TOSHIBA

16-BIT MICROPROCESSOR

TLCS-68000

USERS MANUAL

1VNNVIN SH3SN -9-so1.|. vaIHSOL

AUGUST 1988

886}

TOSHIBA CORPORATION

[oivy |

: The information contained herein is presented only as a guide for the applications of our
products. No responsibility is assumed by TOSHIBA for any infringements of patents or
other rights of the third parties which may result from its use. No license is granted by
* implication or otherwise under any patent or patent rights of TOSHIBA or others.

The products described in this document are strategic products subject to COCOM
regulations. They should not be exported without authorization from the appropriate
- governmental authorities.

- The products described in this document contain components made in the United States
and subject to export control of the U.S. authorities. Diversion contrary to the U.S. law is
. prohibited.

. “M68000 16/32 BIT MICROPROCESSOR PROGRAMMER’S REFERENCE MANUAL”
i is the original of this manual and is issued by Motorola Inc., through Prentice-Hall. The
publishing of this manual is permitted by Motorola Inc. No part of this manual may be
transferred or reproduced without prior permission of Toshiba Corporation.

Copyright 1988 by TOSHIBA CORPORATION
June 1988

TOSHIBA USERS MANUAL

Preface

Thank you very much for making use of TOSHIBA microcomputer LSIs and
development systems.

The TLCS-68000 family, including the TMP68000, is the general-purpose 16/32-bit
microprocessor family which is developed by technical cooperation with Motorola Inc.,
and is compatible with the Motorola M68000 family. The TMP68000/10/08 have various
features such as the general purpose 32-bit register set, the large linear address space,
the powerful instruction set, and flexible addressing modes. The common 32-bit internal
architecture is upward compatible with all the family MPUs. This manual describes
overview of the architecture and function of each instruction set, which are requires for
software development for each MPU (TMP68000/10/08) of TLCS-68000 family. Toshiba
provides various microcomputer LSIs and its development system for wide range of
application.

No part of this manual may be transferred or reproduces without prior permission of
Toshiba corporation.

TOSHIBA

TLCS-68000
16-Bit Microprocessors

User's Manual

TOSHIBA CORPORATION

TOSHIBA CONTENTS
CONTENTS
1. ARCHITECTURAL DESCRIPTIONccoiiiinnnn. VMPU - 1
1.1 INTRODUCTION ...t VMPU 1
1.2 PROGRAMMER'SMODELot VMPU 1
1.3 SOFTWARE DEVELOPMENTiiiiiiiiiiiiiinnanenns VMPU 5
131 Comnsistent Structure i VMPU 5
1.3.2 Structured Modular Programming TR VMPU 9
1.3.3 Improved Software Testabilityc.coiiiiiiiian.... VMPU 9
14 VIRTUAL MEMORY/MACHINE CONCEPTS VMPU - 10
14.1 Virtual Memoryooeiiiiiiii ittt VMPU - 11
14.2 Virtual Machine ...ttt VMPU - 12
2. DATA ORGANIZATION AND ADDRESSING
CAPABILITIES .. i VMPU - 13
2.1 INTRODUCTION ...t e e en e VMPU - 13
2.2 OPERAND SIZE ..ottt VMPU - 13
2.3 DATA ORGANIZATIONINREGISTERS VMPU - 13
2.3.1 Data Registersooiiiiiiiiiiiii e VMPU - 13
232 Address Registers e VMPU - 13
24 DATA ORGANIZATIONIN MEMORYcciiiiiiiinnn... VMPU - 14
2.5 ADDRESSING ..ottt e e VMPU - 17
2.6 INSTRUCTION FORMAT ... i VMPU - 17
2.7 PROGRAM/DATAREFERENCES VMPU - 17
2.8 REGISTER NOTATION ...ttt VMPU - 18
2.9 ADDRESS REGISTER INDIRECT NOTATION VMPU - 18
2.10 REGISTERSPECIFICATION ... i VMPU - 18
2.11 EFFECTIVE ADDRESS ..o VMPU - 18
2.11.1 Register Direct Modesccooiiiiiiiiiiiiiiiii .. VMPU - 19
2.11.1.1 DataRegister Direct i VMPU - 19
2.11.1.2 AddressRegister Directl VMPU - 19
2.11.2 Memory AddressModesiiiiiiii VMPU - 19
2.11.2.1 Address Register Indirect VMPU - 20
2.11.2.2 Address Register Indirect with Postincrement VMPU - 20
2.11.2.3 Address Register Indirect with Predecrement VMPU - 20

TOSHIBA

2.

2.
2.
2.

2.11.2.4 Address Register Indirect with
2.11.2.5 Address Register Inderect with

Displacement

Index

11.3 Special Address Modescoiiriiiiiiiiiiiiiiiee.,

2.11.3.1 Absolute Short Address

2.11.3.2 Absolute Long Addressc.ciiiiiiiiiiiii.,
2.11.3.3 Program Counter with Displacement

2.11.3.4 Program Counter with Index

21135 ImmediateData

2.11.4 Effective Address Encoding Summary
2.12 IMPLICITREFERENCE i
2.13 STACKANDQUEUES ... i

13.1 System Stack EETTETRS e
13.2 UserStacks
133 Queuesiiiiiii...

3. INSTRUCTION SET SUMMARY

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

INTRODUCTION
DATA MOVEMENT OPERATIONS

INTEGER ARITHMETIC OPERATIONSco.oun.

LOGICAL OPERATIONS

SHIFT AND ROTATE OPERATIONS
BIT MANIPULATION OPERATIONS

BINARY CODED DECIMAL OPERATIONS

PROGRAM CONTROL OPERTIONS
SYSTEM CONTROL OPERATIONS

3.10 MULTIPROCESSOR OPERATIONS

4. EXCEPTION PROCESSING

PRIVILEGE STATES e

423 Privilege State Changesooiiiiiiiiiiiiiia...

41 INTRODUCTION
4.2
421 Supervisor State
422 UserStateccoiun.
424 Reference Classification
43
43.1 Exception Vectors R

EXCEPTION PROCESSINGcciviiiiiiiiiii i

CONTENTS
VMPU - 21
VMPU - 21
VMPU - 22
VMPU - 22
VMPU - 23
VMPU - 23
VMPU - 24
VMPU - 24
VMPU - 25
VMPU - 26
VMPU - 27
VMPU - 27
VMPU - 27
VMPU - 29
VMPU - 31
VMPU - 31
VMPU - 32
VMPU - 33
VMPU - 35
VMPU - 35
VMPU - 36
VMPU - 37
VMPU - 37
VMPU - 38
VMPU - 40
VMPU - 41
VMPU - 41
VMPU - 41
VMPU - 42
VMPU - 42
VMPU - 43
VMPU - 43
VMPU - 44
VMPU - 44

TOSHIBA CONTENTS
4.3.2 Kindsof Exceptionsoooiiiiiiiiiiiiiiiiiiiii VMPU - 47
4.3.3 Multiple Exceptions ...l VMPU - 47
434 Exception Stack Framesooiiiiiiiiiiiiniinnn. VMPU - 48
435 Exception Processing Sequencecoiiiiiiaa... VMPU - 50

44 EXCEPTION PROCESSING DETAILED DISCUSSION VMPU - 50
44.1 Reset e VMPU - 51
4.4.2 Interrupts VMPU - 51
443 Uninitialized Interruptol VMPU - 52
444 Spurious Interrupto e VMPU - 52
445 Instruction Traps . ..vvvriiirre et as VMPU - 53
446 Illegal and Unimplemented Instructions VMPU - 53
4.4.7 Privilege Violationsc.cueiiiiiiiiiiiiiiniiinann VMPU - 54
4.4.8 b5 T3 = P VMPU - 54
449 BusError ... e VMPU - 55

4491 Bus Error (TMP68000/TMP68008)cccvvveann.. VMPU - 56
4492 BUSERROR (TMP68010)cuiiiiiiieiniennnnnn.. VMPU - 57
4410 AddressError ... VMPU - 60

4.5 RETURN FROM EXCEPTION (TMP68010)c........ VMPU - 60
451 Determine The Stack Format VMPU - 60
4.5.2 Determine Data Validityol VMPU - 61
45.3 Determine Data Accessibilitycccooiiiiiiiiiiiin, VMPU - 61

APPENDIX A

CONDITION CODES COMPUTATION VMPU - 62

Al INTRODUCTION ...ttt et VMPU - 62

A2 CONDITION CODEREGISTERoitiiiiiiiiiiiinaneenee. VMPU - 62

A.3 CONDITION CODE REGISTERNOTATIONc..cvnenn. VMPU - 62

A4 CONDITION CODE COMPUTATIONciiuiiiiiiiinnannn.. VMPU - 63

A5 CONDITIONTESTS ...ttt VMPU - 65

APPENDIX B INSTRUCTION SET DETAILS VMPU - 66

B.l1 INTRODUCTION ...ttt e e e VMPU - 66

B.2 ADDRESSING CATEGORIEScciiiiiiiiiiiiiiiiieann. VMPU - 66

B.3 INSTRUCTION DESCRIPTIONcciiiiiiiiiiiiiiiien, VMPU - 68

B.4 OPERATION DESCRIPTION DEFINITIONS VMPU - 69

TOSHIBA CONTENTS
APPENDIX C
INSTRUCTION FORMAT SUMMARY VMPU -206
C.1 INSTRODUCTIONoiiiiiiiiiiiiaiiiiiieaaniiieeannn, VMPU -206
APPENDIX D
TMP68000 INSTRUCTION EXECUTION TIMES VMPU -227
D1 INTRODUCTIONcoiiiiiiiiiiieiiiiiiieiiiieaaanns, VMPU -227
D.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES VMPU -227
D.3 MOVE INSTRUCTION EXECUTIONTIMES VMPU -228
D4 STANDARD INSTRUCTION EXECUTIONTIMES VMPU -230
D.5 IMMEDIATE INSTRUCTION EXECUTIONTIMES VMPU -231
D.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES VMPU -231
D.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES VMPU -232
D.8 = BIT MANIPULATION INSTRUCTION EXECUTION TIMES VMPU -233
D.9 CONDITIONALINSTRUCTION EXECUTIONTIMES VMPU -233
D.10 JMP, JSR, LEA, PEA, AND
MOVEM INSTRUCTION EXECUTIONTIMES VMPU -234
D.11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES VMPU -234
D.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES VMPU -235
D.13 EXCEPTION PROCESSING EXECUTIONTIMES VMPU -236
APPENDIX E
TMP68008 INSTRUCTION EXECUTION TIMES VMPU -237
E1l INTRODUCTIONiiiiiiiiiiiiiiiiiiiiiieeaiiaan, VMPU -237
E2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES VMPU -238
E.3 MOVEINSTRUCTION EXECUTIONTIMES VMPU -239
E4 STANDARD INSTRUCTION EXECUTIONTIMES VMPU -240
E5 IMMEDIATE INSTRUCTION EXECUTION TIMES VMPU -242
E6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES VMPU -243
E7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES VMPU -244
E.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES VMPU -244
E9 CONDITIONALINSTRUCTION EXECUTIONTIMES VMPU -245
E.10 JMP,JSR, LEA, PEA, AND MOVEM INSTRUCTION
EXECUTIONTIMES e VMPU -246
E11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES VMPU -247

E.12 MISCELLANEOUSINSTRUCTION EXECUTION TIMES

-248

TOSHIBA CONTENTS
E.13 EXCEPTION PROCESSING EXECUTIONTIMES VMPU -249
APPENDIX F
TMP68010 INSTRUCTION EXECUTION TIMES VMPU -250
F.1 INTRODUCTIONiiiiiiiiiiiieiiiiiiiee e VMPU -250
F.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES VMPU -250
F.3 MOVE INSTRUCTION EXECUTIONTIMES VMPU -251
F4 STANDARD INSTRUCTION EXECUTIONTIMES VMPU -253
F.5 IMMEDIATE INSTRUCTION EXECUTION TIMES VMPU -254
F.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES VMPU -255
F.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES VMPU -257
F.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES VMPU -257
F.9 CONDITIONAL INSTRUCTION EXECUTION TIMES VMPU -258
F.10 JMP, JSR, LEA, PEA, AND MOVEMINSTRUCTION
EXECUTIONTIMESccoiiiiiiiiiiiiiiiii s, VMPU -259
F.11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES VMPU -259
F.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES VMPU -260
F.13 EXCEPTION PROCESSING EXECUTIONTIMES VMPU -262
APPENDIX G

TMP68010 LOOP MODE OPERATION VMPU

-263

TOSHIBA TLCS-68000

1.
1.1

1.2

ARCHITECTURAL DESCRIPTION
INTRODUCTION

The TMP68000, with a 16-bit data bus and 24-bit address bus, was only the first in a
family of processors which implement a comprehensive, extensible computer
architecture. It was soon followed by the TMP68008, with an 8-bit data bus and 20-bit
address bus, by the TMP68010, which introduced the virtual machine aspects of the
TLCS-68000 architecture.

This manual is intended to serve as a programmer’s reference for both systems and
applications programmers for four of the current implementations of the TLCS-68000 -
the TMP68000, the TMP68008, the TMP68010. The hardware system design aspects of
these processors, such as bus structure and control, are presented in the respective
advance information data sheets for each device.

The TMP68000 and the TMP68008 are identical from the view of the programmer,
with the exception that the TMP68000 can directly access 16 megabytes (24 bits of
address) and the TMP68008 can directly access 1 megabyte (20 bits of address). The
TMP68010 have much in common with the first two devices but also possess some
additional instructions and registers as well as full virtual machine/memory capability.

Since the processors are so similar to the programmer, only the differences are
highlighted. When the TLCS-68000 is referenced, the feature described is common to
all. If a particular feature is applicable only to one processor, the TMP part number will
be referenced.

PROGRAMMER’'S MODEL

The TLCS-68000 executes instructions in one of two modes - user mode or supervisor
mode. The user mode is intended to provide the execution environment for the majority
of application programs. The supervisor mode allows some additional instructions and
privileges and is intended for use by the operating system and other system software.
See “4. EXCEPTION PROCESING” for further details.

To provide for the upward compatibility of code written for a specific implementation
of the TLCS-68000, the user programmer’s model is common to all implementations.
The user programmer’s model is shown in Figure 1.1.

VMPU-1

TOSHIBA TLCS-68000

As shown in the user programmer’s model, the TLCS-68000 offers 16 32-bit general
purpose registers (D0~D7, A0~AT), a 32-bit program counter, and an 8-bit condition
code register. The first eight registers (D0~D7) are used as data registers for byte (8-
bit), word (16-bit), and long word (32-bit) operations. The second set of seven registers
(A0~AS6) and the stack pointer (USP) may be used as software stack pointers and base
address registers. In addition, the address registers may be used for word and long word
operations. All of the 16 registers may be used as index registers.

31 16 15 87 0

DO
D1

D2

| D3 DATA REGISTERS
D4 ,

D5

- bs

- b7

31 16 15 0

A0

Al

A2

- A3 ADDRESSREGISTERS
A4

AS

1 A6

A7
' | (usp) USERSTACK POINTER

| | PC PROGRAM COUNTER
7 0

1::, CCR CONDITION CODE REGISTER

Figure 1.1 User Programmer’s Model (TMP68000/TMP68008/TMP68010)

The supervisor programmer’s model includes some supplementary registers in
addition to the above mentioned registers. The TMP68000 and the TMP68008 contain
identical supervisor mode register resources. These are shown in Figure 1.2 and include
the status register (high order byte) and the supervisor stack pointer (A7’).

31 16 15

A7’
[H] (SSP) SUPERVISOR STACK POINTER
15 87 0

SR STATUS REGISTER
Figure 1.2 Supervisor Programmer’s Model Supplement (TMP68000/TMP68008)

The supervisor programming model supplement of the TMP68010 is shown in Figure
1.3. In addition to the supervisor stack pointer and status register, it includes the vector
base register and the alternate function code registers.

VMPU-2

TOSHIBA TLCS-68000

The vector base register is used to determine the location of the exception vector table
in memory to support multiple vector tables. The alternate function code registers allow
the supervisor to access user data space or emulate CPU space cycles.

31 16 15 QA7

| i | (SSP) SUPERVISOR STACK POINTER
15 87 0
SR STATUS REGISTER

31 0

| ver VECTOR BASE REGISTER
2
SFC ALTERNATE FUNCTION
DFC CODE REGISTERS

Figure 1.3 Supervisor Programmer’s Model Supplement (TMP68010)

The status register, shown in Figure 1.4, contains the interrupt mask (eight levels
available) as well as the condition codes: overflow (V) , zero (Z), negative (N), carry(C),
and extend (X). Additional status bits indicate that the processor is in a trace (T)
mode and/or in a supervisor (S) state.

Five basic data types are supported. These data types are:

° Bits

° BCD Digits (4 Bits)
° Bytes (8 Bits)

° Words (16 Bits)

° Long Words (32 Bits)

In addition, operations on other data types such as memory addresses, status word
data, etc. are provided for in the instruction set.

['—— SYSTEMBYTE ——l [—_— USERBYTE —|
15 13 10 8 4 0

[T Ts] (L6 1] [xInJzJvIc
TRACE MODE |
SUPERVISOR STATE
INTERRUPT MASK
EXTEND
NEGATIVE
CONDITION ZERO
CODES OVERFLOW
CARRY

Figure 1.4 Status Register

VMPU-3

TOSHIBA

TLCS-68000

The 14 ﬂexibé addressing modes, shown in Table 1.1, include six basic types:

(] Register Direct

L] Register Indirect

L Absolute

° Immediate

° Program Counter Relative
L] Implied

Included in the register indirect addressing modes is the capability to do
postincrementing, predecrementing, offsetting, and indexing. Program counter relative

mode can also be modified via indexing and offsetting.

Table 1.1 Data Addressing Modes

Mode

Generation

Register Direct Addressing
Data Register Direct
Address Register Direct

EA
EA

Dn
An

non

Absolute data Addressing
Absolute Short)
Absolute Long

EA = (Next Word)
EA = (Next Two Words)

{Program Counter Relative Addressing
- Relative with Offset
" Relative with Index and Offset

EA = (PC) + d16
EA = (PC) + (Xn) + d8

Register Indirect Addresssing
Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with Offset

EA = (An)

EA = (An), AneAn+N
Ane<An-N, EA=(An)
EA = (An) + d16

EA = (An) + (Xn) + d8

Immediate Data Addressing
Immediate
Quick Immediate

DATA =Next Word(s)
Inherent Data

Implied Addressing
Implied Register

EA = SR, USP, SSP, PC,
VBR, SFC, DFC

Notes: EA = Effective Address SR = Status Register d8 = 8-bit Offset (Displacement)
An = Address Register PC = Program Counter d16 = 16-bit Offset (Displacement)
Dn = Data Register ()= Contents of N =1 for byte, 2 for word, and 4 for long word.

Xn = Addressor Data Register
used as Index Register

If An is the stack pointer and the operand
size is byte, N=2 to keep the stack pointer on a
word boundary.
« == Replaces

TOSHIBA | TLCS-68000

1.3

The TLCS-68000 instruction set is shown in Table 1.2. Some additional instructions
are variations or subsets of these and they appear in Table 1.3. Special emphasis has
been given to the instruction set’s support of structured high-level languages to
facilitate ease of programming. Each instruction, with a few exceptions, operates on
bytes, words, and long words and most instructions can use any of the 14 addressing
modes. Combining instruction types, data types, and addressing modes, over 1000
useful instructions are provided. These instructions include signed and unsigned
multiply and divide, “quick” arithmetic operations, BCD arithmetic, and expanded
operations (through traps). Additionally, its high-symmetric, proprietary microcoded
structure provides a sound, flexible base for the future.

SOFTWARE DEVELOPMENT

Many innovative features have been incorporated to make programming easier,
faster, and more reliable.

1.3.1 Consistent Structure

The highly regular structure of the TLCS-68000 greatly simplifies the effort required
to write programs in assembly language as well as high-level languages. Operations on
integer data in registers and memory are independent of the data. Separate special
instructions that operate on byte (8 bit), word (16 bit), and long word (32 bit) integers are
not necessary. The programmer need only remember one mnemonic for each type of
operation and then specify data size, source addressing mode, and destination
addressing mode. This has helped keep the total number of instructions small.

The dual operand nature of many of the instructions significantly increases the
flexibility and power of the TLCS-68000. Consistency is again maintained since all data
registers and memory locations may be either a source or destination for most operations
on integer data.

The addressing modes have been kept simple without sacrificing efficiency. All
fourteen addressing modes operate consistently and are independent of the instruction
operation itself. Additionally, all address registers may be used for the direct, register
indirect, and indexed addressing modes (immediate, program counter relative, and
absolute addressing by definition do not use address registers). For increased flexibility,
any address or data register may be used as an index register. Address register
consistency is maintained for stacking operations since any of the eight address
registers may be utilized as user program stack pointers with the register indirect
postincrement/predecrement addressing modes. Address register A7, however, is a
special register that, in addition to is normal addressing capability, functions as the
system stack pointer for stacking the program counter for subroutine calls as well as
stacking the program counter and status register for traps and interrupts (while in the
supervisor state).

VMPU-5

TOSHIBA

TLCS-68000

Table 1.2 Instruction Set Summary (1/2)

Mnemonic Description
ABCD* Add Decimal with Extned
ADD* Add
AND* Logical AND
ASL* Arithmetic Shift Left
ASR* Arithmetic Shift Right
Bcc Branch Conditionally
BCHG Bit Test and Change
BCLR Bit Test and Clear

I BKPT Breakpoint
BRA Branch Always
BSET Bit Test and Set
BSR Branch to Subroutine
BTST Bit Test
CHK Check Register Against Bounds
CLR* Clear Operand
CMp* Compare
DBcc Decrement and Branch Conditionally
DIVS Signed Divide
DIVU Unsigend Divide
EOR* Exclusive OR
EXG Exchange Registers
EXT Sign Extend
JMP Jump
JSR Jump to Subroutine
LEA Load Effective Address
LINK Link Stack
LSL* Logical Shift Left
LSR* Logical Shift Right

* ;. These instructions available in loop mode on TMP68010.
See “APPENDIX G TMP68010 LOOP MODE OPERATIONS”.

VMPU-6

TOSHIBA

TLCS-68000

Table 1.2 Instruction Set Summary (2/2)

Mnemonic Description
MOVE* Move Source to Destination
MULS Signed Multiply
MULU Unsigned Multiply
NBCD* Negate Decimal with Extend
NEG* Negate
NOP No Operation
NOT* One's Complement
OR* logical OR
PEA Push Effective Address
RESET Reset External Devices
ROL* Rotate Left without Extend
ROR* Rotate Right without Extend
ROXL* Rotate Left with Extend
ROXR* Rotate Right with Extend
RTD Return and Deallocate
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine
SBCD* Subtract Decimal with Extend
Scc Set Conditional
STOP Stop
SuB* Subtract
SWAP Swap Data Register Halves
TAS Test and Set Operand
TRAP Trap
TRAPV Trap on Overflow
TST* Test
UNLK Unlink

VMPU-7

TOSHIBA

TLCS-68000

Table 1.3 Variations of Instruction Types

Instruction

Type Variation Description
ADD ADD* Add
ADDA* Add Address
ADDQ Add Quick
ADDI Add Immediate
ADDX* Add with extend
AND AND* Logical AND
ANDI AND Immediate
ANDI to CCR AND Immediate to Condition Codes
ANDI to SR AND Immediate to Status Regitster
Cmp CMP* Compare
CMPA* Compare Address
CMPM* Compare Memory
CMPI Compare Immediate
EOR EOR* Exclusive OR
EORI Exclusive OR Immediate
EORI to CCR Exclusive OR Immediate to Condition Codes
EORI to SR Exclusive OR Immediate to Status Register
MOVE MOVE* Move Source to Destination
MOVEA* Move Address
MOVEC Move Control Register
MOVEM Move Multiple Registers
MOVEP Move Peripheral Data
MOVEQ Move Quick
MOVES Move Alternate Address Space
MOVE from SR Move from Status Register
MOVE to SR Move to Status Register
MOVE from CCR Move from Condition Codes
MOVE to CCR Move to Condition Codes
MOVE USP Move User Stack Pointer
NEG NEG* Negate
NEGX* Negate with Extend
OR OR* Logical OR
ORI OR Immediate
ORI to CCR OR Immediate to Condition Codes
ORI to SR OR Immediate to Status Register
SUB SuUB* Subtract
SUBA* Subtract Addres
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX* Subtract with Extend

These instructions available in loop mode on TMP68010.
See “APPENDIX G TMP68010 LOOP MODE OPERATIONS”.

VMPU-8

TOSHIBA TLCS-68000

1.3.2 Structured Modular Programming

The art of programming microprocessors has evolved rapidly in the past few years.
Numerous advanced techniques have been developed to allow easier, more consistent
and reliable generation of software. In general, these techniques require that the
programmer be more disciplined in observing a defined programming structure such as
modular programming. Modular programming allows a required function or process to
be broken down in short modules or subroutines that are concisely defined and easily
programmed and tested. Such a technique is greatly simplified by the availability of
advanced structured assemblers and block structured high-level languages such as
Pascal. Such concepts are virtually useless, however, unless parameters are easily
transferred between and within software modules that operate on a reentrant and
recursive basis. (To be reentrant a routine must be usable by interrupt and non-
interrupt driven programs without the loss of data. A recursive routine is one that may
call or use itself.)’ The TLCS-68000 provides the necessary architectural features to
allow efficient reentrant modular programming. The LINK and UNLK instructions
reduce subroutine call overhead in two complementary instructions by allowing the
manipulation of linked lists of data areas on the stack. The MOVEM (Move Multiple
Register) instruction also reduces subroutine call programming overhead. This allows
moving, via an effective address, multiple registers that are specified by the
programmer. Sixteen software trap vector are provided with the TRAP instruction and
are useful in operating system call routines or user generated macro routines. Other
instructions that support modern structured programming techniques are PEA (Push
Effective Address), LEA (Load Effective Address), RTR (Return and Restore), RTE
(Return from Exception) as well as JSR. (Jump to Subroutine), BSR (Branch to
Subroutine), and RTS (Return from Subroutine). ‘

The powerful vectored priority interrupt structure of the microprocessor allows
straight-foward generation of reentrant modular input/output routines. Seven
maskable levels of priority with 192 vector locations and seven autovector locations
provide maximum flexibility for I/O control (a total of 255 vector locations are available
for interrupts, hardware traps, and software traps).

1.3.3 Improved Software Testability

The TLCS-68000 incorporates several features that reduce the chance for errors.
Some of these features, such as consistent architecture and the structured modular
programming capability, have already been discussed.

Of major importance to the system programmer are features that have been
incorporated specifically to detect the occurrence of programming errors or bugs.
Several hardware traps, provided to indicate abnormal internal conditions, detect the
following error conditions:

VMPU-9

TOSHIBA TLCS-68000

] Word Access with an Odd Address

° Illegal Instructions

° Unimplemented Instructions

® Illegal Memory Access (Bus Error)

® Divide by Zero

® Overflow Condition Code (Separate Instruction TRAPV)
° Register Out of Bounds (CHK Instruction)

® Spurious Interrupt

Additionally, the sixteen software TRAP instructions may utilized by the
programmer to provide applications-oriented error detection or correction routines.

An additional error detection tool is the CHK (Check Register Against Bounds)
instruction used for array bound checking by verifying that a data register contains a
valid subscript. A trap occurs if the register contents are negative or greater than a
limit.

Finally, the TLCS-68000 includes a facility that allows instruction-by-instruction
tracing of a program being debugged. This trace mode results in a trap being made to a
tracing routine after each instruction executed. The trace mode is available to the
programmer when the microprocessor is in the supervisor state as well as the user state
but may only be entered while in the supervisor state. The supervisor/user states
provide an additional degree of error protection for the microprocessor by allowing
memory protection of selected areas of memory when an external memory management
device is used.

1.4 VIRTUAL MEMORY/MACHINE CONCEPTS

The TMP68010 introduced the virtual memory/machine concept of the TLCS-
68000 architecture.

In most systems using the TMP68010 as the central processor, only a franction of
the 16 megabyte address space will actually contain physical memory. However, by
using virtual memory techniques the system can be made to appear to the user to
have 16 megabytes of physical memory available. These techniges have been used
for several years in large mainframe computers and more recently in minicomputers
and now, with the TMP68010, can be fully supported in microprocessor-based
systems.

VMPU-10

TOSHIBA . TLCS-68000

In a virtual memory system, a user program can be written as though it has a
large amount of memory available to it when only a small amount of memory is
physically present in the system. In a similar fashion, a system can be designed in
such a manner as to allow user programs to access other types of devices that are not
physically present in the system such as type drives, disk drives, printers, or CRTs.
With proper software emulation, a physical system can be made to appear to a user
program as any other computer system and the program may be given full access to
all of the resources of that emulated system. Such an emulated system is called a
virtual machine.

1.4.1 Virtual Memory

The basic mechanism for supporting virtual memory in computers is to provide
only a limited amount of high-speed physical memory that can be accessed directly
by the processor while maintaining an image of a much larger “virtual” memory on
secondary storage devices such as large capacity disk drives. When the processor
attempts to access a location in the virtual memory map that is not currently
residing in physical memory (referred to as a page fault), the access to that location
is temporarily suspended while the necessary data is fetched from the secondary
storage and placed in physical memory; the suspended access is then completed. The
TMP68010 provides hardware support for virtual memory with the capability of
suspending an instruction’s execution when a bus error is signaled and then
completing the instruction after the physical memory has been updated as
necessary.

The TMP68010 uses instruction continuation rather than instruction restart to
support virtual memory. With instruction restart, the processor must remember the
exact state of the system before each instruction is started in order to restore that
state if a page fault occurs during its execution. Then, after the page fault has been
repaired, the entire instruction that cauesd the fault is reexecuted. With instruction
continuation, when a page fault occurs the processor stores its internal state and
then after the page fault is repaired, restores that internal state and continues
execution of the instruction. In order for the TMP68010 to utilize instruction
continuation, it stores its internal state on the supervisor stack when a bus cycle is
terminated with a bus error signal. It then loads the program counter from vector
table entry number two (offset $008) and resumes program execution at that new
address. When the bus error exception handler routine has completed execution, an
RTE instruction is executed which reloads the TMP68010 with the internal state
stored on the stack, re-runs the faulted bus cycle, and continues the suspended
instruction. Instruction continuation has the additional advantage of allowing
hardware support for virtual I/O devices. Since virtual registers may be simulated
in the memory map, an access to such a register will cause a fault and the function of
the register can be emulated by software.

VMPU-11

TOSHIBA | TLCS-68000

1.4.2Virtual Machine

One typical use for a virtual machine system is in the development of software
such as an operating system for another machine with hardware also under
development and not available for programming use. In such a system, the
governing operating system emulates the hardware of the new system and allows
the operating system to be executed and debugged as though it were running on the
new hardware. Since the new operating system is controlled by the governing
operating system, the new one must execute at a lower privilege level than the
governing operating system, so that any attempts by the new operating system to
use virtual resources that are not physically present, and should be emulated, will
be trapped by the governing operating system and handled in software. In the
TMP68010, a virtual machine may be fully supported by running the new operating
system in the user mode and the governing operating system in the supervisor mode
so that any attempts to access supervisor resources or execute privileged
instructions by the new operating system will cause a trap to the governing
operating system.

In order to fully support a virtual machine, the TMP68010 must protect the
supervisor resources from access by user programs. The one supervisor resource
that is not fully protected in the TMP68000 is the system byte of the status register.
In the TMP68000 and TMP68008, the MOVE from SR instruction allows user
programs to test the S bit (in addition to the T bit and interrupt mask) and thus
determine that they are running in the user mode. For full virtual machine support,
a new operating system must not be aware of the fact that it is running in the user
mode and thus should not be allowed to access the S bit. For this reason, the MOVE
from SR instruction has been added to allow user program unhindered access to the
condition codes. By making the MOVE from SR instruction privileged, when the
new operating system attempts to access the S bit, a trap to the governing operating
system will occur, and the SR image passed to the new operating system by the
governing operating system will have the S bit set.

VMPU-12

TOSHIBA TLCS-68000

2.2

2.3

DATA ORGANIZATION AND ADDRESSING CAPABILITIES
INTRODUCTION

This section describes the data organization and addressing capabilities of the TLCS-
68000 architecture.

OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a
long word equals 32 bits. The operand size for each instruction is either explicitly
encoded in the instruction or implicitly defined by the instruction operation. All explicit
instructions support byte, word, or long word operands. Implicit instructions support
some subset of all three sizes.

DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven
address registers together with the active stack pointer support address operands of 32
bits.

2.3.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low order 8 bits, word
operands the low order 16 bits, and long word operands the entire 32 bits. The least
significant bit is addressed as bit zero; the most significant bit is addressed as bit 31.

When a data register is used as either a source or destination operand, only the
appropriate low order portion is changed; the remaining high-order portion is neither
used nor changed.

2.3.2 Address Registers

Each address register and the stack pointer is 32-bits wide and holds a full 32 bit
address. Address registers do not support byte sized operands. Therefore, when an
address register is used as a source operand, either the low order word or the entire long
word operand is used depending upon the operation size. When an address register is
used as the destination operand, the entire register is affected regardless of the
operation size. If the operation size is word, any other operands are sign extended to 32
bits before the operation is performed.

VMPU-13

TOSHIBA TLCS-68000

24 DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte having an even address
the same as the word as shown in Figure 2.1. The low order byte has an odd address that
is one count higher than the word address. Instructions and multibyte data are accessed
only on word (even byte) boundaries. If a long word datum is located at address n(n
even), then the second word of that datum is located at address n + 2.

5141312111098 7 6 5 4 3 2 10
WORD 000000

BYTE 000000 l BYTE 000001
WORD 000002

BYTE 000002 i BYTE 000003

))

1

WORD FFFFFE
BYTE FFFFFE | BYTE FFFFFF

Figure 2.1 Word Organization in Memory

The data types supported by the TLCS-68000 are: bit data, integer data of 8, 16, and
32-bit addresses, and binary coded decimal data. Each of these data types is put in
memory as shown in Figure 2.2. The numbers indicate the order in which the data
would be accessed from the processor. For convenience, the organization of data in
memory for the TMP68008 is shown in Figure 2-3. The appearance to the programmer,
however, is identical to the TMP68000, and TMP68010.

VMPU-14

TOSHIBA TLCS-68000
BIT DATA
1BYTE=8BITS
7 6 5 4 3 2 1 0
INTEGER DATA
1BYTE =8BITS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB BYTEO LSB BYTE 1
BYTE 2 BYTE 3
1 WORD =16 BITS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB WORD 0 LSB
WORD 1
WORD 2
EVENBYTES ODD BYTES
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
1 LONG WORD =32 BITS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB HIGH ORDER
"""" LONG WORD 0 R vttt bt ittty
LOW ORDER LSB
"""" LONG WORD 1 e
"""" LONG WORD 2 T T T e s s——o— oo —mee
ADDRESSES
1 ADDRESS =32 BITS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB HIGH ORDER
"""" ADDRESS 0 bttt bttt ittt ittty
LOW ORDER LSB
"""" ADDRESS 1 B ARttt bttt
"""" ADDRESS 2 Attty
MSB = MOST SIGNIFICANT BIT
LSB = LEAST SIGNIFICANT BIT DECIMAL DATA
2 BINARY CODED DECIMALDIGITS =1 BYTE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSD BCDO BCD1 LSD BCD2 BCD3
BCD4 BCD5 BCD6 BCD7

MSD = MOST SIGNIFICANT DIGIT
LSD = LEASTSIGNIFICANT DIGIT

Figure 2.2 Data Organization In Memory

VMPU-15

TOSHIBA TLCS-68000

BIT DATA 1 BYTE =8 BITS
7 6 5 4 3 2 1 0

. r r [I I 1 |}

INTEGER DATA 1BYTE =8 BITS

7 6 5 4 3 2 1 0
BYTEO LOWER ADDRESSES
BYTE 1
BYTE 2
BYTE3 HIGHER ADDRESSES

1WORD =2 BYTES =16 BITS
BYTE 0 (MS BYTE) LOWER ADDRESSES

WORD 0O —
BYTE 1 (LSBYTE)
BYTE 2 (MS BYTE)
WORD 1 —j
BYTE 3 (LSBYTE) HIGHER ADDRESSES

1LONG WORD =2 WORDS =4 BYTES =32 BITS

BYTEO HIGH ORDER | LOWER ADDRESSES
BYTE 1 WORD

Bviez "ONGWORDO 15w GRoeR |

BYTE 3 WORD

BYTEO "~ HIGH ORDER

BYTE 1 WORD ‘

Bviez [ONGWORDT 1o GRoER

BYTE 3 WORD | HIGHER ADDRESSES

Figure 2.3 Memory Data Organization of the TMP68008

VMPU-16

TOSHIBA TLCS-68000

2.5

2.6

2.7

ADDRESSING

Instructions for the TLCS-68000 contain two kinds of information: the type of
function to be performed and the location of the operand(s) on which to perform that
function. The methods used to locate (address) the operand(s) are explained in the
following paragraphs.

Instructions specify an operand location in one of three ways:

° Register Specification — the number of the register is given in the register field
of the instruction.

® Effective Address — use of the different effective address modes.

° Implicit Reference — the definition of certain instructions implies the use of
' specific registers.

INSTRUCTION FORMAT

Instruction are from one to five words in length as shown in Figure 2.4. The length of
the instruction and the operation to be performed is specified by the first word of the
instruction which is called the operation word. The remaining words further specify the
operands. These words are either immediate operands or extensions to the effective
addres mode specified in the operation word.

EVEN BYTES (A0 =0) ODD BYTES (A0 = 1)
7 6 5 4 3 2 1 0|7 6 5 4 3 2 10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OPERATION WORD
(FIRST WORD SPECIFIES OPERATION AND MODES)

IMMEDIATE OPERAND (IF ANY, ONE OR TWO WORDS)

SOURCE EFFECTIVE ADDRESS EXTENSION (IF ANY, ONE OR TWO WORDS)

DESTINAATION EFFECTIVE ADDRESS EXTENSION
IF ANY, ONE OR TWO WORDS)

Figure 2.4 Instruction Format

PROGRAM/DATA REFERENCES

The TLCS-68000 separates memory references into two classes: program references
and data references. Program references, as the name implies, are references to that
section of memory that contains the program being executed. Data references refer to

that section of memory that contains data. Generally, operand reads are from the data

space. All operand writes are to the data space.

VMPU-17

TOSHIBA TLCS-68000

2.8

2.9

2.10

2.11

REGISTER NOTATION

Appendix B contains a description of each instruction operation and identifies the
registers using the following mnemonics:

An — Address Register (n specifies the register number)

Dn — Data Register (n specifies the register number)

Xn — Any Register, Address or Data (n specifies the register number)
PC — Program Counter

SR — Status Register

CCR — Condition Code Half of the Status Register

SP — The Active Stack Pointer (either user or supervisor)

USP — User Stack Pointer

SSP — Supervisor Stack Pointer

d8 — 8-bit Displacement Value

d16 — 16-bit Displacement Value

disp — Displacement Value (d8 or d16)

N — Operand Size in Bytes (1, 2, 4)

SFC, DFC — Source/Destination Function Code Register
VBR — Vector Base Register

ADDRESS REGISTER INDIRECT NOTATION

When an address register is used to point to a memory location, the addressing mode
is called address register indirect. The term indirect is used because the operation of the
instruction is not directed to the address itself, but to the memory location pointed to by
the address register. The descriptive symbol for the indirect mode is an address register
designation in parenthesis, i. e., (An).

REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields
within the instruction specify whether the register selected is an address or data register
and how the register is to be used.

EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address
field in the operation word. For example, Figure 2.5 shows the general format of the
single effective address instruction operation word. The effective address is composed of
two 3-bit fields: the mode field and the register field. The value in the mode field selects
the different address modes. The register field contains the number of a register.

VMPU-18

TOSHIBA TLCS-68000

The effective address field may require additional information to fully specify the
operand. This additional information, called the effective address extension, is
contained in a following word or words and is considered part of the instruction as shown
in Figure 2.4. The effective address modes are grouped into three categories: register
direct, memory addressing, and special.

EVENBYTE ODDBYTE |
7 6 5 4 3 2 1 0 ' 7 6 5 4 3 2 1 0 I
15 14 13 12 1 10 9 8 7 6 .5 4 3 2 1 0
| X | X | X | xj X ’ X | X | X | X | X I mope EFFECTIVEAPDRESS peqicreq |

Figure 2.5 Single-Effective-Address-Instruction Operation — General Format

2.11.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of the 16
multifunction registers.

2.11.1.1 Data Register Direct

The operand is in the data register specified by the effective address register field.

GENERATION: EA =Dn

ASSEMBLER SYNTAX : Dn A
MODE : 000 31 0

REGISTER : n DATA REGISTER Dn OPERAND

2.11.1.2 Address Register Direct

The operand is in the address register specified by the effective address register field.

GENERATION : EA=An
ASSEMBLER SYNTAX : An
MODE : 001

31 0

REGISTER : n ADDRESS REGISTER An OPERAND

2.11.2 Memory Address Modes

These effective addressing modes specify that the operand is in memory and provide
the sepcific address of the operand.

VMPU-19

TOSHIBA TLCS-68000

2.11.2.1 Address Register Indirect

The address of the operand is in the address register specified by the register field.
The reference is classified as a data reference with the exception of the jump and jump to
subroutine instructions.

GENERATION : EA =(An)
ASSEMBLER SYNTAX : (An)
MODE : 010

REGISTER : n 3 0
ADDRESS REGISTER An

2.11.2.2 Address Register Indirect with Postincrement

The address of the operand is in the address register specified by the register field.
After the operand address is used, it is incremented by one, two, or four depending upon
whether the size of the operand is byte, word, or long word. If the address register is the
stack pointer and the operand size is byte, the address is incremented by two rather than
one to keep the stack pointer on a word boundary. The reference is classified as a data

reference.
GENERATION : EA =(An)
An=An+N
ASSEMBLER SYNTAX : (An) + _
MODE : 011 31 0
REGISTER : n ADDRESS REGISTER An MEMORY ADDRESS
OPERAND LENGTH 5 g_) 3
(1,2, ord)

MEMORY ADDRESS [OPERAND

2.11.2.3 Address Register Indirect with Predecrement

The address of the operand is in the address register specified by the register field.
Before the operand address is used, it is decremented by one, two, or four depending
upon whether the operand size is byte, word, or long word. If the address register is the
stack pointer and the operand size is byte, the address is decremented by two rather than
one to keep the stack pointer on a word boundary. The reference is classified as a data
reference.

VMPU-20

TOSHIBA TLCS-68000

GENERATION : AA =An -N
EA =(An)
ASSEMBLER SYNTAX : ~(An)
MODE : 100 31 0
REGISTER : n ADDRESS REGISTER An
OPERAND LENGTH .
(1,2, or4)

MEMORY ADDRESS OPERAND

2.11.2.4 Address Register Indirect with Displacement

This address mode requires one word of extension. The address of the operand is the
sum of the address in the address register and the sign-extended 16-bit displacement
integer in the extension word. The reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions.

GENERATION : En=(An)+d16
ASSEMBLER SYNTAX : d16 (An)
MODE : 101
REGISTER : n 31 :
ADDRESS REGISER An
. 0_
DISPLACEMENT s SIGN EXTENDED INTEGER ‘__*?

MEMORY ADDRESS OPERAND

2.11.2.5 Address Register Inderect with Index

This address mode requires one word of extension formatted as shown below.

EVENBYTE ODDBYTE
7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 10
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1.0
|oa] ReaisTER [wia] o [o [o | DISPLACEMENT INTEGER [
Bit15 - Index register indicator
0 - Data register
1 - Address register
Bit14~12 - Index register number
Bit11 - Indexsize
0 - Sign-extended, low order integer in index register
1 - Longvalueinindex register

VMPU-21

TOSHIBA TLCS-68000

The address of the operand is the sum of the address in the address register, the sign-
extended displacement integer in the low order eight bits of the extension word, and the
contents of the index register. The reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions. The size of the index register
does not affect the execution time of the instructions.

GENERATION : En =(An) +(Xn) +d8
ASSEMBLER SYNTAX : d8 (An, Xn.W)
d8 (An, Xn.L)
MODE : 110
REGISTER : n
31 0
ADDRESS REGISTER An l MEMORY ADDRESS]
7 0
DISPLACEMENT I SIGN EXTENDED INTEGER J—>
31/15 0
INDEX REGISTER [SIGN EXTENDED INTEGER |—'>
31 0
MEMORY ADDRESS I OPERAND

2.11.3 Special Address Modes

The special address modes use the effective address register field to specify the special
addressing mode instead of a register number.

2.11.3.1 Absolute Short Address

This address mode requires one word of extension. The address of the operand is in
the extension word. The 16-bit address is sign extended before it is used. The reference
is classified as a reference with the exception of the jump and jump to subroutine

instructions.

GENERATION : EA GIVEN

ASSEMBLER SYNTAX : Abs.W

MODE : 111

REGISTER : 000

15 0

EXTENSION | SIGN-EXTENDED MEMORY ADDRESS J
WORD L
MEMORY ADDRESS [OPERAND I

VMPU-22

TOSHIBA TLCS-68000

2.11.3.2 Absolute Long Address

The address mode requires two words of extension. The address of the operand is
developed by the concatenation of the extension words. The high-order part of the
address is the first extension word; the low order part of the address is the second
extension word. The reference is classified as a data reference with the exception of the
jump and jump to subroutine instructions.

GENERATION : EA GIVEN

ASSEMBLER SYNTAX : Abs.L
MODE : 111
REGISTER : 001
15 0
FIRST EXTENSION WORD | ADDRESSHIGH]
15 0
SECOND EXTENSION | ADDRESS LOW l
WORD
31 0
| CONCATENATION [
MEMORY ADDRESS | OPERAND [

2.11.3.3 Program Counter with Displacement

This address mode requires one word of extension. The address of the operand is the
sum of the address in the program counter and the sign-extended 16-bit displacement
integer in the extension word. The value in the program counter is the address of the
extension word. The reference is classifiedas a program reference.

GENERATION : EA =(PC) +d16
ASSEMBLER SYNTAX : .d16 (PC)
MODE : 111
REGISTER : 010
31 0
PROGRAM COUNTER l ADDRESS OF EXTENSION WORD |
15 0
EXTENSION SIGN EXTENDED INTEGER I"—>@
WORD l
MEMORY ADDRESS I OPERAND

VMPU-23

TOSHIBA TLCS-68000

2.11.3.4 Program Counter with Index

This address mode requires one word of extension formatted as shown below.

i EVEN BYTE ODD BYTE
i 76543210'76543210
i 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1.0
[D/A] REGISTER [wi| o | 0 [0 | DISPLACEMENT INTEGER
Bit15 - Index register indicator
0 - Data register
1 - Address register
Bit 14 through 12 - Index register number
Bit11 - Indexsize
0 - Sign-extended, low order integer in index register
1 - Longvalueinindex register

The address is the sum of the address in the program counter, the sign-extended
displacement integer in the lower eight bits of the extension word, and the contents of
the index register. The value in the program counter is the address of the extension
word. This reference is classified as a program reference. The size of the index register
does not affect the execution time of the instruction.

GENERATION : ‘ En =(PC) +(Xn) +d8
ASSEMBLER SYNTAX : d8 (PC, Xn.W)
d8 (PC, Xn.L)
MODE : 111
REGISTER : 011
31 0
PROGRAM COUNTER r MEMORY ADDRESS |
: 7 0 |
EXTENSION WORD | senexrenoeomreczr | —>%)
31/15 0
INDEX REGISTER l SIGN EXTENDED INTEGER l—’?
31 0
MEMORY ADDRESS | OPERAND]

2.11.3.5 Immediate Data

This address mode requires either one.or two words of extension depending on the size

of the operation.

Byte Operation — operand is low order byte of extension word

Word Operation — operand is extension word

Long Word Operation — operand is in the two extension words, high order 16-bits are
in the first extension word, low order 16 bits are in the

second extension word.

VMPU-24

TOSHIBA TLCS-68000
GENERATION : OPERAND GIVEN
ASSEMBLER SYNTAX : #<data>
MODE : 11
REGISTER : 100
The extension word formats are shown below:
EVENBYTE ODDBYTE
7 6 5 4 3 2 1 0 ‘ 7 6 5 4 2 1 0
15 14 13 12 1 10 9 8 7 6 5 4 2 1 0
[0 0 o 0o o o 0 o] BYTE |
OR
| WORD |
OR
LONG WORD = mmmmmm e HIGHORDER ___ .
LOW ORDER
2.11.4 Effective Address Encoding Summary
Table 2.1 is a summary of the effective addressing modes discussed in the previous
paragraphs.

Table 2.1 Effective Address Encoding Summary

Addressing Mode Mode Register
Data Regiser Direct 000 Register Number
Address Register Direct 001 Register Number
Address Register Indirect 010 Register Number
Address Register Indirect with Postincrement 011 Register Number
Address Register Indirect with Predecrement 100 Register Number
Address Register Indirect with Displacement 101 Register Number
Address Register Indirect with Index 110 Register Number

Absolute Short 111 000
Absolute Long 111 001
Program Counter with Displacement 1 010
Program Counter wiht index 111 011
Immediate 111 100

VMPU-25

TOSHIBA TLCS-68000

2.12 IMPLICIT REFERENCE

Some instructions make implicit reference to the program counter (PC), the system
stack pointer (SP), the supervisor stack pointer (SSP), the user stack pointer (USP), or
the status register (SR). Table 2.2 provides a list of these instructions and the registers

implied.
Table 2.2 Implicit Instruction Reference Summary
Instruction Implied Register(s)
Branch Conditional (Bcc), Branch Always (BRA) PC
Branch to Subroutine (BSR) PC, SP
Check Register Against Bounds (CHK) SSP, SR
Test Condition, Decrement and Branch (DBcc) PC
Signed Divide (DIVS) SSP, SR
Unsigned Divide (DIVU) SSP, SR
Jump (JMP) PC
Jump to Subroutine (JSR) PC, SP
Link and Allocate (LINK) PC, SP
Move Condition Codes (MOVE CCR) SR
Move Control Register (MOVEC) VBR, SFC, DFC
Move Alternate Address Space (MOVES) SFC, DFC
Move Status Register (MOVE SR) SR
Move User Stack Pointer (MOVE USP) uspP
Push Effective Address (PEA) v SP
Return and Deallocate (RTD) PC, SP
Return from Exception (RTE) PC, SP, SR
Return and Restore Condition Codes (RTR) PC, SP, SR
Return from Subroutine (RTS) PC, SP
Trap (TRAP) SSP, SR
Trap on Overflow (TRAPV) SSP, SR
Unlink (UNLK) SP
Logical Immediate to CCR SP
Logical Immediate to SR SP

VMPU-26

TOSHIBA TLCS-68000

2.13 STACK AND QUEUES

In addition to supporting the array data structure with the index addressing mode,
the TLCS-68000 also supports stack and queue data structures with the address register
indirect postincrement and predecrement addressing modes. A stack is a last-in-first-
out (LIFO) list, a queue is a first-in-first-out (FIFO) list. When data is added to a stack
or queue, it is “pushed” onto the structure; when it is removed, it is “pulled” from the
structure.

The system stack is used implicitly by many instructions; user stacks and queues may
be created and maintained through the addressing modes.

2.13.1 System Stack

Address register seven (A7) is the system stack pointer (SP). The system stack
pointer is either the supervisor stack pointer (SSP) or the user stack pointer (USP),
depending on the state of the S bit in the status register. If the S bit indicates supervisor
state, the SSP is the active system stack pointer and the USP cannot be referenced as an
address register. If the S bit indicates user state, the USP is the active system stack
pointer and the SSP cannot be referenced. Each system stack fills from high memory to
low memory. The address mode —(SP) creates a new item on the active system stack
and the address mode (SP) + deletes an item from the active system stack.

The program counter is saved on the active system stack on subroutine calls and
restored from the active system stack on returns. On the other hand, both the program
counter and the status register are saved on the supervisor stack during the processing
of traps and interrupts. Thus, the correct execution of the supervisor state code is not
dependent on the behavior of user code and user programs may use the user stack
pointer arbitrarily.

In order to keep data on the system stack aligned properly, data entry on the stack is
restricted so that data is always put in the stack on a word boundary. Thus, byte data is
pushed on or pulled from the system stack in the high half of the word; the lower half is
unchanged.

2.13.2 User Stacks

User stacks can be implemented and manipulated by employing the address register
indirect with postincrement and predecrement addressing modes. Using an address
register (one of AO~AS6), the user may implement stacks which are filled either from
high memory to low memory, or vice versa. The important things to remember are:

VMPU-27

TOSHIBA TLCS-68000

® using predecrement, the register is decremented before its contents are used as the
pointer into the stack;

using postincrement, the register is incremented after its contents are used as the
pointer into the stack;

® byte data must be put on the stack in pairs when mixed with word or long data so that
the stack will not misaligned when the data is retrieved. Word and long accesses
must be on word boundary (even) addresses.

Stack growth from high to low memory is implemented with
—(An) to push data on the stack,
(An) + to pull data from the stack.

After either a push or a pull operation, register An points to the last (top) item on the
stack. This is illustrated as:

LOW MEMORY
(FREE)
An —| TOPOFSTACK

~
Py

(.(

i :
BOTTOM OF STACK
HIGH MEMORY

Stack growth from low to high memory is implemented with
(An)+ to push data on the stack,
—(An) to pull data from the stack.

After either a push or a pull operation, register An points to the next available space

on the stack. This is illustrated as:

LOW MEMEORY
BOTTOM OF STACK

—~

T(

—_~

TOP OF STACK
An —> (FREE)

HIGH MEMORY

VMPU-28

TOSHIBA TLCS-68000

2.13.3 Queues

User queues can be implemented and mainpulated with the address register indirect
with postincrement or predecrement addressing modes. Using a pair of address
registers (two of A0~AS6), the user may implement queues which are filled either from
high memory to low memory, or vice versa. Because queues are pushed from one end
and pulled from the other, two registers are used: the put and get pointers.

Queue growth from low to high memory is implemented with
(An)+ to put data into the queue,
(Am)+ to get data from the queue

After a put operation, the put address register points to the next available space in
the queue and the unchanged get address register points to the next item to remove from
the queue. After a get operation, the get address register points to the next item to
remove from the queue and the unchanged put address register points to the next
available space in the queue. This is illustrated as:

LOW MEMORY
LAST GET (FREE)
GET (Am) + —_— NEXT GET

)
{
))
{

LAST PUT
PUT (An) + — (FREE)
HIGH MEMORY

If the queue is to be implemented as a circular buffer, the address register should be
checked and, if necessary, adjusted before the put or get operation is performed. The
address register is adjusted by subtracting the buffer length (in bytes).

Queue growth from high to low memory is implemented with
—(An) : to put data into the queue,
—(Am) : to get data from the queue

After a put operation, the put address register points to the last item put in the queue
and the unchanged get address register points to the last item removed from the queue.
After a get operation, the get address register points to the last item removed from the
queue and the unchanged put address register points to the last item put in the queue.
This is illustrated as:

VMPU-29

TOSHIBA TLCS-68000

LOW MEMORY

(FREE)
PUT - (An) —_— LAST PUT

))
((
))
T(

NEXT GET
GET - (Am) — LAST GET (FREE)
HIGH MEMORY

If the queue is to be implemented as a circular buffer, the get or put operation should
be performed first, and then the address register should be checked and, if necessary,
adjusted. The address register is adjusted by adding the buffer length (in bytes).

VMPU-30

TOSHIBA TLCS-68000

3. INSTRUCTION SET SUMMARY
3.1 INTRODUCTION

This section contains an overview of the TLCS-68000 architecture instruction set.
The instructions from a set of tools to perform the following operations:

Data Movement Bit Field Manipulation

Integer Arithmetic Binary Coded Decimal Arithmetic
Logical Program Control

Shift and Rotate System Control

Bit Manipulation Multiprocessor Communications

The complete range of instruction capabilities combined with the flexible addressing
modes described previously provide a very flexible base for program development.
Detailed information about each instruction is given in Appendix B.

Instructions available only on the TMP68010 or which behave differently on the
TMP68010 are highlighted.

The following notations will be used throughout this section.

An = any address register, A0-A7

=}
=]
I

any data register, D0-D7
Xn = any address or data register
CCR = condition code register (lower byte of status register)
cc = condition codes from CCR
SP = active stack pointer
USP = user stack pointer
SSP = supervisor stack pointer
DFC = destination function code register
SFC = source function code register
Rec = control register (VBR, SFC, DFC)
d8 = 8-bit displacement
d16 = 16-bit displacement
disp = d8ordl6
<ea> = effective address
list = list of registers, e.g., D0-D3
#<data> = immediate data; a literal integer
label = assemby program label
[71 = bit 7 of respective operand
[31:24] = bits 31~ 24 of operand; i.e., high order byte of a register
X = extend (X) bit in CCR
N = negative (N) bit in CCR
Z = zero (Z) bit in CCR

VMPU-31

TOSHIBA TLCS-68000

3.2

~ = invert; operand is logically complemented
A = logical AND

V = logical OR

@ = logical exclusive OR

DATA MOVEMENT OPERATIONS

The basic means of address and data manipulation (transfer and storage) is
accomplished by the move (MOVE) instruction and its associated effective addressing
modes. Data movement instructions allow byte, word, and long word operands to be
transferred from memory to memory, memory to register, register to memory, and
register to register. Address movement instructions (MOVE or MOVEA) allow word
and long word operand transfers to ensure that only legal address manipulations are
executed. In addition to the general MOVE instruction there are several data
movement instructions: move multiple registers (MOVEM), move peripheral data
(MOVEP), move quick (MOVEQR), exchange registers (EXG), load effective address
(LEA), push effective address (PEA), link stack (LINK), unlink stack(UNLK). Table 3.1
is a summary of the data movement operations. ’

VMPU-32

TOSHIBA TLCS-68000

3.3

Table 3.1 Data Movement Operations

Instruction Operand Size Operation
EXG 32 XneXn
LEA 32 <ea>—An
An— - (SP)
LINK - SP—AN
SP +d16—>SP
MOVE 8, 16, 32 (<ea>)-<ea>
MOVEA 16,32 |(<ea>)—An
MOVEC 32 Xn—Rc
Rc—Xn
MOVEM 16, 32 (<ea>)—An, Dn
An, Dn—o><ea>
MOVES 8, 16, 32 (<ea>)-Xn
Xn—><ea>
MOVEP 16, 32 (<ea>)-Dn
Dn—<ea>
MOVEQ 8 # <data>—Dn
PEA 32 <ea>— -(SP)
SWAP 32 Dn[31:16]<Dn[15:0]
UNLK - An—SP
(SP) + AN

INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD), subtract
(SUB), multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP, CMPM),
clear (CLR), and negate (NEG). The ADD, CMP, and SUB instructions are available for
both address and data operations, with data operations accepting all operand sizes.
Address operations are limited to legal address size operands (16 or 32 bits). The clear
and negate instructions may be used on all sizes of data operands.

The MUL and DIV operations are available for signed and unsigned operands using
word multiply to produce a long word product, and a long word dividend with word
divisor to produce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended
instructions. These instructions are: add extended (ADDX), subtract extended (SUBX),
sign extend (EXT), and negate binary with extend (NEGX).

VMPU-33

TOSHIBA

TLCS-68000

Refer to Table 3.2 for a summary of the integer arithmetic operations.

Table 3.2 Integer Arithmetic Operations

Instruction Operand Size Operation
ADD 8, 12, 32 Dn +(<ea>)-Dn
(<ea>)+Dn—o<ea>
(<ea>)+#<data>—<ea>
ADDA 16, 32 An +(<ea>)—An
ADDX 8, 16, 32 Dx + Dy + X—Dx
16, 32 - (An) + = (An) + X—>(An)
CLR 8, 16, 32 0—»><ea>
CMP 8, 16, 32 Dn-(<ea>)
(EA) - #<data>
(Ax) + - (Ay) +
CMPA 16, 32 An - (<ea>)
DIVS 32+16 Dn +(<ea>)—Dn
DIVU 32+16 Dn +(<ea>)—Dn
EXT 8—16 (Dn)8—Dn16
16—32 (Dn)16—Dn32
MULS 16X 1632 Dnx(<ea>)-Dn
MULU 16X 1632 Dnx(<ea>)—-Dn
NEG 8, 16, 32 0-(<ea>)—Dn
NEGX 8, 16, 32 0-(<ea>)-X—<ea>
SUB 8, 16, 32 Dn -(<ea>)-Dn
(<ea>)-Dn—o<ea>
(<ea>)-#<data>—<ea>
SUBA 16, 32 An - (<ea>)—An
SUBX 8, 16, 32 Dx - Dy - X—Dx
= (Ax) = = (Ay) - X—(Ax)
TAS 8 (<ea>)-0, 1>EA[7]
TST 8, 16, 32 (<ea>)-0

VMPU-34

TOSHIBA TLCS-68000

3.4

3.5

LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of
integer data operands. A similar set of immediate instructions (ANDI, ORI, EOR, and
EORI) provide these logical operations with all sizes of immediate data. TST is an
arithmetic comparison of the operand with zero which is then reflected in the condition
codes. Table 3.3 is a summary of the logical operations.

Table 3.3 Logical Operations

Operand

Size Operation

Instruction

) DnA (<ea>)—Dn
AND 8, 16, 32 (<ea>)/A\Dn - <ea>
(<ea>) N#<data>— <ea>

Dny/ (<ea>)—-Dn
OR 8, 16, 32 (<ea>)\Dn—> <ea>
(<ea>)\v#<data> - <ea>

(<ea>) ®Dn — <ea>

EOR 8 16 32 (<ea>) ®#<data>—> <ea>

NOT 8, 16, 32 ~(<ea>)—» <ea>

SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic shift instructions
ASR and ASL, and logical shift instruction LSR and LSL. The rotate instructions (with
and without extend) available are ROR, ROL, ROXR, and ROXL.

All shift and rotate operations can be performed on either registers or memory.

Register shifts and rotates support all operand sizes and allow a shift count (from one
to eight) to be specified in the instruction operation word or a shift count (modulo 64) to
be specified in a register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts
or rotates. The SWAP instruction exchanges the 16-bit halves of a register.
Performance of shift/rotate instructions is enhanced so that use of the ROR or ROL
instructions with a shift count of eight allows fast byte swapping.

VMPU-35

TOSHIBA

TLCS-68000

Table 3.4 Shift and Rotate Operations

Instruction Operand Size Operation
ASL 8, 16, 32 [xic]«ef=————]=<0
ASR 8, 16, 32 CL >~ x/c|
LSL 8, 16, 32 [x/c | <o
LSR 8, 16, 32 0 —>——->|—>{ X/C
ROL 8, 16, 32 ¢ <] I
ROR 8, 16, 32 L] 1N
ROXL 8, 16, 32 CJ—{x
ROXR 8, 16, 32 ‘—»I x |-L>| c]
SWAP 32 Dn [msw [sw]

3.6 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit
test (BTST), bit test and set (BSET), bit test and clear (BCLR), and bit test and change
(BCHG). All bit manipulation operations can be performed on either registers or
memory, with the bit number specified as immediate data or by the contents of a data
register. Register operands are always 32-bits, while memory operands are always 8
bits. Table 3.5 is a summary of the bit manipulation operations. (Z is bit 2, the “zero”
bit, of the status register.)

Table 3.5 Bit Manipulation Operations

Instruction Operand Syntax Operation

BTST 8, 32 ~ (<Bit Number>of Destination)—Z

BSET 8, 32 ~ (<Bit Number>of Destination)
—Z;1-Bit of Destination

BCLR 8, 32 ~ (<Bit Number>of Destination)
—Z;0-Bit of Destination

BCHG 8, 32 ~ (<Bit Number>of Destination)
—Z—->Bit of Destination

VMPU-36

TOSHIBA TLCS-68000

3.7 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are
accomplished using the following instructions: add decimal with extend (ABCD),
subtract decimal with extend (SBCD), and negate decimal with extend (NBCD). Table
3.6 is a summary of the binary coded decimal operations.

Table 3.6 Binary Coded Decimal Operations

Instruction Operand Size Operation
' Dx19+ Dyjo+ X —>Dx
ABCD 8
—(Ax)10 + = (Ay)10 + X —>(Ax)
Dx1p - Dy10 = X—>Dx
SBCD 8
-(Ax)10 = =(Ay)10 - X—>(Ax)
NBCD 8 0 - (<ea>)ig - X—> <ea>

3.8 PROGRAM CONTROL OPERTIONS

Program control operations are accomplished using a set of conditional and

unconditional branch instructions and return instructions. These instructions are
summarized in Table 3.7.

VMPU-37

TOSHIBA TLCS-68000

Table 3.7 Prpogram Control Operations

Instruction Operation

Conditional
Bcc If Condition True, Then PC + disp—PC

DBcc |If Condition False, Then Dn = 1—=Dn
IfDn# -1, Then PC+d16—PC

Scc If Condition True, Then 1's—Destination;
Else 0's—Destination

Unconditional
BRA |PC+disp—PC
BSR SP — 4—SP; PC—(SP); PC + disp—PC
JMP Destination—PC
JSR SP — 4—SP; PC—(SP); Destinaiton—PC
NOP |PC+2-PC

Returns
| - RTD | (SP)—PC; SP +4 +d16—>SP

RTR | (SP)—>CCR: SP + 25SP; (SP)—>PC; SP + 4—>SP
RTS (SP)—>PC; PC + 45SP

The conditional instructions provide testing and branching for the following

conditions:
CC — carry clear LS — low or same
CS — carry set LT — lessthan
EQ — equal MI — minus
F — never true* NE — not equal
GE — greater or equal PL — plus
GT — greater than T — always true*
HI — high VC — overflow clear
LE — lessorequal VS — overflow set

* . Not available for the Bec instructions; use BRA for T and NOP for F.
3.9 SYSTEM CONTROL OPERATIONS

System control oprations are accomplished by using privileged instructions, trap
generating instructions, and instructions that use or modify the condition code register.
These instructions are summarized in Table 3.8. In the TMP68010, the MOVE from SR
instruction has been made privileged and the MOVE from CCR has been added. For
more detail see “1.4 VIRTUAL MEMORY/MACHINE CONCEPTS”.

VMPU-38

TOSHIBA

TLCS-68000

Table 3.8 System Control Operations

MOVE EA toSR
MOVE SR toEA
MOVE USP

MOVEC
MOVES
RESET

RTE

STOP

Instruction Operation
Privilleged
ANDI to SR Immediate Data A SR—SR
EORI to SR Immediate Data® SR—SR
ORI to SR Immediate Data V SR—SR

Source—SR

SR—Destination

USP—AnN

An—USP

Rc—Xn

Xn—Rc

Xn—Destination Using DFC

Source Using SFC—Xn

Assert RESET line

(SP)>SR; SP + 2—SP; (SP)—PC; SP + 4—SP;
Restore Stack According to Format

Immediate Data—SR; STOP

Trap Generating
~TRAP

TRAPV
CHK
BKPT

ILLEGAL

SSP - 2—SSP; Format and Vector OFfset—(SSP); ...

SSP — 4—SSP; PC—(SSP);SSP — 2—SSP;
SR—(SSP); Vector Address—PC
If V Then Take Overflow TRAP EXception
If Dn<0 or Dn>(ea), Then CHK Exception
Execute Breakpoint Acknowiedge Bus Cycle; ...
Trap asillegal Instsruction
SSP - 2—-SSP; Vector Offset—(SSP); ...
SSP — 4—5SP; PC—(SSP);
SSP - 2—S5P; SR—(55P);
Ilegal Instruction Vector Address—PC

Condition Code
Register
ANDI to CCR
EORlI to CCR
ORI to CCR
MOVE EA toCCR
MOVE CCR toEA

Immediata Data A CCR—>CCR
Immediate Data® CCR—CCR
Immediate Data V SR—>SR
Source—CCR
CCR—Destination

VMPU-39

TOSHIBA TLCS-68000

3.10 MULTIPROCESSOR OPERATIONS

Communication between the TLCS-68000 Family of microprocessors is supported by
the TAS instruction which executes indivisible read-modify-write bus cycles. See Table

3.9.
Table 3.9 Multiprocessor Operations
Instruction Opgrand Operation
Size
TAS 8 Destination - 0; Set Condition Codes; 1—Destination (7)

VMPU-40

TOSHIBA TLCS-68000

4.
4.1

4.2

EXCEPTION PROCESSING
INTRODUCTION

This section describes the actions of the TLCS-68000 which are outside the
normal processing associated with the execution of instructions. The functions of
the bits in the supervisor portion of the status register are covered: the
supervisor/user bit, the trace enable bit, and the processor priority mask. Finally,
the sequence of memory references and actions taken by the processor on exception
conditions is detailed.

The processor is always in one of three processing states: normal, exception, or
halted. The normal processing state is that associated with instruction execution;
the memory references are to fetch instructions and operands, and to store results. A
special case of the normal state is the stopped state which the processor enters when
a STOP instruction is executed. In this state, no further memory references are
made.

An additional special case of the normal state exists in the TMP68010, the loop
mode, which may be entered when a DBcc instruction is executed. In loop mode,
only operand fetches occur. See “APPENDIX G TMP68010 LOOP MODE
OPERATION".

The exception processing state is associated with interrupts, trap instructions,
tracing, and other exceptional conditions. The exception may be internally
generated by an instruction or by an unusual condition arising during the execution
of an instruction. Externally, exception processing can be forced by an interrupt, by
a bus error, or by a reset. Exception processing is designed to provide an efficient
context switch so that the processor may handie unusual conditions.

The halted processing state is an indication of catastrophic hardware failure. For
example, if during the exception processing of a bus error another bus error occurs,
the processor assumes that the system is unusable and halts. Only an external reset
can restart a halted processor. Note that a processor in the stopped state is not in the
halted state, nor vice versa.

PRIVILEGE STATES

The processor operates in one of two states of privilege: the user state or the
supervisor state. The privilege state determines which operations are legal, is used
by the external memory management device to control and translate accesses, and is
used to choose between the supervisor stack pointer and the user stack pointer in
instruction references.

The privilege state is a mechanism for providing security in a computer system.
Programs should access only their own code and data areas and ought to be
restricted from accessing information which they do not need and must not modify.

VMPU-41

TOSHIBA TLCS-68000

The privilege mechanism provides security by allowing most programs to execute
in user state. In this state, the accesses are controlled and the effects on other parts
of the system are limited. The operating system executes in the supervisor state, has
access to all resources, and performs the overhead tasks for the user state programs.

4.2.1 Supervisor State

The supervisor state is the higher state of privilege. For instruction execution,
the supervisor state is determined by the S bit of the status register; if the S bit is
asserted (high), the processor is in the supervisor state. All instructions can be
executed in the supervisor state. The bus cycles generated by instructions executed
in the supervisor state are classified as supervisor references. While the processor is
in the supervisor privilege state, those instructions which use either the system
stack pointer implicitly or address register seven explicitly access the supervisor
stack pointer.

All exception processing is done in the supervisor state, regardless of the state of
the S bit when the exception occurs. The bus cycles generated during exception
processing are classified as supervisor references. All stacking operations during
exception processing use the supervisor stack pointer.

4.2.2 User State

The user state is the lower state of privilege. For instruction execution, the user
state is determined by the S bit of the status register; if the S bit is negated (low), the
processor is executing instructions in the user state.

Most instructions execute identically in user state and in the supervisor state.
However, some instructions which have important system effects are mode
privilege. User programs are not permitted to execute the STOP instruction or the
RESET instruction. To ensure that a user program cannot enter the supervisor state
‘except in a controlled manner, the instructions which modify the whole status
register are privileged. To aid in debugging programs which are to be used as
operating systems, the move to user stack pointer (MOVE to USP) and move from
user stack pointer (MOVE from USP) instructions are also privileged.

To implement virtual machine concepts in the TMP68010, the move from status
register (MOVE from SR), move to/from control register (MOVEC), and move
alternate address space (MOVES) instructions are also privileged.

The bus cycles generated by an instruction executed in user state are classified as
user state references. This allows an external memory management device to
translate the address and the control access to protected portions of the address
space. While the processor is in the user privilege state, those instructions which
use either the system stack pointer implicitly or address register seven explicitly
access the user stack pointer.

VMPU-42

TOSHIBA TLCS-68000

4.2.3 Privilege State Changes

Once the processor is in the user state and executing instructions, only exception
processing can change the privilege state. During exception processing, the current
state of the S bit of the status register is saved and the S bit is asserted, putting the
processor in the supervisor state. Therefore, when instruction execution resumes at the
address specified to process the exception, the processor is in the supervisor privilege
state.

The transition from supervisor to user state can be accomplished by any of four
instructions: return from exception (RTE), move to status register (MOVE word to SR),
AND immediate to status register (ANDI to SR), and exclusive OR immediate to status
register (EORI to SR). The RTE instruction fetches the new status register and program
counter from the supervisor stack, loads each into its respective register, and then
begins the instruction fetch at the new program counter address in the privilege state
determined by the S bit of the new contents of the status register. The MOVE, ANDI,
and EORI to status register instructions each fetch all operands in the supervisor state,
perform the appropriate update to the status register, and then fetch the next
instruction at the next sequential program counter address in the privilege state
determined by the new S bit.

4.2.4 Reference Classification

When the processor makes a reference, it classifies the kind of reference being made,
using the encoding of the three function code output lines. This allows external
translation of addresses, control of access, and differentiation of special processor states,
such as interrupt acknowledge. Table 4.1 lists the classification of references.

Table 4.1 Reference Classification

Function Code Output
FC2 FC1 FCO

Address Space

Low | Low | Low |(Undefined, Reserved)
Low | Low | High |UserData

Low | High | Low |UserProgram

Low | High | High [(Undefined, Reserved)
High | Low | Low |(Undefined, Reserved)
High | Low | High [Supervisor Data

High | High | Low |Supervisor Program
High | High | High [interrupt Acknowledge

VMPU-43

TOSHIBA TLCS-68000

4.3 EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing, a general
description of exception processing is in order. The processing of an exception occurs
in four steps, with variations for different exception causes. During the first step, a
temporary copy of the status register is made and the status register is set exception
processing. In-the second step the exception vector is determined and the third step
is the saving of the current processor context. In the fourth step a new context is
obtained and the processor switches to instruction processing.

4.3.1 Exception Vectors

Exception vectors are memory locations from which the processor fetches the
address of a routine which will handle that exception. All exception vectors are two
words in length (Figure 4.1) except for the reset vector, which is four words. All
exception vectors lie in the supervisor data space except for the reset vector which is
in the supervisor program space. A vector number is an 8-bit number which, when
multiplied by four, gives the offset of an exception vector. Vector numbers are
generated internally or externally, depending on the cause of the exception. In the
case of interrupts, during the interrupt acknowledge bus cycle, a peripheral provides
an 8-bit vector number (Figure 4.2) to the processor on data bus lines D0~D7.

The processor forms the vector offset by left-shifting the vector number two bit
positions and zero-filling the upper order bits to obtain a 32-bit long word vector
offset. In the case of the TMP68000 and TMP68008, this offset is used as the
absolute address to obtain the exception vector itself. This is shown in Figure 4.3.

In the case of the TMP68010/TMP68012, the vector offset is added to the 32-bit
vector base register (VBR) to obtain the 32-bit absolute address of the exception
vector. This is shown in Figure 4.4. Since the VBR is set to zero upon reset, the
TMP68010, will function identically to the TMP68000 and TMP68008 until the VBR
is changed via the MOVEC instruction.

EVEN BYTES (A0 =0) | ODDBYTES (AD=1)
WORD 0 NEW PROGRAM COUNTER (HIGH) A1=0
WORD 1 NEW PROGRAM COUNTER (LOW) Al=1

Figure 4.1 Exception Vector Format

VMPU-44

TOSHIBA TLCS-68000

D15 D8 D7 DO

IGNORED V7 (V6 ([V5({V4iV3|V2|V1|VO

where:
V7 is the MSB of the vector number

VO is the LSB of the vector number

Figure 4.2 Peripheral Vector Number Format

A31 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 DO

ALL ZEROES V7| V6 |V5[V4|V3|V2|V1|VO|l 0| O

Figure 4.3 Address Translated from 8-Bit Vector Number (TMP68000/TMP68008)

31

CONTENETS OF VECTOR BASE REGISTER —l
31 10 9 J—>
0]0

ALL ZEROES V7 |V6|V5([V4|V3|V2|V1|V0

o

EXCEPTION VECTOR
ADDRESS

Figure 4.4 Exception Vector Address Calculation (TMP68010)

The actual address output on the address bus is truncated to the number of address
bits available on the bus of the particular implementation of the TLCS-68000
architecture. In the case of the TMP68000 and the TMP68010, this is 24 bits. In the
case of the TMP68008, the address is 20 bits in length.

The memory map for exception vectors is given in Table 4.2.

VMPU-45

TOSHIBA TLCS-68000

Table 4.2 Exception Vector Assignment

Vector Address
Number(s) Dec Hex Spaceb Assignment
0 0 000 Sp Reset: Initial SSP2
4 004 SP Reset: Initial PC2
2 8 008 sD Bus Error
3 12 0ocC SD Address Error
4 16 010 sD Illegal Instruction
5 20 014 SD Zero Divide
6 24 018 SD CHK Instruciton
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 sD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator
121 48 030 SD (Unassigned, Reserved)
131 52 034 SD (Unassigned, Reserved)
I 14 56 038 sD Foramt Error5
15 60 03C sD Uninitialized Interrupt Vector
64 040 sD (Unassigned, Reserved)
16~231
92 05C -
24 96 060 sD Spurious Interrupt3
25 100 064 sD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector
o 128 080 SD TRAP Instruction Vectors4
188 0BC -
192 0Co SD (Unassigned, Reserved)
48~631
252 OFC -
256 100 sD’ User Interrupt Vectors
64~255 -
1020 3FC -

Notes:

1. Vector numbers 12, 13, 16~23, and 48~63 are reserved for future enhancements. No user
peripheral devices should be assigned these numbers.

VMPU-46

TOSHIBA TLCS-68000

2. Reset vector (0) requires four words, unlike the other vectors which only require two words, and
is located in the supervisor program space.

3. The spurious interrupt vector is taken when there is a bus error indication during interrupt
processing. Refer to Paragraph “4.4.4 Spurious Interrupt”.

4. TRAP #n uses vector number 32 + n.

5. TMP88010 only. See Return from Exception Section.
This vector is unassigned, reserved on the TMP68000 and TMP68008.

6. SP denotes supervisor program space, and SD denotes supervisor data space.

As shown in Table 4.2, the memory layout is 512 words long (1024 bytes). It starts at
address 0 (decimal) and proceeds through address 1023 (decimal). This provides 255
unique vectors; some of these are reserved for TRAPS and other system functions. Of
the 255, there are 192 reserved for user interrupt vectors. However, there is no
protection on the first 64 entries, so user interrupt vectors may overlap at the discretion
of the systems designer.

4.3.2 Kinds of Exceptions

Exceptions can be generated by either internal or external causes. The externally
generated exceptions are the interrupts, the bus error, and reset requests. The
interrupts are requests from peripheral devices for processor action while the bus error
and reset inputs are used for access control and processor restart. The internally
generated exceptions come from instructions, or from address errors, or tracing. The
trap (TRAP), trap on overflow (TRAPV), check register against bounds (CHK), and
divide (DIV) instructions all can generate exceptions as part of their instruction
execution. In addition, illegal instructions, word fetches from odd addresses, and
privilege violations cause exceptions. Tracing behaves like a very high priority,
internally generated interrupt after each instruction execution.

4.3.3 Multiple Exceptions

These paragraphs describe the processing which occurs when multiple exceptions
arise simultaneously. Exceptions can be grouped accrding to their occurrence and
priority. The group 0 exceptions are reset, bus error, and address error. These
exceptions cause the instruction currently being executed to be aborted and the
exception processing to commence within two clock cycles. The group 1 exceptions are
trace and interrupt, as well as the privilege violations and illegal instructions. These
exceptions allow the current instruction to execute to completion, but preempt the
execution of the next instruction by forcing exception processing to occur (privilege
violations and illegal instructions are detected when they are the next instruction to be
executed). The group 2 exceptions occur as part of the normal processing of instructions.
The TRAP, TRAPV, CHK, and zero divide exceptions are in this group. For these
exceptions, the normal execution of an instruction may lead to exception processing.

VMPU-47

TOSHIBA TLCS-68000

Group 0 exceptions have highest priority, while group 2 exceptions have lowest
priority. Within group 0, reset has highest priority, followed by address error and then
bus error. Within group 1, trace has priority over external interrupts, which in turn
takes priority over illegal instruction and privilege violation. Since only one instruction
can be executed at a time, there is no priority relation within group 2.

The priority relation between two exceptions determines which is taken, or taken
first, if the conditions for both arise simultaneously. Therefore, if a bus error occurs -
during a TRAP instruction, the bus error takes precedence, and the TRAP instriuction
processing is aborted. In another example, if an interrupt request occurs during the
execution of an instruction while the T bit is asserted, the trace exception has priority,
and is processed first. Before instruction execution resumes, however, the interrupt
exception is also processed and instruction processing commences finally in the
interrupt handler routine. A summary of exception grouping and priority is given in

Table 4.3.
Table 4.3 Exception Grouping and Priority
Group Exception Processing
Reset Exception Processing
0 Address Error Begins Within Two
Bus Error Clock Cycles
Trace Exception Processing
Interrupt Begins Before The
1 lllegal Next Instruction
Privilege
TRAP, TRAPV, Exception Processing Is
2 CHK Started By Normal
Zero Divide Instruction Execution

4.3.4 Exception Stack Frames

Exception processing saves the most volatile portion of the current processor context
on the top of the supervisor stack. This context is organized in a format called the
exception stack frame. Although this information varies with the particular processor
and type of exception, it always includes the status register and program counter of the
processor when the exception occurred.

The amount and type of information saved on the stack is determined by the processor
type and type of execution. Exceptions are grouped by type according to priority of the
exception. The group 0 exceptions include address error, bus error, and reset. The group
1 and 2 exceptions include interrupts, traps, illegal instructions, and trace.

The TMP68000 and TMP68008 group 1 and 2 exception stack frame is shown in
Figure 4.5. Only the program counter and status register are saved. The program
counter points to the next instruction to be executed after exceptions processing.

VMPU-48

TOSHIBA TLCS-68000

The TMP68010 exception stack frame is shown in Figure 4.6. The number of
words actually stacked depends on the exception type. Group O exceptions (except
reset) stack 29 words and group 1 and 2 exceptions stack four words. In order to
support generic exception handlers, the processor also places the vector offset in the
exception stack frame. The format code field allows the RTE (return from exception)
instruction to identify what information is on the stack so that it may be properly
restored. Table 4.4 lists the TMP68010 stack format codes. Although some formats
are peculiar to a particular TLCS-68000 Family processor, the format 0000 is always
legal and indicates that just the first four words of the frame are present.

EVENBYTE ODD BYTE

- 0|7 0

15 0 HIGHER
s5p ——+] STATUS REGISTER ADDRESS

PROGRAM COUNTER HIGH
PROGRAM COUNTER LOW

Figure 4.5 TMP68000/TMP68008 Group 1 and 2 Exception Stack Frame

HIGHER

ADDRESS
15 0

Sp —> STATUS REGISTER
PROGRAM COUNTER HIGH
PROGRAM COUNTER LOW

FORMAT VECTOR OFFSET

OTHER INFORMATION
— DEPENDING ON EXCEPTION -

Figure 4.6 TMP68010 Stack Frame

Table 4.4 TMP68010 Format Codes

Format Code Stacked Insformation
0000 Short Format (4 Words)
1000 Long Format (29 Words)
All Others | Unassigned, Reserved

VMPU-49

TOSHIBA TLCS-68000

4.3.5 Exception Processing Sequence

44

Exception processing occurs in four identifiable steps. In the first step, an
internal copy is made of the status register. After the copy is made, the S bit is
asserted, putting the processor into the supervisor privilege state. Also, the T bit is
negated, which will allow the exception handler to execute unhindered by tracing.
For the reset and interrupt exceptions, the interrupt priority mask is also updated.

In the second step, the vector number of the exception is determined. For
interrupts, the vector number is obtained by a processor fetch and classified as an
interrupt acknowledge. For all other exceptions, internal logic provides the vector
number. This vector number is then used to generate the address of the exception
vector. Group 1 and 2 exceptions use a short format exception stack frame (format =
0000 on the TMP68010). Additional information defining the current context is
stacked for the bus error and address error exceptions.

The third step is to save the current processor status, except for the reset
exception. The current program counter value and the saved copy of the status
register are stacked using the supervisor stack pointer. The program counter value
stacked usually points to the next unexecuted instruction, however for bus error and
address error, the value stacked for the program counter is unpredictable and may
be incremented from the address of the instruction which caused the error.
Additional information defining the current context is stacked for the bus error and
address error exceptions.

The last step is the same for all exceptions. The new program counter value is
fetched from the exception vector. The processor then resumes instruction
execution. The instruction at the address given in the exception vector is fetched
and normal instruction decoding and execution is started.

EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources and each exception has processing which is
peculiar to it. The following paragraphs detail the source of exceptions, how each
arises, and how each is processed.

VMPU-50

TOSHIBA TLCS-68000

4.4.1 Reset

The reset input provides the highest exception level. The processing of the reset
signal is designed for system initiation and recovery from catastrophic failure. Any
processing in progress at the time of the reset is aborted and cannot be recovered.
The processor is forced into the supervisor state and the trace state is forced off. The
processor interrupt priority mask is set at level seven. In the TMP6801, the vector
base register (VBR) is forced to zero. The vector number is internally generated to
reference the reset exception vector at location 0 in the supervisor program space.
Because no assumptions can be made about the validity of register contents, in
particular the supervisor stack pointer, neither the program counter nor the status
register is saved. The address contained in the first two words of the reset exception
vector is fetched as the initial supervisor stack pointer and the address in the last
two words of the reset exception vector is fetched as the initial program counter.
Finally, instruction execution is started at the address in the program counter. The
power-up/restart code should be pointed to by the initial program counter.

The RESET instruction does not cause loading of the reset vector, but does assert
the reset line to rest external devices. This allows the software to reset the system to
a known state and then continue processing with the next instruction.

4.4.2 Interrupts

Seven levels of interrupt priorities are provided. In the TMP68000, and
TMP68010 all seven levels are available. The TMP68008 supports three interrupt
levels: two, five, and seven, level seven being the highest priority. Devices may be
chained externally within interrupt priority levels, allowing an unlimited number of
peripheral devices to interrupt the pro.cessor. Interrupt priority levels are numbered
from one to seven, level seven being the highest priority. The status register
contains a three-bit mask which indicates the current processor priority and
interrupts are inhibited for all priority levels less than or equal to the current
processor priority.

An interrupt request is made to the processor by encoding the interrupt request
level on the interrupt request lines; a zero indicates no interrupt request. Interrupt
requests arriving at the processor do not force immediate exception processing, but
are made pending. Pending interrupts are detected between instruction executions.
If the priority of the pending interrupt is lower than or equal to the current processor
priority, execution continues with the next instruction and the interrupt exception
processing is postponed.

VMPU-51

TOSHIBA TLCS-68000

If the priority of the pending interrupt is greater than the current processor
priority, the exception processing sequence is started. A copy of the status register is
saved, the privilege state is set to supervisor state, tracing is suppressed, and the
processor priority level is set to the level of the interrupt being acknowledged. The
processor fetches the vector number from the interrupting device, classifying the
reference as an interrupt acknowledge and displaying the level number of the
interrupt being acknowledged on the address bus. If external logic requests
automatic vectoring, the processor internally generates a vector number which is
determined by the interrupt level number. If external logic indicates a bus error, the
interrupt is taken to be spurious, and the generated vector number references the
spurious interrupt vector. The processor then proceeds with the usual exception
processing, saving the format/offset word (TMP68010 only), program counter, and
status register on the supervisor stack. The offset value in the format/offset word on
the TMP68010 is the externally supplied or internally generated vector number
multiplied by four. The format will be all zeroes. The saved value of the program
counter is the address of the instruction which would have been executed had the
interrupt not been present. The content of the interrupt vector whose vector number
was previously obtained is fetched and loaded into the program counter, and normal

instruction execution commences in the interrupt handling routine.

Priority level seven is a special case. Level seven interrupts cannot be inhibited
by the interrupt priority mask, thus providing a “non-maskable interrupt”
capability. An interrupt is generated each time the interrupt request level changes
from some lower level to level seven. Note that a level seven interrupt may still be
caused by the level comparison if the request level is a seven and the processor
priority is set to a lower level by an instruction.

4.4.3 Uninitialized Interrupt

An interrupting device asserts VPA, BERR, or provides
and TLCS-68000 interrupt vector number and asserts DTACK during
an interrupt acknowledge cycle by the TLCS-68000. If the vector register has not
been initialized, the responding TLCS-68000 Family peripheral will provide vector
number 15, the uninitialized interrupt vector. This provides a uniform way to
recover from a programming error.

4.4.4 Spurious Interrupt

If during the interrupt acknowledge cycle no device responds by asserting
DTACK or VPA, BERR should be asserted to
terminate the vector acquisition. The processor separates the processing of this
error from bus error by forming a short format exception stack and fetching the
spurious interrupt vector instead of the bus error vector. The processor then
proceeds with the usual exception processing.

VMPU-52

TOSHIBA TLCS-68000

4.4.5 Instruction Traps

Traps are exceptions caused by instructions. They arise either from processor
recognition of abnormal conditions during instruction, execution, or from use of
instructions whose normal behavior is trapping.

Exception processing for traps is straightforword. The status register is copied,
the supervisor state is entered, and the trace state is turned off. The vector number
is internally generated; for the TRAP instruction, part of the vector number comes
from the instruction itself. The program counter and the copy of the status register
are saved on the supervisor stack. The saved value of the program counter is the
address of the instruction after the instruction which generated the trap. Finally,
instruction execution commences at the address contained in the exception vector.

Some instructions are used specifically to generate traps. The TRAP instruction
always forces an exception and is useful for implementing system calls for user
programs. The TRAPV and CHK instructions force an exception if the user program
detects a runtime error, which may be an arithmetic overflow or a subscript out of
bounds.

The signed divide (DIVS) and unsigned divide (DIVU) instructions will force an
exception if a division operation is attempted with a divisor of zero.

4.4.6 Illegal and Unimplemented Instructions

Illegal instruction is the term used to refer to any of the word bit patterns which
are not the bit patterns of the first word of a legal TLCS-68000 instruction. During
instruction execution, if such an instruction is fetched, an illegal instruction
exception occurs. Three bit patterns will always force an illegal instruction trap on
all TLCS-68000 Family compatible microprocessors. They are: $4AFA, $4AFB, and
$4AFC. Two of the patterns, $4AFA and $4AFB, are reserved for the system
products. The third pattern, $4AFC, is reserved for customer use.

In addition to the previously defined illegal instruction opcodes, the TMP68010
defines eight breakpoint illegal instructions with the bit patterns $4848~$484F.
These instructions cause the processor to enter illegal instruction exception
processing as usual, but a breakpoint bus cycle is executed before the stacking
operations are performed in which the function code lines (FCO~FC2)are high and
address lines are all low. The processor does not accept or send any data during this
cycle. Whether the breakpoint cycle is terminated with a DTACK,

BERR, or VPA signal, the processor will continue with the

illegal instruction processing. The purpose of this cycle is to provide a software
breakpoint that will signal external hardware when it is executed. See TMP68010
Advanced Information data sheet. A

VMPU-53

TOSHIBA TLCS-68000

Word patterns with bits 15~12 equaling 1010 or 1111 are distinguished as
unimplemented instructions and separate exception vectors are given to these
patterns to permit efficient emulation. This facility allows the operating system to
detect program errors or to emulate unimplemented instructions in software.

Exception processing for illegal instructions is similar to that for traps. After the
instruction is fetched and decoding is attempted, the processor determines that
execution of an illegal instruction is being attempted and starts exception
processing. The exception stack frame for group 2 is then pushed on the supervisor
stack and the illegal instruction vector is fetched.

4.4.7 Privilege Violations

In order to provide system security, various instructions are privileged. An
attempt to execute one of the privileged instructions while in the user state will
cause an exception. The privileged instructions are:

AND Immediate to SR MOVE USP

EOR Immediate to SR OR Immediate to SR
MOVE to SR RESET

MOVE from SR* RTE

MOVEC* STOP

MOVES*

*: TMP68010

Exception processing for privilege violations is nearly identical to that for illegal
instructions. After the instruction is fetched and decoded, and the processor
determines that a privilege violation is being attempted, the processor starts
exception processing. The status register is copied, the supervisor state is entered,
and the trace state is turned off. The vector number is generated to reference the
privilege violation vector, and the current program counter and the copy of the
status register are saved on the supervisor stack and, if the processor is an

| TMP68010, the format/offset word, is also saved. The saved value of the program
counter is the address of the first word of the instruction which caused the privilege
violation. Finally, instruction execution commences at the address contained in the
privilege violation exception vector.

4.4.8 Tracing

To aid in program development, the TLCS-68000 includes a facility to allow
instruction by instruction tracing. In the trace state, after each instruction is
executed, an exception is forced, allowing a debugging program to monitor the
execution of the program under test.

VMPU-54

TOSHIBA TLCS-68000

The trace facility uses the T bit in the supervisor portion of the status register. If
the T bit is negated (off), tracing is disable and instruction execution proceeds from
instruction to instruction as normal. If the T bit is asserted (on) at the beginning of
the execution of an instruction, a trace exception will be generated after the
execution of that instruction is completed. If the instruction is not executed, either
because an interrupt is taken or the instruction is illegal or privileged, the trace
exception does not occur. The trace exception also does not occur if the instruction is
aborted by a reset, bus error, or address error exception. If the instruction is indeed
executed and an interrupt is pending on completion, the trace exception is processed
before the interrupt exception, if, during the execution of the instruction, an
exception is forced by that instruction, the forced exception is processed before the
trace exception. As an extreme illustration of the above rules, consider the arrival of
an interrupt during the exception of a TRAP instruction while tracing is enabled.
First the trap exception is processed, then the trace exception, and finally the
interrupt exception. Instruction execution resumes in the interrupt handler routine.

The exception processing for trace is quite simple. After the execution of the
instruction is completed and before the start of the next instruction, exception
processing begins. A copy is made of the status register. The transition to
supervisor privilege state is made and, as usual, the T bit of the status register is
turned off, disabling further tracing. The vector number is generated to reference
the trace exception vector, and the current program counter, the copy of the status
register and, on the TMP68010, the format/offset word are saved on the supervisor
stack. The saved value of the program counter is the address of the next instruction.
Instruction execution commences at the address contained in thetrace exception
vector.

4.4.9 Bus Error

Bus error exceptions occur when the external logic requests that a bus error be
processed by an exception. The current bus cycle which the processor is making is
then aborted. Whether the processor was doing instruction or exception processing,
that processing is terminated and the processor immediately begins exception
processing.

The bus error facility is identical on the TMP68000 and TMP68008; however, the
stack frame produced on the TMP68010 contains more information. This is to allow
the instruction continuation facility which can be used to implement virtual
memory on the TMP68010 processor. Bus error for the TMP68000/TMP68008 and
for the TMP68010 are described separately below.

VMPU-55

TOSHIBA TLCS-68000

4.4.9.1 Bus Error (TMP68000/TMP68008)

Exception processing for bus error follows the usual sequence of steps. The status
register is copied, the supervisor state is entered, and the trace state is turned off. The
vector number is generated to refer to the bus error vector. Since the processor was not
between instructions when the bus error exception request was made, the context of the
processor is more detailed. To save more of this context, additional information is saved
on the supervisor stack. The program counter and the copy of the status register are of
“course saved. The value saved for the program counter is advanced by some amount, two
to ten bytes beyond the address of the first word of the instruction which made the
reference causing the bus error. If the bus error occurred during the fetch of the next
instruction, the saved program counter has a value in the vicinity of the current
instruction, even if the current instruction is a branch, a jump, or a return instruction.
Besides the usual information, the processor saves its internal copy of the first word of
the instruction being processed and the address which was being accessed by the aborted
bus cycle. Specific information about the access is also saved: whether it was a read or
write, whether the processor was processing an instruction or not, and the classification
displayed on the function code outputs when the bus error occurred. The processor is
processing an instruction if it is in the normal state or processing a group 2 exception,;
the processor is not processing an instruction if it is processing a group 0 or a group 1
exception. Figure 4.7 illustrates how this information is organized on the supervisor
stack. If a bus error occurs during the last step of exception processing, while either
reading the exception vector or fetching the instruction, the value of the program
counter is the address of the exception vector. Although this information is not
sufficient in general to effect full recovery from the bus error, it does allow software
diagnosis. Finally, the processor commences instruction processing at the address
contained in the vector. It is the responsibility of the error handler routine to clean up
the stack and determine where to continue execution.

If a bus error occurs during the exception processing for a bus error, address error, or
read, the processor is halted, and all processing ceases. This simplifies the detection of a
catastrophic system failure, since the processor removes itself from the system rather
than destroy all memory contents. Only the RESET pin can restart a halted processor.

VMPU-56

TOSHIBA TLCS-68000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LOWER IR/W | I/N | FUNCTION CODE
ADDRESS HIGH
ACCESS ADDRESS ..

INSTRUCTION REGISTER
STATUS REGISTER

< PROGRAM COUNTER crerereremrermmmeetnses ittt

RAW (Read/Write): Write =0, Read =1
I/N (Instruction/Not): Instruction =0, Not =1

Figure 4.7 Supervisor Stack Order for Bus or Address Error Exception

4.4.9.2 BUS ERROR (TMP68010)

Exception processing for a bus error follows a slightly different sequence than the
sequence for group 1 and 2 exceptions. In addition to the four steps executed during
exception processing for all other exceptions, 22 words of additional information are
placed on the stack. This additional information describes the internal state of the
processor at the time of the bus error and is reloaded by the RTE instruction to
continue the instruction that caused the error. Figure 4.8 shows the order of the
stacked information. .

VMPU-57

TOSHIBA TLCS-68000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SP — STATUS REGISTER
PROGRAM COUNTER (HIGH)
PROGRAM COUNTER (LOW)
1000 VECTOR OFFSET
SPECIAL STATUS WORD
FAULT ADDRESS (HIGH)
FAULT ADDRESS (LOW)
UNUSED, RESERVED
DATA OUTPUT BUFFER
UNUSED, RESERVED
DATA INPUT BUFFER
UNUSED, RESERVED
INSTRUCTION INPUT BUFFER

INTERNAL INFORMATION, 16 WORDS

Note: The stack pointer is decremented by 29 words, although only 26 words of information are
actually written to memory. The three additional words are reserved for future use.

Figure 4.8 Exception Stack Order (Bus and Address Error)

The value of the saved program counter does not necessarily point to the
instruction that was executing when the bus error occurred, but may be advanced by
up to five words. This is due to the prefetch mechanism on the TMP68010 that
always fetches a new instruction word as each previously fetched instruction word is
used. However, enough information is placed on the stack for the bus error
exception handler routine to determine why the bus fault occurred. This additional
information includes the address that was being accessed, the function codes for the
access, whether it was a read or a write, and what internal register was included in
the transfer. The fault address can be used by an operating system to determine
what virtual memory location is needed so that the requested data can be brought
into phyical memory. The RTE instruction is then used to reload the processor’s
internal state at the time of the fault, the faulted bus cycle will then be re-run and
the suspended instruction completed. If the faulted bus cycle was a read-modify-
write, the entire cycle will be re-run whether the fault occurred during the read or
the write operation.

VMPU-58

TOSHIBA TLCS-68000

An alternate method of handling a bus error is to complete the faulted access in
software. In order to use this method, use of the special word, the instruction input
buffer, the data input buffer, and the data output buffer image is required. The
format of the special status word is shown in Figure 4.9. If the bus cycle was a write,
the data at the fault address location should be written to the images of the data
input buffer, instruction input buffer, or both accoding to the DF and IF bits*. In
addition, for read-modify-write cycles, the status register image must be properly set
to reflect the read data if the fault occurred during the read portion of the cycle and
the write operation (i.e., setting the most significant bit of the memory location)
must also be performed. This is because the entire read-modify-write cycle is
assumed to have been completed by software. Once the cycle has been completed by
software, the RR bit in the special status word is set to indicate to the processor that
is should not re-run the cycle when the RTE instruction is executed. If the re-run
flag is set when an RTE instruction executes, the TMP68010 still reads all of the
information from the stack.

* . If the faulted access was a byte operation, the data should be moved from or to
the least-significant byte of the data output or input buffer images unless the
HB bit is set. This condition will only occur if a MOVEP instruction caused the
fault during transfer of bits 8~15 a word or long word or bits 24~31 of a long

word.
15 14 13 12 11 10 9 8 7 — 3 2 1 0

[rRR | = | F [oF [rm | w8 [BY [RW | * | rca~Fco

RR — Re-run flag; 0 =processor re-run (default), 1 = softrware re - run.

IF — Instruction fetch to the Instruction Input Buffer.

DF — Data fetch to the Data Input Buffer.

RM — Read-Modify-Write cycle.

HB — High byte transfer from the Data Output Buffer or to the Data input Buffer.

BY — Bytetransfer flag; HB selects the high or low byte of the transfer register.

If BY is clear, the transfer is word.
RW — Read/Write flag; 0 =write, 1 =read.

FC — The function code used during the faulted access.
* — These bits are reserved for future use and will be zero when written by the
TMP68010.

Figure4.9 Special Status Word Format

VMPU-59

TOSHIBA TLCS-68000

4.4.10 Address Error

4.5

Address error exceptions occur when the processor attempts to access a word or a
long word operand or an instruction at an odd address. The effect is much like an
internally generated bus error, so that the bus cycle is aborted, and the processor
ceases whatever processing it is currently doing and begins exception processing.
After exception processing commences, the sequence is the same as that for bus error
including the information that is stacked, except that the vector number refers to
the address error vector instead. Likewise, if an address error occurs during the
exception processing for a bus error, address error, or reset, the processor is halted.

On the TMP68010, the address error exception stacks the same information that
is stacked by a bus error exception, therefore it is possible to use the RTE instruction
to continue execution of the suspended instruction. However, if the software re-run
flag is not set, the fault address will be used when the cycle is re-run and another
address error exception will occur. Therefore, the user must be certain that the
proper corrections have been made to the stack image and user registers before
attempting to continue the instruction. With proper software handling, the address
error exception handler could emulate word or long word accesses to odd addresses
ifdesired.

RETURN FROM EXCEPTION (TMP68010)

In addition to returning from any exception handler routine on the TMP68010,
the RTE instruction is used to resume the excution of a suspended instruction by
restoring all of the temporary register and control information stored during a bus
error and returning to the normal processing state. For the RTE instruction to
execute properly, the stack must contain valid and accessible data. The RTE
instruction checks for data validity in two ways; first, by checking the format/offset
word for a valid stack format code, and second, if the format code indicates the long
stack format, the long stack data is checked for validity as it is loaded into the
processor. In addition, the data is checked for accessibility when the processor starts
reading the long data. Because of these checks, the RTE instruction executes as
follows:

4.5.1 Determine The Stack Format

This step is the same for any stack format and consists of reading the status
register, program counter, and format/offset word. If the format code indicates a
short stack format, execution continues at the new program counter address. If the
format code is not one of the TMP68010 defined stack format codes, exception
processing starts for a format error.

VMPU-60

TOSHIBA TLCS-68000

4.5.2 Determine Data Validity

For a long stack format, the TMP68010 will begin to read the remaining stack
data, checking for validity of the data. The only word checked for validity is the first
of the 16 internal information words (SP+26) shown in Figure 4.8. This word
contains a processor version number (in bits 10~13) in addition to proprietary
internal information that must match the version number of the TMP68010 that is
attempting to read the data. This validity check is used to insure that in
multiprocessor systems, the data will be properly interpreted by the RTE instruction
if the two processors are of different versions. If the version number is incorrect for
this processor, the RTE instruction will be aborted and exception processing will
begin for a format error exception. Since the stack pointer is not updated until the
RTE instruction has successfully read all of the stack data, a format error occurring
at this point will not stack new data over the previous bus error stack information.

4.5.3 Determine Data Accessibility

If the long stack data is valid, the TMP68010 performs a read from the last word
(SP+56) of the long stack to determine data accessibility. If this read is terminated
normally, the processor assumes that the remaining words on the stack frame are
also accessible. If a bus error is signaled before or during this read, a bus error
exception is taken as usual. After this read, the processor must be able to load the
remaining data without receiving a bus error; therefore, if a bus error occurs on any
of the remaining stack reads, the TMP68010 treats this as a double bus fault and
enters the halted state.

VMPU-61

TOSHIBA TLCS-68000

APPENDIX A CONDITION CODES COMPUTATION

Al

A2

A3

INTRODUCTION

This appendix provides a discussion of how the condition codes were developed, the
meanings of each bit, how they are computed, and how they are represented in the
instruction set details.

Two criteria were used in developing the condition codes:
[Consistency — across instruction, uses, and instances
L] Meaningful Results — no change unless it provides useful information

The consistency across instructions means that instructions which are special cases of
more general instructions affect the condition codes in the same way. Consistency
across instances means that if an instruction ever affects a condition code, it will always
affect that condition code. Consistency across uses means that whether the condition
codes were set by a compare, test, or move instruction, the conditional instructions test
the same situation. The tests used for the conditional instructions and the code
computations are given in paragraph A.5.

CONDITION CODE REGISTER

The condition code register portion of the status register contains five bits:

N — Negative
Z — Zero

V — Overflow
C — Carry

X — Extend

The first four bits are true condition code bits in that they reflect the condition of the
result of a processor operation. The X bit is an operand for multiprecision computations.
The carry bit (C) and the multiprecision operand extend bit (X) are separate in the
TLCS—68000 Family to simplify the programming model.

CONDITION CODE REGISTER NOTATION

In the instruction set details given in “APPENDIX B”, the description of the effect on
the condition codes is given in the following form:

VMPU-62

TOSHIBA TLCS-68000

X N z \ C
Condition Codes: [| ' | | |

where:

N (negative) Set if the most significant bit of the result is set. Cleared

otherwise.
Z (zero) Set if the result equals zero. Cleared otherwise.
V (overflow) Set if there was an arithmetic overflow. This implies that the

result is not representable in the operand size. Cleared otherwise.

C(carry) Set if a carry is generated out of the most significant bit of the
operands for an addition. Also, set if a borrow is generated in a
subtraction. Cleared otherwise.

X (extend) Transparent to data movement. When affected, by arithmetic
operations, it is set the same as the C bit.

The convention for the notation that is used in the condition code register
representation is:

* : setaccording to the result of the operation
- : not affected by the operation

0 : cleared

1 : set

U : undefined after the operation

A4 CONDITION CODE COMPUTATION

Most operations take a source operand and a destination operand, compute, and store
the result in the destination location. Unary operations take a destination operand,
compute, and store the result in the destination location. Table A.1 details how each
instruction sets the condition codes.

VMPU-63

TOSHIBA TLCS-68000

Table A.1 Condition Code Computations

Operations X|INJZ]|V]C Special Definition
ABCD *1U| ? | U | ? |C=Decimal Carry
Z=ZARmA - ARD
ADD, ADDI, * * * ? ? [V=SmADMARmYSmADMARmM
ADDQ C=SmADm\yRmADmyYSmARm
ADDX * * ? ? ? [V=Sm ADmARmMYSmADMARmM

C=SmADm\yRmADmMmySmARmM
Z=ZARmA-ARD

AND, ANDI, EOR, EORI, e *1ofo
MOVE, MOVEQ, OR, ORI,
CLR, NXT, NOT, TAS, TST

CHK - | *{ulu]lu

SUB, SUBI, * * * ? ? [V=SmADmMmARmMYSmADmMARmM

SUBQ C=SmADm\yRmADm\ySmARmM

SUBX * I x 212172 |[V=SmADmARm\ySmADmMARmM
C=Sm ADm\yRmADmySmARmM
Z=ZARmA - ARD

CMP, - * * ? ? [V=SmADmMmARmMYSmADMARmM

CMPI, CMPM C=SmADmVRmADmMYSmARmM

DIVS, DIVU — * * ? 0 |V =Division Overflow

MULS, MULU — * * 0 0

SBCD, NBCD * u ?2 | U ? | C=Decimal Borrow
Z=ZARmA - ARD

NEG * * * ? ? |V=DmARmM, C=DmVyRm

NEGX * * ? ? ? |V=DmARmM, C=DmYyRm
Z=ZARmA - AR0

BTST, BCHG, BSET, BCLR i ? — | — |Z=Dm

ASL [* [* | 72| ? |[V=DmA(Dm-1vy ~ v Dm1)

+ DM A (Dm-1\/ -/ Dm-r)

C=Dm-r+1

ASL (r=0) - * * 0 0

LSL, ROXL * * * 0 ? |C=Dm-r+1

LSR (r=0) - * * 0 0

ROXL (r=0) - * * 0 ? |[C€=X

ROL i *10 ? [C=Dm-r+1

ROL (r=0) - * * 0 0

ASR, LSR, ROXR * * * 0 ? |C=Dr-1

ASR, LSR (r=0) — [*]*101]0

ROXR (r=0) - * * 0 ? |C=X

ROR - * * 0 ? |C=Dr-1

ROR (r=0) — * * 0 0
- = Not Affected Rm = Result Operand —most significant bit
U = Undefined, result meaningless R = Register Tested
? = Other — See Special Definition n = Bit Number
* = General Case r = Shift Count
X =C LB = Lower Bound
N = Rm o UB = Upper Bound
Z = RmA--ARO AN = Boolean AND
Sm = Source Operand — most significant bit v = Boolean OR
Dm = Destination Operand — most significantbit ®m = NOT Rm

VMPU-64

TOSHIBA TLCS-68000

A5 CONDITION TESTS

Table A.2 lists the condition names, encodings, and tests for the condition branch and
set instructions.

The test associated with each condition is a logical formula based on the current state
of the condition codes. If this formula evaluates to one, the condition succeeds, or is true.
If the formula evaluates to zero, the condition is unsuccessful, or false. For example, the
T condition always succeeds, while the EQ condition succeeds only if the Z bit is
currently set in the condition codes.

Table A.2 Conditional Tests

Mnemonic Condition Encoding Test

T* True 0000 1
F* False 0001 0
HI High 0010 c-Z
LS Low or Same 0011 C+Z

CC (HS) Carry Clear 0100 c

CS (LO) Carry Set 0101 C
NE Not Equal 0110 Z
EQ Equal 0111 z
\Ye Overflow Clear 1000 Y
VS Overflow Set 1001 \
PL Plus - 1010 N
Mi Minus 1011
GE Greater or Equal 1100 NV +N-V
LT Less Than 1101 N-V+N-V
GT Greater Than 1110 N-V-Z+N-V.Z
LE Less or Equal 1111 Z+N-V+N-V

= Bloolean AND
= Bloolean OR
= Bloolean NOT N

2l +

* : Not available for the Bee instruction

VMPU-65

TOSHIBA TLCS-68000

APPENDIX B INSTRUCTION SET DETAILS
B.1 INTRODUCTION

This appendix contains detailed information about each instruction in the
TLCS—-68000 instruction set. They are arranged in alphabetical order with the
mnemonic heading set in large bold type for easy reference.

B.2 ADDRESSING CATEGORIES

Effective address modes may be categorized by the ways in which they may be used.
The following classifications will be used in the instruction definitions.

Data : Ifan effective address mode may be used to refer to data operands, it is
considered a data addressing effective address mode.

Memory : Ifan effective address mode may be used to refer to memory operands, it
is considered a memory addressing effective address mode.

Alterable : Ifan effective address mode may be used to refer to alterable (writeable)
operands, it is considered an alterable addressing effective address
mode. '

Control : Ifan effective address mode may be used to refer to memory operands
without an associated size, it is considered a control addressing effective
address mode. :

Table B.1 shows the various categories to which each of the effective address modes
belong.

VMPU-66

TOSHIBA ' TLCS-68000

Table B.1 Effective Addressing Mode Categories

Address Modes Mode Register Data |Memory | Control | Alterable Assembler
Syntax
Data Register Direct. 000 reg. no. X - - X Dn
Address Register Direct 001 reg no - - - X An
Address Register Indirect 010 reg. no. X X X X (An)
Address Register Indirect
with Postincrement 011 reg. no. X X - X (An) +
Address Register Indirect
with Predecrement 100 reg. no. X X - X —(An)
Address Register Indirect
with Displacement 101 reg. no. X X X X d16 (An)
Address Register Indirect 110 reg. no. X X X X d8 (An, Xn)
with Index
Absolute Short 111 000 X X X X Abs. W
Absolute long 11 001 X X X X Abs. L
Program Counter Indirect 111 101 x x x - d16 (PQ)
with Displacement
Program Counter Indirect 111 011 X X X - d8 (PC, Xn)
with Index
Immediate 111 100 X X - - #<data>

These categories may be combined so that additional, more restrictive, classifications
may be defined. For example, the instruction descriptions use such classifications as
alterable memory or data alterable. The former refers to those addressing modes which
are both alterable and memory addresses, and the latter refers to addressing modes
which are both data and alterable.

VMPU-67

TOSHIBA TLCS-68000

B.3 INSTRUCTION DESCRIPTION

The formats of each instruction are given in the following pages. Figure B.1
illustrates what information is given.

Instruction Name ABCD Add Decimal

Operation bescription Operation : Sourceqg + Destinaitonig
(see “B.4 OPERATION DESCRIPTION)
DEFINITIONS")

Assembler Syntax for this Instruction ————— Assembler

Syntax :

Attributes :

ABCD Dy, Dx
ABCD —(Ay), —(Ax)

Size (Byte)

Text Description of Instruction Operation — Description : Add the source operand -+

Condition Code Effects Condition Codes :
(see “Appendix A")

X N Z VvV C
[=Jul=]u[~]
N : Undefined.

. . Z : Cleared if the resultis non-zero.
Instruction Format - Specifies the\
bit pattern and fields of the
operation word and any other

Unchanged otherwise.
V : Undefined.

words which are part of the C : setifacarry (decimal) was generated.
instruction. The effective address i Cleared otherwise.
extensions are not explicitly X : Sertthesame asthe carry bit

illustrated. The extensions (if there
are any) would follow the
illustrated portions of the Instructuion Format :

instructions. For the MOVE :
instruction, the source effective 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

address extension is the first, 111]010 Reg(ister 110{0{0}|0|RM Reg(ister
followed by the destination y X

effective address extension.
Meanings and allowed values of ————————— Instructuion Fields :

the various fields required by the
instruction format.

Figure B.1 Instruction Description Format

VMPU-68

TOSHIBA TLCS-68000

B.4 OPERATION DESCRIPTION DEFINITIONS

The following definitions are used for the operation description in the details of the

instruction set.

Immediate Data
ds

OPERAND:

An — addressregister

Dn — data register

Xn — any data or address register

PC — program counter

SR — statusregister

CCR — condition codes (lower order byte of status register)

SSP — supervisor stack pointer

USP — user stack pointer

Sp — active stack pointer (equivalent to A7)

X — extend operand (from condition codes)
N — negative condition code

Z — zero condition code

\' — overflow condition code

C — carry condition code

immediate data from the instruction
8-bit address displacement

diée — 16-bit address displacement
disp — address displacement (d8 or d16)
Source — source contents

Destination — destination contents

Vector — location of exception vector

ea — any valid effective address

<bit> of <operand >

(<operand>)
<operand>1g9

(<address register>)

SUBFIELDS AND QUALIFIERS :

selects a single bit of the operand

the contents of the referenced location ‘

the operand is binary coded decimal ; operations are to be
performed in decimal.

the register indirect operator which indicates that the

—(<address register>) operand register points to the memory locatiaon of the
(<address register>)+ instructuon operand.
#<data> immediate data located with the instruction is the operand.

VMPU-69

TOSHIBA

TLCS-68000

OPERATIONS: Operations are grouped into binary, unary, and other.

Binary — These operations are written <operand> <op> <operand> where <op>
is one of the following: ‘

+ 4y

A< >~ %

>

shifted by

rotated by

Unary :
~ <operand >
<operand >sign-extended

<operand >tested

Other:

the left operand is moved to the right operand

the two operands are exchanged

the operands are added

the right operand is subtracted from the left operand
the operands are multiplied

the first operand is divided by the second operand
the operands are logically ANDed

the operands are logically ORed

the operands are logically exclusively ORed
relational test, true if left operand is less than right
operand

relational test, true if left operand is greater than right
operand

the left operand is sfifted or rotated by the number of
positions

specified by the right operand

the operand is logically complemented

the operand is sign extended, all bits of the upper portion
are made equal to high order bit of the lower portion

the operand is compared to 0, the results are used to set the
condition codes

TRAP equivalent to SSP—2 — SSP; Format/Offset Word— (SSP); SSP—4—SSP;
PC—(SSP); SSP—2 — SSP; SR —(SSP); (vector) -»PC
STOP enter the stopped state, waiting for interrupts

If <condition> then <operation> else <operation>. The condition is tested. If true,
the operations after the “then” are performed. If the condition is false and the
optional “else” clause is present, the operations after the “else” are performed. If the
condition is false and the optional “else” clause is absent, the instruction performs no

operation.

; Semicolon is used to separate operations and terminatethe if/then/else operation.

VMPU-70

TOSHIBA TLCS-68000
ABCD Add Decimal With Extend ABCD
Operation Source1g + Destination1g + X — Destination

Assembler ABCD Dx, Dy

Syntax ABCD —(Ax), —(Ay)

Attributes Size = (Byte)

Description Add the source operand to the destination operand along with the extend bit,
and store the result in the destination location. The addition is performed
using binary coded decimal arithmetic. The operands may be addressed in
two different ways:

1. Data register to data register: The operands are contained in the data
registers specified in the instruction. A
2. Memory to memory: The operands are addressed with the predecrement
addressing mode using the address registers specified in the instruction.
This operation is a byte operation only.
Condition Codes :

X N Z

L ToT+Tul+]

N : Undefined.

Z : Cleared if the result is non-zero. Unchanged otherwise.

V : Undefined.

C : Setifa carry (decimal) was generated. Cleared otherwise.
X : Set the same as the carry bit.

Note:

Normally the Z condition code bit is set via programming before the start of

an operation. This allows successful tests for zero results upon completion of

multiple-precision operations.

Instruction Format:

15

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

1100 Register 110/l0!|l 0| o0 [Reml Register

Xy Xx

VMPU-71

TOSHIBA TLCS-68000

ABCD ABCD

Instruction Fields:

Register Xy field — Specifies the destination register:
If R/M = 0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode

R/M field — Specifies the operand addressing mode:
0 — The operation is data register to data register
1 — The operation is memory to memory

Register Xx field — Specifies the source register:
If R/M = 0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode

VMPU-72

TOSHIBA TLCS-68000

ADD Add Binary ADD
Operation : Source + Destination — Destination

Assembler ADD <ea>,Dn

Syntax : ADD Dn, <ea>

Attributes : Size = (Byte, Word, Long word)

Description : Add the source operand to the destination operand using binary addition, and

store the result in the destination location. The size of the operation may be
specified to be byte, word, or long word. The mode of the instruction indicates
which operand is the source and which is the destination as well as the
operand size.

Condition Codes

G T

N : Setif the result is negative. Cleared otherwise.

z Set if the result is zero. Cleared otherwise.

V : Setif an overflow is generated. Cleared otherwise.
C : Setifa carryis generated. Cleared otherwise.

X : Set the same as the carry bit.

The condition codes are not affected when the destination is an address register.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111011 Register Op-Mode Effective Address
Dn Mode | Register

Instruction Fields :
Register field — Specifies any of the eight data registers.
Op-Mode field —

Byte Word Long word Operation
000 001 010 (<ea>)+(<Dn>)—<Dn>
100 101 110 (<Dn>)+(<ea>)—><ea>

Effective Address Field — Determines addressing mode:

a. If the location specified in a source operand, the all addressing modes are allowed
as shown:

VMPU-73

TOSHIBA TLCS-68000
ADD ADD
Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg, number :Dn d8(An, Xn) 110 reg, number :An
An* 001 reg, number :An Abs.W 111 000
(An) 010 reg, number :An Abs.L 111 001
(An) + 011 reg, number :An d16 (PQC) 111 010
- (An) 100 reg, number :An d8(PC, Xn) 111 011
d16 (An) 101 reg, number :An #<data> 11 100
* : Word and Long word only.
b. If the location specified is a destination operand, then only alterable memory
addressing modes are allowed as shown:
Addr. Mode Mode Register Addr. Mode Mode Register
Dn - - D8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000
(An) 010 reg, number :An Abs.L 1M1 001
(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8(PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -

Notes:

1. If the destination is a data register, then it cannot be specified by using the

destination <ea> mode, but must use the destination Dn mode instead.

2. ADDA is used when the destination is an address register. ADDI and
ADDQ are used when the source is immediate data. Most assemblers
automatically make this distinction.

VMPU-74

TOSHIBA TLCS-68000
ADDA Add Address ADDA
Operation Source + Destination — Destination

Assembler

Syntax ADDA <ea>, An

Attributes Size = (Word, Long word)

Description Add the source operand to the destination address register, and store the
result in the address register. The size of the operation may be specified to be
word or long word. The entire destination address register is used regardless
of the operation size.

Condition Codes Not affected

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
111101 Register | Op-Mode Effective Address
An Mode | Register

Instruction Fields

Register field — Specifies any of the eight address registers. This is always the
destination.
Op-Mode field — Specifies the size of the operation:
011 — word operation. The source operand is sign-extended to a operand
and the operation is performed on the address register using all 32
bits.

111 — long word operation.

Effective Address field — Specifies the source operand. All addressing modes

are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An 001 reg, number :An Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PQ) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 11 100

VMPU-75

TOSHIBA TLCS-68000
ADDI Add Immediate ADDI
Operation Immediate Data + Destination — Destination

Assembler

Syntax ADDI #<data>, <ea>

Attributes Size = (Byte, Word, Long word)

Description Add the immediate data to the destination operand, and store the result in
the destination location. The size of the operation may be specified to be byte,
word, or long word. The size of the immediate data matches the operation
size.

Condition Codes

X N Z VvV C

[

T+ 1]

N <N Z

X

Instruction Format:

15 14 13 12 11 10 9

8

Set the same as the carry bit.

7 6

5

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.

4 3 2 1

0

0j0|0j0}f0]1

1

0

Size

Effective Address
Mode | Register

Word Data

Byte Data

Long Word Data (includes Previous Word)

Instruction Fields :

Size field — Specifies the size of the operation:

00 — byte operation.

01 — word operation.

10 — long word operation.

Effective Address field —

Specifies the destination operand. Only data alterable

addressing modes are allowed as shown:

VMPU-76

TOSHIBA TLCS-68000
Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000
(An) 010 reg, number :An Abs.L 111 001
(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8(PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -

Immediate field — (Data immediately following the instruction):
If size = 00, then the data is the low order byte of the immediate word.

If size = 01, then the data is the entire immediated word.

If size = 10, then the data is the next two immediated words.

VMPU-77

TOSHIBA TLCS-68000
ADDQ Add Quick ADDQ
Operation Immediate Data + Destination — Destination

Assembler

Syntax ADDQR #<data>, <ea>

Attributes Size = (Byte, Word, Long word)

Description Add the immediate data to the operand at the destination location. The data
range is from 1 to 8. The size of the operation may be specified to be byte,
word, or long word. Word and long word operations are also allowed on the
address registers, in which case the condition codes are not affected. When
adding to address registers, the entire destination address register is used,
regardless of the operation size.

Condition Codes

X N Z VvV C

EIEIEIENEN

Set if the result is negative. Cleared otherwise.

Set if the result is zero. Cleared otherwise.
Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.

X N < N Z2

Set the same as the carry bit.
The condition codes are not affected if the destination is an address register.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ol1]0]1 Data 0| Ssize Effective Address
Mode | Register

Instruction Fields :

- Data field — Three bits of immediate data, 0, 1~7 representing a range of 8, 1

to 7 respectively.
Size field — Specifies the size of the operation:

00 — byte operation.
01 — word operation.
10 — long word operation.

VMPU-78

TOSHIBA TLCS-68000

ADDQ | ADDQ

Effective Address field — Specifies the destination location. Only alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An* 001 reg, number :An Abs.W 11 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -

- (An) 100 reg, number :An d8 (PC, Xn) - -

d16 (An) 101 reg, number :An #<data> - -

*: Word and Long word Only.

VMPU-79

TOSHIBA TLCS-68000
ADDX Add Extended ADDX
Operation Source + Destination + X — Destination

Assembler ADDX Dx, Dy

Syntax ADDX —(Ax), —(Ay)

Attributes Size = (Byte, Word, Long word)

Description Add the source operand to the destination operand along with the extend bit
and store the result in the destination location. The operands may be
addressed in two different ways:

1. Data register to data register: the operands are contained in data
registers specified in the instruction.
2. Memory to memory: the operands are addressed with the predecrement
addressing mode using the address registers specified in the instruction.
The size of the operation may be specified to be byte, word, or long word.
Condition Codes

X N Z V C

EIEIEEIEN

Set if the result is negative. Cleared otherwise.
Cleared if the result is non-zero. Unchanged otherwise.
Set if an overflow is generated. Cleared otherwise.

Set if a carry is generated. Cleared otherwise.

Set the same as the carry bit.

(NOTE)
Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion of

X N0 N 2Z

multiple-precision operations.

Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11|01 | Regisater | 1| size |0 | 0 |R/M| Register
Xy Xx

VMPU-80

TOSHIBA ' TLCS-68000
ADDX ADDX

Instruction Fields :

Register Xy field — Specifies the destination register:
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement addressing mode.

Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long word operation.

R/M field — Specifies the operand addressing mode:
0 — The operation is data register to data register.
1 — The operation is memory to memory.

Register Xx field — Specifies the source register:
IfR/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement addressing mode.

VMPU-81

TOSHIBA TLCS-68000

AND AND Logical AND

Operation : Source A Destination — Destination

Assembler AND <ea>,Dn

Syntax : AND Dn, <ea>
Attributes : Size = (Byte, Word, Long word)
Description : AND the source operand to the destination operand and store the result in

the destination location. The size of the operation may be specified to be byte,
word, or long word. The contents of an address register may not be used as an
operand.

Condition Codes

X N Z Vv ¢
[-[+[=lofo]

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.

N <N Z

Always cleared.
X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111101l 0 Register 0p- Mode Effective
Dn Mode | Register

Instruction Fields :
Register field — Specifies any of the eight data registers.
Op-Mode field — '

Byte Word Longword Operation
000 001 010 (<ea>)A(<Dn>)— <Dn>
100 101 110 (<Dn>)A(<ea>)— <ea>

Effective Address field — Determines addressing mode:
If the location specified is a source operand then only data addressing modes are
allowed as shown:

VMPU-82

TOSHIBA TLCS-68000
AND AND

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8(An, Xn) 110 reg, number

An - - Abs.W 11 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PQ) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

If the location specified is a destination operand then only alterable memory addressing
modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8(An, Xn) 110 reg, number

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PQ) - -

- (An) 100 reg, number :An d8 (PC, Xn) - -
-d16 (An) 101 reg, number :An #<data> - -

Notes: 1. If the destination is a data register, then it cannot be specified by using the
destination <ea> mode, but must use the destination Dn mode instead.

2. ANDI is used when the source is immediate data. Most assemblers
automatically make this distinction.

VMPU-83

TOSHIBA TLCS-68000
ANDI AND Immediate ANDI
Operation Immediate Data A Destination — Destination

Assembler

Syntax ANDI #<data>, <ea>

Attributes Size = (Byte, Word, Long word)

Description AND the immediate data to the destination operand and store the result in

the destination location. The size of the operation may be specified to be byte,
word, or long. The size of the immediate data matches the operation size.

Condition Codes

X N Z VvV C

L-l*[+«]ofo]
N : Set if the most significant bit of the result is set. Cleared otherwise.
Z : Setif the result is zero. Cleared otherwise.
V : Always cleared.
C : Always cleared.
X : Not affected.
Instruction Format :
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olololololo]l 1|0 size Effective Address
Mode | Register
Word Data Byte Data
Long Word Data (Includes Previous Word)

Instruction Fields :

Size field — Specifies the size of the operation:
00 — byte operation.

01 — word operation.

10 — long word operation.

Effective Address field — Specifies the destination operand. Only data alterable

addressing modes are allowes as shown:

VMPU-84

TOSHIBA TLCS-68000

ANDI ANDI
Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An - - Abs.W 11 000
(An) 010 reg, number :An Abs.L 111 001
(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8(PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -

Immediate field — (Data immediately following the instruction):

If size = 00, then the data is the low order byte of the immediate word.
01, then the data is the entire immediate word.
If size = 10, then the data is the next two immediate words.

If size

VMPU-85

TOSHIBA TLCS-68000
ANDIto CCR ANDI to CCR
AND Immediate to Condition Codes

Operation : SourceACCR—CCR

Assembler

Syntax : ANDI #<data>,CCR

Attributes : Size = (Byte)

Description : AND the immediate operand with the condition codes and store the result in

the low-order byte of the status register.

Condition Codes
X N Z V C
e e lefx]
N : Cleared if bit 3 of immediate operand is zero.
Z : Cleared if bit 2 of immediate operand is zero.
V : Cleared if bit 1 of immediate operand is zero.
C : Cleared if bit 0 of immediate operand is zero.

X : Cleared if bit 4 of immediate operand is zero.

Instruction Format:

Unchanged otherwise.
Unchanged otherwise.
Unchanged otherwise.
Unchanged otherwise.
Unchanged otherwise.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ololofofol1]olo]ola1]a]a]1]0]o0
ojofofolofo]o Byte Data (8 Bits)

VMPU-86

TOSHIBA TLCS-68000

ANDI to SR AND Immediate to the Status Register ANDI to SR

(Privileged Instruction)

Operation : If supervisor state
then Source ASR— SR
else TRAP;

Assembler

Syntax : ANDI #<data>,SR

Attributes : Size = (Word)

Description : AND the immediate operand with the contents of the status regiéter and
store the result in the status register. All bits of the status register are
affected.

Condition Codes

X N Z V C

BB

Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.

Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.

N < N Z

Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.
X : Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10
o|'0|0|o|0|0|1[0[0|1|1|1|1|1[0|0
Word Data (16 Bits)

VMPU-87

TOSHIBA TLCS-68000
ASL Arithmetic Shift ASL
ASR ASR
Operation Destination Shifted by <count> — Destination
Assemble ASd Dx,Dy
Syntax ASd #<data>, Dy

ASd <ea>

where d is direction, L or R
Attributes Size = (Byte, Word, Long word)
Description Arithmetically shift the bits of the operand in the direction (L or R) specified.

The carry bit receives the last bit shifted out of the operand. The shift count
for the shifting of a register may be specified in two different ways:
1. Immedicate: the shift count is specified in the instruction
(shift range, 1~8).
2. Register: the shift count is contained in a data register specified in the
instruction (shift count is modulo 64).
The size of the operation may be specified to be byte, word, or long. The
content of memory may be shifted one bit only, and the operand size is
restricted to a word.

For ASL, the operand is shifted left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and the
extend bits; zeroes are shifted into the low order bit. The overflow bit
indicates if any sign changes occur during the shift.

ASL : <————{ Operand ‘ﬂ
[x —

For ASR, the operand is shifted right; the number of positions shifted is the
shift count. Bits shifted out of the low order bit go to both the carry and the
extend bits; the sign bit (MSB) is replicated into the high order bit.

ASR: —»‘ MSB ‘ Operand ‘——»

VMPU-88

TOSHIBA _ ' TLCS-68000

ASL ASL
ASR ASR
Condition Codes :

X N Z V C

[

N : Setif the most significant bit of the result is set. Cleared otherwise.

Z : Setifthe result is zero. Cleared otherwise.

Vv Set if the most significant bit is changed at any time during the shift
operation. Cleared otherwise.

C : Setaccording to the last bit shifted out of the operand. Cleared for a shift
count of zero.

X : Setaccording to the last bit shifted out of the operand. Unaffected for a
shift count of zero.

Instruction Format (Register Shifts)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111110 Count dr| Size |i/r| 0 | 0 | Register
Register

Instruction Fields (Register Shifts) :

Count/Register field — Specifies shift count or register where count is located:
If i/r= 0, the shift count is specified in this field. The values 0, 1~7 represent a
range of 8, 1 to 7 respectively.
If i/r= 1,the shift count (modulo 64) is contained in the data register specified in
this field.

dr field — Specifies the direction of the shift:
0 — shift right.
1 — shift left.

Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.

VMPU-89

TOSHIBA ' TLCS-68000

ASL | ASL
ASR ASR

i/r field —
If i/r = 0, specifies immediate shift count.
If i/r =1, specifies register shift count.

Register field — Specifies a data register whose content is to be shifted.

Instruction Format (Memory Shifts):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1110000]|dr|1]1 Effective Address
Mode | Register

Instruction Fields (Memory Shifts):
dr field — Specifies the direction of the shift:
0 — shift right
1 — shfit left
Effective Address field — Specifies the operand to be shifted. Only memory alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8(An, Xn) 110 "reg, number :An
An - - Abs.W 1 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An . d16(PC) - -

- (An) 100 reg, number :An d8 (PC, Xn) - -

d16 (An) 101 reg, number :An #<data> - -

VMPU-90

TOSHIBA TLCS-68000
Bee Branch Conditionally Bee
Operation If (condition true) then PC + disp — PC;

Assembler

Syntax Bee <label>

Attributes Size = (Byte, Word)

Description If the specified condition is met, program execution continues at location
(PC)+ displacement. The displacement is a twos complement integer which
counts the relative distance in bytes. The value in the PC is the sign-
extended instruction location plus two. If the 8-bit displacement in the
instruction word is zero, then the 16-bit displacement (word immediately
following the instruction) is used. “cc” may specify the following conditions:

(de carry clear 0100 C
(&) carry set 0101 C
EQ equal 0111 z
GE greater or equal 1100 N-V+N-V
GT greater than 1110 N*V-Z+N-V+Z
HI high 0010 c-Z
LE less or equal 1111 Z+N-V4+N-V
LS low or same 0011 C+2Z
LT less than 1101 N-V+N-V
mi minus 1011 N
NE not equal 0110 Z
PL plus 1010 N
VvC overflow clear 1000 V.
VS overflow set 1001 \"
*: Boolean AND + :Boolean OR N : Boolean NOT N
Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

11110 Condition 8-bit Displacement

16-Bit Displacement if 8-Bit Displacement = $00

VMPU-91

TOSHIBA TLCS-68000

Bece Bee

Instruction Fields :
Condition field — One of fourteen conditions discussed in description.
8-Bit Displacement field — Twos complement integer specifying the relative distance
(in bytes) between the branch instruction and the next instruction to be executed
if the condition is met.
16-Bit Displacement field — Allows a larger displacement than 8 bits. Uesd only if
the 8-bit displacement is equal to $00.

Note: A short branch to the immediately following instruction cannot be generated,
because it would result in a zero offset, which forces a word branch instruction
definition.

VMPU-92

TOSHIBA

TLCS-68000

BCHG

Operation

Assembler
Syntax

Attributes

Description

Test a Bit and Change BCHG

~(<bitnumber> of Destination) = Z;
~(<bit number> of Destination) — <bit number> of Destination

BCHG Dn, <ea>
BCHG #<data>, <ea>

Size = (Byte, Long word)

A bit in the destination operand is tested and the state of the specified bit is
reflected in the Z condition code. After the test, the state of the specified bit is
changed in the destination. If a data register is the destination, then the bit
numbering is modulo 32 allowing bit manipulation on all bits in a data
register. If a memory location is the destination, a byte is read from that
location, the bit operation is performed using the bit number, modulo 8, and
the byte is written back to the location. In all cases, bit zero refers to the least
significant bit. The bit number for this operation may be specified in two
different ways:
1. Immediate — the bit number is specified in a second word of the
instruction.
2. Register — the bit number is contained in a data register specified in the
instruction.

Condition Codes :

X N Z V C

- | - I * | B | N I

N
z
Vo
C

X :

Not affected.
Set if the bit tested is zero. Cleared otherwise.
Not affected.
Not affected.
Not affected.

Instruction Format (Bit Number Dynamic specified by a register)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0lo0| o] o| Register 11011 Effective Address
Dn Mode | Register

VMPU-93

TOSHIBA B TLCS-68000

BCHG BCHG

Instruction Fields (Bit Number Dynamic) :
Register field — Specifies the data register whose content is the bit number.
Effective Address field — Specifies the destination location. Only data alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn * 000 reg, number :Dn d8(An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 | reg, number:An Abs.L 11 001

(An) + 011 reg, number :An d16 (PC) - -

- (An) 100 reg, number :An d8(PC, Xn) - -

d16 (An) 101 reg, number :An #<data> - -

* : Long word only; all others are byte only.

Instruction Format (Bit Number Static, Specified as immedicate data) :

15 14 13.12 11 10 9 8 7 6 5 4 3 2 1 0

o|ojojo}l1|lojojo]|0O|1 Effective Address
Mode | Register
0]0|0|O0OjO0O]|JO]jO]|O Bit Number

Instruction Fields (Bit Number Static) :
Effective Address field — Specifies the destination location. Only data alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn * 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -

- (An) 100 reg, number :An d8 (PC, Xn) - -

d16 (An) 101 reg, number :An #<data> - -

* : Long word only; all others are byte only.

Bit Number field —Specifies the bit number.

VMPU-94

TOSHIBA TLCS-68000
BCLR Test a Bit and Clear BCLR
Operation ~(<bitnumber> of Destination) —Z;
0 — <bitnumber> of Destination
Assembler BCLR Dn, <ea>
Syntax BCLR #<data>, <ea>
Attributes Size = (Byte, Long word)
Description A bit in the destination operand is tested and the state of the specified bit is

reflected in the Z condition code. After the test, the specified bit is cleared in

the destination. If a data register is the destination, then the bit numbering

is modulo 32 allowing bit manipulation on all bits in a data register. If a

memory location is the destination, a byte is read from that location, the bit

operation performed using the bit number, modulo 8, and the byte written

back to the location. In all cases, bit zero refers to the least significant bit.

The bit number for this operation may be specified in two different ways:

1. Immedicate —the bit number is specified in a second word of the
instruction.

2. Register —the bit number is contained in a data register specified in the
instruction.

Condition Codes :
X N Z VvV C

[T-T-1-]

N < N Z

Not affected.
Set if the bit tested is zero. Cleared otherwise.
Not affected.
Not affected.
Not affected.

Instruction Format (Bit Number Dynamic, specified in a register) :
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

olo|o| Register | 11110 Effective Address
Dn Mode | Register

Instruction Fields (Bit Number Dynamic) :

Register field — Specifies the data register whose content is the bit number.

VMPU-95

TOSHIBA TLCS-68000
BCLR BCLR
Effective Address field — Specifies the destination location.
Only data alterable addressing modes are allowed as shown:
Addr. Mode Mode Register Addr. Mode Mode Register
Dn * 000 reg, number :Dn d8(An, Xn) 110 reg, number :An
An - - Abs.W 111 000
(An) 010 reg, number :An Abs.L 111 001
(An) + 011 reg, number :An d16 (PQ) - -
- (An) 100 reg, number :An d8(PC, Xn) - -
d16 (An) 101 -reg, number :An #<data> - -
* : Long only; all others are byte only.
Instruction Format (Bit Number Static, specified as immediate data):
15 14 13 12 11 10 9 8 7 6 5 4 3 1.0
olololol1loflolol1]o0 Effective Address
Mode | Register
ojojojO0OjO|OjO]O Bit Number
Instruction Fields (Bit Number Static) :
Effective Address field — Specifies the destination location.
Only data alterable addressing modes are allowed as shown:
Addr. Mode Mode Register Addr. Mode Mode Register
Dn* 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000
(An) 010 reg, number :An Abs.L 1 001
(An) + 011 reg, number :An d16 (PQ) - -
- (An) 100 reg, number :An d8 (PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -

* : Long only; all others are byte only.

Bit Number field —Specifies the bit number.

VMPU-96

TOSHIBA TLCS-68000
BKPT Breakpoint BKPT
Operation Execute breakpoint acknowledge bus cycle;
Trap as illegal instruction
Assembler
Syntax BKPT #<data>
Attributes Unsized
Description This instruction is used to support the program breakpoint function for debug
monitors and real-time hardware emulators, and the operation will be
dependent on the implementation. Execution of this instruction will cause
the TMP68010 to run a breakpoint acknowledge bus cycle (all function codes
driven high) and zeros on all address lines.
Whether the breakpoint acknowledge bus cycle is terminated with
DTACK, BERR, or VPA, the processor always
takes an illegal instruction exception. During exception processing, a debug
monitor can distinguish eight different software breakpoints by decoding the
field in the BKPT instruction.
For the TMP68000 and TMP68008, this instruction causes an illegal
instruction exception but does not run the breakpoint acknowledge bus cycle.
Condition Codes : Not affected.

Instruction Format :

15

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

1tj]0f0{1f0j0|0j0;1]|0(f0]| 1| BKPT#

Instruction Fields
BKPT # = Immediate data (value = 0~7), encodes 8 software breakpoints.

VMPU-97

TOSHIBA _ TLCS-68000

BRA Branch Always BRA
Operation ~: PC +disp—PC

Assembler

Syntax . BRA <label>

Attributes : Size = (Byte, Word)

Description : Program execution continues at location (PC) + displacement. The

displacement is a twos complement initeger, which counts the relative
distance in bytes. The value in the PC is the instruction location plus two. If
the 8-bit displacement in the instruction word is zero, then the 16-bit’
displacement (word immediately following the instruction) is used.

Condition Codes : Not affected.
Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1. 0
o(f17]1(0|]0j0|0]}]0O 8-Bit Displacement

16-Bit Displacement if 8-Bit Displacement = $00

Instruction Fields :
8-Bit Displacement field — Two complement integer specifying the relative distance
(in bytes) between the branch instruction and the next instruction to be executed

16-Bit Displacement field — Allows a larger displacementthan 8 bits. Used only if the
8-bit displacement is equal to $00.

Note: A short branch to the immediately following instruction cannot be generated
because it would result in a zero offset, which forces a word branch instruction
definition.

VMPU-98

TOSHIBA TLCS-68000
BSET Test a Bit and Set BSET
operation ~(<bitnumber> of Destination) = Z;

1 — <bit number> of Destination

Assembler BSET Dn, <ea>

Syntax BSET #<data>, <ea>

Attributes Size = (Byte, Long word)

Description A bit in the destination operand is tested, and the state of the specified bit is
reflected in the Z condition code. After the test, the specified bit is set in the
destination. If a data register is the destination, then the bit numbering is
modulo 32, allowing bit manipulation on all bits in a data register. If a
memory location is the destination, a byte is read from that location, the bit
operation performed using the bit number, modulo 8, and the byte written
back to the location. Bit zero refers to the least significant bit. The bit
number for this operation may be specified in two different ways:

1. Immediate — the bit number is specified in a second word of the
instruction.

2. Register — the bit number is contained in a data register specified in the
instruction.

Condition Codes :

X N Z VvV C

LT T-T]

N < N Z

X :

Not affected.
Set if the bit tested is zero. Cleared otherwise.
Not affected.
Not affected.
Not affected.

Instruction Format (Bit Number Dynamic, specified in a register) :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

0| 0| 0| Register 1111 Effective Address
Mode | Register

Instruction Fields (Bit Number Dynamic) :
Register field — Specifies the data register whose content is the bit number.
Effective Address field — Specifies the destination location. Only data alterable
addressing modes are allowed as shown:

VMPU-99

TOSHIBA TLCS-68000
BSET BSET

Addr. Mode Mode Register Addr. Mode Mode Register

Dn * 000 reg, number :Dn d8(An, Xn) 110 reg, number :An

An - - Abs.W 11 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -

- (An) 100 reg, number :An d8 (PC, Xn) ~ -

d16 (An) 101 reg, number :An #<data> -~ -

* :Long word only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data) :

15 14 13 12 11 10 9 8 7 6 5 4 3 1. 0

olololol1lololol1]1 Effective Address
Mode | Register

ojojojojojojojo Bit Number

Instruction Fields (Bit Number Static) : ‘
Bit Number field — Specifies the bit number.
Effective Address field — Specifies the destination location.

addressing modes are allowed as shown:

Only data alterable

Addr. Mode Mode Register Addr. Mode Mode Register

Dn * 000 reg, number :Dn d8(An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An 'd16 (PC) - -

- (An) 100 reg, number :An d8 (PC, Xn) - -

d16 (An) 101 reg, number :An -#<data> - -

* :Long word only; all others are byte only.

VMPU-100

TOSHIBA ‘ TLCS-68000

BSR Branch to subroutine BSR
Operation : SP — 4—-8P; PC —(SP); PC + disp—PC

Assembler

Syntax : BSR <label>

Attributes : Size = (Byte, Word)

Description : The long word address of the instruction immediately following the BSR
instruction is pushed onto the system stack. Program execution then
continues at location (PC)+ displacement. The displacement in a twos
complement integer which counts the relative distances in the bytes. The
value in the PC is the instruction location plus two. If the 8-bit displacement
in the instruction word is zero, then the 16-bit displacement (word
immediately following the instruction) is used.

Condition Codes : Not affected.

Instruction Format :

15 14 13 12 11 10 ¢ 8 7 6 5 4 3 2 1.0
ol1|1]l0|lo0o|Oofo0O]|n1 8-Bit Displacement

16-Bit displacement if 8-Bit Displacement = $00

Instruction Fields :
8-Bit Displacement field — Twos complement integer specifying the relative distance
(in bytes) between the branchinstruction and the next instruction to be executed.

16-Bit Displacement field — Allows a larger displacement than 8 bits. Used only if the
8-bit displacement is equal to $00.

Note: A short subroutine branch to the immediately following instruction cannot be
generated because it would result in a zero offset, which forces a word branch
instruction definition.

VMPU-101

TOSHIBA TLCS-68000
BTST Test a Bit BTST
Operation ~(< bitnumber > of Destination) = Z;

Assembler BTST Dn, <ea>

Syntax BTST #<data>, <ea>

Attributes Size = (Byte, Long word)

Description A Dbit in the destination operand is tested, and the state of the specified bit is
reflected in the Z condition code. If a data register is the destination, then the
bit numbering is modulo 32, allowing bit manipulation on all bits in a data
register. If a memory location is the destination, a byte is read from that
location, and the bit operation performed using the bit number, modulo 8,
with zero referring to the least significant bit. The bit number for this
operation may be specified in two different ways:

1. Immediate — the bit number is specified in a second word of the
instruction.

2. Register — the bit number is contained in a data register specified in
theinstruction.

Condition Codes :

X N Z V C

-]

L[+]
N
z
Vo
C

X

Not affected.
Set if the bit tested is zero. Cleared otherwise.
Not affected.
Not affected.
Not affected.

Instruction Format (Bit Number Dynamic, specified in a register) :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

0|0 |o| Register {1 |00 Effective Address
Dn Mode | Register

Instruction Fields (Bit Number Dynamic) :

Register field —Specifies the data register whose content is the bit number.
Effective Address field —Specifies the destination location. Only data addressing modes
are allowed as shown:

VMPU-102

TOSHIBA TLCS-68000

BTST BTST

Addr. Mode Mode Register Addr. Mode Mode Register

Dn* 000 reg, number :Dn d8(An, Xn) 110 reg, number :An

An - - Abs W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PQ) 11 010

- (An) 100 reg, number :An d8(PC, Xn) 111 om

d16 (An) 101 reg, number :An #<data> 111 100

* : Long word only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data) :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ojlojlolo{1|olo|loj0O]|oO Effective Address
Mode | Register
0|0|]O0OjJO0O|O]|]O]JO]O Bit Number

Instruction Fields (Bit Number Static) :
Bit Number field —Specifies the bit number.
Effective Address field —Specifies the destination location. Only data addressing modes
are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn * 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PQ) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> - -

* : Long word only; all others are byte only.

VMPU-103

' TOSHIBA

TLCS-68000

CHK Check Register Against Bounds CHK

Operation If Dn <0 or Dn>Source then TRAP;

Assembler

Syntax CHK <ea>,Dn

Attributes Size = (Word)

Description The content of the low order word in the data register specified in the
instruction is examined and compared to the upper bound. The upper bound
is a twos complement integer. If the register value is less than zero or greater
than the upper bound, then the processor initiates exception processing. The
vector number is generated to reference the CHK instruction exception
vector.

Condition Codes

X N Z VvV C

L-l«Jujufu]

Set if Dn < 0; cleared if Dn>Source. Undifined otherwise.
Undefined.

Undefined.

Undefined.

Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o|1] 0| 0| Register |1 Effective Address
Dn Mode | Register

Instruction Fields
Register field —Specifies the data register whose content is checked.
Effective Address field — Specifies the upper bound operand word.

Only data addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PQ) 111 010

- (An) 100 reg, number :An d8(PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 1M1 100

VMPU-104

TOSHIBA TLCS-68000
CLR Clear an Operand CLR
Operation 0 —Destination
Assembler
Syntax CLR <ea>
Attributes Size = (Byte, Word, Long word)
Description The destination is cleared to all zero. The size of the operation may be
specified to be byte, word, or long word.

Condition Codes

X N Z V C

[-[ofr]o]o]

Always cleared.
Always set.
Always cleared.
Always cleared.
X : Not affected.

N <N Z

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o|1]|]0]0]|0]|1 Effective Address
Mode | Register

Size

Instruction Fields -:
Size field — Specifies the size of the operation.
00 — byte operation.
01 — word operation.
10 — long word operation. _
Effective Address field —Specifies the destination location. Only data alterable addressing
modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000
(An) 010 reg, number :An Abs.L 111 001
(An) + 011 reg, number :An d16 (PQC) - -
- (An) 100 reg, number :An d8 (PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -
Note: A memory destination is read before it is written to.

VMPU-105

TOSHIBA TLCS-68000

CMP Compare CLP
Operation : Destination —Source

Assembler

Syntax : CMP <ea>,Dn

Attributes : Size = (Byte, Word, Long word)

Description : Subtract the source operand from the specified data register and set the

condition codes according to the result; the data register is not changed. The
size of the operation may be byte, word, or long word.

Condition Codes
X N Z V C
L[e fe]+]
N : Set if the result is negative. Cleared otherwise.
Z : Setifthe result is zero. Cleared otherwise.
V : Setifan overflow is generated. Cleared otherwise.
C : Setifaborrow is generated. Cleared otherwise.

X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11010111 Register | Op-Mode Effective Address
Dn Mode | Register

Instruction Fields
Register field- — Specifies the destination data register.
Op-Mode field — »
Byte Word Long word Operation
000 001 010 Dn-(<ea>)

Effective Address field —Specifies the source operand. All addressing modes are allowed
as shown: o

VMPU-106

TOSHIBA TLCS-68000
CMP CMP

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An * 001 reg, number :An Abs.W 1M 000

(An) 010 reg, number :An Abs.L 1M1 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

* : Word and Long word only.

Note: CMPA is used when the destination is an address register. CMPI is used when
the source is immediate data. CMPM is used for memory to memory compares.

Most assemblers automatically make this distinction.

VMPU-107

TOSHIBA TLCS-68000

CMPA Compare Address CMPA
Operation : Destination — Source

Assembler A

Syntax : CMPA <ea>, An

Attributes : Size = (Word, Long word)

Description : Subtract the source operand from the destination address register and set the

condition codes according to the result; the address register is not changed.
The size of the operation may be specified to be word or long word. Word
length source operands are sign extended to 32-bit quantities before the
operation is done.

Condition Codes
X N Z VvV C

BRI

N Set if the result is negative. Cleared otherwise.

z Set if the result is zero. Cleared otherwise.

V : Setif an overflow is generated. Cleared otherwise.
C : Setifaborrow is generated. Cleared otherwise.

X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

110111 Register Op-Mode Effective Address
An Mode | Register

Instruction Fields :
Register field — Specifies the destination data register.
Op-Mode field —Specifies the size of the operation:
011 — word operation. The source operand is sign-extened to a long operand and
the operation is performed on the address register using all 32 bits.
111 — long operation.
Effective Address field —Specifies the source operand. All addressing modes are
allowed as shown:

VMPU-108

TOSHIBA

TLCS-68000

CMPA CMPA

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An

An 001 reg, number :An Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PQ) 111 010

- (An) 100 reg, number :An d8(PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 11 100

VMPU-109

TOSHIBA . TLCS-68000

CMPI Compare Immediate CMPI
Operation : Destination — Immediate Data

Assembler

Syntax . CMPI #<data>, <ea>

Attributes : Size = (Byte, Word, Long word)

Description : Subtract the immediate data from the destination operand and set the

condition codes according to the result; the destination location is not
changed. The size of the operation may be specified to be byte, word, or long
word. The size of the immediate data matches the operation size.

Condition Codes
X N Z VvV C

BB

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.

X : Not affected.

N < N 2

Instruction Format: .
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

olololol1]110flo]l size Effective Address
Viode | Register
Word Data Byte Data
Long word Data

Instruction Fields
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long word operation.
Effective Address field — Specifies the destination operand. Only data alterable
addressing modes are allowed as shown:

VMPU-110

TOSHIBA TLCS-68000
CMPI CMPI

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8(An, Xn) 110 reg, number :An

An - - Abs.W ' 111 000

(An) 010 reg, number :An Abs.L 1M1 001

(An) + 0m reg, number :An d16 (PC) - -

- (An) 100 reg, number :An d8(PC, Xn) - -

d16 (An) 101 reg, number :An #<data> - -

Immediate field — (Data immediately following the instruction) :

If size = 00, then the data is the low order byte of the immediate word.
If size = 01, then the data is the entire immeidate word.

If size = 10, then the data is the next two immediate words.

VMPU-111

TOSHIBA TLCS-68000
CMPM Compare Memory CMPM
Operation Destination — Source

Assembler .

Syntax CMPM (Ax)+, (Ay)+

Attributes Size = (Byte, Word, Long word)

Description Subtract the source operand form the destination operand, and set the
condition codes according to the results; the destination location is not
changed. The operands are always addressed with the postincrement
addressing mode, using the address registers specified in the instruction.
The size of the operation may be specified to be byte, word, or long word.

Condition Codes

X N Z VvV C

HEEEEN

N <N Z

X :

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l

1T0 l 1 | 1 | Register Ay [1 ‘ Slze I 0 l 0 (1 I Register Ax 1

Instruction Fields :
Register Ay field —(always the destination) Specifies an address register for the

postincrement addressing mode.

Size field —Specifies the size of the operation:

00 — byte operation.

01 — word operation.

10 — long word operation.
Register Ax field —(always the source) Specifies an address register for the
postincrement addressing mode.

VMPU-112

TOSHIBA TLCS-68000
DBce Test Condition, Decrement, DBece
and Branch

Operation If condition false then (Dn —1 — Dn; if Dn # —1 then PC + disp — PC):
Assembler

Syntax DBce Dn, <label>

Attributes Size = (Word)

Description This instruction is a looping primitive of three parameters: a condition, a

counter (data register), and a displacement. The instruction first tests the
condition to determine if the termination condition for the loop has been met,
and if so, no operation is performed. If the termination condition is not true,
the low order 16-bits of the counter data register are decremented by one. If
the result is —1, the counter is exhausted and execution continues with the
next instruction. If the result is not equal to —1, execution continues at the
location indicated by the current value of the PC plus the sign-extended 16-
bit displacement. The value in the PC is the current instruction location plus

two.

“cc” may specify the following conditions:

cc carry clear 0100 |C°

cs carry set 0101 C

EQ equal 0111 z

F never true 0001 0

GE greater or equal 1100 |[N*V+N-V

GT greater than 1110 |N*V+*Z+N-*V-Z
HI high 0010 |C-Z

LE less or equal 1111 |Z+N-V+N+V
LS low or same 0011 C+2

LT less than 1101 N-V4+N-V

Mi minus 1011 N

NE not equal 0110 |Z

PL plus 1010 [N

T always true 0000 1

vC overflow clear 1000 |V

VS overflow set 1001 \Y)
* = Boolean AND + = Boolean OR N = Boolean NOTN

VMPU-113

TOSHIBA TLCS-68000

DBce DBcc

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 -8 7 6 5 4 3 2 1 0
ol1]lo0ln1 Condition 1111001 Register

Displacement

Instruction Fields :
Condition field — One of the sixteen conditions discussed in discription.
Register field — Specifies the data register which is the counter.
Displacement field — Specifies the distance of the branch (in bytes).

Notes: 1. The terminating condition is like that definedby the UNTIL loop constructs of
high-level languages. For example: DBMI can be stated as “decrement and
branch until minus”.

2. Most assemblers accept DBRA for DBF for use when no condition is required for
termination of a loop.

3. There are two basic ways of entering a loop: at the beginning or by branching to
the trailing DBcc instruction. If a loop structure terminated with DBce is
entered at the beginning, the control index count must be one less than the
number of loop executions desired. This count is useful for indexed addressing
modes and dynamically specified bit operations. However, when entering a loop
by branching directly to the trailing DBcc instruction, the control index should
equal the loop execution count. In this case, if a zero count occurs, the DBcc
instruction will not branch, causing a complete bypass of the main loop.

VMPU-114

TOSHIBA TLCS-68000

DIVS Signed Divide DIVS

Operation Destination/Source — Destination

Assembler

Syntax DIVS <ea>,Dn 32/16—>16r:16g

Attributes Size = (Word)

Description Divide the destination operand by the source and store the result in the
destination. The operation is performed using signed arithmetic.

The destination operand is a long word and the source operand is a word. The

result is 32-bits, such that the quotient is in the lower word (least significant

16 bits)of the destination and the remainder is in the upper word (most

significant 16 bits) of the destination. Note that the sign of the remainder is

the same as the sign of the dividend. '

Two special conditions may arise during the operation:

1. Division by zero causes a trap.

2. Overflow may be detected and set before completion of the instruction. If
overflow is detected, the condition is flagged but the operands are
unaffected.

Condition Codes:

Ll fe]-]0]

N :

Vo
C:
X

Set if the quotient is negative. Cleared otherwise. Undefined if overflow
or divide by zero.

Set if the quotient is zero. Cleared otherwise. Undefined if overflow or
divide by zero.

Set if division overflow is detected. Cleared otherwise.

Always cleared.

Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

0| 0| 0| Register 11111 Effective Address
Dn Mode | Register

VMPU-115

TOSHIBA TLCS-68000

DIVS DIVS

Instruction Fields :
Register field — Specifies any of the eight data registers. This field always specifies the
destination operand.

Effective Address field — Specifies the source operand. Only data addressing modes are
allowed as shown:

Addr. Mode “Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8(An, Xn) 110 reg, number :An
An - - Abs.W 1 000

(An) 010 reg, number :An Abs.L 11 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8(PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

Note: Overflow occurs if the quotient is larger than a 16-bit signed integer.

VMPU-116

TOSHIBA TLCS-68000
DIVU Unsigned Divide - DIVU
Operation Destination/Source — Destination

Assembler

Syntax DIVU <ea>,Dn 32/16 —16r:16q

Attributes Size = (Word)

Description Divide the destination operand by the source and store the result in the

Condition Codes
X N 2 VvV C

destination. The operation is performed using unsigned arithmetic.

The destination operand is a long word and the source operand is a word. The

result is 32-bits, such that the quotient is in the lower word (least significant

16-bits) of the destination and the remainder is in the upper word (most

significant 16 bits) of the destination. Note that the sign of the remainder is

the same as the sign of the dividend.

Two special conditions may arise during the operation:

1. Division by zero causes a trap.

2. Overflow may be detected and set before completion of the instruction. If
overflow is detected, the condition is flagged but the operands are
unaffected.

Ll l-]0]

N : Setif the quotient is negative. Cleared otherwise. Undefined if overflow
or divide by zero.

Z : Setif the quotient is zero. Cleared otherwise. Undefined if overflow or
divideby zero.

V : Setif division overflow is detected. Cleared otherwise.

C : Always cleared.

X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

olo| o | Register (g |11 Effective Address
Dn Mode | Register

VMPU-117

TOSHIBA TLCS-68000

DIVU DIVU

Instruction Fields
Register field — Specifies any of the eight data registers. This field always spesifies the
destination operand.

Effective Address field —Specifies the source operand. Only data addressing modes
are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8(An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 _reg, number :An #<data> 111 100

Note: Overflow occurs if the quotient is larger than a 16-bit unsigned integer.

VMPU-118

TOSHIBA TLCS-68000

EOR Exclusive OR Logical EOR
Operation : Source ® Destination — Destination

Assembler

Syntax : EOR Dn, <ea>

Attributes : Size = (Byte, Word, Long word)

Description : Exclusive OR the source operand to the destination operand and store the

result in the destination location. The size of the operation may be specified
to be byte, word, or long word. This operation is restricted to data registers as
the source operand. The destination operand is specified in the effective
address field.

Condition Codes :
X N Z V C

L f-l-]-]0]

Set if the most significant bit of the result is set. Cleared otherwise.

Set if the result is zero. Cleared otherwise.
Always cleared.

Always cleared.

X : Not affected.

N < N2

Instruction Format (word form) :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1101111 Register | Op-Mode Effective Address
Dn Mode | Register

Instruction Fields : .
Register field —Specifies any of the eight data registers.
Op-Mode field —
Byte Word Longword Operation .
100 101 110 <ea>® <Dx> — <ea>

Effective Address field —Specifies the destination operand. Only data alterable
addressing modes are allowed as shown:

VMPU-119

TOSHIBA TLCS-68000

EOR EOR

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn . d8(An, Xn) 110 reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 1M1 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 1 011

d16 (An) 101 reg, number :An #<data> 111 100

Note: Memory to data register operations are not allowed. EORI is used when the
source is immediate data. Most assemblers automatically make this
distinction.

VMPU-120

TOSHIBA TLCS-68000
EORI Exclusive OR Immediate EORI
Operation Immediate Data @ Destination — Destination

Assembler

Syntax EORI #<data>, <ea>

Attributes Size = (Byte, Word, Long word)

Description Exclusive OR the immediate data to the destination operand and store the
result in the destination location. The size of the operation may be specified
to be byte, word, or long word. The immediate data matches the operation
size. ’

Condition Codes

X N Z V C
L-[«[-[o]o]
Set if the most significant bit of the result is set. Cleared otherwise.

Set if the result is zero. Cleared otherwise.
Always cleared.

N < N2

Always cleared.
X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

olololol1lol1!l0] size Effective Address
Mode | Register
Word Data (16 Bits) Byte Data (8Bits)
Long word Data (32 Bits, including Previous Word)

Instruction Fields :
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long word operation.
Effective Address field — Specifies the destination operand. Omnly data alterable
addressing modes are allowed as shown:

VMPU-121

TOSHIBA TLCS-68000
EORI EORI

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8(An, Xn) 110 reg, number :An

An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -

- (An) 100 reg, number :An d8(PC, Xn) - -

d16 (An) 101 reg, number :An #<data> - -

Immediate field — (Data immediately following the instruction):

If size = 00, then the data is the low order byte of the immediate word.

If size = 01, then the data is the entire immediate word.
If size = 10, then the data is next two immediate words.

VMPU-122

TOSHIBA TLCS-68000

EORI to CCR Exclusive OR Immediate EORIto CCR
to Condition Code

Operation : Source ® CCR—CCR

Assembler

Syntax : EORI #<data>, CCR

Attributes : Size = (Byte)

Description : Exclusive OR the immediate operand with the condition codes and store the

result in the low-order byte of the status register.

Condition Codes
X N Z V C

N : Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z : Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V : Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C : Changed if bit 0 of immediate operand is one. Unchanged otherwise.
X : Changed if bit 4 of immediate operand is one. Unchanged otherwise.
Instruction Format:

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
oloflofo|1]ofn ojof{1f1][1]1]o]o0
ojofojojofofofo Byte Data (8 Bits)

VMPU-123

TOSHIBA TLCS-68000

EORItoSR . Exclusive OR Immediate EORI to SR
to the Status Register (Privileged Instruction)

Operation : If supervisor state
then Source ® SR— SR
else TRAP;
Assembler
Syntax : EORI #<data>, SR
Attributes : Size = (Word)
Description : Exclusive OR the immediate operand with the contents of the status register
and store the result in the status register. All bits of the status register are
affected.

Condition Codes
: X N Z V C

EIEIENENEN

N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V : Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changed if bit 0 of immediate operand is one. Unchanged otherwise.
X : Changed if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2
cjojojoj|1jof1fojo|1|1r|1|1(1]0

Word Data (16 Bits)

VMPU-124

TOSHIBA TLCS-68000

EXG Exchange Register EXG
Operation : XxoXy
Assembler EXG Dx, Dy
Syntax . EXG Ax, Ay
EXG Dx, Ay
Attributes : Size = (Long word)
Description : Exchange the contents of two registers. This exchange is always a long (32-

bit) operation. Exchange works in three modes:

1. Exchange data registers.

2. Exchange address registers.

3. Exchange a data register and an address register.

Condition Codes : Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 | 1 I UTO l Register Xx [1] Op-Mode Register Xy

Instruction Fields :

Register Xx field — Specifies either a data register or an address register depending on
the mode. If the exchange is between data and addrress registers, this field always
specifies the data register.
Op-Mode field — Specifies whether exchanging:

01000 — data registers.

01001 — address registers.

10001 — data register and address register.
Register Xy field — Specifies either a data register or an address register depending on
the mode. If the exchange is between data and address registers, this field always
specifies the address register.

VMPU-125

TOSHIBA TLCS-68000

EXT Sign Extend EXT
Operation : Destination Sign-extended — Destination

Assembler :

Syntax : EXT Dn

Attributes : Size = (Word, Long word)

Description : Extend the sign bit of a data register from a byte to a word, or from a word to

a long word, depending on the size selected. If the operation is word, bit [7] of
the designated data register is copied to bits [15:8] of that data register. If the
operation is long, bit [15] of the designated data register is copied to bits
[31:16] of the data register.

Condition Codes
X N Z V C
L-[«[+[0]0]
N : Set if the result is negative. Cleared otherwise.
Z : Setif the result is zero. Cleared otherwise.
V : Always cleared.
C : Always cleared.

X : Not affected.

Instruction Format:

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
lo|1|o[o|1|o[o{0pMode]ﬂo[o[aegimron

Instruction Fields :
Op-Mode field — Specifies the size of the sign-extension operation:
010 — Sign-extend low order byte of data register to word.
011 — Sign-extend low order word of data register to long word.
Register field — Specifies the data register whose content is to be sign-extended.

VMPU-126

TOSHIBA TLCS-68000
ILLEGAL Take Illegal Instruction Trap ILLEGAL
Operation SSP — 2 -SSP, Vector Offset —(SSP); l
SSP — 4 — SSP; PC—(SSP);
SSP — 2 —» SSP; SR—(SSP);
Illegal Instruction Vector Address = PC
Assembler
Syntax ILLEGAL
Attributes Unsized
Description This bit pattern causes an illegal instruction exception. All other illegal
instruction bit patterns are reserved for future exception of the
instruction set.
The TMP68010 will first write the exception vector offset and format code
to the system stack followed by the PC and SR to complete a 4-word
exception stack frame.
Condition Codes Not affected.

Instruction Format:
15 14 13 12 11

10 9 8 7 6 5 4 3 2 10
[ofr]ofofrfofrfofrfafrfrfr]rfofo]

VMPU-127

TOSHIBA TLCS-68000

JMP Jump JMP
Operation : Destination Address—PC

Assembler

Syntax : JMP <ea>

Attributes : Unsized

Description : Program execution continues at the effective address specified by the

instruction. The address is specified by the control addressing modes.
Condition Codes : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ot110f(o0|11]1]0]11]1 Effective Address
Mode | Register

Instruction Fields :
Effective Address field — Specifies the address of the next instruction. Only control
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8 (An, Xn) 110 reg, number :An
‘An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + - - d16 (PC) 111 010

- (An) - - d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> - -

VMPU-128

TOSHIBA TLCS-68000

JSR - Jump to Subroutine JSR
Operation : SP —4 —SP; PC—(SP);
Destination Address —PC
Assembler
Syntax : JSR <ea>
Attributes : Unsized

Description : The long word address of the instruction immediately following the JSR
instruction is pushed onto the system stack. Program execution then
continues at the address specified in the instruction.

Condition Codes : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ol1lolol1l1l1]lol1]o Effective Address
Mode | Register

Instruction Fields :
Effective Address field — Specifies the address of the next instruction. Only control
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8 (An, Xn) 110 reg, number :An
An - - Abs.W 11 000

(An) 010 reg, number :An Abs.L 111 001

(An) + - - d16 (PC) 111 010

- (An) - - d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> - -

VMPU-129

TOSHIBA TLCS-68000

LEA Load Effective Address LEA
Operation : <ea>—An

Assembler

Syntax : LEA <ea>,An

Attributes : Size = (Long word)

Description : The effective address is loaded into the specified address register. All 32 bits
of the address register are affected by this instruction.

Condition Codes : Not affected.

Instruction Format :
1514 13 12 11.10 9 8 7 6 5 4 3 2 1.0
o{1!0/ 0| Register 11111 Effective Address
An Mode | Register

Instruction Fields :
Register field — Specifies the address register which is to be loaded with the effective
address.
Effective Address field — Specifies the address to be loaded into the address register.
Only control addressingmodes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8(An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + - - d16 (PC) 111 010

- (An) - - d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> - -

VMPU-130

TOSHIBA TLCS-68000

LINK Link and Allocate LINK

Operation SP — 4 - SR; An—(SR);
SP — An; SP + disp —»SP

Assembler

Syntax LINK An, # <displacement>

Attributes Size = Unsized

Description The current content of the specified address register is pushed onto the stack.
After the push, the address register is loaded from the updated stack pointer.
Finally, the 16-bit sign-extended displacement operand is added to the stack
pointer. The content of the address register occupies one long word on the
stack. A negative displacement is specified to allocate stack area.

Condition Codes : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofl1]JofJolal1l1]ofJol1]lo]1]0] Register
Word Displacement
Instruction Fields :
Register field — Specifies the address register through which the link is to be
constructed.

Displacement field — Specifies the twos complement integer which is to be added to the
stack pointer.

Note:

LINK and UNLK can be used to maintain a linked list of local data and
parameter areas on the stack for nested subroutine calls.

VMPU-131

TOSHIBA TLCS-68000
LSL Logical Shift LSL
LSR LSR
Operation Destination Shifted by <count> — Destination
Assembler LSd Dx, Dy
Syntax LSd #<data>,Dy

LSd <ea>

where d is direction, L or R
Attributes Size = (Byte, Word, Long word) '
Description Shift the bits of the operand in the direction (L or R) specified. The carry bit

receives the last bit shifted out of the operand. The shift count for the

shifting of a register may be specified in two different ways:

1. Immediate — the shift count is specified in the instruction (shift range

1~8).

2. Registe — the shift count is contained in a data register specified in the
instruction (shift count modulo 64).

The size of the operation may be specified to be byte, word, or long word. The

content of memory may be shifted one bit only, and the operand size is

restricted to a word.

For LSL, the operand is shifted left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and the
extend bits; zeroes are shifted into the low order bit.

LSL : Operand I*—'!E'

For LSR, the operand is shifted right; the number of positions shifted is the shift
count. Bits shifted out of the low order bit go to both the carry and the extend
bits; zeroes are shifted into the high order bit.

VMPU-132

TOSHIBA TLCS-68000

LSL LSL
LSR LSR

LSR : @——ﬂ Operand

Condition Codes :

X N z V ¢
[« [-]«]of+]

N : Setif the result is negative. Cleared otherwise.

Z : Setifthe result is zero. Cleared otherwise.

V : Always cleared.

C : Set according to the last bit shifted out of the operand. Cleared for a shift
count of zero.

X : Set according to the last bit shifted out of the operand. Unaffected for a

shift count of zero.

Instruction Format (Register Shifts) :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111)1]0]| Count/ |dr) size |i/f|{ 0| 1| Register
Register

Instruction Field (Register Shifts) :
Count/Register field —
Ifi/fr = 0, he shift count is specified in this field. The values 0, 1~7 represent a range
of 8,1 to 7 respectively.
Ifi/fr =1, the shift count (modulo 64) is contained in the data register specified in
this field.
dr field — Specifies the direction of the shift:
0 — shift right.
1 — shift left.
Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long word operation
ifr field —
Ifi/r = 0, Specifies immediate shift count.
Ifi/r = 1, Specifies register shift count.
Register field — Specifies a data register whose content is to be shifted.

VMPU-133

TOSHIBA | TLCS-68000

LSL LSL
LSR LSR

Instruction Format (Memory Shifts) :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1] o 1 0dr] 1|1 Effective Address
! 00 ' Mode | Register

instruction Fields (Memory Shifts) :
dr field — Specifies the direction of the shift:
0 — shift right. '
1 — shift left.
Effective Address field — Specifies the operand to be shifted. Only memory alterable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - d8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -

- (An) 100 reg, number :An d8 (PC, Xn) - -

d16 (An) 101 reg, number :An #<data> - -

VMPU-134

TOSHIBA TLCS-68000

MOVE Move Data from Source to Destination MOVE
Operation : Source— Destination

Assembler

Syntax : MOVE <ea>, <ea>

Attributes : Size = (Byte, Word, Long word)

Description : Move the content of the source to the destination location. The data is

examined as it is moved, and the condition codes set accordingly. The size of
the operation may be specified to be byte, word, or long word.

Condition Codes
X N Z Vv C
[-[+[-]o]o]
N : Setif the result is negative. Cleared otherwise.
Z : Setif the result is zero. Cleared otherwise.
V : Always cleared.
C : Always cleared.

X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ol ol size Destination Effective Address
Register | Mode Mode | Register

Instruction Fields
Size field — Specifies the size of the operand to be moved:
01 — byte operation.
11 — word operation.
10 — long word operation.
Destination Effective Address field — Specifies the destination location. Omnly data
alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) - -

- (An) 100 reg, number :An d8 (PC, Xn) - -

d16 (An) 101 reg, number :An #<data> - -

VMPU-135

TOSHIBA TLCS-68000

MOVE MOVE

Source Effective Address field — Specifies the source operand. All addressing modes are
allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An* 001 reg, number :An Abs. W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

* . For byte size operation, address register direct is not allowed.

Notes: 1. MOVEA is used when the destination is an address register. Most assemblers
automatically make this distinction.

2. MOVEQ can also be used for certain operations on data registers.

VMPU-136

TOSHIBA TLCS-68000
MOVE from CCR Move from the MOVE from CCR
Condition Code Register

Operation CCR—Destination

Assembler

Syntax MOVE CCR, <ea>

Attributes Size = (Word)

Description The content of the status register is moved to the destination location. The
source operand is a word, but only the low order byte contains the
conditioncodes. The upper byte is all zeroes.

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
of1]l0{0]|0]|0]1 1 Effective Address
Mode | Register

Instruction Fields
Effective Address field — Specifies the destination location. Only data alterable
addressing modes are allowed as shown:

Addr. Mode Mcde Register Addr. Mcde Maode Register
Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000
(An) 010 reg, number :An Abs.L 111 001
(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8 (PC, Xn) - -
d16 (An) 101 reg, number :An #<data> - -
Notes: MOVE from CCR is a word operation. ANDI, ORI, and EORI to CCR are byte

operations.

VMPU-137

TOSHIBA

MOVE to CCR Move to the Condition Code Register

operand is a word, but only the low order byte is used to update the condition

Operation Source —-CCR
Assembler
Syntax MOVE <ea>, CCR
Attributes Size = (Word)
Description

codes. The upper byte is ignored.
Condition Codes

X N 7

VvV _C

Lol fef=Tx]

N < N Z

Set the same as bit 3 of the source operand.
Set the same as bit 2 of the source operand.

Set the same as bit 1 of the source operand.

Set the same as bit 0 of the source operand.

Set the same as bit 4 of the source operand.

Instruction Format:

15

14 13

12

11

10 9

8

7 6

5

4 3 2 1

The content of the source operand is moved to the condition codes. The source

0

0

1

0

0

0

1

0

0

Effective Address
Mode | Register

Instruction Fields :

Effective Address field — Specifies the location of the source operand. Only data

addressing modes are allowed as shown:

VMPU-138

TLCS-68000

MOVE to CCR

TOSHIBA TLCS-68000

MOVE to CCR MOVE to CCR

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8(An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) . 101 reg, number :An #<data> 111 100

Notes: MOVE to CCR is a word operation. ANDI, ORI, and EORI to CCR are byte
operations.

VMPU-139

TOSHIBA TLCS-68000

MOVE to SR Move to the Status Register MOVE to SR

(Privileged Instruction)

Operation : If supervisor stsate
then Source—SR
else TRAP;

Assembler)

Syntax : MOVE <ea>, SR

Attributes : Size = (Word)

Description : The content of the source operrand is moved to the status registe. The
sourrce operarnd is a word and all bits of the status register are affected.

Condition Codes : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

of{1/o0lojo|1]l1|0/|1]1 Effective Address
Mode | Register

Instruction Fields
Effective Address field — Specifies the locaation of the source operand. Only data
addressing modes are allowed as shown: '

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg, number :Dn d8(An, Xn) 110 reg, number :An
An - - Abs.W 111 000

(An) 010 reg, number :An Abs.L 111 001

(An) + 011 reg, number :An d16 (PC) 111 010

- (An) 100 reg, number :An d8 (PC, Xn) 111 011

d16 (An) 101 reg, number :An #<data> 111 100

VMPU-140

TOSHIBA TLCS-68000

MOVE from SR Move from the Status Register MOVE from SR

Operation SR—Destination

Assembler

Syntax MOVE SR, <ea>

Attributes Size = (Word)

Description The content of the status register is moved to the destination location. The
operand size is a word.

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11
of1jo0jo0ofjo0o}jo|0}j0O|1]1

10 9 8 7 6 5 4 3 2 1 0

Effective Address
Mode | Register

Instruction Fields
Effective Address field — Specifies the destination location. Only data alterrable
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg, number :Dn d8 (An, Xn) 110 reg, number :An
An - - Abs.W 111 000
(An) 010 reg, number :An Abs.L 11 001
(An) + 011 reg, number :An d16 (PC) - -
- (An) 100 reg, number :An d8 (PC,” Xn) - -
d16 (An) 101 reg, number :An #<data> - -
Note: A memory destination is read beforre it is wrritten to.

VMPU-141

TOSHIBA TLCS-68000

Move from SR Move from the Status Register Move from SR

(Privileged Instruction)

Operation : If supervisor state
then SR — Destination
else TRAP;
Assembler
Syntax : MOVE SR, <ea>

Attributes : Size = (Word)

Description : The content of the status register is moved to the destination location.
The operand size is a word.

Condition Codes : Not affected.

Instruction Format:

15 14 13 12- 11 10 9 8 7 6 5 4 3 2 1 0

ojl1]/]0]l0lo|lojJoOo]O] 1|1 Effective Address
Mode | Register

Instruction Fields :

Effective Address field — Specifies the destination location. Only data alterable
addressing modes are allowed as shown:

Add. Mode Mode Register Add. Mode Mode Register
Dn 000 reg. Number:An d8 (An, Xn) 110 | reg. Number:An
An - - Abs. W 111 000
(An) 010 reg. Number:An Abs. L 111 001
(An) + 011 reg. Number:An d16 (PQ) - -
—-(An) 100 reg. Number:An d8(PC, Xn) - -

d16 (An) 101 reg. Number:An #<data> - -

Note: Use the MOVE from CCR instruction to access only the condition codes.

VMPU-142

TOSHIBA TLCS-68000

Move USP Move User Stack Pointer Move USP

(Privileged Instruciton)

Operation : If supervisor state
thenUSP — Anor An —USP
else TRAP;
Assembler MOVE USP, An
Syntax : MOVE An, USP
Attributes : Size = (Long word)
Description : The contents of the user stack pointer are transferred to or from the specified

-address register.

Condition Codes : Not affected.
Instruction Format:
15 14 13 12 11 10 9 8 7 6- 5 4 3 2 1.0
oj1]/o|lol1f{1]1]0]0o]|1]1]|0]|dr| Address
Register

Instruction Fields :

dr field — Specifies the direction of transfer:

0 — transfer the address register to the USP.

1 — transfer the USP to the address register.
Register field — Specifies the address register to or from which the user stack pointer is
to be transferred.

VMPU-143

TOSHIBA TLCS-68000
MOVEA Move Address MOVEA
Operation Source — Destination

Assembler

Syntax MOVEA <ea>, An

Attributes Size = (Word, Long word)

Description Move the content of the source to the destination address register. The size of

the operation may be specified to be word or long word. Word size source
operands are sign extended to 32-bit quantities before the operation is done.

Condition Codes Not affected.

Instruction Format :

15 14 13 12 11
010

10 9 8 7 6 5 4 3 2 1 0

Source
Mode | Register

Destinaiton 0

Size)
Register

Instruction Fields :

Size field — Specifies the size of the operand to be moved: :
11 — Word operation. The source operand is sign-extended to a long operand and
all 32 bits are loaded into the address register.
10 — Long word operation.
Destination Register field — Specifies the destination address register.
Source Effective Address field — Specifies the location of source operand. All addressing
modes are allowed as shown:

Add. Mode Mode Register Add. Mode Mode Register
Dn 000 - d8(An, Xn) 110 | reg. Number:An
An 001 - Abs. W 111 000
(An) 010 reg. Number:An Abs. L 111 001
(An) + 011 reg. Number:An d16 (PC) 111 010
-(An) 100 reg. Number:An d8 (PC, Xn) 1M1 011

d16 (An) 101 reg. Number:An #<data> 111 100

VMPU-144

TOSHIBA TLCS-68000
MOVEC Move to/from Control Register MOVEC
(Privileged Instruction)
Operation If supervisor state
thenRc—XnorXn—Re
else TRAP;
Assembler MOVEC Re,Xn
Syntax MOVEC Xn,Rec
Attributes Size = (Long word)
Description Copy the contents of the specified control register (Rc) to the specified

general register or copy the contents of the specified general register to

the specified control register. This is always a 32-bit transfer even
though the control register may be implemented with fewer bits.

Unimplemented bits are read as zeros.

Condition Codes : Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3

oj1j]0j0 1|1 {1fOo]O}]1T]1]{1]1

dr

A/D| Register Control Register

Instruction Fields:

dr field — Specifies the direction of transfer:
0 — control register to general register
1 — general register to control register
A/D field — Specifies the type of general register:
0 — data register
1 — address register
Register field — Specifies the register number.
Control Register field — Specifies the control register.

Hex Control Register

000 Source Function Code (SFC) register.

001 Destination Function Code (DFC) register.
800 User Stack Pointer (USP).

801 Vector Base Register (VBR).

All other codes cause an illegal instruction exception.

VMPU-145

TOSHIBA TLCS-68000
MOVEM Move Multiple Registers MOVEM
Operation Registers —Destination
Source —Registers
Assembler MOVEM register list, <ea>
Syntax MOVEM <ea>, register list
Attributes Size = (Word, Long word)
Description Selected registers are transferred to or from consecutive memory locations

starting at the location specified by the effective address. A register is
transferred if the bit corresponding to that register is set in the mask field.
The instruction selects how much of each register is transferred; either the
entire long word can be moved or just the low order word. In the case of a

~word transfer to the registers, each word is sign-extended to 32 bits

(including data registers) and the resulting long word loaded into the
associated register. MOVEM allows three forms of address modes: the
control modes, the predecrement mode, or the postincrement mode. If the
effective address is in one of the control modes, the registers are transferred
starting at the specified address and up through higher addresses. The order
of transfer is from data register 0 to data register 7, then from address
register 0 to address register 7.

If the effective address is the predecrement mode, only a register to memory
operation is allowed. The registers are stored starting at the specified
address minus the operand length (2 or 4) and down through lower addresses.
The order of storing is from address register 7 to address register 0, then from
data register 7 to data register 0. The decremented address register is
updated to contain the address of the last word stored.

If the effective address is the postincrement mode, only a memory to register
operation is allowed. The registers are loaded starting at the specified
address and up through higher addresses. The order of loading is the same as
for the control mode addressing. The incremented address register is
updated to contain the address of the last word loaded plus the operand
length (2 or 4).

Condition Codes: Not affected.

VMPU-146

TOSHIBA

TLCS-68000
MOVEM MOVEM
Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ol11lolof1larlolo]1|sz Effective Address
Mode | Register
Register List Mask
Instruction Fields
dr field — Specifies the direction of the transfer:
0 — register to memory.
1 — memory to register.
Sz field — Specifies the size of the registers being transferred:
0 — word transfer.
1 — long word transfer.

Effective Address field — Specifies the memory address to or from which the
registers are to be moved. For register to memory transfers, only control
alterable addressing modes or the predecrement addressing mode are
allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn - - d8(An, Xn) 110 reg. number:An
An - - Abs.W 111 000
(An) 010 reg. number:An Abs.L 111 001
(An) + - - d16 (PQC) - -
- (An) 100 reg. number:An d8 (PC, Xn) - -
d16 (An) 101 reg. number:An #<data> - -
For memory to register transfers, only control addressing modes or the
postincrement addressing mode are allowed as shown:
Addr. Mode Mode Register Addr. Mode Mode Register
Dn - - d8(An, Xn) 110 reg. number:An
An - - Abs.W 11 000
(An) 010 reg. number:An Abs.L 11 001
(An) + 011 reg. number:An d16 (PC) 11 010
- (An) - - " d8(PC, Xn) 111 011
d16 (An) 101 reg. number:An #<data> - -

VMPU-147

TOSHIBA

TLCS-68000

MOVEM

MOVEM

Register List Mask field — Specifies which registers are to be transferred.
The low order bit corresponds to the first register to be transferred; the
high bit corresponds to the last register to be transferred. Thus, both for
control modes and for the postincrement mode addresses, the mask
correspondence is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|A7|A6[A5|A4]A3B\21A1[AO{D7[DG|DS|D4[03|D2[D1|00{

while for the predecrement mode addresses, the mask correspondence is

15 14 13 12 11 10 9 8 7 6 5 4 3 2
[DO]DﬂDz]D3|D4|Ds[DG|D71Ao|AﬂA2[A3]A4|A5|A6|AT

Note :
An extra read bus cycle occurs for memory operands. This accesses an
operand at one address higher than the last register image required.

VMPU-148

TOSHIBA TLCS-68000
MOVEP Move Peripheral Data MOVEP
Operation Source —Destination

Assembler

Syntax MOVEP Dx,d16 (Ay)

MOVEP d16 (Ay), Dx

Attributes Size = (Word, Long word)

Description Data is transferred between a data register and alternate bytes of memory,
starting at the location specified and incrementing by two. The high order
byte of the data register is transferred first and the low order byte is
transferred last. The memory address is specified using the address register
indirect plus 16-bit displacement addressing mode. This instruction is
designed to work with 8-bit peripherals on a 16-bit data bus. If the address is
even, all the transfers are made on the high order half of the data bus; if the
address is odd, all the transfers are made on the low order half of the data
bus. On an 8-bit or 32-bit bus, the instruction still accesses every other byte.

Example Long transfer to/from an even address.

Byte organization in register
31 24 23 16 15 8 7 0

Hi-Order LMid-Upper l Mid-Lower 1 Low-Order l

Byte organization in memory (low address at top)
15 14 13 12 11 10 9 8 7 6 -5 4 3 2 1 0

Hi-Order

Mid-Upper

Mid-Lower

Low-Order

VMPU-149

TOSHIBA TLCS-68000

MOVEP MOVEP

Example : Word transfer to/from an odd address.

Byte organization in register

31 24 23 16 15 8 7 0
| ‘ High-Order | Low-Order]

Byte organization in memory (low address at top)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
High-Order

Low-Order

Condition Codes : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o|lo|o]jo Data Op-Mode | 0 { 0 | 1 | Address
Register Register

Displacement

Instruction Fields : Data Register field — Specifies the data register to or from which the

data is to be transferred.

Op-Mode field — Specifies the direction and size of the operation:
100 — transfer word from memory to register.
101 — transfer long from memory to register.
110 — transfer word from register to memory.
111 — transfer long from register to memory.

Address Register field — Specifies the address register which is used
in the address register indirect plus displacement addressing mode.

Displacement field — Specifies the displacement which is used in
calculating the operand address.

VMPU-150

TOSHIBA

TLCS-68000

MOVEQ Move Quick MOVEQ

Operation Immediate Data — Destination

Assembler

Syntax MOVEQ #<data>, Dn

Attributes Size = (Long word)

Description Move immediate data to a data register. The data is contained in an 8-bit
field within the operation word. The data is sign-extended to a long word
operand and all 32 bits are transferred to the data register.

Condition Codes

Tl Tole]

N : Set if the result is negative. Cleared otherwise.
Z . Setif the result is zero. Cleared otherwise.

V : Always cleared.

c : Always cleared.

X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0|1|1] 1| Register | o Data
Dn

Instruction Fields : Register field — Specifies the data register to be loaded.

Data field — 8 bits of data which are sign extended to a long word
_ operand.

VMPU-151

TOSHIBA TLCS-68000

MOVES Move Alternate Address Space MOVES

(Privileged Instruction)

Operation : If supervisor state
then Xn — Destination [DFC] or Source[SFC]—Xn
else TRAP;
Assembler
Syntax . MOVES Xn, <ea>
MOVES <ea>,Xn
Attributes : Size = (Byte, Word, Long word)
Description : Move the byte, word, or long word opefand from the specified general

register to a location within the address space specified by the destination
function code (DFC) register. Or, move the byte, word, or long word
operand from a location within the address space specified by the source
function code (SFC) register to the specified general register.

If the destination is a data register, the source operand replaces the
corresponding low-order bits of that data register. If the destination is an
address register, the source operand is sign-extended to 32 bits and then
loaded into that address register.

Condition Codés . Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

; Effective Address
ojojojoj1r{1{1¢}o0 Size Mode Register

AD| Register |[dr{0]|0]0 o[o o[o]o o|o|o

Instruction Fields : Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long word operation.
Effective Address field — Specifies the source or destination location
within the alternate address space. Only alterable memory
addressing modes are allowed as shown:
A/D field — Specifies the type of general register:
0 — data register.
1 — address register.

VMPU-152

TOSHIBA

TLCS-68000

MOVES

NOTE

On the TMP68010 implementations, the value stored is the incremented or the
decremented value of An. This implementation may not appear on future devices.

MOVES

Register field — Specifies the register number.
dr field — Specifies the direction of the transfer:
0 — from <ea>> to general register.
1 — from general register to <ea>.
MOVES.x An,(An)+
or
MOVES.x An, —(An)
where An is the same address register for both source and

destination and is an undefined operation. The value stored in
memory is undefined.

_Addr. Mode Mode Register Addr. Mode Mcde Register
Dn - - d8(An, Xn) 110 reg. number:An
An - - Ads.W 111 000
(An) 010 reg. number:An Ads.L 11 001
(An) + 011 reg. number:An d16 (PC) - -

- (An) 100 reg. number:An d8(PC, Xn) - -
d16 (An) 101 reg. number:An #<data> - -

VMPU-153

TOSHIBA TLCS-68000
MULS Signed Multiply MULS
Operation Source *Destination — Destination
Assembler
Syntax MULS <ea>,Dn 16 X16—32
Attributes Size = (Word)
Description Multiply two signed operands yielding a signed result. The operation is
performed using signed arithmetic.
The multiplier and multiplicand are both word operands and the result is
long word operand. A register operand is taken from the low order word, the
upper word is unused. All 32 bits of the product are saved in the destination
data register.
Condition Codes
X N Z Vv C
L-[el«folo]
N : Setif the result is negative. Cleared otherwise.
Z . Setifthe resultiszero. Cleared otherwise.
V : Always cleared.
C : Always cleared.
X : Not affected.
Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register - Effective Address
oo %n TP Mode | Register

VMPU-154

TOSHIBA TLCS-68000
MULS MULS
Instruction Fields Register field — Specifies one of the data registers. This field always

specifies the destination.
Effective Address field — Specifies the source operand. Only data
addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg. number:Dn d8 (An, Xn) 110 reg. number:An
An — - Ads.W 111 000
(An) 010 reg. number:An Ads.L 11 001
(An) + 011 reg. number:An d16 (PC) 111 010
—-(An) 100 reg. number:An d8 (PC, Xn) 11 011
d16 (An) 101 reg. number:An #<data> 11 100

VMPU-155

TOSHIBA TLCS-68000

MULU Unsigned Multiply MULU
Operation : Source *Destination — Destination

Assembler

Syntax : MULS <ea>,Dn 16 X 16 »32

Attributes : Size = (Word)

Description : Multiply two unsigned operands yielding a unsigned result. The operation is
performed using unsigned arithmetic.
The multiplier and multiplicand are both word operands and the result is a
long word operand. A register operand is taken from the low order word, the
upper word is unused. All 32 bits of the product are saved in the destination
data register.

Condition Codes

X N zZ VvV C

-l]ofo]

N : Setifthe resﬁlt is negative. Cleared otherwise.
Z : Setifthe result is zero. Cleared otherwise.

V : Always cleared.

C : Always cleared.

X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Register Effective Address
Tp1yogo %n 01 Mode | Register

VMPU-156

TOSHIBA

TLCS-68000

MULU

MULU

Instruction Fields : Register field — Specifies one of the data registers. This field always

specifies the destination.

Effective Address field — Specifies the source operand. Only data

addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg. number:Dn d8 (An, Xn) 110 reg. number:An
An - - Ads.W 11 000
(An) 010 reg. number:An Ads.L 111 001
(An) + 011 reg. number:An d16 (PQC) 111 010
-(An) 100 reg. number:An d8(PC, Xn) 11 011

d16 (An) : 101 reg. number:An #<data> 111 100

VMPU-157

TOSHIBA ‘ TLCS-68000

NBCD Negate Decimal with Extend NBCD
Operation : 0 — Destinationjg — X — Destination

Assembler

Syntax : NBCD <ea>

Attributes 1 Size = (Byte)

Description : The operand addressed as the destination and the exténd bit are

subtracted from zero. The operation is performed using decimal
arithmetic. The result is saved in the destination location. This
instruction produces the tens complement of the destination if the extend
bit is clear, the nines complement if the extend bit is set. This is a byte
operation only.

Condition Codes
X N Z Vv C
[lul«Jul-]
N : Undefined.
Z : Cleared if the result is non-zero. Unchanged otherwise.
V : Undefined.
C : Setifaborrow (decimal) was generated. Cleared otherwise.
X : Set the same as the carry bit.
Note :

Normally the Z condition code bit is set via programming before the start
of an operation. This allows successful tests for zero results upon completion
of multiple precision operations.

Instruction Format :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Effective Address
0100100000l\/lodelRegister

VMPU-158

TOSHIBA TLCS-68000

NBCD NBCD

Instruction Fields . Effective Address field — Specifies the destination operand. Only
data alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg. number:Dn d8(An, Xn) 110 reg. number:An
An - - Ads.W 11 000
(An) 010 reg. number:An Ads.L ' 111 001
(An) + 011 reg. number:An d16 (PC) - -

- (An) 100 reg. number:An d8(PC, Xn) - -

d16 (An) 101 reg. number:An #<data> - -

VMPU-159

TOSHIBA

TLCS-68000

NEG Negate NEG

Operation 0 — Destination — Destination

Assembler

Syntax NEG <ea>

Attributes Size = (Byte, Word, Long word)

Description The operand addressed as the destination is subtracted from zero. The
result is stored in the destination location. The size of the operation may
be specified to be byte, word, or long word.

Condition Codes

: Set if the result is negative. Cleared otherwise.

. Set if the result is zero. Cleared otherwise.

: Set if an overflow is generated. Cleared otherwise.

: Cleared if the result is zero. Set otherwise.

: Set the same as the carry bit.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

110lo0lo]l1]l0]o0 Size l\slffective Address

ode | Register

VMPU-160

TOSHIBA TLCS-68000

NEG NEG

Instruction Fields : Size field — Specifies the size of the operation.
00 — byte operation
01 — word operation
10 — long word operation
Effective Address field — Specifies the destination operand. Only
data alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg. number:Dn d8 (An, Xn) 110 reg. number:An
An - - Ads.W 111 000
(An) 010 reg. number:An Ads.L 111 001
(An) + 011 reg. number:An d16 (PQ) - -
-(An) 100 reg. number:An d8 (PC, Xn) - -

d16 (An) 101 reg. number:An #<data> - -

VMPU-161

TOSHIBA TLCS-68000

NEGX Negate with Extend NEGX
Operation . 0 — Destination — X — Destination

Assembler

Syntax . NEGX <ea>

Attributes . Size = (Byte, Word, Long word) .
Description : The operand addressed as the destination and the extend bit are

subtracted from zero. The result is stored in the destination location. The
size of the operation may be specified to be byte, word, or long word .

Condition Codes
X N Z V C
EIENEEENES
N : Setif the result is negative. Cleared otherwise.
Z . Cleared if the result is non-zero. Unchanged otherwise.
V : Setif overflow is generated. Cleared otherwise.
c : ASe’c if a borrow is generated. Cleared otherwise.
X : Set the same as the carry bit.
Note:

Normally the Z condition code bit is set via progfamming before the start
of an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

; Effective Address
o|1{o0j0f(f0|0O]J0O|O Size Mode |Register

VMPU-162

TOSHIBA

TLCS-68000
NEGX NEGX
Instruction Fields Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only
data alterable addressing modes are allowed as shown:
Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg. number:Dn d8 (An, Xn) 110 reg. number:An
An - - Ads.W 111 000
(An) 010 reg. number:An Ads.L 111 001
(An) + 011 reg. number:An d16 (PQ) - -
-(An) 100 reg. number:An d8 (PC, Xn) - -
d16 (An) 101 reg. number:An #<data> - -

VMPU-163

TOSHIBA ' TLCS-68000

NOP , No Operation NOP
Operation : None

Assebler

Syntax : NOP

Attributes : Unsized

Description : No operation occurs. The processor state, other than the program counter,

is unaffected. Execution continues with the instruction following the NOP
instruction. The NOP instruction does not complete execution until all
pending bus cycles are completed. This allows synchronization of the
pipeline to be accomplished, and prevents instruction overlap.

Condition Codes : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oj17y0j0j1j1j1jo0jo|1]1|1]0]0]0]|1

VMPU-164

TOSHIBA TLCS-68000

NOT Logical Complement NOT
Operation : ~Destination — Destination

Assembler

Syntax : NOT <ea>

Attributes : Size = (Byte, Word, Long word)

Description : The ones complements of the destination operand is taken and the result is

stored in the destination location. The size of the operation may be
specified to be byte, word, or long word.

Condition Codes

X N Z VvV C

[T T-TeTo]

N : Setif the result is negative. Cleared otherwise.
Z : Setif the result is zero. Cleared otherwise.

V : Always cleared.

C : Always cleared.

X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

; Effective Address
o|1]olojo|1]1]|0] size Mode | Regiter

VMPU-165

TOSHIBA

TLCS-68000

NOT

Instruction Fields

Size field — Specifies the size of the operation.

00 — byte operation.
01 — word operation.

10 — long word operation.

NOT

Effective Address field — Specifies the destination operand.
Only data alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode | = Register
Dn 000 reg. number:Dn d8 (An, Xn) 110 reg. number:An
An - - Ads.W 111 000
(An) 010 reg. number:An Ads.L 111 001

(An) + 011 reg. number:An- d16 (PC) - -
-(An) 100 reg. number:An d8 (PC, Xn) - -

d16 (An) 101 reg. number:An #<data> - -

VMPU-166

TOSHIBA TLCS-68000

OR Inclusive OR Logical OR
Operation : Source V Destination — Destination
Assembler
Syntax : OR <ea>,Dn
OR Dn, <ea>
Attributes . Size = (Byte, Word, Long word)
Description : Inclusive OR the source operand to the destination operand and store the

result in the destination location. The size of the operation may be
specified to be byte, word, or long word. The contents of an adress register
may not be used as an operand.

Condition Codes

X N

C - Tolo]

N : Setif the most significant bit of the result is set. Cleared otherwise.
Z : Setif the result is zero. Cleared otherwise.

V : Always cleared.

C : Always cleared.

X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11040]| 0| Register | Op-Mode l\slgggdveﬁdgergissster

VMPU-167

TOSHIBA

TLCS-68000

OR

Instruction Fields :

OR

Register field — Specifies any of the eight data registers.
Op-Mode field —

Byte Word Long word Operation
000 001 010 (<ea>)V(<Dn>)— <Dn>
100 101 110 (<Dn>)V(<ea>)— <ea>

Effective Address field —

If the location specified is a source operand then only data addressing
modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg. number:Dn d8 (An, Xn) 110 reg. number:An
An - - Ads.W 111 000
(An) 010 reg. number:An Ads.L 111 001
(An) + 011 reg. number:An d16 (PC) 111 010
-(An) 100 reg. number:An d8(PC, Xn) 11 011
d16 (An) 101 reg. number:An #<data> 111 100
If the location specified is a destination operand then only memory
alterable addressing modes are allowed as shown:
Addr. Mode Mode Register Addr. Mode Mode Register
Dn - - d8(An, Xn) 110 reg. number:An
An - — Ads.W 111 000
(An) 010 reg. number:An Ads.L 111 001
(An) + 011 reg. number:An d16 (PC) - -
- (An) 100 reg. number:An d8 (PC, Xn) - -
d16 (An) 101 reg. number:An #<data> - -
Notes:

1. If the destination is a data register, then it cannot be specified by using the

destination <ea> mode, but must use the destination Dn mode instead.

2. ORI is used when the source is immediate data. Most assemblers
automatically make this distinction.

VMPU-168

TOSHIBA TLCS-68000

ORI Inclusive OR Immediate ORI
Operation : Immediate Data V Destination — Destination

Assembler

Syntax : ORI #<data>, <ea>

Attributes : Size = (Byte, Word, Long word)

Description : Inclusive OR the immediate data to the destination operand and store the

result in the destination location. The size of the operation may be
specified tobe byte, word, or long word. The size of the immediate data
matches the operation size.

Condition Codes

X N Z V C
oo

-]

N : Setif the most significant bit of the result is set. Cleared otherwise.
Z : Set if the result is zero. Cleared otherwise.

V : Always cleared.

C : Always cleared.

X : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

; Effective Address
ofojojojojOoj0]oO Size Mode]Register
Word Data Byte Data

Long word Data

VMPU-169

TOSHIBA TLCS-68000

ORI ORI

Instruction Fields Size field — Specifies the size of the operation.
00 — byte operation.
01 — word operation.
10 — long operation.
Effective Address field — Specifies the destination operand. Only data

alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg. number:Dn d8 (An, Xn) 110 reg. number:An
An - - Ads.W 111 000
(An) 010 reg. number:An Ads.L 111 001
(An) + 011 reg. number:An d16 (PC) - -
-(An) 100 reg. number:An d8 (PC, Xn) - -

d16 (An) 101 reg. number:An #<data> - -

Immediate field — (Data immediately following the instruction):
If size = 00, then the data is the low order byte of the immediate

word.
If size = 01, then the data is the entire immediate word.
If size = 10, then the data is the next two immediate words.

VMPU-170

TOSHIBA TLCS-68000

ORIto CCR Inclusive OR Immediate to Condition Codes ORI to CCR

Operation : SourceVCCR—CCR

Assembler

Syntax : ORI #<data>, CCR

Attributes . Size = (Byte)

Description : Inclusive OR the immediate operand with the condition codes and store

the result in the low-order byte of the status register.

Condition Codes

N : Setifbit 3 of immediate operand is one. Unchanged otherwise.
Z : Setifbit 2 of immediate operand is one. Unchanged otherwise.
V : Setifbit 1 of immediate operand is one. Unchanged otherwise.
C : Setifbit 0 of immediate operand is one. Unchanged otherwise.
X : Setifbit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1.0
oloflojo|o|lo]o]o o|o1111|1|1|0|0
ofofojojojOjO{|0O Byte Data (8 Bits)

VMPU-171

TOSHIBA TLCS-68000

ORI to SR ORI to SR

Inclusive OR Immediate to the Status Register
(Privileged Instruction)

Operation : If supervisor state
then Source VSR — SR
else TRAP;
Assembler
Syntax . ORI #<data>, SR
Attributes : Size = (Word)
Description : Inclusive OR the immediate operand with the contents of the status

register and store the result in the status register. All bits of the status
register are affected.

Condition Codes

N : Setif bit 3 of immediate operand is one. Unchanged otherwise.
Z : Setifbit 2 of immediate operand is one. Unchanged otherwise.
V : Setifbit 1 of immediate operand is one. Unchanged otherwise.
C : Setifbit 0 of immediate operand is one. Unchanged otherwise.
X : Setifbit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10 9 8 7 6
ofofojofofofofojo]r]
Word Data (16 Bits)

= ln
N
- |w
N TN
o |-
oo

VMPU-172

TOSHIBA TLCS-68000

PEA Push Effective Address PEA
Opération : SP—-4—-SP; EA—(SP)

Assembler

Syntax : PEA <ea>

Attributes : Size = (Long word)

Description . The effective address is computed and pushed onto the stack. A long word

address is pushed onto the stack.
Condition Codes : Not affected.

Instruction Format :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o[+ oo 1 oo o o] Eiscvenddes
Instruction Fields . Effective Address field — Specifies the address to be pushed on to the
stack. Only control addressing modes are allowed as shown:
Addr. Mode Mode Register Addr. Mode Mode Register
Dn - - d8(An, Xn) 110 | reg. number:An
An - - Ads.W 111 000
(An) 010 reg. number:An Ads.L 111 001
(An) + - - d16 (PC) 111 010
-(An) - - d8 (PC, Xn) 111 011
d16 (An) 101 reg. number:An #<data> - -

VMPU-173

TOSHIBA TLCS-68000
RESET Reset External Devices RESET
(Privileged Instruction)

Operation If supervisor state
then Assert RESET Line
else TRAP;

Assembler

Syntax RESET

Attributes Unsized

Description The reset line is asserted for 124 clocks, causing all external devices to be
reset. The processor state, other than the program counter, is unaffected
and execution continues with the next instruction.

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10

9 8 7 6 5 4 3 2 1 0
[ofrfofofr[rrJofofr]r]r]ofofofo]

VMPU-174

TOSHIBA TLCS-68000
ROL Rotate (Without Extend) ROL
ROR ‘ ROR
Operation Destination Rotated by <count> — Destination

Assembler

Syntax ROd Dx,Dy
ROd #<data>, Dy
ROd <ea>
where d is direction, Lor R

Attributes Size = (Byte, Word, Long word)

Description Rotate the bits of the operand in the direction (L or R) specified. The
extend bit is not included in the rotation. The rotate count for the rotation
of a register may be specified in two different ways:

1. Immediate — the rotate count is specified in the instruction (rotate

range, 1~8).
2. Register — the rotate count is contained in a data register specified in
the instriuction.

The size of the operation may be specified to be byte, word, or long word.
The content of memory may be rotated by one bit only and the operand size
is restricted to a word.

For ROL, the operand is rotated left; the number of positions rotated is the
rotate count. Bits rotated out of the high order bit go to both the carry bit
and back into the low order bit. The extend bit is not modified or used.

ROL

Operand |‘—J
For ROR, the operand is rotated right; the number of positions rotated is
the rotate count. Bits shifted out of the low order bit go to both the carry
bit and back into the high order bit. The extend bit is not modified or used.

ROR

l_’(Operand

VMPU-175

TOSHIBA TLCS-68000

ROL ROL
ROR ROR
Condition Codes

X N Z VvV C

s« fof~]

: Set if the most significant bit of the result is set. Cleared otherwise.
: Set if the result is zero. Cleared otherwise.

: Always cleared.

Nn < N Z

: Set according to the last bit rotated out of the operand. Cleared for a
rotate count of zero.

X : Not affected.

Instruction Format (Register Rotate)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Rotate/ ; i i
1111110 Register dr| Size |i/r| 1|1 Register

Instruction Fields (Register Rotate) :

Rotate/Register field —
If i/r = 0, the rotate count is specified in this field. The values 0, 1~7
represent a range of 8, 1 to 7 respectively.
If i/fr = 1, the rotate count (modulo 64) is contained in the data register
specified in this field. ‘
dr field — Specifies the direction of the rotate:
0 — rotate right
1 — rotate left
Size field — Specifies the size of the operation:
00 — byte operation
01 — word operation
10 — long operation
i/r field —
Ifi/r = 0, Specifies immediate rotate count.
Ifi/r = 1, Specifies register rotate count.
Register field — Specifies a data register whose content is to be rotated.

VMPU-176

TOSHIBA

TLCS-68000
ROL ROL
ROR ROR
Instruction Format (Memory Rotate)
15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
Effective Add
L B E R A I 1 Mogce |vel RerSissster
Instruction Fields (Memory Rotate) :
dr field — Specifies the direction of the rotate:
0 — rotate right
1 — rotate left
Effective Address field — Specifies the operand to be rotated.
Only memory alterable addressing modes are allowed as shown:
Addr. Mode Mode Register Addr. Mode Mode Register
Dn - - d8(An, Xn) 110 reg. number:An
An - - Ads.W 111 000
(An) 010 reg. number:An Ads.L 111 001
(An) + 011 reg. number:An d16 (PC) - L -
- (An) 100 reg. number:An d8(PC, Xn) - -
d16 (An) 101 reg. number:An #<data> - -

VMPU-177

TOSHIBA TLCS-68000
ROXL Rotate with Extend ROXL
ROXR ROXR
Operation Destination Rotated with X by <count> — Destination

Assembler

Syntax ROXd Dx, Dy
ROXd # <data>, Dy
ROXd <ea>
where d is direction, L or R

Attributes Size = (Byte, Word, Long word)

Description Rotate the bits of the destination operand in the direction specified. The
extend bit (X) is included in the rotation. The rotate count for the rotation
of a register may be specified in two different ways:

1. Immediate — the rotate count is specified in the instruction (rotate

range, 1~8).
2. Register — the rotate count (modulo 64) is contained in a data register
specified in the instriuction.

The size of the operation may be specified to be byte, word, or long word.
The content of memory may be rotated one bit only and the operand size is
restricted to a word.

For ROXL, the operand is rotated left; the number of positions rotated is
the rotate count. Bits rotated out of the high order bit go to both the carry
and extend bits; the previous value of the extend bit is rotated into the low
order bit.

ROXL

19

i Operand -~

For ROXR, the operand is rotated right; the number of positions shifted is
the rotate count. Bits rotated out of the low order bit go to both the carry
and extend bits; the previous value of the extend bit is rotated into the
high order bit.

VMPU-178

TOSHIBA TLCS-68000

ROXL ROXL
ROXR | ROXR
ROXR

) B

Opearnd —'_

Condition Codes

X N

Z vV C
Ll fefol-]

N : Set if the most significant bit of the result is set. Cleared otherwise.
Z : Setif the result is zero. Cleared otherwise.

V : Always cleared.
C

: Set according to the last bit rotated out of the operand. Set to the value
of the extend bit for a rotate count of zero.

X : Setaccording to the last bit rotated out of the operand. Unaffected for a
rotate count of zero.

Instruction Format (Register Rotate)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rotate/ ;
1111110 Register dr | Size

/1110 Register

Instruction Fields (Register Rotate) :

Rotate/Registér field —
If i/r = 0, the rotate count is specified in this field. The values 0, 1~7
represent a range of 8, 1 to 7 respectively.
If i/fr = 1, the rotate count (modulo 64) is contained in the data register
specified in this field.

dr field — Specifies the direction of the rotate:
0 — rotate right
1 — rotate left

VMPU-179

TOSHIBA TLCS-68000

ROXL ROXL
ROXR ROXR

Size field — Specifies the size of the operation:
00 — byte operation.
01 — word operation.
10 — long word operation.
i/r field —
If i/r = 0, specifies immediate rotate count.
If i/r = 1, specifies register rotate count.
Register field — Specifies a data register whose content is to be rotated.

Instruction Format (Memory Rotate)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Effective Address
1{1]1]lofjolr|o]ldr| 1|1 Mode | Register

" Instruction Fields (Memory Rotate) :

dr field — Specifies the direction of the rotate:

0 — rotate right

1 — rotate left
Effective Address field — Specifies the operand to be rotated. Only memory
alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn - - d8 (An, Xn) 110 reg. number:An
An - - Ads.W m 000
(An) 010 reg. number:An Ads.L 111 001
(An) + . 011 reg. number:An d16 (PC) - -
-(An) 100 reg. number:An d8(PC, Xn) - -

d16 (An) 101 reg. number:An #<data> - -

VMPU-180

TOSHIBA TLCS-68000
RTD Return and Deallocate Parameters RTD
Operation (SP)—-PC; SP+4 +d16 —>SP
Assembler
Syntax RTD #<displacement>
Attributes Unsized
Description The program counter is pulled from the stack. The previous program
counter value is lost. After the program counter is read from the
stack, the displacement value (16 bits) is sign-extended to 32 bits and
added to the stack pointer.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

olt1]ofolr r]rlofolrls]1]ol1]o]0

Displacement

Displacement field —
Specifies the twos complement integer which is to be sign-extended
and added to the stack pointer.

VMPU-181

TOSHIBA TLCS-68000

RTE Return from Exception RTE

(Privileged Instruction)

Operation : If supervisor stat
then ((SP) -»SR; SP + 2—-SP; (SP)—PC; SP +4—SP;)
else TRAP;
Assembler
Syntax : RTE
Attributes : Unsized
Description : The status register and program counter are pulled from the system stack.

The previous status register and program counter are lost. All bits in the
status register aare affected.

Condition Codes : Set according to the content of the word on the stack.

Instruction Format :

15 14 13 12 11 10
lolsfofolsfsfsfoJofafafrfofofa]r]

VMPU-182

TOSHIBA TLCS-68000

RTE Return from Exception (Privileged Instruction) RTE

Operation . If supervisor stat
then ((SP)—»SR; SP+ 2—SP; (SP)—»PC; SP+4—SP;
restore state and deallocate
stack according to (SP))

else TRAP;

Assembler

Syntax : RTE

Attributes : Unsized

"Description : The processor state information in the exception stack frame on top of

the stack is loaded into the processor. The stack format field in the
format/offset word is examined to determine how much information
must be restored.

Condition Codes : Set according to the content of the word on the stack.

Instruction Format:

15 14 13 12 11 10
Lolrfofolsfafafofofafafrfofofs]s]

Format/Offset Word (in stack frame)

15 12 11 10 9 0
| Format | 0 | 0 | Vector Offset

Instruction Fields : Format field — This 4-bit field defines the amount of information to
be restored.

0000 — Short Format, only four words are to be removed from
the top of the stack. The status register and program
counter are loaded from the stack frame.

1000 — TMP68010 Long Format, 29 words are removed from the
top of the stack.

Any others — the processor takes a format error exception.

VMPU-183

TOSHIBA TLCS-68000

RTR Return and Restore Condition Codes RTR

Operation : (SP)—>CCR; SP + 2—SP;
(SP)—-PC; SP +4—->SP

Assembler

Syntax : RTR

Attributes : Unsized

Description : The condition codes and program counter are pulled from the stack. The
previous condition codes and program counter are lost. The supervisor
portion of the status register is unaffected.

Condition Codes 1 Set according to the content of the word on the stack.

Instruction Format :

15 14 13 12 11 10 3 1
Lolifofofsfafafololefafafofs[s]n]

VMPU-184

TOSHIBA TLCS-68000

RTS. Return from Subroutine RTS
Operation : (SP)—»PC; SP+4—-SP

Assembler

Syntax . RTS

Attributes . Unsized

Description : The program counter is pulled from the stack. The previous program

counter is lost.
Condition Codes : Not affected.

Instruction Format :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lofsfofolsfslalofofafafrfofrlo]r]

VMPU-185

TOSHIBA TLCS-68000
SBCD Subtract Decimal with Extend SBCD
Operation Destinationig — Source1g — X — Destination

Assembler

Syntax SBCD Dx, Dy
SBCD —(Ax), —(Ay)

Attributes Size = (Byte)

Description Subtract the source operand from the distination operand with the extend
bit and store the result in the destination location. The subtraction is
performed using decimal arithmetic. The operands may be addressed in
two different ways:

1. Data register to data register: The operands are contained in the data
registers specified in the instruction.

2. Memory to memory: The operands are addressed with the predecrement
addressing mode using the address registers specified in the
instruction.

This operation is a byte operation only.

Condition Codes

N 7

Lol ToT]

N : Undefined.

Z : Cleared if the result is non-zero. Unchanged otherwise.

V : Undefined.

C : Setifaborrow (decimal) is generated. Cleared otherwose.
X Set the same as the carry bit.

Note:

Normally the Z condition code bit is set via programming before the start
of an operation. This allows successful tests for zero results upon completion
of multiple-precision operation.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register Register
110[01|0 D?/Ay 110|000 RM Dg/Ax

VMPU-186

TOSHIBA TLCS-68000

SBCD } SBCD

Instruction Fields : Register Dy/Ay field — Specifies the destination register.
A IfR/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement
addressing mode.
R/M filed — Specifies the operand addressing mode:
0 — The operation is data register to data register
1 — The operation is memory to memory
Register Dx/Ax field — Specifies the source register.
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement
addressing mode.

VMPU-187

TOSHIBA TLCS-68000
Sce Set According to Condition Sce
Operation If Condition True

then 1s — Destination
else 0s —» Destination

Assembler

Syntax Sce <ea>

Attributes Size = (Byte)

Description The specified condition code is tested; if the condition is true, the byte
specified by the effective address is set to TRUE (all ones), otherwise that
byte is set to FALSE (all zeroes). “cc” may specify the following conditions:

CC |carry clear 0100 |C

CS |carryset 0101 | C

EQ |equal 0111 |2~

F nevertrue 0001 {0

GE |greater or equal 1100 [N-V+N-V

GT |greaterthan 1110 {N-V-Z+N-V-Z

HI |high 0010 |C-Z

LE |lessor equal 1111 [Z+NV+N-V

LS |low orsame 0011 |[C+2Z

LT |lessthan 1101 [N-V+N-V

MI | minus 1011 |N

NE [notequal 0110 |Z

Pl iplus 1610 |N

T |alwaystrue 0000 |1

VC |overflow clear 1000 |V

VS |[overflow set 1001 {V

- = Boolean AND + = BooleanOR N = Boolean NOTN

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01011 Condition 111 Effective Address
Mode | Register

VMPU-188

TOSHIBA

TLCS-68000

Sce

Instruction Fields

Sce

Condition field — One of sixteen conditions discussed in description.

Effective Address field — Specifies the location in which the

true/false byte is to be stored. Only data alterable addressing modes
are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. number:Dn d8 (An, Xn) 110 reg. number:An

An - - Ads.W 111 000

(An) 010 reg. number:An Ads.L 111 001

(An) + 011 reg. number:An d16 (PC) - -

~(An) 100 reg. number:An d8 (PC, Xn) - -

d16 (An) 101 reg. number:An #<data> - -
Note:

1. An arithmetic one and zero result may be generated by following the Scc
instruction with a NEG instruction.

VMPU-189

TOSHIBA TLCS-68000

STOP Load Status Register and Stop STOP

(Privileged Instruction)

Operation : If supervisor state
then (Immediate Data — SR; STOP)
else TRAP ;
Assembler
Syntax : STOP # <data>
Attributes : Unsized .
Description : The immediate operand is moved into the entire status register; the

program counter is advanced to point to the next instruction and the
processor stops fetching and executing instructions. Execution of
instructions resumes when a trace, interrupt, or reset exception occurs. A
trace exception will occur if the trace state is on when the STOP
instruction begins execution. If an interrupt request is asserted with a
priority higher than the priority level set by the immediate data, an
interrupt exception occurs, otherwise, the interrupt request has no effect.
If the bit of the immediate data corresponding to the S-bit is off, execution
of the instruction will cause a privilege violation. External reset will
always initiate reset exception processing.

Condition Codes : Set according to the immediate operand.
Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

ol1lofol1lala]ofola]al1]olo]1]o0
Immidiate Data

Instruction Fields : Immediate field — Specifies the data to be loaded into the status
register.

VMPU-190

TOSHIBA TLCS-68000

SUB Subtract Binary SUB
Operation : Destination — Source — Destination
Assembler
Syntax : SUB <ea>,Dn
SUB Dn, <ea>
Attributes . Size = (Byte, Word, Long word)
Description : Subtract the source operand from the destination operand and store the

result in the destination. The size of the operation may be specified to be
byte, word, or long. The mode of the instruction indicates which operand is
the source and which is the destination as well as the operand size.

Condition Codes
LX LNJ Z V C J
N : Setif the result is negative. Cleared otherwise.
Z . Setifthe resultis zero. Cleared otherwise.
V . Setif an overflow is generated. Cleared otherwise.
C : Setifaborrow is generated. Cleared otherwise.
X : Setthe same as the carry bit.

The condition codes are not affected if a subtraction from an address register
is made.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1]10]0]| 1| Register | Op-Mode Effective Address
Mode | Register

Instruction Fields
Register field — Specifies any of the eight data registers.
Op-Mode field —

Byte Word Long word Opration

000 001 010 <Dn> — <ea>—<Dn>

100 101 110 <ea> — <Dn>— <ea>
Effective Address field — Determines addressing mode:

If the location specified is a source operand, then all addressing modes are
allowed as shown:

VMPU-191

TOSHIBA

TLCS-68000
SUB SUB
Addr. Mode Mode Register Addr. Miode Mode Register
Dn 000 reg. Number:Dn d8 (An, Xn) 110 reg. Number:An
An* 001 reg. Number:An Abs. W 111 000
{An) 010 reg. Number:An Abs. L 111 001
(An) + 011 reg. Number:An d16 (PC) 111 010
- (An) 100 reg. Number:An d8 (PC, Xn) 111 011
d16 (An) 101 reg. Number:An #<data> 111 100
* For byte size operaiton, address register direct is not allowed.
If the location specified is a destination operand, then only alterable memory
addressing modes are allowed as shown:
Addr. Mode Mode Register Addr. Mode Mode Register
Dn - - d8 (An, Xn) 110 reg. Number:An
An - - Abs. W 111 000
(An) 010 reg. Number:An Abs. L 111 001
(An) + 011 reg. Number:An d16 (PC) - -
-(An) 100 reg. Number:An d8(PC, Xn) - -
d16 (An) 101 reg. Number:An #<data> - -
Notes: 1. Ifthedestination is a data register, then it cannot be specified by using the destination

<ea> mode, but must use the destination Dn mode instead.

2. SUBA is used when the destination is an address register. SUBI and SUBQ are used
when the source is immediate data. Most assemblers automatically make this
distinction.

VMPU-192

TOSHIBA TLCS-68000
SUBA Subtract Address SUBA
Operation Destination — Source — Destination

Assembler

Syntax SUBA <ea>, An

Attributes Size = (Word, Long word)

Description Subtract the source operand from the destination address register and
store the result in the address register. The size of the operation may be
specified to be word or long word. Word size source operands are sign
extended to 32 bit quantities before the operation is done.

Condition Codes Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i . Effective Address
1{0]0]1 Register Op-Mode Mode | Register

Instruction Fields

Register field — Specifies any of the eight address registers. This is always
the destination.
Op-Mode field — Specifies the size of the operation:

011 — Word operation. The source operand is sign-extended to a long word
operand and the operation is performed on the address register using
all 32 bits.

111 — Long word operations.

Effective Address field — Specifies the source operand. All addressing modes
are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg. Number:Dn d8 (An, Xn) 110 reg. Number:An
An 001 reg. Number:An Abs. W 111 000
(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PC) 111 010

- (An) 100 reg. Number:An d8(PC, Xn) 111 011

d16 (An) 101 reg. Number:An #<data> 111 100

VMPU-193

TOSHIBA TLCS-68000

SUBI ' Subtract Immediate SUBI
Operation : Destination — Immediate Data — Destination

Assembler

Syntax . SUBI #<data>, <ea>-

Attributes : Size = (Byte, Word, Long word)

Description : Subtract the immediate data from destination operand and store the result

in the destination location. The size of the operation may be specified to be
byte, word, or long word. The size of the immediate data matches the
operation size.

Condition Codes

: Set if the result is negative. Cleared otherwise.
: Set if the result is zero. Cleared otherwise. _
: Set if an overflow is generated. Cleared otherwise.

N < N Z

: Set if a borrow is generated. Cleared otherwise.
X : Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ololololol1lo]lo] size Effective Address
Mode | Register
Word Data Byte Data
Long Data

Instruction Fields :

Size field — Specifies the size of the operation.

00 — byte operation.

01 — word operation.

10 — long word operation.
Effective Address field — Specifies the destination operand.
Only data alterable addressing modes are allowed as shown:

VMPU-194

TOSHIBA

TLCS-68000

SUBI SUBI

Addr. Mode ‘Mode Register Addr. Mode Mode Register

Dn 000 reg. Number:Dn d8 (An, Xn) 110 reg. Number:An

An - - Abs. W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PC) - -

- (An) 100 reg. Number:An d8 (PC, Xn) - -

d16 (An) 101 reg. Number:An #<data> - -

Immediate field — (Data immediately following the instruction)

If size = 00, then the data is the low order byte of the immediate word.
If size = 01, then the data is the entire immediate word.
If size = 10, then the data is the next two immediate words.

VMPU-195

TOSHIBA TLCS-68000
SUBQ Subtract Quick SUBQ
Operation Destination — Immediate Data — Destination

Assembler

Syntax SUBQ #<data>, <ea>

Attributes Size = (Byte, Word, Long word)

Description Subtract the immediate data from the destination operand. The data
range is from 1~8. The size of the operation may be specified to be byte,
word, or long word. Word and long word operations are also allowed on the
address registers and the condition codes are not affected. When
subtracting from address registers, the entire destination address register
is used, regardless of the operation size.

Condition Codes

X 0O N2

: Set the same as the carry bit.

: Set if the result is negative. Cleared otherwise.

: Set if the result is zero. Cleared otherwise.

: Set if an overflow is generated. Cleared otherwise.
: Set if a borrow is generated. Cleared otherwise.

The condition codes are not affected if a subtraction from an address register

is made.

Instruction Format:

15 14 13 12 11 10

9

8

7 6

5

4 3 2 1

0

of(1]0|1 Data

1

Size

Effective Address
Mode | Register

Instruction Fields

Data field — Three bits of immediate data, 0, 1~7 representing a range of 8,

1 to 7 respectively.

Size field — Specifies the size of the operation.

00 — byte operation.

01 — word operation.

10 — long word operation.

Effective Address field — Specifies the destination location.

alterable addressing modes are allowed as shown:

Only data

VMPU-196

TOSHIBA

TLCS-68000

SUBQ SUBQ

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg. Number:Dn d8 (An, Xn) 110 reg. Number:An

An* 001 reg. Number:An Abs. W 111 000

(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PC) - -

- (An) 100 reg. Number:An d8 (PC, Xn) - -

d16 (An) 101 reg. Number:An #<data> - -

Word and long only.

VMPU-197

TOSHIBA ' TLCS-68000

SUBX Subtract with Extend SUBX
Operation : Destination — Source — X — Destination
Assembler
Syntax : SUBX Dx, Dy
SUBX —(Ax), —(Ay)
Attributes . Size = (Byte, Word, Long word)
Description : Subtract the source operand from the destination operand along with the

extend bit and store the result in the destination location. The operands
may be addressed in two different ways:

‘1. Data register to data register: The operands are contained in data
registers specified in the instruction.

2. Memory to memory. The operands are contained in memory and
addressed with the predecrement addressing mode using the address
registers specified in the instruction.

The size of the operand may be specified to be byte, word, or long word.

Condition Codes

N zZ VvV ¢
‘|

IR

B

N : Set if the result is negative. Cleared otherwise.

Z : Setifthe result is zero. Cleared otherwise.

V : Setif an overflow is generated. Cleared otherwise.
C : Setifaborrow is generated. Cleared otherwise.

X : Set the same as the carry bit.

Note:

Normally the Z condition code bit is set via programming before the start
of an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1/0|0]| 1| Register | 1 size |0 |0 |rm| Register
. Xy Xx

VMPU-198

TOSHIBA TLCS-68000

SUBX SUBX

Instruction Fields :

Register Xy field — Specifies the destination register:
IfR/M = 0, specifies a data register.
IfR/M =1, specifies an address register for the predecrement addressing
mode. :
Size field — Specifies the size of the operation:
00 — byte operation
01 — word operation
10 — long operation
R/M filed — Specifies the operand addressing mode:
0 — The operation is data register to data register
1 — The operation is memory to memory
Register Xx field — Specifies the source register:
IfR/M = 0, specifies a data register.
IfR/M = 1, specifies an address register for the predecrement addressing
mode.

VMPU-199

TOSHIBA TLCS-68000

SWAP Swap Register Halves SWAP
Oeration . Register [31:16] & Register [15:0]
Assembler
Syntax : SWAP Dn
Attributes 1 Size = (Word)
Descriotion . Exchange the 16-bit halves of a data register.
Condition Codes
X N Z V C
L-[-f«[ofo]
N : Setif the most significant bit of the 32-bit resultis set.

Cleared otherwise.
. Set if the 32-bit result is zero. Cleared otherwise.
. Always cleared.

N < N

: Always cleared.
X : Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o|j1y0jo0oj1|fojojo0ojo0of1j0|0}0 Register

Instruction Fields :

Register field — Specifies the data register to swap.

VMPU-200°

TOSHIBA TLCS-68000
TAS Test and Set an Operand TAS
Operation Destination Tested — Condition Codes; 1 — bit 7 of Destination

Assembler

Syntax TAS <ea>

Attributes Size = (Byte)

Description Test and set the byte operand addressed by the effective address field. The

Condition Codes:

current value of the operand is tested and N and Z are set accordingly. The
high order bit of the operand is set. The operation is indivisible (using a
read-modify-write memory cycle) to allow synchronisation of several

processors.

r

N zZ V ¢
[« [-]o]o]

N

N < N

Instruction Format:

15

. Set if the most significant bit of the operand was set.

Cleared otherwise.

: Set if the operand was zero. Cleared otherwise.
: Always cleared.

: Always cleared.

: Not affected.

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

1100} 1]0 1 0|1 1 Effective Address
Mode | Register

Instruction Fields

Effective Address field — Specifies the location of the tested operand.
Only data alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg. Number:Dn d8(An, Xn) 110 reg. Number:An
An - - Abs. W 11 000
(An) 010 reg. Number:An Abs. L 11 001

(An) + 011 reg. Number:An- d16 (PQ) - -

- (An) 100 reg. Number:An d8 (PC, Xn) - -

d16 (An) 101 reg. Number:An #<data> - -

Note:

Bus error retry is inhibited on the read portion of the TAS read-modify-write bus cycle to

ensure system integrity. The bus error exception is always taken.

VMPU-201

TOSHIBA TLCS-68000

TRAP Trap TRAP

Operation : SSP — 2 — SSP; Format/Vector Offset — (SSP);
SSP — 4 —»SSP; PC —(SSP); SSP — 2 —SSP;
SR — (SSP); Vector Address —PC

Assembler

Syntax : TRAP # <vector>

Attributes . Unsized

Description : The processor initiates exception processing. The vector number is

generated to reference the TRAP instruction exception vector specified by
the low order four bits of the instruction. Sixteen TRAP instruction
vectors (0~15) are available.

Condition Codes : Not affected.

Instruction Format :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oj1tryo0jo0j|1|1r}j1f{ojoj1i{oio0 Vector

Instruction Fields : Vector field — Specifies which trap vector contains the new program
counter to be loaded.

VMPU-202

TOSHIBA TLCS-68000

TRAPV Trap on Overflow TRAPV
Operation : If Vthen TRAP

Assembler

Syntax : TRAPV

Attributes : Unsized

Description : If the overflow condition is set, the processor initiates exception

processing. The vector number is generated to reference the TRAPV
exception vector. If the overflow condition is clear, no operation is
performed and execution continues with the next instruction in sequence.

Condition Codes : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ojtr|jojof1jr|1r|fojof1rjrj{1f{o|1|1]|o0

VMPU-203

TOSHIBA TLCS-68000
TST Test an Operand TST
Operation Destination Tested — Condition Codes

Assembler

Syntax TST <ea>

Attributes Size = (Byte, Word, Long word)

Description Compare the operand with zero. No results are saved; however, the

Condition Codes

condition codes are set according to results of the test. The size of the
operation maybe specified to be byte, word, or long word.

: Set if the operand is negative. Cleared otherwise.
: Set if the operand is zero. Cleared otherwise.

. Always cleared.
. Always cleared.
: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 0
ol1lolol1]lo]1]0] size Effective Address
Mode | Register

Instruction Fields

Size field — Specifies the size of the operation:
00 — byte operation

alterable addressing modes are allowed as shown:

01 — word operation

10 — long word operation
Effective Address field — Specifies the destination operand. Only data

Addr. Mode Mode Register Addr. Mode Mode Register
Dn 000 reg. Number:Dn d8 (An, Xn) 110 reg. Number:An
An .- - Abs. W 111 000
(An) 010 reg. Number:An Abs. L 111 001

(An) + 011 reg. Number:An d16 (PQC) - -

- (An) 100 reg. Number:An d8 (PC, Xn) - -

d16 (An) 101 reg. Number:An #<data> - -

VMPU-204

TOSHIBA TLCS-68000

UNLK Unlink UNLK

Operation : An—SP; (SP)—An; SP+2-SP

Assembler

Syntax : UNLK An

Attributes : Unsized

Description : The stack pointer is loaded from the spécified address register. The
address register is then loaded with the long word pulled from the top of
the stack.

Condition Codes : Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o|1{0f{O0{1|1]|1]0|0|1}{0([1]1] Register

Instruction Fields : Register field — Specifies the address register through which the
unlinking is to be done.

VMPU-205

TOSHIBA TLCS-68000

APPENDIX C INSTRUCTION FORMAT SUMMARY
C.1 INSTRODUCTION

This appendix provides a summary of the primary words in each instruction of the
instruction set. The complete instruction definition consists of the primary words
followed by the addressing mode operands such as immediate data fields, displacements,
and index operands. Table C.1 is an operand code (opcode) map which illustrates how
bits 15 ~ 12 are used to specify the operations.

Table C.1 Operation Code Map

Bits 15 through 12 : Operation
0000 Bit Manipulation / MOVEP /Immediate
0001 Move Byte
0010 Move Long word
0011 Move Word
0100 Miscellaneous
0101 ADDQ/SUBQ/Scc/DBcc
0110 Bcc/BSR
0111 MOVEQ
1000 OR/DIV/SBCD
1001 SUB /SUBX
1010 (Unassigned, Reserved)
1011 CMP/EOR
1100 . AND/MUL/ABCD/EXG
1101 ADD/ADDX
1110 Shift / Rotate
1111 : (Unassigned, Reserved)

VMPU-206

TOSHIBA TLCS-68000
Table C.2. Effective Addressing Mode Categories
Address Modes Mode Register
Data Register Direct 000 reg. no.
Address Register Direct 001 reg. no.
Address Register Indirect 010 reg.no.
Address Register Indirect with Postincrement 011 reg. no.
Address Register Indirect with Predecrement 100 reg. no.
Address Register Indirect with Displacement 101 reg. no.
Address Register Indirect with Index 110 reg. no.
Absolute Short 111 000
Absolute Long 111 001
Program Counter Indirect with Displacement 111 010
Program Counter Indirect with Index 111 011
Immediate 111 100
Table C.3. Conditional Tests
Mnemonic Condition Encoding Test
T True 0000 1
F* False 0001 0
“HI High 0010 C.Z
LS Low or Same 0011 C+2
CC (HS) Carry Clear 0100 C
CS (LO) Carry Set 0101 C
NE Not Equal 0110 z
EQ Equal 0111 z
VvC Overflow Clear 1000 v
VS Overflow Set 1001 \Y
PL Plus 1010 N
Mi Minus 1011 N
GE Greater or Equal 1100 N.V+N.V
LT Less Than 1101 N.V+N.V
GT Greater Than 1110 N.V.Z+N.V.Z
LE Less or Equal 1111 Z+N.V +N.

«=Boolean AND + =Boolean OR
* : Not available for the Bec instruction

N =Boolean NOT N

VMPU-207

TOSHIBA

TLCS-68000

STANDARD INSTRUCTIONS
ORI
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
; Effective Address
ojojojojojojo Size Mode | Register
Size field : 00 =byte
01=word
10 =long word
ORIl to CCR
15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
lofofoJojofojofofofofifri]r]r]ofo]
ORI to SR
15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
[ofofofofofofoJofJofr[r1]1]1]1]o]0]
Dynamic Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Data Effective Address
0cjojojo Register 1| Type Mode | Register
Type field 00 =TST
01=CHG
10=CLR
11=SET
MOVEP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Data Address
0jojojo Register OP-Mode | 0 | 0 | 1 Register
Op-Mode field 100 = transfer word from memory to register

101 =transfer long from memory to register
110 =transfer word from register to memory
111 =transfer long from register to memory

VMPU-208

TOSHIBA TLCS-68000

ANDI
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
: Effective Address
ojofofojoj|jo|1|o Size Mode | Register
Size field : 00 =byte
01 =word
10 =long word
ANDI to CCR

15 14 13 12 11 10 9 8 7 6 5

[oTo Lo o oo+ oloTo 1+ T+Too]

ANDI to SR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o

[ofofoJofofofrfofofafr]r]1]r1]o]o]
SUBI
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofojojojo|1|o]|o0] size e A rerer
Size field : 00 =byte
. 01=word
10 =long word
ADDI

15 14 i3 12 11 0 8§ 8 7 6 5 4 3 2 1 0

- Effective Address
ojo0o|O0|O0]|O0]|n1 110 Size Mode | Register

Size field : 00 =byte
01=word
10 =long word

VMPU-209

TOSHIBA o TLCS-68000

Static Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
00]0]0]|1]0]0}0] Type Mode | Register
Type field : 00=TST
01=CHG
10 =CLR
11=SET
EORI

15 14 13 12 11 10 7 6 5 4 3 2 1 0

: Effective Address
o|jof{ofo}j1j0(1]0 Size Mode | Register

(%]

Size field : 00 =byte
01=word
=long word

EORI to CCR
15 14 13 12 11 10 9

[ofofofolr]o]

EORIto SR

7 6 5 4 1.0
[oJofrfa]r]r]ofo]

ey
(=]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofoJofa1fofsfofofa]a]s[1]r1]o]o]

-
o

CMPI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

: Effective Address
0jo0jo0o]|0|1 1{0(0 Size Mode | Register

Size field : 00 =byte
01=word
=long word

VMPU-210

TLCS-68000

TOSHIBA
MOVES
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
. Effective Address
ojoj{ofo}|1|1}1}]0 Size Mode | Register
Size field : 00 =byte
01 =word
10 = long word
MOVE (Byte)
15 14 13 12 11 10 9 8 7 6 4 3 2 1. 0
olololn Destination Source
Register | Mode Mode | Register
Note register and mode locations
MOVEA (Long word)
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Address Source
ojojrjo Register 0 ! Mode | Register
MOVE (Long word)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olol1lo Destination Source
Register | Mode Mode | Register
Note register and mode locations
MOVEA (Word)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Address Source
ojor Register o Mode | Register

VMPU-211

TOSHIBA

TLCS-68000

MOVE (Word)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olol1]1 Destination Source
j Register | Mode Mode | Register
Note register and mode locations
NEGX
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
. Effective Address
ojr|ojojojojo Size Mode | Register
Size field : 00 =byte
01 =word
10 =long word
MOVE from SR
15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
Effective Address
o|1rjojojojojo T Mode | Register
CHK
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0ol 1 0 Data 111 Effective Address
Register Mode | Register
LEA ,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
J Address Effective Address
ojrjojo Register R Mode | Register

VMPU-212

TOSHIBA

TLCS-68000

CLR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
. Effective Address
o(1|]0j0|0}|0Of1]0 Size Mode | Register
Size field : 00 =byte
01 =word
10 =long word
MOVE from CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
ojrTjojojojojrjorg Mode | Register
NEG
15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
: Effective Address
ojrjojojogrjo size Mode | Register
Size field : 00 =byte
01 =word
10 =long word
MOVE to CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
Effective Address
0| 1]0]0j0}1]0 T Mode | Register
NOT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
: Effective Address
oj1{0(0|0]1 1 Size Mode | Register
Size field : 00 =byte
01 =word

10 =long word

VMPU-213

TOSHIBA

TLCS-68000

MOVE to SR
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Effective Address
01|00 O 1 10T Mode | Register
NBCD
15 14 13 12 11 10 9 8 6 4 3 2 1 0
Effective Address
01100} 1]0 Mode | Register
SWAP
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Data
! oprye 01 0 Register
BKPT
15 14 13 12 11 10 9 8 6 4 3 2 1 0
01 0|1 1 1 BKPT #
PEA
15 14 13 12 11 10 9 6 4 3 2 1 0
Effective Address
0100170 ! Mode | Register
EXT
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
_ Data
0(1]/]0]0|1]0]| 0| Op-Mode Register
Op-Mode field 010 = Extend Word

011 = Extend Long word

VMPU-214

TOSHIBA

TLCS-68000

MOVEM (Registers to EA)

TST

TAS

ILLEGAL

15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
: Effective Address
01|00} }0}0 152 Mode | Register
Sz field 0 =word transfer
1=long word transfer
15 14 13 12 11 10 9 8 7 & 4 3 2 1 0
: Effective Address
of1j0|0|l1|[0O]1 Size Mode | Register
Size field : 00 =byte
01 =word
10 =long word
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Effective Address
0j1]0j0o 1 Yo Mode | Register
15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
lofr1ofof ool fr]r[1[1]o]0]
MOVEM (EA to Registers)
15 14 13 12 11 10 2 8 7 6 4 3 2 1 0
Effective Address
0O{1J0}10}|1 1T{0]0]1]Sz Mode | Register
Sz field 0 =word transfer

1=long word transfer

VMPU-

215

TOSHIBA

TLCS-68000

TRAP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]1JofJoa]1]1]o]o]1]o]o] vetor |
LINK
15 14 13 12 11 10 7 2 1. 0
dd
011|001 ! 0 Qegigiéi
UNLK
15 14 13 12 11 10 2 1 0
o[[oJo '] podre
MOVE to USP
15 14 13 12 11 10 8 2 1. 0
° o] ks
MOVE from USP
15 14 13 12 11 10 8 7 2 1 0
ol1lolol1]1 ofo ég;gzi
RESET
15 14 13 12 i1 0 9 8 7 6 5 4 3 2 1 0
Lofr1fojofr]ift1]ofJofr]r]1]ofofo]0o]

VMPU-216

TOSHIBA TLCS-68000

NOP

15 14 13 12 11 10 9 8 6 5 4 3 2 1 0

o[To o[+ [+ [+ ToTo [+ [+ [1TeoTo 1]
STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[ofrfofofafrfafofofrfr]r]ofofr]o]
RTE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LolrfoJofufrfrfofofafrfrfofofr]r]
RTD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Lol fofofa]r[r]ofofa]r]1]of1]ofo]
RTS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Lol fofofafrfr]oJofa]r[1]ofr1]ofr]
TRAPV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lolrfofofalrfafofofafrfaofa]r]o]

VMPU-217

TOSHIBA TLCS-68000

RTR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lofrfofofaafr]ofofsafa]ofr]n]n]
MOVEC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lof1fofofr[efrofofafrfrf1]ofn [dr]
dr field 0 =control register to general register
1 =general register to control register
JSR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
Ojrjojoprjrint ! Mode | Register
JmPpP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address
ojrjoopTrge T Mode | Register
ADDQ
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
; Effective Address
0f(1]10]1 Data 0 Size Mode | Register
Data field Three bits of immediate data, 0, 1~7 representing a range
of 8, 1to 7 respectively.
Sizefield : 00 = byte
1 = word
10 = long word

VMPU-218

TOSHIBA

TLCS-68000

Scc

DBcc

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
" Effective Address
0of1]101]1 Condition 111 Mode | Register

Condition field :

0000 = always true
0001 = never true
0010 = high

0011 =low or same
0100 = carry clear
0101 = carry set
0110 = not equal

1000 = overflow clear
1001 = overflow set
1010 = plus

1011 =minus

1100 = greater or equal
1101 =less than

1110 = greater than

0111 =equal 1111 =less or equal
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i Data
0111]0(1 Condition 1111]0 1 Register

Condition field :

0000 = always true
0001 =never true
0010 = high

0011 =low or same
0100 = carry clear
0101 =carry set
0110 = not equal
0111 =equal

1000 = overflow clear
1001 = overflow set
1010 = plus

1011 = minus
1100 = greater or equal
1101 =less than

1110 = greater than
1111 =less or equal

VMPU-219

TOSHIBA

SuUBQ
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
. : Effective Addess
011101 Data 1 Size Mode | Register
Data field Three bits of immediate data, 0, 1~7representing a range
of 8, 1to 7 respectively.
Size field . 00 = byte
01=word
10 =long word
Bcc
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| 0 I 1 l 1 | 0 I Condition 8-Bit Displacement
Condition field :
1000 = overflow clear
1001 = overflow set
0010 = high 1010 = plus
0011 =low or same 1011 =minus
0100 = carry clear 1100 = greater or equal
0101 =carry set 1101 =less than
0110 =not equal 1110 = greater than
0111 =equal 1111 =less or equal
BRA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 @0
[o[1[1]o]o]o]o]o] 8-Bit Displacement
BSR

15 14 13 12 11 10 9 8 7

6 5 4 3 2 1 0

[of1]r]ofofofofn]

8-Bit Displacement |

VMPU-220

TLCS-68000

TOSHIBA TLCS-68000
MOVEQ
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
of1 ||| et o Data
egister
Data field Data is sign extended to a long word operand and all 32 bits
are transferred to the data register.
OR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Data Effective Address
T10]0]0 Register Op-Mode Mode | Register
Op-Mode field:
byte Word Long word Operation
000 001 010 <ea> V <Dn> —> <Dn>
100 101 110 <Dn> V <ea> — <ea>
DIVU
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Data Effective Address
110100 Register T Mode | Register
SBCD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Destination Source
tjojogeo Register* 100 0O R/M Register*
R/ M field 0 =data register to data register

1=memory to memory
* |If R/M =0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode.

VMPU-221

TOSHIBA

TLCS-68000

DIVS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Data Effective Address
110070 Register T Mode | Register
SUB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Data ~ Effective Address
Voo Register Op-Mode Mode | Register
Op-Mode field:
Byte Word Longword Operation
000 001 010 (<Dn>)-(<ea>) - <Dn>
100 101 110 (<ea>)-(<Dn>) > <ea>
SUBA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Address _ Effective Address
oo Register Op-Mode Mode | Register
Op-Mode field:
Word Long word Operation
000 111 (<ea>)-(<An>)-><An>
SUBX
15 14 13 12 11 10 9 8. 7 6 5 4 3 2 1 0
1 0 0 1 Destination 1 Size 0 0 |rm Source
Register* Register*
Size field 00 = byte
01 =word

10 = long word

R/M field

0 =data register to data register

1=memory to memory
* 1 If R/M =0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode.

VMPU-222

TOSHIBA

TLCS-68000

cmp

CMPA

EOR

CMPM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Data i Effective Address
HREREE Register Op-Mode Mode | Register
Op-Mode field:
Byte Word Long word Operation
000 001 010 (<Dn>)-(<ea>)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
Address ~ Effective Address
ot Register Op-Mode Mode | Register
Op-Mode field:
Word Long word Operation
011 001 (<AN>)-(<ea>)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Data _ Effective Address
et Register Op-Mode Mode | Register
Op-Mode field:
Byte Word Long word Operation
100 101 110 (<ea>)®(<Dn>)—> <ea>
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1. 0
110 1|1 | Destination 1 Size olol1 Source
Register Register
Size field : 00 =byte
01 =word

10 =long word

VMPU-223

TOSHIBA

TLCS-68000

AND

MULU

ABCD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Data N Effective Address
Ypryogo Register Op-Mode Mode | Register
Op-Mode field:
Byte Word ~ Long word Operation
000 001 010 (<ea>)N\(<Dn>) - <Dn>
100 101 110 (<Dn>)A\(<ea>) —» <ea>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Effective Address
Tpryogoe Register ol Mode | Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1110 |0 | Destination | 4 1 gl glglo|em Soyrce*
Register* Register

R/Mfield : O0=data registerto data register
1=memory to memory
* If R/M =0, specifies a data register
If R/M =1, specifies an address register for the predecrement addressing mode.

EXG (Data Registers)

15 1413 12 11 10 9 8 7- 6 5 4 3 2 1 0
Data Data
TPy)oe Register T1o]rjojojo Register

EXG (Address Registers)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11|00 Address |4} g |q || o1 | Addres
Register Register

VMPU-224

TOSHIBA

TLCS-68000

EXG (Data Register and Address Register)

MULS

ADD

ADDA

ADDX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11110lo0 Data 11110lo0lol1 Address
Register Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11110lo0 Data 10111 Effective Address
Register Mode | Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111011 Data Op-Mode Effective Address
Register Mode | Register
OP-Mode field:)
Byte Word Long word Operation
000 001 010 (<ea>)+(<Dn>)—-><Dn>
100 101 110 (<Dn>) +(<ea>) > <ea>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111011 Address | Op-Mode Effective Address
Register Mode | Register
OP-Mode field:
Word Long word Operation
011 111 (<ea>)+(<An>) - <An>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11110 1 | Destination | q Size olo|R/M Source
Register* Register*

Size field : 00 =byte
01=word
10 =long word
R/M field : 0 =data register to data register
1=memory to memory
*: If R/IM =0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode.

VMPU-225

TOSHIBA TLCS-68000

SHIFT/ROTATE (Register)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1. 0

1{1]1 0| Count’/ lgr| size |i/r| Type Data
Register 'z i Register

Count/Register field : Ifi/rfield = 0, specifies shift count

Ifi/r field = 1, specifies a data register that contains the shift
count

dr field : 0=right
1 =left
Size field : 00 =byte
01=word
10 =long word
i/r field 1 0 =immediate shift count
1 =register shift count
Type field : 00=arithmeticshft
01 =logical shift
10 = rotate with extend
11 =rotate

SHIFT/ROTATE (Memory)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111111010 Type |dr| 1|1 Effective Address
yp Mode | Register

Type field : 00 =arithmeticshift
01 =logical shift
10 = rotate with extend
11 =rotate

drfield : O0=right

1=left

VMPU-226

TOSHIBA : TLCS-68000

APPENDIX D TMPGSOOO INSTRUCTION EXECUTION TIMES

D1

D.2

INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of
external clock (CLK) periods. In this data, it is assumed that both memory read and
write cycle times are four clock periods. A longer memory cycle will cause the
generation of wait states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the
timing data. This data is enclosed in parenthesis following the number of clock periods
and is shown as: (r/w) where r is the number of read cycles and w is the number of write
cycles included in the clock period number. Recalling that either a read or write cycle
requires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods
for the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles
required for some internal function of the processor.

Note:

The number of periods includes instruction fetch and all applicable operand fetches
and stores.

OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

Table D.1 lists the number of clock periods required to compute an instruction’s
effective address. It includes fetching of any extension words, the address computation,
and fetching of the memory operand. The number of bus read and write cycles is shown
in parenthesis as (r/w). Note there are no write cycles involved in processing the
effective address.

VMPU-227

TOSHIBA TLCS-68000

Table D.1 Effective Address Calculation Times

Addressing Mode Byte, Word Long word
Register
Dn Data Register Direct 0 (0/0) 0 (0/0)
An Address Register Direct 0 (0/0) 0 (0/0)
Memory
(An) Address Register Indirect 4 (1/0) 8 (2/0)
(An) + Address Register Indirect with Postincrement 4 (1/0) 8 (2/0)
-(An) Address Register Indirect with Predecrement 6 (1/0) 10 (2/0)
d16 (An) Address Register Indirect with Displacement 8 (2/0) 12 (3/0)
d8 (An, Xn)* Address Register Indirect with Index 10 (2/0) 14 (3/0)
Abs.W Absolute Short 8 (2/0) 12 (3/0)
Abs. L Absolute Long 12 (3/0). 16 (4/0)
d16 (PC) Program Counter with Displacement 8 (2/0) 12 (3/0)
d16 (PC, Xn)* | Program Counter with Index : 10 (2/0) 14 (3/0)
#<data> Immediate 4 (1/0) 8 (2/0)

* The size of the index register (Xn) does not affect execution time.

D.3 MOVE INSTRUCTION EXECUTION TIMES

Table D.2 and D.3 indicate the number of clock periods for the move instruction. This
data includes instruction fetch, operand reads, and operand writes. The number of bus
read and write cycles is shown in parenthesis as (r/w).

VMPU-228

TOSHIBA TLCS-68000
Table D.2 Move Byte and Word Instruction Execution Times
Destination
Source
Dn An (An) (An)+ | -(An) | d16(An) [d8(An,Xn)* | Abs.W | Abs.L
Dn 4(1/0) | 4(170) | 8(1/1) | 8(1/1) | 8(1/1) 12(2/1) 14(2/1) 12(2/1) | 16(1/3)
An 4(1/0) | 4(170) | 8(1/1) | 8(1/1) | 8(1/1) 122/1) 14(2/1) 12(2/1) | 16(1/3)
(An) 8(2/0) | 8(2/0) | 12(2/1) | 12(271) | 12(2/1) 16 (3/1) 18(3/1) 16(3/1) | 20(4/1)
(An) + 8(2/0) | 8(2/0) | 12(2/1) | 12(2/1) | 12(2/1) 16 (3/1) 18(3/1) 16(3/1) | 20(4/1)
-(An) 10(2/0) | 10(2/70) | 14(271) | 14(2/1) | 14(2/1) 18 (3/1) 20(3/1) 18(3/1) | 22(1/4)
d16 (An) 12(3/70) | 12(3/0) | 16(3/1) | 16(3/1) | 16(3/1) 20(4/71) 22(411) 20(4/1) | 24(5/1)
d8(An, Xn)* | 14(3/0) | 14(370) | 18(3/1) | 18(3/1) | 18(3/1) 22 (4/1) 24(4/1) 22(471) | 26(5/1)
Abs. W 12(3/0) | 12(3/0) | 16(3/1) | 16(3/1) | 16(3/1) 20 (471) 22(4/1) 20(471) | 24(5/1)
Abs. L 16(4/0) | 16(4/0) | 20(4/1) | 20(4/1) | 20(4/1) 24 (5/1) 26(5/1) 24(5/1) | 28(6/1)
d16 (PC) 12(370) | 12(3/0) | 16(3/1) | 16(3/1) | 16(3/1) 26(4/1) 22(4/1) 20(4/1) | 24(5/1)
d8(PC, Xn)* | 14(3/0) | 14(3/0) | 18(3/1) | 18(3/1) | 18(3/1) 22(471) 24(4/1) 22(4/1) | 26(5/1)
#<data> 8(2/0) | 8(2/0) | 12(2/1) | 12(271) | 12(2/1) 16 (3/1) 18(3/1) 16(3/1) | 20(4/1)
* The size of the index register (Xn) does not affect execution time.
Table D.3 Move Long Word Instruction Execution Times
Destination
Source
Dn An (An) (An) + -(An) | d16(An) |d8(An,Xn)* | Abs.W | Abs.L
Dn 4(1/0) | 4(1/0) | 12(1/72) | 12(172) | 12(1/2) 16(2/2) 18(2/2) 16(2/2) | 20(3/2)
An 4(1/0) | 4(1/0) | 12(1/72) | 12(172) | 12(1/2) 16(2/2) 18(2/2) 16(2/2) | 20(3/2)
(An) 12(3/0) | 12(3/0) | 20(3/2) | 20(3/2) | 20(3/2) 24(4/2) 26(4/2) 24(4/2) | 28(5/2)
(An) + 12(3/0) | 12(3/0) | 20(3/2) | 20(3/2) | 20(3/2) 24(4/2) 26(4/2) 24(4/2) | 28(5/2)
- (An) 14(3/0) | 14(3/0) | 22(3/2) | 22(3/2) | 22(3/2) 26(4/2) 28(4/2) 26(4/2) | 30(5/2)
d16 (An) 16(4/0) | 16(4/0) | 24(472) | 24(4/2) | 24(4/2) 28(5/2) 30(5/2) 28(5/2) | 32(6/2)
d8(An, Xn)* | 18(4/0) | 18(4/0) | 26(4/2) | 26(4/2) | 26(4/2) 30(5/2) 32(5/2) 30(5/2) | 34(6/2)
Abs. W 16(4/0) | 16(4/0) | 24(4/2) | 24(4/2) | 24(4/2) 28(5/2) 30(5/2) 28(5/2) | 32(6/2)
Abs. L 20(5/0) | 20(5/0) | 28(5/2) | 28(5/2) | 28(5/2) 32(6/2) 34(6/2) 32(6/2) | 36(7/2)
d16 (PQ) 16(4/0) | 16(4/0) | 24(472) | 24(4/2) | 24(4/2) 28(5/2) 30(5/2) 28(5/2) | 32(5/2)
d8(PC, Xn)* | 18(4/0) | 18(4/0) | 26(4/2) | 26(4/2) | 26(4/2) 30(5/2) 32(5/2) 30(5/2) | 34(6/2)
#<data> 12(370) | 12(370) | 20(372) | 20(3/2) | 20(3/2) 24(4/2) 26(4/2) 24(472) | 28(572)

*

The size of the index register {Xn) does not affect execution time.

VMPU-229

TOSHIBA

TLCS-68000

D.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D.4 indicates the time required to
perform the operations, store the results, and read the next instruction. The number of
bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods
and the number of read and write cycles must be added respectively to those of the
effective address calculation where indicated.

In Table D.4 the headings have the following meanings: An

address register

operand, Dn = data register operand, ea = an operand specified by an effective address,
and M = memory effective address operand.

Table D.4 Standard Instruction Execution Times

Instruction Size op<ea>, An” op<ea>, Dn opDn, <M>
Byte, Word 6(1/0) +** 4(1/0) + 8(1/1) +
ADD/ADDA
Long word 8(1/0) + 6(1/0) +** 12(1/2) +
AND Byte, Word — 4(1/0) + 8(1/1) +
Long word - 6(1/0) +** 12(1/2) +
Byte, word 6(1/0) + 4(1/0) + -
CMP/CMPA Long word 6(1/0) + 6(1/0) + —
DIVS - - 158(1/0) +* -
DIVU - — 140(1/0) * -
EOR Byte, Word — 4(1/0Q) *** 8(1/1) +
Long word - 8(1/0Q) *** 12(1/2) +
MULS - - 70(1/0) +* -
MULU - - 70(1/0) +* —
OR Byte, Word - 4(1/0) + 8(1/1) +
Long word — 6(1/0) +** 12(1/2) +
SUB Byte, Word 8(1/0) + 4(1/0) + 8(1/1) +
Long word 6(1/0) +** 6(1/0) +** 12(1/2) +
Note :
+ add effective address calculation time
A word or long word only
* indicates maximum basic value added to word effective address time.
** The base time of six clock periods is increased to eight if the effective address mode is
register direct or immediate (effective address time should also be added).
*kk Only available effective address mode is data register direct.
DIVS,DIVU- The divide algorithm used by the TMP68000 provides less than 10% difference
between the best and worst case timings.
MULS,MULU - The multiply algorithm requires 38 + 2n clocks where n is defines as:

MULS: n= the number of ones in the <ea>

MULU: n= concatanate the <ea>with a zero as the LSB;n is the resultant number of 10

or 01 patterns in the 17-bit source; i.e., worst case happens when the source is

$5555.

VMPU-230

TOSHIBA TLCS-68000

D.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D.5 includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and number of read and write cycles must be added respectively to those of
the effective address calculation where indicated.

In Table D.5, the headings have the following meanings:

= immediate operand,

Dn = data register operand,
An = address register operand,
M = memory operand.

SR = status register.

Table D.5 Immediate Instruction Execution Times

Instruction Size op #, Dn op #, An op#, M
ADDI Byte, Word 8(2/0) - 12(2/1) +
Long word 16(3/0) - 20(3/2) +
ADDQ Byte, Word 4(1/0) 8(1/0)* 8(1/1) +
Long word 8(1/0) 8(1/0) 12(1/2) +
Byte, Word 8(2/0) - 12(2/1) +
ANDI Long word 16(3/0) = 203/1) +
Byte, Word 8(2/0) - 8(2/0) +
CMIPI Long word 14(3/0) = 12(3/0) +
Byte, Word 8(2/0) — 12(2/1) +
EORI Long word 16(3/0) — 20(3/2) +
MOVEQ Long word 4(1/0) - -
ORI Byte, Word 8(2/0) - 12(2/1) +
Long word 16(3/0) - 20(3/2) +
Byte, Word 8(2/0) - 12(2/1)
SUBI Long word 16(3/0) - 20(3/2) +
Byte, Word 4(1/0) 8(1/0)* 8(1/1) +
SUBQ Long word 8(1/0) 8(1/0) 12(1/2) +
+ : add effective address calculation time
* : wordonly

D.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table D.6 indicates the number of clock periods for the single operand instructions.
The number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

VMPU-231

TOSHIBA TLCS-68000

Table D.6 Single Operand Instruction Execution Times

Instruction Size Register Memory
CLR Byte, Word 4(1/0) 8(1/1) +
Long word 6(1/0) 12(1/2) +
NBCD Byte 6(1/0) 8(1/1) +
NEG Byte, Word 4(1/0) 8(1/1) +
Long word 6(1/0) 12(1/2) +
Byte, Word 4(1/0) 8(1/1) +
NEGX- Long word 6(1/0) 12(1/2) +
Byte, Word 4(1/0) 8(1/1) +
NOT Long word 6(1/0) ‘ 12(1/2) +
Byte, Word 4(1/0) 8(1/1) +
Scc : Long word 6(1/0) 8(1/1) +
TAS Byte 4(1/0) 10(1/1) +
Byte, Word 4(1/0) 4(1/0) +
TST Long word 4(1/0) 4(1/0) +
+ : add effective address calculation time

D.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Table D.7 indicates the number of clock periods for the shift and rotate instructions.
The number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table D.7 Shift/Rotate Instruction Execution Times

Instruction Size Register Memory
ASR, ASL Byte, Word 6+2n(1/0) 8(1/1) +
Long word 8+2n(1/0) -
o o | e
+ add effective address calculation time for word operands

n : the shift count

VMPU-232

TOSHIBA ' TLCS-68000

D.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table D.8 indicates the number of clock periods required for the bit manipulation
instructions. The number of bus read and write cycles is shown in parenthesis as (xr/w).
The number of clock periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where indicated.

Table D.8 Bit Manipulation Instruction Execution Times

. . Dynamic Static
Instruction Size
Register Memory Register Memory
Byte - 8(1/1)+ - 12(2/1) +
BCHG Long word 8(1/0)* - 12(2/0) —
BCLR Byte — 8(1/1)+ — 12(2/1) +
Long word 10(1/0) — 14(2/0)* —
BSET Byte — 8(1/1)+ — 12(2/1) +
Long word 8(170)* — 12(2/0)* -
Byte — 4(1/0) + — 8(2/0) +
BTST Long word 6(1/0) — 10(2/0) —
+ : add effective address calculation time

indicates maximum value; data addressing mode only

D.9 CONDITIONAL INSTRUCTION EXECUTICN TIMES

Table D.9 indicates the number of clock periods required for the conditional
instructions. The number of bus read and write cycles is indicated in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table D.9. Conditional Instruction Execution Times

Instruction Displacement Branch Taken Branch Not Taken
Be Byte 10(2/0) 8(1/0)
¢ Word 10(2/0) 12(2/0)
Byte 10(2/0) =
BRA Word 10(2/0) =
Byte 18(2/2) -
BSR Word 18(2/2) —
cctrue - 12(2/0)
DBcc cc false, Count Not Expired 10(2/0) —
cc false, Count Expired — 14(3/0)
+ : add effective address calculation time

indicates maximum base value

VMPU-233

TOSHIBA TLCS-68000

D.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTIONTIMES

Table D.10 indicates the number of clock periods required for the jump, jump-to-
subroutine, load effective address, push effective address, and move multiple registers
instructions. The number of bus read and write cycles is shown in parenthesis as (r/w).

Table D.10 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

,'(?c";"'“" Size (An) (An) + -(An) | d16(An) |d8(AnXn)*| Abs.W | Abs.L |d16(PC) |d8(Pc, Xn)*
JMP - 8 (2/0) - - 10(2/0) 14(3/0) {10 (2/0) | 12 (3/0) | 10 (2/0) 14(3/0)
JSR = 16 (2/2) - - 18(2/2) 22(2/2) |18 (2/2) {20 (3/2) |18 (2/2) 22(2/2)
LEA - 4 (1/0) = - 8(2/0) 12(2/0) | 8 (2/0) |12 (3/0) | 8 (2/0) 12(2/0)
PEA — 12 (1/2) = - 16(2/2) 20(2/2) |16 (2/2) {20 (3/2) |16 (2/2) 20(2/2)
Word 12+4n 12+4n - 16 +4n 18 +4n 16 +4n 20 +4n 16 +4n 18 +4n
MOVEM (3+n/0) | (3+n/0) (4+n/0) (4+n/0) (4+n/0)| (5+n/0)| (4+n/0)| (4+n/0)
M—-R Long 12+8n 12+8n - 16 +8n 18 +8n 16+8n 20 +8n 16+ 8n 18+ 8n
(3+2n/0)[(3+2n/0) (4+2n/0) { (4+2n/0) [(4+2n/0)|(5+2n/0)|(4+2n/0)| (4+2n/0)
Word 8+4n - 8+4n 12+4n 14 +4n 12+4n 16+4n - -
MOVEM (2/n) (2/n) (3/n) (3/n) (3/n) (4/n) = —
R—>M Long 8+8n - 8+8n 12+8n 14 + 8n 12+8n 16+ 8n - -
(2/2n) - (2/2n) (3/2n) (3/2n) (3/2n) (4/2n) - -

n : the number of registers to move

the size of the index register (Xn) does not affect the instruction’s execution time

D.11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table D.11 indicates the number of clock periods for the multi-precision instructions.
The number of clock periods includes the time to fetch both operands, perform the
operations, store the results, and read the next instructions. The number of bus read
and write cycles is shown in parenthesis as (xr/w).

In Table D.11, the headings have the following meaning: Dn = data register
operand and M = memory operand.

Table D.11 Multi-Precision Instruction Execution Times

Instruction Size op Dn, Dn op M, M
Byte, Word 4(1/0) 18(3/1)
ADDX Long word 8(1/0) 30(5/2)
Byte, Word — 12(3/0)
CMPM Long word - 20(5/0)
SUBX Byte, Word 4(1/0) ' 18(3/1)
Long word 8(1/0) 30(5/2)
ABCD Byte 6(1/0) 18(3/1)
SBCD Byte 6(1/0) 18(3/1)

VMPU-234

TOSHIBA

TLCS-68000

D.12 MISCELLANEOQOUS INSTRUCTION EXECUTION TIMES

Table D.12 and D.13 indicate the number of clock periods for the folowing

miscellaneous instructions.

The number of bus read and write cycles is shown in
parenthesis as (r/w). The number of clock periods plus the number of read and write

cycles must be added to those of the effective address calculation where indicated.

Table D.12 Miscellaneous Instruction Execution Times

Instruction Size Register Memory
ANDI to CCR Byte 20(3/0) -
ANDI to SR Word 20(3/0) -
CHK (No Trap) - 10(1/0) + -
EORI to CCR Byte 20(3/0) -
EORI to SR Word 20(3/0) -

ORI to CCR Byte 20(3/0) -
ORI to SR Word 20(3/0) -
MOVE from SR - 6(1/0) 8(1/1) +
MOVE to CCR - 12(1/0) 12(2/0) +
MOVE to SR - 12(1/0) 12(2/0) +
EXG - 6(1/0) -
Word 4(1/0) -
EXT Long word 4(1/0) -
LINK - 16(2/2) -
MOVE from USP - 4(1/0) -
MOVE to USP - 4(1/0) -
NOP — 4(1/0) —
RESET - 132(1/0) -
RTE - 20(5/0) -
RTR - 20(5/0) -
RTS - 16(4/0) -
STOP - 4(0/0) —
SWAP — 4(1/0) —
TRAPV - 4(1/0) —
UNLK - 12(3/0) -
+ add effective address calculation time
Table D.13 Move Peripheral Instruction Execution Times
Instruction Size Register - Memory Memory—Register
Word 16(2/2) 16(4/0)
MOVEP -
Long word 24(2/4) 24(6/0)

VMPU-235

TOSHIBA TLCS-68000

D.13 EXCEPTION PROCESSING EXECUTION TIMES

Table D.14 indicates the number of clock periods for exception processing. The
number of clock periods includes the time for all stacking, the vector fetch, and the fetch
of the first two instruction words of the handler routine. The number of bus read and
write cycles is shown in parenthesis as (r/w).

Table D.14 Exception Processing Execution Times

Exception Periods
Address Error 50(4/7)
Bus Error 50(4/7)
CHK Instruction C O A4(5/48) +
Divide by Zero 42(5/4)
llegal Instruction 34(4/3)
Interrupt 44(5/3)*
Privilege Violation 34(4/3)
RESET** 40(6/0)
Trace 34(4/3)
TRAP Instruction 38(4/4)
TRAPV Instruction 34(4/3)
+ : add effective address calculation time

The interrupt acknowledge cycle is assumed to take four clock periods.
** . Indicates the time from when RESET and HALT are first sampled as negated

to when instruction execution satrts.

VMPU-236

TOSHIBA TLCS-68000

APPENDIXE TMP68008 INSTRUCTION EXECUTION TIMES
E.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of
external clock (CLK) periods. In this data, it is assumed that both memory read and
write cycle times are four clock periods. A longer memorycycle will cause the
generation of wait states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with
the timing data. This data is enclosed in parenthesis following the number of clock
periods and is shown as: (r/w) where r is the number of read cycles and w is the
number of write cycles includedin the clock period number. Recalling that either a
read or write cycle requires four clock periods, a timing number given as 18 (3/1)
relates to 12 clock periods for the three read cycles, plus 4 clock periods for the one
write cycle, plus 2 cycles required for some internal function of the processor.

Note:

The number of periods includes instruction fetch and all applicable operand
fetches and stores.

VMPU-237

TOSHIBA TLCS-68000

n

1 E2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

: Table E.1 lists the number of clock periods required to compute an instruction’s
effective address. It includes fetching of any extension words, the address

! .)

I computation, and fetching of the memory operand. The number of bus read and

I write cycles is shown in parenthesis as (r/w). Note there are no write cycles involved

1 in processing the effective address.

I

1 Table E.1 Effective Address Calculation Times

I Addressing Mode Byte Word Long word

| Register

I|pn . Data Register Direct 0 (0/0) 0 (0/0) 0 (0/0)

1l an Address Register Direct 0 (0/0) 0 (0/0) 0 (0/0)

| Memory

1{(an) Data Register Indirect 4 (1/0) 8 (2/0) | 16 (4/0)

i (An) + Address Register Indirect with Postincrement 4 (1/0) 8 (2/0) | 16 (4/0)

| -(An) Address Register Indirect with Predecrement 6 (1/0) | 10 (2/0) | 18 (4/0)

1 d16 (An) Address Register Indirect with Displacement 12 (3/0) | 16 (4/0) | 24 (6/0)

I{ds (An, Xn)* Address Register Indirect with Index 14 (3/0) | 18 (4/0) | 26 (6/0)

1| Abs.w Absolute Short 12 (3/0) | 16 (4/0) | 24 (6/0)

I|Abs.L Absolute Long 20 (5/0) | 24 (6/0) | 32 (8/0)

| d16(PC) Program Counter with Displacement 12 (3/0) | 16 (4/0) | 24 (6/0)

I d8 (PC, Xn)* Program Counter with Index 14 (3/0) | 18 (4/0) | 26 (6/0)

1| #<data> Immediate 8 (2/0) | 8 (2/0) | 16 (4/0)

1

1 * 1 The size of the index register (Xn) does not affect execution time.

VMPU-238

TOSHIBA TLCS-68000

E.3 MOVE INSTRUCTION EXECUTION TIMES

Table E.2, E.3 and E.4 indicate the number of clock periods for the move
instruction. This data includes instruction fetch, operand reads, and operand writes.
The number of bus read and write cycles is shown in parenthesis as (x/w).

Table E.2 Move Byte Instruction Execution Times

Destination
Source
Dn An (An) (An) + -(An) [d16 (An) [d8(AnXn)* Abs.W Abs.L
Dn 8 (2/0) 8(2/0) | 12(2/1)| 12(2/1)| 12(2/1)| 20(4/1)| 22(4/1)| 20(4/1)| 28(6/1)
An 8 (2/0) 8(2/0)| 12(2/1)| 12(2/1)| 12(2/1)| 20(4/1)| 22(4/1)| 20(4/1)| 28(6/1)
(An) 12(3/0) | 12(3/0)| 16(3/1)| 16(3/1)| 16(3/1)| 24(5/1)| 26(5/1)| 24(5/1)| 32(7/1)
(An) + 12(3/0) | 12(3/0)| 16(3/1)| 16(3/1)| 16(3/1)| 24(5/1)| 26(5/1)| 24(5/1)| 32(7/1)
-(An) 14(3/0) | 14(3/0)| 18(3/1)| 18(3/1)| 18(3/1)| 26(5/1)| 28(5/1)| 26(5/1)| 34(7/1)
d16 (An) 20 (5/0) | 20(5/0)| 24(5/1)| 24(5/1)| 24(5/1)| 32(7/1)| 34(7/1)| 32(7/1)| 40(9/1)
d8 (An, Xn)* 22(5/0) | 22(5/0)| 26(5/1)| 26(5/1)| 26(5/1)| 34(7/1)| 36(7/1)| 34(7/1)| 42(9/1)
Abs.W 20(5/0) | 20(5/0) | 24(5/1)| 24(5/1)| 24(5/1)| 32(7/1)| 34(7/1)| 32(7/1)| 40(9/1)
Abs.L 28(7/0) | 28(7/0) | 32(7/1)| 32(7/1)| 32(7/1)| 40(9/1)| 42(9/1)| 40(9/1) |48 (11/1)
d16 (PC) 20(5/0) | 20(5/0) | 24(5/1) | 24(5/1)| 24(5/1)| 32(7/1)| 34(7/1)| 32(7/1)| 40(9/1)
d8 (PC, Xn)* 22(5/0)| 22(5/0)| 26(5/1)| 26(5/1){ 26(5/1)| 34(7/1)| 36(7/1)| 34(7/1)| 42(9/1)
#<data> 16 (4/0) | 16(4/0) | 20(4/1) | 20(4/1)| 20(4/1)| 28(6/1)| 30(6/1)| 28(6/1)| 36(8/1)
* : The size of the index register (Xn) does not affect execution time.
Table E.3 Move Word Instruction Execution Times
Destination
Source
Dn An (An) (An) + -(An) |d16 (An) |[d8 (An,Xn)*| Abs.W Abs.L
Dn 8 (2/0) 8(2/0)| 16(2/2)| 16(2/2)| 16(2/2)| 24(4/2)| 26(4/2)| 20(4/2)| 32(6/2)
An 8(2/0) 8(2/0)| 16(2/2)] 16(2/2) | 16(2/2)| 24(4/2)| 26(4/2)| 20(4/2)| 32(6/2)
(An) 16 (4/0) | 16(4/0) | 24(4/2)| 24(4/2)| 24(4/2)| 32(6/2)| 34(6/2)| 32(6/2)| 40(8/2)
(An) + 16 (4/0) | 16(4/0)| 24(4/2)| 24(4/2)| 24(4/2)| 32(6/2)| 34(6/2)| 32(6/2)| 40(8/2)
-(An) 18 (4/0) | 18(4/0)| 26(4/2)| 26(4/2)| 26(4/2)| 34(6/2)| 32(6/2)| 34(6/2)| 42(8/2)
d16 (An) 24 (6/0) | 24 (6/0)| 32(6/2)| 32(6/2)| 32(6/2)| 40(8/2)| 44 (8/2)| 40(8/2)|48(10/2)
d8(An, Xn)*| 26(6/0)| 26(6/0)| 34(6/2)| 34(6/2)| 34(6/2)| 42(8/2)| 44(8/2)| 42(8/2)|50(10/2)
Abs.W 24 (6/0) | 24(6/0) | 32(6/2)| 32(6/2)| 32(6/2)| 40(8/2)| 42(8/2)| 40(8/2) |48 (10/2)
Abs.L 32(8/0) | 32(8/0)| 40(8/2)| 40(8/2)| 40(8/2)|48(10/2)|50(10/2) |48 (10/2) |56 (12/2)
d16(PC) 24 (6/0) | 24(6/0)| 32(6/2)| 32(6/2)| 32(6/2)| 40(8/2)| 42(8/2)| 40(8/2)|48(10/2)
d8(PC, Xn)* | 26(6/0)| 26(6/0)| 34(6/2)| 34(6/2)| 34(6/2)| 42(8/2)| 44(8/2)| 42(8/2)|50(10/2)
#<data> 16 (4/0) | 16 (4/0)| 24(4/2)| 24(4/2)| 24(4/2)| 32(6/2)| 34(6/2)| 32(6/2)| 40(8/2)

* : The size of the index register (Xn) does not affect execution time.

VMPU-239

TOSHIBA TLCS-68000
Table E.4 Move Long Word Instruction Execution Times
Source Destination

Dn An (An) (An) + -(An) |d16 (An) d8(AnXn)*| Abs.W Abs.L
Dn 8 (2/0) 8(2/0) | 24(2/4) | 24(2/4)| 24(2/4)| 32(4/4)| 34(4/4)| 32 (4/4)| 40 (6/4)
An 8 (2/0) 8(2/0) | 24(2/4)| 24(2/4)| 24(2/4)| 32(4/4)| 34(4/4)| 32(4/4)| 40 (6/4)
(An) 24 (6/0) | 24(6/0) | 40(6/4)| 40(6/4)| 40(6/4)| 48(8/4)| 50(8/4)| 48(8/4)|56(10/4)
(An) + 24 (6/0) | 24(6/0) | 40(6/4)| 40(6/4)| 40(6/4)| 48(8/4)| 50(8/4)| 48(8/4)|56(10/4)
-(An) 26(6/0) | 26(6/0) | 42(6/4)| 42(6/4)| 42(6/4)| 50(8/4)| 52(8/4)| 50(8/4) |58 (10/4)
d16 (An) 32(8/0) | 32(8/0)| 48(8/4)| 48(8/4)| 48(8/4)|56(10/4) |58 (10/4) |56 (10/4) | 64 (12/4)
d8 (An, Xn)* 34(8/0) | 34(8/0)| 50(8/4)| 50(8/4)| 50(8/4)|58(10/4) |60 (10/4) |58 (10/4) | 66 (12/4)
Abs.W 32(8/0) | 32(8/0)| 48(8/4)| 48(8/4)| 48(8/4)|56(10/4) |58 (10/4) |56 (10/4). 64 (12/4)
Abs.L 40 (10/0) | 40 (10/0) | 56 (10/4) | 56 (10/4) | 56 (10/4) | 64 (12/4) | 66 (12/4) | 64 (12/4) | 72 (14/4)
d16 (PQ) 32(8/0)| 32(8/0)| 48(8/4)| 48(8/4)| 48(8/4)|56(10/4) |58 (10/4) | 56 (10/4) | 64 (12/4)
d8(PC, Xn)* 34 (8/0) | 34(8/0)| 50(8/4)| 50(8/4)| 50(8/4) |58 (10/4) |60 (10/4) |58 (10/4) | 66 (12/4)
#<data> 24 (6/0) | 24(6/0)| 40(6/4)| 40(6/4)| 40(6/4)| 48(8/4)| 50(8/4)| 48(8/4)|56(10/4)

* .

The size of the index register (Xn) does not affect execution time.

E4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table E.5 indicates the time required to

perform the operations, store the results, and read the next instruction. The number
of bus read and write cycles is shown in parenthesis as (r/w). The number of clock
periods and the number of read and write cycles must be added respectively to those
of the effective address calculation where indicated. In Table E.5 the headings have
the following meanings: An = address register operand, Dn = data register
operand, ea =an operand specified by an effective address, and M = memory
effective address operand.

VMPU-240

TOSHIBA

TLCS-68000

Table E.5 Standard Instruction Execution Times

Instruction Size op<ea>, An op<ea>, Dn opDn, <M>
Byte - 8 (2/0) + 12 (2/1) +
ADD/ADDA Word 12 (2/0) + 8 (2/0) + 16 (2/2) +
Long word 10 (2/0) + ** 10 (2/0) + ** 24 (2/4) +
Byte - 8 (2/0) + 12 (2/1) +
AND Word — 8 (2/0) + 16 (2/2) +
Long word - 10 (2/0) +* 24 (2/4) +
Byte - 8 (2/0) + -
CMP /CMPA Word 10 (2/0) + 8 (2/0) + -
Long word 10 (2/0) + 10 (2/0) + -
DIVS - 162 (2/0) * -
DIVU - 144 (2/0) * -
Byte - 8 (2/0) + *** 12 (2/1) +
EOR Word - 8 (2/0) +*** 16 (2/2) +
Long word - 2 (2/0) +*** 24 (2/4) +
MULS - 74 (2/0) +* —
MULU - 74 (2/0) +* -
Byte - 8 (2/0) + 12 (2/1) +
OR Word - 8 (2/0) + 16 (2/2) +
Long word - 0 (2/0) +** 4 (2/4) +
Byte - (2/0) + 12 (271) +
SUB Word 12 (2/0) + 8 (2/0) + 16 (2/2) +
Long word 10 (2/0) + ** 10 (2/0) ** 24 (2/4) +
Notes:
+ add effective address calculation time

*kk

DIVS, DIVU -

Indicates maximum base value added to word effective address time.

The base time of 10 clock periods is increased to 12 if the effective address

mode is register direct or immediate

(effective address time should also be added).

Only available effective address mode is data register direct.

10% difference between the best and worst case timings.
MULS, MULU — The multiply algorithm requires 42+ 2n clocks where n is defined

as:

MULS = n=tagthe <ea> with a zero as the MSB; n is the resultant number

of 10 or 01 patternsin the 17-bit source, i.e., worst case happens

when the source is $5555.

MULU n=the number of ones in the <ea>

The divide algorithm used by the TMP68008 provides less than

VMPU-241

TOSHIBA

TLCS-68000

E.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

Table E.6 Immediate Instruction Execution Times

The number of clock periods shown in Table E.6 includes the time to fetch
immediate operands, perform the operations,store the results, and read the next
operation. The number of bus read and write cycles is shown in parenthesis as (r/w).
The number of clock periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where indicated. In Table
E.6, the headings have the follwing meanings: # = immediate operand, Dn = data
register operand, An= address register operand, and M = memory operand.

+

add effective address calculation time

1

|

|

|

|

|

I

|

|

|

I

|

1 Instruction Size op#, Dn op#, An op#, M

! Byte 16 (4/0) - 20 (4/1) +

1 ADDI Word 16 (4/0) - 24 (472) +

l Long word 28 (6/0) - 40 (6/4) +

1 Byte 8 (2/0) - 12 (211) +

| ADDQ Word 8 (2/0) 12 (2/0) 16 (212) +

| Lon word 12 (2/0) 12 (2/0) 24 (2/4) +
Byte 16 (4/0) - 20 (4/1) +

:l ANDI Word 16 (4/0) - 24 (42) +

I Lon word 28 (6/0) - 40 (6/4) +
Byte 16 (4/0) - 16 (4/0) +

1 CMPI Word 16 (4/0) - 16 (4/0) +

1 Lon word 26 (6/0) - 24 (6/0) +

1 Byte 16 (4/0) = 20 (@) +

ll EORI Word 16 (4/0) - 24 (412) +

1 Lon word 28 (6/0) - 40 (6/4) +

il MOVEQ Lon word 8 (2/0) - -

'W Byte 16 (4/0) - 20 (4/1) +

i ORI Word 16 (4/0) - 24 (472) +

I Lon word 28 (6/0) - 40 (6/4) +
Byte 16 (4/0) - 12 (211) +

! SUBI Word 16 (4/0) - 16 (2/2) +

1 Lon word 28 (6/0) - 24 (2/4) +

i Byte 8 (2/0) - 20 (4/1) +

| SUBQ Word 8 (2/0) 12 (2/0) 24 (412) +

I Lon word 12 (2/0) 12 (2/0) 40 (6/4) +

|

|

VMPU-242

TOSHIBA

TLCS-68000

E.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table E.7 indicates the number of clock periods for the single operand

instructions.

Table E.7 Single Operand Instruction Execution Times

The number of bus read andwrite cycles is shown in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Instruction Size Register Memory
Byte 8 (2/0) 12(2/1) +
CLR Word 8 (2/0) 16 (2/2) +
Long word 10 (2/0) 24 (2/4) +
NBCD Byte 10 (2/0) 12(2/1) +
Byte 8(2/0) 12 (2/1) +
NEG Word 8 (2/0) 16(2/2) +
Long word 10 (2/0) 24 (2/4) +
Byte 8 (2/0) 12(2/11) +
NEGX Word 8 (2/0) 16 (2/2) +
Long word 10 (2/0) 24 (2/4) +
Byte 8 (2/0) 12(2/1) +
NOT Word 8 (2/0) 16(2/2) +
Long word 10 (2/0) 24 (2/4) +
Byte, False 8(2/0) 12 (2/1) +
Sec Byte, True 10 (2/0) 12(21) +
TAS Byte 8 (2/0) 14(2/1) +
Byte 8 (2/0) 8(2/0) +
TST Word 8 (2/0) 8(2/0) +
Long word 8(2/0) 8(2/0) +

+ : add effective address calculation time.

VMPU-243

TOSHIBA TLCS-68000

E.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Table E.8 indicates the number of clock periods for the shift and rotate
instructions. The number of bus read and write cycles is shown in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table E.8 Shift/Rotate Instruction Execution Times

Instruction Size Register Memory

Byte 10 + 2n (2/0) -

ASR, ASL Word 10 + 2n (2/0) 16 (2/2) +
Long word 12 +2n (2/0) -
Byte 10 + 2n (2/0) -

LSR, LSL Word 10 + 2n (2/0) 16(2/2) +
Long word 12 + 2n (2/0) -
Byte 10 + 2n (2/0) -

ROR, ROL Word 10 + 2n (2/0) 16 (2/2) +
Long word 12 +2n (2/0) -
Byte 10 + 2n (2/0) -

ROXR, ROXL |Word 10 + 2n (2/0) 16(2/2) +
Long word 12 +2n (2/0) -

+ : addeffective address calculation time for word operands

n : isthe shift count

E.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table E.9 indicates the number of clock periods required for the bit manipulation
instructions. The number of bus read and write cycles is shown in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

VMPU-244

*

Indicates maximum value; data addressing mode only

TOSHIBA TLCS-68000
Table E.9 Bit Manipulation Instruction Execution Times
X . Dynamic Static
Instruction Size - -
Register Memory Register | Memory
Byte - 12 (2/1) + - 20 (4/1) +
BCHG Long word 12 (2/0) * - 20 (4/0)* -
Byte - 12 (211) + - 20 (4/1) +
BCLR
Long word 14 (2/0) * - 22 (4/0)* -
Byte - 12 (2/1) + - 20 (411
BSET y (211) (411) +
Long word 12 (2/0) * - 20 (4/0)* -
Byte - 8 (2/0) + - 16 (4/0) +
BTST % *
Long word 10 (2/0) - 18 (4/0) -
+ : add effective address calculation time

E.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Table E.10 indicates the number of clock periods required for the conditional
instructions. The number of bus read and write cycles is indicated in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table E.10 Conditional Instruction Execution Times

Instruction Displacement Trep or Trapor
Branch Taken Branch Not taken
8 Byte 18 (4/0) 12 (2/0)
ce Word 18 (4/0) 20 (4/0)
Byte 18 (4/0 -
BRA y (4/0)
Word 18 (4/0) -
Byte 34 (4/4 -
BSR y (4/4)
Word 34 (4/4) -
ccTrue - 20 (4/0)
DBcc
cc False 18 (4/0) 26 (6/0)
CHK - 68 (8/6) +* 14 (2/0) +
TRAP - 62 (8/6) -
TRAPV - 66 (10/6) 8 (2/0)

*+

add effective address calculation time for word operand
indicates maximum base value

VMPU-245

TOSHIBA TLCS-68000

; E.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

I Table E.11 indicates the number of clock periods required for the jump, jump-to-
I subroutine, load effective address, push effective address, and move multiple
: registers instructions. The number of bus read and write cycles is shown in
I parenthesis as (r/w).

: Table E.11 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

l Instruction Size (An) (An) + -(An) d16 (An) d8(Aan, Xn)* Abs,W Abs,L d16 (PC) d8 (PC, Xn)*
I Jmp - 16 (4/0) - co- 18 (4/0) 22 (4/0) 18 (4/0) 24(6/0) 18 (4/0) 22 (4/0)
I JSR - 32 (a/8) - - 34 (4/8) 38 (4/8) 34 (a/8) 40 (6/4) 34 (a/8) 32 (a18)
I LEA - 8 (2/0) - - 16 (4/0) 20 (4/0) 16 (4/0) 24 (6/0) 16 (4/0) 20 (4/0)
I PEA - 24 (2/8) - - 32(4/8) 36 (4/4) 32 (4/8) 40 (6/8) 32 (4/8) 36 (4/4)
I Word 24+8n 24+8n - 32+8n 34+8n 32+8n 40+ 8n 32+8n 34+8n
I MOVEN (6 +2n/0) (6 +2n/0) - (8 +2n/0) (8 +2n/0) (10 + n/0) (10 + 2n/0) (8 +2n/0) (8 +2n/0)
I N—-R Long word 24+16n 24+16n - 32+16n 34+16n 32+16n 40 +16n 32+16n 32+ 16n
I (6 +4n/0) (6 +4n/0) - (8 + 4n/0) (8 +4n/0) (8 + 4n/0) (8 +4n/0) (8 +4n/0) (8 +4n/0)
| Word 16+8n - 16+8n 244+8n 26+8n 24+8n 32+8n - -

I MOVEN - (4/2n) - (4/2n) (6/2n) (6/2n) {6/2n) (8/2n) - -

I R—-N Long word 16+ 16n - 16+ 16n 24+16n 26+16n 24+ 16n 32+ 16n - -

1 (a/8n) - (4/8n) (6/8n) (8/4n) (6/an) - -

1 n: thenumber of registersto move

l * : . thesize of the index register (Xn) does not affect the instruction’s execution time

VMPU-246

TOSHIBA TLCS-68000
E.11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES
Table E.12 indicates the number of clock periods for the multi-precision

instructions. The number of clock periods includes the time to fetch both operands,

perform the operations, store the results, and read the next instructions. The.

number of bus read and write cycles is shown in parenthesis as (r/w).

Table E.12 Multi-Precision Instruction Execution Times

Instruction Size OPDn, Dn OPM, M

Byte 8(2/0) 22 (41)

ADDX Word 8(2/0) 50 (6/2)
Long word 12 (2/0) 58 (10/4)

Byte - 16 (4/0)

CMPM Word - 24 (6/0)
Long word - 40 (10/0)

Byte 8 (2/0) 22 (4/1)

SUBX Word 8 (2/0) 50 (6/2)
Long word 12 (2/0) 58 (10/4)

ABCD Byte 10 (2/0) 20 (4/1)

SBCD Byte 10 (2/0) 20 (4/1)

VMPU-247

LM En SR GEM 0T R RE T G e SO W GTa G C=m 3

o omm Som esma

=2

TOSHIBA TLCS-68000

E.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Table E.13 and E.14 indicate the number of clock periods for the folowing
miscellaneous instructions. The number of bus read and write cycles is shown in
parenthesis as: (r/w). The number of clock periods plus the number of read and write
cycles must be added to those of the effective address calculation where indicated.

Table E.13 Miscellaneous Instruction Execution Times

Table E.14 Move Peripheral Instruction Execution Times

1

|

|

|

|

I

I

|

1

i Instruction Register Memory

) ANDI to CCR 32 (6/0) -

] ANDI to SR 32 (6/0) -

i EORI to CCR 32 (6/0) -

| EORI to SR 32 (6/0) -

i EXG 10 (2/0) -

| EXT 8 (2/0) -

I LINK 32 (4/4) -

i MOVE to CCR 18 (4/0) 18 (4/0) +

| MOVE to SR 18 (4/0) 18 (4/0) +

i MOVE from

I R 10 (2/0) 16 (2/2) +

1 MOVE to USP 8 (2/0) -

I MOVE from

I Usp 8 (2/0) -

| NOP 8 (2/0) -

| ORI to CCR 32 (6/0) -

| ORI to SR 32 (6/0) -

1 RESET 136 (2/0) -

| RTE 40 (10/0) -

| RTR 40 (10/0) -

| RTS 32 (8/0) -

I STOP 4(0/0) -

I SWAP 8 (2/0) -

i UNLK 24 (6/0) -

: + : add effective address calculation time for word operand

1.

1 Instruction Size Register->Memory | Memory—Register

: OVEP L Word 24 (42) 24 (6/0)
ong word 32 (4/4) 32 (8/0)

: + : add effective address calculation time

VMPU-248

TOSHIBA

TLCS-68000

E.13 EXCEPTION PROCESSING EXECUTION TIMES

Table E.15 indicates the number of clock periods for exception processing. The

number of clock periods includes the time for all stacking, the vector fetch, and the
fetch of the first instruction of the handler routine. The number of bus read and

write cycles is shown in parenthesis as: (r/w).

+
*k .

Table E.15 Exception Processing Execution Times

Exception Periods
Address Error 94 (8/14)
Bus Error 94 (8/14)
CHK Instruction 68 (8/6) +
Divide by Zero 66 (8/6) +
Interrupt 72 (9/6)*
Illegal Instruction 62 (8/6)
Privileged Instruction 62 (8/6)
RESET** 64 (12/0)
Trace 62 (8/6)
TRAP Instruction 62 (8/6)
TRAPV Instruction 66 (10/6)

add effective address calculation time
Indicates the time from when RESET and HALT are first sampled as negated to
when instruction execution starts.

VMPU-249

TOSHIBA TLCS-68000

APPENDIXF TMP68010 INSTRUCTION EXECUTION TIMES
F.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of
external clock (CLK) periods. In this data, it is assumed that both memory read and
write cycle times are four clock periods. A longer memory cycle will cause the
generation of wait states which must be added to the total instruction time. -

The number of bus read and write cycles for each instruction is also included with
the timing data. This data is enclosed in parenthesis following the number of clock
periods and is shown as: (r/w) where r is the number of read cycles and w is the
number of write cycles included in the clock period number. Recalling that either a
read or write cycle requires four clock periods, a timing number given as 18(3/1)
relates to 12 clock periods for the three read cycles, puls 4 clock periods for the one
write cycle, puls 2 cycles required for some internal function of the processor.

Note:

The number of periods includes instruction fetch and all applicable operand
fetches and stores.

F.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

Table F.1 lists the number of clock periods required to compute an instruction’s
effective address. It includes fetching of any extension words if necessary. Several
instructions do not need the operand at the effective address to be fetched and thus
require fewer clock periods to calculate a given effective address than the
instructions that fetch the effective address operand. The number of bus read and
write cycles is shown in parenthesis as (r/w). Note there are no write cycles involved

in processing the effective address.

VMPU-250

TOSHIBA

TLCS-G8000

Table F.1 Effective Address Calculation Times

Byte, Word Long word H

Add ressing Mode Fetch No Fetch Fetch No Fetch 'l

Register 1’

Dn Data Register Direct 0(0/0) - 0(0/0) - I!
An Address Register Direct 0 (0/0) - 0(0/0) - !
Memory ' |

(An) Address Register Indirect 4(1/0) 2(0/0) 8(2/0) 2 (2/0) :
(An) + Address Register Indirect with Postincrement 4(1/0) 4(0/0) 8(2/0) 4(0/0) l
-An Address Register Indirect with Predecrement 6 (1/0) 4.(0/0) 10 (2/0) 400 |
d16 (An) Address Register Indirect with Displacement 8(2/0) 4.(0/0) 12 (2/0) 4(1/0) li
d8(An, Xn)* | Address Register Indirect with Index 10 (2/0) 8(1/0) 14 (3/0) 8(1/0) :
Abs.W Absolute Short 8(2/0) 4(1/0) 12(3/0) 4(1/0) {{
Abs.L Absolute Long 12 (3/0) 8(2/0) 16 (4/0) 8(2/0) a'l
d16 (PC) Program Counter with Displacement 8(2/0) - 12 (3/0) - }li
d8 (PC, Xn)* |Program Counter with Index 10 (2/0) - 14 (3/0) - gi
#<data> |Immediate 4(1/0) - 8 (2/0) - ii

* .

F.3 MOVE INSTRUCTION EXECUTION TIMES

Table F.2, F.3, F.4 and F.5 indicate the number of clock periods for the move
instruction. This data includes instruction fetch, operand reads, and operand

The size of the index register (Xn) does not affect execution time.

writes. The number of bus read and write cycles is shown in parenthesis as (v/w).

Table F.2 Move Byte and Word Instruction Execution Times

*.

The size of the index register (Xn) does not affect execution time.

Destination }
source Dn An (An) (An) + -(An) d16(An) |d8(An,Xn)*| Abs.W Absl §
Dn 4(1/0) 4(1/0) 8(1/1) 8(1/1) 8(1/1) 12(2/1) 14(2/1) 12(2/1) 16 (3/1)
An 4(1/0) 4(1/0) 8(1/1) 8(1/1) 8(1/1) | 12(21) 14(2/1) 12(2/1) | 16(3/1)
(An) 8(2/0) 8 (2/0) 12(2/1) 12(2/1) 12(2/1) 16 (3/1) 18(3/1) 16 (3/1) 20(4/1)
(An) + 8 (2/0) 8 (2/0) 12(2/1) 12(211) 12(2/1) 16(3/1) 18 (3/1) 16(3/1) | 20(4/1)
-(An) 10 (2/0) 10(2/0) | 14(2/1) 14 (2/1) 14 (2/1) 18(3/1) | 20(3/1) 18(3/1) | 22(4/1) H
d16 (An) 12 (3/0) 12(3/0) | 16(3/1) 16(3/1) 16(3/1) 20(471) | 22(41) 20(4/1) | 24@a) F
d8 (An, Xn) * 14(3/0). | 14(3/0) | 18(3/1) 18(3/1) 18(31) | 22(41) | 24(4) 2201 | 26(51) |
Abs.W 12(3/0) | 12(3/0) | 16(3/1) | 16(3/1) | 16(3/1) | 20(4/1) | 22(4/1) 200a1) | 2451
Abs.L 16 (4/0) 16(4/0) | 20(4/1) | 20(4/1) | 20(4/1) | 24(5/1) | 26(5/1) 24(5/1) | 28(6/1) ki
d16 (PC) 12(3/0) 12(3/0) 16 (3/1) 16 (3/1) 16 (3/1) 20 (4/1) 22(41) 20(4/1) | 24(5/1)
d8 (PC, Xn) * 14 (3/0) 14 (3/0) 18(3/1) 18(3/1) 18(3/1) 22(4/1) 24(4/1) 22(4/1) | 28(5/)
#<data> 8(2/0) 8(2/0) | 12(211) 12(2/1) 12(2/1) 16 (3/1) 18(3/1) 161 | 201§
|

VMPU-251

TOSHIBA TLCS-68000

Table F.3 Move Byte and Word Instruction Loop Mode Execution Times
Loop Continued Loop Terminated N
Valid Count, cc False Valid Count, cc True | Expired Count
Destination
Source
(An) (An) + - (An) (An) (An) + - (An) (An) (An) + - (An)
Dn 10(0/1) | 10(0/1) - 18(2/1) | 18(2/1) - 16(2/1) | 16(2/1) -
An* 10(071) | 10(0/1) - 18(2/1) | 18(2/1) - 16(2/1) | 16(271) -
(An) 140171) | 14171 | 160171 | 203/1) | 20(3/1) | 22(3/1) | 18(3/1) | 18(3/1) | 20(3/1)
(An) + 14(171) | 14@/1) | 160171) | 20371 | 20371) | 22(371) | 18(3/1) | 18(3/1) | 20(3/1)
-(An) 16(1/71) | 16(1/1) | 18(1/1) | 22(3/1) | 223/1) | 24(3/1) | 203/1) | 20(371) | 22(3/1)
*:
Table F.4 Move Long Word Instruction Execution Times
Destination
Source Dn An (An) (An) + ~(An) | d16(An) |d8(Anxn) | AbsW | AbsL
Dn 4(1/0) a(1/0) | 12(1/2) | 12(172) | 14(1/2) | 16(2/2) | 18(2/2) | 16(2/2) | 20(3/2)
An a(1/0) | a(170) | 12(172) | 12(172) | 14(1/2) | 16(2/2) | 18(2/2) | 16(2/2) | 20(3/2)
(An) 12(3/0) | 12(3/0) | 20(3/2) | 20(3/2) | 20(3/2) | 24(4/2) | 26(4/2) | 24(4/2) | 28(5/2)
(An) + 12(3/0) | 12(3/0) | 20(3/2) | 20(3/2) | 20(3/2) | 24(4/2) | 26(4/2) | 24(4/2) | 28(5/2)
-(An) 14(3/0) | 14(3/0) | 22(3/2) | 22(372) | 22(3/2) | 26(4/2) | 28(4/2) | 26(4/2) | 30(5/2)
d16 (An) 16(4/0) | 16(4/0) | 24(4/2) | 24(472) | 24(4/2) | 28(5/2) | 30(5/2) | 28(5/2) | 32(6/2)
d8 (An, Xn) * 18(4/0) | 18(4/0) | 26(4/2) | 26(472) | 26(4/2) | 30(5/2) | 32(5/2) | 30(5/2) | 34(6/2)
Abs.W 16(4/0) | 16(4/0) | 24(4/2) | 2a(472) | 24(4/2) | 28(5/2) | 30(5/2) | 28(5/2) | 32(6/2)
Abs.L 20(5/0) | 20(5/0) | 28(5/2) | 28(5/2) | 28(5/2) | 32(6/2) | 34(6/2) | 32(6/2) | 36(7/2)
d16 (PC) 16 (4/0) 16(4/0) | 24(4/2) 24(4/2) 24(4/2) 28(5/2) 30(5/2) 28(5/2) 32(6/2)
d8 (PC, Xn) * 18(4/0) | 18(4/0) | 26(4/2) | 26(4/2) | 26(4/2) | 30(5/2) | 32(5/2) | 30(5/2) | 34(6/2)
#<data> 12(3/0) | 12(3/0) | 20(3/2) | 20(3/2) | 20(3/2) | 24(4/2) | 26(4/2) | 24(4/2) | 28(5/2)
*: The size of the index register (Xn) does not affect execution
Table F.5 Move Long Word Instruction Loop Mode Execution Times
Loop Continued Loop Terminated
Valid Count, cc False Valid Count, cc True I Expired Count
Destination
Source
(An) (An) + - (An) (An) (An) + - (An) (An) (An) + - (An)
Dn 14(0/2) | 14(072) - 20(272) | 20(2/2) - 18(2/2) | 18(272) -
An 14(0/2) 14(0/2) - 20(2/2) | 20(272) - 18(2/2) 18(2/2) -
(An) 22(2/2) | 22(272) | 24(2/2) | 28(4/2) | 28(4/2) | 30(4/2) | 24(4/2) | 24(4/2) | 26(4/2)
(An) + 22(272) | 22(2/72) | 24(2/2) | 28(472) | 28(4/2) | 30(4/2) | 24(4/2) | 24(4/2) | 26(4/2)
- (An) 24(2/2) | 24(2/2) | 26(2/2) | 30(4/2) | 30(4/2) | 32(4/2) | 26(4/2) | 26(4/2) | 28(4/2)

VMPU-252

TOSHIBA

TLCS-68000

F.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Tables F.6 and F.7 indicate the time
required to perform the operations, store the results, and read the next instruction.
The number of bus read and write cycles is shown in parenthesis as (r/w). The
number of clock periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where indicated.

In Tables F.6 and F.7 the headings have the following meanings: An =

address

register operand, Dn = data register operand, ea, =an operand specified by an
effective address, and M = memory effective address operand.

Table F.6 Standard Instruction Execution Times

Instruction Size op<ea>, An*** | op<ea>, Dn opDn, <M>
, W 8(1/0 4(1/0 8(1/1
ADD / ADDA Byte, Word () + () + (1/71) +
Long word 6(1/0) + 6(1/0) + 12(1/2) +
Byte, Word - 4(1/0) + 8(1/1) +
AND
Long - 6(1/0) + 12(1/2) +
Byte, Word 6(1/0) + 4(1/0) + -
CMP/CMPA Long word 6(1/0) + 6(1/0) + -
DIVS — - 122(1/0) + -
DIVU — - 108(1/0) + -
EOR Byte, Word - 4(1/0) ** 8(1/1) +
Long word - 6(1/0) ** 12(1/2) +
MULS - - 42(1/0) + -
MULU - - 40(1/0) + -
OR Byte, Word - 4(1/0) + 8(1/1) +
Long word - 6(1/0) + 12(1/2) +
Byte, W 1 4(1/0 8(1/1
SUB /SUBA yte, Word 8(1/0) + (1/0) + () +
Long word 6(1/0) + 6(1/0) + 12(1/2) +
Notes:
+ add effective address calculation time

* .
**
*xk

Indicates maximum value

only available addressing mode is data register direct

word or long word only

VMPU-253

TOSHIBA

TLCS-68000

Tabie F.7 Standard Instruction Loop Mode Execution Times

Loop Continued

Loop Terminated

Valid Count, cc False

Valid Count cc True

Expired Count

Instruc- Size op<ea> |op<ea> op Dn op<ea> |op<ea> opDn [op<ea> |op<ea> op Dn
tion An* Dn <ea> An* Dn <ea> An* Dn <ea>
ADD Byte, Word 18(1/0) | 18(1/0) | 16(1/1) | 24(3/0) | 22(3/0) | 22(3/1) | 22(3/0) | 20(3/0) | 20(3/1)
Long word 22(2/0) | 22(2/0) | 24(2/2) | 28(4/0) | 28(4/0) | 30(4/2) | 26(4/0) | 26(4/0) | 28(4/2)
AND Byte, Word - 16(1/1) | 16(1/1) - 22(3/0) | 22(3/1) - 20(3/0) | 20(3/1)
Long word - 22(2/0) | 24(2/2) - 28(4/0) | 30(4/2) - 26(4/0) | 28(4/2)
P Byte, Word 12(1/0) | 12(1/0) - 18(3/0) | 18(3/0) - 16(3/0) | 16(4/0)
Long word 18(2/0) | 18(1/0) - 24(4/0) | 24(4/0) - 20(4/1) | 20(4/0)
EOR Byte, Word - - 16(1/0) - - 22(3/1) - - 20(3/1)
Long word - - 24(2/2) - - 30(4/2) - - 28(4/2)
OR Byte, Word - 16(1/0) | 16(1/0) - 22(3/0) | 22(3/1) - 20(3/0) | 20(3/1)
Long word - 22(2/0) | 24(2/2) - 28(4/0) | 30(4/2) - 26(4/0) | 28(4/2)
SuB Byte, Word 18(1/0) | 16(1/0) | 16(1/1) | 24(3/0) | 22(3/0) | 22(3/1) | 22(3/0) | 20(3/0) | 20(3/1)
Long word 22(2/0) [20(2/0) | 24(2/2) | 28(4/0) | 26(4/0) | 30(4/2) | 26(4/1) | 24(4/0) | 28(4/2)
* Word or long only.<ea> may be (An), (An)+ or —(An) only. Add two clock periods
to the table value if <ea> is —(An). ‘
F.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table F.8 includes the time to fetch
immediate operands, perform the operations, store the results, and read the next

operation. The number of bus read and write cycles is shown in parenthesis as (x/w).

The number of clock periods and the number of read and write cycles must be added

respectively to those of the effective address calculation where indicated.

In Table F.8, the headings have the follwing meanings: # = immediate operand,

Dn = data register operand, An= address register operand, and M = memory

operand.

VMPU-254

TOSHIBA TLCS-68000
Table F.8 Immediate Instruction Execution Times
Instruction Size op #, Dn op #, An op #, M

ADDI Byte, Word 8(2/0) - 12(2/1) +
Long word 14(3/0) - 20(3/2) +
ADDQ Byte, Word 4(1/0) 4(1/0) * 8(1/1) +
Long word 8(1/0) 8(1/0) 12(1/2) +
ANDI Byte, Word 8(2/0) - 12(2/1) +
Long word 14(3/0) - 20(3/1) +
CMPL Byte, Word 8(2/0) — 8(2/0) +
Long word 12(3/0) - 12(3/0) +
EORI Long word 8(2/0) - 12(2/1) +
Byte, Word 14(3/0) - 20(3/2) +

MOVEQ Long word 4(1/0) - -
Byte, Word 8(2/0) - 12(2/1) +
ORI Long word 14(3/0) - 20(3/2) +
Byte, Word 8(2/0) - 12(2/1) +
SUEBI Long word 14(3/0) - 20(3/2) +
SUB Byte, Word 4(1/0) 4(1/0) * 8(1/1) +
Q Long word 8(/0) 8(1/0) 12(1/2) +

+
*

add effective address calculation time

word only

F.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Tables F.9, F.10, and F.11 indicate the number of clock periods for the single

operand instructions.

The numberof bus read and write cycles is shown in

parenthesis as (r/w). The number of clock periods and the number of read and write
cycles must be added respectively to those of the effective address calculation where

indicated.

Table F.9 Single Operand Instruction Execution Times
Instruction Size Register Memory
NBDC Byte 6(1/0) 8(1/1) +
NEG Byte, Word 4(1/0) 8(1/1) +

Long word 6(1/0) 12(1/2) +
NEGX Byte, Word 4(1/0) 8(1/1) +

Long word 6(1/0) 12(1/2) +
NOT Byte, Word 4(1/0) 8(1/1) +

Long word 6(1/0) 12(1/2) +
Scc Byte, Faise 4(1/0) 8(1/1) +*

Byte, True 4(1/0) 8(1/1) ++*
TAS Byte 4(1/0) 14(2/1) +*
TST Byte, Word 4(1/0) 4(1/0) +

Long word 4(1/0) 4(1/0) +
s add effective address calculation time.

Use non-fetching effective address calculation time.

VMPU-255

TOSHIBA TLCS-68000

Table F.10 Clear Instruction Execution Times

Inst. Size Dn An (An) (An) + -(An) d16 (An) [(d8(An, Xn)* [Abs.w Abs.L
Byte, Word 4(1/0) - 8(1/1) 8(1/1) 10(1/71) | 12(1/1) 16(2/1) 12(2/1) | 16(3/1)
CLR
Long word 6(1/0) - 12(1/2) | 12(1/2) | 14(1/2) | 16(2/2) 20(2/2) 16(2/2) | 20(3/2)

The size of the index register (Xn) does not affect execution time.

Table F.11 Single Operand Instruction Loop Mode Execution Times

Loop Continued Loop Terminated
Valid Count, cc False Valid Count, cc True Expired Count
Inst. Size (An) (An) + - (An) (An) (An) + - (An) (An) (An) + —(An)

Byte, Word 10(0/1) | 10(0/1) | 12(0/1) | 18(2/1) | 18(2/1) | 20(2/0) | 16(2/1) | 16(2/1) | 18(2/1)
Long word 14(0/2) | 14(0/2) | 16(0/2) | 22(2/2) | 22(2/2) | 24(2/2) | 20(2/2) | 20(2/2) | 22(2/2)
NBCD Byte 18(1/71) | 18(1/1) | 20(1/1) | 24(3/1) | 24(3/1) | 26(3/1) | 22(3/1) | 22(3/1) | 24(3/1)
Byte, Word 16(1/71) [16(1/71) | 18(2/2) | 22(3/1) | 22(3/1) | 24(3/1) | 20(3/1) | 20(3/1) | 22(3/1)

CLR

NEG Long word 24(2/2) | 24(2/2) | 26(2/2) | 30(4/2) | 30(4/2) | 32(4/2) | 28(4/2) | 28(4/2) | 30(4/2)
NEGX Byte, Word 16(1/71) | 16(1/71) | 18(2/2) | 22(3/1) | 22(3/1) | 24(3/1) | 20(3/1) | 20(3/1) | 22(3/1)
Long word 24(2/2) | 24(2/2) | 26(2/2) | 30(4/2) | 30(4/2) | 32(4/2) | 28(4/2) | 28(4/2) | 30(4/2)
NOT Byte, Word 16(1/1) | 16(1/1) | 18(2/2) | 22(3/1) | 22(3/1) | 24(3/1) | 20(3/1) | 20(3/1) | 22(3/1)
Long word 24(2/2) | 24(2/2) | 26(2/2) | 30(4/2) | 30(4/2) | 32(4/2) | 28(4/2) | 28(4/2) | 30(4/2)
ST Byte, Word 12(1/0) | 12(1/0) | 14(1/0) | 18(3/0) | 18(3/0) | 20(3/0) | 16(3/1) | 16(3/1) | 18(3/0)

Long word 18(2/0) | 18(2/0) { 20(2/0) | 24(4/0) | 24(4/0) | 26(4/0) | 20(4/0) | 20(4/0) | 22(4/0)

VMPU-256

TOSHIBA TLCS-68000

F.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Tables F.12 and F.13 indicate the number of clock periods for the shift and rotate
instructions. The number of bus read and write cycles is shown in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table F.12 Shift/Rotate Instruction Execution Times

Instruction Size Register Memory*

Byte, Word 6+2n(1/0) 8(1/1) +

FSR, ASL
Long word 8+2n(1/0) -

LSR. LSL Byte, Word 6+2n(1/0) 8(1/1) +
Long word 8+2n(1/0) -

ROR, ROL Byte, Word 6+2n(1/0) 8(1/1) +
Long word 8+2n(1/0) —
Long word 8+2n(1/0) —

+ add effective address calculation time

n : the shift or rotate count

* word only

Table F.13 Shift/Rotate Instruction Loop Mode Execution Times

Loop Continued Loop Terminated
Valid Count, cc False Valid Count, cc True Expired Count
Instruction Size (An) (An) + - (An) (An) (An) + - (An) (An) (An) + - (An)
ASR, ASL Word 18(1/1) | 18(1/1) | 20(1/1) | 24(3/1) | 24(3/1) | 26(3/1) | 22(3/1) | 22(3/1) | 24(3/1)
LSR, LSL Word 18(1/1) | 18(1/1) | 20(1/1) | 24(3/1) | 24(3/1) | 26(3/1) | 22(3/1) | 22(3/1) | 24(3/1)
ROR, ROL Word 18(1/1) | 18(1/1) | 20(1/1) | 24(3/1) | 24(3/1) | 26(3/1) | 22(3/1) | 22(3/1) | 24(3/1)
ROXR, ROXL | Word 18(1/1) | 18(1/1) | 20(1/1) | 24(3/1) | 24(3/1) | 26(3/1) | 22(3/1) | 22(3/1) | 24(3/1)

F.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table F.14 indicates the number of clock periods required for the bit
manipulation instructions. The number of bus read and write cycles is shown in
parenthesis as (r/w). The number of clock periods and the number of read and write
cycles must be added respectively to those of the effective address calculation where
indicated.

VMPU-257

TOSHIBA

TLCS-68000
Table F.14 Bit Manipulation Instruction Execution Times
. . Dynamic Static
Instruction Size i i
Register | Memory | Register | Memory
BCHG Byte - 8(1/1) + - 12(2/1) +
Long word 8(1/0) * - 12(2/0) * -
BCLR Byte - 10 (1/1) + - 14 (2/1) +
Long word 10 (1/0) * - 14 (2/0) * -
BSET Byte - 8(1/1) + - 12(2/1) +
Long word 8(1/0) * - 12 (2/0) * -
Byte — 4(1/0) + - 8(2/0) +
BTST y . (1/0) . (2/0)
Long word 6 (1/0) - 10 (2/0) -

: add effective address calculation time.

: indicates maximum value

F.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Table F.15 indicates the number of clock periods required for the conditional
instructions. The number of bus read and write cycles is indicated in parenthesis as
(r/w). The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table F.15 Conditional Instruction Execution Times

Instruction Displacement Branch Taken Branch Not Taken
Bee Byte 10(2/0) 6(1/0)
Word 10(2/0) 10(2/0)
BRA Byte 10(2/0) -
Word 10(2/0) -
BSR Byte 18(2/2) -
Word 18(2/2) -
cctrue - 10(2/2)
DBcc
cc false 10(2/2). 16(3/0)

: add effective address calculation time.

: indicates maximum value

VMPU-258

TOSHIBA

TLCS-68000

F.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table F.16 indicates the number of clock periods required for the jump, jump-to-
subroutine, load effective address, push effective address, and move multiple

registers instructions.

parenthesis as (r/w).

The number of bus read and write cycles is shown in

Table F.16 JMP,JSR,LEA, PEA, and MOVEM Instruction Execution Times

Inst. Size An (An) + | - (An) | d16(An) | d8(An,Xn)* | Abs.W Abs.L | d16(PC) |d8(PC,Xn)*
JMP - 8(2/0) - - 10 (2/0) 14 (3/0) 10 (2/0) 12 (3/0) 10 (2/0) 14 (3/0)
JSR - 16 (2/2) - - 18 (2/2) 22(2/2) 18(2/2) 20(3/2) 18(2/2) 22(2/2)
LEA - 4(1/0) - - 8(2/0) 12 (2/0) 8(2/0) 12(3/0) 8(2/0) 12(2/0)
PEA - 12(1/2) - - 16 (2/2) 20(2/2) 16 (2/2) 20(3/2) 16 (2/2) 20(2/2)

Word 12+4n 12+4n - 16+4n 18 +4n 16 +4n 20 +4n 16 +4n 18 +4n
MOVEM B+n/0) | (3+n/0) @rr0) | @an0) | @en0) | Sen0) | @en) | @+
M-R Long 12+8n 12+8n - 16 +8n 18 +8n 16 + 8n 20+8n 16+8n | ~16+8n
word (3+2n/0) | (3+2n/0 (4 +2n/0) (4+2n/0) {(4+2n/0) | (5+n/0) | (4+2n/0) | (4+2n/0)
Word 8+4n| - 8+4n| 12+4n 14+an | 12+4n| 16+4n| — -
MOVEM (2n) (2/n) 3/n) (3+n) (3/n) (4/n) - -
R->M Long 8+8n - 8+8n 12+8n 14 +8n 12+8n 16 +8n - -
word (2/2n) - (2/2.) (3/2n) (3/2n) (3/2n) (4/n) - -
Byte, 18(3/0) 20 (3/0) 20 (3/0) 20 (4/0) 24 (4/0) 20 (4/0) 24 (5/0) - -
MOVES | word
M-R |iong 22(4/0) | 24(4/0) | 24(4/0) | 24(5/0) 28(5/0) | 24(5/0) | 28(6/0) - -
word
Byte, 18(2/1) 20(2/1) 20 (2/1) 20(3/1) 24(3/1) 20(3/1) 24 (4/1) - -
MOVES Word
R->M Long 22(2/2) 24(2/2) 24(2/2) 24(3/2) 28(3/21) 24(3/2) 28 (4/2) - -
word
n The number of registers to move.

F.11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES

The size of the index register (ix) does not affect the instruction’s execution time.

Table F.17 indicates the number of clock periods for the multi-precision
instructions. The number of clock periods includes the time to fetch both operands,
perform the operations, store the results, and read the next instructions. The

number of read and write cycles is shown in parenthesis as (r/w).

In Table F.17, the headings have the following meanings:

operand and M = memory operand.

Dn = data register

VMPU-259

TOSHIBA

TLCS-68000
Table F.17 Multi-Precision Instruction Execution Times
Loop Mode
Non-Looped Continued Terminated
Valid Count, Valid Count, Expired
cc False cc True Count
Instruction Size op Dn, Dn opM, M *

Byte, Word 4(1/0) 18(3/1) 22(2/1) 28(4/1) 26(4/1)
ADDX Long word 6(1/0) 30(5/2) 32(4/2) 38(6/2) 36(6/2)
Byte, Word — 12(3/0) 14(2/0) 20(4/0) 18(4/0)
CMPM Long word = 20(5/0) 24(470) 30(6/0) 26(6/0)
. Byte, Word 4(1/0) 18(3/1) 22(2/1) 28(4/1) 26(4/1)
SUBX Long word 6(1/0) 30(5/2) 32(4/2) 38(6/2) 36(6/2)
ASCD Byte 6(1/0) 18(3/1) 24(2/1) 30(4/1) 28(4/1)
SBCD Byte 6(1/0) 18(3/1) 24(2/1) 30(4/1) 28(4/1)

*

Source and destination ea is (An) + for CMPM and — (An) for all others.

F.12 MISCELLANEOQOUS INSTRUCTION EXECUTION TIMES

Table F.18 indicates the number of clock periods for the following miscellaneous
instructions. The number of bus read and write cycles is shown in parenthesis as
(r/w). The number of clock periods plus the number of read and write cycles must be
added to those of the effective address calculation where indicated.

VMPU-260

TOSHIBA TLCS-68000
Table F.18 Miscellaneous Instruction Execution Times
H * %
Instruction Size Register Memory Regls_t)er Sourcg**—>

Destination | Register
ANDI to CCR - 16 (2/0) - - -
ANDI to SR - 16 (2/0) - - -
CHK - 8(1/0) + - - -
EORlI to CCR - 16 (2/0) - — —
EORI to SR - 16 (2/0) - — —
EXG - 6 (1/0) - - -
EXT Word 4 (1/0) - - =
Long word 4 (1/0) — - —
LINK - 16 (2/2) - - -
MOVE from CCR - 4 (1/0) 8(1/1) +* - -
MOVE to. CCR - 12 (2/0) 12(2/0) + - -
MOVE from SR - 4(1/0) 8(1/1) +* - -
MOVE to SR - 12 (2/0) 12(2/0) + - -
MOVE from USP — 6 (1/0) - - —
MOVE to USP — 6 (1/0) - - -

MOVEC - - — 10(2/0) 12(2/0)

Word - - 16(2/2) 16(4/0)

MOVEP Long word — — 24(2/4) 24(6/0)
NOP - 4(1/0) - - -
ORI _to CCR - 16 (2/0) - - —
ORI_to SR - 16 (2/0) - - -
RESET - 130 (1/0) - - —
RTD - 16 (4/0) - — -
Short 24 (4/0) - - -
RTE Long word, Retry Read | 112(27/10) - - —
Long word, Retry Write 112 (26/1) - - -
Long word, No Retry 110 (26/0) — — -
RTR — 20 (5/0) - - —
RTS - 16 (4/0) - — -
STOP - 4(0/0) - - -
SWAP - 4 (1/0) - - -
TRAPV - 4(1/0) - - -
UNLK - 12 (3/0) - - -

+ : add effective address calculation time.

* %

: use non-feching effective address calculation time.

: Source or destination is a memory location for the MOVEP instruction and

a control register for the MOVEC instruction.

VMPU-261

TOSHIBA TLCS-68000

F.13 EXCEPTION PROCESSING EXECUTION TIMES

Table F.19 indicates the number of clock periods for exception processing. The
number of clock periods includes the time for all stacking, the vector fetch, and the
fetch of the first two instruction words of the handler routine. The number of bus
read and write cycles is shown in parenthesis as (r/w).

Table F.19 Exception Processing Execution Times

Exception
Address Error 126 (4/26)
Breadpoint Instruction* 42 (5/4)
Bus Error 126 (4/26)
CHK Instruction* 44 (5/4) +
Divide By Zero 42 (5/4)+
lllegal Instruction 38(5/4)
Interrupt* 46 (5/4)
MOVEC, lllegal Control Register** 46 (5/4)
Privilege Violation 38(5/4)
Reset*** 40 (6/0)
RTE, lllegal Format 50(7/4)
RTE, lllegal Revision 70(12/4)
Trace 38(4/4)
TRAP Instruction 38(4/4)
TRAPV Instruction 38(5/4)

*%
* k%

Add effective address calculation time.

The interrupt acknowledge and breakpoint cycles are assumed to take four clock periods.

Indicates maximum value.

Indicates the time from when RESET and HALT are first sampled as negated to when

instruction execution starts.

VMPU-262

TOSHIBA TLCS-68000

APPENDIX G TMP68010 LOOP MODE OPERATION

The TMP68010 has several features that provide efficient execution of program
loops. One of these features is the DBcc looping primitive instruction. The DBce

instruction operates on three operands, a loop counter, a branch condition, and a
branch displacement. When the DBcc is executed in loop mode, the contents of low
order word of the register specified as the loop counter is decremented by one and
compared to minus one. If equal to minus one, the result of the decrement is placed
back into the count register and the next sequential instruction is executed,
otherwise the condition code register is checked against the specified branch
condition. If the condition is true, the result of the decrement is discarded and the
next sequential instruction is executed. Finally, if the count register is not equal to
minus one and the branch condition is false, the branch displacement is added to the
program counter and instruction execution continues at that new address. Note that
this is slightly different than non-looped execution; however, the results are the
same. ’

An example of using the DBcc instruction in a simple loop for moving a block of
data is shown in Figure G.1. In this program, the block of data *"LENGTH' words
long at address "SOURCE' is to be moved to address *DEST' provided that none of
the words moved are equal to zero. When the effect of instruction prefetch on this
loop is examined it can be seen that the bus activity during the loop execution would

be:

1. Fetch the MOVE.W instruction,

2. Fetch the DBEQ instruction,

3. Read the operand where A0 points,

4. Write the operand where Al points,

5. Fetch the DBEQ branch displacement, and

6. If loop conditions are met, return to step 1.
LEA SOURCE, A0 Load A Pointer To Source Data
LEA DEST, A1l Load A Pointer To Destination
MOVE. W #LENGTH, DO Load The Counter Register

LOOP MOVE . W (AR0)+, (A1)+ Loop To Move The Block Of Data

DBEQ DO, LOOP Stop If Data Word Is Zero

Figure G.1 DBcc Loop Mode Program Example

VMPU-263

TOSHIBA TLCS-68000

During this loop, five bus cycles are executed; however, only two bus cycles
perform the data movement. Since the TMP68010 has a two word prefetch queue in
addition to a one word instruction decode register, it is evident that the three
instruction fetches in this loop could be eliminated by placing the MOVE.W word in
the instruction decode register and holding the DBEQ instruction and its branch
displacement in the prefetch queue. The TMP68010 have the ability to do this by
entering the loop mode of operation. During loop mode operation, all opcode fetches
are suppressed and only operand reads and writes performed until an exit loop
condition is met.

Loop mode operation is transparent to the programmer, with only two conditions
required for the TMP68010 to enter the loop mode. First, a DBec instruction must be
executed with both branch conditions met and a branch displacement of minus four;
which indicates that the branch is to a one word instruction preceding the DBcc
instruction. Second, when the processor fetches the instruction at the branch
address, it is checked to determine whether it is one of the allowed looping
instructions. If it is, the loop mode is entered. Thus, the single word looped
instruction and the first word of the DBcc instruction will each be fetched twice
when the loop is.entered; but no instruction fetches will occur again until the DBcc
loop conditions fail.

In addition to the normal termination conditions for a loop, there are several
conditions that will cause the TMP68010 to exit loop mode operation. These
conditions are interrupts, trace exceptions, reset errors, and bus errors. Interrupts
are honored after each execution of the DBcc instruction, but not after execution of
the looped instruction. If an interrupt exception occurs, loop mode operation is
terminated and can be restarted on return from the interrupt handler. If the T bit is
set, trace exceptions will occur at the end of both the loop instruction and the DBcc
instruction and thus loop mode operation is not available. Reset will abort all
processing, including the loop mode. Bus errors during the loop mode will be treated
the same as in normal processing; however, when the RTE instruction is used to
continue the execution of the looped instruction, the three word loop will not be re-
fetched.

The loopable instructions available on the TMP68010 are listed in Table G.1.
These instructions may use the three address register indirect modes to form one
word looping instructions; (An), (An)+, and —(An).

VMPU-264

TOSHIBA TLCS-68000
Table G.1 TMP68010 Loopable Instructions
Applicable Applicable
Opcodes Addressing Modes Opcodes Addressing Modes
MOVE [BWL] (Ay)to(Ax) —(Ay)to(Ax) ABCD [B] —(Ay) to —(Ax)
(Ay)to(Ax)+ —(Ay)to(Ax)+ ADDX [BWL]
(Ay)to-(Ax) —(Ay)to—(Ax) SBCD [B]
(Ay)+to(Ax) Xy to (Ax) SUBX [BWL]
(Ay)+to (Ax)+Xy to (Ax)+ CMPM [BWL] (Ay)+ to (Ax)+
(Ay)+to —(Ax) CLR [BWL] (Ay)
ADD [BWL] (Ay) to Dx NEG [BWL] (Ay)+
AND [BWL] (Ay)+to Dx NEGX[BWL] |-(Ay)
CMP [BWL] - (Ay) to Dx NOT [BWL]
OR [BWL] TST [BWL]
SUB [BWL] NBCD [B]
ADDA [WL] (Ay) to Ax ASL [W] (Ay) by #1
CMPA [WL] - (Ay) to Ax ASR [W] (Ay)+ by #1
SUBA [WL] (Ay)+to Ax LSL [W] -(Ay) by #1
ADD [BWL] Dx to (Ay) LSR [W]
AND [BWL] Dx to (Ay)+ ROL [W]
EOR [BWL] Dx to —(Ay) ROR [W]
OR [BWL] ROXL [W]
SUB [BWL] ROXR [W]
Note: [B, W, orL]indicate an operand size of byte, word or long word.

VMPU-265

TOSHIBA USERS MANUAL

Postscript

This manual describes functions and characteristics of each LSI in TLCS-68000
family.

All examples employed herein are used as reference for the purpose of explanation.
Toshiba and Motorola disclaim all responsibilities for problems that may result from
using any of these examples. The information contained herein is subject to change
without prior notice as a result of future technical advancement.

This manual is made by :

Toshiba corporation

Integrated Circuit Div.

High End Microprocessor Engineering Sec.
580-1, Horikawa-cho, Saiwai-ku,
Kawasaki-city, Kanagawa 210

JAPAN

PHONE : Japan (81) 44-548-2190

[OVERSEAS OFFICES]

[

Séo Paulo:
Toshiba Brasileira Representacoes Lt
Av., Paulista, B07, 21 Andar Cjto 2106,
Cerqueira Cesar,
Cep 01311-Sdo Paulo-S P-Brasil
Tel. 2834511, 4714, 4964 Fax (11) 251-4104

Athens:
Toshiba Corporation Athens Office
Athens Tower Bldg. A, 2-4 Mesogion Ave
Athens 115-27, Greece
Tel.: 7799828-9, 7791824 Telex 21-6502 TSBA GR
Cable: TOSHIBA ATHENS

Tehran:
Toshiba Corporation Iran Office
No. 79 Bucharest Ave , 3rd Floor, Argentine
Square. Tehran, Iran
PO. Box 15745-343, Tehran, Iran
Tel 624729 Telex 212531 TSBAIR
Cable TOSHIBACO TEHERAN

Bel|ing:
Toshiba Corporation Beijing Office
Room 1622/1624 Beijing Hotel, Dong Chang An Jie.
Beyjing, The People’s Republic of China
Tel. 500-7766 (EX 1622 1624, 3857) 55-4179, 4768

(Girect)
Telex 22807 TOSPK CN Cable: TOSHIBA PEKING

Guangzhou:
Toshiba Corporation Guangzhou Office

Room 609, Office Tower, China Hotel, Liu Hua, Lu
Guangzhou, The People's Republic of China
Tel 663388 (EX 2609) 677427 (Direct)
Fax (20) 67-7427 Telex 44585 TSBGZ CN
Cable TOSHIBA GUANGZHOU

Shanghal:
Toshiba Corporation Shanghal Office
Room 2705 ~ 8, Shanghai Union Building Yanan Rd
East/Sichuan Rd . Shanghai The People's Republic of

China
Tel 200156 200157, 200076 Fax: (21) 200075

Wellington:
Toshiba Corporation Representative
in New Zealand
121h Fioor. Paxus House, 79 Bouicort Street
PO Box 3549, Wellington. New Zealand
Tel 721865, 726001 Fax (4) 731394
Telex: 3433 TOSHIBA NZ
Cable TOSHIBA WELLINGTON

Toshiba America. Inc.
Electronic Components Business Sector
Irvine Head Office
(MOS IC Div.. Semiconductor Div)
9775 Toledo Way, Irvine, CA 92718, U S.A
Tel (714) 455-2000 Fax: (714) 859-3963
Eastern Area Office
(MOS IC Div., Semiconductor Div)
25 Mall Road, 5th Floor,
Burlington. MA 01803, U'S A
Tel ' (617) 272-4352 Fax (617) 272-3089
South Eastern Regional Office
(MOS IC Div,)
4025 Pleasantdale Rd , Suite 320 Atlanta, GA 30340

SA

Tel (404) 493-4240 Far (404) 493-

San Jose Office (Electron Tubes & Devices Div)
Western Area Office (MOS IC Div |

2021 The Alameda Suite 220

San Jose, CA 95126, US A

Tel 408-244-4070 Fax 408-248-5370
Southwestern Reglonal Office

(MOS IC Div)

1400 Quail St , Suite 100 Newport Beach CA 92660
UsSA

Tel (714) 752-0373

Chicago Office (Electron Tubes & Devices Div
Semiconductor Div)

Central Ares Office (MOS IC Div)

1101A Lake Cook RD Deerfieid. IL 60015 US A
Tel (312) 945-1500 Fax (312) 945-1044
South Central Regional Office

(MOS IC Div)

1750 North Collins Blvd . Suite =116
Richardson, Texas 75080 U S A

Tel (214) 480-0470 Fax (214) 235-4114
Poughkeepsie Sales Office

(MOS IC Div)

RR 1 Box 6E

Windsor Park Fishkill. New York 12524 U S A
Tl (914) B96-6500 Fax (314) 297-2605
Boca Raton Sales Office

(MOS IC Div)

1200 N Federal vahway Smxa 407

Boca Raton, FL 33432 U

Tel (305) 394-3004 Fax 13055 394-3006
Detroit Otfice

(Automotiv Div |

26533 Evergreen Road

Sutte 420 Southfield. Mi 48076 U S A

Tel (313) 827-7700 Fax (313) 827-a44a

Toshiba (UK) Limited
Electronic Components Group
Riverside Way Camberley
Surrey GU 15 3YA UK
Tel 0276-694600 Fax 0276691583

Toshiba Electronics Scandinavia AB
Gustavslundsvagen 141 4th Floor
S$-181 15 Bromma. Sweden
Tel 46-8:704 0900 Fax 46.8-80 8459
Telex 14169 TSBSTK S
(Mailing Address PO Box 15031
$161 15 Bromma Sweden)

SALES SUBSIDIARIES

—

Toshiba Electronics Europe GmbH
Dusseldorf Head Office
Hansaallee 181, 4000 Dusseidorf 11
FR Germany
Tel (0211) 52960 Fax (0211) 5296-400
Telex 8582685
Liaison Offices

gart:
Eltinger Str. 61

D-7250 Leonberg F R Germany

Tel (07152) 2106166 Fax (07‘52) 27658
Telex 7245706

Munchen: Buro Munchen Arabellastr 33/v
8000 Munchen 81, F R Germany

Tel (089) 928091-0 Fax 089-9280942
Telex 5-212363

Toshiba Electronics Italiana S.R.L.
Centro Direzionale Colleon: Palazzo Orione-
Ingresso 3 (3° Piano) 20041 Agrate
Brianza (Milano), Italy
Tel 039-638891 Fax 039-638892
Telex 326423 SIAVBC

Toshiba Electronics Espafa, S.A.
Torres Heron Plaza Colén No 2 Torre ||
Planta 6-Pte-2
28046 Macrid, Spain
Tel (1) 53-25-846 Fax (1) 41:91-266
Telex 44672 TOSHE (E)

Toshiba Electronics Taiwan Corp.
Taipel Head Office
8F. Min Sheng Chen Kou Bidg 348-350 Min Sherg
East Road Taipel, Tawan
Tel 02:502-9641 Fax 02-503-7964
Telex 26874 TETTP
Kaohsiung Office
16F-A Chung-Cheng Building
No 2 Chung-Cheng 3rd 80027 Kaohsung
Tel (07) 2410826 Fax (07) 282-7446

Toshiba Electronics Asi;
Hong Kong Head Office
Suite 501 Hong Kong Hotel. Canton Road
Tsimshalsui. Kowloon. Hong Kon
Tel 3:671-141-4 37216111 Fax 3.739.8969
Telex 38501 TSBEH HX
Seoul Branch Office
Room 1061. Chamber Building. 45. 4-KA
Namgaemun-Ro. Chung-Ku Seoul Korea
Tel (2) 757-2472-3 Fax (2) 757-2475
Singapore Branch Office
460 Alexandra Hoad =26-01 PSA Blag
Singapore 0511
Tel 2785252 Fax 2735368
Telex RS 23892 TOSHIBA

Ltd

Toshiba (Australia) Pty. Ltd.
84.92 Talavera Road North Ryde NSW 2113
Australia

Tel [2) 8873322 Fax 2.887 3201 Telex AA27235

MANUFACTURING SUBSIDIARIES AND JOINT VENTURES

Toshiba America, Inc
Microelectronics Center
1220. Midas Way. Sunnyvale.

Toshiba Semiconductor Gm.b H
Grotrian Steinweg Ste 10, 3300

CA 94086 US A

Braunschweig F R Germany

Tel 408-739.0560 Fax 408-746.0577 Tel (0531) 31.0060 Fax (0531) 31006139

Telex 346378 Telex 952368 TSCD

Toushiba C Toshiba Electronics Malaysia Sdn. Bhd
Westinghouse Circle’ Horseneads. New York 42057 Telok Panglima. Grang. 15KM Klang-Banting
14845 US A road Kuala Langat Selangor Malaysia

Tel (607) 796-3500 Tel 03-352.6001-7 Fax 03-352.6139
Telex TOEL MA 39506
Industria Mexicana Toshiba, S.A Penang Branch Office
Calzaca de Guadalupe No 303 Cuatitian Lot 2 08 2na Floor. Wisma Chocolate Products
Edo de Mexico, Mexico 41 Adoo Sittle Lane Panany 10400 Malaysia
Tel 5650088 Telex 017-72-560 Tel 04368523 04-368529 Fax 04368515
Cable Toshiba Mexico
Toshiba Singapore Pte. Ltd
Semp Toshiba Amazonas S.A. 20 Pasir Panjang Road. 09:18/26 PSA Multi-Storey
Rua Ica No 500. Distrito Industrial de Suframa. Manaus. Complex. Singapore 0511
CEP 69000, Amazonas Brazil Tel 2718066 Telex RS 36592 TSPMFG
Tel (092) 237-2:
Telex 35922\97 SEMP BR Cable SEMP AMAZON

The information in this guide has been carefully checked and 1s believed 10 reliable. however
no responsibility can be assumed for inaccuracies that may not have been caught
All information in this guide 1s subject o change without prior notice Furthermore,
Toshiba cannot assume responsibility for the use of any license under the patent nghts of Toshiba or any third parties

TOSHIBA

TOSHIBA CORPORATION
INTERNATIONAL OPERATIONS—ELECTRONIC COMPONENTS

1-1 SHIBAURA 1-CHOME. MINATO-KU, TOKYO, 105. JAPAN
Tel 457-3495 Fax: 451-0576 Telex J22587
TOSHIBA CABLE: TOSHIBA TOKYO

MANUAL NO.

'88-8 (CK) 03 Printed in Japan

