034h | TRAP #26 !
08036h | TRAP #27 X
to to !
08040n | TRAP#32 ' 1FFFEh
08042h T
TRAP #33 !
to X
TRAP #254 !
081FCh '
081FEh | TRAP #2556 .

Assembly Language Instructions 5-113

TRUNCS 7est for Truncation of Signed Data

Syntax TRUNCS{L}
Execution IF [valid truncation not possible]
THEN one — V[ST]
ENDIF
Modes Supported Rd (word only)
IM:Rd (longword only)
Status Bits Z TRUNCS: set if the least significant byte of Rd is zero; cleared

otherwise
TRUNCSL: setif Rdis zero; cleared otherwise

N equals V[ST] XORed with the most significant bit of the original data
object

cleared
TRUNCS: set if bits 15 to 7 of Rd are not the same; cleared
otherwise

TRUNCSL: setif all bits in IM and bit 15 of Rd are not the same;
cleared otherwise

Description Test the signed data in the register(s) to determine if it is possible to accurately
represent the data in the next smaller data object size. If not possible, set the
V bit in the status register to a one.

Use the BV (branch if overflow set with V[ST] = 1) or BNV (branch if overflow
not set with V[ST] = 0) instructions to decide.

Instruction Execution Detalil

[TRUNCS Rd | I TRUNCSL IM:Rd |

bits 7 - 15 are the same bits 7 - 15 are not the same
Cy | Address Data wbfd | Address Data wbfd || Address Data wbid
1-2 prevA (prevA) 1011 prevA (prevA) 1011 prevA (prevA) 1011
OpA+4 IEW 1000 prevA (prevA) 1011 prevA (prevA) 1011
4 OpA+4 IEW 1000 |} OpA+4 IEW 1000

5-114 TMS370C16 CPU

Test for Truncation of Unsigned Data TRUNCU

Syntax

Execution

Mode Supported
Status Bits

Description

Example

TRUNCU

IF [valid truncation not possible],
THEN, one — C[[ST]
ENDIF

Rd

Z setif the least significant byte of Rd is zero; cleared otherwise
N equals the value of bit 7 (most significant bit of the byte result)
C setif bits 8 — 15 of Rd are not zero; cleared otherwise

V cleared

Test the unsigned data word in the destination register to determine if it can
be accurately represented as a byte data object. If not possible, set the C bit
in the status registerto a 1.

Use the BC (branch if carry set with C[ST] = 1) or BNC (branch if carry clear
with C[ST] = 0) instructions to decide.

LABEL TRUNCU R2 ; DOES MS BYTE OF R2 = 0?
BNC Byte_Val; YES, JUMP TO BYTE ROUTINE:
; OTHERWISE, CONTINUE

Instruction Execution Detail

[TRUNCU Rd |

Cy | Address Data wbid
1 prevA (prevA) 1011
2 | OpA+4 IEW 1000

Assembly Language Instructions 5-115

TST Test Value of Source Operand

Syntax TST{B} Synthetic Instruction: Executes as MOV s,ZR
Execution Mov s,ZR

Modes Supported Rs
*Rs
*Rs+
#imm16
*dips16[Rs]
*Rs

Status Bits Z setif the source is zero; cleared otherwise
N equals the most significant bit of the source
C unchanged
V cleared
Description Test the value of the source operand by moving (copying) it to the ZR (R15).
Set the ST bits accordingly. The source value is not changed.

Byte operations test only the least significant byte of a register. Status bits are
set with respect to the size (byte or word) of the operation.

Example TSTB *0Alh[ZR] ; Check byte address 0Alh.
; Set status bits on result.
Check TST &VALUE ;s Check word location VALUE.

i

Set status bits on result.

Instruction Execution Detail

TST{B} Rs TST{B} *Rs TST{B} *As+
(MOV{B} Rs,ZR) (MOV{B} *Rs,ZR) (MOV{B} *Rs+,ZR)

Cy | Address Data wbfd Address Data wbid Address Data wbid
1 | OpA+4 IEW 1000 Rs (Rs) 0811 Rs (Rs) 0811
2 OpA+4 IEW 1000 prevA (prevA) 1011
3 OpA +4 IEW 1000
TST{B} #imm16 TST{B} *disp16[Rs] TST{B} *Rs
(MOV{B} #imm16,ZR) (MOV{B} *disp16[Rs],[ZR]) (MOV{B} *-Rs,ZR)
Cy | Address Data wbid Address Data wbid Address Data wbid
1 | Opa+4 w 1001 OpA+4 w 1001 prevA (prevA) 1011
2 | OpA+6 IEW 1000 disp+Rs (disp + Rs) 0811 Rs-$S (Rs-S) 1811
3 OpA+6 IEW 1000 OpA + 4 IEW 1000

5-116 TMS370C16 CPU

Unlink and Deallocate Stack Frame UNLINK

Syntax

Execution

Modes Supported
Status Bits

Description

UNLINK

(FP) — (SP)

((SP)) - (FP)

Operand not necessary for UNLINK

Z unchanged
N unchanged
C unchanged
V unchanged

Unlink and deallocate the current system stack frame:
1) Load the SP (R13) with the contents of the FP (R0).

2) Reload the FP with its previous value (from the system stack).

Instruction Execution Detalil

| UNLINK |
(/S
Cy | Address Data wbfd
1 prevA (prevA) 1011
2 FP old FP 1011
3 | OpA+4 IEW 1000

Assembly Language Instructions

5-117

XNOR Exclusive NOR Source With Destination

Syntax

Execution

XNOR{B}

NOT (source XOR destination) — destination

Mode Supported Rs,Rd

Status Bits Z setif the result is zero; cleared otherwise

N equals the most significant bit of the resuit
C unchanged
V cleared

Description Logically exclusive OR the contents of the source register with the contents

Example

of the destination register and return the ones complement of the result.

For byte operations, the byte operands are zero-extended to words, are oper-
ated on as words, and produce a word result. The most significant byte of the
result will always be FFh. Note that when Rsis ZR, the instruction is equivalent
to NOT Rad.

Status bits are set with respect to the size (byte or word) of the operation.

Label XNOR R2,R11 ; Exclusive OR the values in
;7 R2 with R11l. Store results
; in R11.

Instruction Execution Detail

5-118

| XNOR{B} RsRd |

Cy | Address Data wbfd
1 | OpA+4 IEW 1000
TMS370C16 CPU

Exclusive OR Source With Destination XOR

Syntax
Execution

Modes Supported

Status Bits

Description

Example

XOR({B}
(source) XOR (destination) — (destination)

Rs,Rd
Rs,*disp16[Rd]
#imm16,Rd
#imm16,*disp16[Rd]

Z setif the result is zero; cleared otherwise
N equals the most significant bit of the result
C unchanged

V cleared

Logically exclusive OR the source operand contents with the contents of the
destination operand. Place results in the destination.

For byte operations, the byte operands are zero-extended to words, are
operated on as words, and produce a word result. The most significant byte
of the result will always be 00h. Nonregister destinations receive the least
significant byte of the result, while registers receive the entire word.

Status bits are set with respect to the size (byte or word) of the operation.

Exclusive OR the LS
byte of R2 with the
source binary value.
Place results in R2
with the MS byte all
zeroes.

LABEL XORB #10110011b,R2

we w3 we wo we we

Instruction Execution Detall

XOR{B} Rs,Rd

. . XOR{B}
XOR{B} As,*disp16[Rd] | XORE} #imm16Rd | o St oo

Cy | Address Data wbfd || Address Data wbfd || Address Data wbtd Address Data wbfd
1 | opA+4 EW 1000 || OpA+4 w 1001 || OpA+4 w 1001 OpA+4 w 1001
2 disp+Rd (disp+Rd) 1S11 || OpA+6 IEW 1000 disp+Rd (disp+Rd) 1811
3 prevA (prevA) 1011 prevA (prevA) 1011
4 disp + Rd result 0S11 disp + Rd result 0S11
5 OpA+6 IEW 1000 OpA+6 EW 1000

Assembly Language Instructions 5-119

5-120 TMS370C16 CPU

Glossary_

This appendix provides definitions of terms and concepts unique to cMCU ™
devices. Other common terms are included if the use of those terms varies
from generally accepted usage.

absolute address: Anaddressing mode in which code or operands produce
the actual address.

A/D pins: The 18 pins that connect the A/D module to the external world;
includes analog inputs ANO—15 and the high and low reference voltages,
Vrethi» and Vreflo-

addressing mode: The method by which an instruction calculates the
location of its required data.

ANO-AN15pins: The 16 analoginput channels to the A/D converter’s digital
inputs.

analog-to-digital (A/D) converter: The cMCU370 A/D Converter, which
receives analog data from up to 16 multiplexed inputs.

assembly language: A symbolic language that describes the binary
machine code in a more readable form and that can be read by an
assembler for conversion into machine code.

asynchronous communications mode: A serial communications format
that needs no synchronizing clock. This format begins with a start bit, is
followed by data bits and an optional parity bit, and ends with one or two
stop bits. This format is commonly used with RS-232-C communications
and PC serial ports.

Glossary

A-2

BCD: Binary coded decimal. Each 4-bit nibble expresses a digit from 0-9
and usually packs two digits to a byte, giving a range of 0—99.

baud: The communication speed for serial ports; equivalent to one bit per
second.

code address: A value that, when placed in the program counter, is placed
on the 16 most significant address lines with the least significant address
line set to 0. This effectively multiplies the code value by 2 and makes it
possible to address memory of up to 128K bytes.

constant: A value that does not change during execution.

CPU: Central processing unit. The cMCU370 product’'s CPU is register-ori-
ented with a status register, program counter register, and stack pointer.
The CPU uses the register file, accessed in one bus cycle, as working
registers. The cMCU370 CPUs are the TMS370C8 (8 bit) and the
TMS370C16 (16 bit).

device: The entire microcontroller, consisting of the CPU and the selected
modules integrated on a single chip.

edge detection: A process that senses an active pulse transition on a given
timer input and provides appropriate output. The active transition can be
configured to be low-to-high or high-to-low.

EEPROM: Electrically erasable programmable read only memory. Memory
that can be programmed and erased under direct program control.

freeze bit: A bit "frozen” to an unmodifiable 1 or 0 value, according to cus-
tomer requirements, during manufacturing.

TMS370C16 CPU

Glossary

halt mode: A mode that reduces operating power by stopping the internal
clock, which stops processing in all the modules. This is the lowest-pow-
er mode in which all register contents are preserved.

idlemode: Amode inwhichthe CPU stops processing and waits for the next
interrupt. This is not a low-power mode.

immediate operand: An operand whose actual constant value is specified
in the instruction.

instruction: The basic unit of programming that causes the execution of one
operation; consists of an opcode and operands along with optional la-
bels and comments.

INT1, INT2, and INT3 pins: Pins connected to external devices to allow
them to interruptthe CPU. INT1 and INT2 can be software configured as
non-maskable interrupts.

interrupt: A signal input to the CPU to stop the flow of a program and force
the CPU to execute instructions at an address corresponding to the
source of the interrupt. When the interrupt is finished, the CPU resumes
execution at the point where it was interrupted.

isosynchronous communications mode: An SCI mode in which data
transmission is synchronized by a clock signal (SCICLK) common to
both the sender and receiver. The format is identical to the asynchronous
mode and consists of a start bit, data bits, an optional parity bit, and a stop
bit.

machine code: The actual binary values read by the CPU for instruction
execution; usually organized as hexadecimal bytes in an assembler
listing.

memory map: A map of the address space accessed by the TMS370C16
processor, partitioned according to functionality (memory, registers,
etc.).

mnemonic: An alphanumeric symbol designed to aid human memory;
commonly represents the opcode of an assembly language instruction.

Glossary A-3

Glossary

module: An element that provides a specific function such as a serial
interface, memory area, A/D conversion, etc. Such modules are
integrated with the CPU to form a device for a specific application.

multiprocessor communications: An SCI format option that enables one
processor to efficiently send blocks of data to other processors on the
same serial link.

nested Interrupt: An interrupt that suspends the service routine of a prior
interrupt. An executing interrupt can set the ST register’s interrupt mask
to prevent being suspended by another interrupt.

NMI: Nonmaskable interrupt. An interrupt that causes a context switch, once
the present instruction finishes execution. When executing, the NMI
cannot be interrupted by other NMIs or peripheral interrupts unless an
RTI instruction occurs or an ST interrupt bit, L2 — LO, is cleared.

offset: A signed value that is added to the base operand to give the final ad-
dress.

opcode: Operation code. In most cases, the first byte of the machine code
that describes to the CPU the type of operation and combination of oper-
ands. TMS370C16 instructions use 16-bit opcodes.

operand: The part of an instruction designating where the CPU will fetch or
store data.

prescaler: A circuit that slows the rate of a clocking source to the counter.

prototyping device: A device used before a masked ROM device is
available that has identical functions, pinout, size, and timings to the
ROM device. Programmable memory such as EEPROM or EPROM is
used in place of the masked ROM.

PWM: Pulse width modulation. A serial signal in which the information is
contained in the width of a pulse of a constant frequency signal. A
cMCU370 device can output a PWM signal with a constant duty cycle
without any program intervention by using the timer compare features.

A-4 TMS370C16 CPU

Glossary

ratiometric conversion: An analog-to-digital conversion in which the
conversion value is a ratio of the Vs source to the analog input. As Vgt
is increased, the input voltage needed to give a certain conversion value
changes, but all conversion values keep the same relationship to Vef.

register file (RF): The 16-register file residing in the CPU. Several registers
also serve, respectively, as the frame pointer (R0), implied register (R1),
stack pointer (R13), status register (R14), and zero register (R15). Each
register is 16 bits.

RESET pin: A pin that when held low starts hardware initialization and
ensures an orderly software startup.

serial communications interface (SCI): An optional PRISM library module
that provides a serial interface, programmable to be asynchronous or
isosynchronous. Many timing, data format, and protocol factors are
programmable and controlled by the SCI module in operation.

SCICLK pin: Serial communications interface clock pin. A pin used as a
synchronizing clock input or output in the isosynchronous mode, or as
a general-purpose /O pin.

serlal peripheral interface (SPI): An optional PRISM library module that
provides a serial interface to facilitate communication between
networked master and slave CPUs. As in the SCI, the SPI is set up by
software; from then on, the CPU takes no part in timing, data format, or
protocol.

signed integer: A number system used to express positive and negative
integers.

SPI: See serial peripheral interface.

stack: A designated part of memory used as a last-in, first-out memory for
temporary variable storage; used during interrupts and calls to store the
current program status. The area occupied by the stack is determined by
the stack pointer and the application program.

stack pointer (SP): A CPU register that points to the last entry or top of the
stack. The SP is automatically incremented before dalai\sopushed onto
the stack and decremented after data is popped (pulled) from the stack.

Glossary A-5

Glossary

A-6

standby mode: A power reduction mode in which the CPU stops
processing, but the on-chip oscillator remains active. Timers remain
active and can cause the CPU to exit the standby mode.

status register (ST): A CPU register that monitors the operation of the
instructions and contains the global interrupt enable mask bits.

TBA (trap table base address): The beginning address of the trap vectors.
An algorithm value involving the trap enumeration value is added to this
address to find the vector corresponding to the trap. See the TRAP
instruction description in Chapter 5.

TRAP: Atrap-to-subroutine assembly language instruction that is a subrou-
tine call. Its operand is a trap number that identifies a location in the trap
vector table, which contains the address of the subroutine.

unsigned integer: A number system used to express positive integers.

watchdog timer: A timer option that can be programmed to generate an in-
terrupt when it times out. This provides a hardware monitor over the soft-
ware to prevent a "lost” program.

TMS370C16 CPU

Index

Note: Boldface page numbers identify a primary
reference

? assembler operator, 4-16, 5-52
& (ampersand) label address format, 4-6

A/D converter vector, 3-20
abbreviations
See also symbols
meaning “contents of ”, 4-2
used with instructions, 5-2
accessing full 128K bytes, 4-16, 5-52
ADATA register, 3-18
ADC instruction, 5-19
ADD instruction, 5-17
add instructions
32-bit add, 5-19
ADC (add word plus carry), 5-19
ADD (add source, destination), 5-17
ADQ (add quick), 5-20
ADD/ADC sequence, 5-19
ADDB instruction, 5-17
address bus, 2-2, 2-8
example (JMP instruction), 4-8
address modes, 4-2
immediate, 4-7
implied, 4-3
PC relative, 4-4
register direct, 4-8
register indirect, 4-9
decrement/increment, 4-12
displacement, 4-13
no displacement, 4-10
substitution using offset, 4-9
summary, 4-2

address, code. See code address
address, illegal, 3-10
addressing modes, summary, 4-2
addressing, indirect. See indirect addressing
ADIR register, 3-18
ADQ instruction, 5-20
synthetic use (INC{B}), 5-55
ADQB instruction, 5-20
ampersand (&) label address format, 4-6
analog power supply, out of regulation, 3-12
analog power supply control, 3-9
AND instruction, 5-21
ANDB instruction, 5-21
architecture, 2-1
arithmetic shift, 5-25
ASR (artihmetic shift right), 5-23
SHL (shift left arithmetic), 5-91
ASR instruction, 5-23
ASRO instruction, 5-25
ASROL instruction, 5-25
ASRL instruction, 5-23
assembly language, 5-1 to 5-119
abbreviation summary table, 5-2
case sensitivity, iv, 5-16
individual instruction descriptions, 5-17 to 5-119
instruction summary table, 5-4
symbol table, 5-2

assistance (hot line, etc.), vi

B{COND} instructions
BC, carry set, 5-27
BEQ, on equal, 5-27
BGE, greater than or equal, 5-27

Index-1

Index

B{COND} instructions (continued)

BGT, greater than, 5-27

BHI, higher, 5-27

BHS, higher or the same, 5-27
BLE, less than or equal, 5-27
BLO, lower than, 5-27

BLS, lower or the same, 5-27
BLT, less than, 5-27

BN, on negative (minus), 5-27
BNC, carry is clear, 5-27

BNE, on not equal, 5-27

BNV, overflow is clear, 5-27

BP, on positive, 5-27

BPZ, on plus (not negative), 5-27
BR, branch always, 5-27

BV, on overfiow set, 5-27

PC relative addressing example, 4-4

bit, 2-17

numbering, 2-14
restrictions, 2-17
value at manufacturing, 3-39

bit set instructions

SBITO (set bit to zero), 5-89
SBIT1 (set bit to one), 5-90

branch instructions

B{COND} (conditional branch), 5-27
BC, carry set, 5-27

BEQ, on equal, 5-27

BGE, greater than or equal, 5-27
BGT, greater than, 5-27

BHI, higher, 5-27

BHS, higher or the same, 5-27
BLE, less than or equal, 5-27
BLO, lower than, 5-27

BLS, lower or the same, 5-27

BLT, less than, 5-27

BN, on negative (minus), 5-27
BNC, carry is clear, 5-27

BNE, on not equal, 5-27

BNV, overflow is clear, 5-27

BP, on positive, 5-27

BPZ, on plus (not negative), 5-27
BR, branch always, 5-27

BRBITO (branch if bit is zero), 5-30
BRBIT1 (branch if bit is one), 5-32
BV, on overflow set, 5-27

logical, 5-28

signed, 5-28

Index-2 TMS370C16 CPU

BRBITO instruction, 5-30

execution redirection, 4-4
BRBIT1 instruction, 5-32

execution redirection, 4-4
brownout

detector, 3-5

indicator, 3-3
brownout-detector power control, 3-9
byte, 2-14, 2-17

restrictions, 2-17

CALL instruction, 2-18, 5-34
direct memory addressing example, 4-3
example, 2-13
return from CALL (RTS), 5-87
use with stack, 2-12
carry bit (ST), 2-7
loading, 5-60
carry value with add, 5-19

case sensitivity of assembler statements, iv, 5-16

check for ones, 5-107
check for zeroes, 5-106

CLKOUT pin
control, 3-9
pin functions, options, 3-6
SCR1 register, 3-9

CLKSRC1/0 bits (clockout pin select), 3-9
CLR instruction, 5-37

CLRB instruction, 5-37

cMCU family, iii

CMP instruction, 5-39

CMPB instruction, 5-39

CMPC instruction, 5-40

code address, 2-2
creation, 4-16
NMI usage, 3-24
use of ? operator, 4-16
code space, 2-18
compare instructions
CMP (compare source to destination), 5-39
CMPC (compare source minus carry), 5-40
COMPL instruction, 5-42

COMPLR instruction, 5-42

Index

complement instructions
COMPL (twos complement), 5-42
NOT (ones complement), 5-81
conditions for branching, 5-27
configuration registers, system, 3-7
control pins, 3-14
control register, system, 3-8, 3-9
copy/move instructions
FMOV (move far), 5-52
MOV (move within 0—64K bytes), 5-70
MOVQ (move quick, immediate value), 5-74

CRC (cyclic redundancy check) generator, 3-6
CRC generator, 3-6
cyclic redundancy check (CRC), 3-6

daisy-chain interrupt priority, 3-38
data organization, 2-14, 2-17
bit, byte, word restrictions, 2-17
data registers, port, 3-17
data truncation test
TRUNCS instruction, 5-114
TRUNCU instruction, 5-115
DBNZ instruction, 5-43
DCR register, 3-16
DEC instruction, 5-45
DECB instruction, 5-45
decrement instructions
DBNZ (decrement, branch if not zero), 5-43
DEC (decrement destination), 5-45
dedicated registers. See registers, specialized
definition of words, Iv
destinations, word and byte, 2-16
device (definition of), iv
digital 1/O pins, 3-14
digital 1/O registers, 3-15, 3-16 to 3-18
DCR (digital output/control), 3-16
DIR (port direction register), 3-17
DSR (digital input status), 3-16
digital input/status registers, 3-16
digital inputs
type A pin use, 3-29
type B pin use, 3-31
type C pin use, 3-33
digital output control registers, 3-16

digital port direction registers, 3-17
digital power status, 3-10

DIO registers. See digital I/O registers
DIR register, 3-17

direct memory addressing, 4-5
format derivation, 4-6

direct register addressing, 4-8
direction register, port, 3-17
displacement for branch, 5-27
division by shift, 5-25

DIVS instruction, 5-46

DIVSL instruction, 5-46

DIVU instruction, 5-48

DIVUL instruction, 5-48
documentation, ordering, vi
double word add, 5-19

DSR register, 3-16

ECLK (external clock), 3-6
EEPROM programming, 3-12
effective address storage, 5-100
effective address store (LDEA instruction), 5-62
emulation slave mode vector, 3-20
emulation trap vectors, 3-20
enabling NMIs, 3-23
exception routine, 3-19
exception, software. See software exception
execution steps for interrupts, 3-22
exiting low-power mode, 3-40
extension word (4-, 8-, 16-bit), 4-7
external interrupts, 3-28
See also interrupts, external
external pins, 3-26
trap (illustrated), 3-20
vectors (illustrated), 3-20

external pin communication, 3-16

external pins, 3-16
INT1 (HPO application), 3-12
RESET, 3-3

external reset, 3-11

EXTRST bit (external reset status), 3-11
EXTS instruction, 5-50

EXTSB instruction, 5-50

Index-3

Index

EXTZ instruction, 5-51
EXTZB instruction, 5-51

failure
digital power, 3-10
oscillator, 3-10
fast add, 5-20

FMOV instruction, 2-18, 5-52
set up code address example, 4-17

FP (frame pointer), 2-4, 2-5
frame pointer (FP), 2-4, 2-5
freeze bit, 3-29, 3-39

type A interrupt options, 3-39

glossary, A-1
See also Appendix A

halt mode, 3-40
IDLE instruction, 5-53
handling of interrupts, exceptions, 3-19
hardware protect override, 3-12
hot line, vi
HPO bit (EEPROM programming), 3-12

1/O port registers, 3-18
IDLE instruction, 5-53
idle mode, 3-40 to 3-42
IDLE instruction, 5-53
ILLACC bit (illegal access reset status), 3-10
ILLADR bit (illegal address reset status), 3-10
illegal
access reset, 3-10
address access, 3-3
address reset, 3-10
opcode trap, 3-20
opcodes, 3-24, 5-54
illegal access, 3-3
reset, 3-10

Index-4 TMS370C16 CPU

illegal address
access, 3-3
reset, 3-10
ILLEGAL instruction, 5-54
as software exception, 3-24
illegal opcode, trap, 3-20
IM (implied register), 2-5
immediate add, quick, 5-20
immediate addressing, 4-7
implied addressing, 4-3
implied register (IM), 2-4, 2-5
INC instruction, 5-55
INCB instruction, 5-55
indirect addressing, register, memory, 2-16
indirect register addressing, 4-9
decrement/increment, 4-12
displacement, 4-13
no displacement, 4-10
substitution using offset, 4-9
INIT1 pin (EEPROM programming), 3-12
instruction modes, 4-2
instructions
See also assembly language
1, 2, 3 word types, 2-10
interpretation, 5-16
organization (1, 2, 3 words), 2-10
stack usage, 2-11
use 17-bit address, 2-9
internal module communication, 3-16
interpolation
INTPU instruction, 5-56
TBLU instruction (table lookup), 5-108
interrupt mask bits (ST), 2-7
interrupts, 3-19 to 3-38
daisy-chain priority, 3-38
external, 3-25, 3-28
frame, 3-25
INTx pins, 3-28
type A, 3-29, 3-30
type B, 3-31, 3-32
type C, 3-33, 3-34
vectors, 3-20
external pins, 3-26
frame, 3-25
frames, examples, 3-27, 3-28
hardware, 3-21
INTx pins, 3-28
invalid, 3-37

Index

interrupts (continued)
multiple, 3-38
nested routines, 3-38
nonmaskable, 3-19
peripheral, 3-19
phantom, 3-37
power module interrupts, 3-35
priority chain, 3-37
resets, 3-19
routine description, 3-19
servicing muitiple, 3-38
software, 3-21
software exceptions, 3-19
stack usage, 2-12
steps of execution, 3-22
trap table base address, 3-20, 3-21
type A, 3-29, 3-30
type B, 3-31, 3-32
type C, 3-33, 3-34

INTPU instruction, 5-56

INTx pins, 3-28

invalid interrupts, 3-37

JMP instruction, 5-58
code address example, 4-16
offset + register example, 4-15
register direct example, 4-8

jump
to destination address (JMP), 5-58
to subroutine (CALL), 5-34

LDBIT instruction, 5-60
LDBITB instruction, 5-60
LDEA instruction, 5-62
LIMHS instruction, 5-63
LIMHSB instruction, 5-63
LIMHU instruction, 5-64
LIMHUB instruction, 5-64

limit register value to
highest signed value (LMHS), 5-63 to 5-67
highest unsigned value (LIMHU), 5-64 to 5-68
lowest signed value (LIMLS), 5-65 to 5-69
lowest unsigned value (LIMLU), 5-66 to 5-70

LIMLS instruction, 5-65
LIMLSB instruction, 5-65
LIMLU instruction, 5-66
LIMLUB instruction, 5-66
LINK instruction, 5-67
load effective address, 5-62
load value into carry bit (LDBIT instruction), 5-60
logic instructions
AND (logical AND), 5-21
OR (logical OR), 5-82
XNOR (exclusive NOR), 5-118
XOR (exclusive OR), 5-119
logical AND, 5-21
logical branch instructions, 5-28
logical shift instructions
SHLA4 (shift left logical 4 bits), 5-94
SHLS8 (shift left logical 8 bits), 5-95
SHRB8 (shift right logical 8 bits), 5-96
low-power modes, 3-40 to 3-42
LSR instruction, 5-68
LSRL instruction, 5-68

memory access, illegal, 3-10
memory addressing, memory direct, 4-5
format derivation, 4-6
memory check, 3-6
memory map, 2-3
code and data space, 2-18
typical, 2-18
modes of address, 4-2
module (definition of), iv
MOV instruction, 4-9, 5-70
code address example, 4-16
code address setup example, 4-17
example, memory direct addressing, 4-5
immediate value example, 4-7
offset + register example, 4-13
register decrement/increment example, 4-12
register direct example, 4-8
register indirect, postincrement example, 4-12
register indirect, predecrement example, 4-11
synthetic use, CLR{B} instruction, 5-37
synthetic uses
EXTZ{B} instruction, 5-51
TST{B} instruction, 5-116
use of ? operator, 4-17

Index-5

Index

MOVB example, 2-16
MOVB instruction, 5-70

offset + register example, 4-14
move within 128K bytes, 5-52

move/copy instructions
FMOV (move far), 5-52
MOV (move within 64K bytes), 5-70
MOVQ (move quick, immediate value), 5-74

MOVQ instruction, 5-74
MPYBWU instruction, 5-75
MPYS instruction, 5-76

MPYSB instruction, 5-76

MPYU instruction, 5-78
MPYUB instruction, 5-78
multiple interrupt servicing, 3-38

multipl5-bit check
for Os, 5-106
for 1s, 5-107

NCRF (New Code Release Form), 3-39
negative bit (ST), 2-7
New Code Release Form (NCRF), 3-39

NMI (nonmaskable interrupt), 3-23
disabling, 3-23
enabling, 3-23
execution summary, 3-22
processing, 3-23
processing steps, 3-23
status register, 3-23
use of type A interrupt pins, 3-29
use of type B interrupt pins, 3-31
use of type C interrupt pins, 3-33
vector table, 3-21

nonmaskable interrupt. See NMI

nonmemory access, 3-3

NOP instruction, 5-80

normal run mode, 3-4

NOT instruction, 5-81

NOTB instruction, 5-81

ones check, 5-107

Index-6 TMS370C16 CPU

opcodes, illegal, 5-54
operator ? (question mark), 4-16
OR instruction, 5-82
ORB instruction, 5-82
oscillator
failure, 3-10

reset, 3-3
reset status, 3-10

oscillator module and low-power modes, 3-40
OSCRST bit (osc reset status), 3-10
overflow bit (ST), 2-7

parallel signature analysis (PSA), 3-6
PSAR1/2 registers, 3-13

parallel signature analysis registers (PSAR1/2), 3-6
PC. See program counter; program counter (PC)
PC relative addressing, 4-4

peripheral interrupt replication, 5-111

peripheral interrupts
description, 3-19
execution summary, 3-22
processing, 3-24
replication, 5-111
vector table, 3-21

phantom interrupts, 3-37
priority chain, 3-37
vectors (illustrated), 3-20
pins
configuring, 3-14
control, 3-14
external, 3-16
INT1 (HPO application), 3-12
RESET, 3-3
general-purpose, 3-14
INT1 (HPO application), 3-12
RESET, 3-3
status, 3-14

pipeline, 5-27

pipeline prefetch, 3-24

PMx ENBL registers, 3-35
PMx FLAGS registers, 3-36

Index

polling, interrupt occurance

type A interrupt, 3-30

type B interrupt, 3-32

type C interrupt, 3-34
POP instruction, 5-83
PORST bit (power on reset), 3-10
port data registers, 3-17
port direction registers, 3-17
postincrement register example, 4-12

power control
brown-out detector as controller, 3-9
voltage regulator as controller, 3-9

power module
fault condition, 3-25
interrupt enable (register), 3-35
interrupts, 3-35
pins, 3-25
power module vectors, 3-20
power on reset, 3-10
power supply control (analog), 3-9
power-saving mode
exiting, 3-40
halt, 3-40
standby, 3-40
predecrement register example, 4-11, 4-12
prefetch pipeline, 5-27
primary voltage regulator, 3-5
priority chain, interrupts, 3-37
PRISM technology, iii
products, TI, vi
program counter (PC), 2-2, 2-8
address bus, 2-8
addressing relative to PC, 4-4
during interrupt routine, 3-19
memory-address relationship, 2-9

programmer’s model, 2-2
programming of EEPROMs, 3-12
PSA, 3-6

PSAR1/PSAR2, 3-6
PSAR1/PSAR2 registers, 3-13
PUSH instruction, 5-84

question mark (?) operator, 4-16, 5-52
quick add, 5-20

reduce power mode
exiting, 3-40
halt, 3-40
standby, 3-40
reduced clock cycles
halt, 3-40
standby, 3-40
register direct addressing, 4-8
register file. See registers, specialized
register indirect addressing, 4-9
decrement/increment, 4-12
displacement, 4-13
no displacement, 4-10
substitution using offset, 4-9
register shift, 5-25
ASR (arithmetic shift right), 5-23
SHL (shift left arithmetic), 5-91
register shift instructions
SHL4 (shift left logical 4 bits), 5-94
SHLS (shift left logical 8 bits), 5-95
SHRB8 (shift right logical 8 bits), 5-96
register value limited to
highest signed value (LMHS), 5-63 to 5-67
highest unsigned value (LIMHU), 5-64 to 5-68
lowest signed value (LIMLS), 5-65 to 5-69
lowest unsigned value (LIMLU), 5-66 to 5-70
registers, dedicated. See registers, specialized
registers, general
bit numbering, 2-14
considerations, 2-7
dedicated, 2-4
system configuration, 3-7
registers, port, 3-17
registers, specialized, 2-4
considerations, 2-7
frame pointer, 2-5
implied register, 2-5
stack pointer, 2-6, 2-11
status register, 2-6
zero register, 2-7
registers, system
configuration, 3-7
SCRO (system control 0), 3-8
SCR1 (system control 1), 3-9
SRSR (system reset status), 3-10
regulator, voltage, 3-5
replication of peripheral interrupt, 5-111

Index-7

Index

reserved trap locations, 5-111
reset
cause
external, 3-11
illegal access, 3-10
illegal address, 3-10
oscillator fail, 3-10
software, 3-10
watchdog timer, 3-11
description, 3-19
event sequence, 3-5
execution summary, 3-22
external reset, 3-11
illegal access , 3-10
illegal address, 3-10
oscillator fail, 3-10
oscillator reset, 3-3
pin, 3-3
power on reset, 3-10
pulse, 8-count, 3-4
register bits, 3-3, 3-8, 3-10, 3-12
sequence, 3-5
software, 3-10, 3-19, 3-21
state diagram, 3-4
status bits, 3-10
status register, 3-5, 3-10
system, 3-3
system status (SRSR register), 3-10
vector (illustration), 3-20
vector table, 3-21
watchdog timer, 3-11

RESET pin, 3-3
RESETO/1 bits (software reset control), 3-8

return instructions
from interrupt (RTI), 5-86
from subroutine (RTS), 5-87

right shift, 5-25
right shift (ASR instruction), 5-23
round to zero, shift instruction, 5-25

rounded interpolation
INTPU, 5-56
TBLU (table lookup), 5-108

rounding for interpolation, 5-109
RTDU instruction, 5-85

RTI instruction, 5-86
enabling NMIs, 3-23
function at end of interrupt routine, 3-19

Index-8 TMS370C16 CPU

RTS instruction, 5-87
implied addressing example, 4-3
run mode, normal, 3-4

SBB instruction, 5-88
SBITO instruction, 5-89
synthetic use (NOP), 5-80
SBITOB instruction, 5-89
SBIT1 instruction, 5-90
SBIT1B instruction, 5-90
SCI vector, 3-20
SCRQO register, 3-8
SCRH1 register, 3-9
set/load a bit (LDBIT instruction), 5-60
shift count, 5-23, 5-25
shift instructions
ASR (arithmetic shift right), 5-23
ASRO (arithmetic right shift, round to zero), 5-25,
5-30
LSR (logically right shift), 5-68
SHL (shift left arithmetic), 5-91
SHLA4 (shift left logical 4 bits), 5-94
SHLS (shift left logical 8 bits), 5-95
SHRS8 (shift right logical 8 bits), 5-96
shift, signed, 5-25
ASR (arithmetic shift right), 5-23
SHL (shift left arithmetic), 5-91
SHL instruction, 5-91
example, 5-92
SHL4 instruction, 5-94
SHLS instruction, 5-95
SHLL instruction, 5-91
SHR8 instruction, 5-96
sign extension
EXTS (extend to next larger data size), 5-50
EXTZ (extend unsigned with zeroes), 5-51
signature analysis, 3-6
registers PSARO/1, 3-13
signed branch instructions, 5-28
signed shift, 5-25
ASR (artihmetic shift right), 5-23
SHL (shift left arithmetic), 5-91
software exception
causes, 3-24
description, 3-19

Index

software exception (continued)
execution summary, 3-22
ILLEGAL instruction, 5-54
illegal instruction, 3-24
processing, 3-24
status register, 3-24
TRAP instruction, 3-24, 5-111
software reset, 3-10
SP, stack pointer. See stack pointer (SP)
specialized registers. See registers, specialized
SPI vector, 3-20
SRCO, 3-8
SRC1, 3-9
SRSR register, 3-10
SSR register, 3-12
ST, status register. See status register (ST)
stack, 2-11
See also stack instructions
during interrupt routine, 3-19
example, 2-13
interrupt example, 2-12
stack pointer. See stack pointer (SP)
use with CALL, 2-12
stack instructions, 2-11
LINK (link and allocate stack), 5-67
list, 2-11
POP (pull from stack), 5-83
PUSH (push onto stack), 5-84
RTDU (unlink stack, return from subroutine), 5-85
UNLINK (unlink, deallocate stack), 5-117
stack pointer (SP), 2-4, 2-6, 2-11
even-value requirement, 2-12
example (RTS instruction), 4-3
standby mode, 3-40
IDLE instruction, 5-53
status pins, 3-14
status register (ST), 2-3, 2-4, 2-6
during interrupt routine, 3-19
during peripheral module interrupt, 3-24
during software exception, 3-24
enabling of NMis, 3-23
set interrupt mask, 5-101
store contents, 5-101
status register instructions
LDBT (load into carry bit), 5-60
STBIT (store ST bit, set carry), 5-97
STRI (store ST, set interrupt level), 5-101
STBIT instruction, 5-97

STBITB instruction, 5-97
semaphore check examples, 5-98
STEA instruction, 5-100
straight-line interpolation
INTPU, 5-56
TBLU (table lookup), 5-108
STRiI instruction, 5-101
SUB instruction, 5-102
SUBB instruction, 5-102
SUBQ instruction, 5-45, 5-103
synthetic use (DEC{B}), 5-45
SUBQB instruction, 5-103
SUBR instruction, 5-104
example, 2-13
synthetic use (COMPL{B}), 5-42
SUBRB instruction, 5-104
subroutine return, 5-87
subtract instructions
SUB (subtract source from destination), 5-102
SUBQ (subtract quick immediate from destina-
tion), 5-103
SUBR (subtract with reverse destination), 5-104
swap byte values, 5-105
SWAPB instruction, 5-105
example, 5-105
SWRST bit (software reset status), 3-10
symbolization, for “contents of”, 4-2
symbols
meaning “contents of”, 4-2
that designate registers, iv
used to define instructions, 5-3
SYSCLK, 3-3
system
block diagram, 3-2
stack. See stack
system clock
CLKOUT pin, 3-6
output, 3-6
system configuration
external interrupts, 3-25
idle mode, 3-40
interrupts, 3-19
low-power modes, 3-40
overview, 3-2
registers, 3-7
digital input/output (DIO), 3-14
reset operation, 3-3
system considerations. See Chapter 3

Index-9

Index

system control register 0, 3-8
system control register 1, 3-9
system reset status register, 3-10
system status register, 3-12

TBITO instruction (with example), 5-106
TBIT1 instruction (with example), 5-107
TBLU instruction, 5-108

TBLUB instruction, 5-108

test for data truncation
TRUNCS instruction, 5-114
TRUNCU instruction, 5-115

timer vectors, 3-20
TMS370C16, system configuration, 3-1

TRAP instruction, 5-111
enabling NMis, 3-23
enumerator calculation, 5-112
software exception, 3-24

trap locations, reserved, 5-111

trap table, 3-20, 3-21
base address (TBA), 3-21
reserved locations, 5-111

truncation possibility test
TRUNCS instruction, 5-114
TRUNCU instruction, 5-115

TRUNCS instruction, 5-114
TRUNCSL instruction, 5-114
TRUNCU instruction, 5-115
TST instruction, 5-116

TSTB instruction, 5-116
type A interrupt, 3-29, 3-30
type B interrupt, 3-31, 3-32
type C interrupt, 3-33, 3-34

UNLINK instruction, 5-117

variants (instruction), 5-4, 5-16
Ve, out of range, 3-3

Index-10 TMS370C16 CPU

VCCA status, 3-12

VCCAON bit, 3-9

VCCAOR bit, 3-12

VCCD out of regulation, 3-10

vector table (interrupts, reset, NMI, peripherals),
3-21

vectors, interrupt, description, 3-20

voltage regulator, primary, 3-5

voltag5-regulator power control, 3-9

voltage, EEPROM programming, 3-12

wait state (idle mode), 3-40

exit, 3-40
wakeup interrupt, 3-40
watchdog timer

overfiow, 3-3

reset, 3-3, 3-11
watchdog/RTI vectors, 3-20
WDCLK (watchdog clock), 3-6
WDRST bit (watchdog reset status), 3-11
word, 2-14, 2-17

restrictions, 2-17
word access, 3-10
word access reset, 3-3

word address, 2-8
with CALL instruction, 5-34

XNOR instruction, 5-118
synthetic use (NOT{B}), 5-81

XOP trap, 3-20
XOR instruction, 5-119
XORB instruction, 5-119

zero bit (ST), 2-7

zero register (ZR), 2-4, 2-7

zero rounding, shift instruction, 5-25
zeroes check, 5-106

ZR, zero register, 2-7

b4
INSTRUMENTS

Printed in U.S.A., March 1994 SPNU043

