
TYPE 2N244 N-P-N GROWN JUNCTION SILICON TRANSISTOR

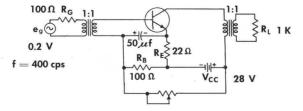
Texas Instruments Type 2N244 N-P-N grown junction *silicon* transistor is especially designed for use in audio or servo amplifier stages requiring medium power output. Beta is limited to a 3 to 1 spread, permitting closer control in circuit design. The large energy gap of silicon permits operation at ambient temperatures up to 150°C. Each unit is thoroughly temperature cycled. This process consists of four temperature shock cycles from -55°C to +150°C and four cycles at 95% relative humidity from -55°C to +75°C. In addition, the hermetic seal is checked by vacuum testing. Every unit is completely tested for design characteristics and undergoes a rigorous tumble test to check for mechanical reliability.

mechanical data

Metal case with glass-to-metal hermetic seal between case and leads. Approximate weight is 2 grams.

absolute maximum ratings at 25°C [except where advanced temperatures are indicated]

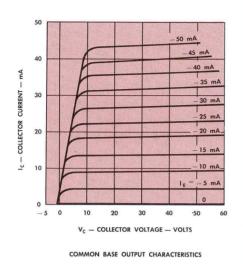
Collector Voltage Referred	l to	Base	4.0	0.00						60 v
Collector Current										60 ma
Collector Dissipation \ .										750 mw
at Î00°C } .										300 mw
at 125°C .										150 mw

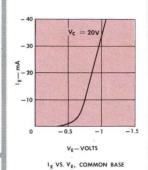

junction temperature

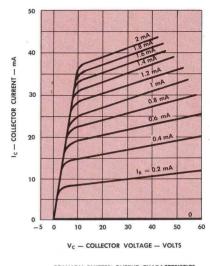
design characteristics at $T_j = 25^{\circ}C$

		test co	nditions	min.	design center	max.	unit
BVco	Collector Breakdown Voltage	I _C = 50 uA	$I_E = 0$	60	_	-	Volt
lco	Collector Cutoff Current	$V_{CB} = 30 \text{ V}$	$I_{E}=0$	_	_	1	μ Α Volt
V_{BE}	Bias Voltage	$I_B = 3 \text{ mA}$	$I_C = 20 \text{ mA}$	_	_	1	
Rcs	Collector Saturation Resistance	$I_B = 3 \text{mA}$	$I_C = 20 \text{ mA}$	- 1	_	350	Ohm
hib	Input Impedance	$V_{CB} = 10 V$	$I_F = -5 \mathrm{mA}$	I — I	12	30	Ohm
hrb	Reverse Voltage Transfer Ratio	$V_{CB} = 10 V$	$l_{\rm E} = -5 \rm mA$	-	60	300	X10-6
hfh	Forward Current Transfer Ratio	$V_{CB} = 10 V$	$l_{\rm F} = -5 \rm mA$	-0.961	-0.97	-0.989	_
h _{fb} PG _e	Power Gain*	$V_{CB} = 28 V$	$I_C = 20 \text{ mA}$	30	_	_	db

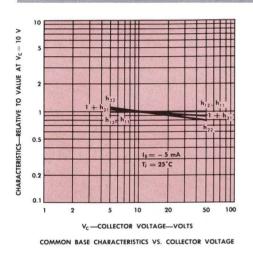
^{*} As measured in the circuit shown below.

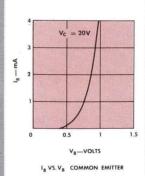

test circuit

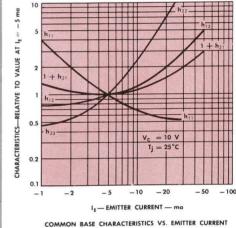


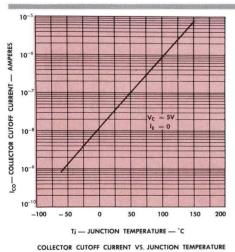

LICENSED UNDER BELL SYSTEM PATENTS

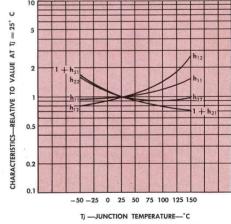
TYPE 2N244


TYPICAL CHARACTERISTICS






COMMON EMITTER OUTPUT CHARACTERISTICS



COMMON BASE CHARACTERISTICS VS. JUNCTION TEMPERATURE