

Unless otherwise noted, this publication, or parts thereof, may not be
reproduced in any form by photographic, electrostatic, mechanical, or

any other method, for any use, including information storage and
retrieval.

For condition of use and permission to use materials contained herein
for publication, apply to Texas Instruments Incorporated.

For permissions and other rights under this copyright, please contact

Texas Instruments, 8600 Commerce Park, M-S 6404, Houston, Texas,
77036.

*Copyright 1980 Texas Instruments Incorporated. All rights reserved.

PREFACE

The following Texas Instruments” publications were used in the
development of this application report and present additional
information relative to process management in the Microprocessor
Pascal System. These publications may be ordered from a TI Sales
Office or authorized distribution. A complete 1listing of TI Sales

Offices and Distributors 1is provided in the last section of this
document.

e The Microprocessor Pascal System User’s Manual, MP351

® Software Develbpment Handbook, MPA29

TABLE OF CONTENTS

! U . I NTRODUCTI ON L L] L] . L] L] L] L] . L] L] . * L] L] L] L] L] . L] . . L] L] L] L) 1
I I . SCHEDUL ING . Ld L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L) L] L) . L L] L] 3
ITI. PROCESS SYNCHRONIZATION . « ©« o « o o o o o o o o o o o o o o o« 6

IVQ CONCLUSION L4 L L) L] L] L L L] L] L L] L] L) L] L] L) L . . b. L) L] L] L] L] L] Qll

LIST OF ILLUSTRATIONS

Figure 1. Scheduling PoliCy. « « ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o o ¢ o o o o o 4

M

Figure 2. SWAP ProcedUre . . « o o o s o s o o o o o o o o o o o o«

Figure 3. Example of Process Synchronization . . « « . « ¢« « « « . . 8

‘. '

6

iii

INTRODUCTION

!ghe Microprocessor Pascal System is a complete Pascal development

ystem designed for target execution on a wide spectrum of Texas

Instruments” microcomputer-based products; from a 9900 microprocessor
chip set to TM990 microcomputer modules to 990 minicomputers.
Microprocessor PASCAL is a superset of Wwirth”“s Pascal language
offering its users such language extensions as concurrent task
execution, expanded input/output capability, and library utilities for
microprocessor applications.

The features of Microprocessor Pascal supporting concurrent
programming provide greater programming efficiency through improved
utilization of the processor. In conventional programming languages,
execution proceeds sequentially from instruction to instruction with
branches to and from subroutines as program logic dictates. Action
takes place within one site of execution or program within the
run-time environment. 1In the Microprocessor Pascal environment,
multiple sites of executions exist as separate "processes”. Action
moves from process to process as CPU time is shared on a priority

@Qasis.

|

The execution of several processes in a single system is termed
"multiprogramming” (also called multitasking). Multiprogramming proves
extremely useful in the development of process control applications
that deal to a large degree with asynchronous occurrences of events.
Each independent asynchronous activity can be. managed by a separate
software module (process). This one-to-one correspondence between
oxternal activities and software processes facilitates a modular
approach to system development that greatly enhances problem

identification, application design, problem resolution, and solution
reliability.

Each process in the Microprocessor Pascal run-time environment is in
one of two states:

1) ready to execute (This "ready" state includes active
processes or the process that is currently executing.)

~ 2) suspended (blocked) and waiting for a condition in the

@

system to change (an event to occur) before it can
become ready to execute.

Processes that are ready to execute reside in a ready Queue. A
priority scheduling policy is used to order processes as they are
placed in queue. The most urgent process is placed first and -is the
active process. The last process in the gqueue 1is the IDLE process
which is activated when no other process is in the ready state. This
scheduling policy switches the attention of the processor from one

FEGHUY PLULESS TO the next. This switching is transparent to the user
and results in an interleaving of process execution; all active
Pprocesses appear to execute concurrently.

Processes that are suspended, waiting for an event to occur, must be
notified when that event has taken Place. The Executive Run-Time
Support uses semaphores for that purpose. A semaphore can be
envisioned as representing some event on which pProcesses synchronize.
Use of a semaphore can be loosely compared to the role of a signalman
in a traffic situation. The signalman waves a flag (performs a signal)
when its clear for a car to proceed. A car waits for the signalman to
wave his flag (performs a wait) before proceeding. In the above
example, synchronization is based on the waving of a flag (event);
this synchronization provides for the sharing of a common resource
(i.e., the road). The scenario is now changed as follows: The
signalman periodically waves his flag regardless of whether or not a
car is waiting to proceed. Also, a counter Kkeeps track of each
occurrence of flag waving when there is no car to receive the signal.
As a car approaches, it checks the counter. If the counter indicates
that the signal was given, it Proceeds. With the above modification,
our example more closely resembles the action of a semaphore in the
Microprocessor Pascal Environment. .

The information presented above briefly introduces tools used by the
Executive Run Time Support to manage processes in the Microprocessor
Pascal Environment. 1In the following sections, the scheduling of the
processor and process synchronization are discussed in more detail.

SCHEDULING POLICY

The Executive Run-Time Support (RTS) scheduling policy determines the
assignment of the processor to one of several ready processes. Ready

processes are inserted in the ready Qqueue and scheduled for execution
according to priority.

A process” priority is represented by a user-assigned numeric value.
The greatest urgency is represented by 0; the least by 32766, which is
reserved for the IDLE process. (IDLE is active only when all other
processes in the system are checked.) Integer values up to 15 indicate
device processes associated with interrupts. (Interrupts can occur due
to a change in some "real world" condition or because they are
programmed to occur to prevent a process from executing longer than
its time slice. Interrupt handlers are usually time-critical and
demand immediate execution.) Integer values greater than 15 represent
non-device processes.

A scheduling decision is made by the Executive RTS each time a
suspended process becomes ready and a ready process terminates or
becomes suspended. .(An explanation of process readiness follows this
discussion of scheduling.) When the active process (at the top of the
queue) terminates execution (or becomes suspended) the next process in
the gqueue becomes the active process. Because the ready queue is
ordered by priority, the most urgent process that is ready 1is given
the processor. When a suspended process becomes ready, it is inserted
in the ready queue based on its priority. The newly ready process
preempts the currently active process (i.e., is placed in front of it
in the ready queue) if it is more urgent. Non-device processes that
become ready are placed in queue behind processes of equwal priority.
(When two processes have equal priority., the process that has been
ready the longest executes first.) Device processes are placed in
front of other processes of equal priority including the active
process. Figure 1 illustrates the working of this scheduling policy.

TIME ACTIVE COMMENTS

o @ [Aa:6e] ['s:i18] [cioE]) A is active

™ ‘ | A:18 i | o:1e | | B:18 | l C:IDLE 1 . D becomes ready; is insarted
in the ready queue ’

T2 D:16 B:18 C:IDLE A blocks and is suspended;

s ™ =1 =] A bkt

@ | e8] [o:e] | 8:18 | [ciibe] E (a device process) is inserted
in the ready queue and pre-
empts D,

T4 @ | F:8 E:8 D:16 B:18 C:IDLE F (a device process with

a priority equal to E’s) pre-
empts E and becomes active

s @ | e8| [p:16] | B:18 | | c:ioe] F blocks and is suspended;
E becomes active

.18 j I C: IDLE] E blocks and is suspended;
A becomes ready ‘
D is the active process

T6 I | o:1s6] | a:16 1 |

4

FIGURE 1 -~ SCHEDULING POLICY

In Fiqure 1 above, the ready queue is represented as a horizontal
series of boxes. Each process (box) is labeled with a letter and a
Priority number. The first box in the ready queue is the active
process. Time moves vertically from top to bottom. Comments to the
right of each queue describe the action performed.

The execution of the RTS scheduling policy displayed in Figure 1
results in process "B" never becoming active. In fact, B will never
become active unless all other processes in queue with greater urgency
become blocked or terminate execution. A process of higher urgency
that becomes ready will always interrupt the (currently) active
Process. Once the more urgent process terminates (or becomes blocked)
the previously active process will resume execution (unless. another
higher priority process becomes ready) . This "preemptive scheduling
with resumption" is designed for event-driven systems in which the
event is some real-world occurrence that demands the immediate

attention of the computer. (Texas Instruments” Software Development
Handbook discusses system design for monitoring and controlling
"real-world" actions).

An RTS utility is available to swap non-device processes (with
priority values greater than 15) in the ready queue. This "swap
procedure” removes the first non-device process from +the queue and
inserts it behind the last process with the same priority. Figure 2
illustrates this.

TIME ACTIVE COMMENTS
To | A:2 B:25 C:26 D: IDLE A call’s SWAP
T | A:2} [Jc:25] la:zsl Queue status after
SWAP

FIGURE 2 — SWAP PROCEDURE

A use of SWAP is to implement time slicing. SWAP is called to force a
non-device process that is active to relinquish the processor. This
swapping of the active process prevents it from running 1longer than
its user specified execution time (time slice).

Up to this point, the discussion has been concerned with the
management of processes that are ready for execution. Processes become
suspended or blocked because of a condition in the system. When
_another process signals that the condition has changed, the waiting
process can become ready. The mechanics of this process
synchronization are described in the next section.

PROCESS SYNCHRONIZATION

The semaphore is a Microprocessor Pascal language construct that is
the fundamental mechanism for synchronization of processes via the
Executive RTS, and can be thought of as representing some event on
which processes synchronize. A process that is dependent on the
occurence of an event can perform a WAIT to ensure that the event has
occured before continuing execution. If the event has already
occurred, the process executes; if not, it is suspended in that
semaphore”s queue until the event does occur. A SIGNAL operation
performed on the associated semaphore allows a process to signal the
occurence of an event. If some process is waiting for the event, it is
made ready for execution; the process is removed from that semaphore”’s
WAIT queue and inserted into the .ready queue. If no process is
waiting, the occurence of the event is recorded in the semaphore until
a WAIT operation occurs for that event. (In both of these cases, the
process that called SIGNAL remains in the active state.) The
semaphores of the Executive RTS can be thought of as "counting”
semaphores in that an occurence of an event is never lost, even if no
process 1is waiting when the event occurs; a count is kept in the
semaphore of all events that occurred (by SIGNAL) but were not
received (by WAIT).

Microprocessor Pascal predefines semaphores as structures composed of
two elements:

3 . '
1) A non-negative counter of unserviced events, and

2) A queue (possibly empty) of suspended processes. 1In
this queue, processes are made ready on a first-in
first-out (FIFO) basis. '

A ‘semaphore is operated on by two primitive operations, WAIT and
SIGNAL. These operations are implemented as routines, but are executed
as though they were single machine instructions. Until these

operations have completed, nothing must access the semaphore, the

queues, or the operations themselves. This 1is assured when the

interrupt mask is set to zero upon entry to the routines, and reset to
its previous state upon exit.

WAIT decrements the counter if it is non-zero; or if it is zero,
suspends the currently active process (the process is moved from the
ready queue to the semaphore queue). SIGNAL increments the counter if
the semaphore queue is empty; or if it is not empty, activates the
first process in the queue (which will always be the process that has
been in the queue the longest). This activation consists of moving the

¢

first process from the semaphore queue to the ready queue.

When semaphores are used to ensure exclusive access to two or more
resources, extreme caution must be exercised to prevent a condition
known as “"deadlock". This takes place when a situation is created in
which two or more processes are suspended, awaiting a condition that
cannot happen because there is no active process to cause the needed
event to occur. ;

For example, if two simultaneously eXecuting processes (A and B) both
require exclusive access to resources (X and Y), the following
sequence will result:

A gets X .. A requests Y
B gets Y .. B requests X

In the above example, neither A nor B will ever resume execution, as A
will be waiting for Y (which B has) and B will be waiting for X (which
A has). To prevert a situation such as this, either and/or both
processes must check the availability of succeeding resources and, if
unavailable, release those already acquired.

The 1listing on the following Page 1is an example of process
synchronization at work. This procedure receives a message from a
mailbox and removes it from the queue. "M" is a pointer that (upon
return from RCVMSG) points to the received message, and ADDRESSEE is a
pointer to the mailbox from which the messagde is to be received. If no
messages exist at call time, the process is suspended until a message
is entered into the mailbox queue (via SNDMSG) .

DX Microprocessor Pascal System Compiler 1.0 10/13/79 11:23:05 PA

0 (* MAP, DEBUG *)

0

0 PROGRAM MAILBOXES; {
0

0 CONST

0 MSGSIZ = 80;

0

0 TYPE

MSGPTR
MBPTR

@MSG;
@MAILBOX;

MSG RECORD
NEXTMSG : MSGPTR;
RESPONSE : SEMAPHORE;

0

0

0

0

0

0 .
g MSGSIZE : INTEGER;
0

0

0

0

CMD : (R, W)
MSGTEXT : PACKED ARRAY (.1..MSGSIZ.) OF CHAR;
END;

MAILBOX = RECORD
MAILPRESENT, MUTEX : SEMAPHORE;

o MSGHEAD, MSGTAIL : MSGPTR;
END;
PROCEDURE SIGNAL (S : SEMAPHORE) ; EXTERNAL;
PROCEDURE WAIT (S : SEMAPHORE); EXTERNAL:;
PROCEDURE INITSEMAPHORE (VAR S : SEMAPHORE ; VALUE : INTEGER);
EXTERNAL; d ‘
PROCEDURE TERMSEMAPHORE (VAR S : SEMAPHORE) ; EXTERNAL;
PROCEDURE SNDMSG (M : MSGPTR ; ADDRESSEE : MBPTR); FORWARD;
PROCEDURE RCVMSG (VAR M : MSGPTR ; ADDRESSEE : MBPTR); FORWAR
PROCEDURE DELMSG (M : MSGPTR ; ADDRESSEE : MBPTR); FORWARD;
PROCEDURE SNDMSG (* M : MSGPTR ; ADDRESSEE : MSPTR *);
(*- - e e e o o e e e e
PURPOSE:
ENTER A MESSAGE INTO A MAILBOX QUEUE.
M : POINTER TO THE MESSAGE.
-~ ADDRESSEE : POINTER TO THE MAILBOX.

PROCEDURES CALLED:
WAIT, SIGNAL.
QUTPUTS:
NONE.
EXCEPTIONS:
NONE.
HISTORY:
04/08/79: ORIGINAL.

BEGIN

WITH M@ DO BEGIN

NEXTMSG := NIL;

WITH ADDRESSEE@ DO BEGIN
WAIT (MUTEX);

0
0
0
0
0
0
0
4
0
2
0
0
0
0
4
4
4
4 INPUTS:
4
4
4
4
4
4
4
4
4
4
4
4
1l
1l
2
3
4

DX Microprocessor Pascal System Compiler 1.0 10/13/79 11:23:05 PA

B B B B B b B B B i D OWWOWOSIO Ui WA b b Db b b BB O

IF MSGHEAD <> NIL
THEN MSGTAIL@ .NEXTMSG := M
ELSE MSGHEAD := M;
MSGTAIL := M ;
SIGNAL (MAILPRESENT);
SIGNAL (MUTEX);
END; (* WITH ADDRESSEE@ *)
END; (* WITH M@ *)
END; (* SNDMSG *)

PROCEDURE RCVMSG (* VAR M : MSGPTR ; ADDRESSEE : MBPTR *);

PURPOSE: '
RECEIVE A MESSAGE FROM A MAILBOX AND REMOVE IT FROM THE QUEUE
INPUTS:
ADDRESSEE: POINTER TO THE MAILBOX FROM WHICH A MESSAGE IS
TO BE RECEIVED.
PROCEDURES CALLED:
WAIT, SIGNAL.
OUTPUTS:
M : A POINTER TO THE RECEIVED MESSAGE.
EXCEPTIONS:
THE PROCESS IS SUSPENDED UNTIL A MESSAGE IS ENTERED INTO THE
QUEUE IF NONE EXIST AT CALL TIME.
HISTORY:
04/08/79: ORIGINAL.

- e e ewn - e e e D D G SED GNP D GED D D = = D D D SED D EuD D = '

BEGIN
WITH ADDRESSEE@ DO BEGIN
WAIT (MAILPRESENT);
WAIT (MUTEX):
M := MSGHEAD;
IF MSGTAIL = MSGHEAD
THEN MSGTAIL := NIL;
MSGHEAD := M@.NEXTMSG:;
SIGNAL (MUTEX);
END; (* WITH ADDRESSEEQ *)
END; (* RCVMSG *)

PROCEDURE DELMSG (* M : MSGPTR ; ADDRESSEE : MBPTR *);
(* —— e ——————-

PURPOSE:
DELETE A MESSAGE FROM A MAILBOX QUEUE.
INPUTS: o
M POINTER TO THE MESSAGE TO BE DELETED.

ADDRESSEE : POINTER TO THE MAILBOX CONTAINING THE QUEUE
FROM WHICH THE MESSAGE IS TO BE DELETED.
PROCEDURES CALLED:
WAIT, SIGNAL.
OUTPUTS:
NONE.
EXCEPTIONS:
NONE.
HISTORY: .

DX Microprocessor Pascal System Compiler 1.0 10/13/79 11:23:05 PA
4 04/08/79: ORIGINAL.

e el ol o ad W
QNIO\O’\G\W.#WNO\OG)\'\I\IO\U'IU\#NNI—‘HQO\&#@IQ

VAR
LAST : MSGPTR;
FOUND : BOOLEAN;
BEGIN

FOUND := FALSE;

WITH ADDRESSEE@ DO BEGIN
WAIT (MUTEX);
IF MSGHEAD = M

THEN BEGIN
MSGHEAD := M@.NEXTMSG;
FOUND := TRUE;
END (* IF MSGHEAD THEN *)
ELSE BEGIN
LAST := MSGHEAD;
WHILE LAST <> NIL AND LAST@.NEXTMSG <> M
DO LAST := LAST@.NEXTMSG;
IF LAST<>NIL THEN BEGIN;
LASTR@.NEXTMSG := M@.NEXTMSG:;
FOUND := TRUE;
IF LAST@.NEXTMSG = NIL
THEN MSGTAIL := LAST; ,
END; (* IF LAST *);

END; (* IF MSGHEAD ELSE *) ‘
IF FOUND
THEN WAIT (MAILPRESENT);
SIGNAL (MUTEX)
19 END; (* WITH ADDRESSEE@ *)
19 END; (* DELMSG *)
19
1 BEGIN (* MAILBOXES *)

1 (* NULLBODY *)

1 END.

(* MAILBOXES ¥*)

10

"

CONCLUSION

The software tools discussed in this document provide interprocess
scheduling and coordination of system resources in the Executive
Run-Time Environment. While simple in terms of language constructs,
these tools provide a sophistication in capability that enables a
higher productivity in the real-time programming environment. Further
information on these and other components of the Microprocessor Pascal
System can be obtained in the Microprocessor Pascal System User”s
Guide and the T™S9900 Family Software Development Handbook.

11

