P-N-P GERMANIUM ALLOY-JUNCTION TRANSISTORS

High-Frequency Transistors

Specifically Designed for Computer and Switching Applications

mechanical data:

WELDED JEDEC TO-5 CASE

THE BASE IS CONNECTED INTERNALLY TO THE CASE

ALL DIMENSIONS IN INCHES

maximum ratings at 25°C case temperature (unless otherwise noted)

	2N395 2N396	2N397	Unit
Collector-Base Voltage	-30 -30	-30	\mathbf{v}
Collector-Emitter Voltage		-15	V
Emitter-Base Voltage		-20	\mathbf{v}
Collector Current	-250 -250	-250	ma
Total Device Dissipation (25°C ambient)*	150 150	150	mw
Storage Temperature Range	-65 to + 100		°C

^{*}Derate 2.5 mw/°C increase in ambient temperature above 25°C.

design characteristics at 25°C case temperature

pe 2N3	95	TEST CONDITIONS	min.	typ.	max.	unit
V _{PT}	Punch-Through Voltage	V _{EBF} = − I v*	- 15	-25		٧
I _{CBO}	Collector Reverse Current	$V_{CB} = -15v; I_E = 0$		— 2	-6	μa
I _{EBO}	Emitter Reverse Current	$V_{EB} = -10v; I_{C} = 0$		— 2	-6	μ_{a}
h_{FE}	d-c Forward Current Transfer Ratio	$V_{CE} = -Iv$; $I_{C} = -I0ma$	20		150	
h_{FE}	d-c Forward Current Transfer Ratio	$V_{CE} = -0.35v; I_{C} = -200ma$	10			
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{c}=-50$ ma; $I_{B}=-5$ ma		-0.1	- 0.2	v
f_{lpha_b}	Alpha-Cutoff Frequency	$V_{CB}=-5v;\;I_{E}=Ima$	3	4.5		mc
Сов	Output Capacitance	$V_{CB} = -5v$; $I_E = Ima$; $f = Imc$		12	20	$\mu\mu f$
$t_d + t_r$	Turn-On Time	$(I_c = -10ma)$		0.76		μsec
t,	Storage Time	$I_{B(i)} = -1.0$ ma		0.50		μsec
t,	Fall Time	$\left(I_{B(2)} = I.0ma\right)$		0.40		μsec

^{*} V_{PT} is determined by measuring the emitter floating potential, V_{EBF} . The collector voltage V_{CB} is increased until $V_{EBF} = -1$ volt, this value of $V_{CB} = V_{PT}$.

design characteristics at 25°C case temperature

pe 2N3	396	TEST CONDITIONS	min.	typ.	max.	unit
V _{PT}	Punch-Through Voltage	V _{EBF} = -Iv*	-20	— 35		٧
I _{CBO}	Collector Reverse Current	$V_{CB} = -20v; I_{E} = 0$		— 2	-6	μ_{a}
I _{EBO}	Emitter Reverse Current	$V_{EB} = -10v; I_{C} = 0$		— 2	-6	μ_{a}
h_{FE}	d-c Forward Current Transfer Ratio	$V_{CE} = -1v$; $I_{C} = -10$ ma	30		150	
h_{FE}	d-c Forward Current Transfer Ratio	$V_{CE} = -0.35v$; $I_{C} = -200$ ma	15			
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{c} = -50$ ma; $I_{8} = -3.3$ ma		-0.08	-0.2	٧
$f_{lpha_{b}}$	Alpha-Cutoff Frequency	$V_{CB} = -5v$; $I_E = Ima$	5	8		mc
Cop	Output Capacitance	$V_{CB} = -5v$; $I_E = Ima$; $f = Imc$		12	20	$\mu\mu f$
$t_d + t_r$	Turn-On Time	$(I_c = -10ma)$		0.59		μsec
t,	Storage Time	$\left\langle I_{B(i)} = -I.0$ ma		0.60		μsec
† _f	Fall Time	$\left(I_{B(2)} = I.0ma\right)$		0.30		μsec

 $[*]V_{PT}$ is determined by measuring the emitter floating potential, V_{EBF} . The collector voltage V_{CB} is increased until $V_{EBF} = -1$ volt, this value of $V_{CB} = V_{PT}$.

pe 2N3	397	TEST CONDITIONS	min.	typ.	max.	unit
V _{PT}	Punch-Through Voltage	V _{EBF} = - Iv*	— 15	-20		٧
I _{CBO}	Collector Reverse Current	$V_{CB} = -15v; I_{E} = 0$		— 2	-6	μ_{a}
I _{EBO}	Emitter Reverse Current	$V_{EB} = -10v; I_{C} = 0$		— 2	-6	μ_{a}
h_{FE}	d-c Forward Current Transfer Ratio	$V_{CE} = -1v$; $I_{C} = -10$ ma	40		150	
h _{FE}	d-c Forward Current Transfer Ratio	$V_{CE} = -0.35v \; ; \; I_{C} = -200 ma$	20			
V _{CE(sat)}	Collector - Emitter Saturation Voltage	$I_{C}=-50$ ma; $I_{B}=-2.5$ ma		-0.07	-0.2	٧
$f_{lpha_{b}}$	Alpha-Cutoff Frequency	$V_{CB} = -5v$; $I_E = Ima$	10	12		mc
C _{°P}	Output Capacitance	$V_{CB} = -5v$; $I_E = Ima$; $f = Imc$		12	20	$\mu\mu$ f
$t_d + t_r$	Turn-On Time	$(I_c = -10ma$		0.47		μsec
+ _s	Storage Time	$\left\langle I_{\mathrm{B(I)}} = -1.0\mathrm{ma} \right\rangle$		0.70		μsec
+,	Fall Time	$I_{B(2)} = 1.0 ma$		0.28		$\mu_{ t sec}$

^{*} V_{PT} is determined by measuring the emitter floating potential, V_{EBF} . The collector voltage V_{CB} is increased until $V_{EBF} = -1$ volt, this value of $V_{CB} = V_{PT}$.