The Engineering Staff of . o
TEXAS INSTRUMENTS INCORPORATED []
Semiconductor Group ‘

“TM 990/100M
MICROCOMPUTER

- USER’S
GUIDE

AUGUST 1977

TEXAS lNSTRUM ENTS

OOOOOOOOOOOO

IMPORTANT NOTICES
Texas Instruments reserves the right to make changes at any time in
order to improve design and to supply the best product possible.

Tl cannot assume any responsibility for any circuits shown or
represent that they are free from patent infringement.

Copyright©1977
Texas Instruments Incorporated

TABLE OF CONTENTS

INTRODUCTION

1.1 General L 1-1
1.2 Manual Organization 1-1
1.3 Specifications L 1-4
1.4 Board Characteristics L .14
1.6 Glossary e 1-4
1.6 Applicable Documents, 1-8

INSTALLATION AND OPERATION

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.5
2.6

General L 2-1
Required Equipment L L, 2-1
Unpacking L 2-2
Power and Terminal Hookup 2-2
Power Supply Hookup 2-2
Terminal Hookup e e 2-2
Operation L e e 2-2
Sample Programs L 2-4

TIBUG INTERACTIVE DEBUG MONITOR

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.2.12
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.35
3.3.6
3.3.7
3.4

4.1
4.2
4.3
4.3.1
4.3.2

General . . . L L 31
TIBUG Commands o v v o e it e e e 31
Execute Under Breakpoint (B), 3-3
CRU Inspect/Change (C) 34
Dump Memory to Cassette/Paper Tape (D) v v v v v v e i e e st e 3-5
Execute Command (E) L, 37
Find Command (F) e 3-7
Hexadecimal Arithmetic (H) 3-8
Load Memory From Cassette or Paper Tape (L) 3-8
Memory Inspect/Change, Memory Dump (M) 39
Inspect/Change User WP, PC, and ST Registers (R) 3-10
Execute in Step Mode (S) e e e e 3-11
TI733ASR Baud Rate (T) v ot e e e e e e e 3-11
Inspect/Change User Workspace (W) e e e e e e e e 3-12
User Accessible Utilities o e e e e e e e e e 3-13
Write One Hexadecimal Character to Terminal (XOP8) 3-13
Read Hexadecimal Word FromTerminal (XOP9) 3-14
Write Four Hexadecimal Characters to Terminal (XOP10) 3-14
Echo Character (XOP 11) e e e e e e e e 3-15
Write One Character to Terminal (XOP 12) 3-15
Read One Character from Terminal (XOP 13) 3-15
Write Message to Terminal (XOP 14) 3-15
TIBUG Error Messages o o v v v vt e e e e e e e e e e e e e 3-16
PROGRAMMING THE TM 990/100M
General . . . L L e e e e e e 4-1
User Memory o o e e e e e e e e e e e e e e e e e 4-1
Hardware Registers o o i i e e e e e e e 4-1
Program Counter L e e e e e 4-2
Workspace Pointer L L e e e e e e e e 4-2

43.3
4.4
4.5
45.1
4.5.2
45.3
454
4.5.5
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.7
4.8
4.9
4.9.1
4.9.2
4.10
4.10.1
4.10.2
4.1

TABLE OF CONTENTS (Continued)

Status Register e e e e e e e e e e e e e 4-2
Software Registers L L L e e e e e e e e e e e 4-4
Instruction Formats and Addressing Modes L L L L e oo 4-7
Direct Register Addressing e e e e e e 4-8
Indirect Register Addressing L L e e e e e e e e 4-8
Indirect Register Autoincrement Addressing e 4-11
Symbolic Memory Addressing, Not Indexed o 0. 4-11
Symbolic Memory Addressing, Indexed Lo Lo 4-11
INSErUCLIONS . . v & o i e 4-14
Format T INstructions 0 v e i e i e e e e e e e e e e e e e e e e e 4-18
Format 2 Instructions i e e e e e e e e e e e e 4-19
Format 3InStructions o i i e e e e e e e e e e e e e e e e e e 4-22
Format 4 Instructions i i e e e e e e e e e e e e e e e e e e 4-23
Format B Instructions i i e e e e e e e e e e e e e e e 4-24
Format 6 Instructions i i e e e e e e e e e e e e e e e e e 4-26
Format 7 INStructions o i i e e e e e e e e e e e e e e e e 4-28
Format 8 INStructions« . o v i i e e e e e e e e e e e e e e 4-30
Format 9 Instructions & . e e e e e e e e e e e e e e e e e 4-32
CRUAddressing i i S T 4-34
Comparison of Jumps, Branches, XOP’s 0 o e 4-36
INTEITUPTS . . . i o e 4-36
Interrupt Operation, e e e e e e e e e e e e e 4-36
Programmable Interrupts L L L e e e e e e e e 4-37
Programming the Interval Timers o . 0 oo e 4-39
TMS 9901 Interval Timer o o o e e e e e e e e e e e e e e e e e 4-39
TMS 9902 Interval Timer o i e e e e e e e e e 4-40
Context Switch to Another Program suchasMonitor 4-43

THEORY OF OPERATION

5.1 General . . . L L e 5-1
b.2 System Clock e e e e e e e e e e 5-1
5.3 Central Processing Unit 0 0 0 i e e e e e e e e e e e 5-1
5.4 RESET and LOAD o ot e e e e e e e e e e e e e e e e 5-3
5.5 Memory I/O Decoder i e e e e e e e e e e e 5-7
5.6 Random Access Memory o o o i i e e e e e e e e e e e e e e e e e 5-7
5.7 Read Only Memory o i i e e e e e e e e e e e e e e e e e 5-7
5.8 Offboard Expansion Buffers e e b-8
5.9 TMS 9901 Parallel 1/O, Interrupts« o e e e e e e e e e e e e 5-8
5.10 TMS 9902 Serial 1/O Interface« . o i e e e e e e e e e e 5-15
5.1 Serial /O Interface e e e e e e e e e e e 5-15
5.12 WireWrap Area . . .« v v o e 5-15
5.13 Multidrop Interface L e e e e e e e e e e e 5-15
APPLICATIONS

6.1 General e e e e e e e e e e e e e e e e e e 6-1
6.2 Wire-Wrap Additional On-Card TMS 9901 o i i i i 6-1
6.3 Parallel 1/O Port Circuitry o o e e e e e e e e e e e e e e e e e 6-1
6.4 Off-Card Additional Random Access Memory L0 e e e e 6-1
6.5 Add Off-Card TMS 9901 o o o e e e e e e e e e e e 6-1
6.6 On-Board Communications Interrupt e e e e e e e e e o8B

TABLE OF CONTENTS (Concluded)

7. OPTIONS
7.1 General L 7-1
7.2 On-Board Memory EXpansion e, 7-1
7.2.1 EPROM Expansion i it i 7-1
7.2.2 RAM Expansion L 7-1
7.3 Asynchronous Serial Communication oL 7-1
7.4 RS-232-C and Teletypewriter Interfaces o v v 7-4
7.5 External System Reset e e e 7-4
7.6 Memory Map Change 7-4
7.7 Line-By-Line Assembler e e 7-6
7.8 TM 990/301 Microterminal e e 7-6
7.9 OEM Chassis @ . o e e e e e 7-6
7.10 Interrupt from TMS 9902 e e e 7-6

APPENDICES

A WIRING TELETYPE MODEL 3320/SJE FOR TM 990/100M
B EIA RS-232-C CABLING
C ASCII CODE
D BINARY, DECIMAL, AND HEXADECIMAL NUMBERING
E PARTS LIST
F SCHEMATICS
G 990 OBJECT CODE FORMAT
H P1, P2, AND P4 PIN ASSIGNMENTS
I TM 990/301 MICROTERMINAL

Figure 1-1
Figure 1-2
Figure 1-3

Figure 2-1
Figure 2-2

Figure 3-1
Figure 3-2
Figure 3-3

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8

LIST OF ILLUSTRATIONS

TM 990/100M Microcomputer PC Board i e e 1-2
Principal TM 990/100M Components v o v v v v v i e e e e e e e 1-3
TM 990/100M Board DIimensions v v v v v i e e e e e e e 1-5
Power Supply Hookup e, 2-3
743 KSR Terminal Hookup e e 2-4
Memory Requirements for TIBUG« o 0 i e e e e e e e e e e 3-2
733 ASR Upper Switch Panel e e e e e e e e 3-6
Tap Tabs o e e e e e e e e e e e e 3-6
Memory Map e e e e 4-2
Status Register L. e e e e e e e e e e e 4-3
Workspace Example L e e e e e e 4-6
TM 990/100M Instruction Formats. o . v v v v i e e e e e e 47
Direct Register Addressing Example L 4-9
Indirect Register Addressing Example oo 4-10
Indirect Register Autoincrement Addressing Example 4-10
Direct Memory Addressing Exampleo oo 4-12

Figure 4-9

Figure 4-10
Figure 4-11
Figure 4-12
Figuve 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure b-b
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7

Figure A-1
Figure A-2

Figure B-1

LIST OF ILLUSTRATIONS (Continued)

Direct Memory Addressing, Indexed, Example L L. 413
BLWP Example e 4-29
XOP Example o e e e e e e e e e e 4-33
LDCR Byte Instruction e e e e e e e e e e e e e e e e 4-35
STCR Word Instruction e e e e e e e e e e e e e e e 4-36
Interrupt Trap Locations L L e e e 4-38
Dedicated Instruction and Workspace Areas for Interrupts3and4 4-39
Enabling and Triggering TMS 9901 Interval Timer 4-41
Example of Code to Run TMS 9901 Interval Timer 4-42
TM 990/100M Block Diagram o o e e e e e e 5-2
Crystal-Controlled Operation v i v v v e e e e e e e e e 5-3
TMS 9900 Signals« . . L e e e e e 5-4
TMS 9900 Data and Address Flow o o i i i e e e e 5-5
TMS 9900 CPU Flow Chart e e e e e e e e e e e e e e e 5-6
External Instruction Decode Logicon TMS9902 5-7
RESET and LOAD Logic i vt e e e e e e e e e e e e 5-8
Memory I/0 Decoder L e e e e e e e e e e e 5-9
Random Access Memory o e e e e e e e e e e e e e e e e e 5-10
Read Only Memory 0 o e e e e e e e e e e e e e e e e 5-11
Buffering of Control Signals to Connector P1 5-12
Buffering of Address and Data Signals to Connector P1, 5-13
TMS 9901 External Logic o o i e e e 5-14
TMS 9902 External Logic i e e e e e e e e e e 5-16
Serial 1/O Interface L. e e e e e e e 5-17
Signals at Wire-Wrap Area i e e e e e e e e e 5-18
Multi-Drop Interface L L e e e e e e e e e e 5-19
Devices Used in Various Applications o o 0 0 vt i e e e e e e e e e 6-2
Signalsat Wire-Wrap Area o i i i i e e e e e e e e e e 6-3
On-Board TMS 9901 Wiring e 6-4
Parallel I/O POrt v i e e e e e e e e e e e e e e e e 65
Off-Board Expansion of RAM o 0 0 e e e e e e e e e e e e e e 6-6
Circuitry to Add TMS 9901 Off-Board o o i i i i i e 6-7
Four Interrupt-Causing Conditionsat TMS 9902 v 6-8
Memory Placement On Board e e e e e e 7-2
Jumpers and Capacitors Used for Option Selection 7-3
Memory Expansion Maps i e e e e e e e e e e e 7-5
Line-By-Line Assembler Qutput i L o e e e e e e e 7-7
TM 990/301 Microterminal o i e e e e e e e e e e e 7-8
OEM ChassiS . v v v v e 7-9
OEM Chassis Backplane Schematic 7-10
Teletypewriter Terminal Strip Connections A-2
Teletypewriter Resistor Connection o ot e e A-3
EIARS-232-C Cabling o i it e e e e e e e e B-1

vi

Figure G-1
Figure G-2

Figure 1-1

Table 3-1
Table 3-2
Table 3-3
Table 3-4

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6

Table 5-1

Table 6-1
Table 6-2

Table 7-1

Table C-1
Table C-2

Table D-1
Table D-2

Table G-1
Table H-1
Table H-2
Table H-3

Table -1

LIST OF ILLUSTRATIONS (Concluded)

Object Code Example G-3
Source Code and Corresponding Object Code o v v v G-b
TM 990/301 Microterminal e 1-2
LIST OF TABLES

TIBUG Commands it e e e 3-1
Command Syntax Conventions e 3-3
User Accessible Utilities 3-13
TIBUG Error Messages i 3-16
Status Bits Affected by Instructions, 4-5
Instruction Description Terms e 4-14
Instruction Set, Alphabetical Index 4-15
Instruction Set, Numerical Index 4-17
CRU AddressingMap e e 4-35
Comparison of Jumps, Branches, XOP's 4-37
1/0 Device Select Lines o 0 e e 5-10
/O Pinsat Wire-Wrap Area i e e e e 6-3
List of Materials for Adding RAM 6-7
Jumpers and Capacitors Used With Options 7-4
ASCIl Control Codes v e e e e e C-1
ASClI Character Code e e e e e C-2
Hexadecimal/Decimal Conversion Chart D-5
Binary, Decimal, and Hexadecimal Equivalents D-6
Object Qutput Tags Supplied by Assemblers G-1
Chassis Interface Connector (P1) Signal Assignment H-1
Serial 1/0 Interface (P2) Pin Assignments H-2
Parallel 1/0 Interface (P4) Signal Assignments e H-3

1-2

EIA CableSignals o o e e e e e e e e

vii/vii

1.1

1.2

GENERAL

SECTION 1

INTRODUCTION

The Texas Instruments TM 990/100M is a self-contained microcomputer on a single printed-circuit board.
The board’s component side is shown in Figure 1-1. It contains features found on computer systems of
much larger size including a Central Processing Unit (CPU) with hardware multiply and divide,
programmable serial and parallel |/O lines, external interrupts, and a monitor to assist the programmer in
program development and execution. Other features include (see Figure 1-2):

° TMS 9900 microprocessor based system: software is compatible with other members of
the 990 family.

L 256 x 16 bits of TMS 4042-2 random-access memory (RAM) expandable on board to 512
x 16 bits.

° 1K x 16 bits of TMS 2708 erasable programmable read-only memory (EPROM)
expandable on board to 2K x 16 bits. Simple jumper modifications allow substitution of
large TMS 2716 EPROM’s (16K bits each) for the smaller TMS 2708's (8K bits). Four
TMS 2716’s allow EPROM expansion to 4K x 16 bits.

NOTE
Three board configurations are available. The
characteristics of each are explained in paragraph 1.4.

L] Buffered address, data, and control lines for off-board memory and 1/0 expansion.

L 3 MHz crystal-controlied clock.

[Interfaces to 20 mA current loop or RS-232-C terminals or to twisted-pair multidrop
interface (see paragraph 1.4).

. Two programmable interval timers.

L User wire-wrap area surrounded by signal access pins; area adjacent to spare onboard
40-pin connector (P3).

° PROM memory decoders allow easy reassignment of memory map configuration.

MANUAL ORGANIZATION

Section 1 covers board specifications and characteristics. A glossary in paragraph 1.5 explains terms used
throughout the manual.

Section 2 of this manual shows how to install, power up, and operate the TM 990/100 microcomputer with
the addition of the following:

Power supply

1-1

-l

FIGURE 1-1. TM 990/100M MICROCOMPUTER

€l

TMS 9900 MICROPROCESSOR
— TIM 9904 CLOCK
[RESET SWITCH

e

ASSEMBLY NO. P1
— TMS 9901 PARALLEL 1/0 CONTROLLER

FIGURE 1-2. PRINCIPAL TM 990/100M COMPONENTS

RAM's

EPROMS

TMS 9902
ASYNCHRONOUS
COMMUNICATIONS
CONTROLLER

1.3

1.4

1.5

o Data terminal (properly wired and connected)
° Connecting cables

Section 3 explains how you can communicate with the TM 990/100M using the 7/BUG monitor {on board
099211-0001 only). This versatile monitor, complete with supervisor calls and operator communication
commands facilitates the development and execution of software. Section 4 covers programming
procedures including the instruction set, interrupts, extended operations (XOPs), context switching, and
1/0 programming.

Section 5 covers theory of operation with paragraphs keyed to schematics of specific areas of the

TM 990/100M hoard. Section 6 contains application considerations, and Section 7 covers options including
a microterminal and a line-by-line (no-label) assembier.

GENERAL SPECIFICATIONS

Power Consumption:

+5 V +12V -12V
256 words RAM, 1K words EPROM 1.2A 0.ZA 0.1 A
256 words RAM, 2K words EPROM 1.2A 02A 0.1A
512 words RAM, 1K words EPROM 14 A 0.2A 0.1 A

Clock rate: 3 MHz

Baud Rates (set by 7/BUG monitor):
110 baud, 300 baud, 1200 baud, 2400 baud

Memory Size:

RAM (TMS 4042-2's), 256 x 16 bits expandable on-board to 512 x 16 bits

EPROM (TMS 2708's), 1K x 16 bits expandable on-board to 2K x 16 bits

Optional EPROM (TMS 2716's), 2K x 16 bits expandable to 4K x 16 bits
Board.Dimensions: See Figure 1-3.
BOARD CHARACTERISTICS
Different models of the TMS 990/100M microcomputer and identified by different assembly numbers. This
number is in the lower left as shown in Figure 1-2. The different aspects of these boards as shipped from
the factory are listed in Table 1-1.

GLOSSARY

The following are definitions of terms used with the TM 990/100M. Applicable areas in this manual are in
parentheses.

Absolute Address: The actual memory address in quantity of bytes. Memory addressing is usually
represented in hexadecimal from 0000, ¢ to FFFF, ¢ for the TM 990/100M.

Alphanumeric Character: Letters, numbers, and associated symbols.

1-4

20

G-l

(S3HONI NI) SNOISN3IIQ d4vOd WOO0L/066 INL "E€-L IHNOIL

R17

o

uz

v2

TM980/100M

MADE IN USA

SERIAL NO

:

1a 1 us

n

E

t
1
Cc7

7

1
=3

ASSY NO 999211 000/t
SUBASSY 933203 000"

c30
C29
L ®

3

b3

cz22

g—— cn
X
X]

L~ —
®
r— c13
Ll

Py =]

@
e’
|

(

DIAGRAM NO 999
60

TABLE 1-1. BOARD ASSEMBLY CHARACTERISTICS

ASSEMBLY NO.

1/0 INTERFACE TYPES

EPROM*

RAM

999211-0001
999211-0002
999211-0003

RS-232-C (EIA) or Current Loop
Multidrop or RS-232-C only
Multidrop or RS§-232-C only

1K x 16 bits**
1K x 16 bits**
2K x 16 bits***

256 x 16 bits**
256 x 16 bits**
512 x 16 bits***

*Assembly 999211-0001 EPROM'’s contain T/BUG monitor; assemblies 999211-0002 and -0003 EPROM’s are not programmed.
**Two 2708 EPROM's and two 4042 RAM's.
***Four 2708 EPROM’s and four 4042 RAM's.

ASCII Code: A seven-bit code used to represent alphanumberic characters and control {Appendix C).
Assembler: Program that interprets assembly language source statements into object code.

Assembly Language: Mnemonics which can be interpreted by an assembler and translated into an object
program (paragraph 4.6).

Bit: The smallest part of a word; it has a value of either a 1 or 0.
Breakpoint: Memory address where a program is intentionally halted. This is a program debugging tool.
Byte: Eight bits or half a word.

Carry: A carry occurs when the most-significant bit is carried out in an arithmetic operation (i.e., resultant
cannot be contained in only 16 bits), (paragraph 4.3.3.4).

Central Processing Unit (CPU): The “heart” of the computer: responsibilities include instruction access and
interpretation, arithmetic functions, I/0 memory access. The TMS 9900 is the CPU of the
TM 990/100M.

Chad: Dot-like paper particles resulting from the punching of paper tape.

Command Scanner: A given set of instructions in the 7/BUG monitor which takes the user’s input from the
terminal and searches a table for the proper code to execute.

Context Switch: Change in program execution environment, includes new program counter (PC) value and
new register file.

CRU (Communications Register Unit): The TMS 9900's general purpose, command-driven input/output
interface. The CRU provides up to 4096 directly addressable input and output bits (paragraph
4.8).

Effective Address: Memory address resulting from interpretation of an instruction, required for execution
of that instruction.

EPROM: See Read Only Memory.

Hexadecimal: Numerical notation in the base 16 (Appendix D).

1-6

Immediate Addressing: An immediate or absolute value (16-bits) is part of the instruction (second word of
instruction).

Indexed Addressing: The effective address is the sum of the contents of an index register and an absolute
(or symbolic) address (paragraph 4.5.3.5).

Indirect Addressing: The effective address is the contents of a register (paragraph 4.5.3.2).

Interrupt: Context switch in which new program counter (PC) and workspace pointer (WP} values are
obtained from one of 16 interrupt traps in memory addresses 0000, ¢ to 003E, 4 (paragraph 4.9).

1/0: The input/output lines are the signals which connect an external device to the data lines of the
TMS 9990.

Least Significant Bit (LSB): Bit having the smallest value {smallest power of base 2); represented by the
right-most bit.

Link: The process by which two or more object code modules are combined into one, with cross-referenced
label address locations being resolved.)

Loader: Program that places one or more absolute or relocatable object programs into memory (Appendix
G).

Machine Language: Binary code that can be interpreted by the CPU (Table 4-4).

Monitor: A program that assists in the real-time aspects of program execution such as operator command
interpretation and supervisor call execution. Sometimes called supervisor (Section 3).

Most Significant Bit (MSB): Bit having the most value; the left-most bit representing the highest power of
base 2. This bit is used to show sign with a 1 indicating negative and a 0 indicating positive.

Object Program: The hexadecimal interpretations of source code output by an assembler program. This is
the code executed when loaded into memory.

One’'s Complement: Binary representation of a number in which the negative of the number is the
complement or inverse of the positive number (all ones become zeroes, vice versa). The MSB is one
for negative humbers and zero for positive. Two representations exist for zero: all ones or all
zeroes.

Op Code: Binary operation code interpreted by the CPU to execute the instruction (paragraph 4.5.1).

Overflow:-An overflow occurs when the result of an arithmetic operation cannot be represented in two’s
complement (i.e., in 15 bits plus sign bit), (paragraph 4.3.3.5).

Parity: Means for checking validity of a series of bits, usually a byte. Odd parity means an odd number of
one bits; even parity means an even number of one bits. A parity bit is set to make all bytes
conform to the selected parity. If the parity is not as anticipated, an error flag can be set by
software. The parity jump instruction can be used to determine parity (paragraph 4.3.3.6).

Program Counter (PC): Hardware register that points to the next instruction to be executed or next word
to be interpreted (paragraph 4.3.1).

1-7

1.6

PROM: See Read Only Memory.

Random Access Memory (RAM): Memory that can be written to as well as read from (vs. ROM).

Read Only Memory (ROM): Memory that can only be read from (can’t change contents). Some can be
programmed (PROM) using a PROM burner. Some PROM'’s can be erased (EPROM’s) by exposure

to ultraviolet light.

Source Program: Programs written in menmonics that can be translated into machine language (by an
assembler).

Status Register (ST): Hardware register that reflects the outcome of a previous instruction and the current
interrupt mask (paragraph 4.3.3).

Supervisor: See Monitor

Utilities: A unique set of instructions used by different parts of the program to perform the same function.
In the case of T/BUG, the utilities are the 1/0 XOP’s (paragraph 3.3).

Word: Sixteen bits or two bytes.

Workspace Register File: Sixteen words, designated registers O to 15, located in RAM for use by the
executing program (paragraph 4.4).

Workspace Pointer (WP): Hardware register that contains the memory address of the beginning (register 0)
of the workspace register file (paragraph 4.3.2).

APPLICABLE DOCUMENTS

The following is a list of documents that provide supplementary information for the TM 990/100M user.

° TMS 9900 Microprocessor Data Manual

L] TMS 9901 Programmable Systems Interface Data Manual

L TMS 9902 Asynchronous Communication Controller {Data Manual)

L Model 990 Computer, TMS 9900 Microprocessor Assembly Language Programmer’s

Guide (P/N 943441-9701)

® TM 990/301 Microterminal

° TM 990/401 TIBUG Monitor Listing

. TM 990/402 Line-By-Line Assembler

L TM 990/402L Line-By-Line Assembler Listing

1-8

SECTION 2
INSTALLATION AND OPERATION

2.1 GENERAL
This section explains procedures for unpacking and setting up the TM 990/100M board for operation.
2.2 REQUIRED EQUIPMENT
(1) Volt-ohmmeter
(2) Soldering iron, electrical solder

(3) 24 AWG insulated stranded wire

(4) 18 AWG insulated stranded wire
(5) Connectors
° 100-pin, 0.125 in. C-C, wire-wrap PCB edge connector such as:
- TI H321150

— Amphenol 225-804-50
- Viking 3VH50/9N05
- Elco 00-6064-100-061-001

o 40-pin, 0.1 in. C-C, wire-wrap PCB edge connector such as:
- TI H311120
- Viking 3VH20/IJND5

° 25-pin RS-232 style (plug)
— ITT DB25P
- TRW CINCH DB25P

(6) Power Supplies
Voltage Reg. Current
+5 V *+3% 1.3A
-12V +3% 0.2A
+12V +3% 0.1A
(7) Terminal such as:
° Texas Instruments 743 KSR or 733 KSR/ASR (see Appendix B)
° Teletype Model 3320/6JE (see Appendix A). This current-loop terminal is

useable with board assembly 999211-0001 only

° RS-232-C compatible terminal (see Appendix B).

2-1

2.3

24

2.4.1

2.4.2

2.5

UNPACKING
Take the TM 990/100M board from its carton and remove the protective wrapping.

Check the board for any abnormalities that could have occurred in shipping. Report any discrepancies to
your supplier.

POWER AND TERMINAL HOOKUP

These procedures assume that user has the following configuration:

.o TM 990/100M board with two TMS 2708 erasable, programmable read-only memories
(EPROM’s).
° Texas Instruments Model 743 KSR terminal.

It is also assumed that jumper configuration is as shipped by the factory (J1, J2, J3, and J4 installed). See
Figure 7-2.

For other memory configurations, see paragraph 7.2 for applicable jumper connections.

For other terminals, contact the manufacturer for correct wiring. Hookup to a Teletype model 3320/SJE is
explained in Appendix A. Hookup for other RS-232-C compatible terminals is explained in Appendix B.

CAUTION
Be very cautious to avoid applying incorrect voltage
levels to the TM 990/100M. Texas Instruments assumes
no responsibility for damage caused by improper wiring
or voltage application by the user.

POWER SUPPLY HOOKUP
Figure 2-1 shows how to connect voltage to the TM 990/100M through connector P1. Be careful to use the
correct pins as numbered on the board; these pin numbers may not correspond to the numbers on the

particular edge connector used.

The table in Figure 2-1 shows suggested color coding for the power supply plugs. To prevent incorrect
connection, label the top side of the edge connector ““TOP'’ and the bottom “TURN OVER.”

TERMINAL HOOKUP
Figure 2-2 shows how to connect the TM 990/100M to the 743 KSR terminal through connector P2. A
DEIBS connector attaches to the terminal; a DB25P connector attaches to P2 on the board. Point-to-point

connections between the connectors are shown in the table.

Because this is an RS-232-C type terminal, make sure that jumper J11 is removed and that jumper J7 is in
the ElA position (Figure 7-2).

OPERATION

(1) Verify that all wiring has been correctly connected.

2-2

\/\

T™ 99/100M
P1 CONNECTOR
(ToP)

u0o0dooondoonotonootioooofooootnonoin

/s -12v
3y +12v

oloooodooonll

EDGE CONNECTOR

UUTUUT Ty mmm
X /

\ SHRINK SLEEVING

18 AWG INSULATED STRANDED WIRE

I | —
]‘\ BANANA PLUGS ’[]]
SUGGEST COLOR CODING
[+5V < THESE AS PER TABLE) —12vliT +12v[]
\.J \.J
VOLTAGE P1PIN* SUGGESTED PLUG COLORS

+5V 3,4 RED

+12v 75,76 BLUE

~12v 73,74 GREEN

GND 1,2 BLACK

*ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS.

A0001417

FIGURE 2-1. POWER SUPPLY HOOKUP

CAUTION
Before connecting the power supply to P1, use a volt-ohmmeter
to verify that correct voltages are present as shown in Figure

2-2.
(2) Set the 743 KSR data terminal switches to the following:
° LOW SPEED switch to high speed (30 characters per second).
L] HALF DUP switch to full duplex.
] ON LINE switch to ON LINE.

2-3

DB25P

TOP2ON
TM 990/100M

A0001418

(3)

(4)

{5)

(6)
2.6

2.6.1

DE15S

TO 743 DATA
TERMINAL

4 CONDUCTOR CABLE, 24 AWG
INSULATED STRANDED WIRE

CONNECTIONS
PIN ON DE15S | PIN ON DB25P SIGNAL
13 2 XMIT
12 3 RECV
" 8 DCD
1 7 GND

FIGURE 2-2. 743 KSR TERMINAL HOOKUP

Apply power to board and data terminal.
Press the RESET switch on the board (see Figure 1-2).
Press the “A’’ key on the terminal.

The 7/BUG monitor (assembly 999211-0001 only) will be called up and print a message
on the terminal. Following the message, a question mark will be printed on a new line.
This is a request to input a command to the 7/BUG command scanner. Commands are
explained in detail in Section 3 and assembly language is presented in Section 4.

NOTE
If control is lost during operation, return control back to
monitor by repeating steps (4) and (5).

SAMPLE PROGRAMS

SAMPLE PROGRAM 1

The following is a sample program you can input using the 7/BUG commands M (paragraph 3.2.8), R
(paragraph 3.2.9), and E (paragraph 3.2.4). (T/BUG is on assembly 999211-0001 only).

(1)

Enter the M command with a hexadecimal address of FDOO.

(2) Enter the following values into memory beginning at hexadecimal address FDOO by using
the space bar with the M command as described in paragraph 3.2.8.

ASSEMBLY
ENTER LANGUAGE
LOCATION VALUE MNEMONICS
FEOO 2FAOQ XOP @ > FEO08, 14
FEO2 FEO8
FEO4 0420 BLWP @ > FFFC
FEO6 FFFC
FEO8 4849 TEXT ‘HI'
FEOA 0AOD DATA > 0A0D
FEOC 0700 DATA > 0700

Exit the M command with a carriage return. The monitor will print a question mark.

(3) Use the R command to set the value ‘FDOQ’ into the P register (Program Counter).
(4) Use the E command to execute the program.
(5) The message HI will print on the printer, followed by a line feed, carriage return, and bell.

Your terminal printout should look like the following:

THOFEDQ
FEOO=2FRD ZFHAD
FEOZ=FEDZ FEIZ
FED4=0460 0d4e0
FEOQE=00310 I
FEOZ=424% 4049
FEOQHR=OROD OAROD
FEOQC=07F0o 070
TR

W=0ES0

F=FEOD FEIN

TE HI

You can re-execute your program by repeating steps (3) and (4).

2.6.2 SAMPLE PROGRAM 2

Using steps 1 to 5 in pragraph 2.6.1, enter and execute the following program which has been assembled by
the optional TM 990/402 Line-By-Line Assembler.

FEOD 2FAO =0F a:FEOS.149

FEO= FEI=

FEO4 040D E 300520

FEGE 00En

FEXS 424F ECOMSEATULATIOML. YOUR FROGEAM WORKZE
FEOR 4E47

FEOD 52491

25

FEOE 5455
FE1D <441
FE1& 5449
FE14 4F4E-
FE1& SzcE
FE1= 059
FE1R 4F55
FEIC Sgocu
FEIE S052
FEZD 4F47
FEzZ S
FEz4 4Dz
FEZE S74F
FEZE SZ4E
FEZD 0707 +:>0707
FEZE o700 +=0700

You can re-execute this program by repeating steps (3) and (4) in paragraph 2.6.1.

2-6

SECTION 3
TIBUG INTERACTIVE DEBUG MONITOR

3.1 GENERAL

T/BUG is debug monitor which provides an interactive interface between the user and the TM 990/100M. It
is supplied by the factory on assembly 999211-0001 only and is available as an option, supplied on two
2708 EPROM's.

TIBUG occupies EPROM memory space from memory address {M.A.) 0080, , as shown in Figure 3-1.
TIBUG uses four workspaces in 40 words of RAM memory. Also in this reserved RAM area are the restart
vectors which initialize the monitor following single step execution of instructions.

The T/BUG monitor provides seven software routines that accomplish special tasks. These routines, called
in user programs by the XOP machine instruction, perform tasks, such as writing characters to a terminal.

XOP utility instructions are discussed in detail in paragraph 4.6.9.

All communication with 7/BUG is through a 20 mA current loop or RS-232-C device. T/BUG is initialized

as follows:

L) Press the RESET pushbutton (Figure 1-2). The monitor is called up through interrupt
trap 0.

e Enter the character ‘A’ at the terminal. T/BUG uses this input to measure the width of
the start bit and set the TMS 9902 Asynchronous Communication Controller (ACC) to
the correct baud rate.

o T/IBUG prints an initialization message on the terminal. On the next line it prints a
question.. mark indicating that the command scanner is available to interpret terminal
inputs.

° Enter one of the commands as explained in paragraph 3.2.

3.2 TIBUG COMMANDS

T/BUG commands are listed in Table 3-1.

TABLE 3-1. 7/8UG COMMANDS

INPUT : RESULTS PARAGRAPH
B Execute under Breakpoint 3.21
C CRU Inspect/Change 3.2.2
D Dump Memory to Cassette/Paper Tape 3.23
E Execute . 3.24
F Find Word/Byte in Memory 3.25
H Hex Arithmetic 3.2.6
L Load Memory from Cassette/Paper Tape 3.2.7
M Memory Inspect/Change 3.2.8
R Inspect/Change User WP, PC, and ST Registers 3.2.9
S Execute in Step Mode 3.2.10
T 1200 Baud Terminal 3.2.1
w Inspect/Change Current User Workspace 3.2.12

31

MEMORY
ADDRESS

0000

0040

XOP VECTORS 0 AND 1

0048

0060

007E

XOP VECTORS 8 TO 15
MONITOR UTILITIES

0080

07FE

TIBUG MONITOR

FFBO MONITOR
WORKSPACES
FEFC WP
RESTART VECTORS
FFFE PC

TIBUG EPROM AREA

~

r TIBUG EPROM AREA

FIGURE 3-1. MEMORY REQUIREMENTS FOR T/BUG

3-2

TIBUG RAM AREA

Conventions used to define command syntax in this paragraph are listed in Table 3-2.

TABLE 3-2. COMMAND SYNTAX CONVENTIONS

CONVENTION
SYMBOL EXPLANATION
<> Items to be supplied by the user. The term within the angle brackets is a generic term.
I1 Optional Item — May be included or omitted at the user’s discretion. ltems not included in brackets
are required.
{} One of several optional items must be chosen.
(CR) Carriage Return
A Space Bar
LF Line Feed
RorRn Register (n =0 to 15)
WP Current User Workspace Pointer contents
PC Current User Program Counter contents
ST Current User Status Register contents

NOTE

Except where indicated otherwise, no space is necessary
between the parts of these commands. All numeric input
is assumed to be hexadecimal; the last four digits input
will be the value used. Thus a mistaken numerical input
can be corrected by merely making the last four digits
the correct value. If fewer than four digits are input,
they are right justified.

3.2.1 EXECUTE UNDER BREAKPOINT (B)

3.2.1.1 Syntax

B < address > < (CR) >

3.2.1.2 Description

This command is used to execute instructions from one memory address to another (the stopping address is
the breakpoint). When execution is complete, WP, PC, and ST register contents are displayed and control is
returned back to the monitor command scanner. Program execution begins at the address in the PC (set by
using the R command). Execution terminates at the address specified in the B command, and a banner is
output showing the contents of the hardware WP, PC, and ST registers in that order. »

The address specified must be in RAM and must be the address of an instruction. The breakpoint is
controlied by a software interrupt, XOP 15.

H no address is specified, the B command defaults to an E command, where execution continues with no
halting point specified.

33

3.2.2

3.2.21

3.2.2.2

EXAMPLE:

TH FCOB

BF FFHU FCoa Ea0n
CRU INSPECT/CHANGE (C)
Syntax

C < base address > { A< count > < (CR) >

Description

The Communication Register Unit (CRU) input bits from “base address” to (*‘base address” + “‘count’’ —1)
are displayed right justified in a 16-bit hexadecimal representation. ‘‘Base address” is a 12-bit value in bits 3
to 14 which is the actual CRU address; this is the same as the contents of register 12 as used by the CRU
instructions (paragraph 4.7). Up to 16 CRU bits may be displayed. The corresponding CRU output bits
may be altered following input bit display by keying in desired hexadecimal data, right justified. A carriage
return following data output forces a return to the command scanner. A minus sign (—) or a space causes
the same CRU input bits to be displayed again. Defaults for "base address” and “‘count”’ are 0, and 10, ¢

respectively.
EXAMPLES:
(1) Examine eight CRU input bits. Base address is 20, 4.
YO O 20a8
002 0=110FF «<—— CARRIAGE RETURN ENTERED
(2) Set value of eight CRU output bits at base address 20, ¢; new value is 02,6.
T D e S CHANGE 00FF TO 0002
T Sl
002 0N=00FF Z-— 2 FOLLOWED BY CARRIAGE RETURN
(3) Check changes in CRU input bit 0.
TCOo0ad
oooo=nool -
Dooo=0001 -
aooo=00ni — > MINUS SIGN ENTERED
oooa=0onol —s
Dooo=00FF -
O0000=00101 «——— CARRIAGE RETURN ENTERED
(4) Check to see if the TMS 9901 is in the interrupt mode {zero) or clock mode (one);

U100
01 =aFFFE «——— CARRIAGE RETURN ENTERED

34

3.2.3

3.2.3.1

3.2.3.2

3.2.3.3

(5) Check the contents of the clock register on the TMS 9901 (bits 1 to 14).

FO101 19
g101=00 e

DUMP MEMORY TO CASSETTE/PAPER TAPE (D)
MONITOR PROMPT

Syntax
D <start address > { A }<stop address > { A }<entry address > { A }DT =< name> < p\>
Description
Memory is dumped from “start address’’ to “’stop address.”” “Entry address’’ is the address in memory
where it is desired to begin program execution. After entering a space or comma following the entry
address, the monitor responds with an “IDT="" prompt asking for an input of up to eight characters that
will identify the proaram. This program ID will be output when the program is loaded into memory using
the T/BUG loader, code will be dumped as non-relocatable data in 990 object record format with absolute
load (‘'start address’’) and entry addresses specified. Object record format is explained in Appendix G.
After entering the D command, the monitor will respond with “READY Y/N’’ and wait for a Y keyboard
entry indicating that the receiving device is ready. This allows the user to verify switch settings, etc., before
proceeding with the dump.
Dump to Cassette Example
The terminal is assumed to be a Texas Instruments 733 ASR or equivalent. The terminal must have
automatic device control (ADC). This means that the terminal recognizes the four tape control characters
DC1, DC2, DC3, and DCA4.
The following procedure is carried out prior to answering the “READY Y/N’’ query (Figure 3-2):

(1) Load a cassette in the left (No. 1) transport on the 733 ASR.

(2) Place the transport in the “RECORD’’ mode.

(3) Rewind the cassette.

(4) lLoad the cassette. If the cassette does not load, it may be write protected. The write

protect hole is on the bottom right side of the cassette (Figure 3-3). Cover it with the tab

provided with the cassette. Now repeat steps 1 through 4.

(5) The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/LINE switches
must be in the LINE position.

(6) Place the TAPE FORMAT switch in the LINE position.

(7) Answer the “READY Y/N’' query with a “Y’’; the 'Y’ will not be echoed.

35

CASSETTE 1 _— CASSETTE 2
[aa—— e — |
REWIND LOAD/FF @ RECORD =———— = PLAYBACK @ REWIND LOAD/FF
H @ READY g READY @
froriond @ END oy END @
sSTOP STOP @ PLAYBACK ===d leeee RECORD © STOP sToP
PLAYBACK CONTROL RECORD CONTROL
CONT BLOCK CHAR
START FWD FWD ON CHARACTER PRINT
[0 © | peeseee
Fo] L] ERROR L
i 1
e !
E
STOP REV TAPE FORMAT ERASE OFF
LINE LINE
OFF OFF
| LOCAL | . | LOCAL

KEYBOARD PLAYBACK RECORD PRINTER

wid]

FIGURE 3-2. 733 ASR MODULE ASSEMBLY (UPPER UNIT) SWITCH PANEL

/— TAPE SIDE UP

o O

Side 1

[aJ] (. L»a]

WRITE TAB FOR SIDE 2

WRITE TAB FOR SIDE 1

A0001419

FIGURE 3-3. TAPE TABS

3-6

3.2.3.4 Dump to Paper Tape

3.24

3.2.4.1

3.2.4.2

3.25

3.2.5.1

3.2.5.2

The terminal is assumed to be an ASR 33 teletypewriter. The following steps should be completed carefully
to avoid punching stray characters:

(1)

(2)

(3)

(4)

(5)

(6)

Enter the command as described in paragraph 3.2.3.1. Do not answer the “READY Y/N'’
query yet.

Change the teletype mode from ON LINE to LOCAL.

Turn on the paper tape punch and press the RUBOUT key several times, placing
RUBOUTS at the beginning of the tape for correct-reading/program-loading.

Turn off the paper tape punch, and reset the teletype mode to LINE. (This is necessary to
prevent punching stray characters).

Turn on the punch and answer the “READY Y/N” query with “Y’’. The Y will not be
echoed.

Punching will begin. Each file is followed by 60 rubout characters. When these characters
appear (identified by the constant punching of all holes) the punch must be turned off.

EXECUTE COMMAND (E)

Syntax
E

Description

The E command causes task execution to begin at current values in the Workspace Pointer and Program

Counter.

Example: E

FIND COMMAND (F)

Syntax

F <start address > { /’\}< stop address > { A }<value > { (CR) }

Description

The contents of memory locations from “start address” to ‘’stop address’’ are compared to “‘value’’. The
memory addresses whose contents equal “value’ are printed out. Default value for start address is 0. The
default for “‘stop address’’ is 0. The default for “value’ is 0.

If the termination character of ‘“‘value” is a minus sign, the search will be from “start address” to “stop
address’’ for the right byte in “value”. If the termination character is a carriage return, the search will be a
word mode search.

37

3.2.6

3.2.6.1

3.2.6.2

3.2.7

3.2.71

3.2.7.2

3.2.7.3

EXAMPLE:

FF s 20 FFFF «—————CARRIAGE RETURN ENTERED
NN

oo

oonla

nole

FF 0 &0 FF— <——————— MINUS SIGN ENTERED
I

ooy

oo

noon

nnle

no1z

aole

gLy

HEXADECIMAL ARITHMETIC (H)
Syntax
H < number 1> { N }< number 2> < (CR) >
Description
The sum and difference of two hexadecimal numbers are output.
EXAMPLE:
T c I:I. Oal 000 CARRIAGE RETURN ENTERED

H1+HE=0200 Hi-Hz=u100

LOAD MEMORY FROM CASSETTE OFi PAPER TAPE (L)
Syntax
L < bias > < {CR) >

Description

Data in 990 object record format (defined in Appendix G) is loaded from paper tape or cassette into
memory. Bias is the relocation bias (starting address in RAM). Its default is 0, ¢. Both relocatable and
absolute data may be loaded into memory with the L command. After the data is loaded, the module

identifier (see tag O in Appendix G) is printed on the next line.

Loading From Texas Instruments 733 ASR Terminal Cassette

The 733 ASR must be equipped with automatic device control (ADC). The following procedure is carried

out prior to executing the L command:

(1) Insert the cassette in one of the two transports on the 733 ASR (cassette 1 in Figure 3-2).

3-8

(2)
(3)
(4)

(5)

(6)

(7)

Place the transport in the playback mode.
Rewind the cassette.
Load the cassette.

Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/LINE switches to
LINE. '

Set the TAPE FORMAT switch to LINE.

Loading will be at 1200 baud; thus the T command must be entered (paragraph 3.2.11).

Execute the L command.

3.2.7.4 Loading From Paper Tape (ASR33 Teletype)

Prior to executing the L command, place the paper tape in the reader and position the tape so the reader
mechanism is in the null field prior to the file to be loaded. Enter the load command. If the ASR33 has
ADC (automatic device control), the reader will begin to read from the tape. |f the ASR33 does not have
ADC, turn on the reader, and loading will begin.

Each file is terminated with 60 rubouts. When the reader reaches this area of the tape, turn it off. The
loader will then pass control to the command scanner.

The user program counter (P) is loaded with the entry address if a 1 tag or a 2 tag is found on the tape.

EXAMPLE:

FL

Q0 l«—————— CARRIAGE RETURN ENTERED

FROSFEAM <————— PROGRAM ID FROM TAPE

3.28 MEMORY INSPECT/CHANGE, MEMORY DUMP (M)

3.2.8.1 Syntax

3.2.8.2 Description

Memory Inspect/Change Syntax
M < address > < (CR) >
Memory Dump Syntax

M < start address > { A }<stop address > < (CR) >

Memory inspect/change “opens’’ a memory location, displays it, and gives the option of changing the data
in the location. The termination character causes the following:

If a carriage return, control is returned to the command scanner.

39

3.2.9

3.2.9.1

3.2.9.2

o If a space, the next memory location is opened and displayed.
o If a minus sign, the previous memory location is opened and displayed.

If a hexadecimal value is entered before the termination character, the displayed memory location is
updated to the value entered.

Memory dump directs a display of memory contents from ‘‘start address’’ to '‘stop address’’. Each line of
output consists of the address of the first data word output followed by eight data words. Memory dump
can be terminated at any time by typing any character on the keyboard.

EXAMPLES:
(1)
T FE0 - CARRIAGE RETURN ENTERED
FEOO=FFOF
FED2=0015 FFFF <—— NEW CONTENTS ENTERED
FEQ4=032311 — <———— MINUS SIGN ENTERED
FEQZ2=FFFF <————— NEW CONTENTS
FEO4=0311

FEDE=0032 EEHAH<— CARRAGE RETURN ENTERED

"

(2)

M2 a0
A0S 0=00z0 0030 0000 0oos a0E0 0D00 0000 0oSg

OOz0=0001

INSPECT/CHANGE USER WP, PC, AND ST REGISTERS (R)
Syntax
R <(CR)>
Description
The user workspace pointer (WP}, program counter (PC), and status register (ST) are inspected and changed
with the R command. The output letters WP, PC, and ST identify the values of the three principal hardware

registers passed to the TMS 9900 microprocessor when a B, E, or S command is entered. WP points to the
workspace register area, PC points to the next instruction to be executed (Program Counter), and ST is the

Status Register contents.
The termination character causes the following:
L A carriage return causes control to return to the command scanner.

° A space causes the next register to be opened.

Order of display is W, P, S.

EXAMPLES:

(1)

TR
W=00z0 100 <«—— SPACE ENTERED
F=0000 200 -«——CARRIAGE RETURN ENTERED

(2)
TR

LiI=01 00 :—— SPACE ENTERED
F=02 00

=001)] «——————— SPACE OR CARRIAGE RETURN ENTERED

.?'.

3.210 EXECUTE IN SINGLE STEP MODE (S)

3.2.10.1 Syntax
S

3.2.10.2 Description.
Each time the S command is entered, a single instruction is executed at the address in the Program Counter,
then the contents of the Program Counter, Workspace Pointer, and Status Register (after execution) are
printed out. Successive instructions can be executed by repeated S commands. Essentially, this command

executes one instruction then returns control to the monitor.

EXAMPLE:
TR

W=FFCE SPACES ENTERED
F=FE10 FEQQ e

=26 0A 4_/— PROGRAM COUNTER
FFLC& FEOZ = [1F< STATUS REGISTER

WORKSPACE POINTER

i

251
TE FFCE FEO4 SE0A
E FFC& FEOS e
TE FFCe& FEQLZ SE0A
NOTE

Incorrect results are obtained when the S instruction
causes execution of an XOP instruction (see paragraph
4.6.9) in a user program. To avoid these problems the B
command should be used to execute any XOP’s in a
program (rather than the S command).

3.2.11 TI1 733 ASR BAUD RATE (T)
3.2.11.1 Syntax

T

311

3.2.11.2 Description

The T command is used to alert 7/BUG that the terminal being used is a 1200 baud terminal which is not a
Texas Instrument’s 733 ASR (e.g., a 1200 baud CRT). To revoke the T command, enter it again.

3.2.11.3 Use

T is used only when operating with a true 1200 baud peripheral device. Note that T is never used when
operating at other baud rates.

In TIBUG the baud rate is set by measuring the width of the character ‘A’ input from a terminal. When an
‘A’ of 1200 baud width is measured, T/BUG is set up to automatically insert three nulls for every character
output to the terminal. These nulls are inserted to allow correct operation of the TM 990/100M with Texas
Instruments 733ASR data terminals.

3.2.12 INSPECT/CHANGE USER WORKSPACE (W)
3.2.12.1 Syntax
W [REGISTER NUMBER] < (CR) >

3.2.12.2 Description

The W command is used to display the contents of all workspace registers or display one register at a time

while allowing the user to change the register contents. The workspace begins at the address given by the
Workspace Pointer.

The W command, followed by a carriage return, causes the contents of the entire workspace to be printed.
Control is then passed to the command scanner.

The W command followed by a register number in hexadecimal and a carriage return causes the display of
the specified register’s contents. The user may then enter a new value into the register by entering a
hexadecimal value. The following are termination characters whether or not a new value is entered:

L A space causes display of the next register.
e A minus sign causes display of the previous register.
° A carriage return gives control to the command scanner.
EXAMPLES:

(1)
Thi- CARRIAGE RETURN ENTERED
FO=F242 FRFl=00z4 *2=FAZA FRI2Z=u02n RE4=FESE RS=0092 Re=1200 E7=0024
F" S=FAAD R9=32500 RA=UEAS RE=0000 RCO=01C20 0 RI=0024 EE=FAZ0 EF=Co00

3-12

(2)

Th 2 - CARRIAGE RETURN ENTERED
Fe=0284 3455

EZ2=001E 100

Fd=15 05 SPACE ENTERED

RS=0450 S00F

RE=FS00) «———— CARRIAGE RETURN ENTERED

3.3 USER ACCESSIBLE UTILITIES
TIBUG contains seven utility subroutines that perform 1/0 functions as listed in Table 3-3. These
subroutines are called through the XOP (extended operation) assembly language instruction. This

instruction is covered in detail in paragraph 4.6.9.

TABLE 3-3. USER ACCESSIBLE UTILITIES

xop FUNCTION PARAGRAPH
8 Write 1 Hexadecimal Character to Terminal 3.3.1
9 Read Hexadecimal Word from Terminal 3.3.2
10 Write 4 Hexadecimal Characters to Terminal 3.3.3
11 Echo Character 3.3.4
12 Write 1 Character to Terminal 3.3.5
13 Read 1 Character from Terminal 3.3.6
14 Write Message to Terminal 3.3.7
NOTE
All characters are in ASCI| code.

NOTE
Most of the XOP format examples herein use a register
for the source address; however, all XOP’s can also use a
symbolic memory address or any of the addressing forms
available for the XOP instruction.

3.3.1 WRITE ONE HEXADECIMAL CHARACTER TO TERMINAL (XOP 8)
Format: XOP Rn,8

The least significant four bits of user register Rn are converted to their ASCI| coded hexadecimal equivalent
(0 to F) and output on the terminal. Control returns to the instruction following the extended operation.

EXAMPLE:
Assume user register 5 contains 203C; 4. The assembly language (A.L.) and machine language (M.L.) values

are shown below.

A.L. XoP R5,8 SEND 4 LSB'S OF R5 TO TERMINAL

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
mLfo o 1 o 1 1] 1 o o olo o[o 1 0 1] > 2E05

Terminal Output: C

3-13

3.3.2 READ HEXADECIMAL WORD FROM TERMINAL (XOP 9)
Format: XOopP Rn,9
DATA NULL ADDRESS OF CONTINUED EXECUTION IF
NULL IS ENTERED
DATA ERROR ADDRESS OF CONTINUED EXECUTION IF
NON-HEX NO. ENTERED
(NEXT INSTRUCTION) EXECUTION CONTINUED HERE IF VALID HEX
NUMBER AND TERMINATOR ENTERED
Binary representation of the last four hexadecimal digits input from the terminal is accumulated in user
register Rn. The termination character is returned in register Rn+1. Valid termination characters are space,
minus, comma, and a carriage return. Return to the calling task is as follows:

L If a valid termination character is the only input, return is to the memory address
contained in the next word following the XOP instruction {NULL above).

o If a non-hexadecimal character or an invalid termination character is input, control
returns to the memory address contained in the second word following the XOP
instruction (ERROR above).

° If a hexadecimal string followed by a valid termination character is input, control returns
to the word following the DATA ERROR statement above.

EXAMPLE:
A.L. xoe R6,9 READ HEXADECIMAL WORD INTO R6
DATA > FFCO RETURN ADDRESS, |IF NO NUMBER
DATA > FFC6 RETURN ADDRESS, IF ERROR
M.L. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M.A. FFBO|O 0 1 V] 1 T 11 0 0 1] 0 0] 0 1 1 0 > 2E46
FFB2|1 1 1 1 1 1 1 1 1 1 0 4] 0 0 0 0 > FFCO
FFB4 |1 1 1 1 1 1 1 1 1 1 V] 0 0 1 1 V] > FFC6
If the valid hexadecimal character string 12C is input from the terminal followed by a carriage return,
control returns to memory address {(M.A} FFB6,, with register 6 containing 012C,, and register 7
containing 000D, .
If the hexadecimal character string 12C is input from the terminal followed by an ASCII plus (+} sign,
control returns to location FFCG, 4. Registers 6 and 7 are returned to the calling program without being
altered. ““+"’ is an invalid termination character.
If the only input from the terminal is a carriage return, register 6 is returned unaltered while register 7
contains 000D 4. Control is returned to address FFCO, 4. ’
3.3.3 WRITE FOUR HEXADECIMAL CHARACTERS TO TERMINAL (XOP 10)

Format:

XOP Rn,10

The four-digit hexadecimal representation of the contents of user register Rn is output to the terminal.
Control returns to the instruction following the XOP call.

3-14

3.3.4

3.35

3.3.6

3.3.7

EXAMPLE:

Assume register 1 contains 2C46, .

AL. XOP R1,10 WRITEHEXNUMBER

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
m.L. [0 0 1 0 1 1] 1 0 1 o] o o] o 0 0 1J > 2E81

Terminal Output: 2C46
ECHO CHARACTER (XOP 11)
Format: XOP Rn, 11

This is a combination of XOP’s 13 (read character) and 14 (write character). A character in ASCII code is
read from the terminal, placed in the left byte of Rn, then written (echoed back]) to the terminal. Control
returns to the instruction following the XOP after a character is read and written. By using a code to
determine a character string termination, a series of characters can be echoed and stored at a particular
address:

CLR R2 CLEAR R2
LI R1,> FEOO SET STORAGE ADDRESS
XOP R2, 11 ECHO USING R2
Cl R2,>.0D00 WAS CHARACTER A CR?
JEQ $+6 YES, EXIT ROUTINE
MOVB R2,*R1+ NO, MOVE CHAR TO STORAGE
JMP $-10 REPEAT XOP
NOTE

The parity bit must be reset so that >0D = CR.
WRITE ONE CHARACTER TO TERMINAL (XOP 12)
Format: XOP Rn,12

The ASCII character in the left byte of user register Rn is output to the terminal. The right byte of Rn is
ignored. Control is returned to the instruction following the call.

READ ONE CHARACTER FROM TERMINAL (XOP 13)

Format: XOP Rn,13
The ASCII representation of the character input from the terminal is placed in the left byte of user register
Rn. The right byte of register Rn is zeroed. When this utility is called, control is returned to the instruction
following the call only af'ger a character is input.

WRITE MESSAGE TO TERMINAL (XOP 14)

Format: XOP @MESSAGE,14

3-16

3.4

MESSAGE is the symbolic address of the first character of the ASCIl character string to be output. The
string must be terminated with a byte containing binary zeroes. After the character string is output, control
is returned to the first instruction following the call.

Assuming the following program:

MEMORY

ADDRESS OP CODE A.L. MNEMONIC
(Hex) (Hex)
FEOO 2FA0 XOP @ > FEEO,14
FEO2 FEEO
FEO4
FEEO 5445 TEXT ‘TEST'
FEE2 5354
FEE4 00 BYTEO

During the execution of this XOP, the character string ‘TEST’ is output on the terminal and control is then
returned to the instruction at location FEOQ4, ¢. TEXT is an assembler directive to transcribe characters into
ASCII code.

TIBUG ERROR MESSAGES

Several error messages have been included in the 7/BUG monitor to alert the user to incorrect operation. In
the event of an error, the word ‘ERROR’ is output followed by a single digit representing the error number.

Table 3-4 outlines the possible error conditions

TABLE 3-4. 7/B8UG ERROR MESSAGES

ERROR CONDITION
0 Invalid tag detected by the loader.
1 Checksum error detected by the loader.
2 Invalid termination character detected.
3 Null input field detected by the dump routine.
4 Invalid command entered.

In the event of errors 0 or 1, the program load process is terminated. |f the program is being input from a
733 ASR, possible causes of the errors are a faulty cassette tape or dirty read heads in the tape transport. If
the terminal device is an ASR33, chad may be caught in a punched hole in the paper tape. In either case
repeat the load procedure.

In the event of error 2, the command is terminated. Reissue the command and parameters with a valid
termination character.

Error 3 is the result of the user inputting a null field for either the start address, stop address, or the entry
address to the dump routine. It also occurs if the ending address is less than the beginning address. The
dump command is terminated. To correct the error, reissue the dump command and input all necessary
parameters.

3-16

4.1

4.2

4.3

SECTION 4

PROGRAMMING THE TM 990/100M

GENERAL

This section covers the instruction set used with the TM 990/100M including assembly language and
machine language. This instruction set is compatible with other members of the 990 family.

Other topics include:

° Hardware and software registers (paragraphs 4.3 and 4.4).
° CRU addressing (paragraph 4.7)
o Interrupts (paragraph 4.10)

The TM 990/100M microcomputer is designed for use by a variety of users with varying technical
backgrounds and available support equipment. Because a TM 990/100M user has the capability of writing
his programs in machine fanguage and entering them into memory using the 7/BUG monitor, emphasis is on
binary /hexadecimal representations of assembly language statements. The assembly language described
herein can be assembled on a 990 family assembler. If an assembler is used, this section assumes that the
user will be aware of all prerequisites for using the particular assembler.

It is also presumed that all users learning this instruction set have a working knowledge in:
L ASCII coded character set (described in Appendix C).
° Decimal/hexadecimal, binary number system {described in Appendix D).

Further information on the 990 assembly language is provided in the Model 990 €omputer/TMS 9900
Microprocessor Assembly Language Programmer’s Guide (P/N 943441-9701).

USER MEMORY

Figure 4-1 shows the user RAM space in memory available for execution of user programs. Note that the
memory address value is the number of bytes beginning at 0000; thus, all word addresses are even values
from 0000 to FFFE 4.

Programs in EPROM'’s can be read by the processor and executed; however, EPROM memory cannot be
modified (written to). Therefore, workspace register areas are in RAM where their values can be modified.
Restart vectors and 7/BUG workspaces utilize the last 40 words of RAM memory space as shown in Figure
4-1.

HARDWARE REGISTERS

The TM 990/100M uses three major hardware registers in executing the instruction set: Program Counter
(PC), Workspace Pointer (WP), and Status Register (ST).

4-1

4.3.1

PROGRAM COUNTER (PC)

This register contains the memory address of the next instruction to be execufed. After an instruction
image is read in for interpretation by the processor, the PC is incremented by two so that it ““points’ to the -
next sequential memory word.

4.3.2 WORKSPACE POINTER (WP)
This register contains the memory address of the register file currently being used by the program under
execution. This workspace consists of 16 contiguous memory words designated registers 0 to 15. The WP
points to register 0. Paragraph 4.4 explains a workspace in detail.
4.3.3 STATUS REGISTER (ST)
The Status Register contains relevant information on preceding instructions and current interrupt level.
Included are:
[Results of logical and two's complement comparisons (many instructions automatically
compare the results to zero).
BYTE 0000
MEMORY BYTE 0001
ADDRESS ~
UPT VECTORS 0000 | _ _ { - —1 ——————
INTERR 003E FIRST
0040 1024
XOP VECTORS EPROM
DEDICATED 007E T™MS 2708 WORD
MEMORY EPROM
TiBuG {0080 1KX16
MONITOR
07FE
0800 SECOND
EPROM 1024
FF68 INT 3 .:“In(s)(zzge $ WORD
_____ } WP AT FF68 OFFE EPROM™
1] e — 2-WORD INST AT FF88 1000
FF8C } INT 4 >~ *
_____________ — WP AT FF8C
FFAC 2.WORD INST AT FFAC } MEMORY
FFBO ~ EXPANSION
FFFE > o
~ \\ FBFE
FCO00 ND
iy RAM SECO
~L TMS 40422 wono
USER FoFe |~ 256X18 RAM®
AVAILABLE ~<
~ e RAM FEOO ~
>~ RAM FIRST
~~ TMS 4042-2
~
~ 256 X 16 ™~ _ WORD
~ cemA L S
~N 0 e e —————
FFFE

A0001420

RESERVED 40 WORDS FOR

AT FFFC AND FFFE

TIBUG MONITOR WORKSPACE
FILES AND RESET VECTORS

FIGURE 4-1. MEMORY MAP

4-2

*STANDARD FOR BOARDS WITH
ASSEMBLY NO. 999211-0003;
OPTIONAL FOR OTHER BOARDS

-4.3.3.2

4.3.3.3

4.3.3.4

43.3.5

N
° Carry and overflow.

° Odd parity found (byte instructions only).
° XOP being executed.
L Lowest priority interrupt level that will be currently recognized by the processor.

The Status Register is shown in Figure 4-2.

o o
A

;-——~J‘—--—*\ " r—-—J\—————\ (;
10 1 12 13 14 15
L L> I A> | EQ [[} I OV—I oP [X l\\\\\l:}EgE\RSIE\D\\\\\I INTYER‘RUTPT MA'SK

L> LOGICALLY GREATER THAN ov OVERFLOW 6
A> ARITHMETICALLY GREATER THAN oP ODD PARITY
EQ EQUAL X XOP BEING EXECUTED
(o CARRY
A0001421
FIGURE 4-2. STATUS REGISTER
".4.3.3.1 Logical Greater Than

This bit contains the result of a comparison of words or bytes as unsigned binary numbers. The most
significant bit (MSB) of words being logically compared represents 2! (32,768), and the MSB of bytes
being logically compared represents 27 (128).

Arithmetic Greater Than

The arithmetic greater than bit contains the result of a comparison of words or bytes as two’s complement
numbers. In this comparison, the MSB of words or bytes being compared represents the sign of the number,
zero for positive, or one for negative.

Equal

The equal bit is set when the words or bytes being compared are equal.

Carry

The carry bit is set by a carry out of the MSB of a word or byte (sign bit) during arithmetic operations. The
carry bit is used by the shift operations to store the value of the last bit shifted out of the workspace
register being shifted.

Overflow

The overflow bit is set when the result of an arithmetic operation is too large or too small to be correctly

represented in two’s complement (arithmetic) representation. In addition operations, overflow is set when
the MSB'’s of the operands are equal and the MSB of the result is not equal to the MSB of the destination

4-3

4.3.3.6

4.3.3.7

4.3.3.8

4.4

operand. In subtraction operations, the overflow bit is set when the MSB's of the operands are not equal,
and the MSB of the result is not equal to the MSB of the destination operand. For a divide operation, the
overflow bit is set when the most significant sixteen bits of the dividend (a 32-bit value) are greater than or
equal to the divisor. For an arithmetic left shift, the overflow bit is set if the MSB of the workspace register
being shifted changes value. For the absolute value and negate instructions, the overflow bit is set when the
source operand is the maximum negative value, 8000, ¢.

Odd Parity

The odd parity bit is set in byte operations when the parity of the result is odd, and is reset when the parity
is even. The parity of a byte is odd when the number of bits having a value of one is odd; when the number
of bits having a value of one is even, the parity of the byte is even.

Extended Operation

The extended operation bit of the Status Register is set to one when a software implemented extended
operation (XOP) is initiated.

Status Bit Summary

Table 4-1 lists the instruction set and the status bits affected by each instruction.

SOFTWARE REGISTERS

Registers used by programs are contained in memory. This speeds up context-switch time because the
content of only one register (WP hardware register) needs to be saved instead of the entire register file. The
WP, PC, and ST register contents are saved in a context switch.

A workspace is a contiguous 16 word area; its memory location can be designated by placing a value in the
WP register through software or a keyboard monitor command. A program can use one or several

workspace areas, depending upon register requirements.

More than three-fourths of the instructions can address the workspace register file; all shift instructions and
most immediate operand instructions use workspace registers exclusively.

Figure 4-3 is an example of a workspace file in high-order memory (RAM). A workspace in ROM would be
ineffective since it could not be written into. Note that several registers are used by particular instructions.

4-4

TABLE 4-1. STATUS BITS AFFECTED BY INSTRUCTIONS

MNEMONIC | L> | A> | EQ c |ov] opr X MNEMONIC | L> | A> | EQ c|ov] opP X
A X X X X X — - LDCR X X X - - 1 —
AB X X X X X X - Lt X X X - - — -
ABS X X X X X - - LIMI - - — - - - -
Al X X X X X - = LREX - - - — - - -
ANDI X X X - — — — LWPI — - - - - - -
B - - - - - - — MOV X X X - — — —
BL - - — - - - - MOVB X X X — - X -
BLWP - - - - — — - MPY - - - — - — —
C X X X - — = - NEG X X X X X - -
cB X X X - - X — ORI X X X — — - —
cl X X X - — - - RSET - - - — — - -
CLR — — — — - — - RTWP X X X X X X X
cocC — — X — - — — S X X X X X - —
czc - - X - — - - SB X X X X X X -
DEC X X X X X — - SBO — — - — — - -
DECT X X X X X — - SBZ — — - — - — —
DIV — - - — X — — SETO - - - — - - -
IDLE - - - = - - - SLA X X X X X - -
INC X X X X X — - soC X X X - - — -
INCT X X X X X — - SOCB X X X - - X -
INV X X X - - - - SRA X X X X - — -
JEQ — - - - — - - SRC X X X X - - -
JGT - — - - — - - SRL X X X X - - -
JH — — — - - - — STCR X X X — - 1 -
JHE - - — - — - - STST - - - - - - -
JL - — — — — - - STWP — - - - - - -
JLE — — - - - - - SWPB — - - - — — -
JLT - — - - - — - szC X X X — - - -
JMP - — — — - - — SzZCB X X X — - X —
JNC — - - - - — - B — — X - — — -
JNE - - - — - - - X 2 2 2 2 2 2 2
JNO — — - -~ - = — XOP 2 2 2 2 2 2 2
Joc — — - - - - - XOR X X X - - - -
JopP - - - — - - —

NOTES

. When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte instructions. Otherwise these
instructions do nt affect the OP bit.

. The X instruction does not affect any status bit; the instruction executed by the X instruction sets status bits normally for that
instruction. When an XOP instruction is implemented by software, the XOP bit is set, and the subroutine sets status bits normally.

MEMORY

ADDRESS
WP REGISTER (HEXADECIMAL)
12 15
e | o k SHIFT BITS 12-15 USED BY
[F°°° f = Fcoo COUNT RO SHIFT INSTRUCTIONS
FC02 R1
FCo4 R 2
FC06 R3
FCO8 R4
FCOA R5
FCoc R6
FCOE R7
FC10 RS
FC12 RO
FC14 R 10
FC16 R 11 } USED BY XOP'S AND BRANCH RETURN
FC18 R 12 } USED IN CRU ADDRESSING
FC1A v R 13
- USED IN CONTEXT
FCcic _ ve R14 SWITCHING (XOP,
— BLWP, RTWP)
FC1E <7 R 15

Aa0001422

FIGURE 4-3. WORKSPACE EXAMPLE .

4-6

45 INSTRUCTION FORMATS AND ADDRESSING MODES

The instructions used by the TM 990/100M are contained in 16-bit memory words and require one, two, or
three words for full definition. The first word (or the single word) of an instruction will describe the
purpose of the instruction while the succeeding one or two words will be numbers that are referenced by
the initial instruction word. A word describing an instruction is interpreted by the Central Processing Unit
(CPU) by decoding the various fields within the 16 bits. These fields are shown in Figure 4-4 for the 9900
instruction set which is also categorized into nine instruction formats as shown in the figure.

In order to construct instructions in machine language, the programmer must have a knowledge of the fields
and formats of the instructions. This knowledge is often very important in debugging operations because it

allows the programmer to change bits within an instruction in order to solve an execution problem.

The fields within an instruction word contain the following information (see Figure 4-4):

® Op code which identifies the desired operation to be accomplished when this instruction
is executed.
L] B code which identifies whether the instruction will affect a full 16-bit word in memory

or an 8-bit byte. A one indicates a byte will be addressed, while a zero indicates a word
will be addressed.

FORMAT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 GENERAL USE

1 opcobE | B [Tp] DR [s | SR ARITHMETIC
2 OP CODE [SIGNED DISPLACEMENT Jump
3 OP CODE WR Ts SR LOGICAL
4 OP CODE c Ts SR CRU
5 "~ OP CODE | c R SHIFT
6 OP CODE | Ts SR PROGRAM
7 OP CODE NOT USED CONTROL
8 OP CODE N R IMMEDIATE
9 OP CODE DR | Ts SR MPY, DIV, XOP
OP CODE OPERATION CODE
B BYTE INDICATOR (1=BYTE)
Tp DESTINATION ADDRESS TYPE*
DR DESTINATION REGISTER
Ts SOURCE ADDRESS TYPE*
SR SOURCE REGISTER
C CRU TRANSFER COUNT OR SHIFT COUNT
R REGISTER
N NOT USED
*TpOR Tg ADDRESS MODE TYPE
00 DIRECT REGISTER
01 INDIRECT REGISTER
PROGRAM COUNTER RELATIVE, NOT INDEXED (SR OR DR = 0)
10 { PROGRAM COUNTER RELATIVE + INDEX REGISTER (SR OR DR>0)
11 INDIRECT REGISTER, AUTOINCREMENT REGISTER
A0001423

FIGURE 4-4. TM 990/100M INSTRUCTION FORMATS

4.5.1

4.5.2

® T fields identified by Tp for the destination T field and Tg for the source T field. The T
field is a two-bit code which identifies which of five different addressing modes will be
used (direct register, indirect register, memory address, memory address indexed, and
indirect register autoincremented). These modes are described in detail in paragraphs
4.5.1 through 4.5.5. The source T field is the code for the source address and the
destination T field is the code for the destination address. As shown in Figure 4-4, only
five instruction formats use a T field. '

® Source and destination register fields which contain the number of the register affected (0
through 15).
\
L] Displacement fields that contain a bias to be added to the program counter in program
counter relative addressing. This form of addressing is further described in paragraph
4.5.7.
] Fields that contain counts for indicating the number of bits that will be shifted in a shift

instruction or the number of Communication Register Unit (CRU) bits that will be
addressed in a CRU instruction.

DIRECT REGISTER ADDRESSING (T=00,)

In direct register addressing, execution involves data contained within one of the 16 workspace registers. In
the first example in Figure 4-5, both the source and destination operands are registers as noted in the .
assembly language example at the top of the figure. Both T fields contain 00, to denote direct register
addressing and their associated register fields contain the binary value of the number of the register
affected. The 110, in the op code field identifies this instruction as a move instruction. Since the B field
contains a zero, the data moved will be the full 16 bits of the register (a byte instruction addressing a
register would address the left byte of the register). The instruction specifies moving the contents of register
1 to register 4, thus changing the contents of register 4 to the same value as in register 1. Note that the
assembly language statement is constructed so that the source register is the first item in the operand while
the destination register is the second item in the operand. This order is reversed in the machine language
construction with the destination register and its T field first and the source register and ‘its' T field second.

INDIRECT REGISTER ADDRESSING (T=01,)

In indirect register addressing, the register does not contain the data to be affected by the instruction;
instead, the register contains the address within memory of where that data-is stored. For example, the
instruction in Figure 4-6 specifies to move the contents of register 1 to the address which is contained in
register 4 (indirect register 4). Instead of moving the value in register 1 to register 4 as was the case in
Figure 4-5, the CPU must first read in the 16-bit value in register 4 and use that value as a memory address
at which location the contents of register 1 will be stored. In the example, register 4 contains the value
FDOO, . This instruction stores the value in register 1 into memory address (MA) FDOO, .

In direct register addressing, the contents of a register are addressed. In indirect register addressing, the CPU
goes to the register to find out what memory location to address. This form of addressing is especially
suited for repeating an instruction while accessing successive memory addresses. For example, if you wished
to add a series of numbers in 100 consecutive memory locations, you could place the address of the first
number in a register, and execute an add indirect through that register, causing the contents of the first
memory address {source operand) to be added to another register or memory address (destination operand).
Then you could increment the contents of the register containing the address of the number, loop back to
the add instruction, and repeat the add, only this time you will be adding the contents of the next memory
address to the accumulator (destination operand). This way a whole string of data can be summed using a
minimum of instructions. Of course, you would have to include control instructions that would signal when

4-8

the entire list of 100 addresses have been added, but there are obvious advantages in speed of operation,
better utilization of memory space, and ease in programming.

EXAMPLE 1
ASSEMBLY LANGUAGE:
MOV R1,R4 MOVE THE CONTENTS OF R1 (SOURCE) TO R4 (DESTINATION)
il A’fﬂ
SOURCE OPERAND T CODE FOR
DESTINATION OPERAND DIRECT REGISTER =
REGISTER 4 -~ T BODE FOR
DIR CT REGISTER
MACHINE LANGUAGE \ REGISTER 1
5 81/9 10 11 12 &13 14 15

1 10 0 0 0 0 1 0 0 o 0 o 0 0 1 |>C101

OP CODE B To DR Ts SR
M.A.
FCO00 RO
FC02 R1
FC04 R2 PLACE R1 BINARY
FCO6 R3 IMAGE IN R4
FC08 R4
FCOA R5
EXAMPLE 2
ASSEMBLY LANGUAGE:

A R4,R10 ADD THE CONTENTS OF R4 (SOURCE) AND R10 (DESTINATION)

MACHINE LANGUAGE:
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 o0 1!0[0 ol 1 0o 1 o,lo o[o 1 o 0“I>A284

OP CODE B8 o DR Tg SR

A0001424

FIGURE 4-5. DIRECT REGISTER ADDRESSING EXAMPLE

49

ASSEMBLY LANGUAGE:
MOV R1,«R4 MOVE THE CONTENTS OF RI (SOURCE) TO ADDRESS IN R4 (DESTINATION)

MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0[0]0 1!0 1 0 0[0 0l0 0 0 1 [>C501

OP CODE B To DR Tg SR
[
M.A.
FCOO0 RO
FCO2 R1 ——
FCO4 R2
FCO6 R3

PLACE R1 BINARY
IMAGE IN MA FD001g

(INDIRECT R4)

FDOO ~—i ' '
FDO2

FCO08 R4 FDOO
FCOA R5

A0001425

‘ FIGURE 4-6. INDIRECT REGISTER ADDRESSING EXAMPLE

ASSEMBLY LANGUAGE:)
MOV R1,*R4+ MOVE THE CONTENTS OF RI TO ADDRESS CONTAINED IN R4,

INCREMENT ADDRESSBY 2

MACHINE LANGUAGE: .
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 > CcDO1

OP CODE ° B To DR Ts SR
BEFORE AFTER
MA.
FCOO RO
FCO2 R 0000 0000
FCO4 R2
FCO6 R3
FCO8 R4 FFOO FF02
/ NN
FFOO AAAA-| [0000

A0001427

FIGURE 4-7. INDIRECT REGISTER AUTOINCREMENT ADDRESSING EXAMPLE

4-10

4.5.3

4.5.4

4.5.5

INDIRECT REGISTER AUTOINCREMENT ADDRESSING (T=11,)

Indirect register autoincrement addressing is the same as indirect register addressing (paragraph 4.5.2)

“except for an additional feature — automatic incrementation of the register. This saves the requirement of
adding an increment (by one or two) instruction to increment the register being used in the indirect mode.
The increment will be a value of one for byte instructions (e.g., add byte or AB) or a value of two for full
word instructions (e.g., add word or A).

‘In assembly language, the register number is preceded by an asterisk (*) and followed by a plus sign (+) as

shown in Figure 4-7. Note in the figure that the contents of register 4 was incremented by two since the

instruction was a move word (vs. byte) instruction. If the example used a move byte instruction, the

contents of the register would be incremented by one so that successive bytes would be addressed (the

16-bit word addresses in memory are always even numbers or multiples of two since each contains two
\bytes). Bytes are also addressed by various instructions of the 990 instruction set.

Note that only a register can contain the indirect address.
SYMBOLIC MEMORY ADDRESSING, NOT INDEXED (T=10,)

This mode does not use a register as an address or as a container of an address. Instead, the address is a
16-bit value stored in the second or third word of the instruction. The SR or DR fields will be all zeroes as
shown for the destination register field in the first example of Figure 4-8. When the T field contains 10,,
the CPU retrieves the contents of the next memory location and uses these contents as the effective
address. In assembly language, a symbolic address is preceded by an at sign (@) to differentiate a numerical
memory address from a register number. All alphanumeric labels must be preceded by an @ sign; numerical
values preceded by an @ sign will be assembled as an absolute address {the TM 990/402 Line-By-Line
Assembler does not recognize alphanumeric symbols but does recognize absolute memory addresses).

In the second example in Figure 4-8, both the source and destination operands are symbolic memory
addresses. In this case, the source address is the first word following the instruction and the destination is
the second word following the instruction in machine language.

SYMBOLIC MEMORY ADDRESSING, INDEXED (T=10,)

Note that the T field for indexed as well as non-indexed symbolic addressing is the same (10,). In order to
differentiate between the two different modes, the associated SR or DR field is interrogated; if this field is
all zeroes (0000,), non-indexed addressing is specified; if the SR or DR field is greater than zero, indexing
is specified and the non-zero value is the index register number. As a result, register 0 cannot be used as an
index register.

In assembly language, the symbolic address is followed by the number of the index register in parentheses.
In the example in Figure 4-9, the source operand is non-indexed symbolic memory addressing while the
destination operand is indexed symbolic memory addressing. In this case, the destination effective address
is the sum of the FF02,, value in the source memory address word plus the value in the index register
(0004, 4). The effective address in this case is FF06;, as shown by the addition in the left part of the
figure.

Note that only symbolic addressing can be indexed.

EXAMPLE 1

ASSEMBLY LANGUAGE:
MOV R1,@>FF00 MOVE THE CONTENTS OF RI TO ADDRESS >FF00

NOTE
The > sign indicates hexidecimal representation.

MACHINE LANGUAGE:
OP CODE B) DR Tg SR

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

1st WORD 1 1 olo|1 o!o o o olo olo 0o o 1 > €801
2nd WORD 1 1 1 1 1 1 1 1 o6 o ©o0 ©0 0 ©0 ©0 0 | >FFo0
M.A.
RO
R1 *
R2
X \ PLACE R1 BINARY
IMAGE IN
FEFE MA >FF00
FFOO U
EXAMPLE 2

ASSEMBLY LANGUAGE:
MOV @>FFOA,@>FF08 MOVE THE CONTENTS OF >FFOA TO >FF08

MACHINE LANGUAGE:
OP CODE B o DR Tg SR

1st WORD 1 1 0 J 0 I 1 0 ’ 0 0 0 0 ’ 1 0 l 0 0 0 0 >C820
2nd WORD 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 >FFOA (SOURCE)
3rd WORD 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 >FF08 (DESTINATION)

BEFORE AFTER

M.A.
FFO8 FFFF 0000
FFOA 0000 0000

A0001428

FIGURE 4-8. DIRECT MEMORY ADDRESSING EXAMPLE

ASSEMBLY LANGUAGE:

MOV~ @>FF00,@>FF02(R1)

MACHINE LANGUAGE:

MOVE THE CONTENTS OF >FFO0TO >FF02+ RI CONTENTS

OP CODE B Tp DR Tsg SR
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 1 0 0 1] 0 0 0 1 1 1] 0 0 0 0
1 1 1 1 1 1 1 0 0 0 o 0 0 0 0
1 1 1 1 1 1 1 0 o 0 0 0 0 1 0

M.A
>FF02 (D)
+ 0004 (R1)
—— FFOO
>FF06

~_ FF02
FFO4
_’F FO6

A0001429

RO
R1
R2

BEFORE AFTER

0004

0004

FFEE FFEE
0000 0000
0000 0000
0000 FFEE

FIGURE 4-9. DIRECT MEMORY ADDRESSING, INDEXED EXAMPLE

456 IMMEDIATE ADDRESSING

>C860
>FF00 (SOURCE)}

>FF02 '(DESTINATION)

This mode allows an absolute value to be specified as an operand; this value is used in connection with a
register contents or is loaded into the WP or the Status Register interrupt mask. Examples are shown below:

LI
Cl
LWPI

R2,100

R8,> 100

>FC00

LOAD 100 INTO REGISTER 2

COMPARE R8 CONTENTS TO > 100, RESULTS IN ST

SET WP TO MA > FC00

4.5.7 PROGRAM COUNTER RELATIVE ADDRESSING

This mode allows a change in Program Counter contents, either an unconditional change or a change
conditional on Status Register contents. Bxamples are shown below:

Jmp
JMP
JEQ
Jvip

$+6
THERE
$+4
>FE26

JUMP TO LOCATION, 6 BYTES FORWARD
JUMP TO LOCATION LABELLED THERE
IF STEQBIT=1,JUMP 4BYTES (MA + 4)

JUMP TO M.A.>FE26 (LINE-BY-LINE ASSEMBLER ONLY)

The dollar symbol ($) means ““from this address’’; thus, $+6 means “this address plus 6 bytes.”

4-13

4.6 INSTRUCTIONS
Table 4-2 lists terms used in describing the instructions of the TM 990/100M. Table 4-3 is an alphabetical

list of instructions. Table 4-4 is a numerical list of instructions by op code. Examples are shown in both
assembly language (A.L.) and machine language (M.L.). The greater-than sign (>) indicates hexadecimal.

TABLE 4-2. INSTRUCTION DESCRIPTION TERMS

TERM DEFINITION
B Byte indicator (1 = byte, 0 = word)
C Bit count
DR Destination address register
DA Destination address
10P Immediate operand
LSB(n) Least significant (right most) bit of (n}
M.A. Memory Address
MSB(n) Most significant (left most) bit of (n)
N Don't care
PC Program counter
Result Result of operation performed by instruction
SR Source address register
SA Source address
ST Status register
STn Bit n of status register
Tp Destination address modifier
Tg Source address modifier
WR or R Workspace register
WRn or Rn Workspace register n
{n) Contents of n
a—~>b ais transferred to b
(a) > b Contents of a is transferred to be
[n] ~ Absolute value of n
+ Arithmetic addition
- Arithmetic subtraction
AND Logical AND
OR Logical OR
@ Logical exclusive OR
n Logical complement of n
> Hexadecimal value

Sl-v

TABLE 4-3. INSTRUCTION SET, ALPHABETICAL INDEX

ASSEMBLY MACHINE STATUS REG. RESULT

LANGUAGE LANGUAGE BITS COMPARED

MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION PARAGRAPH
A A000 - 1 04 X Add (word) 4.6.1
AB B0O0O 1 05 X Add (byte) 4.6.1
ABS 0740 6 0-2 X Absolute Value 4.6.6
Al 0220 8 0-4 X Add Immediate 46.8
ANDI 0240 8 0-2 X AND Immediate 46.8
B 0440 6 - Branch 4.6.6
BL 0680 6 - Branch and Link (R11) 46.6
BLWP 0400 6 - Branch; New Workspace Pointer 4.6.6
o] 8000 1 0-2 Compare (word) 4.6.1
cB 9000 1 0-2,5 Compare (byte) 46.1
Ci 02380 8 0-2 Compare Immediate 4.6.8
CKOF 03C0 7 — User Defined 4.6.7
CKON 03A0 7 - User Defined 4.6.7
CLR 04C0 6 - Clear Operand 4.6.6
coC 2000 3 2 Compare Ones Corresponding 4.6.3
czC 2400 3 2 Compare Zeroes Corresponding 4.6.3
DEC 0600 6 0-4 X Decrement (by one) 4.6.6
DECT 0640 6 0-4 X Decrement (by two) 46.6
DIV 3C00 9 3 Divide 46.3
IDLE 0340 7 - Computer ldle 46.7
INC 0580 6 0-4 X Increment (by one) 46.6
INCT 05C0 6 0-4 X Increment (by two) 4.6.6
INV 0540 6 0-2 X Invert (One’s Complement) 46.6
JEQ 1300 2 - Jump Equal (ST2=1) 46.2
JGT 1500 2 - Jump Greater Than (ST1=1), Arithmetic 46.2
JH 1B00 2 - Jump High (ST0=1 and ST2=0), Logical 4.6.2
JHE 1400 2 - Jump High or Equal (STO or ST2=1), Logical 4.6.2
JL 1A00 2 - Jump Low {STC and ST2=0), Logical 4.6.2
JLE 1200 2 - Jump Low or Equal {ST0=0 or ST2=1}, Logical 4.6.2
JLT 1100 2 — Jump Less Than (ST1 and ST2=0}, Arithmetic 46.2
JMP 1000 2 - Jump Unconditional 4.6.2
JNC 1700 2 - Jump No Carry (ST3=0) 4.6.2
JNE 1600 2 - Jump Not Equal (ST2=0) 4.6.2
JNO 1900 2 - Jump No Overflow (ST4=0) 4.6.2
Joc 1800 2 — Jump On Carry (ST3=1) 46.2

9i-v

TABLE 4-3. INSTRUCTION SET, ALPHABETICAL INDEX (Concluded)

ASSEMBLY MACHINE STATUS REG. RESULT

LANGUAGE LANGUAGE BITS COMPARED

MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION PARAGRAPH
JOP 1C00 2 - Jump Odd Parity (ST5=1) 46.2
LDCR 3000 4 02,5 X Load CRU 46.4
LI 0200 8 — X Load Immediate 46.8
LIMI 0300 8 12-18 Load Interrupt Mask Immediate 4.6.8
LREX 03EQ 7 12-15 Load and Execute 46.7
LWPI 02EQ 8 — Load Immediate to Workspace Pointer 46.8
MOV C000 1 0-2 X Move (word} 46.1
MOVB D000 1 0-2,5 X Move (byte) 46.1
MPY 3800 9 - Multiply 45.3
NEG 0500 6 02 X Negate (Two's Complement) 46.6
ORI 0260 8 0-2 X OR Immediate 46.8
RSET 0360 7 12-15 Reset AU 46.7
RTWP 0380 7 015 Return from Context Switch 4.6.7
S 6000 1 0-4 X Subtract {(word) 4.6.1
SB 7000 1 0-5 X Subtract (byte) 46.1
SBO 1D00 2 — Set CRU Bit to One 4.6.2
SBZ 1E00 2 — Set CRU Bit to Zero 46.2
SETO 0700 6 - Set Ones 46.6
SLA 0A00 5 04 X Shift Left Arithmetic 46.5
SoC EQO00 1 0-2 X Set Ones Corresponding (word) 46.1
SOCB F000 1 0-2,5 X Set Ones Corresponding (byte) 4.6.1
SRA 0800 5 0-3 X Shift Right (sign extended) 46.5
SRC 0BOO 5 0-3 X Shift Right Circular 46.5
SRL 0900 5 0-3 X Shift Right Logical 46.5
STCR 3400 4 025 X Store From CRU 46.4
STST 02C0 8 — Store Status Register 46.8
STWP 02A0 8 - Store Workspace Pointer 46.8
SWPB 06CO 6 - Swap Bytes 4.6.6
szc 4000 1 0-2 X Set Zeroes Corresponding (wordj 4.6.1
SZCB 5000 1 0-2,5 X Set Zeroes Corresponding {byte) 4.6.1
TB 1F00 2 2 Test CRU Bit 46.2
X 0480 6 — Execute 4.6.6
XopP 2C00 9 6 Extended Operation 46.9
XOR 2800 3 02 X Exclusive OR 46.3

TABLE 4-4. INSTRUCTION SET, NUMERICAL INDEX

MACHINE
LLANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL) MNEMONIC INSTRUCTION FORMAT AFFECTED

0200 1} Load Immediate 8 0-2
0220 Al Add Immediate 8 0-4
0240 ANDI And Immediate 8 0-2
0260 ORI - Or Immediate 8 0-2
0280 Cl Compare Immediate 8 0-2
02A0 STWP Store WP 8 -
02C0 STST ' Store ST 8 -
02EO LWPI Load WP Immediate _ 8 .

* 0300 , LM Load Int. Mask 8 12-15
0340 . IDLE tdle 7 -
0360 RSET Reset AU 7 12-15
0380 RTWP Return from Context Sw. 7 0-15
03A0 CKON User Defined 7 —
03C0 CKOF User Defined 7 -
03E0 LREX Load & Execute 7 -
0400 BLWP Branch; New WP 6 -
0440 B Branch 6 -

< 0480 X Execute 6 -
04C0 CLR | Clear to Zeroes 6 -
0500 NEG ‘Negate to Ones 6 0-2
0540 INV Invert 6 0-2

"0680 INC Increment by 1 6 04
05C0 INCT Increment by 2 6 04
0600 DEC Decrement by 1 6 0-4
0640 DECT Decrement by 2 6 0-4
0680 BL Branch and Link 6 —
06C0 SWPB Swap Bytes 6 -
0700 SETO Set to Ones 6 -
0740 ABS] Absolute Value 6 0-2
0800 SRA Shift Right Arithmetic 5 03
0900 SRL Shift Right Logical 5 03
0AQ00 SLA Shift Left Arithmetic 5 0-4
0BOO ’ SRC Shift Right Circular 5 0-3
1000 JMP Unconditional Jump 2 -
1100 JLT Jump on Less Than 2 —
1200 JLE Jump on Less Than or Equal 2 —
1300 JEQ Jump on Equal 2 —
1400 JHE Jump on High or Equal 2 -
1500 JGT Jump on Greater Than 2 -
1600 JNE Jump on Not Equal 2 —
1700 JNC Jump on No Carry 2 —
1800 JocC Jump on Carry 2 -
1900 JNO Jump on No Overfiow 2 —
1A00 Ju Jump on Low 2 —
1B0O JH Jump on High 2 —
1C00 Jor Jump on Odd Parity 2 —
1D00 SBO Set CRU Bits to Ones 2 —
1E00 SBZ Set CRU Bits to Zeroes 2 —
1F00 TB Test CRU Bit 2 2
2000 coC Compare Ones Corresponding 3 2

TABLE 4-4. INSTRUCTION SET, NUMERICAL INDEX (Concluded)

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL MNEMONIC INSTRUCTION FORMAT AFFECTED
2400 CzC Compare Zeroes Corresponding 3 2
2800 XOR Exclusive Or 3 0-2
2C00 XOP Extended Operation 9 6
3000 LDCR LLoad CRU "4 0-2,5
3400 STCR Store CRU 4 02,5
38C0 MPY Multiply 9 -
3C00 DIV Divide 9 4
4000 SZC Set Zeroes Corresponding (Word) 1 0-2
5000 SZCB Set Zeroes Corresponding (Byte) 1 0-2,5
6000 S Subtract Word 1 0-4
7000 SB Subtract Byte 1 0-5 L
8000 (o] Compare Word 1 0-2
9000 CB Compare Byte 1 0-2,5
A000 A Add Word 1 0-4
B00O AB Add Byte 1 0-5
C000 MOV Move Word 1 0-2
D000 MOvB Move Byte 1 0-2,5
EQO00 SOC Set Ones Corresponding (Word) 1 0-2
F000 SOCB Set Ones Corresponding (Byte) 1 0-25

4.6.1 FORMAT 1 INSTRUCTION.

These are dual operand instructions with multiple addressing modes for source and destination operands.

GENERAL FORMAT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE B ™ DR Ts SR

if B = 1, the operands are bytes and the operand addresses are byte addresses. If B = 0, the operands are
words and the operand addresses are word addresses.

4-18

- -1 - S
| op cope 8 RESULT STATUS
MNEMONIC 0 1 2 3 MEANING COMPARED BITS DESCRIPTION
. B | N TQ 07 i AFFECTED
A ~ 1 0 1 0 Add Yes 04 (SAYH(DA) > (DA)
AB . 10 1 1 Add bytes Yes 0-6 (SA)H(DA) *(DA)
C 1 0 © 0 Compare No 0-2 Compare (SA) to (DA) and set
appropriate status bits
CB 1.0 0 1 Compare bytes No 0-2,5 Compare (SA) to (DA) and set
appropriate status bits
MOV 11 01| 0 Move Yes 0-2 (SA) ~ (DA}
MOVB 110 1 Move bytes Yes 0-2,5 (SA) ~(DA)
S 0 1 1 0 Subtract Yes 04 (DA) ~ (SA) ~ (DA)
_SB 0o 1 1 1 Subtract bytes Yes 0-5 (DA) — {SA) =~ (DA)
soc . 1T 11 0 Set ones corresponding Yes 0-2 (DA) OR (SA) =~ (DA)
SOCBI 11 1 1 Set ones corresponding bytes Yes 0-2,5 (DA) OR (SA) —~ (DA)
szC 0O 1 0 0 Set zeroes corresponding Yes 0-2 (DA) AND (SA) = (DA)
~ szcs 010 1 Set zeroes corresponding bytes Yes 0-2,5 (DA) AND (5A) — (DA) B
EXAMPLES
(1) ASSEMBLY LANGUAGE:
A @>100,R2 ADD CONTENTS OF MA >100 & R2, SUM IN R2
MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 0 1 l 0 0 0 0 0 1 0 1 0 0 0 0 0 >A0A0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 >0100

>9081

'12) ASSEMBLY LANGUAGE:
cB R1,R2 COMPARE BYTE R1 TO R2, SET ST
MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 1 0 1] 0 0 1 0 0 0 0 0 0o 1
NOTE
In byte instruction designating a register, the left byte is used. In the above
example, the left byte (8 MSB's) of R1 is compared to the left byte of R2,
and the ST set to the results.
4.6.2 FORMAT 2 INSTRUCTIONS
4.6.2.1 Jump Instructions

Jump instructions cause the PC to be loaded with the value [PC+2(signed displacement)] if bits of the
Status Register are at specified values. Otherwise, no operation occurs and the next instruction is executed
since the PC was incremented by two and now points to the next instruction. The signed displacement field
is a word (not byte) count to be added to PC. Thus, the jump instruction has a range of —128 to 127 words
(—256 to 254 bytes) from the memory address following the jump instruction. No ST bits are affected by a

jump instruction.

4-19

GENERAL FORMAT:

0 1 2 3 4 5 6 7 9 10 11 12 13 14
OP CODE SIGNED DISPLACEMENT (WORDS)
MNEMONIC Op CODE MEANING ST CONDITION TO CHANGE PC
01234567
JEQ 0001t OoO0 11 Jump equal ST2=1
JGT 00010101 Jump greater than ST1=1
JH 00011011 Jump high STO=1and ST2=0
JHE 00010100 Jump high or equal STO=10rST2=1
JL 00011010 Jump low STO=0andST2=0
JLE 0o0d10010 Jump low or equal STO=0o0rST2=1
JLT 0001 00O0O01 Jump less than ST1=0and ST2=0
JMP .0 001 0O0O00O0 Jump unconditional unconditional
JNC 000101 11 Jump no carry ST3=0
JNE 00010110 Jump not equal ST2=0
JNO 00011001 Jump no overflow ST4 =0
JOoC 00011000 Jump on carry ST3=1
JOP 00011100 Jump odd parity ST5 =1

In assembly language,

language is in words.

EXAMPLES

(1)

JEQ $+4

$ in the operand indicates ““at this instruction’”. Essentially JMP $ causes an
unconditional loop to the same instruction location, and JMP $+2 is essentially a no-op ($+2 means “here
plus two bytes”’). Note that the number following the $ is a byte count while displacement in machine

ASSEMBLY LANGUAGE:

IF EQ BIT SET, SKIP 1 INSTRUCTION

MACHINE LANGUAGE:

0 1 2 3

0] 0 1

PC POINTS TO —™

JEQ $+4

B

IF STATUS REGISTERBIT 2=1

SKIP. NEXT INSTRUCTION

>1301

The above instruction continues execution 4 bytes (2 words) from the instruction location or, in other
words, two bytes (one word) from the Program Counter value (incremented by 2 and now pointing to next
instruction while JEQ executes). Thus, the signed displacement of 1 word (2 bytes) is the value to be added

to the PC.

4-20

(2 ASSEMBLY LANGUAGE:
) JMP $

MACHINE LANGUAGE:

REMAIN AT THIS LOCATION

>10FF

- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i lo o o 1 0o o o o 1 1. 1 1 1 1
PC —1 WORD —» JVP $ CONTINUOUS LOOP

PC POINTS TO —»|

»

TO JMP $ (>FF =—1WORD)

This causes an unconditional loop back to one word less than the Program Counter value (PC + >FF = PC-1
word). The Status Register is not checked. A JMP $+2 means ‘“go to the next instruction’ and has a
displacement of zero (a no-op). No-ops can substitute for deleted code or can be used for timing purposes.

.4.6.2.2 CRU Single-Bit Instructions.
These instructions test or set values at the Communications Register Unit (CRU). The CRU bit is selected
by the CRU address in bits 3 to 14 of register 12 plus the signed displacement value. The selected bit is set
to a one or zero, or it is tested and the bit value placed in equal bit (2) of the Status Register. The signed
displacement has a value of —128 to 127.
NOTE
CRU addressing is discussed in detail in paragraph 4.7.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
General Format: OP CODE SIGNED DISPLACEMENT
STATUS
OP CODE
MNEMONIC MEANING BITS DESCRIPTION
01234567
) AFFECTED
SBO 00011101 Set bit to one - Set the selected CRU output bit to 1.
SBZ 00011110 Set bit to zero - Set the selected CRU output bit to O.
T8 0oco011 111 Test bit 2 If the selected CRU input bit = 1, set ST2.
EXAMPLE

R12,BITS 3 TO 14 =>>100

ASSEMBLY LANGUAGE:
SBO 4

MACHINE LANGUAGE:

1 2 3 4 5

SET CRU ADDRESS >104 TO ONE

0
Looo

0 0 0 0 0 1 0 0 >1D04

4-21

46.3 FORMAT 3/9 INSTRUCTIONS

These are dual operand instructions with multiple addressing modes for the source operand, and workspace
register addressing for the destination. The MPY and DIV instructions are termed format 9 but both use the
same format as format 3. The XOP instruction is covered in paragraph 4.6.9.

1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE DR (REGISTER ONLY) Ts SR
RESULT STATUS
OP CODE COMPARED BITS
MNEMONIC 012345 MEANING TOO AFFECTED DESCRIPTION
cocC 001000 |Compare ones No 2 Test (DR) to determine if O's are in each
corresponding bit position where 1’s are in (SA). If so,
set ST2.
czc 001001 |Compare zeros No 2 Test (DR) to determine if O's are in each
corresponding bit position where 1's are in (SA). if so,
set ST2.

XOR 001010 |Exclusive OR Yes 0-2 (DR) @ (SA)—>(DR)

MPY 001110 |Multiply No Multiply unsigned (DR) by unsigned
(SA) and place unsigned 32-bit product
in DR (most significant) and DR + 1
(least significant). If WR15 is DR, the
next word in memory after WR15 will
be used for the least significant half of
the product.

DIV 001111 |Divide No 4 If unsigned (SA) is less than or equal to
unsigned (DR), perform no operation
and set ST4. Otherwise divide unsigned

(DR} and (DR) by unsigned (SA).
;" Quotient —> (DR), remainder = (DR+1).
If DR=15, the next word in memory
§ after WR15 will be wused for the
; remainder.
Exclusive OR Logic = 1@®0=1 ,’
0®0=0 |
1®1=0"
EXAMPLES
(1) ASSEMBLY LANGUAGE:
MPY R2,R3 MULTIPLY CONTENTS OF R2 AND R3, RESULT IN R3 AND R4

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 i 9 10 11 12 13 14 15

0 0 1 1 1 03 0 0 1 1 0 0 0 0 1 0 >38C2

BEFORE AFTER
R2 0002 0002
R3 0003 0000 32-BIT
R4 N 0006 RESULT

4-22

The destination operand is always a register, and the values multiplied are 16-bits, unsigned. The 32-bit
result is placed in the destination register and destination register +1, zero filled on the left.

(2) ASSEMBLY LANGUAGE:
Div @>FC00,R5 DIVIDE CONTENTS OF R5 AND R6 BY VALUE AT M.A. >FC00
MACHINE LANGUAGE:
1 2 3 4 5 6 7, 8 9 10 11 12 13 14 15
%
0 1 1! 1 1 0 0 1 1 V] 0 0 [1] 0 >3D60
11 1 11 0o 0o o0 o0 o0 ©0 o0 0 | >FCo0
BEFQRE AFTER
. M.A. >FC00 0005 0005
R5 0000 0003
R6 0011 0002 |-«——— REMAINDER
The unsigned 32-bit value in the destination register and destination register +1 is divided by the source
operand value. The result is placed in the destination register. The remainder is placed in the destination
register +1.
(3) ASSEMBLY LANGUAGE:
coc R10,R11 ONES IN R10 ALSO IN R11?
MACHINE LANGUAGE:
1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 0 1] 0 1 V] 1 1 1] 0 1 0 1 0 >22CA
Locate all binary ones in the source operand. If the destination operand also has ones in these positions, set
the equal flag in the Status Register; otherwise, reset this flag. The following sets the equal flag:
1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R10 1 0 1 0 1 0 1 0 0 0 0 V] 1 1 0 0 >AA0C
v T
R11 1 1 1 0 1 1 1 1 1 1 (1] 0 1 1 0 1 >EFCD

Set EQ bit in Status Register to 1.

4.6.4 FORMAT 4 {CRU MULTIBIT) INSTRUCTIONS

10

11

12

13

14

15

General Format:

OP CODE

Ts

SR

4-23

The C field specifies the number of bits to be transferred. |f C = 0, 16 bits will be transferred. The CRU
base register (WR 12, bits 3 through 14) defines the starting CRU bit address. The bits are transferred
serially and the CRU address is incremented with each bit transfer, although the contents of WR12 are not
affected. Tg and SA provide multiple mode addressing capability for the source operand. If 8 or fewer bits
are transferred (C = 1 through 8), the source address is a byte address. If 9 or more bits are transferred (C =
0, 9 through 15), the source address is a word (even number) address. If the source is addressed in the
workspace register indirect autoincrement mode, the workspace register is incremented by 1 if C = 1
through 8, and is incremented by 2 otherwise.

RESULT STATUS
MNEMONIC OP CODE MEANING COMPARED BITS DESCRIPTION
012345 TO 0 AFFECTED '
LDCR 001100 | Load communcation Yes 02,57 Beginning with LSB of (SA), transfer the
register specified number of bits from (SA) to_
the CRU.
STCR 00110 1 |Store communcation Yes 0-2,57 Beginning with LSB of {SA), transfer the
register specified number of bits from the CRU to
(SA). Load unfilled bit positions with 0.
tST5 is affected only if 1 € C <8,
EXAMPLE

ASSEMBLY LANGUAGE:

LDCR

@>FE00,8

MACHINE LANGUAGE:

4.6.5

LOAD 8 BITS ON CRU FROM M.A. >FE00

0 1 3 4 5 7 8 9 10 11 12 13 14 15

0 1] 1 (} 0 0 0 0 1 0 0 0 0 0 >3220

1 1 1 1 1 0 0 0 0 0 0 0 0 0 >FEQO0
NOTE

CRU addressing is discussed in detail in paragraph 4.7.

FORMAT 5 (SHIFT) INSTRUCTIONS

These instructions shift (left, right, or circular) the bit patterns in a workspace register. The last bit value
shifted out is placed in the carry bit (3) of the Status Register. If the SLA instruction causes a one to be
shifted into the sign bit, the ST overflow bit (4) is set. The C field contains the number of bits to shift.

General Format:

1

12 13 14 15

OP CODE

4-24

If C = 0, bits 12 through 15 of RO contain the shift count. If C = 0 and bits 12 through 15 of WRO = 0, the

shift count is 16.

; RESULT STATUS
OP CODE
MNEMONIC MEANING COMPARED BITS DESCRIPTION
: 01234567
- ! TOO AFFECTED
SLA. VM 00001010 Shift left arithmetic Yes 0-4 Shift (R) left. Fill vacated bit
: positions with 0.
" SRA 0 0 0 0 1 0 0 O | Shiftright arithmetic Yes 0-3 Shift (R) right. Fill vacated bit
N) positions with original MSB of (R).
SRC 0 00 0 1 0 1 1 | Shiftrightcircular Yes 0-3 Shift (R) right. Shift previous LSB
o into MSB.
-SRL v/ 0 000 1 0 0 1 | Shiftrightlogical Yes 0-3 Shift (R) right, Fill vacated bit

positions with 0's.

/
EXAMPLES

ASSEMBLY LANGUAGE:
SRA R1,2

(1)

MACHINE LANGUAGE:

0

1 2

3

10

11

12

SHIFT R1 RIGHT 2 POSITIONS, CARRY SIGN

13

14

15

o 82y
o o o0 o 1 o o o | o o T o[0 o0 0O 1 o8t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T
R1BEFORE| 1 0o o0 o 1 1 1 1 o o o o 1 1 1 1 >8FOF
~ N < <
\\\ T \\\ T e T i
‘R1 AFTER 1 1 1 o o o 1 1 1 1 6 0o o0 o 1 1 >E3C3
N SIGN BIT CARRIED IN
(2) ASSEMBLY LANGUAGE:
SRC R5,4 CIRCULAR SHIFT R5 4 POSITIONS
MACHINE LANGUAGE:
0 1 2 3 4 5 6 7. 8 9 10 11 12 13 14 15
oBYS5
o o o0 o 1 o o oo 1 o of o 1) 1 | »eeus
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T
REBEFORE | 0 0 0 0 1 o o 1 o o o o 1 1 1 1 >090F
\l T \~_¥ . -~
R5 AFTER AT 1 1 1 1 o o o0 o 1 o o 1 o © o0 o© >F090

4-25

(3) ASSEMBLY LANGUAGE:

SLA R1,0 SHIFT COUNT IN RO
SHIFT COUNT
/7 el N
0 1 2 3 4 6 9 10 1 1 13 14 15
RN R B RN NN N
RO 1 1 0 0 1 1 0 0 1 1 0] 0 0 1 1 >CCC3
R1 (BEFORE) 1 1 1 1 " 1 1 1 o 1 1 1 1 1 1 1
— - - ~ -
R1 (AFTER) 1 1 1 1 I 1 1 1 1 I 1 1 1 1 ' 1 0 0 (1]
N
VACATED BITS ZERO FILLED.
4.6.6 FORMAT 6 INSTRUCTIONS
These are single operand instructions.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
General Format: OP CODE Ts SR
The Tgand S fields provide multiple mode addressing capability for the source operand. .
RESULT STATUS]
OP CODE
MNEMONIC MEANING COMPARED BITS DESCRIPTION
01234567889 E
TOO AFFECTED
B 0000010001 |Branch No - SA — (PC)
BL 0000011010 |Branchandlink No - (PC) = (R11); SA > (PC)
BLWP 000001000 0 |Branch and load No — (SA) =>(WP); (SA+2) —>(PC);
workspace pointer (old WP) = (new WR13);
(old PC) =~ (new WR14});
(ald ST}~ (new WR15});
the interrupt input (INTREQ) is not
tested upon completion of the
BLWP instruction.
CLR 0000010011 |Clear operand No — 0000 > (SA)
SETO 0000011100 [Settoones No - FFFFqg ™ (SA)
INV 0000010101 |Invert Yes 0-2 (SA) — (SA) (ONE'S complement)
NEG 000001010 0 |Negate Yes 0-4 —(SA) > (SA)TWO'S complement)
ABS 000001110 1 |Absolutevalue® No 04 [(SA}] —(SA)
SWPB 0000011011 |Swapbytes No - (SA), bits 0 thru 7 > (SA), bits
8 thru 15; (SA), bits 8 thru 15 >
(SA), bits 0 thru 7.
INC 0000010110 |Increment Yes 0-4 (SA) + 1~ (SA)
INCT 0000010111 |Incrementby two Yes 0-4 (SA) + 2> (SA)
DEC 0000011000 | Decrement Yes 04 (SA) — 1> (SA)
DECT 0000011001 [Decrementby two Yes 0-4 (SA) ~ 2> (SA)
x T 0000010010 |Execute No - Execute the instruction at SA.

*QOperand is compared to zero for setting the status bit (i.e., before execution).

t1f additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these
words will be accessed from PC and the PC will be updated accordingly. The instruction acquisition signal (IAQ) will not be true
when the TMS 9900 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

. 4-26

EXAMPLES

(1) ASSEMBLY LANGUAGE:
B *R2 BRANCH TO M.A. IN R2

MACHINE LANGUAGE:

0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 >0442

R2 F D D O

B *R2 PC | F D D‘OI (AFTER)

M.A. >FDDO | NEXT INSTR. |
— !

(2) ASSEMBLY LANGUAGE:
' BL @>FF00 BRANCH TO M.A. >FF00, SAVE OLD PC VALUE (AFTER EXECUTION) IN R11

MACHINE LANGUAGE:

0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 >04A0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 >FF00

R11 F C 0 4 <« OLD PC VALUE _
M.A. >FCO0 BL @ >FF00 PC i F F O_E:l (AFTER)
>FC02 F F 0 O
>FC04 X

>FF00 NEXT INSTR.

TO RETURN

EXECUTE

B *R11

B *R11
(3) ASSEMBLY LANGUAGE:
BLWP @>FD00 BRANCH, GET NEW WORKSPACE AREA

MACHINE LANGUAGE:

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 >0420

1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 >FDO0

4-27

4.6.7

General Format: (

This context switch provides a new workspace register file and stores return values in the new workspace.
See Figure 4-10. The operand (>FDO0O0 above) is the M.A. of a two-word transfer vector, the first word the
new WP value, the second word the new PC value.

FORMAT 7 (RTWP, CONTROL) INSTRUCTIONS

0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 - 15

OP CODE N

.

External instructions cause the three most-significant address lines (AO through A2) to be set to the levels
described in the table below and cause the CRUCLK line to be pulsed, allowing external control functions
to be initiated. The RSET instruction resets the 1/0 lines on the TMS 9901 to input lines; the TMS 9902 is
not affected. RSET also clears the interrupt mask in the Status Register. The LREX instruction causes a

delayed load interrupt, delayed by two 1AQ cycles after LREX execution. The load operation gives control
to the monitor.

CKOF and CKON can be used by monitoring pins 9 and 10 respectively of U20. See sheet 2 of the

schematics in Appendix F.

~

STATUS ADDRESS
MNEMONIC OP CODE MEANING BITS DESCRIPTION BUS*
012345678910 AFFECTED AO0A1TA2
IDLE 00000011010 idle - Suspend TMS 9900 L H L
instruction execution until
an interrupt, LOAD, or
RESET occurs
RSET 00000011011 Reset 1/0 & SR 12—-15 0—>ST12 thru ST15 L HH -
CKOF 00000011110 User defined —— H H L
CKON 00000011101 User defined - H L H
LREX 00000011111 Load interrupt Control to T/IBUG H HH
RTWP 00000011100 Return from 0-15 (R13) = (WP)
Subroutine (R14) - (PC)
(R15) = (ST)

*These outputs from the TMS 9900 go to a SN74LS138 as shown in Figure 5-6

4-28

BLWP @ >FD00 BRANCH WITH NEW WORKSPACE

"M.A.>FC00 N RO

!/ 5 7
/

> CALLING PROGRAM

>FC80 | BLWP @ >FD00 BEFORE BLWP OCCURS

FCooO WP

TRANSFER >FD00 F F 00 (NEW WP) FC8a4a PC

VECTORS FF 20 (NEW PC) o N ST

[

AFTER BLWP
OCCURS

>FF00 RO < FFOO wp

FF20 PC

N ST

RETURN FCO00 = (OLD WP) R13

VALUES FC84 = (OLDPC) R14

OLD ST CONTENTS R15 >- NEW EXECUTION AREA

>FF20 NEXT INSTR.
RTWP
-/ .
RTWP RETURNS EXECUTION TO CALLING
A0001430 PROGRAM STARTING AT M.A. >FC84

FIGURE 4-10. BLWP EXAMPLE

Essentially, the RTWP instruction is a return to the next instruction that follows the BLWP instruction (i.e.,
RTWP is a return from a BLWP context switch, similar to the B *R11 return from a BL instruction). BLWP
provides the necessary values in registers 13, 14, and 15 (see Figure 4-10).

EXAMPLE

ASSEMBLY LANGUAGE:
RTWP RETURN FROM CONTEXT SWITCH

MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 >0380

4-29

R13 FCO0O

R14 FC8aA4 AFTER
R15 STATUS FCO0O WP
\ . \ FC8a4 PC
. STATUS ST

M.A. >FF40 RTWP

EXECUTION BEGINS AT M.A. >FC84
WITH RO AT M.A. >FCO00.

4.6.8 FORMAT 8 (IMMEDIATE, INTERNAL REGISTER LOAD/STORE) INSTRUCTIONS

4.6.8.1 Immediate Register Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
General format: OP CODE N [R -
10P
RESULT STATUS
OP CODE
MNEMONIC MEANING COMPARED BITS DESCRIPTION
012345678910
TOO AFFECTED
Al 0000001000 1 Add immediate Yes 0-4 (R) + 10P > (R)
ANDI 00000010010 AND immediate Yes 0-2 (R) AND 10P = (R)
Cl 0000001010 09| Compare Yes 0-2 Compare (R) to |OP and set
immediate . appropriate status bits
1 000 0’0 01 0‘0 0 0D Load immediate Yes 0-2 JOP =>(R)
ORI 00000010011 OR immediate Yes 0-2 (R) OR 10P = (R) \
AND Logic: 0.1,1.0=0 OR Logic: 0+1,1+0=1
00=0 0+0=0
1:1=1 1+1=0

4.6.8.2 Internal Register Load Immediate Instructions

5 6 7 8 9 10 1 12 13 14 15

General format: OP CODE N
10P
MNEMONIC Op CODE MEANING DESCRIPTION
0123456 7 89 1
LWPI 0O000O0OO0T1O01T1 1 Load workspace pointer immediate 10P = (WP), no ST bits affected
LiIMI 000 O0O0O0 131 . 00 0 Load interrupt mask . JOP, bits 12 thru 156 >S8T12
o \ % thru ST15

4-30

4.6.8.3 Internal Register Store Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.General format: I

OP CODE [~] R

No ST bits are affected.

OP CODE
MNEMONIC MEANING DESCRIPTION
0123456 7 8 9 10
STST 00000O01TO011T 0 O Store status register (ST) = (R}
STWP 0000O0O0T1TO0T1TO0 1 Store workspace pointer (wpP) —(R)
EXAMPLES

(1) ASSEMBLY LANGUAGE:

Al R2>FF ADD >FF TO CONTENTS OF R2

MACHINE LANGUAGE:

o
-
N
w
H
a
-2}
~N
-}
©

10 1 12 13 14 15

BEFORE AFTER

R2 000F 010E

(2) ASSEMBLY LANGUAGE:

Cl R2>10E COMPARE R2 TC >10E

MACHINE LANGUAGE:

R2 contains ““after” results (> IOE) of instruction in Example (1) above; thus the ST equal bit becomes set.

(3) ASSEMBLY LANGUAGE:

LWPI >FC00 WP SET AT >FC00 (M.A. OF R0)

MACHINE LANGUAGE:

This is used to define the workspace area in a task, usually placed at the beginning
of a task.

4-31

>0222

>00FF

>0282

>010E

>02E0

>FCO00

(4) ASSEMBLY LANGUAGE:
STWP R2 STORE WP CONTENTS IN R2

MACHINE LANGUAGE:

0 0 0 0 0 0 1 0 1 0 1 0 0 () 1 ‘0 >02A2

This places the M.A. of RO in a workspace register.

4.6.9 FORMAT 9 (XOP) INSTRUCTION

Other format 9 instructions (MPY, DIV) are explained in paragraph 4.6.3 (format 3).

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

General Format: | 0 0 1 0 1 1 D (XOP NUMBER) Ts SR

The Tg and SR fields provide multiple mode addressing capability for the source operand. When the XOP is -
executed, ST6 is set and the following transfers occur:

(40,6 + 4D) > (WP) First vector at 40, ¢

(42,6 + 4D} — (PC) Each vector uses 4 bytes (2 words)
SA ~ (new R11)

(old WP) - (new WR13)

(old PC) -~ (new WR14)

(old ST) = (new WR15)

The TMS 9900 does not test interrupt request (INTREQ) upon completion of the XOP instruction.

An XOP is a means of calling one of 16 subtasks available for use by any executing task. The EPROM
memory area between M.A. 40,4 and 7€, 4 is reserved for the transfer vectors of XOP’s O to 15 (see Figure
4-1). Each XOP vector consists of two words, the first a WP value, the second a PC value, defining the
workspace pointer and entry point for a new subtask. These values are placed in their respective hardware ;
registers when the XOP is executed.

The old WP, PC, and ST values (of the XOP calling task) are stored (like the BLWP instruction) in the new
workspace, registers 13, 14, and 15. Return to the calling routine is through the RTWP instruction. Also
stored, in the new R11, is the M.A. of the source operand. This allows passing a parameter to the new
subtask, such as the memory address of a string of values to be processed by the XOP-called routine. Figure
4-11 depicts calling an XOP to process a table of data; the data begins at M.A. FF00, 4.

XOP's 0, 1 and 8 to 15 are used by the T/BUG monitor, calling software routines (supervisor calls) as

requested by tasks. This user-accessible software performs tasks such as write to terminal, convert binary to
hex ASCII, etc. These monitor XOP's are discussed in Section 3.3.

4-32

ASSEMBLY LANGUAGE:
X0P ©@>FF00,4

MACHINE LANGUAGE:

>2D20

>FF00

o 1 2 3 4 s 6 7 8 0 11 12 13 14 1§
o o 1 o 1 1}l 1 o 1 o|lo0o o o o
T
111 1 1 1 1 1 o 0 0o o0 o0 o o
M.A.
r > 0040 XOP 0 WP AFTER
>0042 XOP 0 PC FCoOO WP
XOP J FC20 PC
VECTORS >0050 FCoOoO N ST
>0052 FC20
>007E
N\
CALLING INSTR. XOP @>FF00,4
f >FCo0 RO
FFoOoO R11-+—— PASSED PARAMETER (SOURCE OPERAND)
R12
Xop 4 OLD Wwp R13 RETURN VECTORS
PROGRAM oLD PC R14 TO CALLING TASK
OLD SR R15
_ >FC20 1ST INSTR.
RTWP
. TABLE OF >FF00
VALUES TO

BE PROCESSED

A0001431

4-33

FIGURE 4-11. XOP EXAMPLE

4.7

CRU ADDRESSING .

The Communications Register Unit (CRU) is the 1/O data interface for the TM 990/100M microcomputer.
When CRU instructions are executed, data is written or read through the CRUOUT or CRUIN pins
respectively of the TMS 9900 to or from designated devices addressed via the address bus of the
microprocessor.

The CRU address is maintained in register 12 of the workspace register area. Only bits 3 through 14 of the
register are interpreted by the CPU for the desired CRU address, and this 12-bit value is called the CRU
base address. .

TM 990/100M devices driven off of the CRU interface include the TMS 9901 parallel interface and the
TMS 9902 serial interface which are accessed through the CRU addresses noted in Table 4-5. This table also
lists the functions of the other CRU addresses which can be used for on-card or off-card 1/0 use. Addressing
the TMS 9901 and TMS 9902 for use as interval timers is explained, along with programming examples, in.
section 4.10. Further detailed information on these two devices can be obtained from their respective data
manuals.

The five instructions that program the CRU interface are:

L] LDCR Load from memory a pattern of 1 to 16 bits and serially transmit this pattern
through the CRUQUT pin of the TMS 9900 (paragraph 4.6.4).

° STCR Store into memory a pattern of 1 to 16 bits obtained serially at the CRUIN pin
of the TMS 9900 (paragraph 4.6.4). '

L] SBO Set a CRU bit to a logical one; essentially, this sends a logical one through the
CRUOUT pin of the TMS 9900 (paragraph 4.6.2.2).

° SBZ Set a CRU bit to a logical zero; essentially, this sends a logical zero through the
CRUOUT pin of the TMS 9900 (paragraph 4.6.2.2).

® T8 Test a CRU bit; essentially, this tests the value at the CRUIN pin of the
TMS 9900, and the test results are reflected in the equal bit of the Status
Register (paragraph 4.6.2.2).

To execute any of these five instructions, a CRU address must be present in register 12; this value can be
loaded by software; e.g., use a load immediate instruction (LI}. Although the register is a full 16 bits, only
bits 3 through 14 are used to contain the CRU base address. Bits 0, 1, 2, 3, are zeroes and bit 15 is ignored
as shown below:

/ 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

R12 g

AN J
—— R R ——
CRU PORT ADDRESSED *
ZEROES IGNORE

The LDCR and STCR instructions use a byte or word of memory depending respectively if 1 to 8 bits or
more than 8 bits are to be loaded or stored. In STCR instructions, the right bits of the memory area are
used for storage, and unused left-side bits are zero filled. Figure 4-12 depicts an LDCR instruction using a
byte of memory. Figure 4-13 depicts an STCR instruction using a word of memory.

4-34

The TB, SBO, and SBZ instructions use a displacement of +127 bits and —128 bits from the CRU bit
designated in bits 3 to 14 of R12. Thus, if bit 300, is designated in R12, bits 3 to 14, the following
assembly language instructions and comments would apply:

B >10 TEST CRU BIT >310
SBO =1 SET CRU BIT >2FF TO ONE
SBZ 16 SET CRU BIT >310 TO ZERO

The LDCR and STCR instructions address the CRU using the value in R12; these instructions do not have
the advantage of specifying a displacement from the R12 value such as used by the CRU bit instructions. If
it is necessary to change the CRU address, it is important to understand that only bits 3 to 14 need be
modified. For example, if it is desired to load (LDCR) successive groups of 16 CRU ports, a value of 32
(not 16) must be added to the contents of R12 for each group in order to accurately change the contents of
R12 bits 3 to 14 (Al R12,32). An alternate method would be to load a new value into R12 (LI R12,
> 200; LI R12, > 210; etc.).

4 TABLE 4-5. CRU ADDRESS MAP
CONTENTS OF R12 CRU BASE ADDRESS ‘
UN

(BITSO TO 15) (R12,BITS3TO 14) FUNCTION
0000; ¢ to 007E; ¢ 00,6 to 3F ¢ Reserved, on-card expansion
0080, ¢ to O0BE ¢ 40,4 to 5F ¢ TMS 9902, on-card serial 1/O Interface, timer
00CO0; ¢ to OOFE; ¢ 6016 to 7F ¢ Reserved, on-card expansion
0100; ¢ to 0O13E, ¢ 8014 to 9F ;¢ TMS 9901, on-card 16 1/O parallel interface,

interrupt status register, interrupt mask
register, interval timer

0140,¢4 to O1FE ¢ AOQ;¢ toFF g Reserved, on-card expansion

2004 to 1FFE ¢ 1004 to FFF;¢ Off-card CRU lines

LI R12,>200 LOAD CRU BASE ADDRESS >100 IN BITS 3 TO 14 OF R12
LDCR RS56 6 BITS TO CRU

o 1 2 3 4 5 6 7 8 9 10 KR} 12 13 14 15

o o o o o 0 1 o [} o 0 o l 1 1 [} o ~020C

o 0 o [[0 1 o 0 [} [} o [} o 0 [~0200

o 0 1 1 0 OID 1 1 OIO OIO 1 0 1 >3185

EE: 4 e 108 A N I; 15
w1 [+ o 1]o [+ ol]o]o]]]
Tees | LT

[—0 - CRU Address >100
-, —1
—2

e 56 + CRU Address >105

8 BITS OR LESS — BYTE ADDRESS —10
9 BITS OR MORE — WORD ADDRESS

A0001434

FIGURE 4-12. LDCR BYTE INSTRUCTION

4.35

LI R12>120*2 LOAD CRU BASE ADDRESS >120 INBITS3 TO 14 OF R12

STCR R4,10 10 BITS FROM CRU TO R4
(1] 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 (1] 1] 0 ' 0 (1] 1 0 0 (4] 0 0 1 1 (1] 0 >020C
T T
0 0 4] 0 0 (1] 1 0 0 1 0 0 0 (1] (1] [1] >0240
/] 0 1 1 0 1 1 0 1 0 1] 0 1] 1 0 0 >3684
(1] 6 15
R4 V] (1] 1] V] 1] (1]
WV’A “ l “ L 0 «~CRU Address >120
ZERO FILL
UNUSED LEFT-SIDE BITS . . . — 1
| I
~3
4
~5
-6
7
-8
-9 «~CRU Address >129
A
NOTES: -8
8 BITS OR LESS - BYTE ADDRESS -c
9 BITS OR MORE - WORD ADDRESS b
THE MULTIPLICATION IN THE DESTINATION OPERAND (>120*2)
IS NOT RECOGNIZED BY THE TM 990/402 LINE-BY-LINE ASSEMBLER. - E
THIS MULTIPLICATION IS AN EXAMPLE OF THE RELATIONSHIP OF L F
THE CONTENTS OF THE CRU BASE ADDRESS TO THE CONTENTS
OF REGISTER 12. - 10
A0001436

FIGURE 4-13. STCR WORD INSTRUCTION

48 COMPARISON OF JUMPS, BRANCHES, XOP’'S
This comparison is shown in Table 4-6.
49 INTERRUPTS
4.91 INTERRUPT OPERATION
The TM 990/100M employs 16 interrupt levels with level O the highest priority and level 15 the lowest

priority. Level O is reserved for the reset function. Reset, which can be initiated by the RESET pushbutton
{(Figure 1-2) or by remote activation of the PRES signal, ptaces the board under monitor control.

4-36

TABLE 4-6. COMPARISON OF JUMPS, BRANCHES, XOP'S

MNEMONIC PARAGRAPH DEFINITION SUMMARY

JMP 4.6.2 One-word instruction, destination restricted to +127, —128 words from Program

4.6.6 Two-word instruction, branch to any memory location.
4.6.6 Same as B with PC return address in R11.
BLWP 4.6.7 Same as B with new workspace; old WP, PC and ST contents (return vectors) are in

XOP 4.6.9 Same as BLWP with address of parameter (source operand) in new R11. Sixteen XOP

Counter value.

new R13, R14, R15.

vectors outside program in M.A. 40,4 to 7E; 4; can be called by any program.

4.9.2

Interrupts are controlled by the TMS 9901 interface which polls interrupt signals from 15 input lines (INT1
to INT15), determines the priority of the incoming signal, and sends a four-bit code of the highest priority
interrupt to the TMS 9900 along with an interrupt request (INTREQ). The four-bit code is sent on lines

1C0 to IC3.

The TMS 9900 compares the level of incoming interrupt request to the interrupt mask in the least
significant four bits (12 to 15) of the Status Register. If the level of the incoming interrupt is equal to or
less than the value in the Status Register mask, a context switch takes place similar to a BLWP instruction
(paragraph 4.6.6). A pair of vector addresses (the new WP and PC values) are obtained from one of the 16
interrupt traps in EPROM (M.A. 0000, ¢ to 003E¢), as shown in Figure 4-14. Then the following takes
place:

° The current WP, PC, and ST contents are saved.

L] The new values from the interrupt vectors are placed in the WP and PC hardware registers.

° The old WP, PC, and ST values are placed respectively in R13, R14, and R15 of the new
workspace.

L A value of one less than the new interrupt value is placed in the ST interrupt mask (bits
12 to 15).

° Execution begins and continues until another interrupt of higher priority occurs or until a

return instruction is executed (RTWP).
1f a higher priority interrupt occurs, a second interrupt context switch takes place after at least one
instruction is executed of the first interrupt. This allows execution of a LIMI instruction to inhibit other
interrupts. Completion of the second interrupt passes control back to the first interrupt.

PROGRAMMABLE INTERRUPTS

Interrupt traps 0, 3, and 4 contain vector values burned into EPROM. Interrupts 3 and 4 can be
programmed by the user.

4-37

A0001432

M.A.

0000 WP E ECTORS
0002 Pe INTERRUPT OV
0004 WP
0006 PC INTERRUPT 1 VECTORS
P}
L
L
003C WP
003E PC INTERRUPT 15 VECTORS

FIGURE 4-14. INTERRUPT TRAP LOCATIONS

Interrupt trap 0 is used for the reset function. This is not a user programmable interrupt.

Interrupt trap 3 is the real time clock utilized by programming the TMS 9901 using CRU
instructions. This programming is shown in the TMS 9901 Programmable Systems
Interface Data Manual. Vectors in interrupt trap 3 are FF68;, for the WP vector and
FF88;¢ for the first of a two-word instruction to be inserted in RAM by the user. See
Figure 4-15. This two-word instruction area could contain a B or BL instruction as
discussed in paragraph 4.6.6. The branch would be to the start of a subroutine set up to
handle the interrupt. The subroutine would return to the interrupted program with the
RTWP instruction, using the return values in R13, R14, and R15 of the interrupt
workspace.

Interrupt trap 4 originates from the INT output of the TMS 9902 as shown in the
TMS 9902 Asynchronous Communication Controller Manual. A moveable plug (J11)
allows this signal to be routed either to connector P1 or to the TMS 9901 as input for
interrupt 4 as shown in the Schematics (Appendix F). Vectors in trap 4 are to FF8C, ¢4
for the workspace and to FFAC, ¢ for the first of a two-word instruction. The user can
fill these RAM locations as desired. See Figure 4-15.

Four conditions causing INT to be active (low causing interrupts to occur) are as follows:

TMS 9902 CRU bit 21 a one and a data set status change (DSCH) occurs.
TMS 9902 CRU bit 20 a one and timer elapses (TIMELP)
TMS 9902 CRU bit 19 a one and the transmit buffer is empty (XBIENB).

TMS 9902 CRU bit 18 a one and the receive buffer is loaded (RIENB).

If the user desires to fill interrupt trap locations (M.A. 000C, ¢ to 0012, ;) with his own vector values, he
must reburn the EPROM with the desired values.

4-38

4.10

4.10.1

A0001433

M.A.
FF68

16-WORD

WORKSPACE INTERRUPT 3
FF88

——————-1 2worD |Ns1'nucno~5

FF8C

16-WORD

. WORKSPACE INTERRUPT 4

FFAC | —————— —]} 2wOoRD INSTRUCTION

FIGURE 4-15. DEDICATED INSTRUCTION AND WORKSPACE AREAS FOR INTERRUPTS 3 AND 4

PROGRAMMING THE INTERVAL TIMERS

Two interval timers are available to the TM 990/100M; one from the TMS 9901 and one from the
TMS 9902. Detailed information on these two devices can be found in the respective data manuals for the
TMS 9901 and TMS 9902.

Both interval timers can be programmed to cause interrupts at the TMS 9900:

To trap 3 for the TMS 9901

To trap 4 for the TMS 9902

TMS 9901 INTERVAL TIMER

A detailed discussion of the TMS 9901 interval timer can be found in the TMS 9901 data manual. There are
several possible sequences of coding that can program and enable the interrupt 3 interval timer, and since
the timer has a maximum period of 349 milliseconds before issuing an interrupt, the programmer must
decide whether to set the interval period in the calling program or in the code handling the interrupt. If the
interrupt period desired is longer than 349 milliseconds, then it may be advantageous to reset the timer in
the interrupt subroutine which also triggers the interrupt and returns control back to the interrupted
program. In any case, the timer must be initially set and triggered following the general sequence below:

(1M
(2)
(3)

(4)

Set the CRU address of the TMS 9901 in bits 3 to 14 of R12.
Enable the clock interrupt at the TMS 9901 (interrupt 3).
Set the Status Register interrupt mask to a value of 3 or greater.

Set a register to the value of the interval desired (bits 1 to 14) with bit 15 set to one to
enable the clock as shown in Figure 4-16. This figure shows the code and a representation
of the CRU for setting a time of 250 milliseconds and for setting the TMS 9901 to the
clock mode. The first bit serially brought in on the CRU will be a value of one in bit 15
of the register which sets the TMS 9901 to the clock mode; successive bits (1 to 14) then
set the clock interval value. The final bit brought in triggers the timer.

4-39

4.10.2

(5) When the interrupt occurs, the interrupt handler must reset the interrupt at the
TMS 9901 before returning to the interrupted program.

The clock decrements the value set in step (4) at the rate of ¢/64 (approximately 46,875 Hz with a 3 MHz
clock). The maximum interval register value of all ones in 14 bits (16,383) takes approximately 349
milliseconds to decrement to zero.

The timer can also be started and stopped, then the timer register bits read with an STCR instruction to
determine the elapsed time (elapsed bit count divided by 46,875 equals elapsed time in seconds).

The code in Figure 4-17 is an example of a code to set up and call the TMS 9901 interval timer and also the
code of the interrupt handling subroutine. Note that the calling program first clears the counting register
(RO) of the interrupt workspace. Then it sets up the interrupt masks at the TMS 9901 and TMS 9900 after
setting the TMS 9901 CRU address in R12. Then the calling program sets an initial value in the timer
register (CLK1 to CLK14 as shown in the TMS 9901 data manual). Because the desired output on the
terminal is a message every 15 seconds, a minimum interval is set in the calling program while the interrupt
handler is responsible for setting the time and clearing the interrupt after it occurs. The handler keeps a
count of the intervals to determine the 15 seconds. Since interrupt 3 causes a context switch to the WP and
PC areas shown in Figure 4-15, a branch to the handler is first placed in the RAM instruction area shown
for interrupt 3. The interrupt will continually interrupt the executing program with return values to that
program stored in R13 to R15 of the interrupt workspace. Assembled code is shown for the TM 990/402
line-by-line assembler as well as the PXRASM assembler.

TMS 9902 INTERVAL TIMER

The TMS 9902 interval timer is programmable through the CRU, but it requires a different sequence of
events than for the TMS 9901 timer. A detailed discussion of the TMS 9902 interval timer can be found in
the TMS 9902 data manual. The interval register of the TMS 9902 can contain a maximum value of FF ¢,
providing a maximum interval of 16.32 milliseconds at an internal clock frequency of 1 MHz. The interrupt
is routed to the TMS 9900 through INT4 of the TMS 9901; thus the interrupt masks of both these devices
must be programmed. J1 must be in the “9902" position to route interrupts from the TMS 9902 to the
microprocessor via the TMS 9901; code to run the TMS 9902 interval timer generally follows the following
sequence:

(1) Set the TMS 9901 CRU address in R12 and enable interrupt 4 at that device.
(2) Set the Status Register interrupt mask to a value of 4 or greater.

(3) Set the TMS 9902 CRU address in R12.

(4) Reset the TMS 9902; this sets LDIR and LDCTRL.

(5) Load the interval timer contents (ITC) on the CRU (bits 0 to 7); ITC/15,625 = interval
time in seconds at an internal clock of 1 MHz.

(6) Set TIMENB (CRU bit 20) to ready interrupt and reset TIMELP and TIMERR.

(7) Reset LDCTRL to zero {CRU bit 14).

(8) Set LDIR to a one (CRU bit 13) to begin loading the interval register. When loaded,
LDIR is reset.

(9) Set LDIR to begin timer countdown.

4-40

L R12, 2*>>80 CRU ADDRESS OF TMS 9901 (2 X >80 = >>100)
L R1, >BB8F CLOCK, >2DC7 COUNTS,
LDCR R1,15 SET CLOCK VALUE AT CLOCK REGISTER

ol1]2|3]a]ls|e]7]s8]|0]10]11]12]13]1a]1s

mu1o11o111ooo~a11

1 | >sBsF

L .

CRU
ADDR

be——————— CLK1 TO CLK14 = >2DC7 = 11,719 ——————>
11,719/48,876Hz = 2560MS

e ———

81

82

NOTE:

THE FIRST SERIAL INPUT FROM CRU (A ONE IN BIT 16 OF R1) SETS CLOCK MODE.

8F

LAST INPUT TO CLOCK REGISTER (CLK1 TO CLK14} STARTS THE CLOCK.

A0001436

FIGURE 4-16. ENABLING AND TRIGGERING TIMS 9901 INTERVAL TIMER

4-41

T™MS 9901
ASSIGNMEN

1=CLOCK MODE
CLK1
CLK2

CLK14

ASSEMBLED USING PXRASM ASSEMBLED USING TM 990/402 LINE-BY-LINE

ON 990/4 COMPUTER ASSEMBLER ON TM 990/100M
A
A N C Al
0go01 * * * * * . . * 3 *
0002 ¢ THIS PROGRAM CAUSES AN INTERRUPT THROUGH INT2 .
0003 ¢ EVERY 15 SECONDS USING THE INTERVAL TIMER IN THE
0004 ¢ TMS 9901. THE ADRG OPCODE IS A DIRECTIVE TO THE o
0005 + PXRASM ASSEMBLER TO GENERATE A TAS CHARACTER AND
0005 ¢ CODE TO LOAD AT AN 9RBRSOLUTE ADDRESS. J.WALSH S5-77 +
Qon? * - * * . * » * - -
0008 IDT “IN$9017
0009 .
0010 * PROSRAM CALLING THE INTERRUPT
0011 . F=0062 SES
0012 FDOD AORG >FDON ZET AB3OLUTE ADDRESS TE N
0013 FDOO 0O2E0 LWPI »FD20 LEF INE WORKSPRCE FOOD D2ED LWRT »FIE0
FDO2 FD20 Foog FDEo
0014 FDO4 04E0 CLR #>FFe8 CLEAR INTERRUPT REGISTER © FOO4 Q4ED CLR 35FFES
FD06 FF68 . Foioe FFES
0015 FDO8 o020C LI R12,2e>30 SET 9901 CRU ADDRESS FOOg 0200 LI R1&s:100
FDOA 0100 . FDOR 0100
0016 FDOC 1E00 SBZ 0 9901 TO- INTERRUPT MODE FOOC 1E00
0017 FDOE 1003 3BO0 3 ENABLE INTERRUPT 3 FOOE 100
0018 FD10 0300 LIMI 3 SET STATUS REGISTER INTERRUPT FIL o 0200 3
FIz o003
FD12 0003 FD14 0201 LI RisZ
0019 FD14 0201 LI R1:3 CLOCK COUNT 1, CLOCK MODE FDle 0003
FD16 0003 FO18 33C1 LDCR R1s:1S
0020 FD18 33Ct LDCR R1515 SET CLOCK COUNTs»s ENABLE COUNT FD1A 10FF JWP :FOMA
0021 FDiA 10FF JMP§ LOOF AT THIS LOCATION FOMC ~FEOD
ooae . FEOD 0220 CI ROs&D
0023 + INTERRUPT PROGRAM FEOZ 003C
0024 . FEO4 130B JEQ $+34
0025 FEO0O RORG >FEOQQ ZET ABSOLUTE YALUE FEOS 0S20 INC RO
0026 FEO00 0280 CI ROsED 1% COUNMT = 50 = 15 TECONDS? FEOS 0200 LI R1&8:3100
FEO2 003 FEOR 0100
0027 FEO4 130B JED §+24 YE3» PRINT MEISAGE FEOC 0201 LI R1.:SE3F
0028 FEOA 0530 INC RO tHOs INCREMENT COUMTER FENE SBOF
0029 FEO08 0200 LI R12,2e>80 ZET 9901 CRU ADDRESS FE10 2301 LDOCR R1,15
FEOR 0100 FE1& 1E00 ZEZ 0
0030 FEOC 0201 LI R1s>SBSF CLOCK COURT OF 115719 FE14 1D03 ZEO 3
FEOE SBSF FE1& w200 LIMI 3
0031 FE10 33C1 LDCR R1515 COUNT TOO 9901s ENABLE TIMER FE1&8 0003
0032 FE12 1E00 B2 0 3301 INTERRUPT MODE FEIR 1380 RTWF
0033 FE14 1DO3 IO 3 CLEAR INTERRUPT 3 FELC 2FRO =OF 3:FE2%.14
0034 FE16 0300 LIMI 3 REZET INTERRUFT MASK AT 9900 FEIE FE26
FE18 0003 FE20 04C0 CLR RO
0035 FEIR 0330 RTWP RETURN TO PROGRAM FEZ2 0460 B 3:FEOD
0036 FEIC 2FRAO #OP $>FE26>14 WRITE MESSAGE FEZ4 FEOO
FE1E FE26 FE26 3135 %15 ZELONDE HAVE ELRFIED.
0037 FE20 (0400 CLR RO RESET TIMER REGISTER FE28 2053
0033 FE22 0460 E P:FEQO REINVOKE INTERRUPT FEZA 4543
FE24 FEOQO FEZC 4F4E
0039 FE26 31 TEXT 1S SECONDS HAVE ELAPSELN. “ FEZE 4453
0040 FE3E 0707 DATR >07075>0707 BELLS FEZ0 2048
FE40 0707 FE32 4156
0041 FE42 00 BYTE 0 END OF MESSRGE FE34 4520
0042 . FE36 454C
0043 ¢ INSTRUCTION IN INTERRUPT RAM ARER FE38 4150
0044 . FE2A 5345
0045 FF28 AORG >FF88 FE2C 442E
0046 FF32 0460 ‘B P>FENO 30 TO INTERRUPT ROUTINE FE3E 0707
FF3A FEO0O FE4D 0707
0047 END DIRECTIVE TO PXRASM ASSEMBLER FE4Z 0000
FE44 E
FF38 0460
FF8A FEOO
FFac
MEMORY ADDRESS /
MACHINE CODE
NOTE
THESE PROGRAMS WERE ASSEMBLED FOR EXECUTION
ON A BOARD WITH EXPANSION RAM. FOR EXECUTION
ON A NON-EXPANDED SYSTEM, ABSOLUTE MEMORY
ADDRESSES MUST BE >FE00 OR GREATER AND
REFERENCES TO THE RESULTING ABSOLUTE
ADDRESSES MUST BE UPDATED FROM THE ABOVE
EXAMPLES.
A0001437

FIGURE 4-17. EXAMPLE OF CODE TO RUN TMS 9901 INTERVAL TIMER

4-42

4.11

CONTEXT SWITCH TO ANOTHER PROGRAM SUCH AS MONITOR

By manipullating registers 13, 14, 15 and executing the RTWP instruction, execution can branch from one
program to another, such as a user program to the 7/BUG monitor. The following is code to branch into

or

(10} When the interval timer has counted down to zero, the interrupt (INT) is sent via jumper

J1 to interrupt 4 of the TMS 9901.

NOTE
This interrupt should not be routed to the TMS 9901
from the TMS 9902 while under the monitor as ex-
plained in paragraph 6.6. If J1 is in the P1-18 position,
the interrupt signal will be routed from connector P1,
pin 18.

the monitor.
LI R13>FFBO WP VALUE OF MONITOR
LI R14>80 PC VALUE OF MONITOR
LI R15,0
RTWP

NOTE
The above example shows how to branch into a program
using the RTWP instruction; it also branches into the
monitor. Other more convenient methods to branch to
the monitor include the following:

BLWP @> FFFC MONITOR VECTORS AT M.A. > FFFC

B @>80 BRANCH DIRECTLY TO MONITOR ENTRY POINT

4-43

5.1

5.2

5.3

SECTION 5

THEORY OF OPERATION

GENERAL

This section covers theory of operation of the TM 990/100M. Information in the following manuals can be
used to supplement material in this section:

o TMS 9900 Microprocessor Data Manual
L TMS 9901 Programmable Systems Interface Data Manual
L TMS 9902 Asynchronous Communication Controller

- Figure 51 shows data flow within the TMS 990/100M, highlighting the four major buses:

L Address Bus

o Control Bus

° Data Bus

o Communications R'egister Unit Bus

SYSTEM CLOCK (Figure 5-2)

System timing is regulated by a crystal-controlled TMS 9904 clock driver. The tank circuit, shown in Figure
5-2, is tuned to the third harmonic (48 MHz) of the crystal frequency (16 MHz).

CENTRAL PROCESSING UNIT (Figures 5-3 to 5-6)

The TMS 9900 microprocessor is the central processing unit (CPU for the TM 990/100M. The processor’s
responsibilities include:

° Memory and bus control

® Instruction acquisition and interpretation
° Timing

° System initialization

o CRU programming

Figure 5-3 groups TMS 9900 pins by function. The address bus addresses devices such as the TMS 9901 and
TMS 9902 as well as memory locations. Data is transferred to and from memory as 16-bit words. Interrupt
requests and the interrupt level code (1C0O to IC3) come from the TMS 9901 interface.

5-1

¢S

MONITOR ROM SELECT

EXPANSION ROM SELECT

RAM
MEMORY 1/0 >
co:?;gﬁ{m SELECT :1%’:22:\12 ;.??(' %“;‘T“s’
\ > < y =
Vo
ﬂ SELECT ’T ﬂ
ADDRESS BUS
CENTRAL |/ 11 J | || T IT |
PROCESSOR \‘ CONTROL BUS
UNIT o | [T T 17 T
(DATA BUS
. [] | [[T]
\ CRU CONTROL BUS
B IJ U
R

s1
.L_—/ RESET
—
= REST/LOAD LOAD
PRES LOGIC 1AQ
P1
RESTART
P1> L]
o1
P2 > 2
SYSTEM 53
cLOCK
4
T™S 9904
==
A0001438

() <
—_—— N —
r NG -t

! - WRAP
L WIRE - WRA

-1 AREA
: 1
[

| <

—
promemd
vb"_} 11l

o

<

FIGURE 5-1. TM 990/100M BLOCK DIAGRAM

PARALLEL 1/0 _ BUFFERS FOR
L INTERRUPT TO INT4 c;ﬁf::“;l':gn OFF BOARD
CONTROLLER EXPANSION
<y 1r\. TS
@
> o —_ _—
— E 2 r —
1 - « | SERIALI/O |
: 2 £ | INTERFACE |
J o L o1
w
[
5
—_ — e — 8 S AN A A2
P3 P2 P1

A0001439

5.4

R
XTAL 1 o1 o1
QUARTZ 18 12 A 8
crysTaL CJ R
T _XTAL 2 19 sz M | 02 \an—22__] TMS 9900
MICROPROCESSOR
TANK 1 (TIM9904) 3 R ¢3
I 1 CLOCK 8 [—™W—— 28
0.33uH % 18 pF DRIVER . R
[4
TANK 2) 9 = A—E2] 25
OSCIN -
17 R = 1052
4.7KQ 20 13 3 1
Vce [Vpp [GND GND
1 — 2
+5V +12V

FIGURE 5-2. CRYSTAL-CONTROLLED OPERATION

CRU input instructions (STCR, TB) sample bits on CRUIN while CRU output instructions (LDCR, SBO,
SBZ) place serial outputs on CRUOUT. CRU instructions also program the TMS 9901 and TMS 9902 as
explained respectively in paragraphs 5.9 and 5.10 (examples are shown in paragraph 4.10).

Other signals are explained in detail in the TMS 9900 Microprocessor Data Manual.

Figures 5-4 and 5-5 show the data and address flow within the TMS 9900.

Figure 5-6 shows the logic of three instructions that can be user defined.

RESET AND LOAD (Figure 5-7)

The reset function resets the processor and TMS 9901, inhibiting memory write and the CRU clock. An
interrupt occurs that resets the Status Register and begins execution under the monitor. Reset can occur in
two ways:

° Actuating the RESET pushbutton on the card.
o Setting PRES.B to a logic ZERQ state through connector P1. This signal can generate a
power-up reset by inserting a 39 uF tantalum electrolyte cpacitor as shown in the left side

of Figure 5-7 and in the lower right of Figure 7-2.

The load function causes an interrupt to WP and PC vectors respectively at FFFC, , and FFFE, 4. It is
implemented two ways:

° Executing the software instruction LREX.
L Setting RESTART to logic zero through connector P1. This can be used to generate a

powerup load by inserting a 39 uF tantalum electrolyte capacitor as shown in the left side
of Figure 5-7 and in the lower right of Figure 7-2.

53

- RESET g
—_———

(MSB) DO |e—
GOES TO LOAD 4 42
RESET/LOAD —f TMS 9900 D1 (e—>
LOGIC | =—me D2 43
D3 ja—34
_
— HOLD pa |
5 46
«———— HoLDA D5 |[e—————»
62 a7
CONTROL BUS GOES »1 READY D6 [" >
TO MEMORY DECODER, { +——3 1 wa(t D7 |e———
MEMORY, EXPANSION 61 | — 49
-y——————— | e
BUFFERS. o3 WE D8)
-+———{ MEMEN D9 [&——>
L <29 |pgiN D10<L—.'
D11 —52
|] D12
54
— 9l 42 D13 f———>
FROM SYSTEM CLOCK < 3 55
_ZB-> d’ D14 ———————
56
| —— 8| 04 D15 [———>
11 24
—— | CRUIN (MSB) A0 —*-2-3———*'
CRUIOY =« 30 | pyour Al
L <« 9% lepucrk A2 ———
21
A3 ——————-»20
- 32 —
————®1 INTREQ A4 ——19——>
______QQ_..ICO A5 ‘———:;~———ﬁ—
FROM TMS 9901 4 35 it A6 F——->
INTERRUPT CONTROL 34 17
33 16
L —==—1 3 A8 ———:g————4>
A9 p————
1 14
BV — Ves A10 ————7;““‘*’
1
59
Vee A2 |———»
+12V 27 1
——=— Vpp A13 ————13—»
zac Vss A4 |————m>
Vss
a0

A0001440

FIGURE 5-3. TMS 9900 SIGNALS

5.4

DATA BUS GOES TO
L MEMORY, EXPANSION
BUFFERS

ADDRESS BUS GOES TO
MEMORY AND /0 DECODER,
 MEMORY, EXPANSION
BUFFERS, TMS 9901,

TMS 9902, WIRE-WRAP AREA.

INTREQ IC0-IC3

AO0—A14
PN
(a
~
 —
(~—————————\ 16 16
<
<\:ﬁ/l:__—_—‘\ INTERRUPT
REGISTER MEMORY
INSTRUCTION ADDRESS
REGISTER REGISTER
n — PN
M
16 T2
o
-
GRAM COUNTER
CONTROL PROGRAM C
M .
Ro WORKSPACE REGISTER STATUS
REGISTER
16
; J)
N _
¥
R
o .
L
< 1 16
HOLD . A B
HOLDA
LOAD ALU
WE]
Ri@g: CONTROL
LOGIC
MEMEN C::::‘\
DBIN
RESET
1AQ MULTIPLEXER
CRUCLK)
4
] _J 16
o1—04a
SHIFT _ T6
COUNTER ("]
SOURCF DATA
REGISTCR
: SHIFT REGISTER
<.‘f/l:
16
CRUOUT
CRUIN

A0001441 DO D15

FIGURE 5-4. TMS 9900 DATA AND ADDRESS FLOW

5-5

RESET SIGNAL
CAUSES IMMEDIATE

ENTRY HERE

]

INSTRUCTION
ACQUISITION

INSTRUCTION
EXECUTION

PC+2 - PC

LOAD

GET RESET VECTOR
(WP AND PC)

FROM LOCATION 0, 2
STORE PREVIOUS PC,
WP, AND ST IN NEW
WORKSPACE. SET

INTERRUPT MASK
(ST12—-ST15} =0

LOAD
ACTIVE/

GET LOAD VECTOR
(WP AND PC] FROM
LOCATION FFFCyg,
FFFEqg

WP, AND ST IN NEW
WORKSPACE. SET
INTERRUPT MASK
(ST12 —~ ST15) = 0

ACTIVE?

XOP OR BLWP
INSTRUCTION

INTERRUPT?
(INTREQ
ACTIVE)

INTERRUPT
VALID? (ICO-IC3=

T12-ST15)

Y

Y

STORE PREVIOUS PC,

Y

GET INTERRUPT LEVEL
VECTOR (WP AND PC)
STORE PREVIOUS PC,
WP, AND ST IN NEW

WORKSPACE. SET
INTERRUPT MASK (ST12
—-8§T15) TO LEVEL -1

f

IDLE
INSTRUCTION?

A0001443

FIGURE 5-5

. TMS 9900 CPU FLOWCHART

TO MEMORY AND CRU

Lo

TMS 9900

y

CRUCLK.B

LREX INTERNALLY DEFINED

SN74L8138

|

15

/ //3 A

AO0-A14

-t
@
<
o
Q

znn
al

—_— INTERNALLY DEFINED
.
G1 G2a gBY2P— —*®

A0001444

5.5

5.6

5.7

CRUCLK , ‘

FIGURE 5-6. EXTERNAL INSTRUCTION DECODE LOGIC ON TMS 9900
MEMORY 1/0 DECODER (Figure 5-8)

This area is responsible for decoding the most significant (A, and Ag) bits of the address lines into chip
select lines in order to address either RAM or ROM or an 1/0 device (TMS 9901 or TMS 9902). A 745287
decodes address lines Ay, (MSB of a 15-bit address) through As to determine memory address of a 16-bit

- word in RAM or ROM. A 745288 decodes A4 to Ag to determine addressing of the TMS 9901, TMS 9902,

outputs at the wire-wrap area, or external CRU. Signal MEMEN {(memory enable) determines whether
memory or an 1/O device is being addressed.

Jumper J2 reflects whether the EPROM's in positions U42, U43, U44, and U45 are TMS 2708's or
TMS 2716's, and changes the address map accordingly. See section 7.6.

SEL1, SEL2, SEL3, SEL4, and SELS5 are five signals routed to the wire wrap area on the TM 990/100M.
These signals are intended to be utilized as 1/0 device select lines. All lines are decoded for 32 consecutive
CRU bits. '

Table 51 lists the CRU bit address from which the lines are active.

RANDOM ACCESS MEMORY (Figure 5-9)

Four TMS 4042-2 chips, each consisting of 256 x 4 bits, comprise the random access memory. The standard
TM 990/100M is populated with 266 words of RAM (four TMS 4042-2's). An optional four-chip block can
be added to increase on-board RAM to 512 16-bit words. Figure 5-9 shows the RAM array.

READ ONLY MEMORY (Figure 5-10)

Blocks of TMS 2708 EPROM chips, each consisting of 1024 x 8 bits, comprise the eraseable read only
memory (EPROM). A block of two TMS 2708 chips, containing 1024 words, comes with the
TM 990/100M. An optional second block can be added to increase EPROM to 2048 16-bit words. Figure
5-10 shows the EPROM array. Jumper options at J3 and J4 select whether the EPROM’s are TMS 2708’s or
TMS 2716's. See section 7.6.

5-7

741504 JaLs132 raLson aLse8
{ SOy -
RESET SW. I i ” .

41504 23" g 1
CLR
1 I _J ’ﬁ | o a p SR o p CLR
= -4
" 7418132 741574 741874 74L574
LREX ek, ap peLk, a o— oLk @ p-CAD.
SHES 47K 5V T T ?
PRES B f—
vaw BLE 74L8132 |
6841 N
P1.94 AAA
174w 1AQ 5V
741504
‘ 39uF I o CLR a D CLR o | —tomsT
| ELECTROLYTIC | I TO OFF BOARD
I_T J - 74L574 741874 ' 1/0
_— bcLk - ap beLk @ ST
+5V [d P TO ON BOARD
- (9] 1o
3
RESTART B 47K __1—\
RST
P1-93 S
P2.16 741508

l i
ELECTROLYTIC e &
I -l ' . MEMEN b PR al— L b PR a _J PR

D Q

74L874 74L874 741874

[o} C

K a K ap— .
CLR CLR Ker @
. (]
a 7
WAIT
) l MEMCYC

FROM PROCESSOR v
CIRCUIT

FIGURE 5-7. RESET AND LOAD LOGIC

NOTE
EPROM expansion to 4K is possible by using TMS 2716
EPROM’s (2K x 8 bits) and making jumper changes. This
is discussed in Section 7, Options.

5.8 OFFBOARD EXPANSION BUFFERS (Figures 5-11 and 5-12)

Offboard expansion is possible by tapping signals at the P1 connector. The signals are buffered to drive
board-to-board lines (Section 6, Applications, contains examples of memory and 1/0 expansion off board).
Figures 5-11 and 512 show logic buffering the signals to connector P1. Table H1 in Appendix H lists
connector P1 pins and signals at these pins.

5.9 TMS 9901, PARALLEL 1/0, INTERRUPTS (Figure 5-13)

The TMS 9901 controls:

° 16-bit (maximum) parallel input and output
° Interrupt signals to the TMS 9900 CPU

5-8

DBIN

=
+5V -
74LS20 +5V +5V
47K 745287 {
13 [
R2 I csa RERG ?7K ¢ fm
14 |— 12 RAM . .
r— MSEL L . cs2 DO1 :
2716 | = 1 11 WiFOM l
{ MEMEN 1 10 EROM Py
—< ADG DO3 #
A 2 9 10SEL
0 ADF DO4 <
- Al 3 1 ADE
A2
4 1a0D
A3
7 1apc
A4 6
ADB
A5 5
ADA
745288
15 1 9901SEL
cs
2 L
14 ADE 9902SE
3 EXTCRU
A6 - 13| o0 EXTC
a4 SELT
A7 12 | \oc ———
5 SEL2
A8 11 {aDB 6 SEL3
A9 10| oA 7 SEL4
9 SELG

A0001446

FIGURE 5-8. MEMORY 1/0 DECODER

5-9

74LS04

TABLE 5-1. 1/0 DEVICE SELECT LINES

BASE ADDRESS
REGISTER 12

CRU BIT NUMBER

SIGNAL
(ACTIVE LOW)

v :
0000| 6 00001 6 SEL1
0040, ¢ v 0020, ¢ SEL2
00CO, ¢ v 0060, ¢ SEI3
014044~ 00A0; ¢ SEL4
0180, , 00CO, 4 SEL5
RAM 15 4 A4 RAM 15 4 A4 RAM 15 4 A14 RAM 15 4 A4
N
A6 10 3 A13 A6 10 3 A13 A6 10 3 A13 (A6 10 313)
s A r N ¥ A
DBIN 9 2 A12 OBIN 9 2 a2 DBIN o 2 A2 DBIN 9 2 A12
r — | r J— Ny — Y Yy Y
WE 16 1AM WE 16 1 A1l WE 16 1 AN WE 16| 1 AN
r Y Y
D15 11 17_A10 D15 11 17 A0 J D15 11 17_A10 D15 11 17 410
SO N
D14 12 5 A9 D14 12| 5 A9 D14 12 5 A9 D14 12 5 A9
013 13 6 A8 D13 13 6 A8 D13 13| 6 A8 D13 13 6 A8
- A N r o
RAM D12 14 7 A7 D12 14 7 A7 D12 14 7 A7 12 14 7 A7
N r I
A6
- - TMS4042-2 TMS4042-2 TMSA4042-2 TMS4042-2
WE
A6 DO-D15
DBIN A7-A14
TMS4042-2 TMS4042-2 TMS4042-2 TMS4042-2
_D12 14 7 A7) kD12 14 7 A7 kD12 14 TAT D12 14 7A7 |
D13 13 6 A8 _D13 13 6 A8 kD13 13 6 A8 L.D13 13 6 A8 y
\ D14 12 5 A3 | _D14 12 5 A9 _D14 32 5 A9 D14 12 5 A9
D15 11 17 A0 D15 11 17 A10 D15 11 17 A10 D15 11 17 _A10
l___ WE 16 1an WE 16 1A | WE 16 1 AN WE 16 1An
l__DBIN 9 2 A2 |__DEIN o 2 A2 | DBIN o 2 A2 DBIN 9| 2A12]
A6 10 3 A13 A6 10 3 A13 A6 10 3 A13 y A6 10 3 A13
_ RAM 15 4 A4 _ RAM 15 4 Al4 L RAM 15 4 A14 RAM 15| 4 A4
£0001447 AL AL | =7 J

FIGURE 5-9. RANDOM ACCESS MEMORY

A4

kI,

o ot
L Y 2o
2716 | -~ :’3 ; T™S 2708 TMS2718) ¢ -::3 ’) TM™S 2708
t--—¢ S-1)20 8 Al4 L 1) 20 8 A1
-r_:;l 18 [7 a3 i__:;‘%‘ 18 7 a1)
. D15 9 6 A2 D15 9 6 A2
= (o1a] |10 5 AN = (p1a] |10 5 AN)
(013 1| TMS2708/| 4 A0 (013] |11 | T™Ms2708/] & a0)
o1zl s | TMS2716 [o) o12] |1z | TMS2716 [3 Lo |
o11| [1a 2 A8 (011] |14 2 As
(D10 15 1 A7 (D10 15 KRR
D9 16 23 A6 bo 16 23 As |
_— (s | |17 2 A5 (o8 | [17 22 as)
MROM 2 — E —2
EROM
\ D0 17 |22 as QY 17 2 A5 4
\D1 16 23 A8 | D1 16 23 A6/
| D2 15 1 A7 | D2 15 1 a7 |
\D3 14 2 a8 | D3 14 2 A8 4
\D4 13 | TMS 2708/ 3 A9 | D4 13 | TMS2708/ | 3 A9 4
D5 11 | TMS2716 | , L9 05 1| TMS2716 [4 at0
\D6 10 5 AN | Dé 10 5 A1
\ D7 9 6 A12 \ D7 9 6 A12
18 7 A3 18 | 7 A3
A0001448 20 8 b 20 F_s__ﬂJ ’

VOLTAGE| PIN
Vee 24
Vg 2
Vpo 19
Vss 12

FIGURE 5-10. READ ONLY MEMORY

TMS 9901 transmission to and from memory is handled by CRU instructions. Data to be transmitted in

parallel is received serially by the TMS 9901. Parallel received data is input to memory serially.

Interrupts received by the TMS 9901 are coded and sent via signals ICO to IC3 to the CPU when signal
INTREQ (interrupt request) goes low.

Figure 5-13 shows signal flow to and from the TMS 9901. Further information can be obtained from the
TMS 9901 data manual.

511

75140

{>¢ READY
741504

7 HOLD
o2 p
741504
8
15V
WE 41504
7438 _
WE M— A
i | WE.B _
HOLDA 4L504 HOLDAT i 1 > P1-78
1 I
MEMEN | |
| | MEMEN.B
X | —»- P1-80
VEMEN 41504 0 '
MEMCYC | i
1 l MEMCYC.B
| ' > P1-84
74LS04 - ! |
DBIN DBIN |, |
| DBIN.B
f//””v : ' = P1.82
+5V
% Lo -
4.7k
7438
|ORES >1/4W r———-
1 | IORES.B
1 | > P1-88
| |
| |
* =
Vret =2V 0 "\ | HoLbas
i j 0 - P1-86
| |
CRUCLKB I, I
i \ | CRUCLK.B
| | —» P1-87
A0001449 | I |

5-12

FIGURE 5-11. BUFFERING OF CONTROL SIGNALS TO CONNECTOR P1

€14

7415243

Do LA I NE DO.B A0 n | Nk A0.B
D1 0] L D1.B Al 10 | o Al a1B
D2 s 1. anl® D2.B A2 o aals_ A28
D3 8 lus anpt—D38 A3 8 lis an |8 A3B
BIN LI PN 5V o 1 Jeae
DOUT LEH P 138 {cea
D4 1 1B74L52431A 3 DaB A4 11 1874'-5243;A 3 A4.B
D5 0| L D5.B A5 0] 12 A5.8
D6 o |.o N E D6.B A6 9 |5 aa |8 A6.B
D7 g .o L D7.B A7 8 |.s an 8 A7B

! oGas -b—1qEAB

3 {ea B cea

HOLDA
D8 1 745243 |3 D8.B A8 11 | 7415243 |3 AB.8
1B 1A B 1A

Do L L D9.B A9 10 |,. Ja 14 A9.B
D10 25 N D10.8 A10 o | 3 I8 A10.B
D11 8 lo aa k8 D11.B A11 8 lg 16 A11.B

L oGas L1 4Gas

13 | o 13 |ona
D12 " 1. 74L32431A 3 D12.8 Al2 i1 74‘-52413A 3 A12.B
D13 0 | L D13.B A13 10 g o |2 A13.B
D14 ° | NE D148 Al4 9 lag aa I8 A14.B
D15 2 an 8 D15.B 8 | n l8 A15.8

LI M esu_é +5V 1_dGae

13 |en § 13 |iea

A0001451

FIGURE 5-12. BUFFERING OF ADDRESS AND DATA SIGNALS TO CONNECTOR P1

CRUOUT 2 74LS241 18 cauour
—_— 1A1 1Y1 >
4
- —a2 w2
ol 17 3 o1.B
— 1A3 1Y3
3 -
2 Bliae qvafs— 03B
CLK 13 7
2A1 2Y1 CLK
iAQ 1i E] 1AQ
—_— 2A2 2Y2
CRUIN 16 [.U 4 CRUIN.
L =
+5V 13
2G
EXTCRU —
EXTCRU 143

INTREG " __TMSQ901 -
INTREG INTT

1co 15 | co S
ic1 L3 ey
Ic2 13, oy
I1C3 12 1c3 Tl\ﬁ
1ORST 1 Eg'h TF\'TG
o3 10 |- TNT7/P15
CRUIN q CRUIN m/PM
cRuout 2 | TNTEP13
CRUCLKB 3 lcmucLk INT10/P12
9901SEL 5 IoE INT11/P11
A0 39 Isc INT12/P10
Al 36 1oy INT13/P9
A12 35 1s2 INT14/P8
A13 25 1s3 INT15/P7
Al4 2|, -
5V Ll o5
16 GND P4

_[7 P3
P2

P1

PO

A0001450

+5V

+5V

FIGURE 5-13. TMS 9901 EXTERNAL LOGIC

5-14

ALL 4.7K$2
INT1 +85V
17 TNT1 P1-16
INT2
18 P1-13
9 INT3 4.7K
P1-15 I.__< P1-18
8 INT4 EXT.L _ _
|
3 9902
INTS —J
7 P1-17 ._2___
_ L Pa-g
6 iNT6 N P1.20
L Pa-7 z
23 _ o
P1-6 - g
L———— P4-40 Z |
27 ®
P15 s |w
Pa.38 o=
28 ’ P18 w
2 ——— P4-36
’ P17
Pa-34
30
t P1-10
31 P4-32
‘I P19
32 P4-30
4 P1-12
a3 L pazs
-»- P11
34 P4-26
) 4 P1-14
19 L P4-24
Pa-12
20
P4-10
21
P4-18
22 P4-16
26 P4-14
3 Pa-22
38
v P4-20
ALL 4.7Ks2

510 TMS 9902, SERIAL I/O INTERFACE (Figure 5-14)

5.11

5.12

5.13

The TMS 9902 controls serial 1/0 for the TM 990/100M. Through CRU instructions the user can set:

L] Control criteria such as parity and character length
° Interval timer rate

L Receive data rate

L] Transmit data rate

Data is transmitted and received through the CRUOUT and CRUIN lines. The TMS 9902 can interface with
a terminal through the EIA connector, P2. An interfacing of level shifters is used to allow hookup to a
Texas Instruments 743 KSR, teletypewriter, or other RS-232-C terminal. See Figure 5-14.

When operating under the monitor (supplied with assembly 999211-0001 only), the TMS 9902 is used to
control communication by monitoring signals at the CRU. Signals used for communications purposes also
cause an interrupt level 4 at the TMS 9901. Because of this, jumper J1 must be removed when using the
TIBUG monitor to prevent the internal interrupt from incumbering monitoring operation. This interrupt is
described in detail in paragraph 6.6. Further information is available from the TMS 9902 data manual.

SERIAL I/O INTERFACE (Figure 5-15)

This area provides an interface between the TMS 9902 and a 743 KSR, teletypewriter, or RS-232-C
terminal. The board comes jumpered for 743 KSR operation (jumper J11 disconnected). Section 7
(Options) contains a description of accommodating optional terminals. J11 is installed if the terminal used
is a teletypewriter. Jumper J7 must be in the EIA position to use an EIA terminal or a teletypewriter
with the TM 990/100M. Jumper locations are shown in Figure 7-2.

WIRE-WRAP AREA (Figure 5-16)

A wire-wrap area has been provided for adding additional devices such as TMS 9901°s or TMS 9902's. On
the periphery of the wire-wrap area are pads containing voltages and signals as shown in Figure 5-16.

Spare pins from the 40-pin board edge connectors P3 and P4 are routed to an array of plated through holes
near the bottom of each connector. This facilitates interconnection of these spare pins with circuitry added
in the wire-wrap area.

The wire-wrap area consists of an array of .046 inch diameter holes spaced on 0.1 inch centers. It is
suggested that networks placed in this area be mounted in sockets with wire-wrap tails. Interconnections are
thus facilitated in wire-wrap. Two 16-pin DIP socket locations are dedicated for connection to power and
miscellaneous CRU control signal. See Figure 5-16.

MULTIDROP 1/0 INTERFACE (Figure 5-17)

The Multidrop interface may be used for board-to-board communication over long distances. Generally, all
that is required is a twisted pair line run between the boards. More than two boards may be linked together,
each one is just “dropped” into place, hence the term “multidrop”. If more than two boards are used, the
boards not at the extreme ends of the twisted pair line (i.e., those “dropped in the middle”) are considered
non-terminating boards, and the termination resistor jumper plugs should be removed to prevent standing
wave patterns which might occur, mostly at the higher baud rates. The two boards at the extremes of the

line, regardless of whether additional boards exist in between, should have these resistor jumper plugs
installed (J9—J12). Jumpers to be installed for the multidrop operation are listed below:

INSTALL REMOVE
Half Duplex, non-terminating J5, J8, J7 (MD) J6, J9—-J12
Full Duplex, non-terminating J7 (MD) J5, J6, J8—J12
Half Duplex, terminating board J7 (MD), J5, J6, J8—J10, J12 J11
Full Duplex, terminating board J7 (MD), J6, J9, J10, J12 J11, J5, J8
+5V
TMS9902/03
- A10 12 g, P TO INT4 ON 9901 75188
>—21 13 1s3 xouTt f_?_UT
A12 14 s2 ATS 5 RTS T ®
> A3 15 151 cTs |8 75188
> AM 16 50 oSk [
> 17 {crucLk RIN P
> 8 _lcruout
> 4 lcruin
N 18 |5
> 19 IcE
+5V 20 Vee
9
[—————— GND 75189
-L T
-]
|
|
] 75189
| RS232RIN
| |
| r=—<
| lL EIA
| L =<y _ -~
| MD JI
! 9>--- 75189
TMS9903 11
(ONLY) SCF
§cT|o

A0001452

—

RS232 XMT
P2-3

75188
DCD
> P2-8

DTR
———————< P2-20

RS232 RCV
P2-2

FIGURE 5-14. TMS 9902 EXTERNAL LOGIC

5-16

75189

RECV CLK P2.17

XMT CLK
———————=< P2-15

TO TMS 9902/9903
A

!

75188
XouT

—~12V R30*
TTY XMT RTN
~AAAA
56052
1/2W

| J

P2-24
OUTPUSH

33KQ
Q1" 1y xmT

4
%

+5V

75188

> p2.25
NN/ 2N2905A OUTPULL

3.3KQ +12V
CR1 33KQ cTs

P25

P2-6

\

75188

RTS

\%

75189
DSR

75189

|

75189

)\

75189

N

|

*On assembly 999211-0001 only.

A0001453

RS232 XMT

= p2-3
DCD

> Pp2.8
DTR

= p2.20
RECV CLK

> P2.17
XMT CLK

= P2-15
RS232 RCV

» — P2-2

: INPULL
PR
JUMPER J11 S

/
; .
- TTY RCV |
L 2 L » P2.18

R31* 27K, 1/2W

INPUSH

+12V

'y » P2-23

R32* 3301, 1/2W

—-12V

FIGURE 5-15. SERIAL 1/O INTERFACE

00000000

DETAIL A

0000000

-5V +12V —-12v +5V

[50 HOLES =!
OCO0O0OO0O00O0O0
ADDR. CRU ADDRESS 6 = o o < z |
SEL {R12,BITS 3- 14) T T I I % 5 '°
& DETAIL B
SEL1 000016
w2 e OCO0O0O0O0O00O0
SEL3 00601¢ m - ~ o < o «
SEL4 00A016 ¢ 3 ld Id I.‘u‘ Id |ru‘ 3
SELS 0oco g 2 @ v v
16 x g

A0001454

FIGURE 5-16. SIGNALS AT WIRE-WRAP AREA

518

| OUTPULL
XOUT 2 2z |2 - U
OUTPUSH
RTS 11l>c RTS 4 5 2v B ¢ UIPLS
74LS04N
1A R25
uaz7 27K %W
. T —AAA— +5V
5V Yveer o
10 D e R24
Jo 2, %W
A 33052, %
1
-5V Vee— =
3 1c v P2 ' v
; 12 R23
IGND 12
27K, %W
~ 1 —0 O-—e
75112 - J6
_, A"
T 3 3300
a2 “ww
rinra,
sl || |
Rzz/j\;m —_ 5 LIl
—
o DUPLEX SELECTORS
= R26, 33052, %W
INPUSH + o1a 1v 4. PWAIN
INPULL Dy —eo—218
Ne —81aG av |2
CR2
IN5333 2116 3 > Ne
CR3 EG s 1
IN5333 14 .
+5V Veet
= -5V 3 vee-
11 g
2A
7{GND
1 uas
75107

FIGURE 5-17. MULTI-DROP INTERFACE

5-19

6.1

6.2

6.3

6.4

6.5

6.6

SECTION 6

APPLICATIONS
GENERAL

This section covers various methods of communicating to applications external to the TM 990/100M.
Figure 6-1 shows board locations applicable to this section.

A wirewrap area has been provided for wiring devices on board. This area, shown in detail in Figure 6-2,
contains signal input and output pins located on its periphery. Table 6-1 lists the signatures of the pins.
Note that a spare 40-pin connector (P3) is available adjacent to the wirewrap area.

WIRE-WRAP ADDITIONAL ON-CARD TMS 9901

An additional TMS 9901 may be added for an external application. Figure 6-3 shows wire-wrap wiring to
add a TMS 9901 1/0 controller and associated resistor packs. Sockets with wire-wrap tails are inserted into
the board to accommodate the devices and wiring.

Signals and power available at the wire-wrap area are shown in Figure 6-2. The use of SEL1 to the 74LS00
designates a CRU address of 0000, ¢ (bits 3 to 14 of R12).

PARALLEL I/0 PORT CIRCUITRY

Figure 6-4 shows a parallel 1/0 port that can be implemented in the wire-wrap area. Wire-wrap area signals
are available as shown in Figure 6-2. This port consists of eight input and eight output lines. These 16 lines
are interfaced to connector P3, pins 1 to 16.

OFF-CARD ADDITIONAL RANDOM ACCESS MEMORY

Figure 6-5 shows suggested wiring for adding up to 1K words of RAM off-board in 256-word increments.
Table 6-2 is a list of materials for this addition.

ADD OFF-CARD TMS 9901

Figure 6-6 shows circuitry, connected through connector P1, for connecting an additional TMS 9901 off
the card. The CRU address for the TMS 9901 in this configuration is OFFOQ, 4.

ON-BOARD COMMUNICATIONS INTERRUPT

The TMS 9902 will issue a level 4 interrupt when programmed as in paragraph 4.9. Positioning jumper J1
{shown in Figure 6-1) to the “9902" position connectors the interrupt output of the TMS 9902 to
interrupt level 4. This allows interrupt operation of the TMS 9902.

NOTE
As shown in Figure 6-7, the TMS 9902 timer as well as
three other conditions cause an interrupt to be generated
(INT) which can be routed to interrupt 4 of the
TMS 9901. Because these signals are monitored through
the CRU by the T/BUG monitor to facilitate 1/O and
other functions, the jumper at J1 must be in the
“P1-18" position when operating under the monitor.

6-1

c9

—

TMS 9901 PARALLEL SYSTEM INTERFACE

TMS 9900 MICROPROCESSOR

WIRE WRAP AREA

J1 ROUTES TMS 9901 INT4 TO CONNECTOR P1-18 OR TO TMS 9902.

FIGURE 6-1. DEVICES USED IN VARIOUS APPLICATIONS

ASYNCHRONOUS
COMMUNICATION CONTROLLER

"}{Nsa1 pjnom

uonesado g/l 1924109Ul ‘10$58204d0IDIW Q066 SINL
ayy 01 sadnusayui 818Ul 01 sem 2066 SINL °Ut 3|

‘joa

-uod pajjod Japun adeylarul |eldas ayl saiesado Dg/L

TABLE 6-1. I/OPINS AT WIREWRAP AREA

SIGNAL DEFINITION
A10to Al14 Five LSB's of address bus
CRUCLKB CRU clock input
CRUIN Serial data to CRU
CRUOUT Serial data from CRU
IORST 1/0 Reset
SELT CRU address" is 0000, ,
SEL2 CRU address* is 0020
SEL3 CRU address* is 0060 ¢
SEL4 CRU address* is 00A0; ¢
SELS CRU address* is 00C0, ¢
&3 Clock 03
15V +5 volt supply
—12V —12 volt supply
+12V +12 volt supply
—5V —5 volt supply

*CRU address is in bits 3 to 14 of R12.

A0001454

DETAIL A

IL 50 HOLES

CRU
ADDR CRU ADDRESS

SEL (R12,BITS 3- 14) 2
SEL1 000016

SEL2 00204 Q
SEL3 00601¢ *
SEL4 00AO15 w
SELS 00C04g e

000PO0P

-

-
< <

PQ

CRUO!

- N
n o l»]

z |

CRU

DETAIL B

OO00O0Q®

4
{3
i

CRUCLK

FIGURE 6-2. SIGNALS AT WIRE-WRAP AREA

+5V

4.7K$2,1/4W | RESISTOR PACK 4.7Ks2,1/4W RESISTOR PACK 1
I |
| |
I < < < < |
L oot = === = =] =] ==

+5V
T™S 9901 §
HORST_ 4 RST 1 Vee —J
CRUOUT S0 A10
————— crUQUT
CRUCLK
————— CRUCLK PO
CRUIN CRUIN P1
SEL 1 & s1 A1
INT6 s2 Atz
INTS P15
INT4 P14
INT3 P13
»3 P12
.
INTREQ P11
1c3 P10
NO
CONNECTION| f!C2 P9
1c1 P8 N
1co P2
\

L' . o
= _ Al14
INT1 s4
INT2 P7
P6 P3

——) P4

A0001455

ALL MARKED SIGNALS ARE AVAILABLE AT THE 16-PIN DIP
HOLE PATTERNS ON THE EDGE OF THE WIRE-WRAP AREA.

FIGURE 6-3. ON-BOARD TMS 9901 WIRING

6-4

PADS AT P4 EDGE
CONNECTOR

7418259

A12 4
c ao
A13 5 ar |5
A4 6
74LS04 A a2
SEC _74LS10 CRU o UT Bl a3}’
| CRUCLK 14 | aas |2
16 VCC as 10
19 lcLEAR as |1
8 lono a7 2
74LS00
+6V
7418251
A1 o
LI po |2
A13 10 5
74L500 vu L (2] [E—
A4 N o2 1€
SEL 1 CRUIN 5 2
Y D3 b——-r
7
74L500 ® oa |2
IORST | +6V 2 16}vee o5 |2
+5V - D6 1"
8 leno o7 P12
LIST OF MATERIALS L
arty PART -
2 16 - PIN DIP SOCKETS AND WIRE - WRAP PINS
2 14 - PIN DIP SOCKET AND WIRE - WRAP PINS
1 741:500
1 7415259
1 741504
1 74.5251
1 74L810
A0001456 FIGURE 6-4. PARALLEL 1/0 PORT

6-5

1aSY

74LS20

®re

)
%
Pl

¥y

2

74L874

GND_ 1
GNDI 2

POWER GND
SIGNAL GND

CLR

a D

)

-

74L874

CLR

14

1/2 74LS155

S
+
@
<

5V ld

+5V |4

R/

738 24

REM

WEB | g

| 74Ls243

DBIN.8 | g2

" WMEMENS | 80

D15.B | 43

GBA

A8 13

2G

AB 3

2v3

2v2

2¥v1

2vo

TO
POINT

D148 | 47

74L8243

D138 |ag

D12.8 las

CRE RPN

0118 laa

D108 |43

7415243

D8.B |4z

D8.B |41

o o |s fw

D7.8 |4o

GBA

1

GAB GBA

"

>

74L810

14 D15

AD

Al
A2

A7 4
A8 3
A9 2

A10 1
A12 5

A13 6

A14 7

TO
POINT

'l

74LS04

iu

10

D6.8 |39

7415243

D5.B |38

04.8 |37

oloiaiw

D3.8 |35

D28 lag

4 74185243

D18 |34

D0.B |33

A148 |71

GAB

GBA

GAB GBA

el o

14 D11

0

A0

Al

A3
A
Al

TER|

B 18

A7 &

A8 3
A9 2

A10 1
Al 17
A12 5

A13 6

Al4 7

11 Ln

7

13]

oCT Busy

A13.8 |70

7415241

A12.8 lgo

A11.8 lgg

wlalaln

A10.8 |g7

A9.B lgg

A8.8 |55

A28 lga

A8B |63

A5.8 |62

74L5241

A48 le1

A3.B |so

A28 |59

A1.8 lsg

AQB |57

fm

A0001457

4042 - 2

11 D4

13 D6
14 D7

1701
1/02
1/03

1
A2

1/04

A3
A4
A5

A7 &
Al

ABJA
A9 2

A10 1
A1l 17
A12 5
A13 6

A14 7
A

4042 - 2

11 DO

14 D3

A0

Al
A2

—{9

AS
A7

A8 3
AS 2

A13 F

A4 7

g“w—- o
i
\
i
1

FIGURE 6-5. OFF-BOARD EXPANSION OF RAM

741820

TO ADDITIONAL
256 X 16 BLOCKS

TO CE1 ON ADDITIONAL
256 X 16 MEMORY BLOCKS

TOCTE2 ON ADDTIONAL
THREE 256 X 16 BLOCKS

TABLE 6-2. LIST OF MATERIALS FOR ADDING RAM

QUANTITY PART
7 14-pin DIP Socket*
1 16-pin DIP Socket*
4 per 256 words 18-pin DIP Socket™
3 20-pin DIP Socket®
4 per 256 words TMS 4042-2
1 7418155
1 74LS20
1 74L.S74
1 74LS04
4 7415243
3 7415241
; 1 74LS10
*And wire-wrap pins as required
| 7418367
29 p—CRUIN l _
30 |CRUOUT ! [
47 p_CRUCLKB s 1] D&
a8 iorsT 1|
2a T] TMS2901
g0 |_MEmMENZ | L 2] & Ls
| | 26 16 3 4
i t LS ro |28
gy | 10 o ED)
r
a '__.__l il P9 p2 |2
oo on 1 3], p3 |22
E) t 35|, ra |2
g ! | 74L5367 LSl N ps |20
g 6o |- A3 I 24] g, o K}
£ ot} A4 | 404 yee p7 |23
8 62 AS ! 51 Gno re $27
g 63 |46 ! ro 28
9 6s A7 | 741830 p10 |22
a o5 —22 l Pt |32
| ! ic__ g 12 |30
| S P13 |32
| | pia |33
! [7418367 P15 f34
66 |—A2 |
67 |___A10 |
68 :1 A1 !
69 | A12 |
70 A1 !
7 —ata |
r | — =
! |
| to +5 volts
I |
!
LIST OF MATERIALS
ary PART
1 14 - PIN DIP SOCKET*
a 16 - PIN DIP SOCKET*
1 40- PIN DIP SOCKET
3 7418367
1 741504
1 741530
1 TM™S 9901
* AND WIRE - WRAP PINS AS REQUIRED
A0001458

FIGURE 6-6. CIRCUITRY TO ADD TMS 9901 OFF-BOARD

6-7

INTERRUPT
CAUSING
CONDITION

DATA SET CHANGE {

RECEIVE BUFFER
LOADED, ENABLED

TRANSMIT BUFFER
EMPTY

TIMER ELAPSED {

A0001459

—
DSCENB

XIENB

DSCH

RBRL
RIENB

XBRE

TIMELP

J U U U

TIMENS

FIGURE 6-7. FOUR INTERRUPT-CAUSING CONDITIONS AT TMS 9902

9902
CRU
BIT
DSCINT
20
|
RBINT 16
XBINT
17
TIMINT
19
NT TO INT4 AT
9901
(J1 OPTION)

7.1

7.2

7.2.1

SECTION 7

OPTIONS

GENERAL
This section explains the various options available to the user of the TM 990/100M. These options include:

® Use of TMS 2716 EPROM’s (2K x 8 bits each) instead of TMS 2708 EPROM’s (1K x 8
bits each) (paragraph 7.2).

L On-card expansion of EPROM and RAM (paragraph 7.2)
° Asynchronous serial interrupt from TMS 9902 (paragraph 7.3).
L RS-232-C or teletypewriter interface (paragraph 7.4). Teletypewriter interface is with

assembly 999211-0001 only.

. Microterminal use (paragraph 7.8).

° External switch actuation of a RESET or RESTART signal (paragraph 7.5).

° Memory chip and CRU device selected by bit masks in PROM'’s (paragraph 7.6).
o Assembler in EPROM (paragraph 7.7).

Figures 7-1 and7-2 show board locations application to this section. Table 7-1 is a summary of jumpers and
capacitors used with these options.

ON-BOARD MEMORY EXPANSION (Figure 7-2)
EPROM EXPANSION

EPROM memory can be expanded on-board in two ways (all expansion memory is provided on assembly
999211-0003):

[Add two TMS 2708 EPROM chips (1K x 8 bits each) to provide an additional 1K words
of memory.

® Use two or four TMS 2716 EPROM chips (2K x 8 bits each) to provide 2K or 4K words
of memory.

Figure 7-3 shows placement of EPROM chips and corresponding memory addresses (in bytes). The board
silkscreen designators identify the necessary jumper placement at J2, J3, and J4.

NOTE
Models 999211-1 and -2 come from the factory with 2
TMS 2708's which are installed in sockets at U42 and
U44. Jumper J2 is installed in the “2708'' position and
Jumpers J3 and J4 in the 08" position. This
configuration will allow up to four2708’s to be used in
U42 to U45.

7-1

- SECONDARY EPROM's
- MA 0800,¢ TO OFFF 14 (2708's)
~ MA 10004¢ TO 1FFF ¢ (2716's)

PRIMARY EPROM’s
MA 0000, TO O7FF ;¢ (2708's)
MA 0000, TO OFFF g (2716's)

PRIMARY RAM
FOUR 4042-2's
MA FE00,g TO FFFFqg

—— SECONDARY RAM
FOUR 4042-2's
MA FC004g TO FCFF4¢

FIGURE 7-1. MEMORY PLACEMENT ON BOARD

7-2

— J13

MICROTERMINAL
— J14 USE
— J15

SPARE JUMPERS
— J16,J17, J18

J12 MULTIDROP INTERFACE
J11 (I/O INTERFACE TYPE)

J3 MULTIDROP
36 (INTERFACE

J5
J7 (EIA MULTIDROP

W, SELECT)
— 4
TMS 2708/16
— 42’ EPROM
L SELECT
e 3

C6 (OPTIONAL;
DEBOUNCE PRES. B)

C5 (OPTIONAL; DEBOUNCE RESTART)

FIGURE 7-2. JUMPERS AND CAPACITORS USED FOR OPTION SELECTION

73

7.2.2

7.3

7.4

To utilize TMS 2716 EPROM's J2 must be positioned to
“2716" and J3 and J4 to the ““16"' position.

EPROM types may not be mixed. That is, TMS 2716

may not be populated in U42 and U44 while
TMS 2708’s are populated in U43 and U45.

RAM EXPANSION

Four additional TMS 4042-2 RAM chips can be added as shown in Figure 7-3. This will provide an
additional 512 bytes of RAM. All expansion memory is provided on assembly 999211-0003.

ASYNCHRONOUS SERIAL COMMUNICATION

An internal interrupt to interrupt trap 4 can be selected through programming considerations described in
paragraph 4.9. This interrupt will signal changes in data set status and the current contents of the

TABLE 7-1. JUMPERS AND CAPACITORS USED WITH OPTIONS

OPTION JUMPERS/CAPACITORS PARAGRAPH
TMS 9902 INT to Interrupt 4 J1 (as shown on board) 7.10
P1-18 to interrupt 4 J1 (as shown on board)* 7.10
Use TMS 2708 EPROM's J2, J3, J4 (as shown on board)* 7.21
Use TMS 2716 EPROM'’s J2, J3, J4 (as shown on board) 7.2.1
20 mA Interface Use J11 (installed) 74
RS-232-C Interface Use J11 (disconnected) * 7.4
Microterminal Power J13,J14, J15 (installed) 7.8
External RESTART signal C5 (installed) 75
External PRES.B signal C6 (installed) 75
Muitidrop Interface J5, J6, J8,J9, J10, J12
| EIA/Multidrop Select J7

*Configuration when shipped from factory

TMS 9902 transmit buffer or receive buffer. Further information is presented in the TMS 9902
Asynchronous Communication Controller Data Manual.

RS-232-C AND TELETYPEWRITER INTERFACES

Appendix A covers cabling for a Teletype Model 3320/5JE. To use this terminal {20 mA current loop),
connect the jumper at J11.

CAUTION
Verify correct voltage levels at connector P2 when

attaching a teletypewriter type terminal.

Appendix B covers cabling for an RS-232-C-type terminal. To use this type of terminal, disconnect the
jumper at J11. :

7-4

M.A.

(HEX)
0000
BANK 1
U42, uda 2 TMS 2708°S
{1K X 8 EACH)
0800
BANK 2
2 TMS 2708°S
U43, U45 (1K X 8 EACH)
(EXPANSION)
OFFE
JUMPER SELECTION
J2 — *2708"
J3 AND J4 — “08"
M.A.
(HEX)
FCOO
U33, U35, U37, U39
FEOO
U32, U34, U36, U38
FFEE

A0001460

M.A.
(HEX)
0000
BANK 1
2 TMS 2716°S
(2K X 8 EACH)
Ua2, uas
1000
BANK 2
2 TMS 2716'S
(2K X 8 EACH)
U43, uas (EXPANSION)
1FFE

(A) EPROM EXPANSION

BANK 1
(EXPANSION)

BANK 2

(B) RAM EXPANSION

JUMPER SELECTION
J2 - “2716"
43 AND J4 — 16"

TMS 4042-2

(EACH 256 X 4 WITH

4 IN EACH BANK.TOTAL
EXPANSION TO 512 X 16
BITS)

FIGURE 7-3. MEMORY EXPANSION MAPS

7.5 EXTERNAL SYSTEM RESET

External switches can reset the system through connections at connector P1. They activate the following
signals as shown in Appendix F (Schematics).

RESTART.B. This causes a load function. A 39 uF tantalum capacitor is required at C5

to debounce the switch. See Figure 7-2 for part placement.

PRES.B. This causes reset function. A 39 uF tantalum capacitor is required at C6 to

debounce the switch. See Figure 7-2 for part placement.

7-5

7.6

7.7

7.8

MEMORY MAP CHANGE

On-board memory chip and CRU device addressing is through bit patterns in two PROMs, a 745287 and a
745288 as shown in Appendix F (Schematics). This memory map may be altered by the substitution of
PROM’s with the desired configuration.

TM 990/402 LINE-BY-LINE ASSEMBLER

A line-by-line assembler is available, programmed on two TMS 2708 EPROM’s. It will assemble each
instruction as it is input by the user. The resulting machine code will be printed on the terminal and placed
in continuous memory locations. The 7/BUG monitor must be present to use the assembler.

No relocatable labels can be used. Jump instructions use dollar-sign plus or minus byte displacements, and
symbolic addresses are input as absolute locations. Error codes identify syntax errors (illegal op code),
displacement errors (jump instructions), and range errors (e.g., R33). Figures 4-17 and 7-4 are examples of
assembly outputs using the line-by-line assembler.

TM 990/301 MICROTERMINAL

An alternate to a hard-copy terminal is a TM 990/301 imicroterminal for user communication to and from
the TM 990/100M. The size of a hand-held calculator, the TM 990/301 uses its light-emitting diode (LED)
display to show hexadecimal or decimal values. Features of the TM 990/301 include:

o Hexadecimal to signed decimal and signed decimal to hexadecimal conversion of
displayed value.

L] Display and change contents of Workspace Pointer, Program Counter, Status Register, or
CRU ports.

° Increment through memory displaying contents.

L] Display and change contents of memory addresses.

L Halt or single step user program execution.

L] Begin program execution.

L Keyboard values O through F, .

This microterminal comes with its own cable which attaches to the 25-pin connector P2. To supply power
to the microterminal, place jumpers at J13, J14, and J15. When the microterminal is not connected, make
sure that these jumpers are disconnected. Jumper J7 must be in the EIA position for microterminal
operation. See Figure 7-2.

Figure 7-5 shows the microterminal and cabling to the TM 990/100M.
OEM CHASSIS

An original equipment manufacturer (OEM) chassis is available. It features slots for four boards, a
motherboard backplane interfacing to P1 on the board, and a terminal strip for power, PRES.B, INT1.B,
and RESTART.B. A dimensional drawing of the OEM chassis is shown in Figure 7-6. A schematic of the
backplane is shown in Figure 7-7. P1 pin assignments are listed in Table H-1 of Appendix H.

NOTE
Dimension between card slots is one inch.

7-6

y i
FOon

FEQD
FEDE
FEDS
FE 4
FE =
FEDOE
FEZ
FELDE
FE111
FE1=
FE14
FE1&
FE1=
FE1A
FEL1C
FELE
FECO
FEzzZ
FEZ4
FEZE
FEZE

FEZH 5

FEZLC
FEZE
FE=0
FEZZ

SRR
FE O

Nd e
ERNESEY

434F
4E4T
S@d1
S455
441
4D
F4E
2S5
4F 55
S0
S0S5E
4F 47
SZd1
4T 0
T4F
SZ4E

r:f-"nl

nyov
P
L L

_——MEMORY ADDRESS
——— ASSEMBLER MACHINE CODE

-—— USER INPUT SOURCE CODE

PEIH!== CHANGE MEMORY ADDRESS
ArFEDCA 19
l I*
— SYNTAX ERROR
E NI
SEFE D - CHANGE MEMORY ADDRESS

FCONGEATULATIONE., YOUR FPEOGEAM WORKZL! -

+ OF v
+ = 0F 00

FIGURE 7-4. LINE-BY-LINE ASSEMBLER OUTPUT

7-7

TEXT STATEMENT

Microterminal
™ 8806/301

FRLIN

FIGURE 7-56. TM 990/301 MICROTERMINAL

7-8

7.10 INTERRUPT FROM TMS 9902

An on-board communications interrupt is issued by the TMS 9902 as explained in paragraph 6.6. When
operating under the 7/8UG monitor, place jumper J1 in position “P1-18."

BACKPLANE

f =
] "/g L\ U Y (Y ‘}/ —
@ L J L D U
i] r])
e
so 190 |] ﬂ L |° &
- - TN /\
- J N] e
@ | 3 L) C 3 llo
|~ n M n.m n._m
- 7.49 >
NOTES:

1. DIMENSIONS IN INCHES

2. DISTANCE BETWEEN SLOTS
IS 1 INCH.

A0001463

FIGURE 7-6. OEM CHASSIS

7-9

GND T
I & 12 8 24| 42 48 54 60 66 72 78| 24 M 24
coU , -] o QD R L O ! ﬁ o o o o g 9£ E o
) . 9
! &rc:]e a‘n‘eg & (N < 13, e (SN ! _% (e
49 5[%| B 8| B —E »ﬂ 5
MEMORY/ L‘
DNA/ZRU vz | *ﬂ | ‘E %— b b 4
H 3 N o~
g & NI
g & 88 § {35
w “a QB 4
§| ¢ 3 2 HE 8l s
3 3 3% 3 | ¢
244 | ®| ol) B
MEMORY,
G fekl 3 , ol ld ol | G—I; _l; J; f .
MEMORY [z o k3 S oj o) ol o ¢ Jveoo‘e o["of "o ©) ol 'o
omajcry J* | | o dld & d d d 2 o deod o o v e dddadd o b
5 " 17 23 22 4 47 53 59 &5 7 77 83 a% o5
N~ s
T8t et Tt T8!1 T8/

supay (TN TO32
-2y 4+—©4

+izv -5

5V 1+ 006

PRES.8 407
iNTl.8 +©8
RESTART. 8 +4—©9

IND= SUPPLY T—e 10

T8I

TERMINAL STRIP
IN BACK OF CHASSIS

GND ‘R;/
~ISV1+—02

Rz

330
R! 220
R¢ 330
R0 330
RS 220
RII 220

AN
Ri#¢ 330
RI% 220

Rr2 330

NOTE: BACKPLANE PIN ASSIGNMENTS LISTED
IN TABLE H-1 (APPENDIX H).

FIGURE 7-7. OEM CHASSIS BACKPLANE SCHEMATIC

7-10

APPENDIX A

WIRING TELETYPE MODEL 3320/5JE FOR TM 990/100M

A-1 GENERAL :
Figure A-1 shows the wiring configuration required to connect a 3320/SJE Teletype in a

20 mA current loop with a TM 990/100M. Other teletypewriter models may require
different connections; therefore, consult the manufacturer for correct wiring of other
models. Teletypewriters can be used with Assembly No. 999211-0001 only.

CAUTION

Note the 117 Vac connection at pins 1 and 2. Be sure that this
voltage is not accidently wired to the TM 990/100M board.

A-2 CONNECTIONS
The following assumes that the teletypewriter is wired as it came from the factory.
(1) Locate the 151411 terminal block at the left rear (viewed from the rear) of
the machine (Figure A-1).

{2) Move the white/blue wire from terminal 4 to terminal 5 on the terminal block.
(3) Move the brown/yellow wire from terminal 3 toterminal 5 on the terminal block.

(4) Move the purple wire from terminal 8 to terminal 9 on the terminal block (for 20
mA neutral signaling).

(5) Locate the power resistor behind the teletype power supply. Remove the blue
wire from the 750 ohm tap and connect it to the 1450 ohm tap, as shown in
Figure A-2.

(6) Check pins 3, 4, 6, and 7 at terminal strip 151411, Voltage to ground must be
zero with power applied. If not, do not connect to the TM 990/100M.

NOTE
For teletypewriter operation jumper J11 must be installed and J7
must be in the EIA position.

A-3 TROUBLESHOOTING

If the printer continues to chatter after the RESET switch on the TM 990/100M has been
activated, reverse connections 6 and 7 at the terminal strip.

A-1

TELETYPE MODEL 3320/5JE
T™ 990/100M TERMINAL
STRIP
P2 ®\ 151411
° VIOLET(PURPLE)
OUTPULL
2% ®</ YELLOW
PRINTER OUTPUSH [~
BLACK/GREEN
INPULL e
KEYBOARD INPUSH 7 WHITE/BROWN
px]] V4 "
| RED/GREEN
6 WHITE/YELLOW
* L~
A 2% ' WHITE/BLACK
WHITE/BLUE
‘o<l
-~ BROWN/YELLOW
4 GREEN/ORANGE
e — | RED
3 GRAY (SILVER)
p ol = ol
"\g\wmremeo -
2 7 117 VAC
\ 1 @ 117 VAC
LEFT REAR VIEW OF TELETYPEWRITER
DETAIL A *NO.6 SPACE LUGS
A0001412
FIGURE A-1. TELETYPEWRITER TERMINAL STRIP CONNECTIONS
NELETIPE CABLE COLOK CODPe
TERWM R - RED PLOG FINZS
K % rb - 23y o
Tewm o - BRN peoc Fieie
) _ —_ - L IUTY S SR
PLIMTR | £ 6 C RN
feldm T -~ RLU PLvé praoas

A-2

1450 OHM TAP

DETAIL A

FIGURE A-2. TELETYPEWRITER RESISTOR CONNECTION

A-3

APPENDIX B

EIA RS-232-C CABLING

Figure B-1 shows the wiring for the 743 KSR cable attached between connector P2 on the
TM 990/100M and a 743 KSR data terminal. Also shown is the relationship between cable
wires and signals to the serial interface, the TMS 9902. Figure B-2 shows the cable

configuration for the 733 data terminal.

NOTE
When using an RS-232-C device, disconnect jumper J11 and

insert jumper J7 in the EIA position. See Figure 7-2.

TM 990/100M

EIA CABLE

AL

P2
TMS9902
PROTECTIVE GND]
RECEIVED DATA.
RIN 2
TRANSMITTED DATA
XOouT 3
— D
RTS T be 8
CTS DTR 20
DSR SIGNAL GND 7
A0001414

PROTECTIVE GND

TRANSMIT DATA

RECEIVE DATA

VY A

REQUEST TO SEND

DATA TERMINAL READY

SIGNAL GND

FIGURE B-1. EIA RS-232-C CABLING FOR 743 DATA TERMINAL

743 DATA
TERMINAL

TMS 9902

RIN
XouT

TM 990/100M

PROTECTIVE GROUND

P2

RECEIVED DATA

TRANSMITTED DATA

+12v 3.3K, UW
I‘ ;;5, %W

SIGNAL GND

DCP

DTR

RN O W N =

20

EIA CABLE

PROTECTIVE GROUND

P1

TRANSMIT DATA

RECEIVE DATA
CTS

DSR

SIGNAL GND

REQUEST TO SEND

DATA TERMINAL READY

FIGURE B-2. EIA RS-232-C CABLING FOR 733 DATA TERMINAL

B2

O N O 1 WN =

20

733
DATA

- TERMINAL

APPENDIX C

ASCIl CODE

TABLE C-1. *ASCIli CONTROL CODES

BINARY HEXADECIMAL
CONTROL CODE CODE
NUL — Null 000 0000 00
SOH - Start of heading 000 0001 o1
STX — Start of text 000 0010 02
ETX — End of text 000 0011 03
EOT - End of transmission 000 0100 04
ENQ - Enquiry 000 0101 05
ACK — Acknowledge 000 0110 06
BEL — Bell 000 0111 07
BS — Backspace 000 1000 08
HT - Horizontal tabulation 000 1001 09
LF - Line feed /AL 000 1010 0A
VT — Vertical tab 000 1011 0]:]
FF — Form feed 000 1100 ocC
CR — Carriage return 000 1101 oD
SO — Shift out 000 1110 OE
Sl — Shift in 000 1111 OF
DLE - Data link escape 001 0000 10
DC1 — Device control 1 001 0001 11
DC2 — Device control 2 001 0010 12
DC3 - Device control 3 001 0011 13
DC4 — Device control 4 (stop) 001 0100 14
NAK — Negative acknowledge: 001 0101 15
SYN - Synchronous idle 001 0110 16
ETB — End of transmission block 001 0111 17
CAN — Cancel 001 1000 18
EM - End of medium 001 1001 19
SUB — Substitute 001 1010 1A
ESC — Escape 001 1011 1B
FS — File separator 001 1100 1C
GS — Group separator 001 1101 1D
RS — Record separator 001 1110 1E
US — Unit separator 001 1111 1F
DEL - Delete, rubout 111 1111 7F

*American Standards Institute Publication X3.4-1968

TABLE C-2. *ASCll CHARACTER CODE

BINARY HEXADECIMAL BINARY HEXADECIMAL

CHARACTER CODE CODE CHARACTER CODE CODE
Space 010 0000 20 P 101 0000 50
| 010 0001 21 Q 101 0001 51
”* (dbl. quote) 010 0010 22 R 101 0010 52
010 0011 23 s 101 0011 53
$ 010 0100 24 T 101 0100 54
% 010 0101 25 u 101 0101 55
& 010 0110 26 Y, 101 0110 56
" (sgl. quote) 010 0111 27 w 101 0111 57
(010 1000 28 X 101 1000 58
) 010 1001 29 Y 101 1001 59
* (asterisk) 010 1010 2A z 101 1010 5A
+ 010 1011 28 [101 1011 5B
, (comma) 010 1100 2C \ 101 1100 5C
— {minus) 010 1101 2D] 101 1101 5D
. (period) 010 1110 2E A 101 1110 5E
/ 010 1111 2F _ {underline) 101 1111 5F
0 011 0000 30 / 110 0000 60
1 011 0001 31 a 110 0001 61
2 011 0010 32 b 110 0010 62
3 011 0011 33 c 110 0011 63
4 011 0100 34 d 110 0100 64
5 011 0101 35 e 110 0101 65
6 011 0110 36 f 110 0110 66
7 011 0111 37 g 110 0111 67
8 011 1000 38 h 110 1000 68
9 011 1001 39 i 110 1001 69
: 011 1010 3A j 110 1010 6A
; 011 1011 3B K 110 1011 6B
< 011 1100 3C I 110 1100 6C
B 011 1101 3D m 110 1101 6D
> 011 1110 3E n 110 1110 6E
? 011 1111 3F o 110 1111 6F
@ 100 0000 40 p 111 0000 70
A 100 0001 41 q 111 0001 71
B 100 0010 42 r 111 0010 72
c 100 0011 43 s 111 0011 73
D 100 0100 44 t 111 0100 74
E 100 0101 45 u 111 0101 75
F 100 0110 46 v 111 0110 76
G 100 0111 47 w 111 0111 77
H. 100 1000 48 X 111 1000 78
] 100 1001 49 y 111 1001 79
J 100 1010 aA z 111 1010 7A
K 100 1011 4B { 111 1011 78
L 100 1100 ac ! 111 1100 7C
M 100 1101 4D } 111 1101 70
N 100 1110 4E ~ 111 1110 7E
o) 100 1111 4F

*American Standards Institute Publication X3.4-1968

APPENDIX D

BINARY, DECIMAL AND HEXADECIMAL NUMBERING

D-1 GENERAL

This appendix covers numbering systems to three bases (2, 10, and 16) which are used
throughout this manual.

D-2 POSITIVE NUMBERS

D-2.1 DECIMAL (BASE 10). When a numerical quantity is viewed from right to left, the right-
most digit represents the base number to the exponent 0. The next digit represents the base

number to the exponent 1, the next to the exponent 2, then exponent 3, etc. For example, using
the base 10 (decimal):

106 10° 104 103 102 101 100
X, X XX X X X

or .

1,000,000
100,000
10,000
y 1000 100 10 1
X, XXX , X X X

For example, 75,264 can be broken down as follows:

75, 264
4x10°-4x1 - 4
6x10'-6x10 - 60
———2x10°-2x100 - 200
5x10°-5x 1000 - 5000

7x10*-7x10,000 - +70000
75264

D-2.2 BINARY (BASE 2). As base 10 numbers use ten digits, base 2 numbers use onlyOand
1. When viewed from right to left, they each represent the number 2 to the powers 0, 1, 2, etc.,
respectively as shown below:

215 26 25 24 23 22 21 20

(32,768) e e e (64) (32) (16) (8) (4) (2) (1)
X eoe X X X X X X X

For example, 11011, can be translated into base 10 as follows:

1 1 0 1 1
L1x2o=1x1=1
1x2'=1x2= 2
x22=0x4= 0
1x23=1x8= 8
1x 2% =1x16=+16

or 11011, equals 27.

Binary is the language of the digital computer. For example, to place the decimal quantity 23
(2310) into @ 16-bit memory cell, set the bits to the following:

0 15
0 0 0 0 0 0 0 0 0 0 0 1 o 1 1 1

whichis 1+ 2+ 4 + 16 - 23y,.

D-2.3 HEXADECIMAL (BASE 16). Whereas binary uses two digits and decimal uses ten
digits, hexadecimal uses 16 (O to 9, A, B, C, D, E, and F).

The letters A through F are used to represent the decimal numbers 10through 15 as shown on
the following page.

D-2

Nio Nis Nio N6
0 0] 8 8
1 1 9 9
2 2 10 A
3 3 1 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

When viewed from right to left, each digit in a hexadecimal number is a multiplier of 16 to the
powers 0, 1, 2, 3, etc., as shown below:
163 162 1617 160
(4096) (256) (16) (1)
X X X X

For example, 7 B A 5,5 can be translated into base 10 as follows:

7 B A 5
T—SX16°= 5X1 = 5
- 10x161'=10Xx16 = 160
11X162=11X256 = 2816
7X163= 7X4096 = 28672
316531

or 7 B A 5, equals 31,653.

Because it would be awkward to write out 16-digit binary numbers to show the contents of a
16-bit memory word, hexadecimal is used instead. Thus

003E;s or > O03E (> indicates hexadecimal)
is used instead of
0000 0000 0011 1110:

to represent 62, as computed below:

D-3

BASE 2 BASE 10

1 1 1 1 1 0o 6 10
]; I;——-o x 20 = 0 ‘ E-——-z X 100 = 2
- 1 x 21 = 2 6 X 101 = 60
———1 X 22 = 4 6;
1x 28 = 8 10
1x24 = 16
1x25 = 32 BASE 16
6210
3 Ege
[____~14 X 160 = 14
— 3x 16! = 48
6210

Note that separating the 16 binary bits into four-bit parts facilitates recogniticn and translation
into hexadecimal.

0000 0000 0011 1110, B F16

T by

0 o 3 Etg 1100 0111 1011 1111,

Table D-1 is a conversion chart for converting decimal to hexadecimal and vice versa. Table D-2
shows binary, decimal and hexadecimal equivalents for numbers Oto 15. Note that Table D-1 is
divided into four parts, each part representing four of the 16-bits of a memory cell or word (bits
0 to 15 with bit O being the most significant bit (MSB) and bit 15 being the least significant bit
(LSB). Note that the MSB is on the left and represents the highest power of 2 and the LSB on the
right represents the O power of 2 (2°- 1). As explained later, the MSB can also be used to signify
number polarity (+ or —).

NOTE
To convert a binary number to decimal or hexadecimal, convert
the positive binary value as described in Section D-4.

D-4

TABLE D-1. HEXADECIMAL/DECIMAL CONVERSION CHART

MSB LSB
16° 162 16' 16°
BITS|[0 1 2 3|4 5 6 7 |8 7 8 11| 12 13 14 15

HEX DEC HEX DEC HEX DEC HEX DEC
0 o|o o|o o| o 0

1 409 | 1 256 | 1 16| 1 1

2 8192 | 2 512 | 2 32| 2 2

3 12288 | 3 768 | 3 48 | 3 3

4 16384 | 4 1024 | 4 64| 4 4

5 20480 | 5 1280 | 5 80| 5 5

6 24576 | 6 1536 | 6 96 | 6 6

7 28672 7 1792 | 7 12| 7 7

8 32768 | 8 2048 | 8 128 | 8 8

9 36864 | 9 2304 | 9 144 | 9 9

A 40960 | A 2560 | A 160 | A 10

B 45056 | B 2816 | B 176 | B 1

C 49152 | C 3072 | C 192 C 12

D 53248 | D 3328 | D 208 D 13

E 57344 | E 3584 | E 224 | E 14

F 61440 | F 3840 | F 240 F 15

To convert a number from hexadecimal, add the decimal equivalents for each hexadecimal
digit. For example, 7A82;s would equal in decimal 28,672 + 2,560 + 128 + 2. To convert
hexadecimal to decimal, find the nearest decimal number in the above table less than or equal
to the number being converted. Set down the hexadecimal equivalent then subtract this
number from the nearest decimal number. Using the remainder(s), repeat this process. For
example:

31,3620 - 700016 + 26900 7000

2,690 - AOO;s + 13010 A00

13010=8016 + 210 80
210 = 216 2
7A82;¢

D-56

TABLE D-2. BINARY, DECIMAL, AND HEXADECIMAL EQUIVALENTS

BINARY DECIMAL HEXADECIMAL
(N2) (N1o) (N16)
0000 (0] 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E

. 1111 15 F
¥ 10000 16 10
10001 17 11
10010 18 12
10011 19 13
10100 20 14
10101 21 15
10110 22 16
10111 23 17
11000 24 18
11001 25 19
11010 26 1A
11011 27 1B
11100 28 1C
11101 29 1D
11110 30 1E
11111 31 1F
100000 32 20

D-6

D-3 ADDING AND SUBTRACTING BINARY
Adding and subtracting in binary uses the same conventions for decimal: carrying over in
addition and borrowing in subtraction.

Basically,
0 1 10
1 X1 -1
1 10 (the carry, 1, is carried to the left) 01 (1 is borrowed from
top left)
1 11
} =0+ carry 1
1 1
+_l = 0 (from above) + 1 = 1 + 1
11 101

—\—carry carry 1 + 1 = 10——--/—

1
1 1000 0110
} =0+ 1 carry
1 -1 Borrow the 1 -1
1 } 0111 L0111
=0 + 1 carry
+ 1
100

o o
carry 1 + carry 1

D-7

D-4 POSITIVE/NEGATIVE CONVERSION (BINARY). To compute the negative equivalent
of a positive binary or hexadecimal number, or interpret a binary or hexadecimal negative
number (determine its positive equivalent) use the two’s complement of the binary number.
NOTE
To convert a binary number to decimal, convert the positive binary
value (not the negative binary value) and add the sign.

Two’s complementing a binary number includes two simple steps:

a. Obtain one's complement of the number (1°s become O’s, O’'s becomes 1°s) (invert
bits).

b. Add 1 to the one’s complement.

For example, with the MSB (left-most bit) being a sign bit:

010 (+2) nt (=12 10 (=22) 101 (-32)
101 Invert 000 Invert 001 Invert 010 Invert
+1 Add 1 +1 Add 1 +1 Add 1 +1

110 (—29) 001 (+19) 010 (+29) 011 (+39)

This can be expanded to 16-bit positive numbers:

(=39F67g) 0017 1001 1111 0110 (39F6q5 = +14,8381p)
1100 0110 0000 1001 Invert
+1 Add 1
(<C60A1g) 1100 0110 0000 1010 (C60Aqg = —14,83810) Two’s Complement
SIGN BIT(-)

And to 16-bit negative numbers:

1]

(=C60A4g) 1100 0110 0000 1010 (C60A¢4
0011 1001 1111 0101 Invert
+1 Add 1

—14,8381)

(=39F67g) 0011 1001 1111 0110 (39F64g +14,83810) Two's Complement

SIGN BIT(+)

D-8

APPENDIX E

PARTS LIST (TM990/100M-1)
TABLE E-1. PARTS FOR ALL BOARDS

SYMBOL DESCRIPTION QTy.
Cl1toC4 Capacitor, 22 uF, tantalum electrolytic 4
C7 to C22, Capacitor, 0.047 uF, axial lead 35
C24 to C42
Cc23 Capacitor, 18 pF, ceramic disc 1
CR1 Diode, TN914B 1
L1 Inductor, 0.33 uH 1
P2 Connector, EIA, 25-pin socket 1
R1., R4, R5 Resistor, 68 ohms, 1/4 W, 5% 3
R2, R9, R11 Resistor, 220 ohms, 1/4 W, 5% 3
R3, R8, R10 Resistor, 330 ohms, 1/4 W, 5% 3
R6, R12, Resistor, 4.7 kilohms, 1/4 W, 5% 5
R13, R14, R19
R7 Resistor, 1 kilohm , 1/4 W, 5% 1
R15 to R18 Resistor, 10 ohms, 1/4 W, 5% 4
R20, R34, R35 Resistor, 3.3 kilohms, 1/4 W, 5% 3
R21 Resistor, 33 kilohms, 1/4 W, 5% 1
S1 Switch, SPDT 1

E-1

U1 Resistor Pack, 4.7 kilohms, 16-pin

U2 74LS241N, octal buffer
U3 to U10 74L.S243N, quad bidirectional buffer
U111, u14 7438N, quad, 2-input NAND gate, open collector
ui2 75140N, receiver
u13, u21, u27 74LS04N, hex inverter
U1b TMS 9901, programmable systems interface
U16 TMS 9900, central processing unit
u17 74S287N, PROM, 256 x 4 bits
u18 74LS20N, dual 4-input NAND gate
ut9 74LS362N, clock generator
u20 74LS5138N, 3 to 8 decoder
u22, U26, 74LS74AN, dual D flip-flip
U30, U31
u23 74S288N, PROM, 32 x 8
U25 Resistor pack, 4.7 kilohms, 14 pin
u28 74LS132N, quad, 2-input NAND gate, Schmitt trigger
u29 74L.SO08N, quad, 2-input AND gate
. U32, U34, TMS 4042-2 RAM, 256 x 4 bits
U36, U38
u40 TMS 9902, asynchronous communications controller
U41 75189N, EIA driver
u46 75188N, EIA driver

E-2

VR1 Converter, =5 V, LM7905C
XU15 40-pin socket, low profile
XU16 64-pin socket, low profile
XU17, XU23 16-pin socket, low profile
XU19, XuU40 20-pin socket, low profile
XU32 to XU39 18-pin socket, low profile
XU42 to XU45 24-pin socket, low profile
Y1 Crystal, 48 MHz, 3 overtone

TABLE E-2. ADDITIONAL PARTS FOR ASSEMBLY 999211-0001
(TTY INTERFACE)

SYMBOL DESCRIPTION

Q1 Transistor, 2N2905A, PNP

R30 Resistor, 560 ohms, 1/2 W, 5%

R31 Resistor, 2.7 kilohms, 1/2 W, 5%

R32 Resistor, 330 ohms, 1/2 W, 5%

u42, U44 TMS 2708 EPRbM (1024 x 8 bits each) with TIBUG
monitor

E-3

TABLE E-3. ADDITIONAL PARTS FOR ASSEMBLIES 999211-0002
AND 999211-0003 (MULTIDROP INTERFACE)

SYMBOL DESCRIPTION
CR2, CR3 Zener diode, 3.3 V
R22, R24, Resistor, 330 ohms, 1/4 W, 5%
R26, R28
R23, R25, Resistor, 27 kilohms, 1/4 W, 5%
R27, R29
U42, u44 TMS 2708 EPROM (1024 x 8 bits each)
ua7 75112, balanced line transmitter
u48 75107, balanced line receiver

TABLE E-4. ADDITIONAL PARTS FOR ASSEMBLY 999211-0003 ONLY
(MULTIDROP INTERFACE)

SYMBOL DESCRIPTION
U33, U35, TMS 4042-2 RAM, 256 x 4 bits each
U37, U39 (expansion RAM)
U43, U45 TMS 2708 EPROM, 1024 x 8 bits each

(expansion EPROM)

E4

QTy.

QaTy.

l-d

r

NOTES: UNLESS OTHERWISE SPECIFIED
M CAPRCITANCE VALUES ARE N MICROFARADS

INDUCTANCE VALUES ARE IN MICROFARADS

& 39uf C5%C6 ELECTROLY TIC CAPACITORS ARE USER
INSTALLABLE. THESE SHOULD BE TANTALUM CAPALITORS,
15V MINIMUM.

[ON THE TMY90/100M-1 ASSEMBLY, THE TTY INTERFACE
15 POPLULATED. ON THE TMI90/100M~2 ASSEMBLY, THE
MULTI-DROP INTERFACE 15 POPULATED

SPARES
e
— u2l 12 1
S B
| |‘o 740504 75188N
By e
—
74LS04N 4
w0 J28
E@ﬁx.s:ezu
!
3
LsoaN
3
ss
+RV————— v PI-15,76
C26,24,30 |
32,041 H ez
- I S g
0410 F] 3=V
+5V—e———— ’ Pi-3,4,97,98
C7-Ci6,C18,CI9,C2
I ut.,:.u,czs.i 4] 4;1_54-
C31,033-C39 T
'l: Tzz,f 22,7
- ' 4> P1-1,2,21,23,25,27,31,
| = 117,79,81,83,85,
— — — 1,99, 100,
sug03 ol BCRUCLKD o\ 9r] can -tLC3 83,31,99,100,
17 SEL S i i
sn2 _CRUIN_i0 ? SELS 44 110 7 +5v i 5 2
NC—LS g SEL 4 I il ls 047 35k
A4 ey 5 4 ! !
| a1 XUS1 Clev | |
I A3 | 1zl XUS! |4 ‘ : 3 Pi-73,74
| Al SHa 148 (o)j—f’ +i2v
e ?2 ORST e IS:]
AD ! I {16
sHe A0 165 ol==m2l _ong $18& -5V
[S———— 1 ==]
LOGIC DIAGRAM, TM 990/100M

SHEET 10of 8

SOILVW3IHIS

4 X1aN3ddVv

¢-d

§H8—RESET SRESET poft— DO
SH B&W—‘"LOAD DI |2 DI
sk 7-12Q A 0243 D2
(LA gml 03 H
2 papP> D4
snelg 03 23 D546 DS
4 25 94 06 |47 D&
SH 3[N—TREQ—_L2!NTREQ p7H@s D7
- 380 psfe D8\ . .-
It 351(:1 0 50 o) »e ¥
SH3 12 3dicn Dol Do
R 3A Y e ol :2
gREADY 82prapy [P K — I -
el WWAIT T ay sa D13
WL 6= 55 DI4
L'JI—-HOLD D14
SHe4p74e 00 DA __ Syoipa Ule DisE— DI5
VBB{-5V) . 1VBB A0 |24 AQ
VCC(H5V) v, Al 23 Al
459V€CC a2 B2 T A2 SH4 47
V DD&12V) ZTVDD A3 | A3
= 404,02 as 19 A5 . }SH 4,5¢7
—CRUIN__ 3lepyy AG 18 A6~
5”’”7{—————3—“3“0” CRUOUT a7z A7
CRUCLK 60« 16 AB SHASLET
sk 1,3 LR CRUCLK A8
site —HME___ | GIgE A9 L a3 |
9
[—MEMEN . S3yeuen Alofi4 Al
SHe | D8N 7a 29pp (N Al Al) "
¥ BB
i aile Al2 5SH 5 6eT
A|3” Al
AlalC ata
/ TMS9900 N SEY
) N % ’:ﬁ" 74L504N
4 VR SN 5 {RUTREAD 2 CRUCLKE
Y A YO SH 3,4
v @\ 4
X B YIF-NC —— |
w3 v IOE ¢ s s
vl 12 RST,
v §GZA Y3—%—ﬂ¢” SH 8
CRUCLK L 28 YA
7 ¥ 1 YSQ——NC
18 YEE-NC
I uzo (REX {f o1y &
6 DBIN
[auigp SHG,7
| ¥ 7415138
+5v T4LS20N

3

CENTRAL PROCESSOR UNIT

LOGIC DIAGRAM TM 990/100M
SHEET 20of 8

€4

r P
1
I: < LR DAoL s 1
i e
N
SH2) Itz 317 INT4 F1-18
IC3 121c3 NTS
L Sps-s
+5v —4Qvee NTHe
| y | SSRGS
V: INT 15/P1
:;_——ﬁ 55 S— N
sHg-L10BST UrsTi WTE/re
sHa-B3 D L Spaze +12v R 34
CRUIN UIN T 73/P9) 33K, W
sue(SRUOLL £lcRuouT s P2-e
CRUCLKB T 12/ -2v 4 TERM
CRUCLK * 3 L
sn4 TIOTSEL T pa-30 L A——P25 A_A
A 10 o W ,/P1 R35 l_._rq— - 13
36| ©_ 5 >R
et 3 WT0/f12, 3.3K —T73
A1Z a2 =2
SHZ § “A73 3 P4-34
Al4 24 34 RT3 _ +5Y L TERM
NT8/P — RS 232 RCV (o) o] P21t
WNT/P5) o FE INPULL ©_ "5 >
!_ LTTY U48-2(SHB)
23
uis +12V TTY RCV P2-18 +lev L TERM
R 3 AA
2.7Ka . o2-1
TMS9301 | /2 INPUSH __\)48-1(sH8) l—‘a——_MJM Pz-12
izv TTY RCV RTN p2-23
R32
3 3| A N 330.0,1f2w
e L5 £2138 9 —JnieBN |
S - 240G = _
S ,
- -1
P St T g 2V R3p l - pe
560, /24 TTYXMIRTN, o, 5, a
547-8(SH 8)
L v , _ S~ P2-25
L2l T = 33K n oW U47-9 (SH 8)
53 XouT - 6
52 040 oo 7 2[3 DD 1.5
N RTSI_;_E}_—)%;BB Pz-8 U47-5(H8) | CRI 5A
1850 T3 U21-11(SH8) N ﬂ INgI4B L =
LacrRuaLK SR DSR 3o Pz-20 - —
RUOUT NC U4l TTY INTERFACE
CRUIN 83 ip 15189N
R
:M
3502 5t i s 3
SH4-2ZYESEL | 4gy ai¥ee //TMs ~ U48-45H8) RCV _CLK P2-17
SVss [3903 SCR - 041 [l
L ONLY) 5eTli0 ;
= 13 XMT (LK
o P2~-15
TMS9902/03 INNEZLEN

SHEET 30f 8

v-d

N
SH2 T r'/g J—
vt BNl s
. 7ALS20N — +5v
- . Ri4 Ri3
A LTIRNJANS S4TKn /AW R2
L = KTA 2200, 1AW
+5Y Sl Dollz) ok RAM L SH 6
RI19 52 oy: TR - MROM J0 . PI-90 >y READY.B W
%7K e e EROM ~_Jsms !
W v ;A poale__ ¥ ¥ TOSEL 4 . +5V o 6 READY iy,
L2 ADF I Vv at 12 —
o lr A RIt
o 2 ADE § 8 20 74LS04N
¥ A /4w ——
sHz oo P92 U Pyl g Bl HOD sz
ot 11 Ehpg U7 Y soan
AS Sy pa 8 e v
745287 4
I =
s o
A ol SSOISEL
Lo o e s
I ve 1300 po3 EXICRO o ¢
A7 . 2hpc posd
SHz A8 . lWaps pos
A9 b D‘DA Do 6 SH 1
007l v
U23 pog2 ,Mlang o HOLDAT 12k E.5)
WE MTE | : P18
745288 WE |:‘5 IZk ¥ ¥ olan
n2 | i BETR Vo] M- DBINB —
114} — BIAY 1N 42, PR
s ; 5N L A6 e ‘L—‘{, >°—|; i D,ae /MEWMCYC.B A, p)_ga
+ 4 - v - 8
74L504N FEFEN | i 21 | MEMEN TN R
WAITY Rt 2] PR MEMEN.B spip0
sHe T TAL504N 1 i :
./ MEMCYC +5v 743N
4 RI2
4.TIK 1AW
)
i HOLDA.B ., o\ o0
— 5 8y TORES.B . pi_pe
sng.M_
o 6, CAUCIR.B yp _gq
+ LA —
91
SH B! \ Uie
MEMORY CONTROL o
\v\ CONTROL LINE BUFFERS
AR
pu

LOGIC DiIAGRAM, TM 990/100M
. SHEET 4 of 8

MROM

e
~
{3
N o
e 5
O ¥ o
- @ « = ERRIR
| |] | | «f
Al ~ ,
p—] R ©] I
o7
[
K 44
T S ke
[0]] o~]
o
6 Mm 4
LIl .
2 - 02 v
T r 5
AS+ =1 “ £}
At —gl "
g
€ "
% .
o 80 -, 1 ﬁ
60 El ﬂw
o1d ~ Ell
2Hs(1a . RN
2ad €l
€ia 1] 3 e
v1a 0Ol e T
§I1a 6| S5¢ Z
8l = €
02| — 2
I L i
rdis. v 5
a A2+ —git 7
|| rsozz (2]
> d > 1 8
| r9iLe "
_YJYL
3 +8042
L _YLYJ o o
ro1ze
2] Gif .
= BT v
€l T 2
L S 2
o1 Mwms_
6| D4
=
€
4
o F
3
a 9
Z
8
e ——
T e
~ 3
IS4
0
<y
SF pVEE
o2
9
oz
WYH90Ud GVIE
3dsd vV
A \\thm
= °°9
[
8

F-5

LOGIC DIAGRAM, TM 990/100M

SHEET50of 8

9-d

S ~ i ~ o o
o w - o
z 3 A z @ 2 3
YT — - — — —
Y 344 -
wi[2 H9 3 of I 8f ™! Y
9ll% oy L < o| of 21 |0 BN
3g<|§ HEEE NEEE NEER Sala o
AG
RAM
Ak
DEIN
WE.
]
|
i
Lo .
sl = 0loloo o b o DO N e S o O P =1 N o 0 e o v A e O = e P = B ER e
< — = N =
u32 u3a R L u36 u37 u3s u39
TMS4042-2 TMS4042-2 TMea042-2 U35 TMS 4042-2 TMS 4042-2 TMS 4042-2 TMS 4042-2
NOOTMNN~O
PET PP
CUES DL N’_@zn':—wnv N Ol Tl = BREREECEE OO~ BECEERERRE ~ 9 EEEREE ~] SRS
Al4) Al4
Al3 Al
Al2 Al2
All : Al
Al alg (SHZ
A9 A9
AB AB
A7 AT
RAM MEMORY .

LOGIC DIAGRAM, TM 990/100M
’ SHEET 60of 8 -

v . .

L4

SH 2 |WLD5;§ ;{> & , HOLDA

v2i
74L504N
+5v +5v
L 4 1 14
V¢
Dy uf Ve ls | 03B Lo . a3 pln 5 . A3B b)
P2 2 10bg pplt o D2:B 5o oo az [0 4. A2B o 59
SHe DLy Sl 3a3 s DLBIp 30 SHEZY AL 5 2 ALB ., p)5p
Do y ‘S,B 24 DO.BY p 33 AQ |a U7 & 2 ADBY o og
L GAB . +5y——4
5T 3@5 DT [13lons s
SH2 5 R N U3
o T8N | i - Salszann 7 74LS243N
H4 5 Vi =
15V +5v
14 14
1 . I(;I ¥ D1B o o1 o AT |l 3 L ATB oy s
sz D6 - i 4 1 DB p 39 Aby la_] AeB ols
D5 B a b wDSBlp .35 SHZ{_ A5, |9 5 . ASBY pice
D4 ;, 6 Db, A4, | 8 6 AR, o o
- U4 +sv—14 Us
L3 o3|
[
T 74Ls243N T 7aLs2a3n
4 = -~ =
+5v +5V
in 1
DIl v U 3, DB p_ag AL | 3 AILBy pig
DI0 . i o, DOB pay p A0 10 q " AI0B oo
sHe2 D3 . 9 L DB o4, SH2(A9 |9 5 A9.B] o, 0
D8 " : 6 . DB o4 Y |e_| 6 _AB.B. o .o
4 US *svig u° +ov
L vclzco
-
¢ L 7aLs243N ry L 74LszasN sHe —CRUOUT o 20,/ 18 CRUOUTE, .5,
oy e oy NC—;‘MZ |Y2'I—§— NC
Ne—Siaz v e
% = 7 14 Pi-29¢CRUN.B ;mw? yaflz _CRUN o) 5
DI5 N 1 3 . DISBy o) 45 il 3 AIS.By b 72 sHz A Ly ay 2vil2 AGQB PI-19
Di4 N 1o KM, Di4B 5. A4 IQ] K4 . A“B - 1 S| PLB .
sHa " PI-47 J’ Pi~71 SH 8 A2 2Y, 1-22
DI3 H 9) 5 LDI3BS p_4¢ gypd —AL3 | O 5. :‘\zs.: PI-70 sHe—B83 S 1553 oyad G3. Pl-24
DIz . ? 6 1DRE pi_4g ALz |8 6 B p1-g9 sHa—CR & 1Thaaova3 CLKB ¢ pypg
k ué +5v——a U110 +5v——-»-1226
l (13 s EXTCRA iz U2
| 74LS243N T° 74152438 —Sf—.o 74L5241N
DATA /ADDRESS BUS BUFFERS
LOGIC DIAGRAM, TM 990/100M

SHEET 7 of 8

8-d

<+
14w
. o, PRESS %ﬂ si o LCREX 5028 £
P1-92 . . 4T i
RS T co i g :
S 8o T 3UF L5y Lo04N
N |/¢w _
N R7
<1 "M
U RESTART.B veu o
°:-93 0A T + =
68, iAW 3%F SH3-20UT oA 2l2 OUTPULL
21— I o PO] TOCRLLE: P QUTPUSH }5H3
= 7‘.4LS(}4:\I’ 121 A R2S
L A VT S R U7 I 27K, 1/4w
+5V '8 +5V
aLaren| 137 14LSTAN +5v 14}y,
- +5v — e kY 10 D<c+ _£°:: R24
I 2a.7knlyzs 1 [P J9 330, /4w
L ~5v— v
Ri7, 102, /4w
p1-28¢—EXTCLK.B 3 Zoscma gafi e 8L et e P Y
iy —aet3vyy o RENCaAW g re Tonp 12 P 27K, /4w
5y ——=2Qy v : 27K, /AW = = _
. 10l uis e ’ ~ +5v S = 75112 = e
s R15,100,/4W o —
L—I; o 3 . 5 L
= '::qu ¢,8‘ A : T 9 SR 2 F te= 33zol,n_'
Lie 23 RI6y10 ,Y4W Ji2 e
200¥) -
'JJI‘H 18pF ZTAnKl ¢4S 3 v 2 44 SHeZ ok
_ 31 45
” SL8TAL 1 Fip 1 ;Aﬁ?l 5H 1k 4 . — LnJ!_nJ] 8
4802 B2 1t = — B DUPLEX SELECTORS
-Eb'#:xm_z Tt v 03 g 7,18 04 J 10
2| e LI Z i R — R206y3300, l/4W
osc autfé K su
eralt oz su 3 INPUSH 1A WR_PWRIN o, o
. SH 3 _INPULL_ _2.5
LS362N 5
Y cr2 nve—Sea B
CR3 IN5333 e 2t NC
INS333
— S '2
- +5v |4Vcc¢
RESET/LOAD/CLOCK = -5V e~
42a B
40 g8 | ©-
- 75107

MULTI-DROP INTERFACE

LOGIC DIAGRAM, TM 990/100M
SHEET 8 of 8

APPENDIX G

990 OBJECT CODE FORMAT

G.1 GENERAL

In order to correctly load a program into memory using a loader, the program in hexadecimal
machine code must be in a particular format called object format. Such a format is required by
the 7/BUG loader (paragraph 3.2.7 explains loader execution). This object format has a tag
character for each 16-bit word of coding which flags the loader to perform one of several
operations. These operations include:

= Load the code at a user-specified absolute address and resolve relative addresses.
(Most assemblers assemble a program as if it was loaded at memory address 0000:s;
thus, relative addresses have to be resolved.)

» Load entire program at a specific address.
= Set the program counter to the entry address after loading.

= Check for checksum errors that would indicate a data error in an object record.

'G.2 STANDARD 990 OBJECT CODE
Standard 990 object code consists of a string of hexadecimal digits, each representing four
bits, as shown in Figure G-1. ‘

TAG CHARACTERS

/

00000SAMPROG 90040(‘[({00A00208006D50002$2C0020A0024BC81 BCOO2A7F21AF

A0028B024 1B0000BCB4 1B0002B0380A00CAC0052C00A2B02E0C0032B0200BOFOF7F1DEF

AOOD6BCOAOCO0CABO4C3BC160CO0CCBC1A0C00D0BC072B0281B3A00A00ECB02217F151F

AOOEEB0900B06C1AQ00EAB1102A00F2B0543B11F8B2C20C0032BC101B0B44BE0447F18EF

A0100BDD66B0003B0282C00A2B11EDB0O3407F832F _—/
CHECKSUM FIELD

200C500 10C 7FCABF

\—- LENGTH OF RELOCATABLE CODE

RELOCATABLE ENTRY ADDRESS (BEGINNING OF EXECUTABLE CODE)

END OF OBJECT CODE MARKER

A0001462

FIGURE G-1. OBJECT CODE EXAMPLE

G-1

The object record consists of a number of tag characters, each followed by one or two fields as
defined in Table G-1. The first character of a record is the first tag character, which tells the
loader which field or pair of fields follows the tag. The next tag character follows the end of the
field or pair of fields associated with the preceding tag character. When the assembler has no
more data for the record, the assembler writes the tag character 7 followed by the checksum
field, and the tag character F, which requires no fields. The assembler then fills the rest of the
record with blanks, and begins a new record with the appropriate tag character.

Tag character O is followed by two fields. The first field contains the number of bytes of
relocatable code, and the second field contains the program identifier assigned to the program
by an IDT assembler directive. When no IDT directive is entered, the field contains blanks. The
loader uses the program identifier to identify the program, and the number of bytes of
relocatable code to determine the load bias for the next module or program. The PX9ASM
assembler is unable to determine the value for the first field until the entire module has been
assembled, so PX9ASM places a tag character O followed by a zero field and the program
identifier at the beginning of the object code file. At the end of the file, PX9ASM places another
tag character zero followed by the number of bytes of relocatable code and eight blanks.

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is used when the entry
address is absolute. Tag character 2 is used when the entry address is relocatable. The
hexadecimal field contains the entry address. One of these tags may appear at the end of the
object code file. The associated field is used by the loader to determine the entry point at which
execution starts when the loading is complete.

Tag characters 3 and 4 are used for external references. Tag character 3 is used when the last
appearance of the symbol in the second field is in relocatable code. Tag character 4 is used
when the last appearance of the symbol is absolute code. The hexadecimal field contains the
location of the last appearance. The symbol in the second field is the external reference. Both
fields are used by the linking loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code, with a
location, or an absolute zero, and the symbol that is referenced. When the object code field
contains absolute zero, no location in the program requires the address that corresponds to the
reference (an IDT character string, for example). Otherwise, the address corresponding to the
reference will be placed in the location specified in the object code by the linking loader. The
location specified in the object code similarly contains absolute zero or another location. When
itcontains absolute zero, no further linking is required. When it contains a location, the addre s
corresponding to the reference will be placed in that address by the linking loader. The locat; n
of each appearance of a reference in a program contains either an absolute zero or anott er
location into which the linking loader wili place the referenced address.

G-2

TABLE G-1. OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS

TAG
CHARACTER

o]

O Mmoo W

HEXADECIMAL FIELD
(FOUR CHARACTERS)

Length of all relo-
catable code

Entry address

Entry address

Location of last
appearance of
symbol

Location of last
appearance of
symbol

Location
Location
Checksum for
current record
Ignore checksum
Load address

Load address

Data
Data
Load bias value*
None

Location

Location

SECOND FIELD
8-character program
identifier
None

None

6-character symbol

6-character symbol

6-character symbhol

6-character symbol

None

None

None

None

None
None
None
None

6-character symbol

6-character symbol

MEANING
Program start

Absolute entry
address

Relocatable entry
address

External reference
last used in relo-
catable code

External reference
last used in absolute
code

Relocatable external
definition

Absolute external
definition

Checksum

Do not checksum for
error

Absolute load
address

Relocatable load
address

Absolute data
Relocatable data
Load point specifier
End-of-record

Relocatable symbbl
definition

Absolute symbol
definition

*Not supplied by assembler.

Tag characters 5 and 6 are used for external definitions. Tag character 5 is used when the
location is relocatable. Tag character 6 is used when the location is absolute. Both fields are
used by the linking loader to provide the desired linking to the external definition. The sec »nd
field contains the symbol of the external definition.

)

Tag character 7 precedes the checksum, which is an error detection word. The checksur is
formed as the record is being written. It is the 2's complement of the sum of the 8-bit ASCII
values of the characters of the record from the first tag of the record through the checksum iag
7. If the tag character 7 is replaced by an 8, the checksum will be ignored. The 8 tag can be used
when object code is changed in editing and it is desired to ignore checksum.

Tag characters 9 and A are used with load addresses for data that follows. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address is
relocatable. The hexadecimal field contains the address at which the following data word is to
be loaded. A load address is required for a data word that is to be placed in memory at some
address other than the next address. The load address is used by the loader.

Tag characters B and C are used with data words. Tag character B is used when the data is
absolute; an instruction word or a word that contains text characters or absolute constants, for
example. Tag character C is used for a word that contains a relocatable address. The
hexadecimal field contains the data word. The loader places the word in the memory location
specified in the preceding load address field, or in the memory location that follows the
preceding data word.

To have object code loaded at a specific memory address, precede the object program with the
D tag followed by the desired memory address (e.g., DFDOO).

Tag character F indicates the end of record. It may be followed by blanks.

Tag characters G and H are used when the symbol table option is specified with other 990
assemblers. Tag character G is used when the location or value of the symbol is relocatable,
and tag character H is used when the location or value of the symbol is absolute. The first field
contains the location or value of the symbol, and the second field contains the symbol to which
the location is assigned.

The last record of an object code file has a colon (:) in the first character position of the record,
followed by blanks. This record is referred to as an end-of-module separator record.

Figure G-2 is an example of an assembler source listing and corresponding object code. A

comparison of the object tag characters and fields with the machine code in the source listing
will show how object code is constructed for use by the loader.

G-4

SAMFLE

Llci~ER

a3
284
a0es
A6
alol by
anes
2893
BB1O

u]oh R

5913

=lais e
alas b
g
5lalo]
2R26
ROBR
ojul=la)
Qasac
COSE
RAA3A

BR32

o654
RIS
anog
Be9s
aasA
a932C
BOSE
BORG

T BOR2

BOA4
BBHE
DBAB

MO ERRORS

NI OARZAMFLE

COo02eER

1O0LENE 04 BL 34 BENE44EBFEEDEDC 2 B0 USESSSSRCSOSCONZETFFICLF

SOURCE STATEMENT NO.

-LOCATION COUNTER (ADDRESS RELATIVE TO FIRST OBJECT BYTE)

MACHINE CODE

SDSMAC 945278 Aok

}/// 10T

" SAMPLE -

FRGE B0l

DRGE - DATA WSPACE
HASA 7 DATA START
BRABE DATA O

WSFACE BSS 32

TABLE B35S 190

) START

@4cc CLR 12
G4CcH CLR ©
0262 LI 2, TABLE
Ba2e”
Dt=1315} MOY 8, @TARLE+2
[pukc 1
1e8l JIMF $+4.

L.OooP
a2 LI 4, >1234
1234
B244 ANDI 4, >FEED
FEED
DCEag4 MOWB 4. 42+
D265 LI 5. 5555
5955
cBas MOV 35, @TABLE
(5% bl g

END
A0z OO ZABEO00O0ADOSAE M4 CCEQ4C OB OGS DT HDEEBCSONPFE00F

SAMPLE

oo 00-00

naslgq: 22

SDEMAC

S4F2TR ee

FIGURE G-2. SOURCE CODE AND CORRESPONDING OBJECT CODE

G-b

P1, P2, AND P4 PIN ASSIGNMENTS

APPENDIX H

TABLE H-1. CHASSIS INTERFACE CONNECTOR (P1) SIGNAL ASSIGNMENTS

P1 P1 P1

PIN SIGNAL PIN SIGNAL PIN SIGNAL
33 DO.B 71 A14.B 12 INT13.B
34 D1.B 72 A15.B 1 INT14.B
35 D2.B 22 7.8 14 INT15.8
36 D3B 24 3.8 28 EXTCLK.B
37 D4.B 92 HOLD.B 3 v +5V
38 D5.8 86 HOLDA.B 4 c¥ +5V

39 D6.B 82 DBIN.B 970x +5V

40 D7.8 26 CIKB 98 o¥ +5V

41 D8.B 80 MEMEN.B 75 +12v
42 D9.B 84 MEMCYC.B 767 +12V
43 D10.B 78 WE.B 73 % -12V
44 D11.B 90 READY.B 74 1 -12V
45 D12.B 87 CRUCLK.B 1 oK GND>,
46 D13B 30 CRUOUT.B 2 o GND”
47 D14.B 29 CRUIN.B 21 GND'
48 D15.B 19 IAQ.B 23 GND!
57 AO.B 94 PRES.B 25 GND
58 A1B 88 [ORST B 27 GND
59 A2.B 16 INT1.B 31 GND
60 A3.B 13 INT2.B 770 GND

61 A4.B 15 INT3.B 79 GND
62 A5.B 18 INTZ.B 81 GND
63 A6.B 17 iNT5.B 83 GND
64 A7.B 20 iINT6.B 85 GND
65 A8.B 6 INT7.8 89 GND
66 A9.B 5 INT8B 915k GND

€7 A10.B 8 INT9.B 99 ov GND
68 A11.B 7 INT10.8 100 -+ GND

69 A12.B 10 INT11.B 93 RESTART.B
70 A13.B 9 INT12.8

H-1

TABLE H-2. SERIAL 1/0 INTERFACE (P2) PIN ASSIGNMENTS

oy SIGNAL DESCRIPTION
1 GND
7 GND
3 RS232 XMT RS232 Serial Data Out
2 RS232 RCV RS232 Serial Data In
5 CTS Clear to Send
(3.3KQ pull-up to +12 V)
6 DSR Data Set Ready
(3.3KQ pull-up to +12 V)
8 DCD Carrier Detect
20 DTR . Data Terminal Ready
18,23 TTY XMT TTY Receive Loop/Private
Wire Receive Pair
24,25 TTY RCV TTY Transmit Loop/Private
Wire Transmit Pair
17 RCV CLK Receive Clock
15 XMT CLK Transmit Clock
12* +12V Jumper Option for Microterminal
13* -12V Jumper Option for Microterminal
14* +5V Jumper Option for Microterminal
16 RESTART Invokes the Load
Interrupt to the TMS 9900 CPU

*When using the Microterminal, these voltages are jumpered to the corresponding pin in connector P2. Else, the voltages are not connected.

H-2

TABLE H-3. PARALLEL 170 INTERFACE (P4) SIGNAL ASSIGNMENT

o SIGNAL o SIGNAL
20 PO 17 GND
22 P1 15 GND
14 P2 13 GND
16 P3 11 GND
18 P4 9 GND
10 P5 39 GND
12 P6 37 GND
24 INT15 or P7 35 GND
26 iNT14 or P8 33 GND
28 INT13 or P9 31 GND
30 iNT12 or P10 29 GND
32 iINTT1 or P11 27 GND
34 INTT0 or P12 25 GND
36 INTO or P13 23 GND
38 INTS or P14 21 GND
40 INT7 or P15 19 GND

7 INT 6 1-6 Spares

8 iNT 5

APPENDIX |
TM 990/301 MICROTERMINAL

1.1 GENERAL

The Texas Instruments Microterminal offers all of the features of a minicomputer front panel at reduced cost.
The Microterminal, intended primarily to support the Texas Instruments TM 990/100M and TM 990/180M
microcomputers, allows the user to do the following:

. Read from ROM or read/write to RAM

[Enter/display Program Counter

e Execute user program in free running mode or in single instruction mode

L Halt user program execution

° Enter/display Status Register

L] Enter/display Workspace Pointer (this term is unique to the Texas Instruments 9900
microprocessor)

L Enter/display CRU data (this term is unique to the Texas Instruments 9900 microprocessor)
L Convert hexadecimal quantity to signed decimal quantity
] Convert signed decimal quantity to hexadecimal quantity
1.2 SPECIFICATIONS
o Power Requirements
+12V (£ 3%), 50 mA
—12V (* 3%), 50 mA
+ BV (+ 3%),150 mA
e Operating Temperature: 0°C 1o 50°C (+32° to +122°F)
L Operating Humidity: O to 95 percent, non-condensing
L] Shock: Withstand 2 foot vertical drop
1.3 INSTALLATION

To install the Microterminal onto a TM 990/100M or TM 990/180M microcomputer, do the following:

. Attach jumpers 10 J13, 414, and J15 on the TM 990/100M or to J4, J5, and J6, on the TM
990/180M boaid to route voltages to the Microterminal.

L] Attach the EIA cable from the Microterminal to connector P2. Signals between the
Microterminal and the mictocomputer are listed as in Table I-1.

FIGURE I-1. TM 990/301 MICROTERMINAL

TABLE I-1. EIA CABLE SIGNALS

EIA Connector Interface At TM 990/100M/180M

Pin Signal P2 Pin Signal
2 TERMINAL DATA OUT -2 RS232 RCV
3 TERMINAL DATA IN -3 RS232 XMT
7 GND -7 GND

12 +12Vv -12 +12V

13 —12v -13 —-12v

14 + 5V —-14 + 5V

16 HALT -16 RESTART

CAUTION
Before attaching the Microterminal to a power source, verify voltage
levels between ground and EIA connector pins 12, 13, and 14
at connector P2 on the board. Voltage should not exceed values in
Table I-1. :

1.4 KEY DEFINITIONS

.41 DATAKEYS

X

[o]
(1]

[F=]

Clear Key — Depressing this key blanks display, initializes and sends initialization message (ASCI{ code
for A and ASCII code for Z) to host microcomputer.

Hexadecimal Data Keys — Depressing any one of these keys shifts that value into the right-hand display
digit. AH digits already in the data display are left shifted. For all operations other than decimal to
hexadecimal conversion, the fourth digit from the right is shifted off the end of the right-hand display
field when a data key is depressed. For a decimal to hexadecimal conversion, the fifth display digit from
the right, rather than the fourth, is shifted off the end of the data field.

1.4.2 INSTRUCTION EXECUTION

(7S]

[N

Pressing this key while a program is running (run displayed) will halt program execution. The address of
the next instruction will be displayed in the four left-hand display digits, and the contents of that
address will be displayed in the four right-hand digits. Pressing this key while the program is halted, will
execute a single instruction using the values in the Workspace Pointer (WP), Program Counter (PC), and
Status Register (ST), and the displays will be updated to the next memory address and contents at that
address.

Pressing this key initiates program execution at the current values in the WP, PC; run is displayed in the
three right-hand display digits.

1.4.3 ARITHMETIC

G

[D-H]

The signed hexadecimal data contained in the four right-hand display digits is converted to signed
decimal data. Note that the fourth display digit from the right is the sign bit (1 = negative). The
conversion limits are minus 32,76810 (80001g) to plus 32,767 (7FFF1g). Two H-D key depressions are
required. The sequence is:

1. Depress IH-*D[.

2. Enter data via hex data key depressions.
3. Depress . The results of the conversion are displayed in the five right-hand display
digits.

The decimal data contained in the five right-hand display digits is converted to hexadecimal. The
conversion limits are the same as for hexadecimal to decimal conversion. The seqguence is:

1. Depress |[D~>H].

2. Enter data via hex data key depressions.
3. Depress _ The results of the conversion are displayed in the four right-hand display
digits.

1.4.4 REGISTER ENTER/DISPLAY

bDwp

EPC

DPC

EST

DST

Pressing this key causes the value displayed in the four right-hand digits to be entered into the WP.
Pressing this key causes the WP contents to be displayed in the four right-hand display digits.
Pressing this key causes the value displayed in the four right-hand digits to be entered into the PC.
Pressing this key causes the PC contents to be displayed in the four right-hand display digits.
Pressing this key causes the value displayed in the four right-hand digits to be entered into the ST.

Pressing this key causes the ST contents to be displ ayed in the four right-hand display digits.

1.45 CRU DISPLAY/ENTER

DCRU | Pressing this key causes the data at the designated Communications Register Unit (CRU) addresses to

be displayed. Designate from one to 16 CRU bits at a specified CRU address by using four hexadecimal
digits. The first digit is the count of bits to be displayed. The next three digits are the CRU address
(equal to bits 3 to 14 in register 12 for CRU addressing). When is depressed, the bit count and
address are shifted to the left-hand display, and the right-hand display will contain the values at the
selected CRU output addresses. The output value will be zero-filled on the left, depending upon bit
count entered. If less than nine bits, the value will be contained in the left two hexadecimal digits. If
nine or more, the value will be right justified in all four hexadecimal digits.

ECRU | Pressing this key enters a new value at the CRU addresses and bit count shown in the left display after

depressing [DCRU|. The new value is entered from the keyboard and displayed in the right-hand
display. Pressing |[ECRU| enters this value onto the CRU at the address shown in the left display.

CAUTION
Avoid setting new values at the TMS 9902 on the TM 990/100M/180M
through the CRU (TMS 9902 is at CRU address 00401g), as this device
controls 1/O functions.

.46 MEMORY ENTER, DISPLAY, INCREMENT

1.5

1.5.1

Pressing this key will cause (1) the memory address (MA) in the right-hand display to be shifted to the
left-hand display and (2) the contents of that memory address to be displayed in the right-hand display.

Pressing this key causes the value in the right-hand display to be entered into the memory address
contained in the left-hand display. The contents of that location will then be displayed in the four
right-hand display digits {entered then read back).

Pressing this key causes the same action as described for the key; it also increments the memory
address by two and displays the contents at that new address. The memory address is displayed on the
left and the contents at that address is displayed on the right.

EXAMPLES

EXAMPLE 1, ENTER PROGRAM INTO MEMORY

Enter the following program starting at RAM location FE001g. Set the workspace pointer to FF001g and the
status register to 200016. Single step through the program and verify execution. Then execute the program in
free run mode and verify execution. Then halt program execution.

NOTE
In the following examples, XXXX indicates memory contents at
current value in Memory Address Register.

QOPCODE INSTRUCTIONS
04C0 CLR RO CLEAR WORKSPACE REGISTER O
0580 INC RO INCREMENT WORKSPACE REGISTER 0
0280 Cl RO, >00FF CHECK FOR COUNT 255
00FF
16FC JNE $-6 JUMP TO INC RO IF NOT DONE
10FF JMP $-0 STAY HERE WHEN FINISHED
KEY ENTRIES DISPLAY

Clear Display Depress CLR

Enter PC Value Depress @@ @ | [FEOO

Enter into PC Depress EPC [|FEOO

Display PC Depress DPC

Enter ST Value Depress @ @ [6_[

Enter into ST Depress EST -

Display ST Depress DST

Enter WP Value Depress @]@ - FFOO

Enter Into WP Depress [|FFoo

Display WP Depress [[FFoo

Enter MA Value Depress E”_BJ @] - FEOO

Enter Into MA . Depress EMA mm

Enter CLR 0 Opcode Depress [0 [€l [0 FE00[04CO

Enter data,

increment MA Depress :

Enter INC 0 Opcode Depress B 0] [FE02[0580

Enter Data,

Increment MA Depress FEO04] xxxx]

Enter Cl Opcode Depress [0] [o] [FE04[0280

Enter Data,

Increment MA Depress FEO6]xxxx]

KEY ENTRIES DISPLAY
Enter Ci

Immediate Operand Depress @@

Enter Data,

Increment MA Depress

Enter JNE $-6

Opcode Depress m@ FEO8{16FC

Enter Data,

Increment MA Depress mm
Enter

JMP $-0 Opcode Depress . m@ 10FF
Enter Data,

Increment MA Depress FEOC|xxxx |

The program has now been entered into RAM. Since the PC, ST and WP values have been previously set, the
program can be executed in single step mode by depressing the H/S key.

DISPLAY EXECUTES

(AFTER) INSTRUCTION
Depress CLR RO
Depress INC RO
Depress Cl RO, >00FF
Depress H/S JNE $-6

This cycle will continue until RO reaches the count of 255 at which point the program will continuously
execute at location FEOA1g because it is a jump to itself.

To verify this, depress: DISPLAY
RUN HE

The program should now be “looping to self'’ at location FEOA16. To verify this, depress:

[s] OFF

Now examine the memory location corresponding to Register 0.

pepres oo
Depress [Ema]

This illustrates that FF15 did become the final contents of WP0O. Note that, when the program was being
entered into RAM, was used rather than because of the rather desirable feature of automatic
address incrementing. The advantage of using is that the actual contents of the addressed memory
location are displayed after key depression (echoed back after being entered).

c

n

1.5.2 EXAMPLE 2, HEXADECIMAL TO DECIMAL CONVERSIONS
Convert 800016 to a decimal number

Depress CLR [:l:]
bepress [F=D [T

Depress @ [(5:] @
Depress H->D 2768

Convert 002016 to a decimal number

Depress [0 -
Depress @
Depress H~>D [[32]

1.5.3 EXAMPLE 3, DECIMAL TO HEXADECIMAL CONVERSIONS
Convert 451 oto hex

Depress CLR | I
Depress I —
oepress (4] [E] L]
Depress [D~H]

Convert -—102410 to hex

Depress CLR [:l_—_l
Depress @ El _ 1024
Depress

1.5.4 EXAMPLE 4, ENTER VALUE ON CRU

Send a bit pattern to the CRU at CRU address (bits 3 to 14 of R12) 0EO1g with a bit count of 9 containing a
value of 5 (0000001012).

Depress T
pepress [9] [o] [E] [0] [[90E0 |
Depress l DCRU l m

vepress [0] [0 [0 [3]
Depress

YYYY indicates value at the current CRU address. Note that a|DCRU|operation is always required to
specify bit count/CRU address.

1.5.5 EXAMPLE 5. ENTER, VERIFY VALUE AT MEMORY ADDRESS
Enter 004016 into location FE20 and verify that it got there.

Depress CLR

Depres: 2 [
Depress EMA
Depress [0] [0] [4] [o] FE20}0040]
Depress FE20[0040

The contents of address FE20 are verified by an echo of data from memory to display following the
pressing of If it is desired to view and enter data at address FE22, depress[EMD]

ALPHABETICAL INDEX

INTRODUCTION

The following index lists key words and concepts from the subject material of the manual together with the area(s)
in the manual that supply major coverage of the listed concept. The numbers along the right side of the listing
reference the following manual areas:

Sections — References to Sections of the manual appear as “‘Section x'’ with the symbol x representing
any numeric quantity.

Appendixes — References to Appendixes of the manual appear as Appendix y'" with the symbol y
representing any capital letter.

Paragraphs — References to paragraphs of the manual appear as a series of alphanumeric or numeric
characters punctuated with decimal points. Only the first character of the string may be a letter; all
subsequent characters are numbers. The first character refers to the section or appendix of the manual in
which the paragraph is found.

Tables — References to tables in the manual are represented by the capital letter T followed immediately
by another alphanumeric character (representing the section or appendix of the manual containing the
table}. The second character is followed by a dash (-) and a number:

Tx-yy

Figures — References to figures in the manual are represented by the capital letter F followed
immediately by another alphanumeric character (representing the section or appendix of the manual

containing the figure). The second character is followed by a dash (-) and a number:

Fx-yy

Addressing:

Direct Register 4.5.3.1, F4-5

Immediate e e e e 4.5.3.6

Indexed Symbolic 4.5.3.5, F4-9

Indirect Register 4.5.3.2, F4-6

Indirect Register '

Autoincrement 4.5.3.3, F4-7

Not-Indexed Symbolic 4.5.3.4, F4-8

PC Relative 4.5.3.7
AddressingModes 4.5.3
Applications Section 6
ASClICode Appendix C
Assembler, Line-By-Line 7.7, F4-17, F74
Asynchronous Serial Communication . . . 4.9,7.3
Backplane 7.9
Baud Rate 3.2.11
Binary Mathematics D.3
Binary Number Appendix D
Carry . . .o e e e e e 4.3.3.4
Central Processing Unit 5.3, F5-3, F5-4, F5-5
Clock, System 5.2, F5-2
Commands, 7/BUG 3.2, T3-1
Conversions, Number Appendix D
CRU Addressing 4.7, F4-12, F4-13, T4-5
CRU Inspect/Change 3.2.2
Direct Register Addressing 4.5.3.1, F4-5
Documentation 1.5
Dump Memory 3.23
Equipment, Required22
Error Messages, T/IBUG 3.4, T34
Execute:

Program 3.2.4

StepMode 3.2.10
Expansion Buffers,

Off-Board 5.8, F5-11, F5-12
Features of TM 990/100M 1.1
Formats, Instruction F4-4
GlOSSANY « v v v e e e e e e e 1.4
Hardware Registers 4.3

Inspect/Change 3.2.9

Program Counter 4.3.1

Status Register 4.3.3, F4-2

Workspace Pointer 4.3.2

Index 1

INDEX

Hexadecimal:

Math 3.2.6

Number Appendix D
Hookup:

Power 2.4.2, F21

Terminal 2.4.2, Appendix A, Appendix B
1/0 Decoder, Memory 5.5, F5-8
Immediate Addressing 4.5.3.6
Indexed Symbolic

Addressing 4.5.3.5, F4-9
Indirect Register

Addressing L. 4.5.3.2, F4-6
Indirect Register Autoincrement

Addressing 4.5.3.3, F4-7
Inspect/Change:

Hardware Registers 3.2.9

Memory 3.2.8

Software Registers 3.2.12
Installation Section 2
Instruction Formats F4-4
Instructions 4.5, T4-2, T4-4
Interface:

Multidrop 5.13

RS-232C: 5.10, 7.4, Appendix B

Teletypewriter 5.11, 7.4, Appendix A
Interrupts 4.9,5.9,5.10, F4-14,

F5-13, F5-14

Interval Timers 4.10, F4-16, F4-17
Jumperso F6-1, F7-2, T7-1
Line-By-Line Assembler 7.7, F4-17,F74
LOAD 5.4, F5-7
Load Memory 3.2.7
Loading Programs 3.2.7, G-1
Map, Memory F4-1
Memory:

Expansion 6.4, 7.2

1/0 Decoder e e e 5.5, F5-8

Inspect/Change e e 3.2.8

Load 3.2.7

Map e F4-1

Random Access b6, F1-1, F4-1, F59

ReadOnly 5.7, F1-1, F4-1, F5-10

Search 3.256

T/IBUG F3-1

User . . . v v e e e e 4.2, F41
Microterminal 7.8, F7-5
Monitor Calls, T/IBUG 3.3, T3-3
Multidrop Interface 5.13

Not-indexed Symbolic
Addressing

Numbering:
Binary
Conversions
Hexadecimal

4

Object Code

INDEX (Continued)

.5.3.4, F4-8

Appendix D
Appendix D
Appendix D

Appendix G

Object Tags G-2, TG-1
OEMChassis 7.9, F7-6, F7-7
Off-Board:
Expansion Buffers 5.8, F5-11, F5-12
RAM 6.4,7.2
RESET 7.5
RESTART 7.5
ROM 7.2
TMS9901 6.5
On-Board:
Memory Expansion 7.2
RAM Expansion 7.2.2, F7-3
ROM Expansion 7.2.1,F7-3
OpCode 4.5.1
Operation Section 2
Options Section 7
Overflow 4.3.3.5
Parallel 1/O 5.9, 6.3, F5-13, F6-4
Parity 4.3.3.6
Parts List Appendix E
PC Relative Addressing 4.5.3.7
Pin Assignments:
P1 TH-1
P2 . .. FA-1, FB-1, TH-2
P3 . 5.12
P4 . .. TH-3
Power Hookup 2.4.1, F21
Power Supplies 2.2
Program, Execute 3.2.4
Programming Section 4
Programs, Sample 2.6, F4-17
RAM Expansion:
OnBoard 7.2.2,F7-3
OffBoard 6.4, 7.2
Random Access Memory 5.6, F1-1
F4-1, F5-9
Read Only Memory 5.7, F1-1,
F4-1, F5-10
Registers:
Hardware 4.3

Index 2

Software 4.4, F4-3
Workspace 4.4, F4-3
Required Equipment 2.2
RESET 5.4, 7.5, F5-7
RESTART 7.5
ROM Expansion:
OnBoard 7.2.1,F7-3
OffBoard 7.2
RS-232-C Interface 5.10, 7.4, Appendix B
Sample Programs 2.6, F4-17
Schematics Appendix F
Search Memory 3.2.5
SELLines T5-1
Serial 1/0 5-10, 5-11, 6.6, 7.3,
F6-7, F5-14, Fb-15
Software Registers 4.4, F4-3
Software Registers, Inspect/Change 3.2.12
Source Listing FG-2
Specifications 1.3
Step Mode Execution 3.2.10
System Block Diagram F5-1
SystemClock 5.2, F5-2
Teletypewriter Interface 5.11, 7.4,
Appendix A
Theory of Operation Section 5
TIBUG:
Commands 3.2, T3-1
Error Messages 3.4, T34
Memory F3-1
Monitor Section 3
MonitorCalls 3.3, T3-3
Timers, Interval 4.10, F4-16
TMS 9901:
Interrupts 4.9,4.10, 5.9, F4-17
Off-Card Expansion 6.5, F6-6
On-Card Expansion 6.2, F6-3
TMS9902 5.10, 5.11
Interface 5.11, F5-15
Interrupts 4.9,5.10, 6.6, F4-17,
‘ F5-14, F6-7
Two's Complement D.4
Unpacking 2.3
UserMemory 4.2, F4-1
Utilities 3.3, T3-3
Wire-Wrap Area 5-12, F5-16,

F6-1, F6-2, T6-1

INDEX (Concluded)

Wiring: Teletypewriter Appendix A
RS-232C Appendix B Workspace Registers 44,6 F4-3

Index 3

TEXAS INSTRUMENTS

INCORPORATED
POST OFFICE BOX 1443 « HOUSTON, TEXAS 77001

January 1978

Dear Customer:

We are pleased that you have chosen a member of the TM990 product line for
your microcomputer system.

We would Tlike to introduce you to our user's organization at this time. As
the owner of a TM990 microcomputer module you are eligible for membership to
TI-MIX, the Texas Instruments Minicomputer Information Exchange. This is a
group of mini and microcomputer users who are interested in exchanging ideas,
programs, etc., with each other. We have enclosed an application to TI-MIX
and hope that you will consider joining.

We are working to expand and improve our product line and would appreciate
your help. Any suggestions or problems on the general product line should be
addressed to:

Texas Instruments, Inc.
8600 Commerce Park Drive
Suite 700, MS 653
Houston, Texas 77036

On questions concerning the installation or warranty of the module, please
contact your local TI field sales office or authorized distributor. For de-
tailed technical .questions please call our Microprocessor Customer Support Line
at (713) 776-6511, Ext. 632. .

Sincerely,

A s

A1 Lofthus
Microcomputer Program Manager
MOS Microprocessor

AL:bdr
Enclosure

12201 SOUTHWEST FREEWAY ¢ HOUSTON ¢ 713-494-5113 » TELEX 7-3324 ¢ TWX 910-867-4702 ¢ CABLE: TEXINS

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	Index-0
	Index-1
	Index-2
	Index-3
	Index-4
	timix

