TEXAS INSTRUMENTS

PREFACE

The University BASIC User”s Manual describes Texas Instruments”
University BASIC which 1is an interactive programming language
used with the T™990/189 University Board microcomputer.
The following manuals present additional information relative to
the use of University BASIC, the TM990/189 microcomputer, and the
POWER BASIC family of software products.

e POWER BASIC Reference Manual, MP308, 1602061-9701

e TM990 POWER BASIC Elementary Tutorial Manual, MP31ll

e TM990/189 Microcomputer User”s Guide, MPBO6,
1602004-9701

e 9900 Family Systems Design and Data Book, LCC4400,
97049-118-N1I

e TM990 Introduction To Microprocessors: Hardware and
Software, MPB30, 1602008-9701

e Software Development Handbook, MPA29

e Color Video Using TMS9918 and University BASIC
Application Report, MP723

TABLE OF CONTENTS

SECTION PAGE

I ' OVERVIEW
1. l GENERAL e & e 8 @ e B ® e & S e & 8 e o e v ° * e . l" l
102 UniverSitY BASIC . e ®» & e e ® ®» e ® @ e e & o » l“l
10 3 INTERACTION WITH UniveISitY BASIC . . L] - . . . L) - . l-l
1.4 CONVENTIONS USED IN THIS MANUAL. « « « « « ¢ o « » « 1=3
l - 5 PACKAGING AND RELEASE MED IA . . .] L3 . . . o 1"‘ 3
1 . 6 MANUAL ORGANI ZATION L] . 3 L] . . . L] . L] - . - L] . . 1-5
11 INSTALLATION
2 . .1 GENERAL « e e o « e ® o e o . . L] . . » 2" l
2 . 2 MINIMUM CONFIGURATI ON » . - - . - ° Y . Y - . - . . . 2"’ l
2 . 3 MAXIMUM CONF IGURATION e e @ o o o . . & o o . o . e . 2" l
2 . 4 EPROM INSERTI ON) ¢ o . . .) . . . - 2"' l
2 . 5 INPUT/OUTPUT OPTIONS - - - Y - . .] . - - - - . . - 2‘- 3
2 5 l EIA Comunications o o L} . . . [. . . . L) . 3 2"3
2 5 2 TTY COmmuniCathnS L) . . - . . L] » . 2-3
2.5.3, Audio Cassette Interfac e« o e e e s e e e o o 2=4
2 . 6 SIMPLE EXAMPLE PROGRAM . . - . . - e e 3 -] e o . . 2" 5

3.6.4 Expression Evaluation .
MULTIPLE STATEMENTS ":" . . .
KEYBOARD MODE - . . L] . L] - - »
ERRORS AND ERROR LISTING . . .

Www
s s s
O ~d

I1T GENERAL PROGRAMMING INFORMATION

301 GENERAL - - . . . - . - 3"1.

3'2 THE UnlverSlty BASIC LANGUAGE- . e ® ® ® e & & o o = 3"'].

3.3 TBE UniverSity BASIC PROGRAM . . . - . ¢« e . . - 3"1

3 . 4 SOURCE STATEMENT FORMATO s o . o o e 3"'2
30401 Line Number Field . ° - . . - - ° . . - . . . 3"2
3‘4'2 Statement FiEld L] L] . L] .] - - L] L] L] L] . L] L] 3"2
3.4.3 Decimal Integer Constants . . « « « « o o« o o+ 3=2
3 4 4 String COnStants- e ® @ % & & ® & o & ® e & o 3"'3

3 o 5 VARIABLES . . . L] - . . - . - - - . 3" 3
3 5 1 Simple Variables- e ®© @ e % e @ ® e e o 2 o o 3-3
3.5.2 Numeric Array Variables . . « . « « « o « « « 3-3
3.5.3 Simple String Variables . . « « « « &« o - « & 3-4
3 5 4 String Array- @ & ® ® © e ® ® e ® e e s e ¢ = 3"4

3-6 0 ERATORS AND EXPRESSIONSO . .« » . o « e e . e e o . 3"‘4
3.6.1 Arithmetic Operators. e« ¢ o« o« 3=5
3 6 2 Arithmetic EXPIESSiORS. . . . e o 3 . -
3.6.3 Relational Operators. « o o o 3=

. ¢« . . ¢ o
¢ o ¢ g4 8 o 0
s s & o 8 4 o

.
.
.
.
W W Wwww
*JG\A\O\U’lUI

iid

v

Vi

VII

B T NS Y Y
¢« & o o o
[V -V S ¥ o

(RGO RN RF T RV
. o . L] L] L[] L] -
i O® N0
W o

[*)W Yo = Wi W e)Y
e o 3 o o o
S WN -

N

University BASIC COMMANDS -

GENERAL. + « =«
LIST COMMANDS.
SAVE COMMAND .
LOAD COMMAND .
4.4.1 LOAD. .
4.4.2 LOAD <exp>.
NEW COMMAND. . . .«
SIZE COMMAND . . . =

e o & o @
s s & ¢

-
-
[
[
L]
.
.

e & o 6 g & s o
¢ o © ¢ & o

*

T™990/189 KEYPAD EDIT COMMANDS
University BASIC COLOR VIDEO COMMANDS

.« 6 8 @ e & o o
. s ® & e & . @
e 5 © o 6 ¢ o

. o e 9 & e O s o

. . L] * ® . L] L] .
e & g & 3 8 4 » o o
.o o [2 e o . ® o o
& & e % ¢ © o & p
e 8 ¢ 3 ¢ ® o ® o o
e« @ . o e © o & s @

L]
-
.
-
L
*
L]
-
L]
.

-
°
L
-
L]
-
L]
.
-
D

University BASIC STATEMENTS
GENERAL L] L] L] - - - L 2 L] L] L] L] L] L] . * L] - L] L] L] L]
REMark STATEMENTS.: « « « = o s s ¢ o o o o o o
DIMension STATEMENT. « + « o ¢ ¢ o ¢ o @« o o o o
LET STATEMENT. . . & . o « o o o s o o
CONTROL AND COMPUTED TRANSFER STATEMENTS e« o o o
5.5.1 Unconditional GOTO Statement. « . . « . &
5 . 5 . 2 IF"‘THEN Statement - .) - - . » Y
5.5.3 Subroutine (GOSUB and RETURN) Statements.
5.5.4 FOR/NEXT LOOPS: « ¢ s o s s s o o o o o o
5.5.5 STOP Statement. « o« « « o s ¢« o o s o o o
INPUT STATEMENT . « « « o o ¢ s s © s o o o s o o
PRINT STATEMENT. ¢ ¢ ¢ o o ¢ o o s o & o o o o o
TAB STATEMENT. ¢ o « © o o ¢ o e o s o o s o o o
UNIT STATEMENT « 2 ¢ o o s o o » © o o« o o s o o
BASE STATEMENT - Ll - L] - L] L] L] L] L] L] L] L] . ° L] ®
CALL STATEMENT ¢ « « ¢ ¢ ¢ o o o o s o o o a o o
TONE STATEMENT ¢ « ¢ o ¢ ¢ ¢ o o o o o s o s o o
TOAD STATEMENT . « o o o o o o o o o o a o o o o
CHARACTER STRINGS
GENERAL. . . e o s o & e e s s s e ® e o
CHARACTER ASSIGNMENT e« s e s 6 s s s s o e o e =
CHARACTER CONCATENATION. . + « o o o & « o < o o«
CHARACTER PICK + ¢ o« 2 o o ¢ o o s s o s o o o =
CHARACTER REPLACEMENT. « ¢« ¢« o o o o s o o o o o
BYTE REPLACEMENT <« « ¢ o s o o o o o o o o o o o
University BASIC FUNCTIONS

GENERAL L d L - * . L] - L]
MATEMATICAL FUNCTIONS. .

7.2.1 Absolute Value Function (ABS)
7.2.2 Square Root Function (SQR). .

MISCELLANEOUS FUNCTIONS.

7.3.1 CRU Single Bit Function (CRB)
7.3.2 CRU Field Function (CRF). . .

iv

. . L3 - - .

L] . .

L] . - . . .

¢ o L] L] . [.
e ¢ o ¢ e o
2 ® & o 8 o
[. L . . .
s & o ® & & o
e o « 2 a ® .

@ & & ¢ ® o & 2 s ¢ 0 & & e & s o o e ® & & o ® o 8 o ©

e ® e & o o

e ® ¢ & o ¢ o

s & & & 8 & o © g o

L] e o e o e ® L e o s ® - e s o .

4-1
4-1
4-2
4-2
4-2
4-3
4-4
4-4
4-5
4-5

5-1
5-2
5-2
5-3
5-4
5-4
5-5
5-6
5-8
5-13
5-13
5~17
5-21
5-22

5-22

5-23
5-25
5-25

SEPPRT Y
O N

APPENDIX A

APPENDIX B
APPENDIX C

APPENDIX D

Figure
FPigure
Figure
Figure

Table
Table
Table
Table

1-1
1-2
2-1
5-1

2-1
2-2
4-1
5-1

7.3.3 KEY Function. e o o & e o s o
- 7.3.4 Delta Time Function (TIC) e o o o o s
7.3.5 Memory Modification (MEM) Function. . . .
7.3.6 Random Number (RND) Function. . . « « .« .
7.3.7 SUB FUNCLiON. + « o« ¢ o o o o o o o s o

APPENDICES

University BASIC ERROR CODES . « « «
STATEMENT AND COMMAND SUMMARY. « « « o«
SAMPLE PROGRAMS. . . .
University BASIC COLOR VIDEO COMMANDS.

-« O T
& L] [} L]
o & s o
e & g @»

LIST OF ILLUSTRATIONS

University BASIC on the TM990/189 Microcomputer.
System Memory Map. . . . s e
University BASIC on the TM990/189 Mzcrocomputer.
GOSUB Examp l e . - L] * Ll L] * L] . L] - . L] * L] L3 . L[]

LIST OF TABLES

Description of Materials - EIA 0pt10n.
Description of Materials - TTY Option.
VDP Commands . . e 4 s e s e s 8 s s e @
University BASIC Statements. > e s s s e s e o

.
[
*
.
.

L]
L
.
.
*

* & o @ e ¢ ® e @

.« & o @

\J\STIQ\I
ok WW

A-1
B-1
c-1
D-1

1-2
1-4
2-2
5=-7

2=-3
2-4
4-6
5-1

SECTION I

OVERVIEW

1.1 GENERAL

University BASIC* is a member of the POWER BASIC** family of
software pbroducts. Designed as a training tool for students and
engineers wishing to hecome familiar with the POWER BASIC
language and TM990 modules, University BASIC offers the user an
excellent opportunity to learn through "hands-on" experience. The
T™990/189 microcomputer is a standalone system that can be used
as an aid in learning microcomputer fundamentals and interfacing,
as well as demonstrating the 9900 family 16-bit architecture.

This chapter provides general information concerning the use of
University BASIC and coaventions emploved in the manual. For
further: information concerning other POWER BASIC family members,
consult the T¥990 POWER BASIC Reference Manual, MP308.

1.2 University BASIC

Yniversity BASIC requires the T™990/139 CPU poard and 2 suitable
power supply such as the ™990/519, and will support a single
user on an RS-232-C compatible terminal. University BASIC is an
integer BASIC that supports many (out not all) POWER BASIC
commands and statements. It includes several found 1in this
oroduct onlv, such as the TONE command which allows sound
cavabilitv. Color video commands are also available, and are
dealt with 1in detail in -the Color Video Using ™S9918 and
Iniversity BASIC Application Report, MP723. Installation
procedures for Hniversity BASIC may be found in Section II of
this manual, with additional information provided in the
™990/189 Microcomputer User”s Guide. Figurz 1-1 on the following
page shows a typical fniversity BASIC system configuration.

1.3 INTERACTION WITH University BASIC

ITnteraction with University BASIC involves user input of a series
of program statements and commands and user responses to
program-generated requests for input. The user may enter . program
statements or invoke commands required to examine, debug, or run
the program. Each statement or command is completed by entering a
carriage return.)

*Trademark of Texas Instruments
**Trademark of Texas Instruments

1]
“r

w“w

ied

tehihs

it
LrLslid:

f
“N..\s‘ N\&i L

ey

T m. og2e.
\N ..\ H

T, -

I

|

e ..

u.—u

1 N 3

il

s,

- roud.

]

‘...J.w.!.ﬁ'..vt.z ¥
HE A

LB

L .

\\.,E......:.r
ety fbnks 1 bi-sien 2uene
. .

1

et

P TR

i

e

...; c,...wE,u .m.. .w.mww }

m

S,
p

\J
hier:

o

TS

S

TRTA U o S

i v

PRTRY

.-

TYPICAL UNIVET"ITY BASIC SYSTEM CONFIGURATION

FIGURE 1-1.

s

T™he carriage return terminates and enters the line, advances one
line, and waits for further keyboard input. EBach program
statement is stored as it is entered, and the program may be
listed at any time during its generation or at its completion oy
using the LIST command. At any time the user may halt execution
or terminate a statement/command by striking the escape key on a
terminal, or the Shift 9 kev on the TM990/189 board keypad.

- 1.4 CONVENTIONS USED IN THIS MANUAL

The following conventions are used to describe the statements,
commands, and examples in this manual:

Numeric values for command parameters are integers
unless otherwise specified.

Angle brackets (<>) indicate essential elements of
user-supplied data in statements, commands, and
examples:

10 LET <variable> = <expression>
Braces ({}) indicate a choice between two or more

possibilities (alternative items), one of which must be
included.

’

10 PRINT} <expression>

Brackets ([]) enclose optional items.
[10] [LET] A=3:B=4
Items in capital letters must be entered exactly as shown.

Items in lower-case letters are user-supplied characters.

1.5 PACKAGING AND RELEASE MEDIA
University BASIC 1is released pre-programmed in EPROM which
may be directly installed in the EPROM sockets of the
T™™990/189 board. The release package consists of:

e 2 EPROM“s containing the University BASIC code:

- One 2532 EPROM (4K x 8 bytes)
- One 2715 EPROM (2K x 8 bytes)

e The University BASIC User”s Manual

e Color Video Using TMS9918 and University BASIC
Application Report

Figure l1l-2 depicts the system memory map.

ADDRESS

3FFF

3000
2FFF

1000
OFFF

0c00
OBFF

0800
07FF

0400
03FF

0000

FIGURE l-2. SYSTEM MEMORY MAP

PHYSICAL DEVICE

ONBOARD
ROM

BASIC

2532 EPROM
(4K x 8 bytes)

RESERVED
FOR
OFFBOARD
MEMORY
EXPANSION
(8K x 8 bytes)

EXTENDED ONBOARD
EPROM EXPANSION
(1K x 8 bytes)

ONBOARD EPROM
EXPANSION
(1X x 8 bytes)

v

ONBOARD RAM
EXPANSION
(1K x 8 bytes)

ONBOARD RAM
(1K x8 bytes)

2716 BASIC EPROM

RAM (4045)

l.6 MANUAL ORGANIZATION

The manual is organized into three major segments, the f£first
containing an introduction to University BASIC and a discussion
of the installation procedures as well as a simple example
program. The second segment contains a functional description of
University BASIC as well as general programming information that
describes conventions of the language. The third segment covers
statement syntax and provides specific examples along with more
advanced demonstration programs. ,

SECTION II
INSTALLATION

2.1 GENERAL

System configuration and University BASIC EPROM insertion will be
covered in this section, and a simple example program provided to
verify system operation. Refer to the TM990/189 Microcomputer
User’s Guide for instructions on setting-up and initial operation

of the T™9900/189 microcomputer.

2.2 MINIMUM CONFIGURATION
The minimum configuration for University BASIC includes:
e TM990/189 Microcomputer

e Power supply (TM990/519 or equivalent)

2.3 MAXIMI™™M CONFIGURATION
The maximum configuration may include:

e Any EIA RS-232-C or 20 mA or TTY compatible data
terminal. (e.g., Lear Siegler, ASR745, 763 etc.)

e On-board memory expansion of up to lk bytes (RAM)

e Off-board memory expansion thiodgh the Bus Expansion
Interface

e Audio Cassette Interface
The TM990/189 ®1 1I/0 expansion kit provides the necessary
components to add options to the TM990/189 microcomputer.
These options include:

e Asynchronous Communication port

e On-board relay for audio cassette interface

e Off-board CRU expansion

2.4 EPROM INSERTION

The user should carefully remove the TMS4732 (UNIBUG) EPROM
from the socket marked U33 and replace it with the TMS 2532
EPROM. : :

2-1

FIGURE 2-1.""UNIVERSITY BASIC ON THE T4990/189 MICROCOMPUTER

After following the modification procedure found in Section
9, page 9-1 of the TM990/189 Microcomputer User”s Guide,
install the TMS 2716 EPROM in the socket marked U32. Refer
to Figure 2-1 for appropriate socket markings.

2.5 INPUT/OUTPUT OPTIONS
2.5.1 EIA Communications

Devices that are RS-232-C compatible may be added to provide
asynchronous serial communications between the chosen device
and the TM990/189 microcomputer through installation of the
Serial Communications Interface components listed in Table
2-1. The interface resides at CRU base address >0800 through
>083E. The schematics in Appendix A, page A-10 of the
T™990/189 Microcomputer User’s Guide depict signals
available at 25-pin connector P3, and show the
interconnection of the components in Table 2-1.

TABLE 2-1. DESCRIPT&ON OF MATERIAL - EIA OPTION

ITEM QTY DESCRIPTION INSTALL AT
1 1 TMS9902 U3l
2 1 75188 u37
3 1 RES, 10K ,10%,0.25W R34
4 2 RES,3.3K ,10%,0.25W R35,R36
5 1 Connector ,AMP206584-2 P3
or CANNON DBP-255-AA

Instructions concerning the hookup for an external terminal
can be found in Section 1II, 2.5.3.4 of the ™990/189
Microcomputer User”s Guide.

2.5.2 TTY Communications

Installation of the Serial Communications Interface
components shown in Table 2-1, coupled with the board
modifications presented in Table 2-2 allow the capability to
perform asynchronous serial communications with devices
having a 20 mA current loop interface. (Refer to Appendix A,
page A-10 of the TM990/189 Microcomputer User’s Guide for
both schematics showing signals. available at the 25-pin
connector P3, and the components in Table 2-1). The serial

interface resides at R1l2 CRU base addresses >0800 through
>083E. The modification procedures entails the addition of a
jumper wire between E25 and E26.

Table 2-2. DESCRIPTION OF MATERIAL - TTY OPTION

ITEM QTY DESCRIPTION INSTALL AT
1 1 TMS9902 U3l
2 1 75188 u37
3 1 2N2905 Q12
4 1 1N914B CR9
5 1 RES,33K ,10%,0.25W R32
6 1 RES,3.3K ,10%,0.25% R33
7 1 RES,10K ,10%,0.25W R34
8 1 RES,330 ,10%,0.5W R37
9 1 RES,560 ,10%,0.5W R38
10 1 RES,2.7K ,10%,0.25W R39
11 1 CONNECTOR,AMP 206584-2 P3

or CANNON DBP-25S-AA

Section II, paragraph 2.5.3.4 of the TM990/189 Microcomputer
User”s Guide explains the procedure for an external terminal
hookup.

2.5.3 Audio Cassette Interface

Audio cassette interface circuitry and optional
user-installed recorder control circuitry is provided by the
T™990/189. Programs written to be run on this microcomputer
can be stored on cassette (via the SAVE command) and loaded
when required, thus freeing on-board memory between-times.
Section II, subsection 5.9 of the TM990/189 Microcomputer
User”’s Guide will instruct the user in the the hookup and
operation of an audio cassette recorder.

2.6 ~SIMPLE EXAMPLE PROGRAM

Apply power to the board and activate the LOAD switch. (This
causes University BASIC to begin execution.) "READY" will
appear on the TM990/189 keypad. If an external data terminal
is used, enter UNIT followed by the correct numerical
assignment (refer to Section V, subsection 5.9 for these
output device assignments), press the RETURN key on the
keypad, and the external data terminal will now be
configured to accept data from the keyboard.

The user may now enter the following sequence of commands
and statements to verify that University BASIC has
powered-up correctly.

100 FOR J=1 TO 25

110 FPOR I=1 TO 25

120 TONE I,J

130 NEXT I

140 NEXT J

150 PRINT "CONGRATULATIONS!"
160 STOP ‘

The program may be executed by typing in the RUN command and
entering a carriage return. Upon completion, the program
size and variable storage-used may be displayed by entering
the SIZE command with a carriage return.

SIZE
USED:118
FREE:1364 (Fully Populated)

All variables may now be cleared by typing the NEW command
and entering a carriage return.

SECTION III
GENERAL PROGRAMMING.- INFORMATION

3.1 GENERAL

General programming information about the University BASIC
language is covered in this section. Language features such as
syntax, editing commands, and error listings will be presented.

3.2 University BASIC Language

rommunication with the microcomputer is accomplished using a
programming language; in this case, University BASIC. University
BASIC is composed of commands and statements. Commands are used
to 1list, save, load, and execute the user”s program. Commands
begin with the command name and are executed immediately upon
entry; they are never preceded by line numbers. In general,
commands are used to immediately alter the computer”s operating
environment in preparation for entering a program, debugging a
program, or executing a program.

Statements in University BASIC programs are designed to perform a
task or solve a problem. Statements begin with a line number and
may be displayed with the LIST command and modified by retyping
the whole line. A sequence of previously entered statements is
called a program. The user may abort (or modify) a command or
statement entered by: 1) NOT using the carriage return key at the
end of the line, but backspacing (Shift “M”) and retyping the
line on a terminal keyboard, or 2) using the shift key and
pressing the M key on the TM990/189 keypad.

3.3 THE UNIVERSITY BASIC PROGRAM

A University BASIC program consists of one or more 1lines, each
uniquely identified by a line number in the range 0 to 32,767.
Each line contains at least one statement of the form:

<line number> <statement>

More than one statement may appear on one line by separating the
statements with a colon. (Refer to subsection 3.7 for exceptions
to this rule).

<line number> <statement l>:<statement 2>

The last statement on a line must be contained on that line, and
cannot be continued on the following line. Each line must be
terminated with a carriage return character. Note that no more
than 80 characters may appear on one line.

Automatic 1line numbering may be implemented by using the line
feed key or the Shift A on the TM990/189 keypad. Auto-line

numbering is "initialized to begin at statement number 10 and
increments by 10 between subsequent numbers.

To initiate auto-line numbering when generating a program,
either:

® Enter a CNTR A (or shift A) as the first character
of the line (to which University BASIC responds with
line number 10), or

e Enter the first (starting) statement number and the
associated statement and terminate the line with a
CNTR A (or Shift A) entry.

Auto-line numbering may be terminated by entry of a carriage
return at the end of the statement, or by striking the escape
key.

University BASIC programs are executed beginning with the 1lowest -
numbered 1line and continue sequentially through the program
unless directed otherwise by another statement, or until the last
statement has been executed. Line numbers are also used in
associating program editing activities with a particular
statement line in the program.

3.4 SOURCE STATEMENT FORMAT

3.4.1 Line Number Field

The line number field is the first field of any program line and
consists of a decimal integer between 1 and 32,767 inclusive.
3.4.2 Statement Field

The statement field follows the line number in a program line and
contains one or more University BASIC statements separated by
colons (:). Each statement is comprised of a University _BASIC
keyword followed by a number of constants and/or variables
separated by University BASIC operators.

3.4.3 Decimal Integer Constants

A “constant” is a quantity or data representation that does not

change in value. In University BASIC, a decimal integer constant
is any integer between -32767 and 32767, inclusive.

3.4.4 String Constants

A string constant is a string of characters enclosed within
Aouble quotes. ¥or example:

DPRINT "UNIVRRSITY 3ASIC"

3.5 VARIABLES

A “variable” 1is a representation of a guantity or the quantity
jtself, which can assume any of a given set of values. University
BASTC supports: 1) simple numeric variables, 2) numeric array
variables, 3) simple string variables, and 4 string array
variables. The two numeric variable formats are used extansivaly
in Universitv BASIMT statements and arithmetic operation, while
the two string variable formats are used for string-char=uiar
manipulation, text, and output. If any string wvariable i3
referenced and has not nreviously been defined, the string
variahble will be defined as a null string.

3.5.1 3imnle Variables

Na+nes .for simple numavic variables must begin with a canital
lettar (A-Z) and mav be followed bv one capital letter »~r a
number in the range 0-9. Variable names may not begin wikh
UIniversity BASIZ keyword. A maximum of 120 distinct variables i
allowed, Attemots to define more than this will result in errzor
qaumber 05, "TOO MANY VARIABLES".

uh fo

Txamples zre:

valid names: A, AD, AS8

3.5.2 Mumeric Array Variables

The same rules given for formation of simple numeric variable
names apply to numeric array variables, with the additional
specificaticn that numeric array variables must appear in a 9DIM
statoement which 1is executed before the first reference tn the
variable (see DIM statement, Section V, subsection 5.3). Wumeric
array variahles must always appear with a subscript. e
subscript distinguishes an array variable from a 51mpl= variable
nf the same name (i.e., PRINT A and PRINT A(0) refer to kwo
completely separate variables). Parenthesis should be used when
entering a reference to an array variable. Thezre is no limit
placed upon the number of numeric array variables allowed in
University BASIC. .

3.5.3 Simple String Variables

Simple string variables are handled in the same way numeric array
variables are with the exception that the reference must be
preceded by a dollar sign ($). Internally, string data is stored
left-justified and delimited by a null character (a zero byt=2).
Characters are normally represented as 8~-bit ASCII (normal 7-bit
ASCII with the 8th bit set to zero). If the 8th bit is set to
one, the interpreter will treat the character the same. However,
note that a character with the 8th bit on is NOT equal to the
same character with the 8th bit off! A simple variable in
University BASIC is composed of 16 bits, or 2 (8-bit) bytes.
Thus, a maximum of 1 character should be stored in a simple
string variable of University BASIC; longer strings should be
stored in string arrays (dimensional string variables) as
explained below.

NOTE

Any operation which attempts to place more than the
maximum number of characters in a string variable will
result in overwriting of Aata immediately following the
string variable.

3.5.4 String Array

The same rules given for the formation of numeric array variables
apply to string array variables with the added requirement that
the name must be preceded by a dollar sign (§). The dollar sign,
however, is omitted when defining array variables with the DIM
statement.

3.6 OPERATORS AND EXPRESSIONS

An expression is a list of variables and constants separated b
“operators”. BAn operator, in this sense, is a symbol whic
indicates the action to be performed on an item called an
overand. There are three types of University BASIC operators and
expressions: arithmetic, logical, and relational. These are
listed and briefly described in the following subsections.

3.6.1 Arithmetic Operators

The following is a 1list of valid arithmetic operators, the
precedence of which is given in subsection 3.6.4:

+ addition
subtraction
multiplication
division

. unary plus
unary minus

LI NE 3

3.6.2 Arithmetic Expressions
An arithmetic expression is any valid sequence of numbers ot
variables, properly balanced; no two numbers or variables can be

adjacent, and no two binary operators can be adjacent. For
example:

An expression may consist of a single operand:
DIM A(8)

A sequence of operands may be combined by arithmetic operators:
X*Y
A*B-W/2Z

Any expression may be enclosed in parentheses and considered to
be a basic operand:

(X+Y) /2

(A+B) * (C+D)
Any expression may be preceded by a plus or minus sign:

+X

- (A+B)

3.6.3 Relational Operators

The relational operators are all binary operators that operate on
two arithmetic expressions. They return values of 1 (TRUE) or 0
(FALSE) . Relational operators consist of the following:

exactly equal

less than

less than or equal to
greater than

"greater than or equal to

VvV VAALR
[}

<> not equal

3.6.4 Expression Evaluation

Expressions are evaluated left to right if the operators are of
equal precedence, and there are no parentheses. If there are
parentheses . in the expression, the sub-expression within the
innermost parentheses is evaluated first. Not all operators have
equal precedence; operators which are operated on by an operator
of high precedence are evaluated before operations of low
precedence. .

The precedence of operators is:

l. Expressions in parentheses
2. Negation

3. *l\/"
4. +,-
5. <=,<>
6. >=,<
7. =,>

3.7 MULTIPLE STATEMENTS ":"

A colon terminates a University BASIC statement and can therefore
be followed by another statement on the same line. This saves
memory, speeds execution, and allows for better program
segmentation. All University BASIC statements may be preceded and
followed by a colon in multiple statement 1lines with the
exception of the GOTO, GOSUB, IF-THEN, REM, FOR, NEXT statements
The NEXT statement should not be preceded by another statement
(i.e., should be the first statement of the line), and the REM,
GOSUB , RETURN, and FOR statements should not be followed by any
statements on the same line.

3.8 KEYBOARD MODE

. _
University BASIC executes statements in either "execution" mode
or "Keyboard" mode. In keyboard mode, statement numbers are not
entered, only one line is executed at a time, and control is
returned to the user after its execution. This line may contain
multiple statements properly separated by a single colon.

The system recognizes two kinds of inputs: statements and
commands. See Section IV for University BASIC commands; Section V
for statements. One and only one command may be executed per line
with no statements on the line.

In execution mode, the program counter moves through the program
executing statements. Execution mode is entered by RUN or GOTO
and returns to keyboard mode after any error, “STOP", when all
statements have been executed, or when the escape key is entered.

The following examples illustrate one line calculations in
keyboard mode. Note that ";" is equivalent to PRINT. The user
must terminate each éntry 1ine with a carriage return and
University BASIC responses are underlined for clarity.

Example:

PRINT 12%*12 144
J=1l:A=2:M=3:B=4:;J,A,M,B 123 4

The following types can 6n1y be executed in keyboard mode. They
can only be entered one command per line and cannot be entered in
a program:

LIST
NEW
RUN
SAVE
SIZE

3.9 ERRORS AND ERROR LISTING

The first run of a new program may be free of errors and give the
correct answers. It is more common, however, that errors will be
present and will have to be corrected. Errors will be of two
types: errors of form (syntax, arithmetic, structure, or
grammatical errors) which prevent the running of the program, and
logical errors in the program which cause the computer to produce
either the wrong answers or no answers.

Errors of form cause the error code and statement number in which
the error occurred to be printed, and program execution stops.
Logical errors are often much harder to uncover, particularly
when the program gives answers that appear to be nearly correct.
In either case, after the errors are discovered, they can be
corrected by changing 1lines, by inserting new 1lines, or by
deleting lines from the program. A line is changed by typing it
correctly with the same line number; a line is inserted by typing
it with a line number between those of two existing lines; and a
line is deleted by typing its 1line number and pressing the
carriage return key. A line can be inserted only if the original
line numbers are not consecutive numbers. For this reason, most
programmers will start out using line numbers that are multiples

3-7

of five or ten to leave space for the inevitable changes and
corrections.

Corrections can be made at any time before or after a run. Since
the computer sorts lines (and arranges them in order), a line may
be retyped out of sequence. Simply retype the offending line with
its original line number. If, after examining a program, the
‘errors are not obvious and there are no grammatical errors,
insert temporary PRINT statements to verify the machine 1is
computing correctly.

University BASIC displays error code numbers corresponding to the
appropriate ‘error message to indicate which error has occurred.
Errors are reported in two formats, the first of which dis lag
both the error code number and the statement number in whic e
-error occurred:

*ERR XX AT YYYY

where XX is the error code or error message and YYYY is the
statement number. ,

This error format is displayed whenever errors are encountered
during program execution, and program execution will be
terminated at the offending statement. The error format displays
the statement line in which the error occurred. The offending
statement 1line or other segments of the program may then be
edited to correct the reported error. .

The second format displays only the error code or error message
when an error occurs. These types of errors are detected during
Keyboard mode statement execution, during statement or command
entry, or during program LOADing from cassette. They indicate
that the most recently entered statement or command, on the most
recently LOADed statement is in error. For further details, refer
to Appendix A.

The following error codes and error messages may be issued by the
University BASIC package:

01 = SYNTAX ERROR

02 = UNMATCHED PARENTHESIS

03 = INVALID LINE NUMBER

04 = ILLEGAL VARIABLE NAME

05 = TOO MANY VARIABLES

06 = ILLEGAL CHARACTER

07 = NOT IMPLEMENTED IN THIS RELEASE
08 = STACK OVERFLOW

09 = STACK UNDERFLOW

10 = STORAGE OVERFLOW

11 = NEXT W/O FOR

12 = NOT IMPLEMENTED IN THIS RELEASE
13 = NO SUCH LINE NUMBER

14 = EXPECTING STRING VARIABLE

15 = SUBSCRIPT OUT OF RANGE

16 = TOO MANY SUBSCRIPTS

17 = SQUARE ROOT OF NEGATIVE #

18 = INTEGER OVERFLOW

19 = DIVISION BY ZERO

20 = ILLEGAL DELIMITER

21 = NOT IMPLEMENTED IN THIS RELEASE
22 = TIMEOUT ERROR

SECTION IV

UNIVERSITY BASIC COMMANDS
4.1 GENERAL

University BASIC recognizes two kinds of input: statements and
commands. Commands direct and control system functions which
include initiating computer operation, storing data, and listing
programs. Commands cause immediate computer interaction thereby
allowing operator control. Any command may be entered once
University BASIC has been initialized. An error messsage is
generated when an improper or illegal entry is attempted.

4.2 LIST COMMAND

Forms:
LIST
<line - number> LIST

" The LIST command displays all or any portion of the current
program. Entering only the command forces the entire program to-
be listed. By entering a line number, specific portions of te
program can be 1listed. The line number specifies the starting
line number where 1listing of the program is to begin. The
starting line number need not be an existing line number.
University BASIC will begin listing at the first 1line number
greater than or equal to the starting line number and terminate
listing at either the last line number of the program or when the
user enters the ESCape key.

Example:
LIST
results in a listing of an entire program, wﬁile
100 LIsT

lists all the lines from 100 through end of program, inclusive.

4.3 SAVE COMMAND
Form:
SAVE

The SAVE command writes the source form of the entire University
BASIC program currently in memory to the cassette device. The
program remains in memory after the SAVE and can be deleted by
the NEW command (reference subsection 4.5). The program may be

regfieved by the LOAD command at some future date (subsection
4.4). . 4

The SAVE command will result in the user”s program being stored
on audio cassette.

NOTE

The audio cassette device service routines cannot
be interrupted during the saving of a program
since each bit of the data bytes have a specified
minimum and maximum pulse width for reliable data
storage and retrieval. Therefore, all interrupts
are masked at the CPU whenever a SAVE is being
performed.

4.4 LOAD COMMAND

When a user program has been properly "SAVEA"™ on cassette (Section
4.4.1), or burned into EPROM (Section 4.4.2), the LOAD command
transfers the user program into memory. ‘

Form:

LOAD (Loads from Cassette)
LOAD <exp> (Loads from designated address on EPROM)

4.4.1 1LOAD

Only those statements having statement numbers will be written to
cassette, and statements in memory which have the same statement
number as the program on cassette will be overwritten when the
cassette is loaded.

To load a program from cassette, the tape drive must be readied and in
the playback mode. If an error occurs while loading from cassette, the
error message and the statement number where the error occurred will
be printed. When an error occurs, the loading procedure is terminated
and University BASIC returns to the keyboard mode. University BASIC
automatically stops the cassette transport on a error. Note that all
statements on the cassette tape prior to the occurrence of the error
will have been successfully loaded and need not be entered again. The
remainder of the statements on the cassette may be loaded by again

entering the "LOAD" command after manually stopping the cassette
transport. When loading is complete, it automatically returns to the
keyboard mode and awaits command/statement entry. Program listing,
editing, and execution may then proceed.

NOTE

The audio cassette device service routines cannot
be interrupted during loading of a program since
each bit of the data bytes has a specified minimum
and maximum pulse width for reliable data storage
and retrieval. Therefore, all interrupts are
masked at the CPU whenever a LOAD is being
performed.

4.4.2 LOAD <exp>

The LOAD <exp> command allows EPROM resident programs to be quickly
loaded into University BASIC programs space. The argument specifies an
index into a table of addresses located at memory address >1004. Each
address in this table consists of two bytes beginning at >1004 and
points to the first byte of the user program in EPROM (e.g., LOAD 0
points to the address at location >1004, LOAD 1l points to the address
at location >1006, and LOAD 2 points to >1008, etc.

NOTE

To accomodate larger programs, the load command
does a program purgde while preserving all
variables and variable values. The LOAD. command
can be placed in a program to chain to another
program module. Therefore, the load command can
also be executed as a program statement. Execution
begins with the first statement of the program
when such conventions are used.

For example:

10 REM PROGRAM INITIALIZATION
20 eo
999 LOAD 1 (Chains to next module)

%g REM MAIN PROGRAM
30 ...

Programs stored in EPROMS must be in ASCII code with each line
be?inning with a line number, followed by a space (ASCII >20) then
followed™ by statement or statements (just like in keyboard mode) and
terminated by a carriage return (ASCII >0D). A null byte must be
stored at the end of each program.

Here 1is an example of a program placed in EPROMS. It can be loaded
into University BASIC by doing a "LOAD 0" or a "<line number> LOAD ar.

AORG >0004

DATA >1018

DATA 0,0,90,0,0,0,0,0

AORG >0018

TEXT “10 FOR I=1060 TO 1109~

BYTE >0D

TEXT 20 INPUT X:MEM(I)=Xx"
BYTE >0D

TEXT “30 Y=MEM(I):;Y”

BYTE >0D

TEXT “40 NEXT I°

BYTE >0D

TEXT “50 ;"HENRY WADSWORTH LONGFELLOW"”
BYTE >0D

TEXT “60 Z=SUB 1060~°

BYTE >0D

TEXT 70 ;Z:GOTO 50”

BYTE >0D

TEXT “g80 sTOP”

BYTE >0D

4.5 NEW COMMAND
Form:
NEW
The NEW command deletes the current user program and clears all
variable space, pointers, and stacks. University BASIC responds with.
. "READY" and awaits the entry of a new program. (The program may be
retrieved later if it has been SAVEd.)
4.6 SIZE COMMAND
The SIZE command monitors memory usage by listing the current program
size and free memory in bytes.
Form:
SIZE
Example:
SIZE

USED:0
FREE:1446

SIZE
USED:0
FREE: 1446

4.7 TM990/189 REYPAD EDIT COMMANDS

The keypad of the TM990/189 microcomputer requires special commands in

order to perform some editing functions. The are 1listed in
following table.

SYNTAX EXPLANATION

{shift) 9 Cancel input line or break program
execution.

{Shift) M Backspace.

{Shift) A Initiate automatic line numberlng.
(increments of 10)

{shift) V Moves keypad display left 6 spaces.

" (Shift) W Moves keypad display left by 1 space.
(Shift) Y Moves keypad display right 1 spaces.
(Shift 2) Moves keypad display right 6 spaces.

4.8 UNIVERSITY BASIC COLOR VIDEO COMMANDS

In addition to the commands listed earlier in this section, color
video commands are available to the user of University BASIC.
Thesé commands will be listed in the table below, but additional
information (including full descriptions and demonstration
programs) may be obtained in the Color Video Using TMS9918 and
University BASIC Application Report, MP723.

the

TABLE 4-1. VDP COMMANDS

COMMAND NAME FORMAT

COLOR COLOR <exp>

MODE MODE <exp> {,<exp>}

MOVE MOVE <exp>
MOVE <exp>,<exp>,<exp>

PATTERN PATTERN <exp>,<string>

SPRITE SPRITE <exp>,<string>
SPRITE <exp>,<exp> ,<exp>}
SPRITE <exXp>,<exp>,<exp>

VDP VDP(<expl>) = <exp2>

<var> = VDP <exp>

SECTION V

UNIVERSITY BASIC STATEMENTS

S.1 GENERAL

This section discusses the University BASIC program statements.
Statement formats are presented and their uses are described.

During program execution, control may pass to any statement. Some
statements have no effect on the program when encountered and are
called nonexecutable (such as the REM statement); all others are
called executable.

Statements form the basis of all functional University BASIC
programs. Each statement of a program may occupy only one line;
however, numerous statements may appear on each 1line when
delimited by a colon (:). Table 5-1 lists and briefly describes
each University BASIC statement.*

TABLE 5-1. UNIVERSITY BASIC STATEMENTS

STATEMENT FUNCTION , USE

REM (EOL) Comment Line Program documentation/explanation

DIM Size Specifier Allocates space for array variables

LET Assignment Evaluates expressions and assigns
value

GOTO (EOL) Control Transfers unconditionally

IF-THEN (EQL) Control Conditionally executes statement(s)

GOSUB (EOL) Control Transfers to University BASIC
Subroutines

RETURN Control Returns from University BASIC
Subroutines

FOR (EOL) Control ~ Defines top of loop and loop
parameters

NEXT (EOL) Control Closes program loop

STOP Control Stops program

*NOTE: "EOL" = End of Line

INPUT I/0 Reads from terminal

PRINT I1/0 Prints on output device
TAB 1/0 Formats output into columns
UNIT I/0 Designates print output device

BASE CRU Base Assignment Sets the CRU base address

CALL External Subroutine Transfers to subroutine
TONE : Sound Allows sound capability
L.0ap Load Program Chains longfgrograms

5.2 REMark STATEMENT
Form:
<line number> REM <text> EOL

The REM statement is used to insert remarks (comments) in a
program. REM may contain any textual information. It has no
effect when encountered in execution. Howewver, 'its 1line number
may be used as the argument of a GOTO or GOSUB statement.

oxamples:
10 REM THIS IS A COMMENT
100 REM CHECK FOR X=0

5.3 DIMension STATEMENT

Dimension declarations are used to specify the size attributes
for subscripted variables within the program.

Form:

<line number> D1M <var(dim(,dim}...)
DIM <var (dim{,dim}...)

The DIM statement dynamically allocates user variable space for
array variables. Dimensioned (array) variables must be declared
by the DIM statement before the variables are used. Once
dimensioned, attempts to redimension an array variable to a
larger array size will result in an error message, and attempts
to redimension to a smaller size will be disregarded.

Array sizes -are specified by indicating the maximum sgbscript
values in parentheses following the array name. Subscripts of

dimensioned variables may be any numeric quantity including
constants, simple variables, other dimensioned variables, or even
function calls.. (Note that only two dimensions per variable may
be used). An error will occur if the dimensioned variable
requires more variable space than is currently available in the
user”s vartition. Dimensioned variables always use the 0
"subscript as the first element in the array.

Examples:
10 DIM A(l0),B(10,20)
100 DIM Al(l0),B1(20,30),B9(10,10)

The first statement allows for the entry of an array of 11
elements (0-10) into A, and of an array of 1l x 21 elements into
the two dimensional array, B. The two remaining statements
dimension arrays in a similar manner. String variables must be
dimensioned as numeric variables, e.g., $A must be dimensioned as
A(10), not $A(1l0). Thereafter, the dimensioned numeric variable
may be referenced as a string variable by preceding the variable
with a dollar sign ($). The string array A dimensioned above
should be referenced as $A(0) through $A(10).

Example:
20 DIM c(10),D(8)

This statement defines C to be a one dimensional array with 1l
elements and defines D as a one dimensional array of 9 elements.
Hereafter, these arrays may be considered as string arrays by
referencing the variables via $C(0) through $C(10) and $D(0)
through $D(8).

Strings are stored one character per byte with a null character
used to terminate the string. Hence, simple string variables and
single array elements which are 2 bytes in length can contain up
to one character. Dimensioned string variables can contain up to
the number of elements times 2. Therefore, the dimensioned string
variable $C can contain up to 21 characters.

5.4 LET STATEMENT

The LET statement assigns a value to a variable where the
variable is set equal to an expression consisting of variables
and/or constants separated by operators. The variable being
evaluated may appear within the expression. The newly calculated
value of the variable replaces the old wvalue.

In University BASIC the 1letters LET may be omitted from the
statement so only an equation appears. The LET statement may have
either of the following forms:

<line number> LET <variable> = <expression>
LET <variable> = <expression>
<line number> <variable> = <expression>
' <variable> = <expression>

where

varlable is a string varlable, numeric scalar variable, or
array element.

The assignment statement assigns an expression value to a
variable. Both variable and the expression must bé efther string
or numeric. The following example illustrates the assignment
statement.

10 LET A=3:B=4

20 C=6:D=8

30 DIM E(10)

40 SE(0)="STOP"

50 PRINT A,B,C,D, $E(0)

60 STOP
RUN
3 4 6 8 STOP

5.5 CONTROL AND COMPUTED TRANSFER STATEMENTS

University BASIC statements are executed sequentially unless
altered by control statements. Control may be accomplished by an
unconditional branch, subroutine branch, or loop.

5.5.1 Unconditional GOTO Statement

When the computer encounters a GOTO statement, it jumps to the
program line number specified in the statement. The program
executes the statement at the specified line number and continues
in sequence with the statements that follow.

Form:

<line number> GOTO <line number> EOL
GOTO <line number> EOL

If the "GOTO" is not preceded by a line number (i.e., entered in

Reyboard mode), it allows statements to be skipped and execution
to begin at the line number specified in the statement.

5-4

Examples:

GQTO 200 Begins execution at statement 200 (KReyboard Mode)
100 GOTO 140 Transfers control to statement 140

The following program illustrates the GOTO statement:

10 INPUT A
20 GOTO 40
30 STOP

40 PRINT A
50 GOTO ™MQ 5D

The program execution sequence is line numbers 10, 20, 50, 40 and
30 where execution stops.

5.5.2 IF-THEN Statement

The IF statement alters sequential execution of the program
depending on the state of the specified condition.

Forms:

<line number> IF <expression> THEN <statement(s)> EOL
IF <expression> THEN <statement(s)> EOL
<line number> IF <expression> <relation> <expression> THEN <statement(s)>
IF <expression> <relation> <expression> THEN <statement (s) >
<line number> IF <string> <relation> <string> THEN <statement(s)> EOL
IF <string> <relation> <string> THEN <statement (s)> EOL
<line number> IF <gtring> THEN <statement(s)> EOL
IF <string> THEN <statement(s)> EOL

The condition may be any variable, numeric expression, relational
expression, logical expression, string - variable, string
relational expression, or function which can evaluate to a zero
or non-zero value. Two expressions or strings are compared
according to the given relation and a true or false condition
results. If only a single expression or string is given, the
condition is considered false if the expression is zero or the
string is null; otherwise, it is considered true.

If the condition is true, the statement(s) following the THEN
clause on the same 1line will be executed. If the condition is
false, the statement on the line following the IF-THEN statement
will be the next statement executed. Any University BASIC
statement or statements (including GOTO”s and other IF-THEN
statements) may immediately follow the THEN clause. They cannot
extend to the next statement 1line because statement execution
continues at the next statement line when a false condition

occurs. The IF and THEN clauses must appear on the same statement
line.

Examples:
20 IF A=0 THEN GOTO 100
100 IF I+2 THEN PRINT I
60 IF $A THEN $B=$A

5.5.3 Subroutine (GOSUB AND RETURN) Statements

University BASIC programs may contain internal subroutines. An
internal subroutine is a sequence of statements performing a
well-defined function or operation within the University BASIC
pProgram. Two types of statements govern access to a subroutine: a
GOSUB statement for entry into the subroutine and a RETURN
statement for return to the calling program.

Forms:

‘<line number> GOSUB <line number> EOL
<line number> RETURN

An internal University BASIC subroutine may be invoked from an

point within the program by wusing. a GOSUB statement whic

specifies the entry point of the subroutine as a line number.
" Execution of the GOSUB statement pushes the address of the
statement immediately following the GOSUB statement onto the
GOSUB stack for return, and passes execution to the specified
line number.

A RETURN statement placed in the subroutine is an exit point from
the internal University BASIC subroutine. A RETURN statement
should be placed at each 1logical end of all subroutines. The
RETURN statement causes execution to resume at the first
statement following the GOSUB statement that transferred to the
subroutine. During this transfer, the top return address is
removed from the GOSUB stack. All subroutines should be exited
only via a RETURN statement so the top return address will always
be removed from the GOSUB stack. Unpredictable results occur if a
subroutine is exited in any other fashion.

5-6

20 GOSUB 90 —=——
30 X=X+2
90 Z=2%X-1 !
100 X=X/2
110 RETURN —_—

FIGURE 5-1. GOSUB EXAMPLE

In Figure 5-1 GOSUB 90 involves statements on line numbers 90
(start of subroutine), 100, and 110 (end of subroutine). If a
GOSUB statement is wused, the subroutine it branches to must
contain at least one RETURN statement. The example illustrates
the simplest use of GOSUB and RETURN. The arrows indicate the
flow of control in the program.

A return address (first line number after the call) must be
stored for each GOSUB statement until that statement is executed.
The program in the following example contains "nested"
subroutines (i.e., subroutines within a subroutine) and shows the
actual execution sequence. Each GOSUB to a subroutine must be
accompanied by at least one RETURN statement per exit path. The
nested program and execution sequence of the example demonstrate
entry to and exit from a subroutine. Note that subroutines may be
only be nested to a level of 8.

A RETURN statement must not be encountered unless a GOSUB
statement has been executed.

"Remembering” all the return points by saving them on the GOSUB
stack and never removing them can exhaust the available GOSUB
stack area. The following program, which calculates N illustrates

this problem; its use requires that N return points be
remembered.

10 INPUT "N= ";N

20 GOSUB 100

30 :"N=";N,"N1=";N1,"N2="N2,"N3=";N3
40 STOP

100 GOSUB 200
110 N1l=N*10
120 RETURN
200 GOSUB 300
210 N2=N*100
220 RETURN
300 N3=N*1000
310 RETURN

5.5.4 FOR/NEXT Loops

FOR and NEXT statements indicate the start and end of an
instruction block that is to be repeatedly executed as a set. One
variable takes on different values within a specified range; this
variable is often used in the computation or evaluation contained
in the instruction block. The FOR statement names the variable
and stepping values of that variable and also specifies its
initial and final values. The NEXT statement closes the program
loop. Note that the maximum nesting level possible for FOR~-NEXT
loops in University BASIC is 4.

The FOR statement may have either of the following forms:

<line number> FOR <variable> = <exp> TO <exp> EOL
<line number FOR <variable> = <exp> TO <exp> STEP <exp> EOL

where

variable is a simple numeric scalar variable

expression is a valid University BASIC numeric expression
Note that no pre~test is done by the FOR statement (i.e., it will
always execute once).

The NEXT statement has the form:

<line number> NEXT <variable> EOL

where
variable is a simple numeric variable

The simple variable of the NEXT statement must be the same as the
FOR statement variable at the beginning of the loop.

Specification of the STEP value is optional. If omitted, a value
of +1 is used. The step value may be any constant, variable, or
expression which evaluates to a positive or negative value.
Negative step intervals can be used to decrease the value of the
FOR variable from one pass through the loop to the next. By using
a step value of -1, the FOR variable can be made to decrease by
integer values during successive loop interactions.

Example:

100 FOR J=1 TO 60 STEP 8
110 FOR A=l TO 30 STEP 6
120 TONE J,A

130 NEXT A

140 NEXT J

150 FOR J=10 TO 1 STEP -1
160 FOR A=-3 TO 12 STEP 2
170 TONE J,A

180 NEXT A

190 NEXT J

200 sTOP

Note that the step size may be a variable, an expression, a
negative number, or a positive number. If expressions are used to
specify the initial, final or step-size values, they will be
evaluated only once when the FOR loop is entered. Changing any of
the values (either the step, initial or final values) within the
FOR loop does not affect the number of times the sequence is
executed with the exception of the control variable. The control
variable is assigned to the initial values when the FOR statement
is entered and is incremented (if the STEP value is positive), or
decremented (if the step value is negative) after each repetition
of the loop sequence. The last repetition of the loop sequence is
when the control variable is equal to the final value. When
exiting the 1loop 1in this manner, the control variable is
ingremented (or decremented) one step value beyond the final
value.

A pre~check is performed so that if the initial value is greater
than the final value 1in the case of positive STEP values, the
loop sequence will not be executed. Likewise, if the initial
value is 1less than the final value and the STEP value is
negative, the loop sequence will not be executed.

The control variable may be changed within the body of the loop
and the latest value of the variable will be used in the exit
test; however, this programming practice is not recommended.

The loop continues to be executed as long as the condition:
(step value) *(control wvariable)<(step value) * (end value)

remains true. If the condition:

(step value)*(start value)>(step value)*(end value)

is true when the FOR statement is first encountered, the 1loop
will not be executed.

When the 1loop 1is being executed, the control variable is first
set to the initial value and if the end criterion is not true,
the loop is executed. The control variable is then incremented bg
the step value each time the NEXT statement is encountered an

executed. The loop terminates with the control variable equal to
the last value used in the loop plus the step value.

Example:

10 FOR I=1 TO 4 STEP 2

..

80 NEXT I

90 PRINT "I=";I
RUN

I=5

The NEXT statement closes the FOR loop. When it is encountered,
the step value is added to the control variable. If the control
variable has not gone beyond the end value, control will be
returned to the first statement following the FOR which opened
the 1loop. The control variable of the loop to be closed must be
specified by the NEXT statement.

5~10

FOR loops may be nested; i.e., one FOR loop may contain another
which may contain a third, etc. If nested, however, they should
not use the same control variable. When two loops are nested, one
must be completely contained within the other. Overlapping is not
permitted. The following structure is correct:

100 FOR I=1 TO 2
110 FOR J=1 TO 2
120 FOR K=1 TO 2
130 PRINT I,J.,K
140 NEXT K

150 NEXT J

160 NEXT I

170 sTOP

while the next two structures are incorrect:

10 FOR I=1 TO 2
20 FOR J=1 TO 2

80 NEXT I
90 NEXT J (WRONG, loops may not overlap)

10 FOR I=1 TO 2
20 FOR I=1 TO 2

80 NEXT I
90 NEXT I (WRONG, nested loops may not have the same control
variable)

NOTE: Maximum nesting level is 4.

5-11

The following program illustrates nesting:

- LIST
10 REM AREA OF A TRIANGLE
20 FOR B=6 TO 9
30 FOR H=1l TO 13 STEP 2
40 A=B*H/2
50 PRINT "A=":;A,"B=";B,"H=";H

60 NEXT H
70 NEXT B
80 STOP

This program prints the base, height, and area of triangles with
bases 6, 7, 8 and 9, and heights 11 and 13. All combinations are
Printed: Eight sets of data for the four bases and two height
values.

All wvalues of the variable in the inner loop are cycled through
while the variable in the outer loop is set to its first value.
The outer 1loop variable is then set to its second value and the
inner loop is cycled through again. The program runs through each
outer loop value this way.

It is legal to transfer control from within a loop to a statement
outside the loop, but it is never advisable to transfer control
into a loop from outside. The next two examples illustrate both
of these situations.

Valid transfer out of a loop:

20 FOR I=1 TO N

30 X=X+2*]

40 IF X>1000 THEN GOTO 100
50 NEXT I

Invalid transfer into a loop:

20 GOTO 50

30 FOR I=1 TO N
40, X=X*2*1

50 Y=y+y/2

60 NEXT I

. (WRONG, 50 is inside a loop)

However, it is permissable to call a subroutine from within a
loop and then return from the subroutine back into the loop. The
following example illustrates repetitive calling of a subroutine
from inside a loop. ‘

5-12

Example:

10 FOR I=1 TO N
20 X=2%I-1

30 GOSUB 150

40 2=Z+Y

50 NEXT I

150 IF X<>12 THEN GOTO 180

160 ¥=248

170 RETURN
180 Y=200+4*X
190 RETURN

5.5.5 STOP Statement
The STOP statement terminates program execution at the logical
end of the program. There may be one or more STOP statements in a
University BASIC program, and they may appear anywhere within the
program.
Form:

<line number> STOP

The system displays the line where program execution terminated.

Example:
100 sTOP
STOP at 900

5.6 INPUT STATEMENT

The INPUT statement is used for keyboard input from an interactive
terminal into variables of the BASIC program.

Form:

r '4
<line number> INPUT <variable> g;% <variable> 34

The INPUT statement performs as a READ statement* with the
exception that it accesses the numeric constants and strings from
- the external keyboard.

*Refer to the POWER BASIC Reference Manual, MP3UB

5-13

It provides all translation from character data to the internal
formats of the University BASIC system and thus assigns input
values to the variables or array elements specified in the input
list. All characters are echoed as they are entered. The INPUT
statement 1is extremely versatile and provides a means to l)input
numbers only, 2)input character strings, 3)detect control
characters, 4)prompt with character strings, 5)specify maximum
number of input characters, 6)specify exact number of input
characters, 7)suppress carriage return/line feed, and 8) suppress
prompting. :

Input variables may be entered in a list separated by carriage
returns. Numeric data may be represented as decimal integers.
There should be no embedded spa ces within numeric values and all
spaces preceding or following numeric data are ignored. For
string data input, the string consists of all characters after
the prompting character and up to (but not including) the end of
the input (carriage return). The string includes all entered
blanks and quotes.

The INPUT statement, when used with the comma (,) delimiter
prompts the user with a question mark (?) for numeric inputs
only, and a colon (:) for character inputs. If an illegal number
is entered in response to the question mark prompt, the computer
will respond with a double question mark (??) and wait for
correct input. The computer will continue to prompt until the
user has entered all data requested. When used with the
semi-colon (;) delimiter, however, no prompts are given.

In the following examples, a carriage return is represented by
(CR) and all user responses are underlined.

Examples:

.30 DIM A(1l), B(1), Y(1)

40 INPUT X

50 INPUT $SA(0), $B(0)

60 INPUT $Y(0). $2(0)

70 PRINT X,$a(0), $B(O)r $Y (0), $Z2(0)
80 STOP

RUN .
2256 (cr)
:BOB (cr) :DAN (cr)
:3L (cr) 2803 (cr) 2280 (cr)
256 BOB DAN . HI 80

STOP AT 80

5-14

In the program, statement 40 outputs a question mark waiting for
numeric input. The user enters the number "256" followed by a
carriage return which terminates the INPUT statement of line 40.
The variable X is assigned the value of "256". Next it prompts
with a colon awaiting character string input. The user enters
"BOB" followed by a carriage return. The computer immediately
prompts with a colon awaiting the next string input. The user
enters "DAN" and a carriage return which terminates this input
line. The computer then prompts with a colon and the user inputs
"HI" and a carriage return. Next, the computer prompts with a
question mark and the user incorrectly enters "80A", an illegal
numeric value. Therefore, the computer responds with a double
question mark and awaits correct input. The user enters "80"
followed by a carriage return which terminates the INPUT
statement. The program is then executed, and statement 70 outputs
the values read into the variables.

An INPUT statement can be combined with a PRINT statement to
prompt user response as follows:

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE";
30 INPUT X, ¥, 2
40 PRINT X,Y,2

50 STOP

RUN .

YOUR VALUES OF X, Y, AND Z ARE? 50 (cr) 270 (cr) 290 (cr)
50 70 90

STOP AT 40

Since user prompting for data input 1is required in most
applications, the INPUT statement has been designed to permit
string constants to be embedded in the INPUT statement for direct
prompting output. The string constants must be enclosed by
quotation marks. There may be any number of string constants
within the INPUT statement separated from input variables and
other string constants by commas or semicolons.

The abovg example may be performed as follows:

20 INPUT "YOUR VALUE OF X IS", X, " ¥", ¥, " 2",2
30 STOP

RON

YOUR VALUE OF X IS? 1 (cr) ¥Y? 2 (ecr) 2? 3 (cr)
STOP AT 30 - ' - -

5-15

Similarly for string input:

10 DIM N(5)

20 . INPUT "WHAT IS YOUR NAME", $N(0)
30 PRINT "YOUR NAME IS ":$N(0)

40 GOTO 20

RUN

WHAT IS YOUR NAME: JOHN (cr)
YOUR NAME IS JOHN
WHAT IS YOUR NAME:

A semicolon may be used to perform input formatting. If a
semicolon is placed at the end of an INPUT statement 1line, the
carriage return/line feed 1is suppressed after processing the
INPUT statement as the example below illustrates: :

10 INPUT "INPUT X", X;

20 - PRINT " X SQUARED="; X*X
30 INPUT "INPUT Y", Y

40 PRINT "Y CUBED="; Y*Y*Y
50 STOP

RUN

INPUT X?12 (cr) X SQUARED= 144
INPUT Y?3 (cr)
Y CUBED= 27

STOP AT 50

In line 10 the semicolon is present at the end of the INPUT
statement; therefore, the carriage return/line feed is suppressed
after entering the constant 12 so that "X SQUARED= 144" can be
output on the same line. In line 30 a semicolon is not present so
the carriage return/line feed is performed.

When the semicolon is placed before an assignment variable in the
INPUT list, the automatic prompting of a question mark or colon
is suppressed. The user may then perform his own prompting in the
University BASIC Program by using PRINT statements or placing
character strings in the INPUT statement.

5-16

Example:

5 DIM N(3)

10 INPUT "WHAT IS YOUR EMPLOYEE NUMBER?", SN(O)
20 INPUT "WHAT IS YOUR EMPLOYEE NUMBER?"; S$N(0)
30 STOP

RUN

WHAT IS YOUR EMPLOYEE NUMBER?: 1234 (cr)
WHAT IS YOUR EMPLOYEE NUMBER?1234 (cr)

STOP AT 30

- In line 10, the INPUT Statement prompted with a colon (:). 1In
line 20 no prompt was issued.

5.7 PRINT Statement

The PRINT statement causes the values of all expressions in the
list to be vrinted on the output terminal. Commas and semicolons

are used to separate expressions and provide for print
formatting.

Form:
PRINT P ' ’
line number H expression {:} expression {;} coa {;
PRINT . ‘ R ’
: expression '{;} expression {;} {;

The expression list may contain any numeric variable, numeric
exnre551on, string variable, string constant, or any ASCII code
which is to be output to the terminal device.

String constants may be printed directly by inserting them in the
PRINT statement expression list. String variables are printed by
having the variable name preceded with the dollar sign
designator. The following example illustrates the output of
string constants and string variables.

5-17

100 DIM N(10)

110 $N(0)= "UNIVERSITY BASIC."

120 PRINT "THE NAME OF THE LANGUAGE IS ";:
130 PRINT $N(0)

RUN

THE NAME OF THE LANGUAGE IS UNIVERSITY BASIC.
STOP AT 140

To facilitate rapid statement entry in the edit mode, a semicolon
{;) may be used in place of the word "PRINT" in any PRINT
Statement. Upon statement entry, the semicolon is internally
translated to the "PRINT" code. Thereafter, 1listing of the
statement will result in output of the word "PRINT". For example:

10 PRINT I,J

20 ;X,Y,Z
30 ; "THE SEMICOLON WILL LIST AS "PRINT"
LIST

10 PRINT I,J
20 PRINT X,Y,2 | |
30 PRINT “THE SEMICOLON WILL LIST AS "PRINT"

In its simplest form the. expressions in the output 1list are
separated by commas. In this form, an output line is divided into
8-character print fields starting in columns 1, 9, 17, etc. A
comma €ollowing an expression in a list is a signal to advance to
~the next field. Expressions separated by commas are output one
expression per print field. This enables output lines to be
formatted into ten left-justified columns within the £field.
Expressions may occupy more than one field, in which case the
comma following the expression in the PRINT 1list advances the
orint output to the next blank field. If the terminal device does
not perform in this manner, output values may be lost at the end
of output lines, and the five column output format may be skewed.
Printing will continue in as many lines as are required to
complete the output 1list. When the entire output list has been
printed, a carriage return/line feed is automatically inserted
after the last print item. Subsequent printing begins on the next
line. For example, the following statements:

10 X=7
20 PRINT X, X+2, X+4
30 PRINT "JACK", "JOHN", "ANDY"

would generate

7 9 11
JACK JOHN ANDY

5-18

The automatic carriage return/line feed at the end of a PRINT
statement may be suppressed by placing a comma at the end of the
output list. Subsequent printing will begin in the next field of
the same line. For example:

10 X =7

20 PRINT X, X+2, X+4,

30 PRINT "JACK", "JOHN", "ANDY"
40 STOP

would generate
7 9 17 JACK JOHN ANDY

Note that most terminals automatically generate a carriage return
and line feed as occurs in the following example:

10 FOR I=1 TO 14
20 PRINT I,
30 NEXT I

40 STOP
RUN :
1 2 3 4
6 7 8 9
11 12 13 14
STOP AT 40

More compact printing can be achieved by using semicolons rather
than commas as expression separators. When followed by a
semicolon, numbers in the output 1list will print in as many
characters as required to print the numbers of the expression
Plus one blank space added on the left. However, strings in the
output 1list will print in exactly the end of an output list, the
last item will print in a short field as just described, and
subseguent printing will begin immediately after that field. For
example:

5-19

10 S§1=95
20 52=87
30 S3=92

40 PRINT "SCORES AND MNAME:";S1:S2;
350 PRINT S$3; "GARY"

would generate
SCORES AND NAME: 35 87 92 GARY
Another 2xample:

10 FOR I=1 TO 14
20 PRINT T ;

30 NEXT I
40 STOP
RUN

123456789 1011 12 13 14
STOP AT 40

Note that both semicolons and commas may be used to separate
expressions in any PRINT statement and that the print position of
the next expression will depend on the separator (semicolon or
comna) used to delimit the expressions. The following example
illustrates the use of both delimiters in a single PRINT
statement. :

10 H=98
20 L=60
30 A=79

40 PRINT "HIGH= ";H,"LOW= ";L,"AVERAGE= ";A
would generate
HIGH=98 LOW=60 AVERAGE=79

When a ";" and "," are mixed, the next variable or string is
orinted at the next variable blank column location.

A PRINT statement without an expression 1list is a valid
statement. Execution of this statement results in the output of
one blank line, as the example following illustrates.

10 PRINT "THERE SHOULD BE TWO BLANK LINES BETWEEN HERE AND"
20 PRINT

30 PRINT

40 PRINT "HERE!"

would generate

5-20

THERE SHOULD BE TWO BLANK LINES BETWEEN HERE AND

HERE!
5.8 TAB Statement

Output formatting can also be controlled by use of the TAB
function. :

Form:
TAB (<expression>)

The expression in the TAB function specifies the horizontal
column position in which the print item following the TAB will
begin printing. The TAB function may contain any expression as
its argument. The expression is evaluated and its integer portion
used. If the result is greater than the line size, the specified
print item will be printed on the next output line. If the column
specified by the integer part of the expression has already been
passed in the current print 1line, the TAB function will be
ignored and the print item will be output at the current position
in the print line. The TAB function may be used to format cutput
into columns on the output device.

Examples:

10 PRINT "BIG"; TAB(20);"SPACE"
will generate

BIG SPACE
while:

10 PRINT TAB(20); "SPACE";TAB(l);"BIG"
while:

SPACEBIG

In the first example, the string "BIG" is output starting in

column l. The TAB function advances th printer to column 20 and
outputs the string "SPACE". In the second example, the TAB
function advances the printer to column 20 and outputs the strin
"SPACE". The TAB (1) attempts to return the printer to column ?
in the print 1line. Since that column position has alr=ady been
passed, the string "BIG" is output immediately following "SPACE"
(the current position on the print line). :

5-21

Note that the orinting of tabs in the keyboard mode is not
supported.
5.9 UNIT Statement
The UNIT statement designates the baud rate at which all
subsequent printed output will be sent to the terminal. Note that
the output 1is always sent to the LED”s, and the keyboard is
always active.
Forms:

UNIT <expression>

The unit number assignments are as follows:

UNIT OQUTPUT DEVICE

University Board
110 BAUD

300 BAUD

1200 BAUD

2400 BAUD

4800 BAUD

9600 BAUD

19.2K BAUD

\JG\U\AMNHO‘

Note that the TM990/189 microcomputer works at all baud rates.

5.10 BASE STATEMENT

The BASE statement sets the CRU base address for subsequent CRU
operations.

Form:

<line number> BASE <expression>
BASE <expression>

The BASE statement evaluates the expression and sets the CRU base
address to the result for use by the CRB and CRF functions
(reference subsections 7.3.1 and 7.3.2). The CRB function
addresses bits within -128 to +127 of the evaluated base address.
CRF function transfers bits using the evaluated base address as
the starting CRU address.

5-22

The CRU provides a maximum of 2048 input and output lines that
may be individually selected by a ll1-bit address. The ll-bit
address used by the CRU instructions is actually located in bits
4 through 14 of a workspace register. The evaluated expression of
the BASE statement is loaded into the entire 16-bits of this
workspace register. Therefore, the BASE expression should
evaluate to twice the actual (physical) CRU base address desired
since only bits 4 through 14 are used. The least significant bit
of the BASE expression value is ignored for CRU operations.
Therefore, all expressions should evaluate to an even number. The
range of valid expressions is from 0 to 4095.

Examples:

10 BASE 64
20 CRF(0)=~1
30 BASE 100
40 CRB(-1)=0

Statement 10 sets the CRU BASE address to 64 (physical address of
32), and statement 20 outputs a l6~-bit -1 value. Statement 30
sets the CRU BASE address to 100 (physical address of 50, and
statement 40 sets the CRU bit displaced -1 from the base
(physical address of 49) to zero.

5.11 CALL STATEMENT

The CALL statement allows the user access to assembly language
subroutines. :

FORMS:

<line number> CALL <expression>
CALL <expression>

where expression is the decimal address of the assembly language
subroutine (i.e., the location at which it resides in memory).

5-23

The CALL statement initiates a branch and link and execution
resumes at the address specified in the call. If the workspaces
used are the same as those used by University BASIC, a branch
- indirect to Register 11 will return control to the <calling
program at the following line. If user~specified registers are
employed, an RTWP returns to the 0ld workspace where a branch
indirect to Register 11 will return c¢ontrol to the calling
program. Note that only Registers 0 through 7 should be used when
in University BASIC workspace. -

The following program uses the CALL statement to access an
assembly language routine. Note that the RAM area chosen in this
example is totally arbitrary and no RAM area that is used by
University BASIC should be used for assembly language
programming. The following assembly language routine outputs a
tone and returns to the calling University BASIC program. This
program also puts a value in RO of the University BASIC
workspace, where it can be accessed by the “SUB” function. The
“MEM® statement is used to load the assembly language program
into RAM, where it accesses the routine via “CALL® and “SUB”
statements. .

10 FOR 1=1060 TO 1109

20 INPUT X: MEM(I)=X

30 Y=MEM(I): PRINT Y

40 NEXT I

50 MEM(1033)=1 :REM PASS VALUE USED BY ROUTINE
60 PRINT "DO CALL"

70 CALL 1060

80 PRINT "DO SUB"

90 Z=SUB 1060

100 PRINT Z :GOTO 80

***INPUT NUMBERS UNDER “DECIMAL” ***
DECIMAL

0001 0424 AORG >0424 s CHANGE WORKSPACE
0002 0424 0420 04 32 BLWP @>042E
0425 042E 04 46

0003 0428 C020 192 32 MOV @>0408,R0 ;LOAD FUNCTION VALUE
0422 0408 04 08

0004 042C 045B 04 91 B *Rll ;GO BACK TO UBASIC PROGRAM

0005 042E AORG >042E ;START OF PROGRAM

0006 042E 0402 04 02 DATA >0402 ;ADDR OF NEW WP

0007 0430 0432 04 50 DATA >0432 ;ADDR OF PROG. START

0008 0432 020Cc 02 12 LI R12,>043C ;BASE ADDR. TO SPEAKER
0434 04 60

0009 0436 0201 02 01 LI R1,>0200 ;LOAD TONE DURATION
0438 0428 02 00 |

0010 043a 0202 02 02 LI R2,>00A0 ;LOAD TONE PITCH
043C 00AC 00 160

0011l O43E 1p00 29 00 sBO O ;SET SPEAKER BIT TO ONE

0012 0440 0602 06 02 DEC R2 ;DO WAIT LOOP

5-24°

0013
0014

0015
0016
0017
0018
0019
0020
0021

5.12

0442
0444
0446
0448
044A
044cC
044E
0450
0452
0454

16FE
0202
00a0
1E00
0602
16FE
0601
l6F4
0Al3
0380

254
02
160
00
02
254
0l
244
19
128

TONE STATEMENT

JNE
LI

SBZ
DEC
JNE
DEC
JNE
SLA

The TONE statement provides

* Forms:

<line number>

TONE
TONE

Tl
R2,>00A0

;JUMP IF NOT EQUAL TO 0
: LOAD TONE PITCH AGAIN

;SET ‘SPEAKER BIT TO ZERO

;DO WAIT LOOP

;s JUMP IF NOT EQUAL TO 0

; DECREMENT DURATION LOOP

:;IF NOT ZERO DO TONE AGAIN
;sMULTIPLY UBASIC VARIABLE BY 2
;RETURN TO UBASIC WORKSPACE

sound capability in University BASIC.

<expl>,<exp>; [<expl>,<exp2>])
<expl>,<exp2>; [<expl>,<exp2>]

where <expl> is the pitch and <exp2> is the length of time.

Example:

100
110
120
130
140
150
160
RUN

FOR I=1 TO 25
FOR J=1 TO 15
TONE I,J
NEXT J

NEXT I

PRINT I:PRINT J
STOP

Line 120 directs the TONE command to do Tone I for "J" number of
clock TICS.

~ 5.13 LOAD STATEMENT

Refer to subsection 4.4.1 for a description of LOAD Statement.

5-25

SECTION VI
CHARACTER STRINGS

6.1 GENERAL

ASCITI character strings are stored in the same variables as are
other University BASIC variables. Variables are designated as
containing character strings by program content or semantics. Any
variable or array may contain ASCII characters and, in fact, may
ba filled with ASCII characters and numbers at the same time.
String variables are designated by preceding the variable name
with a dollar sign. Otherwise, the variable is treated as a
number. ASCII characters are stored in contiquous memory
locations with a null character terminating the string. A DIM
statement will ensure that enough memory for a string variable
has been set aside to store all the characters. If this is not
done, other contiguous variables may be destroyed.

6.2 CHARACTER ASSIGNMENT

When a string assignment is made the actual characters are moved
to the new variable.

Form:

$ VAR = <$VAR>
$§ VAR = “"<character string>"

Characters are transferred one by one until a null byte is found.
Examples:

10 $Il="y"

20 $J0=$J1

30 $N(4,0) = "CHARACTER STRING"
A - character string is referred to as <$VAR> and implies either a
literal string or a dollar sign preceding a variable. $<VAR>
implies a character ONLY of the form dollar sign preceding a
variable.
ASCII comparisons of the following form are valid:

IF <$VAR> <RELATION> <$VAR> THEN <BASIC STATEMENT>
Examples:

100 IF $Il="Y" THEN GOTO 500
110 IF $N(I,0) =$B(J,0) THEN GOSUB 600

A dimensioned string variable can have a byte index into the
character string by following the subscripts with a semicolon and
the byte displacement. The range of the index is from 1 through
ghe last byte of the ASCII string. $A(0;1) is equivalent to
a(o0).

Example:

10 DIM A(1l3)

20 $A (0) ="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 PRINT $A(0Q)

40 PRINT $A(0;1)

50 PRINT $A(0;10)

60 STOP

RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJRLMNOPQRSTUVWXYZ
JRLMNOPQRSTUVWXYZ

STOP AT 60

10 DIM A(13),B(1l3)

20 $A (0) ="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $B(0)=$SA(0;10)

40 $a(0;2)=$B(0;2) -

50 PRINT $A(0), S$B(0)

60 STOP

RUN -
AXLMNOPQRSTUVWXYZ JKLMNOPQRSTUVWXYZ

STOP AT 60

6.3 CHARACTER CONCATENATION
Strings are concatenated by using the "+" operator.
Form:

S<VAR> = <SVAR> + <SVAR> +...

Concatenation operations may be chained together and the final
string will automatically be terminated with a null by University
Basic. :

10 DIM A(10), B(1l0)

20 $A(Q)="ABCDE"

30 $A(0)=$A(0)+"FG"+"HIJK"
40 PRINT $A(0)

50 STOP

RUN

ABCDEFGHIJK

STOP AT 50

6.4 CHARACTER PICK

Characters can be picked from one variable into another by using
the assignment operator.

Form:
$<VAR> =
The expression

the number of
terminaated with

<$VAR> , <EXP>

is evaluated and the resulting number specifies
bytes to be assigned. The string is then
a2 null. Note that if the expression evaluates to

a non-positive value, no character pick will occur.

Example:

10 DIM A(10),B(10)

20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $B(0)=$A(0;4),6

40 $B(0;5)=$a(0),1

50 PRINT $B(0)

60 sTOP

ROUN
DEFGA

STOP AT 60

6.5 CHARACTER REPLACEMENT

Character replacement is very similar to character pick with the
exception that a null is not placed at the end of the string.

Form:

10 DIM A(10),B(10)

20 $A(0)8"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $B(0)=$a(0;4),6

40 $B(0;5)=$A(0);1

50 PRINT $B(0)

RUN
DEFGAI

STOP AT 60

6.6 BYTE REPLACEMENT

Individual bytes may be altered by using the numeric equivalent
of an ASCII character along with the "%" operator.

Form:
S<VAR> = %<EXP> ...

The evaluated expression specifies the byte code to replace in
the string variable. Byte replacements may be chained together.

Example:
10 DIM A(1l0) ,B(10)
20 $A(0)=%65%66%0

30 PRINT $A(0)
40 STOP

RUN
AB

STOP AT 40

6-4

SECTION VII

University BASIC FUNCTIONS

7.1 GENERAL

University Basic includes several predefined mathematical,
string, and miscellansous functions. A function is called by
using the following form in any statement where a variable may be
used:

function name‘(argument)
where

function name is a three-letter name
argument may be an expression or variable.

The specified function of the argument replaces the function name
in the statement in which it is used. Functions may be used
instead of, or in combination with, variables in almost all
University Basic statements such as: LET, PRINT, IF, FOR, etc.

7.2 MATHEMATICAL FUNCTIONS

Paragraphs 7.2.1 and 7.2.2 describe the mathematical functions
and their associated forms provided by University Basic.

7.2.1 Absolute Value Functon (ABS)

The absolute value function (ABS) obtains the absolute value of a
positive or negative number. The argument entered following the
function name is the variable name or numeric value for which the
absolute value is required. The function returns a non-negative
argument unaltered and returns the absolute value of a negative
argument. .

Example:

10 INPUT X
20 PRINT SQR(ABS (X))
30 STOP

7.2.2 Square Root Function (SQR)

The square root (SQR) function returns the square root value of
the specified argument. The argument entered following the
function returns the square root of the argument. An error
message (*ERROR 17 AT XXXX) is produced if the argument is
negative).

7-1

Example:
10 INPUT K .
20 PRINT SQR(K)
30 STOP

Executing the above example produces:

? 2
1

NOTE: If the square of the number does not evaluate to an
integer, the square root of the next-lowest number (whose square
root evaluates to an integer) is returned.

7.3 MISCELLANZOUS FUNCTIONS
The miscellaneous functions described in paragraphs 7.3.1 through
7.3.6 are supported by University Basic.
7.3.1 CRU Single Bit Function (CRB)
A CRU bit, addressed relative to a base displacement, is either
read or stored according to program context. The displacement
ranges from -128 to +127. (Refer to Section 5, paragraph 5.10 for
details on the BASE statement.) The function returns a 1 if the
CRU bit is set, and a 0 if not set. Likewise, the selected CRU
bit is set to 1 if the assigned value is non-zero and to 0 if the
assigned value is zero. For example:

CRB(10) =0
will clear the tenth bit relative to the base, while

CRB(1ll)=1 or CRB(1l1l)=345
will set the eleventh bit on. Also,

IF CRB(5) THEN J=4
will set J=4 if the fifth bit is 1.

Form:

CRB (<exp>) =<exp>

7.3.2 CRU Field Function (CRF)

The specified number of bits are transferred to or read from the
CRU starting at the address set by the BASE statement. (Refer to
Section 5, paragraph 5.10 for details on the BASE statement.) The

specified number of bits ranges from 0 to 15. If 2zero, all 16
bits will be transferred. For example:

CRF(0) = =1

transfers 16 bits to the CRU address specified by the BASE
statement. While,

VAL=CRF (8)

reads 8 bits from the CRU base address and stores the result in
VAL. (Bit 1 is the least significant bit of VAL).

Form:

CRF (<exp>) =<exp>

7.3.3 Key Function (KEY)
The key function (KEY) conditionally samples the keyboard in
run-time mode. When the argument is zero, the value of the last
key struck is returned and the key register is reset. Otherwise,
a value of 0 is returned. For example,

I = RKEY(0)

returns the last key struck, or a 0 if none of the Kkeys were
struck; while

IF KEY(65) THEN PRINT "A"

orints "A" if the last key entered was "A".

7.3.4 Delta Time (TIC) Function

The delta time (TIC) function samples a realtime clock and
returns the current TIC value minus the expression value. For
example:

T = TIC(0)
obtains current time, and
D = TIC(T)

calculates elapsed time since the time stored in the variable T
(i.e., TIC (T) = TIC (0) - T.

The TIC function utilizes the interval timer of the TMS9901,
programmed to generate an interrupt (or TIC) every second when
the system clock rate is at 2MHz.

Example:
10 $B=37%0:THIS IS THE CODE FOR CONTROL “G” (BELL)
20 A=TIC(0)
30 IF TIC(A)<>25 THEN GOTO 30
40 PRINT $B
50 GOTO 20
7.3.5 Memory Modification (MEM) Function

The memory modification (MEM) function reads or modifies a memory
location (byte) as specified by the argument. For example:

M = MEM(65)
reads the byte from decimal integer location "65", while
MEM(65) = 25
stores a 25 at decimal integer location "65".
Example:
M = MEM (1)
reads the byte from location 1, while
MEM (1000) =2

stores a 2 at location 1000.

7.3.6 RANDOM NUMBER (RND) FUNCTION

The random number function (RND) is used to generate a psuedo
random number between 0 and 32767.

Form: RND <exp>

«

where exp is a number between 0 and 32767.
Example:
¥=RND 10

would generate a random number between 0 and 10. Note that the
RND function does not support negative numbers.

7.3.7 SUB Function

The SUB function essentially performs in the same manner as the
CALL statement by performing a branch and 1link to the address

74

7.3.7 SUB PFunction

The SUB function essentially performs in the same manner as the
CALL statement by performing a branch and 1link to the address
specified in the call, but returns the data in Register 0.
(Register 0 through Register 4 only should be used.)

The following program uses the CALL statement to access an
assembly language routine. Note that the RAM area chosen in this
example is totally arbitrary and no RAM area that is used by
University BASIC should be used for assembly language
programming. The following assembly language routine outputs a
tone and returns to the calling University BASIC program. This
program also puts a value in RO of the University BASIC
workspace, where it can be accessed by the “SUB”® function. The
“MEM” statement is used to load the assembly language program
into RAM, where the program is accessed via “CALL” and “SUB”
statements.

10 FOR 1=1060 TO 1109

20 INPUT X: MEM(I)=X

30 Y=MEM(I): PRINT Y

40 NEXT I

50 MEM(1033)=1 :REM PASS VALUE USED BY ROUTINE
60 PRINT "DO CALL"

70 CALL 1060

80 PRINT "DO SUB"

90 Z=SUB 1060

100 PRINT Z :GOTO 80

*** INPUT NUMBERS UNDER “DECIMAL‘ ***
DECIMAL
0001 0424 AORG >0424 ; CHANGE WORKSPACE

0002 0424 0420 04 32 BLWP @>042E
0426 0422 04 46

0003 0428 c020 192 32 MOV @>0408,RO ; LOAD FUNCTION VALUE
042A 0408 04 08

0004 042C 045B 04 91 B *R11 ;GO BACK TO UBASIC PROGRAM

0005 042E AORG >042E ;START OF PROGRAM

0006 042E 0402 04 02 DATA >0402 ;ADDR OF NEW WP

0007 0430 0432 04 50 DATA >0432 ;ADDR OF PROG. START

0008 0432 020c 02 12 LI R12,>043C ;BASE ADDR. TO SPEAKER
0434 04 60

0009 0436 0201 02 01 LI R1,>0200 ; LOAD TONE DURATION
0438 0428 02 00

0010 043a 0202 02 02 LI R2,>00A0 ;LOAD TONE PITCH
043C 00a0 00 160

0011 043E 1p00 29 00 SBO O ;SET SPEAKER BIT TO ONE

0012 0440 0602 06 02 DEC R2 ;DO WAIT LOOP

0013 0442 16FE 22 254 JNE T1 ;JUMP IF NOT EQUAL TO O

0014 0444 0202 02 02 LI R2,>00A0 ;LOAD TONE PITCH AGAIN

0446 00A0 00 160

0015
0016
0017
0018
0019
0020
0021

0448
044a
044C
044E
0450
0452
0454

100
0602
l16FE
0601
ler4
0Al3
0380

30

22
06
22
10
03

00

254
01l
244
19
128

SBZ
DEC
JNE
DEC
JHE
SLA
RTWP

R2
T2

Rl

R3

el

;SET SPEAKER BIT TO ZERO

;DO WAIT LOOP

;JUMP IF NOT EQUAL TO O

; DECREMENT DURATION LOOP

;IF NOT ZERO DO TONE AGAIN
;MULTIPLY UBASIC VARIABLE BY 2
;RETURN TO UBASIC WORKSPACE

0l

02

03

04

05

06

07
08

09

10

[}

JMIVERSITY BASIC

ERROR

SYNTAX ERROR

TTNMATCHED PARENTHESIS

INVALID LINE NUMBER

ILLEGAL VARIABLE NAME

TOO MANY VARIABLES

TLLEGAL 7THARACTER

EXPECTING OPERATOR

STACK OVERFLOW
STACK UNDERFLOW

STORAGE OVERFLOW

APPENDIX A

ERROR CODES

EXAMPLE/EXPLANATION
10 LET X>B (incorrect)
10 LET X=B (correct)

(Violates language syntax.)

10 LET ¥X=(A+B (incorrect
10 LET x=(A+B) (correct)

(Parenthesis must be matched.)
32768 LET X=B (incorrect)

(There are only 32767 possible
iine numbers in University
BASIC.) 4

10 X=ABl (incorrect)
10 X=A1l (correct)

(Variable names must begin with
a capital letter and may be
followed by one capital letter
or a number 0-9.)

A maximmum of 120 distinct
variables is allowed. Attempts
to define more than this number
will result in this error.

FOR A 1L TO 10 (incorrect)
FOR A=l TO 10 (correct)

(The blank between “A” and ‘1
is interpreted as an illegal
character.)

Not implemented in this release.

This -error occurs when the GOSUB
nesting level exceeds 8.

This error occurs when the FOR/NEXT

nesting level exceeds 4.

This error occurs when University’

BASIC has used all existing RAM.

11

12
13

14

15

16

17

18

19

NEXT W/0 FOR

EXPRESSION TOO COMPLEX

NO SUCH LINE NUMBER

EXPECTING STRING VARIABLE

SUBSARIPT OUT OF RANGE

TOO MANY SUBSCRIPTS

SQUARE ROOT OF NEGATIVE #

INTEGER OVERFLOW

DIVISION BY ZERO

10 PRINT I
20 NEXT I (incorrect)

10 FOR I=1 TO 5
20 PRINT I
30 NEXT I (correct)

(A FOR statement always requires
a corresponding NEXT statement).

Not implemented in this release.

10 J=9

20 PRINT J

30 GgOTO 15 (incorrect)
40 STOP

(Line 15 does not exist in this
program.)

10 IF $A=X THEN GOTO 20 (incorrect)
10 IF S$A=S$B THEN GOTO 20 (correct)

(The "X" is not a string variable.)

10 DIM A(10)
20 A(20)=5 (incorrect)

10 DIM A(1l0)
20 A(l0)=5 (correct)

(In the first example, A(20)
exceeded the range set by A(10)).

10 DIM A(10,10,10) (incorrect)
10 DIM A(10,10) (correct)

(The DIM statement may have no
more than 2 subscripts.)

10 X=SQR(-=9) (incorrect)
10 X=SQR(9) (correct)

10 X=32768 (incorrect)
10 X=32767 (correct)

(Upper limit of a variable is
32767.)

10 X=10/0 (incorrect)
10 X=10/2 (correct)

(Division by zero is prohibited

in University BASIC.)

20 = ILLEGAL DELIMITER 10 IF X=B; THEN GOTO 30 (incorrect)
10 IF ¥X=B THEN GOTO 30 (correct)

(":" is an illegal delimiter in
this statement.)

21 = EXPECTING VARIABLE Not implemented in this release.
22 = TIMEOUT ERROR T™his error occurs when improper

interface between the microcomputer
and the audio cassette takes place.

APPENDIX B

STATEMENT AND COMMAND SUMMARY

The following pages contain a summary of all University BASIC
commands and statements, and provide a short description of each.

EDIT MODE COMMANDS

Fdit mode commands aid in writing, editing, and debugging
University BASIC programs. Note that "#" indicates a key (or
keys) on the TM990/189 microcomputer keypad while "*" indicates a
terminal keyhoard such as the Lear Siegler ADM.

SYNTAX EXAMPLE/EXPLANATION

ég?iiz; 9 (#)/ Cancel input line or break program execution.
(Shift) M (#)/ Backspace/Delete.

(shift) Rubout (*)

(shift) J (#) Initiate automatic line numbering.

Control A (*) (Increments of 10)

(Shift) V (#) Moves keypad display left 6 spaces.

(Shift) W (#) Moves keypad‘display left by 1 space.

(shift) Y (#) Moves keyvad display right by 1 space.
(Shift) 2 (#) Moves keypad display right by 6 spaces.

COMMANDS

University BASIC commands direct and control system operations.
Commands cause immediate computer interaction thereby allowing
operator control. Commmands may only be entered one per line and
mav not be abbreviated.All letters must be entered in upper case.

SYNTAX EXAMPLE/EXPLANATION

<ln> LIST LIST

List the user”’s program. (<ln> LIST will list
the specified line number through the end of
program or until the Escape key is entered).

LOAD LOAD

Loads a previously recorded University BASIC
program from cassette.

LOAD <program #> LOAD
<ln> LOAD <vprogram #> 10 LOAD
Loads programs .stored in EPROM into RAM.

NEW NEW

from
the

Clears current user program, variables, pointers,
and stacks, and prepares for entry of new progrs

RIIN RUM

Begin program execution at the lowest line number.

SAVE SAVE

Records University BASIC .program onto cassette.

SIZE SIZE

Display current program size, allocated variable
variable space, and available memory in bytes.

STATEMENTS

University BASIC statements form the basis of all University
BASIC _programs. Statements are typically entered into a program
with line numbers and are executed with the RUN command.
Statements may also be entered without line numbers if they are
to be executed immediately. Numerous statements (with the
exception of NEXT, REM, and FOR) may appear on one line if
separated by a colon ().

SYNTAX EXAMPLE/EXPLANATION

<1n> BASE <(exp)> BASE (256)
Sets CRU base for subsequent CRU operations.
<ln> DIM <varl(dim,diml)><,<var((dim,dim]}>
DIM A(1l0), DOG(3,10)
Bllocates user variable space for dimensioned
or array variables. (Note that only two
dimensions may be accepted per DIM statement.)
<1n> FOR <simple var>=<exp> to <exp> STEP <exp> EOL
For I=1 to 10 STEP 2
The FOR statement is used with the NEXT
statement to open and close a program
Both identify the same control variable.
The FOR statement specifies the control
variable and assigns the starting,
ending, and optionally stepping values.
Note that there is no pre-test done,
(i.e., it will always execute once) .
" <ln> NEXT <simple var> NEXT 1 EOL
* (see “NEXT” statement)
<ln> GOSUB 1ln EOL GOsSuUB 200
Transfer program execution to an internal
UBASIC subroutine beginning at the specified
line number.
<1ln> RETURN ‘ RETURN

* (see RETURN statement)

<ln> GOTO ln EOL »OTO 200

Transfer program execution to the specified
line number.

<1ln> IP condition THEN statement(s) EOL
IF I=Q THEN I=J : GOTO 200
Causes conditional execution of the

statement (s) following THEN. Statements
following THEN execute on TRUE condition.

<num-var> ’ num-var> cse ’
<1ln> INPOUT)<string-var> : _'<string—var> ;
INPUT I, $B

Pléces input and numeric values entered from
the keyboard into variables in the INPUT list

<ln> [LET] <var>
= <exp> LET A=B*4

Evaluates and assigns values to variables or
array elements. The LET is optional.

<1ln> NEXT EOL
<simple NEXT I
variable>

Delimits end of FOR loop. The simple variable
must match FOR control variable.

<ln> PRINT .
<exp>[,expl... PRINT A, B, $NAM

Print (without formatting) the evaluated
expressions to the terminal device.

<ln> REM <text> EQL REM comment lines for documentation. Inserts
comment lines into program.

<1ln> RETURN RETURN

Return from UNIVERSITY BASIC subroutine ani
remove top address from GOSUB stack.

B-4

<ln> UNIT <exp> UNIT 3

Designate the device(s) to receive all printed
output.
UNIT University Board
110 Baud
300 Baud
1200 Baud
2400 Baud
4800 Baud
9600 Baud
19.2 k Baud

~NouewNnHo

<in> TALL <exp> CALL
Allows access to assembly language
subroutines. <Exp> is the address
at which the subroutine resides in
memory.

<ln> TONE <expl>,<exp2>;[<exp1>,<ex92>]
TONE I,J

Provides sound capability. Expl =
pitch and exp2 = length of time.

<«1ln> LOAD <exp> Loads from designated address on EPROM.

University BASIC

string, and

FUNCTIONS

provides several predefined mathematical,
svstem functions which simplify Dbrogram entry and

development Any Univer-ity BASIC function may be used in any
statement where a variable may be used. A function may be called
by using "function name (argument)", where the function is the

three-letter

and the argument may e any expression or

variable. The specified function of the argument replaces the
function name in the statement in which it is used.

NJ

SYNTAX

ABS (<exp>)

CRB (<expl>)

CRB (<exp>)
=<exXpl>

CRF" (<expl>)

CRF (<expl>)=
<exp>

MEM (<exp>)

MEM (<expl>)=

EXAMPLE/EXPLANATION

A=ABS (B)
Absolute value of expression
A=CRB (-1)
Reads CRU bit as selected by the CRU hardware

base = exp. Exp is valid over range -127
+128.

CRB (-4) =0

Set or reset CRU bit as selected by CRU hardware
base = expl.If exp2 is non-zero, the bit will Dbr
set, else reset. Expl is valid for -127 thru 12b.°

A=CRY (4)
Read n CRU bits as selected by CRU base where exp

evaluates to n. =Zxp is valid for 0 thru 15.
If exp=0, 16 bits will be read.

CRF (5) =150

Output expl bits of exp2 to CRU lines as selected
by CRU BASE. Expl is valid for 0 thru 15. If
expl = 0, 16 bits will be output.

A = MEM 123
A = MEM(167)

Read byte from user memory at decimal integer
address specified by exp.

exp2
MEM (45) =123

KEY <exp?>

SUB <exp>

RND <exp>

SOR (<exp>)

TIC (<exp>)

MEM (1000)= 15

Store bvte exp2 into user memory at decimal
integer address specified by expl.

A = XEY(0)
IF XEY(65) THEN PRINT "A"

conditionally samples the keyboard in run-time
mode. If exp=0, return the value of last

key struck and clear key register. (Zero is
returned if no other key was struck). If exp is
<> 0, compare last struck key with value of exp.
If thev are the same, a value of 1 is returned
and the key register is reset, if not equal,
then return a 0.

SUB

A = RND

Returns a random number between 0 and 32767.
A = SQR(B)

Square root of expression.

T1=TIC(0)
T2=TIC(T1)

Returns the number of time TICs less the

. expression value. One TIC equals 1 second.

STRINGS

String variables in University BASIC ar=2 designated by preceeding
the variable name with a dollar sign ($). ASCII character strings
are stcred in contiguous memory Dbyte locations with a null
character terminating the string. Dimensioned string variabless
may have a ‘byte index following the subscript(s) to indicate a
bvte position within the specified string. This is indicated by
following the subscripts with a semicolon and the byte
displacement (e.g., $A(0;5)).

FUNCTION/SYNTAX ’ EXAMPLE/EXPLANATION
Assignment

<string-var>{ $A(0)=B(0)
<string-var>= {<string-constant> SA(0)=B(0;5)

Store string into string-var
- ending string with a null.

A dimensioned string variable

can have a byte index into the
character string by following the
subscripts with a semicolon and
the byte displacement. (Range

of index is 1 - last byte of

the ASCII string.)

<string-constant> <string-constant>

Concatenate
<string-var>{

<string-var> }. {<string—var> }
$a (0)=$A (o) +"END"

Concatenate specified string
variables or string constants.

Pick
3

<string-varl%<
<exp>

Replace

tring=-var2>

<string-constant2>,$I=$a(0;2),3

<string-var2>

<st:ing-var>={<string—constant2>¥

<exp>

Bvte Assignment

<var>=%<exp>...

B-9

$J="ABCDE", 3

Pick exp number of characters
from string2 into string-varl
ending string with null.

$B8(0;2)=$A(0);1
$B(0;2)="....";2X

Replace exp number of characters
of string-varl with string 2.

$A(0)=% 65% 66% O

Alter individual bytes using the
numeric equivalent of an ASCII
character and the "%" operator.

INPUT OPTIONS

The following options are available for use with the INPUT
statement to ©oprovide the University 3SASIC user with enhanced
terminal input capability. For additional details on their use,
refer to t“e INPYT statrement, Section V.

SYNTAX EXAMPLE/EXPLANATINN

il

INPUT A;B
Delimit expressions £or multiple inputs

INPUT; A
INPUT A;

~e

Supress orompting if before variable,
or CR LP if at end »f line.

"STRING" INPUT "YES or NO?";SA

Prompt with string and then get input.
Equivalent to :

PRINT "YES or NO?";::INPUT;S$SA

B-10

OUTPUT OPTIONS

University BASIC provides the following options for use with the
PRINT statement. They provide powerfulprint formatting capability
for all user outputdirected to the terminal and/or auxiliary
device (see UNIT statement). For additional information on these
formatting options, refer to Section 5.

SYNTAX EXAMPLE/EXPLANATION

PRINT A;B
PRINT A;

e

Delimits expressions or supresses
CR LF if at end of line.

’ PRINT A,B
Tab to nex; print field.
T™AB (<exp>) PRINT TAB (50):A
Tab to column specified by exp.
string PRINT "HI";$A(0)

Print string or string variation.

"B-11

(ENERAL INFORMATION

SPECTAL CHARACTER

The following characters have a special meaning when encountered in

orogram statement lines:

CHARACTER USE

(2]

Statement separator when entering

multiple statements per line.

: Equivalent to "PRINT" statement

ARITIMETIC OPERATIONS

A=8B Assignment

A-R Subtraction

B+3, $A+SB Addition or string concatenation
A*3 Multiplication

A/3 Division

-A Unary Minus

+A Unary Plus

RELATIONAL OPERATORS

' The relational operators are binary
arithmetic expressions. They return

A=B TRUE if
A<B TRUE if
A<=3 TRUE i€
A>B TRUE if
A>=B TRUE if
A<>B TRUE if

B-12

operators that operate on two
values of 1 (TRUE) or 0 (FALSE).

equal, else FALSE

less than, else FALSE

less than or equal, else FALSE
greater than, else FALSE

greater than or equal,else FALSE

not equal, else FALSE

OPERATOR PRECEDENCE

1.
2.
3.
4.
5.
GQ
7.

Expressions in parentheses
Negation

*'/

+,

L®,<>

>=,>

a')

B-13

APPENDIX C

SAMPLE PROGRAMS

C.l1 PARABOLA

This program demonstrates the use of the TAB function.

100 FOR I=-8 TO 8

110 PRINT TAB(I*I)"*"
120 NEXT I

130 sTOP

RUN

C.2 BLIP

When executed, this program blinks LEDs numbered 2, 3 and ¢
on the TM990/189 microcomputer while making tones on the
sound disk.

10 BASE 0

20 FOR I=17 TO 19

30 CRB(I)=1

40 IF I=17 THEN CRB(19)=0
50 IF I=18 THEN CRB(17)=0
60 IF I=19 THEN CRB(18)=0
70 TONE I-10,80

80 NEXT I

90 GOTO 10

100 stoP

C.3 TIME-OF-DAY CLOCK

The following program creates a time-of-day clock.

2 DIM A(8),B(2),S(2)

4 INPUT "HOURS"S$B(0) :GOSUB 300

5 A(0)=S(1):A(1l)=S(2)

6 IF A(0)<2 THEN GOTO 220

7 IF A(l)>3 THEN GOTO 210

8 IF A(0)>2 THEN GOTO 210

9 INPUT "MINUTES"$B(0) :GOSUB 300
+10 A(3)=S(1l):A(4)=8(2)

11 IF A(3)>5 THEN GOTO 210

12 IF A(4)>9 THEN GOTO 210°

- 14 INPUT "SECONDS"$B(0) :GOSUB 300

15 A(6)=S(1) :A{7)=S(2)

16 IF A(7)>9 THEN GOTO 210

18 IF A(6)>5 THEN GOTO 210

20 SA(8)="A":A(B)=((A(8)/256)=39) *256:$A(2) =":":$A(5)=":"
30 B=TIC(0)

40 IF TIC(B)<>l THEN GOTO 40

50 GOSUB 500

60 IF A(7)=9 THEN GOTO 80

70 A(7)=A(7)+1:GOTO 30

80 A(7)=0:IF A(6)=5 THEN GOTO 100

90 A(6)=A(6)+1:GOTO 30

100 A(7)=0:A(6)=0:IF A(4)=9 THEN GOTO 120
110 A(4)=A(4)+1:GOTO 30

120 A(4)=0:IF A(3)=5 THEN GOTO 140

130 A(3)=A(3)+1: GOTO 30

140 A(3)=0:A(4)=0:IF A(0)>1 THEN GOTO 155
146 IF A(l)=9 THEN GOTO 160

150 A(1)=A(1)+1:GOTO 30

155 IF A(1l)>2 THEN GOTO 200

157 GOTO 150

160 A(1)=0:A(0)=A(0)+1:GOTO 30

200 A(0)=0:A(1)=0:A(3)=0:A(4)=0:A(6)=0:A(7)=0:GOTO 30
210 PRINT "ERROR":GOTO 2

220 IF A(l)>9 THEN GOTO 210

230 GOTO 8

300 FOR I=1 TO 2

310 $S(I)=$B(0;:I),1

320 S(I)=(S(I)/256)-48

330 NEXT I

340 RETURN

500 PRINT $A(8);

510 PRINT A(0);A(1)1SA(2)7A(3) 1A(4) ;SA(S) 1A(6) ;A(T)
520 RETURN

APPENDIX D

UNIVERSITY BASIC COLOR VIDEO COMMANDS

D.1 GENERAL

In addition to the commands listed in Appendix B, color video
commands are available to the user of University BASIC. These
commands are listed below, and their formats provided. Additional
information which includes a full description of each command and
University BASIC demonstration programs may be obtained in the
Color Video Using TMS9918 and University BASIC application
Report, MP723.

D.2 VDP COMMAND/FORMAT LISTING

COMMAND NAME FORMAT
COLOR COLOR <exp>
MODE MODE <exp> {,<exp>}
MOVE MOVE <exp>

MOVE <exp>,<exp>,<exp>
PATTERN ' PATTERN <exp>,<string>
SPRITE ' SPRITE <exp>,<string>

SPRITE <exp>,<exp> |,<exp>}
SPRITE <exp>,<exp>,<exp>

vDP VDP(<expl>) = <exp2>
<var> = VDP <exp>

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	D-01

