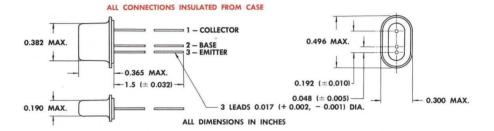
N-P-N GROWN JUNCTION SILICON TRANSIS

18 to 40 beta spread

Specifically designed for high gain at high temperatures



qualification testing

All units are heat cycled from -65°C to +175°C. This test consists of fourteen cycles, four at 95% relative humidity (from -65° C to $+75^{\circ}$ C). Also, the hermetic seal is checked by pressure testing. All units are completely tested for design characteristics and undergo a rigorous tumble test to check for mechanical reliability. These units are designed to meet the requirements of MIL-T-19500/35,

mechanical data

Welded case with glass-to-metal hermetic seal between case and leads. Approximate weight is 1.7 grams.

absolute maximum ratings at 25°C ambient [except where advanced temperatures are indicated]

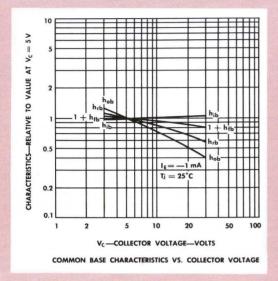
Collector Voltage Re	ferred	to]	Base								45	V
Emitter Voltage Refe	erred	to B	ase								1	V
Collector Current											25	m A
Emitter Current .											-25	mA
Collector Dissipation	} .			~.							150	mW
at 100°C	} .										100	mW
at 150°C	} .						4,				50	mW

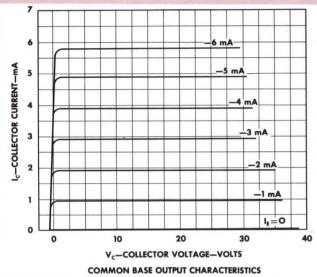
junction temperature

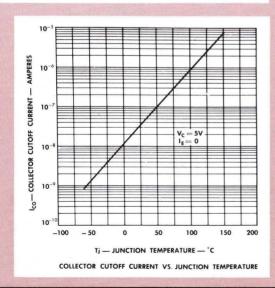
-65°C to +175°C Maximum Range

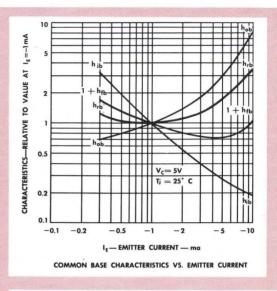
common base design characteristics at Tj = 25°C [except where advanced temperatures are indicated]

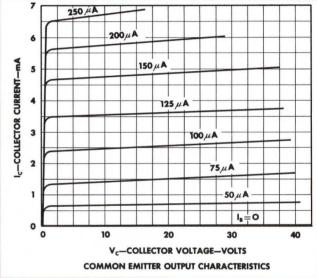
		test con	design min. center		max.	unit	
BV _{CBO}	Collector Breakdown Voltage	$I_{C} = 50\mu A$	$I_E = 0$	45	_	_	Volt
Ісво	Collector Cutoff Current >	$V_{CB} = 30V$	$I_E = 0$	-	_	2	μΑ
	at 100° C}	$V_{CB} = 5V$	$I_E = 0$	-	_	10	μA
	at 150° C}	$V_{CB} = 5V$	$I_E = 0$	_	_	50	μΑ
h _{ib}	Input Impedance	$V_{CB} = 5V$	$I_E = -1mA$	30	42	80	Ohm
hob	Output Admittance	$V_{CB} = 5V$	$I_{E} = -1mA$	0.0	0.4	1.2	μ mho
h _{rb}	Feedback Voltage Ratio	$V_{CB} = 5V$	$I_{E} = -1mA$	25	250	1000	X10-6
h _{fb}	Current Transfer Ratio	$V_{CB} = 5V$	$I_{E} = -1mA$	-0.948	-0.96	-0.976	_
PG _e	Power Gain*†	$V_{CE} = 20V$	$I_E = -2mA$	_	39	_	db
NF	Noise Figure*‡	$V_{CE} = 5V$	$I_{E} = -1mA$	-	20		db
$f_{\alpha b}$	Frequency Cutoff	$V_{CB} = 5V$	$I_{E} = -1mA$	-	5		m c
Cob	Output Capacitance (1mc)	$V_{CB} = 5V$	$I_{E} = -1mA$	_	7	_	$\mu\mu$ f
R _{cs}	Saturation Resistance*	$I_B = 2.2 \text{mA}$	$I_C = 5mA$	_	100	200	Ohm

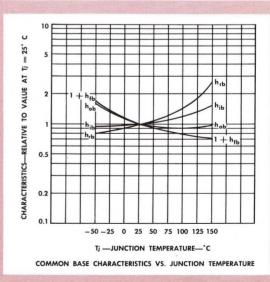

*Common Emitter


 $\dagger Rg = 1k; R_1 = 20k$


‡Conventional Noise—Compared to 1000 ohm resistor, 1000 cps and 1 cycle band width


TYPE 2N118


TYPICAL CHARACTERISTICS



Texas Instruments

POST OFFICE BOX 312 . DALLAS . TEXAS

TO SUPPLY THE BEST PRODUCTS POSSIBLE, TEXAS INSTRUMENTS RESERVES
THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN.