TMS7000
Family Data
Manual

8-bit Microconzﬂbpter Farhily

Texas
INSTRUMENTS

 TMS7000
Family Data
-~ Manual

8-bit Microcomputer Family

IMPORTANT NOTICE

Texas Instruments reserves the right to make changes at any time in
order to improve design and tp supply the best product possible.

Texas Instruments assumes no responsibility for infringement of patents
or rights of others based on Texas Instruments applications assistance
or product specifications, since Tl does not possess full access to data
concerning the use or applications of customer’s products. Tl also
assumes no responsibility for customer product designs.

Copyright © 1983 by Texas Instruments incorporated

TABLE OF CONTENTS

SECTION PAGE
1. INTRODUCTION
1.1 General . ..o e e e e e 1-1
1.2 Background And Design Philosophy e e 1-1
1.2.1 Strip Chip Architecture Topology (SCAT) 1-2
1.2.2 Microprogramming i e e e e e 1-3
1.3 Key Features Of The TMS7000 Familyc.uviuinennenennnnn.. 1-4
T4 SUPPOIt .ttt e et e, 1-6
1.4.1 DevelopmentTools i 1-6
1.4.2 Hotline ASSIStANCE . . .o\t v s i ittt 1-7
1.4.3 TraininG Support oo e e 1-7
1.4.3.1 TDC-700-TMS7000 Family Systems Design 1-8
1.4.3.2 ATS-710-TMS7000 Family Microprogramming 1-8
1.4.4 DesignExpertise00.... e 1-8
2. TMS7000 FAMILY ARCHITECTURE
2.1 On-ChipRAMANdRegistersuviiit it iiiiieeenn. 2-2
2.1.1 RegisterFile (RF) i e 2-2
2.1.2 Peripheral File (PF) e e i, 2-3
2.1.3 Stack Pointer (SP) e e 2-3
2.1.4 StatusRegister (ST)o i e i, 2-3
2.1.5 Program Counter (PC) it i i 2-4
2.2 On-Chip General Purpose l/OPOMS vvinin it enenn 2-4
23 MemoryModes e 2-6
2.3.1 Single-ChipMode. it 2-8
2.3.2 Peripheral ExpansionMode 2-13
2.3.3 FullExpansionMode ittt i i 2-14
2.3.4 MicroprocessorMode i e 2-14
2.3.5 SystemEmulatorMode [P 2-15
2.4 1/OCONtrol REgiSterS . o v v o v it et it e e e e 2-16
2.5 Interruptand Reset Clock OptionS v v v v vt i ittt e i et 2-19
2.5.1 Interrupt Priority oo e e e e 2-19
2.5.2 Device Initialization i 2-20
2.5.3 CPU Interface To InterruptLogic 2-21
2.5.4 InterruptlogiC . .\ .. e e 2-22
2.6 Programmable Timer/Event COUNters'iiiineiiinnennnan. 2-24
2.6.1 Real Time Clock (RTC) i i e e en s 2-27
2.6.2 EventCounter (EC) i ittt et i e e e 2-27
2.6.3 Timer AndPrescaledClock i, 2-27
2.6.4 Timer InterruptPulse e e e e 2-28
2.6.5 TIMEr 2 o e e e e 2-28
2.6.6 Pulse WidthMeasurementv.... e 2-29
2.6.7 Pulse Width Modulation {(PWM) Theory Of Operation 2-29
2.6.8 Multi-Interrupt Pulse Width Modulation (PWM). 2-31
2.7 Serial Port (TMS70X1 VersionsOnly)ttt 2-33
2.71 Description e e e e e e e 2-33
2.7.2 Clock Sources And SerialPortModes 2-35
2.7.2.1 Asynchronous CommunicationMode 2-35
2.7.2.2 [sosynchronous CommunicationMode e 2-36
2.7.2.3 Serial /O CommunicationMode 2-37

2.7.3 Multiprocessor Communication, 2-37
2.7.3.1 Motorola (MC6801)Protocol 2-38
2.7.3.2 Intel (I8O51)Protocol0 iiiiriennn 2-39
2.7.4 Timer3 e e e 2-40
2.7.5 Serial PortRegistersot 2-42
2.7.5.1 Mode Register (SMODE) 2-42
2.7.5.2 Serial Control O Register (SCTLO) 2-44
2.7.5.3 Serial Port Status Register (SSTAT) 2-45
*2.7.5.4 Serial Control 1 Register (SCTL1)c.vvvunn 2-46
2.7.5.5 Timer3DataRegister 2-48
2.7.5.6 ReceiverBuffer i i -2-48
2.7.5.7 Transmitter Buffer....... e e e e 2-49
2.7.6 Serial Portinitializationt 2-49
. 2.7.7 SerialPortInterrupto i e e 2-49
2.8 PinDescription........... e e 2-50
STANDARD INSTRUCTION SET
3.1 DefinitiONS . v . o vt e e e e 3-1
3.2 AddressingModes e e e e e s 3-3
. 3.2.1 Direct AddressingModes ittt i e 33
3.2.1.1 Single Register AddressingMode 3-3
3.2.1.2 Register File AddressingMode e 3-4
3.2.1.3 Peripheral File AddressingMode 3-5
3.2.1.4 |Immediate AddressingMode 3-6
3.2.1.5 Program Counter Relative AddressingMode 3-6
3.2.2 Extended AddressingModes i, 3-7
3.2.2.1 Direct Memory Addressing et e 3-7
3.2.2.2 Register File Indirect AddressingMode 3-7
3.2.2.3 Indexed AddressingMode e - 3-8
3.3 Instructions e e e e e 3-8
3.3.1 Implied Operand InStructionsttt nnnnn 3-8
3.3.2 Single Operand Instructions e 39
3.33 Dual Operand Instructions civu it nnennnnnns 3-10
" 3.3.3.1 RegisterFilelnstructionTvpes 211
3.3.3.2 Peripheral File Instruction Types 3-11
3.3.4 Jumplnstructions e R e 3-12
3.3.4.1 Simple Relative InstructionType oo 3-13
3.3.4.2 Single Relative Instruction Type 3-13
3.3.4.3 Dual RelativeinstructionTypecccvvon.. 3-13
3.3.4.4 Peripheral Relative Instruction Type PN L. 314
3.35 Extended AddressInstructions i 3-14
3.3.6 Miscellaneous Instructions e e e 3-15
3.3.6.1 MOVDInstruction. 3-16
3.3.6.2 TRAPInstructions e 3-17
3.4 CustomMicrocoding . . . v v o vt it e e e e 3-17
"3.5 InstructionDescriptions i e e e e, 3-20
3.5.1 ADC-AddWithCarry oottt e e e e e 3-21
3.6.2 ADD - Addt i e e e 3-22
3.56.3 AND - ANd . . . oo e e e 3-22
3.54 ANDP - And Peripheral Reglster P 3-23
3.5.5 BTJO-BitTestAndJumplfOnec¢cciiiieunn.n. 3-23
3.5.6 BTJOP - Bit Test And Jump If One Peripheral 3-24
3.5.7 BTJZ-BitTestAndJumplfZero............ccci .. 3-24

4,

4.1

BTJZP - Bit Test And Jump If One Perlpheral N 3-25

3.5.8.
3.5.9 BR-Branch i e e 3-25
3.5.10 CALL-Call ... i e e e e e e 3-26
3.5.11 CLR-Clear .. .i vttt i e e e et et e 3-26
3.56.12 CLRC-ClearTheCarryBit O 3-27
3.5.13 CMP-Comparettt i ittt e tee it 3-27
3.5.14 CMPA - Compare Accumulator Extended 3-27
3.5.16 DAC-Decimal AddWithCarry 3-28
3.5.16 DEC-Decrementt iiinnninnnnennsnenneenssns 3-28
3.5.17 DECD-DecrementDouble 3-29
3.5.18 DINT-DisablelInterrupts e e 3-29
3.5.19 DJNZ - Decrement Register And Jump If Not Zero 3-30
3.56.20 DSB-Decimal Subtract WithBormrowot eni e e 3-30
3.5.21 EINT-Enablelnterrupts oottt e it i et 3-31
3.5.22 IDLE-IdleUntilInterruptttt e 3-31
3.5.23 INC-Incremento v vt ittt e e e 3-32
3.5.24 INV-INVert ... i i e e e 3-32
3.5.25 - JMP-Jump Unconditional N 3-33
3.5.26 J<cnd>-JumpOnCondition 3-33
3.5.27 LDA-LoadARegister e e 3-34
3.5.28 LDSP-LoadStackPointer i, 3-35
3.6.29 MOV-Movec.coviiiiinnn.. W e e e e s e 3-35
3.56.30 MOVD-MoveDouble i, 3-36
3.5.31 MOVP - Move To/From Peripheral File e e e 3-36
08632 MPY-Multiplyo .. 337
3.5.33 NOP-NoOperationcciiiiniiinenninennnnnnn 3-37
3.5.34 OR-0r ..ot e e 3-38
3.56.35 OPR- Or Peripheral File Register e e 3-38
3.5.36 POP-PopFromStackcuuuinnninnnnnnns ... 3-39
3.5.37 PUSH-PushONStack.coiiiiunn i 3-39
3.5.38 RETI-Return Frominterrupt e e 3-40
3.5.39 RETS-ReturnFrom Subroutine 3-40
3.5.40 RL-Rotateleft i, 3-41
3.5.41 RLC-RotateleftThroughCarry uu.... 3-41
3.5.42 RR-RotateRight i 3-42
3.5.43 RRC-RotateRight ThroughCarry 3-42
3.56.44 SBB-SubtractWithBorrowt ienen... 3-43
3.5.45 SETC-SetCarmyttt it e 3-43
3.5.46 STA-StoreARegister................ R 3-44
3.56.47 STSP-StoreStackPointer.t iinennnn.n. 3-44
3.5.48 SUB-SUbtractciiiiiiiiiiiie i e e 3-45
3.56.49 SWAP-SwapNibbles 3-45
3.5.560 TRAP-TrapToSubroutine 3-46
3.6.51 TSTA-TestAREgIStErottt ie it e et enn e 3-47
3.5.62 TSTB-TestBRegisterot ennnnnnnn 3-47
3.5.563 XCHB-Exchange withBRegister 3-47
3.5.54 XOR-ExclusiveOr it 3-48
3.5.565 XORP-Exclusive OrPeripheralFile - . 348
ELECTRICAL SPECIFICATIONS
TMS7000/TMS7020/TMS7040/TMS70120/TMS7001/TMS7041 4-1
4.1.1 Description Of The TMS7000/TMS7020/TMS7040/TMS70120

TMS7001/TMS7041Devicesovvii i iininnnn.. 4-1

4.1.2 KeyFeatures e e e e et e e e 4-2
4.1.3 Absolute Maximum Ratings Over Operating Free-Air Temperature
) Range i i i e e e 4-3
4.1.4 Recommended Operating Conditions 4-3
4.1.5 Electrical Characteristics Over Full Range Of Operating Conditions 4-3
4.1.6 Recommended Crystal/Clockin Operating Conditions Over Full
OperatingRangec.it it 4-4
4.1.7 Memory Interface Timing At 10MHz Over Full Operating Free Air
Temperature Range oottt i e e 4-5
4.1.8 Application Of CeramicResonator [4-7
4.1.9 SerialPort TiMiNg - - v vttt eiee it et Lo 48
4.1.9.1 InternalSerialClock, 4-8
4,1.9.2 ExternalSerialClock i, 4-9
4.1.9.3 RX Signals In CommunicationModes 4-10
4.1.9.4 TX Signals In CommunicationModes 4-11
4.1.9.56 RXSignalsInSeriall/OMode 4-12
4.1.9.6 TXSignalsInSeriall/OMode 4-13
4.1.10 PinDescriptions . .\ v vt vt e e . 4-14
4.1.10.1 Pin Descriptions Of The TMS7000/TMS7020/TMS7040
TMS70120 ..o e e e 4-14
4.1.10.2 Pin Descriptions Of The TMS7001/TMS7041 4-15
4.2 ° TMS70C00/TMS70C20/TMS70C40ttt e e e et 4-16
4,21 Description Of The TMS70C00/TMS70C20/TMS70C40 4-16
4.2.2 KeyFeaturescviin i e 4-17
4.2.3 Absolute Maximum Rating Over Operating Free-Air Temperature
Rangeo e e e e 4-18
4.2.4 Recommended Operating Conditions00v... 4-18
4.2.5 Electrical Characteristics Over Full Range of Operating Conditions 4-18
4.2.6 AC Characteristics For Input/OutputPorts 4-19
4.2.7 Recommended Crystal/Clockin Operating Conditions Over Full
OperatingRange it 4-19
4.2.8 Memory Interface Timing At VDD =5V, FOSC = 3MHz Over
The Full Operating Free-Air TemperatureRange 4-21
4.2.9 Pin Descriptions Of The TMS70C00/TMS70C20/TMS70C40 4-24
4.3 SETZOPTIBT . ittt e e e e 4-25
4.3.1 Description Of The SE70P161 Prototyping Component 4-25
4.3.2 Prototyping . . . v vttt e e e e e e e 4-25
4.3.2.1 TMS7041Prototyping vcveiiienennnnnns 4-25
4.3.2.2 TMS7020/TMS7040/TMS70120 Prototyping 4-25
4.3.3 Programming And Installing Eproms e e 4-26
4.3.4 Absolute Maximum Ratings Over Operating Free-Air Temperature
) Range o 4-26
4.3.5 Recommended Operating Conditions 4-27
4.3.6 Electrical Characteristics Over Full Range Of Operating Conditions. ... 4-27
4.3.7 Recommended Crystal/Clockin Operating Conditions Over Full
OperatingRange.c.iiiniiiinnn s 4-27
4.3.8 Memory Interface Timing At 10MHz Over Full O‘perating Free-Air
Temperature Range P 4-28
4.3.9 Pin Description Of The SE70P161 i 4-30
5. MICROPROGRAMMING)
5.1 TMS7000 Custom Microcoding Description cvvt ... 5-1
5.1.1 Typical Applications i 5-1

vi

5.2

5.3

5.1.2 KeyFeaturesttt it it e e et 5-2
5.1.3 MicrocodingExample i i i 5-5
5.1.4 Tradeoffs Of Microcoding e e 5-5
5.1.5 Microcode DevelopmentCycle i, 5-6
5.1.6 Available Support e e e 5-8
5.1.6.1 TMS7000 Microassembler Software Package 5-8
5.1.6.2 TMS7000 AMPL Emulator System P 5-8
) 5.1.6.3 TMS7000 Microcode Documentation Package 5-8
MicrocodedBenchmarkso i e 5-9
5.2.1 Benchmark Rules e e e e e e e 5-9

5.2.2 Benchmark 1: 16 Bit Binary Addition 5-10

5.2.3 Benchmark 2: 16 Bit Binary Coded Decimal Addition 5-10

5.2.4 Benchmark 3:BlockMove i 5-11

5.2.5 Benchmark4: TableSearch 5-12

5.2.6 Benchmark 5: Binary ToBCD Conversion 513

5.2.7 Benchmark 6:Bit1/O . . ., i e e 5-14

Microarchitecture Description e et et 5-15

5.3.1 TMS7000 Family AddressSpacecvveven.on. 5-15

5.3.2 Basic TMS7000 Architectureo v v v i it e i e e e 5-16

5.3.3 Microinstruction Format 5-18

5.3.3.1 MicroinstructionCycle Timing 5-20

5.3.3.2 MemoryCycleTiming 5-21

5.3.3.3 ShortMemoryReferences 5-21

5.3.3.4 LongMemoryReferencesc. ... 5-23

5.3.3.5 InterruptVectorReads.................. 5-24

5.3.3.6 MemoryControlSignals iueu.. 5-25

5.34 Organization Of The TMS7000CPU 5-26

5341 PBUSt e 5-28

5.34.2 NBUS ...ttt e e 5-28

5.34.3 ALBUSt i e 5-29

5.34.4 AHBUSt e . 5-29

5.345 OBUSottt e e e 5-30

5.34.6 MDBUS . ..ottt ittt e 5-32

5.3.4.7 ALUOperationt rnnnnnns 5-33

5.3.4.8 Shifter Operation e e e e 5-35

5.3.4.9 IRRegiSter.....ovvvtiiniiineenenenn. P 5-37

5.3:4.10 StatusRegister:.... i 5-38

5.3.4.10.1 (STC) Status Carry Bit.............. ..., 5-39

5.3.3.10.2 STSB-StatusSignBit 5-39

5.3.3.10.3 STEZ - StatusEqual ToZeroBit 5-39

5.3.3.10.4 STINT - Status Interrupt EnableBit 5-40

5.3.4.11 BCD ConstantRegister0.viniiiann. 5-40

5.3.4.12 OtherRegisters iiinrnnnnnn. 5-43

5.3.5 Microinstruction Sequence Control Overview 5-44

5.3.6.1 DispatchConditions 5-45

5.3.6.1.1 Unconditional Branching-JUNC 5-45

5.3.6.1.2 Function Dispatch-IRL 5-45

5.3.6.1.3 TestSignBit-JT7« 5-46

5.3.5.1.4 TestifZero-JUZ...................... 5-47

5.3.5.1.6 Testifinterrupt-INT 5-47

5.3.5.1.6 - GroupDispatch-IRH 5-48

© 6.3.6.1.7 TestifCanry-JC 5-49

5.3.5.1.8 Test Status Register-MJMP 5-50

5.3.6 ResetOperation R R e 5-51

DESIGN AIDS

6.1

6.2

6.3

7.1

7.2
7.3

7.4

7.5

7.6

Interfacing The TMS7000 To Peripheral And Memory Devices 6-1
6.1.1 Introduction oottt e e 6-1
6.1.2 Peripheral Expansion Mode Example e 6-4

6.1.2.1 Read Cycle Timing For The Peripheral Expansion Mode 6-4
6.1.2.2 Write Cycle Timing For The Peripheral Expansion Mode 6-5

6.1.3 MicroprocessorModeExampleo i it i i 6-7
6.1.3.1 Read Cycle Timing For The MicroprocessorMode 6-7
6.1.3.2 Write Cycle Timing For The MicroprocessorMode '6-8

6.1.4 Software Considerations i ittt i i 6-10

Serial Communication With The TMS7000 Family 6-11

6.2.1 CommunicationFormatst 6-11

6.2.2 Design Constraints For Software And Hardware UART 6-12

. 6.2.2.1 Design Of A Software UART For The TMS7040 6-13

6.2.2.2 Hardware UART (TMS7041) e 6-25

6.2.2.3 RS-232-CInterfaceovveenienanne. ... 634

6.2.2.4 OtherDesignApproach 6-36

Instruction Set ApplicationNotes 6-48

6.3.1 TheStatusRegisterttt eennns 6-48

6.3.1.1 Compare AndJumplinstructions 6-49

6.3.1.2 Addition And Subrtaction Instructions 6-51

6.3.1.3 Swap And Rotation Instructions 6-54

6.3.2 Stack Operations e e e 6-56

6.3.3 Subroutine Instructions e e e 6-57

6.3.4 Multiply And Shifting i e e 6-58

6.3.5 - BranchInstructionsottt ittt e 6-61

6.3.6 Interrupts e e e s 6-61

DEVELOPMENT SUPPORT TOOLS

0 (o To (1o« oo 7-1
7.1.1 XDS COoNCEPt . . v it i e e e e e e e 7-2
7.1.2 KeyFeatures e e e e 7-3
CrossWareot i e e e e 7-3
XDSHardwarecoiiuivinn.. e e e e 7-3
7.3.1 Model 22 e e 7-4
7.3.2 Model 33 e e 7-4
7.3.3 Differences And Similarities - Model 22/Model33 7-6
7.3.4 XML e e e s 7-7
7.3.5 Breakpoint And Trace Functions e e 7-8
7.3.6 Multiprocessing e e 7-9
EvaluationModulest i e 7-9

7.4.1 TMS7000EVM i e, 7-10

7.4.1.1 OperatingSystem e 7-10

Prototype Componentttt e e e e e 7-10

7.5.1 SE70P161 Descriptiono i it it e i 7-11

7.5.1.1 Prototyping e e e e 7-12

7.5.1.2 TMS7041Prototypingccvcuvununnnnn vewe. 7-12

7.5.1.3 TMS7020/TMS7040/TMS70120 Prototyping 7-12

7.5.1.4 SE70P161ElectricalData 7-12

Physical And Ordering Information i, 7-12

7.6.1 CrossWarettt i e e 712

7.6.2 XDSHardware oo i it et e e 7-12

7.6._2.1 Physical Specifications, 7-13

viii

7.6.3 EvaluationModules e,

8. INDEPENDENT SUPPORT

8.1
8.2

8.3

8.4

7.6.4 Warranty And SubscriptionServices oo
Introduction oo it e e e e
Processor Innovations - Intel Based SupportTools
8.2.1 XI Workstation Device Supporto ottt i
8.2.2 Company To Contact e e e e
8.2.3 Product Offeringso it i n i i i e e e
: 8.2.3.1 PIDS1810-11 ...ttt i e e e it eee et
8.2.3.2 PIDS1810-12 ... ittt it et ane e

8.2.3.3 PIDS1810-32ttt i et

Allen Ashley - CP/M Based SupportTools oot e i it iien e i
8.3.1 Company TOCONtACt .+ v v vttt ettt iie et

8.3.2 ProductOfferings vt it i e

8.3.2.1 CP/M Based Development Software For TMS7000 Family . .
SEEQ: Self-Adaptive EEROMt i i et e e
8.4.1 CompanyToContactc. it ninnnnnnnn.

9. QUALITY AND RELIABILITY

Introduction e e e e e e
Average Outgoing Quality ittt iiieen s

New Product And Major Change Reliability Qualification Testing :

Reliability Monitoring T
TMS7020/TMS7040 Reliability Performance

10. GENERAL INFORMATION

10.1 TMS7000Family DeviCes v it ittt ittt e s et et iaaaan e
10.1.1 Prototype And ProductionFlowcoiereron...
10.1.2 Device PrefixDesignatorsc..uiiirunnnnneenenn..
10.1.3 ClockOptions e
10.1.4 ReservedROMLocations. i i i,
10.1.5 OrderingInformation,
10.1.5.1 TMS7000 Family Members With On-ChipROM
10.1.5.2 TMS7000 Family Members Without On-ChipROM
10.1.6 MechanicalDataciuiiiiiiiniiiieeneeneenn.
10.2 DevelopmentSupportTools i e e e
10.2.1 CrossWare e e e e
10.2.2 XDSHardware........... e e et e e e e
10.2.3 EvaluationModules 0ttt e
10.3 TMS7000 Family Documentationt ennnnnnn.
10.4 Worldwide Regional Technology Centers(RTC)
APPENDICES
APPENDIX
Appendix A Instruction Execution TimMes i ittt e e et et et et e e
Appendix BTMS7000Bus Activity Chart it i i e e ie et

Appendix C TMS7500 Data Encryption Device

Appendix DReferences i e e e e e e e

LIST OF ILLUSTRATIONS
FIGURE PAGE
1-1 TMS7020 MicrocomputerBarPlanttt 1-3
2-1 TMS7000 Internal ArchiteCtureo it iin ittt ittt sae e 2-1
2-2 Example Of Stack Initialization In the RegisterFile 2-3
2-3 Status Redister (ST) .. i i it it i e e e e e e e, 2-3
2-4 Bidirectional I/OLogGIC . . . v i e e e e 2-5
2-5 I/OPorts: Single-ChipMode i e e e 2-9
2-6 Interrupt Generation: SystemEmulatorMode i i, 2-15
2-7 IOCNTO- /O Control RegisterO e e e e 2-17
2-8 IOCNT1-l/OControtRegister 1ottt 2-18
2-9 CPU Interface To Interrupt Logic e e e e 2-22
2-10 Interruptlogic Ot 2-23
2-11 Programmable Timer/Event Counter e e e 2-25
2-12 Timers 1 & 2 Data And Control Registers e e e e 2-25
2-13 Pulse Width Measurementttt it e it e e it 2-29
2-14 Pulse Width Modulated Pulse Train . .~ e e 2-29
2-15 TMS7000PWMINT3TIMING & o o oottt et it ettt et e et nne e 2-30
2-16 Simultaneous Interrupts, INT2Preceding vttt it it i in e 12-31
2-17 Simultaneous Interrupts, INT3Preceding i unn. L... 232
2-18 Serial Port Functional BIocks« v oo i i i e e e e e 2-34
2-19 Serial Portl/OLlogic........... e e e . 2-36
2-20 Asynchronous Communication FOrMat vvvoneneeunneeennennenn.. 2-36
2-21 Isosynchronous Communication Formatttt nnnn.. 2-36
2-22 Serial I/0 Communication FOrmMat v ittt ittt eaeeennns 2-37
2-23 Double Buffered WUT And TXSHF e e e e e 2-39
2-24 Motorola Multiprocessor Communication Format 2-39
2-25 Intel Multiprocessor CommunicationFormat it e 2-40
2-26 TIMER 3 Block Diagram e e e e 2-41
2-27 SerialMode Register-SMODEttt e e e e 2-42
2-28 Serial Control ORegister-SCTLO, e 2-44
2-29 Serial Port Status Register- SSTAT i ittt it et et e e e et 2-45
2-30 Serial Control 1 Register-SCTLT it i i ettt e i 2-47
2-31 Timer3DataRegister-T3DATA ittt i e e e ettt 2-48
2-32 ReceiverBuffer-RXBUF e 2-48
2-33 Transmitter Buffer- TXBUF it ittt i it e e e e 2-49
2-34 SC, PE, FE, And Microprocessor Pin Assngnments 2-52
2-35 System Emulator Mode Pin Assignmentsttt iiiien e '2-64
3-1 Single Register Addressing Mode ObjectCode 34
3-2 Register File Addressing Mode ObjectCode e ... 3b
3-3 Peripheral File AddressingMode ObjectCode 3-5
3-4 Immediate AddressingMode ObjectCodet irnennn, 3-6
3-5 Program Counter Relative Addressing Mode ObjectCode [3-6
3-6 Direct Memory Addressing Mode ObjectCodecc0iivin.n. 3-7
3-7 Register File Indirect AddressingMode ObjectCode, 3-7
3-8 Indexed Addressing Mode Object Code\ e e 3-8
3-9 TrapVectorTable«... ... i, L N 3-17
4-1 Output Loading Circuit For Test e e e e 4-3
4-2 Measurement Points For Switching Characteristics e ... 44
4-3 ClockTimingcov it iiiin, S 4-4
4-4 Recommended Clock Connections0ttt it 4-5

4-6
4-7

4-9
4-10
4-11
4-12
4-13
4-14
4-15
5-1
5-2

5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42

Readand Write Cycle Timingot i ittt e i it et i e s 4-6
Ceramic Resonator CirCuUit . . . v v vt i it it e e e it et st e e et 4-7
SC, FE, PE, and Microprocessor Mode Pin Assignments (TMS7000) e 4-14
SC, FE, PE, and Microprocessor Mode Pin Assignments (TMS7001) 4-15
Output Loading Circuit For Testottt e et e e s 4-19
(] Yo S o 411 o o 4-20
Measurement Points For Switching Characteristics (VDD=5V) 4-20
Read AndWrite Cycle TimMiNg . . . vt vt i ittt it et ettt ettt et en e eenane s 4-22
Recommended Clock Connectionsttt nn. 4-23
SC, FE, PE, and Microprocessor Mode Pin Assignments 4-24
Read And Write Cycle TIMingo oot e v cie et e e e 4-29
TMS7000 CPU Internal Block Diagramottt i i e e e e e ee e eae e 5-4
Assembly Language Multiply Sequence i e 5-5
Non-Core Assembly Language Instructionso, 5-6
Microcode DevelopmentFlowchart i i e i nn e 5-7
TMS7000 Family Address Spaceottt it ittt it e 5-16
TMS7000 Overall Block Diagramot i it it e e 5-17
Sample Of AMicasm Statementttt ittt it e e 5-20
Microinstruction Cycle Phases 5-20
On-Chip RAMMemory Cycle Timing oot e i e e 5-22
LongMemory Cycle Timingo ottt it i i i 5-23
Interrupt Vector Readso ittt e e e e e 5-24
Interrupt Vector References ittt e e e 5-25
Internal Organization Of The TMS7000CPUot i et 5-27
P BUS SOUICES . .t ittt it i e e e e e e e e 5-28
N BUSSOUICES . ..ttt it e et et e et et e e e 5-28
AL BUS SOUMCES . . i vttt ittt e et ettt e e e 5-29
AHBUS SOUMCES . . .\ ittt ittt e et et e e e 5-30
Lowwrite (1-O) Description ot e e e 5-30
O Bus Destinationsottt e e e 5-31
MD Bus Destinations oot ittt e e e e 5-32
ALUBIlock Diagramottt e e e e 5-33
ALUFunctions0 ... e e e e e 5-33
ALUCarry InValuesttt et e e e 5-34
Microcode Example e 5-35
SHIFT/ALU Carry-InControls i it et et e e e e 5-36
Shifter Operationttt e e e 5-37
IRRegisterFormats e e 5-38
Status Register e e .. 5-38
STRegisterSources e 5-39
BCD Correction ConstantGenerationttt iennnnn, 5-41
BCD Arithmetic Operation Timing e e e e e e 5-42
CMICASM Statement i e e e e 5-43
Microinstruction DispatchExample e 5-44
Next MICRO Address Generationcciiiiinnennn.. P 5-45
IRL DISpatCh . . o e e e e e e e 5-46
JT7Dispatch . .o o e '5-46
JUZDISpatCh . . o oot e s I 5-47
INTDISPAtCh . . v et e e e e e et it e e 5-47
TMS7000 GroupNumbers e e e 5-48
IRHDISpatch . ..o e e e e e 5-49
JCDISPATCH . .t e ittt e e e e e e 5-50
MacroJump Conditions o v Lt e e e e 5-50

Xi

B5-43 MUMPDISPAICR -« v v v v e e e e e e e e e e e e e .

6-1 TMS70XX Read AndWrite Cycle Timing ot ii it it i i enn ..
6-2 Peripheral ExpansionMode Example it
6-3 Memory Address Decode e e
6-4 MicroprocessorMode Example i e e
6-56 Asynchronous CommunicationFormatttt nnrannns
6-6 I/O'interface P
6-7 SWXMIT Routine Flowchart e et e e
6-8 SWCRVDRoutineFlowchartc.ouun... e
6-9 Delay Constants Calculation o ittt i it e e it e e ea
6-10 StartBitDetectionttt i e e e e
6-11 Interrupt4 Service RoUtingottt it i e e i s
6-12 HWXMIT Routine Flowchart. e e e e e
6-13 HWRCVDRoutineFlowchartttt
B-14 StatuUS RegiSter . . . vt v ittt ittt et e e e e e e e
6-15 Unsigned System With 8 Bits Of Magnitude: 0-255
6-16 Signed System With 7 Bits Of Magnitude: -127TO +127o ...,
6-17 SWAPANdRotationOperationsc.c. ittt ennnens
6-18 - Example Of ADispatch Tablettt
6-19 Example Of ASubroutineCall I,
6-20 Example Of A 16-Bit By 16-Bit Multiplication Subroutine
7-1 Typical Microprocessor Development System it ittt i cann.
7-2 Typical XDS Configurationttt i it ettt e e cn i e
7-3 TheXDSModel 22 e e e e

7-4 Memory Configuration i i e e et
7-5 Levels Of XMPLInterface i e e e e
7-6 The RTC/EVM 7000 EvaluationModule ittt iinns
10-1 Prototype And Production Flow
10-2 DevelopmentFlowchart. ittt i e e e
10-3 TIStandard Symbolization it e e s
10-4 T Standard Symbolization With Customer Part Number
10-5 Tl Standard Device Symbolization Without On-Chip ROM

10-6 40 Pin Plastic Package, 100 Mil Pin Spacing (NPackage),
10-7 40 Pin Plastic Package, 70 Mil Pin Spacing{NSPackage)
10-8 40 Pin Plastic Package, 70 Mil Pin Spacing (JDPackage)
. LIST OF TABLES
TABLE
1-1 TMS7000 Family Members e e
1-2 TMS7000 Standard NMOS Product Family: TMS7000, TMS7020, TMS7040,
TMS70120, TMS7001, TMS7041 oottt e e e
1-3 TMS7000 Standard CMOS Product Family: TMS70C00, TMS70C20, TMS70C40
21 TMS7000 Family Summaryt e e e e e
2-2 Mode-Select Conditions o oo vttt e e e e
2-3 70XOMemoryMap........ e e e e e e e e, -
2-4 FOXTMemory Map . . .ot e e e e e e
2-5 TMS70XO0 PeripheratMemoryMap e e e e e »
2-6 TMS70X1 PeripheralMemoryMap oot

2-7 Reset And Interrupt Vector Locations In ROM

xii

2-9
2-10
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

3-10
3-11
3-12
313
3-14
3-15
3-16
317
3-18
3-19
3-20
3-21
4-1
4-2
43

5-1
5-2
5-3
6-1

6-3
6-4
6-5
6-6
6-7

6-9
6-10
6-11
6-12
7-1
7-2
9-1
9-2
10-1

Serial Port Control Registers ittt it e e 2-33
SC, PE, FE, AND Microprocessor Pin ASSIGRMEntS . . « . ..o vveeei e neannn 2-51
System Emulator Mode Pin Assignmentsottt it e 2-53
TMS7000 Symbol Definitions i e e e 3-2
TMS7000 AddressingModes O 3-3
Implied Operand INStructionsttt i et e e en s 3-9
Machine Instruction Format: Implied Operand Instructions 3-9
Single Operand Instructionsccouuu.... B 3-9
Machine Instruction Formats: Single Operand instructions 3-10
Dual Operand INStructionsottt it o it e e e e 3-10
Machine instruction Formats: RegisterFile 3-11
Machine Instruction Formats: Peripheral File Instructions 3-12
JUMpINSTIUCHIONS . . . o .o e 312
Machine Instruction Formats: Simple Relative Instructions 3-13
Machine Instruction Formats: Single Relative Instructions 3-13
Machine Instruction Formats: Dual Relative Instructions 3-14
Machine Instruction Formats: Peripheral Relative Instruction 3-14
Extended AddressInstructions i e e e 3-14
Machine Instruction Formats: Extended Address Instructions 3156
Machine Instruction Formats: Miscellaneous Instructions, . 3-15
Machine Instruction Formats: MOVD Instruction it ii i en e 3-16
TMS7000 Core (Reserved) INStructionso i ittt ittt et e e e 3-18
TMS7000 Non-Core (Available For Microcode) Instructions 3-20
Conditional Jump Instructions A 3-34
TMS70X0 and TMS70X1 Family Features i 4-1
TMS70CX0 Family Features ittt e e i e e 4-16
EpromUseo oL, S PPN 4-26
Benchmark 1-6 Comparison (2.6MHz) 5-9
MicroinstructionWord Format i e ... 519
MemoryControlsco ... e e e 5-26
Timing Data For Sample Circuits it 6-1
I/OPIN ASSIGNMENTSt ittt ittt ettt i et eia ...t B-13
Cycle Calculation e e e e e e 6-21
Half Bit Cycles Calculation ittt ettt ee e e 6-22
Crystal-Dependent Constants For The Software UART 6-23
Serial POrt RegiSters ittt ittt et e e e 6-26
PAndLValuesInHext 6-34
Classification Of Instructions According To Status Bits Affected 6-48
Compare Instructions Examples: StatusBitValues ion. 6-49
Status Bit Values For Conditional Jump Instructions 6-50
Add And SubtractInstructionso e e 6-51
Multi-Bit Right Or Left Shifts By Immediate Multiply P 6-59
Hardware Configuration Difference Model 22 ToModel 33c.ovuuunn. 7-6
EPROMUSE . . ot ittt ettt e e e e e e 7-11
DynamicLifeTest e e e 9-3
Environmental Tests0 i, e e e 9-4

Valid ROM Start Addresses oo vt it i e et e it e i e e e 10-5

xiii

1.1

1.2

INTRODUCTION
GENERAL

This section of the manual introduces the TMS7000 family of single-chip microcomputers and
presents the underlying design philosophy and information on famlly support tools and
assistance.

The use of TMS7000 refers to all family members (TMS7000, TMS7020, TMS7040,
TMS70120, TMS7001, TMS7041, TMS70C00, TMS70C20, TMS70C40, SE70P161, and
all future family members) unless otherwise stated.

Sections 2 through 4 present in detail the TMS7000 family architecture, instruction set, and
electrical specifications. These sections present the specifics required by the user to
implement a TMS7000 solution in his application. Application examples for hardware interface
and software algorithms are presented in Section 6 after the reader has acquired a thorough
understanding of the standard instruction set.

Development support tools are an extremely important aspect of microcomputer selection and

. algorithm development, Sections 7 and 8 present the support tools and several development

scenarios for the TMS7000 family.

The enormous technological advances in integrated circuits have enabled semiconductor
manufacturers to offer single-chip microcomputers incorporating a central processing unit
(CPU), read only memory (ROM), random access memory (RAM) and input/output (I/0) allon a
single silicon chip. Texas Instruments’ TMS 1000 family was the original 4-bit microcomputes
entry. The TMS1000 family’s price, performance, and reliability have made it the industry
leader in a broad range of applications including timers, electronic toys and games, appliance
controls, vending machines, temperature controllers, automotive instruments, test
instruments, and a variety of other controller applications. The TMS9900 family, the industry’s

. first 16-bit microcomputer, continues to stand in the fore-front of single-chip microcomputer

products. Recent TMS9900 family introductions include the TMS9995 and TMS99000 which
expand the families use to very high performance applications. It was a logical progression
then, for Texas Instruments to introduce the first fully programmable 8-bit microcomputer, the
TMS7000 family.

The TMS7000 family capitalized on Texas Instruments’ experience and leadership position in

the microcomputer market, thereby introducing a true second generation 8-bit Microcomputer
family. The second generation design approach is evident by the powerful instruction set,
addressing modes, and 1/O flexibility all centered around the basic register to register

architecture. Flexibility, in hardware and software, was a basic design goal, therefore the

TMS7000 family consists of a variety of RAM and ROM sizes, I/O functions, and instruction

set definitions, in both NMOS and CMOS, to efficiently address the user’s application

requirements.

BACKGROUND AND DESIGN PHILOSOPHY

Originating from extremely low cost calculator-chip designs, early microcomputers necessarily
implemented extremely simple CPU’s, resulting in primitive instruction sets that made the
simplest programming tasks at best difficult and at worst impossible. This seed of primitive,
hard to program instruction sets continues today in many microcomputers.

The reason for this trend lies in economics, not engineering. Microcomputers are typically used
in extremely high volume applications. The recurring costs of the system, i.e., the price of the

11

O

device far outweigh the one-time cost of the program development. So the emphasis is on
building the least expensive device containing the most functionality. It is an established
economic fact of VLSI design that the larger the silicon bar, the more expensive the device.
Therefore a basic question in the design philosophy of microcomputers centers around the
trade-off in bar size between the CPU complexity (which determines the power of the
instruction set) and the amount of program memory, ROM and RAM.

The CPU, which implements the instruction set, is typically made up of: an accumulator and
other registers, an arithmetic logic unit (ALU), a control programmed logic array (PLA), and a
large number of data buses and control lines interconnecting the three. Traditional
microcomputers built with PLA’s and random logic implement the simplest possible CPU, to
minimize bar area, resulting in instructions which may be simple to implement in the design of
the bar, but extremely difficult to program. In these traditional microcomputers, the trade-off in
maintaining minimum bar area through implementation of a simple CPU, is at the expense of
larger ROM and RAM requirements to implement the user’s algorithm with the resulting

" primitive instruction set. One example of this is the restriction among many first generation
microcomputers limiting jumps to within the same page of ROM.

It is fact that the larger the bar, the more expensive the device, however, this does not imply
that a more powerful CPU cannot be implemented on a single microcomputer chip without
increasing the bar size and cost of the device. The issue lies in the traditional design and layout
of microcomputers. Two significant design innovations have allowed the TMS7000 family to
provide true second generation capabilities and still maintain an extremely small bar and low
cost. These innovations in microcomputer design philosophy are:

e Strip Chip Architecture Topology (SCAT)
* Microprogramming
1.2.1 Strip Chip Architecture Topology (SCAT)

SCAT is Texas Instruments’ term for the design philosophy which incorporates the
non-memory elements of a microcomputer architecture (the registers, ALU and control logic) in
a strip of vertical blocks in the logic design. Figure 1-1 shows the overall layout of the
TMS7020, the 2K ROM version of the TMS7000 family. The row of blocks labeled ““timer’’,
““I/0 control”’, etc., is called the * stnp , and all of the logic is implemented in the early mask
steps of the silicon bar itself. Most of the interconnection between the blocks (in the form of
data and address buses) is implemented on a layer of metal over the silicon. As a result,
valuable bar area is not wasted in providing the interconnect of the logic elements. This is the
essence of SCAT, designing the structures of the entire bar before logic design begins, so that
logic element and interconnect space requirements are minimized, thereby reducing the cost of
the chip.

The modularity of SCAT inherently enable existing TMS7000 designs to be easily modified and
additional features implemented to create new members of the TMS7000 family customized
to the user's needs. The indirect benefit which SCAT offers to the user is a full featured product
family with various ROM, RAM, and I/O configurations, as well as greatly reduced design cycle
time and minimum bar size of all subsequent family additions. Exampies of SCAT designs are
the doubling of the ROM from 2K bytes (TMS7020) to 4K bytes {TMS7040), and the addition
of the UART function to the 4K byte member (TMS7041).

1-2

1.2.2

A
A5 I sl a | on | PPERALER L ar] aa] asf az|ar A0
SITL 1 | control
]
e T 82
v
x |8
oedone |3 TMER 2xBYTE ne
" TO CONTAL '——‘
MICRO INTERAUPT 80
osc ENTRY PONT USER Bt
87
R
2 STATUS 85

PROGRAMMABLE

BCD
. cooe | e

SHIFTER vs$s

AOM YDECODING
32 SENSE AP

8 BIT ROM RAM COMMON 10

s
g CHG)
& AU
o7 3 MASK ROM 86
o[w0 PN
X T —
e | 8
o I L Ram |
3
ROM § WAL 83

D4
ADDA
- I BUPFER 43

03 MEMORY X DEC YBUFF | X-DEC
CONTAOL & GRP DECODE ve

0 CONTROL

02

ov|oofl co | ¢ Jc2 | ca| cafcs|oce|ocr

vee

FIGURE 1-1 — TMS7020 MICROCOMPUTER BAR PLAN
Microprogramming

Another important feature of the TMS7000 family is the Microcode Control Rom (CROM) and
the internal control of the TMS7000 by microprogramming. Most other microcomputers
implement their internal control by a programmed logic array (PLA). Each instruction execution
is divided into a number of “‘states’’ and on each state the PLA outputs both the current control
signals and the next state number. The PLA is a very compact logic structure, but it still leaves
the problem of routing the relevant control signals throughout the rest of the bar for decoding
and control. .

With a microprogramming Control ROM, all of the necessary control signals are contained in a
single microinstruction. The outputs of the microcode CROM are made available lengthwise
down the microcade CROM. Like any other ROM, each microinstruction has its own address,
and when it is read, it immediately supplies the control signals horizontally across to the strip,
right where they are needed. No complex routing or combinational logic is required. The block
of logic called ““entry point’’ in the strip calculates the next address to feed to the microcode
CROM, and the ‘‘micro state”’ is entered. Because a ROM is more compact than a PLA, more
control transistors can be built in the form of a microcode CROM than in a PLA, therefore a
more powerful TMS7000 family standard instruction set was implemented in the microcode
CROM than in an equivalent bar area for a PLA and control decode approach. The benefits to

~ the user of the microcode CROM with the standard instruction set are smaller bar size, thereby

reducing the cost of the device, and the implementation of a more powerful instruction set
since all CPU control is provided directly by the microcode CROM.

Another direct benefit for the user is the ability of the TMS7000 family microcode CROM to be
re-microprogrammed by the user, modifying the standard instruction set to optimize the
TMS7000 in the user’s application. A user defined instruction set provides the advantages of
faster throughput, more efficient utilization of program ROM memory, and improved system
security through unique software algorithms. The ability to re-microcode the TMS7000 family
also provides an alternate solution for designs initially using the standard instruction set, but
encountering a critical timing loop or macro code. ROM space limitations, thereby avoiding
system redesign through re-microprogramming of the TMS7000.

13

1.3

14

Microcoding of the TMS7000 family can be performed by the user, an independent consultant,
the Regional Technology Center (RTC), or the factory. Full support in the form of
documentation, microassemblers, and in-circuit emulators are described in Section 5.

KEY FEATURES OF THE TMS7000 FAMILY

Microprogrammable instruction set

Strip Chip Architecture Topology (SCAT) for rapid family expansion
Register-to-register architecture

Family members with 2K, 4K, and 12K bytes of on-chip ROM and ROMless versions
On-chip 8-bit timer/event counter with:

— Programmable 5-bit prescale

— Internal interrupt with automatic reloading

— Capture latch

e 128-byte RAM register file

Full-feature data/program stack

‘o 32Individual I/O pins:

— 16 bi-directional pins
— 8 output pins '
— 8 high-impedance input pins
— ' Memory-mapped ports for easy addressing
e 256-byte peripheral file
* Memory expansion capability:
— 64K byte address space
e 8-bitinstruction word ’
¢ Eight powerful addressing formats including:
— Register-to-register arithmetic
— Indirect addressing on any register pair
— Indexed and indirect branches and calls

* Two's complement arithmetic
® Single-instruction binary coded decimal (BCD) add and subtract
* Two external maskable interrupts
® Flexible interrupt handling:
— Priority servicing of simultaneous mterrupts
— Software execution of hardwarce interrupts
— Precise timing of interrupts with the capture latch
— Software monitoring of interrupt status
e Accurate pulse width measurement and modulation
* Silicon gate NMOS and CMQS, 5-volt power supply
e ° 40-pin, 600 mil, dual in-line package
L]

100-mil or 70-mil pin-to-pin spacing packages

Tables 1-1, 1-2, and 1-3 present the features and- beneflts of the TMS 7000 family in
addressing the user’s application requirements.

TABLE 1-1 — TMS7000 FAMILY MEMBERS

FEATURES 7000 7020 7040 70120 7001 7041 |70P161 | 70C00 | 70C20 | 70C40
16K
. EPROM :
ON-CHIP ROM (BYTES) NONE | 2k | ak | 12k [Nowe | ax | TPROM fwowe | 2k | ax
BACK
ON-CHIP RAM (BYTES) 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128
INTERRUPT LEVELS 4 4 4 4 6 6 6 4 4 4
1381 1 1 1 1 2 2 2 1 1 1
TIMERS 0 817 0 0 0 1 i 1 0 0 0
/0 LINES:
BI-DIRECTIONAL 16 16 16 16 22 22 22 16 16 16
INPUT ONLY 8 8 8 8 2 2 2 8 8 8
OUTPUT ONLY 8 8 8 8 8 8 8 8 8 8
' SERIAL | SERIAL | SERIAL
ADDITIONAL 1/0 - - - -SSR SERAL S - - -
PROCESS 4
TECHNOLOGY NMOS | NMos | NMOs | NMos | NMos | nmos | nmos | emos | emos | cvos

TABLE 1-2. — TMS7000 STANDARD NMOS PRODUCT FAMILY TMS7000. TMS7020, TMS7040, TMS§70120, TMS7001,

TMS7041

CUSTOMER NEED

FEATURES

BENEFITS

* SATISFY COMPLEX
APPLICATIONS

¢ SECOND GENERATION
8 BIT MICROCOMPUTER

* ADDRESSES HIGH
PERFORMANCE PRODUCTS

¢ PRODUCT UPGRADEWITH
NO SOFTWARE REDESIGN

* WIDESPECTRUM OF
FAMILY MEMBERS NOW.
ALL FUTURE MEMBERS
SOFTWARE COMPATIBLE

¢ INCREASE CAPABILITY WITHOUT
HARDWARE CHANGE; |
BUILDS ON PRIOR SOFTWARE
EFFORTS

* LARGE MEMORY FOR DATA,

e UPTO12KBYTES OF

* 3 DEVICES FOR THE PRICE

HIGH-LEVEL LANGUAGES, ON CHIP ROM OF1.5.
VOCABULARIES
* FEWER EXTERNAL e 161/0PINS * MINIMUM SYSTEM COST
1/0 CHIPS (INDIVIDUALLY DIRECTION THROUGH FLEXIBLE
PROGRAMMABLE], 1/0 STRUCTURE

8 INPUT ONLY
(1/0 ON 7001/7041),
8 OUTPUT ONLY

¢ HIGH THROUGHPUT AND
CODE DENSITY, MINIMUM
PROGRAMMING TIME

= 8X8 MULTIPLY, BCD/
BINARY ADD/SUBTRACT,
SINGLE AND DOUBLE
PRECISION, S/WTRAPS, 1/0
INSTRUCTIONS 9 ADDRESSING
MODES

* FLEXIBLE AND EASY TO USE
INSTRUCTION SET

* REAL-TIME CONTROL

* ONCHIPTIMERS

* ELIMINATES EXTERNAL PARTS

* COMMUNICATIONS LINK

® ON-CHIP UART (SERIAL PORT
" ON7001/7041}

* ELIMINATES NEED FOR
EXTERNAL UART PARTS;
LOWER SYSTEM COST

384

15

TABLE 1-3 — TMS7000 STANDARD CMOS PRODUCT FAMILY TMS70C00, TMS70C20, TMS70C40*

CUSTOMER NEED

FEATURES

BENEFITS

e BATTERY POWER OPERATION

* CMOS TECHNOLOGY, 6 MA
TYPICAL SUPPLY CURRENT

* USEABLE IN PORTABLE
APPLICATIONS, LOW COST
POWER SUPPLY OR BATTERY

e LESS POWER CONSUMPTION
DURING STANDBY

* WAKE-UP MODE = 500 UA,
HALT MODE = 250 UA

e BATTERY LONGEVITY

e INEXPENSIVE POWER SUPPLY,
- OPERATES ON LOW BATTERIES

e 3V-6VPOWER REQUIREMENT

e TOLERANT POWER
SUPPLY VOLTAGE

* OPERATIONIN AN
ELECTRICALLY NOISY
ENVIRONMENT

* INCREASED NOISE MARGIN
WITH CMOS INPUTS

¢ GREATERIMMUNITY TO
ELECTRICAL NOISE

¢ ADDED SYSTEM FUNCTIONS
WITH EXISTING POWER SUPPLY

* LOWER OPERATION POWER

e EXTENDED PRODUCT LIFE

* CMOS FEATURES INCLUDE MICROPROGRAMMABILITY, SCAT AND S/W COMPATIBILITY WITH NMOS VERSIONS

1.4

141

16

SUPPORT

Tl offers extendea development support that consists of the following facits:
® Development Tools

® Hotline Assistance

e Training Support

Development Tools

A microcomputer product, being complex and mask ROM programmed, must be supported by
high level development tools to facilitate ease of application development and verification, and
increase development productivity. The TMS7000 family of 8-bit microcomputers has
available a complete spectrum of development tools from single board systems to full scale
development systems. Each provides in-circuit emulation, with various levels of development
and debug capability. The XDS (Extended Development Support) concept provides host_
independent in-circuit emulation and debug. When coupled with the transportable crossware
(cross support software package), which operates on the system already familar to the user,
the TMS7000 family will provide the user with a cost effective approach to full scale
microcomputer development. The AMPL-7000 Development System provides for standard
macrocode development and emulation as well as microcode support for those applications
utilizing this capability. The single board evaluation module (EVM) has been developed for
evaluation and basic in-circuit emulation of the TMS7000 family in an extremely cost effective
manner. The SE70P161 prototyping component is provided to support form factor emulation
in the user’s application. In addition to these development tools to support system

1.4.2

1.4.3

384

development through in-circuit emulation, the TMS7000 family is supported by software
development tools through several third party independent sources. This wide range of
development tools provides the user with options to select the appropriate level of support
required for his application development. Development support tools and independent support
are described in Sections 7 and 8.

Hotline Assistance

Customers may call into one of the worldwide Regional Technology Centers (RTC) for
assistance on TMS7000 family development. Whether it be an elaboration of the basic
instruction set or a question regarding the microcomputer architecture, the RTC’s have the
expertise and tools to provide the answer. Please consult the following list and contact the
closest RTC if assistance is needed.

Atlanta Boston Chicago
Texas Instruments, Inc. Texas Instruments, Inc. Texas Instruments, Inc.
3300 N.E. Expressway 400-2 Totten Pond Rd. 515 W. Algonquin Rd.
Building 8 Waltham, MA 02154 Arlington Heights, IL
Atlanta, GA 30341 (617) 890-6671 ' (312) 640-2909
(404) 452-4682 (617) 890-4271 Hotline (312) 228-6008 Hotline
(404) 452-4686 Hotline '
Northern California Southern California Dallas
Texas Instruments, Inc. Texas Instruments, Inc. Texas Instruments, Inc.
5353 Betsy Ross Drive 17981 Cartwright Rd. 10001 E. Campbell Road
Santa Clara, CA 95054 Arvine, CA 92714 Richardson, TX 75081
(408) 748-2220 (714) 660-8140 {214) 680-5066
(408) 980-0305 Hotline (714) 660-8164 Hotline (214) 680-5096 Hotline
Bedford, England Freising, West Germany .
Texas Instruments, LTD . Texas Instruments Deutschland GmbH
Manton Lane Haggertystr. 1
Bedford, MK41 7PA 8050 Freising
0234 223000 08161 800
Tokyo, Japan Hannover, West Germany
Texas Instruments Japan Texas Instruments Deutschland GmbH
Aoyama Fuiji Bldg. Kirchhorsterstr Str 2
6-12, Kita Aoyama 3 Chome 3000 Hannover 51

© 03-498-2111 0511/648021
Training Support

The Regional Technology Centers (RTC’s) offer courses for the benefit of customers requiring
engineering details on Texas Instruments’ parts for design or evaluation purposes. Information
(description, schedules, entry instructions) regarding any of the RTC seminars may be obtained
by contacting the local RTC.

All courses are offered on a regularly scheduled basis in the RTC, but can also be presented at
the customer’s location when more than four to five students request training.

17

1.4.3.1

1.4.3.2

1.4.4

1-8

Two courses are offered for the TMS7000 family of Microcomputérs:
e TDC-700-TMS7000 Family System Design

. ATS-710;TMS7000 Family Microprogramming

TDC-700-TMS 7000 Family Systems Design

The TMS7000 family Systems Design course is an introduction to the TMS7000 family of
single-chip microprocessors. Leading off with a description of the chip architecture, the course
gives an understanding of instruction set usage in example situations. The labs give hands-on
experience with the TMS7000 and its development systems. Experience in assembly language
programming and microprocessor/microcomputer hardware design is a prerequisite.

ATS-710-TMS7000 Family Microprogramming

The TMS7000 family Microprogramming course is intended for engineers who need to
customize the standard microcoded instruction set to better suit their needs. It starts with an
introduction to microprogramming in general and leads into the specifics of microprogramming
the TMS7000 family.

Through examples, students learn the opeiation of the standard instruction set and how to
customize it to efficiently implement new instructions through microcoding. Testing
considerations are discussed and hands-on lab sessions allow the student to gain experience in
the use of development software. Experience in assembly language programming and a basic
familiarity with the TMS7000 instruction set and architecture is a prerequisite.

Design Expertise

Texas Instruments can provide in-depth technical design assistance through consultations
with contract design services. This assistance can take many forms that encompass the
application hints in this document to the application groups in the factory and the design
assistance teams in the RTC. Contact your local Field Sales Engineer for current information.

384

TMS7000 FAMILY ARCHITECTURE

Throughout this manual the term TMS7000 family or TMS7000 will include all of the members

of the group. The term 70X1 refers to those devices containing a serial port (7001, 7041 and

70P161). The term 70XO refers to those devices which do not contain a serial port (7000,
7020, 7040, 70120, 70C00, 70C20, 70C40). The major components of the TMS7000 family

internal architecture are shown in Figure 2-1. For a more detailed description consult the

TMS7000 FAMILY MICROARCHITECTURE USER'’S GUIDE (MP061). The main features of the

TMS7000 family devices are summarized in Table 2-1.

© CENTRAL EXTERNAL INTERFACE
N\
PROCESSING / - —
UNIT ~A——ua§ PORT A
) 8
[~#~——P» PORT B
Ve As A i $ PORTC
A8 As As 7 7 POl
MD| AH c 8
At 7 $ PORT D
' <!
PERIPHERAL .
— RESET
/MEMORY 2 -4
CONTROLLER < 7~————< INT1, INT3
—— MEMORY CONTROL (MC)
2
4——F~———« CRYSTAL
C 2
4—F4——d Vcc Vss
—»
AM
<R _—
P 40 PINS TOTAL
L ROM
—> TYPICALLY
——— 2K/4K x 8

FIGURE 2-1 — TMS7000 INTERNAL ARCHITECTURE

2-1

2.1

2.1.1

TABLE 2-1 — TMS7000 FAMILY SUMMARY

GROUP 70X0 70X1
—70CX0—
DEVICE 7000 7020 7040 70120 |70C00 70C20 70C40 | 7001 7041 70P161
ROM (o} 2K 4K 12K (o] 2K 4K [4K 16K
External
RAM 128 128 128 EPROM
TYPE NMOS CMOS NMOS
TIMERS 1 1 3
INT. CLOCK 2.5 MHz 1.75 MHz 2.5 MHz
INTERRUPTS 3 + RESET 3 + RESET 5 + RESET
INT TYPE 3 LATCHED and LEVEL 1 LATCHED 3 LATCHED and LEVEL
2 LATCHED and LEVEL : .
SERIAL PORT NO NO YES
GENERAL PURPOSE
INPUT PINS 8- 8 2
GENERAL PURPOSE
OUTPUT PINS 8 8 8
GENERAL PURPOSE
1/0 PINS 16 16 22
CLOCK OPTNS 12,14 12,14 12,/4 /2 only /2 only 12,14
VOLTAGE 5V 3V-6V 5V
OTHER LOW POWER ASYNCH AND SYNCHR
’ HALT MODE SERIAL PORT, MULTI-
WAKE-UP MODE PROCESSOR COMMUN.
CASCADEABLE TIMERS
ON-CHIP RAM AND REGISTERS

The TMS7000 family has a maximum memory address space of 64K bytes On-chip and Off-chip
memory address spaces vary according to the particular TMS7000 family meimber used {see
Tables 2-3 or 2-4) and the operating mode selected (see Section 2.3). In the sections that follow,
the Register File (RF) and the Peripheral File (PF) are described along with three important registers

in the CPU: the Stack Pointer (SP), the Status Register (ST), and the Program Counter (PC).
Register File (RF)

The 128-byte on-chip RAM resides in locations >0000 to >007F { ‘>’ means hex } of the
TMS7000’s address space and is called the Register File (RF). The RAM is treated as registers by
much of the instruction set and is numbered RO - R127. The first two registers, RO and R1, are also
called the A and B registers respectively. Several instructions specify A or B as either the source or
destination register, e.g., STSP stores the contents of the Stack Pointer (SP) in the B register.
Except where stated otherwise, any register in the Register File can be addressed as an-8-bit
source or destination register.

The stack is also located in the Register File. Refer to Section 2.1.3 for information regarding the
initialization of the Stack Pointer (SP) and stack definition in the Register File.

384

2.1.4

Peripheral File (PF)

The Peripheral File (PF) resides in locations >0100 to >01FF of the TMS7000’s address space.
Some of the TMS7000 instructions are optimized for efficient access to and from registers that
reside in the peripheral file. Peripheral File locations are numbered PO - P255. The PF registers are
used for memory expansion, interrupt control, parallel /O ports, timer control, and serial port
control (if available).) .

Stack Pointer (SP)
The Stack Pointer (SP) is an 8-bit register in the CPU that is typically used to hold a pointer in RAM

(the Register File). However, the SP can also be used as temporary data storage if a stack is not
implemented, or if the SP contents are not needed. When a stack is implemented, the SP points to

_the last or top entry on the stack. The SP is automatically incremented just before data is pushed

onto the stack and automatically decremented immediately after data is popped from the stack.
Upon assertion of the RESET function {see Section 2.5), >01 is loaded into the SP. The size of the
stack can be changed from the 126-level stack at RESET to a smaller stack by executing a stack
initialization program as illustrated in Figure 2-2. This feature allows the stack to be located
anywhere in the Register File. The SPis initialized through the B register (R1).

INIT Mov % >60,B
LDSP

>0000

TOP OF STACK ON RESET — >0001 . - Increment
. . PUSH then
. store

INITIAL TOP OF STACK — >0080

POP Fetch
. . then
UPPER STACK LIMIT — >007F decrement

FIGURE 2-2 — EXAMPLE OF STACK INITIALIZATION IN THE REGISTER FILE
Status Register (ST)

The Status Register (ST) is an 8-bit register in the CPU that contains three conditional status bits;
Carry (C), Sign (N), Zero (Z), and a global Interrupt Enable bit (I) as shown in Figure 2-3.

7 6 5 4 3 2 1. 0

1 11
c |~} 2z 1 FUTURE USE
| 1 |
C - CARRYOUT
N - SIGN
Z - ZERO
[

- INTERRUPT ENABLE

FIGURE 2-3 — STATUS REGISTER (ST)

23

2.2

24

The C, N, and Z bits are used mostly for arithmetic operations, bit rotating, and conditional
branching. The Carry (C) bit is used as the carry-in and the carry-out for most of the rotate and
arithmetic instructions. the Sign (N) bit contains the most significant bit of the destination operand
contents after instruction execution. The Zero (Z) bit contains a one when all bits of the destination
operand are equal to zero after instruction execution. The C, N, and Z status bits also have
jump-on-condition instructions associated with them. The global Interrupt Enable (1) bit must be set
to one by the EINT instruction in order for any of the individual interrupts (INTn} to be recognized by
the CPU. The Interrupt Enable (I) bit can be cleared by the DINT instruction or by executing a device
RESET (see Section 2.5.2). A detailed description of the condition of these bits for each instruction
is described in the TMS7000 ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE (MP916).

Program Counter (PC)

The TMS7000’s 16-bit Program Counter (PC) consists of two 8-bit registers in the CPU which
contain the MSB and the LSB respectively of a 16-bit address: the Program Counter High (PCH)
and Low (PCL). The PC acts as the 16-bit address pointer of the opcodes and operands in memory
of the currently executing instruction. Upon assertion of the RESET function, the MSB and the LSB
of the PC are loaded into the A and B registers of the Register File (see Section 2.5.2).

ON-CHIP GENERAL PURPOSE /O PORTS

The TMS7000 family members have 32 1/0 pins organized as four 8-bit parallel ports labelled Ports
A, B, C, D. Each port is mapped into an 8-bit data value register in the Peripheral File (PF) depending
upon the memory mode configuration of the device. The data value registers are usually called
APORT, BPORT, CPORT, and DPORT in a program. Ports C and D are implemented as bidirectional
1/0 ports on all TMS7000 family devices. In addition, Port A is also partially implemented as a
bidirectional port on all TMS70X1 devices. Each bidirectional 8-bit port has a corresponding 8-bit
Data Direction Register (DDR) that programs each I/O pin as an input or output. A bit set to one in
the DDR will cause the corresponding pin to be an output, while a zero in the DDR will cause the pin
to be a high impedance input. Upon RESET, the DDR flip-flop registers are set to zero by the on-chip
circuitry, forcing them to become inputs. Likewise, the output DATA flip-flop registers are set to
one by on-chip circuitry upon RESET. After RESET, if ‘1's are writteri to the DDR register sometime
before the output data register is changed then the corresponding I/O pins will output a ‘1°. For this
reason, it is good praciice that Forts A, C and D output data registers be ioaded with the desired
value before any bits are configured as outputs. The logic for each bidirectional I/O line is shown in
Figure 2-4.

384

110
PIN

DATA
READ
DDR
l OUTPUT READ
ENABLE
o pf——— fohe
DDR .
FLIP- ¢—— DDR
_FLOP WRITE
Q STROBE
-
OUTPUT
DATA
OUTPUT ‘
VALUE 15 D WRITE
DATA
3-STATE ' ::I':g"; <¢————— DATA
DRIVER 5 WRITE
STROBE

FIGURE 2-4 — BIDIRECTIONAL /O LOGIC

If a port is bidirectional, i.e., if it is Port C or D on the 70X0 devices, or Port A, C, or D on the 70X1
parts then a single pin in the port may be used for both input and output by modifying its Data
Direction Register bit. As shown in Figure 2-4, the output value in the DATA flip-flop register is not
changed when the DDR flip-flop bit is switched into the input mode.

The characteristics of the four Ports A, B, C, D can be summarized as follows:

Port A:

Port B:

Port C:

On the 70X0 parts, Port Ais an 8-bit high impedance input only port, providing
eight general-purpose input lines. Pin A7 may also be used to clock the on-chip
timer/event counter. On the 70X1 parts, bits 0-4 and bit 7 of Port A are
bidirectional I/O lines. Port A pins A5 and A6 are input only pins that also have
other functions when using the serial port. Pin A5 is RXD which receives
incoming serial data and pin A6 is the serial clock output or the serial clock
input. Pin A6 and A7 may also be used to clock the on-chip timer/event
counters, Timer 2 and Timer 1 respectively, of the 70X 1 devices.

When in the single chip mode, Port B is an eight bit general-purpose output
port. In all other modes, Port B s split into two parts with the lower nibble (pins
BO-B3) being general-purpose output only pins and the most significant nibble {
pins B4-B7) are the bus control signals: ALATCH, R/W, ENABLE, and CLOCK
OUT. On 70X1 devices, pin B3 is also the serial output line (TXD) for the serial
port.

In Single-Chip Mode, Port C is an 8-bit bidirectional I/O port where any of its
eight pins may be individually programmed as an input or output line under
software control. In any other mode, Port C becomes a multiplexed
address/data port for the off-chip memory bus; in this case, the least significant

* byte of a 16-bit address is provided followed by 8-bits of read or write data.

25

2.3

2:6

Port D: In Single-Chip or Peripheral Expansion Mode, Port D is an 8-bit bidirectional I/O
‘ port where any of its eight pins may be individually programmed as an input or
- output line under software control. In Full Expansion and Microprocessor -
Modes, Port D provides the most significant byte of the 16-bit address.

Further details of I/O and memory operatidns are contained in the memory mode sections in
Section 2.3.

MEMORY MODES

The TMS7000 can be reconfigured to reference up to 64K bytes of ROM and RAM. Five memory
modes can be selected by a combination of software and hardware: the Single-Chip, Peripheral
Expansion, Full Expansion, Microprocessor, and System Emulator modes. The Mode Control (MC)
input pin, if at a logic one, will force the TMS7000 into the Microprocessor Mode. If the MC pin is
held at + 14 volts, the TMS7000 will enter the System Emulator mode. If the MC pin is held at
logic zero, the remaining memory modes are selected by the two MSBs of the I/0 Control Register
{IOCNTO). i.e., bits 6 and 7, as shown in Table 2-2.

TABLE 2-2 — MODE SELECT CONDITIONS

MODE SELECT CONDITIONS

MODE CNTL 1/0 CONTROL

MODE PIN REG. BIT 7, 6
Single-Chip ov (4] 0
Peripheral Expansion ov (o] 1
Full Expansion ov 1 (o]
Microprocessor Vee X X
System Emulator +14V X X

NOTE: X = Don't Care

Upon RESET, the IOCNTO Register is set to zeros. Refer to Section 2.5.2 for a detailed description
of RESET and the recommended initialization procedure for the IOCNTO Register. The five memory
modes are summarized in Table 2-3 and 2-4 and described in the following paragraphs.

384

>0000-
>007F-
>0080-
>00FF-
>0100-
>0108-
>010C-
>0200-

>C000-
>D000-

>F000-

>F800-

>FFFF-

>0000-
>007F-

>0080-
>O0O0FF-
>0100-
>0117-
>0118-
>01FF-
>0200-

>F000-

>FFFF-

TABLE 2-3 — 70X0 MEMORY MAP

SINGLE CHIP PERIPHERAL EXP FULL EXPANSION MICRO. EMULATOR
REGISTER FILE
RESERVED FOR FUTURE EXPANSION
ON CHIP /0 { TIMERS, INTERRUPTS, /O PORTS)
PERIPHERAL EXPANSION
NOT AVAILABLE
NOT AVAILABLE
MEMORY EXPANSION
70120 70120 70120
7040 7040 7040 TMS7000
70C40 70C40 70C40 USES THESE
7020 7020 7020 MODES ONLY
12k | ak [70C20| 12k | a4k |70C20| 12k | 4k |70C20 " (No on-chip ROM)
Rom | Rom | 2K | Rom | RoM [2K | rom | Rom | 2K ’
ROM ROM ROM
SINGLE CHIP PERIPHERAL EXP FULL EXPANSION MICRO- EMULATOR
PROCESSOR
TABLE 2-4 — 70X1 MEMORY MAP
SINGLE CHIP PERIPHERAL EXP FULL EXPANSION MICRO. EMULATOR
REGISTER FILE
RESERVED FOR FUTURE EXPANSION
ON CHIP I/0 { TIMERS, INTERRUPTS, /0 PORTS, SERIAL PORT)
PERIPHERAL EXPANSION
NOT AVAILABLE MEMORY EXPANSION
: 7001 USES
7041 ON-CHIP PROGRAM ROM, 4K BYTES ONLY THESE
: MODES.
SINGLE CHIP PERIPHERAL EXP FULL EXPANSION MICRO- EMULATOR
PROCESSOR
»
2-7

2.3.1

28

SINGLE-CHIP MODE:

In the Single-Chip mode, all 32 I/0 pins are used for input/output, and no off-chip memory bus
is implemented. All programs and data reside in the on-chip ROM and RAM.

PERIPHERAL EXPANSION MODE:
In the Peripheral Expansion mode, the Peripheral! File addresses are available externally. 20 of

the 32 general purpose I/O lines are still used as general purpose I/0 and 12 pins implement a
multiplexed 8-bit address/data bus and a 4-bit control bus. Qut of the total 256 addresses in

. the Peripheral File, 246 of these are memory mapped externally on the 70X0 devices and 238

are mapped externally on the 70X 1 devices. This expansion mode may be used to address
ROM, RAM, or peripheral devices.

FULL EXPANSION MODE:
In the Full Expansion mode, 12 of the 32 I/O pins are used for general purpose I/0. The

remaining 20 |/O pins are then used to implement a 8-bit most significant address bus, a
multiplexed 8-bit least significant address and 8-bit data bus, and a 4-bit control bus, to

‘external memory. The on-chip ROM is still used, but additional off-chip memory for program or

data storage may also be referenced.
MICROPROCESSOR MODE:

In the Microprocessor. mode, the 32 I/O pins are in the same configuration as in the Full
Expansion mode. However, the addresses for the on-chip ROM are located off-chip, allowing
the user’s program to be prototyped in EPROM. Since the TMS7000 and TMS7001 have no
on-chip ROM, this mode and the emulator mode are usually the only modes in which they can
operate.

SYSTEM EMULATOR MODE: The System Emulator mode is provided for self-emulation and
system development. No on-chip 1/O is implemented. In addition, the on-chip timer and
interrupt controls are disabled.

Single-Chip Mode
In the Single-Chip mode, the TMS7000 functions as a standalone microcomputer with no

off-chip memory expansion bus. The 32 I/O lines may be used for various purposes, such as
scanning keyboards, driving displays, and controlling other mechanisms. The four ports are

_ configured as shown in Figure 2-5.

a)

b)

‘10 INPUT
A7 LINES
BO |
l OUTPUT
LINES
B7
TMS70X0 ' ; ,
CIO BIDIRECTIONAL
& LINES
D|0 BIDIRECTIONAL
o7 LINES
A5/RXD
»— AG/SCLK
v 'Y
A5 A6
A0—A4 <:""—> BIDIRECTIONAL
A7 LINES
B0—B2 OUTPUT
Ba_B7 LINES
TMS70X1 -
. BIDIRECTIONAL
co-c7 @ LINES
BIDIRECTIONAL
Do-b7 ® LINES
B3 '

[

>

B3/TXD

FIGURE 2-5 — I/O PORTS: SINGLE-CHIP MODE

29

210

Table 2-3 and 2-4 illustrate the Single-Chip mode memory map. The unused Peripheral File (PF)
locations and off-chip memory addresses are not available. When reading from unavailable
addresses, an undefined value is returned. Writing to these addresses has no effect. Peripheral
File registers, PO-P11, are used to reference the I/O ports and other on-chip functions. Table
2-5 and 2-6 list the Peripheral File (PF) registers that are available in the Single-Chip mode
configuration.

TABLE 2-6 — TMS70X0 PERIPHERAL MEMORY MAP

SINGLECHIP | PERIPHERALEXP. | FULLEXPAND. MICROPROCESSOR
>0100- /0 CONTROLREGISTER (IOCNTO) PO
>0101- RESERVED . | P1.
>0102- TIMERDATA (TIDATA) P2
>0103- | | ' TIMERCONTROL (TICNTL) P3
>0104- PORT ADATAVALUE (APORT) Pa

>0105- RESERVED ‘ P5
>0106-| —BITSO-3— PORTBDATAVALUE (BPORT) P6
>0106- | PORTBDATA | PERIPHERAL EXPANSION —BITS4-7 — P6
>0107- RESERVED P7
>0108- | PORT C DATA : P8
>0109 (C PORT DATA PERIPHERAL EXPANSION P9

'DIRECTION '

(CDDR)
>010A |PORT D DATAVALUE ~ (DPORT) _ P10
>010B- D PORT DATA

DIRECTION REGISTER ~ (DDDR) n P11
>010C- P12

UNUSEABLE PERIPHERAL EXPANSION o
55

>O01FF- FULL

SINGLECHIP PERIPHERAL EXP MICROPROCESSOR

EXPANSION

NOTE: There are no on-chip peripheral registers in the Emulator mode.

TABLE 2-6 — TMS70X1 PERIPHERAL MEMORY MAP

SINGLECHIP | PERIPHERAL EXP. FULL EXP. MICROPROCESSOR
>0100- /O CONTROL REGISTERO (IOCNTO)
>0101- RESERVED
>0102 TIMERDATA (T1DATA)
>0103] TIMERCONTROL ~ (T1CNTL)
>0104 PORfADArAVALUE { APORT)
>0105] PORT A DATA DIRECTIONREG. (ADDR)
>0106{ —BITSO-3— PORTBDATAVALUE (BPORT)
>0106{ PORTBDATA |PERIPHERALEXPANSION ~ — BITS 4-7—
>0107 RESERVED
>01084{ PORT C DATA
>0109{ CPORT DATA PERIPHERAL EXPANSION
DIRECTION (CDDR)
>010A{ PORT D DATAVALUE (DPORT)
>010B{ D PORT DATA DIRECTION REG. PERIPHERAL EXPANSION
>010C{ UNUSEABLE
>010F- :
>0110- 1/O CONTROL REGISTER1 (IOCNT1)
>0111- FIRST WRITE SERIAL MODE (SMODE)
WRITE SERIAL CONTROL O (SCTLO)
READ STATUS REGISTER (SSTAT)
>01124 TIMER2DATA (T2DATA)
>0113 TIMER2 CONTROL (T2CNTL)
>0114- TIMER3DATA (T3DATA)
>0115- SERIAL CONTROL ~ (SCTL1)
>0116- RECEIVERBUFFER (RXBUF)
>0117- TRANSMITTERBUFFER (TXBUF)
>0118{ UNUSEABLE PERIPHERAL EXPANSION
>01FF-
SINGLE CHIP PERIPHERAL EXP FULL EXP. | MICROPROCESSOR

PO
P1
P2
P3
P4
P5
P6
P6
P7
P8

P9

P10
P11
P12-

P15
P16

P17

P18
P19
P20
P21
P22
P23

P24
P255

212

Port A is referenced as PF Register P4 (APORT). When P4 is read, such as with a move from PF
(MOVP) instruction, the value on the Port A input pins is returned. The input data is read
approximately two machine cycles before the completion of the instruc_tion.

Bit AO is the LSB, and bit A7 is the MSB of Port A. When the on-chip Timer/Event Counter is
placed in the External Event Counter Mode, bit A7 serves as the external clock input, triggering
the Event Counter on every positive-going transition.

On the 70X1 parts, pins AO-A4 and pin A7 are bidirectional I/O pins. Each of these pins can
become either an output or an input pin depending upon the value in the A port Data Direction
Register (ADDR) P5. If a ‘1’ is put in the bit position of P5 then the corresponding pin of the A
port is an output. If a ‘O is written there, then the A port pin becomes a high impedance input
pin. Refer-to Figure 2-4 for a diagram of the bidirectional I/0 logic. On the 70X1 parts, A5 and
A6 have multiple functions. Normally they are both input only pins like the 70X0 parts, but A5
also can be the serial data receiver (RXD). Pin A6 can also be the serial clock I/O pin (SCLK) for
the serial port. It can be either the serial clock output or it can drive the on-chip serial clock
when connected to an external clock. See the serial port section for more information, Section
2.7.2. Pin AB can also be the external clock input for Timer 2.

The Port B pins always assert the value of the Port B data value register, which is PF Register P6
(BPORT). Writing to P6 loads the Port B register and hence modifies the Port B output pins.
Positive logic is used. While RESET is active, Port B register contents are forced to ones by the
on-chip circuitry.

The C and D ports (CPORT and DPORT) are bidirectional I/O pins and are located at P8 and P10

_ of the Peripheral File. Each of these pins can become either an output or an input pin depending

upon the value in the C and D port Data Direction Register (CDDR and DDDR), P9 and P11.[f a

‘1'is putin a bit position of the DDR then the corresponding pin of the portis an output. if a ‘0’ is
written there, then the port pin becomes a high impedance input pin. Writing to CPORT or
DPORT modifies the programmed output pins but has no effect on the input pins. Reading
CPORT and DPORT provides the input values for input pins and the current output value for
output pins. Refer to Figure 2-4 for a diagram of the bidirectional I/0 logic.

Rpadlnn from an output pin (or a bidirectional pin in the cutput mode) provi

put ora igirecluor ipuL e noUe) VIGES e CU niva

being output on that pin. Peripheral File instructions ANDP, ORP and XORP perform a
read/modify/write cycle to PF registers so that when applied to a port data register, these
instructions can clear, set, and complement the output pins on the port. The following program
fragment illustrates the use of the I/0 lines in the Single-Chip mode:

2.3.2

IOCNTO EQU PO

APORT EQU P4
BPORT EQU P6
CPORT EQU P8
CDDR EQU P9
DPORT EQU P10 :
DDDR EQU P11
RESET MOVP % >3FIOCNTO Set Single-Chip Mode, enable all interrupts,
clear all pulse flip-flop
L1 MOVP % >02,DPORT Load Port D with 0000 0010
L2 MOVP % >00,CPORT Load Port C with 0000 0000
MOVP % >FO,CDDR Config C7-C4 outputs, C3-CO inputs
MOVP % >OF,DDDR Config D3-DO outputs, D7-D4 inputs
ORP % >04,DPORT SetD2
ANDP % >7F,CPORT Clear C7
BTJZP % >08,CPORT,L1 Jump if C3is ‘0’
MOVP = % >55,BPORT SetPort Bto 0101 0101
XORP %1,BPORT Toggle bit BO

BTJOP % >41,APORT,L.2 Jump if either A6 or AOisa ‘1’

NOTE

The percent sign (%) indicates the Immediate Addressing Mode (see Section 3.1).
The instruction set is described in Section 3.2.

Peripheral Expansion Mode

The Peripheral Expansion mode incorporates features of both the 1/O-intensive single-chip
mode and the memory-intensive Full Expansion mode. Table 2-5 and 2-6 show the memory
maps for the Peripheral Expansion mode. References to addresses in the Peripheral File
{locations >0100 to >01FF) not corresponding to on-chip registers, result in off-chip memory
cycles. During peripheral file instructions, a peripheral file port is read, even if the value is not
needed such as in a MOVP A,P86. If this read is undesirable because of hardware configuration,
a STA (store A) instruction with the memory-mapped address of the peripheral register can be

. used.

The ability to reference off-chip addresses permits the TMS7000 to be directly connected to
most of the popular peripheral devices developed for 8-bit microprocessors. The TMS7000’s
Peripheral File (PF) instructions can be used to reference these off-chip peripherals just as easily
as the on-chip PF registers are accessed. In Peripheral Expansion Mode, Port A functions the
same as in Single-Chip Mode. '

Port B is divided into two sections: B3-BO function as individual output pins, the same as in
Single-Chip Mode; pins B7-B4, however, function as external memory bus controls as follows:

* Pin B4 (ALATCH) is strobed to logic one while Port C asserts the memory address.
¢ Pin B5 (R/W) is driven to logic one for a read cycle and to logic zero for a write cycle.

* Pin B6 (ENABLE) is asserted at logic zero whenever an external memory cycle is in
progress.

* Pin B7 (CLOCKOUT) is an output clock intended for general memory control timing.

2-13

233

2.3.4

214

Exact signal timing is described in Section 4.

References to the PF register corresponding to Port B are handled in a special manner. When a
write is done to the Port B data value register, B3-BO-output their new value. An external
memory write cycle, writing the full 8-bit Port B value to address >01086, is performed as well.

*When a read is done from the Port B data value register, the least significant nibble is provided

by the current value on pins B3-BO. The most significant nibble, however, is obtained from an
external memory read cycle, readlng from address >0106. The least sngmflcant nibble from
the external memory read cycle is discarded.

Port C functions as a multiplexed address/data port for the memory expansion bus. In normal
configurations, Port C is attached to the input of an 8-bit latch such as an SN74LS373. Signal
B4 (ALATCH) drives the G input of the latch, so that: the outputs follow the inputs while -
ALATGH is high, and latch when ALATCH falls. After ALATCH falls, Port C either becomes a
high-impedance input for read cycles or it asserts the output data for write cycles. Port D
functions identically to a bit-programmable bidirectional /O port, as in the Single-Chip Mode.

NOTE

Because ALATCH and Port C are active for both external and internal (ROM and
RAM) memory cycles, itis recommended that ENABLE be gated with the chip select
input of all external memory devices.

Fuli Expansion Mode

The Full Expansion Mode may be used to extend the memory addressing capability of the
TMS7000 to its full 64K byte limit. External memory may be accessed with instructions using
the Direct, Register File Indirect, and Indexed Addressing modes of the instruction set. This
capability allows a variety of application requirements to be met by expanding the external
program or data storage.

Full Expansion Mode input/output is identical to the i’eripheral Expansion mcde except that
Port D is used to output the most significant byte (MSB) of the 16-bit address and is not
available as an I/O port. The I/0O memory assignments for the Full Expansion mode are shownin
Tabie 2-5 and Tabie 2-6. .

As in the Peripheral Expansion mode, addresses to the Peripheral File (locations >0100 to
>01FF) which are not directly implemented as on-chip registers, result in off-chip memory
cycles. The on-chip Peripheral File registers are listed in Table 2-5 and Table 2-6. Note that the
Port D data value register (DPORT) and the Port D Data Direction Register (DDDR) are
implemented as off-chip addresses in the Full Expansion mode.

Microprocessor Mode

The Microprocessor mode is intended for applications not justifying the use of on-chip ROM.

The port pins are configured exactly as in the Full Expansion mode (see Table 2-2). However,

unlike the Full Expansion mode, no on-chip ROM is referenced in the Microprocessor mode as
shown in Table 2-3. The MC pln must be held at +5 volts to place the device into the
Microprocessor Mode.

235

System Emulator Mode

The System Emulator mode is a special purpose mode designed to support system
development and self-emulation. The TMS7000 is placed in the System Emulator mode by
applyinga + 14 volt level to the Mode Control (MC) input pin. This disables all internal ROM and
1/0. In addition, the internal structure for handling interrupts is disabled.

NOTE

The last 48 bytes { >FFDO- >FFFF) of off-chip memory may be assigned to Traps
0-23.

The usefulness of System Emulator Mode is predicated on its flexible interrupt structure. Up to
128 interrupts may be implemented by wire-ORing them to either the maskable interrupt input
(INT) or to the non-maskable interrupt input (NMI).

Both interrupt lines are level-activated in System Emulator Mode. They do not have the pulsed
interrupt latch, as described in Section 2.5. '

The processor acknowledges interrupts in the System Emulator mode by asserting an Interrupt

Acknowledge (INTA) output on pin B3 of Port B. This is comparable to the INTA signal sent

from the CPU to internal interrupt logic, described in Section 2.5.3. When INTA is asserted,
external circuitry must apply an 8-bit interrupt code into Port C, which is then used by the CPU

to generate the address of the interrupt vector. The vector address is computed by adding the

interrupt code input to >FFOO and then rotating the result left one bit. ThlS is the address of the

LSB of the vector: the MSB is in the preceding address.

The mterrupt vector is the same as the TRAP instruction opcode; for example, a Level 2
interrupt code is >FD, which is the same as the TRAP 2 opcode. Interrupt vector generation is
illistrated in Figure 2-6.

' PROGRAM MEMORY TRAP VECTORS
> FFFA ENTRY POINT MS BYTE
> FD (INT2 INTERRUPT CODE) [— > FFFB ENTRY POINT LSBYTE

FIGURE 2-6 — INTERRUPT GENERATION: SYSTEM EMULATOR MODE

As with all interrupts, the processor pushes the contents of the Status Register and the
Program Counter onto the stack before branching to the address specified by the interrupt
vector.

24

2-16

1/0 CONTROL REGISTERS

The /O control registers are located in the Peripheral File and are responsible for memory mode
definition and interrupt.control. All TMS7000 family members contain the 1/0 Control O
{IOCNTO) register; however, the I/O Control 1 (IOCNT1) register is available only in the 70X1
members. The I/O control registers are mapped into locations PO (IOCNTO) and P16 {IOCNT1)
of the Peripheral File as shown in Figures 2-7 and 2-8. The memory expansion modes and
individual interrupt masks and resets are controlled through these registers. The interrupt
sources may also be individually tested by reading the interrupt flags. The interrupt flag values
are independent of the interrupt enable values. Section 2.3 describes how bits 7 and 6 of the
IOCNTO, together with the Mode Control (MC) pin, determine in which memory expansion
mode the TMS7000 is functioning. See Table 2-2.

The INTn FLAG values are independent of the INTn ENABLE values. Writing a ‘1’ to the INTn
CLEAR bit will clear the corresponding INTn FLAG, but writing a ‘O’ to the INTn CLEAR bit has
no effect on the bit. If INTn is to be recognized by the CPU, three conditions must be met:

1} A one must be written to the INTn ENABLE bit in the IOCNTO or IOCNT 1 Register.

2) The global INTERRUPT ENABLE bit, i.e., bit 4 or | in the Status Register (see Section
2.1.4), must be set to one by the EINT instruction.

3) INTn must be the highest priority interrupt asserted within an instruction boundary
(see Section 2.5). ’

All of the TMS7000's interrupts may be tested in software, independent of whether fhe
interrupt is enabled or disabled. For example, the following program fragment waits for the
rising edge of the interrupt input on the INT1 pin by testing INT1 FLG:

WAIT BTJOP % >02,PO,WAIT Wait for INT1.

This allows the interrupt pins to be polled as ‘latching’ inputs when the interrupt action is not
desired. Refer to Section 2.5 for a detailed description of the TMS7000’s interrupt logic and

oneration
operation.

384

0 = INT3 Inactive

1 = INT3 Active ' 0 = INT2Inactive
. "1 = INT2 Active
0 =INT1 Inactive
PF number = PO 1 =INT1 Active
Address = > 0100 ‘ [
7 6 5 4 3 2 1 0
MEMORY [MEMORY | INT3 INT3 INT2 INT2 INT1 INT1 READ
MODE1 {MODEO | FLAG | ENABLE | FLAG | ENABLE | FLAG ENABLE
PO i
MEMORY [MEMORY | INT3 INT3 INT2 INT2 INT1 INT1 WRITE
MODE 1 | MODEO { CLEAR | ENABLE | CLEAR | ENABLE | CLEAR [ENABLE
PO)
|)
L_ 0 =INT1 Disable
) 1 =INT1 Enabled
00 = Single Chip .0 = No effect
01 = Peripheral 1 = Clear INT1 flag
Expansion
10 = Full |0 = INT2 Disabled
" szaf;§'°3 1 = INT2 Enabled
= Cndetine L— 0 = No effect
1 = Clear INT2 flag
L—0 = INT3 Disabled

1 = INT3 Enabled

— 0 = Noeffect
1 = Clear INT3 flag

FIGURE 2-7 — IOCNTO - /O CONTROL REGISTER 0

(Register NOT cleared ' O = INT5 Inactive

" 0 =INT4 Inactive

by RESET) ‘ F = INT5 Active /1 =INT4 Active

7 6 5 4 3 2 1 0
R R o R INTS INT5 INT4 INT4 |READ
FLAG. | ENB FLAG ENB
P16
R R o R INT5 INT5 INT4 INT4 |wRITE
CLEAR | ENB | CLEAR | ENB
! PF number : P16 Lo =INT4 Disabled
Address: 20110 1 =INT4 Enabled
0 = No effect

1 = Clear INT4 flag

‘0 = INT5 Disabled
1 = INT5 Enabled

L-0 = No effect
1 = Clear INTS flag

FIGURE 2-8 — IOCNT1 - /O CONTROL REGISTER 1

Due to the read/modify/write nature of the bit manipulation instructions (ANDP, ORP, and
XORP), it is possible that a pulsed interrupt could occur during the operation of these
instructions on the IOCNTO and IOCNT1 and be missed. These instructions could also cause
the other interrupt flags to be unintentionally cleared or set. For example, there is no problem if
an XORP instruction is used to enable INT 1 and not alter the condition of the INT1 flag (XORP
"% >03,P0), as long as the flag flip-flop does not change state during instruction execution,
However, if a short INT1 pulse occurs during execution, a O may be read and a 1 would be
written to reclear the INT1 flag. In this case, the INT1 pulse would be undetected by the
processor. This same instruction would also affect the INT2 and INT3 flags as they are also
located in IOCNTO. To avoid these occurrences, use the MOVP and and STA instructions when

writing data to IOCNTO and IOCNT1.

2-18

384

2.5

25.1

The following code segment is an example of how the user can regulate the memory mode bits
and individual interrupt masks and resets through program control:

IOCNTO EQU PO

MOvP % >3B,I0OCNTO SINGLE-CHIP MODE, CLEAR ALL INT FLAGS
* ENABLE INT1 AND INT3

BTJOP % >08,I0CNTO,LABEL TEST IF INT2 SET, IF SET THEN JUMP

ANDP % >E5,IOCNTO CLEAR AND DISABLEINT3
LABEL EQU $

NOTE

This example is one of the few situations where use of the ANDP instruction on the
IOCNTO register is possible.

On RESET, the IOCNTO register is written with all Os. This disables INT1, INT2, and INT3
individually and configures the TMS7000 in Single-Chip mode. In the 70X1 devices, the
IOCNT1 register is not written to during RESET. In order to ensure that INT4 and INT5 are also
individually disabled, it is recommended that all ‘O’s be written to the IOCNT1 register
immediately after RESET. Note that following RESET, all interrupts are globally disabled
because the Interrupt (l) bit in the status register is reset to O.

‘ Because the state of the interrupt flag ﬂih—flops (INTn FLG) are undetermined after RESET, it is

recommended that the flags be cleared by writing a 1 to bit positions 1, 3; and 5 in PO
(IOCNTO) and positions 1 and 3 in P16 {IOCNT1).

INTERRUPTS AND RESET CLOCK OPTIONS

The internal machine cycle frequency, called Phi (¢}, is derived from either a crystal or an
external clock source. There are two options available for converting the external frequency to
¢ and they are called the divide by two (/2) or the divide by four (/4) clock options. These are
mask options which means the option is placed on a manufacturing template, a mask, which
copies the actual circuit onto the silicon device. This means the clock option is finalized at the
start of manufacture and is NOT changeable by software or hardware. If the /2 clock option is

‘chosen, the external frequency divided by 2 is the internal machine cycle. A 5 MHz crystal

would give and internal cycle of 2.5 MHz with the divide by 2 option. If the /4 clock option is
used, the external clock is divided by 4 so that the same 5 MHz crystal would result in a ¢-of
1.25 MHz. In order to get a 2.5 MHz internal cycle a 10 MHz crystal would be used.

The /2 option is recommended for use with crystals and the /4 option can'use either crystals or
another external source. Itis not recommended to use an external source to drive a /2 device. If
a crystal is used it is connected between pins XTAL1 and XTAL2. To improve the crystal
waveform, 15 pF capacitors are connected between XTAL1 and ground and between XTAL2
and ground. If an external clock source is used it is connected to CLKIN, also called XTAL2, and
XTAL1 is left floating.

Interrupt Priority

The TMS70XO0 has priority servicing of three interrupt levels and reset, the TMS70X1 has five
interrupt levels plus reset. These levels are defined as follows:

1) LevelOis the highest priority and is reserved for the RESET function.
2) Level 1is the second highest priority and is a user-defined external interrupt (INT1).

3) Level 2 is the third highest priority and is reserved for the on-chip hardware Timer 1
(INT2).

2-19

2.5.2

2-20

4) Level 3 is the fourth highest priority and is a user-defined external interrupt (INT3).

5) Level 4 is the fifth highest priority and is available only on the 70X1 devices. This
interrupt is used when the serial port is ready. for data transfer, or it can be used by
Timer 3 (INT4).

6) Level 5isthe lowest priority and is available only on the 70X 1 devices. Th|s interruptis
reserved for the on-chip hardware Timer 2 (INT5).

All external interrupts and RESET have Schmitt trigger inputs. The external interrupt interface
consists of three discrete active low input lines which require no external synchronization:
RESET, INT1, and INT3. The INT1 and INT3 inputs are both latch and level triggered on all
TMS7000 devices, with some exceptions on CMOS parts. The INT1 input is only latch
triggered on the TMS70C00, TMS70C20 and TMS70C40. Interrupt Level 2 (INT2) is asserted
upon rollover of the programmable timer (see Section 2.6).

Each interrupt {(INTn) is associated with an INTn ENABLE and FLAG bit in the IOCNTO and
IOCNT1 Registers (see Section 2.4). The INTn ENABLE bit must be set before INTn can be
recognized by the interrupt logic. In addition, there is a global INTERRUPT ENABLE bit (I} in the
Status Register which must be set by the EINT instruction in order for an interrupt to be
recognized by the CPU.

The TMS7000's reset function, CPU/lnterrupt interface, and interrupt logic are described in the
sections that follow.

Device Initialization

Interrupt Level O (RESET) cahnot be masked and will be recognized immediately, even in the
middle of an instruction. To execute the Level O interrupt, the RESET pin must be held low for a
minimum of 1.25 internal ¢lock cycles (¢) to guarantee recognition by the device. During
assertion of the RESET pin, the Data Direction Registers CDDR and DDDR registers (and ADDR’
on 70X1 devices) are cleared to all ‘O’s and the OUTPUT DATA flip-flops of Ports B, C, and D
(and Port A on 70X1 devices) are set to all ones (see I/O logic, Figure 2-4). This causes Ports C
and D (and Port A on 70X 1 devices) to be placed in the high impedance input mode and Port B
to output all ones { >FF) regardiess of the state of the internal machine clock. When RESET is
removed, the following operations are performed prior to the first instruction aquisition.

1) Ail zeros are written to the IOCNTO Register and the Status Register. This disables
INT1, INT2, and INT3 and leaves the INTn FLAG bits unchanged. Note that the
~ IOCNT1 Register in 70X 1 devices is not written to.

2) The MSB and LSB values of the Program Counter just before RESET are stored in RO
and R1 (A and B registers) respectively.

3) The Stack Pointer is initialized to >01.

4) The MSB and LSB of the reset vector are fetched from locations >FFFE and >FFFF
respectively (see Table 2-10) and loaded into the Program Counter.

5) Program execution begins from the address placed in the Program Counter.
As stated above, the reset function does not change the INTn FLAG bits in the IOCNTO register

{since all zeros are written) and does not write at all to the IOCNT 1 register. Also, the OUTPUT
DATA flip-flops of the A, C, and D Ports are set to all “1’s. If any of the bits in a DDR register is

253

set to a ‘1’ ; the corresponding port pin would become an output, producing a ‘1’ level. It is
generally good practice to initialize the OUTPUT DATA flip-flop with the desired output value
(by writing to the port data value register) before writing to the DDR flip-flop to make the
corresponding pin an output. The following sequence of code is an example of what a typlcal
initialization routlne could be after a RESET.

RESET - MOVP % >2E,PQ Clear INT1,.INT2, and INT3 FLAGS and
place device in Single-Chip mode.
Enable INT2.
MOVP % >0A,P16 Clear INT4, INT5 FLAGS (70X1 only).
Disable INT4 and INT5
MOVP %VALU1,P8 Load Port C data value register
(CPORT).
MOVP %MASK1,PS Load Port C data direction register
(CDDR).
‘MOVP %VALU2,P10 Load Port D data value register
(DPORT).
MOVP %MASK2,P11 Load Port D data direction register
(DDDR).
MOVP - %VALU3,P2 - Load Timer 1 Latch (TL).
MOVP %VALU4,P3 Load timer source, internal prescaler
latch and start timer.
EINT . Set global interrupt enable bit to

allow interrupts.

The Stack Pointer can also be reinitialized in the Register File following reset by executing a
program similar to the one below.

STACK MoV %VALUE,B Load B with the stack starting point
LDSP Put this value into the stack pointer *

CPU Interface To Interrupt Logic

Once an interrupt has been asserted (the INTn pin goes low), it becomes active if its ENABLE
bits are set to one, and the global Status Register INTERRUPT ENABLE bit (l) is set to one. An
active interrupt is one which is capable of being recognized by the CPU but has not yet been
acknowledged.

As shown in Figure 2-9, the TMS7000'’s on-chip logic recognizes an active interrupt and sends
an’ INT ACTIVE signal to the CPU. When the currently executing instruction is completed, the
CPU selects the highest priority active interrupt and routes INTA back to the INTn ACK
(interrupt acknowledge) line of the recognized interrupt. In the case of more than one interrupt
active within the same instruction boundary, i.e., simultaneous interrupts, then the interrupts
will be acknowledged by the CPU according to the priority levels described at the beginning of
Section 2.5. For example, if both INT2 and INT3 occur within the same instruction boundary,
INT2 will always be serviced first. Refer to Section 2.6.8 for an application of this example.

221

254

2-22

" wmmavereocie |- [oo

<+—e—JINTT ACK. | —
INT1 INTA '

>——p—{INT1 ACTIVE <
<+—<—{INT2 ACK. | |
INT2 PRIORITY -~

LOGIC IR
INT A
>—»—4INT2 ACTIVE |. CTive

<4—4¢—]INT3 ACK.
>—p—4INT3 ACTIVE I I

INTERRUPT
CODES

INT3

FIGURE 2-9 — CPU INTERFACE TO INTERRUPT LOGIC

Once INTn has been acknowledged by the CPU, the INTn ACK line, as shown in Figure 2-10,
clears the corresponding INTh FLAG flip-flop. The CPU then pushes the contents of the Status
Register and the Program Counter (MSB and LSB) onto the stack, and zeros the Status
Register, including the global INTERRUPT ENABLE (1) bit. The CPU reads an interrupt code from
the interrupt logic and branches to the address contained in the corresponding interrupt vector
location in memory. The addresses of the trap vector locations for each interrupt level are
shown in Table 2-7. There are 19 internal clock cycles (¢) required between the end of an
instruction in the interrupted program and the start of the first instruction of the interrupt
routine. Interrupting out of the IDLE state requires 17 machine cycles.

TABLE 2-7 — RESET AND INTERRUPT VECTOR LOCATIONS IN ROM

VECTOR VECTOR ’ - SERVICE
MSB LSB DESCRIPTION : ORDER
>FFFE >FFFF RESET Immediate
>FFFC >FFFD INT1 External 1
>FFFA >FFFB INT2 Timer1 2
>FFF8 >FFF9 INT3 External 3
) 70X1 only below
>FFF6 >FFF7 INT4 Serial port 4
>FFF4 >FFF6 INTS Timer2 5

The interrupt service routine can explicitly enable nested interrupts by executing the EINT
instruction to directly set the | bit in the status register to a one, thus permitting nested
interrupts to be recognized. When the nested interrupt service routine completes, it returns to
the previous interrupt service routine by executing the RETI intruction.

Interrupt Logic

Theinternal interrupt logic for each the three maskable interrupts for the 70X0 devices and five
maskable interrupts for the 70X 1 devices is shown in Figure 2-10.

The logic is slightly different for INT1 on the 70CXO0 devices so that this interrupt logic will only
detect the Q1 output of the Pulse flip-flop and not INTn. On the CMOS parts, INT1 is a latched
interrupt and not a latched and level as on the other interrupts.

To even further conserve the already low power requirements of the CMOS devices, two low
power modes are provided. These modes are called Halt and Wake-up and are entered by
executing a IDLE instruction. Either an external interrup or the timer interrupt will release the
“device from the low power modes depending on whether it is in the Halt or Wake-up mode. See
Section 4 for a complete description of the modes and interrupts. .

INTn INTn
) CLEAR FLAG ENABLE
IOCNTO A
REGISTER
WR RD WR RD
T T l_ lNTn
I ; | - ACK
INTERRUPT
PIN |
OR |
D
TiMER | Q¢ PRIORITY
l) | LOGIC
ENABLE
I LATCH I
— — A\ INTn
INTn D Q —L__J/ ACTIVE
o e
SYNC STATUS
FF . REGISTER
*Removed from INT1 logic on TMS_70CXX versions INT ENABLE

NOTE: ¢ is aclock with frequency of fose/2 (+ 2 option),
fosc/4 (+ 4 option).

FIGURE 2-10 — INTERRUPT LOGIC

When an external interrupt is first asserted, its level is gated into the Sync flip-flop by the Phi

(&) clock signal, which has a frequency of fosc/2 for the /2 clock option and fogc/4 for the /4
clock option. In order for a pulse interrupt signal to be detected, the pulse width must be a

minimum of 1.25 Phi(¢) frequency periods. The output of the Sync flip-flop clocks a 1 into the

Pulse flip-flop. This is the only time a 1 is loaded into the Pulse flip-flop. The Pulse flip-flop will

be set within 1.25 machine cycles { ¢) of the assertion of the interrupt. If INTn is removed

before the interrupt is recognized, its occurrence is latched in by the INTn Pulse flip-flop (Q1).
The INTn ENABLE bit is used separately to individually mask interrupt levels. This bit must be 1

for the interrupt to be recognized. o

As previously stated, all interrupt control bits are implemented in the IOCNTO and IOCNT1

registers in the Peripherial File. I/O instructions may simply read from and write to each INTn
ENABLE bit (Q2).

2-23

2.6

2-24

The INTn FLAG is handled differently. When the INTn FLAG bit is read, the logical OR of the
Pulse flip-flop output (Q1)} and INTn (inverted | NTn pin) is returned. As long as the INTn pin
is low, the INTn FLAG bit will be read as a 1, regardless of the state of the pulse fiip-flop. This
makes the external interrupts both latch and level sensitive. This is different on INT1 of the

‘70CX0 devices however. When the INT1 FLAG is read, the pulse flip-flop output (Q1) is the

onlly return. This makes INT1 of the TMS70CXO a latched interrupt only and not a level
interrupt. When a 1 is written to the INTn CLEAR bit (See Section 2.5.3), the pulse flip-flop is
cleared. Writing a O to INTn CLEAR has no effect.

The pulse flip-flop allows short pulsed external interrupt signals to be recognized by the CPU. A

pulsed interrupt signal must have a minimum pulse width of 1.25 Phi { ¢) frequency periods in

order to be gated into the pulse flip-flop. The pulse flip-flop will retain the signal until the
interrupt is recognized. When the interrupt is acknowledged by the CPU, the pulse flip-flop is
cleared automatically. To make sure the pulsed interrupt is not interpreted as a level signal, the
maximum pulse (time low) of a pulsed interrupt cannot exceed the following:

(164N ¢

where N equals the number of machine cycles in the interrupt service routine, up to and
including the EINT or RETI instruction and ¢ is the internal machine clock frequency.

This ensures that the INTn FLAG is cleared prior to the first possible instruction boundary in
which the interrupt could be reserviced. Note that this is not of any concern to INT1 on the
TMS70CXO0 devices since INT1 is not level sensitive.

The interrupt structure of the TMS7000 also permits wire-ANDing of multiple interrupt sources
onto a single INTn pin, by allowing level-sensitive interrupt detection in addition to
pulsé-sensitive detection. A high-to-low transition on the INTn pin sets the pulse flip-flop, as
previously described, and this, as well as the low level of the INTn pin, sets the INTn FLAG'in
the active state. When the interrupt is accepted, the pulse flip-flop is cleared and will not be set
again until after the next high-to-low transition of the INTn pin. If the INTn pin remains at a low
level, the corresponding INTn FLAG will remain active, and the interrupt will be recognized
again.

This structure ailows muitipie interrupts to be wire-ANDed onto one interrupt, since the
interrupt will be repeatedly recognized as long as the interrupt pin is low. An application
program could determine which of several interrupts are requesting service and set its own
priority structure.

Interrupt inputs can be tested, using the interrupt FLAG bits (See Section 2.4) without actually
recognizing the interrupt, thus permitting flexible multi-device control. Under program control,
each interrupt routine can retain complete control of the processor or allow nested interrupts,
as described in Section 2.4.

PROGRAMMABLE TIMER/EVENT COUNTERS

The programmable timer/event counters are 8-bit counters with a programmable prescaled
clock source as shown in Figure 2-11. The TMS70X0 devices contain one timer/event counter
and the TMS70X1 devices contain two timer/event counters. Timer 1, with its 8-bit capture
latch, is available in all TMS7000 family members and is accessed at P2 and P3 of the
peripheral file. Timer 2 is available only in the TMS70X1 family members and is accessed at
P18 and P19 of the peripheral file {see Figure 2-12).

384

TIMER 1

5-BIT PRESCALE 8-BIT TIMER
LATCH PL) LATCH (TL)
g8 ——df . ¥ y
EXTERNAL (A7) CLK - 8-BIT TIMER
SIGNAL PRESCALER (C\';JEFSS,T _
. t_l INT3
MODE
INT2 TIMER .81
VALUE [cAPTURE LATCH
CAPTURE
VALUE
TIMER 2
g(g)cscmaD_ §-BIT PRESCALE 8-BIT TIMER
ASCADE
SQURGE LA% {PL) LATCH (TL)
D a—Da e A
SOURCE PRESCALER VALUE)
TIMER 1
INTERRUPT INTS . TIMER
CASCADE :D—J VALUE
FIGURE 2-11 — PROGRAMMABLE TIMER/EVENT COUNTER
" TIMER 1 DATA REGISTER - T1IDATA
7 L 6 [5 l 4 ‘ 3 ’ 2 1 0
PF number: P2 MSB CURRENT TIMER VALUE LSB
Address: >0102
MSB TIMER LATCH VALUE (TL) LSB
TIMER 1 CONTROL REGISTER - T1ICTRL
7 6 5 I 4 ' 3 l 2 , 1 J 0
PF number: P3 'MSB CAPTURE LATCH VALUE {CL) LSB
Address: >0103
START [SOURCE| IDLE‘ PRESCALE LATCH VALUE
' (PL)

'_0 for all NMOS devices

0 = Wake-up low power mode, 70CX0 only
1 = Halt low power mode, 70CX0 only

1 = External clock source from pin A7

0 = Internal clock source = /8

L1 = Start timer

0 = Stop timer

FIGURE 2-12 — TIMERS 1 AND 2 DATA AND CONTROL REGISTERS

READ

WRITE

READ

WRITE

2-25

226

TIMER 2 DATA REGISTER - T2DATA

7]615J413|2I-1L0

PF number: P18

MsB CURRENT TIMER VALUE LSBl

Address: >0112

MSB TIMER LATCH VALUE (TL) LSB

TIMER 2 CONTROL REGISTER - T2CTRL

PF number: P1 9
Address: >0113

7 l 6 l 5 J 4 I 3 I 2 L 1 | 0

0 0 0 0 0 0 0 0

START [SOURCE| CAS- msb PRESCALE LATCH VALUE Isb
CADE (PL)

l:I = Timer 1 output (INT2) is clock source
overides SOURCE bit
0 = SOURCE bit determines clock source -

1 = External clock source from pin A6
0 = Internal clock source = ¢/8

—1 = Start timer
0 = Stop timer

FIGURE 2-12 — TIMERS 1 AND 2 DATA AND CONTROL REGISTERS (CONTINUED)

READ

WRITE

READ

WRITE

The clock source and prescaling value of both timers are determined by the timer control
registers (T1CTRL/T2CTRL). These control bits are write-only and therefore restrict timer

control register manipulations to the following insiructions:
MOvVP % >XX,Pn STA @>01XX
MOvVP A.Pn STA *Rn
MOVP B,Pn STA @>01XX(B)

Where:
>XX = Immediate 8-bit data value in hex
>01XX = 16-Bit peripheral file address in hex
A = Aregister
B = Bregister
Rn = General purpose register pair number
Pn = Peripheral file register number -

The same instructions are required for writing to the timer data registers.

384

2.6.1

2.6.2

2.63

384

The clock source of Timer 1 and Timer 2 is determined by bit 6 (SOURCE) of T1CTRL and
T2CTRL respectively. A SOURCE bit of O selects the internally generated ¢/8 (fosc/32, /4
option or fgsc/16, /2 option) clock and places the Timer/Event Counter in the Real Time Clock
(RTC) mode. A SOURCE bit of 1 selects the external clock source and places the Timer/Event
Counter in the Event Counter mode. In the external mode, the clock sources for Timers 1 and 2
are input on the two Most Significant Bits of I/0 port A (A7) and (A6) respectively.

Bit 7 of the timer control registers is the START bit for the respective programmable timers.
When a O is written to the START bit, the timer chain is disabled or frozen at the current count
value. When a 1 is written to the START bit, regardless of whether it was a O or a 1 before, the
prescaler and counter decrementers are loaded with the corresponding latch values, and the
Timer/Event Counter operation begins. When the prescaler and counter decrement through
zero together, an interrupt flag is set and the prescaler and counter decrementers are
immediately and automatically reloaded with the corresponding latch values. The interrupt
levels generated by the timers are INT2 for Timer 1 and INT5 for Timer 2. Timer 1 has a Capture
Latch (CL) associated with it which “captures” the current value of the counter whenever

~ INT3 is triggered. The capture latch will store the timer value even when INT3 is disabled. -

On the CMOS parts, the capture latch is disabled during the IDLE instruction.

Real Time Clock (RTC)

In the RTC mode, the internally generated ¢/8 (fgsc/32, /4 option or fgsc/16, /2 option) is the
decrementer clock source. Each positive pulse transition of the ¢/8 period signal decrements
the count chain.

The RTC mode allows a program to periodically call a service routine, such as a display refresh,
by simply setting the prescale latch value and the timer latch value so the routine is called at the
desired frequency.

Event Counter (EC)

When Timer 1 or Timer 2 is in the EC mode, the counter functions as in the RTC mode except
pin A7 and A6 of Port A are the decrementer clock sources for Timer 1 and Timer 2
respectively. A positive edge transition on these external pins decrements the count chain.
Note that this will allow INT2 and INT5 to function as a positive edge-triggered external
interrupt by loading a start value of ‘O’ into both the prescaler and timer latches. A positive
transition on A7 or A6 will decrement the corresponding timer through zero and generate an
INT2 or INT5. The EC mode can also be used as an externally provided RTC if the external clock
is input to 1/0 pin A7. The maximum clock frequency on A7 or A6 in the EC mode must not be
greater than ¢/8; or fgsc/32, assuming the /4 clock option and fosc/ 16, assuming the /2 clock
option. The minimum pulse width must not be less than 1.25 machine cycles (1.25 x ¢) as
shown in Section 4.

Timer and Prescaled Clock

The timer clock, whether internal or external, is prescaled by a 5-bit modulo-N counter. The
prescaling value is determined by the least significant five bits of the timer control register. The
actual prescaling value is equal to the timer control latch value plus one. Thus, a value of >88, (
>80+ >8 where >80 is the start bit and >8 is the prescale value) in the timer control latch
would result in a fogc/160 clock output from the prescaler, assuming a /4 clock option.

An INT2 interrupt for Timer 1 or an INT5 interrupt for Timer 2 is momentarily pulsed when both
the prescaler and counter decrement past the zero value together. This sets the INT2 or INT5
flag flip-flop, as described in Section 2.5.4. The prescaler and counter are then immediately

2-27

reloaded with the contents of the prescale latch (PL} and the timer latch (TL) and the timer will
start decrementing with the new PL and TL value. The TL is loaded through the Timer 1 data
register (T1DATA) for Timer 1 and the Timer 2 data register {T2DATA) is loaded into Timer 2.
This value is write-only. When read, the timer data register contains the current value of the
counter. The PL is loaded through the Timer 1 control register (T1CTRL) for Timer 1 and the
Timer 2 control register (T2CTRL) loads into Timer 2. When read, the T1CTRL contains the
Capture latch (CL) value and the T2CTRL contains all zeros.

2.6.4 , Timer Interrupt Pulses

The period of the timer INT2 and INT5 interrupt pulses may be calculated by the following

formula:
tNT =tCLK*(PL+1)*(TL+1)
where:
HNT " = period of timer interrupts
tolk = 8/¢ (32/fosc on/4 option or 16/fagg on /2 option) for internal RTC
mode or the period of input external
EC mode
PL v = Prescaler Latch value

TL = Timer Latch value

At the falling edge of the INT3 input, the Timer 1 value is loaded into the Capture Latch (CL).
" When read, the Timer 1 control register contains the CL value. This feature provides the
capability to determine when an external event occurred relative to the internal timer.

NOTE -

During the HALT mode of the CMOS version. the capture latch may not be loaded by
INT3.

2.6.5 Timer 2

Timer 2 is only available on the TMS70X1 family devices (i.e. TMS7001, TMS7041,

! SE70P161). Timer 2 is similar to Timer 1 except that there is no Capture Latch associated with

Timer 2, and INT5 is generated by Timer 2. In addition, T2CTRL also contains the CASCADE bit

~(bit 5). This bit is used in conjunction with T2CTRL SOURCE (bit 6) to determine the
decrementing source of Timer 2. ‘

A CASCADE bit of 1 selects the interrupt generated by Timer 1 (INT2) as the decrementing
input to the prescaler of Timer 2. The CASCADE bit overrides the SOURCE bit, i.e., if the
CASCADE bit is set to 1 the SOURCE bit_of Timer 2 has no effect.

As with Timer 1, a SOURCE bit of O selects the internally generated ¢/8 (fosc/32, /4 option or
fosc/ 16, /2 option), and places the the timer in the Real Time Clock (RTC) mode.’A SOURCE bit
of 1 selects the external clock source and places the Timer/Event Counter in the Event Counter
(EC) mode. '

2-28 ' " 384

2.6.6

2.6.7

The external EC input for Timer 2 is general purpose I/O pin A6/SCLK of Port A. A6/SCLK is
also the 1/0 line (depending on mode of operation) for the baud rate generator clock (SCLK).
Section 2.7.2 describes the SCLK signal.

Driving the external EC line for Timer 2 with the A6/SCLK produces the following modes:

1) With both SCLK and T2 external, the input signal drives the baud rate timer (T3) and
Timer 2 (T2).

2) With SCLK external and T2 internal, the 1/O bit (A6/SCLK) drives the baud rate timer
(T3) and ¢/8 drives Timer 2’s prescaler.

3) With SCLK and T2 internal, the A6/SCLK pin is the 1x baud rate output signal from T3
and the T2 source is ¢/8.

4) With SCLK internal and T2 external, A6/SCLK is the 1x baud rate signal from T3 and
drives T2. In this mode, the baud rate timer and Timer 2 are cascaded, with the baud
rate timer driving Timer 2. This is done by setting the CASCADE bit to O and the Timer
2 SOURCE bit to 1. Timer 2 can then be cascaded with either Timer 1 or the baud rate
timer.

Pulse Width Measurement

Through the use of the Capture Latch (CL) the Timer/Event Counter can work with pulse width
measurement applications. A simple exclusive OR- gate is all that is needed to set up the
TMS7000 to handle a pulse width modulated input as shown in Figure 2-13. In software, ' the
user outputs the inverted input pulse train through one of the output lines (BO in this case). This
line is exclusive-ORed with the input data line resulting in an input to the INT3 pin. This causes
the Capture Latch to be loaded with the current value of the timer at each transition of the input
pulse train. The user program can then compare these values to determine width values.

TMS7000

INPUT DATA o
| TNT3
B0

FIGURE 2-13 — PULSE WIDTH MEASUREMENT

Pulse Width Modulation (PWM) Theory of Operation

Pulse Width Modulation (PWM) involves the encoding of information in the width of a pulse.
Information can be contained in the widths of the these pulses when these pulses occur at a
base frequency as shown in Figure 2-14.

'o——t——.r——t——or-;——t—;»l
e L i
- w1 e

(B

W2 I‘—Ws—'l

f=1/t
FIGURE 2-14 — PULSE WIDTH MODULATED PULSE TRAIN

2.29

2-30

Since the interrupts are only latched on a low level, a technique to give a low level at the
beginning and end of a pulse is shown in Figure 2-15 which allows a simple timing program to
measure the pulse width. This technique can be extended from PWM to any interval
measurement application:

The TMS7000 is equipped to perform pulse measurement with the addition of a single
exclusive OR-gate.

The edges of the PWM measurement are driven off of INT3 while the onboard counter times
the event. The TMS7000 interrupt is structured so that the current value of the timer is
captured at the CL (P3) on receipt of INT3. The actual time between events can then be derived
from this captured value. The additional output BO is used to disable INT3 between successive
edges of input train (Figure 2-15}.

0 e I e IR py
=i I B I B e B B

"—W1 ——.' l‘—.l—'Wz : l‘—— W3——’I
I L__J | —
SERVICE B) A B
ROUTINE START STORE
ACTION TIMER CAPTURE
' LATCH

FIGURE 2-15 — TMS7000 PWM INT3 TIMING

The decoded data, now encoded in the interval between INT3s, is available on alternate
interrupts at the Capture Latch (P3). A sample INT3 service routine is:

INT3 XORP % >01,P6 TOGGLE BO
DEC R2 MARK YOUR PLACE
BTJO % >01,R2,RSTRT JUMP OFF OF MARKER
MOvVP P3,B SAVE CAPTURE LATCH DATA
RETI

RSTRT MOVP % >80,P3 RESTART TIMER
RETI

In this sample, R2 is used to keep the interval measurement on the proper portion of the pulse,
and to flag the interrupt to the mainline program. Pin BO saves the Capture Latch data for the
mainline program to interpret.

384

- 2.6.8

For long pulse widths, the prescale value can be adjusted to prevent the timer from rolling over
before receiving an INT3. An alternate solution is to maintain a zero value of prescale, but use
INT2 (the timer interrupt) to drive a software counter. A sample code is:

INT2—» QRP % >08,PO CLEARINT2 FLAG
INC R4 . INCREMENT UPPER STAGE
RETI COUNTER
NOTE:

This sample code involves using the TMS7000 in a multi-interrupt environment.
Care must be taken to ensure that a correct sequence of interrupts is performed.
Multi-interrupt Pulse Width Modulation is described in the following paragraphs.

Muiti-Interrupt Pulse Width Modulation (PWM)

A simultaneous interrupt occurs when the INT3 service routine is delayed due to the receipt of

a higher priority INT2 at the same time.

For example, when the user is operating the INT2 timer at high resolution (low value of
prescale) to time intervals between successive INT3 events, the INT2 service routine
increments a software controlled RAM byte. This byte serves as an upperstage byte for the
timer, so the high resolution offered by a low value of prescale can be maintained.

However, when both interrupts occur within an instruction cycle, one of the two sequences
shown in Figures 2-16 and 2-17 has occurred.

& INSTRUCTION TIME |
IAQ IAQ
| . |
INT2 INT3
TIMER CAPTURE IAQ = INSTRUCTION
ROLLS LATCH ACQUISITION
OVER LOADED

FIGURE 2-16 — SIMULTANEOUS INTERRUPTS, INT2 PRECEDING .

In the first sequence, if INT2 precedes INT3 within an instruction boundary, the receipt of INT2
implies that the timer has rolled over and its latch value { >FF) is reloaded into the current timer
register. The current timer value was captured upon receipt of the interrupt (3). The INT2
service routine increments the software (RAM) counter and exits. The INT3 is then
immediately serviced as the current timer value was captured upon receipt of the interrupt (3).
The service routine reads the capture latch value, and a correct interval may be deduced from
this capture value and the software upperstage counter value.

2-31

[P

INSTRUCTION TIME]

[l
IAQ
| |
INT3 INT2
CAPTURE TIMER
LATCH ROLLS
LOADED OVER

IAQ

IA'Q = INSTRUCTION
ACQUISITION

FIGURE 2-17 — SIMULTANEOUS INTERRUPTS, INT3 PRECEDING

The second sequence that ‘can occur is when INT3 precedes INT2 within an instruction
boundary. As in the previous case, INT2 is serviced first. However, the current timer value is
captured by hardware when INT3 comes in, before actual servicing of INT3. INT2 has not yet
occured and the hardware has therefore captured a timer value that has not rolled over. This
timer value is likely to be near or at >00. The INT2 service routine, if it does not check for this
condition (by testing the most significant bit (MSB) of the timer for rollover) will increment the
upper stage of software by default and will cause an incorrect value to be assumed for the
interval. This condition occurs because the timer (implemented in hardware) and the program’s
upperstage counter (software driven) are out of sync.

The following code will correct the situation.

INT2 BTJZP
BTJO
JMP
OKAY INC
RET3

INT3 then becomes:

INT3 XORP

DEC

RSTRT

RETI

% >20,P0O,0KAY
% >80,P3,0KAY

DeET2
noio

% >01,R2,RSTRT
P3.,B

% >80,P3

R4

CHECK FOR PENDING INT2
CHECK CAPTURED VALUE

OKAY TO INCREMENT UPPER STAGE

rnA
TOGGLEBC

MARK YOUR PLACE

JUMP OFF OF MARKER
SAVE CAPTURE LATCH DATA

RESTART TIMER
RESET SOFTWARE UPPER STAGE

384

2.7

271

SERIAL PORT (TMS70X1 VERSIONS ONLY)
Description

The TMS70X1 contains a serial port which greatly enhances its 1/0 and communication
capability. It is not available in the TMS70XO0 vesions of the TMS7000 family. The serial port
can operate in several modes which let the TMS70X1 interface with Universal Asynchronous
Receiver/Transmitter (UART) peripheral devices, as well as multiple microcomputers
(TMS70X1, MC6801, 18051). These serial links are implemented using standard
asynchronous protocols. These multiprocessor protocols, described in Section 2.7.3, are
compatible with those used by the Motorola MC6801 and Intel I8051.

A second mode, isosynchronous, permits very high transmission rates.

The'third mode, a serial /0O mode, can be used to expand I/O lines using external shift registers,
and to communicate with peripheral devices requiring a non-UART serial input (e.g. display
drivers).

Including a hardware serial port on-chip saves ROM code and allows much higher transmission
rates than could be achieved in software. The full-duplex serial port has a double buffered
transmitter and receiver.

The serial port consists of a receiver (RX), transmitter (TX), and Timer 3 {T3). The complete
functional definition of the serial port is programmed by the TMS70X1 software. A set of
control words must first be sent out to the serial port to initialize it, so that it supports the
desired communications format. These control words will determine the baud rate, character
length, even/odd/off parity, number of stop bits, etc.

The serial port is controlled and accessed through registers in the peripheral file. The reglsters
associated with the serial port are:

TABLE 2-8 — SERIAL PORT CONTROL REGISTERS

REGISTER NAME TYPE FUNCTION
P17 SMODE FIRST WRITE Serial Port Mode
P17 . SCTLO WRITE - Serial Port Control-O
P17 SSTAT READ Serial Port Status
P20 T3DATA R/W Timer 3 Data
P21 SCTL1 R/W Serial Port Control-1
P22 RXBUF READ Receiver Buffer
P23 TXBUF WRITE Transmission Buffer

The SMODE register is the receive/transmit (RX/TX) write-only control register. The SCTLO
and SSTAT are the RX/TX write-only control register and read-only status register, respectively.
These registers are all accessed through P17. The first write after a hardware or serial port
reset accesses SMODE (See Section 2.7.5.1). All subsequent writes access SCTLO. These
registers are common to both RX and TX, and both RX and TX will have the same mode and
frame format.

» Isosynchronous is the term given to this second communication mode of the serial port. This mode has the same frame format as the
. asynchronous mode, but uses only one serial clock {SCLK) cycle per data bit as opposed to 16 SCLKs per data bit for the asynchronous mode.
This allows transmission rates 16 times those of the asynchronous mode.

384

2-33

2-34

The T3DATA register accesses the Timer 3 8-bit timer. It is similar to T1DATA and T2DATA.
The SCTL1 register is a read/write control register for the RX/TX and Timer 3.

The RXBUF is a read-only register containing data from the RX. The RXBUF is double buffered
with the internal shift register (RXSHF) so that the the TMS70X1 CPU has at least a full frame
to read the received data before the RX may overwrite it with new data.

The TXBUF is a write-only register from which the TX takes the data it transmits. It is double
buffered with the TX shift register (TXSHF), so that the TMS70X1 CPU has a full frame to
write new data before TXBUF becomes empty.

Figure 2-18 is a block diagram of the serial port registers and functional blocks. Figure 2-19
illustrates serial port I/O logic. Section 2.7.5 describes serial port registers in detail.

CPU

SERIAL PORT

SMODE/
SCNTLQ/ SSTAT

AB/SCLK

FIGURE 2-18 — SERIAL PORT FUNCTIONAL BLOCKS

<:: T3DATA/ <::i> < >
- SCNTL1 ‘TIMER3
»INT4
. <: 4———SCLK
— mxavr K mxsir K A < ASIRXD
—»INT4
C— :(> O [
TXBUF TXSHF TX »B3/TXD
PpINT4

384

2.7.2

2.7.2.1

TMS70X1

RXD =g— A5/RXD
16
A5 =g
A6
SCLK
EXTERNAL q—ﬁ gm SCLK/A6
SCLK 15

INTERNAL ——

CLK BIT

0 = EXT —d
[~

B3 37

FIGURE 2-19 — SERIAL PORT I/O LOGIC

The TXD and RXD lines use I/O lines B3 and A5 respectively. This configuration allows the TXD
and RXD pins to be used as I/0 pins if desired. If serial port transmission is disabled, then TXD
follows B3. If reception is disabled, then no receiver interrupts occur and A5 is aninput bit.

Clock Sources and Serial Port Modes

The serial port can be driven by an internal (Timer 3) or external baud rate generator. The source
of the serial clock (SCLK) is determined by the clock (CLK) bit, SCTL1(6) (See Section 2.7.5).
An external clock source is input on the highimpedance A6/SCLK line. An internal clock source
is output on the low impedance A6/SCLK line, being derived from Timer 3 via a ¢/2 clock
(fosc/8 for /4 option, fogc/4 for /2 option) as shown in Figure 2-19. The internally generated
SCLK has a 50% duty cycle. The current value of SCLK (internal or external) can be determined
by reading A6/SCLK. The RX receives data on the rising SCLK edges and the TX transmits data
on the falling SCLK edges.

The RX/TX has three communication modes: asynchronous, isosynchronous, and serial 1/0.
The serial /O mode is used to link the serial port to shift registers for simple I/0 expansion. The
isosynchronous and asynchronous communication modes are used to link to other

‘ synchronous and asynchronous devices. These two mode also have extra features for two

formats of multiprocessor communication. In alt modes I/0 is NRZ {non-return to zero) format,
i.e. data value 1 = high level, and data value O = low level.

Asynchronous Communication Mode
When the serial port is operating in the asynchronous communication mode, the frame format

consists of a start bit, five to eight data bits, even/odd/no parity, and one or two stop bits. The
bit period is 16 times the SCLK period.

2-35

2.7.2.2

2-36

SCLK

TXD
RXD

RX operation is initiated by reception of a valid start bit, which consists of a negative edge (1
and then O in adjacent SCLK periods) followed by taking a majority vote of three samples where
2 of the samples must be zero. These samples occur seven, eight, and nine SCLK periods after
the negative edge. This sequence provides false start bit rejection and also locates the center of
bits in the frame, where the bits will be read on a majority basis. Figure 2-20 illustrates the
asynchronous communication format, with a start bit showing how edges are found and
majority vote taken.

FALLING
EDGE DETECTED MAJORITY VOTE TAKEN

l l‘ 2 3 4 5 6 L L ls' 1 a2 13' W 15 16 .. 12
JuUuyyuyyuyuyuyuuyrirUuUuUuULnungo

DATA BIT PERIOD = 16 SCLK PERIODS

]

FIGURE 2-20 — ASYNCHRONOUS COMMUNICATION FORMAT

Since the RX synchronizes itself to frames, the external transmitting and receiving devices do
not have to use the same SCLK; it may be generated locally. If the internal SCLK is used it wilt
be output continuously on pin AB.

Isosynchronous Communication Mode

In this mode, the frame format consists of a start bit, five to eight data bits, even/odd/no parity,
and one or two stop bits. The bit period equals the SCLK period. RX operation is initiated by
reception of a valid start bit, which consists of a negative edge. Bits are read on a single value
basis. Since the RX does not synchronize itself to data bits the transmitter and receiver must be
supplied with a common SCLK. If the internal SCLK is used it is output continuously on pin
A6/SCLK. Figure 2-21 illustrates the isosynchronous communication format, with a complete
frame consisting of a start bit, six data bits, even parity, and two stop bits.

FALLING EDGE
INDICATES
START BIT

|

[]

] i

: . |

')
s [oo |01 o2 b3 |oaos | E|s1 s2

“— i
DATA BIT PERIOD = SCLK PERIOD
)

TXD
RXD

FIGURE 2-21 — ISOSYNCHRONOUS COMMUNICATION FORMAT

2.7.2.3

2.7.3

In both the asynchronous and isosynchronous communication modes, when a frame is fully
received, RXBUF is loaded from RXSHF, RXRDY and INT4 FLG are set to 1, and the error status
bits are set accordingly. RXRDY is reset to O when the CPU reads RXBUF.

Transmission is initiated after the CPU writes to TXBUF. This sets TXRDY to 0. Once TXSHF is
empty, it is loaded from TXBUF, setting TXRDY and INT4 FLG to 1. Upon completion of the
transmission, TXSHF will reload if TXBUF is full; if not the TX will idle and TXE will be 1 until
TXBUF is written to.

Serial /O Communication Mode

When the serial I/O mode is in operation, the frame format is five to eight data bits and one stop
bit, with no corresponding clock edge for the stop bit. The clock does not send pulses during
the stop bits. The bit period is equal to the SCLK period. TX operation is initiated by writing to
TXBUF, when TXRDY equals 1. RX operation is initiated by writing a 1 to the RXEN bit. Figure
2-22 illustrates the serial 1/O format for two back to back frames, each containing five data
bits.

SCLK ACTIVE AND DATA BEING TRANSMITTED OR RECEIVED

ERRREEREEE.

INTERNALLY

GENERATED Illlllllll ll'llllrll_
SCLK ;

},’f{,’ . oo o1 p2] o3 04 [so | po o1 [z)03 [os so

o t o

SCLK & TXD INACTIVE AND HIGH
FIGURE 2.22 — SERIAL /0 COMMUNICATION FORMAT

Aninternal SCLK source will be output on pin A6/SCLK. In the serial I/0 mode, SCLK is gated
on pin A6/SCLK and will only be active when data is being transmitted or received; otherwise,
pin A6/SCLK will have a one value. An external SCLK may be selected and will drive the serial
port. However, this clock mode will be useless since there is no on-chip method to generate a
gated SCLK to drive the external shift registers.

Multiprocessor Communication

When the serial port is in either the asynchronous or isosynchronous communications mode, -
the multiprocessor communication formats are available. These formats are used to transfer
information between many microcomputers on the same serial link. Information is transferred
as a block of frames from a particular source to some destination(s). The TMS70X1 has
features to identify the start of blocks, and suppress interrupts and status information from the
RX until a block start is identified.

2-37

2.7.3.1

2-38

In both multiprocessor modes the sequence is as follows: the serial port wakes up at the start
of a block and the TMS70X1 CPU reads the first few frames (containing a destination address).
If the block is addressed to the microcomputer the CPU reads the rest of the block; if not it puts
the serial port to sleep again and therefore will not receive serial port interrupts until the next
block start.

In order to provide more flexibility, the TMS70X1 implements two multiprocessor protocols,
one supported by Motorola and the other by Intel. These protocols are described in the
following paragraphs. The Motorola protocol is compatible with the Motorola MC6801

processor mode and the Intel protocol is compatible with the Intel protocol for the 8051. The
mode of TMS70X1 multiprocessor protocol is software selectable via the MULTI bit in the
SMODE register (see section 2.7.5). Both formats use the WU and SLEEP flags to control the
TX and RX features of these modes.

Because the Intel multiprocessor mode contalns an extra address/data bit, it is not as efficient
as the Motorola mode in handling large blocks (over 10 bytes) of data. The Intel mode on the
other hand, is more efficient in handling many small blocks of data because it does not have to
wait in between blocks of data as does the Motorola mode.

Motorola !M0680 1) Protocol

In this protocol, blocks are distinguished by having a longer idle time between the blocks than
between frames in the blocks. An idle time 10 bits or more after a frame indicates the start of a
new block.

In the Motorola mode of multiprocessor communications, the processor wakes up (serial port
serial port interrupt. The user’s service routine then receives the address sent out by the
transmitter and compares this address to its own. If the CPU is addressed, the service routine
will not set the SLEEP bit, and receive the rest of the block. If the CPU is not addressed, the
service routine sets the SLEEP bit (in software) to a 1. This lets the CPU continue to execute its
main program without being interrupted by the serial port. The serial port will set the SLEEP bit
to O whenever it detects a block start signal. '

There are two ways to send a block start signal. The first is to deliberately leave an idle time of
10 bits or more by delaying the time between the transmission of the last frame of data in the
previous block and the address frame of the new block. In the second way, the TMS70X1 -
implements a more efficient method of sending a block start signal. Using the wake up (WU)
bit, an idle time of exactly one frame (timed by the serial port) can be sent. The serial

communications line is therefore not idle any longer than necessary.

Associated with the WU bit is the wake up temporary (WUT) ?Iag. WUT is an internal flag,
double buffered with WU. When TXSHF is loaded from TXBUF, WUT is loaded from WU and
WU is reset to O. This configuration is shown in Figure 2-23.

wu TXBUF

| U

wWuT : - TXSHF

FIGURE 2-23 — DOUBLE BUFFERED WUT AND TXSHF
Sending out a block start signal of exactly one frame time is accomplished as follows:

A 1 must first be written to the WU bit. Then a data word (don’t care) must be written to the
TXBUF. When the TXSHF is free again, the contents of the TXBUF are shifted to the TXSHFE
and the WU value is shifted to WUT. If the WU bit had been set to a 1, the start, data, and parity
bits will be suppressed and an idle period of one frame, timed by the serial port, will be
transmitted. The next data word, shifted out of the serial port after the block start signal, will be
the second data word written to the TXBUF after writing a 1 to the WU bit. The first data word
written is suppressed while the block start signal is sent out, and ignored after that.

However, writing the first don’t care data word to the TXBUF is necessary so the WU bit value
can be shifted to WUT. After the don’t care data word is shifted to the TXSHF, the TXBUF (and
WU if necessary) may be written to again, since WUT and TXSHF are both double buffered.

Although the RX still operates when the SLEEP bit is 1, it will not set RXRDY, INT4 FLG, or the

error status bits to 1. The RX will set the SLEEP bit to O if it times an appropriate 10 bit idle time
on RXD. The Motorola multiprocessor communication format is shown in Figure 2-24.

/ prose OI'= FrAMES \
-

4 A} L

! N
mome | JL T L_JL_J, L J0 J0L_J,0L_JI T’

L—— IDLE PERIODS OF 10 BITS OR MORE

2;3::::059 s ADDR Jsrlst| DATA Jsp 1s7] DATA 13
\ A A '
FIRST FRAME WITHIN FRAME WITHIN
BLOCK IS ADDRESS. : BLOCK
IT FOLLOWS IDLE -
PERIOD OF 10 BITS IDLE PERIOD -
OR MORE. LESS THAN 10 BITS
FIGURE 2-24 — MOTOROLA MULTIPROCESSOR COMMUNICATION FORMAT
2.7.3.2 Intel (I8051) Protocol

In the Intel protocol, the frame has an extra or address bit just before the parity bit. Blocks are
distinguished by the first frame(s) in the block with the address bit set to 1, and all other frames

~with the address bit set to 0. The idie period timing is irrelevant.

2-39

2.7.4

2-40

The WU bit is used to set the address bit. In the TX, when the TXBUF and WU are loaded into
the TXSHF and WUT, WU is reset to O and WUT is the value of the address bit of the current
frame. Thus, to send an address, the WU bit must be set to a 1, and the appropriate address
value should then be written to the TXBUF. When this address value is transferred to the
TXSHF and shifted out, its address bit will be sent as a 1, which flags the other processors on
the serial link to read the address. Since the TXSHF and WUT are both double buffered, the
TXBUF and WU may be written to immediately after TXSHF and WUT are loaded. To transmit
non-address frames in the block, the WU bit must be left at O.

On the serial link, all processors set their SLEEP bit to 1 so that they will only be interrupted
when the address bit in the data stream is a 1. When the processors receive the address of the
current block, they compare it to their own addresses and those processors which are
addressed set their SLEEP bit to a O, so that they will read the rest of the block.

Though the RX still operates when the SLEEP bit is 1, it will not set RXRDY, INT4 FLG, or the
error status bits to 1 unless the address bit in the received frame is a 1. The RX does not alter
the SLEEP bit: this must be done in software. The Intel multiprocessar communication format
is shown in Figure 2-25.

/ S \
s = f \ T

L

RXD/TXD | l?l ITI] fI T’l T*l I 1.1
' IDLE PERIOD OF NO SIGNIFICANCEf f f
RXD/TXD -
EXPANDED | ADDR | 1 splsT] DATA o]se Ist] DATA ToTse
\ A J
\ 4 v

FIRST FRAME WITHIN ADDR/DATA BIT

BLOCK IS ADDRESS. IS 0 FOR FRAME

THE ADDR/DATA BIT WITHIN BLOCK.

IS 1,

IDLE TIME IS OF
NO SIGNIFICANCE.
FIGURE 2-25 — INTEL MULTIPROCESSOR COMMUNICATION FORMAT
Timer 3

Timer 3 is a simplified version of Timer 1 and 2 and, like Timer 2, is only available on the
TMS70X1 versions of the TMS7000 family. Figure 2-26 is a block diagram of Timer 3.

384

2-BIT 8-BIT LATCH
LATCH T3DATA (7-0)
2-BIT .
2 el
o * PRESCALER 8-BIT TIMER

'

READ FROM T3DATA (7-0)

SET T3FLG =1 eg——mi

SET INTAFLG =1, IF T3ENB =1 «—

RX/TX GENERATED
-———
INTERNAL SCLK = @] OIVIDEBY 2 '

FIGURE 2-26 — TIMER 3 BLOCK DIAGRAM

Timer -3 is accessed through T3DATA (similar to T1DATA and T2DATA), and SCTL1 (shared
with RX/TX functions). The clock source for Timer 3 is internal only, and has a frequency of
/2. Timer 3 is a free running clock and is updated with new timer values when it decrements
through zero. .

Timer 3 consists of a 2-bit prescaler and an 8-bit timer. Both the prescaler and the timer are
reloaded from 2-bit and 8-bit latches respectively, when they decrement through zero. The
latches are write only, but the 8-bit counter can be read.

The Timer 3 output goes to the serial port via a divide by two circuit, producing an equal
mark-space ratio internal SCLK. The baud rate generated by Timer 3 is user programmable and
is determined by the value of the 2-bit prescaler and the 8-bit timer latch. The equations for
determining the baud rates for both the asynchronous and isosynchronous modes are as
follows: ‘

¢
64 x(PL + 1) x(TL + 1)

Asynchronous Baud Rate =

)
4x(PL + 1)x(TL + 1)

|

Isosynchronous Baud Rate =

where:

fosc = crystal frequency

(0] = Internal machine clock frequency '
(either 1/4 or 1/2 of fosc¢ depending on clock chaice)

PL = Timer 3 prescale latch value

TL =Timer 3 latch value

For example, to program the serial port to operate at 300 baud in the asynchronous mode (with
¢ = 2.5 MHz), the prescaler value is set to O and the latch value set to 129 decimal, or >81.

2-41

The Timer 3 output always sets T3FLG to 1, and sets INT4 FLG to 1 if T3ENB is a 1 when the
timer and prescaler decrement through O. This allows Timer 3 to be used as a utility timer if it is
not used by the serial port. Timer 3 and its flags are not affected by the serial port software
reset, UR. Therefore, Timer 3 may be used independently of the serial port.)

2.7.5 Serial Port Registers
2.7.5.1 Mode Register (SMODE)

SMODE (see Figure 2-27) is a write-only register and is accessed through P17 in the peripheral
file. It describes the character format and type of communications mode (asynchronous or
isosynchronous). SMODE is only accessible after a hardware reset or after resetting the UART
through the UR bit. It must be the first register written to in the serial portimmediately following
a reset. After writing to the SMODE register, it cannot be accessed without first performing a
reset operation. The first operation to location P17 in the peripheral file, immediately following
a reset, will access the SMODE register. All subsequent writes to P17 will access the control

register (SCTLO).
(First write after RESET)
PF
number: 7 6 5 4 3 2 1 0
P17
Address: STOP [SIO |PEVEN| PEN [CHAR1|CHARO|{COMM | MULTI | WRITE ONLY
>0111

1 = Intel protocol

|__| LO = Motorola protocol

O = Isosynchronous
communication

1 = Asynchronous
communication

00 = 5 bits/character

—— 01 = 6 bits/character
AN _— T hisalalhmcn nsnn
v = 7 viIw/uliarautict
1=

8 bits/character

—— 1 = Parity enabled
O = Parity disabled

= Even parity
= 0Odd parity

‘L— 0 = Serial /0 mode
1 = Communication mode

—O = One stop bit -
1 = Two stop bits

FIGURE 2-27 — SERIAL MODE REGISTER - SMODE

\

2-42 . 384

NOTE

If the serial port is configured so that some features are irrelevant, then the
corresponding flags are don‘t care. For example, when configured in the serial |/O
mode, bits 7, 4,1, and O are Don’t Cares.

MULTIPROCESSOR MODE (MULTI) BIT O:

There are two possible multiprocessor protocols, the Motorola and the Intel. Both are described
in Section 2.7.3. Setting this bit to a O selects the Motorola protocol; setting it to a 1 selects the
Intel protocol. The multiprocessor communication is different from the other communication
modes in that the multiprocessor mode uses the Wake-Up and the Sleep functions.

COMMUNICATIONS MODE (COMM) BIT 1:

This bit determines the serial port mode of communication. Setting the bit to 1 selects the
asynchronous mode. In this mode the bit period is 16 times the SCLK period and bits are read
on a two out of three vote basis. Setting the bit to O selects the isosynchronous mode. In this
mode, the bit period is equal to the SCLK period and bits are read on a single value basis. These
modes of operation are described in section 2.7.2..

NUMBER OF BITS PER CHARACTER (CHAR1 ,CHARO) BITS 2,3:

Characters are programmable to 5, 6, 7 or 8 bits. Characters of less than 8 bits are
right-justified in RXBUF and TXBUF. Characters of less than 8 bits are padded with leading
zeros in the RXBUF. The unused leading bits in the TXBUF may be written as don't care values.
The RXBUF and TXBUF register formats are given in sections 2.7.5.6 and 2.7.5.7.

PARITY ENABLE (PEN) BIT 4:

If parity is disabled then no parity bit is generated during transmission or expected during
reception. A received parity bit is not transferred to the RXBUF with the received data as it is
not considered one of the data bits when programming the character field.

PARITY EVEN (PEVEN) BIT 5:

If PEN is set, then this bit defines odd or even parity according to the number of odd or even 1
bits in both transmitted and received characters.

SERIAL I/0 OR COMMUNICATION MODE (SIO) BIT 6:

This bit determines whether the serial port operates in the serial I/O mode or one of the
communication modes. Setting this bit to a O sets the serial port in the serial |/O mode. Deletion
of the start and stop bits, in conjunction with an internal 1x clock, allows ease of I/O expansion
by use of external shift registers. Setting this bit to a 1 selects the communication mode. When
this bit is set to 1 the COMM bit determines whether the serial port is in the asynchronous or
isosynchronous mode.

NUMBER OF STOP BITS (STOP) BIT 7:
This bit determines the number of stop bits sent when the serial port is in one of the

communication modes. Setting this bit to a O selects one stop bit, and setting it to a 1 selects
two stop bits. The receiver checks for one stop bit only.

2-43

2.7.5.2

244

Serial Control O Reg/'s ter (SCTLO)

SCTLO (see Figure 2-28) is a write-only register, and is accessed through P17 of the peripheral
file. The SCTLO register is used to control the serial port functions, such as transmit and receive
enable, clearing of error flags and software reset. After a hardware or software reset, the
SMODE register must be written to before accessing the SCTLO register, since the SMODE and
SCTLO registers are accessed through the same location. Any subsequent writes to this
register location (P17} will load the SCTLO register. SCTLO is cleared by a reset (hardware or
software).

PF number: 7 6 5 4 3 2 1 0

P17

Address: X UR X ER X [RXEN [X | TXEN WRITE ONLY
>0111

- [1 = Transmitter enabled

0 = Transmitter disabled

= Receiver enabled
0 = Receiver disabled

L—1 = Reset error flag
0 = Noreset flags

— 1 = Reset serial port
0 = Noreset

FIGURE 2-28 — SERIAL CONTROL O REGISTER - SCTLO
TRANSMIT ENABLE (TXEN) BIT O:

Data transmission through TXD cannot take place unless this bitis setto a 1, When resetting

a 0, the transmission is not halted until all the data previously written to TXBUF has been sent.
TXEN is set to O by a reset (hardware or software).

RECEIVE ENABLE (RXEN) BIT 2: : : .

In the communication modes {asyhnchronous and isosynchronous) setting the RXEN bit to 1
allows RX to set INT4 FLG, and enable RXRDY. When reset to O, this bit prevents received
characters from being transferred into the receiver buffer, and no RXRDY interrupt is
generated. However, the receiver shift register continues to assemble characters. Thus, if
RXEN is set partially through reception of a character, it will be transferred complete into
RXBUF. In the serial /0 mode writing a 1 to RXEN initiates RX operation. If an internally
generated SCLK is used, a gated SCLK at pin A6 is enabled. When the entire frame is received,
RX disables SCLK and sets RXRDY and INT4 FLG to a 1, and RXEN to 0. RXEN has no direct
effect on RXRDY or INT4 FLG in this mode. RXEN i is set to 0 by UR.

ERROR RESET (ER) BIT 4: - .

Writing a 1 to this bit clears aII three error flags in the SSTAT register (PE, OE, FE). Writing a O
has no effect.

384

2.7.5.3

384

SOFTWARE UART RESET (UR) BIT 6:

Writing a 1 to this bit puts the serial port in the reset condition, and enables the SMODE register
for initialization. A6/SCLK is put in the high impedance state {input), the TXD signal is held at 1,
so that the B3 pin may be used as a general purpose output line (see Figure 2-19). Untila O is
written to UR, all affected logic is held in the reset state. UR must be set to O before the
TMS70X1 CPU can write a 1 to CLK and output SCLK on Port A. UR is set to 1 by reset
{hardware). The UART Reset affects only the items above and it is not a general device reset
like the RESET pin.

Serial Port Status Register (SSTAT)

This status register (see Figure 2-29) is a read-only register and is accessed through P17 of the
Peripheral File. It is used for determining the status of the serial port. Bits O, 1, and 6 of this
register are cleared by a resét (hardware or software).

7 ‘6 5 4 3 2 1 0]
PF number: P17 - :
Address: >0111 0 [BRKDT| FE OE PE TXE | RXRDY | TXRDY READ ONLY

L 1 = TXBUF ready

for character
0 = TXBUF full

1 = RXBUF ready with
new character
0 = RXBUF empty

1 = Transmitter empty
0 = Transmitter writtento

1 = Parity error
0 = No parity error

1 = Overrun error
0 = No overrun error

1+= Framing error
O = No framing error

— 1 = Break detected
0 = No break

FIGURE 2-29 — SERIAL PORT STATUS REGISTER - SSTAT

TRANSMITTER READY (TXRDY) BIT O:

The TXRDY bit is set by the transmitter to indicate that TXBUF is ready to receive another
character, and is automatically reset when a character is loaded. The serial port interrupt (INT4)
is issued at the same time (if enabled) the TXRDY bit is set. This bitis set to 1 by UR.

RECEIVER READY (RXRDY) BIT 1:

This bit is set by the receiver to indicate that RXBUF is ready with a new character, and is
automatically reset when the character is read out. The serial port interrupt (if enabled) is
issued at the same time the RXRDY bit is set. RXRDY is set to O by UR.

2:45

2.7.5.4

2-46

TRANSMITTER EMPTY (TXE) BIT 2:

The TXE bitis set to 1 when the transmitter shift register and TXBUF are empty, and reset to 0
when the TXBUF is written to. This bit is set to 1 by UR. .

PARITY ERROR (PE) BIT 3:

PE is set when a character is received with a mismatch between the number of 1s and its parity
bit. This bit is reset by the ER bit in SCTLO.

OVERRUN ERROR (OE) BIT 4:
The overrun error bit is set when a character is transferred into RXBUF before the previous
charater has been read out. The previous character is overwritten and lost. OE is reset by the

ER bit in SCTLO.

BREAK DETECT (BRKDT) BIT 6:

) Thé BRKDT bit will show that a break condifion has occurred. BRKDT is set if the RXD line

remains continuously low for 10 bits or more, starting from the end of a frame (stop bit). When
the break ends, BRKDT is set to a O immediately. In the serial /O mode BRKDT remains a O. This
bit is reset to O by UR. A break is generated by setting Port B bit 3 low. Setting B port bit 3 high
again resumes operation of the TXD line.

Figure 2-16, Serial Port /O Logic, shows how the TXD and RXD lines are multiplexed on 1/O
lines B3 and A5 respectively. This configuration allows the TXD and RXD pins to be used as I/O
pins if desired. If transmission is disabled, then TXD follows B3. If reception is disabled, then no

receiver interrupts occur and A5 is an input bit.

FRAMING ERROR (FE) BIT 5:

The FE bit is set when a character is received with a O stop bit. The stop bit indicates that

~ synchronization with the start bit has been lost and the character is incorrectly framed. FE is

reset by the ER bit in SCTLO.
Serial Control 1 Register (SCTL1)
The SCTL1 (see Figure 2-30) is a read/write register and is accessed through P21 in the

peripheral file. This. register is used to control the source of SCLK, multiprocessor.
communications, Timer 3 interrupt, and the Timer 3 prescaler value.

384

Address:

—0 = T3FLG was cleared by software
1 = Timer 3 decremented through zero
or T3FLG was set by software

Pf number 7 6 5 4 3 2 1 0
0 CLK SLEEP wu T3FLG | T3ENB (PRE3(1) [PRE3(0) | READ
>0115 X . CLK | SLEEP WU | T3FLG | T3ENB |PRE3(1)| PRE3(0)| WRITE

: E 2-Bit prescale

latch for Timer

0 = Disables T3 interrupt
to set INT4 FLG

1 = Enables T3 interrupt
to set INT4 FLG

— O = Clear T3FLG
1 = Set T3FLG

—— Controls TX multiprocessor communication

—— Controls RX multiprocessor communication

——O0 = External SCLK from pin A6/SCLK
1 = Internal SCLK from Timer 3

FIGURE 2-30 — SERIAL CONTROL 1 REGISTER - SCTL1

TIMER 3 PRESCALE LATCH (PRE3{1), PRE3(0)) BITS 0,1:

These bits act as the prescale bits for Timer 3. The internal clock input to the Timer 3 is either
fosc/4. 18, /16, or /32 (/2 option) or fosc/8, /16, /32, or /64 (/4 option) depending on the
setting of these bits. The output of timér 3 divided by 2 is the actual baud rate for the
isosynchronous mode or divided by 32 for the asynchronous mode. :

TIMER 3 INTERRUPT ENABLE (T3ENB) BIT 2:

When T3ENBis settoa 1, Timer 3 will set INT4AFLGtoa 1 whenitsets T3FLGtoa 1. T3ENBIs
reset to O by a hardware reset, but not by UR. This allows Timer 3 to operate independently of
the serial port. ’ :

TIMER 3 INTERRUPT FLAG (T3FLG) BIT 3:

The T3FLG bit is set to a 1 when both the Timer 3 prescaler and Timer 3 decrement through

zero together. T3FLG indicates that Timer 3 was the source of the serial port interrupt. T3FLG

must be cleared by software in the T3 interrupt service routine, since it is not cleared when the

INT4 vector is fetched by the CPU: This bit is also reset to O by a hardware reset, but not by UR.
This allows Timer 3 to operate independently of the serial port.

‘2:47

2.7.5.5

2.7.5.6

2-48

WAKE UP (WU) BIT 4:

The WU bit controls the TX features of the multinrocessor modes {Section 2.7.3). W
to O by UR and cannot be set again until UR is cleared.

SLEEP (SLEEP) BIT 5:

The SLEEP bit is used to control the RX features of the multiprocessor modes (S‘ection 2.7.3).
This bit is reset to O by UR.

SERIAL CLOCK SOURCE (CLK) BIT 6:

The CLK determines the source of SCLK. Setting this bit to a O selects an external SCLK, which
is input on the high impedance A6/SCLK line. Setting it to a 1 selects an internal SCLK, derived
from Timer 3. This signal is output on the low impedance A6/SCLK line. The CLK bit is reset to
0 by UR and cannot be set again until UR is cleared.

Timer 3 Data Register

The Timer 3 Data register - T3DATA (see Flgure 2-31) is a read/write register and is accessed
through P20 in the Peripheral File.

7 ‘ 6 ' 5 l 4 | 3 I 2 ‘ 1 | 0
PF number:P20 msb CURRENT TIMER VALUE Isb | READ
Address: >0114

msb TIMER LATCH VALUE (TL) Isb |WRITE

FIGURE 2-31 — TIMER 3 DATA REGISTER - T3DATA

Receiver Buffer

The receiver buffer - RXBUF (see Figure 2-32) is a read-only register and is accessed through
P22 in the Peripheral File. This register contains the current data from the RX. Writing has no
direct effect on this register. Note that the read/write sequence of the MOVP instruction (as
well as ORP, XORP, ANDP) performs a read before a write. This action will perform a spurious.
clearing of the RXBUF, and will set RXRDY to 0. Data in the RXBUF is right justified with padded
Os.

7‘6'5\4‘3‘2'1‘0

PF number:P22 msb RECEIVER DATA Isb
Address: >0116
0 0 0 &4———b5databits——p
0 0 <« 6 data bits »
0 <« 7 data bits »
< 8 data bits >

FIGURE 2-32 — RECEIVER BUFFER - RXBUF

2.7.5.7

2.7.6

2.7.7

Transmitter Buffer

The transmitter buffer - TXBUF (see Figure 2-33) is a write-only register and is accessed
through P23 in the Peripheral File. This register contains the data to be transmitted by the TX.
Reading P23 returns >00. Data written to the TXBUF must be right justified since the left-most
bits will be ignored for characters less than eight bits in length.

7l6'|5‘4‘3‘2|1|0

PF number:P23 msb TRANSMITTER DATA Isb
Address: >0117

X X X <&4——5databits——p
X X &4 ——6databits———p
X «&4——————7databits >
< 8 data bits :

FIGURE 2-33 — TRANSMITTER BUFFER - TXBUF
Serial Port Initialization

To use the serial port on the TMS70X1, the user must first initialize it. After initialization, the
serial port is operated by simply reading and writing to Peripheral File registers. Initialize the
serial port as follows:

1) -Set B3 Data value to 1. This allows the TXD line to transmit.

2) Write to the SMODE register (P17). This sets the character format and the type of
communication mode.

3) Write to the SCTLO register (second write to P17) to set the UR bit to 0. This same write
can also enable the transmitter, receiver, or both.

Once the serial port is initialized it can be operated continuously in the selected operational
mode. If the mode needs to be changed, the serial port must be reset, and then reinitialized for
the desired mode. The serial port can be reset in two ways; hardware reset (via RESET.pin), or
software reset (via UR bitin SCTLO).

Serial Port Interrupts

INT4 is dedicated to the serial port. Three sources can generate an interrupt through INT4: the
transmitter (TX), the receiver {RX), and Timer 3 (T3). Setting TXEN to a 1 allows data loaded
into the TXBUF to be shifted into the TXSHF The TX sets TXRDY and INT4 FLG to 1 when
TXSHF is loaded from TXBUF.

In the communication modes, if RXEN is set to 1 the RX sets RXRDY and INT4 FLG toa 1 when
RXBUF is loaded from RXSHE If RXEN is O, the RXSHF still receives frames and shifts them
into the RXBUF, but RXRDY and INT4 FLG are held to O. If a character is in RXBUF, and RXEN is
then setto a 1, RXRDY and INT4 FLG will be set to 1.

In the serial /O mode the RXEN is set to initiate the receptlon ofa frame When the last bit of
the frame is received RXEN is reset to O.

2:49

2.8

2-50

However, RXRDY and INT4 FLG are still set to 1 when the character is shifted from RXSHF to
RXBUF. RXRDY and INT4 FLG bits are not masked by RXEN.

Timer 3 sets T3FLG, and INT4 FLG if T3ENB = 1, when its prescaler and timer decrement
through O together.

Thus when INT4 is acknowledged by the CPU; RXRDY, TXRDY, and T3FLG are the flags to
indicate its source. The INT4 service routine must determine which of these sources caused
INT4 in the specific application. For example, if all three are likely sources, the INT4 service
routine must check for the following possible situations:

1} RXRDY only

2) TXRDY only

3) T3only

4) RXRDY, TXRDY, T3
5} RXRDY, TXRDY

6) RXRDY, T3

©7) TXRDY, T3

8) None

The last situation check is necessary because RXRDY, TXRDY, or T3FLG can set INT4 FLG.
Therefore it is possible that one or more interrupts may occur between CPU acknowledgement
of INT4 and INT4 service routine testing of RXRDY, TXRDY, and T3FLG. The INT4 FLG bit is
cleared by the CPU when it acknowledges INT4. If a second source of INT4 is sét in the time
between this clearing and the software testing, the second or third interrupts will be serviced
by current INT4 service routine. Thus when INT4 is again acknowledged (INT4 FLG was set
again by the second interrupt) RXRDY, TXRDY, and T3FLG will all be set to O.

" PIN DESCRIPTION

Table 2-9 and Table 2-10 defines the pin assignments and describes the function of each pin for
the Single-Chip, Peripheral Expansion, Full Expansion, Microprocessor and Emulator modes for
the TMS70X0 and TMS70X1. All the TMS7000 family devices discussed in this manual are
pin compatible. Some pins on 70X 1 devices have extra functions and CMOS devices have
different electrical specifications {see Section 4).

TABLE 2-9 — SC, PE, FE, AND MICROPROCESSOR PIN ASSIGNMENTS

APPLICABLE
SIGNATURE /0 DESCRIPTION SECTIONS
AO 110 . AO-A4 and A7 are general purpose bi-directional 2.2
At 1/0 pins and A5,A8 are input-only general purpose 2.3
A2 110 pins for the 70X1 only.
A3 110 AO-A7 are general purpose input pins for
A4 110 70X0 devices.
A5/RXD IN Serial port receiver 271
A6/SCLK 1/0 Serial port clock, input or output 272
A7 110 Real Time Clock used to decrement Timer 1 2.6.1
BO ouT BO-B3 Output only pins 2.2
B1 OUT | B4-B7 Output only pins in single chip mode 2.3
B2 ouT B4-B7 Memory interface in all other modes
B3/TXD ouT Serial port transmitter in 70X1 devices only 2,71
B4/ALATCH ouT Memory interface Address Latch strobe
B5/ RW ouT Memory interface Read or Write signal
B6/ENABLE ouT Memory interface Enable strobe
B7/CLOCKOUT| OUT Internal clock out
co 170 General purpose bi-direction pins in single 2.2
C1 110 chip mode 2.3
Cc2 110 :
C3 110 Multiplexed low address and data bus in
c4 110 all other modes
C5 110
cé /0
c7 110
DO 110 General purpose Bi-direction pins in single 2.2
D1 110 chip and peripheral expansion modes 2.3
D2 110
D3 110 High address bus in Full Expansion and
D4 110 Microprocessor modes
D5 . 110
D6 1/0
D7 110
INT1 IN Maskable interrupt of higher priority 24
INT3 . IN Maskable interrupt of lower priority 2.4
RESET IN Device reset 2.5.2
MC IN Mode control 2.3
XTAL2/CLKIN IN Crystal input for control of internal oscill. 2.5
or input pin for external oscill.
XTAL1 IN Crystal input for control of internal oscill. 2.5
leave open for external oscill.
vee IN Supply voltage { +5V NMOS, 3 to 6V for CMOS)
Vss IN ground reference

2-51

BS/RMW 1 Vss
B7/CLOCKOUT 2 B6/ENABLE
B0 3 B4/ALATCH

B1 4 B3

B2 5§ mc

A0 6 c7

Al 7 c6
A2 8 cs

A3 9 c4

A4 10 c3

A7 N c2

INT3 12 1

iNT1 13 co

RESET 14 DO

: A6 15 D1
A5 16 Vee

XTAL2/CLKIN 17 D2

XTALT 18 D3

D7 19 D4

D6 20 DS

ssaw 1] [40 vss
B7/cLockouT 2] 39 B6/ENABLE
- B0 3(38 B4/ALATCH
Bl 4] 37 B3/TXD
B2 5[D36 m™mC
a0 600 D35 c7
a1t 700 34 c6
a2 s 033 c5
a3 9 32 &
as 10 31 c3
a7 ol 70x1 |30 c2
Wiz 12 29 o
iNTT 13 (] 28 CO
RESET 14 (] 27 DO
aéisclk 15 2% DI
A5/RXD 16] 25 Vce
XTAL2/CLKIN 17] 24 D2
xTAL1 18 (] - J23 03
p7 19 (] D22 oa
ps 20 [] D21 b5

FIGURE 2-34 — SC, FE, PE, AND MICROPROCESSOR MODE PIN ASSIGNMENTS

2.52

TABLE 2-10. — SYSTEM EMULATOR MODE PIN ASSIGNMENTS

APPLICABLE
SIQNATURE 110 ‘ DESCRIPTION SECTIONS
AO /0 Not Connected 2.35
Al 110 . NC
A2 110 NC
A3 110 NC
A4 110 NC
AB/RXD IN NC
AB/SCLK 110 NC
A7 110 NC
BO ouT NC
B1 ouT NC
B2 ouT NC
B3/TXD ouTt Interrupt Acknowledge 2.5.3
B4/ALATCH OUT | Memory interface Address latch 235
BS/RW | OUT Memory interface Read or Write 2.3
B6/ENABLE ouT Memory interface Memory Enable
B7/CLOCKOUT| OUT. | Internal clock out
co 110 ADDRO
c1 110 ADDR1 2.3
Cc2 /0 ADDR2 Multiplexed low address and data bus -
c3 110 ADDR3 ‘
ca 110 ADDR4 i
C5 110 ADDR5
Ccé 1/0 ADDR6
Cc7 110 ADDR7
DO, 1/0 ADDRS 2.2
D1 110 ADDR9 2.3
D2 110 - ADDR10
D3 110 ADDR11 High order address byte
D4 110 ADDR12
D5 110 ADDR13
"D6 1/0 ADDR14
D7 1/0 ADDR15
NM1 IN Non-Maskable interrupt of higher priority 235
INT IN Maskable interrupt of lower priority 235
Note: This pin is NC on the CMOS version
RESET IN Device reset 2.5.2
MC IN 'Mode control: must be held at + 14 Volts 23
XTAL2/CLKIN IN Crystal input for control of internal oscill. 25
or input pin for external oscill. o
XTAL1 IN Crystal input for control of interan! oscill. 25
leave open for external oscill.
Vee IN Supply voltage (+5V NMOS, 3V to 6V for CMOS)
Vss "IN Ground reference

2-53

2.54

BS/RW 1 Vss
B7/CLOCKOUT * 2 B6/ENABLE
: B0 3 B4/ALATCH

B1 4 83/INTA
B2 5 MmC
A0 6 c7
Al 7 c6
A2 8 cs
A3 9 c4
A4 10 c3
A7 N c2

Ml 12 c1)
iNT 13 co
RESET 14 Do
A6 15 D1
A5 16 vee

XTAL2/CLKIN 17 D2
XTAL1 18 D3
D7 19 D4
D6 20 D5

FIGURE 2-35 — SYSTEM EMUMTOR MODE PIN ASSIGNMENTS

3.1

STANDARD INSTRUCTION SET

The TMS7000 instruction set is composed of 61 instructions that provide for input, output,
manipulation, and comparison of data. The instruction set is divided into eight functional
categories: ‘

ARITHMETIC INSTRUCTIONS

BRANCH AND JUMP INSTRUCTIONS

COMPARE INSTRUCTIONS

CONTROL INSTRUCTIONS

LOAD AND MOVE INSTRUCTIONS

LOGICAL INSTRUCTIONS

SHIFT INSTRUCTIONS

I/O INSTRUCTIONS
Refer to the TMS7000 ASSEMBLY LANGUAGE PROGRAMMER'’S GUIDE (MP 916) for a
detailed description of the instruction set, machine formats, addressing modes, and other
information relevant to the execution of a TMS7000 assembly language program. The
sections that follow summarize the key features of the TMS7000 Assembler.

DEFINITIONS ' :

The symbols used in the instructions are listed and defined in Table 3-1.

31

32

TABLE 3-1 — TMS7000 SYMBOL DEFINITIONS

SYMBOL DEFINITION
$ Current value of Program Counter
A Register A or RO in Register File
B Register B or R1 in Register File
b Bit numberasinb7 (0 <=b <=7)
Rn Register n of Register File (0 < =n <= 127)
Rn-1 Regsiter File numbern-1 (0 <=n <= 127)
Pn Port n of Peripheral File (0 < = n <= 255)
PC Program Counter
IPC Interpretive Program Counter
ST Status Register
SP Stack Pointer
s Source operand (either a reg or an immed 8-bit operand)
Rs Source register in Register File (0 <=s <= 127)
d Destination operand (always a register)
Rd Destination register in Register File (0 <=d <= 127)
Pd Destination in peripheral file
Rd-1 Register File numberd-1 (0 <=d <= 127)
iop Immediate operand
ra Relative Address (ra = ta - pcn)
ta Target Address (ta =ra pcn)
pcn Location of the next instruction
cnd Condition
@ Indicates an address or label
% Indicates immediate operand
* Indicates Indirect Register File Addressing Mode
> Hexidecimal number
MSB Most significant byte or bit
LSB Least significant byte or bit

3.2 ADDRESSING MODES

The TMS7000 Assembly Language supports eight addressing modes. Five of these modes
specify 8-bit operands and are classifed as Direct Addressing Modes. The remaining three
addressing modes generate a 16-bit address and are classified as Extended Addressing Modes.
Table 3-2 summarizes both classifications.

TABLE 3-2 — TMS7000 ADDRESSING MODES

ADDRESSING . SEE
CLASS MODE : EXAMPLE SECTION
DIRECT SINGLE REGISTER LABEL DEC B

INC R45

. ’ CLR R23 3.2.1.1

REGISTER FILE LABEL MOV BA

ADD AR17 ,

CMP R32,R73 3.2.1.2
PERIPHERAL FILE LABEL XORP AP17)

MOVP P42,B o 3.2,1.3
IMMEDIATE LABEL AND % >C5,R55

ANDP %VALUE,P32

BTJO % >D6,R80,LABEL 3.2.1.4
PROGRAM COUNTER
RELATIVE LABEL1 JMP LABEL

DJNZ ALLABEL

BTJO %>16,R12,LABEL :

‘ - ' BTJOP B,P7,LABEL 3.2.1.5
EXTENDED | DIRECT MEMORY LABEL LDA ‘@ >F3D4

CMPA @LABEL 3.2.2.1
REGISTERFILE ‘
INDIRECT : LABEL STA *R43 3.2.2.2
INDEXED LABEL2 BR @LABEL(B) . 3.2.2.3

3.2.1 Direct Addressing Modes

The five Direct Addressing modes specify 8-bit operands. Each is described in the following
sections.

3.2.1.1 Single Register Addressing Mode

The Single Register Addressing mode specifies a single register in the Register File as
containing the 8-bit operand. The register can be sepcified as Rn or n (See Table 3-2), where nis
the Register File number and O is less than or equal to n which is less than or equal to 127.
When specifying either the A or B register, A or B can be substituted for RO or R1 respectively in
the operand field of the assembly language statement. As is explained in Section 3.3.1,
instructions using the Single Register Addressing mode are also called implied operand
instructions if either the A or B register is specified. Instructions using the Single Register
Addressing Mode and specifying Rn, where 2 is less than or equal to n which is less than or

384 : T) 33

equal to 127, are also called single operand instructons and are described in Section 3.3.2.
Figure 3-1 illustrates the object code generated by a Single Register instruction for the the

following cases:

Case 1: <inst>
<inst>

Case 2: <inst>

Rn (where 0 less than or equal to n which is less than or equal to

(PC) —» opcode

CASE 1

A
B
127)
(PC)—M opcode
(PC +1) —» Rn
CASE 2

{(Where 0 < n < 127)

FIGURE 3-1 — SINGLE REGISTER ADDRESSING MODE OBJECT CODE

3.2.1.2 Register File Addressing Mode

The Register File Addressing mode specifies a source and a destination register in the Register
File as containing the 8-bit operands. As illustrated in Table 3-2, the assembly language
statement specifies the source register before the destination register. Figure 3-2 illustrates the
object code generated by an instruction using the Register File Addressing mode for the

following cases:
Case 1: <inst>

Case 2: <inst>
<inst>
<inst>

Case 3: <inst>
<inst>
<inst>

B,A

A,B
Rs,A
Rs,B

A,Rd
. B,Rd
Rs,Rd

NOTE:‘i’he MOV instruction is uniquely defined for Register File Addressing mode. Refer to Table 3-8 for definition.

34

(PC) —™ opcode (PC) ——» opcode (PC) ——»{ opcode

(PC+1) — s (PC+1)-—J s

(PC+2) —») d

CASE 1 CASE 2° CASE 3

FIGURE 3-2 — REGISTER FILE ADDRESSING MODE OBJECT CODE
3.2.1.3 Peripheral File Addressing Mode

" The Peripheral File Addressing mode is used to perform 1/O tasks. Each PF register is an 8-bit
port which can be referred to as Pn or n, as shown in Table 3-2. There are four instructions that
use the Peripheral File Addressing mode: MOVP, ANDP, ORP, and XORP. BTJOP and BTJZP are
also peripheral instructions but they have a different format which is discussed in Section
3.3.4.3. All four instructions may be executed using either the A or B register as the source
register and Pn as the destination register. However, only the MOVP instruction may also be
executed using the Pn as the source register and either A or B as the destination register. Figure
3-3iillustrates the object code generated by an instruction using the Peripheral File Addressing
mode for the following cases:

Case 1: <inst> A,Pn
<inst> B,Pn

Case 2: MOvVP Pn,A
MOVP Pn,B

(PC) ——» opcode

(PC+1) ‘ Pn

. CASES 1 AND 2

FIGURE 3-3 — PERIPHERAL FILE ADDRESSING MODE OBJECT CODE

3-5

3.2.1.4

3.2.1.5

Immediate Addressing Mode

The Immediate Addressing mode uses the contents of the byte following the opcode byte as an
8-bit operand. As shown in Table 3-2, the immediate operand (iop) can be a hex constant or a
label, and is indicated by a percent sign preceding the expression. Immediate operands can be
used by RF, PF, and Jump instructions. Refer to Tables 3-8, 3-9, 3-13, and 3-14 for an
illustration of the particular machine instruction formats. In addition, the MOVD instruction
uses immediate operands in two special formats (See Table 3-18). Figure 3-4 illustrates the
simplest case of an instruction using the Immediate Addressing mode.

P

(PC) —W opcode

(PC+1) —»| - iop

FIGURE 3-4 — IMMEDIATE ADDRESSING MODE OBJECT CODE
Program Counter Relative Addressing Mode

The Program Counter Relative Addressing mode is used by all jump instructions. As shown in
Table 3-2, the assembly language statement for a jump instruction always includes a target
address (ta) in the form of a label. During assembly, the target address is used by the
microcomputer to calculate a relative address (ra) as follows: ra =ta -pcn, where pen is the
location of the next instruction and -128 is less than or equal to ra which is less than or equal to
127. Note that the relative address is also referred to as the offset. The machine instruction
formats for the various types of jump instructions are given in Tables 3-11, 3-12, 3-13, and
3-14. Figure 3-5illustrates the object code generated by a jump instructon.

{PC) opcode
L]
L]
n iop*
b
Y d*
t
e
S
* S*
*
(PC + n) =——ps ra

*n optional bytes, depending upon the particular jump instruction

FIGURE 3-5 — PROGRAM COUNTER RELATIVE ADDRESSING MODE OBJECT CODE

3.2.2 Extended Addressing Modes

The three Extended Addressing modes generate 16-bit addresses to memory. The 16-bit
address space includes the Register File, the Peripheral File, on-chip program memory, and
off-chip memory. Each of the Extended Addressing modes is described in the sections that
follow. : '

3221 Direct Memory Addressing Mode

Direct Addressing Mode specifies a 16-bit address that contains the operand. As shown in
Table 3-2, the 16-bit address is preceded by an @ sign and can be written as a hex constant or
as a label. Figure 3-6 shows how the object code produced by an instruction using the Direct
Memory Addressing mode is used to generate a 16-bit effective address.

(PC} opcode

(PC+1) —» addr MSB

> 16-BIT EFFECTIVE
ADDRESS

(PC +2) —» addr LSB

FIGURE 3-6 — DIRECT MEMORY ADDRESSING MODE OBJECT CODE
3.2.2.2 - Register File Indirect Addressing Mode

The Register File Indirect Addressing mode uses the contents of a register pair as a 16-bit
effective address. As shown in Table 3-2, the indirect register file address is written as a
register number (Rn) preceded by an asterisk (¥}, i.e.: *Rn. The LSB of the address is contained
in Rn, and the MSB of the address is contained in the previous register (Rn-1). Note that RO
cannot be specified. Figure 3-7 shows how the object code produced by.an instruction using
the Register File Indirect Addressing mode is used to generate a 16-bit effective address.

(PC) —ﬁ opcode
Rn-—2
(PC+1) — Rn Rn-1 addr MSB 16-BIT
EFFECTIVE
——— Rn addr LSB ADDRESS
Rn+1

FIGURE 3-7 — REGISTER FILE INDIRECT ADDRESSING MODE OBJECT CODE

384 o : 3-7

3.2.2.3 Indexed Addressing Mode

The Indexed Addressing mode generates a 16-bit address by summing the contents of the B
register with a 16-bit direct memory address. As shown in Table 3-2, the assembly language
statement for the Indexed Addressing mode contains the direct memory address written as a
label preceded by an @ sign, followed by a B in parentheses, i.e.: @LABEL(B). The summing
operation automatically transfers any carries into the MSB. Figure 3-8 illustrates how the
object code produced by an instruction using the Indexed Addressing mode is used to generate
a 16-bit effective address. This mode should not be confused with the move double (MOVD)
instruction’s % VALUE(B) addressing mode; see Section 3.3.6.

Reg B

(PC) —¥ opcode Index

(PC+1)—] - addr MSB

16-BIT
EFFECTIVE
ADDRESS
(PC+2) addr LSB
FIGURE 3-8 — INDEXED ADDRESSING MODE OBJECT CODE
3.3 INSTRUCTIONS

The instruction set is divided into the following types of instructions: Implied Operand, Dual
Operand, Jump, Extended Address, and Miscellaneous instructions. Each instruction type is
defined in the sections that follow. For additional details, refer to the TMS7000 ASSEMBLY
LANGUAGE PROGRAMMER’S GUIDE (MP 916).

3.3.1 Implied Operand Instructions -
Implied Operand instructions are one-byte instructions whose operands, if any, are implied by
the opcode itself. Table 3-3 lists the implied operand instructions in alphabetical order, along

with a brief functional description of each instructon. Table 3-4 shows the machine instruction
format for all Implied Operand instructions.

- 38 : i : ’ 384

TABLE 3-3 - IMPLIED OPERAND INSTRUCTIONS

STATUS BITS ;
MNEMONIC . MEANING AFFTECTED DESCRIPTION
CLRC Clear Carry Bit C,N,Z 0 — C.N,Z, set from A register
DINT Disable Interrupts CN,Z| 0-1,0~-C,0-n0~-~2
EINT Enable Interrupts C.,N,Z,I 1-1,0-C,0-n0-~2
IDLE - Idie until Interrupt none Suspend until interrupt
LDSP Load Stack Pointer none B register — SP
NOP No operation none PC+ 1~ PC
POP ST "Pop Status from Stack none Top of Stack —ST; SP — t — SP
PUSH ST Push Status onto Stack none SP + 1— SP; ST— Top of stack
SETC | setcamy CNzZ 1-C0-N1=2
STSP Store Stack Pointer none SP — B register
Operand address — PC
RETI Return from Interrupt loaded from Stack — PC LSB byte, SP — 1—SP
stack Stack — PC MSB byte, SP — 1—SP
Stack — ST, SP —1—SP ’
RETS Return from Subroutine none Stack — PC LSB byte, SP — 1—SP
Stack — PC MSB byte, SP — 1 — SP

TABLE 3-4 — MACHINE INSTRUCTION FORMAT: IMPLIED OPERAND INSTRUCTION

ASSEMBLY LANGUAGE STATEMENT

MACHINE INSTRUCTION FORMAT (BYTE 1)

<inst>

opcode

3.3.2 Single Operand Instructions

Single Operand instructions are either one- or two-byte instructions that use the Single Register
Addressing mode exclusively. Table 3-5 lists the Single Operand instructions in alphabetical
order, along with a brief functonal description of each. Table 3-6 shows the machine instruction
formats for all single operand instructions. -

’ TABLE 3-5 - SINGLE OPERAND INSTRUCTIONS

STATUS BITS
MNEMONIC MEANING AFFTECTED DESCRIPTION

CLR Clear Operand CNzZ * 0 — dest

DEC Decrement CN,Z Dest - 1 — dest

DECD Decrement Double C.,N,z Register pr — 1 — register pr

INC - Increment CN,Z Dest + 1 — dest

INV Invert C,N,Z Inverted dest — dest

POP Pop from Stack CN,z Top of Stack — dest, SP - 1—SP

PUSH Push on Stack C.N,z SP + 1 — SP, Dest — top of stack

RL Rotate Left CN,Zz bn — bn + 1,b7 — b0, C

RLC Rotate Left through carry C,N,Z2 bn - bn + 1,C - b0,b7 - C

RR Rotate Right C.N,Zz bn + 1 — bn,b0 - b7,C

RRC Rotate Right through carry C,N,Z bn +1 —bn C—b7,b0 -C

SWAP Swap Nibbles CN,Z b7-64 — b3-b0

XCHB Exchange with Register B C.N,Zz B - dest, N,Z set on Dest contents

39

TABLE 3-6 — MACHINE INSTRUCTION FORMATS: SINGLE OPERAND INSTRUCTIONS

ASSEMBLY LANGUAGE STATEMENT

MACHINE INSTRUCTION FORMAT

BYTE 1 BYTE 2
<inst> A
<inst> B opeode
<inst> Rd opcode d

3.33 Dual Operand Instructions

Dual Operand instructions are one-, two-, or three-byte instructions that specify one of the

following:

¢ Both a source and destination register

e Animmediate operand and a destination register

Table 3- 7 lists the Dual Operand mstruétlons in alphabetical order, along with a brief description

of each.

TABLE 3-7 — DUAL OPERAND INSTRUCTIONS
STATUS BITS
MNEMONIC MEANING DESCRIPTION
AFFECTED
ADC Add with Carry ~CNzZ Source + dest +. carry — dest
. ADD Add Bytes C.N.Z Source + dest — dest

AND AND bytes C\N,Z2 Source logically: ANDed with dest — dest
ANDP AND Peripheral File C\N,Z2 Source logically ANDed with PF — PF
CMP Compare C,N,z Dest - source computed but not stored
DAC Decimal Add w/Carry CN,Z2 Source + dest + carry — dest
DSB Decimal Subtract w/Borrow C.N,z Dest - source - 1 + carry — dest
MoV Move CN,Z Source — dest .
MOVP Move to/from PF CN,Z Read or write data from/to Pf
MPY Multiply C.N,Z2 Source x Dest— A, B
OR OR C.N,Z Source logically ORed with dest — dest
ORP OR Peripheral File C,N.Z . Source logically ORed with PF — PF
SBB Subtract with Borrow CN.Z Dest - source -~ 1 + carry — dest
suB Subtract Bytes C.N,Z Dest - source — dest’
XOR Exclusive OR CN,Z Source exclusively ORed with dest — dest
XORP Exclusive OR PF C.N,Z Source exclusively ORed with PF — PF

3-10

3.3.3.1

Register File Instruction Types

Table 3-8 lists the machine instruction formats for the Dual Operand instructions which
address the Register File. The instructions which use these formats are:

ADC ADD AND CMP

Mov MPY OR SBB

DAC DSB

SuB XOR

These instructions use either the Register File Addressing mode or a combination of the
Register File and Immediate Addressing modes. Note that the MOV instruction is specifically
illustrated in Table 3-8, because its formats are uniquely defined.

TABLE 3-8 — MACHINE INSTRUCTION FORMATS: REGISTER FILE INSTRUCTIONS

MACHINE INSTRUCTION FORMAT

ASSEMBLY LANGUAGE STATE BYTE 1 BYTE 2 BYTE 3
<inst> B,A opcode
<inst> A,B
<inst> Rs,A opcode s
<inst> Rs,B
<inst> A,Rd
<inst> B,Rd opcode s d
<inst> Rs,Rd
<inst> % <iop>,A .
<inst> % <iop>,B opcode ‘op
<inst> % <iop>,Rd opcode iop d .
MOV A.B
MOV B.A opcode
MOV A,Rd
MOV B,Rd opcode d
MOV Rs.A opcode s
MOV Rs,B

3.3.3.2

Per/'pheral File Instruction Type

Table 3-9 shows the machine instruction formats for the Dual Operand instructions that
address the Peripheral File. The instructions which use these formats are:

ANDP MOovP ORP XORP

These instructions use either the Peripheral File Addressing mode or a combinatidn of the
Peripheral File and Immediate Addressing modes. Note that the MOVP instruction is
specifically illustrated in Table 3-9 because its formats are uniquely defined.

3-11

TABLE 3-9 — MACHINE INSTRUCTION FORMATS: PERIPHERAL FILE INSTRUCTIONS

ASSEMBLY LANGUAGE STATE MACHINE INSTRUCTION FORMAT
BYTE 1 BYTE 2 BYTE 3
<inst> A, Pn
<inst> B, Pn opcode "
<inst> % <iop>. Pn opcode iop n
MOVP Pn, A
MOVP Pn, B
MOVP A, Pn opcode "
MOVP B, Pn
3.34 Jump Instructions
Jump instructions are two-, three-, and four-byte instructions that use the Program Counter
Relative Addressing mode. These instructions are divided into four format types: Simple
Relative, Single Relative, Dual Relative, and Peripheral Relative. All jump instructions must
specify a target address (ta) in the form of a label in the assembly language statement, so thata
relative address (ra) can be calculated according to the following formula:
ra = ta-pcn.
where pcn is the location of the next instruction and -128 is less than or equal to ra which is less
than or equal to 127 (See Section 3.2.1.5). Table 3-10 lists all jump instructions in alphabetical
order, along with a brief description of each instruction.
TABLE 3-10 — JUMP INSTRUCTIONS
MNEMONIC MEANING STATUS BITS DESCRIPTION
AFFECTED
BTJO Bit Test Jump if One C.N,Z If source ANDed with dest = O, jump
BTJOP Bit Test Jump if One PF C,N,2Z If source ANDed with PF # O, jump
BTJZ Bit Test Jump if Zero CN,Z If source ANDed with inverted dest # O, jump
BTJZP Bit Test Jump if Zero PF C,N,Z If source ANDed with inverted PF # O, jump
DJINZ Dec.Reg.Jump Non-Zero none Dest ~ 1 — dest, if dest # O, jump
JMP Jump Unconditional none PC + offset - PC
JC/JHS Jump if Carry Set/ none if C = 1, PC + offset — PC
Jump if Higher or Same
JN Jump if Negative none If N =1, PC + offset — PC
JNC/JL Jump if No carry/ none If C = 0, PC + offset — PC
' Jump if Lower
JNZ/INE Jump if Not Zero/ none If Z = 0, PC + offset — PC
. Jump if Not Equal .
Je “Jump if Positive none IfN =0,Z =0, PC + offset - PC
JPZ Jump if Pos. or Zero none if N = 0, PC + offset — PC
JZ/JEQ Jump if Zero/ none If2 = 1, PC + offset — PC
Jump if Equal to

NOTE: Some conditional jump instructions have two names: one indicating the condition of the Status Register bits that are tested and one

indicating the result of a CMP (compare) instruction.

3.3.4.1 Simple Relative Instruction Type
Table 3-11 shows the machine instruction format for the Simple Relative Instruction typé. This
format requires only the target address (label) in the operand field of the assembly language
statement. The Simple Relative Jump instructions are:
JMP Jump {(Unconditionat)
JC/JHS “Jump If Carry Set/Jump If Higher Or Same
JN Jump If Negative
JNC/JL Jump If No Carry/Jump If Lower
JNZ/JNE Jump If Not Zero/Jump If Not Equal
JP Jump If Positive
JPZ Jump If Positive Or Zero
JZ/JEQ Jump If Zero/Jump If Equal To
TABLE 3-11 ~ MACHINE INSTRUCTION FORMAT: SIMPLE RELATIVE INSTRUCTIONS
ASSEMBLY LANGUAGé STATEMENT ___MACHINE INSTRUCTION FORMAT
BYTE 1 BYTE 2
<inst> <ta> opcode . ra
3.3.4.2 Single Relative Instruction Type
Table 3-12 shows the machine instruction formats for the Single Reiative instruction type.
These formats require a Register File number and a target address {label) in the operand field of
the assembly language statement. DJNZ is the only Single Relative jump instruction.
TABLE 3-12 — MACHINE INSTRUCTION FORMATS: SINGLE RELATIVE INSTRUCTIONS
ASSEMBLY LANGUAGE STATE MACHINE INSTRUCTION FORMAT
BYTE 1 BYTE 2 BYTE 3
<inst> A, <ta>
. opcode ra
<inst> B, <ta>
<inst> Rn, <ta> opcode n ra
3.3.4.3 Dual Relative Instruction Type

Table 3-13 shows the machine instruction formats for the Dual Relative instruction type. These
formats require a target address (label) and either a Register File number or an immediate
operand in the operand field of the assembly language statement. BTJO and BTJZ are the Dual
Relative Jump instructions.

313

TABLE 3-13 — MACHINE INSTRUCTION FORMATS DUAL RELATIVE INSTRUCTIONS

ASSEMBLY LANGUAGE STATE MACHINE INSTRUCTION FORMAT : .
BYTE 1 BYTE 2 BYTE 3 BYTE 4

<inst> B, A, <ta> opcode ra

<inst> Rs, A, <ta>
., opcode s ra
<inst> Rs, B, <ta>

<inst> Rs, Rd, <ta> opcode s d

<inst> % <iop>, A, <ta> .
) A opcode iop ra
<inst> %<iop>, B, <ta> .

<inst> % <iop>, Rd, ta

opcode iop d ra

3.3.4.4 Peripheral Relative Instruction Type
Table 3-14 shows the machine instruction formats for the Peripheral Relative instruction type.
These formats require a target address (label), a Peripheral File register number, and either an
immediate operand or one of two possible Register File Registers (the A or B register) in the
operand field of the assembly language statement. BTJOP and BTJZP are the Peripheral
Relative jump instructions. X) '
TABLE 3-14 — MACHINE INSTRUCTION FORMATS: PERIPHERAL RELATIVE INSTRUCTIONS
" MACHINE INSTRUCTION FORMAT
’ M
ASSEMBLY LANGUAGE STATE : BYTE 1 BYTE 2 BYTE 3 BYTE 4
<inst> A, Pn, <ta>
. opcode n ra
<inst> B, Pn, <ta>
<inst> % <iop>, Pd, <ta> . opcode iop n ra
3.3.5 Extended Address Instructions
Extended Address instructions are two- or three-byte instructions that reference a 16-bit
address in memory. Table 3-15 lists the Extended Address instructions in alphabetical order,
along with a brief description of each instruction.
TABLE 3-15 — EXTENDED ADDRESS INSTRUCTIONS
STATUS BITS
MNEMONIC MEANING DESCRIPTION
AFFECTED
BR Unconditional Branch none . Dest — PC
CALL Call Subroutine none SP + 1 - SP, PCMS byte — stack
! . SP + 1— SP, PCLS byte— stack
CMPA Compare to A Register CN,Zz A - Source computed but not stored
LDA Load A Register C.N,Z Source — A
STA Store A Register CN,Z A — dest

3-14

Table 3-16 shows the machine instruction formats for the three addressing modes available to
Extended Address instructions: Direct, Register File Indirect, and Indexed Addressing modes.

TABLE 3-16 — MACHINE INSTRUCTION FORMATS: EXTENDED ADDRESS INSTRUCTIONS

MACHINE INSTRUCTION FORMAT
ASSEMBLY LANGUAGE STATE BYTE 1 BYTE 2 BYTE 3
<inst> @ <addr> opcode addr MSB addr LSB
<inst> *Rd ’ opcode d
<inst> @ <addr>(B) : opcode addr MSB addr LSB
3.3.6 Miscellaneous Instructions

“The MOVD and the twenty-four TRAP instructions are special instructions that do not belong in
any of the previously described catagories of instruction types or addressing modes. These
instructions are shown in Table 3-17 and are discussed in the sections that follow.

TABLE 3-17 — MACHINE INSTRUCTIONS FORMATS: MISCELLANEOUS INSTRUCTIONS

STATUS BITS
MNEMONIC MEAN DESCRI N
. ING AFFECTED SCRIPTIO
MOVD Move Double . CN2Z - a.

iop — register pr

b. indexed iop — register pr

c. register pr — register pr

TRAP O Trap to Subroutine none SP +1—SP, PCMS byte — stack

A SP + 1 — SP, PCLS byte — stack
A .
Ay Entry vector — PC

TRAP 23

3-15

3.3.6.1 MOVD Instruction

The MOVD instruction moves-a two-byte value into a register pair in the Register File.. This
destination register pair is specified by a single register number; Rd ,which indicates that the
MSBiis contained in Rd-1 and the LSBis contained in Rd. As shown in Table 3-18, the two-byte
value may be a 16-bitimmediate operand, a 16-bitindexed immediate operand, or the contents
of a register pair in the Register File. These formats are useful for the following tasks:

MOVD %iop,Rd
MOVD %iop(B),Rd
MOVD Rs,Rd

Register pair initialization with an immediate value before
executing an instruction in the Register File Indirect
Addressing mode.

Register pair initialization with an indexed immediate value
before executing an instruction in the Register File Indirect
Addressing mode.

Register pair to register pair transfer in the Register File.

The C, N, and Z status bits are affected by the execution of the MOVD instruction as follows:

C — Set to zero

N — Set to one if MSB is negative; set to zero if MSB is positive or zero

Z — Set to one if MSB is zero; set to zero if MSB is nonzero

Refer to Section 3.4.2 for more details on the status bits.

!

TABLE 3-18 — MACHINE INSTRUCTION FORMATS: MOVD INSTRUCTION

ASSEMBLY LANGUAGE STATE MACHINE INSTRUCTION FORMAT
BYTE 1 BYTE 2 BYTE 3 - BYTE 4
MOVD % iop, Rd opcode iop MSB iop LSB d
MOVD % iop, (B), Rd opcode iop MSB iop LSB d
MOVD Rs, Rd opcode . s d

3-16

3.3.6.2

3.4

TRAP Instructions

The TRAP instructions branch to a two-byte location in a reserved section of memory called the
Trap Vector Table. As shown in Figure 3-9, each trap location stores a 16-bit address which
references either the reset function (TRAPO), one of the three interrupt service routines
(TRAP1-INT1, TRAP2-INT2, TRAP3-INT3), or a subroutine (TRAP4-23).

">FFDO TRAP23 Address " MSB
>FFD1 TRAP23 Address LSB
>FFEO TRAP15 Address MSB
>FFE1 TRAP15 Address LSB
>FFFA - TRAP2 Address MSB
>FFFB ~ TRAP2 Address LsB
>FFFC TRAP1 Address MSB
>FFFD TRAP1 Address LSB
>FFFE TRAPO Address - MsB
>FFFF TRAPO Address LSB

FIGURE 3-8 — THE TRAP VECTOR TABLE

The TRAP instructions are all single-byte instructions, i.e., the machine instruction format
requires only the opcode byte. No status bits are affected by the execution of these
instructions.

TRAPs 0-23 push the contents of the Program Counter onto the stack (PC MSB followed by PC
LSB) before executing the subroutine stored at the address in the Trap Vector Table. See
Section 3.5.50 and Section 6.3.3 for more information.

CUSTOM MICROCODING

For applications requiring unusually high performance, or for customers wishing to tailor the
instruction set to their application program, the TMS7000 instruction set is implemented with
160 micro-instructions of 45 bits each with which Texas Instruments is prepared to support
limited customer re-microcoding. More details of custom microcoding can be found in Section
5 of this book. '

Certain instructions in the instruction set may be removed and replaced with a unique
customer-defined instruction, others may not. The instructions which may not be altered
comprise the core instruction set; those which may be altered or removed are classified as
non-core instructions. A listing of the core (reserved) and non-core (available for microcoding)
instructions is provided in Tables 3-19 and 3-20 respectively.

TABLE 3-19 — TMS7000 CORE (RESERVED) INSTRUCTIONS

MNEMONIC OP CODE MNEMONIC OP CODE MNEMONIC OP CODE
NOP 00 OR Rn,A 14 BTJO Rn,A 16
IDLE 01 OR %n,A 24 BTJO %n,A 26
MOV Rn,A 12 ORRn,B 34 BTJO Rn,B 36
MOV %n,A 22 OR Rn,Rn a4 BTJO Rn,Rn 46
MOV Rn,B 32 OR %n,B 54 BTJO %n,B 56
MOV Rn,Rn 42 ORB,A 64 BTJO B,A 66
MOV %n,8 52 OR %n,Rn .74 BTJO %n,Rn 76
MOV B,A 62 o
MOV %n,Rn 72 XOR Rn,A 185 BTJZ Rn,A 17
MOV A,B co XOR %n,A 25 BTJZ %n,A 27
MOV A,Rn DO XOR Rn,B 35 BTJZ Rn,B 37
MOV B,Rn D1 XOR Rn,Rn 45 BTJZ Rn,Rn 47
. XOR %n,B 55 BTJZ %n,B 57
AND Rn,A 13 XOR B,A 65 BTJZB.A ° 67
AND %n,A 23 XOR %n,Rn 75 BTJZ %n,Rn 77
AND Rn,B 33
AND Rn,Rn 43 TSTA/CLRC 'BO POPST 08
AND %n,B 53 TSTB (3] PUSHST OE
AND B,A 63 SETC 07 LDSP 0D
AND %n,Rn 73 RETS 0A STSP 09
DINT 06 RETI 0B EINT 05
ADD Rn,A 18 ADC Rn,A 19 SUB Rn,A 1A
ADD %nA 28 ADC %n,A 29 SUB %n,A 2A
ADD Rn,B 38 . ADC Rn,B 39 SUB Rn,B 3A
ADD Rn,Rn 48 ADC Rn,Rn 49 . SuUB Rn,Rn 4A
ADD %n,B 58 ADC %n,B 59 SUB %n,B 5A
ADDBA 68 ADC B,A 69 SUB B.A 6A
ADD %n,Rn 78 ADC %n,Rn 79 SUB %n,Rn 7A
SBB Rn,A 1B LDA @n 8A STA @n 8B
SBB %n,A 2B LDA *Rn 9A STA *Rn 9B
SBB Rn,B 38 LDA @n(B) AA STA @niB) AB
SBB Rn,Rn 4B
SBB %n,B 58 BR @n 8C CALL @n 8E
SBB B,A 68 BR *Rn 1] CALL *Rn © o 9E
SBB %n,Rn 78 BR @n(B) AC CALL @n(B) AE
CMP Rn,A 1D DEC A -B2 INC A 83
CMP %n,A 2D DEC B c2 INC B : c3
CMP Rn,B kD) DEC Rn D2 : INC Rn D3
CMP Rn,Rn 4D
CMP %n,B 5D INV A B4 CLRA B5
CMP B,A 6D INV B ca CLRB cs
CMP %n,Rn 7D INV Rn D4 CLR Rn D5

TABLE 3-19 — TMS7000 CORE (RESERVED) INSTRUCTIONS (CONTINUED)

MNEMONIC OP CODE MNEMONIC OP CODE MNEMONIC OP CODE
PUSH A B8 POP A B9 DJINZ A BA
PUSH B cs POP B cs DJNZ B CA
PUSH Rn D8 POP Rn D9 DJNZ Rn DA
RR A BC RRC A BD RL A BE
RR B cc RRC B Eels) RLB CE
RR Rn DC RRC Rn DD RL Rn DE_
TRAP 7 F8 RLC A BF JMP EO
TRAP 6 F9 RLC B CF JNAJLT E1
TRAP 5 FA RLC Rn DF JzIJEQ E2
TRAP 4* F8 JCIIHS E3
TRAP 3 FC JPIGT E4
TRAP 2 FD JPZ/IGE ES
TRAP 1 FE JNZ/INE E6
TRAP O FF E7

JNC/JL

TABLE 3-20 — TMS7000 NON-CORE (AVAILABLE FOR MICROCODE) INSTRUCTIONS

MNEMONIC OP CODE MNEMONIC OP CODE
MPY Rn,A 1c TRAP 23 E8
MPY %n,A 2¢C TRAP 22 E9
MPY Rn,B 3c TRAP 21 EA
" MPY Rn,Rn 4c TRAP 20 EB
MPY %n,B 5C TRAP 19 EC
MPY B,A 6C TRAP 18 : ED
MPY %n,Rn 7C TRAP 17 EE
TRAP 16 FF
DAC Rn,A 1E TRAP 15 FO
DAC %n,A 2E TRAP 14 F1
DAC Rn,B °3E TRAP 13 F2
DAC Rn,Rn 4E TRAP 12 F3 '
DAC %n,B 5E TRAP 11 Fa4
DAC B,A 6E TRAP 10 F5
DAC %n,8n 7E TRAP 9 F6
TRAP 8 F7
DSB Rn,A 1F ANDP A,Pn 83
DSB %n,A 2F ANDP B,Pn 93
DSB Rn,B 3F ANDP %n,Pn A3
DSB Rn,Rn 4F
DSB %n,B . 5F ORP A,Pn 84
DSB B.A 6F ORP B,Pn 94
DSB %n,Rn 7F ORP %n,Pn A4
MOVD %n,Rn 88 XORP A,Pn 85
-MOVD Rn,Rn 98 XORP B,Pn 95
MOVD %n(B),Rn A8 XORP %n,Pn A5
DECD A BB BTJOP A,Pn 86
DECD B cB BTJOP B,Pn 96
DECD Rn DB . BTJOP %n,Pn A6
SWAPA 87 BTJZP A.Pn 87
SWAP B c7 BTJZP B,Pn 97 -
SWAP Rn D7 BTJZP %n,Pn A7
CMPA @n 8D - MOVP A,Pn 82
CMPA *Rn ap MOVP B,Pn 92
CMPA @n(8) AD MOVP %n,Pn A2
" XCHB A B6 MOVP Pn,A 80
XCHB 8 ce -
XCHB Rn D6 MOVP Pn,B 91
3.5 INSTRUCTION DESCRIPTIONS

The assembler for the TMS7000 family will accept these instructions in the indicated
Assembly Language format. The byte count for each instruction may be determined from its
instruction type and its operands. Refer to Appexdix A for specification for opcode assignment
and instruction timing information.

The instruction descriptions are presented in alphabetic order. The discussion of each
instruction includes mnemonic, syntax, instruction type, example, status bits affected,and
some useful notes. All instructions may have optional labels before the mnemonic and
comments after the operands. Label, mnemonics, operand field and comments must be
separated by a space.

3-20 .

3.5.1

All of the logical instructions, AND, OR, XOR, ORP ... follow the tables below. These functions
operate on the eight bits in the source and their corresponding bits in the destination. The AND
function is useful in clearing bits, the OR function can set bits to ‘1’ and the XOR function can
toggle the bits from ‘1’ to ‘0’ or from ‘0" to “1’.

LOGICAL FUNCTIONS

— AND — —OR— — XOR —
Src Dst Rst Src Dst Rst Src Dst Rst

o] [o] (o] o] 0 0 (o] 0 (o}

[o] 1 [¢] (o] 1 1 o] 1 1

1 o] o] 1 0 1 1 0 1

1 1 1 1 1 1 1 1 (o]
Src = source bit
Dst = destination bit
Rst = result bit

ADC Add with Carry : ADC

SYNTAX: ADC <s>,<d>

EXECUTION RESULTS: (s) + (d) + C —> (d)

EXAMPLE: LABEL ADC R66,R117 Adds the contents of register 66 to
. register 117 plus the carry.

TYPE: Dual Register

STATUS C —setto ‘1’ oncarry-out of {s) +{(d) +C

BITS: Z —setonresult

N —setonresult

ADC with an immediate operand of zero value is equivalent to a conditional increment of the
destination operand. ADC may also be used to implement multi-precision addition of signed or
unsigned integers. For example, the 16-bit integer in register pair (R2,R3) may be added to the
16-bit integer in (A,B) as follows:

ADD .R3,B Low order bytes added
ADC R2,A High order bytes added

3-21

3.6.2.

3.6.3

3-22

ADD) Add ’ ADD
SYNTAX: ADD <s>,<d>
EXECUTION RESULTS: (s) + (d) — (d)

EXAMPLE: LABEL ADD A,B Adds the contents of the A and B
register and stores the results in B

TYPE: Dual Register
STATUS C —1" on carry-out of (s) + (d}
BITS: Z —setonresult
N —setonresult
ADD is used to add two bytes, and may be used for signed two's complement or unsigned
addition.
AND ' ~ And ~ AND
SYNTAX: AND <s>,<d>
EXECUTION RESULTS: (s} .AND. (d} — (d)
EXAMPLE: AND % >1,R12 Clear all bits in R12 except bit O
TYPE: Dual Register
STATUS C+«—0
BITS: . N —setonresult
Z —setonresult
AND is used to perform a logical AND of the two operands. Each bit of the 8-bit result follows
the truth table which is at the beginning of this section. AND is useful in clearing or resetting

bits. If a bit needs to be cleared in the destination, then a ‘O’ is put at that bit location in the
source. A ‘1’ in the source will cause the bit in the destination to remain the same.

3.54

3.56.56

ANDP . And Peripheral Register ANDP
SYNTAX: ANDP <s>,<d> '

EXECUTION RESULTS: (s) .AND. (p) —> (p)

EXAMPLE: CLRBIT ANDP % >DF,P6 Clear bit 5 of the B port

TYPE: Dual Peripheral File |

STATUS C«0

BITS: N — seton result

Z — setonresult
ANDP may be used to clear one or more bits in the peripheral file. Thus, it may be used to reset
an individual output line to zero. This may be done with an ANDP instruction where the source
is an immediate operand that serves as a mask field. The example above shows how bit 5 of
the B Port (P6) is cleared. The only valid source operands are A, B and %iop.
BTJO Bit Test and Jump if One ' BTJO
SYNTAX: BTJO <s>,<d>,<offset>
EXECUTION RESULTS: If (s).AND.(D) <> O, then PC + (offset) —> PC

EXAMPLE: BITSET BTJO % >14,R4,ISSET Jumpif R4 (bit2)or

R4 (bit4)isa‘1’
TYPE: _ Dual Relative
STATUS C«—0
BITS: N — seton (s).AND.(d)

Z — seton (s).AND.(d)
Use the BTJO instruction to test for at least one bit which has a corresponding ‘1’ bit in each

operand. For example, the source operand can be used as a bit mask to test for one or more ‘1’
bits in the destination address. The operands are not changed by this instruction. :

3-23

3.5.6

3.5.7

3-24

BTJOP : Bit Test and Jump if One Peripheral . BTJOP
SYNTAX: BTJOP <s>,<p>,<offset>
EXECUTION RESULTS: If (s).AND.(p) < >0, then PC + (offset) — PC

EXAMPLE: LABEL BTJOP % >81,P4, THERE Jump if Port A{bitO)or
. Port A(bit7)is ‘1’

.TYPE: Peripheral-Relative

STATUS Ce«—0
BITS: N — seton (s}).AND.(p)
Z — seton (s).AND.(p)

Use the BTJOP instruction to test for at least one bit position which has a corresponding ‘1’ in

_ each operand. For example, the source operand can be used as a bit mask to test for at least

one ‘1’ bit in the destination peripheral file register. The example above tests bit O and bit 7 of
the input A port, and jumps if eitherisa ‘1'.

BTJZ Bit Test and Jump if Zero BTJZ
SYNTAX: 'BTJZ <s>,<d>,<offset>
EXECUTION RESULTS: if (s).AND.(NOT d) < > O, then PC + (offset) —» PC

EXAMPLE: ISZERO BTJZ A,R23,ZERO If any "1" bits in A correspond to
‘ to ‘0’ bits in R23 then jump

4TYPE: Dual Relative

STATUS Ce—0
BITS: N — seton (s).AND.(NOTd)
Z — seton (s).AND.{NOT d)

Use the BTJZ instruction to test for at least one O bit in the destination operand which has a
corresponding ‘1 bit in the source operand. The operands are not changed by the instruction.

3.5.8

3.5.9

BTJZP ’ Bit Test and Jump if Zero Peripheral BTJZP

SYNTAX: BTJZP <s>,<d>, <offset>

EXECUTION RESULTS: if {s).AND.(NOT d) <> 0, then PC + {offset) —» PC

EXAMPLE: LABEL BTJZP - % >21,P4, THERE Jump if P4{bit 0) or
: P4(bit5)is ‘0’

TYPE: Peripheral Relative
STATUS Ce«0
BITS: N — seton (s).AND.(NOTd)

Z — seton (s).AND.(NOTd)
Use the BTJZP instruction to test for at least one bit position which hasa ‘1’ in the source and
an ‘0" in the peripheral file register. For example, the source operand can be used as a bit mask
to test for zero bits in the destination peripheral file register. The example above tests bit O and
bit 5 of the input A port, and jumps if either is a ‘O’. The jump is calculated starting from the
opcode of the instruction just after the BTJZP. The operands are unchanged by this instruction.
BR ‘ Branch BR
SYNTAX: . BR <d>

EXECUTION RESULTS: (d) — PC

EXAMPLES: LABEL BR @THERE Direct addressing
BR + @TABLE(B) Indexed addressing
BR *R14 - Indirect addressing

TYPE: Extended Address

STATUS

BITS: Not changed

BR may be used to branch to ANY location in the the 64K memory space including the Register
space. This extended address type instruction supports three different modes. The powerful

concept of computed GOTO'’s is supported by the BR *Rn instruction. An indexed branch

instruction of the form BR @TABLE(B) is an extremely efficient way of executing one of several

actions on the basis of some control input. This is similar to the CASE statement of Pascal and

other high-level languages. For example, suppose register R3 contains a control value. The

program can branch to label ACTIONO if R3=0, ACTION1if R3 =1, etc, for up to 128 different

actions. This technique may also be used to transfer control on character inputs, error codes,
etc. See section 6.3.5 for examples.) :

3-25

3.5.10 CALL Call CALL
SYNTAX: CALL <d>

SP

EXECUTION RESULTS: SP+1 -
PC MS Byte —> stack
. SP+1 —* SP
PC LS Byte —> stack
operand address — PC

EXAMPLES: LABEL1 CALL @LABEL4 Direct addressing
CALL @LABEL5(B) Indexed addressing

CALL *R12 ‘Indirect addressing
TYPE: - Extended Address
STATUS
BITS: Not changed

CALL is used to invoke a subroutine. The PUSH and POP instructions can be used to save,

pass, or restore status or register values. The extended addressing modes of the CALL

instruction allow powerful transfer of control functions. .
3.5.11 CLR Clear i CLR

SYNTAX: CLR <d>

EXECUTION RESULTS: O — (d)

EXAMPLE: ZEROIT CLRB

TYPE: Single Register
STATUS Ce«0
BITS: N <«—O

Z — 1

CLR is used to clear or initialize any file register including the A and B registers.

3-26

3.5.12

3.5.13

3.6.14

CLRC Clear the Carry bit CLRC
SYNTAX: CLRC :

EXECUTION RESULTS: status bits set
EXAMPLE: LABEL CLRC
TYPE: Implied Operand

STATUS C+«0
BITS: N — set on value of A register
Z — seton value of A register

CLRC is used to clear the carry flag if required before an arithmetic or rotate instruction. Note
that the logical and move instructions typically clear the Status carry bit. The CLRC opcode is
equivalent to the TSTA opcode.

CMP ' . Compare . CMP

SYNTAX: CMP <s>,<d>

EXECUT‘ION RESULTS: (d) - (s) computed
EXAMPLE: ' LABEL CMP R13,R89
TYPE: Dual ﬁegister

STATUS C —'V"if (d)is logically greater than
BITS: or equal to (s) S .
N — Sign of result
Z —'1'if (d)is equal to (s)

CMP is used to compare the destination operand to the source operand. For a complete
discussion of this instruction see 6.3.1.1. '

CMPA) ‘Compare Accumulator Extended CMPA

SYNTAX: CMPA <s>

EXECUTION RESULTS: (A) - (s) computed but not stored

EXAMPLE: LABEL CMPA @TABLE2 Direct addressing
- CMPA @TABLE(B) Indexed
CMPA *R123 - Indirect
TYPE: Extended Address

STATUS C —'1"if (A} is logically. greater than or
BITS: equal to (s)
N —‘1"if (A) is arithmetically less than (s)
Z —'1"if(A)is equal to (s)

CMPA may be used to compare a long-addressed operand (e.g., via direct, indirect, or indexed
addressing modes) to the A register. It is especially useful in table lookup programs in which the
table is stored either in extended memory or in program ROM. The status bits are set exactly as
if register A were the destination (d) and the addressed byte the source (s).

3-27

3.5.15

3.6.16

3-28

' DAC Decimal Add With Carry DAC

SYNTAX: DAC <s>,<d>
EXECUTION RESULTS: (s) + (d) + C—>(d) Decimal

EXAMPLE: LABEL DAC % >24,A Add the packed BCD value 24 to
Accum.

TYPE: Dual Register
STATUS C —1'if value of (s} + (d) + C >= 100
BITS: N —setonresult

Z —setonresult

DAC is used to add bytes in binary-coded decimal (BCD) form. Each byte is assumed to contain
two BCD digits. Operation of DAC is undefined for non-BCD operands. DAC with animmediate

* operand of zero value is equivalent to a conditional increment of the destination operand. The

DAC instruction automatically performs a decimal adjust on the binary sum of (s) +(d) +C. The
carry bit is added to facilitate adding multi-byte BCD strings, and so the carry bit must be
cleared before execution of the first DAC instruction.
DEC ' Decrement DEC
SYNTAX: DEC <d>
EXECUTION RESULTS: (d) - 1~—>(d)
EXAMPLE: LABEL DEC R102
TYPE: Single Register
STATUS C —0'if (d) decrements from >00 to >FF;
BITS: ‘1’ otherwise.
N —set on result

Z —setonresult

The DEC instruction is used to subtract a value of ‘1’ from any addressable operand. The DEC
instruction is also useful in counting and addressing byte arrays.

3.5.17

3.5.18

DECD . Decrement Double) DECD
SYNTAX: DECD <rp>
TYPE: Single Register

EXAMPLE: LABEL DECD R51 Decrement (R560,R51) register pair
R51 = LSB

EXECUTION RESULTS: (rp) - 1= (rp)
STATUS C —0' if most significant byte decrements from
BITS: >00to >FF. Otherwise, C = ‘1",

N — set on most significant byte of result

Z — set on most significant byte of result

DECD may be used to decrement 16-bit indirect addresses stored in the register file. Tables
longer than 256 bytes may be scanned using this instruction.

DINT . Disable Interrupts . DINT
SYNTAX: DINT
EXECUTION RESULTS: O—»interrupt enable status bit

EXAMPLE: LABEL DINT

TYPE: Implied Operand
STATUS | <0
BITS: C+0

N «0

Z «—0

DINT is used to turn off all interrupts simultaneously. Since the interrupt enable flag is stored in
the status register, the POP ST, RETI or LDSP instructions may reenable interrupts even though
a DINT instruction has been executed. During the interrupt service, the interrupt enable bit is
automatically cleared after the old status register value has been pushed onto the stack.

3-29

3.5.19

3.5.20

3-30

'DJNZ Decrement Register And Jump If Not-Zero DJNZ

SYNTAX: DJNZ <d>, <offset>

EXECUTION RESULTS: . (d)-1->(d); if (d} <> O, then PC + (offset) —PC

EXAMPLE: LABEL DJNZ R15,THERE
TYPE: Single-Relative

STATUS

BITS: Not changed

The DJNZ instruction is used for looping control. Combines the DEC and the JNZ instruction
together to give a more compact and faster instructipn. This instruction does not change any of
the status bits. - . :

DSB . Decimal Subtract With Borrow . DSB
SYNTAX: DSB = <s>,<d>

EXECUTION RESULTS: (d)-(s)- 1 + C—(d) Decimal

'EXAMPLE: LABEL DSB R15,R76

TYPE: Dual Register

STATUS C —1' no borrow required, ‘0’ if borrow required
BITS: N —'set on result
Z —setonresult

DSB is used for multiprecision decimal BCD subtraction. A DSB instruction with an immediate
operand of zero value is equivalent to a conditional decrement of the destination operand. The
carry status bit functions as a borrow bit, so if no borrow in is required, the carry bit should be
setto ‘1’. This can be accomplished by executing the SETC instruction.

3.5.21

3.56.22

EINT Enable Interrupts EINT
SYNTAX: EINT
EXECUTION RESULTS: 1—>interrupt enable

EXAMPLE: LABEL EINT

TYPE: . . Implied Operand
STATUS | «—1
BITS: Ce1

N «1

Z «—1

EINT is used to turn on all enabled interrupts simultaneously. Since the interrupt enable flag is
stored in the status register, the POP ST, LDST, and RETI instructions may disable interrupts
even though a EINT instruction has been executed. During the interrupt service, the interrupt
enable bit is automatically cleared after the old status register value has been pushed onto the
stack. Thus, the EINT instruction must be included inside the interrupt service routine to permit
nested or multilevel interrupts.

IDLE : Idle until Interrupt - : IDLE
SYNTAX: IDLE-

EXECUTION RESULTS: pc—> pc until interrupt
pc + 1= pc after return from interrupt

EXAMPLE: LABEL IDLE
TYPE: Implied Operand
STATUS

BITS: Not changed

IDLE is used to allow the program to suspend operation until either an interrupt or reset occurs.
Itis the programmer’s responsibility to assure that the interrupt enable status bit {and individual
interrupt enable bits in the 1/O control register) are set before executing the IDLE instruction.
Upon return from an interrupt, control passes to the instruction following the IDLE instruction.

3-31

3.5.23 INC Increment INC
SYNTAX: INC <d>
EXECUTION RESULTS: (d) + 1= (d)
EXAMPLE: LABEL INC A
TYPE: Single Register
STATUS C —'1'if (d}) incremented from >FF to >00;
BITS: ‘0’ otherwise.

N —setonresult

Z —setonresult

INC is used to increment the value of any register. It is useful in incrementing counters into
tables. .

3.5.24 INV Invert " . _ INV
SYNTAX: INV <d>
EXECUTION RESULTS: NOT (d) — (d)
EXAMPLE: LABEL INV A
TYPE: Single Register
STATUS C«0
BITS: N — setonresult
Z — setonresult
INV performs a logical or one’s complement of the operand. A two’s complement 6f the

operand can be made by following the INV instruction with an increment (INC). A one’s
complement reverses the value of every bit in the destination.

3-32

3.5.25

3.5.26

JMP v Jump unconditional ‘ JMP
SYNTAX: JMP <offset>

EXECUTION RESULTS: PC + (offset}—PC The PC is taken from the instruction

after the JMP
EXAMPLE: LABEL JMP THERE
TYPE: ' Simple Relative .
STATUS
BITS: . Not changed

Jump unconditionally to the address specified in the operand. The second byte of the JMP
instruction is loaded with the 8-bit relative address of the operand. The operand address must
therefore be within — 128 to + 127 bytes of the location of the instruction following the JMP
instruction. The assembler will indicate an error if the target address is beyond — 128 to + 127
bytes from the next instruction. For a’longer jump the BR (branch) instruction can be used.

J<cnd> ' Jump On Condition * J<cnd>
SYNTAX: J<cnd> <offset>

EXECUTION RESULTS: If tested condition is true, PC + offset—PC

EXAMPLES: LABEL JNC THERE
LABEL JP HERE

TYPE: Simple Relative

STATUS v

BITS: Not affected

3-33

3.6.27

TABLE 3-21 — CONDITIONAL JUMP INSTRUCTIONS

CONDITION FOR JUMP
INSTRUCTION ‘ MNEMONIC {STATUS BIT VALUES)
CARRY | NEGATIVE ZERO

Jump If Carry JC 1 X X
Jump If Equal JEQ X X 1
Jump If Higher Or Same JHS 1 X X
Jump If Lower Ji 0 X X
Jump If Negative JN X 1 X
Jump If No Carry JNC 0 X X
Jump If Not Equal JNE X X 0
Jump If Non-zero JNZ X X 0
Jump If Positive JP X (o] 0
Jump If Positive Or Zero JPZ X 0 X
Jump If Zero Jz X X 1

The J<cend > instructions may be used after a CMP instruction to branch according to the
relative values of the operands tested. After MOV, MOVP, LDA, or STA operations, a JZ or JNZ
may be used to test if the value moved was equal to zero. JN and JPZ may be used in this case
to test the sign bit of the value moved. For a more complete description of the Jump
instructions see 6.3.1.1.

LDA . Load A register LDA
SYNTAX: LDA <s>

EXECUTION RESULTS: (s)=—> Addr

EXAMPLES: LABEL1 LDA @LABEL4 Direct
LABEL2 LDA @LABEL5(B) Indexed
LABEL3 LDA *R13 Indirect
TYPE: Extended Address

STATUS C+«0
BITS: N — set on value loaded
Z — seton value loaded

The LDA instruction is used fo read values stored anywhere in the full 64K memory space. The
direct addressing mode provides an efficient means of directly accessing a variable in memory.
Indexed addressing gives an efficient table look-up capability for most applications. Indirect
addressing allows the use of very large look-up tables and the use of multiple memory pointers
since any pair of registers can be used as the pointer. The DJNZ (Decrement and Jump if
Non-Zero) instruction can be used with either indexed or indirect addressing to create fast and
efficient program loops or table searches.

384

3.5.28

3.5.29

LDSP Load Stack Pointer LDSP
SYNTAX: LDSP
EXECUTION RESULTS: (B)—>SP

EXAMPLE: LABEL LDSP

TYPE: Implied Operand
STATUS
BITS: Not changed

Copy the contents of the B register to the stack pointer register. LDSP is used to initialize the
stack pointer.

MoV 2 Move ' ~ mov

SYNTAX: MoV <s>,<d>

TYPE: Dual Register

. EXECUTIONRESULTS: (s)—>{d)

EXAMPLES: LABEL1 Mov AB Move the contents of A reg. to B reg.
LABEL2 MoV R32,R105 Move the contents of R32 to R105
LABEL3 Mov %10,R3 Move the value 10 to R3

STATUS C«o0
BITS: N — set on value loaded
Z — seton value loaded

MOV is used to transfer values within the register space. Immediate values may be loaded into

registers directly from the instruction. The fact that the A or B register is an operand is implied in
the MOV opcode, resulting in shorter and quicker moves from the A or B register.

3-35

3.5.30

3.5.31

© 3-36

MOVD Move Double MOVD
SYNTAX: MOVD <s>,<d>
EXECUTION RESULTS: (rp)—>(rp)

EXAMPLE: LABEL MOVD %>1234,R3 Load Register Pair R2,R3 with > 1234
MOVD R5,R3 CopyR4,R56to R2,R3 R5,R3 = LSB
MOVD %TAB(B),R3 Copy indexed address to R2,R3

TYPE: Miscellaneous

STATUS C+0
BITS: N — set on most significant byte moved
Z — set on most significant byte moved

MOVD moves a two-byte value to the register pair indicated by the destination register number.

The destination is the second operand of the instruction and it points to the LSB of the
destination register pair. The source may be a 16-bit constant, another register pair, or an
indexed address. For the latter case, the source must be of the form “%ADDR(B}” where
ADDR is a 16-bit constant or address. This 16-bit value is added (via 16-bit addition) to the
contents of the B register, and the result placed in the destination register pair. This will store an

_indexed address into a register pair, for use later in indirect addressing mode.

MOVP Move To/From Peripheral File MOVP
SYNTAX: . MOVP <s>,<d>

EXECUTION RESULTS: <g>— <d>

EXAMPLE: SETIMR MOVP A,P2 Setup timer value
RDPORT MOVP P4,B Read Port A data
TYPE: Peripheral File

STATUS C+0
BITS: N — set on value moved
© Z — seton value moved

MOVP is used to transfer values to and from the peripheral file. This may be used to input or
output 8-bit quantities on the /O ports. The peripheral file also contains control registers for the
interrupt lines, the /O ports, and the timer controls. The operands supported by this instruction
are A, B and %iop.

During peripheral file instructions, a peripheral file port is read. The read can include out-
put operations each as ‘'MOV A,P6'. If this read is undesirable because of hardware con-
figuration, a STA (Store A) instruction with the memory-mapped address of the peripheral
register can be used.

3.5.32

3.56.33

MPY Multiply MPY

SYNTAX: MPY <g>,<d>

EXECUTION RESULTS: (s) X (d)— (A,B) Result always stored in A,B
EXAMPLE: LABEL MPY R3,A Muitiply R3and A

LABEL2 MPY %32,B Shift B register 5 places left
TYPE: Dual Register)

STATUS C«0
BITS: N — set on most significant byte of results { A register)
Z — set on most significant byte of results (A register)

MPY performs an 8-bit multiply for a general source and destination operand. The 16-bit result
is placed in the ‘A,B’ register pair with the most significant byte in A. Multiplying by a power of
two is a convenient means of performing double-byte shifts. If a double byte shift is three
places or less, then it may be faster to use RLC or RRC instead of multiply. If a single byte needs
shifting then it is almost always faster to use RLC or RRC.

NOP No Operation ‘ ' . NOP
SYNTAX: NOP

EXECUTION RESULTS: PC + 1—PC

EXAMPLE: LABEL NOP

TYPE: Implied Operand
STATUS ‘
BITS: Not changed

NOP is useful as a pad instruction during program development, to “patch out” unwanted or
erroneous instructions or to leave room for code changes during development. Itis also useful
in software timing loops.

3-37

3.56.34

3.5.35

3-38

OR or OR
SYNTAX: OR .<s>,<d>
EXECUTION RESULTS: (s) .OR. (d) = (d)

EXAMPLE: LABEL OR . - A,R12 Or the A register withR12, Storein R12
‘ SETBIT OR % >0FA Set lower nibble of A to ‘1's, leave
upper nibble unchanged

TYPE: Dual Register

STATUS C <=0
BITS: ‘N — setonresult
Z — setonresult

v

OR is used to perform a logical OR of the two operands. Each bit of the 8-bit result follows the
truth table at the beginning of this section. The OR operation is used to set bits in a register. If a
register needs a ‘1’ in the destination then a1’ is placed in the corresponding bit locationin the
source operand.

ORP OR Peripheral File Register ORP
SYNTAX: ORP <s>,<d>
EXECUTION RESULTS: (s) .OR. (d)=—> (d)
EXAMPLE: LABEL . ORP’ A,P12
TYPE: Peripheral File
STATUS C<«0
BITS: N — seton result
Z — setonresult
ORP is used to perform a logical OR of the source operand with a peripheral file location, and
write the result back to the peripheral file. This may be used to set an individual I/O bit of a

peripheral register. Since the peripheral file is read before it is ORed, it may not work with some
peripheral locations which have different function when reading then when writing.

3.5.36

3.56.37

POP POP From Stack POP

SYNTAX: POP <d>

EXECUTION RESULTS: Stacktop = (d) Move value then decrement SP
- SP-1 ~— SP
EXAMPLES: GETIT POP R32
PUTBCK POP ST

TYPE: Single Register
: “POP ST” Special, see below

STATUS Ce0 N
BITS: N — set on value POPed
Z — seton value POPed

The data stack can be used to save or to pass values, especially during subroutines and
interrupt service routines. The POP instruction pulls a value from the stack. The status register
may be replaced with.the contents on the stack by the statement: POP ST. This one-byte
instruction is usually executed in conjunction with a previously performed “PUSH ST”
instruction.

PUSH Push On Stack : ~ PUSH
SYNTAX: PUSH <d>

EXECUTION RESULTS: SP + 1— SP; Increment SP then move value
(d) — (stack top)

EXAMPLES: STORE1 PUSH A

SAVEST PUSH ST
TYPE: Single Register

”"PUSH ST” Special, see below
STATUS C <0
BITS: N — set on value PUSHed

Z — seton value PUSHed

The data stack is used to save or pass values, especially during subroutines and interrupt
service routines. The PUSH instruction places a value on the stack. The Status register may be

~ pushed on the stack with the statement: PUSH ST. This one-byte instruction is usually

executed in conjunction with a subsequently performed “"POP ST” instruction. The status
register is unaffected. .

3-39

3.56.38

3.5.39

3-40

RETI
SYNTAX: RETI

EXECUTION RESULTS: Stack
SP-1
Stack
SP-1
Stack
SP-1

EXAMPLE: LABEL RETI

TYPE: Implied Operand

STATUS Status Register

BITS: is loaded from
the stack

Return From Interrupt RET!

VIEEE

PCLS Byte
SP

PC MS Byte
SP

ST

SP

" RETI is typically the last instruction in an interrupt service routine. RETI restores the status

register to its state immediately before the interrupt occurred and branches back to the
program at the instruction boundary where the interrupt occurred. The A and B registers, if
used, must be restored to original values before the RETI instruction.

RETS

SYNTAX: RETS

EXECUTION RESULTS: Stack
SP-1
Stack
SP-1

EXAMPLE: LABEL RETS

TYPE: Implied Operand
STATUS
BITS: Not changed

hE

Return From Subroutine » RETS

PC LS Byte
SP
PC MS Byte
SP

RETS is typically the last instruction in a subroutine. RETS results in a branch to the location
immediately following the subroutine call instruction. In the called subroutine there must be an
equal number of POPs and PUSHes so that the stack is pointing to the return address and not

some other data.

3.56.40

3.5.41

RL Rotate Left : ‘ RL
SYNTAX: RL <d>

EXECUTION RESULTS: = Bitn) —> Bitin+1)
Bit(7) —> Bit(O) and Carry

"EXAMPLE: LABEL . RL R102

TYPE: Single Register

STATUS C —setto bit 7 of the original operahd
BITS: N —setonresult .
Z —setonresult

»

c msb| 6 | 5 | 4| 3| 2]1 |1

An example of the RL instruction is: If the B register contains the value >93, then the RL
instruction changes the contents of B to >27 and sets the carry status bit.

RLC Rotate Left Through Carry RLC
SYNTAX: RLC <d>
EXECUTION RESULTS: Bitln) —> Bit(n+1)

Carry — Bit(0)
Bit(7) — Carry /

EXAMPLE: LABEL RLC R72
TYPE: Single Register

STATUS C set to bit 7 of the original operand
BITS: N — setonresult

Z — setonresult

\ c «~— msb | 6 5 4 3 2 1 Isb

An example of the RLC instruction is: if the B register contains the value >93 and the carry
status bit is a zero, then the RLC instruction changes the operand value to >26 and carry to
one. Rotating left effectively multiplies the value by 2. Using multiple rotates, any power of 2 (
2, 4, 8, 16...} can be achieved. This type of multiply is usually faster than the MPY { multiply)
instruction. This instruction is also useful in rotates where a value is contained in more than one
byte such as an address or in multiplying a large multibyte number by 2. Care must be taken to
assure that the carry is at the proper value. The SETC or CLRC instructions may be use to setup
the correct value.

3-41

3.56.42

3.5.43

3-42

RR Rotate Right RR
SYNTAX: RR <d>

EXECUTION RESULTS: +1) = Bitin)
Bit(0) — Bit(7)and carry

EXAMPLE: LABEL RR A
TYPE: Single Register
STATUS C —set to bit O of the original value

BITS - N —setonresult
- Z —setonresult

c —msb| 6 | 5 | 4 |3] 2|1 |ibf—

An example of the RR instruction is: If the B register contains the value >93, then the "RRB”
instruction changes the contents of B to >C9 and sets the carry status bit.

RRC Rotate Right Through Carry RRC
SYNTAX: RRC <d>

EXECUTION RESULTS: Bit(n+1)=—> Bit(n)

Carry —» Bit(7)
Bit{(0) —» Carry

EXAMPLE: LABIéL RRC R32

- TYPE: Single Register
STATUS C —set to bit O of the original value
BITS: N —setonresult

Z —setonresult

C msb| 6 5 4 3 2 1 Isb

An example of the RRC instruction is: If the B register contains the value >93 and the carry
status bit is zero, then the ‘RRC B’ instruction changes the operand value to >49 and sets the
carry status bit. When the carry is ‘O’ this instruction effecively divides the value by 2. A value
of >80 becomes >40. By using this instruction more once, the value can be divided by any
power of 2. Care must be taken to assure the correct value in the carry bit.

3.5.44

3.5.45

SBB Subtract With Borrow SBB
SYNTAX: SBB <s>,<d>

EXECUTION RESULTS: (d)-{s)-1 + c—>(d)

EXAMPLE: LABEL SBB %23,B Subtract 23 from B register -
TYPE: Dual Register

STATUS C —setto ‘1’ if no borrow; ‘O’ otherwise

BITS: N —setonresult. ‘

Z —setonresult.

SBB is used for multiprécision two’s .complement subtraction. An SBB instruction with an
immediate operand of zero value is equivalent to a conditional decrement of the destination
operand. With (s) =0, and C='0’, then (d) is decremented, otherwise it is unchanged. A
borrow occurs if the result is negative. In this case, the carry bit is set to ‘O’.

. SETC - Set Carry k) . SETC

SYNTAX: SETC
EXECUTION RESULTS: 1= carry

EXAMPLE: LABEL SETC.

TYPE: Implied Operand
STATUS Ce+1 '
BITS: N <0

Z 1

SETC is used to set the carry flag if required before an arithmetic or rotate instruction.

3-43

3.5.46

3.5.47

3-44

STA Store A Register STA
SYNTAX: STA <d>
EXECUTION RESULTS: (A)=>(d)

EXAMPLES: LABEL1 . STA @LABEL4 Direct addressing

LABEL2 STA @LABEL5(B) Indexed
LABEL3 STA *R13 Indirect
TYPE: Extended Address

STATUS C<+0 .
BITS: N — set on value loaded
Z — seton value loaded

The STA instruction is used to store values anywhere in the 64K memory address space. The
direct addressing provides an efficient means of directly accessing a variable in general
memory. The indexed addressing provides an efficient table look-up capability. Indirect
addressing allows the use of very large look-up tables and the use of multiple memory pointers
since any pair of registers can be used as the pointer. The Decrement Register and Jump if
Non-Zero instruction (DJNZ) can be used with either indexed or indirect addressing to create
fast and efficient program loops or table searches.

STSP Store Stack Pointer) STSP
SYNTAX: STSP
EXECUTION RESULTS: (SP)—>(B)

EXAMPLE: LABEL STSP

TYPE: Implied Operand
STATUS
BITS: Not changed

STSPis used to make a copy of the SP if required. This instruction can be used to test the stack
size. The indexed addressing mode may be used to reference operands on the stack. Ex: STSP
then LDA @ >0000(B) will put the present value on top of the stack into A register.

3.56.48

3.6.49

SuUB Subtract SUB
SYNTAX: suB <s>,<d>

EXECUTION RESULTS: (d) - {s)—> (d)

EXAMPLE: LABEL SsuB " R19,B

TYPE: Dual Register

STATUS C —setto 1" if result > = 0, ‘O’ otherwise
BITS: N —setonresult

Z —setonresult

SUB is used for two’s complement subtraction. The carry bitis set to ‘O’ if a borrow is required.
The carry bit could be renamed a “No-Borrow ” bit in this case.

SWAP Swap Nibbles SWAP
SYNTAX: SWAP <d>

EXECUTION RESULTS: bits(7,6,5,4, 3,2,1,0)— bits(3,2,1,0, 7,6,5,4)

EXAMPLE: LABEL SWAP R45

TYPE: Single Register

STATUS C —set to bit O of the result or bit 4 of the original
BITS: . N —setonresults

Z —setonresults
SWAP exchanges the first four bits with the second four bits. This instruction is equivalent to 4

consecutive RL { rotate left) instructions. It is used to manipulate four bit operands, especially
during packed BCD operations.

3-45

3.5.50

3-46

TRAP . Trap To Subroutine TRAP

SYNTAX: TRAP <n> n=0-23

EXECUTION RESULTS: 'SP + 1 - SP -
PC MS Byte —» stack
SP + 1 - =— SP
PC LS Byte —> stack
Entry vector -+ PC

EXAMPLE: LABEL TRAP 15

TYPE: ‘Miscellaneous
STATUS .
BITS: not changed

The operand <n> is a trap number which identifies a location in the Trap Vector Table,
addresses >FFDO to >FFFF in memory. The contents of the two-byte vector location form a
16-bit trap vector to which a subroutine call is performed. TRAP is an efficient way to invoke a
subroutine. The highest block of memory is the Trap Vector Table, and contains as many
subroutine addresses as available traps for the TMS7000 family member. The subroutine
addresses are stored like all other addresses in memory, with the least significant byte in the

higher-addressed location, as shown below.

TRAP VECTOR TABLE

. >FFDO Trap 23 address msb
>FFD1 Trap 23 address Isb

_ >FFEO Trap 15 address msb
>FFE1 . Trap 15 address Isb
>FFFA " Trap 2 address msb
>FFFB " Isb
>FFFC Trap 1 address msb
>FFFD " Isb
>FFFE | - Trap O address msb
>FFFF Trap O address Isb

Note that TRAPs 0, ,1,2and 3 correspond to the hardware-invoked interrupts 0, 1, 2, and 3
respectively. The hardware-invoked interrupts, however, push the program counter and the
status register before branching to the interrupt routine, while the TRAP instruction pushes
only the program counter. TRAP O will branch to the same code executed for a system reset but
will not set or clear all the registers like the hardware RESET. For more information see Section
6.3.3. '

3.5.61

3.5.62

3.5.53

TSTA Test A Register TSTA
SYNTAX: TSTA

EXECUTION RESULTS: C,N,Z bits set

EXAMPLE: LABEL TSTA Test A register
TYPE: Implied Operand ‘
STATUS Ce0

BITS: N — seton value in A register

Z — setonvaluein A register

This instruction can be used to set the status bits according to the value in the A register. This
instruction is equivalent to the CLRC (Clear Carry) instruction. ‘

TSTB . Test B Register TSTB
SYNTAX: TSTB

EXECUTION RESULTS: C,N,Z bits set

EXAMPLE: LABEL TSTB Test B
: Register

TYPE: implied Operand

STATUS C «0

BITS: N — seton value in Bregister
. Z — seton value in B register

This instruction can be used to set the status bits according to the value in the Bregister. It may
be used to clear the carry bit. This instruction is equivalent to the XCHB B (exchange B with B)
instruction.

XCHB - Exchange With B Register XCHB
SYNTAX: XCHB <d>

EXECUTION RESULTS: (B) = (d)

EXAMPLE: LABEL XCHB A exchange B register with A register
XCHB R3 exchange B register withR3
TYPE: Single Register

STATUS C+-0
BITS: N — set on original.contents of B
Z — seton original contents of B

XCHB is used to exchange a register with the B register without going through an intermediate
location. The XCHB instruction with the B register as the operand is equivalent to the TSTB
instruction.

3-47

3.5.54

3.5.55

3-48

XOR Exclusive Or - XOR
SYNTAX: ~ XOR <s>,<d>

EXECUTION RESULTS: ({s) .XOR. {d)=> (d)

EXAMPLE: LABEL XOR R98,R125
XOR %1,R20 Toggle bit 0in R20
" TYPE: Dual Register

STATUS C<+0
BITS: N — set on result
Z — setonresult

XOR is used to perform a bit-wise exclusive OR operation on the operands. The XOR
instruction can be used to complement bits in the destination operand. Each bit of the 8-bit
result follows the truth table shown at the beginning of this section. This operation can also
toggle a bit in a register. If the bit value in the destination needs to be the opposne from what it
currently is, then the source should contain a ‘1’ in that bit location.

XORP Exclusive Or Per;pheral File a XORP
SYNTAX: XORP <s>,<d>
EXECUTION RESULTS: (s) .XOR. (d)=(d) ‘
EXAMPLE: LABEL XORP % >01,P9 Reverse'direction of pin C(0)
TYPE: Peripheral File
STATUS ~ C 0
BITS: N — setonresult
Z — setonresult
XORl‘? is used to perform a bit-wise exclusive OR operation on the operands. The XORP

instruction can be used to complement bits in the destination PF register. The example above
inverts bit O of P9, which is the port C data direction register, thus reversing the direction of the

pin.

- 4, ELECTRICAL SPECIFICATIONS
4.1 TMS7000/TMS7020/TMS7040/TMS70120/TMS7001/TMS7041
4.1.1 Description Of The TMS7000/TMs7020/TMS704OITMS70120/TMS§001/TMS7041
The TMS70XO0 devices (TMS7000, TMS7020, TMS7040, and TMS70120) are single chip
8-bit microcomputers containing a CPU, timer, 1/0, RAM, and various amounts of on-chip
ROM. The TMS7020 contains the CPU, RAM, timer, and 1/O on-chip, and also provides 2K
bytes of on-chip ROM. The TMS7040 offers the same features as the TMS7020 and has an
increased on-chip ROM size of 4K bytes. The TMS70120 offers the same features as the
general family and efficiently handles large programs with 12K bytes of on-chip ROM. The
TMS7000 family member contains the same features of the TMS7020 except it contains no
on-chip ROM.
The TMS70X1 devices (TMS7001 and TMS7041) contain a flexible on-chip serial port in
addition the CPU, timer, I/O, and on-chip RAM and ROM. The TMS7041 contains 4K bytes of
on-chip ROM, while the TMS7001 has no on-chip ROM.
Each member in the TMS70X0 and TMS70X1 families have 128 bytes of on-chip RAM, and all
have the capability through memory expansion modes, to access up to 64K bytes of address
space. For additional information on the TMS7000 family architecture, refer to Section 2.
Table 4-1 depicts the TMS70X0 and TMS70X1 family features.
TABLE 4-1 — TMS70X0 AND TMX70X1 FAMILY FEATURES
FAMILY MEMBERS
FEATURES 7000 7020 7040 70120 7001 7041
ON-CHIP ROM (BYTES) "NONE 2K 4K 12K NONE 4K
ON-CHIP RAM (BYTES) 128 128 128 128 © 128 128
INTERRUPT LEVELS 4 4 .4 4 6 6
13-BIT 1 1 1 1 2 2
TIMERS 6 BT 0 0 0) 1 i
1/0 LINES:
BI-DIRECTIONAL 16 16 16 16 22 22
INPUT ONLY 8 8 8 8 2 2
OUTPUT ONLY 8 8 8 8 8 8
i SERIAL SERIAL
ADDITIONAL 1/0 - - - - PORT PORT
PROCESS
TECHNOLOGY NMOS NMOS NMOS NMOS NMOS NMOS

384

Unless otherwise indicated the following specifications for the TMS7000 apply to the
TMS7020, TMS7040, TMS70120, TMS7001, and TMS7041.

4

4.1.2

4.2

Key Features

® o o o

Microprogrammable instruction set

Strip Chip Architecture Topology (SCAT) for rapid family expansion

Register-to-register architecture

Family members with 2K, 4K, and 12K bytes of on-chip ROM and ROMless versions

On-chip 8-bit timer/event counter with 5-bit prescale:

— Internal interrupt with automatic reload

— Capture latch '

— Second 8-bit timer/event counter with 5-bit prescale and cascade capability
{TMS7001 and TMS7041 only))

Flexible on-chip serial port (TMS7001 and TMS7041 only)

— Fully software programmable

— Internal or external baud rate generator

— Separate baud rate timer usable as a third timer

— Asynchronous, isosynchronous, or serial modes

— Two multiprocessor communication formats

128-byte RAM register file

Full-feature data/program stack

32 TTL-compatible I/O pins:

— 16 bi-directional pins {22 bi-directional pins on TMS7001 and TMS7041)

— 8 output pins i

— 8 high-impedance input pins (2 input pins on TMS7001 and TMS7041)

Memory-mapped ports for easy addressing

256-byte peripheral file

- Memory expansion capability:

— 64K byte address space

8-bit instruction word

Eight powerful addressing formats including:

— Register-to-register arithmetic

— Indirect addressing on any register pair

— Indexed and indirect branches and calls

Two's complement arithmetic

Single-instruction binary coded decimal (BCD) add and subtract
Two external maskable interrupts

Flexible interrupt handling:

— Priority sérvicing of simultaneous interrupts

— . Software execution of hardware interrupts

— Precise timing of interrupts with the capture latch
— Software monitoring of interrupt status

Accurate pulse width measurement and modulation
N-channel silicon gate MOS, 5-volt power supply
40-pin, 600-mil, dual-in-line package

100-mil or 70-mil pin-to-pin spacing packages

4.1.3

Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise
Noted)T

Supply voltage, Vcc (SeeNote1) —03VIO7V

AllINPULVOItAgES .« . . o ot i et e e e e —0.3Vto20V
All output voltages e e iiireeen...—03Vto7V
Continuous power dissipation e e e e e e e e 1W
Operating free-air temperature range . e 0°Cto 70°C
Storage temperature rangeo v v v vt en et e et —55°Cto 150°C

1 Stresses beyond those listed under *“Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions’’ section
of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Unless otherwise noted, all voltages are with respect to Vgg.

4.1.4 Recommended Operating Conditions
PARAMETER MIN NOM MAX UNIT
Supply voltage, Vcc) 4.5 5 5.5 \
] CLOCKIN 2.6 Vcc+05| v
High-level input voltage, V|4 MC 14 v
) All others 2 Vee+0.5| v
. CLOCKIN 0.6 Vv
Low-level input voltage, V) Al others : 08 v
High-level output current, IgH . —400 uA
Low-level output current, lor 10 mA
Operating free-air temperature, TA [o] 70 °C
4.1.5 Electrical Characteristics Over Full Range of Operating Conditions '
PARAMETER TEST CONDITIONS MIN TYPT max | uniT
] Input current, Port A INPUT-only pins V|=Vsgg to Vg +2 =10 uA
] Input current, I/O pins Vi=0.4 V to Vco 10 =100 | uA
C Input capacitance 2 pF
VOH High-level output voltage lo=-400 pA 24 28 \Y%
VoL Low-level output voltage l0=3.2 mA 0.2 0.4 \4
(0} Output rise time?¥ 9 50 ns
1(0) Output fall time* 10 60 | ns
lcc Supply current 80 150 mA
————— All outputs open
PD{av) Average power dissipation f 400 825 | mW

tal typical values are at Vo = 5V, T = 25°C.
Rise and fall times are measured between the maximum low level and the minimum hlgh level using the 10% and 90% points (see Figure 4-2}. Qutputs
have 100-pF loads to Vgg.

384

2.192vV

560

Vo

T 100 pF

FIGURE 4-1 — OUTPUT LOADING CIRCUIT FOR TEST

43

OUTPUTS

28V|m o —— e e — e ——VOH (MIN)
22Vf— ————

_——— e e e = 90%

0.6V
0.4 V|

0

—— ——— = 10%

o = = VoL {MAX)

INPUTS

20V e e e S W ——— TP][}

18 V|—— e e e A — — -90%

092 Ve e ——]

0.80 V|— == s e o —_—— VIL (MAX)

0

FIGURE 4-2 — MEASUREMENT PblNTS FOR SWITCHING CHARACTERISTICS

4.1.6 Recommended CRYSTAL/CLOCKIN Operating Conditions Over Full Operating Range

PARAMETER : : MIN _ TYP MAX | UNIT
fosc CRYSTAL/CLOCKIN frequency (divide-by-4 opuon) 2.0 10.1 | MHz
fosc CRYSTAL frequency (divide-by-2 option} (see Note 1) 1.0 5.05 | MHz
te(P) CRYSTAL/CLOCKIN cycle time (divide-by-4 option) 99 500 ns
te(P) CRYSTAL cycle time (divide-by-2 option) 198 1000 ns
tc(S) Internal state cycle time 396 2000 ns
tw(PH) CLOCKIN pulse width high . 45 ns
tw(PL) CLOCKIN pulse width low 45 ns
ty CLOCKIN rise time# 30 | ns
t CLOCKIN fall time* 30 | ns
td{PH-CL) CLOCKIN rise to CLOCKOUT rise delay. . 125 200 ns

* Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points (see Figure 4-2}. Ou(puts
- have 100-pF loads to Vgg.

NOTE 1: Divide-by-4 option recommended with external clock drive.

Jo—teir—o4

|
|
tf—o r-l | | rortw(r’m
.

XTAL2/
CLKIN

| P"l“wlpu

ctout A }I / \ / _
|

I
le
Jo

tels)

FIGURE 4-3 — CLOCK TIMING

44

(a) TMS70XX

XTAL1 XTAL2/CLKIN

18 |. 17
5 MHz,

L —

PARALLEL
15pF 2 RESONANT A~ 15 pF

—

(b)

18
ng ———
17
CLOCK
SOURCE

XTAL1
TMS70XX
XTAL2/CLKIN

NOTES: The divide-by-2 input can be used with XTAL only. Divide-by-4 can be used with XTAL or CLKIN inputs.
Alternative use of ceramic resonators is illustrated in Section 4.1.8.

FIGURE 4-4 — RECOMMENDED CLOCK CONNECTIONS

4.1.7 Memory Interface Timing At 10 MHz Over Full Operating Free-Air Temperature Range
PARAMETER MIN TYP MAX | UNIT
te(C) CLOCKOUT cycle time (see Note) 400 2000 ns
tw(CH) CLOCKOUT high pulse width 130 170 200 ns
tw(CL) CLOCKOUT low pulse width 150 190 240 ns
td(CH-JL) CLOCKOUT rising to ALATCH falling edge 260 300 340 ns
|_ta(cH-EL) " CLOCKOUT rising to ENA falling -10 15 50 ns
t(JHI ALATCH high pulse width 150 190 - 230 ns
i{AH-JL) High address valid before ALATCH fall 50 170 220 ns
_ﬂ AL-JL) Low address valid before ALATCH fall 50 150 220 ns
thiL-AL) Low address hold after ALATCH fall 30 45 80 - ns
t4(RW-JL) RD/WR valid before LATCH fall 50 140 200 ns
th] EH-RW) RD/WR hold after ENA rise 40 100 ns
th(EH-AH) High address hold after ENA rise . 30 40 ns
| thiEH-Q) Data out hold after ENA rise 65 80 ns
t4(Q-EH) Data out valid before ENA rise 230 290 ns
td(AF-EL) ENA fall after low address HI-Z 0 30 120 ns
t4(EH-AF) ENA rising to next address drive 60 85 ns
t4(EL-D) Data in after ENA falling 155 190 ns
__‘Q[EH-D) Data in hold after ENA rise 0 ns
t4(A-D) Access time, data in from valid address 400 470 ns
t4(A-EH) 'ENA high after address valid 580 730 ns

NOTE: t¢(C) is defined to be 4/fogc {or 2/fggc if the divide-by-2 option is selected) and may be referred to as a machine state or simply a state.

CLKOUT (B7)

ALATCH (B4)

HI ADDR (D0-D7)

LO ADDR (C0-C7)

ENABLE (B6)

RD/WR (B5)

46

EXTERNAL READ

EXTERNAL WRITE RAM READ INTERNAL READ
r—teo)—
| tw(cL)
e B 1 tw(CH)
| | .
l T Fta(CH-ED)
[—tdtcH-a0)
[]
/2 \
-= H'd(AH—JL) N '
l ' I n 'h(EH—AH)
'/ 4 ' Ty, V. //
ESS a HI ADDR 4 HI ADDR f A[:;R f HI ADDR
4 [__i. Jl A) A
th(JL-AL) - . i
- [Ao '1!‘_'"‘5”“” - th(EH-Q)
4 T 7, T s
pATA [5\ | DATAP 6%/// 7. Lo-
19a a DATA ouT (=] ADDR
out 17 | ! IN <2 Z 7
Lt 4(a-D)— F—td(EH-AF) ! .)
! _‘i*i e L, H(Q-ED
4 p—ta(ar-gV) | I~
[| .
- ok |
= H(EH-RW) ‘
_'1 F—tatrw-a0y I l--——-(d(A_EH)———l

FIGURE 4-5 — READ AND WRITE CYCLE TIMING

4.1.8

Application of Ceramic Resonator

The resonant circuit shown in Figure 4-6 provides an economical alternative to quartz crystals
where frequency tolerance is not a major concern. Frequency tolerance over temperature is -

about 1%.

Ceramic resonator suppliers.

MURATA CORPORATION OF AMERICA
1148 Franklin Rd. SE.

Marrietta, GA. 30067

404/952-9777

Telex: 0542329 Murata ATL

NGK SPARK PLUGS (USA) INC.
20608 Madrona Ave.

Torrance, CA 90503
213/328-6882

Telex: 664290

KYOCERA INTERNATIONAL
8611 Balboa Ave.

San Diego, CA 92123
714/279-8310

Telex: 697929

For 5 MHz operation

Resonator ceralock CSA5.00MT
Resistor 1 MS2 10%

Capacitors (both) 30 pF

For 5 MHz operation
Resonator R5.0M
Resistor 1 M2 10%
Capacitors 68 pF = 10%

— P18 XTAL1
TMS7000 I—P17 XTAL2
L™ pan M o I
Q—i D RESONATOR

RESISTOR

T T CAPACITORS

FIGURE 4-6 — CERAMIC RESONATOR CIRCUIT

4.1.9 Serial Port Timing (TMS7001, TMS7041, And SE70P161 Only)

4.1.9.1 Internal Serial Clock
© CLKOUT .
B(7) .
(NOTES a.b) :

—-: :.'td(CL-SL)
SCLK 7
Al6) |

|

|

]

{NOTE c) N
. — I-td(CL-'ro) i
TXD 1

x TXD
B(3) . N\ i

taRD-cLy—| jo—
RXD . ,
A(5) } Don’t Care XRXD XT" t Care
| [
. ' P—+'wlnui

RXD
SAMPLE SAVED

NOTES:

a) The CLKOUT signal is not available in Single-Chip mode.
b) CLKOUT = tgc) = @
c) Example shows SCLK = @/8.

PARAMETER TYP UNIT
td(CL-SL) CLKOUT low to SCLK low 1/4 te(C)
1d(CL-TD) CLKOUT low to new TXD data 1/4 t¢(c)
td(RD-CL) RXD data valid before CLKOUT low 1/4 t¢(C) ne
tw(RD) RXD data valid time 1/2 te(C)

4-8

4.1.9.2 External Serial Clock

CLKOUT , : '
B(7) I | l I I i | I | I | I I I l I |
{NOTE a)
' :t——o‘- (Note'e) -] Aﬁ{—-(Noted)
SA%!)(——m pe—t4(se-TD)——=! W——
(NOTE b) 1 ! |
'.——tmsg:rm——d

‘ |

D ' i

B(3) TXD H
[—taro-cu)

RXD . Don’t
D
Al5) on‘t Care X RXEX Care
‘w(HD)—H
RXD

SAMPLE SAVED

NOTES:

a) The CLKOUT signal is not available in Single-Chip mode.
CLKOUT = t(c) = @

b) Example shows SCLK = @/10.

¢) SCLK sampled; if 1 then 0, fall transition found.

d) SCLK sampled; if 0 then 1, rise transition found.

PARAMETER TYP UNIT
td(RD-CL) RXD data valid before CLKOUT low 1/4 1(C))
tw(RD) RXD data valid time 1/2 te(c) ns
1d(SB-TD) Start of SCLK sample to new TXD data 3% te(C)
t4(SE-TD) End of SCLK sample to new TXD data 2% te(C)

4.1.9.3 Rx Signals In Communication Modes

"o | . lummm ‘ | : —
RXRDY . ') . r ‘ I——
A0 0.0.0.0.0 0

3

RXD

NOTES:

a) Format shown is start bit + seven data bits + stop bits.

b) SCLK is continuous, external or internal.

¢} User means user software executed by CPU.

d) If RXEN = 0, RXSHF still receives data from RXD. However, the data
is not transferred to RXBUF and RXRDY and INT4 FLG are not set.

SEQUENCE OF EVENTS

1) RXSHF data is transferred to RXBUF. Error status bits are set if an error is detected.
2) User writes to INT4 CLR to clear INT4 FLG. If not, CPU clears.

INT4 FLG on entry to Leve!l 4 interrupt routine.

4)' User reads RXBUF.

410

4.1.9.4 Tx Signals In Communication Modes

m |
@

TXEN

TXE l
TXRDY I l
\ € fa a
TXD 0
1R22A3f4)A52617 E e e
w wn

NOTES:

a) Format shown is start plus eight data parity bits plus two stop bits.
b) SCLK is continuous whether internal or external.
c) User means user software executed by CPU.

SEQUENCE OF EVENTS

1 User writes to TXBUF.

INT4 FLG and TXRDY are set.

User resets TXEN; current frame will finish and transmission will stop whether TXBUF is full or empty.
7) TXE is set if TXBUF and TXSFT are empty.)

3) User writes to INT4 CLR to clear INT4 FLG or CPU clears INT4 FLG on entry to fevel 4 interrupt routine.

2)}{ TXBUF and WU data is transferred to TXSHF and WUT and

4-11

4.1.9.5 Rx Signals in Serial I/O Modes

INT4
FLG

17
RXEN é
— I
o X o X XX XXX X"
T

NOTES:

a) RXEN has no effect on INT4 FLG or RXRDY in serial I/0 mode.
b) RXD is sampled on SCLK rise; external shift registers should be clocked on SCLK fall.
¢} The SCLK sotirce should be internal as it is gated by internal circuitry.

SEQUENCE OF EVENTS

1) User starts receiving by setting RXEN.

2) Gated SCLK starts and data is received.

3) RXEN is automatically cleared in last data bit.

4) RXSHF data is transferred to RXBUF and RXRDY and INT4 are set.

5) User writes to INT4 CLR to clear INT4 FLG; if not CPU clears INT4 FLG on entry to level 4 interrupt
routine. . .

6) User reads RXBUF.

4.1.9.6 Tx Signals in Serial I/O Modes

INT4
FLG I
TXEN

. | ® T

TXRDY' 0_'
X X XX XXX/

SCLK

NOTES:

a) Format shown is eight data bits.
b) The SCLK source should be internal as it is gated by internal circuitry.

SEQUENCE OF EVENTS.

1) User writes to TXBUF.
2) TXBUF data is transferred to TXSFT; INT4 FLG and TXRDY are set and SCLK starts.
3} User resets TXEN, current frame will finish and transmission will halt whether TXBUF is full or empty.

4) Frame ends and SCLK stops because TXEN = 0.

413

4.1.10 Pin Descriptions

4.1.10.1 Pin Description of The TMS7000/TMS7020/TMS7040/TMS70120

Figure 4-7 defines the pin assignments and describes the function of each pin for the
Singte-Chip (SC), Peripheral Expansion (PE), Full Expansion (FE}, and Microprocessor Modes

for the TMS70XO0 family (TMS7000, TMS7020, TMS7040, TMS70120).

/o

SIGNATURE | PIN DESCRIPTION
AO {LSB) 6 IN | 1/O Port A: Input lines
Al 7 IN (Specific /0O configuration for;
A2 8 IN Single Chip Mode — see Section 2.3.1,
A3 9 IN | Peripheral Expansion Mode — see
A4 10 | IN | Section 2.3.2, Full Expansion
A5 16 IN Mode — see Section 2.3.3, Micro-
A6 15 IN processor Mode — see Section 2.3.4)
A7 {MSB) 111N '
BO (LSB) 3 |OUT | 1/0 Port B: Output lines
B1 4 | OUT [(Specific 1/0 configuration for;
B2 5 |OUT | Single Chip Mode — see Section 2.3.1,
B3 37 |OUT [Peripheral Expansion Mode — see
B4/ALATCH 38 [OUT | Section 2.3.2, Full Expansion
BS/R/W 1 {OUT | Mode — see Section 2.3.3,
B6/ENABLE 39 | OUT | Microprocessor Mode — see Section
B7/CLOCKOUT| 2 |0OUT| 2.3.4)
CO (LSB) 28 | 1/0 | 1/O Port C: General purpose bidirectional .
c1 29 | 1/O | lines {Specific 1/O configuration for; Single
c2 30 1/0 | Chip Mode — see Section 2.3.1, Peripheral
Cc3 31 1/0 | Expansion Mode — see Section 2.3.2,Full
c4 32 1/0 | Expansion Mode — see Section 2.3.3,
C5 33 | 110
Cc6 34 1/0 | Microprocessor Mode — see Section 2.3.4)
C7 (MSB) 35 | t/O
DO (LSB) 27 | 1/O | 1/O Port D: General purpose
D1 26 | 1/0 ‘| bidirectional lines {Specific
D2 24 | 1/O | 1/O Configurations for; Single
D3 23 1/0 | Chip Mode — see Section 2.3.1,
D4 22 | 1/O | Peripheral Expansion Mode — see
21 21 1/0 { Section 2.3.2, Full Expansion Mode —
D6 20 § 1/0 | see Section 2.3.3, Microprocessor
D7 (MSB) 19 | 1/O | Mode — see Section 2.3.4)
INT1 13 IN { Maskable Interrupt
INT3 12 IN Maskable Interrupt
RESET 14 | IN | RESET
mC 36| IN |.Mode Control
XTAL2/CLKIN | 17 IN Crystal input for control of internal OSC.;

input pin for external OSC. or LRC
| networks '
XTAL1 18 IN Crystal input for control of internal OSC.;
leave open for external OSC.

vce 25 IN Supply voltage (+5V)
Vss 40 | IN | Ground reference

414

FIGURE 4-7 — SC, FE, PE, AND MICROPROCESSOR MODE PIN ASSIGNMENTS

B5/R/W
B7/CLOCKOUT
1)

A5
XTAL2/CLKIN
XTAL1Y

D7

D6

Vss
B6/ENABLE
B4/ALATCH
83

MC

c7

cé

cs
ca
c3
c2

c1
co
DO
D1
Vee
D2
D3
D4
D5

4.1.10.2 Pin Description Of The TMS7001/TMS7041

Figure 4-8 defines the pin assignments and describes the function of each pin for the
Single-Chip (SC), Peripheral Expansion (PE), Full Expansion (FE), and Microprocessor Modes
for the TMS70X1 family (TMS7001 and TMS7041)

SIGNATURE PIN | I/O DESCRIPTION

AO (LSB) 6 /10 1/0 Port A: General Purpose Bidirectional lines
A1 7 110 (Specific /O configuration for: es/R/A 1]
A2 8 110 Single Chip Mode — see Section 2.3.1, B7/CLOCKOUT 2 []
A3 9 110 Peripheral Expansion Mode — see B0 3(]
A4 10 110 Section 2.3.2, Full Expansion B1 4 E
AB/RXD 16 | IN | Mode — see Section 2.3.3, Micro- hot :E
AB/SCLK 15 1/0 processor Mode — see Section 2.3.4) Al 7 g
A7 11 IN A2 8
BO (LSB) 3 |ouT 1/0 Port B: General purpose Output lines A3 o]
B1 4 |OUT (Specific 1/0 configuration for: A4 10 (]
82 5 JOUT | Single Chip Mode — see Section 2.3.1, A7 (g
B3/TXD 37 |ouT Peripheral Expansion Mode — see ::I: :; E
B4/ALATCH 38 |OUT | Section 2.3.2, Full Expansion . RESET 14
B5/RIW 1 |OUT | Mode — see Section 2.3.3, AB/SCLK 155
B6/ENABLE 39 |OUT | Microprocessor Mode — see Section A5/RXD 16 (]
g7/cLockout | 2 |out | 234 XT“”)‘ET"::"“ " E
CO (LSB) 28 | 110 | 1O Port C: General purpose bidirectional 07 19
C1 29 (1/0 lines (Specific 1/0 configuration for: Single os 20 {
c2 30 | /O Chip Mode — see Section 2.3.1, Peripheral
c3 31 | 110 Expansion Mode — see Section 232, Full
c4 32 | I/O Expansion Mode — see Section 2.3.3,
C5 33 | 1/0
cé 34 | I/O Microprocessor Mode — see Section 2.3.4).
C7 (MSB) 35 | I/0 :
DO (LSB) 27 | I/0 /O Port D: General purpose
D1 26 | 1/0 -bidirectional lines (Specific
D2 24 | 1/0 1/Q Configuration for: Single
D3 23 | I/O Chip Mode — see Section 2.3.1,
D4 22 | /0 Peripheral Expansion Mode — see -
D5 21 1 1/0 Section 2.3.2, Full Expansion Mode —
D6 20 | /O see Section 2.3.3, Microprocessor
D7 (MSB) 19 | VO Mode — see Section 2.3.4).
ﬁ 13 IN Maskable Interrupt
INT3 12 IN Maskable Interrupt
RESET 14 | N | RESET
MC 36 IN Mode Control
XTAL2/CLKIN 17 IN Crystal input for control of internal OSC.;

input pin for external OSC. or LRC networks
XTAL1 18 | IN Crystal input for control of internal OSC.;

leave open for external OSC.
Vcnc 25 IN Supply voltage (+5 V)
Vss 40 | IN Ground reference

FIGURE 4-8 — SC, FE, PE, AND MICROPROCESSOR MODE PIN ASSIGNMENTS

Vss
B6/ENABLE
B4/ALATCH
B3/TXD

MC

c7

cé

cs

4.2

4.2.1

4-16

TMS70C00/TMS70C20/TMS70C40
DESCRIPTION OF THE TMS70C00/TMS70C20/TMS70C40

The TMS70C00, TMS70C20, and TMS70C40 devices extend the TMS7000 family line into
low power CMOS applications. They are single chip 8-bit microcomputers containing CPU,
timers, 1/0, and on-chip RAM and ROM. Table 4-2 presents the basic features of the present
TMS70CXX family members.

The TMS70CXX family (TMS70C00, TMS70C20, and TMS70C40 devices) are fully software
and pin compatible with their TMS70XX NMOS counterparts. They differ in the areas of
interrupt operation, power down modes, input/output levels, operating voltage, and frequency
range.

The TMS70CXX family maintains the four hardware interrupt levels of the TMS70XX family
(RESET, INT1, INT2, and INT3). The TMS70CXX family implements INT1 as only a
latched interrupt, not a latched and level interrupt as on the TMS70XX NMOS devices. The
TMS70CXX family implements RESET, INT2, and I NT 3 in exactly the same manner as in
the TMS70XX family (i.e., INT3 is both latch and level sensntlve) Refer to Section 2.5 for
additional information on interrupt operation.

The TMS70CXX family supports two low power modes, the WAKE-UP mode and the HALT
modes. Both of these modes are entered via execution of the IDLE instruction. The selection of
the power down mode is determined by bit 5 of the timer 1 control register (T1CTRL) and then
executing the IDLE instruction. The device is released from both power down modes through
activation of RESET or acknowledgement of an enabled interrupt. Note that interrupts must
be enabled in the status register and the I/O control register ((OCNTO) before the power down
mode is entered for INT1, INT2 (timer), or I NT3 to be acknowledged. It is important that
both power down modes provide RAM data retention.

Unless otherwise indicated, the following specnflcatlons for the TMS70CO00 apply to the
TMS70C20 and TMS70C40 as well.

‘ TABLE 4-2 — TMS70CX0 FAMILY FEATURES

FAMILY MEMBER

FEATURES 70000 | 70C20 | 70C40
ON-CHIP ROM (BYTES) NONE | 2K aK
ON-CHIP RAM (BYTES) 128 128 128
INTERRUPT LEVELS 4 4 4
GENERAL PURPOSE
INTERNAL REGISTERS 128 128 128
TIMERS: 13-BIT | 13-BIT { 13-BIT
1/0 LINES:)

BI-DIRECTIONAL 16 16 16
INPUT ONLY 8 8 8
’) OUTPUT ONLY 8 8 8
ADDITIONAL 1/O * - - -
PROCESS
TECHNOLOGY cMos | cmos | cmos

4.2.2

Key Features

® Microprogrammable instruction set)

¢ - Strip Chip Architecture Topology (SCAT) for rapid family expansion

® Register-to-register architecture .

e Family members with 2K and 4K bytes of on-chip ROM and a ROMless version
L[]

On-chip 8-bit timer/event counter with:

— Programmable 5-bit prescale

— Internal interrupt with automatic reloading
— Capture latch

128-byte RAM register file

Full-feature data/program stack

. 32 CMOS-compatible 1/0 pins:

— 16 bi-directional pins

— 8output pins

— 8 high-impedance input pins
Memory-mapped ports for easy addressing
Wide voltage operating range, frequence range
— 3V-1MHztypical

— 5V-3.3MHz typical

Two software selectable low-power modes
256-byte peripheral file

Memory expansion capability:

— 64K byte address space

8-bit instruction word

Eight powerful addressing formats including:

— Register-to-register arithmetic

— Indirect addressing on any register pair

— Indexed and indirect branches and calls
Two's complement arithmetic

Single-instruction binary coded decimal (BCD) add and subtract
Two external maskable interrupts

Flexible interrupt handling:

— Priority servicing of simultaneous interrupts
— Software execution of hardware interrupts
— Precise timing of interrupts with the capture latch

" — Software monitoring of interrupt status

Accurate pulse width measurement and modulation
Complementary silicon gate MOS

40-pin, 600-mil, dual-in-line package

100-mil or 70-mil pin-to-pin spacing packages

417

4.2.3

Absolute Maximum Rating Over Operating Free-Air Temperature Range (Unless Otherwise
Noted)T

Supply voltage, VDD(SeeNote1) i, —03VIO7V

AllINPUtVOIAgES vt e it et e e e e —0.3VtoVpp + 0.3V
All output voltages eeve...—03VtoVpp + 0.3V
Inputcurrent e e e e + 10mA
Continuous power dissipation A o B 21"
Operating free-air temperature range v v v v v v i e ettt iee e e 0°Cto 70°C
Storage temperaturerange veteniiin.a.... —bB°Cto 150°C

1 Stresses beyond those listed under **Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyend those indicated in the ““Recommended Operating Conditions'* section
of this specification is not implied. Exposure to absolute-maximum-rated conditons for extended periods may affect device reliability.

NOTE 1: Unless otherwise noted, all voltages are with respect to Vgg.

4.2.4 Recommended Operating Conditions’
PARAMETER MIN NOM MAX | UNIT
Supply voltage, Vpp 3 5.5 \
Vpp = 65V Vpp-1 \
High-level input voltage, V|4 | Vpp = 4 V i Vpp-0.7 \4
Vpp =3V } Vpp-0.5 \
Vpp = 5V 1 \
Low-level input voltage, V| | Vpp = 4V 0.7 \
Vpp = 3V 0.5 | .V
Operating temperature range, TAT 0 70 °C

1 Plans are underway to extend the operating temperature range from —40°C to 85°C.

425 Electrical Characteristics Over Full Range Of Operating Conditions
PARAMETER TEST CONDITIONS MIN TYP! MAX | UNIT
IoH = -1 mA, Vpp =5V Vpp-2.5 Vpp-0.5 .
VOH High-level output voltage OH DD 0o - DD \2
loH = ~0.4 mA, Vpp =5V VDD-0.5 Vpp-0.2
VoL Low-level output voltage loL = 1.7 mA, Vpp = 5V 0.3 0.4 \
] Input leakage current Vi = Vpp. Vpp = 5V 5 A
VoH = Vpp-0.5V, Vpp = 5V -0.3 -1.2
V, = Vpp-0.5V, Vi =4V -0.2 -0.8
loH Source current OH DD DD - mA
VoH = Vpp-0.5V, Vpp =3V -0.1 -0.5
VoH = 2.5V, Vpp =5V -1 -4.5
VoL = 0.4V, Vpp = 5 V 1.7 2.4
loL Sink current VoL = 0.4V, Vpp =4V - 1.2 1.8 mA
VoL = 0.4V, Vpp = 3V 0.7 1
Operating, 5.5 8 mA
fosc = 3 MHz, Vpp =5V
Wake-up mode, 500 800 A
! Supply current fose = 3 MHz, Vop =5V :
DD - PRl Halt mode, 250 550 A
fosc = 3 MHz Vop =8V KA
Halt mode, XTAL/CLKIN = GND,
a.moe AL/CL GND . 2 10 A
all input = Vpp or GND, Vpp =5V
t All typical values are at Vpp = 5V, Tp = 25°C.
418 384

LOAD VOLTAGE
970 @

T 100 pF |

.

FIGURE 4-9 — OUTPUT LOADING CIRCUIT FOR TEST

Vo

4.2.6 AC Characteristics For Input/Output Ports

PARAMETER TEST CONDITIONS MIN TYet MAX | UNIT
CL = =
tr(10) /O port output rise time ¥ L=15pF Vpp =8V % ns
CL=-50pF, Vpp =5V 70 110 150
tf(10) /O port output full time ¥ CL=150pF Vpp =5V 2 ns
Cy = 80pF, Vpp = 5V : 25 50 70
t%(10) VO port input rise/fall time?* Vpp = 5V 70 | ns

1 All typical values are at Vpp = 5V, Ta = 25°C.
Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points {see Figure 4-11).

4.2.7 Recommended CRYSTAL/CLOCKIN Operating Conditions Over Full Operating Range

PARAMETER TEST CONDITIONS MIN TYP MAX | UNIT
Vopp=5V 0.5 3.6 | MHz
fosc CRYSTAL frequency (see note 1) Vpp =4V 0.5 2.7 | MHz
Vpp=3V 0.5 1.3 | MHz
Vpp=5V 277 2000 ns
te(p) CRYSTAL cycle time : Vpp=4V 370 2000 ns
Vpp =3V 769 2000 ns
Vpp=56V 554 4000 ns
te(s) Internal state cycle time Vpp=4V 740 4000 ns
Vpp=3V 1538 4000 ns
t CRYSTAL rise timeT ° 30| ns
t§ CRYSTAL fall timet 30 ns
dosc CRYSTAL duty cycle 45 50 55 %
td(PL-CL) CRYSTAL fall to CLOCKOUT rise delay 100 200 ns

t Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points.
NOTE 1: TMS70CXX family members currently use only the divide-by-two option as the INPUT CLOCK option.

4-20

i T AVYAYAWA

CLKOUT

OUTPUTS

45V
4.1V

o8V
04V

0

INPUTS

4.0V
3.7V

IL—'leL-CL)
|
]
|
!

| el "

FIGURE 4-10 — CLOCK TIMING

_——e e e el —— e e — e — —— VOH (MIN)

—————— e A e e — - 90%

—_——_—— - —— — ——————— — —\— — — —— — — — 10%

VoL (MAX)

_________ —_—_——— e e — 10%

————————— —— e ———— — V), (MAX}

FIGURE 4-11 — MEASUREMENT -POINTS FOR SWITCHING
CHARACTERISTICS (Vpp = 5V}

Memory Inteface Timing At Vpp = 5V, fos¢ = 3 MHz Over The Full Operating Free-Air

4.2.8
Temperature Range
PARAMETER MIN TYP MAX | UNIT
te(C) CLOCKQUT cycle time (see note) 665 ns
tw(CH) CLOCKOQUT high pulse duration 260 340 470 ns
twiCL) CLOCKOQUT low pulse duration 190 270 360 ns
td(CH-JL) CLOCKOUT rising to ALATCH falling edge 400 580 ' ns
_td{CH-EL) CLOCKOUT rising to ENABLE falling 30 - 60 ns
tw(JH) ALATCH high pulse duration 260 370 ns
td(AH-JL) High address valid before ALATCH falt 230 330 ns
t4(AL-JL) Low address valid before ALATCH fall 220 320 ns
| td(JL-AL) Low‘iidress hold after ALATCH fall 110 160 ns
| td(RW-JL) RD/WR valid before ALATCH fall 220 320 ns
th(EH-RW} RD/WR hold after ENABLE rise 170 ns
th(EH-AH) High address hold after ENABLE rise 165 ns
th(EH-Q) Data out hold after ENABLE rise 130" 190 ns
t4(Q-EH) Data out valid before ENABLE rise 330 480 ns
td(AF-EL) ENABLE fall after low address HI-Z ¢} 0 20 ns
| td(EH-AF) ENABLE rising to next address drive 130 ns
td(EL-D) Data in after ENABLE falling 290 ns
th(EH-D} Data in hold after ENABLE rise 0 ns
td(A-D) Access time, data in from valid address 770 ns
td(A-EH) ENA high after address valid 800 1150 ns

NOTE: TMS70CXX family members use a cycle time, t(C), that is equal to 2/fogc and is referred to as a machine state or simply a state.

4-21

CLKOUT (B7)

ALATCH (B4)

HI ADDR (D0-D7)

LO ADDR (C0-C7)

ENABLE (B6)

RD/WR (B5)

4-22

EXTERNAL READ 'EXTERNAL WRITE RAM READ INTERNAL READ
[tetc)—1
| 11 tw(cL)
= tw(CH)
I .
| o [
I | —|F——Ftatcr-eD
~ [—tatcH-aL
-l tw(JH) .
] [\
_/ 3 I\ J \
-JI P——i td(AH-JL)
: I -{ —— th(EH-AH)
/ T T T Y,
ESS f HI ADDR 7 HI ADDR ﬁ ALSR 2 - HI ADDR
L il ! 1L/4 4
— i-—4 theo-an)| |
— 1—-'L ta(AL-JL) _“'_ th(EH-D) -~ th(EH-Q)
T / T /. B
paTA)4 S\ | DATA 6%// 56%
109 DATA OUT
out Ylaaf IN a #n3) ADDR
// ‘It ! | -< /A W
LLty(a-p)— r—ta(EH-AR) i
P oo | tata-etd
+ F—tacar-£) | I~
' |
| i r—l—l ' }
, — th(EH-RW)
_‘ll f—t d(RW-JL) I , I‘——t d(A-EH) ——‘-{

FIGURE 4-12 — READ AND WRITE CYCLE TIMING

(a)

XTAL1

TMS70CXX

18

15 pF T

(c)

tb)
XTAL2/CLKIN
17
3 MHz,
) 0 ! cLock
P | ' SOURCE
PARALLEL
RESONANT 1< 15 pF
P18 XTAL1
TMS7000 P17 XTAL2
L LI
D RESONATOR
RESISTOR
CAPACITORS

18

nc ———p4 XTAL1

17

14

TMS70CXX

XTAL2/CLKIN

——— e —

NOTE: The TMS70CXX family currently uses only the divide-by-two option as the input clock options. Sources of . ceramic

resonators are given in Section 4.1.8.

FIGURE 4-13 — RECOMMENDED CLOCK CONNECTIONS

4-23

4.2.9

Pin Description Of The TMS70C00/TMS70C20/TMS70C40

Figure 4-14 defines the pin assignments and describes the function of each pin for the
Single-Chip (SC), Peripheral Expansion (PE), Full Expansion (FE), and Microprocessor modes

for the TMS70CXO0 family (TMS70C00, TMS70C20, TMS70C40).

SIGNATURE | PIN | I/O DESCRIPTION
A0 (LSB) 6 IN 1/0 Port A: Input lines
Al 7 iN (Specific 1/O configuration for;
. A2 8 IN | 'Single Chip Mode — see Section 2.3.1,
A3 9 IN Peripheral Expansion Mode — see
A4 10 IN Section 2.3.2, Full Expansion
A5 16 IN Mode — see Section 2.3.3, Micro-
A6 15 iN processor Mode — see Section 2.3.4)
A7 (MSB) 11 IN
BO (LSB) 3 |OUT | I/O Port B: Output lines
B1 4 | QUT | (Specific 1/O configuration for;
B2 .5 | OUT | Single Chip Mode — see Section 2.3.1,
B3 37 | OUT | Peripheral Expansion Mode — see
B4/ALATCH 38 |OUT | Section 2.3.2, Full Expansion
B5/R/W 1 |OUT | Mode — see Section 2.3.3,
B6/ENABLE 39 | OUT | Microprocessor Mode — see Section
B7/CLOCKOUT| 2 (OUT| 2.3.4)
CO (LSB) 28 1/0 | 1/0 Port C: General purpose bidirectional
C1 29 | /O | lines (Specific I/O configuration for; Single
c2 30 1/O | Chip Mode — see Section 2.3.1, Peripheral
Cc3 31 1/O | Expansion Mode — see Section 2.3.2,Full
ca 32 1/O | Expansion Mode — see Section 2.3.3,
C5 -33 1/0
C6 34 | 1/0 | Microprocessor Mode — see Section 2.3.4)
C7 (MSB) 35 1/0
DO (LSB) 27 | 1/O | 1/O Port D: General purpose
D1 26 1/0 | bidirectional lines (Specific
D2 24 1/0 | 1/0 Configurations for; Single
D3 23 | /O | Chip Mode — see Section 2.3.1,
D4 22 1/O | Peripheral Expansion Mode — see
D5 21 1/0 | Section 2.3.2, Full Expansion Mode —
D6 20 1/0 | see Section 2.3.3, Microprocessor
D7 (MSB) 19 | 1/0 | Mode — see Section 2.3.4)
INT1 13 IN Maskable Interrupt
INT3 12 IN Maskable Interrupt
RESET 14 IN RESET
MC 36 IN Mode Control
XTAL2/CLKIN | 17 IN Crystal input for control of internal OSC.;
input pin for external OSC. or LRC
networks
XTAL1 18 iN Crystal input for control of internal 0SC.;
leave open for external OSC. '
Vee 25 | IN | Supply voltage (+5V)
Vss 40 IN | Ground reference

4-24

FIGURE 4-14 — SC, FE, PE, AND MICROPROCESSOR MODE PIN ASSIGNMENTS

BS/R/W
B7/CLOCKOUT
BO

81

B2

AD

Al

A6

A5
XTAL2/CLKIN
XTAL1

D7

D6

W ONDOU HWN =

Vss
B6/ENABLE
B4/ALATCH
e3

MC

c7

c6

c5

ca

c3

cz2

c1

co

DO

D1

Vee

D2

D3

D4

7

DS’

4.3

4.3.1

4.3.2

4.3.2.1

4.3.2.2

384

SE70P161
Description Of The SE70P161 Prototyping Component

The SE70P161 prototyping component is another member of the TMS7000 family of
single-chip 8-bit microcomputers. The SE70P161 is pin compatible with the TMS7020,
TMS7040, TMS70120, TMS7041, and has the same instruction set described in Section
3 of this data manual.

The SE70P161 can also be used to emulate CMOS members of the TMS7000 family, with the
following limitations. Because the SE70P161 is an NMOS device, its logic levels are not CMOS
compatible. Also, this device does not support the low-power modes of the CMOS devices
such as HALT or wake-up. Finally, INT1 on the SE70P161 is both latched and level triggered as
in the NMQOS devices, not just latched, as in the CMOS devices. Further details of these
differences are provided in the sections which discuss the function.

The SE70P161 serves as a prototyping component for the TMS7000 devices and provides the
ability to verify in real-time software written for all TMS7000 family members mentioned in the
preceding paragraphs. This device uses standard TMS2764 or TMS27128 EPROMSs. The
EPROM s are located in a socket on top of a 40-pin dual-in-line package.

The SE70P161 is packaged so that an EPROM device can be plugged into the top of the
package (piggy back}. This two chip unit acts as an emulator of the TMS7020 (2K bytes of
internal ROM space), the TMS7040/7041 (4K bytes of internal ROM space) and the
TMS70120 (12K bytes of internal ROM space). The SE70P161 can also be used as an
emulator of any future members derived from the TMS7040/7041 with up to 16K bytes of
internal ROM space.

Prototyping

NOTE

System emulators and development tools are only to be used in a prototype
environment. Texas Instruments does not warrant their use in customer’s
applications. .

TMS7041 Prototyping

The SE70P161 uses either 2764 or 27128 EPROMs with 250 nanoseconds access time or
better. The SE70P161 is identical to the TMIS7041 except the supply currentis a max:mum of
150 mA higher because of the EPROM.

TMS7020/7040/70120 Prototyping

The SE70P161 system emulator can be used as a TMS7020/TMS7040/TMS70120
prototype. In this mode, internal peripheral port 16 must be cleared by adding MOVP% >00,
P16 to the initialization routine.

In any expansion mode, peripheral ports 13 through 23 are used internally and are not
accessible to external peripherals in this memory space. In addition, in the full expansion mode,
memory Iocatlons COOO through FFFF are reserved for an EPROM and are not externally
available.

4-25

4.3.3

4.3.4

Programming And Installing EPROMS

All EPROM access times are not more than 250 nanoseconds. Pin 1 is identified by a nearby
L-shaped gold trace; socket 1 for the EPROM is located in in the same corner. Table 4-3 shows
the use of the EPROMS.

TABLE 4-3 — EPROM USE

PROM | Tom | smmr | smanr
SPACE ADDRESS ADDRESS

27128 16K Bytes >C006 >0006

2764 8KBytes | >E006 >0606

2764 4K Bytes >F006 >1006

2764 2K Bytes >F806 >1806

7/
tNOTE: Texas Instruments reserves the first 6 bytes of ROM. Addresses in this range may not be defined by the user
program.

The SE70P161 is fabricated in two versions. Both versions have fixed internal ROM space of

16K bytes (COOO-FFFF), one with a divide-by-two clock generator and the other with a
divide-by-four. Note that on the SE70P161, none of the 16K EPROM address space can be
mapped as external addresses except in microprocessor mode.

Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise

- Noted)t
Supply voltage, VCC (SeeNote 1), —0.3Vto7V
Allinputvoltageo ittt i i i i i e e —0.3Vto20V
Alloutput voltageso ittt e e e e —03Vto7V
Continuous power dissipationttt te ittt e e 1w
Operating free-airtemperature rangeo vt vi e ti i inn e vaneon 0°C to 55°C
Storage temperatuUre FANGE . . v v v v v e v e e et e s e et et s 0°Cto 100°C

t Stresses beyond those listed under ’Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at,these or any other conditions indicated in the “Recommended Operating Conditions’ section of this
specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Unless otherwise noted, all voltages are with respect to Vgs.

4-26

4.3.5 Recommended Operating Conditions
PARAMETER MIN NOM MAX UNIT
Supply voltage, Vo . 4.5 5 5.5 \"

- - CLOCKIN 2.6 Vcc+0.5
High-tevel input voltage, V| Al others 2 Voo 05 v
Low-level input voltage, V| CLOCKIN 06 \

All others 0.8
High-level output current, IOH -400 A
Low-level output current, lgp N 10 mA
Operating free-air temperature, T 0 55 °C
4.3.6 Electrical Characteristics Over Full Range Of Recommended Operating Conditions
PARAMETER TEST CONDITIONS MIN TYPT MAX | UNIT -
VOoH High-level output voltage IoH = -0.4 mA 2.4 Vv
VoL Low-level output voltage loL = 2mA 0.4 \
0) Input current V| = Vgg to' Vee 10 A
icc Average supply current¥ All outputs open 80 150 | mA
T All typical values are at Voc = 5 V, TA = 25°C.
+ Average supply current without piggyback EPROM device installed.
4.3.7 Recommended CRYSTAL/CLOCKIN Operating Conditions Over Full Operating Range
PARAMETER MIN TYP MAX | UNIT
fosc CRYSTAL/CLOCKIN frequency (divide-by-4 option) 2.0 10.1 | MHz
fosc CRYSTAL frequency (divide-by-2 option) (see Note 1) 1.0 5.05 | MHz
te(p) CRYSTAL/CLOCKIN cycle time {(divide-by-4 option) 99 500 ns
te(P) CRYSTAL cycle time (divide-by-2 option) - 198 1000 ns
te(S) Internal state cycle time 396 2000 ns
tw(PH) CLOCKIN pulse width high 45 ns
tw(PL) CLOCKIN pulse width low 45 ns
tr CLOCKIN rise time* 30 | ns
ki CLOCKIN fall time? 30 | ns
t4(PH-CL) CLOCKIN rise to CLOCKOUT rise delay 125 200 ns__ |

¥ Rise and fall times are measured between the maximum low level and the minimum hlgh level using the 10% and 90% points (see Figure 4-3). Outputs

have 100-pF loads to Vgg.
NOTE 1: Divide-by-4 option recommended with external clock drive.

384

4-27

4.3.8 Memory Interface Timing At 10 MHz Over Full Operating Free-Air Temperature Range
PARAMETER MIN NOM _MAX | UNIT
tc(C) CLOCKOUT cycle time (see Note) 400 2000 | ns
tw(CH) CLOCKOUT high puise width 130 170 200 ns
tw(CL) CLOCKOUT low pulse width 150 190 240 | ns
td(CH-JL) CLOCKOUT rising to ALATCH falling edge 260 300 340 ns
td(CH-EL) CLOCKOUT rising to ENABLE falling —10 15 50 ns
tw(JH) ALATCH high pulse width 150 190 230 | ns
td(AH-JL) High address valid before ALATCH fall 50 170 220 ns
td(AL-JL) Low address valid before ALATCH fail 50 150 220 ns
th(JL-AL) Low address hold after ALATCH fall 30 45 80 ns
td(RW-JL) RD/WR valid before ALATCH fall 50 140 200 ns
th(EH-RW) RD/WR hold after ENABLE rise 40 100 ns
th(EH-AH) _ High address hold after ENABLE rise 30 40 ns
th(EH-Q) Data out hold after ENABLE rise 65 80 ns
td(Q-EH) Data out valid before ENABLE rise 230 290 ns
td(AF-EL) ENABLE fall after low address HI-Z 0 30 120 ns
td(EH-AF) ENABLE rising to next address drive 60 85 ns
td(EL-D} Data in after ENABLE falling 155 190 ns
th(EH-D) Data in hold after ENABLE rise 0 ns
td(A-D) Access time, data in from valid address 400 470 ns
td(A-EH) ENA high after address valid 580 730 ns

NOTE: t¢(c) is defined to be 4/fosc. (or 2/fosc if the divide-by-2 option is selected) and may be referred to as a machine state or simply a state.

4.28

CLKOUT (B7)

ALATCH (B4)

HI ADDR (D0-D7)

LO ADDR (C0-C7)

ENABLE (B6)

RD/WR (BS5)

EXTERNAL READ EXTERNAL WRITE RAM READ INTERNAL READ
[""' ey
| tw(CL)
~ tw(CH) ,
[
] l
| | }———}ta(cH-eD
1 ' —{td(CH-aL)
-l 'w(JH)
||
|
—J[F——}'d(AH—JL)
I I _'I — th(EH-AH)
'/ ' T] 7 V. //
Essg HI ADDR 4 HI ADDR % ALDR ; HI ADDR
. |] NS
—4i~4fh(JL—Au |
- 'l—J"d(AL—JL) -ﬂ_"“e”"” - th(EH-Q)
7R l NV 7
DATA)48 DATA = / ; ' LO-
PR e B
Lt g(A-D)—] rta(EH-AR) . '
' __i H— e l tatQ-gt
44 —ta(aF-gn) | [~
' |
| |
= tnewrw ||
—‘{ F—tamw-0 | | | F——taca-en |

FIGURE 4-15 — READ AND WRITE CYCLE TIMING

4-29

4.3.9

Pin Description Of The SE70P161

R/W B(5)

CLK QUT B(7)
B(0)

B(1)

B(2)

A(0)

Al1)

A(2)

A(3)

Al4)

A(7)

NT3

INTT

RST
A(6)/SCLK

" A(5)/RXD
XTAL 2/CLKIN
XTAL 1

D(7)

D(6)

1 PIN LOW, EPROM ALWAYS ENABLED

4-30

‘l_
2
3_
4
5—
6—
7—
.8—
9—
10—
11—
12—
13—
14—
15—
16—
17—
18—
19—
20—

°Vee
CA12
OA7
OA6
OA5
o0A4
OA3
0A2
OA1
OA0
oD0
oD1
oD2
oVss

L

70P161

—40
—39
—38
—37
—36
—35
—34
—33
—32
—31
—30
—29
—28
-27
—26
—25
—24
—23
—22
—21

Vss

B(6)/ENABLE
B(4)/ALATCH
B(3)/TXD,

MC

C(7) (MSB)

C(6)

C(5)

C(4)

C(3) \
C(2)

c(1)

c(0)

D(0)

D(1)

Vce (MAIN ICC SUPPLY)
D(2),

D(3)

D(4)

D(5)

384

5.1

5.1.1

MICROPROGRAMMING
TMS7000 CUSTOM MICROCODING DESCRIPTION

Standard members of the TMS7000 family implement a general purpose instruction set
intended to address the needs of most potential users. A general purpose instruction set,
however, does not directly address the requirements of any specific application. Microcoding is
a technique which can be used to tailor the instruction set to more efficiently satisfy the
particular application needs. Basic performance attributes of the TMS7000, such as speed and
program size, may be greatly improved by microcoding.

Microcoding involves modifying the CPU control logic. This logic implements the instruction
set of the CPU and, when modified, includes the user functions as a new assembly language
instruction. The control information (called microinstructions) is contained in a ROM called the
Control ROM, or CROM (see Figure 5-1 TMS7000 CPU Internal Block Diagram). This
microprogram is similar to an assembly language program contained in memory. The control
logic may be modified to implement a new user function by using similar methods as the
masked program ROM. Modifying this microcoded control information allows a relatively
inexpensive way to implement a more efficient user routine. Normally, this routine would be
written in assembly language code which uses more time and ROM. In contrast, altering the
instruction set of a CPU which is not microprogrammed is expensive and usually impractical
due to the complexity of modifying the random logic used to implement its control section.

With custom microcoding, the new function is normally initiated by executing a single, newly '
defined assembly language instruction which generates a unique opcode that causes the
function to execute. Microcoding can produce a 40% or greater improvement in performance
depending on the function implemented.

Typical Applications

In a wide variety of applications, microcoding efficiently bridges the performance and cost gap
between general purpose microprocessors/microcomputers and expensive high performance
dedicated controllers. Applications for microcoding are from areas where extended
performance and control at the bit level are required in a dedicated micro-
processor/microcomputer based system. These requirements can include speed and program
size improvements. Texas Instruments’ microcoding capability and support for the TMS7000
makes this microcomputer family the ideal choice for these types of applications.

51

5.1.2

5-2

Some typical applications for TMS7000 cﬁstom microcoding are listed below:

e AUTOMOTIVE ¢ TELECOMMUNICATIONS
DASHBOARD CONTROL MEMORY PHONES
DASHBOARD DISPLAY AUTOMATIC DIALERS
RADIOS ‘ PHONE LINKED COMPUTER
CAR COMPUTER TERMINAL

¢ INDUSTRIAL

e COMPUTER PERIPHERALS MACHINE CONTROL
PRINTERS SPEED CONTROL
DISK CONTROLLERS POSITION CONTROL
KEYBOARDS - TEMPERATURE CONTROL
ALPHA-GRAPHIC TERMINALS HIGH-LEVEL LANGUAGE
TAPE CONTROLLERS COMPUTER CONTROL
SMART MODEMS TIMER-CONTROLLER-CLOCKS
HANDHELD COMPUTERS
PLOTTERS " & CONSUMER

HOME COMPUTERS

* RETAIL GAMES
POINT OF SALE TERMINALS EDUCATIONAL PRODUCTS
SCALES SPEECH PRODUCTS
BAR CODE READERS SECURITY
VENDING MACHINES SMART APPLIANCES .
DATA ENCRYPTION - STEREO EQUIPMENT
REMOTE BANK TELLERS
METERING

Key Features

There are several advantages to using microcode to implement a given function instead of
coding that function in assembly language. Among these are:

* . IMPROVED EXECUTION SPEED

* REDUCED PROGRAM SIZE REQUIREMENTS AT THE ASSEMBLY LANGUAGE LEVEL
* ALGORITHM SECURITY |
e |ESS EXTERNAL LOGIC REQUIRED

One of the most important advantages is the improvement in execution speed of microcoding
over assembly language. This improvement in execution speed results because microcode is
more specific than assembly language and therefore performs less redundant operations in its
execution. This results in more compact and efficient code which executes in fewer CPU
cycles, thereby executing faster.

As an example of this redundancy, consider a sequence of assembly language code that
operates on a byte of data. Any operation on that byte will typically involve bringing the byte
into the CPU, operating on-it and possibly another operand and then storing the result of this
operation in memory. Subsequent operations on this result require that the data be again
brought into the CPU before it can be used. In a microcoded version of the same sequence, a

significant amount of execution time can be saved since the data which is required at a later
stage of processing can remain in the CPU. This eliminates the overhead of muitiple memory
accesses which store and then retrieve the same information.

Another advantage of microcode is that since the CPU operates more efficiently, less assembly
language code is required to perform a given function. This results in reduced program size and
ROM memory requirements, especially if this code is used repetitively. Specifically, a function
which may take many instructions to implement in assembly language may be executed in
microcode with only one assembly language instruction. Clearly, this can result in significant
savings in memory requirements.

Algorithm security is another positive aspect of microcoding. Once microcoded functions are

implemented on the TMS7000 chip, the algorithm used in their implementation is significantly

more difficult to access than if it were an assembly language program contained in ROM. Thus,
if a particular method of implementing a function is proprietary for any reason, microcoding the

function will increase the security of this information. This is important, for example, in

applications which implement data encryption type functions and in highly competitive

markets such as toys and games.

Microcoding can also reduce the amount of additional logic circuitry required in a system. This
reduction in additional circuitry in a system results because many of the functions to be
performed in the external logic can be accomplished by the microcoded sequences. These
functions include such operations as bit shifting, latching, counting, timing synchronization
and many other functions which can be easily accomplished in microcade. Implementing these
functions in microcode results in a lower system chip count which results in lower system cost
and improved reliability. -

5-3

¥-S

W OTMD W
—_— L
0(7:0) ; =
EI-(Hs) 17 | GL I) | Ha
: 8 8
4 y
=
STATUS BCD REG IR
FH1) |-(m) FHY FH1 FHy] fFHD
< : 8 8 8
M 4 Nao) ¢ NE-0) 8,
1 A : ’ 8
PR R O s N7 L
T v L P(7-0) Pi-0) 8
E . v - - 2
) — ® 1s F“—#PAL
AH(7-0) AH(7-0) 8 8 AH(7-0)
'E AL(7-0) 8 8, AL(7-0)
1) Fen] Fan T Ren
) (H1) (H1) (H1)
8y 8 8 3 3 F ENTRY g
pr 4 . ~ POINT |-¥ o
CONST PCH PCL MAL sP CONST Loaic M
T0 To
AH BUS ‘ AH BUS
H4 (H4) (H4) H4
575 ‘L;H-() T]}- H (H4)

2-4 DECODE

NOTE: Transfer gate controls in parentheses indicate only the clock phase on which the control occurs. Controls are not activated each cycle of the clock,
only when the control signal is asserted.

FIGURE 5-1 — TMS7000 CPU INTERNAL BLOCK DIAGRAM

8 MD(7-0) memORY

DATA BUS

ADDRESS BUS
HIGH BYTE

ADDRESS BUS
LOW BYTE

45
CONTROL

N

TO RAM,
ROM, 110

e

5.1.3

5.1.4

Microcoding Example

To illustrate the contrast between functions coded in assembly language vs. functions
implemented in microcode, it is interesting to consider two sequences which perform the same
operation. Figure 5-2 shows an assembly language code sequence which implements the
same multiply algorithm that the TMS7000 MPY instruction uses.

CLR A RESULT INITIALLY ZERO
CLR R3 - CLEAR LOOP COUNT
LOOP1 CLRC CLEARS STCBIT .
Loor2 - RRC A SHIFT RESULT RIGHT 1 BIT
RRC B CHECK MULTIPLIER BIT
JNC @LABEL ADD OR NO ADD?
INC R3 INCREMENT LOOP COUNT -
ADD R2,A PERFORM ADDITION
“JMP @LOO0P2 PROCESS NEXT BIT
LABEL INC R3 INCREMENT LOOP COUNT
CMP %9,R3 NINE LOOPS COMPLETE?
JNE @LO0P1 NO, PROCESS NEXT BIT
TSTA IF YES, SET STATUS, EXIT

FIGURE 5-2 — ASSEMBLY LANGUAGE MULTIPLY SEQUENCE

The assembly language sequence performs an eight by eight bit multiplication. This sequence
leaves the resultant 16-bit product in the A/B register pair and sets the Status Register bits
according to the contents of the A Register (just as the MPY instruction does). The sequence
implements the multiply function as a subroutine and assumes that the two operands are
located in R1 (the B Register) and R2. It should be noted that if a general addressing scheme
had been implemented, additional code would have been required.

Although this sequence implements the same multiply algorithm that the MPY instruction
uses, a minimum of 3&'38 cycles (143.2 us with a 2.5 MHz internal clock rate) are required for its
execution, whereas the microcoded MPY instruction executes in a maximum of 48
microinstruction cycles (19.2 ps). The magnitude of this difference illustrates how much more
efficient microcoded functions can be than functions coded in assembly language.

The significant savings of microcode over assembly language often makes microcoding
indespensible in meeting a design’s performance goals.

Considerations Of Microcoding

There are several tradeoffs to consider in determining whether microcoding is appropriate for a
given application. These tradeoffs include:

e DESIGNCYCLE EXTENDED .
e DEVICE TESTING REQUIREMENTS INCREASED
¢ AVAILABLE CROM SPACE RESTRICTED TO 46 WORDS (OUT OF 160}

* ONE ORMORE ASSEMBLY LANGUAGE IN‘SfRUCTIONS MUST BE SACRIFICED

5-5

' 5.1.5

5-6

Each of these tradeoffs require consideration in the microcoding process. A potentially longer
and more complex design cycle needs to be taken into account during the early planning stages
of a microcoding task. This is also true of additional testing requirements dictated by a custom
microcoded CPU. Both considerations should be anticipated and provided for. Also, since the
standard instruction set microcode occupies the full 160 words of CROM, some of the
standard instructions must be removed to make room for custom microcode. The standard
instructions to be removed should be considered carefully to avoid Ilmmng assembly language
programming.

The standard assembly language instruction set has been divided into two groups of
instructions designated core and non-core. Core instructions, considered to be essential in
maintaining architectural integrity, are provided with all TMS7000’s and may not be removed
for microcoding purposes. Non-core instructions may be removed from the standard
instruction set to allow room for microcoding. Of the 160 words in the CROM, 46 are non-core.
The non-core assembly language instructions are listed in Figure 5-3.

MPY Multiply

DAC Decimal Add with Carry

DSB Decimal Subtract with Borrow
DECD Decrement Double

MOVD Move Double

SWAP Swap

CMPA Compare A

XCHB Exchange B

TRAPn Traps 8-23

Peripheral File instructions

FIGURE 5-3 — NON-CORE ASSEMBLY LANGUAGE INSTRUCTIONS
Microcode Development Cycle
The microcode development support package makes development of microcode for the

TMS7000 straightforward and efficient. The microcode development cycle comprises many
steps. These steps are briefly summarized below:

¢ GENERATE SPECIFICATION FOR MICROCODE
e GENERATE AND VERIFY MICROCODE

* GENERATE AND VERIFY TEST PATTERNS

e PRODUCE AND TEST PROTOTYPE t)EVICES

The first step in the microcode development cycle is to determine that microcode is appropriate
for the application and to identify which functions are to be microcoded. Once this is
accomplished, a specification for the microcode is generated and writing of the microcode can
begin. Also at this time, the assembly language code to be contained in the TMS7000’s
program ROM should be generated.

The flowchart in Figure 5-4 shows the microcode development cycle in detail. Contact the Tl
Factory for details of project timing.-Microcode can be generated by four different sources: (1)
customer (2) TI's Regional Technology Center - RTC (3) 3rd party (4) Tl factory. It should be
noted that this flowchart depicts the flow for microcode developed by a customer; however,

Texas Instruments will generate custom microcode if required. The development cycle in this
case is similar to the one shown except that the flow includes validation of the code by the
customer to ensure that the desired function is implemented.

GENERATE
SPEC FOR
MICROCODE

oenare | | Soesare
MICROCODE CODE

— |

RUN
ON
EMULATOR

YES

' GENERATE '
TEST
INPUTS

SEND TRANSFER
PACKAGE
TOTI

, I
' .

GENERATE . FABRICATE
TEST PARTS
PATTERNS
TEST
PARTS
SAMPLES
TO
CUSTOMER

FIGURE 5-4 — MICROCODE DEVELOPMENT FLOWCHART

57

5.1.6.1

5.1.6.2

5.1.6.3

58

Available Support

Support for microcoding is provided through a comprehensive package of software, hardware
and documentation. This support includes: :

‘e TMS7000 MICROASSEMBLER SOFTWARE PACKAGE
* TMS7000 AMPL EMULATOR SYSTEM
¢ TMS7000 MICROCODE DOCUMENTATION PACKAGE, CONSISTING OF:

— TMS7000 MICROCODE DEVELOPMENT GUIDE {MP #458)

— TMS7000 MICROASSEMBLER USER’S GUIDE (MP #457)

— TMS7000 MICROARCHITECTURE USER’S GUIDE (MP #061)

— TMS7000 MICROPROGRAMMER'S REFERENCE CARD (MP #459)
TMS 7000 Microassembler Software Package
This package is the software used for running the microassembler on the Tl 990 hard disk
computer. The TMS7000 microassembler (called MICASM) is the microcode assembler for the
TMS7000 family which allows programmers to modify the standard TMS7000 family
microcode and create a microcode object file.
TMS7000 AMPL Emulator System
The TMS7000 AMPL Emulator, which runs on Tl 990 computers under AMPL, supports the
TMS7000/TMS7020/TMS7040 devices (and their CMOS versions with the same limitations
as the SE70P161, see Section 7.5) and the TMS70120. It allows in-circuit emulation of the
microcoded device running at full speed or single stepping through the microcode.
TMS7000 Microcode Documentation Package
The Microcode Development Guide is a general microcode development aid which includes a
tutorial on microcoding. This manual is normally the first document required and is helpful in
determining whether microcoding is appropriate for a given application.
The TMS7000 Microassembler User's Guide describes the TMS7000 microassembler
program which is used to generate microinstructions from statements containing mnemonics

for microcode functions.

The Microarchitecture User’s Guide contains'all of the detailsvof the internal operation of the
TMS7000 that are necessary for microcoding.

The Microprogrammer’s Reference Card contains a useful collection of reference information
pertinent to microcoding the TMS7000.

5.2

5.2.1

MICROCODED BENCHMARKS

Benchmarks are a common method of comparing the performance of different computing
elements executing the same function. A set of common microprocessor/microcomputer
benchmarks has been microcoded to demonstrate the typical speed improvements possible
through microcoding. These benchmarks and the speed improvements for each are listed in
Table 5-1.

TABLE 5-1 — BENCHMARK 1-6 COMPARISON (2.5 MHz)

7000 7000
BENCHMARK MICROCODED RANK STANDARD RANK
BINARY ADDITION 4 1.0 6.4 63
BCD ADDITION 5.6 1.0 10 56
BLOCK MOVE 315 1.0 1780 21
TABLE SEARCH 101 1.0 453 22
BINARY TO BCD 100 1.0 295 34
BIT1/0 10 1.0 20 50
RELATIVE RANKING 1.0 ‘ 41

Note that the performance of the TMS7000 assembly language benchmark ranges anywhere
from 21% to 63% of the performance of the microcoded version. These variations are due to
which speed improvement techniques were applied and the extent to which they were able to
be applied.

All benchmarks {except Benchmark 3) are responsible for fetching their own operands.
Therefore the custom microcode must be entered directly from the instruction acquisition
sequence of microcode. The TRAP B instructions all share the TGBO microstate which is
entered directly from IAQ2, the last instruction acquisition microstate. All benchmarks will use
the TGBO microstate for the first microinstruction of the benchmark. The instructions, TRAP 8
through TRAP 15, all enter the TGBO state. Non-core microinstructions were used as needed
starting from the first non-core microinstructions listed in the TMS7000 standard instruction
set source file.

Benchmark 3 uses shared microcode to fetch some of its operands. An unused instruction is
used to enter the shared microcode. This unused instruction will execute the TESTO state after
the addressing mode microcode. The TESTO microstatement is executed after the Long
Addressing Function microcode fetches two of the necessary operands. The opcode used will
be >89 which is currently unimplemented in the standard instruction set.

Benchmark Rules
The following list describes the rules used when microcoding the benchmarks:

1) All of the registers used in the assembly language code may be used No other
registers may be used.

2} ThePCH, PCL, and SP registers must not be modified except where it is necessary to

read operands. The program counters (PCH and PCL) may be stored on the stack to
allow general use of these registers.

59

.5.2.2

5.2.3

510

3) The microcode can assume where its operands are if operand placement is the same
as in the assembly language benchmark.

4) The CPU’s T, MAL, and IR registers are available for storage. The IR register, which
uses the opcade as a basis for dispatches may be used because no function or group
dispatches will be performed once the benchmark microcode is entered.

An individual description of each microcoded benchmark and what speed improvement
techniques were applied follows.

Benchmark 1: 16 Bit Binary Addition

Two 18-bit unsigned binary integers in on-chip RAM (the register file) are added together; the
result is stored back into on-chip RAM. One integer is contained in the A (MSB) and B registers,
and the other operand is contained in registers R3 (MSB) and R4. The resultis left inthe A and B
registers. The assembly language code to perform binary addition is:

ADD R4,B AddLSBs together.y..set up carry for MSB addition
ADC R3,A Add MSBs together...add in carry from LSB addition

This code occupies four bytes of memory and takes 6.4 microseconds to execute. The
corresponding microcode implementation occupies one byte of memory and executes in 4
microseconds. Seven unique microstatements were required to perform binary addition. The
following techniques were used to obtain the 38% speed improvement:

1) Elimination of instruction fetch and PC increment operations for the ADC instruction.

2) Benchmark 1 assumes the operands are located in registers A, B, R3 and R4.
Constants are generated to address registers R3 and R4.

Only a 38% speed improvement was possible in this-benchmark due to the simplicity of the
function. : :

Benchmark 2: 16 Bit Binary Coded Decimal (BCD) Addition
Two uﬁsigned 4 digit packed BCD integers in on-chip RAM are added together and the result
stored back into on-chip RAM. One of the integers is contained in the A (MSB) and B registers
and the other is located in registers R3 (MSB) and R4. The assembly language code is:

CLRC Clear carry for LSB addition

DAC R4,B Add with carry LSBs

DAC R3A Add MSBs together with carry from LSB addition

This code uses five bytes of memory and executes in 10 microseconds. This benchmark’s

~ microcode occupies one byte of code space and executes in 5.6 microseconds. Eleven unique

microstatements were required to implement this function. This represents a speed
improvement of 44%. The following techniques provided the 44% improvement:

1) Elimination of instruction fetch and PC increment operations.

2y Assumption of operand placement. Again, as in Benchmark 1, constants are
generated to address registers R3 and R4.

5.2.4

Only a 44% speed improvement was possible due to the simplicity of the algorithm. Note that
BCD arithmetic is slightly more complex than binary addition, and thus a 44% improvement
was obtained, versus 38% for Benchmark 1. Also note that a CLRC instruction is required
before the first addition since there is only one BCD addition instruction and it adds in the carry
bit from the status registers.

Benchmark 3: Block Move

Ablock of 127 bytesin off-chlp memory is moved to another location also in off-chip memory.
The assembly language code to move blocks of data is:

MOV %127,B Set up number of bytes to move
LOOP LDA - @FROM-1(B) ReadaFROM block data byte
: STA @T0-1(B) Store byte to a TO block address
DJNZ B,LOOP Decrement block move counter...jump if
. non-zero

This code uses 10 bytes of code, and when a block length of 127 bytes is specified, will
execute in 1780 microseconds. Note that the table move is started from the end of the table.
The microcode requires five operands: the number of bytes to move, the FROM addresses, and
the TO addresses. The opcode and operands of Benchmark #3 will appear in memory in the
following order:

LOCATION X BENCHMARK 3 OPCODE
X+1 - TOMSB '
X+2 TOLSB
X+3 FROM MSB
X+4 FROMLSB

X+5 NUMBER BYTES TO MOVE

Six bytes of program storage are needed and program execution will take 315 microseconds.
Twenty-five unique microstatements are required. The CPU register usage is as follows:

PCH register — FROM MSB
PCLregister — FROM LSB

Tregister = — TOMSB
MAL register — TO LSB
IRregister — Byte move counter

The microcoded block move allows a variable block move function. If the microcode is passed
a block length of zero, 256 bytes will be moved. The microcode makes no check for belng
passed a block length of zero.

Two 16-bit addresses need to be referenced by this benchmark: the FROM block address and
the TO block address. Because there are only two general purpose CPU registers available to
address memory with (T and MAL), the program counter registers (PCH and PCL) are used to

- store one of the 16 bit block addresses. The program counter registers are saved on the stack.

Therefore, two bytes of stack must be available for use by this benchmark’s microcodes.

Benchmark 3 uses shared microcode to fetch the TO MSB and the TO LSB addresses. The
Long Addressing function is used to fetch these two operands into the T and MAL registers. An
unused opcode, >89, is available in the Long Addressing function group to be used. The
opcode >89 will direct execution to the TESTO microinstruction after the long addressing

511

mode fetched the TO addresses. The TESTO non-core mlcrostatement is the first non-core
microinstruction used by the benchmark microcode.

The following techniques were applied to yield the 82% speed improvement:
1) Elimination of instruction fetch and PC increment operations.

2) The LDA and STA instructions move the data byte to the A register for storage. The
microcode leaves the data byte inside the CPU.

3) The loop downcounter decrement operation is performed at the end of the block
move loop. However the downcounter equal to zero check is done during the first
microinstruction of the block move loop. This allows the loop to execute in fewer
microstates.

4) The program counters are incremented when they are retrieved from the stack. Two
cycles are saved because the incrementing of the program counters is done the same
cycle the program counter values are passed thru the ALU to the program counter
registers.

5.2.6 Benchmark 4: Table Search

Benchmark 4 searches a table looking for a key character. The assembly Ianguage code
appears like this:

MOV %KEY,A Set up byte to look for

MOV %40,B Setuptablelength
LOOP CMPA @TABLE-1(B) Does the table byte match key character

JEQ FND If bytes match, jump

DJNZ B,LOOP Decrement table length counter; jump if non zero
NFND Key Not Found
FND ~ : Key Found

This code occupies 11 bytes and executes in 326 microseconds. The timings are all done for
the KEY not found condition. The microcode version requires four operands and occupies five
bytes of code space. The microcoded instruction and its operands will appear in memory as
follows:

LOCATION X BENCHMARK 4 OPCODE
X+1 TABLELENGTH
X+2 KEY VALUE TO SEARCH FOR
X+3 TABLE ADDRESS MSB
X+4 TABLE ADDRESS LSB

When a table length of 40 is passed to the microcode, execution will take place in 101.6
microseconds. Again, the microcode implementation allows variable table lengths and KEY
values. Twenty-one unique microstatements were required to implement the table search
algorithm. The CPU register usage is as follows:

T register — Table address MSB
MAL register — Table address LSB
IR register — Key value to search for

512

5.2.6

The A register holds the table length original value. This value is stored for later subtraction
with the current B offset value to yield the correct table offset value when the KEY is found.
The table length downcounter is contained in the B register.

_The assembly language version searches the table from back to front. The microcode version

searches the table from front to back. If the microcode searched the table from back to front as
the assembly code does, the table address would have to be reread every iteration of the loop
because of the current table offsets addition into the tabie base address. The CMPA instruction
does the table offset addition into the base address in the assembly language version. Reading
the table from front to back allows the table address, contained in T and MAL, to be continually
incremented to point to successive table locations. The B register, which contains the table
offset downcounter, is read, decremented, written back to the B register, and then checked for
having reached zero. ‘

The original table length is stored in the A register. Once the KEY is found, the B register is
subtracted from the original table length (in A) to yield the correct table offset. .

To obtain the 69% speed improvement, the following techniques were used:

1} Elimination of instruction fetch and PC increment operations.

2) Elimination of unnecessary reads/writes. The table addresses and the KEY character
are all stored internal to the CPU.

3) The table value and the KEY value are compared during the same cycle the B register
is read for the decrement operation.

4) The decision of whether the KEY is found or not is made in the same microcycle that
the B register is decremented and written.

5) The table address is incremented the same cycle as a mlcrmump is done on the table
empty condition.

If the KEY was not found, the B register contents are >FF. This limits the table length to 254
bytes, or >FE. Because the microcode cannot determine the address of the code to execute
when the KEY is found, the PC will be incremented by two to point past the KEY not found
return. This requires that a two byte jump be placed at the NFND label to jump over the KEY
found code.

Benchmark 5: Binary To BCD Conversion

This benchmark performs binary to BCD conversion. A 16 bit binary number, contained in
registers R2 (MSB) and R3, is converted to a Binary Coded Decimal value to be left in registers
A (MSB) and B. The conversion is dpne by looping 16 times, rotating A and B through the
status carry and adding the BCD number to itself (which sets up the carry for the rotations).
The assembly language code is: i’

CLR A Clear MSB result
CLR B Clear LSB resuit
MOV %16,R4 Set up loop count
LOOP RLC B The BCD resultin A and B
RLC A Is generated through the carry bit

DAC R3,R3 Decimal add binary MSB to itself to set up carry
DAC R2,R2- Decimal add binary LSB to itself to set up carry
DJNZ R4,LOOP Decrement loop count and jump if non zero

513

5.2.7

This code occupies 16 bytes, and takes 295 microseconds to execute. The microcode version
occupies only one byte of code space and takes 100 microseconds to execute. A speed
improvement of 66% is obtained. Generally speaking, iterative functions will yield a greater
speed improvement when microcoding than non-iterative functions.

The T register is used to hold the ‘A"’ register value (binary MSB). The T register is written to
the A register at the end of the conversion. The binary LSB is stored in'the B register as is done
by the assembly code.

The loop downcounter is stored in the IR register. To decrement a value by one, it will be placed
on the ALU P bus with a zero gated onto the N bus. The ALU will then perform a subtraction
(PSUBN) operation with a zero carry in to decrement the operand. Because the IR only
connects to the N bus, an extra cycle is required each loop iteration transferring the IR thru the
ALU to the MD bus where the next microinstruction will gate the value onto the P bus to
perform the decrement operation.

The 66% speed improvement was obtained through the use of the following techniques:
1) Elimination of instruction fetch and PC increment operations.

2) Assumption of operand placement. The binary number is assumed to be in R2 and
R3 and the result is assumed to be placed in A and B.

3) Elimination of unnecessary reads/writes. The binary MSB, which the assembly code
manipulates to/from the A register, is left internal to the CPU in the T register.

4) The constant value "“3" (to address R3) and the constant ‘16"’ are generated
simultaneously.

5) The binary MSB and LSB (assembly uses CLR A and CLR B) are cleared
simultaneously.

6) The loop downcounter decrement, and equal to zero check, are done at the same
time as the constant ‘’2’’ is incremented to point to R3.

Benchmark 6: Bit 1/0

1

Benchmark 6 tests the ability of microcorriputers to perform bit I/O operations. An input only

port {port A) and an ouput only port (port B) are used. If any one of three input bits are a /1"’

then an output bit will be set to a “1’’. Then, if another input bit is a “‘O”’ three output bits are
toggled. Allinputs may be on the same 8 bit port, but inputs and outputs must be on different
ports. The assembly language code is:

ANDP %IMASK1,PA AND functions checks for ** 1’ bits on PA
Jz NEXT If none are set, jump over bit set instruction
ORP %O0MASK1,PB Set the output bittoa ‘' 1"’
NEXT BTJOP %IMASK2,PA,DONE If any masked bits are a ““0"’, jump over toggle
function
XORP %OMASK2,PB Toggle output bits values
DONE

5.3

5.3.1

This code occupies 15 bytes and takes 20 microseconds. The timings are calculated assuming
neither of the two jumps were taken; the ORP and XORP instructions were executed.
Benchmark 7 is passed the following parameters in the order they are obtained from the
program counter pointers:

LOCATION X BENCHMARK 6 OPCODE
X+1 IMASK1
X+2 OMASK1
X+3 IMASK2
X+4 OMASK2

The microcode application of this benchmark uses five bytes of code space and executesin 10
microseconds which represents a 50% speed improvement.

Only the T register is used by this benchmark. The mask values are read into the T register. The
peripheral port values are read onto the MD bus and operated on with the mask values to
provide a port output value or to set up the status (for decision making).

The 50% speed improvement was gained by the application of the following techniques:
1) Elimination of instruction fetch and PC increment operations.

2) Rearrangement of algorithm functions. While the Port A decision is being made, the
read of the output mask is started. Even if the output mask is not needed, the
program counter still needs to be incremented to point to either the next operand or
the next instruction.

3) Port Ais an input only port but the ANDP instruction writes to this port. Writing to
port A is not required by this benchmark and was removed in the microcode
‘application of the benchmark. .

MICROARCHITECTURE DESCRIPTION

This section contains a description of the internal architecture of the TMS7000. It describes
primarily the operation of CPU; the memory and on-chip /O circuitry may vary among the
TMS7000 family members, and will be described in the documentation for those individual
devices. This section is intended to present information regarding the internal architecture of
the TMS7000 family necessary for microcoding these devices. A symbolic microinstruction
assembler called MICASM is provided for assembling microcode instruction mnemonics. This
assembler is described in the TMS7000 MICROASSEMBLER USER’S GUIDE (Part Number
MP457).

TMS7000 Family Address Space

The TMS7000 family address space is divided into multiple 256-byte pages. Addresses
>0000 to >007F are utilized as a 128-byte Register File or RF, and reference the on-chip RAM.
On-chip ROM is located at the top of the address space, from addresses >F800 to >FFFF for
the TMS7020, and >FO00 to >FFFF for the TMS7040. The last 48 bytes of memory,
addresses >FFDO to >FFFF, are reserved for trap and interrupt vectors. The TMS7000 family
address space is shown in Figure 5-5. Note that the TMS70120, not depicted in Figure 5-5, has
12K bytes of ROM.

5-15

5.3.2

516

ADDRESSES MEMORY

>0000 — >007F RAM REGISTER FILE
>007F — >00FF RESERVED

>0100 — >01FF PERIPHERAL FILE
>0200—>EFFF § - MEMORY EXPANSION :
>F000 — >F7FF PROGRAM ROM (TMS7040 ONLY)

>F800 — >FFCF PROGRAM ROM (TMS7020/40)
>FFDO — >FFFF TRAP VECTORS

FIGURE 5-5 — TMS7000 FAMILY ADDRESS SPACE

The Peripheral File, or PF, is a special 256-byte page in the memory address space. Each
location of the PF is a special control or data register. On-chip circuitry interprets PF Registers
as I/0 control, programmable timer, memory expansion, and other registers to control features
of the chip. For example, the four I/O ports may be accessed as four registers in the PF
Accesses to the Peripheral File are recognized by the Peripheral/Memory Controller (PMC)
external to the CPU. In general, all chip functions not implemented by the CPU will be
implemented by the Peripheral/Memory Controller, and controlled via accesses to Peripheral
File Registers. .

The advantage of defining special pages for the Peripheral and Register files is that accesses to
these areas may be made by specifying an offset of 8 bits, rather than a full 16-bit memory
address. The Register File is located at memory addresses >0000 thru >007F and the
Peripheral File is implemented in the second page of memory address space, from addresses
>0100to >01FF. ’

Basic TMS7000 Architecture
The major components of the TMS7000 architecture are the CPU, the Peripheral/Memory

Controller, and the RAM and ROM. These components and their interconnections are shownin
Figure 5-6.

EXTERNAL INTERFACE

CENTRAL / - \
PROCESSING 8
UNIT [»—4 PORTA
- [~2 $ PORTB
8
ts ks ks 7 [~—p4 PORTC
MD | AH [AL| C <294 PORTD

PERIPHERAL —<d4 RESET

/MEMORY 2 4 INT1, INT3
CONTROLLER

MEMORY CONTROL (MC)

—d
€—~24 CcRysTAL
«—2 4

RAM
128 x 8

Vce, Vss

40 PINS TOTAL

ROM
TYPICALLY
2K/4K x 8

FIGURE 5-6 — TMS7000 OVERALL BLOCK DIAGRAM

The Central Processing Unit (CPU} contains the internal registers, which store the operands of
an instruction, and the Arithmetic Logic Unit (ALU), which operates on the internal register
values. A shifter is provided to rotate the output of the ALU before its results are either stored in
an internal CPU register or written to a memory location. The CPU is described in further detail
in paragraph 5.3.4.

The Peripheral/Memory Controller (PMC) is a collection of modules which interface the CPU
with the I/0 ports, memory, and the interrupt inputs. The CPU is connected to the PMC via the
Address Low (AL), Address High (AH), Memory Data (MD), and Control (C) Buses. The MD
Bus, AL Bus, and AH Bus are also connected to the on-chip RAM and ROM memories.

. The Peripheral/Memory Controller (PMC) performs many functions. Itinterfaces the CPU to the

outside world by providing control and data registers for /O ports, interrupts, and internal timer
controls. The interface control registers appear to the CPU as addresses in the Peripheral File. In
the TMS7000, the PF is implemented in the second 256 byte page of memory, at addresses
>0100 to >01FF. Input/output in the TMS7000 is accomplished by reading and writing bytes
in the Peripheral File implemented by the PMC. In terms of the microarchitecture, the exact
functions of the Peripheral File registers are family member dependent.

5-17

5.3.3

5-18

The Control (C) Bus connecting the PMC and the CPU carries control information required in the
interface between these two subsections of the TMS7000. The C Bus is made up of seven
signals, each of which is described briefly below.

e #MEM (Membry): set by the CPU durihg any memory access.

* #MEMCNT (Memory Continue): set by the CPU during the first cycle of two cycle
memory accesses.

e #WR (Write): set to 1 by the CPU to indicate a memory write operation.

~® STINT (Status Interrupt Enable): set by the CPU to allow the PMC to assert IACT.

e |JACT (Interrupt Active): set by the PMC if a valid interrupt is active and STINT isa 1.
* RST (Reset): set to 1 by the PMC whenever the external RESET pinis a O.
e OTMD (O Bus to MD Bus Enable): set by the PMC to enable the O Bus to drive the MD Bus.

Each of these signals is discussed in greater depth in later sections of this manual. Further

- details of interrupt control may be found in the TMS7000 8-Bit Microcomputer Data Manual

(Part Number MP O08A).
Microinstruction Format

This section describes the format of the TMS7000 microinstructions, and details the internal
timing of microinstruction execution.

The CROM is organized as a 64-bit wide, 160-word memory. The current microarchitecture of
the TMS7000 uses 45 bits per microinstruction to control its operation. To allow for future
expansion of this architecture, however, a total of 64 microinstruction bits are reserved in the
architecture definition. Table 5-2 describes the format of the TMS7000 microinstruction word.

TABLE 5-2 — MICROINSTRUCTION WORD FORMAT

BITS FIELD FUNCTION
63-56 #JMPADDR(7-0) BASE ADDRESS FOR NEXT INSTRUCTION
55-53 #JMPCNTL(2-0) JUMP FUNCTION SELECTION
52 #0>PCH GATES 0 BUS TO PCH REGISTER
51 #MD>T GATES MD BUS TO T REGISTER
50 #-MD> IR GATES MD BUS TO IR'REGISTER
49-48 #LOWWRITE(1-0) SELECTS ONE OF 3 O BUS DESTINATIONS
Y : #-0> 8T GATES O BUS TO ST REGISTER
46 #MD> P GATES MD BUS TO P BUS
45 #PCH> P GATES PCH REGISTER TO P BUS
44 #PCL>P GATES PCL REGISTER TO P BUS
43 #MD>N GATES MD BUS TO N BUS
42 #T>N GATES T REGISTER TO N BUS
41 #ST>N GATES ST REGISTER TO N BUS
40 #BCD>N GATES BCD CONSTANT TO N BUS
39 #IR>N GATES IR REGISTER TO N BUS
38 #ONE> AL GATES CONSTANT ONE TO AL BUS
37 #PAL GATES P BUS TO AL BUS
36 #MAL> AL . GATES MAL REGISTER TO AL BUS
35 #SP> AL GATES SP REGISTER TO AL BUS
34 #T> AH GATES T REGISTER TO AH BUS
33 #PCH> AH GATES PCH REGISTER TO AH BUS
32 #ONE> AH GATES CONSTANT ONE TO AH BUS
31 #MEMCNT FIRST ONE OF TWO CYCLE MEM. ACCESS
30 #MEM INDICATES A MEMORY ACCESS
29 #WR INDICATES A MEMORY WRITE
28 #-LST UPDATES STATUS REGISTER BITS
27-24 #SHIFTCNTL(3-0) SELECTS SHIFT/ALU CARRY FUNCTIONS
23-20 #ALUCNTLI(3-0) SELECTS ALU FUNCTION
19 #ABL LOGICAL (VS. ARITHMETIC) ALU OP’'S
18-0 Reserved

NOTE: In multiple bit fields bit 0 is the LSB.

All 160 words of the CROM are required to implement the standard instruction' set of the
TMS7000. Because of this, adding other microcoded functions to the TMS7000 requires that
some of the standard instructions be deleted to allow space for the new instructions.

The TMS7000 Standard Instruction Set has been divided into two instruction groups
designated core and non-core instructions. Non-core instructions are those instructions which
Texas Instruments will allow to be removed in order to implement other microcoded functions.
Core instructions may not be removed and are provided with any TMS7000 whether further
microcoding has been implemented or not. Core and Nen-core instructions are described in the
TMS7000 Microcode Development Guide, (Part Number MP 458).

A symbolic microprogram assembler, MICASM, is available to aid microprogram generation.
MICASM accepts mnemonic names for bit fields in a microinstruction word, and builds the
appropriate bit patterns. The names of each bit field in the TMS7000 microinstruction word are
given in Figure 5-7. They are distinguished from other signal names by preceeding them with a
‘. :

5-19

5.3.3.1

5-20

For single bit fields, if the MICASM statement contains the name of the bit, it is asserted in the
assembled instruction. For high-true signals, the bit is set to 1; for low-true signals (such as
#-0>8T), the bit is set to 0. For multiple-bit fields, MICASM accepts any one of a set of
possible names, where each name corresponds to a bit pattern for the multi-bit field. A sample
of a MICASM statement is shown in Figure 5-7.

.ORG ADDO 'ADD Dual Operand Function
Z>AH, 'AH =0 for Page O access
MAL>AL, AL = destination register #
MD>P, . 'Source operand to P bus
T>N, . ‘Destination operand to N bus PADDN,ZCI,LST

PADDN,ZCI,LST
'Add them, load status register
MW, "Write the result to destination
JUNC(NEXT); 'Jump to next microinstruction

FIGURE 5-7 — SAMPLE OF A MICASM STATEMENT

The .ORG line establishes the address of the microinstruction in the Control ROM. The
remaining lines contain symbols which set bits in the current microinstruction word. The last
line indicates the next microinstruction that is to be executed.

Microinstruction Cycle Timing

Each microinstruction cycle has four overlapping clock phases; H1, H2, H3, and H4. H1 and
HS3 are non-overlapping, and H2 and H4 are non-overlapping. Microinstruction cycles begin on
the rising edge of H1. Two versions of clock generator circuitry are available for the TMS7000.
The first version uses the external crystal frequency directly to generate H1-H4. The second
version divides the crystal frequency by two before generating the internal clock phases.

Figure 5-8 shows the timing relationships of the four internal clock phases H1-H4 and the
signal from the crystal oscillator.

*NOTE: This waveform represents the crystal oscillator output divided by two if that version of the clock generator circuitry is
used.

- N
N

CYCLEi CYCLEi+1

0
FIGURE 5-8 — MICROINSTRUCTION CYCLE PHASES

5.3.3.2

5.3.3.3

H1-H4, the four internal clock phases, are used as data transfer signals throughout the
architecture. In particular, the current microinstruction is gated out of the Control ROM during
H1. Microinstruction bits required during later phases (H2, H3, H4) are appropriately sampled
by the hardware.

The internal implementation of the TMS7000 uses MOS dynamic ratioless logic which allows
the chip to operate with lower power requirements than with other types of MOS logic. Signal
lines considered to be valid during phase HX (e.g. H1) are precharged during the
non-overlapping phase of HX (e.g. H3). For this reason, timing diagrams in this document will
indicate signal values only during the phase in which they are valid, with a don’t care indication
during the phase in which they are precharged.

Memory Cycle Timing

Memory references to the on-chip Register File (RF) require one microinstruction cycle, and are

called short memory cycles. All other references, i.e. to on-chip ROM, extended memory, or

the Peripheral File, require two microinstruction cycles, and are called long memory cycles.
Extended memory must be able to respond in this time period, since no wait states are provided

in the TMS7000.

Short Memory References

The timing for a read or write to the on-chip Register File is shown in Figure 5-9.

5-21

522

ON-CHIP RAM MEMORY CYCLE TIMING
i+1 i+2

/\ /T]
F_—_/_—\'—/—-_

N/ | \ /"

H1

H2

H3

H4

T\
L/ \.
—/_-_
-_—F
ALL SHORT REFS:
#MEM /'_——"1
#MEMCNT [\
XK

AL BUS
je——»}-REGISTER NUMBER (0-255)

AH BUS [\

ADDRESS HIGH = >00
READS:

#WR |\
mpBus [XXX XK

L——-LREAD DATA AVAILABLE
WRITES:
#WR |/ ‘

L——’I'WRITE DATA SPECIFIED

FIGURE 5-9 — ON-CHIP RAM MEMORY CYCLE TIMING

For a Register File read during cycle i, the microinstruction loaded at the initiation of cycle i
asserts #MEM high and #MEMCNT low. #MEM is asserted at all times when a memory
reference is active, and #MEMCNT is asserted high only during the first cycle of two-cycle (ie.
long) memory cycles. #WR is set low for read operations and high for write operations.
Microinstruction i also specifies the contents of the the address bus, placing a >00 on the AH
(Address High) Bus and the register number on the AL (Address Low) Bus. During H2, the MD
Bus is precharged and the RAM is accessed. For the duration of H4, the RAM output data on
write operations and the RAM input data on read operations is on the MD Bus.

Because H4 of cycle i overlaps H1 of cycle i+ 1, the data read on cycle i may be loaded into
registers T or IR at the end of cycle i or gated onto the P or N Buses at the beginning of cycle
i+1. This characteristic of the MD Bus can be very useful in optimizing microcode
performance.

5.3.34

' Initial members of the TMS7000 family implement only 128 bytes of the 256-byte Register

File; attempts to write to addresses in non-existent on-chip memory will be ignored. Attempts
to read non-existent memory will produce >00.

Long Memory References

The timing for all long memory references is shown in Figure 5-10.

i i+1 i+2
)/ \) |
H2| /7 _ / \ /- \L
H3 m . /—_

ALL LONG MEM REFS:
#MEM

#MEMCNT

H4"__f\ /T /|
[
/ T\

AL BUS

AH BUS
le——o}-MEMORY ADDRESS
READ:

awr \

READ DATA AVAILABLEje——»]

WRITE: | AT END OF CYCLE 1 +1

#WR |/

OFF CHIP ONLY -ja——sj| ! : I
ON CHIP ONLY

WRITE DATA ASSERTED

FIGURE 5-10 — LONG MEMORY CYCLE TIMING

The memory control signals #MEMCNT, #MEM, and #WR are specified in the microinstruction
directly. Figure 5-10 shows these signals valid during a full microinstruction cycle because,
once specified for a cycle, their state will not change during that cycle.

For all long memory references, #MEM must be asserted high for two consecutive cycles.
#MEMCNT should be 1 for the first cycle, and O for the second cycle. #MEMCNT is asserted by
specifying the MCNT symbol in the MICASM statements for the microinstruction. Various
combinations of the #MEM and #WR microinstruction bits are specified by other MICASM
symbols, as explained in paragraph 5.3.3.6. The 16-bit address to be accessed must be gated

5-23

5.3.3.5

5.24

onto the AH and AL Buses during the first cycle. The Peripheral/Memory Controller latches the
memory address, so the address need not be asserted during the second cycle. It should be
noted that this feature can be used to great advantage in microcode sequences since this
allows the AH and AL Buses to be used for other functions during the second microinstruction
cycle. In this manner, microcode functions may be overlapped which can result in shorter,
faster executing microcode.

For read cycles, #WR is set to O for both cycles. The result of a read appears on the MD Bus in
phase H4 of the second cycle. It may either be loaded into the T or IR Registers at the end of the -
second cycle or loaded into the P or N Bus at the beginning of the third cycle.

For write cycless#WR is set to 1 for both cycles. When the write's destination is an cn-chip
address, the write data must be valid during H4 of the second microinstruction cycle; when the
writes destination is an off-chip address, the write data is required to be valid during H4 of the
first microinstruction cycle. The data used in an off-chip write is latched by the PMC during the
first cycle, and therefore need not be valid during the second cycle, and conversely the data in
an on-chip write need not be valid during the first cycle. This can be used advantageously in
certain microcoding situations. If desiréd, however, data may be asserted during both cycles.

Interrupt Vector Reads

When an interrupt is received by the Peripheral/Memory Controller, the PMC asserts IACT on
the Control Bus to the CPU, provided that STINT is a 1. The state of IACT may be tested by the
CPU using an INT dispatch (see paragraph 5.3.5.1.5). If aninterrupt is active the CPU may then
read an interrupt vector supplied by the PMC on the MD Bus, indicating which interrupt has

- occurred. The interrupt vector read requires two cycles, as shown in the timing diagram in

Figure 6-11.

CYCLE
i+1 i+2

H1 /—\I¥
TN /[N/ [/"
#MEMCNT |/~
-
_

#MEM

#WR

0

‘0

"' Q”'
X0

VECTOR SUPPLIED-L——‘-J

FIGURE 5-11 — INTERRUPT VECTOR READS

NV
AL,AH BUS [X

Notice that #MEM and #WR must be low for both cycles of the interrupt vector read. As with a
long memory read, the vector is not available until the end of the second microinstruction
cycle. An interrupt vector read may be coded in MICASM using the statements described in
Table 5-3.

The value of the vector supplied by the PMC for each interrupt is shownin Figure 5-12. There is
a distinction between the interrupt vector supplied by the PMC and the trap vector address at
which the interrupt subroutine entry point address is stored.

INTERRUPT VECTOR TRAP VECTOR
LEVEL SUPPLIED ADDRESS

O (Reset) —_— >FFFE

1 >FE >FFFC

2 >FD >FFFA

3 >FC >FFF8

FIGURE 5-12 — INTERRUPT VECTOR REFERENCES

The vector supplied by the PMC is the same as the TRAPn opcode for the TMS7000 Standard
Instruction Set. In order to call the interrupt handler, the microcode generates the trap vector
address from the vector supplied, and reads memory at that location to get the address of the
interrupt handler subroutine. it should be noted that the interrupt trap vector addresses shown
in Figure 5-12 are those implemented in the currently supplied TMS7000 Standard Instruction
Set Microcode. Different trap vector addresses may be implemented if additional microcode is
written to handle maodified interrupt servicing.

5.3.3.6 Memory Control Signals

The three memory control signals output by the CPU and interpreted by the Peripheral/Memory
Controller are:

e #MEMCNT (Memory Continue): asserted on the first cycle of a two-cycle long memory
reference. .

e #MEM (Memory): asserted if the microinstruction references memory of any kind (RAM,
ROM, extended, peripheral).

e #WR (Write): 1 if a write is being performed; O if a read.

The interpretation of various combinations of these signals is described in Table 5-3.

5-25

TABLE 56-3 — MEMORY CONTROLS

#MEMCNT A#MEMCNT #MEM #WR Function OTMD MICASM
{previous) {current) Symbol
0 0 0 - 0. - No Mem Reference - 0 -See Note 1-
0 [0 1 Gate O Bus to MD Bus 1 0> MD-See Note 2
0 0 1 0 Short Memory Read 0 MR
0 0 1 1 Short Memory Write 1 MW
1 0 0 0 2nd State'Int. Vector 0 INTVEC
1 0 0 -1 * lllegal * 1 -
1 0 1 0 2nd State Long Read 0 MR
1 0 1 1 2nd State Long Write 1 Mw
0 1 0 0 1st State Int. Vector 1 MCNT, INTVEC
0 1 0 1 * lilegal * 1 -
0 1 1 0 1st State Long Read 1 MCNT, MR
0 1 1 1 1st State Long Write 1 MCNT, MW
1 1 X X * llegal * 1 -

NOTES: 1. MICASM is not capable of generating this combination of memory controls directly.

5.3.4.

5-26

2. This combination of memory control signals is also the default combination, produced by MICASM when no memory control is specified.

The MICASM symbol or symbols listed in Table 5-3 must be used to specify the appropriate
combination of memory control signals. The '#MEMCNT Microinstruction Bit is set
independently by the MICASM symbol MCNT. The various combinations of #MEM and #WR
Microinstruction Bits are set by specifying the MICASM symbols O>MD, MR, and MW.
O>MD may be specified when no memory access is desired, but the ALU Output (O) Bus
contents are to be gated onto the Memory Data (MD) Bus. OTMD, the signal which enables the
O Bus to drive the MD Bus, is generated by the PMC and is defined as OTMD =#WR .OR.
#MEMCNT. The O>MD MICASM statement has been defined only to assert OTMD during
non-memory cycles by generating a unique combination of #WR and #MEMCNT which does
not occur during actual memory cycles. (O>MD should not be coded during memory
accesses). Note, however that the combination of memory controls produced by O>MD is
aiso the default and will be produced by MICASM if no memory controls are coded in a
particular microinstruction cycle.)

MR is specified for a memory read operation, and MW for a memory write. For long memory
cycles, which require two microinstructions, MCNT is specified in the first microinstruction
only. MR or MW must be specified in both microinstructions.

Organization Of The TMS7000 CPU

This section describes the internal organization of the TMS7000 CPU. A block diagram is
shown in Figure 5-13. Each of the internal registers and buses are 8 bits wide. The internal CPU
buses are used to transfer information between registers and to devices external to the CPU.
Normally a bus will be used to transfer data between two. particular locations during a
microinstruction cycle. (Buses are precharged at various times during each microinstruction
and therefore cannot be used to store data). These types of transfers of information are
explained in the following descriptions of the various buses and registers within the CPU. In
most cases, a bus will usually have only one source or destination; however, it may be desirable
to have either multiple sources or destinations for bus.)

The case of multiple destinations of a bus is a simple extension of a single bus destination; a
bus’s contents are merely gated to several places simultaneously. This can be accomplished by

simply including the MICASM statements for each destination, ie., MD >N and MD >P both
coded in the same microinstruction cycle.

Multiple sources for a bus is more complex. Logically this may be coded in MICASM in a
straightforward manner, just as multiple bus destinations are, however the result is quite
different. The contents of a bus when multiple sources are specified is the logical OR of the two
sources. This may be used advantageously in saving microcoede in some situations with one
restriction: thee TMS7000 Emulator cannot be used to debug the microcode. It should be
emphasized that this technique should be used only when absolutely necessary and the
Emulator may not be used to check the microcode, which can make a design very difficult to
debug.

OTMD (TRANSFER GATE XPRECH)
Lo FROM MEM. CONTROL]
M

“LsT ‘P | =0TST(H3) =aCH3 b eMoTTHG]| «NOTIRTD)
(H3 8 s
4 NT TO
&7 |—=NT. LoG. B
Hes1s8) 10
|-esTC RENTRY
;f)zzumv rawt ®STEZ) POINT (= ren
o2z |sTATush o TREG
couT,
TmT0
F=BTNIHY ENTRY PT.
5 bl
F=TTNm | =tRTN®HD ;] Moy
| =STINGHY v s s La 8 _MDU0)
s N70) R{7)) ——
H v
Lol Ao W =MEM,sMEMCNT, sWR To
- —_—
PERIPHERALS
: 8 P70 POl ni (aBovE) @—2M_ 1 RaM
! st i *ACH(3.0) : - 2 rony
SABL b rranmn AsT 3 POREY:
EEEg—— 4 TIM
ARTTD) N ARG 8 s FHOD) 5 INTERRUPTS
‘ 6 MEM. CONTROL

‘]}- =PAL(P)
AGO__ 8 8 ALTD)

SPCHTAH| .|
}onzmm?]—'ﬁ:‘)‘ Fon - Jp=petemn] | =MALTAL] b aspTaLinn] - sONELHY) K2
8 8 8 8 8 1 FROM IR _IR(7.0) r‘u

sP

=SL i}
*CARD ~erereee——]

2CAR1

R215)~*]

oo Lonerand raow IS¢
T PcH [MAL 10 |st ST58 — s
o ATUS L s7ez —od XXXX
AH BUS . ALBUS 2z =
FROM €2~ CONTROL

: SHIFTER
. FROMTREGT(?
}-x0TPCH(H4) I-[cncum) !}-Iormumﬁ OTSP(HA) INTERR. LOG. RST

0(7-0

2JAD(7-0}

24 DECODE

FIGURE 5-13 — INTERNAL ORGANIZATION OF THE TMS7000 CPU

5-27

65.3.4.1

5.3.4.2

5-28

THE PBUS

The P Bus is one of the inputs to the Arithmetic Logic Unit, or ALU. It is called P for positive
because it always contains the positive or left-hand operand; in subtract operations, the ALU

~ always computes P-N and in add operations, P +N is computed. The P Bus is loaded from the

MD Bus, the AL Bus, the PCH Register, the PCL Register or with the constant >00 or >01. Any
of the AL Bus sources may be placed on the P Bus by gating them onto the AL Bus and
asserting the #PAL microinstruction bit, connecting the P Bus to the AL Bus. A P Bus source
must be coded in each microinstruction cycle. All of the possible P Bus sources are shown in
Figure 5-14.

PRUS NMICASM

SOURCE SYMBOL(s) HEX REPRESENTATION
MD Bus MD>P 0000 40Q0 0000 000
PCH Register PCH>P 0000 2000 0000 000
PCL Register PCL>P 0000 1000 0000 000
MAL Register MAL>AL, AL>P 0000 0030 0000 000
SP Register SP>AL, AL>P 0000 0028 0000 000
>01 constant ONE>AL, AL>P 0000 0060 0000 000
>00 constant Z>PorDC>P. - 0000 0000 0000 000

FIGURE 5-14 — P BUS SOURCES

The hex representation in Figure 5-14 indicates the bits in a microinstruction that are affected
when the MICASM symbol shown is specified for the P Bus source. Note that if a
microinstruction requires no source on the P Bus, the MICASM symbo! DC>P must be
specified to indicate a don’t care condition on the bus.

The P Bus is loaded at the beginning of a microinstruction cycle, on phase H1.
The N Bus

The N Bus is the second input to the ALU. It is called N for negative because in an ALU subtract
operation, the N Bus contains the negative or right-hand operand. The N Bus is loaded from the
MD Bus, the T Register, the IR Register, the Status Register, the BCD Constant Register or the
constant >00. The source of the N Bus is indicated directly by a bit in the microinstruction

word. If the bitis 1, the source is gated onto the N Bus. An N Bus source must be coded in each

microinstruction cycle. All the possible N Bus sources are shown in Figure 5-15.

N BUS MICASM

SOURCE SYMBOL(s) HEX REPRESENTATION

MD Bus MD>N ~ 0000 0800 0000 0000
T Register T>N 0000 0400 0000 0000
Status Register ST>N 0000 0200 0000 0000
'BCD Constant BCD>N 0000 0100 0000 0000
IR Register IR>N 0000 -0080 0000 0000
>00 constant Z>Nor DC>N 0000 0000 0000 0000 .

FIGURE 5-15 — N BUS SOURCES

5.3.4.3

5.3.4.4

If a microinstruction does not require an operand on the N Bus, the MICASM symbol DC >N
must be specified to indicate a don’t care condition on the bus.

The N Bus is loaded at the beginning of a rhicroinstruction cycle, on phase H1.
The AL Bus

The AL (Address Low) Bus holds the the lower 8 bits of all memory addresses. This includes
references to the Register File, Peripheral File, on-chip, and extended memory. The AL Bus is
loaded during phase H1, at the beginning of a microinstruction cycle. The sources of the AL
Bus are the MAL Register, the SP Register, or the constant >00 or >01. The constant >01 is
provided to efficiently address RAM location >01, {the B register of the standard TMS7000).
This also facilitates addressing registers 16 and 17 (>10 and >11). An AL Bus source must
be specified in each microinstruction cycle.

The AL Bus may also be connected to the P Bus by asserting the #PAL microinstruction bit,
which can be accomplished by coding the P> AL MICASM instruction. In this manner, the AL
Bus sources (MAL, SP, or the constant >00 or >01) may be gated onto the AL Bus and then
onto the P Bus to be operated on by the ALU. Likewise, the P Bus sources (PCH, PCL, and MD
Bus contents) may be gated onto the P Bus and then onto the AL Bus to serve as low order
address lines. The MD Bus contents transferred are those present at the start of the
microinstruction, i.e., those output by the previously executed microinstruction. All of the
possible sources of the AL Bus are listed in Figure 5-16.

ALBUS MICASM

SOURCE SYMBOL(s) HEX REPRESENTATION

MAL Register MAL>AL 0000 0010 0000 0000
SP Register) © SP>AL 0000 0008 0000 0000
PCL Register PCL>P, P>AL 0000 1020 0000 0000
PCH Register PCH>P, P>AL 0000 2020 0000 0000
MD Bus MD>P, P>AL ' 0000 4020 0000 0000
>01 Constant ONE>AL 0000 0040 0000 0000
>00 Constant Z>ALorDC>AL 0000 0000 0000 0000

FIGURE 5-16 — AL BUS SOURCES

If no AL Bus source is required, the MICASM symbol DC >AL must be specmed to indicate a
don't care condition on the bus:

The AH Bus

The 8-bit AH (Address’High) Bus contains the high-order byte of the address referenced by the
CPU. Itis loaded during H1, at the beginning of a microinstruction cycle. It may be loaded with
the contents of the PCH Register, the T Register, or the constant >00 or >01. The high byte of
the program counter is intended to be stored in PCH; the T Register is intended to hold the high
byte of other addresses in memory. The constant >01 is provided to efficiently access
addresses in the Peripheral File (i.e., addresses of the form >01XX). An AH Bus source must
be coded in each microinstruction cycle. The sources of the AH Bus are summanzed in Figure
5-17.

-6-29

5.3.4.5

5-30

"AHBUS MICASM

SOURCE SYMBOLIs) HEX REPRESENTATION

PCH Register o PCH>AH 0000 0002 0000 0000
T Register T>AH 0000 0004 0000 0000
>01 Constant ONE>AH 0000.0001 0000 0000
>00 Constant Z>AHor DC>AH 0000 0000 0000 0000

FIGURE 5-17 — AH BUS SOURCES

If no AH Bus source is required, the MICASM symbel DC > AH must be specified to indicate a
don’t care condition on the bus.

The O Bus

The O (Output) Bus always contains the output of the ALU-Shifter combination. Its contents
may be loaded onto the MD Bus, or into the Status, PCH, PCL, MAL, or SP Registers. The
Status Register is loaded by the low-true microinstruction bit #—0>ST. The PCH Register is
loaded by the high-true microinstruction bit #0 >PCH. The load signals for the other destination
registers (MAL, PCL, and SP) are encoded in the microinstruction bits #LOWWRITE(1-0), as
shown in Figure 5-18. Note that since these bits are encoded, these three O Bus destinations
are mutually exclusive; that is, only one of these destinations may be specified in a given
microinstruction cycle.

HLOWWRITE 0BUS MICASM
1 0 DESTINATION SYMBOL
0 o ——none—— C——
0o 1 MAL Register 0>MAL
1 o0 PCL] 0>PCL
11

SP 0O>SP
FIGURE 5-18 — LOWWRITE (1-0) DESCRIPTION

. ‘
There is no microinstruction bit that directly loads the MD Bus from the O Bus, because the MD
Bus contents are under control of the Peripheral/Memory Controller (PMC). This transfer is
controlled by the OTMD signal sent from the PMC to the CPU on the C Bus. OTMD is asserted
on every memory write cycle, {on-chip or extended memory), and on the first state of every
long memory cycle. This is diagrammed in Table 5-3.

The O Bus is normally gated onto the MD Bus unless otherwise required in a memory cycle.
Optionally, the O >MD symbol may be coded in a MICASM statement. MICASM sets up the
appropriate values of the #MEM and #WR microinstruction bits so that OTMD will be asserted
by the Peripheral/Memory Controller. The O Bus contents may then be loaded into the T or IR
Registers from the MD Bus. Refer to paragraph 5.3.3.6 for a description of OTMD.

To write the O Bus contents to memory, the memory control signals must be specified. The
destinations of the O Bus are identified in Figure 5-19.

0O BUS MICASM MICROINSTRUCTION FIELD
DESTINATION SYMBOL HEX REPRESENTATION

ST Register 0>ST 0000 0000 0000 0000 (Low True)
PCH Register O>PCH 0010 8000 0000 0000

PCL Register O>PCL 0002 8000 0000 0000

MAL Register O>MAL 0001 8000 0000 0000 \Only One
SP Register 0>SP 0003 8000 0000 0000) Of Three
T Register *[0>MD],MD>T 0008 8000 2000 0000

IR Register *[0O>MD],MD>IR 0004 8000 2000 0000

Short Mem Cycle MwW 0000 8000 6000 0000

Long Mem, Cycle 1 “MCNT,MW ‘0000 8000 EOCO 0000

Long Mem, Cycle 2 MW 0000 8000 6000 0000

* Specifying O >MD here is optional

FIGURE 5-19 — O BUS DESTINATIONS

The O Bus is loaded during phase H4 of the microinstruction cycle. It contains the result of the

ALU and Shifter operations specified in the current microinstruction.

5-31

5.3.4.6

5-32

The MD Bus

The MD (Memory Data) Bus is a bidirectional bus that transfers data to and from the CPU: Data
is valid on MD during phase H4 of a microinstruction cycle, which spans two microinstructions.
Thus, data may be read from the MD Bus onto the P or N Bus at the beginning of a cycle (H1),
and the ALU results then loaded back onto the MD Bus at the end of the cycle (H4). It is
important to note that when using data from the MD Bus during H1 of a particular
microinstruction cycle, the actual data available will be the contents loaded onto the MD Bus
during the end of the previous cycle.

Aj the end of a cycle, the MD Bus may be loaded in one of three ways:
| 1) The O Bus contents may Be gated onto the bus. |
2) The on-chip RAM or ROM may place data onto the bus.
3) The Peripheral/Memory Controller may place data onto the bus.

The MD Bus contents are controlled by the Peripheral/Memory Controller (PMC). The PMC
sends the OTMD signal to the CPU to signal loading the MD Bus from the O Bus. The CPU
requests use of the MD Bus by asserting combinations of the #MEM,#MEMCNT, and #WR
signals, as shown in Table 5-3. The PMC sends signals to the on-chip ROM and RAM to control
their accesses to the bus.

i
The timing of read and write accesses to memory is explained in paragraph 5.3.2.3. For short
memory reads, data is available at the end of the microinstruction that initiated the read. This -
data may be loaded into the T or IR Registers during that microinstruction by specifying the
MD >T or MD >IR MICASM symbols, respectively. The data may be loaded into the P or N Bus
on the next microinstruction by specifying the MD >P or MD >N symbols in the MICASM
statement for the next microinstruction. For short memory cycle writes, the O Bus data is
placed on.the MD Bus, and the MW MICASM symbol specified. For long memory reads, the
desired address is placed on the AH.and AL lines, and the MR and MCNT symbols specified in
the first of the two cycles required. At the end of the second cycle, data is available on MD.
(The memory address is latched by the PMC on the first cycle, and need not be asserted on the
second cycle). For long memory writes, the address is specified in the first cycle, and the data
is placed on the MD Bus for the first and/or second cycles. The destinations of the MD Bus in
the CPU are described in Figure 5-20.

MD BUS MICASM
DESTINATION WHEN LOADED SYMBOL
7
T Register) End of Cycle MD>T
IR Register End of Cycle MD>IR
P Bus Start of Cycle MD>P
N Bus : Start of Cycle MD>N

FIGURE 5-20 — MD BUS DESTINATIONS

5.3.4.7

ALU Operation-

The Arithmetic Logic Unit (ALU) accepts as inputs the values on the P and N Buses, and
outputs its result to the Shifter. The ALU operation is controlled by the #ALUCNTL(3-0) and
#ABL lines from the current microinstruction. The ALU operates on the values loaded on the P
and N Buses during H1 of the current microinstruction and produces an 8-bit output which is
input to the Shifter, and a carry bit (COUT), which is an arithmetic carry bit based on the 8-bit
ALU operation. To specify the carry-in, the ALU accepts the #SHIFTCNTL(3-0) bits from the
current microinstruction. An overall block diagram of the ALU appears in Figure 5-21.

couTt

N BUS

TO
SHIFTER

P BUS

SHIFTCNTL(3-0)

STC UC

FIGURE 5-21 — ALU BLOCK DIAGRAM

The available operations of the ALU are defined in Figure 5-22.

#ALUCNTL HEX MICASM

(3-0) #ABL REPRESENTATION SYMBOL ALUOUTPUT
0000 O 0000 0000 0000 0000 PADDN P+N+Cl
0000 1 0000 0000 0008 0000 XNOR PXNORN
0001 1 0000 0000 0018 0000 AND PANDN
0010 1 Q000 0000 0028 0000 . IPORN (NOTP)ORN
0011 1 0000 0000 0038 0000 PASSN N

0100 1 0000 0000 0048 0000 PORIN P OR (NOTN)
0101 1 0000 0000 0058 0000 PASSP P

0110 1 0000 0000 0068 0000 FF - >FF

0111 1 0000 0000 0078 0000 * OR PORN

1000 1 0000 0000 0088 0000 NOR PNORN

1001 1 0000 0000 0088 0000 ZERO >00

1010 1 0000 0000 00A8 0000 INVP NOTP

1011 1 0000 0000 00B8 0000 IPANDN (NOTP) ANDN
1100 1 0000 0000 00C8 0000 INVN NOTN

1101 1 0000 0000 00D8 0000 PANDIN P AND (NOT N)
1110 1 0000 0000 OOE8 0000 NAND P NAND N
1111 0 0000. 0000 00FO 0000 PSUBN P-N-1+Cl
1111 1 0000 0000 OOF8 0000 XOR PXORN

FIGURE 5-22 — ALU FUNCTIONS

5-33

5-34

The Carry-in. Bit of the ALU (Cl) is specified by the #SHIFTCNTL(3-0) bits of the
microinstruction, which are described in full in the next section. For operations requiring no
shifting of the ALU contents, the possible carry-in bits are defined in Figure 5-23.

#SHIFTCNTL MICASM ALU CARRY IN
3210 SYMBOL (cn

0000 ZCl 0

0001 ONECI 1

0010 uci UC — Micro Carry Bit
0011 STCI STC — Status Carry Bit

FIGURE 5-23 — ALU CARRY IN'VALUES

The Micro Carry Bit (UC) is the carry-out from the ALU operation of the immediately preceeding
microinstruction. This is not the same as the Shift-out Bit (SOUT) from the Shifter operation of
the previous microinstruction. The Status Carry Bit (STC) is the Carry bit of the Status Register.

The arithmetic Carry-out Bit from the ALU (COUT) is 1 if there is a carry-out during an add
(PADDN) or subtract {(PSUBN) operation in the ALU. For an add operation, COUT =1 indicates
there was a carry, i.e., the sum of the (unsigned} operands exceeds 255. For a subtract
operation, COUT =0 indicates there was a borrow, i.e., the P operand was lower than the N -
operand {unsigned). For all other operations, i.e., logical operations, COUT is set to 0. COUT is
sent to the Status Register circuitry for possible loading into STC, the Status Carry Bit. '

As an example of ALU operation, the following symbols appearing in a MICASM statement,
. PADDN,zCli

W|II cause the ALU to calculate the sum of the P and N Bus contents. To calculate the difference
between the P and N Bus contents,

PSUBN,ONECI
must be specified. A 1 must be carried in since no borrow was desired. Figure 5-24 details two

microcode examples. The microinstructions read the current byte addressed by the PC, place it
in the T Register, and increment the PC.

.ORG IMMED1
PCL>P,P>AL,
PCH>AH,

Z>N,
PADDN,ONECI,
O>PCL,
MCNT,MR,
JUNC(IMMED2);

.ORG IMMED2
DC>AH,DC>AL,

PCH>P,
Z>N,
PADDN,UCI,
O>PCH,

MR,

MD>T,
JUNC(NEXT);

-’ Read immediate byte, 1st cycle

’ Define location of microinstruction

' Place PCL on AL Bus via P Bus

' Place PCH on AH Bus

' Place Zero on N Bus

’ Increment PCL by 1 (sets Micro Carry UC
’ Place result back in PCL

' 1st cycle of long read

’ Goto next cycle

' Read immediate byte, 2nd cycle

" Don’t care what's on AH and AL since address was
latched on 1st cycle ‘

’ Place PCH on P Bus

’ Place Zero on N Bus)

’ Add micro carry from PCL increment

’ Place result back in PCH '

' Meanwhile, continue memory read

* And place the byte read into T

' Then goto next instruction

FIGURE 5-24 — MICROCODE EXAMPLE
Notice that an increment was done.in IMMED1 by using an-ALU carry-in'of 1. The second
instruction (IMMEDZ2) incremented the high byte of the PC only if the Micro Carry Bit (UC)
generated by IMMED1 was 1.
5.3.4.8 Shifter Operation

The Shifter performs a variety of 1-bit shift operations on the output of the ALU. The
#SHIFTCNTL(3-0) lines control the following ALU and Shifter characteristics:

® The ALU Carry-in Bit (Cl} '
® The shift direction (L or R)
® The bit shifted into the Shifter

Figure 5-25 shows the various combinations of shift control lines.

5-35

5-36

#ShiftCntl " ALU Shift Shift-In MICASM
3210 Cl Direction Bit Symbol
0000 0 - ZCl
0001 1 . No - ONECI
0010 uc Shift - ucl
0011 STC — STCI
0100 (o]) ALU(7) . RLO
0101 1 Shift ALU(T) RLZ
0110 [o] Left STC RLCO
0111 1 STC RLCZ
1000 0] ALU(0) RRO
1001 1 Shift ALU(0) RRZ
1010 0 Right STC RRCO
1011 1 STC RRCZ
11 XX * Invalid * *

FIGURE 5-25 — SHIFT/ALU CARRY-IN CONTROL

For #SHIFTCNTL =00XX, no shifting is performed, and the ALU Carry-in Bit Cl is as described
in the ALU description, above. For #SHIFTCNTL=010X, the ALU output is rotated left, with
the most significant bit, ALU(7), shifted in from the right. For #SHIFTCNTL=011X, the ALU
output is rotated left through the Status Carry Bit, STC. For #SHIFTCNTL = 100X, the ALU
output is rotated right, and for #SHIFTCNTL=101X, the output is rotated right through the
carry bit. The MICASM symbols represent this, with the last character indicating the value of

the ALU ClI bit. #SHIFTCNTL = 1 1XX is an invalid command and must never be specified.

The Shift-out Bit (SOUT) shifted out in a rotate instruction is sent ta the Status Register. It will
be loaded as the new Status Carry Bit (STC) if the #-LST microinstruction bit is set. Operation
of each of the shift instructions is diagrammed in Figure 5-26.

384

5.3.4.9

ROTATE
RIGHT

ROTATE
RIGHT
THRU
CARRY

ROTATE
LEFT

ROTATE
LEFT
THRU
CARRY

IR Register

SOUT = SHIFT-OUT BIT
STC =STATUS CARRY BIT

—

D7

D6

D5

D4

D3

D2

D1

DO

j—' souT

ALU(0)

STC —9»

D7

Dé

D5

D4

D3

D2

D1

DO

b————% SOUT

D6

DS

D4

D3

D2

D1

DO

aaC

ALU(7)

souT *—

D7

D6

D5

D4

D3

D2

D1

DO

4 sTC

FIGURE 5-26 — SHIFTER OPERATION

The Instruction Register (IR) is a register intended to hold the assembly language opcode. It is
loaded from the MD Bus by specifying the MD >IR symbol in a MICASM statement. It may be

Ioaded onto the N Bus with the IR>N MICASM symbol.

The TMS7000 Microarchitecture is designed to dispatch (branch) on various subfields of the IR
contents, providing for the execution of appropriate microcode for each assembly language
instruction. The IR may be considered to have two possible formats:

1) Format O is indicated by a O in IR(7), the most significant bit of the IR Register. In this

format, bits IR(6-4) form a 3-bit Group field and bits IR(3-0) form a 4-bit Function field.

2) Format 1isindicated by a 1 in IR(7). In this format, bits IR(6-3) form a 4-bit Group field

and bits IR(2-0) form a 3-bit Function field.

The formats of the IR Register are diagrammed in Figure 5-27.

5-37

5.3.4.10

IR REGISTER .
7,6 ,5,4,3,2_ 1.0

FORMAT 0 0 GROUP FUNCTION

7 4.6 ,5 34,3 ,2,1,0

FORMAT 1 1 GROUP FUNCTION

FIGURE 5-27 — IR REGISTER FORMATS

The terms group and function refer to logical subsets of assembly language opcodes. In the
TMS7000 standard instruction set the Group field in an opcode indicates the addressing mode
of the instruction, and the Function field indicates the arithmetic or logical operation performed
on the operands. The microarchitecture is designed to allow significant sharing of
microinstructions among opcodes within the same group or function. In the microcode for the
standard TMS7000, for instance, all opcodes of the form >1X share microcode which fetches
the A Register and a general RF register. .

The mechanisms for dispatching on the Group and Function field values in the IR are described
in Section 4. Dispatching on an IR subfield may be performed on the first microinstruction after
the IR is loaded. Thereafter, dispatching may be performed by microinstructions up to and
including the next one that reloads the IR. If no dispatching is required, then the IR may be used
as a general purpose 8-bit register.

The Status Register
The Status,Register (ST) is an 8-bit register with contents indicating various conditions of the

CPU. Each bit of the Status Register has a special meaning and separate circuitry devoted to it.
The format of the ST Register is shown in Figure 5-28.

7 6 5 4 3 1l 2 ! 1 I 0

STC STSB STEZ STINT RESERVED FOR EXPANSION

5-38

FIGURE 5-28 — STATUS REGISTER

STC is the Status Carry Bit. It holds either the carry-out of the ALU, the shift-out of the Shifter,
or the decimal arithmetic carry-out. STSB s the Status Sign Bit. It contains the most significant
bit of the O Bus contents. STEZ is the Status Equal to Zero Bit. It contains a 1 when all bits of
the O Bus are zero. STINT is the Status Interrupt Enable Bit. Bits 3-O of the Status Register are
reserved for future expansion. These bits wil be zeros when the ST Register is loaded onto the
N Bus. .

The existing Status Register Bits may be modified in one of two ways:
1} All bits may be replaced by the contents of the O Bus.

2) The STC, STSB, and STEZ bits may be set according to their particular input circuitry.
The STINT Bit is unaffected in this case.

The Status Register Sources are summarized in Figure 5-29.

STREGISTER MICASM

SOURCE SYMBOL HEX REPRESENTATION

OBus O>S8T 0000 0000 1000 0000 (Asserted low}
Input . ’

Circuitry LST 0000 8000 0000 0000 (Asserted low)

FIGURE 5-29 — ST REGISTER SOURCE

The O Bus is gated into the Status Register if the #-O >ST Microinstruction Bit is asserted low.
This may be specified by the O >ST symbol appearing in a MICASM statement. The STC,
STSB, and STEZ Bits are loaded when the #-LST Microinstruction Bit is asserted low. This may
be specified by the LST symbol appearing in the MICASM statement. There is no way to
individually load the STC, STSB, and STEZ Bits; they must be loaded together. This feature
permits an efficient implementation of the TMS7000 status logic, typically a very costly itemin
single-chip microarchitectures. The special circuitry defining the value of the STC, STSB, and
STEZ Registers is described in the following paragraphs.

5.3.4.10.1 The Status Carry Bit (STC)

When the #-LST signal is asserted by coding the LST MICASM instruction, the STC Bit will be
loaded from one of three sources:

1) The ALU Arithmetic Carry-out Bit (COUT); This is the carry/borrow bit generated by
the ALU on arithmetic operations. COUT is loaded if no Shifter operation is specified,
i.e., #SHIFTCNTL =00XX.

2) The Shifter Shift-out Bit (SOUT). This is the bit shifted out in Shifter operations. If a
Shifter operation is specified—i.e., #SHIFTCNTL>0011—then SOUT is loaded into
the STC Bit (whether a rotate thru carry was specified or not).
3) The BCD Decimél Carry/Borrow Out Bit (DCOUT). This is the carry bit computed by
the decimal adjust hardware within the BCD Constant Register. It is loaded into the
STC Status Carry Bit if the #BCD >N Bit is set, indicating a decimal adjust constant is
loaded onto the N Bus.
5.3.4.10.2 The Status Sign Bit (STSB)
When #-LST is asserted, the input to the STSB Bit is O(7), the most significant bit of the O Bus.
5.3.4.10.3 The Status Equal To Zero Bit (STEZ)
When #-LST is asserted, the input to the STEZ Bit is the Micro Equal-to-Zero Bit, UEZ. The UEZ

Bit is simply the logical NOR of all O Bus lines. That is, if all O Bus lines are O, UEZ is set to 1.
Otherwise, itis setto O.

5-39

5.3.4.10.4 The Status Interrupt Enable Bit (STINT)

5.3.4.117 .

5-40

The STINT Bit may only be modified by loading the O Bus contents into the Status Register. The

STINT Bit corresponds to bit O(4) in this case. STINT is output from the CPU to the

Peripheral/Memory Controller on the C (Control) Bus between the CPU and PMC. if STINT =0,
the PMC will not pass an interrupt to the CPU via the IACT line (also in the C Bus). If STINT=1,

the PMC will assert IACT on an interrupt. By dispatching on the IACT bit, the microcode is able

to test for interrupts.

Due to propagation delays, the effect of loading STINT on IACT takes two microinstruction
cycles to be asserted. Accordingly, if STINT is updated in cycle i, IACT will not be valid until
cycle i+ 2. Thus a JINT dispatch on |IACT will not jump correctly if coded instate i+ 1.

BCD Constant Register

The BCD Constant Register is amodule which generates a corrgction constant for binary coded
decimal arithmetic operations. Decimal numbers on the TMS7000 are represented with 2
binary coded decimal digits per byte, with the least significant digit in the least significant
nibble, bits 3-0, of a byte. For example, the decimal number 78 would be represented in binary
as‘01111000’, or >78. To perform demmal addition on two BCD Bytes X and Y, the following
operations must be performed .

1) The binary sum of X and Y is computed, with the STC Bit carried in, and the result

saved temporarily.

2) A decimal correction constant is compuféd by the BCD hardware.

3} The correction constant is added to the saved result to produce the final BCD sum.
Each of these operations requires a microinstruction cycle.
The STC Bit is added in order to permit adding muitiprecision strings of BCD digits. Decimal .
subtraction (with borrow) is similar to the above procedure. The binary difference X-Y is first

computed, and the correction constant then subtracted from the result:

Figure 5-30 indicates the decimal correction constant and decimal carry out bit generated for
decimal addition and subtraction.

H1+H2<9
H1+H2=9
H1+H2>9

7 4 3 0

OPERAND 1 H1 L1 C = STATUS CARRY BIT (STC)
B = STATUS BORROW BIT

OPERAND 2 H2 L2 (INVERSE OF STC}
DCOUT = DECIMAL CARRY OUT

L1+L2+C<10 10<=L1+L2+C L1-B>=L2 L1-B<l2

>00 >06 H1>H2 | >00 DCOUT | >06 DCOUT

> 00 >66 DCOUT H1=H2 | >00 DCOUT | >66

>60 DCOUT >66 DCOUT H1<H2 | >60 >66

DECIMAL ADD WITH CARRY

DECIMAL SUBTRACT WITH BORROW

FIGURE 5-30 — BCD CORRECTION CONSTANT GENERATION

The BCD constant logic uses signals from the ALU such as the 8-bit carry {COUT), the ALU
operation code #ALUCNTL(3-0), and ALU outputs on the O Bus to determine the correction
constant and Decimal Carry-out Bit (DCOUT). Like the binary arithmetic carry, DCOUT is 1 if a
carry is required after an addition, and O if a borrow is required after a subtraction. Figure 5-30
indicates the conditions in which DCOUT is 1. DCOUT is sent to the Status Register for
possible loading into the STC Status Carry Bit.

Three microinstruction cycles are required to perform a decimal arlthmetlc operatlon The
timing for a decimal arithmetic operation is shown in Figure 5-31.

5-41

5-42

e T\
P BUS N N/
KXXXXXA XXX

&

BCD OPERAND | BINARY RESULT
N BUS
BCD OPERAND CORRECTION CONSTANT

BINARY RESULT BCD RESULT

= PBCOBCO0CO

BINARY RESULT BINARY RESULT BCD RESULT
SAVED READ WRITTEN

#8CD>N |\ :
LOAD CONSTANT ONTO N BUS
#LsT |/ d

LATCH DCOUT INTO STATUS REGISTER

FIGURE 5-31 — BCD ARITHMETIC OPERATION TIMING

The first state loads the BCD operands onto the P and N Buses, and performs the appropriate
ALU operation (PADDN or PSUBN) to produce the binary resuit. The binary result must be
stored in a temporary location for use in the third state. The BCD operation diagrammed in
Figure 5-31 assumes the result is stored in the RF. The second state reads this binary result
from the Register File and leaves it on the MD Bus. This state allows the BCD constant
hardware to determine the correction constant and Decimal Carry-out Bit, DCOUT. The third
state loads the binary result onto the P Bus and the correction constant onto the N Bus and
performs the appropriate ALU operation to produce the correct BCD result. The Status Register
should be loaded in this state by coding an LST instruction in MICASM.

The MICASM statement shown in Figure 5-32 implement a decimal add with carry. A source
operand is added to a destination operand, and the result stored in the destination operand (a
register in the RF). The T Register is assumed 'to contain the source operand, the MD Bus
contains the destination operand, and the MAL Register contains the register number of the
destination operand. o

5.34.12

.ORG DACO ' Decimal Add w/ Carry, first state
Z>AH, ' Place destination register address
MAL>AL, ! on address bus: AH=0, AL=MAL
MD>P, ' Dest. operand to P Bus

T>N, " Source operand to N Bus
PADDN,STCI, " Add them, including carry from last DAC
MW, . ' Store binary result in dest. register
JUNC(DAC1); ’ Goto DAC1

".ORG DAC1 ' DAC, second state

Z>AH, ’ Read binary result back. Put dest. addr
MAL>AL, ! on addr. bus: AH=0, AL=MAL
DC>P, DC>N, ' Don’t cares to P and N Bus
PADDN,ZCl, ~ " Maintain ALU operation code (PADDN})
MR, ’ Read binary result, placed on MD Bus
JUNC(DAC2); ' Goto DAC2

.ORG DAC2 ' DAC, third state

Z>AH, ' Put destination address on Address Bus
MAL>AL, ! (AH=0, AL=MAL)

MD>P, ' Put binary result on P Bus

BCD>N, ' Put BCD correction constant on N Bus
PADDN,ZCI, * Add them (with no carry)

LST, ' Load Status register with decimal carry
MW, * Store BCD result to destination registe
JUNC(NEXT); ' Goto next microinstruction.

FIGURE 5-32 — MICASM STATEMENT

For a decimal subtract operation, the PADDN symbols should be replaced with PSUBN. State
DAC2 should subtract the BCD constant via the MICASM symbols PSUBN,ONECI. A carry-in
of 1 is needed since no borrow is required.

Other Registers

The remaining registers implemented in the TMS7000 CPU include five storage registers and
two constant registers. Two of the storage registers, the PCH and PCL, are used to hold the
high and low bytes of the Program Counter. The Program Counter contents are normally
essential to CPU operation, hence the PCH and PCL reglsters are almost never used as general
purpose storage.

Two other storage registers, the Temporary or T Register and the MAL or Memory Address Low
Byte Register may be paired to store the high and low bytes of a memory address, or used
separately with the T Register serving as temporary storage and a memory address being
generated from the MAL and a constant.

There are two constant registers used for generating the constant >01; one for each of the AH
and AL Buses. Thus either of these buses may be loaded with either >00 or >01 if necessary.
This capability is used for, among other things, generating RF and PF Addresses.

The SP or Stack Pointer is normaliy used to hold a pointer to the stack in RAM, but may be used
as temporary data storage if a stack is not implemented or if the SP contents are not needed.

.5-43

 5.35

5-44

Microinstruction Sequence Control Overview

This section describes the mechanisms used in controlling the sequence of microinstruction
execution, which include generation of the next microinstruction address in both conditional
and unconditional branching. Included is a description of dispatching capabilities which can be
used to share microstates among several assembly language instructions.

‘Microinstructions are stored in the Control ROM, or CROM, on the TMS7000 chip. A
characteristic of horizontally microprogrammed architectures like the TMS7000 is that each
microinstruction indicates the address at which the next microinstruction to be executed is
located. In the TMS7000,the next microaddress is specified by two fields:

1) #JMPADDR(7-0), an 8-bit field indicating a base address in CROM.

2) #JMPCNTL(2-0), a 3-bit code indicating one of 8 dlspatch offsets from the base
address in #JMPADDR.

If #JMPCNTL(2-0) = 000, then the #JMPADDR field is simply the address of the next
microinstruction. If #JMPCNTL(2-0) is nonzero, it indicates what data will replace the low
order bits of #JMPADDR, and thus form the next microaddress. This technique is called
dispatching, and is extremely easy to implement in MOS technology.

All conditional branching in microcode is accomplished by means of dispatching. A base
address is specified in the #JMPADDR(7-0) bits of the microinstruction. The #JMPCNTL(2-0)
lines indicate what data is used to form the low order bits of the base address to generate the
new microinstruction address. As an example, Figure 5-33 depicts dispatching on the IR(3-0)
Bits.

7 6543210 765 43 210

#MPADDR(7-0) IR REGISTER

L]#J_J Il

7 6 54 3210
NEXT ADDRESS

FIGURE 5-33 — MICROINSTRUCTION DESPATCH EXAMPLE

The dispatch field bits, like IR(3-0), actually replace the low order address bits in the
#JMPADDR(7-0) field; they are not OR’ed with them. For example, suppose #JMPADDR was
specified tbe >11, and the #JMPCNTL(2-0) lines are set to 110, indicating a dispatch on STC,
the Status Carry Bit. If STC were 0, the next microaddress would be >10.

Figure 5-34 summarizes the possible dlspatch fields and the MICASM code to indicate the next
address.

5.3.5.1

5.3.5.1.1

5.3.5.1.2

~ #AJMPCNTL NEXT ADDRESS ’ MICASM
210 7 6 5 - 4 3 2 1 0 Format
000 J7 Jé J5 . U4 J3 J2 J1Jo JUNC(addr)
001 J7 Jé J5 J4 IR3 IR2 IR1 IRO IRL(baseaddr)
010 J7 J6 J5 J4 J3 J2 Ji1. 17 JT7 (oneaddr,zeroaddr)
011 J7 Jé J5 J4 J3 J2 J1 UEz JUZ(oneaddr,zeroaddr)
100 J7 J6 J5 Ja J3 J2 0 IACT INT(oneaddr,zeroaddr)
101 J7 J6 J5 IR7 IR6 IRS IR4 (1) IRH(baseaddr)
110 J7 Jé J5 Ja J3 J2 J1 STC JC(oneaddr,zeroaddr)
111 J7 J6 J5 J4 J3 J2 J1 MUMP MJMP(oneaddr,zeroaddr)

(1) IR3 .or. (.not. IR7)

Jn — #JMPADDR(n)

IRn — IR Register bit n

) — T register sign bit (bit 7)

UEZ — 1if0bus = >00, 0 otherwise

IACT — Interrupt Active line from PMC _

STC — Status Carry Bit

MJMP — Macro jump: test Status Register bits
baseaddr — Base micro-address for dispatch
oneaddr — Next micro-address if bit 0 is 1

zeroaddr — Next micro-address if bit 0 is 0
FIGURE 5-34 — NEXT Mlcﬁo ADDRESS GENERATION
Dispatch Conditions
Each of the dispatch possibilities is further explained in ti\e following sections.
Unconditional Branching (JUNC)

If conditional branching of the microcode is not desired, #JMPCNTL should be set to 000. The
symbol

JUNC(addr)

appearing in a MICASM statement will cause the TMS7000 to branch unconditionally to the
microinstruction at address addr after the current microinstruction is executed. The addr field
may be a constant or, more practically, a symbol equated to the desired address of the
microinstruction. The address addr is loaded into the #JMPADDR(7-0) field of the current
microinstruction.

Function Dispatch (IRL)

When #JMPCNTL =001, the next microinstruction is determined by the low four bits of the the
IR Register. This is specified in MICASM as:)

IRL{baseaddr)

The baseaddr is loaded into the #JMPADDR(7-0) field of the microinstruction. The next micro
address is determined by replacing the bits 3-O of the base address with bits 3-O of the IR
‘Register. To avoid confusion, itis convenient to make the base address a multiple of 16i.e., bits
baseaddr(3-0) =0, since they will be ignored. The IRL dispatch is indicated pictorially in Figure
5-35. . . ’

5-45

CONTROL ROM

BASEADDR IR(3-0) =0
NEXT MICROINSTRUCTION
BASEADDR+1 IR(3-0) =1 ADDRESS FOR:
: . IRL(BASEADDR)
(11}
BASEADDR+15 IR(3-0) = 15
/

FIGURE 5-35 — IRL DISPATCH

An IRL dispatch is a dispatch on the Function field of the IR. In the TMS7000 Standard
Instruction Set the Function field indicates the arithmetic operation to be performed. This is
contrasted with the Group field, bits 7-4, which indicates the addressing mode of the
instruction. Even though Format 1 instructions have a 3-bit Function field; IR(2-0), the IRL
dispatch still performs a 16-way branch on the lower 4 bits of the IR Register. The Function
dispatch for Format 1 opcodes thus depends on the value of the IR(3) Bit.

5.3.5.1.3 Test Sign Bit (JT7)

The sign bit of the contents of the T Register may be dispatched on by specifying
#JMPCNTL =010. This is indicated by

JT7(oneaddr,zeroaddr)
in a MICASM statement. The oneaddr field should be the 8-bit address of the microinstruction '

to be executed if T(7) is 1, and the zeroaddr field is the address of the microinstruction to be
executed if T(7) is 0. This is shown in Figure 5-36.

CONTROL ROM

ZEROADDR =0 NEXT MICROINSTRUCTION
, ADDRESS FOR:
ONEADDR TN ="1 JT7 (ONEADDR, ZEROADDRY)

FIGURE 5-36 — JT7 DISPATCH

Typically, zeroaddr and oneaddr are MICASM Iabels initialized by an .EQU statement. It is
required that zerroaddr be even and that oneaddr = zeroaddr + 1.

5-46

5.3.5.1.4 TestIf Zero (JUZ)

The microcode may test the value on the O Bus of the immediately preceeding microinstruction
by specifying #JMPCNTL =011. This is indicated by

JUZ(oneaddr,zeroaddr)

appearing in a MICASM statement. When JUZ appears in microinstruction i, it tests the O Bus
contents of the previously executed microinstruction, i-1. The entry-point logic replaces
JMPADDR(0) with the UEZ Bit from the Status Register, whichis 1 when the O Bus is all zeroes
(>00) and O otherwise. The symbol oneaddr denotes the address to which control is
transferred if the O Bus was zero, i.e., if UEZ= 1. The symbol zeroaddr denotes the address
jumped to if the O Bus was nonzero, i.e., if UEZ =0. Like the JT7 MICASM symbol, zeroaddr
must be even and oneaddr must equal zeroaddr + 1. The dispatch on the UEZ Bit is depicted in

Figure 5-37.
CONTROL ROM
ZEROADDR UEZ=0 NEXT MICROINSTRUCTION
ADDRESS FOR:
ONEADDR UEZ=1 JUZ (ONEADDR, ZEROADDR)

FIGURE 5-37 — JUZ DISPATCH
5.3.5.1.56 Test If Interrupt (INT)
The microcode may test for a pending interrupt by dispatching on the IACT (Interrupt Active)
signal input from the Peripheral/Memory Controller. This is accomplished by specifying
~ #JMPCNTL =100, orin a MICASM statement by:
INT(oneaddr,zeroaddr)
As with the JT7 and JUZ instructions, oneaddr denotes the microinstruction address branch to

ifIACT =1, and Zeroaddr is the address branched to if IACT = 0. Zeroaddr and oneaddr must be
adjacent, as depicted in Figure 5-38.

'CONTROL ROM

ZEROADDR lACT=0 NEXT MICROINSTRUCTION
ADDRESS FOR:
ONEADDR IACT =1 INT (ONEADDR, ZEROADDR)

FIGURE 5-38 — INT DISPATCH

The IACT line is asserted by the Peripheral/Memory Controller (PMC) when an interrupt
condition is detected. IACT can be asserted only when STINT (Status Interrupt Enable) is 1.
Operation of the PMC in asserting interrupts is further explained in the TMS7000 8-Bit
Microcomputer Data Manual (Part Number MP O08A).

5-47

5.3.5.1.6 Group Dispatch (IRH)

5-48

Dispatching on the Group field of the IR Register is accomplished by specifying 101 in the
#JMPCNTL field. This is indicated by coding

IRH(baseaddr)

in a MICASM statement. The baseaddr field is loaded into the #JMPADDR field of the
microinstruction being defined.

There are 24 groups defined, 8 in Format O {IR(7)=0) and 16 in Format 1 (IR(7)=1}. The
grouns are numbered in Figure 5-38,

FORMAT 0 FORMAT 1
R GROUP R GROUP

) NUMBER NUMBER
"0000XXXX 0 10000XXX 8L
0001 XXXX 1 10001XXX 8H
0010XXXX 2 10010XXX oL
001 1XXXX 3 1001 1XXX 9H
- 0100XXXX 4 10100XXX - AL
0101XXXX 5 10101XXX - AH
0110XXXX 6 10110XXX BL
0111XXXX 7 10111XXX BH
11000XXX CL
| 11001XXX CH
’ T1010XXX DL
11011XXX DH
11100XXX EL
11101XXX EH
11110XXX FL
11111XXX FH

FIGURE 5-39 - TMS7000 GROUP NUMBERS

The IRH(baseaddr) symbol performs a 24-way dispatch on the Group field. This is done by
replacing the low order bits of #J/MPADDR with a function of the Group number. The high nibble
of the IR Register, IR(7-4), is placed in the low nibble of the next address, shifted by 1 bit. The
low order bit of the next address, is defined as NEXTADRESS(0) =IR(3).0OR.(.NOT.IR(7)). For
Format O instructions, NOT IR(7) =1, and NEXTADDRESS(0) always equals 1. Thus, the
machine will jump to miicroaddress baseaddr + (group* 2} + 1 for Format O group numbers. For
Format 1 instructions, NOT IR(7) =0, and NEXTADDRESS(0) equals IR(3). Thus, the machine
will jump to microaddress baseaddr +{(group*2) +IR(3) for Format 1 .group numbers. The
group names given in Figure 5-39 are the first hex digit in the two-digit hex representation of
the IR Register contents. Format 1 names have an L if IR(3) =0 and H if IR(3) = 1. The operation
of the Group decode is shown in Figure 5-40. .

5.3.5.1.7

CONTROL ROM

BASEADDR
BASEADDR+1 GROUP 0
BASEADDR+3 GROUP 1
BASEADDR+5 GROUP 2

. .

: L) o s
BASEADDR+>0F : GROUP 7
BASEADDR+>10 GROUP 8L
BASEADDR+>11 , GROUP 8H
BASEADDR+>12 GROUP 9L
BASEADDR+>13 - GROUP 9H

. .

. LN] .

. .
BASEADDR+>1E GROUP FL
BASEADDR+>1F GROUP FH

FIGURE 5-40 — IRH DISPATCH

The CROM addresses baseaddr, baseaddr + 2, baseaddr +4, etc., may be used for other
microinstructions. The microcode for the TMS7000 Standard Instruction Set uses the IRH
dispatch immediately after the assembly language instruction is loaded into the IR. Each group
corresponds to an addressing mode for the instruction, and the microcode executed after the
dispatch fetches the appropriate operands. Typically, a Function, or IRL, dispatch is then
performed, and the microcode branches to perform the appropriate ALU function on the
operands. In this manner, the operand fetch microinstructions are shared among the assembly
language instructions and each instruction has its own microcode to perform the function of
that instruction.

Test If Carry (JC)

The microcode may test the value of the carry bit in the Status Register by performing a
dispatch on the STC Bit. This is indicated by specifying #JMPCNTL(2-0) =110, or

JC(oneaddr,zeroaddr)
appearing in a MICASM statement. The bit tested is the.value of the STC (Status Carry) Bit
after the execution of the immediately preceeding microinstruction, i.e., the microinstruction

executed prior to the one containing the JC(oneaddr,zeroaddr) statement. The STC Bit is
placed in bit O of #JMPADDR, and the result used as the next microinstruction address.

5-49

If the STC Bit is 1, control transfers to oneaddr, and if STC =0, control transfers to zeroaddr.
The locations zeroaddr and oneaddr must be adjacent, with zeroaddr on an even address and
oneaddr on the subsequent odd address. This is diagrammed in Figure 5-41.

CONTROL ROM

ZEROADDR STC=0 NEXT MICROINSTRUCTION
ADDRESS FOR:

ONEADDR STC=1 JC(ONEADDR, ZEROADDR)

FIGURE 5-41 — JC DISPATCH
5.3.5.1.8 Test Statius Register (MJMP)

The contents of the status register may be tested with the Macro Jump dispatch by specifying
#JMPCNTL(2-0) =111. This is indicated by

MJMP(oneaddr,zeroaddr)

appearing in the MICASM statement for a microinstruction. The MJMP dispatch tests eight
possible conditions of the Status Register, indicated by the 3 bits in IR(2-0). If the condition is
true, control transfers to oneaddr. If the condition is not true, control transfers to zeroaddr. The
conditions tested are indicated in Figure 5-42.

CONDITION TESTED

IR(2-0) sTC STSB STEZ COMMENT
000 X X X Unconditionally Jump
0 01 X 1 X Jump if Negative
010 X X 1 Jump if Zero
011 1 X X Jump if Carry
100 X 0 o] Jump if Positive
101 X o] X Jump if Positive or Zero
110 X X 0 Jump if Not Zero
111 0 X X Jump if No Carry

FIGURE 5-42 — MACRO JUMP CONDITIONS
The Xs in the Condition Tested column indicate don‘t care conditions.
The result of the condition test is placed in Bit O of #JMPADDR to form the new

microinstruction address. The address oneaddr must be the odd address immediately following
zeroaddr, as shown in Figure 5-43. ’

550

CONTROL ROM

ZEROADDR CONDITION FALSE NEXT MICROINSTRUCTION
ADDRESS FOR:
ONEADDR CONDITION TRUE MJMP (ONEADDR, ZEROADDR)

FIGURE 5-43 — MJMP DISPATCH

The MJMP dispatch is used in the microcode of the TMS7000 Standard Instruction Set to
implement the conditional branch instruction.

5.3.6 Reset Operation

When the RESET pin is asserted externally, the PMC asserts the RST signal on the C Bus
between the PMC and CPU. The entry-point logic immediately forces the next microinstruction
address to be >FF. Unlike the normal interrupt facility, the microcode does not poll the RST line;
rather, the microinstruction at CROM address >FF is unconditionally forced to be the next
microinstruction executed.

In the TMS7000 Standard Instruction Set, the sequence of microinstructions executed upon

reset fetch a subroutine entry point address at address >FFFE in memory (in the on-chip ROM)
and branch to the subroutine.

5-51

5-52

- DESIGN AIDS

6.1 INTERFACING THE TMS7000 TO PERIPHERAL AND MEMORY DEVICES
6.1.1 Introduction
All TMS7000 family devices feature 32 pins which can be used for general purpose 1/O.
However, several of these pins may be reconfigured to form an off-chip memory expansion
bus. This reconfiguring allows the microcomputer to reference up to 64K bytes of ROM, RAM,
or other peripheral devices. Two sample designs are presented which interface external
peripheral and memory devices to the TMS7000.
All TMS70XX* devices are software compatible and differ only in special hardware features
such as on-chip ROM size, extra timers, serial ports, etc. The timing data of the devices used in
the two sample circuits are listed in Table 6-1. The timing information is taken from the data
manual of that particular device. The timing data specified for the TMS70XX assumes a /4
clock option and a 10 MHz input clock frequency. Timing data for a 9 MHz clock was
interpolated by multiplying the values specified in the data manual by 10/9. Refer to the tlmlng
diagram in Figure 6-1.
TABLE 6-1 — TIMING DATA FOR SAMPLE CIRCUITS
TMS70XX({U3)
TIMING DATA (-4 OPTION}
PARAMETER TEST CONDITIONS MIN _MAX |UNIT
t, Access time, data in fr I‘d dd = 9 M 414 822
d{A-D) Cess . ain Om valig aadress T = 10 MHz 2400 470 ns
) e ——— f = 9 MHz 172 211
td(EL-D) Data-in after ENABLE falling f = 10 MHz 155 190 ns
_—) f= 9MHz 67 94
td(EH-AF) ENABLE rising to next address drive - ioMiz 50 35 ns
— — f= 9MHz 4 111 :
th(EH-RW) R/W hold after ENABLE rise Y v 6 100 ns
— f= 9MHz 0
X Data-in hol i .
th{EH-D) ata-in hold after ENABLE rise - i0MH: - o ns
] — f= 9MHz 72 89
. Data-] i
th(EH-Q) ata-out hold after ENABLE rise = 70 Mhz 5 30 ns
— f= 9MHz 255 322
. Data- lid before ENABLE ri
td{Q-EH) ata-out valid before ENABLE rise = 10 Mhz 230 290 ns

* TMS7OXX refers to all family devices except as noted.

6-1

TABLE 6-1 — TIMING DATA FOR SAMPLE CIRCUITS {CONTINUED)

from enable to any output (2-levels of logic}

TMS9918A(U5)
TIMING REQUIREMENTS
PARAMETER NOM { UNIT
tsuy(D-wWH) Data setup time before CSW high 100
th(wWH-D} Data hold time after CSW high 30 ns
SWITCHING CHARACTERISTICS
PARAMETER TYP MAX | UNIT
ta(CSR) Data access time from CSR low 100 150
["Data disable time after CSR high 65 100 |
TMS2516-35(U11)
SWITCHING CHARACTERISTICS
PARAMETER TYP MAX | UNIT
ta(A) Access time from address 260 350
ta(s) Access time from chip select 120 ns
tdis(S) Output disable time from chip select during read mode only 100
TMS4016-25(U10)
TIMING REQUIREMENTS
PARAMETER MIN MAX | UNIT
tsu(D) Data setup time 100 ns
th(D} Data hold time 10
SWITCHING CHARACTERISTICS
PARAMETER MIN MAX | UNIT
ta(A) Access time from address 250
ta(S) Access time from chip select low 120 ns
tdis(S) Output disable time after chip select high 80
74LS00(U1), 74832(U2), 74LS373(U4), 74LS245(U6),
7408(U7), 74LS04{U8), and 745138(U9)
SWITCHING CHARACTERISTICS
PARAMETER TYP MAX | UNIT
tpd 74LS00(U1) propagation delay time 10 15 ns
tpd 74S532(U2) propagation delay time 4 7 ns
thd 74LS373(U4) propagation delay time 12 18 ns
tpd 74LS245(UB) propagation delay time 8 12 ns
tpLZ 741LS245(U6) output disable time from low level 15 25 ns
tpd 7408(U7) propagation delay time 17.5 27 ns
tpd 741L504{U8) propagation delay time 10 15 ns
74S5138(U9) propagation delay time, high-to-low level
tPHL . 7 1 ns
 from enable to any output (2-levels of logic}
745138(U9) propagation delay time, low-to-high level
tPLH 5 8 ns

CLKOUT (B7)

ALATCH (B4)

HI ADDR (D0-D7)

LO ADDR (C0-C7)

ENABLE (B6)

RD/WR (BS5)

INTERNAL READ

AWAS

EXTERNAL READ EXTERNAL WRITE RAM READ
[tetc) 1
| tw(cL)
| tw(CH)
|)
I |
| |
| | A F—Ftacr-en
—‘1

n

g

-JI — th(EH-AH)
g ' 7 Y %
ess | HI ADDR ;) HI ADDR ; ASOR [] - HiADDR
{ 1 |
—~ et tpea-an| |
-~ }- [tetAL-0 j *h(EH-D) - th(EH-Q)
T T by
paTA [1o5) | pATAR ALE %/ DATA ZIE Lo-
out p-2 N =) ouT 1S ADDR
7 S %, A/
taA-D)—] | = rtdEH-AP !
Ly . ta(EL-D) L, Q£
F—taar-g0 | I
[| A
|
| |1 |
| = It tnEr-rwW) |
——II b—taaw-a0 | | | F—tata-en——

-

FIGURE 6-1 — TMS70XX READ AND WRITE CYCLE TIMING

6-3

6.1.2

6.1.2.1

6-4

Peripheral Expansion Mode Example

The schematic in Figure 6-2 is a TMS70XX — TMS9918A VDP (Video Display Processor) logic
design using a minimum number of parts. The TMS70XX is configured for the Peripheral
Expansion Mode, so only the C port and half of the B port are dedicated to the TMS9918A
memory map interface. The C port becomes the multiplexed address/data bus and the upper
nibble of the B port becomes the interface control bus. A 9 MHz crystal is used for the 70XX
because the read access time of the TMS9918A is too long for a 70X X running at the full speed
of 10 MHz (with divide by 4 clock option). The A port, D port, and the other half of the B port
({lower nibble) of the 70XX remain available as I/O ports for other system functions. The A port
is input‘only (I/0 on the 7041), the D port is I/O, and the lower B port nibble'is output only. U4
latches the 8-bit address from the address/data bus during read and write memory cycles. U6
is a bidirectional data buffer which is necessary for a fast disable time of read data on the
address/data bus before the next processor read/wnte cycle. A very sumple address decode is
accomplished with U1 and U2.

There are 246 bytes of external memory mapped addressing possible with the TMS70XX in
Peripheral Expansion Mode (238 bytes for the 704 1). A complete address decoding scheme is
not necessary because the TMS9918A is the only peripheral device depicted in this design.
Eight address lines (A7 - AO) are available in the Peripheral Expansion Mode and three of these
are needed for address decoding in this application. The MODE input pin of the TMS9918A is
used to decode the two separate memory addresses it requires. A5 is used to enable write
cycles to the TMS9918A and A6 is used to enable read cycles from the TMS9918A. Separate
addresses are used for VDP read and write because of the read-before-write nature of many of
the 70XX instructions (see paragraph 6.1.4, Software Considerations). The TMS9918A
select starts at >0120 and >0140 and will not interfere with any of the dedicated or reserved
peripheral file addresses of the 70XX. AO is connected to the MODE input of the TMS9918A.
The four 16-bit addresses are decoded as follows.

A15 A8 A7 AO
0000 0001 XO01X XXXO ’
0000 0001 XO01X XXX1 Writeonly addresses (X = don’t care)

0000 0001 X10X XXXO
0000 0001 X10X . XXX1 Readonly addresses

Read Cycle Timing For The Peripheral Expansion Mode
In a TMS70XX read cycle, the read data from the TMS9918A should be available as soon as
172 ns (td(EL-D)) after ENABLE signal falls low. The TMS9918 will deliver data 150 ns

maximum from CSR low. The minimum access time calculated for this circuit is:

td{EL-D) = Maximum delay time from ENABLE low to read data valid
td(EL-D) = ta(CSR) + tdpU2 + tpdu6 = 150 + 7 + 12 = 169 ns.

6.1.2.2

As mentioned earlier, U6 is a bidirectional data buffer which is necessary for a fast disable time
of read data on the address/data bus before the next processor read/write cycle. The minimum
ENABLE rise to the next address drive time of the TMS70XX running at 9 MHz (td(EH-AF)) is
67 ns, so the design goal is to have a data disable time of less than or equal to 67 ns in the read
cycle. The TMS9918's data disable time from CSR high (tpvx) is at maximum 100 ns. UB is
used to solve this possible data bus conflict problem. The maximum data bus disable time is
calculated next.

td(EH-AF) = Maximum time data bus is tristate after ENABLE high -
td(EH-AF) = tpdU2 + tpdU7 + tPLZUB = 7 + 27 + 25 = 59 ns

It is necessary to ensure that the RW signal does not change state beforé any buffers driving
the data bus are disabled. For example, if the U6 bidirectional buffer were enabled (G low) and
the RMW signal changed state (DIR low-high or high-low) then the previous buffer inputs would
become buffer outputs and cause possible bus conflict in the system. The RMW signal from the
TMS70XX is held in a steady-state for at least 44 ns after ENABLE goes high (th(EH-RW))-
Consequently, the G signal to U6 must be high within 44 ns of ENABLE going high. .

th(EH-G) = Maximum ti.me G goes high after ENABLE rise

th(EH-G) = tpdU2 + tpdU7 = 7 + 27 = 34 ns
Write Cycle Timing For The Peripheral Expansion Mode
In-a Write Cycle the TMS9918A expects the write data from the TMS70XX to be valid for
approximately 100 ns (tsy(D-WH)) before the CSW signal goes inactive (high). The circuit will
easily meet this requirement as shown next.

tsu(D-WH) = Minimum time data is valid before CSWhigh

tsu(D-WH) = (td(Q-EH) + tpdU2) — tpdU6 = (255 + 4) — 12 = 247 ns

The TMS9918A expects a data hold time of about 30 ns {th(WH-D)) after CSW rises. The data
hold time in this circuit is calculated as follows,

th(WH-D) = Minimum time data is valid after CSW rise

th(WH-D) = tpdU7 + tPLZU6 = 17.5 + 15 = 32.5ns

6-5

9-9

PERIPHERAL EXPANSION MODE EXAMPLE--
TMS70XX TO TMS9918A/9928A/9929A)

us

u3 va
TMS70XX 7415373 .
' A
c7 _—Ap7 a0 sa 7
AD6 A6
c6 — D 70 741500
ADS A5
5™ apa 6 6 A4
ca — 0 50— .
c3 ~~ ADS__ 4D 4Q _AZ-— 74Ls00 m
c2b——222__3p 30 U1) u2
AD1 Al 741500
c1 ~ 2D 20 20 74532
GO :f:TCH et 1a
B4/ALATCH G- ocC 91
- L , 7403&@
BS/RIWF A/wW:
y ENABLE-
B6/ENABLE
AD(7-0) ué
- 7415245
_ 1 A8 D:
AD6 D
B7 A7
00K D(7- >
D7-D0 17-0 :gi . s 'gi
| Aoz |0 Ao
~ AVAILABLE -
B4
83-80 813-0) > AS AD2_ | . A4 02
/0 AD1 A
B2 A2
__ap0_ |, A1l—00
A7-AO Al7-01
RW-__lpir G-
uay)

D¢
9.0

i

FIGURE 6-2 — PERIPHERAL EXPANSION MODE EXAMPLE

TMS9918A

CSR-
CSwW-

MODE

CcDo
cb1
CcD2
cDp3
cb4a
CcDs
CD6
cD?

I MHz

+0
10.739 I_

DATA
FROM
RAMS

ADDR/
DATA
T0
RAMS

6.1.3

6.1.3.1

Microprocessor Mode Example

In the Full Expansion Mode and the Microprocessor Mode, all 16-bits of addressing is available
on the C and D ports of the TMS70XX. The on-chip ROM (if any), RAM, and limited 1/O of the
70XX can still be used in the Full Expansion Mode, but the ROM is disabled in the
Microprocessor Mode and its address space is available externally.

The schematic in Figure 6-4 is an example of a memory interface to a 10 MHz TMS70XX
operating in the Microprocessor Mode. The Mode Control (MC) pin is tied to VCC to place the
70XX in this mode. The D port becomes the most significant 8-bit address bus (A15 — A8).
The C port becomes the multiplexed least significant 8-bit address bus (A7 — AO) and full 8-bit
data bus, just as in the Peripheral Expansion Mode. The memory control signals are brought out
on the upper nibble of the B port, just as in the Peripheral Expansion Mode. The A port remains
an input only port {I/O port on the TMS7001/TMS7041) and the lower nibble of the B port
remains an output only port.

The least significant 8-bits of the 16-bit address (A7 — AQ) are latched into U4 by the ALATCH
from the address/data bus during read/write memory cycles. U6 is a bidirectional data buffer
which is necessary for a fast disable time of read data to the 70XX before the next read/write
cycle. A full address decode is accomplished with U8 and U9. Eight memory select lines
(SELO to SEL 7} are generated by U9 and are each individually activated on an address block
of 2048 bytes. Figure 6-3 lists the address range decoded by each select pin.

Pin Address Range

SELO >C000 — >C7FF
SEL1 >C800 — >CFFF
SEL2 >D000 — >D7FF
SEL3 >D800 — >DFFF
SEL4 >E000 — >E7FF
SEL5 >EB00 — >EFFF
SEL6 ->FO00 — >F7FF
SEL7 >F800 — >FFFF

FIGURE 6-3 — MEMORY ADDRESS DECODE

The example schematic in Figure 6-4 shows a TMS4016-25 static RAM selected by SELO
and a TMS2516-35 EPROM selected by SEL 7. Any combination of ROM, RAM or other
peripheral device could be added into the circuit and enabled by the other SEL pins, provided
that their timing requirements allow them to be interfaced to the TMS70XX.

Read Cycle Timing For The Microprocessor Mode

vThe minimum address to déta access time required by the TMS70XX is 400 ns (t4(A-D)). The

following equation is used to check if U10 and U11 can deliver read data in less than or equal to
400ns.

td(A-D) = Max read data valid time from address (A10 — AQ)

td(A-D) = ta(A)U10 + tpdU4 + tpdue = 250 + 18 + 12 = 280ns
td(A-D) = talA)U11 + tpdU4 + tpdue = 350 + 18 + 12 = 380 ns

6-7

6.1.3.2

6-8

The minimum ENABLE to data access time required by the TMS70XX is 155 ns (td(EL-D))-
Consequently, the chip select to data access of U10 and U11 must be less than or equal to 155
ns.

td(EL-D) = Maximum delay time read data is valid from ENABLE low
td(EL-D) = ta(A)U10 + tPHLU9 + tpdu6 = 120 + 11 + 12 = 143 ns
td(EL-D) = ta(S)U11 + tPHLU9 + tpdue = 120 + 11 + 12 = 143 ns

The minimum ENABLE rise time to the next address drive time of the TMS70XX is 60 ns (
td{EH-AF)). The data bus is not to be driven by any external devices within this time: this is the
main purpose of U6.

td(EH-AF) = Maximum time data bus is tristate after ENABLE high

td(EH-AF) = (2 X tpdusg) + tpLZU6 = (2X 15) + 25 = 55ns
As mentioned earlier, to avoid any possible bus conflict, the data direction of U6 must not be
reversed by the RMWsignal while this device is enabled (G low). Therefore, G of U6 must be high
within the time ENABLE goes high and RM/changes state .

th(EH-G) = Maximum time G goes high after ENABLE rise

th(EH-G) = 2 X tpqug = 2X 15 = 30ns
Write Cycle T/mmg For The M/cropracessor Mode
The output data from the TMS70XX must be valid long enough before ENABLE rises to
satisfy the TMS4016-25 RAM. The following equation derives the minimum time that write
data will be valid to the memory devices while they are selected.

tsu(D)U10 = Minimum time data is valid before Srise

tsu(D)U10 = (td(Q-EH) + tPLHU9) — tpdU6 = (230 + 5) — 12 = 223 ns
A tsu(D)U10 of 223 ns easily excedes the minimum data setup requirement of 100 ns for the
TMS4016-25 RAM. The 4016 requires a minimum data hold time of 10 ns after S rises (
th(D)U10), so the value for th(D-S) must be greater than or equal to 10 ns. The purpose of the
two inverters (U8) going to the G input of U6 is to ensure sufficient data hold time for the RAM.

th(D)U10 = Minimum data hold fime to U10 after S rise

th(D)U10 = [(2 X tpdus) + tPLZU6] — tPLHU9 = [(2X 10) + 15] — 8 ’

th(D)U10 = 27 ns

6-9

MICROPROCESSOR MODE EXAMPLE
(TMS70XX TO TMS2516 EPROM AND TMS4016 RAM)

u3 ua
TMS70XX 7418373 — A0 ™ msg;?s-zs
Cc7 ~ AD7 8D 8Q A7 A10 {a10 D7
e AD6 A6 N_A10 § pas f———
~ 7D 70— _49 |9 DQ7[D6
c ADS 6a 5 | e
5 ~ 6D \—A8_las pasf—2—
ca AD4 5D 5Q __ﬂ__J A7 D4
N——="_1A7 Das5
AD3 A3 —————
c3 40 4Q g _A6 paal 03
c2 w AD2 ap 3q A2 A A5 A6 T
. N
. A1 N-AS 145 Dpa3
c1 4221 2o 20— A% s paz bt
co T s o0)
Y ALATCH N-A3_1a3 pa1
BA4/ALATCH G- oc _A2_|,, ‘
BS/R/W. W - | us . LY PV
745138 _A0_|a0
| - SELO-
B6/ENABLE ENABLE vop s- G-
741503 viboset- "
A15 -
D7 A4 —Dol q62a | sea-
b6 G1 v3 p—SEL3- =
b5 A13 c SEL4-
pa A12 . vap— == U1
: Y5 TMS2516-35
D3 ALl A SEL6 -
A10 J Y6 _ D7
p2 A b8 | Mo |s b Y
D1 Ag G28 % A10 a7}
Do 8 741504 oo N_29 l.q as}—25].
: us 7415245 A8 _l1ag as|-04
A7 D3
B(3-0) A7 a3
G- DIR A6 D2
AVAILABLE A€ _{ng Q3
AS S AD7 B8 A8) A5 D1 *
_ AD6 N_A5_1as Q2
Y 87 A7 A4 oo)
A(7-0) k- AD5 86 A6 As Y
L AD4 A3 a3
- BS As| __A2
Mc—> vee ___AD3 B4 A4| | {A2
. N AD2 AL _fa1 yppl—ss v
l | ' I e B3 A3 _A%_ |0
10 MH N ADO B2 A2 PD/IPGM{—L
I T \ 81 A1 1
= = D{7-0) J

FIGURE 6-4 — MICROPROCESSOR MODE EXAMPLE

6.1.4

‘Software Considerations

The TMS70XX microcomputer features a variety of instructions which allow easy access to
external memory mapped devices. The address space from >0100 to >01FF serves as the
peripheral file. A special set of instructions are dedicated to the peripheral file for more efficient
I1/0 communication to peripheral devices memory mapped in this space. The Peripheral
Expansion Mode of the 70XX allows this space to be available externally. All instructions
dedicated to the peripheral file use the letter ‘P’ at the end of the opcode mnemonic. These
instructions are MOVP, BTJOP, BTJZP, ANDP, ORP, and XORP (see Section 3.3.3.2).

As indicated previously in the Peripheral Expansion Mode example, separate addresses are
used for reads and writes. Due to processor design, many of the TMS70XX instructions
perform a read-before-write cycle on the destination operand. This is true with the peripheral
file instructions that would most likely be used to write to the TMS9918A:

MOVP A,Pn

MOVP B,Pn

MOVP %IOP,Pn

where: .

A,B = accumulators

n = peripheral file number
0P = immediate data value

These will read the peripheral file address before writing to it. If the CSWand CSR pins of the
TMS9918A are decoded at the same address, a false read would occur when using these
instructions. Therefore read and write addresses must be decoded separately. There is a
method to allow the use of the same address for reading and writing in the TMS9918A

example. This method is to use an instruction that does not read-before-write on the

destination address. :

STA @LABEL

STA @LABEL(B)

STA *Rn

where:

LABEL = 16-bit destination address
B = index register

n = register pair number

The instructions listed above will not perform an unnecessary read cycle on the destination
address before writing to it. The TMS9918A address decode could be simplified by using just
two address lines (A5,A0) instead of three (A6,A5,A0) when using these instructions.

6.2

6.2.1

384

A program can be executed from anywhere in the TMS70XX 64K byte address space where
memory is available. This includes the 128 byte register file which is located at >0000 to
>007F. Caution should be taken if a program is allowed to execute in the peripheral file address
space because some of these locations are reserved for special on-chip functions. The Full
Expansion Mode and Microprocessor Mode allow the use of additional external memory. The
Microprocessor Mode example shows that RAM can be added externally as well as EFROM. A
program can write to and read from this RAM by using the extended instructions LDA and STA.
Direct, indirect, and indexed addressing modes are possible with the following instructions.

LDA @LABEL
LDA *Rn

LDA @LABEL(B)
STA @LABEL
STA *Rn

STA @LABEL(B)

where:

LABEL = 16-bit source/destination address
n = register pair number

B = index register

The TMS70XX is a versatile single-chip microcomputer that can be reconfigured to address
external peripheral and memory devices. This allows the TMS70XX to meet system
requirements that could not be satisfied with single-chip mode.

SERIAL COMMUNICATION WITH THE TMS7000 FAMILY

This section is intended to assist the TMS7000 family user in performing serial communication
via a UART {Universal Asynchronous Receiver Transmitter) function. It describes the
implementation of the UART function in software using the TMS7040 and with the on-chip
serial port using the TMS7041.

Communication Formats

Serial communications occur in one of two basic formats; synchronous or asynchronous.
These formats are similar in that they both require framing bits to be added to the data to enable
proper detection of the data at the receiving end.

In synchronous format, blocks of data are sent as a continuous string of characters where the
string is preceded and terminated by framing bits; the preceding framing bits are used by the
receiving device to synchronize its clock with the transmitter’s clock.

In asychronous format, as shown in Figure 6-5, each character to be transmitted is preceded
by a START framing bit and followed by a parity bit (if parity is enabled), then one or more STOP
framing bits.

44— CHARACTERBITS ——M™ ——p

MARKING START DO D1 Dn PARITY STOP MARKING
LSB MSB-
———p INCREASING TIME

FIGURE 6-5 — ASYNCHRONOUS COMMUNICATION FORMAT

6-11

6-12

The START bit is a logical zero, or SPACE. It notifies the receiver to start éssembling a character
and allows the receiver to synchronize itself with the transmitter.

A PARITY bit is an additional bit added to a character for error checking. The PARITY bitis set to
‘0" or ‘1" in order to make the number of “1's in the character (including the PARITY bit) even or
odd depending on whether even or odd parity is sélected.

The STOP bit is a logical one or MARK. One or more STOP bit(s} are added to the end of the
character to ensure that the START bit of the next character will cause a transition on the
communication line and give the receiver time to catch up with the transmitter if its basic clock
happens to be running slightly slower than that of the transmitter.

Design Constraints For Ths Scftwars And Hardwaie UARTS

The purpose of this design is to implement the UART function using the TMS7000 family.
There are two main routines to be written: the ‘transmit’ routine that transmits the characterin
the A Register and ‘receive’ routine that receives the character and stores it in the A register.
The routines for the software UART will be called SWXMIT and and SWRCVD; likewise, the
routines for the hardware UART will be called HWXMIT and HWRCVD. Both the software and
hardware UART implementations use the same I/O pins as shown in Figure 6 6.

+5V
2k
5241 L 75188
s | 3L TX 1IN0 6 3
% 5
‘LS241 75189
5 6
as [16_RX 15 4 2
70XX
—_ 'Ls2a1 75188
4 DTR 17 2
B1. N3 3 6
l/
25 PIN
‘15241 75189 CONNECTOR
3
a2 | 8 0sR 7(}13 41 20
+12V
t 2.2k0
8
+12V
2.2k
9
-12v
t 2.2ke
10
1
7

FIGURE 6-6 — I/0 INTERFACE

6.2.2.1

Port A5 (pin 16) and Port B3 (pin 37) are used for réceiving data and transmitting data. Port A2
{pin 8) and Port B1 (pin 4) are used for the inputting and outputting of the handshaking signals.
Table 6-2 defines the pin assignments and the function of each pin.

TABLE 6-2 — I/0 PIN ASSIGNMENT

SIGNATURE PIN 1/0 FUNCTION
A2 8 | Data Set Ready (DSR)
A5 16 | Receive Data (RXD)
B1 4 (o} Data Terminal Ready (DTR)
B3 37 (o} Transmit Data (TXD)

The flowcharts together with the complete program listings for the XMIT and RCVD routines
are included later in this section.)

Design Of The Software UART For The TMS7040

Listed below is the register assignment for the software UART:

REGISTER

* R34 =BDCNT1

R35=BDCNT2
R36 =HFBAUD
R37=MODE
R38=BITCNT
R39 =BITIME
R40=DLAYR1
R41=DLAYR2
R42 =UATREG
R43=TMP
R44 =STAT
R45=RCHAR
R46 =SHFCNT

NAME

BIT COUNTER
BIT COUNTER

HALF BAUD RATE

MODE REGISTER

COUNTER INITIALIZER

TIMER INITIALIZER

DELAY LOOP1
DELAY LOOP2
UART REGISTER

TEMPORARY REGISTER

STATUS REGISTER

RECEIVED CHARACTER

SHIFT COUNTER

FUNCTION

STORE DELAY CONSTANT

STORE DELAY CONSTANT

STORE HALF BIT DELAY CONSTANT
SET MODE OF OPERATION

FOR # OF BITS TO BE XMITTED

FOR DELAY

USED IN DELAY LOOPING

USED IN DELAY LOOPING
TEMPORARY REGISTER
TEMPORARY REGISTER

FOR CHECKING PARITY ERROR
STORE THE RECEIVED CHARACTER
FOR BIT POSITION ADJUSTMENT

Each register has been assigned a name and its function is listed beside it.

* R34 and R35 provide the time constants for looping in the delay subroutine.

e R36 provides the delay constant for sampling the start bit at the half bit position.

* R37 controls the number of STOP bit(s), odd/even/no parity and the number of bits in the

character.

e R38 controls the number of bits to be transmitted.

* R39 provides the delay constant for time compensation.

* R40and R41 are used in the actual delay looping in the delay subroutine. They are loaded
from R34 (BDCNT 1) and R35 (BDCNT2) at the beginning of the delay subroutine.

6-13

6-14

e R42 contains a parity error flag at bit O.
* 'R45is used to store the received character.
* R46 is used to make the bit position adjustment so that the received data is right-justified.

Mode Register R37 =MODE

. MODE is accessed through R37 in the register file. It describes the character format of the

software UART.
R37 =MODE
7 6 5 4 3 2 1 o0
CHAR1 |CHARQ| PDIS | STOP (o] 0 0 PODD
< ' I—— 0 = Even Parity.
1 = Odd Parity
0 = One Stop Bit

1 = Two Stop Bits

O = Parity Enabled
1 = Parity Disabled

00 = 5 bits/Character
01 = 6 bits/Character
10 = 7 bits/Character
11 = 8 bits/Character

Parity Odd (PODD) Bit O — If this bitis set to a 1, then odd parity is is selected. The parity bit will
be set to O or 1 in order to make the total number of 1's in the character (lnciudlng the PARITY
bit) odd.

Bit 1 to Bit 3 are reserved and must be setto O's.

Number of Stop bits (STOP) Bit 4 — This bit determines the number of STOP bit(s) to be sent.
Setting this bit to a O selects one STOP bit and setting it to a 1 selects two STOP bits.

Parity Disable (PDIS) Bit 5 — If this bit is set to a 1 then no PARITY bit is generated during

transmission or expected during reception.

Number of Bits per Character (CHARO, 1) Bit 6,7 — A character is programmable to 5, 6, 7 or 8
bits. Characters less than 8 bits are right-justified.

Status Register R44 = STAT

STAT is accessed through R44 of the register file. It is used for determining the parity error in
the received character. .

R44 =STAT

X X X X X X X PARE

L_ o=nNo Parity Error
1 = Parity Error

Parity Error (PARE) Bit O - This bit indicates that a parity error is encountered on the received
character if this bit is set to a 1 after a character is received.

SOFTWARE UART ROUTINE DESCRIPTION

~ The details of the routines for the software UART can be best understood by going through
Figure 6-7 , 6-8 and the program listings in this section.

In the SWXMIT routine, the character is contained in the A Register. This character is to be
transmitted through the transmit line (TXD) according to the format specified in the MODE
(R37) register.

The following is a portioh of the SWXMIT routine listing:

0008 XMIT1 EQU >08 TRANSMIT ‘1"
MASK (OR)
OOFD RTS EQU >FD READY TOSEND (AND)
0004 DSR EQU >04 _ DATA SET
READY (TEST)
0004 UARTIN EQU P4 PORT A-UART
_ INPUT ()
0006 UARTOTEQU P6 PORT B-UART
OUTPUT (1
0032 FOO6 C8 SWXMITPUSH B SAVE CONTENTS
: OF THE B REG.
0033 FOO7 A4 ORP %XMIT1,UARTOT PLACE A ‘MARK’
ON XMIT LINE
FOO8 08 '
FOO9 06 :
0034 FOOA A3 ANDP %RTS,UARTOT ASSERT ‘RTS’
FOOB FD
‘ FOOC 06 .
0035 FOOD A6 WAIT BTJOP %DSR,UARTIN,WAIT WAIT FOR
HANDSHAKING
FOOE 04
FOOF 04
FO10 = FC

6-15

6-16

The SWXMIT routine listing starts by saving the B Register value on the stack so that the value
can be restored after the execution of the routine.

Symbols refer to SWXMIT flowchart in Figure 6-7.

A

It places a ‘MARK'’ or 1 on the transmit line (TXD) and then places a O on the
output handshaking line (DTR } informing the receiving end that it is Ready
To Send the character. It waits for the input handshaking line (DSR) to be .
pulled to a O by the receiving end. Refer to SWXMIT listing immediately
above.

Onceit recei\}es a 0, it starts initializing the Bit Counter (R38) and the Timer
Initializer (R39). :

It jumps to ‘LOOP2’ to send out the START bit. After calling the delay
subroutine, it jumps back to ‘LOOP1’ and starts sending the character bits.
The total number of bits to be sent is determined by Bit Counter (R38).

After all the character bits have been transmitted, it tests the MODE (R37)
register for parity. If parity is enabled, it will output the parity bit, otherwise;
it jumps to the STOP bit and outputs the number of STOP bit(s) specified in
bit 4 of MODE (R37).

After sending the STOP bit(s), it places a 1 on the output handshaking line
(DTR) and restores B-register.

8 9

c <

START

SAVE B REGISTER
PLACE A
‘MARK' ON
XMIT LINE
AND ASSERT ‘RTS’

INITIALIZE
BIT COUNTER
AND TIME
COMPENSATION

il

OUTPUT START
BIT THEN
DATA BITS

PARITY
ENABLED
?

OUTPUT
PARITY
BIT

I

OUTPUT
STOP
BIT(S)

}

DISASSERT
‘RTS'
AND RESTORE
B REGISTER

FIGURE 6-7 — SWXMIT ROUTINE FLOWCHART

6-17

6-18

In the SWRCVD routine, the character

in the A Register.

The following is a portion of the SWRCVD routine listing:

0113

0114

0115

0116

0117

0118
0119

0120
o121

FOAE
FOAF
FOBO
FOB1

FOoB2
FOB3
FOB4
FOB5

FOB6
FOB7
FOB8
FOB9

FOBA
FoBB

FOBC
FOBD
FOBE

FOBF
FOCO

FOC1
FoC2

00FD
0020
0004

0006

A3
FD
06
A7

20
04
FC
AB

20
04
FC
32

24
00

00
CA
FC

RTS EQU
DIN EQU
UARTIN EQU
UARTOT EQU

ANDP

MARKCK BTJZP

STRBIT BTJOP

MoV

HERE2 NOP

NOP
DJNZ

>FD
>20
P4
P6

%RTS, UARTOT

is received through the receive line A5(RXD) and stored

READY TO SEND (AND)
DATA IN (TEST)
PORT A-UART

INPUT (1)
PORT B-UART

OUTPUT (1)
ASSERT ‘DTR’

%DIN,UARTIN,MARKCK LOOP UNTIL

%DIN,UARTIN,STRBIT

HFBAUD,B

B,HERE2

SAMPLE START BIT AT HALF BIT

A6

20
04
F2

BTJOP

%DIN,UARTIN,STRBIT

MARK OCCURS

LOOP UNTIL
SPACE OCCURS

INITIALIZE
COUNTER

TIME
COMPENSATION (4)

(4)
WAIT HALF A BIT (7 + 2)

BRANCH IF
FALSE START

Symbols refer to SWRCVD flowchart in Figure 6-8:

A

It starts by saving B-register, initializing the Bit Counter (R38) and the Shift
Counter (R46).

Then, it places a O on the output handshaking line (DTR-) informing the
transmitting end that it is Ready To Receive the character. It checks the
receive line (RXD) for ‘"MARK’ or 1. After this condition is satisfied, it waits
for the START bit to occur. Once the START bit is detected, it waits half abit
and samples again. Refer to the listing immediately above.

If the START bit is valid after half bit, it starts assembling the character bits
after calling the delay subroutine for one bit delay. The received character is
stored in RCHAR (R45).

It checks for a parity error and sets the STAT (R44) accordingly. The
character received is also made right-justified.

Then, it places a 1 on the output handshaking line (DTR-) and moves the
character from R45 to A-register. Finally it restores B-register.

6-19

6-20

A<

® 3

cs .

START

SAVE B REGISTER
INITIALIZE BIT
COUNTER AND

SHIFT COUNTER

I

ASSERT
‘DTR’

1S
INPUT A

START BIT

?

START

BIT VALID
AFTER HALF
BIT

ASSEMBLE
THE
CHARACTER
BITS

PARITY
ENABLED
?

CHECK
PARITY AND
SET THE
STATUS REGISTER

:

MAKE THE
NECESSARY #

. FOR
ADJUSTMENT

o

OF SHIFTS §—

DISASSERT"
‘DTR’

I

STORE THE
RECEIVED
CHARACTER IN
A REGISTER
AND RESTORE

B REGISTER

FIGURE 6-8 — SWRCVD ROUTINE FLOWCHART

CALCULATION OF THE DELAY CONSTANTS AND FORMULAS

Figure 6-9 describes how the delay works and how the bit time is
calculated. .

Let T = time per bit in micro seconds.

MARKING STARTBIT CHARACTERBITS

T

»
L8

A

FIGURE 6-9 — DELAY CONSTANTS CALCULATION

Forinstance, if the microcomputer is operating at the crystal/clockin frequency fosc = 10 MHz
with the divide by 4 option (fosc = 5 MHz with the divide by 2 option) as shown in Figure 6-9.
The clockout cycle time tc(c) = 400 n seconds. Table 6-3 shows the total number of cycles
needed in the delay loop for the corresponding baud rates.

TABLE 6-3 — CYCLE CALCULATION

TIN #OF CYCLES TOTAL # OF CYCLES
BAUD RATE MICRO SEC NEEDED IN DELAY LOOP*
300 3333 8333 8221
600 1667 - 487 4055
1200 8333 2083 1971
2400 417 1042 930
4800 208" 521 - 409
9600 104 260 . 148

*NOTE: There are 112 cycles needed to manipulate the next bit to be sent out.

Refer to the delay subroutine in the SWUART program listing at the end of this section. The
following is a sample of that program.

OF CYCLES PER
INSTRUCTION
DELAY MOV BDCNT2,DLAYR2 [INITIALIZE OUTER COUNT 10
ENTRY MOV BDCNT1,DLAYR1 INITIALIZE INNER COUNT 10
HERE1 DJNZ DLAYR1,HERE1 INNER COUNT 9+2
DJNZ - DLAYR2,ENTRY OUTER COUNT 9+2
RETS 7

Let A = Value in BDCNT1 and B = Value in BDCNT2 where A and B range from 1 to 255.
Therefore, total number of CYCLES in the delay subroutine

" =(11A+21)B+17-2(B+1)
= 11AB+19B+15

, 6-21

6-22

For example, if the total number of cycles in the delay subroutine = 4055, A = 35andB = 10
are needed.

~ A simple program can optimize the value of A and B to provide the correct number of delay

cycles.

Values of A and B with different crystal frequencies are provided in Table 6-5 at the end of this
section.

Figure 6-10 describes how the start ‘half bit’ works and is calculated. Listed below is a sample
of the start bit detection program found in the SWRCVD routine.

OF CYCLES PER
INSTRUCTION

STRBIT BTJOP %DIN,UARTIN,STRBIT LOOP UNTIL START BIT OCCURS 12

MOV HFBAUD,B INITIALIZE COUNTER 8
HERE2 NOP TIME COMPENSATION 4

NOP TIME COMPENSATION 4

DJNZ B,HERE2 WAIT HALF ABIT 7+2

BTJOP- %DIN,UARTIN,STRBIT SAMPLE AGAIN, BRANCH IF

FALSE START BIT
MARKING ‘0’ detected Sample again
here at
half bit

START BIT CHARACTERBITS

FIGURE 6-10 — START BIT DETECTION

" Once the START bit is detected, the program will wait half a bit time and sample again as

shown in Figure 6-10. This sequence provides false start bit rejection and also locates the
center of bits in frame for assembling the character. Refer to Figure 6-8 SWRCVD flowchart -
symbol B. Table 6-4 shows.the number of cycles needed for a half bit delay.

TABLE 6-4 — HALF BIT CYCLES CALCULATION

_ # OF CYCLES FOR # OF CYCLES NEEDED
BAUD RATE HALF BIT FOR HBAUD DELAY*

300 4167 4147

600 2083 2063

1200 1042 B 1022

2400 521 . 501

4800 260 240

9600 ! 130 ‘ 110

* NOTE: 20 Cycles are used to set up the half bit delay after the start bit is detected.

-+

Let X = value in HFBAUD where X ranges from 1 to 255.
Therefore, [4 +4 +(7 + 2)IX-2 = # OF CYCLES NEEDED FOR HFBAUD DELAY

For example, if the number of cycles needed for a HBAUD delay is 4147, a value of X equal to
244 is needed.

X values with different crystal frequencies are provided in Table 6-5.
The crystal-dependent constants (BDCNT1, BDCNT2 and HFBAUD) used in the software
UART are given in Table 6-5. These constants must be loaded into the corresponding registers

and the MODE register must be set before SWXMIT or SWRCVD is called.

TABLE 6-5 — CRYSTAL-DEPENDENT CONSTANTS FOR THE SOFTWARE UART

BAUD RATE . BDCNT1(A) BDCNT2(B) HFBAUDIX)
300 18 1D F4
600 23 0A 79
1200 06 17 ac
2400 1A 03 1E
4800 22 01 OE
9600 0A 01 07

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
10MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 5SMHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300 1Cc . 14 C3
600 90 . 02 61
1200 oB 0B 30
2400 09 06 17
4800 07) 03 ‘0B
9600 02 02 05

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
8MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 4MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

6-23

TABLE 6-5 — CRYSTAL-DEPENDENT CONSTANTS FOR THE SOFTWARE UART (CONTINUED)

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300 23 OA 79
600 06 17 3C
1200 1A 03 1E
2400 22 01 OE
4800 0A o1 07

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
5MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 2.5MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300) 920 02 61
600 0B oB 30
1200 09 06 17
2400 07 03 oB
4800 02 02 05

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
4MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 2MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) = HFBAUD(X)
300 83 04 AE
600 80 02 57

1200 10 07 28
2400 1 03 15
4800 02 06 OA
9600 01 02 04
CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
3.579MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

6-24

6.2.2.2

TABLE 6-56 — CRYSTAL-DEPENDENT CONSTANTS FOR THE SOFTWARE UART (CONTINUED)

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)
300 80 02 57
600 10 : 07 2B

1200 1 03 15
2400 02 06 0A
4800 01- 02 04
CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
3.579MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR

- BAUD RATE BDCNT1(A) BDCNT2(B) - HFBAUD(X)
300 1B 11 : A1l
600 02 40 50
1200 37 02 27
2400 oB : 04 13
4800 12 01 09
9600 0z . 01 04

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
3.3MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) . HFBAUD(X)
300 oB) oB 30
600 09 06 17

1200 07 } 03 . oB
2400 ' 02 02 05

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
2MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 1MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

Hardware UART (TMS70X1)

The serial port consists of a receiver (RX), transmitter (TX), and TIMER3 (T3). The complete
functional definition of the serial port is configured by the TMS7041 software. A set of control
words must first be sent out to the serial port to initialize it, so that it will support the UART
function.

The serial port is controlled and accessed throUgh registers in the peripheral file. The registers
associated with the serial port are shown in Table 6-6.

6-25

TABLE 6-6 — SERIAL PORT REGISTERS

REGISTER NAME TYPE FUNCTION
P17 SMODE WRITE Serial Port Mode
P17 SCTLO . WRITE Serial Port Control-O
P17 SSTAT READ Serial Port Status
P20 T3DATA R/W Timer 3 Data
P21 SCTL1 R/W Serial Port Control-1
P22 RXBUF READ ~ Receiver Buffer
P23 TXBUF WRITE Transmission Buffer

The following diagrams are bit assignments of the peripheral file registers. They are included
here for reference. It is suggested that the reader consult Section 2.7 for a complete
description and explanation regarding their uasge.

Mode Register (SMODE)

SMODE is accessed through P17 in the peripheral file. It is used to control the character format
and type of communications mode (asynchronous or isosynchronous).

P17 =SMODE

7 6 5 4 3 2 1 0

STOP | SIO |PEVEN| PEN |CHAR1|CHARO|COMM | MULTI

4+—F > L_ 0 = Motorola protocol
1 = Intel protocol
0 = Isosync
communication
1 = Async

communication

00 = b Bits/character
- 01 = 6 Bits/character
10 = 7 Bits/character
11 = 8 Bits/character

1 = Parity enabled
0’ = Parity disabled

1 = Even parity
0 = Odd parity

0 = Serial I/O mode
1 = Communication
mode

O = One stop bit
1 = Two stop bits

6-26

Serial Control O Register (SCTLO)

SCTLO is accessed through P17 of the perpheral file. The SCTLO register is used to control the
serial port functions, such as transmit and receive enable, clearing of error flags and software
reset.

P17 =SCTLO
7 6 5 4 3 2 1 0
x | R | x ER X |RXEN | X |TXEN

[0 = Transmitter disabled
1 = Transmitter enabled

0 = Receiver disabled
1 = Receiver enabled

= Reset error flag
0 = Noreset error flags

1 = Reset serial port
0.= Noreset

6-27

Status Register (SSTAT)

The Status is accessed through P17 of the Peripheral File. It is used for determining the status
of the serial port.

P17 =SSTAT

7 6 5 4 3 2 1 0

X BRKDT | FE OE PE TXE |[RXRDY |[TXRDY

|__ 1 = TXBUF ready for
character
0 = TXBUF full

"1 = RXBUF ready with
character
0 = RXBUF empty

1 = Transmitter empty
0 = Transmitter
.written to

1 = Parity error
0 = No parity error

1 = Overrun error
0 = No overrun error

1 = Framing error -
0 = No framing error

= Break Detected
0 = No break

6-28

Serial Control 1 Register (SCTL1)

The SCTL1 is accessed through P21 in the peripheral file. This register is used to control the

source of SCLK, multiprocessor communications, TIMER3 interrupt, and the TIMER3 prescaler
value.

P17 =SCTL1

X CLK | SLEEP | WU | T3FLG [T3ENB | PRE3 | PRE3

4_: 2-bit prescaler

for TIMER3

0 = Disable T3INT
1 = Enable T3 INT

O = Reset T3FLG
1 =Setby T3

Control TX
multiprocessor

Control RX'
multiprocessor

External Clock

o =
1 = Internal Clock

6-29

6-30

DESCRIPTION

SMODE is only accessible after a RESET operation (hardware or software). The first write
operation to location P17 in the peripheral file, immediately following a RESET, will access the
SMODE register. All subsequent writes to P17 will access the control register (SCTLO).

INT4 is dedicated to the serial port. Three sources can generate an interrupt through INT4: the
transmitter (TX), the receiver (RX}, and TIMER3 (T3). The serial port can be driven by an
internal TIMERS or external baud rate generator.

In this HWUART program, the T3 interrupt is disabled and the internal TIMER3 is chosen for the
serial clock. The INT4 service routine as shown in Figure 6-11 must determine which flag
caused the INT4 and take the necessary action. The INT4 vector is stored in memory
addresses >FFF6 and >FFF7.

INT4.
GENERATED
BY RE(;EIVER

v

MOVE THE
CHARACTER FROM
RXBUF TO
REGISTER A

INT4
. GENERATED
BY TRA! TTER
?

IS
TRANSMISSION
COMPLETE

?

RETURN FROM
INT4 SERVICE
ROUTINE

FIGURE 6-11 — INTERRUPT 4 SERVICE ROUTINE

6-31

In the HWXMIT routine (refer to Figure 6-12 HWXMIT flowchart and the listing at the end of
the section) the peripheral file registers are set in the following orders:

1) P5 =ADDR
2) P16 =I0CNT1
3) P17 =SCTLO
4) P21 =SCTL1

Port A Direction Register

1/0 Control Register 1

Serial Port Control Register O
Serial Port Control Register 1

.

-

6-32

* START

CLEAR INT4 FLAG
AND ENABLE INT4,
(ADDR & 10CT1)

I

CLEARALL
ERROR FLAGS AND
ENABLE THE
TRANSMITTER
(SCTLO)

J

USE INTERNAL

TERRUPT
GENERATED BY T3
ND SET P=
(SCTL1)

!

ASSERT ‘RTS’

HANDSHAKING
?

ENABLE INTERRUPT

I

MOVE CHARACTER
FROM A REGISTER
TO TXBUF THUS
GENERATES INT4

‘

INTERRUPT 4
SERVICE ROUTINE

I

DISABLE THE
TRANSMITTER
CLEAR INT4 FLAG &
DISABLE INT4
(SCTLO & 10CT1)

'

DISASSERT
‘RTS’

FIGURE 6-12 — HWXMIT ROUTINE FLOWCHART

It then places a ‘O’ on the output handshaking line B1(DTR-) informing the receiving end that it
is ready to send. After receiving the ready signal A2(DSR- = 0) from the receiving end, it
enables the maskable interrupt, moves the character from the A Register to TXBUF thus
generating an INT4. Upon returning from the INT4, it d:sables the transmitter and places a ‘1’
on the output handshaking line B1(DTR-).

In the HWRCVD routine (refer to Figure 6-13 HWRCVD flowchart and the listing at the end of
the section) the peripheral file registers are set in the following order:

1) P5 =ADDR
2) P16 =IOCNT
3) P17 =SCTLO
4) P21 =SCTL1

Port A Direction Register

1 1/0 Control Register 1-

Serial Port Control Register O
Serial Port Control Register 1

START

—

ASSERT./DTR’ AND
WAIT FOR INT4

L

SET INPUT HAND-
SHAKING PORT,
CLEAR INT4 FLAG
AND ENABLE INT4
(ADDR & 10CT1)

INTERRUPT 4
SERVICE ROUTINE

:

CLEAR ALL
ERROR FLAGS AND
ENABLE THE
RECEIVER (SCTLO)

I

:

DISABLE THE
RECEIVER CLEAR
INT4 FLAG &
DISABLE INT4
(SCTLO) & I0CT1)

USgEIgTERNAL CLOCK
DISABLE INTERRUPT
GENERATED BY T3
AND SET P=0
(SCTL1)

I

DISASSERT ‘DTR’

I

ENABLE INTERRUPT

FIGURE 6-13 — HWRCVD ROUTINE FLOWCHART

6-33

where:

6.2.2.3

6-34

In the transmit operation, the maskable interrupts are enabled and a ‘0’ is placed on the output
handshaking line B1(DTR-) informing the transmitting end that it is ready to receive the
character. It waits for the INT4 generated by the Receiver to occur. Upon returning from the
INT4, the routine clears the INT4 flag and disables INT4. Then, it sets the output handshaking
lineB1(DTR-)toa 1.

The baud rate generated by TIMER3 is user programmable and is determined by the value of
the 2-bit prescaler and the 8-bit timer latch. The equation for determmlng the baud rates for
asynchronous mode is as follows:

¢
64*(P +1)*(L + 1)

ASYNCHRONOUS BAUD RATE =

Internal clock frequency
TIMER3 prescaler value
L - = TIMERS latch value (to be stored in T3DATA Register)

0o
o

For instance, if the mjcrocomputer is operating at the crystal/clockin frequency fosc = 10 MHz
with, the divide by 4 option (fosc = 5 MHz with the divide by 2 option), the internal clock
frequency, ¢, equals 2.5 MHz. The corresponding P and L values in hex are listed in Table 6-7.

TABLE6-7 — PANDL VALUES IN HEX

BAUD RATE P L
300 0 81

600 0 40
1200. o 20
2400 0 OF
4800 0 07
9600 0 03
19200 0 01
38400 0 00

The SMODE register, the T3DATA register, and the INT4 vectors (in this case, memory
addresses >FFF6 = FO, >FFF7 = 42) must be set before the HWXMIT or HWRCVD routine is
called.

RS-232-C Interface

The RS-232-C interface consists of SN75188 line drivers and SN75189A line receivers as
shown in Figure 6-6. The A port {input) of the TMS70XX (software and hardware UART) is
used on all data and handshaking receptions. The B port (output) is used on all data and
handshaking transmissions. As shown in Figure 6-6, the receive-data line goes to connector
pin 2 and the transmit-data line to pin 3. The handshaking signal DSR (Data Set Ready) is
received through pin 20 and DTR (Data Terminal Ready) is transmitted through pin 6. This
configuration forms a port suitable for connection to an RS-232-C compatible terminal.

Before the data is transmitted, the TMS70XX will place + 12V through the line driver
SN75188 on connector pin 6 and wait until pin 20 rises above +4 V. After the handshaking
signal is received, the data is then transmitted. If at any time the DSR is not asserted, it will wait
in‘a loop until it is asserted.

CABLING EXAMPLES

25 PIN CONNECTOR PORT /0
PINO1 PROTECTIVE GND
PIN 02 DATA RX |
PIN 03 DATATX 0
PIN 06 DTR(HANDSHAKE OUTPUT) 0
PIN 07 SIGNAL GND
PIN 08 +12V
PIN 09 +12V
PIN 10 -12v
PIN 20 DSR(HANDSHAKE INPUT) |
EIA PORT 820 KSR
PIN 02 RX < PIN 02 X
PIN 03 T » PINO3 RX
PIN 06 DTR » PINO6 DSR
PINO7 GND PIN 07 GND
PIN 08 PDCD » PINO8 DCD
PIN 20 DSR & PIN 11 SCA
PIN 04 TO PIN 05
EIA PORT 743 KSR
PINO1 GND ____ PINO9 GND
PIN 02 RX ¢——— PIN13 TX
PINO3 ™ _ » PIN12 RX
PIN 07 GND _______~ PINO1 GND
PIN 08 POCD 5 PINTI DCD
PIN 20 DSR 4———— PIN15 DTR
EIA PORT 810LP
PIN O1 GND = PINO1 GND
PIN O3 X — » PINOS RX
PIN 06 DTR —— _» PINO6 DTR
PINQ7 GND = 'PINO7 GND
PIN 08 PDCD 5 PINO8 DCD
PIN 20 DSR “«—— PN DTR
EIA PORT 980 CARD
PIN 02 RX 4———— PINO3 TX
PIN O3 ™ —_— » PINO2 RX
PIN 06 DTR — » PIN20 DSR -
PIN 07 GND. _ PINO7 GND
PIN 08 POCD _______ _ » PIN18 DCD
PIN 20 DSR PIN 08 RTS

6-35

6.2.2.4

6-36

Other Design Approaches

In the example given above, the microcomputer operates at the maximum internal clock rate of
2.5 MHz. For the TMS7000 family members with different timing requirements, the new
crystal-dependent constants and the value of T3DATA can be determined by the given
formulas. This allows both the software and hardware UARTSs to operate at other baud rates.

In the software UART, TIMER1 may be used instead of a software delay loop. This can greatly
increase the microcomputer’s throughput.

'

SWUART 7000 FAMILY MACRO ASSEMBLER 2.0

PAGE 0001

0001 OPTION XREF
0002 IDT 'SWUART '
0003 AKARRAAKKAKRARARRARAKRAKRAARKRARAAAKKRARAAKRAAAAAARARAAKRARRAAAKRAKA
0004 0008 XMIT1 EQU >08 TRANSMIT 'l' MASK (OR)
0005 00F7 XMITO EQU >F7 TRANSMIT '0' MASK (AND)
0006 0002 NRTS EQU * >02 NOT READY TO SEND (OR)
0007 O0FD RTS EQU >ED READY TO SEND (AND)
0008 0004 DSR EQU >04 DATA SET READY (TEST)
0009 0020 DIN EQU >20 DATA IN (TEST)
0010 *
0011 0022 BDCNT1 EQU . R34 BIT COUNTER (1)
0012 0023 BDCNT2 EQU R35 BIT COUNTER (1)
0013 0024 HFBAUD EQU R36 HALF BAUD RATE (1)
0014 0025 MODE EQU R37 . MODE REGISTER (1)
0015 0026 BITCNT EQU R38 COUNTER INITIALIZER(1)
0016 0027 BITIME EQU R39 TIMER INITIALIZER (1)
0017 0028 DLAYRL EQU R40 DELAY LOOPI (1)
0018 0029 DLAYR2 EQU R4l DELAY LOOP2 - (1)
0019 002A UATREG EQU R42 : UART REGISTER (1)
0020 0028 TMP EQU R43 TEMPORARY - (1)
0021 002C STAT EQU R44 STATUS REGISTER (1)
0022 002D RCHAR EQU R45 RECEIVED CHARACTER(1)
0023 002E SHFCNT EQU R46 . SHIFT COUNTER (1)
0024 * .
0025 0004 UARTIN EQU P4 PORT A-UART INPUT (1)
0026 0006 UARTOT EQU P6 PORT B-UART OUTPUT(1)
0027 FO06 AORG >F006
0028 *
0029 *
0030 * CHARACTER TO BE TRANSMITTED IS IN THE A REGISTER
0031 kz==z====================z==ssssssssss=sssssssssssssssssssss
0032 FOO6 C8 SWXMIT PUSH B SAVE CONTENTS OF THE B REG.
0033 FOO7 A4 ORP %XMIT1,UARTOT PLACE A 'MARK' ON XMIT LINE

FOO8 08

FO09 06
0034 FOOA A3 ANDP %RTS,UARTOT ASSERT 'RTS'

FOOB FD :

FOOC 06
0035 FOOD A6 WAIT BTJOP %DSR,UARTIN,WAIT WAIT FOR HANDSHAKING

FOOE 04 :

FOOF 04

FO10 FC
0036 *
0037 FO11 42 MOV MODE,BITCNT INITIALIZE

FOl12 25

FO13 26
0038 FO14 DE RL" BITCNT BIT

FO15 26
0039 FO16 DE RL BITCNT COUNTER

FO17 26
0040 FO18 73 AND %>03,BITCNT

FO19 03

FOlA 26
0041 FO1B 78 ADD %>07,BITCNT

FOIC 07 .

FOID 26
0042 *

6-37

6-38

0043

0044

0045

0046

0047

0048

‘0049

0050

-0051

0052
0053
0054
0055
0056
0057
0058

0059

0060

0061
0062

0063
0064

" 0065

0066

FOlE
FO1lF
F020
F021
F022
F023
F024
F025
F026
F027
F028
F029
FO2A
FO2B
Fo2C
FO2D
FOZE
FO2F
F030
F031
F032
F033
F034
F035
F036
F037
F038

FO039 |

FO3A
FO3B
FO3C
FO3D
FO3E
FO3F
F040
F041
F043
F044
F045
F046
F047
F048
F049

FO4A
F04B
F04C
F04D
FO4E
FO4F

'FO50

FO51
F052
F053
F054
FO55
FO56

72
05
27
D5
2B
42
25
22
EO
10
72
01
2B
43
00
2B
48
2B
2A
BC

2B
DE
2B
DE
2B
91
06
53
F7
34
2B
92
06
8E
F084
DA
26
E2
76
20
25
18

DA
27
FD
00
77
01
24
05
-~ A4
08
06
EO
05

LOOP1

LOOP2

SELF1

MOV

CLR

MOV

JMP

MOV

AND

ADD

RR

RL

RL

RL

MOVP

AND

OR

MOVP

CALL

DJINZ

Nop
BTJZ

ORP

JMP

%>05,BITIME

TMP

MODE, UATREG

LOOP2

%>01, TMP
A,THP

TMP , UATREG

- A

TMP

TMP

TMP
UARTOT,B
%XMITO,B
TMP,B

B, UARTOT
@DELAY

BITCNT,LOOP1
%520, MODE, STOPB
BITIME,SELF1
2501, UATREG , PARZ

%XMIT1,UARTOT

PDONE

PAGE 0002

INITIAL TIME CONSTANT

SET UP START BIT

SET UP MASK FOR A REG
COPY LSB OF A REG TO TMP
CALCULATE PARITY

SET UP NEXT BIT FOR XMIT
ADJUST FOR BIT LOCATION
ADJUST FOR BIT LOCATION
ADJUST FOR BIT LOCATION
COPY P6 INTO B REG

MASK OUT BIT OF B REG
SET UP B REG FOR XMIT P6
DATA BIT XMITTED TO EIA

DELAY TO PROPER BAUD RATE

JUMP TO XMIT LOOP 9

JUMP TO STOPB IF PARITY I

DISABLED
TIME COMPENSATION

OUTPUT PARITY BIT = ONE

9

10

10

~Nw;m

9

14

+2

S

0067

0068
0069
0070
0071
0072
0073
0074
0075

0076

0077

0078
0079
0080
0081
0082
0083
0084
0085

0086

0087
0088
0089
0090
0091
0092

0093
0094

0095

F057
F058
F059

FO5A

FO5B
FOSC
FOSD
FOS5F
F060
FO61

F062
F063
F064
F065
F066
F067
F068
F069
FO6A
FO6B
F06C
FO6D
FO6E

FO6F

FO70
FO071
F072
FO073
F074
FO075

‘'FO76

F077
F078
F079
FO7A
FO7C
FO7D
FO7E
FO7F
F080
F081
F082
F083

F084
F085
FO86
F087
F088
F089
FO8A
F08B
Fo8C
FO8D

A3
F7
06
00
00
8E
F084
00
00
00

D7
2A
73
01
" 2A
D3
23
72
03
27
DA
27
FD
A4
08
06
72
07
27
DA
27
FD
00
8E
F084
DA
2A
F3
A4
02

06

co
0A

42
23
29
42
22
28
DA
28
FD
DA

PAGE 0003

OUTPUT PARITY BIT = ZERO

TIME COMPENSATION

TIME COMPENSATION
GET NUMBER

OF STOP BIT

INC BY 1 FOR COMPENSATION

TIME COMPENSATION

OUTPUT STOP BIT

TIME COMPENSATION

JUMP FOR SECOND STOP BIT

DISASSERT 'RTS' "

RESTORE B REGISTER

*
K o e e e = e e

PARZ ANDP %XMITO,UARTOT
NOP
NOP
PDONE CALL @DELAY
NOP
NOP
NOP
*
STOPB SWAP UATREG
AND %>01,UATREG
INC UATREG
MOV %>03,BITIME
SELF2 DJNZ BITIME,SELF2
ORP %XMIT1,UARTOT
'SECOND MOV~ %>07,BITIME
SELF3 DJNZ BITIME,SELF3
NOP
CALL @DELAY
DINZ UATREG,SECOND
ORP %NRTS,UARTOT
POP B
RETS
DELAY ROUTINE
DELAY MOV BDCNT2,DLAYR2
ENTRY MOV BDCNTI,DLAYR1
HEREL DJNZ DLAYRL, HEREL
DJNZ DLAYR2,ENTRY

INITIALIZE OUTER COUNT 10
INITIALIZE INNER COUNT 10
INNER COUNT

9+2

OUTER COUNT 9+2

6-39

6-40

0096
0097
0098
0099
0100
0101
0102
0103

0104

0105

0106

0107
o108
0109
0l10

0111

0112

0113

0114

0115

0116

0117
0118
0119

0120
0121

FOBE
FO8F
F090

F091
F092
F093
F094
F095
F096
F097
F098
F099
F09a
FO9B
Fo9C
FO9D
FO9E
FO9F
FOAO
FOAl
FOA2
FOA3
FOA4
FOAS
FOA6

FOA7
FOA8
FOA9

FOAA'

FOAB
FOAC
FOAD
FOAE
FOAF
FOBO
FOB1
FOB2
FOB3
FOB4
FOB5
FOB6
FOB7
FOB8
FOB9
FOBA
FOBB
FOBC
FOBD

FOBE -

FOBF
FOCO
FOC1

29
F7
0A

c8
42
25
26
DE
26
DE
26
73
03
26
42

- 26

2E
74
FC
2E
D4
2E
78
05
26

D5
2D
73
FE
2C
D5
2B
A3
FD
06
A7
20
04
FC
A6
20
04
FC
32
24
00
00
CA
FC

A6
20
04

RETS

PAGE 0004

* SOFTWARE UART RECEIVE ROUTINE
*

SWRCVD PUSH B

MOV MODE,BITCNT
RL BITCNT

RL BITCNT

AND %>03,BITCNT
MOV BITCNT,SHFCNT

OR %>FC,SHFCNT

INV SHFCNT

ADD %>05,BITCNT
CLR RCHAR

AND %>FE,STAT
CLR TMP

ANDP %RTS,UARTOT

MARKCK BTJZP %DIN,UARTIN,MARKCK

STRBIT BTJOP %DIN,UARTIN,STRBIT

HERE2

*

MOV HFBAUD ,B
NOP
NOP
DINZ B,HERE2

SAMPLE START BIT AT HALF BIT
BTJOP %DIN,UARTIN,STRBIT

SAVE B REG
INITIALIZE

BIT

COUNTER

GET NUMBER OF SHIFT

CLEAR INCOMING CHAR REGISTER

SET STATUS BIT-0 TO ZERO

CLEAR TMP REG

ASSERT 'DTR'

LOOP UNTIL MARK OCCURS

LOOP UNTIL SPACE OCCURS

INITIALIZE COUNTER

TIME COMPENSATION(4)
(4)

WAIT HALF A BIT (7+2)

BRANCH IF FALSE START

0122

0123

0124
0125
0126
0127
0128
0129
0130

0131
0132

0133

0134
0135
0136

0137

0138
0139

0140
0141
0142
0143
0144
0145

FOC2
FOC3
FoCc4
FOCS
FOCé
FOC7
FOC8
FOC9
FOCA
FOCB
FOCC
FOCD
FOCE
FOCF
FODO

FOD2
FOD3
FOD4
FOD5

FOD6
FOD7
FOD8
FOD9
FODA
FODB
FODC
FODD
FODE
FODF
FOEO
FOE1l
FOE2
FOE3
FOE4

. FOES

0146
0147

0148
0149

0150
0151

0152
0153

0154

0155
0156

FOE6
FOE?7
FOE8
FOE9
FOEA
FOEB
FOEC

FOEE
FOEF
FOFO
FOF1

FOF2
FOF3
FOF4
FOF5

F2
72
01
27
43
25
23
00
00
00
00
- 00
00
8E
Fo84

52
‘04
ca
FE

a7
20
04
05
D3
23
07
EO
05
00
00
00
00
00
DD
2D
00
D2
26
E6
E4
8E
FO84

76
20
25
13

52
03
CA

MOV %>01,UATREG

AND MODE, UATREG

NOP .
NOP
NOP
NOP
NOP
NOP
CALL

SAMPLE @DELAY

*

MOV %>04,B

RECHER DJNZ B,RECHER

*

* SAMPLE DATA BIT HERE
BTJZP %DIN,UARTIN,ZERO

INC UATREG

SETC

JMP BYPASS
ZERO NOP

NOP

NOP

NOP

NOP
BYPASS RRC RCHAR

NOP

DEC BITCNT

JNZ SAMPLE

CALL @DELAY
b

BTJO %>20,MODE, THERE
*

MOV %>03,B
CYCLE DJNZ B,CYCLE

* .
* SAMPLE PARITY BIT HERE

PAGE 0005

MASK PARITY BIT

TIME COMPENSATION

DELAY FOR PROPER BAUD RATE

TIME COMPENSATION
DELAY CNT IS THE SAME -
XMIT AND RCVD

READ DATA BIT JUMP IF O

TIME COMPENSATION TO ENSURE
ZERO BIT IS THE SAME LENGTH

AS ONE BIT
PLACE BIT INTO MSB RCHAR

IS PARITY BIT ENABLE?

IF NO, JUMP TO DONE
TIME COMPENSATION

34 CLOCK CYCLES LOOP

6-41

PAGE 0006

0157 FOF6 A7 BTJZP %DIN,UARTIN,PZ JUMP TO PZ IF PARITY BIT=0
FOF7 20 ‘
FOF8 04
FOF9 02 . :
0158 FOFA D3 INC TMP INCREMENT TMP IF PARITY
FOFB 2B
0159 * BIT=1
0160 FOFC 45 Pz XOR TMP,UATREG CHECK FOR PARITY ERROR
FOFD 2B '
FOFE 2A
0161 FOFF 73 AND %>01,UATREG MASK, SAVE
F100 01
F101 2a)
0162 F102 44 OR UATREG, STAT AND PUT THE RESULT IN
F103 2a '
F104 2C
0163 * STAT BIT O
0164 F105 D5 THERE CLR TMP '
F106 2B
0165 F107 4D SHIFT CMP SHFCNT,TMP MAKE THE
F108 2E i
F109 2B o
0166 F10& E2 Jz DONE NECESSARY
F10B 06
0167 F10C BO CLRC NUMBER OF
0168 F10D DD RRC RCHAR SHIFT
F10E 2D
0169 F10F DA , DJNZ SHFCNT,SHIFT
F110 2E
F111 F5
0170 *
0171 F112 A4 DONE ORP %NRTS,UARTOT DISASSERT 'DIR’
F113 02
F114 06
0172 F115 12 MOV RCHAR,A MOVE THE DATA BIT TO A
F116 2D .
0173 F117 €9 POP B RESTORE B REG
0174 F118 OA RETS
0175 END

NO ERRORS, NO WARNINGS

6-42

LABEL

BDCNT1
BDCNT2
BITCNT

BITIME
BYPASS
CYCLE
DELAY
DIN
DLAYR1
DLAYR2
DONE
DSR
ENTRY
HERE1
HEREZ2
- HFBAUD
LOOP1
LooP2
MARKCK
MODE
NRTS
PARZ
PDONE
Pz
RCHAR
RECHER
RTS
SAMPLE
SECOND
SELF1
SELF2
SELF3
SHFCNT
SHIFT
STAT
STOPB
STRBIT
SWRCVD
SWXMIT
THERE
TMP

UARTIN
UARTOT

UATREG

WAIT
XMITO
XMIT1
ZERO

VALUE

0022
0023
0026

0027
FOE4
FOF4
F084
0020
0028
0029
F112
0004
F087
F08a
FOBB
0024
F028
F038
FOB1
0025
0002
F057
FO5C
FOFC
002D
FOD4
00FD
FOCF
F072
FO4A
FO6C
F075
002E
F107
oo2c
F062
FOB5
F091
F006
F105
002B

0004
0006

002a

FOOD
00F7
0008
FODF

DEFN

0011
0012
0015

0016
0145
0154
0092
0009
0017
0018
0171
0008
0093
0094
0117
0013
0047

. 0054

0114
0014
0006
0067
0070
0160
0022
0133
0007
0130
0081
0062
0079
0082
0023
0165
0021
0075
0115
0100
0032
0164
0020

0025 -
0026

0019

0035
0005
0004
0140

REFERENCES

0093
0092
0037
0104
0043
0139
0154
0058
0114
0093
0092
0166
0035
0095
0094
‘0119
0116
0059
0046
0114
0037
0086
00564
0066
0157
0l10
0133
0034
0148
0085
0062
0079
0082
0105
0169
0111
0060
0115

0151
0044
0158

0035

0033
0171
0045
0137
0035
0055
0033
0136

0038
0105

0062

0070
0115
0094
0095

0045

‘0171

0145

0113

0106
0l62

0121

0047
0160
0114
0034

0049

0160

0067
0065

0039
0108
0078

0084
0121

0060

0168

0107

0048
0l64
0115
0054

0064
0lel

0080

0040
0147
0079

0130
0136

0101

0172

0165

0049
0165
0121
0057

0075
0162

0041

0081

0149
0157

0123

0169

0051

0136
0065

0076

0059

0082

0151

0052

0157
0067

0077

'PAGE 0007

0101 0102 0103

0053 0056 0112

0080 0086 0113

0085 0122 0123

6-43

6-44

HWUART

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020

0021

0022
0023
0024
0025
0026
0027
0028

- 0029

0030
0031

0032

0033

0034
0035
0036

0037
0038

0039

0040
0041

0042
0043

F006
F006
F007
F008
F009
FO0A
FOOB
FooC
FOOD
FOOE

FOOF
FO1l0
FO1l1

F0l2
FO13
FO14
FO15
FO16
FO17
F018
F019
FO1A
FO1B
FO1C
FO1D

7000 FAMILY MACRO ASSEMBLER

0008
00F7
0002
OO0FD
0004

0000
0004
0005
0006
0010
0011
0011
0011
0014
0015
0016
0017

A3
FB
05
A2
03
10
Az
11
11

A2
40
15

A3
FD
06
A6
04
04
FC
05
82
17
01
A2

"SCTL1

PAGE 0001

***********************k*******************k****************

OPTION XREF

IDT "HWUART'
XKMITL EQU >08
XKMITO EQU >F7 .
NRTS EQU >02
RTS EQU >FD
DSR EQU >04

* P. REGISTE

IOCNTO
UARTIN EQU
ADDR
UARTOT EQU
I0CNT1
SMODE
SCTLO
SSTAT
T3DATA

RXBUF

R DEFINITION

P6

P16
P17
P17
P17
P20
P21
P22
P23

TRANSMIT 'l' MASK (OR)
TRANSMIT '0' MASK (AND)
NOT READY TO SEND (OK)
READY TO SEND (AND)
DATA SET READY (TEST)

I/0 CONTROL REGISTER 0
PORT A-UART INPUT

PORT A DIRECTION

PORT B-UART OUTPUT

I/0 CONTROL REGISTER 1
SERIAL PORT MODE
SERIAL PORT CONTROL-0
SERIAL PORT CONTROL STATUS
TIMER 3 DATA

SERIAL PORT CONTROL-1
RECEIVER BUFFER
TRANSMITTER BUFFER

*

MOVP

ANDP

WAIT BTJOP

EINT
MOVP

IDLE
MOVP

>F006
%>FB,ADDR

%>03, IOCNT1

%>11,SCTLO

%>40,SCTL1

%RTS , UARTOT

%DSR,UARTIN, WAIT

A, TXBUF

%>02,I0CNT1

SET A2=INPUT
CLEAR INT4 FLAG & ENABLE INT4
NO RESET OF SERIAL PORT

CLEAR ALL ERROR FLAGS AND
ENABLE TXEN=1, RXEN=0 DISABLED
USE INTERNAL CLK,RESET T3FLAG

DISABLE T3 INTERRUPT& SET P=0
ASSERT 'RTS'

WAIT FOR HANDSHAKING

ENABLE MASKABLE INTERRUPT

WAITING FOR INT4
CLEAR INT4 FLAG & DISABLE INT4

FO1E
.FO1F
0044 F020
F021
F022
0045
0046 F023
F024

FO25

0047 F026

0048

0049

0050 .

0051

0052 F027
F028
F029

0053 F02A

FO2B:

Fo2cC

0054 FO2D
FO2E
FO2F

0055

0056

0057 F030
FO31
F032

0058

0059 F033

0060 F034
F035
F036

0061 F037

0062 F038
F039
FO3A

0063 FO3B
FO3C
FO3D

0064 FO3E
FO3F
F040

0065 FO41

0066

0067

0068

0069

0070 F042
F043
F044
F045

0071 F046
F047

0072 F048
F049
FO4A

384

02
10
A2
00
11

A4
02
06
OA

A3
FB
05
A2
03
10
A2
14
11

A2
40
15

05
A3
FD
06
01
A2
00
11
A2
02
10
A4
02
06
0A

A7
02

11

02
80
16
A7
01
11

PAGE 0002

MOVP %>00,SCTLO NO.RESET, DISABLE XMIT TXEN=0
* RXEN=0
ORP %NRTS,UARTOT DISASSERT 'RTS'
&0
RETS
*
*
*
*
HWRCVD ANDP %>FB,ADDR SET A2=INPUT
MOVP %>03,I0CNT1 CLEAR INT4 FLAG & ENABLE INT4
MOVP %>14,SCTLO NO RESET OF SERIAL PORT
* CLEAR ALL ERROR FLAGS & ENABLE
* RECEIVER RXEN=1,TXEN=0 DISABLE
MOVP %>40,SCTL1 INTERNAL CLK, P=0
* : " " RESET T3FLAG & DIASBLE T3 INT
'EINT ENABLE MASKABLE INTERRUPT
ANDP %RTS, UARTOT ASSERT 'DTR'
IDLE WAITING FOR INT4
MOVP %>00,SCTLO DISABLE RCVER R®XEN=0, TXEN=0
MOVP %>02,I0CNT1 CLEAR INT4 FLAG& DISABLE INT4
ORP %NRTS,UARTOT DISASSERT 'DTR'
RETS
*
A e e e e e e e e e e e e e e e e mcmmememmccmmmmam————————
* INTERRUPT 4 SERVICE ROUTINE
Ko e e e o e o e
BTJZP %>02,SSTAT,TX
MOVP RXBUF,A INT4 GENERATED BY HWRCVD
TX BTJZP %>01,SSTAT,FIN JUMP TO FINISH

6-45

6-46

F04B
0073 F04C
F04D
FO4E
FO4F
0074 FO50
0075
0076

04
A7 LOOP BTJZP %>04,SSTAT,LOOP
04 . .
11
FC
OB FIN . "RETI
*

END W

NO ERRORS, NO WARNINGS

PAGE 0003

INT4 GENERATED BY HWXMIT

INTERRUPT VECTOR STORE
" AT FFF6 AND FFF7

LABEL

ADDR

. DSR
FIN
HWRCVD
HWXMIT
IOCNTO
IOCNT1
Loop
NRTS
RTS
RXBUF
SCTLO
SCTL1
SMODE
SSTAT
T3DATA
TX
TXBUF
UARTIN
UARTOT
WAIT
XMITO
XMIT1

VALUE

0005
0004
FO050
F027
F006
0000
0010
F04cC
0002
00FD
0016
0011
0015
0011
0011
0014
F048
0017
0004
0006
FO15
00F7
0008

DEFN

0015
0008
0074
0052
0031
0013
0017
0073
0006
0007
0023
0019
0022
00i8
0020
0021
0072
0024
0014
0016
0039
0005
0004

REFERENCES

0031
0039
0072

0032
0073
0046
0038
0071
0033
0036

0070

0070
0041
0039
0038
0039

0052

0043

0064
0060

0044
0057

0072

0046

0053

0054

0073

0060

0063

0062

0064

PAGE 0004

6-47

6.3

- 6.3.1

6-48

INSTRUCTION SET APPLICATION NOTES

This section provides supplemental information about the instruction set as an aid to program
development. Refer to the TMS7000 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE (MP
916) for further application notes.

- The Status Register

The Status Register has four status bits that provide conditional execution of a variety of
arithmetic and logical tasks (see Figure 6-14). The Carry (C), Sign (N), Zero (Z), and Interrupt
enable (I) occupy bits 7-4 of the Status Register. The global INTERRUPT ENABLE {1} bit is only
affected by the EINT, DINT, and POP ST instructions. The C, N, and Z bits are affected by a
number-of instructions. Table 6-8 classifies the instruction set according to the status bits
affected by each instruction.

Bt MSB 7 6 5 4 3 2 1 0 LsB

C N Z | Future Use

FIGURE 6-14 — STATUS REGISTER

Among the initialization-type instructions, two of the most useful are the compare instructions
CMP and CMPA. Section 6.3.1.1 describes the way in which CMP and CMPA can be used to
create the necessary status conditions for either a logical-type (unsigned) or arithmetic-type
(signed) jump instruction. In Section 6.3.1.2, the effects of addition and subtraction on the
Status Register are diagrammed for both signed and unsigned systems. Finally, Section
6.3.1.3 describes how SWAP and the rotation instructions RR, RRC, RL, and RLC can be used
to clear, set, shift, or test the various status bits as required.

)

TABLE 6-8 — CLASSIFICATION OF INSTRUCTIONS
ACCORDING TO STATUS BITS AFFECTED

INSTRUCTION TYPES
INIT CLEAR CARRY, | CLEAR CARRY, | CLEAR CARRY, | o\ ay NO
STATUS SETN,ZON | SETN,ZON | SETN,ZON STATUS STATUS
REG. A B RESULT AFFECTED
DINT LDA TSTB AND ADC BR
EINT STA XCHB ANDP . ADD CALL
POPST TSTA BTJO CMP DJNZ
RETI BTJOP CMPA IDLE
SETC BTJZ DAC JICND)
CLRC BTJZP DEC JMP
‘ CLR DECD NOP
INV DSB PUSH ST
MoV SBB RETS
MOVD SuB STSP
MOVP TRAP
OR LDSP
ORP
POP
PUSH
XOR
XORP

6.3.1.1

Compare And Jump Instructions

The compare instructions CMP and CMPA, affect the C, N, and Z bits in the Status Register by
subtracting a source operand (s) from a destination operand (d). The result of (d) — (s) is not
stored and is computed as follows:

(d)-(s) = (d) + (s) + 1 = 8-bit Result

where (s) is a direct one-for-one bitwise inversion, one’s complement, of {s). The C bit serves
as a “no borrow ” bit and is set to ‘1’ if (d) is greater than or equal to (s) . The N bitis set to the
same value as the MSB of the result. For two’s complement {signed) systems, N = 1 indicates
a negative number, and N = O a positive number. The Z bit is set to ‘1" if the source is equal to
the destination ((d) = (s)). The CMP instruction uses the contents of a register (Rn) in the
Register File as the destination operand, and either an immediate operand (IOP) or the contents
of another Rn as the source operand. The CMPA instruction uses the contents of the A register
as the destination operand and one of the Extended Addressing modes (Direct, Register File
Indirect, or Indexed) is used to generate the source operand. Table 6-9 illustrates the limits of
both signed and unsigned systems by listing the status bits affected for various source and .
destination operands substituted into the (d) — (s) expression.

TABLE 6-9 — COMPARE INSTRUCTION EXAMPLES: STATUS BIT VALUES

SRC DEST D-S Cc N z INSTRUCTIONS THAT WILL JUMP
FF 00 01 0 0 0 JL JUNC JNE UNZ JP JPZ
00 FF FF 1 1 (o] JHS JC JUNE JNZ JUN
00 7F 7F 1 o o JHS 'JC UNE JUNZ JP JPZ
81 oo 7F 0 0 0 JL JUNC JNE JUNZ JP JPZ
00 81 81 1 1 0 JHS JC JUNE JNZ JN
80 00 80 0 1 0 JL JUNC JUNE JUNZ JUN
00 80 80 1 1 0o JHS JC JUNE JUNZ JN
7F 80 01 1 0 0 JHS JC JNE JNZ JP JPZ
80 7F FF 0 1 0 JL JUNC JNE JNZ JUN
7F 7F 00 1 o 1 JHS JC JEQ JZ JPZ
7F 00 81 0 1 0 JL JUNC JUNE JUNZ JN

Since the compare instructions do not alter the source and destination operands, these
instructions can be executed prior to a conditional jump instruction to test for a particular
relationship between the source and destination operands. Table 6-10 lists the necessary
status bit conditions for each of the conditional jump instructions and the type of system in
which itis applicable, i.e., signed or unsigned. '

6-49

6-50

TABLE 6-10 — STATUS BIT VALUES FOR CONDITIONAL JUMP INSTRUCTIONS

CONDITION ON 5:{‘5:5’:,%; N
MNEMONIC INSTRUCTION WHICH JUMP SIGNED -
- IS TAKEN JUMP: - SIGNED
C N 2
JC/JHS Jump If Carry/Jump
If Higher Or Same (d)unsigned > =(s) 1 X X Y Y
JNC/IL Jump If No Carry/
Jump If Lower (d)unsigned < ={s) 0 X X Y Y
JZ/JEQ Jump If Zero/Jump
If Equal (d) = (s) X X 1 Y Y
JNZ/INE Jump If Non-zero/
Jump If Not Equal (d) <> (s) X X 0 Y Y
JP Jump If Positive (d)-(s) =pos # X 0 O Y N
JN Jump If Negative (d)-(s) =neg # X 1 X Y N
JPZ Jump If Positive (d)-(s) =pos #
Or Zero or0 X 0 X Y N
X = Dop’t care

Table searches are efficiently performed through the use of the compare A register extended
{CMPA) instruction. In the following example, A 150 byte table is searched for a match with a 6

byte string:

*

SEARCH
LOOP1
LOOP2

MATCH
*

NOFIND

MOV

MOV %6,B

XCHB R2

DEC - B

Jz NOFIND

LDA @TABLE-1(B)
XCHB R2

CMPA @STRING-1(B)
JNE LOOP1

DJNZ B,LOOP2
EQU $

EQU $

%150+ 1,R2

Table length = 150 bytes
String length = 6 bytes

Swap-pointers, long string in B
Table end ? if so, no match found

Load test character

Swap pointers, string pointer in B
Match ? }

If not, reset string ptr. else test
next character.

Match found

No match found

The indexed addressing mode is used in this example and has the capability to search a 256
byte string if needed. The B register alternates between a pointer into the 6 byte test string and

a pointer into the longer table string.

384

6.3.1.2

Addition And Subtraction Instructions

The TMS7000 instruction set supports both single and multi-precision addition and subtraction
for either binary or BCD, signed (two's complement) or unsigned data.

‘The following example illusitrates how to perform a 32-bit addition with the ADD and ADC
_instructions:

ADD R30,R120

ADC R29,R119
ADC R28,R118
ADC R27,R117

Since no initial carry-in is desired, the first instruction is ADD. The ADC instruction is then
executed three times in succession to transfer the carry through all 32 bits.

The following example illustrates how to perform a 24-bit subtraction with the SUB and SBB
instructions:

SuB R4,R127
SBB R3,R126
SBB R2,R125

Since no initial borrow-in is desired, the first instruction is SUB. The SBB instruction is then
executed twice in succession to achieve the 24-bit result. The addition and subtraction
instructions, their execution results, and the status bits affected are listed in Table 6-11.

TABLE 6-11 — ADD AND SUBTRACT INSTRUCTIONS

INSTR DESCRIPTION EXECUTION RESULTS STATUS BITS AFFECTED

ADD Add [(s} + (d)] = (d) C:1oncarryoutof [...]
N: set on result
Z: seton result

ADC Add w/Carry [(s) +(d) + C] = (d) C: 1 oncarry out of [...]
- N:setonresult
Z: set onresult

DAC Dec Add w/C [(s) + (d) + C] = (d}) C: 1if[..] > = 100 decimal
— Decimal BCD — N: set on resuilt
Z: set onresult

suB Subtract [(d)}-(s}] - (d) C:1if[..1>=0
: N: set on result
Z: set on result

SBB Sub w/Borrow [(d)-(s)-1 + Cl=(d) C: 1 if no borrow
N: set on result
Z: set on result

DSB Dec Sub w/B [(d)-{s)-1 + C]- (d) C: 1if no borrow
: — Decimal BCD — N: set on result
Z: set on result

6-51

6-52

The overflow/underflow conditions for both signed and unsigned systems are summarized in
Figures 6-15 and 6-16, respectively. Note that an Exclusive OR of the C and N bits ANDed with
the Exclusive OR of the MSBs of the operands can always be used as a check for an overflow or
underflow for subtraction in a signed system (if (C XOR N) AND (MSB1 XOR MSB2) = 1 then
out of range). When adding two signed numbers, the test for an out of range condition is
similar to the subtraction method. When an Exclusive OR of the C and N bits ANDed with the
inverse of the Exclusive OR of the MSBs of the two operands equals one then an overflow or
underflow has occured (if (C XOR N) AND (NOT(MSB1 XOR MSB2)) = 1 then out of range).

¥ ROUTINE TO CHECK FOR SIGNED UNDERFLOW OR OVERFLOW
*1f (N XORN) AND { MSB1 XORMSB2) = 1 then out of range
MOV OPRND1,A

XOR OPRND2,A get XOR of the MSBs
SUB OPRND1,0PRND2 Subtract 2 signed numbers
JN ISNEG
NOTNEG JNC NOERR N=0
JMP CXORN1 C XORN = 1, First part of equation
* is true .
ISNEG JC NOERR N=1)
CXORN1 TSTA C XORN = 1; set flags for MSB1 XOR MSB2
JPZ NOERR If (N XOR C) AND (MSB1 XOR MSB2) = 1 then

*

out of range. For addition change this
instruction to JN NOERR

OUTRNG ... Out of Range. Underflow or overflow
*

*

NOERR No underflow or overflow

In an unsigned system, the C bit always reveals the overflow/underflow status as follows:
addition overflow if C=1 after addition, and subtraction underflow if C=0 after subtraction.
Figures 6-15 and 6-16 show the >00 to >FF boundary as being detectable by the C bit. The
decrement instructions DEC and DECD set the C bit to O if the >00 to >FF boundary is
crossed, i.e., the O to 255 boundary in the unsigned system, and the O to — 1 boundary in the
signed system.

SUBTRACT

N =X (DON'T CARE)

ADDITION OVERFLOW
{C=1 POST ADDITION)

SUBTRACTION UNDERFLOW
(C=0 POST SUBTRACTION)

FIGURE 6-15 — UNSIGNED SYSTEM WITH 8 BITS OF MAGN!ITUDE: 0-255 {>00->FF)

SUBTRACTION UNDERFLOW

—127 oA +127
7 b

SUBTRACT ADD

FIGURE 6-16 — SIGNED SYSTEM WITH 7 BITS OF MAGNITUDE: —127 to + 127 (>81->7F)

6-53

6.3.1.3

6-54

The following subroutine shows the use of the addition instructions in adding two multi-digit
numbers together. Each of the numbers is a packed BCD strings of less than 256 bytes (512
digits) stored at memory locations STR1 and STR2 . This routine adds the two strings together
and places the result in STR2 placing the result in STR2. The strings must be stored with the
most significant byte in the lowest number register. With most all of the TMS7000 family
instruction set, it is convenient to store all numbers and addresses with the most significant
byte in the lower numbered location.

DECIMAL ADDITION SUBROUTINE
ONINPUT : B = LENGTH OF STRING (NUMBER OF BYTES }
STACK MUST HAVE 3 AVAILABLE BYTES.

*

* ON QUTPUT STR2 = STR1 + STR2

* .

ADDBCD CLRC Clear carry bit
PUSH ST Save status of stack

LOOP LDA . @STR1-1(B) Load current byte
Mov A,R2 Saveitin R2
LDA @STR2-1(B) Load next byte of STR2
POP ST Restore carry from last add
DAC R2,A Add decimal bytes)
PUSH ST Save the carry from this add
STA @STR2-1(B) Store result
DJNZ B,LOOP Loop until done
POP ST Restore stack to starting position
RETS Back to calling routine

Notice the use of the indexed addressing mode to reference the bytes of the decimal strings.
Notice also the need to push the status register between decimal additions, to save the decimal
carry bit. The B register is used to keep count of the number of bytes that have been added.

SWAP and Rotation Instructions
The rotation operations performed by the four rotation instructions Rotate Right (RR), Rotate

Right Through Carry (RRC), Rotate Left (RL), and Rotate Left Through Carry (RLC}) are
illustrated in Figure 6-17. The SWAP instruction executes the equivalent of four consecutive RL

_instructions, with the C bit in the Status Register set equal to Bit 4 of the original operand or Bit
0 of the result, i.e., LSB of the result. A SWAP instruction example is also given in Figure 6-17.

669

B7 B6

B5 B4 B3 B2 B1 BO B7? B6 B5 B4 B3 B2 B1 BO

({11

[TT T T r{III[IITW—'—E

c B7 B6

RL . RR

B5 B4 B3 B2 B1 BO B7 B6 B5 B4 B3 B2 B1 BO

| |

TLTT] HEEEN

RLC RRC
old old ’ new new
MSN LSN ‘ MSN LSN
old A A new A A
¢ 4 V3 c 's" e 65 a4aV3s 2 1 o\
SWAP
(2] [J I1I1I°I°I°I°I-——-' Lelofefelt |‘|]

B
»

Note: N and Z set on result for RL, RLC, RR, RRC, and SWAP.

FIGURE 6-17 — SWAP AND ROTATION OPERATIONS

6.3.2

6-56

Stack Operations

The stack is located in RAM and can be tailored to the specific needs of the user. One powerful
application of the stack is the establishment of tables. For example, Figure 6-18 illustrates a
dispatch table with an interpretive program counter (IPC). An IPC is used in some high level
languages, such as PASCAL, to give the proper execution sequence. The IPC can be contained
in any register and it points to an interpretive pseudo code (PCODE) byte that in turn specifies
one of 256 dispatch routines. The overall effect of this function is that a program can execute
one of a large number of different routines depending on a single value stored in a register. Two
separate 256-byte sections are required for the high and low address bytes of each dispatch
routine. The first entry of each section (ROVO) corresponds to PCODE =0, and the second
entry (ROV1) to PCODE =1, etc.

*

IPC EQU R3 Interpretive Program Counter
LDA *IPC : Get the input Code, range = 0-255
DECD IPC Point to the next input code
MOV AB PCODE Index Register
LDA @DTABLE(B) Lookup Address MSB
PUSH A Put MSB on stack
LDA @DTABLE + 256(B) Lookup Address LSB
PUSH A Put LSB on stack
RETS Jump to the Address on the stack
*
DTABLE BYTE ROVO0/256 Beginning of MSB table

BYTE ROV1/256

BYTE ROV255/256
LSB table starts here
BYTE ROVO — Warning Messages May
BYTE ROV1 Appear Here But They Do
. Not Affect Results

BYTE ROV255
FIGURE 6-18 — EXAMPLE OF A DISPATCH TABLE WITH AN INTERPRETIVE PROGRAM COUNTER (iPC)

It should be noted that the assembler expressions have 16-bit values. For those instructions
requiring an 8-bit operand, the expression is truncated to the least significant 8 bits. A warning
message may result from this truncation, but the value will be correct. Thus, the following
instructions place byte values >AA, >55, and >55 at memory locations >8000, >8001, and
>8002, respectively:

AAS55 LABEL EQU >AAb5
8000 AORG >8000
8000 AABS DATA LABEL . ‘
8002 55 BYTE LABEL LSB only

6.3.3 .

The most significant byte (MSB) of an expréssion can be obtained by dividing the value by 256
(2°) as shown below:

AABS LABEL EQU >AA55
8000 AORG >8000
8000 AAB5 . DATA LABEL
8002 AA BYTE LABEL/266 MSB only

Subroutine Instructions

There are two types of instructions for invoking subroutines: CALL and TRAP. Both instructions
save the current value of the Program Counter (PC) on the stack before transferring control to
the subroutine. Since the return address is stored on the stack, subroutines can be easily
nested. The two types of instructions differ only in the way in which the subroutine address is
determined and in the amount of program memaory required for execution of the subroutine.

The CALL instruction uses the Extended Addressing modes (Direct, Register File Indirect, and
Indexed) to specify the subroutine address. This permits simple calls with a fully specified
address as well as more complex calls with a calculated address. Of the two types of
instructions, the CALL instruction requires more program memory than the TRAP instructions.
For example:

CALL @BITTEST

requires three bytes of memory: one byte for the opcode and two bytes for the subroutine
address. If the subroutine call is required at six locations, 18 bytes are necessary to implement
the CALLs. The equivalent task for the TRAP instruction requires only 8 bytes for six
successive uses of the same TRAP, since only the opcode byte is necessary after the first use.
Six of these 8 bytes are the TRAP opcodes and the other two bytes are the trap vector. The first
use of the TRAP instruction requires one opcode byte plus the two bytes of the subroutine
address which are located in the Trap Table. The next use and every subsequent use willonly
require one more byte as compared to the 3 bytes for every call. All the trap vectors are stored
at the end of memory with the most significant byte of the trap subroutine stored in the lower
numbered location. The exact address where the trap vector (which is the trap subroutine
address) is stored is found from the following formula.

LSB of Addresss which contains the TRAP subroutine address = >FFFF — 2 x N where N is
the TRAP number.

MSB of address = LSB — 1

6-57

6.3.4

The TRAP instructions (TRAPs 4-23) provide the most efficient means of invoking subroutines.
Figure 6-19 illustrates an example of a subroutine call generated by a TRAP instruction.

{Main Program)
TRAP 4
{More Main Program)

BR MAINPR

BITTEST EdU $

- {(Subroutine Body)
RETS

AORG >FFF6
DATA BITTEST

FIGURE 6-19 — EXAMPLE OF A SUBROUTINE CALL BY MEANS OF A TRAP INSTRUCTION

The Return-From Subroutine (RETS) instruction should be executed to pop the PC from the
stack and restore program contro! to the instruction immediately following the CALL or TRAP
instruction.

Multiplication And Shifting

The MPY instruction performs an 8-bit by 8-bit multiply with a 16-bit result that is stored in the
A and Bregisters. The most significant byte (MSB) of the resultis in A, and the least significant
byte (LSB) is in B. The MPY instruction can also be used to perform multi-bit right or left shifts
by using an immediate operand as the multiplier. For example:

MPY %8,B

The above example takes the value of B and multiplies it by 8. After the instruction executes, B
contains the previous value left-shifted three bits (2® = 8) with no fill bits. The A register
contains the previous value's most significant 3 bits which gives a value equivalent to shifting
the previous value right 5 bits (8-3 = 5) with no fill bits. Using this method it is possible to shift
any 8 bit value left or right up to 8 bits. In most cases this is faster than the rotate instructions
and almost always takes less program bytes. Table 6-12 lists the number of bits right- or
left-shifted for a range of immediate multipliers.

TABLE 6-12 — MULTI-BIT RIGHT OR LEFT SHIFTS BY IMMEDIATE MULITPLY

IMMEDIATE BITS BITS
MULTIPLIER RIGHT LEFT
SHIFTED SHIFTED

9 2 7 1
4 6 2
8 5 3
16 4 4
32 3 5
64 2 6
128 1 7

NOTE: Rotate instructions may take less execution time than a Multiply instruction.

Multi-precision multiplications can be easily executed by breaking the multiplier and the
multiplicand into scaled 8-bit quantities, as shown in Figure 6-20 (16 x 16 bit multiplication
with a 32-bit result in R6-R9).

6-59

* X %k ok ok X ¥ *x k *k x % ¥ *x * %

16 BIT MULTIPLICATION ROUTINE

MULTIPLIES THE 16 VALUE IN REGISTER PAIR R2,R3 BY THE
VALUE IN REGISTER PAIR R4,R5. THE RESULTS ARE STORED
INR6, R7, R8, R9 AND THE A AND B REGISTERS ARE ALTERED

»

16-BIT MPY: XH XL XVALUE
X YH YL Y VALUE
XLYLm XLYLI 1 =Isb ‘
XHYLm XHYLI m = msb
~ XLYHm XLYHI
+ XHYHm XHYHI
RSLT3 RSLT2 RSLT1 RSLTO

EQU R2 Higher operand of X
EQU R3 Lower operand of X

EQU R4 Higher operand of Y

EQU" R5 Lower operand of Y

EQU R6 Msb of the final result

EQU R7

EQU RS .

EQU. R9 Lsb of the final result

CLR RSLT2 Clear the present value

CLR RSLT3

MPY XL,YL Multiply Isb’s

MOV B,RSLTO Store Isb in result register O
MOV A,RSLT1 Store msbin result register 1

MPY XH,YL Get XHYL

ADD R1,RSLT1 Add to existingresult XLYL

ADC RO,RSLT2 Add carry if present
MPY XL,YH Multiply to get XLYH

ADD R1,RSLT1 Add to existing result XLYL + XHYL
ADC RO,RSLT2 Add to existing results and carry

ADC %0,RSLT3 Add if carry present
MPY XH,YH Multiply msb’s

ADD R1,RSLT2 Add once again to the result reg
ADC RO,RSLT3 Do the final add to the result reg

FIGURE 6-20 — EXAMPLE OF A 16-BIT BY 16-BIT MULTIPLICATION SUBROUTINE

6.3.5

6.3.6

Branch Instruction

The branch instruction {BR) is used to unconditionally transfer program control to any desired
location in the 64K byte memory space. The BR instruction supports direct, indexed, and
indirect addressing. Direct addressing is used for simple “GOTO” programming. Indexed
addressing allows table branches. This indexed branch technique is similar to the Pascal
”"CASE" statement, Program control is transferred to location CASEO if the input is ‘O *, to
CASE1ifitisa’ 1’, etc. This transferring method can implement up to 85 different cases. In the
example below, indexed addressing is used to access a relative branch table:

JTABLE MOVP P4,A Get data from A port { Value * 85)

ADD A,B Add twice to triple value
ADD AB Multiply it by 3 (BRis 3 bytes long }

BR @CTABLE(B) branch according to the A port value * 2

CTABLE BR @CASEOQ If P4 = O do this branch
BR @CASE1 If P4 = 1 do this branch

BR @CASE2 If P4 = 2 do this branch

The branch instruction can also be used with indirect addressing in order to branch to a
computed address. For example, suppose that a computed branch address has been
constructed in R19 and R20. The desired program control transfer is made by:

BR *R20
Interrupts

The number of interrupts and the hardware configuration for an TMS7000 family device is -
specified by each device in Section 2. The TMS7020, for example, has three interrupts in
addition to RESET.

RESET and the interrupts are vectored through predetermined memory locations. RESET uses
the “TRAP O” vector which is stored at memory locations >FFFE - >FFFF. The interrupts also
use the TRAP vector table with INT1 using the “TRAP 1” vector, etc. Thus, the “TRAP 2~
instruction involves the same code as the interrupt INT2 (see Section 6.3.3).

The interrupts differ from the TRAPs in that they also push the status register vaiue on the
stack, clear the interrupt enable bit in the status register, and reset the corresponding interrupt
flag bit. Thus the EINT instruction must be used if nested interrupts are desired. The return from
interrupt (RETI) instruction restores the status register and the program counter, re-enabling
interrupts. R :

Many interrupt service routines alter the status of key registers such as the A and B registers.
These routines should use the stack to restore the machine state to the desired value. For
example, the following interrupt routine performs an 1/O driven table look-up. The A and B
registers are used, but their values are saved and restored:

6-61

6-62

INT PUSH A Store A and B registers on stack

PUSH B

MOVP P4,B Get input from the A port

LDA @LOOKUP(B) Do a table lookup to get new value
MOVP A,P6 Output new value on B port

POP B Restore A and B registers in the
POP A reverse order that they were put on
RETI . Back to main program.

*

Normally all interrupts are disabled during an interrupt service routine. If an interrupt needs to
be able to occur while the processor is servicing another interrupt, then the interrupt enable bit
in the status register should be set to a ‘1. The number of interrupts that can be serviced at any
one time is determined by the size of the stack which is always a maximum of 128 bytes
because the stack resides in the register file. Since other registers and data will most likely
share the same space, the stack size is usually much less. When doing nested interrupts, great
care must be taken to avoid corrupting the data in the registers used by the most recent
routine. If INT1 interrupts an ongoing INT 1 service routine, then the registers used by the INT1

routine are used in two different contexts. If provisions are not made for these type situations,
such as disabling all interrupts at critical times, then data errors will result.

Sometimes a program will have distinct parts which require different responses to the same
interrupt call. Since the interrupt vector is always set in nonchangeable ROM, another method
must be used to change the vector for each part. One way of accomplishing this is to store a
second vector in a RAM register pair and let the first instruction in the interrupt routine execute .
an indirect branch on that register. The example below shows how this is done.

SERVIC

PROGRAM TO DEMONSTRATE MULTIPLE INTERRUPT SERVICE ROUTINE
LOCATIONS. ’
main program

MOVD
EINT
IDLE

MOVD - %SERVI2,R127

PUSH
PUSH

%SERVIC,R127

" Firstinterrupt 1 service routine

A
B

Put Int. 1 service routine
address in register

turn on and wait for interrupts
change Int. 1 routine to SERVI2.

Beginning of the Int. 1 service
routine for this part of the program

Second interrupt 1 service routine

PUSH
DEC

BR

A
R4

*R127

Start of another interrupt 1 service
routine

The entiré Int. 1 service routine.
Tranfers control to the address which
isinR127 and R126

Interrupt vector table at end of memory

AORG

- DATA

DATA

>FFFC
INT1
>F806

Address of Interrupt 1 service routine
Reset vector Start of program.

The following routine is an example of a bubble type sorting program. This routine
demonstrates the utility of the indexed mode of addressing. Tables up to 256 bytes in length
can be sorted using the routine. Longer tables can be sorted using the indirect addressing

mode.
FLAG

SORT

LOOP1

LOOP2

150 BYTE BUBBLE SORT
EQU R2

CLR FLAG

MOV %149,8

LDA @TABLE(B)
CMPA @TABLE-1(B)
JL LOOP2

INC FLAG '

PUSH A

LDA @TABLE-1(B)
STA @TABLE(B)
POP A

STA @TABLE-1(B)
DJNZ B,LOOP1
BTJO % >FFFLAG,SORT

’Sv?ap has been made’ flag

Reset swap flag

Number of bytes to be sorted

Look at entry in table

Look at next lower byte

If lower skip to next value

Entry is not lower, set swap flag
Store upper byte

Take lower byte

Put where upper was

Get the old upper byte

Put where the lower byte was

Loop until all the table is looked at

If swap was made then resweep table
If no swap was made, then table is done

6-63

6-64

.

7. DEVELOPMENT SUPPORT TOOLS

7.1 INTRODUCTION

With the introduction of the XDS* (Extended Development Support) concept of high
performance support for the development needs of its customers, Tl has taken a major step
toward making it easier to use its microcomputers. This ease of use coupled with the high
performance of the XDS tools will increase development productivity. Figure 7-1 shows the
typical microprocessor development system.

J‘ TRACE H

) IN-CIRCUIT
EMULATOR
F'b?sp,f Y DEVELOPMENT \ TARGET
PROCESSOR N\ 4
PROM PROGRAMMER
HARD DISK

_ PRINTER

VDT CONSOLE

FIGURE 7-1 — TYPICAL MICROPROCESSOR DEVELOPMENT SYSTEM

* XDSisa registered trademark for Texas Instruments Incorporated, Dallas, Texas 75265. All rights are reserved.

71

As shown in Figure 7-2, the configuration for XDS development is different from the traditional
devlopment system configuration but results in the same functionality for the system
developer. The ability to use the system tools that the developer is familiar with greatly

- enhances the productivity of the developer.

HOST COMPUTER | 2
PRINTER
— . PROM
R RS 232 PROGRAMMER
. DEVELOPMENT
PROCESSOR
ELOPPY IN-CIRCUIT
DISK EMULATOR
/m,,,\“— e
q’ RS i =
oo pug TARGET
HARD DISK i
PRINTER VDT CONSOLE BREAKPOINT/TRACE
FIGURE 7-2 — TYPiCAL XDS CONFIGURATION
7.1.1 XDS Concept

The XDS concept is centered around host independence that features a consistent
development tool set for TI microcomputers and microprocessors. Included in the XDS
concept are versatile Macro Assemblers pre-configured to run on a number of hosts. These
Macro Assemblers include the necessary information to service the XDS workstations. The

" XDS workstations are powerful in-circuit emulators that include breakpoint and trace

capabilities. As an option, intelligence can be added to provide XMPL* (High Level Debug
Language) for increased target control. . :

The host-independent configuration of the XDS, coupled with a consistent set of development
and debug tools lets the user select the Tl processor best suited to solving his problem. Having
a common set of tools available means the basic development format has to be learned only
one time and then can be used with any member of the supported TI TMS7000 family.

XDS cross-assemblers and host interfaces are available for running under IBM 370 MVS and
CMS operating systems, DEC VAX VMS operating system, and Tl operating systems TX4,
TX990, and DX10. This broad range of systems capability permits the development of
software systems using pre-installed tools familiar to the user. This ever increasing range of
operating systems supported allows development on many different hardware configurations
(IBM 370, 3033, 43xx; DEC VAX 11; TI TMAM9000, FS990/4, FS990/10, DX10, and
others) with more to come in the future (DEC PDP-11, IBM PC, TI PC, COMPAQ, and others). In
addition, independent vendors offer support on a number of other systems (Intel MDS, Series
ll, Series lll; CP/M based systems; etc.).

Emulation of a Tl microcomputer is provided by the XDS unit using a RS232 link for interface
with a variety of host systems. User supplied peripherals are also connected through similar
RS232 links, thus creating a low-cost high-performance hardware/software development

* XMPL is a registered trademark for Texas Instruments Incorporated, Dallas, Texas 75265. All rights are reserved.

7-2

7.1.2

7.2

7.3

system. The XDS family of products supports RS232 downlink capabilities, in-circuit
emulation, and target system debugging with breakpoint and trace capabilities. These
capabilities enhance software development while executing real-time target system
debugging.

Key Features

®* Host independent (cross-assemblers available for IBM MVS and IBM CMS, VAX VMS,
and TI DSG TX4, TX990, and DX10-with others planned)

® Provides support for TMS7000, TMS320, TMS9995, AND' TMS99000 microprocessor
families

* Real-time in-circuit emulation capability

® High performance at low cost

e User friendly hardware and software

* Easily expandable

e Convenient desk-top workstation, see Figure 7-3

* Allows integrated system level debug rather than just hardware or software
CROSS SUPPORT SOFTWARE PACKAGE

CrossWare™ (Cross Support Software Package) is available to run on many hosts to support Tl
XDS development. TI CrossWare packages are available for the IBM MVS and CMS operating
systems, DEC VMS operating system, and Tl TX4, TX990, and DX 10 operating systems.
Support is available for Intel MDS 800, Intel Series Il, Intel Series lll, and CP/M based systems
from independent vendors. See Section 8 on independent support. Future support is planned
for the DEC PDP-11, IBM PC, Tl Professional Computer and others. ‘

The CrossWare packages come complete with a full featured macro assembler and a linkage
editor to support modular software with link of the modules at link time rather than at
assembly. This approach encourages writing of small modules and speeds the correction of
program errors.

CrossWare documentation provides the installation information necessary for each specific
host to implement the support package and support attachment of XDS hardware for target
debug.

XDS HARDWARE

XDS hardware supports TMS7000 microcomputer system development utilizing a host
independent approach. Currently, there are two product offerings available in the XDS
hardware family. The Model 22 is a full featured, real-time in-circuit emulator offering hardware
breakpoints and logic state trace capabilities. The Model 33 XDS offers all of the capabilities of
the Mode! 22 with the added feature of built in intelligence running the high leve! target debug
language XMPL {Extended Microprocessor Prototyping Language}.

* CrossWareis a registered trademark for Texas Instruments Incorporated, Dallas, Texas 75265. All rights are reserved.

7-3

7.3.1

7.3.2

Model 22

The XDS Model 22 includés a chassis, card cage, power supply, fan, and a three board set
consisting of an emulator, communications and memory expansion board, and a separate
board for setting breakpoints and logic state tracing (see Figure 7-3).

The software written and developed on the host can be downloaded into the Model 22
emulator memory space through a standard RS232 EIA link. Further development and testing
of target hardware and software is aided through the versatile and comprehensive debug
monitor located in firmware, onboard the emulator. Over 65 commands are available (including
HELP) to give the user complete control over the target system. Key among the 65 monitor
commands is an assembler permitting almost any system to be used as an intelligent terminal
and prepare the source text for assembly by the XDS box. The XDS Model 22 can perform full

speed in-circuit emulation with breakpoint and trace capabilites.

Utilizing the hardware and software breakpoint commands and the logic state trace analyzer, a
complete record of events can be examined to rapidly increase debugging efficiency and
decrease development time. The user can select a range of memory addresses and 1/0
addresses to set valid breakpoints. The breakpoint/trace (B/T) board can breakpoint on any
memory cycle, a memory read, a memory write, or an instruction acquisition. For /O
operations, the B/T board can breakpoint on any I/O cycle, 1/0 read, or I/O write, if the I/O
address qualifications are met. A trace is provided to give a history of execution prior to the
breakpoint. Trace samples are stored in the trace memory and can be read back afterexecution
has been halted. The user can trace memory cycles and /0 cycles.

This cycle of ysing the host computer and the XDS Model 22 for testing produces a quick
efficient way for target system development. After debugging is complete, EPROMs can be
programmed using the host computer’s PROM programming capabilities.

Model 33 . .

The XDS Model 33 is one of the most advanced development support tools available on the
market today. It includes the feature set of the XDS Model 22, and it presents a user-friendly,
high-level interface and debug language for complete control of the target application system.

XMPL, a sophisticated, high level target debugging language, supports the previously
mentioned Tl microcomputers. The user interface presented by XMPL is screen oriented to
maximize system use and offers a procedure oriented command system. By defining new
screen formats and command processes, a collection of procedures can be supplied to support
a wide variety of applications. XMPL gives the user a means of controlling emulator functions
and communicating with the host system to gain access to mass storage and data generated

‘on the host.

FIGURE 7-3 — THE XDS MODEL 22

7-5

7.3.3

Differences And Similarities - Model 22/Model 33

Table 7-1 provides the differences and similarities between the Model 22 and the Model 33
products. :

TABLE 7-1 — HARDWARE CONFIGURATION DIFFERENCE MODEL 22 TO MODEL 33.

MODEL 22
SLOT BOARD : ‘ FUNCTION
7] e FUTURE EXPANSION
AR : T MODEL 33 EXPANSION
I : MODEL 33 EXPANSION
4 " COMMUNICATIONS COMM. WITH HOST
3 ' ———— TI EMULATOR SPACE
2 EMULATOR IN-CIRCUIT EMULATION
1 BREAKPT/TRACE BREAKPOINTS/TRACE
, MODEL 33
sLOT BOARD FUNCTION
7 . T e FUTURE EXPANSION
6 TM990/233 XMPL PROGRAM MEMORY
5 TM990/103 - USER INTERFACE (HLI)
4 COMMUNICATIONS COMM. WITHHOST
3 —————- TIEMULATOR SPACE
2 EMULATOR ' IN-CIRCUIT EMULATION
1 BREAKPT/TRACE BREAKPOINTS/TRACE

Model 22 XDS and Model 33 XDS are packaged in the same modular table top workstation.
This workstation contains a dual motherboard providing for the interface between the
emulation modules and the TM930 modules used to provide the intelligence for the XMPL
language. Using this bus structure provides for easy upgrade and changing CPU support. A
diagramatic reference is provided in Table 7-1 to illustrate the similarities/differences in the
Model 22 and the Model 33.)

.

7.3.4

The memory map of the XDS for the TMS7000 family is extremely flexible. As shown in Figure
7-4, the map can be arranged in any practical configuration that the developer desires. This
flexibility facilitates system level debug rather than just software or hardware debug.

Memory Location

Microprocessor .
p Emulator : Memory Expansion

TMS70XX 64K bytes : (not used, all memory in emulator)

TMS7000: Allocated in 256 byte blocks, X blocks as on-chip ROM and Y blocks as off-chip memory,
where 256(X + Y} = 64K bytes.

- TMS70XX Emulator
FFFF
Full address
space of TMS70XX
Memory accessable
“in 256 byte blocks
0 ' .

FIGURE 7-4 — MEMORY CONFIGURATION IN XDS/70 MODEL 22/33
XMPL

The XMPL high level debug language controls the emulation of target application programs by
setting breakpoints, defining of data or address comparison events, data and address trace, as
well as direct target system 1/0O and memory manipulation. These procedures are
programmable in a high level language using integer and boolean mathematics. The Pascal
constructs included are capable of repetitive sequences and decision making. Allowing a
program to test and act upon target application events, XMPL reads emulator and trace

_ conditions while viewed by the user through self-defined windows on the video screen.

The screen oriented user interface is designed to maximize system use. The user is encouraged
to customize the interface to a particular application by writing a procedure to display target
registers or memory pertinent to his application. The output of the procedure is displayed in a
temporary window. If the user makes the window permanent, the information is updated
whenever a command is entered and the emulator is not running. With very little effort the user
has created a constant visible description of the state of his application.

XMPL supports multiple levels of user sophistication. This allows the experienced user to
quickly enter commands and parameters all on one line, while the inexperienced user is helped
by self prompting sequences which quickly direct the user to entering the required information.
The flowchart in Figure 7-5 demonstrates the three levels.

(commano

{EXPERIENCED
USER}

KNOW
PARAMETERS?,

DISPLAY
TITLE
LINE

(INTERMEDIATE (INEXPERIENCED
USER) USER)

NO

INPUT ALL
PARAMETERS
ON SAME

LINE
DIS
PARAMETER
PROMPT
Li
INPUT <
PARAMETERS L

INPUT
PARAMETERS
1 AT ATIME

' ALL
EXECUTE YES PARAMETERS
COMMAND ENTERED?

FIGURE 7-5 — LEVELS OF XMPL INTERFACE
7.3.5 Breakpoint And Trace Functions

The XDS breakpoint and trace (B/T) board allows the user to set a hardware interrupt or
breakpoint which halts emulator execution. Breakpoints can be set on /O and/or memory
operations with three simple monitor commands. The user can select a range of memory
addresses and I/O addresses for valid breakpoints, or can select two separate memory
addresses or two separate I/O addresses. The B/T board can breakpoint on any memory cycle;
memory read, memory write, or an instruction acquisition. For 1/O operations, the B/T board
can breakpoint on any I/O cycle; I/O read, or I/O write if the I/O address qualifications are met.

The trace function is provided to give a history of execution prior to the breakpoint. It is used to
analyze a set of signals based on addresses and commands. Trace samples are stored in trace
memory and can be read back after execution has been halted. The user can trace both
memory and /O cycles including memory read, memory write, and instruction acquisitions or
all memory cycles, and I/0 read, }/O write, or any I/O cycle.

7.3.6

7.4

The trace memory can hold 2048 words by 48 bits of trace samples. The user is given the

option of how many of these 2048 samples to take, or to keep wrapping around in trace
memory, writing over the oldest trace sample with the newest trace sample.

Multiprocessing

With the ever increasing use of sophisticated designs of multiple microprocessor systems,
there is need for multiprocessor development support. Tl’s XDS offers this multiprocessor
support to debug up to 9 stations linked together in a daisy chained fashion. These systems
can be any of the XDS supported Tl processors (TMS7000 family, TMS320 family, TMS9995
family or the TMS98000). The XDS system is connected to the host computer via the RS232
port of the last XDS workstation. A single user CRT interface can control each of the
workstations. The target system may be of any configuration of Tl microprocessors that are
supported by XDS. Each workstation may be utilized individually or the workstations can be
grouped or subgrouped to synchronize control over the entire target system.

EVALUATION MODULES

The Texas Instruments RTC series of evaluation modules are designed for hands-on hardware
evaluation of specific TI microcomputers. In addition, the RTC/EVM's can function as a limited
feature, stand-alone development system for the family of parts that they support. To facilitate
the evaluation/development functions, EVMs offer text editing, audio cassette interface,
upload/download support, assembler, and EPROM programming utility.

The RTC/EVM7000, Figure 7-6, is designed to emulate the single-chip mode of the TMS7000.
It does not support the expansion modes of the TMS7000 family of processors.

FIGURE 7-6 — THE RTC/EVM 7000 EVALUATION MODULE

79

7.4.1

7.4.1.1

7.5

7-10

TMS7000 EVM

The RTC/EVM7000 is a single board system capable of emulating the single-chip mode of
operation of the TMS7000 family of microcomputers. There are two versions of the evaluation
module: the RTC/EVM7000N-1 for NMOS members of the TMS7000 family and the
RTC/EVM7000C-1 for CMOS versions. The EVM can stand alone as a development system,
using the on-board text editor for creation of TMS7000 Asssembly Language text files, and the
audio cassette tape interface, with limited directory and file search capability as a mass storage
media. A more productive environment can be accomplished by connecting the EVM to a
resident host computer that is used to develop and save the text files and either using
CrossWare to assemble them on the host or download the text files to the EVM for assembly by
the on-board assembler. To support this and other possible configurations the EVM has two EIA
RS232 ports.

The EVM firmware supports three ports in the operation of loading and dumping data (text,
object code) for storage and/or display. Two of these ports conform to EIA RS232C and are
called PORT 1 and PORT 2. The third portis the audio tape connection, PORT 3. The baud rates
supported on PORTs 1 and 2 are 110 through 9600 baud.

The EVM comes equipped with eight 8K byte sockets for the entire 64K byte address space of
the TMS7000. Currently, 16K bytes of the EPROM is devoted to the resident firmware
(>C000 to >FFFF). User RAM is expanded in 8K byte increments, from 16K bytes to 32K
bytes. Available to the user for addition of logic is a wire-wrap development area.with all
required signals provided and labeled.

To facilitate evaluation/development of a TMS7000 project, the EVM offers a limited feature
emulation capability. The crystal frequency of the EVM can be tied to the target application
through the emulation cable.

Operating System

The EVM operatlng system firmware resides in 16K bytes of EPROM and is divided into three
functional areas:

¢ Debug monitor and EPROM programmer
® Assembler ,
¢ TextEditor

All the software is designed to |nteract with itself and the user to provide an easy to use
development/evaluation tool. :

The EPROM programmer provides control for:

e TMS2764 EPROMS
e TMS27128 EPROMS

During assembly/debug operations, the EVM RAM can be configured to emulate all TMS7000
family members and for the emulation of the 2K and 4K ROM version devices, allows assembly
of text files directory from RAM.

PROTOTYPE COMPONENT

The SE70P161 is a protyping component that Texas Instruments offers to support form factor
evaluation of a TMS7000 target.

7.5.1

SE70P161 Description

The SE70P161 protyping component is another member of the TMS7000 family of single-chip
8 bit microcomputers. The SE70P161 is pin compatible with the TMS7020, TMS7040,
TMS70120, and TMS7041, and has the same instruction set as these devices. The
SE70P161 can also be used to emulate CMOS members of the TMS7000 family, with the
following limitations. Because the SE70P161 is an NMOS device, its logic levels are not CMOS
compatible. Also, this device does not support the low-power modes of the CMOS devices
such as HALT or Wake-up. Finally, INT1 on the SE70P161 is both latched and level triggered as
in the NMOS devices, not just latched, as in the CMOS devices. Further details of these
differences are provided in the sections which discuss the function.

The SE70P161 serves as a form fit and function component for the TMS7000 devices and
provides the ability to verify in real-time the software written for all TMS7000 family members
mentioned in the preceding paragraphs. This device uses standard 2764 or 27128 EPROMs.
The EPROMs are located in a socket in the top of the 40 pin SE70P161. Refer to Table 7-2 for

mapping information for the various EPROMs supported.

The SE70P161 is packaged so that an EPROM device can be plugged into the top of the
package (piggy back}. This two chip unit acts as an emulator of the TMS7020 (2K bytes of
internal ROM space), the TMS7040/7041 {4K bytes of internal ROM space), and the
TMS70120 (12K bytes of internal ROM space). B

TABLE 7-2 — EPROM USE

.)
EPROM 70XX 70XX 27XX
TYPE oM START START
ADDRESS ADDRESS
27128 16K Bytes >C006 >0006
27128 12K Bytes >D006 >1006
2764 8K Bytes >E006 ~ >0006
2764 4K Bytes >FO06 >1006
2764 2K Bytes >F806 >1806

"NOTE: Texas Instruments reserves the first 6 bytes of ROM. For example addresses from >FO00 to >FOO5 may not be defined
by the user program for a TMS7040.

The SE70P161 is available in two versions. Both versions have fixed internal ROM space of
16K bytes {COO0-FFFF), one with a divide by two clock generator and the other with a divide
by four. Note that on the SE70P161, none of the 16K EPROM address space can be mapped as
external addresses except in microprocessor mode.

7-11

7.5.1.1

7.5.1.2

7.5.1.3

7.5.1.4

7.6

7.6.1

7.6.2

7-12

Prototyping

System emulators such as the SE70P161 are only designed to be used in a prototype
environment and as such are tested and supported for that purpose.

TMS7041 Prototyping

The SE70P161 serves as a prototyping component for the TMS7000 devices and provides the
ability to verify in real-time software written for all TMS7000 family members mentioned in
Section 4. This device uses standard TMS2764 or TMS27128 EPROMs. The EPROMs are
located in a socket on top of a 40-pin dual-in-line package.

TMS7020/TMS7040/TMS70120 Prototyping

The SE70P161 system emulator can also be used as a TMS7020/TMS7040/TMS70120
prototype. In this case, P16 (Peripheral File location >010), must be cleared during the device
initialization routine to prevent spurious interrupts from the unused serial port logic. One way to
accomplish this is by coding MOVP % >00,P16 in the initialization routine.

SE70P161 Electrical Data

Reference Section 4.3 (SE70P161) for electrical specifications.

PHYSICAL AND ORDERING INFORMATION

CrossWare
L
PART NUMBER DESCRIPTION OPERATING SYSTEM
TMDS7040113-21 T1990 DSDD O TX-b
TMDS7040123-06 ~ TISY0T50 DX10
TMDS7040123-08 - T1990 Tape : ‘ DX10
TMDS7040123-10 TI990DS10 DX10
TMDS7040123-22 TI990 CD1400 DX10
TMDS7040133-03 TI990 SSSD - TX-4
TMDS7040210-08 DEC VAX Tape VMS 2.0
TMDS7040310-08 ' IBM Mainframe MVS
TMDS7040320-08 IBM Mainframe CMS
XDS Hardware
) XDS
MICROCOMPUTER MODEL NO. PART NO.
TMS7020, TMS7040 :
TMS7041, TMS70120 Model 22 TMDS7062210
Model 33 TMDS7063310

7.6.2.1 Physical Specifications

The XDS equipment is a professionally styled table top sized unit suitable for most work
surfaces. The XDS Models 22 and 33 have an air inlet on each side of the unit and an air
exhaust port on the rear of the unit. A minimum of five inches clearance must be maintained
between the XDS and neighboring equipment on the sides and rear for proper air flow. Listed
below are the dimension and clearance requirements.

DIMENSIONS
Width = 17.0Inches (43.2 CM)
Depth = 16.5 Inches (41.9 CM)
Height = 7.4 Inches (18.8 CM)
Target Cable = 18.0 Inches (46.0 CM)
CLEARANCE REQUIREMENTS

Sides: 5 Inches Minimum (15.2 CM)
Back 5 Inches Minimum (15.2 CM)
Top None Required
Front None Required

7.6.3 Evaluation Modules

The RTC/EVM is available in two configurations. The first configuration RTC/EVM7000N-1
supports the NMOS versions of the TMS7000 single chip microcomputer family. The
RTC/EVM7000C-1 is designed to support the CMOS members of the TMS7000 family. Listed
below are the RTC/EVM part numbers.

RTC/EVM PN DEVICES SUPPORTED
RTC/EVM7000N-1 7020/7040/70120/7041
RTC/EVM7000C-1 ‘ 70C20/70C40 . !

7.6.4 Warranty Services

A limited warranty covers the cost of parts and labor if any defects in materials or maufacturing
methods require service within 90 days from the date of purchase from TI. The software
license agreement and subscriber card must be completed and returned to Tl before the license
isin force. '

All technical questions and requests for service for XDS development of hardware and
software should be directed to the customer support lines at the nearest Tl Regional
Technology Center (See paragraph 1.4.2, Hotline Assistance).

Repair of XDS equipment is performed at the system level with chassis and all boards being
returned to the Houston factory repair center.

713

384

714

8.2

8.2.1

INDEPENDENT SUPPORT
INTRODUCTION

The TMS7000 family of single chip microcomputers is supported by product offerings from a

number of independent vendors. These support products take many forms, from cross

assemblers that run on small systems to second sources for the TMS7000 components.
Included in this section are a number of tools that augment the support provided by Texas

Instruments. Inclusion of a product in this section does not constitute product endorsement on

the part of Texas Instruments but merely an attempt at product awareness. The products listed

here are representative of independent vendor supplied products and are not intended to be an

allinclusive list of independent vendor supplied support tools.

PROCESSOR INNOVATIONS™ - INTEL* BASED SUPPORT TOOLS

The XI* Core Cross-Development Package enhances an Intellec” system to provide
stand-alone development facilities for designing with Texas Instruments’ TMS320, TMS7000,
TMS99XX, and TMS99XXX microprocessor families. The XI Core Cross-Development
Package consists of an XI-90/30 CPU module, the Xi Software System, and companlon
documentation. ,
The XI CPU module is a busmaster module which converts an Intellec system into a dual
processor Xl development station. The XI CPU module, when inserted in an available
busmaster slot within the Intellec system chassis, coexists with the Intellec system’s current
8080 family CPU module. The module is passive during microprocessor development sessions
with Intel microprocessors and active for all XI microprocessor cross-development sessions for

. the TMS7000 family.

The XI Software System consists of Processor Innovations’ Xl cross-development operating
system plus a companion set of target product development, debug, and firmware
manufacturing utilities for execution on the Xl system. The Xl operating system is dedicated to
microprocessor dévelopment cross-support and is functionally equivalent to the Texas
Instruments’ AMPLUST operating system for Tl development systems.

The XI Core Cross-Development Package has been designed to accommodate all currently
available Intellec development systems.

Xl Workstation Device Support

The XI Core Cross-Development Package converts an Intellec system into an XI| workstation
capable of supporting both Intel and Texas Instruments microprocessor development activity.
An XI workstation, when used to design with Texas Instruments’ microprocessors, supports
the following Intellec and Xl devices:

¢ Intellec dual disk drive system (single or double density)

* Intellec display terminal

¢ |Intellec line printer

* Processor Innovations and Xi are registered trademarks for Processor Innovations Corporation, Eatontown, N.J. 07724. Intel and Intellec are
registered trademarks for Intel Corporation, Santa Clara, CA. 95051. All rights are reserved.

T AMPLUS is a registered trademark for Texas Instruments Incorporated, Dallas, Texas 75265. All rights are reserved.

81

8.2.2

8-2

e XIRS232C serial communications interface

* XI CRU expansion chasis interface

The XI R§232C interface is heavily used by the XI Software System to extend XI devic

support to include:

* Board level target systems, such as Texas Instruments’ TMS7000 evaluation modules.

e RS232C based in-circuit emulation tools, such as TI's XDS* emulator instruments for:

TMS7000 8 bit single-chip microcomputer family
RTC/EVM evaluation modules

TMS320 32 bit processor family

TMS99000 16 bit processor family

TMS9995 16 bit microprocessor

RS232C PROM/EPROM programmers

The CRU expansion chassis interface is a high speed serial link used with separately-packaged
Xl software utilities to extend X! device support to include:

¢ Tl CRU based in-circuit emulator systems for:

TMS7000 assembler and microassembler
TMS9900/9800-40

TMS9980A/9981

TMS9989

TMS9940

* TICRU based logic state trace system

® CRU based PROM/EPROM programmer system

Additional development hardware support will be provided in later X| Software System
releases and through the introduction of planned X| add-on packages.

Company To Contact -

Processor Innovations Corp.
P.O.Box L

Eatontown, N.J. 07724
Phone (201) 542-6500

Contact - Marketing

8.2.3

8.2.3.1

8.2.3.2

.8.2.3.3

8.3

Product Offerings
PIDS 1810-11

The XI-800 Core Cross-Development Package contains the hardware, software and
documentaion necessary to upgrade an Intellec Model 800 to an XI-800 development
workstation. This package contains an XI-90/30-20 CPU module, 4 floppy diskettes (2 single,
2 double density), and supporting documentation.

PIDS 1810-12

The XI-ll Core Cross-Development Package contains the hardware, software and
documentation necessary to upgrade an Intellec Series 11/80 or Intellec Series 1/85 system to
an XI-1l development workstation. This package contains an XI-90/30-30 CPU module, 2
floppy diskettes {1 single, 1 double density) and supporting documentation.

PIDS 1810-32

The XI TMS7000 family Macro Assembler Package contains the software and documentation
necessary to add TMS7000 assembly language program translation capability to an Xl
development workstation. It contains two Xl floppy diskettes (1 single, 1 double density) and
supporting documentation.

ALLEN ASHLEY - CP/M* BASED SUPPORT TOOLS

Included in the Allen Ashley cross assembler series are cross assemblers for Tl's TMS7000
family, TMS9900 family, and TMS320 family of processors. This series of cross assemblers
allows any CP/M system to serve as a development station for single-chip microcomputers and
microprocessors. '

With minor exceptions the SYSTEM-TMS7 assembler. features instruction mnemonics and -
syntax as defined by Texas Instruments. The SYSTEM-TMS7 includes the ASMB interactive
assembler/editor, the MAKRO macro assembler, the EDIT text editor, a cross reference
generator, and off-loading facilities.)

The ASMB editor/assembler is intended for the creation, modification and test of program
modules. ASMB includes a simple assembler, a line editor, and the facilities for saving and
retrieving files from disk. Source code for ASMB'is maintained in memory to eliminate the
requirement for a separate edit cycle. The source language is assembled into object code
directly into RAM for immediate testing. Program errors can be caught, repaired and
re-assembled in seconds with ASMB. Validated program modules developed with ASMB can
be saved on disk for input to the more powerful MAKRO disk assembler.

The MAKRO assembler includes full macro and conditional assembly features, as well as the
ability to link a series of source files together during a single assembly. MAKRO reads the
source code from-disk and writes object code back to disk: all available memory is free for
symbol tables and macro expansion. MAKRO is the vehicle by which the modules developed
under ASMB can be collected together into a single program. MAKRO treats the disk as an
extension of memory, and source files exceeding available memory size can be assembled.

* CPIMis aregistered trademark for Digital Research Incorporated, Pacific Grove, CA. 93950. All rights are reserved.

8-3

8.3.1

8.3.2

8.3.2.1

8.4

EDIT is a full spectrum string oriented text editor which includes all the features required to
create or modify source programs for the MAKRO assembler. Source programs on an input disk
file are paged into a dynamic memory buffer, modified and written out to the output disk file.
Commands include block move or delete, string search or change, and disk file merge. A single
command reformats the line-oriented source file created under ASMB to the free-form source
input of MAKRO. i :

Programs-created with the development systems must be off-loaded to the target processor.
Facilities are provided to implement the offload as a direct transfer from memory, via a byte
stream over a CPU port, or via COM or HEX files. An off loader for HEX files is provided. Direct
support for off loading to the XDS line of Tl support tools is included.

Company To Contact

Allen Ashley, Inc.
395 Sierra Madre Villa
Pasadena, Ca. 91107

Phone (213) 793-5748
Contact - Marketing
Product Offerings
CP/M Bases Development Software For The TMS 7000 Family

The SYSTEM-TMS?7 is a total software package for the development of TMS7000 code on a
CP/M based small microprocessor system complete with documentation and utilities.

The following formats can be supplied:

IBM PC Morrow Micro Decision
TRS-80 (TRSDOS) Mod ill
Osborne |

Kaypro Ii

North Star - CP/M

Micropolis Mod Il

Xerox 820

Standard 8” CP/M format (SSSD)

SEEQ*: SELF-ADAPTIVE EEROM

The SEEQ 72720 is a full function single-chip microcomputer, fabricated in N-channel Silicon
Gate technology, which contains a 2K x 8 5V nonvolatile electrically erasable (EEROM)
program memory. The program memory can be erased and programmed via the processor
itself during normal program execution or can be programmed under control as if it were a
standard 5V EEROM memory component. The EEROM can easily be expanded off-chip using
the processor’s Full Expansion Mode. External EEROM can be programmed with the same
instruction used to alter on-chip EEROM.

* SEEQ, DiTrace, and Silicon Signature are registered trademarks for SEEQ Technology Incorporated, San Jose, CA. 95131, All rights are

reserved.

8-4

8.4.1

A security lock mechanism is implemented in EEROM memory which allows the user’s
program to inhibit external access to its proprietary program code. Once activated this lock can
be reset only by an external EEROM block clear operation which erases the entire program
memory contents.

As with other EEROM devices which SEEQ manufactures, the 72720 has DiTrace* and Silicon
Signature* features to facilitate production testing tracking. Each device is encoded with
detailed processing and testing results which are stored in a special EEROM memory as it
passes through the manufacturing cycle. Also stored is an unalterable identification code
which contains information such as mask revision and EEROM programming parameters.

An EEROM Microcomputer member of the TMS7000 family is desirable because the
availability of a single-chip microcomputer with nonvolatile program memory which can be
altered under process control makes possible the design of low cost products with many new
features:

* Self adaptive code for machines that learn as they perform their tasks.

* In-Circuit reprogrammability to eliminate product disassembly for firmware updates.

* Remote reprogrammability to eliminate service calls for firmware updates.

* [nternally stored product history including factory test results, product configuration,
revision level, and service records.

e Stored initialization parameters to eliminate front panel switches and automatically
configure product for one or many users.

* Product usage and error logging to simplify maintenance and pinpoint product failure
modes. '

e Code and data security to protect proprietary programs and confidential data.

Company To Contact
SEEQ Technoiogy Incorporated
1849 Fortune Drive
San Jose, California 95131
Phone (408) 942-1990

Contact - Marketing

* SEEQ, DiTrace, and Silicon Signature a;e registered trademarks for SEEQ Technology Incorporated, San Jose, CA. 95131. All rights are

reserved.

85

9.1

9.2

QUALITY AND RELIABILITY
INTRODUCTION

Quality and reliability (Q&R) performance of Texas Instruments Progrémmable Products, which
includes the TMS7000 family, relies upon systematic input from:

e QOurcustomers

¢ QOur total manufacturing operation from front end wafer fabrication through final shipping
inspection

® Product quality and reliability monitoring

Our customers’ perception of quality must be the governing criteria for judging performance,

and this concept is.the basis for Texas Instruments Corporate Quality Policy, which is as
follows:

"“For every product or service we offer we shall define the requirements that solve
the customers’ problems, and we shall conform to those requirements without
exception.’’ :

The Programmable Products Division (PPD) has established aggressive internal quality and
reliability goals for the TMS7000 series but is even more concerned with receiving continuing
customer feedback to ensure user satisfaction. Customer perceived performance is the most
important PPD Q&R measurement, though it is the last input received for any product delivery
cycle.

AVERAGE OUTGOING QUALITY

PPD continually inspects its products prior to shipment for electrical and mechanical
compliance to Data Manual or Customer Specifications. Discrepancies are analyzed and
corrective actions are taken to achieve our internally established goals, which are as follows:

4Q83 4084 4Q85
Electrical Testing 800PPM 400PPM 200PPM
Visual/Mechanical Inspection. 800PPM 400PPM 200PPM

More significantly, PPD is currently working very closely with several customers to achieve
comparable levels of performance, as measured by the customer in a system environment.

91

9.3

9.4

9-2

NEW PRODUCT AND MAJOR CHANGE RELIABILITY QUALIFICATION TESTING

As part of PPD’s normal process of introducing new products or making major changes, plastic
packaged devices must demonstrate satisfactory performance in the following
environments:) :

1000 hours, 125 °C Dynamic Operating Life Test
1000 hours, 150°C Storage

1000 hours, 85°C/85% Relative Humidiity, Biased
1000 cycles, —65°C to 150°C Temperature Cycling
96 hours, Autoclave @ 15 PSI

Electro Static Discharge resistance

Additional tests may also be performed when appropriate.

Failure mechanisms are identified through failure analysis, and corrective actions are
implemented to provide continual performance improvements.

Current PPD goals for key performance environments are as follows:
2

4083 4084 4085
Dynamic Operating Life Test : 100 60 B0
Derated to 55°C, .5EV, 60%UCL FITS FITS FITS
85°C/85% Relative Humidity, .8) .3
Biased % Failures ’
Temperature Cycling .3 .25 A

% Failures

Wherever possible PPD encourages customer cooperation/participation in achieving
qualification certification for PPD. Joint customer/PPD: qualifications have been achieved and
provide an efficient approach to demonstrating required reliability performance for both PPD
and the user. :

RELIABILITY MONITORING

After products are initially qualified, representative product samples are tested on a quarterly
basis to measure and verify performance to goals for the key performance environments:

® Operating life test

* 85°C/85% relative humidity, Biased
® Temperature cycling

* Autoclave

Analysis of failures is performed to determine the need for design or manufacturing
improvements.

9.5

384

TMS7000 Family Reliability Performance

A summary of recent performance data on this family of devices demonstrates the following

results:
TABLE 9-1 — DYNAMIC LIFE TEST
TEMP o DEVICE HOURS
DEVICE oC SAMPLE SIZE FAILURES (.5eV @ 55°C)
' Millions
7040 150 42 [¢] 2.23
7040 125 687 ¢} 10.70
7040 85 194 [¢] .85
7041 125 182 1 . 4.09
7041 95 78 (o] .53
70120 125 455 0 10.23
1638 1 28.63
(60% UCL) Failure Rate: 71 FITS
MTTF: 1614 Years
9-3

TABLE 9-2 — ENVIRONMENTAL TESTS

ENVIRONMENT) Sl;l:gl;LE . FAILURES F AIL‘}L‘;RES

Biased 85°/85% RH, 1000 Hours 275 3 1.1 :
150 C Storage, 1000 Hours (Mil Std 883B) 220 - 1 05
Temp Cycle, —65°/150°, 1000 Cycles
(Mil Std 883B) 401 2 - 0.5
Auto Clave, 96 hours 262 o FJ
Cycled Biased Humidity, 1000 Hours 38 1 2.6
100 Temp Cycles —65°/150° + 500 Hours)
85°/85% RH + 500 Hours 125 °Dynamic Life Test 45 (o] 0
Solderability (Mil Std 883B) 48) 'o

" Lead Fatigue (Mil Std 8838) . 5 . 0 o]
Salt Atmosphere (Mil Std 8833B) 10 [0} 0

PPD is committed to satisfying your qualty and reliabiility requirements and invites comments
and questions in supporting customer needs.

10.
10.1

10.1.1

GENERAL INFORMATION
TMS7000 FAMILY DEVICES
Prototype And Production Flow

The TMS7000 family of masked ROM microcomputers are semi-custom devices with ROM
tailored to the customer’s application requirements. The semi-custom nature of these devices
requires a standard, defined interface between the customer and the factory in the production
of TMS7000 devices with on-chip ROM. Figure 10-1 shows this standard
prototype/production flow for customer ROM receipt. The following sequential steps refer to
the blocks in Figure 10-1.

A 4

CUSTOMER SUBMITS CUSTOMER S ITS CUSTOMER SUBMITS
ROM CODE Ml CROCOMPU S EC NPRF

NO CUSTOMER

.ROM RECEIPT
APPROVAL

' Tl ORDERS MASKS,
URES, AND
OTOTYPES

=2

>
WC
po3
ap0
-0
o4

CUSTOMER

NO PROTOTYPE
' APPROVAL

CUSTOMER RELEASE
TO PRODUCTION

- TI SHIPS
PRODUCTION DEVICES

FIGURE 10-1 — PROTOTYPE AND PRODUCTION FLOW

10-1

10-2

~ 1) For Tl to accept the receipt of a customer ROM algorithm, each of the following three

2)

3

4)

items must be received by the Ti factory:

A. The customer completes and submits a New Products Release Form (NPRF) to Ti
describing the custom features of the device (e.g., customer information,
prototype and production quantities and dates, any exceptions to standard
electrical specifications, customer part numbers and symbolization, package
type, etc). The NPRF is available from Tls’ field sales engineers.

B. The customer submits a copy of the specification for the microcomputer in their
system, including the functional description and electrical specification (including
absolute maximum ratings, recommended operating conditions, and timing
values).

C. When the customer has completed code development and after verification of this
code with the development system, the standard TMS7000 tagged object code is
submitted to the Tl factory on an acceptable media for processing. These include:

* Single-sided, single density floppy disks formatted by the 990/4 TXDX
floppy disk operating system or the TX990 conversion utilities on hard-disk
based AMPL systems.

¢ Double-sided, double derisity floppy disks formatted by the TMAMS000
AMPLUS operating system.

e Bulk Data Transfer from a Texas Instruments Regional Technology Center
(RTC) to the Tl Wilcrest facility to the DX990.

e Coded EPROM devices (i.e., 2516, 2532, 2716, 2732)
The mask ROM codes should be sent to:

Texas Instruments Microcomputer Division
P.O. Box 1443, MS 6435
Houston, TX 77001

Code review and ROM receipt is performed on the customer’'s code and a
manufacturing ROM code number is assigned to the customers algorithm. All future
correspondence shoud indicate this number. The ROM receipt procedure reads the
ROM code information, processes it, and reproduces the customers tagged ROM
object code which is returned to the customer for verification of correct ROM receipt.

The customer then verifies that the ROM code received by Tl is correct and that no
information was misinterpreted in the transfer. The customer will then return written
confirmation of correct ROM receipt verification or will re-submit the code for
processing. .

Tl generates the prototype photomask, processes, manufactures, and tests 25
prototype devices for shipment to the customer. Limited quantities in addition to the
initial 25 prototypes may also be purchased by the customer for use in customer
evalation. ‘

10.1.2

NOTE

Texas Instruments recommends that prototype devices not be used in production
system since their expected end-use failure rate is undefined but is predicted to be
greater that standard qualified production.

All prototype devices are shipped against the following disclaimer:
“It is understood that, for expediency purposes, the initial 25 prototype devices (and any
additional prototype devices purchased) were assembled on a prototype (i.e., non-production
qualified) manufacturing line whose reliability has not been characterized. Therefore, the

anticipated inherent reliability of these devices cannot be expressly defined.”

5) The customer verifies the operation of these prototypes in the system and responds
with either written customer prototype approval or disapproval.

6) W.ith customer algorithm approval, the ROM code is released to production and Tl will
begin shipment of production devices according to customer’s final specification and
order requirements. ,

Two leadtimes are quoted in reference to the preceeding flow:

Prototype leadtime — elapsed time from the receipt of written ROM receipt verification to
the delivery of 25 prototype devices.

Production leadtime — elapsed time from the receipt of written customer prototype approval
to delivery of production devices.

For the latest TMS7000 family leadtimes, contact the nearest Tl field sales office.

Device Prefix Designators

To provide expeditious system evaluations by customers during the product development
cycle, Texas Instruments assigns a prefix designator with four options: TMS, TMP, TMX, and
SE. -

TMX, TMP, and TMS are representative of the evolutionary stages of product development

from engineering prototypes through fully qualified production devices. Figure 10-2 depicts
this evolutionary development flowchart.

10-3

TMX XXXX

v

TMP XXXX

TMS XXXX

10-4

.Experimental devices that are not
representative of the final device's
electrical specifications.

Final silicon die that conforms to the
device’s electrical specifications but has
not completed reliability verification.

Fully qualified production devices.

FIGURE 10-2 — DEVELOPMENT FLOWCHART

10.1.3

384

TMX devices are shipped against the following disclaimer:
1) Experimehtal product and its reliability has not been characterized.
2) Productis sold “‘asis’’.

3) Product is not warranted to be exemplary of final production version if or when
released by Texas Instruments.

TMP devices are shipped against the following disclaimer:
1) Customer understands that the product purchased hereunder has not been fully
characterized and the expectation of reliability cannot be defined; therefore, Texas

Instruments standard warranty refers only to the device's specifications.

TMS devices have been fully characterized and the quality and reliability of the device has been
fully demonstrated. Texas Instruments’ standard warranty applies.

The SE prefix designation is given to the system evaluator devices used for prototyping

purposes. Currently this designation applies only to the SE70P161 member of the TMS7000
family. ’

SE devices are shipped against the following disclaimer:

1) System evaluators and development tools are for use only in a prototype environment
and not warranted for sale in the customer’s application.

~ Clock Options

There are two clock options available on the NMOS TMS7000 family devices (TMS7000,
TMS7020, TMS7040, TMS70120, TMS7001, TMS7041) for converting the external
frequency to the internal machine cycle frequency, called Phi (¢p) They are termed the divide by
two {/2) or the divide by four (/4) clock options. These are mask options which means the
option is finalized at the time of manufacture and is NOT changeable by software or hardware.
If the divide by two clock option is chosen, the external frequency divided by 2 is the internal
machine cycle frequency. A 5 MHz crystal would generate an internal machine cycle of 2.5
MHZ with the divide by two option. If the divide by four clock option is chosen, the external
clock is divided by 4 so that the same 5 MHZ crystal would generate an internal machine cycle
of 1.25 MHz. (In this example a 10 MHz crystal would be used to get a 2.5 MHz internal
machine cycle.)

The divide by two clock option is recommended for use with crystals and the divide by four
clock option use either a crystal or another external clock source. It is not recommended to use
an external source to drive a divide by two device. If a crystal is used it is connected between
pins XTAL1 and XTAL2. To improve the crystal waveform, 15 pF capacitors are connected
between XTAL1 and.ground and XTAL2 and ground. If an external clock source is used, it is
connected to XTAL2 (also called CLKIN), while XTAL1 is left floating.

10-5

10.1.4

10.1.5

710.1.5.7 .

The selection of the divide by clock option for TMS7000 family members with on-chip ROM is
designated by the customer in the New Products Release Form (see Section 10.1.1), while
standard TMS7000 family members without on-chip ROM have this designation as part of
their part number (see Section 10.1.5.2).

Reserved ROM Locations

TMS7000 family members with on-chip ROM have the first 6 byte locations reserved for Ti
use. Therefore these locations must not be used by the customer in the development of the
ROM code. The user must remember this when performing development using the XDS
emulator, the EVM, the SE70P161, or a TMS7000 family member without on-chip ROM. Table
10-1 depicts the valid ROM starting address for the common family members.

TABLE 10-1 — VALID ROM START ADDRESSES

FAMILY ROM VALID START
MEMBER SPACE ADDRESS
7020,70C20 2K Bytes >F806
7040,7041,70C40 4K Bytes >F006
70120 12K Bytes >D006

Ordering Information

TMS7000 family devices can be divided into two categories for ordering informationA and
symbolization, with the distinction being made on the presence (or absence) of on-chip ROM.

TMS7000 Family Members With On-Chip ROM

TMS7000 family members with on-chip ROM are semi-custom devices with the ROM mask
programmed to the customer’s requirements. These devices follow the prototyping and
production flow outlined in Section 10.1.1. Since they are semi-custom devices, they receive a
distinct identification as follows: '

C, 1 2 3 4 5, N 2,
MICROCE:)DE DESIGNATOR /I '

standard
L custom
UNIQUE CUSTOMER ROM PACKAGE
CODE IDENTIFICATION N plastic DIP, 100-mill pin spacing

10-6

N2 plastic DIP, 70-mill pin spacing
JD side brazed ceramic DIP, 100-mill pin spacing

All packages are currently 40-pin, 600-mil dual-in-line packages (DIP). Refer to section
10.1.6 for complete package dimensions.

384

There are two types of symbolization for TMS7000 family members with on-chip ROM. These

are:

1) Tl standard symbolization

2) TIstandard symbolization with customer part number.

line 1:
line 2:

line 3:

line 1:
line 2:
line 3:

line 4:

(d)

(e)

(d)

(e)

(h)

(a) (b) (e} - MEANING OF MARKINGS

{A‘ C12345N2 DBUA8327 (a)
(o)

©1981Til ©1983TI (f) (c)
. (d)

24655 {g) Philippines (e)

: (f)
(g)

Texas Instruments trademark
Customer’s ROM code
Tracking mark and date code
Tl microcode copyright

Lot code

Copyright of ROM code
Assembly site

FIGURE 10-3 — TI STANDARD SYMBOLIZATION

(a) (g) MEANING OF MARKINGS

123456789012 (a)
(b) (c) (b)

©1981 TI C12345N2 DBUA8B327 (c}

(d)

24655 ©1983 TI (f) ' (e)

) : (f)
Philippines ' (g)
(h)

Texas Instruments trademark
Customer’s ROM code
Tracking mark and date code
Tl microcode copyright

Lot code

Copyright of ROM code
Customer part number
Assembly site

FIGURE 10-4 — TI STANDARD SYMBOLIZATION WITH CUSTOMER PART NUMBER

10.1.5.2 . TMS7000 Family Members Without On-Chjp ROM

TMS7000 family members without on-chip ROM are standard device types, and therefore

PREFIX

TMS STANDARD

have a standard identification as follows:

T MS700 N 2L —2
~——__CLOCK OPTION

DEVICE TYPE

TEMPERATURE RANGE

2 divide by two
4 divide by four

L 0Cto70C
A -40Cto85C

PACKAGE

N plastic DIP, 100-mill pin spacing
N2 plastic DIP, 70-mill pin spacing]
JD side brazed ceramic DIP, 100-mill pin spacing

All packages are currently 40-pin, 600-mili dual-in-line packages (DIP). Refer to section 10.1.6
for complete package dimensions. ’

384

107

Examples of common TMS7000 family members without on-chip ROM are:

TMS7000NL-2 ' TMS7001NL-4
TMS7000NL-4 TMS7001N2L-2

The standard symbolization for these devices is shown in Figure 10-5.

(a) (b) MEANINGS OF MARKINGS
] N
line 1: M TMS7001NL-2 (a) Texas Instruments trademark
. (b) Standard device number
line2: (d) ©1981TI DBUA8327 (¢} {c) Tracking mark and date code
{d) TI microcode copyright
line3: (e) 24655 (f) Philippines (e) Lot code

(f) Assembly site
FIGURE 10-5 — TI STANDARD SYMBOLIZATION FOR DEVICES WITHOUT ON-CHIP ROM

10.1.6 Mechanical Data

53,09 (2.090) MAX —————————————{

o o o o ¥ o e e ¥ e v s e e s o o ¥ o (o Vo e W e W

EITHER
INDEX
S [N S G S [A S G S | G ¢

€ 4524.0284 & D— DR S @
- 0600 0010)’]

i 0,508 (0.020)

| Mwh —
) 5.08 (0.200) MAX

~ SEATING PLANE

% 3,17 (0.125) MIN

0.457:0.076 N
0.279 : 0.076
0011 -0 oos)a\r . 001800003 I 0,838 (0.033) MIN

PIN SPACING 2,54 (0.100) T.P. . "‘2'1 Siooes
{See Note ’ai 1,52 (0.060) NOM

4.

NOTES: a. Each pin centerline is located within 0.254 (0.010) of its true longitudinal position.
b. All linear dimensions are in millimeters and parenthetically in inches.

108

FIGURE 10-6 — 40 PIN PLASTIC PACKAGE, 100 MIL PIN SPACING
{TYPE N PACKAGE SUFFIX).

384

40-PIN PLASTIC PACKAGE (0.070 PIN SPACING)

35,31 (1.390 MAX ————————

21
!t_\l—'II:I_E‘ImFlI_H_H_H—lI—H_H—II_\ﬁELL—! O

EITHER ————f .
INDEX

| SN) S SN § G5) S N N A R) N § S NN AN N D | N D S) A |
® @
& 452420254

!‘lo.eoo:o,omn

0,508 {0.020)
MIN

¥
5,08 (0.200) MAX
— SEATING PLANET
: 0.457:0,076
0.279 + 0,078 - .
0279 ¢ o.oos)_.\\" 10,018 0.003) 1"

PIN SPACING 1,78 (0.070)T.P. 40|
{See Nots a) 1,02 (0.040) NOM

NOTES: a. Each pin ccntcrﬁno is located within 0,254 (0. 010) of its true longitudinal position.
b. All linear di are in mill and p.

3.17 (0.125) MIN
L——'— .

L—— 1,27 (0.050) MAX

in inches.

FIGURE 10-7 — 40 PIN PLASTIC PACKAGE, 70 MIL PIN SPACING
{TYPE N2 PACKAGE SUFFIX).

313112020

.08 10, noo-

1 4210 300,04

i
e

12.088 15.24 - 0.251
10475 30 10600 - 0010)
127 0 0501
& NOM

, EEEEEEEE@EEEE@l

1 IOICATON

20.3-0.25
10800 -0 0101

20.3:0.25

10,850 00101

1824+ 0,08
N 10 080 - 0. 002)
308 0121 ‘.1 ou
0.284 10 0101 NOM —
TR P i § |
o Y
S2 I

80210321
‘f ¥ MAX
-4 .30 . 0.3
10730 - 00
127013

10.050 - 0.008)

210888
1018070023

‘—:!’ o, PN
0.26: 0,05 £.598 10 2201
10.010 - 0.002)

127010284
womt 10080+ 0 010¢
15.2410.284
— 4.318:0.288
© 600100101 I © 1017000100
wom

Lom seacma lo-g sz om s
284101001 TP 10078-0002)
(See Note &)

pe- 10 0801
wouM

Notes: a. Each pin centerline is located within 0.127 (0.005) of its true longitudinal position
b. All dimensions are in millimeters and parenthetically in inches

FIGURE 10-8 — 40 PIN CERAMIC PACKAGE, 100-MIL PIN SPACING

+ (TYPE JD PACKAGE SUFFIX). 109

o

10.2

10.2.1

10.2.2

10.2.3

10.3

10-10

DEVELOPMENT SUPPORT TOOLS

CrossWare
PART NUMBER DESCRIPTION OPERATING SYSTEM
TMDS7040113-21 TI1990 DSDD X5
TMDS7040123-06 TI990 T50 DX10
TMDS7040123-08 TI 990 Tape - DX10
TMDS7040123-10 TI990 DS10 DX10
TMDS7040123-22 TI990 CD1400 DX10
TMDS7040133-03 TI990 SSSD TX-4
TMDS7040210-08 DEC VAX Tape VMS
TMDS7040310-08 IBM Mainframe MVS
TMDS7040320-08 IBM Mainframe CMS

* XDS Hardware
PART NUMBER XDS MODEL # TMS7000 FAMILY SUPPORT
TMDS706221O Model 22 TMS7020, TMS7040, TMS7041, TMS701 20

Evaluation Modules

PART NUMBER DEVICES SUPPORTED

RTC/EVM7000N-1 TMS7000, TMS7001, TMS7020, TMS7040, TMS7041,
TMS70120

RTC/EVM7000C-1 TMS70C20, TMS70C40

TMS7000 FAMILY DOCUMENTATION

DOCUMENT
NUMBER DOCUMENT

TMS7000 FAMILY DATA MANUALS:

MPOOSA TMS7000/7020/7040 8-BIT MICROCOMPUTER DATA MANUAL

SPNF002 TMS7000 PROGRAMMERS POCKET REFERENCE CARD

SPNV002 TMS7500 DATA ENCRYPTION DEVICE PRODUCT DESCRIPTION

SPNS004 TMS7500 DATA ENCRYPTION DEVICE PRELIMINARY DATA
MANUAL

TMS7000 DATA SHEETS AND BROCHURES:

SPNSO005 TMS7007 DATA SHEET

SPNBOO1 TMS7000 SALES BROCHURE
SPDS002 7000 XDS MODEL 22 DATA SHEET
SPDV002 7000 XDS MODEL 22 BROCHURE
SPNS006 SE70P161 DATA SHEET '

384

TMS7000 FAMILY MICROCODE SUPPORT:

SPNVOO1 TMS7000 CUSTOM MICROCODING PRODUCT DESCRIPTION
MP061 TMS7000 FAMILY MICROARCHITECTURE USER’S GUIDE
SPNUOO1 TMS7000 MICROCODE DEVELOPMENT GUIDE

MP457 TMS7000 FAMILY MICROASSEMBLER USER'S GUIDE
MP459 TMS7000 MICROPROGRAMMERS REFERENCE CARD

TMS7000 FAMILY SOFTWARE SUPPORT:

SPNUOO2B TMS7000 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

MPB45 TMS7000 SOFTWARE DEVELOPMENT SYSTEM INTRODUCTION GUIDE
MPB52 - TMS7000 SOFTWARE DEVELOPMENT SYSTEM INSTALLATION GUIDE
MPB10 TMS7000 IBM CROSS SUPPORT REFERENCE GUIDE

MPB53 TMS7000 VAX CROSS SUPPORT REFERENCE GUIDE .

MPB38 TMS7000 EMULATOR INSTALLATION AND OPERATION GUIDE

MPB37 TMS7000 EMULATOR COMMAND LANGUAGE GUIDE

TMS7000 FAMILY APPLICATION NOTES:

SPNAOO1 INTERFACING TMS7000 TO PERIPHERAL AND MEMORY DEVICES
"SPNA002 TMS7000 BUS ACTIVITY CHART

SPNAOO3 TMS7000 KEYBOARD INTERFACE APPLICATION REPORT
SPNUO003 8051 — TMS7041 SYSTEM CONVERSION USER’'S GUIDE

104 WORLDWIDE REGIONAL TECHNOLOGY CENTERS (RTC)

Atlanta Boston Chicago

Texas Instruments, Inc. Texas Instruments, Inc. Texas Instruments, Inc
3300 N.E. Expressway 400-2 Totten Pond Rd. 515 W. Algonquin Rd.
Building 8 - Waltham, MA 02154 Arlington Heights, IL
Atlanta, GA 30341 (617) 890-6671 (312) 640-2909

(404) 452-4682 (617) 890-4271 Hotline (312) 228-6008 Hotline
(404) 452-4686 Hotline

Northern California Southern California Dallas

Texas Instruments, Inc. Texas Instruments, Inc. Texas Instruments, Inc.
5353 Betsy Ross Drive 17981 Cartwright Rd. 10001 E. Campbell Road
Santa Clara, CA 95054 Irvine, CA 92714 Richardson, TX 75081
(408) 748-2220 (714) 660-8140 (214) 680-5066

(408) 980-0305 Hotline (714) 660-8164 Hotline (214) 680-5096 Hotline
Bedford, England Freising, West Germany ,

Texas Instruments, LTD Texas Instruments Deutschland GmbH

Manton Lane Haggertystr. 1

Bedford, MK41 7PA 8050 Freising

0234 223000 : 08161 800

Tokyo, Japan Hannover, West Germany

Texas Instruments Japan Texas Instruments Deutschland GmbH

Aoyama Fuji Bidg. Kirchhorsterstr Str 2

6-12, Kita Aoyama 3 Chome 3000 Hannover 51

03-498-2111 0511/648021

184 ' 10-11

10-12

WORLDWIDE REGIONAL TECHNOLOGY CENTERS (Concluded)

Stockholm, Sweden t Cedex, France

Nordic Technology Center Paris Technology Center
Texas Instruments Texas Instruments
Sverigefilialen 8-10 Avenue Morane Saulnier
Norra, Hamnvagen 3 Boite Postale 67

Box 39103 78141 Velizy-Villacoublay
S-100 54 Stockholm, Sweden Cedex, France

8-235480 39-46-9712

Rieti, Italia

Rieti Technology Center
Semiconduttori -

Italia S.P.A.

Viale Delle Scienze, 1
02015 Cittaducale
Rieti, Italia

746-6941

384

A1

APPENDIX A
~ INSTRUCTION EXECUTION TIMES

INSTRUCTION EXECUTION TIMES

Each instruction of a TMS7000 family device requires from 1 to 4 bytes of program space.
Execution time varies from 4 to 48 machine cycles with most instructions requiring less
than 9 cycles to complete. Table A-1 summarizes the byte and machine cycle counts for
each instruction. A variety of addressing modes are provided for each instruction, and the
byte and cycle count for each is indicated. The form of the entries is byte count/cycle count.
Table A-2 is the instruction opcode set.

A1

TABLE A-1 — INSTRUCTION EXECUTION TIMES

OPERATION ADDRESSING MODES
A B RF PF @ lab *RF @ lab (B) OTHER NOTES
ADC B,—— 1/5
RF,—— 2/8 2/8 3/10
%iop,—— 2/7 217 3/9
ADD B,—— 1/5
RF,—— | 2/8 2/8 3/10
%iop,—— 2/7 2/7 3/9
AND B,~— 1/5
RF,—— 2/8 2/8. 3/10
. %iop,-— - 2/7 2/7 3/9)
ANDP A= 2/10
8,—— : 2/9
%iop,—— 3/11
BTJO B,~— 2/7 . ()
RF,—— 3/10 3/10 4/12 .)
%iop,—— 3/9 3/9 4/11
BTJOP A—— 311 : (1)
: B—- 3/10
%iop, -~ 4/12
BTJZ - B,—- e m
RF,—— 3/10 3/10 412
%iop,—— 3/9 3/9 4/11
8TJZP A 3/11 . (1)
B,-— 3/10
%iop,—— 4/12
BR — 3/10 2/9 3/12
cALL - 3/14 213 3/16
CLR - 1/5 1/5 2/7 . .
CLRC —— 1/6
CcMP ‘B,—- 1/5
RF,- - 2/8 2/8 3110
%i0p,— ~ 2/7 2/7 3/9 ! .
CMPA —— . 3/12 2/ 3/14
DAC B,~— 17
RF,—-- 2/10 2/10 3/12
%iop, —— 2/9 2/9 3/11
DEC - 1/5 1/5 217
DECD =— 1/9 1/9 2/11
DINT - 1/5
DINZ - 2/7 217 3/9 1 m
DSB8 B, - 17
RF, -~ 2/10 2/10 3/12
%iop,—— 2/9 2/9 3/
EINT - ' . : 1/5
IDLE - 1/6+
INC — 1/5 1/5 2/7
INV - 1/5 1/5 217
JMP -) 217)
Jend lab N 2/5 (1,2)
LDA - 3/ 2/10 3/13)
LDSP = 1/5
MOV A 1/6 2/8
B,~— 1/5 2/7
RF,—— ,2/8 2/8 3/10
%top,~ — 217 2/7 3/9
MOVD %iop,~— 4/15
%iop (B),- — 417
RF,— - : 3/14
MOVP A-— 2/10
B—— 2/9
%iop,— -~ A 3/11
PF,—— 2/9 2/8

A-2

384

TABLE A-1 — INSTRUCTION EXECUTION TIMES (CONTINUED)

OPERATION

ADDRESSING MODES .
. A B RF PF @ 1ab * RF @ lab (B) OTHER NOTES
MPY 8,—-— 1/44
RF,~— ——1 2/47 2/47 3/49
%iop,~— 2/46 2/46 3/48
NOP - 1/4
OR 8,—— 1/5
RF,—— 2/8 2/8 3/10
%iop,—— 207 217 3/9
ORP A—— 2110
B,—~ 219
%iop,—— 311
POP —_ 1/6 1/6 2/8 .
POP ST — 1/6
PUSH - 1/6 16 2/8 .
PUSH ST _ 116
RETI - 1/9
RETS —_ 177
RL - 1/8 1/5 207
RLC — 1/6 “1/5 2/7
RR —- 1/6 1/5 217
RRC - 1/8 1/5 L27
SBB B,—— 1/5 .
: RF,—— 2/8 2/8 3/10
%iop,-—-— 217 217 3/9
SETC —— 1/5
STA — - 3 2/10 313
STSP - 1/6
SuB B,—- 1/5
RF,—- 2/8 2/8 3/10
%iop,~— S2/7 2/7 3/9
SWAP - 1/8 1/8 2/10
TSTA - 1/6
TSTB - 1/5
TRAPn - 1/14
XCHB —_ 1/6 1/6 2/8
XOR 8,—— 1/8)
RF,—- 2/8 2/8 3/10
%iop, - - 217 2/7 3/9
XORP A=— 2/10
B,—— 2/9
%iop,— - 3
NOTES:
{1 Add 2 to cycie count if branch is taken.
(2) Conditional Jump Instructions (see Table 3-3).
NOTATION: Data Form — number of bytes/number of internal clock cycles,
A A register
B B register
RF Register File number
PF Peripheral File number
lab Label
iop Immediate operand

A-3

ADC
ADD
AND
ANDP
BTJO
BTJOP
BTJZ
BTJZP

CALL
CLR
CLRC
CMmP
CMPA
DAC
DEC
DECD
DINT
DJNZ
DSB
EINT
IDLE
INC
INV
JMP
JCIHS
JNNLT
JNCHL
JNZIINE
JPUGT
JPZIJGE
JZUEQ
LDA
LDSP
MoV

! MOVD
MOVP
MPY
NoP

ORP
POP
PUSH
RET!
RETS
RL
RLC
RR
RRC
SBB
SETC
STA
STSP
suB
SWAP
TSTA
TSTB
TRAP
XCHB
XOR
XORP

INSTRUCTION — OPCODE SET

e DUAL OPERAND PERIPHERAL [EXTENDED] OTH
=a 2
g|a clele|lelelnlE] Bl 0| & (&
lalz|2|8|E|5]e clalalcial el alElB T |4
J.\ <|@|<|a o |a e £ § 2 5 5
_| = 3]
69119 |29 |39 |59 49)] X
8 [is |78 [as {58 4a X
[13]23[33]s3]43 X
93 A3 X
66|16 |26 |38 |56 |48 X
85| [96] |Ag X
17127 {37157)47 X
87 97 A7 X
8C|9C[AC
SE|9E|AE
B5(C5|05 X
B0 | x
10 [20 (3D [5014D X
80[90[AD X
1€ [2€ [9E [SE 4 X
B2[C2[D2 X
BB|CB|DB X
06 | X
BA|CA|DA -
[F [2F [3F [5F [4 X
05 [X
ot
B83[C3|D3 X
B4[C4[DA X
E0
E3
E1
7
6
E4
ES
E2
8A[9A |AA X
00
(12122 a2 |52 |42 X
88|98 {A8 X
82180 [92(91]A2 X
1CJ2C |3C|5C|4C X
0
14024 |34 |54 |44 X
1 84| (94| |Aa X
E§'csﬁﬁ 08 | X
B8|C8|D8 0E | X
0B
0A
BE|CE|DE X
BF[CF[OF X
BC|CC|pC X
BD[CD (DD X
X
07 (X
88|98 [AB X
11 — 109
1A [2A I13A [5A J4A X
B7[C7|D7 X
B0 {X
C1 X
E8-FF
B6| |06 X
1 [75 |25 [35 |55 |45] [X
- 85] 1951 [AS I X

ADC
ADD
AND
ANDP
BTJO
BTJOP
BTJZ
BTJZP
BR
CALL
CLR
CLRC
cMmpP
CMPA
DAC
DEC
DECD
DINT
DJINZ
DsB
EINT
IDLE
INC
INV
JMP
JCIJHS
JNILT
JNCIL.
JNZINE
JPUGT
JPZIGE
JZiEQ
LDA
LDSP
MOV
MOvVD
MOVP
MPY
NOP

ORP
POP
PUSH
RETI
RETS
AL
ALC

RRC
SBB
SETC
STA
STSP
SuB
SWAP
TSTA
TSTB
TRAP
XCHB
XOR
XORP

APPENDIX B
TMS7000 BUS ACTIVITY CHART

The following tables describe the information present on the address and data buses during
each cycle of each instruction. This informatiop is useful to:

1) Document the contents of the address and data buses and control pins on a cycle by
cycle basis.

2) Calculate instruction execution times.
3) Compare actual results to expected results.
4) Gain a better understanding of microcomputer operation.

The information on the address and data buses, as well as the control pins, can be externally
monitored only when the device is in either the full expansion, peripheral expansion,
microprocessor, or system emulator modes.

Because the TMS7000 is implemented using a microcoded architecture, the microcode that
fetches the instructions and their data can be shared by many instructions. This allows the
instruction set to be grouped according to the types of operands the instructions require and
how they are fetched. The instruction set bus activity chart will be presented according to the
different instruction groups supported. Each instruction group is based on one of the
addressing modes supported by the TMS7000. The different addressing modes supported by
the TMS7000 are as follows:

1) Double Operand Functi(;ns (DOPFUN). These instructions require 2 operands for
execution. The-instructions in this group are: ADC, SUB, SBB, MOV, AND, OR, XOR,
BTJO, BTJZ, ADD, CMP, DAC, DSB, and MPY.

2) Miscellaneous Functions {MISCFUN). These instructions need no operands because
the instruction function is implied in the opcode. Contained in this group are: NOP,
IDLE, EINT, DINT, SETC, POP ST, STSP, RETS, RETI, LDSP, and PUSH SP.

3} Long Addressing Functions (LAFUN). This group of instructions requires a sixteen bit
address which is used to address the entire 64K address range of the TMS7000. The
instructic_)ns in this group are: LDA, STA, BR, CMPA, and CALL.

4) Single Operand Functions-Special (SOPFUNS). These instructions needv 1 operand
for execution. The instructions in this group are: DEC, INC, INV, CLR, XCHB, SWAP,
MOV A,B, MOV A, RN, MOV B, RN, TSTA/CLRC, and TSTB.

5) Single Operand Functions - Normal(SOPFUNN). These instructions need one
operand for execution. Because of the way CPU control is implemented and the
number of supported single operand instructions, two groups of single operand -
functions are needed. The instructions that belong to this group are: PUSH, POP,
DJNZ, DECD, RR, RRC, RL, and RLC. '

6) Double Operand Functions, Peripheral (DOPFUNP). These instructions require two

operands and interact with the TMS7000’s peripheral ports. The instructions are:
MOVP, ANDP, ORP, XORP, BTJOP, and BTJZP.

B-1

B-2

7) Move Double (MOVD). MOVD moves a register pair to a register pair.

8) Relative Jumps. These conditional and unconditional jumps alter program flow by
adding or subtracting an 8 bit value from the program counter.

9) ‘ Traps (TRAP). This group of instructions is used to perform subroutine calls.

Each instruction’s execution consists of three basic parts: instruction acquisition, operand

. addressing (addressing modes), and functional operation on the operands (functional modes).

To construct the cycles required to execute any instruction, start with the instruction
acquisition function as shown in Table B-2. These three cycles are needed to fetch the
instruction opcode, increment the program counter, and pre-fetch the B register. Next,
construct the number of addressing mode cycles needed to fetch the instruction’s operands by
looking up which instruction group the instruction belongs to in Table B-1 and then referencing
that table (Tables B-3 through B-11). Each table consists of two parts: the addressing mode
and the functional part. After the operand addressing cycles are found, the second half of the
table will detail the cycles involved with the functional part of instruction execution. Add all
these cycles together to obtain the bus activity present during that instruction’s execution. As
an example of this, Figure B-1 shows the execution steps involved with the instruction
"“ADD R5,R6"".

ADDR MODE CYCLE ADDRESS BUS DATA BUS RW
ALL INSTRUCTIONS 1 Opcode address Irrelevant data R

2 Opcode address Instruction Opcode R

3 Breg. qddress B reg. contents R

The first two cycles fetch the ADD instruction’s opcode and increment the program counter.
The third state prefetches the B register to speed up instructions that reference the B register.
The addressing mode is entered next. This information comes from Table B-2.

i

ADDR MODE IS Rn, Rn CYCLE °~ ADDRESSBUS DATA BUS RW
MOV,AND,OR,XOR,BTJO, 1 Opcode Address + 1 Irrelevant Data R
DAC,ADD,SUB,SBB,MPY, 2 Opcode Address + 1 Rsrc address R
BTJZ,CMPDSB 3 Rsrc address Rsrc data R

4 Opcode address + 2 Irrelevant data . R

5 Opcode address + 2 Rdest address R

6 Rdest address Operand data R

FIGURE B-1 — ADD R5, R6 EXAMPLE

The ADD instruction is a double operand function requiring two operands. Double operand
functions are described in Table B-3. Cycles 1 and 2 of this mode read the “R5'’ operand
address. Cycle 3 reads the register contents. Note that the internal register read {or a write) is a
one cycle operation. All other reads/writes are two cycles long, requiring that the address bus
be held stable for two complete machine cycles. Each machine cycle corresponds to one clock
period of the CLKOUT signal {pin 2), starting with the rising edge of this signal. Cycles 4 and 5
read the Rdest address, ““R6’’, which is where the resultant value will be left. Cycle 6 reads the
contents of register R6. At this point, both operands are inside the CPU and the indicated
function can be performed.

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS RW

ADD 1 Register address Register data w

The functional portion of the “ADD’’ instruction is detailed in the second half of Table B-3. The
second half of each table describes the functional portion for each instruction group. Once both
operands are inside the CPU, only one cycle is needed to perform the add operation. The result
is written back to register R6 during this cycle. A total of 10 cycles was required to perform an
"“ADD R5, R6"’.

The instruction acquisition sequence is common to all instructions, and therefore is presented
separately for clarity. Each addressing mode will be presented followed by the functional

portion of each.instruction’s execution.

The tables are arranged in the foliowing order:

TABLE TABLE CONTENTS

B-1 Alphabetical Index Into Instruction Groups
B-2 Instruction Acquisition Functions

B-3 : Double Operand Instructions

B-4 Miscellaneous Instructions

B-5 Long Addressing Instructions

B-6 Single Operand Instructions - Special
B-7 Single Operand Instructions - Normal
B-8 Double Operand Instructions - Peripheral
B-9 Move Double Instructions

B-10 Relative Jump Instructions

B-11 Trap Instructions

B-12 Reset Function

Each table will consist of two parts: the addressing mode portion and the functional portion.

Table B-1 is provided as an index into the rest of the tables. Table B-1 lists all standard
TMS7000 instructions in alphabetical order with the correponding addressing mode.

Each table indicates whether a read or a write is performed that cycle. The RAWsignal will be high
for reads and low (logic zero level) for writes. The memory control signals, ALATCH and ENABLE, are
asserted during both reads and writes. Reference the memory interface timing diagrams contained in
Section 4 of this manual for further information.

B-3

B4

' TABLE B-1 — ALPHABETICAL INDEX INTO INSTRUCTION GROUPS

INSTR ADDR MODE TABLE# FUNCTION
ADC DOPFUN 3 ADD WITH CARRY
ADD DOPFUN 3 ADD
AND - DOPFUN 3 AND ‘
ANDP DOPFUNP 8 AND VALUE WITH PERIPHERAL PORT
BTJO DOPFUN 3 TEST BIT AND JUMP IF ONE
BTJOP DOPFUNP 8 TEST PERIPHERAL BIT & JUMP IF ONE
BTJZ DOPFUN 3 TEST BIT AND JUMP IF ZERO
BTJZP DOPFUNP 8 TEST PERIPHERAL BIT & JUMP IF ZERO
BR LAFUN 5 LONG BRANCH
CALL LAFUN 5 SUBROUTINE CALL
CLR SOPFUNS 6 CLEAR
CLRC SOPFUNS 6 CLEAR STATUS CARRY BIT
CMmP DOPFUN 3 COMPARE VALUE
CMPA *LAFUN .5 COMPARE VALUE WITH A REGISTER
DAC DOPFUN 3 DECIMAL ADD WITH CARRY
DEC SOPFUNS 6 DECREMENT VALUE
DECD SOPFUNN 7 DECREMENT DOUBLE REGISTER PAIR
DINT MISCFUN 4 DISABLE INTERRUPTS
DJUNZ SOPFUNN 7 DECREMENT AND JUMP IF NOT ZERO
DsB DOPFUN 3 DECIMAL SUBTRACT
EINT MISCFUN 4 ENABLE INTERRUPTS
'IDLE MISCFUN 4 IDLE (PC IS HELD UNCHANGED)
INC SOPFUNS 6 INCREMENT
INV SOPFUNS 6 INVERT
JMP REL JUMPS 10 UNCONDITIONAL RELATIVE JUMP
Jend REL JUMPS 10 CONDITIONAL RELATIVE JUMPS (JN/JLT,JZ/JEQ,
JL,JC/JHS,JP/JGT,JPZ/JGE,JNZ/INE,JNC)
LDA LAFUN 5 LOAD A REGISTER FROM LONG ADDRESS
LDSP MISCFUN 4 LOAD STACK POINTER
Mov DOPFUN 3 MOVE A DATA VALUE
SOPFUNS 6

| MOVD MOVD 9 MOVE A 16 BIT VALUE TO REG. PAIR
MOovP DOPFUNP 8 MOVE A DATA VALUE TO/FROM PORT
MPY DOPFUN 3 MULTIPLY TWO 8 BIT VALUES
NOP MISCFUN 4 NO OPERATION
OR DOPFUN 3 OR TWO VALUES TOGETHER
ORP DOPFUNP 8 OR PORT VALUE WITH ANOTHER VALUE
POP SOPFUNN 7 POP A VALUE OFF THE STACK
POP ST MISCFUN 4 POP STACK VALUE INTO STATUS REG.
PUSH SOPFUNN 7 PUSH A VALUE ONTO THE STACK
PUSH ST MISCFUN 4 PUSH STATUS REGISTER ONTO STACK
RETI MISCFUN 4 RETURN FROM INTERRUPT
RETS MISCFUN 4 RETURN FROM SUBROUTINE
RL SOPFUNN 7 ROTATE LEFT)
RLC SOPFUNN 7 ROTATE LEFT THROUGH CARRY BIT
RR SOPFUNN 7 'ROTATE RIGHT
RRC SOPFUNN 7 ROTATE RIGHT THROUGH CARRY BIT
SBB DOPFUN 3 SUBRACT WITH BORROW
SETC MISCFUN 4 SET CARRY BIT

TABLE B-1 — ALPHABETICAL INDEX INTO INSTRUCTION GROUPS (CONTINUED)

INSTR ADDR MODE TABLE # FUNCTION

STA LAFUN 5 STORE A REGISTER TO LONG ADDRESS

STSP MISCFUN 4 STORE STACK POINTER TO B REGISTER

SuUB DOPFUN 3 SUBTRACT ,
SWAP SOPFUNS 6 SWAP NIBBLES OF AN 8 BIT VALUE)
TSTA SOPFUNS 6 TEST A REGISTER AND SET STATUS

TSTB SOPFUNS 6 TEST B REGISTER AND SET STATUS

TRAPn TRAP 1 TRAP TO SUBROUTINE

XCHB SOPFUNS 6 EXCHANGE VALUE WITH B REGISTER

XOR DOPFUN 3 EXCLUSIVE OR .

XORP DOPFUNP 8 EXCLUSIVE OR WITH PERIPHERAL POR

TABLE B-2 — INSTRUCTION ACQUISITION MODE - OPERATION CODE FETCH

Go to Addressing Mode (Tables 3 through 11)

ADDR MODE CYCLE ADDRESSBUS - DATA BUS RW
ALL INSTRUCTIONS 1 . Opcode address Irrelevant data R
2 Opcode address Instruction Opcode R
If an interrupt is pending, go to interrupt code listed below
3 Breg. address Breg. contents R

NOTES: This mode is executed for all instructions to fetch the instructions’s operation code, or opcode.
. The B register is prefetched to speed up the execution of instructions that reference the Bregister.

The Program Counter is incremented during cycles 1 and 2 of this mode.

Eal ol S

passed immediately to the interrupt handling code shown below.

During cycle 2 an interrupt check is performed. If an interrupt is detected, cycle #3 is not executed. Control is

B-5

B-6

TABLE B-2 — INSTRUCTION ACQUISITION MODE-INTERRUPT HANDLING

ADDR MODE CYCLE ADDRESS BUS DATA BUS RW
INTERRUPTS - 1 Irrelevant data Irrelevant data —
2 lrrelevant data Irrefevant data -
Jump to cycle number 5 if opcode was IDLE (>01). If it was
an IDLE instruction, do not decrement PC because desired
return is past the IDLE instruction.
3 Irrelevant data Irrelevant data -
4 : Irrelevant data Irrelevant data -
5 SP register Status register w
6 Irrelevant data Irrelevant data -
— Jump to Trap group at Table B-11 —
NOTES: 1. The Program Counter is decremented during cycles number 3 and 4. This is done because the instruction that

the PC had pointed at has not been executed.

2. The status register is saved on the stack during cycle #5. When control is passed to the Trap group {at Table

B-11) the program counters will be saved.

-TABLE B-3 — DOUBLE OPERAND FUNCTIONS - ADDRESSING MODES

Instructions: ADD,ADC,AND,BTJO,BTJZ,CMP,DAC,DSB,MOV,MPY,OR,SBB,SUB, XOR

Go To Functional Modes For This Addressing Group

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opcode Address + 1 Irrelevant Data R
Rn, A 2 Opcode Address + 1 Rn Address R
’ 3 Rn Address Rn data R
4 A register address A register data R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
’ . 1 Opcode Address + 1 Irrelevant Data’ R
%n, A 2 Opcode Address + 1 Immediate value (%n) R
3 A register address Aregister data R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opcode Address + 1 Irrelevant data R
Rn,B .2 Opcode Address + 1 Rn address R
3 Rn address Rn data R
4 B register address Operand data R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opcode Address + 1 Irrelevant Data R
Rn, Rn 2 Opcode Address + 1 Rsrc address R
3 Rsrc address Rsrc data R
4 Opcode address + 2 Irrelevant data R
5 Opcode address + 2 Rdest address R
) 6 Rdest address Rdest data R
Go To Functional Modes For This Addressing Group :
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opcode Address + 1 Irrelevant Data R
%n, B 2 Opcode Address + 1 Immediate data R
3 B register address Breg. data R
.Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
B, A ’ 1 A register address R

A register data

B-7

TABLE B-3 — DOUBLE OPERAND FUNCTIONS - FUNCTIONAL MODES (CONTINUED)

Instructions: ADD,ADC,AND,BTJO,BTJZ,CMP,DAC,DSB,MOV,MPY,0OR,SBB,SUB,XOR

Jump To Instruction Acquisition Sequence

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opcode Address + 1 Irrelevant Data R
%n, Rn 2 Opcode Address + 1 Immediate data R
{ 3 Opcode Address + 2 Irrelevant data R
4 Opcode Address + 2 Rn address R
5 Rn address Rn data R
Go To Functional Modes For This Addressing Group
MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS RW
MoV 1 Register address Register data w
AND 1 Register address Register data w
OR 1 Register address Register data w
XOR 1 Register address Register data w
ADD 1 Register address Register data w
ADC 1 Register address Register data w
suB 1 Register address Register data w
SBB 1 Register address Register data w
CMP 1 Irrelevant data Irrelevant data -
DAC 1 Register address Register data w
DAC 2 Register address Register data R
DAC 3 Register address Register data W
DSB 1 Register address Register data W
DSB 2 Register'address Register data R
DSB 3 Register address = ' Register data w
MPY 1 Breg. address Breg. data "
MPY 2 Irrelevant data Irrelevant data —
MPY 3 Irrelevant data Irrelevant data —
MPY 4 Breg. address B reg. data R
MPY 5 Breg. address Breg. data W
MPY g iterations 6 Irrelevant data Irrelevant data -
MPY 7 Irrelevant data Irrelevant data -
MPY" 8 Areg. address MSH mult. product
MPY 9 Irrelevant data Irrelevant data -
BTJO,BTJZ 1 Irrelevant data " Irrelevant data -
BTJO,BTJZ 2 Opcode address + 1 Irrelevant data R
BTJO,BTJZ 3 Opcode address + 1 Jump PC offset R
BTJO,BTJZ 4 Opcode address + 1 Jump PC offset R
BTJO,BTJZ . 5 Irrelevant data Irrelevant data -
BTJO,BTJZ 6 Irrelevant data Irrelevant data -
BTJO,BTJZ 7 Irrelevant data Irrelevant data —

TABLE B-3 — DOUBLE OPERAND FUNCTIONS - FUNCTIONAL MODES (CONTINUED)

NOTES: 1. MPY - This microcode iterates to berform the multiply. The functional portion of the MPY instruction requires 40
states for execution.
2. BTJO,BTJZ - Not all states are executed. Either state 2 or 3 is executed but not both. The same applies to states
6and 7.)
3. Where referenced, Rsrc is the first operand listed and Rd is the second. The resultant value will be stored at the -
Rd address.

TABLE B-4 — MISCELLANEOUS FUNCTIONS - ADDRESSING MODES

Instructions: DINT,EINT,IDLE,LDSP,NOP,POP ST,PUSH ST,RETI,RETS,SETC,STSP

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS) RW

1 SP contents Stack value R
Go To Functional Modes For This Addressing Group

TABLE B-4 — MISCELLANEOUS FUNCTIONS - FUNCTIONAL MODES

Instructions: DINT,EINT,IDLE,LDSP,NOP,POPST,PUSHST,RETI,RETS,SETC,STSP

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS RW
EINT 1 Irrelevant data Irrelevant data —
DINT 1 Irrelevant data Irrelevant data —
SETC 1 Irrelevant data Irrelevant data —
POPST 1 SP contents Stack data R
POP ST 2 Irrelevant data Irrelevant data -
STSP 1 Irrelevant data {rrelevant data -
STSP 2 Breg. addr SP contents w
RETS 1 Irrelevant data ' lIrrelevant data -
RETS 2 Register address Register data R
RETS 3 Irrelevant data Irrelevant data —
RETI 1 Irrelevant data Irrelevant data —
RETI 2 Register Address Register data R
RETI 3 Irrelevantdata - Irrelevant data -
RET! 4 SP contents Register data R
RETI 5 Irrelevant data Irrelevant data -
LDSP 1 Irrelevant data Irrelevant data —_
PUSH ST 1 Irrelevant data Irrelevant data -
PUSH ST 2 SPcontents - Status register w
IDLE 1 Irrelevant data Irrelevant data —
IDLE 2 ® Irrelevant data Irrelevant data -
Jump To Instruction Acquisition Sequence

NOTE: 1. NOP does not have an execution state. From the addressing mode control is passed back to the instruction

acquisition microcode.

B-9

B-10

TABLE B-5 — LONG ADDRESSING FUNCTIONS - ADDRESSING MODES

Instructions: BR, CALL, CMPA, LDA, STA

Go To Functional Modes For This Addressing Group

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opcode address + 1 Irrelevant data. R
2 Opcode address + 1 MSH of long address R
@n 3 Opcode address + 2 Irrelevant data R.
4 Opcode address + 2 LSH of Ibng address R
5 Irrelevant data Irrelevant data -
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opqode address + 1 Irrelevant data R
*Rn 2 Opcode address + 1 Rn address R
3 Rn address LSH of long address R
4 Rn - 1 address MSH of long address R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Irrelevant data Irrelevant data -
@n(B) 2 Opcode address + 1 lrrelevant data R
3 Opcode address + 1 MSH of long address R
4 Opcode address + 2 Irrelevant data R
5 Opcode address + 2 LSH of long address R.
6 Irrelevant data Irrelevant data -
7 . Irrelevant data Irrelevant data -

TABLE B-5 — LONG ADDRESSING FUNCTIONS - FUNCTIONAL MODES (CONTINUED)

Instructions: BR, CALL, CMPA, LDA, STA

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS RW
LDA 1 Operand‘ address " Irrelevant data R
LDA 2 ‘Operand address Operand data R
LDA 3 A reg. address Operand data w
STA 1 A reg. address A reg. contents R
STA 2 Operand address Areg. contents w
STA 3 Operand address A reg. contents w
BR 1 Irrelevant data Irrelevant data —
BR 2 Irrelevant data Irrelevant data —
CMPA 1 Operand address Irrelevant data R
CMPA 2 Operand address Operand data R
CMPA 3 A reg. address A reg. contents R
CMPA 4 lrrelevant data Irrelevant data -
’CALL 1 lrrelevant data Irrelevant data -
CALL 2 SP contents PCH contents w
CALL 3 Irrelevant data Irrelevant data -
CALL 4 SP +1 PCL w
CALL 5 Irrelevant data Irrelevant data .
CALL 6 Irrelevant data Irrelevant data -
Jump To Instruction Acquisition Sequence
TABLE B-6 — SINGLE OPERAND FUNCTIONS, SPECIAL - ADDRESSING MODES

Instructions: * CLR; DEC; INC; INV; MOV A,B; MOV A,RN; MOV B,RN;

SWAP; TSTA/CLRC; TSTB; XCHB; :
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
A 1 A register address " Areg. contents R

Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
B " B register address Breg. contents R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opcode address + 1 Irrelevant data R
Rn 2 . Opcode address + 1 Rn address R
3 Rn address Rn data R

Go To Functional Modes For This Addressing Group

B-11

Instructions:

TABLE B-6 — SINGLE OPERAND FUNCTIONS, SPECIAL - FUNCTIONAL MODES

CLR; DEC; INC; INV; MOV A,B; MOV A,RN; MOV B,RN;

SWAP; TSTA/CLRC; TSTB; XCHB;

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS RW
DEC 1 Register address Register Data w
INC 1 Register address Register Data w
INV 1 Register address Register Data w
CLR 1 Register address Register Data w
XCHB | 1 Breg. address Register Data w
XCHB 2 Register address Register Data w
SWAP 1 Irrelevant data Irrelevant data -
SWAP 2 Irrelevant data Irrelevant data -
~SWAP 3 Irrelevant data -Irrelevant data -
SWAP 4 Register address Register data w
MOV A,B 1 A reg. address Areg. data R
MOV A,B 2 B red. address Areg. data w
MOV A,Rn 1 Areg. address | Areg. data R
MOV A,Rn 2 Register address Areg. data w
MOV B,Rn 1 Register address Breg. data w
TSTA/CLRC 1 Areg. address Areg. data R
TSTA/CLRC 2 Register address Register data w
TSTB 1 Breg. address Register.data w
Jump To Instruction Acquisition Sequence
TABLE B-7 — SINGLE OPERAND FUNCTIONS, NORMAL - ADDRESSING MODES
Instructions: DECD, DJNZ, POP, PUSH, RL, RLC, RR, RRC
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
A 1 A reg. address Areg. data R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
B 1 B reg. address Breg. data R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
. 1 Opcode address + 1 Irrelevant data R
Rn - 2 Opcode address + 1 Rn address R
3 Rn address Rn data R

Go To Functional Modes For This Addressing Group

B-12

TABLE B-7 — SINGLE OPERAND FUNCTIONS, NORMAL - FUNCTIONAL MODES

Instructions: DECD, DJNZ, POP, PUSH, RL, RLC, RR, RRC

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS RW
PUSH 1 Irrelevant data Irrelevant data —
PUSH 2 SP contents Register data W
POP 1 SP contents Register data R
POP 2 Register data Register data w
RR 1 Register data Register data w
RRC 1 Register data Register data w
RL 1 Register data. Register data w
RLC 1 Register data Register data w
DECD 1 Register data Register data w
DECD 2 Irrelevant data Irrelevant data
DECD 3 Irrelevant data Irrelevant data —
DECD 4 Register address Register data R
DECD -5 Register address ‘Register data w
DJNZ 1 Register address Reg. data- 1 w
DJNZ 2 Opcode address + 1 Irrelevant data R
If resultis not = O, jump to state 4
DJNZ 3 Opcode address + 1 Jump PC offset R
Jump to instruction acquisition sequence
DJNZ 4 Opcode address + 1 . Jump PC offset R
DJNZ 5 Irrelevant data Irrelevant data -
If jump PC offset is positive, jump to state 7
DJNZ 6 Irrelevant data Irrelevant data -
Jump To Instruction Acquisition Sequence
DJNZ 7) Irrelevant data Irrelevant data —
Jump To Instruction Acquisition Sequence ‘

B-13

B-14

TABLE B-8 — DOUBLE OPERAND FUNCTIONS, PERIPHERAL - ADDRESSING MODES

Instructions: ANDP, BTJOP, BTJZP, MOVP, ORP, XORP

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Areg. address Areg. data R
A, Pn 2 Opcode address + 1 Irrelevant data R
3 Opcode address + 1 Pn address R
4 Pn address Irrelevant data R
5 Pn address . Pn data R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS ‘RW
1 Opcode address + 1 Irrelevant data R
B, Pn 2 Opcode address + 1 Pn address R
3 Pn address Irrelevant data R
4 Pn address Pn data R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE ' CYCLE ADDRESS BUS DATA BUS RW
1 Opcode address + 1 Irrelevant data R
%n, Pn 2 Opcode address + 1 %n (immediate data) R
3 Opcode address + 2 Irrelevant data - R
4 Opcode address + 2 Pn address R
5 Pn address Irrelevant data R .
‘6 Pn address Pn data R
-Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Areg. address Areg. data R
Pn, A 2 Opcode address + 1 Irrelevant data R
3 Opcode address + 1 Pn address R
4 Pn address Irrelevant data R
5 Pn address Pn data R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opcode address + 1 Irrelevant data R
Pn, B 2 Opcode address + 1 Pn address R
3 Pn address Irrelevant data R
4 Pn address Pn data R
Go To Functional Modes For This Addressing Group
NOTES: 1. Aﬂdressing modes "A, Pn” and “Pn, A” fetch their operands the same way.

2. Addressing modes “B, Pn” and “Pn, B” fetch their operaﬁds the same way.

TABLE B-8 — DOUBLE OPERAND FUNCTIONS, PERIPHERAL - FUNCTIONAL MODES

Instructions: ANDP, BTJOP, BTJZP, MOVP, ORP, XORP

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS RW
MOVP X, Pn 1 Pn address Peripheralreg. data W
MOVP X, Pn 2 Pn address . Peripheral reg. data W
MOVP Pn, A 1 Areg. address Register data w
MOVP Pn, B 1 Breg. address Register data w
ANDP 1 Pn address Peripheral reg. data W
ANDP 2 Pn address Peripheral reg. data W
ORP 1 Pn address Peripheral reg. data W
ORP "2 Pn address Peripheralreg. data W
XORP 1 Pn address Peripheralreg. data W
XORP 2 Pn address Peripheralreg. data W
BTJOP 1 Irrelevant data Irrelevant data -
BTJOP 2 Opcode address + 1 . Irrelevant data R -
If bit tested is equal to a 1, jump to state 4
BTJOP N 3 Opcode address + 1 Jump PC offset R
Jump to instruction acquisition sequence
BTJOP -4 Opcode address + 1 Jump PC offset R
BTJOP 5- Irrelevant data Irrelevant data -
If jump PC offset is positive, jump to state 7
BTJOP 6 Irrelevant data Irrelevant data —
Jump To Instruction Acquisition Sequence
BTJOP 7 Irrelevant data Irrelevant data —
BTJZP 1 Irrelevant data Irrelevant data —
BTJZP 2 Opcode address + 1 Irrelevant data R
If bit tested is equal to a O, jump to state 4
BTJZP 3 Opcode address + 1 Jump PC offset R
Jump to instruction acquisition sequence
BTJZP 4 Opcode address + 1 Jump PC offset. R
BTJZP 5 Irrelevant data Irrelevant data —
If jump PC offset is positive, jump to state 7 ‘
BTJZP 6 Irrelevant data Irrelevant data —
Jump To Instruction Acquisition Sequence
BTJZP 7 Irrelevant data Irrelevant data -
Jump To Instruction Acquisition Sequence '
NOTE: 1. MOVP X, Pn - X is either the A or Bregister, or an 8 bit immediate value %n.

B-15

Instructions: MOVD

TABLE B-9 — MOVE DOUBLE - ADDRESSING MODES

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opcode address + 1 Irrelevant data R
%n, Rn 2 Opcode address + 1 MSH of immed. data R
3 Opcode address + 2 Irrelevant data R
4 Opcode address + 2 LSH of immed. data R
5 Irrelevant data Irrelevant data -
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Opcode address + 1 Irrelevant data R
Rn, Rn 2 Opcode address + 1 Rn source address R
3 Rn source address Rn data - LSH R
4 Rn - 1 source addr. Rn - 1 data - MSH R
Go To Functional Modes For This Addressing Group
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RW
1 Irrelevant data Irrelevant data -
2 Opcode address + 1 lrrelevant data R
%n(B), Rn 3 Opcode address + 1 MSH of immed. data R
4 Opcode address + 2 Irrelevant data R
5 Opcode address + 2 LSH of immed. data R
6 Irrelevant data Irrelevant data -
7 . Irrelevant data Irrelevant data —
Go To Functional Modes For This Addressing Group
" TABLE B-9 — MOVE DOUBLE - FUNCTIONAL MODE
MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS RW
MOVD 1 Irrelevant data Irrelevant data -
MOVD 2 Opcode address + 2/3 lIrrelevant data R
MOvVD 3 Opcode address + 2/3 Destination Rn addr . R
MOvVD 4 Irrelevant data Irrelevant data —
MOvVD 5 Dest. Rn address LSH register data w
MOVD 6 Irrelevant data Irrelevant data —
MOvVD 7 Dest. Rn-1 address MSH registerdata W
Jump To Instruction Acquisition Sequence
NOTE: 1. MOVD - States 2 and 3 will be Opcode address + 2 for the *“%n, Rn’’ and the ‘‘Rn, Rn"’ addressing modes.

States 2 and 3 will be Opcode addrress + 3 for the **%n(B), Rn"’ addressing mode.

B-16

TABLE B-10 — RELATIVE JUMPS - ADDRESSING AND FUNCTIONAL MODES

Instructions: JMP,JN/JLT,JZ/JEQ,JC/JHS,JP/JGT,JPZ/JGE,JNZ/INE,JNC,JL

RELATIVE JUMPS CYCLE ADDRESS BUS DATA BUS RW
1 . Opcode address + 1 Irrelevant data R
If jump condition is true, jump to state 3’

2 Opcode address + 1 Jump PC offset R
. Jump To Instruction Acquisition Sequence

3 Opcode address + 1 Jump PC offset R

4 Irrelevant data Irrelevant data -

If jump offset s positive go to state 6

5 Irrelevant data Irrelevant data -
Jump To Instruction Acquisition Sequence

6 Irrelevant data Irrelevant data -
Jump To Instruction Acquisition Sequence

NOTES: 1.

2.

Cycle 1 tests the jump condition. If the jump is true, go to state 3, else execute state 2 and return to the
instruction acquisition sequence. 1
Cycle 4 tests whether the jump offset is positive or negative. If the jump offset is positive, go to state 6.

TABLE B-11 — TRAPS - ADDRESSING AND FUNCTIONAL MODES .

Instructions: Trap O through Trap 23

CYCLE ADDRESS BUS : DATA BUS RW

TRAPS
-Trap O - 7 (Group A) 1 Irrelevant data Irrelevant data -
Trap 8 - 15 {Group B) 1 Irrelevant data Irrelevant data -
Trap 16 - 23 (Group C) 1 Irrelevant data Irrelevant data -
2 Irrelevant data Irrelevant data —
3 Addr. >FFOO + Opcode Irrelevant data R
4 Addr. >FFOO + Opcode LSHtrap vector R
5 Addr. >FFOO + Opcode-1 lrr. data R
6 Addr. >FFOO + Opcode-1 MSH trap vector R
7 Sp contents PCH contents W
8 Irrelevantdata - Irrelevant data —
9 Sp + 1 contents PCL contents w
10 Irrelevant data Irrelevant data -
11 Irrelevant data Irrelevant data -

Jump To Instruction Acquisition Sequence

B-17

B-18

TABLE B-12 — RESET FUNCTION

RESET CYCLE ADDRESS BUS DATA BUS RW
Reset Function 1 Irrelevant data Irrelevant data R
2 Irrelevant data Zeroes —
3 Address >0100 Zeroes w
4 Address >0100 Zeroes w
Jump to Trap Group

NOTES: 1.

o p e

read operationis done the first cycle even though the address and data buses contain irrelevant data. Thisread is
done to protect memory in case a long write was in progress when the Reset action occured.

The write to address >0100 is done to disable all interrupts. «

The Stack Pointer is initialized to >01.

The Program Counter is stored in the register pairs A and B.

The Trap Group code will take the Reset vector from >FFFE and >FFFF and place it in the Program Counter.

The RESET function is initiated when the RESET line of the TMS7000 device is held at a logic
zero level for at least five clock cycles. The Reset function is active at a logic zero level, and
occurs on pin 14 of the device. When an active signal is detected on the RESET line the
following sequence is entered immediately after the current machine cycle is done.

APPENDIX C
TMS7500 DATA ENCRYPTION DEVICE

C.1 DESCRIPTION
The TMS7500 Data Encryption Device (DED)* is a peripheral device designed to perform the
National Bureau of Standards (NBS) Data Encryption Standard (DES) algorithm as specified in
the Federal Information Processing Standard (FIPS) Publication 46. The TMS7500 DED can be
memory mapped on computer systems requiring the use of the Data Encryption Standard. The
TMS7500 is a standard preprogrammed TMS7020 8-bit single-chip microcomputer using the
standard microcoded instruction set. This allows the TMS7500 to be a very cost effective
solution for low cost data encryption requirements. The device comes in a 40-pin package,
requires a single 5 volt supply, and all /O pins are TTL compatible (see Figure C-2). For more
information on the TMS7500 refer to the TMS7500 Data Encryption Device Data Manual.
C.1.1 Typical Applications
The TMS7500 is particularly well suited for any system requiring the use of alow cost, medium
speed data encryption device. It can easily keep up with the data rates required by most
modems and terminals without sacrificing system performance. Some typical applications are:
¢ Computer to terminal communication links
¢ Home banking communication links
® Teller machines for banks
e Portable terminals
e Point of sale terminals
e Small business systems

e Trade market software protection

U Any system requiring a low cost, medium speed Data Encryption Device

* The products covered by this document (TMS7500) are within the group of electronic products that are wholly or partly of U. S. origin or
technology, the export of which is subject to export license control by the U. S. Government. Therefore, prior to exportation, you are obligated to
obtain the required expart license from the U. S. Department of State. (Refer to Title 22, Code of Federal Regulations.)

c-2

Key Features

A number of key features, most of which are user programmable, enables the TMS7500 to
enhance the flexibility of any system using data encryption. The device can store two keys at
one time and operate in two of the standard data encryption modes. Some of the key features
are highlighted below: ‘ ’

Validated by the National Bureau of Standards

Can store both a Master and an Active 64-bit key

Active key can be encrypted or decrypted by the master key internally_
Electronic Codebook (ECB) or Ciphér Feedback (CFB) modes of operation

Dual B-Lwit data bus operation possible; one for plain data, aﬁd one for cipher data
Command register programmable from data bus or from external pins on chip
Status is displayed on external pins and can be read from the data bus

Clock source can be internal or external

On-Chip clock uses crystal or ceramic resonator

" Maximum data rate of 3200 bits per second (ECB) or 400 bits per second (CFB) with 5

MHz clock (divide by 2 option) or 10 MHz clock (divide by 4 option)

Single power source requirement (4 5V)

Cc.2

Cc3

PROCESSOR INTERFACE

All 6ommunications between a host processor and the TMS7500 can be handled through the
main 8 bit data bus. The processor can access the command and status registers, both master
and active key registers, and the 8 byte data buffer through this bus. An optional cipher data
bus can be used to handle all encrypted data. The 7 bit read only status register provides the
host processor with current status information such as:

e Key entered

® Key parity error

® Active key register is being accessed

* Encrypt or decrypt mode

® Electronic codebook or cipher feedback mode

¢ Initialization Vector loaded (for cipher feedback mode)

The five bit write only command register accepts several different commands from the
processsor, including the following commands:

¢ Resetthe DED

e Enter an active key

® Enter active key and encrypt or decrypt under master key

® Encrypt or decrypt data

* Electronic codebook or cipher feedback operation

The master and active key registers are write only registers. This prevents the key value from
ever being discovered once it is entered into the device. Another unique feature is that a new
active key, when entered into the DED, can be encrypted or decrypted by the master key
before it is stored into the active key register. This allows the user to send a new active key to

the DED in encrypted or decrypted form for maximum security.

The 8 byte data buffer is used to handle all plain data and ciphered data sent to and read from
the DED.

EXTERNAL COMMAND AND STATUS DISPLAY
The command and status registers may also be accessed from external pins. Status register

contents are displayed at all times on six status display pins. The command register is
accessible from five external command pins when the external command mode is enabled.

€-3

c4

EXTERNAL

FUNCTIONAL BLOCK DIAGRAM

The functional block diagram of the TMS7500 DED in Figure C-1 illustrates an architecture
organized around certain registers, buffers, and I/O buses which are all linked together through
the data selectors. All of the necessary data path sequences through these selectors are
determined by a 5-bit Command Register and 8 external Control-Handshake pins. The device
status is stored in the Status Register and is also available on the Status Display Pins. The

64-bit key values and encryption data are passed along the 8-bit Main Data Bus and Cipher
Data Bus.

CONTROL AND MAIN CIPHER
HANDSHAKE PINS DATA BUS DATA BUS

5 5 3
COMMAND D COMMAND DATA
PINS
DATA 8
SELECTOR A8
/ 5 :
\ 4 DAT
SELECTOR
5-BIT
COMMAND | 1]
REGISTER 5 INPUT DATA
\ L .
6 CONTROL
- A8
Y 1137 y
g;ﬁﬂi ‘;_ [7 iT sTATUS TO DATA SELECTORS » " 64-BIT INPUT
PING REGISTER 7 STATUSDATA BLOCK
A
64
' ’ —r 64
PARITY STATUS KEY DATA
64-BIT
DES
ACTIVE KEY L
REGISTER e \ —> ALGORITHM
" ol =l < 56
7 Ll < o « //
d 59 KEY DATA A
64 3= y 4
~ » —a
\J 7 4
64-BIT : | o
MASTER KEY
REGISTER s OUTPUT BLOCK
CIPHERED l
KEY DATA

C4

L
s ouTteuT
DATA

FIGURE C-1 — TMS7500 FUNCTIONAL BLOCK DIAGRAM

C.5 PIN-OUT AND PIN FUNCTION

Figure C-2 shows the TMS7500 pin-out. Following is a description of the pin functions.

HANDSHAKE PINS

STATUS DISPLAY
PINS ﬁ

EXTERNAL COMMAND
PINS <

MISC. PINS <

FIGURE C-2 — TMS7500 DATA ENCRYPTION DEVICE PIN-OUT

CFB

D/E

EAKY

. RESET
(' DUALBS
XTAL1
XTAL2
EXTCMD
CMND

K STATUS

DED PIN-OUT

1] 40
20 [36
130] 25
12

30 D 35
aQ P
5 O [J 33
37 d p 32
390 31
380 Tms7500 30
6 O DED 29
S d 40-PIN N 2
8 [) 19
g [20
14 [) 2t
16 O) 22
1704 N 23
180 [24
15 O) 26
10 0 27
i

GND
GND
Ve

MDB7)

MDB6
MDBS
MDB4
MDB3
MDB2
MDB1
MDBO /
CDB7W
CDB6
CDBS
CDB4
CDB3
cDB2
CDB1

$ MAIN DATA BUS

> CIPHER DATA BUS

CDBO /

C-5

C.5.1

C.6.2

C-6

Handshake Pins

SIGNATURE | PIN | 1/0 DESCRIPTION

ODAV 1 [0} Output Data Available-ODAV becomes active (high) when the
DED has data available to be read on one of the data buses. After
one read cycle, ODAV will go inactive {low).

BUSY 2 0 Busy - BUSY becomes active {low) after LD | N is driven active
{low), indicating that data was written to one of the data buses
and is being stored by the DED. The DED will then set BUSY
high. More data should not be fed to the DED until BUSY
becomes inactive (high).

ODAC 12 [Output Data Accepted ODAC is made active (low) when a read

: cycle is executed from either the Main Data Bus or the Cipher
Data Bus. This signal alerts the DED that output data has been
read by the host processor. ODAC is ignored if the DED does not
. have output data available to be read.

LDIN 13 i Load DataIn- LD I N is driven active (low) when a write cycle is
executed to either the Main Data Bus or the Cipher Data Bus.
When LDIN becomes active, the DED will activate BUSY and
store the byte of data. LDIN is ignored if the DED is waiting for
any output data to be read.

Status Display Pins
SIGNATURE PIN /0 DESCRIPTION

ECBST 3 o} Electronic Codebook Status-ECBST reflects the logic level of the
ECB bit in the Command Register.

.CFBST 4 [0} Cipher Feedback Status-CFBST reflects the logic level of the
CFBST bit in the Status Register.

D/E-ST 5 O Decrypt/Encrypt Status-D/E ST reflects the logic level of the
D/E ST bit in the Status Register.

EAKYST 37 [0} Enter Active Key Status-EAKYST reflects the logic level of the
EAKYST bit in the Status Register. :

KYPER 38 o} Key Parity Error - KYPER reflects the Ioglc level of the KYPER bit
in the Status Register.

KYENT 39 o} Key Entered - KYENT reflects the logic level of the KYENT bit in
the Status Register.

C.5.3 External Command Pins .

SIGNATURE

PIN

110

DESCRIPTION

ECB

CFB

EAKY.

RESET

14

Electronic Codebook - If the EXTCMD and CMND pins are active
(high), the ECB bit in the Command Register will reflect the logic
level of the ECB pin.

Cipher Feedback - If the EXTCMD and CMND pins are active
(high), the CFB bit in the Command Register will reflect the logic
level of the CFB pin.

Decrypt/Encrypt - If the EXTCMD and CMND pins are active
(high), the D/E bit in the Command Register will reflect the logic
level of the D/E pin.

Enter Active Key - If the EXTCMD and CMND pins are active
{high), the EAKY bit in the Command Register will reflect the
logic level of the EAKY pin.

Reset - When active (low), the DED is reset, regardless of the
logic level on any other pin. A reset will clear the Status Register,
Status Display pins, Command Register, and both key registers.
Both data buses will be in a high impedance (input) state. After
the RESET pin is initiated, a delay time of at least 174
microseconds is required before any other commands can be
given to the DED.

C.5.4 Cipher Data Bus Pins

SIGNATURE

PIN

110

DESCRIPTION

CDBO-7

19-24,
26,27

/0

Cipher Data Bus - When DUALBS is active 26-27 {high}, the 8-bit
Cipher Data Bus is used to pass all encrypted data to and from
the DED. CDB?7 is the most significant bit and CDBO is the least
significant bit. When DUALBS is inactive (low), the Clpher Data
Bus is disabled and left in a high impedance state.

C-7

C.5.5 Main Data Bus Pins

SIGNATURE

PIN

/0

DESCRIPTION

MDBO-7

28-35

110

. Data Bus is used to pass all data to and from the DED. When

1/0 Main Data Bus - When DUALBS is inactive (low), the Main

DUALBS is active (high), the Main Data Bus is used to pass only
unencrypted data to and from the DED. MDB7 is the most
significant bit and MDBO is the least significant bit.

C.5.6 Miscellaneous Pins

SIGNATURE

PIN

110

DESCRIPTION

CMND

STATUS

EXTCMD

DUALBS

XTAL1

XTAL2

vce

Vss

11

15

16

17

18

25

36,40

Command Register Update - When active (high), CMND will
direct data to the Command Register. The source of command
data is determined by the EXTCMD pin. When CMND is inactive
(low), access to the Command Register is disabled.

Read Status - When STATUS is active (high), the Status Register
contents are available on the Main Data Bus (never on the Cipher
Data Bus). The STATUS pin should be made inactive (low),
before a read cycle is executed to get the status data from the
bus.

External Command - When active (high), all command data is
received from the External Command Pins. When inactive (low),
all command data is received from the Main Data Bus.

Dual Data Bus - When active (high), the DED will communicate
on both the Main Data Bus and the Cipher Data Bus. When
inactive (low), the DED will only communicate on the Main Data
Bus. ‘

Crystal Input 1 - Crystal input for internal clock oscillator. Leave
open if an external clock source is used.

Crystal Input 2 - Crystal input for internal clock oscillator. Also
input for an external clock source (divide by 4 only).

Power Source - Power supply source = +5 V.

Power Ground - Power ground = O V. Both pins must be
grounded.

C-8

384

DUALBS D/E CIPHER DATA MAIN DATA
PIN ‘ BUS BUS
0 NOT USED READ/WRITE
1 NOT USED READ/WRITE
0 -‘READ FROM WRITETO
1 WRITETO READ FROM

c.6

C.6.1

FIGURE C-3 — DED DATA FLOW
STATUS AND COMMAND

The DED has two separate internal registers for command and status data. Most of the status
data is also available on the Status Display Pins. The optional External Command Pins can be
used to load the command register.

DED Status Register

The Status Register contains the operational status of the DED at all times. This is a read only
register. All of the status bits, except for MSGST, are also available on the Status Display Pins.
The DED status register contents can also be read from the Main Data Bus. This is done by
setting the STATUS pin high and then low and doing a Read Cycle. A request for status can be
initiated any time during DED operations, even during a DES calculation or when output data is
available. it is important to note, however, that all other operations stop until the status byte is
read from the DED. All status bits are true when equal to one. The Status Register is cleared
when RESET or RESET2 is initiated. The following is the Status Register layout and bit
descriptions.

STATUS REGISTER

7 6 5 4 .3 2 1 0
0 KYENT MSGST KYPER EAKYST D/E-ST CFBST ECBST
MsB ‘ LSB

KYENT- Key Entered - KYENT indicates when a key has been initially loaded into the DED
after a RESET or RESET2 function. KYENT is cleared upon reset and is set to one
after 8 bytes of key data have been loaded into the Master Key Register.

SGST - Message Start - MSGST indicates that the next 8 bytes loaded into the DED are to
be used as an Intitialization Vector (V) for the CFB mode of operation. MSGST is
set to one when the CFB mode has been initialized in the Command Register. It is
cleared after 8 bytes are loaded in for an IV, upon a reset, or when any other mode
of operation is entered.

c.6.2

c-10

KYPER - Key Parity Error - KYPER indicates that a parity error was detected on the last key
loaded into the DED. This is only to detect key parity errors and will not prevent
continued operations of the DED. KYPER is set to one when parity errors are
detected and will be cleared if the next key entered does not have a parity error or
upon reset.

EAKYST- Enter Active Key Status - EAKYST reflects the logic level of the EAKY bit in the
Command Register.

D/E ST'- Decrypt / Encrypt Status - D/E ST reflects the logic level of the D/E bit in the
Command Register.

CFBST - Cipher Feedback Status - CFBST reflects the logic level of the CFB bit in the
Command Register.

ECBST - Electronic Codebook Status - ECBST reflects the logic level of the ECB bit in the
Command Register. -

DED Command Register

All DED operations are controlled from the Command Register. The Command Register is a
write only register that can be accessed in two different ways, depending on the state of the
EXTCMD pin. When EXTCMD is low, command data is received from the Main Data Bus.
When EXTCMD is high, command data, except for RESET2, is received from the EAKY, D/E,
CFB, and ECB pins on the External Command Bus. The RESET pin ignores the logic level of the
EXTCMD pin and can be activated any time. In either case, the CMND pin determines when
data will be directed to the Command Register. When EXTCMD is high and CMND is set high
for aminumum of 42 pus and then low, the data on four External Command Pins are latched into
the lower nibble of the Command Register. When EXTCMD is low and CMND is held high, the
next byte written to the Main Data Bus is moved into the Command Register. All command bits
are true when high. The Command Register is cleared upon either a RESET or RESET2. The
following is a layout of the Command Register and pin descriptions.

COMMAND REGISTER
7 6 5 4 3 2 1 0
RESET2 | X X - X EAKY D/E CFB ECB
MsB (X = DON'T CARE) ‘ . LSB

RESET2- Software Reset - when set to one, RESET2 will cause the DED to reset. The results
: are the same as if a reset occured from the RESET pin.

EAKY - Enter Active Key - when set to one, EAKY allows access to the Active Key
Register from the Main Data Bus or the Cipher Data Bus.

D/E Decrypt / Encrypt - This bit can determine the direction of data flow as well as
whether the DED will Encrypt or Decrypt. D/E is set to one for Decrypt and zero for
Encrypt operations. This bit also affects the direction of data flow when the DED is
using both data buses (DUALBS pin equal one).

c.6.3

CFB- Cipher Feedback - When set to one, the DED will run in the Cipher Feedback mode
of operation. EAKY and ECB should be equal to zero while in this mode. D/E is set
for encrypting or decrypting.

ECB- Electronic Codebook - When set to one, the DED will run in the Electronic
Codebook mode of operation. CFB should be equal to zero while in this mode.
EAKY could be a one since it uses ECB to encrypt or decrypt new active keys, but
should be zero for normal ECB operation. D/E is set for encrypting or decrypting.

System Interface

Depending on system requirements, all or part of the TMS7500 1/0 capability may be utilized.
Figure C-4 is an example of using all of the TMS7500 I/O options. In this configuration two data
buses are used as separated channels for clear data and ciphered data when the DUALBS pin
connected to VCC. All ciphered data is passed along the Cipher Data Bus; all plain text data,
master key, active key, and the Initialization Vector (IV) for the CFB mode is passed along the
Main Data Bus. The two data buses can be memory mapped in separate locations of a single
host microprocessor for added system security. They may also be hooked to two separate
processors in a multiprocessor application.

With the EXTCMD pin connected to VCC, commands to the DED are received from external
switches rather than from the Main Data Bus. A command is entered by setting the appropriate
toggle switches and pushing the command button (see Figure C-4) to latch the bit pattern into
the command register. The DED is reset by pushing the external reset button. The status is
displayed constantly on LED indicators driven by the Status Display pins.)

C-11

C-12

Vee Vss

f 3

r vec Vss
8 DATABUSA 8 a.BIT 8 MAIN DATA BUS 8 ¥MDBO-MDB7
LATCH
. RS-A 741S373
e < — OE
28
.
ge ODAC
o« =
[
= 81 gmr |8
LATCH
WS A 7415373 opAv
L > G OF BUSY
J CIPHER DATA BUS 8)] CDB0-CDB7
<§ DATABUSB_8| oo é ow
LATCH
RS-B 74L8373 Vece DUAL BS
su| > N
» o EXTCMD
?g
BE ‘:Do_ STATUS
g E = Vss
8 8-BIT 8 COMND
LATCH _ —E= |
WS 8 7415373 v
[— e oF |
4
o vee TMS7500
o RESET
COMMAND
SWITCHES ° EAKY
o D/E
STATUS INDICATORS ° cre
Vece v
A X o ECB
A# KYENT ,
] o g <I | = Vss
a2 KYPER KYENT
___;Wy_.»_o<,| KYPER
EAKYST
- 7 EAKYST e
I WA—t °Q_ CFBST
A7 D/E ST ECBST
XTAL1 XTAL2/
" g CFBST DH CLKIN
ECBST 7

FIGURE C-4 — FULL TMS7500 I/O USAGE

= Vss

APPENDIXD
REFERENCES

HEXADECIMAL/DECIMAL CONVERSION TABLE

Table D-1 lists the hexadecimal/decimal conversion table. To convert a hexadecimal number to
decimal, add the decimal equivalents for each of the four positions. To convert from decimal to
hexadecimal, use the hex equivalents of the largest decimal numbers in each position that add
up to the desired number. Begin summing the nearest MSB number that is less than (or equal
to) the desired decimal number. ‘

TABLE D-1 — HEXADECIMAL/DECIMAL CONVERSION TABLE

mse -0 3| a 7 |s 11 12 15 | o8
HEX DEC | HEX DEC | HEX DEC | HEX DEC
0 o o 0 0 0 0 0
1 4096 | 1 256 1 16 1 1
2 8192 | 2 512 2 32 2 2
3 12288 | 3 768 3 48 3 3
4 16384 | 4 1024 4 64 4 4
5 20480 | 5 1280 5 80 5 5
& 24576 | 6 1536 6 96 6 6
7 28672 | 7 1792 7 112 7 7
8 32768 | 8 2048 8 128 8 8
9 36864 | 9 2304 9 144 9 9
A 40960 | A 2560 A 160 A 10
B 45056 | B 2816 B 176 B 1
C 49152 | ¢ 3072 c 192 c 12
D 53248 | D 3328 D 208 D 13
E 57344 | E 3584 E 224 E 14
F 61440 | F 3840 F 240 F 15

D1

D.2

D-2

ACRONYMS AND ABBREVIATIONS

ACK

- AMPL

BCD
BRKDT
CHAR
CL
CLK
COMM
CPU
CROM
DDR
EC
ENB
EPROM
ER

FE

FLG
110
1AQ
IOCNTL
LSB
MC
MOS
MSB
MULTI
OE

PC

PE

PEN

PEVEN

PF
PL
PLA

.PWM

R/W
RAM
RF
ROM
RTC.

RXBUF
RXEN
RXRDY
SCAT
SCLK
SCTL
SHF

SMODE -

SP
SSTAT
ST

Acknowledge

Advanced Microprocessor Prototyping Laboratory
Binary Coded Decimal
Break Detect

Character

Capture Latch

Clock

Communication Mode
Central Processing Unit
Control ROM

Data Direction Register
Event Counter

Enable

Eraseable Programmable Read Only Memory
Error Reset

Framing Error

Flag

Input/Output

Instruction Acquisition

1/0 Control Register

Least Significant Bit/Byte
Mode Control

Metal Oxide Semiconductor
Most Significant Bit/Byte
Multiprocessor Mode
Overrun Error

Program Counter

Parity Error

Parity Enable

. Parity Even

Peripheral File

Prescaler Latch
Programmabile Logic Array
Pulse Width Modulation
Read/Write

Random Access Memory
Register File

Read Only Memory

Real Time Clock or Regional Technology Center
Receiver

Receiver Buffer

Receiver Enable

Receiver Ready

Strip Chip Architecture Topology
Serial Clock

Serial Control

Shift Register

Serial Mode

Stack Pointer

Serial Port Status Register
Status Register

Stop Bit

Timer Control

Timer Data

Timer Latch
Transistor-Transistor Logic.
Transmitter

Transmitter Buffer

Transmit Data

Transmitter Empty

Transmit Enable

Transmitter Ready

Transmitter Shift Register
Software UART Reset

Wake Up

Wake Up Temporary

Extended Development Support
Extended Microprocessor Prototyping Laboratory
Crystal

D-3

04

TI Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive, Suite 514,
Hunuville, AL 35803, (205) 837-7530.

ARIZONA: Phoenix, P.O. Box 35160, 8102 N. 23rd Ave.,
Suite A, Phoenix, AZ 85021, (602) 995-1007.

El Segundo, 831 S. Douglas St., El Segqundo,
CAWZ(S 1213)973 2571; Irvine, 17891 Cartwright Rd.,
Irvine, CA 92714, (714) 660-1200; Sacramento, 1 int
West Way, Suite 171, Sacramento, CA 95813, (916) 929-1521;
3 View Ridge Ave., Suite B., San Diego, CA

21220 Erwin St., Woodland Hills, CA91361 (213) 704-7759.

COLORADO: Denver, 9725 B. Hampden St., Suite 301,
Denver, CO 80231, (303) 695-2800.

CONNECTICUT: Wallingford, 9 Barnes Industrial
Rd., Bames Industrial Park, Wiallingford, CT 06492, (203)
269.0074.

FLORIDA: Clearwater, 2280 U.S. Hwy. I9N., Suite ZJZ
Clearwatr, FL 33515, (813) 796-1926; Ft. Lauderdale, 2

N.W. 62nd St., Ft. Lauderdale, FL 33309, (305) 973-8501
Maitland, 2601 Maitland Center Parkway, Maitland, FL 32751,
(305) 646-9600.

GEORGIA: Atlanta, 3300 Northeast Expy., Building 9,
Athanta, GA 30341, (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W. Algonquin, Arlington
Heights, IL 60005 (312) 640-2934.

INDIANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wi
46805 (219) 424-5174; Indianapolis, 2346 S. Lynhum S\uw
400, Indianapolis, IN 46241, (317) 248.8555.

/A: Cedar Rapids, 373 Collins Rd. NE, Suite 200, Cedar
Rawl- 1A 52402, (319) 395-9550.

MARYLAND: Baltimore, 1 dwrﬁndl’l 7133 Rutherford
Rd., Baltimore, MD 21207, (301) 944-8600.

MASSACHUSETTS: Waltham, 504 Torten Pond Rd.,
Watcham, MA 02154, (617) 890-7400.

IGAN: Farmington Hills, 33737 W. 12 Mile Rd.,
anmngmn Hills, M1 48018, (313) 553-1500.

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435,
(612) 830-1600.

MISSOURI: Kansas City, 8080 Ward Plowy. , Kansas City, MO
64114, (816} 523.2500; St. Louis, 11861 Westline Industrial
Drive, St. Louis, MO 63141, (314) 569-7600.

NEW JERSEY: Clark, 292 Terminal Ave. West, Clark, N}
07068, (201) 574-9800.

NEW MEXICO: Afbuquerque, 5907 Alice NSE, Suite E.,
Albuquerque, NM 87110, (505) 265-8491.

NEW YORK: East Syracuse, 6700 Old Collamer Rd., East
Syracuse, NY 13057, (315) 463-9291; Endicott, 112 Nanticoke
Aw., PO no-m‘ Endicort, NY 13760, (607) 754-3900;

1 Huntington Quadrangle, Suite 3C10, P.O. Box
2936, Melville, NY Il747 (516) 454-6600; Poughkeepsie,
201 South Ave., Poughkeepsie, NY 12601, (914) 473-1900;
Rochestee, 1210 Jefferson Rd., Rochester, NY 14613, (716)
424-5400.

NORTH CAROLINA: Charlorte, 8 oodenGreen,
Woodlawn Rd., Charlotte, NC 28210, (704) 52

Raleigh, 3000 Highwoods Blvd., Suice 118, Raleizh NC 27625,
(919) 876-2725.

OHI0: Beachwood, 23408 CommmaMRd Beachwood,
OH 44122, (216) 464-6100; Dayton, IeyBId;, 4124
Linden Ave., Dayton, OH 454]1 (SIJ) 258-3877.

OKLAHOMA: Tulsa, 3105 E. Skelly Dr., Suite 110, Tulsa,
OK 74105, (918) 149-9541.

OREGON: Beaverton, 6700 SW 105¢h St., Suite 110,
Beaverton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. Washington, 575 Vn-xmu Dr., Ft.
Washington, PA 19034, (215) 643-6450; Coraopolis, P
15108, 420 Rouset Rd., 3 Airport Office PK, (412) 771:8550.

TENNESSEE: Johnson City, P.O. Drawer 1255, Erwin Hwy.,
Johnson City, TN 37601, (615) 461-2191.

‘TEXAS: Austin, 12501 Research Blvd., P.O. Box 2909,
Aumn,TX73713 (SIZ) 150«7655 D-ﬂn P. O. Box 1087,
Richardson, TX 750t ton, 9100 Southwest Frwy., Suite
237, Houston, TX 77036. (713) 7784591 San Antonio, 1000
Central Park South, San Antonio, TX 78232, (512) 496-1779.

UTAH: Salt Lake City, 3672 West 2100 South, Salt Lake City,
UT 84120, (801) 973-6310.

VIRGINIA: Fairfax, 3001 Prosperity, Fairfax, VA 22031,
(103) 849-1400; Midiothlan, 13711 Surter’s Mill Circle,
Midlochian, VA 23113, (804) 44-1007.

'WISCONSIN: Brookfield, 205 Bishops Way, Suite 214,
Brookfield, W153005, (414) 784-3040.

'WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bldg 6,
Redmond, WA 98052, (206) 881-3080.

CANADA: Ottawa, 436 Mac lzrenSt Ortawa,

K2POMS, (GIJ) 233-1177; Richmond Hill, 280 Ce:

Richmond Hill L4C1B1, Ontario, C:nadn (416) 364 9|8l St

Laurent, V:Ik St. Laurent rans Canada Hwy.,
HQSIR?. {514) 334-3635. B

St. Laurent, Quebec,
TI Distributors

ALABAMA: Hali-Mark (205) 837-8700.

ARIZONA: Phoenix, Kierulff (602) 243-4101; Marshall (602)
zé& -6181; Wyle (602) 249-2232; Tucson, Kierulff (602)
24-9986.

ALIFORNIA: Los Angeles/Orange County, Arrow (213)
7017500, (714) 851-8961; IEC/JACO (714)smssoc @)
998-2200; Kierulff (213) 725-0325, 1) LTI Marshall
(213) 9995001, (213) 442-7204, (714) 556-6400; R.V.
Weatherford (714} 634-9600, (213) 849-3451, (714) 623-1261;
Wyle (213) 322-8100, (714) 6411600, San Diego, Arrow (619)
565-4800; Kierulff (619) 278-2112; Marshall (619) 578-9600;
R. V. Weatherford (619) 695-1700; Wyle (619) 565-9171; San
Francisco Bay Area, Arrow (408) 745-6600; Kierulff (415)
968-6292; Marshall (408) 732-1100; Wyle (408) 727-2500;
Santa Barbara, R. V. Weatherford (805) 965.8551.

LORADO: Arrow (303) 758-2100; Kierulff (303)
790—4«4 Wyle (303) 457-9953.

CONNECTICUT: Arrow (203) 265-7741; D|plomxz (203)
797-9674; Kierulff (203) 265-1115; Marshall (203) 265-3822;
Mnlgm (203) 795-0714.

Lauderdale, Arrow (305) 776-7790; Diplomat
(105) 971 7160 Hall-Mark (305) 971-9280; Kierulff (305)
652-6930; Orlando, Arrow (305) 725-1480; Diplomat (305)
7ZS 4520; Hall-Mark (305) 855-4020; Milgray (305) 647-5747;
amps, Diplomat (813) 443-4514; Hall-Mark (813) 576-8691;
KumW(BlS) 576-1966.

GEORGIA: Arrow (404) 449-8252; Hall-Mark (404)
447-8000; Kierulff (404) 447-5252; Marshalt (404) 923-5750.

ILLINOIS: Arrow (312) 397-3440; Diplomat (312) 595-1000;
Hall-Mark (312) 860-3800; Kierulff (312) 640-0200; Newark
(312) 638-4411.

U

TeExAs
INSTRUMENTS

Creating useful products
and services for you.

A1 Indianapolis, Arrow (317) 243-9353; Graham
(3I7) 634-8202; Fe. W-vu.Gnhm(lW) 4233422

TOWA: Arrow (319) 395-7230.

KANSAS: Kansas City, Com; Specukm (913)
492-3555; Hall-Mark (913) 883-4747 ‘Wichita, LCOMP (316)
265-9507.

MARYLAND: Arrow (301) 247-5200; Diplomat (301)
995-1226; Hall-Mark (301) 796-9300; Kierulff (301) 247-5020;
Milgray (301) 468-6400.

MASSACHUSETTS: Arrow (617) 933-8130; Diplomat (617)
429-4120; Kluulﬁ(Gln 667-8331; Marshalt (617) 272-8200;
Time (617) 935-8080.

MICHIGAN: Detroit, Arrow (313) 971-8200; Newark (313)
967-0600; Grand Rapids, Newark (616) 243-0912; Arrow (616)
243-0912.

MINNESOTA: Arrow (612) 830-1800; Hall-Mark (612)
854-3223; Kierulff (612) 941-7500.

MISSOURI: Kansas City, LCOMP (816) 221-2400; St. Louis, -
Atrow (314) 567-6888; Hall-Mark (314) 291! 5350 Kierulff
(314) 739-0855.

NEW HAMPSHIRE: Arrow (603) 668-6968.

NEW JERSEY: Amw (201) 575-5300, (609) 235-1900;
Diplomat (201) 785-1830; General Radio (609) 964-8560; Hall-
Mark (201) 575-4415, (609) 424-7300, JACO (201) 778-4722;
Kierulff (201) 575-6750; Marshall (201) 882-0320; Milgray
(609) 983-5010.

NEW MEXICO: Arrow (505) 243-4566; International
Electronics (505) 345-8127.

W YORK: Long Island, Arrow (516) 231 le.anlomnt
(516) 45&63)4 Hall-Mark (516) 737-0600; (516
273.5500; Marshall (516) 273-2424: Milgray (516) 546-5600,
(800) 645-3986; Hall-Mark (516) 737-0600; Rochester, Arrow
(716) 275.0300; Marshall (716) 235-7620; Rochester Radio
Supply (716) 454-7800; Syracuse, Arrow {315 652-1000;
Diplomat (315) 652-5000; Marshall (607) 754-1570.

NORTH CAROLINA: Arrow (319) 876-3132, (919)
725-8711; Hall-Mark (919) 872.0712; Kierulff (919) 852-9440.

OHIO: Cincinnati, Graham (513) 772-1661; Hall -Mark (513)
563-5980; Cleveland, Arrow (216) 248-3990; Hall-Mark (216)
473-2907; Kierulff (216) 587-6558; Columbus, Hall-Mark (614)
891.4555, Daytoa, Arrow (513) 435.5563; ESCO (513)
226-1133; Marshall (513) 236-8088.

AHOMA: Arrow (918) 665-7700; Component Specialties
(918) 664-2820; Hall-Mark (918) 665-3200; Kierulff (918)
252-7537.

OREGON: Kierulff (503) 641-9150; Wyle (503) 640-6000.

PENNSYLVANIA: Arrow (412) 856-7000, (215) 928-1800;
General Radio (215) 922-7037; Hall-Mark (215) 355-7300.

ustin, Arrow (512) 835-4180; Componen

szcm!nu (512)837.8922; Hall-Mark (512) 258- 3648 Kierulff
(512) 835-2090; , Arrow (214) 386-7500;
Specnalnu(llﬂ 3576511, HzllMark(ZH) 341-1147;
International Electronics (214) 233-9323; Kierulff (214)
343- 2400, El Paso, lnmmnnml Electronics (915) 778-9761;

Arrow (713) 491-4100; Component Specialties (713)
- 7137 Hall-Mark (713) 781-6100; Harrison Equipment
(713) 879-2600; Kierulff (713) 530-7030.

'UTAH: Diplomat (801) 486-4134; Kieralff (801} 973-6913;
Wyle (801) 974-9953.

VIRGINIA: Arrow (804) 282-0413.

'WASHINGTON: Arrow (206) 643-4800; Kierulff (206)
575-4420; Wyle (206) 453-8300.

WISCONSIN: Arrow (414) 764-6600; Hall-Mark (414)
761-3000; Kierulff (414) 784-8160.

ANADA: Calgary, Future (403) 259-6408; Varah (403)
zso 1235; Hamikton, Varah (416) 561-9311; Montreal, CESCO
(514) 735-5511; Future (514) 694-7710; Ottawa, CESCO (613)
226-6905; Furure (613) 820-8313; Quebec City, CESCO (418)
687423l Toronto, CESCO (416) 661-0220; Future (416)
3.5563; Vancouver, Future (604) 43&5545 Varah (604)
o 3211; Winnipeg, Varsh (204) 633-6190 Bl

TI Worldwide
Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive, Suite 514,
Huntsville, AL 35805, (205) 837-7530.

ARIZONA: Phoenlx, P.O. Box 3516C, 8102 N. 23rd Ave.,
Suite A, Phoenix, AZ 85021, (602) 995-1007.

CALIPORNIA: El Segundo, 831 S. Douglas St.. El Segundo,
CA 90245, (213) 973-2571; Lrvine, 17891 Caxtwﬂchxkd L,
Irvine, CA 92714, (714) 660-1200; Sacrame
West Way, Suite 171, Snnmmo.CA9§81$ (916) 929 l$2|
San Diego, 4333 View Ridge Ave., Suite B., San Diego, CA
92123, (714) 278-9600; SanuCIan, 5353 Bersykm Dr.,

ta Clara, CA 95054, (408) 980-9000; Woodland Hill,
llZZOErmet Woodland Hills, CA 91367, (213) 704- 7759

COLORADO: Denver, 9725 E. Hampden St., Suite 301,
Denver, CO 80231, (303) 695-2800.

CONNECTICUT: Wallingford, 9 Bamnes Industrial Park
zkd.:oBcc’m« Industrial Park, Wallingford, CT 06492, (203)
69-0074.

FLORIDA: Clearwater, 2280 U.S. Hwy. 19N., SmuZJZ
Clearwacer, FL 33515, (813) 796:1926; Ft. Lauderdale, 2

N.W. 62nd St., Fe. Lauderdale, FL 33309, (305) 973 8501.
Mdsdlnd, 2601 Mmland Center Parkway, Maitland, FL 32751,
(305) 646-9600.

GEORGIA: Atlanta, 3300 Northeast Expy., Building 9,
Adanta, GA 30341, (404) 452-4600.

ILLINOIS: Adlington Heights, 515 W. Algonquin, Adlington
Heights, IL 60005, (312) 640-2934.

INDLANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN
46805, (219) 424-5174; Indianapolis, 2346 S. Lynhurst, Suite
1—400. Indianapolis, IN 46241, (317) 248-8555.

Cedar Rapids, 373 Collins Rd. NE, Suite 200, Cedar
Rapld- 1A 52402, (119) 395.9550.

MARYLAND: Baltimore, | Rutherford PL., 7l)3 Rutherford
Rd., Baltimore, MD 21207, (301) 944-8600.

-MASSACHUSETTS: Waltham, 504 Totten Pond Rd.,
Waltham, MA 02154, (617) 890-7400.

MICHIGAN: Farmington Hills, 33737 W. 12 Mile Rd.,
Famington Hills, MI 48018, (313) 553-1500.

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435,
(612) 830-1600.

ISSOURL: Kansas City, 8080 Ward Pkwy., Kansas City, MO
64114, (816) 523-2500; St. Louis, 11861 Westline Industriat
Drive, St. Louis, MO 63141, (314) 569-7600.

NEW JERSEY: Clark, 292 Terminal Ave. West, Clark, N]
* 07066, (201) 5$74-9800.

NEW MEXICO: Albuguerque, 5%07 Alice NSE, Suite E.,
Albnquerque. NM 87110, (505) 265-8491.

YORK: Esst Syracuse, 6700 Old Collamer Rd., East

Symuu NY 13057, (315) 463-9291; Endicott, 112 Nancicoke

Ave., PO. Box 618, Endicort, NY 13760, {607) 754-3900;

Mebville, 1 intington Quadrangle, Suite 3CI0, P.O. Box
9%, Melv-lle NY 11747, (516) 454-6600; Poughkeepsie,
201 South Ave., Poughkeepsie, NY 12601, (914) 473-290C;
Roch;;&;t, 1210 Jefferson Rd., Rochester. NY 14623, (716)
424- .

NORTH CAROLINA: Charlotte, 8 Woodlawn Gnm.
Woodlawn Rd., Charlotte, NC 28210, (704) 527-09

Raleigh, 3000 Highwoods Bivd., Suite 118, Raleigh, NC 27625,
(919)876-2725.

OHIO: Beachwood, 23408 Commerce Park Rd., Beachwood,
OH 44122, (216) 464-6100; Dayton, Kingsley Bldg., 4124
Linden Ave.. Dayton, OH 45432, (513) 258-3877.

OKLAHOMA: Tulsa, 3105 E. Skelly Dr., Suite 110, Tulsa,
OK 74105, (918) 749-9547.

OREGON: Beaverton, 6700 SW 105th St., Suite 110,
Beaverton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. Washington, 575 Virginia Dr., Fr.
Washington, PA 19034, (215) 643-6450; Coraopolis, PA
15108, 420 Rouser Rd.. J Airport Office PK. (412) 271-8550.

‘TENNESSEE: Johnson City, P.O. Drawer 1255, Erwin Hwy.,
Johnson Ciey, TN 37601, (615) 461-2191.

TEXAS: Austin, 12501 Research Blvd., P.O. Box 2909,

Austin, TX7871’ (512) 250-7655: Daltas, P. O. Box 1087.
Richardson, TX 75080; Houston, 9100 Southwest Frwy., Suite
237, Houston, TX 77036, (713) 778-6592; San Antonlo, 1000
Cenml Park South, San Antonio, TX 78232, (512) 496-1779.

UTAH: Salt Lake City, 3672 West 2100 South, Sak Lake City,
UT 84120, (801) 973-6310.

VIRGINIA: Fairfax, 3001 Prosperity, Fairfax, VA 22031,
(703) 849-1400; Midlothlan, 13711 Sutter's Mill Circle,

Midlochian, VA 23113, (804) 744-1007.

'WISCONSIN:! Brookfield, 205 Bichops Way, Suite 214,
Brookfield, W1 53005, (414) 784-3040.

‘WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bldg 6,
Redmond, WA 98052, (206) 881-3080.

CANADA; Ottawa, 436 Mac Laren St., Ouaw:. Canad.l
K2POMS, (613) 233-1177; Richmond Hill, 280

Richmond Hill L4C1B1, Ontario, Canada, (416) 834 918l £
Laurent, Ville St. Laurent Quebec, 9460 Trans Canada Hwy.,
St. Laurent, Quebec, Canada H4S1R7, (514) 334-3635. B

ARGENTINA, Texas Instruments Argentina S.A.L.C.F.:
I’-L;mzzr;ga 130, 15¢h Floor, 1035 Buenos Aires, Argennm.
4.

AUSTRALIA (& NEW ZEALAND), Tcxn Instruments
Australia Led.: 6-10 Talavera Rd., North Ryde {Sydney), N
South Wales, Australia 2113, 02 + 887 llZZ Sth Flwr 18 Sr
Kilda Road, Melboutne, Victoria, Australia 3004,

03 +267-4677; 171 Philip Highway, Elizabeth, South Australia
5112, 08+ 255-2066.

AUSTRIA, Texas Instruments Ges.m.b. H.: Industriestrabe
B/16, A-2345 Brunn/Gebirge, 2236-846210.

BELGIUM, Texas Instruments N.V. Belgium S.A.: Mercure
Centre, Raketstraat 100, Rue de la Fusee, 1130 Brussels,
Belgium, 02/720.80.00.

BRAZIL, Texas Instruments Electronicos do Brasil Ltda.: Av.
Faria Lima, 2003, 200 Andar— Pinheiros, Cep-01451 Sso
Paulo, Brazil, 815-6166.

D Texas || ASS, Marielund 465
DK-2730 Herlev, Denmark, 2 - 91 74 00.

FINLAND, Texas Instruments Finland OY: PL 56, 00510
Helsinki 51, Finland, (90) 7013133,

FRANCE, Texas Instruments France: Headquarters and Prod.
Plant, BP 05, 06270 Villencuve-Loubet, (93) 20-01-01; Paris

. BP 67 8-10 Avenue Morane-Saulnier, 78141 Veliry-
Villacoublay, (3) 946-97-12; Lyon Sales Office, LOree D'Ecully,
Batiment B, Chemin de la Forestiere, 69130 Ecully, (7) 833-
04-40; Strasbourg Sales Office, Le Sebastopol 3. Quai Kleber,
67055 Strasbourg Cedex. (88) 22-12-66; Rennes, 23-25 Rue du
Puits Mauger, 15100 Rennes, (99) 79-54-81; Toulouse Sales
Office, Le Peripole—2, Chemin du Pigeonnier de Ja Cepiere,
31100 Toulome (61) 44-18-. 19 Marseille Sales Office, Noilly
Paradis—146 Rue Paradis, 13006 Marseille, (91) 37-25-30.

U

TeExas
INSTRUMENTS

Creating useful products
and services for you

GERMANY. Tnll Inummemx Deuuchhnd GmbH: Hag-

rty-scrasse 8050 Frel 1; Kurfuers!
l95/l96 DJW Bﬂllnl5 0)0-8817’65 lll Hutn"/K[b
belstrasse, D-4300 Essen, 0201-24250; Frankfurter Allee 6.8,
D-6236 Elchboml 06196-43074; Hamburger Strasse 11,
D-2000 Hamburg 76, 040- 2201154, Kirchhorsterstrasse 2,
D-JOOOHmMmSl 0511-64801! Arabellastrasse 15, D-8000
Muenchi h 11, D-7302 Ost-
fildem UNzlhmen. 07|l)‘030

HONG KONG (+ PEOPLES REPUBLIC OF CHINA),
Texas Instruments Asia Ltd.: 8th Floor, World Shipping Crr.,
Harbour City, 7 Canton Rd., Kowloon, Hong Kong,
3+712:1223.

IRELAND, Texas Instruments (Ireland) Limited: 25 St.
Stephens Green, Dublin 2, Eire, 01 609222.

ITALY, Texas Instruments Semiconduttori Italis Sps: Vial

Delle Scienze, 1, 02015 Cirtaducale (Rl«l). Traly, 0746 694 L
Via Salaria KM Z‘ (Palazzo Cosma), M

(Rome), ltaly, 06 9004395; Viale Europt 3844, X)
Cologno Monzese (Milano), 02 2532541; Corso Svizers, 185,
10100 Torino, lealy, 011 774545; Via J. Berozzi, 6, 45100
Bologna, lItaly, 051 355851.

JAPAN, Texu Immmunu Asia Ltd.: 4F Aoyama Fuji Bldg.,
6-12, Kita A« -Chome, Minato-ku, Tokp.)-pm 107,
03-498-2111; Oulu!run: SF, Nuﬂwlnlbld;

-Chome, Higashi-ku, Onla. Japan 541, 06-204-1881; Nuwl
Beanch, 7F Daini Toyota West Bldg., 10-27, Meieki 4-Chome,
Nakamura-ku, Nagoys, Japen 450, 052-583.8691.

KOREA, Texas Instruments Supply Co.: Room 201, Kwang-

Bldg., 24-1, Hwayand-Dong, Sung dong-ku, lJ)Seoul
01+464-6170$

MEXICO, Texas Instruments de Mexico S.A.: Foniente 126,
No. 489, Colomu Vallejo, Mexico, D.F. 02300, 567- 92N

MIDDLE FAST. Texas Instruments: No 13, 1st Floor Mannai
Bldg., Diplomatic Area, Manama, P.O. Box 26335, Bshrain,
Arabian Gulf 973-724681.

ERLANDS, Texas Instruments Holland B.V., P.O. Box
12995 (Bullewijk) IlwAZAmlmd:m Zuld-Oost, Holland
(020) 5602911,

NORWAY, Texas lmmnmnu Norway A/S: Kr. Augustage. 13,
Oslo 1, Norway, (2) 20 60 40.

PHILIPPINES, Texas Instruments Asia Led.: 14th Floor, Be-
Lepanto Bldg., 8747 Paseo de Roxas, Makati, Metro Manils,
Philippines, 882465

PORTUGAL, Texss Instruments Equipamento E
(Portugal), Lda.: Rua Eng. Frederico Ulrich, 2650 Mmirl Da
Maia, 4470 Maia, Portugal, 2-9481003.

SCOTLAND, Texas Instruments Limited: 126-128 George
Street, Edinburgh, Scocland, EH1 2AN, 031 226 2691.

SINGAPORE (+ INDIA, INDONESIA, MALA)
THAILAND), Texas Instruments Asia Led.: P.O. Box 138,
Unit #02-08, Block 6, Kolam Ayer Industrial Est., Kallang
Sector, Singapore 1334, Republic of Singepore, 7472255,

SPAIN, Texas Instruments Espana,
Galdiano No. 6, Madrid 16, 1/458.
Barcelona-8, 253 60 00/253 29 02.

: C/Jose Lazaro
C/Balmes, 89

SWEDEN, Texas Instruments Intemational Trade Corporation
(S;nsléeﬁlialen) Box 39103, 10054 Suxl:holm Sweden, 08 -
354

SWITZERLAND, Texas Instruments, Inc. Riedstrasse 6,
(CH-8953 Dietikon (Zuerich) Swutmhnd 1.740 2220.

TAIWAN, Texas Instruments Supply Co.: 10th Floor, Fu-
Shing Bldg., 71 Sung-Kiang Road, Taipei, Taiwan, Republic of
China, 02 +521.932).

UNITED KINGDOM, Texas [nstruments Limited: M;

Lane, Bedford, MK41 7PA, England, 0234 67466; 186 Hl(h
Street, Slouxh SL11LD, England, 0753 35545; St. James
House, Wellington Road North, Stockport, SK4 2RT, England,
061 442-8448. BB

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

April 1984 TEXAS
Revision A INSTRUMENTS
1603481-3701 Creating useful products

Frinted in U.S.A., and services for you. SPNDOO1A

