P-N-P GERMANIUM ALLOY-JUNCTION TRANSISTORS # **High-Frequency Transistors** ## Specifically Designed for Computer and Switching Applications mechanical data: WELDED JEDEC TO-5 CASE #### THE BASE IS CONNECTED INTERNALLY TO THE CASE ALL DIMENSIONS IN INCHES #### maximum ratings at 25°C case temperature (unless otherwise noted) | | 2N395 2N396 | 2N397 | Unit | |--|---------------|-------|--------------| | Collector-Base Voltage | -30 -30 | -30 | \mathbf{v} | | Collector-Emitter Voltage | | -15 | V | | Emitter-Base Voltage | | -20 | \mathbf{v} | | Collector Current | -250 -250 | -250 | ma | | Total Device Dissipation (25°C ambient)* | 150 150 | 150 | mw | | Storage Temperature Range | -65 to + 100 | | °C | ^{*}Derate 2.5 mw/°C increase in ambient temperature above 25°C. ### design characteristics at 25°C case temperature | pe 2N3 | 95 | TEST CONDITIONS | min. | typ. | max. | unit | |----------------------|--------------------------------------|--|------|------------|--------------|------------| | V _{PT} | Punch-Through Voltage | V _{EBF} = − I v* | - 15 | -25 | | ٧ | | I _{CBO} | Collector Reverse Current | $V_{CB} = -15v; I_E = 0$ | | — 2 | -6 | μa | | I _{EBO} | Emitter Reverse Current | $V_{EB} = -10v; I_{C} = 0$ | | — 2 | -6 | μ_{a} | | h_{FE} | d-c Forward Current Transfer Ratio | $V_{CE} = -Iv$; $I_{C} = -I0ma$ | 20 | | 150 | | | h_{FE} | d-c Forward Current Transfer Ratio | $V_{CE} = -0.35v; I_{C} = -200ma$ | 10 | | | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | $I_{c}=-50$ ma; $I_{B}=-5$ ma | | -0.1 | - 0.2 | v | | f_{lpha_b} | Alpha-Cutoff Frequency | $V_{CB}=-5v;\;I_{E}=Ima$ | 3 | 4.5 | | mc | | Сов | Output Capacitance | $V_{CB} = -5v$; $I_E = Ima$; $f = Imc$ | | 12 | 20 | $\mu\mu f$ | | $t_d + t_r$ | Turn-On Time | $(I_c = -10ma)$ | | 0.76 | | μsec | | t, | Storage Time | $I_{B(i)} = -1.0$ ma | | 0.50 | | μsec | | t, | Fall Time | $\left(I_{B(2)} = I.0ma\right)$ | | 0.40 | | μsec | ^{*} V_{PT} is determined by measuring the emitter floating potential, V_{EBF} . The collector voltage V_{CB} is increased until $V_{EBF} = -1$ volt, this value of $V_{CB} = V_{PT}$. ### design characteristics at 25°C case temperature | pe 2N3 | 396 | TEST CONDITIONS | min. | typ. | max. | unit | |----------------------|--------------------------------------|--|------|-------------|------|------------| | V _{PT} | Punch-Through Voltage | V _{EBF} = -Iv* | -20 | — 35 | | ٧ | | I _{CBO} | Collector Reverse Current | $V_{CB} = -20v; I_{E} = 0$ | | — 2 | -6 | μ_{a} | | I _{EBO} | Emitter Reverse Current | $V_{EB} = -10v; I_{C} = 0$ | | — 2 | -6 | μ_{a} | | h_{FE} | d-c Forward Current Transfer Ratio | $V_{CE} = -1v$; $I_{C} = -10$ ma | 30 | | 150 | | | h_{FE} | d-c Forward Current Transfer Ratio | $V_{CE} = -0.35v$; $I_{C} = -200$ ma | 15 | | | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | $I_{c} = -50$ ma; $I_{8} = -3.3$ ma | | -0.08 | -0.2 | ٧ | | $f_{lpha_{b}}$ | Alpha-Cutoff Frequency | $V_{CB} = -5v$; $I_E = Ima$ | 5 | 8 | | mc | | Cop | Output Capacitance | $V_{CB} = -5v$; $I_E = Ima$; $f = Imc$ | | 12 | 20 | $\mu\mu f$ | | $t_d + t_r$ | Turn-On Time | $(I_c = -10ma)$ | | 0.59 | | μsec | | t, | Storage Time | $\left\langle I_{B(i)} = -I.0$ ma | | 0.60 | | μsec | | † _f | Fall Time | $\left(I_{B(2)} = I.0ma\right)$ | | 0.30 | | μsec | $[*]V_{PT}$ is determined by measuring the emitter floating potential, V_{EBF} . The collector voltage V_{CB} is increased until $V_{EBF} = -1$ volt, this value of $V_{CB} = V_{PT}$. | pe 2N3 | 397 | TEST CONDITIONS | min. | typ. | max. | unit | |----------------------|--|--|-------------|------------|------|----------------| | V _{PT} | Punch-Through Voltage | V _{EBF} = - Iv* | — 15 | -20 | | ٧ | | I _{CBO} | Collector Reverse Current | $V_{CB} = -15v; I_{E} = 0$ | | — 2 | -6 | μ_{a} | | I _{EBO} | Emitter Reverse Current | $V_{EB} = -10v; I_{C} = 0$ | | — 2 | -6 | μ_{a} | | h_{FE} | d-c Forward Current Transfer Ratio | $V_{CE} = -1v$; $I_{C} = -10$ ma | 40 | | 150 | | | h _{FE} | d-c Forward Current Transfer Ratio | $V_{CE} = -0.35v \; ; \; I_{C} = -200 ma$ | 20 | | | | | V _{CE(sat)} | Collector - Emitter Saturation Voltage | $I_{C}=-50$ ma; $I_{B}=-2.5$ ma | | -0.07 | -0.2 | ٧ | | $f_{lpha_{b}}$ | Alpha-Cutoff Frequency | $V_{CB} = -5v$; $I_E = Ima$ | 10 | 12 | | mc | | C _{°P} | Output Capacitance | $V_{CB} = -5v$; $I_E = Ima$; $f = Imc$ | | 12 | 20 | $\mu\mu$ f | | $t_d + t_r$ | Turn-On Time | $(I_c = -10ma$ | | 0.47 | | μsec | | + _s | Storage Time | $\left\langle I_{\mathrm{B(I)}} = -1.0\mathrm{ma} \right\rangle$ | | 0.70 | | μsec | | +, | Fall Time | $I_{B(2)} = 1.0 ma$ | | 0.28 | | $\mu_{ t sec}$ | ^{*} V_{PT} is determined by measuring the emitter floating potential, V_{EBF} . The collector voltage V_{CB} is increased until $V_{EBF} = -1$ volt, this value of $V_{CB} = V_{PT}$.