
TMS7000

Assembly
Language
Programmer's

Guide

8-BitMicrocomputerFamily

43
TEXAS

INSTRUMENTS

SPNU0028

 __Manuai Update

MANUAL TITLE: TMS7000 Assembly Language Programmer's Guide

REVISION CHANGE: to C MANUAL UPDATE NUMBER: SP8Z011

ECN NUMBER: 517192 PRINTING DATE: February 1984 DATE OF CHANGE: July 1984

This sheet accompanies the manual which has the following part numbers?’

ENGINEERING P/N: 1602127-9701 . SP NUMBER:| SPNU002B

PAGE CHANGe OR ADD

2-13 When the immediate value is greater than >7F and the user precedes this immediate value
with %o¢ (immediate and negate unary operations), the assembler correctly calculates the
value but issues an error message. The error message “EXPRESSION OUT OF BOUNCS”
should be ignored. See following example:

TEST T4S7000 MACRO ASSEMBLER VAX/VMS 2.1 83.088 14:07:07 6/13/84
PAGE 0001

0001 " |
0002 * VAX X-SUPPORT TEST SOFTWARE
0003 “
0004 IDT ‘TEST’
000S F000 AORG >F000
0006 FOOO 52 MOV t>10,B

FOOL 10 .
0007 FOO2 OD LDSP
0008 F003. Ol IDLE
0009 F004 28 ADD tH>40,A

FOOS BF
0010 F006 28 ADD SH>7E,A

FOO7 80
0011 FOOs 28 ADD %#>80,A

F009 =7F
euaeween® EXPRESSION OUT OF BOUNDS
0012 END

0001 ERROR, 0000 WARNINGS, LAST ERROR AT OO0O11

3-5 Insert the attached sheet for page 3-5.

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time to
improve design and to supply the best possible product for the
spectrum of users.

The TMS7000 Assembly Language Programmer's Guide (Part Number
1602127-9701) is printed in the United States of America and is
copyrighted by Texas Instruments Incorporated. All rights reserved. No
part of these publications may be reproduced in any manner’ including
storage ina retrieval system or transmittal via electronic means, or

other reproduction in any form or any method (electronic, mechanical,
photocopying, recording, or otherwise) without prior written
permission of Texas Instruments Incorporated.

Information contained in these publications is believed to be accurate
and reliable. However, responsibility is neither assumed for its use
nor for any infringement of patents or rights of others that may
result from its use. No license is granted by implication or otherwise
uncer any patent or patent right of Texas Instruments or others.

The following is a trademark of Texas Instruments Incorporated: AMPL

~

Copyright, Texas Instruments Incorporated, 1983

N
M
P
O
A
Y
P
O
P
O

/P
O

NA
D
P
O
P
O

NA
O
P
O
P
O
P
O
P
O
P
O
l
O
P
O
P
O

/P
O
P
O

[O
Y

[P
O
1

P
O
P
O
P
O
N
O
P

P
O
P
O
P
O
P
O
P
O

S
I
N

N
D
A
D
P
P
P

P
W
W
W
W
W
W
W
W
W

C
O
N
I
D
&
W
W
D
—

j
w
R
O
—

f
W
P

W
n
&
W
P
O

U
M
&
W
N

TMS 7000 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

TABLE OF CONTENTS

SECTION 1: INTRODUCTION

INTRODUCTION . 2. 2 1 2 ww ee ee ee ee ee ee ee 1-1
ASSEMBLY LANGUAGE APPLICATION... +2 2 ee. 1-1

SECTION 2. GENERAL PROGRAMMING INFORMATION

GENERAL... 2. 1 1 ww ew ee ee te et ee ee 2-1
DATA AREAS 2. 1 1 we ee ew te tt ee 2-1
THE TMS7000 INSTRUCTION SET2.4.2.22.4204.«. 2-]

Arithmetic Instructions46.-4642848-. 2-2
Branch and Jump Instructions 2-3
Compare Instructions2. +2628 58 2 eees 2-4
Control Instructions50 6 2 ee ee eee - 2-4
Load and Move Instructions+244.-. 2-4
Logical Instructions 2-5
Rotate/Shift Instructions 6.888 2-5
I/O Instructions068 254808 2 ees 2-6

SOURCE STATEMENT FORMAT2.24 242 eee 2-6
Label Field...06. 6 2 ee ee ee ew ee 2-8
Command Field...0. 5 ee ee ee ee 2-8
Operand Field 2.4.64 26648256 ee eee 2-9
Comment Field... 0. 2. 6 we ew ee ee ee 2-9

CONSTANTS . 2... 6 wwe ww ee ee we ee ee ee 2-9
Decimal Integer Constants2.4.-. 2-9
Binary Integer Constants0+80846. 2-9
Hexadecimal Integer Constants4... 2-10
Character Constants24 64688848848 2-10
Assembly-Time Constants2..2028-84 2-10

SYMBOLS . . 2... ww ww ee ew ee ew te ee ek 2-10
Predefined Symbols2.2.2.2..2.0848+2. 2-11
Terms . 1. 1 1 ew we we ww we ww we we we ee 2-12
Character Strings6.6.080848408448-8 2-12

EXPRESSIONS . . 2... 2 1 1. we ee ee ee ee te 2-12
Arithmetic Operators In Expressions 2-12
Logical Operands In Expressions 2-13
Parentheses In Expressionse448-4 2-13
Well-Defined Expressions288+- 2-14
Relocatable Symbols In Expressions 2-14
Externally Defined Symbols In Expressions 2-15

iii

N
O
M

S
P
P
P
P
P
W
N

e
H

T
h
P
O
P

P
O
&
&
&

W
n
=

W
o
n

a
o
n

f
&
W
N

e
H

P
W
H
H

&
W
P
A

SECTION 3: ASSEMBLY INSTRUCTIONS

GENERAL. . 2. 1. 2. 1 ewe ee ee ee ee we
OPERAND ADDRESSING MODES2.2.2.64.4.24..

Special Addressing Modes4.2-24-42406.6.
Register File Addressing24+ 5020868.
Peripheral File Addressing4.24.-.2e4..
Immediate Addressing2e 22 eee eee
Program Counter Relative Addressing

Extended Addressing Modes2+2.20e.e-.
Direct Memory Addressing 2. 2 2 ee eee
Register File Indirect Addressing
Indexed Addressing 2 2 we ee we we eee

INSTRUCTION TYPES... . 2... 1 0 ee ew ee ew ew ee ne
Single Register Instruction Type
Dual Register Instruction Type
Peripheral File Instruction Type
Relative Address Instruction Types

Simple Relative Address Instruction Type
Single Relative Address Instruction Type
Dual Relative Instruction Type
Peripheral Relative Instruction Type

Extended Address Instruction Type
Implied Operand Type Instructions
Special Address Type Instructions

INSTRUCTION DESCRIPTIONS2 22 ee ee
Add With Carry Instruction (ADC)2...
Add Instruction (ADD)8.2.2.22.2.88-
And Instruction (AND)...2..2.2.262 200888
AND Peripheral File Register Instruction (ANDP)
Bit Test And Jump If One Instruction (BTJO)
Bit Test And Jump If One-~Peripheral Instruc. (BTJOP). .
Bit Test And Jump If Zero Instruction (BTJZ)
Bit Test And Jump If Zero-Peripheral Instruction (BIJZP)
Branch Instruction (BR)
Call Instruction (CALL)
Clear Instruction (CLR)2.2.2.22.+2.2848-48
Clear Carry Instruction (CLRC)
Compare Instruction (CMP)2..44.6.
Compare With An Extended Instruction (CMPA)
Decimal Add With Carry Instruction (DAC)
Decrement Instruction (DEC)2.2.2.2.2.22.22.2.2..
Decrement Double Instruction (DECD)2.2.2..
Disable Interrupts Instruction (DINT)
Decrement Register And Jump If Non-Zero Instr. (DINZ) .
Decimal Subtract With Borrow Instruction (DSB)... .
Enable Interrupts Instruction (EIN)
Idie Until Interrupt Instruction (IDLE)
Increment Instruction (INC) -

iv .

W
w
W
w
W
w
W
W
W
w

W
w
W
&
W
W
&

W
&

Ww
W
W
w
W
W
&

W
w
W
&
W
&
W
w
W
w
W
w
W
w
W
&
W

G
G
W

W
G
W
W
w

P
P

H
H
P
H
P
P
H
P
P

H
P
H
H
A
H

L
H
H
f

U
I
&
&
&
W
W
W
W

P
O
P
O
1
9
P
O
P
P
O

j
&
W
R
O
=

R
O
—

W
n
&
W

P
O
=

Invert Instruction (INV)
Jump Unconditional Instruction (JMP)
Jump On Condition Instruction (J<cnd>)
Load A Register Instruction (LDA)
Load Stack Pointer Instruction (LDS)
Move Instruction (MOV)e8..
Move Double Instruction (MOVD)4.....
Move To/From Peripheral File (MOVP)
Multiply Instruction (MPY)4..
No Operation Instruction (NOP)2.2..
Or Instruction (OR)242+626+480428-
OR Peripheral File Register Instruction (ORP)
POP From Stack Instruction (POP)4...
Push On Stack Instruction (PUSH)
Return From Interrupt Instruction (RETI)
Return From Subroutine Instructor (RETS)
Rotate Left Instruction (RL):....+2..
Rotate Left Through Carry Instruction (RLC) we ew ee
Rotate Right Instruction (RR)... ee eee
Rotate Right Through Carry (RRC) ee ek ee
Subtract With Borrow Instruction (SBB)
Set Carry Instruction (SETC)20..
Store A Regster Instruction (STA)
Store Stack Pointer Instruction (STSP)
Subtract Instruction (SUB)
Swap Nibbles Instruction (SWAP)
Trap To Subroutine Instruction (TRAP)
Test A Register Instruction (TSTA)
Test B Register Instruction (TSTB)
Exchange With B Register Instruction (XCHB),.
Exclusive Or Instruction (XOR)2..
Exclusive Or Peripheral File Register Instruc. (XORP) .

SECTION 4: USER APPLICATION NOTES

GENERAL... .. 1... ee ee ee poe ew we ew we ee
ARITHMETIC INSTRUCTIONS2.2.2.280448-.

Incrementing Instructions (INC/DAC/ADC)
Decrementing Instructions (DEC/DSB/DECD).
Addition Instructions (ADD/ADC/DAC)
Subtraction Instructions (SUB/SBB).
Multiply Instruction (MPY) ,..........e.4.6.

DATA MOVEMENT INSTRUCTIONS2.2.2.2.
Register Move Instructions (MOV/XCHB/MOVD)
I/O Move Instruction (MOVP)2.44.
Load And Store Instructions (LDA/STA/DJNZ)

LOGICAL INSTRUCTIONS2.2.220848-.
Register Logical Instructions (INV/XOR/OR/AND)
1/0 Logical Instructions (XORP/ANDP/ORP/BJOP/BTJZP) . .

BRANCH INSTRUCTION (BR)2..2.0848-4

>
>

u
t
U
T
O
F
O
F
0

O
F
0
0
0

0
)
9
0
0
0
T
T

0
)
0
0

0
0

F
T
0
0

0
9
0
0

0
7
0
0
0
0
0
T
T

W
O
N
A
M
P
W
H
e

O
W
S
W
D
&

G2
)
K
O

2
pn
t
p
s

N
M
—
©

P
m
W
M

&
W
D
=

SUBROUTINE INSTRUCTIONS (CALL/TRAP/RETS)
THE STACK . 2. 2 1 ww we ee ee ww we tw te ee
INTERRUPTS 2. 1 1 ww ee eee ee we te ee ee

SECTION 5: ASSEMBLER DIRECTIVES

GENERAL . . = 2. 1 1 ww ww ee te we ee ee ee
THE MACRO ASSEMBLER (MACASM) ... 2.2 2 2 ee ee eee
ASSEMBLER DIRECTIVES24642424068-. Se ee

Directives That Affect The Location Counter
Absolute Origin Directive (AORG)
Relocatable Origin Directive (RORG)
Dummy Origin Directive (DORG)
Block Starting With Symbol Directive (BSS)
Block Ending With Symbol Directive (BES)
Even Boundary Directive (EVEN)
Data Segment Directive (DSEG)
Data Segment End Directive (DEND)
Common Segment Directive CSEG)
Common Segment End Directive (CEND)
Program Segment Directive (PSEG)
Program Segment End Directive (PEND)

Directives That Affect Assembler Output...
Output Options Directive (OPTION)2.2..
Program Identifier Directive (IDT)2...
Page Title Directive (TITL)2...
Restart Source Listing Directive (LIST)
Stop Source Listing Directive (UNL)
Eject Page Directive (PAGE)2.2.2..

Directives That Initialize Constants
Initialize Byte Directive (BYTE)
Initialize Ward Directive (DATA)
Initialize Text Directive (TEXt)2...
Define Assembly Time Constant Directive (EQU)

Directives That Provide Linkage Between Programs
External Difinition Directive (DEF)
External Reference Directive (REF)
Secondary External Reference Directive (SREF)
Force Load Directive (LOAD)

Miscellaneous Directives2.2..0204e8.
Program End Directive (END)2...2.2..
Copy Source File Directive (COPY)4.2..
Define MACRO Library Directive (MLIB)

SYMBOLIC ADDRESSING TECHNIQUES

vi

A
N
A
N
D
A
A

O
V

S
E
N
N
N
N
N
N

S
N
S

S
S

n
M

u
n
O
n
&

W
w
W
W
D

W
R
e

C
O
C
O
C
O
O
O
C
O
C
O
©

C
O
C
O
O
O
0
0
0
0
C
O
C
O
&
&

O&
O
&

W
H
0

W
w
m
w
W
w
W
w
G
&
P
A

f
W
P
A

W
W
W
W
W
w
W

Ww
W
W
W

W
w
&
&

Ww
W
W
w
W
w
W
W
P
F

O
n
a
n

n
u
n

n
N
&

f
m
&

W
w

Ww
W

Ww
W
W
P

P
F

n
i
n
&

G
W
P
M
—

-
_

W
h
!

N
=

SECTION 6: PROGRAM LINKING

GENERAL... .. 2... 1 wee ee wt tw et et ee
RELOCATION CAPABILITY-66664+24 0488488
LINKING PROGRAM MODULES646..424040868+4

External Reference Directives4.e8e68-.
External Definition Directive4+e-.-.
Program Identifier Directive2.4.6.
Linking . 2... 1 6 ww we ew ww ew we ee ete es

GENERAL... . 2. 2 2 ww ew ee we ee tw we te ee
SOURCE LISTING 2.1. 1 ee ee ew ee ee ew
ASSEMBLER ERROR MESSAGES424+4-468620448-

Normal Completion Error Messages-.
Abnormal Completion Error Messages

CROSS-REFERENCE LISTING.4.2.2.2..0484.
OBJECT CODE... ... 2... ew eee ee eee ee

Object Code Format4042484888-
External References In Object Code4...
Changing Object Code2428004+240848-4

SECTION 8: MACRO ASSEMBLER LANGUAGE

GENERAL... 2. 21 1 we ee ew ee ee ee
DEFINING MACROS2.2.2.02.0202424.026+2448084088%8

Sample Macros... 2.2.50 2 © ee ee ew eee
MACRO LANGUAGE ELEMENTS

Strings . 2... 6 ww we we ee ee ee ee ee ee
Constants And Operators4.2.2.228428.-
Variables 2.6.6.2... 424.6 we ew ee ee ees

Parameters 2.2.2.6 668 «© eee we ee

Macro Symbol Table
Variable Qualifiers4.4.4.8.08.888.

Keywords 2. 6 6 ee ee ee te we ee ee el

Symbol Attribute Component Keywords

Parameter Attribute Keywords
Verbs . 2... 1 6 ww www we tk kw tw tt ke

S$MACRO Statement2.248088488 04
SVAR Statement2.68084 0888848
SASG Statement 2... 2.2. 2 eee ee ee
SIF Statement2.2.2.2.00 8 868 808-4
SELSE Statement
SENDIF Statement

8.3.6 Model Statements 2.646. 6068 64688.
8.4 MACRO EXAMPLES 2.6 ee ee ee we ew ee
8.4.1 Macro ID 2.1. ee ew ew ww et ww tte we
8.4.2 Macro GENCMT 1.1. 1 ee we we ew we we we ee
8.4.3 Macro FACT .. 2... 1 ee ee we ew ew we te ww ew
8.4.4 Macro PULSE...+246645+625c845454c84 sev eee
8.5 MACRO ERROR MESSAGES2464+ 2802628 we eee

APPENDICES

APPENDIX A: CHARACTER SETS RECOGNIZED BY THE ASSEMBLER
APPENDIX B: TMS 7000 DATA ORGANIZATION.2.2.2.-.
APPENDIX C: ASSEMBLER DIRECTIVE TABLE ee ee ew
APPENDIX D: OPCODE MAP 2.624600 28 2 «© we wee
APPENDIX E: INSTRUCTION OPCODES SET2.2.2.2.2.2.2..

LIST OF ILLUSTRATIONS

Figure 1-1. Development Process4+24+24+244e44.8.
Figure 2~1. Source Statement Format4.+.+644.-.
Figure 7-1. Cross-Reference Listing Format
Figure 7-2. Sample Object Code4.2.2.2.2.2.2....

LIST OF TABLES

Table 2-1 Results Of Operations On Absolute And Relocatable
Items In Expressions48+0.8-.

Table 3-1. Addressing Modes6.2040488248-.4
Table 3-2. Single Register Machine Instruction Formats... .
Table 3-3. Dual Register Operand Addressing Combinations ...
Table 3-4. Dual Register Machine Instruction Formats
Table 3-5. Peripheral File Operand Addressing Modes
Table 3-6. Peripheral File Machine Instruction Formats
Table 3-7. Simple Relative Machine Instruction Formats
Table 3-8. Single Relative Machine Instruction Formats
Table 3-9. Dual Relative Machine Instruction Formats
Table 3-10. Peripheral Relative Machine Instruction Formats . .
Table 3-11. Extended Address Machine Instruction Formats .
Table 3-12. Implied Operand Type Instructions
Table 3-13. Conditional JUMP Instructions
Table 5-1. Assembler Directives That Affect The

Location Counter2.2.2.2.8084c88:

viii

W
w
W
w
W
w
W
w
W

P
O

@
e
d
#
@
t
t

és:
06

8

o
n

—
-
—
3
e

1
O
O
O
S
I
M

—
_
—
—

©
O
©

Table 5-2 Directives That Affect Assembler Output 5-13
Table 5-3 Directives That Initialize Constants 5-16
Table 5-4 Directives That Provide Linkage Between Programs . 5-19
Table 5-5 Miscellaneous Directives4.-. 5-22
Table 7-1 Assembly Listing Errors 7-2
Table 7-2 Abnormal Completion Error Messages 7-6
Table 7-3 Symbol Attributes2..2.e28428. 7-7
Table 7-4 Object Record Format And Tags 7-11
Table 8-1 Variable Qualifiers2.4.2.2.2.2.204.2. 8-8
Table 8-2 Variable Qualifiers For Symbol Components 8-10
Table 8-3 Symbol Attribute Keywords 8-11
Table 8-4 Parameter Attribute Keywords 8-12
Table 8-5 Macro Error Messages228046-. 8-25

ix

-—~

SECTION 1

INTRODUCTION

1.1 GENERAL

Assembly Language {is a computer-oriented language for writing
programs, consisting of mnemonic instructions and assembler
directives: In assembly instructions, symbolic addresses are assigned
to memory locations and specify instructions by means of symbolic
operation codes called mnemonic operation codes. Instruction operands
are specified by means of symbolic addresses, numbers, and expressions
consisting of symbolic addresses and numbers.

Assembler directives control the process of converting an Assembly
Language program into a machine language program, place data in the
program, and assign symbols to values to be used in the program.
Assembler directives that place data in memory locations allow the
user to assignment of symbolic addresses to those locations.

Assembly Language is computer-oriented in that the mnemonic operation
correspond directly with machine instructions. The chief advantage of
an Assembly Language over machine language is that the mnemonic
symbols are easier to use and easier to remember than the binary zeros
and ones of machine language. Other advantages are the use of
expressions as operands and the use of decimal numbers in expressions
and as operands.

This manual describes the construction of Assembly Language programs
for Texas Instrument's TMS 7000 family of 8-bit microcomputers. Topics
covered include general programming information, discussion of
addressing modes and instruction types, a definition of instructions,
discussion of user application techniques, and descriptions of source
and cross-reference listings, object code, and norma) and abnormal
errors.

1.2 ASSEMBLY LANGUAGE APPLICATION

An Assembly Language. program (the source program) must be processed by
an Assembler to obtain a machine language program that can be execute
by the computer. Changing a source program to object code is called
assembling because the process converts the mnemonic instruction to
binary values, then associates them with absolute or relocatable
binary addresses to form a machine language instruction.

To illustrate the function of Assembly Language in the development of
programs, consider the following steps in program development:

1) Define the problem.

2) Flowchart the solution to the problem.

3) Code the solution by writing Assembly Language statements
(machine instructions and assembler directives) that
correspond to the steps of the flowchart.

4) Prepare the source program by writing the statements on
the medium appropriate to the installation; e.g., enter a
file on a disk, keypunch the statements, etc.

5S) Execute the Assembler to assemble the machine language
object code corresponding to the source program.

6) Debug the resulting object code by loading and executing
the object code and making corrections indicated by the
results of executing the object code.

7) Repeat steps 5 and 6 until no further correction is
required.

The use of Assembly Language in program development relieves the
programmer of the tedious task of writing machine language
instructions and keeping track of binary machine addresses within the
program. Figure 1-1 also illustrates this procedure.

1 DEFINE |
! PROBLEM !}

|
V

FLOWCHART
SOLUTION

 $
-
<
-
—

+

+
-
-
-
-

+

’i<

V

+
-
-
-
—

+

CODE
SOLUTION

V

INPUT
CODE

V +

$+
-
-
-
—

+

$
=

+

EXECUTE
ASSEMBLER

+
-
—
-
-
-

+

OAD AND |
XECUTE
BJ CODE |!

r
a
o
m
m
r
l

<
o
—

 YES

+
o
w
e
a
e

e
e
e
W
e

w
e
e
a
o
e
e
e
o
e
e
w

w
e
e

a
n
e
w
e
e
e
o
s
s

FIGURE 1-1 - DEVELOPMENT PROCESS

1-3

SECTION 2

GENERAL PROGRAMMING INFORMATION

2.1 GENERAL

The TMS7000 Assembly Language is a powerful set of instructions
consisting of mnemonic operation codes (herein called mnemonics) that
correspond directly to binary machine instructions. The assembly
language program (the source program) must be converted to a machine
language program (the object program) by a process called assembling
before it can be executed by the computer. Assembling consists of
converting the mnemonics to binary values and associating those values
with binary addresses to create machine language instructions.
Assembler directives, discussed in Section 5, control the process,
place data in the object program, and assign values to the symbols to
be used in the object program.

2.2 DATA AREAS

The data manipulated by the TMS7000 are organized into three areas:

- Register areas, including up to 128 general-purpose
registers for data storage. In addition, the TMS7000 CPU
has access to three special-purpose registers: the l6-bit
Program Counter (PC), the 8-bit Status Register (ST), and
the 8-bit Stack Pointer (SP).

- Program areas containing the main program and subroutines.

- The Peripheral File (PF) area used for I/0 purposes.

Detailed information and illustrations of these data areas are
presented in Appendix B.

2.3 THE TMS7000 INSTRUCTION SET

The TMS7000 instruction set is composed of 54 instructions that
provide for the input, output, manipulation, and comparison of data.

The instruction set is divided into eight functional categories. They
are:

The

Arithmetic instructions

Branch and Jump instructions

Compare instructions

Control instructions

Load and Move instructions

Logical instructions

Shift instructions

I/O instructions

instructions making up each category are discussed
following paragraphs. Detailed information concerning al!
instructions {is presented in Section 3.

2.3.1 Arithmetic Instructions

in the
of these

T™S7000 arithmetic instructions perform basic arithmetic operations on
byte values. They are:

INSTRUCTION

Add With Carry

Add

Decimal Add with Carry

Decrement

Decrement Double

Decimal] Subtract with Borrow

Increment

Invert (Complement)

Multiply

Subtract with Borrow

Subtract

2-2

MNEMONIC

ADC

ADD

DAC

DEC

DECD

DSB

INC

INV

MPY

SBB

SUB

2.3.2 Branch and Jump Instructions

TMS7000 branch and jump instructions transfer contro! to specified

locations in program memory. Branch instructions are unconditional;
the destination specified may be anywhere within the 64K-byte program
space. Jump instructions may be conditional or unconditional; the
destination specified is limited to a displacement of +127 to -128
bytes relative to the address of the next instruction in the program.
Conditional jump instructions transfer control according to the state
of one or more bits in the Status Register, a file register, or
peripheral port.

INSTRUCTION MNEMONIC

Branch BR

Bit Test and Jump if One Peripheral BTJOP

Bit Test and Jump if Zero Peripheral BTJZP

Bit Test and Jump if One BTJO

Bit Test and Jump if Zero BTJZ

Call Subroutine CALL

Decrement Register and Jump if Non Zero DJNZ

Jump if Carry/Jump if Higher or Same JC/JHS

Jump Unconditional ly JMP

Jump if Negative JN

Jump if No Carry/Jump if Lower JNC/JL

Jump if Not Zero/Jump if Not Equal JNZ/JNE

Jump if Positive JP

Jump if Positive or Zero JPZ

Jump if Zero/Jump if Equal JZ /JEQ

Return from Interrupt RETI

Return from Subroutine RETS

Trap to Subroutine TRAP

2-3

2.3.3 Compare Instructions

TMS7000 compare instructions set or reset bits in the Status Register,
usually in preparation for a conditional jump instruction. The compare
instructions perform arithmetic comparisons on signed and unsigned

8-bit values.

INSTRUCTION MNEMONIC

Compare CMP

Compare A to memory CMPA

Test A register TSTA

Test B register TSTB

2.3.4 Control Instructions

Control instructions affect the operation of the TMS7000. These
instructions are concerned with control of the carry status bit and
interrupt flag in the Status Register, and execution of IDLE and NOP
directives.

INSTRUCTION MNEMONIC

Clear Carry Bit CLRC

Set Carry Bit SETC

Disable Interrupts DINT

Enable Interrupts EINT

Idle until Interrupt IDLE

No Operation NOP

2.3.5 Load and Move Instructions

Load and move instructions form a comprehensive set of data movement
operations, with single instructions to implement register to
register, memory to register and I/O to register transfers.

2-4

INSTRUCTION MNEMONIC

Load A register LDA

Load Stack Pointer LDSP

Move MOV

Move Double MOVD

Move to/from Peripheral MOVP

Pop from Stack POP

Push on Stack PUSH

Store A register STA

Store Stack Pointer STSP

Swap Nibble SWAP

Exchange with B register XCHB

2.3.6 Logical Instructions

Logical instructions provide the capability to perform various Boolean
operations on system data, memory locations and registers.

INSTRUCTION MNEMONIC

AND AND

Clear CLR

Invert INV

OR OR

Exclusive OR XOR

2.3.7 Rotate/Shift Instructions

Rotate/Shift instructions shift the contents of a specified register
by one bit. The value of the last bit shifted out of register is
placed in the carry bit of the Status Register. The resulting value is
compared to zero and the results of that comparison are reflected in
the zero and sign bits of the Status Register.

2-5

INSTRUCTION MNEMONIC

Rotate Left RL

Rotate Left through Carry RLC

Rotate Right RR

Rotate Right through Carry RRC

2.3.8 I/0 Instructions

Input/output instructions manipulate data in any one of the peripheral!
file (PF) registers. Since certain PF registers correspond to the 1/0
pins of the TMS7000, these instructions are used to set, reset, and
test the I/0 pins of the device.

INSTRUCTIONS MNEMONIC

Move to/from Peripheral Register MOVP

OR Peripheral File Register ORP

AND Peripheral File Register . ANDP

XOR Peripheral File Register _ XORP

Bit Test and Jump if One-Peripheral BTJOP

Bit Test and Jump if Zero-Peripheral BTJZP

NOTE

The particular use of peripheral file registers varies among
TMS7000 family microcomputers. See the User's Guide for that
particular device for details.

2.4 SOURCE STATEMENT FORMAT

An Assembly Language source program consists of source statements that
may contain assembler directives, machine instructions,
pseudo-instructions, or comments. Source statements scanned by the
Assembler may contain four ordered fields separated by one or more
blanks. These fields, label, command, operand, and comment, are
discussed in the following paragraphs. Source statements containing an
asterisk (*) in the first character position are comment statements,
and as such, they have no affect on the assembly.

2-6

The character set accepted by the TMS7000 Assembler consists of the
ASCII character set as well as special characters that are undefined
in ASCII. Appendix A contains tables that list the TMS7000 Assembler
character set, along with associated ASCII and Hollerith codes.

The syntax for source statements other than comment fields is:

[<label>] ...<mnemonic> ...[<operand>]...... [<comment>]

- A source statement may have a label that is defined
by the user.

- One or more blanks separate the label from the
command mnemonic. Instruction operation codes,
assembler directives, and user-defined operation
codes are all included in the generic term mnemonic.

- One or more blanks separate the mnemonic from the
operand (when an operand is required).

- One or more blanks separate the operand(s) from the
comment field. Comments are ignored by the Assembler.

The following conventions are required:

- Items in capital letters and special characters must
be entered as shown.

- Items within angle brackets (< >) are defined by the
user.

- Items in lowercase letters are classes (generic
names) of items.

- Items within brackets ([]) are optional.

- Items within braces ({ }) are alternative items; one
must be entered.

- All ellipses (...) indicate that the preceding item
may be repeated.

- Blanks (indicated by carets (+)) in the definition
or syntax are significant.

The last source statement of a source program is followed by the
end-of-file statement for the source medium (e.g.,- for punched cards,
a card with a slash, (/) punched in column one and an asterisk (*) in
column two).

Figure 2-1 illustrates a method of entering source statements. In each
of the first four statements, the label begins in column 1, the opcode

2-7

in column 8, the operands in column 14, and comments in column 26.

EXAMPLE TMS7000 FAMILY MACRO ASSEMBLER DX2.1 83.074 9:15:53 7/19/83

PAGE 0001
0001 fowne *
0002 * EXAMPLE OF SOURCE PROGRAM INPUT *
0003 * *
0005
0005 IDT ‘EXAMPLE’
0006 0000 C5 CLR B
0007 0001 80 LABEL1 MOVP P4,A

0002 04
0008 9003 67 BTJZ 1,A,LABEL1

0004 FC
0009 END

NO ERRORS, NO WARNINGS

FIGURE 2-1 - SOURCE STATEMENT FORMAT

2.4.1 Label Field

The label field begins in character position one of the source record.
extends to the first blank, and contains a symbol of up to six
significant characters. The first character of the symbol must be
alphabetic. Additional characters may be any alphanumeric characters.
A label is optional for machine instructions and for many assembler
directives. When the label is omitted, the first character position
must contain a blank. A source statement consisting of only a_ label
field is a valid statement. It has the effect of assigning the current
value of the location counter to the label; this is equivalent to the
following directive statement:

<label> EQU $

2.4.2 Command Field

The command field begins after the blank that terminates the label
field, or in the first nonblank character past the first character
position (which must be blank when the label is omitted). The command
field is terminated by one or more blanks and may not extend past the
right margin. The command field may contain one of the following
opcodes:

- Mnemonic operation code of a machine instruction

- Mnemonic operation code of user defined instructions

- Assembler directive.

2-8

2.4.3 Operand Field

The operand field begins following the blank that terminates the
command field and may not extend past the right margin of the source
record. The operand field may contain one or more constants or
expressions (described in paragraphs 2.5 and 2.7) separated by commas.
The operand field is terminated by one or more blanks.

2.4.4 Comment Field

The comment field begins after the blank that terminates the operand
field or the blank that terminates the command field, in the case of
commands that have no operands. The comment field may extend to the
end of the source record, if required, and may contain any ASCII
character including blank(s). The contents of the comment field up to
the eod of the input record are listed in the source portion of the
assembly listing and have no other effect on the assembly.

2.5 CONSTANTS

The Assembler recognizes five types of constants, each internally
maintained as a 16-bit quantity: decimal integer constants, binary
integer constants, hexadecimal integer constants, character constants,
and assembly-time constants. They are described in the following
paragraphs.

2.5.1 Decimal Integer Constants

A decimal integer constant is written as a string of decimal digits.
The range of values of decimal integers is -32,768 to +65,535.
Positive decimal integer constants in the range 32,768 to 65,535 are
considered negative when interpreted as two's complement values.

The following are valid decimal constants:

1000 Constant equal to 1000 or >3E8
-32768 Constant equal to -32768 or >8000
25 Constant equal to 25 or >19
65535 Constant equal to 65535 ot >FFFF

2.5.2 Binary Integer Constants

A binary integer constant is written as a string of up to 16 binary
digits (0/1) preceded by a question mark, "?". If less than sixteen
digits are specified, the Assembler will right justify the given bits
in the resulting constant.

The following are valid binary constants:

2-9

?0000000000010011 Constant equal to 19 or >0013
70111211111111111 Constant equal to 32767 or >7FFF
711110 Constant equal to 30 or >001E

2.5.3 Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to four
hexadecimal digits preceded by a greater than sign, '>'. Hexadecimal
digits include the decimal values '0' through '9' and the letters ‘A'
through 'F'.

The following are valid hexadecimal constants:

>78 Constant equal to 120
>F Constant equal to 15
>37AC Constant equal to 14252

2.5.4 Character Constants

A character constant is written as a string of one or two alphabetic
characters enclosed in single quotes. Two consecutive single quotes
are required to represent each single quote contained within a
character constant. The characters are represented internally as
eight-bit ASCII characters. A character constant consisting only of
two single quotes (no character) is valid and is assigned the value
0000(Hex).

The following are valid character constants:

"AB' Represented internally as >4142
'C' Represented internally as >43 or >0043
'N' Represented internally as >4E or >004E

rrp! Represented internally as >2744

2.5.5 Assembly-Time Constants

An assembly-time constant is a symbol given a value by an EQU
directive (see paragraph 2.4.1). The value of the symbol is determined
at assembly time and is considered to be absolute or relocatable
according to the relocatability of the expression, not according to
the relocatability of the location counter value. Absolute value
symbols may be assigned values with expressions using any of the above
constant types.

2.6 SYMBOLS

Symbols are used in the label field and the operand field. A symbol jis
a string of alphanumeric characters, ('A' through 'Z', '0' through '9!

2-10

and '$'). The first character in a symbol must be 'A' through ‘'Z' or
'$'. No character may be blank. When more than six characters are used
in a symbol, the Assembler prints all the characters, but accepts only
the first six characters for processing (the Assembler also prints a
warning indicating that the symbol has been truncated). Therefore,
symbols must be unique in the first six characters. User-defined
symbols are valid only during the assembly in which they are defined.

Symbols used in the label field become symbolic addresses. They are
associated with locations in the program and must not be used in the
label field of other statements. Mnemonic operation codes and
assembler directive names may also be used as valid user-defined
symbols when placed in the label field.

Symbols used in the operand field must be defined in the assembly,
usually by appearing in the label field of a statement or in the
operand field of a REF or SREF directive.

The following are examples of valid symbols:

START Assigned the value of the location at which it
appears in the label field.

ADD Assigned the value of the location at which it
appears in the label field.

OPERATION OPERAT is assigned the value of the location
where it appears in the label field.

Symbols are discussed in the paragraphs that follow.

2.6.1 Predefined Symbols

The predefined symbols are the dollar sign character ($) and the
Register and Port symbols. The dollar sign character is used to
represent the current location within the program. The register
symbols are of the form "Rn" where 'n' is a constant in the range 0 to
255.

The peripheral file symbols are of the form Pn, where n ranges from 0
to 255.

The following are examples of a valid predefined symbols:

$ Represents the current location
RO Represents Register 0
PO Represents Peripheral Register 0

The symbol ST is reserved and may not be defined by the user.

2-11

2.6.2 Terms

Terms are used in the operand field of machine instruction and
assembler directive. A term may be a binary, character, decimal or
hexadecimal constant, an absolute assembly~time constant or a label
having an absolute value.

2.6.3 Character Strings

Several assembler directives require character strings in the operand
field. A character string is written as a string of characters
enclosed in single quotes. For each single quote in a character
string, two consecutive single quotes are required to represent the
single quote. The maximum length of the string is defined for each
directive that requires a character string. The characters are
represented internally as eight-bit ASCII. Appendix A gives a complete
list of valid characters within character strings.

The following are valid character strings:

‘SAMPLE PROGRAM' Defines a 14-character string consisting
of SAMPLE PROGRAM

"PLAN ''c'!! Defines an 8-character string consisting
of PLAN *‘C'

"OPERATOR MESSAGE : PRESS START SWITCH’ Defines a
3/-character string consisting of the
expression enclosed in in single quotes.

2.7 EXPRESSIONS

Expressions are used in the operand fields-of assembler directives and
machine instructions. An expression is a constant or symbol, a series
of constants or symbols, or a series of constants and symbols
separated by arithmetic operators. Each constant or symbol may be
preceded by a minus sign (unary minus), a plus sign (unary plus), or
the # symbol (unary invert). The # symbol causes the value of the
logical complement of the following constant or symbol to be used. An
expression may not contain embedded blanks. Symbols that are defined
as external references may be operands of arithmetic instructions
within certain limits, as described in paragraph 2.7.1.

2.7.1 Arithmetic Operators In Expressions

The arithmetic operators used in expressions are as follows:

2-12

for addition
for subtraction
for multiplication
for signed division
for logical note

M
€
1
+

In evaluating an expression, the Assembler first negates any constant
or symbol preceded by a unary minus and then performs the arithmetic
operations from left to right. The Assembler does not assign
precedence to any operation other than unary plus or unary minus. Al]
operations are integer operations. The Assembler truncates the
fraction in division.

For example, the expression 4+5*2 would be evaluated 18, not 14 and
the expression 7+1/2 would be evaluated four, not seven.

The Assembler checks for overflow conditions ‘when arithmetic
operations are performed at assembly time and gives a warning message

whenever an overflow occurs, or when the sign of the result is not as
expected in respect to the operands and the operation performed.
Examples where a “VALUE TRUNCATED" message is given are as follows:

-2*>4000 >FFFE+2 -1*>8001

>8000*2 ->8000-1 -2*>8000

2.7.2 Logical Operand In Expressions

If a pound sign (#) precedes a number or an expression, the number. or
expression is changed to its complement. All other arithmetic
operations have precedence over the Logical Not (#) operation, except
where modified by parenthesis.

2.7.3 Parentheses In Expressions

The Assembler supports the use of parentheses in expressions to alter
the order of evaluation of the expression. Nesting of pairs of
parentheses within expressions is also supported. When parentheses are
used, the portion of the expression within the innermost parentheses
is evaluated first. Then the portion of the expression within the next
innermost pair is evaluated. When evaluation of the portions of the
expression within the parentheses has been completed, the evaluation
is completed from left to right. Evaluation of portions of an
expression within parentheses at the same nesting level: may be

considered to be simultaneous. Parenthetical expressions may not be
nested more than eight deep.

For example, the use of parentheses in the expression LAB1+((4+3)*7)
will result in the following operation: add four to three; multiply
the resulting sum by seven; add the resulting product to the value of
LAB].

2-13

2.7.4 Well-Defined Expressions

Some assembler directives require well-defined expressions in operand
fields. For an expression to be well-defined, any symbols or
assembly-time constants in the expression must have been previously
defined. Also, the evaluation of a well-defined expression must be
absolute and a well-defined expression must not contain a character
constant.

2.7.5 Relocatable Symbols In Expressions

An expression that contains a relocatable symbol or relocatable
constant immediately following a multiplication or division operator
is illegal. Also, when the result of evaluating an expression up to a
multiplication or division operator is relocatable, the expression is
{lilegal.

If the current value of an expression is relocatable with respect to
one relocatable section, a symbol of another section may not be
included until the value of the expression becomes absolute. Some
examples of relocatable symbols used in expressions are:

BLUE+1 The sum of the value of symbol BLUE plus one.

GREEN-4 The result of subtracting four from the value
of symbol GREEN.

2*16+RED The sum of the value of symbol RED plus the
product of two times 16.

440/2-RED The result of dividing 449 by twe anc
subtracting the value of symbol RED from the
quotient. RED must be absolute.

Table 2-1 defines the relocatability of the result for each type of
operator.

2-14

TABLE 2-1 - RESULTS OF OPERATIONS ON ABSOLUTE AND
RELOCATABLE ITEMS IN EXPRESSIONS

2

The Assembler allows externally defined symbols (defined

A 6 | we | we {| AS | AB

ABS! ABS | ABS | ABS ! ABS | KBS(B<>0)

ABS RELOC | RELOC | iegat | Notel ! i}legal

RELOC ! ABS | RELOC | RELOC | Note2 Note3

RELOC | RELOC | illegal | Noted | illegal | illegal
| |

Note 1: Illegal unless A equals zero or one. If A is one, the
result is relocatable. If A is zero, the result is an
absolute zero.

Note 2: Illegal unless B equals zero or one. If B is
result is relocatable. If B is zero, the result is an
absolute zero.

Note 3: Illegal unless B equals one. If B equals one, the result
is relocatable.

Note 4: Illegal unless A and B are in the same section.
are in the same section, the result is absolute.

one, the

If A and B

.7.6 Externally Defined Symbols In Expressions

1 n REF and

SREF directives) in expressions under the following conditions:

1) Only one externally referenced symbol may be used in an
expression.

2) The character preceding the referenced symbol must
plus sign, a blank, or a comma (the @ sign

be a

is not

considered). The portion of the expression preceding the
symbol, if any, must be added to the symbol.

3) The portion of the expression following the referenced
symbol must not include multiplication, division, or
logical operations on the symbol (as for a relocatable
symbol described in Subsection 2.7.4).

4) The remainder of the expression following the referenced
symbol must be absolute.

The Assembler limits the user to a total of 255 external referenced
symbols per module. Modules using more than 255 external symbols must

2-15

be broken into smaller modules for assembly and linked using the link
editor.

2-16

SECTION 3

ASSEMBLY INSTRUCTIONS

3.1 GENERAL

This section describes the mnemonic instructions of the TMS7000
Assembly Language. Detailed assembly instruction descriptions and
descriptions of the addressing modes used in the Assemdly Language and
the instruction formats of the assembly instructions are provided.
Also included are exampies of programming the instructions.

To understand the material presented in this section, the user must be
familiar with the data organization required by the Assembler.
Detailed information on byte and word organization, the status
register, peripheral files, and register files is presented in
Appendix B.

3.2 OPERAND ADDRESSING MODES

The TMS7000 Assembly Language supports seven operand addressing modes.
Four of these modes specify 8-bit operands only and are classified as
Special Addressing Modes. The remaining three are used to generate a
full 16-bit address and are classified as Extended Addressing Modes.
Table 3-1 defines all seven modes. :

3-1]

TABLE 3-1 - ADDRESSING MODES

@TABLE (B)

! ! SEE
i CLASS {| ADDRESSING MODE | EXAMPLE | SECTION
l ewmmmmeeerwoene | mawmawnwanamaamawanecaooeettrr | sememenwewewwmwooowoe

! ! ! !
! DIRECT | Register File R3 3.2.1.1
! |! Adccressing 3

! ! | !
! ' Peripheral File ' P10 ' 3.2.1.2
' | Addressing ! |
§ (i '

1 ' Immediate | ANDP %>98,010 | 3.2.1.3
: | Addressing ' {

|
' Program Counter 1 JMP LABEL ' 3.2.1.4

{ Relative !
| Addressing ! }

‘ t i i
i ((0

' EXTENDED ! Direct Memory | @>F476 3.2.2.1
! ' Addressing ! @>THERE
| { i {

! 1 Register File 1 *RO 1 3.2.2.2
| Indirect 1

=

*10
! Addressing

! | Indexed Addressing | 1 3.2.2.3
i ' ! ‘
t ’ ’ '

3.2.1 Special Addressing Modes

The Special addressing modes specify 8-bit source and destination

operands. Each of these modes is discussed in the paragraphs that
follow.

3.2.1.1 Register File Adcressing: Register fiie addressing specifies
a file register that contains the operand. Any register may be
referenced by the expression. For example:

Rn

‘one

n '

where n is the register file number (0 <= x <= 127). In aeneral,
instructions which vererence tne recister file incluce a byte which
contains the regisz2- number. The fo'iowing exampies show the coding
of instructions tna~ rave rasister Tile acdressing:

LINE ADDR OBJECT STATEMENT
Note: this is a 3-

1 0000 48 LINE] ADD R3,R4 byte instruction;
0001 03 the opcode is >48,
6602 04 source register >03

and the destination

register is >04.

Register RO is called the A register, and register Rl is called the 8B
register. The fact that A or B is an operand in the instruction is
usually encoded in the opcode byte. Thus, instructions which reference
the A or B registers are usually shorter. For example, the following
line lists an instruction to add register R3 to A:

LINE ADDR OBJECT STATEMENT

2 0003 18 LINE2 ADD R3,A
0004 03

This example is only a two-byte instruction: the opcode is >18 and the
source register number is >03. The various dual-operand addressing
types which imply the A or B register are described in paragraph 3.3.

3.2.1.2 Peripheral File Addressing: Peripheral file addressing is
used to perform I/0 on the TMS7000. The Peripheral File (PF) is a
256-byte block of memory address space dedicated to the I/O interface
and other on-chip peripheral functions (such as a programmable timer).
Each PF register, or port, has an 8-bit PF register number. Peripheral
file addressing specifies a PF register number in one byte of a
multi-byte instruction. A PF number is written as:

Pn where n is the port number (0 <= x <=255).

The PF is accessed by special peripheral file instructions, which have
a P postfix on the instruction name. Each is a dual operand
instruction in which the PF is the destination. The source operand is
limited to the A or B registers and immediate data. Examples of the PF
instructions are given below. The code also demonstrates immediate
addressing. Note the use of the % sign.

oY
) ‘

O
W

APORT EQU P4
BPORT EQU P6
CPORT EQU P8
COIR EQU Pg
DPORT EQU P10
DDIR EQU Pll

ANDP A,P3

MOVP B,PO
BTJOP %>40 ,APORT

PF register for 8-bit A port (input).
PF register for 8-bit B port (output).
PF register for 8-bit C port (I/0).
C port data direction register.
PF register for 8-bit 0D port (I/O).
D port data direction register.
Replace contents of P3 (Timer Cntl)
with AND of contents of A and P3.
Copy B to I/0 control register (PO).

,LAB Test bit 6 of port A and jump to LAB
* if it is a ‘1’.

ORP %>01,BPORT Set bit 0 of port B to '1'.
ANOP %>FE,BPORT Set bit 0 of port B to '0'.
MOVP %>F0,CDIR Setup C(3-0) input, C(7-4) output.
XORP %>80,CPORT Toggle bit 7 of C port.
MOVP %>00,DDIR Setup all D port bits as input.

An exception to the PF destination-only rule is made for the MOVP
instruction, by which PF register contents may be copied to the A or B
register.

MOVP ODPORT,A Copy current inputs on 0 to A register

3.2.1.3 Immediate Addressing: Immediate instructions use the contents
of a byte following the opcode byte as an operand. The immediate value
operand is an expression, and the value of the expression is placed in
a byte following the opcode byte. The immediate operand is written as
an expression preceded by a percent sign. The following examples
illustrate immediate addressing:

MOV %>98,R123 Replace the contents of R123
with >98

ANDP %MASK,P10 Logically AND the value of MASK
and the contents of P10; copy
the results to P10.

Immediate operands may be used as the source operand in all dual
operand instructions, including those with a peripheral file acting as
the destination. Immediate operands will be denoted <iop> in this
document.

3.2.1.4 Program Counter Relative Addressing: Program counter relative
addressing is used by all jump instructions. The Assembler subtracts

the target address (ta) specified from the location (ocn) of the next
instruction to form a signed 8-bit relative address (ra). For example:

ra = ta - pen

where ra must be in the range of -128 through +127. When the
instruction is in relocatable code (that is, wnen the location counter
is relocatable), then the relocation type of the evaluated address
expression must match the relocation type of the current location

374

counter. When the instruction is in absolute code, the expression must
be absolute. The following example illustrates the use of program
counter relative addressing:

JNC THERE Jump to THERE if the carry status bit
1s equal to zero.

DJUNZ R3,LOOP Decrement R3 and jump to LOOP if the
result is non-zero.

BTJZP %>01,APORT,$ Keep looping as long as bit 0 of A
port isa Q.

The Assembler will generate an error message if the -128 to +127 range
is exceeded.

3.2.2 Extended Addressing Modes

Three addressing modes may be used to generate a full 16-bit address
to memory. These addressing modes are Direct, Register Indirect, and
Indexed. Because the TMS7000's on-chip register, peripheral files, and
ROM are mapped into its 16-bit memory address space, these addressing
modes may be used to reference the register file, peripheral file, and
program memory data areas as well as off-chip memory.

3.2.2.1 Direct Memory Addressing: specifies a 16-bit address that
contains the operand. A direct memory address is written as:

<addr>

where <addr> is a program label or other 16-bit expression. The
following are examples of instructions using direct memory addressing:

LDA @>F47/D Copy contents of memory location
>F47D to register A

BR @THERE Branch to location THERE

3.2.2.2 Register File Indirect Addressing: specifies the address of a
pair of register file locations which contain the address of the
operand. An indirect register file address is written as

*Rn
or

*expr

where the decimal constant n or the expression (*expr) is the number
of the register containing the least-significant byte of the 16-bit
address. The most-significant byte of the address is contained in
register n-l. For example, if an address is contained in registers R4
and R5, "*R5" must be specified to use that address. If RO (register

3-5

A) is specified, then R255 is used for the most significant half. (*RO
is undefined for TMS7000 family devices that do not implement R255.)
The following example illustrates the use of register file indirect
addressing in the STA (Store A) instructon:

MOVD %>4358 ,R45 Load address into (R44,R45) pair.

STA *R45 Copy the contents of register A
into address >4358.

3.2.2.3 Indexed Addressing: specifies a memory address that contains
the 8-bit operand. The address is the sum of the contents of the 8B
register and a 16-bit direct address. An indexed address is written as
an expression preceded by an at sign, @, and followed by a B in
parentheses:

@<expr>(B)

where <expr> is a program label or l6-bit expression. The following
example illustrates the use of indexed addressing:

STA @TABLE(B) Copy the contents of A into the
memory location specified by the
contents of B and the value of

* symbo! TABLE.

®%

x

This addressing mode is particulary suited for table lookup
algorithms. When tables start at a higher address and run to a_ lower
address, the two-byte DJNZ B instruction may be used in a loop to step
through the table until the desired element is found. For example, the
following subroutine searches through a table for the byte contained
in A, returning with the index of that byte in B. The calling program
should initialize A to the search value and B to the total size of the
table. For example:

* LOOKUP -- TABLE LOOKUP ROUTINE
* ON ENTRANCE, A IS SET BY CALLER TO SEARCH VALUE

B IS SET BY CALLER TO TABLE SIZE
ON EXIT, B IS SET TO 1-BASED INDEX OF SEARCH VALUE

IN TABLE, OR ZERO IF IT IS NOT FOUND.

LOOKUP EQU §
LOOP CMPA TABLE~1(8) COMPARE TABLE ELEMENT TO A

e
4

8

JZ EXIT Tr EQUAL, EXIT
DJNZ B,LOOP TF NOT, DECREMENT B AND LOOP

EXIT RETS RETURN FROM SUBROUTINE

3.3 INSTRUCTION TYPES

Instruction types are the combinations of operand addressing modes

that are used by TMS7000 instructions. Tne instruction types supported
are Single Register, Dual Register, Cerioneral File, Simple Relative,

Ga
d é

J
»

Dual Relative, Extended Address, and Special. Each is described in the

paragraphs that follow.

3.3.1 Single Register Instruction Type

The Single register instruction addressing type is used by all
instructions that specify only one register in the operand field. The

operand of the instruction is usually the register specified. Some

instructions, however, may affect a register pair, in which case the
register specified contains the least significant byte. Single
register instructions generally require a byte in the instruction to
specify the register number. When the A or register is used,
however, the operand is implied in the opcode; thus the register
number byte is not required.

Several examples of valid single register instructions fol low:

INC A Increment A register
DEC R3 Decrement register 3
RR 43 Rotate register 43 right

COUNT EQU R14
DEC COUNT Decrement register 14
DECD R10 Decrement the 16-bit value

* in RO and R10

Some TMS7000 family devices will not implement the full 256 bytes of
the register file. The results obtained by executing instructions
specifying non-existent registers are undefined.

The machine instruction format for each single register addressing
mode is described in Table 3-2.

TABLE 3-2 - SINGLE REGISTER MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE STATEMENT MACHINE INSTRUCTION FORMAT

 <inst> A

! opcode !
<inst> B + onny

<inst> Rd + + +oeewone+

f opcode | ' d |
+ + +ecee--—+

3-7

3.3.2 Dual Register Instruction Type

Dual register instructions specify two operands in the operand field:
a source and a destination. The source may be a register or an
immediate 8-bit operand. The destination is always a register. In the
most general case, such instructions require 3 bytes: one for the
opcode, one for the source register number (or immediate operand) and
one for the destination register number. When the destination is the A
or B register, the destination operand is implied in the opcode. In
this case, two bytes are required: one for the opcode and one for the
source operand. When B is the source and A is the destination (B to A
addressing mode), only an opcode byte is required (however when A_ is
the source and B is the destination, both an opcode byte and a source
byte are required).

Table 3-3 lists the directly supported addressing modes for dual
operand instructions. The MOV instruction is expanded to include A to
B, A to RF, and B to RF addressing mode combinations.

TABLE 3-3 - DUAL REGISTER OPERAND ADDRESSING COMBINATIONS

i DESTINATION
i aowee oooee

SOURCE | A} Bf RF
wa |oceccenene|onnnn|
| |

A ! N }MiM
B ! xX |N tM
RF ! x 1x dX
7%<Op> Xx ! X ! YX

| i i
i ’ (

X -- Supported for all instructions
M -- Supported for MOV instruction only
N -- Not supported

For ease and clarity of programming, combinations of operand
addressing modes not directly supported may be specified in an TMS7000
Assembly Language statement. The Assembler will automatically
translate them to a directly supported combination. For instance, AOD
A,R3 will be translateac to ADD RO,R3, which uses the RF to RF
instruction type. When this translation occurs, it will take an extra
byte of memory that may not have been anticipated. The machine
instruction formats for the various dual register operand addressing
forms are shown in Table 3-4.

TABLE 3-4 - DUAL REGISTER MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE STATEMENT MACHINE INSTRUCTION FORMAT

| |
! |
| |
| |
| <inst> B,A tennnnnn=+
| | | opcode |
! ' $oemoeoome+
' i

| |
| <inst> Rs,A ! teonneon-+ teencennn+

<inst> Rs,8 { opcode | {= s
' | toeeccee=+ $e~rcoeren-=+

| |
<inst> Rs,Rd ' tonne----+ teenennn-+ tenant

| opcode} { s jf jd |
! ' $oecoe--=+ peeree---+ $eom—+

t §
' ’

<inst> %<iop>,A teonenrne=+ teececen=+
! <inst> %<iop>,B f opcode | { ifop§ |
! ! $eeceor---+ perce+

| |
<inst> %<iop>,Rd tocarman+ teccrenn=+ tecent

| opcode’{ {; iop j; jd |
! ! $ooeeon-—+ poorenn-—+ $oem—+

| |
! MOV A,B } teoneren=+

| opcode |
| aa+
! |
! MOV A,Rd ' toeoceo---+ +eeerere--+

MOV B,Rd ' opcode | | OD
! ! pooree--—+ $oeerere---—+
\ '
t i
! '
i '.

3.3.3 Peripheral File Instruction Type

Peripheral file instructions are the I/O instructions of the TMS7000.
They are dual operand instructions in which the source is A, B, or an
immediate operand and the destination is a peripheral file register.
Peripheral file instructions include MOVP, ANDP, ORP, XORP, BTJOP, and
BTJZP. The MOVP instruction additionally may be used to read from a PF
register and copy the contents into A or B.

The peripheral file operand addressing mode combinations are
summarized in Table 3-5.

3-9

TABLE 3-5 - PERIPHERAL FILE OPERAND ADDRESSING MODES

7 | DESTINATION 7
| eewsoesweeeasweee | meeeaeseeewaeawnroeceonae j

i

' SsoURcE ! AB PF
seecueesenaanuvoanne l eseaveseooeewwsonoanaoaaee|

A 1 oN oN X
B 1 N oN X
PF (| M M ON

' oN oN. X

X-Supported for all instructions
M-Only supported for MOVP instruc.
N-Not directly supported

x =e o
O

o
O V

The machine instruction formats for peripheral type instructions are
shown in Table 3-6.

TABLE 3-6 - PERIPHERAL FILE MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE

' STATEMENT ' MACHINE INSTRUCTION FORMAT
' ~ a - ~ .

! !
<inst> A,Pn teaccescn+ teeesecnn=+

! <inst> B,Pn ! opcode |} on '
§ + + + +

t t

' ! $ooeenemce+ -eccecrere=+ +ee~ceeo=+

' <inst> %<iop>,Pn ' ' opcode |}! |} iop rf n !
' ' powoeooooe+ +oeeeeeeon+ +eecme===+

§ ’

! MOVP Pn,A ! tonrnnenn=+ tecccenn=+
MOVP Pn,B ! ' opcode | ! n

' ' $orowmere=+ peccoreeo=+

i (
i q

3.3.4 Relative Address Instruction Types

Relative address instruction type is used by most instructions that
alter the flow of control (instructions not included in this type are
the BRanch, CALL, TRAP, RETI, and RETS). One operand in. the assembly
Statement for relative branch instructions is the target address (ta)
to which control is transferred. The assembler calculates an 8-bit
signed relative address (ra) as follows:

ra = ta - pen

where "pcn" jis the program counter for the next instruction. The

3-10

target address must be in the same control section (i.e., relocatable
section number or absolute) as the program counter. The relative
address types can be classified as Simple Relative, Single Relative,
Dual Relative, and Peripheral Relative instruction types, as described
in the following subsections.

3.3.4.1 Simple Relative Address Instruction Type: requires only the
target address (ta) in the operand field. These include the JMP and
J<cnd> instructions where <cnd> completes the mnemonic according to
the condition evaluated (e.g., JC for Jump if Carry).

The machine instruction format for simple relative addressing type is
shown in Table 3-7.

TABLE 3-7 - SIMPLE RELATIVE MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE

| 8

1 STATEMENT | MACHINE INSTRUCTION FORMAT
(a> Gh ap a= ap => 1 a> aD GD GD GD GD GD GD GD GD GD CD GD GP GP CD GP GD GD GD GD CD CD GD GD CD CD CD CD CP CF CD OP OD i

! ! !
! : $oeoeocore---+ tereren---+ !

! <inst> <ta> ' ' opcode {| | ra |
! ! $oeere-—=+ +-eeceere+ !

{ (i
(‘ t

| | |

3.3.4.2 Single Relative Address Instruction Type: this instruction is
a combination of single register and simple relative address types.
There are two operands: a register number and a target address. This
addressing type is used by the DJUNZ (Decrement and Jump if Nonzero)
instruction. The machine instruction format for single relative
instructions is shown below in Table 3.8.

TABLE 3-8 - SINGLE RELATIVE MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE

{ 8
t t

! STATEMENT ' MACHINE INSTRUCTION FORMAT
leeenewwwwmowowewoewoewooooooce leweeeeeeeeewoeeeeewwewwewwweoeoeeoeooewowoeowow oe
‘ ‘

<inst> A,<ta> ' + + + +
! <inst> B,<ta> ' ' opcode ! | ras
! : $oeee---=-+ pocecomoe+

f ' +eeeree--=+ p-oeeoeecooe+ +eecnoccee+

<inst> Rn,<ta> ! ' opcode }| | n 1 | ras
! $oeeocoeo==+ +recoceore=+ poeceoroen=+

3.3.4.3 Dual Relative Instruction Type: a combination of dual
register and simple relative instruction types. Qual relative
instructions, such as BTJO (Bit Test and Jump if One), contain a

3-11

destination register and a target address. The supported source and
destination register combinations are the same as those specified for
dual register instructions. The machine instruction format for dual
relative instructions is described in Table 3-9.

TABLE 3-9 - DUAL RELATIVE MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE

STATEMENT { MACHINE INSTRUCTION FORMAT
| - | —a--2== ---=- wnonnnnn--
| t
' ' + + +-22 +

' <inst> B,A,<ta> ' ' opcode! ! ra |}
' : pooeeoe-=+ teeecceco=+

' <inst> Rs,A,<ta> 1 + + + “+ + +
| <inst> Rs,B,<ta> { | opcode | {| s ff] ora f
' ' powererom—e=+ prccococeor=+ pocecoee==—+

t j

! | poeoooone+ +eecee-ee+ +oemeee-=+ $oce~-~+

1 <inst> Rs,Rd,<ta> } ! opcode | | s ft od f tora
! ! poooomoeore+ teeceoror--+ $2erere=—+ ¢eece-=+

! t
i ‘

| <inst> %<iop>,A,<ta> | + + + + teennnn--+
| <inst> %<iop>,B,<ta> {| | opcode | } fop |! rai ‘$
' ' $ocoeoore+ $oececece+ peeecen-e+

t ‘

$oeeeoocon=+ +eeeneee=+ poeeeeon—+ +eecnn+

{ <inst> %<iop>,Rd,ta> { {| opcode | | iop | {| d ee
! ' pooeweoroe=+ +ceceeoo=e+ -oeeemeoe+ +-2eceoe+

{ {
§ ‘

3.3.4.4 Peripheral Relative Instruction Type: this instruction type
is a combination of the peripheral file and simple’ relative
instruction types. Peripheral relative instructions, such as BTJOP
(Bit Test and Jump if One-~Peripheral), specify three operands: an A,
B, or immediate source; a PF register destination; and a target
address.

The machine instruction format for peripheral relative instructions is
shown in Table 3-10.

3-12

TABLE 3-10 - PERIPHERAL RELATIVE MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE

| STATEMENT ! MACHINE INSTRUCTION FORMAT
| -------=-== wosnaons [nnnnnnnnn wnonannannnnnnnnnnnennnanannnn
| <inst> A,Pd,<ta> | teeeceene+ teeennnn=+ trecnnon-+
! <inst> B,Pd,<ta> | {| opcode } | an r! ora |
' J teeneonen+ $eoceronrne+ +eereem--+

|
: 1 + + + + + - + po2-=-+

| <inst> %<top>,Pd,<ta> ! {| opcode | | jiop {| {| an f | ra!
[+ + += + +eeceeoe=+ +o--—+

|

3.3.5 Extended Address Instruction Type

Extended address type instructions are those which reference a byte
via its 16-bit address in the memory space of the TMS7000. These
instructions have a single operand in either direct, register
indirect, or indexed operand addressing mode.

Extended address instructions include CALL (Call Subroutine) and BR
(BRanch) which transfer control to any instruction in memory.

The machine instruction formats for extended address instructfdns are

given in Table 3-11. The most significant byte of a 16-bit address in
the instruction is stored first.

TABLE 3-11 - EXTENDED ADDRESS MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE

 + +

<inst> @<addr>(B) addr msb! ! addr Isb!

+—
-—

+
+
—
—

+

topcode

' t
0 i

| STATEMENT MACHINE INSTRUCTION FORMAT
| memennne on lemon - - weanneane
(8

' ' $occeoooe=+ + + + +

<inst> @<addr> ! ' opcode ! ! addr msb! | addr |sb!
' + - + $eceorcoone+ +oeememerm-e+

! $ooeeeoone+ $eroecoooee-e+

! <inst> *Rd ' { opcode |} | d '
' ' + + + +

}

3.3.6 Implied Operand Type Instructions

Implied operand type instructions are one-byte instructions whose

3-13

operands, if any, are implied by the opcode itself. These include
several miscellaneous instructions such as EINT (Enable Interrupts)
and POP ST (Pop Status). The machine instruction format for implied
operand instructions is shown in Table 3-12.

TABLE 3-12 - IMPLIED OPERAND TYPE INSTRUCTION

ASSEMBLY LANGUAGE ~
STATEMENT

MACHINE INSTRUCTION
FORMAT

<inst>

{

3.3.7 Special Address Type Instructions

Special address type instructions (e.g., MOVE DOUBLE) are those whose
operands do not fit any of the above instruction types. The machine
instruction formats for these instructions are listed with the
instruction's description in Section 3.4.

3.4 INSTRUCTION DESCRIPTIONS

The following paragraphs describe the instruction set of the TMS7000.
The Assembler for each TMS7000 family device will accept these
instructions (in the indicated Assembly Language format). The byte
count for each instruction may be determined from its instruction type
and its operands. The binary opcodes and cycle counts for each
instruction may vary among family members. Refer to the individual
family member specification for opcode assignment and instruction
timing information.

The instruction descriptions are presented in alphabetic order. The
discussion of each instruction includes mnemonic, syntax, instruction
type, example, definition, Status bit, and application note
information.

3-14

ACD ACD

3.4.1 Add With Carry Instruction (ADC)

SYNTAX: [<label>] ...ADC ...<s>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLE: LABEL ADC R66,R117

DEFINITION: Add the source operand to the destination operand with
carry in and store the result at the destination address.

EXECUTION RESULTS: (s) + (d) + C => (d)

STATUS BITS AFFECTED: C set to '1' on carry-out of (s)+(d) +C
Z set on result
N: set on result

APPLICATION NOTES: ADC may be used to implement multi-precision
addition of signed or unsigned integers. ADC with an immediate operand
of zero value is equivalent to a conditional increment of the
destination operand. For example, the l6-bit integer in register pair
(R2,R3) may be added to the l6-bit integer in (A,B) as follows:

ADD R3,8 Low @rder bytes added
ADC R2,A High order bytes added

3-15

ADD ADD

3.4.2 Add Instruction (ADD)

SYNTAX: [<label>] ...ADD ...<s>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLE: LABEL ADD A,B

Definition: Add the source operand to the destination operand and
store the result at the destination address.

EXECUTION RESULTS: (s) + (d) -> (d)

STATUS BITS AFFECTED:
C: '1' on carry-out of (s) + (d)
Z: set on result
N: set on result

APPLICATION NOTES: ADD is used to add two bytes, and may be used for
signed two's complement or unsigned addition.

3-16

AND AND

3.4.3 And Instruction (AND)

SYNTAX: [<label>] .. AND ...<S>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLE: LABEL AND A,B

DEFINITION: Logically AND ‘the source operand to the destination
operand and store the result at the destination address.

EXECUTION RESULTS: (s) .AND. (d) -> (d)

STATUS BITS AFFECTED:
C: set to ‘'0'
N,Z: set on result

APPLICATION NOTES: AND jis’ used to perform a logical AND of the two
operands. Each bit of the 8-bit result follows the truth table:

SOURCE DESTINATION DESTINATION
Operand Bit Operand Bit Result Bit

7 0 0 0

0 l 0

] 0 0

1] 1

3-17

ANDP ANDP

3.4.4 AND Peripheral File Register Instruction (ANDP)

SYNTAX: [label>] ... ANDP ...<s>,<d> [<comment>]

TYPE: Peripheral File

EXAMPLE: LABEL ANDP %>DF,P6 Clear bit 5 of B port

DEFINITION: Logically AND the source and the peripheral file register
specified in the destination, and place the result in the PF register.
The source may be the A or B registers, or an immediate value.

STATUS BITS AFFECTED:
C: set to '0'
Z,N: set on result

APPLICATION NOTES: ANDP may be used to clear one or more bits in the
peripheral file. Thus, it may be used to reset an individual output
line to zero. This may be done with an ANDP instruction where the
source is an immediate operand that serves as a mask field. The
example above shows how bit 5 of the I/O control register (PO) jis
cleared, thus disabling level-3 interrupts.

3-18

BTJO BTJO

3.4.5 Bit Test And Jump If One Instruction (BTJO)

SYNTAX: [<label>] ...BTJO ...<s>,<d>,<offset> ...[<comment>]

TYPE: Dual Relative

EXAMPLE: LABEL BTJO %>41,B,THERE Jump if bit B(6) or bit B(0) is set.

DEFINITION: Logically AND the source and destination operands and do
not copy the result. If the result is non-zero, then perform a program
counter relative jump using the offset operand. The program counter is
set to the first byte AFTER the BIJO instruction before the offset is
added.

EXECUTION RESULTS: if (s).AND.(D)<>0, then PC+(offset)->PC

STATUS BITS AFFECTED:
C: set to zero
Z,N: set on (s).AND.(D)

APPLICATION NOTES: Use the BTJO instruction to test for at least one
bit which has a corresponding '1' bit in each operand. ~for-example,
the source operand can be used as a bit mask to test for '1' bits in
the destination address.

3-19

BTJOP BTJOP

3.4.6 Bit Test And Jump If One-Peripheral Instruction (BTJOP)

SYNTAX: [<label>] ..BTJOP ..<s>,<d>,<offset> ..[<comment>]

TYPE: Peripheral-Relative

EXAMPLE: LABEL BTJOP %>01,P4,THERE Test Port A(0) bit

DEFINITION: Logically AND the source and destination operands and do
not copy the result. If the result {fs non-zero, then perform a program
counter relative jump using the offset operand. The program counter is
set to the first byte after the BIJOP instruction before the offset is
added.

EXECUTION RESULTS: if (s).AND.(D)<>0, then PC+(offset)->PC

STATUS BITS AFFECTED:
C: set to zero
Z,N: set on (s).AND.(D)

APPLICATION NOTES: Use the BTJOP instruction to test for at least one
bit position which has a corresponding 1 in each operand. For example,
the source operand can be used as a bit mask to test for one bits in
the destination peripheral file register. The example above tests bit
0 of the input A port, and jumps if it is al.

3-20

BIJZ BIJZ

3.4.7 Bit Test And Jump If Zero Instruction (BTJZ)

SYNTAX: [<label>] ...BTJZ ...<s>,<d>,<offset> ...[<comment>]

TYPE: Dual Relative

EXAMPLE: LABEL BTJZ %>10,23,HERE IF R3(4)='0', JUMP

DEFINITION: Logically AND the source and the inverted destination
operand; do not copy the result. If the result is not equal to zero,
then perform a program counter relative jump using the offset operand.
The program counter is set to the first byte after the BTJZ
instruction before the offset is added.

EXECUTION RESULTS: {f (s).AND.(NOT d)<>0, then PC+(offset)->PC

STATUS BITS AFFECTED:
C: set to '0'
Z,N: set on (s).AND.(NOT d)

APPLICATION NOTES: Use the BTJZ instruction to test for at least one 0
bit in the destination operand which has a corresponding 1 bit in’ the
source operand.

3-21

BIJZP BIJZP

3.4.8 Bit Test And Jump If Zero-Peripheral Instruction (BTJZP)

SYNTAX: [<label>] ..BTJZP ..<s>,<d>,<offset> ..[<comment>]

TYPE: Peripheral Relative

EXAMPLE: LABEL BIJZP %>81,P4, THERE If Port A(O) or A(7) are 0,
then jump.

DEFINITION: Logically AND the source and inverted destination
operands, and do not copy the result. If the result fs non-zero, then
perform a program counter relative jump using the offset operand. The
program counter is set to the first byte after the BIJZP instruction
before the offset is added.

EXECUTION RESULTS: if (s).AND.(NOT d)<>0, then PC+(offset)->PC

STATUS BITS AFFECTED:
C: set to zero
Z,N: set on (s).AND.(NOT d)

Application notes: Use the BTJO instruction to test for at least one
bit position which has a 1 in the source and an 0 in the peripheral
file register. For example, the source operand can be used as a bit
mask to test for zero bits fn the destination peripheral file
register. The example above tests bit 0 of the input A port, and jumps
if it is a Q.

3-22

BR BR

3.4.9 Branch Instruction (BR)

SYNTAX: [<label>] ...BR ...<d> ...[<comment>]

TYPE: Extended Address

EXAMPLES: LABEL BR @THERE Direct addressing
BR @TABLE(B) Indexed addressing
BR *R14 Indirect addressing

DEFINITION: Branch directly to location specified by the 16-bit
addressing mode. The effective address is obtained using any one of
the three extended addressing modes.

EXECUTION RESULTS: (d)->PC

STATUS BITS AFFECTED: none

APPLICATION NOTES: BR may be used to branch to any location in the the
program. The powerful concept of computed GOTO's is supported by the
BR *Rn instruction.

An indexed branch instruction of the form BR @TABLE(B) jis an extremely
efficient way of executing one of several actions on the basis of some
control input. This is similar to the CASE statement of Pascal and
other high-level languages. For example, suppose register R3 contains
a control value. The program’ branches to label ACTIONO if R3=0,
ACTION] if R3=1, etc, for up to 128 different actions.

For Example:

ENTER EQU $ START EXECUTION HERE
MOV R3,B MOVE CONTROL INPUT TO B
RL 8B MPY BY 2 TO GET TABLE OFFSET
BR @TABLE(B) BRANCH TO CORRECT "JMP ACTION"

* STATEMENT

DISPATCH EQU $ DISPATCH TABLE
JMP ACTIONO
JMP ACTION]

JMP ACTIONn
ACTIONO EQU $

<code for action 0>
ACTION] EQU $

<code for action l>

This technique may be used to transfer control on character inputs,
error codes, etc.

3-23

CALL CALL

3.4.10 Call Instruction (CALL)

SYNTAX: [<label>] ...CALL ...<a> ...[<comment>]

TYPE: Extended Address

EXAMPLES: LABEL1 CALL @LABEL4
LABEL2 CALL @LABELS(B)
LABEL2 CALL *R12

DEFINITION: Push the Current PC on the stack and branch to the
effective operand address.

EXECUTION RESULTS: SP + 1 => SP
PC MSByte -> stack
SP + 1 => SP
PC LSByte => stack
operand address -> PC

STATUS BITS AFFECTED: none

Application notes: CALL is used to invoke a subroutine. The PUSH and
POP instructions can be used to save, pass, or restore status or
register values.

3-24

CLR CLR

3.4.11 Clear Instruction (CLR)

SYNTAX: [<label>] ...CLR ...<d> ...[<comment>]

TYPE: Single Register

EXAMPLE: LABEL CLR B

DEFINITION: Replace the operand value with a zero.

EXECUTION RESULTS: 0 -> (d)

STATUS BITS AFFECTED:
C: set to ‘0'
N: set to ‘0!
Z: set to '1'

APPLICATION NOTES: CLR {fs used to clear or initialize any file
register including the A and B registers.

3-25

CLRC CLRC
3.4.12 Clear Carry Instruction (CLRC)

SYNTAX: [<label>] ...CLRC ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL CLRC

DEFINITION: Clear the carry status; the sign and zero flags are
determined by the contents of the A register.

STATUS BITS AFFECTED:
C: set to ‘0' .
N,Z: set on value of A register

EXECUTION RESULTS: status bits set

Application notes: CLRC is used to clear the carry flag if required
before an arithmetic or rotate instruction. Note that the logical and
move instructions typically clear the carry status. The CLRC
instruction is equivalent to the TSTA instruction.

3-26

CMP CMP

3.4.13 Compare Instruction (CMP)

SYNTAX: [<label>] ...CMP ...<s>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLE: LABEL CMP R13,R89

DEFINITION: Subtract the source operand from the destination operand;
do not store the result.

EXECUTION RESULTS: (d) - (s) computed

STATUS BITS AFFECTED:
C: '1' if (d) is logically greater than

or equal to (s)
N: Sign of result
Z: '1' if (d) is equal to (s)

APPLICATION NOTES: CMP is used to compare the destination operand to
the source operand. The N bit is set to the sign of the result of
subtracting (s) from (d). The C bit is set to '1' if (d) is greater
than or equal to (s), interpreting (d) and (s) as unsigned integers.
For either signed or unsigned interpretations, the Z bit is set to '1'
if (d) and (s) are equal.

The status bits are set upon the result of computing (d) - (s). N and
Z are set on the result of this subtraction. The carry bit C is a
"borrow" bit--i.e., it is '0' if (d) is logically less than (s). The
difference between logical and arithmetic compares is demonstrated
be low:

DESTINATION SOURCE C N Z

FF 00 j] 0
7F 00] 0 0
80 00 1 1 0
80 7F 1 0 0
7F 7F 1 0 j
7F 80 0 1 0

As shown above, negative numbers are considered arithmetically less
than, but logically greater than, positive numbers. Note that the
State of the n bit does not necessarily reflect a comparison of s and
d interpreted as signed two's complement 8-bit numbers.

The CMP instruction can be used with the conditional branch
instructions to branch on the comparison between the destination
operand (d) and the source operand(s), as shown on the next page:

3-27

CMP CMP

JUMP CONDITION ON WHICH
INSTRUCTION JUMP IS TAKEN

JC/JHS 0 logically >= S$
JN D arithmetically < §$
JNC/JL D logically < §S
JNZ/JNE O not equal to §
JP DO arithmetically > $
JZ/JEQ D equal to §
JPZ OD arithmetically >= §

3-28

CMPA CMPA

3.4.14 Compare With An Extended Instruction (CMPA)

SYNTAX: [<label>] ...CMPA ...<s>...[<comment>]

TYPE: Extended Address

EXAMPLE: LABEL CMPA @TABLE(B)

DEFINITION: Subtract the contents of the byte addressed by the operand
from the contents of the A register.

EXECUTION RESULTS: (A) - <s> computed

STATUS BITS AFFECTED:
C: ‘1' if (A) fis logically greater than or

equal to <s>.
N: ‘l' 4f (A) is arithmetically less than <s>
Z: ‘1' if (A) is equal to <s>

APPLICATION NOTES: CMPA may be used to compare a_long-addressed
operand (e.g., via direct, indirect, or indexed addressing modes) to
the A register. It is especially useful in table lookup programs in
which the table is stored either in extended memory or in the program
ROM. The status bits are set exactly as if the register A were the
destination (d) and the addressed byte the source (s). See the CMP
instruction for programming techniques using the CMPA instruction.

3-29

DAC DAC
3.4.15 Decimal Add With Carry Instruction (DAC)

SYNTAX: [<label>] ...DAC ...<s>,<d> ...[<comment>]

TYPE: Oual Register

EXAMPLE: LABEL DAC %24,A

DEFINITION: Add the source operand to the destination operand with
carry in and store the result at the destination address. Each operand
is a two-digit integer using BCO format.

EXECUTION RESULTS: (s) + (d) + C -> (d)

STATUS BITS AFFECTED:
C: ‘'1l' if value of (s) + (d) + C >= 100
N: set on result
Z: set on result

APPLICATION NOTES: DAC is used to add bytes in binary-coded decimal
(BCD) form. Each byte is assumed to contain two BCD digits. Operation
of DAC is undefined for non-BCD operands. DAC with an immediate
operand of zero value is equivalent to a conditional increment of the
destination operand. The DAC instruction automatically performs a
decimal adjust of the binary sum of (s)+(d)+C. The carry bit is added
to facilitate adding multi-byte BCD strings, and so the carry bit must
be cleared before execution of the first DAC instruction.

EXAMPLE: Add ‘'1234' (STR1) to ‘'5678' (STR2) in binary coded decimal
form. Each operand is stored as a 2-byte BCD string with the most
significant digits first. Assume operand STR1 is stored in R3 and R4,
containing values >12 and >34 respectively. STR2 is stored in R5 and
R6 as >56 and »>78. The result would be the string >69,>12,
representing the number 6,912. Assume STR1 is stored in registers
R3,R4 and STR2 in RS,R6. The code to add STR1 and STR2 is:

CLRC CLEAR CARRY IF NOT ALREADY CLEAR
DAC R4,R6 ADD LOW BYTES
DAC R3,R5 ADD HIGH BYTES PLUS CARRY

The result will be left in STR2 (i.e., register pair R5,R6).

The following subroutine adds packed decimal strings of less than 256
bytes (512 digits) stored at memory locations STR1 and STR2 together,
placing the result in STR2. The strings must be stored with the most
significant byte first.

3-30

DAC DAC

* Decimal Addition Subroutine
* On input: B = length of string (number of bytes)
* Stack must have 3 available bytes.
* On output: STR2 = STR1+STR2
x

R

CLRC
PUSH ST
LDA @STR1-1(8)
MOV A,R2
LDA @STR2-1(B)
POP ST
DAC R2,A
PUSH ST
STA @STR2(B)
DJNZ B,LOOP
POP ST
RETS

LOOP

CLEAR CARRY BIT
SAVE STATUS ON STACK
LOAD CURRENT BYTE OF STRI1
SAVE IT IN R2
LOAD NEXT BYTE OF STR2
RESTORE CARRY FROM LAST ADD
ADD DECIMAL BYTES
SAVE CARRY FROM THIS ADD
STORE RESULT
LOOP UNTIL DONE
RESTORE STACK

Notice the use of indexed addressing mode to reference the bytes of
the decimal strings. Notice also the need to push the status register
between decimal additions, to
register is
added.

save

3-31

the decimal carry bit. The B
used to keep count of the number of bytes that have been

DEC DEC

3.4.16 Decrement Instruction (DEC) DEC

SYNTAX: [<label>] ...DEC ...<d> ...[<comment>]

TYPE: Single Register

EXAMPLE: LABEL DEC R102

DEFINITION: Subtract one from a copy of the operand and store the
result in the operand address.

EXECUTION RESULTS: (d) - 1 => (d)

STATUS BITS AFFECTED:
C: ‘'O' if (d) decrements from #00 to #FF;

'1' otherwise.
N: set on result
Z: set on result

APPLICATION NOTES: The DEC instruction is used to subtract a value of
one from any addressable operand. The DEC instruction {s also useful
in counting and addressing byte arrays.

3-32

DECD DECD

3.4.17 Decrement Double Instruction (DECD)

SYNTAX: [<label>] ...DECD ...<rp> ...[<comment>]

TYPE: Single Register

EXAMPLE: LABEL DECD RS1 Decrement (RS0,R51)
* register pair

DEFINITION: Subtract one from the 16-bit value contained in the
destination register pair. The operand is the register number of the
least significant byte.

EXECUTION RESULTS: (rp) - 1 => (rp)

STATUS BITS AFFECTED:
C: '‘'O' if most significant byte decrements from

>00 to >FF. Otherwise, C = '1'.
N: set on most significant byte of result
Z: set on most significant byte of result

APPLICATION NOTES: DECD may be used to decrement 16-bit indirect
addresses stored in the register file. Tables longer than 256 bytes
may be scanned using this instruction. The subroutine shown on the
next page searches a 500 byte table for a given byte, and returns with
the (R4,R5) register pair containing the address of that byte.
Register pair (R2,R3) should be initialized to the last address (i.e.
highest-addressed element) of the table:

3-33

DECD DECD

* LONGLOOK: LONG TABLE LOOKUP ROUTINE
CALLING SEQUENCE:

MOVD <TABLE LAST ADDR>,R3 TABLE ADDRESS -> (R2,R3)
MOVD <TABLE SIZE>,RS5 TABLE SIZE -> (R4,R5)
MOV <SEARCH VALUE>,A SEARCH VALUE -> A
CALL @LONGLOOK

ON EXIT, (R2,R3) WILL CONTAIN ADDRESS OF SEARCH VALUE
(R4,R5) WILL CONTAIN 1-BASED INDEX OF VALUE
CARRY BIT WILL BE SET TO ‘'1' IF NOT FOUND,
OTHERWISE IT WILL BE RESET TO '0O'

LONGLOOK EQU §$

2
e
e
8
s

6
82

4
HR
H
R

LOOP CMPA *R3 CHECK CURRENT BYTE
JZ FOUND IF EQUAL, WE FOUND IT (CARRY CLEARED)
DECD R3 IF NOT, DECREMENT TABLE ADDRESS
DECD RS5 DECREMENT TABLE COUNT
JNZ LOOP IF HIGH BYTE <> 0, CONTINUE
CMP %0,R5 IF LOW BYTE <> 0, CONTINUE
JNZ LOOP
SETC IF COUNT = 0, SET CARRY FOR ERROR

FOUND RETS RETURN FROM SUBROUTINE LONGLOOK

3-34

DINT DINT

3.4.18 Disable Interrupts Instruction (DINT)

SYNTAX: [<label>] ...DINT ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL ODINT

DEFINITION: Clear the interrupt enable flag in the status thus
disabling further interrupts.

STATUS BITS AFFECTED:
I: set to ‘0!
C,.N,Z: set to ‘0'

EXECUTION RESULTS: O -> interrupt enable status bit

APPLICATION NOTES: ODINT is used to turn off all interrupts
simultaneously. Since the interrupt enable flag is stored in the
Status register, the POP ST, and RETI instructions may reenable
interrupts even though a DINT instruction has been executed. During
the interrupt service, the interrupt enable bit is automatically
cleared after the old status register value has been pushed onto the
stack.

3-35

DJNZ _ DJNZ

3.4.19 Decrement Register And Jump If Non-Zero Instruction (DJNZ)

SYNTAX: [<label>] ...DUNZ ...<d>,<offset> ...[<comment>]

TYPE: Single-Relative

EXAMPLE: LABEL OJNZ R15, THERE

DEFINITION: Decrement the operand and copy result to operand address.
If result is non-zero, then take relative jump.

EXECUTION RESULTS: (d)-l->(d); if (d)<>0, then PC+(offset)->PC

STATUS BITS AFFECTED: None

APPLICATION NOTES: The DJNZ instruction is used for looping control.

3-36

DSB DSB

3.4.20 Decimal Subtract With Borrow Instruction (DSB)

SYNTAX: [<label>] ...DSB ...<s>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLE: LABEL DSB R15S,R76

DEFINITION: Subtract the source operand and borrow in from the
destination operand and store the result at the destination address.
Each operand is a two digit integer in packed BCD (binary coded
decimal) format.

EXECUTION RESULTS: (d) - (s) - 1 + C => (d)

STATUS BITS AFFECTED:
C: ‘'1' no borrow required, '0' if borrow required.
N,Z: set on result

APPLICATION NOTES: DSB is used for multiprecision decimal BCD
subtraction. A DSB instruction with an immediate operand of zero value
is equivalent to a conditional decrement of the destination operand.

The carry status bit functions as a borrow bit, so if no borrow in is
required, the carry bit should be set to '1'. This can be accomplished
by executing the SETC instruction.

3-37

EINT EINT

3.4.21 Enable Interrupts Instruction (EINT)

SYNTAX: [<label>] ...EINT ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL EINT

DEFINITION: Set the interrupt enable flag in the status thus enabling
interrupts.

STATUS BITS AFFECTED:
I: set to ']'
C,N,Z: set to '1'

EXECUTION RESULTS: 1 -> interrupt enable

APPLICATION NOTES: EINT is used to turn on all enabled interrupts
simultaneously. Since the interrupt enable flag is stored in the
status register, the POP ST, LDST, and RETI instructions may disable
interrupts even though a EINT instruction has been executed. During
the interrupt service, the interrupt enable bit is automatically
cleared after the old status register value has been pushed onto the
stack. Thus, the EINT instruction must be included inside the
interrupt service routine to permit nested or multilevel interrupts.

3°38

IDLE IDLE

3.4.22 Idle Until Interrupt Instruction (IDLE)

SYNTAX: [<label>] ...IDLE ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL IDLE

DEFINITION Suspend further instruction execution until an interrupt or
a reset occurs. Upon return from an interrupt, control passes to the
instruction following the IDLE instruction.

STATUS BITS AFFECTED: none

APPLICATION NOTES: IDLE is used to allow the program to suspend
operation until either an interrupt or reset occurs. It is the
programmer's responsibility to assure that the Timer Control Register
bit for Halt and Wake-up Modes (and individual interrupt enable bits
in the I/O control register) are set before executing the IDLE
instruction.

The IDLE instruction has a differenct affect on the TMS70CO0 CMOS
family devices. The IDLE inruction will cause the CMOS device to enter
one of two low power modes which use a fraction of the normal
operating power. In the Wake-Up Mode, the on-chip oscillator remains
active, and activation of the timer interrupt or the external
interrupts (RESET-, INT1-, INT3-) can be used to release the device
from the low power mode. In the Halt Mode, the oscillator and time are
disabled and only activation of an external interrupt will release the
device from the Halt Mode.

When any TMS/000 family device is released from an IDLE instruction,
program control passes to the next instruction.

3-39

INC INC

3.4.23 Increment Instruction (INC)

SYNTAX: [<label>] ...INC ...<d> ...[<comment>}

TYPE: Single Register

EXAMPLE: LABEL INC A

DEFINITION: AOD one to a register.

EXECUTION RESULTS: (d) + 1 = (d)

STATUS BITS AFFECTED:
C: ‘'1' {f (d) incremented from #FF to #00;

'O' otherwise.
N,Z: set on result

APPLICATION NOTES: INC is used to increment the value of any register.

3-40

INV INV

3.4.24 Invert Instruction (INV)

SYNTAX: [<label>] ...INV ...<d> ...[<comment>]

TYPE: Single Register

EXAMPLE: LABEL INV A

DEFINITION: Invert or complement all bits in the operand.

EXECUTION RESULTS: NOT (d) => (d)

STATUS BITS AFFECTED:
C: set to ‘0!
N/Z : set on result

APPLICATION NOTES: INV performs a logical or one's complement of the
operand. A two's complement of the operand can be made by following
the INV instruction with an increment (INC).

3-41

JMP JMP

3.4.25 Jump Unconditional Instruction (JMP)

SYNTAX: [<label>] ...JMP ...<offset> ...[<comment>]

TYPE: Simple Relative

EXAMPLE: LABEL JMP THERE

DEFINITION: Jump unconditionally to the address specified in the
operand. The second byte of the JMP instruction is loaded with the
8-bit relative address of the operand. The operand address must
therefore be within -128 to +127 bytes of the location of the
instruction following the JMP instruction.

STATUS BITS AFFECTED: none

EXECUTION RESULTS: PC + (offset) -> PC

APPLICATION NOTES: The Assembler will indicate an error if the target
address is beyond -128 to +127 bytes from the next instruction.

3-42

J(cond) J(cond)

3.4.26 Jump On Condition Instruction (J<cnd>)

SYNTAX: [<label>] ...J<cnd> ...<offset> ...[<comment>]

TYPE: Simple Relative

EXAMPLES: LABEL JNC THERE
LABEL JP HERE

DEFINITION: The assembler recognizes two mnemonics for each of the
conditional jump instructions. One set of mnemonics reflects the
actual conditon of the status bits tested. The other set reflects the
particular condition of the status bits after a compare instruction
(CMP or CMPA). The destination is considered compared to the source.
For example, assume the A register contains >FE hex. The following
instruction:

CMP %3,A

is read "Compare A to 3". The instruction:

JGT LABEL]

is equivalent to "JP LABEL1" and will not jump, because A is not
greater than 3 (i.e., as a signed value). The instruction:

JHS LABEL2

is equivalent to "JC LABEL2", and will jump because A is higher than 3
({.e., as an unsigned number).

Table 3-13 on the next page lists each conditional jump instruction,
and the condition in which it will cause a jump to the location
specified in the operand field:

3-43

J(cond) J(cond)

TABLE 3-13 - CONDITIONAL JUMPINSTRUCTIONS

CONDITION FOR JUMP
(STATUS BIT VALUES)

a‘

INSTRUCTION ! MNEMONIC { CARRY } NEGATIVE ! ZERO

1- - - 1~~ prternn

| Jump If Carry ' Jc ' 1 | X ne,’
1 Jump If Equal ! JEQ { xX | X 1 1
1 Jump If Higher Or Same { JHS ' 1 | X 1 XxX
{| Jump If Lower JL i Oo. || X 1 =X
{ Jump If Negative JN ' Xx | 1 ; Xx
| Jump If No Carry ! JNC ! 0 | X 1X
| Jump If Not Equal ! JNE ! xX ! X 1 60
t Jump If Non-zero JNZ ' xX | X r+ 9
{ Jump If Positive ' JP Xx | 0 t =—§60
' Jump If Positive Or Zero ! JPZ !) 0 1X
! Jump If Zero : JZ }) X 1]
i i ’ i t
0 (i i ’

EXECUTION RESULTS: If tested condition is true, PCtoffset->PC

STATUS BITS AFFECTED: none

APPLICATION NOTES: The J<cnd> instructions may be used after a CMP
instruction to branch according to the relative values of the operands
tested. After MOV, MOVP, LDA, or STA operations, a JZ or JNZ may be
used to test if the value moved was equal to zero. JN and JPZ may be
used in this case to test the sign bit of the value moved.

3-44

LDA LDA

3.4.27 Load A Register Instruction (LDA)

SYNTAX: [<label>] ...LDA ...<s> ...[<comment>]

TYPE: Extended Address

EXAMPLES: LABEL1 LDA @LABEL4 DIRECT
LABEL2 LDA @LABEL5(B) INDEXED
LABEL3 LDA *R13 INDIRECT

DEFINITION: Copy the contents of the source operand address to the A
register; addressing modes include direct, indexed, and indirect.

EXECUTION RESULTS: (s) -> A

STATUS BITS AFFECTED:
C: set to ‘'0'
Z,N: set on value loaded

APPLICATION NOTES: The LDA instruction is used to read values stored
in extended memory. The direct addressing provides an efficient means
of directly accessing a variable in general memory. Indexed addressing
provides an efficient table look-up capability for most applications.
Indirect addressing allows the use of very large look-up tables and
the use of multiple memory pointers since any pair of file registers
can be used as the pointer. The DUNZ (Decrement and Jump if Nonzero)
instruction can be used with either indexed or indirect addressing to
create fast and efficient program loops or table searches.

3°45

LDSP LDSP

3.4.28 Load Stack Pointer Instruction (LDSP)

SYNTAX: [<Tabel>] ...LDSP ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL LODSP

DEFINITION: Copy the contents of the B register to the stack pointer
register.

EXECUTION RESULTS: (B) -> SP

STATUS BITS AFFECTED:
C,N,Z: no effect

APPLICATION NOTES: LOSP is used to initialize the stack pointer.

3-46

MOV MOV

3.4.29 MOVE Instruction (MOV)

SYNTAX: [<label>] ...MOV ...<s>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLES: LABEL1 MOV A,B
LABEL2 MOV R32,R234
LABEL3 MOV %10,R3

DEFINITION: Copy the source operand to the destination operand
address.

EXECUTION RESULTS: (s) -> (d)

STATUS BITS AFFECTED:
C: set to '0'
Z,N: set on value loaded

APPLICATION NOTES: MOV jis used to transfer values in the register
file. Immediate values may be loaded into registers directly from the
instruction. The fact that the A or B register is a source is implied
in the MOV opcode, resulting in shorter and quicker moves from the A
or B register. See the Dual Register instruction type description.

3-47

MOVD MOVD

3.4.30 Move Double Instruction (MOVD)

SYNTAX: [label>] ... MOVD ...<s>,<rp> [<comment>]

TYPE: Special, see below

EXAMPLE: LABEL MOVD %>1234,R3 LOAD (R2,R3) REGISTER PAIR
MOVD R5,R3 COPY (R4,R5) TO (R2,R3)
MOVD %TAB(B),R3 COPY INDEXED ADDRESS TO

(R2,R3)

DEFINITION: MOVD moves a two-byte value to the register pair indicated
by the destination register number. The destination is the
higher-addressed register of the register pair. The sources may $e a
16-bit constant, another register pair, or an indexed address. For the
latter case, the source must be of the form "%ADDR(B)" where ADDR is a
16-bit constant or address. This 16-bit value is added to the contents
of the B register, and the result placed in the destination register
pair.

STATUS BITS AFFECTED:
C: set to '0';
N,Z: set on most significant byte moved

APPLICATION NOTES: “MOVD %ADOR,Rn" is useful for initializing register
pairs to be used in indirect addressing mode. "MOVD Rs,Rd" will
transfer two registers at atime. "MOVD ZADDR(B),Rn" will store an
indexed address into a register pair, for use later in indirect
addressing mode. That is, the contents of B are added to the l6-bit
value of ADDR and the result placed in the register pair (Rn-1,Rn).

INSTRUCTION FORMAT: The instruction format of the MOVD instruction is
a combination of the Extended Address and Single Register Formats, as
shown below:

ASSEMBLY LANGUAGE

STATEMENT MACHINE INSTRUCTION FORMAT

+o + + + +reewoeon—+ + - +

MOVD %ADDR, Rd ' opcode | | addr msb! | addr Isb! ! d !
+ e2=+ += + + + poeceoceone-+

MOVD Rs,Rd fopcode | | S {| d !

ponnnnna+ +e + + ++ +
MOVD %ADDR(B) ,Rd fopcode { | addr msb! | addr Jsb! | d !

+ + += + + + teewweeoen+

3-48

MOVP MOVP

3.4.31 Move To/From Peripheral File (MOVP)

SYNTAX: [label>] ... MOVP ...<s>,<d> [<comment>]

TYPE: Peripheral File

EXAMPLE: LABEL MOVP A,P2 SETUP TIMER VALUE
LABEL MOVP P4,B READ PORT A DATA

DEFINITION: Read or write data to the peripheral file. The
destination is read before the source is written into it.

STATUS BITS AFFECTED:
C: set to '0Q'
Z,N: set on value moved

APPLICATION NOTES: MOVP is used to transfer values to and from the
peripheral file. This may be used to input or output 8-bit quantities
on the I/O ports. For example:

MOVP P4,A

reads the data from input port 4. The instruction

MOVP B,P6

puts the contents of the B register into I/O register 6, which is the
B output port.

The peripheral file also contains control registers for the interrupt
lines, the I/0 ports, and the timer controls. For a full description
of the peripheral file register consult the individual MLP family
member specification.

During peripheral file instructions, a peripheral file port is read.
The read can include output operations such as 'MOV A,P6'. If this
read is undesirable because of hardware configuration, an STA (Store
A) instruction with the memory-mapped address of the peripheral
register can be used.

3-49

MIPY MPY

3.4.32 Multiply Instruction (MPY)

SYNTAX: [<iabel>] ...MPY ...<s>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLE: LABEL MPY R3,A MULTIPLY R3 AND A
LABEL2 MPY %32,B SHIFT B 5 PLACES LEFT

DEFINITION: MPY performs an 8-bit multiply for a general source and
destination operand. The 16-bit result is placed in the 'A,B' register
pair with the most significant byte in A.

EXECUTION RESULTS: (s) * (d) -> (A,B)

STATUS BITS AFFECTED:
C: set to 'Q'
N,Z: set on most significant byte of result

APPLICATION NOTES: MPY jis used to perform an 8-bit multiply.
Multiplying by a power of two is a convenient means of performing
double-byte shifts.

Multiple-precision multiply routines may be implemented easily with
the MPY instruction. The subroutine shown on the next page implements
a 16 by 8 bit multiply:

3-50

MYP MYP

MPY16X8: MULTIPLY 16-BIT NUMBER IN (R2,R3) BY
8 BIT NUMBER IN A. ON RETURN,
LOW ORDER 16-BITS OF RESULT IS (R2,R3). HIGH 8 BITS
ARE IN A.
IF NO OVERFLOW, ZERO BIT IS ‘1'
IF OVERFLOW ERROR, ZERO BIT IS ‘O'
USES 3 BYTES OF STACK (NOT INCLUDING RETURN PC)

MOVD <16-BIT>,R3
MOV <8-BIT>,A
CALL MPY16X8

RESULT:

MPY16X8

+

+ A*R2(MSB)

R2 R3
x A

A*R3(MSB) A*R3(LSB)
A*R2(LSB)

®

x

®%

®%

x

x

x

* CALLING SEQUENCE:
x

x

x

*

®

R

®

*

x

A

EQU
PUSH
PUSH
MOV
MPY
PUSH
MOV
MOV
MPY
POP
AOD
ADC
POP
POP
RETS

$
B
R4
A,R4
R3,A
A
B,R3
R4,A
R2,A
R2
B,R2
20 ,A
R4
B

R3

SAVE TEMPORARY REGISTERS

COPY A
=A*R3(MSB) B=A*R3(LSB)
SAVE A*R3(MSB)
RESULT LSB = A*R3(LSB)
RESTORE A
A=A*R2(MSB) B=A*R2(LSB)
POP A*R3(MSB) TO RESULT(MSB)
RESULT(MSB)= A*R3(MSB)+A*R2(LSB)
RIPPLE CARRY TO OVERFLOW BYTE
RESTORE TEMPS

RETURN

3-51

NOP NOP

3.4.33 No Operation Instruction (NOP)

SYNTAX: [<label>] ...NOP ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL NOP

DEFINITION: Perform no operation.

EXECUTION RESULTS: PC + 1 => PC

STATUS BITS AFFECTED: none

APPLICATION NOTES: NOP is useful as a pad instruction during program
development, to "patch out" unwanted or erroneous instructions.

3-52

OR OR

3.4.34 Or Instruction (OR)

SYNTAX: [<label>] ...OR ...<s>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLE: LABEL OR A,R12

DEFINITION: Logically OR the source operand to the destination operand
and store the result at the destination address.

EXECUTION RESULTS: (s) .OR. (d) -> (d)

STATUS BITS AFFECTED:
C: set to '0'
N,Z: set on result

APPLICATION NOTES: OR is used to perform a logical OR of the two
operands. Each bit of the 8-bit result follows the truth table:

SOURCE DESTINATION DESTINATION
OPERAND BIT OPERAND BIT RESULT BIT

0 0 0

0]]

] 0 1

]]]

3-53

ORP ORP

3.4.35 OR Peripheral File Register Instruction (ORP)

SYNTAX: [<label>] ...ORP ...<s>,<d> ...[<comment>]

TYPE: Peripheral File

EXAMPLE: LABEL ORP A,P12

DEFINITION: Logically OR the source operand to the destination
peripheral file register and write the result to the peripheral file
register. The source may be the A or B registers, or an immediate
value.

EXECUTION RESULTS: (s) .OR. (d) -> (d)

STATUS BITS AFFECTED:
C: set to '0'
N,Z: set on result

APPLICATION NOTES: OR is used to perform a logical OR of the source
operand with a peripheral file location, and write the result back to
the peripheral file. This may be used to set an individual I/0 bit, as
follows:

ORP %>01, .P6 SET BIT 0 OF PF REGISTER 6 (B Port)

3-54

POP POP

3.4.36 POP From Stack Instruction (POP)

SYNTAX: [<label>] ...POP ...<d> ...[<comment>]

TYPE: Single Register
"POP ST" Special, see below

EXAMPLES: LABEL1 POP R32
LABEL2 POP ST

DEFINITION: Remove the top byte from the stack and copy to the operand
address. Decrement the stack pointer to point to the new top-of-stack
byte.

EXECUTION RESULTS: Stack top => (d)
SP - 1 => SP

STATUS BITS AFFECTED:
C: set to '0'
N,Z: set on value POPped

APPLICATION NOTES: The data stack can be used to save or to pass
operands, especially during subroutines and interrupt service
routines. The POP instruction pulls an operand from the stack.

The status register may be replaced with the contents on the
stack by the statement:

POP ST

This one-byte instruction {fs usually executed in conjunction with a
previously performed "PUSH ST" instruction.

3-55

PUSH PUSH

3.4.37 Push On Stack Instruction (PUSH)

SYNTAX: [<label>] ...PUSH ...<d> ...[<comment>]

TYPE: Single Register
"PUSH ST" Special, see below

EXAMPLES: LABEL] PUSH A
LABEL2 PUSH ST

DEFINITION: Increment the stack pointer and place the operand value on
the stack as the new top-of-stack.

EXECUTION RESULTS: SP + 1 => SP;
(d) -> (stack top)

STATUS BITS AFFECTED:
C: set to '0'
N,Z: set on value pushed

APPLICATION NOTES: The data stack can be used to save or pass
operands, especially during subroutines and interrupt service
routines. The PUSH instruction places an operand on the stack. The
Status register may be pushed on the stack with the statement:

PUSH ST

This one-byte instruction is usually executed in conjunction with a
subsequently performed “POP ST" instruction. The status register is
unaffected.

3-56

RETI RETI

3.4.38 Return From Interrupt Instruction (RETI)

SYNTAX: [<label>] ...RETI ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL RETI

DEFINITION: POP the top two bytes from the stack to form the return
address, POP the status from the top of stack, and branch to the
return address.

EXECUTION RESULTS: Stack => PC LSByte
SP - 1 => SP
Stack <-> PC MSByte
SP - 1 => SP
Stack -> ST
SP - 1 => SP

STATUS BITS AFFECTED:
ST register loaded from stack

APPLICATION NOTES: RETI is typically the last instruction in an
interrupt service routine. RETI restores the status register to its
state immediately before the interrupt occurred and branches back to
the program at the instruction boundary where the interrupt occurred.

3-57

RETS RETS

3.4.39 Return From Subroutine Instruction (RETS)

SYNTAX: [<label>] ...RETS ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL’ RETS

DEFINITION: POP the top two bytes from the stack and branch to the
resulting l6-bit address.

EXECUTION RESULTS: Stack <-> PC LSByte
SP - 1 => SP
Stack <->,PC MSByte
SP - 1 => SP

STATUS BITS AFFECTED: no effect

APPLICATION NOTES: RETS jis typically the last instruction ina
subroutine. RETS results in a branch to the location immediately
following the subroutine call instruction.

3-58

RL ri

3.4.40 Rotate Left Instruction (RL)

SYNTAX: [<label>] ...RL ...<d> ...[<comment>]

TYPE: Single Register

EXAMPLE: LABEL RL R102

DEFINITION: Shift the operand one position to the left and fill the
least significant bit and the carry status bit with the value of the
original most significant bit; copy the result to destination addresss

EXECUTION RESULTS: Bit(n) -> Bit(n+1)
Bit(7) -> Bit(0) and Carry °

STATUS BITS AFFECTED:
C: set to bit(7) of original operand
N,Z: set on result

APPLICATION NOTES: An example of the RL instruction is: If the B
register contains the value >93, then the RL instruction changes the
contents of B to >2/7 and sets the carry status bit.

+oo-+ + --

Cc} “| MSB}64}5}4]3}2414 LSB
$oe—+ +ooce oo-

crest

+
-
—

+

3-59

RLC RLC

3.4.41 Rotate Left Through Carry Instruction (RLC)

SYNTAX: [<label>] ...RLC ...<d> ...[<comment>]

TYPE: Single Register

EXAMPLE: LABEL RLC R102

DEFINITION: Shift the operand to the left one bit position and fill
the least significant bit with the original value of the carry status
bit; copy the result to the destination address. Move the original
operand most significant bit to the carry status bit.

EXECUTION RESULTS: Bit(n)->Bit(n+1)
Carry->Bit(0)
Bit(7)->Carry

STATUS BITS AFFECTED:
C: set to bit(7) of original operand
N,Z: set on result

APPLICATION NOTES: An example of the RLC instruction is: if the 8B
register contains the value >93 and the carry status bit is a zero,
then the RLC instruction changes the operand value to >26 and carry to
one.

treme! C fenccean=- 1MSB1615!$4!34)2414 LSB} <4
+Powe Soe@V@eeFGeeBesaenawoenDoaneeneoweeweeae@

3-60

RR RR

3.4.42 Rotate Right Instruction (RR)

SYNTAX: [<label>] ...RR ...<d> ...[<comment>]

TYPE: Single Register

EXAMPLE: LABEL RR A

DEFINITION: Shift the operand to the right one bit position and fill
the most-significant bit and the carry status bit with the value of
the original least significant bit. Copy the result to operand
address.

EXECUTION RESULTS: Bit(n+l) -> Bit(n)
Bit(0) <-> Bit and Carry

STATUS BITS AFFECTED:
C: set to bit(0) of original operand
N,Z: set on result

APPLICATION NOTES: An example of the RR instruction is: If the B
register contains the value >93, then the "RR B" instruction changes
the contents of B to >C9 and sets the carry status bit.

 $omm+ +-- -< - +

1 C fem-t--0! MSB 1615141312411 LSB t<
pomm—+ ' p-ooeerooe= - - -

3-61

RRC RRC

3.4.43 Rotate Right Through Carry (RRC)

SYNTAX: [<label>] ...RRC ...<d> ...[<comment>]

TYPE: Single Register

EXAMPLE: LABEL RRC R32

DEFINITION: Shift the operand to the right one bit position and fil]
the most significant bit from the carry status bit. Fill the carry
Status bit with the value of the original least significant bit.

EXECUTION RESULTS: Bit(n+1)->Bit(n)
Carry->Bit(7)
Bit(0)->Carry

STATUS BITS AFFECTED:
C: set to bit(0) of original operand
N,Z: set on result

APPLICATION NOTES: An example of the RRC instruction is: If the B
register contains the value >93 and the carry status bit is zero, then
the 'RRC B' instruction changes the operand value to >49 and sets the
carry status bit.

+o-=+ + +

tem>! C fenrmm>} MSB}6$ 5141/3 4 24 1 4 LSB fe->-+
f pomm+ += +

3-62

SBB SBB

3.4.44 Subtract With Borrow Instruction (SBB)

SYNTAX: [<label>] ...SBB ...<s>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLE: LABEL SBB %23,B

DEFINITION: Subtract the source operand and borrow in_ from the
destination operand and store the result at the destination address.

EXECUTION RESULTS: (d) - (s) -1 + C -> (d)

STATUS BITS AFFECTED:
C: set to '1' if no borrow; '0' otherwise
N,Z: set on result.

APPLICATION NOTES: SBB is used for multiprecision two's complement
subtraction. An SBB instruction with an immediate operand of zero
value is equivalent to a conditional decrement of the destination
operand. With (s)=0, if C='0', then (d) is decremented, otherwise it
is unchanged. A borrow is required if the result is negative. In this
case, the carry bit is set to '0'.

3-63

SETC SETC
3.4.45 Set Carry Instruction (SETC)

SYNTAX: [<label>] ...SETC ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL SETC

DEFINITION: Set the carry and zero status flags and clear the sign
status flag.

EXECUTION RESULTS: status bits affected

STATUS BITS AFFECTED:
C: set to '1'
N: set to ‘0!
Z: set to '1'

APPLICATION NOTE: SETC is used to set the carry flag if required
before an arithmetic or rotate instruction.

3-64

STA STA

3.4.46 Store A Register Instruction (STA)

SYNTAX: [<label>] ...STA ...<d> ...[<comment>]

TYPE: Extended Address

EXAMPLES: LABEL] STA G@LABEL4 DIRECT.
LABEL2 STA @LABELS(B) INDEXED
LABEL3 STA *R13 INDIRECT

DEFINITION: Copy the contents of the A register to the
operand address. The addressing modes are Direct,

Indexed, and Indirect.

EXECUTION RESULTS: (A) -> (D)

STATUS BITS AFFECTED:
C: set to '0Q'
N/Z: set on value loaded

APPLICATION NOTES: The STA instruction is used to store values
anywhere in the memory address space. The direct addressing provides

an efficient means of directly accessing a variable in general memory.
The indexed addressing provides an efficient table look-up capability.
Indirect addressing allows the use of very large look-up tables and
the use of multiple memory pointers since any pair of file registers
can be used as the pointer. The ‘Decrement Register and Jump if
Non-Zero' instruction (DJNZ) can be used with either indexed or
indirect addressing to create fast and efficient program loops or
table searches.

3-65

STSP STSP

3.4.47 Store Stack Pointer Instruction (STSP)

SYNTAX: [<label>] ...STSP ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL STSP

DEFINITION: Copy the contents of the stack pointer register to the 8
register.

EXECUTION RESULTS: (SP) => (B)

STATUS BITS AFFECTED: none

APPLICATION NOTES: STSP is used to make a copy of the SP if required.
This instruction can be used to test the stack size. The indexed
addressing mode may be used to reference operands on the stack.

3-66

SUB SUB

3.4.48 Subtract Instruction (SUB)

SYNTAX: [<label>] ...SUB ...<s>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLE: LABEL SUB: R19,B

DEFINITION: Subtract the source operand from the destination operand
and store the result at the destination address.

EXECUTION RESULTS: (d) - (s) -> (d)

STATUS BITS AFFECTED:
C: set to 'l' {if result >=0, '0' otherwise
N,Z: set on result

APPLICATION NOTES: SUB is used for two's complement subtraction The
carry bit is set to '0' if a borrow is required, i.e. if the result is
negative.

3-67

SWAP SWAP

3.4.49 Swap Nibbles Instruction (SWAP)

SYNTAX: [<label>] ...SWAP ...<d> ...[<comment>]

TYPE: Single Register

EXAMPLE: LABEL SWAP R45

DEFINITION: Swap the least significant nibble of the operand with the
most significant nibble and copy the result to the operand address.
The SWAP instruction is equivalent to four consecutive rotate left
(RL) instructions with the carry status bit set equal to the least
significant bit of the result.

EXECUTION RESULTS: Bits 7:6:5:4 <-> Bits 3:2:1:0

STATUS BITS AFFECTED:
C: set to Bit(0) of result or Bit(4) of original
Z,N: set on result

APPLICATION NOTES: SWAP is used to manipulate four bit operands,
especially during packed BCD operations.

3-68

TRAP TRAP

3.4.50 Trap To Subroutine Instruction (TRAP)

SYNTAX: [<label>] ...TRAP ...<n> ...[<comment>]

TYPE: Special

EXAMPLE: LABEL TRAP 15

DEFINITION: The operand <n> ifs a trap number which identifies a
location in the Trap Vector Table, addresses >FFDO to >FFFF in memory.
The contents of the two-byte vector location form a l6-bit trap vector
to which a subroutine call is performed.

e

STATUS BITS AFFECTED: none

EXECUTION RESULTS: SP + 1 -> SP
PC MSByte -> stack
SP + 1] -> SP
PC LSByte -> stack
Entry vector -> PC

APPLICATION NOTES: TRAP jis an efficient way to invoke a subroutine.
The uppermost block of memory is the Trap Vector Table, and contains
as many subroutine addresses as available traps for the TMS7000 family
member. The subroutine addresses are stored like any other address in
memory, with the least significant byte in the higher-addressed
location, as shown below.

TRAP VECTOR TABLE

>FFFF | TRAP O Address LSB }
>FFFE ! " MSB |
>FFFD |! TRAP 1 Address LSB }
>FFFC | " MSB |
>FFFB | TRAP 2 Address LSB }
>FFFA ! " MSB }

>FFE] | TRAP 15 Address LSB !}
>FFEO | " MSB }

>FFD1 | TRAP 23 Address LSB |
>FFDO | " MSB }

i
i

3°69

TRAP TRAP

A Trap subroutine address 'TRAPn' may be used as follows:

ORG FFF-2N-1
DATA TRAPn TRAP n SUBROUTINE ADDRESS

Note that TRAP 1, +=‘(|TRAP 2, AND TRAP 3 correspond to the
hardware-invoked interrupts 1,2, and 3 respectively. The
hardware-invoked interrupts, however, push the program counter and the
status register before branching to the interrupt routine, while the
TRAP instruction pushes only the program counter. TRAP 0 will branch
to the same code executed for a system reset.

The number of traps allowed depends on the individual family member.
On the TMS7000 and TMS7020 the maximum number of traps allowed is 24.

3-70

TSTA TSTA

3.4.51 Test A Register Instruction (TSTA)

SYNTAX: [<label>] ...TSTA ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL TSTA TEST A REGISTER

DEFINITION Set the status bits on the value of the A register

EXECUTION RESULTS: C,N,Z bits set

STATUS BITS AFFECTED:
C: set to ‘0!
Z,N: set on value in A register

APPLICATION NOTES: This instruction can be used to set the status bits
according to the value in the A register.

3-71

TSTB TSTB

3.4.52 Test B Register Instruction (TSTB)

SYNTAX: [<label>] ...TSTB ...[<comment>]

TYPE: Implied Operand

EXAMPLE: LABEL TSTB TEST B REGISTER

DEFINITION: Set the status bits on the value of the B register

EXECUTION RESULTS: C,N,Z bits set

STATUS BITS AFFECTED:
C: set to ‘0°
Z,N: set on value in B register

APPLICATION NOTES: This instruction can be used to set the status bits
according to the value in the B register. It may be used to clear’ the
carry bit.

3-72

XCHB XCHB

3.4.53 Exchange With B Register Instruction (XCHB)

SYNTAX: [<label>] ...XCHB ...<d> ...[<comment>]

TYPE: Single Register

EXAMPLE: LABEL XCHB A
XCHB=sR3

DEFINITION: Copy the destination operand to the B register; then copy
the B value to the destination register.

EXECUTION RESULTS: Bits (B) <-> (d)

STATUS BITS AFFECTED:
C: set to '0'
N,Z: set on original contents of B.

APPLICATION NOTES: XCHB is used to exchange a file register with the B
register without going through an intermediate location. The XCHB
instruction with the B register as the operand is equivalent to the
TSTB instruction.

3-73

XOR KOR

3.4.54 Exclusive Or Instruction (XOR)

SYNTAX: [<label>] ...XOR ...<s>,<d> ...[<comment>]

TYPE: Dual Register

EXAMPLE: LABEL XOR %>98,R125

DEFINITION: Logically exclusive OR the source operand to the
destination operand and store the result at the destination address.

EXECUTION RESULTS: (s) .XOR. (d) -> (d)

STATUS BITS AFFECTED: |
C: set to ‘0!
N,Z: set on result

APPLICATION NOTES: XOR is used to perform a bit-wise exclusive OR of
the operands. The XOR instruction can be used to complement bits in
the destination operand. Each bit of the 8-bit result the following
truth table:

SOURCE DESTINATION DESTINATION
OPERAND BIT OPERAND BIT RESULT BIT

0 0 0

0]]

] 0 1

]] 0

3-74

XORP | AORP

3.4.55 Exclusive Or Peripheral File Register Instruction (XORP)

SYNTAX: [<label>] ...XORP ...<s>,<d> ...[<comment>]

TYPE: Peripheral File

EXAMPLE: LABEL XORP %>01,P9 REVERSE BIT C(O) DIRECTION

DEFINITION: Logically exclusive OR the source operand to the
peripheral file register specified, and write the result to the
peripheral file register.

EXECUTION RESULTS: (s) .XOR. (d) -> (d)

STATUS BITS AFFECTED: -
C: set to '0'
N,Z: set on result

APPLICATION NOTES: XORP is used to perform a bit-wise exclusive OR of
the operands. The XORP instruction can be used to complement bits in
the destination PF register. The example above inverts bit 0O of P9,
which is the port C data direction register, thus reversing the
direction of the bit.

3-75

SECTION 4

USER APPLICATION NOTES

4.1 GENERAL

This section provides information and specific examples’ that
supplement the application notes in the instruction descriptions.
Programming examples are included for those instructions for which the
application notes require additional explanation.

4.2 ARITHMETIC INSTRUCTIONS -

The TMS7000 Instruction Set supports all arithmetic operations, as
well as array indexing, loop control, and bit shifting.

4.2.1 Incrementing Instructions (INC/DAC/ADC)

The TMS7000 instruction set supports single and double-precision
incrementing of any file register. These instructions can be used for
arithmetic purposes, for array indexing, or for loop control.

Any file register can be directly incremented using the INC
instruction. For example, the instruction sequence:

INC A
INC R14

increments the contents of both register A and register 14. The INC
instruction can also be used to control] a flag value as follows:

* 150 BYTE BUBBLE SORT

FLAG EQU R2 COUNT

SORT CLR FLAG RESET SWAP FLAG
MOV 70149 ,B SORT COUNT

LOOP 1 LDA @TABLE(B)
CMPA @TABLE-1(8) COMPARE ADJACENT VALUES
JL LOOP2 IF LOWER, SKIP
INC FLAG SET DETECT FLAG TO NON-ZERO
PUSH A USE STACK FOR TEMPORARY STORAGE
LDA @TABLE-1(B)
STA @TABLE(B) SWAP OPERANDS
POP A
STA @TABLE-1(B)

LOOP2 EQU $
DJNZ 8B,LOOP] LOOP UNTIL ALL TABLE IS SWEPT
BTJO %>FF,FLAG,SORT IF SWAP MADE, RESWEEP TABLE

In this bubble sort routine, the INC instruction is used to guarantee
a non-zero value in the FLAG register if an operand swap is made. The
FLAG value is initialized using the CLR instruction. The BTJO
instruction is used to test the FLAG value to determine if a swap has
been made.

A register containing Binary Coded Data (BCD) can be incremented with
the DAC instruction as shown below:

CLRC Clear Carry
DAC %1,R18 Add "1" to register 18

using BCD format

The CLRC instruction is required only if the carry status bit is not
already cleared by the preceding instruction execution sequence.

Any file register can be conditionally incremented by a single
instruction using the ADC instruction with a zero value immediate
source operand. For example, the instruction sequence:

INC R19
AOC #0 ,R18

performs a double precision increment by unconditionally incrementing
register R19 and then conditionally incrementing register R18.

4.2.2 Decrementing Instructions (DEC/DSB/DECD)

The TMS7000 instruction set supports single and double-precision
decrementing of any file register. These instructions can be used for
arithmetic purposes, for array indexing, or for loop control.

Any file register can be directly decremented using the DEC
instruction or conditionally decremented using the SBB instruction.
For example, the instruction sequence:

DEC B
SUB R103 ,R3
SBB 700 ,A

unconditionally decrements the B register, subtracts register R103
from register R3, and then decrements the A register if a borrow-out
is generated by the subtraction.

A register containing BCD data can be decremented with the DSB
instruction as shown below:

SETC Clear Borrow
DSB - £1,B BCD Decrement

The SETC instruction is required only if the carry status bit is not
already set by the preceding instruction execution sequence. Remember
that the subtraction "borrow-in" is the complement of the carry status
bit.

Any pair of contiguous registers can be decremented using the double
precision DECD instruction. DECD is especially powerful when used in
conjunction with instructions with register indirect adddressing. For
example, the instruction sequence:

* 'TABLE' START OF TABLE OF DATA
POINT EQU R81 TABLE POINTER
START EQU TABLE+1000 TABLE START

MOVD START , POINT INITIALIZE POINTER
LOOP EQU $

CMPA *POINT MATCH
JEQ MATCH IF SO, EXIT
DECD POINT NEXT TEST VALUE
JC LOOP

NOMTCH

MATCH EQU $

searches a 1000-byte table for an entry matching the contents of the A
register. If a match is found, then register pair R80::R81 points at
the matching table entry. The DECD instruction is used to step the
pointer through the table.

4.2.3 Addition Instructions (ADD/ADC/DAC)

The TMS7000 instruction set supports both single and double-precision
addition for either binary or BCD data.

4-3

The ADD and ADC instructions are used for single and multi-precision
binary addition respectivly. The ADD instruction adds the two
specified operands with a zero value carry-in. The ADC instruction
adds the two operands with a carry-in value equal to the value of the
Carry status bit. Thus, the following instruction sequence:

ADD R30,R120
ADC R29 ,R119
ADC R28 ,R118
ADC R27,R117

adds the 32-bit value in registers R27-R30 to the 32 bit value in
registers R117-R120. The initial instruction is ADD since no carry-in
is desired. ADC is used in the next three instructions in order to
ripple a carry through all 32 bits.

The DAC instruction is used to add BCD values. The carry-in value is
equal to the carry status bit value. Consequently, the carry status
bit must be cleared if no carry-in is desired. For example, the
following sequence:

MOVP P4,A
MOVP P8,B
DAC %>13,B
DAC %>47,A

adds a BCD constant equal to 4713 to the contents of the A and B
registers. Note that the MOVP instruction automatically clears the
Carry status bit thus eliminating the need for a CLRC instruction.

4.2.4 Subtraction Instructions (SUB/SBB)

The TMS7000 instruction set supports both single and double-precision
subtraction for either binary or BCD data. The SUB and “SBB
instructions are used for single and multi-precision binary
subtraction respectively. The SUB instruction adds the two specified
operands with no borrow-in. Tne SBB instruction uses a borrow-in which
is equal to the complement of the carry status bit. For example, the
following sequence:

SUB R2,R125
SBB R3,R1z4
SSBB s-R4,R123

subtracts the 24-bit value in registers R2 through R4 from the 24-bit
value in registers R125 through R127. Because the borrow in is the
complement of the carry status Dit, the following examples clears the
A register:

MOV ‘%1,A
SSBB %0.A

Normally, however, the one-byte 'CLR A' instruction is used to place a
zero value in the A register.

4.2.5 Multiply Instruction (MPY)

The MPY instruction performs an 8-bit by 8-bit multiply with a 16-bit
result that is stored in the A and B registers. The most significant
byte of the result is in A, and the least significant byte in B. The
MPY instruction can also be used for multi-bit right or left shifts as
shown below:

MPY #8 ,B

This instruction takes the value of B and multiplies it by 8. After
the instruction executes, B contains the previous value, left shifted
3 bits (2**3=8) with zero fill bits. The A register can be considered
to contain the previous value right shifted 5 bits (2**[8-5]=8) with
zero fill bits. Thus, left or right multi-bit shifts can be performed
as shown below:

BITS BITS
IMMEDIATE RIGHT LEFT
MULTIPLIER SHIFTED SHIFTED

. 2 7]
4 6 2
8 5 3

16 4 4
32 3 5
64 2 6
128] /

Multi-precision multiplications can be conveniently performed by
breaking the multiplier and multiplicand into scaled 8-bit quantities
as shown below:

4-5

® 16 BIT MPY: XH XL X VECTOR
* X YH YL Y COEFFICIENT
eT. ~o---

* XLYLm XLYLI 1 = Isb
* XHYLm XHYLI m = msb
* XLYHm XLYH1
* + XHYHm XHYH1

* RSLT3 RSLT2 RSLT1 RSLTO
x

XH EQU R2 Higher operand of X
XL EQU R3 Lower operand of X
YH EQU R4 Higher operand of Y
YL EQU RS Lower operand of Y
RSLT3 EQU RE MSB of the final result
RSLT2 EQU R7
RSLT1 EQU R8
RSLTO EQU RI LSB of the final result

MPY32 CLR ACC2 Clear the present value
CLR ACC3
MPY XL,YL Multiply LSBs
MOV 8B,RSLTO Store LSB in Result Register 0
MOV A,RSLT1 Store MSB in Result Register 1
MPY XH,YL Get XHYL
ADD R1,RSLT1 Add to existing result XLYL
ADC R0O,RSLT2 Add carry if present
MPY XL,YH Multiply to get XLYH
ADD R1,RSLTI Add to existing result XLYL+XHYL
ADC RO,RSLT2 Add to existing results and carry
ADC %0,RSLT3 Add if carry present
MPY XH,YH Multiply MSBs
ADD R1,RSLT2 Add once again to the Result Register
ADC RO,RSLT3 Do the final add to the Result Register

The 16-bit operands in registers R2-R3 and R4-R5 are multiplied to
yield the 32-bit result in registers R6-R9. Note: the A and 8B
registers are, in general cases, referred to as RO and Rl in order to
emphasize that the dual register addressing mode with A or B as the
source operand is not directly supported (except for MOV instruction).
The RO or R1 address is substituted for the A or 8 register
respectively. The assembler normally, however, automatically performs
this translation.

4.3. DATA MOVEMENT INSTRUCTIONS

The TMS7000 Instruction Set supports instructions which permit simple
data movement, exchange or swapping of register contents, copy
register contents from one continguous register pair to another,
calculations of indexed addresses, transfer peripheral file port
values, and move values to an I/O port, read and store values, table
look-up, searching, and loop control (of table or block transfers).

4-6

4.3.1 Register Move Instructions (MOV/XCHB/MOVD)

For simple data movement between registers, the MOV, XCHB, and MOVD
instructions are used. The MOV instruction is used to copy the
contents of one register into another register or load a register with
an 8-bit immediate value. For example, the instruction sequence:

MOV %87,A
MOV A,R93
MOV R93,R112

results in RO, R93, and R112, each containing the decimal value "87".

The XCHB (exchange with B register) instruction is used to exchange or
swap the contents of the B register and any other register. Thus, the
A and B registers can be exchanged with the instruction:

XCHB A

The MOVD instruction is used to copy the contents of any two
contiguous registers into any other register pair, or else load a
l6-bit immediate value into a register pair. The higher-numbered
register of the register pair is specified as shown below:

MOVD %>18FA,R4
MOVD R4,R117

In the above example, R3 and R4 are first loaded with immediate values
>18 and >FA respectively. R3 and R4 are then copied into R116 and R117
respectively. The MOVD instructions are often used to initialize or to
copy register pairs to be used in the indirect register addressing
mode. In the following instruction sequence:

MOVD %>F900,R100
LDA *R100

The A register is loaded with the value of memory location >F900.

The MOVD instruction also supports a special "indexed immediate" mode.
This mode adds the 8-bit B register value to a 16-bit immediate
operand and stores the result in a register pair. This is equivalent
to calculating an indexed address but in this case the resulting
address is stored rather than used to fetch an operand. For example,
the following examples place the values of >9/7 and >1E into registers
R17 and R18 respectively:

MOV %20,B
MOVD %>971E(B),R18

4-7

4.3.2 I/0 Move Instruction (MOVP)

The peripheral move (MOVP) instruction is used to transfer a
peripheral file port value to or from the A or B register, or move an
immediate value to an I/O port. There are consequently five different
MOVP address combinations as shown below:

MOVP P4,A INPUT 1/0 TO A
MOVP P4,8 INPUT I/0 TO B
MOVP A,P6 OUTPUT A TO 1/0
MOVP B,P6 OUTPUT B TO I/O
MOVP %>13,P6 OUTPUT IMMEDIATE TO I/0

A peripheral file port is read during ALL peripheral file instructions
including output operations (e.g., "MOVP A,P4"). If this read is
undesirable as a result of hardware concerns, then a (store A)STA
instruction should be used with the memory-mapped address of the
peripheral port.

4.3.3 Load and Store Instructions (LDA/STA/DJNZ)

The LOAD A register (LDA) and STORE A register (STA) instructions are
used to read or store values anywhere in the full 64K byte address
space. There are three extended addressing modes: direct, indirect,
and indexed. Direct addressing provides an immediate 16-bit address
which directly points to any byte in the TMS7000 memory space. The
following instructions result in the transfer of the byte in location
>F819 to location >7193 and the A register.

LABEL EQU >F819
LDA @LABEL
STA @>7193

Indexed addressing also uses a l6-bit direct address. The effective
l6-bit memory address, however, is formed by adding the 8-bit B
register value to the l6-bit direct address. Thus, the following
instructions copy the A register value into memory’ location >1927:

MOV m>2/ ,B
STA @>1900(B)

Indexed addressing is normally used in table lookup, transfer, or
search algorithms The 8-bit B register index value provides a range of
up to 256 bytes, which is sufficient for most applications. Register
indirect addressing, however, is available for applications requiring
a larger table size.

A table lookup can be performed by simply placing the table index into
the B register and using an indexed LDA instruction as shown below:

MOVP P37,8 INPUT 8B REG
LDA @TABLE(B) LOOKUP VALUE 8B

4-8

The DJNZ instruction is especially powerful in table or block
transfers. This loop control instruction decrements the specified
register and transfers control if the result is non-zero. Thus, the
table index can be stepped with automatic looping until the transfer
is completed. For example, an 80-byte block transfer is performed by
the following sequence:

MOV 480 ,B
LOOP LDA @SRC-1(B)

STA @DEST-1(B)
DINZ B, LOOP

Table searches are efficiently performed through the use of the
compare A register extended (CMPA) instruction. In the following
example, a 150-byte table is searched. for a match with a 6-byte
string:

SEARCH MOV #150+1 ,R2 TABLE LENGTH = 150 bytes
LOOP 1 MOV ~6 ,B STRING LENGTH = 6 bytes
LOOP2 XCHB R2 SWAP POINTERS, LONG STRING IN B

DEC B TABLE END? IF SO, NO MATCH FOUND
* JZ NOFIND

LDA @TABLE-1(B8) LOAD TEST CHARACTER
XCHB R2 SWAP POINTERS, STRNG POINTER IN B
CMPA @STRING-1(B) MATCH?
JNE LOOP 1 IF NOT, RESET STRING PTR.
DJNZ B,LOOP2 ELSE TEST NEXT CHARACTER

MATCH EQU $ MATCH FOUND

NOFIND EQU $ NO MATCH FOUND

The indexed addressing mode is used in the above example and has the
capability to search a 256 byte string if necessary. The B Reaister
alternates between a pointer into the six-byte test string and a
pointer in to the longer table string.

Register indirect addressing is normally used when the 256-byte
indexing range is not adequate. For example, a 1000-byte table move is
performed in the following example:

MOVD 71000 ,R6
MOVD woRC+999 , R4
MOVD A*DEST+999 , R6

LOOP LDA *R4
DECD R4
STA *R6
DECD R6
DJNZ RZ , LOOP
DJNZ B,LOOP

4.4 LOGICAL INSTRUCTIONS

The TMS7000 instruction set provides powerful and flexible register
and I/0 logical bit manipulation and test support.

4.4.1 Register Logical Instructions (INV/XOR/OR/AND)

The invert (INV), exclusive OR (XOR), AND, and OR instructions are
used for register logical or Boolean bit manipulation. The bit test
and jump instructions (BTJO,BTJZ) provide efficient and flexible
single or multi-bit testing.

Any register can be complemented via the INV instruction. Each bit is
replaced with its boolean NOT thus resulting in a one's complement of
the register. Individual bits may be complemented with the XOR
instruction as shown below:

XOR #>81,R24

In this example, the most significant and least significant bits of
R24 are complemented since the immediate operand has "1" bits in these
bit positions. The remaining bits of R24 are unaffected since the
immediate operand has "0" bits in the corresponding bit positions. The
XOR bit mask source can be specified to be a register operand as well
as an immediate operand. In the following example. the contents of R24
are selectively complemented after a table lookup to find the desired
bit made:

MOVP Pé6,B
LDA @TABLE(B)
XOR RO ,R24

Note the use of RO to specify the A register in the final instruction.

The AND and OR instructions can be used to clear or to set selected
bits in a register. The instruction sequence:

BITO EQU >01
BIT6 EQU >40

AND *BITO,A
OR *BIT0+BIT6,B

clears the least significant bit (Bit 0) of the register A and sets
bit 6 and bit 0 of the B register.

The BTJO and BIJZ instructions provide register single or multiple bit
test capability. The Bit Test and Jump if One (BTJO) instruction tests
for "1" bits in the destination operand. A relative jump is made if at
least one such match is found. The BTJO instruction can be thought of
as a logical AND instruction in which the relative jump is taken if
the result is non-zero. The result, however, is not stored thus
leaving the destination operand unchanged. The instruction:

4-10

BTJO %>FF,A,NZERO

causes a relative jump to location NZERO if the A register contains at
least one "1" bit. The instruction sequence:

BIT4 EQU >10
BTJO *BIT4,R19,>FD19

results in a relative jump to location >FD19 if bit 4 of R19 is a "1"
independent of other R19 bit values.

The Bit Test and Jump if zero (BTJZ) instruction is similar to BIJO
except that it tests for "0" bits in the destination operand. BTJZ
test for "0" bits in the destination corresponding to "1" bits in the
source operand and jumps if at least one match occurs. For example,
the instruction:

BTJUZ 7>0F ,B, ZEROS

results in a conditional jump to location ZEROS if any bit in the
least significant nibble (bits 0-3) of the B register is a "0".

4.4.2 1/0 Logical Instructions (XORP/ANDP/ORP/BJOP/BTJZP)

The exclusive OR (XORP), ANDP, ORP, BTJOP, and BTJZP provide I/0
Boolean logical support. The Boolean bit mask can be specified to be
either an immediate operand or else derived from the A or B registers.
The destination operand is any.one of the 256 peripheral file I/0
ports.

The XORP, ANDP, and ORP allow any bit in an I/O port to be toggled,
cleared, or set by a single instruction. For example, the following
instruction sequence toggles bit 7 of PORTB, clears bit 0 of PORTC,
sets bits 1 and 6 of PORTC, and then restores bit 7 of PORTB to its
original value:

BITO EQU >01
BIT1 EQU >02
BIT6 EQU >40
BIT7 EQU >80
CPORT EQU P8
BPORT EQU P6

XOR *BIT7,BPORT
AND '*B1ITO,CPORT
OR #BIT1+BIT6 ,CPORT
XOR *B1T7,BPORT

The BIJOP and BIJZP instructions are similar to the BTJO and BTJZ
instructions. They provide flexible and efficient I/O bit testing. For
example, the instruction:

BIUZP ~>O0F,P18,$

4-11

loops on itself as long as any bit in the lower nibble (bits 3-0) of
I/O port P18 is a “O". The Bit Test Jump instructions can also be used
to test a single I/0 bit as shown below:

BITS EQU >20
BTJOP %BIT5,P0,>FEA7

Execution of the above code causes a conditional jump to location
>FEA7 if bit 5 of I/O port PO is a "1".

The conditional jump instructions can also be used to test for 1/0
values. For example, the following instruction sequence:

AND A,P200
JZ LABEL

logically ANDs the value of the A register to I/O port P200 and then
jumps to location LABEL if the resulting PZOO0 value is zero. The Jump
if Negative (JN) and Jump if Positive or Zero (JPZ) instructions can
also be used if the most significant bit (i.e., sign bit as bit 7) is
to be tested. For example, the instructions:

OR B,P97
JPZ LABEL]

Or the contents of the B register to I/0 port P97 and jump if bit 7 of
the result is a "1" bit.

4.5 BRANCH INSTRUCTION (BR)

The Branch instruction (BR) is used to unconditionally transfer
program control to any desired location in the 64K=-byte memory space.
The BR instruction supports direct, indexed, and indirect addressing.
Direct addressing is used for simple "GOTO" programming. Indexed
addressing allows table jumps. In the example below, indexed
addressing is used to access a relative jump table:

MOVP P4,B
RL B
BR @CTABLE (B)

CTABLE JMP CASE0 IF P4=0
JMP CASE] IF P4=1
JMP CASE2 IF P4=2

This indexed branch technique is similar to the Pascal "CASE"
Statement. Program control is transferred to location CASEO if the
input is '0', to CASE] if it is a '1', etc. Up to 128 cases can be

4-12

implemented. The case table entries can, of course, be longer entries
simply by adjusting the B register index to a different alignment
value.

The branch instruction can also be used with indirect addressing in
order to branch to a computed address. For example, suppose that a
computed branch address has been constructed in R19 and R20. The
desired program control transfer is made by:

BR *R20

4.6 SUBROUTINE INSTRUCTIONS. (CALL/TRAP/RETS)

TMS7000 Instruction Set provides several simple and flexible means of
invoking and transferring control between subroutines, and for
implementing complex algorithms.

The TMS7000 has two means of invoking subroutines: CALL and TRAP. Both
instructions save the current value of the program counter on the
stack before transferring control to the subroutine. Since the return
address is stored on the stack, subroutines can be easily nested. The

two instructions differ only in the way in which the subroutine

address is determined.

The CALL instruction uses direct, indirect, or indexed addressing to
specify the subroutine address. This permits both simple calls with a
fully specified address or more complex calls with a calculated
address. Thus, a table driven subroutine call similar to the branch
"CASE" statement can be implemented with indexed addressing.

The TRAP instruction is the most efficient way to invoke a subroutine.
There can be up to twenty-four TRAP instructions. The precise number
supported is specified in the appropriate TMS7000 family member data
manual. For example, the TMS/000 and TMS7020 both support twenty-four
different TRAPs.

An individual subroutine address is associated with each of the TRAPs.
These addresses are contained in a TRAP vector table which is in the
upper-most block of memory. Each vector table entry contains the
l6é-bit starting address of the corresponding subroutine as shown
be low.

4-13

TRAP 4

ORG >FFF8 TRAP 4 VECTOR TABLE ENTRY
DATA —C-BITTEST TRAP 4 SUBROUTINE ADDRESS

The trap subroutine address may be placed into the table as shown
be low:

ORG >FFFF-2N-1
DATA TRAPn TRAP n subroutine address

Thus, for example, the subroutine starting at location BITTEST can be
called either by a CALL instruction:

CALL @BITTEST

or by a TRAP instruction.

In each instance, a CALL requires three bytes: the opcode and two
subroutine address bytes. If the subroutine is required at six
locations, eighteen program bytes are used in total to implement the
CALLs. The first use of a TRAP instruction also requires three bytes:
the opcode and the two bytes in the vector table. However, only the
opcode byte is required for successive use of the same TRAP. Thus, six
uses of a TRAP require eight bytes (ten less than required by the
equivalent CALLs).

The Return from Subroutine (RETS) instruction restores program control
to the instruction immediately following the CALL or TRAP instruction.
The return address is “POPped" off the stack and placed into the
program counter. The stack is restored to its original state. If
desired, the subroutine return can be aborted as demonstrated in the
following code:

JC ERROR DETECTED ERROR%
RETS IF NOT, NORMAL RETURN

ERROR POP ST ELSE POP OFF RETURN
POP ST ADDRESS

In this example, the return address is removed from the stack since it
is no longer desired.

The value of a file register and the status register can be pushed on
or POPped from the stack. This is often done to pass data between
routines or to temporarily store data during loops. For example, the
following instruction sequence restores the value of the A register to

4-14

its value before a table lookup instruction occurs:

PUSH A
MOVP P19,8
LDA @TABLE(B)
MOVP A,P20
POP A

4.7 THE STACK

The stack is located in RAM and can be tailored to the specific needs
of the user. One powerful application of the stack is the
establishment of tables. For example, the following program
illustrates a dispatch table with an Interpretive Program Counter
(IPC). An IPC is used in some high-level languages, such as Pascal, to
give the proper execution sequence. The IPC can be contained in any
register, and it points to an interpretive pseudo code (PCODE) byte
that in turn specifies one of 256 dispatch routines. The overal]
effect of this function is that a program can execute one of a large
number of different routines, depending on the single value stored in
a register. Two separate 256-byte sections are required for the high
and low address bytes of each dispatch routine. The first entry of
each section (ROVO) corresponds to PCODE=0, and the second entry
(ROV1) corresponds to PCODE=1, etc.

IPC EQU R3 INTERPRETIVE PROGRAM COUNTER
LDA *IPC GET INPUT CODE. RANGE = 0-255
DECD IPC POINT TO NEXT INPUT CODE
MOV A,B PCODE INDEX REGISTER
LDA @DTABLE(B) LOOKUP ADDRESS MSB
PUSH A PUT MSB ON STACK
LDA @DTABLE+256(B) LOOKUP ADDRESS LSB
PUSH A PUT LSB ON STACK
RETS JUMP TO ADDRESS ON THE STACK

DTABLE BYTE ROVO/256 BEGINNING OF MSB TABLE
BYTE ROV1/256

BYTE ROV255/256
* BEGINNING OF LSB TABLE. WARNING

BYTE ROVO MESSAGES MAY APPEAR HERE, BUT
BYTE ROVI THEY DO NOT AFFECT RESULTS.

BYTE ROV255

It should be noted that the assembler expressions have l6-bit values.

4-15

For those instructions requiring an 8-bit operand, the expression is
truncated to the least significant eight bits. A warning message may
result from this truncation, but the value will] be correct. Thus, the
following instructions place byte values >AA, >55, >55 at memory
locations >8000, >8001, and >8002 respectively:

AASS LABEL EQU >AA55
8000 AORG 8000
8000 AAS5 DATA LABEL
8002 AA BYTE LABEL LSB only

The most significant byte (MSB) of an expression can be obtained by
dividing the value by 256 as shown below:

AASS LABEL EQU >AA55
8000 AASS AORG 8000
8000 AA DATA LABEL

° BYTE LABEL/256 MSB only

In this example, byte values >AA, >55, >AA are placed at memory
locations 8000, 8001, and 8002.

4.8 INTERRUPTS

The number of interrupts for an TMS7000 family device is specified by
the appropriate device data manual. The 1MS7020, for example, has
three interrupts in addition to RESET.

RESET and the interrupts are vectored through predetermined memory
locations. RESET uses the "TRAP 0" vector which is stored at memory
locations >FFFE->FFFF. The interrupts also use the TRAP vector table
with INT] using the "TRAP 1" vector, etc. Thus, the "TRAP 2"
instruction involves the same code as the interrupt INT2 instruction.

The interrupts differ from the TRAPs, however, in that they also push
the Status Register value on the stack, clear the interrupt enable bit
in the Status Register, and reset the corresponding interrupt flag
bit. Thus, the EINT instruction must be used if nested interrupts are
desired. The return from interrupt (RETI) instruction restores the
Status Register and the Program Counter, re-enabling interrupts.

Many interrupt service routines alter the status of key registers such
as the A and 8B registers. These routines should use the stack to
restore the machine state to the desired value. For example, the
following interrupt routine performs an I/O driven table lookup. The A
and B registers are used, but their values are saved and restored:

4-16

INT PUSH A STORE A AND B REGISTERS ON STK
PUSH B
MOVP P4,B GET INPUT FROM A PORT
LDA @LOOKUP(B) DO TABLE LOOKUP TO GET NEW VAL
MOVP A,P6 OUTPUT NEW VALUE ON B PORT
POP B RESTORE A AND B REGISTER IN
POP A THE REVERSE ORDER THAT THEY

WERE PUT ON THE STACK
RETI RETURN TO MAIN PROGRAM

®

Normally, all interrupts are disabled during an interrupt service
routine. If an interrupt needs to be able to occur while the processor
is servicing another interrupt, then the interrupt enable bit in the
Status Register should be set to a 1. The number of interrupts that
can be serviced at any one time is determined by the size of the
stack, which is always a maximum of 128 bytes because the stack
resides in the register file. Since other registers and data will most
likely share the same space, the stack size is usually much less.

When doing nested interrupts, great care must be taken to avoid
corrupting the data in the registers used by the most recent routine.
If INT1 interrupts an ongoing INT1 service routine, then the registers
used by the INT1 routine are used in two different contexts. If
provisions are not made for these types of situations, such as
disabling all interrupts at critical times, then data errors wil]
result.

Sometimes a program will have distinct parts which require different
responses to the same interrupt call. Since the interrupt vector is
always set in nonchangeable ROM, another method must be used to change
the vector for each part. One way of accomplishing this is to store a
second vector in a RAM register pair and then let the first
instruction in the interrupt routine execute an indirect branch on
that register. The example below shows how this is done:

4-17

®

&

SERVIC

®

x

SERVI2

NT]

*
e
n
e

t
r
e

&

The next routine is an example of a bubble-type sorting program.

PROGRAM TO DEMONSTRATE MULTIPLE INTERRUPT SERVICE ROUTINE
LOCATIONS

(Main Program)
MOVD
EINT
IDLE
MOVD

“SERVIC, R127

*SERVIZ R127

PUT INT1 SERVICE ROUTINE IN
REGISTER, TURN ON AND WAIT
FOR INTERRUPTS.

CHANGE INT1 ROUTINE TO SERV12

(First INT1 Service Routine)

PUSH
PUSH

A
B

BEGIN INT] SERVICE ROUTINE
FOR THIS PART OF PROGRAM.

(Second INT1 Service Routine)
PUSH
DEC

BR

A
R4

*R127

BEGIN ANOTHER INT1 SERVICE
ROUTINE.

THE ENTIRE INT1 SERVICE
ROUTINE TRANSFERS CONTROL
TO THE ADDRESS IN R126 AND
R127.

(Interrupt Vector Table At End Of Memory)
AORG
DATA
DATA

>FFFC
INT1
>F806

ADDR OF INT1 SERVICE ROUTINE
RESET VECTOR START OF PROGRAM

The
routine demonstrates the utility of Indexed Mode addressing. Table up
to 256 bytes in length can be sorted using the routine. Longer tables
can be sorted using the Indirect Addressing Mode.

®

®

FLAG

SORT

LOOP 1

LOOP2

150-BYTE

CLR
MOV
LDA
CMPA

INC
PUSH

STA
POP
STA
DJNZ
BTJO

BUBBLE SORT

FLAG
#149 ,B
@TABLE(B)
@TABLE-1(B)
LOOP2
FLAG
A
@TABLE-1(B)
@TABLE(B)
A
@TABLE-1(B)
B,LOOP1
zo>FF, FLAG, SORT

4-18

SWAP HAD BEEN MADE FLAG

RESET SWAP FLAG
NUMBER OF BYTES TO BE SORTED
LOOK AT ENTRY IN TABLE
LOOK AT NEXT LOWER BYTE
IF LOWER, SKIP TO NEXT VALUE
ENTRY IS NOT LOWER; SET SWAP FLAG
STORE UPPER BYTE
TAKE LOWER BYTE
PUT WHERE UPPER BYTE WAS
GET OLD UPPER BYTE
PUT WHERE LOWER BYTE WAS
LOOP TIL ALL TABLE IS EXAMINED
IF SWAP MADE, THEN RESWEEP TABLE;
IF NO SWAP MADE, TABLE DONE.

SECTION 5

ASSEMBLER DIRECTIVES

5.1 GENERAL

The TMS7000 assembly language is processed by the Macro Assembler,
executing in a host computer. This section describes the assembler and
its directives.

5.2 THE MACRO ASSEMBLER

The Macro Assembler generates object code for the TMS/000
microcomputer. The Assembler processes source code twice. On the first
pass, the assembler maintains the Location Counter, builds a symbol
table, and produces a copy of the source code for processing during
the second pass. On the second pass, the assembler reads the copy of
the source and assembles the object code using the operation codes and
the symbol table produced during the first pass.

5.3 ASSEMBLER DIRECTIVES

Assembler directives and machine instructions in source programs
supply data to be included in the program and control the: assembly
process. The assembler supports a number of directives in the
following categories:

. = Directives that affect the location counter

- Directives that affect the assembler output

- Directives that initialize constants

- Directives that provide linkage between programs

- Miscellaneous directives.

5.3.1 Directives That Affect The Location Counter

As an assembler reads the source statements of a program, a component
of the assembler called the Location Counter advances to correspond to
the memory locations assigned to the resulting object code. The first
nine of the assembler directives listed below initialize the Location
Counter and define the value as relocatable, absolute, or dummy. The
last three directives advance the Location Counter to provide a_ block
or an area of memory for the object code to follow. The word boundary

9-1

directive also ensures a word boundary (even address). The directives
are listed in Table 5-1. The following paragraphs provide a detailed
discussion of each.

TABLE 5-1 - ASSEMBLER DIRECTIVES THAT AFFECT THE LOCATION COUNTER

DIRECTIVES { MNEMONICS !

|
| * Absolute origin { AORG |
! * Relocatable origin ' RORG !
! ™* Dummy origin { DORG |
f * Data segment | OSEG
| *® Data segment end | DEND !
| * Common segment t. CSEG
| * Common segment end { CEND
| * Program segment te PSEG !
| * Program segment end PEND !
' * Block starting with symbol BSS !
' * Block ending with symbol ! BES !
|

§.3.1.1. Absolute Origin Directive (AORG): AORG places a value in
the location counter and defines the succeeding locations as absolute.
Use of the label field is optional. When a label is used, it is
assigned the value that the directive places in the location counter.
The command field contains AORG. The operand field is optional, but
when used, contains a well-defined expression (wd-exp). The assembler
places the value of the well-defined expression in the location
counter. The comment field is optional and may be used only when the
operand field is also used. When no AORG directive is entered, no
absolute addresses are included in the object program. When the
operand field is not used, the length of all preceding absolute code
replaces the value of the location counter.

SYNTAX:

[<label>]...AORG...[<wd-exp>...[<comment>]]

EXAMPLE:

AORG >1000+X

Symbol X must be absolute and must have been previously defined. If X
has a value of 6, the location counter is set to >1006" by this
directive. Had a label] been included, the label would have been
assigned the value >1006.

5.3.1.2 Relocatable Origin Directive (RORG):
RORG places a value in the location counter; if encountered in
absolute code, it also defines succeeding locations as program-relocatable
When a label is used, it is assigned the value that the directive
places into the location counter. The command field contains RORG.
The operand field is optional; when it is used, the operand must
be an absolute or relocatable expression (exp) that contains only
previously defined symbols. The comment field may be used only when
the operand field is used.

SYNTAX:

[<label>] ...RORG ...[<exp] ...[<comment>]

When the operand field is not used, the length of the program segment,
data segment, or specific common segment of a program replaces the
value of the location counter. For a given relocation type X (data-,
common-, or program-relocatable), the length of the X-relocatable
segment at any time during an assembly is either of the following
values:

- The maximum value the location counter has ever attained

as a result of the assembly of any preceding block of
X-relocatable code

- Zero, if no X-relocatable code has been , previously
assembled

Since the location counter begins at zero, the length of a segment and
the next available address within that segment are identical.

If the RORG directive appears in absolute or program-relocatable code
and the operand field is not used, the location counter value is
replaced by the current maximum length of the program segment of that
program. If the directive appears in data-relocatable code without an
operand, the location counter value is replaced by the maximum length
of the data segment. Likewise, in common-relocatable code, the RORG
directive without an operand causes the maximum length of the
appropriate common segment to be loaded into the location counter.

When the operand field is used, the operand must be an absolute or
relocatable expression (exp) that contains only previously defined
symbols. If the directive is encountered in absolute code, a
relocatable operand must be program-relocatable; in relocatable code,
the relocation type of the operand must match that of the current
location counter. When it appears in absolute code, the RORG directive
changes the location counter to program-relocatable and replaces its
value with the operand value. In relocatable code, the operand value
replaces the current location counter value, and the relocation type
of the location counter remains unchanged.

EXAMPLE:

RORG $-20 OVERLAY TEN WORDS

5-3

The $ symbol refers to the location following the preceding
relocatable location of the program. This has the effect of backing up
the location counter by ten words. The instructions and directives
following the RORG directive replace the ten previously assembled
words of relocatable code, permitting correction of the program
without removing source records. If a label had been included, the
label would have been assigned the value placed in the location
counter.

SEG2 RORG

The location counter contents depend upon preceding source statements.
Assume that after defining data for a program that occupied >44 bytes,
an AORG directive initiated an absolute block of code. The absolute
block is followed by the RORG directive from the preceding example.
This places >0044 in the location counter and defines the location
counter as relocatable. Symbol SEG2 is a relocatable value, >0044. The
RORG directive from the above example would have no effect except at
the end of an absolute block or a dummy block.

5.3.1.3 Dummy Origin Directive (DORG): DORG places a value in the
location counter and defines the succeeding locations as a dummy block
or section. When assembling a dummy section, the assembler does not
generate object code but operates normally in all other respects. The
result is that the symbols that describe the layout of the dummy
section are available to the assembler during assembly of the
remainder of the program. The label ts assigned the value that the
directive places in the location cotnter. The operation field contains
DORG. The operand field contains an expression <exp> which may be
either absolute or relocatable. Any symbol] in the expression must have
been previously defined.

SYNTAX:

[<label>] ...DORG ...<exp> ...[<comment>]

When the operand field is absolute, the location counter is assigned the
absolute value. When the operand is relocatable, the location counter
1s assigned the relocatable value and the same relocation type as the
operand. When this occurs, space is reserved in the section that
has that relocation type.

EXAMPLE:

DORG 0

The effect of this directive is to cause the assembler to assign
values relative to the start of the dummy section to the labels within
the dummy section. The example directive is appropriate to define a
data structure. The executable portion of the module (following a RORG
directive) should use the labels of the dummy section as relative
addresses. In this manner, the data is available to the procedure

5-4

regardless of the memory area into which the data is loaded.

EXAMPLE:

RORG 0

(code as desired)

DORG $

(data segment)

END

The example of the DORG directive is appropriate for the executable
portion (procedure division) of a procedure that is common to more
than one task. The code corresponding to the dummy section must be
assembled in another program module. In this manner, separate data
portions (dummy sections) are available to the procedure portion.

The DORG directive may also be used with data-relocatable or
common-relocatable operands to specify dummy data or common segments.
The following example illustrates this usage:

CSEG 'COM1'

DORG $ "$" HAS A COMMON-RELOCATABLE VALUE

LAB1 DATA $

MASK DATA >F000

CEND

In the example, no object code is generated to initialize the common
segment COM1, but space is reserved and all common-relocatable labels
describing the structure of the common block (including LAB] and MASK)
are available for use throughout the program.

5.3.1.4 Block Starting With Symbol Directive (BSS): BSS advances the
location counter by the value of the well-defined expression (wd-exp)
in the operand field. Use of the label field is optional. When used, a
label is assigned the value of the location of the first byte in the
block. The operation field contains BSS. The operand field contains a

5-5

well-defined expression that represents the number of bytes to be
added to the location counter. The comment field is optional.

SYNTAX:

[<label>] ...BSS ...<wd-exp> [<comment>]

EXAMPLE:

BUFF1 BSS 80 CARD INPUT BUFFER

This directive reserves an 80-byte buffer at location BUFF1.

5.3.1.5 Block Ending With Symbol Directive (BES): BES advances the
location counter by the value in the operand field. Use of the label
field is optional. When used, a label is assigned the value of the
location following the block. The operation field contains BES. The
operand field contains a well-defined expression that represents the
number of bytes to be added to the location counter. The comment field
is optional.

SYNTAX:

[<label>] ...BES ...<wd-exp> ...[<comment>]

The following example shows a BES directive:

BUFF2 BES >10

The directive reserves a l6-byte buffer. Had the location counter
contained >100 when the assembler processed this directive, BUFF2
would have been assigned the value >110.

5.3.1.6 Even Boundary Directive (EVEN): EVEN places the location
counter on the next word boundary (even byte address). When the
location counter is already on an even boundary, the location counter
is not altered. Use of the label field is optional. When used, a label
is assigned the value in the location counter after the directive is
processed. The command field contains EVEN. The operand field is not
used, and the comment field is optional. SYNTAX:

[<label>] ...EVEN ...[<comment>]

EXAMPLE:

WRF1 EVEN

The directive assures that the location counter contains an even

boundary address and assigns the location counter address to label
WRF1.

5-6

5.3.1.7 Data Segment Directive (DSEG): DSEG places a value in the
location counter and defines succeeding locations as data-relocatable.
Use of the label field is optional. When a label fs used, it is
assigned the data-relocatable value that the directive places in the
location counter. The command field contains DSEG. The operand field
is not used, and the comment field is optional.

SYNTAX:

[<label>] ...DSEG ...[<comment>]

Initially, the location counter is set to zero. A RORG directive may
be used to adjust the location counter values.

The DSEG directive defines the beginning of a block of
data-relocatable code. The block is normally terminated with a DEND
directive. Ifeseveral such blocks appear throughout the program, they
comprise the data segment of the program. The entire data segment may
be relocated independently of the program segment at link-edit time.
This provides a convenient means of separating modifiable data from
executable code.

In addition to the DEND directive, the PSEG, CSEG, AORG, and END also
properly terminate the definition of a block of data-relocatable code.
The PSEG directive, like DEND, indicates that succeeding locations are
programprelocatable. The CSEG and AORG directives effectively
terminate the data segment by beginning a common segment (CSEG) or an
absolute segment (AORG). The END directive terminates the data segment
as well as the program.

EXAMPLE:

RAM DSEG START OF DATA AREA

<Data-relocatable code>

ERAM DEND

LRAM EQU ERAM-RAM

The block of code between the DSEG and ODEND directives is
data-relocatable. RAM is the symbolic address of the first word of
this block; ERAM is the data-relocatable byte address of the location
following the code block. The value of the symbol LRAM jis the length
in bytes of the block.

5-7

5.3.1.8 Data Segment End Directive (DEND): DEND terminates the
definition of a block of data-relocatable code by placing a value in
the location counter and defining succeeding locations as
program-relocatable. Use of the label field is optional. When used, a
label is assigned the value of the location counter prior to
modification. The command field contains DEND. The operand field is
not used, and the comment field is optional. As a result of this
directive, the location counter is set to one of these values:

- The maximum value attained by the location counter as a
result of the assembly of any preceding block of
program-relocatable code.

- Zero, if no program-relocatable code has been previously
assembled.

If encountered in common-relocatable or program-relocatable code, DEND
functions as a CEND or PEND, and a warning message is issued. Like
CEND and PEND, it is invalid when used in absolute code.

SYNTAX:

[<data>]DEND ...[<comment>]

5.3.1.9 Common Segment Directive (CSEG): CSEG places a value in the
location counter and defines succeeding locations as
common-relocatable (i.e., relocatable with respect to a common
segment). Use of the label field is optional. When used, a label is
assigned the value placed by the directive in the location counter.
The operation field contains CSEG, and the operand field is optional.
The comment field may only be used when the operand field is used.

If the operand field is not used, the CSEG directive defines the
beginning of (or continuation of) the blank common segment of the
program. When used, the operand field contains a character string of
up to six characters enclosed in quotes. (If the string length exceeds
six characters, the assembler prints a truncation error message and
retains the first six characters of the string.) If this string has
not previously appeared as the operand of a CSEG directive, the
assembler associates a new relocation section number with the operand,
sets the location counter to zero, and defines succeeding locations as
relocatable with respect to the new relocatable section. When the
operand string has been previously used in a CSEG, the succeeding code
represents a continuation of the particular common segment associated

with the operand. The location counter is restored to the maximum
value attained during the previous assembly of any portion of that
particular common segment. The second operand, <exp>, specifies the
memory alignment for the beginning of the Section.

SYNTAX:

[<label>] ...CSEG ...['<string>' [<comment>]]

5-8

The following directives will properly terminate the definition of a
block of common-relocatable code: CEND, PSEG, DSEG, AORG, and END. The
block is normally terminated with a CEND directive. The PSEG
directive, like CEND, indicates that succeeding locations are
program-relocatable. The ODSEG and AORG directives effectively
terminate the common segment by beginning a data segment or an
absolute segment. The END directive terminates the common segment as
well as the program.

The CSEG directive permits the construction and definition of
independently relocatable segments of data that several programs may
access or reference at execution time. The segments are the assembly
language counterparts of FORTRAN blank COMMON and labeled COMMON, and
in fact, permit assembly language programs to communicate with FORTRAN
programs which use COMMON. Information placed in the .object code by
the assembler permits the link editor to relocate all common segments
independently and make appropriate adjustments to all adresses that
reference locations within common segments. Locations within a
particular common segment may be referenced by several different
programs if each program contains a CSEG directive with the same
operand or no operand.

The following example illustrates the use of both the CSEG and the
CEND directives:

COMIA CSEG ‘ONE!

<Common-relocatable section, type 'ONE'>

CEND

COM2A CSEG ‘TWO!

<Common-relocatable section, type 'TWO'>

COM2B CEND
COMIC CSEG ‘ONE'

<Common-relocatable section, type 'ONE'>

COM1B CEND

COM1L DATA COM1B-COM1A LENGTH OF SEGMENT 'ONE'
COM2L DATA COM2B-COM2A LENGTH OF SEGMENT 'TWO'

The three blocks of code between the CSEG and the CEND directives are
common-relocatable. The first and third blocks are relocatable with
respect to one common relocation type; the second is relocatable with
respect to another. The first and third blocks comprise the common
segment 'ONE'; the value of the symbol COMIL is the length in bytes of
this segment. The symbol COM2A is the symbolic address of the first
word of the first word of common segment '‘TWO'; COM2B is the
common-relocatable (type ‘'TWO') byte address of the location following
the segment. (Note that the symbols COM2B and COMIC are of different
relocation types and possibly different values.) The value of the
symbol COM2L is the length in bytes of common segment '‘TWO'.

5.3.1.10 Common Segment End Directive (CEND): CEND terminates the
definition of a block of common-relocatable code by placing a value in
the location counter and defining succeeding locations as
program-relocatable. Use of the label field is optional. When used, a
label is assigned the value of the location counter prior to
modification. The command field contains CEND. The operand field is
not used, and the comment field is optional. As a result of this
directive, the location counter is set to one of the following values:

5-10

- The maximum value the location counter has ever attained
as a result of the assembly of any preceding block of
program-relocatable code.

- Zero, if no program-relocatable code had been previously
assembled.

SYNTAX:

[<label>] ...CEND ...[<comment>]

If encountered in data- or program-relocatable code, this directive
functions as a DEND or PEND. As is the case for DEND and PEND, CEND jis
invalid when used in absolute code. See Subsection 5.3.1.9 for an
example of the use of the CEND directive.

5.3.1.11 Program Segment Directive (PSEG): PSEG places a value in
the location counter and defines succeeding locations as a
program-relocatable. When used, a label is assigned the value that the
directive places in the location counter. The command field contains
PSEG. The operand field and the comment field is optional. The
location counter is set to one of the following values:

- The maximum value the location counter had attained as a
result of the assembly of any preceding block of
program-relocatable code.

- Relocatable zero, if no program-relocatable code had been
previously assembled.

SYNTAX:

[<label>] ...PSEG ...[<comment>]

The PSEG directive is provided as the program=segment counterpart to.
the DSEG and CSEG directives. Together, the three directives provide a
consistent method of defining the various types of relocatable
segments. The following sequences of directives are functionally
identical:

5-1]

SEQUENCE 1 SEQUENCE 2

DSEG OSEG

<Data-relocatable code> <Data-relocatable code>

DEND
CSEG CSEG

<Common-relocatable code> <Common-relocatable code>

f

CEND
PSEG PSEG

<Program-relocatable code> <Program-relocatable code>

PEND

END END

5.3.1.12 Program Segment End Directive (PEND): The PEND directive is
provided as the program-segment counterpart to the PEND and CEND
directives. Like those directives, it places a value in the location
counter and defines succeeding locations as program-relocatable
(however, since PEND properly appears only in program-relocatable
code, the relocation type of succeeding locations remains unchanged).
Use of the label field is optional. When used, a label is assigned the
value of the location counter prior to modification. The command field
contains PEND. The operand field is not used, and the comment field is
optional. The value placed in the location counter by this directive
is simply the maximum value attained by the location counter as a
result of the assembly of all preceding program-relocatable code, this
directive functions as a DEND or CEND. Like DEND and CEND, it is
invalid when used in absolute code.

SYNTAX:

[<label>] ...PEND ...[<comment>]

9712

5.3.2 Directives That Affect Assembler Output

This category contains the directive supplying a program identifier in
the object code and five directives affecting the source listing.
Table 5-2 lists those Directives. The paragraphs following discuss the
Directives in detail.

TABLE 5-2 - DIRECTIVES THAT AFFECT ASSEMBLER OUTPUT

{ DIRECTIVES { MNEMONICS |
| |

{| Qutput Options i OPTION '
| Program Identifier | IDT |
' Page Title ' TITL
{| Restart Source Listing ! LIST !
| Stop Source Listing ! UNL
| Eject Page PAGE :

| |

5.3.2.1 Output Options Directive (OPTION): OPTION selects several
options for the assembler listing output. The <option-list> operand is
a list of keywords, separated by commas, where each keyword selects a
listing feature. The available <option-list> features are:

BUNLST: Limit the listing of BYTE Directives to one line
DUNLST: Limit the listing of DATA Directives to one line
FUNLST: Turn off all unlist options
NOLIST: Inhibit all listing output. (This overrides the

LIST Directive)
SYMLST: Produce a symbol listing in the object file
TUNLST: Limit the listing of TEXT Directives to one line
XREF: Produce a symbol cross-reference listing

SYNTAX:

... OPTION <option-list>

§.3.2.2 Program Identifier Directive (IDT): IDT assigns a name to
the object module produced. Use of the label field is optional. When
used, a label assumes the current value of the location counter. The
command field contains IDT. The operand field contains the module name
<string>, a character string of up to eight characters within single
quotes. When a character string of more than eight characters is
entered, the assembler prints a truncation error message and retains
the first eight characters as the program name.

9-13

SYNTAX:

[<label>] ...IDT ...'<string>' ...[<comment>]

EXAMPLE:

IDT ‘CONVERT '

This example directive assigns the name CONVERT to the module being
assembled. The module name is printed in the source listing as the
operand of the IDT directive and appears in the page heading of the
source listing. the module name is also placed in the object code and
is used by the link editor for automatic entry-point resolution. A
routine whose entry point is to be automatically resolved by the link
editor must be declared as the ‘string’ on the IDT statement for that
module. The entry point must also be REF'd in this case.

NOTE

Although the Assembler will accept lowercase letters and
special characters within the quotes, ROM loaders, (for
example) will not. Therefore, only uppercase letters and
numerals are recommended.

5.3.2.3 Page Title Directive (TITL): TITL supplies a title to be
printed in the heading of each page of the source listing. When a
title is desired in the heading of the listing's first page, a TITL
directive must be the first source statement submitted to the
assembler. This directive is not printed in the source listing. Use of
the label field is optional. When used, a label field assumes the
current value of the location counter. The command field contains
TITL. The operand field contains the title (string), a character
string of up to 50 characters enclosed in single quotes. When more
than 50 characters are entered, the assembler retains the first 50
characters as the title and prints a truncation error message. The
comment field is optional; the assembler does not print the comment
but does increment the line counter.

SYNTAX:

[<label>] ...TITL ... ‘<string>' ...[<comment>]

EXAMPLE:

TITL ‘**REPORT GENERATOR**'

This directive causes the title **REPORT GENERATOR** to be printed in
the page headings of the source listing. When a TITL directive is the
first source statement in a program, the title is printed on all pages
until another TITL directive is processed. Otherwise, the title is
printed on the next page after the directive is processed, and on
subsequent pages until another TITL directive is processed.

5-14

5.3.2.4 Restart Source Listing Directive (LIST): LIST restores
printing of the source listing. This directive is required only when a
no source listing (UNL) directive is in effect and causes the
assembler to resume listing. This directive is not printed in the

source listing, but the line counter increments. Use of the label
field is optional. When used, a label assumes the current value of the
location counter. The command field contains LIST. The operand field
is not used. Use of the comment field 1s optional but the assembler
does not print the comment.

SYNTAX:

[<label>] ...LIST ...[<comment>]

EXAMPLE:

UNL

The UNL directive inhibits printing of the source listing, and can be
used to reduce assembly time and the size of the source listing.

5.3.2.5 Stop Source Listing Directive (UNL): UNL halts the source
listing output until the occurrence of a LIST Directive. It is not
printed in the source listing, but the source line counter is
incremented. This directive is frequently used in MACRO definitions to
inhibit the listing of the macro expansion.

Use of the label field is optional, but when used, the label assumes
the value of the Location Counter. The command field contains the
symbol UNL. The operand field is not used. The comment field jis
optional, but the Assembler does not print the comment.

SYNTAX:
[<label>] ...UNL ...[<comments>]

5.3.2.6 Eject Page Directive (PAGE): PAGE causes the Assembler to
continue the source program listing on a new page. The PAGE directive
is not printed in the source listing, but the line counter increments.
Use of the label field is optional. When used, a label assumes the
current value of the location counter. The command field contains
PAGE. The operand field is not used. Use of the comment field is
optional, but the assembler does not print the comment.

SYNTAX:

[<page>] ...PAGE ...[<comment>]

5-15 °

EXAMPLE:

PAGE

The directive causes the assembler to begin a new page of the source
listing. The next source statement is the first statement listed on
the new page. Use of the page directive to source listing into logical
divisions improves program documentation.

§.3.3. Directives That Initialize Constants

This category consists of directives assigning values in successive
bytes or words of the object code, a directive placing characters of
text in the object code for display or print purposes, and a directive
initializing a constant for use during the assembly process. Table 5-3
lists these Directives. The following paragraphs discuss each
directive in detail.

TABLE 5-3 - DIRECTIVES THAT INITIALIZE CONSTANTS

DIRECTIVE | §MNEMONIC !}

| Initialize Byte | BYTE |
| Initialize Word { DATA
| Initialize Text | TEXT |
| Define Assembly-Time Constant | EQU |

|

5.3.3.1 Initialize Byte Directive (BYTE): BYTE places one or more
values in one or more successive bytes of memory. Use of the label
field is optional. When used, a label is assigned the location in
which the assembler places the first byte. The command field contains
BYTE. The operand field contains one or more expressions separated by
commas. The expressions must contain no external references. The
assembler evaluates each expression and places the value in a byte as
an eight-bit two's complement number. When truncation is required, the
assembler prints a truncation warning message and places the
right-hand portion of the value in the byte. The comment field is
optional.

SYNTAX:

{[<label>] ...BYTE ...<exp>[,<exp>]...... [<comment>]

EXAMPLE:

KONS BYTE >F+1,-1,'D'-'=',0,'AB'-'AA'

The directive initializes five bytes, starting with a byte at location

5-16

KONS. The contents of the resulting bytes are 00010000, 11111111,
00000111, 00000000, and 00000001.

5.3.3.2 Initialize Word Directive (DATA): DATA places one or more
values in one or more successive two~byte words memory. Use of the
label field is optional. When used, a label is assigned the location
at which the assembler places the first word. The command field
contains DATA. The operand field contains one or more expressions
separated by commas. The assembler evaluates each expression and
places the value in a word as a 16-bit two's complement number. Words
are stored most significant byte first, i.e. at the lower address. The
comment field is optional.

SYNTAX:

[<label>] ...DATA ...<exp>[,<exp>]...b...[<comment>]

EXAMPLE:

KONS1 DATA 3200,1+'AB' ,-'AF' ,>F4A0, 'A'

The directive initializes five words, starting with a word at location
KONS1. The contents of the resulting words are >0C80, >4143, >BEBA,
>F4A0, and >0041.

5.3.3.3 Initialize Text Directive (TEXT): TEXT places one or more
characters in successive bytes of memory. The assembler negates the
last character of the string when the string is preceded by a minus
(-) sign (unary minus). Use of the label field is optional. When used,
a label is assigned the location at which the assembler places the
first character. The command field contains TEXT. The operand field
contains a character string of up to 52 characters enclosed in single
quotes, which may be preceded by a unary minus sign. The comment field
is optional.

SYNTAX:

[<label>] ...TEXT ..[-]'<string>' ...[<comment>]

EXAMPLE:

MSG1 TEXT '‘EXAMPLE' MESSAGE HEADING

The directive places the eight-bit ASCII representations of the
characters in successive bytes. When the location counter is on an
even address, the result is >4558, >414D, >504C, and >45XX. XX, the
contents of the rightmost byte of the fourth word, are determined by
the next source statement. The label MSG1 is assigned the value of te
first byte address containing >45. Another example, showing the use of
a unary minus, follows:

MSG2 TEXT - 'NUMBER'

5-17 °

When the location counter is on an even address, the result is >4E&55,
>4D42, and >45AE. The label MSG2 is assigned the value of the byte
address in which >4E is placed.

5.3.3.4 Define Assembly-Time Constant Directive (EQU): EQU assigns a
value to a symbol. The label field contains the symbo] to be given a
value. The command field contains EQU. The operand field contains an
expression. Use of the comment field is optional.

SYNTAX:

<label> ...EQU ...<exp> ...[<comment>]

NOTE

<exp> may not contain a REF'd symbol
and may not contain forward references.

EXAMPLE:

SUM EQU RS

The directive assigns an absolute value to the symbol SUM, making SUM
available to use as a register address. A second example of an EQU
directive follows:

TIME EQU HOURS

The above example directive assigns the value of the previously
defined symbo] HOURS to the symbol TIME. When HOURS appears in the
label field of a machine instruction in a relocatable block of te
program, the value is a relocatable value. The two symbols may be used
interchangeably. Symbols in the operand field must be previously
defined.

5.3.4 Directives That Provide Linkage Between Programs

This category contains two directives that enable program modules to
be assembled separately and integrated into an executable program. One
directive places one or more symbols defined in the module into the
object code making them available for linking. The other directive
places symbols used in the module but defined in another module into
the object code, allowing them to be linked. Table 5-4 lists these
directives. The following paragraphs discuss each in detail].

5-18

TABLE 5-4 - DIRECTIVES THAT PROVIDE LINKAGE BETWEEN PROGRAMS

| |
! DIRECTIVE ' —MNEMONIC |

|
|

| External Definition DEF |
| External Reference ' REF |
| Secondary External Reference | SREF |
! Force Load ! LOAD !

|
| | |

5.3.4.1 External Definition Directive (DEF): DEF makes one or more
symbols available to other programs for reference. The use of the
label field is optional. When used, a label fs assigned the current
value of the location counter. The command field contains DEF. The
operand field contains one or more symbols, separated by commas, to be
defined in the program being assembled. The commend field is optional.

SYNTAX:

[<label>] ...DEF <symbol>[,symbol>]...... [<comment>]

EXAMPLE:

DEF ENTER,ANS

The directive causes the assembler to include symbols ENTER andANS in
the object code; these symbols are available to other programs.

5.3.4.2 External Reference Directive (REF): REF provides access to
one or more symbols defined in other programs. The use of the label
field is optional. When used, a label is assigned the current value of
the location counter. The command field contains REF. The operand
field contains one or more symbols, separated by commas, to be used in
the operand field of a subsequent source statement. The comment field
is optional.

SYNTAX:

[<label>] ...REF ...<symbol>[,<symbol>]...... [<comment>]

EXAMPLE:

REF ARG1,ARG2

The directive causes the assembler to include symbols ARG] and ARG2 in
the object code so that the corresponding addresses may be obtained
from other programs.

If a symbol is listed in the REF statement, then a corresponding

5-19

symbol must also be present in a DEF statement in another source
module. If a one-to-one matching of symbols does not occur, then an
error occurs at link edit time. The system will generate a summary
list of all “unresolved references".

5.3.4.3 Secondary External Reference Directive (SREF): SREF provides
access to one or more symbols defined in other programs. The use of
the label field is optional. When a label is used, the current value
of the location counter is assigned to the label. The command field
contains SREF. The operand field contains one or more symbols,
separated by commas, to be used in the operand field of a subsequent
source statement. The comment field is optional.

SYNTAX:

[<label>] ...SREF ...<symbol>[,<symbol>]...... [<comment> |

EXAMPLE: " ° .

SREF ARG1,ARG2Z

The directive causes the link editor to include symbols ARG] and ARG2
in the object code so that the corresponding addresses may be obtained
from other programs.

Unlike REF, SREF does not require a symbol] to have a corresponding
symbol listed in a DEF statement ‘of another source module. The SREFed
symbol] will be an unresolved reference, but no error message wil! be
given.

5.3.4.4 Force Load Directive (LOAD): The load directive is like a
REF, but the symbol does not need to be used in the module containing
the LOAD. The symbol used in the LOAD must be defined in some other
module. LOADs are used with SREFs. If one-to-one matching of LOAD and
DEF symbols does not occur, then unresolved references will occur
during link editing.

SYNTAX:

[<label>] ...LOAD ...<symbol>[,<symbol>]...... [<comment>]

5-20

EXAMPLE:

Module Al Module A2 Module A3

| | |
' LOAD C, D } } LOAD C | LOAD E, F !

|
+-- + + + pooeooee------+

H |
V V V

!
Module B V

| SREF C, D, E, F |
|

' DATA C !
| DATA D '
! DATA E '
! DATA F !
+ : +

(

V

Module C V Module DD V Module E V Module F V

|
' DEF C ! ' DEF D } 1 DEF E ' DEF F }

peeweeeoroe==+ + + + + $eeeo-----+

Module Al uses a branch table in module B to obtain one module C, D,
E, or F. Module Al knows which of module C, D0, E, and F it requires.
Module B has an “SREF for C, D, E, and F. Module C has a DEF for C.
Module D has a DEF for D. Module E has a DEF for E. Module F has a DEF
for F. Module Al has a LOAD for the modules C and D it needs. Module
A2 has a LOAD for the module C it needs. Module A3 has a LOAD for the
modules E and F it needs.

The LOAD and SREF directives permit module B to be written to handle a
highly involved case and still be linked together without unnecessary
modules since Al only has LOAD directives for the modules it needs.

When a link edit is performed, automatic symbol resolutions will pull
in the modules appearing in the LOAD directives.

If the link control] file included Al and A2, modules C and D would be

5-21 °

pulled in while modules E and F would not be pulled in. If the link
control file included A3, modules E and F would be pulled in while
modules C and D would not be pulled tn. If the link control file
{included A2, module C would be pulled in while modules D, €, and F
would not be pulled in.

5.3.5 Miscellaneous Directives

This category includes those assembler directives not applicable to
the other categories. Table 5-5 lists the directives and the following
paragraphs discuss them.

TABLE 5-5 - MISCELLANEOUS DIRECTIVES

' DIRECTIVE { MNEMONIC |

| |

! Program End ' END |
' Copy Source File { COPY !
| Define MACRO Library | MLIB !

|

5.3.5.1 Program End Directive (END): END terminates the assembly.
The last source statement of a program is the END directive. Any
source statements following the END directive are considered part of
the next assembly. Use of the label field is optional. When used, a
label is assigned the current value of the location counter. The
command field contains END. Use of the operand field is optional. When
used, the operand field contains a program-relocatable or absolute
symbol that specifies the entry point of the program. When the operand
field is not used, no entry point is placed in the object code. The
comment field may be usedonly with an operand field.

SYNTAX:

{[<label>] ...END ...[<symbol> ...[<comment>]]

EXAMPLE:

END START

The directive causes the assembler to terminate the assembly of this
program. The assembler also places the value of START in the object
code as an entry point.

5.3.5.2 Copy Source File Directive (COPY): COPY changes the source
input for the assembler. Use of the label field is optional. The
command field contains COPY. The operand field contains a file name
from which the source statements are to be read. The file name may be

97-22

the following:

- An access name recognized by the operating system

- A synonym form of an access name

The comment field is optional.

SYNTAX:

[<label>] ...COPY ...<file name> ...[<comment>]

EXAMPLE :

COPY SFILE

The directive in the example causes the assembler to take its source
statements from a file SFILE. At the end-of-file for SFILE, the
assembler resumes processing source statements from the file or device
previous to the COPY directive. A COPY directive may be placed ina
file being copied. Nested copying of files can be performed by placing
a COPY directive in a file being copied. Such nesting is limited by
the assembler to eight levels; additional restrictions may be placed
by the host operating system.

5.3.5.3 Define MACRO Library Directive (MLIB): The MLIB directive is
used to provide the Assembler with the name of a library containing
macro definitions. The operand of this directive is a directory
pathname constructed according to the conventions of the host
operating system and enclosed in single quotes. (See IDT and TITL
directives) This directive is defined only for hosts which support
libraries on hard disks.

SYNTAX:

[<label>] .. .MLIB ...'<pathname>' ...[<comment>]

Use of the label field is optional. When used, a label assumes the
current value of the Location Counter. The command field contains
MLIB. The operand field contains the pathname, a character string to
up to 48 characters enclosed in single quotes; longer strings will
Cause a truncation error message. The comment field is optional.

NOTE

Neither the Assembler nor its run-time support has access to
the operating system's synonym table, and so cannot expand
pathnames. The use of synonyms will prevent finding any
macros in that library.

5-23

EXAMPLE:

MLIB 'MYVOLUME.MACDIR.CMPXMACS .NEWMACS' (9900)
MLIB ‘USER32.BIGPROJ.MYTASK.MACROS' (9900)
MLIB ‘'DRCO: [MOORE .ASM32 }' (VAX)

The above example would cause the macro function, when the program
finds a macro call SUBMAC (not previously defined), to search first
for a file named USER32.BIGPROJ.MYTASK.MACROS.SUBMAC, and then if that
file isn't found, to search for a file named
MYVOLUME .MACDIR.CMPXMACS .NEWMACS .SUBMAC, in that order.

5.4 SYMBOLIC ADDRESSING TECHNIQUES

The assembler processes symbolic memory addresses allowing the user to
address a register by its symbolic memory address.

The following example illustrates this type of coding:

SUM EQU 33 ASSIGN SUM FOR
REGISTER 33

QUAN EQU 34 ASSIGN QUAN FOR
REGISTER 34

ADD SUM , QUAN ADD R33 to R34

The two initial EQU directives assign meaningful labels to be used as
register addresses in the subroutine.

5-24

SECTION 6

PROGRAM LINKING

6.1 GENERAL

The TMS7000 Assembler supplies both absolute and relocatable object
code that may be linked as required to form executable programs from
separately assembled modules. This section contains guidelines to
assist the user in taking full advantage of these capabilities.

6.2 RELOCATION CAPABILITY

Relocatable code includes information that allows a bootstrap loader
to place the code in any available area of memory. This relocation
capability allows the most efficient use of available memory and is
required for disk-resident programs executed under an operating
system.

Absolute code must be loaded into a specified area of memory. Absolute
code is appropriate for code that must be placed in dedicated areas of
memory and may be used for memory-resident programs executing under
operating systems.

Object code generated by an assembler consists of machine language
instructions, addresses, and data comprising the assembled program.
The code may include absolute segments, program-relocatable segments,
data-relocatable segments, and numerous common-relocatable segments.
In assembly language source programs, symbolic references to locations
within a relocatable segment are called relocatable addresses. These
addresses are represented in the object code as displacements from the
beginning of a specified segment. A program-relocatable address, for
example, is a displacement into the program segment. At load time, al]
program-relocatable addresses are adjusted by a value equal to the
load address. Data-relocatable addresses are represented by a
displacement into the data segment. There may be several types of
common-relocatable addresses in the same program, since distinct
common segments may be relocated independently of each other. A
subsequent section of this manual describes the representation of
these relocatable addresses in the object code.

The elements of source statements are expressions, constants, and
symbols. The relocatability of an expression is a function of the
relocatability of the symbols and constants that make up the
expression. An expression is relocatable when the number of
relocatable symbols or constants added to the expression is one
greater than the number of relocatable symbols or constants subtracted
from the expression. (All other valid expressions are absolute.) When
the first symbol or constant is unsigned, it is considered to be added
to the expression. When a unary minus follows a subtraction operator,

6-1

the effective operation is addition. The unary negation operator may
not be applied to a relocatable expression or subexpression (see
Subsection 2.6.4). For example, when all symbols in the following
expressions are relocatable, the expressions are relocatable:

LABEL + 1]
LABEL+TABLE+-INC
-LABEL+TABLE+INC

Decimal, hexadecimal, and character constants are absolute.
Assembly-time constants defined by absolute expressions are absolute,
and assembly-time constants defined by relocatable expressions are
relocatable.

Any symbol that appears in the label field of a source statement other
than an EQU directive is absolute when the statement is in an absolute
block of the program. Any symbol that appears in the label field of a
source statement other than an EQU directive is relocatable when the
statement is in a relocatable block of the program. The type of the
label or an EQU directive is the type of an expression in an operand
field. .

To summarize, a location is either absolute or relocatable and may
contain either absolute or relocatable values. The example program in
Appendix G includes absolute locations with relocatable contents and
relocatable locations with absolute contents.

6.3 LINKING PROGRAM MODULES

Since the assembler includes directives that generate the information
required to link program modules, it is not necessary to assemble an
entire program in the same assembly. A long program may be divided
into separately assembled modules to avoid a long assembly or to
reduce the symbol table size. Also, modules common to several programs
may be combined as required. Program modules may be linked by the link
editor to form a linked object module that may be stored on a_ library
and/or loaded as required. The following paragraphs define the linking
information that must be included in a program module.

6.3.1 External Reference Directives

Each symbol from another program module must be placed in the operand
field of an REF or SREF directive in the program module that requires
the symbol. The example below shows a program named 'MAIN' whichs REFs
a routine named ‘'SUBR1'. SUBR1 is not defined in File A.

(FILE A)

IDT "MAIN'
REF SUBR1

CALL @SUBR1

END

6.3.2 External Definition Directive

Each symbol defined in a program module and required by one or more
other program modules must be placed in the operand field of a DEF
directive. The example below show a program named 'ROUTINES' when DEFs
a routine named 'SUBR1'. The label 'SUBR1' must be defined in the
program.

(FILE B)

IDT "ROUTINES '
DEF SUBR1 , SUBR2

SUBR1 EQU $

RETS
SUBR2 EQU $

RETS
END

When program 'MAIN' in FILE A is linked with program ‘ROUTINES’ in
FILE B, the linkage is automatically resolved.

6.3.3 Program Identifier Directive

Program modules that are to be linked by the link editor should
include an IDT directive. The module names in the character strings of
the IDT directives should be unique. The <string> on the IDT directive
is not automatically a DEF'd symbol.

6-3

6.3.4 Linking

The link editor builds a list of symbols from REF directives as it
links the program modules. The link editor matches symbols from DEF
directives to the symbols in the reference list. The link editor
follows linking commands to determine the modules to be linked. If the
module in which a routine is defined has the same name as the routine
entry points, the link editor can automatically locate the required
module in a designated library.

SECTION 7

ASSEMBLER OUTPUT

7.1 GENERAL

This section presents information concerning the various data output
by the assembler. The assembler output discussed includes source
listings, error messages, a cross reference listing, and object code.

7.2 SOURCE LISTING

The source listings show the source statements and the resulting
object code.

Each page of the source listing has a title line at the top. Any title
supplied by a TITL directive is printed on this line. A page number is
printed to the right of the title. The printer inserts a blank line
below the title line and prints a line for each source statement
listed. The line for each source statement contains a source statement
number, a location counter value, the object code assembleH, and the
source statement as entered. A source statement may result in more
than one byte of object. code. The assembler prints the location
counter value and object code on a separate line for each additional
byte. Each added line is printed following the source statement line.

EXAMPLE:

0018 0156 42 MOV R10,R5
0157 OA
0158 05

The source statement number, 0018 in the example, is a four-digit
decimal number. Source records are numbered in the order in which they
are entered including those source records that are not listed (e.g.,
TITL, LIST, UNL, and PAGE directives are not listed; source records
between a UNL directive and a LIST directive are not listed). The
difference between two source record numbers printed immediately in
line indicates source records entered and not listed.

The next field on a line of the listing contains the location counter
value, a hexadecimal value... In the example, 0156 is the location
counter value. Not all directives affect the location counter; the
field is blank for those directives that do not affect it. Of the
directives that the assembler lists, the IDT, REF, DEF, EQU, SREF, and
END directives leave the location counter field blank.

The third field normally contains a single blank. However, the

7-1

assembler places a dash in this field when warning errors are
detected.

The fourth field contains the hexadecimal representation of the object
code, 420A05 in the above example. All machine instructions and the
BYTE, DATA, and TEXT directives use this field for object code. The
EQU directive places the value corresponding to the label in the
object code field.

The fifth field contains the characters of the source statement as
they were scanned by the assembler. Spacing in this field is
determined by the spacing in the source statement. The four fields
contained in source statements will be aligned in the listing only
when they are aligned in the source statements or when tab characters
are used.

7.3 ASSEMBLER ERROR MESSAGES . °

The assembler issues two types of error messages: normal completion
messages and abnormal completion messages. Each of these types is
described in the following paragraphs.

7.3.1 Normal Completion Error Messages

When the assembler completes an assembly, it indicates any errors it
encounters in the assembly listing. The assembler indicates errors
following the source line in which they occur. At the end of a module
(IDT-END pair), the corresponding messages are printed.

Table 7-1 lists error, warning, and information messages.

TABLE 7-1 - ASSEMBLY LISTING ERRORS

MESSAGE EXPLANATION/RESPONSE

NONFATAL ERRORS

t
(

}
t

|
| WARNING - ‘CEND' ASSUMED
‘

| WARNING - 'DEND' ASSUMED
(

! WARNING - 'PEND' ASSUMED

' WARNING - 'DSEG' ASSUMED This is a warning that the following
' two statements have the same result:
: CSEG 'DATA'
| DSEG

(CONTINUED)

7-2

TABLE 7-1 - ASSEMBLY LISTING ERRORS (CONTINUED)

MESSAGE EXPLANATION/RESPONSE

NON-FATAL ERRORS, Continued

WARNING - SYMBOL TRUNCATED The maximum length for a symbol is six

WARNING - STRING TRUNCATED

WARNING = TRAILING OPERAND(S)

WARNING -

**LAST WARNING

ABSOLUTE VALUE REQUIRED

DISPLACEMENT TOO BIG

INVALID EXPRESSION

EXPRESSION OUT OF BOUNDS

DUPLICATE DEFINITION

INVALID RELOCATION TYPE

INVALID OPCODE

FATAL ERRORS

characters.

Check the syntax for the directive in
question to determine the maximum
length for the string.

BYTE VALUE TRUNCATED A value that fs to be used as a byte!
value was larger than can be_ loaded!
into a byte.

7-3

9

An instruction with an operand with a
fixed upper limit was encountered that
overflowed this limit.

This may indicate invalid use ofa
relocatable symbol in arithmetic.

There is a range limit for the value
being used that was exceeded.

The symbol appears as an operand of a!
REF statement, as well as in the label!
field of the source, OR, the symbol!
appears more than once in the label!
field of the source.

The type of variable isn't relocatable

The second field of the source record!
contained an entry that ifs not a!
defined instruction, directive, |!
pseudo-op, DXOP, DFOP, or macro name.

(CONTINUED)

TABLE 7-1 - ASSEMBLY LISTING ERRORS (CONTINUED)

MESSAGE

FATAL ERRORS, Continued

EXPLANATION/RESPONSE

INVALIO OPTION

INVALID REGISTER VALUE

INVALID SYMBOL

VALUE TRUNCATED

SYMBOL USED IN BOTH REF AND DEF

COPY FILE OPEN ERROR

EXPRESSION SYNTAX ERROR

INVALID ABSOLUTE CODE DIRECTV

LABEL REQUIRED

BLANK MISSING

COMMA MISSING

COPY FILENAME MISSING

INDIRECT (*) MISSING

SYMBOL REQUIRED

OPERAND MISSING

REGISTER REQUIRED

CLOSE (') MISSING

7-4

The option given in the OPTION direc-
tive are invalid.

The given register value is too large
or too small.

The symbol being used has_ invalid
characters in it.

The value used was too big for the
field, so it has been truncated.

File does not exist or is already
being used.

Unbalanced parentheses OR invalid
operations on relocatable symbols.

The directive PEND, DEND and CEND have
no meaning in absolute code.

A blank is needed but one was not
found.

Expected a comma but did not find!
one. Usually means that more operands!
were expected.

The indirect addressing (*) was needed

There was no operand field

A register should be used rather than
a label or an absolute number.

(CONTINUED)

TABLE 7-1 - ASSEMBLY LISTING ERRORS (CONTINUED)

MESSAGE EXPLANATION/RESPONSE

FATAL ERRORS, Continued

STRING REQUIRED

PASS1/PASS2 OPERAND CONFLICT

SYNTAX ERROR

UNDEFINED SYMBOL

DIVIDE BY ZERO

ILLEGAL SHIFT COUNT

?

CANNOT INDEX BY REGISTER ZERO

TEXT directive used with no text
following.

The symbols in the symbol table did
not have the same value in PASS] and
PASS2. Usually a problem with the
Assembler.

The symbol being «used has not been
REF'ed or it has been DEF'ed but not
used.

The shift count being asked for is not
valid.

INFORMATION MESSAGES

OPCODES REDEFINED

MACROS REDEFINED

As a result of an MLIB directive, one
or more assembler opcodes has been
redifined by a MACRO within a MACRO
directory. The user should take
action if this is not intended.

As a result of an MLIB directive, one
or more currently defined macros has
been redefined by a MACRO (of the
Same name) with a MACRO directory.
The user should take action if this
is not intended.

7.3.2 Abnormal Completion Error Messages

Most abnormal completion error messages are issued by the operating
system under which the assembly runs (messages in this category
include those concerned with file I/O errors). The user should refer
to the applicable operating system reference manual for detailed
information.

Many abnormal completion messages are caused by transient error
conditions that do not persist. For this reason, the user should
attempt to execute the assembler a second time. If the abnormal
termination persists, the user may load a backup copy of the
assembler. If the error still persists, the user may wish to contact a
Customer representative.

Table 7-2 lists the abnormal error messages.

TABLE 7-2 - ABNORMAL COMPLETION ERROR MESSAGES

UNEXPECTED END OF PARSE
ERROR MAPPING PARSE - ASSEMBLER BUG
INVALID OPERATION ENCOUNTERED
NO OP CODE
INVALID LISTING ERROR ENCOUNTERED
SYMBOL TABLE ERROR
INVALID LIB COMMAND ID
UNKNOWN ERROR PASSED, CODE = XXXX

7.4 CROSS-REFERENCE LISTING

The assembler prints an optional cross-reference listing following the
source listing. The format of the listing is shown in Figure 7-1.

LABEL VALUE «ODEN REFERENCES

ADDT O1A8 0325 0314

ADSR D O1A0 0316 0342 0343 0348 0349

GT 0006 0997

OBTCHN R 0088

SQUIB U 0127 0233

FIGURE 7-1 - CROSS-REFERENCE LISTING FORMAT

As shown in the illustration above, in the label column the assembler
prints each symbol defined or referenced in the assembly. If a single
character followins the symbol, it represents the attribute of the

7-6

symbol. These symbol-attribute characters and their meanings are
listed in Table 7-3. The second (Value) column contains a four-digit
hexadecimal number, the value assigned to the symbol. The number of
the statement that defines the symbol appears in the third
(Definition) column. For undefined symbols, this column is left blank.
The right-most (Reference) column lists the numbers of statements that
reference the symbol. A blank in this column indicates the symbol is
never used.

TABLE 7-3 - SYMBOL ATTRIBUTES

|
' CHARACTER | MEANING |

|
! R | External reference (REF) |}
! D ' External definition (DEF) |
| U | Undefined {
' M ! Macro name i
! S ' Secondary reference (SREF)!
' L ' Force load (LOAD) {

7.5 OBJECT CODE

The assembler produces object code that may be linked to other code
modules or programs, and loaded directly into the computer. Object
code consists of records containing up to 71 ASCII characters. The
user can correct record data via a keyboard device. Reassembly would
then be unnecessary. Figure 7-2 presents an example of object code.

KOOOOSAMPROG 90040CO000A0020BC06DB000290042C0020A0024BC81BC002A7F219F
A0028B80241B0000BCB41B0002B0380A00CACO0S52CO0AZ2B0ZE0CO032B0200B0FOF7F1DEF
AOODEBCOAODCOOCABO4C3BC 160CO0CCBC1ANCOODOBCO72B0281B3A00A00ECB02217F151F
AOQOEEBOSO0B06C1A00EAB1102A00F2B0543B11F8B2C20C0032B8C101B0B44BE0447F18EF
A0100B80D66B0003B0282C00A2B11EDB03407F832F
200CE0010C 7FCABF

FIGURE 7-2 - SAMPLE OBJECT CODE

7.5.1 Object Code Format

Object code is formatted to contain records made up of fields
sandwiched betwwen tag characters. Table 7-4 below lists field and tag
character information.

7-7

A tag character occupies the first position on each line of object
code and identifies the fields it precedes to the loader. The specific
tag character used depends on the function of the fields with which it
is associated. The paragraphs that follow detail the various tag
characters and their associated fields.

Tag character K is placed at the beginning of each program and is
followed by two fields. Field one contains the number of bytes of
program relocatable code; field two contains the program identifier
assigned to the program by an IDT directive. When no IDT directive is
entered, the field is blank. The linker uses the program identifier to
identify the program, and the number of bytes of program-relocatable
code to determine the load bias for the next module or program.

The tag character M is used when data or common segments are defined
in the program and is followed by three fields. Field one contains the
length, in bytes, of data- or common-relocatable code, field two
contains the data or common segment identifier, and field three
contains a “common number." The identifier is a six-character field
containing the name $DATA (padded on the right by one blank) for data
segments and $BLANK for blank common segments. If a named common
segment appears in the program, an M tag will appear in the object
code with an identifier field corresponding to the operand in the
defining CSEG directive(s). Field three of the M tag consists of a
four-character hexadecimal number defining a unique common number to
be used by other tags that reference or initialize data of that
particular segment. For data seqments, this common number is always
zero. For common segments (including blank common), the common numbers
are assigned in increasing order, beginning at one and ending with the
number of different common segments. The maximum number of common
segments that a program may contain is 127.

Tag characters 1 and 2 are used with entry addresses. The associated
field is used by the linker to determine the entry point in which
execution starts when linking is complete. Tag character 1 is used
when the entry address is absolute; tag character 2 when the address
is relocatable. The field lists the address in hexadecimal form.

Tag characters 3, 4, and X are used for external references. Tag
character 3 is used when the last appearance of the externally
referenced symbol is in program-relocatable code; tag character 4 when
it is in absolute code; and the X tag when it is in data-or common
relocatable code. Tag characters 3 and 4 are associated with two
fields. Tag character X may identifiy one additional field. Field one
contains the location of the last appearance of the symbol. Field two
contains the symbol] itself. Field three is only used to supply the
common number for the X tag.

Tag character E is used for external references. An E tag is used when
a nonzero quantity is to be added to a reference. Field 1 identifies
the reference by occurrence in the object code (0, 1, 2, ...). In
other words, the value in field one is an index into references
identified by 3, 4, V, X, Y and Z tags in the object code. The list is
maintained by order of occurrence (i.e., the first entry in the list

7-8

is the symbol located in field two of the first 3, 4, V, X, Y, or Z
tag). Field 2 contains the value to be added to the reference after
the reference is resolved.

Tag character @ is used for external references of an 8-bit value. It
serves the same purpose for 8-bit values that the E-tag serves for
16-bit values.

Tag characters 5, 6, and W are used for external definitions. Tag
character 5 is used when the location is program-relocatable. Tag
character 6 is used when the location is absolute. Tag character W is
used when the location is data~ or common-relocatable. The fields are
used by the linker to provide the desired linking to the external
definition. Field one contains the location of the last appearance of
the symbol. Field two contains the symbol of the external definition.
Field three of tag character W contains the common number.

Tag character 7 precedes the checksum, and is placed at the end of the
set of fields in the record. The checksum is an error detection. word
and is formed as the record is being written. It is the two's
complement of the sum of the eight-bit ASCII values of the characters
of the record from the first tag of the record through the checksum
tag, 7.

Tag characters 9, A, S, and P are used with load addresses required
for data words that are to be placed at other than the next immediate
memory addresses. Tag character 9 is used when the load address is
absolute. Tag character A is used when the load address is
program-relocatable. Tag character S is used when the ‘oad address is
data-relocatable. Tag character P is used when the load address jis
common-relocatable. Field one contains the load address. Field two is
only present for tag character P and contains the common number.

Tag characters *, B, C, T, and N are used with data words. Tag
characters * and B are used when the data is absolute (ji.e., an
instruction word or a word that contains text characters or absolute
constants). Tag * is used for absolute byte data (8 bits) and B is
used for absolute word data (16 bits). Tag character C is used for a
word that contains a program-relocatable address. Tag character T is
used for a word that contains a data-relocatable address. Tag
character N is used for a word that contains a common-relocatable
address. Field one contains the data word. The linker places the data
word in the memory location specified in the preceding load address
field or in the memory location that follows the preceding data word.
Field two is only used with N and contains the common number.

Tag characters G, H, and J are used when the sv.abol table option is
specified. Tag character G is used when th- location or value of the
symbol is program-relocatable, tag character H is used when the
location or value of the symbol is absolute, and tag character J is
used when the location or value of the symbol is data- or common-
relocatable. Field one contains the location or value of the symbol.
Field two contains the symbol] to which the location is assigned. Field
three is used with tag character J only and contains the common

7-9

number.

Tag character U jis generated by the LOAD directive. The symbol
specified is treated as if it were the value specified in an INCLUDE
command to the linker. Field one contains zeros. Field two contains
the symbol for which the loader will search for a definition.

Tag characters V, Y, and Z are used for secondary external references.
Tag character V is used when the last appearance of the externally
referenced symbol is in program-relocatable code; tag character Y when
it is in absolute code; and the Z tag when it is in data- or
common-relocatable code. Tag characters V and Y are associated with
two fields. Tag character Z may identifiy one additional field. Field
one contains the location of the last appearance of the symbol. Field
two contains the symbol itself. Field three is only used to supply the
common number for the Z tag.

Tag character 8 is also associated with the checksum field but is used
when the checksum field is to be ignored.

Tag character 0 is used to specify a load bias. Its lone associated
field contains the absolute address that will be used by a loader to
relocate object code. The Link Editor does not accept the D tag.

Tag character F is placed at the end of the record. It may be followed
by blanks.

The end- of each record is identified by the tag character 7 followed
by the checksum field and the tag character F (this data is described
above). The assembler fills the rest of the record with blanks and a
sequence number and begins a new record with the appropriate tag
character.

The last record of an object module has a colon(:) in the first
character position of the record, followed by blanks or time and date
identifying data.

Table 7-4 defines the object record format and tags.

7-10

TABLE 7-4 - OBJECT RECORD FORMAT AND TAGS

TAG 1ST FIELD 2ND FIELD 3RD FIELD

(MODULE DEFINITION)
K PSEG LENGTH PROGRAM ID(8)
M -«DSEG_LENGTH $DATA 0000
M ‘BLANK COMMON LENGTH $BLANK COMMON #
M -CSEG LENGTH COMMON NAME(6) COMMON #

(ENTRY POINT DEFINITION)
1 ABSOLUTE ADDRESS
2 —-~P=R_ ADDRESS

(LOAD ADDRESS)
9 ABSOLUTE ADDRESS
A P=R._ ADDRESS
S$ _D-R ADDRESS
P C+R ADDRESS COMMON OR CBSEG #

(DATA)
* “ABSOLUTE 8-BIT VALUE (2)
B ABSOLUTE 16-BIT VALUE
C —-P=R ADDRESS
T —_-DeR ADDRESS
N _-C-R ADDRESS COMMON OR CBSEG #

(EXTERNAL DEFINITIONS)
6 ABSOLUTE VALUE SYMBOL(6)
5 _—-P=R ADDRESS SYMBOL(6)
W _-D-R/C-R ADDRESS SYMBOL(6) COMMON #

(EXTERNAL REFERENCES)
3 P-R ADDRESS OF CHAIN SYMBOL(6)
4 ABSOLUTE ADDRESS OF CHAIN SYMBOL (6)
X _D=R/C-R ADDRESS OF CHAIN SYMBOL (6) COMMON *
E SYMBOL INDEX NUMBER ABSOLUTE OFFSET
@ SYMBOL INDEX NUMBER OFFSET (2) MASK (2)

(SYMBOL DEFINITIONS)
G P=R ADDRESS SYMBOL(6)
H ABSOLUTE VALUE SYMBOL(6)
J“ DeR/C-R ADDRESS SYMBOL(6) COMMON #

(FORCE EXTERNAL LINK)
U 0000 SYMBOL(6)

(SECONDARY EXTERNAL REFERENCE)
V P= ADDRESS OF CHAIN ENTRY SYMBOL(6)
Y ABSOLUTE ADDRESS OF CHAIN SYMBOL(6)
Z -D=R/C=R ADDRESS OF CHAIN SYMBOL(6) COMMON #

7-11

(CONTINUED)

7-12

TABLE 7-4 - OBJECT RECORD FORMAT AND TAGS (Continued)

TAG 1ST FIELD 2ND FIELD 3RD FIELD

(CHECK SUM)
7 VALUE

(IGNORE CHECK SUM)
8 ANY VALUE

(LOAD BIAS)
D ABSOLUTE ADDRESS

(END OF RECORD)
F

(END OF OBJECT MODULE)

1. ALL FIELD WIDTHS ARE FOUR CHARACTERS UNLESS OTHERWISE SPECIFIED
BY NUMBERS IN PARENTHESES

2. IF THE FIRST TAG IS 01 (HEX), THE FILE IS IN COMPRESSED OBJECT
FORMAT.

3. P-R PROGRAM SEGMENT RELATIVE (ADDRESS)
D-R DATA SEGMENT RELATIVE (ADDRESS)
C-R COMMON SEGMENT RELATIVE (ADDRESS)

7.5.2 External References In Object Code

External references are possible. The Link Editor will resolve al]
external references automatically.

7.5.3 Changing Object Code

In most cases, changing the object code is not the best way to correct
errors in a program. All changes or corrections to a program should be
made in the source code, then the program should be reassembled.
Failure to follow this principle can make subsequent correction or
maintenance of the program impossible. The information in the
following paragraphs is intended for those rare instances when
reassembly is not possible. Any changes made directly to the object
code should be thoroughly documented so that the programmers who come
later can see what the program actually does, not what the source code
says that it does.

7-13

To correct the object code without reassembling a program, change the
object code by changing or adding one or more records. One additional
tag character is recognized by the loader to permit specifying a load
point. The additional tag character, D, may be used in object records

changed or added manually.

Tag character D is followed by a load bias (offset) value. The loader
uses this value instead of the load bias computed by the loader
itself. The loader adds the load bias to all relocatable entry
addresses, external references, external definitions, load addresses,
and data. The effect of the D tag character is to specify that area of
memory into which the loader loads the program. The tag character D
and the associated field must be placed ahead of the object code
generated by the assembler.

Correction of the object code may require only changing a character or
a word in an object code record. The user may duplicate the record up
to the character or word in error, replace the incorrect data with the
correct data, and duplicate the remainder of the record up to the
seven tag character. Because the changes the user has made wil] cause
a checksum error when the checksum is verified as the record is
loaded, the user must change the seven tag character to eight.

When more extensive changes are required, the user may write an
additional object code record or records. Begin each record with a tag
character 9, A, S, or P, followed by an absolute load address or a
relocatable load address. This may be an address into which an
existing object code record places a different value. The new value on
the new record will override the other value when the new record
follows the other record in the loading sequence. Follow the load
address with a tag character *, B, C, T, or N and an absolute data
word or a relocatable data word. Additional data words preceded by
appropriate tag characters may follow. When additional data is to be
placed at a nonsequential address, write another load address tag
character followed by the load address and data words preceded by tag
characters. When the record is full, or all changes have been written,
write tag character F to end the record.

When additional memory locations are loaded as a result of changes,
the user must change field one of tag character zero, which contains
the number of bytes of relocatable code. For example, if the object
field written by the assembler contained 1000 Hex bytes of relocatable
code and the has added eight bytes in a new object record, additional
memory locations will be loaded. The user must find the zero tag
character in the object code file and change the value following the
tag character from 1000 to 1008; he must also change the tag character
7 to 8 in that record.

When added records place corrected data in locations previously
loaded, the added records must follow the incorrect records. The
loader processes the records as they are read from the object medium,
and the last record that affects a given memory location determines
the contents of that location at execution time.

7-14

The object code records that contain the external definition fields,
the external reference fields, the entry address field, and the final
program start field must follow all other object records. An
additional field or record may be added to include reference to a
program identifier. The tag character is 4, and the hexadecimal field
contains zeros. The second field contains the first six characters of
the IDT character string. External definitions may be added using tag
character 5 or 6 followed by the relocatable or absolute address,
respectively. The second field contains the defined symbol, filled to
the right with blanks when the symbol contains less than six
characters.

NOTE

Both object code that will be linked and object code that
will be loaded by the bootstrap loader can be changed

- without reassembling the program. The Link Editor, though,
will’ not accept tag character D in changed or added object
records.

7-15

SECTION 8

MACRO ASSEMBLER LANGUAGE

8.1 GENERAL

The Macro Assembler supports a macro definition language which may be
used to simplify programming. A macro definition is a set of source
statements (machine instructions, macro language statements, and
assembler directives) which generate other source statements within
the source program.

When the Assembler processes a macro call, it substitutes the
predefined source statements of the macro definition for the macro
call source statement, and assembles the substituted statements as if
they had been included in the source program. This section describes
the macro language and the verbs used to define macros.

8.2 DEFINING MACROS

The creation of macro definitions is normally done by including within
the assembler source file lines of code in a predefined format, which
1s detailed in the paragraphs that follow. In general, the definition
requires a line marking the start of a macro definition, putting the
macro name in the label field of the symbolic line, the string
'SMACRO' in the op-code field, and possibly a list of formal
parameters separated by commas in the op-code field.

Macros may be defined in-line with the normal assembler input, except
that a macro definition must appear prior to an invocation of that
macro. Good documentation practice is to place all macro definitions
at the top of the assembler source file. Placing the macro definitions
at the top of the assembler source file also allows easy reference to
all the definitions because they are in one location.

In addition, macros may be defined in external files. These files are
simply text files, like the assembler source file which contains
macros defined in the same manner as those defined in-line. Only one
macro may be defined in a file. The Assembler is informed of the
existence of a macro library ({.e., a collection of macro files) by
means of the 'MLIB' assembler directive. The syntax of the MLIB
directive is:

MLIB 'VOLUME.DIRECTORY .MACLIB'

The string enclosed in the quotes represents a directory name in the
format required by the conventions set by the host operating system.

The use of a macro library is as follows: Assume that a library of
macro definitions 1s contained in a directory named
*VOLUME.DIRECTORY.MACLIB', and that a file named 'CPXADD' is a member
of that directory. If the macro call

LABEL CPXADD CX1,CX2

1s found in the assembler source, the in-memory macro table is first
searched for the definition of CPXADD. CPXADD will be in the macro
table if CPXADD was previously defined in the assembler source file or
was previously encountered and has already been read from a macro
file. If the definition is not found in the macro table, a search of
the normal assembler op-code/directive table is made. If found there,
the op-code will be assembled as a normal machine instruction. If not,
an attempt is made to find the file whose name is formed, by appending
the macro name to the MLIB name. If more than one MLIB directive has
been encountered, the most recently defined library is searched first,
then all remaining libraries are searched. If the file is found, the
macro definition is copied into the Assembler's macro file (in a
compressed format), and an entry is made in the macro table for later
use.

Because of the sequence of the search for matching definitions
(library search following op-code table search), a macro defined in a
library will not automatically redefine a machine instruction,
although this its easily done using an in-line macro definition. To
extend this capability to the macro library, the user should include
in that library, a text file named ‘'MLIST', in which is contained (one
per line, starting in column one) the names of the opcodes and
currently defined macros the user wishes to have redefined by macros
contained in a macro library.

A typical MLIST file might be constructed as follows, using the
appropriate system text editor:

file named <MLIB directory name> .MLIST
record 1 ADD (opcode)
record 2 LACK (opcode)
record 3 MOV (opcode)
record 4 FSUB (macro)

eof(MLIST)

This file (MLIST) is read, if provided, when the MLIB directive is
processed. If a name found there matches a currently defined opcode or
a name in the macro table, the matching entry is removed from its
table. This forces a search of the libraries, since the name will not
be found elsewhere. When a name is found matching an opcode, the
message:

' **"** OPCODES REDEFINED'

is printed in the assembler listing following the printing of the MLIB
statement. A similar message:

' wee MACROS REDEFINED’

will appear when currently defined macros are redefined. If this is
the user's intent, then no action is required; if not, then some
action is required, such as the deletion of some or all of the records
in the file MLIST.

The name of a macro in file should be the same as the file name,
otherwise, some inefficiency in macro usage will result. If the file
named CPXADD contains a definition line such as

CPXMUL $MACRO MR, MD

an entry for a macro named CPXMUL will be made in the internal macro
table, and the next call to CPXADD will be recognized as undefined,
and again, reentered as CPXMUL into the internal macro table.

NOTE

The MLIB directive and the macro library concept are
supported only by host systems which allow libraries on hard
disks.

8.2.1 Sample Macros

The following is a simple example of a macro definition:

INCX SMACRO
LDA ©X
INC A
STA @X
SEND

The above code defines a macro mamed INC. S$MACRO identifies the
beginning of the macro definition, and $END identifies the end of the
macro definition. LDA @X, INC A, and STA @X are model] statements
which will be placed into the source program upon a macro call. (A
model statement is a statement that "models" an assembler lanquage
statement. Such a statement is or will form, after macro substitution,
a legal language statement.) The macro INC may now be used in the
source program as often as necessary. The macro may be called by
simply placing the line

INCX

within the source file. The Macro Assembler will replace this line
with the remainder of the definition, i.e.:

8-3

LDA @X
INC A
STA @X

X must be a symbol representing a memory address in the source program
assigned by the EQU directive. INCX is limited because the macro can
only be used with a single memory location. The following macro,
however, can be used with any memory location:

INC $MACRO M
LDA @:M.S:
INC A
STA @:M.S:
SEND

M is a macro parameter which is replaced by the actual parameter when
the macro is called. M.S is the string component of this variable,
1.e., the symbol representation of the variable. For example, the
line:

INC Y

will be replaced by:

LDA @Y
INC A
STA @Y

but

INC Z

will be replaced by:

LDA §=@2
INC A
STA @Z

Another component of a macro variable is the value component. An
example of the use of this component is:

ADDK S$MACRO X,NUM (X and NUM are parameters. See
LDA @:X.S: paragraph 8.3.3.1)
AOD %:NUM.V: ,A
STA @:X.S:
SEND

NUM.V is the value component of the parameter NUM. The call:

ADDK Y,3
will result in:

8-4

LDA @Y
ADD %3,A
STA @Y

These and other macro commands will be explained in the following in
greater detail in the following paragraphs.

8.3 MACRO LANGUAGE ELEMENTS

The elements of the macro language are strings, constants, operators,
variables, keywords, and verbs. A macro definition consists of model
statements and statements containing macro language verbs. A_ model
statement results in an assembly language source statement. The
elements of the macro language and model statements are explained
fully in the following paragraphs.

8.3.1 Strings

The literal strings of the macro language consists of one or more
characters enclosed in single quotes. They are identical to the
character string used in the assembly language.

An example of a string is: ‘ONE’.

Another example jis: ' ' (a blank).

8.3.2 Constants And Operators

Constants for macro language are defined in the same manner as for
assembly language. The following are examples of constants:

>9F3C
$ (current PC value)

Arithmetic operators are also valid in the macro assembler. Functions
of +, -, * (multiply), and / (divide) can be used to generate operand
values. The following are examples of the use of arithmetic operators:

LABEL EQU $+4 (current PC value + 4)

Relational operators are also available for use in the macro
assembler. The relational operators compare the values of two
variables or constants and return the answer of TRUE or FALSE. The
relational operators are:

Equal
Greater than
Less than

= Not equalw
e
A
V

il

The following are examples of the use of relational operators:

8-5

$IF A.V>3 (Process succeeding clock if value
component of variable A jis >3.

SIF B.L#=A.L (Process succeeding block if length
component of variable B is not equal
to length component of variable A.

Boolean operators are another feature offered by the macro assembler.
They perform the desired operation and return either TRUE or FALSE.
The boolean operators are:

& AND
++ OR
-- NOT

The following is an example of the use of the boolean operators:

SIF --((A.V>3)&(B. LAA. L)

The macro language permits concatenation of macro symbol components
with literal strings, characters of mode] statements, and other macro
variables. Concatenation is indicated by writing character strings
side by side with string mode references.

8.3.3 Variables

A macro definition may include variables which are represented in the
same manner as symbols in the assembler symbol table with the
restriction that they may be a maximum of two characters in length
(see Macro Symbol Table Section 8.3.3.2). The following are examples
of variables:

VA P4 SC F2 A

NOTE

Macro variables are strictly local; they are available only
to the macro which defines them. Access to symbols in the
AST is through the symbol components.

8.3.3.1 Parameters: Parameters are a special class of macro
variables. They are declared in the $MACRO statement at the beginning
of the macro definition. The sequence of parameters in the operand
field of the $MACRO statement corresponds to the sequence of operands
in the operand field of the macro call. In the expansion of a macro
call, the parameters have values which are associated with the
corresponding operands in the macro call in a manner to be described
in the following section. The following are examples of $MACRO
statements with parameters:

8-6

LABEL $MACRO A,B3

NAME $MACRO O,RC,AM

8.3.3.2 Macro Symbol Table: The macro translator maintains a macro
symbol table (MST) similar to the symbol table of the Assembler, the
AST. Each entry consists of the string, value, length, and attributes
of a variable or parameter. The macro expander module places
parameters in the MST as it processes a macro call, and places
variables in the MST as it processes the macro language statements
that declare variables.

The string component of an MST entry contains a character string
assigned to the macro variable/parameter by the macro expander.

The value component of an MST entry contains the binary equivalent of
the string component, if the string component is an integer. ~The value
component can also contain the value of the symbol, if the string
component is a symbol in the AST. If a parameter is an operand list,
the value is the length of the list. The length component contains the
number of characters in the string component. The attribute component
of the MST is a bit vector, the bits of which correspond to the
attributes of the variable or parameter.

For example, the statement:

ADDK $MACRO X,NUM

identifies a macro, ADDK having parameters AU and AD.

A macro call to activate that macro definition could be coded as
follows:

ADDK VAR1,3

The MST would now contain parameters X and NUM. The string component
of parameter X would be the character string VAR]. The attribute
component would indicate that the parameter is supplied in a macro
call. The length component would be four. The string component of
parameter NUM would be the character 3. The value component would be
three,(expressed as a binary number) and the length component would
be one. The attribute component would indicate that the parameter is
supplied in the macro call.

Each component of a macro variable may be accessed individually.to the
Reference to a variable component is made in either binary mode of
string mode. In the binary mode, the referenced macro variable
component is treated as a signed 16-bit integer. Binary mode access is
made by wiring the variable name and component. A reference to the
string component of a macro variable in binary mode is the 16-bit
integer value of the ASCII representation of the first two characters
of the string. For example, the binary mode value of the string

8-7

component of X is >5641, which fis the ASCII representation for VA.

String mode access of macro variable components is signified by
enclosing the variable in a pair.of colon characters (:). For example:

2X:

NOTE

Colons are always used in pairs to enclose a variable name.
If a component qualifier is used, the pair of colons enclose
the entire qualified name.

8.3.3.3 Variable Qualifiers: The components of a parameter or
variable may be specified using the. specific names as shown in Table
8-1. The variable name is followed by a period (.) and the single
letter qualifier. The following examples show qualified variables:

X.S String component of variable VARI. For example, in the
macro call: ADOK, X.S equals the binary equivalent
for VA, or >5641. If a string mode is indicated, as
fn :X.S8:, the string component is the character
string "VARI". |

X.A Attribute component of variable VARI. This component
may be accessed by use of logical operators and
keywords which are deseribed in tables 8-2, 8-3 and
8-4 which follow.

X.V. Value component of variable VARI.

X.L Length component of variable VAR]. For example, in the
macro call: ADD VAR1,3 , :X.L is the character ©
string 4.

TABLE 8-1 - VARIABLE QUALIFIERS

| QUALIFIER MEANING 3

- |
| S The string component of the variable. |

| A The attribute component of the variable. :

| V The value component of the variable. |

L The length component of the variable.

Except in an $ASG statement , an unqualified variable means the string

8-8

component of the variable. In the two following examples, the
concatenated strings are equivalent:

:CT.S: WAY Variable CT qualified: string component =
WAY.

:CT: WAY Variable CT unqualified: string component
= WAY.

NOTE

In model statements, binary references to macro variables
MUST be qualified.

All symbols in the AST have symbol components. (All components of
macro parameters and the values of all AST symbols are directly
accessible.) In order for other components to be accessed in a_ macro,
the symbol must be assigned to the string component of a macro
variable using $ASG. The additional qualifiers shown in Table 8-2 may
be used with the macro variable to access the symbol components of the
AST symbol.

The following are examples of qualified variables that specify symbol
components of string components of variables. (Assume that V1.S_ has
been defined as MASK, and the statement: MASK EQU >FF has been
previously encountered in the assembly language source program.)

B1.SS String component of the symbol MASK. This is null
unless a macro instruction has caused a string to
be associated with it by using a $ASG statement.

V1.SV Value component of the symbol MASK, j.e., >FF. In
the string mode, V1.SV equals the
characters: 255.

V1.SA Attribute component of the symbol MASK. This
component may be accessed by use of logical
operators and keywords, as described below.

V1.SL Length component of the symbol MASK. If a string
has been assigned to MASK, then V1.SL is the
length of that string.

Concatenation is especially useful when a previously defined string is
augmented with additional characters. The string ONE could be
represented by a qualified variable such as CT.S. In that case,
concatenation is expressed as follows:

:CT.S:' WAY!

8-9 °

would provide the same result as writing

"ONE WAY'

If the qualified variable CT.S represents the characters: TWO
the result of the concatenation in the example would be Tw0 WAY.
Strings and qualified variables may be concatenated as required and
the variable need not be first. Components of variables that are
represented by a binary value (e.g., CT.V and CT.L) are converted to
their ASCII decimal equivalent before concatenation.

For example:

sCT.S' WAY ':CT.L:

1s expanded as

ONE WAY 3

since the length component of the variable CT is three.

TABLE 8-2 - VARIABLE QUALIFIERS FOR SYMBOL COMPONENTS

QUALIFIER MEANING

SS String component of a symbol] that {s the string
component of a variable.

SV Value component of a symbol that {is the string
component of a variable.

SA Attribute component of a symbolthat is the string
component of a variable.

SL Length component of a symbol that is the string
component of a variable.

n
e
e
e
w
e
s
e
s
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
F
O
O
O
O
o
t
=

a
p
e
G
e

a
v
e
=
e
n
w

a
b
e
w

a
v
e
o
w
@
e
®

S
h
e
p
e
w
a
e
s
a
P
e
®
a
b
e
.
a
r
e
n
a
o
?
G
a
p
G
e
n

8.3.4 Keywords

The macro language recognizes certain keywords that specify the
attributes of assembler symbols and macro parameters. Each keyword
represents a bit position within a word that contains al] attributes
of the symbol or parameter. A_ keyword may be used with a logical
operator and the attribute component to test or set a specific
attribute of a symbol or parameter. The following paragraphs describe
how keywords are used with symbols and parameters.

8-10

8.3.4.1 Symbol Attribute Component Keywords: The keywords listed in
Table 8-3 may be used with a logical operator and the symbol attribute
component: .SA to test or set the corresponding attribute
component in the AST. The following example shows an expression that
uses a symbol attribute component keyword:

V1.SA&$STR This is the result of an AND operation
between the attribute component of the symbol!
MASK and a flag corresponding to keyword
$STR. The expression is TRUE when the
contents of the string component of MASK is
not null; otherwise, the expression is FALSE.

Another example shows an expression that uses a symbol attribute
keyword:

V1.SA++$REL This is the result of an OR operation between
the attribute component of the symbol MASK
and the flag corresponding to keyword $REL.

TABLE 8-3 - SYMBOL ATTRIBUTE KEYWORDS

NOTE: The use of these attributes in conditional assembly (See
SIF) can lead to pass conflict errors if the symbol has
not been defined prior to the macro call.

| KEYWORD MEANING !

i

} SREL Symbol is relocatable

| |
! $REF Symbol is an operand of an REF directive !

SDEF Symbol is an operand of a DEF directive !

$STR Symbol has been assigned a component !
string.

|
$MAC Symbol is defined as a macro name. |

SUNDF Symbol is not defined. !

! !
| 3
| :
| |
| |
| !

8.3.4.2 Parameter Attribute Keywords: The keywords listed in Table
8-4 may be used with a logical operator and the macro symbol attribute
component to test or set the corresponding attribute in the MST
attribute component. These attribute keywords may be used to test or

8-11

set attributes of all variables in the MST. The following examples
show expressions that use parameter attribute component keywords:

P6.A&SPCALL This {fs the result of an AND operation
between the attribute component of variable
P6 and the flag corresponding to keyword
$PCALL. The expression is TRUE when variable
P6 is a parameter supplied in a macro call.
Otherwise the expression is FALSE.

RA.A++$PSYM This 1s the result of an OR operation between
the attribute component of variable RA and
the flag corresponding to keyword $PSYM.

TABLE 8-4 - PARAMETER ATTRIBUTE KEYWORDS

KEYWORD MEANING

SPCALL | Parameter appears as a macro-instruction operand.

SPOPL Parameter is an operand list. The value component
contains the number of operands in the list.

SPSYM Parameter {is a symbolic memory address. (NOTE: a
symbolic memory address is recognized when the
variable is preceded by an @ character.

8.3.5 Verbs

The macro language supports 7 verbs that are used in macro language
statements. Any statement in a macro definition that does not contain
a macro language verb in the operation field is processed as a model
statement.

8.3.5.1 $MACRO Statement: The $MACRO statement must be the first
Statement of a macro definition. It assigns a name to the macro and
declares the parameters for the macro. The macro name consists of one
to six alphanumeric characters, the first of which must be alphabetic.
Each <parm is a parameter for the definition. Parameters are
described in paragraph 8.3.4.1. The operand field may contain as many
parameters as the size of the field allows and must contain al]
parameters used in the macro definition. The comment field may not be
used if there are no parameters.

SYNTAX:

<macro name> ...$MACRO ...[<parm>][,<parm>]... ... [<comment>]

8-12

The macro definition is used in the expansion of macro calls that have
the macro name as an operation code. The syntax for a call is as
follows:

..<macro name> ..[<operand list>], }<operand/list>]... ... [<comment>]

The macro name specifies the macro definition to be used. Each operand
may be any expression or address type recognized by the Assembler, or
a character string enclosed in quotes. Alternatively, a list which jis
a group of operands enclosed in parentheses and separated by commas
(when two or more operands are in list) may be used. An operand list
1s processed as a set after removal of the outer parentheses during
macro expansion.

Operands (or operand lists) may be nested in parentheses in the macro
call for use within macro definitions.

° e

For example:

ONE $MACRO P1,P2

specifies 2 parameters.

A call such as

ONE PAR1,PAR2

will result in

PAR] being associated with Pl and PAR2 being associated with P2.
However, a call] such as:

ONE PAR1,(PAR21,PAR22)

will result in PAR] being associated with Pl and PAR21,PAR22 being
associated with P2. Now :P2: or =:P2.S: can be used as a pair of
operands in a model statement.

Processing of each macro call in a source program causes the macro
expander to associate the first parameter in the $MACRO statement with
the first operand or operand list on the macro call line and the
second parameter with the second operand or operand list, etc. Each
parameter receiving a value has the $PCALL attribute set in the MST.
When the macro definition has more parameters specified than the
number of operands in the macro call, the $PCALL attribute is not set
for the excess parameters. The $PCALL attribute is also not set if an
operand is “null",i.e., the call line has two commas adjacent or an
Operand list of zero operands. Expansion of the macro can be
controlled by the number of operands by using the $PCALL attribute and
SIF statements. For example, a =macro definition containing

AMAC SMACRO P1,P2,P3 when called by AMAC AB1,AB2 sets
SPCALL in parameters Pl and P2 but not for P3. Similarly,

AMAC XY, ,XY3 causes $PCALL to be set for Pl and P3 but not for

8-13

P2.

When the macro instruction has more operands than the number of
parameters in the $MACRO statement, the excess operands are combined
with the operand or operand list corresponding to the last parameter
to form an operand list (or a longer operand list). For example, with
the macro statements shown below, the operands of the two macro calls
in the following c would be assigned to the parameters in the same
ways:

(1) ONE EQU. 9
Two EQU 43
THREE EQU 86
FIX SMACRO P1,P2 MACRO FIX

FIX ONE,TWO,THREE MACRO INSTRUCTION
FIX ONE,(TWO,THREE) MACRO INSTRUCTION

(2) A EQU 7
B EQU 15
C DATA 17
0 DATA 63
E EQU 95
F EQU 47
G EQU 58
H EQU 101
T EQU 119
PARM $MACRO P1,P2,P3,P4,P5,P6,P7,P8,P9

PARM @A,,B,(),C,(0),E,(G,(H,I))

Parameter assignments:

P8.S = P2.S = (no string)
P8.A = $PCALL P2.A = (all false)
P8.L= 1 P2.L=0
P8.V=7 P2.V = 0

P3.S =B P4.$ = (no string)
P3.A = $PCALL P4.A = $POPL
P3.L= 1 P4.L=0
P3.V = 15 P4.V=0

P§.S=C P6.S =D
P5.A = $PCALL P6.A = $PCALL,SPOPL
P§S.L=1 P6.L = 1
P5.V = 17 P6.V=1

8-14

P7.S=E P8.S = G,(H,!I)
P7.A = $PCALL P8.A = $PCALL,$POPL
P7.L= 1] P8.L=7
P7.V = 95 P8.V = 2

P9.S = (no string)
P9.A=0 (all false)
P9.L = 0
P9.V=0

NOTE

A macro definition will supercede previous macro definitions
and native instructions with the same name. Symbolic
operands which appear in a macro call are treated as
symbolic operands in native instructions, f.e., if they are
not defined with the program in which they appear, whey wil]
be listed as undefined symbols.

8.3.5.2 $VAR Statement: The $VAR statement declares the variables for
a macro definition. The $VAR statement is required only if the macro
definition contains one or more variables other than parameters. More
than one $VAR statement may be included and each $VAR statement may
declare more than one variable. Each <var> in the operand is a
variable as previously described, see Section 8.3.4.

SYNTAX ; ~

. .$VAR ...<var>[,<var>]... ... [<comment>]

The following is an example of a $VAR statement:

$VAR A,CT,V3 Three variables for a macro

The example declares variables A, CT, and V3. A, CT, and V3 must not
have been declared as parameters. The $VAR statement does not assign
values to any components of the variables. $VAR statements may appear
anywhere in the macro definition to which they apply, provided each
variable is declared before the first statement that uses. the
variable. Placing $VAR statements immediately following the $MACRO
statement is recommended.

8.3.5.3 $ASG Statement: The $ASG statement assigns values to the
components of a variable. Variables that are not parameters do not
have values for any components until values are assigned using $ASG
statements. Components of variables with previously assigned values
may be assigned new values with $ASG statements.

8-15

SYNTAX:

..$ASG ...<expression/string> TO <var> ...[<comment>]

The expression operand may be any expression valid to the assembler
and may contain binary mode variable references and the keywords in
Tables 8-3 and 8-4.

NOTE

The binary mode value of a string component or symbol string
component used in an expression is the binary value of the
first two characters of the string. Thus, if GP.S has the
string LAST, the value used for GP.S is an expression in the
<string> hexadecimal number >4C41 which is the ASCII °
representation for LA. °

A string may be one or more characters enclosed in single quotes, or
the linking (concatenation) of such a literal string with the string
mode value of a qualified variable. The <var> may be either an
unqualified variable or a qualified variable.

When the operands are both unqualified variables, al] components are
transferred to target variables. When the destination variable is
qualified, only the specified component receives the corresponding
component of the expression or string. An exception to this is when a
string is assigned to the string component of a variable or symbol,
the length component of that variable or symbol is set to the number
of characters in the assigned string. If the attribute component of
the destination variable is to be changed, only those attributes which
can be tested using keywords are changed. Other attributes maintained
by the macro assembler may or may not be changed as appropriate.

NOTE

A qualified variable that specifies the length component is
tllegal as a destination in a $ASG statement and wil] NOT
set the length component.

The following examples show the use of the $ASG statement:

SASG P3 TO V3 Assign all the components of
variable P3 to variable V3.

8-16

S$ASG :P3.S8:‘'ES' TO P3.S Concatenate string 'ES' to the
string component of variable
P3, and set the string
component to the result. Also,
add 2 to the value of the new
length component.

SASG :CT.A++PSYM TO CT.A Set the flag in the attribute
component of variable CT to
indicate the symbolic address
attribute.

Variables P3, V3, and CT must have been previously declared either as
parameters in a $MACRO statement or as variables in a $VAR statement.

The $ASG statement may be used to modify symbol] components as shown in
the following examples. Assume the P3.V = 6 and P3.S = SUB.

SASG 'TEN' TO G.S Assigns 'TEN' as the string
component of variable G. When
'TEN' ds a symbol in the AST,
this statement allows the use
of indirect component
qualifiers to modify the
components of symbol TE

S$ASG P3.V TO G.SV Sets the value component
of the symbol in the string

-- component of variable G to the
value component of variable
P3. In this case, the value
component of TEN is set to 6.

SASG 'A':P3.8:'S' TO G.SS Concatenates string 'A', the
string component of variable
P3, and string 'S' and places
the result in the indirect
string component of variable
G. Also sets the length
component of the same symbol.
Thus, the string component of
TEN is ASUBS and the length
component is five.

NOTE

Keywords in a $ASG statement MUST be used with a Boolean
operator and an attribute component of a variable in the
source field. The attribute component must come first.

8-17

8.3.5.4 $IF Statement: The $IF statement provides conditional
processing in a macro definition.

SYNTAX:

.$IF ...<expression> ...[<comment>]

An $IF statement is followed by a block of macro language statements
terminated by an $ELSE statement or an $ENDIF statement. When the
SELSE statement jis used, the $ELSE statement is followed by another
block of macro language statements terminated by an $ENDIF statement.
When the expression in the $IF statement has a nonzero value (or
evaluated as TRUE), the btock of statements following the $IF
statement is processed. When the expression in the $IF statement has a
zero value (or evaluated as FALSE), the block of statements following
the $IF statement is skipped. When the $ELSE statement is used and the
expression in the $IF statement has a nonzero value, the block of
statements following the S$ELSE statement and terminated by the $ENDIF
statement is skipped. Thus, the condition of the SIF statement may
determine whether or not a block of statements is processed, or which
of two blocks of statements is processed. A block may consist of zero
or more statements. The <expression> may be any expression as defined
for the $ASG statement and may include qualified variables and
keywords. The expression defines the condition for the $IF statement.

NOTE

The expression is always evaluated {in binary mode.
Specifically, the relational operations (<,>,=,#=) operate
only on the binary mode values of macro variables. Boolean
operators may be nested. See Section 8.3.3. In addition, $IF
blocks may be nested, at most, 44-levels deep.

The following examples show conditional processing in macro
definition:

SIF KY .SV Process the statement of BLOCK A when the
. i indirect value component of the variable KY

BLOCK A. contains a non-zero value. Process the
. statements of BLOCK B when the component

SELSE contains zero. After processing either
: block of statements. continue processing at

BLOCK B the statement following the SENDIF statement.

SENDIF

8-18

SIF ~-(T.A&$PCALL) Process the statements of BLOCK A when the
. attribute component of parameter T indi-

BLOCK A cates that parameter T was not supplied in
the macro instruction. If parameter T was

. supplied, do not process the statements
SENDIF of BLOCK A. Continue processing at the

. statement following the $ENDIF statements

. in either case.
SIF T.L=5 Process the statements of BLOCK A when the

. length component of variable T is equal to
5, do not process the statements of BLOCK

. BLOCK A A. Continue processing at the statement
SENDIF following the $ENDIF statement.

8.3.5.5 $ELSE Statement: The S$ELSE statement begins an alternate
block to be processed if the preceding $IF expression was false. (See
Section 8.3.5.6)

SYNTAX:

.. S$ELSE ...[<comment>]

8.3.5.6 S$ENDIF Statement: The S$ENDIF statement terminates the
conditional processing initiated by an $IF statement in a macro
definition. Examples of $ENDIF statements and their use are shown in a
preceding paragraph. (See Section 8.3.5.6)

SYNTAX:

.. .$ENDIF ...[<comment>]

8.3.5.7 $END Statement: The $END statementmarks the end of the group
of statements that the macro definition named in the operand. When
executed, the SEND statement terminates the processing of the macro
definition. The <macro name> parameter is optional.

SYNTAX:

..-$END ...[<macro name>][<comment>]

The following is an example of an $END statement:

SEND FIX Terminates the definition of macro FIX.

8.3.6 Model Statements

As previously mentioned, a macro definition consists of model
statements and statements that contain macro language verbs. A model

8-19

Statement always results in an assembly language statement. This
statement may be composed of the usual elements of an assembly
language statement combined with string mode qualified variable
components, see Section 8.3.4.3. The resulting source statement must
be a legal assembly language statement. The following examples show
model statements:

MOV %6,R12 This model statement is itself an assembly language
source statement that contains a machine
instruction.

:P7.S: MPY :P2.8:,R8 :V4.S: This model statement begins
with the string component of variable P7. Three
blanks, MPY, and three more blanks’ are
concatinated to the string. The string component
of variable P2 is concatenated to the result, to
which R8 and three blanks are concatenated. A
final concatenation places the string component of
variable V4 in the model statement. The result is
an assembly language machine instruction having
the label and comment fields and part of the
operand field supplied as string components.

:MS.S: This model statement is the string component of
variable MS. Preceding statements in the macro
definition must place. a valid assembly language
source statement in the string component’ to
prevent assembly errors.

NOTE

Conditional assembly directives may not appear as operations
in a model statement. Comments supplied in model statements
may not contain periods (.) since the macro assembler scans
comments in the same way as model statements and improper
use of punctuation may cause syntax errors.

8.4 MACRO EXAMPLES

Macros may simply substitute a machine instruction for a macro
instruction, or they may include conditional processing, access the
assembler symbol table, and employ recursion. Several examples of
macro definitions are described in the following paragraphs.

8.4.1 Macro ID

Macro [ID is an example of a macro with a default value. The macro
supplies two DATA directives to the source program. It consists of
nine macro language statements, four of which are model statements.
The definition is as follows:

8-20

ID SMACRO WS,PC

DATA :WS.S:

$IF PC .A&SPCALL

DATA >PC.S:,15

SELSE

DATA START ,15

START &QU $

SENDIF

SEND

SYNTAX:

Defines ID with parameters WS and
PC.

Model statement - places a DATA
directive with the string of the
first parameter as the operand in
the source program.

Tests for presence of parameter PC.

Model statement - places a DATA
directive in the source program.
The first operand is the string of
the second parameter, and the
second operand is 15. This
Statement is processed if the
second parameter is present.
State of alternate portion of
definition.

Model statement - places a DATA
directive in the source program.
The first operand is label START,
and the second operand is 15. This
Statement is processed if the
second parameter is omitted.

Model statement - places a_ label
START in the source program. This
statement is processed if the
second parameter is omitted.

End of conditional processing.

End of macro.

[<LABEL>] ...ID ...<address>[,<address>] ...[<comment>]

The addresses may be expressions or symbols.

The following is an example of a macro instruction for macro ID:

ID WORK1,BEGIN

The resulting source code would be:

DATA WORK]
DATA BEGIN,15

8-21

If only one operand is supplied, the macro instruction could be coded
as follows:

ID WORK2

This would result in the following source code:

DATA WORK2
DATA START ,15

START EQU $

This form of the macro instruction imposes two restrictions on the
source program. The source program may not use the label START and may
not call macro ID more than once. Problems with labels supplied in
macros may be prevented by reserving certain characters for use in
macro~generated labels. A macro definition may maintain a count of the
number of times {ft is called and use this count in each label
generated by the macro.

8.4.2 Macro GENCMT

This Macro GENCMT example shows how to implement both those comments
which appear in the macro definition only, and those comments which
appear in the expansion of the macro. When this macro is called, the
statement in line six generates a comment.

0001 IOT "GENCMT'
0002 GENCMT $MACRO
0003 SVAR V
0004 * THIS IS A MACRO DEFINITION COMMENT *
0005 $ASG ‘*' TO V.S
0006 >V.S: THIS IS A MACRO EXPANSION COMMENT *
0007 SEND
0008 GENCMT
0001 * THIS IS A MACRO EXPANSION COMMENT *
0009 0000 0000 DATA 0,1

0002 0001
0010 GENCMT
0001 * THIS IS A MACRO EXPANSION COMMENT *
0011 GENCMT
0001 * THIS IS A MACRO EXPANSION COMMENT *
0012 0004 0004 DATA 4
0013 END

NO ERRORS, NO WARNINGS

8.4.3 Macro FACT

Macro FACT is an example of the recursive use of macros. FACT produces

8-22

the assembly code necessary to calculate the factorial of N, and store
that value at data memory address LOC. Macro FACT accomplishes this by
calling FACT1, which calls itself recursively.

FACT

FACTI

SMACRO N,LOC
SIF N.V<2
MOV %1,A
STA @:LOC:
SELSE
MOV %:N.V:,A
STA @:LOC:
$ASG N.V-1 TO N.V
FACT1 :N.V:,:LOC:
SENDIF
SEND

$MACRO M,AREA
SIF M.V>1
LOA @:AREA:
MPY %:M.V:,A
MOV B,A
STA @:AREA:
$ASG M.V-1 TO M.V
FACT] :M.V:,:AREA:
SENDIF
SEND

8.4.4 Macro PULSE

»
¢*

eh
8

&
*

¢
4

&

N greater than/equal 2, so store
N at LOC

DECREMENT N
DO FACTORIAL OF N-1

Multiply factorial so far by
current position

Save result
Decrement position
Recursively calls itself

This is a set of macros in which the name describes an addressing mode
expected by the macro. The example assigns Register A to a port,
Register B to a port, and an immediate value to a port. These macros
can be usefull in programming I/O routines.

PULSEA $MACRO PX
ORP A,:PX.S:
SEND

®

PULSEB $MACRO PX
ORP B,:PX.S:
SEND

®

PULSEI $MACRO I,PX
ORP %:1.S:,:PX.S:
SEND

8-23

8.5 MACRO ERROR MESSAGES

Table 8-5 lists and defines the Macro error messages which may be
generated.

TABLE 8-5 - MACRO ERROR MESSAGES

MACRO
ERROR MESSAGE DESCRIPTION

MACRO LINE TOO LONG

LONG MACRO VARIABLE
QUALIFIER

TOO MANY MANY VARIABLES

INVALID MACRO QUALIFIER

VARIABLE ALREADY DEFINED

IF LEVEL EXCEEDED

MACRO ASSEMBLER
PROGRAM ERROR

In a macro definition, macro directive lines}
may only be 58 characters long, and model!
statements, when fully expanded, may only be!
60 characters long.

Macro variable qualifiers may only be one or
two characters in length.

The total number of macro parameters, vari-
ables and labels in one macro definition may
not exceed 128.

The only valid macro qualifiers are: S,V, L,
A, SS, SV, SL and SA.

A macro variable cannot be redefined within
a macro.

The maximum nesting level of $IF directives
1s 44,

The Macro Assembler has detected an internal!
error. These can be caused by incorrect!
syntax.

i
(

8-24

APPENDIX A

CHARACTER SETS RECOGNIZED BY THE ASSEMBLER

The TMS7000 Assembler recognizes the ASCII character listed in Table
A-1. It also accepts the characters listed in Table A-2, if they occur
within quoted strings or in comment fields. The special characters in
Table A-3 are not accepted by the assembler but may be recognized and
acted upon appropriately by other programs. The device service routine
for the card reader accepts (and stores into the calling program''s
buffer) all the characters listed in Tables A~I, A-2, and A-3.

All of the tables include the ASCII code for each character
represented a a hexadecimal value and a decimal value. The tables also
include the keypunch (Hollerith Code) for each character.

TABLE A-1 - ASCII CHARACTER SET

|
| | (KEYPUNCH) !

| HEXADECIMAL VALUE { DECIMAL VALUE |} CHARACTER } HOLLERITH CODE |
|

20 ! 32 | Space ! Blank |
! 21 ' 33 ! { 11-8-2 |

22 { 34 ! " 8-7 !
| 23 35 # { 8-3 !

24 ! 36 $ 11-8-3 !
! 25 ! 37 4 0-8-4 !
| 26 ! 38 ! & ! 12
! 27 ! 39 | | 8-5 !
! 28 ! 40 (! 12-8-5 !
} 29 41 !) 11-8-5 !
! 2A ! 42 | * ! 11-8-4
} 2B 43 ! + ! 12-8-6 !

2c ! 44 ! , ! 0-8-3 !
! 2D ' 45 ! - 11 !
: 2E 46 ! . ! 12-8-3 !
! 2F ! 47 / | 0-1 !

30 48 ' 0 | 0 !
31 49 ! 1 1 !

! 32 50 2 ' 2 |
33 ' 51 3 | 3 !

{ 34 ' 52 4 ' 4
35 53 ! 5 5 !| |

! (CONTINUED) !

TABLE Awl - ASCII CHARACTER SET

iu)
N

O
Q

0

©
8

©
O
o
v
t

c
o
©
©

C
O

=
x

|
w
o
r

0
@
e

o
e

—
—

N
I
M
a
O
w
o
t
h

tft
P
T
r
A
N
I
M
N
G
M
N
M
O
r
D
A
K
N
M

A
G
M
w
o
r
a
a

N
I
O
n
e
r

i

a
.

w
n
m
o
d
g
a
r
t
t
i
t
m
o
r
#
s
#
e
e
e
r
t
e
e
t
e
#
e
t
u
s
e
t
n
t
t
r
t
s
p
t
e
t
e
r
e

ti
n
m
e
m
o
n
a
o
a
a
o
r
t

t
i
t

w
n

>
-

C
O
O
r
t
Q
u
a
d

§
§
O
N
N
N
N
N
U
N
N
N

N
e
t
e
t
e
t
e
t
e
t
e
r
t
e
t
e
t
e
t

tit
§

bt
tk

tk
tk

8
E
N
N
4

u
y

o
m
o
t

Q
a
©

S
t
i
t
e
s
e
s
t
a
t
e
t
N

H
T
H
O
O
o
O
O
o
O
O
o
d
O
o
O
M
d
M
d

UMUC
UMUlrrmRKshLdhihilhlet

t
O

©

r
e©<
=

f
o

ia)

©=
W
M
m
O
G
D
«
V
R

A
e
S
G
S
F
L
M
O
V
O
W
U
Y
D
I
T
E
H
O
Q
K
M
A
T
Z
O
A
I
A
K
N
E
D
Z
S
X
F
N
S
e
r
w
e

<
<

xqQ)

A-2

QUOTED STRINGS AND COMMENT FIELDS
TABLE A-2 - SPECIAL CHARACTERS RECOGNIZED IN

w
-(c
o

m
N
M
F
M
w
r

O
M
A

‘
a
a
A
I
m
+

A
N
M
O
M
W
?
T
M
N
M
N
W
O
n
r
n
r
a
G
D
I

&£t
'
F
t

t
t

te
I
n
m
M
s
A
w
M
m
w
W
o
r
a
d
a

m
a
r
e

O
V

w
n
w
o
r
e

#
6

tt
8

7
A

t
©

6
6

6
t

0
8

£
e
t
e
t
e
t
e
t
e
t
e
t
e
t
e
t
o
t

tt
0
t
t
t

FC
P
U
E
C
O
M
M
M
G
M
!
A
_

E
C
E

M
I
N
O
T
M
W
T
S
I

FF
1
D
W
D
W
O
W
A
O
A

I
o
n
o
o
o
q
o
q
o
o
O
9

O
C
F
n

n
t
H
A
M
m
e
t
H
O
O
o
O
o
I
o
o
o
O
t

n
A
o
m
M
a
t
_

t
_
_

U
_
m
M
w
m
M
o
d
t

ti
t
s
e

o
n
e
t
o
e
t
t
t
6
e

6
8

86
6

86
€

@
6
6

@
6

8b
be
b
l

Ul
G
N
r
t
O
N
D
E

E
E
O
O
N
M
O
N

N
I
A
L
L
A
L
O
U
Q
U
Q
U
O
Q
U
O
U
Q
U

OQU
Q
U
Q
E

Q
U
O
I
G
N
Q
b
e
t
e
t
e
t
e
t
e
t
e
t
e
t
e
t
e
*
N
i
e
t
e
*
N
e
t

to
tt

§
t
e
r
t
*
t
N
e
t

d
6

Gt
Gt

8

CHARACTER {| HOLLERITH CODE

(Continued)

 HEXADECIMAL VALUE | DECIMAL VALUE

QUOTED STRINGS AND COMMENT FIELDS
TABLE A-2 - SPECIAL CHARACTERS RECOGNIZED IN

e
t
m
+

o
O

@
]

A
N
I
M

N
I

e
t
e
C
O
M
M
F
t
i
n
o
O
r
m
o
O

@
e
t
t
6
e
t
e

68
N
I
M
T
i
N
O
m

o
O

@
e
r
e
e
_
g
c

8
a
e
e
t
#
e
e
#
»
e
t
b
e
a
t
r
t
s
h
e

G
A
M
M
A
A
A
A
M
a
a
@

Ff
#

€
6
b
b

I

a
o
a
m
a

i
c
o

c
o

w
t
~
d
A
D
N
A
N
n
a
n
A
e
c
t

i
¢

€
8

8
8

K
e
N
I
A
N
N
H
N
A

M
N
O
O
1

(
e
0
8
0
=

4
“
f
p

e
#
N
M
I
*
?
A
O
n
r
e
e
s
e
t
e
e
!
o
#
s
e
@
€
@
C

0
0

0
e
t
e
t
m
t
e
r
t
i
e
t
e
t
e
t
i
e
r
w
t
i

€@
§

bt
tt
b
l
l
l

O
r
O
v
O
Y

e-t
o
v

a
v

t
r
i

n
n
m
n
i
o
o
o
o
a
q
o
o
o
o
o
a
q
o
o
o
d
n
t
n
n
H
t
n
e
n
a
A
t

r
t
D
M
D
O
Q
D
A
Q
M
O
0
Q
W
A
0
A
0
O
®
@

o
r

v
e
m
m
e
r
m
e
m
w
o
t
c
o
m
o
c
a
c
m
d
@
m
t
r
s
e
m
e
e
t
e
n
s
e
t
e
e
t
e
_
e
_
e
t
w
}
e
e
e
e
e
s
v
t
e
e
e
e
#
?
t
e
¢
e
t
¢

6
6

¢
6

@
8

C
U
C
I
N
A

t
e
e
s

b
t
E
N
E

t
C

EC
N
R
E
A
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

N
e
t
e
t
e
t
e
t
e
r
i
e
c
t
e
t
r
t
O
o

8
8
K
A
D
N
A
N
M
A
N
A

N
A
I
N
H
I
A
A
N

t
t
r
t
e
t
n
r
t
e
t
r
e
t
n
t
n
r
t
n
e
t
n
n
n

n
e
t
e
t
t
t
t
e
t
e

(Continued)

HEXADECIMAL VALUE } DECIMAL VALUE | CHARACTER | HOLLERITH CODE
A-4

QUOTED STRINGS AND COMMENT FIELDS
TABLE A-2 - SPECIAL CHARACTERS RECOGNIZED IN

t
a
E
a

a
n
u
n
m
d
g
e
d
m
w
o
r

o
O

o
m
e

©
r
e
|

’
©

cGy
O
v
G
y
G
y
O
v
O
Y
O
V
O
V

a
n
n
d
g
d
e
m
u
w
o
r

G
O
m
r
a
n
n
m
n
d
g
e
M
w
o
r
e

i
r
e
r
e
e
e
r
e
e
r
e
b
r
l
e
o
r
e
o
r
e
n
m
M
e
m
w
o
n
r
t
t
t
t

&@€
t
t
r
n
m
a
e
m
n
m
w
o
r
s

ft
'

bt
t

t
t

0

a
g

Q
q
Q
o
o
q
o
a
o
q
o
0
a
q
o
n
0
Q
o
o
d
q
c
i
t
t
f

t
t

t
t

1
O
O
O
M
O
O

I
t
'
s
t
r
e
t
r
r
e
i
e
Q
m
o
g
o
a
n
o
n
o
o
a
o
n
o
a
o
0
a
o
o
o
a
o

@
e
s
e
e
e
e
e
e
t
t
t
e
m
@
m
d
c
d
j
a
n
g
a
a
a

ii
¢#

tt
t
e

‘
a
m
@
a
a
n
a
m
a
o
a
q
a
m
a
o
r
z
e
t
t
t
s
t

ss
bt

—
a
s
a
t
a
a
s
t
e
t
s
t
t
i
e
t
a
e
t
e
t
t
i
@
:
¢
@
t
e
¢
8
8

8
e
G

9
€@

€@
@
C
r
a
N
M
A
o
c
t

a
c

A
A
A
s
M
M
A
M
O
O
O
O
O
O
O

K
M
M
e
t
M
m
m
M
M
O

o
O
o
O
O
O
O
O
M

e
n
t
e
r
t
e
r
t
r
t
e
t
e
t
e

tas
@
e
e
e
e
s
:
e
6
e
e
6
e
e
e
¢
¢
?
%
6
¢
6
e
0
6
8
¢
6
0
6

8
6

@
@

6@
@

@
@

@
@

@
@

@
@

6@
&€@

8
6

8

—
N
A
U
A
N
N
A
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
e
a
r

5
S
a
t

a
i
t
t
a
t
a
s
t
t
n
A
A
A
A
s
a
t
t
e

K
t
X
K

S
a
t
t
t
t
e
t
a
t
a
t
s
t
n
t
A
s
t
s
e
t

x
=DECIMAL VALUE | CHARACTER

e
e

e
p
e
e
a
o
e
e
x
e
s
a
e
e
e
a
p
e
s
a
r
e
m
a
e
e
n
e
e
e
e
e
e
e
m
e
e
s
e
e
e
e
a
o
e
e
w
a
n
c
o
e
e
v
e
n
a
n
e
s
e
e
n

c
e
e
n
a
r
e
s
e
e

B
5
8
)
O
e
O
e
S
O
O
E
O
w
O
w
O
S
O
e
O
w
w
e
O
w
w
e
w
e
O
e
O
e
w
e
e
w
w
e
e
n
o
e

TABLE A-3 ON NEXT A-

OPERATIVE SYSTEM DEVICE SERVICE ROUTINE
TABLE A-3 - ADDITIONAL CHARACTERS RECOGNIZED BY THE

—
-

m
w
s
r
m
w
o
r

i
4

7
T
m
M
m
w
o
n
r

(
m
o
r

@
e
é
@
e
t
e

&€
C
D
H
I
n
m
n
d
e

o
O

|
@
(
t
e
e
r
t

O
n
n

~
m

a
t
t

w
o
w

c
o
o
o
q
m
a
m
i
i
t
z
t
e
t
i
a
s
w
o
n

w
h
a
r
n
r
a
a
a
q
a
d
a

si
e
t
e

te
w
m
m
m
@
d
e

tr
m
t

t
i
t

&
C
_
D
W
a
n
m
i
e
n
t
i
a
g
a
n
t
i
t
i
t
z
t
s
t
r
t
_
i
v
q
o
u
e
w
m
n

A
N
H
N
a
r

§
£
E
A
D

N
N
A
N
A
A
N
M
?
!

§F
F
F
E
D
W
A
E
D
A
E
N
D
A
A
N
N
A
M

I
o
e
r
e
o
s
o
e
m
a
m
a
e
e
a
a
e
t
t
i
t

t
§
e
t
e
t
e
r
t
r
t
i
r
t

ti
D
d

e
w
t

§£€
GC

t
6

8b
6

H
O

O
N
N
N
G
®
G

§
§
F
R
A
N
E
N
N
N
N
N

e
t
e
t
e
t
e
t
n
e
t
O
m

O
r
t

t
t
N
O

e
r
t
e
t
t
i
e
t
e
t

6
o
t
e
t
P
O
O
H

c
t
e
t
e
t
e
t
e
s
f

o
t

t
e
t
e
t

O
N

oo?
me]

 HEXADECIMAL VALUE | DECIMAL VALUE | CHARACTER {| HOLLERITH CODE

APPENDIX B

TMS7000 DATA ORGANIZATION

B.1 GENERAL

The TMS7000 is an 8-bit processor manipulating data organized into
register areas, program areas, and file areas. The paragraphs that
follow describe byte organization, l6-bit data organization, and the
three general data areas present in the TMS/000 environment.

B.2 BYTE ORGANIZATION

The byte consists of eight bits of memory. The least significant bit
(LSB) is designated bit 0; the most significant bit (MSB) is bit 7.
Figure B-1 illustrates byte organization.

MSB LSB

FIGURE B-1 - BYTE ORGANIZATION

B.3 16-BIT ORGANIZATION

Some TMS7000 instructions produce 16-bit results. A 16-bit data area
is organized with the MSB as bit 15 and the LSB as bit 0. Figure B-2
illustrates 16-bit data organization.

—l__ — ttt__
SB LSB

FIGURE B-2 - SIXTEEN BIT DATA ORGANIZATION

B.4 REGISTER AREAS

The TMS7000 has access to three, special purpose hardware registers
and 128 general purpose registers. Both types of register areas are
described below.

B.4.1 Hardware Register Areas

The hardware registers accessed by the TMS/000 are as follows:

o The 16-bit program counter (PC) containing the address of
the next instruction to be executed. The address in the PC
1s used by the processor to fetch the next instruction
from the program area. Following the fetch, the PC is
incremented.

o The 8-bit status register (ST). Three conditional status
bits and the current state of the interrupt enable flag
are present in the ST. Figure B-3 illustrates the status
register.

o The 8-bit stack pointer (SP) pointing to the last entry on
the data stack. The data stack provides subroutine and
interrupt capability as well as temporary data storage.

7 6 5 4 3 2 1 0

| |
{ C f N | 2 f J! { 0 f oO | O ff 0

fo |

N= sign bit - most significant bit of result.
C= carry out - 1 if carry out results; zero otherwise.
Z= zero - 1 if result if zero; zero otherwise.
I= interrupt enable

FIGURE B-3 - STATUS REGISTER CONFIGURATION .

B.4.2 General Purpose Registers

The TMS7000 has 128 general purpose registers forming the registers
file (RF). The RF is located in random access memory addresses >0000
through >007F. The registers are consecutively numbered from RO to
R127 and respectively located at >0000 to >007F. Registers RO, and Rl
are also referred to as A and B registers. Registers in the register
file may be addressed as registers by instructions having register
file addressing modes or as memory locations by instructions having
general memory addressing mode.

B.5 PROGRAM AREAS

The main body of a program is contained in the program area. Programs
and subroutines are coded to solve an equation, run a motor, determine
the status of a process, set or reset control lines, etc. The program
area consists of 2048 bytes of ROM located at address >F800 to >FFFF.
External memory can be added to expand the total program area to
63,226 bytes.

1 if interrupts enbabled; zero otherwise.

B.6 PHERIPHERAL FILE.

The on-chip input/output (1/0) resources are mapped into the
peripheral file (PF) as illustrated in Figure B-5. The PF is
memory-mapped into locations >0100 to >Q1FF. I/0 Ports, I/0 status,
and I/0 control registers are included with the peripheral file. PO is
mapped into >0100 and P255 into >Ol1FF. A peripheral file location may
be addressed using the I/O addressing modes or as a memory location by
instructions with general memory addressing nodes.

RRARKRAAAKRKAKARAKARAKKRARARKRARKK

>0000 - >007F * RAM register file *
RKEARKAKARAKKRAKRKRARRARRRRR

>007F - >00FF * future use *
RRAARAAAARARARARKKRRKRKRKRRRRRR

>0100 - >O1FF * peripheral file *
RRARAARAKARAKRKRRKRKAKARRARRKRKK

>0200 - >F/FF * memory expansion *
RARARRAAAAKRRKRRKKRAKKRKARRARR

>F800 - >FFFF * ROM program memory *
RARAARAKKAKAAKAKAARARAKKRKKAKKKKAKK

FIGURE B-4 - TMS7020 PERIPHERAL FILE MEMORY MAP

B-3

APPENDIX C

ASSEMBLER DIRECTIVE TABLE

The assembler directives for the assembly language are listed in Table
C-1. All directives may include a comment field following the operand
field. Those directives that do not require an operand field may have
a comment field following the operator field. Those directives that
have optional operand fields (RORG) and (END) may have comment fields
only when they have operand fields.

The following symbols and conventions are used in defining the syntax
of assembler directives:

Angle brackets: <>: Enclose items supplied by the user.

Brackets: [}: Enclose optional items.

An Ellipsis: (...): Indicates that the preceding item may
, be repeated.

Braces: { }: Enclose two or more items of which
one must be chosen.

The following words are used in defining the items used in assembler
directives:

Symbol: A character string composed of letters/digits representing
a specific concept/label/value/expression.

String: A character string of a length defined for each directive.

Exp: An expression.

WD-Exp: Well-defined expression.

WA: Absolute expression in the range from 0 to 15.
Operation: Mnemonic operation code, macro name, or previously

defined operation or extended operation.

C-1

TABLE C-1 - ASSEMBLER DIRECTIVES

m
e
e
m
e
s

e
r
e
s
e
v
e
s
e
n
e
e
r
e
s
e
e
e
e
w
e
e
r
a
s
e
w
a
e
a
e
s

e
r
a
s
e
o
s

e
n
e
m
a
e
e
e
e
r
e
e
e
e
e
a
e
e
e
e
e

c
r
e
e
e
m
e
e
e
e
e
w
e
e
e
e
e
e
e
e
m
O
e
S
e
S
e
O
e
S
e
S
e
F
P
O
S
O
S
O
e
O
m
o
m
o
n
e
e
e
e
e
e
m
e
e
e

DIRECTIVE

Output Options*
Page Title
Program Identifier

SYNTAX

OPTION <keyword>[,<keyword>]...
[<label>] TITL<string>
[<label>] IDT<string>

Copy Source File [<label>] COPY<file name>
External Definition tapers DEF<symbo1>[,<symbo1>]
Secondary Reference [<label>] SREF<symbol>[,<symbol>]
Absolute Origin [<label>] AORG<wd expr>
Relocatable Origin [<label>] RORG [<expr>]
Dummy Origin <label>] DORG<expr>
Block Starting <label>] BSS<wd expr>
With Symbol
Block Ending
With Symbol
Initialize Word
Initialize Text
Operation

[<label>] BES<wd expr>

[<label>] DATA<expr>[,<expr>]...
[<label>] TEXT [-] <string>

Define Assembly- <label> EQU<expr>
Time Constant
Word Boundary [<label>] EVEN
No Source List Satie UNL
List Source <label>] LIST
Page Eject [<Tabel>] C-
Initialize Byte [<label>] BYTE<,wd expr>[,<wd expre>]...
Program End btabels END [<symbo1>]
Program Segment <label>] PSEG
Program Segment End [<label>] PEND
Data Segment [<label>] OSEG
Data Segment End [<label>] DEND
Common Segment [<label>| CSEG[<string>b. .[<comment>]]
Common Segment End ([<label>] CEND
Load Object [<label>] LOAD <symbol>[,<symbol>][<comment>]
END [<label>] END[Symbo]]
Macro Library [<label>] MLIB<string>
* VALID KEYWORDS (Output Options):

Limit the listing of BYTE directives to one line.
Limit the listing of BYTE directives to one line.

; Turn off all unlist options.
: Do not produce a listing.
: Produce a symbol table listing in the object file.
Limit the listing of TEXT directives to one line.

: Produce a cross-reference listing.<
o
A
n
S
T
N
O
W

C-2

APPENDIX D

TMS7000 HEXADECIMAL INSTRUCTION TABLE/OPCODE MAP

0000 0001 0010 0011 0100 0101 0110 0111 ##+.1000 1001 1010 1011 1100 1101 1110 1111

L wo 1 2 3 |/46/s 6 ? 8 9 A 8 c o| e€ Fe

NOP MOvVP TSTA/ MOV MOV JMP TRAP

0000 9 es| PaA CLRC AB A,Rna 1§

IOLE MOVP TSTB MOV JN/ TRAP

0001 ' —_—~ Pn.B 8.An JLT 14

oo10 2 MOV MOV MOV MOV MOV MOV MOv MOVP| MOVP MOVP OEC Dec O€C JZ/ TRAP

Ra.A!l %n,A.| RnB Ra.RAn}| %n,8 B.A Sn Pn| A,Pa 8.Pn %nPr A. 8 Ra JEQ 13

0011 3 ANDO ANO ANO ANO ANO ANO ANO ANOP ANOP ANOP INC INC INC JC/ TRAP

Rn,A %n,A.| Rn.B Ra.Raj %7.8 B.A SAR A.Pra 8,Pn %n Pn A 8 Rin JHS ?

0100 « OR OR OR OR OR OR OR ORP ORP ORP INV INV INV JP/ TRAP

RnB %n.A An.8 Ra,Rn| %nB B.A SAR] A,Pn B.Pr %nPr A 8 Rr JGT 11

0101 § EINT XOR XOR XOR XOR XOR XOR XOR XORP XORP XORP CLR CLR CLR JPZ/ TRAP

Rn,A| %n,A RnB Ra.Ra| 97.8) BA Sa.R A,Pr B.Pn %nPn A 8 Rn JGE 10

o110 6 OINT BTJO!| BTJO BTIO| BTIO; BTJO| BTIO BTJO BTIOP!| BTIOP STIOP XCHB XCHB| XCHE/ INZ/ TRAP

Rn, Al %n,.A-| Ra.B Ra,Ral %nB BA SAR] APn 8.Pn %n Pr A 8 Rn INE 9

01117 sexe BTJZ BTJZ BTIZ BTIZ BTIZ BTJZ BTIZ STIZP BTIZP BTIZP SWAP SWAP SWAP JNC/ TRAP

Ra,Aj %n,A+ RnB An,Rn| %n.B 8.4 SAR A.Pra B.Pr %nPr A 8 Ra JL 8

1000 8 POP ADO ADO ADO AOO ADO ADO ADO MOVO! MOVO MOVO| PUSH PUSH PUSH TRAP TRAP

sT Ran Al %nA} AaB RaRn| %nB BA HRI GAR! Rn.An %AlB)Rn A 8 Rn 23 7

1001 9 STSP AOC AOC AOC; AOC} AOC ADC AOC POP POP POP TRAP TRAP

RaAl %n.A.| RnB Ra. Rant 0.8 B.A SAR A 8 Rin 22 6

1010 A ReTs Sus} SUB SUB; SUB; SUB SUB SUB LOA LOA LOA OJNZ OJNZ! OJNZ TRAP TRAP

RaAl %n.A An.B Ra,Raj %a,8 B.A %*nR @n “Rin @niB) A 8 Rn 21 S|

1011 8 RET! S88 S86 SB8B SBB SB8B S8B SBB STA STA STA OECO OECD! OECD TRAP! TRAP

Rn.A| %n.A RnB Ra. Ral %a,8B B.A %nR @n “Rn @niB) A B Rn 20 4

1100 c| MPY MPY MPY MPY MPY MPY MPY| BR | BR BR RAR RR RR TRAP! TRAP

Rn Ai %n.A RnB Ran.RAni %n.B 3.A %anA @n "Fin @n(B) A 8 Rn 19 3

1101 D LOSP CMP CMP CMP CMP CMP CMP CMP CMPA| CMPA CMPA RRC RRC RRC TRAP! TRAP

Rn.Al %n.A RnB Ra,Ral %n.8B B.A %n.A @n “Rn @n(8) A 8 Rn 18 2

1110 € PUSH OAC; DAC OAC! OAC} OAC; OAC} OAC] CALL! CALL CALL RL AL RL TRAP| TRAP

ST Rn Aj %n,A RvB Ra.Ani| %n.8 B.A %n.R Bn “Rn @ni(8) A 8 Ra 17 1

111 OSB; OSB OSB OSB; OSB; OSB} OSB RLC RLC RLC TRAP| TRAP

Rn.Aj %n,A! RnB! Ra.Ral %n.8 B.A ta. A 8 Ra 16 0

a - A Register

8 =- 6 Register

Rn - Register File

Pr - Perionerei File

"on - Irmmediate

@n - Oirect

eAn - tadirect

APPENDIX E

TMS7000 INSTRUCTION OPCODE SET

and
ance
6TI0
eT20P
er
orizy

GALL

CLAC

CaPa

ac

oec

oeco

On?

GInT

1\OU8

tee

inv

IIMS

MIT

ICit

IZ)IE

P1IGT

PUIGE

42580
Oa

wov |

£Oveo

Ove

wev

NOP

OR |

aap

PoP

Push

rem

agers

AL
ALC |
AR

aac

$86

sere
gta

ors

sus

guar :

STA

STB :

cmap | ‘ ‘ '

uCme | 86: i o6 . ' \ ;

xOR | | 1 48:15 23.35 56, 39, 8 ' , . ' mI

cone {| | ! ‘ i { : : , , 38. sf. i ag | ' ‘ X,

€3.26:

E-1

INDEX

ABNORMAL COMPLETION CHECKSUM 7°9,7-10,
ERROR MESSAGES 7-5,/7-6 7-14

ABS OPERATOR ... 2-15 CLEAR CARRY
ABSOLUTE ORIGIN INSTRUCTION (CLRC) 3-26

DIRECTIVE (AORG). 5-2 CLEAR INSTRUCTION (CLR) 3-25
ADD INSTRUCTION (ADD) 3-‘16 CLOCK. 8-6
ADD W/CARRY — COLONS 8-8

INSTRUCTION (ADC) 3-15 COMMON SEGMENT DIR (CSEG) 5-8
ADDITION INSTRUCTIONS COMMON SEGMENT END

(ADD/ADC/DAC) . . 4-3 DIRECTIVE (CEND). 5-10
AND INSTRUCTION (AND) 3-17 COMPARE INSTR (CMP) 3-27,3-43
AND PERIPHERAL FILE COMPARE INSTRUCTIONS 2-2,2-4

REGISTER INST (ANDP) 3-18 COMPARE WITH AN EXTENDED
ANGLE BRACKETS .. 2-17 INSTRUCTION (CMPA) 3-29
ARITHMETIC INSTRUCTIONS 2-2,2-12, CONCATENATION . . . 8-6,8-9,

4-1 8-10 ,8-16
ARITHMETIC OPERATORS 8-20

IN EXPRESSIONS . 2-12 CONSTANTS AND OPERATORS 8-5
ASCII CODES ... A-1 CONTROL INSTRUCTIONS 2-2,2-4,
ASSEMBLER DIRECTIVES §-1,5-2, 3-10

5-22 ,8-1 COPY SOURCE FILE DIR 5-22
ASSEMBLER ERROR MESSAGES 7-2 CPU 2... 2-1
ASSEMBLER OUTPUT . 5-1,5-13,7-1 CROSS REFERENCE LISTING 7-1
ASSEMBLY INSTRUCTIONS 1-1,3-1 DASH (IN ASSEMBLER OUTPUT) 7-2
ASSEMBLY LANGUAGE APPLICATION 1-1 DATA AREAS 2-1,3-5
ATTRIBUTES SYBMOL . 7-7,8-7, DATA MOVEMENT INSTRUCTIONS 4-6

8-10,8-11, DATA ORGANIZATION . 3-1
8-12 ,8-16 DATA SEGMENT DIR (DSEG) 5-7

BINARY INTEGER CONSTANTS 2-9 DATA SEGMENT END DIR (DEND)5-8
BIT TEST AND JUMP IF DECIMAL ADD W/CARRY

ONE INSTRU (BTJO) 3-20 INSTRUCTION (DAC). 3-30
BIT TEST AND JUM IF ONE- ‘ DECIMAL INTEGER CONSTANTS 2-9

PERIPHERAL INSTR (BTJOP) 3-22 DEC SUBTRRACT W/BORROW
BLANKS 2-7 INSTRUCTION (DSB). 3-37
BLOCK ENDING W/SYMBOL DIREC 5-6 ODECREMENT OBL INSTR (DECD)3-33
BLOCK STARTING W/SYMBOL DECREMENT INSTR (DEC) 3-32

DIRECECTIVE . . . 5-5 DECREMENT REG AND JUMP IF
BRACES 2-7 NON-ZERO INSTR (DJUNZ) 2-3,
BRACKETS 2-7 3-36 ,3-65
BRANCH/JUMP INSTRUCTIONS 2-2,2-3 DECREMENTING INSTRUCTIONS
BRANCH INSTRUCTION (BR) 3-23,4-12 (DEC/DSB/DECD) . . 4-2
BRANCHING 3-70 DEFINE MACRO LIBRARY
CALL INSTRUCTION (CALL) 3-24,4-14 DIRECTIVE (MLIB) . 5-23
CAPABILITY, RELOCATION 6-1 DEFINING MACRS .. . 8-1]
CARETS 2-7 DIRECT MEMORY ADDRESSING 3-5
CHANGING OBJECT CODE 7-13 DIRECTIVES THAT AFFECT
CHARACTER CONSTANTS 2-9,2-10, ASSEMBLER OUTPUT . 5-13

6-2 DIRECTIVES THAT AFFECT THE
CHARACTER STRINGS . 2-12,6-3, LOCATION COUNTER . 5-1,5-2

8-6

OIRECTIVES THAT INITIALIZE
CONSTANTS 5-1,5-16

DIRECTIVES THAT PROVIDE
LINKAGE BETWEEN PROGRAMS 5-1,

5-18,
5-19

DISABLE INTERRUPTS
INSTRUCTION (DINT) 3-35

DISPLACEMENTS ... 6-1
DIVIDING 2-14, 4-16
DIVISION 2-13,2-14,

2-15,5-5
DUAL REGISTER INSTR TYPE 3-8,3-47
DUAL RELATIVE INSTR TYPE 3-11
DUMMY ORIGIN DIREC (DORG) 5-4
EDIT §-20 ,5-21
EJECT PAGE DIREC (PAGE) 5-15
ELLIPSES 2-7
EVEN BOUNDARY OIREC (EVEN) 5-6
EXCHANGE W/B REGISTER

INSTR (XCHB) 3-73,4-7
EXCLUSIVE OR INSTR (XOR) 3-74
EXCLUSIVE OR PERIPHERAL FILE

REGISTER INSTR (XORP) 3-75
EXTENDED ADDRESS INSTR TYPE 3-13
EXTENDED ADDRESSING MODES 3-1,3-5,

3-23, 4-8
EXTERNAL REFERENCE

DIRECTIVE (REF) . 5-19
EXTERNAL REFERENCES

IN OBJECT CODE . 7-13
EXTERNALLY DEFINED SYMBOLS

IN EXPRESSIONS 2-15
FLAGS 3-26 , 3-64
FORCE LOAD DIREC (LOAD) 5-20
GENERAL PROGRAMMING INF 1-1,2-1
GUIDELINES, LINKING 6-1
HEXADECIMAL INTEGER

CONSTANTS 2°9,2-10
HOLLERITH CODES . . A-l
I/O INSTRUCTIONS . 2-2,2-6,3-9
I/O LOGICAL INSTRUCTIONS

(XORP/ANDP/OPR/BJOP/BTJZP) 4-11
1/0 MOVE INSTRUCTION (MOVP) 4-8
IDLE UNTIL INTERRUPT

INSTR (IDLE) 3-39
IMMEDIATE ADDRESSING 3-3,3-4
IMPLIED OPERAND TYPE INSTR 3-13
INCREMENT INSTR (INC) 3-40
INCREMENTING INSTR

(INC/DAC/ADC) . . 4-1
INDEXING 4-1 ,4-2,

4-9

T-2

INITIALIZE BYTE
DIRECTIVE (BYTE) . 5-16

INITIALIZE TEXT
DIRECTIVE (TEXT) . 5-17

INITIALIZE WORD
DIRECTIVE (DATA) . 5-17

INSTRUCTION DESCRIPTIONS 3-1,
3-14, 4-1

INSTRUCTION TYPES. . 171,3-6,
3-10,3-11,
3°-12,3-14

INTEGERS 2-9 ,3-15,
3-27

INVERT INSTR (INV) . 3-41
ITEMS IN EXPRESSIONS 2-15
JUMP IF CARRY —

INSTRUCTION (JC). . 3-43,3-44
JUMP IS SEQUAL

INSTRUCTION (JEQ) . 3-43-3-44
JUMP IF GREATER THAN OR

EQUAL INSTR (JGE) . 3-43,3-44
JUMP IF GREATER THAN

INSTRUCTION (JGT) . 3-43,3-44
JUMP IF HIGHER/SAME

INSTRUCTION (JL). . 3-43,3-44
JUMP IF LESS THAN

INSTRUCTION (JL). . 3-43,3-44
JUMP IF LOWER

INSTRUCTION (JL). . 3-43,3-44
JUMP IF NEGATIVE

INSTRUCTION (JN). . 3-43,3-44
JUMP IF NO CARRY

INSTRUCTION (JNC) . 3-43,3-44
JUMP IF NOT EQUAL

INSTRUCTION (JNE) . 3-43,3-44
JUMP IF NON-ZERO

INSTRUCTION (JNZ) . 3-43,3-44
JUMP IF POSITIVE (JP) 3-43,3-44
JUMP IF POSITIVE/ZERO

INSTRUCTION (JPZ) . 3-43,3-44
JUMP ON CONDITION INSTR (J)3-43
JUMP UNCONDITIONAL

INSTRUCTION (JMP) . 3-42
KEYWORDS 8-10
LABELS 5-4,5-5,

5-24 8-22,
8-24

LIBRARIES 5-23 ,8-2,
8-3

LIBRARY §-22,5-23,
6-2,6-4,

8-1,8-2 ,8-3
LIMITS 2-12,2-15

3-8, 3-10

LINKER

LINKING PROGRAM MODULES 6-2
LISTING, ASSEMBLER. 7-1
LOAD A REGISTER INSTR (LDA) 3-45
LOAD AND MOVE INSTR 2-2,2-4
LOAD AND STORE INSTRUCTIONS

(LDA/STA/DUNZ). . 4-8
LOAD STACK POINTER

INSTRUCTION (LDS) 3-46
LOGICAL INSTRUCTIONS 2-2,2-5,

4-10 4-11
LOOPING 3-5,3-36,

| 4-9
MACRO ASSEMBLER . . 5-1,8-1,

8-3 ,8-5,
8-6 ,8-16,
8-20 ,8-24

MACRO ASSEMBLER LANGUAGE 8-1
MACRO ERROR MESSAGES 8-24
MACRO EXAMPLES 8-20
MACRO FACT 8-22,8-23
MACRO GENCMT 8-22
MACRO ID 8-20 8-21,

8-22
MACRO LANGUAGE ELEMENTS 8-5
MACRO PULSE... . 8-23
MACRO SYMBOL TABLE 8-6 ,8-7
MESSAGES 4-15,7-1,

7-2,7-5,
7-6 ,8-24

MISCELLANEOUS DIRECTIVES 5-1,5-22
MNEMONICS 2-1,3-43,

§-2,5-13
MODEL STATEMENTS 8-3,8-5,

8-6 ,8-9,
8-19,8-20,
8-24

MOVE DOUBLE INSTR (MOVD) 3-48
MOVE INSTR (MOV) 3-47
MOVE TO/FROM PERIPH FILE

INSTR (MOVP). . . 3-49
MULTIPLICATION 2-13,2-14,

2-15
MULTIPLY INSTR (MPY) 3-50,4-5
NIBBLES 3-68
NO OPERATION INSTR (NOP) 3-52
NORMAL COMPLETION ERROR

MESSAGES 7-2
NULL . 2... 2... 8-9 8-11,

8-13
OPCODES 2-8 3-14,

7-5 ,8-2
OPERAND ADDRESSING MODES 3-1,3-6,

I-3

OPTIONS
OR INSTR (OR) . .
OR PERIPHERAL FILE

REGISTER INSTR (ORP)3-54,3-75
ORGANIZATION . . 3-1
OSCILLATOR .. . 3-39
OUTPUT OPTIONS

DIRECTIVE (OPTION) 5-13
OVERFLOW . 2713,3-5
OVERLAY 5-3
OVERRIDES... . 5-13
PAGE TITLE DIR (TITL) 5-14
PARAMETER ATTRIBUTE

KEYWORDS .. . 8-11,8-12
PARENTHESIS IN EXPRESSIONS 2-13
PATHNAMES 5-23
PCODE 4-15
PERIODS 8-20
PERIPHERAL FILE ADDRESSING 3-3
PERIPHERAL FILE INSTR TYPE 3-9
PERIPHERAL RELATIVE

INSTRUCTION TYPE 3-12
POP FROM STACK. .

INSTRUCTION (POP) 3-55
PREDEFINED SYMBOLS 2-11
PROGRAM COUNTER

RELATIVE ADDRESSING 3-4,3-5
PROGRAM END DIR (END) 5-22
PROGRAM IDENTIFIER

DIRECTIVE (IDT). 5-13,6-3
PROGRAM LINKING. . 6-1
PROGRAM SEGMENT

DIRECTIVE (PSEG) 5-11
PROGRAM SEGMENT END

DIRECTIVE (PEND) 5-12
PUNCTUATION .. . 8-20
PUSH ON STACK

INSTRUCTION (PUSH) 3-56
QUALIFIERS 8-8,8-9,

8-10,8-17,
8-24

RAM 4-15, 4-17,
5-7

RANGE 2-9,2-11,
3-4,3-5,
4-8 4-9,
4-15,7-3

REASSEMBLING . . 7-14,7-15
REGISTER FILE ADDRESSING 3-2
REGISTER FILE

INDIRECT ADDRESSING 3-5,3-6
REGISTER LOGICAL INSTRUCTIONS

CINV/XOR/OR/AND) 4-10
REGISTER MOVE INSTRUCTIONS

(MOV/XCHB/MOVD) 4-7

RELATIVE ADDRESS
INSTRUCTION TYPES 3-10

RELOCATABLE ORIGIN
DIREC (RORG). . . 5-3

RELOCATABLE SYMBOLS
IN EXPRESSIONS. . 2-14

RELOCATION CAPABILITY 6-1
RESTART... ... §-13,5-15
RESTART SOURCE LISTING

DIRECTIVE (LIST) 5-15
RETURN FROM INTERRUPT

INSTR (RETI). . . 3-57
REVERSING 3-75
ROTATE LEFT INSTR (RL) 3-59
ROTATE LEFT THROUGH

CARRY INSTR (RLC) 3-60
ROTATE RIGHT INSTR (RR) 3-61
ROTATE RIGHT THROUGH

CARRY INSTR (RRC) 2-6,3-62
ROTATE/SHIFT INSTRUCTIONS 2-5
SAMPLE MACROS... 8-3
SEARCHING 4-6
SECONDARY EXTERNAL

REFERENCE DIR (SREF).
SET CARRY INSTR (SETC)
SIMPLE RELATIVE ADDRESS

INSTRUCTION TYPE 3-11
SINGLE REGISTER INSTR TYPE 3-7
SINGLE RELATIVE ADDRESS

5-20
3-64

INSTRUCTION TYPE. 3-11
SLASH IN END-OF-FILE

STATEMENT 2-7
SOURCE LISTING §-13 5-14,

§-15,5-16,
7-1,7-6

SOURCE STATEMENT FORMAT 2-6,2-8
SPECIAL ADDRESS

TYPE INSTRUCTIONS 3-14
SPECIAL ADDRESSING MODES 3-1,3-2
STOP SOURCE LISTING
DIRECTIVE (UNL) . 5-15

STORE STACK POINTER
INSTRUCTION (STSP) 3-66

SUBROUTINE INSTR
(CALL/TRAP/RETS). 4-13

SUBROUTINES 2°1,3-°55,
3°56 , 4-13

SUBSECTIONS 3-11
SUBTRACT INSTR (SUB) 3-67
SUBTRACT W/BORROW

INSTRUCTION (SBB) 3-63
SUBTRACTION

INSTRUCTION (SUB/SBB)
SWAP NIBBLES

INSTRUCTION (SWAP) 3-68

4-4

SYMBOL ATTRIBUTE
COMPONENT KEYWORDS 8-11

SYMBOLIC ADDRESSING
TECHNIQUES . . . 5-24

SYNONYMS 5-23
TAG 2... 21... 7-7,7-8,

7-9,7-10,
7-11,7-13,
7-14,7-15

TEST A REGISTER
INSTRUCTION (TSTA) 3-71

TEST B REGISTER
INSTRUCTION (TSTB) 3-72

TMS INSTRUCTION SET 4-1
TRAP TO SUBROUTINE

INSTRUCTION (TRAP) 3-69
USER APPLICATION NOTES 4-1
VARIABLE QUALIFIERS 8-8,8-10,

8-24
VECTOR. 3-69 , 4-6,

4-13 ,4-14,
4-18 , 8-7
8-1,8-5,
8-12,8-19
2-8 ,8-22

WIRING. 8-7
1-1,4-11,
7-10,7-15
8-8 ,8-9,
8-15 8-16,
8-17 ,8-18,
8-22 ,8-23
8-3 ,8-4,
8-19 8-21,
8-21 ,8-23
8-6 ,8-11,
8-13 ,8-18,
8-19 ,8-21,
8-23 ,8-24
8-1 ,8-3,
8-4 ,8-6,
8-7 ,8-12,
8-15,8-17,
8-21 ,8-22,
8-23
8-15 8-17,
8-22

	alpg_00_0001
	alpg_00_0002
	alpg_00_0003
	alpg_00_0004
	alpg_00_0005
	alpg_00_0006
	alpg_00_0007
	alpg_00_0008
	alpg_00_0009
	alpg_00_0010
	alpg_00_0011
	alpg_00_0012
	alpg_01_0001
	alpg_01_0002
	alpg_01_0003
	alpg_01_0004
	alpg_02_0001
	alpg_02_0002
	alpg_02_0003
	alpg_02_0004
	alpg_02_0005
	alpg_02_0006
	alpg_02_0007
	alpg_02_0008
	alpg_02_0009
	alpg_02_0010
	alpg_02_0011
	alpg_02_0012
	alpg_02_0013
	alpg_02_0014
	alpg_02_0015
	alpg_02_0016
	alpg_03_0001
	alpg_03_0002
	alpg_03_0003
	alpg_03_0004
	alpg_03_0005
	alpg_03_0006
	alpg_03_0007
	alpg_03_0008
	alpg_03_0009
	alpg_03_0010
	alpg_03_0011
	alpg_03_0012
	alpg_03_0013
	alpg_03_0014
	alpg_03_0015
	alpg_03_0016
	alpg_03_0017
	alpg_03_0018
	alpg_03_0019
	alpg_03_0020
	alpg_03_0021
	alpg_03_0022
	alpg_03_0023
	alpg_03_0024
	alpg_03_0025
	alpg_03_0026
	alpg_03_0027
	alpg_03_0028
	alpg_03_0029
	alpg_03_0030
	alpg_03_0031
	alpg_03_0032
	alpg_03_0033
	alpg_03_0034
	alpg_03_0035
	alpg_03_0036
	alpg_03_0037
	alpg_03_0038
	alpg_03_0039
	alpg_03_0040
	alpg_03_0041
	alpg_03_0042
	alpg_03_0043
	alpg_03_0044
	alpg_03_0045
	alpg_03_0046
	alpg_03_0047
	alpg_03_0048
	alpg_03_0049
	alpg_03_0050
	alpg_03_0051
	alpg_03_0052
	alpg_03_0053
	alpg_03_0054
	alpg_03_0055
	alpg_03_0056
	alpg_03_0057
	alpg_03_0058
	alpg_03_0059
	alpg_03_0060
	alpg_03_0061
	alpg_03_0062
	alpg_03_0063
	alpg_03_0064
	alpg_03_0065
	alpg_03_0066
	alpg_03_0067
	alpg_03_0068
	alpg_03_0069
	alpg_03_0070
	alpg_03_0071
	alpg_03_0072
	alpg_03_0073
	alpg_03_0074
	alpg_03_0075
	alpg_03_0076
	alpg_04_0001
	alpg_04_0002
	alpg_04_0003
	alpg_04_0004
	alpg_04_0005
	alpg_04_0006
	alpg_04_0007
	alpg_04_0008
	alpg_04_0009
	alpg_04_0010
	alpg_04_0011
	alpg_04_0012
	alpg_04_0013
	alpg_04_0014
	alpg_04_0015
	alpg_04_0016
	alpg_04_0017
	alpg_04_0018
	alpg_05_0001
	alpg_05_0002
	alpg_05_0003
	alpg_05_0004
	alpg_05_0005
	alpg_05_0006
	alpg_05_0007
	alpg_05_0008
	alpg_05_0009
	alpg_05_0010
	alpg_05_0011
	alpg_05_0012
	alpg_05_0013
	alpg_05_0014
	alpg_05_0015
	alpg_05_0016
	alpg_05_0017
	alpg_05_0018
	alpg_05_0019
	alpg_05_0020
	alpg_05_0021
	alpg_05_0022
	alpg_05_0023
	alpg_05_0024
	alpg_06_0001
	alpg_06_0002
	alpg_06_0003
	alpg_06_0004
	alpg_07_0001
	alpg_07_0002
	alpg_07_0003
	alpg_07_0004
	alpg_07_0005
	alpg_07_0006
	alpg_07_0007
	alpg_07_0008
	alpg_07_0009
	alpg_07_0010
	alpg_07_0011
	alpg_07_0012
	alpg_07_0013
	alpg_07_0014
	alpg_07_0015
	alpg_07_0016
	alpg_08_0001
	alpg_08_0002
	alpg_08_0003
	alpg_08_0004
	alpg_08_0005
	alpg_08_0006
	alpg_08_0007
	alpg_08_0008
	alpg_08_0009
	alpg_08_0010
	alpg_08_0011
	alpg_08_0012
	alpg_08_0013
	alpg_08_0014
	alpg_08_0015
	alpg_08_0016
	alpg_08_0017
	alpg_08_0018
	alpg_08_0019
	alpg_08_0020
	alpg_08_0021
	alpg_08_0022
	alpg_08_0023
	alpg_08_0024
	alpg_A_0001
	alpg_A_0002
	alpg_A_0003
	alpg_A_0004
	alpg_A_0005
	alpg_A_0006
	alpg_B_0001
	alpg_B_0002
	alpg_B_0003
	alpg_B_0004
	alpg_C_0001
	alpg_C_0002
	alpg_D_0001
	alpg_D_0002
	alpg_E_0001
	alpg_E_0002
	alpg_I_0001
	alpg_I_0002
	alpg_I_0003
	alpg_I_0004

